untitled
Saturday, December 2, 2000

Last Saved:

Page 1 of 1
2:08:10 PM

December 4, 2000

This is Chapter 3 of the TX-2 User®s Handbook
dated August, 1963.

Help in obtaining the rest of this document,

and other material on TX-2, including software,
would be appreciated.

Al Kossow (aek@spies.com)

TX-2 USERS HANDBOOK

CHAPTER 3 - OPERATION CODE

TABLE OF CONTENTS

Page
3-1 BRIEF GUIDE TO THE ABBREVIATIONS + & « « « + o o o o o o o o o o o o o o o o o o« 33
3-2 OP CODE DESCRIPTIONS - (For In Out, See Chapter 4.) « v + . ¢ v ¢ v« v« . 3-5
3-2.1 TOAD-STORE CLASS o + « o o ¢ « « o o o o s s a o o o o s o o o a s oo 35
LDA, IDB, LDC, IDD, (IDE) - LOAD = « « v « & o ¢ o o o « o o s o o + » 36
STA, STB, STC, STD, (STE) = STORE = « = « « « = « o v o o o« « s « + . 3-8

EXA - EXCHANGE + « « « o = o = s o s s o v o o n s v s n v vsen. 310

3-2.2 INDEX REGISTER CLASS « « ¢ = « & « o o o o o o o ¢ o o s o o« o s o« « « 313

RSX - Reset Index e a1

DPX - Deposit INAEX « « o o o o o o o o o« s o s o s = s s o o o o s o 316
EXX - Exchange INGEX o + o « o o o o o o o o o s o s o o s = s o o . 3-18
AUX - Augment Index " e e s s e s s s e s e e e s s e oaoa e e s = . 320
ADX - Add Index e s s s 6 s e s s s 4 s e e e m s e s e e s s . 322

SKX - Skip on Index T a2t

JPX ~ Jump on Positive IndeX « + « o & o o + o o o o« « + o « o o« o . 326
JNX -~ Jump on Negative INd€X + « « v « « « « s o o o « s o o o o « « « 326
3-2.3 JUMP-SKIP CLASS e e e e e e e e e e e e e . 329

JMP - Jump (with variations) ., e e e e e e e e e e e e e .. 330

JPA - Jump on Positive Accumulator . « « « ¢ ¢ ¢« v ¢ 4 ¢ o 4 332
JNA - Jump on Negative Accumulator . . « « « o ¢ &« ¢ &« 4 o o o o o o« « 3-32
JOV - Jump on OveTrflow - + v o &« &« ¢ o s o o &t o o o o o o =« = = « o o 332
SKM = SKIp o Bit & & & ¢ ¢ 4 4 ¢ v 4 o o o t o o s e s e o s e e o« 3-34
SED -~ Skip if E DIffers .« & v« o« « o o o o « o o o o o o » e e e e e . 3236
3-2.4 SCAIE, NORMALIZE CYCLE " . v v v & ¢ 4 v o « s o o s o o e e e e . . 3-37
SCA, SCB, SAB - Scale e e e e e e e e e e e e e e v v e e e . . 3-38
NOA, NAB - Normalize e e e e e e e e e e e e e e e e e v e e . 3200

CYA, CYB, CAB = CFCLE '+ v v v o o o o o o v e e e e m e e e e w . 3k

August 1963

3-2.5 LOGIC, INSERT, COMPLEMENT/PERWTE .

ITA, UNA, DSA, ITE - Logic . . .

INS - Insert . . ¢« ¢ ¢ o ¢« o « &

COM - Complement/Permute . .

3-2.6 CONFIGURATION MEMORY CLASS
SPF, SPG - Specify
FIF, FLG - File C e e e
3-2.7 ARITHMETIC CLASS
ADD, SUB + &« v v + o ¢ o o &
MIL o « o ¢ v o v s o o o o«
DIV e o v v o o 6t v o o a s
TEY o v v 6 o o o v o s 0 o s
3-3 OPERATION CODE CHART (Wesley A. Clark)
3-3.1 NUMBER SYSTEMS .« « o « « .« .
3-3.2 GLOSSARY OF TERMS . . + + . .
OPERATION CODE CHART

3-3.3 NOTES ON THE CODING CHART . .

3-4 CHAPTER 3 INDEX (Alphabetical and Numerical)

Page

. 3-45
. 3-k6°
. 3-48
« 350
. 3-53
- 354
« 3-55
. 3-57
. 3-58
. 3-60
. 3-62
. 3-65
. 3-67
. 3-68
. 3-68
. 3-71
.- 3-73
- 377
August 1963

3-1 BRIEF GUIDE TO THE ABBREVIATIONS

Xj X Memory Register "j"
[XJ] Contents of X Memory Register j
T STUV memory address "T" (STUV memory is "S", "T", "U", and "V" memories)
T T+ X
J [J]
[TJ] Contents of STUV Memory Register TJ
Fa F memory register a
[F,] Contents of F memory register o
\a [TJ] [TJ] Configured as specified by o
q Quarter
L Left Half
R Right Half
S Sign of
SE Sign Extended (i.e. "With Sign Extension")
==> Is copied into (Goes into)
Examples:
a[T] ==> A The configured contents of STUV memory register T goes into the
accumulator.
5q3(A) ==> gha The sign of quarter 3 of A is copied into all of quarter U4 of the
accumulator.
[Xj] ==> L(T) The contents of X memory register j goes into the left half of STUV
register T.
L[T] ==> XJ The left half of STUV register T goes into X register j.
ql[TJ] == ch Quarter one of the contents of STUV memory TJ is copied into F

memory register «.

The notation below is borrowed from the M4 Utility system. (See Chapter 6.)
{w) Register Containing w

* Deferred address

A,B,C,D,E The AE addresses: 377604k, 377605, 377606, 377607, and 377610

The current location - i.e. the location of the instruction being performed.

August 1963 ' 3-3

3-2 Op Code Descriptions

August 1963

3-2.1 LOAD, STORE, EXCHANGE

LDA
LDB
LDC
LDD

LOAD AE (24-27)
LOAD E REGISTER (20)

LOAD means copy into the AE from STUV memory.

%pa T

J

Q’[TJ] == A

STUV memory is not changed.

IDA, 2k LDA
LDB, 25 24
LDC, 26
LDD, 27
LDE, 20

Activity, Sign

Extension, and permutation are used. ALL load instructions except LDE perform the standard

[Tj] ==> E.

EXAMPLES: **(Standard F memory - Chart 7-2)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENT
1 T .Since all four quarters
J [r,] =>4 b
i ‘ ‘ l J» are active, su w;rd form
1 LDA Tj [T] => E is immaterial. OLDA or
UL, A J 30LpA would be equivalent.
:] TJ The left half of A is
1 ‘ ‘ R[Tj] ==> R(4) not changed.
2 LDA T, (0.] o> 5
A J
] T 3 R[T J] == R(A) The 18 bit word from
STUV is "expanded" to
11 SR[T,] ==> L(A) *P
3 LDA TJ '——-———lll J 36 bits through "sign
(¢,,] - 100 | VZZITIZA a [7,] =>E extension.”
:j TJ A "Right Half Load" -
» \\\ L{Ty] == R(a) the left half of A is
4 LDA T | SO I i | [T] - E not affected.
R 7//////Y,. A J

**A11l examples apply directly to LDA, LDB, LDC, and LDD.

the final M to E copy 1s omitted.

3-6

LDE is essentially the same - only

August 1963

LDA, 2k LDA
LDB, 25 2y
LDC, 26
LDD, 27
IDE, 20

The left half of A is

unchanged. The right
half becomes the same as
A
:::] (Before) L[A] == R(A) the lef’céa In a similar
5. °Loa A \ manner, ~ LDA A sets the
. . , [A] == E left equal to the right.
S—// A‘}.ter) 1210 would clear the
left half word‘ through
sign extension.
| — ab[T J] ==> ql1(A) The nine bit number in
€ l6LDA T \ th[T,j] ==> ¢2,3,4(A) quarter 4 of 'l“j is
J — | expanded to 36 bits in A.
[F,¢] = 163 QIR A [y] ==>E
C—1 (Tk) |) This is double indexing.
R{(T,).] == R(A _
7. | ‘o (1,)% t 1 k'3 (1) = T+X X1
. , [(T.).] ==> E (Tt is not always faster
. //////1/, A k%3 because the defer cycle
taekes time also.)
August 1963 3-1

STORE AE (34-37)
STORE E (30)

STORE is a non-destructive copy from AE to STUV memory.
it becomes a partial store.

Gga T

J

Al == T

STA, 3k STA
STB, 35 34
STC, 36
STD, 37
STE, 30

With a partially active configuration
Subword form is meaningless - only active pathways are used. The

E register is set from the memory word after the store operation (except for STE which does not

change E).

EXAMPLES: **(Standard F Memory - Chart 7-2)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENT
V/////////////A [A] ST T,j is set from A, A is
IS, not changed. Since all
1. STA Tj 1 1 1 t % quarters are active, all
::] _ are copied into TJ.
Since there is no sign
. W7
‘ R[A] ==> R(TJ) extension, Mora would
1 >
2. STA Tj 1 T . have the same affect.
 E— [F,,] = ko
12STA would be exactly
V4 RA] = L(r.) ° actly
5 == 3 the same.
3. STA T ‘\\
This sets the left equal
74774/ R R[A] == L(A) to the right (as does
b 2Sma A ‘\\ 2IDA A). Since there is
: ** no sign extension on STA,
l2STA would do the same.

{Fez] = 232

*% After the store operation is complete, the new content of Tj is copied into E except for

the STE instruction which does not change E.

August 1963

STA, 34 STA
STB, 35 3%
sTC, 36
STD, 37
STE, 30

Quarter 1 is copied into

777 S R -
. qi[a] ==> Q3(TJ) quarter 3 of T.. The
5. | Pstat \ o .
J > rest of Tj is unchanged.
. ——
[F5] 762 A
Stores in the right half
) N 77777, TJ only - useful for setting
6. | LsrE TJ t 1 R[E] ==> L(TJ) address sections - (For
(Store E) — example, at start of sub-
B routines entered via hJPR).
7777777777 (T,) 3 [A] = (2.) Double indexing -
o k'3 (Tk)J = T+[xk]+[xJ]
T. STA {Tk]*
J *¥%
C——
- A

August 1963

EXCHANGE A (54) EXA
Sk

“al =1 S

'“chTj
L “[TJ] => A

EXCHANGE A is a combination of STA and LDA. Sign extension, if any, occurs only in A and after

Subword form, Activity, and permutation are all used.

the exchange of data.

