®
®
®
(A E X AN X X X

&
0000000 000000000000 TPPCPOROPOO000PDBOPOPOIIIIIIIOOIOOIOGIESESOIPOPOIOOOS®

DIGITAL COMPUTERS

L
®
]
.
.
@
.
L
L
.
*
L
.
L
L]
]
L]
L]
L]
»
.
L]
()
L]
-
.
&
.
.
.
.
.
.
.
L]
L]
[}
.
L]
L]
.
.
0y

Massachusetts Institute of Technology
Summer Session 1954
a909000®

BUSINESS APPLICATIONS

® o 89 © LA] e ¢ ° L 2 J L] 8¢ L] ee o ane ® o L3 *® LR ® L2 J ® L X J (XX X KK J

® ® &] ® 9 @ L & ® ® ® o LA ® L] L] ® L] ® ® L] L] (X J (X J

66 & ¢ ® o L e & 9 L] ® L] ® ® o LR 2 *] ® ® ® L L 2 *® ® 200000
® 0 ¢ 5 2 4 B F T T W S S OB SRS e P T e NN O e ® »r > 0 s~ U T W e e S o e An Ree T U TR NGl YRR SR SRCIE S R N B S UG S e ST R SRR Ry W S R O Bl e e TNR S ? ® & % 8 8 % » s 8 a0
@ escse scoe eecIPOOeS e9508 09 20806660 esee ¢ o608 I E AR E R R BB 2 ecso e secseede csoene0OCO

L] L] e ° L] ® ® LR L L] [] L @ ©0900600

...................Q.......'........CC.‘0....0........O.‘.'.C.....Cl.. 0000002000580 00000006000

o s s

® ® 0.0 08000 00 0 o

Massachusetts Institute of Technology

Summer Session 1954

Notes from a special

summer program in

222 3 4444 886 777 8
IR L]
222 3 4444 8 @6 ; 8888

222 383338 4 $S 8 8 TI7 888 999
RIS LR R O
2222 3338 2 6662 888

222 _ 3 3 444
222§ 810 g,
222 3333 4442 g 8
2222 3888 4444 S 7777 888 2999 0 2
et bl il B0 el H RS
g % 3 4 5855 8 7777 g g g 2
by

Charles W, Adams
Stanley Gill
and many others

§:77 sss 9999
7 8ses 9599

} 777 8888 sos

1 §o, § 110:
22% g g 4442

with the cooperation of the
Digital Computer Laboratory of the
Department of Electrical Engineering

and the

Office of Naval Research

1-1

1, INTRODUCTION

These notes discuss a new kind of equipment for the rapid, reliable
and inexpensive processing of large volumes of information -- systems
built around general-purpose, automatically-sequenced, stored-program
electronic digital computers. These devices, typified by Remington-Rand's
UNIVAC and by IBM's types 701, 702, 704, and 850 have been the subject of
much recent popular discussion, often being referred to as tape-processing
machines, as electronic data-processors, or, unhappily, as ®"giant brains."

For convenience in what follows, the long and somewhat redundant
modifiers -- general-purpose, automatically-sequenced, stored-program,
electronie, and digital ~-- will be dropped, and the term "computer™ alone
will be used to refer to these systems. Before dropping the modifiers,
one might reasonably ask what each of them means and what kinds of com-
puting equipment are not being talked about here, as well as what kinds
are,

Digital versus Analog

A digital computer is one which operates numerically on digits --
on quantities expressed in discrete, quantized, digital form. Digital
contrasts with analog, which describes any computing device which oper-
ates on continuous variables. It is, in other words, possible to com-
pute in two quite different ways -- by measuring to determine how much,
or by counting to determine how gany.

Man learned to count by enumerating things one by one in corres-
pondence with his fingers and toes (his digits), just as he learned to
measure lengths, say, by comparing with the length of his hand or his
foot. Little wonder that he learned to count by fives and tens. Stones
and then beads replaced the fingers, and the first real computing device,
the abacus, was born., Adding machines, desk caleculators, cash registers,
parimutuel machines, score boards, and punched card machines are modern-
day digital devices.

Slide rules, rulers, planimeters, scales, wind tunnels, towing tanks,
and hour-glasses are analog devices, However, just as the term digital
computer is frequently restricted to mean only a stored-program device,
an analog computer is usually taeken to mean not merely a simple computing
aid or a model but rather an electronic, electrical, or mechanical de-
vice whose behavior is analogous to that of a given physical system.
Analog computers are mainly useful ih giving quick, inexpensive, rela-
tively imprecise solutions to fairly complex engineering and control
problems, The precision of an analog computer is limited to the precision
of mechanical or electrical parts, usually one part in a hundred or a

1-3

thousand, or at most one part in ten thousand. The cost of increased
precision in analog devices goes up exponentially, whereas the precision
of digital devices can be increased by adding digits at less than linear
increase in cost (and often by proper coding without even altering the
equipment, although at a sacrifice of speed).

Getting back to the adjectives -- electronic, of course, implies
that free electrons are used somewhere in the system, usually in a
vacuum tube. Actually, the term electronic is usually reserved for those
devices whose essential functions are performed entirely by electronics
and not at all by mechanical processes. When mechanical actions control
the flow of electrons and vice-versa, as in an electrical relay, the
term electro-mechanical is used.

.General- versus Special-Purpose; Applications

A general-purpose computer is one which can, if necessary, be used
in any problem from any area of digital computer applications, unless its
speed or its storage capacity is inadequate. This does not mean that any
general-purpose computer is equally useful in any problem. Any computer
is designed to turn in its best performance on some given type of problem.
Often, however, the flexibility and complexity required for one given
problem is such that a computer designed for the purpose turns out to be
adaptable to almost any other problem -- though perhaps with much less
efficiency dollar-for-dollar compared to a computer built with the other
purpose in mind,

On the other hand, there are truly special-purpose computers -- such
as desk calculators, accounting machines, IBM 407's, and magnetic drum
inventory machines such as the American Airlines reservisor -- in which
the lack of some facilities (notably decision-making) prevent the device
from being adaptable to other kinds of problems,

Digital computers have application in five different areas:

1, SCIENTIFIC RESEARCH -~ testing a theory or method of solution by
carrying out a solution and comparing the results with em-
piriecal data (when the method is successful, it often is used
in a? engineering analysis or synthesis approach to give new
data).

2. ENGINEERING ANALYSIS AND SYNTHESIS - applying known techniques of
analysis to the parameters of some system design (usually one
chosen in an attempt to synthesize by finding parameters which
will give the desired resultk for example, computation of
aircraft design, assembly-line balance, insurance rate tables,
operations research, etc.

3. REDUCTION OF EXPERIMENTAL DATA ~ Processing engineering tests,
©.8., rocket firings, into more usable form.

1-5

4. PROCESS CONTROL ~ determining, from all available measurements,
the corrections needed at all available control points to
adjust a physical system to give the desired output. For ex-
ample, control of aircraft in flight, of steel mills, of re-
fineries, of assembly plants, etc.

5, BUSINESS DATA-HANDLING -~ processing the day-to-day work of in-
ventory records, accounting, payroll, etc., and from this ob-
taining data to be reduced for control and management purposes.

Bach of these kinds of applications puts special demands on the computing
system. For example, ease of programming is especially desirable to
sclentific research; dependability is especially essential in business
data~-handling and usually in process control; special input facilities
are needed for all of the last three named: special output facilities are
needed for the last two; and a large storage system or automatic file is
uswlly needed for business data-handling,

Automatic Sequencing

According to our definitions, an adding machine or a desk calculator
can truly be called a general-purpose digital c omputer. Such machines
today perform a ten-digit multiplication in less than ten seconds.
Modern elsctronic techniques can Speed this up a milliénfeld -~ but to’
what avail? A competent person-eperating a modern desk calculator per-
forms about 500 operations a day. By building a calculator a million
times as fast, one can reduce the maximum of 5000 seconds of machine
operating time per day to a twentieth of a second, but speed up the over-
all process by at most 10% or 20%. The bottleneck is, of course, the
human operator, |

The automatically-sequenced digital computer is simply a mechaniza-
tion not only of the arithmetic operations but of the operator who de-
termines the sequence in which the operations are performed. All of the
important logiecal principles of the automatically-sequenced digital com-
puter were outlined by Cherles Babbage over a hundred and twenty years
ago, but mechanical and electrical techniques could not satisfy his needs
at that time and his Analytical Engine was never built,

The arithmetic element of an automatically-sequenced digital com-
puter, corresponding to the desk caleulator of a manual system, can ad-
vantageously be made to work very fast, performing arithmetical opera-
tions in a few millionths of a second, for the rest of the system can
now keep up with it. The combrol element, the counterpart of the human
operator, can readily be made far faster, more reliable, and somewhat
less demanding of wages and fringe benefits than the man., Unfortunately,
however, there is need for automatic memory or storage of various de-
grees of accessibility, corresponding to the memory of the operator, the
notebook, and the reference library. There is also need for input and
output - the means of communication with the outside world, It is the
memory and the input-output that causes the greatest engineering

SECONDARY
STORAGE

CONTROL.

WE NEED ¥277

N RUSH - P.D.Q.-

‘°:s IN A HURRY |l

; ARITHMETIC __\
, ELEMENT

ERE'S PROBLEM|

H
STORAGE

#278, JOE 1|

UTATION

ARITHMETIC ELEMENT CONTROL STORAGE
FORMS SUM TAKES INSTRUCTIONS| [0)
DIFFERENCE FROM STORAGE 1)
PRODUCT THEN 2)
QUOTIENT DIRECTS ALL OTHER :
(Positive or Negative) ELEMENTS PROPERLY 5“)
[
— 55
7]
PUSHBUTTONS
\ y
TaPE | TAEEANpuT| |SECONDARY) {oyrpyr
PREPARATION STORAGE

AUTOMATIC DIGITAL COMPUTATION

1-7

difficulties in the physical realization, and places the greatest limi-
tations on the speed and reliability of existing computers,

Stored~-Programs versus Card-, Tape-, or Plugboard-Programmed

The flexibility of the sequencing can be improved if the computer
can

1. move back and forth within the sequence without manual operation
or other excessive delay, and

2, make modifications on its own instructions,

These two facilities are gained if the program of instructions as well as
the data are stored in the internal, random-access memory. This is not
what is done if plugboards or sequences of cards or punched tape are used
to store the instructions, The second facility listed is achieved auto-
matically if the instructions go into the same storage element as the
numbers, although there are stored-program computers in which this is not
done. Since all of the following discussions are based on stored-
program computers, it is to be hoped that the virtues of such a system
will become more apparent as the discussion progresses,

Programming and Coding

When a humen operator is to solve a problem using a calculator or
to process a payroll on an accounting machine, he must be supplied with
instruetions which specify just how the solution is to be obtained. In
like manner, the digital computer must be provided with a list of in-
structions, or program, in properly coded form, to describe how the solu-
tion is to be obtained. The process of preparing such a coded program is
called programming. Programming really consists of two parts:

l. planning the program, or sequence of elementary steps, by which
the problem may be solved

2, coding the sequence of steps into a coded program - a sequence of
computer instructions. There are a number of other steps con-
cerned with coding, as shown in the figure entitled Digital
Computation Center, but except for debugging (removing mis-
takes) these are largely clerical,

The coding of a problem requires detailed knowledge of the specific com-
puter on whieh the problem is to be solved. A coded program has meaning
only to the computer for which it wasg written. The planning of a solu~
tion, on the other hand, does not necessarily involve the details of any
given computer, although a given problem may frequently be solved most
efficiently if formulated one way for one computer and another way for
another,

1-8

Since it is virtually impossible to discuss programming without re-
ferring to a specific computer, two hypothetical computers, called TAC
and SAC (for Three-Address Computer and Single-Address Computer, respec-
tively), will be assumed throughout the ensuing discussions and examples.
These computers do not in fact exist, but their characteristics are to be
simulated on the Whirlwind I computer to permit programs written for TAC
or SAC to be performed and the results or lack of them to be indicated
realistically.

The simulation of these idealized, pedagogical computers by Whirl-
wind I has actually been accomplished by means of special programs
written for the Whirlwind I computer by members of the summer school
staff. Such programming represents a considerable effort (several man-
months) by experienced programmers and is not unlike the job of construc-
ting a digital computer from tubes and wires, except that a peneil is
used in place of a soldering iron. The techniques for accomplishing the
simulation of one computer by another, and the motivations for doing so,
will be described briefly in Chapter ., For the present purposes, TAC
and then SAC will be described as if they existed in the hardware and no
further mention will be made of the role played by the Whirlwind I com-
puter,

Both TAC and SAC have, of course, the basic computer elements:
arithmetic element, control, storage, secondary storage, input and out-
put. Between them they are intended to typify most of the characteris-
tics of most of the other currently-available digital computers, com-
bining many of the best features, omitting some of the speecial features
and peculiarities of each. Naturally, both important concepts and
innumerable details make up a complete description of the computer.
Rather than attempt to describe the TAC ahd SAC computers completely at
the' outset; we Have attéched a complete description as an appendix to
these notes and will build up first TAC and then SAC gradually, embellish-
ing them with more details and more new concepts as we progress.

2-1

2. THE RUDIMENTS OF TAC CODING

The best way to learn to code for a given computer is to work out
a few examples. First, of course, one must become acquainted with the
general characteristics of the machine at hand. A complete description
of TAC, such as is appended as Chapter 24, is hardly necessary at this
point. It seems more reasonable to build the description a little at
a time; but even so, the first bite, as presented in this chapter, 1s
a big one,

General Characteristics of TAC

The storage element of TAC consists of 110 different registers.
A storage register is a location, like a pigeon hole, in which a single
computer "word" may be stored by the computer control element and re-
covered by it when the word is needed.

A word in TAC is a series of 9 digits, letters or other characters
representing a number, an instruction, or some other data. Since with
numbers the first character always is a sign, nny one storage register
can contain any integer (whole number) between -99999999 and *99999999
--anything up to a hundred million.*

Each register is identified by an address, just as the houses on
a street are identified by addresses. Tle addresses of TAC's 110 different
registers are 00, 01, 02,..., 99, x0, x1,...,x9. (These addresses are
all listed on the "TAC Program Form", along with space for filling in the
contents of each of the corresponding registers. One character goes into
the first space and two into each of the others merely for convenience in
reading and writing. There is also a blank space for comments or notes.,)
The x registers differ from the others by being, in effect, faster than
the rest, as will be seen in more detail later. Register x0 is very
special; it contains a very useful number, 000000000, and its contents
can not be altered in any way by any instruction. Registers x1 and x2
will also be seen later to have an important property--~TAC can auto-
matically deal with them in tandem as a single "register" (calléd xx)
which stores a 1l6-digit number made up of the two 8-digit numbers which
they individually store.

*Alternatively, since a character of a word can be any of the symbols

on the MIT Flexowriter keyboard (similar to a standard typewriter), it
is possible to store any 9-character combination such as Joe E Doe or
16-8-1954 (spaces, dashes, ete., count as characters). However, certain
of the instructions about to be described will deal only with strictly
numerical quantities. Numbers larger than a hundred million .or smaller
than one may be handled by special techniques, but only signed 8-digit
integers will be discussed here at the beginning.

2-2

An instruction is one kind of word. It specifies both an operation
to be performed, such as add or subtract, and the addresses which des-
ignate where the words to be operated upon are to be found. For example,
the word A27131609 (this and the many instructions which follow are easier
to read if punctuated by spaces which would not actually appear in the
word in TAC--thus, A 27 13 16 09) is an instruction which specifies that:
the integer contained in register 27 is to be added (because the letter
A represents addition) to the integer contained in register 13 (without
changing what is contained in registers 27 or 13), the sum is to be
stored in register 16 (erasing whatever was previously in register16),
and the next instruction to be obeyed is to be taken from register 09
(without changing what is in register 09). The fact that TAC is called
a three-address computer, yet deals with instructions that clearly have
four addresses in them, is merely a question of terminology. The fourth
address, specifying the location of the next instruction, is not counted
in the name because it does not serve an important logical function, for,
as the Single-Address Computer SAC will demonstrate, the instruction
could nearly as well be taken from consecutively-numbered locations.

Symbols Used

The results of the various operations which TAC can perform are
easier to describe if a few symbols are used for commonly-needed phrases.
Two in particular are useftl enough to have become somewhat standard in
the computer field generally, although many variations still exist.

The symbols are:

C() represents the word contained in the register whose address
is enclosed by the parentheses, usually being read as "the contents
of ==" or sometimes merely as "C of --"

—> represents the phrase "becomes the new contents of" or simply
"ooes into",

For example:

€(27) + C(13) —> 16 should be read as follows: "the contents
of register 27 plus the contents of register 13 becomes the new
contents of register 16" or, for brevity, %C of 27 plus C of 13
goes into 16",

Another group of convenient symbols refers specifically to TAC alone.
They make it possible to identify and distinguish between the 9 different
characters (whether they be digits, signs, letters, symbols, ete,) which
make up a TAC word. This is done in two different ways. First, the’,
character positions or columns of a word are numbered 1, 2, 3, 4, 5, 6,
7, 8, 9 from left to right. Second, any word is sometimes represented
symbolically by the 9 letters abcde fghi,
A TAC word: sign ,— 8=digit j
’ ’ h-1l 3

-1a [e flg
Column # : A;£Jxii:;:l;&:ﬁ;;=2»a=é;,;L»wéi:,éi»- & 35 an instruction
: operation addresses address address
code letter (of operands) (at result) (at next instruction)

¢ & as a number

2-3

Thus the letter d is used to represent the 4th character of the word,
whatever that character happens to be. Similarly, the pairs of letters
be, de, fg, and hi are used to represent the four different addresses
specified in any instruction word.

For eample, in the add instruction A 27 13 16 09 described earlier,
a = A (since the first character of the instruction was a capital A)
be =27, de = 13, fg = 16, and hi = 09. The result of this particvlar
A instrvction can be described symbclically, as above, by writing
c(27) + ¢(13) —> 16. Similarly, the result of any A instruction can
be written symbolically as C(be) + C{de) —> fg, which simply means
that "the contents of the register designated by the first address
(second and third characters) of the given instruction plus the contents
of the register designated by the second address (fourth and fifth
characters) of the given instruction becomes the new contents of the
register designated by the third address (sixth and seventh characters)
of the given instruction" and, implicitly, the next instruction is to
be taken from hi, the register designated by the fourth address (eighth
and ninth characters) of the given instruction.

Arithmetic Operations A, S, M and D

The four most obvious operations for TAC to perform are addition,
subtraction, multiplication, and division. These are comparatively
simple to describe and to use, especially if no attention is given to
the questions of what happens if the results are too large to fit in
a register or if non-numerical quantities are involved. Suffice it
here to say that if the result of an arithmetic operation exceeds eight
digits, TAC will print out certain symptomatic information, called a
post mortem, and then stop. Non-numerical gquantities can in certain
cases be added or subtracted but not multiplied or divided, and results
up to 16 digits may be handled by using the specisl x1-x2 tandem register
xx. Detailed discussion of these complications will be deférred.

The four basic arithmetic operations in TAC, representing the four
addresses by bc, de, fg, and hi as described above, are:

ﬁame Code Function

Add A C(bc) + C(de) —> fg

Subtract S C(be) - C(de) —> fg

Multiply M C(be) x C(de) — fg

Divide D C(be) + C(de) — fg
(next instruction from hi in all cases)

2-4

Thus, to repeat a previous example, the instruction A27131609 adds C(27)
to C(13), places the result in register 16, and causes the next instruc-
tion to be taken from register 09. TAC treats all numbers as integers.
Adding, subtracting, or multiplying two integers gives an integer as the
exact result, and this is the result stored in fg by the A, S, or M oper-
ations, Division, however, is not an exact process. In this case TAC
rounds off in a conventional way, equivalent to adding‘%;myﬁehhsigmdﬂﬂl
quotient and then throwing away the entire fractional part. Thus TAC
forms, as the rounded quotient, an integer which is at least as nearly
equal to the exact quotient as any other integer would be,

One other instruetion will be necessary in even the simplest cases,
namely an instruction which stops the computer. This is called Halt
rather than stop since the code symbol H was available whereas the sym-
bol S is used for Subtract. Halting does not involve any operation on
the contents of any registers, so the first three address sections are of
no significance and may be filled in with zeros or any other characters,
The fourth address of Halt specifies, as usual, where the next instruc-
tion is to be found, but this is of no significance unless it is antici-
pated that one might want to press a button and have the program carry
on or repeat, in which case the halt address should be properly filled
in. Since one occasionally wants to repeat a calculation just to make
sure the machine was not behaving badly the first time through, it is
good practise always to set the fourth address of a Halt instruection so
that the program can be repeated even if no repeat is anticipated.

Name Code Function
Halt H stop the computation

(take next instruction from hi if restarted manually)

Use of the Arithmetic Instructions

For example, if register 00 contains the integer +00000007 and
register 01 the integer +00000095, then a program for placing 7 + 95 in
register 02 would be
03] A00010204
04] HO0000003

which, assuming that the computer is somehow gotten to start with the
instruction in 03, adds the 7 in 00 to the 95 in 0l and places the re-
sult, +00000102, in 02. The H operation then stops the computer, ready
to repeat if necessary. To place 95+7 in register 2, the program could
be
03
04

D01000204
HO0000003

which divides C(0O1l) = +00000095 by C(00) = +00000007, forming the result
+00000014 which is then placed in 02,

2-5

As a first real example, which must of course still not be very hard,
we give a nod to THE COMPLEAT STRATEGYST, which gives social standing to
this type of problem, and take up the case of the vending-machine opera-
tors. Consider the plight of John, Mal, and Arnie, whose vending machines
bring them each day a number of coins which we will represent as x =
nickels, y dimes, and z quarters. Somehow they must total the take and
divide the profits, with Arnie giving or taking the odd cent if the total
does not divide evenly. Their business being large (but less than a
million dollars a day), they decide to use TAC to take the output of their
electronic coin counters and work out the split. Our task is to write a
program which will make TAC do the job.

First, let us express the problem as concisely as possible. The
gross take, in cents can obviously be found by taking 5 times the num-
ber of nickels (which we decided to call x) plus 10 times the number of
dimes (y) plus 25 times the number of gquarters (z). Clearly, also, a
share is a third of the gross, except that in rounding off to the nearest
cent we may make the shares a third of a cent too large or too small,

In this case, Arnie's share is to be a cent larger or a cent smaller than
John's and Mal's, Thus we can find John's share and Mal's share by
simply dividing the gross by 3, and then find Arnie's share by subtract-
ing the other two from the total. Our problem can be summarized by three
equations

Gross = 5x + 10y + 25z
John's share or Mal's share = Gross/3, rounded off
Arnie's share = Gross - John's share - Mal's share

Next, let us express the calculation in terms of a sequence of
arithmetic operations

1. multiply: 5 times x = b5x

2. multiply: 10 tinmes .y = 10y

3. multiply: 25 times z = 25z

4, add: 5x plus 10y = 5x + 10y

5, add: 25z plus (5x+10y) = Gross

6. divide: Gross divided by 3 = Johnt's or Mal's share
7. add: " J's share plus J's share = 2 J's share

8. subtract: Gross minus 2 J's share = Arnie's share

Now we have a program -- a sequence of elementary operations -- for
solving the problem. The final step is to code this program into basie
TAC language. To do this, we must first assign all the necessary numeri-
cal information to specific registers in TAC's storage element. Let us
list the necessary numbers

l. © 8. ©5x

2. "10\ constants needed 9. 10y

3, 25 10. 25z unknowns
4, 3 1l. D5x+10y to be
5. x "7 the number of 12, Gross computed
6. ¥ coins, which is 13. John's or Mal's share

7. 2 (data we are to 1l4. Twice John's share

be given 15. Arnie's share

2-6

Bach of these quantities must be put into some storage register before
TAC can carry out the calculation, Similarly, the coded program or list
of instructions that we intend to write must also be stored, one instruc-
tion to a register. It makes no difference which register is used for
which instruction, constant, or unknown (actually we will find later
that, in so-called "serial!' computers like TAC, the computation may go
faster if the numbers and instructions are judiciously placed). Since it
does not matter, we may as well assign the various constants, input data,
and unknowns to registers Ol throusgh 15 in the order in which they are
listed above. "Suppose we are given specific values for x, y, and z:
13,976 nickels; 9,433 dimes; 2,747 quarters.

01 |+00000005 08 5x

02 |+00000010 constants 09| | registers 10y

03]+00000025 10| | reserved 25z

04]+00000003 11} | for 5x+10y

05]+00013976\ x given 12| { quantities Gross

06 |+00009433 data 13f | to be J or M share

071+00002747 z 14} | computed 2 J's share
15 A's share

To get the constants and the given data into registers 01 through
07 where we want them, we will simply type the addresses and the quanti-
ties, exactly in the form shown, on the Flexowriter, preparing a punched
tape which can be read into the computer by putting it into TAC's tape
reader and pressing the "READ IN" button. To reserve registers 08
through 15 we need do nothing at all except not to use these registers
for anything else in our own program. The instructions, once we get
them written, can go on the same tape with the data, typed in the same
form.

In TAC, any of the instructions, ineluding the first one, can go
into any of the registers. At the end of the punched program tape we will
type the location of the first instruction, followed by the word "start"
and TAC will then stop reading in and start computing. Consequently, we
can place our instructions anywhere in storage, except of course in the
registers we have already assigned to other purposes. Register 16 seems
as good a place to start as any. OSince each of the operations called
for in our previous list is an operation in TAC's vocabulary, and since
all of the numbers involved are integers that will fit into TAC's regis-
ters, the coded instructions correspond directly to the operations of
our previous list, :

The list of instructions which we might use to describe our prob-
lem is as follows:

27
numerical quantities

instructions comments (relisted for reference)
16 |M 01 05 08 17 5x—8 1]+00000005
21+00000010
17 | M 02 06 09 18 10y—9 31+00000025
41+00000003
18 | M 03 07 10 19 25z —910 5|+00013976 x
6]+00009433 y
19 A 08 09 11 20 5x+10y=211 7{+00002747 =z
8]5x
20 |A 10 11 12 21 25z + (5x+10y)-12 9|10y
10|25z
21 |D 12 04 13 22 Gross/3—13 11|5x+10y
12|5x+10y+25z = Gross
22 | A 13 13 14 23 2 J's share—l4 13|Gross$3 = J or M share
14|T + T = 27
2315 13 14 15 24 A's share-»15 15{Gross - 27 = A's share
24 | H 00 00 00 16 stop

The instruction in register 16 says: multiply what is in register
01.(namely 5), by what is in register 05 (namely 13976), place the
product (namely 69880) in register 8, and then take the next instruction
from register 17. The instruction in 17 then places 10 x 9433 = +00094330
in 9; the instruection in 18 places 25 x 2747 = +00068675 in 10; C(19)
places +00164210 in 11; C(20) places +00232885 in 12; C(2l) places
+00077628 (John's share or Mal's share, in which the extra third of a
cent was rounded off) in 13; C(22) places +00155256 in 14; C(23) places
+00077629 (Arnie's share, which in this case is one cent larger than
John's or Mal's) in 15; and C(24) stops the computer -- ready to re-
peat if necessary. The complete program as typed in preparing the
punched tape for TAC might look as follows, where the top line contains
some conventionalized identification which will be described later on.

£2t 198-400-1
01} +00000005
02| +00000010
03[+00000025
04 +00000003
03| +00013976
06| +00009433
07| +00002747
16{ MO1050817
17| M02060918
18| MO3071019
19| A08091120
20| Al0111221
21| D12041322
22| A13131423
23| 513141524
24 HO0000016
16| start

Program for the Vending Machine Operators |

Qutput

A program to be useful must print the results of the caleulation
so that they can be read, not simply keep the whole thing to itself as in
the preceding example. It is consequently necessary to have an instruc-
tion which prints. It would on the whole be satisfactory for this in-
struction simply to print the contents of a specified register. This
would leave two addresses unused (unless one printed three words at once,
which might not always be COnvenient), which does not make computer de-
signers feel very bright.

In addition, it is very necessary to print the informestion intelli-
gibly. In the preceding example, John's and Mal's shares and Arnie's
share could be printed merely as +00077628 and +00077629, but it would
be much better to print the shares in dollars, with some identification
as well, for example:

John 2776.28

Mal 8776.28

Arnie 776429

total $2328.85

The print instruction therefore permits printing parts of words, and per-
mits putting one character, such as a space, a dollar sign, a comma, a
period, a carriage return, etc., both before and after each printed -
group. (The complete list of Flexowriter characters includes digits,
superseripts, capital letters, small letters, symbols, and machine
functions, as listed at the top of page 24-1. The machine functions are
répresented in writing by underlined capitals: R = carriage return,
S = space, T = tab, B = back space, C = color change, H = halt--printer
only.,., I-= ignore). In the print instruction, only de is an address
in the normal sense. The digits b and ¢ are used to designate what part
of the word is to be printed, b indicating which column to start with
and ¢ indicating which to end with. Characters £ and g may be any
Flexowriter characters at all. TAC simply prints f itself, whatever it
is, before printing the designated part of C(de) and then prints g itself

at the end. If nothing is wanted either before or after, f and/or g may
be designated as I, representing "ignore."

Name Code Punetion

Print P Print the characters in the columns
numbered b’ through ¢ in C(de), pre-= -
ceded by the character £ and followed
by the' character g

For example, in the vending-machine operator problem again, we
could print John's share and Arnie's share in the form

+00077628
+00077629

by replacing the halt instruction in register 24 by the following:

24P 19 13 I R 25 print characters 1 to 9 of C(13)
preceded by nothing and followed
by a carriage return (with line
feed)

25|P 19151 I 26 print characters 1 to 9 of C(15)
and nothing else

26{H 00 00 00 16 stop, ready to repeat if necessary

Alternatively, we could print their shares in the form

8776.28
2776.29
by writing
24P 57 13 g . 25 print ¢ 776.
25|P 89 13 I R 26 print 28 and return carriage to next.
line

26|P 57 15 ¢ , 27 print & 776.

27/P 89 151 I 28 print 29

28|H 00 00 00 18 stop

Suppose we really want to be really elegant -- we might arrange to

print something like the earlier example,

. John, Mal: g776.28
Arnie: 2776.29
Totalt $2,328.85
This
requires a long string of print instructions and the insertion of some
special words to contain the names "John, Mal:" and "Arnie:", the back-
spacing and underlining and the word "total:", Thus

24P 19 25 J S 26 Prints John, Mal: followed by a space

25| ohn, Mal:

26|P 57 13 ¢,. R7 Prints $776.

