6345

Engineering Note B-516

SUBJECT:
To:
From:
Date:

Abstract:

Comment:

Page 1 of 26

.Digital Computer Laboratory .
Massachusetts Institute of Technology ' \
Cambridge, Massachusetts

COMPREHENSIVE SYSTEM OF SERVICE ROUTINES

S« & E. C. Group and Group 61
H. Uchiyamada
December 17, 1953

The Comprehensive System of Service Routines provides for con-
version by WWI to binary form from Flexowriter-coded perforated

tapes prepared according to conventions which have been chosen to
facilitate the task of coding programs for WWI, In addition to
straightforward conversion of function letters and decimal addresses, -
the Comprehensive System (CS) providee for (1) use of floating
addresses for which assignment of final storage locations is made dy
the computer (this has the important advantage of permitting inser-
tions and deletions of instructions without extensive renumbering in
the program) (2) automatic selection of Input/Output and Programmed
Arithmetic (PA) interpretive subroutines which 'éliminates to a con-
siderable dégree the time wasted in handling tapes and the possible
errors involved (3) automatic cyele control (patterned after the
Manchester B~tube) available within the PA routines which will re-
duce the need for using uninterpreted WWI instructions within an
interpreted program and vhich will generally facilitate programming
(4) th and}ing of generalized decimal numbers (gdn) of the form

2z X 2 1 which enables the programmer to express numerical .
data in whatever form is best sulted to the particular calculation.

The author has acted, in the main, as editor of this E~-note. Sec~
tions have been written by Eric Mutch, John Frankovich, Frank Helwig
and Edwin Kopley. The CS as a whole represents the work of many
people in the Sclentific and Engineering Computation Group. This
note is intended as a reference manual, not as an introductory

~préesentation of programming techniques and conventions, which will

be available later.

Index for Engineering Note E-516

A

Accumulator, 12

multiple register, 12, 16, 23
Address, 3, 4

absolute, 5, 7

assignment, 5, 8

current, 5, 6, 10

definite, 10

floating, 3, 4, 6, %, 9, 10

indefinite, 10

relative, 3, 4, 5, 7, 9

temporary storage, 3, 4, 9
Ambiguities, 9

list of, 11

B

Block counter, 24
Buffer register, 9, 16, 17

Cc

Carriage return, 5, 8, 10
Characters
special, 25
Comma, 5, 9
Comparison register, 15
Constant syllables, 3
integers, 3
octal numbers, 3
operations, 3
Current address, 6, 7, 9
indicator, 5
Cycle control, 14, 17
count, 9, 15
decrease, 15
exchange, 15
increase, 15
reset, 15

D

Decimal point, 22
integers, 3
Definite address, 10

DITTO, 4, 10, 11

E

Equals sign, 5, 8, 9,.10
Exponents, 23

Fence, 4, 10
Floating address, 3, 4, 6, 7
assignment, 8, 9
Format, 23, 24
Frame, 23, 24
example of, 23, 24

G
Generalized decimai number, 8, 10,
13, 14
I
IN, 4, 10, 13

Indefinite address, 10
Index register, 15
Initial zero suppression, 22
In/ Out, 21
Input, 21
Integers, 3
decimal, 3
literal, 3, 9, 15, 16, 17
Interpreted operations, 3, 12, 15,1
functions of, 19
Interpretive subroutines, 12
entry to, 13
exit from, 13
automatic assembly of, 17

L
Literal integers, 3, 9, 15, 16, 17
M

Magnetic tape units, 21
MOD, 4
Multiple-length number, 4
fixed point, 4
floating point, 4
Mnltiple register accumulator (MRA)
12, 16, -

NOTPA, 4, 17

Number specimen, 21, 22

Number system, 4, 12, 21
indicator, 4
multiple-length, 4, 12, 14
single~length, 4, 13, 14

* Numeroscope, 21
0]

Octal numbers, 3, 8
Operations, 3
interpreted, 3
WWI, 3
Oscilloscope, 21
ouT, 4, 10, 13
Output, 21
equipment, 21
special words, 4

speeds, 21
P
PA, 4,)2
PARAMETER, 4

Parametric syllables, 3
floating address, 4
preset parmeters, 3, 8, 9, 10
relative address, 4, 9
temporary storage, 4, 8, 9

Personal parameter, 3, 7, 8

Preset parameters, 3, 7, 8, 9, 10
personal, 3, 7, 8
subroutine, 3, 7, 8
universal, 3, 7, 8

Print, 21

Program, 3

Programmed Arithmetic, 12

le0hes 9 21

R .

Relative address, 3, 4, 5, 9
indicator, 5
Rules, 8, 9, 10, 11

S

Scale factors, 23
Single=length number, 4
fixed point, 4

floating point, 4

Special output characters, 25
Speclal words, 4, 10, 11, 13
Specimen number, 21, 22
START AT, 4, 9
i START AT, 4, 9, 10
Stem, 9, 10
Sub-blocks, 17, 18
buffer, 18
cycle count, 18
divide, 18
Pa, 18
Subroutine, 5, 8
parameter, 3, 7, 8
interpretive, 12, 13

~ Syllables, 3, 8, 9, 10, 11

constant, 3
parametric, 3

T

Tab, 5, 8, 10, 24
Temporary storage, 3, 4, 8, 9

- Terminating characters, 3, 5

output, 23
Typewriters, 21

U
Universal parameter, 3, 7, 8
Vv
Vertical bar, 5
W
Words, 3
output, 4
program title, 4
special, 4
z

Zero suppression, 22

I

II

Table of Contents

Introduction
Definitions . : ~t
- Program ——
Words
Syllables
constant,
parametric

Special ‘Words
‘_Number Systems

Programming
Terminating Characters and Their Eunctions --------------------
Absolute Addresses
Relative Addresses
Floating Addresses
Preset Parameter
Bules for Forming Words Out of Syilables
Rules for Forming a Program.@utuof Words -
List of Ambiguities

III Programmed Arithmetic —-——-

IV

v

Input / Output

Number Systems and Definitions
Interpretive Subroutines
Entry to and Exit from Interpretive Subroutines
‘Generalized Decimal Numbers
Cycle Control
Buffer Register ——
Automatic Assembly of Interpretive Subroutines
Sub=blocks and Their Lengths -- -
Interpretive Operations and Their Functions

Introduction
Examples of In/Out Instructions
In/Out Order Repeated
Format Specification
Special Characters

Conclusion

d

. E &
®

B 63 03 63 63 01 & &3] N

o R e B)
oI REERERN Ehovovoon

TRERE

g
]

Page 3

I, Introduction

A program is an ordered sequence of words, written with the intention of
having it typed on paper tape in the (new) Flexo-code and inserted in WWI by
the intermediary of the Comprehensive Conversion Program (CCP).

