
. .

G)~~G)D~ ffiffi®® ~G)@D©
. illrn~rnillrn~©rn ~ill~rnJill~

wrnill®~®~ at TI

GJ~~GJO~ rnrn®® ~GJ@O©

© .., M I TS, Inc. 1 971 .
Third Printing, July, 1977 .

. rnrn~rnrnrnGm~rn ~ill~rnJill~
wrnrn~~®~ ~t TI

2450 Alamo S.E.! Albuquerque, New Mexico 87106

PREFACE

The Altair BASIC language is a high-level ~roqrarnming
language specifically desiqned for interactive com?uting
systems. Its sim?le "English-like instructions are easily
understood and auickly learned and its interactive nature
allows instant feedback of results and diagnostics. Despite
its sirn?licity, however, Altair BASIC has evolved into a
powerful language with nrovisions for editinq and strinq
processing as well as numecical computation.

The Altair BASIC interpreter reads the instructions of
the BASIC language and directs the ALT~IR 8800 series
microcomputer to execute them. Altair BASIC includes Tany
useful diagnostic and editing features in all versions. The
extended versions provide additional features includinq
comQrehensive file input/output orocedures in the disk
version.

This manual will ex?lain the feat~rss of the BASIC
languaqe and the special ~rovisions of the 4K, 8K, Extended
and Disk Extended ~ltair BASIC interpreters, release 4.1. For
quick reference, a table of Altair BASIC instctlctions,
diagnostics and functions are provided in Section 6. A
complete index is at the end of the manual.

BASIC ~.l 1

April, 1977

CONTENTS

1. Some Introductory Remarks. 4

1-1 Introduction to this manual 4
a. Conventions
b. Definitions

1-2 Modes of Operation 5
1-3 Formats 6

a. Lines-AUTO and RENUM
b. REMarks
c. Error Messages

1-4 Editing - elementary prOV1Slons 9
a. Correcting Single Characters
b. Correcting Lines
c. Correcting.Whole Programs

2. Expressions and Statements 10

2-1 Ex?ressions 10
a. Constants
b. Variables
c. Array Variables - the DIM Statement
d. Operators and Precedence
e. Logical Operations
f. The LET Statement

2-2 Branching and Loo~s 19
a. Branching

1) GOTO
2) IF ••• THEN ••• [ELSE]
3) ON ••• GOTO

b. Loops - FOR and NEXT Statements
c. Subroutines - GOSUB and RETURN Statements
d. Memory Limitations

2-3 In~ut/Out?ut 23
a,. INPUT
b. PRINT
c. DATA, READ, RESTOPE
d. CSAVE, CLOAD
9. Hiscellaneous

1) ~~AIT

2) PEEK, POKE
3) OUT, INP

2 BASIC 4.1

.<1pril t 19'77

3 . Functions 28
3-1 Intrinsic Functions 28
3-2 User-Defined Functions - the DEF Statement 28
3-3 Errors 29
4. Strings 30
4-1 String Data 30
4-2 String Operations 30

a. Comoarison Operators
b. String EXl;)ressions
c. Input/Output

4-3 String Functions 31

5. Extended Versions 32

5-1 Extended Statements 32
5-2 Extended Operators 38
5-3 Extended Functions 39
5-4 The EDIT Command 41
5-5 PRINT USING Statement 46
5-6 Disk File Operations 51

6. Lists and Directories 69

6-1 Commands 69
6-2 Statements 72
6-3 Intrinsic Functions 77
6-4 Special Characters 82
6-5 Error Messages 84
6-6 Reserved Words 91

Aopendices

A. ASCII Character Codes 93
B. Loading Altair BASIC 95
c. Sgeed and Space Hints 106
D. Mathematical Functions 109
E. Altair BASIC and Machine Languaqe 112
F. Usinq the ~CR Interface 114
G. Convertinq BASIC Programs Not Written for the Altair Com~uter 116
H. Disk Infornation 118
I. The PIP Utility Program 124
J. RSTLESS Versions of BASIC 128
K. Using Altair BASIC on the

Intellec* a/Mod 80 and MOS Systems 129
L. Patching ~ltair BASIC's I/O Routines 132
~. Using Disk Altair BASIC: An Example - 137

Index 145

BASIC 4.1

April, 197i

3

4

1. SOME INTRODUCTORY REMARKS

1-1 Introduction to this Manual.

a. Conventions. For the sake of simplicity, some
conventions will be followed in discussing the features of .the
Altair BASIC language.
1. Words ~rinted in ca?ital letters must be written exactly
as shown. These are mostly names of instructions and
commands.
2. Items enclosed in angle brackets «» must be sU??lied as
explained in the text. Items in square brackets ([]) are
optional. Items in both kinds of brackets, [<H>] , for
example, are to be supplied if the ootional feature is used.
Items followed by dots (•••) may be re~eated or deleted as
necessary.
3. Shift/ or Control/ followed by a letter me.ans the
character is typed by holding down" the Shift or Control key
and tY9ing the indicated letter.
4. All indicated punctuation must be supplied.

b. Definitions. Some terms which will become important
are as follo\vs:

Alphanumeric char~cter: all letters and numerals taken
together are called a19hanumeric characters.

Carriage Return: Refers both to the key on the terminal
which causes the carriaqe, print head or cursor to move to' the
beginning of the next line and to the command that the
carriage return key issues which terminates a BASIC line.

Command Level:
the command level.

After Altair BASIC orints OK, it is in
This means it is ready to accent commands.

Commands and Statements: Instructions in Altair BASIC
are loosely divided into two classes, Commands and Statements.
Commands are instructions normally used only in direct mode
(see Modes of Operation, section 1-2). Some commands, such as
CaNT, may only be-used in direct mode since they have no
meaning as ?rogram statements. Some commands, such as DELETE,
are not normally used as program statements because they cause
a return to command level. But most commands will find
occasional use as 9rogram statements. Statements are
instructions that are normally usee ~n indirect mode. Some
statements, such as DEF, may only be used in indirect mode.

Edit: The 9rocess of deleting, adding and substituting
lines in a 9rogram and that of preparing data for output
according to a ?redetermined format will both be referred to
as ·~editing. Ij The particular meaning in use will be clear from
the context.

BA.SIC 4.1

April, 1977

Integer Expression:
truncated to an integer.
need not be of integer type.

An ex~ression whose value is
The comoonents of the expression

Reserved Words: Some words are reserved by BASIC for use
as statements and commands. These are called reserved words
and they may not be used in varIable or function names.

Special Characters: Some characters appear differently
on different terminals. Some of the most important of these
are the following:

(carat) appears on some terminals as t (up~arrow)
~ (tilde) does not a9?ear on so~e terminals and orints

as a blank
(underline) a~~ears on some terminals as ~(back-arrow).

String Literal: A strinq of characters enclosed by
quotation marks (~) which is to be input or· output' exactly as
it appears. The quotation marks are not cart of the strinq
literal, nor may a string literal contain quotation marks.
(·· .. HI, THERE is not legal.)

Type: While the actual device used to enter information
into the computer differs from system to system, this manual
will use the word .• type " to refer to the r;>rocess of en try.
The user types, the com?uter prints. Ty~e also refers to the
classifications of numbers and strings. The meaning will be
clear from the context.

1-2 Modes of Operation.

Altair BASIC provides for operation of the computer in
two different modes. In the direct mode, the statements or
commands are executed as they are entered into the comnuter.
Results of arithmetic and logical operations are display~d and
stored for later use, but the instructions themselves are lost
after execution. This mode is useful for debugging and for
using Altair BASIC in a IIcalculatorii mode for quick
com~utations which do not justify"the design and codin? of
com~lete programs.

In the indirect mode, the com~uter executes instructions
from a orogram stored in memory. Program lines are entered
into memory if they ar~ preceded by a line number. Execution

.of the program is usually initiated bv the RUN command.

BASIC, 4.1 5

April, 1977

1-3 Formats.

a. Lines - AUTO and RENUM. The line is the fundamental
unit of an Altair BASIC proqrarn. The format for ah Altair
BASIC line is as follows:

nnnnn <BASIC statement>[:<BASIC statement> •••]

Each Altair BASIC line begins with a number. The number
corres?onds to the address of the line in memory and indicates
the order in which the statements in the line will be executed
in the 9rogram. It ~lso provides for branching linkages and
for editing. Line numbers must be in the range 0 to 65529. A
good orogramminq ?ractice is to use an increment of 5 or 10
between successive line numbers to allow for insertions.

