EM COMPREHENSIVE
SYSTEM
MANUAL

® .0
.......
[J L []
.....
[] (X J

A SysTeMm OF AuTOoMATIC CODING
ForR THE WHIRLWIND I COMPUTER

;E'. §:" DIGITAL COMPUTER LABORATORY
HE MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE 39, MASSACHUSETTS

Memorandum M-2539-2

December, 1953
Revised April, 1954
Revised December, 1955

COMPREHENSIVE SYSTEM MANUAL

A System of Automatic Coding

for the Whirlwind Computer

by
C. Adams - H. Denman E. Kopley
D. Arden J. Frankovich J. Porter
S. Best F. Helwig A, Siegel

Digital Computer Laboratory
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

M-2539-2
FOREWORD

This volume repfesents the cooperative efforts of a number of former .
and present members of the staff of the M.I.T. Digital Computer Laboratory.
Since this volume is based on work performed over a number of years, it .
is impossible to give proper credit to all individuals who were involved.
The principal contributing authors were:

€., Adams H. Denman E, Kopley
D, Arden J+ Frankovich J. Porter
S, Best F. Helwig A, Siegel

A portion of the contents of this volume was first prepared as a
memorandum in the Digital Computer Laboratory in December, 1953, The
original work was supported under ONR contract N5ori06001, The coopera-
tion of the Mathematical Sciences Division of the Office of Naval Research
in the preparation of this volume is grétefully acknowledged,

Since this volume is specifically written for the M.I.T., Whiriwind T
Computer, it principally describes the two coding systems which are in
current use; namely, the Comprehensive System (the interpreted CS Com-
puter), and the basic Whirlwind code (WWI). The Comprehensive System
employs multiple Whirlwind registers and programmed arithmetic %o execute
its instructions. However, it utilizes the basice Whirlwind Computer to
implement each instruction. Thus, the Whirlwind Computer assumes differ-
ent outward characteristies depending upon the coding system which is
employed.,

Although the coding systems described in this volume are based on
the Whirlwind Computer, the basic coding and programming techniques may
be employed on any stored program computer, It is hoped that this volume
will help disseminate programming informm tion to a larger group of people
in the rapidly-expanding computer field.

F. M, Verzuh
Head, Scientific and
Engineering Computations Group

Cambridge, Massachusetts
December 23, 1955

M-2539-2

TABLE OF CONTENTS

INTRODUCTION

PART I, Introduction to Programming and Coding
CHAPTER I THE GS COMPUTER - SIMPLIFIED VERSION
CHAPTER II TRANSFER OF CONTROL - COUNTING '
CHAPTER III CYCLE COUNTERS - MODIFICATION OF ADDRESSES
CHAPTER IV FLOATING ADDRESSES
CHAPTER V INPUT AND OUTPUT
CHAPTER VI ERRCRS AND POST-MORTEMS
CHAPTER VII SUBROUTINES
CHAPTER VIII REVIEW

PART II. Advanced Coding Techniques

CHAPTER IX
CHAPTER X

CHAPTER XI

CHAPTER XII
CHAPTER XIII
CHAPTER XIV
CHAPTER XV
CHAPTER XVI
CHAPTER XVII

SOME MORE FUNDAMENTALS

NUMBER SYSTEMS

THE WHIRLWIND COMPUTER

AUXILIARY STORAGE AND IN-OUT EQUIPMENT
PROGRAMMED ARITHMETIC

THE CONVERSION PROGRAM

THE UTILITY CONTROL PROGRAM

AUTOMATIC INPUT-OUTPUT REQUESTS
GENERALIZED POST-MORTEMS

M =2559=2 Introduction =i

INTRODUCT IGR

In barter, man first learned the need for assessing the relative
sizes of different commodities, He found it possible to do this in two
quite different ways - by measuring to determine how much, or‘by»counting
to determine how many. Just as he learned to measure length by compﬁring
with the length of a hand or foot, he learned to count by placing the
apples or skins or stones to be counted in one-to-one correspondence with
his fingers - the digits on the end of his arms. Little wonder that he
learned to count by fives and tens, or that the symbol V was used to
represent one hand full while X represented two hands fulle.

Computation developed out of measuring and cbunting, the two sciences
being called geometry and arithmetic, respectively. The introduction of
8 very important concept = the digit zero - and thence the development of
the Arabic or positional system of numbers, permitted arithmetical comp=
utation to be performed with much greatér facility than before. As
always, greater speed led not to less time spent; but to more computatien
being undertaken, -

As the complexity and frequency of each problem grew, the need to
mechanize the arithmetical processes became more urgent. A thousand years
ago, the development of the abacus overcame the limitation set by the
inadequacy of the number of fingers and toes a man could produce. Finally,
hundreds of years after the development of the abacus, and thousands of
years after the beginnings of counting and arithmetic; great minds pro-
duced the little cogs which grew into the modern adding machines, desk
ealculators and accounting machines, ‘

As time went on, the cogs grew better and went around faster.

Special sets of cogs made the machines perform the sequences of addition
needed to form a product, and later the sequences of addition and sub-
traction needed to find a quotient. Motors replaced hand cranks., Today
a good mechanical calculator multiplies two 10 digit numbers in ten
seconds or less,

Modern electronics could speed this up almost a million fold. Bub

M-2539-2 Intro-2
to what avail? Practical experience indicates that a competent person
operating a modern calculator performs about 500 operations a day - and
many of these operatipns
require but a fraction of the
10-second maximum in the cal-
culator. Speed up the cal=-
gulator a million fold and
you speed up the overall com-
putation by at most 10%,
assuming thet the operator
can stand the increased
strain, What is needed is to
replace the human being in
the system; not mersly to
speed up fhe arithmetiecal
processes themselves.

More than 140 years ago,
one man, Charles Babbage,

dreamed of machines which

would far surpass the wondrous contrivances of Pascal and the others.-
The more advanced of his two machines, for he dreamed of two different
types, would perform the basic operations of addition, subtraction,
multiplication and division. And it would do much mere: It would

perform, aubtomatically

. CONTROL Fwe NEED *277

RUSH - P.D.Q.-
IN A HURRY |l
\ ARITHMETIC “__\ described sequence of

ELEMENT arithmetic operations

and without human
SECONDARY

intervention; a pre-

L

and make predescribed
logical decisions
based en the results

as it went along.

In outlining his
Analytical Engine in
1834, Babbage describ-

SEMI-AUTOMATIC DIGITAL COMPUTATION ed all the important

HERE 'S PROBLEM{

STORAGE *278, JOE 1

M-2539-2 ' - : Intro-3
principles of today's ultramodern automatic digital computers. It took
over a century, however, for mechanical and electrical sciences to reach .
a state at which his dream could be fulfilled.

The automatic digital computer is simply & mechanization not only of
the arithmetical operations, but of the operator which determines the
sequence in which the operations are performed. The arithmetic element
of the

. . ARITHMETIC ELEMENT CONTROL STORAGE
digital
: : FORMS SUM TAKES INSTRUCTIONS 0)
DIFFERENCE FROM STORAGE 1)
computer, PRODUCT [+ | THEN 2)
. QUOTIENT DIRECTS ALL OTHER :
corresponding (Positive or Negative) | AELEMENTS PROPERLY) 57y
to the desk \\\ f
y
caleculator, /’ A BUS
can advan- PUSHBUTTONS
]]
tageously be
TAPE | Torminput | |SECONDARY) oyt
made to work PREPARATION STORAGE
ry fast ‘
very ’ AUTOMATIC DIGITAL COMPUTATION

performing
arithmetical operations in a few millionths of a second, for the rest of
the system can now keep up with it. The control element, the counterpart
of the human operator, can readily be made far faster, more reliable, and
somewhat less demanding of wages and fringe benefits than the man,
Unfortunately, however, there is need for automatic memory or storage
of various degrees of accessibility, corresponding to the memory of the
operator, the notebdok, and the reference library. There is also need
for input and output - the means ef'ccmnunication with the outside world.
Primerily, it is memory and input-output,depending upon the particular
problem, that causes the greatest difficulty in the physical féalization,
and places the grestest limitations on the speed and reliability of

existing computers,.

M-2539-2- Intro-4

When a human operator is to solve a program using a calculator
or to process a payroll on an accounting machine, he must be supplied
with instructions which specify just how the solution is to be obtained.
In like mamner; the digital computer must be provided with a list of
instructions, or program, in properly coded form, to describe how the
- solution is to be obtained. The process of preparing such a coded 7
_program is called programming. Programming really consists of two parts:

1) planning the program, or sequence of elementary steps, by
which the problem may be solved
2) coding the sequence of steps into a coded program -~ a sequence
of computer instructions. %
The coding of a problem requires detailed knowledge of the specific
computer on which the problem is to be solved. A coded ﬁrogram has
meaning only to the computer for which it was written. The planning of
a solution, on the other hand, does not necessarily involve the details
of any given computer, although a given problem may frequently be solved
most efficiently if formula ted one way for one computer and another way
for another,

Part I of this manual deals with the Comprehensive System of Service
Routines, which is usually abbreviated to "C3" or "CS computer". The"
instructions discussed in Part I are not performed directly by the
electronic circuitry of the Whirlwind I computer, but are actually
accomplished by more or less lengthy sequences of the actual instructions
performed directly by the machine., The {8 system is 80 designed that the
programmer need not actually concern himself with this fact, buf may use
the instructions almost as if they were performed directly by the computer.

These CS or "interpreted" instructions have been so designed as to

M-2539=2 Intro-5
make many commonly occurring functions very easy to program. Since they
are actually composed of sequences of basic machine instructions, the

same result can often be accomplished in less computer time but more

‘program preparation time by coding in basic machine code. The basie

machine is also capable of some functions which cannot easily be performed
-with CS instructions,

| Since the basic principles of coding are illustrated very simply in
the use of CS or interpreted instructions, Part I of this manusl deals
only with the €38 computer. Part II describes the basic Whirlwind code
and can be read independently of Part I, although thorough familiarity
with Part I will help greatly in mastering Part IT,

If it is desirable to get results quickly on a problem requiring only

a small amount of computer time, the CS computer should be used as much
as possible in order to minimize progrsm preparation time. TFor problems
requiring a -large amount of computer time, careful consideration should
be given to organization of the calculation and possible use of basiec
Whirlwind code. This can lengthen program preparation time by a ‘cone
siderable amount depending on the skill and experience of the programmer

but may shorten computer time.

M-2539-2

COMPEREHENSIVE SYSTEM MANUAL

PART I

Introduction to Programming and Coding

M=~2539=-2 I-1

CHAPTER I: THE CS COMPUTER - SIMFLIFIED VERSION

The CS computer has, of course, the basic computer elementss
arithmetic element; control, primary ("high-speed™) storage, secondary
storage, input and output. Haturally,‘a nunmber of‘important concepts
and innumerable details make up a complete description of the computer,
Rather than attempt to describe the computer completely at the outset,
we will first deseribe a simplified form of the computer, embellishing
it with more details and more new concepts as we progress. In simplify-
ing anything, one must sometimes tell half-truths, and this we will do;
but we shall not tell any forthright lies.

The primary storage element of the computer consists of approximate-
ly 1360 registers.* Storage registers are locations, pigeon holes into
which computer words may be stored by the computer control and recovered
by it when needed. A word is a sequence of digits representing a number
or an instruction. The location of each register is identified by an
address, just as the houses on a street are identified by addresses.

The addresses of the 1360 different registers are 32, 33, 34, 35,...1380
and 1391.

In the CS computer a word that represents a number occupies two

SUCCESSIVE registers of storage. The location of the number is always

specified by the address of the FIRST of the two registers. The maximum

magnitude of a number that can be stored in the memory of thelcs computer

is about 9. x 1018

5.5 x 10-20. A programmer will write his numbers in the usual decimal

s, and the smallest non-zero magnitude is about

forms +129,7863

* The exact number of registers gvailable can be determined by the tables
given in Chapter XIII.

M-2539-2 o I2
where he may indicatees many as 8 significant digits provided the magnitude
of the number satisfies the range requirements indicated above,

A more detailed discussion of the representation of numbers will be
given below.

An instruction is the second kind of word and occupies a single reg-

ister of storage. It specifies both an operation such as add or subtract,

and an address, This address designates where the word to be qperatéd
upon is to be found. For example, the word iad 237 is an instruction which
specifies that the number contained in registers 237 and 238 is to be added
to the number already in the multiple register accumulator (MRA).

The muléiple register accumlator (MRA) forms the heart of‘thsvarithn
metic element. In ity the sum or diffefencé, product or quotient of two
numbers is formed. The maximum magnitude of a number that can be handled

9863

in the MRA is about 7,0 x 10 whereas the minimum magnitude for a non=-

zero number in the MRA is sbout 7.l 1:10-9864;
The first few basic imstructions to be considered are described below

by their abbreviations, nemes, and effects. They can be described more

concisely and compactly if a few standard symbols and terms are first

defined,
Symbol Meaning
URA multiple register accumulator
al address of any chosen storage register
N (MRA) the number in the MRA before the

instruction is obeyed

N(al) the number stored in registers al and
al+l before the instr. is obeyed

—_— replaces

clear <oo set the contents of ... to zero

M-2539=-2) - o - I-3

Thus "N(MRA)+N(al)—> N(MRK)" is to be read as "the initial number
in the MRA plus the number stored in registers al and al+l replaces the
initial number in the MRA™; i.e., the sum of the numbers contained in
MRA and al appears in MRA.

Abbreviations for the instructions of the €S computer have been
selected for mmemonic reasons. An initial letter i is used to indicate
that the instructions are j._nterpx;eted by s?ecial progrsms stored in the
Whirlwind I computer (see Chapter XIII). ffhe time im milliseconds for

executing each instruction is given in the last column,

ica al clear MRA and add to it N(al) N(al)-IN(MRA) 0, 7ms
ics al clear MRA and subtract from -N(al)—>N(MRA) 0. Tms
Tt N(al) - ' S o
its al transfer N(MBA) into (al,al+l) N(MRA)=-IN(al) 0.9ms
iad al add ’ | © N(MRA)+*N(al)—W(MRA) 2.Oms
isu al subtract N(MRA)-N(al)—N(MRK) 2.Oms
imr al multiply and roundoff N(MRA) N (al)—-)ﬂ(mj l.4ms
idv al divide i B N(MRA):N(al)—sN(MRK) Z.2ms
iex al exchange N(MRA) with N(al) N(MRA)~ (al); 1.3ms
« N(al)>N(umA)
iTOA+nl.2345¢ type out N(MRA) in normalized
form followed by a carriage 75.ms
return
israr STOP 0. 4ms:

* The normalized form referred to is one that represents a number in the
form

. of
¥dy+ dydgd,dg x 10

where X is adjusted so that 4 7 0 (unless the number itself is zero).

M=-2539-2 I-4

IF IT ISN'T MENTIONED, I? DORSN'T HAPPEN{

The definition of ica al does NOT specify that anything new goes

into register al. This means that N(al) does not change. Likewise,

N(al) is unchanged by ics, iad, isu, imr, and idv. Similarly, N(MRA)

is unchanged by its, iTQA, and i83TQP.

WHEN A NEW QUANTITY REPLACES AN OLD ONE, THE OLD ONE DISAPPEARS{

The definition of ica says that N(al) becomes the new contents of MRA.
The MRA is first cleared in this process so that its former content is
lost,

TO0 LARGE A RESULT LEADS TO TROUBLE

Obviously, if the result of an arithmetic operation lies outside the
range that can be stored, the result cannot be copied into storage. It
may, however, be further operated on in the MRA. If a programmer, through
oversight, instructs the computer to copy into storage a result which
will not fit, the computer will stop and indicate an alarm. Obviously,
also, it is possible for the result of anarithmetic operation to become
too large to fit even in the extended capacity of the MRA. This, too,

is an overflow and produces an alarm.

Straightforward Computation - Example 1

Suppose a rectangular swimming pool

of any given dimensions is to be

filled with water to a level 1 foot

below the top of the pool. Before

£illing, the pool is to be painted

green on the bottom and on all four

sides up to the water level. @mne

M=2439-2 1-5

gallon of paint covers 500 square feet, and one cubic foot of pool water
weighs about 63 pounds. We wish the computer, given the length, width
and height in feet, to print out:

a) the weight of the water the pool will hold

b) the number of gallons of green paint needed.

Representing feet of length by Xig width by xz, and height by Zé, we
readily find that the pool surface area to be painted equals

bottom + 2 sides + 2 ends

XX, + 2 xl(xs-l) + 2o xzy(xs-l)
and the amount of paint in gallons is obtained by dividing the above
number of square feet by 500, the number of square feet per gallon.

The volume is X; ° X, * (X%ul), and the weight of water is obbtained
by multiplying this number of cubic feet by 63 pounds per cubic foot,

By collecting terms with an eye to reducing the number of multipli-
cations ‘which will be required in the computation, the two quantities
desired can be rewritten as follows

2(Xp*%y) (K5-1) + Xy Xy

Paint = Water = 63X X_(X_-1)
— XX, Xy A

A procedure for-finding these quantities might be:

al a2 a3

find and store | find and store find

X -1 X, 63X,X, (x3-1)

g4

print weight of water
just computed

(continued on page I-6)

M-2539-2 I-6

I a4
a7 _ ab . ad
print amount of find find
3 '3 : - x g
paint just compute 2(Xi+x2)(xg 1)+XiXé r?"‘ 1+ Xz
) . 500
a8
STCp

Certain numerical constantsare obviously needed. These must be
stored in storage registers. The registers may at this stage be chosen
anywhere in storage that the programmer desires. Suppose we place them
in the first available registers (viz., 32, 33, etc.) although other
registers might have been used. The only rule that needs to be noted at
this time is that instructions must be stored in a sequence of registers
that corresponds directly with the sequence in which the instructions are
to be executed. Thus numbers may be stored anywhere provided they do not
interrupt the sequence of instructions,

s2| +1.

34, +2,
36| +63.
38| +500,

Recall that +1. occupies registers 32 and 33, hence +2. ocoupies registers
34 and 35, etce The dimensions of the pool must also be provided initially.
(It is worthwhile for the student to note that by beginning the problem
with a different set of dimensions this same program can be used unchanged.)

20| (length) = X,

a2l (wiath) = X,

a4| (beignt) = x,

During the calculation various intermediate quantities (viz., 13-1
and Iixz) will be calculated and need to be storeds We can provide for
them by initially storing +0e. in two pairs of registers which will later

contain the desired quentities; thus
X, -1
46| *0. Initially, 1a'ber{x3x
a8l +o. 172

M-2539=2. | I=7

We are now ready to write down the required instructions. We can
begin storing them in any register we desire but once we have chosen the
first register, succeeding instructions must occupy successive registers.
Exceptions to this rule will be the subject of Chapter II of these notes.
Since the next available register in storage is 50 (not 49, since +0.
occupies both 48 and 49) we could begin with that register. Nate that if
we were to need some more registers for constants or intermediate quantities
we could wait until after we had written down all the neceséafy instructions
and then choose these additional registers so as not to interrupt the
sequence of instructions, In the present case, our preliminary analysis

has made this unnecessary. We can, then, write the instrué¢tions as:

50| ica 44 place N(44) = height in MRA .
al 1 511 isu 32 subtract N(32) = +1., loaving X,-1 in MRA
52| ite 46 store the result in register 46(for later use); the
result also remains in MRA

53' iea 40 clear the MBRA and add to it(i.e., place in it) the

N(40)=Il
aZ 54] imr 42 multiply by N(42) = X,; forming KIIZ in MRA

55| its 48 store the result in register 48(for later use); the
result also remains in MRA

o3 {56' imr 46 multiply by N(46)=X,-1,forming XX, (X -1) in MRA

57| imr 36 multiply by N(36)= +63,, forming 6311}(2(}!3-1) in MRA
equal to the weight of water :

ad 58' 1TOA+nl,.2345¢ type out the numerical value of N(MRA) which
is the desired result

o5 {59' ica 40 place X; in MRA
60' iad 4 form li + xé in MRA
61| imr 34 form Z(Ii*xé) in MRA
" 62| imr 46 form 2(X,*X,) (X -1) in MRA
Lssl iad 48 form " +XX, in MRK

64| idv 38 form 2(X;+X,)(X.-1) + in MBA equal to the amount
Xi Ié 13 ' XiXé of paint

500
a7 65| iTOA*nl.2345¢ type out the amount of paint
as 66| iSTaP stop

M-2539=2 I-8

The brackets indicated to the left of the above program show how
the sequence of instructions effects the operations inmcluded in the boxes
of the diagram on pages I-56 and I-6. Such a diagram is often called a
"flow diagram”., This is an example of how more complicated programs can
be decomposed into the programming of simpler logical blocks. Of course,
the present program is rather trivial but the usefulness of this procedure

will become apparent later.

M-2539-2 IT-1

CHAPTER Ii: TRANSFER OF CONTROL - COUNTING

Thus far, the computer has been instruected to solve simple arith-
metical problems, but it can oniy be made to solve the same sort of
problem more than once by starting it over again manually with new data.
Since whole programs such as the swimming pool paint and water ealcula-
tion just given can be performed (exclusive of output) by the computer
in less than 1/40 of a second (faster than the eye can see), there would
be a tremendous proportion of time spent by the computer in waiting to
be told what to do next. The key to the situation is to give the com-
puter ability: (1)} to repeat calculations with new data which it has
itself generated, {2} to make predesecribed logical decisions based on
results it has obtained, and (3) to modify not only its own data but its
own instructions. These abilities wiil be discussed and illustrated in
this and the following seetions,

Special instructions are needed to make the computer repeat, or
make logical decisions. These are called "jumps"™ or "transfers of con-
trol,"” and they tell the computer, under certain conditions, to take the
next instruction not from the next consecutive register, but from the
register specified by the address section of the jump instruction. One
of the jump instructions is unconditional; the other is conditional and
makes the computer transfer control if and only if a given condition is
fulfilled; otherwise the next instruction is taken in sequence.

The following are the available transfer of control instructions:

isp al transfer control take the next 0.5 ms
(sub program) instruction from

register al and
continue from there

iep al conditionally transfer control ditto, if N(MRA)(0*: 0.4 ms
{(conditional program) if N(MRA))>O, take
the next instruec-
tion in sequence

*We define N(MRA)>O if the sign of the number stored in the MRA is +;
and N(MRA)(O if this sign is -, Arithmetic rules apply in the normal
way except for the difference of two equal numbers. In this case the
MRA will contain zero but the sign is -; hence the icp would assume
N(MRA)KO. '

M-2539-2 IT-2

Unconditional Transfer of Control (Example)

Suppose a swimming pool contains 40,000 gallons of fresh water.
Once each minute a bucket containing 20 gallons of salt water, contain-
ing .1 pound of salt per gallon, is lowered gently into the pool, A
corresponding amount of pool water, unmixed with the newly-added salt
water, but thoroughly mixed otherwise, escapes through an overflow pipe
at the other end. We wish the computer to print out the amount of salt
which will be in the pool after 1 minute, 2 minutes, 3 minutes, etc.

During each minute, 2 pounds of salt come in with the salt water,
After 1 minute then, there will be 2 pounds of salt in the water. But
during the second minute, not only de 2 more pounds come in, but a small
quantity goes down the drain. The amount down the drain is 1/2000 times
the amount present, since 20 gallons out of 40000 contains one two-
thousandth of the amount of salt present. Hence, at the end of the
Second minute, the total salt equals the 2 pounds from the first minute
plus the influx of 2 pounds minus the spillover of 2+1/2000 = 0.001
pounds, for a total of 3,999. During the third minute, 2 more pounds
come in, and 1/2000 of the 3,999 already there escapes, leaving
5.9970005 pounds. To formulate this more generally, let x; = pounds of

salt at the end of the ith minute. Then,
X, = 0 at start
x, = 2 during first minute
X, =2+ 2-2/2000 = 3,999 during second minute

Xz = 2 + 3,999-3.999/2000 = 5.9970005 during third minute

and in general

_ . ..-th
X =24 x; - 11/2000 = 2+0.,9995xi during the i+l1” minute

A possible procedure for programming the problem would be:

form and store print the result

g2+0.9995xi

Ti41

(repeat)

¥M-2539-2 II-3

The program can be written:*

100 | +2, pounds of salt added

102 | +0,9995

104 | +0, amount of salt in pool (initially 0)

1oe| ica 104 place +x, in MRA

107 | imr 102 form 0,9995x,

108 | iad 100 form x,,, in MRA

109 | its 104 replace x, by x, , in register 104

110 | iTOA+nl.2345¢ primt x, .

lllI isp 106 repeat; i.e., take next instruection
from 106

Counting Using Conditional Transfers of Control (Example)

The program just written will be performed over and over again un-
til stopped by human intervention or machine breakdown,

Suppose what is really desired is knowledge as to how much salt
will have accumulated in one day= 1440 minutes. One could, of course,
simply wait until 1440 lines of results had been printed, then stop the
computer and copy the result. Much more efficient, however, would be a
revised program which would compute 1440 steps without printing, print
the result, and stop. For this, we have the computer decide, by means
of a conditional transfer of control just when 1440 steps have been com-
pleted. The importance of such an ability can hardly be overemphasized.

The necessary program might be:

form and store Increase if i = 1440] | print
xi+l=2+0.9995xi ibyl if 1 £ 1440

xl440and stop

T

* As an exercise the student may attempt to shorten this program,.

M-2539-2 II-4

1oo| +1,

102 | +2,

104| +0.9995 [constants

106 | +1439,

108] +0, pounds of salt

110| +0, minutes = i

112| ica 108

113| imr 104

114 | iad 102

115 | its 108 form x, in 108

116 | ica 110

117 iad 100

118| its 110

119 isu 106 form i - 1439, in MRA

120 iep 112 if N(MBA)O, which occurs (since i changes in
unit steps) if i< 1440, teke the next instrue-
tion from 112
if N(MRA)> 0, which occurs when i = 1440,
ignore this instruction

121 | ica 108

122| 1TOA+n1.2345¢ PTint X440

123 | iSTOP

Note that if +1440. had been stored in 106, then when i beecame
= +1440, the N(MRA) would be <0 (cf. page II-1). Hence control would be
transferred back to 112,

Calculating Until Desired Value is Reached (Example)

As a third possibility, suppose what is really wanted is the time
at which the amount of salt in the pool exceeds 1000 pounds. Again the
computer must be programmed to make a simple decision. A possible pro-
gram would be:

inerease| |form and store if x; 41> 1000 print i,
i by l—-)xi+l=2+0.9995xi) if £100 stop

i1

T |

M-2539-2

501 |
503 |
505 |
507 |
509 |
511 |
513 |
514 |
515 |
516 |
517 |
518 |
519 |
520 |
521 |

522 |
523 |
524|

+0,
+0,
iea 511
iad 501
its 511
iea 50
imr 505
iad 503
its 509
isu 507

iep 513

ica 511

?

+0,9995
+1000.

II=-5

constants

pounds of salt

minutes = i

increase i by 1

caleculate new x1+1

It xi+l__1000 take next instruetion from 513
If Iﬁ*].>1000’ ignore this instruetion and go
on to 522

iTOA+n1.2345¢

iSTOP

N~2539-2 II-6

Programming Exercises

Construct sequences of instructions to carry out the following
processes on the C3 computer.,
It will be assumed that x and y are contained in registers 32 and
34 respectively., All results will be assumed to have values that will
not exceed the capacity of any register. Stop the computer after each
problem,
1. Place x+y in 41,
2. Place xS in 53. o
3. a, b, e, d are contained in 100, 102, 104, and 106, respective-
ly. Place ax3 + bx2 + ¢x + d in register 500, ’
4, Place the larger of the positive numbers x and y in reglster 75,
5. Place x in 115,
6. vPlace 19 in 115 by a program of no more than 8 instructions,
7. Place x in 115; where x # 0 and n is an integer +0. unknown
to you, which has been placed in 72 by a preceding program.
8. Place x°' in 77,

(a) using the fewest possible number of registérs,

storagewise, in your program,

(b) using the fewest possible number of instructions,
timewise, in your program. (Assume that the CS
computer consumes about the same amount of time for

each instruction.)

M-2539-2

Solutions to examples on page II-6:

1)

2)

3)

4) 100

ica
iad

its

32
34
41

iSTOoP

iea
imr
imr
its

32
32
32
53

isSTOP

ieca
imr
iad
inr
iad
imr
iad
its

100
32

102
32

104
32
106
500

isTOP

iea
isu
iecp
ica

its

32
34
106
32
75

iSTOP

ica

isp

ica

imr
imr
imr
its

34
104
52
32
32
32
115

iSToP

ica 32
imr 32
its 115
imr 115
its 115
isTap

6)
7) 102
8a) 65

ica 32
imr 32
ime 32
its 115
imr 115
imr 115
its 115
iSToP
ies 72
its 72
ieca 72
iad 113
its 72
iep 109
iSToP
iea 115
imr 32
its 115
isp 104
+1,

+1.

iea 77

its 77
ieca 73
jad 75
its 73
icp 65
iSTOP
-40,
+1,
+1,

67

II-7

ieca 95
iex 77
iad 75
icp 72
iSTOP

iex 77
imr 32
isp.68
+1,

M-2539~-2

8b)

100

ica
imr
its
imr
its
imr
its
imr
inmr
imr
imr
imr

its

32
32
77
77
77
77
7
7
77
77
77
32
77

iSTOP

OR

100

ieca
imr
imr
imr
imr
its
imr
its

imr

imr

its

32
32
32
32
32
77
77
77
V4
77
77
38
77

iSTOP

II-8

M-2539-2 III-1
CHAPTER III: CYCLE COUNTER - MODIFICATION OF ADDRESSES

In the eyclic examples described in Chapter II the addresses of
instruetions within each eycle did not change. However, one of the more
important jobs that compubers are called upon to do involves dealing with
data which are stored consecutively and are to be operated upon cyeli-
cally in a set fashion. Cycle counters have been devised to facilitate
the counting of the repetitions of a cyele of instructions and the modi-~
fying of instructions therein, Cycle counters are often called B-boxes,
a term that has received wide-spread adoption since it was first used
with the Ferranti compﬁter at Manchester University in 1948,

A. Cycle Counting

As was indicated in Chapter II, the counting of cyecles of operations
can be carried out by programming, utilizing the MRA. However, if an
intermediate numerical result happens to be in the MRA it must be copied
into storage while the counting is done. For example, suppose we wish
5, xé,...(involving 9
multiplications) using a cycle of instructions. The program might be as
follows:

to caleculate xlo by forming in succession 12, x

43| 41,
45| +9, number of times cycle
is to be carried out‘} 22132212&
47' x
49| +0, receives result
51| +0, used for counting.} index
53| ica 47
54| its 49
55| ica 43
56| its 51
57' ica 43 multiply by x
58 | imr 47
59| its 49 |
60 | ica 51 incr:ase eyele
61| iad 43} Counter
by 1
62| its 51

55| isu 45

M-2539-2 III-2

64 | icp 57 j

65 I iSTOP
Note that the power of x obtained in the MRA after the instruction in
register 58 has been executed must be stored preparatory to the counting
effected in registers 60-64.

The number of registers used in this program can easily be reduced.
However, the form above was chosen to illustrate that eyele eounting
consists basically of two elements: an index element that actually counts
the number of times the cycle has been carried out; secondly, a criterion
element for determining when the cycle has been carried out the desired
number of times,

In the G5 computer special facilities have been included for count-
ing cyeclic operations independently of the MRA., The heart of this ecyecle
counter is the cycle control register pair. This is actually two storage
registers, one of which is called the index register and the other, the
criterion register., Provision is made for clearing the index register,
setting the criterion register to any desired integral value (up to 2047),
increasing the index register by any desired integral amount (up to 2047),
and testing when the magnitude of the integer in the index register be-
comes equal to or greater than the magnitude of the integer in the eri-
terion register.

Care should be taken not to confuse the integers stored in the
single index register and single criterion register with the ordinary
numbers that are stored in two consecutive registers. The arithmetic
instructions described in Chapter I deal automatically with two-register
numbers. However, the following instructions affect the cycle counter
and hence, as indicated, deal with the integers stored in the single
special registers. (See Chapter

We define C(o..)

i

contents of ...

C(index register)

n = C(eriterion register)

M-2539-2 ITI-3

iecr m gcycle reset Set i= +0, n=m (+Ogg is an integer¢2048) 0,4 ms
ict al cycle count Increase i by 1 and if this new value of 0.4 ms
|i| > [n|, then reset i= +0 and take the
next instruetion in sequence; if the new
|i|<.|n|, take the next instruetion from
register al.

The calculation of xlO may now be done by the following program:

32| b3

34| +0.

36[ier 9 set up for 9 cycles
37| ica 32

28| imr 32} oyele

39| iet 38

40| its 34

41| isToP

The following table presents a history of the contents of the index
and criterion registers and the MRA after the execution of the iet in-
struction in register 39 of the program above.

i n MRA

— — —

End of cyele 1 1 9 x°
| 2 2 9 xs
3 3 9 x4
4 4 9 15
5 5 9 x6
6 6 9 x7
7 7 9 x8
8 8 9 xg
9
9{ reset tof9 10
0

B, Modification of Addresses

The machinery for adjusting an address by means of the cycle
counter is quite simple. The programmer simply appends "+c¢" to an

N-2539-2 III-4

address, When this instruction* is to be executed the address is first

modified. If we let "i" denote the integer that is contained in the

index register, then the address is inereased by 21 before it is executed

(except in the case of the instruction whose operation is isp where the

address is inereased merely by i). For example, if the prograsmmer writes
ica 100+¢

then when this instruction is to be executed, the following instruction

is actually formed
ica (100+2i)

and then executed. The increment 2i was selected since we are usually
working with arithmetic operations on numbers and these numbers oceupy
two registers of storage. In the case of isp 100+c we get isp (100+i)
sinee this is used with instructions (recall that instructions occupy
one register of storage). It should be noted that if at any time one
were to exemine the contents of the register containing the instruetion
ica 100+c the address part would be 100 (not 100+2i). The increment 21
(or i in the case of isp) is added on only during the execution of the
instruction,

A simple example illustrating the use of the eycle counter for ad-
dress modifications as well as for counting is the following. Suppose
we wish to transfer the numbers in registers 100, 102, 104 and 106 to
registers 200, 202, 204, 206. We would then write:

32! ier 4 set up for four cyeles

53| iea 100+c clear MRA and add to it N(100+2i); i=0,1,2,3
34| its 200+c store N(MRA) in 200+2i; i=0,1,2,3

35 | iet 33 add one to index register; if the new |i|}4

then reset i=+0 and taks the next instruction
from register 36; if |i|<4, then take the
next instruction from register 33, Note that
n does not change (=+4).

36 iSTOP
Since there are many cases when we desire to operate on numbers
that are not stored in consecutive locations, but are spaced a constant

number of registers apart, we have the following instructions:

¥ The +c cannot be used in the icp and iet instructions,

M-2539-2 ITI-5

ieim cycle increase Increase the contents of the 0.4 ms
index register by m.

iecd m eycle decrease Decrease the contents of the 0.4 ms
index register by m.

Here +0<m is an integer {2048,

As an example of the use of the ici instruction, let us write a
program which transfers numbers in register 100, 104, 108 and 112 into
registers 200, 204, 208 and 212,

We have: .

301| ier 8 set up for 4 cycles {;::g
302| ica 100+c pick up N(100+2i) i=0,2,4,6
303| its 200+c store in 200+2i i=0,2,4,6
304] fei 1 inerease i by 1

305] ict 302 go through 4 cycles

The following table presents a history of the contents of the index
and criterion registers after the execution of the iet instruetion in
register 305 of the program above:

i 2
End of cycle 2 8
4 8
3 6 8
8
4 { reset 8
to O

C. Multiple Counters

Since programs usually contain cycles within eyecles, provisions
have been made for selecting any number of counters the programmer re-
quires (the upper limit on the number of counters available to each pro-
gram is a function of the amount of storage the programmer is willing to
spare for counting). Multiple counters are often referred to as counter
lines. The following instruetion permits the use of more than one cycle
control register pair so that more complicated@ programs may be treated
effectively:

M-2539-2 III-6

ise j Select counter selects counter j as reference 0.9 ms
for all subsequent interpreted

(+0¢ j is an integer< 2048) instructions using a counter
until execubion of the next
isc instruction: each counter
has its own index and criterion
registers.

If a programmer wishes to use only one cycle counter, there is no
heed for him to select this counter with the ise j instruction. He will
automatically get one cycle counter if there appears in his program any
cycle counter instruction (other than iei, icd, or iex*). In any pro-

gram, counbter zero is initially considered selected until an ise j, with

j>0 is executed. Except for this property, counter zero is no differ-
ent from any other counter such as 1, 2,...,
Two separate cycle counter registers (index, criterion) are set

aside automatically for counter n (where n is the maximum value for j in

any program) and for counters n-1, n-2,..., 2, 1, O. Consequently, it
is advisable to select an uninterrupted sequence of counters so as not
to waste storage for counters that are never used. Thus if the only

isc j instructions in a particular program were isc 0, isc 3, isc 6, the
programmer would be wasting 8 registers of storage.

To illustrate the use of this instruetion, suppose we have a pro-
gram that calculates the values of two quantities, F and G, as functions
of the time t = j At for j = 1,2,3,...,1000 (At is a prescribed incre-
ment of time, say .Ol seconds). Suppose further that it is desired to
print out the value of F at the end of each 5 time steps (i.e., for i = 5,
10, 15,...), the value of G at the end of each 20 steps, and to stop the
program at the end of 1000 time steps. If we store the value of F when
calculated in 200 and of G, in 202, the following program would suffice:

32| ise 0
33] ier 50
34' ise 1
35| ier 4

* icx defined on page 7

M-2539~-2 ITI-7

sé| isc 2

37] ier 5

38| isc 2

39| cse e calculate
ece e and store
LR K | o ® F, G'

see LR)

103 et 39
104| ica 200

105| iTOA+nl.2345¢ Note that the letter ¢ used here does not
refer to the cycle counter but, as will be
discussed in chapter 5, gives a carriage
return.

106 isc 1

107| iet 38

108| ica 202

109| iTOA+n1.2345c

110§ isec ©
111] iet 38
112| iSToP

zoo| +04 will contain F
202| +0. will contain G

(Would the program be as efficient without register 38? Explain.)

This problem could have been done differently by using an instruc-

tion we are about to define. However, the first method is the preferred

one since it is logically simpler.

icx al cycle exchange Exchange C (index register) with 0.6 ms
C(al) and exchange C (criterion
register) with C(al+l).

Second Method
32| ier 50
33| iex 204
34| ier 4

35| iex 206

M-2539-2 ' III-8

36| icr 5
37| calculate

ene am and store

o8 *® F, G
103, ict 37
104| ica 200
105| iTOA+nl,.2345¢

106| icx 206

107| ict 35

108| ica 202

109| 4iTOA+nl.2345c

110| iex 204

111| iet 33

112| isToP

200] +0. will contain F.
202| +0. will contain G
204| *%0. count for 1000 At
206| +0. count for G

Advanced Section

D. The following two cycle counter instructions appear in this chapter
merely for completeness. They are considered to be part of the more ad-
vanced section of this manual for two reasons:

(1) There is an easier way to accomplish the same effect.

(2) They are used more rarely than other cycle counter instructions.

iat al a2dd and transfer add C{index register) to the 0,5 ms
C(al) and store the result in
the index register and in
register al

iti al transfer index transfer the right 11 digits 0.4 ms
of the index register into the

digits right 11 digits of register al

These two instructions are principally used for altering the ad-

dress section of an instruction.

M-2539-2 Iv-1

CHAPTER IV: TFLOATING ADDRESSES

The examples presented in the preceding sections have been simple
ones chosen to illustrate specific points. It should be clear to the
student that, in practice, programs are far more involved than the ones
displayed. Nevertheless, even though these examples are simple, certain
inconveniences may be observed in the writing of the programs. First of
all, in writing a sequence of instructions it is rather tedious to have
to write down all of the addresses especially since only a few of them
are referred to in other instructions. But even worse, note that if by
error we had left out an instruetion in our sequence (e.g., if we had
forgotten to multiply by (Xg—l) in the program on page I-8) then to in-
sert this instruction would require our renumbering all the subsequent
instructions and then searching all the address parts of instructions to
correct those affected. This is not only annoying but very often leads
t0 needless errors,

It should be pointed out that there is a remedy that can be used to
avoid this inconvenience. To be specific, if we had:

55| its 48

56| iad 36

57’ iTOA+nl.2345¢
where we have omitted the instruction imr 46, between registers 56 and
57 we could replace the instruction in register 56 by an isp to some
block of unused registers (e.g., 70, 71, 72); that is:

LR]

55| 1its 48

56| isp 70

57| 1TOA+n1,.2345¢
and then we add to the program:

70| 1iad 36 carrying out the instruction
that previously had been in 56

71| imr 46 carrying out the omitted

instruetion

72| 1sp 57

M-2539-2 ’ Iv-2

Such a procedure for correcting a program is frequently called a "patch",

Note that ™patching" is not only unaesthetic, but it is wasteful of
space and makes a program more difficult to follow (and therefore to cor-
rect) since it interrupts the basic logic of the program.

Finally, we might note that before we write down each of the sample
programs above we had to set aside certain registers for input data,
intermediate results, and final results. Now it was emphasized that it
mattered little where in storage we put these registers provided they did
not interrupt a sequence of instructions., e now see that by using our
jump instruction (isp) we have a good deal of flexibility in interrupt-
ing such sequences. However, it should be clear that it would be bad
practice to make use of such jump instructions (since it is wasteful of
computer storage*) simply to jump over a misplaced constant. On the
other hand when one first begins %o write down a program it may be very
difficult to determine just how many registers will be occupied by data
needed in the program and how many are needed for holding intermediate
results. If one leaves too many registers for them then he may find he
doesn't have enough registers left for his program. On the other hand,
if he doesn't leave enough - or if he actually starts out by writing
instructions first (beginning in register 32) - then, since he has no
way of knowing a priori precisely how many registers will be occupied
by instructidns, he is faced with the problem of determining what ad-
dresses to assign to the registers needed for the as yet unspecified
data or results.

The obvious sclution to this dilemma is to assign some sort of
tentative addresses to these unspecified registers. Since we are already
using numbers to specify addresses, it is only natural to distinguish
these unspecified registers by a literal nomenclature. Since there are
only 26 letters, a simple system is to use letters followed by integers
(e.g2., al, bl2, g3, etc.). Such addresses will be called floating ad-

dresses (abbreviated as P£lads) since the actual value of the address

* Also in many cases when a set of instructions is repeated a great many
times, such extraneous instructions can represemt a needless expenditure
of computer time.

M-2539-2 Iv-3

(called the absolute address to distinguish it) can not be determined

until the program is complete.

Thus for the example on page II-3, we could have written the pro-
gram initially as:

100| ica i1

101| imr 43

102| iad bl

103 | its il

104 | iTOA+n1.2345¢
105 | isp 100

i1, +0,

bl, +2.

a3, +0,9995
It should be emphasized that at this point it does not matter what
we label the bracketed quantities so long as each label is unique. We
might even use names such as Joe, Tom, etc. However, the combination of
a lower case letter followed by an integer is a neat and convenient one
and has been adopted in the CS computer. (The letters o and 1 are ex-
cluded.)