A word is a finite ordered sequence of syllables. Normally all the sylla-
bles forming a word must be separated by a plus or minus sign, but plus signs
may be omitted wherever there is no danger of ambiguity. Details of this and
other rules governing the assembly of syllables will be given in Section II,
. Any word made up of one or more syllables must be followed by a terminating
character. There are four possible terminating characters giving four possible
ways in which the conversion program will treat the word. These terminating
characters and their functions will be described 'in Section II. A given word
is megningful, from the conversion program's viewpoint only if the words, or
syllables, respectively, are chosen in a manner not contrary to any of the rules.
Any combination of words or syllables not forbidden by the rules will be accepted
by the conversion program.. Special words will.be described later in this section.
A single length word is represented in WWI by q‘lé binary digit array.

Syllables may be divided into two classes, namely, constant syllables
and perametric syllables° The class of constant syllables includes opera-
tions, integers and octal numbers. The class of parametric syllables
includes preset parameters, relative address, temporary storage, and
floating address.

Constant Syllables
Operations are of two kinds, namely, WWI orders and interpreted
‘orders. The WWI operations or orders (ca, cs,---slh, slr, srh, etc.)
are described in detail in M=1624. The interpreted orders (ica, ics,
~ete,) will be found listed with their functions under Section III on
Programmed Arithmetic (PA)

Integers may be positive or negative decimal integers or the
literal integers, b or c. The decimal integers used are 0, 1, 2,---,
32767 with an implicit factor of 2-15 and no decimal point. The

" literal integers serve a specific purpose which will be described
under Section III on PA.

Octal numbers are of the form dge°d 192d3d d where d_, the sign
digit, is either O or 1 and where d ooeds are tge octal 81g1ts having
one of the values 0, 1, 2, 3, 4s 5, 6 7. A 1. indicates the start
of a negative octal number, the remalning digits being the sevens
complement of the absolute magnitude of ‘the number. If an octal
number occurs as a syllable in a word, it must always be the first

- syllable, i.e. only one octal number syllable can occur in any word.
An example of a positive octal number is 0.04573. In order to
-obtain the negative of this number one must change the 0. to 1. and
also get the sevens complement of the five octal dlglts following the
sign digits thus the negative becomes 1.73204. -

Parametric Syllables
Preset parameters are of the form 0410,#, whereo(; is u, p or z
depending on whether the parameter is of tﬁe type universal (assigned
particular meaning and never used for anything else), personal (can
be used by anyone to mean anything desired) or subroutine (for para-
meter in subroutines) respectively; oo is any letter of the alphabet

Page 4

except o and 13 and # is'any decimal number of the form 1, 2, 3, cooy
255, with initial zero suppressed.

A relative address is one which is used for writing instructions
within a subroutine or within any block of instructions with addresses
relative to the start of the block (that is, as if the block started
in register zero). Such relative addresses are obtained by including
an "r!" in the address of the instruction, e.g. ca 35r (which consists
of the three syllables ca + 35 + r).

The single lower case letter "t" indicates the zero-th register
of a block of temporary storage. Its value must be assigned in the
same way as for a preset parameter. See Section II on preset para-
meters.

A floating address is one which enables a programmer to write
his instructions so that they refer to the words of his program and
not to the locations of those words in storagef

Special Words™* ‘
The following are different groups of gpecial words:

Program titl8 words: TAPE, MOD, PARAMETER, suffixed by
: . additional information
Output words? TOA, FOR etc. (See Section IV under Input/
Output) perhaps suffixed by additional
information and perhaps preceded by an i
Number system indicators: MULTIPLE, SINGLE, (m,n) where
oo m and n are integral numbers.
For details see Section III
under P.A.
Entry to and exit from PA routines: IN¥ OUT#*
Word called a fence: |llooo|ll (1ce. 25 vertical bars)
Words: DITTO, START AT, i START AT, the last two of which
' are suffixed by the starting address
Denial of need for a PA interpretive routine: NOTPA.
Special words which are ignored: LSR (library of subroutines),
‘ ' END OF SUEROUTINE

The number system (myn) indicates a number, m-binary digits long with
n the number of binary digits in the exponent of 2, and the number is of
the form Z= x°2Y¥ where x is a m binary digit number and y is & n binary
digit number. A single length number with a fixed point would be a (15,0)
number. An example ofasingle length floating point number would be (15,15) »
 An example of a multiple-length number with a fixed point would be (30,0). -
An example of a multiple-length number with a floating point is (30-j,j)
where 1 < j =< 14, For a detailed description of multiple length numbers
see Section III on PA. Single length numbers with fixed point are
adequately handled by the WWI operations. Multiple-length and single
length floating point numbers are handled by the interpretive operations
for which see Section III on PA.

“

All special Words must be terminated by a tab or carriage return.’

Only these Special Words occupy storage registers.

Page‘S*

II. Programming

Terminating Characters and their Functions

Any word made up of one or more syllables must be followed by a térmlnating
character. There are four possible terminating characters giving four possible
ways in which the conversion program will treat the word. '

Tab (=-3]) or ' "word to be stored" indicator. This causes the
Carriage Return (Q) word to be stored in the register determined by

‘ the current address indicator, unless the word is
preceded by an equals sign, for which see below.

Vertical bar (|) address assignment indicator. This causes the ’
current address indicator to be set to the wvalue
corresponding to the preceding word. Thus the
following word to be stored will be placed in the

register thus indicated regardless of consecutivity.

Comma. () = floating and/or relative address assignment indica-
tor (see paragraphs on relative and floating
addresses below)

Eqﬁals sign (=) . = parameter assignment indicator. This causesthe

parameter immediately preceding the equals sign
to be set to the value following it (which will
be terminated by a tab or carriage return). If
.no word follows the equals sign (i.e. if the next
symbol is a tab or carriage return) the parameter
will be assigned the value zero.

- Absolute Addresses .

At the start of a program and at any point, thereafter a decimal 1nteger
followed by a vertical bar (e.g. 96|) indicates the location into which the
next word is to be placed. 1In the abséhce of any further indication words will
be stored consecutively; in the absence of an initial indication words will be
stored consecutively starting in register 32 (decimal)., Note that this con-
version program does not permit the use of octal addresses.

Relative Addresses

Instructions within a subroutine-or within any block of instructions may be
written with addresses relative to the start of the block. Such relative
addresses are obtained by including an "r" in the address. This causes the
content of a special register known as the relative address indicator (r.a.i)
to be added to the instruction during conversion. The r.a.i., may be set at
the beginning of the block by the symbols Or, which cause it to be set to the
value of the current address--i.e. the address into which the next word will
be put. If an integer n precedes the letter r instead of the zero the r.a.i.
will be set to a value equal to the current address minus the integer n; e.g.
if the current address is 90 the symbols 5r, will set the r.a.i. to 85. Note
that a comma following a floating address will also set the r.a.i. (For details
see the following paragraph on floating addresses.) The current address indica-
tor may be set to a desired relative value at any point in a program by punching
that value followed by the letter r and a vertical bar; e.g. 35rl will cause the
next word to be stored in 35r regardless of consecutivity.

Page €

Floating,Addresses

As already stated a flpating address system is designed to enable a
programmer to write his instructions so that they refer to the words of his
program and not to the 1ocatlons of those words in storage.

