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FOREWORD 

This manual describes the operations available with the Advanced Continuous Simulation 
Language, ACSL (pronounced "axle"). This language was designed for modelling and evaluating 
the performance of continuous systems described by time dependent, non-linear differential equa­
tions. 

In the development of the simulation system, emphasis has been placed on the ability to run 
and evaluate the model on-line. Provision has been made to overcome the usual problem of high 
data volume -- monitoring information can be directed to the terminal, high volume output to a lo­
cal line printer. 

In becoming familiar with this book, it is recommended that the reader look through Chap­
ters 1, 2 and 3 and then turn to the example programs given in Appendix A -- making reference 
to the operators, Chapter 4, and run-time commands, Chapter 5, as necessary. These chapters list­
ing the available operators are not designed for direct reading because of the alphabetic organiza­
tion of the material. 

Before running a simulation, make sure Chapter 7 on program debugging has been studied. 
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1. INTRODUCTION 

Simulation of physical systems is a standard analysis tool used in the evalution of hardware design prior 
to actual construction. The continuous system simulation language described herein, and referred to as ACSL 
- Advanced Continuous Simulation Language - has been developed expressly for the purpose of modelling 
systems described by time dependent, non-linear differential equations and/or transfer functions.* Typical 
application areas are control system design, chemical process representation, missile and aircraft simulation 
or fluid flow and heat transfer analysis. Program preparation can either be from block diagram interconnec­
tion, conventional FORTRAN statements or a mixture of both. 

Highlights of the language are free form input, function generation of up to three variables, and 
independent error control on each integrator. Flexibility is provided for plotting the behavior of the models 
under a number of external forcing functions. Many simulation oriented operators such as variable time delay, 
dead zone, backlash and quantization are included and made readily accessible. 

The ACSL program was intended to provide a simple method of repret'!nting these mathematical models 
on a digital computer. Working from an equation description of the problem or a block diagram, the user 
writes ACSL statements to describe the system under investigation. Drive cards are written to exercise the 
model and these statements are keypunched and submitted for solution. An alternate mode is via a remote 
terminal such as a teletype; true on-line control is now possible with the user changing model constants and 
monitoring the resulting solutions. 

Statements describing the model need not be ordered since the ACSL processor will sort the equations 
so that no values are used before they have been calculated (applies only to the DERIVATIVE section of an 
explicitly structured program - see subsection 3.0). This operation of the language is to be contrasted to the 
usual digital programming languages like FORTRAN, where program execution depends critically on state­
ment order. The ACSL sorting procedure is described in more detail in Subsection 3.2. 

1 .1 JOB PROCESSING 

The cards supplied by the user are in two distinct groups - the first group contains those concerned with 
defining the model or structure of the system being simulated; the second group contains the sequence of 
commands that exercise this model - Le., change parameters, start runs, control which plots to make. 

The model definition statements are read by the ACSL program which translates these to a set of 
intermediate FORTRAN programs. These FORTRAN programs are compiled, loaded with the ACSL 
Run-time Library and executed. The run-time drive cards now are read by the executive which decodes and 
executes commands in sequence - refer to Section 5 for a descripti'Jn of the commands usable at run-time. 
At least a START command is necessary at this point to exercise the model. 

1.2 LANGUAGE FEATURES 

The language consists of a set of arithmetic operators, standard functions and a set of special statements 
and a MACRO capability which allows extension of the special statements, either at the system level for each 
installation, or for each individual user. The arithmetic operators are +, -, *, /, **, denoting addition, 
subtraction, multiplication, division and exponentiation. The functions are listed in Section 4 and consist of 
special ACSL operators such as QNTZR (quantization), UNIF (uniform random number), etc. In addition, 
all the functions of the FORTRAN library are available such as SQRT (square root), AMOD (modulus), 
etc. Integration is a special ACSL operator that is accomplished either by INTEG or INTVC, i.e. 

* The basic structure follows the specification established by the Technical Committee on Continuous 
System Simulation Languages and under the auspices of Simulation Councils, Inc. (SCi) in SIMULA­
TION 9 (Dec. 1967) pp 281-303. 
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R = INTEG(X, RZERO) 

implies 

.£T X dt R = RZERO + 

This integration operator is the heart of the simulation system. In building any model, it is necessary 
to change differential operators into integration operators and this is conventionally accomplished by express­
ing the highest derivative of a variable in terms of lower derivatives and other variables. As an example, 
consider the spring dashpot system excited by a given function of time F(t). In general form it can be written 

x + 2~ wx + w2x = F(t) 

where w is the natural frequency and ~ the damping ratio. Expressing this equation in terms of the highest 
derivative X, we have 

x = F(t) - 2~ w x - w2x 

Since x appears on the right hand side, we must give it'a name (XD). The two integrations can the be written 
as 

XD = INTEG(F(T) - 2*ZE*W*XD - W**2*X, XDIC) 

X = INTEG(XD, XI C) 

This process transforms the original set of differential equations to a set of first order equations which 
can be solved directly by integrating. 

It is necessary to be somewhat careful in the transformation process to avoid the introduction of 
redundant state variables. In the above sequence we could have avoided the reference to x (XD) by calculating 
x (XDD) directly and embedding an INTEG operator in the expression, i.e. 

XDD = F(T) - 2*ZE*W*INTEG(XDD, XDIC) - W**2*X 

Now X is the second integral of XDD so 

X = INTEG(lNTEG(XDD, XDIC), XI C) 

In these two equations, there are three INTEG operators - each one a state variable - but two are integrations 
of XDD with the same initial condition, one of these is redundant and can be elimin~ted by explicitly naming 
the first derivative as shown previously. 

Before we give a detailed description of the language, let us code a simple problem using the arithmetic 
operators and the SQRT and INTEG. functions defined above. 

The coding for the equations 

X = Y + X{l - X2 - y2)/YX2 + y2; X(O) = 0.5 

Y = -X + Y{l - X2 - y2)/JX2 + y2; Y(O) = 0.0 

is shown in Figure 1-1. 

While this series of statements completely describes the equations to be solved it does not represent the 
complete problem statement. Figure 1-2 lists the complete running program where each card is numbered for 
reference. To complete the model definition a PROGRAM card (l) is needed to start; the communication 
interval must be defined by the CINTERVAL operator (3); the termination condition must be specified as 
a logical expression forming the argument for the TERMT operator (7); and the model definition must be 
completed by an END card (8) which matches the PROGRAM card. This end card tells the translator nothing 
further is expected unless FORTRAN subroutines or functions are included. A further refinement is in 
assigning symbolic names for the initial condition, X(O) and Y(O), and for the stop time TSTOP. These are 
preset in the CONSTANT statement (2). 
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R2 = X**2 + Y**2 
X = INTEG(Y + X*( 1.0 - R2)/SQRT(R2), 0.5) 
Y = INTEG(-X + Y*(I.O -R2)/SQRT(R2), 0.0) 

Figure 1-1. Model Equations Corresponding to Mathematical Definition - Limit Cycle Problem 

MODEL DEFINITION CARDS 

(1) PROGRAM LIMIT CYCLE 
(2) CONSTANT XZ = 0.5, YZ = 0.0, TSTOP = 4.0 
(3) CINTERV AL CINT = 0.1 
(4) R2 = X**2 + Y**2 
(5) X = INTEG(Y + X*( 1.0 - R2)/SQRT(R2), XZ) 
(6) Y = INTEG(-X + Y*(I.O - R2)/SQRT(R2), YZ) 
(7) TERMT(T .GE.TSTOP) 
(8) END 

RUN-TIME DRIVE CARDS 

(9) OUTPUT T, X, Y 
(10) START 
(11) 'CHANGE INITIAL CONDITIONS AND RUN AGAIN' 
(12) SET XZ = 0.7 
(13) START 
(14) STOP 

Figure 1-2. Programs for Model Definition and Run-time Drive Cards - Limit Cycle Problem 

Once a symbol is assigned to a variable it can be changed at run-time. Embedding literal constants (the 
characters 0.5 are a literal constant) in the program is not good programming practice. It is much better to 
use a symbol preset to the value desired. Changes then occur in one place. 

In addition to the model definition statements, the run-time group of cards must be defined that tells 
how the model is to be exercised. These are separated from the model definition section by an end-of-record 
separator for a batch run (7-8-9 multipunch in column one on a CDC 6000/7000 machine) or else a separate 
file. Interactively the run time commands can come from a key board or a terminal. The OUTPUT statement 
(9) defines the variables which are to be listed at each communcation interval; then the model must be told 
to go by the command START (IO). Card number eleven is a comment, twelve changes the intial condition 
and thirteen says run again. Card number fourteen terminates the simulation study. Section 1 of Appendix 
A lists the actual program and the output listing and plots obtained in solving this set of equations. 
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1.3 CODING PROCEDURE 

The ACSL coding line contains eighty characters of which the first seventy-two are used for program 
information and 73-80 for identification, if needed. The ACSL statement may be placed anywhere on the card 
and the user should arrive at some standards to preserve a uniform appearance of the source text. Suggested 
standards are as follows: 

Section delineators - PROGRAM, INITIAL, DYNAMIC, END, etc., starting in column 1 

PROCEDURAL brackets - matching pairs of PROCEDURAL/END statements starting in column 6 

Unlabelled statements - starting in column 7 

Labelled statements - label starting in column 6 

Assignment statements - ensure the equal sign (=) falls in column 15 or beyond 

These procedures are not necessary, but they make the resulting program much neater and easier to read. 

More than one statement can be placed on one card by separating them by a dollar sign ($). Any 
statement can be continued on to the next line by adding an ellipsis (three consecutive periods ... ) anywhere 
at the end of the card - to the right of any non-blank information but before column seventy-two. Any trailing 
blanks are squeezed out of the card containing the ellipsis and the following card is added directly - it is as 
though the characters were strung on the end after the last non-blank charcter of the preceding card, starting 
with column 1. Leading blanks of the continuation card are not suppressed. Comments may be added by 
enclosing a complete statement in quotes. Note that neither a quote (') nor a dollar sign ($) can be part of 
a comment. Examples: 

'THIS IS A COMMENT CONTINUED ON TO ... 

THE NEXT LINE' 

'THE NEXT LINE HAS TWO STATEMENTS' 

A=B+C $ X=Y+Z 

'COMMENTS CAN BE ADDED IN LINE AS ... 

A SEPARATE STATEMENT' 

X = Y + Z $ 'ASSIGN VALUE TO X' 

'NEXT ARE TWO LABELLED STATEMENTS' 

LABEL .. C = D + 50 

1000 .. FORMAT(1X, 3EI2.S) 

Blank lines can be interspersed throughout the code in order to help produce an attractive program format. 

1.4 RESERVED NAMES 

The only reserved names in the language are those of the form ZOnnnn and ZZaaaa, where 'n' is any 
digit and 'a' is any alphanumeric character. All generated variables and system subroutine names are in this 
form. However, it behooves you, the user, to keep in mind the system variable default names listed in Table 
1-1. These default names can be changed to any name you please, but if you do not, the default names will 
be in existence so they can be set by program control in the model definition section. Other uses of these names, 
e.g., defining MAXT as a state variable, could cause conflicts. 
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TABLE 1-1. System Variable Default Names 

Set By Default Default 
Statement Name Value Definition 

CINTERVAL CINT 0.1 Communication Interval 
MINTERVAL MINT 1.0E-I0 Minimum Calculation Interval 
MAXTERVAL MAXT 1.0E+ 10 Maximum Calculation Interval 
NSTEPS NSTP 10 Number of Calculation Intervals 
VARIABLE T 0.0 Independent Variable 
ALGORITHM IALG 5 Integration Algorithm 
ERRTAG none .FALSE. Error Indicator 

NOTE: It is probably a good idea to treat these names as reserved and not use them 
for any purpose except that stated. 

A second level of names is the run-time executive system constants listed in Appendix C. These are flags 
and numeric values that determine the manner in which plots are going to be made, print intervals, etc. 

Such quantities as the y-axis length in inches (YINCPL) for line plots, number of points between grid 
lines in the x-direction for printer plots (NGXPPL) can be under user's control - at run-time - if desired. All 
these symbols have a default value that is chosen for reasonableness. Access is by normal SET commands, 
i.e., 

SET YINCPL = 5.0 

Any symbol in the SET command causes a search of the user's dictionary - established by the symbols in the 
model definition code - and if that is unsuccessful, the dictionary of run-time system symbols is searched. Thus, 
if you use one of the system constants as a name in the program, that use will override the internal use within 
the run-time executive. It merely means that you will not have the luxury of modifying the system default 
value. 

1.5 FORTRAN SUBROUTINES 

Any user defined FORTRAN function or subroutine may be used in the simulation program by including 
it following the END card that matches the PROGRAM card. The translator looks for the following: 

REAL FUNCTION 

INTEGER FUNCTION 

LOGICAL FUNCTION 

SUBROUTINE 

FUNCTION 

PROGRAM 

and if found, assumes all the rest of the cards in the model definition section are to be passed directly to the 
FORTRAN compiler. The format of these cards is not changed in any way so FORTRAN card format must 
be followed exactly, i.e. start in column seven or beyond etc. 

The only change the translator makes is to look for a dollar sign ($) in column one. This card is replaced 
by the simulation common block and type statements - which may run to many cards ~ so making available 
to the subroutine the names and values accessible in the main program. 
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WARNING: There is no selectivity in this process - either all the symbols are obtained or none. It 
is easy to get name conflicts and also violate the translator sorting algorithm by this 
action. 
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2. LANGUAGE ELEMENTS 

The following list of language elements must be understood before proceeding to the next section which 
describes the individual ACSL statements in detail. Most of the basic elements are defined the same as in 
FORTRAN with the exception of the list in Table 2-1, which lists the major differences between ACSL and 
FORTRAN. A reader who is familiar with FORTRAN could continue to the next section at this point. 

TABLE 2-1. Major Differences, ACSL to FORTRAN 

LABELS 

NAMES 

TYPES 

CODING 

CONTINUATIONS 

COMMENTS 

2.1 CONSTANTS 

Symbolic as well as numeric labels allowed. 
Labels are separated from statements to which they 
are attached by two periods. 
Due to problems with MACRO expansions within 
labelled statements, it is recommended that labels 
only be used with CONTINUE statements. See 
LABELS section 2-3 for further information. 

No embedded blanks are allowed in names. 
Each name must have no more than SIX characters. 
Names should not be of form Znnnnn or ZZaaaa where 
n is any digit and a is any alphanumeric character. 

Variables starting with I, J, K, L, M or N are 
not automatically considered integer. All variables 
and functions are considered real, floating point 
variables unless typed explicitly otherwise. 

Free format - use any columns 1 through 72. 

An ellipsis ( ... ) at the end of a line implies 
continuation onto the next card image. A non-blank 
column six has no significance in free format. 

A fully quoted statement is a comment and cannot 
contain another quote or dollar sign. A 'C' in 
column one has no significance in free format. 

Constants may be either integer, real, logical or Hollerith. An integer constant is a whole number, written 
without a decimal point or embedded blanks. Positive numbers may be prefixed with a plus sign; negative 
numbers must be prefixed with a minus sign. Length is implementation dependent (CDC 6600, about thirteen 
digits). Subscripts of arrays are limited to about five digits. 

Examples: o +526 -63 476 

A real constant is written with a decimal point together with an optional exponent. Positive numbers may be 
prefixed with a plus sign; negative numbers must be prefixed with a minus sign. 

Examples: 3.El 3.1416 31.416E-l 

-0.000345 0.347E03 -27.6E+220 

2-1 



Logical constants may be one of two values: 

. TRUE. .FALSE . 

Hollerith constants are strings of letters and digits and are defined differently for the translator and at 
run-time. The translator accepts the normal character count - an unsigned integer - followed by H, followed 
by the character string. The general form is 

nHh1h2 · .. hn 

Examples of this are 

3HSAM 

IH) 

12HCONTROL DATA 

SH LEAD 

Note that blanks are signficant in the character count. For the run-time executive, Hollerith strings are 
defined by enclosing in quotes - so implying that the quote character cannot be included in the Hollerith 
constants, i.e., 

SET TITLE = 'LIMIT CYCLE, RUN1' 

While literal constants can be used in expressions directly, there is no way of changing the value at 
run-time. The original source cards must be changed and the program retranslated, compiled and executed. 
If the same constant appears more than once, it implies more changes in the source text. Better programming 
practice is to give all constants symbolic names to be used in expressions, presetting these via CONSTANT 
statements; i.e., 

don't say 

Instead: 

AREA = 3.142*R**2 

CONSTANT PI = 3.142 

AREA = PI*R **2 

2.2 VARIABLES 

Variable names are symbolic representations of numerical quantities that mayor may not change during 
a simulation run. They refer to a location and have a value equal to the current number stored in that location. 
Both simple and subscripted variables may be used. A symbolic name must start with a letter and be followed 
by zero to five letters and digits (not more than SIX characters). All variables in an ACSL program are 
assumed to be of type REAL unless explicitly typed otherwise. The FORTRAN convention for integers 
starting with the letters I through N does not apply. 

Examples of simple variables: 

A AS7 ABS7D K20 

A subscripted variable may have one, two or three subscripts enclosed in parentheses. Subscripts can be 
expressions in which the operands are simple integer variables and integer constants, and the operators are 
addition, subtraction, multiplication and division only. For more information on storage allocation see AR­
RAY statement - Section 4.12. 

Examples of subscripted variables names are: 

B(S, 2) 

C47(3) 

BS3(S*I + 2, 6, 7*K + 3) 

ARRAY(2) 

In the above example I and K must be declared explicitly to be INTEGER variables. 
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2.3 LABELS 

A label may be attached to a statement so that control may be transferred to it by GO TO or used to 
label a FORMAT statement. Labels may be either: 

1) One through six alphanumeric characters with the first alphabetic 

2) One through five numeric characters (digits)* 

The labels must be set off from the statement to which they apply by two periods - i.e., 

Ll .. X = A + B 

1000 .. Y = C + D 

GO TO Ll 

Although it is legal to attach a statement label to any executable statement, it is recommended that these 
labels only appear on CONTINUE statements. Aside from the improvement in appearance, structure and 
modifiability, many problems can be avoided. The basic difficulty is that the statement body may contain 
MACRO calls. The effect of a MACRO call inside a statement - functional form - is that the macro is 
expanded first followed by the labelled statement. As an example, consider the random number generator, 
GAUSS which is implemented as a MACRO. It's use could be in a PROCEDURAL in a labelled statement 

GO TO LABEL 

LABEL .. X = GAUSS(MEAN, SIGMA) 

This would expand to the FORTRAN code 

GO TO 99996 

Z09999 = MEAN + GRV(ZZSEED)*(SIGMA) 

99996 X = Z09999 

Now the intermediate variable Z09999 won't be assigned a value if the GO TO transition is followed. 
However, if we use a CONTINUE instead 

GO TO LABEL 

LABEL .. CONTINUE 

X = GAUSS(MEAN, SIGMA) 

This code expands to 

GO TO 99996 

99996 CONTINUE 

Z09999 = MEAN + GRV(ZZSEED)*(SIGMA) 

X = Z09999 

which gives the correct sequence. The stand alone form of the MACRO works in this case and avoids the extra 
assignment statement, since no intermediate variable is generated, i.e. 

* The system uses labels starting at 99999 and works downwards. Labels with too high a value should not 
be used, else a conflict may result. 
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LABEL .. GAUSS(X = MEAN, SIGMA) 

becomes* 

99996 X = MEAN + GRV(ZZSEED)*(SIGMA) 

To avoid the label problem, we had originally thought of attaching the LABEL to the first line of the 
code generated from the MACRO but then the problem with the DO loop raises it's head - now the label must 
be the last operation of the loop - statements generated after the labelled statement are not included in the 
loop. Even if we differentiate between the DO-loop labels, the language allows a loop with direct GO TO's 
to the terminating statement label: 

DO LABEL I = 1,20 

IF (condition) GO TO LABEL 

LABEL .. X = X + GAUSS(MEAN, SIGMA) 

To formulate rules to translate this sequence appears to be impossible. If the operation is programmed with 
labelled CONTINUE statements, two labels will be necessary and the translation is straightforward, i.e. 

DO LABELl I = 1,20 

IF (condition) GO TO LABEL2 

LABEL2 .. CONTINUE 

X = X + GAUSS(MEAN, SIGMA) 

LABELl .. CONTINUE 

2.4 EXPRESSIONS 

An expression is a combination of operators and operands'which, when evaluated, produces a SINGLE 
numerical value. 

The arithmetic operators are 

+ addition 

- subtraction 

The relational operators are 

.EQ. equal to 

.GT. greater 

.LT. less than 

* multiplication 

/ division 

** exponentiation 

.NE. not equal to 

.GE. greater than or equal to 

.LE. less than or equal to 

(The results of a relational expression can only be .TRUE. or .FALSE.) 

The logical operators are 

* To use this form, you must be familiar with the implementation of each of the operators defined in the 
language - i.e. whether MACRO or function subroutine. It only works for single line MACROS if at the 
end of a DO-loop. 
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.NOT. reverses truth of logical expression that follows it 

.AND. combines two logical expressions to give value .TRUE. when BOTH are .TRUE. otherwise 
.FALSE . 

. OR. combines two logical expessions to give value .TRUE. when EITHER is .TRUE. otherwise 
.FALSE. 

The operands may be either constants, variables (simple or subscripted) or functions. Examples of arithmetic 
expressions: 

A 5.76 

3 + 16.5 B + A(5)/2.75 

-(C + DEL * AERO) (B-SQRT(A **2 + X**2»/2.0 

Two arithmetic operators may not appear next to each other in an arithmetic expression. If minus is to be 
used to indicate a negative operand, the sign and the element must be enclosed in parentheses is preceded by 
an opera tor -

i.e., 

but, 

B*A/(-C) 

A*(-C) 

-A*B-C 

not B*A/-C 

Parentheses may be used to indicate groupings as in ordinary mathematical notation but they may not be used 
to indicate multiplication. 

Relational expressions are a combination of two arithmetic expressions with a relational operator. The 
relational expression will have the value .TRUE. or .FALSE. depending on whether the stated relation is valid 
or not. The general form of the relational expression is: 

al op a2 

where the a's are arithmetic expressions and op is a relational operator. 

NOTE: A relational operator must have two operands combined with one operator. Thus the 
form al op a2 op a3 (A. EO. B. EO. C) is INVALID. 

Examples are: 

A.EQ.B 

A57. GT. 0.0 

A + D .LT. 5.3 

(5.0*B - 3.0).LE.(4.0 - C) 

Logical expressions are combinations of logical operands and/or logical operators which, when evaluated, will 
have a value of .TRUE. or .FALSE. 

11 op 12 op 13 op .R 4 • • • 

where the Q's are logical operands or relational expressions. i.e., 
LOGICAL AA, CC, LFUNC 
AA. AND. (B. GE. C). OR. CC. AND. LFUNC(X,Y). AND. (X. LE. V). OR .. NOT. AA 

Note that the symbolic names AA, CC and LFUNC have been declared to be of type logical. LFUNC is a 
function with a .TRUE. or .FALSE. result calculated from the value of the variables X and Y. 

Note that arguments of functions may, in general, be expressions. Since expressions can contain func­
tions, an arbitrary depth of complexity can be generated. Just using the SIN and COS function as an example, 
a valid expression would be 
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A + SIN(X*COS(5*X + Y) - COS(A + Z/SIN(5.3*C) + C*y /SIN(SIN(X + Y)*PI))) 

Remember the sole requirement for an expression is that it has ONE value when evaluated numerically. 

2-6 



3. EXPLICIT STRUCTURE 

The basic program structure where the model is surrounded by PROGRAM ... END cards has limitations 
when it comes to calculating initial conditions. They must be real variables, expressions or constants and 
cannot incorporate multiple statement logic. In order to have a more flexible structure, three extra regions 
of the program may be introduced - INITIAL, DYNAMIC and TERMINAL - and the model definition is 
placed in a DERIVATIVE section embedded in the DYNAMIC. Each section must be terminated with an 
END card as shown in Figure 3-1. If this method is chosen, any or all of these four explicit blocks may be 
included: Each block must have its own terminating END card and the ordering INITIAL, DYNAMIC, 
embedded DERIVATIVE and TERMINAL must be followed. 

PROGRAM 

INITIAL 

END 

}
statements performed before the run begins. State variables do not contain 
the initial conditions yet. 

END 

DYNAMIC 
DERIVATIVE 

}
statements needed to calculate derivatives of each INTEG 
statement. The dynamic model. 

END 

}statements executed every communications interval. 

END 

TERMINAL 

}
statements executed when the termination condition TERMT becomes 
true. 

END 

Figure 3-1. Outline of Explicitly Structured Program 

3.1 PROGRAM FLOW 

The program flow when leaving the executive (due to the START command) is to sequentially proceed 
through the INITIAL section (Figure 3-2 shows a flow diagram). At this point, the initial conditions have 
not been transferred into the state variables (outputs of integrators) so these variables will be undefined if 
any attempt is made to use them. It should be possible to arrange the calculation of any necessary initial 
conditions in terms of any constants or other initial conditions already defined. Another alternative is to use 
the RESET (q.v.) operator that will transfer the available initial conditions to the state names and may 
(RESET('EV AL')) or may not (RESET('NOEV AL')) be accompanied by a call to the derivative evaluation 
routine to calculate all intermediate variables. 

Leaving the INITIAL region, the integration routine is initialized which involves transferring all initial 
conditions into the corresponding states and evaluating the code in the DERIVATIVE section OIice. This 
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INITIAL 

INITIAL 
CODE 
BLOCK 

FROM 
EXECUTIVE 
ON START 

}- - - - - - -
END ~----~----~ 

DYNAMIC 

}- - ---
END 

STOP~ FALSE, 

DYNAMIC 
CODE 
BLOCK 

TERMINAL 
CODE 
BLOCK 

STATE HAS INITIAL COND­
ITIONS TRANSFERRED AND 
DERIVATIVE ROUTINE IS 
USED TO EVALUATE 
DERIVATIVES ONCE READY 
FOR DATA LOGGING 

DERIVATIVE 

JERIVATIVE 
EVALUATION 

ROUTINE { 
END 

Figure 3-2. Main Program Loop of ACSL Model 
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action is taken to ensure that all calculated variables are known before the data logging at the time equals 
zero condition. Note that it may appear from the program listing that the DYNAMIC section is executed 
before the DERIVATIVE section; in actual fact, this is not so. You should not rely on calculations in the 
DYNAMIC section to initialize variables for this DERIVATIVE section. On the other hand, all values 
calculated in the DERIVATIVE section are available in the DYNAMIC section. 

Still following the flow chart in Figure 3-2, the STOP flag is reset and the program starts to execute 
the code within the DYNAMIC block. 

There is no restriction on the variables that may be referredto in this DYNAMIC section. All the states 
will have values and intermediate calculations in the DERIVATIVE section will have been executed. 

After this block the STOP flag is tested to see if it is time to transfer to the TERMINAL region. Note, 
the STOP flag is set by the TERMT statement and if any of these statements are included in the DYNAMIC 
block, exit will occur at this check when one of the arguments becomes true. 

If the STOP flag is not set, the program writes out the values of all the variables specified in the 
OUTPUT and PREPAR lists - the former to the output file or printer, the latter to a scratch file for later 
plotting. 

The integration routine is now asked to integrate over a communication interval using the code embedded 
in the DERIVATIVE block to evaluate the state variable derivatives. 

The integration routine returns with the states advanced through the communication interval and again 
the STOP flag is tested. At this point, it may have been set by a TERMT statement placed in the DERIVA­
TIVE routine. If not set, the program loops and reexecutes the DYNAMIC section. 

Control can be transferred between sections using GO TO's and statement labels, if needed. It is illegal 
to transfer into the DYNAMIC region, since the integration initialization won't be performed correctly. 
Transfer from the dynamic region to either INITIAL or TERMINAL is quite acceptable, so also, is transfer 
between INITIAL and TERMINAL blocks. Note at least one GO TO in the DYNAMIC region or one 
TERMT statement must be included or the program will never stop! 

Control cannot be transferred either into or out of the DERIVATIVE section since this is changed into 
a separate subroutine and as such, is inaccessible to the main program loop. 

When the STOP flag is set true, program control transfers to the TERMINAL section which is executed 
in sequence. On passing out of the section END, control returns to the executive which will read and process 
another control card (run-time command - PLOT, DISPLY, etc.). Note, if a jump (GO TO) is included in 
the TERMINAL section back to the INITIAL, the last output will not be written out, unless the LOG 
operator is used (see Chapter 4). 

3.2 PROGRAM SORTING 

The model definition code that is placed in the DERIVATIVE subroutine is sorted so that outputs are 
calculated before they are used. The sort algorithm is relatively simple and consists of two passes. Pass number 
one examines each statement; output variables are marked as calculated and an input list is established for 
the statement - all the variables on the right of the equals sign. A variable name may appear simultaneously 
on both left and right hand sides of an equal sign (=) in either an assignment statement or PROCEDURAL 
header. In this case sorting takes place only on the left hand or output variable so that the block is positioned 
before any use of the variable. Pass number two takes the list of statements and examines them in turn. If 
none of the variables on the input list have their calculated flags set, the statement is added to the compile 
file and the calculated flag for the output variable (or variables) is turned off. 

If any of the variables on the input list are marked calculated, the statement is saved and the next 
statement examined. If any statement has been added to the compile file, all the saved statements are 
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reexamined to see if they can now be disposed of and their calculated flags reset. This algorithm works because 
any output variables that have already been processed will have their calculated flags reset. Only output 
variables coming up in the statement stream will be flagged and as such can hold up statements that depend 
on these outputs. State variables, of course, are not flagged as calculated - the calculation must be performed 
by the integration routine and all derivative evaluations finally derive from the current value of the state 
variables. Example: 

CONSTANT PI = 3.142, RZ = 1.0 

AREA = PI*R**2 

R = RZ + LR 

LR = INTEG{AREA, 0.0) 

The first statement is translated into the FORTRAN DATA statement and an I/O list established. 
There are no inputs and the variables PI and RZ have their calculated flags set. 

DATA PI/3.142/, RZ/1.0/ 

The second statement has inputs PI and R, and variable AREA has its calculated flag set. Third 
statement has an inputs, RZ and LR; the calculated flag for R is set. The last statement establishes LR as 
a state and AREA as the derivative. The calculated flag for LR is not set - it is assumed known at the start. 

At the end of the first pass the symbol table looks like Table 3-1, and the calculated flags are set as in 
the (a) column. 

TABLE 3-1. Calculated Flags in Symbol Table During Sort 

(a) Begin (b) After (c) After (d) After 
Symbol Pass 2 Constant R = Statement AREA = Statement 

AREA ON ON ON 
LR 
PI ON 
R ON ON 
RZ ON 

The second pass starts by reading the statements in sequence again, along with the associated I/O lists. 
The first statement has no input list, so it can be output to the compile file directly - in so doing, the calculated 
flags for PI and RZare reset - Column (b), Table 3-1. 

No other statements are pending so the next statement is read. Inputs are PI and R. R is still flagged 
as calculated so the statement is saved. 

The next statement is read. Inputs are RZ and LR - neither of these are flagged so that statement is 
transferred to the compile file and the output variable flag for R is reset. The saved statement is reexamined 
and now, no input variables are flagged so the statement can be disposed of, erasing the flag on AREA. 

Any well posed problem (without algebraic loops) can be completely disposed of by this method and the 
compile file will have all the statements correctly ordered. 

CONST ANT statements are treated like regular assignment statements as far as sorting so if you place 
all the CONSTANT statements at the end of the program almost all the other statements will have to be saved 
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or held up. It's usually considered good practice to place these at the front of the modules in which they are 
used. 

Algebraic loops are identified inside the ACSL translator by the fact that statements are left over at the 
end of the DERIVATIVE section sort. This is normally considered an error since true algebraic loops should 
be broken with the IMPL statement. In this case the remaining statements are listed by chaining through the 
loop, listing each statement in turn. It is usually easiest to follow the loop backwards from the bottom of the 
list where it will be found that each variable on the left side of an equals (=) sign will appear on the right 
hand side of the statement above it. Procedural blocks make following the path more difficult since the entire 
block is listed and considered as one statement but the position is determined by the variables on the left and 
right hand side of the PROCEDURAL header. When the code is reconstructed, the PROCEDURAL header 
has been lost so the dependencies should be marked in to replace the entire code block. 

Most algebraic loops are programming errors caused by incorrect PROCEDURAL headers or missing 
state equations. For example, the PROCEDURAL block: 

PROCEDURAL (A, B = C, D) 

A=C 

B=D 

END $ 'END OF PROCEDURAL' 

may cause an algebraic loop by implying that A is a function of D and B is a function of C. Use PROCEDUR­
ALs sparingly and with care. Using many small PROCEDURALs is better than using a few large ones. 

Algebraic loops can be broken by algebra, the IMPL operator or by use of a PROCEDURAL ... END 
block to hide the actual computational order from the sorter so that the previous value of the implicit variable 
can be used (needs initializing). 
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4. ACSL STATEMENTS 

Included in this section are all the basic statements which can be recognized by the ACSL translator. 
A number of these are the same as equivalent FORTRAN statements with the exception that there is no 
restriction on which card column to start in. 

As a general philosophy, ACSL uses the equals sign in an unfamiliar way. In translating a user's 
program, ACSL needs to know what are the inputs to each statement and what are the outputs in order that 
the statement sequence can be sorted into the correct order. For an assignment statement, all variables to the 
right of the equal sign are input, the variable to the left is given the single numerical value of the right hand 
expression and so is the output. The idea is extended to cases where more than one element is an output so 
that all elements to the left of the equal sign are considered outputs, those to the right are considered input. 

PROCEDURAL (A, B, C = D, E) 

... block of statements 

END 

This tells the translator to treat the statements bracketed by the PROCEDURAL ... END statements as 
a block (Le., not to rearrange the order) and that it is to consider D and E as inputs; A, Band C as outputs. 
Only variables calculated elsewhere in the same DERIVATIVE block must be listed on the input list. Expert 
users can use judicious manipulation of the input and output lists in order to override the ACSL sort operation, 
if necessary. 

Elements listed in lower case are syntactical elements (i.e., variables) and may be replaced by any 
character string that satisfies the definition. Elements listed in uppercase must have these characters exactly 
as spelled out in the statement. Ambiguities can normally be resolved by assuming that any applicable 
FORTRAN standards hold. . 

A number of special functions are described that aid in the definition of simulation models. In general, 
the output of each function is a single number (usually floating point) and the arguments are arithmetic 
expressions which may be of arbitrary complexity; i.e., these may contain functions which contain arguments 
which contain functions to any depth desired. Included in this list for completeness are all the standard 
FORTRAN library functions. In general, logical or relational expressions are used to determine switching 
criteria; for constants, .TRUE. and .FALSE. should be used since the bit pattern of logical variables depends 
on the installation and FORTRAN compiler in use. 

The basic program structure is explained in detail in Section 3, which includes program flow and 
statement sorting. The program is set up to calculate the derivatives of the state variables (outputs and 
integrators) and the statements that perform this operation are bracketed by PROGRAM ... END cards. 
Each statement will have certain input variables and it will calculate the value of one (usually) or more output 
variables. The program sorting sequence will rearrange the statement sequence if necessary so that values are 
not used before they have had fresh values calculated. Blocks of code that the user requires for a fixed sequence 
may be bracketed by PROCEDURAL ... END cards which tell the sort routine to treat the included cards 
as a single block. In that case all inputs needed by the block and all values output must be included in the 
argument list of the PROCEDURAL (q.v.) block header. A variable may not be both input and output for 
a single PROCEDURAL BLOCK simulataneously. Variables may be both input and output to a statement 
if they cross a memory or integration operator., i.e. 

x = INTEG(-K*X + F, XIC) 

Z = DELA Y(KI *Z + K2*F, ... ) 
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is a normal model description but 

X = Y + 3.0*SIN(X) 

is illegal since the sort cannot be performed. See the IMPL operator. 

More flexibility is obtained by including INITIAL, DYNAMIC and TERMINAL sections to evaluate 
code only at the beginning (INITIAL), at every communication interval (DYNAMIC) or at the end (TER­
MINAL). Statements included in these sections will not have the order of calculation changed; they will be 
executed directly in the sequence given. 

The use of labels on statements normally implies that the order of the statements is important. ASSIGN, 
GO-TO and IF statements are normally associated with changing the order of program execution. In order 
to avoid the rearrangement that goes on in the DERIVATIVE section of an explicit program or within the 
PROGRAM block of an implicit program they should normally be enclosed in PROCEDURAL ... END 
brackets so that the group of statements is treated as a whole. It is not necessary to bracket blocks in the 
INITIAL, DYNAMIC or TERMINAL region since these are not sorted into a different order. 

Some of the operators involve state variables and can only be invoked from within a DERIVATIVE 
section. While they can be included in a first level PROCEDURAL block these must always be executed and 
cannot be successfully by-passed by jumping around operator statements. The following is a list of such 
operators: 

CMPXPL 

OU 

DBLINT 

REALPL 

INTEG 

TRAN 

LED LAG 

If an attempt is made to skip around any of these statements, the derivative for the state variable will usually 
be left a non-zero value (constant while the operator is skipped) so that the internal state variable will continue 
to change. The correct method for stopping a state variable changing is to ensure that the derivative goes to 
zero. 

Other operators are defined using a MACRO skeleton in which case two alternative forms of invocation 
are possible when the operator only has one output. As an example consider REALPL, the first order lag. 
A conventional use of this operator is: 

Y = KI *REALPL(Tl, X) 

where the state variable (output of the real pole function) is given an assigned dummy name and so not 
considered visible. It is usually advantageous to multiply the input by constants rather than the output -
synonymous if the operator is linear - as so: 

Y = REALPL(TI, Kl *X) 

where the input to the operator is now an expression. If the form of the statement is then a single assignment, 
the stand alone macro invocation can be used as so: 

REALPL(Y = TI, Kl*X) 

and in this case (only) the variable Y will be assigned to the state table. Tl).is stand alone form is usually 
preferred in order to minimize the number of internally generated variables but numerically all forms are 
equivalent. Operators that can be expressed in stand alone form are so indicated in the following list. 

4.1 ABS 

Absolute value of the argument expression 

y = ABS(x) 

x is a real floating point expression 
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4.2 ACOS 

Arc-cosine is a function 

y = ACOS(x) 

where x is real floating point variable or expression lying between - 1.0 and + 1.0. Result is real number in 
radians (zero to 7r). 

4.3 AINT 

Integerize by using the functional form 

y = AINT(x) 

where x is a real floating point variable or expression of arbitary complexity. Result - Y sign of X times largest 
integer <Ixl and is a real floating point number. 

4.4 ALGORITHM 

The algorithm used by the integration routine may be chosen and/or the system variable name changed. 
The name IALG is the default and may be set numerically at run-time to control the execution algorithm. 
Standard form is 

ALGORITHM name = integer constant 

where "name" will be the new name for the integer defining the run-time algorithm. 

At present there are seven integration algorithms available as listed in Table 4-l. The Adams-Moulton 
(lALG= 1) and Gear's Stiff (lALG=2) are both variable step, variable order integration routines that are 
self-initializing. In general they will attempt to keep the per-step error in each state variable below the desired 
value. This desired value is obtained by taking the maximum of the corresponding absolute allowed error 
(XERROR) and the relative allowed error (MERROR) multiplied by the maximum absolute value of the 
state so far 

E· = max(X· M· IY·lmax) 1 l' 1 1 

TABLE 4-1. Integration Algorithm Numbers 

IALG ALGORITHM 

0 Sample Data Systems 
1 Adam's Moulton; variable step, variable order 
2 Gears Stiff; variable step, variable order 
3 Runge-Kutta first order or Euler 
4 Runge-Kutta second order 
5 Runge-Kutta fourth order 
7 User supplied subroutine (INTEG) 

The order of integration starts at one and then changes dynamically as the program progresses, along with 
the calculation interval as the integration routine attempts to take the largest possible step consistent with 
the allowed error bounds. * 

* For more information see subroutine DIFSUB in "Numerical Initial Value Problems in Ordinary 
Differential Equations" C.W. Gear, Prentice-Hall, N.J. 1971 pp 150 et seq. 
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Gear's Stiff integration method can take calculation steps that are- orders of magnitude larger than the 
smallest time constant. There is an overhead involved, however, since a linearized state transition matrix must 
be formed and inverted. Tests have shown that for problems where the range of time constants only differs 
by one or two decades, there is little benefit in using this method - the Adams-Moulton technique is invariably 
faster. If the range of time constants covers more than three or four decades, then this technique should be 
significantly faster than any other. 

A problem was noted in using the Stiff integration algorithm with one of the states only defined when 
positive. This difficulty occurred in integrating for mean square receiver noise in a missile adjoint formulation. 
The simulation model took the square root of this quantity. In starting off the algorithm the linearized state 
derivative matrix - or Jacobian - is evaluated numerically by perturbing each state first minus, then plus* and 
computing the approximate slope from the change in the derivative value. The perturbation magnitude used 
to compute this slope is the current allowable error obtained from MERROR and XERROR. If the positive 
state starts with an initial condition of zero, then the first perturbation will make it negative - an unacceptable 
situation for the derivative evaluation. The way round this problem is to start the integrator off with enough 
bias in the initial condition so that the calculation of the Jacobian doesn't violate any constraints. Since the 
number used for the perturbation is the allowable per-step error, then a bias of this amount should not affect 
overall model validity. 

At the end of a simulation run that uses a variable step-size algorithm, statistics are written out giving 
the weight each state had in controlling step size. You can adjust the error criterion using this information. 
A separate listing indicates the number of times the predictor-corrector algorithm failed to converge and cause 
a general step size reduction - usually considered a more serious failure than bumping into the allowable error 
tolerance. This error summary may be suppressed by setting (SET) the system variable WESITG (write error 
summmary, integration control) to .FALSE. - useful when running from a terminal. 

Current step size (CSSITG) and current integration order (CIOITG) are avail~ble as system variables 
which may be OUTPUT or PREPARed. CIOITG is an integer and cannot be plotted. 

The Runge-Kutta routines (IALG = 3, 4 and 5) work by evaluating the derivatives at various points 
across a calculation interval. A weighted combination of these derivatives is then used to step across the 
interval. Runge-Kutta second order (lALG = 4) advances the state with two derivative evaluations per step. 
This usually needs a smaller step than Runge-Kutta fourth order (lALG = 5), four derivative evaluations 
per step): However, for the same step size, it should run about twice as fast: Experiment is worthwhile for 
production jobs. 

Integration algorithm zero is treated as a special case and is included to model discrete controllers with 
samplers controlling transfers to and from the continuous world - modelled by another DERIVATIVE block 
with a smaller effective step size. DERIVATIVE blocks with an integration algorithm of zero are called 
DISCRETE blocks and are further described under that heading. 

4.5 ALOG 

Natural logarithm of real argument x by 

y = ALOG(x) 

x should be > 0.0. 

NOTE: This function is NOT the antilogarithm. 

* Normally if the system variable TSMITG (two sided matrix evaluation, integration control) has its default 
value .F ALSE., the states are only perturbed in the negative direction. 

4-4 



4.6 AlOG10 

Logarithm to base ten of real argument x is given by the function 

y = ALOGIO(x) 

x should be > 0.0. 

4.7 AMAXO 

Determine maximum argument; standard functional form 

y = AMAXOUI, j2' ... ,jn) 

where the ji are integer variables or expressions. Y will be the real floating point value of the maximum 
argument. 

4.8 AMAX1 

Determine maximum argument; standard functional form 

y = AMAXI(xb X2, ... , xn) 

where the Xi are real, floating point variables or expressions of arbitrary complexity.Y will be given the value 
of the maximum Xi' Negative values are considered less than positive values. 

4.9 AMINO 

Determine minimum integer argument and convert to floating point; standard form 

y = AIMINOUi, j2, ... , jn) 

Similar to AMAXO except returns the value of the minimum argument. 

4.10 AMIN1 

Determine minimum real argument; standard functional form 

y = AMINI(xb X2, ... , xn) 

Similar to AMAX 1 except returns the value of the minimum argument. 

4.11 AMOD 

Remainder of modulus can be obtained by 

y = AMOD(xb X2) 

which returns the floating point remainder when dividing Xl by X2' The definition is a bit loose if X2 is negative 
so it is actually defined as Xl - [XI/X2] x2 where [ ] determines the integer with magnitude not greater than 
the argument and with the same sign. x I and X2 may be real floating point variables or expressions of arbitrary 
complexity. 

4.12 ARRAY 

Equivalent to the FORTRAN DIMENSION statement, this operator allocates space for up to three 
dimensions to be associated with a variable name. Standard form of the ARRAY statement is 

ARRAY vb v2, v3' v4' ... Vn 

The variable names Vi may have 1, 2 or 3 integer CONSTANT subscripts separated by commas; i.e., 
SPACE(5,5,5). (Note the subscripts must not be symbolic). While this statement can, in general, appear 
anywhere in the program, it is recommended that it be placed in the beginning of each module. It must appear 
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before any invocation of a MACRO that uses dimension information. Section 10 of Appendix A gives an 
example of the use of this statement. 

4.13 ASIN 

Arc-sine of the real argument x is 

y = ASIN(x) 

x should be between - 1.0 and + 1.0 and the result will be in radians (-7r /2 -< y -< + 7r /2) 

4.14 ASSIGN 

A label can be assigned to a simple integer variable for use later in an assigned go to. Standard form 
of the statement is 

ASSIGN k TO m 

where k is a statement label and m is a simple integer variable. It is important for the ACSL translator to 
find a space between the label k and the following TO. Subsequent evaluation of 

GOTOm 

will transfer control to the statement labelled, k. Example: 

ASSIGN RTURN2 TO M 

The variable M should be explicitly typed INTEGER. 

4.1 5 ASSIGNMENT STATEMENT 

variable = expression 

'variable' may be simple or subscripted. If subscripted in a sort' section it must be enclosed in a PROCEDUR­
AL block. On execution, the single value of the expression is stored into the location defined by 'variable'. 
A special form is the integration statement 

A = INTEG(expression, AIC) 

which marks A as a state variable. It actually stores a value (of expression) in the derivative of A. 

The integration statement can be embedded at any depth in an expression since it only has one value, 
so the following is valid. 

X = A*INTEG(DERIV, IC) + 3.0*C 

In this case a made-up variable is assigned to be a state and the value of this used in the expression. This form 
is not recommended since states should be well defined and accessible to the user. Define your own intermedi­
ate variable, i.e., 

ST = INTEG(DERIV, IC) 

X = A*ST + 3.0*C 

4.16 ATAN 

Arc-tangent of real argument x is 

y = ATAN(x) 

x is unlimited - except infinite - and result Y will be in radians such that (-7r/2 < Y < + 7r/2). 

NOTE: For full coverage of the circle it is better to use ATAN2 (q.v.). 

4-6 



4.17 ATAN2 

Arc-tangent of angle formed by the point with real coordinates x, y and the positive X axis. Function 
IS 

z = ATAN2(y, x) 

x and y can be both positive and negative, defining the full circle of revolution. Result will be in radians such 
tha t -7r < Z < + 7r. 

4.18 BCKLSH 

Backlash may be modelled using the following standard forms: 

y = BCKLSH(ic, dl, x) 

BCKLSH(y = ic, dl, x) 

where 

ic = initial conditions on y. Output will always lie between the limits x - dl and x + dl 

dl = half width of backlash - see Figure 4-1 

x = input, a real variable or expression 

~o~ y 

I 
') 

, , 

I ) 
X 

Figure 4-1. Mechanism Illustrating BCKLSH Operator 

For unsymmetric applications change the expression for the input x, i.e. If Y is to move when x is greater than 
UL or less than LL then the invocation would be 

Y = BCKLSH(YIC, O.5*(UL - LL), X - O.5*(UL - LL)) 
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4.19 BOUND 

Variables may be bounded or limited with this function. It should not be used to limit the output of an 
integrator since the integrator itself will continue to wind up and must actually integrate out of the limit. The 
function LIMINT should be used in this case, which sets the derivative to zero if it is still driving into the 
limit. On sign reversal the integrator will immediately come out of the limit. Standard form of the BOUND 
function is 

y = BOUND(ll, ul, x) 

Result 

y =11, x < li. 
y = x, 21 -< x -< ul 

y = ui., x > ul 

4.20 CALL 

Subroutines may be invoked by an explicit call which has the standard forms 

CALL name 

CALL name (Ph P2, ... , Pn) 

name is the name of the subroutine being called and Pi are actual arguments which may be expressions of 
arbitrary complexity for input values. Variables, arrays and subscripted variables may be used for arguments 
that have values stored into them. Note that in this form the translator cannot tell which arguments are inputs 
and which are outputs so the call must be embedded in a PROCEDURAL block if it is in the sortable section 
of the program (DERIVATIVE), i.e., if 0i are output variables and Pi are input variables or expressions, then 
the following cards could be used 

PROCEDURAL (Oh O2,°3 = Pb P2, P3, P4) 

CALL SUBR(Ob Pb P2, P3, P 4, 03' 02) 

END 

Now the translator will handle this section as a block and it will have been told which variables are inputs 
and which are outputs. 

A third form of the call is provided just in case the subroutine happens to be written with the input 
expressions on the left and the output variables on the right. In this case use 

CALL SUBR(Ob °2, ... , Om = Ph P2, ... , Pn) 

where the 0i are output variables - names or arrays that have their values calculated by the subroutine and 
the Pi are input expressions. 

The translator will rearrange the order and change the equal sign (=) to a comma so that the resulting 
call will be 

CALL SUBR(Ph P2, ... , Pn = 0b 02, ... , Om) 

4.21 CINTERVAL 

The communication interval is the interval where control returns to the dynamic section and output 
variables have their values recorded. In general, no finer grain detail can be seen, so it is extremely important 
that the user choose this communciation interval with care. The standard form of the statement is 

CINTERVAL name = real constant 
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where name is a simple, unsubscripted variable. 

The system default name is CINT and the default value is 0.1. The value of the name defined in the 
CINTERV AL statement may be changed by the program so that different phases can be viewed at different 
data rates. 

Assume we have a missile simulator that has four phases of flight: 

1) Initial turn 

2) Midcourse 

3) Acquisition 

4) Terminal 

Now we would like to measure these phases at different rates - initial turn at a fairly fine level of a tenth of 
a second; the long midcourse only every second and acquisition and terminal at the fine rate of every 50 msec. 
In the initial section (Figure 4-2) PHASE is declared to be an integer and initialized to one. An array STEP 
is defined and filled with the desired communication intervals to match each phase of flight; PHASE is one 
for initial turn, two for midcourse, three for acquisition and four for terminal. In the DYNAMIC section the 
communication interval (using default name CINT) is set using the current value of the flight PHASE (will 
range from one to four). In the derivative section the value of PHASE is computed from the logic used to 
establish the different flight regions. This is shown as a block since the algorithm will depend on the 
implementation of the model. However, when it is implemented, the value of PHASE should be maintained 
in the range one to four. 

INITIAL 
SECTION 

DYNAMIC 
SECTION 

DERIVATIVE 
SECTION 

INTEGER PHASE 
ARRAY STEP (4) 
CONSTANT STEP = 0.1,1.0,0.05,0.05 
PHASE = I $ 'INITIALIZE PHASE TO START' 

I~I:N~ = STEP (PHASE) 

'COMPUTE PHASE OF FLIGHT' 
PROCEDURAL(PHASE =, , , ) 

END 

END 

Figure 4-2. Example of Program to Vary Communication Interval 
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The following example changes the name of the variable defining the communication interval (from the 
default CINT) 

CINTERVAL CI = 0.01 

Now all references should be made to the symbol CI when the value is to be recorded or changed. 

CINT acts as an upper bound on the integration step size, except for integration algorithm zero, and 
also for the last step of a communication interval since the model will be advanced to the data recording time. 
This question is discussed in 'more depth under DYNAMIC (qv). The actual integration step is obtained from 
the following statements. 

H = MAX(MINT, MIN(MAXT, CINTjNSTP» 

H = MIN(H, time left to next event) 

which applies bounds of MAXT and MINT to first guess of CINT jNSTP and then limits this to be no more 
than the time left in the current communciation interval or to the next event (DISCRETE section) 

4.22 CMPXPL 

A second order transfer function may be conveniently implemented by using the standard forms: 

y = CMPXPL(p, q, x, icl, ic2) 

CMPXPL (y = p, q, x, icl, ic2) 

Results: y will be related to input x through the transfer function 

= _~I __ ~ 
X pS2 + qs + I 
y 

y(O) = icl 

y(O) = ic2 

The same restriction on IC's are present as for the INTEG operator; both may be omitted if zero. p and q 
may be expressions of arbitrary complexity (Figure 4-3). 

4.23 COMMENT 

MACRO CMPXPL(Y,P,Q,X,IC1,IC2) 
MACRO STANDVAL IC1=O.O,IC2=O.O 
MACRO REDEFINE YDOT 
YDOT=INTEG«(X)-(Y)-(Q)*YDOT)/(P),IC1) 
Y=INTEG(YDOT,IC2) 
MACRO END 

Figure 4-3. Listing of CMPXPL Operator Macro 

Any complete statement may be inclosed in quotation marks and it will then be ignored by the translator. 
It is illegal to ADD the quoted string to another statement, i.e., 

A = B + C 'THIS IS AN ASSIGNMENT' 

is all one statement and hence illegal. The card can be broken up into two statements by 

A = B + C $ 'THIS IS AN ASSIGNMENT' 
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The normal rule regarding continuations using the trailing ellipsis applies, i.e., 

A = B + C $ 'THIS IS A LONGER COMMENT ... 

REGARDING THE ASSIGNMENT OF A VALUE TO A' 

Since the quotes must be balanced and the statement separator ($) overrides all other operators, 
comments cannot contain quotation marks or dollar signs. 

4.24 CONSTANT 

Similar to a FORTRAN DATA statement, this operator is used to preset symbolic locations with 
numeric data. Standard form of the CONSTANT statement is 

where 

CONSTANT d1 = ab d2 = k*a2' d3 = a3b a32, k*a33 

di = Identifiers representing simple variables or array names. Implied do-loop notation may not 
be used. If di is an array name, integer subscripts may be used to fill individual elements 
within the array, else the entire array must be filled. 

ai = Literals and signed or unsigned constants. 

k = Integer constant repetition factors that cause the literal following the asterisk to be 
repeated k times. 

No check is made that reals are stored into reals, integers into integers and logicals into logicals. A common 
error is to omit the decimal point from a number which will then be stored as an integer. When the symbolic 
name is used as a real number, the integer stored there may be considered zero. An example of the correct 
use of the CONSTANT statement is: 

LOGICAL Ll 

INTEGER II 

ARRAY A(2) 

CONSTANT Ll = .TRUE., 11=2, A=2*1.0, B = 5.76 

4.25 CONTINUE 

Is a do-nothing statement which is normally used for a label to transfer control to or terminate a DO-loop. 
For preference, this statement should be used for all labels due to problems with MACRO expansions - see 
sub-section 2.3. 

4.26 COS 

Takes the cosine of a real argument x which must be in radians 

y = COS (x) 

result will be -1.0 < Y < + 1.0 

4.27 DBG 

Debug features are built into the translator and varying sections of the translator process can be printed 
on command via this statement. It should normally only be used under instruction of someone familiar with 
the programming of the translator. 
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4.28 DBUNT 

A special operator is provided for integrator limiting when the limited output is the second integral of 
an acceleration. This type of limiting can best be described in terms of the mass spring-damper system 
descri bed by 

mx +bx +cx = f(t); x(O) = XDZ, x(O) = XZ 

where physical stops constrain the mass to move only between xJ.J (lower limit) and xuJ. (upper limit) i.e., 

xJ.J. < x < xui 

When the displacement (x) of the mass reaches its limit, the mass must stop, implying that the velocity (x) 
is zero. The mass must remain stopped until the force acting on it (f(t) - cx) changes sign. The DBLINT 
operator (double limited integration) can be used to represent this type of limiting. The standard form of the 
invoca tion is 

where 

DBLINT(x, xd = xic, xdd, xdic, J.J., uJ.) 

x = a displacement 

xd = a velocity (~) 

xic = x(O) 

xdd = the input, an acceleration (x) 

xdic = x(O) 

J.J. = the lower limit 

uJ. = the upper limit 

Figure 4-4 gives a listing of the macro opera tor. 

MACRO DBLINT(X,V,XIC,A,VIC,LBX,UBX) 
MACRO REDEFINE VL,IC 
CONSTANT IC::::O. 0 
CALL ZZDLIM(V,VL=IC,X,INTEG(ZZLIMF(X,A,LBX,UBX) VIC) () 0 I qx lJqX) )( :::: .[ N·J· V (., (V X·,· (., ) , ." . , ... .1:. ,. }:; 
.,. ." I ..... 

MI~CRO END 

Figure 4-4. Listing of DBUNT Operator Macro 

An alternate way of performing this operation is to wrap a stiff spring around the loop when the wall 
is approached - this corresponds to what happens physically since the wall will always have a finite spring 
constant (Figure 4-5). The problem with this representation is in the behavior of the digital integration routine 
in the vicinity of the wall when the wall stiffness is made extremely high. 

4.29 DEAD 

Dead space has standard form 

y = DEADCtl, ul, x) 

Result is: 
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f(t) + x I 

S 
x 

rHl------
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S 

Figure 4-5. Limited Displacement - Spring Stiffness, Ks' Wall Stiffness Kw, 
Damping Constant Kd 

y = x -1.1., 

y = 0.0, 

y = x - ul., 

x < 1.1. 
1.1. <: x <: ul. 

x > ul. 

x 

4.30 DELAY 

A variable must be delayed in time to model passage through a pipe or other transport effects. This 
operator should not be used lightly since it tends to use a lot of storage and the extra calculation time can 
be significant. 

or 

The operator is invoked by the standard function forms 

y = DELA Vex, ic, tdl, nmx) 

D ELA Y (y = x, ic, tdl, nmx) 

where 

x = the input - an arithmetic expression of arbitrary complexity 

ic = the initial value of the output until the independent variable has advanced by the delay, 
tdl 

tdl = the delay between input and output 

mmx = an integer CONSTANT (i.e 10) giving the maximum number of calculation intervals in 
the delay. The calculation interval may vary but the sum of nmx calculation intervals must 
always be greater than the current time delay. 
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This operator is implemented by allocating a dummy array, 2*nmx words long, and prefilling with the 
value of ic, extending over all past history. Each entry in the table is associated with a time and at each new 
calculation interval a new value is inserted into the array - treating it as a circular list. To compute the output 
value, tdl, the current time delay is subtracted from the independent variable value and the table is searched 
for time values that bracket this required previous time. A linear interpolation is performed between the 
corresponding input values. If not enough data points are present, an error is reported. This operator approxi­
mates the pipeline with a varying velocity. For best results the time delay should vary slowly. 

NOTE: This operator requires the sort algorithm to separate sections of code and so should 
not be included in a PROCEDURAL block. 

4.31 DERIVATIVE 

Identifies the blocks of code performed at the request of the integration routine to evaluate the state 
variable derivatives. The integration routine is called from the dynamic section (Subsection 3.1) and asked 
to advance the state over the next communication interval using the code embedded in the DERIVATIVE 
blocks to evaluate the state variable derivates. The actual number of evaluations depends on the integration 
algorithm employed. All the statements in the DERIVATIVE blocks are translated into a separate subroutine 
so it is illegal to transfer control by GO TO's from these blocks to other sections (INITIAL, DYNAMIC, 
or TERMINAL) or vice versa. 

More than one DERIVATIVE section may be used, each with its own independent integration algorithm 
and integration step size. Although this technique can save execution time when correctly used, any implemen­
tation must be approached with caution since, in general, incorrect answers will be obtained unless the model 
is split with a full understanding of the effects of computation delays for variables that cross block boundaries. 
This tool has been provided for research into problem split rules and should be regarded more as a state-of-the­
art technique rather than for every day practical implementation. For anyone who considers himself a novice, 
no more than one DERIVATIVE section should ever be used, unless it is to model a discrete controller where 
natural delays occur. 

The basic structure is to include more than one derivative block - delimited by DERIVATIVE ... END 
statements within the DYNAMIC block, i.e. 

DYNAMIC 

DERIVATIVE SECTION 1 

END $' OF SECTION 1 ' 

DERIVATIVE SECTION 2 

END $' OF SECTION 2 ' 

etc 

END $' OF DYNAMIC' 

Each derivative section can have its own integration algorithm, maximum step size, minimum step size and 
NSTEPS value. Default values for these quantities are established in normal fashion. If a value is specified 
outside a DERIVATIVE section, this becomes the default for all DERIVATIVE sections. Values relating 
to a particular DERIVATIVE section are defined by including the appropriate statement between the 
DERIVATIVE ... END delimiters, i.e. 

ALGORITHM IALG = 4 
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NSTEPS NSTP = 1 

DERIVATIVE SECI 

ALGORITHM ALG 1 = 3 

MAXTERVAL MAXI = 0.001 

END $' OF SECI ' 

DERIVATIVE SEC2 

MAXTERVAL MAX2 = 0.010 

END $' OF SEC2 ' 

The first two statements establish algorithm number four (4) to be the default algorithm and each section 
will have a NSTP of 1. Within derivative section one, the algorithm is specified to be three (3) with a 
maximum step size of 1 msec (0.001). Within derivative section two, the default algorithm is taken and the 
maximum step size set to 10 msec (0.010). Since NSTP is one, these will be the actual step sizes. 

Implementation for these block descriptor names is by forming an array of length the number of 
derivative sections for each one of the describing quantities. The names used are the default or those specified 
outside the DERIVATIVE sections. In the preceding example, this would be IALG(2), NSTP(2), MAXT(2) 
and MINT(2). Names specified within the derivative sections are equivalenced into appropriate slot of the 
main array, i.e. 

IALG(I) == ALGI 

MAXT(l) == MAXI 

MAXT(2) == MAX2 

and preset to the value indicated. These values can be changed by SET commands at run-time. To change 
the integration algorithm for section two, it must be referred to as IALG(2) since a name was not explicitly 
given, i.e. 

SET ALG 1 = 5, IALG(2) = 5 

Because of the equivalencing convention, it is important that unique names be used for descriptors 
defined within DERIVATIVE blocks. 

At the start of the simulation run, the DERIVATIVE blocks are placed on an event list and executed 
in the order in which they are specified in the model definition section. Note that the sort algorithm cannot 
rearrange statements over a block boundary, so that if a value calculated in the second block is used in the 
first block, the first time it will be undefined. Such quantities should be initialized in the INITIAL section. 

Each block is placed back on the event list assigned with the time to which that block has advanced. In 
the case given of a 1 msec step associated with Section 1 and a 10 msec step associated with Section 2, the 
event list will look like: 

4-15 



A B C 0 E F G 

0.0 0.0 0.001 0.002 0.010 0.010 0.011 
1 2 1 1 1 2 1 

0.0 0.001 0.010 0.010 0.010 0.011 0.020 
2 1 2 2 2 1 2 

After Section 1 has been advanced one step to 1 msec, the event list has Section 2 at the top (B) with a time 
of 0.0. Advancing this section one step leaves it at 10 msec and now Section 1 is back at the head of the list 
again (C). Section 1 keeps on being advanced until they are both at 10 msec (E). Now we assume that 1 is 
a little ahead of 2, and goes to 11 msec (F). Next step advanced 2 by 10 msec and the event list picture changes 
to (G). This cycle then repeats. 

The only break in the regular progression is at a communication interval or at an equivalent barrier 
represented by a DISCRETE block or a block with an integration algorithm of zero. The times for all 
DISCRETE blocks and also the communication action are entered onto a separate event list where all actions 
are ordered in time; the next time on the event list is called the barrier time. 

For all other DERIVATIVE blocks, the current step size is checked against the current time (T) and 
the barrier time from the next event list. If the integration with the current step size will exceed the barrier 
time, the actual step is reduced so that the last step is made exactly up to the event. All states will then line 
up in time for the event to take place. If the event is a communication interval data recording, the derivatives 
are evaluated once more so that all algebraic variables depending on the states will be consistent. This action 
is not taken for barriers established by DISCRETE blocks since differences are likely to be small and the 
overhead of an extra forced derivative evaluation comparatively high. If. any problems are encountered 
remember that the state variables will be at the correct time and any algebraic vatiables can be rederived in 
the sampling code if necessary. 

It seems most people choose step sizes and communication intervals that are integer multiples of each 
other. The ACSL system does not require this however, and it is acceptable to choose a fixed step length for 
the continuous section of 4 msec, a sampling INTERVAL (qv) in the DISCRETE block of 11 msec and a 
communication interval of 20 msec. The first few calculation intervals would then be 

4, 4, 3, 4, 4, 1, 2, 4, 4, 3, 4, 3, 4, ... 

The first short step of 3 msec brings time up to 11 msec the first barrier time. Then two more normal steps 
are followed by a short step of 1 msec to bring time up to the communication time of 20 msec. The next barrier 
is the DISCRETE block at 22 msec causing a step size of 2 msec and so on. The variable step algorithms are 
similar in that the step length will vary but the last step will always be reduced to move the block exactly up 
to the barrier time. Note however for monitoring purposes, the variable CSSITG or current step size will 
contain the step length the integration algorithm would like to take, not the shorter one actually taken up to 
the communication interval time. 

4.32 DERIVT 

The derivative function can be implemented if ABSOLUTELY necessary. Note that it is never necessary 
to invoke a derivative - it can be expressed instead in terms of all the other states in the system. Since the 
derivative operator is a first order approximation, it can lead to instability if it is used to represent any major 
loop. The only time this may be justified is for a minor term where a large amount of extra calculation may 
be needed to reform the problem in terms of the states. Standard form is 
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where: 

y = DERIVT(ic, x) 

DERIVT(y = ic, x) 

ic = Y(O) 

x = the input, an arithmetic expression 

NOTE: This operator should not be included. in a PROCEDURAL block. 