1) Line numbers may be generated automatically .in the
Extended and Disk versions of Altair BASIC by use of the AUTO
and RENUM commands. The AUTO command ?rovides for automatic
insertion of line numbers when entering 9rogram lines. The
format of the AUTO command is as follows:

AUTO[<initialline>[,[<increment>]]
Example;

AUTO 100,10
100 INPUT X,Y
110 PRINT SQR(X-2+Y-2)
120 -C
OK

AUTO will number every input line until Cantrol/e is typed.
If the <initial line> is omitted, it is assumed to be 10 and
an increment of 10 is assumed if <increment> is omitted. If
the <initial line> is followed by a comma but no increment is
specified, the increment last used in an AUTO statement is
assumed.

If AUTO generates a line number that already exists in
the program currently in memory, it prints the number followed
by an asterisk. This is to warn the user that any in?ut will
replace the existing line.

2) The RENUM command allows ~rogram lines to be "spread
out" so that a new line or lines may be inserted between
existing lines. The format of the RENUM command is as
follows:

.RENUM [<NN>[,<MM>[,<II>]]]

where NN is the new number of the first line to be
resequenced. If omitted, NN is assumed to be 10. Lines less

6 BASIC 4.1

April, 1977

than MM will not be renumbered. If MM is omitted, the whole
program will be resequenced. II is the increment between the
lines to be resequenced. If II is omitted, it is assumed to
be 10. Examoles:

RENUM Renumbers the whole program to start at line 10
with an increment of 10 between the new line numbers.

RENUM 100,,100 Renumbers the whole program to start
at line 100 with an increment of 100.

RENUM 6000,5000,1000 Renumbers the lines from 5000 up
so they start at 6000 with an increment of 1000.

NOTE

RENUM cannot be used to chanqe the order of program
lines {for exam~le, RENUM i§,30 when the program has
three lines numbered 10, 20 ana 30} nor to create line
numbers greater than 65529. An ILLEGAL FUNCTION CALL
error will result.

All line numbers appearing after a GOTO, GOSUE, THEN,
ON ••• GOTO, ON ••• GOSUB and ERL<relational o?erator> will be
?roperly changed by RENUM to reference the new line numbers.
If a line number a~?ears after one of the statements above but
does not exist in the program, the message nUNDEFINED LINE
XXXXX IN YYYYY" will be printed. This line reference (XXXXX)
will not be changed bV RENUH, but line number YYYYY may be
changed.

3) In the Extended and Disk versions, the current line
number may be designated by a period (.) anywhere a line
number reference is recruired. This is particularly useful in
the use of the EDIT command. See section 5-4.

4) Following the line number, one or more BASIC
statements are written. The first word of a statement
identifies the o~er~tions to be performed. The list of
arguments which follows the identifying word serves several
purposes. It can contain (or refer symbolically to) the data
which is to be operated u~on by the statement. In some
important instructions, the operation to be ?erformed depends
u~on conditions or options s~ecified in the list.

Each type of statement will be considered in detail in
sections 2, 3 and 4.

BASIC 4.1 7

April, 1977

8

More than one statement can be written on one line if
they are separated by colons (:). Any number of statements
can be joined this way provided that the line is no more than
72 characters' long in the 4K and 8K versLons or 255 characters
in the Extended and Disk versions. In the Extended and oisk
versions, lines may be broken with the LINE FEED key.
Example:

100 IF X<Y+37<line feed>
THEN 5 <line feed>
ELSE PRINT (X) (carr iaqe return>,

The line is shown broken into three lines, but it is in~ut as
one BASIC line.

b. REMarks. In many cases, a program can be more easily
understood if it contains remarks and ex~lanations as well as
the statements of the program proper. In Altair BASIC, the
REM statement allows such comments to be included without
affecting execution of the program. The format of the REM
statement is as follows:

REM <remarks>

A REM statement is not executed by BASIC, but branching
statements may link into it. REM statements are terminated by
the carriage return or the end of the line but not bv a co~on.
Example:

100 REM DO THIS LOOP:FOR I=lT010 -the FOR statement
will not be executed

101 FOR I=1 TO 10: REM DO THIS LOOP -this FOR state-
ment will be execu­
ted.

In Extended and Disk versions, remarks may be added to the end
of a 9rogram line separated from the rest of the line by a
single auotation mark (I). Everything after the single quote
tvill be ignored.

c. Errors. When the BASIC interpreter detects an error
that .will cause the orogram to be terminated, it prints an
error message. The error message formats in Altair BASIC are
as follows:

Direct statenent
Indirect statement

?XX ERROR
?XX ERROR IN nnnnn

XX is the error code or message (see section 6-5 for a list of
error codes and messages) and nnnnn is the line number where
the error occurred. Each statement has' its own ?articular
oossible errors in addition to the general errors in syntax.

BASIC 4.1

Ap:ril, 1977

These errors will be discussed in the descri?tion of the
individual statements.

1-4. Editing - Elementary provisions.

Editing features are provided in Altair BASIC so that
mistakes can be corrected and features can be added and
deleted without affecting the remainder of the 9rogram. If
necessary, the whole program may be deleted. Extended and
Disk Altair BASIC have eX9anded editing facilities which will
be discussed in section 54 -

a. Correcting Single Characters. If an incorrect
character is detected in a line as it is being ty?ed, it can
be corrected immediately with the backarrow (, underline on
some terminals) or ,except in 4K, the RUBOUT key. Each stroke
of the key dele~es the immediately 9receding character. If
there is no preceding character, a c3rriaqe return is issued
and a new line i~ begun. Once the unwanted characters are
removed, they can be replaced simply by ty~ing the rest of the
line as desired.

When RUBOUT is typed, a backslash ,\) is printed and then
the character to be'deleted. Each successive RUBOUT prints
the next character to be deleted. Typing a new character
prints another backslash and the new character. All
characters between the backslashes are deleted.

Example:

100 X=\=X\Y=10 Typing two RUBOUTS deleted the 1='
and 'X' which were subsequently
replaced by Y=.

b. Correcting Lines. A line being typed may be deleted
by typing an at-sign (@) instead of typing a carriage return.
~ carriage return is printed automatically after the line is
deleted. Exce9t in 4K, typing Control/U has the same effect.

In the Extended and Disk versions, ty?inq ControllA
instead of the carriaqe return will allow all the features of
the EDIT command (except the ~ command) to be used on the line
currently being ty~ed. See section 5-4.

c. Correcting Whole Programs. The NEW command causes
·the entire current program and all variables to be deleted.
NEW is generally used to clear memory space preoaratory to
entering a new Qrogram.

BASIC 4.1 9

April, 1977

10

2. EXPRESSIONS AND STATEMENTS.

2-1. Exoressions.
.'

The simplest BASIC expressions are single constants,
variables and function calls.

a. Constants. Altair B~SIC accepts integers or floating
point real numbers as constants. All but the 4K version of
Altair BASIC accept string constants as well. See section
4-1. Some exam?les of acce~table numeric constants follow:

123
3.141
0.0436
1.25E+05

Data ino,ut from the terminal or numeric constants in a ~roqram
may have any number of digits up to the length of a line (see
section l-3a). In 4K and 8K Altair B~SIC, however, only the
first 7 digits of a number are significant and the seventh
digit is rounded up. Therefore, the command

PRINT 1.234567890123

produces the following output:

1.23457
OK

In Extended and
preC~Slon format
digit rounded up.

Disk versions of Altair BASIC, double
allows 17 significant digits with the 17th

The format of a ~rinted number is determined by the
following rules:

1. If the number is negative, a minus sign (-) is printed to
the left of the number. If the number is ~ositive, a
space is o,rinted.

2. If the absolute value of the number is an integer in the
range 0 to 999999, it is printed as an integer •

. 3. If the absolute value of the number is greater than or
equal to .01 and less than or equal to 999999, it is
o,rinted in fixed point notation with no exponent.