The E register is set equal to the STUV memory word used.

EXAMPLES:
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENT.
700778 s [1.] => A
J
v oman | T .
J _ [A] ==> T
vrr177777777 3
T
—7777 R Rl] <=5 508 |
2. Yexa T : 3 t *%
J e R[A] ==> R(T,)
N 77777, B\ J
C—wza 7 SR[TJ] ==> L(A) Sign extension occurs in
A, but not in T,.
3. ipya T, t t R[Ty] =>R(A) ’ P
(T
[F,.] = 10 VA A -R[A] ==> R(T;))
11
7 T
7/ 3 L[TJ] ==> R(A) ’
L, 2Exa TJ . \\ *¥%
e L R[A] => L(T)
A J

*% The two copy operations that perform an exchange take place simultaneously.

Remember also

that E is changed - it is set equal to the final contents of the STUV memory word.

3-10

August 1963

54
77 A %3 w(r,] ==> aua
5. 5E)(.A T 3 \ *%
o @[A] ==>q3(T,)
[F5] = 762 [V7 A
When "A" is used as the
A address section, EXA has
2 7] (Before) the same affect as STA.
6 EXA A \\ No exchange 1s made, and
. A R[A] ==>L(4) there is no sign extension
N /777
(After)
7/ (Tk)j [(T)] s A Double indexing:
k’J (Tk)j = T+[xk]+[xJ]'
T. EXA {Tk]:)j('
e [A] ==> (Tk)
(L dd /77 A 3
August 1963 3-11

3-2.2 Index Register Class

RSX
DPX
EXX
AUX
ADX -
SKX ——— REX, SEX
JPX INX
INX DEX
SXD
SXL
SXG
RXF
RDX
RFD

¥* Supernumerary Mnemonics for SKX.

August 1963 3-13

RESET INDEX (RSX, 11)

aRst T

1] o> %,

J

RsX
11

RESET is a non-destructive copy from STUV memory into X memory.

Subword form, Activity, and Permutation are used.
The E register is set equal to the STUV memory word used.

EXAMPLES: (Standard Configurations - Chart 7-2)

(Usuelly "T", but see example 7.)

ABBREVIATED

' CONFIGURATION
NO. | INSTRUCTION DIAGRAM EXPLANATION COMMENT
T ORSX would do the same.
CI 1717 R[T] == X
1 J
Lo T R (2] -2
| N
A7) X‘j
‘ 1
11 ° 11] > X, 2RSX would do the seme.
2
2. RSX, T \\
J [T] ==>E [F,] = 12
273 X4
o s Qr] ==>Rr(x,) | The TIER helf of %, is
3 set from T. The left nine
3. RSX, T 1
3 e [T] ==>E bits are not changed.
X,
CTT T T q1i[T] ==> R(XJ) Sign of quarter 1 of T is
8q1(T) ==>1L(X J) extended throughout the
b 13RSXJ T 1 left half of X,. The right
| O
6 V74 X‘j (1] ==>E half is set as above. 33psx
=1
[Fl3] would do the same. [F33] = 320
CT T T T Nothing happens (other than
21 chenging E).
5. RSX, T 1 l [(T] ==>E
J LI
v 12 [T x,
[Fpy] = 230 3

3-1k

August 1963

DEPOSIT INDEX (DPX, 16) ~ DPX
16

aDPXJ T aE(J]% T

DEPOSIT is a non-destructive copy from X memory into STUV memc:y.

Activity and Permutation are used.

The X memory word is expanded to a full 36 bit subword by extending bit 2.9 (the X register
sign bit) but only active quarters are used. (The subword form is immaterial.)

The E register is set equal to the STUV memory used. (Usually "I", but see examples 8 and 10.)

EXAMPLES: (Standard F Memory - Chart 7-2)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION COMMENT
7 Only the right half of T
is changed.
1. lnpxJ T t ¢ E(J] - R(T)
E l X
J
NN A Only the left half of T
2 is changed.
|- DPX, T Ec‘)] = L(T)
X
3 x
DA\ T E(J] = R(T) All of T is used. Note
that DPX, T (or DPX T)
3. DPX, T bt t 4 °
3 SX‘j = L(T) is a handy clear instruc-
A B XJ tion. ([XO] = 40 and can-
not be changed.)
[:::E T Only quarter 1 of T is
changed.
b 3ppx. T f R[Xj] = q1(T)
I | X
J
T Only quarter 4 is changed
16 for only one path is active.
5. DEX, T RE‘;] = qk(T)
[F ¢l = 163 C—J x

3-16 August 1963

LA S SX, => R(T) All of T is affected.
; 3
6. 17 . .
DPX'j T % [XJ] == L(T)
poam———
= s e > x
[F,,] = 202 - — y
a1 T Surprisingly enough, this
21 does do something. (See
T PXJ T T 1 SXJ ==>L(T) example 5, RSX.)
I x
"""" J
[Fel] = 230
I //7//////, " [X.] =T Deposit is indexable with
8 1 (}* J k deferred addressing.
. DPX, {T 1 t
J Tk [Tk] =>E
1 x 5
VA WA T SX, =3 q3(T) Note that bit 2.9 of Xj
33 1 1 J is used even though quarter
9 DEXy T [XJ] = q1(T) | 2 is not active.
= 32 I X
[F33] 320 11— 3
—— [xJ] = R(E) V memory, except the A, B,
10. DPX 377720 1 1 1 C, D, and E registers can
' sxJ => L(E) not be changed by any instruc-
NG E— % tion. Note that E is set to

"what -would-have-gone -into-
T . ”"

August 1963

EXCHANGE INDEX (EXX, 1ht) ~ EXX
b

==> T
EX T
J

XX is a combination of RSX and DPX. Except for sign extension, it does Just what its name
implies - i.e. it will interchange words between X memory and STUV memory.

Subword Form, Activity, and Permutation are used. The E register is set equal to the STUV

memory word used.

EXAMPLES: (Standard F Memory - Chart 7-2.)

CONFIGURATION ABBREVIATED
NO. | INSTRUCTION DIAGRAM EXPLANATION COMMENT
T
/7. R[T] ==>X,
1. lr::cx‘j T t t [x,] ==>R(T)
[T Ny W (] ==>E
77777303
A 1] ==>X,
2Exx [x,] ==>1(T)
= J ! ..__&:_n [%] ==>E
Y7,)(‘j
T R[T] ==>X Note that left half of T
J .
[x,] ==>R(T) is cleared.
3 By T T 1 1 i s(x 9 ==> L(T)
I X br] —>x
7 T ‘-1_1[7] ==>R(X J) Nine bit exchange.
3 R[xJ] ==> q1(T)
* By t [7] ==>E
Xs
T : R[Xj] ==>gh(T) | Sign is extended in X,
16 adt] ==> R(X,) | but not in T.
5. EXX 4 I : , Sqh(T) ==> L(XJ)
[Fyg] = 163 zaza X (1] ==>E

3-18 August 1963

EXX

14
T {x.] ==>1(T) Sign of X, is extended
NN\ J J :
17 NN ifr] ==>Xx into the right half of T.
6 md T s(xj) ==>R(T)
(rpl =202 | U778 X, [r] ==>E
< T Same as 21D}?}‘I T.
oz] o 3
S@ﬁ->L@)
7. | Tmg i
1 (o] ==
[le] = 230 R xj
Y Tk R[Tk] —=5X EXX is indexable ;:Lf a .
8 1 (T ¥ 3 t [Xj] ==>'R(Tk) deferred address is used.
' J ok (1] ==>E
k
X,
sqr[T] ==> L(X,) .
Note that bit 2.
Y T ql[T] > B(X) ote that bit 2.9 is used
for sign extension (not 1.9).
9. 33mj T ; ; R[X,] ==> q1(T) -
(F] - 30 7.7 X, S(XJ) ==> q3(T)
33173 [1] => =
a 1o
C - T3S R[377720] ==> XJ Same as R:Xj 377720. (Tog-
1) l [X.] ==> R(E) gle registers must be changed
10. EXX 377720 l l 1 J c
J L[377720 —=> L(E) by hand. Note that E is set
vz XJ. to what would have gone into
T.)
August 1963

3-19

AUGMENT INDEX (AUX, 10)

AUX forms an 18 bit ring sum in X,.

AUX
10

AUX

z [x,] + °{x] —>x,

J

STUV memory is not affected.

Activity and permutation are used.
ory.

There is no overflow detection. All of X

If quarters 1 and 2 are active, subword form is immaterial.

3 is affected.

Sign extension applies to the operand taken from STUV mem-

If one quarter of the STUV memory operand is inactive (as in standard configuration #3, for

exa.mple) s +0 is used for thet quarter.

The E register is set-equal to the STUV memory word.

address is used.

See example 6.)

(This is "T" except when a deferred

EXAMPLES: (Standard F Memory - Chart 7-2.)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION COMMENT
E:E::] T Standard configurations
N [xj] + R[T] ==>X, #0, 11, 20, and 30 would
= AUX,j T l l [7] ==>E do the same.
7 X, (7, =180 [F,,] = 200
[FBO] = 600
I — T Standard configuration
5 \ [xj] + 1[T] ==> xJ #12 would do the same.
2. AUX T ’
. J [T] ==>E
7 X 5 [Fle] = 1k2
—— T Standard configuration
13 ‘ [xJ] + ql[T]SE ==> xj #33 would do the same (but
3. CAUX, T ['
(F]j” ‘6 7777 (] ==>E NOT #3!) (See note on next
137~ X, page.)
[F33] = 320
7. T This has sign exﬁension
Ui T ; [XJ.] + @[T]gp ==> X, to the right. (There is
b J 7 [T] ==>E no suitable standard con-
[Fot] = 220 Xj figuration.)

3-20

August 1963

AUX

10
T Register T is ignored, and
T
21 [XJ] + (+0) = xj Xj is not chenged. Except
5. AUXJ T l 1 for E, this instruction is
[C— [T] ==> B
N /7777 x'j innocuous.
V777 Tl; Same as example 1, but
1 % . [XJ] + R[Tk] ==> Xj indexed via a deferred
6. AUXJ {Tkl 1 l address.
g (r,]==>E
/7Y, XJ

NOTE: E is cleared and then loaded as if by aLDE. The sum of R[E] and [X,] then goes into X
(circuitously) end E is set equal to the STUV register used (ie.[T] or [Tk] if a deferred

address was used). XJ is always set.