4.33 DIM 

Positive difference is obtained by the function 

y = DIM(x h X2) 

where Xl and X2 are real floating point variables or expressions. Result is 

y = xl - X2 if xl> x2 

y = 0.0 otherwise 

4.34 DISCRETE 

An equivalent to the DERIVATIVE block is introduced by the keyword DISCRETE. The intent is to 
make it easy to model digital sampled data controllers where the communication to and from the continuous 
world occurs at fixed, known in advance, times. The format of the statement is 

DISCRETE name 

END 

inserted within the DYNAMIC code block, if any, at the same level as any DERIVATIVE blocks. The action 
of the statement is to demarcate a code sequence that is executed at a discrete event or time point with the 
execution being controlled by the keyword INTER V AL. Like the DERIVATIVE blocks, each DISCRETE 
block has a time associated with it which is entered into an event list, which time will become a barrier for 
all the other DERIVATIVE blocks ensuring that they all take a final step (may be short) up to the barrier 
time before the code in the DISCRETE section is executed. If the INTER V AL statement is included, the 
DISCRETE block is re-entered on the event list with a time equal to the current time plus the current contents 
of the INTERVAL variable. 

An example using a DISCRETE block to model a control computer is given in Section 11 of Appendix 
A and is shown in outline here by the following structure 

PROGRAM discrete controller 

DERIVATIVE CaNTIN 

(X DEPENDS ON U) 

END $' OF CONTINUOUS SECTION' 

DISCRETE SAMPLE 

INTERVAL DTSAMP = 0.100 
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(U DEPENDS ON X) 

END $' OF DISCRETE' 

END $' OF PROGRAM' 

In the continuous section we define a plant that can be as complex as necessary but structurally has an output 
X that depends on a control U. The control U should be visualized as being generated via a digital to analog 
converter so that the value of the control remains constant between output intervals. The next section is a 
DISCRETE block that is executed every DTSAMP seconds, defined by the INTERVAL statement to be 0.1 
seconds. This block uses the output value of the plant X, which will be at the sample time, to compute a control 
U which will be used over the next sample interval. The successful operation of this simulation requires the 
continuous section to be exactly at the sample time when the plant value X is used to determine the next control 
U. 

Jumps in the control U will modify all the high order derivatives estimated for the continuous plant so 
variable step algorithms will usually have to reduce the step size or even restart, since the fixed step size 
algorithms retain no memory of previous history, the new step will start out with a new evaluation of the 
discontinuous derivatives. The key to the action is the fact that the effective time of the continuous section 
is exactly at the sample time when the DISCRETE section code is executed. 

The order of execution of the blocks is as given in the model definition code at time equals zero and both 
DERIV ATIVE and DISCRETE blocks can be mixed. In general, in a closed loop situation, some variables 
will have to be initialized in the INITIAL section since they are used before being calculated in a later block. 
Reference as an example the control variable U in the preceding code sequence which is used in the continuous 
section before it is calculated in the DISCRETE block. If used like this without initialization, the first value 
of U used in the continuous section will be the last value left behind by the previous run! A test of the presence 
of these initialization problems is to make two identical runs i.e. START $ START. If any answers are 
different it usually indicates an error. 

The sequence of events at the time-equals-zero condition differs somewhat from the corresponding 
DERIVATIVE blocks. For conventional DERIVATIVE blocks, the initial conditions are moved to the state 
variable array and the derivative code executed once. Then the integration algorithm takes over and in 
integrating over the first step re-evaluates the derivatives again (the variable step algorithm IALG = 1 or 
2 will predict the state variables first before the correct iteration) so it appears that two derivative evaluations 
are used at time-equal-zero. With the DISCRETE block, the first evaluation takes place and then the block 
is placed back on the event list at some time in the future (depends on the INTERVAL statement) with any 
state variables still with their initial condition values. Now time will advance for other sections until the 
DISCRETE section barrier time is reached when the integration algorithm first advances the state variables, 
if any, to the current time by euler integration and then re-evaluates the DISCRETE section code. In general 
integration statements (INTEG or INTVC) are not used inside DISCRETE blocks since the facility is 
designed to represent sampling actions independent from the continuous physical world where "the true 
integrations take place. There is sometimes a need for a simplified integration algorithm with a fixed step size 
and a single derivative evaluation per step. This has arisen in the past in translating DYNAMO models to 
run under ACSL. In this case the entire model can be placed in a DISCRETE block and no extra derivative 
evaluations will be inserted at the communication interval times. Since the states are always advanced just 
before a re-evaluation of the derivative code, algebraic variables are always synchronized to the state variables 
for data recording. 

The mechanism for implementation of a DISCRETE section is to set an effective algorithm of zero in 
the corresponding IALG slot which can be seen from the debug output. The INTER V AL variable is equiva­
lenced into the MINT (MINTERV AL) array and preset to the appropriate numeric value. Slots in the 
corresponding MAXT (MAXTERVAL) and NSTP (NSTEPS) arrays are ignored. 
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4.35 DO STATEMENT 

The standard FORTRAN DO statement may be included. Note that the loop should normally be 
embedded in a PROCEDURAL block so that the sort routine will not rearrange the order of execution. This 
is not necessary within the INITIAL, DYNAMIC or TERMINAL regions of an explicit program since these 
are not sorted - each statement being executed in sequence. The loop cannot extend from INITIAL to 
TERMINAL to execute a sequence of runs. Each loop must be closed within its own block. The reason is the 
CONTIN statement that branches directly into the DYNAMIC loop. Most FORTRAN compilers will reject 
a branch into a loop. If a loop is established to make successive runs, then CONTIN cannot have any meaning 
since the initialization won't be performed properly. 

A DO statement makes it possible to repeat a group of statements a designated number of times using 
an integer variable whose value is progressively altered with each repetition. The initial value, final value and 
rate of increase of this integer variable is defined by the set of indexing parameters included in the DO 
statement. The range of the repetition extends from the DO statement to the terminal statement, which must 
follow the DO statement, and is called the DO loop. The standard form of the DO statement is 

where 

DO n i = mb m2 

DO n i = m l' m2, m3 

n = a label of the terminal statement of the loop, may be a symbol or numeric. 

i = a simple integer variable called the index variable. With each repetition its value is altered 
by the increment parameter, m3' This varible may not be changed within the loop. 

ml = initial parameter, the value of i during the first loop. 

m2 = terminal parameter, when the value of i surpasses the value of m2, DO execution is 
terminated and control goes to the statement immediately following the terminal state­
ment. 

m3 = increment parameter, the amount i is increased with each repetition. If omitted - first form 
above - the value 1 is assumed. 

The mb m2, and m3 must be simple integer variables or unsigned integer constants. 

In general, the use of DO statements should be minimized. More flexibility is usually obtained by 
programming each loop explicitly, i.e., 

I = ml 

L1 .. IF(I.GE.m2) GO TO L2 

... \ loop 

I = I + m3 

GO TO L1 

L2 .. CONTINUE 

Now general expressions, arrays and real variables can be used for the indexing parameters. 

For more information on the structure of the DO statement see the local FORTRAN reference manual. 
The ACSL translator checks the syntax of the DO statement but does not validate the correct nesting of loops 
or terminal statements. Errors of structure will be indicated by the FORTRAN compiler. 
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4.35 DYNAMIC 

Identifies the block of code that is performed every communication interval throughout the run. It must 
be accompanied by its matching END card. Code executed in the DYNAMIC block can leave variable values 
around for use by the DERIVATIVE and DISCRETE blocks over the next communication interval and in 
that sense it can act as a sampler or D / A converter. It is preferable to include code calculations in a separate 
DISCRETE block and so make model behavior independent of the data recording action. The intent within 
the DYNAMIC block is to provide a place to put output related calculations so that they can be performed 
at the usually slower data recording rate rather than at each derivative evaluation. Examples are unit 
conversions such as radians to degrees or meters/seconds squared to gees. The time interval for the next 
communication interval can be itself changed, based on some simulation phase or configuration so obtaining 
variable data recording rates - see CINTERV AL statement for example. 

No sorting is performed on any of the code within the DYNAMIC block. 

4.36 END 

Denotes the end of a block or section. Subsection 3.1 shows the use of END's in structuring an explicit 
program. One of the most common errors is not getting the right number of END's to balance off the program 
blocks. Error messages 'NOT ENOUGH ENDS' and 'TOO MANY ENDS' are issued when the count is 
incorrect. It acts like a right parenthesis in an arithmetic expression, except that it terminates blocks of 
statements. An incorrect count corresponds to unbalanced parentheses. 

4.37 EQUIVALENCE 

This operator is similar to the FORTRAN version in that it allows renaming of areas of storage. Due 
to the nature of storage in ACSL (all variables appear in a single common block) there are specific rules for 
the use of EQUIVALENCE which do not appear in normal FORTRAN usage. ,The standard form of the 
statement is: 

EQUIVALENCE (Main variable, equivalenced variables(s)) .. . 

,(Main variable, equivalenced variables(s)) .. . 

,( etc.) 

where "main variable" will appear in the users common block, and thereby reserve storage, while the 
equivalenced variables will be assigned storage relative to the main variable, but will not reserve space. All 
variables will appear in the dictionary with their own types and dimensionality. 

Rules which restrict the use of EQUIVALENCE are as follows: 

1) System variables (CINT etc.), States, Derivatives and Initial Conditions may only appear as main 
variables. 

2) A main variable may never appear as an equivalenced variable. 

3) An equivalenced variable must not appear more than once. 

4) Variables may have no subscript or only one when being specified in an EQUIVALENCE statement. 
Multi subscripted arrays must appear using their equivalent single subscript. For example, given 
A(5,5), equivalencing the (3,3) element to SAM would require a reference to A(5*3 + 3) or A(18) 
i.e. 

EQUIVALENCE (A( 18), SAM) 

In using equivalenced variables, any reference to an equivalenced variable name is taken to be a reference 
to its associated main variable, even through the equivalenced variable may be only one element of a large 
main variable array. Thus the sorter will produce the error message "multiply defined symbol" if two 
equivalenced variables are assigned values outside a PROCEDURAL block. 
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ARRAY RM(3) 

EQUIVALENCE (RM(l), RM1), (RM(2), RM2), (RM(3), RM3) 

RM1 = 0.0 

RM2 = 10000.0 

***MULTIPLY DEFINED SYMBOL*** 

Generally the main variable is equal to or larger than it's equivalenced variable(s) since the main variable 
reserves storage, i.e., 

ARRAY A(lO) 

EQUIVALENCE (A, B) 

Here A is the main variable, B is the equivalenced variable. A reference to B uses the first element of A (= 
A( 1)). B(2) is not allowed unless B is a separately defined array. 

ARRAY A(lO) 

EQUIVALENCE (B, A) 

Now B is the main variable - which reserves one word of memory - and A is the equivalenced variable. A 
reference to A(2) will access the variable that follows B in the common block, generally not known to the user. 

4.38 ERRTAG 

The name given to the variable that is used to indicate an attempt to reduce the step size below the 
minimum, MINT, can be changed. This name will be set .TRUE. to indicate an error by a variable step size 
integration algorithm which is reducing the step size to control the error bound. Standard form of the 
statement is 

ERRTAG name 

where 'name' is a simple unsubscripted variable. The type of 'name' will be automatically set to LOGICAL 
and it will be preset to .FALSE. to start with. The variable step integration routine will call the derivative 
subroutine once with the name given under ERRTAG set to .TRUE. if it needs to reduce the step size below 
the minimium calculation interval, MINT. If it is still .TRUE. on return, the termination flag for that run 
will be set. Control should then revert to the terminal section, or executive and the next command will be read. 
If provision is made to handle this case and reset the flag, then care must be taken that an endless loop is not 
formed. 

4.39 EXP 

Exponential of real argument x 

y = EXP(x) 

x is limited in size such that the maximum machine word size should not be exceeded by the exponential. 
Result is 

4.40 EXPF 

The exponential function can be switched on or off. The output is a function rising on a time constant 
to 1.0 (ON = .TRUE.) or decaying to zero (ON = .FALSE.). Standard form is 

y = EXPF (ic, ta, on) 
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EXPF (y = ie, ta, on) 

where: 

ic = Y (0) - should be between zero and 1.0 

ta = the time constant (r) 

on = a logical variable or expression, denotes rise or decay 

Results: 

y = 1.0 - EXP(-(T - To)/r); ON = .TRUE. 

y = EXP(-(T - T1)/r); ON = .FALSE. 

To and Tl are the times at which ON changed .FALSE. to .TRUE. and .TRUE. to .FALSE. respectively. 

4.41 FCNSW 

Function switch operator has standard form 

y = FCNSW(p, xl, x2, x3) 

Results: 

y = xl, P < 0.0 

y = x2, P = 0.0 

Y = x3, P > 0.0 

4.42 FORMAT 

The FORTRAN FORMAT statement may be used and must have a label. In an explicit program, the 
FORMAT statement and corresponding I/O statement (READ, WRITE, etc.) must both be in the DERIV A­
TIVE section or neither. Standard form of the FORMAT statement is 

Ll .. FORMAT(character string) 

The ACSL translator does not check the detailed syntax of the FORMAT statement. For further specification, 
reference should be made to a standard FORTRAN manual. 

4.43 GAUSS 

A normally distributed random variable can be generated by 

y = GAUSS(m, s) 

GAUSS(y = m, s) 

y will be normally distributed with mean m and standard deviation s. 

NOTE: Warning listed under UNIF. 

The seed for a random sequence can be reset by UNIFI or GAUSI. If not set, a different random 
sequence will be in effect for each run. Figure 4-6 gives a listing of the operator macro. 
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4.44 GAUSI or UNIFI 

MACRO GAUSS(Y,AVE,SIG> 
Y=AVEfGRV(ZZSEED>*(SIG) 
i"lACRO END 

Figure 4-6. Listing of GAUSS Operator Macro 

The seed for the random number generator can be initialized by using this operator. Standard form of 
the call is 

GAUSI(k) 

UNIFI(k) 

where k is an integer constant or expression and should be an odd number for a maximal length sequence. 
If it's small (1,3,5 ... ) the first five or ten values of random numbers will be highly correlated. Figure 4-7 
gives a listing of the operator macro expansion. Only one initialization routine should be used since they both 
set the same seed variable. 

NOTE: This operator should only be invoked in the INITIAL section of an explicit program or 
provision must be made to skip over it except at the beginning of each run in an implicit 
program. If it is repeatedly executed, the random numbers won't change. 

4.45 GO TO STATEMENT 

MACRO GAUSI(SEED) 
PROCEDURAL(=SEED) 
ZZSEED::::SEED 
END 
i··'tACI~() END 

Figure 4-7. Listing of GAUSI Operator Macro 

GO TO statements transfer control to a labelled statement whose reference is fixed or which is assigned 

during execution of the program. The statement labels used in the GO TO statements must be associated with 

executable statements in the same program unit as the GO TO statement. In explicit programs, the INITIAL, 

DYNAMIC and TERMINAL sections exist in a single program unit. However, control cannot be transferred 

into the DYNAMIC region. The reason for this is that the integration routines must be initialized at the start 

of the run and this initialization operation is done on leaving the INITIAL section and entering the DYNAM­

IC section. Control can be transferred/rom the DYNAMIC region and between INITIAL and TERMINAL 
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regions. The DERIVATIVE section is a separate program block. 

In the following a statement label may be either numeric or symbolic. Standard forms of the various 
labels are: 

GOTOk 

Execution resumes at the statement labelled k. Example: 

GO TO LOOP 

GO TO m,(nb n2 ... , nm ) 

GOTOm 

The statement acts as a many branched GO TO. m is a simple integer variable ASSIGNed a label value. 
The ni are statement labels which should correspond to a possible label assigned to m. 

GO TO (nb n2, ... , nm), i 

where: 

nj = statement labels 

i = a simple integer variable that has been given an integer value between I and m. 

If i has the value k, then control will be transferred to the kth statement label, nk, in the above list. 

WARNING: The inclusion of a large number of GO TO's is considered harmful to the successful 
completion of any simulation project. 

4.46 HARM 

A sinusoidal or harmonic drive function can be defined by: 

y = HARM(tz, w, p) 

Result: 

where: 

y = 0.0 

y = SIN(w*(T - tz) + p) 

tz = delay in sec 

w = frequency in rad/sec 

p = phase shift in rad 

T < tz 

T >- tz 

Note that if p is non-zero a jump discontinuity will be involved. 

4.47 HYSTERESIS 

Use the backlash operator BCKLSH 

4.48 lABS 

Absolute value of an integer argument can be obtained by the function 

n = IABSU) 

j is an integer variable or expression of arbitrary complexity. 

NOTE: Integer variables must be declared to be type INTEGER. The default type is REAL. The 
function name lABS should be typed INTEGER as well. 
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4.49 101M 

Integer positive difference can be obtained by the function 

n = IDIMUb j2) 

where ji and j2 are integer variables or expressions. 

NOTE: 101M should be declared of type INTEGER prior to its use. 

Result: 

n = ji j2; 

n = 0; 

4.50 IF STATEMENTS 

IF statements are used to transfer control conditionally. At the time of execution, an expression in the 
IF statement is evaluated and the result determines the statement to which the jump will be made. The most 
useful form is the one-branch logical IF. It has the standard form 

IF(lexpr) statement 

where lexpr is a logical or relational expression (one that has a single value - either .TRUE. or .FALSE.) and 
statement is any executable FORTRAN statement except another logical IF, a DO statement or END. 
Non-FORTRAN statements or those particular to ACSL may expand to more than one actual FORTRAN 
statement. Only a single statement can be included in the logical IF statement. Examples are: 

IF(A. LT. 5.0) A = A + 0.1 

IF(T. GT. TSTOP) GO TO FINISH 

The real switch (RSW) operator (q.v.) can often be used in place of an IF which then avoids having to bracket 
the IF code sequence by PROCEDURAL ... END statements in order that statement order can be 
maintained. 

The three-branch arith-metic IF is also included for completeness. In general, these should be avoided 
entirely due to the difficulty encountered in fonowing any complex branching structure. Use only logical IF's 
given before with explicit GO TO's which effectively act like a two-branch IF and avoid the statement label 
on fall through. Standard form of arithmetic IF is 

where: 

IF(c) nb n2-, n3 

c = any arithmetic expression 

nj = statement labels 

Control is transferred as 

c< 0, jump to statement nb 

c = 0, jump to statement n2' 

c > 0, jump to statement n3 

4.51 IMPL 

The solution of simultaneous or algebraic equations cannot be written directly because of the sort 
algorithm. Every value is assumed calculable on the outputs of the integrators or state variables. Equations 
of the form x = f(x) cannot be expressed in this form and it is necessary to find another way to calculate the 
output. Often an algebraic operation can be performed that can simplify the result. Feedback round a summer, 
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., y 

leads to 

Y = X - KY 

which cannot be modeled directly. 

A little algebra can easily give 

Y X =---
1 + K 

Some functional relations may be impossible to solve explicitly and so the implicit operator can be 
invoked. This will separate out the algebraic loop and use a Newton-Raphson iteration method to try to find 
a solution. 

WARNING: This operation can multiply the computer time need for a simulation study many times. 
It is worth spending some time trying to avoid implicit loops. 

The standard form for the function is: 

where: 

y = IMPL(yz, e, m, efl, expr, ydl) 

IMPL(y = yz, e, m, efl, expr, ydl) 

yz = ini tial guess 

e = the error bound - real constant or arithmetic expression 

m = the maximum number of iterations to try - must be an integer constant or variable - not 
an expression 

efl = the error flag - a variable only - which is set nonzero if the iteration does not converge 

expr = the expression that contains or eventually leads back to Y 

ydl = the value used to increment the initial value to estimate the derivative. If not specified the 
assumed value is 0.0001 

NOTE: The IMPL operator should not be used in a PROCEDURAL block that will prevent the 
correct sorting of any intervening statements. 

The iterative method used is Newton-Raphson to solve 

Y = feY) 

= fn - fn - 1 

Yn-Yn-l 

= fn - CnYn 
1 - Cn 

Upon initial entry 

Yn-1 = YZ 

is the derivative estimate 
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Yn = (1.0 + Yn)*Yn-1 

The error criterion for successful completion of the iteration is 

IYn - fnl<IYnl*E 

4.52 INITIAL 

Identifies the block of code that is performed just once before the start of each run. It must be 
accompanied by its own matching END card enclosing the block and the block must be placed before the 
DYNAMIC (q.v.) section. Refer to Subsection 3.1 for rules of explicitly structured programs. No sorting is 
done on any code within the INITIAL block. 

4.53 INT 

Integerization of a real floating point argument 

n = INT(x) 

n will be the sign of x times the largest integer < Ixl 

NOTE: INT should be declared of type INTEGER prior to it use. 

4.54 INTEG 

All integration in an ACSL program is handled by a centralized integration routine. In performing 
integrations, the integration algorithms utilize two intervals - the calculation interval and the communication 
interval. Since digital integration is basically a discrete process, the calculation interval is the fundamental 
interval over which the state variables are updated. No finer detail is accessible except by some interpolation 
scheme. All integration schemes for the set of first order differential equations 

x = f(x) 

finish up looking like 

Xn+l = Xn + hf(xn+a ) 

where 0 <a< 1. The problem is to find the effective derivative to be used in updating the state vector. Note 
that with suitable conditions on continuity and differentiability, the mean value theorem guarantees that an 
a exists that will produce an exact answer for the state trajectory - finding it is another matter, however. 
Different integration schemes approximate the derivative in different ways - usually by expanding the 
derivative function in a Taylor series, about the current state. 

As an example, consider the Runge-Kutta integrations. The derivative function f(x) is evaluated four 
times and saved as the vi' The first is the slope at the beginning of the interval: 

VI = f(xn) 

This slope is extrapolated half way across the interval and a new value calculated: 

V2 = f(xn + 0.5 hVI) 

This new slope is brought back to the beginning of the interval and again used to extrapolate half way across 
the interval and a new slope evaluated 

v3 = f(xn + 0.5 hV2) 

This third slope is brought back to the beginning of the interval and used to extrapolate all the way across 
and a new slope evaluated there 

v4 = f(xn + hV3) 

We now have four slopes - one an exact one at the beginning of the interval and approximations - two in the 
middle and one at the end. Runge-Kutta says that the average slope to be used in updating the state is the 
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weighted average of these - assigning twice the weight to the slopes in the center of the interval as the ends, 
i.e., 

f(xn+a) = (vI + 2v2 + 2v3 + v4)/6 

Errors introduced at each step will normally be proportional to h5 for this method. 

The form of the integration statement is either 

state = INTEG(deriv, ic) 

or embedded in any legal expression as a function that has a single output, the value of the state. When the 
integration statement is alone, then the state name can be identified - embedding in an expression means a 
generated variable must be used for the state. 

'state' = a simple variable or subscripted array name with a single integer CONSTANT subscript. * 

'deriv' = an arithmetic expression of arbitrary complexity, i.e., may contain further INTEG state­
ments, functions or MACRO's 

'ic' = a simple non-subscripted variable, a real constant or a general expression enclosed in paren­
theses. If it is a simple variable (preferred), then this variable name must not be used as 
another initial condition, state, derivative or system variable name. 

If the expression form is chosen the statement is sorted in such a way that all components in the 
expression are evaluated before the state value is assigned. Equations using the state will then follow. Problems 
may occur when using this form with the REIN IT command (q.v.) at model execution time. The expression 
'will always be evaluated and substituted for an initial condition established by the reinitialization operation. 

Examples of use are as follows: 

ARRAY X(S) 

Y = INTEG(S.O*X + C, VIC) 

X(1) = INTEG(A + B, XIIC) 

X(2) = INTEG(INTEG(4.0*DD + X(l), 0.0), X2IC) 

Z = P*INTEG(ZDOT, 0.0) + BT 

W = INTEG(WDOT, (2.0*AL*SIN(TH))) 

The following comments are to be noted. 

1) That Z, in the above, is not a state since the INTEG function appears embedded in an expression. 

2) Once the array X has been defined as a state by the single INTEG statement~ another assignment 
statement cannot be used to fill the other slots of an array. If one element of an array is a state, ALL 
elements of the array must be states; i.e., 

X(3) = W + S.O*Y 

X(4) = AL*INTEG(ALP, 0.0) + W 

are both illegal when accompanying the above. 

Initial conditions can only be names not used as states, other initial conditions or system variables; i.e., 

YY = INTEG(YYD, VIC) 

ZZ = INTEG(Z*4.0, X) 

ZK = INTEG(KK, CINT) 

* See the vector integration operator INTVC for another way to solve matrix differential equations. 
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are all illegal when used with the above cards. CINT could be used if the system default name has been 
changed by a CINTERV AL statement (q.v.). 

The reason for the rules may be better understood if the actual translation operation is explained. The 
translator is building up three lists of names that will be placed in sequence in a FORTRAN common block. 
The state list will contain all the state variables and arrays, the derivative list will contain names that have 
values for the derivatives stored into them and the initial condition list will have names with values correspond­
ing to the equivalent slot in the state list. The problem comes about that each name in these lists must be 
unique. The initial condition name for each state must be different. If it is a constant or an expression, a 
generated name is used (Znnnnn) but if it is a simple variable the translator uses that name directly. The 
expression form is changed into a test (IF statement) on the first evaluation of a run, in which case the 
expression is evaluated and the result stored into the state. The derivatives at present are all generated 
variables to avoid conflict since it was thought that integrating a state was too common a feature to eliminate. 
The statements 

YD = INTEG(S.O*X, 1.0) 

Y = INTEG(YD, VIC) 

will generate the following assignment statements 

Z09999 = S.O*X 

Z09998 = YD 

and a DATA statement for the generated initial condition 

DATA Z09997/ 1.0/ 

Now the state list will be YD,Y; the derivative list will be Z09999, Z09998; and the initial condition list will 
be Z09997,YIC. Each name on the list is unique. 

From this we can show that it saves time to include the derivative expressions in the INTEG statement 
rather than calculating the derivative by name explicitly. Of course, if the derivative is needed in other 
calculation sequences then it must be given a name, but this would be an unusual case, i.e., 

YD = S.O*X + YY 

Y = INTEG(YD, VIC) 

would be better done by 

Y = INTEG(S.O*X + YY, VIC) 

unless the value of the expression S.O*X + YY is needed elsewhere in the program. The extra assignment 
statement is avoided. However, see the use of INTVC below for single elements - pseudo arrays of size one. 

4.55 INTEGER 

See type statements. 

4.56 INTERVAL 

In order to schedule repeated execution of a DISCRETE (q.v.) block, the INTERVAL statement is used 
both to define the name of the variable controlling the repetition period and its initial value. Standard form 
for the statement is 

INTER V AL name = real constant 

where 'name' is a simple unsubscripted variable name. There is no default and a DISCRETE section without 
an INTER V AL statement will never be executed. 
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The mechanization of the INTERVAL feature is to use the slot in the global MINTERVAL array 
corresponding to the DISCRETE block and equivalence the INTERVAL variable into this array. If no 
INTERVAL statement is placed within the DISCRETE block, a value of zero is used as the default which 
flags the DISCRETE block as not to be executed during the initialization phase. 

4.57 INTVC 

The restrictions on the INTEG operator with regard to initial condition and derivative arrays can be 
avoided by using this vector integrator operator. Standard form is 

x = INTVC(xd, xic) 

where x, xd and xic are arrays of the same size and correspond to state, derivative and initial condition 
respectively. See the program in Section 10 of Appendix A for examples of the use of the INTVC operator. 

The restrictions on the use of the INTVC operator are as follows: 

1) INTV C cannot be used in an expression. 

2) The derivative array must not appear anywhere else as a state. (If you must use a state as a derivative 
- velocity, for instance - use the block transfer (XFERB) subroutine to move it into another array 
before using INTVC. 

3) The initial condition cannot be a constant or expression. 

4) The array size may be one - or equivalently a single undimensioned variable can be used instead. In 
this case, the derivative name is used explicitly and no extra assignment statement is generated. 

5) The derivative array cannot be preset with a CONSTANT statement since it is cleared automatically 
to zero before the derivative evaluation routine is called the first time - after the INITIAL section 
- after every START. 

As an example consider 

ARRAY X{lO), XD{lO), XIC{lO), M(5, 5), MD(5, 5), MIC(5, 5) 

x = INTVC(XD, XIC) $ 'VECTOR INTEGRATION' 

M = INTVC(MD, MIC) $ 'MATRIX INTEGRATION' 

If R, V and A are range, velocity and acceleration vectors so 

ARRAY R(3), V(3), A(3) 

the following is ILLEGAL -

V = INTVC(A, VIC) 

R = INTVC(V, RIC) 

since these statements ask for V to be considered as both a state and a derivative at the same time. Using the 
XFERB (transfer block) subroutine and defining an RD (R dot) array, the sequence becomes 

V = INTVC(A, VIC) 

CALL XFERB (RD = V, 3) 

R = INTVC(RD, RIC) 

4.58 I/O STATEMENTS 

FORTRAN read, write and file handling statements can be included and are recognized by the ACSL 
translator but a minimum of syntax checking is performed. Most errors will be indicated at the FORTRAN 
compilation that follows trc;tnslation. 
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The following definitions apply to all the I/O statements covered: 

1 = logical I/O number that determines the file. The logical unit numbers available depend on machine 
type and operating system. See addendum. 

1 = 5 being the INPUT file or card reader 

= 6 being the OUTPUT or print file 

= 9 being the PRINT file - must be disposed of explicitly 

n = FORMAT declaration identifier which must be a statement label (number or symbol) 

L = input/output list. This list portion of an input/output statement indicates the data items and the order, 
from left to right, of transmission. The input/output list can contain any number of elements. List items 
may be array names, simple or subscripted variables, or an implied DO-loop. Items are separated by 
commas, and their order must correspond to any FORMAT specifications associated with the list. 
External records are always read or written until the list is satisfied. The ACSL translator does not 
check the syntax of the list - any character string will be accepted and errors will be indicated by the 
subsequent FORTRAN compilation. For more details on list format, refer to a FORTRAN reference 
manual. 

Standard form of the I/O statements are as follows: 

PRINT n, L - Information in the list L is transferred to the OUTPUT unit-printer or remote 
terminal - in accordance with the FORMAT declaration, n .N.B. Use LINES (q.v.) before the PRINT or 
WRITE to tell the executive how many lines are being written. Top-of-form is then handled automatically. 

WRITE(i, n)L - Same as PRINT above except the file is determined by the value of the unit i. Valid 
logical unit numbers depend on machine type and operating system. See addendum. 

READ n, L - One or more card images are read from the standard INPUT unit - card reader or 
remote terminal. Information is converted from left to right in accordance with the FORMAT specification, 
n, and is stored in the locations named in the list, L. 

READ(i, n)L - Same as READ above, except the file is determined by the value of the unit i. Valid 
logical unit numbers depend on machine type and operating system. See addendum. 

4.59 ISIGN 

Append a sign by 

n = ISIGNUb j2) 

where jl and j2 are integer variables or expressions. Result is sign of j2 times absolute value of jl and the result 
will be an integer. 

NOTE: ISIGN should be declared to be of type INTEGER prior to its use. 

4.60 LEDLAG 

A lead-lag compensator may be conveniently implemented by using the standard forin 

y = LEDLAG(p, q, x, ic) 

LEDLAG(y = p, q, x, ic) 

Result: y will be related to input x through the transfer function 
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y = ps + 
x qs + 

p 
y (0) = q x(O) + ic 

The same restriction on ic is present as for the INTEG operator. p and q may be expressions of arbitrary 
complexity. Figure 4-8 shows the mechanization of this operator as a system macro. 

MACRO LEDLAG(OUT,P,Q,IN,IC) 
MACRO STAND VAL IC=O.O 
MACRO REDEFINE X,Y 
x:::: IN 
OUT:-.::Y+ (P) *X/ (Q) 

Y~INTEG«X-OUT)/(Q),IC) 

fvtACRO END 

Figure 4-8. Listing of LEDLAG Operator Macro 

4.61 L1MINT 

Integrators should not be limited using the BOUND function since the integrator will continue to 
integrate and will thus require a time to integrate out of the limit when the derivative changes sign. The 
LIMINT operator holds the integrator at the limit as long as the derivative is of such a sign to drive it further 
into limit. * When the derivative reverses sign, the integrator will immediateI'y come off limit. The operator 
has the standard form 

where: 

y = LIMINT(yd, ie, ll., ul.) 

LIMINT (y = yd, ic, l.l., ul.) 

yd = an expression for the derivative 

ic = yeO) - same restriction on ic as on the INTEG statement; may be omitted if zero 

l.t= lower limit on y 

ul. = upper limit on y 

Figure 4-9 shows the effect of the LIMINT operator. 

4.62 LINES 

Used to tell the executive processor how many lines are going to be written with PRINT or WRITE 
statements. Pass by this if you do not use FORTRAN FORMAT statements. The executive processor at 
run-time keeps track of the number of lines written on the output file and every 55 lines issues a top-of-form 
and prints out the header and TITLE. If FORTRAN write statements are included in the model definition 
they are expected to inform the processor how many lines they are going to write so that the pagination is 
performed correctly. Standard forms of the call are 

* See DB LINT operator for double integration, acceleration to displacement with limited displacement. 
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yet 

CALL LINES (n) 

yd' I 
S 

ic 

yd' IS MADE ZERO WHEN y EXCEEDS BOUNDS 

Figure 4-9. Effect of LlMINT Operator 

'I 

where n is the number of lines about to be printd. If n lines are not available on the current page, the page 
will be ejected. You should not issue your own top-of-form by making Column 1 a digit 1. 

CALL LINES(2) 

PRINT99, A, B, C 

99 .. FORMAT{lX, 2EI2.5/IX, FI2.2) 

In order to force a top-of-form prior to the write, call subroutine PAGE(q.v) before calling LINES. 

4.63 LOG 

The data logging operation for the OUTPUT and PREPAR lists can be forced by a call to this 
subroutine. Data logging only takes place after each pass through the DYNAMIC section and on exit from 
the TERMINAL section. Finer detail can be recorded by judicious use of this operation. An example of use 
is as follows: 

LOGICAL HIRATE 

IF(HIRA TE) CALL LOG 

which will force the data logging action whenever logical variable HIRATE is true. 

4.64 LOGICAL 

See type statements. 

4.65 LSW, RSW 

Logical (or integer) and real switch functions. The standard form of these two operators is 
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i = LSW(p, jh j2) 

y = RSW(p, Xh X2) 

The functions take on the value of the second argument, jI or Xh when the logical expression p has the value 
. TR UE., otherwise the value of the third argument, j2 or X2' The j I and j2 are any integer or logical expressions; 
x I and X2 are real expressions. 

NOTE: LSW should be declared to be of type INTEGER prior to its use. 

4.66 MACRO 

Denote the beginning of a MACRO definition if not already within a definition. Within a definition 
denotes special subcommands to be interpreted by the MACRO processor. For a full description of the 
MACRO capability see Sect jon 6. 

4.67 MAXO 

Maximum of a string of integer arguments can be obtained from 

n = MAXOUI, j2, ... ,jn) 

where the ji are integer variables or expressions; any number of arguments may be included. 

NOTE: MAXO should be declared of type INTEGER prior to its use. 

4.68 MAX1 

Maximum of a string of real arguments can be found from the function 

n = MAXl(xb X2, ... , xn) 

where the Xi are real, floating point variables or expressions. Any number may be included. Result will be the 
integerized value of the largest xi' where the integerized value is the sign of the Xi times the largest integer 
<Ixil 

NOTE: MAX1 should be declared to be of type INTEGER prior to its use. 

4.69 MAXTERVAl 

See MINTERV AL. 

4.70 MERROR, XERROR 

Relative and absolute error bounds - per step - for individual state variables. They are written in the 
standard form -

MERROR VI = real constant, v2 = real constant, etc. 

XERROR VI = real constant, v2 = real constant, etc. 

where the Vi are nonsubscripted variable names that are state variables, i.e., appear opposite an INTVC or 
INTEG statement that is not embedded in an expression. The state itself can be an array, but then the errors 
specified will apply to all elements in the array. Individual elements cannot be given separate error tolerances. 

MERROR is used for relative (fractional) errors and 

XERROR for absolute errors. 

If any relative or absolute errors are specified, the FIRST specification encountered will be applied to 
all integrators that are unspecified. If no values are specified, the relative and absolute errors will both be set 
to 1.0E-4. 
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Example: 

where: 

MERROR X = 1.0E-4, Y = 1.0E-6 

X = INTEG(XD, XIC) 

Y = INTEG(YD, VIC) 

Z = 5.0*INTEG(ZZZ, 0.0) + COS (X) 

Note Z in the above example cannot have any error bounds specified since it is not a state. The actual state 
will be a generated variable which will be placed in the assignment statement instead of the INTEG function. 

The MERROR and XERROR statements have meaning only for the variable step-size integration 
algorithms and are used to bound the error introduced at each step. Based on the maximum absolute value 
of a state variablelVjlmax since the start of the run*, the allowable error bound is defined to be 

Ej = MAX(Xj, Mjlvj1maJ 

If any of the predicted errors in a step of the integration program are greater than the corresponding 
Ej, the calculation interval or step size is reduced appropriately. If the error is still too large after the step 
size has been reduced to the minimum, the ERRTAG variable, if any, is set .TRUE. and the run aborted. 

4.71 MINO 

Minimum of a string of integer arguments can be found from the function 

n = MINOUb j2' ... ,jn) 

where the jj are integer variables or expressions. Any number of arguments may be included. 

NOTE: MINO should be declared to be of type INTEGER prior to its use. 

4.72 MIN1 

Integerized minimum of a string of real arguments can be found from the function 

n = MIN1(XI' X2, ... ,xn) 

Arguments will be the same as for MAX 1. 

NOTE: MIN1 should be declared of type INTEGER prior to its use. 

4.73 MINTERVAL, MAXTERVAL 

The minimum and maximum calculation intervals (integration step size) can be controlled and renamed 
using these statements. If a variable step size algorithm attempts to go below the value of the minimum step 
size, the error tag will be set. If it is already set, the termination flag will be set. Standard form for the 
statements are 

MINTER VAL name = real constant 

MAXTER V Al name = real constant 

where 'name' is a simple unsubscripted variable name. Default names for these variables are MINT and 
MAXT so why not use them? They can be set by assignment statements in the program or by SET commands 
at run-time. Example: 

MINTERVAL MINT = 1.0E-6 

* Use of CONTIN at run-time defines the start of a new run in this sense since the integration routine has 
to be reinitialized. 
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then at run-time 

SET MINT = 2.0E-6 

MAXTER V AL may be used to control the step size independently of the communication interval changes 
if NSTEPS (q.v.) is made 1. The calculation interval (step size) is started off at the CINT /NSTP and this 
is then forced to lie in the region MINT to MAXT. 

4.74 MOD 

Modulus, or remainder, of an integer divided by an integer can be obtained by 

n = MODUbh) 

where jl and j2 are integer constants, variables or expressions. 

Result is remainder of jl divided by j2. When h is negative, this isn't quite correct. What actually happens 
is that the result is jl - [jl/j2] j2 where [ ] is an integer with magnitude of not more than the argument and 
with the same sign. 

NOTE: MOD should be declared to be type INTEGER since the default for all variables is type 
REAl. 

4.75 MODINT 

Moded integrator allows operation in reset and hold mode as well as normal operate. The mode of the 
integrator is determined by the two flags in the call. Standard form is 

Y = MODINT(yd, ic, 11,12) 

MODINT(y = yd, ic, .U., 12) 

where: 

yd is the derivative variable or expression. 

ic is the initial condition - see INTEG for restrictions on initial conditions. 

11 and 12 are logical variables or expressions of arbitrary complexity denoting the mode. 

The truth table is 

11 12 Mode 

T F reset 
F F operate 
T T operate 
F T hold 

where 

T = .TRUE. and F = .FALSE. 

Figure 4-10 shows the mechanization of this operator as a system macro. 
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MACRO MODINT(Y,D,IC,LCV:I.,LCV2) 
i'Y\(~CI:~O I:~ELABEI... If 
MACRO REDEFINE ICTEM,STATE,STORE,MODED 
L.OGICAL MOIlED 
CONSTANT STORE=O. 
PROCEDURAL(Y,MODED=STATE,IC,LCV:l.,LCV2) 
CALL ZZICSCICTEM=&rORS) 
IF(ZZFST(STATE).LT.O.5)GOIO B 
i"lOBED::::. FALSE. 
IF ( (LeV:l. ) . AND. (I...CV~~) . orc . NOT. ( (LeV:l. ) . OFC (LCV~~) ) ) GOlD B 
i·ylelDED::::. TRUE. 
IF (LeV:I. ) I CTEM:::: I C· .. ·STATf.:: 
13 .. Y::::STATE+ICTEM 
END 
STATE=INTEG(ZZRSW(MODED,O. ,D), IC) 
MACF~() END 

Figure 4-10. Listing of MODINT (Moded Integrator) Operator Macro 

4.76 NSTEPS 

Defines the calculation interval - integration step size - in terms of the communication interval. It 
renames the integer variable that defines the number of integration steps in a communication interval. 
Standard form of the statement is 

NSTEPS name = integer constant 

where name is a simple nonsubscripted variable. The default name is NSTP and is normally given a value 
of 10. This means that the integration step will be one-tenth the communication interval. 

The variable named in the NSTEPS statement is automatically typed INTEGER. The name defined 
in the NSTEPS statement (or NSTP by default) can be set by assignment statements within the program 
itself. 

The maximum and minimum step size values MAXT and MINT take precedence over the step size 
arrived at by dividing the communication interval by NSTP, i.e., the step size H is given by 

H = MAX(MINT, MIN(MAXT, CINT/NSTP)) 

It is recommended that the value of NSTP be made unity so that the integration step size can be controlled 
by the value of MAXT, specified by a knowledge of the plant dynamics i.e. include the statement NSTEPS 
NSTP = 1. If CINT /NSTP is controlling, then a change in observation interval CINT will require a 
corresponding change to NSTP to keep the same step size. Having to change two variables for one result is 
normally considered bad programming practice. 

4.77 OU 

Band limited white noise can be implemented by this function. A normal random number generator 
(GAUSS) will deliver a fixed total power - rms value - but the frequency spread will depend on the current 
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calculation interval. Usually, the low frequency power density is important so casual use of GAUSS into a 
low pass filter will lead to ill-defined variation of this quantity as the step size is changed. The Ornstein­
Uhlenbeck process maintains a constant source of power over a specified frequency band, so eliminating any 
problem of having to include the current calculation interval in the standard deviation of the random variable. 
Standard forms are 

where 

y = OU(Ta, m, s) 

OU(y = T a, m, s) 

Ta is the low-pass filter time constant. Break frequency is 1/2 7rTa Hz 

m is the mean value of Y 

s is the standard deviation of Y (rms value) 

The operator is implemented by generating a correlated noise sequence from the general formula 

-~ t 
n = n.e 7 i + 1 1 

where 

T is the correlation time constant 

Ll t is the sample interval 

Wi is a gaussian random variable 

We would like to find the Wi that will produce the correct noise power or such that 

n2 = (1'2 

Square the above equation for ni+ 1 and take expected values 

-2~ t 

nt + 1 = nt e 7 + w t 
1 

since we can assume the random drive uncorrelated with the noise sequence. i.e. 

n·w· = 0 1 1 

But nt = nt + 1 =-;? 

so w t = 
1 

-2~ t 
-7-

0
2 (1 - e ) 

Now the sequence can be expressed by 

-~ t .... 1 -26. t 
= ni e-=r- + 0 ., (1 - e-7- ) gi 

where gi is a gaussian random variable of zero mean and unit variance. 
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4.78 OUTPUT, PRE PAR 

Variables to be recorded at each comml:mication interval can be specified by these two statements. In 
general, these st.atements should be viewed as part of the exercising of the model and included in the run-time 
commands. It is realized, however, that standard lists may be defined and, in that case, may be included within 
the model definition part of the program. The statements are accomplished by system MACRO's so the 
arguments must be enclosed in parentheses for the model definition. The corresponding run-time commands 
do not have parentheses. Standard forms are 

OUTPUT (vh V2, V3' etc.) 

PREPAR (vh V2, v3' etc.) 

where Vi are either simple variables or array names. If the Vi are array names, the entire array will be reported. 
In this form it is not possible to select array elements. 

OUTPUT designates the variables that will have their values recorded on the print file as the run 
progresses at each communication interval. PREPAR records the values on a save file that is used by any 
subsequent PLOT or PRINT commands. The OUTPUT list cannot be in columns, since each communication 
interval the entire block of output variables must be printed. Once the data has been saved, it can be put into 
columns by repeated passes down the file. 

N.B. The OUTPUT and PREPAR statements in the model definition wastes core space since the names 
must be preset into a data array and then transferred once at run-time to the lists used by the executive. Only 
one OUTPUT and PREPAR statement is significant. If more than one is used the first one will be effective. 

Any run-time OUTPUT or PREPAR statements will override these statements embedded in the model 
definition. 

For an explicit program (Subsection 3.1) they should be placed in the INITIAL section. They must not 
be placed in the TERMINAL section. 

These statements are translated to a subroutine call that passes the list of names given. The appropriate 
list (OUTPUT or PREPAR) is checked and if the length is currently zero, the list of names is added. If the 
length non-zero, no action is performed. By this means, build up is avoided in loops and the run-time 
specification will override the model definition specification. 

4.79 PAGE 

In order to control pagination, subroutine PAGE can be used to force a top-of-form and turn on or 
suppress auto page eject. As a by product, the number of lines left on the current page is returned as the second 
argument. The format of the call is 

CALL PAGE (K, nll) where K is a code to modify the page eject as follows: 

= -2, suppress auto page eject, eject next write 

= -1, suppress auto page eject 

= 0, ignore but return 'NLL' 

= 1, turn on auto page eject 

= 2, turn on auto page eject, eject next write 

nil is returned as the number of lines left on the current page. In order to force a new page before writing 
ten lines via a formatted write statement use 

CALL PAGE (2, NLL) 

CALL LINES (10) 
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WRITE (6, 99) ... 

The ACSL system normally operates in an internal auto page eject mode. The exception is the printer PLOT 
command when plots can span page boundaries. Auto page eject is restored after each PLOT. 

4.80 PREPAR 

See OUTPUT. 

4.81 PRINT 

See 1/0 statements. 

4.82 PROCEDURAL 

Denotes the beginning of a block of PROCEDURAL code that will finish with a matching END. The 
code within the block will be executed in the sequence given and no attempt will be made to reorder it. Form 
of statement 

where: 

PROCEDURAL (output list = input list) 

output list = variable, variable, variable ... 

input list = expression, expression, ... 

The output list should contain only nonsubscripted variable names. They may belong to arrays however, in 
which case the entire array must be filled within the block. The sort algorithm requires that values only appear 
as outputs once - otherwise, the error message 'multiply defined output symbol' is issued. 

So 

A(1)= X + Y 

A(2)= Y + Z 

flags the variable A as having a value placed in it twice and so illegal. An acceptable form would embed this 
sequence in a PROCEDURAL block. 

PROCEDURAL(A = X, Y, Z) 

A(1)= X + Y 

A(2)= Y + Z 

END 

which tells the sort routine to place the block before a reference to any element of the array A. 

PROCEDURAL ... END brackets need only be used in a DERIVATIVE section where the code is 
sorted. Remember PROGRAM ... END alone is an implicit DERIVATIVE section. Code placement in the 
INITIAL, DYNAMIC, or TERMINAL sections is unsorted so although PROCEDURAL ... END may 
be used, it will have no effect. 

Within a DERIVATIVE section, the entire block is moved so that is is placed after the calculation of 
all variables on the input list and before the use of any variables on the output list. Although other variables 
may be present on the list, sorting is only with respect to variables calculated within the same DERIVATIVE 
section. The sort operation never moves code across section boundaries. The entire DERIVATIVE section can 
be made a PROCEDURAL block and since it then can't be moved, no input or output argument list is 
necessary. PROCEDURAL ... END brackets should always be used around code constructs in which the 
order must not be changed. Typical operators are DO, GOTO and IF (three way or single branch). 
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Expert users may lie in specifying what is on the input/output lists. The ACSL translator never looks 
inside the PROCEDURAL block to ensure compliance with the list supplied, so it is possible to break 
algebraic loops for approximate solution by omitting one of the loop variables from the PROCEDURAL input 
list. Since this variable will be used before it's calculated, initialization is required in the INITIAL section. 
In breaking implicit loops this way, the last value of the variable will be used which is satisfactory in a large 
number of cases. Be warned however that the results will change with step size and a variable phase shift will 
be present in traversing the implicit block. 

NOTE: Statements involving memory operators which must be sorted into correct execution 
order should not be included in a PROCEDURAL block. These are ZHOLD (zero order 
hold), DELAY, DBUNT, DERIVT, (the derivative operator) and for other reasons IMPlic­
it. 

4.83 PROGRAM 

The first card in the model definition section must be this card; it has the form 

PROG RAM any character string except a dollar sign 

The character string is not used in any way and serves merely to identify the deck and listing. This card must 
be accompanied by a matching END statement to terminate the model definition section. 

4.84 PTR 

A resolver - polar to rectangular - can be implemented by the standard form 

PTR(X, y = r, th) 

Result is 

x = R *COS(th) 

y = R *SIN(th) 

where the angle, th, must be expressed in radians. Figure 4-11 lists the mechanization of this operator as a 
system macro. 

MACRO PTR(Xl,X2,R,TH) 
)(:1. ;::: (I=\:) *COS (TH) 
)(~':~:::: (I=\:) *BIN (TH) 
NACRO END 

Figure 4-11. Listing of PTR (Polar to Rectangular) Operator Macro 

This form is not a functional representation since there are two outputs. Thus, this statement cannot be 
embedded in an expression. It can only stand alone as shown. 

4.85 PULSE 

A train of pulses can be generated using the PULSE function. The independent variable, default T, is 
used to drive it. Note that the integration step size may affect the answers in that too large a step could cause 
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the pulse to stay on indefinitely. The output will always be turned on (= 1.0) at the beginning of the first 
calculation interval that follows the exact turn on time. Standard form is 

y = PULSE(tz, p, w) 

Result 

Y is a pulse train (0.0 or 1.0) starting at the first calculation interval that equals or exceeds tz. Period 
is p and width is w. 

y 

t 1.0 r=w~ 
p · i 

.. T 
TZ 

4.86 QNTZR 

A variable may be quantized so that only discrete values are used. It is a zero centered system as shown 
in the diagram. Standard form 

y = QNTZR(p, x) 

Result: 

x 

where x and p are real variables or expressions. 

4.87 RAMP 

The RAMP function generates a linear ramp of unit slope, starting at a specified time. It is another way 
of applying a dead zone (DEAD q.v.) to the independent variable. Standard form is: 

y = RAMP(tz) 

Result is: 

y = 0.0 

y = T - tz, 

T < tz 

T >tz 

TZ 
T 
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RAMP starts at first calculation interval that equals or exceeds tz. 

4.88 READ 

See I/0 statements. 

4.89 REAL 

See type statements. 

4.90 REALPL 

A first order lag may be implemented by the standard form 

y = REALPL(p, x, ic) 

REALPL(y = p, x, ic) 

Result: 

y will be related to input x through the transfer function 

y 

x ps + 1 

Y(O) = ic 

The same restrictions on ic are present as for the INTEG operator; if zero, it may be omitted. P may be an 
expression of arbitrary complexity. Figure 4-12 lists the macro to implement this operator. 

MACRO.REALPL(Y}P}X,IC) 
MACRO STANDVAL IC=O.O 
Y=INTEG«X-(Y»/(P),IC) 
i"lACI:;:O END 

Figure 4-12. Listing of REALPL Operator System Macro 

4.91 RESET 

A special operator is provided for use in the INITIAL section that can initialize the state variables and 
optionally perform intermediate calculations. Normally when entering the INITIAL region, the state variable 
names are undefined - it is only on exit from the INITIAL region to the DYNAMIC region that the 
initialization operation is performed. Remember the prime objective of the INITIAL region is to calculate 
the unknown initial conditions. Two forms of the call are possible so 

RESET ('EV AL') 

RESET ('NOEV AL') 

where the argument explicitly says whether or not a complete derivative evaluation is to be attempted. It is 
. the user's responsibility to ensure that unknown initial conditions have "reasonable" values to prevent arithme­
tic errors (divisions by zero say). An example would be calculating the initial conditions to be placed on the 
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accelerometer filters in a missile simulation. In order to obtain the nominal acceleration, the missile velocity 
vector must be rotated into the missile axes, the angle of attack determined and the aerodata looked up to 
obtain force coefficients. This code must be expressed in terms of the inital condition variables rather than 
the state variables unless the RESET operator is used. 

This extra code can be avoided by 

RESET ('EV AL') 

at the beginning of the INITIAL region since the derivative subroutine would calculate body acceleration 
using the state variable names. The problem is that the process is not selective - calculations of all state variable 
derivatives is attempted. In the above example the output of the accelerometer filter must lead somewhere 
and if initialized indefinite will lead to an arithmetic error. If the undefined initial conditions are preset in 
a CONSTANT statement (0.5 is a useful default number) then the calculation can proceed and the meaning­
less numbers can be disregarded. The important thing is that all the calculations can proceed without 
arithmetic errors. 

The operator is defined in terms of a state vector S, and the initial condition vector IC. The state 
derivative vector is given by 

It 

S ="f(S, T) 

Now the RESET(a) action is 

S ~ IC, T ~ XICITG 

if (a=EVAL) evaluate f(S, T) 

4.92 RSW 

See LSW (logical switch). 

4.93 RTP 

A resolver - rectangular to polar - can be implemented by the standard form 

RTP(r, th = x, y) 

Result: 

r =Vx2 + y2 

th = ATAN2(y, x) 

The angle, th, will be in radians and will cover the range - 1r to + 1r depending on the magnitude and signs 
ofx and y. Figure 4-13 shows the mechanization of this operator as a system macro. Note the second argument 
of the arc-tangent (ATAN2) is modified by the. addition of a very small amount. Inputs of 0.0, 0.0 will return 
an angle of zero instead of indefinite. 

MACRO RTP(R,THJX1JX2) 
R=SQRT«Xl)**2t<X2)**2) 
TH=ATAN2(X2,Xl+l.0E-30) 
MACRO END 

Figure 4-13. Listing of RTP (Rectangular to Polar) Operator Macro 
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This form is not a functional representation since there are two outputs. Thus, this statement cannot be 
embedded in an expression. It can only be used as stand alone as shown. 

4.94 SAVE 

The current MACRO tables containing the MACRO names and packed definitions are written - in 
binary - on the ACSL System Macro File. This operation allows each user to maintain his own file of 
MACRO's separate from the system file. 

The normal operation of the system is to read into the MACRO definition tables, the contents of this 
Macro File before the translation begins. If it does not exist, no MACRO definitions are present. 

Action of SA VE is to write the current contents of the MACRO tables back on this file, thus destroying 
the original contents. To use SAVE you must have WRITE permission on the current MACRO file. 

4.95 SCALE 

Rounds the given maximum and minimum values so that they are suitable for plotting. Standard form 
of the call is 

SCALE(smn, smx = ymn, ymx) 

where: 

ymn and ymx are the minimum and maximum values 

smn and smx are the scaled minimum and maximum to be used on a plot (i.e., rounded to multiples 
of 1, 2, 4, or 10) 

The first two arguments need not be distinct frm the second, i.e., 

SCALE(ymn, ymx = ymn, ymx) 

replaces actual minimum and maximum values with the rounded ones. 

Normally, this operator should be used in the TERMINAL section of an explicit program to establish 
scale factors for subsequent PLOT (q.v.) commands. It is only used when two or more plots need the same, 
originally unknown, scale factors. 

4.96 SIGN 

A ppend a sign by 

y = SIGN(xb X2) 

where: 

x I and X2 are real, floating point constants, variables or expressions. 

Result is the sign of X2 time the absolute value of Xl; 

To mulitiply by the SGN of a variable where 

SGN(x) = +1.0 x>O.O 

SGN(x) = -1.0 x<O.O 

the SIGN function can be used so 

y = X*SIGN(1.0, Z) 

which will give 

y = X*SGN(Z) 
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NOTE: The result of SIGN(X,Z) is not the same thing as X*SIGN(1.0,Z). 

4.97 SIN 

Takes the sine of a real argument which must be in radians 

y = SIN(x) 

Result will be such that - 1.0 < y < 1.0 

4.98 SQRT 

Take the square root of a positive real argument x. 

y = SQRT(x) 

4.99 STEP 

The STEP function produces a change from zero to one in the output at a specified value of the 
independent variable. Standard form is 

Result is 

y = STEP(tz) 

y = 0.0, T<tz 

Y = 1.0, T>tz 

y 

1.0 f"----_--+I_--.... .. T 

TZ 

Pulse starts at first calculation interval that equals or exceeds tz. 

4.100 TABLE 

Used to describe an arbitrary function of one, two or three variables. A separate TABLE statement must 
be used to define each function. The standard form is: 

TABLE name, n, dimension(s)jdata listj 

where 'name' = name of the function. The value will be accessed by name (argl), name (arg1, arg2) or 
name (arg1, arg2, arg3) for functions of one, two or three variables respectively. The 

, arguments in the above are arithmetic expressions, hence can contain an arbitrary level 
of complexity. 

'n' = an unsigned integer constant giving the number of independent variables; must be 1, 2 
or 3. 

'dimension(s)' = unsigned integer constants; the number of constants must correspond to the value for n. 
The value of the constants give the number of discrete data points for each successive 
independent variable. A dimension of one is illegal. 

'data list' = real constants: First comes the list of independent variable values. The number of these 
points should equal the sum of the dimensions. Then, the data points of the function with Iii 

the first argument varying fastest. The number of function data points must equal the 
product of the dimensions. 
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All data points for the independent variables (break points) must be of monotonically increasing order 
- values may be identical but a breakpoint must never be less than a preceeding value. Each TABLE statement 
may contain as many data points as desired. Once the function has been defined it may be referenced just' 
like any other ACSL function. Repeat counts may be used in the data specification. 

Examples of use in tables of one, two and three variables. Breakpoints are 2 for arg a, 3 for arg band 
4 for arg c. ' 

TABLE FIARG, 1,2/0.0, 1.0, fb f2/ 

TABLE F2ARG, 2, 2, 3/0.0, 1.0, - 1.0,0.0, + 1.0 ... 

f11' f2h f12' f22' f13, f23/ 

TABLE F3ARG, 3, 2, 3,4/0.0, 1.0, - 1.0,0.0, + 1.0,0.0,0.1,0.2,0.3 ... 

,f11b f21h f12b f22h f13b f231 .. . 

,f112' f212' f122' f222' f132, f232 .. . 

,f113, f213, f123, f223, f133, f233 .. . 

,f114' f214' f124' f224' f134, f234/ 

For all function generation routines, if the calculated values of the independent variables lie outside the 
range specified by the TABLE statement, the values for the function will be obtained by extrapolating from 
the last values given. 

The table operator makes up a MACRO of the same name as the function so that all references after 
the table definition are caught. An array is also defined with the same name and enough storage to contain 
both function data values and the corresponding argument breakpoint values. This array name is entered into 
the dictionary and it may be accessed in normal fashion by SET, DISPLY etc. commands. One point to note 
is the order of data entry into the array - the function data is listed first, then the breakpoint values follow. 
This order is the opposite from that listed in the TABLE statement. It was felt that the more normal operation 
at run time was changing function values rather than breakpoints. 

Consider the pitching moment table as a function of Mach number 

TABLE CM, 1, 5 

/0.0, 0.8, 1.2, 1.5, 2.5 ... 

,0.50, 0.51, 0.92, 0.83, 0.15/ 

This will make up an array CM( 1 0) - the first five words will contain the function values 0.50, 0.51, 0.92, 
0.83, 0.15; the words six through ten will contain the breakpoint values 0.0, 0.8, 1.2, 1.5, 2.5. To change the 
function value for Mach 1.5 we can 

SET CM(4) = 0.65 

To change the breakpoint from Mach 1.5 to Mach 1.6, we must calculate the position in the table (= 5 + 
4) so 

SET CM(9) = 1.6 

will change the breakpoint. For multidimension tables, the function data all comes first, then the breakpoint 
data in order - first, second, third argument. Remember the run-time command SET cannot access a 
multidimension array. 

When used, the function referenced is translated into an assignment to a dummy variable from the 
function look up subroutine i.e. 

Q = 0.5*RO(H)*V**2 
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would become 

Z09999 = ZZFl(10, Z09998, RO, H) 

Q = 0.5*Z09999*V**2 

where the first argument of ZZFl (the 10) is the number of breakpoints, the second argument is the current 
breakpoint interval, the third argument is the array name which will contain the function value and the fourth 
argument is the expression that is the original argument expression. Note the problem with labels - if the 
original statement is labelled so that control can be transferred by other GOTO's. i.e. 

Ll .. Q = 0.5*RO(H)*V**2 

The label will still be attached to the Q = statement in the translated text and the Z09999 = assignment will 
be bypassed unless control flows directly. Labels in general should be avoided and when used should only be 
attached to CONTINUE cards to prevent this problem (see Section 2.3 for more details) 

4.101 TAN 

Take the tangent of the real argument x which must be expressed in radians 

y = TAN (x) 

4.102 TERMINAL 

Identifies the block of code performed at the end of each run. It must be accompanied by a matching 
END card. In order to save calculating variables-over and over again during the simulation run, the calculation 
can be placed in the TERMINAL block and executed only at the end of the. run. Radial miss distance is a 
case in point where range components XMT,YMT and ZMT may be available throughout the flight. Radial 
miss distance at the end would be computed from 

MISS = SQRT(XMT**2 + YMT**2 + ZMT**2) 

Placing this in the TERMINAL section would save the extra central processor time to evaluate this expression 
every integration step. Code in the TERMINAL section is not sorted. 

4.103 TERMT 

The terminate conditions must be specified that will stop the simulation run. In an explicit program, 
control will be transferred to the TERMINAL region and from thence back to the executive which will 
interpret the next sequential command. An implicit program will transfer control back to the executive 
directly. Standard form of the operator is: 

TERMT (logical expression) 

The run will terminate when the logical expression is .TRUE .. More than one TERMT statement can be used 
though it is usually better to extend the logical expression in the argument to cover all possibilities. It should 
normally be placed in the DYNAMIC region of an explicit program. 

Example, 

TERMT«H. LE. 0.0). OR. (V. LE. VMIN). OR .... 

(T. GE. TMAX» 

A TERMT statement placed in the DYNAMIC section will stop the simulation at a communication 
interval. A TERMT statement placed in a DERIVATIVE or DISCRETE section will stop the simulation at 
the integration step (calculation interval) following when it becomes .TRUE .. 
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4.104 TRAN 

Transfer functions in the form of a ratio of polynomials in the Laplace operator, s, may be directly 
implemented in ACSL by the transfer function simulation operator. The simple first order transfer function 
- REALPL and LED LAG and second order CMPXPL are preferred since the code generated is more 
efficient. Higher order operators should use TRAN. Standard forms are: 

where: 

y = TRAN(nn, nd, qn, qd, x) 

TRAN (y = nn, nd, qn, qd, x) 

nn is an integer CONSTANT giving ORDER of the numerator polynomial 

nd is an integer CONSTANT giving the ORDER of the denominator polynomial 

qn is the coefficient array for the numerator (may be a real constant if nn is zero) 

qd is the coefficient array for the denominator 

x is the input, an arithmetic expression of arbitrary complexity 

The polynomials are in the form of highest power of s coefficient first and any coefficient that is missing 
must be input as zero. Note nn + 1 and nd + 1 numbers are required in the numerator and denominator arrays 
since it is the ORDER that is defined, not the number of coefficients. 

All initial conditions are taken as zero and nn and nd must be integer constants, not symbols. That is, 
the order cannot be changed during a run, nor can it be changed artificially by setting the highest power of 
the denominator polynomial to zero, i.e., QD( 1) must be nonzero. 

Example 1: 

G( s) = ____ .:;..;3s::..+.;...::..2-
S3 + 2S2 + 5 

ARRAY P(2), Q(4) 

CONSTANT P = 3.0, 2.0, Q = 1.0, 2.0, 0.0, 5.0 

OUT = TRAN(I, 3, P, Q, IN) 

Note the sl term has to be filled in as a zero in the Q array. 

Example 2: 

G(s) =_K_ 
S3 + 1 

ARRAY D(4) 

CONSTANT D = LO, 0.0, 0.0, 1.0 

Z = TRAN(O, 3, K, D, 5*X + COS(TH)) 

Note when the numerator is a single value it does not need to be declared in an array. Some way of calculating 
the value - constant or assignment statement or expression must be provided, however. Figure 4-14 lists the 
mechanization of this operator as a system macro. This listing is to be viewed as an example of the complexities 
that can be implemented using macros. 