Once we appreciate that these floating addresses (flads) can be
chosen at the programmer®s will, we recognize the possibility of mnemonic
labelling. This makes it easier for others to follow the program - and
also easier for the programmer himself to check his program. For example,
we could use the letter ¢ for registers assigned to contaiﬁ constants,
the letter x for a variable, etc. Thus the program above might have

been written as:

lOOl ica x1

101 | imr c2

102 | iad cl

103 | its x1

104 | 1TOA*n1.2345¢
105 | isp 100

cl, +2,

c2, +0,9995
x1l, +0,

M-2539-2 IV=4

Having introduced the idea of a floating address we might examine

the possibility of writing our sequence of instructions with such a pro-

cedure. Let us consider the example above, Note that the sequence of
instructions written there begins in register 100 and occupies each suc-
cessive register through 105. However, the only instruction whose ad-
dress needs to be identified is register 100 since that address is re-
ferred to by the instruction (isp 100) in register 105. Consequently,
we could have written this same sequence of instructions as follows:
al,ica x1

imr ¢2

iad cl

its x1

iTOA +nl.2345c¢

isp al

In this form the address al is floating - that is,Athe actual regis»
ter in storage to be occupied by the instruction ica x1 is unspecified,
Once we specify that al should be equal to 100, these instructions take
the form they had on page IV-3 since successive instructions will occupy
successive registers,

However, note the tremendous flexibility we have gained by using a
floating address form. First of all we do not need to write down a
whole lot of addresses, We need only identify or tag those registers to
which we wish to refer; e.g., we tag the register containing ica x1 so
that we can instruet the computer to transfer control to that register
at a suitable point in our program (isp al). For this reason we shall

refer to "al,™ as a floating address tag.

Secondly, if we discover that we have omitted an instruction we
need only insert it at the proper place. For example, if we had errone-
ously written:

al,ica x1
iad el
its x1
we need only indicate the correction by writing:
al,ica x1
iad ecl
its x1

imr c2

M-2539-2 Iv-5

The rewriting of the program into absolute address form is a simple
elerical procedurs, Eacb‘wqrd is assigned an absolute address in a con-
secutive sequence (remembering that numbers occupy two successive regis-
ters), and then the address seetion of each instruetion is replaced by
the corresponding one of the newly assigned absolute addresses, Since
the procedure is straightforward, it is perfectly possible to make the
computer perform the task automatically during input. The CS computer is
so arranged that this substitution of absolute addresses for fleoating
addresses is performed amtomatically when the tape containing the program
is read into the computer, Consequently, although the programmer nmay do
the job himself if he wishes, there is no need to rewrite a program in
absolute address form, The tape is simply prepared using floating ad-
dresses as indicated; the rest of the job is performed by the computer,
The actﬁal procedure followed by the CS computer in transforming float-
ing addresses to absolute addresses will be discussed in Chapter 7,

The letter and number(s) forming a floating address may be chosen
at will (except that the letters 1 and o should not be used because of
ambiguity with the numbers 1 and 0). One other réstriction is imposed
by the procedure used by the €S computer for keeping track of the flads
as the program is being read in. The sum over all letters of the maxi-
mum numbers used for each letter should not exceed 255 - €.8., if a pro-
gram used only the floating addresses al, a2, a3, al?, a9, x31, x100, and
25, this condition would be satisfied since 17+9+100+5=131 which is less
than 256,

It is possible to refer to a register that has not been tagged by a
floating address. This is done by referring its address to a floating
address that has been used, e.g.,

®00

bl,iea ¢l
its i1
iea il
al,imr e3

L -

isp bl+23

M-2539-2 IV-6

The instruetion isp bl+2 will transfer control to that register whose
address is iwo more than bl, Note we can obtain the same result by
writing isp al-l. This instruction would transfer control to that regis-
ter whose address is one less than al. Care should be taken in applying
this procedure to numbers since they occupy two successive registers,
Thus in the example:
al,+17.6
+3,984
-0,78
bl,ica al+2
its i1

LR

the instruction ica al+2 will place +3.984 in the MRA. The tendency, of
course, would have been to use ica al+l which would have been in error.
This is one ‘reason for avoiding the use of these address references. An
even more significant reason for limiting the use of this procedure is
the fact that it makes it as difficult to insert corrections as in the
case of absolute addresses, For example, if we wanted to insert +7. in
our program between +17.6 and +3,984, we would have to be careful to
correct the address of the instruection in bl, ete, Consequently, rather
than referring to the address of +3,984 by al+2, a different floating
address is advisable,

It should be pointed out that it is permissible to use both float-
ing addresses and absolute addresses within the same program. All of

the sample problems given above can be used with the CS computer.

K-2539-2 Iv-7

PROGRAMMING EXERCISES

Construect sequences of instruetions to carry out the f«ollawing pro-=
cesses on the CGS computer.

It will be assumed that x and y are numbers contained in registers
32 and 34 respectively at the beginning of each problem. All results
will be assumed to have values that will not exceed the capacity of any
registgr. Stop the computer after each problem.

1. Do the following examples of the first set of programming exer-
cises (on page II-6) using the cycle counter instructions if this will
shorten the program: |

a. eXx. 6 (No more than 7 instructions),
b. ez, 8 (a)

2, Initially N(cl)=z and N(c2)=w. Make N(c2)=z and N(cl)=w,

3. Find the sum.of the 200 numbers in the consecutive registers dl,
dl+2, d41+4,.040.,31%398. Place the sum in e4,

4. Caleculate x where x # O and where the cycle count pair (index
= +0, criterion = n 2 0) has been stored in registers 71 and 72 by a
preceding program; the value of n is unknown to you. Place the answer
in register 115,

M-2539-2

Solutions to progr

1, (a) ier 8

3.

ica 32
al,imr 32
iet al
its 115
isSToP

(b) ier 40
iea 32

al imr 32
iet al

its 77
isTop

ica clx
iex e2
its el
iSTOP

ier 200
ica c4

al, iad d1 + ¢
ict al
its c4
isToP

e4,+ ,0

4.

al,

a2,

115

Iv-8

amming exercises on p. IV-7:

iea 115
iex 71
icd 1
iet a2
its 115
iSToP
imr 32

isp al'

+1,

M-2639-2 V-1

CHAPTER V: INFUT AND OUTPUT

I. Input

Thus far it has been assumed that programs and data can somshow be

gotten into the computer without worrying in detail how one goeg about
actually doing so. The process is simple and straightforward, but certain .
conventions must be observed. The conventions are described. below.

Instructions, numbers, and certain control information must all be
typed on a Flexowriter tape-perforating machine. This machine can simule
taneously type a printed copy and punch a paper tape. In response to each
key that is depressed, a unique combination of holes is punched in each of
8ix of the seven positions across a 7/8 inch tape, the combination indicat-
ing which of the 50 different keys on the typewriter has been depressed.
The code values corresponding to each of the keys are tabulated on a list
called the Flexowriter code (see Table 1). The seventh hole is used for
control purposes and must always be punched (which is accomplished auto-
matically by leaving the button labeled "7th HME"™ depressed).

In point of fact, the programs are typed almost exactly in the form
in which they have been written in these notes so far. The ﬁasic rules
ares

Aes Instructions

Instructions are typed as 3 lower case letters followed either
by a floating address made up of one letter (not o or 1) and 1, 2, or 3
digits (any integer from 1 thru 255), or by an absolute address made up
of 2, 3, or 4 digits (any integer from 32 thru about 1591*) followed by
a carriage return or a tab shift. The only exceptions to this rule are
the "iSTOP" instruction for stopping the computer and the output instruct-
ion iTOA+n1.2345¢c. Other output instructions are available and will be
discussed in detail later in this chapter,

Bo HNumbers

Numbers are typed as a plus or minus SIGN followed by as many as
8 significent digits if desired with a DECIMAL POINT, NO COMMAS, followed
by a carriage return or a tab shift. Exponentials with bese 2 or 10 may

*
See Chapter XIII for detailed discussion of number of registers
available,

M~2539=2 V-2

5X105) o

Numbers may be zero or have any magnitude between about 5.5x10'20 and
ox10'8,
Co Absolute Address Assignments

be appended as factors each preceded by an x (e.g., +1234.56x2"

Absolute address assignmeﬁts are typed as a 2, 3, or 4 digit
integer (any integer from 32 thru 1418*)f0110wed by a VERTICAL BAR.
This causes the word that follows the vertical bar to be stored in the
register identified b& the absolute address that precedes the vertical
bar (that is, the word is "assigned" to this register). It should be

remembered that if the word is a number it will occupy two successive
registers, the first of which is specified by the absolute address that
precedes the vertical bar,

If the first word of a program is not preceded by an absolute
address assignment it will automatically be stored in register 32. All
succeeding words will be stored sequentially (with numbers occupying pairs
of registers) until an absolute address assignment is encountered. The
word that follows directly after the vertical bar will be assigned by the
general rule, All successive words that are not given absolute address
assignments will be stored sequentially following the last absolute

address assignment. For example, if a programmer began his program withs

ica 500
jimr 502
its 36
isp 70
+,0

70) ica 712
imr 36
its 602

X XX X3

he would find in storage in the CS computer:

% See Chapter XIII for a discussion of the variation possible in this
upper limite.

¥-2539-2 V-3

Address of Contents of
Begister Register
32 . - ica 500
33 imr 502
34 its 36
35 isp 70
36
} oo
37
[d °
L] L]
: :
70 ica 712
71 imr 36
72 its 602
° °
L] L
o]
< *

O0f course, if the first word of a program is preceded by an ahsolute
address assignment, the word will be assigned to the corresponding register
(or register pair). Succeeding words will be stored-sequentially in those
registers following the given absolute address until another absolute
address assignment is encountered, etc.

D. Floating Aﬂdress Tags

Floating address tags are typed as one lower case letter (not o
or 1) and 1, 2, or 3 digits (any number from 1 thru 255) followed by a
COMMA. This is called a tag since it is used by the programmer to identify
the word that follows it. For example: ¢l,+,5000 tags the constant
+,5000 so that it can be referred to elsewhere in the program (e.ge.,
imr cl), 7

The general rules given above ;n section C. for assigning words

to storage registers are unaffected by the presence of floating address

M-2539-2) V-4

tags. The floating address itself is set equal to the absolute address
of the register that contains the word tagged by the floating address.
Thus, if a program began with
‘al, ica 500
imr 502
its il
isp 70
il, +.0
70| ica 712
imr il
a2, its 602

L X 24

the programmer would find in storage:

Address 'contents
32. ica 500
33 imr 502
34 ' its 36
35 isp 70
56 +40
37
o (-]

° ¢

- -]

70 ica 712
71 imr 36
72 its 602
-} o

M .

The floating address al would be replaced by 32 wherever it appears in
the program, il by 36, a2 by 72, ete. It should be pointed out that the
only way a floating address gets set equal to an absolute address is

when that floating address is used as a tag. Consequently, if a floating
address is used in an instruction but is never used as a tag, the program
will be in error and not perform properly (see VI-1).

E. Beginning of Tape

In preparing the perforated paper tape to be read into the CS

M-2539 V-5

computer, the following two lines should be typed before typing the
program itself:

l. The first line should contain suitable identifying information.
The first word of this line should be *fe¢"™., No other eharadﬁerb should
precede the "fc¥. This word should be followed by the number that identi-
fies the tape and at least one space. The programmer may then write-his
name followed by a space and then the date. Commas may be used where
desired. However, the total number of characters (including spaces and
comnas should not exceed 60, Example of a typical titles

fo 125-45-6789 John Doea*

2. The second line should contain the special expression (24,6).

F. End of Tape
Each tape should conclude with a line containing i START AT xyz
where xyz denotes the address (e.g., al or bl2 or 719 or al+5) at which
the program starts. The words START AT are capitalized.
Go Typographical Errors

If the typist makes a mistake while punching a tape on the Flexo-
writer and detects the error immediately (before any more eharadtersvare
punched on the tape), then the tape can be corrected by backing the tape
one line in the punch; This places the incorrect character under the
punching heads. If the typist then presses the "Code Delete™ button, all
seven holes will be punched across that line of tape (this is called-a
"nullify" character). This character will be ignored when the tape is ..
read into the computer. Similarly, if several characters have been punched
after an erroneous one; all of these characters could be punched over with
the "nullify"™ character, starting with the first incorrect one. The
typing and punching can then be resumed with the correct characters. If
an error is undetected for a large number of lines, it is usually necessary
to duplicate the tape up to the error, then punch the correct character,
skip the error on the original tape, continue to duplicate it, etc.

Splices suitable for the available tape reader are difficult to
produce. Occasionally, ingenious ways of correcting small mistakes can

be found, but there are no standard and recommended ways availabla,

* The character Q" is used to indicate & carriage return.

M-2539-2 V-6

H., Corrections in the Program After Tape is Typed

A tape may be remade by duplication and correction, and if
floating addresses are used throughout; insertions and deletions may be
made at will in the program. Simple changes can sometimes be made by
adding words at the end of the tape, preceded by absolute address assign-
ments, This causes the new words to be read in over the incorrect words,
replacing them. To enable the programmer to make corrections in registers
whose absolute addresses are not easily determined; he may make use ofs

I. Floating Address Assigmments

Floating address assignments are typed as a floating address that
had been previously used as a tag, plus a small integer if desired; follow-
ed by a VERTICAL B&Ro This causes the next word to go into a register
already used, that is, the next word is "assignéd“ to this register,

Floating address tags should not be used in a program following
the use of a floating address assignment unless an absolute address

assigmment intervenes. For example:

Correct Incorrect

L] @

© L]

S) . -
a3, iad b4 a3, iad b4
its @6 its 6

[®

° .
aS! isu b4 a3| isu b4
550 | ica a5 ica a5
its i7 its 17
isp d¥ isp 43

01’ +.5 01’ +05

Both programs will replace the contents of register a3 by isu b4. However,
the program on the right will then store ica a5 in a3+l, etc. but it will
NOT associate the correct absolute address with the floating address cl.
Je Ignored and Synonymous Characters
The space and nullify are completely ignored by the computer.

Thus spaces may be used for typographical reasons wherever desired.
They are recommended between operation and address sections of instruct-

jons. Carriage returns are interpreted in the same way as tabs; both

M-25592 V-7

have the logical function of terminating a word. Extra carriasge returns
or tabs may be used at will except within words or addresses. Commas,
periods, signs; vertical bars, letters, and numbers &ll have certain
meanings and must not be used indiscriminately. The digit zero and the .
letter o are interchangeable as are the digit one and the letter 1., Shifts
to upper and lower case have meaning and should not be used indiseriminate
ely, but it is actually only when punctuation, letters, or.digits are
typed in upper case that special things happen. If the shift key is .
acsidentally pushed and no character typed before shifting down again, no
harm is done. Backspaces are permitted in titles, but nowhere else. An
important rule to which the computer adheres iss IF, WITHOUT MANUAL MOVING
OF THE CARRTIAGE, THE TAPE PRINTS AN ACCEPTAELE COPY, THE TAPE IS VALID;
i.e.;, there are no mistakes possible on tape that do not show on the -
typewritten copy when printed from the tapes

K. Layout

Qrdinarily, several words are typed to a line, separated from one
another by a single tab, the last word om a line being followed by,au
carriage return in place of a tab, The tab stops are set permanently
and should not be changed.

A series of 10 consecutive vertical bars (ealled a FENCE) may be
inserted where desired to subdivide the Flexowriter tape into convenient
visible blocks.

It is good practice to tab twice before an address tag or assign=-
ment and once after it; making it easy to spot the address on. the printed
page. However; a tag or assigmment need only be preceded by 222 tab and
followed by none (i.e., followed immediately by an instruction or a
number) 4

L. Sources of Error

There are numerous errors that can appear on a tape. They
manifest themselves in various ways. Some of these are looked for by

the computer.,
The computer detects the following mistekess numbers that are

too large, an excessive number of flads (more than 255, as explained on
page IV-5) or of output requests (more that about 50), illegal Flexowriter
characters (characters that do not appear in Table la on page V-16), refer-

ences to floating addresses that are not used as tags, illegal duplicate

M-2539-2 V-8

flad tags, starting addresses that are too large, programs that accidently
exceed the available storage, and the use of a flad tag after a flad
assignment without an intervening absolute address assigmment (see section
I. on page V-6). - -

Qther errors, such as addresses that are too large and ambiguous
words,are not specifically detected by the computer but usually cause
improper operation of the program. Careful proofreading of the program
typed during the preparation of the tape is suggested,

IT. Output
The basic ides behind the procedure that has been set up for an

output request is that the programmer should write a sample number in
his output request. A program will then be automatically set up in the
storage of the CS computer to present the output in the formvdesirede

The output media that are surrently available for these automatic
routines ares (1) a "direct™ typewriter on which numbers may be recorded,
(2) a ®delayed” typeﬁriter, where the numbers are first recorded in
Flexowriter-coded form at high speed on magnetic tape and later typed out
while the computer is doing something else, and (3) an oscilloscope
("scope®) with camera attachment. The maximum speed of these media and

the maximum number of characters obtainable on one line are as followss

1) Typewriter 8 characters/sec. 154 characters/line

2) Magnetic Tape (to be used later with Typewriter)154 characters/line
133 characters/sec.

3) Scope(with camera attachment) 6% characters/line
200-500 characters/sec.
A programmer indicates his output request by writing the letter i
followed by three upper case letters followed by a sample number. The

first of the upper case letters will be either an M for magnetic tape,
T for direct typewriter, or S for scope. The second is O to indicate

output. The third is A to indicate that he desires alphabetic or num-
erical (alphanumerical) output. For example, the request

M=~2439=2 V-9

iTOA+123.1234 : . (1)
will automatically set up in the storage of the CS computer a program
that will print out the contents of the MRA as a decimal number, with
proper sign, having three digifs'to the left of the decimal point and
four digits to the right. ‘

A. Initial Zeros '
If the number actually contains more then three digits' to the
left, the routine automaticélly adjusts itself toc print them all. On the

other hend, anj non-significant digits (i.e.; initial zeros) will be
printed as zeros. In many'opérations it is desired to skip initial zeros
(except for the ome just to‘the left of the decimal point) and print the
first significaht‘digit of the number at the extreme left of the column.
This feature can be obtained by inserting the letter "i"™ in the request
just before the sample number, e.g.,
iTOA+1123,1234 (2)

On the other hand, it is often desired to line up the numbers
so that the decimal points fall in a line. Yet it may be desirable to.
omit printing eny initial zeros. By inserting the letter "p" instead of

nz:n B
T GeBes iTOA+p123,1234 (3)
initial zerces will be printed as spacess
Bo Normalized Form

Finally, it mmyibe desired to print all of the numbers in a
normaelized form, i.e., all numbers are multiplied by a power of 10 such
that the first non-zero significant digit always falls in the same .
relative position with respect to the decimal point. In this case, the
number printed is followed by a vertical bar followed by the signed
power of 10 that the number is to be multiplied by. This kind of output
is obtained by inserting an "n" instead of "p", e.g.,

iT0A*n123.1234 (4)

As an example, consider the number -7.953261. The above request
will give the following printed numberss:

using form (1)eesaoceoasee=007.9532

(2)occsovesea=7.9532
(3)oecesocosom 7,.9532
(4)eeeeonenna=795.3261| -02

M-2539 -2 V10

c. Signs

If the programmer wishes to have the sign of all numbers printed,
then he writes + after the iTOA as in the examples already considered.

In some applications the programmer may know that all his numbers
are of one sign (e.g., positive) and thersfore may not want to take the
time or space to print the sign. -In this case he simply omits the sign
from his request; e.g.,

iTCA nl23.1234
and the printed number will be unsigned.

On the other hand, he may want only the negative numbers to appear

signed. For this he ﬁrites:

iTOA-n123.1234
Rote that he cammot get both positive numbers with signs and negative
numbers without signs from a single output instruction.

D. Terminsl Characters

In any of the cases above, the carriage of the typewriter will
remain exactly where it was after the last number was typed. It is poss=
ible for the programmer to terminate his number with one, two, three or
four spaces; or with a carriage return, or with a tab., To get the spaces
he simply writes the proper number of s’s after his number, e.g., to get

two spacesg

iTOA*1123.1234ss

To get a carriage return, use a "c" instead-of:.the s's:
iTOA+1123,1234c

and for a tabe
iTOA+i123.1234%

BE. Decimal Point
If the programmer wants only the digits to the left of the

decimal point printed and does not want the decimal point itself printed

(e.ge, for integers) he need only omit the point in his request, thuss
iTOA+1123ss

On the other handy; if his numbers are all less than one and he desires

to omit the decimal point in his print-out, he simply replaces the

decimal point by the letter "r" (denoting radix point), thuss
iTOA+nrl23ss

M~2439-2 _ V-l

to print three digits to the right with no decimal point printed. Note
that if the number in the MRA should unexpectedly exceed unity, then the
resulting digits to the left would be printed along with the desired
three to the right with no indicated decimal point,.

Fo Repetition of Qutput Requests

It is often desirable to insert output requests at different

points within the same program. Provision has been made in the €8
computer so that the sample number does not have to be repeated if that
sample number and the desired output medium are the same as the one pre--
ceding it in the written programs Thus if a programmer has written:
iTOA+i123,1234ss (5)
and writes the next output request as
iTOA
the form of the output will be the same as for (5).
Ge Scale Factors
It is possible to have the number in the MRA multiplied by a

scale factor before that number is printed out. The permissible scale

factors consist of exponentials with base 2 or base 10. As many such
factors may be used as desired. The factors should be written after the
semple number, and each factor should be preceded by an x. (N.B. The -
"+" sign should not be written for positive exponents.)

Thus if the programmer desired to have the number in the MRA
multiplied by 2° x 10”3 before printing it out, he would write his request
in the following forms:

iTOA+3123.1234 x 2° x 10 0ss

Ho Special Characters

Provisions are available for printing out special characters
(such as a decimal point, space, tab, sign, or carriage return) by them-
selves (i.e., without printing some number with it). A request such as:

iTOA ¢

will cause a carriage return to be typed on the "direct" typewriter. The
significant characteristic of this request is that no sample number is
indicated,

The symbols for the special characters are the same as those
introduced above. Only one symbol should be used in any given request.

Thus the request iMOA +, will not record e plus sign and a decimal point

M-2539=2 . = : : V=12
on the delayed printer. To obtain such a sequence of characters the
programmer should requeste

iMOA +

iMOA.

Provision has not been made in the CS computer for repeating
requests for special characters as disecussed in section F. of this
chapter since the saving of programmer’s time would be trivial. - Conse-
quently, a request for just a special character (no sample number) should
always include the necessary symbol for the desired character,

I. Magnetic Tape Stop Character

In making use of magnetic tape for delayed printing it is desire.
able that each programmer terminate the Flexowriter printing from magnetic
tape to avoid printing information recorded subsequent to his owno L
special "STQP CODR™ character, which can be recorded on magnetic tape,
will automatically stop the delayed printout equipment. It is possible
for a programmer to provide this stop code character automatically as
follows, l

The output requests

iMQA. end _
can be used by a programmer when he has completed his recording on
magnetic tape to mark the end of his information. The WiMGA ehd” request
records successively on magnetic tape a shift to lower case, stop code
character, two carriage returns, and another stop code character,
J. Page Format

It is often desirable to arrange a set of numbers that are to be
printed out according to a predetermined page layout. The pertinent
information for such an arrangement specifies how many numbers are to
be printed per line; how many spaces are desired between numbers, and
how many numbers are included in the ssts Thus three counters are required
for keeping account of these numbers.

This counting can be set up automatically in the €8 computer by
means of the instruction

i PORMAT or, more briefly, i PQR
followed by a tab or carriage return, followed by the three pertinent

counts separated by tabs or carriage returns. Thus the request:

H=2539=2 . V13

i FOR
X
P
J\.

will set up counters to provide X. numbers per line, B spaces between
numbers, and ¥~ numbers per blocks, & , B and X~ are positive
integers and should be written without a decimal point. <X and p are .
restricted by the requirement that the number of characters per line on
the Flexowriter should not exceed 154, If a programmer sets B = 0, he
will obtain a tab between his numbers, JA' can be any positive integer
not exceeding 32,767. A typical request would bes
| i FOR

+ 10

+ 2

+ 95
giving a block of 95 numbers with 10 numbers per line for 9 lines, 5
mumbers in the last line, and two spaces between each number,

After J*' numbers have besen printed out, two carriage-feturns
are typed and the counters are reset ready to lay out a new block., IF
the programmer prints out fewer than JL numbers, the carriage of the
Flexowriter will be left in a position determined by the last number
printed out.

To make use of the counting facility described in the preceding
paragraphs, the programmer need only uge the letter "f" as his terminal
character (instead of the characters suggested in section D above).

Thus the request

iTQA+nl,2345f
will print out a number in a form already deseribed. After the number
has been printed, the counter Jb will be increased by 1 to see if a
block has been completed. If it has, two carriage returns will be typed
and the counters will be reset., If not, the counter X will be
increased by 1 and a test will be made to see if a line has been com-
pletede If it has, a carriage return will be typed and X will be
reset. If not, P spaces (or a tab if B=0) will be typed and the carriage
of the Flexowriter will be left alone awaiting further output instructionms,

Thus, the request i FOR, when executed, sets the counters and

lil—2.539-2 V=14

calls in the routines needed to effect the counting. Any subsequent
i FOR requests will simply reset the counters. It should be emphasized
that the i FOR request does not return the carriage of the Flexowriter
to its left-hand margin (since at this time the routine does not know
what medium the progremmer has selected). For this reason the programmer
should be sure to return the carriage accordingly by a special request
such as iMGAc (as a rule a programmer may assume that before his program
is run on the machine the carriage has been returned by the computer
operator to its left-hand margin).

The actual page layout counting is done in response to the suffix
£ used as the terminating symbol, Qbviously any request using any other
terminating symbol will not affect the counters and hence may spoil the

isyout unless planned by the programmere

V=15

M-2539-2

fec TAPE NO. 123-45-6789 SMITH

icapi+c
ictso+4
icapi

imrpl+6

°

ispsi

ispsi+2
itssl+3
imrpl+6

e
®

1cts2+3
ispwi
icapl+h

*
L2

»

ispsi+2
isp0O
iadtl

°
°

.

(MAIN BODY OF PROGRAM OMITTED FOR BREVITY)

(24,6)

s2,itas2+3 ier7
icapl+il+c ispsi
icapl+3 itstl 1tstl+2
ispsh icapl+5 idvs4+3
NERRRRENN

pl,+. -5.74x10~°%

+. +1.0x1078
1TOA+1123.1234ss

icapl

1TOA

icall

1TOA-112345.67c

isps2

1 START AT a1l

o

+.034274L
+.

+.

°

+1716.226
bl,1lcan2

°

AN EXAMPLE OF A PROGRAM TYPED FOR THE CS COMPUTER

icrb
s3,itas3+3
imrn2+6

M-2539-2 V-16
TABLE 1, THE ‘FL' FLEXOWRITER CODE

Alphanumerical Sequence

Lower Upper Character Decimal Octal j Lower Upper Character Decimal Octal
Case Case 123456 Value Value | Case Case 123456 Value Value
a A 000110 6 6 0 o 111110 62 76
b B 110010 50 62 i 1 010101 21 25
e C 011100 28 34 2 2 001111 15 17
d D 010010 18 22 3 3 - 000111 7 7
e E 000010 2 2 4 4 001011 11 13
f F 011010 26 32 5 S 010011 19 23
g G 110100 52 64 6 8 011011 27 33
h H 101000 4o 50 7 ‘ 010111 23 27
i I 001100 12 14 8 8 000011 3 3
j J 010110 22 26 9 2 110110 54 66
k K 011110 30 36 { _ 000101 5 5
1 L 100100 36 Iy | space bar 001000 8 10
m M 111000 56 70 = : 001001 9 11
n N 011000 24 30 + / 001101 13 15
) o} 110000 48 60 | color change 010000 16 20
P P 101100 4y 54 .) 010001 17 21
q Q 101110 46 56 , (011001 25 31
r R 010100 20 24 - - 011101 29 35
S S 001010 10 12 | back space 100011 35 43
t T 100000 32 40 | tabulation ° 100101 37 45
u U 001110 14 16 carr. return 101001 ke 51
v v 111100 60 74 | stop 110001 4g 61
W W 100110 38 46 |upper case 111001 57 71
X X 111010 58 72 lower case 111101 61 75
y Y 101010 yo 52 .| nullify 111111 63 77

zZ Z 100010 34 4o

M=-2539-2

Decimal Octal Character Lower Upper

TABLE 2.

THE “F LII

FLEXOWRITER CODE

Binary Numerical Sequence

V17

Decimal Octal Character Lower Upper

Value Value 123456 Case Case | Value Value 123456 Case Case

0 0 000000 not used 32 40 100000 t T

1 1 000001 not used 33 41 100001 not used

2 2 000010 e E 3% 42 100010 z Z

3 3 000011 8 8 35 43 100011 back space

4 4 000100 not used 36 4y 100100 1 L

5 5 0001.01 _ 37 45 100101 tabulation

6 6 000110 a A 38 46 100110 W W

7 7 000111 3 3 39 47 100111 not used

8 10 001000 space bar 40 50 101000 h H

9 11 001001 = 44 51 101001 carr. return
10 12 001010 S S 4o 52 101010 y Y
11 13 001011 4 4 43 53 101011 not used
12 14 001100 i T 4y 54 101100 p P

13 15 001101 + / 45 55 101101 not used
14 16 001110 u U 46 56 101110 q Q
15 17 001111 2 2 y7 57 101111 not used
16 20 010000 color changd 48 60 110000 o 0

17 21 010001 . kg 61 110001 stop

18 22 010010 d D 50 62 110010 b B
19 23 010011 5 s 51 63 110011 not used
20 24 010100 r R 52 64 110100 g G

21 25 010101 1 1 53 65 110101 not used
22 26 010110 j J 5k 66 110110 9 °

23 27 010111 7 v 55 67 110111 not used
24 30 011000 n N 56 70 111000 m M
25 31 011001 s (57 71 111001 upper case
26 32 011010 f F 58 72 111010 x X
27 33 011011 6 8 59 73 111011 not used
28 34 011100 c C 60 7% 111100 v '
29 35 011101 - - 61 75 111101 lower case
30 36 011110 k K 62 76 111110 0 °

31 37 011111 not used 63 77 111111 nullify

¥-2539-2 VI-1
CHAPTER VI: ERRORS AND POST-MORTEMS

Even the most carefully written and well organized program is likely
to contain mistakes. In fact, the location and correction of these mis-
takes often constitutes most of the effort required in the development
of a working coded program,

Consequently, several facilities have been included in the Compre-
hensive System to aid in the location of mistakes. The general term
"post-mortem" is used to denote any information printed or displayed by
the computer expressly for the purpose of locating, or aiding the loca-
tion of, a mistake,

Several such post-mortem facilities are available, The present
chapter will give only an introduction to the use and interpretation of
the post-mortem facilities. A more detailed exposition will be given in
Chapter XVII, ‘

In the process of reading and converting a Flexowriter program tape
(fc tape) a check is made by the conversion program.fgr certain cleriecal
errors which can be recognized before the program is actually performed
by the computer. One or more mistakes discovered by this check result
in a "conversion® post-mortem, This conversion post-mortem consists of
a short phrase giving a brief description of the mistake which is typed
on the direct printer (the Flexowriter connected directly to the com-
puter), Examples of two of the most common conversion post-mortems are

unassigned flads
al at 240

duplicate flad is b5

The first of these results indicates that a word at 240 has referred

and

to a tag al which has not been defined by the program. BEvery tag re-
ferred to by an instruction must be located or assigned somewhere in the
program by the notation "al," followed by the information to be placed
at this location. If the quantity to be located at al during progran
read-in is immaterial, nevertheless some quantity, if ohly +0,, should be
placed at the location al. E.g., al, +0,

On the other hand, if the notation "al," occurs at two distinect
points of the program, the symbol al is ambiguously defined and will re-

sult in the second conversion post-mortem mentioned above,

M-2539=2 VI-2

A complete list and explanation of the various possible conversion
post-mortems is given in Chapter XIV,

In addition to the conversion post-mortem, the comprehensive system
includes the programmed arithmetic post-mortem (PAPM) and a post-mortem
tape (fp tape) program.

The PAPM, if requested, gives the programmer a statement of the con-
tents of certain standard registers in the programmed arithmetic subrou-
tines associated with his program, The information recorded by the PAPM
can not be controlled by the programmer, bubt in the majority of cases
suffices for the location of the mistake. The fp tape, on the other hand,
allows the programmer to obtain information from any drum or core memory
register which may be useful in the detection of a mistake.

The PAPM can be requested by a programmer by an appropriate check
on his performance request if no fp tape is submitted. An fp tape causes
an automatic PAPM if programmed arithmetic subroutines have been called

for and used {for more detailed comments see Chapter XVII).

CS PA Post-mortenm

A sample CS PAPM is given here:
fe 191-25-62 JONES 0622.1 11-10-55
(24,6) PA PM
stopped at 279 279| iex493+c 499 | -.12345678| +7 wra| +.12345678 | +22
1633 0| 0,10 1|||3,12 2|o,o 5/0,0 4fo,7 s5|6,6
509| icp606 615| isp285 320fisp221 246| icp255 274|icp278

The PAPM results (see the above sample) are divided into five sec-
tions,
Section 1. Identification. This usually occupies the first two lines
and ircludes the title of the last tape converted plus the date and time
on the first line and the number system followed by the letters PAPM on
the second line.
Section 2, In the example shown the computer stopped while performing*
the instruction in register 279, which was i1ex493+c, The index of the

most recently selected counter was such as to cive an effective address

*This section contains information about the interpreted instruction
which was being executed or which was most recently executed.

M-2539-2 VI-3

of 499, Register 499 (and 500) contained the gd number -.123456789| +7,
The contents of the register(s) referred to by the interpreted instruc-
tion on which the program stopped are printed out in a manner deemed
most useful to the programmer. The details are contained in Chapter XVII.
Occasionally you may get a PAPM showing that the program stopped
while executing isp or iep or iet., This can happen only when the com-
puter ﬁas stopped manually, and is probably due to the kind of manual
stop described in Chapter XIII.
The contents of the MRA as a 9-digit gd number is recorded at the
end of the section,
Section 3. The counter section., The contents of the index and eriterion
registers, respectively, of all the counters called for by the program
are printed here. The address at the beginning of the section is the
decimal address of the index register of the zeroth counter, The number
of the counter most recently used is followed by two extra vertical bars.
In the example, counter 1 was most recently used. The index of counter 1
is such as to yield an effective address of 499 in the iex493+c¢ instruc-
tion, Counters are printed 10 fto a line., If counters are not called for
by the program, this section will not appear in the PAPM,
Section 4. The jump table. The PA routine keeps a record of the regis-
ters containing the 5 most recent isp or effective iep, i.e., transfer of
control or jump, instructions. This is a continuing "delay line" kind of
table - entries come in one end and go out the other end 5 jumps later,
Transfers due to iet instructions are not entered in the table. When a
PAPM is given, the addresses in this fable are printed out and each ad-
dress is followed by a vertical bar and the contents of that register
as an interpreted instruction.* The most recent jump appears last in
the section, that is, the entries read chronologically from left %o

right. It should be emphasized that the contents of the registers are

* All automatic output requests become a non-interpreted transfer of
control to a routine or routines, automatieally assembled in Core Memo-~
ry immediately preceding the PA routine., All interpretive automatic
output (e.g., iMOA---) routines return control interpretatively to the
main program by an isp. Such isp's will be as much a part of the jump
table as any other interpreted transfer of control. They can usually
be identified by a large address preceding the vertical bar.

M-2539-2 Vi-4

printed as they appear when the PAPM is given, which may not necessarily
agree with the contents when the jump was actually executed., If less

than 5 jumps have been executed, only those will be printed. If no
Jumps have been executed by the interpretive routine, the phrase ™no
Jumps" is recorded. '

If in the event of a mistake, information not included in the PAPM
is desired, such information can be obtained by means of a post-mortem
request tape (fp tape). If an fp tape is used, request for a PAPM is
not necessary since a PAPM is provided automatically for a program which
inciudes one or more instructions beginning with the letter i (iad9 iek,
etc.)o

In typing an fp tape it is essential that the first two characters
on the punched tape be the letters fp. No other characters may precede
or intervene between this pair including characters which may not appear
on the typed copy such as delete, carriage return, space, tab, color
shifts or black space. The characters fp may be followed by any identi-
fying information desired, provided that no carriage return is typed
except at the end of this information where one is required. Following
this carriage return requests for the contents of groups of registers
recorded either as interpreted instructions or gensralized decimal
(floating point) numbers may be requested in the following form:

346 1i 741

973 gd 1i2

The abbreviations ii amd gd stand for interpreted instructions and
generalized decimel, respectively., The location of the initial register
of the group requested is typed before the abbreviation and the location
of the final register requested is typed following the abbreviation.

The unit on which the post-mortem infbrmation is recorded is de-
termined by the nearest one of the three letter abbreviations DEL, DIR,
or SCO preceding the request. These abbreviations cause the post-mortem
information to be recorded on the delayed typewriter (via magnetic tape),
direct typewriter or film (via the osecilloscope) respectively. Since
computer time is used for printing on the direct typewriter, this form
of recording should be avoided. In the absence of any specific designa-
tion of output unit the delayed printer will be used.

M=2539=2 VI=-5

The last request of a post-mortem tape must be followed by two
vertical bars (il).

A typical post-mortem tape might resemble the following sample:

fp Ebenezer Aloysius Doe, Esq. - Tuesday

175 ii 175 SCO 176 gd 201

DEL 205 ii 209] |

The contents of register 175 would be typed on the delayed printer
as an interpreted instruction, the registers from 176 to 201 inclusive
would be recorded as 13 generalized decimal numbers on film and the 5
registers from 205 through 209 would be typed from magnetic tape by the
- delayed printer.as inferpreted instruetions, - - o=

Since a request for generalized decimal numbers always invoclves an
even number of registers, these requests must ineclude both an even and
odd location, If this is not the case, only the numbers within the
gpecified range will be recorded,

M-2539-2 VII-1

CHAPTER VII: SUBROUTINES

In preparing a program to solve a problem on a digital computer,
the programmer frequently will find that his program naturally breaks
down into a series of groups of instruetions, each performing some neces-
sary operation. One or more of such groups often are written to perform
the operation denoted in one of the blocks of the flow diagram for the
solution of the problem. Examples of such operations are the extraction
of roots of a number, the calculation of the values of a function for
values of the independent variables, ete., If such operations occur in
many different programs, much programming time will be saved if these
routines are available t0 the programmer without the necessity of his
preparing them. Such groups of instruetions, which perform particular
operations, are called subroutines, and a collection of such subroutines
is usually called a subroutine library. ZEven if particular routines are
not available in the subroutine library, the programmer may still find
it desirable to write these himself as subroutines im his program, both
to simplify the logical structure, and to save space if the same routine
is to be used at different points in the progran, .

As an illustration of a subroutine, let us assume that the polyno-

2

mial function ax® + bx + ¢ is to be evaluated for a particular value of

X which is in the MRA, A program to evaluate this function would be

its bl store x

imr al form ax

iad a2 form ax + b

imr bl form ax® + bx

iad a3 form ax® + bx + ¢

which uses the registers
al, a coefficients of the polynomial, which will be
a2, b particular numbers depending on the particular
a3, ¢ problem,
bl, +0. storage for x
If we wish to make this subroutine a self-contained block, then an

isp order will be needed to skip around the registers containing numbers,

M-2539-2 VIi-2

as
isp pl
al,
a2, b
a3, e
b1, +0,

pl, its bl

imr al
iad a2
imr bl
iad a3

This subroutine is now ready for insertion where needed in a pro-
gram, If this subroutine is a member of the subroutine library, there
is a punched paper tape containing these instruetions kept in a file,
and this tape can be copied into the main program wherever desired., If
a programmer is using a subroutine from the library, he must carefully
ascertain exactly what the subroutine will do, how many registers it
will occupy (if storage space is critical), where it places the result
or results, what its accuracy is (if this is a factor), ete, If he is
interested in the time required by his program, then the time reguired
by each subroutine, if it can be determined, will be necessary.
Belative Addresses

If a floating address is used in a subroutine, whether written by

the programmer or obtained from the subroutine library, the programmer
must avoid using this same floating address in other parts of the same
program, since the C3 computer cannot handle the ambiguous situation of
one floating address corresponding to two different absolute addresses.
Since several subroutines from the library might be used in the same
program, this also means that all library subroutines would have to use
different floating addresses (and none could be used twice in the same
program}, For these reasons, floating addresses are not used in library
subroutines, Also, absolute addresses cannot be used in library sub-

routines since the programmer must be permitted to place such subroutines

M-2539-2 VII-%

at any point in his program. However, references to other registers in

the subroutines are usually necessary; for this purpose relative addresses

are used, Thus, a register is labeled not by an absolute or floating
address, but by its position relative to some arbitrary register called
the reference register, which is usually the first register of the rou-
tine. Relative addresses are indicated by the suffix r, i.e., 3r refers
to the third register after the first register of the subroutine.* When
the program tape is fed into the machine, relative addresses are con-
verted by the machine to absolute addresses by adding the relative ad-
dress to the absolute address corresponding to the referenece register,

If the above example is written in terms of relative addresses, we have:

Or, isp 9r The Or, is used to specify the reference
ir, a register, as will be explained in the
3r, b following paragraphs. The lr tags
5r, c the instruction (or number) that fol-
7r, +0, lows as the register (or pair of regis-
9r, its 7r ters) whose absolute address is the
10r, imr 1r reference register plus one
1lr, iad 3r
1l2r, imr 7r

13r, iad 5r
Not all the instructions or numbers in such a subroutine need be prece-
ded by relative addresses. The use of relative addresses is similar to.
the use of absolute addresses in that counting of registers is required;
if an instruction or number is omitted by the programmer, it may be
necessary to renumber the registers and the cross-references in the rou-
tine after the insertion of the desired material,

There are two ways to indicate to the machine the absolute address
of the reference register: (1) If the subroutine is to be started in
a certain absolute register, say 100, then the programmer should write
100]or, followed by the first imstruction of the routine. Thus if it

were desired to have the above subroutine begin at register 100, the

* The relative address 3r should not be confused with the floating
address r3,

¥-2539-2

programmer could write
100 |0r ,

isp
a
b
e
+0,
its
imre
iad
imr

iad

9r

7r
1r
3r
7r
5r

This would appear in the machine as

100

101
102

113

isp

a

+0,

its
imr
iad
imr

iad

109

107
101
103
107
105

VII-4

(2) If a programmer using floating addresses wishes this subroutine

to start in al, he may write

al,Or,

isp 9r

1r, a
3r,b
or, ¢

7r,+0.

its 7r

Note: we could omit the relative

address assignments lr, 3r, etc.

