MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

TX-2 USERS HANDBOOK

ALEXANDER VANDERBURGH, Jr. (Ed.)

LINCOLN MANUAL NO.45

JULY 1961

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachuseits Institute of Technology,
with the joint support of the U.S. Army, Navy and Air Force under Air
Force Contract AF 19(604)-7400.

LEXINGTON MASSACHUSETTS

Note to TX-2 Users -

The TX-2 Users Handboock will be printed in several installments - you
now have the first. There will be seven chapters - they are listed below in

order of (expected) appearance:

Chapter 4 - In-Out System - Sections L6 and T4 (Mag. Tape and
Plotter) to come later.
" 7 - Charts
" 6 - M4 Utility System Summer '61
" 5 - Iights and Buttons
" 3 - Operation Code - Fall '6fl
" 2 - Functional Description Who knows?
" 1 - Introduction

Your comments, criticisms, and (unfortunately,) corrections, are

requested.

A
A. Vanderburgh‘

July 1961

TX-2 USERS HANDBOOK

CHAPTER 3 - OPERATION CODE

TABLE OF CONTENTS

3-1 BRIEF GUIDE TO THE ABBREVIATIONS . .

3-2 OP CODE DESCRIPTIONS - (For In Out, See Chepter 4.) .

3-2.1 LOAD-STORE CLASS .

LDA, IDB, LDC, LDD, (IDE) - LOAD - .

STA, STB, STC, STD, (STE) - STORE -

EXA - EXCHANGE -

3-2.2 INDEX

RSX

DPX

AUX

SKX

JPX

JNX

REGISTER CLASS .
Reset Index
Deposit Index
Exchange Index
Augment Index
Add Index

Skip on Index

Jump on Positive Index .

Jump on Negative Index .

3-2.3 JUMP-SKIP CLASS

JMP

JPA

JNA

Jov

SKM

SED

Jump (with variations) .

Jump on Positive Accumulator .

Jump on Negative Accumulator .

Jump on Overflow .
Skip on Bit

Skip if E Differs

3-2.4

August 1963

SCALE, NORMALIZE CYCLE
SCA, SCB, SAB - Scale
NCA, NAB - Normalize

CYA, CYB, CAB - Cycle

3-1

Page

3-5
3-5
3-6
3-8

3-10

3-13
3-1k
3-16
3-18
3-20
3-22
3-2h
3-26
3-26
3-29
3-30
3-32
3-32
3-32
3-34
3-36
3-37
3-38

3-k2

3-2.5

3-2.6

3-2.7

3-3 OPERATION
3-3.1
3-3.2
3-3.3

3-L CHAPTER 3

LOGIC, INSERT, COMPLEMENT/PERMUTE .

ITA, UNA, DSA, ITE - Logic .
INS - Insert

COM - Complement/Permute
CONFIGURATION MEMORY CLASS
SPF, SPG - Specify

FLF, FLG - File

ARITHMETIC CLASS

ADD, SUB

MUL

DIV .

TLY .

CODE CHART (Wesley A. Clark)
NUMBER SYSTEMS

GLOSSARY OF TERMS .
OPERATICN CODE CHART

NOTES ON THE CODING CHART .

INDEX (Alphabetical and Numerical)

3-2

Page
3-45

3-46
3-48
3-20
3-33
3-5k
3-55
3-57
3-58
3-60
3-62
3-65
3-67
3-68
3-68
3-T1
3-73

August 1963

3-1 BRIEF GUIDE TO THE ABBREVIATIONS

Xj X Memory Register "j"
[Xj] Contents of X Memory Register j
T STUV memory address "T" (STUV memory is "S", "T", "U", and "V" memories)
T, T + |X,
J [x,]
[Tj] Contents of STUV Memory Register Tj
Fa F memory register &
[Fa] Contents of F memory register <
o [Tj] [Tj] Configured as specified by o
q Quarter
L Left Half
R Right Half
S Sign of
SE Sign Extended (i.e. "With Sign Extension")
==> Is copied into (Goes into)
Examples:
o‘[T] ==> A The configured contents of STUV memory register T goes into the
accumulator.
Sq3(A) == akA The sign of quarter 3 of A is copied into all of quarter 4 of the
accumulator.
[Xj] ==> L(T) The contents of X memory register j goes into the left half of STUV
register T.
L[T] == Xj The left half of STUV register T goes into X register j.
ql[Tj] == Fa Quarter one of the contents of STUV memory Tj is copied into F

memory register .

The notation below is borrowed from the M4 Utility system. (See Chapter 6.)
{w) Register Containing w

* Deferred address

A,B,C,D,E The AE addresses: 37760k, 377605, 377606, 377607, and 377610

The current location - i.e. the location of the instruction being performed.

August 1963 3-3

3-2 Op Code Descriptions

August 1963

3-2.1 LOAD, STORE, EXCHANGE

DA
LDB
LDC
LDD
LDE

STA
STB
STC
STD
STE

EXA

3-5

LOAD AE (2k-27)
LOAD E REGISTER (20)

LOAD means copy into the AE from STUV memory.

Extension, and permutation are used.

[Tj] ==> E.

“roa T,
J

a[Tj] - A

FEXAMPLES: **(Standard F memory - Chart 7-2)

LDA, 24 LDA
LDB, 25 2k
LDC, 26

LDD, 27

IDE, 20

STUV memory is not changed. Activity, Sign
ALL load instructions except LDE perform the standard

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENT
1 T Since all four quarters
J [T.] ==>2 .
l ‘ ‘ l J are active, subword form
. A -
+ LD Tj [T] =& is immaterial. 20LDA or
I A J 30LDA would be equivalent.
E::::::::::] TJ The left half of A is
1 R[Tj] ==> R(&) not changed.
2. IDA T, l l
J [T.] ==> E
N 7///14///, A dJ
] Tj R[Tj] ==> R(A) The 18 bit word from
. n "
11 l l SR[T.] ==> L(A) STUV is "expanded" to
3. LDA T, J . "
J (I S, A 36 bits through "sign
(7,1 =10 ZZIIIITI A [T,] ==>E extension. "

——— 3 "
N

O VZIT7A

LIT,] == R(2)

Ce

A "Right Helf Load" -
the left half of A is
not affected.

*%A11 examples apply directly to LDA, LDB, LDC, and LDD.

the final M to E copy i1s omitted.

oN

LDE is essentially the same - only

August 1963

LDA, 24 LDA
IDB, 25 24
LDC, 26
DD, 27
IDE, 20

The left half of A is
unchanged. The right

half becomes the same as

A -

I:I (Before) L[A] —=> R(A) the J_eftéz In a similar

5 ZLDA A \ manner, ““LDA A sets the
Al == E left equal to the right.

——)

I 7//7//11/, (éter) 22L0 would clear the
left half word through
sign extension.

C—] Tj qLI-[Tj] ==> ql(A) The nine bit number in

6 16LDA . \ Sah[T.] == 2,3, 4(A) quarter 4 of Tj is
J expanded to 36 bits in A.
[7,] - 163 TR a (1] ==&
C——1 (Tk)j [| This is double indexing.
R[(T,).] == R(A) _
7. Lion (z,)% l l k'3 (Tk)j = T+[Xk]+[Xj].
J . , [(T).] => E (It is not always faster

Y A L because the defer cycle

takes time also.)
August 1963 3-7

STORE AE (34-37) STA, 34 STA
STORE E (30) gggi gg 34
STD, 37

STE, 30

%sra T, %

Af => T,
] J

STORE is a non-destructive copy from AE to STUV memory. With a partially active configuration
it becomes a partial store. Subword form is meaningless - only active pathways are used. The
% register is set from the memory word after the store operation (except for STE which does not

change E).

EXAMPLES: **(Standard F Memory - Chart 7-2)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENT
I, Tj B Tj is set from A, A is
[4] =>T. :
J not changed. Since all
1 STA Tj 1 T ? t x quarters are active, all
[::j A are copied into 'I'J..
Since there is no sign
7777
J R[A] ==> R(Tj) extension, Moma would
1]
2. STA Tj I T have the same affect.
¥
— Y [£,] - 140
T 12SC[‘A would be exactl
v/ R ¥
R[A] == L(T.) |
> J he same.
3. STA T, ‘\§::\\\
d x [Flg] = 1he
C—— 1 &
This sets the left equal
4] A to the right (as does
o R[A] == L(a) hos
k. STA A ‘\\) ILDA A). Since there is
— ** no sign extension on STA,
A l2STA would do the same.
[F22] =232

#% After the store operation is complete, the new content of Tj is copied into E except for
the STE instruction which does not change E.

3-8 August 1963

STA, 34 STA

STB, 35 3k
87TC, 36
STD, 37
STE, 30
777 Quarter 1 is copied into
ql[A] ==> q?;(TJ.) quarter 3 of T,. The
5. | Jsma ‘\\\\ A
% rest of Tj is unchanged.
7] = 762 — 1
[#] = 7
Stores in the right half
[VW only - useful for setting
6. LR Tj T 1‘ R[E] address sections - (For
{Store E) example, at start of sub-
) = I
routines entered via hJPQ).
777777777 [] Double indexing -
A
(r); = T+0x (X,]
T. STA {T }*
k7J *%
— 1

August 1963

EXCHANGE A (54)

all

Al ==>T,
] J

IO‘EDCAT.
3

] Ur,] == a

EXCHANGE A is a combination of STA and LDA.
the exchange of data.

The E register is set equal to the STUV memory word used.

Subword form, Activity, and permutation are all used.

Sk

Sign extension, if any, occurs only in A and after

EXAMPLES:
CONFIGURATION ABBREVIATED
NO. | INSTRUCTION DIAGRAM DESCRIPTION COMMENT
7720777778 " ; [1.] = &
41 ==
1 EXA T t i I t **
- [A] ==> T,
7777777 o J
T
777 J R[TJ] ==> R(A)
2 lixa 7. I I **
J PR T R{A] ==> R(T,)
V2224 a J
7, Tj SR[Tj] ==> L(A) Sign extension occurs in
A, but not in T,.
11 R[T.] ==> ’ j
3 BXA 1, g [1,] ==>®(n) o
[F] = 140 7777777772 R[A] ==>R(T,)
11
T;
/77 R J L[Tj] ==> R(A)
4 2EXA T \X *%
L R[A] ==>1L(T.)
[V7277 a J

*%¥ The two copy operations that perform an exchange take place simultaneously. Remember also

that E is changed - 1t is set equal to the final contents of the STUV memory word.

3-10

August 1963

54
L v] °3 qa[Tj] —=> qlA
5 PEXA T, \ %
J D gi[A] ==>q3(T.)
[F,] = 762 777, A J
When "A" is used as the
A address section, EXA has
5 vz] (Before) the same affect as STA.
6 EXA A \\ No exchange is made, and
A R[A] ==> L(&) there is no sign extension
Y
(After)
TSI, (Tk)j ()] —sa Double indexing:
x/ 31 =72 (T,), = melx J+{x,]
o | mear| 111 - mi it
==> (7).
vz N [a] => (%)
Iygust 1963 3-11

3-2.2 Index Register Class

RSX

DPX

EXX

AUX

ADX *%

SKX ——— REX, SEX

JPX INX

INK DEX
SXD
SXL
SXG
RXF
RDX
RED

¥ Supernumerary Mnemonics for SKX.

August 1963 3-13

RESET INDEX (RSX, 11)

YRex . T
J

a i J—
[T] == Xj

RSX
11

RESET is a non-destructive copy from STUV memory into X memory.

Subword form, Activity, and Permutation are used.

The E register is set equal to the STUV memory word used.

(Usually "T", but see example 7.)

EXAMPLES: (Stenderd Configurations - Chart 7-2)
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION COMMENT
0
T RSX would do the same.
N A Rl1] => X,
1
1| Ry b [] =55
| I |
oz Xj
T lgRSX would do the same
T T 11 L[T] ==> Xy ' ’
2 ®Rsx. T \\
J S [T] ==> E [Fl2] = 1lh2
VX Xj
o o al[r] ==>R(x,) | [°° TERS nelf of %, s
J set from T. The left nine
3. 3pex. T l
J Y [T] ==>E bits are not changed.
Y2 x.
J
T ql[T] ==> R(xj) S5ign of quarter 1 of T is
CT 1T 171
Sqi(T) ==> L(XJ,) extended throughout the
L. L3rex T l left half of X.. The right
J —_— ==>
’ 2R X, (] E half is set as above. SSRSK
= 160
[Fl3] would do the same. [F33] = 320
CT T T T Nothing happens (other than
o1 changing E).
5. “RSX, T l 1 [T] ==>E
dJ LA
[F21] = 230 [:]E:] X

3-14

August 1963

RSX

11
T This time Xj is cleared
1
%zsx. T Sqk(T) ==> Xj because of sign extension.
6. : I
[Fa] = 030 1 [T] ==> E
L7 Xj
:] Tk With a deferred address,
R[T,] ==> X, RSX is indexable. Note
| b Ly
7o | BSX; {Tyd (7] ==>® that E is set from T, this
==
A7 s £ time.
Nothing happens because X
a register O cannot be changed.
8. RS%y ’ (1] =>= [XO] = 0 permanently.

August 1963 3-15

DEPOSIT INDEX (DPX, 16) DPX
16

O‘DPXJ. P O‘E(j] > T

DEPOSIT is a non-destructive copy from X memory into STUV memory.

Activity and Permutation are used.

The X memory word is expanded to a full 36 bit subword by extending bit 2.9 (the X register
sign bit) but only active quarters are used. (The subword form is immaterial.)

The E register is set equal to the STUV memory used. (Usually "T", but see examples 8 and 10.)

EXAMPLES: (Standard F Memory - Chart 7-2)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION COMMENT
T T Only the right half of T
1 is changed.
1. DEX, T t 4 E{J] = R(T)
3 ox.
J
T Only the left half of T
is changed.
2
2. DEX, T ‘i\ E{J] = L(T)
L1 x
J
All i .
T E{] - R(T) of T is used. Note
J that DPX, T (or DPX T)
5. | oex. T bt 0
3 SXj = L{T) is a handy clear instruc-
}T:_‘_-_“D X,j tion. ([XO] = +0 and can-
not be changed.)
I:E T Only quarter 1 of T is
3 changed.
L. DPX, T f R[XJ = q1(T)
1 ox,
dJ
L T Only quarter 4 is changed
16 for only one path is active.
5. DEX, T RE(j] = qli(T)
= X,
[Fl6] 163 1 3

3-16 August 1963

LY, sx. => R(T) All of T is affected.
3
17
[F,] = 202 N B
-
Y/ Surprisingly enough, this
o1 does do something. (See
& DPXJ * T 1 SXj = L(T> example 5, RSX.)
N N
[7,,] =23
777 [X] - T Deposit is indexable with
1 * J k deferred addressing.
S I SR P (7] ==
1
YV VA SX. —s q3(r) | Tove that bit 2.9 of X,
33 J is used even though quarter
o DRy T T T [Xj] =>q1(T) | 2 is not active.
[..] = 320 N
33
] [Xj] => R(E) V memory, except the A, B,
10. DPX 377720 C, D, and E registers can
T T t T SXj => L(E) not be changed by any instruc-
[tion. DNote that E is set to
"what -would-have -gone-into-
T. "
August 1963 3-17

EXCHANGE INDEX (EXX, 1k4)

EXX is a combination of RSX and DFX.

EXX T

T] ==> X,
] J

1h

Except for sign extension, it does just what its name

implies - i.e. it will interchange words between X memory and STUV memory.

Subword Form, Activity, and Permutation are used.

memory word used.

The E register is set equal to the STUV

EXAMPLES: (Standard F Memory - Chart 7-2.)
CONFIGURATT ON ABBREVIATED
NO. | INSTRUCTION DIAGRAM EXPLANATION COMMENT
T
A, R[T] ==>X
1. e T t t [Xj] ==>R(T)
J [I T S| [T] ==>E
V.. 2 Xj
T
) LT] ==>X,
2 PEXX. T ‘\\\ [x,] ==>L(1)
J P S [T] ==>E
v Xj
T RlT] ==> X, Note that left half of T
LA
[XJ] ==> R(T) is cleared.
3 mj . T T 1 i s(x.) ==>1(T)
—7777 R 7] ==>E
7 T ql[T] ==>R(X.) Nine bit exchange.
5 “ Rlx.] ==> q1(T)
oJ
L Exxj T ; [7] ==> &
A *;
7 E— T R[Xj] ==> qlk(T) Sign is extended in Xj
16 . Tl ==>Rr(x.) | but not in T.
2 Ky T \ Sqb(T) ==> L(X,)
[Fye] = 163 X7 X, (] ==>E

3-18

August 1963

EXX

14
T [X.] ==>1(7) Sign of X, is extended
NN\ J 3
17 % Lfr] => X, into the right half of T.
6 B, T >§< s(x,) ==>R()
(7] =202 | (0222 X, [r] ==&
77 T Same as 21DPX, T.
21
EXX, T
! r_?_f_ [T] ==
B]-ep | T x
v Tk R[T] =X, EXX is indexable if a
% [X] ——>R%T) deferred address is used.
8 lE}CXj () I I []" k
T ==>E
22 xj
Sqi[r] => L(x,) . .
J Note that bit 2.9 is used
7R ql[T] => R(XJ.) for si .
r sign extension (not 1.9).
9. 33}190(3 T ; R[X,] => q1(1) —
T x 0)) > a3(a)
= 32 s j
(755l = 320 J (2] - ®
a loa ~
] TSS R[377720] ==> X. Same as Ran 377720. (Tog
1 [X] o> R%E) gle registers must be changed
10. EXX | 377720 l l l l 3) ,
3 L[377720] - L(E) by hand. Note that E is set
v X to what would have gone into
7.)
August 1963

3-19

AUSMENT INDEX (AUX, 10)

AUX
10

AUX

T [xj] + Y] ==X,

AUX forms an 18 bit ring sum in Xj' There is no overflow detection. All of Xj is affected.
STUV memory is not affected.

Activity and permutation are used.

ory.

If quarters 1 and 2 are active, subword form is immaterial.

Sign extension applies to the operand taken from STUV mem-

.

If one quarter of the STUV memory operand is inactive (as in standard configuration #3, for

example), +0 is used for that quarter.

The E register is set equal to the SIUV memory word.

address is used.

See example 6.)

EXAMPLES: (Standard F Memory - Chart 7-2.)

(This is "T" except when a deferred

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION COMMENT
T Standard configurations
N I
[x.]1 + R[T] ==> %, #0, 11, 20, and 30 would
1. Lk, T l l J J
J [T] ==>E do the same.
L7223 X. = =
3 [Fll 140 [F2O] - 200
[F3O] = 600
I — T Standard configuration
o [x] +1f7] ==>x, #12 would do the same.
J el [T] ==>E
A X, -
: [Flz] = 1h2
. T Standard configuration
T [x.] +afr]l_.. ==>X #33 would do the same (but
3. Bax, T . \ Tt T TeE) , (
j T, (7] ==>E NOT #3!) (See note on next
[Fl3] = 160 Xj page.)
F = 320
[33] 3
o] T This has sign extension
. O‘AUXJ. T ‘ [x.] + q2[T]SE ==> xJ. to the right. (There is
[F] . L. [T] ==>E no suitable standard con-
o =FE X, figuration.)
»55 0 J

3-20

August 1963

AUX

10
T Register T is ignored, and
11
o1 [Xj] + (40) = Xj Xj is not changed. Except
5. AUXj T l l [7] = E for E, this instruction is
| Iy S ==
I 7//7. Xj innocuous.
o Tk . Same as example 1, but
1 % [Xj] + R[Tk] ==> Xj indexed via a deferred
6. AUXj [Tkl l l (7]-=>8 address.
772 % k
dJ

NOTE: E is cleared and then loaded as if by oLLDE. The sum of R[E] and [X,] then goes into X.
(circuitously) and E is set equal to the STUV register used (ie.[T] or [Tk] if a deferﬁed
address was used). Xj is always set. Note - If either quarter 1 or 2 is not part of
an active subword, (as, for example, with standard configuration #3) one operand of the

sum is not completely specified and 40 will be used as that part of the operand.

August 1963 3-21

ADD INDEX (ADX, 15) ADPX
15

aTK, T [x,]+ 1] ==>T

ADX forms an }@_pit ring sum usually in STUV memory although only the active quarters are stored.
There is no overflow detection. The operands are always 18 bit words - one from X memory the
other from STUV memory. A configuration should be chosen such that the word from STUV memory
has both quarters active, or is an extended 9 bit subword. If only one quarter is active, the

inactive quarter of the operand is set to +0.
Activity and Permutation are used. Only active quarters are stored, but sign extension applies
to the operand taken from STUV memory.

The E register is set equal to the STUV memory word used. (This is "T" except when a defer is

involved. See example 6.)

EXAMPLES: (Standard F Memory - Chart 7-2)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION COMMENT
T Left half of T is not
vz [x.] + R[T] ==> &T ¢
1 * J changed. The sum is
1 ADK, T ; T (] => 5 standard 18 bit ring
1 Xj sum, also called "ones
complement sum.”
A T [Xj] + L[T] —=> IT Right half of T is not
5 : changed.
2. ADX, T \
J [T] ==>E
L1 X,
T T (X.] + ql[T]s‘E —=> q1(T) This gives a 9 bit ring
13 J sum. Configuration 33
3. ADX, T T
3 (7] ==> & would do the same, #3
[F13J = 160 1 Xj would not. See note next
page. The subword
length should be 18 bits.

3-22 August 1963

15
NOTE: In example 3, the 9 bit result is an honest 9 bit ring sum only when X, contains an
Z Dy SEevy 2= 3
extended 9 bit word. (See RSX, example L.) ADX cannot be used to add a 9 bit word to
an 18 bit word. Use AUX.
Essentially the same as
T example 3 except that
77 .
aADX T [X] + qZ[T]SE —=> qZ(T) the left half of X, is
L. T J significant. [F] illu-
[F.] = 220 [T] ==>E strated is 220. There
o — 'Y :
J is no suitable standard
configuration.
— T "Nothing" is done here
o1 because quarters 1 and
> AR, T T T [7] ==>= 2 are both inactive.
1 x,
A Tk Same as example 1, but
[x.] +B[T] ==>RT . .
1 % J k k indexed via deferred
6 ADXj {Tkl indexing.
— Bl >
X,
J
NOTE: E is cleared and then loaded as if by LDE. The sum of R[E] and [Xj] then goes into E
and an OtSTE is performed. Inactive quarters of the STUV memory word therefore remain
unchanged. If either quarter 1 or 2 is not part of an active subword (as, for example,
with standard configuration #3), one operand of the sum is not fully specified and +0
is used to fill out the operand.
August 1963 3-23

SKIP ON INDEX (SKX, 12)

Yarx . T
3

SKX
12

SKX (or REX, or SEX) provides 32 combinations of setting, adding, comparing, skipping, flag

raising, and dismissing - all relating to X memory and without changing the AE or the E register.

(see examples below.)

F memory is not used.

The configuration syllable specifies the desired combination.

(Examples

1 - 8 show the use of bits 4.6, 5, 4 and examples 10 - 12 illustrate bits L4.8 and 4.7.)

"' the address syllable, (or the final deferred address) is used as an OPERAND.

EXAMPLES:
MNEMONIC
ABBREVIATTION ABBREVIATED
NO. INSTRUCTION (See Chart 7-3) DESCRIPTION COMMENT
SKXJ T STUV memory is not used -
o REXJ T "T" is the operand, not its
= SKXj T SEXJ T :=>'Xj location. The brackets [].
(Set) were left out on purpose.
"Minus" T - i.e. its ones
2. lSKXj T (Set negative) =T ==> Xj complement is used to set
X..
J
If the sum is zero, it will
2 INX, T
3. SKX, T 3 [X.] + T ==>X, be -0 (all ones) unless [X,]
J (Increase) J J s J
was initially +0.
3 DEX T “-7" is added to [Xj]' Zero
L. SK{, T J X,]+ (-T) ==>X, ;
J (Decrease) [J] (-7) 3 is -0. It cannot be +0.
Skip if [X,] differs from T.
Ir X, 14 T [,)
L SXDj T St 3 Note: (+0) = (-0) and if
> SKX, T (skip if X P [X.] is initially (+0), it
. (i.e. #+2 ==> P) o d
differs.) is changed to (-0).
Skip if [¥] differs from
N R J
) i (Skip if X Ir [Xj] # T _T. Note: (-0) = (+0) and
. SKXj T differs from Skip - i [Xj] is initially (-0),
ive. i.e. #42 ==
negative) (i-e 2 >P) it is changed to +0.
Skip if [xj] is less than T
SXL, T k] < and if {X,] -T do%ﬁ/ﬁot over-
7. 6SKXj T (Skip if X Skip - flow. (Skip_ran T-377TTT
is less.) (i.e. #+2 ==>P) to T) Note: i‘,[xj]is ini-
tially (#0), /At is changed
to (-0). /

3-24

August 1963

SKX

12
Skip if [Xj] is greater than
SXG, T Ir [XJ.] > -T -T and if [xj] + T does not
7 (Skip if X Skip overflow. (Skip range: -T to
8. SKX, T is greater.) i.e. 42 ==>P 377777-T) Note: If [X.]
is initially (-0), it ig
changed to (+0).
=[X5] is set equal to T,. e.g.
. . a) sxxj (o) = set xj
9. SKXj {Tk] REXJ, {Tk] T+[Xk] ==> Xj . . from Xk
b) szocj {oj] = Comple-
ment Xj'
For j =1 to 378, RXF is the
RXF, T T o= X same as OSKX for there are
10. lOSKX. T (Reset and J no flags for these numbers.,
’ raise flag.) 1 ==> Flag Note that flag zero can be
raised. o
See Chapter L4 for the rami-
fications of "DISMISS."
2 R)CDJ. T T 2=>X ;f J = tl:e uc:urrent sequence
11. SKXJ T (Reset and I number, "I" is nearly imma-
Dismiss.) terial for the subsequent
(See note 3) change of sequence will
change XJ_.
This is used to change
RFDj T T ==>X, sequence number - often in
12. | Oskx, T (Reset, Raise 1 ==> Flag, | the form - Pskx, #41. Tk
? flag, and Dis- DISMISS ’ is ignored if j i current
miss.) sequence number.

Notes: 1. "Skip" means “omit the next instruction.” i.e. "Go to #+2."

2. The configuration syllable is united with the rest of the instruction. It may be

given redundantly. e.g. DEX is
3. The hold bit cancels DISMISS.
4. RXF cannot be used as a Jump.

be copied into the P register,

Chapter L.)

August 1963

me. it

3-25

the same as 3SKX or lIl\IX or 3DEX.
SKX is the same as SKX alone.)
Index register "j is indeed set, but it will not

unless a change of sequence number occurs. (See

JUMP ON POSITIVE INDEX (JPX, 06)
JUMP ON NEGATIVE INDEX (JNX, O7)

JPX, T
J

JPX 06
JNX 07

JPX and JNX are "Loop-closing", "Index-sensing" jump instructions. Their operation is as

follows:
[Xj] is Sensed:
(Zero is excluded.
JPX jumps on POSITIVE.
JNX jumps on NEGATIVE.)
If it JUMPS: If it does not:
#+1 ==> R(E) #+1 => P
T ==> P There is no DISMISS
DISMISS occurs unless E is not changed.
cancelled via "h".
I |
V-
The increment is added:
n+ X, == X.
dJ [J]
(This is done whether
it jumps or not.)
Note: . If the sum is zero, it is -O.

n

. n is a signed integer: -17 to + 178.

1
2
3. F Memory is not used.
i

. A deferred address determines where to jump to, but not if, and the second

index register is not modified.

1. Straight Table Scan (100 register
table located at "TABL.")

a.; JPX
Start - REXj T7
Loop — LDA TABLj

nt JPXj Loop

This program scans the table
"packward through the manu-

script." (i.e., highest
memory location first.) DNote:

X is initially set to + (n-1).
J

3-26

L.y JNX
Start — lSKXj 77

Ioop — LDA (TABL + 77)j

n't TN, Loop

This program scans "forward
through the manuscript.” (i.e.,
lowest memory location first.)
Note: X. is initially set to

- (n-1).9

August 1963

JPX JNX

06 o7
th .
2. To secan every n table register
a) START — REK, (IL - n) b) START — lREXj (TL - n)
LDA TABLj LDAj TABL + TL - n
n™® 7K, #-1 n' o, #-1

These programs run for (%E) iterations if we assume that TL (Table Length) is an
integer multiple of n. As written, they scan the first register of each block of
n registers. To scan register "i" of each block, the IDA instruction could be
written LDA (TABL + i)j for example "a" (JPX) and LDA (TABL + i + TL - n)j for

example "b" (JMX).
3. Interlaced Table Scan

Scope flicker can be reduced by an interlaced table scan. The fact that the change
in Xj is made after the jump decision causes a somewhat peculiar parameter configu-
ration, but the program logic is essentially the same as above. For example, if "C"
is the interlace, "TL" is the Table length, and if "C" is not a factor of "TL," the

program below scans the whole table with an interlace of C. (If "C" is a factor of

TL, the program degenerates to example 2a.)

START - lREX(j C

INX, TL
J

ILDA (TABL + C - 1)j

nC JFXj #-1

JMP # -3

If C =3, and TL = 7, the table is scanned in the following order: 6, 3, 0, L, 1,
5, 2, 6, 3, 0, etc.

NOTE: 1. "Zero" used as an address (as above) is always +0.
2. M4 automatically puts a hold bit on JPX and JNX to cancel the automatic dismiss
(see Chapter 4 and Chapter 6).
3. The address of a deferred JNX or JPX is completely determined before the index
register is changed. Therefore a -lJPXala S would jump to Sa as defined by the

original contents of Xa - if it jumps at all.

August 1963 3-27

3-2.3 JUMP SKIP CLASS

JMP
JPA
JNA
JovV
SKM
SED

August 1963 3-29

JUMP (With Variations)

“ne T,

J

05

JMP is an unconditional transfer of control. It means go to T (or Tj) for the next set of

instructions.

to provide 32 variations of JMP as illustrated below:

The configuration syllable "G" does not refer to F memory but is used directly

[
4.8 4.7 L6 4.5 ik
DISMISS - L 1 = "BRANCH" E‘An indexable JMP
(See Chap. L) 1P = BRC = Go to Tj
Saves last memory — ~——— - 1 = Saves return point (#+#1) in Xj
reference in L(E) 2 = JPS = Go to T, save
return point in Xj.f
Saves return point (#+1) —~—
in R(E)t
EXAMPLES: (See #10.)
SUPERNUMERARY JUMPS
NO. INSTRUCTION MNEMONIC TO COMMENT
1. OJMP Tj JMP Tj T Xj is ignored.
2. lJMP Tj BRC T, Tj Indexable Jump = BRANCH
(Branch)
3. 2o T JPs Tj T Jump and save return point (#+1) in
{Jump and Save) the specified index register (X.).
o
Branch and save, Xj is used to
3 evaluate the jump destination Tj
b JMP T BRS Tj Tj and is then reset to the return
point (#+1).
(Branch and Save)
5. toe o - T X, is ignored, #41 is saved in R(E)
6. 2P T *BRC T, T, Return point (#+1) is saved in R(E)
6 L Return point (#+1) is saved in R(E)
7 JMP T JES Tj T and also in Xj'

+ In M4 terminology, the symbol "#" is an abbreviation for the location of the current

instruction.

(See Chapter 6.)

3-30

August 1963

JMP
05

Top o

BRST,
dJ

Xj is used to determine the Jump
destination T, and is then reset to
the return point (#+1). The return

point is saved in R(E) as well.

One T,

The memory location of the last
data reference is saved in L(E).
(i.e. the contents of the Q

register)

10.

luJMP T

JPQ T

Jump, save "p" (i.e. #+1) and "g"
(location of last data reference).
This is the recommended jump, for
the information saved is often of

use in checkout.

1l.

am T,

BPQ T,

This instruction is the same as JPQ
except that the jump destination

is indexed.

12.

e T,

JES T

Jump, save in E, and in Xj'

JPD T

Jump, Dismiss.

BRD T

=]

Branch, Dismiss.

JDS T

Jump, Dismiss, Save in Xj'

16.

SBne T
J

BDS T

Branch, Dismiss, Save in Xj’

Jump and save return point (#+1) in
NOTE: A superscript numeral can be
JMP =

16

August 1963

16

the specified index register (Xj)'
used redundantly on supernumerary mnemonics. For example:
JES = JBS = 20PQ = “MIps ete.

(Mk "unites" them into the word.)

3-31

CONDITIONAL JUMPS JPA (46)
JNA (47)
Jov (45)

JPA - Jump on Positive Accumulator
JNA - Jump on Negative Accumulator
JOV - Jump on Overflow

Crpa T,
J
%A T,
d

%ov T,
R

The conditional jumps go to T, if the conditions are satisfied by any active subword. Permuta-

tion is ignored. The return point (#+1) is saved in E if the jump takes place. The accumulator
and overflow flip-flops are not changed. Note that these conditional jumps are indexable.

EXAMPLES :

#1L. A Four-way Switch:

JOoV OF *¥%¥ Goes to OF if overflow exists (Zh =1)
JNA N1 **% Goes to N1 if A is negative.
JPA Pl *¥% Goes to P1 if A is positive.

-—- ** Continues if A is zero.

#2. Overflow:

30JOV Tj is equivalent to 37JOV Tj’ for both configurations specify the same active
subwords. If any of the four overflow flip-flops are set to 1, control will go to

Tj‘ The overflow indicators (Zh’z3’Z2’Zl) are not cleared by JOV.

Active subwords use the overflow indicator associated with the sign quarter, e.g. Z2

is associated with the right half word, Zh with the left half word.
#3. To Detect Minus Zero in an Index Register:

JNX. T or JPX, T will not jump on either + or - zero.)
J dJ

DPX A
‘o, A #* (0,,-0) or (0,,+0) now in A
JPA T1 ¥¥% Goes to Tl if -0 in right half word.

*¥¥ Continues if +0 in both halves.