27|P 89 13 1 R 28 Prints 28 followed by a carriage-
: return

28|P 19 29 A 8 30 . Prints Arnie: followed by 5 spaces

29 rniet SSSS

(continued on next page)

2-10
30!P 57 15 ¢ I 31 Prints $776
31|P 18 32 I I 33 Prints 4 backspaces, 4 underlines

- (1.e. underlines the four pre-
ceding digits)

32(BBBB_ ___I

33|P 82 15 . I 34 Prints .29

34]P 27 32 I R 35 Underlines the 3 preceding digits
and returns carriage

35{P 29 36 1 S 37 Prints 2 spaces, then Total: , then

another space
36]I S S Total:

37iP 44 12 § , 38 Prints g 2, (total is in reg. 12)
38|p 57 12 I I 39 Prints 328

391P 89 12 , H 40 Prints .85 and a stop character
40|H 00 00 00 lé Stops the computer.

The example given does a neat job of printing, but it is predicated
on a beforehand knowledge of how many digits there are in each of the
results. On a bad day, the boys might find their share printed in the
form

John, Mal: $087.13
Arnie; 5087.12
Total: $0,261.58

which would be esthetically displeasing, while on the good days, they
might lose a thousand dollars apiece (although the discrepancy would
show up in the total). The catastrophe of losing digits can be pre-
cluded by arranging always to print more digits, but this means that the
results would almost always lack esthetic appeal. The proper solution,
usually, is to write an elaborate program for determinihg how many sig-
nificant digits there are and then printing only those. Such a zero-
suppression program involves more coding feabtures and tricks than have
been covered thus far.

Input

We have seen that inserting a program of instructions and initial
values into TAC is done by simply preparing a punched tape, putting it
in the reader, and pressing the button. There are times, however, when
the same program is to be used over and over again on different data
where it is not efficient to have the computer stop after each calcula-
tion and wait for someone to press the button to read more data in.
Also there are times when it is not convenient to prepare data directly

2-11

in the form of TAC words. Both of these situations are provided for by
means of the read instruction, R, described below.

Name Code Function
Read R ' Read enough characters from punched

tape to fill the positions numbered
b through ¢ in register de without
changing the other digits of C(de)

Unlike program input, the Read operation reads explicitly each
character which appears on tape except the code delete (al1
holes punched) which is ignored, and the upper and lower case
symbols which are not counted (although they are used automati-
cally to differentiate capital letters from small ones, ete.)
Consequently underlined characters and § and ¢ are each read as
three separate characters.

For example, in the vending-machine problem it would be more prac-
tical to leave the number of nickels, dimes, and quarters unspecified
in the program but to arrange for the program to start by reading the
necessary data from a separate tape. We might for instance arrange to -
have the coin counts typed out in the form "013976 nickels, 009433:dimes,,
002747 quarters.™ The program for reading these quantities into regis-
ters 5, 6, and 7 could then be

25]R 49 05 00 26 reads 013976 into the right hand end
of register 04

26|R 19 27 00 28 reads Snickles, into 27 to discard
it

27|+00 00 00 00 acts as a waste basket to receive

‘ unwanted information

281R 49 06 00 29 reads 009433 into the right hand end
of register 05

29|R 17 27 00 30 discards Sdimes, -

30|R 49 07 00 31 reads 002747 into 06

31|R 18 27 00 16 discards Syuarters, goes to start of
original program

25 start new gtarting address

The above program will (as long as the contents of registers 04, 05, and
06 start out with +00 as they do in the original program) put the same
data into 04, 05, and 06 as we did earlier by writing the values into
the program. The revised program, however, can be used without change
from day to day fér different numbers of coins, and the number of coins
can be tabulated in a convenient, readable form rather than having to be
incorporated into the program in an artificial way.

3-1

3., Drum Storage, x-Registers, Scaling, Precision,
and Conditional Seguences

TAC's primary storage element is imagined to be a magnetic drum,
a rotating cyclinder with a magnetizable surface, on which the 9 char-
acters comprising each of the 100 words stored in locations 00 through
99 are recorded. Each character occupies a seguencec6f’seven posisions
tions in each of which there either is a pulse or no pulse, roughly
corresponding to the system of holes or no holes used on punched tape
or punched cards.

z: cv :
L 7‘ ‘Lsurface
%g’ﬂ% (exploded view)

Y

5

£

0
reading & » 0D
recording 7§ 12
heads ek

<

<

TAG*s Hypothetical Drum

Access to a particular storage location requires electronically
selecting one of the four channels on the drum, then waiting until
the proper one of the 25 words on the drum begins to pass the reading
heads. The channel selection and the circumferential position are
found in effect by an exact division of the desired address by 25,
the quotient being the channel, and the remainder being the desired
circumferential position around the drum. The time between calling
for a word and receiving it from storage is called the "access time".
Access time is made up of the waiting time, or "latency", and the
time taken for all of the string of 9x7=63 pulses to appear and be
read, which 'is called thé "word, time®.

Since TAC's drum is imagined as rotating 40 times a second, and
since there are 25 words on each track, words go by the reading-
recording heads at a rate of 1000 per second° A word time in TAC is
therefore one thousandth of a second, ugually ¢slled:one milli=-second.
The "latency" varies from O to 24 word times, since the best that can
happen is for the desired register to turn up just as it is wanted,
and the worst is for it just to have passed. In executing most instruc-
tions, TAC must make four references to storage, one to read each of
the operands, one to store the result, and one to read the next in-
struction. It should be noted here that "read", just as in its common
usage, means to sense intelligently without destroying the information
recorded.

3=2

The time taken to execute an instruction depends largely on the

latency == the time spent waiting for the right information to show

up in the drum. TAC looks for the two operands specified by the bec

and de addresses simultaneously if both are wanted. Thus TAC takes
first whatever comes first, then waits for the other, or takes both
together if they appear together. This has the effect of reducing the
latency appreciably. TAC does not try to obtain the next instruction
while it is still trying to store the result 6f the previous one,
hovever, because this would be a possible source of mistakes by pro-
grammers if they attempted to alter the instruction that is to be per=-
formed next. The fact that latency can be reduced by judicious arrange=-
ment of words in storage is a matter of considerable interest in some
computer designs and a matter of some consternation to the programmers.
Work is progressing on producing computer programs which will in turn
underteke to produce a "minimal latency routine®. In the meantime we
will merely note the existence of this complication and not concern
ourselves here with the details.

The x-Registers

It is possible to reduce the latency a great deal if there is a

small amount of storage which has a random access with no latency.

Such parallel storage systems are commonplace for the full primary

storage in present day computers, but they are more expensive than

equivalent serial storage capacity. By a small amount is meant any-

where from one to sixteen registers, an amount which does not add as

much percent-wise to the cost of the computer as it does to the effective
- speed. The high=-speed or zero-latency registers in TAC are imagined

to be either magnetic core stepping registers or drum revolvers, devices

which will be discussed briefly in chapter 13. They are labelled

XO, xlg X2, X3, XAg X59 ,Xég X?g X89 and ng and are or’dinarily used

to hold frequently-needed data and intermediate results, although they

may be used just as any of the drum registers are used.

In any computer, the number zero is needed surprisingly often.
In a three~or four-address computer, izero is especially useful when
a word is simply to be copied from one location into another. Register
x0 has consequently been built to contain zero, in the form 000000000,
and can not be made to hold anything else. Even if a non=zero word
is sent to xO by an instruction, the zero will be unchanged, the non-
zero word lost, and no harm will be done unless the lost word was
wanted. This feature makes x0 useful as a waste basket, in the way
(for example) in which register 27 was used on page 2-11 to permit
reading and discarding unwanted information. (Since x0 in effect
contains nothing, there would, if TAC were to be built, be no need
to use any hardware at all for register xO.

Tandem Register xx

Registers x1 and x2 are, like register x0, rather special as well,
but in a different way. TAC is equipped to deal with x1 and x2 in

3=3

tandem, as if they were .a single register twice as long as usual.
Taken together, the pair is called double-x, written xx. The purpose
of this feature is to facilitate arithmetic operations in which 8
digits ‘are not sufficient. In multiplication in particular, the
product of two 8-digit numbers is a 16-digit number, and even if only
the 8 most significant are to be retained later, it is useful to be
able to form the full product and then divide it by 100,000,000 (for
example) to reduce it back to eight digits to be stored. There are
in fact a great many times when a double=length register is useful
if not necessary, as we will see as we progress. Double-x serves
this purpose well.,

The four arithmetic operations described thus far (A, S, M, D)
and the two which are to be described in this chapter (N, C) all may
involve double=length operations in xx, except only that TAC will not
divide by the contents of xx. The address xx may, for instance, be
used as the fg address in an add or subtract instruction to.obtain:

a double=length sum. No post-mortem (see page 2=3) will occur when
sums, differences, products, or quotients are greater than 99,999,999
if the result is to go into register xx. If the result to go into xx
exceeds 9,999,999,999,999,999, a post-mortem will occur, but this of
courseccannot happen unless C(xx) was one or both of the terms going
into the operation being performed.

The contents of xx is defined to be C(xl1)x 100,000,000 + C{x2).
Thus, if C(xl) = +12345678 and G{x2) = +98765432, then C(xx) =
+1234567898765432. C{xx) is not defined at all unless C{x1) and
C(x2) are both numbers and both have the same sign. Both C(xl1) and
"C(x2) retain signs separately, but TAC will not operate on C(xx) at
all unless the two signs are the same =- a post-mortem occurring if
they differ., The xx register cannot be used in connection with any
of the logical operations to be described later nor can its contents
be printed from or read into: This is no real limitation since x1
and x2 may always be manipulated separately.

Precision and Scaling

Adjusting numerical, alphabetical, and other logical information
to the Procrustean bed of computer word lengths and magnetic tape
block lengths is often a severe problem., The numerical computations
of science, engineering, process control, statistics, etc., are gen=
erally concerned with numbers which are approximations to physical
quantities, and in these cases one usually wants to carry just as
many significant digits as can economically be carried, provided that
‘this is greater than some individually prescribed amountifér anyrgiven
problem.

The number of digits needed is usuwally between 4 and 10 and often
between 5 and 8. To allow for these cases, most computers are built
to carry from 8 to 13 decimal places. There remains a further problem,
that of keeping the quantities "centered® in the registers so that no
digits "overflow® the left end {a catastrophe) and not too many drop

3=,

off the right end (a loss in precision). The problem of carrying
enough digits is one of precision, whereas the closely related problem
of making full use of the available digits by keeping numbers centered
is one of scaling.

The solution of the scaling problem is straightforward, provided
that the programmer knows in advance how large each piece of data and
each intermediate and final result can possibly be, and provided that
allowing room for this maximum does not make the average precision
too small by wasting too much space in the average case. Knowing the
maximum, one simply chooses the units in which the quantity is to be
expressed in such a way that the maximum value will fit in the register.

For example, in writing a prcgram for TAC to deal with the dist-
ances involved in a land survey of Middlesex County, one would probably
express distances to a millionth of a mile, or perhaps to a hundredth
of a foot or a tenth of an inch, since in each case the maximum tolerable
distance would be from one to two hundred miles - which is somewhat
more than enough than is needed on the left end, but there is also more
- than is strictly needed on the right, so it matters little. On the
other hand, dealing with distances in nuclear physics, one might choose
a thousandth or a millionth or a billionth of an angstrom (a unit
which is itself only 4 billionths of an inch)j whereas in planning
global strategy one would perhaps use thousandths of miles {to allow
a maximum of a hundred thousand miles), and in astronomy one might
use a million or a billion miles as the unit of measure. Nor is there
any reason other than convenience for choosing standard units or dec-
imal fractions thereof. 1In glcbal strategy, where one might not be
interested in distances over 25000 miles, one could use one four-
thousandth of a mile as a unit. Of course, there would ordinarily be
little point in this as it would not buy enough extra precision to be
worth the minor inconvenience.

The choice of units amounts to shifting the decimal point within
the number being operated on. In effect; the decimal point of the
quantity, if expressed in the most natural or convenient units, will
lie at some number of places to the right or the left of the largest
digit, while in TAC the point always lies 8 to the right of the largest
digit. Scaling is merely keeping track of the difference between
these two locations. For example, in global strategy, the largest
distance may be 17384, miles, with the point 5 places right of the
largest digit. Since we want the largest digit to fall in the left
end of a TAC register, and since TAC will assume 8 places to the
right, there is a difference of 5-8 = =3 place39 and the scale factor
should be 1073 = 1/10%% = 1/1000 = 0.001, i.e. the unit used should
be a thousandth of a mile so that the maximum value would occupy 8
digits, just as was decided earlier.

Floating=point Numbers

In any computation in which the numbers are merely approximations
to some physical quantity, sealing is concerned only with leaving

3=5

as few zeros at the left end of the words in storage as possible,
since these are merely wasted precision. Keeping all the quantities
centered close to the left end without overflow is usually a ticklish
problem, often a very difficult one, especially if the maximum values
of the quantities involved are not known in advaence., Since keeping
track of the decimal point is itself a computational job, there seems
little reason why the computer should not be made to do its own secaling.
This is, in fact, done quite often by writing, once and for all, pro-
grams which will keep track of decimal points during the entire comp-
utation. Such programs are called floating-point routines, because
the decimal point in effect floats at its proper place within the
register. Some computers are being designed with the ability to do
floating=point arithmetic designed right into the hardware, e.g., the
IBM 704. Floating=point numbers are made up of two parts, in a kind
of logarithmic fashion. For example, the quantity =12345.67 may be
represented by =.1234567:45, since it equals =.1234567 x 10*53 the
quantity +.0004567 may, in the same system, be represented by
+,45670003=3 since it equals +.4567000 x 10°3. Since it turns out
that floating-point techniques are of relatively little value in
business problems, there is little value in studying the techmiques
any further here,

Integers vs. Fractions in Business

In most business applications, it appears numbers have a different
meaning than they do in most engineering and other such applications.
Most numbers in business are, by fact or by definition, exact == not
merely approximations of physical quantities. A price, a catalog
number, a quantity, are usually exact integers. Rounding a number
is not necessary as often as it is in engineering work, and when a
quantity is rounded, the number of digits to be kept and even the
rule for rounding is usually specified exactly by law or by custom.
If some item lists for $20.78, for example, its price is 2078 cents,
exactlys if one buys 14 such items, the list price is 14 x 2078 =
29092 cents exactlys but if the discount is 10%, an approximation
is required, for the discount cannot be given as 2909.2 cents. The’
fact that most business quantities are expressed as whole numbers,
but that percentages and many other quantities are really fractions
less than one raises the question of whether a computer should treat
numbers as integers, with the point at the left, or as fractions,
with the point at the right, or somewhere in the middle.

Addition and subtraction turn out to be the same no matter where
the point is located == it makes no difference even if the computer
thinks the points are on the right and the programmer thinks they
are on the left, as long as the point are actually in the same place
in both of the numbers being added or subtracted. Multiplication,
on the other hand, is a horse of a different color. Consider the two
casess '

27, 027
x 12, X od2

0324 00324

3=6

The product is essentially twice as long as its factors., In the exam-
ple, thé left-hand word {03) 6f the product is called:the majbr half of
the product, the right-hand word (24) is the minor half. A computer
which works with integers ordinarily keeps the minor half of the
product and throws the major half away, whereas a computer working
with fractions keeps the major half and discards the minor half, or
perhaps rounds it off by adding one to the major half if the leftmost
digit of the minor half exceeds 5. It is evident that neither pro=-
cedure fits the bill in all cases in either business or any other
applications. Floating=point of course avofds this question, but
floating=point is not especially satisfactory for exact operations

on integers and is completely unsatisfactory for the many non-arith-
metical, logical operations required in business.

The question of decimal-point location seems to be answerable as
follows:

1. in business applications, where working with integers and
logical values is more common than not, a computer operating
on numbers with the point fixed at the right is usually more
satisfactory than any other single mode of operation,

2. in engineering and other applications dealing with approx-
imations of physical quantities, not-exact=but- best=possible
results are usually wanted and a point-fixed-at-left computer
is slightly preferable to one with the point fixed at the
right, while one with built-in floating=point and fixed-
point together is naturally preferable to either fixed-point
schene,

3. in BOTH kinds of applications, IT MUST BE POSSIBLE, IF .. ,
NECESSARY, TO DEAL WITH FIXED=AT-RIGHT, FIXED-AT-LEFT, FIXED-
ANYWHERE-EISE, AND FLOATING POINTS.

Naturally it is possible to have a machine with the point fixed at

the middle or somewhere else between the ends, and there are such
computers (e.g., Monrobot)s but the advantage is small unless there

are enough digits (say ten on either side) to permit the computer to

act simultaneously like a fixed-at-left and a fixed-at-right machine

(and this then doubles the cost of the computer storage element since
only half of each register will ordinarily be useful in any one problem).

In TAC, it is primarily the xx register that facilitates dealing
with other than fixed-at-right integers. Register xx alsoc facilitates
dealing with numbers which are inherently longer than 8 digits, but
a discussion of that situation will be postponed until chapter 5.

It should be noted, in connection with discussing special facilities,
that while such features are often highly desirable they are never
absolutely essential. (In fact, it can be shown to be possible,
although not practical, to perform any arithmetical or logical oper-
ation with a "computer® whose only abilities areg to deal only with
zercs and onesj to be able to change any single digit to a 1 if it is
a 0 and to a 0 if it is a 13 and to choose between two possible next
instructions depending on whether the digit was a O or a 1.)

Use of the xx-Register

As en example of the use of the xx register; take Fred'’s case.
Fred has smuggled 100,021 pounds sterling out of England and is ex-
changing them for dollars in Lucerne. The rate of exchange offered
him there is 2.80173 dollars per pound. Fred wishes to use TAC to
tell him the worth of his fortune in dollars. (He does not care how
the people in Lucerne decided on the rate of exchange to so many
significant figures.) The program is, of course, quite short, assuming
that the number of pounds to be converted is punched as a 7-digit
number on'a; tape.

00| R 39 x 00 Ol reads number of pounds into x2

Ol] M x2 x3 xx 02 100021 x 280173 = 28023183633 -» xx, putting
+00000280 in x1 and +23183633 in x2

02] D x x4 xx 03 C(xx)/1000 = 28023184 - xx, putting +00000000
in x1 and +28023184 in x2

03] P 27 x2 $L Oh _sivo go80231.84
04 P 89 x2 I 05
05{ H 00 00 00 00 stops, ready to start at zero if necessary

x1| + 0000 00 00 used as temporary storage during program to
x| + 70000 00 00 store first pounds,then thousandths of cents,
then cents

x3| + 700728 01 73 rate of exchange in thousandths .of cents per
pound.

x4} +7000+700-10 00 necessary constant.

There are several things worth noting about this program. One is

that since the result of the division by 1000 is known to be less than
99,999,999, the result will fit into register x2 alone., The fg address
of "the D instruction could therefore be x2 rather than xx, the dif-
ference being ohly that if sddress xx is specified, +00000000 will
be put into x1, whereas if x2 is specified, C{(x1) will remain unchanged
as +00000280. Similarly, in the multiply instruction, if xx had been °
given as the bc address in place of x2, the result would have been
unchenged in this 'case, $ince C(x1) = +00000000 initially so that C(xx)
= C(x2)§ but this of course is not always true.

Another approach to the problem would be required if Fred had
had a million and 21 pounds instead of his paltry tenth of a millionm.
Then the total number of cents would exceed 99,999,999, This can be
handled here by thinking of the dollars and the cents separately.
Suppose after multiplying 1000021 by 280173, getting 280178883633 in
xx, we had multipldéd C(xx)by 1000 rather than dividing it by 1000,
C(xx) would then contain 280178883633000 millionths of a cents, with
+02801788 in x1 and +83633000 in x2, Clearly C{xl) is the number of
dollars, and C({x2) is the remainder in millionths of cents, and we
can simply print the two parts separately. Another difficulty arises,

3-8

however, if we want the result rounded off in the normal way. We
could divide by 1,000,000 and get 2 in x1 and 80178884 in x2, which
gives the correct result, still in two registers. Unfortunately,

not having the split occur between the dollars and the cents means
that we must use three print instructions, one for the $2, one for
the 801788 end one for the .84, Alternatively, we could do the
rounding by merely adding 400500000 to xx, which would give +02801788
(the correct number of dollars) in x1 and +84133000 {in which the
first 2 digits are the correct number of cents) in x2. Our program
in this case would bes

00| R 29 x2 00 O1 10000021 —» x2
0Ll M x2 x3 =xx 02 2280178883633 - xx
(+00002801 — x1, +78883633 —» 02)
0] M xx x4 xx 03 +280178883633000 —» xx
(+02801788 — x1, +83633000 —» x2)
03] A xx x5 xx 04 +280178884133000 —» xx
(+02801788 — x1, +84133000 - x2)
04| P 39 x1 EI 05 prints $2801788
05] P 23 x2 I 06 prints .84
06] H 00 00 00 00 stops
x1| + 00 00 00 0o temporary storage
x2(+ 000000 00
x3| + 00 28 01 73
X& + QO QO 10 00 constants
x5 + 00 50 00 00

Rumerical Shift Operation

One other thing worth noting in connection with Fred'!s problem
is this =~ multiplying or dividing by 1000 or by other powers of ten
appears to be something one would often want to do. Clearly it should
somehow be made easier both for the programmer to require and for the
computer to execute a multiplication or a division by a million, say,
than by 1279413 or by any other arbitrary number, for all that is
required in multiplying or dividing by powers of ten is to shift the
individual digits to the right (for dividing) or to the left (for
multiplying. In almost all computers there are special instructions
to shift right and shift left. TAC is no exception. There are in
fact two kinds of shift operations in TAE, one to perform the numerical
shifting equivalent to multiplication or division, with proper rounding
and with the sign not shifted, and a second to shift ("logically")
all characters, digit or not, sign or noty without rounding. The
former is defined on the following pageg the latter will be described
in chaptey 50 1 .

3=9

Name Code Function
Nubierical.

shift left N+ C(de) x 10° — fg

shift right N- C(de) + 10° — fg

In other words, N shifts the number in de to the left ¢ places if b
is + or to the right ¢ places if b is = and places the result in fg.

Let us now take an example of N (and all of the other instrucs’
tions introduced thus far). Carolyn has been selling homemade candy
for 73¢ a pound. When someone buys more than one, they often ask
for a quantity discount, and Carolyn has haphazardly given various
discounts, amounting usually to about 5% on 2 pounds, 15% on 6, and
never over 30%. Bob wants to make life easy for his wife and decides
to mechanize the computing of the discount price. He tabulates a few
of the discounts that Carolyn has given before and decides on the
formula: % discount = 30 = 150/(q+4), where q represents the number
purchased. Thus for one pound, g = 1 and the discount = 30 = 150/5 =
0%, for ¢ = 2 the discount = 30 = 150/6 = 5%, and so~on, never exceeding
30%. Bob writes the following TAC program for his problem, and the
very first customer orders 96 pounds. Bob punches these two digits
on tape (he only allowed for two digits at a maximum), and the comp-
utation TAC performs is described alongside the program,

00| R 8 x3 00 01 Places 96 from tape into righthand edd-of x3
0l] A x3 20 x2 02 96 + 4 = 100 - x2

02 D 21 x2 x2 O3 150,000/100 = 1500 - x2

03] s 22 x2 15 04 30000 = 1500 = 28500 — 15

Ol M x3 x4 x5 05 96 x 73 = 7008 x5

05| M x5 15 xx 06 7008 x 28500 = 199728000 —» xx

06| N =5 xx x2 07 199728000 = 100000 = 1997 ~» x2

07] 8 x5 x2 x2 08 7008 = 1997 = 5011 - x2

o8f P 67 x2 S8I 09 Print $50, first digit of net price
09] P 8 x2 .I 10 Print .11

10] H 00 00 00 OO0 Stop

15 ———— receives 1000 x % discount

+

20 00 00 00 04
211 + 00 15 00 00 constants
22| + 00 03 00 00

z% - } used in calculating % and total discounts
x3 -

+ 00 00 00 00 receives the quartity 96 in the right end,
leaving +00000096.
X4l + 00 00 00 73 -~ 1list price per pound

x5 T — ~ receives total list price

3=10

Qonditigna} Sequence = The Comparison Instruction

The last of the four instructions (others were M, D, and N) for
operating on numbers, rather than on instructions, alphabetic words,
or other logical information, is C, for Compare numberically. It is
in many ways the most important of the four, and in it lies the real
heart of the automatic digital computer. C permits varying the instruc-
tion sequence to be followed depending on the outcome of the comput-
ation up to the point in question. A card programmed calculator and
other tape- and card-sequenced devices are capable of elementary
decision making of the same sort, but only the stored=program computer
is capable of repeating certain parts of a computation automatically
for a prescribed number of times or until a desired result is approx-
imated closely enough

Name - Code Funection
Compare G . .

. take the next instruction fromsg
numerically " fg if C(be) c(de), 5

b 3£ C(be)C Clde),
mnext register.consecutively
_Uir c(be)=c(de),

Notice that this instruction does not store or print any result.

Its only puteome-is the detection of one of three different conditions:
either C(bc) is larger than C(de), or it is smaller, or they are equals
As used here;, the symbols > and < , read "is greater than" and "is
less than®, refer to the sign as well as the magnitude of the numbers
in question. Thus, 3 > 2 (i.e. 3 is greater than 2) 4 > =5, =2 > =7,

0 > =97, ete., If C(be) = C(de), the next instruction is taken from
the register immediately following the register in which the C instruc-
tion was found. Naturally bc and de may be set equal to one another,
or either may be made equal to the next ¢onsecutive address. C will
lead to a post-mortem if C(bec) and C(de) are not both strictly : -
numerical in form.

The comparison instruction will of course show up in a number
of examples in later chapters. A simple example here will suffice to
illustrate the principle involved.

The Cambridge Electric Light Company charges residential sub-
scribers in 4 stepss 5¢ for the first 12 kilowatt=hours or less,
4L¥ each for the next 38, 3¢ each for the next 50, and 2 1/2¢ each for
the rest. Charlie used 146 kwh in March. The following program
is intended to make TAC compute his light bill and others'like it. The
general scheme may be seen rather better in a diagrammatic form showing
questions and alternative answers. Diagrams such as this are commonly
used in planning a program and in documenting a program for later
reference or for use by someone else in actually coding the program.
They are generally referred to as "flow diagrams®.

3-11

START
¥
01| R 79 x4 00 02 Read in K, the number of kwh used, to x4
02| A 03 x0 x3 04 - |Put 75, the minimum bill, in x3.
03| + 00 00 00 75 ¥
04! C x4 07 08 05 (Gompa.re K: @
) N
¢ if greater if equal if less
05| P 67 x4 §1 06
06{ P89 x4 .I 28 \\\‘““‘ Print C(x3)
TR B A
07| + 00 00 00 12 Prepare for step 2: ‘Hﬁ
08| S x4 07 x4 09 Form Kmlz‘
09| ¢ x4 13 14 10 (Compare (K = 12) = 38)
<
if greater if equal if less
10| M x4 11 x4 12 i ¥
11| + 00 00 00 04 Compute and add step 2 charge: /
12| A x3 x4 x3 05 Add 4(K - 12) to C(x3)
13| + 00 00 00 38 443 in step 2 charge:
14 A x3 15 x3 16 Add 4.38 = 152 to C(x3)
15| + 00 00 01 52 ¥
o Prepare for step 3:
16| S x4 13 x4 17 ~ Form (K = 12) « 38 =K = 50
¥
17| ¢ xk 21 22 18 ~ (Compare (K = 50) s 50)
<
if greater if aqual if less
18| M x4 19 x4 20 i ‘ \Yi
19| + 00 00 00 03 Compute and add step 3 chargez| 7
20| A x3 x4 x3 05 Add 3(K = 50) to C(x3) '
21| + 00 00 00 50 [Goniute and add step 3 & & charges: A
22| M x4 23 xb 24 Add (50 + 5(K = 50))/2 to C(x3)
231 + 00 00 00 05
24| A xi 21 x4 25
25| D xb 26 x4 27
26| + 00 00 00 02
27| A x3 x4 x3 05
281 H 00 00 00 01 STOP

Program and Flow Chart for Cambridge Electric Light Company Problem

3=12

Exercises

Each of the following exercises is independent of the others in the
set, so that any register may be used for one purpose in one problem and
for a different purpose in another. Unless there are special reasons,
the instructions should be placed more or less consecutively, starting
at register 0l. Exercise #5 and those beyond generally leave unspec=
ified the locations at which to store the data and constants. Ordinarily,
this alloecation should end up with constants interleaved as needed in
the instructions, or grouped separately on the drum, and with datd and
intermediate results stored, if possible, in the x registers. In general
these problems if done in a straightforward way may be assumed not to
give rise to numbers too large to fit in one register, but some thought
should always be given to this possibility. One should also take care
not to throw away precision by dividing before multiplying, etc. Each
program should come to a halt when the job is complete. Do not look
for anything difficult hidden in these problems. The first ones:are
just as simple as they seem. The number in parentheses at the end of o~
each exercise is a reasonable par for the number of registers required
in storing instructions, constents, data, and results, including those
explicitly designated in the statement of the problem.

3.1. Ellie has placed in register x3 an order for a certain number
of cups of tea., In making tea she uses one teaspoonful for
each cup wanted and one for the pot. Assuming that register
51 contains +0000000l, write a program to put in register x4
the number of teaspoonéful of tea that Ellie should use. (5)

3.2, The gross weights in pounds of four different items to be
shipped to New York are stored in registers x4, x5, x6, and
X7. Write a program to put the total weight of the shipment
into x8. (9-=11)

3.3, Morgan's rate of pay, in cents per hour, is in register x3,
the number of his withholding tax exemptions is in x4, and
the number of hours he worked last week is in x1. The quan-
tity 1300, which is the number of cents exempt per week per
exemptiony is in register 51. Write a program to put Morgan's
withholding-taxable earnings into register x2. (9-10)

3c4. The length and width in inches of Herb's rectangular coal bin
(which is of a modest size) are stored in registers x3 and x4,
while those of Bob's bin are stored in x6 and x7. The present
level depth in inches of the coal in Herbfs bin is stored in
x5 and that of Bob's in x8. Herb changes over to oil heat and
ships his coal to Bob. Write a program to modify the contents
of x8 to the proper new depth. (14)

3.54 Centigradeitemperature can be converted to Fahrenheit by.the
formula:s Fahrenheit temp. = 32 +(9/5)(Centigrade temp.).
The temperature of the drinks Maurice serves has been measured
in Centigrade degrees (it is 19) and recorded in register xS.
Write a program to place the equivalent Fahrenheit temperature,
to the nearest degree, (which would be 66°), into register x8.