4. In Extended and Disk versions, fixed ~oint values u? to
9999999999999999 are possible.

BASIC 4.1

April, 1977

5. If the number does not fall into categories 2, 3 or 4,
scientific notation is used.

The formats of scientific notation are as follows:

SX.XXXXXESTT single precision

SX.XXXXXXXXXXXXXXXDSTT double ?recision

where S stands for the signs of the mantissa and the exponent
(theY need not be the same, of course), X for the digits of
the mantissa and T for the digits of the eXDonent. E and D
may be read " •.• times ten to the 90wer •••• " Non-significant
zeros are su~pressed in the mantissa, but two digits are
always printed in the exponent. The sign convention in rule 1
is followed for the mantissa. The ex?onent must be in the
range -38 to +38. The largest number that may be represented
in Altair BASIC is 1.70l41E38; the smallest nositive number
is 2.9387E-38. The following are exam~les of numbers as in?ut
and as output by Altair BASIC:

Number

+1
-1
6523
lE20
-12.34567E-10
1.234567E-7
1000000
.1 .
• 01
.000123
-25.460

Altair BASIC Output

1
-1

6523
lE20

-1.23456E-09
1.23457E-07
1E+06
.. 1
.01
1.23E-04

-25.46

The Extended and Disk versions of Altair BASIC allow
numbers to be represented in integer, single precision or
double precision form. The type of a number constant is
determined according to the following rules:

1. A ~onstant with more than 7 digits or a to'
in the exponent is double precision.

instead of

2. A constant outside the range -32768 to 32767, with 7 or
fewer digits and a decimal point or with an IE' eX90nent
is single precision.

3. A constant in the ranqe -32768 to 32767 and no decimal
-?oint is integer.

BASIC ~.l 11

April, 197'7

12

4. A constant followed by an exclamation ~oint (1) is single
precision; a constant followed by a 90und sign (#) is
double ~recision.

.-

Two additional types of constants are allowed in Extended
and Disk versions of ~ltair BASIC. Hexadecimal (base sixteen)
constants may be ex~licitly designated by the symbol &H
preceding the number. The constant may not contain any
characters other than the digits 0 - 9 or letters A - F, or a
SYNTAX ERROR will occur. Octal constants may be designated
either by &0 or just the & sign.

In all fornats, a snace is printed after the number. In
all but the 4K version, Altair BASIC checks to see if the
entire number will fit on the current line. If not, it issues
a carriage return and prints the whole number on the next
line.

b. Variables. ~ variable represents symbolically any
number which is assigned to it. The value of a variable may
be assigned explicitly by the programmer or may be assiqned as
the result of calculations in a program. Before a variable is
assigned a value, its value is assumed to be zero. In 4K, a
variable name consists of one or two characters. The first
character is any letter. The second character must be a
numeral. In other versions of Altair BASIC, the variable name
may be any length, but any al~hanumeric characters after· the
first two are ignored. The first character' must be a letter.
No reserved words may appear as variable names or within
variable names. The following are examples of legal and
illegal Altair BASIC variables:

Legal
In 4K and 8K Altair BASIC:

A

Zl

Other versions:
TP

PSTG$

COUNT

Illegal

%A (first character must
be alohabetic.)
ZIA (variable name is too
long for 4K)

TO (variable names cannot
be reserved words)

RGOTO (variable names can­
not contain reserved
words.)

rn all but 4K Altair BASIC, a variable may also represent
a string. Use of this feature is discussed in section 4.

BASIC 4.1

April. 19ii

1) Extended and Disk versions of ~ltair BASIC allow the
use of Integer and Double Precision variables as well as
Single Precision and Strings. The tYge of a variable may be
explicitly declared in Extended and Disk versions of Altair
BASIC by using one of the sy~b01s in the table below as the
last character of the variable name.

Type Symbo~

Strings (0 to 255 characters) $
Integers (-32768 to 32767) %
Single Precision (up to 7 digits, ex~onent between

-38 and +38)
Double Precision (up to 16 digits, exponent between

-38 and +.38) #

Internally, BASIC handles all numbers in binary. Therefore,
some 8 digit single precision and 17 digit double precision
numbers may be handled correctly. If no type is ex~1±citly
declared, ty?e is determined by the first letter of the
variable name according to the type table. The table of types
may be modified with the following statements:

DEFINT r
OEFSTR r
DEFSNG r
DEFD8L r

Integer
String
Single Precision
Double Precision

where r is a letter or range of letters to be designated.
Exam?les:

15 DEFINT I-N Variable names beqinning with the let-
ters I-N are to be of inteqer ty?e.

20 DEFDaL D Variable names beginning with D are to
be of double precision ty~e.

If no type definition statements. are encountered, BASIC
proceeds as if it had executed a DEFSNG A-Z statement.

2) Integer variables should be
since they take the least amount
integer arithmetic is much faster
arithmetic.

used wherever possible
of space in memory and
than single ?recision

Care must be exercised when single precision and double
preCISIon numbers are mixed. Since sinqle precision numbers
can have more significant digits than ~iil· be printed, a
double precision variable set to a single precision value may
·not print the same as the single precision variable.

10 A=1.01
20 B#=A*10:C#=CDBL(A)*10#

SASIC 4.1

April, 1977

single precision value
convert to double ?recision

13

14

30 PRINTA;B#;Ci;CDBL(A) in various ways
RUN

1.01 10.10000038146973 10.09999990463257 1.009999990463257
OK

In order to assure that double precision numbers will piint
the same as sinq1e 9recision, the VAL and STR$ functions
should be used. For example:

10 A=1.0l
20 Bi=VAL(STR$(A)) :C#=B#*10#
30 PRINT AiB#iC#
RUN

1.01 1.01 10.1
OK

c. Array Variables - The DIM Statement. It is often
advantageous "to refer to several variables by the same name.
In matrix calculations, for example, the computer handles each
element of the matrix separately, but it is convenient for the
programmer to refer to the whole matrix as a unit. For this
purpose, Altair BASIC 9rovices subscri9ted voriables, or
arrays. The form of an array variable is as follows:

VV«subscri?t>[,<subscri9t > •••])

where VV is a variable name and the subscripts are integer
exnressions. Subscr ipts may be enclosed in parenthese.s or
square brackets. An array variable may have only one'
di~ension in 4K, but in all other versions of Altair BASIC it
may have as many dimensions as will fit on a single line. The
smallest subscript is zero. Examples:

/

A(5) The sixth element of array A. The first
element is A(0) •

ARRAY(I,2*J) The address of this element in a two­
dimensional array is determined by
evaluating the ex~ressions in parenthe­
ses at the time of the reference to the
array and truncating to inteqers. If
1=3 and J=2.4, this refers to ~RRAY(3,4).

The DIM statement allocates storage for
sets all array elements to zero.
statement is as follows:

array variables and
The form of the DIM

DIM VV«subscri?t>[,<subscri?t> .•.])

where VV is a legal var i·able name. Subser i1;>t is an. integer
expression which specifies the largest ?ossible subscript for
that dimension. Each DIM statement may a?oly to more than one
array variable. Some examples follow:

BASIC 4.1

Ap-ril, 19ii

113 DI~1 A (3), 0$ (2 , 2 ,2)
, 114 D I ~1 R2 % (4), B (10)

115 DIM Ql (N), Z# (2+I) Arrays may be dimensioned dy­
namically during program
execution. At the time the
QIM is executed, the ex~ression
within the parentheses is e- ..
valuated and the resillts truri­
cated to integer.

If no DIM statement has been executed before an array variable
is found in a proqram, BASIC assumes the variable to have a
maxi~um subscript of 10 (II elements) for each dimension in
the reference. A BS or SUBSCRIPT OUT OF RANGE error message
w'ill be issued if an attem?t is made to reference ·an array
element which is outside the s~ace allocated in its associated
DIM statement. This can occur when the wrong number of
dimensions is used in an array element reference. For
example:

30 LET A(I,2,3)=X when A has been dimensioned by
10 DIM A(2,2)

A DD or REDIMENSIONED ARRAY error occurs when a DIM statement
for an array is found after that array has been dimensioned.
This often occurs when a DIM statement ao~ears after an array
has been given its default dimension of 10.

d. O~erators and Precedence. Altair BASIC provides a
full range of arithmetic and (exceot in 4K) logical o~eraiors.
The order of execution of o~erations in an ex?ression is
always accordIng to their precedence as shown in the table
below. The order can be sgecified exclicitly by the use of
?arentheses in the normal algebraic fashion.

Table of Precedence

Operators are shown here in decreasing order of precedence.
O?erators listed in the same entry in the table have the same
precedence and are executed in order from left to right in an
expression.

1.

2.

3.