For example, conszder the following set of instructions with fixed addresses:

32] ca 41
33| ad 100
34| ts 41
35| ca.42
36 ad 100
37| ts.42
38| ca 43
39| ad 100
4Ol ts 43
41| ca 101
' 42| mr 102
- 43| ts 103
44| ep 32

Seven of these instructions refer to the locations of other instructions within
the group. If any instructions (or words) were to be added to or deleted from
this set, a considerable amount of renumbering would be necessary, in general.
A floating address system removes the need for this, by labelling each word to
which reference is made by a floating address label. The floating address is
of the form<X#, where A is any lower-case letter of the alphabet except o and
1, and where # is any integer of the form 1, 2, 3,.00., 255 with initial zeros
suppressed. This floating address, without the comma, is then used as the
address section of any instruction which is to refer to the word so labelled.
Thus the above program might become:

f3, ca m9
ad 100
ts m9
ca h5
ad 100
ts h5
ca b2
ad 100
ts b2
m9, ca 101
h5, mr 102
b2, ts 103
"ecp £3

' Note that floating addresses may be used in any order and that words referring
to a floating address may occur either earlier or later than the word labelled
by the corresponding floating address. Thus ingertions into or deletions from
such a program may be made without any renumberlng or any alterations to the
existing words.

The current address is the address of the register into which the next
word will .go. If the next word occupies several registers, then this is the
address of the first register of the word. When a floating address is read,
the donversion program records it, together with the current address, as an

Page 7

entry in a special table. The word following is then stored away in the normal
manner--i.e. in the location specified by the current address. At a later stage
in the conversion--when all the information to be converted has been read--all
words referring to floating addresses have added to them the relevant entries
from this table:. The letter and number(s) forming a floating address may be
‘chosen at will (within the limits already set on floating address labels) but
care must be taken that the sum over all letters of the maximum numbers-used
for each letter does not exceed 255.(e.g. if only floating addresses a3, al7,
d9, x31, x100 and Z5 were used in a given program, the condition would be
satisfied because 17 + 9 + 100 + 5 = 131 < 256). The comma following a floating
address serves also as a reference for relative addresses which follow, by
setting the relative address indicator to the value of the current address indi-
cator (c.a.i.).

Examgles

(Absolute address)-—> 34’ ca g7 «-- (floating)
(Floating address)--»» g7, sp 73 <=-- (absolute)
ts 2r «c-- (reletive)
(Relative address)---> 4r| si 7aR«e-- (floating)
(Floating address)=--> a2, + 3
' "00055

The words in this example would be converted to:

34| ca 35

35| sp 73

36| ts 37 »

371 - (contains +0)
38l = (contains +0)
39| si A7

40| +3

41| -.0055

A word not itself labelled by a floating address may be referred to in floating
address fashion relative to a preceding or following word which has a floating
address. Thus the word "si 7a2" in the above example refers to the seventh
word after the word with the floating address "a2". The same word could be
referred to by the floating address 12g7. It is of interest to note in this
respect that a2 = 5g7 and g7 = -5a2 (+ is implicit between -5 and a2). Note
that no additions or deletions may be made between a word referred to by such
means and the word carrying the floating address without a certain amount of
renumbering. Corrections may be made to words already labelled by floating
addresses, and to the words following them, by preceding each corrected word by
the relevant floating address terminated by a vertical bar instead of by a comma,
-8

g7| sp 72

la2l -.0065

would amend the second and last orders of the above example.

Preset Parameters

The three classes of preset parameters, (universal, personal, and sub-
routine) have already been mentioned in the introduetion. A preset parameter
consists of two lower case letters followed by a decimal integer less than
256 but greater than zero. The second: letter may be any letter other than o

Page 8

or 1. The first letter is used to distinguish the three classes of parameters;
i.e. u for universal parameter, p for personal parameter and z for subroutine
parameter. (Note that the letter s could not be used to indicate a subroutine
parameter owing to the fact that the conversion program would confuse an sa
parameter with an sa WWI operation,' etc.) Care must be taken that the sum over
all parameter letter pairs of the maximum numbers used for each letter pair

must not exceed 40 (e.g. if only paremeters pa2, za5, za7, pd7, zghk, ugb, ugd
and zzll were used in a given program, the condition would be satisfied because
247+7+/+8+11 = 39<41. If the single lower case letter "t" were used anywhere

in the progrem one more would have to be added to the sum which must not exceed
40. In the example given above if a "t" was used anywhere in the program the
condition would still be satisfied since 39+1 = 40<4l). A value may be assigned
to a preset parameter by a word consisting of the parameter followed by an
equals sign and the value to be assigned terminated by a tab or carriage return.
After assignment any number of parameters may be edded to or subtracted from
‘any word.. Preset parameters may be assigned values which depend on other preset
- parameters. They may also be assigned values which depend on floating addresses.
Subroutine library tapes will begin with the symbols $LSRY followed by the cata~-
log number and the title of the subroutine. After the title the various para-
meters needed by the subroutine will be listed, each followed by an equals sign,
a stop character and a tab or carriage return. Thus, when copying a library
tape onto a program tape, parameter values may be inserted by hand each time the
Flexowriter stops.. If the value of any parameter is zero, nothing need be in-
serted and it is only necessary to restart the Flexowriter.

Examples, illustrating point made above on preset parameters, follow:

um3=+3 universal parameter ,

ca71l+um3 word becomes ca7i o B
" pm3=0.00020 personal parameter v
" sfr+pn3 word becomes sfrlbé

zm3=rs0 subroutine parameter

zs2=pm3+um3 subroutine parameter

¢s7=zm3 word becomes ca7

sdrzs?2 word becomes s{rl9

The value of a temporary storage parameter is assigned in the same way as
for a preset parameter; e.g. t=190 or t=pn3 or t=f3. To refer to a temporary
storage register in an instruction, the fourth for example, the symbols 31t are
used; e.g. calte.

Rules for forming words out of syllables

1) No other syllable may occur in a generalized decimal number but' the
generalized decimal number and the terminating charagxer.g;A generalized
decimal number is of the form +djds=--dk.dk+]---dmx2 1x10%1 vhere
O2keme18 and 23 and £§ are integers, signed if negative, otherwise not
signed, and such that the final number is restricted by the number

system indicated by the programmer.

2) Only one octal number syllable can occur in any word, i.e. the octal
number sylleble must always be the first syllable.

3) A word, address assignment, parameter assignment, or floating address
assignment can be found by the sum formed by "special add" of
successive syllables contained in them. (Note that the value thus
obtained depends upon the sequence in which the syllables are written.)

4)

5)

6)

Page 9

A plus or minus sign preceding a syllable, indicates that the value of
the syllable is to be multiplied by +1 or -1 respectively before being

~added into the word value.

A plus or minus sign should always be used when there is an ambiguity
in the meaning of a syllable or pair of syllables. (For examples of
ambiguities see list of ambiguities.)