(9)

3.7

3.8,

3090

3,10,

3=13

The Halcyon Investment Trust, with trusts as large as a half-
million dollars, has declared a scientifically-computed div-
idend of 3.41785%. Write a program which will read 8 digits,
specifying an amount in cents, from punched tape, calculate
the dividend to the nearest cent, and print it as an 8-digit,
unpunctuated number. (8)

The Delphi Electric Light Company wants its electricity bills
computed automatically. Initially, the readings of one cust-
omer's meter last month is placed in x3 and the reading this
month in x4. The Delphi meters read only 4 digits. Write a
program which will put the number of kwh. used into register
x5, allowing for the case in which the meter has turned over--
so that, for example, this month's reading is 0173 while last
month's was 9941. (8)

Dean and Jack need TAC's help in playing two=card stud, in
which each player draws two cards and the Winner is the holder
of the higher pair, or, if neither has a pair, of the highest
singde card, always without regard for suit. The numerical
value of Dean's two cards are in registers x3 and x4, those

of Jack's in x5 and x6. Write a program which will print
"Dean wing®, "Jack wins", or "I%s a draw', depending on the
cards each holds. (17-20)

Kewa of Tagore exacts as tribute from his victims a number of
kruls equal to the eighth power of their waist measurement in
inches (i.e., the product of the measurement multiplied by
itself seven times; for example, 28 = 256, 10%® = 100,000,000
and 408 = 6,553,600,000,000). One dollar equals 10, OOO OOO 000
kruls (ten megakilokruls) Alan's waist has just been measured
and the result placed in register x3. Write a program to

print the tribute Alan must pay in dollars and cents, to the
nearest cent, allowing for a 60 inch waist ($16796.16), without
zero suppression. (11)

Martin makes short-term loans of less than $400. On these he
charges 12% simple interest and accepts payments of any amount
at any time. Each payment is first applied to payment of the
simple interest on the previous balance for the number of days
since the last payment, and the remainder of the payment is
then subtracted from the balance. When a payment is receivedg
Tweetie, Martin's office girl, punches a tape which contains
the previous balance in cents (5 digits), the date of the
previous payment (using 2 digits for the date, 2 for the month-
numbered Ol 'to 12, and 2 for the year), the date of the present
payment. (in the same form), and the amount of the present
payment in cents (5 digits). For example, if Murphy's balance
after his last payment on Sept. 13, 1953, was $183.69 and he
now pays $25 on Aug. 16. 1954, Tweetie types, with no punctuation
at all, the digits 18369130953 16085402500 , which breaks down
in the following way:

3=14

18369130095316085402500%0
4 balance 13 Sept 53 16 Aug 54 $ paid

Assuming a 360-day year of 12 30-day months, one can find

the number of days between any two dates, such as between
17/09/53 and 13/08/54, by forming the difference in years
times 360 plus the difference in months times 30 plus the
difference in daysj for example {(54-53)360 + {08-09)30 +
(16-13) = 333. The simple interest is simply the balance times
0.12 times the number of days divided by 360; for example,
18369x 0,12 x 333/360 = 2039, The new balance is, of course,
the previous balance plus interest minus payment: for examplek
18369 + 2039 = 2500 = 17908. Write a program which, given

a: data tdpe prepared by Tweetie, will tell Murphy or any of
Martin's customers what is his new balance by printing it

in dollars and cents (e.g., $179.08) after any payment. (30)

4o Cycles, Counting; Modification of Instructions

Cycles

Problem: the output of a figgle factory is limited solely by °
the supply of jiggle-muts, of which 77 are required in each figgle,
and is seldom more than five a day. Jiggle=nuts are perishablej they
are delivered fresh each morning, and any left over must be sold at
the end of the day. The number delivered this morning is given in xl.
Print the number that will have to be sold today.

This is esséntially a question of finding a division remainder.
TAC does not do this directlys it rounds off quotients and gives no
remainder. "We could actually find the remainder from the rounded
quotient by a process of multiplication and subtraction, but there is
a more direct way which is quicker if the quotient is small. We simply
duplicate the operation of the figgle factory, subtracting 77 from
the pile of jiggle=nuts as each figgle is made, until finally there
are not enough left to make a further figgle.

The calculation is largely repetitive. We can make a neat compact
routine by writing the subtract instiuction only once,' and arranging
for TAC to obey it repeatedly. We make it part of a gycle.

~ We could easily make it a cycle on its own, by making its fourth
address equal to the address of the location containing it, so that
it is always followed by itself. This, however, would not cause the
repetition to stop; the machine would go on subtracting endledsly {or
until stopped by an excessively negative result). Somehow the machine
must decide whether or not to repeat the subtraction, and this decision
must be made after each repetition.

For this purpose we can use the conditional instruction. If the
number of jiggle-nuts remaining is greater than or equal to 77 & .further
figgle can be madej if ‘it is less than 77 the process is finished. We can

code it thus: 51 ¢ x1 04 01 02 test ' evel
01| S x1 04 x1 00 subtract 77 | V€
02| P 8 x1 RS 03 print
03| H 00 00 00 00 stop
0L | + 00000077

Counting

Henry has succeeded in producing one specimen of a rose plant
with fine emerald green blooms. He decides to propagate it by taking
one cutting per plant each year, but cuttings cannot be taken from a
plant until it is two years old. His first plant is now one year old.
Print the number that he will have after twenty years, assuming that
he is an infallible gardener and none' of his plants: ever-die,

Let us store the total number of plants at any given time in xI1,

4=2

and the number that are more than one year old in x2. Then for each -
year TAC must add C{x2) to C{x1), and replace €(x2) by the old C{xl).
It must perform these operations 20 times, and stop. Again the progrem
is repetitivey again we will use a cycleo

The basic operations are caused by the instructions

0| &4 x1 x2 x1 01
01)] § x1 x2 x2

As before, we could maeke an endless cycle simply by writing 00 at the

end of the second instruction, but if the process is to terminate we

must include a conditional instruction in the cycle. There is a dif=-
ference, however, between this exemple and the last., There the number

of jiggle~nuts itself provided the condition on which to base the decision
whether to repeat. Here we do not know what Henry’s roses will be doing
after twenty years; the decision must be based simply on the number of
years which have elapsed. This essentially involves counting the years;
TAC must be made to keep a tally as it goes along.

We will keep this tally in x3. The complete routine could be as
followss

00| A x1 x2 x1 01

01|l s x1 x2 x2 02 J the buginess 1
02| A x3 06 x3 03 add one to tally cyele
031 € x3 07 04 00 test for completion

04 | P 59 x1 RS 05 print

05 H 00 00 00 00 stop

06 | + 00000001

07 | + 00000010

x1 | + 00000001 total plants

x2 | + 00000000 mature plants

x3 | + 00000000 tally

Minimal Latency Coding of Cycles

To make them easier to follow, the foregoing examples have not
been coded for minimum latency. In practice one frequently finds that
most of the machine's time is spent in obeying cycles which appear to
be only a small part of the whole routine, simply because they are
obeyed much moere often than the rest of the routine is. Hence it is
worth while coding these cycles for minimum latency, even if the rest
of the coding is not done in this way.

Modification of Imstructions

The Consolidated Glue Corporation markets glue in containers of
fifteen different sizes, numbered 1 to 15. The capacities of these
sizes (in hundredths of a pint) are listed respectively in locations
20 to 34. An order is receivedj the number of containers required is
given in x3 and the size number in x4. Print the amount of glue

4=3
rrequired to f£ill this order, to the nearest gallon.

This problem unavoidably requires the use of an instruction of
which one address is not known when the program is written., Some i+
instruction must pick out from the 1list the capacity of the container
required, and the location of this information depends on the number
given in x4 when this calculation begins. The routine itself must
therefore cause the machine to construct:ithe wariable instruction =
before using it. This may be done as follows:

00O R +4 x4 x1 01 Shift size left to de position.
01 A 07 x1 02 02 Put appropriate instruction in 02
multiply capacity by number of containers.

03| D xx 08 x1 04 Divide by 800 to get galloms.
0L | P 49 x1 RS 05 Print result.

o5 | P 17 09 II 06 Print "gallons".

06 | H 00 00 00 00 Stop.

07 | M x3 19 xx 03

08 | + 00000800

09| gallons 00

Note that no word has been writtén for register 02, although the second
instruction tells TAC to look in 02 for its next instruction. The
reason: is that before TAC Tooks for this instruection, a suitable
instruction will have been put there. This is done by the instruction
in 01, and the instruction that gets put in 02 is

M x3 (19+s) xx 03
where s is the size number.

Programmed Switches

In the previous example we had to shift the given number into the
second address (de) position so that, by addition, it could be used
to construct the second address of the instruction to be placed in
register 02, In a similar way any address in an instruction can be
modified by the machine itself. If the fourth address is modified
the effect is interestings it causes TAC to take its next instruc=
tion from a location which depends on the numbers from which the fourth
address was constructed. This may lead the machine into one of a num=
ber of quite different courses of action.

This way we can tackle such a problem as the following. Bingo
Products Inc. has ten classes of employees, identified by code numbers
1 to 10. Each class has its own rules for calculating wages, all
quite different. An employee'’s code number is given in xl13 print it,
and proceed to calculate his wage. The routine for this might begin
this way:

0| A 02 x1 01 01 put appropriate instruction in Ol.
print code number and go to cor=
responding instruction in 03...12.
02| P 89 x1 Bg 02 |
03 [|first instructions for
§ each type of wage -
ok

12 calculation,

Instruction Modification Within a Cycle

Problem: Chin Foo has a tape punched with a list of his 57
customers, None has more than nine letters in his name, and each
name is followed by spaces to make a total of nine characters. Also
a carriage return symboliprecedes each name. Read these names into
registers 41 through 97.

This is another repetitive job and we shall use a cycle in the
program., However, the operations are not exactly the same at each
repetition: the first neame must go into 41, the second into 42, and
80 on. Hence the instruction that places each name in the store must
be changed at each repetitiong the appropriate address will have to
be increased by one each time.

To end the repetitions we must again include something equivalent
to counting; we shall simply couht from O to 57 (although this is not
the most efficient way of progremming it, as we shall see later).

The complete routine is:

00l R 11 x0O 00 01 discard carriage return symbol

01l R 19 41 00 O2 read neme into its register (41...97)
02| A 01 06 01 03 increase 2nd address in 0l

03] A x1 07 x1 04 count

04L] G x1 08 05 00 tést for end of job

051 H 00 00 00 00

06| + 00 01 00 00

07| + 00 00 00 Q1L

Bl T B R B P tally

Resetting

Note that after the sbove job is done the second instruction
remains as R 19 98 00 02, and C(xl) remains as +00000057, so that if
we tried to use this routine a second time it would not work. If it
were to be used as part of a big routine {i.e. as a "subroutine"),
and were intendéditolbecbbeydd:several:times withintthe big:routine,
it would have to be refreshed between applications by having C(Ol)
and C(x1) reset to their initial vdlues. This resetting would have
to be done by means of instructions obeyed between successive applic-
ations of this name-reading subroutine, preferably immediately prior
to each application. Usually such instructions are written along
with the subroutine, making the whole subroutine self-resetting.

Exercises

4010

4020

4030

o dyo

zi-°5o

40 6o

40 70

A bottle contains 15 ounces of horrible medicine. Andrew has to
take a certain dose (stated in hundredths of an ounce in register
x1) each day until there is not enough left to continuej he may
then throw away the dregs. Print to the nearest hundredth-the
number of ounces which he will have the pleasure of discarding.
(Use a cycle.) (6)

x1 contains an amount of money in centsj x2 contains a rate of

‘interest in tenths of percent (e.g. C{x2) = 30 represents 3

percent.) Print the total after 10 years, assuming that the
interest is compounded annUally to the nearest cent. (12)

ot
Using the same data as in question 2, print theknumber of complete
years after which the total is at least double the original
principal. (12)

How Foo has a TAC input tape bearing the names of his 200 custe
omers; each name consists of nine letters and is followed by a
sign and a five digit decimal number which is the amount in cents
of the customer's credit (a minus sign means that the customer
owes How money).

Write a routine that will read the tape and print out the names
and debts of all customers owing $100 or more. (12)

Chin Foo has placed the names of his 57 customers in registers
41 through 97. Each shirt received by his laundry is marked
with the customer's serial number (1 through 57). Read one
shirt number (2 characters) from the input tape and print its
ownérfs name. (5)

The Tipperary Trust Company has 68 customers whose balances (in
cents) are stored in registers 20 through 87. Print the sum of
the balances, which is less than a million dollars. (12)

With the data of question 6, subtract from each balance a fixed
charge of 75 cents. (10)

5, COMPARING; GROUPING AND PACKING

"Logical™ Comparison of Words in TAC

Chin Foo, having placed his customers' names in locations 41 through
97, wishes to have TAC check whether they are in alphabetical order.

For this problem we need to have some way of letting TAC decide
which of two words comes first alphabetically; this involves comparing
alphabetical characters. The C instruction vi 1l only compare numbers.
We therefore make use of a further instruction:

Name Code Function
Compare X Take next instruction froms
Logically fg if C(be)>C(de)*

hi if C(bc)< C(de)*
or next register consecubtively
if C(be) is identical with C(de)

*The meaning of the symbol>» is defined here in such a way that if C(be)
comes later alphabetically than C(de), then C(be)>C(de), and vice versa.
In detail, the rule is as follows: compare the characters of C(be) with
those of C(de) column by column from the left until corresponding charac-
ters differ. Whichever of these characters comes later in the alphabet
belongs to the "greater™ word. Since TAC registers may contain a variety
of symbols besides the letters of the alphabet, and since we distinguish
between capital and small letters, the alphabet is extended for this
purpose to include all the sumbols that TAC uses. The full list is given
in the TAC summary and is repeated here:

02468

TCEg~/)=-+.1 02468 ab ooo 2

RBEZ:(_=, S8 13579

—

(Since the decimal digits appear here in their natural order, the K in-
struction can be used to compare positive numbers. It is however a little
untidy when negative numbers are involved, so a separate "compare numeri-
cally" instruction has besn provided.)

For Chin Foo we need to make 56 comparisons, namely C(41) with C(42),
C(42) with C(43), etc. As this is a repetitive kind of job we shall
agaln use a cycle, and since we must operate on successive registers we
shall have to modify an instruction within the cycle. The coding is very
similar to the last example in Chapter 4, except that we now have to modi-
Py two addresses in the same instruction; however, both can be modified
simultaneously.

5-2

As a Turther refinement we shall show how it is possible to dis-
pense with the separate tally for counting repetitions, and instead to
base the decision whether to repeat the cycle on the instruction which is
being modified. The latter starts as K 41 42 14 11 and ends as K 96 97
14 11 ; when it has passed this final value the process may be stopped.
For this comparison also we shall use a K instruction; since C is in-
tended for use with pure numbers it would stall on any word containing
letters, even though the essential comparison is merely concerned with
the addresses, which are numbers,

10|K 41 42 14 11 compare consecutive names

11|A 10 16 10 12 increase addresses in 10 eycle
12|K 10 17 13 10 test for end

13|P 13 18 R, 15 print "0.K,"

14|P 48 18 R. 15 print "WRONG®

15|H 00 00 00 00 stop

lé + 01 01 00 00

17}K 97 98 14 11

18 0 K WR ON G,

Grouping of Registers

We have gseen that register xx may be used for arithmetic givi \
rifg'to astronomical figures such as the national debt (between 10% and
10-°), This is the only part of TAC that may be used to perform arith-
metic on such large "double length" numbers directly. However, there is
no reason why such numbers should not be stored in any two TAC registers;
we are perfectly free to regard any two registers as holding two parts
of a single number if we wish. Similarly we may break an item of alpha-
betiecal information into parts occupying separate registers, Names, for
example, frequently contain more than nine letters, but they can be arti-
ficially split between the ninth and tenth letters and the two parts
stored in different registers. Since there is never any strong reason
for doing otherwise, the parts are nearly always stored in consecutive
registers,

Business applications rarely call for long numbers to be stored;
however, long alphabetical items often arise, and so does the problem of
determining their correct alphabetical sequence.

Problems two names, each of 18 characters, are stored in TAC; the
first in registers 15 and 16, and the second in registers 17 and 18.
Print them in alphabetical order,

S5=3

To compare them we must first compare their left-hand halves; if
these are identical, we must then compare their right-hand halves., If
the left-hand halves are not the same the second comparison is unneces-
sary. We might code the routine thus:

00]K 15 17 02 06 compare L.H. halves
Ol{K 16 18 02 06 compare R.H. halves
02|P 19 17 RI 03]

031P 19 18 1I 04 print with
04{P 19 15 RI 05 order reversed
05|P 19 16 II 10]

06|P 19 15 BT 07 N

o7|P 19 16 II 08 print in

08P 19 17 RI 09 given order
o9|P 19 18 II 10 |

10jH 00 00 00 00 stop

Packing

Just as some items are too long to be accommodated in registers of
a fixed length, so also some items are much shorter than the registers
available. There is of course no difficulty in putting a short item in
a long register; unused digits can always be filled in with zeros in the
case of a number, or with ignores in case of names; etc. However, it is
more economical in storage space if two or more such items can be "packed"
into a single register.

There is nothing mysterious about this: the items are just placed
side by side, in different digits of the same register. The need fre-
quently arises, however, to separate and rearrange such items. Two in=-
structions in TAC*s instruction code are designed to meet this need,
The first is:

Name Code Function
Extract E In those columns, and only those,

in which C(de) has o0dd* characters,
replace the characters of C(fg) by
the characters occupying correspond-
ing columns in C(be), without al=~
tering the other characters in C(fg).

* (See top of next page)

5-4

*Where the characters of C(de) are decimal digits the meaning of "odd"™
is obvious; in other cases, characters in the lower line of the list at
the bottom of page 5-1 are considered odd, and those in the upper line
even.

In most applications C(de) will be a prearranged mixture of appro-
priately even or odd digits -- e.g., O's and 1's. Suppose, for example,
that register x1 contains the day of the week in full (ernding with ig-
nores if necessary), and that x2 contains a positive number, less than a
million. ¥e wish to abbreviate the day to its first three letters so
that we may pack it and the number into xl together. This requires just
one instruction and one other word:

O0)E x2 01 x1 02
01]0 00 11 11 11

The effect is to replace all the letters of the day except the first
three by the digits of the number. ‘

Packing, and the reverse process of unpacking, also frequently in-
volve shifting characters to the right or left within registers. The N
instruction is restricted to be used with numbers only, and there is a
further instruction for shifting:

Name Code Function
Logical L Shift C(de) and C(fg) cyclically
Shift v ¢ places; left if b = +, right if b = -

Note firstly that two registers are involved; the contents of both are
shifted. Secondly the shift is cyelic; characters shifted off the end
of either register appear at the opposite end of the other register.
The two registers form a closed loop thus:

Characters merely move round the loop and none are lost,

If, in the last example, we wished to have the number (without
sign) in the left-hand 6 digits of x1, and the abbreviated day in the
right-hand 3, then we would need one instruction alone:

00 L -6 x1 x2 01

This would, however, upset C(x2),

5-5

Example of Unpacking

A positive sum of British money is represented in x1 thus: number
of pounds (without sign) in digits 1-5, number of shillings in digits
6 apd 7, number of pence in digits 8 and 9. Put these numbers into
registers x2, x3, and x4 respectively.

The simplest procedure is to shift C(x1l) to the right, extracting
each number as it arrives in the correct digital position, thus:

00|E x1 06 x4 01 extract pence

01]L -2 x1 x0 02

02]E xl1 06 x3 03 extract shillings
03|L -2 x1 x0 04

04|E x1 07 x2 05 extract pounds
O05|H 00 00 00 00

0610 00 00 00 11
0710 00 01 11 11
x2{+ 00 00 00 00
x3|+ 00 00 00 00

x4 + 00 00 00 00

Exercises

l. The results of British football matches are decided solely on the
number of goals scored and are always coded thus:

1 means the "home" team won.
2 nmeans the "away" team won.
X means a draw,

Registers 50 through 99 contain the scores of 50 matches; digits 2
through 5 in each register give the number of gecals scored by the home
team, and digits 6 through 9 the number scored by the away fteam. Print
the 50 results. (21)

2. Too Foo's laundry has attracted only 23 customers, which is fortunate
for TAC because each customer's name occupies two consecutive registers;
altogether registers 54 through 99 are used. Print a suitable word to
indicate whether the order is alphabetical. (13)

5-6

3, Today's date is cammonly written in England as 17/8/54. Suppose
that this is packed into register x1, allowing 2 digits for each part,
and ending with a period, thus: 17/08/54. Write a program that will
convert this into the form AUGL71954 and will handle any date in the
20th century. (28)

4, The order of precedence of the guests at the Maharajah's Banquets
is detemined primarily by the numbers of wives possessed; where these
numbers are equal the guests are arranged in alphabetical order. Read
a tape carrying 357 names each followed by the associated number of
wives, and print out the name of the most distinguished guest. TEach
name is followed by ignore characters to a total of 15, and numbers
consist of 3 deciml digits (it is considered unethical to possess more
than 999 wives.) (15)

5. Too Foo (see question 2) has rearranged his list of customers to
allow three registers per customer; the third holds the customer's
credit balance in cents. The list now occupies registers 31 through 99.
Read one name (18 characters) from the tape; if this is the name of a
customer print the name and his credit balance, otherwise print "no
record." (18)

8~1

8. INTRODUCTION TO SAC

TAC and SAC have been chosen to present two rather different con-
ceptions of an electronic digital computer, and to include between them
most of the basic features of logical desigh and coding conventions
found in present-day computers., '

SAC differs from TAC in the following important respects:

l. SAC has a single-address instruction code,

2, Whereas a TAC register holds any group of 9 symbols, which in a
special case may be a number or an instruction or neither, a SAC regis-
ter cannot hold anything other than a number or an instruction. Alpha-

betical items can only be stored by coding them to appear as numbers.

3. SAC has a "B-box" which improves the efficiency of the machine
in operations involving counting and the modification of instructions.

4, The process which loads the program into SAC is considerably

more elaborate than that for TAC and permits a program to be written in
a more convenient form.

SAC Instruction Code

Since each instruction contains only one address it cannot describe
such a big operation as is defined by a TAC instruction. For example,
the operation

c(21) + c(22) »23

which is accomplished by one TAC instruction, involves reference to
three storage registers and therefore requires three SAC instructions in
succession. The first of these obtains €(21) from the store, the second
adds €(22) to it, and the third puts the sum in 23. This isg all one
operation for TAC; in SAC the three steps are taken separately, each in
response to a different instruction.

Some part of SAC must retain C(21) while waiting for C(22) to be
obtained, and must hold the result of the addition while waiting for
the third instruction to be obeyed. A very special register is pro-
vided for this purpose; it is called the accumulator.

The actual instructions required to tell SAC to perform the above
addition are:

8-2

cef 21 copy contents from register 21 into accumulstor
add 22 add contents of register 22 to number in accumulator
cei 23 copy conténts of accumulator into register 23

We shall be introducing further SAC instructions from time to time;
meanwhile the following few will serve to begin with. The abbreviation
AC stands for the accumulator; n is any address,

Code Name - Funection

ecef n copy contents from C(n)-»AC

cei n copy contents into C(AC)-Fn

add n add C(AC) + C(n)->AC

sub n subtract C(AC) - C(n)-PAC

mby n multiply by ‘C(AC) » C(n)=pAC

dby n divide by ~ ¢(AC) < C(n)=#AC (rounded off)
tyn 0O type number Print C(AC)

stp O | stop stop the computer

The above SAC instruetions have nothing corresponding to the fourth
address in TAC. In general, when a SAC instruction has been obeyed, the
machine auntomatically looks in the next consecutive register for its
next instruction. Only certain special types of instructions allow this
sequence to be broken; we shall consider these shortly.

SAC Registers

SAC has 299 registers numbered O through 298, Register 0 always
contains the number zero; also C(290) = 1, C(291) =10, €C(292) = 100,
C(293) = 1000, ete. up to C(298) = 100,000,000 (in general, C(290 + p) =
10P for p = 0...8). Every other register (1 through 289) is capable of
holding either an instruction (in which the address must be less than
299) or a signed number of up to 8 decimal digits in length. The accu~
mulator may hold either an instruction or a signed number of up to 16
decimal digits in length. As in TAC, numbers are considered as integers,
with the decimal point at the extreme right; fractions can only be stored
by scaling.

It is assumed that the store of SAC is all of a high speed type;
there is no division into rapid-access and slow-access registers as in
TAC.

8-3

Example of SAC Program

The program on page 2-7, if recoded for SAC, would appear as follows:

instructions comments numbers
16' ccf 7 2z »AC 1| +5
17l mby 1 4 52 9AC 4| +3
18| add 6 y + 5z -»AC) 5| x
19| ada & 2y + 52-»AC o 6| v
20| add 5 X + 2y + 5z-pAC 7| 2
21l mby 1 5x + 10y + 25z »AC
22] cei 12 Gross 512 12| Gross
23| aby 4 Gross/3 -2 AC 13| Gross/3 = T
24| cei 13 . Gross/3-p13 14| 27
25| add 13 2T-3AC 15| Gross - 27 = A
26] cei 14 2T 14
27 eer 12 Gross »AC
2g swp 14 Gross - 2T=PAC
29 cei 15 A's share =}15
ZOI stp O stop

Transfer of Control

It has been mentioned above that certain instructions allow the
normal consecutive sequence of execution to be broksn, so that after one
of these instruetions has been obeyed the next instruction to be obeyed
may not be in the next consecutive register. Such a break is called a
"transfer of control." Of these special instructions, one (the first in
the list below) is unconditional, i.e., it always causes a transfer of
control. The others are all conditional, i.e., the location of the next
instruction depends on some condition inside the machine,

8-4

Code Name Function '
jmp n Jump unconditionally take next instruction from register
n, and continue consecutively from
there. _
Jjip n Jump if positive ditto if C(AC)>0, otherwise ignore.
 jin n Jump if negative ditto if C(AC)<0, otherwise ignore.
jiz n Jjump if zero " ditto if C(AC)' = 0, otherwise ignore|
jix n Jjump if excess ditto if the absolute value of
C(AC) exceeds 134,217,727; other-
wisécignore:

e

The "jump if excess" instruction has been provided to assist the pro-
gramer in computations with numbers whieh might perhaps exceed the ca-
pacity of an ordinary storage register. Such numbers may be formed in
the accumulator by multiplication or addition, up to a limit of 10

but cannot be ecopied into the store unless they are less than aboutb 108
The above instruction helps one to design the program so that over-
large numbers are detected in the accumulator before an attempt is made
to copy them out. The critic limit, as will be seen from the above
description, is not exactly 10~ but is a little larger, due to the fact
that numbers are actually stored as 27 binary digits and sign.

With these instructions, programs containing cycles and programs of
the electricity bill type (page 3-11) can be coded. It is not possible
to compare two numbers directly with one instruction, as in TAC, but
such a comparison can always be made by first subtracting one number
from the other and then testing the difference,

To give a'simple example, the figgle factory problem might be coded
as follows., It turns out to be simplest, in SAC, to continue to sub-
traet’ 77 Witil’ the humber! of jiggle-pubs actually becomes nega@ive and
“thén to corréct by. adding 77 once afterwardse..’
1| Nunber of jiggle-nuts delivered
2| +77
10| cef 1 pubt number delivered in AC
11| sub 2 subtract 77
121 jip 11 repeat if cycle
13| jiz 11 positive or zero

14| add 2 correct

15] tyn O print

8=5

Some Further Instructions

The following instructions are also understood by SAC and are
occasionally usefuls

Code Name Function
enf n ' copy negatively from -C(n)—AC
emf n copy magnitude from C(n) copied into AC with

positive sign, regardless of
sign of C(n) itself.

xch n exchange ¢(AC)—n, C(n)—AC

SAC also possesses a second division instruction, for divisions involv-
ing whole numbers where a remainder is required as well as a quotient,
the latter not being rounded off. (This makes it quite unnecessary to
use a cycle for the figgle factory.) The remainder is placed in a
special "remainder register,” RR. Associated with this are two other
instructions; all three are given below.

Code Name Function

dhr n divide Holding remainder Divide C(AC) by C(n).
gquotient—AC -
remainder—RR

eri n copy remainder into C(RR}—n

jir n Jump if remainder Pake next instruction from
register n if C(RR) is not
Zero.

When SAC obeys a dhr instructiom it gives a remainder smaller than the
divisor in magnitude and having the same sign as the dividend. The
following relationship always holds:

quotient x divisor + remainder = dividend

The only way in which C(RR) can be changed is as the result of a dhr
instruction.

The B-Box

The B=box is a device containing seven registers which are distinct
and separate from the accumulator and remainder register and from the
store, and which.are called the counters or B-regigsters: they are de-
noted by the letters a through g. Each counter contains two integers

8«6

called the index and the criterion respectively. Provision is made for
increasing the index by 1 and testing to see whether it has become equal
to the criterion, The following single instruction combines these oper-
ations: ' '

Code Name * Function |
jii n b Jump if counting increase i, by 1, then take
is incomplete next instruetion from n if
ip<ny

Here i, and n, are the index and criterion respectively of counter b,
Any one of the counters a through g may be used by substitubting the
appropriate letter for b.

It will be noticed that this instrué¢tion contains more than the
usual operation section plus one address; it also contains a letter
specifying which counter is involved. We shall see later that in fact
most of the SAC instructions may have such a laﬁter attached.

One important application of the B-box is to the counting of the
repetitions of a cycle. Before we can use it in this way we need one
further instruction:

Cod Name - Function
rst n b reset counter i,=0

nbcn

ILet us néw apply this device to Henry's roses (p. 4-1).
1](+0 number mature

2| +1. constant

10jcef 2 | put 1 in AC initially

11 |rst 20 a c,8eb to count 20° bimes

12 |xech 1 new mature = old total

13 |add 1 new total' = 0ld sum- c&cle,
14| jii 12 a - count |
15| tyn O | print

16| stp © stop

8-7

Throughout this computation the total number of plants in each year is
held in the accumulator.

The B-~box here acts as a useful auxiliary to the accumulator for
the simple side-operation of counting. However, its most essential
feature lies in a direct connection between the B-box and the control
unit of the machine. The design of the machine makes it possible for
instructions to be modified after being read from the store and before
being executed by the control unit., This modification consists of
adding the index of any counter to the address in the instruction.

To specify which counter index (if any) shall be added, the letter
corresponding to that counter is simply added to the instruetion.
Suppose for example that ib = 6,

Then the instruection
cef n b

will copy into the accumulator not C(n), but C(n+g).

Note that the instruction as it stands in the store is not affected
in any way by the counter. The addition occurs after the instruction
has been read from the store and as it is about to be executed.

If no letter is written at the end of an instruetion, no such modi-
fication will occur. The following instructions are like cef in that
a letter may be added to indicate that modifieation is required.

cef, cnf, cmf; cei; add, bub, mby, dby, dhr; czﬁ; xch; jmp, jip, Jjin,
Jjiz, jix, jir.