Note - If either quarter 1 or 2 is not part of

an active subword, (as, for example, with standard configuration #3) one operand of the

sun is not completely specified and +0 wlll be used as that part of the operand.

August 1963

3-21

ADD INDEX (ADX, 15) ADX
15

ADX, T [x,] + 1) ==> T

ADX forms an £8__ bit ring sum usually in STUV memory although only the active quarters are stored.
There is no overflow detection. The operands are always 18 bit words - one from X memory the
other from STUV memory. A configuration should be chosen such that the word from STUV memory
has both quarters active, or is an extended 9 bit subword. If only one gquarter is active, the
inactive quarter of the operand is set to +0.

Activity and Permutation are used. Only active quarters are stored, but sign extension applies
to the operand teken from STUV memory.

The E register is set equal to the STUV memory word used. (This is "T" except when a defer is
involved. See example 6.)

EXAMPLES: (Standard F Memory - Chart 7-2)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION COMMENT
T left half of T is not
777/, [x,] + R[T] ==> RT
changed. The sum is
1 lADX T T T
[T] ==>E standard 18 bit ring
— XJ sum, also called "ones
complement sum."
i f t
7 T [xj] + L[T] ==> LT nght half of T is no
2 changed.
2. “ADX, T \\
J [T] ==>E
1 x y
v T | [x,]+allTlg => a(r) | TS gives a 9 bit xing
13 J sum. Configuration 33
3. ADX, T 1
3 [T] => E would do the same, #3
[Fl3] = 160 l:[Xj would not. See note next
page. The subword
length should be 18 bits.

3-22 August 1963

‘ADX

15
NOTE: In example 3, the 9 bit result is an honest 9 bit ring sum only when X'j contains an
extended 9 bit.word. (See RSX, example k.) ADX cannot be used to add a 9 bit word to
an 18 bit word. Use AUX.
Essentially the same as
P example 3 except that
. 77
aADXJ T [XJ] + qa[TJSE ==>q2(T) the left half of X, is
L. 1 significant. [Fa] illu-
[F,] = 220] x, [T] ==>E strated is 220. There
is no suitable standard
™ configuration.
] T "Nothing" is done here
o1 because quarters 1 and
5 ADX, T t T [r] ==>= 2'are both inactive.
] x
(F,,1 =23 3
Tk [X] . R[T] o> BT Same as example 1, but
1 * J k k indexed via deferred
6. ADX, {T } t 1
J Tk —=> E indexing.
. il =
J
NOTE: E is cleared and then loaded as if by “LDE. The sum of R(E] snd [x J] then goes into E
and an O‘S‘I‘}E.' is performed. lnactive quarters of the STUV memory word therefore remain
unchanged. If either quarter 1 or 2 is not part of an active subword (as, for example,
with standard configuration #3), one operand of the sum is not fully specified and +0
is used to fill out the operand.
August 1963 3-23

SKIP ON INDEX (SKX, 12)

Q

SKX, T

J

SKX

SkX (or REX, or SEX) provides 32 combinetions of setting, adding, comparing, skipping, fiag

raising, and dismissing - all relating to X memory and without changing the AE or the E register.

(See examples below.)

F memory is not used.

The configuration sylleble specifies the desired combination.

(Examples

1 - 8 show the use of bits 4.6, 5, L and examples 10 - 12 illustrate bits 4.8 and 4.7.)

"p" the address syllable, (or the final deferred address) is used as an OPERAND.

EXAMPLES:
MNEMONIC
ABBREVIATION ABBREVIATED
No. | INSTRUCTION (See Chart 7-3) DESCRIPTION COMMENT
SKX‘j T STUV memory is not used -
o REX 3 T "T" is the operand, not its
1 Sy T SEX T T ==> x,j location. The brackets []
(Set) were left out on purpose.
"Minus" T - i.e. its ones
2. lSKX 3 T (Set negative) -T ==> X 3 camplement is used to set
X,.
J
If the sum is zero, it will
2 INX, T |
3. SKX, T [X,] + T ==>X be -0 (all ones) unless [X,]
J (Increase) J J 3
was initially +0.
o 3 DEX T T Mp" s added to fXJ]. Zero
. SKX, T J X,] + (-T) ==>X
3 (Decrease) (x,1+ (-1) ==>X, is -0. It cannot be +0.
Skip if [X,] differs from T.
i [X,]F T g
L SXDJ T St J Note: (+0) = (-0) and if
5. SKX, T (Skip if X ; - 1) [X,] s initially (+0), 1t
i.e. 42 => P :
differs.) (is changed to (-0).
Skip 1f [X,] aiffers fram
¢ 5 (Skip if X £ [Xj]’é -T -T. Note: (-0) = (+0) and
. . T i ip -
SKX differs from Skip if [xj] is initially (-0),
negative.) (i.e. #+2 ==> P) it is changed to 40
Skip if [xJ] is less than T
¢ SXL, T If [xj] < T and if [xj] -T does not over-
T. sxxj T (Skip if X Skip - flow. (Skip range: T-37TT77
is less.) (L.e. #42 ==>P) to T) Note: If [Xj]is ini-
tially (+0), it is changed
to (-0)-

3-24

August. 1963

SKX

12
Skip 1f [Xj] is greater than
SXGJT If [xj] > -T -T and if [xJ] + T does not
7 (Skip if X Skip overflow. (Skip range: -T to
8. Skx, T is greater.) if.e. §42 ==> P 3TTTT7-T) Note: If [X,]
is initially (-0), it is
changed to (+0).
,[X,] is set equal to 'I.'k. e.g.
J *
a) SKX, {0} = set X
* * T+[X] => J Tk J
. + == N
9 SIG(J {Tk] REXJ {Tk) X, xJ L . from X
b) SKXJ {OJ) = Comple-
ment X,.
b
For § =1 to 378, RXF is the
RXF, T s same as OSKX for there are
10 T ==>X
10. SKX 5 T (Reset and J no flegs for these mumbers.
. 1 ==> Flag X
raise flag.) j | Note that flag zero can be
raised.
See Chapter 4 for the rami-
fications of "DISMISS."
o0 :RXD:J T T ==>xj If J = the current sequence
11. SKX, T (Reset and number, "T" is nearly imma-
J DISMISS
Dismiss.) terial for the subsequent
(See note 3) change of sequence will
change X 5
_ This is used to change
RFD, T
T ==>X 3 sequence number - often in
12. | Fsxx , T (Reset, Raise 1 ==> Flag, | the fom - 3Oskx gL T
flag, and Dis- DISMISS is ignored if j = current
miss-) sequence number.
Notes: 1. "Skip" means "omit the next instruction." i.e. "Go to #+2."
2. The configuration syllable is united with the rest of the ihstruction. It may be
given redundantly. e.g. DEX is the same as 3SIO(or lINX or 3DEX. ‘
3. The hold bit cancels DISMISS. (h 2OSKX is the same as SKX alone.)
L. RXF cennot be used as & Jump. Index register "j" is indeed set, but it will not
be copied into the P register, unless a change of sequence number occurs. (See
Chapter 4.)
August 1963

3-25

JUMP ON POSITIVE INDEX (JPX, 06)
JUMP ON NEGATIVE INDEX (JNX, OT)

JPX, T

JPX and JNX are "Loop-closing”, "Index-sensing" jump instructions.

follows:

Note: 1.
2.

L,

EXAMPLES :

[XJ] is Sensed:

(Zero is excluded.
JPX jumps on POSITIVE.
JNX jumps on NEGATIVE.)

JBX 06
JNX 07

Their operation is as

—

DISMISS occurs unless
cancelled via "h".

L

a

E is not changed.

If it JUMPS: If it does not:
#41 ==> R(E) 1 => P
T ==> P There is no DISMISS

i

J

The increment is ad&ed:
n+ X, = [Xj]

(This is done whether
it jumps or not.)

If the sum is zero, it is -O.

n" 1is a signed integer:

F Memory is not used.
A deferred address determines where to jump to, but not if, and the second
index register is not modified.

-17 to + 17

1. Straight Table Scan (100 register
table located at "TABL.")

JPX b.) JNX

Start - REX, 77 Start - lsxcx‘j 7

Loop ~ LDA TABL, Loop - LDAA(TA.BL+77)J.
nt opx , Toop ntt o Loop

This program scans the table
"packward through the manu-’

script.” (i.e.,

highest
memory location first.s Note:
Xj is initially set to + (n-1).

3-26

This program scans "forward
through the manuscript.' (i.e.,
lowest memory location first.)
Note: X, is initially set to
- (n-l).J

August 1963

2. To

JPX JNX

06 07
th
scan every n table register
s) SIART ~ REX, (TL - n) b) START -]ms:x.j (TL - n)
LDA TABL‘1 I.DA.j TABL + TL - n
" Jex y #1 ' ' , #1

These programs run for (;TI—I"-) {iterations if we assume that TL (Table Length) is an
integer multiple of n. As written, they scan the first register of each block of
n registers. To scan register "i" of each block, the LDA instruction could be
written LDA (TABL + i) 3 for example "e" (JPX) and LDA (TABL + i + TL - n) 3 for
example "p" ().

3. Interlaced Table Scan

NOIE:

August 1963

Scope flicker can be reduced by an interlaced teble scan. The fact that the change
in X, is made after the jump decision causes a scomewhat peculiar parameter configu-
ration, but the progrem logic is essentially the same as above. For example, if "C"
is the interlace, "TL" is the Table Iength, and if "C" is not a factor of "IL," the
program below scans the whole table with an interlace of C. (1f "C" is a factor of
TL, the program degenerates to example 2a.)

* L

START - :!"REXJC 0 L q
’ 0T 5 5

IN'X'J TL A/ ,/,p 1 1

’ oy
LI-J;\(TABL+C-1)J ﬂ7- 6:4/ %'fba
h JPXJ#—l [

IMP #-3

If C = 3, and TL = 7, the table is scenned in the following order: 6, 3, 0, L, 1,
5, 2, 6, 3, 0, etc.

1. "Zero" used as an address (as above) is always +0.

2. M4 automatically puts a hold bit on JPX and JNX to cancel the automatic dismiss
(see Chapter b and Chepter 6).

3. The address of & deferred JNX or JPX is completely determined before the index
register is changed. Therefore a —lJPXala S would Jump to Sa. as defined by the
original contents of Xa - if it jumps at all.

3-27

3-2.3 JUMP SKIP CLASS

JMP
JPA
JNA
Jov
SKM
SED

August 1963 3-29

JUMP (With Variations)

e 7

J

05

JMP is en unconditional transfer of control. It means go to T (or TJ) for the next set of

instructions.