BASIC ... 1

April, 1977

Expressions enclosed in parentheses ()

~ exoonentiation (not in 4K). Any number to the zero
power is 1. - Zero to a negative Dower causes a /0 or
DIVISION BY ZERO error.

- negation, the unary minus o~erator

15

16

·4. *,/ multiplication and division

5. \ integer division (available in Extended and Disk
versions, see section 5-2)

6. MOD (available in Extended and Disk versions. See
section 5-2)

7. +,- addition and subtraction

8. relational operators
= equal
<> not equal
< less than
> greater than
<=,=< less than or equal to
>=,=> greater than or eoual to

(the logical o~erators below are not available in 4K)

9. NOT logical, bitwise negation

10. AND logical, bitwise disjunction

11. OR logical, bitwise conjunction

(The logical ,operators below are available only in
Extended and Disk versions.)

12. XOR logical, bitwise exclusive OR

13. EQV logical, bitwise equivalence

14. IMP logical, bitwise implication

In 4K Altair BASIC, relational operators may be used only once
in an IF statement. In all other versions, relational
ogerators may be used in any expressions. Relational
expressions have the value either of True (-1) or False (0).

e. Logical Operations. Logical o?erators may be used
for bit manipulation and Boolean algebraic functions. The
AND, OR, NOT, XOR, EQV and IMP operators convert their
'arguments into sixteen bit, signed, two's complement inteqers
in the range -32768 to 32767. After the 'operations -are
performed, the result is returned in the same form and ranoe.
if the arguments are not in this range,' an FC or ILLE~AL
FUNCTION CALL error message ~ill be printed and execution will
be terminated. Truth tables for the logical ooerators apuear
below. The o~erations are performed bitwise, that is,

BASIC 4.1

April, 1977

corresponding bits of each argument are examined and the
result comr;>uted one bit at a tine. In binary operations, bit
7 is the most significant bit of a byte and bit 0 is the least
significant.

AND
X y X AND Y
1 1 1
1 0 0
0 1 0
0 0 0

OR
X y X OR y
1 1 1
1 0 1
0 1 1
0 0 0

NOT
X NOT X
1 0
0 1

XOR
X Y X XOR Y
1 1 0
1 0 1
0 1 1
0 0 0

EQV
X Y X EQV Y
1 1 1
1 0 0
0 1 0
0 0 1

IMP
X Y X IMP Y
1 1 1
1 0 0
0 1 1
0 0 1

Some examples will serve to sho·,v how the loqical ocerations
work:

63 AND 16=16

15 AND 14=14

-1 AND 8=8

4 OR 2=6

10 OR 10=10

BASIC 4.1

April, 1977

63=binary 111111 and 16=binary 10000,
so 63 AND 16=16
15=binary 1111 and 14=binary 1110,
so 15 ~ND 14=binary 1110=14.
-l=binary 1111111111111111 and 8=binary
1000, so -1 AND 8=8.
4=binary 100 and 2=binary 10, so
4 OR 2=binary 110=6. .
binary 1010 ORld with itself is 1010=

17

-lOR -2=-1

NOT 0=-1-

NOT X=~(X+1)

10.,
-l=binary 111111111111111~ and -2=
1111111111111110, so -lOR -2=-1.
the bit complement. of sixteen zeros
is sixteen ones, which is the two's
complement re?resentation of -1.
the two's complement of any number is
the bit com?lement ?lus one.

A ty~ica1 use of logical 0gerations is 'masking', testing a
binary number for some predetermined pattern of bits. Such
numbers rniqht come from the computer's input ports and would
then ref1~ct the condition of-some external device. Further
applications of logical o~erations will be considered in the
discussion of the IF statement.

f. The LET statement.
assign a value to a variable.

LET <VV>=<ex~ression>

The LET statement is used
The form is as follows:

to

where VV is a variable name and the expression is any valid
Altair BASIC arithmetic or, exce9t in 4K, logical or string
ex~ression. Examples:

1000 LET V=X
110 LET I=I+l the '=' sign here means 'is re?lace~

by •••• '

The word LET in a LET statement is optional, so algebraic
equations such as:

120 V=.5*(X+2)

are legal assignment statements.

A SN or SYNTAX ERROR message is ~rinted when B~SIC
detects incorrect form, illegal characters in a line,
incorrect punctuation or nissing 9arentheses. An OV or
OVERFLOW error occurs when the result of a calculation is too
large to be represented by Altair BASIC's number formats. All
numbers must be within the ranGe lE-38 to 1.70l4lE38 or -lE-38
to -1.70141E38. An attempt to divide by zero results in the
/0 or DIVISION B1 ZERO error message.

For a discussion of strings, string variables and string
operations, see section 4.

18 BASIC ~.l

April, 1977

2-2. Branching, L009s and Subroutines.

a. Branching. In addition to the sequential execution
of program lines, BASIC provides for chanqing the order of
execution. This ~rovision is called branchinq and is the
basis of programmed decision making and loops. -The'statements
in Al tai r BASIC which provide for branc.hinq are the GO TO ,
IF ••• THEN and ON ••• GOTO statements.

1) GOTO is an unconditional branch.
follo\'1s:

Its form is as

GOTO<mmromm>

After the GOTO statement is executed, execution continues at
line number mmmmm.

2) IF ••• THEN is a conditional branch.
follows:

Its form is (a.s

IF<expression>THEN<mmmmm>

where the expression is a valid arithmetic, relational or,
except in 4K, logical eXyression and mmmmm is a line number.
If the expression is evaluated as non-zeta, BASIC continues at
line mmrnmm. Other~'lise, execution resumes at the next line
after the IF ••. THEN statement.

~n alternate form of the IF ••• THEN statement is as
follows :'

I F < e x pre s s ion >' TH EN < s tat e fl1 en t >

where the statement is any Altair B~SIC statement. Examples:

BASIC 4.1

April, 1977

10 IF A=10 THEN 40 If the ex~ression A=10 is
true, BASIC branches to line 40. Otherwise, execution
proceeds at the next line.

15 IF A<B+C OR X THEN 100 The expression after IF is
evaluated and if the value of the expression is
non-zero, the statement branches to line 100.
Otherwise, execution continues on the next line.

20 IF X THEN 2S . If X is not zero, the statement
branches to line 25.

30 IF X=Y THEN PRINT X If the expression X=Y is true
(its value is non-zero), the PRINT statement is
executed. Otherwise, the PRINT statement is not
executed. In either case, execution continues with
the line after the IF ••• THEN statement.

35 IF X=Y+3 GOTO 39 Equivalent to the corres90nding
IF •.• THEN statement, excent that GOTO must be followed
by a line number and not by another statement.

"'0 .1.

20

Extended and Disk versions of Altair BASIC ~rovide an ex~anded
IF ••• THEN stakernent of the form

IF<ex?ression>THEN<YY>ELSE<ZZ>

where YY and ZZ are valid line numbers or Altair B~-SIC
statements. Exam?les:

IF X>Y THEN PRINT ~GREATER" ELSE PRINT ~NOT GREATER"

If ·the expression X>Y is true, the statement after THEN is
executed. Otherwise, the statement after ELSE is executed.

IF X=2*Y THEN 5 ELSE PRINT "ERROR"

If the ex?ression X=2*Y is true, BASIC branches to line 5.
Otherwise, the PRINT statement is executed. Extended and Disk
Altair BASIC allow a comma before THEN.

IF statements may be nested in the Extended and Disk
versions. Nesting is limited only by the length of the line.
Thus, for example:

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X<line feed>
THEN PRINT it LESS THAN II ELSE PRINT " EQUAL It

and

IF X=Y THEN IF Y>Z THEN PRINT I'X>Z"ELSE PRINT ilY<=Zu <line feed>
ELSE PRINT I'X<>y ,1

are legal statements. If a line does not contain the same
number of ELSE and THEN clauses, each ELSE is matched with the
closest unmatched THEN. Exam?le:

IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT ·'A<>C··

\'l i 11 not ? r in t " .?\ < > C " w hen A < > 13 .

3) ON ••• GOTO (not in 4K) provides for another ty?e of
conditional branch. Its form is as follows:

ON<expression>GOTO<list of line numbers>

After the value of the expression is truncated to an integer,
say I, the statement causes BASIC to branch to the line whose
humber is Ith in the list. The statement may be followed by
as many line numbers as will fit on one line. If I=0 or is
greater than the number of lines in the lis~, execution will
continue at the next line after the ON .•• GOTO statement. I
must not be less than zero or greater than 255, or an FC or
ILLEGAL FUNCTION CALL error will result.