As an example of the use of this facility, we shall code for SAC
problem 4.7 on page 4-5. This requires the subtraction of 75 from each
number in registers 20 through 87, We use a cyele, in which two of the
instructions refer to the address of the register being dealt with, and
therefore must in effect be changed at each repetition. By using the
B-box we may leave these instructions fixed in the store, and yet still
have them refer to a whole series of registers.

1| +75

10| rst 68 a set to count 68 times

11| cce 20 ‘a . subtract charge cycle:
12| sub 1 d ‘ from amount in i =

13| cei 20 a » register (20 + ig) Oceceeb?
14| jii 11 a ; count

15) stp O stop

8-8

The foregoing deseriptiorn shows the principal uses of the B-box,
There are four more instructions relating directly to it, which are
occasionally useful.

Code Name. Function
ine n b increasge coﬁm:er ib + n-i,
n, + n—ny
dec n b decreass counter iy - n—iy

jic n b Jump if complete i, + 1-i
: jump to n if
new iy>ny or = ny,

eii n b copy ipdex into ig—>n

Erercizes

Racods the followiaz problems for SAC, Vhere aguantities were given
in X=registers of TAC, %dcpt any suitable registers in the store of SAC
$0 hold these wantities.

368 Sedk 42 4.3 4.6

9-1

9, SAC: EDITING, PACKING, SYMBOLIC ADDRESSES

Further Input and Output Instructions

The rin O instruction is the converse of the tyn instruction; it
reads one whole numbér from the input tape and places it in the accum-
ulator. The end of the number is denoted by a carriage return or tab.

In Chapter 8, the tyn instruction was described only in its simplest
form, with the address O. There are many variations, distinguished by
inserting different address values, which can be used for printing num-
bers in a variety of different forms. The address values are listed,
with their effects, in the SAC Summary.

In order to be able to accept and present data in alphabetical as
well as numerical form, SAC has special instructions for reading and .
printing alphabetical characters. These are the ric O and tyc instruc-
tions. The former reads a single character from the input tape, and the
latter prints a single character. The character may be any of those
available on the Flexowriter; however, since most of these characters
cannot be represented directly in SAC, they are coded as numbers inside
the machine. The numerical equivalents of the various characters are
given in the table headed "The Flexowriter Code®”. The ric O instruction
places this number in the accumulator; the tyc instruction prints the
character defined by its own address. For example, if the symbol b is
read from the input tape by the instruction ric 0, the number 62 will be
put in the accumulator; and the instruction tyc 62 will print this char-
acter. Notice that there are two forms of each character, depending
on whether the printer is on upper or lower case; two special characters
(71 and 75) serve to change the case.

One of the principal uses of tyc is to insert carriage return, tab,
space and punctuation symbols into the results produced by SAC.

Both tyc and tyn normally use the delayed printer; the information
is not printed during computation but is stored on magnetic tape, which
is Jater played back and printed. The recording can be done without
slowing down the machine appreciably, and the printing can be done while
the machine is engaged on another problem. However, there is also a
printer linked direetly with the machine and this may be used if desired.
Adding 100 to the address of a tyc or tyn instruction will cause the
direct printer to be used.

To summarize, the instructions for reading and printing data are:

Instruction Meaning Definition
ric O read in character read the next char. via the PETR into
AC as a positive integer 77 -
rin O read in numerically read the next complete integé_r via the

PETR into AC

9-2

tye m type character record on delayed printer (m), or on
tye 100+m direct printer (100+m), the Flexo.

, char. specified by the integer m.
tyn m type numerical record on delayed printer (m), or on
tyn 100+m direct printer (100+m), C(AC) as

specifised by m.

Modification of Instructions in SAC

Although the B-box removes the need for changing instructions in
many cases, there are still some cases in which it is desirable to alter
an instruction in the machine during the execution of a program. This
may involve performing arithmetic on the address part, or changing the
operation part, or both.

In order to be able to distinguish such enterprising and ingenious
feats of programming from mere mistakes, which tend to look the same,
SAC forbids direct arithmetical operations on whole instructions. Instead,
a way is provided of extracting and of replacing the address parts of
ingtructions, which are numerical quantities, so that arithmetic may be
performed on them alone., (For this purpose any counter letter that may
be appended to an instruction is not considered part of the address.)

Code Name Function

caf n b copy address from copy address section of C(n) into AC

cai n b copy address into replace address section of C(n) by C(AC)

caf and cai instructions may have counter letters appended to them in
the same manner as ccf, ete,

While it ie in the accumulator, an address is regarded as a number
and may be operated on arithmetically like any other number.

Whole instruetions may be moved from place to place via the accumu-
lator without causing a post-mortem, provided that they are not changed
on the way. To set both the operation and address parts of an instruc-
tion during computation, the operation part should be set first by copy-
ing another instruction which has the same operation; the address can
then be corrected if necessary by means of cai.

Packing of Alphabetical Data

As mentioned at the beginning of Chapter 8, a SAC register cannot
hold any arbitrary group of symbols, but only a number or an instruction.
All alphabetical data must therefore be coded as numbers inside the
machine,

The ric and tyc instructions provide a means of conversion between
individual characters and single numbers in the machine. To economize

9-3
in storage space, however, it is desirable to pack as many characters
as possible into one register. Now each character is represented by a
number of at most 2 decimal digits, whereas there are 8 decimal digits
available in each register. A simple way of packing is therefore to
use successive pairs of decimal digits in one register to hold 4 numbers
representing 4 different characters.

The packing process can be done by shifting decimally, i.e. by multi-
plying by powers of 10; e.g. to read 4 characters and to pack them, left
to right, in register 1, the program would be:

10 ric O first character to AC

11| mby 292 shift first character 2 places left
12] eei l and copy into 1

13} rie O second character to AC

14 add 1 attach first character

15| mby 292 shift both 2 places left

16] cci l and copy into 1

17] rie O
assemble first 3 characters
18] add 1
19| mby 292
shift and copy into 1
20] ecei l
211 ric O

22| add 1 assemble all characters and copy into 1

23] ceil

or better,

10| riec O
11| rst 3 a
12| mby 292]
13| cei 1

eycle 3 times
14| ric O

15| add 1

16| ji1 11 a
171 cei 1

9-4

Unpacking can be achieved by successive division (using dhr) by 100;
the remainders are the numbers representing the original characters,
although they appear in the reverse order to that in which they were
packed on the previous page.

It is worth inquiring what the effect would be if we used a number
other than 100 for the multiplications and divisions when packing and
unpacking. Clearly, unless we use some power of 10, the packed numbers
will not be recognizable as distinct groups of decimal digits in the
decimal form of the whole. However, there is nothing magical about the
decimal notation, and we need not worry if the decimal number we get
looks quite unlike any of the numbers we packed, provided that we can
still unpack them successfully.

In fact, the process works with any number in place of 100, with
one important restriction. The number used must be greater than the
highest number to be packed. For example, the highest Flexowriter code
number is 77, so that we may use 78 or any higher number in place of 100.
What we are doing, in fact, is simply converting a number from the scale
of 78 into the decimal scale, or into whatever scale we imagine SAC to
use, Just as in the scale of 10 no digit exceeds 9, so in the scale of
78 no digit may exceed 77 ~- and this is true of the numbers in the
Flexowriter code.

In practice there is a limit to the size of numbers that can be
accomodated in one register, and so the number resulting from the packing
process must not be too large. This means that the number used as the
base for conversion must not be too large. Thus we can pack 4 Flexo
characters into one SAC register using the base 100, but we cannot do it
with base 150, because that might lead to a number as great as 77 x
(150)3 which is a bigger number than a SAC register can hold.

Unfortunately we cannot get more than 4 Flexo characters into one
register. Even using the smallest possible base (78), the packing of
five characters might produce a number as great as 2887174367 which is
too big for SAC.

In most machines there is a practical advantage in using a base
which is a simple power of the number base used in the arithmetic unit
of the machine; in a decimal machine, for instance, the base 100 would
be particularly convenient for packing. The reason is that multiplication
and division by such a number can be performed merely by shifting left
or right, which is a very simple and rapid operation. Most machines (e.g.
TAC) have special shift instructions that are quicker than the equivalent
multiplications and divisions. SAC has no special shift instructions,
but if a multiplication or division instruction refers to one of the
registers 290 through 298 (which contain the powers of 10) it takes a
time which depends on the power of 10 involved, but which is in any case
quicker than an ordinary multiplication (see SAC Summary). From this
point of view, therefore, SAC resembles a decimal machine.,

9-5
Symbolic Addresses

At the beginning of Chapter 8 it was mentioned that SAC has facilities
for automatically processing programs after they have been read from the
input tape, and before they are executed, so that programs need not be
written in precisely the form in which the machine will finally use them.

The most important feature of this process is the conversion of
symbolic addresses. These are groups of symbols that may be written, if
desired, in an instruction in place of a numerical address. When the
program is processed by the machine before the calculation begins, all
symbolic addresses are replaced by numerical addresses so that the ex-
ecution of the program may proceed exactly as already described. A
symbolic address merely represents, temporarily, some numerical address.

A symbolic address always consists of a lower case letter followed
by a number less than 1,000: e.g., aly, b40, p792, ete. Its use lies
in instructions which refer to any word that itself appears as part of
the written program. Any word can be labelled with a convenient symbolic
address merely by writing that address alongsi alongside it (for details see
below). Instructions that contain this same symbolic address will then
be automatically adjusted during loading, so that by the time the cal-
culation begins they will all refer to the register containing the word.

The same effect can, of course, always be obtained in the old way
simply by finding out which register the word will eventually occupy in
the store, and by writing its actual numerical address in all instruc=-
tions referring to the word. Using a symbolic address merely avoids
having to predict what the numerical address will be. The advantage of
this becomes more apparent when one is faced with the probability of
having to rearrange large parts of the program; either to correct a mis-
take or to make some revision. Numerical addresses must be changed
wholesale, but symbolic addresses are not affected.

A symbolic address, used to label a word, is sometimes said to be
assigned to the word. The symbolic is written on the left of the word
and separated by a comma, thuss

b3, 750
If the instruction
ccf b3
appears somewhere in the same program, then it will be adjusted during

loading so that, when executed, it will cause the former word (i.e. the
number 750) to be placed in the accumulator.

Example of Use of Symbolic Addresses

If the coding example on page 8=6 were written using symbolic
addresses, it might appear as follows:

9-6
l| al, +0

a2, +1
10| b1, cof a2
rst 20 a
b2, xch al
add al

jii b2 a

tyn O
stp O

Notice that only two numerical addresses have been written on the
left, to indicate which registers are to contain the words written. As
symbolic addresses are used, there is no need to fill in all the numerical
addresses on the lefts; indeed, the idea of symbolic addresses is to make
this unnecessary. If, however, we want the machine to put the various
words in the same places as were used on p. 8-6, it must be told that
there is to be a gap between registers 2 and 10. The number 10 on the
third line tells SAC that the instruction gcf a2 is to be placed in reg-
ister 10. In the absence of such an indication SAC places each word in
the register following that in which the previous word on the program
sheet was placed. Thus, there is no need to indicate where all the other
instructions are to gog they will be placed consecutively.

In point of fact, since we are using symbolic addresses we do not
really care very much where the instructions go. If the number 10 were
omitted, the instructions would go into registers 3 through 9 but they
would still work. We can moreover leave out the number 1 preceding the
first word, for the loading process will automically put this word into
register 1 unless we specify otherwise.

The symbolic address bl labelling the first instruction is not, in
fact, used in any other instruction in the program. The reason for
attaching this label is to enable SAC to be told {without referring to
an absolute address) where to begin execution of the program. This is
indicated on the program sheet by writing, after the program,

bll start

These are the principal uses of symbolic addresses. A further use
(the "assignment®™ of a word, for correction purposes, to a register to
replace a word appearing earlier in the program) and some further details
of tape preparation will be found in the Summary of Specifications for
SAC.

11-1

11, SAC - INPUT TAPE PREPARATION AND POST MORTEMS

Input

The process of preparing coded programs for aetual input to the
computer is a simple and straightforward one. However, there are a few
conventions that must be observed. These conventions are described
below,

Instructions, integers, and control information must be typed by a
Flexowriter tape perforating machine. In addition to performing the
function of an electric typewriter, this machine produces a 7/8" punched
paper tape. For each key depressed on the Flexowriter, a unique combi-
nation of holes or no holes is punched in each of 7 positions across "
this tape.

Coded programs are actually typed almost exactly in the form in
which they are written. The basic rules are

1. Beginning of tape: the first line of the page must begin with
the lower case letters f2s followed by the summer session identification
number, 198, a dash followed by the programmer’s-number and another dash,
followed by the number assigned to the particular tape by the programmer.
This information will be used by the compuber to maintain a log of com-
puter operation, Following this information, but on the same line, the
programmer may put any other convenient identifying information such as
nane(s), date, and purpose of the program. All identifying information
must be on'one.line{fdllowed»by a carriage return. For example:

f2s 198-5-2 Customer billing Billetdoux - 8/21/54

Following this line, the program is typed with the first instruction
going into register 1 unless an absolute address assignment comes first.

2., Absolute addressess; typed as 1, 2, 3 decimal digits in the
range 0-298,

3. Absolube address assignments: typed as an absolute address
followed by a vertical bar. However, since register O permanently con-
ta&ns the numbgr 0 and registers 290-298 permanently contain the numbers
10¥ = 1, to 10" respectively, any attempt to assign the absolute addresses
will result in a conversion post mortem (see Locating Mistskes in Pro-
grams). Any number of tabs or carriage returns can intervene between an
absolute address assignment and the instruction or number to which it
refers. Instructions and numbers following an absgolubte address assign-
ment are assigned to addresses in sequence beginning with the absolute
address assigned.,

11-2

4, Floating addresses: typed as any lower case letter except O or 1
followed by 1, 2, or 3 decimal digits with the restriction that the first
digit must be non-zero,

5. Floating address assignments: typed as a floating address
followed by a comma. The floating address preceding the comma will be
assigned a value equal to the address of the next register in normal
sequence unless the floating address was preceded by an absolute address
assignment. In this case, the floating address will be assigned the
value of the absolute address indicated. Any number of tabs or carriage
returns may intervene between a floating address assignment and the con-
tents of the register to whiech the floating address is assigned.

6. Instructions: +typed as three lower case letters followed by an
absolute or floating address.and terminated with a tab or carriage re-
turn.

7. Numbers: typed as a plus or minus sign followed by 1 to 9 deci-
mal digits (the plus sign may be omitted if desired). The number should
contain no commas or decimal points and should be terminated by a tab or
carriage return.

8. End of tape: the end of a program is marked by the word "start”,
The word "start™ is preceded by the address at which the programmer wants
the program to start, followed by a vertical bar, e.g.,

127 start

One precaution must be observed. If the same piece of tape is to con-
tain two or more programs or one program with two or more "start" indi-
cations, there must be no character (including tab, space and carriage
return) between the final "™t" of a "start" and the "f" of the "f3s"
which must follow.

9. Typographical errors: errors which are caught soon enough may be
deleted on tape by repositioning the tape and punching all sewen holes
of the erroneous character by means of the "code delete™ lever, yielding
the character known as "nullify", which is completely ignhored by the
computer during input. If an error is not caught soon enough, the tape
must ordinarily be reduplicated up to the error, the correction made,
the erronedus character skipped, and the rest of the tape duplicated.
Simple changes can sometimes be made by manual nullification of charac-
ters in the middle of the tape and/or by adding words at the end of the
tape, preceded by absolute address assignments which cause the new words
to be read in over the incorrect words, replacing them, The incorrect
word, however, must be a legitimate one which the computer ean interpret;
otherwise the compuber will stop on the illegal word.

10. Ignored and synonomous characters: +the space and back space are
completely ignored by the computer, as is the nullify. Spaces may be
used for typographical reasons wherever desired, but neither back spaces
or spaces can be used to make corrections or to take the place of tabs.
Carriage returns and tabs are interpreted identically, and have the

11-3

logical funttion of terminating a word. Extfa'carriage returns or tabs
may be used at will between words or addresses, but not within them,
Comma, period, plus, minus, equals, vertical bar, letters and digits all

have certain meanings and must not be used indiscriminately.

The digit

zero and the letter o0 are always completely interchangeable as are the
digit one and the letter 1.

the title line.

Upper case should never be used, except in

Both upper and lower case shift keys punch characters

on tape which are not ignored, but as long as all of the typed characters
come out in lower case it does not matter if any shift characters are put
on the tape accidentally. An important rule to which the computer adheres
iss if, without manual moving of the carriage, the tape prints an accept-
able copy, the tape is probably valid, providing spaces (or back spaces)
have not been used to give the effect of a tab (or of the absence of one).

11. Layout: rules 1 through 8, above, specify the structure of in-
dividual words, address assignments, and the beginning and end of the
tape. Rule 10, making carriage returns and tabs synonymous and permitting
more than one of them wherever there is one, permits great latitude in

‘page layout.

Ordinarily, several words are typed in a line, separated

from one another by a single tab, the last word on a line being followed

by a carriage return in place of a tab,
nently and should not be changed.

The tab stops are set perma-
When using absolute addresses, it is

good practice to put an address at the beginning of each new line to
help during typing and proofreading (since it helps prevent losing one's
place), and to put a blank line between non-consecutive registers.

(The following example computes two totals of 5 numbers each and
verifies the result by checking the sum of the totals against a cumu-

lative total of all ten numbers (crossfooting).

The rogram 1s per-

fectly general but the format of the printed page could be altered by
changing the print program at a3-2.) >

f2s 198-5-2 Eisenhower = Crossfootiﬁg 8/23/54

19
adds0c¢
ineic
Jiiaia
tye51
stpO

50 8125331
2 15694230
0

11| start

rst2a
ceibOa
Jiia2b.
sub62
a3,cef60a

7631900
8513960
)

rstilc
cef62
ccib0a
Jizakh
tynio

10093726
7010123
0

al,rsts5b
addsOc
addé3
stpoO
tye51

3110221

001523
0

a2,ccfb60a
eccib2
eeib3
a4, rst2a
Jiia3a

9872865
25834821

11-4

Locating Mistakes in Programs

ihen a computer program is performed several alternatives may re-
sult. The computer may

1. produce correct results and stop as planned;

2. preduce results of unknown significance and stop as planned;
3. produce incorrect results or none at all and stop as planned;
4. produce incorrect results ofznoﬁe at all and not stop;

5. produce some kind of results or none at all, and stop because
of a violation of the computer!s rules after recording a post-mortem.

In cases 2 and 3, the burden of checking usually lies on the pro=-
grammer, but in cases 4 and 5 the computer can aid in the trouble-~
shooting process by printing out useful information concerning the state
of the contents of various registers at the time the machine stopped,
and a little of the "history"™ of the way the program operated before the
stop., This recorded information and the process of recording it is
called a "post-mortem.™ In case 4, the computer must be stopped by the
operator, who then obtains a post-mortem, but in case 5 the post-mortem
is performed automatically. In cases 2 and 3 a post-mortem can be ob-
tained by request of the programmer.

The results of the computation, whether correct or incorrect, are
often very useful in mistake location, This is especially true in cases
2 and 3 when a hand computed check may be an effective way of detecting
an error. In any event the results of the program and speed with which
they were obtained should be carefully considered.

Compubation Post-mortem

A typical SAC post-mortem is given below and the meaning and sig-
nificance of each type of information discussed,

(see next page)

11-5

198-5-2 Eisenhower - Crossfooting 8/23/54

Computer ran for 2 min, 11.57 sec.

Tape 41 1is at bloek 41
Tape 2 1is at block 52
Tape 3 1s at block 99

Tape 4 is at bloek 35

STO§PED AT a2+1 a2+1| cela3+30 a3+3d 124053879

Ad| 149888700 RH 45

COUNTERS 4| 1,2 Y 4,5 ¢ 9,19 40,0 ¢ 0,0 10,0 g 0,0
START,.a2+6 (a2..a2+6)° a2,.a2+10

ai..a2+6 (a2,.a2+6)° é2..a2+2 stop

a3+29 88834043 124053879 88834043 124053879

The post-mortem information in the example can be interpreted as
follows:s

HafLine l: The title line, reprinted for identification, .

*Line 2: The computation time to the nearest hundredth of a second
from the time the program started to the time it stopped. This time
will be the time required for the hypothetical computer SAC to perform
the program and may not agree with the actual elapsed time on Whirlwind.

*Lines 1 and 2 will be automatically recorded before any computer stop,
vren 1f no post-mortem is to be performed.

11-6
Lines 3, 4, 5, 6: If any tape unit has been used, the block at
which each unit is positioned will be recorded, with the number of the
last unit used typed in red.

Line 7: The computer refused to perform the instruction at a2+1
which was, according to the post-mortem, ceci a3+30 where a3+30 contained
the number 124053879.

Line 8: The contents of the accumulator and remainder register at
the time the computer stopped were 149888700 and 45 respectively. If
dhr had not been used, the contents of the remainder register would not
have appeared in the post-mortem.

Line 9: The index and the criterion associated with each counter
are printed on this line, with the index printed before the comma and
the criterion printed after the comma,

Lines 10, 11l: This "jump table" illustrates the last ten distinet
sequences of instructions performed before the computer stopped. In
this example the computer had not gone through ten distinet sequences of
instructions, so the "history" of the program from the start is given.
In this example the computer performed the sequence of instructions from
the "start" to a2+6. At that register a jump to a2 occurred, starting
a new sequence at a2, The jump at a2+6 occurred 3 more times causing
the sequence of instructions from a2 to a2+6 to be repeated 3 times.
This is indicated on the post-mortem by enclosing the sequence a2..a2+6
in parentheses and using the exponent 3. Note that the jump in a2+6 was
performed 4 times with the result that the instructions a2...a2+6 were
verformed 5 times. After proceeding to a2+10 the cycle was apparently
repeated until the computer stopped on the fifth repetition of the in-
struction in a2+2,

Line 12: The final contents of every register whose contents have
been altered in the course of the program is printed here.

In this example the trouble is lccateg by observing that the con-
tents of the accumulator are larger than 2 7 = 134217728 which is the
largest integer that can be placed in a register. The machine therefore
recognized that the cci instruction was attempting the impossible and
stopped.

The above post-mortem might be the result of the program on page
11-3, except for the fact that lines 3, 4, 5, and 6 and RR 45 would not
have been present since no magnetic tape instruction or dhr is present
in that program. However, the numbers being added by that program would
result in the error indicated above.

In general, to locate a mistake which the printed or plotted re-
sults do not make obvious, one examines the post-mortem to determine
where and thence why, symptomatically, the computer balked. Since the-
possible sources of P-M for each instruction are specified in the code,
and since the instruction on which the P-M occurred is elearly indicated
on the P-M along with the numerical quantities involved, this is never

117

difficult, If the source of the trouble is not then obvious, one tries
t0 establish how the situation arose, by tracing the path of the program
back from the "stop™ by means of the "jump table", and by examining the
contents of critical storage registers,

When no obvious causes are noted, a wise procedure is to test,
carefully, each and every piece of available information for consistency,
to make sure that it agrees with what you expected of the program. This
involves mentally confirming the results printed or plotted, the exact
value or at least the order of magnitude of the contents of every regls-
ter listed in the P-M, and the validity of every jump in the jump table.
If everything jibes and still no explanation of the source of the mis-~
take can be found, the possibility of a computer malfunction should be
considered and, in some cases, the program should be re-run to make
certain that exactly the same symptoms are obtained. If so, and if no
able counsel can be found, relax; then try the above procedure over
again,

Conversion Post-mortems

Some programming errors can be detected before computation begins:
for example, an integer with magnitude larger than 227, an instruction
with address section larger than 298 or an illegal combination of letters
as an operation code., For errors of this type the computer will print
a description of the error before the program is run. For example, the
computer may print

Integer magnitude too large at al-5
Improper instruction used at b6-3
Undefined floating address used at h7

Counter letter missing at ¢l06-5

Correction of Mistakes

After a tape has been prepared, corrections can always be made by
duplicating the tape up to the mistake, typing the correction, advanc-
ing the tape reader beyond the mistake and finishing the duplication.
Sometimes the correction can more readily be made by adding to the end
of the tape. If the word in register 23 is ccf231 and should be cnf 123,
adding 23icnf123 to the end of the tape (before the "start”) will coTTect
the mista If register 23 contains cni 123 (a non-existent operation)
it must be corrected where it appears as it will otherwise be treated
during input as an improper operation code regardless of what is put
into register 23 later. Frequently the mistake can be judiciously nulli-
fied (by punching holes manually in the tape) without disturbing the
sequence, but completely nullifying one word will ordinarily result in

11-8

the following word going into the wrong register. In most cases it will
be possible to nullify everything but a decimal digit or two (and the
tab or carriage return needed to terminate it), which will convert with-
out trouble to some positive integer which can be replaced by a correc-
tion tacked on the end of the tape., For example, if 23 contains cnil23
and should contain cnfl23, the ¢, n, and i can be nullified, leaving

the integer 123 in reglster 23, and then 25icnf123 can be tacked on to
the end of the 1 tape, correcting the mistake.

Corrections of this type can also be made using floating address
notation. For example, in the sequence

al, add x2
cel x3
eni b7

the cni b7 can be corrected by nullifying the ¢, n, and 1 as described
above, and placing
al+2|enf b7

at the end of the program.

If several registers must be inserted in a program, the use of
floating addresses makes it feasible to duplicate the program tape up
to the point of insertion, type the registers to be inserted, and con-
tinue duplicating the tape., If fixed addresses have been used, and it
is desirable to avoid renumbering all the instructions after the in-
sertion, the program must be "patched." For example, if the sequence

add 23
mby 24

must be inserted between dby 32 and cei 33 in the segment

1oo|ccr 31
dby 32
eel 33,

then either the dby 32 or cci 33 can be replaced by a jump instruction
which jumps to a hitherto unused part of storage where the necessary
insertion can be performed followed by a jump back to the original pro-
gram., Assuming that the registers 200 through 203 have not been used
by the original program, the insertion mentioned above can be accom~"_
plished by placing the sequence

lOl’jmp 200

200|dby 32
add 23
mby 24
jmp 102

at the end (but before the start) of the original. It is good practice

11-9

when typing the original tape to leave blank tape between the last pro-
gram register and the start indication, to facilitate corrections.

Summarz

The process of preparing a coded program for any digital computer
consists of planning, then coding. The planning is usually difficult
but unavoidable, regardless of what kind of a computer is to be used,
The ecoding is, in principle, trivial. In practice, the details of the
conventions and the many possible sources of misunderstandings and care-
less mistakes make the process a rather lengthy one. The amount of
learning required can be reduced by use of simple, mnemoniec conventions
and by making the computer do as much of the clerical work as possible,
SAC incorporates many mnemonic features and simplifications. It also
incorporates powerful means to help locate mistakes which do occur.

SAC is reasonably typical of diesital computers gensrally, but in-
corporates many features (some of which have not been described in these
notes) which make it one of the easiest digital computers for which to

do the detailed, trivial, burdensome, but frequently fascinating job of
coding,

12-1
12. NUMBER SYSTEMS

It is, perhaps, not always generally realised how far we depend
upon convention to interpret the things we see written down. Suppose
I write down the symbols 1954. You will probably conclude, unless
something to the contrary is said, that I am writing down the year
of Our Lord (according to the Gregorian Calendar). If I put a comma
after the one = 1,195/ - you might well be right in thinking that
I am about to refer to one thousand nine hundred and fifty four
(=1 x 1000 + 9 x 100"+ 5 x 10 + 4) jiggle nuts. A variety of pos=-
sibilities might occur to you = for instance, nineteen point five
four (=1 x 10+ 9 +5 x 1/10 + 4 x 1/100), $19.54, 1954 hours (using
a 24 hour clocks D.S.T.y E.S.T.} = the choice would depend on the
context. If I write 1.954, however, it is likely that the only
suitable convention that will occur to you is the so-called decimal
notation, and you will suppose that I mean 1 x 10 + 9 x 1/10 + 5
x 1/100 + 4 x 1/1000, where by 1/10 I mean 1 § 10, and by ¢, +, and
x I mean that the set of symbols are combined according to a certain
set of rules to form a new set of symbols. (By the rather obscure
wording of the last sentence you will see that we are near the edge
of quicksand and in fact readily become bogged in defining our sym-
bolism, but I shall assume that the normal meanings of the symbols
such as +, x, & and so on are known to you).

In the few examples above I have tried to show that the meaning:
you attach to a set of symbols is largely dependent upon the con=
ventions that are commonly adopted. Now it is obvious that the ones
that have been adopted are not by any means the only ones that might
be adopted - it is merely a matter of convenience to use the particular
ones chosen. This is an important point to realise, since what is
convenient as a convention for you and I is not necessarily so for a
piece of electronic apparatus, as we shall see, and there is no good
reason why we should not adopt different conventions for use inside
such an apparatus. The only difficulty introduced by this is that a
conversion must take place at some stage from our conventions'to those
of the machine and vice-versa. This, however, can often be carried
out by the machine itself, thus pot affecting our reading of the
results and feeding in of data, which is done in a familiar convention.