(cont. on next page)

M-2539-2 ’ VII-5

ime 1r
iad 3r
imr 7r
iad 5r

Since subroutines in the library have the Or, of the first address
punched in the tape, the programmer can simply write "1001" or "al,"
before indicating that the subroutine is to be inserted at this point.
Actually the "Or,"™ is superfluous after the floating address tag "al,®
since the comma in a floating address tag makes the register so tagged
become the reference register. To indicate that a subroutine, say
number 10, from the library is to be inserted at a particular point in
the program, the programmer may write "LSR tape no. 10" on the line fol-
lowing the al, or the lOOI. This will appear on the typewritten copy of
the program and will be punched on the paper tape. The library tape
containing the subroutine is then duplicated on the program tape., A%
the end of the subroutine tape appears the words "END OF SUBROUTINE, "
These two groups of words are used to indicate on the typewritten sheet
the positions of various library subroutines (ISR), which helps make
this copy of the program easier to follow,

Unlike floating addresses, the same relative addresses may be used
at many points in a program. In each block of instructions in which
relative addresses are used, the reference register is determined by the
most recent word which contains a comma in the address-tag section, e.g.,
"0r,"” in the above example. If we wished to evaluate the above poly-
nomial for two values of x, say Xy and x,, stored in register 4l and d2,
and to type the results on one line, we could write

ispel

dl,xy

dz,xy

¢l,ica dl

(continued on next page)

M=-2539-2 ViI-6

cé,iSP 9r
a
b
c
+0,
its 7r
imr 1r
iad 3r
imr 7r
iad 5r
iTOA+n1,2345%
¢3,ica 42
c4,isp 9r
a
b
c
+0.
its 7r
imr 1r
iad 3r
imr 7r
iad Sr
iTOA+nl.2345¢
If this program were Library Subroutine tape number 10, then the
programmer would get the same program by writing
ispel
dl,xl
dz,xz
el,ica 41
e2,
ISR Tape No. 10
iTOA+n1,2345%
c3,ica 42
c4,
ISR Tape No, 10
iTOA+n1,2345¢

M-2539~2 VII-?

When this program appears in the computer, the absolute addresses in
corresponding orders of the subroutine in its two positions will be 4if-
ferent, since the reference registers are different in the two cases.
Closed Subroutines

Obviously, it is wasteful of storage registers to place the same
subroutines at two or more points in storage. Some saving could be
realized by using floating addresses to tag the registers containing
the eonstanfs in the subroutines, and then placing these at only one
point in the program. For subroutines written by the programmer, this
is feasible, but for library subroutines it would require changing these
routines, which we wish to avoid. In addition, this probably would not
amount to a substantial saving, since the constants in a subroutine mor-
mally do not occupy many registers of the routine., For these reasons, a
special order has been built into the CS computer which permits the Pro=-
grammer to leave his main routine, go to a subroutine to perform some
particular operation, and then return to the next register of the main

program. This order is ita.

ita al Iransfer address transfer, into the address O.4ms -
section of the instruetion
in register al, the address
that is one more than the
address of the register con-
taining the last isp (or iep
with N(MRA)&0)

To illustrate the use of the ita al instruction, suppose we rewrite

the program:
al,ica dl pick up X
isp ¢3 go to subroutine
iTOA+nl.2345t print the resulting N(MRA) followed by a tab
ieca d2 pick up X,
isp ¢3 go to subroutine

(continued on next page)

M-2539=2 VII-8

iTOA+n1,.2345¢ print N(MRA) followed by a carriage return
. go on with program

e¢3,0r, ita 61
its 137
imr 7r
iad 9r
imr 13r
iad 11lr
isp ©
a
b
c
+0,

al,x

d2,x

1

2

Note: It does not matter what address is initially written in the isp
instruction in 6r, since the ita instruction will write the correct
return address in this instruction whenever the subroutine is entered by
an isp or iep from the main program. This new construction of the sub-
routine also removes the necessity for the isp formerly required to

skip around the group of constants in the subroutine,

The above subroutine, starting with the ita in e3, could be placed
anywhere in storage and can be entered from any other point in storage.
It is a completely self-contai ned block of instructions which carries
out a particular operation when entered with a value of x in the MRA and
returns control to the main program when this operation has been com-
pleted. This type of subroutine is called a "closed subroutine” as con-
trasted with those subroutines (given in the first examples of this-
chapter) which must be placed in the main program wherever they are re-
quired and are called "open subroutines", When a closed subroutine has
been placed in storage, we may regard the isp order which "calls" in
the subroutine (like the isp ¢3 above) as representing a new order, in

this case an order which evaluates the value of the polynomial for the

M~-2539=2 ViI-9

particular value of x in the MRA., The subroutines in the library are of
the closed type and therefore have an ita as their first instruetion.

A library of subroutines can be a great asset to the programmer,
particularly since most problems ean be written as a sequence of smaller
standard operations which are probably represented in the subroutine 1li-
brary. Time is saved by using the subroutine library, not only in the
composing and writing of the instructions for the routine, but also in
checking the program for mistakes, since the library subroutine has been
tested and should be correct. If the programmer writes his program as a
sequence of subroutines called in by a main program, it may simplify the
work of writing the program and each new subroutine can be tested sepa-
rately as it is written making it easier to isolate and correct any
mistakes.

Parameters _

The subroutine that we have just evolved will evaluate the given
polynomial for any value (within the storage limits of the CS computer)
of the variable x,

Let us now suppose that we have a program in which we wish to evalu-
ate a number of different polynomials each of the same degree but with
different sets of coefficients. We could make use of a group of sub-
routines, one for each case, but these subroutines would all have a
great deal in common and it would be a waste to store eqch one in full,

What is required is to be able to modify one copy of the subroutine
to meet each case as it arises, or to have the subroutine modify itself
as required. OSomehow the user must be able $0 specify the information
that is needed to modify the subroutine. This specification is called a
parameter of the subroutine,

Program Parameters

When a parameter is provided by the program it is called a program
parameter. For example, sets of coefficients for the polynomial sub-
routine could be stored in the main program to be used when needed,
Such program parameters need not be stored a priori in the program, but
they can actually be determined as part of the program. The variable x
itself is a good example of a program parameter., The value of x for

which the value of the polynomial is to be found may be determined by

M-2539-2 ViI=-10

the program.

The most convenient place for the program parameter is in the MRA
since the contents of the MRA are unchanged by the isp, However, only
one such parameter can be stored in this way. Also, since the MRA is
used in the subroutine, its initial contents must be processed immediate-
ly or be lost. This places restrictions on the subroutine.

The next most convenient place for the program parameter is in the
main program in the register or registers following the isp to the closed
subroutine. The reason that this location is convenient is that the ad-
dress of the register following the isp is available to the subroutine
through the mechanism of the ita instruetion. Unfortunately, the CS
computer ddes not contain any simple means for setting the necessary
addresses to refer to these registers. The procedure for handling such
addresses makes use of instructions and techniques that will be described
at a later stage in the development of the CS logic., Consequently,
further discussion of the use of program parameters will be postponed for
a later chapter.

Preset Parameters

The use of program parameters permits the variation of a parameter
from time to time during the execution of the program. In the case of a
library subroutine, however, it frequently happens that although it is
useful to be able to choose a value of the parameter to sult a particular
program, it is no hardship to forego the ability to change the parameter
during the execution of the program. This means that the parameter can
be fixed before the calculation begins, and need not be reset each time
the subroutine is called in.

The setting of the appropriate parameter for a particular program
must be done when the program is read into the machine, The form of the
subroutine which is kept in the library files must be applicable to all
permissible values of the parameter. If the fullest advantage is to be
taken of the subroutine, we want to be able to copy it directly onto a
program tape without having to make any alterations. The machine itself
must therefore adjust the subroutine according to the parameter value
chosen. It does this as the program is read into the machine, so that

by the time the whole program is in the machine the subroutine is in the

M-2539-2 VII-1il

form required by the particular program. Because the parameter is fixed
before the execution of the program begins, it is called a preset
parameter,

Various methods have been used with various machines for incorpora-
ting preset parameters intoc the subroutine. They all require that the

value of the parameter be defined (i.e., identified and specified) by

suitable punching on the tape preceding the portion of the tape on which
the subroutine itself is copied. During the read-in process the machine
remembers the identity and specified value of the preset parameter.
Hence, when it reads in the subroutine, it is able to incorporate the
preset parameter correctly into the subroutine. A list of the pertinent
preset parameters ére always included in the description of the subrou-
tine. For the convenience of the programmer, preset parameters are usu~
ally chosen so that if their values are not specified they automatically
assume their most common values (which should be zero for subroutines to
be used in the CS computer).

In the G3 computer, preset parameters are identifised by the fact
that they consist of two lower case letters followed by a decimal integer
less than 41 but greater than zero. The first letter must be one of the
following three: p, u, or z. The second letter can be any letter other
than o or 1. Care must be taken that the sum over all parameter letter
pairs of the maximum numbers used for each letter pair does not exceed
40, For example, if the preset parameters pa 2, za 5, za 7, pd 7, zg 4,
ug 6, ug 8, and zz 11 were used in a given program, the condition would
be satisfied because 2+7+7+4+8+11 = 39(41. 4

A value is specified for a preset parameter simply by writing down
the parameter followed by an equal sign, the value to be assigned, and

finally a tab or a carriage return, For example, if it is desired to

set the preset parameter pa 2 to the value +8, che simply writes in his

program: pa 2 = +8 (followed by a tab or carriage return).

Preset parameters may be set equal to any positive or negative integer
not exceeding 32,767 in magnitude (this integer must not contain any
decimal point ~ see Chapter XIV), In addition, a preset parameter may be
set equal to a floating address, an absolute address, or to another pre-

set parameter provided they are assigned suitable integral values

H-2539-2 VIiI-12

elsewhere in the program (the floating address, an-ahsolute address .or

by being used as a

tag, the preset parameter by being explicitly assigned an integral
value),
The following subroutine evaluates a polynomial.anxn+ see FTa_X+3

10

(11> n (integer)> 0), where the coefficients 8yzeacascs,dyy 2T stored

in fixed registers in the subroutine, (Such a polynomiallgight Tepre—
sent an approximation to an arbitrary function where the accuracy of the
approximation can be varied by varying n.)
ppl=
Or,ita 8r
its 9r
ier ppl
ica 1lr
4,iad 33r - ppl - ppl + ¢
imr 9r
iet 4r
iad 33r
8,isp O
+0,
40,

210

89
Actually, the numerical value of the

coefficients of the polynomial would

0 o » o =@

appear here.
0

If the programmer wanted a 5th degree polynomial then he would
write ppl = 5. If he wanted a 6th degree polynomial, then he would
write ppl = 6, etc,

Temporary Storage

In many routines, certain registers are used only to hold inter-
nediate results, For example, in the program on page VII-1, the initial

contents of register bl is immaterial., When it is desired to evaluate

M-253¢~2 VII-13

the polynomial for some value of x, the value of x is stored in register
bl and the evaluation is carried out. If this particular value of x is
not needed elsewhere in the program, the éontents of register bl again
becomes immaterial. Such registers whose contents are set and used when
needed during the execution of the program and are otherwise immaterial
are called temporary stcrage registers,

A programmer who finds it necessary to make use of such registers
will simply set aside certain registers for this use. For example, regis-
ters 46, 47, 48, and 49 in the program on page I-6 were set aside to hold
temporarily the indicated intermediate results. If such a program were
used in conjunction with one or more subroutines which also made use of
temporary storage registers, then it should be possible by the very
nature of a temporary storage register for the main routine and the sub-
routines to make use of a common set of registers. The number of regis-
ters in this set will be determined by the maximum number of registers
whose contents are needed in the program at any given time.

The difficulty that arises in using such common sets of temporary
storage registers is that we need some way for each of the routines to
refer to the common set. In the CS computer the label Ot denotes the
first of a set of consecutive temporary storage registers, 1t the second,
2t the third, etc. The label "0t™ is usually abbreviated as "™t" (i.e.,
0t and t are synonymous; both refer to the same register).

Temporary storage registers are specified in the same manner as are
preset parameters. The programmer simply writes, for example, t=1400
(or, t=al) and henceforth any reference to a temporary storage register
is determined., For example, ica 2% becomes ica 1402, its t becomes its
1400, (Similarly with t=al, ica 2t becomes ica al + 2; its t becomes
its al,) Note that once t (or Ot) has been specified then all of the
other temporary storage registers are also specified. Hence the program-
mer must be careful to set aside in sequence the proper number of tem-
porary registers that will be needed. The number of registers required
for any library subroutine is always included in the associated speci-
fications,

Thus, for example, if the main program needs three temporary storage

registers, and if we use two subroutines, one of which makes use of five

M-2539-2 ViI-14

temporary storage registers and the other subroutine only one, then we
would set aside in our program a block of five registers to be ugsed as
temporary storage registers. If this block began in register 1400 (or
al), then in our program (usually at the very beginning) we would write
t=1400 (or, t=al). Just as for preset parameters, it is necessgary to
speeify in the program the location of the temporary storage registers
before reference is made to these registers in the program,

Making use of this new notation, we can rewrite the subroutine on
page VII-8 as follows (it is assumed that somewhere in the main program
before we use any of the temporary registers, t will have been specified):

Or,ita ér

its ¢ (Store x in the temporary storage registers t and 1t.)
ime 7r

iad 9r

imr ¢

iad 1llr

isp O

¢
Thus, by referring to t (and 1t), the main program could, if desired, -
also make use of the same two temporary storage registers. Note that
since numbers occupy two storage registers, the instruction "its t"
will actually store a number in registers + and 1t. Hence the above
subroutine requires that two registers be set aside in the main program
for temporary storage.

Temporary storage registers should not be confused with floating
addresses. Recall that floating addresses are written as a lower ease
letter followed by a positive integer (ggi 0). Thus 1t refers to a

temporary storage register whereas t1 is a floating address.

M-2639-2 CHAPTER VIII REVIEW VIII-1

&, Summary of the Instruction Code of the Simplified CS Computer
(see definition of symbols in Tepble 1)

" Op.Time C
Instr. - 1n msec. Keaning Definition Alam***
its al+te . 1.0 (cycle)trangfer N(MRA) into N(MRA)—N{al+21) ByF

‘ (al+2i,al+2i+1)

iex al+c l.4 (cycle) exchange N{(MRA MW (al+21) ByF

ica altc +79 - (cycle) glear MRA3add N(al+2i) N(al+2i)—N(MRA) F .

ics altc .81 (?ycle)’)glear MRAssubtract -N{al+2i)—N(MRA) F

' N(al+2i .

iad al+c 2.2 (cycle) add N (MRA)+N (sl +21)N (MRA) C',F

isu al+c 202 (cycle) subtract N(MRA.%H(&HZ:’:L}—)H%MRA) C',F

Amr alte 1.6 (cycle) multiply and roundoff N(MRA)xN{al+Zi}—N(MRA) C',F,K

idv alte 2.3 (cycle) diyide N{MRA}2N(a1+2i) SN (MRA) C',BY,FK

isp al+c «87 (cycle) transfer of control Take the next instruction from D,F
reg.(al*i)and continue from there

isc J *% «90 select gounter Select cycle count line jJ A

icr m *% «40 cycle reset Set i=+C,n=m :

ict al .45 gycle count Increase i by 1:if [iklg_[nh reset D,d
i=+0 and take next instruction in
sequenge;if {ild(lnltake next instr,

i from register al

iat al «45 add and transfer 434 ¢(index reg.)to the C(al)and I

' : : store the result. in index reg.and

. register al '

iti al «40 transfer index digits Transfer the right 11 digitsof the I

: index reg. into the right 11 digits

: of resgister al .

ici m #% «40 cycle increase Increase contents of index reg. G
by m '

icd m % +40 gcycle decrease Decrease contents of index rege H-
by m

iex al <60 cycle exchange BExchange CG(index reg,)with C(al)
and exchange C(criterion reg.)
with ¢(al*l) .

ita al «38 transfer address Replace the address section of the
instr.in reg. al with the address
that is one more than the address
of the reg. sontaining the last
jsplor icp with N(MRA)negative)

icp al .38 conditionally transfer comtrol Take the next inst.from reg.al and D

(conditional program) continue from thers,if N(MRA) is

neg.;if N(MRBA)is pos. take the next
instruction in sequence.

its al 0.9 transfer N(MRA)into(al,altl) N(MRA)—¥(al) B

iex al 1.3 exchange N(MRA) with N(al) N.(MRA (al) B

ica al .65 glear MRAj;add N(al) _ N(al)—N(MRA)

ics al .68 glear MRAsgubtract N(al) N(al)—N(MRA)

iad al 2,0 add N(l&mgﬂi(al)—>N (MRA) ¢

isu al 2,0 subtract N(MRA)-N(al)—sN(MRA) C.

imr al le4 multiply and roundoff N (MRA)xN(al)-—N(MRA) c,X

idv al Ze2 diyide N (MRA 2N {al)—N (MRA) C,B,K

isp al +46 +transfer control . Taeke next instr. from reg. al D

(subprogram) and continue from there

* For Outpub Instructions see Table Illo
** m and j are positive integers less than 2,048.
*%% Consult Alarm Table in this chapter.

M-2539-2 VIII=-2

Table I - DEFINITION OF SYMBOLS

Symbol Meaning

MRA Multiple register accumulator

al Let al represent any floating address, absolute address

N(MRA) The number in the MRA before the instruction is
obeyed S '

N(al) The number stored in registers al and al+l before the

, instruction is obeyed '

Closo) Contents of oeo

i C(index register)

iy New C(index register)

n C(criterion register)

N(al+2i) The number stored in registers al+2i and al+2i+l before
the instruction iz obeyed

R Replaces ’ '

clear coe Set the contents of... to zero

Table II - ALARNS
(C*', D' are same as C,D except that al+c replaces al)

Check Order Alarms

Counter not provided for by the PA is selected (this
can occur only if the "j" in isc j has been modified
(a) by the program so that it has become greater than
the largest j in the isc_j instructions before the
program was performed).

(B) Exponent of N{2paY 2 64
(c) o< jelal)|< /2
(D) When control is transferred to an undefined instruction

an alarm occurs on the undefined instruction.

Divide Error Alarm

(E) clal) = 0

Arithmetic Overflow Alarms

(F) The contents of the index register could be large
enough to cause an alarm;i.e.,when alte > 32,767,

G} Cgindex register) + m > 32,767

H C(index register) = m{=32,767

(1) 'C(index register) + C(al)|> 32,767

(J) i = 32,767 before the ict is executed 9364

(K) Resultl > 7.0 x 109863 .y |fesult|{< 7.1 x 10

M-2539=2 VIII-3
Table IIT - QUTPUT INSTRUCTICNS

A. Specifications using either iTOA, iMOA or iSCA
iTOA abcdefg Record N(MRA) on direct printer

iMCA abedefg Record N(MRA) on delayed printer
iSQA aebcdefg Record N{MRA) on scope (film)

Bxamples iTOA*: i, 12,8 4 5x 27% x10% ¢,
a b ¢ d e f g
(1) Ssign Meaning
+ all numbers will be preceded by sign
- only negative numbers will be preceded by sign
nothing numbers will not be preceded by sign
(2) Initial Zeros Meaning
i initial zeros will be skipped
P initial zeros will be replaced by spaces
n all numbers will be printed in a normalized
form .
nothing initial zeros will be printed as zeros

(3) Digits Left

The programmer indicatesths number of digits he wishes to
have printed to the left of the decimal point by actually writing a sampiem
number containing the same number of digits to the left of the decimal point

as he wishes printed. Thus:

iTQA + 123.4567
specifies that the programmer wishes to have his numbers printed with 3 digits
to the left of the decimal point., (The magnitude of the digits one writes in
the sample number has no effect whatsoever on the program,) If the number
actually contains more than three digits to the left of the decimal point, all
these digits will automatically be printed out.

(4) Decimal Point Meaning
o A decimal point will appear in &ll numbers
nothing No decimal point will be printed. (Used
when programmer desires only integral part
of number.)
r No decimal point will be printed. (Used

when programmer expects all results to be less
than one; if the number in the MRA should
unexpectedly exceed unity, then the integral

M-2539-2 VIII=4

part of the number will also be printed
out but no decimal point will separate the
integral “from the fractional part of the
number .

(5) Digits Right
If a programmer were to use the sample number illustrated

in (3), he would get four digits printed out to the right of the decimal
point (or to the right of where the decimal point should be).
(6) Scale Factors -
Powers of 2 and 10 may be used as scale factors to multiply

the number in the MRA before it is printed out:

(a) Every factor must be preceded by a lower case x.
) || , lﬁ' £ 99

(7) Termlnal Characters (characters used to terminate a number)
i

¥

s space-
ss 2 spaces
588 3 spaces
ssss 4 spaces
o carriage return
t +tab
nothing carriage of typewriter will remain exactly
where it was after the last number was
. typed
£ format (see section C below)
Bxamples s
(1) -7.953261 iTOA * 123.1234s -007.9532 space
iTQA + i123.1234 =T.9532 DIRECT
iTCA pl23.1234c¢ 7.9532 car.ret, -
iTOA - nl23.1234t -795,3261| -02 tab
(2) +795.3261 iMOA 123.123ss : 795.326 space space
. . 1 A2,
iMOA - 11234,.5x10%c 79532.6 car.ret, DELAYED
iMOA + pl2r34 +79532

iMOA nl.234t 7.9553 | +02 tab

M-2539-2 e VIII-5

B. Special Characters

To print out a single special character (such as a decimal point,
space, tab, sign, or carriage return) the programmer follows the iTOA or
iMOA by the single symbol representihg the desired character (as indicated
in sections (1), (4) and (7) of table III above).

Examples - |
iTOAc -
will cause a carriage return to be typed on the "direct" typewriter,

C. Pormat Specification

This facility provides the programmer with an automatic device for
obtaining a suitable layout of his output data,
If "f" is used as a terminal character in an output request (see
Table III, section A=7) then the instruction and 3 program parameters-
iFROR
X

P
¥

must appear somewhere in the program before the first output instrustion
containing the "f". (This will furnish the CS output section with the

necessary layout information before a number is printed oute)

X represents the number of words/ilne (maxlmum number of
characters per line is 155)

B represents the number of spaces between words (A tab is
obtained by setting p=0) .

ol represents the number of words per block (The maximum

is 32,767. Since the block counter is automatically reset
after eaeﬁ “block is completed, the upper limit, 32,767, for
is not a significant limitation.

Example: Supposing the programmer wishes to have 2500 words typed out
and usess

iFOR
+12
+2
+400

The output request iTUOA+12.345f will then give 12 words per line, 2 spaces
between words and 400 words per block. THE BLOCKES ARE SEPARATED BY Z CARRIAGE
RETURNS. In this example there will be six blocks of 400 words and one block
of 100 words. (The programmer should provide carriage returns at the begin=-
ning and at the end of his print-out if the latter doesn't coincide with the
end of & block.)

M-2539-2 VIII=S

B. Cautions

1. It is important that programmers write a vertical bar (e.g.,
54' } long enough so that it cannot be confused with the humeral '°. One.

2. The initial word following the tape title (execluding such
special words as (24,6), NOT PA*, temporary storage or preset parameter
indications) will automatically (unless otherwise assigned) go into the
initial register of storage (i.e., register 32). However, if one tape
contains several titles, such as might occur if a tape contained several
parameters, the initial word after ensuing titles (excluding as above)
must have an absolute address assignment “52' " if the initial word is to
go into register 32, Also, if it is desired that a floating address,
€.2., a2, should have the same absolute address assignment in all the
parameters, it must be indieated in each parameter, e.g., "36| a2,".

3. In deciding the number of registers to be used in a program,
remember that instructions occupy one register and numbers occupy two
registers.

4, Remember that t and Ot are synonymous (1t is the register
following %);

that +. and +,0 and +0, are synonymous
that "0,", "r,", and "Or," are synonymous
and that r and Or are synonymous

5. Consider the following section of a program:

54| isp g7
g?7, ieca 73
isp 76
41-] isp a2+7
az, +.3
-,0055
When this appears in the computer it takes the following form:
- 34] isp 35
35| ica 73
36| isp 76

*3ee Chapter XIV.

M-2539-2 VIII-7

37] — Registers 37 and 38 each contain the in-
58] _— teger +0 only if storage was previously
39| isp 47 cleared and if nothing was previously

40] 3 assigned to registers 37 and 38. If you
41) want to have the number +.0 in 37 and 38,
42] —-.0055 program +.0 in 2r or in 37,

43|

6. Remember that all numbers must have at least a sign and a
decimal point. Also, if powers of 10 or 2 are used with positive ex-

ponents, do not specify a + sign in the exponent of 10 or 2,

CORRECT NUMBERS INCORRECT NUMBERS
+2,.7 2.7

+2,7 x 10° +2,7 x 10°°
+0.102659 0.102659

+, or +,0 or +0, +0

7. Since the maximum magnhitude of a number that can be stored
in 2 registers of storage is about 9x1018 and the smallest non-zero mag-
nitude is about 5.5x10_20, caution must be exercised to keep numbers
within these limits when transferring to storage from the MRA,

Example 1. -2.’7x10-25 will go into storage as a number belween
—27%% ana —27%4 (see Chapter XIV).

Example 2. +2.7x1021513 too large for storage (a check order
alarm will result),

8., In order to utilize floating address programming so that
insertions and deletions can be made without the bother of renumbering,

al,
a2z,
a3,

L]
-

is preferred to
al,
al+l,
al+2,

Y

M-2539-2 VIII-8

This follows from the fact that al, a2, ad,... are independent floating
addresses,

9, In storing numbers, the instruction "its 1t"™ transfers
N(MRA) to 1t and 2t. Consequently, the next number to be transferred re-
quires the instruection "its 3t" which will transfer N(MRA) to 3t and al
and al+l, and "its b2" transfers N(MRA) to b2 and b2+1l, Suppose we de-
sired to transfer the numbers in ¢l and ¢2 into a sequence of registers

beginning at b2:

CORRECT INCORRECT
ica el ica el
its b2 its b2
ica e2 | ica e2
its b2+2 its b2+l

10, The following example is given to distinguish between
floating, temporary, and relative addresses:

al, ica t1 (floating address)
its al+? (floating address)
its 2% (temporary storage address)
its 13 (floating address)
idv t1+2 (floating address)
its or (relative address)
isp r3+2 (floating address)

11, If a floating address tag, sueh as el, is preceded by an
address assignment (disregarding carriage returns and tabs), then this

must be either an absolute address or a relative address assignment.

A. CORRECT B. CORRECT C. INCORRECT
134] d1,+.0 d1,+.0 d1,+.0
+,0 4,0 +.0
140| 6r a1+6|
el,*.4 . el,t.4 el,t.4

12, It is important to note that even though an absolute ad-
dress may interrupt the consecutivity of the assignment of registers,
nevertheless this consecutivity may be resumed by the use of the proper
notation illustrated as follows:

M-2539-2 ‘ VIII-9

SOl g7,ica b3 the absolute address will be 50

its c2 the absolute address will be 51

200| ica z4 the absolute address will be 200
21-| isp dl the absolute address will be 52 since the

reference address for the r was determined
by the g7,

13. Consider the following portion of a program: (this is
correct if one wants +,0 stored in registers a2,a2+l).

al,+,75

az2,+,0

a3,+,5
On the other hand, the following routine is incorrect if one is intend-
ing to put zero into (a2,a2+1):

al,+,75

a2,

ad,+,5
In this case, a2 and a3 are assigned the same absolute address and there~
fore the same content, namely +.5.

14. One of fhe most common errors is to use a flad in the ad-
dress section of an instruction without using that flad as a tag anywhere
in the program. (See Chapter VI, Page VI-1). "

15. If only one counter is to be used throughout the program,
it is not necessary to use an isc operation to select it. Cycle counter
(or line) zero is automatically available if any counter instruction
(other than ici, ied, or iecs) or the cycle counter letter "e" appears
in the original program,

Cycle counter line zero is the first counter line available.
The instruetion isc 1 selects the second counter line, isc 2 selects the
third counter line, etc., However, from a programmer's point of view it
may be easier to think of it in the following way:

isc 0 selects counter line zero

isc 1 selects counter line one

ise 2 selects counter line two

etc.

K-2539-2 VIII-10

16, If the value of m in the instruction icr m is set by the

program, so _that there is a possibility of m being set to zero, then the

following expediency may be used:

ier(n) the variable ier instruection
jed 1
al,ict £l N
- do cycle

cycles completed
isp al

17, In using eycle control, remember that when the instruction
isp 100+c is to be executed, the instruction isp(100+i) is effectively
formed and then executed. The other operations which may be used with
+e¢ {(namely: its, iex, ieca, ics, iad, isu, imr, idv) experience the same
transformation as the example above except that the i is replaced by 2i.

18. A preset parameter cannot be specified by anything that
could occupy more than one register of storage. Thus it might be a
floating address, absolute address, sum and/or difference of flads or of
other preset parameters, instructions, or integers written without'a de-
cimal point (see Chapter VII, Page VII-9)

ACCEPTABLE UHAGGEPTABiE
VALUES FOR PRESET PAR. VALUES FOR.PRESET PAR.

+50 +,50

ica g2 ———

+h3+z4-y7 —

-627 =627,

pb2+cl9 o

19, Preset parameters must be specified in the program before

they are referred to in the program:

CORRECT _ INCORRECT
pp3=7 ica b4

ica b4 ' its e3+pp5
its ¢3+pp5 o

o pp5="7

M-2539-2 VIII-11

20. Temporary registers must be specified in the program before

they are referred to in the program:

CORRECT INCORRECT
t =f£6 ies b2+4
ics b2+4 imr t
imr © °

. °

: & = 16

2l. The reference register referred to in the relative address

in an instruction is the last tag (the last address followed by a comma),

al,ica 5r Sr refers to the fifth register after al
its 7r 7r refers to the seventh register after al
imr B5r
its Sr
isp bl
+26.13
+0,

bl,isu 6r 61 refers to the sixth register after bl
idv 8r 8r refers to the eighth register after bl
its al+b al+3d refers to the fifth register after al
imr al+7 al+? refers to the seventh register after bl
its 10r 10r refers to the tenth register after bl
isp a4 |
+3.14
~-26359,28
+,0

d4,.

-

22, Single letters may not be written without separating them

by a plus or minus sign:

CORRECT . " INCORRECT
imr+t+c imr te
or

imr t+¢ (Since ™" may be omitted between operation
letters and single letters.)

M=-2539=-2:

COMPREHENSIVE SYSTEM MANUAL

PART II

Advanced Coding Techniques

M-2538-2 IX-1

CHAPTER IX: SOME MORE FUNDAMENTAIS

In the preceding chapters, the basic features of the CS computer
have been presented. We have seen how the computer can be applied to
solve the type of problems which arise in scientific calculations,
Although the problems presented were simple, they served to illustrate
the characteristics of the computer: its ability to perform arithmetic
operations, to make decisions based on caleulated results, to modify the
effective address of its instructions during ecyclic operations. We have
described, also, such concepts as mnemonic coding, floating addresses,
preset parameters, and decimal input. These are not primarily attri-
butes of the computer itself, but rather are features of the conversion
routine which has been written for it. The conversion routine is the
program which reads Flexowriter tapes and translates them into the
numbers and instructions which are to be stored in the computer memory.
Together, the computer and its conversion routine constitute a powerful

instrument for carrying out scientific and engineering ealeulations.

A few words about the motivation and the design of the CS computer
are appropriate at this point. This computer is designed specifically
to handle the numbers commonly used by scientists and engineers in their
calculations. It is at once apparent that these numbers may with equal
likelihood be exceedingly small or exceedingly large, for the scientist
is concerned with figures which may vary over a tremendous range of mag-
nitudes. In a digital computer, numbers are represented as a count of
how many times some basic increment is contained in the number. In
order to have an accurate representation for small numbers, the basiec
inerement must be made small. A small increment size, however, means
that the count of increments contained in a large number will be large.
It would appear, therefore, that the CS computer should have both a
small inerement size (to distinguish between small numbers) and a large

register length (to permit large numbers to be stored).

M-2539-2 : IX-2

If the computer were designed in this way, we would indeed be able
to use it to solve scientific problems., We would soon notice, however,
that at any time only a small portion of each register actually contained
useful and significant information. Secientific data almost always are
expressed to a fixed number of significant digits, the remaining digits
being uncertain. Our storage registers, because they were required to
accommodate both very large and very small numbers, would necessarily
contain many more digit positions than we could effectively use at one
time, Those digit positions for which we had no information would be
set to zero and would be wasted., This inefficient use of storage capa-
city could be avoided if, in some way, we could devise a scheme for
storing only the significant digits of our numbers. But this, of course,
is quite simple. All it would require is that we associate with each
number an indication of the position of the deeimal point relative to
the digits; the two pieces of information, taken together, would then

completely specify the number.

The CS computer actually employs a scheme of this sort, which is
called floétingwpoint representation, for its numbers. Each number con-
sists of two distinet parts. One of these contains the significant
digits of the number, and the other indicates the position of the point.
The conversion routine automatically translates numbers into this form
during read-in, and the computer itself automatically performs arithmetic
operations on numbers which are in this form. Since it permits handling
of numbers with widely differing magnitudes and retains only significant
digits, the floating-point arithmetic facility is by far the most useful

feature of the CS computer,

It will be recalled that instructions and numbers in the CS computer
are essentially different in form. Because the floating-point repre-
sentation is applicable to numbefs but not to instructions, the reason
for this distinetion is now evident. It is, however, very frequently
useful to modify instructions during the course of a program, and it
would be desirable to have some means for operating on instructions as

well as on numbers. It would then be possible, for instance, for a

M-2539-2 IX=3

program to compute an address (which is, after all, nothing but a special
kind of number) and insert it into an instruction to be obeyed at a later
point in the program. In the CS computer, the difference between num-
bers and instructions mekes this almost impossiblee* What we need is
another set of instructions, to supplement those of the CS computer,
which operate on other instructions rather than on floating-point

numbers.

This set of instruetions is found, not in the CS computer, but in
another digital computer, called Whirlwind I. In order to write effec-
tive and efficient programs for the CS computer, it is necessary to be
Pamiliar also with Whirlwind I. The two computers complement each other,
each being most efficient for the type of computation for which it was
designed. The relationship between the two computers is a curious one,
for both may be used during the course of the same problem. It is
possible to switch from CS operation to Whirlwind I operation or vice -
versa, whenever it is desired to do s0.** The reason for this has been
hinted at in an earlier chapter. The CS computer is actually simulated
by Whirlwind I; it does not exist as a collection of circuits and com-
ponents. The simulation is carried out by interpretive routines, in the
Whirlwind I instruetion code, which are automatically executed each time
a CS instruction is to be obeyed. The roubtines needed to carry out any
CS instructions that appear in a tape are stored in-the higher-numbered
registers of core memory by the conversion routine. The same conversion
routine is used to translate both CS tapes and Whirlwind I tapes. There-
fore, all the facilities of the conversion routine (mnemonic coding, .
floating addresses, preset parameters, etc,) are available in the
Whirlwind I computer, just as they are in the CS computer. This makes

the Pacilities of both computers equally available to the coder.

*Phe CS computer instructions iti al and iat al permit such computations
to be carried out, but are awkward to use. ' a

*#Phe special instructions IN and OUT, which are required to do this,
are described in a later chapter.

M-2539-2 IX-4

A distinetion must, of course, be drawn between the eonversion
routine and the interpretive routines which comprise the CS computer,
The conversion routine simply translates from Flexowriter code to the
binary code of Whirlwind I, assembling in storage the program it has
read from paper tape plus any additional routines required by that pro-
gram.. Thé conversion routine operates during read-in, before the pro-
gram itself starts to operate. The interpretive routines, on the other
band, actually appear in core memory during the operation of a program,
and are used automatically each time a CS instruction is executed. The
interpretive routines are compiled by the conversion routine, for later

use during the running of the program being converted,

In summary, then, we can say that the GS computer provides features,
not found in Whirlwind I itself, which simplify the task of coding for
scientific and engineering ealculations, Its usefulness is limited to
these special features, however, snd judicious use of the Whirlwind I
computer in conjunction with the simulated computer can result in both
greater ease of coding and in reduced operating time, To make most
effective use of the facilities of the Digital Computer Laboratory, one
should be familiar with the advantages (and the disadvantages) of both

computers,

Because Whirlwind I is a binary computer, some understanding of
non-decimal number systems is desirable before discussing it. Such
number systems are the subject of the next chapter. Codimg for Whirlwind
I itself is described in Chapter XI,

The more advanced section of this manual follows Chapter XII. The
basic prineiples involved in programming and coding are covered in
Chapters X through XII and are quite adequate for effective use of the
computer by most coders. The advanced chapters serﬁé‘primarily to ex-
tend the prineciples developed in Part I to cases which, for clarity of
presentation, were not treated earlier. All the features of the Compre-
hensive System of Service Routines are described in sufficient detail to
enable the more proficient coder to utilize the full flexibility of the

M-2539-2 IX-5

system.

In addition, the advanced section contains a description of some of
the methods by which the features of the Comprehensive System were
realized., The Comprehensive System includes not only the compiling and
assembly routines of the conversion program, but also the interpretive-
arithmetic and automatic-output routines of the CS computer and the -
generalized post-mortem routines., Hence, this description provides the
advanced coder with background material for a fuller understanding of the

principles and techniques involved in such a compiling system.

M-2539~2 X-1

CHAPTER X: NUMBER SYSTEMS

I. Introduction |

The accident of ten fingers led man quite naturally to use decimal
numbers as a means for computation. The preferred position of the
decimal system remained undisturbed until the advent of the high speed
electronic digital computer, when it was discovered that another system
(based on 2 instead of 10) was more suitable.

In this.chapter we show that any integer greater than 2 can be used
as a base for a number system and discuss the problems of converting
between number. systems.

ITI. The Positional Notation
et N be.an integer and R22 be an integer. If |N| is divided by R
there results a unique quotient, g and a unique remainder, o

= ‘ > <r y

/ N qeR+r 0 Qg2 0 0<r0<R_

Since qo is .an integer the process can be repeated with 9y as dividend.
q°=,qu + Ty Q20 0sry<R

The process ~terminates m{her_l qi-l<R whence we obtain
4= 0 Ty =930
N has thus been expressed in the form
= i .
The above expression can. .be shortened to
N=EmT «T1%
which is called a positional representative of N
R is called the radix of the representation and the integers, rj,
are called the digits of the representation. R distinct characters are
required to express integers in positional notation with radix Re
If F is a fraction, OS|FI<1, the positional representative of F is

obtained as follows:

M=2539=2 X2

Multiplying |F| by R we obtain
RIF| = r,+F

where
<
0-r=l<R OsF<1
Similarly multiplying F__lby R we obtain)
RF,=r,+F 5 Ofr_x<R OsF_¢1
and
RF . =1 .. + i < ; . <,
2 =Tog *F 3 0<r_3<R O.F_3<l
B 00000 coeo XX §
RF_(ﬂf_;I).A.:; r_, + F-—n o< r;n<.R OSE._;ﬁd
600000 coo 200
F has thus been expressed in the form ...
— =1 -2 =n
F "i (r__‘lR +r_‘2R + ooa+r_nB. + ooo)

which is shortened to

F=4 o 1 T peoo T p eoo

If F_, =0 for some value of n, then

' r-(n+1):r— (n-+2)=“°=0
and the positional representative is said to terminate.

For example, in the decimal system
1!/8 =+ 012500 o000

has a terminating representative.

IITI, Radix Systems
Any integer, R22, can be selected as radix for a positional notation.

The following names have been given to systems which arise when radices
other than 10 are chosen
2 Binary
Ternary
Quaternary
Quinary
Senary
Septenary
Octal

@ -3 O Vb W

M=2539-2 _ X-3

9 Novenary
10 IRCIMAL
11 Undecimal
12 Duodecimal

It was noted previously that R distinet characters are required for
the digits in a positional notation with radix, R, For R<10 it is most
convenient to employ the usual symbols, O, 1, ..., 9. For R>10 new digit
symbols must be introduced, e.g. we could choose letters and let a
represent the "digit® 10, b represent the ndigit® 11, etc.

Some examples follow:

10L =122 402 +1 Radix 2
9001 = 2:33 + 2.3% # 2.3 + 1 Radix 3
6L = 6-7 + 1 | Radix T

aa7% =10-113 + 10-11% + 711 4 5 Radix 11

IV, Arithmetic within a Radix System
. Arithmetic within a radix system is based upon two tables (ad-
ition .and multiplication teblesn), and a set of rules of combination.

The rules of combination are exactly those learned in high school for

dealing with decimal numbers., The tables are a function of the system.
The addition and multiplication tables for the binary (radix 2) and
ternary (radix 3) systems are given below.

Binary 0 1
Addition 0|0 1
111 10
0 1
Multiplication 010 O
110 1
Ternary _ 01 2
Addition 0|0 1 2
1{1 2 10
212 1011
0 1 2
Multiplication 0|0 0 O
1j]0 1 2
210 2 11

¥=2539-2 | X=4

Arithmetic in any system other than decimal is an unrewarding

experience,

V. Conversion between Radix Systems.

We consider the following problem: given a number, x, to find a
positional representative of x with radix, R.

Since x can be expressed in the form

x=N+F

where N is an integer and F is a fraction this problem can be split
into two parts. v

(1) Given an integer, N, to find a positional representative of N
with radix, R, and .

(2) Given a fraction, F, to find a positional representative of F
with radix, R,

VI. Integer Conversion between Radix Systems
(1) Let N be an integer which is to be converted to a positional
representative with radix, R. Such a representative exists,
— m
N“rmg +«...+I‘1R+r0
Dividing by R, we have »
= gl .
__g;--rmR 4'“@4%1'1-&_%0

Thus the remainder after division. ié the digit, rg, of the required

representative and the quotient is

, Ni:rmRmm;‘"+ooo+r~2R+r1
If Ny is divided by R, the new remainder is the digit, ry , of the re-
quired representative., The process is repeated until all the digits
have been obtained,

The arithmetic of the algorithm (forming N/R, N1/‘3,,«(,,.) is per-
formed in the radix system to which N was originally expressed. Thus
the algorithm is of most value when arithmetic in the original radix
system is relatively easy.

As an illustration of the algorithm we convert the decimal integer,

612, to a positional representative with radix 7.

¥=2539-2 X=5

612/7 = 87 + 3/7

3

87/7 =12 + 3/7 3
12/7 = 1+ 5/7 5
1/7 =.0 + 1/7 1

The required representative is thus, 1533,

(2) If arithmetic in the final radix system is relatively easy the
following algorithm may be used,

Let N be an integey which is initially expressed in positional
notation with radix, S , and which is to be converted to a positional

representative with radix, R, Then

-

0
and
N = (c0o((s, 8 *—%‘91} 5 + %—2) B4 000)
The latter expression ean be directly evaluated using the arithmetic of
the final radix system, .
As an illustration of the algorithm we convert the ternmary (radix 3)

- . »n e g
N""‘@ms "ﬂouo""ﬁla‘ﬂ’s

integer, 21211, to a decimal integer,
23+1=T7
Te3+2=23
23 < 34+1=170
70 o 3 4 1 =211
The reguired representative is thus 211,

i

A simplification of the algorithm occurs if there is available a
table of powers of the initial radix expressed in positional notation

with radix R, In this case the expression
- ‘m = 000 .
N=g 87 + +8,8 + 8g

may be directly evaluated using the arithmetic of the final radix

system,
Thus given the table
=
3P =27
32 =9
3t =3
o)

3 =1

M=2539=2 X5

the decimal equivalent of the ternary integer, 21211, can be evaluated
as follows

28l 4127 +2094+13+1=1624+27+18+ 3+ 1=211

VI Fraction Conversion between Radix Systems
(1) Let F be a fraction which is to be converted to positional
notation with radix R. Such a representation exists,
— o=l ~2 X

N = T3 R- +‘r_=2R +
Multiplying by R; we have

NR;P»]. 2R +r,,3R 4 °°°
Thus the integer part.of NR is the.digit, T3 of the required repre-

+r. =1 2

sentative and the fractional part of NR is
o B A C=2

N.,.,l ?rQQ'R +‘1°;3 R ™+ ‘°°

If the product, N jR, is formed, then the integer part of N 4R is
the digit, r_,, of the required representative, The process can be
repeated until it terminates (some N_; = 0) or until a sufficient
number of digits have been obtained,) ‘

The algorithm requires that arithmetic (in forming NR, N_; R; co0)
be performed in the original radix system and is most convenient when
arithmetic in that system is relatively easy, _

As an illustration of the algorithm we convert the decimal fraction,
4 . 125, to a binary fraction.