BASIC 4.1

Ap-ril t 19i7

b. Loops - FOR and NEXT. It is often desirable to
perform the same calculations on different data or
repetitively on the same data. Fdr this 9ur?Ose, Altair BASIC
provides the FOR and NEXT statements.. The form of the FOR
statement is as follows:

FOR<variable>=<X>TO<Y>[STEP <Z>]

where X,Y and Z are expressions. When the FOR statement is
encountered for the first time, the ex?ressions are evaluated.
The variable is 'set to the value of X which is called the
initial value. BASIC then executes the statements which
.follow,the FOR statement in the usual manner. When a NEXT
statement is encountered, the step Z is added to the variable
which is then tested against the final value Y. If Z, the
step, is positive and the variable is less than or equal to
the final value, or if the step is negative and the variable
is greater than or equal io the" final value, then BASIC
branches back to the statement immediately following the FOR
statement. Otherwise, execution oroceeds with the statement
following the NEXT. If the ste? is not specified, it is
assumed to be 1. Examples:

10 FOR I=2 TO 11 The loop is executed 10 times with
the variable I taking on each in­
tegral value from 2 to 11.

20 FOR V=l TO 9~3 This loop will execute 9 times un­
til V is greater than 9.3

30 FOR V=10*N TO 3.4/Z STEP SQR(R) The initial, fin~l
and step expressions need not be
integral, but they will be eval­
uated only once before loop-
ing begins.

40 FOR V=9 TO 1 STEP -1 This loop will be executed 9
times.

FOR ••• NEXT loops may be nested. That is, BASIC will
FOR ••. NEXT 1009 within the context of another
exam?le of two nested 10095 follows:

execute a
1009. An

100 FOR I=l TO 10
120 FOR J=l TO I
130 PRINT A(I,J)
140 NEXT J
150 NEXT I

Line 130 will 9rint 1 element of A for I=l, 2 for I=2 and so
on. If loops are nested, they must have different loo?
variable names. The NEXT statement for the inside loop
variable· (J in the example) must apoear before that for the
outside variable (I). Any" number of "levels of nesting is
allowed up to the limit of available memory.

BASIC 4.1
21

Ap~ilJ 1977

22

The NEXT statement is of the form:

NEXT[<variabie>[,<variabl~> •••]]

where each variable is the loop variable of a FOR loop for
which the NEXT statement is th~ end ooini. In the 4K version,
the only form allowed is NEXT with one variable. In all other
versions, NEXT without a variable will match the most recent
FOR statement. In the case of nested loops which have the
same end point, a single NEXT statement may be used for all of
them, exce~t in 4K. The first variable in the list must be
that of the most 'recent loop, the second of the next most
recent, and so on. If BASIC encounters a NEXT statement
before its corresponding FOR statement has been executed, an
NF or NEXT WITHOUT FOR error message is issued and execution
is terminated.

c. Subroutines - GOSUS and RETURN Statements. If the
same operation or series of o~erations are to be gerformed in
several places in a program, storage s?ace requirements and
programming time will be minimized by the use of subroutines.
A subroutine is a series of statements which are executed in
the normal fashion upon being branched to by a GOSUB
statement. Execution of the subroutine is terminated by the
RETURR statement which branches back to the statement after
the most recent GOSUB. The format of the GOSUB statement is
as follows:

GOSUB<line number>

where the line number is that of the first line of the
subroutine. A subroutine may be called from mor~ than one
place in a program, and a subroutine may contain a call to
another subroutine. Such subroutine nesting is limited only
by available memory.

Except in the 4K version, subroutines may be branched to
conditionally by use of the ON ••• GOSUB statement, ~hose form
is as follows:

ON <expression> GOSUB <list of line numbers>

The execution is the same as ON.~.GOTO exce?t that the line
numbers are those of the first lines of subroutines.
Execution continues at the next statement after the ON •.• GOSUB
upon return from one of the subroutines.

d. Memory Limitations. While nesting in loo~s,
subroutines and branching is not limited by BASIC, memory size
limitations restrict the size and complexity of programs. The
OM or OUT OF MEMORY error message is issued when a Qrogram
requires more memory than is available. See Ap~endix C for an

BASIC 4.1

April, 197i

explanation of the amount of memory required to run programs.

2-3. In?ut/Out?ot

a. INPUT. The INPUT statement causes data input
requested from the terminal. The format of the
statement is as follows:

INPUT<list of variables>

to be
I~fpUT

The effect of the INPUT statement is to cause the values typed
on the terminal to be assigned to the variables in the list.
When an INPUT statement is executed, a question mark (?) is
printed on the terminal signalling a request for information.
The operator tYQes the required numbers or strings (or~ in 4K,
ex~ressions) se?arated by commas and types a carriage return.
If the data entered is invalid (strings were entered. when
numbers were requested, etc.) BASIC prints ~REDO FROM START?'
and waits for the correct data to be entered. If more data
was requested by the INPUT statement than was typed,?? is
printed on the terminal and execution awaits the needed data.
If more data was typed than was requested, the warning 'EXTRA
IGNORED' is printed and execution proceeds. After all the
requested d~ta is incut, executio~ continues normally at the
statement following the INPUT. Except in 4K, an o?tional
prompt string may be added to an INPUT statement.

INPUT[d<prornpt string>u 1]<variable list>

Execution of the statement causes the prompt string to be
printed before the question mark. Then all o~erations 9roceed
as above. The prompt string must be enclosed in double
quotation marks (d) and must be separated from the variable
list by a semicolon (1). Example:

100 INPUT "~'lHAT'S THE VALUE"1X,Y causes the following
out?ut:

WHAT'S THE VALUE?

The requested values of X and Y are ty~ed after the? Except
in 4K, a carriage return in response to an INPUT statement
will cause execution to continue with the values of the
variables in the variable list unch~nged. In 4K, a SN error
results.

b. PRINT. The PRINT statement causes the terminal to
print data. The simplest PRINT statement is:

PRINT

BASIC ~.l 23

April, 197i

24

which' prints a carriage return. The effect is to ski? a line.
The more usual PRINT statement has the following,form:

PRINT<list of expressions>

which causes the values of the ex~ressions in the list to;_ be
printed. String literals may be printed if they are enclosed
in quotation marks (").

The position of ~rinting is determined by the punctuation
used to separate the entries in the list. Altair BASIC
divides the printing line into zones of 14 spaces each. ~
comma causes printing of the value of the next expression to
begin at the beginning of the next 14 column zone. A
semicolon (~) causes the next ?rinting to begin immediately
after the last value printed. If a comma or semicolon
terminates the list of ex~ressions, the next PRINT statement
begins printing on the same line according to the conditions
above. Otherwise, a carriage return is ?rinted.

c. DATA, READ, RESTORE

1) The DATA statement. Numerical or string data needed
in a program may be written into the pro~ram statements
themselves, input from peripheral devices or read from DATA
statements. The format of the DAT~ statement is as follows:

DAT .. ~<list>

where the entries in the list are numerical or string
constants separated by commas. In 4K, ex~ressions may also
appear in the list. The effect of the statement is to store
the list of values in memory in coded form for access by the
READ statement. Examples:

10 DATA l,2,-lE3,.04
20 DATA " LOO~, MITS Leading and trailing spaces-in

string values are sup~ressed unless the string is
enclosed by double quotation marks.

2) The READ statement. The data stored by ~ATA
statements is accessed by READ statements which have the
following form:

READ<list of variables>

-where the entries in the list are variable names separated by
commas. The effect of the READ statement is to assiqn the
values in the DATA lists to the corres?onding variables in the
READ statement list. This is done one by one from left to
right until the READ list is exhausted. If there are more
names in the READ list than values in the DATA lists, an OD or

BASIC ~.!

April, 1977

OUT OF DATA error messacre is issued. If there are more values
stored in D~TA statements than are read by a READ statement,
the next READ statement to be executed will begin with the
next unread DATA list entry. A single READ statement may
access more than one DATA statement, and more than one READ
statement may access the data in a single DATA statement. ;'_

An SN or SYNTAX ERROR message can result from an
improperly formatted DATA list. In 4K Altair BASIC, the error
message will refer to the READ statement which attempted to
access the incorrect data. In other versions, the line number
in the error message will refer to the actual line of the DATA
statement in which the error occurred.