DISMISS
S (See Chap. 4)

Saves last memory e

5.8 K7 k6 W5 L

The configuration syllable "Q" does not refer to F memory but is used directly
to provide 32 variations of JMP as illustrated below:

I

[

reference in L(E)

1 = "BRANCH" = An indexable JMP
lJMPEBRCEGotoTJ

[
1

Saves return point (#+1) in XJ
2.J'MPE.J’PSEGoto T, save

return point in X .f

d
Saves return point (#1)
in R(E)t
EXAMPLES: (See #10.) ‘
SUPERNUMERARY JUMPS
NO. INSTRUCTION MNEMONIC TO COMMENT
1 0
. JMP TJ JMP T,j T X‘j is ignored.
2. Ine T ; BRC T T, Indexable Jump = BRANCH
(Branch) .
3. e T 5 JPS T T Jump and save return point (#+1) in
(Jump and Save) the specified index register (X,).
' Branch and save, X 3 is used to
3 evaluate the jump destination T 3
k- Mp T,j BRS TJ Tj and is then reset to the return
point (#+1).
(Branch and Save)
5. l‘JMP T 5 - T xJ is ignored, #1 is saved in R(E)
6. 3up Tj l‘BRc T 5 T 3 Return point (#+1) is saved in R(E)
s b Return point (#+1) is saved in R(E)
& M T JES Ty T and &lso in X,. -

+ In Mb terminology, the symbol "#" is an sbbreviation for the location of the current

instruction.

(See Chapter 6.)

3-30

August 1963

JMP

05
XJ is used to determine the Jump
7 L destination T, and is then reset to
8. JMP TJ BRS TJ Tj the return point (#+1). The return
point is seved in R(E) as well.
The memory location of the last
. data reference is saved in L(E).
a1 - T
9. 3 (i.e. the contents of the Q
register)
~ Jump, save "p" (i.e. #+1) and "g"
(location of last data reference).
10. th'MP T JPQ T T This is the recommended Jjump, for
the information saved is often of
use in checkout.
This instruction is the same as JPQ
11. 15mp TJ BPQ TJ T3 except thet the jump destination
is indexed.
16
i12. JMP TJ . JES TJ T Jump, save in E, and in XJ.
13. O T ; JED T T Jump, Dismiss.
1h. Lo 7 s BED T, Ty Branch, Dismiss.
15. 22JMP TJ JDS TJ T Jump, Dismiss, Save in XJ.
16. e TJ BDS Tj TJ Branch, Dismiss, Save in XJ.

Jump and save return point (#+l) in the specified index register (Xj).

NOTE: A superscript numeral can be used redundantly on supernumerary mnemonics. For example:
160p = 65ms = 55 = 27pq = 1%7PS etc. (Mb "unites" them into the word.)

August 1963

3-31

CONDITIONAL JUMPS JPA (46)
JINA (47)
Jov (45)

JPA - Jump on Positive Accumilator
JNA - Jump on Negative Accumlator
JOV - Jump on Overflow

(¢4
JPA T
J

a
JNA T
J

o
JOV T
S

The conditional jumps go to T 3 if the conditions are satisfied by any active subword. Permuta-
tion is ignored. The return point (#+1) is saved in E if the jump takes place. The accumletor
and overflow flip-flops are not changed. Note that these conditional Jjumps are indexadle.

>

EXAMPLES:

#. A Four-way Switch:

Jov. OF **% Goes to OF if overflow exists (Zh =1)
JNA N1 *¥%* Goes to NL if A is negative.
JPA Pl ** GCoes to P1 if A 1s positive.
- ** Continues if A is zero.
#2. Overflow:

3OJOV T 3 is equivalent to 37JOV T 3 for both configurations specify the same active
subwords. If any of the four overflow flip-flops are set to 1, control will go to

T 3 The overflow indicators (Zh’z3’2'2’zl) are not cleared by JOV.

Active subwords use the overflow indicator associated with the sign quarter, e.g. Z2
is associated with the right half word, Zh with the left half word.

#3. To Detect Minus Zero in an Index Register:

(JNXJ T or JPX, T will not Jjump on either + or - zero.)

J
DFX A
lDPXJ A ** (0,,-0) or (0,,+0) now in A
JPA T1 *¥% Goes to Tl if -0 in right half word.

¥* Continues if +0 in both halves.

3-32 August 1963

JPA (L6)
JNA glvr)
Jov (L5)

#4. 18 Bit Zeros Again:

207pn 1P ** One half (or botk) positive - (Goes to 1P)

20mva 1N *% One half (or both) negative - (Goes to 1N)
JPA PN ** Left (4+0), Right (-0) - (Goes to EN)
JNA NP ** Left (-0), Right (+0) - (Goes to NP)
*% Both (+0) or Both (-0) - (Contimue)

August 1963 . 3-33

SKIP ON BIT (SKM, 17) : " SKM

7
c
qu.b T
"Skip-on-a-bit" uses a one bit operand. It has 32 variations - some with M4 Supernumerary
Mnemonics. The basic variations ere as follows:
b9 4.8 k7 L6 k5 L4
L1 A L
Nt st —————m—it
00 - No skip 4——-' ‘-—-— 00 - No change »
0L - Skip unconditionally Ol - Bit is complemented
10 - Skip if bit = 0 10 - Bit is set to O ("Make Zero")
11 - Skip if bit =1 11 - Bit is set to 1 ("Mske One")
("Skip" means "go to (#+2)"
i.e. skip over the next L If 4.6 =1, T is cycled right once. (Rotated)

instruction.)
The bit in question is identified by its quarter number and bit number as diagrammed below:

I T .1 3.9.........3.1 2.9......... 2.1 1.9.cc..nenn. 1.1
L L | - 1 [

The meta bit is No. 10 (dec.). (SKM is the only instruction that can affect it.)
The parity bit is No. 11 (dec.).

The parity circuit is No. 12 (dec.).
(Any quarter number will do for the parity and meta bits.)

These can not be changed by SKM.

Bits and quarters are numbered from right to left and should be in subscript when used with SKM.
(See chapter 6, page 6-7.) The bit designation goes in the "J bits" (3.6 - 3.1}, as follows:

3.6 3.5 3.4 3.3 3.2 3.1
|] |

Quarter No.-‘_J L____d> Bit Number (When given in the form indicated above,
(00 refers to qbt) Bit Numbers are interpreted as Decimal,

-

e.g. 4.10 is the usual metabit designation.)

SKM is therefore non-indexable except through deferred addressing.

If a non-existent bit is selected, e.g. bit 0.0,1.0,2.0,3.0 for example, Unconditional Skips
(SKU) and Rotate (CYR) will still work, but "makes" will do nothing, and conditional skips
will not skip.

3-34 August 1963

SUPERNUMERARY MNEMONICS (See Chart 7-3)

MKC

SKU
suc
1174

SKZ,
szcC
S22
SZN

SKN
SNC
SNZ
SNN

MCR
MZR
MNR
SNR
SZR
SUR

- lSKM ~ Make complement
- 2SKM - Make zero
- 35KM - Make one

10

- “VYsSKM -

11

- “TSKM -
- lstM -
- L3sim -

2

- OSKM-

21,

- ““SKM -

22

- SKM
- 23sm -

- 3Ogkm
- sxm

b

32qxm
33SKM

- TSKM -
- JsKM -

6

- JSKM -
- T -

3k

Skip
Skip
Skip
Skip

Skip
Skip
Skip
Skip

Skip
Skip
Skip
Skip

unconditionally, (go to #+2)

and complement

and make zero
and meke one

if
on
on

on

on
on
on

on

bit

=0

zero and complement

zero and make zero

zero and mske one

one

one

one

one

Cycle memory

end complement
end mske zero
and make one

once to the right (rotate)

Make complement and rotate

Make zero and rotate

Make one and rotate

- “ SKM - Skip on one and rotate

- 2)"'SKM - Skip on zero and rotate

1

- 7 'SKM - Skip and rotate

NOTE: "Skip" is first, "make” next, and "rotate" last. b'SZZ =
and then rotate.

EXAMPLES:
1.

To copy & bit:

SKzZ Q2.3

SUN Tl.l

MKZ Tl.l

August 1963

2. To clear n

Sets bit T, | Rex, (n-1)
equal to MKZLL lOlOtT
bit Q, 4 Lo 1

3-35

SKM
17

26

SKM = Skip on zero, make zero,

metabits starting at T

** i.e. MKZ, | T }*

SKIP IF E DIFFERS

SED compares all active quarters of E and T
difference exists the next instruction is skipped over.

Program Counter) can be chenged. (E is not changed.) Subword Form is immaterial.

SED

SED T

Only P can
be changed.

J

according to the given permutation. If any

No registers other than P (the central

EXAMPLES: (Standard F Memory - Chart 7-2.)
NO. INSTRICTION DIAGRAM COMMENT
[::] T 3 #+2 =» P if E differs from T 3
1. SED 'I‘J l l I | #+1 =» P if they are identical
L 1 =
:} T 5 The left half of T 5 is compared
12
5. 20 TJ \\ to the right half of E. (~°SED
is identical.) [F12] = 142,
1 =
] = The right and left halves of E
22S E are compared. 17SED E, 2SED E,
3. ED // 12 22
SED E, or ~ SED E would have an
] E identical result.

3-36

August 1963

3-2.4 SCALE, NORMALIZE, CYCLE

SCA
SCB
SAB
NOA
NAB
CYA
CYB
CAB

August 1963 3-37

SCALE SCA, 70
SCB, TL
SAB, 72

(o]
%5ca 7, Nalx2 Ty e a

"SCALE" multiplies each active subword by "a power of 2," i.e. by 2" where n is a signed integer
specified in T 3 Each active subword can be scaled a different amount. The D register is used
to count the binary shifts. The details are as follows:

a) An %DD T, is performed (with permutation and sign extension as called for).

J

b) Each active subword (of A or AB) 1s scaled according to its sign quarter in D, and
these sign quarters are left set to -0.

c) ~If en overflow exists for an ective subword, the proper result is recovered by comple-
menting the sign digit after the first shift, and the indicator is cleared. This rule
is used for all operands - left (+), right (_), and zero. Overflow can not affect SCB.

Notice that SCALE amounts to shifting all the bits except the sign left or right and filling
the vacant positions with copies of the sign bit (i.e. with #0). SCALE senses overflow and
corrects the sign bit if necessary. SCA and SAB always clear the overflow flip-flop - even if
bits are lost off the left end. SCALE never sets the overflow flip-flop.