+ , 12502 = 4+ 0,250 0
+ . 25022 =4 0,500 0
4 . 5002 =+ 1,000 S)

The required binary number is thus + ,001,

(2) If-arithmetic in the final radix system is relatively easy
the following algorithm may be used,

Tet F be a fraction which is expressed in finite positional nota=-
tion with radix, , and which is to be converted to an equivalent posi-
tional representative with radix, R, Then

el . a2 1 -
Feg, 8 45,8 4 o ss s
and , '/ \
F =\°°°(\‘ asg_’l“%*‘ + 8 o JS"'-i-s_B\is + °°°>'g"
\ \ 7

M=2539-2 X=7

The latter expression can be directly evaluated using the arithmetic of
the final radix system.
As an illustration of the algorithm we convert the binary fraction,
+,101, to an equivalent decimal fraction,
1/2 + 0= 0,5 + 0 = 40,5
+0,5/2 + 1 = 40,25 + 1 = +1,25
+1,25/2 = +0,625 A
The required decimal fraction is thus +0,625,
A simplification of the algorithm occurs if there is available a
table of powers of the initial radix expressed in positional notation
with radix R, In this case the expression

= =1 g2 =1
=s 4R "+s8,8 +.,oo,+s¢ms

1]

may be directly evaluated using the arithmetic of the final radix system.
Thus, given the table .

2”1 = 0,5

22 = 40,25

2”3 = 30,125 |

The decimal equivalent of the binary fraction, +.101, is evaluated as

follows . : :

1°0.5+0°0.,25+1° 0,125 = +0.5 + 0,125 = +0,625

VII. Binary to Octal Conversion

Iet N be an integer expressed in positional notation with radix, R.

= 2
N“‘r0+r13+r2R+ooo

and let S = Rj » where j is a positive integer. By suitably grouping
terms in the above expression we obtain

= C pd=l
N"’(ro+rln+aao j"’lR)

J=1y pJ
+(rj +r R+ ..o +rzja1R) R

j+l
+ 0 0.0

1y 1]
+ (,a.f'i:.j trigaq B eee g ™M) R
+ 060

Letting 1

= J
j rij + rij+l R+ .66 +rij+j._lR

¥=2539=2 X=8

this becomes
- . J ‘ ij

. lN‘Tgo‘*"SlR +aa¢+$jR +oea

or, since R™ = R

N:B;O‘!“Bls +o.e+85_53’"‘

Thus conversion from positional notation with radix, R, to positional
notation with radix,'S' = Rj, can be done by inspection if there is
available a.table giving the digits of the final radix system in posi-
tional notation with radix, R,

- The required table for binary to octal conversion (and conversely)
is the followings

Binary Octal
000
0ol
010
011
100
101
110
111 7 :

As an example we convert to octal the binary mmber, 10110110

20 Hg neo
2 6 6 266

The binary radix system is important because of its frequent

O« H W v H O

use in electronic digital computers. The octal radix system has a
reflected importance since arithmetic in octal is easier than arithmetic

in binary (fewer digits, hence fewer chances for error).

IX. Exponential Representations

Iet X be a positive (non=-zero) real number, There exists a real
number, %, such that
X=&
namely
3 = log2 X

¥-2539-2 X=9

Z can be expressed in the form

(9.1) | Z=y 4+ i. , g+i .

where i is an integer, Thus, X = 2 = 27+ 2% and letting
x=2

we have
X=x+ 2"

We abbreviate the above notation to
X =(x,1) .

and call the couple, (x, i), an exponential representative of X.
X is called the mantissa of the representative and y is called its

exponent.,
We can perform arithmetic operations with exponential representa-

tives. For example _
¥y Yo Y1+¥2
(1) (527 « (%27 =% %5 -2

or | (xl’ Yl) i (xgg Yz) = (X]_ X5s V1 *’_Yz)
(2 (xl*zyl) + (x'z'??z) = (xl'zyl 22572 4 (x, 2221 2-y1_)

~¥5 V. T T
=(x 2 Zaxp2 Ty 2t ?

. ‘yz -yln :
or (1, Yl) + (Xg;yz) =(x 2 "4%2 T,¥ +7,)

1 71

() @2 = (1) c2 et

or ()Tt =m)
N 1
(4 =(xc27) =(~=x) -2
or -(x , v) = (=% » ¥y)

A number, x, does not have a unique representative since the
integer, i, defined in (9.1) is not unique. For example
8 = 820 = 4+2F =2-2° =1.23 =0.5.2%

M¥=2539-2 X=10

0f particular interest is the form of the representatives for
1 and O,

(1) Since
1 =273 . o%
for any integer §j, the representatives of 1 all have the form
(27, 3)
(2) Since
0 =029
for any integer j, the representatives of 0 all have the form
(0, 3J)

Let X have the representative, (x, i), This is not unique.

If a representative for X is multiplied by a representative for 1, the
result is a representative for X . o

(9.2) (x ,1) » (279, §) = (x 279, 1 +3)

It can be shown that all representatives of X will be obtained if jJ
_ranges over the values, j =0, + + 2y ocosoe .

A normalization rule is any rule for selecting one of the couples
in (9.2) to be the unique representative of X. The one selected is
called the normalized exponential representative, Arithmetic carried
out with normalized representatives will not in general yield
normalized representatives so that the normalization rule will have to
be appiied to each result., We shall be concerned with two normalization
rules, o

Tn the first case we select the integer, j, in (9.2) so that
1/2 € xe27%1
Thus the normalized representative for 8 is]
B=+0.5 02" or (+0.5,4)
The resulting normalized representation is called a floating exponent
representation. ,
(2) In the second case we select the integer, j, in (9.2) so that
i+3=0 |
This is a rather trivial case in which the representative for X is
the couple
(X,0)
This representation is called a fixed exponent representation.

M=2539=2 X-11
In both of the above cases the normalized representative of

zero is simply defined to be the couple

(0, 0)

M~-2539-2 XI-1

CHAPTER XI: '8 WHIRILWIND I COMPUTER

I, Some Basic Concepts

A, The Whirlwind I computer (WWI) uses words in its operation. A
word is simply an array of sixteen binary digits. For reference, the

sixteen binary digits of a word are numbered from O to 15, counting from
left to right,

B. A word may be used as either a number or an instruction. The
distinetion is made by the manner in which the word is used, not by the
form of the word itself, The importance of the faet that numbers and in-

structions have exactly the same form cannot be overemphasized.

C. WWI has an arithmetic element in which words are processed.

When a word is used in the arithmetic element, it is usually being

treated as a number.

D, WWI has a control element in which words are obeyed, When a

word is used in the control element, it is always being treated as an

instruection.

E, WWI has a magnetic-core memory (CM) which contains 2016

storage registers or locations, numbered from 32 to 2047. The number

which is used to refer to a register is called its address. Each regis-
ter ecan hold one word. The registers of CM constitute the primary
storage of WAI. Both the arithmetic element and the control element ob-

tain the words they need from CM.

F, WWI has an auxiliary storage consisting of two magnetic drums

and five magnetic tapes. Words may be transferred in either direction
between CM and auxiliary storage. Hords which are in auxiliary storage
are usually brought into CM before they are used by the arithmetic or

control elements,

M-2539-2 XI-2

G. To solve a problem using WWI, a sequence of words must initially
be read in to CM, This sequence of words, comprising the numbers and in-

structions required to solve a problem, is called a coded program or a

routine. The procedure of determining a suitable method for solving a
problem is called programming; the process of translating this method
into a eoded program is called coding.

II, Numbers

A, When a word in WWI is considered as a number, digit O repre-
sents its sign and the remaining fifteen binary digits specify its mag-
nitude. When the number is positive, digit O contains a binary 0 and
digits 1 through 15 contain the magnitude as a binary number. The repre-
sentation of a negative number is formed from the eorresponding positive
number by changing all its zeros to ones and all its ones to zeros., Thus,
in a negative number digit O contains a binary 1 and digits 1 through 15

contain the comglement of the magnitude.

Positive number: O 000 110 011 001 101 # +,1000
Negative number: 1 111 001 100 110 010 -.1000

It is not necessary %o know the binary structure of a number when coding.
Numbers my be read into and obtained from WWI in the decimal notatlon
(the conversion to and from binary being done by the computer), so that
the binary operation need not be of direct concern. It should, however,
be remembered that no more than fifteen binary digits are available to
represent the magnitude of a number. This is equivalent to about 4.7
decimal digits, and is the maximum precision obtainable without using

special programming technlques.

B. All numbers are fractions; no number can be represented if it

is greater than or equal to unity. Both positive and negative fractions

may be used. During input, numbers may be specified as decimal fractions

by typing them in the form

+,2743 -.1279 +.0

© M=2539-2 XI=-3

Decimal fractions are typed with an algebraic sign (+ or =) followed by
a decimal point followed by the decimal digits of the fraction. More
than four decimal digits may be typed if desired; the computer rounds
off to fifteen binary digits automatically.

C. If he finds it convenient to do so, the programmer may affix
to decimal fractions factors of the form x 10°(x 2Bo For instance,
the decimal fraction +.2743 may equally well be typed as

+27.43 x 1072 or +,00027L3 x 103

Similarly, the fraction 1/l will be obtained by typing any of the
followings

+.25 +25, x 1072 +1, x 2-2

or even +100, x 10~2 x 2=2, Note that these numbers are in generalized
decimal form, and hence, it is necessary that the number obtained after
taking all multiplying factors into account be less than unity.

D. Since the smallest discernible increment is 1 x 2“15 s all num=-
bers may be expressed as IN x 2”’15 , where N is an integer. It is often
useful to consider a number to represent the integer 3 {with the
factor 2“’15 always understocd).* This is helpful for counting or for
modifying addresses, as will be seen later. Numbers may be typed as
decimal integers:

+17 19 =3562 +0

Decimal integers have an algebraic sign (+sign may be omitted) and no

W#WWI always treats numbers as fractions. Since (A x 2-15) £ (B x 2-15)
= (ATB) x 2-15 , it is immaterial which viewpoint is adopted when adding
or subtracting, Care mst be exercised, however, when multiplying or
dividing numbers which the programmer is considering as "integers"; it is

easy to see that the result is not another "integer®,

M~-2539-2 I-4

A
decimal point, No factors of the form x 10 x 2ﬁ.may be used with

decimal integers.

E. Occasionally, it is useful to specify a number in the octal
notation, rather than in the decimal number system. Because of the di-
rect correspondence between one octal digit and groups of three binary
digits, use of the octal system is an easy way to specify the exact
array of binary digits to go infto a register. The octal system may be
used also when the programmer knows the octal value of a number and does
not want to bother to convert it to decimal.

Numbers may be typed as octal fractions. To specify an octal

fraction, due account must be taken of the way positive and negative
numbers are stored in WWI. The first symbol typed must be the sign digit,
whieh is either O or 1. This is followed by a point (o), and then by
exactly five octal digits to specify the contents of the remaining posi-
tions in the register. The numbers given in paragraph (A) above may be
written as octal fractions:

0.06315 =
1,71462

+,1000
-21000

Note that octal fractions do not contain the symbols + or -; the same

information is specified instead by using the digits O or 1.

F. The number zero has two distinct representations in WWI, One
of these has a positive sign and is written +0; the other, which has a
negative sign, is written -0.¥ Either form of the number zero may be
used in an arithmetic operation and will yield the correct result. When
the answer to a computation is zero, there are simple rules for deter-
mining which of the two possible zeros results. These rules will be

discussed later with the arithmetic instructions to which they apply.

% +0 ccusiets of 16 binary O's; ~O of 16 binery 1's. The reader may
verify that this is in accord with the rules for positive and negative
numbers in WWI.

M-2539-2 XI-5

ITI. Instructions *

A, When a word in WWI represents an instruction, digits O %o 4 are

devoted to the operation section and the remaining eleven digits to the

address section., The operation section indicates the nature of the in-
struction (addition, multiplication, ete.) and the address section
normally contains the address of a register whose contents are.to. be used
in the operation. In a few instructions, the address section is not the
address of a register at all, but is used for other purposes., This will

be explained when the instruetions are discussed individually.

B, For input to WWI, instructions are typed as a two-letter mne-
monic code followed by a floating, relative, or absolute address. These
forms of address have been discussed earlier in connection with the CS
computer, and the conventions are exactly the same for WWI. However,
the two-letter WWI instructions should never be confused with the three-

letter CS instructions. Examples of WWI instructions are:

cam5 dmt2+4 (floating addresses)
nr3r eper (relative addresses)
51384 es32 (absolute addresses)

IV, The Instructions eca x; ¢s x, em x: the Accumulator (AC): and the B-
Register (BR)

A, Words are processed in WWI by use of the arithmetic element,
This element contains within it several registers which take part in the
information processing. The most important of these is the aceumulstor
(AC), a sixteen~binary digit register which is used in most of the WWI
instructions, It is the AC in which sums and products, for instance,
are formed., Another 16-digit register, the B-register (BR), can be
viewed in many cases as an extension to the rizht of AC and in some
cases as a completely separate register. The arithmetic element also
contains two other registers: the A-register (AR) and special-add

memory (SAM). The uses of these registers will become apparent later,

M-2539-2 ' XI-6

B, It is usually necessary to bring the contents of a storage regis-
ter into AC preparatory to further operations upon the word which it con-

tains, For this purpose the following WWI instructions are defineds;

ca x Clear AC-and BR and add C(x) to: AC*
es X Clear AC and BR and subtract .C(x) from AC
em x Clear AC and BR and add magnitude of C(xz) to AC

These instructions provide flexibility in bringing the desired form of
a word in OM into AC. Note that they all clear BR and that they leave
C(x) unchanged,

V. The Instructions ad x, su x, dm x, ab x, ao x; The Arithmetic-Check
(Overflow) Alarm

A, The WWI computer has several instructions which are used for
addition and subtraction. The simplest and most straightforward of
these are

ad x Add C(x) to C(AC) and store sum in AC

su x Subtract C(x) from C(AC) and store difference '
in AC

Both of these instructions leave C(BR) and C(x) unchanged.

B. The instruction dm x is used for forming the difference of the

magnitudes of two numbers.

dm x Place in AC the quantity IC(AC)I - IC(x)'
place the previous C(AC) in ER,

leave C(x) unchanged

The fact that the previous contents of AC appears in BR after dm x is

*The descriptions of WWI instructions in these notes are brief and are
intended only to point out the more significant features of the instruc-
tions, A complete listing of a:Ll WE‘II 1nstructiqgs 1s,given on the
atfdched drawing D-595192-2,° "' o ooiomen Ol e

N-2539-2 | XT-7
executed is often useful,

C. C(BR) may be added to C(x) by using the instruction

ab x Ada C(BER) to C(x), store sum in AC and in x,
Leave C(BR) unchanged.

Since C(BR) is unchanged, the ab x instruction facilitates adding the
same quantity to the contents of several registers.

C(BR) is treated by ab x just as the contents of any storage regis-
ter. In particular, BR digit O is considered to be a sign digit, not a
numerical digit. The need for emphasizing this point will become cléar
when those instructions which treat BR as an extension of AC are dis-
cussed later. The instruction dm x places numbers in BR in the form

required by ab X.

D. It is very often desired to increase the contents of a storage

register by 1 x 2710

. If C(x) is an instruetion, this increases its
address section by one, The instruction ao x makes this special case

of addition very easy.

ao x Add one times 219 4o C(x) and store the sum
both in x and in AC. Leave C(BR) unchanged.

E. It has been mentioned that zero has two representations in WWI,
+0 and =0. In general, a zero resulting from addition or subtraction is
-0, In two cases only, +O will be obtained. These cases are
(+0) + (4#0) = 40 and (+0) = (=0) = +0.

F. All numbers in WWI are fractions, It is obviously possible for
the sum or difference of two such numbers to equal or exceed one., If
this happens, the result cannot be represented in the computer and, in
general, an alarm will occur. The aiarm caused by this type of error is

called the arithmetic-check or overflow alarm. When any alarm occurs,

the computer stops with the contents of the registers of the arithmetic
and control elements displayed in lights on the control panel,

M=2539=2 XI-8

Should a routine stop on an alarm, it indicates that a programming
or coding mistake has been made, and it is, of course, necessary for the
programmer to locate and correct the mistake. The "post-mortem™ routines
which are available to aid the programmer in this task are deseribed in
Chapter XVII,

VI. The Instructions ts x, $d x, and ex x -~ Storing Results

A. In order to retain a result which has been produced in AC, it
is usually necessary to place the result in a storage register. This is
accomplished by the instruection

ts x Transfer C(AC) to storage register x.
Leave C(AC) unchanged,

The previous C(x) is lost after the instruction ts x is executed.

B, It will be remembered that the last eleven binary digits of an
instruction constitute its address section., Often only the address
section of an instruction in a storage register is to be modified, the
operation section being unchanged. For this purpose there is provided
the instruction

td x Transfer last 11 digits of C(AC) to last 11
digits of register x. ILeave C(AC) and first
five digits of C(x) unchanged.,

If C(x) is an instruction, td x causes its address section to be re-
placed by the address section of the word in AC. If C(x) is a number,
td x may be executed, but the resulting C(x) will be a mixture of five
digits remaining from the previous number and eleven new digits from AC.
In general, this is meaningless. +td x is a logical, not a numerical,
coperation,

C. An instruction which is frequently very convenient is

ex X Exchange C(x) and C(AC); i.e., place C(x) in AC
and place previous C(AC) in x,

M~2539~-2 XI-9

This instruction permits the coder to bring C(x) into AC, but at the
same time it also stores the previous C(AC) in x. It thus combines two
logically separate funections in one instruction. Note that ex x does

not change C(ER).

VII. Transfer of Control, The Instructions sp x and cp X ——
The A-Register

A, The WWI computer obeys instructions in sequence until a spécific

instruction whiech breaks this sequence is encountered. The instruetion

8p x Take next instruction from register x and
continue obeying instructions in sequence

from there.

permits the coder to specify a break in the sequence of control. The

instruction sp x is always obeyed; it is an unconditional transfer of

control,

B, An extremely valuable instruction is ep x, which permits the
programmer to make a transfer of control conditional on the result of

the immediately preceding calculation,

ep X If C(AC) is negative, proceed as in sp x; if
C(AC) is positive, ignore this instruction and

go on to the following instruction in sequence.

e¢p x is the only conditional transfer of control instruction available
in the WWI computer. All "decisions" in the computer which choose one
sequence of operations rather than another are made using this instruc-
tion. It is possible to reduce virtually any criterion for choice among
a number of possible routines to a sequence of suitable "yes-no" de-
cisions, It is therefore possible, using only the cp x imstruction, to
realize even extremely intricate and elaborate decision criteria in the

computer.

M~-2539-2 XI-10

C. Whenever an instruction is executed by WWI, that instruction
must, of course, be located in a storage register. Each storage register
has an address, y. Whenever an sp x or ¢p x instruction is executed in
register y, the address (y+l) is stored in the A-register (AR), another
register of the arithmetic element. The AR is a sixteen—binar&-digit
register, but only the last eleven digits are affected by sp X or cp X.
The address y is the register in which sp x or cp x is located; it should
not be confused with register x, the address within the sp x or ¢p x
instruction itself. The address (y+l) is stored in AR on c¢p X even when

C{AC) is positive and cp x is otherwise effectively ignored.

VIII. Closed Sub-Routines -~ The Instruction ta x,

A, The use of sub-routines in the solution of a problem has already

been discussed in conneetion with the CS computer. It will be recalled
that a subroutine is a sequence of instructions which may be entered from
several points in a larger routine., Most often, it is desired that a
subroutine be closed; i.e., 1t is desired that it return, when it is

finished, to the main routine at the point from which it was entered.

B, In writing c¢losed subroutines for the WWI computer, the

instruction

ta x Transfer the last eleven digits of the A-register
to the last eleven digits of register x. Leave
the operation section of register x and the

contents of all other registers unchanged.

is invaluable, Subroutines are invariably entered using the operations
sp or ¢cp. The address section of the AR is set equal to (y+1) by these
instructions. If the initial register of a subroutine contains the
instruction ta x, the address (y+l) may be inserted into any register x
of the subroutine. In particular, it may be inserted into the sp or cp
operation which is used to leave the routine, and in this case the

subroutine is closed.

M=2539=2 . XI-11
Another use for ta x will be discussed with the instruetion sf x,

C., One caution must be observed in using the instruetion ta x.
While it has not been explicitly stated in these notes, most WWI in-.
struetions change C(AR)., ta x must be used immediately after e¢p x or
sp x before any instructions which modify C(AR) are executed., ta x

should be the first instruetion of a closed subroutine,

IX., The Instructions mh x, mr x, Av X —= The Divide-Error Alarm

A, WWI has two instructions which are used to multiply numbers.

mh x Multiply C(AC) by C(x) and hold the full
thirty-binary-digit product in AC and the first
15 d1gits of BR; treating ER as.an extension.
to the right of AC,

mr x Multiply C(AC) by C(x) and round off the
product to fifteen binary digits in AC,
Clear ER.

It is clear that the product of two fifteen-digit numbers is a
thirty-digit number. The full thirty-digit product may be retained by
using mh i; the product may be rounded off to one register length by
using mr X.

B. In both the instructions mh x and mr x the sign of the product
is determined according to the usual rule for multiplication., In par-
ticular, this is true when onme of the factors is +0 or -0; the sign of
the product is still determined from the ordinary rule, giving to each
of the zeros 1its appropriate sign.

C. As was mentioned earlier, negative numbers in WWI are stored
as the complement of the corresponding positive number. The fact that
the complementary form is used within WWI is normally of little sig-
nificance to the coder. However, it is a peculiarity of the computer

H-2539-2 XI-12

that the B-register is never complemented when the result of a multipli-
cation extends into it. The digits in PR always appear as their positive
magnitude, even though the digits in AC are complemented if the product
is negative, The sign which should be associated with C(BR) in this
case is the sign of C(AC), Digit O of BR is not a sign digit; it con-
tains the first numerical digit of C(BR). Digit 15 of BR will contain a
ZETO, '

In order to obtain the digits in BER after the mh x instruction with

their proper sign, it is most convenient to use a suitable numerical-

shift instruction to move them into AC., The shift instructions will be

described in detail later.

D, WWI has one divide instruction:

dv_x ;;yjde,C(AC).by C(x), storing the quotient in BR,

After the execution of dv x, AC contains a zero of the same sign as
the quotient. The quotient is in BR, but it is nncomplemented (just as
in the case of mh x) even though it may be negative. Again, a numerical-
shift instrmiection is required in order to hring\the guotient into AC with

its proper sign,

B, The gquotient which appears in BR has sixteen numerical digits.
There is room in AC (or in a storage register) for only fifteen numeri-
cal digits. Consecuently, the sixteenth digit cannot, in general, be
retained. The extra digit, however, permits round-off to fifteen digits
t0 be accomplished if a rounded quotient is desired., dv x should, in
general, be followed by slh 15 or, to obtain round-off, slr 15,

F, If the dividend exceeds the divisor, the result will exceed the
capacity of the computer, Should this mistake occur, the computer will

stop on a divide-error alarm,

X. The Numerical-Shift Instruetions —- slh n, slr n, srh n, srr n.

A, Ve are all familiar with the procedure of multiplying a

M-2539-2 \ XI-153

'deéimal number by lON simply by moving the decimal point to the right N
places. An analogous procedure exists in the binary number system, in
which moving the binary point to the right n places multiplies a binary
number by 2%, Similarly, moving the binary point to the left n places
divides a biﬁary number by 2%,

‘ B, In WWI, the binary point is fixed at the left immediately
following the sign. The binary point cannot be moved, but the same
effect may be achieved by shifting the number itself with respeet to the
fixe@ binary point. If the number is shifted to the right, it is equiva-

lent to moving the binary point to the left, and vice versa.

C. The numericalashift instructions in WWI provide s means for
shifting the combined contents of AC and BR to the right or left,
thereby dividing or multiplying by the corresponding power of two. The
'shiftuleft ihstruction is useful for bringing C(BR) into AC. Since
these are numerical shift instruetions, the sign digit (digit 0) of AC
is not shifted; only those digits of AC and BR which actually are numeri-
cal take part in the shift. When the sign of AC is negative, C(AC) is
assumed to be complemented, but C(BR) is hoﬁo This corresponds to the
manner in which negative results are stored in AC and BR after the in-

struetions mh x and dv x.

slh n Shift the combined AC and BR %o the left n*
places. Hold all digits in AC and BR after
the shift.

sir n Shift the combined AC and BR to the left n

places, Round off the C(AC) on the basis of
the magnitude of C(BR) after the shift. Then
clear BR.

srh n Same as slh n, only shift is to the right.

* n is taken modulo 32,

M-2539-2 X1-14
srr n Same as slr n, only shift is to the right.

In all four of these instructions, digit O of AC is not shifted,
any digits shifted left out of AC 1 or right out of BR 15 are lost, and
if C(AC) is negative, AC is complemented before and again after the
shift,

D. Note that these instruections differ somewhat from the form of
the other WWI instructions discussed so far, First of all, three letters
are required to specify the shift operations instead of two., All three
must be typed or ambiguity will result,.

A more significant difference is that the address section of these
instructions does not refer to a storage register at all, but specifies
by how many places the number is to be shifted. Since only AC and BR
are involved in these instructions, no storage register need be speci-
fied and the address section may be used for this purpose.

The operation sections of slh n and slr n are identical, as are
the operation sections of srh n and srr n. The distinetion between -
these instructions is made not by the operétion section but by digit 6
(the second digit of the address section). Since the address n is small,
digit 6 may be used without causing any difficulty. In slh n and srh n,
digit 6 must be a one; in slr n and srr n, it must be a zero., If the
address of one of these instructions is changed by using a %d x instrue-

tion, the coder must remember to preserve the correct value of digit 6.

E. DNote that after a shift instruction, C(AC) may be so large that

round-off can cause it %o equal unity,* In this case, if the instructiqn

calls for round-off, the arithmetic-check or overflow alarm will result.

XI. The Logical Cycle Instructions -- clh n and cle n.

A, On occasion it is desirable to move the digits of a word as it

stands to the left or right without regard to the numerical significance

* This occurs when C(AC) = 12710

Y~-2539-2 ' XI-15
‘of the digits. In this case, the sign digit is treated like any other
digit; the process is simply one of reorienting the digits without re-
gard to their meaning either as a number or an instruction.

Two instructions are available for executing this operation:

clh n - gycle the combined AC and BR to the left by n
' | places. Carry any digits cycled out of AC O
into BR 15, Hold all digits at the end of the
cyclé.

“elen Same as clh n, except clear BR after the cycling.

B. Note that the AC and BR are treated as a closed ring; digits
cycled out of the left of AC appear at the right of BR. No round-off
oceurs. Digit 6 of clc n must be zero; digit 6 of e¢lh n must be 1.

Logically, the shift and eycle instructions are quite different;
the programmer should remember that the shift instructions are numerical

and the cycle instructions are logical in function,

XII. BScale Factoring —-%The Instruction sf x.

A, Fractions may, in general, have one or more zeros between the
binary point and the first significant digit, These zeros are not
significant, in the sense that the fraction may equally well be ex-
pressed as another fraction (having no initial zeros) times Z'N, where N
is the number of initial zeros in the original fraction. This latter
form has the advantage that its numerical value may be expressed to full
fifteen~binary-digit precision. However, in performing arithmetic oper-
ations on numbers expressed in this form, due account must be taken of
the factor 2N associated with each number; they cannot be combined

directly using WWI arithmetic instructions,

¥-2539-2 XI=16

B, The instruction

st x Scale factor the combined AC and BR; i.e.,
shift the contents of AC and BR left until there
are no initial zeros. Store N, the number of
times shifting was necessary, in the address
seetion of C(x) and of C(AR).

permits numbers to be expressed easily in scale-factored form. Note
that the procedure for handling the scale~factored numbers must be coded
by the user; in the WWI compuber, no automatic facilities exist for
taking scale factors into account. sf x treats C(AC + ER) numerically,
Just as do the shift instructions.

Since N appears in AR as well as in register x, it may be placed
in other registers also by using the ta operatioﬁ immediately following
sf x., The operation section of C(x) is unchanged by sf x; this should
normally be zero before the sf x instruction is executed. If C(AC + ER)
is *0, N is set equal to 33,

XITII. The Instruction sa x -- Special-Add Memory

A. Normally, if the result of an addition is as large as'unity in
magnitude, an overflow alarm occurs, Occasionally, the coder will find
it convenient to permit an overflow to occur without alarm, taking
account of the overflow later in the routine., The instruction sa x,
special-add x, differs from the instruetion ad x only in its behavior in

the event of overflow.

sa x Add C(x) to C(AC), store the fractional part
of the sum in AC. Store the integer part of
the sum (0, +1, or -1) times 2715 4n special-
add memory (SAM). Give no overflow alarm.

SAM is a special register of the arithmetic element. Its only possible

contents are 0, +1, or -1 (times 2'15), and these are stored in SAM only

M-2539-2 X117
by the sa x instruction.

B. The contents of SAM after the instruction sa x is executed may
be used by executing one of the operations ca, ¢s, or cm, When these
operations were first discussed, it was not mentioned that C(SAM) is
added to the word which is brought into AC by these instructions and that
the sum is left in AC. When C(SAM) = 0, this addition does not change
C(x) and the ca x, es x, and cm x instructions behave as was described
earlier. SAM is always cleared (i.e., set equal to zero) by the instruec-
tions ca x, ¢s x, or cm x after they have used its contents. Note that
an overflow alarm will oceur on these instructions if the addition of

C(SAM) causes the number which is to be placed in AC to equal unity.

C. The execution of any of the following instructions clears SAM
without using its contents:; ab x, ad x, su x, ao x, dm x,vmr x, mh x,

dv x, slr n, slh n, srr n, srh n, sf x,

D. SAM may always be assumed to be clear after the read-in of a
program tape.

XIV., The Instructions md x and sd x

A, A logical instruction useful for retaining certain digits of a

word while setting the other digits equal to zero, is

md x Logically "multiply" each digit of C(AC) by the

same digit in C(x) and place result in AC,
The effect of this instruction is to set the digits of AC which
correspond to zeros in x equal to zero, and to leave the digits of AC

which correspond to ones in x unchanged.

B. Another useful logical instruction is

M-25%9-2 XI-18

8d x Logically, form the "sum" of each digit
of C(AC) and the same digit in C(x) and
place the result in AC.

The effect of this instruetion is to place 1's in those digit
positions of AC whose original contents differ from the corresponding
digits in x and to place O's in those positions in which C(AC) and C(x)
were originally the same. One possible use for sd x is in checking the
jdentity of two computed results.*

C. md x and sd x are non-arithmetic instructions; they treat C(AC)
and C(x) simply as arrays of digits, without regard for their numerical
significance.

The two instructions are summarized in the following two tables,
which show the final contents of each digit position imn AC as a funetion
of the initial contents of that digit position and the contents of the

same digit position in register x.

AC AC

mi x 0 1 sd x c 1

0 0 0 0 0 1

x 1 0 1 r 1 0

In the terminology of symbolic logic, the funection represented by

md x is "and", the function given by sd x is "exclusive or."

* The ck x instruction (see next page) performs such a check, but offers
no alternative except stopping the computer if the results do not agree.

M-2539-2 | XI-19

IV. The Instruction ck x -- The Check-Register Alarm

A. The instruction

ck x Compare C(AC) and C(x). If they are identical,
proceed to the next instruction; if they differ,
stop the computer in a check-register alarm.

enables the coder to stop the computer in case a computed word does not

agree exactly with some predetermined value,

B. The instruction ck x is rarely used in mathematical computa-
tions. It finds its widest application in coding which involves use of
auxiliary equipment by the computér. It may be employed, for instance,
to insure that information has been transferred correctly from an exter=-
nal unit to the computer.

XVI. The Instructions si O and si 1

The following instructions can be used to stop the computer:
‘ sio Stop the computer.
sil Stop the computer if the "STOP ON si 1" switch
is on, otherwise continue to the next instruct-
ion.
The "STOP ON si 1" switch is on the control console and can be set by the
computer operator.
The coder should not normally use these instructions to stop the
computer, Instead he should use the special instructions:

STOP Stop the WWI computer
iSTOP Stop the CS computer
Reasons for this will be given subsequently. =~ . .

XVII, Some Examples of Operations on Instructions

The use of the WWI computer instructions for executing operations
on numbers is relatively straightforward. The arithmetic operations,
such as ca x, ad x, su x, imr x, dv x, are used in much the same way as

the analogous CS computer instructions. It must be remembered, however,

M-2539=-2 XI=-20

that the WWI instructions operate on single-register WWI numbers, while
the instructions of the CS computer operate on the two-register numbers
of the CS computer, The distinction between the two compubters must
always be kept clearly in mind by the coder,

Since numbers and instructions in the WWI computer have the same
form, there is nothing to prevent the coder from executing arithmetic
operations on instructions instead of on numbers. At first glance, it
might appear that this is a mistake which should be avoided. However,
quite the contrary is true; in fact, it is the ability to operate on
instructions and numbers with equal facility that gives the WWI computer
mach of its flexibility and usefulness,

As a simple example of this concept, let us consider the problem
of modifying the address section of an instruction. Iet us suppose that
we have (as part of our coded program) the instruction, su b3, and that
this instruetion is in register m5. This means, as you recall, that we

had typed in our routine

m5,sub3

We wish, 1et us say, to modify this instruction during the course of the
compubtation sc that it becomes sub3-6. That is, we wish to change the
instruction so that it no longer refers to register b3 but refers in-
stead to six registers before b3. This may be accomplished with the

following sequence of instruetions

m5 ,sub3 ¢l,-6 Constant

e o & &

(continued on next page)

M-2539=2 X1-23

camd Obtain sub3 in AC ,
adcl Form sub3d + =6 = gub3=6
tsmb © Store sub3-6 in md

L
L]

Here, an instruction (in m5) and a number (in cl) have been added to
produce an instruction with a modified address.

Note that the number in cl is stored as a decimal integer (i.e., the
ractor x2—° is understood). This is consistent with the fact that the
address section occupies digits 5-15 of an instruction; both the address
section and the decimal integer occupy the final digit positions of the
registero*

The same change in the sub3 instruction may be made in other ways.

Two possible procedures are:

o

o

mb ,sub3 c2, subd-6
cac Obtain sub3-6 in AC
tsmd Store sub3-6 in md

°©
p:d

o

or, using the td x operation,

o

]

mn5 ,sub3 e3,adb3-6 (or any instruction
o which has the ad-
. dress section b3-6)
cacd Obtain adb3-6 in AC

(continued on next page)

* Tf the sum of the address and the integer exceeds 2047 (or is less
than 0), the addition will affect the digits devoted to the operation
section, producing not only a new address but also a new instruction.

M-2539-2 XT-22"

tdmdS Transfer the address section only from AC to m5.

The coder often has considerable flexibility in using the WWI instruc-
tions to manipulate other instructions, It is generally,best to use

the procedure which requires the fewest additional registers or (if the
routine is so short that storage is not a problem) the shortest possible
time,

Observe that the word in register ¢3 has the form of an instruction,
although, as we have used it, it is never obeyed., If any instruction
with the address section b3-6 had already been employed in our routine,
it would not have been necessary to add another word having this address
section; we would simply have tagged as c¢3 the register containing the
instruction of the desired form. It invariably shortens a routine if
the same word can be used at different times for more than one purpose,

Let us consider now the problem which is handled in the CS compuber
by using the cycle-counting facility. This facility, as you remember,
permits going through a "loop"™ of instructions a predetermined number of
times, appropriately indexing selected instructions within the loop at
each repetition. There is no cycle-counting facility in the UWI com-
puter, Counting and address modification must be coded explicitly using
the WWI instructions. An example of a loop which is repeated 40 times

is given below,

al,cabd cl, -39 Counter

a2,sub4 Cycle of instruections to be repeated 40 times.
. Insbruetions in registers a2 and a3 are to be
. indexed each cycle.

aS;tsdl

-

(continued on next page)

M-2539-2 ‘ XT+23

aoad Index instructions

aoad

aocl Index counter

cpal If counter is negative, repeat. When counter
. becomes positive, continue to next instruction
. in sequence

L]

Note the use of the ao operation for indexing and for counting. (The
cyele is executed 40 times. Why is the counter in cl set to -39 instead
of -40%)

The words in a2, a3, and cl are actually changed by the ao operation.
Hence, these are left with their "completed" contents after the cycle is
finished. If the cycle is used only once, this is quite permissible.
However, if the same cycle is to be reused, the changed registers within

the routine must be reset to their initial values.

ENTRY cac4 c4,-39 Constants for
POINT tsecl c2,b4 resettin 0Ses
cac2 Reset changed e3,41 & purp
tda2 registers cl,0
cac3d
tda3
al,cab3
az,sud

° Registers which are reset
° to initial values

a3,ts0

©

aoald
aoad
aocl
cpal

The six instructions preceding the loop simply restore the initial con-
tents of registers which are changed while the loop is executed.
The reader will find it instructive to rewrite the routine just

presented so that it is somewhat shorter than the version just given.

¥=2539=2 XI-2L

To do this, eliminate entirely the need for a counter set to =39 by uti-
lizing the fact that the instruction aoa3 places the new contents of a3
in AC as well as in a3. Remember that subtraction of two instructions

is permissible,

XVIII. Parity Alarm

The coder may occasionally encounter an alarm which has not been
discussed with any of the WWI instructions.

Each time a core-memory register or a register on the magnetic drum
is referred to, a so=called "parity check" is carried out to determine
whether one of the digits in the register has changed since it was re-
corded. In virtually all cases the parity check is completed success=
fully and computer operation continues.

Occasionally, hcwevér, é computer malfunction causes a faulty re-
cording or a change in the information recorded in a register. When the
parity check detects this, the computer stops on a parity alarm. A
parity alarm may also be obtained if a non-existent magnetic-drum group
is selected by the coder.

Should a routine stop on a parity alarm not traceable to an ime-
proper drum reference, it may be some consolation to the coder to know
that the alarm results from an error made by the computer and not by

coder,

XIX. Test Storage =- Registers O and 1

A. Tt has been mentioned that the registers of core memory are
numbered starting at address 32. Registers O through 31, which are not
part of core memory, exist and are referred to as test storage. Most of
the registers of test storage have their contents set into them by
toggle switches; the contents cannot be changed by a program. Five of

the test storage registers are flip-flops, a form of storage register
whose contents can be changed.,

B. In general, instructions referring to test storage should not
be used. Some exceptions exist.

M-2539-2 , XI-25

C. The coder may make use of the contents of registers 0 and 1;
Register O always contains the number, +0; register 1 always contains
the number, +1, These constants are frequently needed in a program.
Any instruction which tries to alter the contents of a test storage
register will be executed but will not succeed in changing the contents
of the register. Thus, the instruction, ao 1, can be used tb place the

integer, +2, in the AC.

D, The instructions, sp O or ¢p O, can be used to stop the computer

since the integer, +0, is also the instruction si O.

XX, The Control Panel

A. Various buttons on the control panel are used by the computer
operator to start and stop the computer. An understanding of these is of
value to the coder.

B. The START-OVER button enables the operator to start the computer
at any selected register of core memory. The address of the register -
must first be entered by the operator into a set of toggle switches
called the PC RESET switches., For this reason the address should be
specified in octal.

C. The START OVER AT 4O button starts computer operation at regis-
ter 32 (this is equivalent to LO in the octal system),

D. The STOP stops the computer and is used when it is necessary to
stop the computer manually. Normally, programmed stops are used.

E. The RESTART button causes the computer to re-commence operation
at the register immediately following the one in which it stopped. It
may be used either following the instructions si 0, si 1, STOP, or i STOP,
or after the STOP button has been pushed.

M-2539=2 XIT-1

CHAPTER XII: AUXILIARY STORAGE, INPUT-OUTPUT EQUIPMENT

I. Introduction

The primary. storage of WWI consists of 32 toggle switch registers
(TS) numbered, O, 1, ...y 3L, and 2016 registers of core memory (cM)
numbered, 32, 33; ooos 2047. The primary storage is directly address-
able (addresses of instructions can denote operands in the storage)
and has random access (a fixed amount of time, 8 usec, is required to

obtain a word from the storage, regardless of its address).

Additional forms of storage (called auxiliary storage) are avail-
able on WWI which are not directly addressable. These are the following:

(1) Magnetic Drums
(2) Magnetic Tapes
(3) Punched Paper Tapes

Information in auxiliary storage must be brought into CM before
computations can be performed with it.. Devices provided for realizing
this transfer (along with certain others) are called input-output
devices, .

The primary input medium for WWI is punched paper tape (generally
prepared on a Flexowriter typewriter). Paper tapes can be read into the

computer on one of the following input devices:

(1) A mechanical tape reader.
(2) A photoelectric tape reader.

The following output devices are available to WWI:

(1) A display oscilloscope
(2) A paper tape punch
(3) A Flexowriter typewriter

M-2539-2 XII-2

In addition an auxiliary tape punch and typewriter have been provided
which can proceed under the control of characters recorded on magnetic
tape °

II, The Input-Output Instructions

Transfers between auxiliary storage and CM along with use of the
input-output equipment proceed under the control of 5 WWL instructions
ealled in-out instructions. These make use of a special 16 bit register
called the in-out register (I0OR), Transfers between auxiliary storage
and CM proceed through the IOR and AC.

A ¥k IR AC CM
Storage
The instruetion
sin select input-output deviece n

selects the in-out device and mode of operation designated by n. An si
instruction is normally followed by one of the other in-out instructions
(rd, re, bi, bo). Any piece of equipment can be deselected by

selecting a new piece of equipment.

The instruction
rd- read
copies C(IOR) into AC and clears IOR. The contents of its address
section is immaterial.

The instruction
rc- record _
copies C(AC) to. auxiliary storage (via IOR), Its address section is
also immaterial. '

The instructions
bi x block input to x
bo x block output from x

M-2539=2 XII-3

transfer blocks of words between CM and auxiliary storage. The address,
X, specifies the initial register of CM involved.

III. The Magnetic Drums

Two magnetic drums, called the auxiliary drum (AD) and the buffer
drum (BD) are available to WWI, The two drums are physically similar:
metal cylinders, 8.5 in. in diameter, 13 in. long, rotating at
approximately 60 revolutions per sec. (16.7 ms per revolution). Each
drum is divided into 12 parallel sections called groups and numbered

Oy.lyooes 11. Each group consists of 20L8 words which are numbered O,
1, coos 2047, A word is composed of 16 binary digits.

