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FOREWORD

This manual describes the operations available with the Advanced Continuous Simulation
Language, ACSL (pronounced “axle”). This language was designed for modelling and evaluating
the performance of continuous systems described by time dependent, non-linear differential equa-
tions.

In the development of the simulation system, emphasis has been placed on the ability to run
and evaluate the model on-line. Provision has been made to overcome the usual problem of high
data volume -- monitoring information can be directed to the terminal, high volume output to a lo-
cal line printer. - '

In becoming familiar with this book, it is recommended that the reader look through Chap-
ters 1, 2 and 3 and then turn to the example programs given in Appendix A -- making reference
to the operators, Chapter 4, and run-time commands, Chapter 5, as necessary. These chapters list-
ing the available operators are not designed for direct reading because of the alphabetic organiza-
tion of the material.

Before running a simulation, make sure Chapter 7 on program debugging has been studied.
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1. INTRODUCTION

Simulation of physical systems is a standard analysis tool used in the evalution of hardware design prior
to actual construction. The continuous system simulation language described herein, and referred to as ACSL
- Advanced Continuous Simulation Language - has been developed expressly for the purpose of modelling
systems described by time dependent, non-linear differential equations and/or transfer functions.* Typical
application areas are control system design, chemical process representation, missile and aircraft simulation
or fluid flow and heat transfer analysis. Program preparation can either be from block diagram interconnec-
tion, conventional FORTRAN statements or a mixture of both.

Highlights of the language are free form input, function generation of up to three variables, and
independent error control on each integrator. Flexibility is provided for plotting the behavior of the models
under a number of external forcing functions. Many simulation oriented operators such as variable time delay,
dead zone, backlash and quantization are included and made readily accessible.

The ACSL program was intended to provide a simple method of repre.enting these mathematical models
on a digital computer. Working from an equation description of the problem or a block diagram, the user
writes ACSL statements to describe the system under investigation. Drive cards are written to exercise the
model and these statements are keypunched and submitted for solution. An alternate mode is via a remote
terminal such as a teletype; true on-line control is now possible with the user changing model constants and
monitoring the resulting solutions.

Statements describing the model need not be ordered since the ACSL processor will sort the equations
so that no values are used before they have been calculated (applies only to the DERIVATIVE section of an
explicitly structured program - see subsection 3.0). This operation of the language is to be contrasted to the
usual digital programming languages like FORTRAN, where program execution depends critically on state-
ment order. The ACSL sorting procedure is described in more detail in Subsection 3.2.

1.1 JOB PROCESSING

The cards supplied by the user are in two distinct groups - the first group contains those concerned with
defining the model or structure of the system being simulated; the second group contains the sequence of
commands that exercise this model - i.e., change parameters, start runs, control which plots to make.

The model definition statements are read by the ACSL program which translates these to a set of
intermediate FORTRAN programs. These FORTRAN programs are compiled, loaded with the ACSL
Run-time Library and executed. The run-time drive cards now are read by the executive which decodes and
executes commands in sequence - refer to Section 5 for a description of the commands usable at run-time.
At least a START command is necessary at this point to exercise the model.

1.2 LANGUAGE FEATURES

The language consists of a set of arithmetic operators, standard functions and a set of special statements
and a MACRO capability which allows extension of the special statements, either at the system level for each
installation, or for each individual user. The arithmetic operators are +, -, *, /, **  denoting addition,
subtraction, multiplication, division and exponentiation. The functions are listed in Section 4 and consist of
special ACSL operators such as QNTZR (quantization), UNIF (uniform random number), etc. In addition,
all the functions of the FORTRAN library are available such as SQRT (square root), AMOD (modulus),
etc. Integration is a special ACSL operator that is accomplished either by INTEG or INTVC, i.e.

* The basic structure follows the specification established by the Technical Committee on Continuous
System Simulation Languages and under the auspices of Simulation Councils, Inc. (SCi) in SIMULA-
TION 9 (Dec. 1967) pp 281-303.
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R = INTEG(X, RZERO)
implies T
R = RZERO + '/0. X dt
This integration operator is the heart of the simulation system. In building any model, it is necessary
to change differential operators into integration operators and this is conventionally accomplished by express-
ing the highest derivative of a variable in terms of lower derivatives and other variables. As an example,
consider the spring dashpot system excited by a given function of time F(t). In general form it can be written
X + 2 wx + w2x = F(t)
where w is the natural frequency and { the damping ratio. Expressing this equation in terms of the highest
derivative X, we have
X = F(t) - 2 w X - w?x
Since x appears on the right hand side, we must give it-a name (XD). The two integrations can the be written
as
XD = INTEG(F(T) - 2*ZE*W*XD - W**2*X XDIC)
X = INTEG(XD, XIC)
This process transforms the original set of differential equations to a set of first order equations which
can be solved directly by integrating.

It is necessary to be somewhat careful in the transformation process to avoid the introduction of
redundant state variables. In the above sequence we could have avoided the reference to x (XD) by calculating
X (XDD) directly and embedding an INTEG operator in the expression, i.e.

XDD = F(T) - 2*ZE*W*INTEG(XDD, XDIC) - W**2*X
Now X is the second integral of XDD so
X = INTEG(INTEG(XDD, XDIC), XIC)

In these two equations, there are three INTEG operators - each one a state variable - but two are integrations-
of XDD with the same initial condition, one of these is redundant and can be eliminated by explicitly naming
the first derivative as shown previously.

Before we give a detailed description of the language, let us code a simple problem using the arithmetic
operators and the SQRT and INTEG. functions defined above.

The coding for the equations
X =Y+ X(I-X2-Y)HANXE + YZ X(0) = 0.5
Y =-X + Y(1-X2-Y2)/VXZ + YZ Y(0) = 0.0
is shown in Figure 1-1.

While this series of statements completely describes the equations to be solved it does not represent the
complete problem statement. Figure 1-2 lists the complete running program where each card is numbered for
reference. To complete the model definition a PROGRAM card (1) is needed to start; the communication
interval must be defined by the CINTERVAL operator (3); the termination condition must be specified as
a logical expression forming the argument for the TERMT operator (7); and the model definition must be
completed by an END card (8) which matches the PROGRAM card. This end card tells the translator nothing
further is expected unless FORTRAN subroutines or functions are included. A further refinement is in
assigning symbolic names for the initial condition, X(0) and Y(0), and for the stop time TSTOP. These are
preset in the CONSTANT statement (2).

12



X**Q + Y#*2
INTEG(Y + X*(1.0 - R2)/SQRT(R2), 0.5)

R2
X
Y INTEG(-X + Y*(1.0 -R2)/SQRT(R?2), 0.0)

Figure 1-1. Model Equations Corresponding to Mathematical Definition - Limit Cycle Problem

MODEL DEFINITION CARDS

(1) PROGRAM LIMIT CYCLE

(2) CONSTANT XZ = 0.5, YZ = 0.0, TSTOP = 4.0
(3) CINTERVAL CINT = 0.1

(4) R2 = X**2 +Y**)

(5) X = INTEG(Y + X*(1.0 - R2)/SQRT(R2), XZ)
(6) Y = INTEG(-X + Y*(1.0 - R2)/SQRT(R2), YZ)
(7) TERMT(T.GE.TSTOP)

(8) END

RUN-TIME DRIVE CARDS

9) OUTPUTT,X,Y

(10) START

(11) ‘CHANGE INITIAL CONDITIONS AND RUN AGAIN’
(12) SETXZ=0.7

(13) START

(14) STOP

Figure 1-2. Programs for Model Definition and Run-time Drive Cards - Limit Cycle Problem

Once a symbol is assigned to a variable it can be changed at run-time. Embedding literal constants (the
characters 0.5 are a literal constant) in the program is not good programming practice. It is much better to
use a symbol preset to the value desired. Changes then occur in one place.

In addition to the model definition statements, the run-time group of cards must be defined that tells
how the model is to be exercised. These are separated from the model definition section by an end-of-record
separator for a batch run (7-8-9 multipunch in column one on a CDC 6000/7000 machine) or else a separate
file. Interactively the run time commands can come from a key board or a terminal. The OUTPUT statement
(9) defines the variables which are to be listed at each communcation interval; then the model must be told
to go by the command START (10). Card number eleven is a comment, twelve changes the intial condition
and thirteen says run again. Card number fourteen terminates the simulation study. Section 1 of Appendix
A lists the actual program and the output listing and plots obtained in solving this set of equations.
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1.3 CODING PROCEDURE

The ACSL coding line contains eighty characters of which the first seventy-two are used for program
information and 73-80 for identification, if needed. The ACSL statement may be placed anywhere on the card
and the user should arrive at some standards to preserve a uniform appearance of the source text. Suggested
standards are as follows:

Section delineators - PROGRAM, INITIAL, DYNAMIC, END, etc., starting in column 1
PROCEDURAL brackets - matching pairs of PROCEDURAL/END statements starting in column 6
Unlabelled statements - starting in column 7

Labelled statements - label starting in column 6

Assignment statements - ensure the equal sign (=) falls in column 15 or beyond

These procedures are not necessary, but they make the resulting program much neater and easier to read.

More than one statement can be placed on one card by separating them by a dollar sign ($). Any
statement can be continued on to the next line by adding an ellipsis (three consecutive periods . . .) anywhere
at the end of the card - to the right of any non-blank information but before column seventy-two. Any trailing
blanks are squeezed out of the card containing the ellipsis and the following card is added directly - it is as
though the characters were strung on the end after the last non-blank charcter of the preceding card, starting
with column 1. Leading blanks of the continuation card are not suppressed. Comments may be added by
enclosing a complete statement in quotes. Note that neither a quote () nor a dollar sign ($) can be part of
a comment. Examples:

“THIS IS A COMMENT CONTINUED ON TO . . .
THE NEXT LINE’
“THE NEXT LINE HAS TWO STATEMENTS’
A=B+C § X=Y+2Z
‘COMMENTS CAN BE ADDED IN LINE AS . ..
A SEPARATE STATEMENT’
X=Y+Z $ ‘ASSIGN VALUE TO X’
‘NEXT ARE TWO LABELLED STATEMENTS’
LABEL..C =D + 50
1000 . . FORMAT(1X, 3E12.5)

Blank lines can be interspersed throughout the code in order to help produce an attractive program format.

1.4 RESERVED NAMES

The only reserved names in the language are those of the form ZOnnnn and ZZaaaa, where ‘n’ is any
digit and ‘a’ is any alphanumeric character. All generated variables and system subroutine names are in this
form. However, it behooves you, the user, to keep in mind the system variable default names listed in Table
1-1. These default names can be changed to any name you please, but if you do not, the default names will
be in existence so they can be set by program control in the model definition section. Other uses of these names,
e.g., defining MAXT as a state variable, could cause conflicts.
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TABLE 1-1. System Variable Default Names

Set By Default Default
Statement Name Value Definition

CINTERVAL CINT 0.1 Communication Interval
MINTERVAL MINT 1.0E-10 Minimum Calculation Interval
MAXTERVAL MAXT 1.0E+10 Maximum Calculation Interval
NSTEPS NSTP 10 Number of Calculation Intervals
VARIABLE T 0.0 Independent Variable
ALGORITHM IALG 5 Integration Algorithm
ERRTAG none .FALSE. Error Indicator

NOTE: It is probably a good idea to treat these names as reserved and not use them

for any purpose except that stated.

A second level of names is the run-time executive system constants listed in Appendix C. These are flags
and numeric values that determine the manner in which plots are going to be made, print intervals, etc.

Such quantities as the y-axis length in inches (YINCPL) for line plots, number of points between grid
lines in the x-direction for printer plots (NGXPPL) can be under user’s control - at run-time - if desired. All
these symbols have a default value that is chosen for reasonableness. Access is by normal SET commands,
ie.,

SET YINCPL = 5.0

Any symbol in the SET command causes a search of the user’s dictionary - established by the symbols in the
model definition code - and if that is unsuccessful, the dictionary of run-time system symbols is searched. Thus,
if you use one of the system constants as a name in the program, that use will override the internal use within
the run-time executive. It merely means that you will not have the luxury of modifying the system default
value.

1.5 FORTRAN SUBROUTINES

Any user defined FORTRAN function or subroutine may be used in the simulation program by including
it following the END card that matches the PROGRAM card. The translator looks for the following:

REAL FUNCTION
INTEGER FUNCTION
LOGICAL FUNCTION
SUBROUTINE
FUNCTION
PROGRAM

and if found, assumes all the rest of the cards in the model definition section are to be passed directly to the
FORTRAN compiler. The format of these cards is not changed in any way so FORTRAN card format must
be followed exactly, i.e. start in column seven or beyond etc.

The only change the translator makes is to look for a dollar sign ($) in column one. This card is replaced
by the simulation common block and type statements - which may run to many cards - so making available
to the subroutine the names and values accessible in the main program.
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WARNING: There is no selectivity in this process - either all the symbols are obtained or none. It
" is easy to get name conflicts and also violate the translator sorting algorithm by this
action.

1-6



2. LANGUAGE ELEMENTS

The following list of language elements must be understood before proceeding to the next section which
describes the individual ACSL statements in detail. Most of the basic elements are defined the same as in
FORTRAN with the exception of the list in Table 2-1, which lists the major differences between ACSL and
FORTRAN. A reader who is familiar with FORTRAN could continue to the next section at this point.

TABLE 2-1. Major Differences, ACSL to FORTRAN

LABELS Symbolic as well as numeric labels allowed.

Labels are separated from statements to which they
are attached by two periods.

Due to problems with MACRO expansions within
labelled statements, it is recommended that labels
only be used with CONTINUE statements. See
LABELS section 2-3 for further information.

NAMES No embedded blanks are allowed in names.

Each name must have no more than SIX characters.
Names should not be of form Znnnnn or ZZaaaa where
n is any digit and a is any alphanumeric character.

TYPES Variables starting with I, J, K, L, M or N are

not automatically considered integer. All variables
and functions are considered real, floating point
variables unless typed .explicitly otherwise.

CODING Free format - use any columns 1 through 72.

CONTINUATIONS An ellipsis (... ) at the end of a line implies
continuation onto the next card image. A non-blank
column six has no significance in free format.

COMMENTS A fully quoted statement is a comment and cannot
contain another quote or dollar sign. A ‘C’ in
column one has no significance in free format.

2.1 CONSTANTS

Constants may be either integer, real, logical or Hollerith. An integer constant is a whole number, written
without a decimal point or embedded blanks. Positive numbers may be prefixed with a plus sign; negative
numbers must be prefixed with a minus sign. Length is implementation dependent (CDC 6600, about thirteen
digits). Subscripts of arrays are limited to about five digits.

Examples: 0 +526 -63 476

A real constant is written with a decimal point together with an optional exponent. Positive numbers may be
prefixed with a plus sign; negative numbers must be prefixed with a minus sign.

Examples: 3.El ' 3.1416 31.416E-1
-0.000345 0.347E03 -27.6E+220
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Logical constants may be one of two values:
.TRUE. .FALSE.

Hollerith constants are strings of letters and digits and are defined differently for the translator and at
run-time. The translator accepts the normal character count - an unsigned integer - followed by H, followed
by the character string. The general form is

nHh,hy . . . h,

Examples of this are
3HSAM 12HCONTROL DATA
1H) SH LEAD

Note that blanks are signficant in the character count. For the run-time executive, Hollerith strings are
defined by enclosing in quotes - so implying that the quote character cannot be included in the Hollerith
constants, i.e.,

SET TITLE = ‘LIMIT CYCLE, RUNY’

, While literal constants can be used in expressions directly, there is no way of changing the value at

run-time. The original source cards must be changed and the program retranslated, compiled and executed.
If the same constant appears more than once, it implies more changes in the source text. Better programming
practice is to give all constants symbolic names to be used in expressions, presetting these via CONSTANT
statements; i.c.,

don’t say
AREA = 3.142*%R**2
Instead:
CONSTANT PI = 3.142
AREA = PI*R**2

2.2 VARIABLES

Variable names are symbolic representations of numerical quantities that may or may not change during
a simulation run. They refer to a location and have a value equal to the current number stored in that location.
Both simple and subscripted variables may be used. A symbolic name must start with a letter and be followed
by zero to five letters and digits (not more than SIX characters). All variables in an ACSL program are
assumed to be of type REAL unless explicitly typed otherwise. The FORTRAN convention for integers
starting with the letters I through N does not apply.

Examples of simple variables:
A AS57 ABS7D K20

A subscripted variable may have one, two or three subscripts enclosed in parentheses. Subscripts can be
expressions in which the operands are simple integer variables and integer constants, and the operators are
addition, subtraction, multiplication and division only. For more information on storage allocation see AR-
RAY statement - Section 4.12.

Examples of subscripted variables names are:
B(5, 2) B53(5*I + 2, 6, 7*K + 3)
C47(3) ARRAY(2)
In the above example I and K must be declared explicitly to be INTEGER variables.
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2.3 LABELS

A label may be attached to a statement so that control may be transferred to it by GO TO or used to
label a FORMAT statement. Labels may be either:

1) One through six alphanumeric characters with the first alphabetic

2) One through five numeric characters (digits)*

The labels must be set off from the statement to which they apply by two periods - i.e.,
L1..X=A+8B
1000.. Y=C+D
GO TO L1

Although it is legal to attach a statement label to any executable statement, it is recommended that these
labels only appear on CONTINUE statements. Aside from the improvement in appearance, structure and
modifiability, many problems can be avoided. The basic difficulty is that the statement body may contain
MACRO calls. The effect of a MACRO call inside a statement - functional form - is that the macro is
expanded first followed by the labelled statement. As an example, consider the random number generator,
GAUSS which is implemented as a MACRO. It’s use could be in a PROCEDURAL in a labelled statement

GO TO LABEL

LABEL .. X = GAUSS(MEAN, SIGMA)
This would expand to the FORTRAN code
GO TO 99996

709999 = MEAN + GRV(ZZSEED)*(SIGMA)

99996 X = Z09999

Now the intermediate variable 209999 won’t be assigned a value if the GO TO transition is followed.
However, if we use a CONTINUE instead

GO TO LABEL

LABEL .. CONTINUE
X = GAUSS(MEAN, SIGMA)

This code expands to
GO TO 99996

99996 CONTINUE
709999 = MEAN + GRV(ZZSEED)*(SIGMA)
X = 709999

which gives the correct sequence. The stand alone form of the MACRO works in this case and avoids the extra
assignment statement, since no intermediate variable is generated, i.e.

* The system uses labels starting at 99999 and works downwards. Labels with too high a value should not
be used, else a conflict may result.
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LABEL . . GAUSS(X = MEAN, SIGMA)
becomes*
99996 X = MEAN + GRV(ZZSEED)*(SIGMA)

To avoid the label problem, we had originally thought of attaching the LABEL to the first line of the
code generated from the MACRO but then the problem with the DO loop raises it’s head - now the label must
be the last operation of the loop - statements generated after the labelled statement are not included in the
loop. Even if we differentiate between the DO-loop labels, the language allows a loop with direct GO TO’s
to the terminating statement label:

DO LABELI =1, 20
IF (condition) GO TO LABEL

LABEL . . X = X + GAUSS(MEAN, SIGMA)

To formulate rules to translate this sequence appears to be impossible. If the operation is programmed with
labelled CONTINUE statements, two labels will be necessary and the translation is straightforward, i.e.

DO LABELI I =1, 20
IF (condition) GO TO LABEL2

LABEL2 .. CONTINUE
X = X + GAUSS(MEAN, SIGMA)
LABELI .. CONTINUE

2.4 EXPRESSIONS

An expression is a combination of operators and operands:which, when evaluated, produces a SINGLE
numerical value.

The arithmetic operators are
+ addition * multiplication
- subtraction / division
** exponentiation

The relational operators are

.EQ. equal to .NE. not equa}l to
.GT. greater .GE. greater than or equal to
.LT. less than .LE. less than or equal to

(The results of a relational expression can only be .TRUE. or .FALSE.)

" The logical operators are

* To use this form, you must be familiar with the implementation of each of the operators defined in the

language - i.e. whether MACRO or function subroutine. It only works for single line MACROS if at the
end of a DO-loop.
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.NOT. reverses truth of logical expression that follows it

.AND. combines two logical expressions to give value . TRUE. when BOTH are .TRUE. otherwise
.FALSE.

.OR. combines two logical expessions to give value . TRUE. when EITHER is . TRUE. otherwise
.FALSE.

The operands may be either constants, variables (simple or subscripted) or functions. Examples of arithmetic
expressions:

A 5.76
3 + 16.5 B + A(5)/2.75
-(C + DEL*AERO) (B-SQRT(A**2 + X**2))/2.0

Two arithmetic operators may not appear next to each other in an arithmetic expression. If minus is to be
used to indicate a negative operand, the sign and the element must be enclosed in parentheses is preceded by
an operator -

ie.,
B*A/(-C) not B*A/-C
A*(-C)

but,
-A*B-C

Parentheses may be used to indicate groupings as in ordinary mathematical notation but they may not be used
to indicate multiplication.

Relational expressions are a combination of two arithmetic expressions with a relational operator. The
relational expression will have the value . TRUE. or .FALSE. depending on whether the stated relation is valid
or not. The general form of the relational expression is:

aj op ag
where the a’s are arithmetic expressions and op is a relational operator.

NOTE: A relational operator must have two operands combined with one operator. Thus the
form a; op ag op a3 (A. EQ. B. EQ. C) is INVALID.

Examples are:
A.EQ.B A+D.LT. 53
AS57. GT. 0.0 (5.0*B - 3.0).LE.(4.0 - C)

Logical expressions are combinations of logical operands and/or logical operators which, when evaluated, will
have a value of .TRUE. or .FALSE.

11 0p£20p£30pf4 e
where the €’s are logical operands or relational expressions. i.e.,
LOGICAL AA, CC, LFUNC
AA. AND. (B. GE. C). OR. CC. AND. LFUNC(X,Y). AND. (X. LE. Y). OR.. NOT. AA

Note that the symbolic names AA, CC and LFUNC have been declared to be of type logical. LFUNC is a
function with a .TRUE. or .FALSE. result calculated from the value of the variables X and Y.

Note that arguments of functions may, in general, be expressions. Since expressions can contain func-
tions, an arbitrary depth of complexity can be generated. Just using the SIN and COS function as an example,
a valid expression would be
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A + SIN(X*COS(5*X + Y) - COS(A + Z/SIN(5.3*C) + C*Y/SIN(SIN(X + Y)*PI)))

Remember the sole requirement for an expression is that it has ONE value when evaluated numerically.
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3. EXPLICIT STRUCTURE

The basic program structure where the model is surrounded by PROGRAM...END cards has limitations
when it comes to calculating initial conditions. They must be real variables, expressions or constants and
cannot incorporate multiple statement logic. In order to have a more flexible structure, three extra regions
of the program may be introduced - INITIAL, DYNAMIC and TERMINAL - and the model definition is
placed in a DERIVATIVE section embedded in the DYNAMIC. Each section must be terminated with an
END card as shown in Figure 3-1. If this method is chosen, any or all of these four explicit blocks may be
included: Each block must have its own terminating END card and the ordering INITIAL, DYNAMIC,
embedded DERIVATIVE and TERMINAL must be followed.

PROGRAM
INITIAL

}Statements performed before the run begins. State variables do not contain
the initial conditions yet.

END

DYNAMIC
DERIVATIVE

Statements needed to calculate derivatives of each INTEG
statement. The dynamic model.

END

}Statements executed every communications interval.
END
TERMINAL

‘}Statements executed when the termination condition TERMT becomes
true.

END
END

Figure 3-1. Outline of Explicitly Structured Program

3.1 PROGRAM FLOW

The program flow when leaving the executive (due to the START command) is to sequentially proceed
through the INITIAL section (Figure 3-2 shows a flow diagram). At this point, the initial conditions have
not been transferred into the state variables (outputs of integrators) so these variables will be undefined if
any attempt is made to use them. It should be possible to arrange the calculation of any necessary initial
conditions in terms of any constants or other initial conditions already defined. Another alternative is to use
the RESET (q.v.) operator that will transfer the available initial conditions to the state names and may
(RESET(‘EVAL’)) or may not (RESET(‘NOEVAL’)) be accompanied by a call to the derivative evaluation
routine to calculate all intermediate variables.

Leaving the INITIAL region, the integration routine is initialized which involves transferring all initial
conditions into the corresponding states and evaluating the code in the DERIVATIVE section once. This
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FROM

EXECUTIVE
ON START
INITIAL
INITIAL
—_——— = = — — CODE
: BLOCK
END
STATE HAS INITIAL COND-
INITIALIZE ITIONS TRANSFERRED AND
INTEGRATN — — ] DERIVATIVE ROUTINE IS
ROUTINE USED TO EVALUATE
DERIVATIVES ONCE READY
FOR DATA LOGGING
STOP~=—— FALSE . |
I
DYNAMIC 1 |
|
DYNAMIC |
—_————— — - CODE
BLOCK |
|
END |
|
|
|
]
|
|
|
|
|
) DERIVATIVE
UNTECRATE. DERIVATIVE
MUNICATION —_——t — — EVALUATION
INTERVAL ROUTINE
END
TERMINAL
- TERMINAL
-_—————— - = CODE
BLOCK
END

RETURN
TO EXECUTIVE

Figure 3-2. Main Program Loop of ACSL Model
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action is taken to ensure that all calculated variables are known before the data logging at the time equals
zero condition. Note that it may appear from the program listing that the DYNAMIC section is executed
before the DERIVATIVE section; in actual fact, this is not so. You should not rely on calculations in the
DYNAMIC section to initialize variables for this DERIVATIVE section. On the other hand, all values
calculated in the DERIVATIVE section are available in the DYNAMIC section.

Still following the flow chart in Figure 3-2, the STOP flag is reset and the program starts to execute
the code within the DYNAMIC block.

There is no restriction on the variables that may be referred to in this DYNAMIC section. All the states
will have values and intermediate calculations in the DERIVATIVE section will have been executed.

After this block the STOP flag is tested to see if it is time to transfer to the TERMINAL region. Note,
the STOP flag is set by the TERMT statement and if any of these statements are included in the DYNAMIC
block, exit will occur at this check when one of the arguments becomes true.

If the STOP flag is not set, the program writes out the values of all the variables specified in the
OUTPUT and PREPAR lists - the former to the output file or printer, the latter to a scratch file for later
plotting.

The integration routine is now asked to integrate over a communication interval using the code embedded
in the DERIVATIVE block to evaluate the state variable derivatives.

The integration routine returns with the states advanced through the communication interval and again
the STOP flag is tested. At this point, it may have been set by a TERMT statement placed in the DERIVA-
TIVE routine. If not set, the program loops and reexecutes the DYNAMIC section.

Control can be transferred between sections using GO TO’s and statement labels, if needed. It is illegal
to transfer into the DYNAMIC region, since the integration initialization won’t be performed correctly.
Transfer from the dynamic region to either INITIAL or TERMINAL is quite acceptable, so also, is transfer
between INITIAL and TERMINAL blocks. Note at least one GO TO in the DYNAMIC region or one
TERMT statement must be included or the program will never stop!

Control cannot be transferred either into or out of the DERIVATIVE section since this is changed into
a separate subroutine and as such, is inaccessible to the main program loop.

When the STOP flag is set true, program control transfers to the TERMINAL section which is executed
in sequence. On passing out of the section END, control returns to the executive which will read and process
another control card (run-time command - PLOT, DISPLY, etc.). Note, if a jump (GO TO) is included in
the TERMINAL section back to the INITIAL, the last output will not be written out, unless the LOG
operator is used (see Chapter 4).

3.2 PROGRAM SORTING

The model definition code that is placed in the DERIVATIVE subroutine is sorted so that outputs are
calculated before they are used. The sort algorithm is relatively simple and consists of two passes. Pass number
one examines each statement; output variables are marked as calculated and an input list is established for
the statement - all the variables on the right of the equals sign. A variable name may appear simultaneously
on both left and right hand sides of an equal sign (=) in either an assignment statement or PROCEDURAL
header. In this case sorting takes place only on the left hand or output variable so that the block is positioned
before any use of the variable. Pass number two takes the list of statements and examines them in turn. If
none of the variables on the input list have their calculated flags set, the statement is added to the compile
file and the calculated flag for the output variable (or variables) is turned off.

If any of the variables on the input list are marked calculated, the statement is saved and the next
statement examined. If any statement has been added to the compile file, all the saved statements are
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reexamined to see if they can now be disposed of and their calculated flags reset. This algorithm works because
any output variables that have already been processed will have their calculated flags reset. Only output
variables coming up in the statement stream will be flagged and as such can hold up statements that depend
on these outputs. State variables, of course, are not flagged as calculated - the calculation must be performed
by the integration routine and all derivative evaluations finally derive from the current value of the state
variables. Example:

CONSTANT PI = 3.142, RZ = 1.0
AREA = PI*R**2

R =RZ + LR

LR = INTEG(AREA, 0.0)

The first statement is translated into the FORTRAN DATA statement and an I/O list established.
There are no inputs and the variables PI and RZ have their calculated flags set.

DATA PI1/3.142/, RZ/1.0/

The second statement has inputs PI and R, and variable AREA has its calculated flag set. Third
statement has an inputs, RZ and LR; the calculated flag for R is set. The last statement establishes LR as
a state and AREA as the derivative. The calculated flag for LR is not set - it is assumed known at the start.

At the end of the first pass the symbol table looks like Table 3-1, and the calculatéd flags are set as in
the (a) column.

TABLE 3-1. Calculated Flags in Symbol Table During Sort

(a) Begin (b) After (c) After (d) After
Symbol Pass 2 Constant R = Statement AREA = Statement
AREA ON , ON ‘ ON
LR ’
PI ON
R ON ON
RZ ON

The second pass starts by reading the statements in sequence again, along with the associated 1/O lists.
The first statement has no input list, so it can be output to the compile file directly - in so doing, the calculated
flags for PI and RZ are reset - Column (b), Table 3-1.

No other statements are pending so the next statement is read. Inputs are PI and R. R is still flagged
as calculated so the statement is saved.

The next statement is read. Inputs are RZ and LR - neither of these are flagged so that statement is
transferred to the compile file and the output variable flag for R is reset. The saved statement is reexamined
and now, no input variables are flagged so the statement can be disposed of, erasing the flag on AREA.

Any well posed problem (without algebraic loops) can be completely disposed of by this method and the
compile file will have all the statements correctly ordered.

CONSTANT statements are treated like regular assignment statements as far as sorting so if you place
all the CONSTANT statements at the end of the program almost all the other statements will have to be saved
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or held up. It’s usually considered good practice to place these at the front of the modules in which they are
used.

Algebraic loops are identified inside the ACSL translator by the fact that statements are left over at the
end of the DERIVATIVE section sort. This is normally considered an error since true algebraic loops should
be broken with the IMPL statement. In this case the remaining statements are listed by chaining through the
loop, listing each statement in turn. It is usually easiest to follow the loop backwards from the bottom of the
list where it will be found that each variable on the left side of an equals (=) sign will appear on the right
hand side of the statement above it. Procedural blocks make following the path more difficult since the entire
block is listed and considered as one statement but the position is determined by the variables on the left and
right hand side of the PROCEDURAL header. When the code is reconstructed, the PROCEDURAL header
has been lost so the dependencies should be marked in to replace the entire code block.

Most algebraic loops are programming errors caused by incorrect PROCEDURAL headers or missing
state equations. For example, the PROCEDURAL block:

PROCEDURAL (A, B = C, D)
A=C

B=D

END §$ ‘END OF PROCEDURAL’

may cause an algebraic loop by implying that A is a function of D and B is a function of C. Use PROCEDUR-
ALs sparingly and with care. Using many small PROCEDURALS is better than using a few large ones.

Algebraic loops can be broken by algebra, the IMPL operator or by use of a PROCEDURAL ... END
block to hide the actual computational order from the sorter so that the previous value of the implicit variable
can be used (needs initializing).
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4. ACSL STATEMENTS

Included in this section are all the basic statements which can be recognized by the ACSL translator.
A number of these are the same as equivalent FORTRAN statements with the exception that there is no
restriction on which card column to start in.

As a general philosophy, ACSL uses the equals sign in an unfamiliar way. In translating a user’s
program, ACSL needs to know what are the inputs to each statement and what are the outputs in order that
the statement sequence can be sorted into the correct order. For an assignment statement, all variables to the
right of the equal sign are input, the variable to the left is given the single numerical value of the right hand
expression and so is the output. The idea is extended to cases where more than one element is an output so
that all elements to the left of the equal sign are considered outputs, those to the right are considered input.

PROCEDURAL (A, B, C =D, E)
. . . block of statements

END

This tells the translator to treat the statements bracketed by the PROCEDURAL . . . END statements as
a block (i.e., not to rearrange the order) and that it is to consider D and E as inputs; A, B and C as outputs.
Only variables calculated elsewhere in the same DERIVATIVE block must be listed on the input list. Expert
users can use judicious manipulation of the input and output lists in order to override the ACSL sort operation,
if necessary.

Elements listed in lower case are syntactical elements (i.e., variables) and may be replaced by any
character string that satisfies the definition. Elements listed in uppercase must have these characters exactly
as spelled out in the statement. Ambiguities can normally be resolved by assuming that any applicable
FORTRAN standards hold. '

A number of special functions are described that aid in the definition of simulation models. In general,
the output of each function is a single number (usually floating point) and the arguments are arithmetic
expressions which may be of arbitrary complexity; i.e., these may contain functions which contain arguments
which contain functions to any depth desired. Included in this list for completeness are all the standard
FORTRAN library functions. In general, logical or relational expressions are used to determine switching
criteria; for constants, .TRUE. and .FALSE. should be used since the bit pattern of logical variables depends
on the installation and FORTRAN compiler in use.

The basic program structure is explained in detail in Section 3, which includes program flow and
statement sorting. The program is set up to calculate the derivatives of the state variables (outputs and
integrators) and the statements that perform this operation are bracketed by PROGRAM . . . END cards.
Each statement will have certain input variables and it will calculate the value of one (usually) or more output
variables. The program sorting sequence will rearrange the statement sequence if necessary so that values are
not used before they have had fresh values calculated. Blocks of code that the user requires for a fixed sequence
may be bracketed by PROCEDURAL ... END cards which tell the sort routine to treat the included cards
as a single block. In that case all inputs needed by the block and all values output must be included in the
argument list of the PROCEDURAL (q.v.) block header. A variable may not be both input and output for
a single PROCEDURAL BLOCK simulataneously. Variables may be both input and output to a statement
if they cross a memory or integration operator., i.e.

X = INTEG(-K*X + F, XIC)
Z = DELAY(K1*Z + K2*F, .. )
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is a normal model description but
X =Y + 3.0*SIN(X)
is illegal since the sort cannot be performed. See the IMPL operator.
More flexibility is obtained by including INITIAL, DYNAMIC and TERMINAL sections to evaluate
code only at the beginning (INITIAL), at every communication interval (DYNAMIC) or at the end (TER-

MINAL). Statements included in these sections will not have the order of calculation changed; they will be
executed directly in the sequence given.

The use of labels on statements normally implies that the order of the statements is important. ASSIGN,
GO-TO and IF statements are normally associated with changing the order of program execution. In order
to avoid the rearrangement that goes on in the DERIVATIVE section of an explicit program or within the
PROGRAM block of an implicit program they should normally be enclosed in PROCEDURAL . .. END
brackets so that the group of statements is treated as a whole. It is not necessary to bracket blocks in the
INITIAL, DYNAMIC or TERMINAL region since these are not sorted into a different order.

Some of the operators involve state variables and can only be invoked from within a DERIVATIVE
section. While they can be included in a first level PROCEDURAL block these must always be executed and
cannot be successfully by-passed by jumping around operator statements. The following is a list of such
operators:

CMPXPL DBLINT INTEG LEDLAG
ou REALPL TRAN

If an attempt is made to skip around any of these statements, the derivative for the state variable will usually
be left a non-zero value (constant while the operator is skipped) so that the internal state variable will continue
to change. The correct method for stopping a state variable changing is to ensure that the derivative goes to
Zero.

Other operators are defined using a MACRO skeleton in which case two alternative forms of invocation
are possible when the operator only has one output. As an example consider REALPL, the first order lag.
A conventional use of this operator is:

Y = KI1*REALPL(TI, X)

where the state variable (output of the real pole function) is given an assigned dummy name and so not
considered visible. It is usually advantageous to multiply the input by constants rather than the output -
synonymous if the operator is linear - as so:

Y = REALPL(T1, K1*X)

where the input to the operator is now an expression. If the form of the statement is then a single assignment,
the stand alone macro invocation can be used as so:

REALPL(Y = T1, K1*X)

and in this case (only) the variable Y will be assigned to the state table. This stand alone form is usually
preferred in order to minimize the number of internally generated variables but numerically all forms are
equivalent. Operators that can be expressed in stand alone form are so indicated in the following list.

4.1 ABS
Absolute value of the argument expression
y = ABS(x)

X is a real floating point expression
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4.2 ACOS
Arc-cosine is a function
y = ACOS(x)

where x is real floating point variable or expression lying between - 1.0 and + 1.0. Result is real number in
radians (zero to ).

4.3 AINT
Integerize by using the functional form
y = AINT(x)

where x is a real floating point variable or expression of arbitary complexity. Result - Y sign of X times largest
integer <Ix| and is a real floating point number.

4.4 ALGORITHM

The algorithm used by the integration routine may be chosen and/or the system variable name changed.
The name IALG is the default and may be set numerically at run-time to control the execution algorithm.
Standard form is

ALGORITHM name = integer constant
where “name” will be the new name for the integer defining the run-time algorithm.

At present there are seven integration algorithms available as listed in Table 4-1. The Adams-Moulton
(IALG=1) and Gear’s Stiff (IALG=2) are both variable step, variable order integration routines that are
self-initializing. In general they will attempt to keep the per-step error in each state variable below the desired
value. This desired value is obtained by taking the maximum of the corresponding absolute allowed error
(XERROR) and the relative allowed error (MERROR) multiplied by the maximum absolute value of the
state so far

E; = max(X;, M; 1Y;Imax)

TABLE 4-1. Integration Algorithm Numbers

IALG ALGORITHM
0 Sample Data Systems
1 Adam’s Moulton; variable step, variable order
2 Gears Stiff; variable step, variable order
3 Runge-Kutta first order or Euler
4 Runge-Kutta second order
5 Runge-Kutta fourth order
7 User supplied subroutine (INTEG)

The order of integration starts at one and then changes dynamically as the program progresses, along with
the calculation interval as the integration routine attempts to take the largest possible step consistent with
the allowed error bounds.*

* For more information see subroutine DIFSUB in “Numerical Initial Value Problems in Ordinary
Differential Equations” C.W. Gear, Prentice-Hall, N.J. 1971 pp 150 et seq.
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Gear’s Stiff integration method can take calculation steps that are orders of magnitude larger than the
smallest time constant. There is an overhead involved, however, since a linearized state transition matrix must
be formed and inverted. Tests have shown that for problems where the range of time constants only differs
by one or two decades, there is little benefit in using this method - the Adams-Moulton technique is invariably
faster. If the range of time constants covers more than three or four decades, then this technique should be
significantly faster than any other.

A problem was noted in using the Stiff integration algorithm with one of the states only defined when
positive. This difficulty occurred in integrating for mean square receiver noise in a missile adjoint formulation.
The simulation model took the square root of this quantity. In starting off the algorithm the linearized state
derivative matrix - or Jacobian - is evaluated numerically by perturbing each state first minus, then plus* and
computing the approximate slope from the change in the derivative value. The perturbation magnitude used
to compute this slope is the current allowable error obtained from MERROR and XERROR. If the positive
state starts with an initial condition of zero, then the first perturbation will make it negative - an unacceptable
situation for the derivative evaluation. The way round this problem is to start the integrator off with enough
bias in the initial condition so that the calculation of the Jacobian doesn’t violate any constraints. Since the
number used for the perturbation is the allowable per-step error, then a bias of this amount should not affect
overall model validity.

At the end of a simulation run that uses a variable step-size algorithm, statistics are written out giving
the weight each state had in controlling step size. You can adjust the error criterion using this information.
A separate listing indicates the number of times the predictor-corrector algorithm failed to converge and cause
a general step size reduction - usually considered a more serious failure than bumping into the allowable error
tolerance. This error summary may be suppressed by setting (SET) the system variable WESITG (write error
summmary, integration control) to .FALSE. - useful when running from a terminal.

Current step size (CSSITG) and current integration order (CIOITG) are available as system variables
which may be OUTPUT or PREPARed. CIOITG is an integer and cannot be plotted.

The Runge-Kutta routines (IALG = 3, 4 and 5) work by evaluating the derivatives at various points
across a calculation interval. A weighted combination of these derivatives is then used to step across the
interval. Runge-Kutta second order (IALG = 4) advances the state with two derivative evaluations per step.
This usually needs a smaller step than Runge-Kutta fourth order (IALG = 5), four derivative evaluations
per step): However, for the same step size, it should run about twice as fast: Experiment is worthwhile for
production jobs.

Integration algorithm zero is treated as a special case and is included to model discrete controllers with
samplers controlling transfers to and from the continuous world - modelled by another DERIVATIVE block
with a smaller effective step size. DERIVATIVE blocks with an integration algorithm of zero are called
DISCRETE blocks and are further described under that heading.

4.5 ALOG
Natural logarithm of real argument x by
y = ALOG(x)

x should be > 0.0.
NOTE: This function is NOT the antilogarithm.

* Normally if the system variable TSMITG (two sided matrix evaluation, integration control) has its default
value .FALSE., the states are only perturbed in the negative direction.
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4.6 ALOG10
Logarithm to base ten of real argument x is given by the function
y = ALOGI10(x)
x should be > 0.0.

4.7 AMAXO
Determine maximum argument; standard functional form
y = AMAXO(Qy, jo, - - - » Jn)

where the j; are integer variables or expressions. Y will be the real floating point value of the maximum
argument.

4.8 AMAX1
Determine maximum argument; standard functional form
y = AMAXI(xy, Xg, . - ., X,)

where the x; are real, floating point variables or expressions of arbitrary complexity. Y will be given the value
of the maximum x;. Negative values are considered less than positive values.

4.9 AMINO
Determine minimum integer argument and convert to floating point; standard form
y = AIMINOG;, jo, - - - » Jn)

Similar to AMAXO except returns the value of the minimum argument.

4.10 AMIN1
Determine minimum real argument; standard functional form
y = AMIN](X], X9y v s Xn)

Similar to AMAXI except returns the value of the minimum argument.

4.11 AMOD
Remainder of modulus can be obtained by
y = AMOD(xy, x9)

which returns the floating point remainder when dividing x; by x,. The definition is a bit loose if x, is negative
so it is actually defined as x; - [x;/X5] Xy where [ ] determines the integer with magnitude not greater than
the argument and with the same sign. x; and xo may be real floating point variables or expressions of arbitrary
complexity.

4.12 ARRAY

Equivalent to the FORTRAN DIMENSION statement, this operator allocates space for up to three
dimensions to be associated with a variable name. Standard form of the ARRAY statement is

ARRAY vy, vy, v3, vy, . ..V,

The variable names v; may have 1, 2 or 3 integer CONSTANT subscripts separated by commas; i.e.,
SPACE(5,5,5). (Note the subscripts must not be symbolic). While this statement can, in general, appear
anywhere in the program, it is recommended that it be placed in the beginning of each module. It must appear
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before any invocation of a MACRO that uses dimension information. Section 10 of Appendix A gives an
example of the use of this statement.

4.13 ASIN
Arc-sine of the real argument x is
y = ASIN(x)

x should be between - 1.0 and + 1.0 and the result will be in radians (-7/2 <Y =< + 7/2)

4.14 ASSIGN

A label can be assigned to a simple integer variable for use later in an assigned go to. Standard form
of the statement is

ASSIGN k TO m

where k is a statement label and m is a simple integer variable. It is important for the ACSL translator to
find a space between the label k and the following TO. Subsequent evaluation of

GO TO m

will transfer control to the statement labelled, k. Example:
ASSIGN RTURN2 TO M

The variable M should be explicitly typed INTEGER.

4.15 ASSIGNMENT STATEMENT
variable = expression

‘variable’ may be simple or subscripted. If subscripted in a sort section it must be enclosed in a PROCEDUR-
AL block. On execution, the single value of the expression is stored into the location defined by ‘variable’.
A special form is the integration statement

A = INTEG (expression, AIC)
which marks A as a state variable. It actually stores a value (of expression) in the derivative of A.

The integration statement can be embedded at any depth in an expression since it only has one value,
so the following is valid.

X = A*INTEG(DERIY, IC) + 3.0*C

In this case a made-up variable is assigned to be a state and the value of this used in the expression. This form
is not recommended since states should be well defined and accessible to the user. Define your own intermedi-
ate variable, i.e.,

ST = INTEG(DERIY, IC)
X = A*ST + 3.0*C

4.16 ATAN
Arc-tangent of real argument X is
y = ATAN(x)
x is unlimited - except infinite - and result Y will be in radians such that (-7/2 <Y < + «/2).
NOTE: For full coverage of the circle it is better to use ATAN2 (q.v.).
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4.17 ATAN2
Arc-tangent of angle formed by the point with real coordinates x, y and the positive X axis. Function
is
z = ATAN2(y, x)
x and y can be both positive and negative, defining the full circle of revolution. Result will be in radians such
that -# < z < + 7.
4.18 BCKLSH
Backlash may be modelled using the following standard forms:
y = BCKLSH(ic, dl, x)
BCKLSH(y = ic, dl, x)
where
ic = initial conditions on y. Output will always lie between the limits x - dl and x + dl
dl = half width of backlash - see Figure 4-1

X = input, a real variable or expression

I I I | | | ! T T T~

Figure 4-1. Mechanism lllustrating BCKLSH Operator

For unsymmetric applications change the expression for the input x, i.e. If Y is to move when x is greater than
UL or less than LL then the invocation would be

Y = BCKLSH(YIC, 0.5*(UL - LL), X - 0.5*(UL - LL))
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4.19 BOUND

Variables may be bounded or limited with this function. It should not be used to limit the output of an
integrator since the integrator itself will continue to wind up and must actually integrate out of the limit. The
function LIMINT should be used in this case, which sets the derivative to zero if it is still driving into the
limit. On sign reversal the integrator will immediately come out of the limit. Standard form of the BOUND
function is

y = BOUND({4, uf, x)

Result v
y =14, x < {4
y =X, ‘ H=x=u
y =ul, ' x> uf
4.20 CALL A
Subroutines may be invoked by an explicit call which has the standard forms
CALL name
CALL name (p;, P2, - - - 5 Pu)

name is the name of the subroutine being called and p; are actual arguments which may be expressions of
arbitrary complexity for input values. Variables, arrays and subscripted variables may be used for arguments
that have values stored into them. Note that in this form the translator cannot tell which arguments are inputs
and which are outputs so the call must be embedded in a PROCEDURAL block if it is in the sortable section
of the program (DERIVATIVE), i.e., if O, are output variables and P; are input variables or expressions, then
the following cards could be used

PROCEDURAL (O}, Oy, O3 = Py, Py, P3, P,)
CALL SUBR(Oy, Py, Py, P53, Py, O3, Oy)
END

Now the translator will handle this section as a block and it will have been told which variables are inputs
and which are outputs.

A third form of the call is provided just in case the subroutine happens to be written with the input
expressions on the left and the output variables on the right. In this case use

CALL SUBR(OI, 02, ey Om = Pl’ P2, ey Pn)

where the O; are output variables - names or arrays that have their values calculated by the subroutine and
the P; are input expressions.

The translator will rearrange the order and change the equal sign (=) to a comma so that the resulting
call will be

CALL SUBR(P;, Py, ..., P, =0,,0,,...,0,)

4.21 CINTERVAL

The communication interval is the interval where control returns to the dynamic section and output
variables have their values recorded. In general, no finer grain detail can be seen, so it is extremely important
that the user choose this communciation interval with care. The standard form of the statement is

CINTERVAL name = real constant
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where name is a simple, unsubscripted variable.

The system default name is CINT and the default value is 0.1. The value of the name defined in the
CINTERVAL statement may be changed by the program so that different phases can be viewed at different
data rates.

Assume we have a missile simulator that has four phases of flight:
1) Initial turn

2) Midcourse

3) Acquisition

4) Terminal

Now we would like to measure these phases at different rates - initial turn at a fairly fine level of a tenth of
a second; the long midcourse only every second and acquisition and terminal at the fine rate of every 50 msec.
In the initial section (Figure 4-2) PHASE is declared to be an integer and initialized to one. An array STEP
is defined and filled with the desired communication intervals to match each phase of flight; PHASE is one
for initial turn, two for midcourse, three for acquisition and four for terminal. In the DYNAMIC section the
communication interval (using default name CINT) is set using the current value of the flight PHASE (will
range from one to four). In the derivative section the value of PHASE is computed from the logic used to
establish the different flight regions. This is shown as a block since the algorithm will depend on the
implementation of the model. However, when it is implemented, the value of PHASE should be maintained
in the range one to four.

INTEGER PHASE
INITIAL ARRAY STEP (4)
SECTION CONSTANT STEP = 0.1, 1.0, 0.05, 0.05

PHASE =1 § ‘INITIALIZE PHASE TO START’

DYNAMIC e
SECTION CINT = STEP (PHASE)

‘COMPUTE PHASE OF FLIGHT’
DERIVATIVE PROCEDURAL(PHASE =, , , )
SECTION o

END

END

Figure 4-2. Example of Program to Vary Communication Interval
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The following example changes the name of the variable defining the communication interval (from the
default CINT) '

CINTERVAL CI = 0.01
Now all references should be made to the symbol CI when the value is to be recorded or changed.

CINT acts as an upper bound on the integration step size, except for integration algorithm zero, and
also for the last step of a communication interval since the model will be advanced to the data recording time.
This question is discussed in more depth under DYNAMIC (qv). The actual integration step is obtained from
the following statements.

H = MAX(MINT, MIN(MAXT, CINT/NSTP))
H = MIN(H, time left to next event)
which applies bounds of MAXT and MINT to first guess of CINT/NSTP and then limits this to be no more
than the time left in the current communciation interval or to the next event (DISCRETE section)
4.22 CMPXPL
A second order transfer function may be conveniently implemented by using the standard forms:
y = CMPXPL(p, q, x, icl, ic2)
CMPXPL (y = p, q, x, icl, ic2)

Results: y will be related to input x through the transfer function

y = ) l

X ps? +qs+ 1
y(0) = icl

y(0) = ic2

The same restriction on IC’s are present as for the INTEG operator; both may be omitted if zero. p and q
may be expressions of arbitrary complexity (Figure 4-3).

MACRO CMPXPLOY, P, Q, X, TCL, IC2)

MACRO STANDVAL IC1=0.0, IC2=0.0

MACRO REDEFINE YLROT
YHOT=INTEGCC (X))~ (Y)~CIXRYTIIOTY /7 (F), 1C1)
Y=INTEG(YDOT, 1C2)

MACRO END

Figure 4-3. Listing of CMPXPL Operator Macro

4.23 COMMENT

Any complete statement may be inclosed in quotation marks and it will then be ignored by the translator.
It is illegal to ADD the quoted string to another statement, i.e.,

A = B + C ‘THIS IS AN ASSIGNMENT’
is all one statement and hence illegal. The card can be broken up into two statements by
A =B + CS$ ‘THIS IS AN ASSIGNMENT’
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The normal rule regarding continuations using the trailing ellipsis applies, i.e.,
A =B + C$ ‘THIS IS A LONGER COMMENT . ..
REGARDING THE ASSIGNMENT OF A VALUE TO A’
Since the quotes must be balanced and the statement separator ($) overrides all other operators,
comments cannot contain quotation marks or dollar signs.
4.24 CONSTANT

Similar to a FORTRAN DATA statement, this operator is used to preset symbolic locations with
numeric data. Standard form of the CONSTANT statement is

CONSTANT dl = ap, d2 = k*az, d3 = agj, 439, k*333
where

d; = Identifiers representing simple variables or array names. Implied do-loop notation may not
be used. If d; is an array name, integer subscripts may be used to fill individual elements
within the array, else the entire array must be filled.

a; = Literals and signed or unsigned constants.

k = Integer constant repetition factors that cause the literal following the asterisk to be
repeated k times.

No check is made that reals are stored into reals, integers into integers and logicals into logicals. A common
error is to omit the decimal point from a number which will then be stored as an integer. When the symbolic
name is used as a real number, the integer stored there may be considered zero. An example of the correct
use of the CONSTANT statement is:

LOGICAL LI
INTEGER I

ARRAY AQ2)

CONSTANT LI = .TRUE,, II=2, A=2*1.0, B = 5.76

4.25 CONTINUE

Is a do-nothing statement which is normally used for a label to transfer control to or terminate a DO-loop.
For preference, this statement should be used for all labels due to problems with MACRO expansions - see
sub-section 2.3.
4.26 COS

Takes the cosine of a real argument x which must be in radians

y = COS(x)

result willbe -1.0 =Y =< +'1.0

4.27 DBG

Debug features are built into the translator and varying sections of the translator process can be printed
on command via this statement. It should normally only be used under instruction of someone familiar with
the programming of the translator.
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4.28 DBLINT

A special operator is provided for integrator limiting when the limited output is the second integral of
an acceleration. This type of limiting can best be described in terms of the mass spring-damper system
described by

mX +bx +cx = f(t); x(0) = XDZ, x(0) = XZ
where physical stops constrain the mass to move only between x U (lower limit) and x,p (upper limit) i.e.,
Xp IS X = Xyg

When the displacement (x) of the mass reaches its limit, the mass must stop, implying that the velocity (x)
is zero. The mass must remain stopped until the force acting on it (f(t) - c¢x) changes sign. The DBLINT
operator (double limited integration) can be used to represent this type of limiting. The standard form of the
invocation is

DBLINT(x, xd = xic, xdd, xdic, ££, uf)
where
x = a displacement

xd = a velocity (;()

xic = x(0)
xdd = the input, an acceleration (X)
xdic = x(0)

L4 = the lower limit
uf = the upper limit

Figure 4-4 gives a listing of the macro operator.

MACRO DBLINT (X, U, XIC, A, VIC, LEX, URX)

MACRO REDEFINE VL, IC

CONSTANT IC=0.0

CALL ZZDLIMV, V=10, X, INTEGCZZLIMF (X &, LEX, URX), VIC), :

e THTOR e ICY, 0.0, LEX, URX)
MACRO END

Figure 4-4. Listing of DBLINT Operafor Macro

An alternate way of performing this operation is to wrap a stiff spring around the loop when the wall
is approached - this corresponds to what happens physically since the wall will always have a finite spring
constant (Figure 4-5). The problem with this representation is in the behavior of the digital integration routine
in the vicinity of the wall when the wall stiffness is made extremely high.

4.29 DEAD
Dead space has standard form
y = DEAD(g4, uf, x)
Result is:



M

<

Kd

wl—
>
w|—
#

Figure 4-5. Limited Displacement - Spring Stiffness, K, Wall Stiffness Kyy,
Damping Constant Kq

y =x-44, x < g¢

y = 0.0, N=x=u

y =x-ul, X > uf
4.30 DELAY

A variable must be delayed in time to model passage through a pipe or other transport effects. This
operator should not be used lightly since it tends to use a lot of storage and the extra calculation time can
be significant.

The operator is invoked by the standard function forms
y = DELAY(x, ic, tdl, nmx)
or
DELAY (y = x, ic, tdl, nmx)
where
x = the input - an arithmetic expression of arbitrary complexity

ic = the initial value of the output until the independent variable has advanced by the delay,
tdl

tdl = the delay between input and output

mmx = an integer CONSTANT (i.e 10) giving the maximum number of calculation intervals in
the delay. The calculation interval may vary but the sum of nmx calculation intervals must
always be greater than the current time delay.
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This operator is implemented by allocating a dummy array, 2¥nmx words long, and prefilling with the
value of ic, extending over all past history. Each entry in the table is associated with a time and at each new
calculation interval a new value is inserted into the array - treating it as a circular list. To compute the output
value, tdl, the current time delay is subtracted from the independent variable value and the table is searched
for time values that bracket this required previous time. A linear interpolation is performed between the
corresponding input values. If not enough data points are present, an error is reported. This operator approxi-
mates the pipeline with a varying velocity. For best results the time delay should vary slowly.

NOTE: This operator requires the sort algorithm to separate sections of code and so should
not be included in a PROCEDURAL block.

4.31 DERIVATIVE

Identifies the blocks of code performed at the request of the integration routine to evaluate the state
variable derivatives. The integration routine is called from the dynamic section (Subsection 3.1) and asked
to advance the state over the next communication interval using the code embedded in the DERIVATIVE
blocks to evaluate the state variable derivates. The actual number of evaluations depends on the integration
algorithm employed. All the statements in the DERIVATIVE blocks are translated into a separate subroutine
so it is illegal to transfer control by GO TO’s from these blocks to other sections (INITIAL, DYNAMIC,
or TERMINAL) or vice versa.

More than one DERIVATIVE section may be used, each with its own independent integration algorithm
and integration step size. Although this technique can save execution time when correctly used, any implemen-
tation must be approached with caution since, in general, incorrect answers will be obtained unless the model
is split with a full understanding of the effects of computation delays for variables that cross block boundaries.
This tool has been provided for research into problem split rules and should be regarded more as a state-of-the-
art technique rather than for every day practical implementation. For anyone who considers himself a novice,
no more than one DERIVATIVE section should ever be used, unless it is to model a discrete controller where
natural delays occur.

The basic structure is to include more than one derivative block - delimited by DERIVATIVE...END
statements within the DYNAMIC block, i.e.

DYNAMIC
DERIVATIVE SECTION 1

END $ OF SECTION 1°
DERIVATIVE SECTION 2

END § OF SECTION 2°
etc
END § OF DYNAMIC”’

Each derivative section can have its own integration algorithm, maximum step size, minimum step size and
NSTEPS value. Default values for these quantities are established in normal fashion. If a value is specified
outside a DERIVATIVE section, this becomes the default for all DERIVATIVE sections. Values relating
to a particular DERIVATIVE section are defined by including the appropriate statement between the
DERIVATIVE . . . END delimiters, i.e.

ALGORITHM IALG = 4



NSTEPS NSTP = 1
DERIVATIVE SEC1

ALGORITHM ALGI =3

MAXTERVAL MAX1 = 0.001

END § OF SEC1°
DERIVATIVE SEC2
MAXTERVAL MAX2 = 0.010

END $° OF SEC2°

The first two statements establish algorithm number four (4) to be the default algorithm and each section
will have a NSTP of 1. Within derivative section one, the algorithm is specified to be three (3) with a
maximum step size of 1 msec (0.001). Within derivative section two, the default algorithm is taken and the
maximum step size set to 10 msec (0.010). Since NSTP is one, these will be the actual step sizes.