EXAMPLES: (SCB is illustrated to avoid overflow complications.)

CONFIGURATION - ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENT
:] {-4,) [B] x o~k ==>B (-4,] is a M4 convention
t l l l for A register with -4
1. SCB{-4,) -0 ==> q!(D) in quarter 4. See Chap-
VLAY P 43,2,1{T;] ==>q321(D) | ter 6, page 6-7 and 6-10.
2
g4[B] x 2° ==> qU(B) Quarter 1 of B is not
30 [:.__:_l () -2 changed. The sign bits
SCB (N} a3[B] x 27 ==>q3(B)

are never changed. Bits

2. 'l' l l i 3o q2 (B)
N = 27750030000y} Y, T, ¥, ¥, 2[B] x 27 ==>q2 (may be lost off either

W//////////A D -0 ==>D end without any alarm.

‘The left halves of B and

2

2SCB {n} :] () R[B] x 2% ==>R(B) D are not changed.

3. \~\A -0 ==>q2(D) Note that gl of (N}
N = 27750030004,

- 775 ==>qL(D) specifies the argument
ZR of the scale operation.

\

3-38 August 1963

SCA, 70

Note: Scale can of course be indexed - e.g. SCA T 3 vhere the argument comes from T 5 It is

more common programming practice to use an RC word - e.g. SCA(-1,].
4, oOverflow: (SCA and SAB)

a) To "recover an overflow":

LDA {200 000 000 000) **Acc. will now be 40O 000 000 000 (a nega-

ADD (200 000 000 000) tive number), and z, {overflow bit #4) will
'be "l"-

sca {-3,) #*-3, = TTh 000 000 000. After the scale,

Acc. will be 0O 000 000 QOO and Zuvwill be

"o". Z3’Z2’Z1 are not sensed nor changed.

(Any negative argument will suffice.)
b) Only active subwords are processed:

IDpA (200 300 koo 100}

30ADD {200 300 400 300} *¥Ace. will be 40O 600 001 LoO.
*¥A11 four Z flip-flops will be "1%,
Blgca (774 774 TTH T7H) **0nly L(A) is scaled. Acc. will become

040 060 001 400. Z), will become "0O",
Z_?’,Za,Z:L will remain "1".

Isca (774 774 77% 774 **0nly R(A) is changed. Acc. becomes
040 060 700 140 and Z
and Zl are still "1".

becomes "0". Z

2 3

Note that Zl‘.,Z3,Z2 ’Zl are overflow indicators. They tell whether overflow has
occurred. An overflow resulting from negative numbers (as in g2 above) is not

treated any differently.

5. Subword forms for the AB register:

R E i ! g J
b) "8 - 18" |s a) | um s R(A) | R®) |
c) “27-9" |s qk32(A) | ab3(s) -Hs al(A)} ai(3)]
a) "9-9-9-9" s au(n)i ab(m) |5 a3(A)i a3(8)|[s «2(a)] w2(a)] [s w(w) a(®)]

Note that all of B is part of the subword. There is only one sign bit in anAB subword.

August 1963 3-39

NORMALIZE ACCUMULATOR

NORMALIZE AB (Extended Accumulator)

NORMALIZE scales Jjust enough to remove leading zeros or to

the active overflow indicators.

yon T

Al x 2"% ==> A

O‘[TJ] - nz ==> Sq(D)

NOA 64
NAB 66

"recover" from OVERFLOW. It clears
The number of leading zeros (nz) is subtracted from the argu-

ment from Tj (a[TJ]) and this difference is left in the Sign Quarter of D. If an overflow con-
dition exists at the start, "nz" is -1, the scale is one place to the right, and the sign is
complemented - just as for SCA or SAB. If nz is zero, it is +0. (See Note L also.)

\.

NOA and NAB start with an cZI..DD Tj' nz" is subtracted from the sign quarter(s) and the rest
of D is not changed. The E register becomes a copy of TJ'
EXAMPLES:TT (Assume that NO OVERFLOW exists.)
ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
"nz" is the number of
[___————] {+0} [A] x 27% ==>A " "
leading "zeros in the
1. NOA(0} l l l l -nz ==> g4(D) original contents of A.
7 +0 ==> 3,2,1(D) ("Zeros" can be positive
¢ - 22
zercs or negative zeros.)
The left halves of A
R[A] x 2"% ==>R(A) and D are not changed.
[_—__—:l {+0} "nz" is the number of
"zero" in the original
. 2uoao) \\ -nz ==> g2(D) '
contents of the right
W 7//7/p +0 ==> q1(D) half of A. Note that
the result in D is a
nine bit numeral.
ZR " 1" " "
R[A] x 2®7 ==>R(a) ZR" and "ZL" are the
EED: (N} a-ZR ==> q2(D) leading zeros of the
17 right and left 18 bit
3. NOA(N) ‘% b ==>q1(D) words of A. (N} is a
N = a,b,,c,d [i | L[A] x 2ZL . -
> 7 - ==> L(A) register containing
] - o0 | ANZAND ;
17 c-ZL ==> ql(D) a,b,c, and d in quarters
4,3,2, and 1.
d ==>q3(D)

1t Brackets({} are used in the TX-2

See Chapter 6, page 6-10.

M4 Assembly Program

3-40

to indicate "Register Containing",

August 1963

NOA 6k
NAB 66

nz with a 27,9 split,
qb32[A] x 27% ==> qh32(A) both counts will be

CITTTim a-nz ==> gl(D) 26 if [A] 18 zero.

(See note on page

. “Noa(N) l l l l b ==> q3(D) 3-6L.)
N = a,b,,c,d | ‘\——ut ¢ ==> q_2(D)
o = %00 C—/— o

al{A] x 2"% ==> q1(a)

d-nz ==> ql(D)

5 - A sample program — Evaluate V = xyz
This product could have 105 significant bits (3 word lengths). One must resort to
programmed arithmetic to get them all, but normalize can be used to get the 34 most
significant bits. Consider the programs below.

Without Normalize: With Normalize:

ILDA X LDA X

MUL Y MUL Y

MUL Z NAB (0}

STD T

This program puts the 35 left bits MUL Z
of the 105 bit product in A and SAB T
essentially worthless numerals in
B. The answer in A may be too small With normalize, the product is given
by 1 (in the 35th place). in AB, to 35+nz places from the sign.

(It may low by 1 in the (35+nz)th
place.) "nz", the number of zeros,
is in T (in negative form). nz
could be as much as 69 so the last
SAB may not be desired. For example,
if the NAB instruction above were
replaced with NAB{34.,} the answer
in AB can be considered a 71 bit
integer.
NOTE: 1. NOA and NAB leave E set the same as the memory register used.
2. If overflow exists, "nz" is -1 so [Tj]+l ==> 5q(D).
3. NAB is essentially the same instruction - using the double length word (AB) instead.
(See page 3-39 - "Subword forms for the AB register".)
L. Normalize is an arithmetic instruction. The sign bit is not counted. "Leading

zeros" will, of course, be plus or minus zeros - i.e., the same as the sign.

August 1963 3-41

CYCLE

Geya T

J

CYA, 60
CYB, 61
CAB, 62

CYCLE légically falls in a class with LDA and STA, for it is most easily considered as a bit

shifting instruction and the sign bit has no special significance.

are inserted at the other.

None are lost.

Bits shifted off one end

However, since the practical details of its use

are so similar to SCALE, it is ususlly grouped with SCALE and NORMALIZE. The use of the
memory word is the same as SCALE.

a.). An “LDD T,

is the first step.

©.) Each active subword is "cycled" or "rotated" according to its Sign Quarter in D

and the sign quarter is left at -O.

connected - and can be considered as & ring of bits.

For cycle, the active subword has its ends

If the number of places

equals the subword length, the instruction does not change the subword. You can

therefore arrive at any new position by cycling either way - the short way takes
less computer time. The sign bit is handled no differently than the others and

no bits are lost.

c.) Overflow is ignored.

d.) The E register becomes a copy of the memory register used.

EXAMPLES: Assume [A] = 123 456 765 l‘32(8) at the start

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRITPION COMMENT
1) 247 135 753 064 ==> A One 36 bit ring cycled
1. CYA(+1,) l l l l -0 ==> g4(D) once to the left.
L |
Ay D +0 ==> q3,2,1(D)
T T 246 ==> ql(A) The four quarters
led tel,
3OCYA{N] 135 ==> q3(A) are cycled separately
2. i.e. four nine-bit
N=1,1,,1,1 | Jalanlanla 753 ==> q2(A)
RS D rings, each one bit
065 ==> ql(A) to the left.

3-42

August 1963

Assume [A] = 123 456 765 1*32(8) at the start.

CYA, 60
CYB, 61
CAB, 62

3. Zcya(-3,)

| I—

7\ R

[T Je3

276 543 ==> R(A)

-0 ==>R(D)

The left halves of

A and D are not
changed. The right
half of A (a ring

of 18 bits) is cycled
3 places to the right.
i.e. one octal place.)

DPX B
' CAB{+3,}

N=3:21:5)'6 NN
RN D

234 567 654 320 ==>A

000 000 000 001 ==> B

-0 ==> gl(D)
+2 ==> q3(D)
+5 ==> q2(D)
-6 ==> q1(D)

The 72 bit ring -AB-
is cycled 3 bits,
i.e. one octal place
to the left.

NOTES: 1.
3.
August 1963

The E register becomes a copy of the memory word used.

CYA, CYB, CAB are indexable, and, of course, deferred addressing cen also be used.

(Neither of these is common.

Most users use RC words.)

CAB uses the same word structure as SAB and NAB.

3-43

3-2.5 LOGIC, INSERT, COMPLEMENT/PERMUTE

ITA
ITE
UNA
DSA
INS
COM

August 1963 3-1;5

BIT LOGIC INSTRUCTIONS

For these instructions, the word is considered
each bit column is a separate entity.
active subwords - with sign extension if applicable.
es usual, identical to the memory word used.

For ITE, the operand is the active quarters only.

‘GITA T

J

I}

;] & [a] =>4

For ITA, UNA, and

ITA L

DSA 65
ITE Lo

as a string of independent bits

For these three, the E register is

There is no sign extension.

result, .of course, goes into E and there is no final E register copy from memory.

DSA, the argument a[TJ], is all the

set,

All these instructions are indexable and of course indirect addressing can be used.