3-32 August 1963

#4. 18 Bit Zeros Again:

EOJ‘.PA

ZOJNA

JPA
JNA

August 1963

1N
PN
NP

JPA (46)
JNA (LT)
Jov (45)

#% One half (or both) positive - (Goes to 1P)

*% One half (or both) negative - (Goes to 1N)
*¥% Left (+0), Right (-0) - (Goes to PN)
** Left (-0), Right (+0) - (Goes to NP)
#*% Both (+0) or Both (-0) - (Continue)

3-33

SKIP ON BIT (SKM, 17) SKM

17
d
SKMq.b T
"Skip-on-a-bit" uses & one bit operand. It has 32 variations - some with M4 Supernumerary
Mnemonics. The basic variations are as follows:
b9 4.8 4.7 L6 L5 Lk
e et | e——
00 - No skip <—————-—-——I [———— 00 - No change
01 - Skip unconditionally 01 - Bit is complemented
10 - Skip if bit = 0 10 - Bit is set to O ("Make Zero")
11 - Skip if bit =1 11 - Bit is set to 1 ("Make One")
("Skip" means "go to (##2)"
i.e. skip over the next L TIf 4.6 =1, T is cycled right once. (Rotated)

instruction.)

The bit in question is identified by its quarter number and bit number as diagrammed below:

The meta bit is No. 10 (dec.). (SKM is the only instruction that can affect it.)
The parity bit is No. 11 (dec.).

The parity circuit is No. 12 (dec.).
(Any quarter number will do for the parity and meta bits.)

These can not be changed by SKM.

Bits and quarters are numbered from right to left and should be in subscript when used with SKM.
(See chapter 6, page 6-7.) The bit designation goes in the "J bits" (3.6 - 3.1), as follows:

3.6 3.5 3.4 3.3 3.2 3.1

! ! l

Quarter No. <~J L_____, Bit Number (When given in the form indicated above,
(00 refers to glh) Bit Numbers are interpreted as Decimal,

e.g. 4.10 is the usual metabit designation.)

SKM is therefore non-indexable except through deferred addressing.

If 2 non-existent bit is selected, e.g. bit 0.0,1.0,2.0,3.0 for example, Unconditional Skips
(SKU) and Rotate (CYR) will still work, but "makes" will do nothing, and conditional skips
will not skip.

3-3k August 1963

SUPERNUMERARY MNEMONICS (See Chart 7-3)

SKU
SucC
SUZ
SUN

SKZ
SzC
577,
SZN

SKN
SNC
SNZ
SNN

SNR
SZR
SUR

- lSKM - Make complement

- 2SKM - Make zero

unconditionally, (go to #2)

and complement

and meke zero

and make one

if
on
on

on

on
on
on

on

bit =0
zero. and complement
zero and make zero

zero ~and make one

one
one and complement
one and make zero

b

one and make one -

- "SKM - Cycle memory once to the right (rotate)
- 5SKM - Make complement and rotate

- "SKM - Meke zero and rotate

- 7SKM - Make one and rotate

on

on

one and rotate

zero and rotate

- 3SKM - Mske one -~
- Oskm - sxip
- M - skip
- 125k - skip
- 3srm - sxip
- gk - skip
- Ploxy - skip
- 22SKM - Skip
- 235k - skip
- 3Okm - skip
- 3ok - skip
- 32SKIM - Skip
- 3sru - skip

L

6
_ 3hsry - skip
_ Phary - sip
- Yharu - srip

NOTE: "Skip" is first,

and then rotate.

EXAMPLES :

1.

To copy a bit:

SKZ Q, o

SUN Tl.l

MKZ Tl.l

August 1963

and rotate

"meke" next, and “"rotate" last. l‘LSZZ =

2. To clear n

Sets bit T, | Rex,, (n-1)

equal to MKZA lOIOlT

bit Q5 'lgpxa #1
3-35

SKM
L7

o

26,

SKM = Skip on zero, make zero,

metabits starting at T

** ie. MKZ) (T ¥

SKIP IF E DIFFERS

SED T

Only P can
be changed.

SED

SED compares all active quarters of E and Tj according to the given permutation. If any

difference exists the next instruction is skipped over.

Program Counter) can be changed.

(E is not changed.) Subword Form is immaterial.

No registers other than P (the central

EXAMPLES: (Standard F Memory - Chart 7-2.)
NO. INSTRUCTION DIAGRAM COMMENT
I: Tj #+2 =» P if E differs from TJ.
1. SED tl?j l I | | #41 =» P if they are identical
L 1 =
l:’ Tj The left half of T, is compared
. 12
5. 2amp 1. \\ to the right half of E. (°SED
J is identical.) [F,] = k.
[1 =
] E The right and left halves of E
22 B are compared. 17SED E, 2SED E,
3. SED // 12 22
SED E, or = SED E would have an
‘:} E identical result.
3-36 August 1963

3-2.4 SCALE, NORMALIZE, CYCLE

SCA
SCB
SAB
NOA
NAB
CYA
CYB
CAB

Mugust 1963 3-37

SCALE

o4

SCA T,

dJ

%Al x 2

eyl o

SCA, 70
SCB, 71
SAB, T2

"SCALE" multiplies each active subword by "a power of 2," i.e. by 2" where n is a signed integer

specified in T..

to count the binary shifts.

The details are as follows:

Each active subword can be scaled a different amount.

The D register is used

a) An LoD Tj is performed (with permutation and sign extension as called for).

b) Each active subword (of A or AB) is scaled according to its sign guarter in D, and

these sign quarters are left set to -0.

c) If an overflow exists for an active subword, the proper result is recovered by comple-

menting the sign digit after the first shift, and the indicator is cleared.

is used for all operands - left (+), right (_), and zero.

This rule

Overflow can not affect SCB.

Notice that SCALE amounts to shifting all the bits except the sign left or right and filling

the vacant positions with copies of the sign bit (i.e. with 10).
corrects the sign bit if necessary.
bits are lost off the left end.

SCALE senses overflow and
SCA and SAB always clear the overflow flip-flop - even if
SCALE never sets the overflow flip-flop.

EXAMPLES: (SCB is illustrated to avoid overflow complications.)
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENT
[::::::::::J {-4,} [B] = 2_h ==>3B {-4,} is a MLt convention
l l l l for A register with -k
1. SCB{-k4,} -0 ==> q}(D) in quarter 4. See Chap-
VA D 43,2,1[T;] ==>a321(D) | ter 6, page 6-7 and 6-10.
gk[B] x 2® o> ql(B) Quarter 1 of B is not
[Jwm o b
3OSCB) a3[B] x 572 —> g3(B) changed. The sign bits
2. l l l i 3 are never changed. Bits
N = 2775003000) ,__Jt__.n_: e@[B] x 2° ==>q2 (B) mey be lost off either
////////////A D -0 ==>D end without any alarm.
> The left halves of B and
25 ==
2SCB) i:' m R[B] x >R(B) D are not changed.
3. \«\\ -0 ==>q2(D) Note that ql of (N}
N = 2775003000(8) — 775 ==> q1(D) specifies the argument

|
\

of the scale operation.

3-38

August 1963

SCA, 70

Note: Scale can of course be indexed - e.g. SCA Tj where the argument comes from Tj' It is

more common programming practice to use an RC word - e.g. SCA{-1,]}.

I, Overflow: (SCA and SAB)

a) To "recover an overflow':

LDA {200 000 000 000}
ADD {200 000 000 000}

ScA {-3,)}

b) Only active subwords are processed:

LDA {200 300 400 100}

3%4pD {200 300 400 300}

2Lsea (778 774 TTH TTH)

Ysca (77 77H TTH TTH)

**Acc. will now be 400 000 000 000 (a nega-
tive number), and Z), (overflow bit #4) will
-be lll".

*¥-3, = 774 000 000 000. After the scale,
Acc. will be 040 000 000 000 and Zh will be

TN T

c . Z3,Z2,Zl are not sensed nor changed.

(Any negative argument will suffice.)

*¥Ace. will be 40O 600 001 L0O.

¥¥A11 four Z flip-flops will be "1".
**0nly L(A) is scaled. Acc. will become
0kO 060 001 400. Z) will become "o",

z3,Z2,Zl will remain "1".
*¥0nly R(A) is changed. Acc. becomes
040 060 700 140 and Z, becomes "O". Z

2 3
and Z, are still "1".

Note that Zh’Z3’Z2’Zl are overflow indicators. They tell whether overflow has

occurred.

treated any differently.

5. Subword forms for the AB register:

An overflow resulting from negative numbers (as in g2 above) is not

a) "36" E A

o

]

b) "8 - 18" E L) |

L(B) | [s R(A) ,

R(B) AJ

) "27-9" [s

qk32(4)

| q432(B) s awi am)]

a) "9-9-9-9" [S q}L(A)g qu(B)t 's

a3(a)1 3(8)| |8 @2(8)] @2(3)| |8 ar(a)} a1(®)]

Note that all of B is part of the subword.

August 1963

There is only one sign bit in anAB subword.

3-39

NORMALIZE ACCUMULATOR
NORMALIZE AB (Extende

NORMALIZE scales just enough to remove leading zeros or to "recover" from OVERFLOW.

the active overflow i

d Accumulator)

o 1,

%a] x 2" ==>a

O:[TJ.] - nz ==> Sq(D)

ndicators.

NOA 6L
NAB 66

It clears

The number of leading zeros (nz) is subtracted from the argu-

ment from Tj (a[Tj]) and this difference is left in the Sign Quarter of D. If an overflow con-

dition exists at the

complemented - just as for SCA or SAB.

"

start, "nz

NOA and NAB start with an “IDD T,. "nz'

of D is not changed. The E register becomes a copy of Tj‘

EXAMPLES:TT (Assume that NO OVERFLOW exists.)

is -1, the scale is one place to the right, and the sign is

If nz is zero, it is +0. (See Note 4 also.)

is subtracted from the sign quarter(s) and the rest

ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRTIPTION COMMENTS
[::::::::::] {+0} (4] % "nz" is the number of
leading "zeros" in the
1. NOA{0} l l l l -nz ==> q4(D) original contents of A.
(2R3 10 ==> 3,2,1(D) ("Zeros" can be positive
zeros or negative zeros.)
The left halves of A
R[A] x 2"% ==> R(A) and D are not changed.
: {+0} "nz" is the number of
, ENOA{O} ‘\\\:::\\‘l -nz ==> q2(D) "zero" in the original
) contents of the right
[40 40 ==> q1(D) half of A. Note that
the result in D is a
nine bit numeral.
R[A] x PR ==> R(A) "ZR" and "ZL" are the
l:l:[:D () a-ZR ==> q2(D) leading zeros of the
lTNOA[N} T:)%;é%:: b o> q1(D) right and left 18 bit
3. words of A. (N} is a
N = a,b,,c,d D L{a] x 2L ==>L(4) register containing
[F17] = 202 ANNZZN c-2L ==> k(D) a,b,c, and 4 in quarters
4,3,2, and 1.
d ==>q3(D)

Tt Brackets{]} are used
See Chapter 6, page

in the TX-2 M4 Assembly Program to indicate "Register Containing".

6-10.

3-ko

August 1963

NOA 64
NAB 66

nz With a 27,9 split,
al32[A] x 277 ==> gh32(A) both counts will be

CIT T 1m a-nz ==> g4(D) 26 if [A] is zero.

(See note on page

Ooa(n) l l l l b = 43(D) 3-61.)

a,b,,c,d l—“._'D c ==> q2(D)
400 nz
ql[A] x 27° ==> q1(4)

d-nz ==> q1(D)

5 - A sample program — Evaluate V = xyz
This product could have 105 significant bits (3 word lengths). One must resort to
programmed arithmetic to get them all, but normalize can be used to get the 34 most

significant bits. Consider the programs below.

Without Normalize: With Normalize:

IDA X IDA X

MUL Y MUL Y

MUL Z nAB {0}

STD T

This program puts the 35 left bits MUL Z
of the 105 bit product in A and SAB T
essentially worthless numerals in
B. The answer in A may be too small With normalize, the product is given
by 1 (in the 35th place). in AB, to 35+nz places from the sign.

(Tt may low by 1 in the (35+nz)th
place.) '"nz", the number of zeros,
is in T (in negative form). nz
could be as much as 69 so the last
SAB may not be desired. For example,
if the NAB instruction above were
replaced with NAB{3k4.,} the answer
in AB can be considered a 71 bit
integer.
NOTE: 1. NOA and NAB leave E set the same as the memory register used.
2. If overflow exists, "nz" is -1 so [Tj]+l ==> 3q(D).

3. NAB is essentially the same instruction - using the decuble length word (AB) instead.
(See page 3-39 - "Subword forms for the AB register".)

L, Normalize is an arithmetic instruction. The sign bit is not counted. “Leading

zeros" will, of course, be plus or minus zeros - i.e., the same as the sign.

August 1963 3-41

CYCLE CYA, 60
CYB, 61
CAB, 62

%oy T,

J

CYCLE logically falls in a class with LDA and STA, for it is most easily considered as a bit
shifting instruction and the sign bit has no special significance. Bits shifted off one end
are inserted at the other. None are lost. However, since the practical details of its use
are so similar to SCALE, it is usually grouped with SCALE and NORMALIZE. The use of the

memory word is the same as SCALE.
s.) An %1DD T, is the first step.

b.) ZFach active subword is "cycled" or "rotated" according to its Sign Quarter in D
and the sign quarter is left at -0. For cycle, the active subword has its ends
connected - and can be considered as a ring of bits. If the number of places
equals the subword length, the instruction does not change the subword. You can
therefore arrive at any new position by cycling either way - the short way takes
less computer time. The sign bit is handled no differently than the others and

no bits are lost.
c.) Overflow is ignored.
d.) The E register becomes a copy of the memory register used.

EXAMPLES: Assume [A] = 123 L56 765 ”32(8) at the start

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRITPION COMMENT
T 3603 007 135 753 06k —=> A One 36 bit ring cycled
1. CYA(+1,) l l l l -0 ==> gk(D) once to the left.
| |
2NN +0 ==> q3,2,1(D)

CT T I 246 ==> qi(A) The four quarters
Pcyam) l l l l 135 ==> q3(A)

i.e. four nine-bit
N=1,1,,1,1 (A [| B TE| 753 ==> q2(A) ; :
A D rings, each one bit

065 ==> q1(A) to the left.

are cycled separately

3-42 August 1963

Assume [A] = 123 456 765 A32(R) at the start.

CYA, 60
CYB, 61
CAB, 62

[T Jes0

276 543 ==> R(A)

The left halves of
A and D are not

changed. The right

3. ECYA{-3;) \\::::\\ half of A (a ring
-0 ==>R(D) of 18 bits) is cycled
N7
3 places to the right.
i.e. one octal place.)
234 567 654 320 ==> A The 72 bit ring -AB-
[TTT]m 000 000 000 001 ==> B is cycled 3 bits,
DPX B A i.e. one octal place
o -0 ==> k(D)
L. CA.B{+3,} l l l l to the left.
N=3,2,,5,-6 | Do +2 ==> q3(D)
T YN P
+5 ==> q2(D)
-6 ==> q1(D)

NOTES: 1. The E register becomes a copy of the memory word used.

CYA, CYB, CAB are indexable, and, of course, deferred addressing can also be used.

(Neither of these is common.

Most users use RC words.)

3. CAB uses the same word structure as SAB and NAB.

August 1963

3-43

3-2.5 LOGIC, INSERT, COMPLEMENT/PERMUTE

ITA
ITE
UNA
DSA
INS
coM

August 1963 3-45

BIT LOGIC INSTRUCTIONS : TTA 41

UNA 42
DSA 65
ITE 40

%rTa , O‘[TJ,] A [A] =>4

For these instructions, the word is considered as a string of independent bits -
each bit column is a separate entity. ZFor ITA, UNA, and DSA, the argument a[Tj], is all the

active subwords - with sign extension if applicable. For these three, the E register is set,
L

as usual, identical to the memory word used.
For ITE, the operand is the active quarters only. There is no sign extension. The
result, of course, goes into E and there is no final E register copy from memory.

All these instructions are indexable and of course indirect addressing can be used.

Name INTERSECT UNITE DISTINGUISH**
Abbreviation ITA UNA DSA¥¥*
ITE
Symbol A v @
Other Names "AND" Inclusive OR Exclusive OR
Partial Add
a
T,
(1]
Logic 0 1
Diagram N olo 0
(2]
110 1
Note that this is Note that this is
the "carry" that the Partial Sum.
results from
addition.

3-46 August 1963

(IT4) (TNA) (Ds4)

Typical Masking - e.g. Bit Setting, or Bit Complementing -
if Tj contains 77 clearing to minus if Tﬁ contains 77
Use ITA T; clears all zero - if Tj contains | pgy Tj complements

of A except for the 77, UNA Tj sets the

last & bits. last 6 bits to 1 with-
out changing the rest.

the last 6 bits.

gpec:.i.l BOSAB {-9,-9,,-9,-9} 3OSA.B (-9,-9,,-9,-9} 303@{"9;‘9);'9‘9}
e jma [wa3 __ L DSAB]
T 7 77 I positive, & is If Negative, A is set | The absolute value or
F30= 600 cleared to +0. The to ~0. The original magnitude or each
original [A] goes in- [A] goes into B. quarter goes into A
to B. The original [A] goes
into B.

All quarters are
active and in-
dependent.

*% Note: DSA affects both the C and D registers. The effect on D is equivalent to LDD T..
The effect on C is equivalent to forming the carries and uniting them with the original
contents of C. - i.e. ([A] A[Tj]) v [c] ==>cC.

No. | INSTRUCTION CONFIGURATION ABBREVIATED DESCRIPTION COMMENT
DIAGRAM
%77 .
T, R |T R [A] = R (A T, affected.
1 lUNA T "7242 J [J] v [] > (8) J T8 unaiiecte
J The left half of A

[Tj] => E is also unchanged.

I [
\ =

Tj is unaffected.

] => R (&) | Each bit of left half
]

\
\

of A is "intersected"
=> L (a) with bit 2.9 of T, -
Hence, if R [T.] Yis

2 llITA Tj

—-—
-——

(
SR [Tj]AL[
[

W////A A T.] => E positive, L(a)? is
J cleared.
T, is unaffected.
g Y |) AR = RE)) b warrecten.
3 llITE T l i Tﬁire ?s no siég
extension on .
7] - wo| W24 ®
R [Tj] @ R [A] == R (8) DSA affects registers
— % Blnl = RO | 520k drove.
[T.] =
y | 'psa T l l (B[T,] A A])iR[C] => R(C)
| 973 =«

August 1963 3-k7

INSERT

INS 55

J

“ms T, ([2)a[B]) v ([BlAlT,]) => T,

Insert is a partial STA (store accumulator) instruction — only those bits marked by a 1 in

the corresponding column of B are stored in Tj' There is no sign extension, and [A] is not

changed.

to the final contents of the memory word used.

It [B] is minus zero (all ones), INS is identical to STA. The E register is set

EXAMPIES: (Standard F Memory - Chart 7-2)
CONFIGURATION MASK
NO. INSTRUCTION DIAGRAM (CONTENTS OF B) COMMENTS**
Vg = . !
72777770 " [4] => ;. 19 1o
1, NS T. T t T -0 identical to STA when
J [B] = -0."
I
N7 T. R[A] =>T.. is ti
7 " [A] > 1. ts tine
5. INS T. T T T T 0,, TTTTTT it locks like a “STA Tj’
J because of the mask.
|t
Bit 1.1 of A is copiled
_VA Tj into position 1.1 of T,j'
3. 3ms T T L,2,,3,1 Quarters 2,3, and 4 are
J inactive. No other bits
— Y are changed. TOINS T,
would do the same.
[Fl3] = 160
Bit 1.1 of A is copied
%_ ‘I'j into position 4.1 of TJ.
L 6INS T -‘\\\\\\\\ L,2,,3,1 Note that permutation
J has no effect on the use
 — Y of B. ‘Prns T, is
identical.

**In all cases, there is a final copy into E from the memory register used.

t "Insert" is also given by ([A] v [E]) A ([B] v [Tj]).

3-48

August 1963

_INS 55

CONFIGURATION TSR
No. INSTRUCTTON TIeURAT o p———
73 s T 5 o)
> 3INS£Tk}.j* T 1*:5):6;7 JSTA e*s ywould Dbe
7 equivalent.
V2 a
I Since [B] = +0, nothing
happens.
6. INS Tj T T T T +0 ppens
L 7 a
P A ql[a] => q3(&). Only
252555..... (;fter) Q- [l q o
arter 3 o S
T s A L,5,,0,7 quarter 3 of A 1
changed. (Because of
(before)

August 1963

3-49

COMPLEMENT - PERMUTE (PMT) CcoM
56

coM T T.] = T,

Tj is permuted.

COM - Complement - performs two basic operations. The active subwords of Tj are
complemented (one's complement - all ones become zeros and vice versa) (with sign extension)

and all gquarters are permuted whether active or not. Note that if all quarters are inactive,

COM permutes all quarters of Tj without changing the data. PMT is another abbreviation -
equivalent to COM.
There are 4 basic steps:
1. [Tj] => E , permuted according to «.
2. Sign extension occurs in active subwords.
. 07
3. Active subwords are complemented. ([E] => aE)

Lo [E] = Tj straight - no permutation.

Note that, as usual, E is the same as Tj at the end.

EXAMPLES: (Standard F Memory - Chart 7-2)

NO. INSTRUCTION CONFIGURATION ABBREVIATED COMMENTS
DIAGRAM DESCRIPTION
T, T.] = T, All of T. i

) 7 | Bl ot 1, 10
1 cou T, TER’ (vefore) complemented

7 T. T.] = E

I, ; [2;] =

(after)
:]:I Tj L[Tj] => R(Tj) The halves are

reversed and the

2 Zeom T SO (before) right half is
e — _ complemented.
vz Y |)

(after)

[:' Tj qu[Tj] => ql(TJ_) Quarters 2, 3,

and 4 are set to

~ e SR
3 loCOM Tj *~ \befoze, the complemented
[F 6] - 163 W Tj SqlL[TJ.] => ¢2,3,4(T3) sign extension.
160) (after)

3-30 . August 1963

NC. INSTRUCTION CONFIGURATION ABBREVIATED COMMENTS
DIAGRAM DESCRIPTION
YoM T, I R[T.] => L (T,) | When all
J J J J quarters are
" >§< inactive, the
a =172 L[r,] = R (T.) data is not
(all inactive) ,:, T J J changed - it is
J (Simmltaneously) merely permuted
according to
the given con-
figuration.
T [T, .1=>1T . This has
« : k,J k,J k,J double index-
5 CoM {Tk}j l l l l ing.
[S S| T =T +
T, .]=> E k,Jj
T 5| Bl 3
[x,] + [x,]
Note:

August 1963

Since COM does not use any register other than Tj, there may be some confusion

as to the meaning of "Activity".

drawn are active.

the permutation comes first, complementing second, and sign extension last.

In this chapter, quarters for which arrows are

To be consistent with other instructions, one should say that

If you

use the phrase "Active Subwords of Tj", the order of the first two is immaterial

since both operations can be considered to take place simultaneously.

sign extension uses the complemented sign.

3-31

In any event,

3-2.6 CONFIGURATION MEMORY CLASS

SFF
SPG
FLF
FLG

August 1963 3-53

SPECIFY FORM (SPF)
SPECIFY GROUP (SPG)

"Specify" copies from STUV memory into F Memory.

SPF ql [TJ.] => F,
r _
a1 (1] = F,
q 2 [Tj] = P
C
SPG a3 (1] = F_,
a b [1,] = T3

sets only one F Memory word.

SPF (21)
SPG (22)

(STUV memory is not changed.) SFF

SPG sets four. F Memory addresses are consecutive modulo 338 -

i.e., 0,1, 2, ..., 368, 378,0, 1, 2, etc. These instructions are indexable but not configur-

able. The E register is set, as usual, to the contents of the memory register used.
EXAMPLES:
NO. INSTRUCTION DESCRIPTION COMMENT
[§)

1 SPF Tj -~ Fy is permanently set
to +0 and can not be
changed.

qz[Tj] = F;
2 apg Tj q 3[Tj] => F, Same as #1.
kr.] = F
a H[r;] => Ty
q l[Tj] => F37 F_ is, of course, not
37 _ changed. The F

3 SFG Tj 4 3[Tj] = Memory address "c" is

normall; iven in OCTAL
g ¥r] = 7, Ve

3-5h4

August 1963

FILE FORM
FILE GROUP

FLF Tj [Fc] =3 ql(‘I‘j)
[F] =>a(T))
[Fopy] = (1)

‘FLG T,
S| [Fel = qB(TJ.)

[Fc+3] == q}l’(Tj)

FIF 31
FLG 32

"File" copies from F Memory into STUV Memory. (F Memory is not changed.) File Form (FLF)

copies a single 9 bit word, File Group copies four.

The F Memory Addressing is modulo 37— i.e.

E register is set as usual, to the contents of the memory word used.

They are indexable, but not configurable.

=0, 1, 2, ... 368’ 378, 0, 1, 2, ... etc. The

EXAMPLES :
NO. INSTRUCTION DESCRIPTION COMMENT
o Fo is permanently
1. FLF Tj +0 => ql(Tj) set to 40.
0 => ql(Tj)
o [Fl] => q'2(Tj)
2. FILG T, B —_—
3 (F,] => a3(T,)
F.] = gi(T.
[F5] => al(T,)
[F36] => ql(Tj) The F Memory address
‘ [F.] => q2(T.) "c" is normally
3. 3 FLG Tj 31 J given in octal.
0 = a3(T;)
=> qi(T
[F 1 => ak(T))
August 1963 3-55

3-2.7 ARITHMETIC CLASS

ADD
SUB
MUL
DIV
TLY (TALLY)

August 1963

ADD (67) ADD (67)
SUBTRACT (77) suB (77)
DD T, %Al + O‘[TJ_] = %
%5uB) 4] - O‘[Tj] = %

ADD and SUBTRACT are straightforward one's complement (RINGED) arithmetic instructions.

The use of configuration is similar to LDA. A zero result is negative except when both argu-

ments are zero at the start -(+0) + (+0) = +0; #0 -(-0) = +0. There are four overflow indica-

tors--a separate indicator for each active subword. The indicator is cleared before the
arithmetic is done and is set to a one for either type of overflow--(too negative or too positive).
(With one's complement arithmetic there is a sign reversal when overflow occurs. The scale
instructions take this into account.) Sign extension occurs prior to the arithmetic. The D
register is set as if an %D Tj were done. The C register is set to the carries from
each column. (In the case of subtract, "c" contains the carries from adding the complement

of [Tj]') The B register is unaffected. The E register is set, as usual, to the contents

of the memory word used.

EXAMPLES: (Standard F Memory - Chart 7-2)
. CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
[a] + [Tj] = A Thﬁ ex%re?sion
[A] A [T.] =>C is
A =
1 S T I BT B R B vetes .
J [T =~ D equivalent to saying the
l l l l 3 "carries" of each bit
[r.] = E column go into the cor-
- J responding bit column of
////////////A C. Z)+ is set if over-
flow occurs.
] R[A] + L[TJ] => R(A) | The left half of the A,
2 _ C, and D registers is
2 ADD Tj \\\;:?\\\. R(A] A L[Tj] => R(C) unchanged. 22 is set
;;""J L[Tj] => R(D) if overflow occurs.
| v [1,] => =
: [a] - [1.] => & Z, 1is set if overflow
[A] A [Tj] = C occurs.
3 SUB T, l l l l (5] => D
| S S S |
A, (1] > =

3-58

August 1963

ADD (67)

suB (77)
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
3o 277} : T, 606 => ql(A) {277} is the Mip repre-
L. _ sentation for "a register
3ADD (307} o= Zl containing 277(8)".
207 => gi(C)
7 oo el
4 D 07 = E
6 [: T, 201 => ql(4a) {510,0) is the M4 rep-
ILDA {510,0} 1 - resentation for "A
=> Z X .
5. 6 1 register containing 510(8)
ADD {470,0} Y10 => q1(C) s 4
in quarter 4, and zero
_7// b k70 => q1(D) in the rest of the word."
4
470,0 => E See Chapter 6.
Note: The four OVERFLOW indicators are associated with the subwords by Sign Quarter
Number. See table below:

August 1963

SUBWORD OVERFLOW INDICATOR
Quarter 4 Zu
Quarter 3 Z3
Quarter 2 22
Quarter 1 Zl
Left Half Zu
Right Half 22
Full Word 24
27 - 9 Zh and Zl

3-59

MULTIPLY (76) MUL (76)

S,) %Al x O‘[TJ.] => %(aB)

"MUL" forms the double-length, ones-complement product of [A] and [Tj] and stores it in
A and B. The extra bit of B -- at the extreme right -- is set equal to the sign bit of the

product, i.e., to + O. (Bit 1.1 of B = Bit 4.9 of A after MUL.)

>
Full Product :{__+O(Same as the)

““\ 8ign Bit

4
=
Y
C
o]

|
Sign __,//

Bit |

— [

A

The use of configuration is similar to LDA and the relevant overflow indicator (correspon-

ding to the active sign quarter) is cleared. No overflow can be generated. The active

subwords of C are cleared to +0 and D is set as if an oCLDD Tj had been done. The E

register is, as usual, set to the contents of the memory word used.

EXAMPLES: (Standard F Memory - Chart 7-2.)

CONFIGURATTION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTICN COMMENTS
: T [a] x [TJ_] => AB "AB" is the double
1 MUL T. £0 =>bit 1-1(B) | Leneth register
3 +0 = 7 diagrammed above.
4 It is also used with
') +0 => C SAB, CAB, and DIV.
77777777773 D (z,] = D Bit 13 of B is
(r.] => E Gima om
J depending on the
sign of the product.
‘:’ Tj 000 => g 1 (&) With standard con-
3 050 => g1 (B) figuration 3,
2 LDA (5] 000 => g1 (C) qL[AB] is an 18-bit
SMUL {4y l ook => g1 (D) register composed of
0 = Zl quarter 1 of A and
7 D quarter 1 of B. The
I 777/ other quarters are
not changed
3-60

August 1963

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
[::::::::::] 7 + 0 ==> R(A) The left half
1 words are not
IbA (- ==
{-3} 000030 ==> R(B) changed.
3. 1) + 0 ==> R(C)
MOL (-4} | - 4 ==> R(D)
bz » -k==> &
0 ==> 22
- 3000 ==> B
LDA
k. (i} l +0==> C
MUL {400} - 400 ==> D
V4 - 400 ==> E
0 == Zh
1% 0 => 1)
__ Only the right
2rm (3 0} 000030 ==> R(B) half words are
5. 2 + 0 ==> R(C) changed.
%L (4 ,, 0) - + 4 ==> R(D)
77/ (+4,,0) ==> E
0 ==> 22
Note: When a 27-9 subword form is used, the Arithmetic Step Counter is set for the

August 1963

27-bit word, if it is active.
word if it is active also. (This is true for MUL, DIV, NOA, NAB, and TLY.)
Normal use of this subword form is for floating numbers of the form N = x -

(27 pits for "x," 9 for "y").

This results in too many steps for the 9-bit

oF

Since different operations are performed on the

two syllables, both subwords will not be active at the same time.

3-61

DIVIDE (75)

DIV (75)
%aB] — a['I‘j] ==>A
%prv T,
J Remainder ==> B

DIVIDE considers the contents of AB (except for the lowest order bit of B) as the

numerator and the contents of Tj as the denominator. (Note that it is compatible with MUL.)

Configuration is similar to ADD, LDA, etc. The Quotient is stored in A with the appropriate

algebraic sign.

The remainder is stored in B with the same sign as the original numerator.

(The sign of the remainder is at the left, as usual.) (SAB {+n} will bring strange bits into

A for the remainder (in B) is not an extension of the quotient.)

—[J—’AB EQ+__R_ Q==> A

[T.] [r.] ==> B

The relevant overflow indicator is cleared at the outset and an overflow will be generated

if | [A] | exceeds or equals | [Tj] | .

Note: 1.

f |[a]] < 2 - |[Tj]| overflow, if any, is guaranteed recoverable via

SCA {-n} . SAB {-n} will also recover the correct answer, but it will
destroy the remainder.

If both [AB] and [Tj] are normalized (as per NAB and NOA), the condition
above is met, and any overflow is recoverable.

On overflow, the sign of A 1is always the reverse of the proper

algebraic sign.

If overflow is not recoverable, both [A] and [B] are useless.

X = N , and Overflow is set. (This is true for any N.)

+ 0
LN , and Overflow is set. (Also true for any N.)
-0

Divide clears C (as if by %pe (0}) and sets D (as if by %D Tj).
The contents of the memory register go into E, as usual.

See also note on page 3-61.

3_ 62 August 1963

EXAMPLES: (Standard F Memory - Chart 7-2.) DIV (75)
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
|:J T [AB] - {Tj] => A |Overflow, if any, sets
1. DIV T, Remainder = B Zy:
J l l l l +0 = C
[Tj] => D
077 (1] - =
: 'I'J R[2B] = R[Tj] => R(A)|Overflow sets Z,. The
- Loy T Remainder => R(B)|left half of the arith-
: J l l +0 => R(C)|{metic unit is unchanged.
J T R[r,] = R(D)
77/ (7] => &
J
[:‘:j T‘J 00k => q1{A) |The numerator is actually
3 B half of 000052 since the
;. LDA {000} 0L => al(B) |jqiest order bit of B is
3pB (052) 000 => ql(C) |not part of it. In deci-
_ mal, we have 21 ¢+ 5 or
3pry) _ D 005 => q1(D) 4 with a remainder of +1.
= 005=> E
0 => Zl
6 [:l T, +4 => ql(A) |Note that [A] is minus
L 6 A (-0,) J 1 = qu(B) |Z€TO The numerator is
’ ILDB (725,) - g therefore -21 (decimal).
6 prv +0 => q1(c) |If [A] were 40, the
(-5} il -5 => ql(D) |numerator would be
L A 0 (-5,) = E igs(g) or 234 (decimal).
0 = Z

August 1963

3-63

TALLY (74)

TLY (TALLY) loads A (as does LDA).

of D.

The E register is set, as usual, to

The rest of D 1is not affected.

TLY (74)

Oy .
3

a[TJ.] == A

count of ones + [SqD] ==> SqgD

]

Then the count of ones is added to the sign quarter

The sign digit is counted also if it is a "one".