All 12 groups on the AD are available to WWI, however groups O
and 11 are not available without restriction to. the coder (this will be
subsequently explained). Only groups 2, 3, eoss 7 of the BD are availe
able to WWI and none of these are available without restriction to the
coder (also to be explained later).

The address (n) of the i-th word of the g-th group is defined by
n=2048g + i
In other words, the auxiliary drum registers have addresses ranging from
0 to 214575, and the buffer drum from L4096 to 16383, If n is written as
a 15 binary digit number it will be noticed that digits 1-L contain the
group number (g) and digits 5-15 contain the location within the group

(1),

M=2539=2 XII-=}

A. Recording on the Drum

The drum is selected by one of the instructions
si 967 select AD, record mode,
si 975 select BD, record mode.
The address on the drum in which recording is to take place is specified
by C(AC). |

The instruction, rc, copies C(AC) into IOR and thence to the drum.
The average time required to get the word from IOR to the drum is 1/2
revolution (8,3 ms)*. Any instruction other than an in-out instruction
can be executed during this time. Any number of rc¢ instructions can

follow the si. Words are recorded on successive drum registers.

Any rc instruction can be replaced by the instruction, bo x, which
records the block of n words (where G(AC) = n * 2™1%) beginning at CM
register x on the drum. 8.3 ms (1/2 revolution) is required to record
the first word. Succeeding words, however, require only 16 s for the
transfer.

As an example we record C(al) in drum register dl, C(a2) and C(a2+ 1)
in d1 + 1 and d1 + 2, and C(a3) in dl + 3.

ca ml } Select AD, reg., dl

si 967 m2, + 2

ca al} Record C(al)

re _ ")

cam?) Record C(a2) al, C(al)

bo a2) and C(a2 + 1) a2, C(a2)

ca a3 } Record C{a3) C(a2 + 1)
rc 3'3, 0(33)

STOP

This cannot take place until.the drum register in which the word to
be recorded is under the recording heads of the drum.

M=2539=2 III-5

B, Reading from the Drum)
The drum is selected by one of the following instructions,
si 963 select AD, read mode
- s8i oM select BD, read mode
The drum address is specified by C(AC). The si brings the.contents of
the specified drum register into IOR., The average time required for the

transfer is 1/2 revolution (8.3 ms). Any instruction other than in-out
instructions can be done during this time. One and only one rd or bi

instruction must occur after each si.

The instruction, rd, copies C(IOR) into the AC and clears IOR.

The instruction, bi x, copies a block of n words (where C(AC) =
n o 2”;5) into a block of registers in CM whose initial address is x.
Only 16éps per word is required for the transfer.

As an example we copy the contents of BD register al into CM
register bl.
ca miL
si 971
rd
ts bl
STOP

Select BD, reg, al ml, al

} Store in bl

IV, The Magnetic Tapes

Five magnetic tape (MT) units (numbered O, 1, 2, 3a and 3b) are
available to WWI, The reels of tape are from 800 - 1000 ft. long.
Tapes are set in motion by means of si instructions (which specify the
unit, the direction of motion and the mode of operation)ﬁ Once selected
a tape continues its motion until another si is executed. Tape moves
under the reading-recording heads at a speed of 30, in. per sec. If an
si instruction affects the motion of an MT unit (e.g., a moving tape is
deselected, a tape moving forward is selected to move backward, a new
tape is selected), approximately 5.5 ms delay is required for the tape
unit to complete the mechanical change.

M-2539-2 XII-6

[

MTO is not available to the programmer. MII may be used only under
certain restrictions (later explained). Only one of the units, 3a and
3b can be connected to WWL in the same program. For coding purposes
both of these are called MI3,

The normal position for a reel of tape is for the reading-recording
heads to be at one end of the tape (this point is called the 1imit stop).

The forward direction on tape is by definition away from the 1limit stope.

A, Recording on Magnetic Tape

The following si instructions are used to select the unit and
its direction of motion S
si 70 + 83 select MT j, record forward j=0,1, 2, 3
si 71 + 83 select MI' j, record reverse Jd=0,1, 2, 3
The si instruction switches the unit to. the record mode#* and starts it
in the specified direction. After a 1L.3 ms delay (5.1 of which may be
required to bring the tape to full speed) a special character called a
block mark is recorded on the tape. Any instructions other than in-out
instructions may be done during this time. The unit is left in the record
mode.

Direction of Motion

/Ejﬁ/ erased erased
4;;22 tape tape

) P)\

Block Mark

The instruction, rc, records C(AC) on the tape (via IOR), This
requires a 2.6 ms delay during which no in-out instructions can be
performed, Any number of re¢ instructions may follow an si instruction.
a 16 bit word is recorded on magnetic tape in the following form

& Direction of Motion

é;;j;/ erased 1 3 5 7 9|11 13|15 erased

At’ape o2 |u 6|81 12| tape
The unit is left in the record mode.

If a tape unit is in the record mode, tape which passes under the
reading-recording heads is erased.

M=2539=2 XII-7

The following si instructions should be used to deselect the tape
unit after recording new information.
si 68 + 83 select MT j, stop after record forward
si 69 + 8j select MT j, stop after record reverse
j=0,1; 2, 3
The si instruction delays for 1lhol ms, switches the unit to the record
mode in the opposite direction, delays for 1li.3 ms and deselects the unit,

< Direction of Original Motion
Efi;7/ I erased
/////// { tape
// 1
[-
{ bk ms
}< lhoB ms j

Use of this si instruction guarantees that a tape unit will stop in
erased area. If a tape unit is stopped by selecting another piece of
equipment it is switched immediately to the read mode and in coasting to
a stop may pass over previously recorded information. This technique for
stopping a unit may be used, however, if it is known in advance that the

tape has been erased.

As an example we record C(al) and C(bl) on MT2 in the forward

direction, 55};/3494/

si 86

ca al MR ©iock Mark
re .

ca bl 7////// ca)

re Forward

si 8l Direction 4796/;6/;/ c(a2)

STOP

M=2539=2 XII-8

B, Reading from Magnetic Tape

The following si instructions are used to select the unit and
the direction of motion S

si 66 + 8j select MT j, read forward j=0,1, 2, 3

si 67 + 83 select MT j, read reverse
The si instruction switches the unit to the read mode (tape is not
erased) and starts it in the specified direction. After a delay of 5.l
ms (to allow the uwnit to attain full speed) the unit looks for a block
mark and reads the next 8 lines on tape into the IOR to form a 16 bit .
word., Any instruction other than an in~out instruction can be done
during this time. The si instruction must be followed by at least one

rd or bi instruction.

The instruction, rd, copies C(IOR) into the AC and clears IOR.
Any number of rd instructions can follow an si. Since magnetic tape is
a free running device words, keep coming into the IOR as fast as they
appear at the reading heads. A program alarm will occur unless inform-
ation is removed from the IOR (by rd instructions) before new information

appears.

Any si instruction selecting another piece of equipment will serve
to deselect a tape unit in the read mode. If no specific si instruction
is required then the instruction

si L08 deselect in-out equipment
should be used.

The instruction, bi x, copies the next n words (where. C(AC) XN
n o 2=15) into a block of CM registers whose initial address is x. An
si instruction must be given for each bi instruction used. Words
recorded in one direction can be read in the opposite direction but will
reappear in a scrambled form. Thus if the word
[}

o11] 2.3 Juis[6ir[8iofiom 12713 | ahias)

]
is recorded in the forward direction and read in the reverse direction

it appears in the AC as

i15] 128131 10111 8l ol 617 ugs 21'3 0{1

M=2539=-2 . XII-9

i.€os in reverse order by block of 2 bits. The unscrambling of the word
to its original form is an intriguing coding exercise.

C. QRecording on Tape

The following si instructions are used to select the unit and

the direction of motion. |

si 6L + 83 select MT j, rerecord forward

si 65 + 8j select MT j, rerecord reverse
The si instruction switches the unit to the read mode (tape is not
erased) and starts it in the specified direction. After a delay of 56l
ms (to allow the unit to attain full speed) the unit starts looking for
a block mark and after finding one switches to the record mode. Any
instructions other than in-out instructions can be done during this time.

The si can be followed by any number of rc instructions.

The rerecord si can be used to skip over blocks of recorded informe-
ation without disturbing them., This is done by switching the unit to
the read mode (by a read si or another rerecord si) immediately after
the bloek mark has been found. Once the desired block has been found

its contents can be changed using rc instructions.

V. The Typewriter

The typewriter is selected by the instruction

si 149 select typewriter
Each character to be typed must be sent to the unit from the right-hand

6 bits of the AC by an rc instruction. An arbitrary six bit code has
been defined by the manufacturer and is given below.

The instruction, bo x, can be used to print a block of n characters
(where C(AC) =n o 2"15)o The n characters must be stored (in the form
described above) in a block of CM registers whose initial address is x.

M=2539=2 , . ’ XII-10

Typewriter

'It_takes 125 ms to print each character (not a tab or carriage
return), It takes up to 900 ms to print a tab or carriage return. A4
table of the Flexowriter characters printed by the typewriter is given
in Chapter V. | |

v

VI. The Oscilloscope and Camera

Individual points can be displayed on a cathode ray oscilloscope
by specifying the coordinates, (x,y), where |x| < 1 and |yl Z1.

The instruction
‘ si 38h select oscilloscope .
is used to select the scope and specify the y coordinate (the first 11
digits of the AC, including the sign digit, are used for this purpose.

The instruction, re, is used to specify the x coordinate (the first
11 digits of the AC are again used) and to display the point. Any -
mumber of rc instructions can follow the si. A delay of 170 ps occurs .
after each rc¢ during which time no in-out instructions can be performed.

Points displayed on the scope are automatically photographed by a
camera whose shutter is always open. The instruction
sily index camera
is used to index the film in the camera., A delay of some 500 ms occurs
after an si lj during which time no in-out instruction can be performed.

M=2539=2 ' XII-11

As an example we display two points with coordinates; (-1/2, 1/2)

and (1/2, 1/2), on the oscilloscope y
sil Index camera
= }‘ Select y = 1/2 ﬁ +
S1 38!1 o --~f--8
ca } | +V15
. -1 %
o Display (<1/2, 1/2) LA +|/,L*1_
ca
ro Display (1/2, 1/2) -1
STOP

VII. The Photoelectric Tape Reader

The photoelectric tape reader (PEIR) is the primary input device
for punched paper tape. The paper tape contains 7 parallel channels,
6 of which contain information (under the convention that a hole in a
channel denotes a 1). A hole is punched in the 7-th channel whenever

information occurs in the other 6 channels.

1 2 3 L 5 6

%%

10 lines of information can be stored per in. on tape. The PEIR reads
information from tape either one line at a time (line by line) or 3 .
lines at a time (word by word) and places the information in the IOR,

The instruction
si 137 select PEIR, line by line
starts the PETR and reads the first line of information into the r:.ght«-
hand 6 bits of the IOR, The si instruction must be followed by at

least one rd or bi instruction.

M=2539=2 XII=12

PETIR

le

., 2 L

7/////////101112 13w |15 | IR

cleared

The instruction, rd, transfers C(IOR) to the AC and clears IOR.
Any number of rd instructions can follow the si. The PETR is a free
running device (at 210 lines per sec.) so that lines of information go
into IOR as soon as they appear on tape. If no blank lines occur on tape
this means that lines of information will arrive every L ms and that rd
instructions removing information from IOR must occur more frequently.

Any si instruction selecting another piece of equipment may be used
to deselect the PETR, If this is done within 2 ms after reading a line
then the next line on tape may be read by selecting the PEIR again.

Any rd instruction can be replaced by the instruction, bi x, which
reads the next n lines (where C(AC) = n o 2-15) from tape and stores them
(in the form previously deséribed) in a block of CM registers whose
initial address is x.

The instruction

si 139 select PEIR, word by word
behaves very much like the si 137, except that 3 lines on tape (instead
of 1) are read and assembled in the IOR to form a 16 digit word as
follows:
T Direction of Motion

o[1]2] 3 uy//A’//g

13

s s |wlem| oV//l/—>| 02|23 ‘uls 6|7|8 9|101112
/ o \ —
1011121311;15//6 5 5 6

Paper Tape

New words arrive in the IOR every 12 ms.

M-2539-2 : XII-13

VIII. The Mechanical Tape Reader

. The mechanical tape reader (MTR) behaves exactly like the PEIR,
We have the following si instructions:
si 128 select MIR, line by line
si 130 select MIR, word by word

Bach rd instruction requires 105 ms in the line by line mode and
315 ms in the word by word mode. No in-out instruction can be performed

during this time,

The MIR is not a free running device: so that no timing problems .
arise in reading information. It is not necessary to deselect the MIR.

IX, The Mechanical Punch

Information to be punched may be recorded one line at a time from
the left=hand six digits of the AC

of 1} 2] 3| L| 5 ///////AC

| .|

Immaterial

0123145% -

M-2539=2 XII-1)l

or 3 lines at a time from the entire AC '

5 5 L

O~

0 |1]2 |3 |k “ 51617 1819 ||l10]11 12 |13 |14 15 |4

J /
o 1 2 3 L
-567897//

10 11 12 13 14|15 //

Either form may be recorded with or without 7-th holes. The following
si instructions are used: '

si 132 select punch, line by line, no 7=th hole

si 133 select punch, line by line 7-th hole

si 13h select punch, word by word, no 7-th hole

si 135 select punch, word by word, 7-th hole

Each line (word) to be punched requires an rc. instruction. Any
mmber of re instructions can be used after the si. Any rc instruction
can be replaced by a bo instruction. BEach r¢ instruction requires 80 ms
in the line by line mode and 2LO0 ms in the word by word mode. No in-out
instruction can be performed during this time,

It is not necessary to deselect the punch. -

M2539-2 XII-15

Xo The Delayed Printer and Punch

Coded information which can be used to control a flexowriter
printer and punch can be recorded by the computer on MT units 2 and 3.
The following si instructions are used to select the tape unit:

si 118 select MT2, record forward for delayed output.
si 126 select MI'3, record forward for delayed output.

The instruction, re, records C(AG) on the tape. The digits of the
AC have the following meaning

0123h567%m

. \ L timmaterial

6 bit character to be printed
or punched;

0 denotes printer, 1 denotes
punche ‘

0 denotes no 7-th hole, 1 ‘
denotes 7-th hole (for punching)

An rc instruction must be given for each character to be printed or
punched. Any number of rc instructions may follow the si., Each re
instruction requires 7.6 ms during which time no in-out instruction can

be performed.

The code for the printer is exactly that described in the section
on the flexowriter typewriter used for direct output from the computer.

Characters for delayed output can be recorded by the computer at
the approximate rate of 133 per sec.

M=2539=2 XII==16

XI, Alarms using In-Out Equipment

Most of the difficulties in using in-out equipment are associated
with the free running devices., Program alarms, inactivity alarms and
parity alarms can be generated by using in-out devices illegally.

(1) If a piece of equipment is selected in the read mode and an
rd instruction is given before the next word arrives in IOR, the
'computer must wait until a word arrives. Once a word has arrived in the
IOR no new word can arrive from the unit until the IOR has been cleared
(presumably by an rd instruction). If a new word arrives before this
occurs, a program alarm is given by the computer, This occurs only if
a free running unit is selected.

Another difficulty (not necessarily leading to an alarm) can occur
here since the si instruction clears the IOR also. This means that a
word can arrive in the IOR from a free-running unit and be lost if the
next in-out instruction is an si (clearing IOR) and not an rd., Care must
be taken to stop these units quickly enough if no more words are desired.

(2) A parity alarm will probably occur if an si instruction
selecting the drum is given when C(AC) is an illegal drum address.

(3) si instructions with undefined addresses may cause the comput-
er to stop on an inactivity alarm or may be ignored by the computer.

(L) An rc instruction after an si selecting a read mode or an rd
instruction after an si selecting a record mode will probably lead to

an inactivity alarm.

(5) Failing to follow a read si selecting the drum by a single
rd (or bi) will probably lead to an inactivity alarm.

(6) The drums have a parity check on reading and recording similar
to that generated in CM. An improper reading or recording on the drum

can cause. a parity alarm (in this case not due to the program but to the
computer)

M=2539=2. XIIT-1

CHAPTER XIII: PROCRAMMED ARTTHMEBTIC
I, Introduction
II., Interpretive Subroutines:

III. Generalized Decimal Numbers
A. (15, 15) Numbers
B, (30 - j, 3j) Numbers
C. (15, 0) and (30, 0)-
D. (m, n) Control Words
E. Examples

IV. (30.- j, j) Interpretive Subroutines
A. Tnstructions
B, Cycle Counter Instructions
C. Buffer Registers:

Vo Automatic Compilation

VI, Mistake Anticipation

M=2539=2 XIII-2

I. Introduction

In this chapter we begin to discuss the programs written for WWI
which form the C$ computer,

The term, programmed arithmetic, is used to describe any systematic
use of a set of routines for performing arithmetic and logical tasks
which. in general are not built into the computer hardware.

For example, computations using 15 binary digit numbers will not
always yield results having sufficien’d accuracy. One possible remedy
is to perform arithmetic using 30 digit numbers stored in two consecu-
tive WWI registers, Since operations on this type of numbers are not
directly available they must be programmed.

Two such numbers

p=a; 2% 4 a, 270 asia < 21

B=b 25 4+, 2720

1 2 2

0%Iby < o15

whose sum

A+B=(a +b) 2715 (ay + b)) =30

is less than unity can be added by the following program
pl, ca a2
sa. b2 (al.2 + bz)—)N (c2)
ts 62
p2, ca al
ad bl (al + bl)-> N (cl)
ts cl
STOP
al, a; ? A
a2, a,
bl, bl} B
b2, b
cl, o } A+ B
c2, c5

2

Any overflows which oecur in forming, a, + b2 , are properly picked
up as carries in forming, &y + by . overflows which occur in forming,

ay + bl’ stop the cox:nput.er‘.,(D

OFind two pathological cases in which this could occur,

M=2539=2 XIII-3

Programs forming A-B, AB and A/B can also be written and extended
calculations performed on 30 digit numbers, Individual operations
are performed by copying down these programs and specializing the
addresses as needed,

However, computer time can be traded for space and convenience if
each of the required.operations is written (once) as a closed subroutine,
Address specialization (via program parameters) is then performed by the
subroutines. -

- If the operations .are binary it is necessary to assign three
program parameters, two giving the addresses of the operands in storage
and one.giving the address at which the result is to be placed.

Thus if a closed subroutine for addition is stored beginning
at register, sl, the sum, A + B, is formed as follows

sp sl S
al Address of operand, A.
bl Address of operand, B.
cl Aﬂdress for result, C.

Operations using closed subroutines with a single program parameter
may be used if a multiple register accumulator (MRA) is introduced.

An MRA for 30 digit numbers consists of two consecutive WWI registers
which have the following relationship with a set of closed one=- parameter
subroutines:

(1) One of the operands associated with the subroutines is stored
in the MRA.

(2) The result of the operation is stored in the MRA,

The single parameter.of the subroutines is the address in storage
of the remaining operand,

It is convenient to write closed one-parameter subroutines for
performing the following logical operationsg

(1) Copy the contents of the MRA into a specified storage location,

(2) Copy the contents of a specified storage location into the MRA,

Suppose that the following closed one-parameter subroutines have

been written:

M=2539-2 XITI-4

(1)

sp sl } N (al)— N(MRA)
al

(2) sp s2 } N (al) + N(MRA)->N(MRA)
al

(3) sp s3 { N (al) - N(MRA)->N(MRA)
al

(4) sp s4" } N(MRA)— N(al)
al

Then letting A = N(al) and B = N(a2), the following program stores
(A # B)A, in cl.
pl, sp sl . A
al
p2, sp s2 A+ B
a2
p3, sp s3 (A +B)A
o al ‘
p4, sp s4 (A + B)A > N(cl)
el
p5, STOP

Ii. Interpretive Subroutines
The preceding program forming (A + B)A could also be carried out

by executing the following program

rl, ca pl Store first sp instruction of
ts r3 } previous program in r3
r2, ca pl +1 Store its program parameter (address
_ ts rd } of operand) in r4
r3, + 0 } Execute the operation
r4, + 0 |
ao r2
td rl Set up to do the next operation
ao rz
sp rl

This technique is obviously inefficient since it replaces one sp

instruction (initiating the operation) by several instructions (bringing

M=2539-2 XIII-5

the initiating sp instruction and the program parameter to a fixed
location), It illustrates an important point: that wordé can be used
merely to indicate instructions which'themselves now become parameters
(in a sense) for a higher order subroutine,

One technique of this type has great practical importance since it
again trades computer time for space by cbndensing the information
required to specify an instruction into a single word. This is ‘done
as follows:

Rach standard closed subroutine is assigned a numerical value, e.g.

0 N(al)->N(MRA)
1 N(al) # N(MRA)— N(MRA)
2 N(al) ° N(MRA)— N(MRA)
3 N(MRA)—>N(al)

An address parameter need only occupy 1l bits in a word, The remaining
(left hand) 5 bits of the word are used for the operation parameter
(allowing for 32 operations). The following program translates para-

meters into references to standard closed subroutines:

rl, ca pl} Store address parameter (pl contains
td r4 the word representing the operation).
clh?2l Bring operation number to right-hand
5 bits of AC,
ad r5
td r2 Form sp instruction referring to a
r2, ca Tl standard closed subroutine
ts r3
r3, +»O} Execute the instruction
rd, +0
aorl } Set up to execute next instruction
Csprl
r5, rb
r6, sp sl 0 Table of sp instructions which
sp sZ 1 transfer control to the various
sp s3 2 standard closed subroutines
sp s4 3

M=2539=2 XIII=6

The preceding program is an example of a type of subroutine
called an interpretive subroutine, The parameters decoded by inter-

prétive subroutines are called interpreted instructions,

IT1I, Ceneralized Decimal Numbers

We return now to the subject of exponential representations and
describe..how such representations are sfpred in the memory of the WWI
computer, To begin with we define an (m, n) rep,resentative: for n¥ 0,

. An (m,n) representative of a numbér, X¥0 s isa floating exponent
representative of the number in which m binary dlglts are used to re-
present the mantissa and n blnar'y digits are used to represen‘b the
exponent, -

Only numbers in the range
TR B NPPIC e B
can have (m,n) representatives.,

Algebraic operations on (m,n) representatlves will not in
general yield (m,n) representatives, However if the result lies in the
range (3.1) it can be épproximated by an (m,n) representative., If the
result lies outside the 1nterval (3 l) it is called an overflow or an
underflow accordmg as its exponent is too large or too small.

‘An (m,0) representatlve of a number, X, where |XIK1 , is a
fixed exponent representative in which m binary digits are used to .
represent the mantissa,

Only numbers in the range

A+2Mexge g 12"
can have (m,0) representatives,

The (S contains facilities for converting to binary the follow-
ing kinds of numberss

(1) Integers,

(2) Octal Fractions,

(3) Generalized Decimal (GD) Numbers.

GD numbeﬁs,.are written in the following form

P q
+ rm”o rl ro o T yece Ton x 28 x 10

¥~2539~2 . XITI=-7

GD numbers differ in appearance from integers and octal fractions in
that they must contain both a printed sign and a decimal point. This,
however, is..all they need consist of,'so'that

+ =4 ,0
is a Gﬁ number.

@D numbers can be converted into several kinds of (m,n)
representatives . {both floating exponent and fixed exponent representa-
tions can.result), These are now described.

A. (15,15) Numbers |
A (15,15) representative (of a GD number) has a 15 binary digit

mantissa and a 15 binary digit exponent., By convention two consecutive

WWI reglsters are used for the number and the mantlssa is stored in the
first reglster.
al
al +1

The one's complement notation is used for storing negative mantissas

mantissa

+ exponent

and exponents°

Only pumbers lying in the range

2P g |x] € ¢ 2750 "15)

can have (15,15) representatives.

The (15, 15). representative of the real number, 0, is deflned
to have the mantissa, O, and the exponent 215 + 1.
B. (30 = j, j) Numbers

A (30 = j,j) representative (of a GD number), i=1, 2, cons

14, has a 30 = j-binary dlg;t mantissa and a J digit exponent. By
convention two consecutive WWI registers are used for the number and

the 15 most sigﬁificant digits of the mantissa are stored in the. first
register. The j digits of the exponent are stored in the left most j
digits of the second register and the 15 -3 least 51gn1flcant digits

of the mantissa are stored in the right most 15 - j digits of the second
register, The sign digit of the first register is the sign of the
mantissa and the sign digit of the second register is the sign of the .

exponent,

¥=2539=2 XIII~8

al mantissa

i
'
]
]
al & 1) ¢

exponent maentissa
fe—3J >| € 15=5 —

The one'ls. complement notation is used for storing negative mantissas and

exponentso

The following convention is used for storing the minor part of
the mantissa. »

The magnitude of the minor part of the mantissa is stored in the
second register if the expoﬁent is positive, otherwise the one's
complémgnt of the magnitude is stored.

Only numbers lying in the range

3 _ .
<Ixi< ‘+2_ l L (12 30 + 3)

can have (30 = js 3) representatives,
The {30 = J, 3) representative of the real numbers 0, is
defined to have the mantlssag 0, and the exponent, QQJ + 1,
¢, (15, 0) and (30, 0) rumbers
) A (15, 0) represen ta+1ve (of a GD number) is a 15 binary digit

number whose radix point is at the left-hand end of the number, Such
mumbers are stored in a 31ng1e WWI register according to the one’s
complement notation, The WRI instruction code deals with (15, O) numbers o
A (30, 0) representative { of a GD number) is a 30 binary digit
number whose radix point is at the left-hand end of the number, By
convention two consecutive WWI registers are used for the number and the
15 most significant digits are stored in the first register, The one's
complement notation is used for storing negative numbers, Each half of
the (30,0) number will have a sign digit but, by convention, these are
assumed fo agree.
Do The {my, n) Contrci Word

GD numbers can be converted to any of the (m, n) representations
previcusly described., The representation obtained depends on the
previous appearance in the manuseripi of control words of the form,
(m, n). The focllowing rules applys

(1) If no previous {m, n) control word has occured, a GD

number ig converted tc a (15, 0) representative.

Mw2539=2 XITI-9

(2) If an (m, n) control word occurs, then all GD numbers
following it are converted to (m, n) representatives until another
(m, n) control word occurs,

For examples

fe 100-0-0 |

+ 6792 41.23 x 1072 (15, 0) Numbers
(30, 0) | .
+ W77 +,23 X 2°5 (30, 0) Numbers
(23,7) |

+12,34 ~.0036 x 10" (23, 7) Numbers

If a GD number exceeds the range of the representation, the
translation process is stopped. For example

fe 100-0-0
(30, 0)
41,234
B. Examples of (m, n) Numbers
(1) (15, 0)
Decimal +,12345
Octal +,07715 .
Register ' x) | 0.07715
(2) (30, 0)
Decimal +0123456789
Octal +,07715 33515
Register | x)
x11)
(3) (15, 15) : .
Decimal +1234,5 = +,12345 x 10%= +,60278 x 2'*
Octal +,56451 x 215 .
Register x)
x#1) [000013
(4) (24, 6) - :
Decimal #1234,567 = +,1234567 x 10%= +,6028159 x 2+
Octal +,56451 045 x 20
Register x)

x+1)

M=2539=2 XIIT=10

Iv, The (30 = j, j) Interpretive Subroutine

Operations on (m, n) numbers other than (15,0) numbers must be

programmed., An interpretive subroutine which performs operations on (m, n)
numbers is called an (m, n) interpretive subroutine. A (30 - j, Jj)
interpretive subroutine, for j =1, 2 .,, 14, can be automatically
compiled during the translation process if the coder so specifies,

The (30=j, J) interpretive subroutine performs operations on
(30 = j, j) numbers, In coding operations on these numbers it is con-
venient to first unpackage the numbers to a three register form in which
the mantissa occupies two full registers and the exponent one full
register, This is illustrated below.

[0)

1
W
Xp

mantissa » mantissa

exp mantissa | g ntissag%;C;j;ja

The additional digits required for the mantissa (ekponent) in the three
register form are all zeros or ones according as the mantissa (exponent)
is positive or negative, Three-register numbers of this form described
above are called (30, 15) numbers,

Accordingly the MRA in the (30 -j, j) interpretive subroutine
contains a (30, 15) number, Operations requiring that a number in the MRA
be placed in storage always form a packaged (30 = j, j) approximation to
the number in the MRA, The addresses (in storage) of the MRA are the
following

2042 Exponent
2043 Mantissa (major part)
2044 Mantissa (minor part)

A, The Interpreted ;§§pructions

The interpreted instructions used by the (30 - j, j) interpreted
subroutine are written in the form

ixy

M=2539=2

where xy denotes a pair of letters which frequently correspond to an

analagous WWI instruction.
1. The Instructions, ica al and jc¢g al,

The interpreted instruction, ica ai, unpackages the (30 - j, J)
mumber in registers al and al + 1 to a (30,15) number and copies the

(30, 15) number into the MRA.

The interpreted instruction, ics al, complements the mantissa of the

(30, 15) number before copying it into the MRA,

No alarm can occur on either of these instructions.

2. The Instrucyion, its al

The instruction, its al, forms a (30 - j, Jj) approximation to the

(30, 15) number in the MRA as follows:

lLet T denote the number obtained by rounding off the 30 digit

mantissa in the MRA to 30 - j digits. Define x by

=13 ir |5 =1
x* =X . if lil(l

Let y denote the exponent in the MRA. Define y* by
7 =yl ir &l =1
y*fy if Ixl<1

If
2 +1cy%d -1 S
the (30 - J, J) approximation is defined to be (x*, y*).

If
y* g2 A :
the (30 ~ j, §) approximation is defined to be (x*, =27 +1),
I
y2 2!

the number has no (30 - j, j) approximation and an alarm is generated

(the deliberate generation of a computer alarm is referred to as

mistake anticipation).

The resulting (30 -j, j) approximation is then copied into registers

al and al + 1,

The instruction, its, is an inverse to the instruction, ica, in the

sense that the sequence

ica al
its al .
leaves unchanged the contents of al and al + 1.

M=2539-2 XIII-12

3, The Instruction, iex al

The instruction, iex al, forms the (30 - j, j) approximation to the
number in the MRA (exactly as deseribed for the its operation),
exchanges it with the (30 - j, j) number in registers al and al + 1, un-
packages the latter number to a (30, 15) number and copies it into the
MRA (exactly as described for thé ica operation).

i The Instructions, iad al and isu al

The instruction, iad al, first unpackages the (30 - j, j) number in
registers al and al + 1 to a (30, 15) number. An alarm is génerated
(mistake anticipation) if the major part of its mantissa lies in the
range, 0<|x|<1/2. We denote the unpackaged number by

Y o zy
and the number in the MRA by

x - 28
The exponents, x and y, are compared and the number with the larger
exponent is placed in the MRA,

If |x - yI1>29 the numbers are called incommensurable and the sum of
the numbers is defined to be the number with the larger exponent (already
in the MRA).. :

If |x - y1£29, the following sum is formed

7w X+ 7 o= %71
and scale factored to yield

Z=% o 2P
where either

1/2 £121<1 and =32£p¢l
(if 121 ¥ 0) or

12l =0 and p = =33
(if 1Z! = 0), The sum of the two numbers
' g o oP*X

is copied into the MRA,

The routine yields correct results even when the number in the MRA has
a non-scale-factored mantissa. The sum of two numbers has a scale-
factored mantissa except for the case where the summand in the MRA was

M=2539-2 XITI-13

non=scale-factored and incommensurabie (with larger exponent) with the
summand from storage.

Difficulties can arise when one of the summands is a zero. Since
the routine does not distinquish zeros the sum of a zero and a non=-zero
number can easily be the zero (if its exponent is much larger).

_An overflow (which is not anticipated by the routine) can occur in
forming the exponent of the sumy p + x, but the possibility is remote.

The instruction, isu al, behaves exactly like the instruction, iad al,
except that the mantissa of the summand from storage is complemented
before entering the routine.

The mantissa of the sum (or difference) is accurate to at least 28
binary digits.

S. The Instruction, imr al

The instruction, imr al, first unpackages the (30 - j, j) number in
registers al and al + 1 to a (30, 15) number, An alarm (mistake antici-
pation) is generated if the major part of the mantissa lies in the range,
0<I1xJ<1/2. We denote the unpackaged number by

Y o2V
and the number in the MRA by
X o 2% |
A two register approximation, % to the four régister product, XY,
is formed and scale=factored to yield
=% .002P
where either
1/2< 121<1 and =32<p<0
(if 12130) or ‘
|Z2l=0 and p = =33
(if 1Zl = 0). The product of the two numbers
g o oP*XH+Y
is copied into the MRA
An overflow alarm (which is not anticipated by the routine) can occur
in forming the exponent of the product, p + x + ye.

The mantissa of the product is accurate to at least 28 binary digits.

Ma25392 | XITI-1k

6. The Instruction, idv al :
The instruction, idv al, first unpackages the (30 - j, J)number in

registers al and al + 1 to a (30, 15) number. An alarm is generated
(mistake anticipation) if the major part of the mantissa lies in the
range, 0<1X1<1/2, We denote the unpackaged number by

Y. 2
and the number in the MRA by

x - 2*

A two register inverse,-%-Yfl, of h¥Y is formed and the multiplica-
tion routine is used to multiply.

Tt » 2 T2 ang X ¢ 2%

An overflow alarm (which is not anticipated by the routine) can
occur in forming the exponent of the quotient, x - y +2, A divide.error
alarm (also not anticipated) will occur if register al contains a zero.

The mantissa of the quotient is accurate to at least 2l binary
digits.,

7. The Instructions, isp al, icp al and sp al

The execution of an interpreted instruction is in general initiated
by the following WWI instructions
2018 a0 2019
2019| ca -
Register 2019 is called the interpreted program counter (IPC) since it
contains the address of the interpreted instruction being performed.
The instruction
bl, isp al
begins by storing the WWI instruction; ca bl + 1, in a register (whose
address is 20h0) called the intertreted A-register (IAR). The previous
contents of the IAR is stored in the initial register (whose address is
2025) of a four-register table called the jump table. "Previous entries
in the jump table are shifted downward. The TAR and jump table thus
list the addresses of the last five isp instructions performed.
The WWI instruction, ca al, is then placed in the IPC and WWI
computer control transferred to the IPC.
The instruction .
bl, icp al

M=2539-2 XIII-15

behaves exactly like the instruction, isp al, if the number in the MRA
is negétive, and is otherwise ignored.
The instruction
bl, sp-al -
causes WWL computer control to be transferred to register bl from which
computer control passes to register al.
8, The Instructions, IN and OUT
The WWL instruction
al, IN
is translated into the instruction, sp 2046, and transfers computer

control to a two register program
2046 ta 2019
2047 sp 2019
Since 2019 is the IPC this causes the interpretive subroutine to
interpret the instruction contained in register, al + 1, An IN which
~ is executed by the interpretive instruction is ignored (see the
instruction, sp al),
The interpreted instruction
-~ aly OUT .-
is translated into thé instruction, sp al +# 1, and is a special case of
the instruction, sp al. An OUT which is executed as a WWL instruction
is ignored,-
B. The Cycle Counting Instructions

The single letter, © may be used as a suffix for any of the
interpreted instructions
its al, jex al, ica al, ics al,
jad aly; isu al, imr al, idv al,
isp al.
and has the effect of subtracting a fixed amount (+20) from whatever is
the value of the corresponding interpreted instruction.
Let ixy denote any of the above instructions except isp.
In executing the instruction
ixy al+e
the interpretive instruction first forms the address
W= (al + 2i) mod 2048

M=2539=2 XIII-16

where i denotes the contents of the index register being used, and then
executes the instruction, ixy W. In the case of the isp instruction the
quantity, W, defined above is replaced by
W= (al+1i) mod 2048
Overflow alarms (not anticipated) can occur in forming W(or W)
and in executing the instructions ici, icd; ictxbr iat. in general these
occur when the contents of an index register becomes excessive.

1. The Instruection, isc n

The instruction, ise n, makes it possible to use multiple pairs of
index and criterion registers., The integer, n, can assume the values,
n=0,1, 2, .0.s and the corresponding index and criterion registers
(numbered accordingly) are assigned consecutive locations in a storage

block which is allocated during the translation process,

el 14

cl+l n,

cl+2 ;l

c1+3 il
L

The length of the block depends on the maximum value of n appearing
as the address of an isc instruction in the printed manuseript. The
location of the block will vary, but the address of the O index register
(1.e. cl) always appears in register 20L5, '

A check alarm is generated (mistake anticipation) if the interpretive
subroutine attempts to execute an isc n instruction for which no index
and criterion register has been allocated in the above table.

C. The Buffer Registers
Some (30, 15) storage locations (called buffer registers) have been

defined which can be used as operands for interpreted instructions. These
are denoted by the symbolic addresses '
by 1by 2B, ooy 263b
and can be used as addresses for the instructions
its, iex, ica, ics, iad, isu, imr, and idv
When such an instruction is performed both operands are (30, 15) numbers.
~ The single letter, b, is assigned the value, 1784, during the

M=2539-2 | XIII-17

translation process so that the address, nb, becomes n + 1784, Addresses
denoting buffers are larger than ordinary addresses in a program,

The buffer registers are exact images of the MRA and are assigned
consecutive locations in a storage block which is allocated during the

translation process,

cl exponent)

cl+l mantissa S b

cl+2 mantissa A

el+3 exponent, , i

el+l mantissa 5 1b

cl+5 mantissa |
- J

The length of the block depends on the maximum value which the
integer, n, assumes in addresses of the form, nb, appearing in the
printed manuscript., The location of the block will vary, but the address
of the exponent of the 0 buffer always appears in register 2039.

V. Automatic Compilation
A (30 = 3, j) interpretive subroutine is automatically compiled

during the translation process in response to the appearance of certain
words in the printed manuscript. The rules are explained in the follow-
ing sections

A (30 = 3, J) interpretive subroutine will be compiled if and only
if the following conditions are satisfied,

1, The last (m, n) control word in the manuscript is of the form,
(30 = 3, 3), where J =1, 2, ..., 14,

2. An interpreted instruction, ixy al,or an i START AT appears in
the mamuscript,

3, The word, NOTPA, does not appear in the manuscript,

M=2539=2 XIII=18

The satisfying of these conditions guarantees the inclusion of a
minimal (30 -j, j) interpretive subroutine which performs the ordinary
arithmetic and logical instructions not involving cycle counters or
buffers,

Further specialization of the (30 - j, j) interpretive subroutine
can be accompliéhedo This has been made possible by breaking up the
interpretive subroutine into four program blocks,

1, The Basic Program Block: is described above,

2, Thé Cycle Counting Program Blocks executes instuctions suffixed
by ¢ and instructions affecting the cycle counters, This block is
included whéneverAan instruction of the form, ixyalc, or one of the.
instructions, isc, icr, ict, iat, or iti, appears in the manuscript.

3, The Buffer Program Block: executes instructions whose addresses
refer to buffers, This block is included whenever an instruction of the
form, ixynb, appears in the manuscript.

4, The isc Program Block: executes the isc instruction, This
block is included whenever an isc instruction having a non-zero address
appears in the manuscript,

The lengths of the various blocks are given in the following table,

Basic 266
Cycle Counting 40
Buffer 74
ise 23

In addition to the program blocks the following blocks of storage
are allocated during translations

1. The cycle counters

2. The buffers
The lengths of these blocks has already been discussed,

The total length of the (30 - j, Jj) interpretive subroutine compiled
can be obtained by adding all of the block lengths listed above (noting
that the presence of the cycle counting block without the isc block
requires a single cycle counting register pair),

The spatial arrangement of the blocks in storage is the followings

M-2539~2 XIII~-19

Buffers

B s e SO

Cycle
Coumters

ise Block

Buffer
Block

Cycle
Counting
Block

Basic
Block

2047

VI, Mistake Anticipation
Mistake anticipation refers tn the proprammed detection of illegal

situations. Those illegal situations anticipated by the (30-= 3, 3),
interpretive subroutine have bren described in the previous sections.

With anticipated alarms care has bcen taken not to disturb pertinent
temporary registers (MRAy IAR, IPC) in the interpretive éubroutine until
it is certain that the operatinn can proceed correctly. This is ﬁot the
case with non-anticipated alarms,

Thus a programmed arithmetic post-mortem (PAPM) taken after an
anticipated alarm ylelds accurate results while a PAPM taken after a
non-anticipated alarm may present a jumbled picture of the interpreted
subroutine,

Anticipated alarms cause ﬁhe computer to stop on a check alarm
in register 2036. '

M-2539-2 XIV-1
CHAPTER XIV: THE CONVERSION PROGRAM

‘I, Introduction
II. The Operation of the Conversion Program
A, The Use of the Computer Memory
B, The Address Indicators
'IITI. The Vocabulary of ﬁhe ¢S Coding Language
A, Characters
B. Words
C. Polysyllabic Words
1., Syllables
a) Constant Syllables
b) Parametrie Syllables
¢} Special Syllables
2, Control Words
a) Floating Address Tags
b) Current Address Assignments
¢) Drum Address Assignments
d) Starting Address Assignments
e) Preset Parameter Assignments
f) Temporary Address Assignments
g) Relative Address Assignments
3. Single Letters
a) Buffer Registers
b) Cyele Counters
¢) Relative Addresses
d) Temporary Storage
D, Special Words
1. Storage Words
a) Generalized Decimal Numbers
b) Input and Output Subroutine Requests
e¢) PA Entry and Exit Words
d) Stop Instructions
2, Control Words
a) Titles

¥M-2539-2

b)
c)
a)
e)
)
g)

Integer Base Indieators
Cancellation of PA Requests
Library Subroutine Indicators
Number System Indicators
Comment Words

DITTO

IV, Error Detection During the Conversion Process

IIVv-2

M=2539-2 XIV-3

I. Introduction

The primary concern of a coder is to express a program in a language
acceptable to the computer. The characters, or symbols, of this language
mist be those which are accepted by the computer input devices, and the
syntax, or grammar, of the language must permit a simple translation of
the coded program into the equivalent rmchine-coded statement of the
problem in the computer memory. The simplest language from the trans-
lation point of view is the one which is essentially an exact portrayal
of the eventual machine-code. In this case the coder writes machine-
code. Fo; example, with #hirlwind this would correspond to coding with
binary representations of the machine words and, as a matter of faet,
the earliest input translation programs for Whi?lwind did no translating
and merely accepted binary-coded, hand-prepared tapes,

The next stage beyond this is the use of octal or sexadécimal repre-
sentations of groups of the binary digits, or decimal characters in the
case of decimal machines, to reduce the number of characters that must
be manipulated and written by the coder. However, languages using such
characters still require knowledge by the coder of the exact representa-
tions in the computer memory of the instructions he wishes to write. An
essentially different approach is taken, though, if the coder writes in
a language whose elements are abbreviated functional deseriptions of the
operational facilities of the computer, i.e., the operations and oper-
ands used during computation. Such a language, which may bear very
little relationship to the actual appearance of these words in the com-
puter memory, is called an alphanumerical, mnemonic code.