INTERSECT

Name UNITE DISTINGUISH**
Abbreviation ITA UNA DSA¥*
ITE
Symbol A v @
Other Names "AND" Inclusive OR Exclusive OR
Partial Add
e 4 o4 [0
T T
[r,] [,] [,]
Logic o 1 0o 1 0o 1
Disgram 0o 0 0 1 olo 1
a
Yal *a] (]
110 1 111 1 111 ©
Note that this is Note that this is
the "carry" that the Partial Sum.
results from
addition.
3-46

August 1963

(IT4) (una) (Dsa)
Typical Masking - e.g. Bit Setting, or Bit Complementing -
if T,j contains 77 clearing to minus if T 3 contains T7
Use ITA T; clears all zero - if T, contains DSA T 3 complements
:zs.: gxgizz for the T7, UNA Tj sets the the last 6 bits.
* last 6 bits to 1 with-
) out changing the rest.
0 ' 30
Special %8B (-9,-9,,-9,-9) s (-9,-9,,-9,-9) SAB(-9,-9,,-9-9)
Example ITAB _ UNA B _ D_SE_E ________
F. = 600 If positive, A is If Negative, A is set | The a:iocllutervaluﬁ or
30 cleared to +0. The to -0. The original magnitude or eac,
original [A] goes in- [A] goes into B. quarter goes into A
to B. The original [A] goes
into B.
All quarters are
active and in-
dependent.
#* Note: DSA affects both the C and D registers. The effect on D is equivalent to LDD T,.

The effect on C is equivalent to forming the carries and uniting them with the original J
contents of C. - i.e. ([A]A[TJ]) v [c] ==>c.

No- | INSTRUCTION

CONFIGURATION ABBREVIATED DESCRIPTION COMMENT
DIAGRAM
7 =
. L -M T R [le v R[A] => R (a) T, is unaffected.
J # ‘ The left half of A
l) ¢) [TJ] => E is also unchanged.
7/
TJ is unaffected.
N e R R R R
2 ITA T
3 ! L sk [T,]a L [A] = L (a) | with bit 2.9[of]TJ. -
55777 Hence, if R [T is
V22228 A [Tj] => E positive, L(A)J is
cleared.
T, is unaffected.
[77 TJ R [Tj] a R[A] => R(E) L(E) is unaffected.
3| Yo ¥ extension on IT5.
(r,] = 10| (V27 *
R [TJ] @ R [A] == R (a) DSA affects registers
T A, C, D, and E.
[:: J R ETJ} => R (D) See note above.
T,] => E
1 1 3
b DsA T, . l , (R[r,] o AD) v R[C] => R(C)
R

August 1963 3-47

INSERT

INS 55

a
J

msr, | ((alnBD v ((ElD,]) 5 7, |*

Insert is a partial STA (store accumulator) instruction — only those bits marked by a1l in

the corresponding column of B are stored in T,.

changed.

to the final contents of the memory word used.

There is no sign extension, and [A] is not
If [B] is minus zero (all cnes), INS is identical to STA. The E register is set

EXAMPIES: (Standard F Memory - Chart 7-2)
CONFIGURATION MASK :
NO. INSTRUCTION DIAGRAM (CONTENTS OF B) COMMENTS**
Y
7772722 *s [A] > 7). 05 15
1. INS Tj t T T T -0 identical to STA when
[B] = -0.
C—————— 3.
I ‘ = .
Y T R[A] > Ty Tmi; time
t .
2, INS T,j T T f T 0,,7TTT7177 it looks like a “STA Tj,
because of the mask.
.
Bit 1.1 of A is copied
_ﬁ T,j into position 1.1 of TJ'
3. 31ns TJ T 4,2,,3,1 Quarters 2,3, and 4 are
inactive. No other bits
A are changed. L3ys T.j
would do the same.
[Fl3] = 160
Bit 1.1 of A is copied
; %- TJ into position k.1 of T.j'
L, INS T. \ 4,2,,3,1 Note that permutation
J has no effect on the use
— of B. ‘frys T, is
identical.

*%In all cases, there is a final copy into E from the memory register used.

t+ "Insert" is also given by ([A] v [E]) A ([B] v [Tj]).

August 1963

' ’ INS 55
' CONFIGURATION MASK
NO. | TNSTRUCHION DIAGRAM (CONTENTS OF B) COMMENTS**
T | al[A] = HCRpS
> 3INS[TR}J* T 16,5,,6,7 3STA see would dbe
W equivalent.
A
[::j T s Since [B] = +0, nothing
6. INS T 3 T T T t +0 happens.
.
21 (ister) qat[A] = qs(Ai- only
T. 2II\TS A 4,5,,0,7 quarter 3 of A is
changed. (Because of
L________] A the mask.)
(before)
August 1963 349

COMPLEMENT - PERMUTE

Coom T

J

T, is permuted.

COM - Complement - performs two basic operations.

(PT) COM
56

The active subwords of T, are

J

complemented (one's complement - all ones become zeros and vice versa) (with sign extension)

and all quarters are permuted whether active or not.

COM permutes all quarters of T

equivalen{: to COM.

There are 4 basic steps:

without changing the data.

Note that if all quarters are inactive,

PMT 1s another abbreviation -

1. [TJ] => E , permuted according to .
2. Sign extension occurs in active subwords.
3. Active subwords are complemented. (C[E] => %)
4. [E] => T, straight - no permutation.
Note that, as usual, E is the same as Tj at the end.
EXAMPLES: (Standard F Memory - Chart 7-2)
NO. INSTRUCTLON CONFIGURATION ABBREVIATED COMMENTS
DIAGRAM DESCRIPTION
T T, =T All of T, is
C—— 1 7% [zy] => 3
1 coM T + * | ‘ (vefore) complemented
J ——
v T T.l => E
/I [z,] =>
: (after)
I:: T L{r,] => R(T,) The halves are
3 J J reversed and the
2 Zoon T, S (pefore) right helf is
L e)
7// T R[T] => L(T,) complemented.
777 3 J 3
(after)
) 3 | #iisan) |amese,s,
and 4 are set to
3 180 7, S~ (before) the complemented
D - fm 1 - L(T sign extension.
rgl-163 | 4 % |ST) = @.3,km)
(after)
3-30 August 1963

No. INSTRUCTION CONFIGURATION ABBREVIATED COMMENTS
DIAGRAM DESCRIPTION , o
oo 1, U I U N
J J quarters are
N XK inactive, the
a = 172 [r,] = R (T,) data is not
(a1l inactive)] * J J changed - 1t is
J (Simultaneously) merely permuted
according to
the given con-~
figuration.
T [t ,]=>T This has
* E——————:J k,d k,J k,J double index-
5 CoM (T, }; 1 l l l ing.
(WL S S A T =T+
1 T => E k
T] %, (T, 51 => »3
+
[x] + [x,]
Note: Since COM does not use any register other than T 37 there may be some confusion
as to the meaning of "Activity". In this chapter, quarters for which arrows are
drawn are active. To be consistent with other instructions, one should say that
the permutation comes first, complementing second, and sign extension last. If you
use the phrase "Active Subwords of T J" » the order of the first two is inmaterial
since both operations can be considered to teke place simultaneously. In any event,
sign extension uses the complemented sign.
August 1963 3-51

3-2.6 CONFIGURATION MEMORY CLASS

August 1963 3-53

SPECIFY FORM (SPF)
SPECIFY GROUP (SPG)

SPF (21)
SPG (22)

C

SFF TJ ql [TJ] => F,
ql [TJ] => F,
N

C

see T, e3(n]l = T,
1k [TJ]V => c+3

"Specify" copies from STUV memory into F Memory. (STUV memory is not changed.) SPF
N

sets only one F Memory word. SPG sets four. F Memory addresses are consecutive modulo 3,78 -

i.e., 0,1, 2, ..., 368, 37g:0, 1, 2, etc. These instructions are indexable but not configur-

eble. The E register is set, as usual, to the contents of the memory register used.

EXAMPLES:
NoO. INSTRUCTION DESCRIPTION COMMENT
5] ; v
1l SPF T.1 -~ F, is permanently set
to +0 and can not be
changed.
q 2[T ,1] => F,
2 Sspg TJ q 3[TJ] = F, Seme as #1.
q l&[!ll‘:j] => F3
q l[TJ] => Fgp F, 1is, of course, not
37 _ changed. The F
3 SFG T, a 31} => T Memory eddress "c" is
_ normally given in OCTAL
q h‘[TJ] => F,

August 1963

FILE FORM FLF 31
FILE GROUP) FIG 32

FIF T, (F] => qi(1,)

(r] => i (T,)

[Fc+1] => qe(TJ)
FLG T ‘
I [repl = a3(z))

[Feu3] => a¥(T,)

"File" copies from F Memory into STUV Memory. (F Memory is not changed.) File Form (FLF)
copies a single 9 bit word, File Group copies four. They are indexable, but not configurable.
The F Memory Addressing is modulo 378— i.e. "e" =0, 1, 2, ... 368" 378, 0,1, 2, ... etc. The
E register is set as usual, to the contents of the memory word used.

EXAMPLES :
NO. INSTRUCTION DESCRIPTION _ COMMENT
o Fo is permanently
1. FLF Tj +H => q_l(TJ) set to 40.
0 =» q1(T J)
[Fl] =» q2(TJ)
2. °F1G T -
3 [F,] => a3(T,)
[F3] =5 qh(T.j)
[F36] = Q1(TJ) ~ The F Memory address
36 [F37] - qZ(TJ) ¢’ 1s normelly
3. FIG TJ given in octal.
+0 =» q3(Tj)
[F] => al(ty)

August 1963 3-55

3-2.7 ARITHMETIC CLASS

ADD
sUB
MUL
DIV
TLY (TALLY)

August 1963 357

ADD (67) ADD (67)

SUBTRACT (77) ' ' 8UB (77)
% pp T, %a] + a[TJ] = %
%uB T, %a) - a[TJ] = %

ADD and SUBTRACT are -straightforward one's complement (RINGED) arithmetic instructions.
The use of configuration is similar to LDA. A zero result is negative except when both argu-
ments.are\ zero at the start -(+0) + (+0) = +0; +#0 -(-0) = +0. There are four overflow indica-
tors--a séparate indicator for each active subword. The indicator is cleared before the
arithmetic is done and is set to a one for either type of overflow--(too negative or too positive).
(With one's complement arithmetic there is a sign reversal when overflow occurs. The scale
instructions take this into account.) Sign extension occurs prior to the arithmetic. The D
register is set as if an aLDD TJ were done. The C register is set to the carries from
each column. {In the case of subtract » "c¢" contains the carries from adding the complement
of [Tj]‘) The B register i1s unaffected. The E register is set, as usual, to the contents

of the memory word used,

EXAMPLES: (Standard F Memory - Chart 7-2)

i CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
[a] + [Tj] => A The expression
T gy | we Do [BRES .
= ADD Tj J [TJ] =~ D equivalent to saying the
l l l l 3 7 "carries" of each bit
: [T J] => E column go into the cor-

responding bit column of

v/ s e Z, is set if over-

flow occurs.