EXAMPLES :
CONFIGURATION ABBREVIATED
No. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
:: Tj [Tj] => A "n" is the number of
l l L l n+qh[D] => glD ones in [Tj]° The
1. Ty T, _ addition is regular 9-bit
J LS [Tj] =>E ring addition with no
LA A overflow detection.
[————] {40} +0 =>A The D register is not
+0 =>E changed
2. TLY {40} l l l L =
=
A A
_ B not changed. Only the
3- Ty (0] l8+q_2[D] => g2 sign quarter (No. 2) of
-0 => E D is affected.
L "
N 7/7/777.)
Note: When a 27-9 subword form is used, the Arithmetic Step Counter is set for the

27-bit word, if it is active.

word if it is active also. (This is true for MUL, DIV, NOA, NAB, and TLY.)

This results in too many steps for the 9-bit

Normal use of this subword form is for floating numbers of the form N = x - 2y

(27 pits for "x," 9 for "y").

Since different operations are performed on the

two syllables, both subwords will not be active at the same time.

August 1963

3-65

3-3 OPERATION CODE CHART (Wesley A. Clark).

August 1963 3-67

3-3.1 Number Systems

Let S be a binary number of length A

3 number ranges are commonly used:

1) Positive Integers (e.g., r, P, Q)
0 <8 <2M-1

2) Signed Integers (e.g., Xj)

ph-1

- (27\'l -1) < 8 < +(

-1)

3) Signed Fractions (e.g., A in MUL, DIV)

- (- 27y < s < +(@-2 (1))
Negative number represented by "Ones Complement" of corresponding positive
1-0 3z
number. S 5,1 8 (complement of S).
. 0=00...0
t
Two representations of number zero — A bits in length
0=11...1
Reduction Modulo p
For positive integer S 0< 8 < 2u
S if 8<
S modu =
S-p if S> p
Example: 6mod 7 =6, 8mod 7 =1
3-3.2 Glossary of Terms
h Hold bit
[¢ Configuration
i Instruction
J Index
r effective address
Wr memory operand
Wr* Permuted Memory Operand
er Memory operand (indexed)
rj* Permuted Indexed Memory Operand
r, rQ)Xj Operand addresses
D Leftmost (sign) quarter of D

(er*)‘ Leftmost (sign) quarter of permuted indexed memory operand

G Group c

3-68 August 1963

EXAMPLE 1 EXAMPLE 2
S, T A-bit binary numbers S 010 011 101 111 011 010
s Complement of S (sign bit complemented S 101 100 010 000 100 101
<8 > Inversion of S <8 > 110 011 101 0ll 011 010
RS Positive (counterclockwise; left) unit
rotation of S RS 100 111 010 110 110 101
R 'S Negative (clockwise; right) unit a
rotation of S R ™S 101 001 110 011 101 101
2 x5 Unit positive scaling of S (S scaled
up by one) 2x8 000 111 010 110 110 101
2 5| Unit negative scaling of S (S scaled a
down by one) xS 001 001 110 111 101 101
(scaling is rotation without change
of sign bit)
n(s) Normalizer of S (S signed fraction)
% < | n(8) « g | <1 n(s) 0 2
Note: n(0) = n(0) = A -1. (Used as
9-bit number.)
T(S) Tally of S (number of ones in S) (used
as 9-bit number.) 7(8) 5 6
T 011 010 o011 011 0l0 011
SAaT S and T for each bit SA T 010 010 001 011 010 010
b, b=l, 2,
Sv T S orT e 5 A gv T 0l1 011 111 111 011 O0l1
sS@T S or T %but not both s® T 001 001 110 100 001 o001
SerT A-bit binar{ rinﬁ sum of S and T & 101 110 000 010 101 110
Note: S &S =0
SerT A-Dit binary ring difference = (S & T) |S©OT 111 001 001 100 000 111

August 1963

Enclosed expression applies to each active quarter of operand

Enclosed expression applies to each active subword of operand

A blank box indicates that no change is made.

3-69

[N
[N

- . . Vg N
INSTRUCTION EXECUTION TABLE. Imstaeriomzfh,e,i,f,a} {(ewraies aze A SLES N TERmS oF (T vALEs)
TIME
Coven el Lguuev.| waste P | @ X, W Wa= Waexg [Z00] A B c D £
men evel) @ o W YRR D’ D
o 21| SPF | greciry '&NE
22 | §pg |serairy o Pt | aeX; ®
1.2 Tai| Fr{rie _romm A 4 F,
2.8 32| rie | FiLe onoum [
20| LDA [LOAD A "%
° 25|LDB {LoAD B W
26[LDC |LoAs ¢ W
27{1DD [t0AD D Wi
34| STA [STORE A A
35| sTh [store 8 B
1.2 [w]svc store ¢ c
37|sTD |store B [
58 | EXA | ExcHanoE A Q@ A W
(BaA)
2.4 |s5|iNs | insenT (Baw)
a1 | ITA |inTEmsEer A AA W
42 | UNA uNire A Av Wy
) €5 | DSA [misTmGuISH A AW (A & WE)vC
»
67| ADD [ABO AD \4_4,5 Aw_lu W
77| sus | susTracT AG WY A~ WY
15[11]8 5] 76 | Mur | murier @ et |rex; ! oi A WY »
73 {ss137%6] 75 | oiv | Davioe o ® : (S)] (A8/3)guur | (AB/ 15y ap., ®
(%)// w|cva [evere A : 250" o i
P l’ 62| cas [evers AB i ;?M‘”»Aa
(‘%2':3 é1fcrs jevae B i P
70|SCA | SCALE A | 20mi=0 T PN
PNt =)
M)’)Q i Z(H")'(A) 7
630 - -
4 eo X 0 MGy
Z(A)x: ; W)
2<9 50 72 | SA® : SCALE AB i o 2(!)'-AB ®
Mt »
1 >0 Z(w d ={AB) W
i &)< ‘ 2+ (ot am) 5l
7ilsen lscae ® : ROTAN
: , :) =y
6% | NOA : NORMALIZE A | Z(A):0 : ; 2™ A (Wi e ma)
! ¢ 0
% | o] 2 : ’ (@'A) (wie
<6 | NAB | woamaLIZE AB | ZA)eo ; 2=(A8) g (W)Y'ompan
] |zt : (2"« AB) (W) @
|2]3]6]2 7| ny | TAlY ® ; Wy '@ ciny)
<4l pet ojA
+ 1]-A
SKX| SKIP own ®
36 2 (sz) NDEX 2 (XA
Pe+2 3 XJQA
-1 @
56 | PMT | PerpmuTE A =17 W !
2 0 COM |comprLenenT ® [OF —J ®
[s) 20} LDE | LoAD E L]
1.2 l3o|sre |srore E Pet jreX E
40 |\ TE | INTERSECT € € AW
At N T
o 43 |SED | SKAP P e minily
€ DIFFERS ‘M:I. Pr2
2,0 | i7]skm | swr-maxe @ [A @ - R ®
] 1] RSk [Reser x (W)
J.2 |w]om oerosit x SeXKg
1.2 | o] exx [excuance x Pei | A (W Setd) Xy ®
.8 10 | AUX | AugMENT X X ®wWHY q . :
3.2]s[aox apd x X WS
06| TPX | Junr on X; €0 | P+t @ *
3.2 roorne X Ixise [coX; O
07| INK | Jump on X <0 { il
ngoATWE X X420 { Pt |
46| JPA | JuMP on 7\ >0 P+t . i T
rosiTIVE A (W5 i |
0 & X, XY
1.6 |e7|TMA | TUmr 0w o Y !
NSBATIVE A ": <0 P ! |
aef Jov | Jume on a1 !
ovERFLOW Ay |2 Xy B : Pet
2 |osjane zume coven| A B ‘
4 BRC | BRANCH C odd |G Xs @ i | @ ' @
57| TSD | TRANSFER ey | P !
1.6 FYSN e i }
o | Pl AKX @ 1 @ ®
August 1963

3-71

3-3.3 Notes on the coding chart
18

1. In all expressions P + 1, P + 2, sums are reduced modulo 27 .

(777777 + 1) moa 28 = 0.

2. For SPF and FLF only quarter one of er is used. SPG and FLG use all
four quarters. F memory addressing is counted modulo 378 (e.g., 36, 37,

0, 1 ...)
3. If ré Xj = 377604 (address of A reg.) then EXA has same effect as STA.

k. Final value of WQ => (Q=r1r, 16 Xj).

5. ADD, SUB overflow conditions:
If A®W = A+ W Then O ==> Z(A)

If A®OW # A+ W Then 1 ==> Z(4A)

Z(ALB) = Z(Ahg) = Z(AM) = Z(Ah) = Z,
Z(A3) = z3
Z(A2l) = Z(Ag) = 7,
Z(Al) = 7
6. DIV Conditions:
CONDITIONS Z(A) 1 A B
|w_.*|> |AB| 0 QUOT REM
[w_.*| 40 t2d
rj]wrj*]§ [AB] 1 JUNK JUNK
I -
|aB| =0 A
1 =
¥l = 0l ap| 40 L@, x gl s

Sign of normal remainder = sign of dividend (AB).

JUNK is recoverable if |A] <2 iwrj*l .

Expressions listed are not correct for quarter (subword) 1 of A, B, and D'

if a 27, 9 subword is chosen, and if gquarter 1 is active.

8. CYCLE, SCALE, and NORMALIZE instructions begin, in effect, with LDD.

L —
er > E‘T

9. PMT, COM consist of 3 consecutive steps: er* => E
]
E ==> W .
rd
¥

August 1963 3-73

10. SKM variations:

J M selected bit
r.q.b
q mod k4 b ~
Mr.q.lo(dec) = M
3.613.5| 3.4]3.3]3.2{3.1 M B
= P
r.q.11(dec) T
q = quarter; b = bit Mr.q.l2(dec) = parity (Mr)
CONDITIONS ACTIONS
FUNCTION c M (SKIP, Then MAKE,
1.8 b7 b6 b5 hh| TUP| men cycim)
o - - - - P+1==> P
SKIP o i - - - - P+ 2 ==> P
SKIP on 1 o0 - _ _ 0 P+2=> P
ZERO 1 P+1==> P
SKIP on 11 _ - - 0 P+1=> P
ONE 1 P+2==> P
COMPLEMENT - - - 0 1 - Mr.q.b ==> Mr.q b
MAKE ZERO - - - 1 © - 0 ==> Mr.q.b
MAKE ONE - - - 1 1 - 1 = Mr.q_.b
-1
CYCLE - - 1 - - - RTW_ ==>W
r r
11. SG(Xj) is 18-bit number 00 ... 0 or 11 ... 1 according as sign bit of Xj
is 0 or 1.

12. ADX , AUX consist

of sequence of steps:

AUX
E & X, => X,
‘31 >

Ey © X, => EZl‘

13. ¢ is 18-bit signed integer expansion of c. (0< e< 37; -17T<c<+17)

3-74 August 1963

August 1963

14,

15.

JMP, BRC variations:

c
FUNCTION ACTION
L8l L7l k6|45 k)
JUMP - - - r ==>P
BRANCH - - - r o Xj => P
SAVE - - - P+l ==> XJ
- - 0 - - -
P+1=>E - - - P+1 ==>E,
Q ==>E - - - ==> Eh3
DISMISS - - - - ifh=0, 0 => dpL
7SD (Unit Ready)
— assembly
normal mode
mode out in
out in -
= = W .
W_.¥ =>a =>E wrj > UK UK > 'ry
rj X
Y Y
Y Y < Y REV FWD_y
E => U E=>W ¥ -1 ~ B
K rj R Wy => Wy, R Wy = Vs
3-75

CODE NO.

iy /)
5
6
7
10
11
12
il
15
16
17
20
21
22
ol
25
26
27
30
31
32
3k
35
36
37
4o
41
]
43
)
L6
by
5k
55
56
57
60
61
_6e
6k
65
66
67
70
71
72
~7}
75
76
7

August 1963

€y

NUMERICAL ORDER

OPERATION PAGE
108 b7
JMP 3-30
JPX 3-26
JNX 3-26
AUX 3-20
RSX 3-1k
SKX 3-24
EXX 3-18
ADX 3-22
DPX 3-16
SKM 3-34
LDE 3-7
SPF 3-54
SPG 3-54
LDA 3-6
LDB 3-6
LDC 3-6
1DD 3-6
STE 3-8
FLF 3-55
FLG 3-55
STA 3-8
STB 3-8
STC 3-8
STD 3-8
ITE 3-46
ITA 3-46
UNA 3-46
SED 3-36
Jov 3-32
JPA 3-32
JNA 3-32
EXA 3-10
INS 3-48
CcoM 3-50
TSD k-g
CYA 3-k2
CYB 3-L2
CAB 3-42
NOA 3-40
DSA 3-46
NAB 3-40
ADD 3-58
SCA 3-38
SCB 3-38
SAB 3-38
TLY 3-65
DIV 3-62
MUL 3-60
SUB 3-58

CHAPTER 3

INDEX

3-T7

ATPHEABETTICAL. ORDER
OPERATION CODE NO.
ADD Y
ADX 15
AUX 10
COM 56
CAB 62
CYA 60
CYB 61
DIV 75
DPX 16
DSA 65
EXA Sk
EXX 14
FLF 3L
FLG 32
INS 55
108 i
ITA b1
ITE Lo
JMP 5
JNA 47
JNX 7
Jov 45
JPA 46
JPX 6
IDA 24
LDB 25
IDC 26
1DD 27
LDE 20
MUL 76
NAB 66
NOA &L
RSX 11
SAB 72
SCA 70
SCB 7L
SED 43
SKM 17
SKX 12
SPF 21
SPG 22
STA 3k
STB 35
STC 36
STD 37
STE 30
SUB 77
TSD 57
TLY Th
UNA Lo

2
=

1 1 1 1 1 1 1 [I]] 1 [B} 11 [] 1 1] 1 1
EGORPPROOPRRLREBREEERNNNNNRRBAREEET EFIINGEELRTETIERS

TX-2 USERS HANDBOOK
CHAPTER 4 - IN-OUT SYSTEM

TABLE OF CONTENTS

4-1 INTRODUCTION

k-2 TX-2 INOUT JARGON
L-2.1 SEQUENCE - SUBPROCRAM - PROGRAM
4-2.2 PLACEKFEPFRS, PROGRAM COUNTERS, AND THE P REGISTER
4-2.3 SELECT, CONNECT, TURN ON

4-3 TX-2 INOUT CONTROL LANGUAGE
4-3.1 CHANGE OF SEQUENCE NUMBER
L_3.2 THE HOLD BIT
4_3.3 START POINTS
L4-3.% DROP OUT - TEMPORARY AND PERMANENT
4-3.5 THE "10S" OPERATION - "INOUT SELECT"
4-3.6 THE REPORT BIT
4-3.7 "TSD" - TRANSFER DATA

4-3.8 CONTROL LANGUAGE SUMMARY

L-L NOTES ON CODING FOR INTERLEAVED OPERATTON
4_L.1 BRUTE FORCE
h-L.2 HIGH - LOW - MEDIUM PRIORITY SUBPROGRAMS

4-5 UNIT BY UNIT DESCRIPTIONS
No. 41 INOUT ALARMS
No. 42 TRAPPING
No. 47 MISCELLANEOUS INPUTS
No. 50 DATRAC (SAMPLED ANALOG INPUT)
No. 51 XEROX PRINTER
No. 52 PETR (PHOTOELECTRIC PAPER TAPE READER)
No. 54 INTERVAL TIMER
No. 55 LIGHT PEN
No. 56, 60 DISPLAY
No. 61 RANDOM NUMBER GENERATOR
No. 63 PUNCH
No. (65, 66, T1, T2) LINCOLN WRITERS

July 1961 b1

CHAPTER k4
TX-2 IN-OUT SYSTEM

4-1 INTRODUCTION:

TX-2 was designed for 33 "IN-OUT" devices (see chart 7-1). Each chamel is identified
by its "Sequence Number" - Zero for "STARTOVER" and h0—77(8) for "normal" channels.

(Sequence Numbers are usually given in Octal.)
The basic In-Out set includes:

For Input: Photoelectric Paper Tape Reader
Keyboard and Reader of Lincoln Writer
Datrac Analog Sampler

For Output: Xerox Printer
High Speed Paper Tape Punch
Printer and Punch of Iincoln Writer
Display Scopes

For Bulk Storage: Variable Speed Addressable Magnetic Tape
(4 units, manually selected at first, about 2 million words

per wnit.)

The subprograms associated with INOUT units can be written so that the waiting time for
one unit is automatically used as computation time for others. Only one subprogram is in
operation at any specific time, although the interleaved operation of several subprograms

makes it possible for several INOUT units to be in operation simultaneously.

In a typical program, a subprogram will continue to run until it must wait for its
associated unit to complete a data transfer or until it is interrupted to allow a subprogram
of higher priority to run. Each subprogram has a "placekeeper" to remember where it should
resume operation ardan indicator ("FLAG") to tell when it is ready to run again Since it is
likely that more than one subprogram will be ready (i.e., more than one Flag will be up,)
at any given time, a priority system is provided and is adjustazble (by rewiring the "Priority
Plugboard").

Each INOUT chamnel has, therefore, a "Seguence Number" (40-77 octal) for identification,
a placekeeper (the correspondingly numbered index register), and a one bit register - its
"PLAG" for signaling. Channel number zero is a special case in that its "unit" is the
STARTOVER and CODABO pushbuttons, its "placekeeper” is the Toggle Start Point Register (TSP),
and its Priority is the highest and cannot be changed. (The pushbuttons - STARTOVER and
CODABO - raise Flag #0. 'CODABO" also clears alarms, presets all control flip-flops, lowers
all other Flags, and starts the computer. "STARTOVER" does NO MORE than to raise Flag #0.)

Lo July 1961

Sequence Numbers 76 and 77 have been reserved for non-INOUT purposes. Flags 76 and 77

must be raised and/or lowered by programmed instructions. With the standard priority plug-

board, they have the lowest Priority position. (Sequence number L0 has the highest. The X

register, a 6 bit FF register, holds the sequence number of the currently operating sub-

program.) A hTSD using & non-INOUT Sequence No. will cycle memory one place to the left.

h-2 TX-2 INOUT JARGON

h-2.1

Lo.2

Lo.3

July 1961

SEQUENCE - SUBPROGRAM - PROGRAM

TX-2 is indeed a "Multiple Sequence" or "Multiple Subprogram" machine. This is
to say that it can interleave subprograms - i.e., it can keep track of several inter-
leaved program sequences. This does not say that it can run several interleaved
independent programs. So much colusion and cooperation would be required to inter-
leave unrelated programs that they should probably be done by the same person. One
could then argue that the result would be better described as a multi-purpose program.

The word "Sequence" is often used as a synonym for "Inout Channel".
Sometimes it refers to "Sequence Number". (We often say "Sequence" 77 rather than

"Sequence Number” 77). And it is used in the "normal" sense - i.e., "subprogram".

PLACEKEEPERS, PROGRAM COUNTERS, AND THE P REGISTER

The placekeepers - all 33 of them counting #0, (the Toggle Start Point,) - are
memory devices whose purpose is to remember where each subprogram is to resume
operation when it gets a chance. DPlacekeepers MO—77(8) are index registers. Place-
keeper "ZERO" is the Toggle Start Point register (TSP) (a row of toggle switches on

the computer console).

The P register is an 18 bit flip-flop control register that always holds either
the location number of the current instruction or that of the next instruction. It

corresponds to the "program counter" or "instruction counter"” of other machines.

Index Registers 40-77, the placekeepers, are often called the "program counters'.

Occasionally the P register is called "The program counter”.

SELECT, CONNECT, TURN ON

To "connect”, or "Turn on" an INOUT unit means to set the control flip-flop of
the channel so that data can be transferred, and so that the INOUT unit has access to
its Flag. The unit is said to be "connected to the computer"”. FEach regular INOUT
unit has a "C" flip-flop - and a corresponding console indicator - to show whether it

is "connected" or not.

43

The word "select" is often used as a synonym for "connect" but it is also more
or less reserved for the day when two or more units must share the same channel.

This will be true, for example, in the magnetic tape bulk storage system.
TX-2 INOUT CONTROL LANGUAGE

TSD - "Transfer Data" and I0S - "INOUT SELECT" are the only INOUT operations. The
channel used for data transfer depends on the "sequence number" in use rather than the unit
connected, for many units mey be comnected, but only one subprogram is in operation at the

time a given data transfer is initiated.

Control of the interleaving - not strictly an INOUT function is done through:
The hold bit(#4.9), a syllable of every instruction,
Resetting placekeepers via X Memory operations, and

Drop out - permanent or temporary. (See 4-3.4)
L-3.1 CHANGE OF SEQUENCE NUMBER
A change of sequence number occurs whenever:

a) A high Priority INOUT channel takes over by "BREAKING" or

interrupting a lower priority subprogram.

b) A subprogram drops out ither permenently, or to wait for its
unit to get ready for another data transfer) and a lower priority sub-
program takes over. If no other subprogram is ready, no change of
sequence number occurs. The computer goes into "LIMBO", a condition
where it repeatedly scans all the Flags until one is up. If the same

old Flag (as indicated by the K register)comes up, no change of
sequence occurs.

bl July 1961

4-3.2

4-3.3

July 1961

When a change of sequence number occurs, several internal registers are affected:

- - -

- o
+ & oo

+ I
The E Register => | OD# | NEW# | SET FROM THE P REGISTER |

0ld Placekeeper > Reset from the P register same as the right half
of E. This will be "p+1" (one more than the location
number of the last instruction) unless the last
instruction changed P directly. (E.g., by SKX, SKNM,
JMP, JNA, JPA, JOV, JMP, SED, JNX, JPX, or TSD) TSD
will leave "p" rather than "p+l" if the data tramsfer

can not take place.
P Register S Set from the new placekeeper.
K Register :::> Set to the new sequence number.

Note that the current placekeeper is changed only when the sequence number 1s changed.
It can therefore be used as an ordinary index register while its subprogram is in

operation.
THE HOLD BIT

A typical INOUT subprogram is usually written so that it can be interrupted at
any time by another subprogram of higher priority. To do this completely, one would
have to refrain from using the Arithmetic Unit and the E register. Since this is too
severe a restriction, the "hold syllable" or "hold bit" is provided. A hold bit

insures that no "break" or interruption will occur following the completion of the

held instructiocn.

A break can occur before a "held TSD", but only when the INOUT unit is unable to
handle the data transfer. (This is called "DISMISS and WAIT".)

Since instructions using the E register must nearly always be held, the assembly
program automatically inserts the hold syllable. (LDE, ITE, and JPX, JNX.) (JPX
and JNX are included because their automatic dismiss is usually not wanted. The hold
sylleble cancels "dismiss" whether built in (as in TSD, JNX, JPX) or programmed (as

in Oskx, P10s, Xap)).

START POINTS
To start a subprogram we need only set its placekeeper to the starting place and

raise its Flag. If the computer is running, the subprogram will start as soon as it

has highest priority among those that are ready.

b-5

L3,k

"Starting" is particularly easy for sequence number zero. Its placekeeper,
"PSP", is set by hand. If the computer is running or in "LIMBO" the STARTOVER push-
button will suffice. Flag zero will go up and a change of sequence number to #0 will
occur as soon as an instruction is performed that has no hold bit (or when a hTSD that
can not be initiated is encountered). CODABO is used when the computer is not

running, or when the user wants to stop all other subprograms and start subprogram

#O only.

A subprogram using sequence number zero has highest priority and therefore can
not be interrupted. Sequence number zero is used primarily to start other subprograms.
This amounts to setting placekeepers for the others and raising the Flags of those

that should start. The following operations are used:

For setting placekeepers: RSX, SKX - i.e., the instructions normally
used to change the X Memory.

. . [snl LN lo
For raising Flag "F": SKXF or IOSF 50 000

For permanent Drop Out: The dismiss bit (4.8) - a syllable of SKX,
JMP, and IOS only. The built in Dismiss
feature of TSD, JNX, and JPX can also be used
for permanent drop out.

Note that the single instruction "3OSKXa lOl" (in sequence zero) would start
the subprogram that is at 101 operating under sequence number "a". (Providing, of
course, that @ is not zero.) In fact, the SOSKXa 101 will work from any sequence
number other than &. (It can not be made to look like "JMP 101".)

DROP OUT - PERMANENT AND TEMPORARY

When a subprogram is finished, it can drop out permanently through the DISMISS
syllable (bit 4.8) of I0S, SKX, or JMP. When TSD has initiated an output data
transfer or when it has completed an input data transfer the built in dismiss will
cause drop out if "hold" was not used. This drop out will be temporary - the INOUT
unit will raise the Flag. For input units the Flag is raised when the next datwum is
ready (e.g., when the next key is pressed or the next line of tape comes up). For
output units the Flag is raised when the data transfer is complete and the unit is
ready for another (e.g., when the character has been printed, or the paper tape has

been punched).

Drop out always lowers the current Flag. It is considered "temporary"” if the
unit is about to raise the Flag and "permanent" if the Flag will be raised by another
subprogran {or if the subprogram is finished for good). Temporary drop out can also

occur when a TSD operation is not possible - i.e., when an output unit is still busy

L6 July 1961

or when there is no datum available from an input unit (e.g., when the next line has
not yet arrived). This form of temporary drop out is called "DISMISS and WAIT" and
can not be prevented by using the "hold bit". 1In this case, the TSD that caused the
drop cut has not been done, the P register is not advanced,and the TSD is done when

the subprogram resumes operation.
L-3.5 THE I0S OPERATION - "INOUT SELECT"

The primary functions of I0S are "Connection" and "Disconnection" of INOUT units,
and the specification of operating modes. Some units have several modes - for example,
the user has the option of punching tape with or without a 7th hole on each line.

I0S is also used for raising and lowering Flags and will eventually be used for

selecting mag tape drives.

The basic IO0S operations are:

I0S; 20 000 - Disconnect Unit "J"‘#rom the computer

IOSJ 3IXXXX - Connect Unit J (if not already connected), and set to
Mode XXXX

108; 4o 000 - Lower Flag J

IOSJ 50 000 - Raise Flag J

108 60 XXX - Select Unit XXX (Not used yet)

IOSJ 20 000, Disconnect, has no effect on interleaving except that a TSD that
tries to initiate a data transfer will not be performed. (A "Dismiss and Wait" will
occur - waiting for the unit to be ready to transfer the data. In most cases this

amounts to a permanent drop out.)

IOSJ 3XXXX, Connect, has one peculiarity. It will raise Flag J whenever:
Unit J is an OUTPUT unit, -
and Unit J was not already connected.
When a mode change takes much time, the unit involved will generate a raise flag
signal to indicate that the change has been made, and no data transfer will be

accepted during the intervening interval. (i.e., the "buffer is busy".)

IOSJ 4o 000, LOWER FLAG J, is not equivalent to drop out if J is the current
sequence number. The subprogram currently in operation will continue to run until
it drops out or until it is interrupted by a unit of higher priority. If such a
BREAK occurs, the interrupted subprogram will not resume operation, for Flag J is

indeed lowered. If J is not the current sequence number, IOSJ L0 000 prevents

July 1961 L7

subprogram J from resuming operation until Flag J is raised somehow - (perhaps by

unit J or by another subprogram).

10S; 50 000, (and lOSKXJ) will raise FLAG J, but as before, "J = current sequence'

is a special case. Note that:

SKX Y
20 J or 3OSKXJ Y
IOSJ 50 000

Will change the P register and therefore be similar to a JMP if J is not the current

sequence number. But if J is the current sequence number, no change of sequence
number is ordered and the RAISE FLAG cancels the DISMISS. There is effectively no
change. (Except that 3OSKXJ Y will set X_ to "Y" but this will be wiped out by the

J
next change of sequence number.)

The Flag of the current sequence is never used. Following each instruction

that is not held, control scans the Flags having higher priority but goes no further.
It does not consider the current Flag. If the instruction was Eggg no scan is made
at all. When a subprogram drops out, all the Flags are scanned until a raised Flag
is found. When no Flags are up, and this scanning is taking place, the computer is
in "LIMBO". As soon as a Flag is found, a change of Sequence Number (see 4-3.1)

takes place and normal operation is resumed.
4-3.6 THE REPORT BIT

A simple I0S has no effect on the E register. If bit k.4 is set to 1, (a
lIOSJ 0 for example) the control flip-flops of the chosen unit are copied into B
before the rest of the instruction is performed. Thus, if lIOSJ 3XXXX is used, E
will contain information on the state of affairs before the mode change. Unused

portions of E are cleared.

The standard report is as follows:

Bit 3.1 to 3.6 - Sequence Number of Reporting Unit
" 2.9 - Flag
" 2.8 - Buffer Status - 1 = not busy
= busy
"o2.7 - Maintenance
" 2.6 - Connect
" 2.5 - EIA - Equipment Inability Alarm
"2k - MISIND - Missed Data Indicator
" 2.3 -1.1 - Mode flip-flops - same as in the I0S 3XXXX for most
units.
" 3.7 - k.9 - Special indicators - cleared if not used.

4.8 July 1961

4-3.7 TSD - TRANSFER DATA

July 1961

With a few exceptions (41, 42, 55, 75) each INOUT unit has an INOUT Buffer
Register (IOB) and a Status FF. STATUS = 1 means it is the computer's turn to use
the buffer, STATUS = O means that the "BUFFER is BUSY" - i.e., the unit is working
on an uncompleted data transfer. The buffers range in size from 6 to 24 bits.

TSD - Transfer Data - means either "copy from 108, to memory" or "copy memory to
IOBk" where k is the current sequence number (i.e., contents of the K register).
Thus for input units, TSD completes the data transfer and for output units, TSD
initiates the data transfer. (For input, the transfer is "unit-to-buffer,” then
‘buffer-to-memory"(via TSD) and for output it is "memory-to-buffer" (via TSD), then
"ouffer-to-unit".)

Except where TSD is used in ASSEMBLY mode, permutation and activity can be used
in the normal mamner. There is no sign extension - subword form is ignored.
"Inactive" portions of an output buffer are filled with +0. The buffer is considered

to be at the far right unless otherwise stated in the wnit descriptions.

TSD has two built-in DISMISS features. If the buffer is busy, the TSD can not
be performed and drop out occurs whether a hold is used or not. This is called

"dismiss and wait" and comes before the P register index point in the control cycle.

(P is not advanced.) Once the TSD operation is done, the other built-in DISMISS
occurs but this time "hold" is effective. Such a hold is used on input devices to
insure use of the new datum as soon as possible and on output devices to utilize the
processing time without changing the sequence nmumber. It is possible in either case

to use 5o much time that lower priority subprograms never have time to operate.

If an INOUT unit is not comnected, a TSD will find the buffer "busy" and "Dismiss
and wait" will occur. If the unit is subsequently connected by another subprogram,

the flag of the first will be raised and the TSD will be performed as soon as normal
interlesving will allow.

If a TSD is done using sequence number O, 76, or 77, the specified memory word

will be cycled left once. The configuration syllable is not used - the cycle is a

full 36 bit operation. Unless a "hold" was used, the automatic dismiss syllable of
TSD will take effect. (This is also true for sequence numbers Ior waich there is no
INOUT unit as yet.)

Note that for sequence number 75 (Miscellaneous Outputs), TSD does not cycle.
(Tt will still dismiss if not "held", however.)

4-3.8 CONTROL LANGUAGE SUMMARY

105
o] 1
IOSJ 0 - Has no effect except to take time. (But note that ~IO0S is
"Report".)
0
IOSJ 20000 - Disconnect Unit J
0
IOSJ 3XXXX - Connect Unit J, Set Mode, Raise Flag J if Unit J was a
disconnected Output Unit.
0
IOSJ koo00 - Lower Flag J - Not DISMISS, (i.e., will not cause drop out.)
0
IOSJ 50000 - Raise Flag J
SKX
10 . toett
SKXJ N - Raise Flag J, Set XJ to "N.
2OSKXJ N - DISMISS, Set X to "N'.
3OSKXJ N - Both of the above for J # k. If J =k, there is no drop out.
(k = current sequence number.)
DISMISS

Bit 4.8 for 10S, JMP, SKX (e.g., 20510(, 20105)

"Built in" as part of TSD, JNX, JPX

(Ctherwise not available.)

Change of Sequence Number Affects:

Register E — [own# | wew# | conrEnrs or P |

01d Placekeeper - Contents of Register P

Register K — New Seguence Number
Register P — Contents of New Placekeeper X

Report - 1ros - (bit L.k of 108)
[e)Y

~\0 —~ O = ™ ~
=) M al Qo —
L I I I |
*Not Used,cJ Sequence k0*2.3 - 1.1 Mode Bits
Except by Number of
Magnetic Reporting N 2.4 - MISIND
Tape. Unit. 2.5 - EIA
2.6 - Connect
2.7 - Maintenance
2.8 - Buffer Status (0 = busy)
2.9 - Flag
* Register E is cleared before the report. Therefore, all un-used bits

are zero.

4-10 July 1961

L-l NOTES ON CODING FOR INTERLEAVED OPERATION

If a program uses but one unit there is no need to interleave any subprograms and the
entire program can be performed using one sequence number. Even if two or more units are
to be used, it is sometimes better to use them one after the other rather than simultanecusly.
If the above conditions are true, the only pitfall that may be overlooked is premature drop

out. Careful use of the dismiss bit and built in dismiss features will prevent this error.

Interleaved operation of subprograms requires sharing the following:

Main Memory
X Memory
F Memory
Arithmetic Element (A4,B,C,D, and Overflow FF).
TIME
(Listed in order of increasing difficulty)

Main Memory and X Memory must usually be partitioned, except, of course where they are
used for common data. The F Memory can usually be set at the start to some "Standard

Configurations" and left unchanged. Two approaches to sharing TIME and AE are given below.
L-4.3 BRUTE FORCE HOLDING

Whenever the INOUT units involved are slow enough, or are not free-running
(i.e., do not dictate timing) a brute force method may be used. (The Lincoln Writer
Printer and the High Speed Punch are two such units.) The lower priority subprograms
can use a hold bit on all instructions where a break is intolerable, (assuming a
BREAK will change the Arithmetic Element). The only limit is that they can't hold
on all instructions. The highest priority subprogram has no problem other than the
fact that it must drop out now and then to give the others a chance. If it must
wait for a lower unit it can do so by dropping out and relying on the other sub-
program for restarting. Synchronization can be automatic only if the high priority
loop contains a temporary drop out. The easiest way to obtain a temporary drop out
is through regular and, if need be, dummy TSD operations (e.g., non-printing keys on
the Typewriter, blank tape on the punch, ete.). Another method would be to use the
Interval Timer (Unit #54).