Rules concerning the use of single letters:

i) t is considered exactly as a preset parameter, and is usually
used to indicate the zero-th register of a block of temporary
storage registers.

ii) b has the value of the address of the buffer storage register:
in PA routines.

iii) ¢ adds a value to the word sufficient to change an interpreted
instruction into a cycle count interpreted instruction and
should be used only with its, iex, ica, ics, iad, isa, imr,
idv, isp.

iv) r is the relative address and is given a value each time a comma
occurs. .
r = current address =~ stem.
A word containing the terminal character "," and at most one
floating address syllable and one integer syllable, is called
a floating address assignment, e.g. "7g9,"« The stem of a
floating address assignment or parameter assignment is the
integer (if it exists) which precedes the lower case letter
in the floating address assignment or parameter assignment.
In the example above (7g9) 7 s the stem.

7) Whenever a "," occurs, the floating address in the floating address

8)

9)

as51gnment is set equal to the current address less the stem.

Whenever an "=" occurs, the parameter in the parameter assignment is
set equal to the following word less the stem.

A starting address word consists of a START AT or i START AT, suffixed
by any word, i.e. the starting address 1nc1ud1ng a tab or carriage
return.

Page 10

Rules for forming a program out of words

1)

2)

3)

4)
5)

6)

7)

8)

9)

10)

A fence (at least 25 vertical bars) must occur initially and terminalky
in a program.

The initial word of a program will.go into the initial register of
storage (i.e. register 32) and successive words will go into successive
registers unless an address assignment is made. An address assign-
ment consists of constant (except octal numbers) and/or parametric
syllable(s) followed by a vertical bar. A definite address is one

- where the value is explicitly known. An indefinite address is one
. which depends upon floating addresses or parameters, i.e. only implic=

itly known. The current address 1s said to be indefinite, following
an indefinite address assignment, andis said to be definite as soon as
a definite address assignment is made; but is called indefinite again
if another indefinite address assignment is made. If an address assign-
ment (definite or indefinite) is made, the word following such an
address will go into the register indicated by the address assignment.
(Note that in the case of a definite address assignment the current
address 1s given directly, whereas in the case of an indefinite address
assignment the current address may be found indirectly). If no initial
address assignment is made; the current address is considered to be
definite.

No floating address assignments may be made while the current address
is indefinite.

The special word "i START AT" must occur just before the last word.

Titular special words usually occur immediately after the initial
fence, but may occur anywhere.

A fence must occur both before and after any output or titular special
word.

A word containing the terminal character "=" and at most one parameter
syllable and one integer syllable, is called a parameter assignment,
eo.g. "5pclO=", The word following a parameter assignment, less the
stem of the parameter assignment, is the value given to the indicated
parameter. For example, if the word following the above parameter
assignment is 7 (i.e. 5pcl0=7), then pclO=7-5, which says in effect
that the parameter is assigned the value 2.

A generalized decimal number will be converted to the number system -
indicated by the last preceding number system indicatorj i.e. SINGLE
means that the number will be converted to the (15,0) system, and
MUL?IPLE)to the system determined by the preceding (m,n), otherwise
to (15,0

Words occupy one register of storage, generalized decimal numbers
(+n)/15 registers, output special words and IN and OUT one register
each. No other kinds of words occupy any register of storage.

The special word DITTO, followed by a tab (--3]) or carriage return ()
must be preceded by a word or generalized decimal number and followed
by an address assigmnment. The word or generalized decimal number pre-
ceding the DITTO will be ditto'd up to but not including the address

Page 11

iIndicated; e.ge. R}ITolwould cause the word or géneralized decimal
number preceding DITTO, to be stored in the registers up to but not
including 131. .

11) The special words LSR<-, END OF SUBROUTINE-~, OCTAL--, and DECIMAL--,

"~ including all words that follow these special words up to tab or
carriage return are ignored by the conversion program. (One result
is that octal addresses are not permitted).

12) A parameter must be assigned before it is used.

List of common ambiguities

cfe vs cle, write cl+c . if the floating address cl 1s meant ¢
sfe vs sle, write sl+ec " " , s1] »

ol vs a0l, write al

bol vs bOl, write bl y i.e. initial zeros must be suppressed

sol vs s0l, write sl))

Some ambiguities of the conversion program are not obvious to the programmer.
In particular, single letters may not be written without preceding and following
it by a plus or minus sign; e.g. not teca, but *treca

not imrte, but imr+t+c
To avoid difficulties always use a + between two syllables. The + may always be
omitted between function letters and the next syllable.

Page 12

III. Programmed Arithmetic

Number Systems and Preliminary Definitions

In the follow1ng dlscuss1on we shall frequently refer to (myn) numbers
where (m,n) = (30,0) or (15,15) or (30-3,j)y 3 = 1, 25eess l4. We now define -
these numbers.

(1) A (30,0) nurber is a 30 digit binary number witkf*the binary point at the
left-hand end of the number. Such numbers are stored in two consecutive
registers, say q and g+l, with the most significent part of the number
being contained in register q. We shall refer to this number as "the
(30,0) number contained in "locatlon" q."

(i1) A (15,15) number is a number which has been expressed in the form
£= xe2V ’
where x is a 15 binary digit number such that 1/2<.x<1 or x=0 and y is
a 15 binary digit integer. Such numbers are stored in two consecutive
registers, say q and gq+l. The number x is stored in register q and the
number y is stored in register gq+l. We shall refer tO'thls nunber as the
(15,15) number contained in "location" g.

(iii) A (30~3,3) 3= 1, 25000, 14 nunber is a number which has been expressed
- in the forh
Z=xe2Y
where x is a 30-j binary digit number such that 1/2 « x41 or x=0 and y
is a j=digit binary 1nteger. Such numbers are stored in two consecutive
registers, say q and q+l. The 15 most significant digits of x are stored
in register q and the 15-] least significant’ digits of x are stored in
the right-hand 15-j digits of register gq+l. The integer y is stored in
the left-hand j digits of register q+l. The sign digit of register g+l
refers to the sign of y. We shall refer to this number as the (30-3,3)
number contained in "location" q.

On the basis of the above definitions it should be noted that ordinary
calculations on WWI are in the (15,0) number system. (30,0) and (15,0) numbers
shall be refared o as fixed (binary) point numbers. (15,15) and (30-j,j)
numbers shall be refrred to as floating (binary) point numbers.

Interpretive Subroutines

(myn) interpretive subroutines shall mean a particular group of coded
programs whose purpose is to facilitate computation using (m,n) numbers. These
enable the programmer to write coded programs using (m,n) numbers which are in
many ways analogous to ordinary WWI coded (15,0) programs. Such programs, when
called into action, take "interpreted instructions" (more strictly, program
parameters written as instrugtions) one at a time from consecuitve storage
registers and perform the designated single address operations as defined by
the interpreted instruction code. (For a complete list of 1nterpretive opera-
tions and thejr functions see end of Section III.)

A multiple register accumulator (MRA) is used in place of the AC in many
interpreted instructions. The MRA is not a special register as is the AC, but
rather is a group of 3 ordinary storage registers contained within the inter-
pretive subroutine.