Implementation for these block descriptor names is by forming an array of length the number of
derivative sections for each one of the describing quantities. The names used are the default or those specified
outside the DERIVATIVE sections. In the preceding example, this would be IALG(2), NSTP(2), MAXT(2)
and MINT(2). Names specified within the derivative sections are equivalenced into appropriate slot of the
main array, i.e. '

IALG(1) = ALGI
MAXT(1) = MAX1
MAXT(2) = MAX2
and preset to the value indicated. These values can be changed by SET commands at run-time. To change

the integration algorithm for section two, it must be referred to as IALG(2) since a name was not explicitly
given, i.e.

SET ALG1 = 5,IALG(2) =5

Because of the equivalencing convention, it is important that unique names be used for descriptors
defined within DERIVATIVE blocks.

At the start of the simulation run, the DERIVATIVE blocks are placed on an event list and executed
in the order in which they are specified in the model definition section. Note that the sort algorithm cannot
rearrange statements over a block boundary, so that if a value calculated in the second block is used in the
first block, the first time it will be undefined. Such quantities should be initialized in the INITIAL section.

Each block is placed back on the event list assigned with the time to which that block has advanced. In
the case given of a 1 msec step associated with Section 1 and a 10 msec step associated with Section 2, the
event list will look like:
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A B Cc D ... E F G
0.0 0.0 0.001 0.002 0.010 0.010 0.011
1 2 1 1 | 2 1
0.0 0.001 0.010 0.010 0.010 0.011 0.020
2 1 2 2 2 1 2

After Section 1 has been advanced one step to 1 msec, the event list has Section 2 at the top (B) with a time
of 0.0. Advancing this section one step leaves it at 10 msec and now Section 1 is back at the head of the list
again (C). Section 1 keeps on being advanced until they are both at 10 msec (E). Now we assume that 1 is
a little ahead of 2, and goes to 11 msec (F). Next step advanced 2 by 10 msec and the event list picture changes
to (G). This cycle then repeats.

The only break in the regular progression is at a communication interval or at an equivalent barrier
represented by a DISCRETE block or a block with an integration algorithm of zero. The times for all
DISCRETE blocks and also the communication action are entered onto a separate event list where all actions
are ordered in time; the next time on the event list is called the barrier time.

For all other DERIVATIVE blocks, the current step size is checked against the current time (T) and
the barrier time from the next event list. If the integration with the current step size will exceed the barrier
time, the actual step is reduced so that the last step is made exactly up to the event. All states will then line
up in time for the event to take place. If the event is a communication interval data recording, the derivatives
are evaluated once more so that all algebraic variables depending on the states will be consistent. This action
is not taken for barriers established by DISCRETE blocks since differences are likely to be small and the
overhead of an extra forced derivative evaluation comparatively high. If any problems are encountered
remember that the state variables will be at the correct time and any algebraic variables can be rederived in
the sampling code if necessary.

It seems most people choose step sizes and communication intervals that are integer multiples of each
other. The ACSL system does not require this however, and it is acceptable to choose a fixed step length for
the continuous section of 4 msec, a sampling INTERVAL (qv) in the DISCRETE block of 11 msec and a
communication interval of 20 msec. The first few calculation intervals would then be

4,4,3,4,4,1,2,4,4,3,4,3,4, ...

The first short step of 3 msec brings time up to 11 msec the first barrier time. Then two more normal steps
are followed by a short step of 1 msec to bring time up to the communication time of 20 msec. The next barrier
is the DISCRETE block at 22 msec causing a step size of 2 msec and so on. The variable step algorithms are
similar in that the step length will vary but the last step will always be reduced to move the block exactly up
to the barrier time. Note however for monitoring purposes, the variable CSSITG or current step size will
contain the step length the integration algorithm would like to take, not the shorter one actually taken up to
the communication interval time.

4.32 DERIVT

The derivative function can be implemented if ABSOLUTELY necessary. Note that it is never necessary
to invoke a derivative - it can be expressed instead in terms of all the other states in the system. Since the
derivative operator is a first order approximation, it can lead to instability if it is used to represent any major
loop. The only time this may be justified is for a minor term where a large amount of extra calculation may
be needed to reform the problem in terms of the states. Standard form is :
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y = DERIVT(ic, x)
DERIVT(y = ic, x)

where:
ic = Y(0)
x = the input, an arithmetic expression
NOTE: This operator should not be included in a PROCEDURAL block.
4.33 DIM

Positive difference is obtained by the function
y = DIM(x,, x9)
where x; and xy are real floating point variables or expressions. Result is
y = X - Xg if X; > Xg

y = 0.0 otherwise

4.34 DISCRETE

An equivalent to the DERIVATIVE block is introduced by the keyword DISCRETE. The intent is to
make it easy to model digital sampled data controllers where the communication to and from the continuous
world occurs at fixed, known in advance, times. The format of the statement is

DISCRETE name

END

inserted within the DYNAMIC code block, if any, at the same level as any DERIVATIVE blocks. The action
of the statement is to demarcate a code sequence that is executed at a discrete event or time point with the
execution being controlled by the keyword INTERVAL. Like the DERIVATIVE blocks, each DISCRETE
block has a time associated with it which is entered into an event list, which time will become a barrier for
all the other DERIVATIVE blocks ensuring that they all take a final step (may be short) up to the barrier
time before the code in the DISCRETE section is executed. If the INTERVAL statement is included, the
DISCRETE block is re-entered on the event list with a time equal to the current time plus the current contents
of the INTERVAL variable.

An example using a DISCRETE block to model a control computer is given in Section 11 of Appendix
A and is shown in outline here by the following structure

PROGRAM discrete controller
.D.E.RIVATIVE CONTIN

.().('DEPENDS ON U)

END $ OF CONTINUOUS SECTION’

DISCRETE SAMPLE
INTERVAL DTSAMP = 0.100
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(U DEPENDS ON X)

END § OF DISCRETFE’
END § OF PROGRAM’

In the continuous section we define a plant that can be as complex as necessary but structurally has an output
X that depends on a control U. The control U should be visualized as being generated via a digital to analog
converter so that the value of the control remains constant between output intervals. The next section is a
DISCRETE block that is executed every DTSAMP seconds, defined by the INTERVAL statement to be 0.1
seconds. This block uses the output value of the plant X, which will be at the sample time, to compute a control
U which will be used over the next sample interval. The successful operation of this simulation requires the
continuous section to be exactly at the sample time when the plant value X is used to determine the next control
U.

Jumps in the control U will modify all the high order derivatives estimated for the continuous plant so
variable step algorithms will usually have to reduce the step size or even restart, since the fixed step size
algorithms retain no memory of previous history, the new step will start out with a new evaluation of the
discontinuous derivatives. The key to the action is the fact that the effective time of the continuous section
is exactly at the sample time when the DISCRETE section code is executed.

The order of execution of the blocks is as given in the model definition code at time equals zero and both
DERIVATIVE and DISCRETE blocks can be mixed. In general, in a closed loop situation, some variables
will have to be initialized in the INITIAL section since they are used before being calculated in a later block.
Reference as an example the control variable U in the preceding code sequence which is used in the continuous
section before it is calculated in the DISCRETE block. If used like this without initialization, the first value
of U used in the continuous section will be the last value left behind by the previous run! A test of the presence
of these initialization problems is to make two identical runs i.e. START $ START. If any answers are
different it usually indicates an error.

The sequence of events at the time-equals-zero condition differs somewhat from the corresponding
DERIVATIVE blocks. For conventional DERIVATIVE blocks, the initial conditions are moved to the state
variable array and the derivative code executed once. Then the integration algorithm takes over and in
integrating over the first step re-evaluates the derivatives again (the variable step algorithm IALG = 1 or
2 will predict the state variables first before the correct iteration) so it appears that two derivative evaluations
are used at time-equal-zero. With the DISCRETE block, the first evaluation takes place and then the block
is placed back on the event list at some time in the future (depends on the INTERVAL statement) with any
state variables still with their initial condition values. Now time will advance for other sections until the
DISCRETE section barrier time is reached when the integration algorithm first advances the state variables,
if any, to the current time by euler integration and then re-evaluates the DISCRETE section code. In general
integration statements (INTEG or INTVC) are not used inside DISCRETE blocks since the facility is
designed to represent sampling actions independent from the continuous physical world where the true
integrations take place. There is sometimes a need for a simplified integration algorithm with a fixed step size
and a single derivative evaluation per step. This has arisen in the past in translating DYNAMO models to
run under ACSL. In this case the entire model can be placed in a DISCRETE block and no extra derivative
evaluations will be inserted at the communication interval times. Since the states are always advanced just
before a re-evaluation of the derivative code, algebraic variables are always synchronized to the state variables
for data recording.

The mechanism for implementation of a DISCRETE section is to set an effective algorithm of zero in
the corresponding IALG slot which can be seen from the debug output. The INTERVAL variable is equiva-
lenced into the MINT (MINTERVAL) array and preset to the appropriate numeric value. Slots in the
corresponding MAXT (MAXTERVAL) and NSTP (NSTEPS) arrays are ignored.
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4.35 DO STATEMENT

The standard FORTRAN DO statement may be included. Note that the loop should normally be
embedded in a PROCEDURAL block so that the sort routine will not rearrange the order of execution. This
is not necessary within the INITIAL, DYNAMIC or TERMINAL regions of an explicit program since these
are not sorted - each statement being executed in sequence. The loop cannot extend from INITIAL to
TERMINAL to execute a sequence of runs. Each loop must be closed within its own block. The reason is the
CONTIN statement that branches directly into the DYNAMIC loop. Most FORTRAN compilers will reject
a branch into a loop. If a loop is established to make successive runs, then CONTIN cannot have any meaning
since the initialization won’t be performed properly.

A DO statement makes it possible to repeat a group of statements a designated number of times using
an integer variable whose value is progressively altered with each repetition. The initial value, final value and
rate of increase of this integer variable is defined by the set of indexing parameters included in the DO
statement. The range of the repetition extends from the DO statement to the terminal statement, which must
follow the DO statement, and is called the DO loop. The standard form of the DO statement is

DOni=m;, my
DO ni = m;, myg, my
where
n = a label of the terminal statement of the loop, may be a symbol or numeric.

i = asimple integer variable called the index variable. With each repetition its value is altered
by the increment parameter, ms. This varible may not be changed within the loop.

m; = initial parameter, the value of i during the first loop.

my = terminal parameter, when the value of i surpassés the value of my, DO execution is
terminated and control goes to the statement immediately following the terminal state-
ment.

mz = increment parameter, the amount i is increased with each repetition. If omitted - first form
above - the value 1 is assumed.

The m;, my, and m3 must be simple integer variables or unsigned integer constants.

In general, the use of DO statements should be minimized. More flexibility is usually obtained by
programming each loop explicitly, i.e.,

I=m1

L1..IF(I1.GE.my) GO TO Ly

loop
I=1+ mg
GO TO L1

L2 .. CONTINUE
Now general expressions, arrays and real variables can be used for the indexing parameters.

For more information on the structure of the DO statement see the local FORTRAN reference manual.
The ACSL translator checks the syntax of the DO statement but does not validate the correct nesting of loops
or terminal statements. Errors of structure will be indicated by the FORTRAN compiler.
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4.35 DYNAMIC

Identifies the block of code that is performed every communication interval throughout the run. It must
be accompanied by its matching END card. Code executed in the DYNAMIC block can leave variable values
around for use by the DERIVATIVE and DISCRETE blocks over the next communication interval and in
that sense it can act as a sampler or D/A converter. It is preferable to include code calculations in a separate
DISCRETE block and so make model behavior independent of the data recording action. The intent within
the DYNAMIC block is to provide a place to put output related calculations so that they can be performed
at the usually slower data recording rate rather than at each derivative evaluation. Examples are unit
conversions such as radians to degrees or meters/seconds squared to gees. The time interval for the next
communication interval can be itself changed, based on some simulation phase or configuration so obtaining
variable data recording rates - see CINTERVAL statement for example.

No sorting is performed on any of the code within the DYNAMIC block.

4.36 END

Denotes the end of a block or section. Subsection 3.1 shows the use of END’s in structuring an explicit
program. One of the most common errors is not getting the right number of END’s to balance off the program
blocks. Error messages ‘NOT ENOUGH ENDS’ and ‘TOO MANY ENDS’ are issued when the count is
incorrect. It acts like a right parenthesis in an arithmetic expression, except that it terminates blocks of
statements. An incorrect count corresponds to unbalanced parentheses.

4.37 EQUIVALENCE

This operator is similar to the FORTRAN version in that it allows renaming of areas of storage. Due
to the nature of storage in ACSL (all variables appear in a single common block) there are specific rules for
the use of EQUIVALENCE which do not appear in normal FORTRAN usage. The standard form of the

statement is:
EQUIVALENCE (Main variable, equivalenced variables(s)) . . .
,(Main variable, equivalenced variables(s)) . . .
,(etc))

where “main variable” will appear in the users common block, and thereby reserve storage, while the
equivalenced variables will be assigned storage relative to the main variable, but will not reserve space. All
variables will appear in the dictionary with their own types and dimensionality.

Rules which restrict the use of EQUIVALENCE are as follows:

1) System variables (CINT etc.), States, Derivatives and Initial Conditions may only appear as main
variables.

2) A main variable may never appear as an equivalenced variable.
3) An equivalenced variable must not appear more than once.

4) Variables may have no subscript or only one when being specified in an EQUIVALENCE statement.
Multi subscripted arrays must appear using their equivalent single subscript. For example, given
A(5,5), equivalencing the (3,3) element to SAM would require a reference to A(5*3 + 3) or A(18)
i.e.

EQUIVALENCE (A(18), SAM)

In using equivalenced variables, any reference to an equivalenced variable name is taken to be a reference
to its associated main variable, even through the equivalenced variable may be only one element of a large
main variable array. Thus the sorter will produce the error message “multiply defined symbol” if two
equivalenced variables are assigned values outside a PROCEDURAL block.
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ARRAY RM(3)
EQUIVALENCE (RM(1), RM1), (RM(2), RM2), (RM(3), RM3)

RM1 = 0.0
RM2 = 10000.0
***MULTIPLY DEFINED SYMBOL***

Generally the main variable is equal to or larger than it’s equivalenced variable(s) since the main variable
reserves storage, i.e.,

ARRAY A(10)
EQUIVALENCE (A, B)

Here A is the main variable, B is the equivalenced variable. A reference to B uses the first element of A (=
A(1)). B(2) is not allowed unless B is a separately defined array.

ARRAY A(10)
EQUIVALENCE (B, A)

Now B is the main variable - which reserves one word of memory - and A is the equivalenced variable. A
reference to A(2) will access the variable that follows B in the common block, generally not known to the user.

4.38 ERRTAG

The name given to the variable that is used to indicate an attempt to reduce the step size below the
minimum, MINT, can be changed. This name will be set . TRUE. to indicate an error by a variable step size
integration algorithm which is reducing the step size to control the error bound. Standard form of the
statement is

ERRTAG name

where ‘name’ is a simple unsubscripted variable. The type of ‘name’ will be automatically set to LOGICAL
and it will be preset to .FALSE. to start with. The variable step integration routine will call the derivative
subroutine once with the name given under ERRTAG set to . TRUE. if it needs to reduce the step size below
the minimium calculation interval, MINT. If it is still . TRUE. on return, the termination flag for that run
will be set. Control should then revert to the terminal section, or executive and the next command will be read.
If provision is made to handle this case and reset the flag, then care must be taken that an endless loop is not
formed.

4.39 EXP
Exponential of real argument x
y = EXP(x)

x is limited in size such that the maximum machine word size should not be exceeded by the exponential.
Result is

y = ¢e*
4.40 EXPF

The exponential function can be switched on or off. The output is a function rising on a time constant
to 1.0 (ON = .TRUE.) or decaying to zero (ON = .FALSE.). Standard form is

y = EXPF (ic, ta, on)
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EXPF (y = ic, ta, on)

where:

ic = Y(0) - should be between zero and 1.0

ta = the time constant (7)

on = a logical variable or expression, denotes rise or decay
Results:

y = 1.0 - EXP(-(T - Ty)/7); ON = .TRUE.
y = EXP((T - T;)/7); ON = .FALSE.
Ty and T; are the times at which ON changed .FALSE. to .TRUE. and .TRUE. to .FALSE. respectively.

4.41 FCNSW
Function switch operator has standard form
y = FCNSW(p, x1, x2, x3)

Results:
y =x1,p <0.0
y =x2,p =00
y =x3,p > 0.0

4.42 FORMAT

The FORTRAN FORMAT statement may be used and must have a label. In an explicit program, the
FORMAT statement and corresponding I/O statement (READ, WRITE, etc.) must both be in the DERIVA-
TIVE section or neither. Standard form of the FORMAT statement is

L1 .. FORMAT(character string)
The ACSL translator does not check the detailed syntax of the FORMAT statement. For further specification,
reference should be made to a standard FORTRAN manual.
4.43 GAUSS

A normally distributed random variable can be generated by

y = GAUSS(m, s)

GAUSS(y = m, s)
y will be normally distributed with mean m and standard deviation s.

NOTE: Warning listed under UNIF.

The seed for a random sequence can be reset by UNIFI or GAUSI. If not set, a different random
sequence will be in effect for each run. Figure 4-6 gives a listing of the operator macro.
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MACRO GAUSES Y, AVE, ST6)
Y=AVE+GRUCZZGEETD X (STE)
MACRO END

Figure 4-6. Listing of GAUSS Operator Macro

4.44 GAUSI or UNIFI

The seed for the random number generator can be initialized by using this operator. Standard form of
the call is

GAUSI(k)
UNIFI(k)

where k is an integer constant or expression and should be an odd number for a maximal length sequence.
If it’s small (1,3,5 . ..) the first five or ten values of random numbers will be highly correlated. Figure 4-7

gives a listing of the operator macro expansion. Only one initialization routine should be used since they both
set the same seed variable.

NOTE: This operator should only be invoked in the INITIAL section of an explicit program or
provision must be made to skip over it except at the beginning of each run in an implicit
program. If it is repeatedly executed, the random numbers won’t change.

MACRO GAUST (SEETD
FROCEDURAL (=8EEXD
e D=8EED

NI

MACRO ENT

Figure 4-7. Listing of GAUSI Operator Macro

445 GO TO STATEMENT

GO TO statements transfer control to a labelled statement whose reference is fixed or which is assigned
during execution of the program. The statement labels used in the GO TO statements must be associated with
executable statements in the same program unit as the GO TO statement. In explicit programs, the INITIAL,
DYNAMIC and TERMINAL sections exist in a single program unit. However, control cannot be transferred
into the DYNAMIC region. The reason for this is that the integration routines must be initialized at the start
of the run and this initialization operation is done on leaving the INITIAL section and entering the DYNAM-
IC section. Control can be transferred from the DYNAMIC region and between INITIAL and TERMINAL
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regions. The DERIVATIVE section is a separate program block.

In the following a statement label may be either numeric or symbolic. Standard forms of the various
labels are:

GO TO k
Execution resumes at the statement labelled k. Example:
GO TO LOOP
GO TO m,(ny, ng . . ., ny)
GO TO m

The statement acts as a many branched GO TO. m is a simple integer variable ASSIGNed a label value.
The n; are statement labels which should correspond to a possible label assigned to m.

GO TO (n}, ng, ..., np), 1
where:
n; = statement labels
i = a simple integer variable that has been given an integer value between 1 and m.
If i has the value k, then control will be transferred to the kth statement label, n, in the above list.
WARNING: The inclusion of a large number of GO TO’s is considered harmful to the successful
completion of any simulation project.
4.46 HARM
A sinusoidal or harmonic drive function can be defined by:
y = HARM(tz, w, p)
Result:
y = 0.0 T<tz
y = SIN(w*(T - tz) + p) T=tz
where:
tz = delay in sec
w = frequency in rad/sec
p = phase shift in rad

Note that if p is nonzero a jump discontinuity will be involved.

4.47 HYSTERESIS
Use the backlash operator BCKLSH

4.48 1ABS
Absolute value of an integer argument can be obtained by the function
n = [ABS(j)

J is an integer variable or expression of arbitrary complexity.

NOTE: Integer variables must be declared to be type INTEGER. The default type is REAL. The
function name IABS should be typed INTEGER as well.
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4.49 IDIM
Integer positive difference can be obtained by the function

n = IDIM(y, Jo)

where j; and j, are integer variables or expressions.
NOTE: IDIM should be declared of type INTEGER prior to its use.

Result:

n=j jg; 1= e

n = 0; i1 <lJg
4.50 IF STATEMENTS

IF statements are used to transfer control conditionally. At the time of execution, an expression in the
IF statement is evaluated and the result determines the statement to which the jump will be made. The most
useful form is the one-branch logical IF. It has the standard form

IF(lexpr) statement

where lexpr is a logical or relational expression (one that has a single value - either . TRUE. or .FALSE.) and
statement is any executable FORTRAN statement except another logical IF, a DO statement or END.
Non-FORTRAN statements or those particular to ACSL may expand to more than one actual FORTRAN
statement. Only a single statement can be included in the logical IF statement. Examples are:

IF(A. LT.5.0) A = A + 0.1
IF(T. GT. TSTOP) GO TO FINISH

The real switch (RSW) operator (q.v.) can often be used in place of an IF which then avoids having to brécket
the IF code sequence by PROCEDURAL . . . END statements in order that statement order can be
maintained.

The three-branch arithmetic IF is also included for completeness. In general, these should be aveided
entirely due to the difficulty encountered in following any complex branching structure. Use only logical IF’s
given before with explicit GO TO’s which effectively act like a two-branch. IF and avoid the statement label
on fall through. Standard form of arithmetic IF is

- IF(c) ny, ng, ng
where:
¢ = any arithmetic expression
n; = statement labels
Control is transferred as
¢< 0, jump to statement ny,
¢ = 0, jump to statement n,,

¢ > 0, jump to statement ns

4.51 IMPL

The solution of simultaneous or algebraic equations cannot be written directly because of the sort
algorithm. Every value is assumed calculable on the outputs of the integrators or state variables. Equations
of the form x = f(x) cannot be expressed in this form and it is necessary to find another way to calculate the
output. Often an algebraic operation can be performed that can simplify the result. Feedback round a summer,
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leads to
Y =X-KY
which cannot be modeled directly.
‘A little algebra can easily give
v =_X
1 +K

Some functional relations may be impossible to solve explicitly and so the implicit operator can be
invoked. This will separate out the algebraic loop and use a Newton-Raphson iteration method to try to find
a solution.

WARNING: This operation can multiply the computer time need for a simulation study many times.
It is worth spending some time trying to avoid implicit loops.

The standard form for the function is:
y = IMPL(yz, e, m, efl, expr, ydl)
IMPL(y = yz, e, m, efl, expr, ydl)
where:
yz = initial guess

the error bound - real constant or arithmetic expression

(<

m = the maximum number of iterations to try - must be an integer constant or variable - not
an expression

efl = the error flag - a variable only - which is set nonzero if the iteration does not converge
expr = the expression that contains or eventually leads back to Y

ydl = the value used to increment the initial value to estimate the derivative. If not specified the
assumed value is 0.0001

NOTE: The IMPL operator should not be used in a PROCEDURAL block that will prevent the
correct sorting of any intervening statements.

The iterative method used is Newton-Raphson to solve
Y = 1Y)

_fh -y is the derivative estimate
n Yo-Yn-1 '

f,. - C.Y
—-_n nn

Upon initial entry
Y,.1=YZ
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Y,=(1.0+ Y)*Y,,
The error criterion for successful completion of the iteration is
Iy, - f,I<IY|*E

4.52 INITIAL

Identifies the block of code that is performed just once before the start of each run. It must be
accompanied by its own matching END card enclosing the block and the block must be placed before the
DYNAMIC (q.v.) section. Refer to Subsection 3.1 for rules of explicitly structured programs. No sorting is
done on any code within the INITIAL block.

4.53 INT
Integerization of a real floating point argument
n = INT(x)
n will be the sign of x times the largest integer <Ix|
NOTE: INT should be declared of type INTEGER prior to it use.

4.54 INTEG

All integration in an ACSL program is handled by a centralized integration routine. In performing
integrations, the integration algorithms utilize two intervals - the calculation interval and the communication
interval. Since digital integration is basically a discrete process, the calculation interval is the fundamental
interval over which the state variables are updated. No finer detail is accessible except by some interpolation
scheme. All integration schemes for the set of first order differential equations

x = f(x)
finish up looking like
Xp+1 = Xp T hf(xn+a)

where 0 <a< 1. The problem is to find the effective derivative to be used in updating the state vector. Note
that with suitable conditions on continuity and differentiability, the mean value theorem guarantees that an
o exists that will produce an exact answer for the state trajectory - finding it is another matter, however.
Different integration schemes approximate the derivative in different ways - usually by expanding the
derivative function in a Taylor series, about the current state.

As an example, consider the Runge-Kutta integrations. The derivative function f(x) is evaluated four
times and saved as the v;. The first is the slope at the beginning of the interval:

vy = f(x,)
This slope is extrapolated half way across the interval and a new value calculated:
Vo = f(Xn + 0.5 th)

This new slope is brought back to the beginning of the interval and again used to extrapolate half way across
the interval and a new slope evaluated

vy = f(x, + 0.5 hvy)

This third slope is brought back to the beginning of the interval and used to extrapolate all the way across
and a new slope evaluated there

vy = f(x, + hvs)

We now have four slopes - one an exact one at the beginning of the interval and approximations - two in the
middle and one at the end. Runge-Kutta says that the average slope to be used in updating the state is the
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weighted average of these - assigning twice the weight to the slopes in the center of the interval as the ends,
ie.,

f(Xpra) = (v1 + 2vg + 2v3 + v4)/6
Errors introduced at each step will normally be proportional to h for this method.
The form of the integration statement is either
state = INTEG(deriv, ic)

or embedded in any legal expression as a function that has a single output, the value of the state. When the
integration statement is alone, then the state name can be identified - embedding in an expression means a
generated variable must be used for the state.

‘state’ = a simple variable or subscripted array name with a single integer CONSTANT subscript.*

‘deriv’ = an arithmetic expression of arbitrary complexity, i.e., may contain further INTEG state-
ments, functions or MACRO’s

€ e

ic’ = a simple non-subscripted variable, a real constant or a general expression enclosed in paren-
theses. If it is a simple variable (preferred), then this variable name must not be used as
another initial condition, state, derivative or system variable name.

If the expression form is chosen the statement is sorted in such a way that all components in the
expression are evaluated before the state value is assigned. Equations using the state will then follow. Problems
may occur when using this form with the REINIT command (q.v.) at model execution time. The expression
‘will always be evaluated and substituted for an initial condition established by the reinitialization operation.

Examples of use are as follows:
ARRAY X(5)
Y = INTEG(5.0*X + C, YIC)
X(1) = INTEG(A + B, X1IC)
X(2) = INTEG(INTEG(4.0*DD + X(1), 0.0), X2IC)
Z = P*INTEG(ZDOT, 0.0) + BT
W = INTEG(WDOT, (2.0*AL*SIN(TH)))
The following comments are to be noted.
1) That Z, in the above, is not a state since the INTEG function appears embedded in an expression.

2) Once the array X has been defined as a state by the single INTEG statement, another assignment
statement cannot be used to fill the other slots of an array. If one element of an array is a state, ALL
elements of the array must be states; i.e.,

X(3) = W + 5.0*Y
X(4) = AL*INTEG(ALP, 0.0) + W
are both illegal when accompanying the above.
Initial conditions can only be names not used as states, other initial conditions or system variables; i.e.,
YY = INTEG(YYD, YIC)
Z7Z = INTEG(Z*4.0, X)
ZK = INTEG(KK, CINT)

* See the vector integration operator INTVC for another way to solve matrix differential equations.
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are all illegal when used with the above cards. CINT could be used if the system default name has been
changed by a CINTERVAL statement (q.v.).

The reason for the rules may be better understood if the actual translation operation is explained. The
translator is building up three lists of names that will be placed in sequence in a FORTRAN common block.
The state list will contain all the state variables and arrays, the derivative list will contain names that have
values for the derivatives stored into them and the initial condition list will have names with values correspond-
ing to the equivalent slot in the state list. The problem comes about that each name in these lists must be
unique. The initial condition name for each state must be different. If it is a constant or an expression, a
generated name is used (Znnnnn) but if it is a simple variable the translator uses that name directly. The
expression form is changed into a test (IF statement) on the first evaluation of a run, in which case the
expression is evaluated and the result stored into the state. The derivatives at present are all generated
variables to avoid conflict since it was thought that integrating a state was too common a feature to eliminate.
The statements

YD = INTEG(5.0*X, 1.0)
Y = INTEG(YD, YIC)
will generate the following assignment statements
709999 = 5.0*X
709998 = YD
and a DATA statement for the generated initial condition
DATA Z09997/1.0/

Now the state list will be YD,Y; the derivative list will be Z09999, Z09998; and the initial condition list will
be Z09997,YIC. Each name on the list is unique.

From this we can show that it saves time to include the derivative expressions in the INTEG statement
rather than calculating the derivative by name explicitly. Of course, if the derivative is needed in other
calculation sequences then it must be given a name, but this would be an unusual case, i.e.,

YD =50*X +YY

Y = INTEG(YD, YIC)
would be better done by

Y = INTEG(5.0*X + YY, YIC)
unless the value of the expression 5.0*X + YY is needed elsewhere in the program. The extra assignment
statement is avoided. However, see the use of INTVC below for single elements - pseudo arrays of size one.
4.55 INTEGER

See type statements.

4.56 INTERVAL

In order to schedule repeated execution of a DISCRETE (q.v.) block, the INTERVAL statement is used
both to define the name of the variable controlling the repetition period and its initial value. Standard form
for the statement is

INTERVAL name = real constant

where ‘name’ is a simple unsubscripted variable name. There is no default and a DISCRETE section without
an INTERVAL statement will never be executed.

4-29



The mechanization of the INTERVAL feature is to use the slot in the global MINTERVAL array
corresponding to the DISCRETE block and equivalence the INTERVAL variable into this array. If no
INTERVAL statement is placed within the DISCRETE block, a value of zero is used as the default which
flags the DISCRETE block as not to be executed during the initialization phase.

4.57 INTVC

The restrictions on the INTEG operator with regard to initial condition and derivative arrays can be
avoided by using this vector integrator operator. Standard form is

x = INTVC(xd, xic)

where x, xd and xic are arrays of the same size and correspond to state, derivative and initial condition
respectively. See the program in Section 10 of Appendix A for examples of the use of the INTVC operator.

The restrictions on the use of the INTVC operator are as follows:
1) INTVC cannot be used in an expression.

2) The derivative array must not appear anywhere else as a state. (If you must use a state as a derivative
- velocity, for instance - use the block transfer (XFERB) subroutine to move it into another array
before using INTVC.

3) The initial condition cannot be a constant or expression.

4) The array size may be one - or equivalently a single undimensioned variable can be used instead. In
this case, the derivative name is used explicitly and no extra assignment statement is generated.

5) The derivative array cannot be preset witha CONSTANT statement since it is cleared automatically
to zero before the derivative evaluation routine is called the first time - after the INITIAL section
- after every START.

As an example consider
ARRAY X(10), XD(10), XIC(10), M(5, 5), MD(S, 5), MIC(S, 5)

X = INTVC(XD, XIC) $ ‘VECTOR INTEGRATION’
M = INTVC(MD, MIC) $§ ‘MATRIX INTEGRATION’
If R, V and A are range, velocity and acceleration vectors so
ARRAY R(3), V(3), A(3)
the following is ILLEGAL -
V = INTVC(A, VIC)
R = INTVC(V, RIC)

since these statements ask for V to be considered as both a state and a derivative at the same time. Using the
XFERB (transfer block) subroutine and defining an RD (R dot) array, the sequence becomes

V = INTVC(A, VIC)
CALL XFERB (RD =V, 3)
R = INTVC(RD, RIC)

4.58 1/0 STATEMENTS

FORTRAN read, write and file handling statements can be included and are recognized by the ACSL
translator but a minimum of syntax checking is performed. Most errors will be indicated at the FORTRAN
compilation that follows translation.
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The following definitions apply to all the I/O statements covered:

i = logical I/O number that determines the file. The logical unit numbers available depend on machine
type and operating system. See addendum.

i = 5 being the INPUT file or card reader
= 6 being the OUTPUT or print file
= 9 being the PRINT file - must be disposed of explicitly
n = FORMAT declaration identifier which must be a statement label (number or symbol)

L = input/output list. This list portion of an input/output statement indicates the data items and the order,
from left to right, of transmission. The input/output list can contain any number of elements. List items
may be array names, simple or subscripted variables, or an implied DO-loop. Items are separated by
commas, and their order must correspond to any FORMAT specifications associated with the list.
External records are always read or written until the list is satisfied. The ACSL translator does not
check the syntax of the list - any character string will be accepted and errors will be indicated by the
subsequent FORTRAN compilation. For more details on list format, refer to a FORTRAN reference
manual.

Standard form of the I/O statements are as follows:

PRINT n, L - Information in the list L is transferred to the OUTPUT unit-printer or remote
terminal - in accordance with the FORMAT declaration, n .N.B. Use LINES (q.v.) before the PRINT or
WRITE to tell the executive how many lines are being written. Top-of-form is then handled automatically.

WRITE(, n)L - Same as PRINT above except the file is determined by the value of the unit i. Valid
logical unit numbers depend on machine type and operating system. See addendum.

READ n, L - One or more card images are read from the standard INPUT unit - card reader or
remote terminal. Information is converted from left to right in accordance with the FORMAT specification,
n, and is stored in the locations named in the list, L.

READ(, n)L - Same as READ above, except the file is determined by the value of the unit i. Valid
logical unit numbers depend on machine type and operating system. See addendum.

4.59 ISIGN
Append a sign by
n = ISIGN(y, jo)

where j; and jy are integer variables or expressions. Result is sign of j, times absolute value of jj and the result
will be an integer.

NOTE: ISIGN should be declared to be of type INTEGER prior to its use.

4.60 LEDLAG ‘
A lead-lag compensator may be conveniently implemented by using the standard form
y = LEDLAG(p, q, X, ic)
LEDLAG(y = p, q, X, ic)

Result: y will be related to input x through the transfer function
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v (0) = -g— x(0) + ic

The same restriction on ic is present as for the INTEG operator. p and q may be expressions of arbitrary
complexity. Figure 4-8 shows the mechanization of this operator as a system macro.

MACRO LEDLAGOUT, P, Q. IN, T
MACKRO STANDVAL TC=0.0

MACRO REMEFINE X, Y

Xuz TN

OUT=Y+(FIXRX(Q)
YaINTEGCX-OUTYZ(R), TG
MACRO ENID

Figure 4-8. Listing of LEDLAG Operator Macro

4.61 LIMINT

Integrators should not be limited using the BOUND function since the integrator will continue to
integrate and will thus require a time to integrate out of the limit when the derivative changes sign. The
LIMINT operator holds the integrator at the limit as long as the derivative is of such a sign to drive it further
into limit.* When the derivative reverses sign, the integrator will immediately come off limit. The operator
has the standard form

y = LIMINT(yd, ic, £4, uf)
LIMINT (y = yd, ic, 24, ug)
where:
yd = an expression for the derivative
ic = y(0) - same restriction on ic as on the INTEG statement; may be omitted if zero
29= lower limit on y
uf = upper limit on y

Figure 4-9 shows the effect of the LIMINT operator.

4.62 LINES

Used to tell the executive processor how many lines are going to be written with PRINT or WRITE
statements. Pass by this if you do not use FORTRAN FORMAT statements. The executive processor at
run-time keeps track of the number of lines written on the output file and every 55 lines issues a top-of-form
and prints out the header and TITLE. If FORTRAN write statements are included in the model definition
they are expected to inform the processor how many lines they are going to write so that the pagination is
performed correctly. Standard forms of the call are

* See DBLINT operator for double integration, acceleration to displacement with limited displacement.
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yd’ IS MADE ZERO WHEN y EXCEEDS BOUNDS

Figure 4-9. Effect of LIMINT Operator

CALL LINES (n)

where n is the number of lines about to be printd. If n lines are not available on the current page, the page
will be ejected. You should not issue your own top-of-form by making Column 1 a digit 1.

CALL LINES(2)
PRINT99, A, B, C
99 .. FORMAT(1X, 2E12.5/1X, F12.2)
In order to force a top-of-form prior to the write, call subroutine PAGE(q.v) before calling LINES.

4.63 LOG

The data logging operation for the OUTPUT and PREPAR lists can be forced by a call to this
subroutine. Data logging only takes place after each pass through the DYNAMIC section and on exit from
the TERMINAL section. Finer detail can be recorded by judicious use of this operation. An example of use
is as follows:

LOGICAL HIRATE
IF(HIRATE) CALL LOG
which will force the data logging action whenever logical variable HIRATE is true.

4.64 LOGICAL

See type statements.

4.65 LSW, RSW
Logical (or integer) and real switch functions. The standard form of these two operators is
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i= st(p’ jl’ .]2)
y= RSW(p’ X1, X2)

The functions take on the value of the second argument, j; or x;, when the logical expression p has the value
TRUE., otherwise the value of the third argument, j, or Xo. The j; and jy are any integer or logical expressions;
X; and X, are real expressions.

NOTE: LSW should be declared to be of type INTEGER prior to its use.

4.66 MACRO

Denote the beginning of a MACRO definition if not already within a definition. Within a definition
denotes special subcommands to be interpreted by the MACRO processor. For a full description of the
MACRO capability see Section 6.
4.67 MAXO

Maximum of a string of integer arguments can be obtained from

n= MAXO(}], j2, - sy -]l’l)
where the j; are integer variables or expressions; any number of arguments may be included.
NOTE: MAXO should be declared of type INTEGER prior to its use.

4.68 MAX1
Maximum of a string of real arguments can be found from the function
n = MAXI1(xy, Xg, . . ., Xp)

where the x; are real, floating point variables or expressions. Any number may be included. Result will be the
integerized value of the largest x;, where the integerized value is the sign of the x; times the largest integer
S|Xi|

NOTE: MAX1 should be declared to be of type INTEGER prior to its use.

4.69 MAXTERVAL
See MINTERVAL.

4.70 MERROR, XERROR

Relative and absolute error bounds - per step - for individual state variables. They are written in the
standard form -

MERROR v; = real constant, vo = real constant, etc.
XERROR v; = real constant, vy = real constant, etc.

where the v; are nonsubscripted variable names that are state variables, i.e., appear opposite an INTVC or
INTEG statement that is not embedded in an expression. The state itself can be an array, but then the errors
specified will apply to all elements in the array. Individual elements cannot be given separate error tolerances.

MERROR is used for relative (fractional) errors and
XERROR for absolute errors.

If any relative or absolute errors are specified, the FIRST specification encountered will be applied to
all integrators that are unspecified. If no values are specified, the relative and absolute errors will both be set
to 1.0E-4.
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Example:

MERROR X = 1.0E-4, Y = 1.0E-6
where:

X = INTEG(XD, XIC)

Y = INTEG(YD, YIC)

Z = 5.0*INTEG(ZZZ, 0.0) + COS(X)

Note Z in the above example cannot have any error bounds specified since it is not a state. The actual state
will be a generated variable which will be placed in the assignment statement instead of the INTEG function.

The MERROR and XERROR statements have meaning only for the variable step-size integration
algorithms and are used to bound the error introduced at each step. Based on the maximum absolute value
of a state variablelV;l ,, since the start of the run*, the allowable error bound is defined to be

Ei = MAX(Xl, Mi|Vi|max)

If any of the predicted errors in a step of the integration program are greater than the corresponding
E;, the calculation interval or step size is reduced appropriately. If the error is still too large after the step
size has been reduced to the minimum, the ERRTAG variable, if any, is set . TRUE. and the run aborted.

4.71 MINO
Minimum of a string of integer arguments can be found from the function
n= MINO(_]I, j2, . ey _]n)

where the j; are integer variables or expressions. Any number of arguments may be included.

NOTE: MINO should be declared to be of type INTEGER prior to its use.

4.72 MIN1
Integerized minimum of a string of real arguments can be found from the function
n = MINI(xy, Xg, - . . , Xp)

Arguments will be the same as for MAX1.
NOTE: MIN1 should be declared of type INTEGER prior to its use.

4.73 MINTERVAL, MAXTERVAL

The minimum and maximum calculation intervals (integration step size) can be controlled and renamed
using these statements. If a variable step size algorithm attempts to go below the value of the minimum step
size, the error tag will be set. If it is already set, the termination flag will be set. Standard form for the
statements are

MINTERVAL name = real constant
MAXTERVAI name = real constant

where ‘name’ is a simple unsubscripted variable name. Default names for these variables are MINT and
MAXT so why not use them? They can be set by assignment statements in the program or by SET commands
at run-time. Example:

MINTERVAL MINT = 1.0E-6

* Use of CONTIN at run-time defines the start of a new run in this sense since the integration routine has
to be reinitialized.

4-35



then at run-time
SET MINT = 2.0E-6

MAXTERVAL may be used to control the step size independently of the communication interval changes
if NSTEPS (q.v.) is made 1. The calculation interval (step size) is started off at the CINT/NSTP and this
is then forced to lie in the region MINT to MAXT.

4.74 MOD
Modulus, or remainder, of an integer divided by an integer can be obtained by
n = MOD(jj, jg)
where j; and j, are integer constants, variables or expressions.

Result is remainder of j, divided by j,. When j, is negative, this isn’t quite correct. What actually happens
is that the result is j; - [j;/ja] Jo where [ ] is an integer with magnitude of not more than the argument and
with the same sign.

NOTE: MOD should be declared to be type INTEGER since the default for all variables is type
REAL.
4.75 MODINT

Moded integrator allows operation in reset and hold mode as well as normal operate. The mode of the
integrator is determined by the two flags in the call. Standard form is

Y = MODINT(yd, ic, 21, £2)
MODINT(y = yd, ic, 21, £2)
where:
yd is the derivative variable or expression.
ic is the initial condition - see INTEG for restrictions on initial conditions.
£1 and £2 are logical variables or expressions of arbitrary complexity denoting the mode.
The truth table is

n 22 Mode
T F reset
F F operate
T T operate
F T hold

where
T = .TRUE. and F = .FALSE.

Figure 4-10 shows the mechanization of this operator as a system macro.
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MACKRO MODINTOY, 0L TC, LOVE, LOCVE)

MACRO RELABEL R

MACRD REDEFINE ICTEM. STATE, STORE, MODET
LOGICAL MODED

CONSTANT STORE=0.
FROCEDURAL (Y, MODBED=8TATE, TC, LCVL, LCVZ)
CALL ZZICSCICTEM=8TORE
ITFCZZFST(ETATE) (LT, 0.5 GOTO R
MODETE= . FALSE.

TFOCLCVLY CANDL (LCVE) L OR. NOT. ((LEVIY L ORL (LCVE)Y D GOTO R
MODET= . TRUE.

IFO.CVID ICTEM=1C-8TATE

END
STATE=INTEG (ZZREW(MODED, 0., 10O, TC)
MACRO END

Figure 4-10. Listing of MODINT (Moded Integrator) Operator Macro

4.76 NSTEPS

Defines the calculation interval - integration step size - in terms of the communication interval. It
renames the integer variable that defines the number of integration steps in a communication interval.
Standard form of the statement is

NSTEPS name = integer constant

where name is a simple nonsubscripted variable. The default name is NSTP and is normally given a value
of 10. This means that the integration step will be one-tenth the communication interval.

The variable named in the NSTEPS statement is automatically typed INTEGER. The name defined
in the NSTEPS statement (or NSTP by default) can be set by assignment statements within the program
itself.

The maximum and minimum step size values MAXT and MINT take precedence over the step size
arrived at by dividing the communication interval by NSTP, i.e., the step size H is given by

H = MAX(MINT, MIN(MAXT, CINT/NSTP))

It is recommended that the value of NSTP be made unity so that the integration step size can be controlled
by the value of MAXT, specified by a knowledge of the plant dynamics i.e. include the statement NSTEPS
NSTP = 1. If CINT/NSTP is controlling, then a change in observation interval CINT will require a
corresponding change to NSTP to keep the same step size. Having to change two variables for one result is
normally considered bad programming practice.

4.77 OU

Band limited white noise can be implemented by this function. A normal random number generator
(GAUSS) will deliver a fixed total power - rms value - but the frequency spread will depend on the current
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calculation interval. Usually, the low frequency power density is important so casual use of GAUSS into a
low pass filter will lead to ill-defined variation of this quantity as the step size is changed. The Ornstein-
Uhlenbeck process maintains a constant source of power over a specified frequency band, so eliminating any
problem of having to include the current calculation interval in the standard deviation of the random variable.
Standard forms are

y = OU(7,, m, s)
OU(y = 7,, m, s)
where v
7, is the low-pass filter time constant. Break frequency is 1/2 w7, Hz
m is the mean value of Y
s is the standard deviation of Y (rms value)

The operator is implemented by generating a correlated noise sequence from the general formula

where
7 is the correlation time constant
A t is the sample interval
w; is a gaussian random variable

We would like to find the w; that will produce the correct noise power or such that

n? = ¢2 ;
Square the above equation for n;;; and take expected values

=20t
2 - 2 T 2
njy ] = nje +wy

since we can assume the random drive uncorrelated with the noise sequence. i.e.

niwi= 0
But n§= nf_,_l = ¢?
—2A t
T
o) w? = 6% (1-e¢ )

1
Now the sequence can be expressed by

~At -2A t
ni+1=nie7 + 0 (l1-e T )gl

where g; is a gaussian random variable of zero mean and unit variance.
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4.78 OUTPUT, PREPAR

Variables to be recorded at each communication interval can be specified by these two statements. In
general, these statements should be viewed as part of the exercising of the model and included in the run-time
commands. It is realized, however, that standard lists may be defined and, in that case, may be included within
the model definition part of the program. The statements are accomplished by system MACRO’s so the
arguments must be enclosed in parentheses for the model definition. The corresponding run-time commands
do not have parentheses. Standard forms are

OUTPUT (v, vy, v3, €tc.)
PREPAR (Vl, Vg, V3, CtC.)

where v; are either simple variables or array names. If the v; are array names, the entire array will be reported.
In this form it is not possible to select array elements.

OUTPUT designates the variables that will have their values recorded on the print file as the run
progresses at each communication interval. PREPAR records the values on a save file that is used by any
subsequent PLOT or PRINT commands. The OUTPUT list cannot be in columns, since each communication
interval the entire block of output variables must be printed. Once the data has been saved, it can be put into
columns by repeated passes down the file.

N.B. The OUTPUT and PREPAR statements in the model definition wastes core space since the names
must be preset into a data array and then transferred once at run-time to the lists used by the executive. Only
one OUTPUT and PREPAR statement is significant. If more than one is used the first one will be effective.

Any run-time OUTPUT or PREPAR statements will override these statements embedded in the model
definition.

For an explicit program (Subsection 3.1) they should be placed in the INITIAL section. They must not
be placed in the TERMINAL section.

These statements are translated to a subroutine call that passes the list of names given. The appropriate
list (OUTPUT or PREPAR) is checked and if the length is currently zero, the list of names is added. If the
length non-zero, no action is performed. By this means, build up is avoided in loops and the run-time
specification will override the model definition specification.

4.79 PAGE

In order to control pagination, subroutine PAGE can be used to force a top-of-form and turn on or
suppress auto page eject. As a by product, the number of lines left on the current page is returned as the second
argument. The format of the call is

CALL PAGE (K, ng#) where K is a code to modify the page eject as follows:
= -2, suppress auto page eject, eject next write
= -1, suppress auto page eject
= 0, ignore but return ‘NLL’
= 1, turn on auto page eject
= 2, turn on auto page eject, eject next write

nf is returned as the number of lines left on the current page. In order to force a new page before writing
ten lines via a formatted write statement use

CALL PAGE (2, NLL)
CALL LINES (10)
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WRITE (6,99) . ..
The ACSL system normally operates in an internal auto page eject mode. The exception is the printer PLOT
command when plots can span page boundaries. Auto page eject is restored after each PLOT.
4.80 PREPAR
See OUTPUT.

4.81 PRINT
See I/0 statements.

4.82 PROCEDURAL

Denotes the beginning of a block of PROCEDURAL code that will finish with a matching END. The
code within the block will be executed in the sequence given and no attempt will be made to reorder it. Form
of statement

PROCEDURAL (output list = input list)
where:

output list = variable, variable, variable . . .

input list = expression, expression, . . .

The output list should contain only nonsubscripted variable names. They may belong to arrays however, in
which case the entire array must be filled within the block. The sort algorithm requires that values only appear
as outputs once - otherwise, the error message ‘multiply defined output symbol’ is issued.

So
AD=X+Y
AQ)=Y + Z

flags the variable A as having a value placed in it twice and so illegal. An acceptable form would embed this
sequence in a PROCEDURAL block.

PROCEDURALA =X,Y, Z)

A)=X+Y
AQ=Y + Z
END

which tells the sort routine to place the block before a reference to any element of the array A.

PROCEDURAL . . . END brackets need only be used in a DERIVATIVE section where the code is
sorted. Remember PROGRAM ... END alone is an implicit DERIVATIVE section. Code placement in the
INITIAL, DYNAMIC, or TERMINAL sections is unsorted so although PROCEDURAL . .. END may
be used, it will have no effect.

Within a DERIVATIVE section, the entire block is moved so that is is placed after the calculation of
all variables on the input list and before the use of any variables on the output list. Although other variables
may be present on the list, sorting is only with respect to variables calculated within the same DERIVATIVE
section. The sort operation never moves code across section boundaries. The entire DERIVATIVE section can
be made a. PROCEDURAL block and since it then can’t be moved, no input or output argument list is
necessary. PROCEDURAL . . . END brackets should always be used around code constructs in which the
order must not be changed. Typical operators are DO, GOTO and IF (three way or single branch).
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Expert users may lie in specifying what is on the input/output lists. The ACSL translator never looks
inside the PROCEDURAL block to ensure compliance with the list supplied, so it is possible to break
algebraic loops for approximate solution by omitting one of the loop variables from the PROCEDURAL input
list. Since this variable will be used before it’s calculated, initialization is required in the INITIAL section.
In breaking implicit loops this way, the last value of the variable will be used which is satisfactory in a large
number of cases. Be warned however that the results will change with step size and a variable phase shift will
be present in traversing the implicit block.

NOTE: Statements involving memory operators which must be sorted into correct execution
order should not be included in a PROCEDURAL block. These are ZHOLD (zero order
hold), DELAY, DBLINT, DERIVT, (the derivative operator) and for other reasons IMPLic-
it.

4.83 PROGRAM
The first card in the model definition section must be this card; it has the form
PROGRAM any character string except a dollar sign
The character string is not used in any way and serves merely to identify the deck and listing. This card must
be accompanied by a matching END statement to terminate the model definition section.
4.84 PTR
A resolver - polar to rectangular - can be implemented by the standard form
PTR(X, y =1, th)
Result is
x = R*COS(th)
y = R*SIN(th)

where the angle, th, must be expressed in radians. Figure 4-11 lists the mechanization of this operator as a
system macro.

MACRO PTROX1. X2 R TH)
KL= (RIYKCOGCTHD

K= (RIXBINCTH)

MACKREO END

Figure 4-11. Listing of PTR (Polar to Rectangular) Operator Macro

This form is not a functional representation since there are two outputs. Thus, this statement cannot be
embedded in an expression. It can only stand alone as shown.

4.85 PULSE

A train of pulses can be generated using the PULSE function. The independent variable, default T, is
used to drive it. Note that the integration step size may affect the answers in that too large a step could cause

4-41



the pulse to stay on indefinitely. The output will always be turned on (=1.0) at the beginning of the first
calculation interval that follows the exact turn on time. Standard form is

y = PULSE(tz, p, w)
Result

Y is a pulse train (0.0 or 1.0) starting at the first calculation interval that equals or exceeds tz. Period
is p and width is w.

Y
— :
1.0
e s
: -
TZ
4.86 QNTZR

A variable may be quantized so that only discrete values are used. It is a zero centered system as shown
in the diagram. Standard form

y = QNTZR(p, x)
Result:

YA

<V

\O.Sp

where x and p are real variables or expressions.

4.87 RAMP

The RAMP function generates a linear ramp of unit slope, starting at a specified time. It is another way
of applying a dead zone (DEAD q.v.) to the independent variable. Standard form is:

y = RAMP(tz)
Result is:
y =0.0 T< tz
y =T - tz, T =tz
Y

Tz
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RAMP starts at first calculation interval that equals or exceeds tz.

4.88 READ
See I/0 statements.

4.89 REAL

See type statements.

4.90 REALPL
A first order lag may be implemented by the standard form
y = REALPL(p, x, ic)
REALPL(y = p, x, ic)
Result:
y will be related to input x through the transfer function

Yoo 1
< ps+1
Y(0) = ic

The same restrictions on ic are present as for the INTEG operator; if zero, it may be omitted. P may be an
expression of arbitrary complexity. Figure 4-12 lists the macro to implement this operator.

MACRO, REALPLOY, P X T
MACKRO STANDVAL TC=0.0
YuINTEGC(X~(Y) )/ (), IC)
MACRO END

Figure 4-12. Listing of REALPL Operator System Macro

4.91 RESET

A special operator is provided for use in the INITIAL section that can initialize the state variables and
optionally perform intermediate calculations. Normally when entering the INITIAL region, the state variable
names are undefined - it is only on exit from the INITIAL region to the DYNAMIC region that the
initialization operation is performed. Remember the prime objective of the INITIAL region is to calculate
the unknown initial conditions. Two forms of the call are possible so

RESET (‘EVAL’)
RESET (‘NOEVAL’)

where the argument explicitly says whether or not a complete derivative evaluation is to be attempted. It is
. the user’s responsibility to ensure that unknown initial conditions have “reasonable’ values to prevent arithme-
tic errors (divisions by zero say). An example would be calculating the initial conditions to be placed on the
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accelerometer filters in a missile simulation. In order to obtain the nominal acceleration, the missile velocity
vector must be rotated into the missile axes, the angle of attack determined and the aerodata looked up to
obtain force coefficients. This code must be expressed in terms of the inital condition variables rather than
the state variables unless the RESET operator is used.

This extra code can be avoided by
RESET (‘EVAL)

at the beginning of the INITIAL region since the derivative subroutine would calculate body acceleration
using the state variable names. The problem is that the process is not selective - calculations of all state variable
derivatives is attempted. In the above example the output of the accelerometer filter must lead somewhere
and if initialized indefinite will lead to an arithmetic error. If the undefined initial conditions are preset in
a CONSTANT statement (0.5 is a useful default number) then the calculation can proceed and the meaning-
less numbers can be disregarded. The important thing is that all the calculations can proceed without
arithmetic errors. :

The operator is defined in terms of a state vector S, and the initial condition vector IC. The state
derivative vector is given by
e

S = (S, T)
Now the RESET(a) action is
S «IC, T « XICITG
if (a=EVAL) evaluate f(S, T)

4.92 RSW
See LSW (logical switch).

4.93 RTP
A resolver - rectangular to polar - can be implemented by the standard form
RTP(r, th = x, y)

r =vx2% + y?
th = ATAN2(y, x)

The angle, th, will be in radians and will cover the range - = to + = depending on the magnitude and signs
of x and y. Figure 4-13 shows the mechanization of this operator as a system macro. Note the second argument
of the arc-tangent (ATAN?2) is modified by the addition of a very small amount. Inputs of 0.0, 0.0 will return
an angle of zero instead of indefinite.

Result:

MACRO RTP (R, TH, X1, X&)
ReGART X)) KRS+ (X2 R%2)
TH=ATANZ2 (X2, X1+1. 0E~30)
MACRO END

Figure 4-13. Listing of RTP (Rectangular to Polar) Operator Macro
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This form is not a functional representation since there are two outputs. Thus, this statement cannot be
embedded in an expression. It can only be used as stand alone as shown.
4.94 SAVE

The current MACRO tables containing the MACRO names and packed definitions are written - in
binary - on the ACSL System Macro File. This operation allows each user to maintain his own file of
MACRO’s separate from the system file.

The normal operation of the system is to read into the MACRO definition tables, the contents of this
Macro File before the translation begins. If it does not exist, no MACRO definitions are present.

Action of SAVE is to write the current contents of the MACRO tables back on this file, thus destroying
the original contents. To use SAVE you must have WRITE permission on the current MACRO file.
4.95 SCALE

Rounds the given maximum and minimum values so that they are suitable for plotting. Standard form
of the call is '

SCALE(smn, smx = ymn, ymx)
where:
ymn and ymx are the minimum and maximum values

smn and smx are the scaled minimum and maximum to be used on a plot (i.e., rounded to multiples
of 1, 2, 4, or 10)

The first two arguments need not be distinct frm the second, i.e.,
SCALE(ymn, ymx = ymn, ymx)
replaces actual minimum and maximum values with the rounded ones.

Normally, this operator should be used in the TERMINAL section of an explicit program to establish
scale factors for subsequent PLOT (q.v.) commands. It is only used when #we or more plots need the same,
originally unknown, scale factors.

4.96 SIGN
Append a sign by
y = SIGN(x,, Xg)
where:

X; and x, are real, floating point constants, variables or expressions.
Result is the sign of xy time the absolute value of x;;

To mulitiply by the SGN of a variable where

SGN(x) = +1.0 x=0.0
SGN(x) = -1.0 x<0.0
the SIGN function can be used so
y = X*SIGN(1.0, Z)
which will give
y = X*SGN(Z)
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NOTE: The result of SIGN(X,Z) is not the same thing as X*SIGN(1.0,Z).

4.97 SIN

Takes the sine of a real argument which must be in radians
y = SIN(x)
Result will be such that - 1.0 <y < 1.0

4.98 SQRT

Take the square root of a positive real argument x.
y = SQRT(x)

4.99 STEP

The STEP function produces a change from zero to one in the output at a specified value of the
independent variable. Standard form is

y = STEP(tz)
Result is
y = 0.0, T<tz
y =10, T=tz
Y
1.0

TZ

Pulse starts at first calculation interval that equals or exceeds tz.

4.100 TABLE

Used to describe an arbitrary function of one, two or three variables. A separate TABLE statement must
be used to define each function. The standard form is:

TABLE name, n, dimension(s)/data list/

where ‘name’ =

‘dimension(s)’ =

‘data list” =

name of the function. The value will be accessed by name (argl), name (argl, arg2) or
name (argl, arg2, arg3) for functions of one, two or three variables respectively. The

" arguments in the above are arithmetic expressions, hence can contain an arbitrary level

of complexity.

an unsigned integer constant giving the number of independent variables; must be 1, 2
or 3.

unsigned integer constants; the number of constants must correspond to the value for n.
The value of the constants give the number of discrete data points for each successive
independent variable. A dimension of one is illegal.

real constants: First comes the list of independent variable values. The number of these
points should equal the sum of the dimensions. Then, the data points of the function with
the first argument varying fastest. The number of function data points must equal the
product of the dimensions.
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All data points for the independent variables (break points) must be of monotonically increasing order
- values may be identical but a breakpoint must never be less than a preceeding value. Each TABLE statement
may contain as many data points as desired. Once the function has been defined it may be referenced just
like any other ACSL function. Repeat counts may be used in the data specification.