T R{A] + L[T,] => R(A) | The left half of the A,
N R S ey
- D L{T,j} => R(D) if overflow oicurs.
Z TJ. => E
T [a} - [T.] => A Z, is set if overflow
l:] ! fA]l A ﬁj_]- => C ol:curs.
3 SUB T, ,llll, [r;] => D
D (r,]=> =

3-58 August 1963

ADD (67)

. SUB (77)
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM + DESCRIPTION COMMENTS
o (2 T 606 => ql(A) {277) is the ML repre-
N {277} J "
. 3 1 => Zl senta;i;m fgfn a 'x"egister
containing .
ADD [307} l 207 => ql(C) (8)
307 => q1(D)
77
307 = E
6 [::] TJ 201 => q1(A) {510,0) is the Mk rep-
. LpA {510,0} : 1 = z resentation for "A
5. p \ \ 1 register containing 510(8)
D = ;
ADD {470,0) :10 > qIEC; in quarter 4, and zero
= 70 => ql(D in the rest of the word."
V4
4 470,0 => E See Chapter 6.
Note: The four OVERFLOW indicators are associated with the subwords by Sign Quarter

Number. See table below:

August 1963

OVERFLOW INDICATOR

SUBWORD
Quarter 4 Zl..
Quarter 3 Z3
Quarter 2 22
Quarter 1 Zl‘
Left Half Zh
Right Half 22
Full Word z)
27 - 9 z, end Z,

3-29

MULTIPLY (76) » ‘ MUL (76)

“wr T Al x a[TJ] => %aB) | -

"MUL" forms the double-length, ones-complement product of [A] ana [T J] and stores it in
A and B. The extra bit of B -~ at the extreme right -- is set equal to the sign bit of the

product, i.e., to + O. (Bit 1.1 of B = Bit 4.9 of A after MUL.)

i — T — |
&.‘\.}ign» __/g“% s Full Product : :JI\+O(Same as the)

Bit "\ sign Bit

The use of configuration is similar to LDA and the relevant overflow indicator (correspon-
ding to the active sign quarter) is cleared. No overflow can be generated. The active

subwords of C are cleared to +0 and D is set as if anaLDD T. had been done. The E

J
register is, as usual, set to the contents of the memory word used.
EXAMPLES: (Standard F Memory - Chart 7-2.)
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
R [(a] x [1,] => AB "AB" is the double
_ . length register
t L TJ fg ;i bét 1-1(B) diagrammed above.
. 4 It is also used with
\] +0 => C SAB, CAB, and DIV.
07777772773 o (1] = D Bit 1l of B is
[T,j] = dependiﬁg on the
sign of the product.
l:' T s 000 => g1l (A) With standard con-
3 050 => q1l1 (B) figuration 3,
2 LDA (5] 000 => g1 (C) a1[AB] is an 18-bit
3w {4} l ook => q1 (D) register composed of
T 0 => Zl quarter 1 of A and
7 quarter 1 of B. The
L V74D other quarters are
not changed

3-60 ‘ August 1963

CONFIGURATION ABBREVIATED
No. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
L 1 Ty + 0 ==> R(A) The left helf
IDA (- e words are not
(-3} 000030 ==> R(B) changed.
3. 1 . +0 ==> R(C)
MUL (-
-4 . i - 4 ==> R(D)
77 -b=> E
0 ==> Z2
- 3000 == B
. DA
l"; (io 1 1 1 1 o ~ ;
MUL (- 3
(} - 400 ==> D
027 © - 400 ==> E
o == Zl{.
— 0 == 20)
o Only the right
2m (3, 0) 000030 ==> R(B) helf words are
5. Iy + 0 ==> R(C) changed.
2wt 4 ,, 0 — + 4 ==> R(D)
777/ (+4,,0) ==> E
0 ==> 22
Note: When a 27-9 subword form is used, the Arithmetic Step Counter is set for the
27-bit word, if it is active. This results in too meny steps for the 9-bit
word if it is active also. (This is true for MUL, DIV, NOA, NAB, and TIY.)
Normael use of this subword form is for floating numbers of the form N = x . Y
(27 bits for "x," 9 for "y"). Since different operations are performed on the
two syllables, both subwords will not be active at the same time.
August 1963 3-61

DIVIDE (75) DIV (75)

] + %] ==>a)

%y T,

Remainder ==> B

bIVIDE considers the contents of AB (except for the lowest order bit of B) &as the
numerator and the contents of T 3 as the denominator. (Note that it is compatible with MUL.)
Configuration is similar to AID, LDA,Y etc. The Quotient is stored in A with the appropriste
algebraic sign. The remeinder is stored in B with the same sign as the original numerator.
(The sign of the remainder is at the left, as usual.) (SAB (+n} will bring strange bits into

A for the remainder (in B) is not an extension of the quotient.)

[aB] =q+ & Q==> A

[TJ] [TJ] R==> B

The relevant overflow indicator is cleared at the outset and an overflow will be generated

if | [A] | exceeds or equals | [TJ] | -

Note: 1. If [{A]] < 2- l[TJ]I overflow, if any, is guaranteed recoverable via
SCA {(-n} . SAB (-n} will also recover the correct answer, but it will
destroy the remainder.
2. If both [AB] and [T,j] are normalized (as per NAB and NOA), the condition
ebove is met, and any overflow is recoverable.
3. On overflow, the sign of A is always the reverse of the proper
algebraic sign.

L. If overflow is not recoversble, both [A] and [B] are useless.

X - N, eand Overflow is set. (This is true for any N.)
+0

6, L. n , and Overflow is set. (Also true for sny N.)
-0

7. Divide clears C (as if by %ne {0}) and sets D (as if by %pp Tj)'
8. The contents of the memory register go into E, as usual.

9. See also note on page 3-6l.

3-62 : August 1963

EXAMPLES: (Standard F Memory - Chart 7-2.) DIV (75)
' CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
r—-_——': 7, [AB] + [TJ] => A |Overflow, if any, sets
1. DIV T l 1 1 l Remainder => B |24
+0 = C
_ [TJ] => D
7777774 D (7] = E
» f___::l TJ R[AB] + R[TJ] => R(A)|Overflow sets Z,. The
s lDIV " Remainder => R(B)|left half of the arith-
. 3 1 +0 => R(C)imetic unit is unchanged.
L ; R[TJ] => R(D)
N W72 » [TJ] => E
I:‘___‘___"] T 3 00k => ql(A) |The numerator is actually
3 N half of 000052 since the
3. LDA {000} 001 => qL(B) | vest order bit of B is
31'_,1)3 {052} 000 => q1(C) |not part of it. In deci-
N mal, we have 21 + 5 or
3p1v { 5 - D 005 => al(D) |} Htn a remainder of +1.
= 005=> E
0=> 2z
| G o | [| e e ue) e
. IDB (725,} =9 therefore -21 (decimal}.
6 +0 => qi1(c) |[1f [A] were 40, the
pIv { -5,) il -5 => ql(D) [numerator would be
7 +72 ' :
[A » (-5,) => E 2122 gy or 23k (dectnal).
0 = 2 '
1
August 1963 3-63

TALLY (74)

TLY (74)

%

Crry 7,

T] ==> A

J

count of ones + [SqD] ==> SqD

TLY (TALLY) loads A (as does LDA). Then the count of ones is added to the sign quarter

of D.

The rest of D is not affected.

The E register is set, as usual, to [T,j]'

The sign digit is counted also if it is a "one".

EXAMPLES :) .
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
’ [:j T,j [TJ] =>A "n" is the number of
n+qh{D] => gbD ones in [TJ]' The
1. TLY TJ l l l l [T] = E addition is regular 9-bit
) J ring addition with no
[A A overflow detection.
: (+0) +0 =>A The D register is not
_ changed
2. TLY (+0) l l l l *0 =>E
S, SR A |
77777772778 A
:___:::l (-0) - 0 =>R(A) The left half of A is
1. _ not changed. Only the
3. oY (-0} 18+¢2{p] => q2p sign quarter (No. 2) of
. =0 = E D 1s affected.
[WL |
VA A
Note: When a 27-9 subword form is used, the Arithmetic Step Counter is set for the

27-bit word, if it is active.
word if it is active also.

This results in too many steps for the 9-bit
(This is true for MUL, DIV, NOA, NAB, and TLY.)

Normal use of this subword form is for floating numbers of the form N = x - ol

(27 vits for "x," 9 for "y").

Since different operations are performed on the

two syllables, both subwords will not be active at the same time.

August 1963

3-65

3-3 OPERATION CODE CHART (Wesley A. Clark).

August 1963 3-67

3-3.1 Number Systems

Let S be a binary number of length A

3 number ranges ere commonly used:

1) Positive Integers (e.g., r, P, Q)
0<8 < 2"

2) Signed Integers (e.g., XJ)

@M i1) <8 < o+ (20T

- 1)
3) Signed Fractions (e.g., A in MUL, DIV)
-2y g < w - 27 ()

Negative number represented by "Ones Complement" of corresponding positive

N number. s é:g S (complement of s).
Two representations of number zero _g_ : zi : A bits in length

Reduction Modulo u

For positive integer § 0< 8 < 2u

S if S< p
S modu =
S-p if 8> p

Example: 6mod 7T=6,8md7T=1

3-3.2 Glossary of Terms

h Hold bit

c Configuration

i Instruction

J Index

r effective address

Wr memory operand

Wr* Permuted Memory Operand

Wr 3 Memory operand (indexed)

Wr j* Permuted Indexed Memory Operand
r,rexj Operand addresses

D' Leftmost (sign) quarter of D

(Wr J*)' Leftmost (sign) quarter of permuted indexed memory operand

G Group ¢

3-68 August 1963

EXAMPLE 1

, EXAMPLE 2
S, T A-bit binary numbers . S 010 011 101 111 011 o0lo
) Complement of S (sign bit complgmented] S 101 100 o010 000 100 101
<S> Inversion of S <S> 110 011 101 011 0l1 o010
RS Positive (counterclockwise; left) unit
rotation of S RS 100 111 o0l0 110 110 101
Rls | Negative (clockwise; right) unit N
rotation of S RS 101 o001 110 0ll 101 101
2x8 Unit positive scaling of 5 (S scaled
up by one) 2x8 000 111 010 110 110 101
2y 5| Unit negative scaling of S (S scaled 1
down by one) 2™ x 8 001 001 110 111 101 101
(scaling is rotation without change
~ of sign bit) _
n(s) Normalizer of S (S signed fraction)
% < | A8 « g | <1 n(s) 0 2
Note: n(0) = n(0) = A -1. (Used as
9-bit number.) .
+(s) Tally of S (number of ones in S) (used
as 9-bit number.) +(s) 5 6
T 011 010 Oll 011 010 Ol1
SAT S and T for each bit SAT 010 010 001 0l1 010 010
b, b=l, 2,
SvT | 8§ or?T eoe 3 A sy T 011 011 111 111 011 011
S@T S or T but not both s®@ 001 001 110 100 001 001
SeT A-bit binarz rinE sum of S and T ® 101 110 000 010 101 110
SeT A-bit binary ring difference = (S T) {S©T 111 001L 001 100 000 111

August 1963

Enclosed expression espplies to each active quarter of operand

Enclosed expression applies to each active subword of operand

A blank box indicates that no change is

mede.