Because the most usual convention about numbers is the deé¢imal
one, there is a tendency to think of all numbers in this way, but
that is not in fact how we use them. For instance, let us write down
the time - about 0910, say. This is really two separate numbers 09
-and 10 each expressed in de¢imal notation and written together for
‘convenience. Now increase the time by 59 minutes. We do not write
0969, which would be a simple, logical thing to do if we were really
using a decimal convention, but we do write 1009, since there are
exactly 60 minutes in 1 hour. It would, in fact, be more logical not
to write each number in decimal form, but to invent additional sym-
bols to correspond to 10, 11, 12, ..o s 59 minutes. Let us suppose
10 A, 117B ... 35— 2, 36—Ya, 0o s 59—x; we now write the

12-2

time 1009 as A9, and 0936 as 9a. Of course the first symbol could

only go up to G, or, on the 24 hour system, to N. This is just the

sort of system we use when we define the unit of time called a month,
for here we use a combination of létters in place of symbols to specify
the numbers 1, 2, .o. 5 12, i.e. January, February, ... , December.
Whatever the representation of numbers employed commonly, we can, of
course, always fall back on the decimal notation, but this is not the
logical notation for a system if more than 10 symbols would arise
naturally in counting. The number of symbols arising naturally in
designating time is strictly 60 for seconds and minutes, and 24 for
hours; these numbers are called the "bases" of the system, and we

speak of counting "to the base 60", To the base 60 the number 95 =

9 x 60 + 5 = 545 in decimal notation. We employ a great many diff-
erent bases in practice, as a few examples will readily show: =

(1) measures of distance: 12 inches = 1 ft. {base 12), 3 ft. = 1 vd.
(3)s 220 yds. =1 furlong (220), 8 furlongs = 1 mile (8); (ii) -

angular measure: 60 seconds (of arc) = 1 minute, 60 minutes = 1 degree,
90 degrees = 1 right anglé; and.{iii)} fluid measure: 2 pints = 1 quart,
4 quarts = 1 gallon., It is easy to think up other examples fér your-
selves. B :

We have already seen that the decimal system for numbers employs
all the symbols O to 9 ‘and systems with larger bases can employ more
symbols.: What happens if a base less than 10 is used? Obviously we
shall need less, rather than more symbols and it is convenient to
employ the appropriate decimal symbols. Thus for base 4 we might use
0, 1, 2 and 3 only. 5, 6, 7 and 8 only would be permissible but less
easy to understand, and so would probably not be used. The simplest
possible base is 2, which uses the symbols O or 1 only; this offers
a method of recording a. choice between two possibilities in each digit
position. In thi ~notation. the number 11, of course, is no longer
1x10+ 1, but'is' 1 x 2+ 1= 3{decimal notation. We may readily
set up conversion from binary to decimal if we wish,tby the rule that,

if abcsssid a binary num ggr of (t 1 1) digits, then the dec¢imal equiv-

alent is found by a x 2% + b x b1 L+ Conversely we msy

convert from decimal by writing the number as the sum of powers of

two and writing coefficients down as required: thus 25 =16 +8+ 1
=2% +23 4+ 1—)11001 in binary.

coeff. 2*232‘2

Using the same form of positional notation as in decimal, but with
the base 2 substituted, we may express numbers which are not integers,
e.g. 19,50 —>10011.1, since 0.5 = 2~ (or 1/2). Engineeringwise it’
is more convenient as a rule to employ binary notation within the
machine. This enables one to use such physical properties as an
electric current being switched on or off, soft iron being magnetized
or not, or electronic switches being set in one of two positions to
represent numbers rather than relying for them on a current having
one of several possible values within fairly narrow tolérence limits.
In this way it- is possible to ensure reasonably high reliability of
operation. : : , ,

12-3

Arithmetic with binary numbers goes much like that with decimal
numbers, but tends to look a little peculiar when you aren't used to

it. Let us consider a sum in decimal = 7 x 8 + 15 x 3 = 56 + 45 = 101,
In binary this would be written as 111 x 1000 + 1111 x 11 = 111000 +
101101 = 1100101. We note that 1 + 1 =10, and 1 x1 =1, 1 x0=0x

1 =0, As in decimal notation, if two numbers of a and b digits .
respectively are multiplied tcgether the result contains a + b = 1
digits altogether. An important difference is that adding a :zero

to the right of an integer, which multiplies a decimal number by 10,
has the effect of multiplying a binary number by 2. Similarly moving
the binary point multiplies or divides a number by 2§ thus 1101.11 =
1/2 x 11011.1 = 1/4 x 110111 = 2 x 110,111 = 4 x 11,0111 = 8 x 1.10111,

Most machines are so constructed that only a fixed number of
digits can be dealt with arithmetically at one time, these having
a correspondence, usually, with the number of digits contained in a
single unit or location in the store. All machines are such that only
a finite number of digits can be accommodated altogether. As a con=-
sequence of the first restriction certain difficulties are bound to
arise in dealing with numbers of very different sizes. For instance,
if our machine is designed toc deal with four-digit numbers only (in
decimal), then we cannot readily add 1954 to 0003 and retain full
accuracy without some special arrangements. As a consequence of the
second restriction we cannot store certain numbers at all - the
number denoted by the symbol W (= 3.14159 etc.) for instance.
However, for most practical purpcses it is sufficient to work to 10
or 11 significant figures, and this is normally provided against.
It is, of course, necessary to have at least one register in the
machine capable of storing 2k = 1 digits (where the numbers stored
are of k digits) in order to accommodate the result of multiplying
two numbers, unless these can always be accepted rounded off in the least
significant place. Since the numbers stored are of fixed length as
a rule we must introduce a s<¢aling operation to accommodste two
numbers such as 1954 and .,0003. For addition purposes, so long as
the two numbers to bé added are adjusted so that they are correct
relative cne to another, the result will be correct, irrespective of
the supposed position of the decimal point. Thus if we can only
store 19540000 and 3 the result of adding these, 19540003, can be
interpreted as 1954.0003 if we imagine that we did store 195/.0000 and
+0003. The same number is held in the machine whether we call it
19540000 or 1954.,0000, However, the position of the point is vital
in multiplication or division. Consider 3 x 3 = 9, 1In.a 4-=digit
machine holding only integers; the result will appear as 0000009 in
the register, whereas if we interpret the original numbers as ,0003
each, the result should be .00000009, We can overcome many of the
difficulties of this nature either by scaling the numbers adequately
(i.e. multiplying by appropriate factors before storing or before
miltiplication) or by some machine or programming device involving
special representation of the numbers. We often use a device of this
kind ourselves when writing, for instance, fractions. This is con-
venient for representing, for instance, 1/3, which has no exact value
in decimal notation. This is an example of the use of two integers
to define a single decimal number. Another form of representation

12-4

is to write 1954 = 0,195/ x 1049 and ,0003 = .3 x 10”3, and record
in each case two numbers. These are 0.1954 and 4 for the first and
.3 and =3 for the second. The rule is to write the first number as
between =1 and 1 (ex¢luding the letter): together with the power of
10 required to give its correct scale (10 is here called the "radix"
of the representation). A similar convention can be adopted for any
radix, e.g. for radix 2 we write the first number as between 1/2 and
1 and the second as an appropriate power of 23 for instance, .1954

= 7816 x 2°* and we write (.7816, ~2) as the representation. This
is convenient for preserving the maximum accuracy in a calculation,
but is apt to be slow during addition of numbers, since the numbers
have to be adjusted in the arithmetic unit before adding them and re=-
adjusted afterwards. This type of representation is usually called
"floating-point" representation, and is often employed in machines
for preserving accuracy and avoiding carrying out scaling explicitly
in programming.

Finally we come to the important subject of sign representation.
The convention commonly used is to write the sign followed by the
modulus (numerical value) of the number; thus +98, =5./ and so on.
This convention is used on some machines but necessitates the sign
being treated as a different entity from any of the digits of a
number. It is therefore more convenient to use a system of comple-
ments to represent negative numbers. This involves representing
negative numbers by their complement with respect to some number, say
10 for decimal numbers, so that =00005 is written as 99995, =0.1l as
98000 = clearly =1 is not permitted. In binary it is usual to use
complements with respect to 2, so that =1/2 =¥ =0.1 =91,1000000 for
an 8 digit machine. An alternative is the so=called "1's"™ comple=-
ment when we write =1/2 =9 =0,1~91.0111111, i.e. all zeros and ones
are replaced by their opposite. All of these methods of complementing
are employed in machines, ard the decimal equivalent of "1l's" comple=-
ment (called "(9!'8%) complement) is used in I.B.M. punched card
equipment,

In conclusion, I would like to point out that it is not necessary
for the programmer to be fully acquainted with the details of binary -
arithmetic in order to operate a binary computer. On well=designed
binary machinestthere is no need to think of numbers as binary at all,
except possibly in preparing the standard input and output routines.
Once these are done the only indication that binary is being used is
usually that an order multiplying and dividing readily by 2 both
exists and is rapid!

. 14 -1
14. ORGANIZING THE ATTACK ON A PROBLEM

It is difficult to draw hard and fast lines between the stages
of carrying out a computation on an electronic machine, since they
are necessarily closely related. A rough division was shown on one
of the slides shown in the introductory lecture by Professor Adams,
and it seems reasonable to distinguish five main stages: (1) prep-
aration of the problem, (2) coding, {3) preparation of the physical
input medium {e.g. cards, tape, etc.), including verification, {(4)
operating the computer, and (5) analysis and final presentation of
the results, including any checking not carried out during the comp=-
utation. In this chapter I am concerned primarily with stage (1)
(preparation of the problem), but it is necessary to look at the
whole picture of operation in order to understand better the necessity
for certain preparations and the effects which may flow from failure
to prepare the problem correctly.

Whilst it is possible to plan in a general way without considering
the particular computer being used, this:independence cannot be car=-
ried too far, and, in the present day machines, full efficiency can
~only be achieved by catering to the peculiarities of the computer
“used. For the purposes of this discussion, I shall not attempt to
review all the possible peculiarities, but will try to point out what
sort of peculiarities affect planning and in what way. The most
important effects are due to the sizes of the various stores of the
machine and the access time to information contained in them, and the
full significance of this factor will-ndt appear, as a rule, until
coding is attempted. For this reason and because time of operation
as a whole may be important and can seldom be assessed before the
coding stage, coding and programming are difficult to separate out.
Indeéed; an eminent programmer has remarked that programming consists
of writing down the operation symbols and coding putting in the
addresses! However, it is quite possible to program without carrying
the coding into such detail, and to have the coding carried out by
someone else = with a probable consequent loss of effieciency in machine
operation = and this is desirable if the overall time of carrying out
the problem is thereby shortened. Such a policy would obviously be
justified for problems which could be solved in a few minutes, or
even a few hours of machine time, since the preparation time would
largely out weigh'the time of operation in caleculating how long it
would take to solve the problem. Equally obviously there are:problems,
particularly those of a day-by-day nature - inventory control, wages
and the like = where machine operation must be as efficient as possible.
The saving of 10 minutes per day may lead to a yearly saving of some
60 hours, perhaps, or $18,000 using an I.B.M. 701, leaving quite a
margin over the consultant'!s fee for the efficient programmer employed,
whose time might only need to be engaged for a week or so.

Let us assume that we are to separate coding from programming
for the present and that we are considering taking over some part of
the running of a commercial firm on a computer. Firstly,,thecproblem
for the computer must be stated. This must be done with the utmost
care, and is probably the most difficult part of the process in

14 =2

practical cases. I might here quote Dr. Bowden from "Faster Than
Thought", for he puts the commercial aspect of this process succinetly.

" .o.A typical commercial computation is
probably handled by several hundred clerks.
Each individual operation is perfectly
straightforward and there is no mystery
about the underlying principles, but because
of the complexity and the ramifications of
the work it may well be that no single in-
dividual understands the office procedure
in detail; so that the would-be programmer
may have to spend months in finding out
what is in fact done...."

It must be emphasised that what is necessary [is not really to find

out what is at present done, but to find out |all the possible exceptions
to any general rules which are being applied iand to specify what
decisions are to be made in these cases, From the point to view of

a programmer, the person who presents the prodlem, if he is not himself
the programmer, must present only what data ﬂs available (all of it)
and what results he requires, together with specification of what is
to be done when any special situations arise. Do not try to tell the
programmer how to get the results, or attempt to give him a digest

of the data and facts available. This will usually detract from the
efficiency of the program, unless you are capable of doing the pro-
gramming yourself,

Given the data and the results required the programmer must re-
state the problem in a form suiteble for the computer to tackle, i.e.
fundamentally numerical. In particular, he must reduce any criteria
for acceptance or rejection of data, or for deciding between two or
more possible courses, into a comparison of the magnitudes of two or
more; numbers. For instance, suppose we require that an elevator should
stop to pick up passengers at any floor between where it is now and
where it is going if the button of that floor is pressed. - A numerical
statement of this is that, if n— nth floor, the button of which is
being pressed, m — the nearest floor below where the elevator is now,
and 1-- the floor to- which it is going, then we require to stop at
the nth floor when m 2 n > 1 or when m< n < 1. In any other case,
including if m = n € 1, then we do not stop before reaching 1. This
numerical expression of qualitative ideas is an essential preliminary
process in all programming not concerned with direct mathematical
computation.

We now have a problem suitably stated and reduced to a series of
computations connected by numerically determined decisions, and can
draw up a flow chart both for convenient reference and to ensure that
all the possibilities have been considered and treated suitably.

Next, we must consider the computations themselves and decide upon
suitable numerical techniques for carrying them out. It is usually
convenient to break down the dndividual computations somewhat further
in order to make use of any library subroutines that are available,
and to make the process of coding easier. On single address machines,

14 =3

such as SAC, my experience is that I can conveniently code routines
containing up to 100 = 150 instructions, preferably less, containing
not more than three or four cycles within one another. If a comp=-
utation looks like involving more than this it is preferable to break
it down into two separate stages by some suitable rearrangement of

the logic, if necessary. If possible, it is best to make each section
complete in itself, so that it can be tested separately from the rest
of the problem. This enables an economical use of the machine for
error diagnosis to be made., Standard input and output routines are
used to put in the section to be tested and its data, and any errors
arising can be directly attributed to failure of the machine or errors
in the coding, and the latter should be relatively easy to find.
Although proving each section separately does not mean that they all
will work correctly when put together to form the program required,
the sources of error are more readily located when it is certain that
they arise from misuse of the individual sections or oversights in
programming, rather than coding.

This technique for aiding error diagnosis can also be regarded
as a part of the.process of checking required to ensure correct
results from any program. Not only must the programming and coding
be checked, preferably on a trial calculation or calculations designed
to test all the ramifications of the problem, but also it may be
necessary to provide against faulty operation of the machine. A
commonly held misconception is that an effective check is provided
by running the same program twice. It is tiue that, provided the
machine does not contain a random number generator, two consecutive
runs which do not agree are prima facie evidence that the machine is
wrong. However, it does not follow that, if two consecutive runs
agree, they are correct. At least two cases are known to me to have
oceured in practices {1) the machine contained a consistent fault,
and (2) a third run gave a different (and, incidentally, correct)
result, The best method of checking is usually to carry out the
computation by a different method and to compare the results to en=-
sure correctness. Next best is to institute some internal checks
within the calculations, verifying that certain equations hold, for
instance. As an example, if we are computing the sum

¥ =53 +vs§ + 82,
and do the sum of cross products

g7 = 8.8, + 5,5, * 5310
we might verify that the resulting sums gatisfy

fe2gl?e (s, +5,+ 83)2o
Finally we might resort to spot checks by, say, hand calculation to
vetify arbitrarily chosen results. None of these systems is infallible
alone or combined, of course, but the errors in the results can be
reduced to a very small proportion by suitable application. Clearly
it is necessary to incorporate some of the checks indicated in pro-

gramming the problem and this can sometimes be done without greatly
increasing the time of the computation.

14 -4

I may say that I do not hold with indiscriminate use of pro-
gramming techniques to overcome possible engineering failures. These
not only waste time in the computation, but also lead to the conceal=-
ment of faults which are best dealt with as they occur. No test program
has yet been devised that ensures that a machine is fault free, and
it is fair to assume that faults will occur during long consecutive
runs of the machine. The longer the run without output,:or,’at least,
recording results on permenent storage devices, the more catastrophic
is a failure. It is most important to plan the reading in and out
of high speed storage to more permanent forms, and from more perm-
anent storage onto printed sheets at intervals reasonable with respect
to their average failure times. Few high speed stores should be
trusted for very long, on principle, though trouble free running for
more than 8 consecutive hours has often been experienced on most
machines. A good average maximum time to assume is an hour, as not
too much is lost if failure occursj personally I prefer to use 20
minutes as a maximum period - this is more than enough on a fast
machine and adequate on slow ones. Enough should be recorded after
this time to enable a restart to be made from that point, and this
should not be destroyéd at the end of the next period until some
verification has been carried out (this may just consist in not _
stopping the machine, if it appears error free, but this should only
be judged by an experienced operator). Such intermediate results
may, of course, be adequately stored on mediums such as magnetic tape
or a magnetic drum for the whole period of an average calculation,
and may or may not be printed out, as required. However, it may well
be that some intermediate results are required by the problem setter,
or are desirable for checking purposes, and these may be tied up with
the break down indicated above,

This brings us to consideration of another important point: how
shall the data best be recorded for the machine, and how are the
results to be presented? Of course the form of the results must be
determined primarily by the needs of the problem setter, but he should
be encouraged to demand them in the most convenient form for use by
those whom they concern. It is usually possible to arrange the
setting out suitably by the machine, thus saving much time in re-
arrangement. In the same way data should be recorded in the order
and format most convenient for the recording agent, subject to a ' -
preference being given to recording directly onto the medium used by
the machine for input = this should not however be allowed to comp='.
licate the process of recording. Whilst in each case this throws
some extra work on the programmer, who must arrange for the machine
to sort out the data into the form required for operation of the
program, my own experience in handling scientific data would lead me
to believe this to be a good thing. Convendiénce for the recorder
means less mistakes in the original entries, and such mistakes cannot
usually be easily detected or rectified = it has been well said that
the most important entries in a ledger are the original entries, the
accuracy of which cannot be checked by the most highly paid accountants,
and that these are usually made by the lowest paid member of the staffl

Let us now review the points which we have to bear in mind when.
programming. First; we must state the problem carefully in a form

14 -5

fundamemtally numerical; secondly we must decide the form of our data
and of our results; thirdly, we must break down the problem into con-
venient units for (1) coding, (2) storage, and (3) time of operation;
fourthly, we must decide the numerical methods to be employed; fifthly,
we must decide on the checking techniques to be used. After all this
we may begin to carry out the coding, first selecting any library
subroutines which may be available for carrying out units of the comp-
utation, and secondly, writing any new routines required, finishing
up with the master routine tying all the bits together. At this

stage we should estimate the time required to carry out the sections
of the computation and reconsider our breaking down of the problem

to see if this requires revision. Having satisfied ourselves on all
these points we are ready to proceed to the testing of individual
routines, and finally to complete testing of the program. Your own
experiences with TAC will'show that the amount of time taken by the
latter processes are by no means negligible mattersy There are few
things that require more patience and perserverance than getting a
program right. Howéver, once the program is tested and found correct,
there is no greater satisfaction than to watch the machine producing
results in the knowledge that each one represents many man hours of
effort saved - not to mention a few dollars!

15 -1

15, ORGANIZATIONAL PROBLEMS

The purpose of this chapter is to discuss some of the problems
that are encountered in organizing a computing center. First we will
consider certain basic distinguishing characteristics and then we will
go on to the more common problems that are Hund at most centers.

It is difficult to give a general procedure for organizing a
computing center since each center represents or is part of a system
having its own characteristics, Of these characteristics, the follow-
ing four seem quite basic.

1. Size of the computer, In the surveys already offered in this
course you have had an opportunity to see the wide variety of computers
being offered on the market. Last year Dr. Wilkes of the University
of Cambridge suggested that in organizing a center a guiding principle
to remember is that machine time is valuable. This is especially true
when dealing with the larger more expensive machines. Considerable
effort should therefore be spent in insuring that as much machine time
as possible is used productively. However it is also true that any
routine can be shortened if enough time (both coding and machine test-
ing) is spent on it. Consequently a compromise must be reached.

Associated with the size of the computer is the amount and speed
of the auxiliary storage equipment available. A center having a central
computer whose operating speed is comparable to the input-output speeds
can make more extensive use of the auxiliary equipment without sacrific-
ing too much in efficiency. Such considerations are usually predominant
in deciding what sort of automatic coding the center will adopt.

2. ZType of coder. 1In ma%y organizations the person who proposes
the problem does the coding. *his kind of operation: is often referred
to as "open shop". On the other hand, the coding may be done by a
residerit group of experienced coders in what might be called a "closed
shop®. In the open shop, provision must be made for the training of

a large number of new programmers, for their supervision, and for the
carrying-over of results from one problem to another (for example, by
the use of a library of subroutines). Closed shop operation creates

the problem of communication between the person proposing the problem
and the coder. Closed shop operation can also lead to personnel problems
since coding someone else's problem can become very tedious. This leads
to efforts to reduce the coding to a sufficiently low level so that it
can be done by relatively unskilled personnel or by the machine itself.

15-2

3. Type of problem. Here we might distinguish between the pro-
duction~-type problem and the short-run problem which is completed after
a few hours or less of computation. Once a production-type problem has
been successfully coded, the resulting roubtines will be run again and
again with little strain on the programming staff. For this type of
problem, of course, any effort that makes the routines more efficient
will pay off in rich dividends. Also the scheduling of machine time to
handle production runs is greatly simplified since the time required for
a run is usually well known., For short-run problems the ratio of pro-
duction time to checking time will not be very high. For these problems,
methods that reduce the time required to detect and remove mistakes from
a routine may be extremely helpful. Special routines for assembling a
final program from a set of subroutines, for carrying out floating-point,
matrix, or complex arithmetic, and for providing extensive post-mortem
information are often used for this purpose,

4. Kind of computing center. This may best be described by ex-
amples. A computing center that is renting out machine time to a differ-
ent division of the same company or to a different company may not be
too concerned about how efficiently the machine time is used. On the
other hand a center whose income or support is based upon productive re-
sults will of course make every effort to increase production. A re-
search ceanter may devote a great deal of time to computing certain con-
stants to many decimal places or to exploring theorems in Number Theory.
However, a center that has to justify its existence to a cost-conscious
management may find itself setting up routines to take over pay-roll
calculations, etec, ‘

It should be pointed out that the problems associated with the
characteristics just described are not mutually independent. For ex-
ample, the type of coder one employs is related to the type of problems
to be solved. To keep a large machine busy with a set of short-run but
complex problems requires a large staff of programmers. In such a case
it would be more practical to let the person who proposed the problem
learn and carry out the coding., Also the kind of problem to be solved is
related to the kind of computing center. For example, one would not ex-
pect that a research center, such as one finds at the University of
Cambridge or at M.I.T., would allow one programméer to moncopolize a large
fraction of machine time over an extended period., On the other hand,
General Electric can assign a large fraction of its IBM 701 time to the
design of steam turbines for its Lynn plant.

So far we have been considering the organizational problems of com-
puting centers having certain characteristics. One of the more inter-
esting problems is to select the characteristics for a center that is
about to be set up. The questions of which computer to buy (or even
whether to buy one), which problems to put on the machine, and whether
t0 train present personnel to code can be difficult ones. The main
difficulty is that there usually is no one simple answer. For example,
in the choice of a machine, some people feel that it is better to own
two smaller compubters than one large unit so that if one machine is down

15-3

the other is still available., On the other hand, the speed and flexi-

bility of a large machine is far more than double that of a machine of

half its price. Consequently the cost per operation and the number of

operations performed between down periods may mske it the better buy if
there is enough computation to keep it busy. (Of course, each computer
has its own basie properties.)

It might be pointed out that the selection of problems to be placed
on a machine or the investigation of ideas for the development of new
control systems can be carried out on time rented at one of the many
available computing centers. Some companies have found it useful to pur-
chase a smaller computer to gain experience to indicate what future steps
should be taken.

In the preceding paragraphs we have emphasized the differences be-
tween computing centers. However, all of these centers do have a great
deal in common -~ they all want to make use of a high-speed computer to
solve a problem. The fact that this course 1s being offered to you in-
dicates that there is a good deal of common ground. You have already
gone over the steps needed to solve a problem on a high-speed computer
(in Prof. Adams's introductory lecture, in the movie "Making Electrons
Count," in solving your problem on TAC, and, in lecture 14 given by.
Professor Douglas). However, in each of these cases the approach was
from the programmert's point of view. I would now like to review these
steps once more, but this time from the point of view of the person who
is organizing the center. There will, of course, be some overlap in the
two points of view but there are enough new ideas, I believe, to make
this review worthwhile.

The steps indicated on page 1-9 are common to most computing centers
although the importance of each step may vary widely. For example, in a
business application where a procedure for inventory control has been
developed and put into regular use, the main steps of interest would in-
volve preparing a tape or cards with the input information, running the
machine, and checking the results. The other steps might enter infre-
quently when variations or improvements are introduced into the system.
Let us now consider the steps in some detail.

1, Proposing. Sometimes the main problem here is to get people
to propose problems. It can take an awful lot of problems to keep a
large machine busy. Some people feel that a problem has to be very com~
plex before it should be coded for a machine. On the other hand, there
are many problems that could be solved quicker calendarwise on a.desk mach-
ine. Also many people tend to ask for far more results than they need or
can ever hope te process.. As Prof. Douglas has pointed out, many problems
are stated in a misleadirg ' form,

2., Planning. This involves not only the selection of a procedure
(which may or may not be numerical) but, in many cases, the selection of
the computer to be used. It is interesting to note that by the tech-
niques used to simulate TAC and SAC on WWI, many centers have been trans-
formed from single computer units to multi-machine projects. ZEach of

15-4
these computers, whether real or simulated, has its own advantages and
disadvantages. The factors involved in choosing among them include:
availability of the machine, ease of coding (as measured by the time it
takes a programmer, who may be untrained, to code his problem), available
storage, computing speed, computer reliability (for a simulated computer,

this will depend upon the degree of testing), ease of error detection

and tape correction, available precision, and available subroutine 1li-
brary.

3. Coding. In an open shop center the coding of a problem can be
greatly simplified.by the use of such techniques as floating-point rep-
" resentation, symbolic and relative addresses, and counting fae¢ilities,
Moreover, the use of mnemonic instruection codes, compiling routines,
subroutine libraries, etc. abbreviates the training period of a new pro-
grammer, Of course, the ayailability of more than one computer (real or
simulated) doés increase the number of conventions that g programmer may
have to learn. Also the slowing down of the machine by interpretive
routines must be taken into consideration., Such techniques can also be
used, of course, in a closed shop operation but here the need of them is
greatly reduced. For production-type problems it will, in genersl, be
preferable to develop routines that are as efficient as possible.

4, Clerical, In this category we can include typing or punching,
verifying, and the filing of input and output information. When possible
the use of routines that assemble previously prepared subroutines and
allow the use of special pseudo-codes (such as tyn for calling in a
special output routine) simplifies the typing by reducing the length of
tape needed and by making possible the use of more common terminology
(e.g., start). Also versatile read-in programs that can ignore certain
characters (such as color shifts, spaces, treat the letter 1 and the
number one as being synonymous, etec.) make it possible to check the
correctness of a tape by the visual inspection of the typed copy pro-
duced wuile the tape was being punched.

Checks like verifying and proofreading are very desirable since
they can be done at a cost far less than that of the machine time wasted
because of undetected mistakes. Mistakes that result because of the
illegibility of a programmer's writing can only be detected by the pro-
grammer himself., The use of a read-in program that can detect typing
mistakes will also save a great deal of computing time.

The filing of tapes and results can, as in so many other cases, be
facilitated by a suitable numbering system. The handling of machine
output is simplified if these results are suitably labeled. In the
Whirlwind computer this feature has been made automatic.

5. - Testing and debugging (isolating and removing mistakes). In a
computing center that must deal with a large number of new problems, the
task of debugging the corresponding routines can be very time consuming.
SAC and TAC have illustrated how useful conversion and computation post-
mortems can be., However, it should be noted that the incorporation of mis-
take detection routines can materidly slow down the computation. More-
over printing out too muech information each time a mistake is detected.

15-5
can also lead to a waste of computer time,

In many centers programmers are allowed and even encouraged to
operate their own routines. This has obvious advantages but has often
proved objectionable because of the tendency of programmers to try to
correct their routines on the spot without carefully considering what
the changes should be. Thus machine time can be wasted both while the
programmer in question is deciding what changes to make and also be-
cause the hasty changes he makes may be in error.

6. Solving The distribution of the machine time among the accepted
problems will, of course, depend upon the particular system involved.
This system will specify who gets priorities, etec. At the Digital
Computer Lab. we have found it worthwhile to distinguish between long
runs and short runs (less than five minutes) where short runs usually
get the priority. At IBM in New York City a schedule has been set up
so that time assignments can be made automatically by computations
from a rigdid formula.

The system of scheduling adopted should be one that does not
encourage programmers to overestimate their required machine tinme.
This is particularly liable to happen if the system is such that the
programmer will have great difficulty in regaining access to the mach-
ine again. Hence a fluid system is desirable. Of course a programmer
who is paying at a substantial rate for the machine time he uses tends
to be at ileast moderate in his time requests.

Keeping a record of the actual time used by a given problem is
a clerical job that can be done by the use of time clocks. However,
a very suitable system results if the machine itself has some way of
automatically recording the time. For example the Whirlwind I computer
contains a timing register that can count up to almost 10 hours in steps
of 1 1/15 seconds. Thus by setting this register initially to zero it
is possible to punch out the tape number and time for each problem that
is read into the computer., If, for some reason such as machine break-
down, the machine run is interrupted,this fact can be manually punched
on the time record or Yog with an indication of the time lost. This
log can later be processed by the machine itself to produce weekly or
monthly statements of time used, etd.

A type of interruption that can prove most frustrating to a
programmer is one that is caused by a transient machine malfunction
occurring after the routine has run a considerable length of time, A
common type of such malfunction is the loss of a digit either in the
memory itself or during the transfer of information. Such a loss is
usually detected by the computer through a parity check or transfer
check., A parity check adds.un the digits in a word and adjusts an
extra digit tagged to the word so that the sum is even. A transfer
check simply uses two different paths of transmission and checks the
eénd results. Another useful check is a sum check where all the words
in a block of information are numerically added, reduced.module some
convenient number, and the sum stored. Whenever this block is trans-
ferred, the sum is checked. Whenever the machine detects a malfunction

15-6

by one of these checks it will stop. In many types of calculations

the only way the routine can be restored to its correct state is by

completely rerunning the problem. This can result in a serious loss
of computer time.

To reduce the amount of machine time lost as just described, the
programmer can set up rerun points in his routine by periodically
storing on some form of auxiliary storage all the information necessary
to reconstitute his routine. At the time of a machine failure a rerun
or rollback routine can then be employed to continue the calculation
from the last rerun point. It should be noted here that in many cases
the auxiliary equipment itself must also be reconstituted.

Finally care should be taken to avoid idle machine time in the
interim when one problem has been completed and a new one is to begin.,

7. Analyzing Results, Some checks must always be maintained on
the numbers being obtained from the computer. This is basically a
problem for the programmer and Prof. Douglas disc¢ussed various check-
ing methods yesterday. It might be mentioned that it often pays in
the running of a computing center to provide a surce of questioning
for the programmer to be sure that he is aware of this checking. This
sort of questioning usually comes in the preparation (or screening)
stage when the programmer is asked to indicate how he will be able
to verify his results..

8. Maintenance, The engineers who maintain the machine are
usually in attendance or on call while the machine is being operated.
The manufacturer usually sets up some sert of maintenance schedule.
Some difficulties that arise during operation are readily recognized by
the machine operators, It is a good practice for the machine operators
to refer any suspected difficvlties to the engineers. Log books are
usually kept so that the operators can describe any unusual machine
behavior. Most programmers will not try to push runs on a machine
that is misbehaving, since it is sometimes sufficiently difficult to
trouble shoot a routine on a well machine. The organization of the
center should not encourage programmers by making them lose their turn
to try to get results anyway when there is evidence of machine mal-
function,

Standby terminal equipment should be provided when possible since
the cost of such equipment is relatively low. Thus the giving up of
machine time because of a malfunctioning typewriter can be avoided.

Special routines have proved very useful in the testing of computers.
The extent to which such routines can be used will depend, of course,
upon the ingenuity of the programmers and the nature of the computer.