Examples of use in tables of one, two and three variables. Breakpoints are 2 for arg a, 3 for arg b and
4 for arg c.

TABLE FIARG, 1, 2/0.0, 1.0, f,, f,/
TABLE F2ARG, 2, 2, 3/0.0, 1.0, - 1.0, 0.0, + 1.0 . ..
fr1, fo1, frg, fog, 13, fo3/
TABLE F3ARG, 3, 2, 3, 4/0.0, 1.0, - 1.0, 0.0, + 1.0, 0.0, 0.1,0.2, 0.3 . ..
f1115 fa11, fio1s fao1, fi31, fo31 - - -
f112, fa19, 192, fage, fi32, fosg - -
f113, fa13, 193, fa23, f133, fosz - -

f1145 To145 Tr245 Fo045 f1345 Fo34/

For all function generation routines, if the calculated values of the independent variables lie outside the
range specified by the TABLE statement, the values for the function will be obtained by extrapolating from
the last values given.

The table operator makes up a MACRO of the same name as the function so that all references after
the table definition are caught. An array is also defined with the same name and enough storage to contain
both function data values and the corresponding argument breakpoint values. This array name is entered into
the dictionary and it may be accessed in normal fashion by SET, DISPLY etc. commands. One point to note
is the order of data entry into the array - the function data is listed first, then the breakpoint values follow.
This order is the opposite from that listed in the TABLE statement. It was felt that the more normal operation
at run time was changing function values rather than breakpoints.

Consider the pitching moment table as a function of Mach number
TABLE CM, 1, 5 '
/0.0,08,1.2,1.5,25...
,0.50, 0.51, 0.92, 0.83, 0.15/

This will make up an array CM(10) - the first five words will contain the function values 0.50, 0.51, 0.92,
0.83, 0.15; the words six through ten will contain the breakpoint values 0.0, 0.8, 1.2, 1.5, 2.5. To change the
function value for Mach 1.5 we can

SET CM(4) = 0.65

To change the breakpoint from Mach 1.5 to Mach 1.6, we must calculate the position in the table (= 5 +
4) so

SET CM(9) = 1.6

will change the breakpoint. For multidimension tables, the function data all comes first, then the breakpoint
data in order - first, second, third argument. Remember the run-time command SET cannot access a
multidimension array.

When used, the function referenced is translated into an assignment to a dummy variable from the
function look up subroutine i.e.

Q = 0.5*RO(H)*V**2
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would become
709999 = ZZF1(10, 209998, RO, H)
Q = 0.5%Z09999*V**2

where the first argument of ZZF1 (the 10) is the number of breakpoints, the second argument is the current
breakpoint interval, the third argument is the array name which will contain the function value and the fourth
argument is the expression that is the original argument expression. Note the problem with labels - if the
original statement is labelled so that control can be transferred by other GOTO’s. i.e.

L1..Q = 0.5*RO(H)*V**2

The label will still be attached to the Q = statement in the translated text and the Z09999 = assignment will
be bypassed unless control flows directly. Labels in general should be avoided and when used should only be
attached to CONTINUE cards to prevent this problem (see Section 2.3 for more details)

4.101 TAN

Take the tangent of the real argument x which must be expressed in radians

y = TAN(x)

4.102 TERMINAL

Identifies the block of code performed at the end of each run. It must be accompanied by a matching
END card. In order to save calculating variables-over and over again during the simulation run, the calculation
can be placed in the TERMINAL block and executed only at the end of the.run. Radial miss distance is a
case in point where range components XMT, YMT and ZMT may be available throughout the flight. Radial
miss distance at the end would be computed from

MISS = SQRT(XMT**2 4+ YMT**2 + ZMT**2)
Placing this in the TERMINAL section would save the extra central processor time to evaluate this expression
every integration step. Code in the TERMINAL section is not sorted.
4.103 TERMT

The terminate conditions must be specified that will stop the simulation run. In an explicit program,
control will be transferred to the TERMINAL region and from thence back to the executive which will
interpret the next sequential command. An implicit- program will transfer control back to the executive
directly. Standard form of the operator is:

TERMT (logical expression)

The run will terminate when the logical expression is . TRUE.. More than one TERMT statement can be used
though it is usually better to extend the logical expression in the argument to cover all possibilities. It should
normally be placed in the DPYNAMIC region of an explicit program.

Example,
TERMT((H. LE. 0.0). OR. (V. LE. VMIN). OR. . ..
(T. GE. TMAX)) '

A TERMT statement placed in the DYNAMIC section will stop the simulation at a communication
interval. A TERMT statement placed in a DERIVATIVE or DISCRETE section will stop the simulation at
the integration step (calculation interval) following when it becomes .TRUE..
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4.104 TRAN

Transfer functions in the form of a ratio of polynomials in the Laplace operator, s, may be directly
implemented in ACSL by the transfer function simulation operator. The simple first order transfer function
- REALPL and LEDLAG and second order CMPXPL are preferred since the code generated is more
efficient. Higher order operators should use TRAN. Standard forms are:

y = TRAN(nn, nd, qn, qd, x)
TRAN(y = nn, nd, qn, qd, x)
where:
nn is an integer CONSTANT giving ORDER of the numerator polynomial
nd is an integer CONSTANT giving the ORDER of the denominator polynomial
gn is the coefficient array for the numerator (may be a real constant if nn is zero)
qd is the coefficient array for the denominator
x is the input, an arithmetic expression of arbitrary complexity

The polynomials are in the form of highest power of s coefficient first and any coefficient that is missing
must be input as zero. Note nn + 1 and nd + 1 numbers are required in the numerator and denominator arrays
since it is the ORDER that is defined, not the number of coefficients.

All initial conditions are taken as zero and nn and nd must be integer constants, not symbols. That is,
the order cannot be changed during a run, nor can it be changed artificially by setting the highest power of
the denominator polynomial to zero, i.e., QD(1) must be nonzero.

Example 1:

G - 3s+ 2
) s +2s2 +5

ARRAY P(2), Q(4)
CONSTANT P = 3.0, 2.0, Q = 1.0, 2.0, 0.0, 5.0
OUT = TRAN(I, 3, P, Q, IN)
Note the s! term has to be filled in as a zero in the Q array.

Example 2:
= _K
G(s) = —>
© s +1
ARRAY D(4)

CONSTANT D = 1.0, 0.0, 0.0, 1.0
Z = TRAN(O, 3, K, D, 5*X + COS(TH))

Note when the numerator is a single value it does not need to be declared in an array. Some way of calculating
the value - constant or assignment statement or expression must be provided, however. Figure 4-14 lists the
mechanization of this operator as a system macro. This listing is to be viewed as an example of the complexities
that can be implemented using macros.

4.105 TYPE

Variables may be typed and optionally dimensioned at the same time by the three statements REAL,
INTEGER and LOGICAL. The standard form of the statements is:
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MACKRO TRANCOUT, NN NIL P, Q. IN)
MACRO ASSIGN N

MACRO REDEFINE I,2Z,20, Z1C
MACRO RELAREL L.1,L2
MACRO MULTIFLY 0

MACRO INCREMENT NN
MACRO 10. .  IF(N=NIDZ20
MACRO IF (N=1000)999
MACRO INCREMENT 1
MACRO GOTO 10

MACRO 20. . CONTINUE
ARRAY ZONID, ZDONDD , ZTCINID
CONSTANT ZIC=NIKO. O
FROCEDURAL (Z11=F, Q, IN)
ZNCL)=IN-Z(1IXQACD)
MACRO TF(ND=1)25

no L1 T=2,ND

LY =ZNCL)~ZCIRQACTHL)
L1, 2Dy =Z2(T~1)

=“ACRO 2%, CONTINUE
LRCLy=ENCI/Q01)

ENT

MACKRO DECREMENT NN
MACRO TF (NN=NID 26
FROCEDURAL COUT=F, Z)
MACKO TF (NN=Q) 30
OUT=FCLYXZ (N

MACRO GOTO 27

MACRO 26. . CONTINUE
FROCEXURAL COUT=F, Z, ZI)
OQUT=F(L)%ZI L)

MACRO 27. . CONTINUE

0o Le Is=1,NN

L2 QUT=0UTHP I+ XZCTHND
MACRO GOTO 40

MACRO 30. . CONTINUE
OUT= () X2 INID

MACRO 40. . CONTINUE

END

Z=INTUCCZIN ZI0)

MACRO EXIT

MACRO 999,  FRINT NUMERATOR GREATER

MACRO END

THAN DENOMINATOR

Figure 4-14. Listing of TRAN (Transfer Function) Operator Macro
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REAL V], Vg, V3, etc.
INTEGER V], Vg, V3, €tc.
LOGICAL v}, Vg, V3, €tc.

where the V; are either simple variable names or else subscripted arrays with 1, 2 or 3 integer CONSTANT
subscripts separated by commas.

Examples are:
INTEGER K, 1J(10), FRED(2, 2)
LOGICAL FLAG
Note no variable name need be typed as REAL as all variables are assumed to be this form unless explicitly
typed otherwise. The FORTRAN convention that symbols starting with I, J, K, L, M or N are integer does
not hold.
4.106 UNIF
A uniform random number sequence can be generated by
y = UNIF(¢, u)
Result is that y is a random variable uniformly distributed between a lower value ¢ and an upper value u.
WARNING: The power density or what is usually more important, the low frequency power, will
depend on the calculation interval. Variable step integration methods can produce
peculiar results. See OU operator.
4.107 UNIFI

See Gaussian initialization, GAUSI.

4.108 VARIABLE

A nonsubscripted variable is designated as the independent variable for integration with its initial value
given by a real constant. It is written in the form

VARIABLE name = real constant, initial condition name = real constant
If this statement is omitted, the independent variable will be called T, with an initial value of 0.0. The initial
condition value will not have an accessible default name.
4.109 WRITE
See I/0O statements.

4.110 XERROR
See MERROR.

4.111 ZHOLD ‘
A zero order hold can be implemented with the standard forms:
y = ZHOLD(ic, p, x)
ZHOLD (y = ic, p, x)
where:
ic is y(0) if p(0) is false
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p is the sampling switch, i.e.,

y = X, while p is true.

y = previous value while p is false.

x is the input to be sampled - an arithmetic expression of arbitrary complexity.

Figure 4-15 gives a listing of the mechanization of this operator as a system macro.

MACRO ZHOLDCY, TG, 6W, XD
MACRO RETEFINE YL, YN
Cald. ZZTCSOYN=TC)

Cald, ZZIC5YL=10)
YauYN
Coll, ZZHOLOOX 16, W, YL, YND

MACRO END

Figure 4-15. Listing of ZHOLD Operator Macro

A monostable can be implemented using this feature by defining a triangular waveform DL that is zero
when START becomes true. Before START is true, the large initial condition ensures that DL has a large
positive value

LOGICAL START, MONO
DL =T - ZHOLD (-1.0E100, START, T)
MONO = DL. LT. TMONO

The logical variable MONO will be true for a time TMONO after START becomes true. Arrangements
should be made for turning off START (making false) once MONO becomes true so that is is only activated
by a pulse.

IF (MONO)START = .FALSE.

The ZHOLD step will only take place on the first pass through the DERIVATIVE subroutine of each
calculation interval. Subsequent passes and iterations for predictor- corrector algorithms are protected from
discontinuities in this way. Thus it is necessary to wait for the hold to be established before turning off the
activating variable (START).

This statement requires the sort algorithm to be operative, so it should not be included within a
PROCEDURAL block.

NOTE: The ZHOLD operator should not be used in a PROCEDURAL block that will prevent the
correct sorting of any intervening statements.
4.112 ZOH

A zero order hold that is similar to the one used in MIMIC may be invoked by this function. The output
is sampled repetitively every dt units. The standard forms are:

y = ZOH (X, iC, tZ, dt, i)
ZOH (y = x, ic, tz, dt, i)

where:
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X is the input expression

ic is the initial value for the output - up to tz

tz is the time the sampling action starts

dt is the sampling interval

i is an optional integer variable starting at one and incremented before each sampling action:
Fill an array by

ZOH(ARR(I)=x, ic, tz, dt, I)

Figure 4-16 presents a listing of this operator as a system macro

MACKO ZOHC(QUTFUT, INFUT, IC, TO, DT, 1)
MALRO REXEFINE TL, TN
MACRDO ABSIGN N
FROCEDURAL (TL=TO)

Th=TN

CaLL ZZICETL=TO)

FINT

MACRO TF(N=46)10

MACRD GOTO 20

MACKD 10, . CONTINUE
MACRO REDEFINE ITZ
INTEGER I.1Z

CONSTANT 1Z2=1

Cakl ZZ8MPLOT=T4H1, TZ, TL)
MACRO 20, . CONTINUE

CALL ZZEMPL COUTFUT=INFUT, 1C, TL)
CALL ZESMPLCTN=TLADT, TO, TL)

MACRO END

Figure 4-16. Listing of ZOH Operator Macro

In order to generate a triangular wave (TWV) use
TWYV = T-ZOH (T, 0.0, 0.0, DT)

The output of the zero order hold sampling T itself will be a staircase. When this is subtracted from T a
triangular wave will result for:

DT

45°

—-T
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5. ACSL RUN-TIME COMMANDS

Once the model has been translated, and has gone through the FORTRAN compile and load and is in
execution, control is by a sequential set of commands that exercise the model. The order of execution is the
order given and no branching or looping commands are available. Data values may be changed and once
changed stay that way until changed by command or unless the code in the model definition recalculates them.
Control is retained in the executive section until a START command is received when control is released to
the model program and the integration starts. Some method of terminating the run must be present in the
model definition code otherwise the executive will never regain control. (See TERMT operator, Chapter 4.)

For typical command sequences used to exercise the models see examples in Appendix A. Throughout the
description of these run-time commands the philosophy employed is that symbols or variable names imply the
value stored in the location corresponding to the name. Strings in quotation marks stand for themselves and
so may be general Hollerith data and act as a title, comments or subcommands or qualifiers to each of the
main commands.

If any data is needed by the command it must be supplied in the correct format - either integer, real or logical.
An integer is a string of digits with no decimal point, a real number is a string of digits with a decimal point
and/or exponent (E); a logical constant is TRUE. or .FALSE. Hollerith data, i.e., strings in quotation marks,
are considered to be of type integer. Integers used for real variables will be automatically floated prior to use.

Whenever a data element is expected, a symbol can be substituted and the program will consider the data
element to be that contained in the symbol. The type of the data is considered to be that associated with the
symbol when the model was defined. As an example, consider

OUTPUT T, A, B, ‘NCIOUT’ =1

The subcommand ‘NCIOUT”’ expects an integer following that is going to define the number of communica-
tion intervals between OUTPUTSs. The current value in the symbol I is used to specify this number. The symbol
I must have been typed explicitly by

INTEGER 1

in the model definition section since all variables not so typed are considered real. This feature does not provide
a variable output rate changeable by the value in I as the simulation proceeds. It is the current value in the
symbol that is used at the time the command is executed.

Commands are the first variable names on the statement, separated from the arguments to the command
by one or more spaces. Extra commands can be written on the same line by delimiting them by a dollar sign
($). A command may extend over the end of a line by terminating with an ellipsis (three periods . . .). The
following line is appended to the end of the previous card with trailing blanks suppressed. Leading blanks on
the continuation card are not eliminated. Be careful when splitting a symbol that no blanks are accidentally
inserted into the resulting string. Do not forget the delimiter if splitting between symbols (usually a comma)
- it can be at the end of the card before the ellipsis or on the beginning of the following card. The latter is
preferred mainly so that it stands out and cannot get lost if a large number of continuation cards are used.

Arrays may be accessed by element but only a single index is allowed, i.e., referring to TABLE (2,4,3)
is illegal. You should calculate the position in a linear array by assuming the first index varies fastest. If the
previous array had been defined by

ARRAY TABLE (10, 10, 10)

the (2, 4, 3) element could be accessed by TABLE(232) (2 + (4 - 1)*10 + (3 - 1)*10*10). In general, it is
recommended that arrays with more than one dimension be avoided.
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5.1 ACTION

Actions can be scheduled at different values of the independent variable. At present, these consist in
changing a variable value such as setting a switch.

The debug printout is produced if a system integer variable NDBUG is greater than zero. If it is, the
debug list is written out and NDBUG is decremented by one. For example, five debug listings are needed at
T = 0.0 and two at T = 1.0. We can satisfy this requirement by

ACTION ‘VAR’ = 0.0, ‘VAL’ = 5, ‘LOC’ = NDBUG . . .
4 , VAR’ = 1.0, ‘'VAL’ = 2, ‘LOC’ = NDBUG
Read this as schedule an action when the independent variable (‘VAR’) is zero, take a value (‘VAL’) of five
and place it in the location (‘LOC’) NDBUG. When the independent variable is 1.0, take a value of 2 and
place it in location NDBUG. ‘VAR’ and ‘VAL’ must precede the ‘LOC’ they refer to. Output rates can be
changed by scheduling similar actions on NCIOUT (number of communication intervals per output - default
one). Each ACTION card is cumulative, the action scheduled being added to a linked list. It is not necessary
to order the values of the independent variables. As with all other commands, a symbol name may be used

where a data item is expected and the contents of this variable will be used. The value used however is the
value at the time the ACTION card is analyzed, not that at the time the ACTION is performed.

To remove all scheduled actions and start afresh, use
ACTION ‘CLEAR’

Each time ‘LOC’ is mentioned, an ACTION is set up using the then current values for ‘VAR’ and ‘VAL’
which don’t have to be changed every time.

5.2 ANALYZ

The ANALYZ command invokes a linear analysis capability that can evaluate the Jacobian, trim the
state variables to null the rates and also calculate eigen values and their associated eigen vectors. Subcom-
mands available under this generic command are:

‘TRIM’, ‘JACOB’, ‘EIGEN’, ‘FREEZE’, ‘EIGVEC’, ‘EIGPER’,

‘DISPLY’, ‘LIST’, ‘RMSEMX’, ‘FRACMX’, ‘FRACDL’
The subcommands ‘TRIM’, ‘*JACOB’ and ‘EIGEN’ are action commands with no data, the others on the list
require a value or a name to follow.
5.2.1 ‘'TRIM’

The subcommand ‘TRIM’, transfers the initial conditions to the state variables computes the Jacobian
and then using Newton-Raphson iteration adjusts the state variables until the derivatives go to zero i.e., if

X =[A] X + [B] U
the iteration is:
Xn+l = Xn - [A]-Ixn

Use ‘FREEZE’ to remove states that cause the determinant of [A] to become zero. Use ‘FRACMX’ and
‘FRACDL’ to limit the magnitude of the state change per iteration step. It is necessary to follow the TRIM
by a REINIT (q.v.) in order to run the simulation from the steady state condition.

5.2.2 'JACOB’

The subcommands ‘JACOB’ calculates the Jacobian about the current point in state space by numerical
perturbation. The result is then printed out as a large matrix. Note the states must have been given values
either by a preceding START or a ‘TRIM’.

5-2



5.2.3 ‘EIGEN’

This subcommand ‘EIGEN’ calculates the Jacobian and then evaluates and lists the complex eigen values
and optionally the eigen vectors and/or the performance of the eigen evaluator (requires access to IMSL
library for EIGRF routine).

5.2.4 ‘FREEZE' = X, Y ...

This subcommand eliminates the listed variables from the state vector. Useful to eliminate open loop
integrators prior to the trim operation. Open loop integrators form a zero column in the Jacobian so the inverse
doesn’t exist. Variables are only frozen for a single ANALYZ command and the action must be repeated for
each invocation.

5.2.5 ‘EIGVEC’ = .T. (Default is .FALSE.)
This command should precede ‘EIGEN’ and determines whether eigen vectors are to be calculated. Once
set, it stays that way until changed.

5.2.6 ‘EIGPER’ = .T. (Default is .FALSE.)

This subcommand should precede ‘EIGEN’ and determines whether performance and figure of merit
is given by the eigen vector analysis routine. If the figure is less than 1, the eigen values are considered very
good, between 1 and 100 probably alright and over a hundred the results can’t be considered to have any
accuracy. Once set, the flag stays that way until changed.

5.2.7 '‘DISPLY’ = .T. (Default is .FALSE.)

In general ANALYZ operations are considered high volume operations written only on the PRN unit
(like PLOT and PRINT). If ‘DISPLY’ is set true, output is repeated on the DIS unit if different for
monitoring at the terminal. Once set, the flag stays that way until changed.

5.2.8 ‘LIST' = .T. (Default is .FALSE.)
This subcommand turns on a flag that writes out details of the “TRIM? iteration - successive values of
the state vector, the derivative vector and residual. Once set, this flag stays that way until changed.

5.2.9 ‘RMSEMX’ = 0.001 (Default is 0.0001)

This subcommand specifies the allowable error at which trim convergence is obtained. Each state is
associated with an allowable error in usual fashion by

dX; = AMAX1 (XE;, ME;ABS(X;))

where XE; and ME, are the absolute and relative errors specified for the particular state. This quantity is used
in the Jacobian calculation as from
Xl = FI(XI,X2 . o ’Xj’ .. )
der(Fl) = Fl( e ,X] + dX], . .) - Fl( e ,X - dx], .. )
der(Xj) 2 de

During trim the weighted residual R is computed from:
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and the iteration is continued until R is less than the value defined by the ‘RMSEMX’ subcommand. Once
set, the value stays that way until changed.

5.2.10 ‘NITRMX’ = 10 (Default is 50)

This subcommand specifies the maximum number of iterations before the “TRIM’ command gives up.
For a non-linear system, judicious choice of initial condition values may be necessary before a steady state
can be achieved. Once set, this iteration count stays that way until changed. '

5.2.11 ‘'FRACMX’ = 0.2 (Default is 1.0E30)

This subcommand specifies the maximum fractional change in a state variable - applied at each step of
the TRIM iteration. In highly non-linear problems the linear extrapolation can move the state vector into
unallowable regions in state space if unconstrained. The use of ‘FRACMX’ is to restrict the movement and
typical values are 1% to 10% or ‘FRACMX’ = 0.10. The state movement (state X) is never limited to a smaller
value than allowable error dX;.

Xp+1 - Xp = max(dX;, FRACMX.abs(X,))

5.2.12 ‘FRACDL’ = 0.8 (Default is 1.0)

This subcommand specifies the fractional step actually taken when compared with that calculated by
the Newton-Raphson iteration. With non-linear problems, taking the full step, ‘FRACDL’ = 1.0, can cause
cycling. The amount of the step can be reduced to prevent this, though at the expense of convergence speed.

5.2.13 EXAMPLES OF ANALYZ COMMAND

As examples of the use of the ANALYZ command, consider the following. In general, specification
statements come before action statements. The sequence of operations is performed in a left to right manner
with as many continuation lines as necessary.

?ANALYZ ‘LIST'=.T., ‘FREEZE’=X, ‘TRIM’, . ..
? ‘JACOPB’, ‘EIGEN’

This command turns on the list, eliminates (‘FREEZE’) the state X and its corresponding derivative from
the Jacobian, finds a steady state and then evaluates the Jacobian and eigen values.

?START
?ANALYZ ‘JACOPB’, ‘EIGVEC’=.T., ‘EIGEN’

This command determines the Jacobian about the point in state space where the simulation terminated,
specifies that eigen vectors are required and then calculates both eigen values and eigen vectors. Note if we’d
used ‘TRIM’, the ending states would have been overwritten with the initial conditions.

7ANALYZ ‘TRIM’
?REINIT

This command uses the current initial conditions to establish a steady state and then the REINIT command
writes the current state vector back over the initial condition vector. Every subsequent START will now start
from a trim or steady state condition.

The use of ANALYZ presupposes that the model is defined by a sequence of non-linear equations of
the form '
Xl = Fl(Xl’ [N ’Xj’ “ e ,XN,t)
The use of self contained states within the model - those not defined by INTEG and INTVC - will usually

prevent the correct evaluation of the Jacobian. Likewise, memory operators such as ZHOLD, BCKLSH and
DELAY should not be present.
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Another point is that all initial conditions must be defined before ‘TRIM’ is invoked. If some are
calculated in the INITIAL section, set a run time of zero and execute once prior to using ANALYZ i.e.

SET TSTP = 0.0

START

ANALYZ ‘LIST = .T., ‘TRIM’
REINIT

SET TSTP = 99.9

START

REINIT is used after the ‘TRIM’ to move the trimmed state variables back into the initial condition values
so that the steady state point in state space will become the starting point for any subsequent run (START).
5.3 COMMENT
Comments may be included in the run-time drive cards by quoting the entire command. i.e.
START $ ‘EXECUTE THE MODEL’

The comment may not contain either a quote (°) or dollar sign ($).

5.4 CONTIN

The run may be continued where it left off, if the stop conditions have been changed, by CONTIN. This
operation bypasses writing the initial condition into the state vector so that the program will continue to
integrate from the previous position in state space. Note this command only makes sense after a START card
has established a state and also the termination condition of the previous run must have been changed,
otherwise it will stop immediately, i.e.,

model:
CONSTANT TF = 10.0
TERMT(T. GE. TF)

run-time commands:

START $‘Run to 10.0 sec’
SET TF = 15.0 $°Extend to 15.0 sec’
CONTIN $‘Run 10.0 to 15.0 sec’

5.5 DISPLY (sic): Short Form D

Display the values that are currently in the named list. Usually used at the end of a run to determine
terminal values.

DISPLY X1, X2, X3(5)

Arrays, if not explicitly referred to by element, are listed in total.

5.6 END

Tells the run-time executive that a PROCEDure definition is complete.
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5.7 MERROR, XERROR

The relative and absolute errors allowable during the integration step may be individually specified by
these commands. Each state is associated with a corresponding entry and the relative error table (MERROR)
and absolute error table (XERROR): These two commands behave like a SET (q.v.) except that they access
the error table corresponding to the state name rather than the state name itself

MERROR SV1 = 1.0E-3, SV2 = 0.01
XERROR SA1 = 5*0.0001, SA2(3) = 0.02

where the SVi and SAi are state variables and state arrays respectively. Note that arrays may be filled by
a repeat count: An individual array element may be specified - at model definition time the same allowable
error must be specified for all elements in an array.

During the integration step, the estimated error for each state variable is compared to the allowable error
E, obtained from

E; = max (X, MilYilmax)

where (Y;)nax i the maximum of the absolute value of the state achieved so far during the run.

5.8 OUTPUT
The output from the model can be obtained by the command
OUTPUT T, A, B, C(5), D

-The command designates the list elements as data whose values are to be listed as the simulation model
advances in time. This action occurs following a subsequent START (q.v.) command. Subcommands are
available and when used must be quoted so

‘NCIOUT’, ‘CLEAR’

The values of the list elements will normally be written out every communication interval. If this rate
is too high, a reduction can be effected by including the subcommand ‘NCIOUT’ - number of communication
intervals between output. i.e.

OUTPUT T, A, B, ‘NCIOUT’ =5

Only one value for ‘NCIOUT’ can be in effect at one time - the last value set stays in effect until changed
in a subsequent OUTPUT command. The starting value of ‘NCIOUT’ is one. It isn’t possible to designate
~ different list element blocks to be recorded at varying data rates - all elements on the OUTPUT list are given
together.

Array elements can be listed by referring to the specific element (A(3)say). If the name given is an array
but no specific element is called for, all elements will be listed.

OUTPUTs are cumulative. To clear the list and start afresh, use the ‘CLEAR’ subcommand.
OUTPUT ‘CLEAR’, BILL, JOE, SAM

Output is considered to be low volume and will be written to both the DIS and PRN files if different.
The width of the line is controlled by the system variable TCWPRN (terminal character width) which controls
the line width of data being written on the DIS logical unit number. If TCWPRN is set to 72, output will
be three variables across: If TCWPRN is 132, output will be five variables across.

NOTE: The independent variable is not included on the OUTPUT list automatically - it must be
deliberately mentioned if you want to see it.
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5.9 PLOT

Both printer and line plots can be made using values recorded for any of the variables on the PREPAR
list. The actual form of the plots are controlled by system symbols (q.v.) PRNPLT (printer plots), CALPLT
(line plots) and STRPLT (strip plots). Note the order of commands must be:

PREPAR - establishes list to be saved (used once)
START - runs the model, saves values on the PREPAR list

PLOT - makes plots using the data saved during the run

with any other commands in between the above sequence. It is illegal to change the PREPAR list and continue
plotting data made with a previous START. It is the current PREPAR list that is used by the PLOT command
to find the data for each variable on the intermediate scratch file.

The basic form of the plot command is:
PLOT Y1,Y2,Y3,..., YN

which will plot the variables Y1, Y2, Y3, ..., YN - picking as the X-axis the first variable on the PREPAR
list. The form (printer plots, line plots or strip plots) will be determined (all, either or none) by the current
settings of the system symbols PRNPLT, CALPLT and STRPLT.

Sub-commands are available and when used must be in quotes so:
‘XAXIS’, ‘’XHI’, ‘’XLO’, ‘XLOG’, ‘XTAG’, ‘SAME’, ‘OVER’,
‘ALL’, ‘HI’, ‘LO’, ‘CHAR’, ‘LOG’, ‘TAG’
5.9.1 X-AXIS QUALIFIERS (XAXIS, XHI, XLO, XLOG, XTAG)
The X-axis can be changed from the default to any variable on the PREPAR list as in:
PLOT ‘XAXIS’=X2, ‘XLO’=5.0, ‘XHI’=10.0, Y1, Y2

In addition to specifying a new X-axis variable, X2, the scales are also given so that the X-axes will run from
5.0 (low) to 10.0 (high). There is a reason for specifying the X-axis change first on the PLOT command line
since the automatic scaling for the Y-axis variables is determined by picking maxima and minima within the
current X-axis window when the Y-axis variable is reached, in a left to right scan. Other options relating to
the X-axis variable are logarithmic scales, ‘XLOG’, and a character string or tag that can be appended to
the right of the variable name - can be used to identify units for instance

PLOT ‘XAXIS’=W, XTAG’=‘(RAD/SEC)’, ‘XLOG’, ‘XLO’=WMN, . ..
GAIN, PHASE

The respecification of the X-axis variable resets all parameters to their default values, which is why the other
subcommands follow the X-axis definition in the left to right sequence. The default values are no tag string,
linear scales and axis limits chosen by rounding the maximum and minimum values on the data file. When
logarithmic scales are selected the minimum value must usually be specified if the default rounding is to zero.
Zero or negative scale limits are not permitted with logarithmic scales and will produce a diagnostic message
and a replacement with linear scales.

X-axis related parameters, once set, remain that way for all subsequent PLOT commands unless
respecified or the X-axis variable itself is changed.

5.9.2 Y-AXIS QUALIFIERS (HI, LO, CHAR, LOG, TAG)

Individual y-axes variables can have the scales set, the character selected, logarithmic scales specified
and a tag string given. These subcommands all follow the y-axis variable name as qualifiers, applying to the
variable name to the immediate left. As an example, consider:
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PLOT Y1, ‘LO’=0.0, ‘HI’=10.0, Y2, Y3, ‘LO’=5.0, ...
‘HI’'=5.0, ‘CHAR’=T’
Any variable not followed by given scale factors will have ’best’ scales chosen automatically. i.e., Y2 in the
above example. The automatic scaling is obtained by determining the maximum and minimum values of the
variable while the x-axis variable is between its given limits ‘XLO’ and ‘XHI’. This operation ensures that
the scales are chosen appropriately for the plot since it may be necessary to examine in detail a small fraction

or window within the total simulation run. Other options include logarithmic scales ‘LOG’, and a character
string or tag that can be appended next to the variable name i.e.

PLOT Y1, ‘LOG’, ‘TAG’=‘GAIN’, ‘LO’=0.001

where the variable Y1 will be plotted on logarithmic scales. The axis will be labelled with the name Y1
concatenated with the string GAIN with a space in the middle.

It is sometimes necessary to set a group of scales to the same, originally unknown, value. If maximum
and minimum values can be collected in the model definition section (the DYNAMIC section for preference),
then they can be used to set scale factors by using the symbol name instead of a constant i.e.

PLOT Y1, ‘LO’=YMIN, ‘HI’'=YMAX, etc.
Remember, any symbol stands for the value of its contents where a data item is expected.

When any array is plotted, the array name stands for all its elements and any qualifiers such as scale
factors explicitly given apply to all elements of the array. For individual qualifiers each element of the array
must be individually specified on the PLOT command list.

5.9.3 SAME, OVER and ALL

The ‘SAME’ and ‘OVER’ subcommands act on a string of Y-axis variables - all the variables to the left
of the keyword. The command:

PLOT Y1, Y2, Y3, ‘SAMFE’

will apply the scales selected for the first name in the list, Y1 in this case, to the rest of the elements in the
list, Y2 and Y3 as shown. Note this option doesn’t pick the maximum of the maxima and the minimum of
the minima.

The key word ‘OVER’ is used to suppress the extraneous printing of the axes and is normally used in
conjunction with ‘SAME’. The command line:

PLOT Y1, Y2, Y3, ‘OVER’

will draw and label the vertical axes for Y1, the first element in the list but will suppress the separate axes
and labels (although the scales may be different) of Y1 and Y2. The main use of this is comparison plots using
the strip chart option (STRPLT = .T.) because otherwise all plots on the list are drawn on separate areas
of the graph.

All the variables on the PREPAR list can be plotted by a single command so:
PLOT ‘ALL’
used normally for debug purposes. Plots are drawn nominally three to a page (see system symbol NPPPLT
or number of plots per page). ‘
5.9.4 EXAMPLES OF PLOT COMMAND

Some examples of PLOT commands are as follows: X, Y, Z and W are regular variables; A is a three
element array. ‘

5-8



1) Normal plotting, x-axis operations specified first:
PLOT ‘XTAG’=‘(SEC)’, X, Y, Z, W
2) Plot X and Y to the default scale of X, and Z and W to same given scale:

PLOT X, Y, ‘SAME’, Z, ‘LO’=0.0, ‘HI’=5.0, W, ‘SAMFE’

3) Plot array A normally - all element scale factors are individually chosen:

PLOT A

4) Plot array A using default scales for A(1):

PLOT A, ‘SAMF’

5) Plot array A on given scales - the low and high apply to all elements of the preceding array

PLOT A, ‘HI’=50.0, ‘LO’=-50.0

or

PLOT A, ‘HI’=50.0, ‘LO’=-50.0, ‘SAMEFE’

6) Plot A(1) on the same scale as A(2) and add descriptive tag to A(3)

PLOT A(2), A(1), ‘SAME’, A(3), ‘TAG’=‘(FURLONGS)’

7) Use logarithmic scales and tag descriptors:

PLOT ‘XAXIS’=W, ‘XLOG’, ‘XLO’=0.01, . ..
‘XTAG’=‘(RAD/SEC)’, X, ‘LOG’, ‘LO’=1.0E-4, . ..
‘TAG’=*-GAIN’

8) Plot X and Y to the same scale as X; Z and W to the same scale as Z:

PLOT X, Y, ‘SAME’, Z, W, ‘SAME’

5.10 PREPAR
The variables that are to be recorded on a scratch file during the run are listed so
PREPAR T, A, B, C(2)

The same comments on the arguments apply as to the OUTPUT command, with the exception that recording
is every communication interval.

The plot programs assume as a default that the X-axis variable is the first one on the PREPAR list. The
PREPAR list is cumulative. Reset is by PREPAR ‘CLEAR’, T, JOE, . ..

5.11 PRINT

All the variables on the PREPAR list can be listed in columnar form (10 columns to a page) once the
run has been completed and the PREPAR file established. PRINT is similar to PLOT in that it can have a

list of variables and/or subcommands. Subcommands are
‘ALL’, ‘NCIPRN’

For example:
PRINT ‘NCIPRN’ = §, ‘ALL’

will print all the variables on the PREPAR list, listing values every five communicatior. intervals (NCIPRN
= number of communication intervals for print).

PRINT T, X1, X2, X3, X4
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PRINT ‘NCIPRN’ =2, T, Y1, Y2, Y3, Y4

Successive print commands can be used to format the data. Five columns are normally used for listings
to be reproduced directly on “A” size (eight-and-a-half by eleven) paper. Note that the independent variable
has to be included on each list if needed - it doesn’t get printed automatically. The ‘“NCIPRN’ subcommand
is optional - once used the argument becomes the default from then on. :

If array names are used, all array elements will be listed. An array element may be listed separately.
PRINT T, ARRAYA, ARRAYB(3)
The data is only listed on the PRN logical unit unless HVDPRN is true, so if this is set to 9, this high
volume output will go onto the PRINT file for later disposal to the printer queue.
5.12 PROCED

Command sequences can become long and cumbersome when much plotting is performed. To save
repeating the directions after each run a procedure can be defined. Do not confuse this with PROCEDURAL
referenced during the translation phase. This command PROCED is invoked at execution time, i.e.,

PROCED GO § START
PLOT ‘XAXIS’ =X,Y, Z
PLOT ‘XAXIS’ =T, N, M
DISPLY RMISS

END

The sequence of commands START, PLOT - - - until END are saved but not executed. But now a command
GO will execute the entire sequence, i.e.,

SET A =5.0% GO
SET A =6.08% GO
SET A =7.08% GO

which allows the value of the parameter A to be changed before executing the sequence of commands stored
in the procedure ‘GO’. Note that the names and values within the procedure are fixed and cannot be changed
when the procedure is invoked.

5.13 RANGE

"This command determines the maximum and minimum values of variables, that have been saved during
a run by the PREPAR statement. Subcommands are available, and when used must be quoted

‘ALL’, ‘IHD, ‘ILO’, ‘IVAR’
Standard form of the command is
RANGE A, B, C(5)

As usual, array names stand for all the elements in the array. Errors will be reported if any name on the
RANGE list is not defined in the PREPAR list.

Windows may be defined so that sub-ranges can be determined, by specifying both the independent
variable to be used, ‘IVAR’, and the high ‘IHI’, and low, ‘ILO’, values to be used for the test.

RANGE ‘IVAR’=X, ‘ILO’=50.0, ‘IHI’=100.0, ‘ALL’
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which would report the maximum and minimum values of all elements on the PREPAR list when the variable
X lay between 50.0 and 100.0. Once set, the ‘IVAR’, ‘ILO’ and ‘THI’ values remain that way for subsequent
RANGE commands, if not changed. Initial values of ‘ILO’ and ‘IHI’ are - RM X and RMX respectively where
RMX is the largest floating point number available on the machine. The independent variable 'IVAR’ is set
to be the first variable on the PREPAR list.

5.14 REINIT

Reinitialize takes the current value of the state variables and writes them back to the initial condition
table, thereby destroying the original numbers on the table. REINIT can be used when a midcourse guidance
system flies out and is stopped before the terminal phase. It now establishes this current point as the starting
point for subsequent runs.

Refer to SAVE and RESTOR for details on how to recover back to an original condition.

5.15 RESTOR

Restores the user’s data area written on a named file. The file must have been established by a previous
SAVE command

RESTOR ‘“fr’

where fn is a valid file name - see SAVE command.

5.16 SAVE

The entire contents of the user’s data block may be saved on an external file to be subsequently
RESTORed and so override any intermediate changes. ACSL system constants (TITLE, PRNPLT,
XINCPL, etc. are not saved. Standard form is

SAVE ‘fr’

where fn is any valid file name - starts with a letter and six characters or less. Do not use INPUT, OUTPUT,
RRR or PRINT. Any number of SAVE commands may be issued on the same or different files. If it is the
same file, the previous information is overwritten and destroyed.

5.17 SET: Short Form S

Data can be set into any known constant array or variable by this command. If the model definition is
going to calculate a new value of a variable, after START, then it does not usually make much sense to change
it. The command would normally be used for changing the values of constants. Once changed, they stay that
way until changed again.

Legal forms of the SET commands are
SET NSTP = 10, RANGE = 5.6E3, MAS = 4.6, GAIN
SET LOGVAR = .TRUE., ARRAY(5) = 4.3, SWITCH
SET ARRAY(2) = 2.0, 3.0, 4.0, TSTOP = 46. ..
, TITLE = ‘DOPPLER STUDY’, ARRAY (6) = 5*%0.0

The data form must agree with the type of the symbol with the exception that integers may be set into
real variables and automatic floating will take place: Integer variables must not have a decimal point and
logical variables can only be .TRUE. or .FALSE. (.T. and .F. are Short Forms). Arrays can be set by
individual elements or a data list can follow when succeeding data items will be stored in subsequent array
slots. Attempting to exceed the array length will result in an error. Data can also be obtained from another
symbolic location by using the symbol name, i.e.,

[
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SET RMI = RANGE, RMT = RANGE

when after execution the variables RMI and RMT will both contain the value of the number stored in the
symbol RANGE. This concept is useful if a data item has to be stored in many places. It can be stored by
value once and then picked up by name subsequently, thus value changes need only be made in one place.

Hollerith data can be set into a symbol or array that is of type integer. Normally only the system array
TITLE would be so used.
5.18 SPARE

A spare command is provided that will link to a user provided subroutine SPARE. A default version of
this subroutine is available that will list the central processor time, i.e.,

SPARE
ACCUMULATED CP TIME nnn.nnn SEC. ELAPSED CP TIME nnn.nnn SEC.

The accumulated time is normally the time from the beginning of the job: The elapsed time is the incremental
time from the previous invocation of the command. The sequence

SPARESSTARTSSPARE

can be used for timing simulation execution.

5.19 START

Command to allow the model definition to integrate over the state trajectory. Control is released to the
model definition program and provision must be made to terminate execution at some time.

5.20 STOP

Tells the run-time executive that no more commands follow. A termination record is written on the line
plot file, if any plots have been made.

This command should always be the last command issued so that all the files established by the executive
are cleaned up or terminated correctly. It may be necessary to precede STOP with a blank for those operating
systems that interpret STOP as an abort.

5.21 XERROR
Absolute error specification - sse MERROR.
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6. MACRO LANGUAGE

The macro capability of ACSL allows the user to expand the language capability by defining new
operators as the need arises.

A macro may be used in one of two essentially distinct ways. The first is akin to a subroutine or function
which is defined once and then called from many places. The macro is defined once and then invoked. Actual
statements are produced for each macro invocation, but the extra amount of storage used for such instructions
is always small. The only way to define operators involving integrators and memory functions is by using this
macro operator.*

The second approach is to define blocks and write all the equations in terms of standard nomenclature.
These blocks can become part of a system library and with all the variables relabeled, no conflict will appear
between the standard block and another user’s invocation of it. For instance, a standard actuator system could
be defined with input, the commanded deflection; output, the actual deflection. Invocation would then be:

ACTUAT(DLC, DL)

which would tell the processor to reproduce the code to represent the actuator but use the name DLC for
command deflection; DL for the actual deflection.

Some of the more important features of the macro language are:

1) Variables and statement labels may be locally generated. In the event the macro is called more than
once, this will prevent multiply defined variables or doubly defined statement labels.

2) An unlimited number of macro input arguments may be used. These arguments must be valid
expressions with balanced parentheses - of arbitrary complexity - or else any character string enclosed
in quotation marks.

3) Macro definitions may invoke, other macros (nesting) to an unlimited level of complexity. Note,
however, that macro definitions may not be nested. This needs a count of nesting level within the
definition to match up with the correct MACRO END. This count is not performed. The first
MACRO END terminates the definition.

4) Macro’s may be placed anywhere within an ACSL program: They must be defined, however, before
they are used. Any current macro may be redefined and the most recently defined macro will be used
in the expansion.

5) The concatenation operator (>) allows arguments to be placed together without intervening spaces
so making up symbols.

Argument strings are substituted for each appearance of the macro argument name. If the argument
is an expression, care must be taken that the resulting code is correct after the substitution (see Section 6.5).
Other names that may be substituted during macro expansion are the ASSIGNed variable (see Section 6.3.1),
local variable names identified by a REDEFINE (see Section 6.3.12) and local labels identified by a
RELABEL (see Section 6.3.13).

6.1 MACRO DEFINITIONS
The macro definition is a block of code which consists of the following:

1) Macro definition header

* For two examples of this type of macro use, see the example program, PHYSBE; Section 8 of
Appendix A.
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2) Macro directive or ACSL statements
3) MACRO END

The macro definition header specifies the name of the current definition and a list of dummy reference
parameters, analogous to dummy arguments in a FORTRAN subroutine. The translator scans the statements
in the macro body for the appearance of these names, flagging them for substitution by the actual argument
supplied on invocation. The definition terminator, MACRO END, must be present to flag the translator to
return to direct translation instead of saving the macro skeleton (the macro body with the substitutable
arguments flagged is known as the skeleton).

If a macro name is the same as one already defined, either in the system macro file or the current model
definition, the new macro definition replaces the old one. No error message is issued since this is considered
to be a feature whereby the user can always override an old macro definition.

6.2 MACRO DEFINITION HEADER

Two types of macro can be defined but for the most purposes - excluding arrays - the first one is to be
preferred. This is of the form:

MACRO identifier (x;, Xg, X3 . . . , X,)
where identifier will be the macro name (6 characters or less)
X; are variable names - not constants or expressions.

Anywhere the symbol x; is referred to in the macro definition it will be replaced by the ith argument - symbol
or expression - when the macro is invoked. Example:

MACRO MULT(X, Y, Z) $ ‘DEFINITION’
X =Y*Z

~ MACRO END
C = A*MULT(5.0*B, D) $ INVOCATION’

The output of the function is considered the first argument X; Y will be replaced by 5*B and Z by D
everywhere throughout the definition.

A second type of definition is useful when handling arrays. This form has an extra macro so
MACRO MACRO identifier (p, q, r, s)

where identifier is as defined previously, p is the primary argument (any symbol) and q, r, s are secondary
arguments, optional symbols. ‘p’ is the dummy reference parameter and may be thought of as being an array,
each element of which identifies the respective elements in the argument list at invocation time, i.e.,

MACRO MACRO HEAD(P, Q) $ ‘DEFINITION’

MACRO END
ARRAY B(5)
HEAD (A, B = 5*D, E + F, LOW) $ INVOCATION’

Now P(1) appearing in the definition body will be substituted by the symbol A, the first argument, at
invocation time. P(4) will be replaced by the expression E + F, the fourth argument.* The secondary
arguments allow access to the dimension of any argument from a previous ARRAY statement. The ARRAY
statement must come before the macro invocation.

* Arguments at invocation time are delimited by commas or an equals sign.
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Any reference to Q for an array will access the first dimension. In the example above, Q(2) will have
the value 5 from the dimension in the previous ARRAY statement. Q(3) and Q(4) will be illegal since these
arguments are expressions that cannot have a dimension.

Symbols substituted for the secondary arguments R and S act similarly to Q except they provide the
second and third dimensions respectively.

NOTE: Macros written in this second form are extremely hard to read since no mnemonic
symbols can be used for the arguments.

The array expressions are restricted to the following forms.
1) P(i) - iis an integer constant

2) P(n) - n is the ASSIGNed variable (q.v.)

3) P(n + i) - combination of the above.

In general, the substitutable symbols must be separated from other character strings by nonalphanumeric
characters, i.e., *, +, -, ‘blank’ in order for the scan to operate. If the above macro MULT contained the
statement

ASSIGNZ TO K
The symbol Z would not be identified for substitution. Here, the space is all important so
ASSIGN Z TO K works well.

In order to allow the substitutable argument to appear next to a character string the concatenation operator
is defined. This operator is a right arrow (*>) on CDC systems or underline () on ASCII based machines,
which serves as a separator for symbol identification, but is removed entirely from the skeleton. As an example,
suppose we wish to make up unique symbols by adding an F to the third argument of the MULT macro and
including it in an expression.* The new name would be written F>Z (F concatenated with Z), i.e., the
statement

X = Y*F>Z

could be included in the macro definition. Invoking the MULT macro with
A = MULT(SAM, JOE)

would result in the statement
A = SAM*FJOE

where the new symbol FJOE has been defined.

The above call MULT will enter a symbol JOE on the symbol table. If only the made up symbols are
important, the argument may be quoted as

A = MULT(SAM, ‘JOFE’)

where the same expression will be generated but now the symbol JOE will not be entered in the symbol table.
The argument in quotes has the quote characters removed and the literal string of characters enclosed -
including blanks - is substituted for the appropriate argument symbol.

6.3 MACRO DIRECTIVE STATEMENTS

The following section lists in alphabetical order the macro directive statements that may be included
within a macro definition. No code will result from these statements, but extremely flexible control is possible,
of the manner in which the macro is processed at invocation time. The ACSL statements themselves produce

* See PHYSBE example program in Section 8 of Appendix A.
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code, and symbols in the statements will be substituted for the appropriate argument at invocation time. All
these directive statements have MACRO in front to indicate an instruction to the macro processor. See
Subsection 6.4 for some examples of the use of a macro.

All directive statements can have labels attached to them which can be used by the MACRO GO TO
and MACRO IF directives. These labels must be distinct from any labels attached to non-directive statements.
The label is inserted between the leading MACRO of the directive, i.e.,

MACRO S1 .. RELABEL I
MACRO S2 .. CONTINUE
MACRO S3 .. END
Note, these labels control the sequence of the macro processor at macro invocation time. The labels on
nondirective statements control the sequence at run-time execution.
6.3.1 MACRO ASSIGN
The ASSIGN macro directive statement has the standard form
MACRO ASSIGN n

where n is a symbol (usually N is used). The ASSIGN directive assigns the number of arguments in the macro
call to the variable N; the value of N will always be an integer. If the dummy reference parameter contains
a variable subscript, the variable must be the same as the variable used in the ASSIGN statement. Whenever
N is used as part of the dummy reference parameter subscript, the current value of N will refer to the Nth
argument in the macro call list at invocation time. Example:

Second header type
MACRO MACRO SAM(P) $ ‘DEFINITION’
MACRO ASSIGN N

MACRO END
SAM(X, Y, 2) $ INVOCATION’
Within the macro definition
P(N) is the Nth argument ‘Z’
P(1) (N) is X(3)
P(N - 1) (N) is the Nth element of the (N - 1) argument, Y(3)

6.3.2 ARITHMETIC MACRO DIRECTIVES
The arithmetic macro directives have the form
MACRO INCREMENT i
MACRO DECREMENT i
MACRO MULTIPLY i
MACRO DIVIDE i

where i is an unsigned integer constant, the secondary arguments: p, q, r, s; or a macro argument name that
has a literal numeric integer value.

These directives provide arithmetic operations on the ASSIGNED variable N. The value of N may be
added to, subtracted from, multiplied or divided; all arithmetic operations are performed in fixed point integer.
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Example:
MULTIPLY 0
will make the ASSIGNED variable zero

To make the assigned variable equal the dimension of the second argument, the following code can be
used.

MACRO MACRO BIL(P, Q)
MACRO ASSIGN N
MACRO MULTIPLY 0
MACRO S1 .. IF(N = Q(2)) S2
MACRO INCREMENT 1
MACRO GO TO S1
MACRO S2 .. CONTINUE
On exit from this section, N, the assigned variable, will have the integer value Q(2) or the dimension
of the second argument. In this way N can be used as a counter or control variable irrespective of its basic
purpose of transmitting the actual number of arguments used at invocation time.
6.3.3 MACRO CONTINUE
The CONTINUE macro directive has the standard form
MACRO CONTINUE
It is a do-nothing and invariably is included so that it can be labelled as so
MACRO L1 .. CONTINUE
In this form the MACRO IF or MACRO GO TO can branch to this section within the definition.

6.3.4 MACRO DECREMENT

See arithmetic macro directives.

6.3.5 MACRO DIVIDE

See arithmetic macro directives.

6.3.6 MACRO EXIT
The EXIT directive statement has the form
MACRO EXIT
It stops the generation of code at invocation time. The action is the same as a MACRO GO TO to the macro
definition terminator.
6.3.7 MACRO GO TO
The GO TO macro directive statement is written in the form
MACRO GO TO s

where s is a statement label attached to ANOTHER MACRO DIRECTIVE. The GO TO provides an
unconditional branch to another section within the definition.
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6.3.8 MACRO IF
The IF macro directive statement is of the form
MACRO IF (e; = e9) s

where ¢, and ey can be the dummy reference parameters corresponding to the call list, integer constants,
character strings or the identifier used in the ASSIGN directive. They must not be expressions; s is a macro
directive statement label. This directive provides for a conditional branch to the macro directive label s inside
the current definition if the relation e; = e, holds. The strings e; and e, are tested character by character
excluding blanks for equality.

In order to compare a character string with a string passed as a macro argument, the string must be
enclosed in quotes when the macro is invoked and then the MACRO IF compares the argument with an
un-quoted string i.e., if the definition is as follows:

MACRO TEST (ARG)
MACRO IF (ARG = TOP) LABI

MACRO LABI .. CONTINUE
MACRO END
and the invocation is
TEST (‘TOP’)
then the macro will expand via LABI.
6.3.9 MACRO INCREMENT

See arithmetic macro directives.

6.3.10 MACRO MULTIPLY

See arithmetic macro directives.

6.3.11 MACRO PRINT

Error messages may be handled within the macro at invocation time by this PRINT directive statement.
It has the form

MACRO PRINT any character string except a dollar sign ($)
This directive lists the character string on the output device. It will override any global list control. The
primary use is for the user to diagnose his own errors at invocation time and output informative messages.
See the examples in Subsection 6.4.
6.3.12 MACRO REDEFINE
The REDEFINE macro directive statement has the form
MACRO REDEFINE v, vy, . . ., v,

where v; are variable names appearing in the body of the macro. REDEFINE identifies the variables as being
locally defined and specifies that they are to be replaced by unique symbols at each invocation. The generated
variables consist of the letter Z followed by five digits.
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6.3.13 MACRO RELABEL
The RELABEL macro directive has the form
MACRO RELABEL 1, 1y, ..., 1,

where 1; is an alphanumeric label (i=1). RELABEL specifies that all symbols in the list are locally defined
statement labels which are to be substituted for by unique generated numbers at invocation time. These labels
must only be attached to ACSL statements - not macro directive statements (statements preceded with
MACRO).

6.3.14 MACRO STANDVAL
The STANDVAL macro directive statement has the standard form
MACRO STANDVAL arg; = Cj, arggp = Cg . . .

where arg; are the dummy argument names and the c; are literal constants that can be real (1.5), integer (5)
or logical (.TRUE.). The alternate MACRO invocation can also be used with STANDVAL which has the
form as follows:

MACRO STANDVAL P(i) = ¢;, P(j) = ¢, . . .

where i is an unsigned integer constant and the e; are constants. The statement is used to provide standard
values for arguments of a macro. If the i-th argument is not given, then the constant (e;) is used in its place.
If an argument is to take its standard value, then its position in the argument list must be left empty, i.c., the
delimiting commas must be present, and the absence of an argument indicated by a null string (*“ ).
Arguments may be simply omitted at the end of the argument list without the need for commas and a null
string to indicate their absence. The STANDVAL directive must immediately follow the macro header in the
definition if it is used at all.

6.4 MACRO EXAMPLES

The examples will be given of the use of macro calls that demonstrate some of the uses of the directive
statements and of direct parameter substitution.

6.4.1 Sampler

A sampler can be built up of a switch and two zero order holds but for convenience, the entire sequence
can be embedded in a macro and invoked as a function. We would like to say at invocation time

Y = SAMPLE (YIC, DL, T, X)

where YIC will be the initial value of Y, the sample will be repeated every DL of the independent variable,
T. X is the variable to be sampled. Define this macro by

MACRO SAMPLE (SAMP, DL, T, X, IC)

MACRO STANDVAL IC = 0.0 $§ LOGICAL SNSW
MACRO REDEFINE TS, SNSW

TS = ZHOLD (0.0, SNSW, TS + DL)

SNSW = T.GE.TS

SAMP = ZHOLD (IC, SNSW, X)

MACRO END

Note, the output name has to be included in the argument list. The sample time TS is sampled from the
function TS + DL, but only when T equals or exceeds TS, setting SNSW nonzero (1.0) SAMP is snapped
by the zero order hold from the input argument X.



6.4.2 DOT Product

To take the vector DOT product of two arrays A and B, we would like to be able to use the functional
form

X = DOT(A, B)

where X is a scalar and A and B are vectors, previously dimensioned in an ARRAY statement. Since it is
a function (has one output) the operator can be embedded in an arithmetic expression of arbitrary complexity.
We do not want to have to mention the dimension of the vectors in the call since that is likely to change.

To pick up the array dimension we need to use the second form of the macro header. This header
designates P as the primary variable and Q as the secondary variable, that will access the dimension of the
corresponding primary argument. (Figure 6-1 gives macro listings.) The REDEFINE statement ensures the
variable I will not conflict with any other use. If this were omitted, a program variable I could have its value
changed when the macro is executed; a potentially disastrous effect. The test needed is to see if the second
and third arguments have the same dimension; if not, the DOT product is undefined and a macro error
message is printed. If the dimensions are correct the DO loop summation is formed. Note, Q(2) and Q(3) will
be replaced at invocation time by integers corresponding to the array size of the respective arguments: The
MACRO IF must branch to another macro directive statement, hence, the label on the MACRO CONTIN-
UE. This label could not have been attached to the following statement since this is not a macro directive
statement.

At invocation time, with the call shown, this will be translated into
INTEGER Z09999
X =0.0
DO 99999 709999 = 1, 10
99999 .. X = X + Y (Z0999)*Z(Z09999) ‘
where the variable I will have been changed into a unique generated variable Z09999. If embedded functional-
ly in an expression, this code will precede the expression evaluation and a Z variable will be used in the
expression.

6.4.3 Concatenation Example: A Pressure Tank

One of the problems with using MACRO is the tendency to generate large numbers of dummy variables
(Z0nnnn) which have no physical significance. All REDEFINED variables have this form. An alternate
approach is to use the concatenation feature to build unique symbols that are available for plotting or printing.
This technique can also reduce considerably the length of the argument list which is the other alternative when
unique symbolic names are required.

As an example consider a macro to define a gas holding tank which is similar to the PHYSBE example
in Appendix A. We will calculate the flow in as the difference in pressure divided by a resistance. Total
pressure will be the integrated net flow divided by a volume. The macro definition now looks like

MACRO TANK(N)
F_N_I = (P_N_I-P_N)/R_N_I
P_N = (INTEG ((E_N_I - F.N_O)/V_N, P_N_IC)
MACRO END »
The basic equations for different vessels can now be established by the statements
TANK(1)

6-8



MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

MACRO

'MACRO DEFINITION'

MACRO DOT (P, Q)

RELABEL L2 $MACRO REDEFINE I
IF(Q(2)=Q(3))L1

PRINT CONFLICTING DIMENSIONS IN DOT PRODUCT
MACRO EXIT

L1..CONTINUE

P(1) = 0.0

DO L2 I = 1, Q(2)

L2..P(1) = P(1) + P(2)(D)*P(3) (D)

END

ARRAY Y(10), Z(10)

'MACRO INVOCATION'

DOT(X = Y,Z)

TANK(@3)

and the rest of the model must specify constants as interconnections. The first invocation TANK(1) will

generate

n
Figure 6-1. DOT Product Macro Forms X = E Yig
i=1

F1I = (P11 - P1)/R11
P1 = INTEG ((F1I - F10)/V1, P1IC)

Constants must be defined elsewhere for the resistance R1I, the volume V1 and initial pressure P1IC.
Variables that must be defined elsewhere are the input pressure node P11 and the output flow F10. This macro
will then make available to other sections of the simulation the input flow F1I and tank pressure P1.