4.105 TYPE 

Variables may be typed and optionally dimensioned at the same time by the three statements REAL, 
INTEGER and LOGICAL. The standard form of the statements is: 
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MACRO TRAN(OUT,NN,ND,P,Q,IN) 
MACI:;:O ASS I GN N 
MACRO REDEFINE I,Z,ZD,ZIC 
MACRO RELABEL Ll,L2 
MACRO MUL.TIPL.Y 0 
MACRO INCREMENT NN 
MACRO 10 .. IF(N=ND)20 
MACRO IF(N=1000)999 
MACRO INCREMENT 1 
MACRO GOTO 10 
Mf~CRO 20 .. CONT I NUE 
ARRAY Z(ND),ZD(ND),ZIC(ND) 
CONSTANT ZIC=ND*O.O 
PROCEDURAL(ZD=P,Q,IN) 
ZD(1)=IN-Z(1)*Q(2) 
i'1ACI:;:O IF (ND::: 1 ) ~:~~) 
DO 1...1 I::::~:~, NIt 
ZD(1)::::ZD(1)-Z(I)*Q(I+l) 
1..1 .. ZD( 1 )::::Z( 1,",1) 
MACRO 25 .. CONTINUE 
-Z-I}( 1-)::<;-:[1 ( l)'lt~ (1-> 
END 
MACRO DECREMENT NN 
MACRO IF(NN=ND)26 
PROCEDURAL(OUT=P,Z) 
MACI:;:O IF (NN::::(» ~·~O 

OUT::::P ( 1. ) *Z (N) 

j'v1ACRO GOTO 27 
MACRO 26 .. CONTINUE 
PROCEDURAL(OUT::::P,Z,ZD) 
Ol.rr:-.::p ( :1. ) *Z1:I ( :L ) 
MACRO 27 .. CONTINUE 
no L.2 I::::l,NN 
L2 .. 0UT::::OUT+P(I+1.)*Z(I+N) 
MACF~O GOTO 40 
MACRO 30 .. CONTINUE 
()UT::::(P)*Z(ND) 
MACRO 40 .. CONTINUE 
END 
Z::::INTVC(Z[I, ZIe) 
MACRO EXIT 
MACRO 999 .. PRINT NUMERATOR GREATER THAN DENOMINATOR 
NACRO END 

Figure 4-14. Listing of TRAN (Transfer Function) Operator Macro 

4-50 



REAL 

INTEGER 

LOGICAL 

Vb V2, v3, etc. 

Vb v2, v3, etc. 

Vb v2, v3' etc. 

where the Vi are either simple variable names or else subscripted arrays with 1,2 or 3 integer CONSTANT 
subscripts separated by commas. 

Examples are: 

INTEGER K, JJ(10), FRED(2, 2) 

LOGICAL FLAG 

Note no variable name need be typed as REAL as all variables are assumed to be this form unless explicitly 
typed otherwise. The FORTRAN convention that symbols starting with I, J, K, L, M or N are integer does 
not hold. 

4.106 UNIF 

A uniform random number sequence can be generated by 

y = UNIF(!, u) 

Result is that y is a random variable uniformly distributed between a lower value P and an upper value u. 

WARNING: The power density or what is usually more important, the low frequency power, will 
depend on the calculation interval. Variable step integration methods can produce 
peculiar results. See OU operator. 

4.107 UNIFI 

See Gaussian initialization, GAUSI. 

4.108 VARIABLE 

A nonsubscripted variable is designated as the independent variable for integration with its initial value 
given by a real constant. It is written in the form 

VARIABLE name = real constant, initial condition name = real constant 

If this statement is omitted, the independent variable will be called T, with an initial value of 0.0. The initial 
condition value will not have an accessible default name. 

4.109 WRITE 

See I/O statements. 

4.110 XERROR 

See MERROR. 

4.111 ZHOLD 

A zero order hold can be implemented with the standard forms: 

y = ZHOLD(ic, p, x) 

ZHOLD (y = ie, p, x) 

where: 

ic is y(O) if p(O) is false 
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p is the sampling switch, i.e., 

y = x, while p is true. 

y = previous value while p is false. 

x is the input to be sampled - an arithmetic expression of arbitrary complexity. 

Figure 4-15 gives a listing of the mechanization of this operator as a system macro. 

MACRO ZHOLD(Y,IC,SW,X) 
MACRO REDEFINE YL/YN 
CALL ZZICS(YN=IC) 
CALL ZZICS(YL=IC) 
''y'::::YN 
CALL ZZHOLD(X,IC,SW,YL,YN) 
i"'IACI:~O END 

Figure 4-15. Listing of ZHOLD Operator Macro 

A monostable can be implemented using this feature by defining a triangular waveform DL that is zero 
when START becomes true. Before START is true, the large initial condition ensures that DL has a large 
positive value 

LOGICAL START, MONO 

DL = T - ZHOLD (-l.OEI00, START, T) 

MONO = DL. LT. TMONO 

The logical variable MONO will be true for a time TMONO after START becomes true. Arrangements 
should be made for turning off START (making false) once MONO becomes true so that is is only activated 
by a pulse. 

IF (MONO)START = .FALSE. 

The ZHOLD step will only take place on the first pass through the DERIVATIVE subroutine of each 
calculation interval. Subsequent passes and iterations for predictor- corrector algorithms are protected from 
discontinuities in this way. Thus it is necessary to wait for the hold to be established before turning off the 
activating variable (START). 

This statement requires the sort algorithm to be operative, so it should not be included within a 
PROCEDURAL block. 

NOTE: The ZHOLD operator should not be used in a PROCEDURAL block that will prevent the 
correct sorting of any intervening statements. 

4.112 ZOH 

A zero order hold that is similar to the one used in MIMIC may be invoked by this function. The output 
is sampled repetitively every dt units. The standard forms are: 

y = ZOH (x, ie, tz, dt, i) 

ZOH (y = x, ic, tz, dt, i) 

where: 

4-52 



x is the input expression 

ic is the initial value for the output - up to tz 

tz is the time the sampling action starts 

dt is the sampling interval 

i is an optional integer variable starting at one and incremented before each sampling action: 

Fill an array by 

ZOH(ARR(I)=x, ic, tz, dt, I) 

Figure 4-16 presents a listing of this operator as a system macro 

MACRO ZOH(OUTPUT,INPUT,IC,TO,DT,I) 
MACRO REDEFINE TL,TN 
i'vi(~CI:~O ASSIGN .N 
PROCEDURAL(TL=TO) 
TL::::TN 
CALL ZZICS(Tl=TO) 
END 
t"'IACFHl IF( N::::6) :1.0 
IvlACI:~O GOTD ~:~O 

MACRO 10 .. CONTINUE 
MACRO REDEFINE IZ 
INTEGEr~ I., IZ 
CDNSTANT IZ:::::I. 
CALL ZZSMPL(I=It:l., IZ,TL) 
MACRO 20 .. CONTINUE 
CALL ZZSMPl(OUTPUT=INPUT,IC,TL) 
CALL ZZSMPL(TN=TLtDT,TO,TL) 
NACI:;':O END 

Figure 4-16. Listing of ZOH Operator Macro 

In order to generate a triangular wave (TWV) use 

TWV = T-ZOH (T, 0.0, 0.0, DT) 

The output of the zero order hold sampling T itself will be a staircase. When this is subtracted from T a 
triangular wave will result for: 

DT 

O-----------~--------~F---------~----~~--T 
OT 20T 30T 
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5. ACSL RUN-TIME COMMANDS 

Once the model has been translated, and has gone through the FORTRAN compile and load and is in 
execution, control is by a sequential set of commands that exercise the model. The order of execution is the 
order given and no branching or looping commands are available. Data values may be changed and once 
changed stay that way until changed by command or unless the code in the model definition recalculates them. 
Control is retained in the executive section until a START command is received when control is released to 
the model program and the integration starts. Some method of terminating the run must be present in the 
model definition code otherwise the executive will never regain control. (See TERMT operator, Chapter 4.) 

For typical command sequences used to exercise the models see examples in Appendix A. Throughout the 
description of these run-time commands the philosophy employed is that symbols or variable names imply the 
value stored in the location corresponding to the name. Strings in quotation marks stand for themselves and 
so may be general Hollerith data and act as a title, comments or subcommands or qualifiers to each of the 
main commands. 

If any data is needed by the command it must be supplied in the correct format - either integer, real or logical. 
An integer is a string of digits with no decimal point, a real number is a string of digits with a decimal point 
and/ or exponent (E); a logical constant is .TRUE. or .F ALSE. Hollerith data, i.e., strings in quotation marks, 
are considered to be of type integer. Integers used for real variables will be automatically floated prior to use. 

Whenever a data element is expected, a symbol can be substituted and the program will consider the data 
element to be that contained in the symbol. The type of the data is considered to be that associated with the 
symbol when the model was defined. As an example, consider 

OUTPUT T, A, B, 'NCIOUT' = I 

The subcommand 'NCIOUT' expects an integer following that is going to define the number of communica­
tion intervals between OUTPUTs. The current value in the symbol I is used to specify this number. The symbol 
I must have been typed explicitly by 

INTEGER I 

in the model definition section since all variables not so typed are considered real. This feature does not provide 
a variable output rate changeable by the value in I as the simulation proceeds. It is the current value in the 
symbol that is used at the time the command is executed. 

Commands are the first variable names on the statement, separated from the arguments to the command 
by one or more spaces. Extra commands can be written on the same line by delimiting them by a dollar sign 
($). A command may extend over the end of a line by terminating with an ellipsis (three periods ... ). The 
following line is appended to the end of the previous card with trailing blanks suppressed. Leading blanks on 
the continuation card are not eliminated. Be careful when splitting a symbol that no blanks are accidentally 
inserted into the resulting string. Do not forget the delimiter if splitting between symbols (usually a comma) 
- it can be at the end of the card before the ellipsis or on the beginning of the following card. The latter is 
preferred mainly so that it stands out and cannot get lost if a large number of continuation cards are used. 

Arrays may be accessed by element but only a single index is allowed, i.e., referring to TABLE (2,4,3) 
is illegal. You should calculate the position in a linear array by assuming the first index varies fastest. If the 
previous array had been defined by 

ARRAY TABLE (10, 10, 10) 

the (2, 4,3) element could be accessed by TABLE(232) (2 + (4 - 1)*10 + (3 - 1)*10*10). In general, it is 
recommended that arrays with more than one dimension be avoided. 
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5.1 ACTION 

Actions can be scheduled at different values of the independent variable. At present, these consist in 
changing a variable value such as setting a switch. 

The debug printout is produced if a system integer variable NDBUG is greater than zero. If it is, the 
debug list is written out and NDBUG is decremented by one. For example, five debug listings are needed at 
T = 0.0 and two at T = 1.0. We can satisfy this requirement by 

ACTION 'V AR' = 0.0, 'VAL' = 5, 'LOC' = NDBUG ... 

, 'VAR' = 1.0, 'VAL' = 2, 'LOC' = NDBUG 

Read this as schedule an action when the independent variable ('V AR') is zero, take a value ('VAL') of five 
and place it in the location ('LOC') NDBUG. When the independent variable is 1.0, take a value of 2 and 
place it in location NDBUG. 'VAR' and 'VAL' must precede the 'LOC' they refer to. Output rates can be 
changed by scheduling similar actions on NCIOUT (number of communication intervals per output - default 
one). Each ACTION card is cumulative, the action scheduled being added to a linked list. It is not necessary 
to order the values of the independent variables. As with all other commands, a symbol name may be used 
where a data item is expected and the contents of this variable will be used. The value used however is the 
value at the time the ACTION card is analyzed, not that at the time the ACTION is performed. 

To remove all scheduled actions and start afresh, use 

ACTION 'CLEAR' 

Each time 'LOC' is mentioned, an ACTION is set up using the then current values for 'V AR' and 'VAL' 
which don't have to be changed every time. 

5.2 ANALYZ 

The ANAL YZ command invokes a linear analysis capability that can evaluate the Jacobian, trim the 
state variables to null the rates and also calculate eigen values and their associated eigen vectors. Subcom­
mands available under this generic command are: 

'TRIM', 'JACOB', 'EIGEN', 'FREEZE', 'EIGVEC', 'EIGPER', 

'DISPLY', 'LIST', 'RMSEMX', 'FRACMX', 'FRACDL' 

The subcommands 'TRIM', 'JACOB' and 'EIGEN' are action commands with no data, the others on the list 
require a value or a name to follow. 

5.2.1 'TRIM' 

The subcommand 'TRIM', transfers the initial conditions to the state variables computes the Jacobian 
and then using Newton-Raphson iteration adjusts the state variables until the derivatives go to zero i.e., if . 

X = [A] X + [B] U 

the iteration is: 

Xn+l = Xn - [A]-IXn 
Use 'FREEZE' to remove states that cause the determinant of [A] to become zero. Use 'FRACMX' and 
'FRACDL' to limit the magnitude of the state change per iteration step. It is necessary to follow the TRIM 
by a REIN IT (q.v.) in order to run the simulation from the steady state condition. 

5.2.2 'JACOB' 

The subcommands 'JACOB' calculates the Jacobian about the current point in state space by numerical 
perturbation. The result is then printed out as a large matrix. Note the states must have been given values 
either by a preceding START or a 'TRIM'. 
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5.2.3 'EIGEN' 

This subcommand 'EIGEN' calculates the Jacobian and then evaluates and lists the complex eigen values 
and optionally the eigen vectors and/or the performance of the eigen evaluator (requires access to IMSL 
library for EIGRF routine). 

5.2.4 'FREEZE' = X, Y ... 

This subcommand eliminates the listed variables from the state vector. Useful to eliminate open loop 
integrators prior to the trim operation. Open loop integrators form a zero column in the Jacobian so the inverse 
doesn't exist. Variables are only frozen for a single ANALYZ command and the action must be repeated for 
each invocation. 

5.2.5 'EIGVEC' = .T. (Default is .FALSE.) 

This command should precede 'EIGEN' and determines whether eigen vectors are to be calculated. Once 
set, it stays that way until changed. 

5.2.6 'EIGPER' = .T. (Default is .FALSE.) 

This subcommand should precede 'EIGEN' and determines whether performance and figure of merit 
is given by the eigen vector analysis routine. If the figure is less than 1, the eigen values are considered very 
good, between 1 and 100 probably alright and over a hundred the results can't be considered to have any 
accuracy. Once set, the flag stays that way until changed. 

5.2.7 'DISPLY' = .T. (Default is .FALSE.) 

In general ANALYZ operations are considered high volume operations written only on the PRN unit 
(like PLOT and PRINT). If 'DISPLY' is set true, output is repeated on the DIS unit if different for 
monitoring at the terminal. Once set, the flag stays that way until changed. 

5.2.8 'LIST' = .T. (Default is .FALSE.) 

This subcommand turns on a flag that writes out details of the 'TRIM' iteration - successive values of 
the state vector, the derivative vector and residual. Once set, this flag stays that way until changed. 

5.2.9 'RMSEMX' = 0.001 (Default is 0.0001) 

This subcommand specifies the allowable error at which trim convergence is obtained. Each state is 
associated with an allowable error in usual fashion by 

dXj = AMAXI (XEj, MEj.ABS(Xj» 
where XEj and MEj are the absolute and relative errors specified for the particular state. This quantity is used 
in the Jacobian calculation as from . 

Xl = FI(Xh X2 ... ,Xj' ... ) 

der(FI) = FI( ... ,Xj + dXj, ... ) - FI( ... ,X - dXj, ... ) 

der(Xj) 2 dXj 

During trim the weighted residual R is computed from: 

R= i(~)2 
d~ 

j = 1 
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and the iteration is continued until R is less than the value defined by the 'RMSEMX' subcommand. Once 
set, the value stays that way until changed. 

5.2.10 'NITRMX' = 10 (Default is 50) 

This subcommand specifies the maximum number of iterations before the 'TRIM' command gives up. 
For a non-linear system, judicious choice of initial condition values may be necessary before a steady state 
can be achieved. Once set, this iteration count stays that way until changed. 

5.2.11 'FRACMX' = 0.2 (Default is 1.0E30) 

This subcommand specifies the maximum fractional change in a state variable - applied at each step of 
the TRIM iteration. In highly non-linear problems the linear extrapolation can move the state vector into 
unallowable regions in state space if unconstrained. The use of 'FRACMX' is to restrict the movement and 
typical values are 1 % to 10% or 'FRACMX' = 0.10. The state movement (state X) is never limited to a smaller 
value than allowable error dXj. 

Xn+l - Xn -< max(dXj, FRACMX.abs(Xn)) 

5.2.12 'FRACDL' = 0.8 (Default is 1.0) 

This subcommand specifies the fractional step actually taken when compared with that calculated by 
the Newton-Raphson iteration. With non-linear problems, taking the full step, 'FRACDL' = 1.0, can cause 
cycling. The amount of the step can be reduced to prevent this, though at the expense of convergence speed. 

5.2.13 EXAMPLES OF ANAL YZ COMMAND 

As examples of the use of the ANALYZ command, consider the following. In general, specification 
statements come before action statements. The sequence of operations is performed in a left to right manner 
with as many continuation lines as necessary. 

?ANALYZ 'LIST'=.T., 'FREEZE'=X, 'TRIM', ... 

? 'JACOB', 'EIGEN' 

This command turns on the list, eliminates ('FREEZE') the state X and its corresponding derivative from 
the Jacobian, finds a steady state and then evaluates the Jacobian and eigen values. 

?START 

?ANALYZ 'JACOB', 'EIGVEC'=.T., 'EIGEN' 

This command determines the Jacobian about the point in state space where the simulation terminated, 
specifies that eigen vectors are required and then calculates both eigen values and eigen vectors. Note if we'd 
used 'TRIM', the ending states would have been overwritten with the initial conditions. 

?ANALYZ'TRIM' 

?REINIT 

This command uses the current initial conditions to establish a steady state and then the REINIT command 
writes the current state vector back over the initial condition vector. Every subsequent START will now start 
from a trim or steady state condition. 

The use of ANALYZ presupposes that the model is defined by a sequence of non-linear equations of 
the form . 

Xl = FI(Xh ... ,Xj' ... ,XN,t) 

The use of self contained states within the model - those not defined by INTEG and INTVC - will usually 
prevent the correct evaluation of the Jacobian. Likewise, memory operators such as ZHOLD, BCKLSH and 
DELA Y should not be present. 
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Another point is that all initial conditions must be defined before 'TRIM' is invoked. If some are 
calculated in the INITIAL section, set a run time of zero and execute once prior to using ANAL YZ i.e. 

SET TSTP = 0.0 

START 

ANALYZ 'LIST' = .T., 'TRIM' 

REINIT 

SET TSTP = 99.9 

START 

REIN IT is used after the 'TRIM' to move the trimmed state variables back into the initial condition values 
so that the steady state point in state space will become the starting point for any subsequent run (START). 

5.3 COMMENT 

Comments may be included in the run-time drive cards by quoting the entire command. i.e. 

START $ 'EXECUTE THE MODEL' 

The comment may not contain either a quote (') or dollar sign ($). 

5.4 CONTIN 

The run may be continued where it left off, if the stop conditions have been changed, by CONTIN. This 
operation bypasses writing the initial condition into the state vector so that the program will continue to 
integrate from the previous position in state space. Note this command only makes sense after a START card 
has established a state and also the termination condition of the previous run must have been changed, 
otherwise it will stop immediately, i.e., 

model: 

CONSTANT TF = 10.0 

TERMT(T. GE. TF) 

run-time commands: 

START 

SET TF = 15.0 

CONTIN 

5.5 DISPL Y (sic): Short Form D 

$'Run to 10.0 sec' 

$'Extend to 15.0 sec' 

$'Run 10.0 to 15.0 sec' 

Display the values that are currently in the named list. Usually used at the end of a run to determine 
terminal values. 

DISPLY Xl, X2, X3(5) 

Arrays, if not explicitly referred to by element, are listed in total. 

5.6 END 

Tells the run-time executive that a PROCEDure definition is complete. 
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5.7 MERROR, XERROR 

The relative and absolute errors allowable during the integration step may be individually specified by 
these commands. Each state is associated with a corresponding entry and the relative error table (MERROR) 
and absolute error table (XERROR): These two commands behave like a SET (q.v.) except that they access 
the error table corresponding to the state name rather than the state name itself 

MERROR SVI = I.OE-3, SV2 = 0.01 

XERROR SAl = 5*0.0001, SA2(3) = 0.02 

where the SVi and SAi are state variables and state arrays respectively. Note that arrays may be filled by 
a repeat count: An individual array element may be specified - at model definition time the same allowable 
error must be specified for all elements in an array. 

During the integration step, the estimated error for each state variable is compared to the allowable error 
Ei obtained from 

Ei = max (Xh MilYilmax) 

where (Yi)max is the maximum of the absolute value of the state achieved so far during the run. 

5.8 OUTPUT 

The output from the model can be obtained by the command 

OUTPUT T, A, B, C(5), D 

The command designates the list elements as data whose values are to be listed as the simulation model 
advances in time. This action occurs following a subsequent START (q.v.) command. Subcommands are 
available and when used must be quoted so 

'NCIOUT', 'CLEAR' 

The values of the list elements will normally be written out every communication interval. If this rate 
is too high, a reduction can be effected by including the subcommand 'NCIOUT' - number of communication 
intervals between output. i.e. 

OUTPUT T, A, B, 'NCIOUT' = 5 

Only one value for 'NCIOUT' can be in effect at one time - the last value set stays in effect until changed 
in a subsequent OUTPUT command. The starting value of 'NCIOUT' is one. It isn't possible to designate 

. different list element blocks to be recorded at varying data rates - all elements on the OUTPUT list are given 
together. 

Array elements can be listed by referring to the specific element (A(3)say). If the name given is an array 
but no specific element· is called for, all elements will be listed. 

OUTPUTs are cumulative. To clear the list and start afresh, use the 'CLEAR' subcommand. 

OUTPUT 'CLEAR', BILL, JOE, SAM 

Output is considered to be low volume and will be written to both the DIS and PRN files if different. 
The width of the line is controlled by the system variable TCWPRN (terminal character width) which controls 
the line width of data being written on the DIS logical unit number. If TCWPRN is set to 72, output will 
be three variables across: If TCWPRN is 132, output will be five variables across. 

NOTE: The independent variable is not included on the OUTPUT list automatically - it must be 
deliberately mentioned if you want to see it. 
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5.9 PLOT 

Both printer and line plots can be made using values recorded for any of the variables on the PREPAR 
list. The actual form of the plots are controlled by system symbols (q.v.) PRNPLT (printer plots), CALPLT 
(line plots) and STRPLT (strip plots). Note the order of commands must be: 

PREPAR - establishes list to be saved (used once) 

START - runs the model, saves values on the PREPAR list 

PLOT - makes plots using the data saved during the run 

with any other commands in between the above sequence. It is illegal to change the PREPAR list and continue 
plotting data made with a previous START. It is the current PREPAR list that is used by the PLOT command 
to find the data for each variable on the intermediate scratch file. 

The basic form of the plot command is: 

PLOT YI, Y2, Y3, ... , YN 

which will plot the variables YI, Y2, Y3, ... , YN - picking as the X-axis the first variable on the PREPAR 
list. The form (printer plots, line plots or strip plots) will be determined (all, either or none) by the current 
settings of the system symbols PRNPLT, CALPLT and STRPLT. 

Sub-commands are available and when used must be in quotes so: 

'XAXIS', 'XHI', 'XLO', 'XLOG', 'XTAG', 'SAME', 'OVER', 

'ALL', 'HI', 'LO', 'CHAR', 'LOG', 'TAG' 

5.9.1 X-AXIS QUALIFIERS (XAXIS, XHI, XLO, XLOG, XTAG) 

The X-axis can be changed from the default to any variable on the PREPAR list as in: 

PLOT 'XAXIS'=X2, 'XLO'=5.0, 'XHI'=IO.O, YI, Y2 

In addition to specifying a new X-axis variable, X2, the scales are also given so that the X-axes will run from 
5.0 (low) to 10.0 (high). There is a reason for specifying the X-axis change first on the PLOT command line 
since the automatic scaling for the Y-axis variables is determined by picking maxima and minima within the 
current X-axis window when the Y-axis variable is reached, in a left to right scan. Other options relating to 
the X-axis variable are logarithmic scales, 'XLOG', and a character string or tag that can be appended to 
the right of the variable name - can be used to identify units for instance 

PLOT 'XAXIS'=W, 'XTAG'='(RADjSEC)', 'XLOG', 'XLO'=WMN, ... 

GAIN, PHASE 

The respecification of the X-axis variable resets all parameters to their default values, which is why the other 
subcommands follow the X-axis definition in the left to right sequence. The default values are no tag string, 
linear scales and axis limits chosen by rounding the maximum and minimum values on the data file. When 
logarithmic scales are selected the minimum value must usually be specified if the default rounding is to zero. 
Zero or negative scale limits are not permitted with logarithmic scales and will produce a diagnostic message 
and a replacement with linear scales. 

X-axis related parameters, once set, remain that way for all subsequent PLOT commands unless 
respecified or the X-axis variable itself is changed. 

5.9.2 V-AXIS QUALIFIERS (HI, LO, CHAR, LOG, TAG) 

Individual y-axes variables can have the scales set, the character selected, logarithmic scales specified 
and a tag string given. These subcommands all follow the y-axis variable name as qualifiers, applying to the 
variable name to the immediate left. As an example, consider: 
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PLOT YI, 'LO'=O.O, 'HI'=IO.O, Y2, Y3, 'LO'=5.0, ... 

'HI'=5.0, 'CHAR'='T' 

Any variable not followed by given scale factors will have 'best' scales chosen automatically. i.e., Y2 in the 
above example. The automatic scaling is obtained by determining the maximum and minimum values of the 
variable while the x-axis variable is between its given limits 'XLO' and 'XHI'. This operation ensures that 
the scales are chosen appropriately for the plot since it may be necessary to examine in detail a small fraction 
or window within the total simulation run. Other options include logarithmic scales 'LOG', and a character 
string or tag that can be appended next to the variable name i.e. 

PLOT YI, 'LOG', 'TAG'='GAIN', 'LO'=O.OOI 

where the variable YI will be plotted on logarithmic scales. The axis will be labelled with the name YI 
concatenated with the string GAIN with a space in the middle. 

It is sometimes necessary to set a group of scales to the same, originally unknown, value. If maximum 
and minimum values can be collected in the model definition section (the DYNAMIC section for preference), 
then they can be used to set scale factors by using the symbol name instead of a constant i.e. 

PLOT YI, 'LO'=YMIN, 'HI'=YMAX, etc. 

Remember, any symbol stands for the value of its contents where a data item is expected. 

When any array is plotted, the array name stands for all its elements and any qualifiers such as scale 
factors explicitly given apply to all elements of the array. For individual qualifiers each element of the array 
must be individually specified on the PLOT command list. 

5.9.3 SAME, OVER and ALL 

The 'SAME' and 'OVER' subcommands act on a string of Y-axis variables - all the variables to the left 
of the keyword. The command: 

PLOT YI, Y2, Y3, 'SAME' 

will apply the scales selected for the first name in the list, YI in this case, to the rest of the elements in the 
list, Y2 and Y3 as shown. Note this option doesn't pick the maximum of the maxima and the minimum of 
the minima. 

The key word 'OVER' is used to suppress the extraneous printing of the axes and is normally used in 
conjunction with 'SAME'. The command line: 

PLOT YI, Y2, Y3, 'OVER' 

will draw and label the vertical axes for YI, the first element in the list but will suppress the separate axes 
and labels (although the scales may be different) of YI and Y2. The main use of this is comparison plots using 
the strip chart option (STRPLT = .T.) because otherwise all plots on the list are drawn on separate areas 
of the graph. 

All the variables on the PREPAR list can be plotted by a single command so: 

PLOT 'ALL' 

used normally for debug purposes. Plots are drawn nominally three to a page (see system symbol NPPPL T 
or number of plots per page). 

5.9.4 EXAMPLES OF PLOT COMMAND 

Some examples of PLOT commands are as follows: X, Y, Z and Ware regular variables; A is a three 
element array. 
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1) Normal plotting, x-axis operations specified first: 

PLOT 'XTAG'='(SEC)', X, Y, Z, W 

2) Plot X and Y to the default scale of X, and Z and W to same given scale: 

PLOT X, Y, 'SAME', Z, 'LO'=O.O, 'HI'=5.0, W, 'SAME' 

3) Plot array A normally - all element scale factors are individually chosen: 

PLaTA 

4) Plot array A using default scales for A(1): 

PLOT A, 'SAME' 

5) Plot array A on given scales - the low and high apply to all elements of the preceding array 

PLOT A, 'HI'=50.0, 'LO'=-50.0 

or 

PLOT A, 'HI'=50.0, 'LO'=-50.0, 'SAME' 

6) Plot A(1) on the same scale as A(2) and add descriptive tag to A(3) 

PLOT A(2), A(1), 'SAME', A(3), 'TAG'='(FURLONGS)' 

7) Use logarithmic scales and tag descriptors: 

PLOT 'XAXIS'=W, 'XLOG', 'XLO'=O.OI, ... 

'XTAG'='(RAD/SEC)', X, 'LOG', 'LO'=1.0E-4, ... 

'TAG'='-GAIN' 

8) Plot X and Y to the same scale as X; Z and W to the same scale as Z: 

PLOT X, Y, 'SAME', Z, W, 'SAME' 

5.10 PREPAR 

The variables that are to be recorded on a scratch file during the run are listed so 

PREPAR T, A, B, C(2) 

The same comments on the arguments apply as to the OUTPUT command, with the exception that recording 
is every communication interval. 

The plot programs assume as a default that the X-axis variable is the first one on the PREPAR list. The 
PREPAR list is cumulative. Reset is by PREPAR 'CLEAR', T, JOE, ... 

5.11 PRINT 

All the variables on the PREPAR list can be listed in columnar form (10 columns to a page) once the 
run has been completed and the PREPAR file established. PRINT is similar to PLOT in that it can have a 
list of variables and/or subcommands. Subcommands are 

'ALL', 'NCIPRN' 

For example: 

PRINT 'NCIPRN' = 5, 'ALL' 

will print all the variables on the PREPAR list, listing values every five communicatioL intervals (NCIPRN 
= number of communication intervals for print). 

PRINT T, Xl, X2, X3, X4 
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PRINT 'NCIPRN' = 2, T, YI, Y2, Y3, Y4 

Successive print commands can be used to format the data. Five columns are normally used for listings 
to be reproduced directly on "A" size (eight-and-a-half by eleven) paper. Note that the independent variable 
has to be included on each list if needed - it doesn't get printed automatically. The 'NCIPRN' subcommand 
is optional - once used the argument becomes the default from then on. 

If array names are used, all array elements will be listed. An array element may be listed separately. 

PRINT T, ARRAYA, ARRAYB(3) 

The data is only listed on the PRN logical unit unless HVDPRN is true, so if this is set to 9, this high 
volume output will go onto the PRINT file for later disposal to the printer queue. 

5.12 PROCED 

Command sequences can become long and cumbersome when much plotting is performed. To save 
repeating the directions after each run a procedure can be defined. Do not confuse this with PROCEDURAL 
referenced during the translation phase. This command PROCED is invoked at execution time, i.e., 

PROCED GO $ START 

PLOT 'XAXIS' = X, Y, Z 

PLOT 'XAXIS' = T, N, M 

DISPL Y RMISS 

END 

The sequence of commands START, PLOT - - - until END are saved but not executed. But now a command 
GO will execute the entire sequence, i.e., 

SET A = 5.0 $ GO 

SET A = 6.0 $ GO 

SET A == 7.0 $ GO 

which allows the value of the parameter A to be changed before executing the sequence of commands stored 
in the procedure 'GO'. Note that the names and values within the procedure are fixed and cannot be changed 
when the procedure is invoked. 

5.13 RANGE 

This command determines the maximum and minimum values of variables, that have been saved during 
a run by the PREPAR statement. Subcommands are available, and when used must be quoted 

'ALL', 'IHI', 'ILO', 'IVAR' 

Standard form of the command is 

RANGE A, B, C(5) 

As usual, array names stand for all the elements in the array. Errors will be reported if any name on the 
RANGE list is not defined in the PREPAR list. 

Windows may be defined so that sub-ranges can be determined, by specifying both the independent 
variable to be used, 'IVAR', and the high 'IHI', and low, 'ILO', values to be used for the test. 

RANGE 'IVAR'=X, 'ILO'=50.0, 'IHI'=IOO.O, 'ALL' 
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which would report the maximum and minimum values of all elements on the PREPAR list when the variable 
X lay between 50.0 and 100.0. Once set, the 'IVAR', 'ILO' and 'IHI' values remain that way for subsequent 
RANGE commands, if not changed. Initial values of 'ILO' and 'IHI' are - RMX and RMX respectively where 
RMX is the largest floating point number available on the machine. The independent variable 'IVAR' is set 
to be the first variable on the PREPAR list. 

5.14 REINIT 

Reinitialize takes the current value of the state variables and writes them back to the initial condition 
table, thereby destroying the original numbers on the table. REIN IT can be used when a midcourse guidance 
system flies out and is stopped before the terminal phase. It now establishes this current point as the starting 
point for subsequent runs. 

Refer to SAVE and RESTOR for details on how to recover back to an original condition. 

5.15 RESTOR 

Restores the user's data area written on a named file. The file must have been established by a previous 
SA VE command 

RESTOR 'fn' 

where fn is a valid file name - see SAVE command. 

5.16 SAVE 

The entire contents of the user's data block may be saved on an external file to be subsequently 
RESTORed and so override any intermediate changes. ACSL system constants (TITLE, PRNPL T, 
XIN CPL, etc. are not saved. Standard form is 

SAVE 'fn' 

where fn is any valid file name - starts with a letter and six characters or less. Do not use INPUT, OUTPUT, 
RRR or PRINT. Any number of SAVE commands may be issued on the same or different files. If it is the 
same file, the previous information is overwritten and destroyed. 

5.17 SET: Short Form S 

Data can be set into any known constant array or variable by this command. If the model definition is 
going to calculate a new value of a variable, after START, then it does not usually make much sense to change 
it. The command would normally be used for changing the values of constants. Once changed, they stay that 
way until changed again. 

Legal forms of the SET commands are 

SET NSTP = 10, RANGE = 5.6E3, MAS = 4.6, GAIN = 5 

SET LOG V AR = .TRUE., ARRA Y(5) = 4.3, SWITCH = .T. 

SET ARRA Y(2) = 2.0, 3.0, 4.0, TSTOP = 4.6 ... 

, TITLE = 'DOPPLER STUDY', ARRAY(6) = 5*0.0 

The data form must agree with the type of the symbol with the exception that integers may be set into 
real variables and automatic floating will take place: Integer variables must not have a decimal point and 
logical variables can only be .TRUE. or .FALSE. (.T. and .F. are Short Forms). Arrays can be set by 
individual elements or a data list can follow when succeeding data items will be stored in subsequent array 
slots. Attempting to exceed the array length will result in an error. Data can also be obtained from another 
symbolic location by using the symbol name, i.e., 
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SET RMI = RANGE, RMT = RANGE 

when after execution the variables RMI and RMT will both contain the value of the number stored in the 
symbol RANGE. This concept is useful if a data item has to be stored in many places. It can be stored by 
value once and then picked up by name subsequently, thus value changes need only be made in one place. 

Hollerith data can be set into a symbol or array that is of type integer. Normally only the system array 
TITLE would be so used. 

5.18 SPARE 

A spare command is provided that will link to a user provided subroutine SPARE. A default version of 
this subroutine is available that will list the central processor time, i.e., 

SPARE 

ACCUMULATED CP TIME nnn.nnn SEC. ELAPSED CP TIME nnn.nnn SEC. 

The accumulated time is normally the time- from the beginning of the job: The elapsed time is the incremental 
time from the previous invocation of the command. The sequence 

SPARE$ST ART$SPARE 

can be used for timing simulation execution. 

5.19 START 

Command to allow the model definition to integrate over the state trajectory. Control is released to the 
model definition program and provision must be made to terminate execution at some time. 

5.20 STOP 

Tells the run-time executive that no more commands follow. A termination record is written on the line 
plot file, if any plots have been made. 

This command should always be the last command issued so that all the files established by the executive 
are cleaned up or terminated correctly. It may be necessary to precede STOP with a blank for those operating 
systems that interpret STOP as an abort. 

5.21 XERROR 

Absolute error specification - see MERROR. 
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6. MACRO LANGUAGE 

The macro capability of ACSL allows the user to expand the language capability by defining new 
operators as the need arises. 

A macro may be used in one of two essentially distinct ways. The first is akin to a subroutine or function 
which is defined once and then called from many places. The macro is defined once and then invoked. Actual 
statements are produced for each macro invocation, but the extra amount of storage used for such instructions 
is always small. The only way to define operators involving integrators and memory functions is by using this 
macro operator. * 

The second approach is to define blocks and write all the equations in terms of standard nomenclature. 
These blocks can become part of a system library and with all the variables relabeled, no conflict will appear 
between the standard block and another user's invocation of it. For instance, a standard actuator system could 
be defined with input, the commanded deflection; output, the actual deflection. Invocation would then be: 

ACTUAT(DLC, DL) 

which would tell the processor to reproduce the code to represent the actuator but use the name DLC for 
command deflection; DL for the actual deflection. 

Some of the more important features of the macro language are: 

1) Variables and statement labels may be locally generated. In the event the macro is called more than 
once, this will prevent multiply defined variables or doubly defined statement labels. 

2) An unlimited number of macro input arguments may be used. These arguments must be valid 
expressions with balanced parentheses - of arbitrary complexity - or else any character string enclosed 
in quotation marks. 

3) Macro definitions may invoke, other macros (nesting) to an unlimited level of complexity. Note, 
however, that macro definitions may not be nested. This needs a count of nesting level within the 
definition to match up with the correct MACRO END. This count is not performed. The first 
MACRO END terminates the definition. 

4) Macro's may be placed anywhere within an ACSL program: They must be defined, however, before 
they are used. Any current macro may be redefined and the most recently defined macro will be used 
in the expansion. 

5) The concatenation operator (+) allows arguments to be placed together without intervening spaces 
so making up symbols. 

Argument strings are substituted for each appearance of the macro argument name. If the argument 
is an expression, care must be taken that the resulting code is correct after the substitution (see Section 6.5). 
Other names that may be substituted during macro expansion are the ASSIGNed variable (see Section 6.3.1), 
local variable names identified by a REDEFINE (see Section 6.3.12) and local labels identified by a 
RELABEL (see Section 6.3.13). 

6.1 MACRO DEFINITIONS 

The macro definition is a block of code which consists of the following: 

1) Macro definition header 

* For two examples of this type of macro use, see the example program, PHYSBE; Section 8 of 
Appendix A. 

6-1 



2) Macro directive or ACSL statements 

3) MACRO END 

The macro definition header specifies the name of the current definition and a list of dummy reference 
parameters, analogous to dummy arguments in a FORTRAN subroutine. The translator scans the statements 
in the macro body for the appearance of these names, flagging them for substitution by the actual argument 
supplied on invocation. The definition terminator, MACRO END, must be present to flag the translator to 
return to direct translation instead of saving the macro skeleton (the macro body with the substitutable 
arguments flagged is known as the skeleton). 

If a macro name is the same as one already defined, either in the system macro file or the current model 
definition, the new macro definition replaces the old one. No error message is issued since this is considered 
to be a feature whereby the user can always override an old macro definition. 

6.2 MACRO DEFINITION HEADER 

Two types of macro can be defined but for the most purposes - excluding arrays - the first one is to be 
preferred. This is of the form: 

MACRO identifier (xb X2, x3 ... , xn) 

where identifier will be the macro name (6 characters or less) 

Xi are variable names - not constants or expressions. 

Anywhere the symbol Xi is referred to in the macro definition it will be replaced by the ith argument - symbol 
or expression - when the macro is invoked. Example: 

MACRO MULT(X, Y, Z) $ 'DEFINITION' 

X = Y*Z 

MACRO END 

C = A*MULT(5.0*B, D) $ 'INVOCATION' 

The output of the function is considered the first argument X; Y will be replaced by 5*B and Z by D 
everywhere throughout the definition. 

A second type of definition is useful when handling arrays. This form has an extra macro so 

MACRO MACRO identifier (p, q, r, s) 

where identifier is as defined previously, p is the primary argument (any symbol) and q, r, s are secondary 
arguments, optional symbols. 'p' is the dummy reference parameter and may be thought of as being an array, 
each element of which identifies the respective elements in the argument list at invocation time, i.e., 

MACRO MACRO HEAD(P,Q) $ 'DEFINITION' 

MACRO END 

ARRAY B(5) 

HEAD (A, B = 5*0, E + F, LOW) $ 'INVOCATION' 

Now P(1) appearing in the definition body will be substituted by the symbol A, the first argument, at 
invocation time. P(4) will be replaced by the expression E + F, the fourth argument.* The secondary 
arguments allow access to the dimension of any argument from a previous ARRAY statement. The ARRAY 
statement must come before the macro invocation. 

t 

* Arguments at invocation time are delimited by commas or an equals sign. 
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Any reference to Q for an array will access the first dimension. In the example above, Q(2) will have 
the value 5 from the dimension in the previous ARRAY statement. Q(3) and Q( 4) will be illegal since these 
arguments are expressions that cannot have a dimension. 

Symbols substituted for the secondary arguments Rand S act similarly to Q except they provide the 
second and third dimensions respectively. 

NOTE: Macros written in this second form are extremely hard to read since no mnemonic 
symbols can be used for the arguments. 

The array expressions are restricted to the following forms. 

1) P{i) - i is an integer constant 

2) P(n) - n is the ASSIGNed variable (q.v.) 

3) P(n ± i) - combination of the above. 

In general, the substitutable symbols must be separated from other character strings by nonalphanumeric 
characters, i.e., *, +, -, 'blank' in order for the scan to operate. If the above macro MUL T contained the 
statement 

ASSIGNZ TO K 

The symbol Z would not be identified for substitution. Here, the space is all important so 

ASSIGN Z TO K works well. 

In order to allow the substitutable argument to appear next to a character string the concatenation operator 
is defined. This operator is a right arrow (+) on CDC systems or underline (_) on ASCII based machines, 
which serves as a separator for symbol identification, but is removed entirely from the skeleton. As an example, 
suppose we wish to make up unique symbols by adding an F to the third argument of the MUL T macro and 
including it in ~in expression. * The new name would be written F+Z (F concatenated with Z), i.e., the 
statement 

x = Y*F+Z 

could be included in the macro definition. Invoking the MULT macro with 

A = MULT(SAM, JOE) 

would result in the statement 

A = SAM*FJOE 

where the new symbol FJOE has been defined. 

The above call MUL T will enter a symbol JOE on the symbol table. If only the made up symbols are 
important, the argument may be quoted as 

A = MULT(SAM, 'JOE') 

where the same expression will be generated but now the symbol JOE will not be entered in the symbol table. 
The argument in quotes has the quote characters removed and the literal string of characters enclosed -
including blanks - is substituted for the appropriate argument symbol. 

6.3 MACRO DIRECTIVE STATEMENTS 

The following section lists in alphabetical order the macro directive statements that may be included 
within a macro definition. No code will result from these statements, but extremely flexible control is possible, 
of the manner in which the macro is processed at invocation time. The ACSL statements themselves produce 

* See PHYSBE example program in Section 8 of Appendix A. 
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code, and symbols in the statements will be substituted for the appropriate argument at invocation time. All 
these directive statements have MACRO in front to indicate an instruction to the macro processor. See 
Subsection 6.4 for some examples of the use of a macro. 

All directive statements can have labels attached to them which can be used by the MACRO GO TO 
and MACRO IF directives. These labels must be distinct from any labels attached to non-directive statements. 
The label is inserted between the leading MACRO of the directive, i.e., 

MACRO SI .. RELABEL I 

MACRO S2 .. CONTINUE 

MACRO S3 .. END 

Note, these labels control the sequence of the macro processor at macro invocation time. The labels on 
nondirective statements control the sequence at run-time execution. 

6.3.1 MACRO ASSIGN 

The ASSIGN macro directive statement has the standard form 

MACRO ASSIGN n 

where n is a symbol (usually N is used). The ASSIGN directive assigns the number of arguments in the macro 
call to the variable N; the value of N will always be an integer. If the dummy reference parameter contains 
a variable subscript, the variable must be the same as the variable used in the ASSIGN statement. Whenever 
N is used as part of the dummy reference parameter subscript, the current value of N will refer to the Nth 
argument in the macro call list at invocation time. Example: 

Second header type 

MACRO MACRO SAM(P) $ 'DEFINITION' 

MACRO ASSIGN N 

MACRO END 

SAM(X, Y, Z) 

Within the macro definition 

P(N) is the Nth argument 'Z' 

P(1) (N) is X(3) 

$ 'INVOCATION' 

P(N - I) (N) is the Nth element of the (N - I) argument, Y(3) 

6.3.2 ARITHMETIC MACRO DIRECTIVES 

The arithmetic macro directives have the form 

MACRO INCREMENT 

MACRO DECREMENT 

MACRO MUL TIPL Y 

MACRO DIVIDE 

where i is an unsigned integer constant, the secondary arguments: p, q, r, s; or a macro argument name that 
has a literal numeric integer value. 

These directives provide arithmetic operations on the ASSIGNED variable N. The value of N may be 
added to, subtracted from, multiplied or divided; all arithmetic operations are performed in fixed point integer. 
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Example: 

MULTIPLY 0 

will make the ASSIGNED variable zero 

To make the assigned variable equal the dimension of the second argument, the following code can be 
used. 

MACRO MACRO BIL(P, Q) 

MACRO ASSIGN N 

MACRO MUL TIPL Y 0 

MACRO S 1 .. IF(N = Q(2» S2 

MACRO INCREMENT 1 

MACRO GO TO SI 

MACRO S2 .. CONTINUE 

On exit from this section, N, the assigned variable, will have the integer value Q(2) or the dimension 
of the second argument. In this way N can be used as a counter or control variable irrespective of its basic 
purpose of transmitting the actual number of arguments used at invocation time. 

6.3.3 MACRO CONTINUE 

The CONTINUE macro directive has the standard form 

MACRO CONTINUE 

It is a do-nothing and invariably is included so that it can be labelled as so 

MACRO Ll .. CONTINUE 

In this form the MACRO IF or MACRO GO TO can branch to this section within the definition. 

6.3.4 MACRO DECREMENT 

See arithmetic macro directives. 

6.3.5 MACRO DIVIDE 

See arithmetic macro directives. 

6.3.6 MACRO EXIT 

The EXIT directive statement has the form 

MACRO EXIT 

It stops the generation of code at invocation time. The action is the same as a MACRO GO TO to the macro 
definition terminator. 

6.3.7 MACRO GO TO 

The GO TO macro directive statement is written in the form 

MACRO GO TO s 

where s is a statement label attached to ANOTHER MACRO DIRECTIVE. The GO TO provides an 
unconditional branch to another section within the definition. 
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6.3.8 MACRO IF 

The IF macro directive statement is of the form 

MACRO IF (el = e2) s 

where el and e2 can be the dummy reference parameters corresponding to the call list, integer constants, 
character strings or the identifier used in the ASSIGN directive. They must not be expressions; s is a macro 
directive statement label. This directive provides for a conditional branch to the macro directive label s inside 
the current definition if the relation el = e2 holds. The strings el and e2 are tested character by character 
excluding blanks for equality. 

In order to compare a character string with a string passed as a macro argument, the string must be 
enclosed in quotes when the macro is invoked and then the MACRO IF compares the argument with an 
un-quoted string i.e., if the definition is as follows: 

MACRO TEST (ARG) 

MACRO IF (ARG = TOP) LAB! 

MACRO LAB! .. CONTINUE 

MACRO END 

and the invocation is 

TEST (,TOP') 

then the macro will expand via LAB!. 

6.3.9 MACRO INCREMENT 

See arithmetic macro directives. 

6.3.10 MACRO MULTIPLY 

See arithmetic macro directives. 

6.3.11 MACRO PRINT 

Error messages may be handled within the macro at invocation time by this PRINT directive statement. 
I t has the form 

MACRO PRINT any character string except a dollar sign ($) 

This directive lists the character string on the output device. It will override any global list control. The 
primary use is for the user to diagnose his own errors at invocation time and output informative messages. 
See the examples in Subsection 6.4. 

6.3.12 MACRO REDEFINE 

The REDEFINE macro directive statement has the form 

MACRO REDEFINE vI' v2, ... , vn 

where vi are variable names appearing in the body of the macro. REDEFINE identifies the variables as being 
locally defined and specifies that they are to be replaced by unique symbols at each invocation. The generated 
variables consist of the letter Z followed by five digits. 
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6.3.13 MACRO RELABEL 

The RELABEL macro directive has the form 

MACRO RELABEL Ib 12, ... , In 

where 1 i is an alphanumeric label (i> 1). RELABEL specifies that all symbols in the list are locally defined 
statement labels which are to be substituted for by unique generated numbers at invocation time. These labels 
must only be attached to ACSL statements - not macro directive statements (statements preceded with 
MACRO). 

6.3.14 MACRO STANDVAL 

The ST ANDV AL macro directive statement has the standard form 

MACRO ST ANDV AL argl = cb arg2 = c2 ... 

where argi are the dummy argument names and the ci are literal constants that can be real (1.5), integer (5) 
or logical (.TRUE.). The alternate MACRO invocation can also be used with STANDVAL which has the 
form as follows: 

MACRO STANDVAL P(i) = ej, PU) = ej' ... 

where i is an unsigned integer constant and the ei are constants. The statement is used to provide standard 
values for arguments of a macro. If the i-th argument is not given, then the constant (ei) is used in its place. 
If an argument is to take its standard value, then its position in the argument list must be left empty, i.e., the 
delimiting commas must be present, and the absence of an argument indicated by a null string (" "). 
Arguments may be simply omitted at the end of the argument list without the need for commas and a null 
string to indicate their absence. The STANDV AL directive must immediately follow the macro header in the 
definition if it is used at all. 

6.4 MACRO EXAMPLES 

The examples will be given of the use of macro calls that demonstrate some of the uses of the directive 
statements and of direct parameter substitution. 

6.4.1 Sampler 

A sampler can be built up of a switch and two zero order holds but for convenience, the entire sequence 
can be embedded in a macro and invoked as a function. We would like to say at invocation time 

Y = SAMPLE (YIC, DL, T, X) 

where VIC will be the initial value of Y, the sample will be repeated every DL of the independent variable, 
T. X is the variable to be sampled. Define this macro by 

MACRO SAMPLE (SAMP, DL, T, X, IC) 

MACRO STANDVAL IC = 0.0 $ LOGICAL SNSW 

MACRO REDEFINE TS, SNSW 

TS = ZHOLD (0.0, SNSW, TS + DL) 

SNSW = T.GE.TS 

SAMP = ZHOLD (IC, SNSW, X) 

MACRO END 

Note, the output name has to be included in the argument list. The sample time TS is sampled from the 
function TS + DL, but only when T equals or exceeds TS, setting SNSW nonzero (1.0) SAMP is snapped 
by the zero order hold from the input argument X. 
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6.4.2 DOT Product 

To take the vector DOT product of two arrays A and B, we would like to be able to use the functional 
form 

x = DOT(A, B) 

where X is a scalar and A and B are vectors, previously dimensioned in an ARRAY statement. Since it is 
a function (has one output) the operator can be embedded in an arithmetic expression of arbitrary complexity. 
We do not want to have to mention the dimension of the vectors in the call since that is likely to change. 

To pick up the array dimension we need to use the second form of the macro header. This header 
designates P as the primary variable and Q as the secondary variable, that will access the dimension of the 
corresponding primary argument. (Figure 6-1 gives macro listings.) The REDEFINE statement ensures the 
variable I will not conflict with any other use. If this were omitted, a program variable I could have its value 
changed when the macro is executed; a potentially disastrous effect. The test needed is to see if the second 
and third arguments have the same dimension; if not, the DOT product is undefined and a macro error 
message is printed. If the dimensions are correct the DO loop summation is formed. Note, Q(2) and Q(3) will 
be replaced at invocation time by integers corresponding to the array size of the respective arguments: The 
MACRO IF must branch to another macro directive statement, hence, the label on the MACRO CONTIN­
uE. This label could not have been attached to the following statement since this is not a macro directive 
statement. 

At invocation time, with the call shown, this will be translated into 

INTEGER Z09999 

X = 0.0 

DO 99999 Z09999 = 1, 10 

99999 .. X = X + Y (Z0999)*Z(Z09999) 

where the variable I will have been changed into a unique generated variable Z09999. If embedded functional­
ly in an expression, this code will precede the expression evaluation and a Z variable will be used in the 
expression. 

6.4.3 Concatenation Example: A Pressure Tank 

One of the problems with using MACRO is the tendency to generate large numbers of dummy variables 
(ZOnnnn) which have no physical significance. All REDEFINED variables have this form. An alternate 
approach is to use the concatenation feature to build unique symbols that are available for plotting or printing. 
This technique can also reduce considerably the length of the argument list which is the other alternative when 
unique symbolic names are required. 

As an example consider a macro to define a gas holding tank which is similar to the PHYSBE example 
in Appendix A. We will calculate the flow in as the difference in pressure divided by a resistance. Total 
pressure will be the integrated net flow divided by a volume. The macro definition now looks like 

MACRO TANK(N) 

F~J = (P_N_I - P~N)/R_N_I 

P_N = (INTEG ((F_N_I - F_N_O)/V~, ~N_IC) 

MACRO END 

The basic equations for different vessels can now be established by the statements 

TANK(1) 
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'MACRO DEFINITION' 
MACRO MACRO DOT(P,Q) 
MACRO RELABEL L2 $~~CRO REDEFINE I 
MACRO IF(Q(2)=Q(3))Ll 
MACRO PRINT CONFLICTING DIMENSIONS IN DOT PRODUCT 
MACRO MACRO EXIT 
MACRO Ll .. CONTINUE 

pel) = 0.0 

DO L2 I = 1, Q(2) 
L2 .. P(l) = pel) + P(2) (I)*P(3) (I) 
MACRO END 

ARRAY Y(lO), Z(lO) 

'MACRO INVOCATION' 
DOT(X = Y,Z) 

n 

Figure 6-1. DOT Product Macro Forms X = L 
i = 1 

TANK(3) 

Y·z· I I 

and the rest of the model must specify constants as interconnections. The first invocation T ANK( I) will 
generate 

FU = (PU - Pl)/RII 

PI = INTEG ((FII - FIO)/VI, PIIC) 

Constants must be defined elsewhere for the resistance RII, the volume VI and initial pressure PIIC. 
Variables that must be defined elsewhere are the input pressure node PII and the output flow FlO. This macro 
will then make available to other sections of the simulation the input flow FII and tank pressure PI. 

The alternative form of the macro invocation without the concatenation feature would have to be 

TANK (FII, PI = PII, RII, FlO, VI, PIIC) 
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with similar statements for all the other vessels. There is a trade off in deciding how to define the macro which 
can be considered as follows: Without the concatenation feature, argument lists become long and complicated 
but there is flexibility in naming and arguments can be expressions. Using the concatenation feature, the 
argument list is simple - one argument, usually a constant, but can be mixed. The TANK macro could have 
the output flow and downstream pressure specified in the argument list since these are likely to be expressions 
i.e. 

MACRO TANK (N, PI, FO) 

F_NJ = (PI - P_N)jILN_I 

P_N = INTEG «F_N_I - (FO»jV_N, P_N_IC) 

MACRO END 

and in invocation of 

TANK (1, PSOURCE, (PI - P5) jR5I) 

which substitutes PSOURCE for inlet pressure PI and the expression for the outlet flow FO. The disadvantage 
of the concatenation approach is the inflexibility in naming convention and also the fact that any resulting 
symbol must be six characters or less. If three digits are used for the number N, then all concatenated symbols 
must have no more than three other characters. In practical problems one usually only has to allow for one 
digit to identify a component or at most two. 

6.5 MACRO CALLS 

Once a macro has been defined it must be invoked with specific arguments listed for substitution. The 
first form of call is to embed the macro name in an arithmetic expression. For this form only one output (a 
single number) should be produced by the macro - this has functional form 

X = 5.0*SIN(DOT(A, B)j4.0) 

where the DOT product macro is embedded in the argument of the SIN function. A and B in this case 
correspond to the second and third argument of the macro respectively. The output is the first argument. 

Alternative form of the call is as a stand alone statement -

DOT(X = A, B) 

or its exact equivalent 

DOT(X, A, B) 

The equals (=) sign in the first form is to indicate to the reader that X is an output. The program 
determines what are the actual inputs and outputs as it processes the statements produced by the macro, i.e., 
no error would result if the operator were invoked so 

DOT(X, A = B) 

but it would be a little misleading. Note especially that 

X = DOT(A, B) 

is an assignment statement and the name X will not be substituted for the first argument. Only a single 
numerical value can be passed across the equals sign of an assignment statement. 

On the other hand, consider a matrix integration operator we might write: 

MA TINT(X, XD = A, XIC) 

In this set up two entire vectors are the output of the operator and have their values effectively passed across 
the equals sign. 
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The substitution of macro arguments is by replacement of the character string forming the argument 
with the substitutable name. Where expressions are used, the wrong answer can be obtained if parentheses 
are not placed around the argument; i.e., consider a macro to integrate a difference in flow rate so 

MACRO ACCUM(TOT, WI, W2, IC) 

TOT = INTEG (WI - W2, IC) 

MACRO END 

At invocation time we use an expression for net flow out so 

ACCUM(MASS = WIN, WPI + WP2, MASSIC) 

which would give the line of code 

MASS = INTEG(WIN - WPI + WP2, MASSIC) 

which isn't really what we wanted, since the second flow WP2 has a plus sign in front of it. The answer is 
to surround the substitutable name - where operator precedence can cause a problem - with parentheses. The 
macro above should have been defined by 

MACRO ACCUM(TOT, WI, W2, IC) 

TOT = INTEG(WI - (W2), IC) 

MACRO END 

and now at substitution the executed statement is 

MASS = INTEG(WIN - (WPI + WP2), MASSIC) 

It's not necessary to parenthesise the first parameter WI, since any expression substitution will give the correct 
answer. Trouble usually arises when arguments are negated, multiplied or divided by other variables or used 
as a divisor in the macro definition. 
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7. PROGRAM DEBUGGING 

One of the more important features of the ACSL language is the availability of tools that assist in 
pinpointing errors. The first thing is to establish a frame of mind that believes in the existence of errors. It 
is difficult, in general, for the average user who writes a model definition to believe that there are any errors. 
However, if somebody else wrote it, you know there would be something wrong. You must accept the fact that 
all programs have at least one error and part of the joy of coming up with a finished product will be in finding 
it. 

As you write the program, prepare the first run for debugging. Set the stop condition (TERMT) for the 
first run to a small value (typically one communication interval will suffice) so that no time will be wasted 
calculating the incorrect values. Use the 'D' option (despite any errors) * in the translator so that the program 
will proceed to uncover as many errors as possible. 

The first run through the translator will produce syntax error indications and probably error messages 
as well. The latter are listed in Appendix E with some further explanation. The translator analyzes each 
statement in turn and if an error occurs it will indicate this. The way the error is indicated is to write out again 
the statement in error, including any continuations, with a line of asterisks (*) underneath to indicate the 
acceptable section. The asterisk should stop just below where the error is located. 

Example: 

x = Y + (SIN(Y.Y» 

***SYNTAX ERROR***THE LINE IS LISTED WITH A POINTER TO THE ERROR 

X = Y + (SIN(Y.Y» 

*************** 

which shows that the period (.) separating the two Y's is not allowed. It should be an asterisk (*) to indicate 
a multiply. Two points should be noted when these errors are indicated. The first is that only the first error 
in the statement will be indicated. If this error is corrected, it may need a second (or third) run to uncover 
other problems further into the statement. When you make a correction, take a long hard look at the rest of 
the statement. 

The second is that the line listed may not look like the input text if continuation cards are used. The error 
listing gives the complete string to be analyzed after the trailing blanks have been squeezed from the end of 
any cards continued. 

Next check for misspelling - variables you may have intended to be the same get keypunched wrongly. 
Names you intended to change get overlooked. To check these, look,at th~!J!l?QL~J~~,~_,:,r~fy~~p.<;~J~,l:lle~liste.d 
&Q1~Qd of ,l11~,Jr~!l.~~~!g_~_o..~!p.~t: ~,~X.,(~I!.~1:>,1.~s .. Ji~1t;~q, Mg~l~r 'Y ARIA-aLES. ,N OTSPECIEIEDJN ANY 
~LQ~.~~ ,.~~g,.~~"lP:i~~p'~Pil!g~, .. ~()~stC:l.Ilt~_YQl.l,. Jorg()tJ.o .. ~pec;jJY~,Qr.. ,correct-variables. that. had. their ... name 
_JJlissp~Jled at the sta~t!ll1e~t.ge.fip.ing the.p1. They should have been defined. 

Next, take note of any unsatisfied external references from the load map. These will usually correspond 
to arrays you forgot to declare in an ARRAY statement - without this they look just like functions. 

The first run-time command should set up a debug action and usually over the first five or ten derivative 
evaluations will suffice. Include the following card at run-time: 

SET NDBUG = 10 

Alternatively an action can be scheduled that will ensure a debug printout after every START until CLEARed 

* See addendum for a description of the local control card sequence and options. 
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ACTION 'VAR' = 0.0, 'VAL' = 10, 'LaC' = NDBUG 

NOTE: While the system variable NDBUG is greater than zero the complete set of user varia-
bles is printed out and the value of NDBUG is reduced by one. 

This output is probably the most important data to help in debugging; the previous set of tools was merely 
to ensure you had the mechanics correct - commas in the right place, spellings consistent, etc. This debug 
output gives you the actual numbers calculated for everyone of the state derivatives and intermediate 
variables. Look at the numbers carefully and check for reasonableness using your knowledge of the system 
you are trying to model. It is a good idea to start with initial conditions nonzero. If there are too many zero 
values, the arithmetic calculations can conceal errors. For preference, pick conditions so the derivatives all 
have a nonzero value which can be checked. Check the values that are listed for the constants. Any that have 
been preset in a CONSTANT statem~nt and.}¥lw.r~th~ec!mal point has b~7~ l~ft off...~i,ll .. ~~ listed as having 

'p_value of 0.0. Ihi.§ proqlsam is_~'''y''~r;tc9!!H!l9E_~,U,2!' Some arrays may fie missing from this printout if they--­
happen to be longer than the integer contained in the system variable MALPRN (maximum array limit for 
print out). See system variable summary for the default value. 

Now the time comes to try the first full run. Plan what significant output variables will enable you to 
deduce correct model operation. Specify these in an OUTPUT command; increase the termination time and 
START. 

It is at this point that the modeller's skill comes in, in order to rationalize the behavior of the simulation 
in terms of how the real word system is expected to behave. About the only help that can be offered is that 
once questionable areas have been uncovered, schedule debug printouts to cover the area of interest so that 
as much information is recorded as possible. Note that the debug ou,tput occurs every derivative evaluation. 
For Runge-Kutta fourth order integration four derivative evaluations are made for a time step (calculation 
interval), one at the beginning, two in the middle, and one at the end. Looking at the independent variable 
it will appear to advance in half-steps, with two derivative evaluations taking place each step. An extra 
evaluation will take place prior to each communication interval or trip throug~ the DYNAMIC section. 

7.1 MEANING OF DEBUG PRINT OUT 

The debug output is generated by going through the user dictionary which points to all variables in the 
user common block, listing the values of each one by one. The first fifteen variables are ACSL control variables 
that are defined as follows (see Figure A4-7 for an example): 

a) T - Real; Independent variable. May have been renamed in a VARIABLE statement 

b) ZZTICG - Real; Initial condition on the independent variable 

c) CINT - Real; Current communication interval. May have been renamed by CINTERVAL 

d) ZZIERR - Logical; Variable step error flag; May have been renamed by ERRT AG 

e) ZZNBLK - Integer; Number of DERIVATIVE and DISCRETE blocks in use 

f) ZZI - Integer; Distinguishes pre-initial (=0), START (=1) and CaNTIN (=2) 

g) ZZST - Logical; Stop flag set by TERMT operator 

h) ZZFRFL - Logical; First flag set true at first derivative evaluation of every step 

i) ZZICFL - Logical; Initial condition flag set true at first derivative evaluation of every run -
immediately after initial conditions have been transferred to states 

j) ZZRNFL - Logical; Reinitialize flag set true by REIN IT. Used during initialization 
(ZZICFL = .TRUE.) and then turned false 

k) ZZNS - Integer array of length number of DERIVATIVE blocks giving number of state 
variables in each block 
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1) MINT - Real array of length number of DERIVATIVE blocks giving minimum integration 
step size for each block. Name may be changed by global MINTER V AL statement 

m) MAXT - Real array of length number of DERIV A TIVE blocks giving maximum integration 
step size for each block. Name may be changed by global MAXTERV AL statement 

n) NSTP - Integer array of length number of DERIVATIVE blocks giving communication 
interval divisor for each block. Name may be changed by global NSTEPS statement 

0) IALG - Integer array of length number of DERIV ATIVE blocks giving integration algorithm 
number to be used for each block. Name may be changed by global ALGORITHM statement 

Next in the debug print out comes the list of state variables in DERIVATIVE block order and in alphabetical 
order within each block, with their corresponding derivatives and initial conditions on the same line. If line 
width (see TCWPRN and HVDPRN) is sufficient (126) the corresponding values of absolute error (XERR) 
and relative error (MERR) are also listed on the same line. In general the derivatives will all be dummy 
variables (ZOnnnn form) except for those defined by the INTVC integration operator. 

After the states come all the algebraic variables in alphabetical order. Any EQUIVALENCED variables 
are listed at the end. System variable ZZSEED contains the random number seed variable which will change 
(depends on machine type) with every call for a new random number. ZZTLXP is a logical variable present 
in some machine versions to request the reprieve/interrupt capability. If it is set false before the first START, 
normal system dumps can be obtained if desired. 
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8. APPLICATION NOTES 

A number of techniques used in simulation models and run control are included in this section. 

8.1 PARAMETER SWEEP 

It is possible to define a run which consists of a sequence of runs in which a parameter (P) is varied from 
a low limit (PMN) to a high limit (PMX) by a certain increment between runs (PDL). This can be 
programmed using the explicit mode and then plots can be made showing a sequence of curves with the 
parametric variation. 