Page 13

. Entrv to and Exit from Interpretive Subroutines

Entry to the 1nterpret1ve subroutine is accomplished by means of the (15,0)
vord IN. This word is changed into a (15,0) sp instruction by the U5 uhich
transfers control from the program to the proper register in the interpretive
subroutine. The instructions fo;lowwng the word IN are then performed as inter-
preted 1nstruct10ns, €L

32| 1IN

gz; i;ggg;? This progran forms the sun of the (m,n) numbers in
Jocations 50 end 52 .

L) LR A

Exit from the interpretive subroutine is accomplished by means of an inter-
preted instruction sp. In thls partleuler case the interpreted instruction,sp,
and the (15,0) WWI instruction sp,have the same binary value. As an example we

‘have i . | , 4 -
32| N
33} dica50
34} iad52 .
35} sp 60
éé‘ "f'CO (15 O\ wUI operation 1s resured at register 60

se Y

Since it is frequently desired to resume (15,0) WWYI operation at the reg-
ister following the interpreted sp the speelal word OUT has been included in
the conversion vocabularyo If p is the register containing the word OUT, then
the special word is converted to an sp(p*l The previous example can now be
written as

32} m

33} ica50

34} iadé0

351 our

36} ca 100 (15,0) WWI operation is resumed at register 36.

Generalized Decimal Numbers

Several words are included in the 05 +to faeilitate the insertion of
(m,n) numbers into the computer.

The most general decimal mmber which can be converted and stored by the

03 lLas the form > e

+ dld2wo.dkodk*looodm x 2 x 10
Such numbers are first converted by the CCP into the integer

+ dldzooodkoocdma
- The associated ©xponent of 2 is 2 and the associated exponent of 10 is
§ - m+ k. This result is then further processed in accordance with the last
special word (m,n) which appears in the program. This special word causes the
conversion program to convert all subsequent generalized decimal numbers into
(myn) numbers unless it is superseded by another special word (mp,ns)a In the
case of (30,0), (15,15) and (30-j, J) numbers the compenents of the number are
stored in consecutive registersa The special word (15,0) gives us of course a
single register number. ‘

Page 14

As an example, to store the (24,6) numbers 2 and 5 in consecutive locations
write

(24,6)
32| +2. .
34 +5. but 34| is not necessary.

It should be emphasized here that all generalized dec1mal numbers must
contain at least a sign and a decimal point. :

Two applications of the special word (m,n) are handled by the use of
further special words. .

The first of these is the special word SINGLE. Al generalized decimal
numbers, converted after this word appears in a program, are converted to (15,0)
numbers.

The second of these is the special word MULTIPLE. All generalized decimal
numbers, converted after this word appears in a program, are converted to (m ,nl)
numbers, where (mj,n;) is the last special word (m,n) which appears on the tape.
It should be noted that the word MULTIPLE in a tape will be redundant unless the
special word SINGLE occurs between it and the last (m,n) on tape.

An example of the use of these words is

246 |)
+2.

34] +5, -} Converted as (24’6) numbers
SIN?LE »
gg' s } Converted as (15 0) numbers
MULTIPLE .
32l +2.

40| #5. } Conyerted as»(za,é) numbers

It is assumed for the most part that a generalized decimal number is of a
magnitude commensurate with the number system into which it is being converted.
If the number is not commensurate with the nunber system, an alarm may occur
or an incorrect number occurs.

Cycle Control

The cycle control block of an interpretive subroutine is designed to
facilitate the writing of cyclic programs and to permit a certaln amount of
"red tape" to be handled in the interpretive modeé.

The heart of the cycle control block is the cycle control register pair.
This is ~actuallytwo storage registers located in the 1nterpret1ve subroutine.
These registers are called the index registeg'whose contents is a.%nd the com-
parison register, whose contents is"bl

The following interpreted instructions are now defined:

Page 15

Int. Inst. _ -Function
icr m (cycle Set the index register to +0 and the comparison register to
) reset) +m,
ict ¥ (cycle Increase the index register by one and form the quantity
count) | |a+l| |b] = 0., If the quantity is) O interpret next
. the instruction in register y. If the quantity is = -0,

ignore this instruction and reset,the index register to +0.

If now one of the interpreted instructlons ca cs, ad,: su, mr, dv, ts, ex,
sp is wrltten in the form
ixy 100 ¢ or ixy 100 + ¢
the 1nterpret1ve subroutine first forms the ingtruction
ixy (100 + 2g)
and then executes this instruction. The quantity 100 + 2a is formed instead of
100 + a since we deal mainly with arithmetic operations on 2 register numbers.

Thlsvprocedure is best explained by a simple example. Suppose we wish to
transfer the (24,6) numbers in 100, 102, 104, and 106 to registers 200, 202,
204, 206, We could then write

32| icr 4 Set up for four cyéles
33| ica 100 ¢ Pick up C(100 + 2a) a=0,1,2, 3
34| its 200 ¢ Store in 200 + 2a - a=0,1,2,3

” 35| ict 33 Go thru 4 cycles.

Since it will not always be desired to operate on (m,n) numbers stored in
consecutive locations we now define the following interpretive instructions

Int. Inst. Function

ici m (cycle Increase the contents of the index register by +m
increase)

icd m (cycle Decrease the contents of the indekx register by +m
decrease) , :

As an example of the use of the ici, let us write a program which transfers
the (24,6) numbers in registers 100, 104, 108 and 112 into registers 200, 204,
208, and 212. We have

32| icr 8 Set up for 4 cycles

33| ica 100 ¢ Pick up €(100 + 2a) a = 0, 2, 4, 6

34| its 200 ¢ Store in 200 + 2a a =0, 2, 4y 6

35| iei 1 . Increase contents of index reglster by 1
36| ict 33 Go thru 4 cycles

Since most programs usually contain cycles within cycles, the following
interpretive instruction, which effectively permits one to use more than one
cycle control register pair, is added to our code to enable these more com-
plicated programs to be treated effectively.

Int. Inst. Function

iex y (cycle Exchange the contents of the index register with C(y) and
exchange) exchange the contents of the comparison register with C(y+1)

Page 16

To illustrate the use of this instruction, suppose that it is desired to
form four scalar products. There are twd sets, each with four four-dimensional
~vectors. The coefficients of each vector are (24,6) numbers, The coefficients

of the first set of four vectors are stored in four blocks whose addresses

start with 100, 108, 116 and 124. The coefficients of each vector are stored
.in one block. The coefficients of the second set of four vectors are stored in
four blocks whose addresses start with 200, 208, 216 and 22/. Scalar products
will be formed with the first vector of the first set and the first vector of
the second set; the second vector of the first set and the second vector of the
second set; etec. It is desired to store the results of the. four scalar products
in a block starting with address 300. Register 400 is a register used to store
the temporary sum. The instructions are as follows:

32| ier 16

33| iex 60 Set up for 16 cycles .. Y
2é{ igi éo Set up for 4 cycles ~ . . w,{/;

%l jor £ Set up for 4 cycles AR
§g=:§§2 Zéo Clears register 400

39| icx 60 : o ,

40| ica 100 ¢\ a=0,1, 2, 3.