The alternative form of the macro invocation without the concatenation feature would have to be

TANK (F11, P1 = P11, R1I, F10, V1, P1IC)
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with similar statements for all the other vessels. There is a trade off in deciding how to define the macro which
can be considered as follows: Without the concatenation feature, argument lists become long and complicated
but there is flexibility in naming and arguments can be expressions. Using the concatenation feature, the
argument list is simple - one argument, usually a constant, but can be mixed. The TANK macro could have
the output flow and downstream pressure specified in the argument list since these are likely to be expressions
ie.

MACRO TANK (N, PI, FO)
F_N_I = (PI - P_N)/R_N_I
P_N = INTEG ((F_N_I - (FO))/V_N, P_N_IC)
MACRO END
and in invocation of
TANK (1, PSOURCE, (P1 - P5)/R5I)

which substitutes PSOURCE for inlet pressure PI and the expression for the outlet flow FO. The disadvantage
of the concatenation approach is the inflexibility in naming convention and also the fact that any resulting
symbol must be six characters or less. If three digits are used for the number N, then all concatenated symbols
must have no more than three other characters. In practical problems one usually only has to allow for one
digit to identify a component or at most two. '

6.5 MACRO CALLS

Once a macro has been defined it must be invoked with specific arguments listed for substitution. The
first form of call is to embed the macro name in an arithmetic expression. For this form only one output (a
single number) should be produced by the macro - this has functional form

X = 5.0*SIN(DOT(A, B)/4.0)

where the DOT product macro is embedded in the argument of the SIN function. A and B in this case
correspond to the second and third argument of the macro respectively. The output is the first argument.

Alternative form of the call is as a stand alone statement -
DOT(X = A, B)
or its exact equivalent
DOT(X, A, B)

The equals (=) sign in the first form is to indicate to the reader that X is an output. The program
determines what are the actual inputs and outputs as it processes the statements produced by the macro, i.e.,
no error would result if the operator were invoked so

DOT(X, A = B)
but it would be a little misleading. Note especially that
X = DOT(A, B)

is an assignment statement and the name X will not be substituted for the first argument. Only a single
numerical value can be passed across the equals sign of an assignment statement.

On the other hand, consider a matrix integration operator we might write:
MATINT(X, XD = A, XIC)

In this set up two entire vectors are the output of the operator and have their values effectively passed across
the equals sign.

6-10



The substitution of macro arguments is by replacement of the character string forming the argument
with the substitutable name. Where expressions are used, the wrong answer can be obtained if parentheses
are not placed around the argument; i.e., consider a macro to integrate a difference in flow rate so

MACRO ACCUM(TOT, W1, W2, IC)
TOT = INTEG (W1 - W2, IC)
MACRO END
At invocation time we use an expression for net flow out so
ACCUM(MASS = WIN, WP1 + WP2, MASSIC)
which would give the line of code
MASS = INTEG(WIN - WP1 + WP2, MASSIC)

which isn’t really what we wanted, since the second flow WP2 has a plus sign in front of it. The answer is
to surround the substitutable name - where operator precedence can cause a problem - with parentheses. The
macro above should have been defined by

MACRO ACCUM(TOT, W1, W2, IC)
TOT = INTEG(W1 - (W2), IC)
MACRO END
and now at substitution the executed statement is
MASS = INTEG(WIN - (WP1 + WP2), MASSIC)

It’s not necessary to parenthesise the first parameter W1, since any expression substitution will give the correct
answer. Trouble usually arises when arguments are negated, multiplied or divided by other variables or used
as a divisor in the macro definition.
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7. PROGRAM DEBUGGING

One of the more important features of the ACSL language is the availability of tools that assist in
pinpointing errors. The first thing is to establish a frame of mind that believes in the existence of errors. It
is difficult, in general, for the average user who writes a model definition to believe that there are any errors.
However, if somebody else wrote it, you know there would be something wrong. You must accept the fact that
all programs have at least one error and part of the joy of coming up with a finished product will be in finding
it.

As you write the program, prepare the first run for debugging. Set the stop condition (TERMT) for the
first run to a small value (typically one communication interval will suffice) so that no time will be wasted
calculating the incorrect values. Use the ‘D’ option (despite any errors)* in the translator so that the program
will proceed to uncover as many errors as possible.

The first run through the translator will produce syntax error indications and probably error messages
as well. The latter are listed in Appendix E with some further explanation. The translator analyzes each
statement in turn and if an error occurs it will indicate this. The way the error is indicated is to write out again
the statement in error, including any continuations, with a line of asterisks (*) underneath to indicate the
acceptable section. The asterisk should stop just below where the error is located.

Example:
X =Y + (SIN(Y.Y))
**#*SYNTAX ERROR***THE LINE IS LISTED WITH A POINTER TO THE ERROR
X =Y + (SIN(Y.Y))

ok kock skokoskokok ok ok sk kk ok

which shows that the period (.) separating the two Y’s is not allowed. It should be an asterisk (*) to indicate
a multiply. Two points should be noted when these errors are indicated. The first is that only the first error
in the statement will be indicated. If this error is corrected, it may need a second (or third) run to uncover
other problems further into the statement. When you make a correction, take a long hard look at the rest of
the statement.

The second is that the line listed may not look like the input text if continuation cards are used. The error
listing gives the complete string to be analyzed after the trailing blanks have been squeezed from the end of
any cards continued.

Next check for misspelling - variables you may have intended to be the same get keypunched wrongly.
Names you intended to change get overlooked. To check these, look at the symbol cross-reference tables listed
at the end of the translator output. Any variables listed under ‘VARTABLES NOT SPECIFIED IN ANY
BLOCK’ will rp1‘§§dpq‘lllng§ , constants ,yo‘u,‘,fqrgqtHtﬂqmspegl__fy, or.correct. variables that had their name
_mlsspelled at the statement defining them. They should have been defined. '

Next, take note of any unsatisfied external references from the load map. These will usually correspond
to arrays you forgot to declare in an ARRAY statement - without this they look just like functions.

The first run-time command should set up a debug action and usually over the first five or ten derivative
evaluations will suffice. Include the following card at run-time:

SET NDBUG = 10
Alternatively an action can be scheduled that will ensure a debug printout after every START until CLEARed

* See addendum for a description of the local control card sequence and options.
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ACTION ‘VAR’ = 0.0, ‘VAL” = 10, ‘LOC’ = NDBUG

NOTE: While the system variable NDBUG is greater than zero the complete set of user varia-
bles is printed out and the value of NDBUG is reduced by one.

This output is probably the most important data to help in debugging; the previous set of tools was merely
to ensure you had the mechanics correct - commas in the right place, spellings consistent, etc. This debug
output gives you the actual numbers calculated for every one of the state derivatives and intermediate
variables. Look at the numbers carefully and check for reasonableness using your knowledge of the system
you are trying to model. It is a good idea to start with initial conditions nonzero. If there are too many zero
values, the arithmetic calculations can conceal errors. For preference, pick conditions so the derivatives all
have a nonzero value which can be checked. Check the values that are listed for the constants. Any that have
been presetin a CONSTANT statement and where the decimal point has been left off will be listed as having
a value of 0.0. This problem is a very common error. Some arrays may be missing from this printout if they™
happen to be longer than the integer contained in the system variable MALPRN (maximum array limit for
print out). See system variable summary for the default value.

Now the time comes to try the first full run. Plan what significant output variables will enable you to
deduce correct model operation. Specify these in an OUTPUT command; increase the termination time and
START.

It is at this point that the modeller’s skill comes in, in order to rationalize the behavior of the simulation
in terms of how the real word system is expected to behave. About the only help that can be offered is that
once questionable areas have been uncovered, schedule debug printouts to cover the area of interest so that
as much information is recorded as possible. Note that the debug output occurs every derivative evaluation.
For Runge-Kutta fourth order integration four derivative evaluations are made for a time step (calculation
interval), one at the beginning, two in the middle, and one at the end. Looking at the independent variable
it will appear to advance in half-steps, with twe derivative evaluations taking place each step. An extra
evaluation will take place prior to each communication interval or trip through the DYNAMIC section.

7.1 MEANING OF DEBUG PRINT OUT

The debug output is generated by going through the user dictionary which points to all variables in the
user common block, listing the values of each one by one. The first fifteen variables are ACSL control variables
that are defined as follows (see Figure A4-7 for an example):

a) T - Real; Independent variable. May have been renamed in a VARIABLE statement

b) ZZTICG - Real; Initial condition on the independent variable »

c) CINT - Real; Current communication interval. May have been renamed by CINTERVAL
d) ZZIERR - Logical; Variable step error flag; May have been renamed by ERRTAG

e) ZZNBLK - Integer; Number of DERIVATIVE and DISCRETE blocks in use

f) ZZI - Integer; Distinguishes pre-initial (=0), START (=1) and CONTIN (=2)

g) ZZST - Logical; Stop flag set by TERMT operator

h) ZZFRFL - Logical; First flag set true at first derivative evaluation of every step

i) ZZICFL - Logical; Initial condition flag set true at first derivative evaluation of every run -
immediately after initial conditions have been transferred to states

j) ZZRNFL - Logical; Reinitialize flag set true by REINIT. Used during initialization
(ZZICFL = .TRUE.) and then turned false

k) ZZNS - Integer array of length number of DERIVATIVE blocks giving number of state
variables in each block
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1) MINT - Real array of length number of DERIVATIVE blocks giving minimum integration
step size for each block. Name may be changed by global MINTERVAL statement

m) MAXT - Real array of length number of DERIVATIVE blocks giving maximum integration
step size for each block. Name may be changed by global MAXTERVAL statement

n) NSTP - Integer array of length number of DERIVATIVE blocks giving communication
interval divisor for each block. Name may be changed by global NSTEPS statement

0) IALG - Integer array of length number of DERIVATIVE blocks giving integration algorithm
number to be used for each block. Name may be changed by global ALGORITHM statement

Next in the debug print out comes the list of state variables in DERIVATIVE block order and in alphabetical
order within each block, with their corresponding derivatives and initial conditions on the same line. If line
width (see TCWPRN and HVDPRN) is sufficient (126) the corresponding values of absolute error (XERR)
and relative error (MERR) are also listed on the same line. In general the derivatives will all be dummy
variables (ZOnnnn form) except for those defined by the INTVC integration operator.

After the states come all the algebraic variables in alphabetical order. Any EQUIVALENCED variables
are listed at the end. System variable ZZSEED contains the random number seed variable which will change
(depends on machine type) with every call for a new random number. ZZTLXP is a logical variable present
in some machine versions to request the reprieve/interrupt capability. If it is set false before the first START,
normal system dumps can be obtained if desired.
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8. APPLICATION NOTES

A number of techniques used in simulation models and run control are included in this section.

8.1 PARAMETER SWEEP

It is possible to define a run which consists of a sequence of runs in which a parameter (P) is varied from
a low limit (PMN) to a high limit (PMX) by a certain increment between runs (PDL). This can be
programmed using the explicit mode and then plots can be made showing a sequence of curves with the
parametric variation.

Example:

PROGRAM SWEEP
INITIAL

P = PMN

L1..CONTINUE
END $’ OF INITIAL’
DYNAMIC
DERIVATIVE

MODEL DEFINITION

... DEPENDS ON P
END §$’ OF DERIVATIVE’

TERMT (T.GE.TSTOP)
END $ OF DYNAMIC’
TERMINAL

CALL LOG

P =P + PDL

IF (P. LE. PMX) GO TO L1
END $ OF TERMINAL’
END $ OF PROGRAM’

The run-time control cards will be

PREPAR T, list - -

SET FTSPLT = .TRUE.
START

PLOT Y1, Y2, etc.

Ensure the independent variable is the first variable on the PREPAR list and then set FTSPLT (fly back trace
suppression on plots) .TRUE.. This signals the plot program to lift the pen when the variable recorded on
channel one of the PREPAR list is less than its previous value. At the same time, the symbol character is
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bumped. Printer plots, of course, do not need to lift the pen, but the character change means it is a lot easier
to pick out the curves for separate runs. Remember each entry from the INITIAL section into the DYNAMIC
section will reset the independent variable to its initial value. Single runs can be easily generated, either by
setting the maximum value (PMX) to the minimum value

SET PMX = PMN
or by making the increment very large
SET PDL = 1.0E100

8.2 PHASE AND GAIN PLOTS

It is often required to determine phase and gain characteristics of a model that is being forced by a sine
wave. With this system, the excitation frequency can be varied logarithmically and the phase and gain
characteristics determined and plotted as a function of this frequency. First of all, let us establish a name W
for frequency. This will be swept from minimum (WMN) to maximum (WMX) by using a geometric
progression with multiplier KW (= 1.2 to 1.5).

Example:
PROGRAM PHASE AND GAIN
INITIAL
W = WMN
L1..CONTINUE
END $° OF INITIAL’
DYNAMIC
DERIVATIVE
g MODEL
END $¢ OF DERIVATIVE’
TERMTY. . .)
END $° OF DYNAMIC’
TERMINAL
PW = ALOGI0(W)
CALL LOG
W = W*KW
IF (W.LEWMX) GO TO L1
END $ OF TERMINAL’
END $° OF PROGRAM.

The frequency will be varied geometrically and PW is calculated for the x-axis of the plot to be made - the
actual scale will then be logarithmic.

Now to find the phase and gain. Assume that we inject our signal into the equation for the variable F,
and want to know the gain and phase between F and the output variable X, i.e.,

lF(_ = G(w)
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The in-phase (P) and quadrature (Q) components will be given by

T
P =—7TW—/Xsin(WT)dt
TS

T
Q =¥/XCOS(WT)CM

TS

where the integration is taken over any complete cycle.

The trick is to start the integration after sufficient time has elapsed so that the initial transients have
decayed away and then just integrate over a complete cycle. This can be done by logic within either the
DYNAMIC or DERIVATIVE sections and it’s usually easier to set the communication interval to force the
full cycle integration. The phase of the window chosen is immaterial relative to the drive sine wave - it’s only
necessary to integrate over whole cycles.

This sketched out technique requires a complete simulation run for each point i.e. the model code cycles
from TERMINAL to INITIAL every time a new frequency point has been calculated. Another way of
generating frequency response in a single run is described in section nine of Appendix A. While the implemen-
tation described there is fairly complicated, it reduces somewhat the time spent for settling which is wasted
CPU seconds and also allows more direct control of the phase accuracy calculated.

8.3 SUMMARY OUTPUT

It is often useful to obtain a complete list of all simulation variable values in order to document the state
of the simulation. Setting NDBUG = 1 gives a picture at the very first derivative evaluation but we have found
that this is not as useful as a picture obtained at the end of the run. In a final value debug dump, initial
conditions are still available in the initial condition arrays but all other variables document the termination
condition.

In order to easily obtain this final value listing, incorporate the following code in the TERMINAL section
i.e.
TERMINAL

LOGICAL DUMP $ CONSTANT DUMP = .TRUE.
IF (DUMP) CALL DEBUG
END $ OF TERMINAL’

The call to subroutine DEBUG gives the picture but it’s important to have it under the control of a logical
variable that can be set at run-time in order to turn the output on or off.

8.4 IMPULSE AND STEP RESPONSE

Common methods used to check simulation models are the determination of the response to impulses
and steps in the control variables. In most cases it is not necessary to use special operators as these forcing
functions can usually be modelled by parameter changes.

An actual impulse is of infinite height and zero time width and so is impossible to generate directly. The
effects however are felt at all integrators the impulse is fed to, and result in a unity jump in the output of these
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integrators. The easiest way to implement this jump in practice is to apply a value to the integrator initial
condition which models receiving the impulse immediately prior to time equals zero. When the simulation
program starts to execute it will then follow a solution trajectory in response to this hypothetical impulse.

As an example consider a pendulum model so
OMEGA = INTEG(-G*SIN(THETA)/L, OMEGAZ)
THETA = INTEG(OMEGA, THETAZ)

An impulse in force or momentum transferred to the pendulum ball at T=O is modelled by specifying a
non-zero value for the angular rate initial condition OMEGAZ. This may need some calculation since there
are equations governing momentum transfer. These would apply if for example we struct the pendulum bob
with a mallet and would correctly be placed in the INITIAL section.

If the impulse is applied at times other than T=0, then the integral equation must be modified to add
in the net integrated impulse or

OMEGA = INTEG(-G*SIN(THETA)/L, 0.0) + DLOMEG

Now the variable DLOMEG (delta OMEGA) is added in and becomes the initial condition on OMEGA (since
the INTEG has an initial condition of zero). In this configuration we change DLOMEG and since it is always
added to the state variable or output of the INTEG operator, OMEGA will jump discontinuously when this
happens. If DLOMEG has been changed it must be reset in the INITIAL section prior to the start of each
run. It itself becomes an effective state variable. Most cases can be handled by using the initial condition but
when true impulses are applied during the simulation run, then the added variable becomes necessary (see
the aspirin example in section 12 of Appendix A)

Step responses are a different excitation technique, usvally handled by adding a constant (initialized to
zero) at a summing junction but often loops must also be broken. A typical requirement is to examine the
response of a missile - pitch rate, pitch angle and accelerometer reading - to a step in fin deflection. This would
normally be applied at time equals zero and the dynamic response recorded. The trouble here is that a simple
change of initial condition on the fin angle integrator is not sufficient since after the model starts, the fin
deflection will change due to the dynamics built into the actuator model. The key now is to break the outer
loop and prevent this fin motion and the ease whereby this can be done depends somewhat on the actual fin
dynamics model itself. A simple fin model is a first order lag with a typical time constant of 5 to 50 msec,
so motion can easily be stopped by setting temporarily the time constant to 1.0E30. This very large value
ensures that the output will remain constant irrespective of what the input does. Alternatively there may be
a gain between torquer and velocity integrator which can be made zero, so ensuring zero derivatives or a
constant output.

For these types of test cases it is important that model parameter values be given symbolic names, preset
by CONSTANT statements. The symbolic name enters these into the ACSL dictionary and the CONSTANT
statement is just a preset so values changed won’t be changed back as they would if they were set via an
assignment statement. It is bad practice to specify numbers within the code sequence, since no name can be
assigned to the value and so the value itself is always fixed, requiring a re-edit of the model definition code
in order to effect any changes.

As an example, with a first order lag fin model with a time constant of 20 msec we have two choices
a) REALPL (DL = 0.020, DLC, DLIC)
b) CONSTANT TACT = 0.20

REALPL(DL = TACT, DLC, DLIC)

The second form is far better since now we can change the variable TACT at run-time by SET commands.
For step responses we would use
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SET TACT=10E30, DLIC=-0.010
START

which would generate the response for a fixed fin deflection of minus ten milliradians.

8.5 EXTERNALLY DEFINED VARIABLES

It is sometimes necessary to suppress the message relating to undefined variables which will be generated
if names are found that never appear on the left hand side of an equals sign. This happens with external
FORTRAN subroutines that are communicating with the ACSL program via the dollar sign ($) in column
one and described in section 1.5. In order to tell the ACSL system that they are calculated and at the same
time enter the name in the ACSL model dictionary, just mention them in a dummy PROCEDURAL block
which can be placed anywhere in the program.

Consider variables XF, YF and ZF which we know to be defined elsewhere. Add the following two lines

PROCEDURAL (XF, YF, ZF =)
END

which says that it is known that the variables XF, YF and ZF are defined somewhere. In this we assume that
sorting problems are handled separately. Remember there is no check that the inside of a PROCEDURAL
block agrees with the input/output list stated on the header and while it can be a useful feature, care is
necessary in its use in actual simulation programs.
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APPENDIX A
ACSL EXAMPLE PROGRAMS

A number of sample problems have been programmed and run using the ACSL simulation system. In
all cases the input consisted of two files or sets of cards. The first describes the model under examination and
the second is the run-time executive driver. In most cases the model can be considered as being described in
parallel, i.e., there is no necessity to have variables calculated prior to their use. The translator will rearrange
the program until it is in correct sequence for execution. On the other hand, the run-time executive is definitely
sequential and the input is a sequence of commands that tell the model what to do next. At least a START
card is necessary to exercise these models.

All the output from these programs has been designed to fit on standard A size paper (eight and a half
by eleven) where possible, for ease of reproduction. Normally the full width of the line printer is available
(13”) but we have restricted the use of this with the exception of line printer plots since reducing the grid size
to 50 by 50 increases the coarseness, decreasing significantly the quality of the picture. The plots therefore
have been produced on a 100 by 100 grid and the page reduced by 47% for publication.

The listings produced from the OUTPUT command are sized fo fit on the terminal where the size is
controlled by the ACSL system variable TCWPRN (terminal character width for print out). When this is
changed to 72, the output will fit on an 8.5 inch wide sheet. The low volume or display output is at the same
time routed to logical unit nine (SET DIS=09) leaving the high volume output on logical unit six, the output
of which was used to make the figures. These logical unit assignments are machine type specific and are
described in the addenda for a particular installation. The figures were made on a CYBER 175, NOS
operating system.

1. LIMIT CYCLE
The equations
x=y+Kx(-x2-y2)/VxZ+y2
y==x+Ky(1-x2-y2)/Vx2+y2
where
x(0) = xz; y(0) = yz

describe a limit cycle in the xy plane. The limit cycle is a circle of radius 1.0. That is, no matter what initial
conditions are imposed on x and y (except x =y = 0), x2 + y2—1 as t—co

Assume that plotted time histories of x and y are required for t running from 0 to 10 in steps of 0.2 sec.
Printed output need only be listed every 1.0 sec.

The coding for this problem is shown in Figure A1-1 which establishes the base model. Line 7 defines
the root sum square value SQ as a named item so that it can be listed and plotted. Execution time is also saved
by calculating the common subexpression once.

The next three cards specify the integration equations. Line 13 specifies the termination condition
(TERMT). The final time, TF, specified in the constant statement is given as slightly less than ten. If it’s
exactly ten an extra step will be taken since equality of floating point numbers is never exactly obtained. The
value of T obtained by summing many small increments will in general be slightly less than the exact value.

The run-time control cards follow - separated from the model description in the batch run by an end of
record card (7/8/9 punch). First comes the output statements that determine what is to be listed (Figure
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END ¢°
1.7