Example: 

PROGRAM SWEEP 

INITIAL 

P = PMN 

Ll .. CONTINUE 

END $' OF INITIAL' 

DYNAMIC 

DERIVATIVE 

l MODEL DEFINITION 

~ ... DEPENDS ON P 

END $' OF DERIVATIVE' 

TERMT (T.GE.TSTOP) 

END $' OF DYNAMIC' 

TERMINAL 

CALL LOG 

P = P + PDL 

IF (P. LE. PMX) GO TO Ll 

END $' OF TERMINAL' 

END $' OF PROGRAM' 

The run-time control cards will be 

PREPAR T, list - -

SET FTSPLT = .TRUE. 

START 

PLOT Y 1, Y2, etc. 

Ensure the independent variable is the first variable on the PREPAR list and then set FTSPL T (fly back trace 
suppression on plots) .TRUE .. This signals the plot program to lift the pen when the variable recorded on 
channel one of the PREPAR list is less than its previous value. At the same time, the symbol character is 
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bumped. Printer plots, of course, do not need to lift the pen, but the character change means it is a lot easier 
to pick out the curves for separate runs. Remember each entry from the INITIAL section into the DYNAMIC 
section will reset the independent variable to its initial value. Single runs can be easily generated, either by 
setting the maximum value (PMX) to the minimum value 

SET PMX = PMN 

or by making the increment very large 

SET PDL = 1.0EIOO 

8.2 PHASE AND GAIN PLOTS 

It is often required to determine phase and gain characteristics of a model that is being forced by a sine 
wave. With this system, the excitation frequency can be varied logarithmically and the phase and gain 
characteristics determined and plotted as a function of this frequency. First of all, let us establish a name W 
for frequency. This will be swept from minimum (WMN) to maximum (WMX) by using a geometric 
progression with multiplier KW (= 1.2 to 1.5). 

Example: 

PROGRAM PHASE AND GAIN 

INITIAL 

W=WMN 

LI .. CONTINUE 

END $' OF INITIAL' 

DYNAMIC 

DERIVATIVE 

I MODEL 

END $' OF DERIVATIVE' 

TERMT( ... ) 

END $' OF DYNAMIC' 

TERMINAL 

PW = ALOG 1 O(W) 

CALL LOG 

W = W*KW 

IF (W.LE.WMX) GO TO LI 

END $' OF TERMINAL' 

END $' OF PROGRAM. 

The frequency will be varied geometrically and PW is calculated for the x-axis of the plot to be made - the 
actual scale will then be logarithmic. 

Now to find the phase and gain. Assume that we inject our signal into the equation for the variable F, 
and want to know the gain and phase between F and the output variable X, i.e., 

X 
F 

= GUw) 
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The in-phase (P) and quadrature (Q) components will be given by 

T 

P =: f X sin (WT) dt 

TS 

T 

Q =: f X Cos (WT) dt 

TS 

where the integration is taken over any complete cycle. 

The trick is to start the integration after sufficient time has elapsed so that the initial transients have 
decayed away and then just integrate over a complete cycle. This can be done by logic within either the 
DYNAMIC or DERIVATIVE sections and it's usually easier to set the communication interval to force the 
full cycle integration. The phase of the window chosen is immaterial relative to the drive sine wave - it's only 
necessary to integrate over whole cycles. 

This sketched out technique requires a complete simulation run for each point i.e. the model code cycles 
from TERMINAL to INITIAL every time a new frequency point has been calculated. Another way of 
generating frequency response in a single run is described in section nine of Appendix A. While the implemen­
tation described there is fairly complicated, it reduces somewhat the time spent for settling which is wasted 
CPU seconds and also allows more direct control of the phase accuracy calculated. 

8.3 SUMMARY OUTPUT 

It is often useful to obtain a complete list of all simulation variable values in order to document the state 
of the simulation. Setting NDBUG = 1 gives a picture at the very first derivative evaluation but we have found 
that this is not as useful as a picture obtained at the end of the run. In a final value debug dump, initial 
conditions are still available in the initial condition arrays but all other variables document the termination 
condition. 

1.e. 
In order to easily obtain this final value listing, incorporate the following code in the TERMINAL section 

TERMINAL 

LOGICAL DUMP $ CONSTANT DUMP = .TRUE. 

IF (DUMP) CALL DEBUG 

END $' OF TERMINAL' 

The call to subroutine DEBUG gives the picture but it's important to have it under the control of a logical 
variable that can be set at run-time in order to turn the output on or off. 

8.4 IMPULSE AND STEP RESPONSE 

Common methods used to check simulation models are the determination of the response to impulses 
and steps in the control variables. In most cases it is not necessary to use special operators as these forcing 
functions can usually be modelled by parameter changes. 

An actual impulse is of infinite height and zero time width and so is impossible to generate directly. The 
effects however are felt at all integrators the impulse is fed to, and result in a unity jump in the output of these 
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integrators. The easiest way to implement this jump in practice is to apply a value to the integrator initial 
condition which models receiving the impulse immediately prior to time equals zero. When the simulation 
program starts to execute it will then follow a solution trajectory in response to this hypothetical impulse. 

As an example consider a pendulum model so 

OMEGA = INTEG(-G*SIN(THETA)/L, OMEGAZ) 

THETA = INTEG(OMEGA, THETAZ) 

An impulse in force or momentum transferred to the pendulum ball at T=O is modelled by specifying a 
non-zero value for the angular rate initial condition OMEGAZ. This may need some calculation since there 
are equations governing momentum transfer. These would apply if for example we struct the pendulum bob 
with a mallet and would correctly be placed in the INITIAL section. 

If the impulse is applied at times other than T=O, then the integral equation must be modified to add 
in the net integrated impulse or 

OMEGA = INTEG(-G*SIN(THETA)/L, 0.0) + DLOMEG 

Now the variable DLOMEG (delta OMEGA) is added in and becomes the initial condition on OMEGA (since 
the INTEG has an initial condition of zero). In this configuration we change OLOMEG and since it is always 
added to the state variable or output of the INTEG operator, OMEGA will jump discontinuously when this 
happens. If DLOMEG has been changed it must be reset in the INITIAL section prior to the start of each 
run. It itself becomes an effective state variable. Most cases can be handled by using the initial condition but 
when true impulses are applied during the simulation run, then the added variable becomes necessary (see 
the aspirin example in section 12 of Appendix A) 

Step responses are a different excitation technique, usually handled by adding a constant (initialized to 
zero) at a summing junction but often loops must also be broken. A typical requirement is to examine the 
response ofa missile - pitch rate, pitch angle and accelerometer reading - to a step in fin deflection. This would 
normally be applied at time equals zero and the dynamic response recorded. The trouble here is that a simple 
change of initial condition on the fin angle integrator is not sufficient since after the model starts, the fin 
deflection will change due to the dynamics built into the actuator model. The key now is to break the outer 
loop and prevent this fin motion and the ease whereby this can be done depends somewhat on the actual fin 
dynamics model itself. A simple fin model is a first order lag with a typical time constant of 5 to 50 msec, 
so motion can easily be stopped by setting temporarily the time constant to 1.0E30. This very large value 
ensures that the output will remain constant irrespective of what the input does. Alternatively there may be 
a gain between torquer and velocity integrator which can be made zero, so ensuring zero derivatives or a 
constant output. 

For these types of test cases it is important that model parameter values be given symbolic names, preset 
by CONSTANT statements. The symbolic name enters these into the ACSL dictionary and the CONSTANT 
statement is just a preset so values changed won't be changed back as they would if they were set via an 
assignment statement. It is bad practice to specify numbers within the code sequence, since no name can be 
assigned to the value and so the value itself is always fixed, requiring a re-edit of the model definition code 
in order to effect any changes. 

As an example, with a first order lag fin model with a time constant of 20 msec we have two choices 

a) REALPL (OL = 0.020, OLC, DLIC) 

b) CONSTANT TACT = 0.20 

REALPL(DL = TACT, DLC, OLIC) 

The second form is far better since now we can change the variable TACT at run-time by SET commands. 
For step responses we would use 



SET TACT=IOE30, DLIC=-O.OIO 

START 

which would generate the response for a fixed fin deflection of minus ten milliradians. 

8.5 EXTERNALLY DEFINED VARIABLES 

It is sometimes necessary to suppress the message relating to undefined variables which will be generated 
if names are found that never appear on the left hand side of an equals sign. This happens with external 
FORTRAN subroutines that are communicating with the ACSL program via the dollar sign ($) in column 
one and described in section 1.5. In order to tell the ACSL system that they are calculated and at the same 
time enter the name in the ACSL model dictionary, just mention them in a dummy PROCEDURAL block 
which can be placed anywhere in the program. 

Consider variables XF, YF and ZF which we know to be defined elsewhere. Add the following two lines 

PROCEDURAL (XF, YF, ZF = ) 

END 

which says that it is known that the variables XF, YF and ZF are defined somewhere. In this we assume that 
sorting problems are handled separately. Remember there is no check that the inside of a PROCEDURAL 
block agrees with the input/output list stated on the header and while it can be a useful feature, care is 
necessary in its use in actual simulation programs. 
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APPENDIX A 
ACSL EXAMPLE PROGRAMS 

A number of sample problems have been programmed and run using the ACSL simulation system. In 
all cases the input consisted of two files or sets of cards. The first describes the model under examination and 
the second is the run-time executive driver. In most cases the model can be considered as being described in 
parallel, i.e., there is no necessity to have variables calculated prior to their use. The translator will rearrange 
the program until it is in correct sequence for execution. On the other hand, the run-time executive is definitely 
sequential and the input is a sequence of commands that tell the model what to do next. At least a START 
card is necessary to exercise these models. 

All the output from these programs has been designed to fit on standard A size paper (eight and a half 
by eleven) where possible, for ease of reproduction. Normally the full width of the line printer is available 
(13") but we have restricted the use of this with the exception of line printer plots since reducing the grid size 
to 50 by 50 increases the coarseness, decreasing significantly the quality of the picture. The plots therefore 
have been produced on a 100 by 100 grid and the page reduced by 47% for publication. 

The listings produced from the OUTPUT command are sized fo fit on the terminal where the size is 
controlled by the ACSL system variable TCWPRN (terminal character width for print out). When this is 
changed to 72, the output will fit on an 8.5 inch wide sheet. The low volume or display output is at the same 
time routed to logical unit nine (SET DIS=9) leaving the high volume output on logical unit six, the output 
of which was used to make the figures. These logical unit assignments are machine type specific and are 
described in the addenda for a particular installation. The figures were made on a CYBER 175, NOS 
operating system .. 

1. LIMIT CYCLE 

The equations 

where 

x = y + K x (1 - x2 - y2) / vi x2 + y2 

Y = -x + K y (1 - x2 - y2) / V x2 + y2 

x(O) = xz; y(O} ~ yz 

describe a limit cycle in the xy plane. The limit cycle is a circle of radius 1.0. That is, no matter what initial 
conditions are imposed on x and y (except x = y = 0), x2 + y2 -1 as t_oo 

Assume that plotted time histories of x and yare required for t running from 0 to 10 in steps of 0.2sec. 
Printed output need only be listed every 1.0 sec. 

The coding for this problem is shown in Figure Al-l which establishes the base model. Line 7 defines 
the root sum square value SQ as a named item so that it can be listed and plotted. Execution time is also saved 
by calculating the common subexpression once. 

The next three cards specify the integration. equations. Line 13 specifies the termination condition 
(TERMT). The final time, TF, specified in the constant statement is given as slightly less than ten. If it's 
exactly ten an extra step will be taken since equality of floating point numbers is never exactly obtained. The 
value of T obtained by summing many small increments will in general be slightly less than the exact value. 

The run-time control cards follow - separated from the model description in the batch run by an end of 
record card (7/8/9 punch). First comes the output statements that determine what is to be listed (Figure 

A-I 



*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSL TRANSLATOR VERSION 1 LEVEL 6F 81/07/10. 09.35.19. PAGE 1 

PROGRAM LIMIT CYCLE 
·-----------------------DEFINE ALL THE PRESET VARIABLES' 
CONSTANT XZ = 0.5 , YZ = 1.0 
CONSTANT K = 0.2 , TF = 9.99 
CINTERVAL CINT = 0.2 
·-----------------------GIVE NAME TO RMS VALUE' 
SO = SORT(X**2 + Y**2) 
·-----------------------ISOLATE COMMON FACTOR' 
KK = (1.0 - SO**2)/SO 
·--------------------~--LIMIr CYCLE EQUATIONS· 
X = INTEG( Y + K*X*KK, XZ) 
Y = INTEG(-X + K*Y*KK, YZ) 
·-----------------------DEFINE STOPPING CONDITION' 
TERMT(T .GE. TF) 

END •• OF PROGRAM • 

1.718 CP SECONDS 2056 TABLE SPACE USED 3 TABLE MOVES 

SPARE 
SET TITLE = 'LIMIT CYCLE PROBLEM' 
S TCWPRN=72,DIS=9 $. FORCE 3 COLUMN OUTPUT WIDTH • 
OUTPUT T,X,Y,SQ,·NCIOUT·=5 $'DEFINE LIST TO BE PRINTED DURING RUN' 
PRE PAR T,X,Y,SQ $'DEFINE LIST TO BE SAVED FOR LATER USE' 
START 
PLOT X,Y,SQ $'PLOT AS FUNCTION OF TIME' 
PLOT 'XAXIS'=X,Y $'PHASE PLANE PLOT' 
SET NPXPPL=60,NGXPPL=12 .·SQUARE UP PHASE PLANE PLOT' 
PLOT Y $'ASSUMES XAXIS IS LAST VARIABLE EXPLICITLY DEFINED' 
SPARE 
STOP 

Figure A 1-1 . Listing of Limit Cycle Model and Executive Command Cards 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 09.35.55. PAGE 1 

SPARE 
ACCUMULATED CP TIME 6.011 SEC. ELAPSED CP TIME 6.011 SEC. 
SET TITLE = ILIMIT CYCLE PROBLEM 1 

S TCWPRN=72,DIS=9 .1 FORCE 3 COLUMN OUTPUT WIDTH 1 
OUTPUT T,X,Y,SQ, INCIOUT 1 =5 .IDEFINE LIST TO BE PRINTED DURING RUN 1 

PREPAR T,X,Y,SQ ,IDEFINE LIST TO BE SAVED FOR LATER USEI 
START 

T O. X 0.50000000 Y 1.00000000 
SQ 1.11803399 

T 1.00000000 X 1.07143048 Y 0.11524377 
SQ 1.07761050 

T 2.00000000 X 0.65941072 Y-0.81887087 
SQ 1.05136673 

T 3.00000000 X-0.32732337 Y-0.98097465 
SQ 1.03414305 

T 4.00000000 X-0.99128128 Y-0.25178710 
SQ 1.02275868 

T 5.00000000 X-0.74193795 Y 0.69293307 
SQ 1.01519858 

T 6.00000000 X 0.18130838 Y 0.99375825 
SQ 1.01016246 

T 7.00000000 X 0.93107118 Y 0.38308500 SQ 1.00680071 

T 8.00000000 X 0.82357251 Y-0.57520097 
SQ 1.00455355 

T 9.00000000 X-0.03897837 Y-1.00229241 
SQ 1.00305005 

T 10.0000000 X-0.86359260 y-o. 508231~~1 
SQ 1.00204348 

PL.OT X,Y,SQ .IPl.OT AS FUNCTION OF TIMEI 

Figure A 1-2. Run-time Control and Output Stream of Limit Cycle Models 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 09.35.55'. PAGE 
LIMIT CYCLE PROBLEM 

X A -2.000000 -1. 600000 -1. 200000 -0.800000 -0.400000 O. 
Y B-2. 000000 -1.600000 -1.200000 -0.800000 -0.400000 O. 

SO C 1.000000 1. 100000 1.200000 1.300000 1.400000 1.500000 
T XAXIS . 

O. .. .. C .. 

2.000000 .... C. 

4. 000000 . C. 

· C 

· C 

· C 

· C 

6.000000 . C. 

. C 

· C 

.C 

· C 

· C 

.C 

· C 

.C 

C 

8.000000 C. 

C 

C 

C 

C 

C 

C 

C 

C 

c 

. C 

c. 

.. .. .. .... B . 

. B A 

B. 

.... . A. . ... B . 

. A 

. ..... B. 

B. 

A 

A. 

. A B 

10.00000 C............ . .......... A .. .. .. B ... 
PLOT ·XAXIS·=X, Y • ·PHASE PLANE PLOT" 

B. 

..... A . 

A. 

O. 400000 O. 800000' 1. 200000 1 600000 
O. 400000 O. 800000 1 . 200000 1 . 600000 
1. 600000 1. 700000 1. 800000 1 900000 

.. .. A .. . B .............. . 

B . A 

.. .. A . 

B . 

. B 

. . B 

A. 

.B 

. A 

.. A. 

A. 

2.000000 
2.000000 
2.000000 

Figure A 1-3. Plot Resulting from Last Command on Figure A-2 for Limit Cycle Model 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10.09.35.55. PAGE 
LIMIT CYCLE PROBLEM 

Y A -2.000000 -1. 600000 -1 200000 -0.800000 -0.400000 O. 
X XAXIS 

-2.000000 

-1 :200000 

--0.400000 

0.400000 

1.200000 

2.000000 ............ . .. . 
SET NPXPPL=60. NGXPPL=12 $' SQUARE UP PHASE PLANE PLOT' 
PLOT Y $'ASSUMES XAXIS IS LAST VARIABLE EXPLICITLY DEFINED' 

O. 400000 O. 800000 1 . 200000 1 . 600000 2. 000000 

Figure A 1-4. Plot Resulting from Last Command Figure A-3 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81107/10. 09.35.55. PAGE 
LIMIT CYCLE PROBLEM 

Y A -2.000000 -1 600000 -1.200000 -0.800000 -0.400000 O. 
X XAXIS 

o. 400000 o. 800000 1. 200000 1. 600000 2. 000000 

-2.000000 

-1.200000 

-0.400000 

0.400000 

1.200000 

2.000000 
SPARE 
ACCUMULATED CP TIME 
STOP 

Figure A 1-5. 
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A A . . . / 

."'~. . . // 
: A~~: :/~,(: 
: ~A-!2-~/ : 

---A ----A---I'l 

7.630 SEC. ELAPSED CP TIME 1. 619 SEC. 

Phase Plane Plot of Figure A-4 with Axes Squared 
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A 1-2) during the run. The qualifier 'NCIOUT' is set to five to indicate output is only to occur every five 
communication intervals. Then START initiates the run and produces the listing. The next command is PLOT 
which produces the page plot shown in Figure AI-3. As can be seen, the root sum square value SQ tends to 
1.0. A phase plane plot follows (Figure AI-4) where y is plotted against x. Note the distortion of the circle 
to an ellipse because the printer characters are longer than they are wide (ratio of 10:6). Next the x-axis had 
been changed by 

SET NPXPPL = 60, NGXPPL = 6 

(number of points in the x direction for printer plots). The grid is now square and the plot circular (Figure 
A 1-5). Note the second plot does not specify the x-axis variable - the last one used is assumed. 

Other values of the constants could have been tested by following this plot card with further SET 
statements followed by another START. 

2. SPRING 

A spring supporting a mass with a viscous damper attached can be modelled by a linear second order 
differential equation. The equation is derived by writing the expression for the force acting on the mass and 
then using Newton's Law (force equals mass times acceleration) to calculate the acceleration. If x is the linear 
displacement of the spring, the spring restoring force is -Ax lbs, where A is the spring constant (lbs/ft), and 
the viscous damping is proportional to the velocity and opposing it or -Kx lbs, where K is the coefficient of 
the viscous friction in lbs/(ft/sec). If W is the weight in lbs attached to the spring, then the mass is W /g slugs 
where g is the acceleration due to gravity. With this we can express Newton's Law so or: 

w .. • - x=W-Kx-Ax g 

where W, the weight, is the force due to gravity tending to extend the spring. Dividing both sides of the above 
equation by W /g we obtain the expression for the highest derivative or: 

x = (W - Kx -Ax) / (W / g) 

Integrating this twice leads to the two statements: 

x = Jx dt 

x = Jx dt 

Figure A2-1 shows the ACSL model definition statements that represent the dynamics of the mass when it 
is released. Note the alternate way of obtaining time by integrating a constant one. This is useful if it becomes 
necessary to change the initial condition on time. The run-time drive cards are shown in Figure A2-2 and 
output listings in Figure A2-3 through A2-6. At the bottom of Figure A2-4 the plot is set up with a specified 
Y -axis scale factor and Figure A2-5 shows the resulting limited plot. Out of bounds points are brought back 
to the edge of the plot with no attempt made to interpolate for correct intersection with the edge. Beware that 
the slope of the curve as it approaches the limit condition will therefore be incorrect. 

The communication interval was defined in the model definition section to be 0.02 seconds and with a 
run time of 4 seconds this will save 201 data points. Since the x-axis size is a hundred points, two data points 
will be available for plotting in each x-axis box. When they fall in different y-axis boxes, the two points are 
shown on the same vertical line - see Figure A2-4 -, but this is only an artifact of the coarse plotting medium. 
When the rates of change are slow enough, the two points will coalesce into a single point as shown at the 
extrema of the curves. 

3. CONTROL lOOP 
This program was chosen to illustrate how MACROS are used to represent transfer functions from a 

system block diagram. The problem is the design of a lead-lag controller for a second order plant that has 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSL TRANSLATOR VERSION 1 LEVEL 6F 81/07/10. 09.32.52. PAGE 1 

PI:,:(]GI:~Ai"l SPF~ I NG 
[fEI:~ I VA rIVE 

"-----------------------SPRING DAMPING PROBLEM. MODELS RELEASING· 
" A MASS FROM INITIAL CONDITIONS OF ZERO· 
" VELOCITY AND DISPLACEMENTs 
CINTERVAL CINT = 0.02 
"-----------------------DEFINE PRESET VARIABLES' 
CONSTANT XIC = 0.0 ,XDIC = 0.0 ,W = 1.0 

, K :::: 0.02 ,A :::: 1.0 , G :::: 32.2 
, TSTP :::: ::5. 9S) 

"-----------------------ANOTHER WAY OF CHANGING THE INDEPENDENT' 
" VARIABLE· 
TIME :::: INTEG(1.0, 0.0) 
XDD =(W - K*XD - A*X)/(W/G) 
"-----------------------INTEGRATE ACCEL FOR VELOCITY AND POSITION· 
XD :::: INTEG(XDD, XDIC) 
X = INTEG(XD , XIC ) 
"-----------------------SPECIFY TERMINATION CONDITION U 

TEI~F1T (T. GE. TGTf=') 
END $8 OF DERIVATIVE " 
END $" OF PROGRAM • 

Figure A2-1 . Listing of Model Defintion for Spring Damping Problem 

SET TITLE :::: "SPRING DAMPING PROBLEM· 
S TCWPRN=72,DIS=9 $. FORCE 3 COLUMN OUTPUT WIDTH 8 

OUTPUT TIME,XDD,XD,X, "NCIOUT"=20 
PREPAR XDD,XD,TIME,X 
START 
RANGE • I~LL 8 

PLOT uXAXIS· = TIME $8 SET TIME AS X-AXIS FOR SUBSEQUENT PLOTSu 
PLOT X,XD S8 USE AUTOMATIC SCALING· 
PLOT X., ·HI 8::::1.0 .. IILO II ::::O. 0, XD 
PLOT uXAXIsu=XD, X $U PHASE PLANE PLOT· 
STOP 

Figure A2-2. Run-time Drive Commands to Exercise Spring Damping Problem 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 09.33.37. PAGE 

SET TITLE = -SPRING DAMPING PROBLEM-
S TCWPRN=72,DIS=9 .- FORCE 3 COLUMN OUTPUT WIDTH -
OUTPUT TIMEiXDD,XD,X, -NCIOUT-=20 
PREPAR XDD,XD,TIME,X 
START 

TIME O. XDD 32.2000000 
X O. 

TIME 0.40000000 XDD-19.3714113 
X 1.52486284 

TIME 0.80000000 XDD-3.06640990 
X 1.18166762 

TIME 1.20000000 XDD 18.4264342 
X 0.38969003 

TIME 1.60000000 XIID-18.3865897 
X 1.54707775 

TIME 2.00000000 XDD 6.46987709 
X 0.85545031 

TIME 2.40000000 XnD 6.92302052 
X 0.73999060 

TIME 2.80000000 XDD-12.7990980 
X 1.40461313 

TIME 3.20000000 XnD 9.06683251 
X 0.74518210 

TIME 3.60000000 XDD-0.32094098 
X 0.97431479 

TIME 3.99200000 XDD-6.92515695 
X 1 . 233458.47 

RANGE -ALL .: 
XIID-27. 0956534 32.2000000 
XD-4.35499524 5.20222033 

TIME O. 3.99200000 
X O. 1.83607297 

XD O. 

XD 3.83668940 

XD-4.3218750B 

XD 1.90302322 

XD 1.19671746 

XD-2.81890860 

XD 2.25043816 

XII-O. 35628069 

XD-1.33803765 

XD 1.78261606 

XD-O. 9l.957557 

PLOT ·XAXIS- = TIME $. SET TIME AS X-AXIS FOR SUBSEQUENT PLOTS· 
P~OT X,XD .- USE AUTOMATIC SCALING· 

Figure A2-3. Run-time Control Card and Output Stream - Spring Damping Problem 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M B1/07/10. 09.33.37. PAGE 
SPRING DAMPING PROBLEM 

X A O. O. 200000 O. 400000 O. 600000 O. 800000 1.000000 1.200000 1.400000 
XD D -10.00000 -8.000000 -6.000000 -4.000000 -2.000000 

TIME XAXIS 
O. 2.000000 4.000000 

O. A .... 
. A A 

0.800000 

1.600000 

2.400000 

3.200000 

A A 
. A 

4.000000 ... . .... 
PLOT x. 'HI '=1. O. 'LO'=O. O. XD 

A 

A. 

A. A 
A A 

AA 
A A 

A. A 

B B 
. DI.'I 

1.'11.'1 
•• 1.'1 •• 

1.'11.'1. 
BD 

AD ItA 
A A 1.'1 D 

A A 
A A 

B It 
Ie D. 

1.'11.'1 
. D B 

.B .. B .. 
B B . 

A 

1.'1 D 
D D 

D B. 

... A . .. A .. 

D D. 
. D D 

B B 
DIt 

. A A 
A . A 

1.'1 B 
1.'11.'1 . 

. B 1.'1 
I.'IB 

1.'11.'1 
A .MI.'I 

1.'1 Ie. 
B B 

A A 

DB 

A A 

A A 

A A 
. . A. A. 

A A 
A A 

A A 

A . A 

D 
. BB . 

BB 
B 

BB 
A A. DB 

BBA A 

A A 

BB AA 

A. A 

BB AA. 
BB A 

BB A 
BB A 

BB AA. 
DD A A 

. DD A A 
D A A 

DB A A 
B. A A 

1.'1 A A 
BBA A 

AAB 
.. AA ..... BB 
AA BB 

A BB 
A BB 
AA BB 

AA BB 
AA B 

AA BB 
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A A B. 
AA B. 
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BI.'I A 
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Figure A2-4, Plot with Automatic Scale Factor Selection - Spring Damping Problem 
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ACSL RUN-TIHE EXEC VERSION 1 LEVEL 6H 81107/10. 09.33.37. PAGE 
SPRING DAHPING PROBLEH 

Figure A2-5. 

X A o. o. 100000 o. 200000 O. 300000 O. 400000 0.500000 
O. 

0.600000 
2.000000 

0.700000 
4.000000 

o. 800000 O. 900000 
6. 000000 8. 000000 

1.000000 
10.00000 XD B -10.00000 ·-8.000000 ':'6.000000 -4.000000 -2.000000 

TIHE XAXIS 
o. 

O. ElOOOOO 
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•. 400000 

3.200000 
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Forced Off-Scale Plot by Specifying Y-Axis Scale Factor for X-Spring Damping 
Problem 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 09.33.37. . PAGE 
SPRING DAMPING PROBLEM 

STOP 

X A O. 
XD XAXIS 

-10.00000 

--6.000000 

-2.000000 
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6.000000 
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A. 
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Figure A2-6. Phase Plane Plot - Spring Damping Problem 
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a measurement device containing a first order lag (real pole). Figure A3-1 shows the system block diagram. 
Constants in the model are as follows: 

T 1 = 0.020 sec 

T 2 = 0.005 sec 

T 3 = 0.002 sec 

A = 0.012 (sec)2 

B = 0.200 sec 

K 1 = to be determined 

K2 = 0.5 

K3 = 1.0 

The model definition is shown in Figure A3-2 and the run-time drive sequence in Figure A3-3. In the model 
definition, the communication interval (CINT) is defined to be 5msec, a step in input is applied at 20msec 
(TZ) and the transient is allowed to run to the stop time (TSTP) of 499msec or 100 recorded data points. 
In the model listings, the transfer function operators, REALPL, CMPXPL and LEDLAG are embedded in 
the right hand side expressions. This is acceptable when the output is a single numeric quantity and in fact 
these can be nested to any depth desired. An alternate form is available for stand alone use if the operator 
is known to be a MACRO as follows for the three lines calculating XM, X and XP respectively. 

REALPL (XM = TA3, K3*X, 0.0) 

CMPXPL (X = A, B, K2*XP) 

LEDLAG (XP = TAl, TA2, K1*E, 0.0) 

This form of the MACRO invocation is sometimes preferable since it restricts generation of dummy names 
(or those starting with ZO ... ). In changing to the above form we have used the property of linear operators 
that pre and post multiplication by scalars are equivalent. 

In the run-time drive commands (Figure A3-3) the OUTPUT and PREPAR lists are specified and a 
procedure GO defined. The card images between the PROCED ... END are saved and not executed. Then 
two runs are made using the procedure now as a new command, the first with K1 equals to 100.0 and the 
second 10.0. Each 'GO' invokes the START/PLOT sequence saved in the procedure. Figures A3-4 through 
A3-7 show the output stream generated as a result of the run-time drive commands. Notice that when the 
commands within the procedure are echoed back a trailing dollar sign ($) is appended. 

I C; t CONTROLLER PLANT 

~ 
K 1 (T 15 + 1) XP K2 X 

STEP -
T 5 + 1 A 52 + Bs + 1 

2 

MEASUREMENT 

XM K3 

T3 5 + 1 

Figure A3-1 . Control Loop Problem Block Diagram 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSL TRANSLATOR VERSION 1 LEVEL 6F 81/07/13. 13.54.16. PAGE 1 

Pf~OGI~AN LODP 
"-----------------------DEFINE PRESET VARIABLES· 
CONSTANT Kl = 50.0 , K2 = 0.5 I K3 = 1.0 

, TSTP = 0.499 , TAl = 0.020 I TA2 = 0.005 
~ TA3 = 0.002 I A = 0.012 , B = 0.200 
I TZ = O. ()~~ 

CINTERVAL CINT = 0.005 
"-----------------------OUTPUT OF FIRST ORDER LAG IS MEASUREMENTH 
XN = K3*REALPL(TA3, X, 0.0) 
"-----------------------FORCING FUNCTION-
XC = STEP(TZ) 
E = XC - XM 
"-----------------------DEFINE 2-ND ORDER PLANr D 

X = K2*CMPXPL(A, B, XP, 0.0, 0.0) 
"-----------------------CONTROLLER OUTPUT H 
XP = K1*LEDLAG(TA1, TA2, E, 0.0) 
"-----------------------SPECIFy TERMINATION CONDITIONH 
TERNT(T.GE.TSTP) 

END SU OF PROGRAM -

Figure A3-2. Listing of Control Loop Model Definition 

SET TITLE = uCONTROL LOOP PROBLEM-
S TCWPRN=72,DIS=9 sa FORCE 3 COLUMN OUTPUT WIDTH -
OUTPUT T,XC,E,XP,X, "NCIOUT"=10 
PREPAR T,XC,E,XP,X,XM 
PF~OCED GO 
STf~RT 
"FORCE SAME SCALES FOR COMMAND AND MEASURED - FIRST VARIABLE IS REFNCED 
PLOT X,XC,XM, "SAMEH,E 
END $H OF PROCEDURE a 

"MAKE TWO RUNS AND PRODUCE PLOTS OF EACH H 
SET Kl=100.0 $ GO 
SET Kl=10.0 $ GO 
ST()P 

Figure A3-3. Run-time Drive Commands for Control Loop Problem 
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ACSl RUN-TIME EXEC VERSION 1 LEVEL 6M 81/0"7/13. 1:~. !7j4. 4:1.. PAGE 

SET TITLE = ·CONTROl LOOP PROBLEM' 
S TCWPRN=72,DIS=9 $1 FORCE 3 COLUMN OUTPUT WIDTH -
OUTPUT T,XC,E,XP,X, ·NCIOUTI=10 
PREPAR T,XC,E,XP,X,XM 
PI:~OCED GO 
START 
HFORCE SAME SCALES FOR COMMAND AND MEASURED - FIRST VARIABLE IS REFNCE 1 

PLOT X,XC,XM, ·SAME",E 
END $' OF PROCEDURE II 
"MAKE TWO RUNS AND P~\:ODUCE PLOTS OF EACH-
BET Kl:::::l.OO.O ~~ GO 
START$ 

T O. XC O. E O. 
XP O. X O. 

T 0.05000000 XC 1.00000000 E-O. ~5424~5054 
XP-79.081!7j51"7 X 1.36474747 

T 0.10000000 XC :1..00000000 E 0.06252934 
XP 4 . 5~5B40650 X 0.94349680 : 

T 0.15000000 XC 1.00000000 E 0.Ol.B96207 
XP 2.64982182 X 0.98019850 

T 0.20000000 XC 1..000000()O E 0.01921891 
XP 1.88110551 X 0.98078639 

T 0.2500()OOO XC 1.00000000 E 0.0:1.9645:35 
XP 1 . 96034 78~~ X O. 98036;:~55 

T 0.30000000 XC 1.00000000 E 0.01960870 
XP 1.96161406 X 0.98039061 

T 0.35000000 XC 1.00000000 E 0.01960740 
XP 1.96072193 X 0.98039258 

T 0.40000000 XC 1..00000000 E O.019607B7 
XP 1.96078106 X 0.98039214 

T 0.45000000 XC :I .. 00000000 E 0.01960785 
XP 1.96078520 X O. 98039~~15 

T 0.49950000 XC 1.00000000 E O. 0 1 (~60784 
XP 1.96078427 X 0.98039216 

"FORCE SAME SCALES FOR COMMAND AND MEASURED - FIRST VARIABLE IS REFNCE'$ 
PLOT X,XC,XM, -SAMEII,ES 

Figure A3-4. Run-time Drive Commands and Output Stream of Control Loop Problem 

A-I5 

:1. 



Figure A3-S. 

ACSL RUN-TIHE EXEC VERSION 1 LEVEL 6H 81/07/13. 13.54.41. 
CONTROL LOOP PROBLEH 

X A o. 0 . 200000 o. 400000 o. 600000 o. 800000 
XC B o. o. 200000 o. 400000 o. 600000 o. 800000 
XH co. 0.200000 o. 400000 o. 600000 o. 800000 

E n -1..000000 -0·.800000 -0.600000 -0.400000 -0.200000 
T XAXIS 

o. *. 
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Plot of Input Step, XC, Output, X, and measurement, XM, to Same Scales with 
Error, E, for Control Loop Problem 
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ACSL RUN-TIME EXEC VERSION 1 l.EVEl. 6M 81/07/13. 13.54.41. PAGE 3 
CONTROL LOOP PROBLEM 

SET K1=10.0 $ GO 
START$ 

T o. XC o. E o. 
XP o. X O. 

T 0.05000000 XC 1.00000000 E 0.75834817 
XF' 6.00718267 X 0.26483287 

T 0.10000000 XC 1.00000000 E 0.23491640 
XF' 1.07926131 X 0.78064589 

T 0.1.5000000 XC 1.00000000 E 0.02168535 
XP-0.03417260 X 0.98055897 

T 0.20000000 XC 1.00000000 E 0.05569507 
XP 0.80350815 X 0.94077047 

T 0.25000000 XC 1.00000000 E 0.14405774 
XP 1. 67195084 X 0.85305345 

T 0.30000000 XC 1.00000000 E 0.18779721 
XP 1.94272303 X 0.81153849 

T 0.35000000 XC 1.00000000 E 0.18684210 
XF' 1.83522449 X 0.81366126 

T 0.40000000 XC 1.00000000 E 0.17242946 
XP 1.68335989 X 0.82809089 

T 0.45000000 XC 1.00000000 E 0.16384387 
XP 1.62368836 X 0.83631791 

T 0.49950000 XC 1.00000000 E 0.16308868 
XF' 1.63462643 X 0.83684777 

-FORCE SAME SCALES FOR COMMAND AND MEASURED - FIRST VARIABLE IS REFNCE-$ 
PLOT X}XC}XM}~SAME·}E$ 

Figure A3-6. Second Run - Control Loop Problem 

A-I7 



ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/13. 13.54.41. PAGE 
CONTROL LOOP PROBLEM 

STOP 

X A O. 
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Figure A3-7. Plot of Step, Output and Error for Second Run - Control Loop Problem 
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4. PILOT EJECTION STUDY 

The purpose of this investigation is to determine the trajectory of a pilot ejected from a fighter aircraft 
in order to ascertain whether he will strike the vertical stabilizer of the aircraft. Several combinations of 
aircraft speed and altitude will be investigated since the drag on the pilot, causing his relative horizontal 
motion with respect to the aircraft, is a function of air density and velocity (squared). The ejection system 
is devised so that it causes the pilot and his seat to travel along rails at a specified exit velocity, V E, at an angle, 
0E' backward from vertical. The seat becomes disengaged from the rails at Y = Y 1. This first phase of the 
ejection is illustrated in Figure A4-1. Once the pilot and seat combination leaves the rails, it follows a ballistic 
trajectory which can be determined; however, since it is the relative motion of the pilot with respect to the 
aircraft (which is assumed to fly level at constant speed) that is important, we can formulate our equations 
to obtain this trajectory directly. This phase of the ejection is shown in Figure A4-2. 

The governing equations are: 

· X = V cos 0 - V A 

· Y = V sin 0 
· V = 0 

-D . = _ - g SIn () 
M 

· 0=.0 

= - (g cos O)/V 

D = ~ P CDSV2 

Two cases will be run, viz: 

Case 1: V A = 900 ft/sec 

p = 2.3769 x 10-3 slugs/ft3 (sea level) 

Case 2: VA = 500 ft/sec 

p = 2.3769 x 10-3 slugs/ft3 (sea level) 

Constants (for all cases) 

m = 7 slugs g = 32.2 ft/sec2 

CD = 1 S = 10 ft2 

Y 1 = 4 ft V E = 40 ft / sec 

BE = 15 deg (= 15/57.3 rad) 

The initial values of V and 0 (pilot's initial velocity vector at moment of leaving cockpit rails) are given by: 

V(O) = (VA - VE sin BE)2 + (VE cos OE)2 

() (0) = tan- 1 
. 

[ 

VE cos ()E ] 

V A - V E SIn () E 
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Figure A4-1. First Phase of Ejection 
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Figure A4-2. Space Trajectories, Vehicle and Pilot 
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X(O) = Y(O) = 0 

A run is to be terminated when anyone of these conditions occurs: 

X < -60ft (pilot beyond vertical stablizer) 

Y > 30 ft (pilot well above 12 ft high tail) 

t > 4.0 sec . 
Print t, V, V, 0, X, and Y every 0.01 sec 

Plot X versus Y 

Plot X, Y, and V versus t 

The coding for this example is given in Figure A4-3 with comments as follows. A procedural is defined to 
calculate the switch YGEI (Y greater than or equal to one). Note that the initial conditions on the pilot's 
velocity VIC and flight path THIC are calculated in the initial section. They must not be calculated in the 
derivative section since the initial condition table is transferred to the state table before the derivative section 
is evaluated. The terminate condition of X less than -60 ft or Y greater than 30 ft or time greater than 4 sec 
is placed in the DYNAMIC section to be interrogated every communication interval. 

The output strean1 from running the model is shown in Figure A4-4 through A4-8. We have not 
separately listed the run-time drive cards since they are echoed as part of the normal output stream. In Figure 
A4-4, after establishing the title, the OUTPUT and PREPAR lists are defined and the first run is made 
(ST ART) using the default parameter values defined in the model definition or aircraft velocity of 900 ft/ sec. 
Output values are listed during the run every five communication intervals or 0.05 sec. The run stops at 0.44 
seconds since x has become more negative than the minimum specified or -60 ft. The first plot produces time 
histories, where the x-axis variable is T, and then the trajectory plot with the x-axis taken as X, the relative 
distance of the pilot along the aircraft from the cockpit, negative towards the tail. At 60 f1. the pilot just clears 
the 12 f1. high tail. Note that this plot specifies 'XLO'=XMN or -60 f1. so that the plot runs from this value 
to zero. If the XLO subcommand had not been used, normal rounding would have caused the scales to run 
from -100 to zero, so wasting 40% of the plotting area. 

In Figure A4-7, a second run is set up with a debug print out at the derivative evaluation with T equal 
to or greater than 0.1: The output rate is reduced to every ten communcation intervals or 0.1 sec but the same 
list is maintained: The aircraft speed is changed to 500 ft/sec and the model run again. 

The debug output is obtained by using the ACTION command which is read as: When the independent 
variable ('V AR') is 0.1 take a value ('VAL') of 1 and store it into a location ('LOC') called NDBUG. The 
printout followir.g the START card has the normal listing at the time equal to 0.0 and 0.1 (note the reduced 
frequency) and then all the variables in the model definition are listed out by the debug operation since the 
ACTION has made NDBUG positive. The time is actually at 0.l01 sec which means that Twas 
0.0999999999999 rather than 0.1 at the previous integration step. The order of the list is system variables 
(described in more detail in Section 7), state variables with their associated derivatives and initial conditions, 
followed by all the rest of the problem variables in alphabetical order. 

Since the ACTION statement changed the system variable NDBUG to one, only one debug list is written 
out and the run continues normally from that point with output every 0.1 seconds. The plot of the second run, 
Figure A4-8, shows the pilot now clearing the tail by 5 f1. at the lower velocity. 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSL TRANStATOR VERSION 1 LEVEL 6F 81/07/10. 11.25.41. PAGE 1 

PROGRAM EJECTION 

INITIAL 

"-----------------------DEFINE 
CONSTANT THEDEG::: 15.0 
CONSTANT MASS::: 7.0 
CONSTANT CD ::: 1.0 
CONSTANT G ::: 32.2 
CONSTANT VE ::: 40.0 
CONSTANT XMN ::: -60.0 
CONSTANT TMX::: 4.0 
CINTERVAL CINT::: 0.01 

ALL PRESET VARIABLES • 
, DEGRAD::: 57.3 
, Yl ::: 4.0 
, S ::: 10.0 
, RO ::: 0.0023769 
, VA ::: 900.0 
, YMX ::: 30.0 

"-----------------------EJECTION ANGLE IN RADIANS' 
THE ::: THEDEG/DEGRAD 
"-----------------------SEAT INITIAL VELOCITY' 
VX ::: VA - VE*SIN(THE) 
VY ::: VE*COS(THE) 
VIC ::: SGRT(VX**2 + VY**2) 
THIC ::: ATAN2(VY, VX) 

END $" OF INITIAL • 

DYNAMIC 

DERIVATIVE 

"-----------------------RELATIVE POSITIONS' 
X ::: INTEG(V*COS(TH) - VA, 0.0) 
Y ::: INTEG(V*SIN(TH), 0.0) 
"-----------------------SPACE VELOCITY AND FLIGHT PATH ANGLE' 
V ::: INTEG(YGE1*(-D/MASS - G*SIN(TH», VIC) 
TH ::: INTEG(YGE1*(-G*COS(TH)/V), THIC) 
"-----------------------COMPUTE DRAG' 
D ::: 0.5*RO*CD*S*V**2 
"-----------------------USE PROCEDURAL FOR SWITCH TO KEEP SEAT' 
I CONSTRAINED TO GUIDE RAILS. THIS OPERATION IS BETTER DONE BY -

YGEl ::: RSW(Y .GE. Yl, 1.0, 0.0) I 

I BUT IS SHOWN HERE TO DEMONSTRATE USE OF A PROCEDURAL BLOCK • 
PROCEDURAL(YGEl ::: y, Yl) 

YGEl ::: 1.0 
IF(Y.LT.Y1) YGEl ::: 0.0 

END $" OF PROCEDURAL • 

END $" OF DERIVATIVE • 

"-----------------------SPECIFY TERMINATION CONDITIONS" 
TERMT(X.LE.XMN .OR. Y.GE.YMX .OR. T.GE.TMX> 

END $" OF DYNAMIC • 

END ." OF PROGRAM • 

Figure A4-3. Listing of Model Definition Section for Pilot Ejection Problem 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 11.26.11. PAGE 

SET TITLE - IPILOT EJECTION 1 

S TCWPRN=72,DIS=9 .1 FORCE 3 COLUMN OUTPUT WIDTH 1 
OUTPUT T,TH,V,X,Y,D, INCIOUTI=5 
PREPAR T,TH,V,X,Y 
START 

T O. 
X O. 

T 0.05000000 
X-0.51760084 

T 0.10000000 
X-1.03520168 

T 0.15000000 
X-·2.92272617 

T 0.20000000 
X-7.74560503 

T 0.25000000 
X-·15.1368159 

T 0.30000000 
X-24.7874576 

T 0.35000000 
X-·36.4412100 

T 0.40000000 
X--49.8830398 

T 0.44000000 
X-61.8005731 

TH 0.04340252 
Y O. 

TH 0.04340252 
Y 1.93186163 

TH 0.04340252 
Y 3.86372327 

TH 0.04167638 
Y 5.70253371 

TH 0.03967529 
Y 7.33859116 

TH 0.03753729 
Y 8.79210784 

TH 0.03526236 
Y 10.0801944 

TH 0.03285045 
Y 11.2170486 

TH 0.03030154 
Y 12.2145814 

TH 0.02816375 
Y 12.9191282 

Figure A4-4. Output Stream for Pilot Ejection Study 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 11.26.11. PAGE 
PILOT EJECTION 

TH A 0.010000 0.014000. 0.018000 0.022000 0.026000 9.030000 0.034000 0.038000 0.042000 0.046000 
V B 500. 0000 550. 0000 600. 0000 650. 0000 700. 0000 750. 0000 800. 0000 850. 0000 900. 0000 950. 0000 
X C -100.0000 -90.00000 -80.00000 -70.00000 -60.00000 -50.00000 -40.00000 -30.00000 -20.00000 -10.00000 
Y D O. 2.000000 4.000000 6.000000 8.000000 10.00000 12.00000 14.00000 16.00000 18.00000 
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Figure A4-5. Time Plot - Pilot Ejection Study 
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ACSL RUN-TI"E EXEC VERSION 1 LEVEL 6" 81/07/10. 11.26.11. PAGE 
PILOT EJECTION 
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Figure A4-S. Trajectory Plot - Pilot Ejection Study 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 11.26.11. 
PILOT EJECTION 

PAGE 

·SET UP FOR DEBUG LIST OF ALL VARIABLES WHEN T = 0.1 • 
ACTION ·VAR· = O. L ·VAL· = 1, ·LOC· = NDBUG 
OUTPUT ·NCIOUT·=10 $. SAME OUTPUT LIST,LOWER RATE • 
• LIST OF COMMANDS ON ONE CARD • 
SET VA = 500.0 $ START $ SET DIS=9 $ PLOT ·XAXIS· = X, ·XLO· = XMN, Y 

V 491.170015 
D 2867.11166 

T O. TH 0.07874502 
X O. Y O. 

T 0.10000000 
X-l.03520168 

.... DEBUG DUMP - SYSTEM 
T 0.10100000 

ZZIERR F 
ZZST F 

ZZRNFl. F 
MAXT 1.0000E+10 

STATE VARIABLES 
TH 0.07874502 

V 491.170015 
X-1.04555369 
Y 3.90236050 

ALGEBRAIC VARIABLES 
CII 1.00000000 

G 32.2000000 
S 10.0000000 

TMX 4.00000000 
VX 489.647983 
Yl 4.00000000 

Z09999 0 
XICITG O. 

TH 0.0'7874502 
Y 3.86372327 

VARIABLES. NDBUG IS 
ZZTICG O. 
ZZNBU< 1 
ZZFRFL T 

ZZNS 4 
NSTP 10 

DERIVATIVES 
Z09993 O. 
Z09994 O. 
Z09998-10.3520168 
Z09996 38.6372327 

D 2867.11166 
MASS 7.00000000 

THE 0.26178010 
VA 500.000000 
VY 38.6372327 

YGEl O. 
ZZSEED 5555555555 

:I. 

V 491. 170015 
D 2867.11166 

CINT 0.01000000 
ZZI 1 

ZZICFL F 
MINT 1.0000E-l0 
IALG ~:; 

INITIAL CONDITIONS 
THIC 0.07874502 

VIC 491. 17001~) 
Z09997 O. 
Z09995 O. 

DEGRAD 57.3000000 
RO 0.00237690 

THEDEG 15.0000000 
VE 40.0000000 

XMN-·60. 0000000 
YMX 30.0000000 

ZZTL.XP T 

4 

J)E'BUG 
T 0.20000000 TH 0.07220484 V 454. 489096 00 T puT 
X-3.86295505 Y 7.44086099 D 2454.86634 

T 0.30000000 TH 0.06486207 V 421 . 7268~~7 
X-l0.1960489 Y 10. 442~~282 D 2113.70011 

T 0.40000000 TH 0.05696625 V ~593. 365588 
X-·19.5501745 Y 12.9249537 [I 1838.96'577 

T 0.50000000 TH 0.04851703 V 368. 580101) 
X-31.5330481 Y 14.9354053 [I 1614. 5~~471 

T 0.60000000 TH 0.03951440 V 346.7404:1.5 
X-45.8242341 Y 16.5114590 D 1428. 860~j4 

T 0.69000000 TH 0.03093918 V 329.196798 
X-·60.4398634 Y :1.7.5845096 [I 1287.92959 

Figure A4-7. Set Debug Printout, Run and Plot - Pilot Ejection Study 
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ACSL RUN-TIHE EXEC VERSION 1 LEVEL 6H 81/07/10. 11.26.11. PAGE 
PILOT EJECTION 
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5. TEMPERATURE DISTRIBUTION ALONG A RADIATING FIN 

The only practical way of rejecting heat from a power plant operating in outer space is by thermal 
radiation. If the "working fluid" of the power plant passes through tubes, an efficient radiating surface could 
be devised by placing many tubes side by side. This would maintain the entire surface at the highest possible 
temperature. Such a system, though, is highly vulnerable to being punctured by a meteor fragment or some 
other particle, and this could lead to the loss of the vital working fluid. 

A less efficient but also less vulnerable arrangement is shown in Figure A5-I. The number of tubes has 
been reduced and the space between the tubes has been filled by a fin of rectangular cross section. We want 
to determine the temperature profile across the fin for various tube spacings, fin thicknesses, fin material, etc. 
The temperature profile, in turn, can be used to calculate the efficiency of the radiating system. Keep in mind 
that this is really a problem in static temperature distribution. Time is not a factor because steady state 
conditions throughout the system are assumed. 

5.1 Assumptions 

Two views of the radiating fin are shown in Figure A5-2. In terms of this figure, the pertinent assump-
tions are as follows: 

1) Steady-state conditions have been established. 

2) Heat is transferred out of the fin only by radiation through a non absorbing medium. 

3) Thermal properties of the material are constant. 

4) There is no heat conduction in the y direction. 

5) Heat loss from the two exposed side edges is small enough to consider the edges as being insulated. 

6) Temperature is effectively constant across the fin thickness, 2H, at all values of x which implies 2H 
«W, 2H« L 

These assumptions reduce the problem to mathematical formulation for one-dimensional steady-state heat 
transfer under combined radiation and conduction. 

5.2 Mathematical Formulation 

Consider the heat balance for an element strip shown in Figure A5-3 where the width is W, half thickness 
is H, and length is ~x. The local rate of heat conduction through the cross-sectional area 2HW at position 
x is given by Fourier's equation to be 

= -K(2HW) -dT I 

dx 
x 

where K is the thermal conductivity of the material. 

The rate of heat conduction out of the segment is 

qx + I.J.x = - K(2HW) dT 
dx 

x+l.J.x 

The rate of heat lost by radiation is the difference, namely 

I.J.q = - K(2HW) [:; - ~~ ] 
x x + I.J.x 
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Figure A5-2. Geometry of the Radiating Fin 
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Figure A5-3. Heat Balance for an Elemental Strip 
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This can also be expressed by means of the Stephan-Boltzman law for heat radiation, considering both the 
top and bottom surfaces of the element; 

where 

dq = (J"€ (T4 - TS4) (2W dX) 

(J" = Stephan-Boltzman constant for the material 

€ = emissivity of the material 

T = temperature of the segment, in oR 

T s = temperature of the surroundings, in OR 

The heat balance equation, then becomes 

- K(2HW) fdT - dT II ] = oe (T4 - T 4) (2W~x) 
dx dx S 

L x x + ~x 

Dividing both sides by -K(2HW)dx and inverting the order on the left side gives: 

1 fdT 
~x dx 

x+~x 

_ dT I ] = ~ (T4 
- T 4 ) 

dx KH S 

Ix 

In the limit, as dX"'O, the left side becomes the second derivative of T with respect to x, so that the final 
equation becomes 

5.3 Initial Conditions and Parameters 

Since Equation A5-1 is a second order differential equation, appropriate initial conditions must be 
specified for the temperature and the temperature gradient at x = O. While the initial temperature is known, 
(the temperature where the fin joins the tube) the initial temperature gradient is not known. However, it is 
clear from the symmetry of the arrangement that the temperature gradient at the midpoint between tubes 
where x = L is zero. Thus, the problem falls in the category of a two-point boundary value problem that must 
satisfy these conditions: 

T(O) = 2000 0 R 

dTI = 0 
dx x = L 

A complete list of variables and parameters, along with suitable units, is as follows: 

T = Temperature 

x = Distance 

(J" = 0.1 73 x 10-8 

€ = 0.9 

K = 25 

ft 

Btu/(hr) (ft2) (OR4) 
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H = 0.0012S 

L = 0.2S 

Ts = 0 

ft 

ft 

Notice that the temperature of the surroundings, Ts' has been taken to be at absolute zero for this example. 

5.4 Solution 

A solution is considered to be successful if 

dT 
dx 

~ 0.2 when x = L 

The current run is terminated and a new run started if: 

1) T exceeds its initial value by one percent or more. 

2) T goes negative. 
dT 

3) dx > 0.2 when x = L 

A new estimate of OTOXZ is computed using: 

OTOXZ = OTOXZ - 0.07*OTOX(x = L) 

new old 

where OTOX(x = L) is the final value of the temperature gradient. One case is to be run with an initial 
temperature of 2000 oR and an estimated temperature gradient of -20,000 oR./ft. 

The listing of the model definition section is shown in Figure AS-4. Note that the terminal section checks 
the final value of temperature slope and if not within the specified tolerance recycles to the initial section for 
another run with a new value of initial slope. The independent variable is specified to be the variable X and 
the initial condition is set to 1.0E-I0 to give it a lead on the round off error. 

The call to subroutine LOG forces an OUTPUT operation and resets the counter for the "NCIOUT" 
divisor so that the last value of the run will always be listed. 

The output stream is shown in Figure AS-S through AS-12. After the START, the first three iterations 
find the intermediate temperature is more than 1 percent greater than the starting value, so triggering the 
terminate (TERMT) condition. For the fourth and subsequent iterations the x variable gets to 0.2S and now 
the final value of dt/dx is slowly reduced until at iteration number ten the value is -0.IS3, well within the 
ERROR tolerance of 0.2. A more detailed printout (PRINT) using data saved on the PREPAR list is started 
in Figure AS-7 and which goes on to Figure AS-II. Note the use of the flyback trace suppression flag FTSPLT 
which when true will resynchronize the line count to zero when the independent variable (first variable on 
the PREPAR list) steps back to the initial condition. Once the iteration has converged, a second START -
Figure AS-II - redoes the last run, since the initial condition on temperature slope (OTOXZ) is still the same. 
This makes sure that the PREPAR list data base only has one run to be plotted, which shows, in Figure AS-12, 
the temperature gradient (OTOX) and temperature (T) plotted against distance (X) along the fin. It is often 
easier and more cost effective merely to repeat the last run of an iteration rather than making complicated 
arrangements to save each run separately, before it's known that the convergence criteria have been satisfied. 
Plotting after the first START card would have shown the parametric set of curves as the iteration proceeded, 
since the PREPARed file doesn't get rewound between runs on cycling from TERMINAL to INITIAL 
sections. In this case the overstrikes cause rather an unattractive plot and don't provide much information, 
since it's the final profile that is needed. 

A-31 



*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSL TRANSLATOR VERSION 1 LEVEL 6F 81/07/10. 09.35.22. PAGE 1 

PROGRAM RADIATING FIN 

INTEGEF~ N 
CONSTANT SG = 1.73[-9 EP = 0.9 
CONSTANT H = 0.00125 1 K = 25.0 
CONSTANT L = 0.25 1 TS = 0.0 
CONSTANT TZ = 2000.0 1 ERROR = 0.2 
CONSTANT DTnXZ = -20000.0 , GAIN = 0.07 
CINTERVAL CINT = 0.0025 
"-----------------------OFF-SET INITIAL VALUE TO HANDLE ACCUMU- ... 

LATED ROUND OFF - CHANGE NAME FROM T TO X· 
VARIABLE X = 1.0E-10 

INITIAL 

"-----------------------NOTE N IS HANDLED AS AN INTEGER· 
N = 0 

Lt .. CONTINUE 
N = N + 1 ." BUMP RUN COUNT • 

END $" OF INITIAL" 
"-----------------------NOTE NO DYNAMIC SECTION SINCE NOT USED" 

l:IERIVATIVE 

"-----------------------INTEGRATE FOR TEMPERATURE AND TEMP RATE· 
NOTE T IS NOW TEMP NOT TIME" 

T = INTEG(DTDX, TZ) 
DTDX = INTEG(SG*EP*(T**4 - TS**4)/(K*H), DTDXZ) 
"-----------------------SPECIFY TERMINATION' CONDITION· 
TERMT(X.GE.L .OR. T.GE.1.01*TZ .OR. T.LT.O.O) 

END $" OF DERIVATIVE • 

TERMINAL 

"-----------------------FORCE OUTPUT AT END OF EVERY SWEEP • 
CALL LOG 
I-----------------------IF CONVERGED OR TOO MANY TRIES· 
IF«ABS(DTDX).LT.ERROR) .OR. N.GT.10) GO TO L2 
H-----------------------FIND NEW GUESS FOR INITIAL TEMP RATE· 
DTDXZ = DTDXZ - GAIN*DTDX 
·-----------------------TRY RUN AGAIN" 
GO TO '-1 

l.2 .. CONTINUe: 

END $" OF TERMINAL • 

END $" OF PROGRAM • 

Figure A5-4. Listing of Model Definition Section for Radiating Fin Problem 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 09.36.09. 

SET TITLE - -RADIATING FIN PROBLEM-
S TCWpr~N:::72, D:rS~~:9 ~~ u FOf~CE :3 COL.UMN OUTPUT WIDTH -
OUTPUT X,T,N,DTDX,DTDXZ, -NCIOUT u :::20 
PREPAR X, DTDX, T , N, DTDXZ 
START .-PERFORM ITERATION-

X 1.0000[-10 T 2000.00000 
DTDX-20000.0000 DTDXZ-20000.0000 

X O. O~H)(}O(}O() 
DTDX :3:l2~5. 646:1.6 

X 0.OB400000 
DTDX 20882.?789 

X 0.04750000 
DTDX··1064.29250 

X O. 09n5000() 
DTDX 17906.0279 

X O. :l0:350000 
DTDX 22~~36. 6824 

X O. 04 n:iOOOO 
DTDX···4:3~~7. 96377 

X O. 097~;OOOO 
DTDX 5876.6:3976 

X O. 1:3925000 
DTDX 23828.7709 

X O. 04 7~;OOO() 
DTDX···7612.48011 

X O. 097~jOOOO 
DTDX···2:310.61152 

X O.1475000() 
DTDX :1.076.41.560 

X 0.19750000 
DTDX 5269.23907 

X 0.24750000 
DTDX 1.6044.3551 

X 0.25000000 
DTDX 17l4~~. 5322 

X 0.04750000 
DTDX·-9B44. 85583 

X 0.09750000 
DTDX-6545.72840 

T 16~:i~.;j. OB8SH 
DTDXZ"·20()OO.OOOO 

T 202~~.:l ~~8()~~ 
DTDXZ-20000.0000 

T :1.:=j49. 94861 
DTDXZ· .. ~~:t41.1:l. 75<j15 

T 19()3. ~~9:l ~5:3 
DTDXZ-21461.7595 

T 2()2:3. 47708 
DTDXZ-21461.7595 

T 1446.935(16 
DTDXZ-23025.3273 

T 14B:l. 25~~59 
DTDXZ-23025.3273 

l 2()2·3. ()7~~49 
DTDXZ-23025.3273 

T 133(7.47"700 
DTDXZ···24693. 34L~ 

T :l l08. 29245 
DTDXZ·-2469:3. ~~41~~ 

T 107B.97754 
DTDXZ-24693.3413 

T 1228.43104 
DTDXZ ,·,24693. ~~413 

T 1702.91644 
DTDXZ-·24693.34:1.3 

T 1744.37926 
DTDXZ-24693.3413 

T 1263.59645 
DT[lXZ-25893.3885 

T 873.352393 
DT[lXZ-25893.3885 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

PAGE 

1 

3 

4 

4 

4 

4 

4 

5 

5 

Figure A5-5. Run-time Commands and Output Stream from Radiating Fin Problem 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL. 6M 81/07/10. 09.36.09. PAGE 2 
I:;:ADIATING FIN PROBLEM 

X 0.14750000 T 568.948130 N ~; 

DTDX-5823.09994 DTDXZ-25893.3885 

X 0.19750000 T 281.268091 N 5 
DTDX-5723.23787 ['TDXZ-25893.3885 

X 0.24675000 T-·0.47550353 N ~:; 

DTDX-5720.17206 ['T['XZ-25893.3885 

X 0.04750000 T 1288.78802 N 6. 
DTDX-CP110.73249 DTDXZ-25492.9765 

X 0.09750000 T 949.223751 N [) 

DTDX-5244.32007 DTDXZ-25492.9765 

X 0.14750000 T 723. 29502B N [) 

DTDX-4011.22327 DTDXZ·-25492. 9765 

X 0.19750000 T 5~54. 7800~~9 N I.) 
DTDX-3607.81982 DTDXZ-·2549~~. 976~) 

X 0.24750000 T 357. 711()1() N 6 
DTDX·-3501. 62433 DTDXZ···25492.9765 

X 0.25000000 T 348. 95<1417 N 6. 
DTDX-·3499.68229 DTDXZ-25492.9765 

X 0.04750000 T 1304.26264 N 7 
DTDX ·-8656. ~:S617 4 DTDXZ-·25247.9987 

X 0.09750000 T 996.832602 N 7 
DTDX-4396.61310 DTDXZ-25247.9987 

X 0.14750000 T 824.629724 N 7 
DTDX···2704. 41. 990 DTDXZ-25247.9987 

X O. 1 97~)00OO T 71 ~5. ()8:3960 N 7 
DTDX···1840.86:L08 DTDXZ·-25247.9987 

X 0.247500()() T 6:34. 8()3277 N 7 
DTDX···1:329.91836 DTDXZ·-25247.9987 

X 0.25()0()00() T 631.5()3590 N 7 
DTDX·-1309.90090 DTDXZ-25247.9987 

X 0.04750000 T 131().()6695 N B 
DTDX···8485.25438 DTDXZ···25156. :3056 

X O. 097~jO()00 T 1014.8981:3 N B 
DTDX-4068.36337 DTDXZ···25156. :3056 

X 0.147500()0 T 864.120545 N a 
DTDX···2:J.66.726:1.:3 DTDXZ ···25156. 3()56 

Figure AS-6. Output Stream from Radiating Fin Problem 

A-34 



ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 
RADIATING FIN PROBLEM 

81/07/10. 09.36.09. 