The coding language of the Comprehensive System provides such a
code., It has elements which denote the functional operations, etc.,
with which the coder would prefer to be concerned while initially coding
a problem, but it also contains elements which allow the coder %o denote
exactly what is to be the contents of particular registers of the com~
puter memory in case he feels the need for such coding. Abbreviations
suech as "ea" are used to designate the operation of clearing the Whirl-
wind accumlator and adding to it the contents of a register. The loca-
tion of the register can be designated by a floating address tag which

may also bear some mnemonic relation to the variable designated. Other

M-2539=2 Iv-4

faeilities, like cycle counting and buffer storage in the interpreted
computers, again use mnemonic designators. In no case need the coder
unnecessarily concern himsélf with other than the functional structure
of the program he is coding. In addition he has at his disposal various
pseudo-operations which effectively enlarge the number of facilities
available.

The eonversion program of the Comprehensive System accepts the se-
guence of alphanumeric characters comprising the code for a program and
translates this infto the equivalent machime-code in Whirlwind., In this
chapter the G3 language will be completely specified, and some of the
operational aspects of the system will be deseribed,

II, The Operation of the Comprehensive System

A, The Mechanies of the System

A program is introduced into the Whirlwind computer via the

Comprehensive System by punching the sequence of characters correspond-
ing to the coded program into seven-channel paper tape with a Flexowriter
typewriter-puneh, This tape is placed in the photo-electric paper tape
input device of Whirlwind and the read-in button is pushed. The programs
described in Chapter XV then transfer the contents of core memory to
auxiliary drum group #0 and bring the conversion program into the core
memory of Whirlwind. This program takes over the read-in and transla-
tion process.

The conversion program consists of several smaller programs
which perform their functions in sequence, First, the title program
reads the title punched on the Flexo tape and records this on various
output devices for identification purposes (see Chapter XV on this also),
In particular, the title is normally recorded on Magnetic Tape #3 to
identify program results which might appear there. The next program,
called the first pass program, then reads in the remainder of the paper
tape, translates it partially, and records the partially-translated inQ
formation as a sequence of blocks on Magnetic Tape #1. The information on
MT#1 is called "logical™ information to distinguish it from the untrans-
lated form on paper tape and the completely-translated end product,
Tables of information pertaining to the kinds of floating addresses and

preset parameters used and the automatic interpretive routines desired

M=2539=2 XIV=5

are also compiled during the first pass and are left in core memory.

The second pass program reads the information on MT#1 back-
wards and tabulates in core memory the vaiues of all the floating ad-
dress tags and all the automatic output requests. Control is then trans-
ferred to a set of programs which compile all the interpretive and output
routines desired and store these at the proper locations on auxiliary
drum group #0 corresponding to the eventual core memory addresses.

The third pass program then reads the information on MT#L in
the forward direction and completes the translation process, placing the
completely translated words on the auxiliary.drum. Any words written on
drum group #0, of course, replace those initially copied there from core
memory. The last program then records the values of all the floating-
address tags on MT#3 and transfers control back to a program which copies
auxiliary drum group #0 into core memory and stops the computer in suech
a manner that pushing the Restart button will transfer control to the
address indicated by the START AT at the end of the Flexo tape.

Several things need to be said about the conversion process.
First, the computer stops after all of the Flexo tape in the reader is
read in, If the Restart button is pushed, then the conversion proceeds
as above. But if this Flexo tape does not contain all of the informa-
tion that is to be translated at this time, as, for example, when the
program tape is broken into two or more sections, then pushing the
Start at 40 button will cause the first pass program o read in more
Flexo tape from the tape reader until the next START AT word occurs.

This process may be repeated as many times as desired until all tapes
are read in. Pushing the Restart button will then initiate the second
pass program.‘ Several tapes can thus be converted together as if they
were one tape.

The computer operator can also cause the conversion program to
record on MT#3 a copy of the converted program as it would appear 'in come
puter memory in binary fomm. This process is controlled by pushing other
buttons on the control console. The information on MT#3 can be punched
out on paper tape to give a 556 copy of the program. This may subse-
quently be read back into the computer without meking use of the conver-

sion program (see Chapter XV for a description of the struecture of this

M-~2539-2 XIV-6

556 tape.

The conversion process will terminate at any stage if the cbn»
version program detects one of several kinds of error in the coded Pro=-
gram, These errors are described in a later section. An indication of
these errors is printed on the direct output typewriter and also on MT#3,

B. The Address Indicators

A program which has been coded and punched on tape has a se-
quential structure which reflects the sequential, single-address struc-
ture of the machine code in the Whirlwind computer, If this sequence is
broken or otherwise disturbed, then the program in computer storage will
not operate in the expected manner, However, not only must the sequence
of words be preserved, but also the values used in the address sections
of the instruction words must be in agreement with the actual loeation
of the designated operands.

Coders who use numeriecal addresses throughout a program pose
no problems in this respect for an input translation program, but there
are two kinds of difficulty which do arise in other situations, Con~-
sider first the case where a program is coded wholely or in part with
floating addresses. In this case the translation program must do some
computation to find the value of the floating addresses used in the Dro-
gram and insert the correct numerical values where desired into the ad-
dress sections of instruections, The mechanics of this computation is
rather simple: +the translation program merely notes the location as—
signed to the initial word of a block of words and sets a counter to
this value. Then, as successive words which will occupy storage loca=-
tions occur, the translation program merely indexes this counter. When-
ever a floating address occurs tagging a word, the translation program
assigns the current value of this counter to the floating address. This
evaluation takes place during the first pass of the translation process,

and the counter described is called the current address indicator. It

should be noted that this indicator is set to a new value only when a
current address assignment occurs, and is indexed once or twice whenever
a word occupying storage registers occurs.dependihg upon the number-ef"
registers occupied by the word.,

A second problem arises, though, when a coder decides that not

M=2539-2 XIV-7

all of his program will be stored in the random access memory of the com-
puter during the read-in and translation process. This, for example,
occurs when the program consists of a large iterative loop, not all of
whieh ean fit into core memory at once but which must be entirely within
the computer at all times if the solution is %o be computed in a reason-
able time. Here the problem is that those parts of the program which

are to be stored in auxiliary memory must be assigned locations during
the read-in process which may bear little or no relationship to the
actual locations in core memory when being executed,

In Whirlwind this auxiliary memory is the auxiliary drum. The
registers in the core memory are addressed from 32 %o 2047, A natural
manner of addressing the registers on the drum so that words can be as-
signed locations there is to consider the drum as a non-random access
extension of core memory. The system used is to assign the addresses
0 to 24575 to the registers of the drum. Registers 32 to 2047 are used
to store the contents of core memory during the read-in process and are
normally identified with core memory. Registers 22528 to 24575 are used
to store the utility control program and hence are also not available
for use by programmers, However, the entire range is covered by another

address counter, called the drum address indiecator, which emables a coder

to assign.words to any location in either core memory or the drum. Pro-
grams or data stored on the drum during read-in ean be brought into core
memory during program operation by proper use of the drum in-out instrue-
tions (see Chapter XII).

The exact rules by which the conversion program determines the
locations of words end the values of floating address tags using these
two indiecators are as follows: the value given to a floating address
tag is based entirely upon the value of the current address indiecator
when the tag occurs, whereas the location assigned to words in storage
is exactly the value of the drum address indicator when the words occur.
Both indicators are given the initial value of 32 (decimal) by the con-
version program before any Flexo tape is used. Whenever a current ad-
dress assignment causes the current address indicator to be increased
or decreased by a cerftain amount, then the drum address indicator will

be increased or decreased by that same amount.

M-2539~2 XIvV-8

Hence, if a prcgram fits entirely into core memory, there will
be no need for the coder to be concerned with the drum address indicator.
However, if a program is to be stored on the drum, then use must be made

of drum address assignments. Whenever one of these assignments occurs,

the conversion program gives the indicated value to the drum address in-
dicator without affeeting the current address indicator. Thus it is
possible to have words stored in one loeation while associated floating
address tags receive different values.

An exception will now be described: whenever a current address
assignment immediately follows a drum address assignment, then the drum
address indicator is not affected by the current address assignment, This
permits a coder to assign explicit values to both indieators. Definitions
and examples of the use of the two kinds of assignments are given in the
section on polysyllabic words.

III. The Vocabulary of the Comprehensive System Coding Language

A . complete listing of the elements of the CS coding language is
given in Figures 1 and 2 at the end of this chapter. Constant reference
should be made to them during the following deseription,

&, Characters

The coder has available the symbology on the keyboards of the
Flexowriter typewriter-punches used at the Digital Computer Laboratory.
Depressing a key causes a unique six binary digit character to be punched
on paper tape and the ﬁape to be advanced one position. This tape is the
medium for inserting coded programs into the computer. Only those six
bit characters corresponding to keyboard characters are accepted by the
conversion program, and only meaningful sequences of characters should be
written or punched. The conversion program detects and indieates all
illegal characters (see Figure 1); however, not all meaningless sequences
are detected., For a description of the detected ones, see Section IV,

All accepted characters have a unique meaning to the conversion
program except for the letters o and 1. These are considered to be the
same as the digits 0 and 1. Upper case characters are considered distinct
from lower case characters even though the same codes are punched on the
paper tape. The shifts to upper or lower case correspond to actual charac-

ters punched on the paper tape and are used to distinguish upper and lower

M-2539-2 Iv-9

case characters, Any number of the shift characters may occur at any
place on the tape so long as the print of the resulting tape has the
correct appearance. That is, superfluous shift characters are ignored.
Tab and carriage return characters may also be inserted where desired be=-
tween words to control the print format,
B. Words

In the CS language nearly every word in the coded program corre-
~sponds either to a computer instruction or to a data word and will occupy
registers in the storage element of the computer after translation, There
are other words, however, which do not in themselves occupy storage regis-
" ters but are used instead to influence the form and location of the
storage words. These two kinds of words are classified by calling them,

respectively, storage words.and control words.

A different classification can be obtained by considering the

structure of the words, Some, for example, like

cad7+h3-zb2
or

243+
are composed of more primitive elements which usually consist of more
than one character. The sixteen bit value of the translated word is es-
sentially the sum of the binary values of these elements. These elements

are called syllables, and such words, polysyllabic words. On the other

hand, there are control words like
DITTO
and storage words like
iMOA+1,.234567s
which have a specific meaning or function in the translated program but

not a polysyllabic structure. These are called special words.

Thus we have four classes of words: polysyllabic storage words,
polysyllabic control words, special storage words, and special control
words. All words in the CS language are classified in this manner, and
the description of the language is built around this system of classifi-

cation.

u

M-2539-2 XIV-10

C. Polysyllabic Words

A polysyllabic word is a sequence of syllables followed by a
terminating character. Each syllable is detected by the conversion pro-
gram and, unless it is a special syllable (see l.c below), is given a
sixteen bit value. These values are summed to give the value of the con~
verted word. The summation does not take place in the sequence the
syllables occur, but all the constant syllables are summed first and the
parametric syllables are added later. However, the letter r is treated
in the special manner described in the section on relative addresses.
The value of a syllable is added or subtracted depending upon whether
the syllable is preceded by a plus sign (explicit or implicit) or a minus
sign.

The conversion program detects the end of a word by the oc-
currence of a terminating character. The terminating character deter-
hines the function of the word terminated, as well, perhaps, as that of
the following word, There are only four such characters: the tab or
carriage return, the comma, the equals sign, and the vertical bar. Of
course, the syllables occurring in a word also influence the meaning of
the word.

A polysyllabic word terminated by a tab or carriage return is
always a storage word unless the preceding word is terminated by an
equals sign or unless this word contains the special syllable START AT,
On the other hand, any word terminated by a comma, equals sign, or ver-
tical bar is a control word., The sequence of the syllables should have
no effeect upon either the meaning of the word or the binary value of the
word. However, the manner of summation of the values of syllables oc-
curring in the word can influence the binary value of the word. The
"special add" operation is used in combining the syllables (see Chapter
XI), and any overflow that may occur during the formation of the inter-
mediate partial sums is forgotten., Since the constant syllables are
summed before the parametric syllables, it is possible for such an over-
flow to occur without the coder being immediately aware of the fact.
Fortunately, however, the only time that this situation will normally
oceur is when a coder uses negative syllables in a Whirlwind instruction

containing the operation code "ca", as described in Chapter VIII,

M-2539-2 gv-11

1. The Syllables

The syllables are classified as constant, parametric, and

special.
a) The Constant Syllables

The constant syllables are so-called since their

binary values are fixed and do not depend upon the other words in the
program,
1) The Whirlwind Operations

These syllables are written as two or three
lower case letters and are listed, with their binary wvalues, at the end
of Chapter XI. Usually only one of them appears in an instruction word,
but actually as many as desired may be used,

2) The Interpreted Operations

These are always written as three lower case.
letters with the first letter an "i". They are given in Chapter XIII,
3) The Integers

These are any of the integers from 0 to 215-

1
and are written with or without sign, but never with a radix point, They
are assumed to be decimal unless otherwise indicated by use of the appro-
priate special words (see the section on the integer-base indiecators).

4) The Octal Fractions

Sometimes it is desirable to‘specify the exact
binary value of a word, or part of a word; the octal fractions permit
this, They are written as a one or a zero, followed by a point and
exactly five octal digits. This amount of information is equivalent to
a sixteen bit Whirlwind word. Octal fractions need not be the only
syllable in a word, and the only precaution which must be observed by a
coder is that an octal fraction appearing as the first syllable in a word
must not be preceded by a plus or minus sign. If this rule is broken,
then the word will be considered to be a generalized decimal number,

5) The Single Letters

Two syllables, b and ¢, consist of a single
letter and have a fixed binary value. These are discussed further in

the section on single letters,

M=-2539~2 XIv-12

b) The Parametric Syllables

The parametric syllables are given binary values
which depend upon an implicit or explicit assignment given by the coder.
The rules describing assignments are given in later sections of this
chapter,

1) The Floating Addresses

A Ploating address syllable consists of a single

letter followed by a decimal integer from 1 to 255, Any letters except
o or 1 may be used. The binary value assigned to a floating address is
determined by the conversion program and depends upon how the floating
address is used as a tag by the coder. This value is substituted for
the syllable whenever the conversion program deteets the floating ad-
dress in other words., _

2) The Preset Parameters

A preset parameter syllable consists of two

letters followed by a decimal integer from 1 to 40, The first of the
two letters must be a p, u, or z, while the second can be any letter
except o or 1, The binary value assigned to a preset paramefer is de-
fined explicitly by the coder, This value is then subgtituted in all
subsequent uses of the parameter until the parameter is redefined,

%) The Single Letters

The two syllables r and t are given binary
values which depend upon their use in the program being converted. They
are discussed at length in the section on single letters.

e) The Special Syllables

Two syllables are unusual in the sense that they

have no corresponding binary values, but are instead used in words to
determine their control functions., Both consist of upper case letters
and are normally written as the first syllable of the words in which
they appear,

1) The Drum Address Syllable

This syllable consists of the upper case letters
DA, and is used to distinguish a drum address assignment from a current

address assignment,

M-2539-2 aV-13

2) The Starting Address Syllable
This is written as START AT, though only the

Pirst three letters need actually be written. It must be preceded by a
lower case i if the initial instruction executed in the program is an
interpreted instruction. '

2. The Polysyllabic Control Words

Any polysyllabie word términated by a comma, ,equals sign,,
or vertical bar, or containing one of the special syllables is a poly-
syllabic control word. The seven different kinds of such words are de-
seribed below, These words are usually restricted in the kind of syl-
lables which they may contain,

a) Floating Address Tags

A floating address is assigned a value by writing it
as a syllable in a polysyllabic word which is terminated by a comma and
which appears just before the word being tagged. Only integer syllables
may appear in the tag word in addition to the floating address itself.
Thus, a coder may write

al,=-79 .
thereby tagging the location of the word -79 by the floating address al,
The conversion program actually gives the value of the current address
indicator to al when the al, occurs., On the other hand, he may also
write 5+al, =79 3
In this case the conversion program subtracts 5 from the cufrent address
indicator and gives the resulting value to the floating address al, In
other words, the conversion program always substracts the positive or
negative integers which may be present in the tag word from the current
address indicator in order to find the value of the floating addressa.

 The number of floating addresses which may appear in

a program is limited., If no input-output special words are used in the
program, then the sum of the maximum integers appearing for each of the
letters uséd for floating addresses must be less than 256. Hence, if
only the floating addresses wl, wlO, and r245 are used, then we have
the inequality

10+245 { 256

satisfied, On the other hand, if wll or r246 or bl were also used, then

M-2539-2 XIV-14

we would not be able to satisfy the inequality. ZEach input-output
special word which appears reduces the number of floating addresses which
may be used by one, so, for example, if ten such words appear, then the
above sum can be at most 245, It is important that all floating addresses
appearing in a program should be considered in determining the maximum
integer for each letter and not just those floating addresses which ap-
pear in tag words. .
The current address indicator may at times be in the
indefinite status described below, No floating addresses may be defined:
then, Violation of either this rule or the one above will cause an error
indieation by the conversion program. |

b) Current Address Assignments

A coder may wish to specify the initial address of a

program in core memory, or the end of a block of registers in which a
word is being DITTO'd (see section III, D), In these cases he must make
a current address assignment. This is done by writing a polysyllabic
word, terminated by a vertical bar, in which no special syllables appear.
Suech a word will alter the current address indieator and drum address
indicator as deseribed in section II, B.

Hence, if a coder writes

152|
or
al+10|

then the eurrent address indieator will be given the values, respective-
1y, of 132 or al+l0., Suppose, now, that the previous word is not a drum
address assignment and that the current address indicator had the value
32 when the current address assignment 132| occurred. Then the effect
of the current address assignment is to increase both the drum address
indicator and the current address indicator by 100. On the other hand,
if the previous word is a drum address assignment, then only the current
address indicator is altered.

If any parametric syllables other than r appear in
a current address assignment, then the current address indicator is
placed in an indefinite status, It will remain so until a current ad-

dress assignment occurs which contains only constant syllables or r,

M-2539-2 ' XIV-15

While the indicator is in this state, no floating address assignments
may occur. However, if at most one parametric syllatle was in the
current address assignment, then the relative address may be assigned a
value (see section IIT,C.3.C)e

¢) Drum Address Assignments

In order to specify the location of sections of a
program which lie in auxiliary-drum storage, a coder must use drum ad-
dress assignments. These have the same structure as current address
assignments except that the first syllable is always the special syl-
lable DA. The occurrence of one of these words always causes the drum
address indicator to be set to the value of the word without altering the
value of the current address indiecator. The drum address indicator does
not have an indefinite status corresponding to that deseribed for the
current address indicator.

d) Starting Address Assignments

The last word which must be punched on every Flexo
tape is a starting address assignment. This word indicates to the con-
version program the address of the first instruction to be executed
when the converted program is operated. It has the structure of a
storage word except that the first syllable must be the special syllable
START AT or i START AT,

e) Preset Parameter Assignments

Frequently a coder will want to specify an arbitrary
value for a syllable. This can be done by making a preset parameter as-
signment. The value specified by such an assignment for a preset para-
meter will apply in later uses of the parameter until a new assignment
for that parameter occurs,

' An assignment consists of a polysyllabic word ter-
minated by an equals sign and containing no parametric syllables other
than the preset parameter being assigned. A polysyllabic storage word
or a special storage word other than an input-output request, or a tab
or carriage return must immediately follow the assignment. The value
given to the preset parameter is the value of this subsequent word, if
one appears, less the value of all the syllables in the assignment other

than the preset parameter itself. Hence, for example,

M-2539-2 ‘ XTV-16

ica3+pal = al=-r+0.04777+pb2
is equivalent to

pal = al-rt+0,04777+pb2-ica=-3.
In either case the effect would be to assign a value to the syllable pal
which will then be used by the conversion program in later appearances
of pal in other words, as for example in

10+pal
or

DA pal

One further rule applies to the use of preset para-

meters in a program., Each preset parameter syllable consists of two
letters and an integer. The sum of the maximum integer for each of the
two letter pairs used in a program must be less than 32. That is, if
the parameters pal, uq22, zz7, and zz8 are used, the rule is satisfied,
since 1+22+8 ¢ 32, However, this is not true if any parameters other than
ugl to ug2l or zzl to zz6 are also used,

f) Temporary Address Assignments

The syllable t is given a value by exactly the same
method used to specify a preset parameter, and if t is used in a program
then the sum of the maximum integers for the preset parameters must be
less than 31,

Usually only one assignment is made for t, but since
it is treated as a preset parameter by the conversion program it can be
respecified as often as desired.

g) Relative Address Assignments

'A value is given to the relative address syllable r
whenever a word terminated by a comma occurs, Hence, a floating address
tag is also a relative address assignment, and the value given to r in
such cases is the same as that given to the floating address. However,
if a polysyllabic word containing only constant syllables and terminated
by a comma occurs, then a value is given to r equal to that of the
current address indicator less the value of this word. Regardless of
how r is defined, the value specified is substituted in all other uses

of r until a new value is defined.

M-2539-2 IIv-17

3, The Single Letters
The single letters b, ¢, r, and t, when used in poly-

syllabic words, must always be preceded and followed by the correct
punctuation characters. These are the plus and minus signs and the
various terminating characters. In only one case can one of these charac-
ters be omitted; that is when the preceding character is a plus sign and
its omission causes no ambiguity in meaning., For example, the word

catt
can be abbreviated %o

cat

without ambiguity. However, the word

catr+t
can be written as
car+t
but not as
cart

gince rt would be considered as an improper two letter Whirlwind opera-
tion code syllable. The syllable structure is emphasized here again
gsince the conversion program detects syllables by reading the characters
of the word in sequence from left to right, The syllables are actually
the longest sequences of characters which have meaning. In the case of
meart", the eonversion program starts a new gyllable on the letter r and,
the following letter t causes confusion, However, the ca 1s detected as
a syllable since car is not a defined syllable (see Pigure II).

| a) Buffer Registers

The buffer registers are referred to as b, 1b, 2b,

3b,.e0, and as many buffer registers are provided as is indicated by the
coder. This indication is implicit: whenever the syllable b occurs in
any polysyllabic word, the conversion program observes the value of the
address section of the word. The maximum of these values in all such
words in the program, or group of programs being converted together,
determines the length of the block of buffer registers. The value of
the address section is actually the sum of the values of the integer and
relative address syllables in the word reduced modulo 2048. In forming
the velue of the converted word, the integer value of 1784 (decimal) is

M-2539-2 XIVv-18

given to b, This value is not added to a word until after the address
section value is determined.

Care must be taken when the number of buffer regis-
ters in a program depends upon some parametric quantity. For example,
writing

pal=10

o
o

o

icapal+b
will not of itself cause eleven buffer registers to be set aside by the
conversion program for the interpretive routine to use; it will instead
cause only one buffer to be available. If, however, the coder writes
pal=10b

o

o

o

icapal
then eleven buffers will be available,

b) Cycle Counters

The address section of interpreted instructions may
be modified by the currently selected cycle counter index register by
simply appending the single letter syllable ¢ to the word., The effect
of this syllable upon the converted word is to change the binary value
of the operation code. This is done by giving the syllable ¢ the octal
fraction value 0.57777. The ¢ may thus be considered a fourth letter
for the interpreted cycle count instruction code.

The presence of the letter c any place in the tape
being converted results in the cycle count block of the interpretive
routine being provided. If no more than one eycle counter is used and no
isc instruction occurs with an address greater than 0, then only the
zeroth counter registers appear. However, if an isc instruction occurs
with an address greater than 0, then the highest-valued such address
determines the highest-numbered cycle count line ocecurring in the con-
verted program. Complete details are given in Chapter XIII about the use

of these counters, The address value of the instruction is the sum of

the integer and relative address syllables modulo 2048, Preset parameters

M-2539-2

XIV-19

cannot be used directly to specify the highest-numbered cycle counter,

and a subterfuge must be used. For example,
pal=10

isepal
will not give-1ll counter lines, but
pal=isclO

will.

e) Relative Addresses

Absolute and floating addresses provide two extreme-

ly different systems of addressing words in programs.

The first enables

a coder to0 know exactly where in storage a given word is located but

allows him no flexibility whatsocever in varying this location.

On the

other hand, floating addresses do allow him complete freedom in altering

the location of words or whole blocks of words, but does not immediate-

ly provide him with information as to the exact location of a given word

in storage., Relative addressing provides the coder with a somewhat inter-

mediate facility by allowing him to specify the absolute location of a

given word relative to some initial point whose absolute address may or

may not known, This initial point may be a location in storage or simply

a word whose floating (or relative) address is known,

In essence, the relative address system depends upon

the ability to save the value of the current address indicator at some

time during the conversion process and being able to use it later.

In

CS, whenever any polysyllabic word terminated by a comma occurs, the

value of the current address indicator less the stem value of the word

is copied into the relative address indicator,

This indicator differs

from the current and drum address indicators in that its value is not

indexed when storage words occur, nor is it altered when a current or

¥-8539-2 XTV-20

drum address assignment occurs. dJhenever the letter r occurs in any
polysyllabic word except those terminated by a comma, the value of the
relative address indicator is added to or subtracted from the value of
the word depending_upon'whether the r is preceded by an (implicit) plus
or a minus sigh. |
v - Often the word "Or," is uséd t0 tag the word whose
location is to be later used as a base point. Thereafter, the location
tagged by "Or," will be used as the value of r in such words as "ea Or®
or "20r ." Hence it becomes possible to refer to the 10th or 20th word
or location after this base point without having to use either absolute
or floating addresses, '
The importance of this facility is evident. However,
Hcertain precautions should be observed in its use. If a coder wrote the
sequence
Or, ta20r
1r, ts24r
3r, ad2lr

<
e
e

'then after the third étorage siord the value of r would be one less than
the previous value. That is, the ability to change the value 6f r at

any piace in a program can work to the coder's'disadvantagé in a manner
whieh he may not immediately observe. The basic difficulty here is that
relative addressing provides the ability %o code in an absolute form
indepehdent of the actual location bf the program in storage, and mistakes
in counting or labeling the words by their relative address in this.block
can be just as disastrous as miscounting the absolute. address of words

in an absolute address program. '

_ Another difficulty that may trap the unwary coder is
the following: +the value of the relative address indicator is essen-
tially a copy at some time of the value of the current address indicator.
Now if the value of the current address indicator were indefinite at the
time the relative address indicator was assigned a value, then the same

status is transferred to the relative address indicator, Now, if this

M~2539-2 JV=-21

status is maintained until some later time when the relative address is
used to assign a value ‘o the current address indicator, then whether
or not the current address indicator is then definite,. it will |
become indefinite. That is, it is possible for the relative address r
to have the indefinite status normally associated with all the other
parametric syllables., Also, if the relative address has an indefinite
value, then it is actually the sum of a constant syllable and a para-
metric syllable, and in the process of determining the binary value of
the words in whieh r is used, the constant syllable part is used in the
first summations and the indefinite part in the second, This situation
may lead to undetected overflows during the summation process whieh are
not easy to discover when looking for errors.

d) Temporary Storage

, During long computations coders frequently find the
need to store intermediate-results for later use. The location of such
storage registers can be conveniently designated by floating, relative,
or absolute addresses. However, such usage of memory may be wasteful,
The coder cannot easily remember, at different places in the program,
which of these locations are available for similar use unless he care=-
fully keeps a record of the contents of all these registers at all times,
One way of systematizing and simplifying this procedure is %o use a
single temporary storage block address designator; in S the letter + is
available for this purpose,

The letter is used by the coder as an address desig-
nating the initial address of a block (of arbitrary length) used for the
storage of intermediate results. The addresses of the registers in the
block are t, 1+t, 2+t,...., and there is, of course, no restriction upon
the manner in which these registers can be used by the coder at various
places in the program. The use of t, instead of the other'types of
address available, considerably simplifies the problem of condensing the
amount of storage needed for a program. All of the library subroutines
which need such storage make use of this facility and hence + is usually
one of the subroutine parameters which needs to be specified. The diffi-
culty might arise in some special circumstance, however, that two sub=

routines making use of the same areas of the temporary storage block are

M-2559=2 . XIV=-22

used at the same time, for example when an arctangent routine transfers
control to a square root routine, In such cases it would be convenient
tc have several different storage blocks., In CS this problem is solved
by allowing the value of t to be respecified whenever desired by the
coder, A value is assigned to t in the same manner that a value is as-
signed to a preset parameter. Hence, a value assigned to t applies only
until another assignment occurs. Normally only one value is assigned
and for reasons of clarity is best assigned at the beginning of the
program tape, but coders can reassign new values whenever they desire.
D, Special Words

1. Special Storage Words

Each of these words occupies registers in the core memory
or auxiliary (not buffer) drum storage of the computer. The number of
registers is determined by the particular kind of word., The location
occupied is determined by the preceding sequence of storage, current
address and drum address assignment words,

a) Generalized Decimal Numbers

These words provide the most flexible form for deci-
mal data input. Various representations of a number can be obtained de-
pending upon the number system currently selected and the manner of
writing the number. These representations range from fifteen bit in-
teger or fractional numbers to. two register, thirty bit fixed or float-
ing point numbers.

A generalized decimal number must always be written
with a plus or minus sign and = decimal point in order that it be dis-
tinguishable by the conversion program from integer numbers and octal
fractions., If no digits at all appear, as for example when a coder
writes

+,

the value of the converted number is zero. As many as 18 digits may be
written, however, although at most 9 of these can have a significant
effect upon the converted number. The decimal point may be placed any=-
where among these digits. Coders are also permitted to write as many
factors of powers of two and ten as they please in order to simplify the

process of writing the numbers, Thus, a number may appear as

M-2535-2 _ XIv=23
-1234,567892345x2°x10 ™ Zx2*

if a coder so desires. The pesitive exponents are written withoub plus

signs, and the resulting number must fit into the previously specified

number system, Otherwise there are nc limitations upon the manner of

writing the number,

b) Input and Output Subroutine Automatic Requests

The input and output pseudo-instructions are de=
scribed fully in the chapters on Input=Output. Only the treatment of
these words by the conversion program proper will be described here.

An inpuxuoutput‘word may or may not be an interpreted
instruction, i.e., begin with the letter "i", However, the next three
capitalized letters are essential in order that the conversion progran
be able to determine what the special word is. The complete word, up to
the terminating tab or carriage return, is replaced by an sp instruction
(whether the pseudo-instruction is interpreted or not) which transfers
control to a subroutine near the end of core memory. The exact location

~of the subroutine is determined by the output adaptation programs., In
addition, the conversion program tags the location of the pseudo-
instruction by a floating-address tag of its own choice. These tags dc
not duplicate any of the tags used by the programmer, but do count against
the total number allowed the coder.

Other limitations are placed on the use of these
pseudo-instructions, At most, 55 such words may occur in a program or
group of programs being converted at one time. The total number of Flexo
characters which may occur in all fthese words is also limited. If there
are n requests for automatic output in a group of tapes being converted
together and there are k,, i=l,...,n, characters typed in each pseudo-
instructicn as it appear; in the fc program tape (not in the actual
output requested!), then i=n

10n+ Z

°=lki

mist be less than 720, Since at least four characters must be typed per

request, the above restriction of at most 55 requests is never realized,
¢) PA Entry and Exit Words

The Comprehensive System offers the possibility of

computing alternately in the Whirlwind computer code and any one of the

M=-2539=-2 av-24

CS interpreted codes., The coder controls the alternation from one of
these computers to the cther by making use of the speecial words IN and
OUT, The "IN" status implied by these is that of being in an inter-
preted system, as opposed to being "OUT" in the non-interpreted, or
Whirlwind computer. The execution of one of these words implies an
actual change in computer control. Two computer control elements are
available, that of the interpreted system and that of the Whirlwind sys-
tem, and one of these actually relinquishes control to the other in order
to effect the transition from the one computational system to tpe other,

The special words are converted in the following
manner: the OUT becomes an sp instruction which transfers control to
the register immediately following the OUT, (This location is computed
on the basis of the current address indicator so that the result is con-
sistent even in drum addressed programs.) The IN is converted to an sp
to a fixed location in the PA routine.

d) The Stop Instructions
The two special words STOP and iSTOP allow the pro=-

grammer to stop operation of the computer by transferring control to
the utility control program (see Chapter XV), Both the STOP and the
iSTOP are converbted to the instruction sp25,

© 2, Speeial Control Words

These words do not occupy storage registers in the con-
verted program. Their use affects only the form and structure of the
converted program. These words differ from polysyllabic control words
in that each has a unique form and a rather special significance.

a) Titles

The title is punched at the beginning of a Flexo-
coded program tape in order to identify the program when the tape is
printed, the results when the prégram is run, and the binary 556 tapse
if produced. A title must occur at the beginning of every CS Flexo tape
and must have the initial characters "fc". Filing conventions require
that a tape number follow the infitfal characters and be in the following
form: ddd-dddd-ddddd, where the d's indicate decimal digits. Any de-
seriptive phrases can occur following the identifying number, These may,

for example, be the problem name, the coder's name, the date, information

M=-2539=2 XIV=25

about the program on the tape, or some of the conditions in which the
tape is to be used. However, the first carriage return or tab character
terminates the title and all of these phrases must be in upper case,

b) The Integer-Bage Indiecators

Two special words are available which alter the base
in which some integers are converted., These words apply only to the in-
tegers appearing in polysyllabic storage or control words, but not to
all of them., The distinction is between address-type integer syllables

and numerical-type integer syllables. The special words OCTAL and

DECIMAL apply only to the address integers, and even then with the ex-
ceptions stated in the discussion of the library subroutine indicators.

All integers appearing in floating address assign-
ments, current address assignments, drum address assignments, relative
address assignments, temporary address assignments (e.g., 10+t=.), and
starting address assignments are considered to be address-type integers.
However, the case of polysyllabic storage words, preset parameter assign-
ments, and preset parameter and temporary address values is somewhat more
complicated. Here, the integers are considered to be numerical integers
if no syllables other than integers, preset parameters, or octal frac-
tions occur in the word. Otherwise, the integers are address-type
integers. ,

In all cases, numerical-type integers are always
considered to be decimal, regardless of the presence or absence of the
indicators OCTAL or DECIMAL. In the absence of these indicators the
address-type integers are also converted decimally. However, if the
word OCTAL cccurs; then subsequent address-type integers are deemed to
be oectal until a DECIMAL occurs, following which they are again con-
verted decimally, and so on, The last indicator which oeccurs specifies
the base of the addresses printed in conversion post-mortems and in the
floating address value table (decimal if no indicators).

This rather complex set of rules governing the con-
version process is due to the past necessity of combining two slightly
different sets of convenbtions used in two previous conversion programs
in the one program used in the Comprehensive System. The rationale used

is that all integers appearing in words where the integers are

I.2539~2 XIV-26

obviously meant to be addresses would be converted as octal integers in
an OCTAL program., If this meaning were not obvious, then the integers
were treated as data or numericaletype integers, Hence, the distinetion
based on the presence of only integers, preset parameters, and octal
fractions. These definitions might cause confusion to the coder who
wishes to use an integer to reset an address modification counter, but
the only real difficulty would arise in the case when, in an octal pro-
gram, the coder found that writing, for example,
10+pal=10+b2

does not imply that pal=b2.

¢) Cancellation of PA Requests

Frequently a coder who has written an interpreted
program in the Whirlwind computer desires to modify it or change some
parameters by reading in a new tape, In such cases, the coder must be
careful that the new tape does not unintentionally cause a new PA rou-
tine, which might differ from the one already there, to be read into the
Whirlwind memory, Since PA requests are implicit, depending upon the
presence of interpreted instructions, number system designators, ete.,
this might easily happen. The effects of different PA routines some-~
times differ only subtly and would not be the first cause of error
sought by the coder. To prevent such difficulties from arising, the
sPécial word NOTPA is available. The presence of this word in a tape,
or in any of a group of tapes being converted together, prevents any PA
routine at all from being read into storage during the conversion pro-
cess, Thus, it is possible to preserve the previous PA routine in
storage and modify only the desired parts of the main program or data.

d) The Library Subroutine Indicators

Subroutines in the Library of Subroutines are iden-
tified by two special words: at the beginning of the subroutine the
word ISR ¢soievcses
is placed, where the dots usually indicate the identifying title and
number of the subroutine, and at the end appears the word

END OF SUBROUTINE
However, these special words serve more than an identification purpose.

All of the subroutines in the library are closed routines. They are

M-2539-2 XIv-27

normally coded in a relative address form with degimal addresses. In
addition, some subroutines make use of preset parameters which are as-
signed values at the beginning of the subroutine but after the title
ISReees. This requires a special integer-base convention for subroutines,.
The convention followed. is this: between the

.ISR and the END OF SUBROUTINE all integers are converted decimally ex-
cept those occurring in preset parameter value specifications. These
words are converted according to the conventions which exist in the main
program when the subroutine is encountered by the conversion program.
This is consistent with the idea that the subroutine itself is, func-
tionally speaking, a closed box, and that the coder need be concerned
only with the preset parameters he himself specifies.

e) The Number System Indicators

The only number systems available are the (15,0),
i.e., the basic Whirlwind number system, and the (30-3,3) systems, where
0<j£15, i.e., the interpretive systems., Three control words are avail-
able to indiecate to which number system subsequent generalized-decimal
numbers are to be converted. A specified number system applies until
another indicator occurs,

In the absence of any other SPecification, the (15,0)
system is assumed, Thus, in a program which consists entirely of Whirl-
wind code, all generalized decimal numbers will appropriately enough
become single-register numbers. On the other hand, in programs written
entirely in an interpretive code the word (24,6), for example, at the
beginning of the tape, after the title, will fix the number system of
the desired PA roubine automatically provided.

A greater degree of complexity arises when both
single-register and multiple-register generalized-decimal numbers are
desired in a single program, In such a case the coder would have to
isolate sequences of single-register numbers and precede them by a (15,0),
and similarly precede sequences of multiple register numbers by, for
example, (24,5)'s, In the course of designing the conversion system it
was felt that some coders might desire to change the number system speci-
fied for the multiple-register numbers after having once run the program.

He would then have to go through the entire tape changing all the (24,6)'s

M-2539-2 XIV-28

to, for example, (23,7)'s. To avoid this problem, the special words
SINGLE and MULTIPLE are provided. SINGLE may be used in place of the
(15,0)'s, MULTIPLE in place of the (24,8)'s (or (23,7)'s). The desired
multiple-register number system neeg, therefore, be placed once only, -
just after the title at the beginning of the tape. The effect on the
system in which the mﬁltiple—register numbers are converted is exactly
the same as before. Then, if it seemed necessary to change the number
system of the multiple-register numbers, only one change in the tape
need be made. The words SINGLE and MULTIPLE are also useful within
library subroutines, which may be written without assuming the use of
any particular multiple~register number system.

f£) Comment Words

The comment-word facility permits a coder to preserve
on the Flexo tape as many of the annotations of his codeéd program as he
desires. These comments, which must start with a vertical bar and end with
a tab or carriage return, will be printed with the code itself whenever
the tape is printed, but they will be ignored by the conversion program
and have no influence whatsocever on the form or operation of the code in
the computer.

g) DITTO

The special word ¥DITTO" is intended to simplify the
problem of repeating the same word in storage many times, Any storage
word, special or polysyllabic, can be repeated, and the block of regis-
ters over which the repetition is extended can be either in core memory
or on the drum, The word "DITTOY" must be preceded by the word which is
to be repeated and followed by a current address assignment which speci-
fies the (current) address of the next register available after the end
of the block. Hence coders must consider not only the number of times
the word is to be repeated but also the number of registers occupied by
the word itself (this is analogous to the considerations in using the
corresponding ditto facility available with 556 binary tape as described in
Chapter XV).

The current address assignment terminating the
"DITTO" block may have the general polysyllabic structure, and the usual

cautions and rules apply. However, the use of "DITTO"™ can be facilitated

-

M-2539-2 XIV=29

by the technique of tagging the word which is to be repeated by the
relative address tag "Or,", and specifying the terminating current ad-
dress assignment in terms of "r". For example, suppose it is desired to
repeat the word "+1" 40 times, i.e., place the word "™+#1" in storage 41
times. This block is to begin at the current location in storage. Since
this word is a single register word, we would write

Or,+1

DITTO

41r
If another storage word is written following the current address assign-

ment "4lr ", then this word will immediately follow the end of the block

of forty-one, +1's, This technique permits a block to be formed at any
time during the course of writing a code without forcing consideration

of the actual location of the block in storage and does not affect the

definiteness or indefiniteness of the current address indicator.

At most, 51l registers can be occupied by the re-
peated word. Thus, in the above example, if we instead desired to fill
1000 registers with +1's, we would subdivide the block and perhaps write

Or,+1

DITTO

512r[0r,+1

DITTO

498r!
The current address assignment at the end of the block cannot have a
value less than that of the current address at the beginning of the
block; however, a word can be repeated zero times by writing

Or,+1

DITTO

1r
or the equivalent; the effect is that the word appears once in storage.

If a double~-register number is repeated, the coder
must remember that the block of registers occupied will be twice as long

as in the corresponding case with single-register words.

M-2539-2 XIV-30

IV, Error Detection During the Conversion Process

The coding language of the Comprehensive System has a syntax whose
rules must be obeyed in order to have a coded program properly cnverted,
Since some of the effects of violating these rules are subtle, an effort
was made to have the conversion program detect some of the more common
errors during the conversion process, For example, one of the common
errors that may get by even a careful checking of a code is the failure
to tag a word by a floating address used in the address section of an
instruction elsewhere in the program. This kind of error is detected
and indicated by the conversion program. On the other hand, the use of
undefined two or three letter operation or_pseudo—oPeration codes is not
detected by the conversion program, Usually this error is immediately
obvious to'a“coder,WhoTkncwstthe operation codeg.

The conversion program prints an indication of the error committed
on the direct oubput typewriter and also on the delayed-output tape unit,
A complete list of all the kinds of detected errors follows, In all
cases except where explicitly mentioned, the conversion process is
carried no further when an error is detected,

Unassigned Flads

This results when a floating address is used in a word and that
floating address has not actually been assigned a value. The locations
of the first thirty such errors are recorded on the delayed output unit
only, and the complete table of all the assigned floating addresses in
the usual form is recorded immediately thereafter, The conversion of
the program is completed with the wvalue zero given to all the unassigned
floating addresses, so the program can be run if this still seems de-
sirable,

Duplicate Flad is --

Sometimes a coder tags two or more different locations or words
with the same floating address tag. Under certain conditions this is an
error, when 1t is not clear which value is to be used. The convention
in CS is that such reassignments will be permitted and the last value
assigned will be the one used, provided each reassignment is separated
from the preceding assignment of the same tag by a current address as-

signment. However, if two inconsistent assignments of the same tag

M= 539-2 Ov-31

oceur without an intervening current address assignment, then an error
indication will be given and the conversion process will stop. The
error can then be found by scanning the floating address tag assignments
on the print of the program tape.

This convention was established with the intention that coders
should be permitted to make "patch™ modifications at the end of a tape
and to reassign tags in them. Such modifications are always initiated by
a current address assignment. Coders should note, though, that duplicate
tag assignments which occur within the main body of the program tape and
which are separated by current address assignments terminating a DITTO
block, for example, will prevent an error indication from being given.
Too Many Flads

A programmer may use at most 255 distinet floating addresses in a
program. Actually this limit is only rarely attainable in practice be-
cause of other limitations arising during the conversion process. These
are the following: each automatic input-output request special word
mskes use of an implicitly-defined floating address tag over which the
" coder has no control and which hence causes one. to be subtracted from
the maximum number of usable floating addresses. The coder can count
the number of such requests in his program and reduce 255 by that quan-
tity. If the number of available tags is exceeded, then the above error
indieation is given.