L-4.2 HIGH-LOW-MEDIUM PRIORITY SUBPROGRAMS

The Brute Force Holding method will not work if the timing of one unit requires
that it receive attention soon after its Flag comes up. In many cases it is necessary
to restrict holding to no more than three consecutive operations. Fortunately, the
index memory operations can be used in place of the Arithmetic Element operations for
many applications. This means that all but the lowest priority subprograms do not
need the Arithmetic Element. The rulesfor this method are as follows:

July 1961 L1

For Lowest Priority Subprogram - The only one to use the Arithmetic Element.
*
a) No more than ™" consecutive holds. (It should be possible to limit

this lowest priority subprogram to holding only on JFPX or JNX.)

("Consecutive", here refers to TIME, not storage.)
For Medium Priority Subprograms -
a) No more than "n" consecutive holds.¥
b) No use of the Arithmetic Element
For Highest Priority -
a) No use of the Arithmetic Element unless it is saved and restored.
b) "Hold" should be needed only on JNX, JPX, and TSD. In other places,

it has no effect. When used on TSD, care should be taken to insure

that some time remains for other units.

*
"n" the number of permissable consecutive "holds" is determined by the timing requirements of
the highest priority subprogram. "n" = 3 is enough to allow considerable flexibility in the

other subprograms.

412 July 1961

No. k1
IN-OUT ATARMS

IN-OUT ALARMS

DESCRIPTION:

This "device enables operation of an Alarm Subprogram whenever an IN-OUT alarm occurs.
FLAG 41 is raised upon EIA (Equipment Inability) or MISAL (Missed Data) for any of the

devices listed below. TSD is used to determine the type and source of the alarm.

MODE SELECTTION:

Connects alarm circuitry to central computer. FLAG 41 will
xoshl 30000 now be raised upon alarms. TSD will now report alarming
conditions. "MISAL" (Alarm) is suppressed. See Note 1 below.

TSD INSTRUCTION:

TSD Tj !“ [::]:::I:::[::] Tj TSD does not clear alarm. The
on i ¢ l l offending unit must be disconnected
. (I0S 20000). See Note 3. TSD
TS0 T, [1 108, copies I0B), into T..
BUFFER BIT ATIOCATIONS:
Bit Corresponding In-Out
Octal Integer Alarm
1.1 001 MISAL - Datrac 50
1.2 002 MISAL - PETR 52
1.3 ook MISAL - Mag. Tape 46
1.4 010 EIA - Mag. Tape 46
1.5 020 EIA - Camers 60
1.6 oko EIA - Punch 63
1.7 100 ETA - Xerox 51
1.8 200 EIA - Lincoln Wtr. 65,66
1.0 400 EIA - Lincoln Wtr. 71,72
NOTE: 1. An unsupressed "MISAL" will stop the computer. The two forms of supression, program

and manual, are independent - both must be off to remove the supression. Programmed
supression does not light the yellow console light, but the red light and gong still
work.

2. EIA - "Equipment Inability Alarm" - does not stop the computer but it may ring a
buzzer or stop the unit involved.

3. If an additional alarm is generated before the first has been cleared, I0B, . will be
set but FLAG 41 will not be raised. TSD can be used again to see if this has occurred.
Note that an IOS 30000 following IOS 20000 will raise FLAGS 60, 63 and 51, but not
FLAGS 50 or 52. FLAG 46 is a special case. TSD should be used before disconnecting
the offending unit for it can not report conditions of units that are not connected.

November 1961

No. 42

The TRAP circuits can be set to raise FLAG 42 (thereby starting a special subprogram)
whenever a metabit is encountered in the operation of other subprograms. FLAG 42 can also
be raised on change of sequence number or upon a signal from the TX-2 Sync System. The
circuits can also set metabits. Since metabits can be encountered in 3 basic ways, there
are several TRAP modes. See below. TSD is not used (but retains its cycle left and
dismiss features). Combined modes are allowed. For example, I108), 30007 will set to trap
on all metabits encountered, whether by instruction,defer cycle, or operand.

MODES
(Programmed) (411 Pushbuttons OFF.)

or Clear Clears Mode Selection

IOSL2 30000

IOSL\L2 30001 Trap on Marked Instruction FLAG 42 is raised before the end of the

marked instruction.

IOS42 30002 | Trap on Deferred Address FLAG 42 is raised before the end of the
instruction using a marked deferred
address.

FLAG L2 is raised after a delay of one
IOS-42 30004 rap on Operand to several instructions, depending on

overlap conditions.

FLAG 42 is raised during change sequence
cycle if new Place Keeper (index register)
108, 30010 | Trap on Change Sequence is marked (2-9 = 1). The "new" (marked)
sequence number goes into quarter 3 of the
E Register, and the "old" into quarter k.

There is no trap when leaving mumber L42.

The three "set metabits” modes below are partly manual in that the "set metabits”

pushbutton switch on the console must be "ON". These modes do not raise FLAG Lo.

IOSLL2 30100 Set Metabits of Instructions Sets metabit of all instructions
performed.
IOSLJ_2 30200 Set Metabits of Deferred Sets metabit of all deferred addresses
Addresses used.
IOS42 30L00 Set Metabits of Operands Sets metabit of all operands used.

July 1961

No. L2

2 of 2

MANUAL MODE: (Trap on Sync System Signal)
FLAG L2 can be raised by a signal from the Sync System. The requirements are:

1. "Sync 1" and "Sync 2" pushbutton switches should be OFF.
The "Sync to Trap" pushbutton switch should be "ON". While it is "ON" all
other trapping modes are not effective. Setting modes still work. When
"Syne to Trap" is turned "OFF", the original mode is reinstated.

3. "Gate 1 to Sync Jacks" pushbutton switch should be ON. (This is located on
the Sync System Panel.)

July 1961

No. L7
MISC. INPUTS

MISCELLANEOUS INPUTS
Nine one-bit independent input channels - each with a BCN jack and an ON-OFF toggle

A standard TX-2 transition from -3V to ground will set the chosen

switch are provided.
The buffer is cleared upon copying into memory via TSD.

buffer digit and raise FLAG 47.-
Two Schmidt Triggers with filters are provided on the panel itself, and a 3 channel push-

button pulse generator is also available as a separate, movable unit.

MODE SELECTION

IOSh7 30000 CONNECT This allows inputs to raise FLAG L47.

It does nothing else.

TSD

TSD Tj [|a E::]:: TJ. | TSD reads IOB into Tj and clears IOB.

‘ ‘ * ‘ Permutation is operative - there is no
sign extension - quarter 1 must be active -

B
1 1o 27 | activity of 2, 3, 4 is not relevant.

OR

“rsp T

i

MANUATL CONTROLS:

w<—Toggles ("on-off" for each.)
e
e

<+—BCN Connectors - (Standard

TX-2 Inout Transition)

.
e
iets

.
o

The input signal must be a "Standard TX-2 Transition” (i.e. from -3 volts to ground

Notes: 1.
with a rise time less than 0.2 microseconds).

2. The Schmidt triggers are completely independent of the rest of the circuitry and
must be cabled to the channel desired. The input to the Schmidt trigger must be
a smooth transition from ground to -3 volts. Since the normal open circuit volt-
age is about -3 volts, a sine wave of about 5 volts RMS, or an opening switch
contact can be used. The filter should be used with the switch contact input or
with any other noisy source. The Schmidt trigger inverts the input signal producing
a standard TX-2 Inout Transition as its output. (The circuit switches at -0.9 volts
going down and at about -2.2 volts going up. The rise and fall time is about 0.15

micréseconds.)

July 1961

No. 50

DATRAC

lof2
DATRAC - Analog to Digital Numerical Input

The DATRAC is an analog to digital converter made by Epsco, Inc. It provides numerical
samples of a continuous electric signal. A measurement or sample is started upon receipt of
a "trigger pulse" from the computer or from an external source. (Such as the Interval

Timer - See No. 54.) Pertinent parameters are as follows: (and see notes below.)

Maximum Sampling Rate: 27 Kilocycles (37 usec per sample)

Measuring Time (Trigger to Raise Flag): 22 usec.

Nominal Input Signal: -1 volt to +1 volt (can be set to 110 vo1t
or Y100 volt behind the panel.)

Output Signed 18 bit Ones Complement Fraction

OPERATIONS

IOS50 30000 CONNECT IOSSO 30000 permits FLAG 50 to be raised and sends
a trigger pulse to the datrac control panel, (wherd
it may be switched to the DATRAC, or not as desired|

by the user.)

TSD T, |« [:D:: Tj TSD copies an 18 bit signed ones complement

OR * ‘ ‘ J fraction into Tj along permuted pathways if so
@ specified. The reliable precision is, however,
15D 7, 1 10B5g]only 8 to 11 bits - (at the left end). There
is no sign extension in T,. TSD also sends a

trigger to the DATRAC con%rol panel (where it

may be switched to the DATRAC or not as desired.)

NOTE: 1. Do not trigger the Datrac more often than at 37 usec intervals. It is possible
to damage the circuits.

2. TSD copies the measurement taken at the time of the last trigger.

3. A MISAL is created when a trigger arrives at the Datrac before the previous sample

has been transferred to the computer via TSD. (See IN-OUT #41.)

July 1961

No. 50
DATRAC

2 of 2
MANUAIL CONTROLS:

DATRAC Control Panel

. Trigger Inputs (Standard TX-2 Inout
Trensition. i.e. -3
to ground in less than
0.2 microseconds.)

= w N

[Osc. Oscillator Inputs (3 volts RMS required)
Osc.

TSD} "Up" connects programmed triggers to

I0s DATRAC. These are internally connected,

General Radio Oscillator (Not an integral part
«— of the DATRAC system.)

DATRAC Signal Input. (Cannon Connector XL31l
required. Pin 1 - Shield, pin 2 - Ground,
pin 3 - Signal.)

. "External Trigger Input” This trigger input is
__—— not compatible with TX-2. Use the inputs on the
‘ "Control Panel" above. They are internally
connected to this input.

~—————_ __ DATRAC Power Supply The Datrac power is not

left ON. A warm-up time of from 5 to 30 minutes
is required,(30 minutes is enough to insure that
it is as stable as it will be.) Users should be
sure to turn the power OFF when they are finished.

July 1961

No. 51
XEROX PRINTER
1 of 3
XEROX PRINTER
The XFROX is an electrostatic, high speed (960 lines per minute) printer. It is

basically a charactron display with automatic continuous xerographic recording. Through
electronic compensation, the display area or frame is held 'Stationary' for about 45 milli-

seconds, and then moved down about 0.1 inch to catch up with the paper. The programmer

must specify the x,y position as well as the code number for each character to be printed.

OPERATIONS

IOS51 30000 CONNECT "Connect" turns on the xerographic recording
apparatus and raises FLAG 51 when the equipment
is ready. (Warm up time is about 5 seconds.)

10851 30010 FRAME SYNC If the unit is not connected, "Frame Sync" will
"connect” it. FILAG 51 is raised at the start of
the next Frame period. (Frame period is 45
milliseconds.)

TSD Tj la [::]:::[::]:::] T. TSD causes one character to be printed. Since
' i
oR L l ‘ ¢ TSD takes about 750 usec, only'GO characters
can be printed within one FRAME interval. See
“rsp T T TT7 108
j 51| diagram below for Xerox buffer layout.
BUFFER LAYOUT
o : © i :
Z s o o —
X Position Y Position Character Code

Notes:

The "Frame Area" is a rectangle approximately 5 by 1 1/L inches.

The "Origin™ is at the left end, centered vertically.

The X position is given by a 9 bit positive integer. (000 to 7778)

The Y position is given by a 6 bit ones-complement signed numeral. {-37 to +378)

A O I

The First TSD starts the paper motion. The paper will continue to move until 15
seconds after the last TSD or until 15 seconds after the Xerox is disconnected

via IOSSlQOOOO.

6. A TSD that must start up the paper drive is unpredictable due to noise generated by
the paper mechanism. The safe procedure is to print cne or two "blank" characters
(e.g. code 100) and an extra Frame Sync (I085130010) to ensure that the paper is
moving smoothly when the data is displayed.

July 1961

Numerical Parameters:

Frame Interval

Frame Reset Interval
Character Print Time
Frame Size

Character Size

Paper Speed

Calculated Parameters:

Characters per line
Vertical deflection
Horizontal deflection
Frame spacing

Lines per inch

Suggested X increment

MANUAL CONTROLS

Note:

ON OFF
SWITCH

are "connected”.

45 milliseconds (approximately)

2 milliseconds

750 microseconds

1 1/4 inches high by 5 inches wide
Nominally 3/32 high by 1/16 wide

2 inches per second

60

.02 inches per unit
.01 inches per unit
.094 inches

10.65

8 units

Low paper buzzer alarm

No. 51

XEROX PRINTER

2 of 3

"Low Paper" alarm causes an EIA indication and can raise FLAG L1 if IO alarm circuits

See IN-OUT Unit L41.

July 1961

CHARACTER

- FN << X E S C H OV ICOC VO ZTXr- R CHIG=TMOO®D

v A

(PERIOD)

Note: Bit 1.9 of the Xerox Character Code is a "size control bit".

XEROX PRINTER CHARACTER CODES

OCTAL CODE

154
142
361
352
313
344
302
354
172
144
143
332
360
370
353
312
160
371
322
183
362
182
343
i1
342
162
132
133
220
221
222
351
372
340
363
730
703
720
150
570
140
114
131
103

(0s6)}071)346)

(043)
(os54)
(012)

(157)

(047)062)317)
(o55)070)345)
(355)

(042)
(145)
(356)
(017)032)307)

(o57)072)347)

(0s53)
{148)
(052)
(147)
(117)

(205)
(206)
(207)

(357)
(0s0)
(073)
(445X 460)715)
(413)
(415X430)705)

(555)

(116)

CHARACTER

E
k

g€ &~ A& v 3

©

W O W @ N A A NN N> A D R D R

X U 2 .

O

",—»-\D“‘%>l

~—

(ZERO)

(COMMA)

(CIRCLE)

No. 51
30of 3

OCTAL CODE
122 (107)
324 (034)
323 (033)
024

111

112

173

174

163

164

310 (040)
311 (041)
333 (063)
203

334 (064)
023

ool

002

003

ooa

020 (oo0s)
021 (o0o0s)
022 (007)
300 (010)
301 (011)
ooo

202

204

120 (105)
121 (106)
113

714 (44a)
373

341 (051)
364 (074)
731 (44a6)a61)716)
704 (414)
721 (416X431)7056)
151

§71 (556)
141

130 (115)
102

104

"1" means large, and

"0" means small. The codes are given above with the "proper" size.

November 1961

PHOTOELECTRIC PAPER TAPE READER

No. 52
PETR
1 of 2

The PETR is a "free running", 400-2500 lines/sec., 7 channel paper tape reasder. The

seventh channel and the feed (or sprocket) holes are used for control, leaving a six bit

data word per line.

and is read as it is pulled past the photodiodes by the reeler.

from rest to a maximum that depends on the size of the reel.

between lines.

The tape must be loaded into the tape bin (manually or automatically)

The speed therefore varies

The tape can not be stopped

It takes about 100 lines (say a foot of tape) to come to a stop.

OPERATIONS

Ios52 30000 STOP TAPE 10552 30002, 30004, 30006 are equivalent.
+ CONNECT PETR is connected if not so already.

IOS52 30100 READ NORMAL Starts reeler and reads tape in NORMAT
(+ CONNECT) mode. (See TSD, below.)

10852 30104 LOAD BIN AND Starts capstan drive in bin direction.
READ NORMAL Stops capstan when END MARK is detected
(+ CONNECT) (code 73 with no T7th hole), and starts

reeler to read tape in NORMAL mode as for

"Read Normal"above.

IOS52 30102 READ ASSEMBLY tarts reeler and reads tape in ASSEMBLY

OR READ SPLAYED Mode. (See TSD, below.)
(+ CONNECT)

IOS52 30106 LOAD BIN AND Starts capstan drive in bin direction.
READ ASSEMBLY Stops capstan when END MARK (73" with
(+ CONNECT) no 7th hole) is detected, and reverts to

Read Assembly mode (30102) above.

TSD OPERATIONS

756 T, e | CT T 17T,
or R

TSD, in NORMAL MODE, uses permutation and/or
Only the 6 bits of TJ_ that
(i.e. Bits

activity.

correspond to the Buffer are changed.

a
TSD T, L:J 1085, 1.1 to 1.6)
In Assembly (i.e. Splayed) mode, the con-
TSD T, e T . . s .
i i figuration syllable is ignored. Tj is
OR cycled left one place and the data goes
%rsp T, 108, , into bits 1.1, 1.7, 2.4, 3.1, 3.7 and 4.4

= 3 as diagramed. Six TSD Tj operations there-
fore assemble a full 36 bit word in Tj'

July 1961

No. 52
PETR

2 of 2
MANUAL CONTROLS

Note: The manual control
pushbuttons discon-
nect the PETR. (This
is equivalent to the

1055220000 instruction.)

Reel/Strip Toggle Switch - Selects the drive for tape
motion in the "Reel" direction for both manual
and computer operation.

Maintenance "Reel” - Up to 2000 lines per sec. Drive
Switch provided by the reeler.
"strip" - About 40O lines per sec. Drive

provided by the internal capstan.

\——— Wing Pushbutton - Starts tape movement in the "Reel"
direction. Countermands any computer originated
operation. Tape is not read by computer.

; Bin Pushbutton - Starts tape movement into the bin,
at about 400 lines/sec via internal capstan drive.
When the "End Mark" (Code T3, no Tth.) is
encountered tape motion is stopped with the mark
on the bin side of the reading point. Any
computer originated operation is countermanded.
Tape is not read.

TAPE DIAGRAMS

| ‘ (Read toward PETR, inside to outside.)

‘ | [6 7[1 olo 113 ol2 2]o 6]

Inside Edge

EEEEEEERENETEERERESR]

End Mark

l "Normal" "Assembly"

(One line) (8ix lines)
- TO the l To the
PETR (Read toward the Reeler

Tth. hole - i.e.
From inside to
outside.)

July 1961

INTERVAL TIMER

No. 5k
INTERVAL TIMER
1l of 2

The INTERVAL TIMER is essentially a counter that passes every nth pulse of a pulse

oscillator (the "End Carry Pulse").

and stop time are controllable.

The basic counting rate, timed interval, start time,

The output, a string of accurately spaced pulses, can be

used to raise FLAG 54, and (or) to trigger an external device (such as the DATRAC for

example). Control is partly manusl, partly by program.

OPERATIONS

IOS5H 30000

STOP COUNTER

(and Connect)*

STOPS the counter and hence the output string.
The count for the interval will now be reset
repeatedly from the buffer (at the counting rate).

(Counting rate is selected manually.)

I0S
054 30100

START COUNTER

(and Connect)*

STARTS the counter. The pulse string will start
after one counted interval and will continue
until it is stopped. In this mode, the string
is available only at the "EC OUTPUT" jack on

the console.

IOSSH 30200

SET TO RAISE
FLAG 54

(and Connect)*

CONNECTS output string to raise FLAG 54 at the
end of each timed interval. This mode is used
when the interval timer is to be started by

hand or by an external trigger.

IOSS& 30300

START and RAISE
FLAG (and Connect)¥

This is a combination of the two operations

Just above. The first output pulse and raising
of FLAG 54 come after one interval as specified
by the Buffer. (The buffer can be set manually
from toggles, or by a TSD in the program.)

*
A1l IOS5h 30000 instructions "connect"” the unit if it is not already connected.

Notes: 1. The buffer is "busy" during "end carry time" - i.e. when it is in use. For 10 kc.,
100 kc., and "Ext. Osc." this is equivalent to the basic counting interval. For
1 me., the buffer is "busy” during the last 16 counts. If the reset value is less
than 16, the counter must be stopped before the buffer can be changed.

2. Any change in the buffer becomes effective only at the end of the current interval
unless the change is made with the counter stopped.

3. Manual control overrides program control.

July 1961

No. 5k
INTERVAL TIMER
2 of 2
INTERVAL TIMER

IOSSM 20000 DISCONNECT This instruction stops the RAISE FLAG signals
but NOT the Interval Timer itself.

I0B (In-Out Buffer). Tnis is used as an
OR 18 bit positive integer. It specifies the

- TSD copies an 18 bit numeral from T, to the
e | - g -
TSD T, la ; J

“TsD T, 702 _, | number of "counts" per timed interval. (The
basic counting rate is manually selected.)
Permutation and/or activity may be used. Any

inactive portion of IOB is set to 40.

MANUAL CONTROLS:

1 me
Oscillator 100 ke
Control 10 ke
External
Oscillator
Maintenance Switch
START pushbutton - Resets the In-Out

buffer from the Toggle Register
and starts the Counter.

STOP pushbutton - Stops the Counter
(Note: When the counter is not
running, it is repeatedly reset
from the buffer.)

External Oscillator Input - (Requires
Toggle Register for a 20 volt l/}o.mlcrosecond puls?
i Manual specification | oscillator similar to the Burroughs
of interval. type 1002 AW)

Output Jack - (Std. TX-2 In-Out Pulses.)

\\\\\\\\\\\\Ekternal Trigger. input switch.

External Trigger input jack. (Requires
a standard TX-2 Inout Transition.
i.e. -3 to ground in less than

~ A

0.2 microseconds.)

Note: The Standard TX-2 Inout pulse has a duration of about 0.4 microseconds and a rise-fall
time less than 0.2 microseconds.

July 1961

No. 55
LITE PEN

LITE PEN

The LITE PEN is a light sensitive device that looks somewhat like a pen. When
"CONNECTED", it raises FLAG 55 whenever it "sees the light", presumably from the scope
display (SEQUENCE NUMBER 6€0).

OPERATIONS
IOS55 30000 CONNECT Allows unit to raise FLAG 55
IOS55 20000 DISCONNECT Prevents raise flag signals from unit.
TSD Tj NOT USED Same as for non-in-out SEQUENCE NUMBER (i.e.,
automatic dropout and cycle left Tj)'

MANUAT, CONTROLS:

The pen itself contains a preamplifier with fixed
gain or sensitivity. The sensitivity dial controls
the gain of the main amplifier. The proper setting
depends on the scope intensity and is usually set
by trial and error. The toggle should be thrown
toward the dial.

NOTE: The light pen is semsitive only during the intensification period of Scope #60. It will
not work properly with the second display scope (#56).

July 1961

No. 60
OSCILLOSCOPE DISPLAY
1l of 2

SCOPE DISPLAY

The "scope” is a cartesian coordinate, high speed (20 to 80 usec) display with 10 bit

precision in (x, y), controllable intensity (4 levels), and a phosphor persistancy of about
2 seconds. Each point must be specified separately and the display must be repeated
endlessly if it is to be viewed rather than photographed. A camera mount, several cameras,

and a film index instruction are provided. The usable display area is 7 by 7 inches.

OPERATTONS
IOS6O 30000 SELECT SCOPE If the scope is unselected, FLAG 60 is raised.
(CONNECT) This instruction gives lowest intensity and a
centered origin. See other IOS6O 30000 type
operations below.
10560 30000 SELECT SCOPE The scope "intensity" is controlled by the
IOS6O 30010 and set duration of the spot rather than beam
IOS6O 30020 INTENSITY intensity.
Ioséo 30030
30000 - Low - 10 usec.
30010 - Med. Low - 20 usec.
30020 - Med. High - 40O psec.
30030 - High - 80 psec.
IOS6O 30000 SELECT SCOPE The origin can be at the center, at the left or
10360 30100 and set bottom edge, or at the lower left corner.
IOS6O 30200 ORIGIN
10560 30300 LOCATION 30000 - Center - [:]
30100 - Bottom Center - 3
30200 - Left Center -
30300 - Lower Left Corner - [:]
10860 30004 INDEX FIIM The IO03 is busy until the return signal comes
back from the camera. The return signal also
raises FLAG 60.
NOTE: The IOS,, 30004 (Index Film) instruction causes an "EIA" (Equipment Inability Alarm) when

the film supply in the camera magazine is low. This raises flag 41 if unit L1 is connected,
lights the "End of Film" light, and rings a buzzer. (See next page.) 1t does not stop

the computer. The scope and camera can still be used until the film runs out completely.
When there is no film at all, the return signal that frees the buffer is not generated,

TSD operations find the buffer "busy"”, and "Dismiss and Wait" occurs.

.
P H
')x}{‘m) - R 3 e

W)

W
ity
L)

November 1961

No. 60
OSCILLOSCOPE DISPLAY

2 of 2
SCOPE DISPLAY
TeD Tj EE“ D:—_—: Tj TSD copies from Tj to the scope buffer. The
10 bit coordinates are interpreted as signed
e l l l’ l ones complement numerals. Therefore, there
“Tsp T, 1 [::] T0B., | are two zeros - plus zero (all zeros) and
/ \ minus zero (all ones). Moved origin modes
x coord. y coord. are realized by automatic complementing of
k.9 -3.9) (2.9 - 1.9) the appropriate sign bit. Thus +0 = -0 in
centered origin mode, and 0777(8) = 1000(8)
in moved modes. Permutation and activity
may be used.
NOTES
1. Tn most cases it is easier to use 9 bit arithmetic. In 18 bit arithmetic, one can use

"Fractions” and sense end carry by the SKM instruction, or one can use "integers" and

sense overflow the same way.

In the latter case, one must cycle or scale to the

left

so that the 10 bits will be in the buffer position.

MANUAT. CONTROLS

L On~Off Pushbuttons =~ Display power
comes on after a 65 second delay. It
is best for it to be brought on while
the computer is stopped, for it often

causes a spurious raise flag signal.

For best resolution, it is neces-
sary to wait about 20 minutes for the
circuits to reach thermsl equilibrium.

"Toward the
"hway", gives a
vertically inverted display to compensate
for the mirror inversion in the camera
mount .

“Camera Inversion Switch
wire" is 'Normal .

End of Film Light

—FEnd of Film Acknowledgement Pushbutton
This button will stop the alarm buzzer,
but does not clear the EIA flip-flop.
(See In-Out #41)

“——Manual Film Index
frame.

Moves the film one

November 1961

No. 61
RANDOM NUMBER GENERATOR

RANDOM NUMBER GENERATOR

The Random Number Generator assembles a 9 bit number "at random" from a radioactive

Cesiun Source. The average time required is 57.6 usec - minimum time 28.8 usec.

OPERATIONS

IOS6l 30000 SELECT AND The select operation also triggers the
TRIGGER generation of a random number. FLAG 61

is raised as soon as the number is ready.

" TSD copies the generated number into T..
o7, e | CTTT T, :
o ? (Permutation is allowed, and quarter one

OR l ¢ l l must be active.) TSD alsc triggers the

215 T D 107 generation of the next number. FLAG 61
‘61

will be raised when it is ready.

MANUAL CONTROLS

On-Off Pushbuttons - There is a 60 Note: The meters should read about half scale.
second warm-up delay. Note: The They are used for maintenance purposes
Random Number Generator should be left only. The maintenance switch is inside
OFF when not in use. the box above the control panel.

July 1961

PAPER TAPE PUNCH

No. 63
PUNCH
1l of 2

The PUNCH is the counterpart unit to the PETR. It is a line-by-line device and can

be programmed to punch at speeds up to 180 lines per second. A TSD must be given for each

line. Four modes are defined below.

OPERATIONS
! th
Ios63 30000 NORMAT, Sets to punch 6 channels - no 7 hole
NO 7th (used for blank tape, end marks, and
visual pattern punching.)
th
10863 3000k NORMAL Sets for 6 channels with automatic 7 %
WITH Yth hole punch on each line. (Used for tapes
to be listed on off line Lincoln Writers.)
IOS63 30002 ASSEMBLY Sets for splayed punching - Six TSD
No 7th instructions punchout a 36 bit computer
word.
IOS63 30005 ASSEMBLY Sets for splayed punching with automatic
WITH 7th 7th hole. Used primarily for Binary

OQutput.

NOTE: All the above 10363 30000 instructions "CONNECT" (SELECT) the punch and raise FLAG 63
th

if (and only if) the PUNCH was unconnected prior to

1e instruction.

TSD T, |

i
OR

“rsp T,
7

CL T T 17,

16|

[

IN NORMAL mode, permutation and/or
activity may be used. Only 6 bits of T

are copied, Tj is not affected.

TSD T, e
OR

“rsp T

2]

In ASSEMBLY mode the configuration
syllable is ignored. The datum is copied
as shown (from bits 4.9, 4.3, 3.6, 2.9,
2.3, 1.6) and after the copy the full 36
bit word is cycled left once (in Tj)'

Six "TSD Tj" operations will copy a 36 bit
word from Tj to tape and will leave Ej

cycled 5 places to the left.

July 1961

No. 63

PUNCH
2 of 2
MANUAL CONTROLS:
Buzzer - Sounds when tape is low or jammed.
Buzzer Suppression Switch - Normally to the left
(i.e., Unsuppressed.)
T — Mainte?ance Switch - "On Maintenance" is to the
r;.gh‘t .
Tape Feed Pushbutton - There is a 5 sec. delay

before tape is fed. (Button must be held down.)

Alarm Indicator Iight (Low Tape, or Tape Jam)

Maintenance Indicator Light

Punch Reeler

‘__~—_‘__—_“““—-Reeler Control Arm - Normally operated by the

tape as it is being reeled but can be moved
up by hand to energize the reeler brake when

Reeler Switch

needed.
"Chad" Basket
Punch Motor Switch - Normally up -
(For use on Maintenance mode only.)
TAPE DIAGRAM:
To the
Punch
Outside § Inside ,
i i
[] Last !
|1 o|1|o olo TSD .
*
First "
Normal Mode - TSD ; ‘s |6 7]1 o]0 1]3 o]z 2o €]
(Read toward the] L m—
Tth. hole - i.e., R e
from inside to
outside edge.) Tth Assembly mode - (Read from bottom
Hole Punch Reeler

to top, inside to outside.)

July 1961

No. 65, 66
LINCOLN WRITER No. 71, 72
l1of 2

LINCOLN WRITER

NOTE: Two Lincoln Writers can be ON LINE at once - "65, 66" or "T1, 72"

REFERENCE: Group Report 51-8 (6 October 1959)

DESCRIPTION:

The Lincoln Writer Input consists of a double keyboard with automatic case change and
a Soroban mechanical tape reader. They are interlocked so that only one can be used at
a time - the keyboard is inactive while the reader is running. The Output is an IBM

electric typewriter and a Friden paper tape punch.

Manual controls on the Lincoln Writer permit on-line or off-line use and seemingly
both at once. The simplest connection for coding is "pure on-line" i.e., keyboard and

reader connected to the computer alone - not to punch or writer.

In this "pure on-line"mode, there are no timing considerations that can cause trouble.
P .

TSD operations can be written without regard to the elapsed time between them. The only

complication that must be remembered is that "carriage return" resets the keyboard to

"lower case" and "normal script" without transmitting any case or script code.

Note also that a "carriage return” sent to the writer via TSD using Sequence # 66 or T2
will also affect the KEYBOARD'S automatic case memory in same manner. The Lincoln Writer
input is not completely independent of its output! The situation becomes more complex when
the keyboard is connected to writer and/or punch as well. These complex cases are to be

discussed later in a supplement.

Automatic case codes are generated whenever the user changes from one keyboard to
another. The key will remain locked down until two TSD operations have been performed -

the first to accept the case code and the second for the character itself.

July 1961

00

o1

02

03

04

0os

06

0z

10

11

12

13

14

15

16

17

20

21

22

23

24

2%

26

27

30

31

32

33

34

35

36

37

TX=2 LINCOLN WRITER CODES

N
N = —]

ol
READ IN
BEGIN

NO

YES

40

41

42

43

44

45

46

47

50

51

52

53

54

55

56

57

60

61

62

63

64

65

66

67

70

71

72

73

74

75

76

77

< c - w
v ~»

< X =
>

CAR RETURN
TAB

BACK SPACE
COLOR BLACK
SUPER

NORMAL

sus

COLOR RED
SPACE

WORD EXAM
LINE FEED DOWN
LINE FEED UP
LOWER CASE
UPPER CASE
STOP

NULLIFY

No. 65, 66
o) 25:

of 2

July 1961

No 65 and/or No. 71

LW INPUT
KEYBOARD
OPERATIONS:
IOS65 30000 CONNECT This instruction selects the keyboard.
KEYBOARD Pressing a key will now raise FLAG 65 (or 71)
(108, 30000

for other unit) if the keyboard is connected to the

computer through the Lincoln Writer

manual controls.

TSD copies the code number of the
depressed key into T,. Permutation
TSD T, |e J

j may be used, quarter one must be

Crr1T 117,
OR | ' Ig active. The key is released after the
108
s 65

o copy. If an automatic code for case
TSD T, change (75 to UPPER, T4 to LOWER) was
generated, the key will be released by

the second TSD.

MANUAL CONTROLS

1. The reader must be started by hand via the "start reader" pushbutton. It will then
read the line at the read station, advance one line, and wait for the datum to be
accepted (presumably via TSD). The keyboard is inactivated while the reader is on.
"STOP Reader" will re-activate the keyboard Maximum speed is 19 lines/sec and if the
keyboard is connected to the computer alone, it can be programmed to run as slowly as
desired.

2. Other manual controls are more or less self-explanatory and are well covered in Group
Report 51-8.

3. Only the six bits (1.1 - 1.6) corresponding to the buffer are changed by TSD.

July 1961

No. 66 and/or No. 72
LINCOLN WRITER OUTPUT

TYPEWRITER OUTPUT

OPERATIONS
IOS66 30000 SELECT This operation selects the output of the
(Unit 1) (CONNECT) Iincoln Writer - Typewriter and/or Punch.
S, 30000 FLAG 66 (or 72) is raised if (and only if)
(Unit 2) the unit was unselected prior to the
instruction.
TSD copies 6 bits from 'I‘j to the Lincoln
TSD Tl ||a D::!: Tj Writer, where it is printed and/or punched
depending on manual controls. The Buffer
oR I | I remains busy until the printing or punching
“1s0 Tj L 10B. .| is over and at that time FLAG 66 (or 72) is
raised Permutation may be used and quarter
one should be active.

MANUAL CONTROL

1. See Group Report 51-8 for details.

2. "Computer Output" should be switched to "Punch" and/or "Writer".

NOTES: 1.

July 1961

Carriage Return (Code #60) not only returns the carriage and advances the paper, but
it also resets the Lincoln Writer to Lowercase and Normal Seript. The Keyboard case
relay is changed too. (In this respect, the keyboard and writer are not independent
devices.)