X 0.19750000 
DTDX-1033.46037 

X 0.24750000 
DTDX-168.016381 

X 0.25000000 
DTDX·-127.276801 

X (). ()47~j()00() 
DTDX-8468.59821 

x O. O(J7~;OOOO 
DTDX·,-40:36. 13740 

X 0.14750000 
nTDX···;~t 12.90756 

x 0.1975()O()0 
DTDX···949.677:376 

X 0.24750000 
DTDX ",39. 841 ~~71 () 

X 0.25000000 
DTDX 3.69604386 

X 0.04750000 
DTDX-8469.08197 

x O. 0(J'7~;0()OO 
DTDX-4037.07406 

X 0.14750000 
DTDX·'·2114.47448 

x (). 1 (l"n:iOOOO 
[lTDX ·'·9~:;~~. 1. ~~4666 

x (). 24 7~:;OO()0 
DTDX-43.606899B 

X 0.2500()0()() 
[lTDX ... (). 1 :7.i:32:37:~0 

x O. 2~.)OO()0()0 
[lTDX -,0. 1 !:i:323730 

T 785.914904 
DTDXZ-25156.3056 

T 756.432739 
DTDXZ-25156.3056 

T 756.063639 
DTDXZ-25156.3056 

T 1310.63128 
DTDXZ·-25147.39b3 

T 1016.66080 
DTDXZ·'·25l47.3963 

T 86B.0064()7 
[ITDXZ·-25147. 3963 

T 79:3.197114 
DTDXZ·-~~5:1.47 .3963 

T 760. 9:3:3~?52 
DTDXZ-25147.3963 

T 768.888072 
DTDXZ·'·25147.3963 

T 131().6:1.489 
nTnXZ·'·2~3:J.47. 6550 

T :l016.6096() 
DTDXZ·'·25147.6550 

T 867.893440 
DTDXZ-25147.6550 

T 792. 98~j 1 06 
DTDXZ-25147.6550 

T 768.568386 
DTDXZ···2::=.i147. 6:7.i5() 

T 760.5:l3688 
DTDXZ···~~51. 47. 6:7.i50 

T 768. ~H3688 
DTDXZ-·~~~:)147. 65!:.i0 

S FTSPLT=.T. ,1 SYNCHRONIZE OUTPUT WITH START OF 
PRINT INCIPRN"=5,X,DTDX,T,N,DTDXZ ,1 DEMONSTRATE 

LINE X DTDX T 
() :L.000[·'·10 .... 20000.000 2000.0000 
5 (). 0:1. 2~'=;()()() .. ·1:L 9~i(). :l88 l.B():~. 780:L 

10 O.025()OOO ·'·6~~()~:;. 166l 169:1.. B47~:~ 

N EI 

N B 

N 8 

N 9 

N 9 

N 9 

N 9 

N 9 

N ()l 

N 10 

N :1.0 

N :1.0 

N 1.0 

N 10 

N 10 

N :1.0 

EACH SWEEP 1 

COL.UMN PRINT . 
N DTDXZ 
:L -"£~OOOO. 000 
:L .... 20()()O. O()O 
:I. ... ~~()()()() . ()()O 

Figure A5-7. Output Stream from Radiating Fin Problem 
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ACSL.. RUN·-TIME EXEC VE~~SION 1 LEVEL 6M B:I.107 1:1.0. 09.36.09. PAGE 4 

I:~ADIATING FIN PROBLEM 

L.INE X DTDX T N DTDXZ 
1:7i 0.0375000 .--:1. 4 ~.5t1. 4 U34 1.644.6516 1 ''''~~()OOO . O()O 
~~O 0.0500000 3:1.2~;. 646~~ l65~5. 0886 1 .... 2()OOO. ()OO 

2!:i 0.0625000 B:L46.5:1.27 17~?4. 6749 1 ·· .. ~?OOOO. 000 
~30 0.0750000 1 45~?9 . 5~39 1.B64.3242 :L · .. ·20()OO.000 

0 1.000E···10 .... ?l461.760 ~~OOO. 0000 ;.:~ "-~~1461.. "760 
5 O. 0 12~)()00 ... :1. ~'~559 . 97~? :1.784.8628 ~~~ ·"~~:l.46:1.. "760 

10 O. 0~~50000 -·8:1. 9() . 9~36!:; 16~iO. 67:1.4 ~~ -,,21461.760 
1 r.:" (). 0~37~jOOO ··4016. ~32Bf., 1~i7!:i . :1.924 ''l .. ··214f.,1.760 • • .1 /; . 
~?O 0.0500000 ,·<34"7 . ~337~:;9 1548. 1B48 ~;~ ""~~146l.. 760 
~:~~; 0.0625000 ;5~~8(). 2~3():I. :I.::i66.3385 ~:~ ···~~1.461. 760 
30 O. 0'75()000 '7~31 ~~. 5~~37 :1.63:1..8588 "1 /;. ·"·~~:1.46:1..' 760 
~5::i (). ()B7~7iO()() 1?37~i. ~Hl l753.397() ~~ -.. ?:l.46:L.760 
40 O. :l.O()()O()O 19(')~~:I .. 8:3l :l.9:7iO. :1.666 ;::~ -·2:L46:L.760 

0 :1. • O()()E .".:t () ·"·~~30~?5. :327 ~~O()(). O()()() ~3 .... 23()~?5. ~3?7 
/::' 
... J O. 0:L~~~5()O() .... :1. 5~~"78 . 6~~ 1 1.764. 6~3H~~ ~5 ·-·~:~3025. ~3~:~7 

:L 0 O. O~?~50000 .-.:102B9. :1.54 :l.606.7Bf.f7 :~ .... ~~~30~?~:;. ~3~:~7 
l!:i (). O:3n:iOOO ,,"66B:I. . ~~"7:3~~ :I.!:iO:l..74:1.4 :3 · .. ·~~~·3Q25. ~5~:~7 

20 O. O!:iOOO()() ''':-f799 . T7~?B 1436.7669 3 .". ~?:30~~5. ~3 ~~7 
,'C:" O. 06~?~.)()()O ·-:t~~78. :367~; 1. 40~j. ~~62:1. ''Y · .. ·~?~30~~~7i. ~327 /.. •• .1 .. ~) 
:'3() O.07!:iO()()() l.:I.~~9. 9~?74 1404. :3409 3 ·· .. 2:~02~5 . :3~~7 
:35 () . 087~:iO()() 3637.9960 1.433. <122:1. 3 ... ·~?:302~5 . 3~:? 
40 O. 10()OO()O 6488.7176 :1.496. 7()40 :3 · .. ·~~30~~~5. :5~:~7 
41::' •• J O. :I. :I.~~~:iO()() :I. ()O:37 . ~549 1. ~:i99 . 01.40 3 · .. ·2:302~;. 3~:~7 

~:iO O. :t ;.~~)O()()() 1.49:1.:3. 8~i1. 1.75~5. 090:1. 3 · .. ·23025. 3~~7 
~:i!:i O. 1 :37~:iOOO ~:~~~4~:~6. ():~:3 1 <ff:12. 6:1.6:1. :5 .", ~~:3 0 ~~ !:i. :~ ~:~ 7 

() :1..0()()[ .... :tO ·"·;'~469:5. 341. ~:~()OO. 0000 4 ""246cn;.341 
~5 (). () :t;'~~::i()()O ·--:1.7:1.0B.43:3 1.74~5. ()743 4 -··246<f:3. :341 

:to O. ()~~!:i()O()O .". :I.~·:~4<f9 . 304 156(). 1524 4' .... ~?~6<j):?I. :541 
:t ~:i O. ():~175()OO ·-·94~~4. B!:i7:1. :1.424. 292B 4 ···~~469:~. :341 
?O O. () ~.:i () <> () () () .-. "7 ~~ ~:~;.:~. ~.:; 4 5 ~~ :l.3~?O. 9:577 "t .... ~~4693. :341 
;.:~ !7; () . ()6~~:::;OOO -'~5~:;5() . :1.240 1.24:1.. 5406 4 -·2469:3. 341 
:'50 O. ()7~:iO()OO ·-·42l4. :3992 :I. lBO. 79:1.'7 4 ''''246<13.341. 
3!:i O. OBn7i()()O -<3()97. 9B92 :1.:1. :55. ~:~723 4 .. ··24693.34:1. 
40 <>. 1 ()()()()O() "-~:~:I.~~4. ~:i"?B:I. :l.10~~. 749~~ 4 .... 2469:3. :341. 
41::' ,.J O. :t :t ?~:)O()O .. -:t ~~4(). 9~~:::i7 100l.7B!:)6 4 .... ~~469:?I. 341 
:::j() o. 1?5()()O() ·"-4()6. 7~~!:j:l. 9 :I. 07:1. . ~i~~()9 4 .... ~~46<1~3. ~34:1. 
:::i~) o. :l :.~ 7 ~:i () () 0 4 :1.1 . "?:3()22 l07:1.. ~5!7i2:1. 4 ·"·~~4693. 341 
f')() O. 1. ~5()()()O() :l246. :I.~?59 :I. OB:I. . 8BO:3 4 " .. 2469:3. ~341 
6~) O. :l t...,2!:5()()() ;';~13(). :1.9:39 :t10~~. 911.3 4 ·"·~~4693. :541, 
70 O. :l "?!:iOOO() ~H ()4. ~:~9B~~ :I. :I. :35. !:i086 4 .... 24693.341 
7~:i (). :t 8"7;:j()OO 4~:~2:1.. 78:55 l1B:I.. :1.:1. :5:1. 4 .... ~~469~3. 341 
BO O.2()()O()O() 5559. :I.!:;05 :I.~~4:1.. 96~39 4 .. ··24693.341 
8~i () . 2:1. ~~~:;()()() 7~~:54 . :1.:1. :3~:i :I.~521.. 48B~:; 4 · .. ·~~469:5. :341 
90 (). 22~:;()()()() 9440. 496~~ :1.425.0:1.16 4 ·"·~?4693. 34:1. 
<f~:j O. 237!:i()()() :I. ~~!::i~:~ 1 . 82!::i :I.:::i6:1.. :I. ()~.:;7 4 · .. ·24f.)9:~. ~341 

tOO o . 2~5()()()OO :1. 7l43. !:i3~? :1."744.379:5 4 ,,,,24693. :341 
() :I. . () 0 () E .. <I. () .... ~:~5B93. 3f:19 2000.0000 1:." 

•• J .... 2~5B9~5. 3B9 
/::' O.O:L 2~5()OO '-':1. B4~:~~~ . ~i9B 17~~"? :::ib'75 /::' ... ·~~!5B9~5. 3B9 ... J d 

:to o . O~:~~:;O()OO ... -:1. 4072. OB9 :I.:::i~:~6. 7:1.0:1. ~i -"~~5B9;:j. 309 
1. ~:i O.O:375()()() .... :1.:1.340 . O~;~:~ L36f; . 1.2:1.7 1::' 

\.1 · ... ~~!:if:l9~3. :3B9 
~.:\() o . () ~:i 0 0 () () 0 ·,,·95:3<j) . 31. ~~7 :I.~:~:59.37:1.2 1:." 

'"' ·"·2589~~. 3B9 
~~~~5 () . ()62~:;OO() · .. ·B:3:L6. O:5~:~:I. :1.:1. ~~f:I. ~~~:i~:~<f ~5 ·"·~~!)B9:5. 3B9 
~5() () . 07!:iO()()O .... 7470. B~j:L:5 :l.O~:~<t . 90!:.i:3 ~i ·· .. 25B9:3. ~~B9 

Figure A5-S. Output Stream from Radiating Fin Problem 
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ACSl.. RUN···TIME EXEC VEF~SI(}N :t. LEVEL 6M 8:I./07/l0. 09.36.09 PAGE ~:; 

F~AnIATING FIN F'F~OBLEM 

LINE X I1TDX T N DTDXZ 
:3~:i O. 08'75()()O ···f.,BB3. ~~42'? 940.414:1.8 5 ·-25893. 389 
40 O. 1000()OO ·-·647~i. 9:1."78 857. 07f.,4~5 5 "-25893. 389 
4~:' O. :1. 1 ~:~5()O() ···6:L 96. 807 1 777.9B4:l0 c· -,25893. 389 ,.I ,.J 

~50 O. 1 ~~~)()()OO ··1.,00')1 . 3789 70:L. T756:L 1;:' 
... J ····25893.389 

1:..1:.-
,.1,.1 O. 1:3n5000 ,-,5887. :1.889 627. 47f:l74 5 -',25893. 389 
6() O. :1. ~5()O()()() ···~58:1.(). f.,90B 5~j4. 4061.5 c· 

... J ···2~:;893. 389 
65 O. 162~:iOOO -,5765. 35~:~'1 482. 0820~~ 1:.-

,.1 ,,,,25893. ~589 
70 O. 17~jOO()() -,5740. ~56~i4 4:L0. :1.87'1:/. c· 

d ,·,25893. 389 
71::' O. 18n:iOOO "-~:;7~~7 . 9:1. e~ ~5:"5B . 5~~09')I c· "·~?5893. 389 ,.1 ,.1 

SO 0.2000000 -·~j722. 5337 ;:~66. ~,16()9:L ~:j ···~~5893. 389 
8~7j () . 21 ~?!7;0()() ···~57~~O. f.,68H 1. 9~:;. 443~~2 C" u ·· .. ~?589~3. 389 
90 o . 22~iOOOO ... ~=:i 7 ~:~ o. ~~ ~~ ~5 () 1. ~:~:3. 93842 ~5 ···25893. 389 
9L~' O. 2~375000 ,·,5720. :L7~:~7 ~;2 . 436089 r.:· · .. ·25893.389 '"' ,.1 

() :1. . OO()E ···10 ·· .. ~~5492. 976 ~~O()O . 0000 6 ·"·2549~? 976 
5 O. 0:1.2~5()OO -·:L 79B4 . ~5~~O 17~~~~. 7409 f., ,-,25492.976 

:l () () . 0 2 ~.)() () () () ---:1.3::i48.0B1 :1.5::)"7. f.I~iB::i 6 ·"·2549~~. 976 
:L ~i () . O:3n:i()(}() .... :L ()7()6 . 2~:~8 1 ~5B7 . 4B08 6 ···2549~~. 976 
20 o . 0~50()()O() '··87"78.80:1.2 1.;:~66. 430B 6 ·"·2!:i49~? 976 
~::5 O. ()6~~~:500() ····?418.6lBB 1.1.6~i. 6658 6 -·2549~~. (1'16 
30 O. 0'7~)OO(}() ,·,1.,4:30. 394:1. :1.079. 425~j 6 ·,,25492. 976 
3~5 o . OB7~5000 ···~i697. 4258 1()()3.B480 6 --25492. 976 
4() O. 100()()OO ··"514!7i. 9:34:3 936. 2:3706 6 ",,25492. 9?6 
45 O. :L :L 2~:;0()O ··472"7. :1.?82 B?4.6486f:1 6 -·2549~? 9'16 
~:;O O. :L ~~ ~:)() 0 0 0 '··4407. ?()~;:I. 81'1 . f.,4~i~~4 c) ·· .. 2::i4'12.976 
5~j O. :t 37~jOOO ···4:L6:3. T799 7c14. :l.4~:~:L4 6 -,,25492. 976 
60 O. 1 ~i()()OOO '·'39'18. 06:1.9 ?:1.3.3()8B:I. 6 ···2549~~. 9'16 
6~i O. :l 6 2 ~)() ()() -:'58:3"7 . 5~i:1. 7 664. 50~:~64 6 ····2~j492. 9"76 
'10 O. 1 "7~i()()OO -<37:3~:~. ~~B44 6:L7.22347 6 ,,,,25492.971., 
?~; O. 1875000 ·<56~.:i4. 478? ~;?:I.. 081.3:3 6 ""25492.976 
80 O.2()()()()O() ·<559?9696 ~i~:~5. ??2')I:3 6 ···~~~i49~~. 976 
85 O. 2:1. ~~~:50()0 ···3~j57 . 824? 4f:l:l .. 06403 1.1 ,,,,25492. 976 
90 o . 2~~~~i()()()0 ···~55:30. 0'184 4~56. 775'76 (:) ·"·2::i4'12.976 
9~:i (). ~?:?in5()()(} -:3~i:I.:1. . 545(} 392. T7378 c) ·"·2~.:;49;'~. 9'76 

tOo (). 2~iOOOOO -3499 . 6B?~5 :340. 9594~~ 6 ····~?~:;49~~. 976 
() :I..OO()E···:tO ···~~5247. 99S' 2000.0000 7 ····25~?47. 999 
I!:" ,3 O. O:L ~'~~:iOOO .. -:1. ?"7:1.b. 071 :1."735.9064 '1 .. ··~?5~:~47. 9'19 

lO (). O~~5()OOO .... :1. :i~:~2B. OO~~ 1544. 6B4~! 7 ···~?5247. 999 
:I.~; () . O~i"75000 ... :1. O:3:1.:i . 'JOB 1398. ?3'74 '7 ... ·~~5~?4"7. 999 
20 O.05()OOOO ···B:30?5240 1.~~83. 0626 ? ... ·~~5~?4? 999 
25 (). () 6 ~~ ~.:;O 0 0 ···685? 3:1.:1.6 118B. 743~5 "l .... ~~5247. 999 
~5() O.O?500(}O '-'~5?71 . 9082 :1.110. :1. ~:~O () ? ····2~;~~4? 999 
3~.:; o . 08?~i()(}() ··-49:3!7;.7961 :I.()43. 4:1.~:!6 '1 .. .. ~:!~i~:~4"7. 999 
40 O.100()()O() ·-4~~?6. ~~819 98~;. 99~~58 7 ""~:~5~?4"7. 999 
45 O. :L :I. 2~30()O -<"5?4::i.643:1. 9~55. 9"lO62 ? ····2~.:i24? 9'19 
~iO O. :l ~?5()O()O ··<3~3:1.:I.. 4~!9:3 B9L 95105 7 ''''2~~i?4"7 . 999 
~:i~:5 o. :l ~3n:;ooo ·-~~950. 9094 B~i~~. 0'78"70 7 ''''2~5~:!4"7 . 'J')l9 
60 O. 1 ~iO()OOO ···?b4? 7~i:L2 B:l.7.93'189 7 ····~~~5~~4"7. 9'jl9 
65 o. 16~?5000 ···~~3B9 . 9~)B4 '186. 49f.)~H "l ·· .. ~?~)~?4? . 999 
?O 0.1"750000 ... ~:! :1. 6B. ~54B~i "758. ()~5963 "l ···~?~:j~?47 . 999 
7~; O. :l Bn:;O()() _.:l 'J? 6. 6B()6 "73~? . :1. ~i9"7~~ 7 ···~2~j~?4"7 . 999 
80 O.200()0()() ••• :1. SO'jl . 06~:j4 708. :i21 "7~:~ '1 ""~~~5~:~4? . 999 
B~.:i O. ? 1. ~~50()() ···:1.66:1.. ~.:i~i"7"7 6Bb. 84~;)4~~ "7 ···~~~:5~~4"7 . 999 
90 O. 2~~5()()OO .. :l5:30. B693 1.166. 9:1.~~"7'J 7 ····2!:;~!47 . 999 

Figure A5-9. Output Stream from Radiating Fin Problem 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 09.36.09. PAGE 6 
I;:ADIATING FIN PROBLEM 

L.INE X I1TItX T N DTDXZ 
95 0.2375000 -1414.3626 648.51867 7 '-'25~~4"7 . 999 

100 o . 2~500000 -1309.9009 631. ~i035cl 7 ····25247.999 
0 1.000E-·10 -,25156 .. 306 2000.0000 8 ····2~5151.). 306 
5 0.0125000 -1761~j. 648 1. 737.09:1.3 8 --2~:j :1.56. ~506 

10 0.0250000 -13107.748 1.547.2400 {3 ·-·~:~!.:i :l56. 306 
:L5 0.0375000 -,10169.309 1402.9554 B "-25151.1.306 
20 0.0500000 -,8129. 8790 :I. ~~89 . 3028 {3 ····251!7ib.30t) 
,~,::-

1. •• ,.1 O.0625()()() -·1.t644.7443 :I. :1.97. 4:1. B6 B ·-·2~3:1.56. 306 
:50 O.075()000 -5520.9489 11~~1.. 6f:H3B 8 ·_·2~:=;:1. ~:i6. :306 
31:' , ;;J O.0875()00 --4643. :1.74:1. :I. 05B . ~3"7!7i5 (3 ·-·2~):I. !7il.t. :306 
40 0.1000000 -3938 . 807~:j :t. 004. 890~~ {3 ····~~!7i l. !7i6. ~5()6 
45 O. 11.25000 -,3360. :1. ~:~8~:j 9!7icl.38:361 {3 ····~:~~:i:1. !7i6. 306 
50 0.1250000 ··~~(374. 6~~7!7i 920. ~iOOO9 (3 '-'2~i 1 ~=:i6 . 306 
t::"t::" 
dd O. 1 :375000 '-24~j9 . 460B 88"7 . ~~~~5"7~5 (3 .... ~~~):1. ~i6. :'506 
60 O. 1500000 -~~()98. 1.31'1 B~ifJ. '18983 8 ,-·25:1. 56. 306 
61::' d O.1625()()O ••• :1. '1"78. 426~~ 834.5c1941 (3 ····2~:i 156. :306 
70 O. 1 "7~)OOO() '-:1.49:1.. OfJ~r7 B14. :1. 9460 B ····2~):I.~i6. 3()6 
"71::' ..I O. :1.875000 -·1 ~~~~8. 92?B "797. ~:~:1.7~j4 B '-'~~~51 ~:i6. ~5()6 

80 0.2000000 ····986. 24b~jB '183. ~i9040 8 '-'~~~51 ~;b. 306 
85 0.2125000 ·'·758.3c1242 772.49970 8 .-.~~!::i:I. ~i6. :306 
90 0.2250000 ···~j4:L . 4l)8~i~~ 7b4. :?)8~:;:1.2 8 · .. ·~~5:1. ~j6. 306 
95 (). 23"7~i()()() -- ;'5 :3 ~:~ . 1 O:39~i ?~j8. 9~51~j4 8 -.~~~.:j:l. ~jl.l. ;3()6 

:1. O() o . 2~3000()O '-:1.27. ~:?b80 756. 06~564 8 .... ~~~j:1. ~jf.). ~506 
() :1. . ()()()E ... :1. () .-.~~~j 147 . ~596 ~:~OO(). O()()() 9 ·-·~:~5:1.4? 39t) 
5 O. ():I.~?~)OOO ,-,17605. 890 :l '1:3'1 . 2064 c"I '-'~:~!:i:l4? . :396 

10 () . 0~~!50()OO ·-:1.:30Cj'6. 0~i9 :l.54?4B84 (1 '-'~~514'1 . ;3C?6 
:I.~i () . 0~5?!:;()()() ••• :1. ():I. 5!:j . ()50 1.403. 36~j4 9 '-'~~514 7. 3S'6 
20 () . O~i()()()()() -·B1:1.2.5B23 :I. ~~B()l . 9()9~j 9 ····~~~:.):1.4? ;3C"l6 
·",r.;-
1.. • ..1 () . 06~2!':i()O() ·'·66~~4. 01 ?~~ :1.:1.98. ~~626 9 ·-·~~~:j:1.47. ;396 
~5() () . 07~jOO()() ···~:j4(jl6. 4:308 :I. :I.~~~~. B:I.~i~~ <] ·-·~~5:1. 4'1 . ~5c16 
:3~j o . OB?~:jOOO --46:1.4. ~;:l.5:1. :1.059.03:39 9 ,-,25:1.4"7.396 
40 O. 10()()OOO -";3905. b~i3B t()06."734b 9 ·-·~~~H4"7. :396 
45 O. 1:1. ~:~5()0() -<~3?~~. :1.:1. ~~6 961. 6'1~~43 <] ·-·2~i14"7. 396 
~:;() O. :L ~~~i()O()() -·~~B31 .. ~~~:i8~3 92~1. ~~cl6~3:1. (? ·· .. ~:~~i147. 396 
~::; ~:i O. 137~iOOO -·~~4:1.0. ~i1~i"7 BC10. ~i980~5 <)I -'~~~::i:l.47. :3S)t, 
60 O. 1 ~iOOO()() ·-·2()4~~. 045~~ 862. B:I.l.8~~ 9 -·~~~:i14"7. ~5c16 
6':' . .1 O. :I. b ~:~ ~.:i () () 0 -,:1.7:1.6.6796 839. ~55:1.03 9 ····25147.396 
"7() (). 1 "7~:i()O()() ·--:1.4 ~~ ~~ . 0 <]:3 "7 8:1.9."76269 9 ····2~i:l.4"7. 396 
"7~:i o. U3n:;OOO _.:1. :l ~i2 : ()~~~~9 80:5.691.,"74 <] ····~:~H47. 396 
SO 0.2000000 "'900 .. 66022 "790. B84~1:1. (jI -··2~H47. 3 c16 
8~j () . ~~:1. ~~~:iOOO ···66:3. 23:l.C,O "78 :t. :l.22~~8 9 .. ··~?514"7. 396 
90 O.225()00O ·'A~1~:'. 68ll~i~'~ 7"74. ~~624:1. 9 ····?!5:1. 4'7 . :396 
95 o . ~?:375000 -'~?:I.4. 4636"7 770. ~~O382 9 ·-·;'~51.47. ~596 

:1. O() O.250()()()() 3.691.10439 ?cIS.OB807 <] ,-,25:1.4"7. ~596 
0 1.0()()r:;:·· .. 1() -·~~~5:1. 4'1 . 6~:;~:i ;'?()OO. 0000 10 ",25:1.47. 6~j5 
~i () . ():1. ~~5()()O "-1'1606. :1."73 1. '7:37 . 20~5() :l () ·-·2~H4? 655 

:l () o . ()2~j()()()() .... C50S'6. 398 :1.547. 481~~ :1. () ·· .. ~~~i 1. 4"7 . 6~j5 
15 o . 0:3"7~:iOOO ·'·1015~i. 41.14 l403. 3!.:i:3~i :1.0 ···~~~jl4"7. 6~j5 

?O o . O~::jOO()OO "'81:1.3. ()84"7 l289.B9:1.9 :to ····~~~il4"7. 6~35 
~~~) (). 06~:~~:;()()() ·'·6l,~:~4. 6193 :1.198. 230t :1.0 .. ··~?~3:1.4"7. 655 
~50 o . ()"7~; ()() () () "'~:i4(1"7 . 1432 :I. :I. ~:~2. "?B~:~~) to .•. ?~j:l. -4"7. 6!:i5 
3 C:' ,d () . ()B"7~jO()() ·'·46:1.!:j. ~54 79 :I.()~:j~;'. "7Cjl:l.~j :1.0 ····2!5:1.47.655 
4() O. :t()OOO()() -<39()6.6175 :1.001.1.6811 lO ····2!:)l4"7. 6~)5 

Figure A5-10. Output Stream from Radiating Fin Problem 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 
RADIATING FIN PROBLEM 

81/07/10. 09.36.09. 

L.INE X DTDX T N DTDXZ 
45 O. 1 :1.~~5000 "<~3~:~3 . 2:1. 79 961.60593 10 MM~~5147. 655 
50 0.1250000 MM28:32. 617:1. 9~~:3. 21~~~~~i :1.0 'M·2~5:1.47. 6~;5 

55 O. 137~;00O -~:~411. . 9401 890. ~;OOO:l. 10 MM25:1.47.655 
60 0.1500000 MM2044. 6493 862.69488 10 MM25:1. 47. 6~;5 
65 0.1625000 -:1.7:1.8.4787 839.21285 10 .... 25147.655 
70 O.17S0000 -:1.424. 1055 819.60071 10 ·-·~~5147. 655 
75 0.1875000 .M·1154.2674 803.508:1.8 :1.0 '-'2~5 :1.4'7.655 
80 0.2000000 -·90:3. :1.6074 790. 61.dd.2 :1.0 "-25147. 6~;5 
85 o . 212~;OOO .M·666.015:1.5 780. 8'7109 :1.0 '-'25:1.47. 6~j5 
90 o . 22~5()O()0 .M·4:38. 78500 773.97449 :1.0 .M·25:1.4 7 . 6~:;5 
95 0.2:575000 -,2:1.7.9:1.490 769.8750:1. 10 .... 25:1.4·7.655 

:1.00 O. 2~:;00000 "MO. 1532:373 76f:L 51369 :1.0 .... 2~:;147. 6~j5 
START $ ·r;:EPEAT LAST CASE OF PF<EVIOUS RUN-

X 1 . OOOOE .. M:I. 0 T ~~OOO. 00000 N :I. 
DTDX-25147.6550 DTDXZ-2S:l.47.6550 

X 0.05000000 T 1289.89191 N 1. 
DTDX-81:1.3.08470 DTDXZ-25:1.47.6550 

X 0.10000000 T 1006.68105 N 1. 
DTDX-3906.61749 DTDXZ-25147.6550 

X 0.15000000 T 862.694885 N :1. 

DTDX-2044.64926 DTDXZ-25147.6550 

X 0.20000000 T 790.666118 N 1. 
DTDX-903.160736 DTDXZ-25147.6550 

X 0.25000000 T 768.513688 N :I. 
DTDX-0.15323730 DTDXZ-25147.6550 

X 0.25000000 T 768.513688 N 1. 
DTDX-0.15323730 DTDXZ-25147.6550 

PAGE 

PLOT -XHI"=L, nTnX, T '"PLOT CONVERGED PROFILE. USE DEFAULT XAXIS· 

7 

Figure A5-11. Output Stream from Radiating Fin Problem. Repeat of Last Converged Run 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 09.36.09. PAGE 8 
RADIATING FIN PROBLEM 

DTDX A -40000.00 -36000.00 -32000.00 -28000.00 -24000.00 -20000.00 -16000.00 -12000.00 -8000.000 -4000.000 

STOP 

T B O. 200.0000 400.0000 600.0000 800.0000 1000.000 1200.000 1400: 000 1600.000 1800.000 
X XAXIS 

O. 

0.050000 ...... . 

0.100000 

0.150000 

0.200000 

0.250000 

..... A. 

B 
r. 

.B 
B 

. .. '" . B. 

· B 
· B 
· B 
· B 
.B 
B 
B 
B 
B 
B 
B 
B 

...... B. 

II 
II 
B 
B 
B 

B. 
B. 
B. 
B. 
B. 
B. 
B. 
B. 
B. 
II. 
B. 
II. 
B. 
II. 

.. B. 

II 
B 

II 
II 
II 
II 
II 

A 

. D 

. D 
... . B. 

D 
B 

II 
II 
B 
B 

B 
D 

D 
B 
D 

B 
B. 
B. 
B. 

B 
B 

B 
B 
B 

B 
B 

A 

B 
B 

B 
II 

A . 
. A 

B 
. .. B .. 

. B 
B 

B. 

II 
B 

B 

.B 

B 
A. B 

. A B 
AB 

. B A 
B A 

B. A 
B A 
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Figure A5-12. Plot of Temperature Profile and Gradient from Last Converged Run -
Radiating Fin Problem 
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6. AIRCRAFT ARRESTING GEAR SYSTEM 

The system investigated here is designed to halt a moving aircraft that would otherwise overrun the end 
of a runway. It is similar in principle to the gear used on aircraft carriers. The problem was selected for this 
manual because it employs a function generator and input relays. The equations listed below describe the 
system, and its geometry is shown in Figure A6-l. A plot of the "water squeezer" damping function, f(Y3), 
is also shown on the figure. The aims of the investigation are to determine the range of aircraft weights and 
speeds that can be accommodated without exceeding the working limits of the cables or the allowable piston 
travel. Here, just two cases are investigated involving different aircraft velocities. 

Differential equations describing the acceleration of the three masses are: 

d2 X . 
m 1 --= - 2fK 1 SIn (} 

dt2 

where the cable tension is given by: 

kl (Yl - 2Y2) Yl > 2Y2 

=1 0 ; Yl ~ 2Y2 

=\ 
k2 (Y2 - Y3) Y2 > Y3 

0 Y2 ~ Y3 

Drag force from the water squeezer is given by 

and geometrical constaints lead to 

Yl = V (x2 + h2
) - h 

sin (} = 

Constants for the problem are as follows: 

ml = 1400 slugs kl = 4550 lb/ft 

m2 = 45.28 slugs k2 = 25,300 lb/ft 

m3 = 20 slugs h = 125 ft 

Initial conditions are given by: 

Y3 (0) = 0 Y3 (0) = 0 

Y2 (0) = 0 Y2 (0) = 0 

x(O) = 290 ft/sec (Run 1) x(O) = 0 

= 200 ft/sec (Run 2) 
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An arbitrary function of one variable is used for the squeezer drag coefficient. 

F(Y3) = A function of Y3 - The data points for the function are shown on the listing, Figure 
A6-1. Linear interpolation between points is desired. 

This problem was programmed in the explicit mode with the INITIAL, DYNAMIC and DERIVATIVE 
regions being defined. The only reason is to show the use of standard FORTRAN output to write out the initial 
speed and case number at the beginning of each run. The DERIVATIVE section contains the descriptive 
equations modelling the system. The model definition listing is shown in Figure A6-2. 

The cables can only transmit tensile forces and account must be taken of the fact that when the cable 
extension is negative, the force is zero. Expressing the force as proportional to the simple extension k2 (Y2 -
Y3) is more representative of a spring. In the original formulation of this problem the function real switch 
operator RSW was used, i.e. 

FK2 = RSW(Y2. GE. Y3, K2*(Y2 - Y3), 0.0) 

When the first argument is true, the second argument is returned, else the third. A more elegant way of 
accomplishing the same thing is to use the FORTRAN function DIM (q.v.) that returns the positive difference 
between the two argull1~nts - if the difference is negative (arg 1 minus arg 2) the result is zero. The force 
equation then becomes 

FK2 = K2*DIM(Y2, Y3) 

The damping coefficient, f(Y3), was represented by a straight line approximation passing through 16 
breakpoints (15 segments). A better fit to the given function could have been obtained by using more 
breakpoints. 

Note the choice of termination conditions. The TERMT statement stops the problem after 10 sec, or 
w hen x reaches 1000 ft. 

The run-time command sequence follows (Figures A6-3 through A6-7) that sets the TITLE and changes 
the grid spacing from the default value of ten to fifty. The effect can be seen on the clarity of the following 
plots. The integration step size had to be changed by the following statement (NSTP is the number of steps 
in a communication interval) so 

SET NSTP = 100 

makes the step size 1 msec since the communication interval is set to 0.2 sec. The reason for this is the small 
time constant associated with the third mass; m3' together with the nonlinearity - the function - that makes 
the program particularly susceptible to step size. The system becomes unstable when the step size is increased 
to 4 msec. A better way to control these types of models when using a fixed step algorithm is to set the 
maximum step size (MAXT) to control (i.e., SET MAX=O.OOI). In this case the step size will stay at this 
value (if NSTP=I) when the communication interval is changed, unless CINT is made less than MAXT, 
in which event the smaller value becomes the integration step size. 

The next run was chosen to illustrate the two types of line plots available by setting both CALPLT and 
STRPLT to true. When system variable CALPLT true, the plot is shown in Figure A6-8. Here the axes are 
drawn side by side and all three plots occupy the same area. The strip chart plot (STRPL T true) is shown 
in Figure A6-9. Each curve occupies a separate slot, normally two inches by five inches, stacked in the order 
given from the bottom. Notice the addition of the XTAG string on both line plots, which adds a unit 
specification to the time variable, T, along the x-axis. Since PRNPLT is still true, the printer plot of Figure 
A6-7 is obtained at the same time. This plot could have been suppressed by making PRNPLT false. 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSl TRANSLATOR VERSION 1 LEVEL 6F 81/07/10. 11.25.52. PAGE 1 

PROGRAM AIRCRAFT ARRESTING GEAR 
INTEGER NCASE 
"-----------------------DEFINE TABLE FOR WATER SQUEEZER DRAG" 
TABLE FY3, 1 , 16 

I '·'10.0 , 0.0 
, lS(). () ,18(). 0 
, 282.() , 294.0 
, 3~iO. () 
, 8.3:3 , 8.33 
, 5.2 ,6.6 
, 2:L.0 , 28.() 
,90.0 / 

, 

, 

, 
, 

:3().0 6().() 
21().() ~~4(). 0 
3()('"J.0 312.0 

4.0 , :1..6 
8.3 , 10.7 
41. () , 50.0 

n-----------------------DEFINE PRESET VARIABLES" 

, 

, 
, 

CONSTANT Mi = l4().() ,M2 = 45.28 ,M3 = 20.0 
, Kl == 4550.0 , K2 == 25300.0 , M = 125.0 

120.0 
270.0 
324.0 

~j. 2 
16.0 
9().() 

, NCASE:::: () , TSTp:::: 9.999 , XMX = iOOO.() 

CINTERVAL. 
INITIAL .. 

, 1-1 := 125. () 
DL :::: O.l() 

, SPEED == ~~:)O. 0 

NCASE NCASE +:1. '"BUMP CASE NUMBER" 
"-----------------------TELL SYSTEM ABOUT TO PRINT FIVE LINES " 
LINES(5) 
WRITE(6, 200) SPEED, NCASE 

200 .. FORMAT(I/20X, 17HAIRCRAFT SPEED - ,F6.2,3X,BHRUN NO. ,13/1) 
END S'OF INITIAL.' 
nYNAMIC 
DERIVATIVE 

·-----------------------COMPUTE SECOND DERIVATIVES' 
Y3DD =(FK2 - FD)/M3 
Y2DD =(2.0*FKl - FK2)/M2 
XDD =-2.0*FK1*STH/Ml 
"-----------------------INTEGRATE FOR FIRST DERIVATIVES' 
Y3D :::: INTEG(Y3DD, 0.0) 
Y2D == INTEG(Y2DD, O.(» 
XD = INTEG(XDD , SPEED) 
"-----------------------INTEGRATE FOR POSITIONS' 
Y3 :::: INTEG(Y3D, 0.0) 
Y2 == INTEG(Y2D, 0.0) 
X == INTEG(XD , 0.0) 
"-----------------------CABLE TENSION BECOMES ZERO WHEN SLACK" 

CAN NEVER GO NEGATIVE - SO USE POSITIVE " 
DIFFERENCE FUNCTION " 

FKI = KI*DIM(Yl, 2.0*Y2) 
FK2 == K2*DIM(Y2, Y3) 
"-----------------------WATER SQUEEZER DRAG" 
FD == FY3(Y3)*Y3D**2 
"-----------------------GEOMETRICAL RELATIONS" 
Yl = SQRT(X**2 + H**2) - H 
STH :::: X/(H + Yl) 

END S'OF DERIVATIVE' 
"-----------------------SPECIFY TERMINATION CONDITION' 
TERMT(T.GE.TSTP .OR. X.GE.XMX) 

END S'OF DYNAMIC' 
END $"OF PROGRAM" 

Figure A6-2. Listing of Model Definition for Aircraft Arresting Gear Problem 

SET TITLE = HAIRCRAFT ARRESTING GEAR PROBLEM n 

S TCWPRN=72,DIS=9 $H FORCE 3 COLUMN OUTPUT WIDTH • 
OUTPUT TI Y3DDI Y3D, Y31 FD, Y2DDI Y2DI Y21 FK2, XDD, XD, X 

FK:L Y:L HNCIOUTH :::: ~:~O 

PREPAR T, X, XD, XDD 
SET NGXPPL = SOl NGYPPL = 50, NSTP = 100 
SET SPEED = 200.0 $ START $ PLOT X, XD, XDn 
SET SPEED = 290.0 $ START 
SET CALPL T :::: . TRUE., ~~ H TURN ON CALCOMP PLOTS· 
S STRPLT=.T.,CALPLT=.T. 
PLOT HXTAGN=H(SEC)H,X,XD,XDD 
STOP 

Figure A6-3. Run-time Drive Commands for Aircraft Arresting Gear Problem 
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ACSl RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 11.26.29. PAGE 

SET TITLE = -AIRCRAFT ARRESTING GEAR PROBLEM-
S TCWPRN=72,DIS=9 $- FORCE 3 COLUMN OUTPUT WIDTH -
OUTPUT T, Y3DD, Y3D, Y3, FD, Y2DD, Y2D, Y2, FK2, XDD, XD, X 

, FK1, Yl, -NCIOUT- = 20 
PREPAR T, X, XD, XDD 
SET NGXPPL = 50, NGYPPL = 50, NSTP = 100 
SET SPEED = 200.0 $ START $ PLOT X, XD, XDn 

AIRCRAFT SPEED - 200.00 

T O. 
Y3 o. 

Y2D O. 
XDD O. 
F~:1 O. 

T 2.00000000 
Y396.2945828 

Y2D 45.8334561 
XDD-44.4263306 
FKl ~3~3BO. ~~837B 

T 4.00()OOOOO 
Y3 15B.436671 

Y~~D ~~O. 9323673 
XDD·_·L3.8850190 
FK:L 1013. 2619~:~ 

T 6.00000000 
Y3190.31341..0 

Y2D 12. 10438:1.~; 
XDD··-6. 00098217 
FK 1 43~3. 515700 

T B.OOOOOOOO 
Y3 209.944687 

Y2D 7.97479974 
XDD·_·3. 0129072~3 
FKl 216.680234 

T 10.0000000 
Y:3 2~?~3. 460384 

Y2D !::i. 7~3175116 
XDD·_·1. 7608605~i 
FK1 1~~6. 31~3557 

Y3DD O. 
FD O. 
Y2 O. 
XD 200.00()()OO 
Y1 O. 

Y3DfJ··-18. 012307~~ 
FD 7972.4·7469 
Y296.5954614 
XD SH,. 1.68~?23:1. 
Y 1 19~3. 9~3~3B42 

Y3DfJ·_·6.57593B66 
FD 2461.01B71.. 
Y~? 158. ~j28·7 46 
XD 4~3. 51. 50~504 
YI31·7.2801B6 

Y~5DD-·~~. 8f.l914008 
FD 1055.24285 
Y2190.352885 
XD 24.9457250 
Yl ~580. 801048 

Y3DD·--:I .. 4~;8"7104:3 
FD 5~~8. 47~~~~94 
Y2 209. 91.)44;~;~ 
XD 16. ~571~?078 
Y:I. 419.976465 

Y:3DD··-0 . 854428;:~() 
FD 308. 31.)4524 
Y~~ 223.471897 
XII 11.·7 404B:L () 
Y 1 446. 97:l ~i~i5 

RUN NO. :1. 

Y3D o. 
Y2DD O. 
FK~~ o. 

X o. 

Y3D 45. 939~~902 
Y~?DD··-18. 8007675 
FK2 7612. 2~~8!54 

X ~?9~3. 4:1. ·7443 

Y~3D ~~O. 975~~641 
Y~:~lln-··6. 6(] :1.16(,42 

FK2 ~~3~~9. 4(]998 
X 424. ~~48469 

Y~3D 1 ~:~. 1.:1. S)~3"707 
Y2DD·-;:~. B80491. ~~5 
FK2997.460()45 

X 490. :1.1:L 92l) 

Y:3D "7. 98094072 
Y;~DD····l .. 4~il.);~ 194~i 
FK~~ 499. ~~98()05 

X ~:j30. 44 7~'509 

Y~5D 5. ·73461369 
Y~?DIt····(). 85~3~j!::i~~~~l) 

'FK~~ 291. ~~75960 
X ~j~:i8. 145554 

Figure A6-4. Run-time Control and Output Stream for Aircraft Arresting Gear Problem 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 11.26.29. PAGE 
AIRCRAFT ARRESTING GEAR PROBLEM 

X A O. 
X[O B O. 

Xll[o C -100.0000 
T XAXIS 

O. A .. 

500.0000 
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Figure A6-5. Plot of Displacement and its First and Second Derivatives for the Aircraft 
Arresting Gear Problem 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 
AIRCRAFT ARRESTING GEAR PROBLEM 

81/07/10. 11.26.29. PAGE 

SET SPEED = 290.0 $ START 

AIRCRAFT SPEED - 290.00 

T O. 
Y3 O. 

Y2D O. 
XDD O. 
FK:I. O. 

T ;;~. OOO()OOOO 
Y3 128.365976 

Y~~It 44. 9787007 
XItD····f.)O. 070~:r751. 
FKl 4447.B0160 

T 4.00000000 
Y~5 185. 7~;BB:l.6 

Y2D 1 B. 4!:i79:1. 90 
XDD·"·13.48980:1.0 
FK:I. 97~;. 660~554 

T 6.00000000 
Y~5 ~~:L:3. ~~"i'4:39:1. 

Y2D :L O. ~':~S):L 0~7;OO 

XDD··"!7j. :1.89~5~:j943 
FK:I. 3712. (7~)4:1. ~3~3 

T 8.00000000 
Y:5 2~~9. B(J~~O~5:1. 

Y~~D 6. 72~50B4~56 
XDD·"·2. 5!7i8919:3l) 
FK:I. :lB:3. 361~~:I.:I. 

T 10.0()()OOOO 
Y:3 24:1.. ;:~BB9;;~~j 

Y~~D 4. 84067:3~::~6 
XDD··" 1 . 4c)B9 :l802 
FK:I. lOS. 07l66~5 

Y~3DD O. 
FD O. 
Y~~ O. 
XD 290.000000 
Y:L O. 

Y~3DD'"'27 .0599270 
FIt :l07B4. 8;;~3'7 
Y2128.770862 
XD 9~3. 2928284 
Y 1 258. 5:L (7;:~63 

Y~5nD····6. 47!7j~317B~3 

FIt ;:~~372. !7i589S) 
Y~~ 18~3. B47474 
XD ~38. 0 1. !7i!:j4~j9 
Yl 37:l 9093BO 

Y~3[1D·-~~. ~:i:l.087T7() 

FD 909.156899 
Y~~ ~~ :l3 . 30034:1. 
XIt 2:1.. 0974~")b6 
Y:l 4~:~6. 6(78649 

Y:3DD·_·l.2476b712 
FD 440. ()~i6:'5~36 
Y~~ ~~;~9. 90B754 
XD :l:3. 7~j!7i~57~~B 
Y 1 4 !:i (j> • 8~:;7B07 

Y:3DD"··0. 700819B:I. 
FD 2~:)6. 286;;~40 

Y~~ 24:1.. ~:~98~i():1. 
xn ~~. 887(7S)()7S) 
Y 1 48~~. l)~~OOS)5 

SET CALPLT = .TRUE. $nTURN ON CALCOMP PLOTS· 
S STRPLT::::. T. I CAI ... PL.T::::. T. 
PLOT ·XTAG1=U(SEC)I,X,XD,XDD 

Y~3D O. 
Y~?DD o. 
FI~:2 O. 

X O. 

Y~3D 4!:i. !7j4 :l2403 
Y~~ItIt·"·29. 770BO~53 
FK2 10243. 62~j2 

X 362. !7i7 69~~3 

Y~3n 18. !7j078865 
Y~:~DD··"6. 44284~~92 

FK2 2243.05264 
X 480.930277 

Y3D 10. ~3046452 
Y~:~DIt·"·2. 49b26943 

FK2 858. 939:345 
X 537. ~3!:j:l. 282 

Y3D 6. 7303!7i936 
Y~~nD'"'1 . ~~45:1. 5:~(j>7 

FK2 4~:~3.:I. ()~:~9(?3 

X 57:l. 34:~7~~7 

Y3D 4. 84~~817()3 
Y~~DD··"O. 709~-:i0784 

FK2 ~~4~~. ~~b9844 
X ~:i94. 6~~:5!:j62 

Figure AS-S. Second Run - Aircraft Arresting Gear Problem 
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ACSL RUN-TIHE EXEC VERSION 1 LEVEL 61'1 811071l0. H.26.29. PAGE 
AIRCRAFT ARRESTING GEAR PROBl.EH 

STOP 
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Figure A6-7. Printer Plot to Match Line Plots in Next Two Figures 
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Figure A6-S. Line Plot Obtained with CALPL T =. TRUE. of Displacement, Velocity and 
Acceleration from the Aircraft Arresting Gear Problem 
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Figure A6-9. line Plot Obtained with STRPL T = . TRUE. of Displacement, Velocity and 
Acceleration from the Aircraft Arresting Gear Problem 
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7. LONGITUDINAL STUDY 

The equations describing the motion of an aircraft in three degrees-of-freedom in a longitudinal plane 
are given below: 

Velocity 

where 

• 
m V = T cos a - 0 - W sin 'Y 

m = W /32.2 slugs 

o = qSCu lbs 

q = 0.5 pV2 lbs/sq ft 

Cu = Cuo + Cnaa + CUo€ IO"E I 

Flight Path 

where 

Pitch 

where 

m V 1- = L - W cos 'Y + T sin a 

L = qSCL lbs 

CL = CLO + CLaa + CLO€O"E + (c/2V) (CLci.~ + CLO£J) 

.-
I £J = M y 

M = qScCM ft-Ibs . 
CM = CMO + CMaa + CMOEO"E + (c/2V) (CMa~ + CMe£J) 

Angle of Attack 

Position 

~ = 8 - ~ 

h = V sin 'Y 

~ = V cos 'Y 

Constants 

T = 2,000 lb 

Iy = 27 x 106 slug ft2 

p = 0.0023 slugs / ft3 

S = 6,000 ft 2 

W = 500,000 lb 

C = 30 ft 
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Aerodynamic Coefficients 

CDO = 0.14 
CDa = 0.63/rad 
CDaE = 0.003/rad 

Initial Conditions 

V(O) = 200 ft/sec 

h(O) = 1500 ft 

8 (0) = 0 rad/sec 

CLO = 1.1 
CLa = 5.2/rad 
CLaE = 0.36/rad 
CLa = 2/rad/sec 
CL8 = 5.5/rad/sec 

CMO = 0.05 
CMa = 0.2/rad 
CMaE = 1.4/rad 
CMa = 8/rad/sec 
CM8 = 22/rad/sec 

This example was chosen to illustrate an iteration to establish correct initial conditions (trim) and 
solution of an implicit loop. 

Values of 8(0), 1"(0) ~!1d (TE are to be computed so that the aircraft is flying in a trimmed condition, i.e., 
the angular accelerations 8, flight path rate ,y and longitudinal acceleration V should all be zero. It is more 
usual to adjust throttle setting as thrust, T, to maintain a given flight path angle rather than the other way 
about. 

This iteration is mechanized (see program listings, Figure A 7-1 and A 7-2) by choosing starting values 
in the INITIAL section for 8(0), 1"(0) and O"E (zero seems good enough) and then in the DYNAMIC, after 
the first evaluation of derivatives, checking if a weighted mean square error 

E = (V)2 + (20 0)2 + (100 )-)2 

is less than a maximum allowable error (0.1). 

If not the initial guess is corrected by . 
1"(0) = 1"(0) + 0.02 V 

8(0) = 8(0) - 1.0.y 

(Te (0) = (TE (0) + 2.0 {j 

A more precise (and faster) iteration would calculate the derivative of the error vector (V, 1", 8) with 
respect to the control vector (1", {j, (T ) three by three Jacobian matrix resulting - say (J) is then inverted and 
the new control vector is given by 

(1",8, (TE)T = (1",8, (TE)T - J-l (V,Y',O)T 

However, the simple iteration given suffices for this fixed example. 

Once convergence has been satisfied, then the variable START is set false and the error check is never 
examined again. Note that in order to recompute the derivatives the program cycles from the DYNAMIC 
section back to the INITIAL section. The integration routine is set up and derivatives calculated at the 
transition from INITIAL to the DYNAMIC. 

The other feature is the use of the IMPLicit operator to calculate angle-of-attack rate. Angle-of-attack 
rate is the difference between body rate and flight path rate. Flight path rate depends on lift which in turn 
is dependent on the coefficient CL. This coefficient includes angle-of-attack rate so forming an algebraic or 
implicit loop. To avoid the sorting problem the IMPL operator is used so 

ex = IMPL(8, 0.001, 10, ef, 8 - ..y, 0.01) 
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· This means take a first guess for ex to be 8 (body rate). Then iterate using Newton-Raphson until differences 
in successive values of a are less than 0.0001. Try at most ten cycles and set ef (error flag) nonzero if this 
number is exceeded. This iteration is a time consuming business and has to be performed at each derivative 
evaluation. In this case it would have been much better to solve algebraically for a before writing the model 
equations - since the equations are linear, this would have been possible. On the other hand, if CL had been 
given in functional form as a table, i.e., CL (a, &) then the implicit operator would have had to be used. 

The output stream from executing the model is shown in Figure A7-3 through A7-7. Output is estab­
lished at every ten communication intervals and a similar set of variables PREPARed for later plotting. The 
START initiates the run and the iteration is reported in the next eight lines of output during which the error, 
ERR, is reduced from 55.4 to 0.1. Then the run starts and the block of OUTPUT variables is written out every 
0.5 seconds. At the end of the run (TMX=6.49 seconds), two PRINT statements are used in order to list 
selected variables, the first at every four communication intervals (0.2 seconds) and the second at every eight 
(0.4 seconds). At the bottom of Figure A 7-5 a strip plot is set up (STRPLT=.T.); the scale factor is reduced 
to a half (PSFSPL=0.5); the x-axis length is increased to ten inches (XINSPL= 1 0.0) and the distance 
between tick marks is increased to two inches (XTISPL=2.0). With the scale factor of a half that keeps the 
x-axis length to five inches but reduces the strip width to one inch, allowing seven variables to be stacked on 
one frame. The first PLOT command only changes the 'XHI' value and ensures that the plot will cover the 
full extent of the x-axis. The second PLOT actually draws the picture of Figure A 7-8. If the first PLOT 
command had not been used, normal rounding would have made the x-axis run from zero to ten so wasting 
35% of the area. Of course in this case the tick marks are not whole numbers but that's a user choice between 
the two ways of forming the plot. We would prefer maximum area utilization. 

The last sequence compares the standard Runge-Kutta fourth order integration routine with the Adams­
Moulton variable order, variable step. The OUTPUT list is cleared ('CLEAR') and reestablished as TIME, 
CIOITG (current integration order) and CSSITG (current step size) - printing out every thirty communica­
tion intervals. The SPARE $ START $ SPARE sequence runs the simulation with the default algorithm 
(lALG = 5, Runge-Kutta fourth order) and shows an elapsed central processor time of about 6.57 seconds. 
Then IALG is changed to one (Adams-Moulton) and the program run again. The integration order rises to 
four and the step size to a maximum of 0.0601 seconds and since this is greater than the communication 
interval (0.05 seconds) it won't change from that value. Note that the actual step size will be equal to the 
communication interval value of 0.05 seconds, since these points are needed for data recording. The current 
step size variable CSSITG contains the step size the integration algorithm would like to take, in the absence 
of any other constraints such as an upcoming event or communication interval which may reduce it from this 
value. From the report at the end of the Adams-Moulton variable step run (Figure A7-6) it can be deduced 
that 8 (TH) was the controlling integrator and the minus sign (-) indicates that the relative error never 
exceeded the absolute error specified. The allowable error was thus set at 0.0001. From the elapsed time listed 
of about 0.73 seconds, the Adams-Moulton integrator was nearly ten times faster. At the bottom of Figure 
A 7-6, the results of the Adams-Moulton integrator run are printed out at one second intervals to be compared 
with the same variables printed in Figures A 7-4 and A 7-5. Agreement is within two or three decimal places. 

In Figure A 7-7 the use of the command ANALYZ is shown which prints out the Jacobian and its eigen 
values. The largest eigen value is 0.82 per second, which implies a rather slowly varying system and in actual 
fact promises good results with integration step sizes of the reciprocal of this value or about one second, a 
further factor of twenty increase in solution speed. In this case the constant constraint on the step size is the 
data recording interval chosen to produce acceptable plots. 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSL TRANSLATOR VERSION 1 LEVEL 6F 81/07/13. 15.18.12. PAGE 1 

PROGRAM AIRCRAFT LONGITUDINAL STABILITY STUDY 

INITIAL 
"-----------------------DEFINE ALL PRESET VARIABLES· 

CONSTANT 

CONSTANT 

CONSTANT 

T :::: 2()()(). () 

I S ::"~ 6()()(). () 

I G :~~ 3~? 2 
CDl :::: (). :1.·4 

I CL.l :::: 1.:1. 
I eMl ::::-0. ~5 

I CLAD ::.~ ;~. 0 
I Ct-1AD ::::-.(3. 0 

K3 :::: 2.0 
VZ :::: 2()0.() 

} XZ :::: O.() 
CINTERVAL CINT :::: 0.05 

I IY :::: 27.0E6 I RO :::: 2.3E-3 
I W :::: 50()OOO.() I CB :::: 30.0 

I CDAL. :::: 0.63 
} CLAL :::: !7i.~? 

I CMAL =.*.(). ;:~ 

I CLTD :::: !7i.!7i 
I CMTD ::::··*2~·~. 0 
I EI~MX :::: 0.:1. 
I HZ :=: 1 !:iO() . () 
I TI :::: 0.5 

I cnDE:::: O.()()3 
I CLDE :::: 0.36 
I CMDE =···:1..4 
I K:t ~~: ().O~? 

} K~? ::::··<l. () 
I TMX :::: 6.49 
} ell :::: 0.0 

"-----------------------CHANGE NAME OF INDEPENDENT VARIABLEs 
U TO AVOID NAME CONFLICT-
VARIABLE TIME:::: 0.0 
LOGICAL START 
"-----------------------NEED MASS FROM WEIGHT IN LBS' 
MASS :::: l&.I/G 
"-----------------------SET INITIAL GUES FOR INITIAL CONDITIONS· 
GAZ :::: 0.0 
THZ :::: 0.0 
[lL.Z :::: 0.0 
·-----------------------START WILL BE MADE TRUE WHEN ITERATION" 

CONVERGES· 
START = .FALSE. 

It. . CONTINUE 

"-----------------------THE TRANSITION FROM INITIAL TO DYNAMIC -
TRANSFERS ALL INITIAL CONDITIONS TO THE • 
STATE VARIABLES AND EVAL.UATES THE CODE • 
IN THE DERI0ATIVE SECTION ONCE • 

DYNAMIC 

IIERIVATIVE 

8-----------------------FIN DEFLECTION IS KICKED TO EXCITE SYSTEM· 
DLE :::: 0.1*STEP(TZ) + DLZ 
8------------~-----------ANGLE OF ATTACK-

AL :::: TH - GA 
·-----------------------DRAG COEFFICIENT-
CD = CDZ + CDAL*AL + CDDE*ABS(DL.E) 
u-----------------------LIFT COEFFICIENT' 
CL = CLZ + CLAL*AL + CLDE*DL.E ... (CB/(2*V»*(CLAD*ALD 

... CLTD*Q) 
8-----------------------DYNAMIC PRESSURE' 
QP = O.5*RO*V**2 
Q-----------------------DRAG AND LIFT' 
D = QP*S*CD 

Figure A 7 -1 . listing of Model Definition for Aircraft longitudinal Study 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSL TRANSLATOR VERSION :l LEVEL 6F 8:l/07/1:3. 15.18.12. PAGE 

L = QP*S*CL 
"-----------------------FLIGHT PATH RATE· 
GAD ~ (L - W*COS(GA) + T*SIN(AL»/(MASS*V) 
u-----------------------LONGITUTINAL VELOCITY RATE· 
VD = (T*COS(AL) - D - W*SIN(GA»/MASS 
"-----------------------PITCH MOMENT COEFFICIENT· 
CM = CMZ + CMAL*AL + CMDE*DLE + (CB/(2*V»*(CMAD*ALD 

+ CMTD*(~) 
u-----------------------PITCHING MOMENT· 
M = QP*S*CB*CM 
H-----------------------NEED PITCH RATE DERIVATIVE EXPLICITLY • 

FOI~ :r TERA T ION u 
(~D = M/IY 
H-----------------------IMPLICIT LOOP FOR ANGLE OF ATTACK RATE-
ALD - IMPL( Q, O.OOOl, lO, EF, Q - GAD, 0.01) 
Q - INTVC(QD, QZ) S· PITCH RATE • 
TH - INTEG(Q, THZ) S· PITCH ANGLE • 
V - INTVC(VD, VZ) SU VELOCITY -
GA - INTVC(GAD, GAZ)S· FLIGHT PATH ANGLE -
H - INTEG(V*SIN(GA), HZ) $ • HEIGHT -
X = INTEG(V*COS(GA), XZ) $" HORIZONTAL DISTANCE TRAVELLED -

END $"0F DERIVATIVE-

H-----------------------IF ITERATION CONVERGED­
IF(START) GO TO Dl 
H-----------------------WEIGHTED ERROR FROM TRIM­
ERROR = VD**2 + (20.0*QD)**2 + (lOO.0*GAD)**2 
·-----------------------IF WITHIN TOLERANCE­
START = ERROR .LE. ERMX 
H-----------------------COMPUTE NEW TRIAL VALUES-
GAZ = GAZ + Kl*VD 
THZ = THZ + K2*GAD 
DLZ, = DLZ + K3*QD 
R-----------------------PRINT ITERATION INFORMATION­
LINES(1)$U INFORM SYSTEM ABOUT TO PRINT ONE LINE -
PRINT 99, GAZ, THZ, DLZ, ERROR 

99 .. FORMAT(5H GAZ ,E12.4,5H THZ ,E12.4,5H DLE ,E12.4,5H ERR ,FlO. 1) 
u-----------------------RETURN TO INITIAL REGION TO RESTART-

THE INTEGRATION ALGORITHM-
GO TO 11 

1:11. .. CONTINUE 

"-----------------------EXPRESS STOPPING CRITERIA­
TERMT(TIME.GE.TMX) 

END $ROF DYNAMIC-

END S"OF PROGRAM-

Figure A7-2. Listing of Model Definition for Aircraft longitudinal Study 
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ACSL RUN-TIME E~EC VERSION 1 LEVEL 6M 81/07/13. 15.19.22. PAGE 

SET TITLE = -LONGITUDINAL AIRCRAFT STABILITY STUDY­
S TCWPRN=80 $- FORCE 3 COLUMN OUTPUT WIDTH -
OUTPUT TIME, M, Q, VII, GAD, IILE, X, V, TH, GA, AI.., EF, ALD, -NCIOUT-=:l.O 
PREPAR TIME, M, Q, VII, GAD, DLE, V, TH, GA, AL 
SET NSTF' = 10 
STAfH 
GAZ 
GAZ 
GAZ 
GAZ 
GAZ 
GAZ 
GAZ 
GAZ 

-·.4719E-01 
-·.8892E-Ol. 
-·.1183E+00 
-·.1342E+00 
.•.. 1397E +00 
-·.1:391E+00 
_ .. 1362E +00 
•... 1330E+OO 

TIME o. 

THZ 
THZ 
THZ 
THZ 
THZ 
THZ 
THZ 
THZ 

VD o. :l1~~()9712 
X o. 

GA-O.13304999 
ALI:! 4. 780:3E···04 

TIME 0.50000000 
VD 0.11389061 

X 99.1287839 
GA···(). 1 :3:3244~~4 

AI ... D 2.4213[····04 

TIME 1.00000000 
VD O. 15~i29~3:3B 
x :L 98. 2918(}:3 

GA···O. L32~:j2507 
AL.D····O. 01760063 

TIME :L.50000000 
VD O. 321 9498~i 

X 297.491969 
GA···(). L340!':i~54~:~ 

ALD···O. 02!':i:L 0 1 0 1 

TIME 2.00000()()() 
VII (). 601.196380 

X 396. 7:34299 
GA···O. 1 38!7i2~.:;53 

AL.D···O. ()2822~:'i~35 

TIME 2.50000000 
vn 0.99482728 
x 496.045171 

GA·-O. 14609914 
AL.D···O. 0288~~471. 

TIME 3.()O()O()OOO 
VD :1..46906702 

X !':i9~). 4704n:i 
GA···O. 15663~~96 

ALD···O . ()~~8079(?9 

.6241E-Ol DLE -.3296E+OO 

.8499E-Ol DlE -.3750E+OO 

.7919E-01 DlE -.3789E+OO 

.6226E-01 DLE -.3782E+00 

.4547E-Ol DlE -.3780E+OO 

.3372E-01 DlE -.3785E+OO 

.2761E-01 DlE -.3791E+OO 

.2573E-Ol DlE -.3796E+OO 
M···A48:3. 15766 

GAD··A. 7803E···04 
V 200.()O()()()() 

At. (). 1587805:L 

M····27()9 . ~~26::i4 
GAD·--:3.0769E-·()4 

V ~~oo. O~)6~i~r7 

AL ().:L 5B9~7i69<? 

M····81944~1. 768 
GAn··-4. 6:37~~E····()4 

V 200. 1:L (J~:570 
AI.. O.15:346:L58 

M-·~:;88~7i:37. 23:1. 
GAD···(). OOSB76:L ~.:; 

V 200. ~~:336~57 
AL O. :l4~~~)~)~5·76 

M··-4n:i:l.B4.786 
GAD·_·O. ():I.~:~()~::j:l.B~~ 

V ~~()O. 461 ~~6:3 
AL O.:l ~~9084!):l 

M-·:308869.266 
GAD···O. 018:L 90:3() 

V ~:~()O. 8~r7767 

AI.. O. :l1474~580 

M-·2 ~·:~~i4 ~~~:~. 1.1 ~5~-:i 
GAn····O. ()~~:38:3B9:1. 

V 2():I..470484 
AL o. :L0048~:~16 

Ef{F~ 

ERr.;: 
Er.;:r.;: 
EI:~I~ 

ERR 
EI~I;: 

Er';:l~ 

ERR 
Q O. 

9.7 
'0\ c. 
,;. .. J 

~3. 5 
2.9 
1.4 

.4 

. 1 

Dl.E ···0. 37964:391 
TI--I o. ()25730!':il. 
EF O. 

[~···6. ~5~)!'54F ····05 
DLE··0.37(J64:391. 

TI-I O. O;~!57:l ~~76 
EF O. 

(;l···(). 0 1 B064~3~i 
DLE···O.27(164:39l. 

TI-I (). ()~:l(}9~56~:i:J. 
EF O. 

(~ ... (). ()~50(1"i'"i':l.6 
IILE···().2"191:..4:"59:1. 

TI-I (). O()B49B:54 
EF O. 

(~ ... (). 040?T7:L 7 
ItL!:: ···0. ~~"1S'64~59:J. 

TI·I···O. ()()944:l O~~ 
EF (). 

(1···0. 04"10:L :306 
DLE···(). ?"7CJ64:·3(?1. 

TH···(). ()~?l:L :?l~:;:3:55 

EF O. 

(~ .... (). ()~:i:l rJ:lBS>:I. 
[lLE ···0. ~~"7964:391. 

TI-I···O. ()56:L ~:iOBO 
EF (). 

Figure A7-3. Run-time Drive Commands and Output Stream for Aircraft Longitudinal Study 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 
LONGITUDINAL AIRCRAFT STABILITY STUDY 

81/07/13. 15.19.22. PAGE 

TIME 3.50000000 M-165020.639 (1-0.05550448 
VD 2.01355780 GAD-0.02876969 DLE-0.27964391 

X 695.,072274 V 202.338536 TH-0.08305317 
GA-0.16981764 AL 0.08676447 EF O. 