The conversion program determines the number of floating addresses
used by counting not only those which are used to tag words, but also
those which occur in any kind of polysyllabic word. Hence if a coder,
uses, for'example; both a255 and b255 in a program and does not tag any
word with either of these, then he will still receive an error indica-
tion,

Indefinite Flad

If a coder tags a word with a floating address while the current

address indicator is indefinite, then he will receive this post-mortem.
For example, this will happen if he Writes

pal] -

b2, -

M-2539-2 V.32

This error is detected during the first pass of the conversion program,
and the computer is stopped while the part of the Flexo tape containing
the error is still in the tape reader,
Too Many Characters in Output Requests

At most 55 automatic input-output request special words can ocecur

in a program being converted. Actually this limit can be attained only
if all these words consist at most of the three upper case letters de-
fining the request, for the number of additional characters which can be
written is limited. The exact formula is given in Section III.C.1.b).

Program Too Long at —-

The conversion program detects whether or not the part of the preo-
gram being converted which will lie in core memory will occupy any of
the space already occupied by the desired interpretive or input-output
routines., If every block of consecutive words which does overlap is
initiated by a current address assignment which has a value greater than
that of the lowest addressed register of the interpretive and input-
output routines, then no error indieation results. However, if any such
block only partially overlaps these routines, then there will be an error
indication. The intention of this rather fine distinction is to permit
coders to modify particular sections of the interpretive routines if they
so desire. Unfortunately, some unintentional modifications will not be
detected,
gd Number at --

This indication occurs when a generalized-decimal number is too0
large to fit into the number system selected at the time the number
occurs.

+ Unassigned

If a reference to the temporary storage registers occurs in any word
at a time when no value has previously been assigned to t, then this in-
dication will be given. The request can be found by examining the Flexo
.tape at the point where it stopped in the tape reader during the conver-
sion process.

Illegal Characters

This indication is given when one of the illegal characters listed
in Figure 1 occurs on the Flexo tape being converted. The illegal

character will be located in the reader when the computer stops.

M-2539-2

FIGURE I XIV-33

Treatment of Flexowriter Coded Characters
by The Conversion Program

Binary Numerical Sequence

Character Lower Upper CS Character Lower Upper CS
123456 Case Case Treatment 123456 Case Case Treatment
i
000000 not used ignored 100000 t T accepted
000001 not used illegal - 100001 not used illegal
000010 e E accepted 100010 z Z accepted
000011 8 8 accepted 100011 back space illegal
000100 not used illegail 100400 1 L same as 1
000101 _ accepted 100101 tabulation accepted
000110 a A accepted 100110 W W accepted
000111 3 s accepted 100111 not used - illegal
001000 space bar ignored 101000 h H acecepted
001001 = : accepted 101001 ear. return same as tab
001010 s S accepted 101010 y Y accepted
001011 &4 4 accepted 101014 not used illegal
001100 i I accepted 101100 j¢] P accepied
001101 + / accepted 101101 not used illegal
001110 u U accepted 101110 q Q accepkted
001111 2 2 accepted 101111 not used illegal
010000 col. change ignored 110000 0 0 same as zero
010001 . accepted 110004 stop ignored
010010 d D accepted 110010 b B ~accepted
010011 5 S accepted 110011 not used illegal
010100 r R accepted 110100 g G acecepted
010101 1 1 accepted 110101 not used illegal
010110 J accepted 110110 9 ° accepted
010111 7 ’ accepted 110111 not used illegal
011000 n N accepted 111000 m M accepted
011001 , (accepted 111001 upper case accepted
011010 f F accepted 111010 x X accepked
011011 6 e accepted 111011 not used illegal
011100 c C accepted 111100 v Vv accepted
011101 - - accepted 111101 lower case accepted
011110 k accepted 111110 © o accepted
011111 not used illegal 111111 nullify ignored

M=2539=2 XIVu34

FIGURE 2

Vocabulary of Syllables, Words, and Special Characters

I. Syllables
A, Constant syllables

1. WW operations: si, rs, bi, ceces, md..
2. Interpreted operations:. isc, icr, seec, iSp
3. Integers: O, 1, 2, cocee, S -1
4, Octal fractions: 1,00000, 1,00001, csce, 0.77777
5. Single letters: a) buffer register "b"
b) eyele counter "c"
B. Parametric syllables

1. Floating address tags: al, ..., 2255, cee, 2255
(1 and o excluded as letters)

2. Preset parameter tags: pal, ..., pz40, uval, .., uz40,
zal,.o, 2240 (1 and o excluded as letters)

3, Single letters: a) relative address "r"
b) temporary address "t"
C. ©Special syllables
1. Drum address: DA
2. OStarting address: START AT, iSTART AT

II. Word terminating characters

A, Tab and carriage return: '%9|'?4J
B. Vertieal bar:
C. Comma: ,
D, Equal sign: =
IITI. Words
A, Polysyllabic words

1. Storage words: The sum of any constant and/or parametric
syllables terminated by a tab or carriage return, e.g.,
caf83, -b0+r, ics sal+pal-5r

2., Control words: The sum of certain constant, parametric
and/or special syllables terminated by a suitable termina-
ting character:

a) Floating address assignment: al,
b) Current address assignment: 50+al|

¢) Drum address assignment: DA 50+al|

M-2539-2

)
)
)
g)

XIV-35

Starting address assignment: START AT al
Preset parameter assignment: pal=q4
Temporary address assignment: . t=q7

Relative address agssignment: 10r,

B. Special words

1., Storage words

a)
b)
c)
a)

Generalized decimal numbers: -125.45678x2qsx10P
Input-Output requests: iMOA+1,234s

PA entry and exit words: IN and OUT

Stop instructions: STOP, 1STOP

2. Control words

a)
b)

e)

d)
e)
£)
g)

Titles: fCsvoenee
Integer base indieators: OCTAL, DECIMAL

Library subroutine indicators: ILSR.ss.., END OF
SUBROUTINE A

Cancellation of implicit PA request: NOTPA
Number system indicators: SINGLE, MULTIPLE, (m,n)
Comment WOTA: |eesseses

Ditto indicator: DITTO

M-2539=2 XVl

CHAPTER XV: THE UTILITY CONTROL PROGRAM

I. The Problem Organization Process
A. Automatic Coding Systems
B. The Computation Center
C. Computer Operation

ITI. The Utility Control Program
A, The Automatic Mode
B. The Manual Mode

ITI. The Drum Utility Programs
4. The Binary Input Program
1, The Block Length Control Word
2. The Block Address Control Word
3. The Check Sum Control Word
L. The Ditto Control Word
5, The Starting Address Control Word
B. The CS Translation Program
C. The Generalized Post-Mortem Program

IV. The Performance Request
A. The Standard Abbreviations
B. Examples of Operating Instructions

V. Director Tapes
A. Restrictions on Director Tapes
B. Post=Mortem Request Tapes in Director Tape Runs
C. Additional Direetor Tape Vocabulary

M=2539-2

I, The Problem Organization Process

It is convenient to distinguish the following four subdivisions in
the process of solving a problem on a digital computer.
(1.) Programming
(2.) Coding
(3.) Transcribing
(h.) Operating .
Programming consists of preparing a general plan for the solution
of a problem and includes such decisions as
(1.) Choice of mathematical model
(2.) Choice of numerical method
(3.) Parameter specifications
(h.) Evaluation of results.
The language of programming is varied. Generally it consists of
English words and mathematical symbols imbedded in a flow diagram.
Coding consists of reducing the flow chart to a program expressed
in terms of machine .code,
The coded program must then be transcribed onto suitable input media,
introduced into the computer storage and operated. '

The problem organization process is illustrated schematically below,

Programmer
~ |
L e |
Problem ul
Statene tj, Results
! | Written Transcriber
| Program
[__»'_ ——
Coder : |
[
/ Transcribed
Program .
: Input
QperaiaF-—'_ Computer
Results |
—I< Output

M=2539-2 ' V=3

A. Automatic Coding Systems

The programmer has almost complete freedom in his choice of language
and will choose the language best adapted to stating the problem., The
coder, on the other hand, is restricted to using the machine code for a
language. A machine code is, in general, convenient only to the builder
of the machine, _

The automatic coding system attempts to ease the coder's task by
allowing him to state the problem in new languages (called input languages)
which are richer than the machine code. The system provides a device
(called a translation program) for translating input language into mae
chine code.

)
Prograxm:ers Coding Input Translation Machine
Languag ———) language Program Code

N
7

B. The Computation Center

The problem organization process is realized in a computation center.
The basic activities involved have already been described in section 1.
-Superimposed on these activities will be a clerical function, since the
center must provide for the flow of information between the various
activities and the keeping of records.

Work on the WWI computer generally is done on an open shop basis,
i.e, the person with the problem to solve does the programming and coding.
Transcription (in this case the punched paper tape) and computer oper-
ation are performed by trained specialists, Communications between the
programmer and the typist proceeds via a standard form called a tape
requisition., Communication between the programmer and the computer
operator proceeds via a standard form called a performance request.

C. Computer @peration

Computer operation consists of organizing input to and output from
the computer, and the keeping of suitable records of machine operation.
Operation will become more complicated as the computation center begins
to accumulate a library of utility programs (i.e., programs which perform
certain more or less routine tasks, e.g., automatic coding systems and

M=2539-2 XVl

post-mortem routines). The need for speed and accuracy in computer oper-
ation is obvious,

II. The Utility Control Program

Operation of the WWI computer has been partially automatized., The
gystem is centered in the use of a program called the utility control
program (UCP) which has been semi=permanently recorded on group 11 of the
auxiliary drum (4D), (1.)

Input to the WWI computer is initiated by pressing a push button on
the control panel which is called the read-in button., This starts the
computer at the instruction contained in register 26 of toggle switch
storage (TS) which is the normal entry point of a short program called
the TS input program. The TS input program does the following: |

(1) Copies the contents of magnetic core memory (MCM) onmto group O

of the auxiliary drum.

(2) Copies the contents of group 11 of the AD (i.e. the UCP) onto (M.

Computer control at this point pssses from register 31 of TS %o regis-
32 of CM (and hence to the UCP), The process is illustrated below.

O +0 .
! L ® Read In Button
TS
22 1.11,036
26 ca 26 |
21 si LS5 (1) ¢cM — group 0
28 bo 26 g
2 d 22 =
38 :i 451 (2) Group 11 (UCP) ——> CM
31 BL 30 1|
32
Group Group
s d 0 11
CHV 4 - > Auxiliary
4 Drum (ucp)
o7 ¢ (2)

(1) The recording heads on this particular group have been disabled 8o
that information can be read from the group but not recorded on the

group.

M=2539=2 Xv=5

At this point the UCP takes charge., The modes of operation of ﬁhis
program can be described best by splitting them into the following two
categories:

(1) An automatic mode = in which the UCP assumes that a punched
paper tape will be read in on the photoelectric tape reader (PETR).

(2) A mamual mode = in which the UCP assumes that the operator has
manually inserted information describing what he wants the UCP to do,.

A. The Automatic Mode

The punched paper tapes which are encountered by the UCP have the
following general form:

(1) Identifying characters

(2) Title

(3) Main body of tape

(1) The identifying characters describe the kind of tape which
follows, For example
(2) fc denotes CS flexo tapes
(b) fb denotes binary tapes
(¢) fp denotes post-mortem request tapes,
Other kinds of punched paper tape exist but will normally not be encoun-
tered by the user of the CS system.
(2) The tape title contains the following information in the follow-
ing order
(a) Tape number
(v) An optional tape description
(¢) A terminating carriage return.
The tape number consists of three integers separated by dashes,

x"yQZo

The first integer (x) is the problem number and is fixed by the problem.
The second number (y) is the programmer's number which never changes

M=2539-2 V-6

(for the particular programmer). The third integer (z) may be arbitrarily
chosen by the programmer and is used to identify the particular tape.

The tape description may consist of any collection of upper case
characters that can be typed on a flexowriter and should at least include
the programmer®s name.

A sample tape title is the following:

fe 165 - 17 - 302 SINE ROUTINE SMITH
\ "4 \

Tape number Tape Desci'iption

The UCP reads in the tape title, identifies the kind of tape follow-
ing and logs the tape title.
The following logs are kept by the program:
(1) a film log
(2) a paper tape log.
(1) The digits of the tape number are displayed on the output os-
cillograph and photographed., Each dash in the title terminates a line on
the scope. For example, the above tape number appears as:

The photographed titles serve to identify any information recorded on the
scope by the program.

(2) Iogging information concerning the tape is also recorded on a
punched paper tape (produced by a flexowriter punch which is directly
connected to the computer). The following information is entered in the
log:

(a) An idemtifying character
¢ for fc tapes
b for fb tapes
p for fp tapes
(b) The tape number (except for fp tapes)
(c) The time of read-in,
For example, the preceding tape title could record the following entry in

¥=2539-2 V-7
the paper tape logs
¢ 165 = 17 = 302 1730.1

T C— fTime
Tape Number

Identifying Character

The paper tape log gives a fairly complete picture of the sequence
of operation and is used as a basis for charging for computer time.

The utility control program finally selects the utility program
required to translate the main body of the tape (on the basis of the
identifying information), brings the required utility program into CM
and transfers computer control to it.

B. The Manual Mode

The computer operator Specifies the manual mode by pressing a push
button on the console called the examine selector panel button. The mode
required is specified by placing a characteristic number in a set of
octal push buttons called the selector panel, This is illustrated below,

® @ 0 10 @
6@ 6@ 5@ 5@ @
99 0 °6G 5@
L L Lo L@ LO
@ 3@ 30 3@ 30
2@ 2 2@ 2@ 20
19 i@101@ 10 10
'@ °@ °® °© °@ °0
\ _/

Sign Numerical Digits
Digit

SELECTCR PANEL

For example, if the number 0,00001 is placed in the selector panel,
then selection of the manual mode by the operator will cause the CS
translation program to produce binary (fb) tapes whenever CS flexo (fec)
tapes are translated.

Me=25 392 XvV-8

A second set of octal push buttons called the insertion panel also
exists on the console and is used (in conjunction with the contents of

the selector panel) to specify manual modes requiring a parameter.

For example, the operator can examine the contents of any register
on the drums by placing the octal number, 0.00002, in the selector panel,
the address of the register in the insertion panel, and selecting the
manual mode,

A large number of manual modes exists, but their use by the CS coder
is rare. '

III. The Drum Utility Programs

In order to speed up the operational process, the utility programs
in daily use on the WWI computer have been semi-permanently stored either
on group 11 of the AD (along with the UCP) or as numbered (identifiable)
blocks on a magnetic tape unit (number 0) .'(1"')

If the required utility program is permanently stored on group 11,
then the utility section process is trivial (since the utility program
has already been copied into CM by the TS input program). If the re-
quired utility program is permenently stored on magnetic tape unit.O,
then the UCP searches tape for the required program and cbpies it onto
M,

A further refinement of the latter process has been made for pro-
grams which are used most frequently and which are too long to fit on
group 11, These programs, called drum utility programs, are permanently

recorded on magnetic tape but operate from only one of the magnetie —
drums,
Whenever a drum utility program is required, the UCP first checks a
specified range of registers on a drum to see if the required program is
on the drum or not. This is done by summing the contents of all of the
registers in the range and comparing it with a standard sum. If the
utility program is already on the drum it is brought into CM and operated.
If the utility program is not on the drum it is brought from magnetic
tape unit O to the drum and a new standard sum is formed.

(1.) The recording heads on magnetic tape unit O have been disabled,

M=2539~-2 Xv-9

Logging and utility program selection are schematically illustrated
below:

#a ¢l65-17-302 - 1730.1

PETR fc 165 - 17 = 302 | Body of Tape

- S puwcn |(3)
MC/M (3) TRUM
SCOPE @)]

Utility Program

MAGNETIC TAPE UNIT O

The utility programs of interest to the CS programmer are the follow=
ing:
A. The binary input program
B; The CS translation program
C. The generaligzed post-mortem program.
A. The Binary Input Program

An input language must perform at least the following two functions:
(1) Provide a vocabulary of program words which translate
into machine words and appear in the computer storage.
(2) Provide a vocabulary of control words which specify
the locations in computer storage at which program words appear.

M-2539-2 XV=10

The binary input program translates binary (fb) tapes and is stored
on group 11 of the AD (along with UCP), The vocabulary of program words
and control words handled by the binary input program is relatively simple.

There is only one kind of program word, namely the 16 digit binary
number which is stored on paper tape in the 556 form described in Chapter
XTI, There are several control words to be described, These are also
stored on paper tape as 16 digit binary numbers in 556 form.

A distinction between control words and program words on tape is made
by the sequence with which they occur on the tape. This can be done, for
example, if the first word on tape is always a control word and if each
control word contains implicitly in its definition the number of program
words following on tape before the appearance of the next control word.

In practice this number can be zero, a fixed number, or be a function of
a previous control word.
1, The Block length Control Word

The block length control word is read as a negative integer having
the form, =n + 1, where n = 1, 2, ..., 2048. This control word informs
the binary input program that the next block of program words appearing
on tape is n words long. The next word appearing on tape, however, is
assumed to be a control word by the binary input program. In particular,
this could be another block length control word which would supercede the
previous one.

2. The Block Address Control Word

Program words can be stored on groups 0 to 10 of the AD and groups
2 to 7 of the buffer drum (BD).by the binary input program. The block
address control word is used to specify the location of the initial word
in a block of program words,

Addresses on the drum are specified as follows:

(a) The sign digit of the block address control word is
used to specify the magnetic drum desired. A zero in this digit denotes
the AD, a one in this digit; the BD,)

(b) The 15 numerical digits of the block address control
word are used to specify the numerical address of the drum register de=
sired. The numerical address of the word located on group n register m is

M=2539-2 XV-11

defined to be

ne- 2048 +m
Note that this follows the convention described in Chapter XII for read=-
ing from and recording on the drum,

The next n words on tape (where n is specified by the block length
control word preceding) are assumed to be program words by the binary in-
put program and are placed on the drums. The word on tape following the
block of program words is assumed to be a control word.

Two examples follow:

(1) =2 Block length control word
© 0,1,0040 Block address control word (AD 8 - 32)
‘ca 0O
ca l Three program words
ca 2 -
(2) =0 Block length control word
1.20040 Block address control word (BD L ~ 32)
ca 0 One program word.

The block length control word may be omitted before program blocks
consisting of a single word. Thus example (2) above could have been
written as

1,20040
ca O

3, The Check Sum Control Word

The check sum control word is best read as the WWI instruction, ck 5.
It must always be followed by another control word on tape called the
check sum,

The occurrence of a check sum control word causes the binary input
program to compare the check sum with a sort of sum-mod-one of the pre-
ceding block of program words (which was formed while the words were
being read into the computer by the binary input program), An alarm is
generated if the two do not agree.

M=2539=2

FExample (1) with a check sum is shown below:

-2

0.40040

ca O
cal
ca 2
ck 5

J‘

1.L00L5

The check sum control word must immediately follow the block of
program words being checked. The word on tape following the check sum is

Block length control word
Block address control word

Program Words

Check sum control word

Check sum.

assumed to be a control word.

The occurrence of check sums on a binary tape is optional.
L. The Ditto Control Word

The ditto control word is read as the WWI instruction, ck 512 + m,

ere m= 0’ 1’ 2, s o0

If a ditto control word appears on tape the bina-

ry input program records the next block of program words appearing on

tape on the drum m times in a block of consecutive registers. The initial
address of the expanded block is specified by the drum address control
word appearing with the bloeck of program words on tape.

Two examples follow:

()

(2)

ck 512 + 2
0.00500| + O (1)

-l ca O
0,00500 + 0 (2)
+0 becomes eca O

ca 0

ck 5

ea 500

ck 512 + 3 o.oosoo| +0 (1)
0.00500 beconmes +0 (2)
+0 +0 (3)

If m= 0, i.e., ck 512, the next block of program words appearing on

tape is ignored.

M-2539-2 XV=13

The first word appearing on tape after the block of program words is
assumed to be a control word.
S. The Starting Address Control Word

The starting address control word is best read as a WWI instruction,
spm. It mst always be followed on tape by another control word of the
form, spx, which is called the starting address. The starting address
control word normally serves to terminate the read-in of the paper tape.

Two cases can arise:

(1) m=3: If the address, m, of the starting address
control word satisfies the inequality, m> 3, then the starting address
control word (and the starting address) are ignored. The next word ap-
,pe-ar:i_ng on tape (after the starting address) is assumed to be a control
word,

(2) m=1orm=2: In this case the binary input program
stores the starting address (spx) in TS register 2 (which is a flip-flop
register), copies the contents of AD group O into CM and transfers compu-
ter control to register m (i.e. 1 or 2), A partial picture of the con=
tents of TSS at this moment is shown below:

0 +0
1+
2 spx
If m= 1, the computer is stopped (on an si 1 instruction). ‘The
operator may now operate the program (brought from AD group O to MCM) by
pressing the restart button. This transfers computer control to the
starting address (x) of the program as obtained from paper tape.
If m=2 (or if m= 1 and the stop on si 1 switch is off), then the
program immediately operates (beginning at the starting address). ‘
A copy of the program before operation will remain on AD group O
unless it is distrubed by the program of unless another read-in occurs,
The operation of the hinary input program is illustrated schemati-
cally on the next page.

M-2539-2

(® Read In Button

V-1l

+0 ® Restart Button
+1 @r Stop on si 1 Switch
spx
_ Group U | Gféup 1l
Binary
Input
Prognmm/, ,
. 2200 +1
/ 2201 +2
/ (W) ’
/ & 3000 +1
3001 +1
Program 3002 1
(3) PETR (1) 2y
-1
0.02200
+1
+2
ck 515
0.07000
+1
spl

spx

M=2539=2 V=15

B, The CS Translation Program

The CS translation program translates CS Flexo tapes and stores the
translated words on the auxiliary drum. Translation takes place in two
stages:

(1) The paper tape is read in and partially translated results are
recorded on a magnetic tape unit (number 1), Partial translation is ter-
minated by the appearance of a START AT control word on the paper tape
which causes the computer to sto;i on an si 1 instruction (provided the
stop on si 1 switch is on), The operator then has two choices. If other
fc tapes are to be traﬁslated with the previous fc tape as a dependent
set, then the operator places these in the PETR and presses a push button
on the control console called the start at LO button.

(2) If no further dependent tapes exist, then the operator completes
the translation by pressing the restart button.

The effect of a START AT block on an fc tape is identical to that of
the spl starting address control word on an fb tape. The starting address
(spx) of the program is stored in TS register 2, the contents of AD group
0 is copied into CM and computer control is transferred to TS register 1
(containing an si 1 instruction).

The CS translation program is a drum utility program and is stored
on B groups L, 5 and 6. The structure of fc tapes is described in
Chapter XIV,

Read=in of an fb or an fc tape as previously described consists of
reading selected blocks of words from paper tape to selected blocks of
registers on the drum, Words appearing on tape replace those previously
stored on the drums, Other registers on the drums are left undisturbed.

A useful variation of this process is produced when the operator
pushes a button on the console called the erase button before reading in
the tape. If this is done, the utility control program records the word,
+0, on all registers of AD group O before translating the tape.

Thus, after read~in has taken place all registers in CM whose contents are
not specified on the tape will contain +0,

Erasure before read=-in is recommended if possible since the retemtion
of meaningless information in storage registers serves to confuse the
situation,

M=2539=2 XV=16

C. The Generalized Post-Mortem Program

The generalized post-mortem program translates post-mortem request
(fp) tapes and records the required requests on specified output units.
When this is completed, the program copies AD group O into CM (thus re-
storing CM to its contents prior to translating the fp tape), and stops
the computer (on the si O instruction in TS register 0},

The generalized post-mortem program is a drum utility program and is
stored on BD groups 6 and 7. ‘The structure of the fp tape is deseribed
in Chapter XVII,

IV. The Performance Request

Communication between the programmer and the operator takes place on
a standard form called performance request which conveys the following

information to the operator:
(1) Type and amount of expected output
(2) Alarm procedure to be followed
(3) The operating instructions for the run.
The type and amount of expected output mmst be specified so that the
operator can organize runs on the computer. It is all too easy to tie wup

the computer because a particular piece of output equipment is not avail-
able,

The alarm procedure tells the operator what steps to follow if the
program does not work.

The operating instructions describe to the operator the sequence in
which the tapes are to be translated and operated.

In the final analysis, this implies stating the exact sequence of
button pushings to the operator. In order that the operating instructions
can be briefly, accurately, and uniformly stated, a set of standard ab-
breviations has been developed for use by the programmers
A, The Standard Abbreviations

(1) e, Press the erase button
(2) ri, Press the read-in button
(3) rs, Press the restart button

(4) salo, Press the start at L4O button

M=2539=2 V=17

(5) fe¢ 100-0=0, Place the corresponding tape in the PETR
£ 100-0-0,
£p 100-0-0,

(6) si 1 switch on, Turn the stop on si 1 switch on

(7) si 1 switch off, Turn the stop on si 1 switch off

(8) mx Set the selector panel to x (octal) and press
the examine selector panel button.
(9) mx Set the insertion panel to x (octal).

B, Examples of Operating Instructions

(1) £b, fc or fp tapes can be translated by the following sequences

tape no., ri, '

€. fb100=0-0, ri,

MCM can be erased prior to translation by the following sequence:
| e, tape no, ri,

(2) fb and fc tapes can be both translated and operated by the
following sequence: _

tape no., ri, rs, ;
Operation begins at the starting address contained on the tape.
-If the stop on si l-switch is off, then operation occurs automati-
cally after translation. Thus translation and operation (beginning at
| the starting address on tape) can also be specified by the sequence:
si 1 switch off
tape no., ri,

Automatic operation also occurs if an fb tape ends with an sp 2
starting address control word. Translation and operation for such a
binary tape can be specified by:

b 100=0=0, ri,

(3) Multiple (independent) translations before operation can be

specified by the sequence:
tape no,, ri, ‘tape no., ri, ..., rs,

. / \ S [N—

translation translation operation

€o8o
b 100-0-0, ri, f£b 100=0-1, ri, rs

Multiple translation can occur only if the stop on si 1 switch is

M=2539-2 XV-18

(L) Dependent fc tapes (having overlapping flads or parameters)
must be translated as if they were a single tape. Dependence of a set of
tapes is indicated on the performance request by writing the tape numbers
in the proper order and following each tape number with a right~hand
parenthesis,

tape no.), tape no.), osos Ti,

€.go
fe 100=0=0), fe 100=0=1), ri,

Dependent tapes can be translated only if the stop on si 1 switeh is
one
(5) A binary (fb) tape can be produced during translation of an fe
tape by writing the standard abbreviation, ric, in place of the standard
abbreviation, ri. A
tape no.), tape no.), ..., rie,
Since this is done by the manual mode when 0,00001 is placed in the
selector panel, the following sequence could also be useds
rm 1, tape no,), tape no.), ..., ri,
~(6) Complex runs can be obtained by seqnenbially requesting simple
runs, For examples
e, fe 100-0-0, ri, rsf fe 100-0-1, ri, rsi

\

simple run simple run

In the above example the assumption is made that the operation of the
program is terminated by stopping the computer. This can be accomplished
in many ways (e.g., by having the computer execute the WWI instructions
si O o 8i 1, or equivalently the instructions sp O or sp 1), however,
for several reasons it is best for programmers to terminate operation by
means of the special instructions, STOP or iSTOP, Both of these stop %he
computer on the WWI instruction, si O, which is contained in TS register
O,

(7) Program operation in a complex run cén also be terminated so as
not to stop the computer. This is done by executing the WWI instruction,
sp 26, which calls in the utility control program and translates the next
tape in the run, ' ‘

For example, if (in the preceding example) tape fe¢ 100=0-0 used the

M=25 392 | XV=19

sp 26 instruction for termination, the operating instructions should be:
e, fo 100=0=0, ri, fc 100-0-1, rs, rs
AN / — 7/

t.ran.i late operate operate
- and
translate

It should be noticed that the operator has been requested to place tape fc
100=0-1 in the PETR before operating tape fc 100=0=0 since translation of
fe 100=0=1 will occur automatically after the operation of fe¢ 100=0-0,
Complications of this sort can be avoided by physically spliecing together
the two tapes which can be identified by the single mumber, fc 100-0=0,
‘The operating instructions could then read:

e, fc 100-0=0, ri,, rs, rs

translate \T/operate
operate
and translate
(8) The operation of the preceding complex run can be made still

more automatic by requesting that the operator turn off the stop on 8i 1
switch. In this case operation occurs automatically after translation,
and the operator is not required to push the restart button to initiate
operation., The above operating instruction could then read:

si 1 switch off,

e, fc 100-0-0, ri,

Translation and operation of both tapes occur automatically after pushing
the read-in button.
(9) A program may be operated beginning at an arbitrary address,

say X, by means of the operating instruction

sa x,
For example:

e, fe 100=0-0, ri, rs, sa x

\ VR W S

Translation Operate
Operate

In this example the program has been operated twice: once beginning at
the starting address (rs) and once beginning at the instruction contained
in register x.

M=25 392 IV=20

V. Director Tapes

A director tape for a particular run on the computer is a punched
paper tape obtained by typing the operating instructions for the run on
a flexowriter,

The objective of the director tape is to duplicate automatically the
sequence of button-pushings that would be performed by the operator in
manually executing the run. The operator places the director tape in the
mechanical tape reader and the run tapes (spliced together in the proper
sequence) in the PETR. The run is then executed by pushing the read-in
button once. This objective is almost realized. There are, how;:e;:m ,
certain restrictions on the use of director tapes which will be described,

The interpretation of the director tape is performed by a program
(called the direétor tape program) which is part of the utility control
program. The director tape program is a drum utility program and is
stored on BD group 2.

There are two advantages in using director tapes which are especially
important in complex runs.

(1) Automatic operation is more efficient sinece computer down time
required for operator action is eliminated. _

(2) Automatic operation insures that the operating instructions
will be carried out exactly as indicated,

A. Restrictions on Director Tapes

(i) Only standard abbreviations (as described in previous sections)
can be used in the operating instructions.

(2) The operation of programs must be terminated by either the sp 26
instruction of the STOP (iSTOP) instruction.

The reason for the latter restriction is that program operation must
not be terminated by stopping the computer., The STOP (iSTOP) instruction
detects whether or not a dire¢tor tape is being used., If a director tape
is not being used, the execution of the STOP instruction will stop the
computer. If a director tape is being used, the execution of a STOP in-
struction will eall in the director tape program which then obtains the
next operating instruction from the director tape and continues operation.

H-2539~2 Xv-21

rost~prortem nequest Tapes in Director Tape Runs

e

During manual operation the operator is frequently requested to per-
{orm a poste-mortem onlv if an alarm occurs. Since vpost-mortem request
tapes must ve spliced witn the program tapes some means rmust be provided
for ignoring an fp tape if no trouble occurs. The following procedure
has been adopted.

If a director tape is being used,; then post-mortem request tapes are
not executed during translation. Instead, they are stored on the buffer
drum and remain there undisturbed until another post-mortem request tape
is translated. If an alarm occurs during a program the operator can
execute the post-mortem requests tape from the buffer drum by a simple
manual procedure, If no alarm occurs, the requests can be completely
ignored.

Request tapes which have been translated and stored on the buffer
drum can also be executed by the following sequence of operating instruec-
tions in the director tape:

rm 33, ri,

The following example illustrates the use of post-mortem request
tapes in a director tape drum:

fp 100=0=0, ri, fp 100-0-0 stored on ED
e, fc 100-0-0, ri, rs, Translate and operate
fp 100-0-1, ri, fp 100-0-1 stored on BD
rm 33, ri, Operate fp 100-0-1

If an alarm occurs during the operation of fc 100=0=0 the operator
can manually obtain fp 100=0-0. If no alarm occurs fp 1:00-0-1 operates
automatically.

C. Additional Director Tape Vocabulary

The following standard abbreviations can be used as operating in-
structions if and only if a director tape is to be prepared for the run:
(1) isa x, operate the program in CM by interpreting the
instruction contained in register x (octal).
(2) eg x; record 40 on all registers of AD group x (octal).
(3) bo x, copy the contents of TS and CM onto AD group x (octal).

M-2539-2 XV=22

(L) bvi x, copy the contents of AD group x (octal) into TS and |
CM.

The standard abbreviation, rs, may be used after the execution of a
STOP (iSTOP) instruction when a director tape is being used and has the
following effect:

If the STOP (iSTOP) instruction was executed as a WWI instruction,
then the program is re-operated by execubting the word following the STOP
instruction in CM as a WWI instruction. v

If the STOP (iSTOP) instruction was interpreted, then the program is
re-operated by executing the word following the STOP instruction as an
interpreted instruction.

All director tapes must be introduced by a title of the form:

fdx=-y=~3z
where x = y = 2 is a tape number in the usual sense.

Director tapes should be terminated by the special operating ine-

struction:
sa 0,
which stops the computer.

M-2539-2 XvVi-1
CHAPTER XVI: OUTPUT

I. General Procedursas-

The following procedures are the most common ones used for getting
inférmation out of the Whirlwind computer:

A. The contents of individual registers in the computer can be examined
by making use of the switches and push-buttons on the control console. The
information is displayed as binary numbers and, since the process is slow
and awkward compared to the following ones, this method is seldom used.

B. Direct programming makes use of the select (si) instructions dis-
cussed in Chapters XI and XII. This procedure is potentially the most éffic-
ient in time and storage. However, it requires a greater proficiency in
Whirlwind coding than is required by procedures C, D, and E. (See Chapter
XII).

C. The library of subroutines contains a number of output routines.
By specifying appropriate preset parameters and by entering the routines
at different points, a great deal of flexibility can be obtained. A list
and descriptiorn of the output subroutines available may be obtained in the
tape preparation room at the Digital Computer Laboratory. In general, sub-
routines are shorter but not as flexiblg Br as easy to use as the pseudo-
codes described urnder procedure E,

D. Post-mortem (fp) tapes have the advantage of not consuming any of
the storage space occupied by the main program. Their principal disadvan-
tages are that absolute addresses must be specified and that they are not
practical to use when output is interspersed with computation unless the
program rum is controlled by a director tape (see Chapter XV). A more com-
plete discussion of how fp tapes are specified and of the forms of output
available is given in Chapters VI and XVII.

E. Pseudo-codes are fictitious instructions that have been invented
to allow the programmer to request output through the use of a notation that
may be easily learned. No knowledge of Whirlwind coding or of Whirlwind
terminal equipment (beyond its existence) is required. The output request
is translated during read-in and the necessary subroutines are compiled.

The cutput requests that are available for recording the contents of

the MRA in printed form were described in Chapter V. It will be remembered

M-2539-2 Xvi-2

that these requests are characterized by three upper-case letters (MOA for
the delayed printer, TOA for the direcf printer, and SOA for the scope)
following the lower-case letter i. They also contain a'sample number’ .
which describes the form in which the ocutput is to be recorded. The request,
iFORMAT, which may be used to specify the layout or format to be followed
when executing these requests, was also described in Chapter V. This request
_differs in form from the others in that it does not contain a sample number,
but instead requires that additional information be provided by means of
"parameters’” occupying successive storage registers immediately following
the output request.

There are available many other output requests, both for the CS com-
puter and for Whirlwind I. Like the ones which have already been described,
each of these is specified by typing a distinguishing combination of upper-
case letters. Many of them, like iFORMAT, require also that suitable para-
meters be stored in the following registers. This chapter is devoted to a

degeription of the remaining output requests.

II. Non-Interpreted Output Requests

‘ All of the output requests described in Chapter V may be used in non-
interpreted Whirlwind-coded routines simply by omitting the letter'i' which
prefixes the request. When the prefix "i" is omitted, any accumulator ref-
erence is to the accumulator (AC) of Whirlwind instead of the MRA and, upon
completion of the request, control will be transferred in the WWI (non-: -
interpretediomede. .

Thus the request MOA + i.1234c¢ will record on magnetic tape for delayed
typing the number in the WWI accumulator (AC) as a decimal fraction with
four digits to the right of the decimal point (no round-off). The special
symbols (+, -, s, ¢, etc,) may be used in the same way as described in
Chapter V,

Observe that since the number in the AC is always less than one in
magnitude, then an MOA;, TOA, or SOA instruction with no factor indicated
to scale the contents of the AC before print out will always give a decimal
fraction print-out. To print out the contents of the AC, C(AC), as an inte-
ger one need only insert the scale factor 215 in his request. For example,

MOA + 12345 x 2'°¢ |
will record on magnetic tape for delayed printing the C(AC) multiplied first

M-2539-2 XvVi-3

by 215 = that is, considered as an integer. Since

C(AC) x 215'< 32768,
the resulting integer can never contain more than five digits. On the other
hand, if the programmer asks for fewer than five digits to the left of the
decimal point, ambiguity may sometimes result if the request is followed
precisely. This happens whenever the number to be printed out unexpectedly
exceeds the requested range.
For example, if
C(AC) = +5178 x 2°2°)
and if the request were '
TOA + 123 x 2

then if the printeoutffibliowedithersoguest-exactly,the result would be

15 c 2)

+517Q with no indication of the error. To avoid this situation, the integer
print-out (compiled in response to an MOA, TOA, or SOA request containing
the single scale factor 215) always gives five digits to the left. Thus
for case (1) above, the request (2) would produce the following printout:
+05178,
To avoid printing non-gigrificantiibitialczevesithepprggrammer:need oh}y
write (see Chapter V):
TOA + 112345 x 215 c
This request (irrespective of the number of digits requested) would produce
the regult
+5l78§
where the initial zero has been suppressed.
Any "uninterpreted” output request with a scale factor other than 2159
2, or 100 will be treated in the same manner as a generalized decimal num-
ber.

I11, Automatic chpe Output Requests

As was indicated in Chapter V, the instructions SOA and iSOA are used
in exactly the same way as the MOA (iMOA) and TOA (iTOA) instructions.
SOA causes the contents of AC to be displayed on the scope, while iSOA is
used to display the gontents of MRA. SOA must be used while in the WWI
mode of operation; iSOA while in the interpreted mode. The form of the
display is specified with a sample number typed immediately following the
capital letters SOA (with no intervening tabs or carriage returns). The

conventions for forming the sample number are exactly the same as for the

M-2539-2 _ Xvi-4

sample numbers used with the typewriter output instructions. Any form
obtainable with MOA(iMOA) or TOA(iTOA) is available with SOA(iSOA).

The terminating symbols "space”, "tab”, and "carriage return” have
been given meanings for the oscilloscopé which are similar in egiect to the
typewriter machine functions. ' |

When a space is recorded on the scope the horizontal deflection is
indexed to the right by the width of one character., Nothing is displayed
in the area passed over. If during the execution oi'"space"‘or during the
actual display of a number, the horizontal deflection should run off the
right edge of the scope face, an arithmetic-overflow alarm will be generatéd,-
The scope output routines consider the scope to be 63 characters wide, so
the programmer must arrange the display‘to kéep it within this range.

For the purpoéés of the tab symbol, the scope :ace‘nas been divided
_into four columns of equal width, “The tab causes the horizontal detlection
to be moved to the right to the beginning of the next available column.

If a tab should be given while charactérs are being displayed in the last
{fourth) column, a check-register alarm is'generatedo |

The earriage return causes the vertical deflection to be indexed down-

ward to the aext line and the horizontal deflection to be reset, in general
'-te the left edge of the seopes¥* If a carriage return is given after the
last available line has been used, its effect is to cause the camera to be
indexed and to reset both the horizontal and vertical deilections to the »
upper left of the scope face. : |

The vertical bax, used as part of some numbers on the typewrlterp is

not displayed on the scope.
Single Chargg@ters

The following instructions may be used to obtain the display of a.

.single character on the scope:

SOA ¢ iSOA ¢
SCA s iSOA s
SOA t isoa t

See COLUMN instruction for exception to thisvrule.

M-2539-2 XVI-5

SOA . isoA .

SO0A + iSOA +
SOA - iSOA -

- FORMAT

The instructions FOR and iFOR may be used unchanged with SOA and iSOA.
FRAME

The instruction FRAME (iFRAME)* causes the camera to be indexed one

frame, and if SOA or iSOA is also in use, it causes the deflections to be
reset to the upper left-hand corner of the scope. If FRAME or iFRAME is
used without an SOA instruction, it simply causes the camera to be indexed.
COLUMN

The instruction COLUMN (iCOLUMN)*#* may be used to facilitate displaying
data in columns. This instruction causes the horizontal deflection to be
- moved to the right to the beginning of the next available column and the
vertical deflection to be restored to the top of the scope. It also causes
subsequent carriasge returns to reset the horizontal deflection to the left
edge of this column instead of to the left edge of the scope face. This

behavior of carriage return will continue until either

a) another COLUMN instruction is executed;
b) a FRAME instructionm is ìuted; or

¢) a carriage return causes the camera to be indexed.

Should a COLUMN instruction be given while characters are being dis-
played in the last column, that COLUMN instruction will behave exactly like
a FRAME instruction.

Repeated Output Requests

It is common practice to use an output request without the sample
number when exactly the same request as the preceding one on the manuscript
'is desired. For instance, in the progranm

iS0A+nl.2345¢

E no intervening
- output requests

the word 1SOA will be converted to iSOA+nl.2345c. Remember, however, that

* These may be shortened to FRA dand iFRA
*% These may be shortened to COL and iCOL

M-2539-2 XVi-6

this always gives exactly the same request as the immediately preceding one.
In the program
iS0A+nl.2345¢

al, E
isoA
the word iSOA will have the effect of iCOL regardless of the sequence of

instructions executed during program operation.

Summary
SOA require sample number, cause display
1S0A of C(AC) or C(MRA) (as appropriate) on scope.
FRA Cause camera to index, and &£ SOA or iSOA is
iFRA also in use, cause deflections to be reset to
left top of scope face.
COL Set deflection to top of next available column
1COL and cause all succeeding carriage returns to reset

horizontal deflection to beginning of this column
instead of to left of scope face.

No. of available columns(when using COL instruction or tab character)=4.
No. of characters per line = 63 max.

No. of lines per frame = 36 max,

IV. Curve Plotting

A. Pseudo codes are available to facilitate the plotting of curves
on the oscilloscope. The instruction SOC (§pope Output gprve) displays
one point on the scope. The vertical coordinate of the point must be in
AC ((Por i1S0C, im, the MRA) at the time the instruction is given. The location
in which the horizontal coordinate has been stored in specified as a para-
meter following the SOC imstruction. Thus, the sequence
isoC or SoC
al al

£

M-2539-2 XvVi-7

will plot one point. Note that al is an address* in CM showing where the
x~-deflection will be found; it is not the x-deflection itself.