41| imr 200 c Forms scalar prédﬁct

42| iad 400

43| its 400

L4 ici 1 . Increase index register by 1
45| icx 60 . '

46| iet 39 Go through Z cycles

47| “iex 70

2§! ;iz égg c} Stores sgalar product

50| ict 35 Go through 16 cycles
511 +.0

Finally, the following interpreted'instructions‘are added to facilitate the .
handling of "red tape" while in the interpretive mode

Int. Inst. _ Function

iat y (add and Add the contents of the index register to the G(y) and store
transfer) the result in the index register and register y. _

iti y (transfer Transfer the right 11 digits of the index register into the
index digits) right 11 digits of register y. . . :

These instructions primarily serve as a means of transferring the contents
of the index register into a given storage register. Since the icr, ieci and icd
instructions enable one to set and change the contents of the index register,
this register can be looked upon as an Interpretive analogue of the single
length, fixed point AC, with iti analogous to td, etc.

The Buffer Register

Although 2 register are used to store a (BO-j,j) number, 3 registers are
used for the MRA to avoid the time consuming operation of packing the last 15-j
digits of the number and the j digits of the exponent into & single register

\ ‘ - . Page 17

after each interpreted instruction. A ;urthpr advuvtagc is gained in that any
sequence of arithmetic operations is performed using 30 digits for the number
and 15 digits for the exponent. This provides in effect a (30,15) system. The
results of computation are combined into (30-j,j) number only when the C(MRA)
1s stored by the instructionsits andiex. .

The buffer register can be used in any of the instructions
icab, icsb, itsb, iexb, iadb, isub, imrb
In all of these cases "b" should be considered to represeht a 3 register (30.,15)
location. Each of the instructions is then carried out as the corresponding

instruction in a (30,15) interpretive subroutine would be carried out.

It should be emphasized that the above words represent the complete vocabu-~
lary available using the buffer symbol b.

The buffer can be used to store'intermediate results in a cyclic program
and thqs rounding off can be avoided wntil after the final cycle.

Autometic Assembly of Interpretivé Subroutines

Interpretive subroutines for computation in the (30,0), (15,15) and (30-j,J)
nunber systems have been incorporated into the CCP in such a way thet the type
of subroutine and the features of this subroutine which are called for by the
prograrmer in the process of writing his progrem are autoratically punched out

n 5-56 tape. '

The kind of interpretive subroutine selected by the CCP will be determined
by the velue of the last (m,n) appearing on tape, e.g. if this is (30,0), the
{50 f\ interpretive subroutine will be selected. The corresponding (m,n) sub-
rowtmre is ‘then punched out onto paper tape if aiy interpretive instrv-tion, i:?)
& in the program. However, the special word NCTPA (which means NOT Pr QLPATTGE
Al ic) appearing anywhere on the tape overrides the effect of writing +ur
interpretive instructions and generalized numbers,and no PA subroutlne is auto-
wa+1pallf sglected. NCTPA is used if a progranmasr wishes to convert (m,n)
numbers znd use an interpretive subroutine which is not part of the CCP or nct
to wee any interpretive subroutine.

Particular interpretive subroutines are further specialized in accordance
with the vords appearing in a program. If the single letters b or ¢ are used
in zny of the instructions in the program, then the corresponding buffer and
cycle contrel subblocks in the particular FA selected are punched out. If these
. letters are not used the corresponding subblocks are not punched out. Similarly,
if an idv instruction is used ‘in a program, the division subblock is punched out.
These 50601allzat10ns are made so that parts of the subroutine which are not used
will not be read into storage. '

- The interpretive subroutines are automatically stored by the CCP in a block
of registers ending in register 1056. The initlal address of the block is found
by adding up the lengths of the several subblocks punched out and subtracting
the result from +1057. :

. . Page 18
‘A table of subblocks and their lengths follows:

Subblock Words necessary on.tape for read in A Length
(30-3,3) ' o
PA Buffer ' - final (30-j,j), b 39
PA final (30-j,3), ixy . 199
Cycle Count final (30-J,j), ¢ . 57
Divide . final (30-j,j), idv _ 26
(15,15) | o b
~ PA PA final (15,15), ixy 113
Cycle-Count final (15,15), c 57
Divide final (15,15), idv 9
(30,0) S '
PA PA , ~ final (30,0), ixy ' : 135
.~ Cycle Count . . final (30,0), ¢ : 57

-Page 19

Interpretive Operations and their functions

Interpreted Instruction

ica¥*y
(* refers to footnote and
is not part of the instruc-
tion) .

ics¥*y

iad*y
isu*y
Amr¥y
idv*;y
.its*yj

iex*y

isp*y
sp ¥y
icp¥y

ita*y
ierm

ict ¥

jeim

Function

Clear the MRA and add into it the (m,n) number in

location y.

Clear the MRA and subtract from it the (m,n)
number in location y.

A8d the (m,n) number in the MRA to the (m,n)
number in locatlon y and leave the sum in
the MRA.

‘Subtract: from the (m,n) number in the MRA the

(myn) number in location y and leave the
difference in the MRA.

Multiply the (m,n) number in the MRA by the (m,n)
number in location y. and leave the product
in the on

Divide the (m,n) number in the MRA by the (myn)
number in location y and leave the quotient
in the MRA. . :

Transfer the (m,n) number in the MRA to location y.

Exchange the (m,n) number in the MRA with the (m,n)
number in location y.

Interpret next the instruction in register y.

Resume (15,0) WWI operation at register y.

If the (myn) number in the MRA is negatlve interpret
next the instruction in register i if positive,
ignore this instruction.

Transfer the address p+l into the right 11 digits
of register y, leaving the left 5 digits
unchanged; p being the address of the isp or
icp most recently interpreted.

Cycle Reset~-set the index register to +0.and the
comparison register to +m.

Cycle Count--increase the index regisier by one
and form the quantity |[|a+l|-]blf-o. If
this quantity is >0, interpret next the
instruction in register y. If the quantity
is ==0, ignore this instruction and reset the
index register to +0.

Cycle Increase--increase the contents of the index
register by +m.

* This interpretive operation is analogous to the (15,0) WWI operation obtained
by dropping the initisl i from the letter triple which designates it. The .
binary equivalent of the interpretive operation will not however be equal
to the binary equivalent of the corresponding (15,0) WWI operation.

* Not available on (30,0).

icd m

iex y
dat y

iti y

- Page 20

Cycle Decrease--decrease the contents of the index
register by +m,

Cycle BExchange--exchange the contents of the index
register with the contents of register y and
exchange the contents of the comparison reg-~
ister with' the contents of register y+1.

Add and transfer--add the contents of the index
register to the contents of register y and
store the result in the index register and
register y.

Transfer index digits--transfer the right 11 digits
of the index register into the right 11 digits
of register y.