3) The RESTORE statement. ~fter the RESTORE statement is
executed, the next piece of data accessed by a READ statement
will be the first entry of the first DATA list in the ?rogram.
This allows re-READing the data.

d. CSAVE and CLOAD (8K cassette, Extended and Disk
versions only). Numeric arrays may be saved on cassette or
loaded from cassette using CSAVE* and CLO~D*. The formats of
the statements are:

CSAVE*<array name>

and

CLOAD*<array name>

The array is written out in binary with four octal 210 header
bytes to indicate the start of data. These bytes are searched
for when CLOADing the array. The number of bytes written is
four plus:

8*<nurnber of elements> for a double nrecision array
4*<number of elements> for a single ?recision array
2*<number of elements> for an integer array

When an array is written out or read in, the elements of the
array are written out with the leftmost subscript varying most
quickly, the next leftmost second, etc:

DIM A(10)
CSAVE*A

writes out A(0) ,A(l) , •• . A(10)

BASTe 4.1

. .l.p:-:1, :97';"

DIM A(10,10}
CSAVE*A

25

26

writes out ~(0,0), A(1,0) ••• A(10,0) ,A(10,1) ••• A(10,10)
.

Using this fact, it is possible to write a two dimensional
array and read it back in as a single dimensional array, etc.

NOTE

Writing out a double ?recision array and reading ~t
back in as a single precision or integer array is not
recommended. Useless values will undoubtedlv be
returned.

e. Miscellaneous Input/Output

1) WAIT (not in 4K). The status of input ports can be
monitored by.the WAIT command which has the following format:

~iAIT< I ,J> [, <K>]

where I is the number of the port being monitored and J and K
are integer eX9ressions. The port status is exclusive ORd
with K and the result is ANDed with J. Execution is suspended
until a non-zero value results. J picks the bits of port I to
be tested and execution is suspended until those bits di'ffer
from the corres~onding bits of K. Execution resumes at the
next statement after the WAIT. If K is omitted, it is assumed
to be zero. I, J and K must be in the range 0 to 255.
Exam-ples:

WAIT 20,6 Execution sto~s until either bit 1 or bit
2 of port 20 are eoual to 1. (Bi t 0 is
least significant bit, 7 is the most sig­
nificant.) Execution resumes at the next
statement.

WAIT 10,255,7 Execution sto9s until any of the most
significant 5 bits of Dart 10 are one or
any of the least significant 3 bits are
zero. Execution resunes at the next statement.

2) POKE, PEEK (not in 4K). Data may be entered into
memory in binary form with the POKE statement whose format is
as follows:

POKE <I,J>

BASIC ~.l

Apr:' 1 t 1977

where I and J are integer expressions. POKE stores the byte J
into the location s~ecified by the value of I. In 8K, I must
be less than 32769. In Extended and Disk versions, I may be
in the ranqe 0 to 65535. J must be in the range 0 to 255. In
8K, data may be POKEd into memory above location 32768 by
making I a negative number. In that case, I is computed by
subtracting 65536 from the desired address. To POKE data into
location 45000, for example, I is 45000-65536=-20536. Care
must be taken not to POKE data into the storage area occupied
by Altair BASIC or the system may be POKEd to death, and 9ASIC
will have to be loaded again.

The complementary function to POKE is PEEK.
for a PEEK call is as follows:

PEEK «I»

The format

where I is an integer ex~ression speclrYlng the address from
which a byte is read. I is chosen in the same way as in the
POKE statement. The value returned is an integer between 0
and 255. A major use of PEEK and POKE is to 9ass arguments
and results to and from machine languaoe subroutines.

3)OUT, INP (not in 4K). The format of the OUT statement
is as follows:

OUT <I,J>

where I and J are integer expressions. OUT sends the byte
signified by J to out?ut port I. I and J must be in the range
o to 255.

The INP function is called as follows:

INP«I»

INP reads a byte from port I where I is an integer expression
in the range 0 to 255. Example:

20 IF INP (J) =16 THEN PRINT "ONI!

BASIC 4.1 27

April, 19i7

28

3. FUNCTIONS.

Altair BASIC allows functions to be referenced in
mathematical function notation. The format of a function call
is as follows:

<name>«argument>[,<argument> •••])

where the name is that of a previously defined function and
the arguments are one or more expressions se~arated by commas.
Only one argument is allowed in 4K and 8K. Function calls may
be components of expressions, so statements like

10 LET T=(F*SIN(T))/P and
20 C=SQR(A~2+B~2+2*A*B*COS(T))

are legal.

3-1. Intrinsic Functions

Altair BASIC provides several frequently used functions which
may be called from any program without further definition. A
procedure is provided" however, whereby unneeded functions ~ay
be deleted to save memory space. See Appendix B. For a list
of intrinsic functions, see section 6-3.

..'

3-2. User-Defined Functions - the DEF Statement (not in 4K).

a. The DEF statement. The programmer may define
functions which are not included in the list of intrinsic
functions by means of the DEF statement. The form of the OEF
statement is as follows:

DEF<function name> «variable list»=<expression>

where the function name must be FN followed by a legal
variable name and the entries in the variable list are 'dummy'
variable names. The dummy variables represent the argument
variables or values in the function call. In 8K Altair BASIC,
only one argument is allowed for a user-defined function, but
in the Extended and Disk versions, any number of arguments is
allowed. Any expression may appear on the right side of the
'equation, but it must be limited to one line. User-defined
functions may be of any type in Extended and Disk versions,
but user-defined string functions are not allowed in 8K. If a
type is specified for the function, the value of the
expression is forced to that ty?e before it is returned to the
calling statement. Examples:

BASIC 4.1

April, 19ii

10 DEF FNAVE(V,W)=(V+W)/2
11 DEF FNCON$(V$,W$)=RIGHT$(V$+W$,5) Returns the right

most 5 characters of "the concat­
enation of V$,and W$.

12 DEF FNRAD(DEG)=3.l4159/l80*DEG When called with the
measure of an angle in degrees ,-"
returns the radian equivalent.

A function may be redefined by executinq another D~F statement
with the same name. ~ DEF statement must be executed before
the function it defines may be called.

b. USR. The USR
language subroutines.

3-3. Errors.

function allows
See apr;>endix E.

calls to assembly

a. An FC or ILLEGAL FUNCTION CALL error results when an
improper call is made to a function. Some places this might
occur are the following:

1. a negative array subscript. LET A(-I)=0, for example.

2. an array subscript that is too large (>32767)

3. negative or zero argument for LOG

4. Negative argument for SQR

5. A~B with A negative and B not an integer

6. a call to USR with no address natched for the machine
language subroutine.

7. improper arguments to MID$, LEFT$,RIGHTS, INP, QUT,
WAIT, PEEK, POKE, TAB, SPC, INSTR, STRING$, SPACES or
ON ••• GOTO.

b. An attempt to call a user-defined function which has
not previously appeared in a DEF statement will cause a UF or
UNDEFINED USER FUNCTION error.

c. A TM or TYPE MISMATCH error will occur if a function
which expects a string argument is given a numeric value or
vice-versa.

BASIC 4.1 29

April, 1977

30

4. STRINGS

In all Altair BASIC versions except 4K, expressions may
either have "numeric value or may be strings of characters.
Altair BASIC provides a complete complement of statements and
functions for maniQulating string data. Many of '~he
statements have already been discussed: so .only their
particular ap.o.lication to strings will be treated in this
section.

4-1. String Data.

A string is a list of characters which may be from 0 to
255 characters in length. Strings may be stated explicitly as
constants or referred to symbolically by variables. String
constants are delimited by quotation marks at the beginning
and end. A string variable name ends with a dollar sign ($).
ExamQles:

A$=UABCO" Sets ~he variable A$ to the four character
string "ABCD"

B9S=".14A/56 11 Sets the variable 89$ to the six character
string " 14A/56 1i

FOOFOO$="ES II Sets the variable FOOFOO$ to the t'\'lO charac-
ter strinq UE$"

Strings input to an INPUT statement need not be surrounded' by
quotation marks.

String arrays may be dimensioned exactly as any other
kind of array by use of the DIM statement. Each element of a
string array is a string which may be up to 255 characters
long. The total number of string characters in use at any
point in the execution of a program must not exceed the total
allocation of string s~ace, or an OS or OUT OF STRING SP~CE
error will result. Strinq space is allocated by the CLEAR
command which is explaine~ i~ section 6-2.