B. Normally, the range of deflections on the scope is -l14{ x{-+1 and
-1¢y<+l. In the absence of another specification, numbers will be plotted
to this scale., When the numbers to be plotted fall outside this range or
are non-uniformly located, we may wish to use another format. The instrucziuu
tion FOC (FOrmat Curves) permits us to do this,

Two variations of FOC must be distinguished. In the first of these,
the origin (0,0) remains at the center of the scope but the scale is to be
expanded (or contracted) to give a different maxiuumvdeflectiono This is
called the symmetrical case, and is specified using the pseudo-instruction
FOC 1 (iFOC 1), followed by two parameters:

iFoC 1 FOC 1

y numbers WWI numbers
max

*pax double-length xmax single-length
Ymax
The execution of FOC 1 (iFOC 1) causes subsequent SOC (iSOC) instructions

to plot points to the scale -x < x<x _, -y
mx = max

< y<y instead of the
max max

normal scale x =y =1,
max max
If it is desired to have the point (0,0) at some position other than
the center of the scope (the asymmetric case), the instruction FOC 2

(iFOC 2) must be used. This ingtruction requires four parameters:

iFOC 2 FOC 2

xmin xmin ‘

x double-length single-length
max numbers max WWI numbers
ymin ymin

Y max Y max

and causes subsequent 30C (iSOC) instructions to plot numbers to the scale
. < <
*nin x<xmax’ Yuin y<ymax"
C... For some applications, it may be desired to plot x- and y-axes
on the scope, in order to produce a more effective display. Two pseudo-

instructions are provided which do this automatically. The instruction

* al may not be 2 buffer; and the notation al+c may not be used here.

M-2539-2 XVI-8

SUX (Scope Uncalibrated aXes) requireg two parameters:

iSux SUX

%, } ¢éeuble-length N single-length
numbers WWI numbers

Yo \ Yo

and plots simply & set of rectangular axeés centered about the point (xo,yo).

The instruction SCX (Scope Calibrated aXes) requires four parameters:

iscx ScXx
b 4 X .

0 | double-length 0 (single-length
yo numbers yo WWI numbers
o single-length a single-~length
5 WWI integers 8 WWI integers

and plots a set of rectangular axes centered about (xo,yo)g with short

calibration marks so placed that the x-axis ds dévided into ¢ equal incre-

ments and the y-axis into B equal increments. The calibration marks always
start from the origin of the coordinates. Note that o and p are always
gsingle-length WWI integers, even with the iSCX instruction. Neither ¢ mor
p may be less than 3,

For both the calibrated or uncalibrated axes, the position of (xo,yo)
is determined in accordance with the last FOC (iFOC) specification that was
executed.

. V. DIB and DOB

The auxiliary drum is frequently used by programmers as an auxiliary
storage medium, To facilitate the transfer of information to and from the
drum, automatically assembled requests similar to the output requests are
available. The drum ig useful, of course, only for temporary storage of
information which (later in the course of the program) will be read back
into the computer. These are, therefore, not "output” requests in the same
sense as the others that have been described; the information transferred
to the drum is accessible only to the computer and not to the coder.

For this reason, the drum requests deal solely with computer words
in their binary form. The transferred words may be WWI or CS computer
numbers or instructions(or, indeed, any combination of these intermixed
in any sequence). This is true because anything that is stored in‘the
computer memory, regardless of the form in which it was originally obtained,

appears simply as an array of binary digits occupying one or more storage

M-2539-2 XVI-9

registers.

The request DOB (Drum Output Binary) or iDOB is used to effect the
transfer of words from the computer'nenory to the drum, This request is
followed by three parameters in the following order:

.a) Initial address in core memory

b) Initial address of drum memory

¢) Number of words to be transferred
As an example, let us suppose that the contents of registers al to bl
{inclusive) in core memory are to be transferred to the drum, starting at
druﬁ register 12765. This will be accomplished by

£ o
- L]

iDOB DOB
al al
or
12765 12765
bl-al+l bl-alsl

L] °
o o
L4 o

The contents of the core memory registers is not changed by DOB or iDOB.

. 8imilarly, words may be transferred from the drum to the computer
memory by using the request DIB (Drum Input Binary) or iDIB. The same
three parameters, in the same order, must follow the input request. The
content: of the dmm registers is not changed by DIB or ibDIB,

Note that, although DOB and iDOB do exactly the same thing (this is
true also of DIB and iDIB), the uninterpreted form must be used in a WWI.
program {iue,,while OUT) and the interpreted form (including the_i) must
be used in a CS computer program (i.e., while IN).

VI Automatic Assembly of Output Requests
Each output request occupies one register at the point where it is

written in the program. Of course, many of the output requests are followed
by parameters which are separated from the request and from one another by
tabs or carriage returna.* These parameters are no ditteren§ from other
storage words, and are stored in sequence in the registers following the

one which contains the output request itself,

Sample numbers are part of the output request, not separate parameters.

M-2539-2] XVI-10

Besides occupying & register in the program each output request causes-
during read-in the automatic assembly of the routines necessary to execute
the request, These routines are stored in the higher-numbered registers
of core memmry, outside the region used by the programmer. The request
itself is translated into a Whirlwind I sp operetiwn whose address part is
determined by the location of the corresponding uisembled routine,

The words of the program are stored in the locations specifibd by the
programmer {nommally, in successive core-memory registers stert1n§~at register
32). It is possible, therefore, that a long program may "overlap" the
automatically-assembled routines, indicating that there is not enough room
in the memory for both the program and the euxiliary‘routinee that it
requests. Such an overlap will be detected during read—in and a conversiun
poat-morten will result; there is no.danger of operating a program in which
this mistake has occurred, However, the programmer may wish to know before
reading in his tape whether or not his program is too long. 34 order to
deteriine this, he nust know éxactly hdv nany registers ‘will be oeeupied
by the aux;lia:y routineh requested by his program,

In determiging this, two importent facts must be taken into account,
First of all, no matter how many times the same request appears in a program,
the routines needed to execute that request will be included only once.
Thus, if the request iMOA+1.23456c is used at five different places in the

program, the routine for 1iMOA+1,23456c will be included once, not five times.
Each of the occurences of iMDAf1.2345éc will be translated into an gp
instruction to the same output routine.

Secondly, it is obvious that many requests differ only in detail, but
otherwise are quite similar, For example, 1MOA+l. 23456c and AT0A+1.23456¢
request exactly the same form of output, and ditfer only in the output
device selected. The routines which execute these requests are almost
jdentical. If a program contains both of them, it would be wasteful to
repeat those sections of coding which are common to the two routines,
Consequently, the assembly procedure permits such common sections of coding
to be shared by more than one routine, and includes the common sections @iy
opge. Thus, if 1MOA+1.23456¢c and 1TOA+1,.23456¢ are both used in the same
program, the nunper of registers required for the two routines is not obtained
simply by adding together the number requdred for each of the routines alone.

M-2539-2 XVI-11

The actual combined routine is shorter than this, because the common sections
are not repeated.

The procedure for calculating the number of registers occupied by the
automatically-assembled output routines is given bélow. Each different
output request used must be taken into account, but repetitions of identical
requests must be ignored.

Each request containing a sample number requires an "interlude"” which
occupies registers in storage. Each interlude consists of four registers
if the sample number contains a scale factor (e.g., x22x10_3) and otherwise
consists of three registers, If the request contains no sample numbéry
then no interlude is required.

The various output requests which can be written have been divided into
categories. Each category used in the program requires the appearance in
core memory of an "entry block"., The output requést categories and the
lengths of the associated entry blocks have been listed in columns 1 and 2
of Table 1. The third column of table 1 contains the numbers of the various
"auxiliary blocks" required by each entry block, The length of each aux-
iliary block is tabulated in table 2.

The total number of registers in core memory occupied by the automatic
output subroutines equals the sum of the number of registers required for
interludes, entry blocks and auxiliary blocks. Each entry block and each
auxiliary block gggg be counted only once in this sum.

For example, let the following output requests .occur in a program.

a) 4iTOA 12.34c
b) MOA 12,34 x 220
¢) 1iTOA 34.56¢

d) MOA end
e) 1iTOA 4.56¢
£) 4iFOR

. Request ¢y ¢an be eliminated because it'is identical to request a).
Of the remaining requests the ones requiring interludes are a), b) and
e). The interludes for requests a) and e) are 3 registers long and the
interlude for request b) is 4 registers long. The total length of the inter-
ludes is then
I=3+4+3=10

M-2539-2 Xvi-12

Requests a) and ¢) all fall in the same category: namely iTOA, no
is

scale factor, not 2 Request b) falls in the category: MOA, scale factor,
Requests d) and f) constitute separate categories. Table 1 gives the lengths

of the entry blocks:

Category Entry Block Length
iTOA,no scale factor 19
MOA, scale factor,
not 215 24(
MOA . end _ 15
iFOR 12

The total length of the entry blocks is:
E=19 + 24 + 15 + 12 = 70
Table 1 also gives the numbers of the auxiliary blocks required for
these entry blocks. ;
Category Auxiliary Block Numbers

iTOA;no scale factor 0,1,6,25,52
MOA; scale factor,

not 215 0,1,6,25,52
MOA . end = === s-e-—-
iFOR : 0,25,28

Eliminating duplicated auxiliary block numbers gives the following list of
blocks required:
0, 1, 6, 25, 28, 52,
Table 2 gives the length of these blocks
Auxiliary Block

Number Length
0 30
1 42
6 17
25 16
28 32
52 218

The total length of the auxiliary blocks is
A =30+ 42 + 17 + 16 + 32 + 218 = 355

The total number of registers required is

M-2539~2 XVIi-13

I1+E+A=10+ 70 + 355 = 435
If the CS computer is also used the number of registers required for
the programmed arithmetic subroutine (see Chapter XIII) must be added to
the above number.

M-2539-2 Xvi-14

Tabie 1

Category Description Entry Block Length Auxiliary Block Numbers
SO0A, no scale factor 9 ; 0,1, 8, 15, 25
SOA, scale factor, not 215 26 0,1, 6, 15, 25, 52
1soa,' no scale factor 22 | 0,1, 6, 15, és, 52
iSOA, scale factor o 30 0, 1, 6, 15, 25, 52
SOA, scale factor, 215 9 0, 1, 15, 18, 25
SOA . 3 15

iSOA . 4 15 .

SOA - 3 _ 15
';qu - | 4 15

gdA + 3 15

iSOA + 4 15

SOA s 2 15

iSOA s 4 15

SOA t . 2 15

iSOA t - 4 15

SOA ¢ B 2 15

iSOA ¢ | 4 15

MOA, no scale factor 7 0, 1, 8, 25

MOA, scale factor, not 215 24 0, 1, 6, 25, 52
iMOA, no scale factor 20 0, 1, 6, 25, 52
iMOA, scale factor 28 0, 1, 6, 25, 52
MOA, scale factor, 215 7 0, 1, 18, 25

bm' 7 -

M-2539-2 XVI-15
Table I continued o

Catégpry Description Entry Block Léng}h Auxiliary Block Numbers
iMOA . 8 , -

MOA - 7 -

iMOA - 8 —

MOA + 7 -

iMOA + 8 -

MOA s 7 -

iMOA s 8 -—

MOA t 7 -

iMOA t 8 R

MOA ¢ . 7 -

iMOA ¢ 8 -

MOA end 15 -

iMOA end 16 -

TOA, no scale factor ' 6 0, 1, 8, 25
TOA, scale factor, not 215 23 0, 1, 6, 25, 52
iTOA, no scale factor 19 0, 1, 6, 26, 52
iTOA, scale factor | 27 0, 1, 6, 25, 52
TOA, scale factor, 215 6 0, 1, 18, 25
TOA . 6 -—

iTOA . .7 -

TOA - 6 -

iToA - 7 —

TOA + 6 -

iTOA + 7 -

M-2539-2 XVi-16
Table I continued

Category Descfz;‘p‘tmnn' Entry Block Lengih Auxiliary Block Numbers
TOA s . 6 -

iTOA 8 7 -

TOA ¢ 6 -

iTOA t© ' v 7 -

TOA ¢ 6 —_—

iTOA ¢ 7 -

FOR 11 ' 0, 25, 28

iFOR 12 0, 25, 28

DOB 4 46

iboB _ 6 46

DIB 4 46

iDIB __ 6 46

FOC 1 32 | 13, 14, 21, 22
iFOC 1 26 2, 11, .12, 23, 24
FOC 2 48 13, 20, 21, 22
iFOC 2 40 .3, 11, 12, 19, 23
SOC 3 14, 21, 22

isoC 3 2, 12, 23

SUX | 6 13, 14, 21

iSux 5 11, 12, 24

{scx 77 13, 14, 22

1SCX | 76 11,12,24

M-2539¢2 XvVIi-17
Table 1 continued

Categoxry Description Entry Block Length Auxiliary Block Numbers
FRA 3 _
iFRA 4 | --
COL | 6 --
iCOL 8 -
Table 11
“Auxiliary Block Number Length
: ' 0 30
' 1 42
' 2 8
3 12
6 17
8 19
111 . : ‘ 68
12 ' , 54
13 . v 71
14 ' 21
15 1104
18 _ 44
19 : 10
20 ' 26
21 15
22 ' 20
23 19
24 6
25 ’ 16 - -
28 - : 32 -
46 43
52 _ 218

M-2539-2 XViI-1
CHAPTER XVII: GENERALIZED POST-MORTEMS

I. Introduction
A, Non-Seleective Programs
B, Selective Prog:éams
G, Trace Programs

II. Post-Mortems of Type A
A, Lights
B. Progremmed Arithmetic Post-Mortems
| C. Secope Post-Mortems

III. Post-Mortems of Type B
A. fp tapes

IV. General Operation of Post-Mortem Programs

M-2539-~-2 XVII-2

I, Inbroduction |
‘One of the most difficult, time-consuming aspects of the solution of

-a complex problem on a high-speed compuber is the process of detecting
and removing errcrs from a coded program. This is due to the lack of a
flexible and rapid communication link befween the computer and user, In
many installations the only link provided is a facility for operating the
 ecomputer so that it stops after each instruection, The operator can then
nmnuélly inspect the contents of any register in the computer before
'proceeding to the next instruction. This is probably the most flexible
and, in terms of computer utilization, least efficient method of detect-
ing mistakes.

‘ A typical approach to trouble-shooting is to hypothesize the cause
 of a mistake and check the hypothesis. Often the difference between a
 good trouble shooter and a poor one is the ability to imagine a number of

- ways & mistake could have been caused, Forming these hypotheses often

" requires a considerable amount of thought and checking them may take con-
siderable time, Since random access to the compuber is not generally
 possible in many installations, this procedure often results in the com-
§ puter standing idle while the user thinks (or worse yet, while he does
" not think!), or in a congiderable delay in trouble shooting while waiting
for free time on the computer. |

For these reasons, it is more desirable to provide the coder with a
printed record which he can study at his leisure without sacrificing com-
puter time. A record obtained after a program has stopped is called a
post-mortem (since the program has effectively "jied"), Post-mortems are
best obtained by the computer itself if at all possible, since the com-
puter is best equipped to interrogate its own memory. Its output equip-
ment, however slow, is faster than human transeription.
| Programs whieh collect and record post-mortem information will be
called post-mortem programs, or, briefly, FPM programs. There are three
general types of such programs which will be desecribed below.
A, an—selective Programs

Programs of this type print a small amount of predetermined
information which will presumably be of use in detecting most errors.

The programmer has no control over what information will be recorded and

M-2539~2 XVII-3

hence, in the interests of efficiency only, the most commonly used data
are generally recorded. It is very desirable that the computer be de-
signed so that all such information can be made sutomatically available
to the programmer, Since this is not the case with Whirlwind I, a
certain amount of this data is routinely recorded manually by the com-
puter operator.

B, Seleetive Programs

Programs of this type allow the programmer to specify the in-
formation desired and the form of oubtput. These are most useful if the
programmer can anticipate the information he will need for error detec-
tion,

¢, Trace Programs

Programs of this type essentially simulate, instruction-by-
instruction, the operation of the computer and come closest to attaining
the flexibility of actual manual operation., Normal operation of the com-
puter is simulated by interpretive roubtines which, in addition, record
the contents of certain registers, specified by the programmer, after
each instruction, or after each instruction of a certain class, In
sophisticated programs of this type the programmer can switch out of the
tracing routine into normal operation and back, so that only spscified
seetions of the program are traced. This mode of operation is often
called "trapping®.

In addition to these three types of post-mortem programs, it is
possible to detect certain purely clerical errors in the process of
reading in and btranslating a tape. This is called a "conversion post-
mortem", and the one used in the Comprehensive System is deseribed in
Chapter XIV, Only those post-mortems which give information about the
actual operation of a program will be described here.

The great majority of programming and coding mistakes can be
detected fairly quickly with the aid of information obtained from post-
mortem programs of type A, Large quantities of data are rarely required
and only a very obscure mistake can warrant large memory printouts or
extensive tracing. The desirability of the different types of post-
mortem facilities hinges on the relative worth of computer time as com-

pared to human time, This worth should not always be based on obvious

N-2539-2 XVIT-4

economic factors., Post-mortems of type A plus enough painfully detailed
thinking should in theory enable every programming or coding mistake to
be detected, just as enough checking of any program should eliminate all
mistakes before it is ever run. However, there are valid reasons, both
economic and psychological, for placing part of the burden on the com=
puter, For this reason it may be desirable to have available programs
which can produce large quantities of data on request or which can trace
a lengthy program even with a considerable sacrifice in speed., The ad-
visability of programs of this type also depends upon the characteristics
of the computer and input-output equipment with whieh they are used,

The Comprehensive System has available only programs of types
A and B, which will be described in more detail in the remainder of this
chapber.
11, Post=Mortems of Type A

A, Lights

Whenever the computer stops, certain information is displayed o

by lights on the computer console. The computer can be stopped by any
one of 5 alarms, by an automatic stop instructien; or by manually presse
ing the stop button. On the performance request, provision is made for
indicating which of these occurred. Blanks are also provided for the re-
cording of the conbents of 9 registers which are available-from.;ights on’
the console, These blanks arevpreceded by the abbreviations lisfed in
Table I with their meanings,

Table I
PC Program Counter
AC (partial) Accumulator
AR "A" Register
PAR Parity Register
cS Control Switch
I0S In~Out Switeh
AC (carry) Accumulator Carry Bits
Aux. Drum Auxiliary Drum
GSR ‘ Group Selection Register
SAR Storage Address Register
Buf, Drum Buffer Drum
gﬁg Sams as Aux, Drum

M=2539=2 XVII-5

In general, unless the programmer specifically requests other-
wise, only those blanks will be filled which are immediately pertinent
to the reason for the stop. All numbers recorded are octal, since they
occur on the console in binary form and it is undesirable to spend the
time required for conversion to deciml form, The number in the PC is
always noted and usnally specifieg the location of the next instruetion,
The following examples will serve to clarify some common cases,

Examplo:
' Arithmetic check alam

PC 42
AC 0,44572 all octal
AR 0.57123

PAR ca 55

This information indicates that an overflow occurred on the
instruction in register 41, which by inspection of the program proved
to be
_ su 60
where the number 0,57123 was stored at location 60, Thée original con-
tents of the accumulator can be recovered by adding 0,57123 (which is in
the A register) to 0,44572 giving

0,57123
0,44572
1,23715

If the overflow was caused by an add instruction, the AR must
be subtracted from the AC assuming the sign position to contain a signi-
ficant binary digit.

Example:
Divide error alarm
PC 4
AC (partial) 0,65040
AR 0.11315
PAR 0,11315
s dv ,
AC (carry) 0.05045

The divide error occurred during the performance of the in-
struction at location 43, The AR and PAR contain the divisor. The

M-2539-2 XVII-6

initial contents of the AC can be recovered by adding the contents of the
AC (partial), AC (carry) and the AR, dividing the result by 2 and adding
the AR again. In this case

0.65040
0,05045
0,11315
2\ 1,05422

0,41611
- 0,11315
0,53126

which is the original dividend. The divide error was justified since

0,11315 £0,53126

The in-out switch in general contains the address part of the
last si instruetion which was executed before the stop. If magnetic tape
or PETR was last selected, then 400 octal is added to the IOS when the
computer stops, This is to insure deselection of the free-running equip-
ment at the time of the stop..

' The control switech is, in general, either clear or holds the

binary code for the Whirlwind operation on which the computer stopped.

The AC (carry) contains unperformed carries (if any) and is
generally useful only for the divide-error alarm,

The drums are divided into groups, each group capable of storing
2048 words (addresses 0000-3777 octal) There are 12 groups on the auxi-
~ liary drum (00-13 octal) and 7 groups on the buffer drum. For both drums
the GSR denotes the group selected and the SAR the register within the
group,

A program alarm most often occurs when information from either
the photoelectric reader or a magnetic tape unit is arriving at the in-
out register faster than read instructions are removing it.

Inactivity alarms usually occur when IN-OUT equipment is unable
to respond to a read or record instruction, because it has not been se-

lected by a proper si instruetion,

¥-2539-2 XVII-7

Ezample:
Inactivity alarm
PC 52 -
cs rd
I0S 707

Since the auxiliary drum had been selected to record, the rd
instruction was impossible, The alarm will occur on the second rd in-
struction (or second word of a bi instruetion) after the improper si.

B. Programmed Arithmetic Post-Mortem (PAPM)

If the computer stopé while performing an interpreted instruc-

tion, the consols lights will in general have little meaning, Illegalities
in this case usually lead %o a programmed check alarm with the PC = 3764,
In this case the cause of the alarm can be deduced from the contents of
the AR, Table 2 lists some contents of the AR whieh can occur,

Whenever interpreted instructions are used, a programmed arith-
metic post-mortem (PAPM) should be requested., A sample PAPM is given

below with explanation of its wvarious sections,

Example:
1) 191-25=62 Jones 0622,1 11=-10=55
(24,6) PAPM

2) Stopped at 279 279)iex49%+c 499|-.12345678| +7 MRA|+.12345678)+22
8) 1626] b|+.123456789|+52 1b|-.987654321|-2 2b|+.135798642|-0

4) 1635| 00,10 1|“5,1z 2lo,0 &lo,7 #[6,6

5) 509|icps06 615 |isp285 320 |isp22l 246|iep255 274|icp2’78
Section 1)

‘This section contains the last title read into the computer

followed by the time to a ftenth of a minube in 24-hour notetion and the
date., The next gives the last number system used by the programmer.
Section 2)

This section gives the location of the register at which the
computer stopped, the contents of this register and the contents of the
register referred by the instruction at this location. The contents of
the MRA at the time of the stop is recorded at the end of this line,

In this example, the computer stopped while performing the
instruction in register 279, which was iex 493+c. The index of the

M-2539=2 XVII-8

eounter most recently selected was 3 so that the effective address re-
ferred to was 499, Registér 499 (a4nd 500) held the zeneralized decimal
number =¢12345678 +7.

éhe number in the MRA had an exponent which was too large for
the number system used (10%22>>263), which caused the stop. .

Section 3)

The . contents of all buffers provided by the PA routine are
listed as 9 digit numbers. The number at the beginning of the section is
the decimal address of the first register of the zeroth buffer. If buf=-
fers are not called for by the program, this section will not be printed.
Section 4)

The contents of the index and criterion register of all counters
called for by the program are prinfed in this section, The number at the
beginning of the section is the decimal address of the index register of
the zeroth counter. The number of the counter most recently used is
followed by two extra vertical bars. In the example, counter 1 was most
recently used, which has index 3, which checks with the information in
section 2, If no counters are called for by the program, this section
will not be printed,

Section 5)

The PA routine keeps a record of the locations of the registers
containing the 5 most recent isp or icp instruetions which resulted in
changes of control or jumps. The contents of these registers at the time
of stop are listed in this section. The contents of the register which
contained the most recent jump instruction is listed last, the contents
of register which contained the previous jump instruction is listed next
to last, etc. If the contents of these registers has been changed since
the jump instruction occurred, the new contents will be printed, If
less than 5 jumps have occurred, only those which have occurred will be
printed. If no jumps have been executed by the interpreted routine, the
phrase ™o jumps" will be printed. An interpreted automatic output
routine will return to the main program by an isp instruction which will
be listed in this table, Such jumps can usually be identified by a large
address preceding the vertical bar, Table II will help in the interpre-

tation of some cases which arise,

M-2539-2 XVII-9
Table II
WWI Lights Operations Which Reason for Comments on
(Octal) Cause_Alarm Stopping PAPM
check alarm |di, ck(dh), md These are not All instructions
PC = 3764 legal inter- printed as WWI
AR = 3430 preted in= instructions
structions

cheeck alarm
PC = 3764
AR = 3400

Any of 17 opera-
tions which refer
to a counter

Counter instruc-
tion cannot be
executed if
counter block has
not been requested

Register referred
to is not printed:
instruction is
printed with WWI
operation code

check alarm
PC = 3764
AR = 3453

iad, isu, imr, idv
iadec, isue, imre,
idve

The instruction
refers to a non-
zZero unscale-

factored number

Number referred‘ta
is printed as two
octal fractions

chleck alarm

its, iex, itsc

MRA contains a

MRA is printed as

PC = 3764 iexe number whose ex- decimal number;
AR = 3503 - ponent is too largest exponent
large allowgble is

0.3x2Y where
(30-3,3) floating
point system is
used

check alarm |isec Address section

PC = 3764 of isc instruc-

AR = 3276 tion is too large

(without

buffer block)

check alarm |isc Address seetion

PC = 3764 of isc instruction

AR = 31867 is too large

{(with buffer
bloek)

check alarm

isp, iep, iect,

Program was

If an illegal in-

PC = 3764 ispe stopped manually terpreted instruec-

AR = 3555 tion is referred
to, it is printed
as Whirlwind in-
struetion

divide error |idv, idve A division by

alarm zero was attempted
PC = 3612
sp Computer stopped in |Computer exited

non-interpretead
part of program,
See WWI lights

rom PA routine
y this sp instruce
tion

M-2539~2 XVII-=10

C. Scope Post-Mortem

Because of the availability of wvery high-speed output in the
form of film records of oscilloscope displays, there is available a
special post-mortem of type A which records all of the contents of core
memory in the form of octal fractions on film, This record is called a
scope post-mortem and can be obtained by checking the appropriate box on
the performance request.

This post-mortem has the disadvantage that all transcription
into instruetion or decimal numbers must be done by the programmer.
Table III giving the octal equivalents of the Whirlwind and interpreted
operation codes is included here., Reference may be made to Chapters X
and XIII for instructions on conversion of single and double length

octal numbers into decimal,

Table III

si 0,00 not used cs 1.04 ied
not used 0.04 itse ad 1.10 iex
bi 0.10 iexe su l.14 ita
rd 0.14 icac em 1.20 icp
bo 0.20 - desc sa 1.24 its
re 0.24 iade a0 1.30 iex
sd 0,30 isue dm 1.34 ica
not used 0.34 imre nr 1,40 ies
ts 0,40 idve mh 1.44 iad
td 0.44 ispe dv 1.50 isu
ta 0.50 ise slr 1.54 imr
ck 0,54 ier . slh 1,55 imr
ab 0,60 iet srr 1.60 idv
ex 0,64 iat srh 1.61 idv
ep 0.70 iti sf 1,64 isp
sp 0,74 sp cle 1,70 } not used
ca 1,00 iei clh 1,71

md 1.74 not used

M-2539-2 XVII-=11

III, Post-Mortems of Type B

Post-mortems of type B may be obtained in the Comprehensive System

by means of post-mortem request tapes (fp tapes). This facility allows
the programmer to request that the contents of several continuous ranges
of registers be recorded in any of several forms on one or more output
units,

It is essential that post-mortem request tapes begin with the charac-
ters, fp. No other Flexowriter characters (visible or invisible on the
printed manuscript) can occur before or between them, The identifying
characters (fp) can be followed by a tape number and a tape description
(see section IT,A in Chapter XV)., Requests for post-mortem information
may follow and are written in the following form .

5-346 wi 5-512
639 of 879

The abbreviations, wi and of, specify the form in which results will
be recorded. The possible forms and their abbreviations are listed in
Table IV,
| Registers on the auxiliary drum can be requested as indicated above,
i.e., by giving the group followed by a dash and the location within the
group or by a decimal integer obtained by multiplying the group number by
2048 and adding the location within the group. Thus, the first request
above could also be written in the equivalent form

10586 wi 10752

The contents of core memory are copied onto auxiliary drum group O
before the operation of an fp tape, so that requests for the contents of
registers in the range 1 to 2047 (inclusive) are actually taken from the
corresponding registers of drum group O and are hence equivalent to re-
quests for the contents of registers in the range 0-1 to 0-2047., Regis-
ter 0 (or 0-0) cannot be requested,

Requests can also be written in the form

361 wi 469 gd 480 ii 619,
This is taken to be equivalent to

361 wi 469

469 gd 480

480 ii 619

M-2539-2

XVII-12

Table IV

ii

gd

of

wi

- di

af

interpreted instructions. The three-letter abbreviation

for the interpreted operation corresponding to the left
five bits is printed followed by the address referred to
by the instruction., If there is no legal interpreted
instruction corresponding to the left five bits, the ab-
breviation for the corresponding Whirlwind instruction
is printed,

generalized decimal numbers, The contents of consecutive

pairs of registers within the range specified are printed
as (30-3,j) numbers. If an odd number of registers is re-
quested, the last register is disregarded.

octal Practions. The contents of the registers requested

are recorded as a binary digit followed by a decimal point
and five octal digits representing consecutive groups of
three binary digits, giving a representation of the 16
binary digits of a register,

Whirlwind instructions. The left five bits of the regis-

ter contents ars redorded as a two-letter combination
according to the mnemonic form of the Whirlwind operation
code,

decimal integers. The contents of the registers requested

are recorded as a plus or minus sign (according as the
sign digit of the register is O or 1) followed by at most
five decimal digits representing the magnitude of the
binary integer contained in the register,

decimal fractions. The contents of the registers re-

quested are recorded as a plus or minus sign (according

as the sign digit of the register is 0 or 1) followed by

a decimal point and five decimal digits representing the
magnitude of the binary fraction contained in the register.

N-2539-2 N XVII-13

Note that the contents of registers 469 and 480 are rscorded twicevin
.different forms. An exception would arise if a request for generalized
decimal (30-3,j) numbers covered an odd number of registers, in which
case the Pfinal register would not be recorded as part of the gd request.
If each request begins with the proper register, the proper results will
 be obtained.
. The output unit desired is specified by one of the three-letter
" abbreviations del, dir, sco, which cause succeeding requests to be re-
,”cérded on a delayed typewriter (via magnetic tape) the direct typewriter
-~ or on film (via the oscilloscope), If these are placed within a request,
" they are considered to have preceded the request. For example, the
 ’réquest
741 ii 839 Wi 841 gd sco 858
is equivalent to
’ 741 ii 839
- 839 wi 841
son
841 gd 858

Use of the direct typewriter should be avoided since computer time
is required for typing. In the absence of any specifically designated
output unit, del is assumed.

The three letter abbreviations dee and oct control the way in which
~ the addresses in succeeding requests are interpreted and the form in
which the contents of the registers requested are recorded. Requests
fdlluwing dec or oct are assumed to be written in decimal or octal repre-
sentation, respectively, and the output addresses are recorded in the
corresponding number system, If no speeific designation is made, dec is
assumed.

Subject to the limitations given in the following paragraph, an fp
tape may consist of as many requests as desired on any output unit or
units. The last request must be followed by two vertiecal bars,

An fp tape may not contain more than 169 requests or 1427 characters
(not including title)s. The title or identifying information may not con-
sist of more than 192 characters (not including the letters fp). Since
no check is made by the fp program to determine if these limits are

M-2539-2 XVII-14

exceeded, normal operation will be disrupted in apparently illogical
fashion in these cases. The limits are sufficiently high so that this is
very unlikely and seldom need be considered. In case of doubt, two or
more fp tapes may be used in succession,

Extra characters or spaces are ignored provided they do not form
any of the above recognizable abbreviations or intervene between charac-
ters forming an abbreviation or number. For example, the requests

DEL TFourscore 74l and Gd 894

seven Ye Ars 861 ago II 862
are incorrect only because of the underlined seo which will cause the
results to appear on the scope instead of the delayed typewriter and
because of the lower case between the G and 4 of the abbreviation gd.

Exceptions to the above are the backspace, which will caise read-in
of an fp tape to stop, and color shift and delete, which may occur any-
where on post-mortem tapes,

Post-mortem requests for a single block of registers on one drum
group can be made by entering appropriate information in the selector
and insertion panels (see Chapter XV). In particular, the requested
information may be punched by this means on Flexowriter tape for direct
read-in to the computer, This should be done only with the cooperation
of someone familiar with such punch-outs since a START AT block must be
manually punched"at the end of these tapes before they can be read into
the computer.

IV. General Operation of Post-Mortem Programs

All of the functions of the CS system and in particular the post-
mortem routines are controlled by the utility control program. When the
read-in button is pressed, the conteﬁts of core memory are transferred
unaltered to auxiliary drum group O and the utility control program is
copied into core memory from auxiliary drum group 1l. If the utility
conbrol program determines that post-mortem request information is
present, (either in the manual intervention registers or in the form of
an fp tape) buffer drum group 7 is sum checked and brought into core
memory if correct (otherwise the conversion and post-mortem routines are
located on tape unit O and read into the appropriate groups of the buffer
drum), Control is then transferred to the appropriate entry point in

M=-2539=2 XVII-15

the post-mortem program which proceeds with the execution of the request.
If an fp tape is used and the following registers of drum group O contain
the indicated information, a PAPM is automatically given without request,
2046, ta 2019
2018, ao 2019
1877, srh
If these conditions are not met and the fp tape contains requests
for either interpreted instructions or generalized decimal numbers, the
1ine
NO PA
is printed, A.+O in a certain register of the PA dispatcher will cause
the line
v) PA iunuSed
- to be printed.
After the post-mortem information has been recorded, the contents

‘of drum group O is restored to core memory,

D-55192-2

AUGUST, 1955

remains unchanged
In-Out Register

= Program Counter
Accumulator, AC(\) digiti of AC, 0 £ i £
ligit i of BR, 0 % i % 15

B-Register, BR(i)
A-Register, AR(i)=digitiof AR, 0 $ i $ 15

The complete WWI instruction code is given below in tabular form.

-15

WHIRLWIND I INSTRUCTION CODE

The notations used in the table, together with their meanings, are as follows:

address of a storage register 0% x ¢ 2047 x(i)
positive integer 0 < n £ 511 mod 32
Special Add Memory
original contents of register ()

original contents of digit i of register () that order
fractional part of the quantity in { } - (AC+BR)(i) = digit i of (AC+BR), 0<i €31
integral part of the quantity in { } =

digit i of register x, 0 i <15
digits k thru £ of register x, 0<k < £ <15

AC+BR = the composite 32 digit register (including

sign)composed of the AC and BR taken in

oolean "exclusive or" operator

= round-off from BR; if BR(0)=1,p=2 —e» = becomes ® = Boolean "and" operator
if BR(0)=0,p=0
CM = Core memory
fnstruc- Binary| Dec. | Final Contents of .
tion Function | Code | Equiv. AC | BR%: SAM x Comments Time
sipar | selectin- |00000 [o . - s ---- || The unit selected is designated by the digits P, and is started. i 0 wilk 51 psec.
out unit or stop the . silisa alarm possible
stop the if si selects uapem or Photo Electric Tipe Reader without necessary
computer s -
00001 1 —— .- ——— ——— Tllegal mnmcuun.
bi x block trans-| 00010 2 x+n - x ---- first word -15 & N " For drum 8 msec.
4n- 27 must be stored in AG at the time the computer executes the Bi.
fer in (n of block | 3¢ 1u0 one word will be read but not transferred. It is simply dis- average and 16 msec.
words carded max. for first word,
to CM) i . 32 psec. for ea. addi-
tional word.
rdx read 00011 3, C(IO0R) [C(IOR) | ---- ---- | After word is transferred from IOR to AC, the IOR is cleared. The 16 ssec
address nlid:hal no significance. - °
bo x Diock tran- (00100 4 x¢n - x - —-== | 4n-27"® must be stored in AC. If na0, no recording will take place.
(n words same as for bi.
from CM)
e x record oo101 5 - - == - .- I rc is used as a display instruction, the IOR is cleared. 24 psec.
sd x sum oo110 6 Ci(AC) ® C; (x) .- C(x) clear ——-- Adds digits without carry 21 psec.
digits = AC(i) @|o1
o 15
N of o1
- 1 10
ts x transfer 01000 8 ——-- ---- --- .- c(ac) . 24 psec.
to storage
tdx transfer 01001 9 f— J— i - x(0-4) un-
digits changed 32 psec.
x(5-15) =
AC(5-15)
tax transfer 01010 10 x(0-4) un-| ta normally follows an sp, cp, sf. or ao
address changed | — - == = 32 paec.
x(5-15)= 32 usec.
AR(5-15)
ck x check o101 1 - R [stops on "check-register alarm" if C(ACH#C(x). (Note
foarro #-0). 24 psec.
abx add BR o100 12 C(BR)+C(x) ——— C(x) clear C(BR) + pouxue Arith. Overflow Alarm :(C(x)HC(BR)R 1
- C(x) r clh 16 puts C(AC) into BI ! . 32 psec.
ex x exchange 01101 13 C(x) C(x) C(AC) ex 0 will clear AC without :leann. BR 32 psec.
cp x conditional |01110 14 - y 1 If C(AC) 2 +0 proceed to next instruction. If C(AC) ¢ -0, execute 5p x. M
transfer (digits 5-16) Ly is location of cp x 16 psec.
control
(conditional .
program) _
spx transfer ol 15 —eee ——— L oy+l N . ———— (Take next instruction from register x. PC --» x |
control [(aigits 5-16) 1y is location of 5 16 psec.
(sub - e — -
program)
cax clear 10000 16 crcsamz s clear) clear ---- | passible Arith. Overflow Alarm 24 psec.
- 1flC(x)+C(5AM)Z l" 1
cs x ﬂ.?t::;:d 10001 17 _clxpcisamzS clear) clear === | possible Arith. Overflow Alarm 24 psec.
if |-c(x)+c(sAu)z' l 1
ad x aad 10010 18 C(AC)+C(x) - C(x) clear ---- | pogsible Arith. Oveﬂ'low Alarm 24 psec.
if |c(acKHC(x)] 2.
sux subtract 10011 19 C(AC)-C(x) ——-- C(x) clear -—— possible Arith. Overﬁn\v Alarm 24 psec.
& |c(ac)-clx) 2
cmx | clearand |10100 20 ‘C(x‘*C(SAM)Z“r clear \ct| clear —--- | possible Arith. Overflow Alarm 24 usec
add l i + 27152 wees
‘magnitude if |C(x) ¥ C(SAM)
sa x special 10101 21 F(C(Ac)ﬂ:qx)} ——— C(x) 1{c(aC)+ R Sign of SAM by sign of £1 ious contents of
add C()}, SAM cleared without alarm. 24 psec.
£ o0
ao x add one 10110 22 C(x)+(1x215) ———- C(x) clear C(x) + possible Arith. Overflow Alarm
ax2”™%) | if cpaxe%)=1 32 psec.
Im x lifference - e(x]) clear ——— if |C(AC)| = |C(x)] resuiltis - 24 psec.
a aifs tou1 23 lcach-) C(AC) =] lc(ac) =|ct) resuttis -0 w
of magnitu
mr x multiply 11000 24 G(AC)-C(x) + p clear [clear [Sign of AC is determined by sign of product. 36-43 psec.
and
round-off
mhx | multiply 11001 25 < C(AC)-Cx) “Jctac)- c(;)”"] (] clear ---- | Sign obtained same as for sux, Result in (AC+BR) is a double s
and (digits 1-15) digits 16-30 register product. ‘ime as
hold n{o)-sa(u) or mr
. . BR15=0 |
dv x divide 1010 26 0 S(AC) jet)| clear ———- Divide Error Alarm if |c(Ac)1 > |C(x} Arith. Overflow Alarm if 73 psec.
1 (sign of quotient)” x) Ic(ac)l = lc(x) # 0 and dv x is followed by alz15.
T T (16 digits) i C(Ac)-c(x)xo the q\lahen! is 0.
slrn | shitlete [(uongl| 27 clear ---- | possible Arith. Overflow Alarm if[F {C(AC+BR)2"} +pl=
an r(c{&cmnz: w0 clear ---- The sign digit is not shifted. Digits shifted out of AC 1 are lost. 16-41 psce.
round-off (a taken m Negative numbers are complemented in AC before shifting and
(n places) after rounding off. Digit 6 of slr n must be zero. .
slhn shift left {10111 | 27 n clear --== | The sign digit i fted. Negative numbers lemented i Same as
- F{C(AC+BR)2 F{|c(ac+n . e sign digit is not shifted. Negative numbers are complemented in
?"‘;l*"’”) (,lx.. m.,)d }z) (di{g!ln(l(,c (35)2 b AC before and after the shift. Digit 6 of slh n must be a o for slp
n places| shn one.
BR(j) ---» 0
j=l6-n,...,15 n>0
srrn shift right 11100 0 28 -n 14 ——— 1 .- possible Arith. Uverflow Alarm on srr C (this instruction simply Same as
i and © C(AC)2™" + clear clear causes roundoff and clears BR). The Sign digit is not shifted. for slr
round-off (n taken mod 32) Negative numbers are complemented in AC before shiftigand
after rounding off. Digit 6 of srr n must be a zero.
srhn | shift right [111001 28 -n -n| . clear --== | The sign digit is not shifted. Negati by 1 ted is Same as
c(ac)z (A e sign digit is not shifted. Negative numbers are complemented in
M;‘;" (n ..(ken) ‘mod 32) I(dflf:ff),zl) l AC before and after the shift. Digit 6 of srhn must be a one. for gir
- - . ,-15 X(0-4) unaffected. nis such that + < |C(AC+BR) 2°|<1;
sf x scale 1101 29 C(AC+BR)2" C(AC+BR)2® n-2715 clear nz > -
factor (digits 1-15) (d.(ghl 16 (31.n)) x(5-15) if C(AC+BR) = 0, thenn = 33 33-81 psec.
() Negative numbers are cumplemented in AC before and after the
15 n>0 multiplication.
clen cycle left 1110 0 30 (AC*BR)(nfi)" clear ———— ——— ——— Sign digit is shifted with all other digits. Digits shifted left out of
and clear > AC(i) ‘ AC 0 are carried around into BR 15. No roundoff. No complementing Same as
15 of AC either before or after the shift. Digit 6 of ¢lc n must be a zero. for slr
v Instruction gl 0 clears BR without affecting AC.
clhn cycle left 1110 1 30 (M:mi\)(mi)32 (AC+BR)(n+i+16) 3. Sign digit is shifted with all other digits. Digits shifted left out of
and hold > AC(:) BRU| 2 AC 0 are carried around into BR 15. No complementing of A Same as
=0 i cither before or after the shift. Digit 6 of glh n must be a gpe. for sir
- =0,..., Instruction glh 0 does nothing. —
md x multiply 11 31 Ci(AC)@C; (x) - [(Final AC) Multiplies digits with no carry
digits g o1 (Final AC) . ®| 0 24 psec.
0,...., 15 0 [
1l ¢y

* In operations mr, mh, dv, slr, srr, srh, si, the C(BR) is assumed
to be the magnitude of the least significant part of AC + BR. For the
ab and dm operations, the BR is treated just as any storage register.

Digital Computer Laboratory

Institute of T

	00-001
	00-002
	00-003
	00-004
	00-01
	00-02
	00-03
	00-04
	00-05
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	06-01
	06-02
	06-03
	06-04
	06-05
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	D-55192-2_WWI_Instr_Aug55