Pagae 21
IV. INPUT/OUTPUT

Introduction

The output media currently available for use with the In/Out routine con-
sist of typewriters, punches, oscilloscopes and magnetic tdpe units. The latter
may be used to record data for subsequent print out on a magnetic typewriter
or as auxiliary storage devices. The oscilloscope may be used in any of three

ways:
a) as a curve plotting instrument

b) to display information in binary form

é) as a numeroscope displaying alphabetical or digital characters
(i.e. "alphanumeric" characters) in any desired layout.

Following are the relative speeds of the several media for recording alpha-
numeric characters and also their characters/line limits:

a) Typewriter 8 characters/sec. - 160 characters/line max.
b) Scope 150 characters/sec. 6/, characters/line mex.

c) Magnetlc Tape - to be used with Magnetlc Typewriter
250 characters/sec. 90 characters/line max.

. The In/Out routine is called 1nto use by three upper case letters. The
first “specifies the equipment to be used, the second states whether information
is to be fed into or out of the computer and the third specifies the type of
information. The letters used are the initial letters of the following words:

Drum ~In Alphameric (alphanumeric)
Magnetic Tape . Out : Binary ’

Punch _ ' Curve

Scope :

Typewriter

Reader

Examples of In/Out Instructions

TOA will prlnt alphameric characters on. the typewriter

S0C will display a curve on the scope
MIB will transfer binary information into the computer from magnetic tape.

A typical example of an output 1nstruct18n is
1TOA+p123.1234sx21L 3107

When the In/Out routine is called upon, it will handle the word currently
in the AC or MRA. When a number expressed in any number system other than
(15,0) is to be dealt with, the calling-in letters must be preceded by the
lower case letter i so that the number will be interpreted. Thus iTOA will
call in the output routine to print the contents of the MRA on the typewriter.
At present, the following number systems are available; (30-n,n) with scale
factor, (30-n,n) without scale factor, (15,0) with scéale factor, (15,0) with
binary point at extreme left, (15,0) with binary point at extreme right.

When the In/Out routine is required to print, display, or punch a number,
the calling-in letters must be followed by a specimen number of the following

Page 22

general form where the numbers in parentheses refer to paragraphs below:

+ o< ###000#9 }fjf.oo#g x2¥ix1061
(1)(2) (3) 4y (5) (5)

The components of the number have the following meanings: (Note that in
the following description the word "print" is used to mean print, punch or dis-
play, depending upon the medium previously selected).

(1) + print the number preceded by its sign

prlnt the number preceded by its sign if the number is negatlve, other-
wise Jjust print the number

éigngs— print the number with no sign
omitte

note: By "omitted" we mean that nothing at all is written. We do not mean
that the word "omitted" is written.

(2) (X is a lower case letter)
(By initial zeros we mean initial zeros at the left of the decimal point.)

Ifetis i initial zeros are ignored in printing and the first significant
digit of the number is printed on the extreme left of the column.

Ifx is p initial zeros are printed as spaces.
If o is omitted initial zeros are printed. -

IfL is n the number is normalized before printing, e.g., all nunbers are
multiplied by such a power of 10 that the first non-zero sign-
ificant digit will always be in the same relative position with
respect to the decimal point. This cannot be used with (15,0)

output.

The actual digits of the numerical part of the spe01men number are im-
material; they merely serve to indicate the number of digits which the pro-
grammer desires to have printed on each side of the decimal point. Thus
ATOA + p347.6210s x 2-3 x 10° would indicate that the programmer wanted 3
digits to the left and 4 digits to the right of the decimal point and the
numbers would be printed in the form ###.####. However, if ¢ is n the number
would be printed in the form ###.####x10% vhich is the normalized case.

(3) If a decimal point is indicated, it will be printed in the position
o indicated.
If a decimal point is omitted, none will be printed. This is ueed

in printing integers.

If a decimal point is replaced by r, no decimgl point will be printed but

' the r indicates where a decimal point
would have been placed had there been
one.

The latter facility would be of practical use in the case of decimal
fractions in which it is desired to save printing time by omitting decimal

points.

Page 23

Unless one indicates a decimal point or replaces the decimal point by

an r, the entire number will be treated as though it were an integer.

(4) (B is a lower case letter)

The symbol(s) ﬁi specify the character(s) with which the printed number
is to be terminated: '

If By 1s s we get one space

If By is ss ~we get two spaces

If B4 is sss ﬁe get three gpacés

If B4 is ssss we get four spaces

IfBy is ¢ we get a carriage return
Ifpyis ¢t we get a tab

If B4 is omitted we got mo terminating character

/

If By is £ we get format, i.e., the terminating character will be

(5) a)
b)
c)
S

e)

£)

g)

determined by the layout section of the In/Out routine which
is in turn controlled by the Format Specification. (See
paragraph on Formet Specification)

If the number is to be printed as a decimel fraction, then ¥ = 0, § = O.
"If the nurber is to be printed as a decimal integer, then &= 15, & = 0.

Every factor must be preceded by a lower case X.

§ s2 %2

Any number of factors may be utilized, i.e.,v2fi x 10 1 x 10
with the following restriction: |Za2 | | sk | = 127

) .
J has a zero exponent, that factor may

x 2 © ete.

Whenever a factor such as zalor 10
be omitted.
If any factor has an exponent ofyl, the 1 may be omitted.

The exponent5¢fi,¢fi are signed if negative, and not signed if positive.

Examples of the use of output instructionsin the (30-n,n) system follow:

ex 1:

ex 2:

%et th§ MRA contain the octal number 0.6277574516 with an exponent of 15
octal).

Thus the number = 0.6277574516 x 215 {octal) :

This is equivalent to +.796812369 x 213 and to +.652748693 x 10%(decimal).
let the output order be iTOA +nl.2345678c

Then the typewriter would print out-+6.5274869/+033. where the number at
the left of the slash is decimal and the number at the right is its
exponent of 10. Thus the number is actually +6.5274869 x 102,

Let th§ MRA contain the octal number 1.1500203261 with an exponent of 15
(octal). '
Thus the number = 1.1500203261 x 215 (octal).

Page 4

This is equivalent to -.796812369 x 213 and to -.652748693 x 104 (decimal).
Let the output order be iSOA - 12.3456s x 1072

Then the 'scope would display -00.0652 sp. (see note below) where sp.
means that a space is provided far a the 'scope.

note: At present no provision is made for rounding off to -00.0653.

Tn/Out Order Repeated

A speciﬁen number need not be designated each time the In/Out routine is

called in. If the calling-in letters are not followed by anything, then the
In/Out routine will provide exactly the same set up as it furnished for the

last

In/Out specification. By exactly the same we mean that if one wrote 1SOA .

following an iTOA + 112.345s x. 2~4 x 10°, he would automatically get

iTOA

+ 112.3458 x 274 x 10°, If the programmer wants the same In/Out order as

the last one except for the calling-in letters, he must write out the In/Out
order in its entirety. - I ' .