Certain character codes (1lk, 15,16 17,71,76,77) do not print. (They are labeled on
the keyboard as "WORD EXAM", "READ IN", etc.) When such a code is sent to the
WRITER, it is accepted, and takes about the same time as a regular character, but
nothing is printed.

No. 75
MISC. OUTPUT
1 of 2

MISCELLANEOUS OUTPUTS

Nine one-bit computer controlled relay contacts with G.R. Terminals are provided.
Channel No. 9 has an high speed ocutput as well. The nine bit word can be shifted left (ring
or open) under manual control at a 500 KC rate if only high speed output is regquired or at

500 cycles per second if the relay contacts are to be sensed. TSD is not used. (Tt will not

cycle the memory word, but it will DISMISS if no "hold" is used, and it will change E as if

it were a CLIE operation.)

OPERATIONS
IOS75 30 000 Clear The nine output channels are set to correspond

" 001 SET 1.1 to quarter 1 (the righthand nine bits) of the
i 002 "1 instruction. TI0S, . 30000 therefore clears all
" 00k 1.3 nine - Ios75 30777 sets all nine.
" 010 "Lk
" 020 o 5 There is no raise flag indication. It may be
1 oLo S assumed that the relay has changed after 2 milli-
" " seconds. The high speed output "MOM-9" will change

100 1.7
1 200 "o1.8 before the instruction is over.*
" hOO 1" 1'9

*Note: Changing bit 1.9 from "1" to "0" produces a standard TX-2 IN-OUT transition (-3 V
to ground) at "MOM-9". Going from "O" to "1" produces a similar transition from
ground to -3. The rise-fall time for these transitions is less than 0.2 micro-
seconds.
MANUAL CONTROLS
— Relay Contact Terminals
Shift Control
Maintenance Switch
High Speed Test Pushbutton - Sets relays to correspond
"MOM-9" Output to the Toggle Reset Register.
Shift-rate Inputs and Input Toggle Reset Register

Selector Switch

November 1961

No. 75

RELAY CONTACTS MISC. OUTPUT

2 of 2
C. P. Clare High Speed Relay - HGS - 1009 - Make before break.

Up to 1/4 amp non-inductive load.

Up to 1 amp reactive load with suppressor only. (Plug-in suppressors are available.)

Cycle rate approximately 500 cycles - 2 millisec. period.

SHIFT CONTROL

1. Ring Shift lLeft
2. Open End Shift Left (all nine, 1.9 is not a sign bit.)
3. No shift

SHIFT INPUT SELECTOR

The shift rate is determined by the external shift inﬁut which may be a sinewave or a
pulse train. The shift input selector is a toggle switch which should be thrown toward the
source used - up for "SINE", down for "PULSE".

SINE WAVE INPUT

A 15V RMS sine wave is required (e.g. GR Oscillator 1304). Maximum rate 500 KC for
High Speed ("MOM-9") output, 500 cycles for relay output. Each cycle produces a one bit
shift if "SHIFT CONTROL" is in position 1 or 2.

PULSE SHIFT INPUT

A standard TX-2 Inout Transition (-3 to Gnd) is required. It gives a one bit shift if
"SHIFT CONTROL" is in position 1 or 2. Maximum rate: 500 KC for High Speed Output (MOM-9),
500 cycles for relay output. "MOM-9" should NOT be used to trigger the shift, for it may
not change bit 1.9 or 1.1. (1t would shift the others reliably.)

NOTE:

1. The shift and pushbutton inputs are not interlocked and can interfere with programmed

use. Miscellaneous inputs can be used to synchronize the program and the shift input

in use.

November -1961

So here is Chapter 5 — Lights & Buttons ——

Many TX-2 users have asked for this chapter. Now that it is out, I hope

it teaches them a lesson.

The next installment will be a re-issue of the second part of Chapter L
(IN-OUT). 1In the past two years, nearly all the IN-OUT units have been

modified or replaced, and a few new ones have been added to the system.

Please do not stand on cne foot waiting for Chapters 1 and 2. There

may be some delay there.

This technical documentary report is approved for distribution.

4

,f!

7 /

Ay 7 o D ,f ."/
“ 7 y < S
Thantln C Lo o
Franklin C. Hudson, Deputy Chief
Air Force Lincoln Laboratory Office

November 1963

TX-2 HANDBOOK
CHAPTER 5
LIGHTS AND BUTTONS

TABLE OF CONTENTS

5-1 Computer Room Layout . + « « + o ¢ ¢ ¢ o« o o v v o s 4 4 e e e s s e s e e e ... 522
5-1.1 Frame Contents - Floor Plan (Fig. 5-1) « « « + « & ¢ v v v v v v v v v v . 522
5-1.2 Power On-Off Procedures (Fig. 5-2) « « « « ¢ v v v v o v vt v v v 4 v o . 523
5-1.3 Power Alarms - Breakers (Fig. 5-3) « « « o « « ¢ « 4 4 4 o v e o 4 v 4 o . 53
5-1.4 Air Conditioning . « « ¢ v v v b et h e e e e e e e e e e e e e e e e . . 52k

5-2 Console Indicator Lights (Fig. 5-4) « « + « v v 4 v 4« v v v i v v v v v v e v v o . 5.5
5-2.1 Primary IndicabtorS « « « « + « « o o « o o o« o o s o s o s s s s s s« . 5.5

(A, B, ¢, D, E, K, P& N, Q & M, Nj & X, FA & F)
5-2.2 Alarms (Fig. 5-5)+ « « o o o 4 o o 4 o o v o v e e e e e e e e e e e e .. 5211
5-2.3 IN-OUT Indicators (Fige 5-6) + « ¢ ¢ ¢ v v v o v v o v v v o o v v v o o o 521k

5-3 Console Pushbuttons (Fig. 5-5) « « + « o o o o o o s v o v v v s e v s v v v v o . 5216

5-3.1 Condition Buttons: (With Lights - "Out" is normal) . « « = « « « « « « . . 516

Suppress Memory - U, T, S
No Overlap
Stop Conditions
Pasofa - (Preset and Start over from Alarm)
Auto Start
Low Speed Repeat
Low Speed Pushbutton
Remote TSP
Suppress Chime
5-3.2 Action Buttons (Fig. 5-5) « « + o o o o o o v o 4 e e 4 e e e e e e .. 5218
Stop
Preset
Clear Alarms, Clear Real Time Clock
Calaco (Clear Alarms and Continue)
Codabo (Count Down and Blast Off)
5-3.k4 Miscellaneous Console THEmS « « « « o o o o o o + o o = o+« o o v = o « o« 5220
Audio Control (Fig. 5-8)
Knob Register - 377620
External Register - 377621

5- TX-2 Sync System (Fige 5-9) + « + + o o o v o o e e s e e e e e e e e e ... 5221
5-5 Miscellaneous CONVENTIONS =« « « « « = o o o o = o o o o s o v o o o s o v s v o . 5225
5-5.1 Paper Tape Read-in Programs e =)
5-5.2 Paper Tape Read-in Programs - Listings - « « « » = + = + « « « o « « « + « 526
5-5.3 Tape Preparation « + « « « o ¢ o ¢ 4 o s e e e e e e e e e e e e e e e e 5-28

November 1963 5-1

5-1 The Computer Room

| BENCH I SPARE PLUGINS 5] L'U:n.as AND MA\NTENAH(EUE AR DUCT |
. DESK
£z @ -
|
IN-0UT SWITcH |ué T |THIN | conTRoL | ARITH.ELEMENT A H S
POWER F E FILM c B
3 CONSOLE ?\
- ROOM
COMPUTER LIGHTS 1BM TAPE ROOM LIGHTS®
SWITCH < > mcn%zbbgk 7
i ROOM INCIDENY RECO|
@ @ TEMP FCAMEKA Lurd
— | 85
AR TAPE s 4— PLUGBOARD PETR
CONDIT. @ = P_‘»UN(H
CONTROL < 1 -
AR 5
CONDITION 3
. “s¥ MEMORY F AEROX
= 15.A. | @ D.P.P. 2 ROOM Fis
STATK O bl LIGHTS Lw-2
TEMP. % | Tare M
o | PLUGBOARD Ev cae. | .
g—‘ [sPaRE pPLuG-Ns] = ST I 2 ORace ’A‘
| Y _..——-—-_1 e —
ENTRANCE ENTRANCE LOCKED DOORS
A-034 AG2E

Fig. 5-1, TX-2 Floor Plan - March 1963

5-1.1 Frame Contents - Floor Plan
F1 - Console - See Figure 5-3, 5-4, 5-5, 5-6, 5-7, 5-8, 5-9
F2 - Main Frame
B - Arithmetic Element, and E Register

C - Control, X Memory, P, Q, M, and N Registers
D - Sequence Control, Thin Film Memory
E - U and T Memories
F - IN-OUT Switch
F3 - S Memory Register Selection Circuits
F4 - S Memory Stack
F5 - S Memory Digit Plane Drivers and Sense Amplifiers

F6 - TX-2 Mag Tape Drivers and Timing Track Writing Equipment

F7 - IBM Tape Control, TX-2 Tape Control, Plotter Control, TX-2 Power

F8 - Lincoln Writer Controls, OB Clock, Display Box, Misc. Inputs Box,
Speech Filters

F9 - Plugboards, Datrac, Interval Timer, Misc. Input, Misc. Output, Ampex
Mag Tape

5-2

e
e
.
im’ m@m‘%‘é;,;‘g‘i

&

5

S &
ol - i

i
L -
vh‘,t(muvx»m eontuiaisy o LR
LMi;wmu,wm ‘m G
i
G
%;E‘mmmmu i

. o "
. i "
. e
e fmwmﬁx G
i i e e
e ? s i
- e e
mwx wmxvm & m M
e
et
s i e
s?&mmwmw i
i

i
34»%,, G

i
°m&m%%m;

i
i mxmu,

n;u(‘mr e
S

i
S
L

S
s

g

o — (;Sl«dwm;hmux ot

w;mssswwm"“““ e u{
L)

i g bt i «46«x*dyMiqum..

mMUxi!S(H i m“p«w;:g;m;mn g i

[2

W

w B g
mwwnwﬁgagi

e

L ;ﬁ<
e
e x,&?% s
i SS
;., s

e !

s X‘XNHW g
m» tm

o
i
Tasmi
i

g
disminei }im"«““ﬁ&ouwm»
iy sl =

ﬁmm& w@wm

e h

x&mwnm .
ﬁwxllgam

i

S
“Mms.w;i

i it
e

-
P
e
e

i

i
i
S

.

i

e
d

£
.

-2
it
5
titl
£ 5

i
fw A 0

B
e

b

Fig. 5-2

Power On:

Hold the button in until the warning horn stops.

be "ready"

with parity alarms suppressed.

should be ready for use.

Writer(s), and the IBM Tape Units.

Power Off:

"
Be sure TX-2 tape is at "MAT 0000",

the time.

5-1.3 Power Alarms - Breakers

—
S
o

!%&‘é! i
3 nmm{x;x,(
e
i
i

i

i o ,wiix,x
“éw

@
i

TG

éé«;g; .

Marginal
Checking
Console

0k w o

e

Fill i 3
! JWEHE*KWWWW
“""‘M%ﬁ?@ Er

b s N
it i i

swsm mv»
o m

! h,,uw At

o

.

g i
et s
< it i

G Er——
iy,
i s

§mm,sm

s
ok s‘“,&,
g r&x*“,unmm, WA

i o
‘ et o .
T T {
ey i e
. A e o
. A0S ey
i e

S e

L

T
o e

Fig. 5-3

e
it
Mi«.Mmmmx,mt a((;a:,,.:,:zx&:z)
wm*‘”" el e

i
i
e w;k
b
g o
e

¥ B
o Mgw
A

sl i b et
Fe i g
g
b

i
T

M&“

in about 1 1/2 minutes.

Log the time.

i
M e
Sadbaa

g
o i
b i

e “mi&&ili}ﬁ""
i

o - ":3'

s
gy

o i

B

s g

ngxm;;y S
MR e

i he

.)

o i

gy
Do
i

i Sl bl

s

ARG L
R s e
W s . e
e
B
S
o

e
e

o

e Y

A R

Run

g

i;n_wmm,wm g
e ,W,mm,wxlm iu‘wm 9
A

it

L S
mm»“

n?»‘
T ot o 0
T e

Il mxg\ i h:?“;mg:“)
i
e “
MMﬁﬁdwwmﬁ

il s
o
o

oo .
;m,w y‘
G
-

&

e
e At

&xmiwsiwmw
o

i s
S o
i . i

Un-suppress the alarms.

before pushing "O

—
S R
x,mwmwwww‘wmg i
Wi

i St }ag&&‘éﬂ i

.

‘M%%wwnw
w—; e

s " e
SRR i
Ly

iRy «" Ng! il

i ig;

f e i
s s i
e
i
,x»g!jx:xxiy-,mm»
i

rori
&mﬂ vmx s
x.s,wxx;u,x i (,‘[G
s o x,;a«m!tﬁ)x e
wm ”‘Mg‘,xssﬁ“ 1@, ‘
i R
ML
te. el
.

i

“m&wmﬁﬁfx,
»Wanwm“wm
[
onee
mmww@wm“w
g
i
L
e
i
s);;3«
WWWMMWsMW
o

e
i e

‘W k” i

i

o

e
o .
P el i
g
i o &
i
s mmm«wm
S
S

L

i ”!52“’ p&?“

umq i S
Wxxznxxrm i ,miifilﬁ,"xim!w
s m(x i

i R
.
. o
. a0

S
s

i
i) xum@« umm

Power Panel (in the Power Room)

The computer will

'clear memory" once or twice

the computer

(Fig. 5-3) Turn on the Lincoln

(They have their own power switches.)

" button. Log

(.) Writ ()’ P .
Ilg 5 3 Turn off the Lincoln eris and IBM Tape Units

Circuit Breaker Indicators

"Time" to be logged

s
e ot

oot iy

S — Poyer Meters

Register 377621

‘,/”’/ (External Input Register)

Maintenance Console

The circuit breakers are located at the top of each frame. When a breaker
"ets go", a horn sounds and a light comes on at the breaker panel and at the power

panel on the console. The accepted procedure is as follows:

Frame: What to do: If that fails:

S, T or U Memory : F2, 3, 4, or 5 a) Dump Power Call for help.
b) Reset the breaker
¢) Bring Power On

Computer Frames: Reset Breaker Call for help.

IN-OUT Equipment Reset Breaker Call for help -
Set Maintenance Switch
on Breaker Panel and

do not use failing unit.

In any event, log the incident stating the time it occurred, which breaker it

was, and what was done.

5-1.4 Air Conditioning
There is a room temperature thermometer on the column at frame 9. It
usually reads about 7OOF. There are two thermometers for the S Memory Stack.
One is behind the stack, the other is in the power room. The power room meters

should read as follows: (They are to the left as you enter from the computer room.)

NORMAL CALL for HELP DUMP_POWER
Memory Stack 60 - 70 72 or more 75 or more
"MIXED AIR" 48 - 58 75 or more 80 or more

5.l November 1963

5-2 The Operating Console Indicator Lights

b

i

P .

e
P eme
a8
LR LR R

e,

Ewimen.
R {1

o i
e

SRR

e i
AT

a,

o i, o e
s R L g i R

\
=

Fig. , - Console Indicator Panel

5-2.1 Primary Indicators

The indicator lights for the central machine registers are arranged <o e

read easily in OCTAL by grouping the binary indicators in columns of 3 lights

each. - The least significant bit at the bottom. For example:

o 1 2 3 4 5 6 7 O (I

Filament bulbs are used and therefore vary in light outp

ut while the computer is
(Note also that the bulbs will occasicnally burn out an
indication.)

running. give an erroneous

The table below summarizes the information given by the lights,

5-5

Registers A, B, C, D, E, X

These indicators always show the contents of the associated flip-flop registers.
(K shows the sequence number last used. - See Chapter 4.) They are not affected
by alarms or pushbuttons. The overflow indicators are just above A.
PK Indicators
PKa and PK[3 are of interest for the most part to the Technicians. They show

. P P .
the PKl.PK2’ and PK_ timing levels Kh’ Pch’ and KEP show the hold bit,

3

configuration bits, and Operation Code of the instruction whose read out cycle is
in progress.
QK Indicators

Qﬁx and QKB show the QK timing levels. Qch

read from F Memory and the last operation that required a data reference. Qch

is also used to remember the original Index Register Number on deferred address

and QKop show the configuration

cycles. (The original Index Register is used last.)
AKX Indicators
AKX, and AK[3 show the AK timing levels. (There is an indicator for each level.
Ach and AKﬁp show the configuration (minus permutation) Operation Code of the last
Arithmetic Operation.

ASK - The Arithmetic Step Counter

ASK is used to count steps for Arithmetic Operations such as Multiply, Tally, and
Divide which are different for different word lengths.

WK - The X Memory Counter

KWK sets the timing levels for the writing of the Index Registers.

CSK - The Change Seguence Counter

CSK sets the timing levels for a Change of Sequence, (CSK 3 lo(octal) are the
steps that indicates LIMBO.)

Memory Indicators - Interlocks

Most of these are not of interest to programmers. The Pll PI2, PI3, PI5’ and
DFA are of use in interpreting N (see page 5-10). PI2 indicates a defer cycle is

in progress. DFA indicates completion of a defer cycle.

5-6 November 1963

START-STOP Control - SPR, Start Point Register

The left half of this indicator shows the start-stop interlocks and is of
interest mainly to Technicians. The right half is the Start Point Register. It
is set by the RESET, STARTOVER, and CODABO pushbuttons and is used to set the P
register when & change 1o sequence zero is performed. (See PK2 in the table below.)

Registers P and N

P and N are the selector and buffer for readout of instructions from STUV Memory.
P is also called the "Central Program Counter"” and N the "Instruction Register".
At the start of any instruction, they are, of course, compatible - P gives the
address of the contents of N. As the instruction is performed, both are changed.
i

M s aytant ~Ff a3 A e denends on whe ER a evele . +he comvpiiter was o
The extent of such uhangc aepenas on wnemn, in tne cyc.e, the conputer was s

There are two indicators to help interpret P. Their use is given below:

Indicators
"POD " P " Contents of P

0 0 P gives the address of the last instruction
read out of STUV Memory. (It may have been
changed in N - see PX, in table on page 5-9.)

0 1 P has been indexed, but not yet used for
read out. It gives the address of the next
instruction.

1 0 "PmODified" - P has been changed radically
and probably bears no relation to N. (As by a
Jump, skip, or sequence change.)

1 1 This situation should not occur. Take
a picture of it.

The interpretation of the N register depends upon the type of operation being
performed, and how far the computer has gone before stopping. Instructions require from
one to five basic cycles. The first cycles for one instruction can be overlapped with the
final cycles of the previous instruction and it is therefore possible for two cycles to
be running at the same time. The stop system (stop button, sync system, and slow speed
control) is synchronized so that once a cycle has started, it must proceed to completion.
There are indicators that tell what cycle is next, but one must exercise ingemuity to

determine which one has just finished. The basgic cycles are abbreviated as follows:

November 1963 5-7

(PKAK)

o

PK

CSK

Instruction Readout Cycle
(Used by AOP instruction - Instruction Readout followed by Arithmetic

Cycle)

Intermediate Address Cycle (Deferred Addressing)

Final Address Cycle (Deferred Addressing)

Data Reference Cycle

Data Reference followed by Arithmetic Operation Cycle. They are
inseparable, but another QK could start before the AK part is over.

Change Sequence Cycle.

In practice, their order of occurrence depends on the operations being performed and

on overlap conditions.

computer operations.

The table below shows the cycles for the three basic types of

Type Op Code (See Chart 7-3) Cycles Required
0-7 (Jumps and I0S) PK)
1
b, 46, 4y With deferred address P, PK, PK3
10 - 57 (Won AE, Non Jump) K, &
2 (but not
L, L6, L47) With deferred address PK, , P, , PK3 , QK
(AE operations) PK, , QKAK
3 60 - 77

With deferred address

PK) , PK, , PKj, QKAK

The CSK cycle can occur only at the end of an instruction - i.e., only after PKl,

PK3, QK, or QKAK - never between PKl and PKé, nor between

The effect of these cycles on N is as follows:

5-8

PK., and ¥K,.

3

November 1963

Cycle

Effect on N

This is the initial instruction readout. N will
contain the instruction located at the address indicated

by P.

EXCEPT when the operation is JNX or JPX (codes 6
and 7), for on these two operations the right half of N
is used for the sign extended index increment (18 bits).
(BUT if the JNX or JPX is deferred, the increment is not

added until PK3 so N is not changed during PKl'

The intermediate deferred address cycle (PK2)
always followed by PK3. The intermediate address is
read out into N using Q as the selector. All 36 bits

is

of N are changed, but the initial index register number

was saved (in QKIRCF) to be used last (in the PK, cycle).

3

After a PK2- cycle, N contains the contents of the
memory register given by Q. Bit 2.9 of Q will be 1 due
to the defer bit.

The final deferred address cycle does not do a
memory readout. It is known as the "Ultimate Cycle".
DFA will be set to 1. N is further changed by adding in
the index contents to get the final address. Then the
original Nj bits are restored and the instruction

continues. The rest of N 1is cleared.

The QK cycle of all index memory operations and
SKM (all op codes 10-17) clears the right half of N.
For RSX, EXX, AUX, and ADX it is subsequently set from
the right half of E which was in turn set from memory
and may have sign extension. ADX puts the augend from
memory there. The next PK cycle can not be overlapped
with the QK cycle of these operations.

QKAK does not change N

CSK

The change sequence cycle always changes Nj to the
old sequence number.

If the new number is zero, the right half of N is
set to the contents of SPR (Start Point Register). The
rest of N is not changed by CSK.

C3K must be followed by PKl'

November

1963

"Gontrol" does not really care about what has been done. It is interested only in
what it is allowed to do. Once it has started a cycle, it goes merrily on to completion,
but before starting one, it must get past a nuimber of interlocks, one of which is the
start-stop system. We can therefore tell what cycle is about to start and with that
information, together with a program manuscript, the P register, and the P + 1 and POb
indicators, we should be able to deduce where it stopped, and therefore what is in N.

The conditions for starting are foretold by indicators PIl, PIQ, PI3, PI5, and DFA as

follows:

"Tnterlock Indicators" Next Cycle Stopped
PIl PI2 PI3 PI5 DFA is After
o] 0 0 0 X PKl ?
0 1 0 1 0 PK2 PKl
0 1 0 0 0 PK3 PK2
0 0 0] 1 PK1 PK3 or QK, CSK
0 0 1 0 X CSK ?
1 0 0] 0 X QK or QKAK ?
Note: "X" means "It can be 0 or 1, it does not matter."”
"?" means "Any cycle but EKQ".

Registers Q and M

Except for defer cycles, @ and M are the selector and buffer for data references to
STUV memory. The memory references for deferred intermediate addresses use Q as the

selector and N as the buffer (Cycles PK, and PK3)=

Indicators Nj and X

The Nj lights are copies of the index tag bits of N (bits 3.6 - '3.1)s The X register
is the index memory buffer. Nj and X will always be compatible, for the X memory is

read out even if it is not used.

Registers FA and F

FA and F are the selector (F Address) and buffer for the Configuration Memory. They

are always compatible.

5-10 November 1963

5-2.2 Alarms

i
S e
m o

s,
Sikitphying
i

T

s afg 0 i,
iy AT
e :

T

i
i

s S
R SRR
G e

iy ot

i
L s

Fig. 5-5, - Alarms, Conditions and Action Pushbuttons

The top row of pushbutton indicators in Fig. 5-5 above is used for the ten TX-2
Alarms, two special indicators, and the Sync System (Section 5-4). All of the alarms
except TSAL, USAL, and the "Mousetrap" can be suppressed by pushing the indicator. These
pushbuttons have two lights each. The upper light indicates the alarm, the lower light
shows that it is suppressed. Suppression of an alarm merely keeps it from stopping the
computer. In the case of parity alarms, the suppression allows the computer to use the
incorrect information and a new, presumably correct, parity is computed and stored. The
light will always come on. The chime must be suppressed separately if not wanted. (See
5-3.1 for chime details.) "MISAL" - the Missed Information Alarm - can also raise flag
i1 (In OCut Alarms). See Chapter 4, Section 5.

Detailed information on each alarm is given in the table below:

ATARM HAPPENS DURING > WHAT
NAME CAUSE COMPUTER CYCLE TO DO
Parity Alarm on readout of Take a picture.
data from STUV Memory into the M QK or Report failing bit and
MEAL Register. Q gives the address of QKAK whether it was "dropped"
STUV Memory register. This alarm or "picked up". (if
can not be programmed. you know what should

have been read out.)

Try again.
Parity Alarm on readout of Take a picture.
instruction into N (location given PK1 Report failing bit as
NPATL by P), or on readout of deferred or "drop out" or 'pick -
intermediate address into N up". Try again, alarm
(location given by Q). 2 not programmeble.
** Because of overlap, another cycle may be running concurrently and the computer will

continue until both are completed.

November 1963 5-11

ATARM HAPPENS DURING WHAT
NAME CAUSE COMPUTER CYCLE TO DO
Parity alarm on readout of Take a picture.
XPAL index register into X. Nj tells Any Report failing bit as
which index register. This alarm Cycle "dropout" or "pickup"
can not be programmed. if you can. Try again.
Parity alarm on readout PKl Take a picture.
FPAL from F Memory (configuration) into QK Report failing bit as
- . n n" " 2 \is
the F register. FA tells which F or QKAK dropout” or "pickup".
memory register. Try again.
Check your pro-
gram, this alarm can
P register is set to an PKl be programmed. If
PSAL illegal address. cSK machine malfunction
is suspected, take a
picture and try again.
Q register is set to an PKé, Check your pro-
illegal address - either a data QK, or gram. This alarm can
QAL reference or a deferred address. QKAK be programmed and is
Check chart on page 5-10. not likely to be a
machine malfunction.
Operation Selection Alarm:
OCSAL An illegal instruction was readout PK1 Check the program.
into N. Teke a picture.
In Out Alarm: This happens Check the device
on an IOS instruction. The selected you are selecting or
TOSAL device is either broken, on "main- the indicator panel.

tenance", or non-existent. The IOS
has had no affect, even if the alarm
was suppressed. The Ni indicators

should tell what unit was selected.

The in out device is
probably on "mainten-
ance". Unless there

is a "hands off" sign,
throw the maintenance
switch down (i.e., not
maintenance) and try

again.

*¥ Because of overlap, another cycle may be running concurrently and the computer will

continue until both are completed.

5-12

November 1963

: *¥%
HAPPENS DURING

ATARM WHAT
NAME CAUSE COMPUTER CYCLE TO DO
Missed Information Alarm: Probably program
This occurs when the program is too trouble. Can happen
slow for the in-out device, and a with PETR, TX-2 Mag Tape,
MISAL new datum or output opportunity has Any A/D Converter, or IBM
come along before the last was used. Time Mag Tape. Take a picture.
MISAL is automatically suppressed if
sequence 41 (in Out Alarms) is
connected.
The T memory selection currents Any Take & picture,
have not died out before a new Cycle report that it Happened,
TSAL register selection was demanded. Except and hope it will go
(T memory is 200,000 to 207,777) CSK away. It can not be
programmed or suppressed.
Same as TSAL, but for the U Any cycle
USAL Memory. (210,000 - 217,777) except CSK Same as for TSAL.
This is an extra alarm
designed to trap any mouse that may
be causing computer trouble. It
Mouse- will be set differently from time Any cycle seme as for TSAL = USAL.
trap to time. As of now, it is set to
catch a missed control pulse.
The following indicators are not true alarms.
A non-standard priority plug- Replace the
Priority board is in use. (The standard It doesn't standard plugboard at
Patch priority is consecutive numerical happen - it Frame 2, Bay D.
Indicator | order--lowest number having highest exists.
priority.)
The computer is running, but It doesn't For most inter-
all selected sequences are waiting happen - it leaved programs, the
Limbo for a flag. exists. LIMBO light will be on,
for some waiting time is
almost unavoidable. If
the program seems to have
stopped completely, check
the interleaving.
** Sée Footnote on page 5-12.

November 1963

5-13

5-2.3 IN-OUT Indicators

The IN-OUT indicators common to most units -
i.e., "Flag", "Connect", "Status", and "Maintenance" -
are on the main indicator panel - Fig. 5-4 and Fig. 5-6
(to the right). All sequence numbers have a FLAG, but
some have no associated IN-OUT unit and hence no "Comnnect'
"Status", or "Maintenance" indicators ("F", "C", "S", and
"M"). The indicators are interpreted as follows: (see
also Chapter 4)

Fig. 5-6 IN-OUT Indicators

INDICATOR MEANING

F - FLAG The Flag is up - The associated program will be operated

as soon as priority conditions allow.

C - CONNECT The Associated IN-OUT unit is "connected"; i.e.,

selected for use.

S - STATUS If STATUS = 1 ("ON"), a TSD can be performed. If

OUT buffer is still busy

STATUS = O ("OFF"), a TSD will have to wait, for the IN-

processing the last datum.

M - MAINTENANCE If M = 1, the Maintenance Switch (at the unit) is up.

Select Alarm). The unit

A select instruction (I0S) will cause an IOSAL (IN-OUT

can not be connected.

The IN-OUT Buffers and special indicators are on & separate panel shown on next page:

(See Chapter 4 also).

5-1k4

November 1963

o o ‘;:‘;;I,;,’Er;’(«»

e

B o 0 S il 'y
Pl i Y i
‘ e W,Mxm* «W
o g

w

K L G

e
o3
) i i

SR i o .(z
;,mmwwwmmm»
i e
! it i .
R L s
Wwwwmemwwwwwk

e
b
i
Vi bl
i 3 .

it b
S
- R
b e 5 Sy 5 e i me
S 18 .
L 0 e A) :
Ko o .
. e hion ¢ B

e
it

T
" G h g, ney
I v

RS

ol L G

f o i "Wﬂm««ummvxxmxmbm

o e & L ' o L A ot

e ,:;m,u 2 i S ,,, L,me«.xm i
o by i i

e o N.mmwf% b ;

.
Db,
oo A

o g
o o S s
N x Vi iy "*'«u &, g o T £o uu«,
4 . e i ‘,«im 2
e
i

i Ww.«mm i

.) N xmmm i e “'T"’ i i s ,AM,,,(M,‘
oy s " & o g T i vxn g,q,, o i,
s o . i x\w- ﬂh e i \HM«‘« g .
R e et
e S e . ‘ : e
o, e AL e e : L,
ot o} R ; = ‘ P
e s ST WO
B it 0 e

b s .
: B L il
st)
i i W,,:x.wmw& o
2t oS

i S st 0410 S
e g ,
-,

e
s e oiommat g
i« by i B e
o i e i)
o i "«x«s»w,,,»,,,m S i i mm o
ol SRl L 8 =
e o e, i ok

st i
ol i R
i it
i
N e i,

o

,

ORI i
At Pt s
. s s i
L e e B e xwimam‘izm .
R s e Gl
sw» v:rﬂw e L Sl
s o e w‘,w,ﬂ“.,,6
frmwmwmum Gl e L R T
A 8 iy e e \Sxxmm i
i s i
s Lo) :
N o ‘
T

i
B S i
o
e
nw,b s T
r

PR
i

i

ooy i
it o ssmwm s
. . x’Jtw«mnx\wwmwm"mkxx«x«x ;
N i (3 mum«w) wwm;mwb

e
A O T
i R

i

Bt

e
Py

e
; B T e
N ““‘rv‘w“'wx i muf i e s e
— e G i i
g £ ST a B }vi«m;r»wmnw e
v w " ey " I S e T wtuwmm«»,;;“m“(.x,m,xg,,>«xtm»x»’xxxm’3
3 «w&w R e i d e oo R mxwv; e R ot o e s ,< Mx;m,
. e i S mxnmmxy«;bt(xwm,«mxxxxmw&«vxx»'x»»»umx*x(oo g o
b b ruu'{("{v(,r-'k it —" —" i ““‘““U‘“““‘:’V “,““ i ”v“xx«mv;»;x;wm REERIGE Q»Mzktimixé;‘a??ﬂ: s ’NMUML
i o R i h " i i i S mnmw“mmum T i
e . P e ‘,IW i o o mmsmm e S
e
i ’ | w2 iy
W G x,;u,, . M ic;x e n«xxxl«u;samxxxn T
g B S iy x&,m s g i s gl
b e m wmxw "m " XKy : b
K e, b i g e
B mwww,,,
s

e

sl e oo
mh‘xxm &m"x“w MS B e g i
indlie] i
e
e
i HWX“ '“mem M
o e SR e
; o Sxxxx!(&«&mmx S Sl
- y LY p e e B
{ S . s } - e R R S
" R} i e g . s i i e S
k] i & . i S
b ;w.;m s o it sf;‘;“‘” i i
. i B K o -
e s : A W P S e o e e
i .) " Lt qu»,wmm sreaa i g S &;‘MW 3
o ; ; ol i M - SR e
e e D e P e i i “w“,,wm S
e ! S x, e LR o ! i il
S M2 : S e TR S e s S T g o
Sl e a5 w5 e e E e T e m T :)zuz;z;“xxumu
ey g . it i xw»m;xxwmmzmmw e o Mm*mmr,>“<r~mmxum,(,ﬁ,,M,ww‘,m) o ',‘ i
et xw,xm»w“m«mxmmm» " i bince DRSS m:vwmw« KT e e o ,,& M‘,,‘,@“ Fin i
i e s A ik N ety ‘ wwww s
i . P e = ;«‘§§tnhm (= o mmcmx,w s«;;m i ; e, ﬁ,xxpwmy&“«xxm;
i 282‘"2‘::“;““ R " *‘%&X,Wg‘ ’3"”’1”’2?1‘{“3"’“, s xnhxax . o smmwu i l,&
PR L i i o R L A, ke xx‘zmxx Siitasipiaii ” Hum it b
e & poat) L i PRI N mmxm««»muu i L L
gk ‘”‘“’ i v o N - Mwu*Mﬂnw“mvw R i
I e e . gl wmwm
g mwmm” i SR xmxvmusmmwmxxm i Us»xxv!«mwm
i . e i u e, i
" " ! i LS .
oty e L B = S o O " | .
e e k P St T 1 n "
i «w«mmw»««:x:w«w;:w);s i s s q‘mm,mwmi i e
i SR :
s L e il

£

-
e

-
e
Shme

b

=

S

g
;‘“WMMKM*M’%“ i swoxfwwm m
i " " $“~‘mxmmmxy ws e ymxxﬂmmx!x‘wmm s mmmw,m;
i x\x»x,m,k‘&g&xx,uxm e i S i ; w«»stwsswxww?mn' bt 9t
R i TN quummmm G cp el S WW,WW w
i m,mmgs L,L%; o - i g‘“; ‘:‘“ ’:“r(*x";“rvrM"(‘“x,~«xmmn;:‘\:“§{:;" 3 cmmxxum it wm ik
x ;,x, A i S

b fee S
ity oniggipg sl
4 wwmmwmw‘%“¢¢,%
i - .
: &
s

iy
yxmuxm;

i
iy m&?é,

s
A o
e T ke
R e i
CI A O G s oni
o S g o
i e i «;;xim,“« it ¢
S REON
HAE eop v

i
i TR AR i
S i
R e
Bl P,

i i

i
ey

i i o S

Fi 5-7 - IN-OUT Buffers and Special Indicators
ig. 5-7 -

5-15
November 1963

5-3 Console

5-3.1

Pushbuttons

Fig. 5-5, - Alarms, Conditions and Action Pushbuttons

Condition Pushbuttons (Fig. 5-5)

The center row of pushbuttons and some of the bottom row will change the mode of

operation and will light up as an indication that the computer is not in its normal mode.