At the Digital Computer Laboratory two sets of routines have come into
use. The first is used with marginal checking for the routine testing

of the various computer sections. The second set is used for diagnostic
purposes to locate actual failures in the auxiliary drum system and term-
inal equipment. In the future it is planned to combine some of the
features of both sets of routines.

16-1

16, TECHNIQUES OF AUTOMATIC CODING

Choice of Coding System

When planning to use a large electronic digital computer, we are
free to choose, from a very large range of possibilities, the form of
coding in which programs shall be written, with 1little or no effect on
the amount of hardware required. The reason for this is that a large
computer can, as it stands, be made to handle a very wide range of inform-
ation=processing tasks; one such task is the receipt of the machine's
own programs and the conversion of these programs into operations to be
carried out. Having decided on our code, we merely have to provide the
machine with a program that will tell it how to convert this code into
the form which it requires. There are of course limitations, and these
we shall consider later.

Our aim in choosing a code is to reduce the amount of labor involved
in programming. This is particularly important at the present stage of
automatic computing, when big new projects are being initiated daily,
but our educational institutions are not yet generally equipped to pro-
duce programmers. It is therefore desirable to relieve the programmer
of unnecessary chores, and; in particular, to see that no work is repesated.

Subroutines

The first and most obvious development is to keep a record of all
pieces of program that are likely to be of use to several peoplej the so-
called library of subroutines. A written description of each subroutine
enables a programmer to see how it might fit into his programg he denotes
it on the program sheet by its catalog number. At first subroutines were
incorporated into programs by copying them in the form of punched tape
or cardsj the advent of large auxiliary stores has made it possible to
keep a library in the auxiliary store and so to maske the incorporation
of a subroutine into a program fully automatic.

Fitting a subroutine into a program is by no means a simple business,
and a whole host of conventions grows up around the use of a library. A
difficulty soon arose over subroutines that were required to be used at
two or more different points in a program: should such subroutines be
copied afresh at each point, or should one copy be made to serve, thus
saving storage space but raising a problem in ensuring the correct sequence
of execution of a program? The latter course led to a special type of
subroutine known as a "closed®™ subroutine, which is allocated a place in
the store away from the main part of the program. A jump instruction
sends control to the subroutine when required, and the subroutine is so
arranged that control always jumps back, when the subroutine has been
executed, to the instruction following the one which caused the original
jump., (See figure on next page.)

16=2

—_
A jmp sl > sly| —p—
A+l -1 -1
N —+— | closed subroutine
Bl - jmp sl I
Y .
B+l < jmp link
v

The jump instruction at the end of the closed subroutine, known as the
link instruction, must contain an address depending on the address from
which the subroutine was last entered (in fact, it must be one more than
this address, namely A+l or B+l as the case may be). Various methods
are used in various machiness in SAC, a special instruction has been
provided (sra - see SAC Summary for details) which can be used at the
beginning of a closed subroutine to set the correct address in the link.

Another difficulty, encountered before the invention of symbolic
addresses, arose from the fact that, since it was required to be able to
place a subroutine anywhere in the store, some of the numerical addresses
in its instructions would have to be adjusted according to its position
in the store. This was overcome by a system of relative addresses, viz.
written addresses defining registers according to their position in
relation to the beginning of the particular subroutine. The relative
addresses were converted to ordinary or ®"absolute® addresses during loading.

Several factors must be considered in making a library subroutine
as useful as possiblej one of these is its generality of application.
For example, a subroutine might be made to carry out some operation (e.g.
to locate the largest number) on a string of numbers in consecutive
registers in the store. To be really useful, the same subroutine should
be applicable however long the string and wherever its first member may
be, although of course in any instance the subroutine must be told these
particulars which are called parameters of the subroutine. Parameter
values are indicated by the programmer when he uses the subroutine, and
are used by the subroutine to suitably adjust its own internal working
so as to produce the required result.

Often two classes of parameters are distinguished: preset parameters
and program parameters. The former are indicated in the written form of
the program, and the corresponding adjustment of the subroutine is made
during loading., The latter are indicated by putting them into the mach-
ine as register contents, and the adjustment is done each time the sub-
routine is used, during the execution of the program. Commonly, they
are put into registers following the jump instruction which sends control
to the subroutine (assuming that the subroutine is of the closed type).

16-3

If it has been decided to place certain closed subroutines in the
store, the task of writing the rest of the program becomes somewhat
easier. The programmer knows that in order to cause the machine to carry
out a certain complex operation he needs merely to write a jump instruc-
tion referring to one of the subroutines (and perhaps to follow it by
one or more parameter values to specify the operation exactly). This is,
on a somewhat grander scale, just what he does when he uses an instruction
to cause the machine to carry out an operation listed in the machinets
instruction code. The presence of the subroutines may be looked upon as
extending the basic instruction code of the machine.

Interpretive Subroutines

This idea has been further developed and has led to the concept
of an interpretive subroutine. This is used to deal with a situation
in which a whole series of operations of a certain general type is re=
quired to be performed in succession, each operation requiring a small
subroutine, with no ordinary basic machine operations intervening. Such
might be the case, for example, if a lengthy calculation were to be
performed on numbers too big to be held in single registers, so that each
arithmetical step involved a set of basic machine operations, i.e., a
subroutine.

In such a case, the machine would spend most of its time executing
the subroutiness if control were sent back to the "main® part of the
program it would immediately be referred on to another subroutine. It
is possible to arrange that control, in fact, never returns to the main
part of the program between operations but remains within the subroutines.
These are all welded into one, an interpretive subroutine; which includes
also a section to supervise the sequence in which the various operations
are performed.

’

The jump instructions in the main program which formerly directed
control to the subroutines are eliminated; all that remain are the para-
meters fixing details of each operation. These parameters must now
specify which operations are to be performed as well as fix their details.

While an interpretive subroutine is being used, the instruction code
of the machine is not merely augmenteds it is entirely replaced. Instead
of instructions, the programmer writes parameters defining operations
to be performed by the interpretive routine according to rules laid down
when it was created. These parameters are in fact instructions in a
different sense.

Processing During Loading

SAC illustrates most of the ways in which a program can be processed
on its way into the machineg foremost among these are the conversion of
symbolic into numerical addresses and the conversion of mnemonic 3=letter
function codes into the binary digital form used within the machine. In
scientific applications the acceptance of numbers written in a great

16=4

variety of different forms is also useful; and if a library is available
for automatic reference, the loading process must recognize symbols which
stand for a subroutine and select that subroutine to be copied from the
library.

Debugging

Finding mistakes in his programs is one of the most tedious ¢hores
facing a programmer, and it is made much easier if he has plenty of
useful information about events within the machine during the run. In=-
formation about the final state of the machine is given by post-mortem
routines. If an interpretive technique is being used, it can with slight
elaboration be made to provide suitably selected information about the
actual running of the program,

If the program has undergone considerable processing during loading,
all devices for providing evidence:for: debugging purposes: should:'reverse-
this process and present their evidence in a form corresponding to that
originally used by the programmer, This may be even more difficult to
plan than the original processing.

Elaborate conversion and interpretive schemes do, however, have one
great advantage when it comes to debuggings Out of the very large variety
of things which the programmer is at liberty to write on his program sheet
many will be nonsensej; and moreover many of these nonsensical things can
be automatically identified as such during one of the processes through
which the program passes. Thus SAC will automatically indicate which of
many different rules a programmer has violated in drawing up his program.
To this extent, therefore, the debugging is practically automatic.

The Principle of Imitation

Although in TAC the store was described as being a magnetic drum,
this fact was not essential knowledge for a user of the machine., The
physical nature of the SAC store has in fact not been disclosed. To a
user, a whole machine may be summarized as a set of rules for writing
instructions and data, and a list showing the machinef's response to each
instruction {the instruction code).

We have just seen; however, that the rules for writing instructions
and data depend entirely on the programs used for feeding them into the
machine, and that the instruction code can be augmented or completely
changed by means of subroutines of greater or less complexity. Consequently,
by the use of suitable programs, a machine may be made to gppear, logically,
as a different machine; i.e., it can imitate another machine. In these
ways, both TAC and SAC have been imitated by Whirlwind, which is basically
quite unlike either,

16-5

The Limitations of Automatic Coding Techniques

There are unfortunately several obstacles in the way of extensive
exploitation of the foregoing ideas. Firstly, all these techniques
absorb some machine time which might otherwise be saved. Secondly, they
also use up part of the storage capacity of the machine. Thirdly, (and
this is a point which is easily underestimated) they require a considerable
amount of programming effort to prepare, and some effort for the user to
learn. Fourthly, there are limits set by the nature of the problem :and
by the transcription devices available. Let us consider these points in
turn.

The processing of a program during loading does not usually take
any appreciable time and, where it is done, it is nearly always well worth
the machine time required. Interpretive techniques, on the other hand,
slow down the rate at which the actual execution of the program takes
place, and may (in the case of long computations) absorb considerable
amounts of time. Objective comparisons are impossible because interpretive
subroutines are normally only used in cases where the machine's instruc-
tion code is inappropriate to the jobs the only alternative to the use
of an interpretive subroutine is then presumably to use several small
subroutines or to write a very long and circumlocutory program without
subroutines., The former would probably save little or no timej; the latter
might save machine time but might also require stupendous amounts of
programming time., Nevertheless it should be borne in mind, when considering
the application of an interpretive technique, that the machine time in-
volved is liable to be large and must be justified by savings in other
directions.

The number of instructions contained in many existing program-proc=-
essing schemes is of the order of several thousands. Where auxiliary
storage is available;, it is usually adequate to hold the processing
routines, but the absence of an auxiliary store severely limits the
facilities that can be provided. Moreover, an interpretive routine, which

- operates during the execution of the program rather than during loading,
must be held in the high-speed part of the store during the computation
and so limits the high-speed storage space available for the program.
Again, however, the only alternative may be worse: to perform the same
computation without an interpretive routine may require much more storage
space.

The work entailed in preparing a program-processing or automatic
coding scheme does not end with the writing of the processing routines,
or even with their successful debugging. It is then necessary to prepare
a description of the scheme as it affects the user. Much of the effect-
iveness of a good scheme can be lost if the description is badly pre-
pared. The aim is to save the future programmer's time; this can unfortun-
ately only be done at the expense of having him spend some time learning
the rules. This is both a psychological and an economical barrier which
it is important to minimize. Clear writing is essential, with the subject
matter so arranged that no person need read passages that do not directly
concern him,

16-6

It has been stated that the net result of automatic coding techniques
is to cause one machine to imitate another. Alternatively, they msy be
thought of as allowing the programmer to write his programs in a different
language, one that is translated to the machine's internal language by
the processing routines. In order to make things easy for the programmer,
we should make the new language as convenient as possible for him to use.
The original statement of the problem to be solved comes to him in some
language, and his job is to convert it into a language that can be pre-
sented to the machine. We should make this gap as narrow as possible,
i.e.; the language asccepted by the processing routines should be as
similar as possible to the language in which the problems arise.

Here, however, there are technical difficulties. Firstly, the lang-
uages that are used in practice contain an immense variety of symbols
(especially in the fields of science and engineering). Not only would
the automatic processing of such information be complicated; but there
simply do not exist transcription devices with keyboards adequate to
handle all the symbols (and any manual translation would defeat our
purpose). Secondly, (and this is more fundamental), very few of the
seemingly precise statements made even in technical subjects can in fact
be interpreted unambiguously without an intelligent knowledge of the sub-
ject matter --= and this is quite beyond the ability of.machines at present.

Notwithstanding these formidable obstacles, automatic coding is
slowly advancing. No one system can be considered the best for all
purposes; there will inevitably be many, appropriate to different types
of applications. There is a tremendous amount of work entailed in
developing each one, and we must not expect any spectacular advances,

18-1

18, OPERATIONS RESEARCH

by Prof. Philip M. Morse, reprinted from
MECHANICAL ENGINEERING, March, 1954

Operations Research is the application of re-
- search techniques to the study of the oper-
ations of war and peace. It examines what
occurs when a team of men or machines does the
job assigned to it, It is an activity; a
pattern of operations, susceptible of being
related to other diverse activities., Its
applications encompass such unrelated matters
as determining time of waiting in line in a
restaurant; fixing the inter-relation between
sales fluctuations, size of inventories, and
production scheduling; or developing a pattern
of search operations for an enemy submarine

or airecraft.

In Operations Research there is an opportunity
for scientists and engineers to help in admin-
igtrative problems, not by becoming the admin-
istrator, but by providing the administrator
with quantitative understanding of aspects of
his operational problems, so that he can reach
a wise decision, fully consecious of the im-
plications of his choice,

This is a progress report on a relatively new branch of applied
science, First utilized during the last war on military problems, it
proved valuable enough so that most military staff, here and in England,
now have operations-research groups. More recently its usefulness in
industry is coming to be recognized, and groups are also being attached
to top industrial staffs. The Operations Research Society of America,
formed two years ago, now has nearly 1000 members; its Journal is now in
its second volume. What is this new activity, and how is it related to
other branches of science and engineering?

Defining a branch of science in a few nontechnical terms is not
easy. Perhaps the safest definition is that Operations Research is the
~activity carried on by operations-research groups and reported in the
Journal of the Operations Research Soeiety of America. But often some
less circular sort of definition is desirable. Students who may wish to

18-2
learn about the field have to be told what it is; people want to know

what it's good for; workers in related fields want to know why it should
be differentiated from their own fields, and so on.

What is Operations Research?

Operations Research has been defined as the application of the
scientific method to problems of management, but this is obwviously too
concise and too general a statement. There are many sorts of "scientifie
methods,” and many sorts of people study problems of management, Part of
the definition must describe the way these problems are studied. Here
the word "research" in the title may give a hint., The research seientist,
at least in the physical sciences, uses the guantitative language of
mathematies, employs the well-known but difficult-to-describe procedures
of experimentation and theory making. He looks at the phenomenon he is
studying in a certain impersonal way, being more interested in how than
in whither, more interested in why than in for what use. Many centuries
of experience have taught him that this impersonal viewpoint, this dual
employment of theory and experiment, will usuwally procure for him re-
sults of value in his science and that too great a preoccupation with
questions of the worth of the result, or the immediacy of the need,
actually will hinder his progress.

Operations Research, then,is the application of research techniques
to the study of the operations of war and peace. It is concerned with
an attempt to understand something, in the scientific sense of the word
*understanding.® It is an effort to discover regularities in some phe-
nomenon and to link these regularities with other knowledge so that the
phenomenon can be modified or controlled, just as other scientific re-
search does. The difference comes in the phenomems which' are studied,
the subject matter, Instead of studying the behavior of electrons, or
metals, or gasoline engines, or insects, or individual men, Operations
Research looks at what goes on when some team of men and equipment goes
about doing its assigned job. A battalion of soldiers, a squadron of
planes, a factory, or a sales organization is more than a collection of
men and machines; it is an activity, a pattern of operation. These oper-
ations can be studied, their regularities can be determined and related
to other regularities; eventually they can be understoed, and they then
can be modified and improved.

Resgearch at the Operational Level

Operations Research is concerned, not with matter or with individual
- machines or with men, but with the operation as a whole; with battle tac-
tics, with strategic and logistic planning for future operations, with
the interrelation between sales fluctuations, size of inventories, and
production scheduling, with the flow pattkrn of goods in a group cf faec-
tories or of traffic in a city, to mention a few examples. We might use
the word "level" to distinguish between the different subject material,

18-3

if we can divorce the word from any connotation of relative importance
or difficulty. Physics and chemistry would then correspond to research -
at the basic or material level, the study of bridges and television sets,
research at the engineering or applied level. Operations Research would
then be "research at the operational level."

Although the name is relatively new, research at the operational
level is not new, of course. Taylor and his followers, in their time-
and-motion studies, have investigated a small part of the whole field,
traffic engineers have been working on another part, systems engineers
encroach on it, and so on, Perhaps the most useful service the new
term Operations Research has performed is to emphasize the essential
unity of the whole field, to force the recognition of similarities in
bshavior in areas hitherto separate, and to make apparent the broad use-
fulness of a number of research techniques and mathematieal models,

Techniques Used

I have not yet said anything about the techniques used in Operations
Research. As with other research, any technique of measurement or of
calculation, any portion of a basic science is used which will produce
results., We should expect that the theory of probability and of statis-
tics would be very useful tools; we also should expect that the tech-
niques of the psychologist would be needed in other cases. This does
not mean that Operations Research is applied statistics, on the one hand,
or is a branch of social psychology, on the other. It uses any and all
of these disciplines to study operations in order that they may be un-
derstood and thus controlled. Since a wide variety of basic science is
involved, much of the research can best be carried on by a team of wor-
kers having a variety of background training, each contributing his
specialized knowledge to the solution of the operationel problem. The
advantage of a mixed team for the study of many operational problems is
obvious. In fact, some persons have said that the use of mixed research
teams is a characteristic of Operations Research. It certainly is im-
portant in many investigations; whether it is characteristic or necessary
might be questioned.

But certainly further generalities will not be helpful here; a few
specific examples may help clarify the picture. Certain particular as-
pects of operations have been the subject of intensive study in the last
few years, and special mathematical models have been developed to help
understand the phenomena. As is usual with models, they represent only
part of the phenomena, and since Operations Research is new, most of
these models need further development before they can be satisfactorily
general in their applicability. Here the Operations Research worker
needs the help of the basic secientist, particularly the mathematician.

18-4

Waiting in Line

Take the simple business of waiting in line - the British ecall it
queuing. All of us do it too much of the time; if we drive to work in -
the morning, we wait at traffic lights; if we go to a cafeteria at noon,
we wait for our lunch. It is the headache of many businesses; it is a
vital problem for airlines when an airport clouds in and the planes be-
gin to stack up, waiting to land. ILet us see what can be said about
this sort of problem.

We start as usual with a fantastically simplified case, one where
the front of the line is served at some constant rate, say, S per second,
and where the rear of the line is being filled up by people (or planes)
coming in at random times but with an average rate of arrival, A per

- second, We also will assume that this has been going on long enough so

that a steady state has been reached; we can consider the transient case
as a later elaboration. The key to this mathematical model lies in the
working out of the various probabilities that the line will have O, 1,
2, or n persons in it. Call the probability that there are n persons
in the line Pp.

It P 0 is large, for example, this means that we are quite likely
to find l& people ahead of us when arriving in line; what the restaurant
tries to do is to make Po large.

To. have a steady state none of the P should change with time.

But every time a person arrives, all the P step up one by one,
P, changes to P,, and so on; and every time a person is served, they all
change downward. So, in order that A persons arriving a second and S
being served a second will not change the probabilities continually, they
must be related in some special way. For example, the rate of disappear-
ance of a line of zero length is AP,, the rate of arrival times the
chance that a zero-length line is there; the rate of appearance of a
line of zero length is SP;, the rate of serving times the chance that a
single-length line is present. To have a constant probability of zero-
length line, we must have these two rates balance; APb = SPy., Similar
balance for lines of unit length, of length n, and so on, gives rise to
the sequence of equations,

APy + SPg = (A + S)Py; APy _y *+ SPpyy = (A + S)P,
and so on.

These can be solved without much trouble, giving

P, = (s - 4) (a%/s™1)

as long as the rate of serving S is larger than the rate of customer
arrival A, It is obvious that if customers are arriving at a rate
faster than they can be served, the line capnot ever be stationary in
length and, if they value their reputation or peace of mind, our restau-
rant or airport managers must avoid this at all costs. But even when

18-5

customers arrive more slowly than they can be served, we see that there
is a finite chance that a line will form. In fact, the average length
of the line turns out to be A/(S - A),

This quantity is quite small as long as the maximum serving rate S
is at least twice the arrival rate A, But if people arrive nearly as
fast as they can be served, the average waiting line rapidly lengthens;
if A is 0.8S, then the average number in line is 4; if A is 0.9S, the
line has 9 in it, on the average, and so on. For example, if A is 0.8S,
if customers are served 25 per cent faster than they arrive, on the
average, then 20 per cent of the time there will be no line, 16 per cent
of the time one will be waiting, 13 per cent of the time two will be in
line, 8 per: cent of the time four will be waiting, 2 per cent of the
time ten will be in line, and so on; the average line length will be
four,

It may seem peculiar that there should be any waiting line when the
mean rate of service is greater than the average rate of arrival; this
is due to our assumption of randomness in service and arrival. We as-
sume that each customer doesn't conveniently arrive just when the last
customer has been served; the customers arrive at random, which does not
mean regularly. Also, one customer may take longer to be served than
the next, and a bunch of customers every now and then arrive just when a
slow-poke is being served.

These random mismatches between customer and server don't matter
much if the service is considerably faster than the average rate of ar-
rival; once in a long time two or three may come in a bunch, but most of
"the time no one is waiting. But if customers arrive nearly as fast as
the line can be handled, these mismatches occur more and more often, and
the chance of a long line ocecurring quickly is large. Of course, if the
servieing process could be made absolutely regular, each service com-
pleted exactly in 10 seconds, for example, and if also we could regiment
our customers to arrive exactly 10 seconds apart, so that one walked in
the door exactly at the end of each 10 seconds, then S could equal A,
and still no line would form.

But service is very seldom as perfectly timed as this, and we
practically never can regiment the arrivals. Customers, automobiles,
and airplanses do arrive in a random manner at restaurants, street inter-
sections, and airports, and it turns out that the results of our simple
quantitative reasoning fit actuality remarkably well in spite of our
preconceptions to the contrary. Here is a case where theory and actuali-
ty contradict our intuitive "feelings." ’

In every case where this theory applies, gross errors of estimate
have been made, regarding the expected length of waiting lines, on the
basis of nonmathematical "hunches." Often long aqguments have occurred
before the manager would be willing to face the consequences of the
theory. They would continue to say, "But why should there be a waiting
line when I can serve them faster than they are coming?" in spite of the
line which was there before their eyes. The results of such irrational
behavior only produce irritation in the case of restaurants, gasoline

18-6

stations, and the likej; it is much more serious in the case of airports
or docking facilities in harbors, particularly under wartime conditions,

Industrial Problens

The simple theory, sketched so quickly above, can be expanded and
complicated almost indefinitely. For example, the problem of machine
maintenance in a factory is of this sort. The machine can be said to
*arrive in the waiting line™ when it breaks down; it is "served" when it
gets repaired. The flow of parts through an assembly line is another
example. The theory can tell us how many parts must be kept on hand at
each stage of the process, in order that no machine should be kept idle
by delay in the earlier processing, for example. Many aspects of the
- over=-all problem of industrial inventories also can be analyzed by this
technique., Here it is the sales, the outflow, which has the large
fluctuations; we need to balance between the requirement that orders be
filled as soon as they come in and the added expense of running a fac-
tory overtime if our inventory runs out.

Another sort of problem which turns up in a large number of oper-
ational studies has to do with the optimization of some function of a
number of variables, subject to boundary conditions which limit the
range of the variables., TFor example, an 0il company can produce various
proportions of fuel oil, gasoline, and aviation fuel from its cracking
plants, depending on the kind of crude oil used, and can produce various
proportions of these end products from a given crude, depending on the
cracking process used., But crudes differ in price, and cracking
processes differ in cost. Suppose the company has orders for definite
quantities of end products to be delivered in the next 3 months., What
amounts of which crude shall it buy, and which processes shall it use in
its cracking plants, to produce the required amounts of products at the
least cost, subject to limitations of supply of crudes and of output of
its plants?

The variables here are the various amounts of crudes to be bought
and the degree of utilization of each plant. The function to be mini-
mized is a linear function of these variables, and the limits on each
variable are known accurately. Such a problem is known as a Mlinear
programming™ problem. There are many such problems whieh turn up in
Operations Research. Techniques of solution are not simple, and many of
them require high-speed computing machines; much further mathematical
research is needed to simplify computing procedures in linear-programming
calculations,

Parenthetically, the optimization of the crude-oil-cracking prob-
lem has been worked out by the research or the engineering departments
of many large oil companies. The persons who worked out those solutions
did not call what they were doing Operations Research; many of them had
not heard of Operations Research., It is also true, however, that most of
these workers were not aware that many other problems in the company'’s
operations were likewise amenable to the same analysis. The value of

18-7

the concept of Operations Research to these companies lies in making
their research men aware that the techniques of theoretical analysis
they have been using for one problem can be applied to a much wider
range of operational problems than they hitherto had conceived, and in
showing the company executives that they can use their own research de-
partments to help solve production and sales and distribution problems,
where formerly they had hot been used.

Linear Programming

Thé linear-programming problem can be visualized most simply in
geometrical terms., The n variables define an n-dimensional space; a
point of this space corresponds to a solution, ZEach limitation on the
- range of the variables corresponds to a hyperplane in this space, re- -
stricting the allowed solution points to one side of the hyperplane., By
the time we have finished specifying all the restrictions (negative pro-
duction not allowed, maximum limits on storage capacity, limits on pro-
duction, and so on) we find that we have surrounded the region of possi-
ble solution by hypersurfaces, so that the allowed region is the interior
of a convex polyhedron in the hyperspace. If the function to be opti-
mized is a linear function of the variables, then the requirement that
this function have some constant value also corresponds to a hyperplane
which may or may not cut through the polyhedron; if it does, it then
corresponds to an operationally possible value of the function to be
optimized. By changing the value of the constant, we can generate a
family of hyperplanes parallel to each other, their distance from the
origin being proportional to the value of the function to be optimized.

Some of the hyperplanes in this family cut through the polyhedron
containing the region of solution; some do not. There are two limiting
hyperplanes, one corresponding to the largest value of the funection for
which the hyperplane just touches the polyhedron, and one corresponding
to the smallest value which just touches. Consideration of the geometry
shows that for most orientations of the family of planes the two limit-
ing planes just touch a vertex of the bounding polyhedron and thus con-
tain just one possible solution compatible with all the boundary con-
ditions. The outermost limiting point is the optimum solution if the
funetion is to be maximized; the innermost point is optimum if the
function is to be minimized, Once the geometry is clear in one's mind,
it is easy to visualiz® the solution. But, at present, it is not easy
actually to compute the optimum vertex when there are several dozen
variables and about a hundred boundary faces of the polyhedron.

Production Planning Needed

Important as linear-progremming techniques are, they need further
generalization to be able to solve many problems in Operations Research,
Production planning is an example. A factory can produce so many units
of some product each month, but sales of the product are small during

18-8

the summer and very large in December, so large that fall production
cannot equal December sales, One solution is to run the factory over-
time during the fall; but overtime production costs more than normal
output. Another solution is to produce more during spring and summer
and store it ready for the winter rush; but warshousing also costs money,
in storage and handling charges and in interest on the money tied up. A
third solution of course is to fail to meet orders in December, but this
is a counsel of despair.

It should be evident by now that this is also a linear-programming
problem. The variables are the regular production each month and the
overtime production each month. The excess of production over sales each
month is warehoused. The boundary conditions are the limits on the pro~-
duction and overtime production each month and the additional require-
ments that the total production from the first of the year shall never
be less than total sales from the first of the year. The quantity to be
minimized is the total cost, including overtime charges and warehousing
charges.

As stated, this is a straightforward linear programming problem, if
we can predict exactly our sales throughout the coming year. If our
sales forecast is exact, we can proceed to find the distribution of pro-
duetion and overtime production each month to minimize total costs and
to satisfy all forecast sales. The trouble is we never know exactly
what the sales are going to be, and if we have underestimated them, we
will not be able to meet orders; if we have overestimated them, we will
end the year with unsold product in our warehouse. All we really have
is a probability distribution of expected sales; to put it pictorially,
some of the sides of the bounding polygon are fuzzy, not sharp.

Problems of "Bounded Optimization"”

At present, our techniques of solution are not adequate for such
problems, nor are they if the funection to be optimized is not a linear
function of the variables. Such more general problems might be called
problems of bounded optimization. The problems are clear, but a great
deal of further analysis and devising of computational techniques is
needed before solutions can be obtained with the requisite ease. Speed
of solution is needed here, for in many cases we wish to find a whole
sequence of solutions as we vary some of the limits: What happens if we
build another factory, or if we close down our factory in August, for
example? When solutions of problems of bounded optimization are sasy to
obtain, many tough problems of planning, of production, of sales effort,
of logistices, and so on, will be easier to solve,

Another kind of problem for which a mathematical model can be built
came up first in naval operations research but has numerous business
analogs, It concerns the operation of "search" for an enemy vessel, or
submarine, or aircraft. The enemy is somewhere in a given area of the
sea, How do you deploy your aircraft to find him? The central idea here
is the "rate of search."” A single plane can see the enemy vessel (by
radar or sonar or visually as the case may be) R miles away, on the

18~9

average. The plane can "sweep™ out a band of width 2R as it moves along;
the picture is analogous t0 a vacuum cleaner, of width 2R, sweeping over
the ocean at a rate equal to the speed of the plane and picking up what-
ever comes beneath it. An area equal to the speed of the plane times
twice the mean range of detection will thus be swept in an hour. The
sweep rates of planes vary from a few hundred square miles per hour %o
several thousand square miles per hour, depending on the plane, the
radar equipment, and the vessel searched for.

If the enemy is equally likely to be anywhere within a certain
area, then the problem is a straightforward geometrical one. The
search effort is evenly laid out over as much of the area as one has
planes available. The problem is a little complicated by the faet that
detection is not certain at extreme ranges, so the probability of detec-
tion falls off near the edge of the swept band and there should be a
certain amount of overlap between bands to improve the chance of detec-
tion near the edges.

But if the chance that the enemy is present varies from area to
area, the problem becomes quite difficult; non-mathematical intuition
may lead to quite erroneous use of available effort. For example, if
the enemy is twice as likely to be in one area than in another, then,
if only a small amount of search effort is possible, all this effort
should be spent in searching the more likely area. If more effort is
available, some time can be spent on the less likely area, and so on.
A definite formula can be worked out in each specific case. Search
plans for various contingencies were worked out by the Operations Re-
gearch team attached to the Navy during the war; they materially aided
the naval efforts in many cases,

From War Effort to Industry

It seems a far ery from planes and ships and submarines to industry
and business activities. But the utility of the mathematical models is
their wide range of applicability. One possible business application of
search theory comes in the problem of assignment of sales effort. Sup-
pose a business has a limited number of salesmen, who are to cover a
wide variety of dealers. Some of these dealers are large stores, which
usually will produce large orders when visited, some are small stores
with correspondingly smaller sales return. If there are enough sales-
men, every dealer can be visited every month, and the optimum number of
sales can be made, although the sales cost will be high., With fewer
salesmen available, search theory indicates that the larger stores
should be visited more often than the small stores; with very few sales-
men it may be that only the large stores should be visited. If the
probable return per visit for each store is known, the optimum distri-
bution of sales effort can then be calculated.