ALD-0.02673479 

TIME 4.00000000 M-120892.038 Q·'·0.058130f31 
VD 2.61327924 GAD-0.03289737 DL.E·-0.27964391 

X 794.925011 V 203.493238 TH-0.11149598 
GA-0.18526832 AL 0.07377233 EF O. 

ALD-0.02523344 

TIME 4.50000000 M-88350.2552 Q-0.06005320 
VD 3.25474200 GAD-0.03622554 DI..E-0.27964391 

X 895.112100 V 204.958763 TH-0.14106705 
GA-0.20258148 AL 0.06151442 EF O. 

ALD-0.02382766 

TIME 5.00000000 M-64151.8200 Q-0.06145434 
VD 3.92621180 GAD"'O. 03881095 DLE·'·0.27964391 

X 995.723088 V 206.752971 TH-·O. 171462~;8 
GA-0.22136990 AL 0.04990732 EF O. 

ALD·-O. 02264339 

TIME 5.50000000 M···46048. 3669 Q·-0.06246668 
VD 4.61780037 GAD-0.04074011 DLE-·0.27964391 

X 1096.85137 V 208.888317 TH-·0.20245679 
GA-0.24128298 AL 0.03882619 EF O. 

ALD··'0.02172656 

TIME 6.00000000 M-32476.6366 Q···O. 06318772 
VD 5.32146229 GAII-O. 04211360 DLE-0.27964391 

X 1198.59233 V 211.372774 TH·'·O. 23:388084 
GA·-0.26201738 AI.. 0.02813654 EF O. 

AL.D-0.02107412 

TIME 6.50000000 M-·22335. 8613 Q·-O. 06369065 
VD IJ. 03092082 GAD-0.04303576 DLE·'·0.27964391 

X 1301. 04170 V 214.210737 TH·-O. 2656()8~:~5 
GA-0.28332137 AL 0.01771313 EF O. 

ALD·'·O. 02065650 

I MAKE COLUMN PRINT OF SELECTED VARIABLES FROM PREPAR LIST • 
PRINT INCIPRN 1 =4ITIMEIMIQIVD,GAD 

LINE TIME M Q VII GAD 
0 O. -4483.1577 O. 0.1120971 -4.780£-04 
4 0.2000000 -3691.5678 -3.020E-05 0.1129881 -4. 0:35E·-04 
8 0.4000000 -3012.0301 -5. 497E-05 0.1136435 -·3. 377E-04 

12 0.6000000 -1.072£+06 -0.0041394 0.1156370 0.0024458 
16 0.8000000 ·-936967. 82 -0.0115693 O. 1~~47060 0.0012126 
20 1.0000000 -819443.77 -·0.0180643 0.1552934 -·4. 637E-04 
24 1.2000000 -717322.81 -·0.0237472 0.2068592 -0.0024664 
28 1.4000000 -·628518. 65 -0.0287242 0.2786918 , ":0.0046991 

Figure A7-4. Output Stream from Aircraft longitudinal Study 
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ACSl RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/13. 15.19.22. 
LONGITUDINAL AIRCRAFT STABILITY STUDY 

LINE TIME M Q 
32 1.6000000 -551229.33 -0.0330870 
36 1.8000000 -483899.01 -0.0369151 
40 2.0000000 -425184.79 -0.6402772 
44 2.2000000 -373927.76 -0.0432326 
48 2.4000000 -329128.86 -0.0458328 
52 2.6000000 -289923.07 -0.0481223 
56 2.8000000 -255568.70 -0.0501399 
60 3.0000000 -225422.63 -0.0519189 
64 3.2000000 -198931.41 -0.0534885 
68 3.4000000 -175617.33 -0.0548739 
72 3.6000000 -155068.31 -0.0560970 
76 3.8000000 -136928.80 -0.0571771 
80 4.0000000 -120892.04 -0.0581308 
84 4.2000000 -106693.28 -0.0589727 
88 4:4000000 -94104.044 -0.0597154 
92 4.6000000 -82927.073 -0.0603703 
96 4.8000000 -72992.043 -0.0609470 

100 5.0000000 -64151.820 -0.0614543 
104 5.2000000 -56279.255 -0.0618998 
108 5.4000000 -49264.402 -0.0622902 
112 5.6000000 -43012.123 -0.0626315 
116 5.8000000 -37440.018 -0.0629291 
120 6.0000000 -32476.637 -0.0631877 
124 6.2000000 -28059.936 -0.0634116 
128 6.4000000 -24126.843 -0.0636046 

PRINT -NCIPRN-=8,TIME,DLE,TH,GA,AL 

VD 
0.3699518 
0.479'7075 
0.6069638 
0.7506856 
0.9098160 
1.0832922 
1.2700565 
1.4690670 
1.6793048 
1.8<197806 
2. 1~~95392 
~~. 36766~"39 
2.6132792 
2.8655533 
~5. 1236997 
3.3869786 
3.6546976 
3.926211.8 
4.2009243 
4.4782854 
4.7577925 
~i. 0389888 
5.3214623 
5.6048448 
~i. 8888103 

GAD 
-,0. 00708~? 1 
-0.0095506 
'-'0.012051.8 
-0. 01.45433 
-0.01699:1.2 
-0.0193691 
-0.0216568 
-0.0238389 
-,0.0259047 
-,0. 0278466 
-,0. 0296604 
-,0.0313440 
-0.0328974 
-,0. 0343~~23 
-,0. 0356217 
-0.0367996 
-,0. 0378608 
-,0.0388110 
-0. 0~596~i59 
-0. 04040~?1 
-,0.0410559 
,-,0. 0416~42 
-,0. 0421l~)6 
-,0. 0425308 
-0. 04288~?5 

LINE TIME DLE TH GA AL 
o O. -0.3796439 0.0257305 -0.1330500 0.1587805 
8 0.4000000 -0.3796439 0.0257188 -0.1332120 0.1589308 

16 0.8000000 -0.2796439 0.0239144 -0.1326063 0.1565207 
24 l.2000000 -0.2796439 0.0167427 -0.1328135 0.1495563 
32 1.6000000 -0.2796439 0.0052940 -0.1347031 0.1399971 
40 2.0000000 -0.2796439 -0.0094410 -0.1385255 0.1290845 
48 2.4000000 -0.2796439 -0.0267104 -0.1443399 0.1176295 
56 2.8000000 -0.2796439 -0.0459412 -0.1520815 0.1061403 
64 3.2000000 -0.2796439 -0.0666948 -0.1616093 0.0949145 
72 3.6000000 -0.2796439 -0.0886336 -0.1727394 0.0841059 
80 4.0000000 -0.2796439 -0.1114960 -0.1852683 0.0737723 
88 4.4000000 -0.2796439 -0.1350784 -0.1989889 0.0639104 
96 4.8000000 -0.2796439 -0.1592214 -0.2137009 0.0544796 

104 5.2000000 -0.2796439 -0.1837990 -0.2292183 0.0454193 
112 5.6000000 -0.2796439 -0.2087118 -0.2453730 0.0366612 
120 6.0000000 -0.2796439 -0.2338808 -0.2620174 0.0281365 
128 6.4000000 -0.2796439 -0.2592434 -0.2790253 0.0197819 

S STRPLT=.T.,PRNPLT=.F.,PSFSPL=0.5,XINSPL=10.0,XTISPL=2.0 

PAGE 

PLOT -XHI-=TMX $- PLOT NOTHING - BUT ESTABLISH FULL RANGE FOR SCALE • 
PLOT TH,Al,GA,GAD,Q,M,DLE 
• CHANGE OUTPUT LIST FOR TIME TRIAL BETWEEN RK4 AND ADAMS-MOULTON • 
OUTPUT ·CLEAR·,TIME,CIOITG,CSSITG, ·NCIOUT-=30 
SPARE $ START $ SPARE 
ACCUMULATED CP TIME 21.259 SEC. ELAPSED CP TIME 21.259 SEC. 
GAZ -.4719E-Ol THZ .6241E-Ol DLE -.3296E+OO ERR 55.4 
GAZ -.8892E-Ol THZ .8499E-Ol DLE -.3750E+00 ERR 9.7 

Figure A7-5. Output Stream from Aircraft Longitudinal Study 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 
LONGITUDINAL AIRCRAFT STABILITY STUDY 

81/07/13. 15.19.22. 

GAZ 
GAZ 
GAZ 
GAZ 
GAZ 
GAZ 

-.1183E+00 THZ . 7919E-Ol OLE -.3789E+00 
-.1342E+00 THZ . 6226E-01 OLE -.3782E+00 
-.1397E+00 THZ .4547E-01 DLE -.3780E+00 
-.1391E+00 THZ . 3372E-Ol OLE -.3785E+00 
-.1362E+00 THZ . 2761E-01 OLE -.3791E+00 
-.1330E+00 THZ .2573E-Ol DLE -.3796E+00 

ERR 2.5 
EI:;:R 3.5 
ERR 2.9 
ERR 1.4 
ERI:~ .4 
ERR .1 

PAGE 

TIME O. CIOITG 4 
TIME 1.50000000 CIOITG 4 
TIME 3.00000000 CIOITG 4 
TIME 4.50000000 CIOlTG 4 
TIME 6.00000000 CIOITG 4 
TIME 6.50000000 CIOITG 4 

CSSITG 0.00500000 
CSSITG 0.00500000 
CSSITG 0.00500000 
CSSITG 0.00500000 
CSSITG 0.00500000 
CSSITG 0.00500000 

ACCUMULATED CP TIME 27.829 SEC. ELAPSED CP TIME 
SET IALG = 1 sn TRY ADAMS-MOULTON INTEGRATION • 

c). !7j'70 SEC. 

START $ SPARE sa COMPARE TIMES • 
GAZ -.4719E-Ol THZ .6241E-Ol DLE -.3296E+00 ERR 
GAZ -.8892[-01 THZ .8499E-01 OLE -.3750E+00 ERR 
GAZ -.1183E+00 THZ .7919£-01 DLE -.3789£+00 ERR 
GAZ -.1342E+00 THZ .6226E-01 DLE -.3782E+00 ERR 
GAZ -.1397E+00 THZ .4547E-01 DLE -.3780E+00 ERR 
GAZ -.1391E+00 THZ .3372E-Ol DLE -.3785E+00 ERR 
GAZ -.1362E+00 THZ .2761[-01 DLE -.3791E+00 ERR 
GAZ -.1330E+00 THZ .2573E-01 DLE -.3796E+00 ERR 

~)!5. 4 
<J.7 
2. ~~.i 

3.5 
;:~ . 9 
1.4 

.4 

TIME O. CIOITG 1 CSSITG 
. 1 

0.00500000 
O. 060 1 ;~~583 
(). OtJO:l ;~383 
(). 060:l ;:~:3B3 
O. 060 1 ;:~3B3 
0.06012383 

TIME 1.50000000 CIOITG 3 CSSITG 
TIME 3.00000000 CIOITG 3 CSSITG 
TIME 4.50000000 CIOITG 4 CSSITG 
TIME 6.00000000 CIOITG 4 CSSITG 
TIME 6.50000000 CIOITG 4 CSSITG 

COUNT OF TIMES STATE CONTROLLED STEP SIZE 
MINUS (-) REL ERR ALWAYS BELOW ABS ERR 

GA PC FAIL 0 ERR CONTROL 15-
H PC FAIL 0 ERR CONTROL 0 
Q PC FAIL 0 ERR CONTROL 7-

TH PC FAIL 0 ERR CONTROL 110-
U PC FAIL 0 ERR CONTROL 0 
X PC FAIL 0 ERR CONTROL 10 

ACCUMULATED CP TIME 28.557 SEC. ELAPSED CP TIME 
PRINT uNCIPRN u=20JTIMEJM,G,UD,GAD 

LINE TIME M Q un 
0 O. ",-4483. :I. ~5T7 O. O. :ll ~~()971 

~~O :t..OOO()()()O ···8 U3960. 3() ···0.O18091() (). 1 ~:j~54 c)4 ~~ 
40 2.0000000 ·"-4;:~4940. 72 _.(). ()4()29:L 1 (). 6()7~5 197 
60 :'5. O()()OOOO -'2~:~:j~~9"7 . !:i6 · .. ·0. O!7j :l926~~ :L. 4c)~1.9:l0:l. 
BO 4. ()()()OO()O .... :1. ;~OB2~; . 6<t .... o. ()~) B :l :3 4 '7 ~::~. (·,:t.430B7 

:too !:i. OOOOO()O · .. ·64:1.:L ~5. ~562 ... (). 06:f. 4~:j64 :3. 9;:r7:54:3~'> 
:L ~~o 6.00000()() ·"-:3245c). ~~B() .... () . OC):3 :l8BS :i. :1~:~~:~63c)9 

GAD 
'·'4. 780E···04 
--4. 70 :1.[· .. ·04 
· .. ·0. ()1~~OC):L7 
.... (). ()23B4 7 b 
.... (). ()3~~90:56 
"·O.O:3BB:l.47 
· .. ·().042:1.l.55 

Figure A 7-6. Output Stream from Aircraft Longitudinal Study 
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(~CSI... I~UN····TIME EXEC VEI:~SION:I. LEVEl... 6M Ol/O".7/l:?). :I.~i.:l.9. ?;:~. 

LONGITUDIN(~L (~If<CF~AFT ST(~BIL.ITY STUDY 

AN(~L. YZ "FI~EEZE n ::::X I "JACOB n., "E I GEN U 

RDtA.l VECTDF~ Nf",-,NEH 
GA:I. H 
TH 4 V 

COI ... UMN VECT()I;~ N(~MES 

GAD :I. 
209906 4 

Z0998~:5 

vn 

MATRIX ELEMENTS - RDWS ACROSS, COLUMNS DOWN 
:I. -0.5305362 O. 0.0493329 0.489063".7 
~.:~ 2()~:j. () ·7:"52!:i () . () . () . 
~ -0.034:1.951 O. -0.72932:1.".7 0.02602:1.8 
-4 O. O. :t . ()OOOO()() o. 
~.:; ·_·18. 06"7~~~58 O. o. ._.:l ;;~. 84B~:il9 

CDMPL.EX E I GEN VALUES I N (~SCEND I NG OI~[lEF~ 

1 o. o. 
2 O.0:l093535 O. 
3 -0.112:1.9"790 o. 
4 -0.366006"76 O. 
5 -0. 82:l52364 O. 

STOP 

() . OO:L :L 4:·54 
····0. ;::~l9~:i804 

:5. ".74"7E·-·05 
o. 

·_·0 . ()~~B93~:iO 

Figure A 7-7. Output Stream from Aircraft Longitudinal Study 

PAGE 

Don't be misled by the ratio of execution for Runge-Kutta to Adams-Moulton. The artifically small step 
size chosen arbitrarily for the RK4 algorithm unfairly penalizes the comparison. In actual tests with typical 
non-linear systems, the second order Runge-Kutta method (lALG=4) did best in terms of CP seconds per 
simulated second. The penalty is that the user must choose the step size, normally by experimentation, but 
sometimes by familiarity with the model. As mentioned above, a good rule of thumb is to make the integration 
step size (MAXT) equal to the smallest time constant in the model. Of course if the controlling time constants 
change significantly, then the variable step algorithms are called for. Stiff systems with fast initial transients 
should use integration algorithm two (IALG=2). 
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~ L~NGITUDINAL AIRCRAFT STABILITY STUDY 
c;i 

!il 
~c;i+----+-----~----------~----------~----------~--------~ 

8 
c:i 

~~+----+:r=--~----------~----------~----------~--------~ . , 

8 
c:i----.... 

N 

88 
~c;i'~---=:=---~~--------~----------~----------~--------~ 

8 
c:i 

----------

~i 

~t------------------------------. 
~c;i ~ 

S! 
c;i~+OO----------'!'.-~----------2'i.6-0---------,3.-B9----------5'i.J-9---------.6.49 

TIME 

Figure A7-S. Strip Plot of Selected Variables from Aircraft Longitudinal Study 

A-61 



8. PHYSBE 

A benchmark simulation model has been described * in order to demonstrate the different methods of 
solving simulation problems. Called PHYSBE, for physiological simulation benchmark experiment, this 
system models the blood flow around a human body, driven by two pumps - the right and left ventricles in 
the heart. Figure AS-l shows the interconnection of the various components of the system which are to be 
considered as large bags or balloons that can be filled with blood. The characteristic is that the more blood 
that is forced in, the higher the pressure. Valves exist between the vena cava (VC) and the right ventricle (RV); 
the right ventricle and the lungs (LN); the lungs and the left ventricle (LV), and the left ventricle and the 
aorta (AO). These valves only allow blood flow in the forward direction. 

The blood is driven around the loop by changing the compliance of the right and left ventricles as a 
function of time, so modeling the squeezing of the blood in the chambers by the heart muscle as it contracts 
and releases. Figure AS-2 shows this r~biprocal compliance as a function of time; this function is repeated 
every second as the heart beats. Each lump contains mass balance and heat balance constraints which are 
described by the following equations. 

The assumptions made are: 

1) Physical parameters of the system are linear. 

2) Blood flow within each area is influenced only by: 

a) Inlet Pressure 

b) Inflow Resistance 

c) Compliance (Volume/Unit Pressure) 

d) Outflow Resistance 

e) Outlet Pressure 

3) There is no resistance to blood flow within areas. 

4) All endogenous heat will be absorbed by the blood and conducted by the blood. 

5) Specific heat of blood and all body components is unity. 

6) Temperature change within the arteries, ventricles, and great veins is negligible. 

* McLeod, J., "PHYSBE: A Physiological Simulation Benchmark Experiment", SIMULATION 1. pp. 
324-329, 1966. 
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HD 

HEAD 

AR 

ARMS ....-

'-- VC 

H>-
RV LN LV AO -- VENA RIGHT --f>-- ~ 

LEFT H>- -
- CAVA VENTRIC LE LUNGS VENTRIC LE AORTA -- VALVE V.ALVE VALVE VALVE -

TR 
TRUNK f--

LG 

LEGS 

Figure A8-1. Interconnection of Lumps to Form Blood Distribution System 

I 

C 

0.0133 

0.0 

-0.428 - - mm Hg/m L 

0.'4 O~ 1 
TIME {sec} 

~-------------------------------.----~~~~-------------

I 
1.0 

Figure A8-2. Reciprocal Compliance or Spring Constant (Pressure per Unit Volume) for 
Heart Chambers 
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Figure AS-3 shows the schematic representation of the mass and heat flow within each lump. Note the 
XX is to be replaced by the two character mnemonic when referring to one of the nine individual lumps. The 
input flow rate is given by the pressure differential and input resistance 

FXXI = PXXI - PXX 
RXXI 

Pressure in the bag is volume by compliance 

PXX 
_ VXX 
- CXX 

Outlet flow rate is given by the pressure differential and output resistance 

FXXO = PXX - PXXO 
RXXO 

The blood volume is the integrated mass flow rate 

VXX = iT (FXXI - FXXO) dt + VXXZ 

Heat (enthalpy) flow i~ is 
QXXI = FXXI * TXXI 

Temperature is total enthalpy in lump by mass. 

TXX = HXX/WXX 

Heat flow out is 

QXXO = FXXO * TXX 

Heat dissipated to surroundings 

QXXB = K * AXXO * (TXX - TA) 

and an accumulated heat is 

HXX = loT (QXXI - QXXO + QXXE) dt + HXXZ 

Now the macro is implemented by defining the macro name and identifying the substitutable parameter, 
i.e., 

MACRO LUMP (X) 

identifies X as a substitutable parameter. 

To make up the input flow equation, the following statement is used (- implies concatenation) 

F-X-O = (P-X-I - P-X)/R-X-I 

which means 'F' concatenated with the argument, concatenated with an '0', etc. When the macro is invoked 
to describe the trunk, designated by TR 

LUMP ('TR') 

where the quotes imply the literal string TR which is not to be considered as a symbol. 

The expansion of the macro for this invocation is shown in Figure AS-4. 
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PXXI 

TXXIO 

XX IS REPLACED BY FOLLOWING TWO LETTER 
STRING 

RXXI PXX - PRESSURE RXXO 
RV - RIGHT VENTRIC LE AA VXX - VOLUME AAA PXXO v;.,v vvv 

CXX - COMPLIANCE 
... 

LN - LUNGS FXXI FXXO 
LV - LEFT VENTRICLE 

AO - AORTA 

QXXI TXX - TEMPERATURE QXXO AR - ARMS 
TXXO .. ... 

HD - HEAD 
HXX - ENTHALPY = TXX 

TR - TRUNK 

~ t 
LG - LEGS 

VC - VENA CAVA 

QXXE QXXD 

(EXTRAN EOU S) (DISSIPATED) 

Figure AS-3. Lump Definition - Mass and Enthalpy Balance 

FHDI 
PHD 
FHDO 
VHD 
QHDI 
THD 
QHDO 
QHDD 

LUMP ( , HD ' ) $' HEAD' 
=(PHDI - PHD)/RHDI 

= VHD/CHD 
=(PHD - PHDO)/RHDO 

= INTEG(FHDI - FHDO, VHDZ) 
= FHDI*THDI 

= HHD/WHD 
= FHDO'~THD 

= K*AHD*(TRD - TA) 
HHD 
MACROEND 

INTEG(QHDI - QHDO + QHDE - QHDD, HHDZ) 

Figure AS-4. Main Invocation and Macro Expansion for Lump Associated with Head (HD) 
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The other macro used in the simulation is the valve so 

MACRO VALVE (R, PO, PI, RZ) 

which calculates a resistance R given outlet pressure, PO, inlet pressure PI, and valve open resistance, RZ. 
If the valve is closed the resistance will rise to a large value (1020) to effectively shut off flow. 

This VALVE macro is defined as a PROCEDURAL block, or one whose order must not be changed. 
The list states that R, the resistance, is the output variable, and that this is calculated as a function of outlet 
pressure, inlet pressure and open resistance. 

Action of the valve is defined by 

R =RZ; 

R = 1020 

PO<PI 

PO>PI 

Invocation to calculate the resistance into the right ventricle is 

VALVE (RRVI = PRY, PVC, RRVIC) 

which expands as shown in Figure A8-5. This says that the input resistance to the right ventricle is RVIZ, 
if the pressure in the right ventricle PRY is less than the pressure in the vena cava, PVC. Otherwise, it is 
1020 so preventing any backflow. 

VALVE(RRVI = PRV, PVC, RRVIZ) 
PROCEDURAL(RRVI = PRV, PVC, RRVIZ) 
RRVI RRVIZ 
IF( PRV.GT. PVC) RRVI = 1.0E20 
END 
MACROEND 

VALVE(RRVO = PLN, PRV, RRVOZ) 
PROCEDURAL(RRVO = PLN, PRV, RRVOZ) 
RRVO RRVOZ 
IF( PLN.GT. PRV) RRVO = 1.OE20 
END 
MACROEND 

Figure AS-5. Macro and Macro Expansion for Inlet and Outlet Values in Right Ventricle 
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The program listing Figures AS-6 through AS-7 defines all the constants necessary to specify the system 
behavior. Since none of the heat flux constants were given in the problem definition they are set to zero, so 
the temperature equations are carried along to count in the time scale but don't calculate significant quantities. 
Since there is no feedback, the temperature merely goes along with the mass balance equation for the ride. 

The compliance of the ventricles is the drive for the system that causes the heart to pump. The reciprocal 
compliance is given as a function of time that repeats every second and this is shown in Figure AS-2. Since 
the code order for calculating the compliance could have been important, it was bracketed in a PROCEDUR­
AL block. 

Then, the valves in the right and left ventricles (two in each lump) are defined. 

The interconnections of each lump, Figure AS-I, define what the inlet and outlet pressures are. For the 
simple case of two elements in cascade, the outlet pressure is the effect of two resistances connected between 
two pressure sources. 

PXX PXXO PYII PYY 
o~o ____ ~o 

RXXO RYYI 

PXXO = 

PYYI 

PXX*RYYI+PYY*RXXO 
RYYI + RXXO 

PXXO 

The aorta and vena cave are rather more difficult since the first feeds five other lumps and the second 
receives flow from the five. Writing down the flow balance - equivalent to Kirchoffs law - leads to the 
following for the aorta output pressure 

PAOO = 
PAO + PHD + PAR + PLG + PTR 

RAOO RHDI RARf RLGI RTRI 

1 +_1_+ 1 + 1 +_1_ 
RAOO RHDI RARI RLGI RTRI 

and similarly for the vena cava inlet pressure 

PVC PHD PAR PLG PTR 
RCVT + RHOO + RARO + iITG5 + RTRO 

1 1 1 1 1 
RCVI + RHDO + RARO + RLGO + RTRO 

PVCI = 

The nine lumps are defined by invoking the macro with the appropriate two character string and this ends 
the model definition included in a DERIVATIVE section. In the DYNAMIC section - interrogated every 
communication interval - is the termination condition and for four cycles the stop time TSTP is set at four. 
This completes the model description: the listing as shown took. 13.2 seconds to translate on a Control Data 
CYBER 173. The run-time commands used to exercise this model are shown listed in Figure AS-S and the 
output stream generated in Figures AS-9 through AS-12. Prior to the START, the communication interval 
(CINT) is set to 20 msec (0.020 sec), the NSTP divisor to one and the calculation interval or integration step 
specified via the maximum step size (MAXT) to be 10 msec (0.010 sec). After the START the OUTPUT 
list is printed out every half second, since the "NCIOUT" multiplier is 25. 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSL TRANSLATOR VERSION 1 LEVEL 6F 81/07/13. 15.16.01. PAGE 1 

PF~OGRAM PHYSBE 
INITIAL 
MACRO LUMP(X) 

F __ X_.I 
P_X 
F_X_O 
V_X 
G __ X __ I 
T __ X 

=(P_X_I - P_X)/R X I 
= V_X/C_X 
=(P_X - P_X_O)/R_X_O 
= INTEG(F_X_I - F X 0, V_X_Z) 
= F _X __ I*T X I 
= H_X/W_ .. X 
= F _X_O *T_ .. X 

K*A_X* (T __ X - TA) 
G __ X __ 0 
G .. _X_D 
H_X == INTEG(Q X I - 0 X 0 + G X E - 0 X It, H X Z) 

MACRO END 
MACRO VALVE(R, PO, PI, RZ) 

PROCEDURAL(R :::: PO, PI, RZ) 
F~ == RZ 
IF(PO.GT.PI) R - 1.0E20 

ENIt 
MACRO END 

CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 

RAOI 
RARI == 
RHDI _. 
RTRI -­
RLGI _. 
RV(~I .... 
RLNI _. 
RRVIZ= 

1. E-'2 
5.15 
2.58 
0.6"7 
~~. 58 
1. E-'2 
1. E-2 
0.0030, 

RLVIZ= 0.0275, 
VLVZ - 319.0 I 

AAO _. 0.0 
AAR = 36"70.0, 
AHD = 1400.0, 
ATR = 6000.0, 
Al.G -' 7000. 0 I 
AVC = 0.0 
ARV 0.0 
A I ... N _. ~5000(). I 

ALV - 0.0 
QARD 0.0 
ave[t .- 0.0 
(~AO[I = 0.0 

RAOO .­
RAI~O -
RHDO -­
RTRO -­
RI ... G() -
RVCO -­
RLNO -
RRVOZ:::: 
RLVOZ= 
VRVZ -
WAO = 
WAR = 
WHD -
WTR -
WLG = 
WVC -
WF~V = 
WLN _. 
l,JLV -
t~HDD 
GRVD .... 

1. E-'2 
10.0 
5.0 
1.42 
5.00 
1. E-'2 
O. 18"75, 
0.0030 
0.0060 
120.0 
1.0 
7000.0, 
4500.0, 
53000. I 

18500. I 

1.0 
600.0 I 

1000.0, 
600.0 
0.0 
0.0 

CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 

K - 0.01 TA -·0.0 
TMX :::: 0.4 TMN .- 0.5, 
CIMX = 0.428 I CIMN :::: 0.0133 

END $- OF INITIAL • 
DYNAMIC 
DERIVATIVE 

PROCEDURAL(CRV,CLV=T) 
TF == AMOD(T, 1.0) 

CAO - 1. 01 
CAR = 4.25 
CHD = 1. ~~1 
CTR == 34.0 
CLG .- 11. 1 
CVC -- 250.0 
CLN = 10.0 

GAOE= 0.0 
OARE = 0.0 
(lH[IE = 0.0 
OTRE == 0.0 
(~LGE = 0.0 
(~VCE: = 0.0 
Q~(VE _. 0.0 
t~LNE-: _. o. 0 
(~L..VE .- 0.0 
GTRD 0.0 
GLN[I - 0.0 

TSTP = 3.99 

IF(TF.LE.TMX) CI =(CIMX-CIMN)*TF/TMX + CIMN 

VAOZ= 80.8 
VARZ= 268.0 
VHDZ= 68.0 
VTRZ= 2180. 
VLGZ= 700.0 
VVCZ= 650.0 
VLNZ= 200.0 

HAOZ= 0.0 
HARZ= 0.0· 
HHDZ= 0.0 
HTRZ== 0.0 
HLGZ= 0.0 
HVCZ= 0.0 
HRVZ:::: 0.0 
HLNZ::.~ 0.0 
HLVZ= 0.0 
GLGD 0.0 
OLVII == 0.0 

IF(TF.GT.TMX .AND. TF.LE.TMN) CI =(CIMX-CIMN)*(TMN-TF) ... 
/(TMN-TMX) + CIMN 
IF(TF.GT.TMN) CI :::: CIMN 
CRV:::: 1.0/CI $ CLV = CRV 

END 

Figure AS-6. Listing of Physiological Simulation Benchmark Experiment (PHYSBE) Model 
Definition 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSL TRANSLATOR VERSION 1 LEVEL 6F 81/07/13. 15.16.01. PAGE 2 

NVALVES IN RIGHT AND LEFT VENTRICLES· 
VALVECRRVI = PRV, PVC, RRVIZ) 
VALVECRRVO = PLN, PRV, RRVOZ) 
VALVECRLVI = PLV, PLN, RLVIZ) 
VALVECRLVO = PAO, PLV, RLVOZ) 
-DEFINE THE INTERCONNECTIONS· 
-VENA CAVA FEEDS RIGHT VENTRICLE· 
PVCO =(PVC*RRVI + PRV*RVCO)/(RRVI + RVCO) 
PRVI = PVCO .·RIGHT VENTRICLE· 
TRVI = TVC 
NRIGHT VENTRICLE FEEDS LUNGS· 
PRVO =(PRV*RLNI + PLN*RRVO)/(RLNI + RRVO) 
PLNI = PRVO .ILUNG INPUTS I 
TLNI :::: TRV 
ILUNGS FEED LEFT VENTRICLE I 
PLNO ::::(PLN*RLVI + PLV*RLNO)/(RLVI + RLNO) 
PLVI :::: PLNO .ILEFT VENTRICLE INPUTS I 
TLVI :::: TLN 
NLEFT VENTRICLE FEEDS AORTA· 
PLVO =(PLV*RAOI + PAO*RLVO)/(RAOI + RLVO) 
PAOI = PLVO .IAORTA INPUTS I 
TAOI = TLV 
IAORTA FEEDS HEAD, ARMS, LEGS AND TRUNK I 
PAOO =(PAO/RAOO + PHD/RHDI + PAR/RARI + PLG/RLGI + PTR/RTRI) ... 

/(I.O/RAOO + I.O/RHDI + I.O/RARI + 1.0/RLGI + l.O/RTRI) 
PHDI PAOO .IHEAD INPUTS· 
THIll = TAO 
PARI - PAOO $IARMS INPUTS· 
TARI TAO 
PLGI = PAOO .ILEG INPUTS· 
TLGI :::: TAO 
PTRI PAOO ,ITRUNK INPUTS I 
TTRI - TAO 
IVENA CAVA IS RETURN FROM HEAD, ARMS, LEGS AND TRUNK I 
PVCI =(PVC/RVCI + PHD/RHDO + PAR/RARO + PLG/RLGO + PTR/RTRO) ... 

/(l.O/RVCI + 1.0/RHDO + 1.0/RARO + 1.0/RLGO + 1.0/RTRO) 
TveI =(THD*FHDO + TAR*FARO + TLG*FLGO + TTR*FTRO)/FVCI 
PARO = PVCI'. PHDO :::: PVCI • PLGO :::: PVCI $ PTRO :::: PVC I 
IDEFINE EACH LUMp· 
LUMP(·RV I ) • IRIGHT VENTRICLE· 
LUMPCILN I ) $ ILUNGS I 
LUMPCILVI) • ILEFT VENTRICLE I 
LUMP(IAO I ) $ NAORTA I 
LUMPCIAR I ) $ IARMS I 
LUMPCIHD I ) $ IHEADI 
LUMPCITR I ) $ ITRUNK I 
LUMP( ILG I ) $ ILEGS I 
LUMP(IVC') $ IVENA CAVAl 

END $1 OF DERIVATIVE I 
TERMT(T.GE.TSTP) 

END $1 OF DYNAMIC I 
END $1 OF PROGRAM I 

13.217 CP SECONDS 3649 TABLE SPACE USED :1.9 TABLE MOVES 

Figure AS-7. Listing of PHYSBE Model Definition 
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SET TITLE="PHYSIOLOGICAL SIMULATION BENCHMARK EXPERIMENT (PHYSBE)" 
S TCWPRN=72,DIS=9 •• FORCE 3 COLUMN OUTPUT WIDTH • 
PRE PAR T,PRVJPLN,PLVJPAO,PHDJPTR,PAR,PLG,PVC,FVCI 

,FAOO,FARO,FHDO,FLGO,FLNO,FLVO,FRVO,FTRO,FVCO,CRV,CLV,CI 
OUTPUT T, PRV, PLN, PAO, PHD, "NCIOUr H =25 
SET CINT=O.02,NSTP=1,MAXT=O.010 
STf~RT 
PRINT "NCIPRN"=4,T,PRV,PLN,FLVO,FRVO 
S STRPLT=.T.,PRNPLT=.F.,CALPLT=.F. ,GRDSPL=.T. 
PLOT FRVO,PLN,PRV 
S CALPLT=:T.,GRDCPL=.T. ,PRNPLT=.T. ,STRPLT=.F. 
PLOT PRV, PI ... N 
STOP 

Figure AS-S. Run-time Drive Commands to Exercise PHYSBE Model 

After the simulation run a more detailed print out is obtained for two pressures, PRY and PLN, and 
two flows, FL V and FR V, every four communication intervals or every SO msec. This runs through Figure 
AS-IO. Next we obtain a strip chart plot by setting STRPL T true. The right ventricle flow and lung and right 
ventricle pressures are shown plotted in Figure AS-II. The grid was produced since G RDSPL was made true 
prior to the plot command. The next line (Figure AS-IO) turns on normal line plots (CALPLT=.T.), asks 
for grid on these plots (GRDCPL=.T.), turns on print plots (PRNPLT=.T.) and turns off the strip plot 
(STRPL T=.F.). The following PLOT command produces the printer plot of Figure AS-I2 and the line plot, 
actually on a Gould electrostatic plotter, of Figure AS-I3. 
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ACSL RUN-TIME EXEC VERSION:I. LEVEL 6M 81/07/13. 15.17.20. PAGE 

SET TITLE=-PHYSIOLOGICAL SIMULATION BENCHMARK EXPERIMENT (PHYSBE)­
S TCWPRN=72.DIS=9 $- FORCE 3 COLUMN OUTPUT WIDTH -
PREPAR T.PRV.PLN.PLV.PAO.PHD.PTR.PAR.PLG.PVC.FVCI 

.FAOO.FARO.FHDO.FLGO.FLNO.FLVO.FRVO.FTRO.FVCO.CRV.CLV.CI 
OUTPUT T. PRV. Pl.N. PAO. PHD. -NCIOUT-=~~5 

SET CINT=0.02.NSTP=I.MAXT=0.010 
START 

T o. PRV 1.59600000 Pl.N 20.0000000 
PAO 80.0000000 PHD 56.1983471 

T 0.50000000 PRV 0.85086878 Pl.N 25.4171240 
PAD tOO. 880641 PHD 56.9120419 

T 1.00000000 PRV 1 . 5856 ·7986 Pl.N 20.9539454 
PAD 74. 273187() PHD 56 . 83~34996 

T 1.5()OOOOOO PRV o. 873~j8286 Pl.N 26.0932275 
PAO 99.1535674 PHD 57.0084605 

T 2.00000000 PRV 1. 62192528 PLN 21.4·780036 
PAO 73. 54j.8443 PHD !:i6. 7579594 

T 2.50000000 PRV o . 894~53126 Pl.N 26.7111711 
PAO 98. ~:~354651 PHD 56.8377607 

T 3.00000000 PRV 1.65475157 PLN 21.9627005 
PAO 73.0300194 PHD 56.5338005 

T 3.50000000 PRV 0.91342323 PLN 27.2808804 
PAO 97.8142421 PHD 56.605:1.521 

T 4.00000000 PRV 1. 68449157 PLN 22.4132055 
PAD 72.6692007 PHD 56.2998931 

PRINT BNCIPRN B=4.T.PRV.PLN.FLVD.FRVO 

LINE T PRV PLN FLVD FRVO 
0 O. 1.5960000 20.000000 -7. 576E-19 -1. 840E-:l.9 
4 0.0800000 11.579815 19.828992 -4.612E-19 -·8. 249E-·20 
8 0.1600000 ~~1..41019() 19.912234 -1.701E-19 115.22742 

12 0.2400000 25.903454 21.978930 ~~67. 24770 301.88644 
16 O. 3~~00000 26.869540 24.074300 287.50230 215.01840 
~~O O.40()()()()() ~~7. 324480 ~:~5 . 476994 279.16393 142.11424 
~~4 0.4800000 6.1()521~j6 ~~5. 517478 -7.689E-19 -1. 941E-:l.9 
28 0.5600000 0.9627592 24.817419 -9.213E-19 -2. 385E-19 
~5~·~ 0.6400000 1. 1()0~:~61~:~ ~~4. 046745 -·8. 629E-19 -2. 295E-·19 
~56· 0.7200000 1. 2~~56486 ~:~3. 307887 -8. 146E':"19 -2.208E-19 
40 O.8()()()()()() :I .. :~4() 1452 22. ~;99530 -7. 744E-·19 -2. 126E-19 
44 0.8800()OO 1 . 4448~;O 1 ~:~1. 92()415 -7.410E-19 -·2.048E-·19 
48 O.960()()OO :I .. 54()7505 21.269336 -7.131E-19 -1.973E-19 
'::"':\ ,JA .. 1.. ()4()()()()() 6.550:1.247 ~~(). 76608() -5. 589E-·19 -1. 422E-19 
~i6 :1. . :I. 2()OO()() 16.469192 ~~(). 757570 -2. 778E-·19 -·4. 288E-~~0 
6() 1.2()()()()()() 24 . 83()5~;4 ~~1. 463533 1.2()384:1.9 259.00168 
64 1.. 280()OOO ~~7.213663 ~~3. 752947 281.51563 266.20886 
68 :I.. 36()()()()() 27.831076 25.516663 276.73555 178.03178 

Figure AS-g. Output Stream from PHYSBE Model 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/13. 15.17.20. 
PHYSIOLOGICAL SIMULATION BENCHMARK EXPERIMENT (PHYSBE) 

LINE T PRV PLN FLVD FRVO 
72 1.4400000 17.074435 26.202923 -3. 574E'-19 .. ~9. 128E-~:~0 
76 1 . ~i~:~OOOOO 0.9124997 ;;~~:; . 884333 -9. 390E-·19 -·2. 497E'~'19 
80 1.6000000 1.059:3256 25.070429 -8. T7~~E-'19 -2. 401E'~'19 
84 1.6800000 1. 193()849 ;;~4. 290124 -8. 260E·-19 -2. :310E·-:l.9 
88 :I .. 7600000 1.3:1.50978 ~:~3 . 54203~~ -7. 835E····19 -,2. ~:~~:~3E·<1. 9 
9~~ :1 .. 8400000 1 . 4~~65~jO:l. 2~~. 824822 -7 . 48;;~E --:1. 9 -2.140[-·19 
96 1. (7200000 1. 5~~85069 2~~. 1372~~0 -,7. 187E~"19 -.~~. 061E-·19 

100 2.0()()0000 1 . 6219~~5:3 ~:~ 1. 478004 -,6. 941. E '~-:l9 '-1. 986E-19 
:1.04 ~:~ . 0800000 11 . 77~?'~557 ~:~:I.. 265876 -4. 146E-19 ~"9. 4(74E-'~:~O 

108 2.1600000 ~:~ 1. . (701:'568 ;;~ 1 . 27~5058 .<1. . 38~jE'~'19 48.177692 
112 2. 240()()()() ;;~7 . 11. ()49:~ 2:'5. 155388 ~:~65. 84205 :'504. 23883 
:1.16 2 .3~?'0()0()O ~?'8. ~:~36425 ~:~5. :315120 276.68971 ~~24. 71582 
120 2.4000000 28. '72749'7 26.786136 268.98179 149. 3354l) 
124 2. 480()OOO l).4187495 ;;~6. 827306 -7. 490E-·19 -2.041E-·19 
128 2.5600000 1.0103165 ~:~6 . 0731 ~5~?' -8. 98~;E-19 -~~. ~)06E -19 
:1.32 2.6400000 :1..1527750 2~i. 2:53196 -,8.432[-,19 -,2. 410E-·19 
:1.36 2.7200000 1.2825971 ~~4. 467109 -,7. 97~~E~":l.9 -.;;~. ~5:1.8E~":I. 9 
140 ;;~. 8000000 1.4010590 23.7134'73 -·7. 591E--19 -·2. ~~:~1E-'19 
:1.44 2.8800000 l.5093069 ;;~2. 990948 -7.273[-:1:9 -2.148[-':1.9 
148 ;~. 9600000 1.6083708 22.298251 -7.007[-'19 -·2.069E-19 
152 3.0400000 6.8:350133 21. 7~;3322 -~j. 495E-·1.9 -,1.492[-,:1.9 
156 3.1200000 17.185497 ;:~1 . '737983 -2. 730E-19 -4. 552[-~:~O 
160 3.2000000 25.94'7598 ~~2. 457848 ;;~. 681;;~666 ;:~68. 442~52 

164 3.2800000 28.458590 24.843446 277.11008 278.08799 
168 3.3600000 29.107288 ;;~6. 687059 272.46705 186.17147 
172 3.4400000 17.857531 27.404736 -,3. 52·7E-·19 -,9. 547[~";;~0 
:1.76 3.5200000 0.9535880 27.060560 -,9.264[-,19 -2. 611E-·:I. 9 
180 3.6000000 1.1050721 26.202135 '-8. 656E-'19 -2.5:1.0E-:l.9 
:1.84 3.6800000 1 . ;~4~~9967 ;;~~;. 379148 -8.153[-'19 -2. 414E-:l.9 
188 ~5. 7600000 1.. 3687:~16 ;;~4 . 590 1 ~5~; -7.7:35E-19 -;;~. 3~~2E-1.9 

.192 3.8400000 1 . 483~j07~; 2:3. 833694 -7. 387E-1.9 -2. 2~55[-19 
:1.96 3.9200000 1.5884298 ~~3. 108481 -·'7.097E-19 -·2.1~;2E-19 

~~OO 4.0000000 1.6844916 ;:~2 . 41 :~205 -6.855[-19 -'2.073[-19 
(" ,:> STRPLT=.T.,PRNPLT=.F. ,CALPLT=.F.,GRDSPL=.T. 
PLOT FRVO, PLN, PRV 
(" CALPLT=.T.,GRDCPL=.T.,PRNPLT=.T.,STRPLT=.F. " 
PLOT PRV, PLN 

Figure AS-10. Output Stream from PHYSBE Model 
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Figure AS-11. Strip Plot of Right Ventricle and lung Pressure and Right Ventricle Flow 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/13.15.17.20. PAGE 
PHYSIOLOGICAL SIMULATION BENCHMARK EXPERIMENT (PHYSBE) 

PRV A O. 4.000000 8.000000 12.00000 16.00000 
PLN B 18.00000 19.00000· 20.00000 21.00000 22.00000 

STOP 

T XAXIS 
o. 

O.8000()O 

1. bO()OOO 

400000 

3.200000 

4.000000 

END DISSPLA --

"'--_---A~A. 

3039 VECTORS GENERATED IN 

2353 WORDS TABLE SPACE USED 

2 PLOT FRAMES. 

20.00000 
23.00000 

24.00000 
24.00000 

28.00000 
25.00000 

32.00000 
26.00000 

36.00000 
27.00000 

40.00000 
28.00000 

Figure A8-12. Plot of Right Ventricle and Lung Pressures from PHYSBE Model 
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Figure A8-13. Line Plot of Right Ventricle and Lung Pressures from PHYSBE Model 
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9. PHASE AND GAIN 

The accompanying program was put together to calculate and plot the phase and gain through the plant 
described by the following transfer function 

X 0.5s+1 
y = G( s) = 0.03 S2 + O. 1 s + 1 

The characteristics were to be obtained by forcing the model with a sine wave and determining the in-phase 
and quadrature components, from which gain and phase can be calculated. Changing frequency slowly allows 
successive points to be calculated until, at the end of a single run, the complete Bode plot can be generated. 
This method is a relatively expensive way to obtain frequency response and is almost never justified for linear 
systems. For a non-linear plant though, this method is the best one available and can be used to match bench 
tests on hardware with a sinewave generator. Care must be taken to choose the excitation amplitude correctly 
and also make sure the model is in steady state while the measurements are made. 

The program listing is given in Figure A9-1 and A9-2 and should be followed through the following 
discussion. The basic action is to establish a separate DERIVATIVE block, which will repeat every cycle of 
the current frequency, and which examines the inphase and quadrature components of a full cycle integration. 
When the change in phase from cycle to cycle is small enough, the data point is recorded and the frequency 
changed so that another point can be calculated. In the program, the INITIAL section sets the first frequency, 
W, and phase, FI. The frequency is started at the maximum value and will be reduced geometrically by: 

W = AMAX1(WMN, KW*W) 

so that the final logarithmic plot will have equally spaced points. For this application KW was defined to be 
0.8 and the frequency sweep was from a maximum value (WMX) of 100.0 down to a minimum value (WMN) 
of 1.0. Next go to the second DERIVATIVE section listed in Figure A9-2 where the plant is defined - this 
is identified as DERIVATIVE CaNTIN. First the name for the step size is.defined (MAXTC) and set to 
zero to indicate that it is calculated elsewhere in the model. The frequency bounds: WMN and WMX, are 
specified together with the amplitude of the forcing function (X MAG) and the settling time (TSETTL=2.0). 
Since the plant is linear the value of the XMAG has no effect but for a real non-linear plant this value should 
be chosen to match the plant capability. The actual forcing function X is obtained from: 

X = XMAG*SIN(W*T + FI) 

where FI is a parameter used to ensure continuity of X, when the frequency W is changed. The model is 
defined by the transfer operator, TRAN, and numerator and denominator polynomials. The numerator 
coefficients are 0.5 and 1.0; the denominator coefficients 0.03, 0.1 and 1.0. In addition we specify a maximum 
step size (MAXTZ) of 0.050 sec chosen conservatively from the plant roots of (-1.5 ±j6) and a minimum 
divisor (NSTPMN) of the period. This really says that no matter how fast the drive sine wave is, use a 
calculation interval of at least a tenth (NSTPMN=10) of the period. As the frequency get slower and slower, 
don't allow the step size to rise above MAXTZ (=0.050). This is performed by the line in the DISCRETE 
section above which calculates MAXTC or: 

MAXTC = AMINI (PERIOD/NSTPMN, MAXTZ) 

The output (Y) of the plant is obtained using the TRAN operator which can be used to represent a general 
polynomial transfer function i.e. 

Y = TRAN(1, 2, A, B, X) 

and then the in-phase (P) and quadrature (Q) components are obtained by multiplying the output (Y) by 
Sin(W*T + FI) and Cos(W*T + FI) respectively and integrating. ' 

A-76 



Returning to the DISCRETE code of Figure A9-1, the first calculation is to obtain the change in the 
in-phase and quadrature components since the last cycle i.e. 

DLP = P - PP 

DLQ = Q - QP 

Since PP and QP are initialized to large numbers, the first time the difference will be large. 

The termination condition (TERMT) is inserted in case a frequency is chosen such that the attenuation 
is too great for the machine precision. For 32 bit computers, EPM shold probably be set to 0.0001 which will 
still give room for nearly 80 dB attenuation. If the change from cycle to cycle in P and Q is less than the 
machine precision, the increments will be zero and the logarithm will fail further on in calculating the gain 
(GDBN). Once the increment has been calculated, the current values of P and Q are saved to become the 
previous values (PP and QP) next time. The phase and gain over the last cycle are calculated from 

PHASE = ATAN[~Q/~P] 

GAIN = 10.0*LOG10[(~P2 + ~Q2) (W /1r)2] 

If the new phase differs from the last phase by too much (nominally 0.1 degrees) then the data save operation 
is skipped. Similarly if a settling time (TSETTL) has not passed, another cycle is taken. If both these tests 
are passed then the phase, gain and frequency are transferred to separately named variables PDG, GDB and 
WFR which will be used for plotting. Next the frequency W is decreased geometrically and the phase (FI) 
of the forcing function adjusted to give continuity in the output. This helps ensure a shorter settling time 
between frequency changes. The previous phase is set to a large number so that the integration over the first 
cycle will be rejected and lastly the data logging routine, LOG, is called in order to force an output and data 
recording action at this point. Recall that the communication interval CINT was set to 1000.0 in the beginning 
of the model definition with the intent that this will produce no output beyond the first time-equal-zero point. 
All the other output will be obtained every time LOG is called indicating a new frequency point is being 
recorded. 

For all cases we then make the previous phase (PDGP) equal to the new phase (PDGN), ready for next 
time, recalculate the PERIOD and a new step size for the continuous section. These last two calculations only 
need to be done when the frequency changes but are put here in order to handle the initialization problem 
rather than repeat the code in the INITIAL section. 

The output stream that results in exercising the model is shown in Figures A9-3. Note the frequency 
multiplier KW was changed to 0.9 from the nominal 0.8 in order to increase the point density to 23 per decade 
so producing smoother plots. The plot was modified to appear on both normal line plot (CALPLT=.T.) as 
well as the default printer plot using a logarithmic x-axis scale. With this logarithmic scale a minimum must 
be specified to avoid the rounding to zero which is expressed symbolically as the contents of WMN (= 1.0 
rad/sec) i.e. 

PLOT 'XLOG, 'XLO' = WMN, PDG, GDB 

The resulting pictures are shown in Figures A9-4 and A9-S. 

These plots were made in one simulation run stopping every so often to change the drive frequency to 
a new value. Examination of the last value of time showed that it needed 242 seconds of simulated time to 
complete the sweep, which explains why it is usually considered an expensive picture to obtain. Individual 
transient studies will be over in three or four seconds or so whereas this run needs effectively sixty transient 
runs. 
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TABLE A9-1. Comparison of Measured and Theoretical Gain (dB) and Phase (degree) 

W GDBM GDBT PDGM PDGT 

90.00 -14.612 -14.617 -88.64 -89.14 
31.38 -5.230 -5.232 -87.47 -87.37 
10.94 5.916 +5.920 -77.47 -77.47 
3.090 7.484 +7.484 +33.67 +33.67 
1.000 1.188 + 1.188 +20.68 +20.68 

From an independent run with a listing of time, T, along with the frequency, phase and gain, it can be 
shown that the high frequency points can be obtained quickly. In fact it takes 35 seconds to sweep the 
frequency from 100 down to 10 radian/second and a further 186 seconds to go from 10 down to 1 radian/ 
second. The reason for this is that we must wait at least one complete cycle and at 1 radian/second each 
measurement is taking over six seconds. 

One caveat is in order in running this type of program and that is errors caused by non-steady-state 
operating conditions. At low attenuations, the drive signal dominates in the P andQ integrators but when the 
plant attenuation becomes high, the residual motion excited by the start up transient or frequency switch can 
become important. An idea of the magnitude of the effect can be obtained by looking at the irregularity in 
the phase plot when the frequency is over 20 radians/second. The plot should theoretically be smooth and 
nionatonic negative as the phase asymtotically approaches -90 degrees. In the output stream of Figure A9-3, 
the phase at 72.9 radians/second is given as -87.8 degrees but at the next frequency point of 65.6 it has gone 
back to -89.3. This change of 1.5 degrees in the wrong direction must be an artifact of the measurement 
implementation. 

We have done an empirical study of this phenomenon and found that better results are obtained with 
heavier damped systems (shorter settling times) and certainly when the attenuation is relatively small. If 
problems occur, experimentation with the phase change error parameter (EPOG) can help or else add a fixed 
settling time after each frequency change so that the system has time to get to a steady state before the 
measurement is taken. As a test of the accuracy, we evaluated the theoretical gain and phase at five selected 
frequency points and the comparison is listed in Table A9-1. Note the phase error of half a degree at high 
frequencies. A second run is made with the allowable phase error EPOG changed to 0.01 (from 0.1). This 
forced slightly longer settling times so that the overall sweep time was 269 seconds (up from 242 seconds) 
and the measured phase at a frequency of 90 radians/second was now -89.07 degrees (theoretical is -89.14 
degrees). The increased settling time was seen in that the measurement at W = 100 was available at 2.51 
sec (was 2.01) and that at W = 90 was produced at 3.84 seconds (was 2.29). At lower frequencies, the tighter 
constraint had little effect since settling has occurred within the first cycle anyway. 

A-78 



*********ADVANCED CONTINUOUS SIMULATION 
ACSL TRANSLATOR VERSION 1 LEVEL 6F 81/07/20. 

PROGRAM PHASE AND GAIN 

LANGUAGE********* 
13.36.51. PAGE 

u-----------------------COMPUTE PHASE AND GAIN OF A GIVEN • 
• TRANSFER FUNCTION BY INTEGRATING OVER A COMPLETE CYCLE. • 
" CONTINUE TO INTEGRATE UNTIL PHASE CHANGE FROM CYCLE TO CYCLE • 
U IS LESS THAN SOME PRESET MINIMUM • 

CINTERVAL 
NSTEPS 

CONSTANT 

INITIAL 

CINT :::: 1000.0 
NSTP :::: 1 

RMN ::: 1. OE·-30 , RMX - 1. OE~~O 

8-----------------------SET FIRST FREQUENCY AND PHASE • 
W ::: WMX 
FI ::: 0.0 
·-----------------------SET PREVIOUS • 
PP :::: RMX 
QP ::: RMX 
PDOP :::: RMX 
u-----------------------INITIALISE PLOT VARIABLES • 
PDO NN 0.0 
GDB ::: 0.0 
WFR :::: 0.0 

END $1 OF INITIAL • 

DERIVATIVE DISCRETE 

IALD ::: 0 

1 

ALGOfnTHM 
MINTERVAL PERIOD - 0.0 S8 INDICATE PERIOD WILL BE CALULATED· 

CONSTANT 
CONSTANT 
CONSTANT 

PF~OCEDURAL 

RADDEG ... ~j7. 3 
EPDG -. 0.1 
KW :::: O.B 

PI:::: 3.14159 
EPM :::: 1.0E···7 

I TSTP ::: :1.0000.0 

"-----------------------CHANGE IN IN-PHASE AND QUADRATURE INTEG • 
RALS OVER LAST CYCLE • 

DLP ::: P - PP 
DL..Q ::: Q .- QP 
N-----------------------IF RELATIVE CHANGE TOO SMALL FOR MACH ACC· 
TERMT«DLP**2+ DLa**2)/(P**Z + Q**2 + RMN) .LT. EPM**2) 
u-----------------------SAVE NEW INTEGRALS AS PREVIOUS • 
PP :::: P 
l~P :::: Q 

H-----------------------CALCULATE NEW PHASE AND GAIN I 
PDGN ::: ATAN2(DLQ, DLP + RMN)*RADDEG 
GDBN ::: 10.0*ALOG10(CDLP**2 + DLQ**2>*lW/(PI*XMAG»**2) 
u-----------------------IF CHANGE IN PHASE NOT SMALL ENOUGH YET I 
IF(ABS(PDGN - PDGP) .GT. EPDG) GO TO SKIP1 
I-----------------------IGNORE RESULTS UNTIL AFTER SETTLING TIME I 
IF(T .LT. TSETTL) GO TO SKIP1. 
H-----------------------TERMINATE ON FREQUENCY SWEEP I 

Figure A9-1 . Model Definition Listing for Phase and Gain Study 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSL TRANSLATOR VERSION 1 LEVEL 6F 81/07/20. 13.36.51. PAGE 

TERMT(W .LE. WMN) 
"-----------------------SAVE VALUE IN SEPARATE NAME FOR PLOTTING H 

PDG :::: PDGN 
GDB :::: GDBN 
~\IFR :::: W 
"-----------------------ADVANCE FREQUENCY GEOMETRICALLY H 

W = AMAX1(WMN, KW*W) 
"-----------------------CALCULATE NEW PHASE FOR CONTINUITY H 

" OF FORCING FUNCTION AT NEW FREQUENCY n 

FI = FI + T*(WFR - W) 
u-----------------------ENSURE PREVIOUS PHASE SET TO FORCE AT » 
II LEAST TWO CYCLES • 
PDGN 
"-----------------------FORCE A DATA LOGGING ACTION H 

CALL LOG 
SKIP:I ... CONTINUE 

"-----------------------RESET PREVIOUS PHASE FOR NEXT TIME H 

PDGP :::: PDGN 
"------------------~----RECALCULATE NEW PERIOD AND STEP SIZE H 

PERIOD = 2.0*PI/W 
MAXTC = AMIN1(PERIOD/NSTPMN, MAXTXZ) 

END $" OF PROCEDURAL • 
TERMT(T .GT. TSTP) 

END $U OF DISCRETE H 

DEF~IVATIVE CONTIN 

i"1AXTEF~V{')1... 

CONSTANT 
C()NST(~NT 

MAXTC :::: (). () 
l,JMN :::: :1.. () 
XM'~G :::: :1.. () 

l"tMX :::: :I. O(). 0 
} TBE1TI... :::: ~~. 0 

. "-----------------------DEFINE MODEL H 

F~EAI... A ( ~:~ )., B ( ~5 ) 
CONSTANT A = O.S, 1.0 , B = 0.03, 0.:1., :1..0 
CONSTANT MAXTXZ = 0.050 ,NSTPMN = 10.0 
Y _. -r J:~ A N ( :f. .. ~~ .. i~ I B , X ) 
B-----------------------IN1EGRATE FOR IN-PHASE AND QUADRATURE COMB 
P = INTEG(Y*SIN(W*T + FI), 0.0) 
Q = INTEG(Y*COS(W*T + FI), 0.0) 

END ~. H OF CDNT:r. NUDUS BECT ION II 

END $H OF PROGRAM • 

Figure A9-2. Model Definition Listing for Phase and Gain Study 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/20. 13.37.43. PAGE 

S TITLE~8PHASE AND GAIN OF A TRANSFER FUNCTION· 
SET TCWPRN=72 $8 FORCE OUTPUT WIDTH TO FIT ON PAGE • 
OUTPUT WFR,GDB,PDG 
PI:;:EPAr~ WFR, GDB, PDG, L DLP, DI ... (~ 
SET KW::::0.9 
START 

WFR O. 
WFR 100.000000 
WFR 9().OO()OOOO 
WFR 81.0000000 
WFR 72.9000000 
~IFF~ 65.6100000 
l,JFR 59.0490000 
WFR 53.1441000 
~JFR 47.8296900 
WFR 43.0467210 
WFR 38.7420489 
WFR 34.8678440 
WFR 31.3810596 
WFR 28.2429536 
WFR 25.4186583 
WFR 2~~ . 8767925 
WFR 20.5891132 
WFR 18.5302019 
WFR 16.6771817 
WFR 15.0094635 
WFR 13.5085172 
WFR 12.1576655 
WFR 10.9418989 
WFR 9. 84 77090~~ 
WFR 8.86293812 
WFR 7.97664431 
WFR 7.17897988 
WFR 6.46108189 
WFR 5.81497370 
WFR 5.23347633 
WFR 4.71012870 
WFR 4.23911583 
WFR 3.81520424 
WFR 3.43368382 
WFR 3.09031544 
WFR 2.78128389 
WFR 2.50315550 
WFR 2.25283995 
WFR 2.02755596 
WFR 1.82480036 
WFR 1.64232033 
WFR 1.47808829 
WFR :1..33027946 
WFR 1.19725152 
WFR :1..07752637 
WFR 1.00000000 
WFR 1.00000000 

S CALPLT=.T.,GRDCPL=.T. 
PLOT ·XLOG·, ·XLO·=WMN,PDG,GDB 

GDB O. 
GDB-15.5339B30 
GDB--:1.4. 6:1.:1.951~~ 
GD8-13.6880B42 
GDB-·12. "7655032 
GDB····ll. 840~5~518 
G[lB~··10. 912:1.528 
GDB·~·9. 97898569 
GDB'~'9 . ()4066204 
[·mB·~·8. 09906~:j5~3 

GDB-7. 15~~769~3~5 
GDB····6. 19762B09 
GDB-·5. 23020223 
GDB"~4 . 25508961 
GDB·-3. ~~5076f.161 
GDB·~·2. ~:~~j563~H6 

GDB·~-:I.. 21329761 
GDB·~·O. :I. 5~~700 19 
GDB 0.98163307 
GDB 2. 087~:~3526 
GDB ~5. 2908772:1. 
GDB 4.56177919 
GDB 5.91640044 
GDB 7.39443458 
GDB 8.95048332 
GDB 10.6294689 
GDB :1.2. ~5:1.76694 
GDB :1.3. "76:1.1.0~j8 
GDB 14.46166'74 
GDB 14. 097:~67!:j 
GDB 12. 9~~6o'856 
GDB 11.4640791 
GDB 10. 0:1.:1. ~319~j 
GDB 8.675071.97 
GDB '7. 48419450 
GDB 6.43282308 
GDB 5.50769463 
GDB 4.6964:1.667 
GDB 3.98711998 
GDB 3. 3696209~:~ 
GDB 2.83474951 
GDB 2.37411:1.94 
GDB 1.. 9798374~3 
GDB 1.64446882 
GDB 1.36094389 
GDS 1.18775786 
GDS :1..18775786 

PDG O. 
PDG-B9.4B28l90 
PIH3·~·88. 64~36 703 
PDG-f.18. 1866592 
PDG"~87 . 8266695 
PDG·-89. 329~:~46:1. 
PDG·-88. 9555~~l6 
PDG··~87. 8230158 
PDG-88. 79376:~~j 
PDG-88. 00~34209 
PDG-86.7765993 
PDG-·87. 4969789 
PDG-87.4719048 
PDG·-86. 838079:~ 
PDG"~87 . 2079492 
PDG-85.9499742 
PDG-85.7098543 
PDG·-84.8512870 
PDG-84.1.)636226 
PDG-82.9781036 
F'DG-81.6269574 
PDG·-79.8609486 
PDG-77.4747302 
PDG·-"74. 14~~"7063 
PDG·-69.5784310 
PDG·-62.7842192 
PDG-52.859"71"77 
PDG-38.5498530 
PDG·-~~O. 41252~j7 
PDG-2.11.206446 
PDG 12.3714693 
F'DG 2~~. 13379:1.8 
PDG 28.2251367 
PDG 31.8013975 
PDG 33.6716777 
PDG 34.3"740970 
PDG 34.2452681 
PDG 33.52264"79 
PDG 32.371.9701 
PDG 30.9191.840 
PDG 29.2622764 
PDG 27.4796699 
PDG ~~5. 6~343745 
PDG 23.7766047 
PDG 21.9455378 
PDG 20.6805527 
PDG 20.6805527 

Figure A9-3. Output Stream from Phase and Gain Model 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07120. 13.37.43. PAGE 
PHASE AND GAIN OF A TRANSFER FUNCTION 

PDG A -100.0000 -80.00000 -60.00000 -40.00000 -20.00000 o. 
GDB B -20.00000 -16.00000 -12.00000 -8.000000 -4.000000 O. 
WFR XAXIS . 

20.00000 
4.000000 

40.00000 
8.000000 

10**(0) ... ..-r- .A\ .. 
B . A \ .\ 

\ A\ 

\ \ 
\ \ 
\: ; 
'r \1 
. ~. 

);~ 

60. 00000 80. 00000 
12.00000 16.00000 

100.0000 
20.00000 

/\ 
...........••• ;.;-.?~' .••........•••••••••••• ) •......... 
: /: /. 
..... /: ........ :.. . ... / ........ . 

. A . B 

/.........../;/ 
i /: 
i~ / ~ 

t :/ I . . 

...... i.: ....... 1 .. . 
I . 8/

B 

/. ;. 
\ : ······t : .... / .... :. 
A . 
\ / 
A 8 

·····r· ······;t 
..... .1. ...... / .. : 

1/··········· 
... \ ...... / ......... . 

. A. . 

· ..... L . ......... : .. 

...... ! ............ :. 
10**(2) ..... . l ... : I. 

STOP 

Figure A9-4. Plot of Phase and Gain against Frequency in Radians / second 

A-82 



c 0 
CJ 

" 0 

-~ II ~J r-------r
l
----i~II---T-T'I' -Iii l-r------I--T---r~.!-----1-1Tl 

I I I 'i I I I I I I i I I 

I I I,'! }! J i I!,' I i I I I I 
01 0

1 

; I I~'" ' I J' I co I" I ! /! 1 ; iii ,I 1 I o~ ~L---~-T-~/-I--t, \ '4 ______ ~----i I II-'.---+~~ 
I 

I 1 ' f I I 1 \ 1 I : t--tI I II' 
! I //1 I I 11\ i ! I I Ii. I I 1 I 
I 1 I I [I I ! ! I I, ! 