SFARE
SET T1

~~~~~~~~~~~~~~~~~~~~~~~ DEFINE ALL THE PRESET VARIABLES®

CONSTANT XZ = 0.5 » YZ = 1.0
CONSTANT K=0.2 , TF = 9.99
CINTERVAL CINT = 0.2

B e GIVE NAME TO RMS VALUE®
sa = SORT(XKK2 + YXX2)

B e ISOLATE COMMON FACTOR®
KK = (1.0 - S0%k2)/5Q

¥ o LIMIT CYCLE EQUATIONS®
X INTEGC Y + KXX¥KK, X2Z)

INTEG(-X + KXYXKK, YZ)

B e DEFINE STOPPING CONDITION®
TERMT(T .GE. TF)

OF PROGRAM *

18 CFP SECONDS 2056 TABLE SFACE USED 3 TAELE MOVES

TLE = "LIMIT CYCLE FRORLEM®

S TCWPRN=72,DIS5=9 $" FORCE 3 COLUMN OUTPUT WIDTH *

OQUTFUT T, X, Y, 8Q, "NCIOUT"=5 $"DEFINE LIST TO BE PRINTED DURING RUN"
FREPAR T,X,Y.8Q $"DEFINE LIST TO BE SAVED FOR LATER USE"
START

FLOT X,Y,8Q $"PLOT AS FUNCTION OF TIME"

PLOT "XAXIS"=X,Y $"PHASE PLANE PLOT®

SET NP
FLOT Y
SPARE
STOP

XPPL=60, NGXPFL=12 $"SQUARE UF PHASE FLANE PLOT®

1

$"ASSUMES XAXIS IS LAST VARIARLE EXPLICITLY DEFINED®

Figure A1-1. Listing of Limit Cycle Model and Executive Command Cards
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ACSL RUN-TIME EXEC VERSION 1 LEVEL &M

SFARE
ACCUMULATED
SET TITLE =

S TCWFRN=72,DI5=9 $"
QUTFUT T, X, Y, 54, "NCIOUT*=5

CF

TIME

*LIMIT CYCLE FROELEM®

FREPAR T, X, Y, SQ

START
T
8Q

T
sQ

T
aaQ

T
saQ

T
50

T
sQ

T
sQ

T
s5Q

T
sQ

T
sa

T
sQ

FLOT X, Y. 80

0.
1.

= 0 - ~J -0 = R Ol =

= g

11803399

. 00000000
07761050

. 00000000
.005136673

. 00000000
. 03414305

. 00000000
. 02275868

. 00000000
.01519858

. 00000000
.01016246

. 00000000
. 00680071

. 00000000
. 00455355

. 00000000
. 00305005

10.0000000

1.

00204348

6.011 SEC. ELAPSED CF

TIME

FORCE 3 COLUMN OQUTFUT WIDTH

81/07/10. 09.35.55.

FAGE

6.011 SEC.

$"DEFINE LIST TO BE FRINTED DURING RUN"
$"DEFINE LIST TO RE SAVED FOR LATER USE*

X 0.

X 1.

50000000

07143048

. 65941072

. 32732337

. 99128128

. 74193795

. 18130838

.93107118

. 82357251

. 03897837

. 86359260

$"FLOT AS FUNCTION OF TIME"

Y 1.

00000000

. 11524377

. 81887087

. 98097465

. 25178710

. 69293307

. 99375825

. 38308500

. 37320097

. 00229241

. 50823121

Figure A1-2. Run-time Control and Output Stream of Limit Cycle Models
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ACSL RUN-TIME EXEC VERSION i LEVEL &M 81/07/10. 09.35.5%. PAGE 2
LIMIT CYCLE PROBLEM

X A =2.000000 ~1.600000 -1.200000 -0.800000 -0.400000 ©. 0.400000 0.800000° 1.200000 1.600000 2.000000
Y B -2.000000 -1.600000 ~1.200000 -0. =0.400 0. 0.400000 0.800000 1.200000 1.600000 2.000000
S@ € 1.000000 1.100000 1,200000 £.300000 1.400000 1.500000 1.600000 1.700000 1.800000 1.900000 2.000000

T XAXIS .
0. .. e A B
c A B
c B .A
c B A
c B . A
c B . A
c B . A
c B A
c B A
c B A
2.000000 ... C..oooii B A
. . . . : - : : : :
c B A
c B A
c B A
c I3 A
c E . A
c Ea
c A R
c A E
4.000000 . C..ooiiii A B D
e . S . . . . i ‘
c a . . CE
c A : R
c A B
c Y B
c A B
c A ]
c A B
c 1 B
6.000000 .C........ O YRS - S
© . . . . . a K
c LA B
c '
c B A
c B 3
c B A
c ) 3 A
c T A
c B a
8.000000 C :
c B A
c B Coa
c B A
c B A .
c B a
c B a .
c B A
c E A
c A B

10.00000 C..
PLOT *XAXIS*=X,Y

Figure A1-3. Plot Resulting from Last Command on Figure A-2 for Limit Cycle Model
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ACSL RUN-TIME EXEC VERSION 1 LEVEL &M 81/07/10. 09.35.55. PAGE 3
LIMIT CYCLE PROBLEM

X XAXIS .

Y A -2.000000 -1. -1, ~0. -0.4000 0. 0.400000 0.800000 1.200000 1.600000 2.000000

=2.000000. .

S1IR00000 ..o

~0.400000 .

0.400000 .

1.200000 .

2.000000 .. : .
SET NPXPPL=60, NGXPEL=12 $'SQUARE UP PHASE PLANE PLOT®
PLOT Y $°ASSUMES XAXIS IS LAST VARIABLE EXPLICITLY DEFINED*

Figure A1-4. Plot Resulting from Last Command Figure A-3
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ACSL RUN-TIME EXEC VERSION 1 LEVEL éM 81/07/10. 09.35.55. FAGE 4
1.IMIT CYCLE PROELEM

Y A -2.000000 -1.600000 -1.200000 -0.800000 -0.400000 O. 0.400000 0.800000 1.200000 1.600000 2.000000
X XAXIS . . . . . . . . . . .
=2 000000 ..

-1.200000 .

-0.400000 .

0.400000 .

1.200000 .

2.000000 .

SPARE
ACCUMULATED CP TIME 7.630 SEC. ELAFSED CF TIME 1.619 SEC
STOP

Figure A1-5. Phase Plane Plot of Figure A-4 with Axes Squared
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A1-2) during the run. The qualifier ‘NCIOUT’ is set to five to indicate output is only to occur every five
communication intervals. Then START initiates the run and produces the listing. The next command is PLOT
which produces the page plot shown in Figure A1-3. As can be seen, the root sum square value SQ tends to
1.0. A phase plane plot follows (Figure A1-4) where y is plotted against x. Note the distortion of the circle
to an ellipse because the printer characters are longer than they are wide (ratio of 10:6). Next the x-axis had
been changed by

SET NPXPPL = 60, NGXPPL = 6

(number of points in the x direction for printer plots). The grid is now square and the plot circular (Figure
A1-5). Note the second plot does not specify the x-axis variable - the last one used is assumed.

Other values of the constants could have been tested by following this plot card with further SET
statements followed by another START.

2. SPRING

A spring supporting a mass with a viscous damper attached can be modelled by a linear second order
differential equation. The equation is derived by writing the expression for the force acting on the mass and
then using Newton’s Law (force equals mass times acceleration) to calculate the acceleration. If x is the linear
displacement of the spring, the spring restoring force is -Ax lbs, where A is the spring constant (lbs/ft), and
the viscous damping is proportional to the velocity and opposing it or -Kx Ibs, where K is the coefficient of
the viscous friction in lbs/(ft/sec). If W is the weight in Ibs attached to the spring, then the mass is W /g slugs
where g is the acceleration due to gravity. With this we can express Newton’s Law so or:

H X =W-Ki-Ax
where W, the weight, is the force due to gravity tending to extend the spring. Dividing both sides of the above
equation by W /g we obtain the expression for the highest derivative or:

X = (W-Kk-Ax) / (W/g)
Integrating this twice leads to the two statements:
x= [ xdt

X = f x dt

Figure A2-1 shows the ACSL model definition statements that represent the dynamics of the mass when it
is released. Note the alternate way of obtaining time by integrating a constant one. This is useful if it becomes
necessary to change the initial condition on time. The run-time drive cards are shown in Figure A2-2 and
output listings in Figure A2-3 through A2-6. At the bottom of Figure A2-4 the plot is set up with a specified
Y-axis scale factor and Figure A2-5 shows the resulting limited plot. Out of bounds points are brought back
to the edge of the plot with no attempt made to interpolate for correct intersection with the edge. Beware that
the slope of the curve as it approaches the limit condition will therefore be incorrect.

The communication interval was defined in the model definition section to be 0.02 seconds and with a
run time of 4 seconds this will save 201 data points. Since the x-axis size is a hundred points, two data points
will be available for plotting in each x-axis box. When they fall in different y-axis boxes, the two points are
shown on the same vertical line - see Figure A2-4 - but this is only an artifact of the coarse plotting medium.
When the rates of change are slow enough, the two points will coalesce into a single point as shown at the
extrema of the curves.

3. CONTROL LOOP

This program was chosen to illustrate how MACROS are used to represent transfer functions from a
system block diagram. The problem is the design of a lead-lag controller for a second order plant that has
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FORAOCIORACKRRATIVANCET
ACSL. TRANSLATOR VERGTON
FROGRAM SFRING
DthlUﬁT]Uf

i,
]

L[NIPRUAI

"

_CINT =
XIe
KN o= 0.

TSP =

(UNSTANI

4

ors sser et bone wene

= INTEGCL. 0,
.m((J -

TIME
X

Xn

X
TERMT(T Gl
OF DERIVATIVE
OF FROGRAM *

KX -

INTEGO X,
LNTT'?(XI!:

IQTI)

ENIt $*
ENI 4"

Figure A2-1.

SET TITLE = "SPRING

S TCWPRN=72, DI5=9 $°
QUTPUT TIME, XDI, XD,

FREFAR XD, XIn TIME.
START

RANGE "aAllL."

FLOT "XAXIG" TIME
FL.OT X, XD " USE
PLOT X *HI®"=1.0.
FLOT "XAXIGY =X,
STOF

X

o

X

Figure A2-2.

AUTOMATIC
OGP =0,
FHASE

LANGUAGE Ok 3ok ok
09 3e. 52 PG

Lokl

SIMULATION
g1L/07/10.

CONTINUOUS

L LEVEL AF 1

534

DAMFING FPROBLEM. MODELS RELEABING®
ZERO"

SFRING
A MASE FROM INITIAL CONDITIONS OF
VELOCITY AND DISPLACEMENT®

0.02

- INE
0.0
02

3

FRESET VARIARLES®
Xnic 0.0 W=
A = 1.0 (3

.0

"’t "‘a
.

H ¥

b L

9

~ANQTHER WaY OF

VAaRTARLE?®

Q.0

AXXDY /(WG

e INTEGRATE

Xure)

X[C )
~SFECIFY TERMINATION CONDITION®

CHANGING THE TINDEPENDHENT®

ACCEL FOR VELOCITY AND FOSITION®

Listing of Model Defintion for Spring Damping Problem

DAMPING FROBLEM®
FORCE
X, "NCIOUT =20

3 COLUMN OQUTPUT WINTH ¥

TIME A% X~-AXIS FOR SUBSEQUENT FLOTS®

CALING®

$' SET

8
O, X
FLANE FLOT®
N

Run-time Drive Commands to Exercise Spring Damping Problem
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ACSL RUN-TIME EXEC VERSION 1 LEVEL &M 81/07/10. 09.33.37. PAGE 1

SET TITLE = "SPRING DAMPING PROBLEM®

S TCWPRN=72,DIS=9 $" FORCE 3 COLUMN OUTPUT WIDTH *
OUTPUT TIME. XDD, XD, X, *"NCIOUT"=20

PREPAR XDD, XD, TIME, X

START
TIME 0. XDD 32.2000000 XD 0.
X 0.
TIME 0.40000000 XDD-19. 3714113 XD 3.83668940
X 1.52486284
TIME 0.80000000 XDD-3. 06640990 XD-4. 32187508
X 1.18166762 |
TIME 1.20000000 XDD 18.4264342 XD 1.90302322
X 0.38949003
TIME 1.60000000 XDD-18. 3865897 XD 1.19671746
X 1.54707775
TIME 2.00000000 XDD 6. 46987709 XD-2. 81890860
X 0.B85545031
TIME 2.40000000 XDD 6. 92302052 XD 2.25043816
X 0.73999060
TIME 2.80000000 XDD-12. 7990980 XI-0. 35628069
X 1.40461313
TIME 3.20000000 XDD 9. 06683251 XD-1. 33803765
X 0.74518210
TIME 3. 40000000 XDD-0. 32094098 XD 1.78261606
X 0.97431479
TIME 3.99200000 XDD-6. 92515695 XD-0. 91957557
X 1.23345847
RANGE *ALL"™
XDD-27. 0956534  32. 2000000
XD-4. 35499524 5. 20222033
TIME 0. 3. 99200000
X 0. 1.83607297
PLOT *XAXIS® = TIME $' SET TIME AS X-AXIS FOR SUBSEQUENT PLOTS"®
PLOT X, XD $* USE AUTOMATIC SCALING

Figure A2-3. Run-time Control Card and Output Stream - Spring Damping Problem
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ACSL. RUN-TIME EXEC VERSION 1 LEVEL &M 81/07/10. 09.33.37

SPRING DAMPING PROBLEM

PAGE

2

Xa o ©0.200000 0.400000 0.600000 0. . 1 1. 1.600000 1 2.
XD B -10.00000 -8. -6. -4, -2. 0. 2 4. 6 8 10.00000
TIME XAXIS . . .
0. 3 BB
Yy . . . BB
A AL . R B
A A . B E
. A A . . BB
a. A . . mB
AL A . . ]
. A . B
A A . BB
A .BAR
BB
| T aa .
BB Aa
. B B . .Aa
B B. . AR
. . B R L aA
. E B . AaA
. BB . A A
. .BR . A A
. BE A A
0.800000 . ... Boottii i AL A
1. 600000
2.400000

3.200000 .

4.000000 .
PLOT X, *HI*=1.0,*LO*

Figure A2-4. Plot with Automatic Scale Factor Selection - Spring Damping Problem
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ACSL RUN-TIME EXEC VERSION 1 LEVEL &M 81/07/10. 09.33.37. PAGE 3
SPRING DAMPING PROBLEM

X 0.100000 0.200000 0.300000 0.400000 0.500000 0 600000 0 700000 0 800000 0 900000 1.000000
Xn B ~10 00000 -8.000000 ~6.000000 -4.000000 -2.000000 O. . . . 10. 00000
TIMF XAXIS . . . . .

DPPDDPDDDIDIDDIDPDDD - -

0.800000 | ... .. ...,

A
A
A
A
. A
1600000 L. A
A
A
A
A
A
A
A
. : . . : . A
B . . . . . A A—.
B . . . A
ER. . . A —n" .
_f
2.400000 ... .. ... ...
3.200000 ...
B. A=A
ER. A
BR . A
BB A
. B A
. BB A
BB A
BB 1y
BB . A
. . . . BB . . . . A
4.000000 ... L e - P A

FLOT 'XAXIS'=XD, X $° PHASE PLANE PLOT®

Figure A2-5. Forced Off-Scale Plot by Specifying Y-Axis Scale Factor for X-Spring Damping
Problem
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ACSL RUN-TIME EXEC VERSION 1 LEVEL éM 81/07/10. 09.33.37. - PAGE 4
SPRING DAMPING PROBLEM

X a o 0.200000 0.400000 0.400000 ©0.800000 1.000000 1.200000 1.400000 1.400000 1.800000 2.000000
XD XAXIS . . . . . . . . . ; .
21000000 © .
28000000 .+ .

~2.000000 .

. A A A AR A A. LA
. A A A A
. A A ] . . A
A A A A A A
. A A A A .
A A A A A. ]
A A A A ‘A A
] . .
LA
A

2.000000 .

6.000000

2000000 | ..\
sTOP :

Figure A2-6. Phase Plane Plot - Spring Damping Problem
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a measurement device containing a first order lag (real pole). Figure A3-1 shows the system block diagram.
Constants in the model are as follows:

T, = 0.020 sec B = 0.200 sec

Ty = 0.005 sec K; = to be determined
T3 = 0.002 sec Ky = 0.5

A = 0.012 (sec)? K; = 1.0

The model definition is shown in Figure A3-2 and the run-time drive sequence in Figure A3-3. In the model
definition, the communication interval (CINT) is defined to be Smsec, a step in input is applied at 20msec
(TZ) and the transient is allowed to run to the stop time (TSTP) of 499msec or 100 recorded data points.
In the model listings, the transfer function operators, REALPL, CMPXPL and LEDLAG are embedded in
the right hand side expressions. This is acceptable when the output is a single numeric quantity and in fact
these can be nested to any depth desired. An alternate form is available for stand alone use if the operator
is known to be a MACRO as follows for the three lines calculating XM, X and XP respectively.

REALPL (XM = TA3, K3*X, 0.0)
CMPXPL (X = A, B, K2*XP)
LEDLAG (XP = TAl, TA2, K1*E, 0.0)

This form of the MACRO invocation is sometimes preferable since it restricts generation of dummy names
(or those starting with Z0 . . .). In changing to the above form we have used the property of linear operators
that pre and post multiplication by scalars are equivalent.

In the run-time drive commands (Figure A3-3) the OUTPUT and PREPAR lists are specified and a
procedure GO defined. The card images between the PROCED . . . END are saved and not executed. Then
two runs are made using the procedure now as a new command, the first with K1 equals to 100.0 and the
second 10.0. Each ‘GO’ invokes the START/PLOT sequence saved in the procedure. Figures A3-4 through
A3-7 show the output stream generated as a result of the run-time drive commands. Notice that when the
commands within the procedure are echoed back a trailing dollar sign ($) is appended.

LE:'* CONTROLLER PLANT
XC E K] (T]S+1) XP K2 X
STEP —— - ""”'2__"— .
TZS+] A S%+ BS +1
MEASUREMENT
XM K3

T, S+ 1 B
3

Figure A3-1. Control Loop Problem Block Diagram



KAKKKKKKKAIVANCED  CONTINUOUS — SIMULAT AN
ACSL TRANSLATOR VERSION 1 LEVEL &F 81/07/13. 13.54.16.
FROGRAM LOOF
o e WEF TNE. PRESET UARIQBLES'
CONSTANT Ki = 50.0 ;K2 = 0. ;K3 = 1.0

s THTF = 0,499 , TAL = 0.0HO o TAZ = 0.00%5

+» TAZ = 0.002 , A = 0,012 s Bo= Q200
» TZ = 0,02
CINTERVAL CINT = 0.00%
KM = hA*RFAIIL(Iﬁé; X 0.0
B cier s vuse cotn aate sasn 2000 asen o 4 axas aune sa0s snen sven sere sane N..,.....‘......“:. Ohi T NCJ !:‘“Nur ! UN L
= h!kP(IZ)
E = X0 - XM
e e oo e oo (U ENED 2-NO ORDER PLANT®
X = K2KOMPXPL (A, B, XP, 0.0, 0.0)
BB cces e sune aetn cate oveo 3400 oube Sone dash some 4008 aben Seuw $440 abes S005 100 Seso BeED BEES Sure abEE C.- UN"RULL LR U U " Flu " o
XF = h1$LLHLAh(TAi’ Tag, E, 0.0)
B e e tonn e ons sore a0ee aose ass ouve soe 2008 soue ste . ....(;" l.. (.;] i Y ]l.. &M lN(}"" 1UN C{:’NI‘ l ‘ LUN'
TERMT(T. hk TSTF)
END 4% OF PROGRAM *®

Figure A3-2. Listing of Control Loop Model Definition

SET TITLE = "CONTROL LOOF PROBLEM®

S TCWPRN=72, DIS=9 4" FORCE 3 COLUMN QUTFUT WINTH *
OQUTEUT T, XC, E, XP, X "NCTOUTY =10

PREFAR T, XC, E. XF, X, XM

FROCED GO

START

"FORCE SAME SCALES FOR COMMAND ANDN MEASURED - FIRST VARIABLE

FLOT X, XC, XM, "SAME", E

END $* OF PROCEDURE *

"MAKE TWO RUNS AND PRODUCE PLOTS OF EACH®
SET Ki=100.0 4 GO

SET Ki=10.0 4 GO

STOF

Figure A3-3. Run-time Drive Commands for Control Loop Problem
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ACSL RUN-TIME EXEC VERSION 1 LEVEL oM 81707713, 13.54.41. FAGE

SET TITLE = PCONTROL LOOF FPROEBLEM®

S TCWFRN=72, [I5=9 $* FORCE 3 COLUMN OUTFUT WIDTH *
QUTPUT T, XC, B, XF) X, "NCIOUT*=10

FREFAR T, XC, E, XF) X, XM

FROCED GO

START

"FORCE SAME SCALES FOR COMMANIDY AND MEASURED -~ FIRST VARIARLE I8 REFNCE"
FLOT X, XC, XM, "SAME", E

ENDI 4" OF FPROCEDURE *

"MAKE TWO RUNS AND FRODUCE PLOTS OF EACH®

SET Ki1=100.0 4 GO

STARTS

T 0. XG 0. E 0.

XF 0. X 0.

T 0.05000000 XGC 1.00000000 E~0Q.342430%4
Xp-79.0815517 X 1.36474747

T 0.10000000 XC 1.00000000 E 0.06252934
XF 4.53840650 X 0.94349480 .

T 0.15000000 XC 1.00000000 E 0.01896207
XF 2.64982182 X 0.98019850

T 0.20000000 XC 1.00000000 E 0.01921891
XF 1.88110551 X 0.98078639

T 0.25000000 XC 1.00000000 E 0.01964535
XF 1.96034782 X 0.98036255

T 0.30000000 XC 1.00000000 E 0.019260870
XF 1.96161406 X 0.98039061

T 0.35000000 XC 1.00000000 E 0.019460740
XF 1.96072193 X 0.98039258

T 0.40000000 XC 1.00000000 E 0.01960787
XF 1.96078106 X 0.98039214

T 0.45000000 XC 1.00000000 E 0.01960785
XF 1.9607852 X 0.9803921%5

T 0.49950000 XGC 1.00000000 E 0.01960784
XF 1.96078427 X 0.98039216

"FORCE SAME GCALES FOR COMMAND AND MEASURED - FIRST VARIARLE IS REFNCE"$
FLLOT X, XC, XM, "SAME ", E4

Figure A3-4. Run-time Drive Commands and Output Stream of Control Loop Problem
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ACSL RUN-TIME EXEC VERSION 1 LEVEL &M 81/07/13. 13.54.41. PAGE .2
CONTROL LOOP PROBLEM

1.200000
1.200000

XA 0. 0.200000 0.400000 0.600000 O. 1

0. 1.
1. 1.200000
o

XC B 0. 0.200000 0.400000 0.
XM C 0. 0. 0. 0 0. 0.
E I -1.000000 -0 ~0. 6000 -0. =0.200000
T XAXIS . . . .
0.

0

1 1
. 1. 1,
. 400000 1.600000 1.800000
. 4000 0. 0.

O he

0.2

© 3 % 3% %

=

o
wpmwwm*wwwwmwgwwwaauua»
>
>
3]

=]

0.100000 .......... U U e x. .

o
o %D
3 3% % o
oo
oo

0.200000 ... ...... I o [ XED. ... ... B

0.400000 ... ... ........... ... L [ T XED. .. ... .. [T [ [P

0.500000 ......... A U e XBD. ... .......i..... T

Figure A3-5. Plot of Input Step, XC, Output, X, and measurement, XM, to Same Scales with
Error, E, for Control Loop Problem
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M

CONTROL LOOFP FRORLEM

SET K1=10.0 ¢ GO

STARTS

T 0.
0.

XF

T 0.
XF 6.

"FORCE SAME
PLOT X, XC, XM, >SAME", E$

05000000
00718267

. 10000000
. 07926131

. 15000000
. 03417260

. 20000000
. 80350815

. 25000000
. 67195084

. 30000000
. 94272303

. 35000000
. 83522449

. 40000000
. 68335989

. 45000000
. 62368836

. 49950000
. 63462643

SCALES FOR

Figure A3-6.

XC

x
90

XC

>
O

XC

> b4 b4
Lo Y [ JEWS [ 2

>
S

XcC
X

O

XC
X

o

XC
X

O

XC 1.
X 0.

Second Run - Control Loop Problem
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. 00000000
. 26483287

. 00000000
. 78064589

. 00000000
. 98055897

. 00000000
. 94077047

. 00000000
. 85305345

. 00000000
. 81153849

. 00000000
. 81366126

. 00000000

2809089

. 00000000
. 83631791

00000000
83684777

81/07/13.

E

13.54. 41

0.

0.

FAGE

. 75834817

. 23491640

02168535

. 05569507

. 14405774

. 18779721

. 18684210

. 17242946

. 16384387

146308848

COMMAND ANI} MEASURED' - FIRST VARIARLE IS REFNCE"$
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ACSL RUN-TIME EXEC VERSION i LEVEL éM 81/07/13. 13.54.41. PAGE 4
CONTROL. LOOP PROBLEM

XA O 0.100000 ©0.200000 0.300000 0.400000 0.500000 0.4600000 0.700000 O. 0. 1.
XC B 0. 0.100000 0.200000 0.300000 0.400000 0.500000 0.400000 0.700000 0.800000 0.900000 1.000000
XM C O. ©.100000 0.200000 0.300000 O. 0. 0. 0.700000 0. . 1.

ED 0. 0.100000 0.200000 0.300000 0.400000 0.500000 0.600000 0.700000 0.800000 0.900000 1.000000

T XAXIS . . . R . . . . . . . .
0. e e e e e e e e e e

*
* .
x .
x .
ca . . B . . . . . . DE
cA . . . . . . . . . o B
cA . . . . . . . . B
. CA . D B
C .A ] B
. caA n )}
CaA o B
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Figure A3-7. Plot of Step, Output and Error for Second Run - Control Loop Problem
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4. PILOT EJECTION STUDY

The purpose of this investigation is to determine the trajectory of a pilot ejected from a fighter aircraft
in order to ascertain whether he will strike the vertical stabilizer of the aircraft. Several combinations of
aircraft speed and altitude will be investigated since the drag on the pilot, causing his relative horizontal
motion with respect to the aircraft, is a function of air density and velocity (squared). The ejection system
is devised so that it causes the pilot and his seat to travel along rails at a specified exit velocity, Vg, at an angle,
0r, backward from vertical. The seat becomes disengaged from the rails at Y = Y. This first phase of the
ejection is illustrated in Figure A4-1. Once the pilot and seat combination leaves the rails, it follows a ballistic
trajectory which can be determined; however, since it is the relative motion of the pilot with respect to the
aircraft (which is assumed to fly level at constant speed) that is important, we can formulate our equations
to obtain this trajectory directly. This phase of the ejection is shown in Figure A4-2.

The governing equations are:
X =Vcosfh-V,u

Y = Vsin 6

V=0 0=Y<Y,
=:E_?_—gsin0 Y=Y,

6 =0 0<Y <Y,
= - (gcos 0)/V Y=Y,

D =_ pCpSV?

Two cases will be run, viz:
Case 1: V4, = 900 ft/sec
p = 2.3769 x 103 slugs/ft3 (sea level)
Case 2: V, = 500 ft/sec
p = 2.3769 x 1073 slugs/ft3 (sea level)

Constants (for all cases)

m = 7 slugs g = 32.2 ft/sec?
Cp =1 S = 10 ft2
Y, =4ft Vg = 40 ft/sec

0 = 15 deg (= 15/57.3 rad)
The initial values of V and 6 (pilot’s initial velocity vector at moment of leaving cockpit rails) are given by:
V(0) = (V, - Vg sin 0g)2 + (Vg cos )2

VE COs 0E

6(0) = tan!
© V - Vpsinfg
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X0)=Y(@0) =0
A run is to be terminated when any one of these conditions occurs:
X =< -60ft (pilot beyond vertical stablizer)
Y = 30 ft (pilot well above 12 ft high tail)
t = 4.0 sec
Print t, V, V, 6, X, and Y every 0.01 sec
Plot X versus Y
Plot X, Y, and V versus t

The coding for this example is given in Figure A4-3 with comments as follows. A procedural is defined to
calculate the switch YGEI (Y greater than or equal to one). Note that the initial conditions on the pilot’s
velocity VIC and flight path THIC are calculated in the initial section. They must not be calculated in the
derivative section since the initial condition table is transferred to the state table before the derivative section
is evaluated. The terminate condition of X less than -60 ft or Y greater than 30 ft or time greater than 4 sec
is placed in the DYNAMIC section to be interrogated every communication interval.

The output stream from running the model is shown in Figure A4-4 through A4-8. We have not
separately listed the run-time drive cards since they are echoed as part of the normal output stream. In Figure
A4-4, after establishing the title, the OUTPUT and PREPAR lists are defined and the first run is made
(START) using the default parameter values defined in the model definition or aircraft velocity of 900 ft/sec.
Output values are listed during the run every five communication intervals or 0.05 sec. The run stops at 0.44
seconds since x has become more negative than the minimum specified or -60 ft. The first plot produces time
histories, where the x-axis variable is T, and then the trajectory plot with the x-axis taken as X, the relative
distance of thepilotalong the aircraft from the cockpit, negative towards the tail. At 60 ft. the pilot just clears
the 12 ft. high tail. Note that this plot specifies ‘XLO’=XMN or -60 ft. so that the plot runs from this value
to zero. If the XL O subcommand had not been used, normal rounding would have caused the scales to run
from -100 to zero, so wasting 40% of the plotting area.

In Figure A4-7, a second run is set up with a debug print out at the derivative evaluation with T equal
to or greater than 0.1: The output rate is reduced to every ten communcation intervals or 0.1 sec but the same
list is maintained: The aircraft speed is changed to 500 ft/sec and the model run again.

The debug output is obtained by using the ACTION command which is read as: When the independent
variable (‘VAR’) is 0.1 take a value (‘VAL’) of 1 and store it into a location (‘LOC’) called NDBUG. The
printout following the START card has the normal listing at the time equal to 0.0 and 0.1 (note the reduced
frequency) and then all the variables in the model definition are listed out by the debug operation since the
ACTION has made NDBUG positive. The time is actually at 0.101 sec which means that T was
0.0999999999999 rather than 0.1 at the previous integration step. The order of the list is system variables
(described in more detail in Section 7), state variables with their associated derivatives and initial conditions,
followed by all the rest of the problem variables in alphabetical order.

Since the ACTION statement changed the sysbtem variable NDBUG to one, only one debug list is written
out and the run continues normally from that point with output every 0.1 seconds. The plot of the second run,
Figure A4-8, shows the pilot now clearing the tail by 5 ft. at the lower velocity.
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XRKKKKKKKADVANCED  CONTINUGUS SIMULATION LANGUAGEXKKKKKKX
ACSL TRANSLATOR VERSION 1 LEVEL 6F 81/07/10. 11.25.41. PAGE 1

FROGRAM EJECTION

INITIAL
e s e e DEFINE ALL FRESET VARIAERLES *
CONSTANT THEDEG = 15.90 » DEGRAD = 57.3
CONSTANT MASS = 7.0 » Y1 = 4.0
CONSTANT Co = 1.0 » 8 = 10.0
CONSTANT G = 32.2 » RO = 0.0023749
CONSTANT VE = 40.0 » VA = 900.0
CONSTANT XMN = -60.0 » YMX = 30.0
CONSTANT THX = 4.0
CINTERVAL T CINT = 0.01
e e o et o o EJECTION ANGLE IN RADIANG®
THE = THEDEG/DEGRAD
e e SEAT INITIAL VELOCITY"
UX = UA - VEXSIN(THE)
vy = VEXCOS(THE)
viIc = SORT(VUXk%2 + VYk%2)
THIC = ATANZ2(VY, VUX)

END $* OF INITIAL °®

DYNAMIC

RERIVATIVE
o o e e e RELATIVE FOSITIONS"
X = INTEG(VXCOS(TH) - VA, 0.0)
Y = INTEG(VXSIN(TH), 0.0)
o e SPACE VELOCITY AND FLIGHT FATH ANGLE"
v = INTEG(YGE1X(-L/MASS - GXSIN(TH)), VIC)
TH = INTEG(YGE1X(-GXCOS(TH)/V), THIC)
o e COMPUTE DRAG"
I = . SKROKCDRSKkVK%k2
¥ ot e e USE FROCETDURAL FOR SWITCH TO KEEF SEAT®
* CONSTRAINED TO GUIDE RAILS. THIS OFERATION IS BETTER DONE RBY - *
* YGE1 = RSW(Y .GE. Y1, 1.0, 0.0)

* BUT IS SHOWN HERE TO DEMONSTRATE USE OF A FROCEDURAL BLOCK *
FROCEDURAL (YGEL1 = Y, Y1)
YGE1 = 1.0
IFCY.LT.Y1) YGE1 = 0.0
END ¢" OF PROCEDURAL *
END $" OF DERIVATIVE *

B o SPECIFY TERMINATION CONDITIONS®
TERMT(X.LE.XMN .OR. Y.GE.YMX .OR. T.GE.TMX)

ENDIN $" OF DYNAMIC *
END $" OF PROGRAM °*

Figure A4-3. Listing of Model Definition Section for Pilot Ejection Problem
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ACSL RUN-TIME EXEC VERSION 1 LEVEL &M

SET TITLE

S TCWFRN=72,DIS8=9 $"

= "PILOT EJECTION"

OUTFUT T, TH,V, X, Y, 0L, *NCIOQUT"=5

FREFAR T, TH, V, X, Y

START

FLOT

SO

T
X
T 0.05000000
X-0.51760084

0.10000000
1.03520168

0.135000000
2.92272617

0.20000000
~7.745360503

0

1

. 25000000
X-15.1368159
T 0.30000000
X-24.7874576

T 0.335000000
X-36.4412100

T 0.40000000
X-49.8830398

T 0.44000000
X-61.8005731

"XAXIS"=T, TH, V,

X,

81/07/10.

FORCE 3 COLUMN OUTFUT WIDTH *

11.26.11.

FAGE

—4

. 04340252

-

. 043402352
.93186163

O oo

-

. 04340252
. 86372327

=

—
< I <X XTI XTI <X <XI ~<XI <I <=

.04167638
. 70253371

o (2 R

03967529
. 33859116

-4

. 79210784

-

03526236

0
7
0.03753729
8
0
10.0801944

-4

0. 03285045
11.2170486

-

0.03030154
2.2145814

0.02816375
12.9191282

-4
< I

Y $"TIME HISTORIES®

Figure A4-4. Output Stream for Pilot Ejection Study

A-23

890. 486592
?424. 00882

890. 486592
9424.00882

890. 484592
?424. 00882

832. 328907
8233. 24182

777.339784
7181. 29398

729.161781
6318.71414

686. 603725
S5602. 64676

648. 737032
5001. 70754

614.827136
4492, 488446

5920. 148541
4139. 07780

1



ACSL RUN-TIME EXEC VERSION 1 LEVEL 6H 81/07/10. 11.26.1%. PAGE 2
PILOT EJECTION

TH A 0.010000 0.014000. 0.018000 0.022000 0.026000 0.030000 0.034000 0.038000 0.042000 0.0446000 0.050000
V B 500.0000 550.0000 400.0000 450.0000 700.0000 ?750.0000 800.0000 850.0000 900.0000 950.0000 1000.000
X C -100.0000 90 00000 —90 00000 ~70 00000 -40.00000 -50.00000 -40.00000 -30.00000 -20.00000 -10.00000
Yo o. 8.000000 10.00000 12.00000 14.00000 14.00000 18.00000 20.00000

T XAXIS .
0.

=7
) e T Gttt
DD DD D DD P> D>

NS
e \\/f ,,,,,,,,, - jf ......

f : o : , : : f :
: . . ‘ : . . . . PN .
Y 0 T
oA4ooooo§ _________ ......... ;,Z’. ..... SR //j ....... l\ ......... ......... .........

/ ; AN
Bf : A

e

FLOT XﬁXIS ‘X XLO =XMN, Y $"GEOMETRICAL X VS.Y*

Figure A4-5. Time Plot - Pilot Ejection Study
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 11.26.11. PAGE 3
PILOT EJECTION

Ya o 2, 4. 6. 8. 10.00000 12.00000 14.00000 16.00000 18.00000 20.00000
X XaX18 . . . . . . . . . . .
=80, 00000 . .. e e e e e e e e I

~48. 00000 .

~36.00000 .

-24.00000 *“/ ........ .

A

/

=82.00000 .. ... a/

Figure A4-6. Trajectory Plot - Pilot Ejection Study
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 11.26.11. PAGE 4
PILOT EJECTION
"SET UF FOR DEBUG LIST OF ALL VARIABLES WHEN T = 0.1 *
ACTION "VAR® = 0.1, "VAL® = 1, *LOC" = NDBUG
OUTFUT "NCIOUT"=10 $° SAME OUTPUT LIST,LOWER RATE *
» LIST OF COMMANDS ON ONE CARD °
SET VA = 500.0 $ START $ SET DIS=9 $ FLOT "XAXIS® = X, °"XLO* = XMN, Y
T o. TH 0.07874502 v 491. 170015
X 0. Y 0. I 2867.11166
T 0.10000000 TH 0.07874502 V 491. 170015
X-1. 03520168 Y 386372327 Il 2867. 11146
/" LERUG DUMF - SYSTEM VARIAELES. NDEUG IS 1 N
T 0.10100000 ZZT1CG 0. CINT 0.01000000
7ZIERR  F ZZNELK 1 771 1
778T  F ZZFRFL T ZZICFL  F
ZZRNFL  F ZZNS 4 MINT 1.0000E~10
MAXT 1.0000E+10 NSTF 10 TALG 5
STATE VARIAELES DERIVATIVES INITIAL CONDITIONS
TH 0.07874502 709993 0. THIC 0.07874502
Y 491.170015 709994 0. VIC 491170015
X-1. 04555369 709998-10. 3520168 709997 0.
Y 3. 90236050 709996 38. 6372327 709995 0.
ALGEEBRAIC VARIAELES
CD' 1. 00000000 Il 2867.11166 DEGRADI 57. 3000000
6 32. 2000000 MASS 7. 00000000 RO 0.00237690
S 10. 0000000 THE 0.26178010 THEDEG 15. 0000000
TMX 4. 00000000 VA 500.000000 VE 40. 0000000
UX 489. 647983 VY 38. 6372327 XMN=60. 0000000
Y1 4.00000000 YGE1 0. YMX 30. 0000000
209999 0 7ZSEED 5555555555 ZZTLXP T
XICITG 0.
DERLG
T 0.20000000 TH 0.07220484 V 454.489096 OOTPUT
X-3. 86295505 : Y 7.44086099 Il 2454. 86634
T 0.30000000 TH 0.06486207 Y 421. 72682
X-10. 1960489 Y 10.4422282 I 2113.70011
T 0.40000000 TH 0.05696625 Vv 393, 365568
X~19. 5501745 Y 12.9249537 [l 1838, 94577
T 0.50000000 TH 0.04851703 Vv 368. 580106
X-31. 5330481 Y 14.9354053 Il 1614, 52471
T 0.40000000 TH 0.03951440 Y 346. 740415
X-45. 8242341 Y 16.5114590 Il 1428. 86054
T 0.69000000 TH 0.03093918 Y 329196798
X-60 . 4398434 Y 17.5845096 Il 1287, 92959
Figure A4-7. Set Debug Printout, Run and Plot - Pilot Ejection Study
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ACSL RUN-TIME EXEC VERSION 1 LEVEL &M 81/07/10. 11.26.11, PAGE 5
FILOT EJECTION

YA 0. 2. 4. é. 8. 10.00000 12.00000 14.00000 16.00000 18.00000 20.00000
X XAXIS - . . . . . . . . . .
~60.00000

-48.00000 .

-~36.00000 |

~24.00000 00T LI I AT I T j TS IIToTIoTTImTos

sT0P

Figure A4-8. Last Trajectory - Pilot Ejection Study
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5. TEMPERATURE DISTRIBUTION ALONG A RADIATING FIN

The only practical way of rejecting heat from a power plant operating in outer space is by thermal
radiation. If the “working fluid” of the power plant passes through tubes, an efficient radiating surface could
be devised by placing many tubes side by side. This would maintain the entire surface at the highest possible
temperature. Such a system, though, is highly vulnerable to being punctured by a meteor fragment or some
other particle, and this could lead to the loss of the vital working fluid.

A less efficient but also less vulnerable arrangement is shown in Figure AS-1. The number of tubes has
been reduced and the space between the tubes has been filled by a fin of rectangular cross section. We want
to determine the temperature profile across the fin for various tube spacings, fin thicknesses, fin material, etc.
The temperature profile, in turn, can be used to calculate the efficiency of the radiating system. Keep in mind
that this is really a problem in static temperature distribution. Time is not a factor because steady state
conditions throughout the system are assumed.

5.1 Assumptions

Two views of the radiating fin are shown in Figure AS5-2. In terms of this figure, the pertinent assump-
tions are as follows:

1) Steady-state conditions have been established.

2) Heat is transferred out of the fin only by radiation through a nonabsorbing medium.

3) Thermal properties of the material are constant.

4) There is no heat conduction in the y direction.

5) Heat loss from the two exposed side edges is small enough to consider the edges as being insulated.

6) Temperature is effectively constant across the fin thickness, 2H, at all values of x which implies 2H
<< W,2H << L

These assumptions reduce the problem to mathematical formulation for one-dimensional steady-state heat
transfer under combined radiation and conduction.

5.2 Mathematical Formulation

Consider the heat balance for an element strip shown in Figure AS-3 where the width is W, half thickness
is H, and length is Ax. The local rate of heat conduction through the cross-sectional area 2HW at position
x is given by Fourier’s equation to be

- dT
dy K(2HW) I
X
where K is the thermal conductivity of the material.

The rate of heat conduction out of the segment is

ay +Ax = - K(2HW) %—

X+ AX

The rate of heat lost by radiation is the difference, namely

_dr
dx
X

dT

Aq = -K(ZHW) I

X+ AX
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Figure A5-3. Heat Balance for an Elemental Strip
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This can also be expressed by means of the Stephan-Boltzman law for heat radiation, considering both the
top and bottom surfaces of the element;

Aq = oe (T4 - Tg*) (2WAX)
where
¢ = Stephan-Boltzman constant for the material
¢ = emissivity of the material
T = temperature of the segment, in °R

Tg = temperature of the surroundings, in °R
The heat balancc equation, then becomes

4T
dx
X

- K(2HW) [%;ﬂ = ge (T* - T ) (2WAX)

X +AXx

Dividing both sides by -K(2HW)Ax and inverting the order on the left side gives:

R
Ax |dx

< T

X+ AX I x

In the limit, as Ax-0, the left side becomes the second derivative of T with respect to x, so that the final
equation becomes

d2T —_ O€ 4
o= o -T
dx? KH T s)

5.3 Initial Conditions and Parameters

Since Equation AS5-1 is a second order differential equation, appropriate initial conditions must be
specified for the temperature and the temperature gradient at x = 0. While the initial temperature is known,
(the temperature where the fin joins the tube) the initial temperature gradient is not known. However, it is
clear from the symmetry of the arrangement that the temperature gradient at the midpoint between tubes
where x = L is zero. Thus, the problem falls in the category of a two-point boundary value problem that must
satisfy these conditions:

T(0) = 2000°R

a1 =0
x| x = L
A complete list of variables and parameters, along with suitable units, is as follows:
T = Temperature °R
x = Distance ft
o =0.173 x 10-8 Btu/(hr) (ft?) (°R%)
e=0.9
K =25 Btu/(hr) (ft2) (°R)
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H = 0.00125 ft
L =0.25 ft
TS =0 °R

Notice that the temperature of the surroundings, T,, has been taken to be at absolute zero for this example.

5.4 Solution

A solution is considered to be successful if

dT

dx

< 0.2 when x =L

The current run is terminated and a new run started if:
1) T exceeds its initial value by one percent or more.
2) T goes negative.
3) TS g2whenx =1L
A new estini(ate of DTDXZ is computed using:
DTDXZ = DTDXZ - 0.07*DTDX(x = L)
new old

where DTDX(x = L) is the final value of the temperature gradient. One case is to be run with an initial
temperature of 2000 °R and an estimated temperature gradient of -20,000 °R./ft.

The listing of the model definition section is shown in Figure A5-4. Note that the terminal section checks
the final value of temperature slope and if not within the specified tolerance recycles to the initial section for
another run with a new value of initial slope. The independent variable is specified to be the variable X and
the initial condition is set to 1.0E-10 to give it a lead on the round off error.

The call to subroutine LOG forces an OUTPUT operation and resets the counter for the “NCIOUT”
divisor so that the last value of the run will always be listed.

The output stream is shown in Figure AS-5 through AS5-12. After the START, the first three iterations
find the intermediate temperature is more than 1 percent greater than the starting value, so triggering the
terminate (TERMT) condition. For the fourth and subsequent iterations the x variable gets to 0.25 and now
the final value of dt/dx is slowly reduced until at iteration number ten the value is -0.153, well within the
ERROR tolerance of 0.2. A more detailed printout (PRINT) using data saved on the PREPAR list is started
in Figure A5-7 and which goes on to Figure A5-11. Note the use of the flyback trace suppression flag FTSPLT
which when true will resynchronize the line count to zero when the independent variable (first variable on
the PREPAR list) steps back to the initial condition. Once the iteration has converged, a second START -
Figure A5-11 - redoes the last run, since the initial condition on temperature slope (DTDXZ) is still the same.
This makes sure that the PREPAR list data base only has one run to be plotted, which shows, in Figure A5-12,
the temperature gradient (DTDX) and temperature (T) plotted against distance (X) along the fin. It is often
easier and more cost effective merely to repeat the last run of an iteration rather than making complicated
arrangements to save each run separately, before it’s known that the convergence criteria have been satisfied.
Plotting after the first START card would have shown the parametric set of curves as the iteration proceeded,
since the PREPARed file doesn’t get rewound between runs on cycling from TERMINAL to INITIAL
sections. In this case the overstrikes cause rather an unattractive plot and don’t provide much information,
since it’s the final profile that is needed.
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XXk KADVANCETH
TRANSLATOR

ACSL.

LANGUAGEXokXkkkkokok
09.35. 22. FAGE 1

SIMULATION
81/07/10.

CONTINUOUS
VERGTON 1 LEVEL 6F

FPROGRAM RADIATING FIN

INTEGER
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CINTERVAL

[ R, s 44m ennn s ense 4ust atre 4ot somn agss anes sese

VARTARLE

INITIAL

N )

L1, CONTINUE

N = N +

END $" OF INITIAL

DERIVATIVE

T = INTEG(OTIX,
= INTEG(SGXEPX(Txx4 -

nrox

S ..NO “F N '[ g

TERMT(X.GE.L .OR.

N

G = 1. 73E-9 » EF = 0.9

H = 0.00125 » K= 25.0

o= 0,25 » T8 = 0.0

TZ = 2000.0 s ERROR =

DTRXZ = -20000.0 , GAIN =

CINT = 0.0025

- e QFF-GET INITIAL VALUE
LATED ROUND OFF -~ CHANGE

1. 0E-10

0.2
0.07

TO HANDLE ACCUMU-. ..
NAME FROM T TO X*
X ==

HANDLET AN INTEGER"

AS

1 $" BUMF RUN COUNT *

—-=NOTE NO DYNAMIC SECTION SINCE NOT USER”

- INTEGRATE FOR TEMPERATURE AND TEMP RATE"
NOTE T I8 NOW TEMF NOT TIME"

TZ)

THXX4) /(KkH)Y, DTOXZ)

= GEEGCIFY TERMINATION CONIITION®

T.GE.1.01%TZ .0OR. T.LT.0.0)

END $* OF DERIVATIVE *

TERMINAL

CALL LOG

IFCCARS(OTRX) . LT. ERROR)

B e e e e o e s e s e s s s e e e e N

nTonxz -

DTOXZ =

e [E CONVERGED OR TOO MANY TRIES®
JOR. N.GT.10) GO TO L2
NEW GUESS FOR INITIAL

TEMF RATE®

GATNXDTIDX

l..............,............................................”.....‘.A...................""RY RUN AGAIN-

GO TO L1
L2. . CONTINUE

EEND $°

END $°

Figure Ab5-4.

OF TERMINAL

OF PROGRAM *

Listing of Model Definition Section for Radiating Fin Problem
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ACSIL.

SET TITLE =
§ TCWFRN=72, DIS=9

RUN-TIME EXEC

*RANTATING

$" FORCE

VERSGTON

LEVEL oM

FIN FRORLEM®

3 COLUMN QUTPUT WIDTH *

OUTFUT X, T, No IITOX, DTRXZ, *NCIOUT " =20

PREFAR
START

Figure Ab-5.

X» DTDX, T, N,

nTHXZ

$*FPERFORM ITERATION"

X 1.0000E~10
NTOX-20000. 0000

X 0.05000000
DTOX 3125, 64616

X 0.08400000
nTnX 20882, 2789

X 0.04750000
DTOX-1064. 29250

X 0.09750000
nrTnx 17906, 0279

X 0. 10330000
NTHX 22336. 6824

X 0.04750000
DTNX~4337 . 96377

X 0.09750000
nTnX 5876, 63976

X 0.13925000
nTonx 23828. 7709

X 0.04750000
DTOX~7612. 48011

X 0.09730000
DTOX-2310. 61152

X 0.14750000
nroex 1076, 41560

X 0.19730000
NTNX 52469. 23907

X 0.24750000
OTOX 1460443551

X 0.25000000
DTHX 17143, 5322

X 0.04750000
nTnxX-9844. 85583

X 0.09750000
DTOX-6545. 72840

T 2000.00000
nTnXzZ-20000. 0000

T 14655, 08858
DTOXZ-20000. 0000

212802
NTNXZ-20000. 0000

T 2022
T 154994861
DTOXZ~21461. 7595

T 1903, 29153
DTOXZ-21461 . 7595

T 2023. 47708
DTOXZ-21461 . 7593

T 1444, 93594
DTHXZ-23025. 3273

T 1481. 25259
NTOXZ-23025. 3273

T 2023. 07249
ODTOXZ 23025 . 3273

T 1339.47700
NTOXZ-24693. 3413

T 1108, 29245
NTOXZ-24693. 3413

T 1078.97754
DTOXZ-24693. 3413

T 1228.43104
NTOXZ-24693. 3413

T 1702.91644
NTOXZ~-24693. 3413

T 1744 37926
OTOXZ-24693. 3413

T 1263. 59645
DTOXZ-25893. 3885

T 873.352393
DTNXZ-25893. 3885
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 09.36.09. FAGE 2

RADIATING FIN PROBLEM

X 0.14750000
nTpx-5823. 09994

X 0.19750000
nToX~-5723. 23787

X 0.244675000
DTOX~-5720. 17206

T 568.948130
DTOXZ-25893. 3885

T 281.268091
DTDXZ-25893. 3885

T-0. 47550353
DTOXZ-25893. 3885

S

9

5

X 0.04750000 T 1288. 78802 6
DTOX~9110. 73249 DTOXZ-25492. 9765

X 0.09750000 T 949 223751 6
DTOX~5244. 32007 DTOXZ-25492 . 9765

X 0.14750000 T 723. 295028 é
DTDX-4011. 22327 DTOXZ-25492. 9765

X 0.19750000 T 534. 780029 6
DTDX~3607. 81982 DTDXZ~25492. 9765

X 0.24750000 T 357.711010 é
DTOX-3501. 62433 DTDXZ-25492. 9765

X 0.25000000 T 348.959417 é
DTOX~3499 . 68229 DTOXZ~25492. 9765

X 0.04750000 T 1304. 26264 7
OTIX-~B656. 36174 NTIXZ-25247. 9987

X 0.09750000 T 996. 832602 7
DTOX-4396. 61310 ITOXZ-25247 . 9987

X 0.14750000 T 824.629724 7
NTIX~2704 . 41990 NTOXZ-25247. 9987

X 0.19750000 T 713. 083960 7
ITIX~1840. 86108 OTIXZ-25247 . 9987

X 0.24750000 T 634803277 7
DTIX-1329. 91836 DTOXZ-25247 . 9987

X 0.2%5000000 T 631503590 7
DTOX-1309. 90090 DTIXZ-25247 . 9987

X 0.04750000 T 1310. 06695 8
DTIX~B485. 25438 NTOXZ-25156 . 3056

X 0. 09750000 T 1014. 89813 g
DTIX-4068. 36337 ITOXZ~25156 . 3054

X 0.14750000 T B4, 120545 8

DTOX-2166. 72613

Figure A5-6. Output Stream from Radiating Fin Problem

NTOXZ-23156. 3056
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/710. 09.36.09.
RADTATING FIN PRORLEM

X 0.19750000 T 785.914904 8
DTOX~1033. 46037 DTDXZ-25156. 3086

X 0.24750000 T 756. A32739 8
NTOX-168. 0146381 DTOXZ-25156. 3056

X 0.25000000 T 756. 06346439 &)
NTOX-127. 276801 DTOXZ~25156. 3056

X 0.04750000 T 1310. 63128 9
DTNX-8468. 59821 DTOXZ~-25147. 3963

X 0.09750000 T 1016. 66080 9
DTOX-4036. 13740 DTOXZ~25147.3963

X 0.14750000 T 868.006407 b4
LDTOX~2112. 20756 DTOXZ-25147. 3963

X 0.197530000 T 793.197114 9
NTOX-949 . 677376 NTIXZ~-25147 . 3943

X 0.247%50000 T 768. 933252 9
DTOX-39. 8412710 OTOXZ-25147. 3963

X 0.25000000 T 768.888072 9
NTnX 3. 6924604386 DTOXZ-25147. 39463

X 0.04750000 T 1310.461489 10
DTOX~84469. 08197 NTOXZ-25147. 6550

X 0.097%50000 T 1016. 609460 10
DTX-4037. 07404 DTOXZ-235147. 6550

X 0.14750000 T 867.893440 10
ODTOX-2114. 47448 DTOXZ-25147. 6550

X Q. 19750000 T 792.985106 10
LDTDX-952. 124666 UTOXZ-25147. 6550

X 0.24750000 T 768. 568386 10
DTNX-43. 6068998 DTOXZ-25147 . 6550

X 0.235000000 T 768.5134688 10
LDTOX-0. 15323730 DTOXZ~25147 . 6550

X 0.25000000 T 768.513488 10

nTOX-0. 15323730

DNTOXZ~25147. 6550

5 FTS8PLT=_T. 4" SYNCHRONIZE OQUTFUT WITH START OF EACH SWEER *
FRINT "NCIPRN"=8, X, OTIOGC T, No DTRXZ 4* DEMONSTRATE COLUMN FPRINT °

L. INE X o T N TuXz
0 1.000E~10 ~20000.000 2000. 0000 1 ~20000. 000
b 0.0125000 ~119%50. 188 1803. 7801 1 =20000. 000
10 0. 0230000 ~420%. 1661 1691. 8472 1 =20000. 000

Figure A5-7. Output Stream from Radiating Fin Problem
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81707710, 09.36.09. FAGE 4
RAGIATING FIN PROBLEM

nTnXz
~20000. 000
=20000. 000
~20000.000
=20000. 000
~21461.760
~21461.760
~21441.760
~214461. 760

L INE X nrnx T
15 0.0375000 ~1436.4184 1644. 6516
20 0. 03500000 3125, 6462 1655, 0886
25 0.0625000 81446 512 1724. 4749
30 0. 0750000 14529 . 539 1864, 3242

0 1. 000E~10 ~21441.760 2000. 0000
b 0.0125000 ~13559.972 1784. 8628
10 0. 0250000 -8190. 9345 1650, 6714
1% 0.0375000 ~40164. 32846 1575, 1924

PIPIRIPI R p e 2

- 20 0.0300000 ~347. 33759 1548. 1848 2 ~21461. 760
20 0. 0625000 3280. 2301 15646, 3388 s ~21461. 760
30 0. 070000 73135237 14631. 85688 2 ~21461.760
35 0. 0875000 12376.511 1753, 3970 o ~21461. 760

40 0. 1000000 19621 . 831 1950. 16466 2 ~21461.760
0 L O00E-10 ~2302%. 327 2000. 0000 K ~23025. 327
b 0.0125000 15278, 621 1764, 6382 3 ~2308%. 327

10 0.0”%0000 ~10289. 154 1606. 7887 3 ~2R025. 327
1% 0. 0375000 ~6681 2732 1501.7414 3 ~2F025. 327

20 0. 0500000 L7728 14346, 76469 3 ~23025. 32
25 0. 0625000 L3675 1405, 2621 3 ~2J0RG. 327
30 0. 0750000 L9274 14043409 3 ~2302%. 387
35 0. 0875000 ?6?/.99&0 14339221 3 ~2302%. 387
40 0. 1000000 6488. 7176 1496. 7040 3 ~R23025. 327
4% 0. LL2H000 10037 . 549 1%599. 0140 3 ~23025. 327

23025 . 32
~2302%. 327
~24693. 341
~24693. 341
~24693 . 541
~24693%. 541
~24693. 341
~244693. 341
~24693. 341
~24693. 341
~24693. 341

50 0.1 ”50000 14913, 831 1733, 0901
v 0. 1375000 22426. 033 1982. 6161
0 1.000E~10 ~24693. 341 2000.0000
5 0. 0125000 ~17108.433 1743.0743
10 0. 0250000 ~12499.304 1560. 1524
15 0.0375000 -9424 8571 1424 2928
20 0. 0500000  ~7222. 5452 1320.9377
25 0. 0625000 5550, 1240 12415406
30 0. 0750000 ~4214. 3992 1180. 7917
35 0. 0875000 ~3097. 9892 11352723
40 0. 1000000 2124 5781 1102. 7492

4% 0. 1125000 M1P40.¢ﬁ57 1081. 7856 ~24693. 341
50 0. 1230000 406, 72519 10715209 ~24693. 341
] 0.1&/'000 411. 73022 1071 G521 ~24693. 341

~24693. 341
~24693. 341
~24693. 341
~24693. 341
~244693. 341

60 0. 1500000 1244, 1259 1081. 8803
65 0.[6”5000 2130.1939 1102, 92113
70 0. 1750000 3104, 2982 1135, 50846
7% 0. 1875000 4221. 7835 1181. 1131
80 0. 2000000 5559, 1505 1241. 9639

85 0. 2125000 7RE4. 1135 1321.488% ~244693. 341
P20 0. 2250000 PA44Q0. 4962 14250116 ~244693. 341
P 0. 2375000 12521825 1861, 1057 ~244693. 341

DDDDDDOIDDDDDDIDIDDDL DD DN

100 0. 2500000 17143, 532 1744 3793 w24693.341

0 L.O00E-10  ~25893. 389 2000. 0000 5 5893. 389
5 0. 0125000 ~18422. 598 L727.5675 by 23893‘399
10 0. 0250000 "l40]h.089 1526.7101 k] ~25893. 389

15 Q0.0375000  ~11340.023 13691217 bl ~25093. 389

20 0. 0500000 95393127 1239. 3712 5 ~25893. 389
23 0.0625000 -8316. 0321 1128, 2529 ] ﬁh893.389

30 0.0750000 ~7470.8513 1029. 9053 5 250893 . 389

Figure A5-8. Output Stream from Radiating Fin Problem
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ACSL RUN-TIME EXEC VERSION 1
RADTATING FIN FROBLEM
L. INE X nTox
35 Q. 0875000 ~4883. 2429
40 0. 1000000 -6475.9178
S 0. 1125000 ~41946.8071
90 0. 1230000 -4009. 3789
9% 0. 1375000 -35887.1889
60 0.1500000 ~5810. 4988
65 0. 1625000 -5765. 3527
70 0. 1750000 -5740.34654
7% 0.1875000 ~G727.9112
80 0.2000000 ~5722. 5337
8% Q. 2128000 -5720. 46488
90 0. 2250000 -5720.2230
@5 Q. 2375000 ~5720.1727
0 1. 000E~10 25492 976
) 0. 0125000 -17984. 320
10 0. 0250000 13548, 881
1% 0. 0375000 -10706.228
20 0. 0500000 -8778.8812
2% 0. 0625000 ~7418.4188
30 0.0750000 ~4430.3941
35 0. 0875000 5697, 4258
40 0. 1000000 5145, 9343
45 0. 1125000 --4727.1782
50 0. 1250000 -4407.70351
GG 0. 1375000 ~4163. 7799
60 0. 1500000 -3978.04619
&% 0. 1625000 ~3837. 0017
70 0. 1750000 ~3732. 2844
7% 0.1873000 ~3654. 4787
80 0. 2000000 ~3597. 9494
a5 0. 2125000 ~3557.8247
90 0. 2250000 -3530.0784
95 0. 2375000 ~3%11. 85450
100 0. 2500000 -3499. 6823
0 1.000E~10 ~25247.999
b 0. 0125000 "I//IA 071
10 0.0””0000 13228002
15 0. 0375000 10$lq.908
20 0. 0500000 ~-8307. 5240
23 0. 0625000 -6857.3116
30 0.0750000 ~5771.9082
35 0. 0875000 ~493%. 7961
40 0. 1000000 ~4276. 2819
45 0. 1125000 ~3745. 6431
G50 0. 1250000 ~3311.4293
] 0. 1375000 -2950. 92094
60 0. 1500000 ~2647. 7512
6% 0. 14625000 ~2389. 9584
70 0. 1750000 -2168. 5485
7% 0. 1875000 -1976. 68046
80 0. 2000000 ~1809. 0654
a5 0. 2125000 ~1661.5577
90 0. 2250000 -1530. 8493

I.EVEL

?40.
8457,
777.
701.
427
L!."A'
482.
410.
334.
266.
195,
123.

&M

T
41418
07643
28410
77561
47874
40615
08202
18791
G2099
246091
44322
93842

H2. 436089
2000. 0000

1732

2. 7409

1537, 9505
1387 4808
1266. 4308

11635

L6458

1079, 4255
1003. 8480

P36
874,
a17.
7464,
713.
&Héb4 .
417,
G571,

Lt 1

adanad .

481..
436.
JF9a.
348,

23706
64860
AHA524
14214
30881
G50264
22347
08133
77293
06403
77576
77378
PEHP42

2000. 0000

173

5.9064

1544 . 6842
1398.7374

12

3.0626

1188. 7433

1110.

1200

10434126

985,

P3G
891
auae.
817.
786
758.
2.15972
708. %
686
bbb .

73

Figure A5-9. Output Stream
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~25893.
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~25247.
DA
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7.999
7.999

25492

';"‘»4( ”~

389
389
389
389
389
389
389
389
389
389
389
389
389

976
P76

976
?76
976
P76
976
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976
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976
P76

P76

P99
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999
P99
P99
P99

'".999

7.999
999

247999
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247 . 999
7.999

P99
999
P99

47 . 999
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from Radiating Fin Problem
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ACSL. RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/710. 09.36.09. FAGE é
RADIATING FIN PROBLEM

I.INE X nrTox T N DTOXZ
5 0.2378000 ~1414.3626 648. 51867 7 ~20R47.999
100 0. 2500000 -1309.9009 631. 50359 7 ~25247.999
0 1.000E-10 ~28156. 306 2000. 0000 8 =20 . 306
5 0.0125000 -17615. 648 1737.0913 8 156. 306
10 0.0250000 -13107.748 1547. 2400 8 -25156. 306
15 0.0375000 -10169. 309 1402, 9654 8 ~251546. 306
20 0.0500000 -8129.8790 1289. 3028 8 ~25156. 306
25 0.0625000 -6644.7443  1197.4186 @ -25156. 306
30 0.0730000 -35520.9489 112146888 & ~25156. 306
i Q0.0875000 -~4643. 1741 1058, 3755 8 ~25156. 306
40 0. 1000000 ~3938.807%5 1004, 8902 8 ~2%156. 306
4% 0. 1125000 3360, 1285 PEP. 38361 8 -2G156.306
50 0. 1250000 287446275 P20.850009 8 ~2%156. 306
55 0. 1375000 ~2459.44608 887. 22573 g ~25156. 306
60 0.1500000 ~2098. 1317 858, 78983 8 ~25156. 306
65 0. 1825000 1778, 4262 834. 59941 a8 ~201%6. 306
70 0. 1750000 ~1491.08357 814, 19460 i} ~25156. 306
75 0.1875000 -~1228. 9278 797. 21754 8 ~251546. 306
80 0. 2000000 -986. 24658 783. 39040 8 @ ~285156.306
8% 0. 21258000 -758. 39242 772.499790 8 ~25156. 306
?0 0. 2230000 -541. 446852 76438512 8 ~25156. 306
4441 Q. 2375000 ~332. 10395 758, 93154 8 25156, 306
100 0. 2300000 ~127.27680 756. 06364 8 ~2%1586. 306
0 L.O00E-10 ~-25147. 3964 2000. 0000 9 ~25147.396
5 0. 0125000 ~176035. 890 1737.2064 ¥ ~25147. 3946
10 0. 0250000 ~13096. 059 1547. 4884 9 ~23147. 396
15 0. 0375000 10155, 050 1403 . 3654 K4 ~25147. 396
20 0. 0500000 -8112. 5823 1289.909% ¥4 2U147.396
2% 0. 0620000 ~6624.0172 1198. 2626 K4 ~25147. 396
30 0. 0750000 -5494. 4308 1122, 8152 9 ~2G147.396
35 0.08753000 4614, 5151 1059. 8339 9 ~2G147. 396
40 0. 1000000 3905, 4538 10046. 7344 K4 ~25147. 396
4% 0. 11258000 ~-3322.1126 P61, 67243 9 ~25147.396
G0 0. 1250000 ~2831. 3585 92329651 Q@ ~2G147. 396
G 0. 1375000 241085157 890. 59803 K4 ~25147.396
40 0. 18500000 -2043. 0452 862.81182 K4 ~25147. 396
635 0. 14625000 ~1714. 6796 839. 35103 4 ~2G5147. 396
70 0.1750000 ~1422, 0937 819. 76269 9 ~2%147. 396
7% 01875000 -1182. 0229 803. 4694674 9 ~25147 . 396
80 0.2000000 90066022 790. 88431 % -25147. 396
85 0. 2125000 ~663. 231460 781. 1222 9 ~25147. 396
P0 0. 2250000 -43%. 48452 774, 26241 9 ~251L47.396
149 0.2375000 -214. 46347 770.20382 9 ~25147.396
100 0. 2300000 3. 4960439 768. 88807 9 ~25147. 396
0 L. O000E~10 -25147. 655 2000. 0000 10 ~2G147. 655
5 0.0125000 ~176046.173 1737. 2030 10 ~20147. 655
10 0.0250000 ~13094. 398 1547. 4812 10 ~25147 . 655
15 0.0375000 ~1015%5. 464 1403 . 3535 10 ~25147. 605
20 0.0500000 = ~-8113. 0847 1289. 8919 10 ~25147 . 655
2% 0.0625000 ~4624. 6193 1198, 2381 10 -25147. 655
30 0. 0750000 ~5497. 1432 L1122, 78235 10 1147 . 655
3G 0.0875000 ~4461%5. 3479 LOGS. 7915 10 ~25147 . 655
40 0. 1000000 -3906. 6175 1006. 6811 10 ~25147. 655

Figure A5-10. Output Stream from Radiating Fin Problem
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ACSL RUN-TIME EXEC VERSION 1 LEVEL &M 81L/07/710. 09.36.09.
RADIATING FIN FROBLEM
L. INE X nTonXx T N DTOXZ
4% 0. 1125000 ~-3323.2179 ?461. 60593 10 ~2G147. 653
G0 0. 1230000 -2832.6171 PRI 21825 10 ~25L47 . 655
O3 0.1375000 -2411.9401 890. 50001 10 ~20147. 655
60 0. 1500000 ~2044. 6493 862. 69488 10 ~20147. 655
65 0. 1625000 ~1718.4787 839. 21285 10 ~23147. 653
70 0.1780000 ~-1424.1085 819. 60071 10 ~25147. 6535
75 0.1875000 -1154.2674 803.50818 10 ~25147. 655
80 0.2000000 ~-903.146074 790. 646612 10 ~25147. 655
85 0.2125000 ~464.01515 780.87109 10 ~25147. 455
?0 0. 2230000 -438. 78500 773.97449 10 ~2G147. 655
¥4+ 0.2375000 -217.914990 769.87501 10 ~25147. 653
100 0. 2500000 ~0. 1532373 76851349 10 ~25147 . 655
START $"REPEAT LAST CASE OF FREVIOUS RUN®
X 1.0000E-~10 T 2000. 00000 N 1
DTOX-25147. 6550 DTUXZ-25147. 6550
X 0.05000000 T 1289.89191 N 1
DTOX-8113. 08470 DTOXZ-25147 . 6550
X 0.10000000 T 1006. 68105 N 1
DNTNX-3906. 61749 DTHXZ~25147. 6550
X 0.15000000 T B&Z. 694883 N 1
DTIX~2044 . 64926 DTOXZ-25147. 6550
X 0.20000000 T 790. 6466118 N 1
DTNX-903. 160736 DNTOXZ-25147. 6550
X 0.258000000 T 768.513688 N 1
DTOX-0. 15323730 DTOXZ-25147 . 6550
X 0.25000000 T 768.513688 N 1
DTnX-0. 15323730 DTNXZ-25147. 6550
FLOT *XHI"=L, OTOX, T $*FLOT CONVERGED PROFILE.USE DEFAULT XAXIS®

Figure A5-11. Output Stream from Radiating Fin Problem. Repeat of Last Converged Run
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ACSL RUN-TIME EXEC VERSION 1 LEVEL éM  81/07/10. 09.36.09. RAGE 8
RADIATING FIN PROBLEN

DTDX ﬁ -40000 00 -36000.00 -32000.00 -28000.00 ~24000.00 -20000.00 —16000.00 ~-12000.00 -B000..000 -4000.000 0.
200.0000 400.0000 400.0000 800.0000 1000.000 1200.000 1400.000 1600.000 1800.000 2000.000
X XAXIS .

0.

0.050000 .

0.100000

>>D>>

0.150000 ... ................

w
>»PDDDD
>P>>>DDD -
PD>DDDDDDD .

P>D>DDDD>D>

PIDPDPDDDDD |

0.200000 - . ...\t e

>PD>DD D

0.250000 .. .. ...l

sT0P

Figure A5-12. Plot of Temperature Profile and Gradient from Last Converged Run -
Radiating Fin Problem
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6. AIRCRAFT ARRESTING GEAR SYSTEM

The system investigated here is designed to halt a moving aircraft that would otherwise overrun the end
of a runway. It is similar in principle to the gear used on aircraft carriers. The problem was selected for this
manual because it employs a function generator and input relays. The equations listed below describe the
system, and its geometry is shown in Figure A6-1. A plot of the “water squeezer” damping function, f(ys),
is also shown on the figure. The aims of the investigation are to determine the range of aircraft weights and
speeds that can be accommodated without exceeding the working limits of the cables or the allowable piston
travel. Here, just two cases are investigated involving different aircraft velocities.

Differential equations describing the acceleration of the three masses are:

d’y; _ . d?y, _

my <= iy - fpyme S =iy - figo
d? .

m; -d—t-z-)i-=—2fK1 sin @

where the cable tension is given by:

ki(yr -2y2) yi1 > 2y,

fx1 =
0 3 V1 <2y,

ko(y2 ~y3) V2> V3

fxo =
0 V2 <3

Drag force from the water squeezer is given by

2
d
fp = F(ys) (%)
and geometrical constaints lead to

v = JE@TEY -h

sinf = X = X

h+y1 ’(Xz +h2)

Constants for the problem are as follows:

m; = 1400 slugs k, = 4550 1b/ft

my = 45.28 slugs ko = 25,300 Ib/ft

m3 = 20 slugs h=125ft
Initial conditions are given by:

y3(0) =0 y3 (0) =0

yo (0) =0 yo (0) =0

x(0) = 290 ft/sec (Run 1) x(0) =0
= 200 ft/sec (Run 2)
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Figure A6-1. Aircraft Arresting Gear System
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An arbitrary function of one variable is used for the squeezer drag coefficient.

F(y3) = A function of y; - The data points for the function are shown on the listing, Figure
A6-1. Linear interpolation between points is desired.

This problem was programmed in the explicit mode with the INITIAL, DYNAMIC and DERIVATIVE
regions being defined. The only reason is to show the use of standard FORTRAN output to write out the initial
speed and case number at the beginning of each run. The DERIVATIVE section contains the descriptive
equations modelling the system. The model definition listing is shown in Figure A6-2.

The cables can only transmit tensile forces and account must be taken of the fact that when the cable
extension is negative, the force is zero. Expressing the force as proportional to the simple extension ky (yg -
y3) is more representative of a spring. In the original formulation of this problem the function real switch
operator RSW was used, i.e.

FK2 = RSW(Y2. GE. Y3, K2*(Y2 - Y3), 0.0)

When the first argument is true, the second argument is returned, else the third. A more elegant way of
accomplishing the same thing is to use the FORTRAN function DIM (q.v.) that returns the positive difference
between the two arguments - if the difference is negative (arg 1 minus arg 2) the result is zero. The force
equation then becomes

FK2 = K2*DIM(Y2, Y3)

The damping coefficient, f(ys3), was represented by a straight line approximation passing through 16
breakpoints (15 segments). A better fit to the given function could have been obtained by using more
breakpoints.

Note the choice of termination conditions. The TERMT statement stops the problem after 10 sec, or
when x reaches 1000 ft. -

The run-time command sequence follows (Figures A6-3 through A6-7) that sets the TITLE and changes
the grid spacing from the default value of ten to fifty. The effect can be seen on the clarity of the following