The table below shows what they do:

NAME FUNCTION

U Memory Off These prevent the program from using the U, S, or

T Memory Off T memories. When the indicators are ON, a PSAL or

S Memory Off QSAL will be generated if an attempt is made to
use the suppressed memory.
Overlapped programs will run slower with "NO OVERLAP"

No Overlap on, but the indicator lights - especially N - should
be easier to interpret.

No Stop on CSK

No Stop on QK The computer will not stop gggggg the selected

No Stop on PK, cycle(s).

No Stop on PKl
"Preset and Start over from Alarm" and "Auto Start"
are usually used together. Auto Start alone is

PASOFA equivalent to pushing CALACO about a second after

AUTO START the alarm. PASOFA is equivalent to an automatic
CODABO after alarm. (Except that the alarm is not
cleared.) They are used primarily for maintenance
and computer repair.

5-16 November 1963

NAME

FUNCTION

Low Speed Repeat

This circuit inserts a variable delay between the
computer cycles. It operates in conjunction with
the NO STOP buttons (i.e., it does not insert a
delay before the selected cycle(s)). There can be
no OVERLAP when this mode of operation is used. .The
inserted delay (and therefore the effective computer
speed) is controlled by the right-hand switch-knob
at the bottom left corner of the control panel

(Fig. 5-5). (It is labeled L.S.R.)

Low Speed Pushbutton

This circuit inserts a "STOP" before each computer
cycle unless the "NO STOP" buttons are on. There

can be no overlap.

Hold on LSPB

"Hold on Low Speed Pushbutton" « In this mode, all
instructions are treated as if their hold bit were
set. This allows step-by-step operation of a low
priority program without any interruption due to a

change of sequence.

Remote TSP

There is a portable control panel that contains

some of the condition and action buttons and another
18-switch toggle START register. It can be plugged
in at Frames 9, 3, and 2, and also behind the
console. (It contains condition buttons: Low
Speed Repeat, Low Speed Pushbutton, Remote TSP, the
Sync Stops; and action buttons: CODABO, PRESET,
CATACO, and STOP.

No Chime on SUPP AIMS
No Chime on SUFPP AIMS

SUPP means "not suppressed". The circuits were
designed for two different chimes but only one tone
is commercially available at present. These

condition buttons have no other effect.

November 1963

>-17

5-3.2 Action Buttons

S) P—
e
Bont |

i

o
S
i

| i
S
B

i
i

s o

;

i bl
v B
Gilar et

i
s i

o
e
il

Fig. 5-5 - Alarms, Conditions and Action Pushbuttons

There are six buttons that actually do something. Their use is outlined in the table

below. No information registers (Memory or AE) are affected. There is no clear memory

button.

BUTTON

FUNCTION

CODABO

"Count Down and Blast Off" - CODABO is the most
commonly used start button. Tt is roughly equivelent
to STOP, CLEAR ALARMS, PRESET, STARTOVER, and CALACO
in that order. TIts effect is to clear all flags, preset
all interlocks, and start the computer at the memory
location given by the Toggleswitch Start Register (TSP)
or the remote TSP, if selected. There are 9 CODABO
buttons - 8 for the fixed addresses - 377710 to 377717
and the ninth for the two toggle START registers (Console
and Remote). CODABO leaves the SPR (Start Point Register)
set to the chosen starting place.

STOP

"STOP" is synchronized so that the computer will
complete the cycles it has started. Except for start-
stop interlocks, no registers or indicators are directly
affected.

5-18 November 1963

BUTTON

FUNCTION

CALACO

"Clear Alarms and COntinue" -~ CALACO merely resumes
operation where it left off. If no flags are up, the
computer will go into LIMBO. The combination of STOP
and CALACO has no effect on a single sequence non-InCut
program, but will probably upset IN-OUT and interleaved
programs because of the timing.

RESET

There are nine RESET buttons - eight of them load
the SRP with the fixed addresses 377710 to 377717.
The ninth loads SRP from the selected Toggle Start
Register (Console or Remote). RESET has NO OTHER EFFECT.
The SRP is, in effect, a partial placekeeper for
sequence zero. If the program raises flag zero, sequence
zero starts at the place indicated by SRP. SRP is not
changed when sequence zero drcps out as the other place-

keepers are. It can be changed only by pushbuttons.

STARTOVER

Nine STARTOVER buttons are available. They are
equivalent to RESET plus a "Raise Flag Zero". STOP
followed by STARTOVER will not do much, for STARTOVER
does not start the computer. If the computer is running
or in LIMBO, STARTOVER will be effective for Flag Zero
has priority over all others no matter which priority
plugboard is in use. STARTOVER followed by CALACO is
similar to CODABO, but does not clear the Flags and

interlocks.

PRESET

There is but one PRESET button. Like RESET, it is
seldom used by programmers. It clears all flags and In-
Out "Connect" flip-flops, and sets all interlocks and
indicators to their proper "PRESET" value. This button
is interlocked so that it is ineffective unless the

computer is stopped.

Clear SUPP AIMS

Clear SUFP AIMS

Suppressed Alarms are handled by separate circuits
and a pushbutton is supplied for each type. SUPP means

"not suppressed".

Clear Real Time
Clock
(Reg. 377630)

The Real Time Clock is indexed automatically every
10 microseconds. It will clear itself every 7.6 days or
so if it is left alone. (The toggle switch to the right
of the indicator turns the indicator lights off but has
no effect on the Clock Register.)

November 1963

5-19

5-3.4 Miscellaneous Console Items:

Audio Controls

Selector Switch

Mike Input

Mike Level Adj.

Fig. 5-8 - Audio Controls

For the convenience in trouble-shooting, to reassure users that the machine is running,
and to further the progress of research, TX-2 has been made audible via two separate,
independent, and identical Audio Systems. The Selector switches have ten positions, five
of which are currently in use and wired as follows:

1. Quarter 1 of the X Register (Analog signal decoded from indicator
Circuit.)
2. Quarter 2 of the X Register (Analog signal decoded from indicator
Circuit.)
3. Vertical Display Decoder (Sequence 60)
k, Horizontal Display Decoder (Sequence 60)
5. The Patch Panel at Frame 9.
The inside knob of the selector switch is the main volume control. The microphone input is
mixed in at all selector settings and has its own level control.
Knob Register - (377620)

Register 377620 - The Knob Register ~ also called the "Shaft Encoded" Register is
located just below display #. It is similar to a toggle register except that it is set
by four knobs - one for each quarter. The metabit is a lighted pushbutton switch. (Eight
revolutions cover the range 000-777.)

External Input Register - 377621)

Register 377621 - The External Input Register - is a set of four plugs just to the
right of the marginal check panel (Fig. 5-3). There exists a box with 37 pushbuttons
intended for use with (or as) the external register. These pushbuttons are directly
analogous to toggles except they must be held down if they are to stay a "1". (Unlike the
keyboard, any number may be down together.)

Note: Contact bounce is about the same as the toggle contact bounce - a delay
of 10 ms allows a small safety factor.
Clock Register - (377630)
Register 377630 is a 36-bit counter indexed every 10 microseconds by an external

oscillator. It can be cleared by pushbutton (Fig. 5-5), but not by a programmed

instruction (such as STA or DPX).

5-20

5-4 TX-2 Sync System

i
c,.f‘gi: L

S o v‘»%:la;?‘

i xm,w k«f’\x i
anwawwymﬁ

o e

. i i
;,, »w,‘ il o ’w .

e e w;;m‘» o oy
“:.‘g v’xk‘<x%»<x“,,m‘< (s *j;:«,@x’,, ""k”}‘i‘ ;mq i
2 “m &» o g o W‘ o

) O »*w, X
*;‘,,» ;W,} *‘f?ﬁ*‘* i g s

e o o

T ;’ xn’?m(x(,%x; ’“&,’%c e e “xh‘ i
palm “x,"m

b 6

xuu

i
L

Vit

it
o G w‘u((;“«mt

*\mU’m i
i e, e
e .,w;?

s
i o

i “‘m
i

i

s

e
St

G ~ L
il ‘3n m N)
by J"mm«”‘%"‘; e ““55‘”*‘ e
i m,,w,k el x;mm,’v S S
’ ¥ it e
i, m gt o g
g;,, i ’m Wm*\«.x wf,%x%; e ;‘;m,,
i, ;»Wi T *‘m,“ “, iyt
e \7‘
i ‘!, i
i 5 . 4
o : i o 4 ’m
ey i g i (

«,(. «,f pes

S bl S ,g« N i

s i, Vg ¥ : m,mm,

e
i
r i

Frags S
e
‘M»
)
S n,’:bx» % e
i ‘»g,‘“ v,,u«w, ;‘ D M\w

R w“f:x o ,,“’ﬂxv o

4 s - i
il “""”‘u"“*x““”“ m ¢ &i«(,mm e il
i
%,‘, G i o

o
SR IR
’m,‘) Nl.,E‘ug“:‘m“‘\xh%w\q“hM’éxx“& "‘?’4(

R iy
w(i
£ (

i o
o g‘“m“)p xguv‘w
h e i
ﬁ?& ‘*‘@a,‘fﬂwﬂ ;
iy i ke
ot i i e
T Mm@mitwm
: o

i,
wJﬁ‘»m;

i m“ km‘m 2

i
’“l“

The Sync System produces an

output signal when certain manually

a)

o .
S ‘\x m 0 sh’“g i
*x”’i(;« “mqw‘ i

i] b)

i r Mmg

“"w“ ”‘u? ‘\!x. e o

*w,,‘w.‘n,q it G u,§;~‘

“«”’ i ‘. «Kag;h,m e *m’.

5 o i i G

*M’(‘ m L “:fgg‘ij‘««,;m S

B i i A *w»ﬁ

i (Rl r
i

St

i e
i e x,*‘«x,ﬁ«i&"‘*x&

i wﬂmwww

i %Q&ﬂ‘*w ‘w i xq “m gl

g‘zﬁ

%pm

T

‘x m}m

0l i
Lt

ms;uf&

o et
‘&<“ﬁ“ﬁ*a
W A i
mmﬁ;(”su%ﬂmd
» e A i 'im.,
A m HER
o “m u,m,
0 “kt;x,:“u. i
wy,k,

S0 usﬂn
S R Lm‘ 6
e e

d)

e xs‘ﬁ\' 4y L il
’«w““m‘@w:‘“»“ 5 i e i il mi"‘«m,ﬁé L
b)n,,‘ s gt i i i "“ o
S ‘;,M;T{W i e
N il
e,
el g
i

s

it

M, xx“ i

By ‘m I
H

i)
i »2‘ ;

w“w‘ﬁwf‘m >
s

i ‘xm o
e ‘;&

xu(,)“«“ﬂ&«x%»m ‘M s "x"‘“ S
i

e
i i ’x i Ix : *y it
o h»z o ﬁm»g&ﬁﬁ‘m @,ﬂﬁ % xl‘

e L,,“w “"MW"’“»«,
e ’
i ’ﬁ&x o 4
i bmg die s :
L w4
o
w,‘“’w ol
S

o
e

possible.

preselected conditions are met.

For example:

When (or if) the program gets
to a prespecified memory
location. (i.e., [P]

value)

preset

When a certain memory register
is used for data or deferred
address. (i.e., [Q]

value)

preset

When a certain operation is
used. (i.e., [PKop] = preset
value)

When a certain sequence

number is used.

Certain combinations are

The output can be

switched to any or all of the
following:

OUTPUT

SWITCH LOCATION

COMMENT

Stop on SYAL #1

Top Row Pushbuttons
(Fig. 5-5)

Stop on SYAL #2

Right next to SYAL 1

There are two alarms
and two condition selectors,
but only one set of condition

parameter switches.

Signal to Sync
Jacks

On Sync Panel
(Fig 5-9 above)

Uses for scope sync
during computer repair and

maintenance.

Raise Flag 42

(trap sequence)

Bottom Row Pushbuttons
(Fig. 5-5)

See Chapter 4 - Trap

Sequence. This button over-

rides other trap modes.

Sync Stop to
Arithmetic Element

Top Row Pushbuttons
(Fig. 5-5)

Used mainly for mainten-
ance to Stop AE operations

within a cycle.

November 1963

5-21

Figure 5-9 shows the two SYNC SYSTEM panels. The lower panel contains the Sync
Parameter Switches; the upper panel the Sync Condition Selecting Switches and the output-

to-Sync jacks pushbutton switches.

Parameter Switches

There is but one set of switches for each parameter even though there are two sets
of selectors. The parameter switches are laid out in four major rows:
INSTRUCTION (K , N)

CHANGE SEQUENCE COUNTER, and INSTRUCTION LOCATION (CSK, P)
DATA CYCLE (e , Q)

ARTTHEMETIC CYCLE (AK)

Each parameter set is grouped, like the indicators (see Fig. 5-4, and Section 5-2.1)

in columns of 3 for Octal interpretation. The least significant bit is at the bottom.

Condition Selector Switches
There are two SYnc stop ALarms (SYAL 1 and SYAL 2). These are controlled by two
"GATES" (Gate 1 and Gate 2). The "GATES" are controlled by two sets of condition switches -

32 switches each. Either gate or both can supply output pulses to the sync jacks or stop
circuits. (Only the alarm indicators are separate.) ALL the selected conditions must be
met for the output to be generated. (The GATES are AND circuits.)

The conditions available are described below:

CONDITION COMMENT

See upper left corner - Fig. 5-9. P&u refers to
the 32 possible time steps (levels) of the PK cycle
counter and therefore determines when the sync signal

PK will be generated. A setting of 16 is recommended,

(oct)
for it provides a definite time to stop, and is used by
all instructions. EKd is recommended when any of the

"P"-type conditions are used.

This compares the PKOP Parameter switch setting

PKop with the operation most recently read out of memory.
(Bits 4.3 to 3.7)
This compares the configuration switch setting with
Pch the configuration bits most recently read out. (Bits
4.8 to k.b)
PKh "h" refers to the hold bit of the instruction most

recently read out. (Bit 4.9)

5-22 November 1963

CONDITION

COMMENT

P

*
P refers, of course, to the P register. The

Parameter switches are in the second major row.

This condition allows selection of the time step
when the sync pulse is generated. A setting of 2 is
recommended. QKd and P&x should not be used concur-
rently unless a particular type of overlap condition is

sought.

op

This set looks for a particular operation, Just as
does PKOP , but only those instructions that require a
data reference will ever get into QK . (The QK
op op
indicator lights are at the left - Fig. 5-4. They are
sometimes helpful in debugging, for they tell what

operation made the last data reference.)

Q is used for intermediate deferred addresses as
well as data references, but these two can be separated
somewhat via QK&. With Q and Q&u selected, the sync
output will occur only for data references since the

PK counter is used for the defer cycles.

Nh.lO

The circuitry is able to detect set metabits on
instructions but not zero metabits. If the parameter
switch is down and the selector switch is up, no sync

pulse can be generated for the gate in use.

k.10

The data reference metabit (Mu'lo) can be detected

0 above). Note that it can
be changed without a memory reference for it serves as

the metabit of the A, B, C, D, and E registers. (i.e.,

only when set (just as Nh'l

MKCh.lO A or MKCh.lO B will change bit 4.10 of M.

"Nj" refers to the "j" bits of the N register and
hence to the index register in use, or to the bit selection

of an SKM operation.

"altimate" cycle.)

% If the instruction that has been interrupted used a deferred address, CALACO will not
continue the program until the third time it is used. (Since P is not changed until the

last moment, & Sync Stop occurs during the intermediate cycle, and again during the

November 1963

5-23

CONDITION

COMMENT

"AK&" is the Arithmetic Instruction Time Level
counter. There is one switch for each level (it there-
fore makes little sense to have more than one up). The

recormended setting is OFF - it is mainly for mainténance

use.

op

"AKbP" is a 6-bit register that holds the most

recent arithmetic operation (code values are all above
57). Tt is not changed until another arithmetic opera-

tion i1s performed.

ASK

ASK is a T-bit counter used for arithmetic opera-
tions that require repetitive steps - for example,
multiply and divide. It clicks along during shifts and

cycles, but is not used.

2.9

X2 9 is the sign bit of the X memory buffer. It
can be used, for example, to detect completion of a JNX
or JPX loop.

2,1

N2 1 is the right half of the N register. It is
2

especially useful for detecting a jump to a specified

location.

K holds the current sequence number. It is often

useful in conjunction with CSK below.

CeSK

CSK - The Change Sequence Counter - will remain

zero until a change of sequence occurs. A setting of
10 (CSK& = 1) detects a change into LIMBO, a setting of
1 is recommended if K is used for the 01d Sequence;

a setting of 6 if K is to be set to the New Sequence.
In either case, the CSK cycle will be completed before
the computer stops.

B, C, D,
F, M1, IOT

These letters refer to open cables at Bays B, C, F,
of Frame 2, the Mag Tape Frames (F6, 7, 8), and Frame 9
(I0I). They are used by the maintenance technicians for

special conditions cooked up as the need arises.

5-24 November 1963

5-5 Miscellaneous Conventions

5-5.1 Paper Tape Read-in Programs -

*
Plugboard Memory (3777h0 - 377777) contains three standard programs. They are as

follows:

CODABO
POINT

NAME OF
PROGRAM

COMMENT

3TTTT0g)

"Clear Memory"
or

"Smear Memory"

All of 8,T, and U Memory is set to +0 in
the Left Half word and each register's own
location in the right. Metabits are not
changed. This program proceeds automatically
to 377750 - Set Standard Config - and then to
377760 - Read in Reader Leader. (See below.)

377750
(8)

Set Configuration

A1l of F Memory is set to the standard
configurations and the program proceeds auto-
matically to 377760 - Read in Reader Leader

377760 gy

Read In

This program reads the first 21 words
from paper tape into registers 3 through 24 of
S Memory, and then goes to register 3. All
binary tapes start with the "Reader Leader",
a block of 21 words that is the TX-2 Read in
Program. The TX-2 Read-in program will read
any standard binary block and check the sum-
check at the end. (If the check fails, the
program tries again.) The meta-bit of each
word being stored is cleared. See listings
below. See Section 6-3.k4, page 6-23 for

Binary Format.

* There are two plugboards:

registers 377760 to 377777.

November 1963

Plugboard "B" -

registers 377740 to 377757, and Plugboard "A"

5-25

5-5.2

Program Listings (continued)

"READER LEADER"

TX-2 Paper Tape Input Program [For Binary Format]

LOCATION

~

N OO A W N

11
12
13
14
18
16
17
20
21
22
.23
24
25
26
27

*
INSTRUCTION

hJPx563777so
hJNx56377760

IMKz4_124ooo1x
RSX573

kTSD 0

36

, JPX5721
guxsso

: AUXSGO
STE 16

15

! BPQ54°
IOSszzoooo

NUMERICAL FORM

(oCTAL)
000000 000000
000000 000001
000000 000002
011154 000005
360554 000020
421153 000000
013000 000011
360554 000017
402000 000000
003053 000034
410753 000007
360554 000020
400656 377760
400756 377760
140500 000027
021712 400011
0111857 000003
405700 000000
360657 000021
011056 000000
421056 000000
013000 000016
150554 000000
010452 020000

¥ Registers 0, 1, and 2 are not part of the Reader Leader itself, but are used as

temporary storage.

5-26

November 1963

*
5-5.2 Program Listings

PLUGBOARD PROGRAMS

NUMERICAL FORM

LOCATION INSTRUCTION (OCTAL)

377740 760,342,,340,000 760342 340000
377741 410,763,.762,761 410763 762761
377742 160,142,,140,411 160142 140411
377743 202,163,,162,161 202163 162161
377744 732,232,,230,200 732232 230200
377745 605,731,,730,733 605731 730733
377746 320,670,,750,600 320670 750600
377747 604,331,,330,333 604331 330333
377750 SPG 377740 002200 377740
377751 4SPG 377741 042200 377741
377752 IOSPB 377742 102200 377742 @
377753 14SPG 377743 142200 377743 %
377754 ZOSPG 377744 202200 377744 2
377755 24SPG 377745 242200 377745 '§
377756 3OSPG 377746 302200 377746 @
377757 34SPG 377747 342200 377747
377760 ISKX5423 011254 000023
377761 REX52377763 001252 377763 R
377762 211055230106 210452 030106 3
377763 REX 45 001253 000005 E
377764 hTSDs426 405754 000026 S
377765 hssJPx53377764 760653 377764 E
377766 h’JNx54377763 410754 377763 a
377767 14JPQ 3 140500 000003
377770 REX77207777 001277 207777
377771 DPX77777776 001677 777776
377772 14JPQ 377773 140500 377773
377773 REX 777610 001200 777610
377774 hssJPX77377771 760677 377771
377775 3OSKN4_12377744 301712 377744
377776 77,,0 000077 000000
377777 14JPQ 377750 140500 377750

¥ The X Memory is not changed, but each register is "exercised" to remove possible

XPAL alarms.

November 1963

5-27

5-5.3 Tape Preparation

(See Group Report 51-8, dated 6 October 1959)

An abbreviated manuscript and associated tape is shown below:

This end is inside the reel.
A yard or so of blank tape
is sufficient to reach the

reeler.

"End Mark" - i.e. code T3
(without seventh hole.)

About 2 inches for convenience
Initial Carriage Return

Initial Carriage Return

2000 0060000

Manuscript

[® oo [
0000 C0060A0D0COOCOOCGOIS O O
L]

Final Carriage Return

0000 OOOOS OOO

About 2 inches for convenience

STOP CODE ~ 76 With a Tth hole

About a foot of blank tape for
protection. This is the outside
end of the reel.

5-28

TX-2 USERS HANDBOOK
CHAPTER & - TX-2 UTILITY SYSTEM

TABLE OF CONTENTS

6-1 INTRODUCTION - TYPICAL USE OF M4 ASSEMBLY PROGRAM
6-1.1 MANUSCRIPT, DIRECTIVE, LISTING
6-1.2 META LANGUAGE
6-1.3 MACRO INSTRUCTIONS

6-2 M4 PROGRAMMING LANGUAGE
6-2.1 INSTRUCTION WORDS
6-2.2 SYMEX DEFINITION - TAGS ~ EQUALITIES - AUTOMATIC ASSIGNMENT
6-2.3 RULES FOR SYMEX FORMATION
6-2.4 NUMERICAL FORMAT - USE OF COMMAS
6-2.5 MEMORY LOCATION OF PROGRAM - ORIGINS
6-2.6 RC WORDS - RC BLOCK
6-2.7 WORD ASSEMBLY
6-2.8 SPECIAL SYMBOLS

6-3 META-LANGUAGE FOR CONTROL OF M4 ASSEMBLY
6-3.1 META-COMMAND FORMAT .
6-3.2 M4 OPERATION - NAME, CLEAN, LW READ, RECONVERT, BLNARY STORE, GOTO
6-3.3 META-COMMANDS FOR MAKING CHANGES - INSERT, DELETE, REPLACE, MOVE
6-3.4 Mh OUTPUT - LISTING, DIRECTIVE, ERRORS, PUNCH (BINARY TAPE)
6-3.5 Mk FORMAT VARTATION - DEC, OCT, T = CR, T = TAB, RC STORE, XXX
6-3.6 USE OF SPECIAL KEYS
6-3.7 MAGNETIC TAPE BULK STORAGE - SAVE, READ, TAPE, CORE
6-3.8 META-COMMAND SUMMARY

6-L MACRO INSTRUCTIONS
6-4.1 MACRO DEFINITIONS - META-COMMANDS "DEFINE" AND "EMD"
6-4.2 THE MNEMONIC ABBREVIATION LINE OF A MACRO DEFINITION
6-4.3 MACRO NAMES
6-4.4 DUMMY PARAMETERS
6-4.5 MACRO TERMINATORS
6-4.6 THE DEFINING SUEPROGRAM
6-L.7 USE OF MACRO INSTRUCTIONS

October 1961 6-1

CHAPTER 6
TX-2 UTILITY SYSTEM

6-1 INTRODUCTION - TYPICAL USE OF M:i ASSEMBLY PROGRAM

The TX-2 Assembly Program "M4" is a conventional symbolic assembler, but has
considerable flexibility and two types of special features - Meta-language for control of

the program, and Macro Instructions, a feature that gives M4 the essential characteristics

of a compiler. The symbolic tags for address sections can be nearly any combination of
letters, symbols, and numerals (with a few restrictions). Tags used for the configuration
and index syllables are nearly as flexible. M4 will assign all tags that have not been
assigned by the user. The program is designed for on-line keyboard input and control as
well as paper tape input. After checkout has started, a program can be kept in symbolic
form in magnetic tape bulk storage.

Typical use of M4 begins with off-line tape preparation using a Lincoln Writer (See
Group Report 51-8.). During debugging, the program can be preserved in symbolic and/or
binary form on paper tape or in mag tape bulk storage as the user wishes. The symbolic form
saved by the program is called a "DIRECTIVE" and is essentially the same as the original
manuscript. Additions, insertions, relocation, rearrangement, and deletion are all handled

by the M4 system - it is not necessary to retype the manuscript.

In addition to DIRECTIVE output (via Xerox, Lincoln Writer, Paper Tape, or Magnetic
Tape), one can also get a LISTING (via Xerox, Lincoln Writer, or Punch). A LISTING is a
copy of the program in absolute as well as symbolic format (side—by—side). It includes an
alphabetically ordered tag table and a FORMAT ERRCR notice if any errors were found. A
LISTING can be obtained on punched péper tape for off-line Lincoln Writer printout, but this

tape is not acceptable as input.

The binary form of the users program can be stored directly in the computer memory,
punched in binary format on paper tape, or stored in magnetic tape bulk storage. When
stored directly, either on mag tape or in memory, the Mi program area is protected and the

storage may be incomplete. If a DIRECTIVE exists in core memory it too is protected.

6-1.1 MANUSCRIPT - DIRECTIVE - LISTING

A "Menuscript" is any program prepered off-line. Tt may exist in printed, hand
written, or punched tape form.

A DIRECTIVE is the symbolic form created by Mi. It may exist within MY tempo-

rary storage, in magnetic tape bulk storage, or in printed or punched form. A

DIRECTIVE closely resembles the manusceript. The following changes are worth noting:

6-2 October 1961

1.) Any corrections and/or insertions have been made.

2.) All definitions and equalities are at the beginning. (Equalities may be
anywhere on a manuscript.)

3.) Redundancies such as extra spaces are removed.

h.) Fractions are converted to the equivalent integer. The Numeral System is

preserved.
5.) A check sum is added at the end.

A LISTING is a program output in absolute as well as symbolic format. The

format is as follows:

Tag Table (Alphabetical)
Equalities

Macro Definitions

Format Errors

Program (in symbolic and absolute)

RC Words (unless the RC block location was specified within the program.)

(The Tag Table, Errors, absolute program, and RC block are not part of a

Directive.)
6-1.2 META-LANGUAGE

The control of the M4 program is accomplished through the M4 Meta-Language
instructions. All meta-language commands are to be preceeded by e (two hands).
When used on a manuscript, meta-commands are obeyed on read-in and do not appear on
the directive (Except for those like w» RC, which is used to specify the location
of the "RC Block" - (Register Containing).).

The basic types of Meta-Language Commands are:

Input
Correction-making
Output

Mag Tape

Format

Macro Definition
Direct Storage
Single Pushbutton

October 1961 6-3

6-1.3 MACRO INSTRUCTIONS

A macro instruction is essentially a convenient flexible abbreviation for a
similarly convenient and flexible subprogram. The user writes the subprogram once -
with dummy parameters - as a "MACRO DEFINITION". Tags, and equalities used in the
definition are kept separately and are not part of the program proper. When a macro
instruction is used, only those parameters that are needed should be specified. The
portions of the defining subprogram that refer to unspecified parameters are left out
when the macro is converted. For this reason, and since the parameter of one macro
can be the abbreviation for another, a different set of instructions will usually be

compiled for each use.

Some standard macro instructions will be built into the Mh system. When they
are used on a manuscript, the definition will appear on the M4 Directive and Listing.
Since Macro Instructions can be redefined, it will not be necessary to avoid using

the standard names except to avoid confusion when reading a program later on.

6-2 Mi PROGRAMMING LANGUAGE

6$-2.1 INSTRUCTION WORDS

A TX-2 instruction word has U basic syllables and three special indicators as

shown in the diagram below:

: ?Cg A) N © ~ 0 ® ~
. < . . - o M
[] ‘h[c i J |*| k

» & T ADD . * GEORGE

B

The three indicators are preassigned symbols as follows:

BIT 4-10 w» = meta bit (not part of binary tape format)
BIT 4.9 & = hold bit
% = no hold bit (Needed because h is automatically included
with LDE, ITE, JPX and JNX.)
BIT 2.9 % = defer bit

They must be in normal script, and may appear anywhere in the word.

6-k October 1961

October 1961

The four basic syllables are as follows:

"e" _ "Configuration" syllable - a 5 bit word (bits 4.4 - L.8) used as
the F memory address or as an extension of the instruction syllable
(oMP, I0S, SKM, SKX). This syllable must be in superscript or
preceeded by I . It can be numerical or symbolic, but no spaces
are allowed. For SKM, JMP, and SKX it is specified automatically
by the supermumerary mnemonics. (See Table 7-3.)
" _ "Ingtruction" syllable - a 6 bit word. This syllable is a normal
script, 3 letter standard mnemonic abbreviation for the instruction.
It is terminated by a space as well as the standard symex ter-
minators. The mnemonic abbreviations include the configuration
syllable as well for JMP, SKM, and SKX. (See Chart 7-3.) The
instruction syllable may be specified numerically or with a normal
symex but in these cases it is not terminated by a space. A
regular symex terminator must be used. (See 6-2.2, rule #38.)
"5" - "Index" syllable - a 6 bit word used as the X memory address, i.e.,
the index register tag. (Except for SKM where it is used for bit
designation.) The "j" syllable is normally in subseript. It may

be a numeral or a symeX, but no spaces are allowed.

"k" - "Base Address" - a 17 bit word. The base address may be symbolic
or numerical and spaces may be used as part of a symex. It is
given in normal script. Redundant spaces are removed upon

conversion.

It is not necessary to use the order shown above. Any ordering is allowed if
the script and symex conventions are carefully used. For example:
*ADD T, or ADD®T

or ADD TI"aor “T, ADD

J] i

SYMEX DEFINITION - TAGS - EQUALITIES - AUTOMATIC ASSIGNMENT

A "Symex" is a symbolic expression. It is converted to a numeral by M4 when a
program is stored, punched in binary format, or listed. A "TAG" is a symex used as
a name for a place in a program. A tag is always terminated by an arrow (-), and

is set to the numerical location of the word that it tags.

A symex can be set equal to a mumeral directly - e.g., "apple = 6", or to any
36 bit word. TFor example a symex may be set equal to an instruction. When such a
symex is used as the instruction syllable in a normal word, it must be terminated by

a symex terminator - not by "space" {Only Standard mnemonics are terminated by space.)

A symex that is not used as a Tag nor defined by equal sign will be assigned by
M4 according to its use within the program. See chart below:

Unassigned Symexes:

Used to Specify: Auvtomatically Assigned as or to:
Configuration Only Zero
Index Only The lowest numerical index register value

not already used. (Except Zero and no
higher than 77.)
Configuration and Index Zero

Address only The numerical memory location of the next
place in the RC words block. The contents
of this RC word are set to zero. This

provision is useful in assigning temporary

storage.
Configuration and Address Zero
Config., Index, and Address Zero
Index and Address Same as Index Only.
Origin (i.e., Memory Location of "N", where N is the mumer of words in the
Block) program including the RC Block.

A symex assigned by ML, or by equals sign may be redefined at any point in a
program manuscript, and the latest definition will be used throughout. If the symex

was initially assigned as a Tag - i.e., with an arrow, a re-definition will be
recorded as a double definition error, and will be accepted, but not corrected. The
only way to remove it from the directive is to use meta-language (REPLACE) and refer

to it with a relative address based on a different tag.

6-2.3 RULES FOR SYMEX FORMATION

1. A symex must contain at least one non-numerical character.

2. It may contain as many legal characters as desired.

3. The single letters A, B, C, D and E are preassigned to the numerals 377604 -
377610. (i.e., the AE addresses.)

L. The three letter mnemonic instruction abbreviations can not be used as symexes.
The preassigned abbreviations and single letters can be used as part of a
symex if they are not separately terminated. Note that space bar terminates

op codes and single letter AE addresses but does not terminate other symexes.

6-6 October 1961

"ATYPE" or "TYPE A" are allowed.

"A TYPE" is equivalent to "377604 + TYPE".

"ADDY" is allowed - "ADD Y" is not. (ADDY is a legitimate Symex -
ADD Y is a two syllable instruction.)

6. The legitimate symbols are:

01 2 3 456 7 8 9

A through Z

a B ¥y A €

i § B npaqgt wxy z (NOT &)
« (PERIOD) ' (APOSTROPHE)
_—DO and Space Bar.

T. Compound Characters are allowed when the following restrictions are applied:

Only one backspace.
Two or three characters only.
Space bar is allowed.