4-2. Strin? OQerations.

a. Comparison OQerators. The com~arison ogerators for
strings are the same as those for numbers:

= equal
<> not equal
< less than
> greater than
=<,<= less than or equal to
=>,>= greater than or equal to

Com~arison is made character by character on the basis of

BASIC ~.l

Ap-ril, 1977

ASClt codes until ~ difference is found. If, while comparison
is ?roceeding, the end of one string is reached, the shorter
string is considered to be smaller. ASCII codes may be found
in Appendix A. Exam~les:

A<Z ASCII A is 065, Z is 090
l<A ASCII 1 is 049
II AU>IIA" Leading and traili.ng blanks are significant

in string literals.

b. String Expressions. String ex~ressions are com~osed
of string literals, string variables and string function calls
connected by the concatenation ooerator (+). The effect of
the catenation operator is to add the string on the right side
of the operator to the end of the string on the left. If the
result of conc~tenation is a string more than 255 characters
long, an LS or STRING TOO LONG error message will be issued
and execution will be terminated.

c. Input/Output. The same statements used for inout and
output of normal numeric data may also be used for strin~
data.

1) INPUT, PRINT. The INPUT and PFINT statements read and
write strings on the terminal. Strings need not be enclosed
in quotation marks, but if they are not, leading blanks will
be ignored and the string will be terminated when the first
comma or colon is encountered. Exam~les:

10 INPUT ZOO$,FOO$
20 INPUT X$

30 PRINT X$,UHI, THERE~

Reads two strings
Reads one string and assigns
it to the variable X$.
Prints two strings, including
all spaces and punctuation
in the second.

2) DATA, READ. DATA and READ statements for string data
are the same as for numeric data. For format conventions, see
the explanation of INPUT and PRINT above.

4-3. String Functions.

The format for intrinsic string function calls is the
.same as that for numeric functions. For the list of string
functions, see section 6-3. Special user-defined string
functions are allowed in Extended and Disk versions and may be
defined by the use of the DEF statement (see section 3-2).
String function names must end with a dollar sign~

BASIC 4.1 31

April, 1977

32

5. EXTENDED VERSIONS.

The Extended and Disk v&rsions of Altair BASIC provide
several statements, o'Perators, functio'ns and commands which
are not available either in the 4K or 8K versions. ·For
clarity, these features are grouped together in this section.
Some modifications to existing 4K and 8K features, such as the
IF ••• THEN ••• ELSE statement and number typing facilities, have
been discussed in conjunction with the other versions. Check
the index for references to those features.

5-1. Extended Statements

a.
program
"f)urposes.

ERASE. The ERASE statement eliminates arrays from a
and allows their space in memory to be used for other

The format of the ERASE statement is as follows:

E~~SE<array variable list>

where the entries in the list are valid array variable names
separated by comma.s. ERASE \-1ill only operate on arrays and
not array elements. If a name appears in ~he list which is
not used in the program, an ILLEGAL FUNCTION CALL error will
occur. The arrays deleted in an ERASE statement may be
dimensioned again, but the old values are lost.
Exam-ple:

10 DIM A(5,5) etc.

60 ERASE A
70 DIM A(100)

b. LINE INPUT. It is often desirable to input a whole
line to a string variable without use of quotation marks and
other delimiters. LINE INPUT ~rovides this facility. The
format of the LINE" INPUT statement is as follows:

LINE INPUT ["<prompt string>lI] ;<string variable name>

The ?rompt string is a string literal that is printed on the
terminal before input is accepted. A question mark is not
printed unless it is contained in the oromot strino. ~ll
"input from the end of the ~rompt string to the carriage return
is assigned to the string variable. A LINE INPUT may be
escaged by typing Control/C. At that ?oint, 8ASIC returns to
command level and ?rints OK. Execution may be resumed at the
LINE INPUT by ty?ing CONT. LINE IN~UT destroys the inout
buffer, so the command may not be edited by Control/A for

BASIC 4.1

April, 1977

·re-execution.

c. SWA~. The SWAP statement allows the values of two
variables to be exchanged. The format is as follows:

SWAP <variable,variable>

The value of th~ second variable is assigned to the first
variable and vice-versa. Either or both of the variables may
be elements of arrays. If one or both of the variables are
non-array variables which have not had values assigned to
them, an ILLEGAL FUNCTION CALL error 'Ilill result. Both
variables must be of the same type or a TYPE MISMATCH error
will result. Example:

10 INPUT F$,L$
20 SWAP F$,L$
30 PRINT F$,L$
RUN

?FIRST,LAST
LAST FIRST

Data in?ut
Computer prints

d. TRON, TROFF, As a debugging aid, two statements are
provided to trace the execution of ?rogram instructions. When
the trace flag is turned on by the TRON statement, the number
of each line in the program is ?rinted as it is executed. The
numbers appear enclosed in square brackets ([]). The function
is disabled by execution of the TRO~F statement. Example:

TRON executed in direct mode
OK ?rinted by computer
10 PRINT l:PRINT "A" typed by ?rograrruner
20 STOP
RUN
[10] 1 line numbers and outout printed by
A com~uter.
[20]
BREAK IN 20

The NEW command will also turn off the trace flaq.

e. IF •.• THEN ••. ELSE. See section 2-2.

f. DEFINT, DEFSNG, DEFDBL, DEFSTR. See section 2-1

g. CONSOLE, WIDTH. CONSOLE allows the console terminal
to be switched from one I/O port to another. The format of
the statement is: 6

CONSOLE <I/O port number>~<switch reqister setting>

BASIC 4.1 33

April, 1977

34

The <I/O port number> is th~ hardware port number of the low
order (status) port of the new I/O board. This value must be
a numeric exnression between 0 and 255 inclusive. If it is
not in this ra~ge, an ILLEGAL FUNCTION C~LL error will occur.
The <swi tch register setting> is also a value between 0---and
255 inclusive which specifies the type of I/O port (SIO, PIO,
4PIO etc) being selected. A?9rO~riate values of the <switch
register setting> may be found in A~pendix B in the table of
'sense switch settings or in the table below.

Table of values for <switch register setting>:

I/O Board

2510 with 2 stop bits
2SIO with 1 sto~ bit
SIO
ACR
4PIO
PIO
HSR
non-standard terminal
no terminal

Sense Switch
Setting

o
1
2
3
4
5
6

14
15

WIDTH Statement

The WIDTH statement sets
printing terminal line.
as follows:

the width in characters of the
The format of the WIDTH statement is

WIDTH <integer expression>

Example:

WIDTH 80
WIDTH 32

The <numeric formula> must have a value between 15 and 255
inclusive, or an ILLEGAL FUNCTION CALL error will occur.

h. Error TraQpinq. Extended and Disk Altair BASIC make
it possible for the user to write error detection and handling
routines which can attem~t to recover from errors or nrovide
more complete exolanatlon of the cause of errors than the
simple error messages. This facility has been added to Altair
BASIC through the use of the ON ERROR GOTO, RESUME and ERROR

BASIC 4.1

April, 1977

statements and with the ERR and ERL variables.

1) Enabling Error Tra~?ing. The ON ERROR GOTO statement
specifies the line of the Altair BASIC proqram on which the
e~ror handling subroutine starts. The for~at"is as follows:

ON ERROR GOTO <line number>

The ON ERROR GO TO statement should be executed before the user
ex~ects any errors to occur. Once an ON ERROR GOTO statement
has been executed, all errors detected will cause BASIC to
start execution of the s?ecified error handling routine. If
the <line number> s?ecified in the ON ERROR GOTO statement
does not exist, an UNDEFINED LINE error will occur.

Example:

10 ON ERROR GOTO 1000

2) Dtsabling the Error Routine. ON ERROR GOTO 0 disables
trapping of errors so any subsequent error will cause SASIC to
print an error messaqe and stop proqram execution. If an
ON ERROR GOTO 0 statement appears in an error traooing
subroutine, it will cause BASIC"to sto~ and print the error
message which caused the trap. It is recommended that all
error trapping subroutines execute an ON ERROR GOTO 0
subroutine if an error is encountered for which they have no
recovery action.

NOTE

If an error occurs during the execution of an error
trap routine, the system error message will be printed
and execution will be terminated. Error trapping does
not trap errors within the error trao routine.