plots. The integration step size had to be changed by the following statement (NSTP is the number of steps
in a communication interval) so

SET NSTP = 100

makes the step size 1 msec since the communication interval is set to 0.2 sec. The reason for this is the small
time constant associated with the third mass; ms, together with the nonlinearity - the function - that makes
the program particularly susceptible to step size. The system becomes unstable when the step size is increased
to 4 msec. A better way to control these types of models when using a fixed step algorithm is to set the
maximum step size (MAXT) to control (i.e., SET MAX=0.001). In this case the step size will stay at this
value (if NSTP=1) when the communication interval is changed, unless CINT is made less than MAXT,
in which event the smaller value becomes the integration step size.

The next run was chosen to illustrate the two types of line plots available by setting both CALPLT and
STRPLT to true. When system variable CALPLT true, the plot is shown in Figure A6-8. Here the axes are
drawn side by side and all three plots occupy the same area. The strip chart plot (STRPLT true) is shown
in Figure A6-9. Each curve occupies a separate slot, normally two inches by five inches, stacked in the order
given from the bottom. Notice the addition of the XTAG string on both line plots, which adds a unit
specification to the time variable, T, along the x-axis. Since PRNPLT is still true, the printer plot of Figure
A6-7 is obtained at the same time. This plot could have been suppressed by making PRNPLT false.
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KKKOOKKKKADVANCED  CONTINUOUS  SIMULATION  LANGUAGEXXXKKKKKK

ACSL. TRANSLATOR VERSION 1 LEVEL &F 81/07/10. 11.25. 2. FAGE 1
FROGRAM AIRCRAFT ARRESTING GEAR

INTEGER NCASE

# e e JEF INE. TABLE FOR WATER SQUEEZER DRAG®

TABLE FY3, 1 . 16
/=100, 0.0 , 30.0  , 60.0  , 120.0
L 150.0 L 180.0 , 210.0 , 240.0 , 270.0
, 2820, 294.0 , 306.0 , 312.0 , 324.0
. 350.0 o
. B33, B33, 4.0 L 1.b . 5.2
;5.2 . 6.6 . 8.3 . 10.7  , 16.0
, 210, 2B.0  , 410  , 50.0 , 90.0
, 900/

B s e N TNE PRFﬁrr VARIAELES®

CONSTANT ML = 140.0 , M2 = 45.28 , M3 = 20.0
. K1 = 4550.0 , K2 = 25300.0 » M= 1250
. NCASE X = 1000.0

= () y T8TF = 9.999 , XM

y H o= 125.0 » BFEED = 250.0
CINTERVAL o= 0.10

INITIAL

NCASE = NCASE

1 S "RUMP CASE NUMBER®
~TELL SYSTEM ARQUT TO FRINT FIVE LINES °*

+

LINES(S)
WRITE(S, 200) SPEED, NCASE
200. . FORMAT(//20X, 17HATRCRAFT SFEED -~ ,F&.2,3X, BHRUN NO. ,I3//)
ENDN $"0F INITIAL®
DYNAMIC
DERIVATIVE
¥ e s e e COMPUTE. GECOND DERIVATIVES”
Y3nn ={(FK2 - FIN /M3
Y200 =(2, 0kFK1 - FK2)/M2

Xoo 2. OXFRK1IXSTH/ M1

B e s INTEGRATE. FOR FIRSET DERIVATIVES
Y30 = INTEG(Y3IDIN, 0.0)

Yan = INTEG(Y20D, 0.0)

Xn = INTEG(XID , SPEEID

b e INTEGRATE. FOR FOSTTIONS®

Y3 = INTEGCY3D, 0.0)

Ya = INTEG(YZL., 0.0)

X = INTEG(XD . 0.0)
e CABLE. TENGION BECOMES ZERO WHEN SLACK®
" CAN NEVER 60 NEGATIVE ~ S0 USE FOSITIVE *
. DIFFERENCE FUNCTION *
FK1 = KIKDIMCYL, 2.0%Y2)
FK2 = K2XDIMCYZ, Y3)
o e WA TER. SAUEEZER DRAG*
Fli = FYZ(Y3)RYIIKK2
H o e e GEOME TRICAL RELATIONS *
Y1 = SART(XKXZ + HKX2) - H
STH = X/(H + Y1)
ENI $*OF DERIVATIVE®
" i me==GFECIFY TERMINATION CONDITION®

TERMT(T. GE. TSTF .OR. X.GE.XMX)
ENI'  $*0F DYNAMIC®
END $*0F PROGRAM®

Figure A6-2. Listing of Model Definition for Aircraft Arresting Gear Problem

SET TITLE = *AIRCRAFT ARRESTING GEAR FROBLEM®

8 TCWPRN=72, 0I8=9 4" FORCE 3 COLUMN QUTFUT WIDTH *©

QUTFUT T, Y3DIL, Y3IL Y3Z, FIn Y20, yan, Y2, FRE, XDm, X, X
» FKL, Y1, *NCIOUT® = 20

FREFAR T, X, XD, XD

SET NbXF}L = G0, NGYPPL = 50, N&STF = 100

sk T = 200.0 4% START $ FLOT X, XI XIm

: = @290.0 % 8TART :

3 FAIPII = TRUE.. $*"TURN ON CALCOMF FLOTS

S 8TRFLT=.T.,CALPLT=.T.

FLAOT *XTAG"=* (SEC)*, X, XIt, Xl

STOF

Figure A6-3. Run-time Drive Commands for Aircraft Arresting Gear Problem
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ACSL RUN-TIME EXEC VERSION 1 LEVEL &M 81/07/710. 11.26.29. FAGE i

SET TITLE = "AIRCRAFT ARRESTING GEAR FRORLEM®

S TCWPRN=72, NIS=9 $" FORCE 3 COLUMN OQUTFUT WIDTH *

QUTPUT T, Y3Im, Y3, Y3, FI, Y200, Y2n, Y2, FK2, XDO, XD, X
» FRL, Y1, "NCIOGUT" = 20

FREFAR T, X, XIi, XIDI

SET NGXPPL = 50, NGYPPL = 30, NSTF = 100

SET SPEED = 200.0 $ START $ PLOT X, XD, XID

AIRCRAFT SFEED - 200.00 RUN NG, 1

T 0. Y3nn O. Y30 0.
Y3 0. For 0. YZ2nD 0.
Y2 0. Y2 0. FK2 0.
Xopn 0. X 200. 000000 X 0.
FKi 0. Yi 0.
T 2.00000000 Y3On-18. 0123073 Y3N A45. 9392902
Y3 96. 2945828 FIt 7972. 47469 Y2N0-18. 80874675
Y20 45. 8334561 Y2 96.5954614 FR2 7612. 22854
XDO-44 . 4263306 X 99. 1682231 X 293.417443
FK1 3380.28378 Yi 193.933842
T 4.00000000 Y36, 575938466 Y3 20.97524641
Y3 158. 4364671 FIr 2441.01876 Y206, 691146942
Y20 20. 93234673 Y2 158. 528746 FR2 2329.49998
Xno-13. 8850190 Xt 43. 5150304 X 424 248449
FRK1 1013. 26192 Y1 317.280186
T 6.00000000 Y30On-2. 88914008 Y3D 12.1193707
Y3 190.3134460 FIr 1085, 24285 Yanu-2. 88049125
Y2 12. 1043815 Y& 190.352885 FRZ 997.440045
Xnh-6. 00098217 XL 24. 9457250 , X 490.111926
FK1 433. 315700 Y1 380.801048
T 8.00000000 Y31, 45871043 Y3n 7.98094072
Y3 209.944687 FIn S28.472294 2001, 45621945
20 7.97479974 Y2 209. 9464422 FR2 499298085
XO-3. 01290723 XIt 16.3712078 X H530.447309
FR1 216. 680234 Y1 419. 976465
T 10.0000000 Y3nm-0. 85442820 Y3 5. 734461369
Y3 223.460384 FIr 308. 34452 Yanp-0. 85355226
Y20 5. 73175116 2 223.471897 FK2 291.27%960
Xoo-1. 76086055 XB 11.7404810 X 558, 145554
FK1 126. 313557 Y1 44646. 971555

Figure A6-4. Run-time Control and Output Stream for Aircraft Arresting Gear Problem
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/10. 11.26.29. PAGE 2
ATRCRAFT ARRESTING GEAR PROBLEM

X A 0. 500. 0000 1000.000
XHE 0. 100. 0000 200. 0000
XDR € ~100. 0000 -50. 00000 0.

T XAXIS . ;

0.

5000000 ...

=
>D>PD
oo

www
>>> >
anooo

>DP D>
co0ao

=
>>>>>
oo

>PD>D>DDD
ooooor

wowmm
>PDPD>DDDD

mwm T Ew
ONooOoonD0n00

PPDD>DDPDD
>P>»D>D>PD>DPDD
0NONOONNO000N000

mmmm R xR

ww

Figure A6-5. Plot of Displacement and its First and Second Derivatives for the Aircraft
Arresting Gear Problem

A-46



ACSL RUN-TIME EXEC VERSION 1 LEVEL &M 81707710, 11.26.

ATRCRAFT ARRESTING GEAR PROBLEM

SET SPEED = 290.0 $ START

ATRCRAFT SFEER ~ 290.00 RUN NO. 2

T 0. Y3nn 0. Y3l
Y3 0. Fn 0. Y20
2 0. Y2 0. FK2

xon 0. Xn 290.000000 X
FK1 0. Yl 0.
T 2.00000000 Y3ON-27 . 0599278 Y30

Y3 128365976 FIr 107848237 Y20
YZN 44.9787007 Y2 128.770862 FR2
XnL-&60. 0703751 X 93. 2 9"8 84 X
FK1 4447.80160 Y1 208 519263

T 4.00000000 Y3O-&. 47531783 Y3n

Y3 185, 758816 Fno 2372 55899 Yann-

20 18. 4579190 2 185.847474 FR2
Xoo-13. 4898010 XN 38. 0155459 X
FRL 975. 6460354 Y1 371 909380

T 6.00000000 Y3nn-2. 51087770 Y3

Y3 213. 274391 FIt 909. 156899 Yann-
Y2 10, 2910500 Y2 213.308341 FK2
XNno-5. 18935943 X 21.0974946 X
FKI1 372. 954133 Y1 426. 698649

T &.00000000 Y3ON-1. 24766712 Y3n

Y3 229 892031 FIr 448. 056336 Y 2T
Y20 6. 725084364 Y2 229.908754 FR2
Xnp-2. 558919346 X0 13, 7553728 X
FR1 183.341211 Y1 459 857807

T 10. 0000000 Y3000, 7008193] Y3n

Y3 241288925 FIv 2546286240 200
Y2 4. 84067326 Y2 241 298501 FR2
Xno--1. 446891802 XIn 9. 88799079 X

FK1I 105.071645 Y1 482 420093

SET CALPLT = $"TURN ON CALCOMF PLOTS®
5 STRPLT=_T., CALFLT=.T.
FLLOT *XTAG"="(SEC) ", X, XIt, XD

- TRUE .

9. FAGE

0.
0.
0.
0.

45. 5412403

29 . 7708033

10243, 6252
362, G76923

18. 5078865
6. 44284292
2243. 05264
480. 930277

10. 30446452

2.49426943
8u8.93934u
537. 351282

6. 73035936

1. 24515397

423. 102993
G71. 343727

4.84281703
0.70?50784
242, 69844
594, 623562

Figure A6-6. Second Run - Aircraft Arresting Gear Problem

A-47

3



ACSL RUN-TIME EXEC VERSION 1 LEVEL &M 81/707/10. 11.26.29. PAGE 4
AIRCRAFT ARRESTING GEAR PROBLEM

XA 0. 500. 0000 1000. 000
XD B 0. 200. 0000 400.0000
Xoh € -400.0000 -200. 0000 0

T XAXIS .

0.

A
A
B A
B A
B a :
B A M
B A >
R a [
|3 a [
B A (S
. B A [
5.000000 ....... B AL .C.
B . A c .
K A c .
)3 A G .
B A c .
B A o
B A 5
B A o
B A
B a
& A
3 a
B A
B A
B A
B A
R A
B a
K ~ A
bl A
E A
B A
B A
B A
|3 A [
3 A C.
B A o]
K A .
b3 a C.
K a C.
i A [
B A .
B A [
B A (S
B a [+%
B A [
B A [
B A [+
B a [
B a o
B A I
B A c
B a [+
B A o}
B A [
B A c
B A c
B [ [+
B A c
. B B A [
10.00000 .. B. ... A [+
STOP
END DISSPLA —— 2792 VECTORS GENERATED IN 2 PLOT FRAMES.

23462 WORDS TABLE SPACE USED

4.900 CP SECONDS EXECUTION TIME.

Figure A6-7.

Printer Plot to Match Line Plots in Next Two Figures
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Line Plot Obtained with CALPLT = .TRUE. of Displacement, Velocity and
Acceleration from the Aircraft Arresting Gear Problem
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Figure A6-9. Line Plot Obtained with STRPLT = .TRUE. of Displacement, Velocity and
Acceleration from the Aircraft Arresting Gear Problem
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7. LONGITUDINAL STUDY

The equations describing the motion of an aircraft in three degrees-of-freedom in a longitudinal plane
are given below:

Velocity

m\./=Tcosa-D-Wsin'y
where

m = W/32.2 slugs

D = gSCy, lbs

q = 0.5 pV2 lbs/sq ft

Cp = Cpo + Cpae + Cppe loe!
Flight Path

mVy =L - W cos y + T sin «
where

L = qSC,, lbs

CL = Cio + Crge + Crgede + (¢/2V) (Cpga + CLib)
Pitch

Lo =M
where

M = qScCy ft-lbs

Cym = Cuo + Cutaer + Cigeoe + (¢/2V) (Cygée + Cpgh)
Angle of Attack

a=46-y
Position

fl = Vsin vy

)'c=Vcos'y

Constants
T = 2,000 1b S = 6,000 ft 2
I, =27 x 108 slug ft2 W = 500,000 Ib
p = 0.0023 slugs/ft3 c=30ft
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Aerodynamic Coefficients

CDO = 0.14 CLO = 1.1 CMO = 0.05

Cpq = 0.63/rad Cra = 5.2/rad Cma = 0.2/rad

CDO'G = 0003/rad CLO'G = 036/rad CMOE = 14/rad
Cra = 2/rad/sec Cmg = 8/rad/sec

Crg = 5.5/rad/sec Cmg = 22/rad/sec

Initial Conditions
V(0) = 200 ft/sec
h(0) = 1500 ft
6 (0) = 0 rad/sec

This example was chosen to illustrate an iteration to establish correct initial conditions (trim) and
solution of an implicit loop.

Values of 6(0), v(0) and g, are to be computed so that the aircraft is flying in a trimmed condition, i.e.,
the angular accelerations 0, fllght path rate y and longitudinal acceleration V should all be zero. It is more
usual to adjust throttle setting as thrust, T, to maintain a given flight path angle rather than the other way
about.

This iteration is mechanized (see program listings, Figure A7-1 and A7-2) by choosing starting values
in the INITIAL section for 6(0), v(0) and o, (zero seems good enough) and then in the DYNAMIC, after
the first evaluation of derivatives, checking if a weighted mean square error

E = (V)2 + (20 6)2 + (100 ~)2
is less than a maximum allowable error (0.1).
If not the initial guess is corrected by
¥(0) = v(0) + 0.02 V
6(0) = 6(0) - 1.0y
0c(0) = 0. (0) +2.00

A more precise (and faster) iteration would calculate the derivative of the error vector (V, v, 6) with
respect to the control vector (v, 6, ¢ ) three by three Jacobian matrix resulting - say (J) is then inverted and
the new control vector is given by

(0, 0)T = (3, 6, 5)T - J1 V60T
However, the simple iteration given suffices for this fixed example.

Once convergence has been satisfied, then the variable START is set false and the error check is never
examined again. Note that in order to recompute the derivatives the program cycles from the DYNAMIC
section back to the INITIAL section. The integration routine is set up and derivatives calculated at the
transition from INITIAL to the DYNAMIC.

The other feature is the use of the IMPLicit operator to calculate angle-of-attack rate. Angle-of-attack
rate is the difference between body rate and flight path rate. Flight path rate depends on lift which in turn
is dependent on the coefficient C;. This coefficient includes angle-of-attack rate so forming an algebraic or
implicit loop. To avoid the sorting problem the IMPL operator is used so

& = IMPL(8, 0.001, 10, ef, § - 7, 0.01)
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This means take a first guess for & to be 6 (body rate). Then iterate using Newton-Raphson until differences
in successive values of & are less than 0.0001. Try at most ten cycles and set ef (error flag) nonzero if this
number is exceeded. This iteration is a time consuming business and has to be performed at each derivative
evaluation. In this case it would have been much better to solve algebraically for a before writing the model
equations - since the equations are linear, this would have been possible. On the other hand, if C| had been
given in functional form as a table, i.e., C|, (a, @) then the implicit operator would have had to be used.

The output stream from executing the model is shown in Figure A7-3 through A7-7. Output is estab-
lished at every ten communication intervals and a similar set of variables PREPARed for later plotting. The
START initiates the run and the iteration is reported in the next eight lines of output during which the error,
ERR, is reduced from 55.4 to 0.1. Then the run starts and the block of OUTPUT variables is written out every
0.5 seconds. At the end of the run (TMX=6.49 seconds), two PRINT statements are used in order to list
selected variables, the first at every four communication intervals (0.2 seconds) and the second at every eight
(0.4 seconds). At the bottom of Figure A7-5 a strip plot is set up (STRPLT=.T.); the scale factor is reduced
to a half (PSFSPL=0.5); the x-axis length is increased to ten inches (XINSPL=10.0) and the distance
between tick marks is increased to two inches (XTISPL=2.0). With the scale factor of a half that keeps the
x-axis length to five inches but reduces the strip width to one inch, allowing seven variables to be stacked on
one frame. The first PLOT command only changes the ‘XHI’ value and ensures that the plot will cover the
full extent of the x-axis. The second PLOT actually draws the picture of Figure A7-8. If the first PLOT
command had not been used, normal rounding would have made the x-axis run from zero to ten so wasting
35% of the area. Of course in this case the tick marks are not whole numbers but that’s a user choice between
the two ways of forming the plot. We would prefer maximum area utilization.

The last sequence compares the standard Runge-Kutta fourth order integration routine with the Adams-
Moulton variable order, variable step. The OUTPUT list is cleared (‘CLEAR’) and reestablished as TIME,
CIOITG (current integration order) and CSSITG (current step size) - printing out every thirty communica-
tion intervals. The SPARE $ START $ SPARE sequence runs the simulation with the default algorithm
(IALG = 5, Runge-Kutta fourth order) and shows an elapsed central processor time of about 6.57 seconds.
Then IALG is changed to one (Adams-Moulton) and the program run again. The integration order rises to
four and the step size to a maximum of 0.0601 seconds and since this is greater than the communication
interval (0.05 seconds) it won’t change from that value. Note that the actual step size will be equal to the
communication interval value of 0.05 seconds, since these points are needed for data recording. The current
step size variable CSSITG contains the step size the integration algorithm would like to take, in the absence
of any other constraints such as an upcoming event or communication interval which may reduce it from this
value. From the report at the end of the Adams-Moulton variable step run (Figure A7-6) it can be deduced
that § (TH) was the controlling integrator and the minus sign (-) indicates that the relative error never
exceeded the absolute error specified. The allowable error was thus set at 0.0001. From the elapsed time listed
of about 0.73 seconds, the Adams-Moulton integrator was nearly ten times faster. At the bottom of Figure
AT7-6, the results of the Adams-Moulton integrator run are printed out at one second intervals to be compared
with the same variables printed in Figures A7-4 and A7-5. Agreement is within two or three decimal places.

In Figure A7-7 the use of the command ANALYZ is shown which prints out the Jacobian and its eigen
values. The largest eigen value is 0.82 per second, which implies a rather slowly varying system and in actual
fact promises good results with integration step sizes of the reciprocal of this value or about one second, a
further factor of twenty increase in solution speed. In this case the constant constraint on the step size is the
data recording interval chosen to produce acceptable plots.
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CdokkSOKAKADVANCED  CONTINUQUS  SIMULATION  LANGUAGENOOKK KKK
ACSHL. TRANSLATOR VERSION 1 LEVEL 6F 81707713, 15.18.12. FAGE 1

FROGRAM ATRCRAFT LONGITUDINAL STARBILITY STUNDY

INITIAL

CONSTANT T = 2000.0 s IY = 27 .0E6 RO = 2. 3E-3
p 8 = 46000.0 s W= 500000.0 , CR = 30.0
G

Y R D
RS D

CONSTANT CHZ = Q.14
ClLZ = 1.1

COnE = 0.003
9.2 CLOE = 0.36
-Q. 2 CMIE =-1.4

ChaAlL. ;
5.8 » K1 = 0.02

LAl
CMAL

, 0.43
CLAI = 2.0 , CLTO

=

CHMTD
ERMX 0.1
HZ = 1500.0
TZ = 0.3

-2 K2 =-1.0
THX = &.49
Q7

#o# o8 g @

- . e v .

CONSTANT VZ = 200.0 0.0

CINTERVAL CINT = 0.03

B e ctte tees ase e sous tas tm 22ss 2 20ts 2250 et S22n an4S BeBe Shen 4men avun aeme sbe0 Soen [_; HANH F‘: NAME‘ 0 l.. ]‘ N n l'i F‘E N I’( [: N T v Ar( I A ]( I. f 5

" TO AVOIN NAME CONFLICT®

VARTARLE TIME = 0.0

LOGICAL START

Wt e e NEE T MAGHE FROM WETGHT IN LES®

MASH = W/G
e e e s QET O INTTIAL GUES FOR INITIAL CONDITIONG®

e GTART WILL BE MADE TRUE WHEN ITERATION®
" CONVERGES®

START = . FALSE.
I1. . CONTINUE -

ENI $°0F INITIAL"

4448 4090 4188 T40s ove S4vk S420 Smsa H4me 9080 304 vere sHbe S008 SHRD aure Snse 22 4RSS esn aent aite S0Re T H lL 1 F,\'ANS r "" J‘ (')N F'.‘ R (JM .' N I T ]‘ A L 'r 0 I..l Y N (\I M ]’ C "
TRANGFERS ALL INITIAL CONDITIONS TO THE °
STATE VARIARLES ANI EVALUATES THE CODRE *
IN THE DBERIVATIVE SECTION ONCE *®

DYNAMIC

DERIVATIVE

o e B UN MEFLECTION I8 KICKEXD TO EXCITE SYSTEM®
ILE = 0. 1KSTEF(TZ) + DLZ
» ..‘.___..._............._.....,..,......,’..,...........“.,.......................,,ANGL'E DF:' ArTgCK L]

AL = TH - GA

B o e [TRAG . COEFF TCTENT ®

oo = CDZ + CDALXAL + CIODEXABS(DLE)

B coer cene ssee arme ees wo cree soas s satn s00s S0nt Suim Svee Sens abre sone Shbn susw smes HERS mere '.~ :[ F'T (:OEF'F ‘[ (': :[ EN" L]

CL = CLZ + CLALXAL + CLOEXDLE + (CE/(2KV))KC(CLADKALL

+ CLTDQ)

¥ e e e [ NAM TG FRESSURE ®

aF = 0. SKROKVKKD :

B et e o s v v s e s s e v TR (G ANT LITFT®

I = QPXSKCD

Figure A7-1. Listing of Model Definition for Aircraft Longitudinal Study
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FENT

END

ENI

KKKKAORKKKADVANCEDR  CONTINUOGUS  SIMULATION LANGUAGENOKKXXKOKK ¥
ACSL. TRANSLATOR VERSION 1 LEVEL 6F 81/07/13. 15.18.12. FAGE

L = QFKSKCL

B i e ene cces cont case aoas sare sase G0es sene at0s sevs s2s Sere dbes $000 Ssa SA4D Sbes Suen H0RS Sh00 F' L. I (’.} '.‘ T Fﬁ a T I..' R A Tr:" L]

GAD w (L - WKCOS(GA) + TXSINCAL))/(MASSKY)

Wi e NG T TUTINAL VELOCITY RATE®

v = (TKCOS(AL) ~ I -~ WKSIN(GA))/MASS

T crae cree corn sues 4vve cuse suse 40s0 sore S80e anes 502 4ons see So0n S038 Shsm Sare obse St Bats S0ss Sens F' .[ ’I CH M OM EN T C OI':.: F' l‘: '[ C ]‘ EN T L]

CM = CMZ + CMALXAL + CMDEXDLE + (CE/(2XVU))X(CMADXALD
+ CHTIRQ)

B ceee veme sese saue sene sane Sete mves 400a dmse 2100 whus s tes senn S02t sene ....m...‘.........F' T Tr:l_] ’r NG MOMEN r n

M = QPKSKCEKCM

B e NEET PTTCH RATE DERTVATIVE EXFLICITLY *

" FOR ITERATION *

am = M/TY

W e e MPL TG T LOOF FOR ANGLE OF ATTACK RATE®

ALI = IMFLC Q. 0.0001, 10, EF, @ - GALL 0.01)

Q = INTVUC(QD, QZ) $" PITCH RATE *

TH = INTEG(R, THZ) $* FITCH ANGLE *

Y = INTVUCUD, VZ) 4% VELOCITY *

GiA = INTUC(GAD, GAZY$® FLIGHT PATH ANGLE *

H = INTEG(UXSIN(GA), HZ) 4 ° HEIGHT *

X = INTEG(UXCOS(GA), XZ) 4" HORIZONTAL DISTANCE TRAVELLED

$"0F DERTVATIVE®

B s ene cune sens et asee oums om0 assa ones soes 4sts Shae sase 40es Sese S40S S0sn o0ia Fovs asss Sens soke [ F '[ T r: R A r '[ U N C 0 N U E‘ H (.; E 1" L]
IF(STARTY GO TO o1 '

B et e t00e cesn re oure s0m toss asne 008 4ose orus aose ases Gret shee 0000 s0e eess B0 oeut She0 ..wk [ GH "‘ E D ERR (‘N':( FR ”M r "\- I H L]
ERROFR = UIkkE + (20, OXQIXX2 + (100, OXGADN) X%2

B e eee csom amas eras csee eses asow aven S0 sume suve 0t onin 4uss waus Sore omut 4uee bove amvs Smee s00r '[ |:' W ’|’ TH I N ‘r n L l,,_R ANC r "

START = ERROR .LE. ERMX :

" o = COMPUTE. NEW TRIAL VALUESG®
GAZ = GAZ + K1%VD

THZ = THZ + K2XGAD

oLz = BLZ 4+ K3XQD

B e e O INT O TTERATTON INFORMATION®
LINESCL)$Y INFORM SYSTEM ABOUT TO PRINT ONE LINE
FRINT 99, GAZ, THZ, DLZ, ERROR

i

3

?9. FORMAT(SH GAZ ,E12.4.3H THZ LE12.4,3H ILE LEL12.4,5H ERR ,F10.

| O, 5000 4at sae0 sans o4a ase0 Bneo sats ote 0es 0ets She0 .».R F: r l”‘.‘( N T n ]' N I T " AL REG T ('] N 1 “ RE‘ STAH T ”n
* THE INTEGRATION ALGORITHM"
GO TO I1

Il . CONTINUE

o e e EXPRESS. STOFFING CRITERIA®
TERMT (TIME. GE. TMX)

$°0F DYNAMIC®

$"0F PROGRAM"

Figure A7-2. Listing of Model Definition for Aircraft Longitudinal Study
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ACSL RUN-TIME EXEC VERSION 1 LEVEL &M 81707713, 15.19.22. FAGE 1

SET TITLE = *LONGITUDINAL AIRCRAFT STABRILITY STUDY*
5 TCWPRN=80 4" FORCE 3 COLUMN OQUTPUT WIDTH *
OUTPUT TIME, M. Q, VDI, GAD, DLE. X, V. TH, GA, al, EF, ALIL *NCIOUT"=10
FREFAR TIME, M. G, VI, GAD, DLE, V, TH. GA, AL
SET NSTP = 10
START
GAZ -, 4719E-01 THZ L6241E-01 DLE -, FRAPEEFO00 ERR 5%,
GAZ ~.8892E~-01 THZ . 8499E-01 DLE -, 37S50E+00 ERR 9.
GAZ ~. 1183E+00 THZ .7919E-01 DLE . 3789E4+00 ERR 2.
GAZ =, 1342E4+00 THZ .6226E-01 DLE . F782E+00 ERR 3.
GAZ =, 1397E+00 THZ LAS47E-01 DLE -, I7B0EHO0 ERR 2.
GAZ =, 1391E+00 THZ . 3372E-01 DLE -, I78BEHO0 ERR 1.
GAZ ~. 13462E+00 THZ L2761E-01 DLE -. 37921E4+00 ERR
GAaZ =, 1330E+00 THZ CRG73E-01 DLE . 3796E+00 ERR
TIME 0. M-4483. 15766 @ 0.
v 0. 11209712 Gal-4. 7803E~04 DLE-0Q. 37964391
X 0. U 200.000000 TH 0. 02573051
GA-0. 13304999 Al 0. 15878051 EF 0.
AL.LL 4. 7803E-04

Lm0 I s R I B Y

TIME 0.50000000 M-2709. 32654 Q-6 GHGAE-05
un 0. 11389061 GAN-3. 0769E-04 NLE~0Q. 37964391

X 99.1287839 U 200, 056557 TH 0. QR2G71276
GA-0. 1332442 Al 0. 15895699 EF 0.

AL 2. 4213E-04

TIME 1.00000000 M-819443 7468 @-0. 01806435
v 0. 15529338 GAl-4 . 6372E-04 DLE-O. 27964391

X 198.291893 U 200. 119570 TH 0.020934%51
GA-0. 13252507 AL 0. 15346158 EF 0.
ALI-0. 01760063

TIME 1.350000000 M-588537 . 231 Q0. 03097716
vl 0. 32194985 GAD-0. Q087615 ME-0. 279464391
X 297.491949 U 200233657 TH 0.00849834
GA-0. 13405542 AL 0. 14255376 EF 0.

ALL-0. 02510101

TIME 2.00000000 M-425184. 786 Q0. 04027717

VIt 0. 604696380 GAL-0. 01205182 DLE-0. 27964391
X 394. 734299 UV 200. 461263 TH-0. 00944102
Ga-0. 13852553 AL 0. 12908451 EF 0.

ALT-0. 02822035

TIME 2.50000000 M~-308869. 2446 (-0, 04701386

Uit 0. 99482728 GAL-0. 01819030 DLE-0. 27964391
X 496. 045171 Y 200.837747 TH-0. 03135335

GA-0. 14609914 Al 0. 11474580 EF 0.
ALTI-0. 02882471

TIME 3.00000000 M-220422 . 635 (-0, 05191891
VI 1. 44906702 GAD-0. 02383891 OLE~0. 27964391
X G9%5. 470475 Y 201470484 TH-0. 05615080

GA-0. 15663296 Al. 0.10048216 EF 0.
ALLD-0. 02807999

Figure A7-3. Run-time Drive Commands and Output Stream for Aircraft Longitudinal Study
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ACSL RUN-TIME EXEC VERSION 1 LEVEL &M

81/07/13.

15.19.22.

PAGE

LONGITUDINAL AIRCRAFT STARILITY STUDY
TIME 3.350000000 M-165020. 639 Q-0. 05550448
vn 2.01355780 GADI-0Q. 028769469 DLE-0. 27964391

X 695.072274
GA-0. 16981764
ALD~0. 02673479

TIME 4.00000000
Ul 2. 61327924
X 794.925011
GA-0. 18526832
ALLD-0. 02523344

TIME 4.50000000
Vo 3. 25474200
X 895.112100

U 202. 3385346
AL. 0.08676447

M-120892. 038
GAD-0. 03289737
UV 203. 493238
Al. 0.07377233

M-88350. 2552
GAD-Q. 03622554
V 204. 958763

TH~

EF

0.08305317
0.

a-0.05813081

EF

ME-0.279643%91
TH-

0.11149598
0.

3-0. 06005320

DLE~-Q. 27964391

TH-0.141067035

6A-0. 20258148 Al. 0.06151442 EF 0.
ALD-0. 02382764
TIME 5.00000000 M-64151.8200 @-0.06145434

M.E~0. 27964391
TH-0. 17146258

Ul 3.92621180 GAD-0. 03881095
X 995.723088 V 206.752971

GA-0. 22136990 AL 0.04990732 EF 0
ALD-0Q. 02264339
TIME 5.50000000 M-46048. 3669 -0.06246668

DLE~0Q. 27964391
TH-0. 20245679

Ul 4.461780037
X 1094.85137

GADI-0. 04074011
v 208.888317

GA-0. 24128298 Al 0.03882619 EF 0
ALT--0. 02172656
TIME 4.00000000 M-32476. 6366 (-0.06318772

VDN 5. 32146229 GAD-0. 04211360 DLE-0. 27964391
X 1198 59233 UV 211.372774 TH-0. 23388084
GA~-0. 26201738 AL 0. 02813654 EF 0.

ALD-0. 02107412

M-22335. 8613 Q0. 063469045
VD 6. 03092082 GAD—-0. 04303576 DLE-0. 27964391
X 1301.04170 V 214.210737 TH-0. 26560825
GA-0. 28332137 Al 0.01771313 EF 0.

ALD-0. 02065650

TIME 64.50000000

* MAKE COLUMN PRINT OF SELECTED VARIARLES FROM PREPAR LIST *
FRINT “"NCIPRN"=4, TIME, M, Q, VD, GAD

L.INE TIME M Q; vn GAD
0 0. ~4483. 1577 0. 0.1120971 -4.780E-04
4 0.2000000 -3491.5678 ~3.020E-05 0.1129881 ~-4.035E-04
a8 0.4000000 -3012.0301 -5 497E-05 0. 1136435 ~3.377E-04
2 Q0.6000000 -1 072E+06 ~0.0041394 0.1156370 0.0024458
14 0.8000000 ~-9349467.82 -0.01154693 0. 1247060 0.0012126
2 1.0000000 ~-819443.77 -0.01804643 0.15592934 -4 637E-04
24 1.2000000 -717322.81 ~0.0237472 0. 2068592 -0.00244664
28 1.4000000 -628518.65 -0.0287242 0.2786918 . -0.0044991
Figure A7-4. Output Stream from Aircraft Longitudinal Study
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ACSL. RUN-TIME EXEC VERSION 1 LEVEL &M 81/07/13. 15.19.22. FAGE

LONGITUDINAL AIRCRAFT STARILITY STUDNY

LLINE TIME M Q un AN
32 1.6000000 ~351229.33 -0.0330870 0.34699518 ~0.007082
34 1.8000000 -483899.01 -0.03469151 0.4797075 ~0.0093506
40 2.0000000 ~-425184.79 -0.0402772 0.6069638 ~0.0120G18
44 2.2000000 -373927.76 ~0.04323%6 0.7506856 -0.0145433
48 2.4000000 -329128.86 ~0.0458328 0.92098160 ~0.0149912
52 2.6000000 ~289923.07 ~0.0481223 1.0832922 ~0.0193691
1) 2.8000000 -258548.70 ~0.0501399 1.27005865 ~0.0216548
60 3.0000000 ~225422.63 -0.0519189 1.4690670 ~0.0238389
64 3.2000000 -198931.41 -0.0534885 1.46793048 -0.0259047
68 3.4000000 -175617.33 ~0.0548739 1.89978046 ~0.0278466
72 3.6000000 -158068.31 ~0.0560970 2.1293392 -0.0296604
76 3.8000000 -1346928.80 ~0.0871771 2.367663%9 -0.0313440
80 4.0000000 ~120892.04 -0.0581308 2.6132792 -0.0328974
84 4. 2000000 -106693.28 -0.0589727 2.8655533 ~0.0343223
88 44000000 ~-94104.044 ~0. 0597154 3.1236997 -0.0356217

2 4. 6000000 -82927.073 ~0.04603703 3.3869786 ~0.0367996
?6 4.8000000 ~72992.043 ~0.0609470 3.6546976 ~0.0378608
100 3.0000000 -64151.820 ~0.0614543 3.9262118 -0.0388110
104 9. 2000000 -56279.255  ~0.0618998 4.2009243 -0.03946559
108 9.4000000 -49264.402 ~0.0622902 4.4782854 ~0.0404021
112 9.6000000  -43012.123 -0, 0626315 4.7977925 ~0.0410559
116 5.8000000 -~37440.018 -0.0629291 5.0389888 -0.0416042
120 6.0000000 ~32476.637 -0.0631877 9.3214623 ~0.0421136
124 6.2000000 -28059.934 ~0.0634116 5.6048448 -0.0425308

128 6. 4000000 -24126.843 -0.0636046 . 8888103 ~0.0428825

PRINT *NCIPRN®=8, TIME, DLE, TH, GA, AL

L.INE TIME DLE TH GA AL
0 0. ~0. 3796439 0. 0257305 ~-0.1330500 0.1387803
8 0.4000000 -0.3796439 0.0257188 -0.1332120 0. 1589308
16 0.8000000 -0.2796439 0.0239144 -0.1326063 0. 1565207
24 1.2000000 ~0.2796439 0.01467427 ~0. 1328135 0. 1495563
32 1.6000000 ~0.2796439 0.0052940 -0.1347031 0.1399971
40 2.0000000 -0.2796439 ~0.0094410 -0.138524G5 Q. 1290845
48 2.4000000 -0.2796439 -0.0267104 -0.1443399 0.1176295
96 2.8000000 -0.2796439 -0.0459412 -0.1320815 0.1061403
64 3.2000000 ~-0.27946439 -0.0666948 -0.1616093 0.0949145
72 3.6000000 —0.2796439 -0.0886336 -0.17273%94 0.0841059
80 4.0000000 -0.2796439 -0.1114960 ~0.1852683 0.0737723
- 88 4.4000000 -0.2796439 ~0.1350784 -0.1989889 0.0639104
?6 4.8000000 ~0.27964392 -0.1592214 -0.2137009 0.0544796
104 5.2000000 -0.2796439 ~-0.1837990 -~0.2292183 0. 0454193
112 5.6000000 -0.2796439 -0.2087118 ~0.2453730 0.0366612
120 6.0000000 -0.2796439 -0.2338808 -0.2620174 0.0281365
128 6.4000000 ~0.2796439 ~0.2592434 -0.27902G53 0.0197819

S STRPLT=.T.,PRNFLT=.F.,PSF8FL=0.5, XINGPL=10.0, XTISPL=2.0

FLOT *"XHI"=TMX %" PLOT NOTHING - BUT ESTARLISH FULL RANGE FOR SCALE
PLOT TH, AL, GA, GAD, Q, M, DLE

* CHANGE OQUTPUT LIST FOR TIME TRIAL RETWEEN RK4 AND ADAMS-MOULTON *
OQUTPUT "CLEAR", TIME,CIOITG, CSSITG, *NCIOUT"=30

SFARE ¢ START $ SPARE

ACCUMULATED CP TIME 21.259 SEC. ELAPSED CP TIME 21. 259 8EC.

GAZ -.4719E-01 THZ L6Z241E-01 DLE =. F296E+00 ERR 05,4
GAZ -.8892E-01 THZ . B499E~-01 DLE ~.3730E+00 ERR 9.7

Figure A7-5. Output Stream from Aircraft Longitudinal Study
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ACSL RUN-TIME EXEC VERSION 1 LEVEL &M B1L/707/713. 15.19.22. FAGE
LONGITURINAL ATIRCRAFT STARILITY STUDY
(GAZ =, 1183E+00 THZ L79219E-01 DLE -, 3789E4+00 ERR 2.9
GAZ =, 1342E+00 THZ 226E-01 DLE =. 3782E4+00 ERR 3.3
GAZ =, 1397E4+00 THZ 4547E-01 DLE ~. 3780E+00 ERR 2.9
GAZ -~ 1391EH+00 THZ L33726-01 DLE =. 3783IE+00 ERR 1.4
GAZ =~ 1362E+00 THZ LR761E-01 DLE - I791E+00 ERR .4
GAZ - 1w?0F400 THZ L2573E-01 DLE -, 3796E+00 ERR .1
TTML 0. CIOITG 4 CH8ITG 0.00300000
TIME 1.350000000 CIOITG 4 CESITG 0. 00300000
TIME 3. 00000000 CIoITe 4 CE8ITE 0.00300000
TIME 4.50000000 CIDITG 4 CEBITG 0.003500000
TIME 6. 00000000 CIoITG 4 CSBITG 0.00500000
TIME 6.530000000 CIoITe 4 CESITEG 0. 00500000
ACCUMULATED CP TIME 27.829 SEC. ELAPSED CFP TIME 6570 SEC.
5FT IaAlLG = 1 $" TRY ALAMS- MOULTUN INTEGRATION "
START 4 SFARE " COMPARE TIMES
bh? = 4719E-01 THZ C6241LE-01 DLE =, F2PGEHOQ ERR 0% 4
GAZ -, 8892E-01 THZ .B499E-01 DLE -~ F7F0E+00 ERR ®.7
GAZ ~. 1183E+00 THZ L7919E-01 DLE ~. 3789E+00 ERR 2.5
GaZ = 13A42E4+00 THZ CHREGE-01 DLE =, 3782E4+00 ERR 3.5
GAZ - LA97E4+00 THZ LAS4A7E-01 DLE ~. 3780E4+00 ERR 2.9
GaZ = 139LEH00 THZ L3372E-01 DLE =, 378TEH00 ERR 1.4
GAZ -~ 1362E4+00 THZ .27615“01 HLE ~. F791E+00 ERR .4
GAZ - 1330EH00 THZ 2573E-01 DLE -, B796EH00 ERR .1
TIME ©. CIOLTG 1 CESSITG 0.005 00000
TIME 1.50000000 CIOITG 3 CEEITG 0. 046012383
TIME 3.00000000 CIoITG a CEEITEG 0.06012383
TIME 4.50000000 CIoITreG 4 CE8ITE 0.06012383
TIME &.00000000 CIOITG 4 COSITG 0.06012383
TIME 6.30000000 CroITe 4 CESITE 0.06012383
COUNT OF TIMES STATE CONTROLLED STEF SIZE
MINUS () REL ERR ALWAYS RELOW ARG ERR
Ga FC FAIL 0 ERR CONTROL. 1%
H FC FATIL 0 ERR CONTROL 0
Q FC FAIL 0  ERR CONTROL 7
TH PC FATL 0 ERR CONTROL 110~
VU FC FAIL 0  ERR CONTROL 0
X FC FAlL O  ERR CONTROL 10
ACCUMULATED CF TIME 28,557 SEC. ELAPSEDR CP TIME . 728 BEC.
FRINT "NCIFRN"=20, TIME, M, Q, VI, GAD
L.INE TIME M Q@ un Gah
0 0. ~ 4483 1577 0. 0. 1120971 ~4.780E-04
20 1L.0000000 -8189460.30 ~0.0180910 0. 15544642 ~4.701E-04
40 2.0000000 -424940.72 -0.0402911 0. 6075197 ~0.0120617
40 F.0000000 -2205297.546  ~0.0019262 1.4699101 -0.0238474
80 4.0000000 ~12082%5.69 ~0.0681347 2.6143087  ~0.0329036
100 3.0000000 -441L10. 3462 ~0.06145064 3.9273439  ~0.0388147
120 6. 0000000 -32454. 280 ~0.04631888 5. 3226349 -0, 0421155

Figure A7-6. Output Stream from Aircraft Longitudinal Study
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ACHL. RUNWTIME EXEC VERSION 1 LEVEL &M B1L707713. 15,1922, FAGE O
LONGITULINAL ATRCRAFTY STARILITY STUDY ‘

ANALYZ "FREEZE"=X, "JACOR", "ETGEN"
ROW VECTOR NAMES

G 1 H 2 8! 3
TH 4 Y %
COLUMN VECTOR NAMES
GAD 1 209985 2 (an 3
2099846 4 VI a3
MATRIX ELEMENTS - ROWS ACROSS. COLUMNS DOWN
1 -0, 5305362 0. 0. 0493329 0. 48904637 0. 0011434
AR205. 87325 0. 0. 0. ), 279ER04
3 -0, 0341951 0. -y FREYIENT 0. 02460218 3. 747605
4 0. 0. 1.0000000 0. 0.
HF -18.067358 0. 0. -12. 848579 -0 02893050
COMPLEX ETIGEN VALUES IN ASCENIING ORUER
R 0

2 0.01093535 0.

b

F 0. 11219790 0.

4 ~0. 36600676 0.

G -0.82152384 0.
STOF

Figure A7-7. Output Stream from Aircraft Longitudinal Study

Don’t be misled by the ratio of execution for Runge-Kutta to Adams-Moulton. The artifically small step
size chosen arbitrarily for the RK4 algorithm unfairly penalizes the comparison. In actual tests with typical
non-linear systems, the second order Runge-Kutta method (IALG=4) did best in terms of CP seconds per
simulated second. The penalty is that the user must choose the step size, normally by experimentation, but
sometimes by familiarity with the model. As mentioned above, a good rule of thumb is to make the integration
step size (MAXT) equal to the smallest time constant in the model. Of course if the controlling time constants
change significantly, then the variable step algorithms are called for. Stiff systems with fast initial transients
should use integration algorithm two (IALG=2).

A-60



g LONGITUDINAL AIRCRAFT STABILITY STUDY
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Figure A7-8. Strip Plot of Selected Variables from Aircraft Longitudinal Study
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8. PHYSBE

A benchmark simulation model has been described* in order to demonstrate the different methods of
solving simulation problems. Called PHYSBE, for physiological simulation benchmark experiment, this
system models the blood flow around a human body, driven by two pumps - the right and left ventricles in
the heart. Figure A8-1 shows the interconnection of the various components of the system which are to be
considered as large bags or balloons that can be filled with blood. The characteristic is that the more blood
that is forced in, the higher the pressure. Valves exist between the vena cava (VC) and the right ventricle (RV);
the right ventricle and the lungs (LN); the lungs and the left ventricle (LV), and the left ventricle and the
aorta (AQ). These valves only allow blood flow in the forward direction.

The blood is driven around the loop by changing the compliance of the right and left ventricles as a
function of time, so modeling the squeezing of the blood in the chambers by the heart muscle as it contracts
and releases. Figure A8-2 shows this réciprocal compliance as a function of time; this function is repeated
every second as the heart beats. Each lump contains mass balance and heat balance constraints which are

described by the following equations.
The assumptions made are:
1) Physical parameters of the system are linear.
2) Blood flow within each area is influenced only by:
a) Inlet Pressure
b) Inflow Resistance
¢) Compliance (Volume/Unit Pressure)
d) Outflow Resistance
e) Outlet Pressure
3) There is no resistance to blood flow within areas.
4) All endogenous heat will be absorbed by the blood and conducted by the blood.
5) Specific heat of blood and all body components is unity.

6) Temperature change within the arteries, ventricles, and great veins is negligible.

* McLeod, J., “PHYSBE: A Physiological Simulation Benchmark Experiment”, SIMULATION 1. pp.
324-329, 1966.
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HD
HEAD
AR
ARMS  |b—
] ve RV LN Lv AO
VENA RIGHT LEFT
CAVA D VENTRICLE r_!> LUNGS —'D_ VENTRIC LE '—‘D—' AORTA
VALVE VALVE VALVE VALVE [ —
TR
TRUNK -
LG
LEGS

Interconnection of Lumps to Form Blood Distribution System

Figure A8-1.
i
c -0.428 ——mm Hg/m £
0.0133
0.0 04 0l1 o
TIME (sec) .

Figure A8-2. Reciprocal Compliance or Spring Constant (Pressure per Unit Volume) for
Heart Chambers
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Figure A8-3 shows the schematic representation of the mass and heat flow within each lump. Note the
XX is to be replaced by the two character mnemonic when referring to one of the nine individual lumps. The
input flow rate is given by the pressure differential and input resistance

_ PXXI — PXX
Fxx RXXI

Pressure in the bag is volume by compliance

_ VXX
XX T oxx
Outlet flow rate is given by the pressure differential and output resistance
_ PXX -PXXO
FXXO = —RXXO

The blood volume is the integrated mass flow rate
VXX = fT (FXXI - FXXO0) dt + VXXZ
Heat (enthalpy) flow i(l)l is
QXXI = FXXI * TXXI
Temperature is total enthalpy in lump by mass.
TXX = HXX/WXX
Heat flow out is
QXXO = FXXO * TXX
Heat dissipated to surroundings
QXXB = K * AXXO * (TXX - TA)
and an accumulated heat is
HXX = j; T (QXXI - QXX0 + QXXE) dt + HXXZ

Now the macro is implemented by defining the macro name and identifying the substitutable parameter,
i.e.,

MACRO LUMP (X)
identifies X as a substitutable parameter.
To make up the input flow equation, the following statement is used (— implies concatenation)
F—=+X—+0 = (P—=X~—I - P—=X)/R—=X—I

which means ‘F’ concatenated with the argument, concatenated with an ‘O’, etc. When the macro is invoked
to describe the trunk, designated by TR

LUMP (‘TR’)
where the quotes imply the literal string TR which is not to be considered as a symbol.

The expansion of the macro for this invocation is shown in Figure A8-4.
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XX IS REPLACED BY FOLLOWING TWO LETTER

STRING
RXX1] PXX - PRESSURE RXXO
PXX1IO——AMA VXX - VOLUME AAA—0 PXXO RV - RIGHT VENTRICLE
LV - LEFT VENTRICLE
AO - AORTA
QXXE L yxx - TEMPERATURE | OXX9Q L o o AR - ARMS
TXX| O———— —-0 IXX HD - HEAD
HXX - ENTHALPY = IR - TRUNK
LG - LEGS
VC - VENA CAVA
QXXE QXXD

(EXTRANEOUS) (DISSIPATED)

Figure A8-3. Lump Definition - Mass and Enthalpy Balance

LUMP('HD"') $ "HEAD'
FHDI =(PHDI - PHD)/RHDI
PHD = VHD/CHD
FHDO =(PHD - PHDO)/RHDO
VHD = INTEG(FHDI - FHDO, VHDZ)
QHDI = FHDI*THDI
THD = HHD/WHD
QHDO = FHDO*THD
OHDD = K*AHD* (THD - TA)
HHD = INTEG(QHDI - QHDO + QHDE - QHDD, HHDZ)
MACROFEND

Figure A8-4. Main Invocation and Macro Expansion for Lump Associated with Head (HD)
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The other macro used in the simulation is the valve so
MACRO VALVE (R, PO, PI, RZ)

which calculates a resistance R given outlet pressure, PO, inlet pressure PI, and valve open resistance, RZ.
If the valve is closed the resistance will rise to a large value (1029) to effectively shut off flow.

This VALVE macro is defined as a PROCEDURAL block, or one whose order must not be changed.
The list states that R, the resistance, is the output variable, and that this is calculated as a function of outlet
pressure, inlet pressure and open resistance.

Action of the valve is defined by
R = RZ; PO=<PI
R = 1020 PO>PI

Invocation to calculate the resistance into the right ventricle is
VALVE (RRVI = PRV, PVC, RRVIC)

which expands as shown in Figure A8-5. This says that the input resistance to the right ventricle is RVIZ,
if the pressure in the right ventricle PRV is less than the pressure in the vena cava, PVC. Otherwise, it is
1020 so preventing any backflow.

VALVE (RRVI = PRV, PVC, RRVIZ)
PROCEDURAL (RRVI = PRV, PVC, RRVIZ)

RRVI = RRVIZ

IF( PRV.GT. PVC) RRVI = 1.0E20
END

MACROEND

VALVE(RRVO = PLN, PRV, RRVOZ)
PROCEDURAL (RRVO = PLN, PRV, RRVOZ)

RRVO = RRVOZ

IF( PLN.GT. PRV) RRVO = 1.0E20
END

MACROEND

Figure A8-56. Macro and Macro Expansion for Inlet and Outlet Values in Right Ventricle
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The program listing Figures A8-6 through A8-7 defines all the constants necessary to specify the system
behavior. Since none of the heat flux constants were given in the problem definition they are set to zero, so
the temperature equations are carried along to count in the time scale but don’t calculate significant quantities.
Since there is no feedback, the temperature merely goes along with the mass balance equation for the ride.

The compliance of the ventricles is the drive for the system that causes the heart to pump. The reciprocal
compliance is given as a function of time that repeats every second and this is shown in Figure A8-2. Since
the code order for calculating the compliance could have been important, it was bracketed in a PROCEDUR-
AL block.

Then, the valves in the right and left ventricles (two in each lump) are defined.

The interconnections of each lump, Figure A8-1, define what the inlet and outlet pressures are. For the
simple case of two elements in cascade, the outlet pressure is the effect of two resistances connected between
two pressure sources.

PXX PXXO PYII PYY
o) AAAA [¢) 0. AAAA o
RXXO RYYI

_ PXX*RYYI + PYY*RXXO
PXXO0 = RYYI + RXXO
PYYI = PXXO

The aorta and vena cave are rather more difficult since the first feeds five other lumps and the second
receives flow from the five. Writing down the flow balance - equivalent to Kirchoff’s law - leads to the
following for the aorta output pressure

PAO + PHD + PAR | PLG + PTR
RAOO RHDI RARI RLGI RTRI

[ 1 + 1, 1 + 1
RAOO RHDI RARI RLGI RTRI

PAOO =

and similarly for the vena cava inlet pressure

PVC + PHD + PAR + PLG + PTR
_ RCVI RHDO = RARO RLGO ' RTRO

PVCI

T T T i ]
Revi T Ropo T RAro T Rico T RTRO

The nine lumps are defined by invoking the macro with the appropriate two character string and this ends
the model definition included in a DERIVATIVE section. In the DYNAMIC section - interrogated every
communication interval - is the termination condition and for four cycles the stop time TSTP is set at four.
This completes the model description: the listing as shown took. 13.2 seconds to translate on a Control Data
CYBER 173. The run-time commands used to exercise this model are shown listed in Figure A8-8 and the
output stream generated in Figures A8-9 through A8-12. Prior to the START, the communication interval
(CINT) is set to 20 msec (0.020 sec), the NSTP divisor to one and the calculation interval or integration step
specified via the maximum step size (MAXT) to be 10 msec (0.010 sec). After the START the OUTPUT
list is printed out every half second, since the “NCIOUT” multiplier is 25.
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KRAKKKKKKATDVANCED  CONTINUOUS SIMULATION LANGUAGEXXXKIKIKX

ACSL TRANSLATOR VERSION 1 LEVEL &F 81/07/13. 15.16.01. FAGE 1

FROGRAM PHYSEE
INITIAL
MACRO LUMF (X)

F XTI =P X_I - P_X)/R_X_I

FoX = Y_X/C_X

F X_0 =(FP_X - P_X_0)/R_X_0

v_X = INTEG(F X I - F_X_0, V_X_Z)

G_X_I = F_X_IKT_X_I

T X = H_X/W_X

G_X_0 = F_X_0 %T_X

G X I = KKA_XK(T_X = TA)

H_X = INTEGCO X I ~ Q. X_0 + Q_X_E - Q_X_In H_X_Z)
MACRO END

MACRO VALVE(R, PO, FI. R2)
PROCEDURAL (R = FO, FI. RZ)

R = RZ

IF(PO.GT.FI) R = 1.0EZ20
ENI

MACRO END

CONSTANT  RAQI = 1.E-2 , RAOO = 1.E-2 , CAOQ = 1.01 » VADZ= 80.8
CONSTANT RARI = 5.15 , RARO = 10.0 , CAR = 4.23 » VARZ= 268.0
CONSTANT RHIDT = 2.58 , RHDO = 5.0 » CHIY = 1.2 » VHDZ= 68.0
CONSTANT RTRI = 0.467 , RTRO = 1.42 , CTR = 34.90 » VUTRZ= 2180.
CONSTANT RLGI = 2.58 , RLGO = 5.00 , CLG = 11.1 » VLGZ= 700.0
CONSTANT RVCI = 1.E-2 , RVUCO = 1.E~-2 , CUC = 280.0 , VUCZ= 650.0
CONSTANT RLNI = 1. E-2 , RLNO = 0.187%, CLN = 10.0 , VLNZ= 200.0
CONSTANT RRVIZ= 0.0030, RRVOZ= 0.0030

CONSTANT RLVIZ= 0.0273, RLVOZ= 0.0060

CONSTANT VLVZ = 319.0 , VRVZ = 120.0

CONSTANT AAD = 0.0 ;) WAD = 1.0 » QAQE= 0.Q » HAOZ= 0.0
CONSTANT  AAR = 3670.0, WaR = 7000.0, QARE = 0.0 » HARZ= 0.0
CONSTANT  AHI = 1400.0, WHD = 4500.0, QHOE = 0.0 -, HHOZ= 0.0
CONSTANT  ATR = 6000.0, WTR = 53000., QTRE = 0.0 » HTRZ= 0.0
CONSTANT ALG = 7000.0, WLG = 18300., QLGE = 0.0 +» HLGZ= 0.0
CONSTANT AVC = 0.0 s WG o= 1.0 s QUCE = 0.0 » HUCZ= 0.0
CONSTANT ARV = 0.0 » WRY = 600.0 , QRVE = 0.0 » HRVUZ= 0.0
CONSTANT  ALN = S50000., WLN = 1000.0, QLNE = 0.0 s HLNZ= 0.0
CONSTANT ALV = 0.0 s WLV = 600.0 , QLVE = 0.0 » HLVZ= 0.0
CONSTANT  QARD = 0.0 s BHID = 0.0 » QTRD = 0.0 » QLGO = 0.0
CONSTANT QUChr = 0.0 s QRVD = 0.0 » QLNDN = 0.0 » QLYY = 0.0
CONSTANT  QAQDN = 0.0

CONSTANT K = 0.01 , TA = 0.0 s THTP = 3.99

CONSTANT TMX = 0.4 » THMN = 0.5, c

CIMX = 0.428 , CIMN = 0.0133
END $" OF INITIAL *

DYNAMIC
NERIVATIVE
FROCEIIRAL CCRY, CLV=T)
TF = AMOLOCT, 1.0)
IFCTF.OLE. TMX) €I =(CIMX-CIMNYXTF/TMX + CIMN
IFCTF.GT. TMX . AND. TF.LE.TMN) CI =(CIMX~-CIMN)X(TMN-TF)...
Z{TMN-TMX) + CIMN
IF(TF.GT. TMN) CI = CIMN
CRV = 1.0/CI % CLV = CRV
ENI

Figure A8-6. Listing of Physiological Simulation Benchmark Experiment (PHYSBE) Model
Definition
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N

END
END

13.

KOKOKKKKKADVANCED  CONTINUOUS SIMULATION LANGUAGEXXOKIoKoKKX
ACSL. TRANSLATOR VERSION 1 LEVEL &F 81/07/13. 15.16.01. FAGE 2

"VALVES IN RIGHT AND LEFT VENTRICLES®

VALVE(RRVI = PRV, PVC, RRVIZ)
VALVE(RRVO = PLN, PRV, RRVOZ)
VALVE(RLVI = PLV, PLN, RLVIZ)
VALVE(RLVO = PAO, PLV, RLVOZ)

"DEFINE THE INTERCONNECTIONS®
"VENA CAVA FEEDNS RIGHT VENTRICLE®

FUCO
FRVI
TRVI

=(PUCXRRVI + PRUXRVCO)/(RRVI + RVEOD)
= PYCO $"RIGHT VENTRICLE"
= TYC

"RIGHT VENTRICLE FEEDS LUNGS®

FRVO
FLNI
TLNI

=(FRVKRLNI + PLNXRRVO)/(RLNI + RRVO)
= FRVO $'LUNG INFUTS®
= TRV

"LUNGS FEED LEFT VENTRICLE"

FLNO
FLVI
TLVI

=(FLNXRLVI + FLVUXRLNO)/(RLVI + RLNO)
= PLNO $"LEFT VENTRICLE INFUTS"
= TLN

"LEFT VENTRICLE FEEDS AORTA"

FLVO
FAOI
TAOI

=(FLUXRAOT + FAOXRLV0O)/(RADI + RILLVO)
= PLVO $"AORTA INFUTS"
= TLY

"AQORTA FEEDS HEAL, ARMS, LEGS AND TRUNK®

FAGO

/(1
FHDT
THIOI
FARI
TARI
FLGI
TLGI
FPTRI
TTRI

=(PAOD/RACO + FHO/RHII + FPAR/RARI + FLG/RLGI + FTR/RTRID. ..

.O0/RA00 + 1.0/RHOI + 1.0/RARI + 1.0/RL.GYI + 1.0/RTRI)

= FAOO $"HEAD INFUTS"

= TAOQ

= PAQOD $"ARMS INFUTS"

= TAQ

= PAOC $"LEG INFUTS®

= TAQ

= PAQO %" TRUNK INFUTS®

= TAOD

"VENA CAVA IS RETURN FROM HEAIL, ARMS, LEGS AND TRUNK®

FYCI

/¢
TVCI
FARD

=(PFUC/RVCI + PHI/RHDO + FAR/RARO + FPLG/RLGO + FTR/RTRO) . ..
.O0/RVCI + 1.0/RHIO + 1.0/RAR0D + 1.0/RLGO + 1.0/RTR(O)

=(THOKFHIO + TARXFARO + TLGXFLGO + TTRXFTRO)/FVCI

= PUCT 4 FHDO = PUCT ¢ FLGO = PVCT ¢ FTRO = PVUCT

"DEFINE EACH LUMF*"

LUMF("RV®) $ "RIGHT VENTRICLE®
LUMFC(YLN®) % "LUNGS"®
LUMPC"LYU") $ "LEFT VENTRICLE"
LUMP (" A0") $ “AORTA"
LUMF("AR") ¥ "ARMS"

LUMF("HD") $ "HEAD"

LUMF("TR") $ “TRUNK®
LUMP("LG") % "LEGS"

LUMPC"VC®) $ "VENA CAVA®

$" OF DERIVATIVE *
TERMT(T. GE. TSTF)

$* OF DyNaMIic *

" OF PROGRAM *

217 CP SECONDS 3649 TABRLE SFACE USED 19 TARLE MOVES

Figure A8-7. Listing of PHYSBE Model Definition
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SET TITLE="FHYSIOLOGICAL SIMULATION BENCHMARK EXFERIMENT (PHYSRE)®
85 TCWFRN=72, 118=9 4" FORCE 3 COLUMN QUTFUT WIDTH °
FREFAR T.FRV, FLN, FLY: PAQ, FHIL PTR, PAR, PLG, FPVYC, FUCT . ..
» FAQQO, FARO, FHDO, FLGO, FLNQ, FLYO, FRVO, FTRO, FUCO, CRY, CLV, CI
QUTFUT T, FRV, PLN, PAO, PHIL, "NCIOUT*=25
SET CINT=0. 02, NSTF=1, MAXT=0.010
START
FRINT "NCIFRN"=4, T, PR, PLN, FLYO, FRVO
8 STRPLT=_T., PFRNPLT=_F. ., CALPLT=_F_, GROGPL=_T.
FLLOT FRUD, PLN, FRY
S CALPLT=_T.,GROCFL=.T., FRNFPLT=_T., STRFLT=_F.
FLOT PRV, FLN
STOF

Figure A8-8. Run-time Drive Commands to Exercise PHYSBE Model

After the simulation run a more detailed print out is obtained for two pressures, PRV and PLN, and
two flows, FLV and FRYV, every four communication intervals or every 80 msec. This runs through Figure
A8-10. Next we obtain a strip chart plot by setting STRPLT true. The right ventricle flow and lung and right
ventricle pressures are shown plotted in Figure A8-11. The grid was produced since GRDSPL was made true
prior to the plot command. The next line (Figure A8-10) turns on normal line plots (CALPLT=.T.), asks
for grid on these plots (GRDCPL=.T.), turns on print plots (PRNPLT=.T.) and turns off the strip plot
(STRPLT=.F.). The following PLOT command produces the printer plot of Figure A8-12 and the line plot,
actually on a Gould electrostatic plotter, of Figure A8-13.
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ACSL. RUN-TIME EXEC

VERSION 1 LEVEL &M

81/07/13.

15.

17.2

FAGE

SET TITLE="FHYSIOLOGICAL SIMULATION RENCHMARK EXPERIMENT (FHYSEE)"
S TCWPRN=72,1118=%9 $* FORCE 3 COLUMN OUTFUT WIDTH *
FREFAR T, PRV, PLN, PLV, FAO, PHIL FTR, FAR, FLG, PVC, FUCT . ..

» FAQO, FARQ, FHRO, FL.GQ, FLNO, FLYO, FRV0, FTRO, FVCO, CRV, CLV, CI
*NCIQUT =25

FRY
FHID

FRV
FHI

FRV
FHI

FRV
FHI

FRY
FHD

FRY
FHD

FRY
FHI

PRV
FHI

FRY
FHU

20.
19.
19.
21.

24.

e

v N

o

oapw BN
24.

24

1.39600000
56.1983471

0.85086878
96.92120419

1.58567986
56. 8334996

0.87358286
57.0084605

1.62192528
56.7579594

0.89433126
96. 8377607

1.65475157
56. 5338005

0. 91342323
96. 6051521

1.68449157
96. 2998931

QUTFUT T, PRV, FLN, PAO, PHI,
SET CINT=0.02,NSTP=1,MAXT=0.010
START
T 0.
PAG 80.0000000
T 0.30000000
FAD 100.880641
T 1.00000000
FAD 742731870
T 1.50000000
PAD 99. 1535674
T 2.00000000
FAQ 73.5418443
T 2.50000000
FAQ 98. 235464651
T 3.00000000
FAQ 73.0300194
T 3.50000000
FAOD 97.8142421
T 4.00000000
FAD 72.6692007
FRINT "NCIPRN"=4,T,FRV, FLN, FLVO, FRVO
L. INE T FRV
0 0. 1.5960000
4 0.0800000 11.579815
8 0.1600000 21.410190
12 0.2400000 25. 903454
14 0.3200000 26. 869540
20 0.4000000 27.324480
24 0.4800000 6. 1052156
28 0. 5600000 0. 9427592
32 0. 6400000 1.1002612
38 0.7200000 1.2256486
40 0. 8000000 1.3401452
44 0. 8800000 1.4448501
48 0. 92600000 1. 5407508
5a 1.0400000 6. 5501247
Sé 11200000 16. 469192
60 1.2000000 24. 830554
b4 1.2800000 27.213663
68 1.3600000 27.831076

LN FLLVO
000000 -7.576E-19
828992 -4.612E~19
?12234 -1.701E-19
978930 2467.24770
074300 287.50230
4746994 279.16393
917478 -7.689E-19
817419 -9.213E-19
. 046745 -8 629E-19
. 307887 8. 146E-19
LEH99530  -7.744E~19
. 920415 -7 . 410E-19
. 269336 ~7.131E-19
. 766080 -5 G89E-19
. 797370 -2.778E-19
.A63533 1.2038419
. 752947 281.51563
.G16663 27673555

FLN 2

<

. 0000

FLN

™3
4}

L4171

FLN 20.9339

FLN 26. 0932

FLN 21.4780

FLN 26.7111

PLN 21.9627

FLN 27.2808

FLN 22.4132

FRVO
-1.840E-19
-8. 249E-20

11522742
301.88444
215.01840
142. 11424
.941E-19
. 385E~19
L295E~-19
.208E~19
C126E-19
. 048E-19
.973E-19
CAZ2E-L9
. 288E-20
259.00168
266.20886
178.03178

LR
o

i
PIPIPI RIS

Figure A8-9. Output Stream from PHYSBE Model
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ACSL. RUN-TIME EXEC
FHYSIOLOGICAL SIMULATION BENCHMARK EXPERIMENT

VERSION 1 LEVEL

17.

0.
1.

b et et

ey

11.

21,
27.
28.
28.
. 4187495
.010?16u

[« R Y .

v

&osd .

28.

ol
£

17.

P‘ﬁi‘h‘HP*O

T., PRNFLT=.F.

LLINE T
72 1.4400000
76 1.5200000
80 1.6000000
84 1.46800000
88 1.7600000
P 1.8400000
?6 1.92200000

100 2.0000000
104 £.0800000
108 2.1600000
112 2.2400000
116 2.3200000
120 2.4000000
124 2. 4800000
128 2.5600000
132 2.6400000
136 2.7200000
140 2. 8000000
144 2.8800000
148 £.9600000
152 3.0400000
156 3.1200000
160 3.2000000
1464 3.2800000
1468 3.3600000
172 3.4400000
176 3.5200000
180 3.6000000
184 3.6800000
188 3.7600000
192 3.8400000
196 3.9200000
200 4.0000000

S STRPLT=.

FLOT FRVO.FLN, FRV

S CALPLT

FLOT PRV, FLN

FRY
074435
9124997

0593256

. 1930849
. 3150978

265501

. 5285069

6219253

"\” I:."?
501388
110493
236425
727497

J27750

.“8‘”971
. 4010590
. 850930649
. 6083708
. 8350133
17.

185497
947598
458590
.107288
857531
P535880

1050721

2429967

. 3687316
. AB3507S
. 5884298

. 6844914

» CALFPLT=,

=, T., GRICFL=.T., FRNFLT=.

PIPINIPIDS

PO DL O

SEXES
3 B3

>,
S AT
- N3

»3

ol
£l

"H..

~
&

Sy

Load .

24.

oy
&
L R

298251
21,
o1

elel
L Kos

oy

4. 843446
26

o
&

ol
£

oM

FLN

202923
. 884333
. 070429
.290124
. 542032
. 824822
137220
. 478004
265876
”1.

275058

. 155388
M. 315120

. 7846136
26.
26.

B27306
073132
2853196
467109

.713473

990948
753322
737983
457848

687059

. 404736
27.
26.

060560

202135

25.379148

25,
24.
23
. 108481
L 413205
» GROSFL=.T,

R
£

ey
£ ke

F.

T.

SP013%0
8334694

2.6812666
277.11008
72. 46700
LG27E-19
. 264E~19
~8. 656E~-19
L 183E-19
. 73GE~

.387E~19
.Q097E-19

-6 . 895E~19

» STRPLT=.F

Figure A8-10. Output Stream from PHYSBE Model
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81707713, 15.17.20.
(FHYSRE)

FLVO FRYO
~3.8574E~19 -9 128E-20
-9.390E-19 -2.497E~-19
-8.772E-19 -2.401E-19
-8.260E~-19 -2.310E-19
~7.838E~-19 -2 223E-19
-7.482E-19 ~2.140E~-19
-7.187E-19 ~-2.061E-19
-&. P41E~19 -1 988E~19
-4, 146E-19 9. 494E-20
~1.388E~19 48. 177692

265, 84208 304‘23883
£76. 68971 224.71582
268.98179 149 33546
~7.490E-19 ~-2.041E-19
-8.985E-19 -2 506E-19
~8. 432E~19 -2, 410E-19
-7.972E-19 -2 318E-19
-7 .591E~19 -2, 231E~19
~7.273E-19 -2.148E-19
~=7.007E-19 -2.069E-19
~5.495E-19  ~1.492E-19
-2.730E-19 -4 552E-20

268. 44232
278.08799
186.17147
~9.547E-20
L611E-19
LS10E-19
.A14E-19
C3R2E-19
. 23GE~19
152E~19
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IMENT

(PHYSBE)

.

p

-

[

PRY
20.0

—

28.0 0.00

23.0

PLN

[

4,00 18.0

=102

2.00

FRUO

0.060

O—5h

Figure A8-

11. Strip Plot of Right Ventricle and Lung Pressure and Right Ventricle Flow
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ACSL RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/13. 15.17.20. PAGE 3
FHYSIOLOBGICAL SIMULATION BENCHMARK EXFERIMENT (FHYSBE)

FRY A 0. 4.000000 8.000000 12.00000 14.00000 20.00000 24.00000 28.00000 32.00000 36.00000 40.00000
PLN B 18.00000 19.00000 20.00000 21.00000 22.00000 23.00000 24.00000 25.00000 26.00000 27.00000 28.00000

T XAXIS .
0. .

0.800000 ...

1. 600000

2.400000 .

3.200000 ..

4.000000 ...
STOP

END DISSPLA ~- 3039 VECTORS GENERATED IN 2 PLOT FRAMES

2353 WORDS TABLE SPACE USEDR

Figure A8-12. Plot of Right Ventricle and Lung Pressures from PHYSBE Model
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PHYSIOLOGICAL SIMULATION BENCHMARK EXPER
IMENT (PHYSBE)
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Figure A8-13. Line Plot of Right Ventricle and Lung Pressures from PHYSBE Model
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9. PHASE AND GAIN

‘ The accompanying program was put together to calculate and plot the phase and gain through the plant
described by the following transfer function

X 0.5s+ 1

Y - 00 = o rolstl

The characteristics were to be obtained by forcing the model with a sine wave and determining the in-phase
and quadrature components, from which gain and phase can be calculated. Changing frequency slowly allows
successive points to be calculated until, at the end of a single run, the complete Bode plot can be generated.
This method is a relatively expensive way to obtain frequency response and is almost never justified for linear
systems. For a non-linear plant though, this method is the best one available and can be used to match bench
tests on hardware with a sinewave generator. Care must be taken to choose the excitation amplitude correctly
and also make sure the model is in steady state while the measurements are made.

The program listing is given in Figure A9-1 and A9-2 and should be followed through the following
discussion. The basic action is to establish a separate DERIVATIVE block, which will repeat every cycle of
the current frequency, and which examines the inphase and quadrature components of a full cycle integration.
When the change in phase from cycle to cycle is small enough, the data point is recorded and the frequency
changed so that another point can be calculated. In the program, the INITIAL section sets the first frequency,
W, and phase, FI. The frequency is started at the maximum value and will be reduced geometrically by:

W = AMAX1(WMN, KW*W)

so that the final logarithmic plot will have equally spaced points. For this application KW was defined to be
0.8 and the frequency sweep was from a maximum value (WMX) of 100.0 down to a minimum value (WMN)
of 1.0. Next go to the second DERIVATIVE section listed in Figure A9-2 where the plant is defined - this
is identified as DERIVATIVE CONTIN. First the name for the step size is.defined (MAXTC) and set to
zero to indicate that it is calculated elsewhere in the model. The frequency bounds, WMN and WMX, are
specified together with the amplitude of the forcing function (XMAG) and the settling time (TSETTL=2.0).
Since the plant is linear the value of the XMAG has no effect but for a real non-linear plant this value should
be chosen to match the plant capability. The actual forcing function X is obtained from:

X = XMAG*SIN(W*T + FI)

where FI is a parameter used to ensure continuity of X, when the frequency W is changed. The model is
defined by the transfer operator, TRAN, and numerator and denominator polynomials. The numerator
coefficients are 0.5 and 1.0; the denominator coefficients 0.03, 0.1 and 1.0. In addition we specify a maximum
step size (MAXTZ) of 0.050 sec chosen conservatively from the plant roots of (-1.5+j6) and a minimum
divisor (NSTPMN) of the period. This really says that no matter how fast the drive sine wave is, use a
calculation interval of at least a tenth (NSTPMN=10) of the period. As the frequency get slower and slower,
don’t allow the step size to rise above MAXTZ (=0.050). This is performed by the line in the DISCRETE
section above which calculates MAXTC or:

MAXTC = AMINI(PERIOD/NSTPMN, MAXTZ)

The output (Y) of the plant is obtained using the TRAN operator which can be used to represent a general
polynomial transfer function i.e.

Y = TRAN(, 2, A, B, X)

and then the in-phase (P) and quadrature (Q) components are obtained by multiplying the output (Y) by
Sin(W*T + FI) and Cos(W*T + FI) respectively and integrating.
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Returning to the DISCRETE code of Figure A9-1, the first calculation is to obtain the change in the
in-phase and quadrature components since the last cycle i.e.

DLP =P - PP
DLQ = Q- QP
Since PP and QP are initialized to large numbers, the first time the difference will be large.

The termination condition (TERMT) is inserted in case a frequency is chosen such that the attenuation
is too great for the machine precision. For 32 bit computers, EPM shold probably be set to 0.0001 which will
still give room for nearly 80 dB attenuation. If the change from cycle to cycle in P and Q is less than the
machine precision, the increments will be zero and the logarithm will fail further on in calculating the gain
(GDBN). Once the increment has been calculated, the current values of P and Q are saved to become the
previous values (PP and QP) next time. The phase and gain over the last cycle are calculated from

PHASE = ATAN[AQ/AP]
GAIN = 10.0*LOG10[(AP? + AQ2) (W/m)2]

If the new phase differs from the last phase by too much (nominally 0.1 degrees) then the data save operation
is skipped. Similarly if a settling time (TSETTL) has not passed, another cycle is taken. If both these tests
are passed then the phase, gain and frequency are transferred to separately named variables PDG, GDB and
WFR which will be used for plotting. Next the frequency W is decreased geometrically and the phase (FI)
of the forcing function adjusted to give continuity in the output. This helps ensure a shorter settling time