Any sequence of characters is legal. (Bxcept @ , 6 , ®)

8. The following symbols terminate symexes:

= / X v A

c=~< >uUun

, (COMMA) = - |

2 h o+ -7

SCRIPT CHANGES, TAB, CARRIAGE RETURN, COLOR CHANGES,
LINE FEED UP, DOWN

{(1rah*x

6-2.4 NUMERICAL FORMAT - USE OF COMMAS

M4 will accept integers or fractions in Decimal or Octal. It will not accept

mixed numbers, except as a SKM bit designation. The details are handled by the

position of the period. See chart below:

Periods Numeral Type Example Equivalent Octal Integer
None Octal Integer 431 000 000 000 431
Preceeding Octal Fraction 431 214 LOoO 000 000
Following Decimal Integer 431. 000 000 000 657
Both Decimal Fraction 31, 156 254 020 303
Centered SKM Bit Designation 2.10 000 000 000 052
(i.e., 10 10102)

Note: The SKM Designation is usually given in subscript and is, therefore, moved

to bits 3.1 - 3.6.

October 1961

6-7

Note: a) The meta-command »wDECIMAL reverses the meaning of a "following"

period. wwOCTAL restores it to the above.

b) The two parts of an SKM Bit Designation are Decimal integers.

c) Numbers may be preceeded by Plus (+) or Minus (-). For example:
(Octal Integer 40O 000 Q00 000 = - 377 T77 777 777-)

d) M4 converts fractions to Integer form for Directives. The Numeral

System is preserved.
Commas are used to specify separate subwords as follows:

a) The word is set to +0. (Any unspecified portions will therefore
stay at +0.)
b) The word is assembled from left to right.

c) The numeral (or any other word) is converted to a 36 bit binary word.

d) This 36 bit word is inserted into Memory according to the comma chart.

COMMA CHART

COMMAS BEFORE | COMMAS AFTER CRAM DTAGRAM EXAMPLE
0 0 EEE Wb 333 222 111
0 1 11 - - -
0 2 oe2 111 - -

333 222 11l -

W

] ° - - - 111
- ! - 222 111 -
- ? - 111 - -
i 3. Y .
j ° T T ==
j *)// - - 111 _
2 - >§< 222 111 kbl 333
i ’ \\ - - hkk 333
’ ’ ~\\\\\‘~w.. - - - Ll
i § N e

6-8 October 1961

For example: To specify 1/2 in each quarter, write
200 200 200 200
or 200, 200,, 200, 200
b A A L
or 335 2 223

b

To specify an instruction in the right half word as well as its normal position

in the left, write

6-2.5

symex form and is terminated by a vertical bar.
it will be on DIRECTIVES, or it may preceed a normal word.

recursive - i.e., set equal to another symex.

incorrectly, and no alarm is generated.

1t

a -]
’ LDAB"’ LDAB,,.

MEMORY LOCATION OF PROGRAM - ORIGINS

The location of the first word of a block is to be specified in numerical or
It may be on a line by itself, as
Th

e symex may be
If the recursive symex is circular

(i.e., eventually equal to itself,) or if it is undefined, the bdlock will be located
ot
n

(It will appear to be located a , where

n™ is the number of words in the program, but the RC words are assigned as if it

were located at zero.) If there is no origin (i.e. no vertical bar), the whole

program is located (correctly) at 200 000(8). See the examples below.

October 1961

HAGS | HAG6=77
LDA BOSY
STA HUPG
22 JAC> JPQ MOUSE
HAG6+100
+413,,5
~563,51
516 LDE TOMM
’ STE JERRY
H-» JPQ HEHE

If the origin is specified by a symex (as "HAGG" above), the block may be moved by

redefining the symex via equal sign. If the origin was assigned numerically (e-g-

516' above) it can be changed by REPLACE, counting back from an honest tag. For
example, to move the block at 516 to location 5516, the proper metacommand would be

»wREPLACE He=3 5516|

Note that the Origin itself counts as a full line.

$-2.6 RC WORDS - RC BLOCK

Since it is often more convenient to specify an operand directly rather than by
its address, M4 interprets any word within brackets, e.g. {3456} as an operand by
providing a register containing the bracketed word, and using its address wherever
the same word is used within brackets. (Bracketed words are called "RC Words"

from "Register Containing".)

The "RC Block" is made up of RC words, i.e. bracketed expressions and temporary
storage assigned to unassigned symexes used in address sections. It is located at

the end of the last program block unless otherwise specified by meta language.
Examples:

sus {w} "w" can be any 36 bit word.

Words within the RC Block may be Tagged. If
such a word is changed via meta language, the
change should be made where it is used (i.e. at
DICKs LDE {GEORGE—-"LDA T "DICK") rather than inside the RC Block

L] (i.e. at "GEORGE").
A change made within the RC Block will not
appear on a subéequent DIRECTIVE. To be

lasting, such a change should be made outside

the block.
wwREP DICK LDA {GEORGE~ 3} *%PERMANENT
wwREP GEORGE GEORGE=3 *¥TEMPORARY

"RC Words" may contain other RC Words - i.e. the brackets may be "nested".

For example:

LDA {LDE {-13}}

The brackets must balance - there must be as many right hand brackets as there are
left hand ones.

6-10 October 1961

6-2.7

6-2.8

WORD ASSEMBLY

The address syllable is formed first as a 36 bit integer using normal integer
arithmetic. It may contain parentheses, the arithmetic symbols: + - X / , and the
logic symbols A ("and"), v ("or"), @ ("exclusive or"). The symbols are in-

terpreted from left to right. (i.e. not quite "normal" algebra)

For example:

Le + 5R/6 is interpreted as E{i}—g—ﬁ

La + (5R/6) is interpreted as LG + 25

Parenthetical expressions may be nested, but the parentheses must balance - i.e.

there must be as many left parentheses as right. For example:
(17 -(4c + (5R/6)))
The use of another symex is equivalent to using parentheses. e.g.,
La + @ is interpreted as 4G + 23 if @ = 5R/6
The 36 bit address syllable is united (inclusive OR) with the others (configuration,
operation, index). Extra syllables of the latter group are also united into the

word. The one bit syllables are set last, "not hold" (h) being the final one.

SPECIAL SYMBOLS

"The current Location" - The symbol "#" is a special symex which always is
equal to the current location. Thus "JMP #" is a jump to itself, "IMP # + 1"
is a"jump-to-the-next-register”. If # is used within brackets, it refers to

the RC BLOCK rather than the current address.

** "Start of Comments” - A double asterisk - ** - is used before comments or
annotations. A1]l symbols are legal in the comment section except wwXXX and
} , and comments are saved and included in Listing and Directive Printouts.
A carriage return terminates the comment section. A comment may be used

within an RC word and another on the same line outside the bracket.

?I(The notation pqu is equivalent to » {Tq} % . The p!, must be in subscript.

For example: REXalsTAGG is equivalent to REX, {TAGGB} * -

- A carriage return immediately preceded by minus sign (-) will not terminate
the line. This feature is needed because complex nested Macro-instructions

often require more than one line of print. It can not be used for comments.

October 1961 6-11

6-3 METALANGUAGE - FOR CONTROL OF Mi ASSEMBLY

The M4 conversion - assembly process is designed for input and comtrol from the key-
board or from paper tape. Since keyboard use is more flexible and tape is faster, the
normal procedure is to use both. "Metacommands" are instructions directed to the M4

program itself covering the following areas:

Paper Tape Input

Alterations

MLk Output

Direct Storage

Format Variation

Magnetic Tape Bulk Storage
Macro Definition (Section 6-4)

6-3.1 METACOMMAND FORMAT

Metacommands may require one line or several, and no address section, or as
many as two. The address section refers to the "Directive" of a program and may
specify one line, or a block of consecutive lines. Note that a line of a directive
may correspond to several program words (c.f. MACRO, Section 6-4) or no program

words at all (e.g., origins and comments).

There are three formats for address sections:

. 1" 1"
1. AA - The line at "AA".
AA+n - The nth line after AA.
AR=n ~ The nth line before AA.
"AA" should be an honest tag (defined by an arrow), rather than a
numeral or symex defined by equal sign.
2. AA|n n lines beginning with the line at AA
AAtq|n (or AA t q).
3. AA -+ BB The block of lines from AA to BB including AA

but not BB. (Or from AA + g to BB + p.)

A typical metacomnand is as follows:

=wREP GEORGE+7 RSTE TT

It will replace the line at "GEORGE + 7" with the word "hSTE TT".

6-12 October 1961

Similarly, the meta-command

wwrMOVE AA-BB GEORGE

will move the block "BA to BB" to just before George.
To reduce typing, the following conventions are allowed:

1. # is equivalent to the end of the program.
AA- means "From before AA to the end". (Do not use this
with DEIETE.)
3. -+AA means "From the beginning up to AA". (Not including AA)
k. The name of a metacommand can be abbreviated to just the first three
letters.

5. Tab is used to terminate syllables.
6-3.2 M4 OPERATION - NAME, CLEAN, LW READ, RECONVERT, STORE, GOTO

There are two versions of the M4 program - "M4 from mag. tape" on the Golden

Reel and "M4 from paper" on the White Reel. They are essentially identical except

that the paper tape version will ignore all metacommands that use magnetic tape
bulk storage.

ML is located at registers 160 000 - 174 010 (octal) and uses the rest of
memory as temporary storage. 157 777 down towards zero is used for storage of

your Directive. 174 000 - 200 000 is used for various tables.
There are two CODABO start points:

160 000 - Fresh start, new program, Mi is reset completely, a New Name
is required.

160 001 - Continue same old program. M4 is reset to OCTAL, and T = TAB.
(see section 6-3.L4)

Upon read-in of either reel, Mk will type NAME and then will wait for the user
to respond by typing his "MLt Name" on the keyboard. The situation is the same as
that produced by the metacommand "NAME" described below:
meNAME DAD

NAME is the metacommand used to identify the user. The users "name"” is

required by Mk to identify output and to determine which part of the ML
Magnetic Tape is to be used. A1l paper tape, and printed output is identified

October 1961 6-13

by the user's M4 initials and a 4 character word derived from the check sum

of his directive.

When "ML4 from tape" is used, the users name determines which portion of
Bulk Storage is available. Most individual users are assigned tape storage
equivalent to one S memory. Groups of users may combine by using the same
name, thereby extending their available bulk storage to several memories.

Bulk storage is used in blocks of 200(8) words. See . section 6-3.7 for further
details.

Note:
1. MY names are three characters long.
2. The special name "FRE" is reserved for users who have no name.
3. "NAME" does not clear M.

w=CLEAN
CLEAN (CL) restores M4 to its pristine state. It is equivalent to
CODABO 160 000 except that CODABO 160 000 types NAME and waits for one, while
CLEAN does not.
==LW READ
IW READ (LW) (Special Key "Readin") switches M4 input from Keyboard
to PETR. The PETR will be in its "Bin and Read" mode (IOSSesoloh). When
stop code (76) is read by the PETR, M. input is switched back to the keyboard.
All Metacommands may be used on tape except m» READ and ww» RECONVERT.
wwRECONVERT
RECONVERT (REC) expands the stored directive into free storage in a
form similar to its printed or punched version. It then forms a new directive.
The result is the same as punching a paper tape directive, cleaning M4, and
reading in the new directive. All redundancies are removed, the RC Block is
corrected, - the directive is shorter than before. When there is insufficient

free storage, this command will produce QSAL and do nothing.
) &

wwBINARY STORE AA
BINARY STORE (BIN), (Special Key "BEGIN") completes the conversion

process and stores the program directly in memory. If an address "AA" is
given, a "h JPQ AA" is performed with sequence number 7O selected. The user
can therefore save the return point, run his program, and return to M4 auto-

matically. "AA" must be within the program area.

"BINARY STORE" does not destroy M4 or the directive. If a program is
to be located within these areas of storage, a binary tape should be made -
see section 6-3.4 under "PUNCH BINARY".

"GO0 TO AA

"GO TO" executes an "h JPQ AA" with sequence 70 selected. It makes
it possible to go to the user's program and return automatically to M. The

address "AA" must be within the program area. NOTE: M4 leaves STANDARD CON-
FIGURATIONS in F memory only when its use is terminated by GOTO or BIN. When

the user starts his own program with CODABO F register #37 is not standard.

v
A

6-1k October 1961

6-3.3 METACOMMANDS FOR MAKING CHANGES - INSERT, DELETE, REPLACE, MOVE

ww INSERT AA ONE LINE
OR

ww INSERT AA

wwEND

INSERT (INS) puts the new program lines just before "AA". When only
one line is to be inserted or when the next line will be a metacommand from

this group, the terminating command "END" is not needed.

~wDELETE AA
wwDELETE AA-+BB
#wDELETE AR|n

DELETE (DEL) removes a section of the directive. Symexes that were
assigned within the removed area are now undefined. The RC words used only
within the deleted area are not removed from the RC Block. If an Origin is
removed, subsequent words are located relative to the Origin preceding the

deleted area.

wwREPLACE AA
mwREPLACE AA-BB
wwREPLACE AA|n

REPLACE (REP) is a combination of DELETE and INSERT. It can remove an
arbitrary number of lines and put a different arbitrary set in their place.
Note that it deals with lines - not words. For example, to replace an in-
struction at a tagged location, one must be sure to replace the tag also, for
the whole line is removed. If only one line is to be inserted, the new line
can be typed on the same line as the REP instruction. If several are required

they must go on succeeding lines and END (or another meta-command from this

group) must be used as a terminator. See examples below.

wwREP Gé Ge->"LDA T, (To correct one line.)
wwrREP AP->AP+6
———— (To replace one set of lines
:::: with a different set.)
wewEND

wrMOVE AA cC

wwMOVE AA-BB cc

= MOVE AA|= cc

MOVE (AA to CC in this case) is a combination of delete and insert where

nothing is lost.

October 1961 6-15

In the example below, a few "second thoughts"” have been indicated in hand

written form.

£ K SAM PLE PROGRAM Fov azns Mamdbo i

START| START=400
TEST» SK2 se2PR
30 i
png Comm —+ JPQ BL< skxgy # HL
108 1
ouT~> TSD TABL, “ 3000
SK. N D N
MK“S.XPR J'R;shsof)rs 00?:{: :/.::::
RE- LDA {8} §-i%
STA RESET

The correction tape for the above is shown below. A complete listing of

the corrected program is given in the next section.

BL=1000
00PS=2000
wwREP TEST TEST»SKZJ.IPR
wwREP OUT=1-0UT+12
COMM~» JPQ BL

30skx, #+12

66

Iossssoooo
OUT=- TSD TABLa

SKZs.SIND

JPQ 0OPS
wwEND
weREP RE RE-+LDA {-1}
ww INS TEST=1 *%*SAMPLE PROGRAM FOR USERS HANDBOOK

Note: The symex "START" could not be used in the last metacommand because it is not an

honest, arrow-defined tag. To insert before an origin, one must count back

from an honest tag.

6-16 October 1961

6-3.4 M4 OUTPUT - LISTING, DIRECTIVE, ERRORS, PUNCH (BINARY TAPE)

ww L IST AA

wwlIST AA-BB 1IST (1I) (Special Key - WORD EXAM) - Iist pro-
e LIST AA|n duces a "Mk Listing" via the Xerox Printer.
wwrPLIST AA

wwPLIST AA-BB Plist produces a listing via Punched paper tape.
wwPLIST AR|n

wrTYPE AA

wwTYPE AA-BB Type produces a listing via the Lincoln Writer.
weTYPE AA|n

A LISTING tells what M4 did with the Manuscript or Directive received.

Macro instructions are given in expanded form. The program is given in OCTAL
as well as symbolic and is usually preceded by various tables. The overall

format is as follows:

LISTING FORMAT

SYMEX TABLE Given only when the first word of the
EQUALITIES TABLE Program is included in the area requested
MACRO DEFINITIONS by the Metacommand.
ERRORS .
PROGRAM:
SYMBOLIC ABSOLUTE
RC BLOCK
SUMCK {Paper tape versions only.)

The SYMEX TABLE is printed in octal, in three columns and is in alpha-

petical order (I letters) as if there were but one page. Symexes with an

asterisk were assigned by M4 because they were left unassigned on the manu-
script, or because they were used within a Macro Definition. Symexes with
a hand (w») are MACRO names. Symexes used only within macros, and those

defined by equals sign, are listed, but no equivalent numeral is given.

The EQUALITTES TABLE is in one column in alphabetic order. (First Letter)

Symexes with an asterisk are those assigned by M. An equality definition
can not be deleted but it will be replaced if repeated. The last definition

is the one that is used, and such repetition does not constitute an error.

MACRO DEFINITIONS are listed as defined originally. They can not be

deleted or changed but they may be re-defined.

October 1961 6-17

The ERROR PRINTOUT is of two types - FORMAT ERROR end DOUBLE ASSIGNMENT.
An error printout is given on the first listing only - it is not repeated on
subsequent listings even though the error may still exist. A line containing
a FORMAT ERROR is reprinted in the error printout and the error deleted from the
Directive. (It therefore can not reoccur.) A DOUBLE ASSIGNMENT occurs when
a symex is assigned both by equal sign and by arrow, or twice by arrow. The

printout gives the location of the first assigmment. The second assignment
is used and can be found in the symex table. If both definitions were by
arrow, the offending tag will appear in two places on the directive and on the
listing, but only the last assigmment will be used throughout the program and
in the Symex table. To delete the first one, it is necessary to count from
some other tag. If the second one was wrong, it can be deleted directly, and
the first one will take over in subseguent Listings and Directives.

The error printout format is shown by the examples below:

DOUBLE DEFINITION] BADTAG **FIRST LOCATION

FORMAT ERROR] LOCATION **BAD LINE

Format Errors include such things as an attempt to define an op code (e.g.

LDA = DAD 6), extra meta-commands (especially END), and improper symbols in
MACRO DEFINITIONS. In meta-commands, the line is removed; in other cases, only
the offending character is deleted.

The PROGRAM is printed in symbolic form at the left, on two lines if
necessary-. The octal numeral form is given at the right with its octal

memory location.

The SUMCHECK occurs only on paper tape versions of Listings and Directives
(Plist and Dir). It is given as a meta-command, e.g. wwSUM 436521
The sum is checked on M4 Read-in(wwlW READ)and if an error is found, the

1o

word "SUMCK" is printed on the Lincoln Writer. The user can proceed at his

own risk, or he can try again.
»wERRORS

ERRORS will type the error block if there are less than 8, or if there
are more, it will print them on the Xerox. Once this is done, the error

b lock will not appear on subsequent 1listings.

6-18 October 1961

Example 1

Here is a listing of the program of the previous section - before the correction tape was

used.

BL=000407 RE=000404 TABL=000412
0UT=000402 RESET=000411 TEST=000400
PR=000410
START= 400
a= 1
FORMAT ERROR| TEST+i1**COM~> JPQ BL
START|
TEST~ SKN _ , PR |s01761 000410l000400
COM JPQ BL |145700 000407] 4012
ouT- TSD TABL, |oos7o1 o0ooa12| 402
MKN PR |os1761 o000410| 403
RE= LbA { o} |0o2400 000406| 404
STA RESET |ooss00 o000411] 40s
0o |oooooo coo0oo| 40s
BL~ o |oocooo 000000| 407
PR~ o {ooo000 coo00oo|ooo4az0
RESET- 0 |oooooe o0ooooo| 411
TABL- ° |0oooooo o0oocoo| 412
mSUM 037602

October 1961 6-19

Example 2

Here is & listing of the same example, made after the correction tape was used. Note that

the error notice is always printed once, even if the error is corrected later on. If a listing

is made between tapes, the error notice is not included on the second listing.

COMM=000401
IND=0OO414

BL= 1000

00PS= 2000

START= 400

QUT=000404
PR=000415
RE=000410
RESET=000416

FORMAT ERROR|] TEST+I1**CQOM~-

START|
TEST=
COMM->

ouT~>

RE=~

IND~
PR=>
RESET~»
TABL-

wwSUM

TABL=000417
TEST=000400

JPQ BL

**SAMPLE PROGRAM FOR USERS HANDBOOK

SKZ __, PR
JPQ BL

-1

o O © ©

056632

6-20

|201761 0004
]140s00 o010
|301266 0004
loco466 0300
Joos7e1 o004
|2021763 0004
l140500 0020
los1761 o004
loe2400 o004
|oosaoo oo0a

|0oooco o000
|777777 77277
|ecoocoo ocoo
|ooocoo oooo
joocooo 0000
Jeooocoo 0000

15| 000400

oo|] 401
03| 402
ool 403
17| 404
14| aos
oco| 406
1s] 407

13]o00c410

16| 411
oo 412
76| 413
oo| 414
oo| aus
oof 416
oo| 417

October 1961

wD IR AA

w=D IR AA-»>BB Directive via Punched paper tape.
weDIR AR]n

»=TDIR AR

wrTDIR AA-BB Directive via Typewriter.

we TDIR AA|n

mr L DIR AA

w=r LDIR AA-BB Directive via Xerox.

»»LDIR AA}n

The format of a DIRECTIVE is as follows:

EQUALITIES TABLE (No Asterisks or Hands)

MACRO DEFINITIONS

SYMBOLIC PROGRAM

ww SUMCHECK 432170 (Looks like a Meta-command)

There is no symex table, error table, octal program, or RC Word block. The
sumcheck is a 6 digit octal number. If the tape has been damaged or spliced
SO that the sumcheck is wrong, M4 will type "SUMCK" on the Iincoln Writer,
and control of Mk will return to the Keyboard.

Partial Listings and Directives

If no address section is given in the Listing and Directive type meta-
commands, the entire program is included in the output. In a partial Listing
or Directive, the tables and macrc definitions are included only if the first

word of the program is included in the section indicated by the address given,

October 1961 6-21 B

(Directive Before Corrections)

START= 400
START|

TEST— SKN _ , PR
COM JPQ BL

ouT TSD TABL,
MKN , PR

RE~-> LoA { o}
STA RESET

wrSUM 011516

(Directive After Corrections)

BL= 1000
00PS= 2000
START= 400
**SAMPLE PROGRAM FOR USERS HANDBOOK
START|
TEST- SKZ 5.1 PR
COMM-> JPQ BL
30
SKX 56#+1
108§ 30000
ouT—> TSD TABLa
SKZ 3.3 IND
JPQ O0OPS
MKN . PR
RE- oA {-1}
STA RESET
r=SUM 021762

6-22 October 1961

wwPUNCH
ww PUNCH AR

PUNCH produces a punched paper tape in Binary Format. If an address is
given, a JPQ AA goes into register 27(oct.)' If there is no given address,
JPD 27 is used. Since the readin program ends with an IOSSZZOOOO (DISCON-
NECT PETR) in register 26(oct.) the "AA" is essentially a starting address
for the tape. AA must be within the program.

Binary Tape Format is as shown below:

To the Bin To the Reeler
- —_—
Last First Start Reader 4
""Progra.m"“"“"“"""”"Progra;m""'Eizc'k‘“'ﬂ‘l:eader .ooooo,onc-
Tth Block* Block* Register (23 words) s
Hole 27(oct)
End
Mark

October 1961

*There is, in general, one block per M4 Origin.

The "Reader Leader" is the binary version of the Readin Program itself. The
Readin Plugboard Program reads the reader leader into registers 0_26(octal)
and then jumps to register 3, the start of the readin program. The first
word of a block tells where the block is to be located, and how many words
are therein. The last word is an 18 bit check sum and an address telling
the readin program where to go next. For all but the last block, this
address will be "3", the start of the readin program. For the last block it
will be 26(0ct.). Register 26 contains "1085220000" and 27 will be either
JPQ AA (if AA is given) or thPD 27 if no address was given. The readin
program therefore will jump to the new program with sequence number 52 chosen,
and with the PETR DISCONNECTED. If there is no given starting address, the
readin program leaves the computer in LIMBO.

6-23

Note: Metabits are not set by the readin program. They are cleared

wherever the readin program stores new words.

Note also: The special block for register 27 comes before the program
on the tape. Progream material that is to go in register 27 therefore super-
cedes this special block created by Mh.

6-3.5 M4 FORMAT VARIATIONS - DEC, OCT, T=CR, T=TAB, RC STORE, XXX

weDECIMAL (== DEC)
we QCTAL (> 0CT)

All numerals in an M4 manuscript are considered to be of the same numeral
system unless they are followed by a period (in which case, the other numeral
system is used). DEC and OCT remain effective until changed and are not saved
for inclusion in the Directive. M4 preserves Decimal Integers by reproducing
them with a "following period". Octal is the "normal" mode - CLEAN or CODABO
160000 (Pushbutton) will reset the mumeral interpretation to Octal. Note also
that the right hand numeral in a SKM bit designation is always Decimal.

wwT=CR
wr T=TAB

When a table of constants is part of a manuscript,.it may be easier to type it in
several columns by "tabulation". "T=CR" allows this by making TAB a word termi-
nator similar to Carriage Return (CR). 1In this mode, tabs can not be used with-

in words. T=TAB returns M4 to normal.

Note: These meta-commands are not included on a Directive. A table that

was typed in ‘several columns will be reproduced as one column on the Directive.

wwRC STORE (w=RC)

RC STORE means "Put the RC BLOCK here". The RC Block will be at the end of
the program if this meta-command is not used. RC STORE can be inserted via wwINS
and need not be deleted for M4 automatically deletes an existing RC STORE when a

new one is inserted.

6-2k October 1961

wwXXX (or Special Key "NO")

XXX has complete comtrol. It wipes out all input information back to the
previous carriage return and forward to the next CR (or tab if T=CR). It can be

used on any line, anywhere even within a comment, but not after backspace.

6-3.6 USE OF SPECIAL KEYS

The top row of keys on the Lincoln Writer has five special keys which have no

machine function or associated character. They are extras, and can be used for
any purpose. The M4 system uses them as abbreviations for certain meta-commands.
These special keys terminate the line as far as M4 is concerned. If an address

is to be used, it is to be typed first. The keys are assigned as follows:

WORD EXAM (71) LIST

YES (17) MOST RECENT OF TYPE, TDIR, DIR, LIST, PLIST, OR LDIR.

NO (16) XXX (This works backwards only - It does not delete
forward.)

BEGIN (15) BIN (BINARY STORE)

READ IN (1k) LW READ

STOP (76) The stop key means "stop". It is always active. If Mh

is printing too much, if it is "hung-up", or if it is
performing a function that is no longer wanted, the
stop key will return control to the keyboard and stop

whatever is going on.

October 1961 6-25

6-3.7 MAGNETIC TAPE BULK STORAGE - SAVE, READ, TAPE, CORE

The M4 Magnetic Tape Bulk Storage reel contains a copy of the M4 program
itself (in Binary and Directive form, and with 3 Binary back-up copies), and
working space about 30 times the size of S Memory. Working space is assigned in
200 word blocks, the average allotment being 1000 blocks - i.e. one S Memory.

M4 does all the detailed tape coding. A standard tape format is used with an

18 bit check sum for error detecting. Tape malfunction is automatically reported
on the typewriter - the report includes missed data detected by the alarm circuits
(Sequence #41) as well as check sum errors. The users "Mi Name" is used to
determine the proper working space, and M4 automatically protects the rest of the
tape. The four Meta-commands listed below permit the user to store and retrieve
his program or other material in Directive Format (Save-Read) or in straight

Binary (Tape-Core).

M4 Answers to Mag Tape Meta-Commands

When M4 can not perform the given command because of programming limitations,
it types NO in red on the Lincoln Writer, and it ignores the command. No data

is transferred.

When M4 can and does complete the given command, it tells the user which tape
area was used, and the associated four character identification derived from the
check-sum. The tape area is specified by the block number of the first block and
the block number of the next free block. For example:

0100 - 0107 TYTT
means that blocks 100 through 106 were used. "TY7J" is the identifying word.

If there is a tape equipment malfunction while Mk is in operation, the words
"TAPE ERROR" are printed in red on the Lincoln Writer followed by pertinent data.
This print-out should be saved for the Tape Engineers, and the incident should be

duly reported.

wwSAVE 100-200 **SAVE CURRENT DIRECTIVE

If all is well, M4 stores the current directive on Mag tape beginning at the
specified block nmumber (100 in this case), and reports back via the typewriter the
tape area used, and the four character identification. This will be the same
identification as that used on Listings. Saving and retrieving a Directive on

Magnetic tape does not "clean it up" the way it does when paper tape is used. The

6-26 October 1961

Directive comes back exactly as it was. To "clean it up", the meta-command
"RECONVERT" should be used before SAVE. The second block number is protected.
If the directive will not fit in the specified area, Mh types "NO" in red. If
the second number is omitted, the remainder of the user's allotted working space
is assumed to be available. If both numbers are omitted, address "zero" is

assumed. If Mk types "NO", the command has been ignored.

wwrREAD 100 *%¥READ DIRECTIVE FROM MAG TAPE

If the address given is the start of a Directive, "READ" will clean M4 and

read in the Directive from tape. It will then type the tape location (i.e. first

block and the one after the last block), and the four character identification.

If the address given is not the start of a Directive, "READ" types "NO" in

red and does not clean M4 nor read from tape.

TAPE - CORE (Binary Storage snd Retrieval)

TAPE and CORE deal with Binary (i.e. Absolutely Numerical) information and
therefore require two address sections - one for the working space on tape and the
other for ecore memory. (The word "to" is understood - i.e. it is TO TAPE and

T0 CORE.) Both address sections must be numerical and the tape address comes

first.
wwTAPE 200-300 0e17777
(TAPE AREA) (MEMORY AREA, INCLUSIVE)
TAPE copies from core to Tape. Working space on tape is used a block at a
time - i.e. in 200(8) word sections. If the second tape block number is omitted,
the rest of the wuser's allotted working space is assumed to be available. If

the data from core will not fit, none of it is copied and M4 types "NO" in red.
If it does fit, Mh types the first block number, the one after the last, and the
Tour character identification derived from the check sum that is used on tape.
The rest of a partially filled block is set to zero. The memory address is

inclusive.

wwCORE 100 0-~17777
(TAPE AREA) (MEMORY AREA, INCLUSIVE)

CORE copies from tape to core until the specified core area is full. If all
is well, M4 will type the usual message - i.e. tape area used, and four character

identification word. If the meta-command asks for words beyond the user's allotted

October 1961 6-27

6-3.8

space, or if the Mi program itself is threatened, M: types "NO" in red.

located at 160000 - 17L4010.)

part of a section is retrieved or if a program is stored in several pieces and

retrieved by one command.

META-COMMAND SUMMARY

Clean
LW Read
Reconvert

Name

Insert
Delete
Replace

Move

List
Type
Plist

Directive punch

Tdir
Ldir
Binary Store
Punch Binary
Goto

Decimal
Octal
T=CR
T=Tab
End

RC

Sumck
Save
Read
Tape

Core

Define

Demo

Input

>~ Changes

>' Output

>- Format

Mag Tape

Macro

BIN
CLEAN
CORE
DEC
DEF
DEL
DEMO
DIR

GOTO
INS
LDIR
LIST
W
MOVE

PLIST
PUN
RC

REC

SAVE
SUMCK
TAPE
TDIR
TYPE
T=CR
T=TAB

6-28

(M4 is

The identification word will be different if only

Binary Store

— Clear M4 Directive Storage

Tape to Core

Decimal

Define

Delete

Demonstrate

Directive Punch

End of Multiple Word Meta-Command
End of Macro Definition
Go To User's Program
Insert

List Directive on Xerox
Print Listing on Xerox
Lincoln Writer Read-in
Move Program Block

Set User Identification
Octal

Punch Listing

Punch Binary

RC Store

Read Directive from Tape
Reconvert

Replace

Save Directive on Tape
Sum Check

Core to Tape

Type Directive

Type Listing

Tab equals Carriage Return

Tab equals Tab.

October 1961

MACRO INSTRUCTIONS

A macro-instruction is an abbreviation for a flexible subprogram which is written by

the user (as a Macro Definition) and is inserted into the program by M4 wherever the Macro
Instruction is used. The subprogram is written in terms of dummy parameters and when it
is copied by M4, only those portions that correspond to specified parameters are used.

For example:

If the definition of "DO A,B,C,D" is

wwDEF po|A,B,C,D
A
B
B
c
D
wwEMD

And if the program is:

100 |

LINE I DO|LDA T;,ADD TT, ADD BB, STA CC
LINE 2~ pojLDpB T,

LINE 3~ po|,6

Then M4 will produce:

100
LINE I 09|LDA T,,ADD TT,ADD BB,STA CC
LDA T, |oo2401 o0oo0112{000100
ADD TT |oos700 000113] 101
ADD TT |oos700 000113 102
ADD BB |oos700 ooo0110] 103
STA CC |oos400 000111] 104
LINE 2- pofLoB T,
LbB T, |oo2502 ooo0112] 105
LINE 3- D%s
6 |oooooo ooooo0s| 106
] |oocooo ooooos| 107

October 1961 6-29

6-4.,1 Macro Definitions — Meta-commands "DEFINE" and "EMD"

As shown by the example above, two meta-commands are used with Macro Definitions —
ww DEFINE (DEF is enough) and ww EMD (End of Macro Definition.) A macro definition has
two parts — the abbreviation itself, and the defining subprogram. The Macro Definition

must precede the use of a Macro instruction.

6-4,2 The Mnemonic Abbreviation Line of A Macro Definition

A Macro Definition starts with the "Macro Name" and dummy parameters as follows:

wwDEF pojA,B,C,D

The "Macro Neme" here is "DO", the "dummy parsmeters" are A,B,C and D, and commas were

used as "Macro Terminators”. A Macro Definition must be terminated by the Meta-command
" wwEMD" (End of Macro Definition).

6-4.3 Macro Names

There are two kinds:

a. Any Symex may be used as a Macro Name. It may be used alone, or followed by a
terminator and parameters, (each of which is separated from the other by termi-

nators).

b. A compound character may be used. It may consist of two or three superposed

non-alpha-numeric characters — e.g., E] or ,-l- or » . It may not be @, @, or -
(These are reserved for M4.) The characters may be typed in any order. A
compound macro name is itself a terminator — i.e. parameters may come before as

well as after. For example:

we DEF A, « [B -DOUG

The Macro Name is [.

6-30 October 1961

6-4 .k

6-4.5

6-4.6

Dummy Parameters

Dumy Parameters may be any symex (even three letter mnemonic codes and the single

letters A, B, C, D and E). A Dumny Parameter may be included as a mnemonic aid and need
not be used in the defining subprogram. Dummy Parameters must be separated by macro
terminators.