3-69

LN
[¥

— INSTRUCTION EXECUTION TABLE. Insrawriews[h,o,i,7,4} (kwrtses ang E,~;-v'-a-‘-::._év';fz;-‘g&;:"_5'~~ vawes)
AN i v
Coven amn] & Loppn | wanr lomen] P Q X, Wy MW Z(&) A B Cc o] €
en cvie6) o] Vi Wt |y P L]
o 28] SPF | sveciov vomm ¢
a2} spe [sreciry snow .
1.2 Tulrir [rice_somn Pot [A6X; 3 ®
2. 32] FLe | riLe swoum [N
201 LDA fLOAD A Y]
° 151108 j\cAD 8 [¥id
26}10C fload ¢ MWL
271100 {10AD D) W
JeiSTA jSTORE A A
afsTe [srone a S
1.2 Dulsvclsvont ¢ c
I713TD |SToRE O . b
39 | Exa | Excuaner A Q@ . A) W
2.4 Jaslwms _mslnf -i::%)\
411 ITA mTRasEcY A As
fazjuma jumre A Au‘q
o 45| 0sA jmsr A A® A Wl e
s7]ase [am) Y™, w3
T7]3U8 | sweraaer A S WS A A Wiy
P18 151 2 [mun | meamimer o o AW —
PeY fAGXg - 1 0
sl w v [wvse o] @ (A YA/ Vo
(*)'/ wlcra |evete A Py ®
P " C2jcAs [eveix A ~'Al
)< [aifern [evare » -
| =0 R
ro]sca [scas A 2arao PP
WAt Y g
Yoo 2490 ¢ay 7
A
% , " [
Z(A)so =)’
<y #0 |72 [340 | cae an P 2T
"y 247 an) ®
. 7 W
Iw_‘l 2(1#)0-_ 2+'-AB) '~y
7 [sch ke @ P
o | HOA | woamarize A | Ziares '-00. A (W;)'edx)
%% @]zt o |TAY (w3 s
66 | HAB | meamaLizg AS | 2(a)e P IS (“:)'em
() Rixl (2"« AB)) e |
i2 316'2] vy | Tanr ®] we o' b))
o0l A o
] cKY| pat s A
SKR| SKrP on .
36 'zl(nsx) LNDEX 2 B | ®
Pz 3 1%,0,
| ¥ . .
56 1PMT | peapvrt a =y [y
Lo CcOm | commenenr ® ®- W o
0 A e € : [
2 laolsre [srorx @ Pel jaeX '3
' 201018 | ivremagey 8 i € AWE
o Jasjsio [amie w0 [oule
T irrzas EA LT
2.0 Liz]sam { s -manz [[A (2] N ®
-] LI (wW,>)
1.2 Iw]|om]ecerosir x SXi)%y
4.2 [wlexx|escuance x Per [(W)) Xg ®
8 10 | AVX | AvemENT X x oL a N
2 Islaox Javy x X (nlly
o4l TPX | Tunr en Xi€O0 | Prt @ h
3.2 ronivive X Xj >0 N ey (By): (Ea):
OTLINK | Jvmr o Xy <0 (Pt
womve X Xi20] Pe i
461 TPA | TUMP o A>o JPer T
PeoivivE A A >0 K M
1.6 Jor|na]some on ‘Ao %X :"'
nieATIVE A R0 »]
] Jov | Jume o Ty T
) SVERTLOW “ﬂg\q A X{ . .’" '
os|INP | Jump coven| A ’
1.2 SAC | BRANCH ¢ wad |28 X7 @ @ ; @
7] TS0 | rRAwsFER resay P
1.6 ATA -
- [Pl AGX; @ @ ©
August 1963

3-71

3-3.3 Notes on the coding chart
8

1. In all expressions P + 1, P + 2, sums are reduced modulo 21 .

(TTTTTT + 1) moa 218 - 0.

2. For SFF end FLF only quarter one -of er is used. SPG and FLG use all
four quarters. F memory addressing is counted modulo 37g (e.g., 36, 37,

0,1...)
3. If reXx - 377604 (address of A reg.) then EXA has same effect as STA.

k. Finel value of WQ => (Q=r,r8 XJ).

5. ADD, SUB overflow conditions:
If A®W = A+ W Then 0 ==> Z(A)

If AW # A+W Then 1 ==> Z(A)

Z(Ah3) = Z(Ah2) = Z(Ab,]_) = Z(Ah) = le-

Z(A3) = z3

z(Ay,) = z(a,) = 2,

z(a) = 2z,

6. DIV Conditions:
CONDITIONS z(A) A B
|W,,*]> |48} | o Quor REM
lWrJ*l # 0 [er*r:. IAB‘ T 1 JUNK FONK
< - .
|AB| =0 A W
1 =

Sign of normal remainder = sign of dividend (AB).

JUNK is recoverable if |A| <2 lwrj*l .

Expressions listed are not correct for guarter (subword) 1 of A, B, snd D'

if a 27, 9 subword is chosen, and if quarter 1 is active.

8. CYCLE, SCALE, and NORMALIZE instructions begin, in effect, with LDD.

* ==
Weg > E'1
T
9. PMT, COM consist of 3 consecutive steps: er* => E
f
E == wrj

August 1963 | 373

10.

SKM variations:

0 M ab selected bit
q mod 4{ b o
¥ .q.10(dec) = ¥r
3.6}3.5] 3.4 3.313.2]3.1 M -
‘ ' .q.11{dec) Py :
q = quarter; b = bit Mr.q.la(dec) = parity (Mr)
CONDITIONS ACTIONS
FUNCTION e " (SKIP, Then MAKE,
1.8 b.7 5.6 .5 44| TPl mmen cycrm)
0 0 - - - - P+1l==> P
SKIP o 1 - - - - | P+a== P
SKIP on 1 0 - - - 0 P+2==> P
ZERO 1 P+1==> P
SKIP on L1 . . . 0 P+1l==> P
ONE 1 P+2==> P
- - - - 0 - -
COMPLEMENT - - - 0 1 - M .q.b ==> Mr.g_,.b
MAKE ZERO - - - 1 o - 0 => M. o
MAKE ONE - - - 1 1 - ' 1 > r.q.b
-1 -
CYCLE - - 1 - - - R W ==>W
r r
11. SG(XJ) is 18-bit number 00 ... O or 1l ... 1 according as sign bit of X
is 0 or 1.
12, ADX , AUX consist
of sequence of steps:
ADX
E2l
E
13. ¢ is 18-bit signed integer expansion of c¢. (0 < e< 37 ; -17

3-7h

. August 1963

August 1963

1h.

15.

JMP, BRC veriations: _
) c
FUNCTION al « _ ACTION
L8 h7| b6 b5 by
JUMP -1l -1-1-10 ==> P
BRANCH -l -1-1-11 X, ==>P
- - - - 0 - -
SAVE -l -1 -111 - P+l==> X,
- - - 0 - - -
P+1=>E} - | - 1. - - P+1 ==>’?21
- I o - -] - -
Q == E : - 1 . - - Q == Ell-3
- : 0 -1 - - - -
DISMISS 1| -1-1-1- £ h=0,0=>¢
TSD (Unit R
- (Unt eady) assembly
normal : mode
l mode l out in
out in ! Y
W% > U, =>E ey = U Ug => ¥y
r) K - —y
] IR Yy REV _FWD y |
B> Ug| | BN gt Wy > | R, =
3-75

August 1963

NUMERICAL ORDER

OPERATION PAGE
I0S L7
JMP 3-30
JPX 3-26
JINX 3-26
AUX 3-20
RSX 3-14
SKX 3-24
EXX 3-18
ADX 3-22
DPX 3-16
SKM 3-34
LIE 3-7
SFF 3-54
SPG 3-54
IDA 3-6
1LDB 3-6
Loc 3-6
1DD 3-6
STE 3-8
FIF 3-55
FIG 3-55
STA 3-8
STB 3-8
STC 3-8 -
STD 3-8
ITE 3-46
ITA 3-k6
UNA 3-46
SED 3-36
JOV 3-32
JPA 3-32
JNA 3-32
EXA 3-10
INS 3-48
coM 3-50
TSD k-g
CYA 3-k2
CYB 3-42
CAB 3-k2
NOA 3-40
DSA 3-46
NAB 3-4o
ADD 3-58
SCA 3-38
SCB 3-38
SAB 3-38
TLY 3-65
DIV 3-62
MUL 3-60
SUB 3-58

CHAPTER 3

INDEX

3-77

ALPHABETICAL ORDER

CODE NO.

67 .
15
10
56
62
60
61
75
16
65
54
1L
3L
32
55
i
k1
ko

>
7

7
45
L6

6
2L
25
26
21
20
76
66
64
11

PAGE

3-58
3-22
3-20
3-50
3-42
3-k2
3-k2
3-62
3-16
3-46
3-10
3-18
3-55
3-55
3-48
b-7

3-46
3-46
3-30

3-26

Py
W RS

3-26

(P RV
1

1 11

wwwwwcf:wwuw

3-36

ww -:-wwtluwwww

	03-01
	03-02
	03-03
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-13
	03-14
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-53
	03-54
	03-55
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-65
	03-67
	03-68
	03-69
	03-71
	03-73
	03-74
	03-75
	03-77