between frequency changes. The previous phase is set to a large number so that the integration over the first
cycle will be rejected and lastly the data logging routine, LOG, is called in order to force an output and data
recording action at this point. Recall that the communication interval CINT was set to 1000.0 in the beginning
of the model definition with the intent that this will produce no output beyond the first time-equal-zero point.
All the other output will be obtained every time LOG is called indicating a new frequency point is being
recorded.

For all cases we then make the previous phase (PDGP) equal to the new phase (PDGN), ready for next
time, recalculate the PERIOD and a new step size for the continuous section. These last two calculations only
need to be done when the frequency changes but are put here in order to handle the initialization problem
rather than repeat the code in the INITIAL section.

The output stream that results in exercising the model is shown in Figures A9-3. Note the frequency
multiplier KW was changed to 0.9 from the nominal 0.8 in order to increase the point density to 23 per decade
so producing smoother plots. The plot was modified to appear on both normal line plot (CALPLT=.T.) as
well as the default printer plot using a logarithmic x-axis scale. With this logarithmic scale a minimum must
be specified to avoid the rounding to zero which is expressed symbolically as the contents of WMN (=1.0
rad/sec) i.e.

PLOT ‘XLOG, ‘XLO’ = WMN, PDG, GDB
The resulting pictures are shown in Figures A9-4 and A9-5.

These plots were made in one simulation run stopping every so often to change the drive frequency to
a new value. Examination of the last value of time showed that it needed 242 seconds of simulated time to
complete the sweep, which explains why it is usually considered an expensive picture to obtain. Individual
transient studies will be over in three or four seconds or so whereas this run needs effectively sixty transient
runs.
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TABLE A9-1. Comparison of Measured and Theoretical Gain (dB) and Phase (degree)

w GDBM GDBT PDGM PDGT
90.00 -14.612 -14.617 -88.64 -89.14
31.38 -5.230 -5.232 -87.47 -87.37
10.94 5.916 +5.920 -77.47 -717.47
3.090 7.484 +7.484 +33.67 +33.67
1.000 : 1.188 +1.188 +20.68 +20.68

From an independent run with a listing of time, T, along with the frequency, phase and gain, it can be
shown that the high frequency points can be obtained quickly. In fact it takes 35 seconds to sweep the
frequency from 100 down to 10 radian/second and a further 186 seconds to go from 10 down to 1 radian/
second. The reason for this is that we must wait at least one complete cycle and at 1 radian/second each
measurement is taking over six seconds.

One caveat is in order in running this type of program and that is errors caused by non-steady-state
operating conditions. At low attenuations, the drive signal dominates in the P and Q integrators but when the
plant attenuation becomes high, the residual motion excited by the start up transient or frequency switch can
become important. An idea of the magnitude of the effect can be obtained by looking at the irregularity in
the phase plot when the frequency is over 20 radians/second. The plot should theoretically be smooth and
monatonic negative as the phase asymtotically approaches -90 degrees. In the output stream of Figure A9-3,
the phase at 72.9 radians/second is given as -87.8 degrees but at the next frequency point of 65.6 it has gone
back to -89.3. This change of 1.5 degrees in the wrong direction must be an artifact of the measurement
implementation.

We have done an empirical study of this phenomenon and found that better results are obtained with
heavier damped systems (shorter settling times) and certainly when the attenuation is relatively small. If
problems occur, experimentation with the phase change error parameter (EPDG) can help or else add a fixed
settling time after each frequency change so that the system has time to get to a steady state before the
measurement is taken. As a test of the accuracy, we evaluated the theoretical gain and phase at five selected
frequency points and the comparison is listed in Table A9-1. Note the phase error of half a degree at high
frequencies. A second run is made with the allowable phase error EPDG changed to 0.01 (from 0.1). This
forced slightly longer settling times so that the overall sweep time was 269 seconds (up from 242 seconds)
and the measured phase at a frequency of 90 radians/second was now -89.07 degrees (theoretical is -89.14
degrees). The increased settling time was seen in that the measurement at W = 100 was available at 2.51
sec (was 2.01) and that at W = 90 was produced at 3.84 seconds (was 2.29). At lower frequencies, the tighter
constraint had little effect since settling has occurred within the first cycle anyway.
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RRKIOKKKKATIVANCED CONTINUQUS  STMULATION  LANGUAGEXOKKIOIOOK AKX
ACSL TRANSLATOR VERSION 1 LEVEL 6F 81/07/20. 13.36. 31, FAGE 1

FROGRAM FHASE AN GAIN

oo e e COMPUTE. FHASE. AND GAIN OF A GIVEN *
* TRANSFER FUNCTION BY INTEGRATING OVER A COMPLETE CYCLE. *

" CONTINUE TO INTEGRATE UNTIL FHASE CHANGE FROM CYCLE TO CYCLE *
* I8 LESS THAN SOME FPRESET MINIMUM *

CINTERVAL CINT = 1000.0

NSTEFS NSTF = 1

CONSTANT RMN = 1.0E~-30 , RMX = 1.0E30
INITIAL

ot e e = GETFIRST FREQUENCY AND PHASE *

W = WMX

FI = 0.0

B o SET PREVIOUS *

FF = RMX

aF = RMX

POGF = RMX

B e INITIALISE FLOT UARIAELES *

FIG = 0.0

GDE = 0.0

WFR = 0.0

ENIY $* OF INITIAL *

NERIVATIVE DISCRETE

ALGORITHM Iakn = 0

MINTERVAL PERIOD = 0.0 4" INDICATE PERIOD WILL RE CALULATED®
CONSTANT . RADDEG = §7.3 » FI = 31415

CONSTANT EFDG = 0.1 » EFM = 1.0E~7

CONSTANT KW = 0.8 » TSTP = 10000.0

FROCEDURAL
e CHANGE. TN IN~-FHASE AND QUADRATURE INTEG *

" RALS OVER LLAST CYCLE *
nLF = P -~ PP
nL.@ = @ - QF

¥ o e TERELATIVE CHANGE TOO SMALL FOR MACH ACC”
TERMT CCOLFXKR + DLOXKZ) /(PRK2 + QXX2 + RMN) . LT. EPMXK2)
B e SAVE NEW INTEGRALS AS PREVIOUS *

aF = Q
e CALCULATE. NEW PHASE AND GAIN °

POGN = ATAN2(DLQ, DLF + RMN)XRADDEG

GDEN = 10.0KALOGLOC(ILPKX2 + DLAXK2)K(W/ (FIKXMAG) ) XX2)

Wt e TF O CHANGE. TN PHASE NOT SMALL ENOUGH YET *
IF (ARS(FDGN ~ POGF) .GT. EFDG) GO TO SKIF1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ IGNORE RESULTS UNTIL AFTER SETTLING TIME *
IFCT .LT. TSETTL) GO TO SKIF1.
B e e e e TERMINATE ON FREQUENCY SWEEF *

Figure A9-1. Model Definition Listing for Phase and Gain Study
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END

ooKATIVANCETD CONTINUOUE  STMULATION  LANGUAGEXO kKKK
ACSL TRANSLATOR VERGION 1 LEVEL &F 81707720, 13.3646.51. FaGE 2

TERMT (W | LE. WMN)

s s e e SOV UET QAL TN BEFARAGTE NaAME FOR PLOTTING ®

FIG = PIIGN

GIE = GREN

WF K o

W = AMAX L CWHN, KWXW)

B (000 cess 40nt oomn sust 5200 sses osn suns sore nese 4sse sese sare sams seme mese B0t sese aven avee sets sern (:'_ ff-\l L [“_ l! ’.., h r ‘Z N !. '/J ;Z'.' !.‘ {\l f.; i' F [:] I',: (': [" N 'I' L N lj [ ‘]" \" ]

" OF FORCING FUNCTION AT NEW FREGUENCY *©

FI = FI + THWFR ~ W)

B ree tree tve vonn s00s 1010 G1ne anae ers 0s Shen oren Bese b4 2008 3en0 bees Bite Bse Shee Weee seve Fese E’ NS lJ F\' {: F‘R E' U [ nlj s'; F' ’.IA 8 F’ 8 E‘ r 'T (] F' t] F,:(:’ tz {}' T L

i LEAST TuO CYCLES "

FIGN = KMX

B ies veet tes dues 0400 baee sane buse oabe Sbes sone sone eust sens aess Sssb She suse besh Sus ek ssee bese F' L] R ["' l; ﬁ I:l A 'r ’3‘ L. L" U C.; 1 N G {_“ (: 'r ] a N L]
call LOG
SRIFPL. .  CONTINUE
M ot o e e e R GET O PREVIOUS PHASE FOR NEXT TIME ®
FOGF = FIGN
FERIOD = 2 0XFI/W
MAXTE = AMINL(PERIODZNSTRFMN, MAXTXZ)

ENDY $* OF PROCEDURAL °®
TERMT(T .GT. TS8TH)

¢ OF DISCRETE *

DERIVATIVE CONTIN

ENI

MAXTERVAL MAXTC = 0.0
CONSTANT WMN = 1.0 » WMX = 1000
CONSTANT XMaG = 1.0 s THETTL = 2.0

X = XMAGKSIN(WXT + FID)

T B s e cnee sas dere sese cane sase sese Satn s4se 2000 sene aReD S0mb 4is wers SHSS 4010 sEen aoeb aset Sins D [ '« INE MO I:l !' "
REAL. ACEY, RBOK)
CONSTANT A= 0.5, 1.0 ;» B o= 003, 0.1, 1.0
CONSTANT MAXTXZ = 0,080 » NSTPFMN = 10.0
Y = TRANCL, 2, &, K, X)
100 saes S0se Sasa S4mb Soes 40se wese 2RED BEke Shen oBew Seke SRR UR0E Shel shas BORS Suen Seve SWve SAR® oars ’l N " I:." G R ﬁ T L‘: '."' n r.,: '[ N . F' ” ﬁ 8 l“‘ !“3' N I:( Q U ﬁ I[ F{ {,’.‘] I U R E (': (3 i'v‘i #
= INTEGOYRGEINCWXT + FI), 0.0)
= INTEG(YXCOS(WET + FI)., O.0)

-
iTDoom

$" 0F CONTINUOUS SECTION *

ENI $° OF PROGRAM *

Figure A9-2. Model Definition Listing for Phase and Gain Study
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ACSL

RUN-TIME EXEC VERSION 1 LEVEL 6M 81/07/20. 13.37.43.

S TITLE=*FHASE AND GAIN OF A TRANSFER FUNCTION®
SET TCWFRN=72 4* FORCE OUTPUT WIDNTH TO FIT ON FPAGE *
OUTFUT WFR, GOE, FIIG

FREFAR

SET KW=0.9

START

S CALPLT=.T.

PLOT

WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR-
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR
WFR

*XLOG",

WFR, GIR, FIG, T, BLF, DL.Q

FAGE

0. GIR 0. FRG 0.
100. 000000 GIE-15. 5339830 FIG-89. 4828190
20. 0000000 GIR-14. 6119512 FIG-88. 6436703
81. 0000000 GIR-13. 68680842 FIG-88. 1866592
72.9000000 GOR-12. 76535032 FOG-87. B266695
65. 6100000 GOR-11.8405518 FRG-89 . 3292461
59.0490000 GIR-10. 2121528 FIRG-88. 9555216
53.1441000 GOR-9. 97898569 FIG-87. 8230158
47 8296900 GIR-9. 04064204 FIG-88. 7937635
43 . 04467210 GIR-8. 09906553 FRG~88. 0034209
38.7420489 GIR-7. 15376933 FRG-846. 7765993
34.8678440 GIR-&. 19762809 FIG-87. 4969789
31.3810896 GOR-3. 23020223 FOG~87.4719048
28. 2429536 GOR-4. 255089461 FOG-86. 8380793
25.4186583 GIR-3. 25076861 FLOG~87. 2079492
22.8767925 GIR-2. 25563316 FOG-85. 9499742
20.5891132 GoE-1. 21329761 FOG-8%. 7098543
18. 5302019 GOR-0. 15270019 FRG-84. 8512870
146.6771817 GIR 0.98163307 FIG-84. 6636226
15. 0094635 GUOR. 2.08723526 PUG-82. 9781036
13.5088172 GIOR 3.29087721 FIDG-81. 6269574
2.1576655 GOR 4.56177919 FIG-79. 8609486
10.9418989 GIER 5.914640044 FRG-77. 4747302
?.84770902 GIDE 7.39443458 POG~74. 1437063
8.86293812 GDE 8.95048332 FIG~69. 5784310
7.97664431 GIE 10. 6294689 FOG-&62. 7842192
7.17897988 GIR 12.31766%94 POG-S2. 8597177
6.46108189 GOR 13.7611058 FIG-38. 5498530
%5.81497370 GIR 14.44616674 FIG~20. 4125257
5. 23347633 GIR 14 0973675 FIG-2. 11206446
4.71012870 GIR 12.9260854 FOG 12.3714693
4.23911583 GIE 11.4640791 FOG 22.1337918
3.81520424 GDE 10.011319%5 FIOG 28. 2251367
3.43368382 GIDE 8.467307197 FRG 31.8013975
3.09031544 GOR 7.48419450 FOG 33.6716777
2.78128389 GDE 4.43282308 FIOG 34.3740970
2.90315550 GDR 5.50769463 FIIG 34. 2452681
225283995 GIE 4.469464146467 FIIG 33. 5226479
2.02755596 GIR 3.98711998 FLG 32.3719701
1.824800346 GIOE 3. 346962092 FIG 30.9191840
1.64232033 GIR 2.83474951 PG 29. 2622764
1.47808829 GOE 2.37411194 PG 27.4796699
1.33027944 GOR 1.97983743 PRG 25, 6343745
1.19725152 GIIR 1.4644446882 FIG 23.77646047
1.07752637 GDR 1.346094389 FOG 21. 9455378
1.00000000 GIR 1.18775786 FOG 20. 6805527
1.00000000 GDE 1.187757864 FOG 20. 6805527
+ GROCPL=.T. \
*XLO"=WMN, FDG, GIIR

Figure A9-3. Output Stream from Phase and Gain Model
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ACSL RUN-TIME EXEC VERSION 1 LEVEL éM 81/07/20. 13.37.43. FAGE 2
PHASE AND GAIN OF A TRANSFER FUNCTION

. PDG A -100.0000 -80.00000 ~40.00000 ~40.00000 ~20.00000 0. 20.00000 40.00000 60.00000 80.00000 100.0000
GDB B -20.00000 -14.00000 —12.00000 8.000000 -4.000000 0. 2.000000 8000000 12.00000 16.00000 20.00000
WFR XAXIS . . . . . . ) X . . .

BOKKCO) . Lo T ...... 1 ........................................
. B 1?
B T a

Voo

10%K(¢1)

10:*(2).:..A,Z ............. [ D e
sTOP

Figure A9-4. Plot of Phase and Gain against Frequency in Radians/second
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10. MISSILE AIRFRAME MODEL

This example was chosen to show the use of vector operators, vector integration and to demonstrate how
other standard FORTRAN subroutines can be incorporated into a simulation model. It is the six degree-of-
freedom model of an uncontrolled ground-to-air missile with the simulation configured to produce transient
responses to control surface deflections. For use in a missile system evaluation, the model would have to be
extended to include a target, target sensor or seeker, guidance law and autopilot as well as expand the
aerodynamic and motor descriptions. This model as it stands is complicated enough and any extensions
describing actual hardware systems usually bear the burden of security classification.

In order to develop the missile model, we must define axis systems and the angles that transform between
different frames. The axis system used in this model has the second or y-axis pointing up, and is found
commonly in models developed for ground launched missiles (HAWK, PATRIOT). The other major school
of thought orients the axes with third or z-axis pointing down, and this tends to be used by missile engineers
who have graduated from airplane development. Models can be built in any system of axes, but for consistency,
all frames in the simulation should become parallel when the orientation angles become zero.

For this example model, the reference or E frame has the El axis horizontal and down range, E2 or
vertical (up) and E3 is crossrange, horizontal, out to the right to form a right hand set. The origin of the frame
is normally on the ground but since we don’t compensate the atmospheric density table look-up for ground
altitude, in this case the origin is assumed to sit at sea level. All velocity and range vectors are normally
expressed as components in this frame unless deliberately specified otherwise. The missile frame, shown in
Figures A10-1 and A10-2 has M1 out of the nose along the center line, M2 along fin one (normally viewed
vertically or up) and M3 out to the right along fin two. The two frames are connected by an euler sequence
of rotations starting at the ground reference or E frame. ¥y (SIM) to the left about E2, 8, (THM) up about
the new three axis E3’ followed by ¢y (FIM) about the new one axis which should now be M1 to align the
two and three axes with M2 and M3. The control fin deflections are shown in Figure A10-1 in their positive
sense - trailing edge right for fins one and three, trailing edge down for fins two and four.

Units adopted in the model are derived from the slug as the unit of mass, the foot as the unit of length
and the second as the unit of time. Recently the US Department of Defense has begun to require metric sizing
with models developed using kilogram, meter, second as the fundamental units. Most of the existing missiles
however are sized in English units.

In developing the simulation model it is important that all units be consistent and fundamental, since
over half of all simulation errors can be said to be the fault of unit misconceptions, either in the equations
or in the constant values. It is strongly recommended that non-basic units such as degrees or gees be eliminated
from the model equations (use radians for angles and feet/second squared or meters/second squared for
acceleration): Variables can be transformed in the DYNAMIC section for output into auxiliary units but keep
the internal scaling within the model consistent.

The simulation model definition code is listed in Figures A10-3 through A10-6. In the INITIAL section,
the integration algorithm is specified as second order, fixed step (IALG = 4); the step size is 10 msec (MAXT
= 0.010); the communication interval divisor is unity (NSTP = 1) and a communication interval of 20 msec
is defined. A subroutine INIT(A) is called to pass the current stability derivative matrix, A, to the aerodynam-
ic table generators. Normally the aerodynamic tables would be real data stored in the external subroutines
and the INITIAL section would be concerned with launch angles, taking into account the position and velocity
of a target.
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KAORIOKKKKKATVANCEDT  CONTINUOUS
TRANSLLATOR VERSION 1 LEVEL &F

- MISSTLE AIRFRAME MODEL

SIMULATION
gr/708/11.

LANGU

ACSL. 17.46.

FROGRAM

== GENERIC MISGILE AIRFRAME

AGENOR o0k kKK

al. FAGE 1

MODEL I8

REVELOFED USING

VECTORS FOR AlLL

THREE DIMENSTONAL

QUANTITIES.

THIS MODEL WILL RESPOND TO FIN DE

CCTIONS S0 REPRESENTING THE "

OFEN LOOF AIRFRAME RESPONSE AND NEENS & SEEKER,

AUTOFILOT, *

ACTUATOR,
EFFECTIVENESS

MOTOR

AN

Ir TARGET MOQULE IN ORDER TO EVALUATE

FUTDANCE"

INITIAL

ALGORITHM
MAXTERVAL
NSTEFS

CINTERVAL

TALG
MAXT
NSTF
CINT

4
0.010
1
0.020

# H o#o#

e PAGE STAR

ILITY DERI

VATIVE MATRIX TO THE °®

COEFFICIENT GENERATION

SUBRROUTINE

CALL INIT(A)

END $" OF INITIAL *
DYNAMIC
NERIVATIVE
B e s s e s s o s o e o LN TR ONMENT  MODULE

e e JUEF TNE. ARRAYS AND CONSTANTS FOR MODULE *
CONSTANT G o= 32.2
B SOUND ~ FUNCTION ALTITUDE *

e JELOCTTY OF
1,

OF
TARLE Vs,

/7 0.0

10

, 1. 0E4 2 0E4 3. 0E4 4 OE4

; 4.0E4 s &.0E4 s 7.0E4 ;» 8.0E4 s ?.0E4
» 11865 . 1077.4 5, 1036.4 , 994.8 » 9681 ..
s 9481 » 9481 : 970.9 2 9776 » 984.3 7/

.RO,
/7 0.0

e OB OF ATMOSFHERIC
1, 10

DENGITY

TARL.E

1.0E4 2.0FE4 3.0E4 4. 0FEA

» 9. 0E4 » 6.0E4 » 7.0EA4 » B.0E4 ¢ ?.0E4
s =6.04191 , ~6.34502 , —6.467084 ,~7.02346 , 7. 43995
2 =7.91851 , ~-8.3946464 , -8.87953 , -9.36448 , -9 87239/

RO

e CALCUHLATE. ACTUAL
EXFU.RO(RM(2)))

ATMOSFHERIC DENSITY

H oM T GG TLE ATRFRAME MODULE ®

B o oo c0an G4ss s 3000 ot 0000 Socm 2100 4000 S004 20ut 4100 one B14m S1ve et Sa0n Sres 4000 00w 4bet r.| E F’ T N E L

REAL. ME(?), VUMM(3),
REAIL. UM(3), UMD(3),
REAL. WM(3), WMIC3),

ARRAYS AND CONSTANTS FOR MODULE
NMO3), NMEC(3), DLG4), CodE3), C(6H)
UMIC(3), RM(3), RMIR(3), RMIC(3)
WMICC3), AC30)

u ..-...........‘.‘......‘...m.-.‘..-......‘.‘......................‘...........,.-.M T SS T L‘:‘ L]

CONSTANT E = 3. 95

DIMENSTONAL CONSTANTS
CRAR 5. 62

3

Figure A10-3. Listing of Model Definition for Missile Airframe Simulation
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AOROCIOICKIKKATIVANCET - CONTINUOUSG  SIMULATION  LANGUAGEXRKOKKKKK
ACSL. TRANSLATOR VERSION 1 LEVEL &F 81/08/11. 17.46.51. FAGE 2

s DXREF = .40

( UN‘S YANT

s INTTTAL. CONDITION VALUES ®
t IC 0.0 » THMIC = 0.0
[ (JN‘nrﬁNT FIMIC = 0.0 ;o WMIC = 3%0.0
CONSTANT UMIC = 2154.8, 2%0.0
CONS mm RML( = 0.0, 10000.0, 0.0
1 e o e QIEFINE ELEMENTS OF STARILITY DERIVATIVE "
" HATRJX LTNI”'AR (-\E.hOIIAT(\ IS ASSUMED FOR SIMPLICITY IN SUBRROUTINE®
" COEFF. NON-LINEAR AERODATA MAY BE INCORFORATED RY REWRITING *
" THIS SUBROUTINE *
CONSTANT A = .-
0. 148 0.0 » 0.0 ’
0.0 -Q. 26 » 0.0 0.0 »
0.0 0.0 =026 0.0 ,
¥ 0 ?

0.0 0.0
-, 286
286 (). 0

.0
.0
.0

.0

- . - o~
O R

.0 0. 528 Q. 0.0 2.0
0.0 (). QO 0. 528 s 0.0 0.0
wmmm e QUL BAMPING - FUNCT lUN QF MACH NUMBER "
TARLE (“l Fe 1, & -
/0.0 s 0.8 > 1.0 » 1.2 » 2.0
L0021 s =021 s 0. 20 s =019 »=0.18 /
B e s s00e 1000 cnen e sors ahes 220t 0000 sons suse sens R — ..Fl '[TCH I]AM"‘-ING o F'l,NCT‘[ON OF' HAE'}H Nl’MHER []
TARLE (,MQ: 1, 5 R
/0.0 ;0.8 s 1.0 » 1.2 ’
y 3.8 s =20 g W s2. 0 yo

*~Jcooo

P e e e

.0
.1 Ve

Py M2

e MAGNT TUDE. OF MISSILE VELOCITY *

MUM = SART(HOT (UM, UM))

e e MAKE. KMEX MATRIX FROM ORIENTATION ANGLES *
CALL MMK(ME = FIM, 1, THM, 3, SIM, 2)

B e oot ta1a e e vt 4are 001 4r0n anen eme ones sase 0sa onen sere anvn o ....,..RO"A"[E‘ vE'L'nC‘[TY "0 MISSILE FF‘:AME: L]

CALL VECROT (UMM = UM, ME)

W o e | ATERAL. AN VERTICAL ANGLES OF ATTACK *
ALz = ATANC-UMMC3) /UMM(1))

AL3 = ATANC UMM(2) ZUMM(1))

W e e e MACH. NUMBER  ANII TIYNAMIC PRESSURE *

MACH = MUM/US(RM(2))

Q = 0. SKROKMUMKRS

o e CALCULATE. DAMPING DERIVATIVES *
FROCEDURAL (CDI = MUM, MACH, WM)

coo) = Q. GKCLP (MACH Y RERWM (1) /MUN
Covy = 0. S¥CHMA(MACH) XCRAR/MUM
Coe2) = COUVXWM(2)

Cne3) = COUVKWM(3)

END $° OF PROCEDURAL

B o e e e (FET MOMENTS ANDD FORCE AERO COEFFICIENTS *
" AND CORRECT LATERAL MOMENTS FOR SHIFT IN CENTRE OF GRAVITY *

" POSITION *
FPROCEDURAL (C = ALZ2, AL3, I, MACH, DXCGE, IXREF)

CALL COEFF(C = ALZ2, AL3, .. MACH)

co) = () - (DXCG . DXREF)IXC(6) /CRAR

3 = C(3) + (OXCEG ~ DIXREF)YXC(H) /CBRAR
END $* OF PROCEDURAL *

B v s e e AL GULATE. ACCELERATION DUE TO AERODYNAMIC®
" EFFECTS ANDO ROTATION RATE DERIVATIVES *

Figure A10-4. Listing of Model Definition for Missile Airframe Simulation
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KRRKKKKKKADVANCED  CONTINUGUS SIMULATION LANGUAGEXKKXKRKKKX
ACSL. TRANSLATOR VERSION 1 LEVEL &F 81/08/11. 17.46.51. FAGE 3

FROCEDURAL (NM, WMIr = @, C, CI, WM, MASS, IXX, 1IYY)

NM(1) = (Q%5%C<{4) + THRUST)/MASS

NMOZ2) = Q¥EXC(S) /MASS

NM(3) = QXSXC{H) /MASS

WMD(L) = QXSXBEX(C(1) + CD(1))/IXX

WHMO(E) = QXSRCEARK(C(Z) + COC2))/ZIYY + WMOL1)%UWUMC3)
WMD(3) = QXSKCHARX(C(3) + CI(3))I/ZIYY ~ WMOL)kWMOR)

END $" OF FROCEDURAL *
B e e e o e = RO TATE. ACCELERATION VECTOR TO EARTH FRAME®
CALL INVROT(NME = NM, ME)
1 o e CALCULATE VELOCITY DERIVATIVES IN THE ¥
" EARTH FRAME -~ NEEDS GRAVITY ADDING IN *
FROCEDURAL (VMDD = NME, &)
UMI(1) = NME(L)
UMnez2) NME(2) -~ G
UMD (3) NME (3)
END ¢* OF FROCEDURAL "
BB cean cee 4000 3000 4nse sms s0us asne s seos S4sk sess Soun Sate s4as Sere soss Sas0 Sres bect S438 Shen bemt Y A ld A N (':; L' E' I:l E:R I U A T '[ V l: #
SIMD = (WM(2IRCOSFIM) ~ WMIRXSINCFIM) ) Z/CO8CTHM)
P e e UNTEGRATE. FOR - ALL EULER ANGLES -~ NOTE USE®
v OF VECTOR INTEGRATOR FOR SINGLE ELEMENT °*
S5IM = INTVC(SIMI, SIMIC)
THM = INTEG(WM(Z2)XSINCFIM) + WM{3)XCOS(FIM), THMIC)
FIM = INTEGOWM(L) — SIMIXSIN(THMY. FIMIC)
B e e e e s s e e e JECTOR INTEGRATE FOR ROTATIONAL VELOCITY °
WM = INTUC (WM, WMIC)
B s eaat 0 snee 4050 aues es00 soae snse Guse soas Shse w0ss G40 abes Bene auet S0ee sese Sene rep so0s 2ba0 T I'.'(Ai\! 8 L. A 1' :[ ("}N A l._ (‘} E. L‘ [’) (: :[ ‘r Y "
UM = INTUCCUMT, UMIO)
"OATIVE VECTOR CANNOT BE A STATE VECTOR (VELOCITY) AG WELL *
CalL. XFERB(RMI = UM, 3)
RM = INTUC(RMIL RMIC)

u i

B et ceen asot 4ame 290w ones 201m vorn 24 s2um cavs S0 oume S0n sans SteR $8°8 Svun 0900 Sene avew vmen SeRE ﬁ [) 'r (’J F" M (1 Il l} l— E' L)

" YING A RBURNT OR GLINE CONDITION *
CONSTANT THRUST = 0.0 » MAGHS = B.77

CONSTANT IXX = 8.77 » IYY = 361.8

CONSTANT BXCE = 10.2

' OF DERTVATIVE *
B e e o s s s s s e e T O ON ELAFSED TIME ®

CONSTANT TETE = -
TERMTC(T L GE. TSTF)

END 4" OF DYNAMIC "

$' OF FROGRAM *

Figure A10-5. Listing of Model Definition for Missile Airframe Simulation
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RCIOORKOCKADVANCED CONTINUOUS  SIMULATION  LANGUAGE XXXk
ACSL. TRANSLATOR VERSION 1 LEVEL 6F 81/08/711. 17.4646.51. FAGE 4

SUBROUTINE INITCC)

D e e e FORTRAN. SUBROUTINE WHOSE ONLY JOE IS TO

C
c
C
¢

C

TRANSFER THE STABRILITY DERIVATIVE MATRIX TO AN ARRAY IN LARELLED
COMMON S0 THAT IT MAY RE ACCESSED IN SUBROUTINE COEFF. NOTE NO
COMMON BLOCKS MAY BE DEFINED IN THE ACSL MODEL DEFINITION SECTION

COMMON/STARI,  AChH, 5)
DATA LENGTH / 30 /

(5 - TRANGFER - BLOCK

CALL XFEREB(C, LENGTH, A)
RETURN

EXND
SUBROUTINE COEFF(ALZ2, AL3, L, MACH, ©)

(o = COMPUTES . 8IX AERODYNAMIC COEFFICIENTS ~

1

[

THREE MOMENTS, C(1), C(2) AND C(3), AND THREE FORCES, Cd4), COH)
AND C(4) . MOMENTS ARE AROUT AXES CENTRED AT THE REFERENCE FOINT
AND MUST BE CORRECTED FOR CENTRE OF GAVITY SHIFT.

INFUTS

A2 ANGLE OF ATTACK AROUT XxM2% - POSITIVE WIND FROM LEFT
ALL3 ANGLE OF ATTACK AROUT *M3% -~ POSITIVE WIND FROM ARQVE
. ARRAY OF FOUR FIN DEFLECTIONS

MACH MACH NUMEER (REAL)

OUTPUTS

C ARRAY OF SIX AERODYNAMIC COEFFICIENTS
REAL. M.<4), C{H)

COMMON/STARDY  ACH, 5D

s o o s s e i s s s o s o COMEUTE. EQUIVALENT CONTROL SURFACE TEFL~
ECTIONS FROM THE FOUR SURFACE ANGLES
n.A w ), RHKCOLC3) 4+ DLC4r — DLA1) - DL(2))
nLy = 0. F0K(0LCLY + TH.(3))
.z = 0L GOKDL(2)Y 4 TH.(4))
e o s s e s i s s s e e o (O UTE. EACH MOMENT ASSUMING IT IS LINEAR
IN EACH OF THE ARGUMENTS
no 110 J4 = 1, 6
[N D) = A0 DRDLA + ACH 2YRDLY + AL 33XDLEZ + AL 4)%aL2
+ AGHEIRALS
110 CONTINUE
RETURN

ENIE

Figure A10-6. Listing of FORTRAN Routines Included in Model Definition of Missile Airframe

Simulation
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The DERIVATIVE section is split up into logically connected code sequences or modules that help in
documenting the simulation. Modules assist in checkout since individual code sequences can be removed and
assigned to individuals for verification, so splitting a simulation development task among a team. We have
used Control Data’s UPDATE utility to maintain modules as common decks for easy access and modification.
The simulation model is then a simple DECK containing ACSL structure statements and CALLs to the
appropriate module.

In the missile airframe module, vector arrays are specified, then constants followed by the code to
compute the derivatives of the state variables. For this simplified case, the aerodynamic characteristics are
determined by values in the five by six matrix A that contains the stability derivative coefficients. Function
tables are defined for roll (CLP) and pitch/yaw (CMQ) damping as functions of Mach Number. The
following discussion now references the code section that starts in the middle of Figure A10-4. First the missile
velocity magnitude is obtained from:

MVM = SQRT(DOT(VM, VM))
where VM is a three component vector velocity in the E frame. DOT is an external function that evaluates
the dot product of two three component vectors. The next step is to form the direction cosine matrix ME, which
is a three by three matrix that transforms vectors expressed in the E frame to components in the M frame.
It can be calculated knowing the three angles ¥y, ) and ¢yy. A subroutine is available* MMK (matrix make)
which is called so:

CALL MMK(A, NA, B, NB, C, NC, M)

which makes up a direction cosine matrix M that will transform between two axis systems that are connected
by a rotation A about the NA axis, B about the NB axis and C about the NC axis. In the ACSL code the
subroutine call is expressed

CALL MMK(ME = FIM, 1, THM, 3, SIM, 2)

which tells the sorter that ME is an output of the routine. For the FORTRAN program produced the
translator will change the order of the arguments so that the outputs are on the right and ME will coincide
with M of the above call.

The next step is to use this direction cosine matrix to obtain components of the missile velocity in the
M frame from

VMM = [ME] YM®
The subroutine VECROT does this rotation and is called so:
CALL VECROT(VMM = VM, ME)

where again the order of the arguments will be inverted by the translator so that the actual FORTRAN call
will be

CALL VECROT(VM, ME, VMM).

A corresponding subroutine INVROT is used later on that performs the inverse rotation
Vi = [MEJ]' Y2

or
CALL INVROT(V1 = V2, ME)

* The three dimensional geometry subroutines are provided in an optional library ULIB.
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Lateral and vertical angles-of-attack are next calculated. The lateral angle-of-attack g (=AL?2) is the angle
between M1 and the projection of the velocity vector on to the M1 - M3 plane and is positive for a positive
rotation from M1 to the wind vector about M2 (wind from left). Vertical angle-of-attack a3 (=AL3) is the
angle between M1 and the projection of the velocity vector on the M1 - M2 plane and is positive for a positive
rotation from M1 to the wind vector about M3 (wind from above). See Figure A10-2.

—

q
_vMM3)
D

ie.

a, tan™! rad

vM(M2)
vMM1)

- ol

rad

s tan™

Atmospheric density (o0 = RO) comes from the environment module calculated by
p = poexp [LROF(h)] slugs/ft3

Height h is the component of missile range along E2 or RM(2), and the log density function is used to reduce
the dynamic range of the function and so make the straight line interpolation over 10 kft increments more
accurate. The airframe module computes dynamic pressure from

_pV?

= 55— Ib/fe?

Mach number is obtained from the velocity of sound - function of altitude - and missile velocity so

MVM

VS()

Next dimensionless damping coefficients are obtained using normalized spin rates. The missile spin rate is
expressed as a three component vector WM giving the rates as components resolved along the M1, M2 and
M3 axes. The damping coefficient components of the total moment coefficients are now given (P, Q and R
are replaced in the model by WM(1), WM(2) and WM(3) respectively):

MACH =

CD(1) = Cop(MACH) (%})
CD(2) = Cp(MACH) (%)
CD@3) = Cppq(MACH) (%‘})

From symmetry, the pitch and yaw damping derivatives are assumed identical so C,,, is used instead of
C,.r- Note since the calculation is of array elements the calculations are embedded in a PROCEDURAL block
that lets the system know that all values of the array CD are calculated within the block.
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Next the aerodynamic coefficients - three moment and three force - are calculated using a subroutine.
They can be evaluated as functions of the two angles-of-attack, ay and a3, four fin deflections 4, . . . 6, and
Mach Number, seven variables in all. One of the objects of this exercise was to study the effect of different
techniques in evaluating aerodynamic coefficients from full nonlinear tables of data to simple linear stability
derivatives. For the case shown simple linear stability derivatives were used embedded in the (A) matrix passed
to the COEFF subroutine in the INITIAL section (CALL INIT .. .). This (A) matrix is a five by six array
having components

Cgoa Cpoy Cpoz Cpa2 Cpa3
Cméa Cméy Cméz Cma?2 Cma3
(A) = Cnéa Cnoy Chéz Cna2 Cna3
CXsa CX5y CX 5z CXa2 CXa3
CYéa Cysy CYéz CYa2 CYa3
CZoa CZsy CZoz CZa2 CZa3

The effective roll, yaw and pitch fin control deflections da, éy and 6z are obtained from
0, = 0.25 (<01 - 69 + 035 + 04)
oy = 0.5 (5; + d3)
53 = 0.5 (52 + 64)

Figure A10-6 shows the implementation of subroutines COEFF and INIT to return the six component vector
C having elements.

C(1) - rolling moment coefficient, about M1
C(2) - moment coefficient about M2

C(3) - moment coefficient about M3

C(4) - force coefficient along M1

C(5) - force coefficient along M2

C(6) - force coefficient along M3

Now the aerodynamic acceleration can be obtained and stored as components of the vector ny. Aerodynamic
acceleration is that produced by aerodynamic forces and excludes gravity. This quantity is that which would
be read by any on-board accelerometers.

ny; = (@ S Cx + THRUST)/MASS
nye = q S Cy/MASS
ny3 = q S Cz/MASS
The rate accelerations have gyroscopic terms in the equations when applied to a normal spinning rigid body.
Equations of motion of a conventional aircraft have the form (neglecting Ix).
IxP = qSb Cy + (Iy - I)QR
I,Q = q S¢C,, + (I - I)RP

Now for a missile having quadrant symmetry, the lateral moments of inertia are equal i.e.,
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IY = IZ
and in addition the long thin shape assures that the roll moment of inertia is small i.e.,

Iy <<ly
Using this information the equations become

IxP = qSb [Cy+ Cop (%)]
. _ Qc

: - RS
IyR = qSTIC,+Cpq (’27 ] -IyPQ

The translational accelerations are rotated from the missile frame (M) to the ground or reference frame
(E) using subroutine INVROT which accomplishes
NME = [ME]! NMM)
The velocity derivatives are obtained by including the acceleration due to gravity
VyED = Ny ED
V2 = NyE2 . G
V(B3 = Ny, (E3)
The angular rate derivative \/./M is obtained from the standard gimbal equation
Y = (Q Cos ¢y - R Sin ¢y)/Cos Oy
and now the three angles are obtained by integrating the respective rates.
Ym = INTVC@y, ¥pic)
Om = INTEG(Qsingy + R Cos ¢p, Omic)
¢m = INTEG(P - ¥y Sinfy, dmic)

Note since the derivative is an expression, the operator INTEG must be used for 6, and ¢),. Vector integration
for Yy works since the arguments can be considered as one component vectors. An extra assignment statement

is saved since the derivative must be a unique name. The missile angular spin vector and velocity vector are
integrated from the respective accelerations by the two lines:

WM = INTVC(WMD, WMIC)
VM = INTVC(VMD, VYMIC)

The three elements of VM are transferred to the range derivative vector RMD so that the derivative has a
unique name. For vector integration the derivative cannot be a state since it is allocated to the derivative block
and the storage conflict would result. Now the three component range vector is declared to be the integral
of the three component derivative or:

RM = INTVC(RMD, RMIC)
which completes the specification of the airframe six degree of freedom module.

The last line describes the motor module - see bottom of page A10-5 - that specifies zero thrust and
constant mass and inertias. In actual practice a motor model must compute thrust as a function of time from
motor ignition and the varying mass, inertia and center of gravity position, all of which significantly effect
flight characteristics.
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The output stream from exercising the model is shown in Figures A10-7 through A10-14. Starting at
Figure A10-7, the TITLE is established and then the PREPAR list defined. Fixed fin deflections of -0.01
radians are specified for fins two and four, so that the motion is in the vertical plane - missile nose tends to
go up. After the START, conditions are established for strip chart plots (STRPLT = .T.), with grids
(GRDSPL = .T.), a half scale factor (PSFSPL = 0.5) and a longer x-axis (XINSPL = 10.0). This allows
us to stack more variables on a page and the following PLOT command produces the response of Figure A10-8.
The PRINT “ALL” command lists the numerical values which extends through the end of Figure A10-9.
Next, the ANALYZ command is used to find a trim condition, and evaluate the Jacobian and the eigen values.
Seven state variables (RM, VM and FIM) are frozen leaving five to be varied. The five roots are listed at
the top of Figure A10-10, a real pole at -4.21 and double complex poles at -1.2 + 16.7j. In order to see the
trim condition found, the state variables are transferred back to the initial conditions by REINIT and then
one pass through the code with debug output is ensured by setting the stop time (TSTP) to zero and the debug
parameter (NDBUG) to one. The START produces the debug list which extends through Figure A10-11.

The next ANALYZ command evaluates the Jacobian of the full twelve by twelve state matrix with
corresponding eigen values at the bottom of Figure A10-12. The last page of output shows moving the center
of gravity'to the rear (reference point forward) which models a launch or unburnt motor condition. The plot
of the response is shown in Figure A10-14 with the matching eigen values listed in Figure A10-13. Note the
response is more oscillatory and the dominant roots have become more unstable.

The last figure, Figure A10-15, shows the output obtained from the subroutine LISTD when a dictionary
is prepared defining all the variables used in the model. The following statements were placed in the INITIAL
section:

LOGICAL DICTN $ CONSTANT DICTN = .FALSE.
IF(DICTN) CALL LISTD(5) |
DICTN = .FALSE.

At run time DICTN was SET = .TRUE. and the START card was followed by the dictionary definitions
in alphabetical order. Note the indication at the end of the listing that shows definitions were not supplied
for SIMIC and S. See Appendix B-3 for more details.
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ACSL. RUN-TIME EXEC VERSION 1 LEVEL 6M BL08/711. 17.47 %56, FAGE

SET TITLE=*MISSILE LONGITUDINAL DYNAMICG®
FREFAR T, NM, WM, ALZ, AT, UM, 8IM, THM, FIM, MACH, Q

SET NL(2)==0. 051, M (4)=~0_ 0L, TITLE(S)="S§TEF IN FIN", "NOMINAL CG®
START

SET STRFLT=.T., GROSPL=.T.,PFEGFSPL=0. 5, XINGPL=10.0, XTISFL=2.0

§ PRNPLT=.F., TCWPRN=72

FLOT NM(2), UM(3), AL3, UM(2), THM

PRINT “NCIFRN*=35, "ALL"

L INE T NM 1) NMO2) NMO3) WML

0 0. 0. ~18. 473875 0. 0.
5 0. 1000000 0. 7%, 759493 0. 0.

10 0. 2000000 0. 11271735 0. 0.
15 0. 3000000 0. 468, 1146555 0. 0.
20 0.4000000 0. 57. 548205 0. 0.
25 0. 5000000 0. 77. 826600 0. 0.

30 0. 46000000 0. 79. 9538464 0. 0.
35 0. 7000000 0. 71. 025331 0. 0.

40 . 8000000 71139716 0. 0.

45 .F000000 749205465 0. Q.
50 0000000 74. 409054 0. 0.
G99 . 1000000 72827707 0. ’ 0.
40 L 2000000 73.202458 0. Q.
65 . 3000000 73.8065978 0. 0.
70

LS000000 73. 283640 0. 0.
6000000 73.389862 0. 0.
. 7000000 73452074 0. ' 0.
. 8000000 73.360048 0. 0.
.2000000 73. 302325 0. 0.
. 0000000 73.304638 0. 0.

7%
80
85
?0
P

100

0
0
0
0
0
0.
4000000 0. 73.544976 0. 0.
0
0
0
0
0
0

F% JECRy

v

LINE WMC2) WM O3 AlLZ AlL3 UMl
0 0. 0. 0. 0. 2154.8000
5 0. 0. 0964540 0. =0 0072943 2154.7878

10 0. 0.0183467 0. ~0. 0101561 2154. 6730
15 0. ~0. 0137568 0. ~0. 0067039 21545532
Z 0. 0. 0234575 0. ~0. 0058841 2154 . 4820
25 Q. 0.03280964 0. =Q0. Q0074570 2154 . 3843
30 0. 0.0158099 =0, 0074227 2154 2435
35 0. 0.0137948 =Q. 00469321 2154 0998
49 0. 0. 0212874 =0, 0069419 2183, 9553
4% 0. 0.0212679 =0. 0072361 2153. 7895
50 0. 0.018059% -Q. 0071977 2153. 6040
G55 0. .0184311 -0. 0070745 2153. 4087
40 0. 0197497 -Q. 0071071 21583, 2016
65 0. .0194276 =0. 0071555 2152. 9780
70 0. . 0188892 -0. 0071369 2152.7398

75 0. 01907465 ~0.007118% 2152. 4887
80 0. 0192722 -0. 0071287 2152, 2239
85 0. 0191557

~0. 0071305 2151. 6511
-0.0071283 2151 . 3442

-0.0071308 2151. 0233

0190705
.0191144
01912946

?0 0.
PG 0.
100 0.

21

~0.0071355 2151. 9445
21
1

SOOI TOOTO

SO ODT

Figure A10-7. Run-time Commands and Output Stream for Missile Dynamics Evaluation.
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MISSILE LONGITUDINAL DYNAMICS
STEP IN FIN NOMINAL CG

5.00

2.50

THM =102

1.00 0.00

0.00

UM(2) =102

0.00-1.00
h

-1,00

AL3 =1p2

0.10-2.00

ST

—~O
— T

30
AN
)

2.00-0.10

N
(

NM(2) =102

-2.00

0.40 0.80 1.20 1.80 2.00

o
I~
=]

Figure A10-8. Strip Chart Plots of Missile Response to Fixed Fin Deflection - Norminal
Centre of Gravity
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ACHL RUN-TIME EXEC  VERSTON 1 LEVEL &M 81L/08/71L1. 17.47. %56 FAGE o

MISSILE LONGITULINAL DYNAMICS STEF IN FIN NOMINAL €6
LINE UM UM{E) GIM THM FIM
0 Q. 0. 0. 0. 0.
5 =0, 9254375 0. 0. 0. 0068448 0.
10 6. 3848135 0. 0. 0. 0131193 0.
15 12.319067 0. 0. 0. 0124215 0.
20 14. 895778 0. 0. 0. 0127998 0.
25 18, 452335 0. 0. 0.0160218 0.
30 23326785 0. 0. 0.0184506 0.
3G 27. 6246594 0. 0. 0. 01975464 0.
40 31.428341 0. 0. 0. 0215319 0.
45 35531244 0. 0. 0. 0237317 0.
50 39809254 0. 0. 0. 0256806 0.
5% 43 . 935283 0. 0. 0.0274764 0.
40 48. 000948 0. 0. 0. 02939462 0.
&% G2 1365127 0. 0. 0. 0313661 0.
70 G628 .’LJ"; Q. 0. 0. 0332761 0.
75 6. 397079 Q. 0. 0. 0351703 0.
80 64504384 0. 0. 0. 0370907 0.
85 68, 622892 0. 0. 0. 0390135 0.
90 72738132 0. 0. 0.0409234 0.
PG 76. 844041 0. 0. 0. 0428322 0.
100 80. 947254 0. 0. 0.0447451 0.
L.INE MACH Q
0 2. 0000000 407%. 4612
G 1.9999842 4075, 4321
10 1.9998917 407%. 0020
15 1.9998119 4074. 51468
20 1.9997713 40741274
25 1.9997187 4073. 6431
30 1.9996478 4073. 0123
3G L. 9995811 4072 . 3222
40 1.9995178 4071. 5812
4% 1.999448%5 4070.7518
90 1. 9993745 40469 . 8340
o5 19992996 4068 . 8442
60 1.9992229 4067 .7803
65 1.9991428 4066 . 6358
70 1.9990598 4065, 4125
75 1.9989747 4064. 1131
80 1.9988870 4062.7368
85 1.9987946 4061. 2825
?0 1.9987037 4059 . 7811
PG5 1.9986082 40u8.14?1
100 1.9985101 4006 . 4583

ANALYZ "FREEZE"=KM, UM, tIﬁ:“TR[M" "JACORY, "ETGEN®
NEW JACORTAN EVALUATED
ROW VECTOR NAMES

SIM 1 THM 2 WM{l) 3
WM{2) 4 WM{3) bt
COLUMN VECTOR NAMES
SIMD 1 Z09e8e s WMD 1) 3
WMIN(2) 4 WMINC3) b

Figure A10-9. Output Stream from Missile Dynamics Evaluation
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ACSL RUN-TIME EXEC VERSION

MISSILE LONGITUDINAL DYNAMICS

MATRIX ELEMENTS

1 0. 0.

2 0. 0.

3 0. 0.

4 ~-274.73213 0.

5 0. ~276. 72476
COMPLEX EIGEN VALUES IN ASCE

1 -4.20941462 0.

2 —1.20489158 146. 5913531
3 ~1.20489158 ~16. 5913531
4 -1.20489158 ~16. 5917972
9 -1.20489158 16.5917972

REINIT
8§ TETP=0. 0, NODRUG=1
START
.. CDERUG DUMP - SYSTEM VARI
T 0.
ZZIERRKR F
ZZ8T T
ZZRNFL. T

MAXT 0.01000000

STATE VARIABLES
FIM 0.
RMCL) 0.
RM{Z2) 10000. 0000
RM(3) 0.
SIM 0.
THM 0. 007294676

UM(1) 2154.80000
UM(2) 0.
UM(3) 0.
WM(1l) 0.
WM(2) 0.
WM(3) 0.
ALGERBRAIC VARIARLES
AC30) 0.
B 3.95000000
-2.0817E~-17
0.
Cnoo.
CLF-0. 21000000
=0. 19000000

0. 80000000
2.00000000
=1.50000000

0.
1.20000000
=0. 01000000
DXCG 10. 2000000
IXX 8.77000000
MACH 2. 00000000

Figure A10-10. Output Stream (Eigen Values and Debug) from Missile Dynamics Evaluation

- ROWS ACROSS,

1 LEVEL 6M a81/08/11. 17.47.56. FAGE
STEF IN FIN NOMINAL
COLUMNS DOWN
0. 1.0000266 0.
0. 0. 1.0000000
~4. 20941464 0. 0.
0. ~2. 4097032 0.
0. 0. ~2. 4097832

NIING ORDER

ARBLES. NIBUG
ZZTICG O.
ZZNBLK 1
ZZFRFL T
ZING 12
NSTF 1

s

DERIVATIVES
709981 0.
RMINCL)Y 2154, 80000
RMIN(2)Y 0.
RMIC3E) 0.

SIMD 0.
709982 0.
UMO(1) 0. 855302704
UMD(2) 43, 5894323
UMIN{3) 0.
WML 0.
WMI(2) 0.

WMO(3) -1, 8318E-14

AL2 0.
¢ 0.
CRAR 5.42000000
=, 21000000
=0, 18000000
100000000
. B0000000
=2. 00000000
0. 80000000
2.00000000

DXREF 9. 40000000

IYY 361.800000
MAGE 8.77000000

A-98

CINT 0.02000000
221 1
ZZICFL T

MINT 1.0000E~10
TALG 4

INITIAL CONDITIONS

FIMIC 0.

RMICC1L) O.
RMICC2) 10000. 0000
RMIC(3) O.

SIMIC 0.

THMIC 0.007294746
UMICOL) 2154.80000
UMICC2) 0.

UMICC(E) 0.
WMICCL)Y 0.
WMIC(2) 0.
WMIC{E)Y O

00729474

0. 01173352
COVY-0. 00273854
0.

=0, 20000000

1. 20000000
=2. 00000000
2. 10000000

1.00000000

=0, D1000000

G 322000000
LROCZO)Y 920000, 0000
ME 0. 99997338
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Figure A10-11. Output Stream from Missile Dynamics Evaluation
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ACSL. RUN-TIME EXEC VERSION 1 LEVEL 6M 81/708/711. 17.47.56. PAGE S
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Figure A10-12. Output Stream (Jacobian and Eigen Values) from Missile Dynamics
Evaluation
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ACEL RUN-TIME EXEC  VERSION 1 LEVEL 6M gL/08/11. 17.47.56. FAGE &
MIGOTLE LONGITUDINAL DYNAMICS STEP IN FIN AFT CG

S THMIC=0.0, T&TP=1.99

START

FLOT NMC2), WMC3), AL3, UM(2), THM

ANALYZ "EIGEN®

COMPLEX ETGEN VALUES IN ASCENDING ORDER
L 0. 0.

0.

0.
=1.72439E-08 0

7.3633E-08 0.

1. 4193E-03 0.
=9 LAB6E-05 0. 03939874
-9 LATAE-0T ~0. 039398076

8 ~4.20831874 0.

@ -4, 20152799 ~24. 8543608
10 -4 20182799 24.8543608
11 -4, 20159641 248543850
12 4. 20159641 ~24. 85438%0

STOF

END DISSPLE —- 3651 VECTORS GENERATEDN IN 2 FLOT FRAMES.

1382 WORDS TARLE SFACE USED

Figure A10-13. Output Stream from Missile Dynamics Evaluation Forward Center of Gravity
Position.
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11. DISCRETE SAMPLED COMPENSATOR

This example was chosen to illustrate the use of a DISCRETE section in modelling a sampled data system
in which a control computer interacts with a continuous plant. The system block diagram is shown in Figure
Al1-1 where the plant is represented by a transfer function:

1
s(s+1)

This system can be visualized as a water level control problem where the valve controlling the flow into the
tank has a one second time constant. An instantaneous level measurement, X, is assumed which is compared
with a desired level X¢ and the error sampled every tenth of a second. A digital controller is to be designed
that takes the samples of level error E and outputs a command U to the valve so closing the loop. This control
is taken to be a linear combination of the current error E,, the previous error E, ;, and the previous control
U,..;- Expressed in Z-transform notation this becomes

U ag-ajz-l

E 1-bjzl
In terms of equivalent lead/lag network, the a and b coefficients above can be written
_TiED
B0 T ag P (Ts (UTLAG- /T ED)
2, = ILED
L T ag P (TS/TLAG) by =exp (Tg/TLAG)

which gives unity steady state gain and reduces to a zero order hold when the lead and lag time constants are
equal.

The program or model definition code to represent this plant and control system is shown in Figure
A11-2. In this model we have made use of the multiple derivative section capability where different blocks
of code can be given their own integration algorithm and step size.

In the INITIAL section the coefficients of the digital filter are calculated so that the controller response
can be thought of in terms of equivalent lead/lag time constants. At the same time the discrete control (UD)
and the previous error (EP) are initialized to zero. Since they are needed before they are calculated, they are
effectively system state variables, though not obtained by integration.

In the continuous section, the plant is modelled by the one line:
X = INTEG(REALPL(TAD, KU*U), 0.0)

The control (U) is selected to take either the discrete value (UD) or that produced by a continuous lead-lag
compensator (UC) based on a switch DISC i.e.

U = RSW(DISC, UD, UC)

which will allow test at run time between the effect of the discrete or the continuous controller by changing
the logical variable DISC from .FALSE. to .TRUE. Integration step size for this section will be 0.02 seconds,
specified both by the communication interval (CINT) and by the global MAXT. The reason for such a
comparatively short step is in order to record data during the sampling so that the discrete hold (sample
interval 0.1 sec) can be seen on the plots. The communication interval chosen gives five points for every sample,
so squaring the corners when the control (U) is plotted in Figures A11-4 through A11-6. If the communication
interval had been increased to 0.1 seconds or more, the straight lines drawn between points would have masked
the sampling action, though the simulation would still behave the same internally.
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In the DISCRETE block, the step size is controlled by the INTERVAL statement which specifies the
name of the controlling variable as TSAMP with a value of 0.1 seconds. The code will execute once a T equals
zero and then once thereafter, every 0.1 seconds. Since the order of the code is important, it is bracketted by
PROCEDURAL . ... END statements which prevent the reordering of any code within the block. Notice that
there is no input/output list on the PROCEDURAL statement since the entire DISCRETE section is made
procedural. The input/output list is only necessary to ensure correct ordering relative to other statements
within the same DISCRETE or DERIVATIVE section. Statements will never be reordered across a section
boundary.

Within the PROCEDURAL block, the new control is calculated based on the previous control, previous
error and current error or

UD = B1*UD + AO*EP

and then the current error is transferred to the previous error by EP = E. If we hadn’t used the PROCEDUR-
AL block, the EP assignment would have been moved in front of its use in the UD calculation so both E and
EP would now contain the current error, when the new UD was calculated, not what was intended in the code.

With the use of the DISCRETE section, the continuous section is guaranteed to be at the sample time
when the DISCRETE section code is executed, so the value of current error (E) used is that actually at the
sample time: A new value of control is calculated that is immediately available to the continuous section for
use over the next sample interval. This action models a control computer with no calculation delay. In actual
practice, dedicated controllers are usually compute bound, sampling from the outside world, calculating the
new control action through the sample period and transferring this value back to the continuous section at
the same time that a new sample is obtained. Modelling this action requires modifying the control calculation,
first assigning the next control to the output control and then calculating a new next control i.e.

UD = UDN
UDN = B1*UDN + AO*E - A1*EP
Now both UD and UDN are effectively state variables and so must be initialized.

The execution of the model as listed in Figure A11-2 is shown in Figure A11-3. The first run (START)
is followed by a column PRINT of the numeric values and a line plot of the base-line response shown in Figure
Al11-4. Next the OUTPUT list is CLEARed and two more runs are made - first with a equivalent lead/lag
ratio of 5:1 (see Figure A11-4) and then with a reduction of the loop gain from 5.0 to 1.0 (See Figure A11-5).
Lastly the response of the continuous feedback compensator is obtained, using the same values of lead/lag
‘time constants and gain, by setting the switch variable DISC to .FALSE. The response is shown in Figure
All-7.

U K 1 X
) U™ s(s + 1)

0.2sec
(TSAMP)

Figure A11-1. Discrete Control System Block Diagram
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ACSL RUN-TIME EXEC VERSION 1 LEVEL éM 81/07/713. 15.16.54.

S TITLE="DISCRETE SAMFLED CONTROLLER",TITLE(S)="RASE CASE"
SET TCWPRN=72 $* FORCE 3 COLUMN OUTFUT FORMAT *

FREFAR T, U, X, E

QUTFUT T, U, X, "NCIOUT"=%0

START
T 0. uo. X 0
T 1.00000000 U=0.1706028% X 1
T 2.00000000 U-0.32541587 X1
T 3.00000000 U 0.34323663 X 0
T 4.00000000 U-0. 12205848 X 1
T 4.92000000 U-0.0646322 X 1
FRINT *ALL", "NCIPRN"=10
LINE T U X E
0 0. 0. 0. 1.0000000
10 0.2000000 0.9758129 0.09304688 0.9069312
2 0.4000000 0.7998402 0.337622 0.6623774
30 0.6000000 0.5032633 0.6683773 0.3316227
40 0.8000000 0.1565214 1.0134606 ~0.01344606
50 1.0000000 ~0.1706028 1.3083497 -0.3083497
60 1.2000000 -0.4215391 1.5065476 -0.5065476
70 1.4000000 -0.5613530 1.8855153 -0.5855153
80 1.46000000 -0.5800839 1.5474411 -0.5474411
90 1.8000000 ~0.4910931 1.4154223 ~0.4154223
100 2.0000000 -0.3254159 1.2263854 -0.2263854
110 2.2000000 -0.12346905 1.0224804 -0.0224804
120 2.4000000 0.0725356 0.8427189 0.15372811
130 2.4000000 0.22844609 0.7163382 0.2836618
140 2.8000000 0.3214041 0. 6588552 0.3411448
150 3.0000000 0.3432366 0.6711533 0.32884467
1460 3.2000000 0.2998426 0.74134469 0.2586531
170 3.4000000 0.2081127 0.8487028 0.1512972
180 3.6000000 0.0913604 0.9686219 0.0313781
190 3.8000000 -0.0257924 1.0776326 ~0.0774326
200 4.0000000 ~0.122058%5 1.1574883 -0.1574883
210 4.2000000 ~0.1828818 1.1977512 -0.1977512
220 4.4000000 -0.2021441 1.1966035 -0.1966035
230 4.6000000 -0.1821059 1.1599839 -0.1599839
240 4.8000000 -0.1318374 1.0994379 -~0.0994379
S CALFLT=.T.,PRNPLT=_F., GRICFL=.T.

FLOT U, X

OUTFUT "CLEAR"

S TLED=2.3, TITLE(S5)="KU=5.0 TLED=2.5" $ START 4 FLOT U, X

5 KU =1.0, TITLE(S)="KU=1.0 TLED=2. 3" 4 START ¢ PLOT U,X

* NOW COMFARE CONTINOUS CONTROLLER *

S TITLE="CONTINUOUS ANALOG FEEDNRACK CONTROLLER",DISC=. FALSE.
START

FLOT U, X

STOF

‘Figure A11-3. Output Stream from Execution of Discrete Sampled Compensator Model
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Figure A11-4. Plot of Control and Level against Time for Base Case, Discrete Sampled
Compensator
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Figure A11-5. Plot of Control and Level against Time for Lead/Lag Ratio of 5
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Figure A11-6. Plot of Control and Level against Time for Reduced Loop Gain, Final Design
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CONTINUOUS ANALOG FEEDBACK CONTROLLER
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Figure A11-7. Comparison using Continuous Lead/Lag Feedback Control
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12. ASPIRIN DOSAGE EVALUATION

This model follows mathematically the aspirin concentration level in the blood stream of a person taking
variable doses at various preset times. A similar program would be used to determine the concentration of
any drug which had an exponential decay. The example was chosen to show how discontinuities can be
introduced into the simulation state variables without having to recompute the values of the output of
integrators, a matter that has to be left to the integration routine. In actual fact there are no true discontinui-
ties in the physical world and one should really consider the dynamics of the ingestion process - the passage
through the stomach wall or, if injected, the velocity of the hypodermic piston. These effects, however, would
normally be approximated in most simulations as discontinuities if their time of action is short compared with
the overall period of interest.

The basic equation in the model is the exponential decay given by

dc = R
dt

which says that the rate of change (decay) of concentration of (C) is proportional to the concentration. The
constant of proportionality is a rate R.

Since the concentration can change suddenly as doses are taken, we need to add a term indicating the
total dose. As an integral equation, the concentration can now be expressed as

- f—RCdt+ 3 D

In the simulation model code this is written
BLOOD = INTEG(-RATE*BLOOD, 0.0) + TOTAL

where BLOOD is the concentration in grains and TOTAL contains the sum of the doses up until the current
time.

The listing of the model definition section is shown in Figure A12-1 which defines two arrays, TDOS
for the time of the dose and DOSE for the actual dose at the corresponding time. An integer index INDX
is used to advance through the arrays. The arrays are preset so that a larger dose of the five tablets (25 grains)
is given initially and only two hours are between the first and second doses. Eight hours lie between the fourth
and fifth doses and the last effective dose is at thirty hours.

In the INITIAL section INDX is started at one to access the initial dose time and TOTAL, effectively
a state variable, is set to zero. In the DERIVATIVE section the BLOOD and URINE levels are calculated,
the URINE being the total amount excreted. The URINE rate is the opposite of the rate for BLOOD which
means that what is removed from the bloodstream appears directly in the urine.

The dose time and dose accumulation is performed within a PROCEDURAL . . . END block which is
treated as a whole. Within the PROCEDURAL block, the current dose time TDOS (INDX) is tested against
the independent variable time (T). If it’s not time for a dose the rest of the block is bypassed If the dose time
is equalled or exceeded, the dose is added to total by

TOTAL = TOTAL + DOSE(INDX)

and then the index is incremented by one, ready for the next dose.
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In writing this type of simulation model there is an inclination to change the state variable itself i.e,
BLOOD = INTEG(-RATE*BLOOD, 0.0)
BLOOD = BLOOD + DOSE(INDX)

This operation is illegal since the value in the state variable BLOOD is only a temporary copy of the actual
state variable which is saved internally by the integration routine. Note if we convert the BLOOD integration
to the expression form:

BLOOD = -INTEG (RATE*BLOOD, 0.0)

BLOOD is no longer a state variable, it is now just the negative of the actual state variable (the output of
the INTEG operator) which will be given a generated name ZOnnnn.

When we add TOTAL to the integration a similar transformation occurs so that BLOOD is no longer
a state variable but now we can manipulate TOTAL in such a way that the answer comes out right.

The run-time output stream is shown in Figure A12-2. After the START a column PRINT is obtained
to list numeric values and then a PLOT, the output of which is shown in Figures A12-3 and A12-4. The first
figure shows the format for the strip plots (STRPLT = .T.) and the second for the standard line plots
(CALPLT = .T.) where all curves are superimposed. The actual plot line reads

PLOT TOTAL, ‘TAG’ = ‘“+URINE’, URINE, ‘SAME’, ‘OVER’, BLOOD

The tag string is used to add the extra label on the TOTAL axis, ‘SAME’ ensures identical scales and ‘OVER’
suppresses the now redundant axis for URINE.

The RATE parameter is changed to 0.28 and a second run made, followed by a PLOT. Only the strip
plot is used in Figure A12-5 which shows the extra strip generated when ‘OVER’ was eliminated from the
plot line. From the plot it can be seen that the higher decay rate has reduced the average blood level
concentration.

The discontinuties introduced into TOTAL violate the restrictions on the state variables placed by most
integration algorithms, i.e., the derivatives shall be continuous and differentiable. In practice, fixed step size
algorithms step over these discontinuities very well with only minor differences in the calculated solutions
when the step size changes. In the code we make no attempt to synchronize the discontinuity with the
integration step so it can occur at any of the derivative evaluations that make up the step. This means that
this particular step (which contains the discontinuity) will be in error but the answers will only be slipped a
fraction of a step length. It is this requirement that dictates the integration step size. From the decay rate
of the aspirin (0.14 or 0.28) step sizes of two or three hours would do quite well in integrating the differential

“equations. However, uncertainty in dose times of this much is too large an error. In the model, the step size
is set (via MAXT) to 0.05 or 3 minutes to reduce the uncertainty which now seems tolerable in light of what
we are trying to simulate.
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KKAOOKIOKKADVANCEDR CONTINUOUS  SIMULATION LANGUAGEXKKKkKKkKX
ACSL TRANSLATOR VERSION 1 LEVEL 6F 81/07/13. 15.1%5.89. FAGE 1

FROGRAM ASFIRIN DOSAGE TEST

o FOLLOWS CONCENTRATION OF DRUG IN EQDY *
* GIVEN A DOSAGE HISTORY. USES EXPONENTIAL ELIMINATION RATE *
* WITH FIXED TIME CONSTANT *

o DEFINE TYFES ANDN ARRAY DIMENSIONS®
INTEGER INDX > INDXMX
ARRAY DOSE(?) , THOS(?)
~~~~~~~~~~~~~~~ DEFINE FRESET CONSTANT VALUES®
CONSTANT RATE = 0.14 , INDXMX = 9
. TSTOP = 49.0
CONSTANT DOSE = 25.0 , 15.0 » 15,0
¢ 150 , 15.0 » 150
» 15,0, 15,0 s 0.0
CONSTANT THOS = 0.0 » 2.0 s 6.0
10.0 ., 18.0 » 22,0
26.0 30.0 99.0
B e e e DEFINE COHHUNICQTION INTERUAL ANDN INTEGRATION STEF *
CINTERVAL CINT = 0.5
MAXTERVAIL MAXT = 0.085
NSTEFS NSTF = 1
INITIAL
¥ o e START WITH FIRST DROSE, NONE PRESENT®
* AT BEGINNING"
INDX =]
TOTAL = 0.0
END 6" OF INITI
NYNAMIC
DFRIUATIUE
~~~~~~~~~~~~~~~ AMOUNT LEFT IN BLOOD STREAM®
BLOOD = INTEG(~RATEXELOOD, 0.0) + TOTAL
************* TOTAL AMOUNT EXCRETED AS URINE®
UHINE = INTEG( RATEXRLOOL., 0.0)