Macro Terminators

The following symbols may be used.

r = > l == a~<>AaU/ xvaA

Other symbols may not be used.

The Defining Subprogram

The defining subprogram is written using the Dummy Parameters and must be terminated

by »wEMD (End of Macro Definition). Note the following rules and conventions.

1. Symexes defined by equal sign (=) or by arrow (=) within the macro definition

are not part of the program proper and refer only to the macro subprogram.

2. A symex that is not defined within the MACRO will refer to the main program and
if it's not assigned there, it will be assigned automatically in the RC Block.

(But only if the Macro is used in the program proper.)

3. The single letter symexes A, B, C, D, E will refer to the AE unless they are used

as Dumy Parameters.

. An instruction in a definition may use a parameter harmlessly so that it will be
left out when the parameter is not used. One way to do this is as follows:

oA & 7T ; + (0P) = (DP)

("DP" is the dummy parameter.)

5. A Dummy Parameter may not be used as a tag within the defining subprogram. (You

can, of course, write JPQ DP, but not:

D P> LDA “T,

6. A line that uses two Dummy Parameters will be left out if either is left out

when the macro is used.

October 1961 6-31

7. A line that uses a dummy parameter may be kept in with that parameter equal to
zero when the parameter is not used. This is done by using another symex that

is set equal to the dummy in question. For example:

LDA DUMI +DUM2

can be written as:

LDA DUM1I + Gs
G6 = DUM2

6-4.7 Use of Macro Instructions

A macro may be used as a Pseudo Instruction by itself, or "nested" as a parameter of
another macro. It may even be used as a parameter of itself. It may be an RC word.
When used as an RC Word, it will use several registers of the RC Block and the location

of the first of these will be the associated address. Consider the examples below.

Example 1. A Macro used within brackets — i.e. as an "RC Word"

wwDEF TBS|a
a
a
a
a
a
wwEMD
100]|
USE~> LDA {Ts-»TBS]| o} *%5 BLANK RC WORDS
LDA TOMM
STA TS+3

The program is expanded as follows:

100]

USE~ LDA {T5-TBS]|0} | 002400 000103]|000100
LDA TOMM |oo2400 o000110] 101
STA TS+3 |oosa00 ocoo106] 102

TS TBS|oO
0 [ococooo 00oo00] 103
o |oooooo oooooo| 104
0 [oocoooo oococoo| 105
0 |occooo 0ooooo| 106
0 |oooooo o0ooo0o| 107
TOMM- o |ooooco o0o0o0c00|000110

6-32 October 1961

Example 2, A Macro used to generate a table of squares.

If the manuscript

w=DEF

wrEMD

100]

TABL~>

is as follows:
sqlA
A

A

NSQ= (#-TABL) % (#~-TABL)
sa| (sa] (sa] (NSQ)))

Ms will produce the program shown in the "Plisting" below.

NSQ= (#-TABL) x (#-TABL)

»wDEF

mwEMD

100]

TABL-

rrSUM

October 1961

TABL=000100

SQ|A

sq| (se] (se] (NsSQ))

(NSQ) Joooooo 000000)000100
(NSQ) |oooaoo oooooz] 101
(NSQ) |ooo000 000004] 102
(NSQ) |oooooo 006011 103
(NSQ) Jocoooo 000020] 104
(NSQ) Joooooo 00cos:i| 105
{NSQ) [o00000 000044] 106
(NSQ) |coocoo o0co00s:| 107
025015
6-33

Example 3. An open subroutine for index memory "integer" multiplication.

The macro below finds the righthand 18 bits of the full product of two X Memory
words (O & B), provided that said product is no larger than 17 bits and sign. The
product goes into X Register "o, "TXX" is cleared, X Register "g" is ruined, and the
symexes "TXX" and "FX1" are "used up". (Since symex "S" is defined within the macro,

it is not "used up".)

TXX=000110 USE=000100
FX1= 1
S=
wwDEF MULX,axB
DPX TXX
TExx TXX
4
S szz, TXx
INXa‘p
!NXBIB
RSXFXITXX
_ JPX_y S
»wEMD
100]
USE~> MULX,1x2
DPX TXX Joo1600 coo110|000100
TExx , TXX Jor11401 0o00110| 101
4
szz ,,, TXX |261721 ooo110| 102
INX 1 |o21201 400107] 103
INX 2|2 |o221202 400107] 104
RSX o) TXX |oor101 o0oor10| 105
JPX Ly, S |4ooeor ooo102] 106
2 |ocooo2 o0o00000| 107
TXX-> 0 |oooooc 0oo0o0oo|oooir0
wrSUM 037643

6-34 October 1961

Fxample 4. An open subroutine for "exclusive or" using a compound macro name.

In the macro below, the result goes into X Register "o, TXX is set to (@), c(B),
and X Register "B" is not changed. An underline was used in the macro name because

the symbols @, ©, and ® are not available as macro names.

TXX=000106 USE=000100
BILL= 1
TOMM= 2
wrDEF @8
1
DPXBTXX
2
k DPX,TXX
»'7com €
RITE TXX
hRSXaE
2
AUXuE
wwEMD
100]
T2 TOMM@BILL
1
DPX opy TXX |o11601 0co106l000100
2
h
DPX Loum TXX |421602 o00106] 101
R 7com |s75600 377610] 102
BITE TXX |404000 o000106] 103
h
RSX Loum E |401102 577610] 104
2
AUX Lo E |o21002 377610 105
TXX- ° |oooooo o0o00000| 106
mSUM 036551

October 1961 6-35

7-8

TX-2 USERS HANDBOOK
CHAPTER 7 - VARIOUS TABLES

TABLE OF CONTENTS

IN-OUT SEQUENCE NUMBER ASSIGNMENTS

STANDARD CONFIGURATIONS

OPERATION CODE MNEMONICS

META-COMMAND MNEMONICS

XEROX CHARACTER CODES

LINCOLN WRITER CHARACTER CODES

ML COMMA CHART

AVERAGE DURATION OF INSTRUCTIONS

October 1961 7-0

IN-QUT SEQUENCE ASSIGNMENTS FOR TX-2

00 STARTOVER

40 60 DISPLAY NO- 1

41 ALARM, IN-OUT 61 RANDOM NUMBER GENERATOR

42 TRAP 62 PUNCH NO- 2

43 63 PUNCH NO- 1

44 64

45 1BM MAG TAPE 65 LINCOLN WRITER INPUT NO- 1

46 MAG TAPE BULK STORAGE 66 LINCOLN WRITER OUTPUT NO-* 1
47 MISCELLANEOUS INPUTS 67

50 DATRAC 70

51 XEROX 71 LINCOLN WRITER INPUT NO- 2

52 PETR 72 LINCOLN WRITER OUTPUT NO- 2
53 73

54 INTERVAL TIMER 74 PLOTTER

s5 LITE PEN 75 MISCELLANEQUS OQUTPUTS

56 DISPLAY NO- 2 76

57 77

Table T-1

October 1961

6oLD

TABLE 7-2
STANDARD CONFIGURATION SET
a Fle] DESCRIPTOR o Fle| DESCRIPTOR
0 000 43214“‘ 20 200 i__s__z_il‘_k{‘
1 340 4 3:2 1 J__L 21 230 4. 3.2 1 u.;
2 342 21-43 \: 22 232 2 1-4 3 ‘4/
3 760 4-3.2-1 LL 23 732 2:1-4+3 l_'/
4 761 1:4:3:2 \ﬁ_u 24 733 3:2:1-4 l_‘/
5 762 2:1:4:3 \t_' 25 730 4+3-2-1 ‘il
6 763 3:2-1:4 \ 26 731 1+4-3-2 \|‘_J
7 410 4 3 21 * ‘ * 27 605 1:2:3-4 ng_l
10 411 1 4 3.2).}\/ 30 600 4+3-2-1 ii‘ii‘
11 140 4321 i * 31 750 4:3-2-1 ' }
[t
12 142 21 43 \}‘ a 32 670 4:3-2-1 ‘L
13 160 43 21 } 33 320 4 3-2 1 ‘h_i
14 161 1 4 3 2 n.._._\l.s 34 333 3 2+1 4 /
- - et
15 162 21 43 | \, 35 330 4 3.2 1 |__§.|
16 163 3214|_>_| 36 331 1 4.3 2 \
- - —_
17 202 21-4 3 LZ% 37 604 34012 SN
STANDARD PERMUTATIONS
T DK | S| 7L XRNX | S XX T AKX
0 2 3 L 5 6 7
October 1961 Table T7-2

NEW

TABLE 7-24"

STANDARD CONFIGURATION SET

a Fle] DESCRIPTOR a Fle| DESCRIPTOR
L 3 21 L 321
) ooo 4321 | | | | 20 200 4 3.21 | | |___|1
1 340 4 3.2 1 ;l__l_x 21 250 4 3.2 1 l|__|l
2 342 2 1043 T 22 252 2 1.43 _——
3 760 4e3e2e1 A 23 671 1e4e3e2 __—
L 3 2 1 L 3 2 1

4 761 led4e302

| 2410403

N
5 762 201e4.3 T~ 2s 673 3e2el104

—a
6 763 3e2eled T~ 26 604 3edele2
2 = sezerrz 35, 25
7 410 4.3 201 | | | 27 605 1.2:3e4 THEL
b 3 2 1 L 3 2 1
10 411 1.4 3.2 DN 30 600 4e3.2.1 | | | |
11 140 4 35 2 1 | | 31 750 4e3.2e1 |

12 142 21 43 T 32 730 4.3.21 |

I | L
13 160 4 3 2 1 | 33 670 4e3.2e1 |
- L) haad 1
L 3 2 1
14 161 1432 \| 34 To be assigned by the user
15 162 2 1 4 3 \ 35 1" 1" 1 " 1"t 1m
- e~
1 1" n " 1 11
16 163 3214 T~ 36

To be assigned by the user, but

17 202 2 leqg 3 t&< 37 also used by Executive System.
. (So use hold bit.)

STANDARD PERMUTATIONS

XS] D3 AL XX SN K

1 2 3

*¥For use with the TX-2 Executive Systemwnly.

February 1964 [A—fex')

Numerical Order Alphabetical Order Supernumerary Mnemonics
0

0 ADD - 67 (1) JMp - ~JMp
1 ADX - 15 PO
2 ¥ = r'::;z) AUX - 10 BRC - 2<JD/JP
3 ’ CoM - 56 JPS - “JMP
4 - 108 CAB - 62 3
5 - P (1) CYA - 60 B33 'mJMP
6 - JPX CYB - 61 JPQ -~ JMP
7 - X DIV - 75 15
10 - AUX DPX - 16 BPQ _16M
11 - RSX DSA - 65 JES -7 IMP
12 - SKX (2) EXA - 54 20
13 EXX - 14 JPD —21JMP
14 - EXX FIF - 31 BRD -"TIMP
15 - ADX FIG - 32 22
16 - DPX NS - 55 JD3 '23JMP
17 - SKM (3) I0S - 4 BDS -"7JMP
20 - LDE ITA - 41
21 - SPF ITE - 40 0
20 - SPC JMP - 5 (2)RHX'2SEX' SKX
23 JNA - b7 INX - “SKX
ok - TDA INX - 7 3
25 - LDB JOV - 4k DEX - LLSKX
26 - LDC JPA - 46 SXD - SKX
27 - LDD JPX - 6 6
30 - STE IDA - 2k SXL - YSKX
31 - FLF IDB - 25 SXG - 'SKX
32 - FIG LDC - 26 10
33 DD - o7 RXF —ZOSKX
34 - STA IDE - 20 RXD - "SKX
35 - STB MUL - 76 30
36 - STC NAB - 66 RFD -7 SKX
37 - SID NOA - 64 o
Lo - ITE RSX - 11 (3) 8KM - Oy
b - ITA SAB - 72 1
4o - UNA SCA - 70 MKC - 2SKM
43 - SED SCB - 71 Make MKZ - “SKM
Wy - Jov SED - 143 3
45 L IBA SKM - 17 KN 'lOSKM
46 - JPA SKX - 12 SKU -~ "SKM
47 - JNA SPF - 21 11
50 SPG - 22 Skip < sue '125KM
51 STA - 3k4 SUZ -"“SKM
22 STB - 35 sur -1sxar
53 STC - 36 >. 50
54 - EXA STD - 37 Skip SKZ -"7SKM
55 - INS STE - 30 on S7C -2ls1<M
56 - COM SUB - 77 Zero < 22
57 - TSD TSD - 57 877 -~"SKM
60 - CYA TLY - 7k 23
SZN -~ SKM
61 - CYB UNA - ko > 30
62 - CAB ki SKN -~ 7'SKM
63 kip 31
on SNC -""SKM
64 - NOA one < 3
65 - DSA SNZ -"“SKM
66 - NAB 33
67 - ADD >SNN fKM
70 - SCA CYR - 'SKM
71 - SCB R - 0
72 - SAB CR 6SKM
73 MZR - ~SKM
T4 - TLY Rotat T
75 - DIV ota e<MNR 31+SKM
76 - MUL SNR -~ 'SKM
77 - SUB 7R _QLLSKM
EUR -MSKM

OPERATION CODE MNEMONICS

Table 7-3 October 1961

7-4 META-COMMAND MNEMONICS

Clean BIN - Binary Store
IW Read ot CLEAN - Clear MLk Directive Storage
Reconvert CORE - Tape to Core
Name DEC - Decimal
DEF - Define
Insert) DEL - Delete
Delete >. Changes DEMO - Demonstrate
Replace DIR - Directive Punch
Move . END - End of Multiple Word Meta-Command
EMD - End of Macro Definition
List A GOTO - Go To User's Program
Type INS - Insert
Plist LDIR - List Directive on Xerox
Directive punch LIST -~ Print Listing on Xerox
Tdir ?' Output LW - Lincoln Writer Read-in
Ldir MOVE - Move Program Block
Binary Store NAME - Set User Identification
Punch Binary ocT - Octal
Goto J PLIST - Punch Listing
PUN - Punch RBinary
Decimal) RC - RC Store
Octal READ - Read Directive from Tape
T=CR REC - Reconvert
T-Tab > Format REP - Replace
End SAVE - Save Directive cn Tape
RC SUMCK - Sum Check
Sumck . TAPE - Core to Tape
TDIR - Type Directive
Save TYPE - Type Listing
Read >_ Mag Tape T=CR - Tab equals Carriage Return
Tape T=TAB - Tab equals Tab.
Core Y,
Define Macro
EMD
Demo

October 1961 Table 7-4

CHARACTER

A

w-w ¥ N < X E < C A4 0V DO vOoO ZT I MR A I 0o m Mmoo w

v A

(PERIOD)

XEROX PRINTER CHARACTER CODES

OCTAL CODE

154
142
361
352
313
344
302
354
172
144
143
332
360
370
353
312
160
371
322
153
362
152
343
161
342
162
132
133
220
221
222
351
372
340
363
730
703
720
150
5§70
140
114
131
103

(os56)f071)3456)

(043)
(054)
(012)

(157)

(047)062)317)
(055 070)345)
(355)

(042)
(145)
(356)
(017)032)307)

(057X072)347)

(053)
(146)
(e52)
(147)
(117)

(205)
(206)
(207)

(357)
(oso)
(073)
(a45)4a60)715)
(413)
(415X4a30)705)

(555)

(11586)

j

»

s Q v 3

N e R’ 8

L D <® W™ R

- >

“w O W O N o »u A N

| 4 =21 > 2 O x v 2 =«

*

CHARACTER

(ZERO)

(COMMA)

{CIRCLE)

Note: Bit 1.9 of the Xerox Character Code is a "size control bit'".
The codes are given above with the "proper' size.

"0" means small.

Table 7-5

ocT
122
324
323
024
111
112
173
174
163
164
310
311
333
203
334
023
001
0oz
003
004
020
021
022
300
301
000
202
204
120
121
113
714
373
341
364
731
704
721
151
571
141
130
102
104

AL CODE
(107)
(034)
(033)

(040)
(041)
(o63)

(064)

(0o05s)
(00s)
(007)
(010)
(011)

(105)
(106)

(444)
(os51)
(074)
(446)461)716)
(¢14)
(416)X431)706)

(556)

(115)

"1" means large, and

October 1961

TX=2 LINCOLN WRITER CODES

00 o0 m» 40 Q a
011y 41 RA

0z 2z | 42 S p

03 3 | 45 T €

oa a4 / 44 U h

05 § x 45 V >

06 6 # 46 W B

07 7 - 47 X A

10 8 < 50 Y X

11 9 > 51 I~

12 _ 7 s2 ({

13 0] 55) }

14 READ IN ’ 54 + =

15 BEGIN 55 - =

16 NO s6 , !

17 YES §7 o ¥

20 A n 60 CAR RETURN
21 B¢ 61 TASB

22 C v 62 BACK SPACE
23 D g 63 COLOR BLACK
24 E Y 64 SUPER

2s F ¢t 65 NORMAL

26 G w 66 SUB

27 H x 67 COLOR RED
30 1 4 70 SPACE

31 J ¥ 71 WORD EXAM
32 K = 72 LINE FEED DOWN
33 L ? 73 LINE FEED UP
34 Mu 74 LOWER CASE
35 N n 75 UPPER CASE
36 0§ 76 STOP

37 Pk 77 NULLIFY

October 1961 Table 7-6

7-7 M4 COMMA CHART

COMMAS BEFORE COMMAS AFTER CRAM DIAGRAM EXAMPLE

0 o} * ‘ ‘ * 4Ll 333 222 111

111 - - -

/
0 2 ’(/ 222 111 - -
0 3 / / / 333 222 111 -

1 0 ‘ - - -1
1 1 / il - 222 111 -
1 2 / - 11 - -
1 3 tt Lhk 333 222 -
2 0 ‘ ‘ - - 222111
2 1 / - - 111 -
o > >§< 222 111 bk 333
2 3 \ - - Lbb 333
3 0 + - - 111
3 1 T~ i
3 2 A T A
3 3 NN - - bbb o333

Table 7-7 October 1961

7-8 AVERAGE DURATION OF INSTRUCTIONS

This duration chart was made by TX-2 by timing the duration of 8000 repetitions of

each éperation with various combinations of memories. The columns are labled as follows:
P MEM The memory used for the instructions.
OP Code The instruction being timed.
A The memory used for intermediate deferred address (if any).
Q MEM The memory used for final operand (if any).
MMS Average duration in microseconds.

The abbreviations used within the columns are as follows:

S memory

T memory

Flip-Flop part of V memory (4,B,C,etc.)

Toggle Memory

The instructions are listed in numerical order (by op codes).

October 19€1

Table 7-8

P MEM OP CODE A Q MEM MMS

S AQP 167000 840
T AoP 167000 6+0
S 10S o 9.2
T 10S 0 7.2
S JMP 706
T JMP 5.6
S JPA 8.0
T JPA 60
S JNA 8.0
T JNA 6.0
S Jov 8.0
T Jov 6+0
S JNX 96
T JNX 7.6
S JPX g6
T JPX 76
S SKX 10+0
T SKX 8.0
S SKX S 2044
T SKX S 184
S SKX T 18+4
T SKX T 1644
S AUX S 136
T AUX S 116
S AUX) VFF 12+4
T AUX VFF 1044
S AUX VT 1240
T AUX VT 100
S AUX T 116
T AUX T 9-6
) RSX S 128
T RSX S 10+8
S RS X T 10+8
T RSX T 8.8
S RSX VFF 11-6
T RS X VFF 96
S RS X VT 11-2
T RS X vT 9.2
3 ADX S 16-0
T ADX S 10-0
S ADX T 10-0
T ADX T 12-0
S ADX VFF 10-8
T ADYX VFF 8.8

Table 7-8, pg. 1 October 1961

October 1961

0P CODE

ADX
ADX
DPX
DPX
DPX
DPX
DPX
DPX
pPX
DPX
EXX
EXX
EXX
EXX
EXX
EXX
EXX
EXX
SKM
SKM
SKM
SKM
SKM
SKM
SKM
SKM
SKM
SKM
SKM
SKM
SKM
SKM
SKHM
SKM
SKM
SKM
SKM
SKM
SKM
SKM
SKM
SKM
LDA
LDA

e T R M R B TR 7 R 7 R 7 T ¥, TR 7 T 7, B 7 B 74]

Table 7-8, pg. 2

Q MEM

VT
vT

VFF
VFF

VT
VT

VFF
VFF

vT
vT

VFF
VFF

VT
VT

VFF
VFF

VT

< <
w »nw 0 06 m m 4 - wuv

m =

MMS

10-4
8.4
1440
746
746
10-0
8+4
64
ge0
6.0
1440
112
1142
10+0
116
946
112
92
14-8
96
946
108
104
8e4
10-0
g0
252
200
200
212
208
18+8
2044
1844
232
18+0
180
1992
188
16+8
14-8
946
12+8
6+4

P MEM OP CODE A Q MEM MMS

S LDA T 6.8
T LDA T 8.8
S LDA VFF 6+8
T LDA VFF 5.2
S LDA VT 6e8
T LDA VT 4.8
S LDB S 128
T LDB S 64
S LDB T 6.8
T LDB T g8
S LDB VFF 68
T LbB VFF 5.2
S LDB VT 68
T LDB vT 4.8
S LbC S 12+8
T LDC S 64
S LDC T 68
T LbC T ge8
S LbC VFF 68
T LDC VFF §e2
S LDC VT 68
T LDC VT 4.8
S LDD S 12+8
T LDD S 64
S LDD T 68
T LDOD T 8+8
S LDD VFF 6.8
T LDD VFF §e2
S LDD vT 6+8
T LDD vT 4.8
S LDE S 12-8
T LDE S 64
S LDE T 6+8
T LDE T ERY:]
S LDE VFF 6e8
T LDE VFF 5e2
S LDE VT 6+8
T LDE VT 4.8
S SPF S 12-8
T SPF S 9¢6
S SPF T 9.6
T SPF T 8.8
S SPF VFF 1044
T SPF VFF 84

Table 7-8, pg. 3 October 1961

P MEM 0P CODE A Q MEM MMS

S SPF vT 10-0
T SPF vT 8.0
S SPG S 128
T SPG S 96
S SPG T 96
T SPG T 88
S SPG VFF 10+4
T SPG VFF 84
S SPG vT 10+0
T SPG VT g0
S STA S 1440
T STA S 76
S STA T 648
T STA T 10-0
S STA VFF 68
T STA VFF 52
S STA vT 68
T STA vT 4.8
S ST8 S 1440
T STB S 76
S st T 6-8
T STB T 1040
S STB VFF 68
T STB VFF 5.2
S STB vT 648
T STB vT 4.8
S STC S 140
T STC S 746
S STC T 68
T STC T 10-0
S STC VFF 6+8
T STC VFF 52
S STC vT 6.8
T STC vT 4+8
S STD S 140
T STD S 76
S STD T 68
T STD T 10+0
S STD VFF 68
T STD VFF 52
S STD vT 6+8
T STD vT 4.8
S STE S 14+0
T STE S 76

October 1961 Table 7-8, pg. &

P MEM 0P CODE A Q MEM MMS
S STE T 6+8
T STE T 100
S STE VFF 6.8
T STE VFF 5.2
S STE VT 648
T STE vT 4.8
S EXA S 14+0
T EXA S 7.6
S EXA T 6e8
T EXA T 10.0
S EXA VFF 68
T EXA VFF §5e2
S EXA vT 6.8
T EXA VT 4.8
S ITA S 12-8
T ITA S 64
S ITA T 6.8
T ITA T 8.8
S ITA VFF 68
T ITA VFF 5e2
S ITA vT 68
T ITA vT 4.8
S UNA S 128
T UNA S 6e4
S UNA T 68
T UNA T 8.8
S UNA VFF 648
T UNA VFF §5e2
S UNA vT 6.8
T UNA vT 4.8
S DSA S 128
T DSA S 6e4
S DSA T 68
T DSA ' T 8e8
S DSA VFF 6.8
T DSA VFF Se2
] DSA VT 68
T DSA vT 4.8
S ITE S 128
T ITE S 64
S ITE T 68
T ITE T 8.8
S ITE VFF 68
T ITE VFF §e2

Table 7-8, pg. 5 October 1961

P MEM OP CODE A Q MEM MMS

S ITE VT 68
T ITE VT 4.8
S SED S 128
T SED S 96
S SED T 96
T SED T 88
S SED VFF 10+4
T SED VFF 8es
S SED VT 10+0
T SED vT 8+0
S FLF S 14+0
T FLF S 746
S FLF T 68
T FLF T 10+0
S FLF VFF 65
T FLF VFF 6.0
S FLF vT 6.8
T FLF VT a.8
S FLG S 156
T FLG S 88
S FLG T 8.4
T FLG T 116
S FLG : VFF 84
T FLG VFF 8.0
S FLG VT 8e4
T FLG vT 6.8
S TSD S 144
T TSD S 8.8
S TSD T 746
T TSD T 1044
S TSD VFF 746
T TsD VFF 8.8
S TSD VT 7e6
T TSD VT 8.8
S INS S 15.2
T INS S 8.8
S INS T 6.8
T INS T 1142
S INS VFF 6+8
T INS VFF 64
S INS vT 68
T INS VT 60
S COM S 14+8
T COM S geq

October 1961 Table 7-8, pg. 6

P MEM 0P CODE a Q MEM MMS
s COM T 68
T COM T 10+8
s COM VFF 6+8
T COM VFF 6+4
s COM VT 6-8
T COM vT 640
S ADD S 12+8
T ADD s 6ed
S ADD T 68
T ADD T 8.8
s ADD VFF 68
T ADD VFF 5.6
s ADD VT 68
T ADD VT 4.8
$ SuB s 1248
T suB s 6ea
S SuB T 68
T susB T 88
S sus VFF 6+8
T suB VFF 5e6
S sus vT 6+8
T suB vT 4.8
S MUL S 20.8
T MUL S 20+8
s MUL T 19+6
T MUL T 20+0
S MUL VFF 1946
T MUL VFF 208
S MUL VT 1946
T MUL VT 192
s 7MmuL s 176
T “muL s 1746
S 7MUL T 16+4
T 7MuL T 1592
s “MuL VFF 16-4
T 7MuL VFF 16+0
s 7muL VT 1644
T 7MuL vT 16+0
s TmuL s 1640
T TmuL s 1444
s TnuL T 1146
T oL T 1240
s MuL VFF 132
T Thue VFF 12+8

Table 7-8, pg. 7 October 1961

P MEM OP CODE A Q MEM MMS

s Imue vT 13+2
T ImuL vT 12-8
S SMuL S 12+8
T SMuL s 11+2
s *MuL T 10-0
T S MuL T g8
s SMuL VFF 10-0
T SMuL VFF 946
s SmuL VT 1040
T SMuL VT 946
s DIV s 800
T DIV s 800
S DIV T 772
T DIV T 7746
s DIV VFF 788
T DIV VFF 7844
S DIV vT 772
T DIV vT 78+4
s “p1v s 6048
T “prv S 6048
S 7DIV T 596
T “p1v T 60+0
S 7DIV VFF 596
T “p1v VFF 60-8
s “p1v VT 596
T “p1v VT 592
S Iprv s 4342
T Ip1v s 43.2
s Iprv T 4240
T Io1v T 40+8
s Iprv VEF 42+0
T Iprv VEF 4146
s Ip1v VT 4240
T Iprv vT 4146
s Sp1v s 2244
T Sp1v s 2204
s Sprv T 19+6
T Sprv T 200
s *p1v VFF 21+2
T *prv VFF 20+8
s *prv VT 1946
T *p1v VT 208
S TLY S 19+2
T TLY S 19+2

October 1961 Table 7-8, pg. 8

P MEM OP CODE A Q MEM MMS

S TLY T 16+4
T TLY T 168
s TLY VFF 1840
T TLY VFF 176
$ TLY VT 1840
T TLY vT 176
s 7TLY s 16+0
T 1Ly s 1640
s 7Ly T 13+2
T 7TLY T 13+6
s 1LY VFF 14-8
T 7TLY VFF 144
s 7TLY vT 132
T 7TLY VT 1444
S ITLY S 12+8
T Ly s 1142
s Ty T 100
T oy T 12-0
s Ity VFF 100
T Ity VFF 1142
s 1y vT 100
T ooy vT 946
s 1Ly s 1248
T 1Ly s 8.0
s STLy T 68
T *TLy T 8.8
s i IR VFF 68
T STLy VFF 8.0
S 3TLY vT 6.8
T 1LY VT g-0
S SCA S 12+8 1072
T SCA s 8.0 10742
S SCA T 68 10444
T SCA T 8.8 10448
s SCA VFF 6-8
T SCA VFF 80
S SCA vT 68 10640
T SCA vT 8.0 105+6
S 7SCA S 128 1072
T 7sch S 8.0 1072
S 7sca T 6.8 10444
T 7sca T 8.8 1048
s 7sca _ VFF 6.8
T 7sca VFF 8.0

Table 7-8, pg. 9 October 1961

P MEM

- »n 4 N 4 »n 4 nu 4 0 4 nu 4 v 4 n 4 nu 4 0 A4 N0 -4 n A4 n -4 un 4 n A4 u A4 v A unu A n A4 n -1 n -4 n

October 1961

OP CODE

7sca
7sca
Isca
Isca
Isca
Isca
Isca
SCA
SCA
SCA
SCA
SCA
SCA
SCA
sCA
SCA
SCA
SCA
SCB
SCB
SCB
S
SCB
SCB
SCB
SCB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB

L I 7 7 R I I N O O

NN N NN N NN

1
1

A Q MEM

VT
VT

VFF
VFF
vT
vT

VFF
VFF
VT
vT

VFF
VFF
vT
VT

VFF
VFF
VT
VT

VFF
VFF
vT
VT

Table 7-8, pg. 10

MMS

68
840
128
8.0
68
8.8
68
8.0
60
8+0
12-8
8.0
6.8
88
68
8.0
6+8
8+0
128
8.0
68
8.8
68
8.0
68
80
128
8.0
6+8
88
68
80
68
8+0
12+8
8.0
68
88
68
8.0
68
80
128
8.0

1060
1056
107 -2
1072
104+4
10448

1060
1056
107 +2
1072
104+2
1048

106-0
10546
1072
107.2
1044
104+8
10640
105+6
10640
10546
1072

1072

10444
1048

1060
1056
1072
1072
1044
1048

10640
10546
1072
107 -2

P MEM 0P CODE A Q MEM MMS

s Isas T 6.8 10444
T 1spaB T 88 104+8
s Isas VFF 6-8

T Isas VFF 80

S Isps vT 6.8 1060
T isns vT 8.0 105+6
S *sas S 12+8 107 .2
T ®saB s 8+0 107-2
S SSAB T 6+8 10444
T 3sas T 8.8 10448
s ®sas VFF 68

T ®sas VFF 8+0

s ®saB VT 68 10646
T 3sas vT 8.0 1056
S cyYs S 128 1072
T cys S 8.0 107 2
S cYB T 68 10444
T CYB T 88 1048
S CYs VFF 68 10640
T cyYs VFF 8-0 105-0
S cys VT 6+8 1060
T CYB vT 8.0 105+6
S 7cys S 1248 1072
T 7cvs S 8.0 107+2
s 7cve T 6.8 104 -4
T 7CYB T 8.8 104.8
S 7CYB VFF 68 1060
T 7cys VFF 8.0 10556
S 7CYB vT 6.8 1060
T 7cve VT 8-0 105+6
S ICYB S 128 1072
T zCYB S 8.0 1072
s Icvs T 648 1044
T fcvs T 8.8 10448
S Icvs VFF 6.8 106+0
T lcys VFF 8.0 10546
$ fcvs vT 6.8 10640
T fevs vT 80 105+6
S SCYB S 128 1072
T 3CYB S 8.0 107 2
s Scvs T 6.8 104+4
T 3cys T 8+8 10448
s Scys VFF 6.8 106+0
T 5cys VFF 8.0 10546

Table 7-8, pg. 11 October 1961

P MEM

- v A n A n A0 A 0N A VA4 OO -A VA Ad DA N AN AN - W - N oW

October 1961

0P CODE

Scys
3cys
CYA
CYA
CYA
CYA
cYA
CYA
CYA
CYA
CAB
cAB
CAB
cAB
cAB
cAB
CAB
CAB
NOA
NOA
NOA
NOA
NOA
NOR
NOA
NOA
NAB
NAB
NAB
NAB
NAB
NAB
NAB
NAB

a Q MEM

vT
vT

VFF
VFF
vT
vT

VFF
VFF
VT
VT

VFF
VFF
vT
VT

VFF
VFF
vT
vT

Table T7-8, pg. 12

MMS

6.8
8.0
12+8
8.0
6.8
8+8
6+8
8.0
648
8.0
12-8
8.0
6.8
8.8
6.8
8.0
6+8
8.0
19+2
192
18+0
1844
18+0
192
1840
17 <6
3346
335+6
32+4
32e8
32+4
3346
32.4
3240

106+0
105+6
1072
1072
1044
104.8

38.2

388
10640
10546
10742
1072
1042

104+8

3848
1060
10546

128
8.0
68
88
68
80
68
8.0

128

80
6+8
88
68
80
6+8
80

	000
	001
	3-01_Aug63
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	4-01_Jul61
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13_IN-OUT_ALARMS
	4-14
	4-15_TRAP
	4-16
	4-17_MISC_INPUTS
	4-18
	4-19_DATRAC
	4-20
	4-21_XEROX_PRINTER
	4-22
	4-23
	4-24
	4-25_PETR
	4-26
	4-27_INTERVAL_TIMER
	4-28
	4-29_LITE_PEN
	4-30
	4-31_OSCILLOSCOPE_DISPLAY
	4-32
	4-33_RANDOM_NUMBER_G#99FD5
	4-34
	4-35_PUNCH
	4-36
	4-37_LINCOLN_WRITER
	4-38
	4-39_LW_INPUT
	4-40
	4-41_LW_OUTPUT
	4-42
	4-43_MISC_OUTPUT
	4-44
	5-00_Nov63
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	7-00_Oct61
	7-01
	7-02
	7-02A_Feb64
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08.00
	7-08.01
	7-08.02
	7-08.03
	7-08.04
	7-08.05
	7-08.06
	7-08.07
	7-08.08
	7-08.09
	7-08.10
	7-08.11
	7-08.12