I . I' --/k", I I !N\ ' I, I I I , I ' 
o I 0 ~--- I /' "'! ! i : 1! L I I I I 
~-,-j ~~7---- . ----ll!----~\-t.'-JI-+~- t--~\_---, ----1. -- 1.-H1

--,--

- I I I \ , 1 I i \ i I ,: II I 
N I ' i \ I I!' , 1 I .. 

S t--- ! i \1 ! i I' \'" I I I;! ' I i 

* I ~ I I I h I I " , I i I I I I I 
('J i C5 I ;! \\' 1 I! "ll'! I I I I ,I I, - I~Jl 0 I ,I ' 'I I I I ,I ' ~ DN C). I ! I \! i I I I ' I ! I, I 
CLe:o ,';"1,1---- 1--t +1 Ttl" rl,Tr-- f--- i~l-ll--I+, j 

/ I 1 \'; I ' I "J" I II 
I II Ii! I I ! I ,i I ~'.'I! I , I I 

' ,I I 1 ' I'" I 

~)J CJ 1 ,'I i : I \ Iii , I ~ i I I . I 
UJ ~+- I I I ~~ I I I 'I iffi' I I " N __ ,I \1 I ' \. 1 I 
e: 1 -;-4 I T-i --t -r ll\lr-·---i ------r- : --n-l 
'I Ilill'N I I,ll , I I I' , 'I 

1 I ,I' I 1.li! " II IN) 
\ ! , ; ! 1 I" ~ ~J ~LJ-U I ,11111 c=t1wlili 

I I 100 101 102 
WFR 

Figure A9-S. Line Plot of Phase and Gain against Frequency in Radians/ second 
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10. MISSILE AIRFRAME MODEL 

This example was chosen to show the use of vector operators, vector integration and to demonstrate how 
other standard FORTRAN subroutines can be incorporated into a simulation model. It is the six degree-of­
freedom model of an uncontrolled ground-to-air missile with the simulation configured to produce transient 
responses to control surface deflections. For use in a missile system evaluation, the model would have to be 
extended to include a target, target sensor or seeker, guidance law and autopilot as well as expand the 
aerodynamic and motor descriptions. This model as it stands is complicated enough and any extensions 
describing actual hardware systems usually bear the burden of security classification. 

In order to develop the missile model, we must define axis systems and the angles that transform between 
different frames. The axis system used in this model has the second or y-axis pointing up, and is found 
commonly in models developed for ground launched missiles (HAWK, PATRIOT). The other major school 
of thought orients' the axes with third or z-axis pointing down, and this tends to be used by missile engineers 
who have graduated from airplane development. Models can be built in any system of axes, but for consistency, 
all frames in the simulation should become parallel when the orientation angles become zero. 

For this example model, the reference or E frame has the E1 axis horizontal and down range, E2 or 
vertical (up) and E3 is crossrange, horizontal, out to the right to form a right hand set. The origin of the frame 
is normally on the ground but since we don't compensate the atmospheric density table look-up for ground 
altitude, in this case the origin is assumed to sit at sea level. All velocity and range vectors are normally 
expressed as components in this frame unless deliberately specified otherwise. The missile frame, shown in 
Figures A10-1 and A10-2 has M1 out of the nose along the center line, M2 along fin one (normally viewed 
vertically or up) and M3 out to the right along fin two. The two frames are connected by an euler sequence 
of rotations starting at the ground reference or E frame.1/;M (SIM) to the left about E2, 8M (THM) up about 
the new three axis E3' followed by c/JM (FIM) about the new one axis whi~h should now be M1 to align the 
two and three axes with M2 and M3. The control fin deflections are shown in Figure AIO-1 in their positive 
sense - trailing edge right for fins one and three, trailing edge down for fins two and four. 

Units adopted in the model are derived from the slug as the unit of mass, the foot as the unit of length 
and the second as the unit of time. Recently the US Department of Defense has begun to require metric sizing 
with models developed using kilogram, meter, second as the fundamental units. Most of the existing missiles 
however are sized in English units. 

In developing the simulation model it is important that all units be consistent and fundamental, since 
over half of all simulation errors can be said to be the fault of unit misconceptions, either in the equations 
or in the constant values. It is strongly recommended that non-basic units such as degrees or gees be eliminated 
from the model equations (use radians for angles and feet/second squared or meters/second squared for 
acceleration): Variables can be transformed in the DYNAMIC section for output into auxiliary units but keep 
the internal scaling within the model consistent. 

The simulation model definition code is listed in Figures A10-3 through A10-6. In the INITIAL section, 
the integration algorithm is specified as second order, fixed step (IALG = 4); the step size is 10 msec (MAXT 
= 0.010); the communication interval divisor is unity (NSTP= 1) and a communication interval of 20 msec 
is defined. A subroutine INIT(A) is called to pass the current stability derivative matrix, A, to the aerodynam­
ic table generators. Normally the aerodynamic tables would be real data stored in the external subroutines 
and the INITIAL section would be concerned with launch angles, taking into account the position and velocity 
of a target. 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSl TRANSLATOR VERSION 1 LEVEL 6F 81/08/11. 17.46.51. PAGE 1 

PROGRAM - MISSILE AIRFRAME MODEL 

H ___________ ------------A GENERIC MISSILE AIRFRAME MODEL IS • 
• DEVELOPED USING VECTORS FOR ALL THREE DIMENSIONAL QUANTITIES. • 
" THIS MODEL WILL RESPOND TO FIN DEFLECTIONS SO REPRESENTING THE • 
• OPEN lOOP AIRFRAME RESPONSE AND NEEDS A SEEKER, AUTOPILOT, • . 
H ACTUATOR, MOTOR AND TARGET MODULE IN ORDER TO EVALUATE GUIDANCE· 
H EFFECTIVENESS • 

INITIAL 

ALGOF~ITI-IM IALG - 4 
MAXTERVAI... MAXT 0.0:1.0 
NSTEPS NSTF' - 1 
GINTERVAI ... CINT = 0.020 

8-----------------------PASS STABILITY DERIVATIVE MATRIX TO THE • 
COEFFICIENT GENERATION SUBROUTINE • 

CALL INIT(A) 

END $. OF INITIAL • 

DYNAMIC 

DEI~IVATIVE 

H-----------------------ENVIRONMENT MODULE • 

H-----------------------DEFINE ARRAYS AND CONSTANTS FOR MODULE • 
CONSTANT G = 32.2 
H-----------------------VELOCITY OF SOUND - FUNCTION OF ALTITUDE • 
TABLE VS, I, 10 

/ 0.0 ,l.0E4, 2.0E4 ,3.0E4 ,4.0E4 
} 5.0E4 } 6.0E4 } 7.0E4 } 8.0E4 } 9.0E4 
} 1186. ~i } 1077.4 , 10:36.4 , 994.8 ,968.:t 
,968.1 ,968.1 ,970.9 , 977.6 ,984.3 / 

H---------------~-------LOG OF ATMOSPHERIC DENSITY • 
TABLE LRO, 1, 10 

/ 0.0 , 1.0E4 , 2.0E4 , 3.0E4 , 4.0E4 
, 5.0E4 , 6.0E4 , 7.0E4 , 8.0E4 , 9.0E4 
,-6.04191 ,-6.34502 ,-6.67084 ,-7.02346 ,-7.43995 
,-7.91851 ,-8.39664 ,-8.87953 ,-9.36448 ,-9.87239/ 

"-----------------------CALCULATE ACTUAL ATMOSPHERIC DENSITY • 
RO = EXP(LROCRMCZ») 

H-----------------------MISSILE AIRFRAME MODULE • 

A-----------------------DEFINE ARRAYS AND CONSTANTS FOR MODULE • 
F~ E A I... ME ( 9 ), V M M C 3 ), N M <:3 ), N M E C3 ), II L. C 4 ), CD <:3 ) I C ( 6 ) 
REAL VM ( 3 ), VMD ( 3 ), VM I C ( 3 ), RM ( 3 ), RMD ( 3 ), I~M I C C3 ) 
REAL WM ( 3 ), WMIt C3 ) I WM I C C?i ), A C"50 ) 

"-----------------------MISSIL.E DIMENSIONAL CONSTANTS • 
CONSTANT B = 3.95 , CBAR = 5.62 

Figure A 10-3. listing of Model Definition for Missile Airframe Simulation 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSL TRANSLAT~R VERSION 1 LEVEL 6F 81/08/11. 17.46.51. PAGE 2 

CONSTANT S = 13.9 , DXREF = 9.60 
CONSTANT DL = 4*0.0 
"-----------------------INITIAL CONDITION VALUES 1 

CONSTANT SIMIC = 0.0 , THMIC = 0.0 
CONSTANT FIMIC = 0.0 , WMIC = 3*0.0 
CONSTANT VMIC = 2154.8, 2*0.0 
CONSTANT RMIC = 0.0, 10000.0, 0.0 
"-----------------------DEFINE ELEMENTS OF STABILITY DERIVATIVE 1 

" MATRIX. LINEAR AERODATA IS ASSUMED FOR SIMPLICITY IN SUBROUTINE 1 

" COEFF. NON-LINEAR AERODATA MAY BE INCORPORATED BY REWRITING • 
U THIS SUBROUTINE 1 

CONSTANT A = 
O. :l4H ,(). 0 ,() . () ,() . () ,() . () ,0. 0 

,0.0 ,-().26 ,0.0 ,0.0 ,O.() ,-0.286 
, 0.0 ,0.0 ,·~·O. 26 ,0.0 ,0.286, O. () 
,0.0 ,().5~~f:I, 0.0 ,(}.O ,0.0 ,2.0 
, O. () ,(). () ,(). ~i~::~f:I ,0. () , ····2. () ,0. 0 

I-----------------------ROLL DAMPING - FUNCTION OF MACH NUMBER 1 

TABLE CLP, 1, S 
10.0 ,0.8 ,:I..() ,:l.2 ,~~.() 

,-0.21 ,-0.21 ,-~.2(} ,-0.19 ,-(}.18 I 
"-----------------------PITCH DAMPING - FUNCTION OF MACH NUMBER 1 

TABLE CMQ, 1, 5 
I (}.O ,0.8 ,:1..0 ,:L.~:~ ,~~.O 

,·~·3.8 ,·~·2.0 ,--<l.S ,··~2.0 ,····2.:1. / 

u-----------------------MAGNITUDE OF MISSILE VELOCITY 1 

MVM = SQRT(DOT(VM, VM» 
I-----------------------M~KE *ME* MATRIX FROM ORIENTATION ANGLES 1 

CALL MMK(ME = FIM, :I., THM, 3, SIM, 2) 
I-----------------------ROTATE VELOCITY TO MISSILE FRAME • 
CALL VECROT(VMM = VM, ME) 
I-----------------------LATERAL AND VERTICAL ANGLES OF ATTACK • 
AL2 = ATAN(-VMM(3)/VMM(1» 
AL3 = ATAN( VMM(2)/VMM(1» 
"-----------------------MACH NUMBER AND DYNAMIC PRESSURE 1 

MACH = MVM/VS(RM(2» 
Q = (}.5*RO*MVM**2 
I-----------------------CALCULATE DAMPING DERIVATIVES • 

PROCEDURAL(CD = MVM, MACH, WM) 
CD(1) = O.5*CLP(MACH)*B*WM(1)/MVM 
CCVV = O.5*CMQ(MACH)*CBAR/MVM 
CD(2) = CCVV*WM(2) 
CD(3) = CCVV*WM(3) 

END SI OF PROCEDURAL 1 

------------------------GET MOMENTS AND FORCE AERO COEFFICIENTS • 
- AND CORRECT LATERAL MOM~NTS FOR SHIFT IN CENTRE OF GRAVITY • 
- POSITION 1 

PROCEDURAL(C = AL2, AL3, DL, MACH, DXCG, DXREF) 
CALL COEFF(C = AL2, AL3, DL, MACH) 
C(2) = C(2) - (DXCG -.DXREF)*C(6)/CBAR 
C(3) = C(3) + (DXCG - DXREF)*C(S)/CBAR 

END SI OF PROCEDURAL 1 

I-----------------------CALCULATE ACCELERATION DUE TO AERODYNAMIC· 
EFFECTS AND ROTATION RATE DERIVATIVES 1 

Figure A 10-4. Listing of Model Definition for Missile Airframe Simulation 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSl TRANSLATOR VERSION 1 LEVEL 6F 81/08/11. 17.46.51. PAGE 3 

PROCEDURAL(NM, WMD = 0, C, CD, WM, MASS, lXX, IYY) 
NM(l) = (Q*S*C(4) + THRUST)/MASS 
NM(2) = O*S*C(S)/MASS 
NM(3) - 0*S*C(6)/MASS 
WMD(l) - O*S*B*(C(l) + CD(1»/IXX 
WMD(2) = 0*S*CBAR*(C(2) + CD(2»/IYY + WM(1)*WM(3) 
WMD(3) = 0*S*CBAR*(C(3) + CD(3»/IYY - WM(l)*WM(2) 

END $1 OF PROCEDURAL • 
I-----------------------ROTATE ACCELERATION VECTOR TO EARTH FRAME' 
CALL INVROT(NME = NM, ME) 
"-----------------------CALCUlATE VELOCITY DERIVATIVES IN THE 
1 EARTH FRAME - NEEDS GRAVITY ADDING IN • 

PROCEDURAL(VMD = NME, G) 
VMD ( 1 ) ::: NME ( 1 ) 
VMD(2) = NME(2) - G 
VMIt ( 3 ) = NME ( 3 ) 

END $1 OF PROCEDURAL " 
R-----------------------YAW ANGLE DERIVATIVE • 
SIMD ::: (WM(Z)*COS(FIM) - WM(3)*SIN(FIM»/COS(THM) 
I-----------------------INTEGRATE FOR ALL EULER ANGLES - NOTE USE-
• OF VECTOR INTEGRATOR FOR SINGLE ELEMENT • 
81M = INTVC(SIMD, SIMIC) 
THM = INTEG(WM(2)*SINCFIM) + WM(3)*C08(FIM), THMIC) 
FIM ::: INTEG(WMCI.) .- SIMD*SIN(THM) .. FIMIC) 
"-----------------------VECTOR INTEGRATE FOR ROTATIONAL VELOCITY • 
WM :::: INTVCCWMD, WMIC) 
" ..................................... _ ................................. _-.-......... TIi:ANSLAT I DNAL \JELOC I TY , 

VM = INTVC(VMD, VMIC) 
"-----------------------TRANSLATIONAL POSITION - NOTE THE DERIV- , 
" ATIVE VECTOR CANNOT BE A STATE VECTOR (VELOCITY) AS WELL 1 

CALL XFERB(RMD :::: VM, 3) 
RM :::: INTVC(RMD, RMIC) 

n-----------------~-----MOTOR MODULE • 

"-----------------------SIMPLE VERSION WITH ZERO THRUST SPECIF- -

CONSTANT 
CONSTANT 
CDNBTANT 

YING A BURNT OR GLIDE CONDITION • 
THRUST:::: 0.0 , MASS::: 8.77 
I XX :::: 8. "7".7 , I YY :::: :36:t. 8 
DXCG :::: 1 (). ;:~ 

END $" OF DERIVATIVE -

"-----------------------STOP ON ELAPSED TIME 8 

CONSTANT TSTP = 1.99 
TERMT(T .8E. TSTP) 

END $" OF DYNAMIC • 

END S" OF PROGRAM • 

Figure A 10-5. Listing of Model Definition for Missile Airframe Simulation 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACBL. Tf~ANSLAT()R VERSION 1 LEVEL.. 6F 8:l/08/1:1.. 17.46. S:l. PAGE 4 

SUBROUTINE INIT(C) 
C-----------------------------FORTRAN SUBROUTINE WHOSE ONLY JOB IS TO 
C TRANSFER THE STABILITY DERIVATIVE MATRIX TO AN ARRAY IN LABELLED 
C COMMON SO THAT IT MAY BE ACCESSED IN SUBROUTINE COEFF. NOTE NO 
C COMMON BLOCKS MAY BE DEFINED IN THE ACSl MODEL DEFINITION SECTION 
(
., 
., 

COMMON/STABD/ A(6,S) 
DATA LENGTH / 30 / 

("' 

C-----------------------------TRANSFER BLOCK 
CALL XFERB(C, LENGTH, A) 
r~ETUr~N 

c 
END 
SUBROUTINE COEFF(AL2, AL3, DL, MACH, C) 

C-----------------------------COMPUTES SIX AERODYNAMIC COEFFICIENTS -
C THREE MOMENTS, C(l), C(2) AND C(3), AND THREE FORCES, C(4), C(5) 
C AND C(6). MOMENTS ARE ABOUT AXES CENTRED AT THE REFERENCE POINT 
C AND MUST BE CORRECTED'FOR CENTRE OF GAVITY SHIFT. 
C 
C INPUTS 
C 
(
., 
., 

c 
c 
c 
(
., 
., 

AL2 
AL~5 
[It 

MACH 

ANGLE OF ATTACK ABOUT *M2* - POSITIVE WIND FROM LEFT 
ANGLE OF ATTACK ABOUT *M3* - POSITIVE WIND FROM ABOVE 
ARRAY OF FOUR FIN DEFLECTIONS 
MACH NUMBER (REAL) 

C OUTPUTS 
c 
C 
C 

c 

c 

ARRAY OF SIX AERODYNAMIC COEFFICIENTS 

REAl... [II... ( 4 ), C ( I.> ) 

COMMON/STABD/ A(6,5) 

C-----------------------------COMPUTE EQUIVALENT CONTROL.. SURFACE DEFL-
C ECTIONS FROM THE FOUR SURFACE ANGLES 

DLA = 0.25*(DL(3) + DL(4) - Dl(l) - DL(2» 
DLY = 0.50*(Dl(1) + DL(3» 
DLZ = 0.50*(DL(2) + DL(4» 

C-----------------------------COMPUTE EACH MOMENT ASSUMING IT IS LINEAR 
C IN EACH OF THE ARGUMENTS 

DO :I.:t. () ,.I :::: 1, 6 
C(J) - A(J,1)*DLA + A(J,2)*DLY + A(J,3)*DLZ + A(J,4)*AL2 

:l.l() CONTINUE 
F~ETUf~N 

END 

+ fi (,..1 .. ~D *AL~1 

Figure A 10-6. Listing of FORTRAN Routines Included in Model Definition of Missile Airframe 
Simulation 
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The DERIVATIVE section is split up into logically connected code sequences or modules that help in 
documenting the simulation. Modules assist in checkout since individual code sequences can be removed and 
assigned to individuals for verification, so splitting a simulation development task among a team. We have 
used Control Data's UPDATE utility to maintain modules as common decks for easy access and modification. 
The simulation model is then a simple DECK containing ACSL structure statements and CALLs to the 
appropriate module. 

In the missile airframe module, vector arrays are specified, then constants followed by the code to 
compute the derivatives of the state variables. For this simplified case, the aerodynamic characteristics are 
determined by values in the five by six matrix A that contains the stability derivative coefficients. Function 
tables are defined for roll (CLP) and pitch/yaw (CMQ) damping as functions of Mach Number. The 
following discussion now references the code section that starts in the middle of Figure AIO-4. First the missile 
velocity magnitude is obtained from: 

MVM = SQRT(DOT(VM, VM» 

where VM is a three component vector velocity in the E frame. DOT is an external function that evaluates 
the dot product of two three component vectors. The next step is to form the direction cosine matrix ME, which 
is a three by three matrix that transforms vectors expressed in the E frame to components in the M frame. 
It can be calculated knowing the three angles ..pM, OM and ¢M. A subroutine is available* MMK (matrix make) 
which is called so: 

CALL MMK(A, NA, B, NB, C, NC, M) 

which makes up a direction cosine matrix M that will transform between two axis systems that are connected 
by a rotation A about the NA axis, B about the NB axis and C about the NC axis. In the ACSL code the 
subroutine call is expressed 

CALL MMK(ME = FIM, I, THM, 3, SIM, 2) 

which tells the sorter that ME is an output of the routine. For the FORTRAN program produced the 
translator will change the order of the arguments so that the outputs are on the right and ME will coincide 
with M of the above call. 

The next step is to use this direction cosine matrix to obtain components of the missile velocity in the 
M frame from 

VM(M) = [ME] VM(E) 

The subroutine VECROT does this rotation and is called so: 

CALL VECROT(VMM = VM, ME) 

where again the order of the arguments will be inverted by the translator so that the actual FORTRAN call 
will be 

CALL VECROT(VM, ME, VMM). 

A corresponding subroutine INVROT is used later on that performs the inverse rotation 

.Y.l = [ME]-l V2 

or 

CALL INVROT(VI = V2, ME) 

* The three dimensional geometry subroutines are provided in an optional library ULIB. 
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Lateral and vertical angles-of-attack are next calculated. The lateral angle-of-attack a2 (=AL2) is the angle 
between M I and the projection of the velocity vector on to the M I - M3 plane and is positive for a positive 
rotation from MI to the wind vector about M2 (wind from left). Vertical angle-of-attack a3 (=AL3) is the 
angle between M I and the projection of the velocity vector on the M I - M2 plane and is positive for a positive 
rotation from MI to the wind vector about M3 (wind from above). See Figure AIO-2. 

i.e., 
a, = tan-

1 r~:~:~~] rad 

tan-
1 ~ ~:~:~~ ] rad 

Atmospheric density (p = RO) comes from the environment module calculated by 

p = poexp [LROF(h)] slugs/ft3 

Height h is the component of missile range along E2 or RM(2), and the log density function is used to reduce 
the dynamic range of the function and so make the straight line interpolation over 10 kft increments more 
accurate. The airframe module computes dynamic pressure from 

q = py2 Ib/ft2 
2 

Mach number is obtained from the velocity of sound - function of altitude - and missile velocity so 

MVM 
MACH = VS(h) 

Next dimensionless damping coefficients are obtained using normalized spin rates. The missile spin rate is 
expressed as a three component vector WM giving the rates as components resolved along the M I, M2 and 
M3 axes. The damping coefficient components of the total moment coefficients are now given (P, Q and R 
are replaced in the model by WM(l), WM(2) and WM(3) respectively): 

CO(l) = CQP(MACH) G~) 

CD(2) = CmQ(MACH) 
( 2

QyC) 

CD(3) = Cmq(MACH) ( R2YC) 

From symmetry, the pitch and yaw damping derivatives are assumed identical so CmQ is used instead of 
CnR' Note since the calculation is of array elements the calculations are embedded in a PROCEDURAL block 
that lets the system know that all values of the array CD are calculated within the block. 
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Next the aerodynamic coefficients - three moment and three force - are calculated using a subroutine. 
They can be evaluated as functions of the two angles-of-attack, a2 and a3' four fin deflections 01 ... 04 and 
Mach Number, seven variables in all. One of the objects of this exercise was to study the effect of different 
techniques in evaluating aerodynamic coefficients from full nonlinear tables of data to simple linear stability 
derivatives. For the case shown simple linear stability derivatives were used embedded in the (A) matrix passed 
to the COEFF subroutine in the INITIAL section (CALL INIT ... ). This (A) matrix is a five by six array 
having components 

Cl,oa cl,oy cl,oz Cta2 Cta3 
c moa c moy cmoz c ma2 cma3 

(A) == c noa c noy cnoz cna2 cna3 
cXoa CXoy cXoz cXa2 cXa3 
cYoa cYoy cYoz cYa2 cYa3 
cZoa cZoy cZoz cZa2 cZa3 

The effective roll, yaw and pitch fin control deflections oa, oy and OZ are obtained from 

oa = 0.25 (-01 - 02 + 03 + (4) 

Oy = 0.5 (01 + (3) 

03 = 0.5 (02 + (4) 

Figure Al 0-6 shows the implementation of subroutines COEFF and INIT to return the six component vector 
£having elements. 

C{l) - rolling moment coefficient, about Ml 

C(2) - moment coefficient about M2 

C(3) - moment coefficient about M3 

C( 4) - force coefficient along M I 

C(5) - force coefficient along M2 

C( 6) - force coefficient along M3 

Now the aerodynamic acceleration can be obtained and stored as components of the vector nM' Aerodynamic 
acceleration is that produced by aerodynamic forces and excludes gravity. This quantity is that which would 
be read by anyon-board accelerometers. 

nMI = (q S Cx + THRUST)/MASS 

nM2 = q S Cy/MASS 

nM3 = q S Cz/MASS 

The rate accelerations have gyroscopic terms in the equations when applied to a normal spinning rigid body. 

Equations of motion of a conventional aircraft have the form (neglecting Ixz). 
, 

IxP = qSb C t + {Iy - Iz)QR . 
IyQ = q Sc Cm + {lz - Ix)RP 

Now for a missile having quadrant symmetry, the lateral moments of inertia are equal i.e., 
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Iy = Iz 
and in addition the long thin shape assures that the roll moment of inertia is small i.e., 

Ix « Iy 
Using this information the equations become 

IXi> = q Sb [C£ + C£p (;t )1 
IyQ = q Sf [Cm + CmQ (~} + IyPR 

IyR = q Sc [Cn + CmQ (~S) 1 - IyPQ 

The translational accelerations are rotated from the missile frame (M) to the ground or reference frame 
(E) using subroutine INVROT which accomplishes 

NM(E) = [ME]-l NM(M) 

The velocity derivatives are obtained by including the acceleration due to gravity 

VM(EI) = NM(EI) 

V
M

(E2) = N
M

(E2) - G 

V
M

(E3) = N
M

(E3) 

The angular rate derivative 'if;M is obtained from the standard gimbal equation . 
'if;M = (Q COS cJ>M - R Sin cf>M) ICos 8M 

and now the three angles are obtained by integrating the respective rates. 

'if;M = INTVC('if;M, 'if;MIC) 

8M = INTEG(QsincJ>M +R Cos cJ>M, 8M1C) 

cf>M = INTEG(P - ~M Sin8M, cJ>MIC) 

Note since the derivative is an expression, the operator INTEG must be used for 8M and cJ>M. Vector integration 
for 'if;M works since the arguments can be considered as one component vectors. An extra assignment statement 
is saved since the derivative must be a unique name. The missile angular spin vector and velocity vector are 
integrated from the respective accelerations by the two lines: 

WM = INTVC(WMD, WMIC) 

VM = INTVC(VMD, VMIC) 

The three elements of VM are transferred to the range derivative vector RMD so that the derivative has a 
unique name. For vector integration the derivative cannot be a state since it is allocated to the derivative block 
and the storage conflict would result. Now the three component range vector is declared to be the integral 
of the three component derivative or: 

RM = INTVC(RMD, RMIC) 

which completes the specification of the airframe six degree of freedom module. 

The last line describes the motor module - see bottom of page AIO-5 - that specifies zero thrust and 
constant mass and inertias. In actual practice a motor model must compute thrust as a function of time from 
motor ignition and the varying mass, inertia and center of gravity position, all of which significantly effect 
flight characteristics. 
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The output stream from exercising the model is shown in Figures AIO-7 through AIO-14. Starting at 
Figure AIO-7, the TITLE is established and then the PREPAR list defined. Fixed fin deflections of -0.01 
radians are specified for fins two and four, so that the motion is in the vertical plane - missile nose tends to 
go up. After the START, conditions are established for strip chart plots (STRPLT = .T.), with grids 
(GRDSPL = .T.), a half scale factor (PSFSPL = 0.5) and a longer x-axis (XINSPL = 10.0). This allows 
us to stack more variables on a page and the following PLOT command produces the response of Figure AIO-8. 
The PRINT "ALL" command lists the numerical values which extends through the end of Figure AIO-9. 
Next, the ANALYZ command is used to find a trim condition, and evaluate the Jacobian and the eigen values. 
Seven state variables (RM, VM and FIM) are frozen leaving five to be varied. The five roots are listed at 
the top of Figure AIO-IO, a real pole at -4.21 and double complex poles at -1.2 ± 16.7j. In order to see the 
trim condition found, the state variables are transferred back to the initial conditions by REINIT and then 
one pass through the code with debug output is ensured by setting the stop time (TSTP) to zero and the debug 
parameter (NDBUG) to one. The START produces the debug list which extends through Figure AID-II. 

The next ANALYZ command evaluates the Jacobian of the full twelve by twelve state matrix with 
corresponding eigen values at the bottom of Figure A I 0-12. The last page of output shows moving the center 
of gravity' to the rear (reference point forward) which models a launch or unburnt motor condition. The plot 
of the response is shown in Figure AIO-14 with the matching eigen values listed in Figure AIO-13. Note the 
response is more oscillatory and the dominant roots have become more unstable. 

The last figure, Figure AID-IS, shows the output obtained from the subroutine LISTD when a dictionary 
is prepared defining all the variables used in the model. The following statements were placed in the INITIAL 
section: 

LOGICAL DICTN $ CONSTANT DICTN = ,FALSE. 

IF(DICTN) CALL LISTD(S) 

DICTN = .FALSE. 

At run time DICTN was SET = .TRUE. and the START card was followed by the dictionary definitions 
in alphabetical order. Note the indication at the end of the listing that shows definitions were not supplied 
for SIMIC and S. See Appendix B-3 for more details. 
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ACSI... I~UN""TIME EXEC VEHSION :1. LEVEl ... 11M 

SET TITI...E=uMISSILE LONGITUDINAL DYNAMICS­
PREPAR T,NM,WM,AL2,AL3,VM,SIM,THM,FIM,MACH,Q 
SET DI...(2)=-0.Ol,DL(4)=-0.OI,TITLE(5)=nSTEP IN FINn, "NOMINAl... eGa 
STAFH 
SET STRPLT=.T. ,GRDSPL=.T. ,PSFSPL=0.5,XINSPL=10.0,XTISPL=2.0 
S PRNPLT=.F.,TCWPRN=72 
PLOT NM(2),WM(3),AL3,VM(2),THM 
PRINT uNCIPRNM=5, BAl...l-

LINE 
o 
1:.­
,.f 

10 
15 
~~O 
'",ee 
~.,.f 

30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
B~) 

90 
9~j 

:1.00 

LINE 
() 

5 
:to 
:t ~5 
20 

:?H> 
35 
40 
4~:; 

:7iO 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

T NM ( :1. ) 
() . O. 
O.1000()()O O. 
o . ~~OOOOOO O. 
0.3000000 O. 
O.4()OOO()O O. 
o . 5 () O()() 0 0 0 . 
0.6000000 O. 
().700()()O() O. 
O.BOO()()()O (). 
0.90000()() O. 
1.0()()()()OO O. 
:I..l.O()()()()() O. 
:I. . ~:~O()O()OO O. 
l.3()O()()O() O. 
:I..4000()OO O. 
1 .. 5000000 O. 
1.6000000 O. 
:I..700000() O. 
:I..80()OO()(} (). 
:I..9()0()000 O. 
?OOOOOOO O. 

o. 
O. 
O. 
O. 
O. 
o. 
o. 
o. 
O. 
O. 
O. 
O. 
O. 
o. 
o. 
o. 
o. 
o. 
O. 
o. 
O. 

o. 
0.0966540 
O.O:l.B:3467 

····0. 0:1. :~r756B 
O. 0234!:i7!:i 
0.0328096 
O. 015809(1 
O. 0:1. 37948 
O. O~:~:I.~~874 
O. 02:t~?679 
0.0180595 
O.O:l.843:1.l 
O. O:t 97497 
0.0:1.94276 
0.0:1.88892 
O. O:l.9076~i 
O. 0:1. ~")~:7~?~? 
().O:t9:1.557 
O. 0:1. 907()~5 
0.0:1.9:1.:1.44 
0.0:1.91296 

NM(2) NM(3) 
··<t8. 47387~j O. 

7~:;. 7~:j949:3 () . 
:1.1.2. 7:t 7:3~7j O. 
68. :t 1655!:i O. 
~i7 . ~i48~:~O~:i O. 
77 . B~~6!:i~50 O. 
79 . 9~i3864 () . 
71. 02!5:1:3:t O. 
7:1.. :I.~~97:t6 O. 
74. ~")~:~()~56!:i O. 
74. 409()~:j6 O. 
7~~. 827707 O. 
7:3. ~~()~:~4~:i8 o. 
7:3. B()~.:i978 O. 
7:3.544(176 O. 
73. ~~83640 O. 
73. :189862 O. 
7:1. 452074 (). 
7:3. :36()048 O. 
7:'3. ~302:3~:~5 O. 
7:·~. :304638 O. 

O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 
O. 

AL~: AL:3 
o. 

····0. 007~~94:3 
"-0. 0 1 0 1561 
· .. ·O.O()670:i9 
····0 . ()0~)88l, 1. 
,-,0.0074570 
"-0.0076227 
"-0. 0069321. 
····0.0069419 
.. ··0.0072361 
-,,0.0071977 
,-,0.0070765 
-,0.0071.071 
-'0.007:1.555 
-'0.007:1.369 
""0.0071:1.85 
""0.0071.287 
-0.0071355 
'-'0.0071305 
-0.0071283 
-,0.0071308 

o. 
o. 
o. 
o. 
o. 
o. 
o. 
O. 
o. 
O. 
O. 
o. 
o. 
o. 
o. 
O. 
o. 
o. 
O. 
o. 
O. 

~JM(:t) 

VMCU 
2154.8000 
2:1.54.7878 
2154.6730 
2154.5532 
~:~ 154 . 48~:~0 
2:1.54.3843 
2154.2435 
;~:I. 54. 09(l8 
2153. 95~i3 
2153.7895 
2:1.53.6040 
2153.4087 
2:1.53.2016 
2:1.52.9780 
2152.7398 
2152.4887 
2152.2239 
215:1 .. 9445 
2151. 651.1 
2:1.51.3442 
~?15:1.. 0233 

PAGE 

Figure A 10-7. Run-time Commands and Output Stream for Missile Dynamics Evaluation 
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MISSILE LONGITUDINAL DYNAMICS 
8 STEP IN FIN NOMINAL CG 

N~I I 1-
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Figure A 1 O-S. Strip Chart Plots of Missile Response to Fixed Fin Deflection - Norminal 
Centre of Gravity 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/08/11. 17.47.56. PAGE 2 
MISSILE LONGItUDINAL DYNAMICS STEP IN FIN NOMINAL CG 

LINE VM(~~) 
() () . 
c· 
,.1 

:1. 0 
:I.!:j 
~~O 

c:·c:· 
,.1 •• 1 

f.>() 
f.>~j 

7() 
7~j 

SO 
B~:j 

90 
9~::j 

:tOO 

LINE 
o 

:to 
:l ~5 
20 

30 
~3~j 

40 
4~j 

50 
~;5 

... (). 9~~~:)4:3n~"i 
6 . ~5B4B 1. ~3!:j 
:I.~~. :3:1.9067 
:1.4. 89~5778 
:1. B. 4!:j~~3~5!:j 
~:\3. 3~~6 7B~j 
~:~7 . 6~':~6!:;(?4 
31. 42B341. 
~5~). ~:j::H ~~64 

:39 . 8()9~~~j4 
4:'5. 93~:j~~8:3 
48. 00()9 AHl 
~j~~. :I. 3!:j:l. ~::~7 
~j6. ~~B:'5~:)~:~7 

6(). :397()"?9 
64. ~i04~584 
t:>8. 62~:~89~~ 
7~~. 7:?HH:3~~ 
76.844041 
80. (J47~~~.i4 

MACH 
2.000()()()() 
:I .. 99S)9fJ6~':~ 
:L. 9(?(;)89:1.·1 
:1..9998:1.:1.9 
:L . (J9(JTI:L:3 
1 . ~?(197:1. 87 
:1..9996478 
1 . 999~:j8:1.:I. 
:1. . 99(15:L 78 
:I.. 99944B~:j 
:I.. 999374~i 
:I .. 999~~9(16 

60 :I. . 999~~~~~~9 
6~j :I .. 99(J14~:~8 
70 :I .. 9(j>90~i90 
7~j :1.. 990<;)747 
80 :I.. 990B87() 

VM C"~) 
O. 
o. 
O. 
O. 
o. 
O. 
O. 
O. 
O. 
o. 
O. 
O. 
O. 
o. 
o. 
o. 
O. 
O. 
O. 
o. 
o. 

U 
40n:i.4612 
40n5. 43~:::I. 
407!.:i. ()O;::~O 
4074. ~H68 
4074.:L274 
4()7~3. 6431 
4()T:L O:l.?3 
407~:~. 32~:~2 

407:1..58:1.2 
4070. 7~i:l. 8 
4069.8340 
4068.8442 
4067.7003 
4066. ('):3~7j8 
406~j. 4:1. ~~5 
4064. 1:1. :3:1. 
4062. T568 

85 :1..9907966 406:L.2825 
90 1.9907037 4059.751.1 
95 1.9986082 4058.1431 

100 :1..99851.0:1. 4056.4583 

nIM THM 
O. o. o. 
o . O. ()06BcI4B O. 
o. 0.01:3:1.:1.93 o. 
O. O. O:l.~:~4~:~:I.~.) o. 
o. O. ():I. ~~799B O. 
o. O. ()160~~18 O. 
O. 0.0184506 O. 
o. O. ():l.97~j65 O. 
o. o. 0~::~1~i3:1.9 o. 
o. O. 02:!rl~5:1. 7 O. 
o. O. O~~~j68()6 O. 
O. O.()274764 O. 
o. o. 0~~9:3962 o. 
o. O.0:3:1.366:t o. 
o. o. O:~:3~~76:1. o. 
o. O. 0~3~j:L 703 O. 
O. O. 0:370907 O. 
O. 0.0390135 O. 
o. (). 04()9~~:34 o. 
o. o. 04~~8:3~~~~ o. 
o. O.04474!:il O. 

ANALYZ "FF~EEZEn~:RMIVM,FIM, IITFHM",IIJACOB", "EIGEN' 
NEW JACOBIAN EVALUATED 
ROW VECTOR NAMES 

f.HM 
,,1M (2) 

:I. 
4 

COLUMN VECTOR NAMES 
BIMD :I. 

WMD (2) 4 

TI-IM 
l,JM C"5) 

Z () (;HI B ~:~ 
WMD <:3) 

2 WM(:1. ) 
~.) 

~:~ WMIt (:1.) 
.. ~. 
'"' 

FIM 

Figure A 10-9. Output Stream from Missile Dynamics Evaluation 
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ACSl RUN-TIME EXEC VERSION 1 lEVEL 6M 81/08/11. 17.47.56. PAGE 3 
MISSILE lONGITUDINAL DYNAMICS STEP IN FIN NOMINAL C6 

MATRIX ELEMENTS - ROWS ACROSS, COLUMNS DOWN 
1 O. O. O. 1 . 0000266 O. 

1.0000000 
O. 

2 o. o. o. o. 
3 o. O. -·4.2094146 O. 
4 -276.73213 O. O. -2.4097832 O. 
5 O. -276.72476 O. O. 

COMPLEX EIGEN VALUES IN ASCENDING ORDER 
1 -4.20941462 o. 
2 -1.20489158 16.5913531 
3 -1.20489158 -16.5913531 
4 -1.20489158 -16.5917972 
5 -1.20489158 16.5917972 

I~EINIT 
S TSTP=O.O,NDBUG=l 
START 
.... DEBUG DUMP - SYSTEM 

T (). 
VARIABLES. NDBUG IS 

ZZTICG (). 
ZZIEI~R F 

ZZST T 
ZZRNFL T 

MAXT 0.01000000 

STATE VARIABLES 
FIM O. 

F<M ( 1.) O. 
F<M (2) 10000. 0000 
RM (3) O. 

SIM O. 
THM 0.00729676 

VM(I) 2154.80000 
VM (2) (). 

VM(3) O. 
WM ( :L) O. 
(,.IM (2) o. 
(,.IM C5) o. 

ALGEBRAIC VARIABLES 
A(30) O. 

B 3. 9~i()O(}O()() 
-,,2. ()817E····17 
o. 

CD (). 
CLp···(). ~? 1 ()()OOOO 

-·0. 19000000 
O.80()()()()()() 
~:~ . OO()()()()O() 

-·1. ~:;O()()()()()() 

O. 
1.2()0()0()()() 

····O.O:l.OO()()()() 
DXCG 10.200000() 

I XX 8. T7()()OOOO 
MACH 2.0()()()()()()O 

ZZNBL.K :1. 
ZZFRFL T 

ZZNe :1.2 
NSTF' :1. 

DERIVATIVES 
Z()998:1. O. 
RMD(l) 2154.80000 
F~MIH ~~) O. 
F~MD ( :3) (). 

SIMD (). 
Z()99B~:~ (). 
VMD(1)-().553()27()4 
VMD(2) 43.5894323 
VMD (:3) o. 
WMD (:1.) (). 

WMD(2) o. 
WMD(3)-1.8318E-14 

AL.2 o. 
CO. 

O. 
CHAR ~j. 6~·~()O()()O() 

o. 
····0. ~:~:I. O()O()()() 
.... (). 18()()O()OO 

:I. . ()()()()O()()O 

CM(~·<5. 8()()()()OOO 
····2. O()()()()OOO 

O.8()()()()()()() 
~:~ . ()()()() () 0 () () 
o. 

DXF~EF 9. 6()()O()OOO 
IYY ~56:1.. BOO()OO 

MASS B. T70000()O 

···2. 4097832 

:I. 
CINT O.020()O()()O 

ZZI 1 
ZZICFI.. T 

MINT :I .. O()()OE···:l.O 
IAI...G 4 

INITIAL CONDITIONS 
FIMIC (). 

r~M I C (:1.) o. 
RMIC(2) :l.O()OO.()OOO 
F~MIC(3) o. 

SIMIC (). 
THMIC 0.00729676 

VMIC(l) Z154.8(}(}(}O 
l..)MIC(~~) O. 
VMICC"5) O. 
WMIC(:t) o. 
WMIC(2) (). 
(,.IMIC(~5) o. 

AI...:~··-(). O()7296 7 6 
o. 
o . O:t :1. ? ;·5 3 ~:j;:~ 

CCVV····O. ()02?:?iB!::j4 
o. 

····0. ~~Oo()O()OO 

O. 
:I. . ~?OO()()oOO 

.... ~? O()O()()(}OO 
····2. :1. O()()()()OO 

:t..O()()()()()()O 

[II ... O. 
····O.O:l.O()()O()O 

G ~3~:~. ;::~O()()OOO 

LRO(20) 9()O()O.OOOO 
ME (). 9999?::~:3B 

Figure A 10-10. Output Stream (Eigen Values and Debug) from Missile Dynamics Evaluation 
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ACBI ... I:::UN····TIMF, EXEC \..'FI:~B:rON l LEVEL I.>M Bl/OB/11. :1."7. 4l. ~:j6. PAGE 4 
MISBILE LONGITUDINAL DYNAMICS STEP IN FIN NOMINAL CG 

· .. ·0. O()l?<11.>69 
(). <jl<"J<J9"?;·3~1B 
O. 

NM (). 
NME ····0. ~j~:i~3()?"7()4 

C~ 4()7~:i. 46:1. ~?~? 
THF<UST (). 

.... :1. 5. 7~:~~:~<J:I. 6B 
1 i\ (" ::) B 3 O. 
ZO)986-0.1BOOOOOO 
Z0999;3 o. 
ZZSEED 5555555555 
Z09989-3.80000000 

·'·2. 00000000 
0.80000000 
~~ . O()()OOOO() 

····0. ;:~O()O()()()O 
Z09992 O. 

:I. . ~·~()()OOO()() 
'··6. ~54~:iO~~OO() 
···7. 4;399~:i()OO 
···n. 8"79~::i:.3()O() 

Z()9996 (). 
;30()O(). O()()() 
bO()()().()()()() 
90()OO.()OO() 
:l 0;36. 4()O()O 
<l68. 10()O()() 
9"7"7. 6()()OOO 
:l.O()O().()OO() 
4()()OO.()O()() 
"70()()().OO()() 

ANALYZ • JACOB·, a E :[(:1EN· 
ROW VECTOR NAMES 

FIM :1. 
F<M (3) 4 
VM(l) l 
WM(:L) :1.0 

CDL.UMN VECTOR NAMES 
ZO<1981 :L 
RMJJ(3) 4 
VMD(l) 7 
WMD (:I.) :1.0 

O. 
o. 
:L.()O()OOOOO 
?~). ?9:J.4:::iOO 
"7~:i. "7n94:'3~~;3 

r~o o. 001 7~:;~i4l 
TSTP O. 

O. 
Z09984-2.10000000 
Z()<J<J87 O. 
Z09994-6.34502000 
ZlTLXP T 

.... ? OOOOOO()O 
•... ~~. :1. 0 0 () () ()() () 

:J. . ()(}OO(}O()(} 
Z09991-0.210(}O(}OO 

····0. :I. <JOO()O()O 
O.8000()OO() 
~:~. ()O()()OO()O 

····6.67084000 
'.'."7. 91 S!.':i:t 000 
····9 . ~364480()O 

1()()()O.()OOO 
4()()()O.()O()() 
7()()()() . O()()O 

Z0999"? 1186.50()()() 
994.80()OOO 
<j>bH. :lOOO()() 
984 . ~5()OOO() 
20()O().OOOO 
~jOOOO . O()()() 
80()()().OOOO 

I:;:M ( :1.) ~~ 

81M c:· 
,.J 

VM(2) B 
vJM(~~) 11 

F<MD ( :1. ) ' ... 
~:. 

SIMD I:!" 
~, 

VMD (~:~) B 
vJMD (~~) :1.:1. 

MATRIX ELEMENTS - ROWS ACROSS, COLUMNS DOWN 
:I. O. O. o. o. 

O. O. O. o. 
-·0. 0072969 O. 

2 O. 
(). 
(). 

O. 
:L . O()OOO()O 
O. 

O. 
O. 

o. 
o. 

0.00729669 
O. 

MVM 2:1. ~:i4 . 8()OOO 
o. 
o. 

S :I. ~3 . 90()()O(}0 
VMM ~?:L~54. "74~~64 

VS(20) 90000.()(}OO 
Z0998~~i o. 
Z09988 10l"7.40()()O 
Z09999 0 
XICITG (}. 

.... 1. . ~i()OOOO(}O 
Z()9990 O . 

l.?OO()()()()O 
.... (). ~'~:I. O()()()OO 
····0. :I. BO()O()()O 

:I.. (}OOO()(}()O 
Z()9995-6.()419:LO()0 

.... "7. ()~~~546()()0 

.... f:). ~596b40()O 

... <» . 87?;?)9()()O 
~~()(}()(). O()()O 
5()()OO.()O()O 
80()()().OO()O 
10"77.4()()()0 
<l68. :1.0(}()()O 
970.9(}()OOO 

Z()<1998 (). 
3()()()().OO()O 
6()()(}(). O()()O 
<JOOOO.()()()O 

r~M C?) ~5 
THM C) 

VM(3) 9 
l-tlM( 3) :1.2 

F<MD ( ~:~ ) ~5 
Z()998~:~ 6 
VMD (~~) 9 
t.,IMD (~5) :1.2 

O. 
:t. O()()O()()O 

O. 
O. 

Figure A 10-11 . Output Stream from Missile Dynamics Evaluation 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 
MISSILE LONGITUDINAL DYNAMICS 

3 O. O. o. 
o. O. 1.0000000 
o. O. 

4 O. O. O. 
O. O. O. 
O. O. 

5 O. O. O. 
O. O. O. 
1.0000266 O. 

6 O. O. o. 
O. o. o. 
O. 1.0000000 

7 O. O. 1. 739E-05 
·,,170. 05392 -,5. 133E ···04 0.0437463 

O. O. 

8 O. O. -,0. 0023833 
1.2917.897 0.070344"7 '-5.9951.967 
O. O. 

9 -18.475548 O. O. 
O. O. O. 
O. O. 

10 O. O. o. 
O. o. O. 
O. O. 

11 -2.0192297 O. O. 
O. O. O. 

-,2. 4097832 O. 

12 O. O. 5. 760E-19 
-276.72476 -1. 700E-17 O. 12842~~5 

O. -2.4097832 

COMPLEX EIGEN VALUES IN ASCENDING ORDER 
1 O. O. 
2 O. O. 
3 1.2070E-14 O. 
4 3.1692E-08 O. 
5 -6.0184E-08 O. 
6 -3.~912E-04 0.06794567 
7 -3.0912E-04 -0.06794567 
8 -4.20941462 O. 
9 -4.20243747 16.5379930 

10 -4.20243747 -16.5379930 
11 -4.20264954 -16.5381496 
12 -4.20264954 16.5381496 

S DXREF=10.7,TITLE(7)=·AFT CG 

81/08/1i. 17.47.56. PAGE 5 
STEP IN FIN NOMINAL CG 

o. o. 
O. O. 

O. O. 
1 .. 0000000 O. 

O. O. 
O. O. 

0.- O. 
o. O. 

O. O. 
O. O. 

O. O. 
O. O. 

O. -:1.29:1.8.585 
-5. 995!:i 159 O. 

O. o. 
O. --4 .. 2094:1.46 

O. -276.73213 
-0.1284259 O. 

O. O. 
O. O. 

Figure A 10-12. Output Stream (Jacobian and Eigen Values) from Missile Dynamics 
Evaluation 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/08/11. 17.47.56. PAGE 6 
t-iIBSII...E LONGITUDINAl... DYN('~MICB BTEP IN FIN AFT CG 

S THMIC=0.O,TSTP=1.99 
ST .. ~RT 
PLOT NM(2),WM(3),AL3,VM(2),THM 
ANALYZ 'EIGENQ 
COMPLEX EIGEN VALUES IN ASCENDING ORDER 

:L o. O. 
2 o. o. 
3 -1.7439(-08 O. 
4 7.3633E-08 O. 
5 1.4193E-05 O. 
6 -9.1656£-05 0.03939876 
7 -9. 1656E-05 -0.03939876 
8 -4.20851876 O. 
9 -4.20152799 -24.8543608 

10 -4.20152799 24.8543608 
11 -4.20159641 24.8543850 
12 -4.20159641 -24.8543850 

STDP 

END DISSPLA 3651 VECTORS GENERATED IN 

1382 WORDS TABLE SPACE USED 

;':' PLOT FRAMES. 

Figure A 10-13. Output Stream from Missile Dynamics Evaluation Forward Center of Gravity 
Position. 
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MISSILE LONGITUDINAL DYNAMICS 
o STEP IN FIN AFT CG 
o 

I 

.p<:-____ --1 ______ ---L-______ -'--__ .---1---j 
o o 
-i,------ -=r=---- I_~ 

~g --t! j I ~~ ;--~------I- ------+-------_.- - ------1 
~~ _____ -'-_____ ---1--____ ___ __ I 

N 

o o 
d~-------.-------~----------~-----------~----------~ 

g~ 
. c!-+-+--+---:c:::::q--------l--------+------.- --------

en 
...-l 
a: 

o 
CJ 

8 
d,-----------._-------~-----------~-----~-----~ 

8 J 
c!-'---------l....----------1-------------L------L------

o o 

.~ l'-----
-l 

~o fll N 

I 
7 0. 00 0.40 o. BO 1. 20 1. 60 2.00 

T 

Figure A 10-14. Strip Chart Plots of Missile Response to Fixed Fin Deflections - Aft Centre 
of Gravity 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6U 81/12/02. 17.07.17. PAGE 

A 
AL..2 
AL3 
H 
C 
CBAR 
eCl)V 
CD 
CINT 
CLP 
CMO 
DICTDM 
It I... 
ItXCG 
ItXREF 
FIM 
FIMIC 
G 
IAI...G 
IXX 
IYY 
LI:;:O 
MACH 
MASS 
MAXT 
MINT 
ME 
MVM 
NM 
NME 
NSTP 
(~ 

I:;:M 
RMD 
I;~MIC 

t=~0 

81M 
BIMD 
T 
THM 
THMD 
THMIC 
THRUST 
TSTP 
V 1'1 
VMD 
VMIC 
VMM 

WM 
WMD 
WMIC 
XICITG 
8IMIC 
B 

F~EAL ( :~O) 

I 
I 

3.95000000 
REAL ( 6) 

~:;. 6~~()()0()OO 

I 
F~EAL( 3) 

() . O~~OOOO()() 
REAL( 10) 
REAL( 1.0) 

T 
F~EAI... ( 4 ) 

:I. () . ~~()OOOOo 
9.60000000 

I 
o. 
:~~~. 2()O()O()O 

4 
8. 7"7000000 
~~61. . 800000 

REAL( 20) 
I 

8. 7"7()O()OOO 
().01.00000() 
1..0000E··"10 

F~EAL( 9) 
I 

REt~L ( :3) 
F~EAL ( 3) 

1. 
I 

F~EAL ( 3) 
REAL ( 3) 
REAl ... ( 3) 

O. 

I 
I 
I 

I 

****** 
o. 
O. 
1..99000000 

REt~L ( 3) 
F~EAL( 3) 
REAL ( 3) 
REAL ( 3) 
F~EAL ( 20) 
REAL ( 3) 
REAL( 3) 
REAL( 3) 

O. 
O. 
1.:3. 9000000 

ARRAY OF AERODYNAMIC STABILITY DERIVATIVES 
ANGLE OF ATTACK ABOUT *M2*, POSITIVE WIND FROM ABOVE (RAD) 
ANGLE OF ATTACK ABOUT *M3*, POSITIVE FROM RIGHT (RAD) 
CHARACTERISTIC SPAN (FT) 
ARRAY OF AERO COEFFICIENTS 
CHARACTERISTIC CHORD (FT) 
CHORD OVER VELOCITY (SEC) 
DAMPING DERIVATIVE - DIMENSIONLESS MOMENT DERIVATIVES 
COMMUNICATION INTERVAL (SEC) 
ROLL DAMPING COEFFICIENT 
PITCH AND YAW DAMPING COEFFICIENT 
DICTIONARY DUMP FLAG 
FIN DEFLECTION (RAD) 
CENTRE OF GRAVITY POSITION, POSITIVE TO REAR (FT) 
AERODYNAMIC REFERENCE POINT, POSITIVE TO REAR (FT) 
ROLL ANGLE OF MISSILE OR *M* FRAME (RAD) 
INITIAL CONDITION ON *FIM* (RAD) 
GRAVITY ACCELERATION (FT/SEC**2) 
INTEGRATION ALGORITHM (INTEGER) 
ROLL INERTIA (SI...UG-FT**2) 
LATERAL INERTIA (SLUG-FT**2) 
LOG ATMOSPHERIC DENSITY 
MACH NUMBER 
MISSILE MASS (SLUG) 
MAXIMUM INTEGRATION STEP SIZE (SEC) 
MINIMUM INTEGI~ATION STEP SIZE (SEC) 
MATRIX TO TRANSFORM FROM *E* FRAME TO *M* OF MISSILE FRAME 
MAGNITUDE OF *VM* (FT/SEC) 
AERODYNAMIC ACCELERATION VECTOR OF MISSILE (FT/SEC**2) 
COMPONENTS OF *NM* EXPRESSED IN *E* FRAME (FT/SEC**2) 
NUMBER OF STEPS (NDT USED) (INTEGER) 
DYNAMIC PRESSURE (LBS/FT**2) 
RANGE VECTOR FOR MISSILE (FT) 
DERIVATIVE OF *RM* (M/SEC) 
INITIAL CONDITION ON *RM* (FT) 
ATMOSPHERIC DENSITY (SLUG/FT**3) 
YAW ANGLE OF MISSILE (RAD) 
DERIVATIVE OF *SIM* (RAD/SEC) 
INDEPENDENT VARIABLE TIME (SEC) 
MISSILE PITCH ANGLE (RAD) 
DERIVATIVE OF *THM* (RAD/SEC) 
INITIAL CONDITION ON *THM* (RAD) 
THRUST (LBS) 
TIME STOP F()J:< SIMUL.ATION (SEC) 
VELOCITY OF MISSILE (FT/SEC) 
ACCELERATION OF MISSILE (FT/SEC**2) 
INITIAL CONDITION ON *VM* (FT/SEC) 
COMPONENTS OF *VM* IN *M* FRAME (FT/SEC) 
VELOCITY OF SOUND (FT/SEC) 
SPIN RATE VECTOR OF MISSILE (RAD/SEC) 
DERIVATIVE OF *WM* (RAD/SEC**2) 
INITIAL CONDITION ON *WM* (RAD/SEC) 
TEMPORARY INITIAL. CONDITION ON *T* 

* * 

Figure A 10-1 5. Dictionary listing Produced from Subroutine LlSTD in the INITIAL section 
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11. DISCRETE SAMPLED COMPENSATOR 

This example was chosen to illustrate the use of a DISCRETE section in model,ling a sampled data system 
in which a control computer interacts with a continuous plant. The system block diagram is shown in Figure 
A 11-1 where the plant is represented by a transfer function: 

s(s + 1) 

This system can be visualized as a water level control problem where the valve controlling the flow into the 
tank has a one second time constant. An instantaneous level measurement, X, is assumed which is compared 
with a desired level Xc and the error sampled every tenth of a second. A digital controller is to be designed 
that takes the samples of level error E and outputs a command U to the valve so closing the loop. This control 
is taken to be a linear combination of the current error En' the previous error En-h and the previous control 
Un-I' Expressed in Z-transform notation this becomes 

U ao - al z-1 

E 1 - b 1 z-l 

In terms of equivalent lead/lag network, the a and b coefficients above can be written 

_ TLED 
ao -T-- exp (-TS (l/TLAG - I/TLED) 

LAG 

T 
a -LED 1---T

LAG 
exp (-Ts/TLAG); b i = exp (-Ts/TLAG) 

which gives unity steady state gain and reduces to a zero order hold when the lead and lag time constants are 
equal. 

The program or model definition code to represent this plant and control system is shown in Figure 
A11-2. In this model we have made use of the multiple derivative section capability where different blocks 
of code can be given their own integration algorithm and step size. 

In the INITIAL section the coefficients of the digital filter are calculated so that the controller response 
can be thought of in terms of equivalent lead/lag time constants. At the same time the discrete control (UD) 
and the previous error (EP) are initialized to zero. Since they are needed before they are calculated, they are 
effectively system state variables, though not obtained by integration. 

In the continuous section, the plant is modelled by the one line: 

X = INTEG(REALPL(T AD, KU*U), 0.0) 

The control (U) is selected to take either the discrete value (UD) or that produced by a continuous lead-lag 
compensator (UC) based on a switch DISC i.e. 

U = RSW(DISC, UD, UC) 

which will allow test at run time between the effect of the discrete or the continuous controller by changing 
the logical variable DISC from .FALSE. to .TRUE. Integration step size for this section will be 0.02 seconds, 
specified both by the communication interval (CINT) and by the global MAXT. The reason for such a 
comparatively short step is in order to record data during the sampling so that the discrete hold (sample 
interval 0.1 sec) can be seen on the plots. The communication interval chosen gives five points for every sample, 
so squaring the corners when the control (U) is plotted in Figures AII-4 through A1I-6. If the communication 
interval had been increased to 0.1 seconds or more, the straight lines drawn between points would have masked 
the sampling action, though the simulation would still behave the same internally. 
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In the DISCRETE block, the step size is controlled by the INTERVAL statement which specifies the 
name of the controlling variable as TSAMP with a value of 0.1 seconds. The code will execute once a T equals 
zero and then once thereafter, every 0.1 seconds. Since the order of the code is important, it is bracketted by 
PROCEDURAL ... END statements which prevent the reordering of any code within the block. Notice that 
there is no input/output list on the PROCEDURAL statement since the entire DISCRETE section is made 
procedural. The input/output list is only necessary to ensure correct ordering relative to other statements 
within the same DISCRETE or DERIVATIVE section. Statements will never be reordered across a section 
boundary. 

Within the PROCEDURAL block, the new control is calculated based on the previous control, previous 
error and current error or 

UD = B1 *UD + AO*EP 

and then the current error is transferred to the previous error by EP = E. If we hadn't used the PROCEDUR­
AL block, the EP assignment would have been moved in front of its use in the UD calculation so both E and 
EP would now contain the current error, when the new UD was calculated, not what was intended in the code. 

With the use of the DISCRETE section, the continuous section is guaranteed to be at the sample time 
when the DISCRETE section code is executed, so the value of current error (E) used is that actually at the 
sample time: A new value of control is calculated that is immediately available to the continuous section for 
use over the next sample interval. This action models a control computer with no calculation delay. In actual 
practice, dedicated controllers are usually compute bound, sampling from the outside world, calculating the 
new control action through the sample period and transferring this value back to the continuous section at 
the same time that a new sample is obtained. Modelling this action requires modifying the control calculation, 
first assigning the next control to the output control and then calculating a new next control i.e. 

UD = UDN 

UDN = B1 *UDN + AO*E - Al *EP 

Now both UD and UDN are effectively state variables and so must be initialized. 

The execution of the model as listed in Figure AII-2 is shown in Figure AII-3. The first run (START) 
is followed by a column PRINT of the numeric values and a line plot of the base-line response shown in Figure 
AI1-4. Next the OUTPUT list is CLEARed and two more runs are made - first with a equivalent lead/lag 
ratio of 5: I (see Figure AII-4) and then with a reduction of the loop gain from 5.0 to 1.0 (See Figure Al1-5). 
Lastly the response of the continuous feedback compensator is obtained, using the same values of lead/lag 
'time constants and gain, by setting the switch variable DISC to .FALSE. The response is shown in Figure 
All-7. 

U 

E 

UN = B1 UN- 1 + AOEN - A1 EN -1 

O.2sec O.2sec 
(TSAMP) 

Figure A 11-1 . Discrete Control System Block Diagram 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSL TRANSLATOR VERSION 1 LEVEL 6F 81/07/13. 15.16.03. PAGE 1 

PROGRAM DISCRETE SAMPLED COMPENSATOR 

"-----------------------MODELS A CONTINUOUS PLANT WITH EITHER A H 

II CONTINUOUS 01;: nISCI:~ETE FEED B('~CI\ CONTI:~OLLEI:~ l"IR(~PPED AI:~OUND IT. R 

II PLANT CAN BE VISUALISED AS A LEVEL CONTROLLER USING VALVE • 
II WITH SINGLE LAG TIME CONSTANT (= 1 SECOND) • 

LOGICAl ... 
CONSTANT 
CONSTt-lNT 
CONSTANT 
CONSTANT 

INITIAl. 

DISC 
KU :::: ~j. 0 
DISC - .TRUE. 
TLED .... o. ~:j 

TSTP 'M' -4.9 

CINTERVAL CINT = 0.02 
NSTEPS NSTP = 1 
MAXTERVAL MAXT = 0.020 

} TAD ;;:: 1.0 
XC :::: :1..0 
TLAG ;::; (). 5 

"-----------------------CALCULATE Z TRANSFORM CONTROLLER GAINS • 
B1 = EXP(-TSAMP/TLAG) 
AO = TLED*EXP(-TSAMP*(1.0/TLAG - :I..O/TLED»/TLAG 
A1 = TLED*EXP(-TSAMP/TLAG)/TLAG 
"-----------------------INITIALISE PSEUDO STATE VARIABLES • 
UD :::: 0.0 
EP :::: 0.0 

END $8 OF INITIAL • 

DERIVATIVE CONTINUOUS 
II-----------------------PLANT MODEL • 
X = INTEG(REALPL(TAD, KU*U), 0.0) 
H-----------------------CONTINUOUS CONTROL ACTION • 
UC = LEDLAG(TLED, TLAG, E) 
E :::: XC .M. X 
"-----------------------CHOOSE DISCRETE OR CONTINUOUS CONTROL • 
U = RSW(DISC, UD, UC) 
TERMT(T .GE. TSTP) 

END $" OF CONTINUOUS SECTION • 

DISCRETE DISCF~T 

INTERVAL TSAMP = 0.1 
PROCEDURAL 

"-----------------------DISCRETE CONTROL IS LINEAR COMBINATION OFa 
PRE V CONTROL, PREV ERROR AND CURRENT ERR • 

UD = B1*UD + AO*E - A1*EP 
a-----------------------CURRENT ERROR BECOMES PREVIOUS ERROR H 

EP =: E 
END SH OF PROCEDURAL 8 

END $8 OF DISCRETE SECTION a 

END $" OF PROGRAM a 

Figure A 11 -2. Model Definition Code for Discrete Sampled Compensator 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/13. lS.16.54. PAGE 

S TITLE=·DISCRETE SAMPLED CONTROLLER·,TITLE(S)=·BASE CASE· 
SET TCWPRN=72 $. FORCE 3 COLUMN OUTPUT FORMAT • 
PREPAR T,U,X,E 
OUTPUT T,U,X, ·NCIOUTI=50 
START 

T O. lJ O. 
T 1.00000000 U-0.17060285 
T 2.00000000 U-0.32541587 
T 3.00000000 U 0.34323663 
T 4.00000000 lJ-0.12205848 
T 4.92000000 lJ-0.06463221 

PRINT IALLI,INCIPRN I =10 

LINE TUX E 
o O. O. O. 1..0000000 

10 0.2000000 0.9758129 0.0930688 0.9069312 
20 0.4000000 0.7998402 0.3376226 0.6623774 
30 0.6000000 0.5032633 0.6683773 0.3316227 
40 0.8000000 0.1565214 1.0134606 -0.0134606 
50 1.0000000 -0.1706028 1.3083497 -0.3083497 
60 1.2000000 -0.4215391 1.5065476 -0.5065476 
70 1.4000000 -0.5613530 1.5855153 -0.5855153 
80 1.6000000 -0.5800839 1.5474411 -0.5474411 
90 1.8000000 -0.4910931 1.4154223 

100 2.0000000 -0.3254159 1.2263854 
110 2.2000000 -0.1236905 1.0224804 
120 2.4000000 0.0725356 0.8427189 
130 2.6000000 0.2284609 0.7163382 
140 2.8000000 0.3214041 0.6588552 
150 3.0000000 0.3432366 0.6711533 

-0.4154223 
-0. ~~263854 
-0.0224804 

O.15728l.1 
0.28366:1.8 
0.3411448 
0.3288467 

160 3.2000000 0.2998426 0.7413469 0.2586531 
170 3.4000000 0.2081127 0.8487028 0.1512972 
180 3.6000000 0.0913604 0.9686219 0.0313781 
190 3.8000000 -0.0257924 1.0776326 -0.0776326 
200 4.0000000 -0.1220585 1.1574883 -0.1574883 
210 4.2000000 -0.1828818 1.1977512 -0.1977512 
220 4.4000000 -0.2021441 1.1966035 -0.1966035 
230 4.6000000 -0.1821059 1.1599839 -0.1599839 
240 4.8000000 -0.1318374 1.0994379 -0.0994379 

S CALPLT=.T.,PRNPLT=.F. ,GRDCPL=.T. 
PLOT U,X 
OUTPUT ICl.EAR I 

X 
X 
X 
X 
X 
X 

S TLED=2.5,TITLE(5):IKU=5.0 TLED=2.5 1 $ START $ PLOT U,X 
S KU =1.0,TITLE(5)=IKU=1.0 TLED=2.5 1 $ START $ PLOT U,X 
I NOW COMPARE CONTINOUS CONTROLLER 1 

O. 
1.30834973 
1.22638539 
0.67115330 
1. 157488~:~8 
1 .. 05753083 

S TITLE=ICONTINUOUS ANALOG FEEDBACK CONTROLLERI,DISC=.FALSE. 
START 
PI ... OT U, X 
STOP 

'Figure A 11-3. Output Stream from Execution of Discrete Sampled Compensator Model 
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Figure A 11-4. Plot of Control and Level against Time for Base Case, Discrete Sampled 
Compensator 
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Figure A 11-5. Plot of Control and Level against Time for Lead / Lag Ratio of 5 
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Figure A 11-6. Plot of Control and Level against Time for Reduced Loop Gain, Final Design 
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Figure A 11-7. Comparison using Continuous Lead / Lag Feedback Control 
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12. ASPIRIN DOSAGE EVALUATION 

This model follows mathematically the aspirin concentration level in the blood stream of a person taking 
variable doses at various preset times. A similar program would be used to determine the concentration of 
any drug which had an exponential decay. The example was chosen to show how discontinuities can be 
introduced into the simulation state variables without having to recompute the values of the output of 
integrators, a matter that has to be left to the integration routine. In actual fact there are no true discontinui­
ties in the physical world and one should really consider the dynamics of the ingestion process - the passage 
through the stomach wall or, if injected, the velocity of the hypodermic piston. These effects, however, would 
normally be approximated in most simulations as discontinuities if their time of action is short compared with 
the overall period of interest. 