Format Specification

word:

a)
b)
c)
)
e)
£)

The In/Out routine contains a layéut-section which may be»set by the special
FOR L xB x ¢ | |

this word must precede any output érder for which it is to be used

the entire word FORMAT may be wriften»instéad of FOR, if desired

o represents the number of Qords/line. (maximﬁm is 15) “

numbersel, B, J should be»séparated by lower case x -

B SPESSeRL 15, BPBSE. 5, Rases Beliyogn, prdey (paxinun 1o ©)

¥ represents the number of words per blodk (typewriter)
Y represents the number of words per frame ('scope)

The maximm ¥ is 511. However, if the programmer has ‘mére than 511 words

to be prihted,, the block counter becomes automatically reset after each block
is completed. : ‘

ex 1l:

ex 22

Let us suppose that the programmer wishes to type 2500 words in blocks
of 400.. If he specifies that ¥ = 400, then he will automatically get 6
blocks of 400 words each and a seventh block of 100 words. The blocks
will be separated by 2 carriage returns. In order to get the final 100
words as a separate block one must heed the following note.

Note: provision is made for one automatic carriage return at the
beginning of the Format routine and two at the end of a block. However,
the programmer should provide carriage returns at the end of his print-
out if that doesn't coincide with the end of a block. This carriage
return order is described in the Special Characters section.

Let us consider ex. 1 if the scope were being used instead of the type-
writer. The only difference is the restriction on the number of lines

per frame which is 36. However, if the programmer requested & words/line,
400 lines/block, he would get 288(8x36) words on one frame and 112(400-288)
words on the next frame since provision is made for automatic indexing at
the end of 36 lines and st thd end of a block. Thus the programmer would

Page 25

get altogether & frames of 288 words each, 6 frames 'of 112 words each
and one frame of 10C words. However, the last frame of lOO words will
be obtained only if the following note is heeded.

Note: The programmer must provide *the order FRAME in order to index the
camera at the end of any partlcular display since it is unlikely that
the end of a display will coincide with the filling up of a frame or the
end of a block. An automatic index is provided at the beginning of the
display routine. ‘ : S -

Special Characters

a) One may obtain a -, +, ., s (space), t (tab), c (carriage return) at
any time by merely using the call-in letters followed by any one of the
above six.

exs: TOA + gives a + on the‘typewriter-
'SOA ¢ gives a carriage‘return on the 'scope

b) The order COL contlnues the’ 'scope dlsplay in the next column, at the
top of the frame.. ,

The order FRA takes a plcture, and sets the camera up for the next
frame.,

- One may use the entire word COLUMN FRAME instead of COL, FRA respectively-
but all letters must be upper cases ¥, ,

Page 26

V. Conclusion

At present the CS is entirely on paper tape. Strides have been made in
the direction of replacing some of the paper tapes with magnetic tapes. The
latter transition will depend to a considersble extent upon the availablllty
of magnetic tape units. At present only one magnetic tape unit is aveilable
whereas it is considered that three tape units is the optimum number for the
efficient use of the CS. It is planned to store the CS permanently in the
magnetic drum as soon as the drum is available. Post-mortems (PM) and Mistake
Diagnosis (MD) routines will be incorporated into the CS in the near future.
As soon as new In/Out routines are prepared, they will be incorporated into
the CS,

Signed]/1 M

H. C. Uchiygfhda

Signed

' Approﬁéd‘ ' éf%ﬁﬂ”él..

C. W. Adams.

Index for Engineering Note E-516

A N

Aecumlator, 12 ,
multiple register, 12, 16, 23
'Address, 3, 4
'abSO].ute, 5, 7
agsignment, 5, &
current, 5, 6, 10
definite, 10
floating, 3, 4, 6, ¥, 9, 10
indefinite, 10
relative, 3, 4, 5, 7, 9
temporary - storage, 3, 4, 9
Ambiguities, 9 .
: list of, 11

B

. Block counter, 24

Buffer register, 9, 16, 17
c

Carriage return, 5, 8, 10

Characters
special, 25

Comma, 5, 9

Comparison register, 15

Constant syllables, 3
integers, 3
octal numbers, 3
operations, 3

Current address, 6, 7, 9
indicator, 5

Cycle control, 14, 17
count, 9, 15
decrease, 15
exchange, 15
increase, 15
reset, 15

A D
- Decimal point, 22
C integers, 3
-Definite address, 10
DITTO, 4, 10, 11
E

Equals sign, 5, 8, 9, 10
Exponents, 23

Fence, 4, 10
Floating address, 3, 4, 6, 7
assignment, 8, 9
Format, 23, 24
Frame, 23, 24
example of, 23, 24

G R
Generalized deciﬁal number, 8, 10,
' 13, 14
I
Iﬁ, 4, 10, 13

.Indefinite address, 10
- ‘Index register, 15 .

Initial zero suppression, 22
In/ Out, 21
Input, 21
Integers, 3

decimal, 3

literal, 3, 9, 15, 16, 17
Interpreted operations, 3, 12,15, 1¢
-+ functions of, 19
Interpretive subroutines, 12

entry to, 13 '

exit from, 13

utomatic assembly of, 17

L
Literal integers, 3, 9, 15, 16, 17
M

Magnetic tape units, 21
MOD, 4 .
Multiple-length number, 4
fixed point, 4
floating point, 4
Mnltiple register accumulator (MRA)
12, 16, 3

N

NOTPA, 4, 17

Number specimen, 21, 22

Number system, 4, 12, 21
indicator, 4
multiple-length, 4, 12, 14
single-length, 4, 13, 14

Numeréscope, 21
0]

Octal numbers, 3, 8

Operations, 3 '
interpreted, 3

_ - WWI, 3 :

Oscilloscope, 2

oor, 4, 10, 13

Output, 21 :
equipment, 21
special words, 4

speeds, 21
P
PA, 4, 12
PARAMETER, 4

Parametric syllables, 3
floating address, 4
preset parmeters, 3, 8, 9, 10
relative address, 4, 9
temporary storage, 4, 8, 9
Personal parameter, 3, 7, 8
‘Preset parameters, 3, 7, 8, 9, 10
personal, 3, 7, 8
subroutine, 3, 7, 8
universal, 3, 7, 8
Print, 21 £
Progrem, 3
Programmed Arithmetic, 12
Punches, 21

R

Relative address, 3, 4, 5, 9
indicator, 5
Rules, 8, 9, 10, 11

S

Scale factors, 23 :
Single=length number, 4
fixed point, 4

floating point, 4

Special output characters, 25

_Special words, 4, 10, 11, 13

Specimen number, 21, 22
START AT, 4, 9
i START AT, 4, 9, 10
Stem, 9, 10
Sub-blocks, 17, 18
buffer, 18
cycle count, 18
divide, 18
- PA, 18
Subroutine, 5, 8
parameter, 3, 7, 8
interpretive, 12, 13
Syllables, 3, 8, 9, 10, 11
constant, 3
parametric, 3

T
T&b’ 5’ 8, 10, 24,
Temporary storage, 3, 4, 8, 9
Terminating characters, 3, 5
output,; 23 '
Typewriters, 21
i
Universal parameter, 3, 7, 8
\'f
Vertical bar, 5
W
Words, 3
output, 4
program title, 4
special, 4
7

Zero suppression, 22