An interesting and typicalyvariation on this problem comes when we
consider the action of the individual salesmen, when we try to make their
behavior conform to the best over-all distribution for the company. For

18-10

each individual salesman, with his limited effort, it may be best for
him to visit only the large stores; if his visits are uncontrolled and
if he is paid a flat commission, it may turn out that the large stores
are visited too often, the small stores too seldom, for best returns

for the company as a whole. It then becomes necessary to work out a
system of incentive commissions designed to induce the salesmen to
spread their efforts more evenly between large and small customers. If
the general theory has been worked out, this additional complication can
be added without too much difficulty.

This problem of balancing the tendencies of different parts of a
large organization is one which 1s often encountered in industrial
Operations Research. The sales force is out to increase sales of all
items, though some items may return less profit than others. Production
resists changeover to making another product, though sales on the other
product are increasing; and the financial department frowns on building
up large inventories, though small inventories always put the production
division at the mercy of sales fluctuations., It is often not too diffi-
cult to suboptimize each of these divisions separately, so each is
running smoothly and effectively in so far as its own part of the busi-
ness is concerned. But to be sure that all these parts mesh together to
make the company as a whole operate most efficiently requires much more
subtle analysis and very careful quantitative balancing,

In the interest of reducing factory overtime and to keep down in-
ventory, for example, it may be necessary to modify the salesman's in-
centive commissions, so he will be induced to push one line over another.
It may be necessary for the production division to allow more overtime
in one department than another, to make some part of its operation run
at less than optimum in order that the over-all operation be optimum;
and one must take care not to penalize the production department, by
reduced bonuses or the like, for reducing its efficiency so that the
effectiveness of the whole is improved.

But perhaps these few simple examples are enough to show that the
research techniques developed to increase our understanding of the
nature of the physical world also can be used to help us understand
operational problems. In many cases in industry and war, a simplified
quantitative model of the situation can help us see what goes on and
can help us devise the best way to proceed. In many cases it is neot
necessary to have a complete picture of all that goes on, clear down to
all the basic details. As long ds our mathematical model can be ad-
justed to fit some of the regularities which appear, we can abstract
these parts of the behavior from the rest and study them separately.
The process of abstraction, of keeping clear of local details, has the
advantage of providing a model which may fit a variety of eircumstances -
restaurants, production lines, or landing aircraft. By gaining in
generality, of course, we lose in detail.

Perhaps it also can be seen that such methods probably cannot be
used to solve all problems., Just as it is quite unlikely that the
methods of analysis used so successfully in genetics can be used to
solve all biological problems, for example, so it is unlikely that the

18-11

Operations Research scientist, with his specialized techniques of analy-
sis, can ever replace the usual business executives or army generals,
with their practical experience and their intuitive grasp of the com-
plicated effects of morale and applied psychology, for example.

But as new techniques are tried in more and more different fields,
it should become clear what operational situations can be analyzed by
its means and what situations cannot. Already there are Operations
Research teams working closely with military and industrial administra-
tors, exploring these possibilities, reporting their findings to the
administrator that he may be able to combine their quantitative results
with his experience and judgment to reach more understanding decisions.

In general, scientists and engineers have not been active in ad-
ministering government or business., This is not surprising, for the
business of science is to understand, not to act. In Operations Re-
search, however, the scientist and engineer can provide a better under-
standing of operational problems so administrative decisions can be.
made wisely.

20 = 1
20, COST REDUCTION THROUGH ELECTRONIC PRODUCTICN CONTROL

by
R. G. Canning

Reprint of paper presented at the semi=-annual meeting of the American
Society of Mechanical Engineers, Los Angeles, California, June 28 =
July 2, 1953 and published in the November, 1953, issue of Mechanical

Engineering.

Of the four main aspects of cost reduction that come to mind
probably the most common is that of product improvement; redesign of
the product to simplify or eliminate parts, making for easier fabrica-
tion, and so on., The second aspect is methods improvement, a familiar
subject to those in Industrial Engineerings this calls for more effic=-
ient use of tools, work space, motions, and the like. The third aspect
is better utilization of productive facilitiesj this includes production
planning, loading, and scheduling, and covers more efficient decision-
making and more effective control. The last aspect is reduction of
overhead, by the mechanization of the office.

In a current paper;, Dr. M.E. SaIVesonl indicates a mathematical
framework for the loading and scheduling of productive facilities. The
development of such a mathematical model is most important, because
it would provide production management withca systematic means of determ-
ining optimum (or near optimum) loads and schedules. The application
of mathematical methods in practical situations undoubtedly will depend
to a great extent: upon the use of electronic data-processing equipment.
However, the "introduction of such electronic equipment also can result
in the reduction of overhead by the mechanization of the office, if an
adequate systems design is considered from the outset.

The main points'made in this paper are 'thdt, in the author'!s opinion,
the primary value of electronic production control for cost reduction
will be in the form of increased output of product, using the same pro-
ductive facilities (although it is realized that this "intangible"
gain is often harder to sell to management); then to a lesser extent
electronics also will reduce overhead, by replacing clerical employees.

To give a clearer picture of how these cost reductions might come
about and why the two points are so rated;, a sketch of an electronic
system designed for one local company that shows promise of meeting
these objectives, and an order of magnitude of these two types of cost
savings, will be presented. .

: 1 "A Computational Technique for the Scheduling Problem", by M.E.
Salveson, presented at the Semi-Annual Meeting, Los Angeles, California,
June 28=July 2, 1953, of the AMERICAN SOCIETY OF MECANICAL ENGINEERS.

20 = 2

Mechanization of the Office

For logical sequence of presentation, it will be necessary to con-
sider the latter of these two points, the mechanization of the office,
as background material for the first point. One gf the major object=-
ives of the project, as set forth by Dr. Salveson™, is the design of
a master scheduling computer which will fulfill the functions of
loading and scheduling produ¢tion:-operations. In attacking the problem
of how to design such a machine, it was apparent that a data-handling
system would be necessary for two function: {a) to translate the -
schedule generated by this master computer into specific shop instruc-
tion, and (b) to measure and feed back the actual rate of progress, as
initial conditions for the next scheduling computation. The present
state of the electronic-computer art is such that a data system to per-
form these functions appears quite feasible even though the design of
the master scheduling computer may not be as yet. TPurthermore, a data
system might well pay for itself in a short time by means of savings
in clerical salaries, and thus pave the way for the introduction of
the master scheduling computer at a later time.

To investigate this application of electronic machines to pro-
duction data processing, a two-phase study was planned. The first
phase was to consist of a number of plant visits to companies in the
Los Angeles area to determine some of the characteristics of those
firms which might be interested in electronic data system, i.e., number
of employees, type of product, type of production organization, and so
on. The second phase was to locate one firm in the lccal area that
met many of these requirements and study it in detail, with the aim of
designing an electronic system to meet its needs. Thus we started out
with one objective in mind of "mechanizing the production-control
office" =~ we wanted to find out where employees could be replaced
more efficiently by electronic machines, and an indication of how many
employees could bd so replaced.

The remainder of the paper will be devoted to presenting some of
the conclusions of this two-phase study, with respect to cost reduction.
Based on the results of the first phase of the study, we will first
split the field of production into two main segments, and choose one
of them for analysisj within this segment, we will point out the types
of firms most in need of electronic production-control systems. We
will state briefly the present methods used by such companies and
finally, by the example of the case study, we will show how electronics
more nearly can provide what is de51red in the wav of a productiona
control svstem for fhe f‘wrmso ‘ RS . .

One main ‘segment of the productlon fleld about whlch much has
been written recently (especially with respect to its probable use of
electronics) has been given the name of "automation® -- automatic
materials handling and automatic control of the continuous production

2 "0n a Quantitative Method in Production Planning and Scheduling,®™ by
M.E. Salveson, Econometrica, vol. 20, October, 1952, pp. 554=590.

20 = 3

line. The continuous line appears to be the objective of much of
American industry, in order to achieve mass production and low unit
cost. The use of electronics here would be that of control, to re-
place some production employees in the routine operations of meter=-
watching, switch-throwing, and so on. This is an important field and
is receiving considerable attention today, not only by industrial
engineers but also by electronic and servosystem engineers. However,
in a continuous-line plant, a relatively large production=-control

staff is usually not needed. The main production problem is estimating
the size of the market (rate of demand) and then adjusting the rate of
production to meet this demand. The small number of clerical employees
in the production-control office does not hold much hope for necessary
cost savings in such firms.

Applying System to Job-Shop Production

Rather, it is the other segment of the production field with which
we will be concerned -- the job-shop operation, stressing customer
service rather than mass production, where a large variety of products
is possible, and production is to customer order rather than to
finished-goods inventory. These are the firms that do have a relatively
large production-control department. The results of the first phase
of the study can be stated briefly. It was evident that job=-shop
plants with less than 500 employees probably could not justify the pur-
chase of an electronic production-control system; also, certain plants
with over 1000 employees almost certainly could consider the purchase
of such a system. Firms with over 500 but less than 1000 employees
varied in their need, and would require individual detailed analysis..
It is at this size of plant (over 1000 employees) that the concept of
"freedom of choice™ at the foreman level becomes important.

As an illustration of this concept, the continuous-line plant
obviously has little freedom of choice as to which job will be worked
on next; the next job coming down the line will be the one. If the
necessary materials do not arrive at the right place at the right time,
the line stops and the general manager of the plant knows about it in
a matter of minutes. At the other extreme, in the large job shop,
there are any number of jobs waiting to be worked on in any department,
and the foreman is faced with the task of choosing which sequence to
work them.

Other forms of this "freedom of choice" problem were encountered,
including plants with a large volume o6f engineering changes (as in the
aircraft firms), a complicated payroll structure where any one employee
might work on as many as ten different wage rates during a week, and
large-volume inventory control where it is difficult to pick up the
individual disbursements easily.

In the course of these plant visits, one plant stood out above the
others as an interesting one for a detailed study. At this company,
the production-control manager had developed quite an efficient manual
system of production control, by the use of centralized inventory

20 - 4

control, a priority system based on due dates, control boards in each
department showing the due dates of the jobs in that department, and
so on. With about 1000 employees in the plant, there were only eight
expediters (or about 0.8 per cent of the total employees), which com-
pares very well with the 2 to 5 per cent figure reported in other
plants. It was felt that if an electronic system could "compete" with
the present manual system, this would augur well for the use of elec-
tronics in other plants.

The company produces on a job-shop basis =-- to customer order,
rather than to finished-goods inventory. A large variety of products
is possible, and individual customer specifications are common. '
Since the firm does much of the fabrication of component parts, and all
of the assembly, this means that the loading and scheduling problems
are present,

Now, restricting attention to this type of plant, let us assume
that customer orders are received and processed. This processing calls
for a fair amount of clerical effort-- exploding bills of material,
posting requirements, recapping requirements and comparing with in=-
ventory, deciding whether to enter an order (shop or purchase) to ob-
tain the parts, preparing such an order, investigating the status of
raw materials and ordering them if needed. Let us assume that several
thousand such orders are in the plant or in the purchasing department
at any one time. To make matters realistic, we will g¢onsider that
some of these thousands of orders are behind schedule, owing to machine
breakdown, tooling troubles, reworks, and so on. Finally, let us con=
entrate our attention on the production controller, or chief expediter,
whose responsibility it is to coordinate activities so as to get all
of the parts of one customer order into the assembly department at one
time,

The Chief Expediter's Job

Under present methods, what are the activities of such a person?
Obviously there are too many orders in the shop for him to remember
the status of all of them. So decentralization is used; expediters
are assigned to groups of departments to watch the status of orders
within those departments. One of the main functions of these expediters
is to observe the "exceptions", e.g., orders behind schedule more than
a certain amount, and either take corrective action themselves or re-
port the matter to the chief expediter. The other important source
of such "exception™ data is from the assembly departmént, which informs
the chief expediter that certain assemblies cannot be worked since
they have parts missing.

Since there is no regular flow of work within the shop, it is
next to impossible to predict how many shop orders will arrive in any
given department during a day. Thus bottlenecks can &@nd do develop
overnight. When bottlenecks do occur, the decision must be made im-
mediately whether to authorize overtime or send some of the jobs out-
side on a subcontract basis. The former course has its obvious draw-
backs, while the latter course costs heavily in time, in order for

20 -5

bids to be requesjed, and received, tools and materials shipped to -
the outside firm, and so on. Life often becomes a continuing suc-~
cession of "putting out fires" for preduction-control management.

Whgp Electronics Offers

What does electronics have to offer for such a situation, in so
far as the mechanization of clerical functions is concerned? Fig. 1
is a flow diagram of the proposed method of processing customer orders
at the company studied. The first operation is that of typing a stand-
ard sales order from the customer!s order. Such items as inspection,
procedure, renegotiation clause, customer code number, and product
code must often be added to the information supplied by the customer.
By using a special electric typewriter, a punched paper tape is ob-
tained in addition to the regular typed document. This punched paper
tape has the information in a form suitable for direct entry into an
electronic data-handling machine. Bills of material are prepunched
into punched cards (which are still important "building blocks" in a
systems design, even with the advent of magnetic tapes, and the like).
The appropriate decks are selected by the operator and fed into the
machine. The machine combines these variable data (quantities, due
dates, and so on) with the stamdard data and posts them on the require-
ments magnetic tape. After all postings,are made, the machine scans
the requirements for each part number, and compares it with the in-
ventory data for the same part on the adjacent tape. Parts that may
need ordering can be used for a "loading" computation described by
Dr. Salveson, or the decision on what and how much to order can be
made by the human operator after the machine prints out the facts on
these questionable items. In addition to storing the order information
inside the machine, we also ask the machine to prepare the customary
papers to which we are accustomed and cannot live without.

What has the machine done so far? Nothing that is not done &al-
ready by manual methods, except that the operations of writing, com=-
puting, sorting, selecting, and so on, are done by machine instead of
by clerks. As an important by-product, we have the pertinent inform-
ation stored in the machine, where 1t can be used for other purposes.

In much this same way, information on the progress of shop orders
within the shop can be picked up and stored in the machine. Space

does not permit a discussion of how this is accomplished in the system
we propose, but further details majy be o?tained directly from the author
or from a special report on the subject.

Now, what does the production controller do with an electronic
system? Fig. 2 is the block diagram of the analysis part of the pro-
posed system.

3 "A Proposed Electronic Data Handling System for Production Control",
by R.G. Canning, Research Report No. 10, February, 1953, Industrial
Logistics Research Project, University of California, los Angeles,
California

Customer

Ditto

ster

éérking Mbm93§>

Ty

EDHM

20 = 6

:>(§brking Mbqgi} :

& &

| Invento
adely 5| ppEM E \ i
S SR P .«
Control
‘ /- , ape
" Gontro Select ch
Parts List
Tub File
Punche Purchage ssem. Parts ggggr 4
Tapse Req'n Order Req'n

Posting Requirements and Order ’

N

Material Req! :

20 = 7

_ Figure 2.
l A 4
t8 Short
@;rAgaemgiYa
Shipments by
Due Dates

éﬁiiii’

/ \A—k N
Re<<e> ‘ | .
v ' [
[| = Y
B@(—-O(——- Board
, Chioice oK |

R et

fﬁ%?ﬁfer EbF“%%E)

CONTROL AND EXPEDITING

20 - 8

To begin with; we see another tub file of punched cardsj each
card indicates a customer order for one month. If the customer enters
an order for the same assembly over a period of several months, a
similar card would be prepared for each month. These cards are then
sorted and collated by shipment-due dates. As a first step in the
analysis, the productiom controller selects the cards from the front
of the deck; these cards represent shipments that are past due, due
this week, and due during the next two weeks or so. These cards are
then read into the elctronic data-handling machine {EDHM).

How EDHM Works

For each card, the machine then -automatically refers to one part
of its memory, a magnetic tape showing how many parts are short for
each assembly order. The information is presented graphically so that
the production controller'!s attention is directed, for exsmple, to
those assembly orders that are past due and have only one part missing.
It is on such critical parts that he will concentrate his attention.

He then asks the machine to indicate the part numbers of these critical
parts.

The next step is to find the present status of all shop orders
that are making these critical parts. To do this, the machine auto-
matically refers to another magnetic-tape memory (there being at least
four such tape units tied to the machine, each storing the equivalent
of 12,000 punched cards). After this step, the production controller
is able to concentrate his attention on the critical shop orders.

Notice the difference between the present manual systems and the
electronic system. In the manual systems, no one man can keep track
of the status of all ordérs in the shop, so that this function is
split up between a number of men. In the electronic system, the machine
has all the information available and presents the desired infoiisation
on demand to the production controller, for his decision. Except for
this, however, the electronic system is still not too different from
the present manual methods using clerical help. The system so far,
then, is the mechanization of the office.

Perhaps the reader is questioning why we have mixed up punched
cards with magnetic tepes == why not all or the other? Punched cards
are still very useful for the operations of printing, sorting. and
c¢ollating data. Also, they constitute an economical and efficient
form of data storage where sequential access from small decks of cards
is sufficient and where few changes occur in the dataj it is hard to
"erase" a hole in a card, for example. Magnetic tapes, on the other
hand, have the advantage of automatic look-up (called random access),
ease of erasing and changing the data, and no need for the machine
operator constantly to feed new decks of cards into the machine. It
is likely that for some years to come, electronic data-processing
systems will make use of both methods.

20 -9

The Scheduling Problem

Now let us consider the scheduling problem -~ the anticipation of
bottlenecks and the decisions on the most effective corrective actions
needed. As was pointed out earlier, the large number of shop orders
and other variables cause this to be a difficult decision-making
problem for the production controller. Owing to the limited memory
span of the human mind, the number of wariables that enter into these
decisions must be reduced to the point where one person can comprehend
them.

Simplification of the manual scheduling operation is accomplished
as follows: The main criterion of priority for a shop order is due
date =- primarily, the date on which it must be ready for the assembly
department, and then the individual operation due dates which must
be met in order to achieve the final due date. If the shop order is
for parts that are holding up tbe zompletisén: of an-asiembly, a higher
priority can be given by setting back the individual operation due
date until there is no other 'job in the department with an earlier
date. However, if the coordination of several shop ordefs is involved,
to make them all arrive at the assembly department at the same time,
this is often too complicated a situation to solve mentally with any
degree of accuracy,, owing to all the interactions. The time estimate:
for a shop order to progress through several operations is not cal-
culated from standard times plus waiting times, but is likely to be
an ' average "flow time" based on experience. Thus "rules of thumb"
must be used, and the expediters concentrate their attention on the
"exception" orders.

It is in such a situation that electronics begins to show a marked
advantage over manual methods. An important feature of the system is
that very little additional equipment is needed for this function,
since all the pertinent production date are stored already inithe
machine.

Referring again to Fig. 2, we have added a block called the
scheduling machine., For those familiar with industrial engineering,
this machine is an electronic analog of the well-known Gantt chart.

For those not familiar with Gantt charts, let us say that the scheduling
machine assigns shop orders to machine tools in just the same decision-
making manner as is done in the shop -- only on a much faster time
scale. The machine is then able to deduce logically what is most

likely to be happening in the shop for each hour during the next few
weeks,

The scheduling machine is first loaded from the shop-order status
tape, which gives an up-to-date picture of the status of each shop
order. The machine then starts working its way into the future, hour
by hour. When a machine tool is available, the scheduling machine
scans through all waiting shop orders and picks the "one" with the
highest priority that is slated to go on that type of machine tool.
At any desired time, the machine can stop working its way into the
future and total up the number of shop orders waiting in each department,

20 - 10

to give a picture of scheduled versus available hours.

When a future bottleneck becomes apparent, the production con=-
troller has several choices, in order to smooth out the peaks and
valleys: changing priorities to move some jobs faster, overtime work,
sending certain jobs outside on subcontract well in advance of when
the bottleneck would occur, and so on. By "playing" with the schedule
in this way, it is believed that he can derive a satisfactory schedule
for the next week or two. Also, he can get a rough idea of the future
by letting the machine run out a month or two in advance. A rough
estimate of the time scale is 15 min. machine time for 40 hr. shop
time.

Therefore, two brief (and, it is hoped important) stateménts
can be made about the contribution of electronics to the scheduling
problem: The electronic machine helps the production contréller to’ -
inelude more of the important variasbles into his decision-making
procéss, instead of using simplifications and "rules of thumb", Also,
the scheduling machine allows the production controller to see the
consequences of several alternative decisions, and to choose the dec-
ision with the better consequences. Bottlenecks and valleys can be
foreseen and corrective action started in time to do some good. We
feel confident that a better utilization of production facilities will
be realized from such a system, with resultant savings even greater
than those obtained from mechanization of clerical operations.

Possible Cost Reductions

The question then arises =~ what is the magnitude of cost re=-
ductions that an electronic system might produce? Educated estimates
only are available so far. At the company studied, it is estimated
that the functions of about 14 of the 29 people now in production
control could be handled by machine. This direct saving from salaries
and overhead would amount to some $175,000 or more, in 2 1/2 years.
Since the company's product output in 2 1/2 years would be in the
neighborhood of (and this is an estimate based on the number of direct
labor employees) 5129000,000, even a 3 per cent increase in output
from the reduction of bottlenecks and more optimum scheduling and
loading would mean a saving of about $360,000, or about twice as much
as the clerical savings. The two savings total some $535,000, in
2 1/2 years, and the cost of the eguipment is estimated to be between
$250,000 and $300,000.

Conclusion

This paper gives an idea of how an electronic system could take
over many of the routine clerical operations in production control,
and to assist in some of the nonroutine operations. However, space
does not permit a discussion of some of the more interesting issues
such as how a particular company can determine whether or not elec-
tronics would be of interest to the management. Nor has it been

20 - 11

possible to consider the likely and very important reactions of em-
ployees, unions, supervisors, and top management to the idea of such

a system, or the possible changes in a company's way of doing business.
These are questions requiring further investigation as actual ap-
plications are made.

Summary of Specifications for 24=1
TAC == a Three-Address Computer

TAC is a hypothetical computer developed for use in MIT's special summer
program in Digital Computers: Business Applications, August, 1954. A compiler-
interpreter program for MIT's Whirlwind I permits Whirlwind to simulate TAC.

TAC Definitions

A character is any of the following letters, digits, superscripts, symbols, or
machine functions, comprising the complete vocabulary of the MIT Flexo-

writers (augmented by g and £).
TCEg™/)=-+.1 02468°2%884p,,.2
RBEHE: (_=,]8 13579125 7°aAB,,.2

(where R = return carriage, T = tab (stops every 10th space), B = back space,
C = color shift (starts black), H = stop, I = ignore; S = space)

A word consists of nine characters, which are identified from left to right by
the letters a bc de f g h i or by the digits 1 to 9.

A number is a word in which the first character, a, is =, +, or O and each of
the remaining eight characters becdefghi'is oneof nine digits O, 1, 2500459,
forming an 8-digit decimal integer.

An instruction is a word in which the first character, g, represents one of the
fifteen operations listed below and the remaining characters, paired, form
four "addresses". The scheme is shown below:

|_a b | ¢ LAéAJ e
Dperationvcgggxcter G ——

Address of first operand (except
in N, L, R, P, T)

Address of second operand:

An address normally refers to one of 110 registers which are numbered 00, Ol,
socy 99, x0, x1, ooy x9. However, there are certain exceptions to thiss

(1) The bc address associated with operations N, L, R, P and T is omitted,
and the characters are used as a continuation of the operation des-
"ignation (see e.g. N+, N= below)}

(2) The fg address for operation P is omitted and the characters are
used to continue operation specificationj

(3) The registers x1 and x2 can be treated as a single register for cer-

"~ tain purposes and this register is denoted by the address xx. For
operations A, S, M, D or N, the-contents of xx will be treated as
a single 16-digit number, provided that x1 and x2 both contain 8~
digit numbers having the same sign. Thus if x1 contains +12345678
and x2 contains +98765432, then xx will be deemed to contain
+1234567898765432,

We note that address xO always contains exactly zero. A postemortem (see
below) will always occur if any instruction contains an address which is
not legitimate accoding to the above rules.

[£ leg |l h |3
rAddress bf next instruction

(except in C, K, I)

Address to which result' is sent
{except in C, K, P,'R,I)

A postemortem is performed automatically whenever TAC encounters any impossible
instruction (im particular, any word not starting with one of 15 legitimate
operation code letters, or containing an illegitimate address, or violating
the special conditions Iisted.dﬁ,page$28§o The post-mortem consists of
printing the location of the illegitimate instruction itself, the contents
of the registers it refers to, a sequence table listing the locations of
the instructions performed just prior to the post-mortem, and an altered-
word tablé listing the contents of all of the registers whose contents have
been altered during the program.

The time required to perform a given instruction may be calculated from the
following facts: TAC storage consists of a magnetic drum with 4 groups of 25
words (0=24, 25=49, 50«74, 75=99) revolving at 40 revolutions per second (1 milli-
second per word); access to the x registers is one word time (no waiting time
required); and TAC always follows the control sequence: it acquires the instruc-
tion, acquires the operand{s*), performs the required operation {in the number of
word times indicated in the following list), and stores the result{s*) (omitting
any stogage accesses where none is required, as with the bc address of N, L, R,
P, or T).

#31f two references to the drum are required to acquire operands or store results,
TAC searches for both simultaneously, so that the time required is the longer of
the two access times computed independently.

Symbols Used

abcdefghi represents the nine characters of a TAC word,

C() represents "contents of", Thus C{be) represents "the contents of the reg-
ister whose address is be®™ (where b and ¢, the second and third characters
of the instruction, must each be either one of the decimal digits or the
letter x).

represents "becomes the new contents of". Consequently: C{bc)+C(de)—>fg
should be read as "the contents of bc plus the contents of de becomes the new
contents of register fg, replacing whatever was in fg but not changing what
is in bec or de.

represents TAC's double-length register made by pairing x1 and x2.

xx
> represents "is greater than®, < represents "is less than",
10° (read as ™ten to the c") represents a one followed by ¢ zeros. (for example
10° = 100,000). _
Y S E§‘ TAC Instruction Code
h‘uﬁ ‘\ P — ’
Name | S € & Function Post-Mortem will occur .
Read ['R | 5/char. | Read enough characters from punched |[If there is not enough tape
- | tape to fill the positions numbered |or if tape contains illegal
b thru ¢ in register de, without characters, or if b=0, or _if
changing the other digits of C(de). [c=0 or if bc or if Te¥if not
a legitimate address,
(ignores deletdons, deals properly with upper and lower case, but
reads all other characters including back spaces, underlines, tabs,
and carriage returns explicitly, and g and £ are each read as 3
characters). :

Print| P |10/char.| Print the characters in the positions| unless b=1l, 2,0.., 9 and
numbered b thru ¢ in register de, preT "e=ly; 250005 9 and
ceded by the character f and followed| de is a legitimate addressofﬂdTX&)

_ by g- ovr if b>¢,

Tape | Tr|30/block| read 10 words from block de (or from | unless b=wor r

Read next consecutive block if de=00) on n e=1l, 2,.3, 4 and:
tape unit ¢ into registers fg, fg+l, n £fg=00, Oljc0.5 90 or

N . I °coayg ggi S o e e e o x0
T . " de=00, 0l;..0.5 Or 40

Tape | Tw write 10 words onto block de (or onto _ p Tve el

Write next consecutive block if de=00) on ?ﬁs%e;ggd&oglzigtégnhas been
unit ¢ from registers fg, fg+ly... °
fg+9

Input| I {5/char. | Without altering the present contents
of storage, start reading a punched
tape containing a TAC program in con-
ventional form, ending by taking the
next instruction from the addréss pred
ceding "start" at the end of the tape|

Halt | H C+an committine. Start at hs onlv 3 the start bntton 3e denreacsed .

24=3

*° -
C(de) has odd characters (listed in the if be, de, or fg=xx

lower line of the two lines below#), . _
replace the characters of C(fg) by the characters occupying corresponding

colums in C(be), without altering the other characters in G(fg).

Add A |2 |C(Be)+C(de)—>fg 1.* if the magnitude of the result exceeds
: 99,999,999 {or 9,999,999,999,999,999 if
fg=xx)
, 2. if be=xx or de=xx or fg=xx and (bec) and (de)
Subtract S 12 |C(be)-C(de) >£fg are not both numbers.

3. if the column=by=-column addition or subtractio
involves any non-digit N in any arithmetic
operation other than N+0=N, N-0O=N, or N=N=0.,

. (see next page for details) .
Multiply M | 10| C(be)xC(de) > fg 1.* if magnitude of result exceeds 9?,999,999
: (or 9,999,999,999,999,999 if fg=xx
Divide D | 25/ C(be)+C(de)>1g 2a,in M and D only, unless C(be) and C(de) are
(quotient rounded) b
Namerical , oth numbers. _ ~
Shift Left | N+ C(de)xloc-»fg 2b. in N only, unless b=+ or =, c=decimal digit,
o T s Dttt —_ and C(de)=a number.
Shift Right| N~ C(de)+10" > fg 3. in D only, if de=xx
‘Compare C | 2 [Take next instruction * ifC(bc) andC(de) are not both numbers.
Numerically] from: fg if C(be)> C(de),
hi if C(be) < C(de), or
next register consec=
utively if C{be)=C{de). .
Logical L | 2 |Shift C{de) and C(fg) unless b=+ or =3 c¢=0, 1, cc0y Or 9; and de and
Shift cyclically ¢ places(left |[fg are legitimate addresses.
if b is +, right if b is or if be, de, or fg=xx.
< b=+ b= -»
P e -0
Compare K | 2 [Take next instruction *,f be. de. or fo=
Logically from fg if C(be)>C(de), | == °Cr» 9¢» OT 1g%Xx.
hi if C{be)=<C(de), or .
next register consecu-
tively if C(be) is ident
1°%i,3§§¥9°£§€zgymbol N
| > is defined as’ follows: Compare the characters of C(bc) with those
of C{de) column-by-column from the left end until identity is established
or until one character is found to be to the right of the other in the
list below,** in which case the word containing said character is said
to be greater than the other logically _
Extract E [2 |In those columns, and only those, in which

% small{ evens

jend odd: RBHE: (=,| S 13579 1°°7° arn Z
. Register contains V00000000~ If an inStrudtion a empts to put other information

TCEg™/)-+,1 02468 92488 595 ,,, 2) large
end

into it, the information is lost. No Post-Mortem occurs.

2. The next instruction is taken from hi (unless otherwise specified in operations C and
K) except in I,

3. A Post-Mortem always occurs if hi is not a legitimate address (except in I,and i2 H
if not restarted).

* A Post-Mortem occurs on A, S; M, D, C; K, and E unless bc, de, and fg are all legitimate
addresses. R

25=1
Summary of Specifications for

SAC = a Single-Address Computer

SAC is the 195/ version of the Summer Session Computer of 1953, which
was developed for summer classes. SAC is the Summer Session Computer without
floating-point numbers but with auxiliary magnetic tapes for a larger amount
of storage.