The basic equation in the model is the exponential decay given by 

de = -R e 
dt 

which says that the rate of change (decay) of concentration of (C) is proportional to the concentration. The 
constant of proportionality is a rate R. 

Since the concentration can change suddenly as doses are taken, we need to add a term indicating the 
total dose. As an integral equation, the concentration can now be expressed as 

e = J -R e dt + I Di 

In the simulation model code this is written 

BLOOD = INTEG(-RATE*BLOOD, 0.0) + TOTAL 

where BLOOD is the concentration in grains and TOTAL contains the sum of the doses up until the current 
time. 

The listing of the model definition section is shown in Figure A12-1 which defines two arrays, TDOS 
for the time of the dose and DOSE for the actual dose at the corresponding time. An integer index INDX 
is used to advance through the arrays. The arrays are preset so that a larger dose of the five tablets (25 grains) 
is given initially and only two hours are between the first and second doses. Eight hours lie between the fourth 
and fifth doses and the last effective dose is at thirty hours. 

In the INITIAL section INDX is started at one to access the initial dose time and TOTAL, effectively 
a state variable, is set to zero. In the DERIVATIVE section the BLOOD and URINE levels are calculated, 
the URINE being the total amount excreted. The URINE rate is the opposite of the rate for BLOOD which 
means that what is removed from the bloodstream appears directly in the urine. 

The dose time and dose accumulation is performed within a PROCEDURAL ... END block which is 
treated as a whole. Within the PROCEDURAL block, the current dose time TDOS (lNDX) is tested against 
the independent variable time (T). If it's not time for a dose the rest of the block is bypassed. If the dose time 
is equalled or exceeded, the dose is added to total by 

TOTAL = TOTAL + DOSE(lNDX) 

and then the index is incremented by one, ready for the next dose. 

A-112 



In writing this type of simulation model there is an inclination to change the state variable itself i.e, 

BLOOD = INTEG(-RATE*BLOOD, 0.0) 

BLOOD = BLOOD + DOSE(lNDX) 

This operation is illegal since the value in the state variable BLOOD is only a temporary copy of the actual 
state variable which is saved internally by the integration routine. Note if we convert the BLOOD integration 
to the expression form: 

BLOOD = -INTEG (RATE*BLOOD, 0.0) 

BLOOD is no longer a state variable, it is now just the negative of the actual state variable (the output of 
the INTEG operator) which will be given a generated name ZOnnnn. 

When we add TOTAL to the integration a similar transformation occurs so that BLOOD is no longer 
a state variable but now we can manipulate TOTAL in such a way that the answer comes out right. 

The run-time output stream is shown in Figure AI2-2. After the START a column PRINT is obtained 
to list numeric values and then a PLOT, the output of which is shown in Figures A12-3 and AI2-4. The first 
figure shows the format for the strip plots (STRPLT = .T.) and the second for the standard line plots 
(CALPLT = .T.) where all curves are superimposed. The actual plot line reads 

PLOT TOTAL, 'TAG' = '+URINE', URINE, 'SAME', 'OVER', BLOOD 

The tag string is used to add the extra label on the TOTAL axis, 'SAME' ensures identical scales and 'OVER' 
suppresses the now redundant axis for URINE. 

The RATE parameter is changed to 0.28 and a second run made, followed by a PLOT. Only the strip 
plot is used in Figure A 12-5 which shows the extra strip generated when 'OVER' was eliminated from the 
plot line. From the plot it can be seen that the higher decay rate has reduced the average blood level 
concentration. 

The discontinuties introduced into TOTAL violate the restrictions on the state variables placed by most 
integration algorithms, i.e., the derivatives shall be continuous and differentiable. In practice, fixed step size 
algorithms step over these discontinuities very well with only minor differences in the calculated solutions 
when the step size changes. In the code we make no attempt to synchronize the discontinuity with the 
integration step so it can occur at any of the derivative evaluations that make up the step. This means that 
this particular step (which contains the discontinuity) will be in error but the answers will only be slipped a 
fraction of a step length. It is this requirement that dictates the integration step size. From the decay rate 
of the aspirin (0.14 or 0.28) step sizes of two or three hours would do quite well in integrating the differential 
equations. However, uncertainty in dose times of this much is too large an error. In the model, the step size 
is set (via MAXT) to 0.05 or 3 minutes to reduce the uncertainty which now seems tolerable in light of what 
we are trying to simulate. 
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*********ADVANCED CONTINUOUS SIMULATION LANGUAGE********* 
ACSL TRANSLATOR VERSION 1 LEVEL 6F 81/07/13. 15.15.59. PAGE 1 

PROGRAM ASPIRIN DOSAGE TEST 

·-----------------------FOLLOWS CONCENTRATION OF DRUG IN BODY • 
• GIVEN A DOSAGE HISTORY. USES EXPONENTIAL ELIMINATION RATE -
• WITH FIXED TIME CONSTANT • 

·-------------DEFINE TYPES AND ARRAY DIMENSIONS-
INTEGER INDX} INDXMX 
ARRAY DOSE(9) I TDOS(9) 
N-------------DEFINE PRESET CONSTANT VALUES-
CONSTANT RATE::: 0.14 } INDXMX::: 9 

CONSTANT 

CONSTANT 

TSTOP ::: 49.0 
DOSE::: 25.0 } 15.0 

, 15.0 , 15.0 
, 15.0 , 15.0 

TDOS::: 0.0 , 2.0 
, 10.0 , 18.0 

, 15.0 
, 15.0 
, 0.0 
, 6.0 

, 26.0 ,30.0 , 99.0 
·-------------DEFINE COMMUNICATION INTERVAL AND INTEGRATION STEP -
CINTERVAL CINT ::: 0.5 
MAXTERVAL MAXT ::: 0.05 
NSTEPS NSTP ::: 1 

INITIAL 
N-------------START WITH FIRST DOSE, NONE PRESENT· 
- AT BEGINNING' 
INDX ::: 1 
TOTAL ::: 0.0 

END $- OF INITIAL· 
DYNAMIC 
[lERIVATIVE 

--------------AMOUNT LEFT IN BLOOD STREAM­
BLOOD ::: INTEG(-RATE*BLOOD, 0.0) + TOTAL 
--------------TOTAL AMOUNT EXCRETED AS URINE­
URINE ::: INTEG( RATE*BLOOD, 0.0) 
8-------------TE8T FOR DOSE, BUMP TOTAL-

PROCEDURAL(TOTAL,INDX::: DOSE, TDOS) 
--------------IF NOT TIME FOR DOSE­
IF(T.LT.TDOS(INDX» GO TO L1 
N-------------ADD NEW DOSE TO TOTAL­
TOTAL ::: TOTAL + DOSE(INDX) 
·-------------GET SET FOR NEXT DOSE-
INDX ::: INDX + 1 

L1 .. CONTINUE 
END $- OF PROCEDURAL· 

END $- OF DERIVATIVE' 
--------------STOP WHEN GIVEN LAST DOSE­
TERMT(INDX.GT.INDXMX .OR. T.GE.TSTOP) 

END $- OF DYNAMIC· 
END .- OF PROGRAM-

Figure A 12-1 . Listing of Model Definition for Aspirin Dosage Evaluation 
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/13. 15.16.33. PAGE 

SET TITLE = -ASPIRIN DOSAGE TEST-
S TCWPRN=72 $- FORCE 3 COLUMN OUTPUT WIDTH ' 
S PRNPLT=.F.,CALPLT=.T.,STRPLT=.T.,GRDSPL=.T. 
PREPAR T, BLOOD, URINE, TOTAL, INDX 
START 
PRINT 'NCIPRN'=5, 'ALL' 

LINE 
0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
~jO 
re' 
•• ' •• 1 

60 
65 
70 
75 
BO 

T 
O. 
;~. 5000000 
5.0000000 
7.5000000 
10.000000 
12.500000 
:1.5. 000000 
:1.7. ~500000 
20.000000 
~~2. 500000 
~:~5. 000000 
;~7 . 500000 
~50. 000000 
~5~~. ~jOOOOO 

~55. 000000 
:~7 . 500000 
40.000000 

BLOOD ur';:INE TOTAL 
25.000000 O. 25.000000 
31.619426 8.3805736 40.000000 
22.281833 17.718167 40.000000 
27.874691 27.125309 55.000000 
19.642963 35.357037 55.000000 
24.424815 45.575185 70.000000 
17.211877 52.788123 70.000000 
12.129004 57.870996 70.000000 
19.897147 65.102853 85.000000 
28.023507 71.976493 100.00000 
19.747832 80.252168 100.00000 
26.089011' '88,910989 115.00000 
18.384615 9~~615385 115.00000 
23.538073 106.46193 130.00000 
16.586999 113.41300 130.00000 
11.688661 118.31134 130.00000 
8.2368602 121.76314 130.00000 

85 42.500000 5.8044173 124.19558 130.00000 
90 45.000000 4.0903037 125.90970 130.00000 
95 47.500000 2.8823883 127.11761 130.00000 

PLOT TOTAL, 'TAG'='t URINE',URINE, 'SAME', -OVER', BLOOD 
DISPLY RATE,TDOS,DOSE 

RATE 0.14000000 
6.00000000 
~·:~2. OO()OOOO 
99.0000000 
:1.5. 0000000 
15.0000000 
O. 

TDOS O. 
:1.0.0000000 
~·:~6. 0000000 

DOSE ~~5. 0000000 
15.0000000 
15.0000000 

SET RATE=0.28,TITLE(S)='RATE - 0.28' 
START 
PLOT TOTAL, URINE, 'SAME',BLOOD 
DISPLY RATE, TDOS, DOSE 

STOP 

RATE 0.28000000 
6.00000000 
22.0000000 
99.00()OOOO 
1 ~5 . 0000000 
l5.00()OO()O 
O. 

TIIOS O. 
10.0000000 
26.0000000 

DOSE 2~i. 0000000 
15.0000000 
15.0000000 

INDX 

6 
7 
7 
8 
8 
9 
9 
9 
9 
9 
9 
9 

2.00000000 
18.0000000 
30.0000000 
15.0000000 
15.0000000 
15.0000000 

2.00000000 
18.0000000 
:~O. OOOOO()O 
15.0000000 
15.0000000 
15.00000()0 

Figure A 12-2. Output Stream from Aspirin Dosage Evaluation Study 
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Figure A 12-3. Strip Plot of Blood Concentration, Total Dosage and Urine Elimination, Rate in 
0.14 
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Figure A 12-4. line Plot of Blood Concentration, Total Dosage and Urine Elimination 

A-II7 



o 

ASPIRIN DOSAGE TEST 
RATE = 0.28 

o~ ________ ~ ________ ~ ________ ~ ________ ~ ______ ~ 
¢ 

N 
o 

o 
o 
o 

o 
o 
N 

---t 0 
.0 

N 
o 

o 
o 
o 

o 
o 
N 

---t 0 
.0 

o 
o 
o 

II 

f~ 
0.00 10.0 

II 
r-

I U 

20.0 30.0 40.0 50.0 
T 

Figure A 12-5. Strip Plot of Blood Concentration, Urine Elimination and Total Dosage, Rate in 
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APPENDIX B 
GENERAL PURPOSE UTILITY SUBROUTINES 

A number of general purpose subroutines have been developed and included in the system library. 

1. AGET (name, a), APUT (name, a) 

Obtain the values from or put values into a variable array in either the user or system dictionary. Useful 
in a separate FORTRAN subroutine to obtain or return isolated values not passed through the calling 
sequence. Necessary in order to access values from the system dictionary. Arguments are: 

name - Hollerith representation of dictionary name to be accessed, i.e. Direct Hollerith constant (3HDIS) 
or symbol preset to Hollerith constant. 

a - array of size equal to or greater than that of 'name' - may be a scalar of dimension 1. 

For AGET all elements of 'name' are returned in successive locations of 'a'. APUT works in the opposite 
direction and fills all positions of the array 'name' with the contents of successive locations of 'a'. Standard 
form of use would be 

CALL AGET (6HNPXPPL, NPX) 

CALL APUT(5HTITLE, NEWTTL) 

where NEWTTL is dimensioned to contain at least 120 characters (12 words on CDC 6000/7000. 20 on 
UNIVAC 1100 and 30 on 32 bit hex machines IBM 360/370, SEL etc.). See RGET, IGET and VPUT for 
changing individual elements of an array. 

NOTE: These functions require a full dictionary search and if placed in a loop executed every 
calculation interval will use an excessive amount of computer time. 

2. BlDDCT (nHname, name, type, size) 

NITBlD (length) 

Build dictionary allows variables in other FORTRAN subroutines and COMMON blocks to be added 
to the ACSL dictionary. Since labelled COMMON block locations are defined at load or link-edit time, this 
operation must be performed once at the start of each simulation study. The typical requirement is to add 
variables (XVEL and IPNT are used in the example) that are in external common blocks (/USER/is used) 
that communicate between FORTRAN subroutines external to the ACSL simulation model definition. The 
actual number of variables and common blocks depends on the particular situation and can be large. 

In order to add the example names to the dictionary, write a subroutine so 

SUBROUTINE ADDNMS 

COMMON/USER/IPNT, XVEL 

COMMON/ZZDCT/DUMMY(1000) 

CALL NIT BLD(1000) 

CALL BLD DCT(4HIPNT, IPNT, 2, 1) 

CALL BLD DCT(4HXVEL, XVEL, 1, 1) 

RETURN 
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END 

and call this from the pre-initial section of the ACSL model definition code i.e. 

PROGRAM TO EXTEND DICTIONARY 

CALL ADDNMS $ 'ADD NAMES TO DICTIONARY' 

INITIAL 

END $ 'OF PROGRAM' 

Alternatively all the code can be placed in the main program and then use the P option on the translator to 
indicate it is user supplied. 

In the ADDNMS subroutine, the external COMMON blocks can be referred to (no COMMON blocks 
can be included in the ACSL model definition). The dictionary COMMON block/ZZDCT / must be included 
and extended beyond the length established by the ACSL translator, which normally will size the dictionary 
to just fit all the names in the model definition (2 words per name in machines with six or more characters 
per word, 3 words per name for machines with 4 or 5 characters/word). In the example, the dictionary 
COMMON block is extended to a thousand words, which length is then communicated to the extension 
program via the NITBLD call. This must be present since the BLDDCT subroutine has no idea how much 
space is available at the end of the standard ACSL dictionary. 

The actual calls to BLDDCT pass a Hollerith version of the new name, the name itself which really 
corresponds to the address in the COMMON block, and an integer indicating type and an integer indicating 
size. The types are one for REAL, two for INTEGER and three for LOGICAL. Size must be the array size 
if an array (product of dimensions if more than one) or one if 'name' is a scalar. 

The action of BLDDCT is to search through the dictionary to the end and then add the entry correspond­
ing to 'name', moving the dictionary terminator one block. An error is reported if 'name' is already in the 
dictionary or if the end of the dictionary would have to be extended beyond the length established by the call 
to NITBLD. . 

Once the name has been added to the dictionary, all run-time references can be made just like any other 
ACSL variable with the data being transferred to and from the external COMMON blocks 

OUTPUT XVEL 

DISPLY IPNT 

All the ACSL run-time commands can be used to PLOT, PRINT, SET these variables rather than having 
to move everything into the main ACSL common block /ZZCOMj. 

3. DEBUG 

A call to this routine will produce a debug list of all variables, excluding arrays greater than MALPRN 
(maximum array limit for print), on both PRN and DIS units. Described in Section 7 is the technique of 
setting NDBUG to a positive integer whereby a debug list is produced at the end of every derivative evaluation. 
While useful as a checkout tool, with large programs this action can produce an over-whelming amount of 
output. Selective output can now be obtained by 

IF(logical condition) CALL DEBUG 

included in the DERIVATIVE section. Including the statement 

CALL DEBUG 
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in the DYNAMIC section produces the entire list at each communication interval and is synonymous with 
asking for the OUTPUT of all variables. Including 

IF(DUMP)CALL DEBUG 

in the TERMINAL section is a useful artifice since all final values are displayed as well as the initial 
conditions for that run. 

4. IGET(nHname,i} RGET(nHname,i} 

Obtain the value of a variable (integer = IGET, real = RGET) in the user or system dictionary. For 
use primarily for selecting elements of arrays since AGET and APUT should be used for scalars. Arguments 
are: 

name - Hollerith representation of dictionary name to be accessed i.e. symbol preset to Hollerith 
constant or direct Hollerith constant (3HPRN) 

1 - integer constant or variable denoting element of array 

Standard form of use would be 

WORD = IGET(5HTITLE, 4) 

NOTE: These functions require a full dictionary search and if placed in a loop executed every 
calculation interval will use an excessive amount of computer time. 

5. INTEG 

In order to provide flexibility in trying new and improved integration algorithms, it is possible to 
incorporate a user written routine via this subroutine (INTEG). Setting IALG=7 will transfer control to this 
routine at the beginning of every integration step. In order to write an effective INTEG routine, familiarity 
with the ACSL run-time routines ZZINTG, ZZRKIN, ZZMVM, ZZNITS and ZZNITA is essential. 

6. lISTD (file) 

Provides a listing of the user dictionary and current variable values along with any explanation of 
variables supplied on the named file. Used mainly for reports, it requires preparing a dictionary with variable 
name and definition. The argument 'file' is an integer constant or variable defining a file containing the 
definitions or card images. 

col 1-9 variable name, left justified 

col 10 continuation indicator in sequence 0,1,2,3 etc. 

col 11-80 definition 

Standard form of invocation would be in the INITIAL or TERMINAL section on a switch 

IF(LIST)CALL LISTD(5) 

LIST = .FALSE. 

Logical unit five is normally the input file so the dictionary would follow immediately behind the START 
card. The dictionary is terminated with a blank name field. When the definition must be continued beyond 
column eighty, continuations can be used which consist of a non-blank character in column ten. The name 
field in this case is ignored and just the extra definition is listed out. For convenience in ordering the initial 
dictionary repeat the name on each continuation card, numbering the cards in column ten 0, 1, 2, 3 etc. Now 
a standard sort on columns one through ten will produce an alphabetical order with continuation cards in their 
correct place. Note that zero is used in column ten to start a continuation sequence and acts just like a blank. 
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The reason for using a zero is that in some computer systems blanks will collate after numbers rather than 
before. 

When used with logical unit five, the dictionary definitions appear on the run-time drive file immediately 
after the START and the following card images will be read until a blank or end-of-file. 

7. LOG 

This routine can force a data recording and output list from within the ACSL model definition or from 
any external FORTRAN subroutine. 

CALL LOG 

will reset the NCIOUT count of the OUTPUT statement, forcing a value listing. All the variables on the 
PREPAR list are recorded for later PRINTing or PLOTting. 

8. RGET (nHname, i) 

Real get - - see IGET 

9. SET (value, name, times) 

A useful subroutine that is provided primarily to initialize arrays and set all elements to a given value. 
Standard form of use is 

CALL SET (v, x, n) 

where the value of the expression v is placed into n locations of array x. i.e. 

CALL SET(O.O, ARR(5), 3) 

zeros the fifth, sixth and seventh elements of array ARR. No check is made to see whether these elements 
actually exist. 

10. TIMER 

Program execution time can be estimated by use of this subroutine placed in the INITIAL, DYNAMIC 
or TERMINAL sections. The derivative evaluation routine is called one hundred times and the average 
central processing time used per evaluation reported. It must not be called from the DERIVATIVE section 
since it will then be activated recursively and the program will abort with an error message (TIMER 
CALLED FROM DERIVATIVE SECTION) 

11. VPUT (name, i, value) 

Place a value in a named variable in either the user or system dictionary. Arguments are: 

name - a Hollerith constant or variable defining a name in either the user or system dictionary 

i-the element number in the array 

value - a constant, variable or expression that corresponds in type to the named variable 

Standard form of invocation would be 

CALL VPUT(5HARRAY, 4, DATE) 

NOTE: This subroutine requires a full dictionary search and if placed inadvertently in a loop will 
use an excessive amount of computer time. 

12. WEM (nH message, nchar) 

Error messages may be written using the ACSL standard output interface by this subroutine. Standard 
form of use is 

B-4 



CALL WEM(nH message of length n characters, n) 

which will write an error message on both PRN and DIS logical units if different. 

13. WRITG 

Write integration intermediate data. Primary use is in debugging the variable step integration routines 
(IALG = 1 or 2). The state history stacks and error tables are listed. Should normally be placed at the end 
of the DERIVATIVE section. Data is written on the logical unit number contained in system variable PRN. 
Standard form of invocation is: 

CALL WRITG 

14. XFERB 

A transfer block routine is provided for moving arrays from one place to another. Useful for initialization 
instead of forming DO-loops. Standard forms of call are 

CALL XFERB(x, n, y) 

CALL XFERB(y = x, n) 

which takes n elements from array x and moves them to array y. No check is made to see whether these 
elements are contained in the arrays. 
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APPENDIX C 
ACSL SYSTEM SYMBOLS 

Certain system constants can be changed if not used in the simulation model to allow greater flexibility. 
These names are generated by the first three characters to describe the action and the last three characters 
to describe the processor. 

- PPL refers to printer plots 

- CPL refers to line or Calcomp plots 

- SPL refers to strip plots 

- PL T refers to plotting in general 

- ITG refers to integration 

- PRN refers to printed outputs 

These variables can all be changed by SET statements. The value set must agree in type - i.e., integer 
to integer, logical to logical, real or integer into real. The nominal value preset is given below the symbol. 

1. Refers to Plots in General 

CALPLT 
(.FALSE.) 

DEFPLT 
(.FALSE.) 

FTSPLT 
(.FALSE.) 

Logical: Plot on the line plot device selected at load or link-edit time. 

Logical: Defer plots. The current plot is not printed so that subsequent 
plots can be built up on the same picture. This feature has been used 
to plot trajectories of both missile and target on the same grid, i.e. 

SET DEFPLT = .TRUE. 
PLOT 'XAXIS' = RMJ, RM3 
SET DEFPLT = .FALSE. 
PLOT 'XAXIS' = RTl, RT3 

The first plots the missile trajectories with the x-axis, RM 1. Then 
the deferred plot restriction is lifted and the second plot plots target 
trajectory RTI versus RT2 and produces the output. Scale factors 
should be set so that the same scale factors are used for both target 
and missile trajectories. A useful feature here is the use of a symbolic 
name to imply the contents of the location denoted by the symbol. 

Line or Calcomp plots work similarly with the exception that the 
axes are not drawn while DEFPLT is .TRUE.. Thus it is important 
to be sure that ,the scales are the same since no indication will be given 
if they are not: The reason is the limited size of the plot image area so 
that scales cannot continue to be drawn without running out of room. 

Logical: Flyback trace suppressed on plots. If a number of parametric 
runs have been made - by cycling between the INITIAL and TERM IN AL 
sections - they can be plotted and if this variable is TRUE, plotting 
is suppressed and the symbol is incremented on flyback. The flyback is 
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NPPPLT 
(3) 

PRNPLT 
(.TRUE.) 

STRPLT 
(.FALSE.) 

determined from the first variable on the PREPARe list. When the 
difference between successive values becomes negative it is assumed that 
a new run has started. Normally, the independent variable is made the 
first variable on the PREPARe list. 

Integer: Number of plots per page used when invoking the PLOT 'ALL' 
command and controls the number of variables plotted per drawing. 

Logical: Plot on printer 

Logical: Plot on line device in strip chart form. Normally one 
variable per axis set stacked in reverse order to that on the command line. 

2. Refers to Printer Plots 

CGDPPL 
(47) 

NGXPPL 
(20) 

NGYPPL 
(10) 

NPCPPL 
(1) 

NPXPPL 
(100) 

NPYPPL 
(100) 

Integer: Character for the grid in the printer plot. Set to be a period. 
Note, it can only be changed by knowing the character value as an integer, 
not by quoting. 

Integer: Number of points between grid lines in the x-direction for printer 
plots. Nominal setting sets a grid of periods every twenty characters. 

Integer: Same as NGXPPL in y direction. 

Integer: Number of points per character plotted on the printer: This feature 
can be used for placing time ticks on a phase plane plot, i.e. 

SET DEFPLT = .TRUE. 
PLOT 'XAXIS' = X, Y 
SET DEFPLT = .FALSE., NPCPPL = 10 
PLOT 'XAXIS' = X, Y, 'CHAR' = '*' 

The first plots Y against X using values recorded every communication interval 
but the output is deferred. The plot frequency is changed and the second plot 
is plotted over the first, with a different character so flagging every tenth 
point. 

Integer: Gives number of points in the x direction for printer plots. For 
square plots make this six tenths of the y direction points. 

Integer: Gives number of points in the y direction for printer plots. 'For 
narrow terminals this will be reduced to fifty. 

3. Refers to Line or Calcomp Plots 

GRDCPL 
(.FALSE.) 

LINCPL 
(.TRUE.) 

Logical: When set TRUE, draw grid lines from each tick mark on the axes. 

Logical: Draw lines between points for the line plots. The lines between 
points can be suppressed by making this variable .FALSE .. Note if both 
SYMCPL and LINCPL are false, nothing will be plotted. 
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NPCCPL 
(10) 

PSFCPL 
(1.0) 

SATCPL 
(.FALSE.) 

SYMCPL 
(.FALSE.) 

TBRCPL 
(9600) 

TTLCPL 
(.TRUE.) 

XCICPL 
(0.0) 

XINCPL 
(5.0) 

XTICPL 
(1.0) 

YCICPL 
(0.0) 

YINCPL 
(5.0) 

YTICPL 
(1.0) 

Integer: Number of points per character on the line plots. In this case 
a symbol is written every ten points plotted. Used for time ticks on phase 
plane plots. 

Real: Plot scale factor for line plots. The overall size of the plot, including 
axes and letteri,ng can be made smaller (or larger) by changing this factor. 

Logical: Suppress axis text. Allows the axes and tick marks to be drawn 
but suppresses all numbers and labels for speed in repetitive plots. 

Logical: Plot symbols on the curve. Characters will be centered over the 
point and will correspond to the normal FORTRAN character set. Special 
symbols can be obtained as follows: 

C) ~ + X ~. ~ :R Z Y ):1: * Z I 
1 2 3 " 5 6 7 e 9 10 11 12 13 

which correspond to asking for special characters such as 'CHAR'='%'. The 
actual characters available are installation dependent so see local addendum. 
If symbols are plotted for every point, they are usually over-written and 
confused (so see item NPCCPL). 

Integer: Baud rate of channel to line plot device. Normally needed for 
Tektronix plotters. Note must be set before the first PLOT command when 
the plot device is initialized. 

Logical: Title on line plots. The full 120 character title array is written 
at the top of each plot in three lines of forty characters each. The last 
line overlaps into the plot area. Since most of TITLE is not often used, 
trailing blanks in TITLE may result in fewer than three lines being written. 

Real: X-axis cross position. Position on x-axis (in inches) where last 
y-axis is positioned. 

Real: X-axis length in inches for line plots. 

Real: X-axis tick increment in inches for line plots. 

Real: Y cross inches for line plots. This dimension is where the x-axis is 
drawn on the page. Normally at the bottom, it can be raised up to ten inches. 
Negative values will send the plotter into limit. 

Real: Y-axis length in inches for line plots. 

Real: Y-axis tick increment in inches for line plots. 
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4. Refers to Strip Plots 

GRDSPL Logical: Draw grid lines from each axis tick on strip chart plots. 
(.FALSE.) 

LINSPL 
(.TRUE.) 

NPCSPL 
(10) 

PSFSPL 
(1.0) 

SATSPL 
(.FALSE.) 

SYMSPL 
(.FALSE.) 

TTLSPL 
(.TRUE.) 

XCISPL 
(0.0) 

XINSPL 
(5.0) 

XTISPL 
(1.0) 

YASSPL 
(0.5) 

YCISPL 
(1.0) 

YINSPL 
(2.0) 

YTISPL 
(1.0) 

Logical: Draw lines between points on strip chart plots. 

Integer: Number of points per character or symbol on strip chart plots. 

Real: Plot scale factor for the strip chart plots. 

Logical: Suppress axis text. Allows the axes and tick marks to be drawn but 
suppresses all numbers and labels for repetitive plots. 

Logical: Plot symbols on the curve. The symbols will correspond to those 
given for SYMCPL. 

Logical: Draw a title over the strip plots. Three lines of forty characters 
each. 

Real: X-axis cross position. Position on x-axis (in inches) where y-axis 
is placed. 

Real: X-axis length in inches for strip chart plots. 

Real: X-axis tick increment in inches for strip chart plots. 

Real: Y-axis separation between successive axes stacked vertically. 

Real: Y-axis cross position. Position on y-axis (in inches) where the 'x-axis 
is placed. 

Real: Y-axis length in inches for strip chart plots: 

Real: Y-axis tick increment in inches for strip chart plots. 

5. Refers to Print Data 

HVDPRN 
(.FALSE.) 

MALPRN 
(10) 

TCWPRN 
(132) 

Logical: High volume data to display unit. Ensures all data written on PRN 
unit is also copied on the DIS unit if different. 

Integer: Maximum array length. For debug output all arrays were normally 
listed. In order to control the amount of output, this variable was added 
that suppresses listing of the contents of any array longer than this value. 
The last element only will be listed to show that it is present and to indicate 
the array length. 

Integer: Terminal character width. Controls the line width of any data written 
on the display (DIS) logical unit. For basically interactive machines such 
as DEC V AX/II the default is changed to 72. 
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6. Integration Control 

CIOITG 
( ... ) 

CSSITG 
( ... ) 

MXOITG 
(6) 

NRWITG 
(.FALSE.) 

TSMITG 
(.FALSE.) 

WESITG 
(.TRUE.) 

7. General 

CMD 
(5) 

DIS 
(6) 

NDBUG 
(0) 

PLT 
(9) 

PRN 
(6) 

Integer: Current integration order. Calculated by the program it may be 
OUTPUT or PREPARed so that the integration order may be followed when 
using one of the variable order, variable step integration routines (IALG = 
1 or 2). 

Real: Current step size. Calculated by the program it may be OUTPUT or 
PREPARed so that the actual integration step size may be followed as explained 
previously (CIOITG). 

Integer: Maximum order. The maximum order of the integration algorithm 
may be specified between 1 and 6 when using the variable order, variable step 
integration routines. 

Logical: No rewind. When this flag is true the data file containing the 
value of all the variables on the PREPARe list is not rewound immediately 
after a START. Data from sequential runs is then accumulated rather than 
being written on top of the previous data, thereby erasing it. 

Logical: Two sided matrix evaluation. The stiff integration algorithm 
(IALG = 2) needs to evaluate the linearized state transition matrix. If 
the state equation is dx/ dt = F(x), then two sided is obtained from F(x +dx) 
and F(x-dx); single sided from F(x) and F(x-dx). While two sided is more 
accurate than single sided, it requires twice as long to evaluate the complete 
matrix. 

Logical: Write error summary. At the end of a run using the variable order, 
variable step integration routines (IALG = 1 or 2) the option exists to list 
all the states along with the count of the number of times each state controlled 
the integration stepsize. Normally true, this data may be suppressed by 
setting WESITG false. 

Integer: Logical unit from which run-time commands are read. May only be 
five, six or nine on Control Data computers. See local installation guide. 

Integer: Logical unit on which display data is written out on. Output from 
DISPLY, RANGE and OUTPUT commands. Allowed values depend on 
machine and installation. 

Number of derivative evaluations that will have DEBUG output tied to them. 

Integer: Logical unit for line plot output (when CALPLT is .TRUE.). Device 
and installation dependent - see local installation guide. 

Integer: Logical unit on which high volume data is written out. All data 
written on unit DIS is echoed on unit PRN if different. In addition printer 
plots and PRINT command output are only written on this file. Allowed values 
depend on machine and installation. 
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RRR 
(8) 

TITLE 
(blank) 

Integer: Logical unit on which intermediate data is written out. Allowed 
values depend on machine and installation. 

Hollerith: Up to 120 characters may be set into this array which is listed 
at the top of each page. Hollerith data must be quoted. 
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APPENDIX D 
QUICK REFERENCE GUIDE FOR ACSL OPERATORS 

Tables 0-1, 0-2 and 0-3 list the operators available in the model 'definition section, the run-time 
executive commands and the system constants. 

Throughout the model definition operators, X is a real expression, J is an integer expression. An 
expression can be a signed or unsigned constant, a variable or array name, or any combination formed into 
a legal expression. 

TABLE 0-1. Summary of ACSL Model Definition Statements 

ABS(x) 

ACOS(x) 

AINT(x) 

Statement 

ALGORITHM IALG = 5 

ALOG(x) 

ALOGI0(x) 

AMAXOU1, j2 ... ) 

AMAX1(x1, x2 ... ) 

AMINOU1, j2 ... ) 

AMIN1(xl, x2 ... ) 

AMOD(xl, x2) 

ARRAY v(l, 2, 3), ... 

ASIN(x) 

ASSIGN k TO m 

ATAN(x) 

ATAN2(y, x) 

BCKLSH(ic, dl, x) 

BOUND (ll, ul, x) 

CALL name 

CINTERVAL CINT = 0.1 

CMPXPL(p, q, x, icl, ic2) 

Explanation 

A bsol u te value 

Arc-cosine; result in radians 

Integer part of real expression x 

Define integration algorithm 

Natural logarithm 

Logari thm to base ten 

Real maximum of integer expressions, ji 

Maximum of given string of expressions, xi 

Real minimum of integer expressions, ji 

Minimum of given string of expressions, xi 

Remainder when xl is divided by x2 

Specifies up to three dimensions 

Arc-sin; result in radians 

Used before a GO TO m branch 

Arc-tangent-result in radians 

Angle in radians between x-axis and point (x, y) 

Backlash or hysteresis 

Limit expression x to be between lower and upper limits 

Invoke subroutine 

Define name and value for communication interval 

y = 1 ; yeO) = icl; yeO) = ic2 
pS2 + qs + 1 
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TABLE 0-1. Summary of ACSL Model Definition Statements-Continued 

Statement 

COMMENT 

CONSTANT d = a 

CONTINUE 

COS (x) 

DBG'i' 

DBLINT(x, xd = ic, dd, dic, 
1.1., ul. ) 

DEAD( 1.1., u f , x) 

DELA Y(x, ic, tdl, nmx) 

DERIVATIVE 

DERIVT(ic, x, T) 

DIM(xI, x2) 

DISCRETE 

DO 1 j = 1, n 

DYNAMIC 

END 

EQUIVALENCE(mv, v) 

ERRTAG ERR 

EXP(x) 

EXPF(ic, T, on) 

FCNSW(p, xl,x2, x3) 

FORMAT( ... ) 

GAUSS(m, s) 

GAUSIU) 

GO TO 1 

HARM(tz, w, p) 

IABSU) 

Explanation 

Enclose statement in quote for comment 

Set constant d to value a 

Do nothing - usually labelled 

Cosine of expression x in radians 

Translator debug feature 

Double integrator with limit 

11 

7 u.1 X 

Delay expression x through fixed time tdl 

Begins block evaluating state variable derivatives 

Differentiate expression x: WARNING should not be used unless 
absolutely necessary 

Difference (xl - x2)if positive, else zero 

Begins block representing a DISCRETE event 

Start of DO-loop 

Begins section entered every communication interval 

Must complete each section, block or PROCEDURAL 

Equivalence names to same location 

Defines name for variable to indicate integration error 

Natural exponent of expression x 

Rise and fall between 0.0 and 1.0 on exponential with time constant 

Function switch 

Format description for READ, WRITE or PRINT statements 

Normally distributed random variable, given mean, m, and standard 
deviations. 

Initialize random number seed 

Transfer control to statement labelled 1 

Output is sin(w*(T - tz) + p»; T>tz else 0.0 

Absolute value of integer expression j 
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TABLE D-1. Summary of ACSL Model Definition Statements-Continued 

Statement Explanation 

IDIMUl, j2) Integer positive difference of integer expression j 1 and j2 

IF(lexpr) statement If logical expression, lexpr is .TRUE., execute statement 

IMPL(yz, e, m, efl, f(y), yd) Solves implicit equation fey) = y 

INITIAL Begins section executed at beginning of every run - after each 
ST AR T command 

INT(x) Integer part of real expression x 

INTEG(xd, xic) Integrates derivative xd given initial value xic 

INTEGER Defines type (and size) for variables, functions (and arrays) 

INTVC(xd, xic) Integrates vector derivative xd given initial value vector xic. 
State, derivative and initial condition may be names only - arrays 
must be same size 

ISIGNUl, j2) Absolute value of integer expression j 1 times a sign of integer 
expression j2 

LEDLAG(p, q, x, ic) 
y ps + 1 . / - = __ ; yeO) = IC + px q 
x qs + 1 

LIMINT(yd, ic, ii, ul) Limited integrator 

LINES(i, 'TOF') Inform top-of-page manager i lines are about to be written. 
Optional 'TO F' 

LOG Forces data recording action when called as subroutine 

LOGICAL Defines type (and size) of variables, functions(and arrays) 

LSW(p, tv, fv) Logical or integer switch 

MACRO Begins macro definition 

MAXOUl, j2 ... ) Maximum of integer expression j 1, j2 ... 

MAXl(xl, x2 ... ) Integerized maximum of real expression xl, x2 ... 

MAXTER V AL MAXT = Defines name and value of maximum calculation interval 
1.0 E+ 10 

MERROR X=O.OOI, ... Defines allowed relative error for state variables 

MINOU 1, j2 ... ) Minimum of integer expressions j 1, j2 ... 

MINl(xl, x2 ... ) Integerized minimum of real expressions xl, x2 ... 

MINTERVAL MINT = Defines name and value of minimum calculation interval 
1.0E-IO 

MODUl, j2) Remainder when integer expression j 1 is divided by integer 
expression j2 

Cant. 
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TABLE 0-1. Summary of ACSL Model Definition Statements-Continued 

Statement 

MODINT(yd, ie, .U, £2) 

NSTEPS NSTP = 10 

OU(r, m, s) 

OUTPUT(vI, v2 ... ) 

PREPAR(vI, v2 ... ) 

PRINT n, L 

PROCEDURAL(yI, y2 = 
xl, ... ) 

PROGRAM text string 

PTR(x, y = r, 8) 

PULSE(tz, p, w) 

QNTZR(p, x) 

RAMP(tz) 

READ n, L 

REAL 

REALPL(p, x, ic) 

Explanation 

Moded integrator Ll 

T F 

TOPER HOLD 

L2 
F RESET OPER 

--

Define name and value of number of steps (calculation intervals) 
in a communication interval - overridden by MAXT and MINT 

Band limited white noise, mean m, standard deviation, s: break 
frequency 27r / r Hz 

Record values of Vi each communication interval 

Save values of Vi on prepare file, each communication interval 

Print list L according to FORMAT n. Precede with LINES(i) 

Begins block whose order is to be maintained. The block will be 
placed before statementS-U$ing the Yi and after those calculating 
the Xi 

First card of model definition deck. No dollar sign in text. 

x = r cos 8; y = r sin 8 

o n .. T y-
~-------~~-----~~X 

':&P/2 
45-t z . 

I ~T 

Read list L according to FORMAT n 

Define type (and size) of variables, functions (and arrays). 
Assumed default for all names in program. 

y(O) = ic 
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TABLE 0-1. Summary of ACSL Model Definition Statements-Continued 

Statement 

RESET(a) 

RSW(p, tv, fv) 

RTP(r, () = x, y) 

SAVE 

SCALE( dmn, dmx = 
ymn, ymx) 

SIGN(xl, x2) 

SIN(x) 

SQRT(x) 

STEP(tz) 

TABLE name,n,d/list/ 

TAN(x) 

TERMINAL 

TERMT(lexpr) 

TRAN (nn, nd, qn, qd, x) 

UNIF( I. ,u) 

UNIFIU) 

VARIABLE T = 0.0, 
TSC = 0.0 

XERROR X = I.OE-4 

ZHOLD(ic, p, x) 

ZOH(x, ie, tz, dt, i) 

Explanation 

Used in INITIAL section to transfer initial condition array 
to state array. Argument must be 'EV AL' or 'NOEV AL' 

Real switch 

r = vx2 + y2; () = ATAN2(y, x) 

Save current macro tables on the macro file 

Convert ymx and ymn to scales on plots 

Absolute value of expression xl, times sign of x2 

Sine of expression x - x in radians 

Square root of eXPression x: Error if negative 

Define arbitrary function of n variables, dimensions d - breakpoints 
and function values given in list 

Tangent of expression x • x in radians 

Begins section entered at termination of a run 

Identifies run termination condition; forces transfer to TERMINAL 
section when logical expression, lexpr, is .TRUE. 

Transfer function: nn is ORDER of numerator; nd is ORDER 
of denominator, nn and nd must be integer constants, qn and qd 
are arrays of coefficients of s for numerator and demoninator, 
high order coefficient first 

Uniform random number distributed between lower, I, and upper, u. 

Initialize seed for random number generator - changes same seed 
as GAUSI 

Defines name and initial condition on independent variable 

Define allowed absolute error for state variable 

Output is x if p is .TRUE., last value output if .FALSE. 

Periodic hold every dt seconds starting at tz 
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TABLE 0-2. Summary of ACSL Run-Time Executive Commands 

Command Subcommands Explanation 

ACTION Schedule action 

'VAR' = Independent Variable (when) 

'VAL' = Value (what) 

'LOC' = Data location (where) 

'CLEAR' Clear action list 

ANALYZ 

'FREEZE' = Hold value of state variables listed 

'EIGVEC' = Calculate eigen vectors along with eigen values 

'EIGPER' = Calculate eigen finder performance 

'DISPLY' = List all output on display (DIS) unit 

'LIST' = List details of trim iteration 

'RMSEMX' = Specify allowable error for trim convergence 

'NITRMX' = Specify maximum number of iterations during trim 

'FRACMX' = Specify maximum fractional change during trim 

'FRACDL' = Specify fraction of Newton-Raphson step ,taken during trim 
iteration 

'TRIM' Initiate the trim iteration 

'JACOB' Calculate and list the system Jacobian 

'EIGEN' Calculate system eigen values 

CONTIN Continue to integrate 

DISPLY D Display values of named variables 

END Completes PROCEDure definitions 

MERROR Establish relative errors for given state variables 

OUTPUT Schedule names on list to have values listed during run 

'NCIOUT' = Number of communication intervals between output 

'CLEAR' Clear output list 

PLOT Printer and/or line plots and/or strip plots 

'ALL' Plot all variables on prepare file 

'CHAR' = Use given character for plot 

'HI' = Specify upper y-axis value 

'LO' = Specify lower y-axis value 

Cont. 
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TABLE 0-2. Summary of ACSL Run-Time Executive Commands-Continued 

Command Subcommands Explanation 

'TAG' = Specify y-axis character tag string 

'LOG' Use logarithmic scale for y-axis 

'OVER' Overplot - no axis drawn 

'SAME' Same scales for variables to left 

'XAXIS' = Specify X-axis variable 

'XHI' = Specify right-most x-axis value 

'XLO' = Specify left-most x-axis value 

'XTAG' = Specify x-axis character tag string 

'XLOG~ Use logarithmic scale for x-axis 

PREPAR Schedule names on list to have values saved on prepare file 
during run 

'CLEAR' Clear prepared list 

PRINT Select names on PREP ARe list to have values listed in 
column form 

'NCIPRN' = Number of communication intervals between print lines 

'ALL' Print all variables on PREP ARe file 

PROCED Define beginning of procedure block. Terminated by END. 

RANGE Print maximum and minimum values of selected variables 
on PREP AREe list 

'ALL' Determine range for all variables on PREPARe list 

'IHI' = High value for independent variable 

'ILO' = Low value for independent variable 

'IVAR' = Define independent variable 

REINIT Reinitialize initial conditions to current state 

RESTOR Restore data area from any named file 'fn' 

SAVE Save data area on a named file 'fn' 

SET(S) Set values of constants 

SPARE Links to FORTRAN subroutine of that name: Library routine gives 
central processor time used and that elapsed since last call 

I 

START Start simulation run 

STOP Terminate simulation study 

XERROR Establish absolute errors for given state variables 
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TABLE 0-3. Executive System Variables 

Name Default Explanation 

CALPLT .FALSE. Dra w line plots 

CGDPPL 0 Character for grid - printer plots 

CIOITG ... Current integration order - integration control 

CMD 5 Logical unit executive commands are read from 

CSSITG ... Current step size - integration control 

DEFPLT .FALSE. Defer output of plot 

DIS 6 Logical unit for display output 

FTSPLT .FALSE. Flyback trace suppression (channell) for all plots 

GRDCPL .FALSE. Grids on line plots 

GRDSPL .FALSE. Grids on strip plots 

HVDPRN .FALSE. High volume display 

LINCPL .TRUE. Dra w lines between points - line plots 

LINSPL .TRUE. Draw lines between points - strip plots 

MALPRN 10 Maximum array length printed by debug 

MXOITG 6 Maximum integration order 

NDBUG 0 Debug listing forced if greater than zero 

NGXPPL 20 Number of points between grid lines in x direction 

NGYPPL 10 Number of points between grid lines in y direction 

NPCCPL 10 Number of points between characters - line plots 

NPCSPL 10 Number of points between characters - strip plots 

NPPPLT 3 Number of plots per page - 'ALL' plots 

NPXPPL 100 N umber of points in X direction - printer plots 

NPYPPL 100 N umber of points in Y direction - printer plots 

NRWITG .FALSE. No rewind of RRR file before run STARTs 

PLT 9 Logical unit number for plot output 

PRN 6 Logical unit number for high volume output 

PRNPLT .TRUE. Draw printer plots 

PSFCPL 1.0 Plot scale factor - line plots 

PSFSPL 1.0 Plot scale factor - strip plots 

RRR 8 Logical unit for prepare file - raw run record file 

SATCPL .FALSE. Suppress axis text - line plots 

Cont. 
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TABLE 0-3. Executive System Variables-Continued 

Name Default Explanation 

SATSPL .FALSE. Suppress axis text - strip plots 

STRPLT .FALSE. Draw strip plots 

SYMCPL .FALSE. Plot symbols on line plots - every NPCCPL points 

SYMSPL .FALSE. Plot symbols on strip plots - every NPCSPL points 

TBRCPL 9600 Terminal baud rate for graphics 

TCWPRN 132 Terminal character width 

TITLE BLANK Array of 120 characters printed at page top 

TSMITG .FALSE. Two sided matrix evaluation of Jacobian 

TTLCPL .TRUE. Draw title on line plots 

TTLSPL .TRUE. Draw title on strip plots 

WESITG .TRUE. Write error summary - integration control 

XCICPL 0.0 X -axis crosses in inches - line plots 

XCISPL 0.0 X-axis crosses in inches - strip plots 

XINCPL 5.0 Length of X -axis in inches - line plots 

XINSPL 5.0 Length of X-axis in inches - strip plots 

XTICPL 1.0 X -axis tick increment - line plots 

XTISPL 1.0 X-axis tick increment - strip plots 

YASSPL 0.5 Y -axis separation - strip plots 

YCICPL 0.0 Y -axis crosses in inches - line plots 

YCISPL 1.0 Y -axis crosses in inches - strip plots 

YINCPL 5.0 Length of Y-axis in inches - line plots 

YINSPL 2.0 Length of Y-axis in inches - strip plots 

YTICPL 1.0 Y -axis tick increment - line plots 

YTISPL 1.0 Y -axis tick increment - strip plots 
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APPENDIX E 
EXAMPLE CONTROL CARDS 

This manual is accompanied by a separate booklet or addenda that gives a detailed description of how 
to use ACSL within the particular operating environment of your computing system. Since operating system 
commands differ from manufacturer to manufacturer, and even within competing groups from the same 
manufacturer, it is impossible to describe the details for all machines. As far as the ACSL program is 
concerned, it is machine transportable and models defined on one machine should produce the same results 
when run on another. Of course, numerical precision will vary somewhat. The main difference the user must 
be aware of is the characters per word when SET-ting individual elements of the TITLE array. 

In order to provide some idea of how the program is actually run, this section shows the command 
sequence or deck set up when running under the NOS operating system with a CDC 6000 or CYBER 70 
machine. 

1. Batch Operation 

Your job card 

ACCOUNT (your account number, password) 

CHARGE (charge number) 

GET (ACSL/UN = ACSLSYS) 

ACSL (I = INPUT, PLT = UNI) 

SAVE (PLFILE) 

7/8/9 - end of record 

l ACSL model definition program 

7/8/9 - end of record 
I • 
j ACSL run-time control cards 

6/7/8/9 - end of information 

This sequence will exercise the model under the command of the run-time drive cards, producing output 
on the line printer. Any line or strip plots will be written on an intermediate plot file (PLFILE) for later 
processing by UNIPOST 
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2. Terminal Operation 

Log on - enter account number, then password 

charge(your charge number) 

get(acsl/un =acslsys) 

acsl(i = model) 

?set prn=9 

etc 1 ACSL run-time commands 

~ ?end 

route(print,dc = pr) 

bye 

This sequence will exercise the model, the definition statements for which have been presto red on file 
'MODEL'. Low volume data will be presented on the terminal, high volume being disposed of to a local line 
printer as the last operation. 
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APPENDIX F 
ACSL ERROR MESSAGES 

The following lists the error messages that can be produced during the translation phase of the program 
together with amplification and possible causes. 

1. ACSL Translator Error Messages 

BAD BREAKPOINT SPEC 

The number of arguments specified in the TABLE statement is not 1, 2 or 3 or the number of breakpoint 
integers given does not correspond with the number of arguments. 

BAD FUNCTION DATA COUNT 

The number of data items in the TABLE statement (between slashes) does not add up to the total length 
expected - product of dimensions plus sum of dimensions. 

CONFLICTING DATA TYPE 

The identifier indicated in the error message is being used in a way that conflicts with an earlier usage. 
Some examples are: 

1) Attempt to use a label as a variable 

2) Using the variable in two different type declarations 

3) Using "States" or "Ies" in logical or integer typing statements 

4) Using duplicate "ICs" in separate INTEG statements 

CONFLICTING LABEL NAME 

The identifier indicated in the error message is either a variable being used as a statement label, or a 
previously defined label. 

DIMENSIONS ALREADY SET 

Attempt to define the dimensions of a previous dimensioned array. 

EQUIV ALENCE ERROR 

Usually caused by not realizing the special place occupied by the first variable in the EQUIVALENCE 
list which is used, in the ACSL sense, as a primary variable. This variable must always appear first on 
the list for any subsequent EQUIVALENCE statements into the same array. Another cause is 
equivalencing the same secondary variable to two different primary variables. System variables such as 
CINT, MAXT, state, derivative and initial condition variables must be given as primary variables 

ILLEGAL BLOCK COMBINATION 

An ACSL block delimiter (PROGRAM, INITIAL, END, etc) was encountered, out of the proper 
sequence. 

ILLEGAL DERIVATIVE DEFINITION 

Derivative arrays are not allowed except in INTVC statements. 

INSUFFICIENT REGION FOR TRANSLATION 

Insufficient field length for ACSL to attempt translation. Always fatal. Increase memory region parame­
ter and resubmit job. 
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INTEG NOT IN SORT BLOCK 

Integration statements must be in a DERIVATIVE block (an implicit PROGRAM ... END structure 
is synonymous with a DERIVATIVE block) rather than the INITIAL, DYNAMIC or TERMINAL 
section. Usually caused by an END mismatch which terminates a block inadvertently. May also be 
caused by an integration statement inside a PROCEDURAL ... END block nested to level two or 
higher. 

MACRO ARGUMENT ERROR 

Error in the macro definition and attempting to invoke the macro, or the computed argument number 
for the main argument is less than" 1" or greater than the original number of arguments. 

MACRO NOT DEFINED 

Attempt to use a macro which has not been defined. The syntax of the statement indicates a macro is 
present but the macro is not found in the macro file. 

MACRO NOT INVOKED 

Attempt to use an "ASSIGNED" variable when variable was not defined in an ASSIGN statement. 

MACRO STATEMENT ORDER ERROR 

During macro expansion: No standard value for an unspecified macro argument, or an attempt to use 
the dimensions of an undimensioned argument. ' 

MISSING DERIVATIVE STATEMENT 

An INTEG statement is missing for some element of a state array. 

,JULTIPLY DEFINED SYMBOL 

The named variable has previously been assigned a value in this sort block or: deriv~tive section. 

'l~O RIGHT SIBLING 

Internal ACSL system error during syntax analysis. Report to system staff with example. 

NO TABLE SPACE LEFT 

Insufficient field length for ACSL to continue running. Usually caused by the use of a large number of 
variables in a large program. Can also be caused by arithmetic loops encountered in statement sorting. 
An increase in field length of 10K should be more than sufficient in most cases. Always fatal. 

OUTSIDE TABLE LIMIT 

A system error in the ACSL translator. Report to system staff with example. 

PARAMETER NOT FOUND 

Attempt to assign a standard value to a variable other than one of the main arguments in a MACRO 
definition. 

PROC.ENDEDINCORRECTLY 

An ACSL block delimiter, other than "END", was found inside a "PROCEDURAL" block. 

PREMA TURE END OF FILE 

An end of file was encountered on the translator input file before the logical end of the ACSL source 
program was found. Implies an incomplete program or a missing END statement. 

TABLE ALREADY DEFINED 

The table name has already been used in another context prior to the current table definition. Either as 
a simple variable, another TABLE definition or simple use. TABLE functions must be defined before 
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their first use since otherwise the translator cannot distinguish the use from normal FORTRAN func­
tions. 

TOO MANY CHARACTERS 

The truncated identifier, indicated by the message, contains more than 6 characters. Translation contin­
ues with the truncated version of the identifier. 

TOO MANY ENDS 

Statements remain on the input file after the final END of the ACSL program. The remaining 
statements are listed but not processed. Implies that too many END statements were included'in the 
program, or that statements were misplaced, or that FORTRAN routines are included with the source 
deck but don't start with SUBROUTINE, FUNCTION, INTEGER FUNCTION, etc. 

UNSORTABLESTATEMENTBLOCK 

An arithmetic loop was encountered during sorting, and is listed below the message. The statements will 
not appear on the compile file, but the statements which depend on this block will. 

VARIABLE NOT DIMENSIONED 

The variable indicated in the error message is being used as an array without being declared as such by 
an ARRAY, DIMENSION or other such typing statement. 

WRONG DIMENSIONS 

Attempt to use an array with ·more than 3 subscripts. 

2. RUN-TIME ERROR MESSAGES 

Run-time error messages produced by the ACSL executive processing the model drive cards, are as 
follows: . 

CAN-T FIND ARRAY ELEMENT IN name 

A reference has been made to a particular array element that doesn't exist or has already been deleted 
once before by a preceding FREEZE. 

CAN-T FIND name 

The 'name' does not appear in the dictionary or in the case of PLOT, PRINT or RANGE commands, 
might not have been included on the PREPAR list. 

CAN-T SATISFY ERROR CRITERION 

The integration algorithm has decided it needs to take a step smaller than MINT to keep the largest 
error within bound. Must be acknowledged with ERRTAG (q.v.) or the simulation run will stop. 

CANNOT TRIM WITH DELAY FUNCTION 

An attempt has been made to use the TRIM subcommand of ANALYZ. The Jacobian is in error if 
D ELA Y- functions are used in the model. 

CONSTANT COLUMN - NUMBER IS n 

In trying to invert the Jacobian, a constant column has been identified and indicated by numeric value 
into the list of unfrozen state variables. Usually the result of keeping a state variable in the iteration that 
has no influence on any other part of the model. 

CONSTANT ROW - NUMBER IS n 

In trying to invert the Jacobian, a constant row has been identified. Usually the result of keeping a state 
variable in the iteration with a constant (may be zero) derivative. 
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END OF COMMAND FILE ENCOUNTERED 

An end of file has been sensed on the file identified by logical unit CMD. The simulation study is 
terminated and control reverts to the operating system. 

ERROR AFTER name 

Some sort of syntax error has been determined after the given 'name' appears on the command card 
image. Trying to specify NCI by a real number (2.0 for example): 'CHAR' value as a logical for instance. 

ERROR IN EIGEN ANALYSIS ROUTINE 

ERROR NUMBER IS n 

An error was made in trying to determine the eigen values of the Jacobian matrix. See error listing for 
eigen analysis routine actually used. 

FILE LENGTH TOO SHORT 

The RESTORe command found the data block did not match the user block length. Usually caused by 
attempting to RESTORe a file SAVEd from a previous translation run. Changes to the ACSL program 
will invalidate previous assignments. 

FILE NAME SHOULD BE QUOTED 

The argument for the SAVE/RESTORe commands should be a valid file name in quotes, i.e. 

SAVE 'JOE' 

File names should start with a letter and contain no more than six characters (letters or digits) 

ILLEGAL COMMAND WORD 

The command word starting the statement is not in the standard list nor is it the name of any PROCE­
Dure established. 

ILLEGAL DATA TYPE FOLLOWING name 

Something is wrong with the command following the symbol 'name' and before any following symbol. 

INDEPENDENT VARIABLE CHANGED IN JACOBIAN EVALUATION name 

A state variable has been modified inside the DERIVATIVE section used to calculate the Jacobian. 
Since the Jacobian evaluator uses numerical perturbation of the unfrozen state variables, any other 
modification will invalidate the calculation. 

INSUFFICIENT AREA FOR DELAY FUNCTION 

The array length specified in one of the DELAY functions is too small to accommodate all the data points 
needed. Usually produced when the model goes through a region requiring a very small step size. 

INSUFFICIENT DATA 

The statement is terminated when data was expected. 

JACOBIAN DETERMINANT ZERO, CAN~T TRIM 

The TRIM subcommand of ANALYZ has found that the Jacobian has a zero determinant so the 
Newton-Raphson iteration can't proceed. Using FREEZE prior to the TRIM can usually eliminate the 
offending state. 

\ 

LINE PLOT LIBRARY NOT LOADED 

An attempt has been made to make line plots (PLOT with CALPL T true) without instructing the loader 
or link-edit program to substitute the appropriate device driver. See local addendum for devices available 
and JCL or system control cards required. 
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LINEAR ANALYSIS ROUTINE NOT LOADED 

An attempt has been made to use the run time command ANALYZ without ensuring that the routines 
are present to handle the command. Due to infrequent usage, the normal default is to omit the routines 
that handle the ANAL Y Z command in order to save memory and load time. See local addendum for 
JCL required to instruct the loader or link-editor to link in the appropriate modules. 

LIST DOESN'T CONTAIN name 

One of the ANAL YZ subcommands is looking for a variable in a list. For instance FREEZE can only 
apply to state variables. 

NAME ALREADY DEFINED 

In using LISTD to process a set of dictionary definitions, the same variable name has appeared twice. 
Usually caused by omitting continuation digits from column ten (10) for long definitions. 

NAME ALREADY IN DICTIONARY 

In using BLDDCT to extend to the ACSL dictionary an attempt was made to add a name already present 
in the dictionary. 

NAME FOR PROCEDURE NOT GIVEN OR ILLEGAL 

The procedure name is not of the correct form following the PROCED command. 

NAME MUST PRECEDE DATA 

A data item is given before a name has been established to store the value in, i.e. 

SET A = 2.0 is alright 

but SET 2.0 = A is wrong 

NAME OR ELEMENT NOT ON PREPAR LIST - name 

One of the commands that refers to the PREPAR list (PLOT, PRINT, RANGE, etc) has a variable 
name or array element in the list that was not included in the original PREPAR command i.e. PREPAR 
Y(2), Y(3) followed later by PLOT Y(1). 

NEED A NAME FIRST 

Modifiers to one of the plot variables refer to a preceding symbol. If no symbol is given it is an error, 
i.e .. 

PLOT 'LO' = 0.0 'HI' = 5.0, YI is incorrect 

NO MORE TABLE SPACE, MAX LENGTH USED IS i 

The run time table space manager has run out of space and the simulation study must be aborted. 
Frequently associated with using the stiff integration algorithm which needs 2N squared words, where 
N is the number of the state variables. See local addendum for mechanism to increase table space at 
run-time. 

NO SPACE LEFT IN DICTIONARY FOR name 

In attempting to extend the user dictionary with BLDDCT, the common block space designated for the 
dictionary has been filled and no more names can be added. Length may not have been established with 
NITBLD. Extend the length of the dictionary common block/ ZZDCT / in the user supplied main 
program. 

NO USER SUPPLIED INTEGRATION ROUTINE 

An attempt has been made to use integration algorithm seven (lALG=7) without supplying a subroutine 
INTEG to handle the integration. 
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REFERENCE OUT OF LIMIT OF ARRAY name 

An array element is referred to that is outside the declared size of the array. In a SET command 
sequential data items go into succeeding slots of an a,rray. Each is checked to make sure the array bound 
is not exceeded, i.e., if A is an array of size five, th'e following 

SET A(3) = 1.5, 2.5, 5.0, 6.0 

would produce this message since the 6.0 is to be stored in A(6). 

REFERENCE TO NON-STATE VARIABLE name 

An attempt has been made to specify error tolerances with XERROR or MERROR for a variable that 
is not a state variable. Check names in state list from debug output. 

RESCALE NOT IMPLEMENTED 

Reference has been made to the old ACSL system symbols RSCCPL, RSCPPL or RSCPLT that were 
supposed to cause dynamic rescaling within a plot. This feature was eliminated at level 6M. 

STEP SIZE TOO LARGE. STATE - n 

A zero determinant has been found in trying to invert the matrix (I + hA) in the stiff integration 
algorithm. Should never happen but may be fixed by reducing the allowable step size. 

SYNTAX ERROR X = Y++Y 

************* 

The statement is repeated and the line of asterisks stops where the first syntax error occurred. 

TAG TOO LONG AFTER name 

A TAG string on a PLOT command has too many characters. Actual number allowed will depend on 
machine type but all machines will accept twenty (20) character messages. 

TOO MANY ITERATIONS, CAN-T CONVERGE 

The TRIM sub-command of ANALYZ has failed to converge within the specified number of iterations. 
Either increase the numbers of iterations (NITRMX), reduce the convergence criteria (RMSEMX) or 
decrease the step (FRACDL). Use REIN IT to hold on to any gains obtained with the current iteration. 

TYPE CONFLICT ON STORE INTO name 

The data does not agree with the predetermined type of 'name'. Logical data can only be .TRUE. (.T.) 
or .FALSE. (.F.). Integers are allowed into reals, but all other combinations are illegal. 

X-AXIS SCALES INCORRECT FOR LOG PLOTS 

Y-AXIS SCALES INCORRECT FOR LOG PLOTS on name 

The scale values are either negative or zero when making logarithmic plots. Usually the LO value must 
be specified since the normal rounding will change the LO axis marker to zero. 

ZERO PIVOT ELEMENT FOUND AT STATE INDEX n 

In using TRIM within ANALYZ, a zero determinant has been found when trying to invert the Jacobian. 
This message identifies the row number at which the zero pivot element first showed up and can 
sometimes be correlated to a state variable having a degenerate relationship with the rest of the model. 
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