~~~~~~~~~~~~~~~ TEST FOR DOSE, BUMP TOTAL®

FROCEDURAL (TOTAL, INDX = DOSE, TIOS)
~~~~~~~~~~~~~ IF NOT TIME FOR DOSE*
IF(T.LT. TDOSCINDX)) GO TO L1
~~~~~~~~~~~~~~ AL NEW DOSE TO TOTAL®
TOTAL = TOTAL + DOSE(INIX)
~~~~~~~~~~~~~~~~ GET SET FOR NEXT DOSE®
INDX = INDX + 1

L1..CONTINUE

END $* OF FROCEDURAL®

END 6" OF DERIVATIVE®
B e e STOF WHEN GIVEN LAST DOSE®
TERMT (INDX. GT. INODXMX .OR. T.GE.TSTOF)
ENIN " OF DYNAMIC®
END  $" OF FROGRAM®

Figure A12-1. Listing of Model Definition for Aspirin Dosage Evaluation
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ACSL RUN-TIME EXEC VERSION 1 LEVEL &M 81/07/713. 15.16.33. FAGE 1

SET TITLE = "ASPIRIN DOSAGE TEST"

S TCWFRN=72 4" FORCE 3 COLUMN COUTFUT WIDTH *
S FPRNFLT=.F.,CALFLT=.T.,8TRFLT=.T.,GRDGFL=.T.
FREFAR T, BLOOD, URINE, TOTAL., INDX

START

FRINT "NCIFRN"=35, "ALL"

L. INE T RLOOD URINE TOTAL INDX
0 0. 25. 000000 0. 23.000000 2
b 2.5000000 31.619426 8.3805736 40.000000 3
10 5.0000000 22.281833 17.718167 40.000000 3
15 7.5000000 27.8744691 27. 125309 53. 000000 4
20 10.000000 19. 642963 35. 387037 53. 000000 4
258 12.8500000 24. 424815 45. 575183 70.000000 k¥
30 13.000000 17.211877 H2.788123 70.000000 9
35 17.500000 12. 129004 57.870996 70.000000 ]
40 20.000000 19.897147 65. 102853 85. 000000 6
4% 22. 500000 28. 023507 71.976493 100.00000 7
50 23. 000000 19. 747832 80. 252168 100. 00000 7
G5 27.3500000 26. 089011 - 88,910989 11%5. 00000 g
60 30. 000000 18. 384615 96615385 115. 00000 8
63 32.8500000 23.538073 106.46193 130. 00000 9
70 35.000000 16.586999 113. 41300 130. 00000 9
75 37.500000 11. 688661 118.31134 130. 00000 9
80 40. 000000 8. 2368602 121.76314 130.00000 k4
85 42.500000 . 5.8044173 124. 19558 130. 00000 9
90 4%5. 000000 4. 0903037 125.90970 130. 00000 9
95 47 .500000 2.8823883 127 .11761 130.00000 9
FLOT TOTAL, "TAG®*="+ URINE", URINE, "SAME", "OVER", ELOCOD
DISFLY RATE. TDOS, DOSE
RATE 0.14000000 TROS 0. 2.00000000
6. 00000000 10.0000000 18.0000000
22.0000000 26.0000000 30.0000000
99. 0000000 NOSE 25. 0000000 15. 0000000
15. 0000000 15. 0000000 15. 0000000
15. 0000000 15. 0000000 15. 0000000
0.
SET RATE=0. 28, TITLE(S)="RATE = 0.28"
START
FLOT TOTAL, URINE, *SAME®, RLOGD
NISPLY RATE, TDOS, DOSE
RATE 0.28000000 Tnos 0. 2.00000000
4.00000000 10.0000000 18.0000000
22.0000000 26. 0000000 F0. 0000000
99.0000000 OSE 2%. 0000000 15, 0000000
15.0000000 135.0000000 15.0000000
150000000 150000000 15. 0000000

0.
STOF

Figure A12-2. Output Stream from Aspirin Dosage Evaluation Study
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ASPIRIN DOSAGE TEST
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Figure A12-3. Strip Plot of Blood Concentration, Total Dosage and Urine Elimination, Rate in
0.14
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o o ASPIRIN DOSAGE TEST
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Figure A12-4. Line Plot of Blood Concentration, Total Dosage and Urine Elimination
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ASPIRIN DOSAGE TEST

_ RATE - 0.28
o
<
o
son N
SYIN
= v
[am]
O
o
()
O
~
[QN]
C_D.ca //’
x O
LLJ-—i
=
v /,/
D ,
)
(@]
of3
O
[an]
o~
N
(@w]
T8
g /
" -/
e — /]
(D)
}__.
gF%—/—_/_
o
0.00 10.0 20.0 30.0 40.0 50.0

Figure A12-5. Strip Plot of Blood Concentration, Urine Elimination and Total Dosage, Rate in
0.28
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APPENDIX B |
GENERAL PURPOSE UTILITY SUBROUTINES

A number of general purpose subroutines have been developed and included in the system library.

1. AGET (name, a), APUT (name, a)

Obtain the values from or put values into a variable array in either the user or system dictionary. Useful
in a separate FORTRAN subroutine to obtain or return isolated values not passed through the calling
sequence. Necessary in order to access values from the system dictionary. Arguments are:

name - Hollerith representation of dictionary name to be accessed, i.e. Direct Hollerith constant (3HDIS)
or symbol preset to Hollerith constant.

a - array of size equal to or greater than that of ‘name’ - may be a scalar of dimension 1.

For AGET all elements of ‘name’ are returned in successive locations of ‘a’. APUT works in the opposite
direction and fills all positions of the array ‘name’ with the contents of successive locations of ‘a’. Standard
form of use would be

CALL AGET (6HNPXPPL, NPX)
CALL APUT(SHTITLE, NEWTTL)

where NEWTTL is dimensioned to contain at least 120 characters (12 words on CDC 6000/7000. 20 on
UNIVAC 1100 and 30 on 32 bit hex machines IBM 360/370, SEL etc.). See RGET, IGET and VPUT for
changing individual elements of an array.

NOTE: These functions require a full dictionary search and if placed in a loop executed every
calculation interval will use an excessive amount of computer time.

2. BLDDCT (nHname, name, type, size)

NITBLD (length)

Build dictionary allows variables in other FORTRAN subroutines and COMMON blocks to be added
to the ACSL dictionary. Since labelled COMMON block locations are defined at load or link-edit time, this
operation must be performed once at the start of each simulation study. The typical requirement is to add
variables (XVEL and IPNT are used in the example) that are in external common blocks (/USER /is used)
that communicate between FORTRAN subroutines external to the ACSL simulation model definition. The
actual number of variables and common blocks depends on the particular situation and can be large.

In order to add the example names to the dictionary, write a subroutine so
SUBROUTINE ADDNMS
COMMON/USER/IPNT, XVEL
COMMON/ZZDCT/DUMMY (1000)
CALL NIT BLD(1000)
CALL BLD DCT(4HIPNT, IPNT, 2, 1)
CALL BLD DCT(4HXVEL, XVEL, 1, 1)
RETURN

B-1



END

and call this from the pre-initial section of the ACSL model definition code i.e.
PROGRAM TO EXTEND DICTIONARY
CALL ADDNMS $ ‘ADD NAMES TO DICTIONARY’
INITIAL

END § ‘OF PROGRAM’

Alternatively all the code can be placed in the main program and then use the P option on the translator to
indicate it is user supplied.

In the ADDNMS subroutine, the external COMMON blocks can be referred to (no COMMON blocks
can be included in the ACSL model definition). The dictionary COMMON block/ZZDCT/ must be included
and extended beyond the length established by the ACSL translator, which normally will size the dictionary
to just fit all the names in the model definition (2 words per name in machines with six or more characters
per word, 3 words per name for machines with 4 or S characters/word). In the example, the dictionary
COMMON block is extended to a thousand words, which length is then communicated to the extension
program via the NITBLD call. This must be present since the BLDDCT subroutine has no idea how much
space is available at the end of the standard ACSL dictionary.

The actual calls to BLDDCT pass a Hollerith version of the new name, the name itself which really
corresponds to the address in the COMMON block, and an integer indicating type and an integer indicating
size. The types are one for REAL, two for INTEGER and three for LOGICAL. Size must be the array size
if an array (product of dimensions if more than one) or one if ‘name’ is a scalar.

The action of BLDDCT is to search through the dictionary to the end and then add the entry correspond-
ing to ‘name’, moving the dictionary terminator one block. An error is reported if ‘name’ is already in the
dictionary or if the end of the dictionary would have to be extended beyond the length established by the call
to NITBLD.

Once the name has been added to the dictionary, all run-time references can be made just like any other
ACSL variable with the data being transferred to and from the external COMMON blocks

OUTPUT XVEL
DISPLY IPNT

All the ACSL run-time commands can be used to PLOT, PRINT, SET these variables rather than having
to move everything into the main ACSL common block /ZZCOM/.

3. DEBUG

A call to this routine will produce a debug list of all variables, excluding arrays greater than MALPRN
(maximum array limit for print), on both PRN and DIS units. Described in Section 7 is the technique of
setting NDBUG to a positive integer whereby a debug list is produced at the end of every derivative evaluation.
While useful as a checkout tool, with large programs this action can produce an over-whelming amount of
output. Selective output can now be obtained by

IF(logical condition) CALL DEBUG
included in the DERIVATIVE section. Including the statement
CALL DEBUG

B-2



in the DYNAMIC section produces the entire list at each communication interval and is synonymous with
asking for the OUTPUT of all variables. Including

IF(DUMP)CALL DEBUG

in the TERMINAL section is a useful artifice since all final values are displayed as well as the initial
conditions for that run.

4. IGET(nHname,i) RGET(nHname,i)

Obtain the value of a variable (integer = IGET, real = RGET) in the user or system dictionary. For
use primarily for selecting elements of arrays since AGET and APUT should be used for scalars. Arguments
are:

name - Hollerith representation of dictionary name to be accessed i.e. symbol preset to Hollerith
constant or direct Hollerith constant (3HPRN)

i - integer constant or variable denoting element of array
Standard form of use would be
WORD = IGET(S5HTITLE, 4)

NOTE: These functions require a full dictionary search and if placed in a loop executed every
calculation interval will use an excessive amount of computer time.

5. INTEG

In order to provide flexibility in trying new and improved integration algorithms, it is possible to
incorporate a user written routine via this subroutine (INTEG). Setting IALG=7 will transfer control to this
routine at the beginning of every integration step. In order to write an effective INTEG routine, familiarity
with the ACSL run-time routines ZZINTG, ZZRKIN, ZZMVM, ZZNITS and ZZNITA is essential.

6. LISTD (file)

Provides a listing of the user dictionary and current variable values along with any explanation of
variables supplied on the named file. Used mainly for reports, it requires preparing a dictionary with variable
name and definition. The argument ‘file’ is an integer constant or variable defining a file containing the
definitions or card images.

col 1-9 variable name, left justified
col 10 continuation indicator in sequence 0,1,2,3 etc.
col 11-80 definition
Standard form of invocation would be in the INITIAL or TERMINAL section on a switch
IF(LIST)CALL LISTD(5)
LIST = .FALSE.

Logical unit five is normally the input file so the dictionary would follow immediately behind the START
card. The dictionary is terminated with a blank name field. When the definition must be continued beyond
column eighty, continuations can be used which consist of a non-blank character in column ten. The name
field in this case is ignored and just the extra definition is listed out. For convenience in ordering the initial
dictionary repeat the name on each continuation card, numbering the cards in column ten 0, 1, 2, 3 etc. Now
a standard sort on columns one through ten will produce an alphabetical order with continuation cards in their
correct place. Note that zero is used in column ten to start a continuation sequence and acts just like a blank.
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The reason for using a zero is that in some computer systems blanks will collate after numbers rather than
before.

When used with logical unit five, the dictionary definitions appear on the run-time drive file immediately
after the START and the following card images will be read until a blank or end-of-file.

7. LOG

This routine can force a data recording and output list from within the ACSL model definition or from
any external FORTRAN subroutine.

CALL LOG

will reset the NCIOUT count of the OUTPUT statement, forcing a value listing. All the variables on the
PREPAR list are recorded for later PRINTing or PLOTting.

8. RGET (nHname, i)
Real get - - see IGET

9. SET (value, name, times)

A useful subroutine that is provided primarily to initialize arrays and set all elements to a given value.
Standard form of use is

CALL SET (v, x, n)
where the value of the expression v is placed into n locations of array x. i.e.
CALL SET(0.0, ARR(S), 3)

zeros the fifth, sixth and seventh elements of array ARR. No check is made to see whether these elements
actually exist.

10. TIMER

Program execution time can be estimated by use of this subroutine placed in the INITIAL, DYNAMIC
or TERMINAL sections. The derivative evaluation routine is called one hundred times and the average
central processing time used per evaluation reported. It must not be called from the DERIVATIVE section
since it will then be activated recursively and the program will abort with an error message (TIMER
CALLED FROM DERIVATIVE SECTION)

11. VPUT (name, i, value)
Place a value in a named variable in either the user or system dictionary. Arguments are:
name - a Hollerith constant or variable defining a name in either the user or system dictionary
i - the element number in the array
value - a constant, variable or expression that corresponds in type to the named variable
Standard form of invocation would be
CALL VPUT(SHARRAY, 4, DATE)

NOTE: This subroutine requires a full dictionary search and if placed inadvertently in a loop will
use an excessive amount of computer time.

12. WEM (nH message, nchar)

Error messages may be written using the ACSL standard output interface by this subroutine. Standard
form of use is
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CALL WEM(nH message of length n characters, n)

which will write an error message on both PRN and DIS logical units if different.

13. WRITG

Write integration intermediate data. Primary use is in debugging the variable step integration routines
(IALG =1 or 2). The state history stacks and error tables are listed. Should normally be placed at the end
of the DERIVATIVE section. Data is written on the logical unit number contained in system variable PRN.
Standard form of invocation is:

CALL WRITG

14. XFERB

A transfer block routine is provided for moving arrays from one place to another. Useful for initialization
instead of forming DO-loops. Standard forms of call are

CALL XFERB(x, n, y)
CALL XFERB(y = x, n)

which takes n elements from array x and moves them to array y. No check is made to see whether these
elements are contained in the arrays.
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APPENDIX C
ACSL SYSTEM SYMBOLS

Certain system constants can be changed if not used in the simulation model to allow greater flexibility.
These names are generated by the first three characters to describe the action and the last three characters
to describe the processor.

- PPL refers to printer plots

- CPL refers to line or Calcomp plots

- SPL refers to strip plots

- PLT refers to plotting in general

- ITG refers to integration

- PRN refers to printed outputs

These variables can all be changed by SET statements. The value set must agree in type - i.e., integer
to integer, logical to logical, real or integer into real. The nominal value preset is given below the symbol.

1. Refers to Plots in General

CALPLT
(.FALSE.)

DEFPLT
(.FALSE.)

FTSPLT
(.FALSE.)

Logical: Plot on the line plot device selected at load or link-edit time.

Logical: Defer plots. The current plot is not printed so that subsequent
plots can be built up on the same picture. This feature has been used
to plot trajectories of both missile and target on the same grid, i.e.

SET DEFPLT = .TRUE.
PLOT ‘XAXIS’ = RM1, RM3
SET DEFPLT = .FALSE.
PLOT ‘XAXIS’ = RT1, RT3

The first plots the missile trajectories with the x-axis, RM1. Then
the deferred plot restriction is lifted and the second plot plots target
trajectory RT1 versus RT2 and produces the output. Scale factors
should be set so that the same scale factors are used for both target
and missile trajectories. A useful feature here is the use of a symbolic
name to imply the contents of the location denoted by the symbol.

Line or Calcomp plots work similarly with the exception that the

axes are not drawn while DEFPLT is .TRUE.. Thus it is important

to be sure that the scales are the same since no indication will be given
if they are not: The reason is the limited size of the plot image area so
that scales cannot continue to be drawn without running out of room.

Logical: Flyback trace suppressed on plots. If a number of parametric
runs have been made - by cycling between the INITIAL and TERMINAL
sections - they can be plotted and if this variable is TRUE, plotting

is suppressed and the symbol is incremented on flyback. The flyback is

Cont.
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NPPPLT
3)

PRNPLT
(. TRUE.)

STRPLT
(.FALSE.)

determined from the first variable on the PREPARe list. When the
difference between successive values becomes negative it is assumed that

a new run has started. Normally, the independent variable is made the
first variable on the PREPARe list.

Integer: Number of plots per page used when invoking the PLOT ‘ALL’
command and controls the number of variables plotted per drawing.

Logical: Plot on printer

Logical: Plot on line device in strip chart form. Normally one
variable per axis set stacked in reverse order to that on the command line.

2. Refers to Printer Plots

CGDPPL
(47)

NGXPPL
(20)

NGYPPL
(10)

NPCPPL
(1

NPXPPL
(100)

NPYPPL
(100)

Integer: Character for the grid in the printer plot. Set to be a period.
Note, it can only be changed by knowing the character value as an integer,
not by quoting.

Integer: Number of points between grid lines in the x-direction for printer
plots. Nominal setting sets a grid of periods every twenty characters.

Integer: Same as NGXPPL in y direction.

Integer: Number of points per character plotted on the printer: This feature
can be used for placing time ticks on a phase plane plot, i.c.

SET DEFPLT = .TRUE.

PLOT XAXIS’ =X,Y

SET DEFPLT = .FALSE., NPCPPL = 10
PLOT ‘XAXIS’ = X, Y, ‘CHAR’ = ¥

The first plots Y against X using values recorded every communication interval
but the output is deferred. The plot frequency is changed and the second plot
is plotted over the first, with a different character so flagging every tenth
point.

Integer: Gives number of points in the x direction for printer plots. For
square plots make this six tenths of the y direction points.

Integer: Gives number of points in the y direction for printer plots. For
narrow terminals this will be reduced to fifty.

3. Refers to Line or Calcomp Plots

GRDCPL
(.FALSE.)

LINCPL
(.TRUE.)

Logical: When set TRUE, draw grid lines from each tick mark on the axes.

Logical: Draw lines between points for the line plots. The lines between
points can be suppressed by making this variable .FALSE.. Note if both
SYMCPL and LINCPL are false, nothing will be plotted.

Cont.

C-2



NPCCPL
(10)

PSFCPL
(1.0)

SATCPL
(.FALSE.)

SYMCPL
(.FALSE))

TBRCPL
(9600)

TTLCPL
(. TRUE.)

XCICPL
(0.0)

XINCPL
(5.0)
XTICPL
(1.0)

YCICPL
(0.0)

YINCPL
(5.0)

YTICPL
(1.0)

Integer: Number of points per character on the line plots. In this case
a symbol is written every ten points plotted. Used for time ticks on phase
plane plots.

Real: Plot scale factor for line plots. The overall size of the plot, including
axes and lettering can be made smaller (or larger) by changing this factor.

Logical: Suppress axis text. Allows the axes and tick marks to be drawn
but suppresses all numbers and labels for speed in repetitive plots.

Logical: Plot symbols on the curve. Characters will be centered over the
point and will correspond to the normal FORTRAN character set. Special
symbols can be obtained as follows:

08 +XOPRZYHKR |

11 12 13

which correspond to asking for special characters such as ‘CHAR’=‘%’. The
actual characters available are installation dependent so see local addendum.
If symbols are plotted for every point, they are usually over-written and
confused (so see item NPCCPL).

Integer: Baud rate of channel to line plot device. Normally needed for
Tektronix plotters. Note must be set before the first PLOT command when
the plot device is initialized.

Logical: Title on line plots. The full 120 character title array is written

at the top of each plot in three lines of forty characters each. The last

line overlaps into the plot area. Since most of TITLE is not often used,
trailing blanks in TITLE may result in fewer than three lines being written.

Real: X-axis cross position. Position on x-axis (in inches) where last
y-axis is positioned.

Real: X-axis length in inches for line plots.

Real: X-axis tick increment in inches for line plots.

Real: Y cross inches for line plots. This dimension is where the x-axis is
drawn on the page. Normally at the bottom, it can be raised up to ten inches.
Negative values will send the plotter into limit.

Real: Y-axis length in inches for line plots.

Real: Y-axis tick increment in inches for line plots.
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4. Refers to Strip Plots

GRDSPL
(.FALSE.)

LINSPL
(TRUE.)

NPCSPL
(10)
PSFSPL
(1.0)
SATSPL
(FALSE.)

SYMSPL
(.FALSE.)

TTLSPL
(TRUE.)

XCISPL
(0.0)

XINSPL
(5.0)
XTISPL
(1.0)

YASSPL
(0.5)

YCISPL
(1.0)
YINSPL
(2.0)

YTISPL
(1.0)

Logical: Draw grid lines from each axis tick on strip chart plots.
Logical: Draw lines between points on strip chart plots.

Integer: Number of points per character or symbol on strip chart plots.
Real: Plot scale factor for the strip chart plots.

Logical: Suppress axis text. Allows the axes and tick marks to be drawn but
suppresses all numbers and labels for repetitive plots.

Logical: Plot symbols on the curve. The symbols will correspond to those
given for SYMCPL.

Logical: Draw a title over the strip plots. Three lines of forty characters
each.

Real: X-axis cross position. Position on x-axis (in inches) where y-axis

is placed.

Real: X-axis length in inches for strip chart plots.

Real: X-axis tick increment in inches for strip chart plots.

Real: Y-axis separation between successive axes stacked vertically.

Real: Y-axis cross position. Position on y-axis (in inches) where the x-axis
is placed.

Real: Y-axis length in inches for strip chart plots.

Real: Y-axis tick increment in inches for strip chart plots.

5. Refers to Print Data

HVDPRN
(.FALSE.)

MALPRN
(10)

TCWPRN
(132)

Logical: High volume data to display unit. Ensures all data written on PRN
unit is also copied on the DIS unit if different.

Integer: Maximum array length. For debug output all arrays were normally
listed. In order to control the amount of output, this variable was added

that suppresses listing of the contents of any array longer than this value.
The last element only will be listed to show that it is present and to indicate
the array length.

Integer: Terminal character width. Controls the line width of any data written
on the display (DIS) logical unit. For basically interactive machines such
as DEC VAX/11 the default is changed to 72.
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6. Integration Control

CIOITG Integer: Current integration order. Calculated by the program it may be

.. OUTPUT or PREPARed so that the integration order may be followed when
using one of the variable order, variable step integration routines (IALG =
1 or 2).

CSSITG Real: Current step size. Calculated by the program it may be OUTPUT or

.. PREPARed so that the actual integration step size may be followed as explained
previously (CIOITG).

MXOITG Integer: Maximum order. The maximum order of the integration algorithm

(6) may be specified between 1 and 6 when using the variable order, variable step

integration routines.

NRWITG Logical: No rewind. When this flag is true the data file containing the

(.FALSE.) value of all the variables on the PREPARe list is not rewound immediately
after a START. Data from sequential runs is then accumulated rather than
being written on top of the previous data, thereby erasing it.

TSMITG Logical: Two sided matrix evaluation. The stiff integration algorithm
(.FALSE)) (IALG = 2) needs to evaluate the linearized state transition matrix. If
the state equation is dx/dt = F(x), then two sided is obtained from F(x+dx)
and F(x-dx); single sided from F(x) and F(x-dx). While two sided is more
accurate than single sided, it requires twice as long to evaluate the complete

matrix.
WESITG Logical: Write error summary. At the end of a run using the variable order,
(. TRUE)) variable step integration routines (IALG = 1 or 2) the option exists to list

all the states along with the count of the number of times each state controlled
the integration stepsize. Normally true, this data may be suppressed by
setting WESITG false.

7. General
CMD Integer: Logical unit from which run-time commands are read. May only be
(5) five, six or nine on Control Data computers. See local installation guide.
DIS Integer: Logical unit on which display data is written out on. Output from
(6) DISPLY, RANGE and OUTPUT commands. Allowed values depend on

machine and installation.

NDBUG Number of derivative evaluations that will have DEBUG output tied to them.
(0) ‘
PLT Integer: Logical unit for line plot output (when CALPLT is .TRUE.). Device
9) and installation dependent - see local installation guide.
PRN Integer: Logical unit on which high volume data is written out. All data
(6) written on unit DIS is echoed on unit PRN if different. In addition printer

plots and PRINT command output are only written on this file. Allowed values
depend on machine and installation.

Cont.
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RRR Integer: Logical unit on which intermediate data is written out. Allowed

(8) values depend on machine and installation.
TITLE Hollerith: Up to 120 characters may be set into this array which is listed
(blank) at the top of each page. Hollerith data must be quoted.
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APPENDIX D
QUICK REFERENCE GUIDE FOR ACSL OPERATORS

Tables D-1, D-2 and D-3 list the operators available in the model definition section, the run-time
executive commands and the system constants.

Throughout the model definition operators, X is a real expression, J is an integer expression. An
expression can be a signed or unsigned constant, a variable or array name, or any combination formed into
a legal expression.

TABLE D-1. Summary of ACSL Model Definition Statements

Statement Explanation
ABS(x) Absolute value
ACOS(x) Arc-cosine; result in radians
AINT(x) Integer part of real expression x
ALGORITHM IALG = 5 Define integration algorithm
ALOG(x) Natural logarithm
ALOGI10(x) ’ Logarithm to base ten
AMAXO0@1,j2...) Real maximum of integer expressions, j;
AMAXI1(x1, x2...) Maximum of given string of expressions, x;
AMINOGL, j2...) Real minimum of integer expressions, j;
AMINI(x1,x2...) Minimum of given string of expressions, X;
AMOD(x1, x2) Remainder when x1 is divided by x2
ARRAY v(1, 2, 3),... Specifies up to three dimensions
ASIN(x) Arc-sin; result in radians ‘
ASSIGN k TOm Used before a GO TO m branch
ATAN(x) Arc-tangent-result in radians
ATAN2(y, x) Angle in radians between x-axis and point (X, y)
BCKLSH(ic, dl, x) Backlash or hysteresis
BOUND (ll, ul, x) Limit expression x to be between lower and upper limits
CALL name Invoke subroutine
CINTERVAL CINT = 0.1 Define name and value for communication interval
CMPXPL(p, g, x, icl, ic2) y =Ts2"3rlq_sﬁ";9(o) = iel;y(0) = ic2

Cont.
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TABLE D-1. Summary of ACSL Model Definition Statements—Continued

Statement Explanation
COMMENT Enclose statement in quote for comment
CONSTANT d = a Set constant d to value a
CONTINUE Do nothing - usually labelled
COS(x) Cosine of expression x in radians
DBG’ Translator debug feature
DBLINT(x, xd = ic, dd, dic, | Double integrator with limit
24, ug )
o | Ao
DEAD(£4,ut, x) / I ol X
DELAY (x, ic, tdl, nmx) Delay expression x through fixed time tdl
DERIVATIVE Begins block evaluating state variable derivatives
DERIVT(ic, x, T) Differentiate expression x: WARNING should not be used unless
absolutely necessary
DIM(x1, x2) Difference (x1 - x2)if positive, else zero
DISCRETE ‘ Begins block representing a DISCRETE event
DO1j=1,n Start of DO-loop
DYNAMIC Begins section entered every communication interval
END » Must complete each section, block or PROCEDURAL
EQUIVALENCE(mv, v) Equivalence names to same location
ERRTAG ERR Defines name for variable to indicate integration error
EXP(x) Natural exponent of expression x
EXPF(ic, r, on) Rise and fall between 0.0 and 1.0 on exponential with time constant
FCNSW(p, x1,X9,x3) Function switch
FORMAT(. . )) Format description for READ, WRITE or PRINT statements
GAUSS(m, s) Normally distributed random variable, given mean, m, and standard
deviations.
GAUSI(j) Initialize random number seed
GO TO 1 Transfer control to statement labelled 1
HARM(tz, w, p) Output is sin(w*(T - tz) + p)); T=tz else 0.0
TIABS() Absolute value of integer expression j

Cont.
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TABLE D-1. Summary of ACSL Model Definition Statements—Continued

Statement

Explanation

IDIM(1, j2)
IF(lexpr) statement

IMPL(yz, e, m, efl, f(y), yd)

INITIAL

INT(x)
INTEG(xd, xic)
INTEGER
INTVC(xd, xic)

ISIGN(1, j2)

LEDLAG(p, q, X, ic)

LIMINT(yd, ic, 28, ug)
LINES(, ‘TOF’)

LOG

LOGICAL
LSW(p, tv, fv)
MACRO
MAXO0(@1,j2...)
MAX1(x1,x2...)

MAXTERVAL MAXT =
1.0 E+10

MERROR X=0.001, . . .
MINOGL, j2 . . .)
MINI(x1, x2 . . .)

MINTERVAL MINT =
1.0E-10

MOD(1, j2)

Integer positive difference of integer expression jl and j2
If logical expression, lexpr is . TRUE., execute statement
Solves implicit equation f(y) =y

Begins section executed at beginning of every run - after each
START command

Integer part of real expression x
Integrates derivative xd given initial value xic
Defines type (and size) for variables, functions (and arrays)

Integrates vector derivative xd given initial value vector xic.
State, derivative and initial condition may be names only - arrays
must be same size

Absolute value of integer expression j1 times a sign of integer
expression j2
y ps+1 .
= : = 1c + px
TS y(0) px/q
Limited integrator

Inform top-of-page manager i lines are about to be written.
Optional ‘TOF’

Forces data recording action when called as subroutine
Defines type (and size) of variables, functions(and arrays)
Logical or integer switch

Begins macro definition

Maximum of integer expression j1, j2 ...

Integerized maximum of real expression x1, x2 . ..

Defines name and value of maximum calculation interval

Defines allowed relative error for state variables
Minimum of integer expressions j1, j2 . . .
Integerized minimum of real expressions x1, x2 . . .

Defines name and value of minimum calculation interval

Remainder when integer expression j1 is divided by integer
expression j2

Cont.
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TABLE D-1. Summary of ACSL Model Definition Statements—Continued

Statement

Explanation -

MODINT(yd, ic, £1, £2)

NSTEPS NSTP = 10
OU(r, m, s)

OUTPUT(vl, v2...)
PREPAR(v1, v2...)
PRINT n, L
PROCEDURAL(yl, y2 =
x1,..)

PROGRAM text string
PTR(x,y =r, 6)

PULSE(tz, p, w)

QNTZR(p, x)

RAMP(tz)

READ n, L
REAL

REALPL(p, x, ic)

Moded integrator L
T F
T | OPER HOLD

L2
F | RESET OPER

Define name and value of number of steps (calculation intervals)
in a communication interval - overridden by MAXT and MINT

Band limited white noise, mean m, standard deviation, s: break
frequency 27 /7 Hz

Record values of v; each communication interval
Save values of v; on prepare file, each communication interval
Print list L according to FORMAT n. Precede with LINES(i)

Begins block whose order is to be maintained. The block will be
placed before statements_using the y; and after those calculating
the x;

First card of model definition deck. No dollar sign in text.

X=rcosf,y =rsinf

Jr.o

- P —p

Fia
v =T

'l ——P j—

- X

tz
t - T

Read list L according to FORMAT n

Define type (and size) of variables, functions (and arrays).
Assumed default for all names in program.

Yy .
= y(0) =ic

ps+1
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TABLE D-1. Summary of ACSL Model Definition Statements—Continued

Statement

Explanation

RESET(a)

RSW(p, tv, fv)
RTP(r, § = x, y)
SAVE

SCALE(dmn, dmx =
ymn, ymx)

SIGN(x1, x2)
SIN(x)
SQRT(x)

STEP(tz)

TABLE name,n,d/list/

TAN(x)
TERMINAL
TERMT(lexpr)

TRAN(nn, nd, gqn, qd, x)

UNIF( £ ,u)
UNIFI(j)

VARIABLE T = 0.0,
TSC = 0.0

XERROR X = 1.0E-4
ZHOLD(ic, p, x)
ZOH(x, ic, tz, dt, i)

Used in INITIAL section to transfer initial condition array
to state array. Argument must be ‘EVAL’ or ‘NOEVAL’

Real switch
r =vx2 + y2;, 0 = ATAN2(y, x)
Save current macro tables on the macro file

Convert ymx and ymn to scales on plots

Absolute value of expression x1, times sign of x2
Sine of expression x - x in radians

Square root of expression x: Error if negative

-

Define arbitrary function of n variables, dimensions d - breakpoints
and function values given in list

Tangent of expression x - x in radians
Begins section entered at termination of a run

Identifies run termination condition; forces transfer to TERMINAL
section when logical expression, lexpr, is . TRUE.

Transfer function: nn is ORDER of numerator; nd is ORDER
of denominator, nn and nd must be integer constants, qn and qd
are arrays of coefficients of s for numerator and demoninator,
high order coefficient first

Uniform random number distributed between lower, 1, and upper, u.

Initialize seed for random number generator - changes same seed
as GAUSI

Defines name and initial condition on independent variable

Define allowed absolute error for state variable
Output is x if p is .TRUE., last value output if .FALSE.

Periodic hold every dt seconds starting at tz
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TABLE D-2. Summary of ACSL Run-Time Executive Commands

Command Subcommands Explanation
ACTION Schedule action
‘VAR’ = Independent Variable (when)
VAL’ = Value (what)
‘LOC = Data location (where)
‘CLEAR’ Clear action list
ANALYZ
‘FREEZE’ = Hold value of state variables listed
‘EIGVEC’ = Calculate eigen vectors along with eigen values
‘EIGPER’ = Calculate eigen finder performance
‘DISPLY’ = List all output on display (DIS) unit
‘LIST = List details of trim iteration
‘RMSEMX’ = [ Specify allowable error for trim convergence
‘NITRMX’ = Specify maximum number of iterations during trim
‘FRACMX’ = Specify maximum fractional change during trim
‘FRACDL’ = Specify fraction of Newton-Raphson step taken during trim
iteration
‘TRIM’ Initiate the trim iteration
‘JACOB’ Calculate and list the system Jacobian
‘EIGEN’ Calculate system eigen values
CONTIN Continue to integrate
DISPLY D Display values of named variables
END Completes PROCEDure definitions
MERROR Establish relative errors for given state variables
OUTPUT Schedule names on list to have values listed during run
‘NCIOUT’ = Number of communication intervals between output
‘CLEAR’ Clear output list
PLOT Printer and/or line plots and/or strip plots
‘ALL’ Plot all variables on prepare file
‘CHAR’ = Use given character for plot
‘HI’ = Specify upper y-axis value
‘LO = Specify lower y-axis value

Cont.
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TABLE D-2. Summary of ACSL Run-Time Executive Commands-—Continued

Command Subcommands Explanation
‘TAG’ = Specify y-axis character tag string
‘LOG’ Use logarithmic scale for y-axis
‘OVER’ Overplot - no axis drawn
‘SAMFE’ Same scales for variables to left
XAXIS = Specify X-axis variable
‘XHF = Specify right-most x-axis value
‘XLO = Specify left-most x-axis value
‘XTAG’ = Specify x-axis character tag string
XLOG? Use logarithmic scale for x-axis
PREPAR Schedule names on list to have values saved on prepare file
during run '
‘CLEAR’ Clear prepared list
PRINT Select names on PREPARe list to have values listed in
column form
‘NCIPRN’ = Number of communication intervals between print lines
‘ALL’ Print all variables on PREPARe file
PROCED Define beginning of procedure block. Terminated by END.
RANGE Print maximum and minimum values of selected variables
on PREPARE:ge list
‘ALL’ Determine range for all variables on PREPARe list
‘IHY = High value for independent variable
‘ILO’ = Low value for independent variable
‘IVAR’ = Define independent variable
REINIT Reinitialize initial conditions to current state
RESTOR Restore data area from any named file fn’
SAVE Save data area on a named file ‘fn’
SET(S) Set values of constants
SPARE Links to FORTRAN subroutine of that name: Library routine gives
central processor time used and that elapsed since last call
START Start simulation run
STOP Terminate simulation study
XERROR Establish absolute errors for given state variables
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TABLE D-3. Executive System Variables

Name’ Default Explanation
CALPLT .FALSE. Draw line plots
CGDPPL 0 Character for grid - printer plots
CIOITG . Current integration order - integration control
CMD 5 Logical unit executive commands are read from
CSSITG . Current step size - integration control
DEFPLT .FALSE. Defer output of plot
DIS 6 Logical unit for display output
FTSPLT .FALSE. Flyback trace suppression (channel 1) for all plots
GRDCPL .FALSE. Grids on line plots
GRDSPL .FALSE. Grids on strip plots
HVDPRN .FALSE. High volume display
LINCPL .TRUE. Draw lines between points - line plots
LINSPL .TRUE. Draw lines between points - strip plots
MALPRN 10 Maximum array length printed by debug
MXOITG Maximum integration order
NDBUG Debug listing forced if greater than zero
NGXPPL 20 Number of points between grid lines in x direction
NGYPPL 10 Number of points between grid lines in y direction
NPCCPL 10 Number of points between characters - line plots
NPCSPL 10 Number of points between characters - strip plots
NPPPLT 3 Number of plots per page - ‘ALL’ plots
NPXPPL 100 Number of points in X direction - printer plots
NPYPPL 100 Number of points in Y direction - printer plots
NRWITG .FALSE. No rewind of RRR file before run STARTSs
PLT 9 Logical unit number for plot output
PRN 6 Logical unit number for high volume output
PRNPLT .TRUE. Draw printer plots
PSFCPL 1.0 Plot scale factor - line plots
PSFSPL 1.0 Plot scale factor - strip plots
RRR 8 Logical unit for prepare file - raw run record file
SATCPL .FALSE. Suppress axis text - line plots
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TABLE D-3. Executive System Variables—Continued

Name Default Explanation
SATSPL .FALSE. Suppress axis text - strip plots
STRPLT .FALSE. Draw strip plots
SYMCPL .FALSE. Plot symbols on line plots - every NPCCPL points
SYMSPL .FALSE. Plot symbols on strip plots - every NPCSPL points
TBRCPL 9600 Terminal baud rate for graphics
TCWPRN 132 Terminal character width
TITLE BLANK Array of 120 characters printed at page top
TSMITG .FALSE. Two sided matrix evaluation of Jacobian
TTLCPL .TRUE. Draw title on line plots
TTLSPL .TRUE. Draw title on strip plots
WESITG .TRUE. Write error summary - integration control
XCICPL 0.0 X-axis crosses in inches - line plots
XCISPL 0.0 X-axis crosses in inches - strip plots
XINCPL 5.0 Length of X-axis in inches - line plots
XINSPL 5.0 Length of X-axis in inches - strip plots
XTICPL 1.0 X-axis tick increment - line plots
XTISPL 1.0 X-axis tick increment - strip plots
YASSPL 0.5 Y-axis separation - strip plots
YCICPL 0.0 Y-axis crosses in inches - line plots
YCISPL 1.0 Y-axis crosses in inches - strip plots
YINCPL 5.0 Length of Y-axis in inches - line plots
YINSPL 2.0 Length of Y-axis in inches - strip plots
YTICPL 1.0 Y-axis tick increment - line plots
YTISPL 1.0 Y-axis tick increment - strip plots
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APPENDIX E
EXAMPLE CONTROL CARDS

This manual is accompanied by a separate booklet or addenda that gives a detailed description of how
to use ACSL within the particular operating environment of your computing system. Since operating system
commands differ from manufacturer to manufacturer, and even within competing groups from the same
manufacturer, it is impossible to describe the details for all machines. As far as the ACSL program is
concerned, it is machine transportable and models defined on one machine should produce the same results
when run on another. Of course, numerical precision will vary somewhat. The main difference the user must
be aware of is the characters per word when SET-ting individual elements of the TITLE array.

In order to provide some idea of how the program is actually run, this section shows the command
sequence or deck set up when running under the NOS operating system with a CDC 6000 or CYBER 70
machine.

1. Batch Operation

Your job card
ACCOUNT (your account number, password)
CHARGE (charge number)
GET (ACSL/UN = ACSLSYS)
ACSL (I = INPUT, PLT = UNI)
SAVE (PLFILE)
7/8/9 - end of record

gACSL model definition program
7/8/9 - end of record

$ACSL run-time control cards
6/7/8/9 - end of information

This sequence will exercise the model under the command of the run-time drive cards, producing output
on the line printer. Any line or strip plots will be written on an intermediate plot file (PLFILE) for later
processing by UNIPOST



2. Terminal Operation
Log on - enter account number, then password
charge(your charge number)
get(acsl/un=acslsys)
acsl(i=model)
7set prn=9
etc 1 ACSL run-time commands
?end s
route(print,dc = pr)
bye

This sequence will exercise the model, the definition statements for which have been prestored on file
‘MODEL’. Low volume data will be presented on the terminal, high volume being disposed of to a local line
printer as the last operation.
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APPENDIX F
ACSL ERROR MESSAGES

The following lists the error messages that can be produced during the translation phase of the program
together with amplification and possible causes.

1. ACSL Translator Error Messages
BAD BREAKPOINT SPEC

The number of arguments specified in the TABLE statement is not 1, 2 or 3 or the number of breakpoint
integers given does not correspond with the number of arguments. '

BAD FUNCTION DATA COUNT

The number of data items in the TABLE statement (between slashes) does not add up to the total length
expected - product of dimensions plus sum of dimensions.

CONFLICTING DATA TYPE

The identifier indicated in the error message is being used in a way that conflicts with an earlier usage.
Some examples are:

1) Attempt to use a label as a variable

2) Using the variable in two different type declarations

3) Using “States” or “ICs” in logical or integer typing statements

4) Using duplicate “ICs” in separate INTEG statements
CONFLICTING LABEL NAME

The identifier indicated in the error message is either a variable being used as a statement label, or a
previously defined label.

DIMENSIONS ALREADY SET
Attempt to define the dimensions of a previous dimensioned array.
EQUIVALENCE ERROR

Usually caused by not realizing the special place occupied by the first variable in the EQUIVALENCE
list which is used, in the ACSL sense, as a primary variable. This variable must always appear first on
the list for any subsequent EQUIVALENCE statements into the same array. Another cause is
equivalencing the same secondary variable to two different primary variables. System variables such as
CINT, MAXT, state, derivative and initial condition variables must be given as primary variables

ILLEGAL BLOCK COMBINATION

An ACSL block delimiter (PROGRAM, INITIAL, END, etc) was encountered, out of the proper
sequence.

ILLEGAL DERIVATIVE DEFINITION
Derivative arrays are not allowed except in INTVC statements.
INSUFFICIENT REGION FOR TRANSLATION

Insufficient field length for ACSL to attempt translation. Always fatal. Increase memory region parame-
ter and resubmit job.



INTEG NOT IN SORT BLOCK

Integration statements must be in a DERIVATIVE block (an implicit PROGRAM . .. END structure
is synonymous with a DERIVATIVE block) rather than the INITIAL, DYNAMIC or TERMINAL
section. Usually caused by an END mismatch which terminates a block inadvertently. May also be -
caused by an integration statement inside a PROCEDURAL . .. END block nested to level two or
higher.

MACRO ARGUMENT ERROR

Error in the macro definition and attempting to invoke the macro, or the computed argument number
for the main argument is less than “1” or greater than the original number of arguments.

MACRO NOT DEFINED

Attempt to use a macro which has not been defined. The syntax of the statement indicates a macro is
present but the macro is not found in the macro file.

MACRO NOT INVOKED
Attempt to use an “ASSIGNED” variable when variable was not defined in an ASSIGN statement.
MACRO STATEMENT ORDER ERROR

During macro expansion: No standard value for an unspecified macro argument, or an attempt to use
the dimensions of an undimensioned argument.

MISSING DERIVATIVE STATEMENT
An INTEG statement is missing for some element of a state array.
JULTIPLY DEFINED SYMBOL
The named variable has previously been assigned a value in this sort block or derivative section.
NO RIGHT SIBLING
Internal ACSL system error during syntax analysis. Report to system staff with example.
NO TABLE SPACE LEFT

Insufficient field length for ACSL to continue running. Usually caused by the use of a large number of
variables in a large program. Can also be caused by arithmetic loops encountered in statement sorting.
An increase in field length of 10K should be more than sufficient in most cases. Always fatal.

OUTSIDE TABLE LIMIT
A system error in the ACSL translator. Report to system staff with example.
PARAMETER NOT FOUND

Attempt to assign a standard value to a variable other than one of the main arguments in a MACRO
definition.

PROC. ENDED INCORRECTLY
An ACSL block delimiter, other than “END”, was found inside a “PROCEDURAL” block.
PREMATURE END OF FILE

An end of file was encountered on the translator input file before the logical end of the ACSL source
program was found. Implies an incomplete program or a missing END statement.

TABLE ALREADY DEFINED

The table name has already been used in another context prior to the current table definition. Either as
a simple variable, another TABLE definition or simple use. TABLE functions must be defined before
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their first use since otherwise the translator cannot distinguish the use from normal FORTRAN func-
tions.

TOO MANY CHARACTERS

The truncated identifier, indicated by the message, contains more than 6 characters. Translation contin-
ues with the truncated version of the identifier.

TOO MANY ENDS

Statements remain on the input file after the final END of the ACSL program. The remaining
statements are listed but not processed. Implies that too many END statements were included-in the
program, or that statements were misplaced, or that FORTRAN routines are included with the source
deck but don’t start with SUBROUTINE, FUNCTION, INTEGER FUNCTION, etc.

UNSORTABLE STATEMENT BLOCK

An arithmetic loop was encountered during sorting, and is listed below the message. The statements will
not appear on the compile file, but the statements which depend on this block will.

VARIABLE NOT DIMENSIONED

The variable indicated in the error message is being used as an array without being declared as such by
an ARRAY, DIMENSION or other such typing statement.

WRONG DIMENSIONS

Attempt to use an array with more than 3 subscripts.

2. RUN-TIME ERROR MESSAGES

Run-time error messages produced by the ACSL executive processing the model drive cards, are as
follows:

CAN-T FIND ARRAY ELEMENT IN name

A reference has been made to a particular array element that doesn’t exist or has already been deleted
once before by a preceding FREEZE.

CAN-T FIND name

The ‘name’ does not appear in the dictionary or in the case of PLOT, PRINT or RANGE commands,
might not have been included on the PREPAR list.

CAN-T SATISFY ERROR CRITERION

The integration algorithm has decided it needs to take a step smaller than MINT to keep the largest
error within bound. Must be acknowledged with ERRTAG (q.v.) or the simulation run will stop.

CANNOT TRIM WITH DELAY FUNCTION

An attempt has been made to use the TRIM subcommand of ANALYZ. The Jacobian is in error if
DELAY functions are used in the model.

CONSTANT COLUMN - NUMBER IS n

In trying to invert the Jacobian, a constant column has been identified and indicated by numeric value
into the list of unfrozen state variables. Usually the result of keeping a state variable in the iteration that
has no influence on any other part of the model.

CONSTANT ROW - NUMBER IS n

In trying to invert the Jacobian, a constant row has been identified. Usually the result of keeping a state
variable in the iteration with a constant (may be zero) derivative.
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END OF COMMAND FILE ENCOUNTERED

An end of file has been sensed on the file identified by logical unit CMD. The simulation study is
terminated and control reverts to the operating system.

ERROR AFTER name

Some sort of syntax error has been determined after the given ‘name’ appears on the command card
image. Trying to specify NCI by a real number (2.0 for example): ‘CHAR’ value as a logical for instance.

ERROR IN EIGEN ANALYSIS ROUTINE
ERROR NUMBER IS n

An error was made in trying to determine the eigen values of the Jacobian matrix. See error listing for
eigen analysis routine actually used.

FILE LENGTH TOO SHORT

The RESTORe command found the data block did not match the user block length. Usually caused by
attempting to RESTOREe a file SAVEd from a previous translation run. Changes to the ACSL program
will invalidate previous assignments.

FILE NAME SHOULD BE QUOTED
The argument for the SAVE/RESTORe commands should be a valid file name in quotes, i.e.
SAVE ‘JOE’
File names should start with a letter and contain no more than six characters (letters or digits)
ILLEGAL COMMAND WORD

The command word starting the statement is not in the standard list nor is it the name of any PROCE-
Dure established.

ILLEGAL DATA TYPE FOLLOWING name
Something is wrong with the command following the symbol ‘name’ and before any following symbol.
INDEPENDENT VARIABLE CHANGED IN JACOBIAN EVALUATION name

A state variable has been modified inside the DERIVATIVE section used to calculate the Jacobian.
Since the Jacobian evaluator uses numerical perturbation of the unfrozen state variables, any other
modification will invalidate the calculation.

INSUFFICIENT AREA FOR DELAY FUNCTION

The array length specified in one of the DELAY functions is too small to accommodate all the data points
needed. Usually produced when the model goes through a region requiring a very small step size.

INSUFFICIENT DATA
The statement is terminated when data was expected.
JACOBIAN DETERMINANT ZERO, CAN-T TRIM

The TRIM subcommand of ANALYZ has found that the Jacobian has a zero determinant so the
Newton-Raphson iteration can’t proceed. Using FREEZE prior to the TRIM can usually eliminate the
offending state.

LINE PLOT LIBRARY NOT LOADED

An attempt has been made to make line plots (PLOT with CALPLT true) without instructing the loader
or link-edit program to substitute the appropriate device driver. See local addendum for devices available
and JCL or system control cards required.



LINEAR ANALYSIS ROUTINE NOT LOADED

An attempt has been made to use the run time command ANALYZ without ensuring that the routines
are present to handle the command. Due to infrequent usage, the normal default is to omit the routines
that handle the ANALYZ command in order to save memory and load time. See local addendum for
JCL required to instruct the loader or link-editor to link in the appropriate modules.

LIST DOESN’T CONTAIN name

One of the ANALYZ subcommands is looking for a variable in a list. For instance FREEZE can only
apply to state variables.

NAME ALREADY DEFINED

In using LISTD to process a set of dictionary definitions, the same variable name has appeared twice.
Usually caused by omitting continuation digits from column ten (10) for long definitions.

NAME ALREADY IN DICTIONARY

In using BLDDCT to extend to the ACSL dictionary an attempt was made to add a name already present
in the dictionary.

NAME FOR PROCEDURE NOT GIVEN OR ILLEGAL
The procedure name is not of the correct form following the PROCED command.
NAME MUST PRECEDE DATA
A data item is given before a name has been established to store the value in, i.e.
SET A = 2.0 is alright
but SET 2.0 = A is wrong
NAME OR ELEMENT NOT ON PREPAR LIST - name

One of the commands that refers to the PREPAR list (PLOT, PRINT, RANGE, etc) has a variable
name or array element in the list that was not included in the original PREPAR command i.e. PREPAR
Y (2), Y(3) followed later by PLOT Y(1).

NEED A NAME FIRST

Modifiers to one of the plot variables refer to a preceding symbol. If no symbol is given it is an error,
i.e..

PLOT ‘LO’ = 0.0 ‘HI’ = 5.0, Y1 is incorrect
NO MORE TABLE SPACE, MAX LENGTH USED IS i

The run time table space manager has run out of space and the simulation study must be aborted.
Frequently associated with using the stiff integration algorithm which needs 2N squared words, where
N is the number of the state variables. See local addendum for mechanism to increase table space at
run-time.

NO SPACE LEFT IN DICTIONARY FOR name

In attempting to extend the user dictionary with BLDDCT, the common block space designated for the
dictionary has been filled and no more names can be added. Length may not have been established with
NITBLD. Extend the length of the dictionary common block/ZZDCT/ in the user supplied main
program.

NO USER SUPPLIED INTEGRATION ROUTINE

An attempt has been made to use integration algorithm seven (IALG=7) without supplying a subroutine
INTEG to handle the integration.



REFERENCE OUT OF LIMIT OF ARRAY name

An array element is referred to that is outside the declared size of the array. In a SET command
sequential data items go into succeeding slots of an array. Each is checked to make sure the array bound
is not exceeded, i.e., if A is an array of size five, the following

~ SET A(3) =15, 25, 5.0, 6.0
would produce this message since the 6.0 is to be stored in A(6).
REFERENCE TO NON-STATE VARIABLE name

An attempt has been made to specify error tolerances with XERROR or MERROR for a variable that
is not a state variable. Check names in state list from debug output.

RESCALE NOT IMPLEMENTED

Reference has been made to the old ACSL system symbols RSCCPL, RSCPPL or RSCPLT that were
supposed to cause dynamic rescaling within a plot. This feature was eliminated at level 6M.

STEP SIZE TOO LARGE. STATE - n

A zero determinant has been found in trying to invert the matrix (I + hA) in the stiff integration
algorithm. Should never happen but may be fixed by reducing the allowable step size.

SYNTAX ERROR X = Y++Y
kkokdkekkkkkkkkk
The statement is repeated and the line of asterisks stops where the first syntax error occurred.
TAG TOO LONG AFTER name

A TAG string on a PLOT command has too many characters. Actual number allowed will depend on
machine type but all machines will accept twenty (20) character messages.

TOO MANY ITERATIONS, CAN-T CONVERGE

The TRIM sub-command of ANALYZ has failed to converge within the specified number of iterations.
Either increase the numbers of iterations (NITRMX), reduce the convergence criteria (RMSEMX) or
decrease the step (FRACDL). Use REINIT to hold on to any gains obtained with the current iteration.

TYPE CONFLICT ON STORE INTO name

The data does not agree with the predetermined type of ‘name’. Logical data can only be .TRUE. (.T.)
or .FALSE. (.F.). Integers are allowed into reals, but all other combinations are illegal.

X-AXIS SCALES INCORRECT FOR LOG PLOTS
Y-AXIS SCALES INCORRECT FOR LOG PLOTS on name

The scale values are either negative or zero when making logarithmic plots. Usually the LO value must
be specified since the normal rounding will change the LO axis marker to zero.

ZERO PIVOT ELEMENT FOUND AT STATE INDEX n

In using TRIM within ANALYZ, a zero determinant has been found when trying to invert the Jacobian.
This message identifies the row number at which the zero pivot element first showed up and can
sometimes be correlated to a state variable having a degenerate relationship with the rest of the model.
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