SAC Definitions

A word is either an instruction or an integer written to be stored in one
register. Each register holds 27 binary digits and a sign.

An integer is composed of 27 binary digits and a sign. Hence its magnitude

must be less than 22 = 134,217,728 which is somewhat greater than 10°.

Hence SAC integers may be thought of as being 8 decimal digits long.
They are written as a + or a = sign (the + may be omitted) and 1 to 8
decimal digits, followed by carriasge returns or tabs.

An instruction is made up of an operation section and an address section, and
possibly a "counter letter® to add the value of a counter to the value
of the address before execution. Instructions are followed by tabs of
carriage returns.

An operation is indicated by a code of three lower-case letters as given on
pages 3 and 4.

An address may be either absolute or symbolic. An gbsolute address is any
integer from O to 298 (since SAC has 299 registers). Using_these-integers,words
are assigned to registers using the address followed by a vertical bars

102| add 15
A symbolic address is a single lower-case letter {except g or 1) followed
by one to three decimal digits. It is used to "tag® registers which are
referred to by the program and are written:

cef b3
The register referred to is tagged by the address and a commasg

b3, +750
To correct a program and assign a new word to a previously used register,
the tag is written with a vertical bar instead of a comma:s

bBﬁ +700
If the register to be changed has no tag, a count from the nearest tag
may be added to that tag and written with a vertical bars

b3+5| +2
In either case, words from this point on (after the correction) will
overwrite the registers following b3 or b3+5. Counter letters {a, b, ¢,
d, e, £, or g) do not alter the actual instructions in the store but
rather cause the instruction to refer to a register with an address which
is the sum of the address section of the instruction and the value of
the counter called for at the time of execution of the instruction.

A post-mortem may be of two types, conversion or computation. A conversion
post-mortem occurs when the program which changes the SAC program into
Whirlwind language finds a gross error on the tape. Such errors may be
1) unassigned symbolic address, 2) undefined instruction, 3) duplicate
symbolic address, 4) absolute address too large, 5) program longer than
289 words plus the 10 fixed constants, 6) integer too large, 7) number in
symbolic address too large, and 8) no counter letter on operations rst,

ii, jie, inc, dec, and cii. Computation post-mortems occur during the
execution of the program and are defined for each instruction. See pages

3y 4y and 5,

25=2
SAC Equipment

SAC is intended to be representative of the general field of single-
address digital computers. It doesn't exist as a configuration of electron
tubes and wire, though. It is simulated through compiler=interpreter programs
on M.I.T.%s Whirlwind I computer. It has a speed of about 3000 operations
per second. SAC has 289 registers to hold integers or instructions and 10
registers with fixed constants. Input is by means of tape prepared on the
Flexowriter tape perforating equipment and read through a Photoelectric
Tape Reader. Output is provided by three different devices. Through the
oscilloscope and the camera, curves may by plotted point by point and photo=-
graphed for permanent record. Information may be typed in two ways, either
on a typewriter directly connected to the machine or on special magnetic
tape for typing at a later time (recording is done at a much higher speed
than direct typing).

The whole computer centers around the arithmetic element, which is
made up of an accumulator twice as long as a register, capable of holding
54 binary digite (which means it may hold an integer whose maximum value is

about 18 x 1015)9 and the remainder register to hold the remainder after a
dhr instruction. SAC has an auxiliary store composed of four magnetic

tape units, each capable of storing 990 words. They may be used only through
the SAC instructions mts; mtr, and mtw.

Data may be placed in the machine in two ways. The prepared program
tape may be read into the machine by placing the machine in the loading
mode by pressing the READ-IN button, or by using the rip instruction.
Complete words, terminated by tabs or carriage returns, may be read in using
the rin instruction. Both instructions read Flexowriter tape in the PETR,

A program is prepared on the Flexowriter typewriter which punches a
tape as the typewriter operates. There are four parts to the programs

1) the title line, written as f2s 198-~/f=~ = === and some identifying
information. The first set of holes on the actual tape must correspond to
an £, The title line is followed by a carriage return.

2) the actual words of the program, each terminated by tabs or carriage
returns, using symbolic or absolute addresses as desired.

3) tags on the words as needed, or absolute addresses when desired.

4) an order telling the computer at which instruction the program is
to begin being executed, using either a7| start if a tag has been assigned
to the word to be started at, or a2¥6| start if the word has no tag but one
is near; or an absolute address 27| start.

INTRUG .

cef
cel
enf
cmf
cri
xch
add
sub
mby
dby

- dhr

jmp
jip
jin
jiz
jir
jix

sra

caf
cai
rst
jii
jic

dec
¢ii

m
ol
o o o v o o v o o o o

al
ai b

o’

mb
al b

al b
mb
mb
al b

o
s
o o v o o o U

INSTRUCTION CODE OF THE SINGLE ADDRESS COMPUTER (sac)

MEANING

copy contents from
copy contents into
copy negative from
copy magnitude from
copy remainder into
exchange

add*

subtract+ ' _
multiply by

divide by

divide holding
remainder

- jump

jump if positive
jump if negative
jump if zero

jump if remainder-
Jump if excess

set return address**

copy address frop¥¥*

copy address into¥**
reset (counter b)
jump if incomplete
jump if complete

- increase (counter b)

decrease (counter b)
copy index into

DEFINITION

C(a1+ib)=>AC

C(aC)»aled

=C(a1+ib)=$AC

|c(a1+1, |- ac

C(RR)«)al+ib

C(Ac)-a)aiﬁbg c(a1+ib)-=>AG

C(AC) + C(al+i,)-AC

C(AC) - G(a1+ib)-’AC

C(AC) x c(a1+ib)—mc :

divide C(AC) by c(a1+ib), rounded quotient =3AC.
divide C(AC) by C(alt+i,), quotient->AC,

- remainder>RR

take next instruction from al+ib
ditto, if C(AC) >0
ditto, if C(AC)KO
ditto, if C(AC) =0
ditto, if C(RR) # O
ditto, if G(AC) 3 227

replace address section of C(al+i) with 1 + the
address of the register containing the most recent
jump or conditional jump which took effect

address section only (as an integer) of C(al+ib)=¥AC
address section of.C(AC)=%a1+ib &8 address section
set ib = Og_nb =m

increase‘ib by 1, then jump to al if ib<,nb

increase ib‘by 1, then jump to al if i‘b%nb
increase ‘both-ib and n, by m

decrease both ib and n, by m

ib as an integer<sal

TIVE
(ms.)

0.1
0.1
0.1
0.1
0.1
0.1

0.1

0.1
1.5%7
1.5
1.5%"

0.1

0.1

0.1
0.1
0.1
0.1
0.1

0.1
0.1
0.1
0.1
0.1

0.1

0.1
0.1

POST-MORTEM¥*if
14 '
2,5, 9

14, 15

149 15

5 &

2,59 9, 14

l, 39 49 99 14'
1, 4, 9, 13, 14
1, 12

11, 12

11, 12

€52

17
10, 17
10, 17
10, 17
17

10, 17
5, 16

5, 16

5, 7, 9, 16
19

17, 18

17, 18

18, 19

18, 19

5

INTRUC.

pat
fre
ric
rin
rip

mts

mtr
ntw

tyc
tyc

tyn
tyn

‘stp

al b

mo b

al b
al b

m
100+m

m
100+m

0

MEANING
plot al

frame (scope) camera
read in charscter
read in numerically

read in program

‘magnetic tape search

magnetic tape read
magnetic tape write
type character

type numerical vﬁiﬁe

stop

i

DEFINITION

plot a point on the scope at x = c(Ac)

C(alti,) &y =
(see drawing on page 4)

move the next film frame into place and open the
camera shutter if it was closed

read the next char. via the PETR into AC as a
positive integer< 77

read the next complete integer via the PETR
into AC

read in program via paper tape in PEIR, storing
and starting as directed by new program

search magnetic tape unit m for block no and stop at
beginning of block. If no=00, select next block in
order.

read from most recently selected magnetic tape unit
and block into registers a1+ib, al+ib+lgooe,al+i +9

write on most recently selected magnetic tape unit
and block from registers al+ib9 al*ib+lgeo°,al+ib*9

record on delayed printer (m), or on direct printer
(100+m) ;s the Flexo. char. specified by the integer m

record on delayed printer (m), or on direct printer
(100+m), C(AC) as specified by m (see table page 4)

stop the computation

TIME
(ms.)

1
500
100

400

+4+4

+++

+++

15
100

*lioo

POST-MORTEM¥if -
6, 12

{Comp. stop=s if
no tape in PETR)

1 (also see
ric above)

22 (also see
ric above)

235 24
25, 27
26, 27
20

2, 10, 21

#Tne programming mistakes which result in a post-mortem are listed on the next page.

forming an instruction if any of the programming mistakes listed with that instruction are made.
always occur if (a1+ib) 2300 or if (aifj,b)(Oo

“Yhen executing this 1nstruct10n9 a counter letter, if any, is not considered part of the address- section of the

instruction in register al+i .

b°

A post-mortem results while per-
A post=mortem will

v An integsr may be added to an instruction or vice-versa, but an integer may be subtracted only froﬁ’an instruction.
Two ingtructions with identical operations sections may be subtracted to get an integer.

**4 multiplication or division imstruction in which the register referred to (register al+i) is 290+p where O<fp<18
(so that the resulting operation is a decimal shift) takes 0.1 (p+l) milliseconds.

ﬂ-ébé‘

Time for magnetic tape instructions: 10 ms. per block read or written, plus 10 ms. each time tape stops.

Searching -

time is the same as the time to read all intervening blocks, but computer operation may occur simultamecusly.

¥Longer time applies to direet printing, shorter time to delayed printing (via special magnetic tape).

=62

PROGRAMMING MISTAKES which cause s POST-MORTEM

1. Result is an integer of magnitudeézzs4 15. GC{al+i,) is an instruction

2. Result is an integer of magnitude22

27 16. C{al+i,) is not an instruction

b

3. C(AC) and C{al+i,) are both instructions 17. C{al#i.) is not an instruction and the jump takes effect
4o Result is instruction with address » 499 (the ;gstéubrtem will occur after the jump is executed)
5, al+i, & 290 or al+iE§0 18, Resulting magnitude of i,2 512
6. 1C(AC) 21024 or [¢(al+i, } 21024 19. m> 499
7. C(AC) is a positive integer>499 20, m>77 or m corresponds to an illegal Flexo character
(or instruction with address< 300) 21. m=10 or m=20 or m2 30
8. C(AC) is an instruction 22, Tirst character on new tape is not f. (Will cause WWI
9. C(AC) is undefined alarm) (Reader stops after last t in start. If new pro-
10, C{AC) is not an integer ' gram follows, next character must be £.
110 C(a1+ib) =0 230 m % 19 29 39 or 4
12. C(AC) and C(al+i,) are not both integers 24. no = 00 and block 99 has just been used
13. C{al+i,) is not an integer, or instruction 25, a1+ibé 281 or al*i, =0
with same operation section as C(AC) 26, al+i =290 b
1o C(al+ib) is undefined ' 27. If ‘tape is positioned after block 99

Contents of special registers

C(0) (=40 . | c(295) = +102 = 100,000
€c(290) = +1 ;=41 C(296) = +1o7 = 1,000,000
C(291) = +10; = +10 c{297) = +#10g = 10,000,000
c(292) = +105 = +100 c(298) = +10° = 100,000,000
€(293) = +10-° = +1000° €(299) = undefined

C(294) = +10* = +10,000

DEFINITIONS OF SYMBOLS

—
AC
C(al)

C(al+i

b

b)

i

RR
PETR

becomes the new contents of
Accumulator

Contents of register al. al represents any floating address; i.e., any letter except o or 1, fol-
lowed by any non-negative decimal integer < 1000.

Contents of the register whose address is obtained by adding to al the value of ibo

The index associated with counter b, where b represents any of the 7 counters a, by, ¢, d, e, £ or
g. Except for the 6 instructions rst, jii, jic, inc, dec, cii, a counter letter need not be
specified all.

The criterion associated with counter b,
Remainder Register, which holds the remainder after dhr and is not changed by any other instruction.

Photo-electric Tape Reader into which is inserted a punched Flexo tape to be read in under control
of the computer.

G652

Tabulation of m walues for use with tyn

n initial zeros

0 ignored

1-9 printed
11=19 spaced over

Examples G{AC) = 12

tynO 1234
tyn103 | Post-Mortenm
tyn5 01234
tynllé *%1234

* represents space on printed copy

no, of digits

printed = 4

l«d<9
d=n
1€ 4 €(mn=10)

C(AC) = =789
=789
=789
=00789
**=789

total space

DOS. neg.
d da +1
m m+ 1
m=10 me9
C(AC) =0

0

000
00000
FHRRAKO

- Calibration of Scope Face for pat Instruction

for pletting

zero prints

as Post=Mortem if
0.
‘m O's [c(ac)=10"

see examples |C(ACﬁE:lOm=lO
Delayed/Direct

Delayed

Direct

Delayed

Direct

. Area available

9=52

26-1
A Selected Bibliography of Material
Relevant to Business Applications of Computers

PROCEEDINGS_ OF CONFEHENCES AND SYMPOSIA
Joint AIEE-IRE-ACM Computer Conference Revorts

(Available from the Association for Computing Machinery, 2 Bast 63rd St.,
New York, N.Y.)

1.

Trends in Computers: Automatic Control and Data Processing (Western
Computer Conference, Los Angeles, Calif., Feb. 11-12, 1954, $3.00)

Keynote and Luncheon Addresses

a. Will Electronic Principles Make Possible a Business Revolution
W. W. McDowell, p.9

b. Trends in Electronic Business Data Systems Development,
Dean E. Wooldridge, p. 16 -

Session II-Data Processing Systems

¢. The Sutomatic Handling of Business Data, Oliver Whitby , p. 75
d, Introduction, Richard G. Canning, p. 80

e. Ready-to-Wear Unit Control Procedure, S. J. Shaffer, p. 82

f. Unit Control Systems Engineering, Raymond Davis, p. 89

g. A Solution for Automatic Unit Control, Harry D. Huskey, p. 96
h. The System in Operation, Myron J. Mendelson, p. 98

Session IV-Data Processing Equipment

i. The IBM Magnetic Drum Calculator Tyme 650-Engineering and Design
Considerations, ¥. S. Hughes, Jr., p. 140

Jjo Design Features of Remington RHand Speed Tally, John L. Hill, ». 155

k. Production Control With the Elecom 125, Norman Grieser, p. 163

1. A Centralized Data Processing System, Jerome J. Dover, p. 172

m. A Merchandise Control System, William L. Martin, p. 184

co0ssoand 10 other articles

Proceedings of the Western Computer Conference
(Los Angeles, Calif., Feb. 4-6, 1953, $3.50)

Session I

a., Commercial Applications -- The Implication of Census Experience
J. L. McPherson, p. 49 ;

b. Payroll Accounting with Blecom 120 Comvuter, R. F. Shaw, p. 54

c. Automatic Data Processing in Larger Manufacturing Plants
M. E. Salveson and R. . Canning, p. A5

d. Requirements of the Bureau of Old-Age and Survivors Insurance for
Electronic Data Processing Kquipment, ¥. E. Stickell, p. 74

e, The Processing of Information-Containing Documents, G. W. Brown and
L. N, Ridenour, p. 80 '

eocoscand 18 other articles

Proceedings of the Bastern Joint Computer Conference
(Washington, D.C., Dec. 8-10, 1953, $3.00)

Use of Electronic Data-Processing Systems in the Life Insurance
Business, M. BE. Davis, p. 11

essoccand 23 other articles

26-2
PROCEEDINGS OF CONFERENCES AND SYMPOSIA - Cont.

L, Review of Input and Output Equipment Used in Computing Systems
(New York, N.Y., Dec. 10-12, 1952, $4,00)
27 articles

5. Review of Electronic Digital Computers
(Philadelphia, Pa., Dec. 10-12, 1951, $3.50)

Proceedings of the Association for Computing Machinery

(Available from the Association for Computing Machinery, 2 B. 63rd St,
New York, N.Y.)

6. Meeting at Toronto, Ont., Sept. 8-10, 1952 - 35 articles ($3.00)
7. Meeting at Pittsburgh, Pa., May 2 and 3, 1952 - 41 articles ($4.00)
See also Journal of the ACM, #23 below

American Management Association
(Available from American Management Assn., 330 W. 42nd St., New York 36, N.Y.)

8. A.M.A. Special Conference - Integrating the Office for Electronics
(Convention Workbook, Feb. 25-26, 1954, New York, N.Y., Not for sale)
Contains good bibliography of references.

9. A New Approach to Office Mechanization: Integrated Data Processing
Through Common Language Machines - The U.S. Steel Corp. Program
$2.50 to non-members

Navy Mathematical Computing Advisory Panel Meetinss

(Published by the Office of Naval Research, Dept. of the HNavy,
Washington, D. C.)

10, Symposium on Managerial Aspects of Digital Computer Installations
30 March 1953

11. A Symposium on Commercially Available General-Purpose Electronic
Digital Computers of Moderate Price - 14 May 1952

Life Office Management Association

12, Blectronics Seminar, Papers presented at Spring Conference,
Swampscott, Mass., May 25, 1953 (Not for sale)

Midwest Research Institute (Kansas City, Mo.)

13. A Symposium on Industrial Applications of Automatic Computing
Eguipment, Jan., 1953

Railway Systems and Procedures Assn,

14, Proceedings 1954 Spring Meeting: Inventory Management and Data
Processing (Chicago, I1l,, April 20-22, 1954, $4.50, Copies
obtainable from: Mr. J. W. Milliken, Secretary-Treasurer, Railway
Systems and Procedures Assn., P. 0. Box 514, New York 8, N.Y.)

Manchester University Computer

15. Inaugural Conference, July, 1951

26-3
SURVEYS
16. A Survey of Automatic Digital Computers - Office of Naval Research-
1953 (Available from US Dept. of Commerce, Office of Technica; Services,
Washington 25, D. C., $2.00)

17. Electronic Digital Computer Survey - Jan. 1953
(Vitro Corp. of America, 233 Broadway, New York 7, N.Y.)

GLOSSARIES

18. Report to the Association for Computing Machinery: First Glossary of
Programming Terminology - June 1954
(Available from the ACM, 2 East 63rd St. New York 36, N.Y., $.25)

19. Standards on Electronic Computers: Definitions of Terms, 1950
(Available from IRE, 1 Bast 79 St., New York 21, N.Y., $.75)

REPORTS

20. Electronics - New Horizon in Retailing
Research Report prepared by a group of students &t the Harvard Grad.
School of Business Administration
(Available from AER Associates, 6450 Cecil Ave., Clayton 5, Mo.-$10.00)

21. Blectronic Business Machines - A New Tool for Management
Report of a group of Harvard Business School students for second-year
course in Manufacturing

22. Report of Committee on New Recording Means and Computing Devices
Society of Actuaries, Sept., 1952

. COMPUTER JOURNALS

23. Journal of the Association for Computing Machinery (Published
Quarterly since Jan. 1954, subscriptions $5.00 for members; $10.00 for
non-members; membership, including subscription, $6.00)

24, Computers and Automation (Edmund C. Berkeley and Associates, 36 West
1lth St., New York 11, N.Y., $4.50/yr., published periodically; now
to be published monthly)

'BOOKS

25. Berkely, Bdmund C., Giant Brains or Machines that Think
John Wiley and Sons Inc., 440 Fourth Ave., New York, N.Y. (1949)

26, Booth and Booth, Automatic Digital Calculators
Academic Press Inc., 125 Bast 23rd St., New York 10, N.Y. (1953)

27. Bowden, B. V., JFaster Than Thought
Pitman Publishing Corp., 2 West 45 St., New York, N.Y. (1953)

28. Diebold, John, Automation
D Vah Nostrand Co. Inc., New York, N.Y. (1952)

29. Engineering Research Associates, High Speed Computing Devices
McGraw-Hill Book Co., New York, N.Y. (1950)

30. Hartree, Douglas R, Calculating Instruments and Machines
The University of Illinois Press, Urbana, Illinois (1949)

BOOKS, Cont. 26-4

31. Wiener, Norbert, The Human Use of Human Beings
Houghton Miffling Co., Boston (1950)
32. Wilkes, Wheeler and Gill The Preparation of Programs for an Electronic

Digital Computer
Addison Wesley Press, Inc., Cambridge 42, Mass. (1951)

ARTICLES FROM JOURNALS AND MAGAZINES

33. Business Week
Tomorrow's Management Aug 15, 1953

Yarvard Business Heview
34, Blectronics Down to Barth, J. A. Higgins and J. S. Glickauf, March-
April 1954
35. GE and UNIVAC, R. F. Osborn, July-August 1954

36. Office Management Association Journal
Automatic Calculating Machines and Their Potential Application in
the Office, D. R, Hartree, August 1952

37. dJournal of the Instutute of Actuaries
Large-Scale Electronic Digital Computing Machines, R. L. Michaelson
December 1953

38. Journal of Accountancy
Accountant's Responsibility for Making Punched-Card Installations

Successful, Leon E. Vannais Oct. 1949

39. Journal of the Royal Society of Aris
Automatic Calculating Machines, M. V. Wilkes, 14 December 1951

40. Proceedings of the Institute of Radio Engineers, Computer Issue,
October 1953
a. Computing Bit by Bit or Digital Computers Made Easy
A, L, Samuel, p. 1223
b. Can Machines Think?, M. V. Wilkes, p. 1230
¢. Computers and Automata, C. E. Shannon, p. 1234
d. Electronic Computers and Telephone Switching, W. D. Lewis, p. 1242
e. Fundamentals of Digital Computer Programmlng, W. H. Thomas, p. 1245
seovo-and 39 other articles

hi, Phllosoghlcal Magazine _
Programming a Digital Computer to Learn, A. G. Oettinger, Dec. 1952

b2, Stores
Retailing with Electronics, Joseph B. Jeming

Fortune
43, Office Robots, January, 1952, p. 82
Ly, The Automatic Factory, October, 1953, p. 168
Ls, The Information Theory, December, 1953, p. 136 Francis Bello
46, Push-Button Labor, August, 1954, p. 50

Scientific American
47, Mathematical Machines, H. M. Davis, April 1949, p. 29
43, The Strange Life of Charles Babbage, Philip and BEmily Morrison,
April 1952, p. 66
49, Computers in Business, L. P. Lessing, January 1954, p. 21
50. Linear Programming, W.W.Cooper and A. Charnes, August 1954, p. 21

51. Time
The Thinking Machine, Jan. 23, 1950, p. 54

COMMERCIAL COMPUTER MAEERIAL

26-5

nternational Business Machines Corp., 590 Madison Ave., New York, NW. Y.

52.

530
5.
55.
560

Light 6n the Future (1953) (General information on computers.)

IBM Electronic Data Processing Machine Type 702 Manudl of Instruction

IBM Type 650 Operating Principles

Principles of Operation Type 701 and Associated Equipment (1953)
IBM Speedcoding System for the Type 701 Electronic Data Processing
Machines (1953)

Also case studies on the 650 and brochures on commercial applications of
other IBM machines,’ ’

__QLQ&JQL__j@h_Qg., 315 Fourth Ave., New York 10, N.Y.

57.

58,
59.
60.
61.
62.

63.

‘f;ogram?ing Univac Fac-tronic Systems - Instruction Manual I (1953)
18.50

How Univac Predicted the Election for CBS-TV (1952)

The A-2 Compiler Systems Operation Manual (1953)

The Editing Generator (1952)

Univac Short Code (1952)

The Programmer -~ & periodical ‘
Catalogue of Courses in Blectronic Computers (1953-54) -

Cﬁggggér.ﬁegggrgg Corp., 3348 W. Bl Segundo Blvd., Hawthorne, Calif.
64. An Explanation for the Layman of "Electronic Brains",

65.

é6.
67.

Bverett A. Emerson (1953)

Comparison of the Card-Programmed Computer with the General-
Purpose Computer Model CRC 102-A (1953)

Accounting with Blectronics, J. 8. Warshauer (1953)

Sorting and Collating with the CRC 107 or CRC 102A General
Purpose Computers

The British Tabulating Machine Co,, Ltd., 17 Park Lane, London, V.1,
8. Rambles Through Binland and Electronia, R. Michaelson

MIT PUBLIQATIONS
Course Notes

69.

?;tes on Digital Computers and their Applications, Summer 1953
5.00)

70. -?égita% Computers - Advanced Coding Techniques, Summer 1954
1.00

71, Notes from MIT Summer Course on Operations Rosearch, June 16-
July 3, 1953 ($3.50+ .15 postage from Technology Press)

Theses

72, Blectronic Digital Machines for High-Speed Information Searching,
Philip R. Bagley (1951)

73. Applications of Self-Checking and Self-Correcting Codes to
Digital Computers, F. B. Heart (1952)

N, A Burvey of Automatic Coding Techniques for Digital Computers
John L, Jones, (1954)

75. Department Store Information Processing Techniques

, B. B, Morries (1952) :
76. ‘Information Sorting in the Application of Electronic Digital

Computers to Business Operations, H. H. Seward (1954)

26-6

MIT PUBLICATIONS, Cont,

Digital Computer laboratory Reports

77,
78.
79.
80.
81.
82.
83,

84,
850

The Programmed Synthesis of Digital Computers Within Digital
Computers, F. E. Heart (1954)

The M.I.T. Systems of Automatic Coding: Comprehensive, Summer
Session, and Algebraic, C. W. Adams (1954)

?igitﬁl Computers As Informetion Processing Systems, J. W. Forrester
1949 ‘

Charles Babbage -~ Scientist and Philosopher, Edited by R. R.

Rathbone (1942)

The Difference Engines of Pshr Georg and Edvard Scheutsz,

Edited by R. R. Rathbone.(1952)

Summary Report No. 37 - First Quarter 1954
Summary Report No. 36 - Fourth Quarter 1953
Summary Report No. 35 - Third Quarter 1953

Sumnmary Report No. 34 - Second Quarter 1953

a0 op

ctuBa COoOSE HECHE TR0

XEde

N <

THE FLEXOWRITER CODE

Alphanumerical Sequence Coded Value Sequence
Up. Code Low. Up. Code Code Low. Up. Code Low. Up,
Case Value Case Case Value Val, Case Case Val, Case Case
A 6 0 ° 76 The values of such 2 e E 35 - -
B 62 1 1 25 characters are equal 3 8 8 36 k K
c 34 2 2 17 to the sum of the 5 | 0 t T
D 22 3 3 7 weights appearing at 6 a x 42 z 4
the head of each column
E 2 I 4 13 in which a hole is 7 3 s 43 back space
F 32 5 s 23 punched. The seventh 10 space bar 4y 1 L
G 64 6 8 33 hole, which comprises 11 = : 4s tabulation
H 50 7 7 27 the right-most column 12 8 S 46 w w
in the sketch, is used
I 14 8 8 3 only for control pur- 13 4 4 50 h H
J 26 9 e 66 poses. The seventh 1% i I 51 carr. ret.
K 36 + / 15 hole must be punched .15 + / 52 v
L L) - = 35 as part of each char- 16 u U 54 P P
acter which is to be
M 70) 21 read in by the com- 17 2 2 - 56 q Q
N 30 , (31 puter. 20 color shiff &0 o 0
o 60 : 11 21 .) 61 stop code
P 54 | _ 5 22 4 D 62 b B
402010 14 2 1 7th hole
Q 56 space bar 10 | 23 5 s 64 g g
n 24 carr. ret. 51 IIJI’)[F/"’J 2k r R 66 9 ®
8 12 tab. ks char. val. 25 1 : 70 m M
T 40 up. case T1 e 34 26 3 J 71 up. case
U 16 low. case 75 —eab ! Zg 27 7 7 72 x X
X 116# mélllify 27 a F3 30 'n }(I 715$ v v
stop code 1 31 s 7 low. case
X 72 back space 43 TTostop 6L 33 p 0 F 7% o °
Y . ! [}
H Eg color sft. 20 \ feedholes %3 g c 77 nullify

)

10

11

12

13

14

15

16

17

18

19

20

TAC Time Chart
00 01 02 03 04 05 0
25 26 27 28 29 20 3
5 22 23 24

8

50 51 52 53 54 2 15 1
46 LT 48 49

1

6

1 1
3 40 4,
75 76 77 78 79 o 61 62 63 64 ¢5 ¢
— 86 87 88 89 o0 o

T“}N'N'NM s

HoHO®
QWL O
LSRN IR ST
0\t \ O
w oW
WM\ O
NOR O
O\ O
P .

72 73 74

]

—
D et SR

t— |
———
—
—
t— |
]

STORAGE CAPACITY in BITS

I0°
23 STORAGE CAPACITY vs. OPERATION TIME
for
73 63 78 AUTOMATIC DIGITAL COMPUTERS
17
30 65
1
53 '
|05 38 @
Drum @
Acoustic
96 68 ¢
27 7
15 69 77 16270 .
1 71 @ 58 81)
79 6 . 6D 95
84
14 é% :
2 .
2) . Electro-Static Core
2
@ 7 13
a4 @ °
57 5
IO ! 1 36
| sec. 100 msec. IO msec. | msec.
TIME TO PERFORM a+b=c; c+d+e=f; gxh=i
O= commercially avaiiable 21 CRC‘:L(.)'.7 30 ELECOM 200 51 I[i.IAC 68 MSAC éj_ RAYIA)A‘C
22 CSIRO Mark I 31 ELLIOTT-NRDC 52 IAS 69 MOSAIC 84 SEAC
1 ABC 13 BINAC 23 CUBA 33 ERA 1101 53 IRSIA-FNRS 70 NAREC 86 SWAC
2 ACE 1% Burroughs 2k DYSEAC 3L ERA 1102 57 JOHNNIAC 74 NICHOLAS 87 TAC
4 APEgRgC 415 CADAC 102 25 EDPM 701 35 ERA 1103 58 LEO 73 OARAC 88 TC-1
5 APE(X)C - 416 CADAC 102A 26 EDSAC I 36 FLAC 61 Manchester 76 ORACLE 92 UNIVAC
6 ARRA 17 CALDIC 27 EDVAC 38 G2 62 MANIAC 77 ORDVAC 95 Whiriwind I
7 AVIDAC 18 Circle 28 ELECOM 100 45 Hughes Air 64 MIDAC 78 PERM 96 WISC
12 BESK 19 CE 36-101 29 ELECOM 120 49 IBM 650 65 MINAC 79 PTERA

	000
	001
	01-01
	01-03
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	12-01
	12-02
	12-03
	12-04
	14-01
	14-02
	14-03
	14-04
	14-05
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	24-01
	24-02
	24-03
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	26-01
	26-02
	26-03
	26-04
	26-05
	26-06
	A-01
	B-01
	C-01