3) The ERR and ERL Variables. When the error handling
subroutine is entered, the variable ERR contains the error
code for the error. The error codes and their meanings are
listed below. See section 6-5 for a detailed discussion of
each of the errors and error messages.

Code

1
2

SASIC 4.1

April, 1977

Error
d

NEXT WITHOUT FOR
SYNTAX ERROR

35

36

3 RETURN WITHOUT GOSUB
4 OUT OF DATA
5 ILLEGAL FUNCTION CALL
6 OVERFLOW
7 OUT OF MEMORY
8 UNDEFINED LINE
9 SUBSCRI~T OUT OF RANGE
10 REDIMENSIONED ARRAY
11 DIVISION BY ZERO
12 ILLEGAL DIRECT
13 TYPE MISMATCH
14 OUT OF STRING SPACE
15 STRING TOO LONG
16 STRING FORMULA TOO COMPLEX
17 CAN'T CONTINUE
18 UNDEFINED USER FUNCTION
19 NO RESUME
20 MISSING OPERAND
21 RESUME WITHOUT EFROR
22 UNPRINTABLE ERROR
23 LINE BUFFER OVERFLOW

Disk Errors

50 FIELD OVERFLOW
51 INTERNAL ERROR
52 BAD FILE NUMBER
53 FILE NOT FOUND
54 BAD FILE MODE
55 FILE ALREADY OPEN
56 DISK NOT MOUNTED
57 DISK I/O ERROR
58 FILE ALREADY EXISTS
59 SET TO NON-DISK STRING
60 DISK ALREADY MOUNTED
61 DISK FULL
62 INPUT PAST END
63 BAD RECORD NUMBER
64 BAD FILE NAME
65 t10DE-MISMATCH
66 DIRECT STATEMENT IN FILE
67 TOO MANY FILES
68 OUT OF RANDOM BLOCKS

The ERL variable contains the line number of the line
where the error was detected. For instance, if the error
occured in line 1000, ERL will be equal to 1000. If the
statement which caused the error was a direct mode statement,
ERL will be equal to 65535 decimal. To test if an error

BASIC .t.l

April, 1917

occurred in a direct statement, use

IF 65535=ERL THEN .••

In all other cases, use

IF ERL=<line number> THEN •••

If the line number is on the left of the equation, it cannot
be renumbered by RENUM (see section l-la).

4) Oisk Error Values The ERR function. The ERR
function returns the parameters of a DISK I/O ERROR. ERR(0)
returns the number of the disk, ERR (1) returns the track
number (0-76) and ERR(2) returns the sector number (0-31).
ERR(3) and ERR(4) contain the low and hioh order bytes,
respectively, of the cumulative error count since BASIC was
loaded.

NOTE

Neither ERL nor ERR may a9gear to the left of the =
sign in a LET or assignment statement.

5) The RESUME statement. The RESUME statement is used to
continue execution of the BASIC program after the error
recovery ?rocedure has been performed. The user has three
options. The user may RESUME execution at the statement that
caused the error, at the statement after the one that caused
the error or at some other line. To RESUME execution at the
statement which caused the error, the user should use:

RESUME

or

RESUME 0

To RESUME execution at the statement immediately after the one
which caused the error, the user should use:

RESUME NEXT

To RESUME execution at a line dfferent than the one where the
error occurred, use:

BASIC 4.1 37

.l.pril, 197:

38

RESUME <line number>

Where <line number> is not equal to zero.

6) Error Routine Exam?le. The following examQle shows
how a simQle error trapping subroutine oQerates.

100 ON ERROR GOTO 500
200 INPUT ~WHAT ARE THE NUMBERS TO DIVIDE~:X,Y
210 Z=X/Y
220 PRINT ~QUOTIENT IS":Z
230 GOTO 200
500 IF ERR=ll AND ERL=2l0 THEN 520
510 ON ERROR GOTO 0
520 PRINT ~YOU CANT HAVE A DIVISOR OF ZERO!"
530 RESUME 200

7) The ERROR statement. In order to force branching to
an error trap~ing routine, an ERROR statement has been
Qrovided. The primary use of the ERROR statement is to allow
the user to define his own error codes which can then
conveniently be handled by a centralized error tra? routine as
described above. The format of the ERROR statement is:

ERROR <integer ex?ression>

When defining error codes, values should be 9icked which' are
greater than the ones used by Altair BASIC. Since more error
messages may be added to Altair BASIC, user-defined error
codes should be assigned the highest available numbers to
assure future compatibility. If the <numeric ex~ression> used
in an ERROR statement is less than zero or greater than 255
decimal, an ILLEGAL Fm~CTION CALL error will occur. Of
course, the ERROR "statement may also be used to force SYNTAX
or other standard Altair BASIC errors. Use of an ERROR
statement to force Qrintout of an error message for which no
error text is defined will cause an UNPRINTABLE ERROR message
to be printed out.

5-2. Extended Operators.

Two operators are provided that are exclusive to the
Extended and Disk versions.

a. Integer Division. Integer division, denoted by \
(backslash) , forces its arguments to integer form and
truncates the quotient to an integer. More precisely:

A\B= FIX(INT(A)/INT(B))

BASIC 4.1

. April, 19i:

Its precedence is just after multiplication and floating ooint
divison. Integer division is approximately eight times as
fast as standard floating point division.

b. Modulus Arithmetic - the MOD ope.rator. A r10D B gives
the 'remainder' as A is divided by B. More precisely:

A MOD B=INT(A)-(INT(B)*(A\B})

If B=0, a DIVISION BY ZERO error occurs. The precedence of
MOD is just below that of integer division.

5-3. Extended Functions.

a. Intrinsic Functions. Extended and Disk Altair BASIC
~rovide several intrinsic functions which are not available in
the other versions. For a list of these functions and a
description of their use, see section 6-3.'

b. The DEFUSR statement. U? to ten assembly language
subroutines may be defined by means of the DEFUSR statement
whose form is as follows:

DEFUSR[<digit 0 through 9>]=<integer exnression>

Example:

DEFUSRl=&100000
DEFUSR2=31096
DEFUSR9=ADR

The <integer expression> is the starting address of the USR
routine s?ecified. When the USR subroutine is entered, the A
reqister contains the type of the argument which was given to
the USR function. This is also the length of the descri?tor
for that argument type:

Value in A
2

Meaning
Two byte signed two IS com91ement inte.qer.
String. 3

4
8

Single ~recision four byte floating Doint number.
~ouble ~recision floating point number.

When the USR subroutine.is entered, the [H,L] reaister pair
contains a pointer to the floating ?oint accumulator (FAC) •

. The [H,L] registers contain the address of FAC-3.
If the value in the FAC is a single precision floating point
number, it is stored as follows:

FAC-3:
FAC-2:

BASIC 4..1

.~pril, IS-:-7

Lowest 8 bits of mantissa.
Middle 8 bits of mantissa.

39

40

PAC-I: Highest 7 bits of mantissa with hidden (im~lied)
leading one. Bit 7 is the sign of the number (0
~ositive, 1 negative).

PAC: EXDonent excess 200 octal. If the contents of PAC is 200,
the exponent is 0. If contents df PAC is 0,the number is
zero.

If the argument is double 9recision floating point, the FAC-7
to PAC-4 contain four more bytes of mantissa, low order byte
in PAC-7, etc. If the argument is an integer, PAC-3 'contains
the low order byte and FAC-2 contains the high order byte of
the signed two's complement value. If the arqument is a
string, [D,E] points to a string descriptor of the arcrument,
'i,'lhose form is:

Byte
o
1-2

Use
Length of string 0-255 decimal.
Sixteen bit address ~ointer to first byte of
strings text in memory (Caution - may ?oint into
program text if argument is a string literal).

The string returned by a call to USR with a string argument is
the string the user's routine sets up in the descri~tor.
Modifying [D,E] does not affect the returned string. For
example, C$=USR(A$) results in C$ and A$ being set to the same
str iog. The statement C$=USR (A$+i' ..) avoids modifying A$
since the user's routine modifies the descri?tor of the
temporary string A$+" H.

A string returned by the user's routine should lie
withing the storage area occupied by the argument string.
Increasing the length of a string in a user's routine is
guaranteed to cause trouble.

Normally, the value returned by a USR function will be
the same ·ty~e (integer, string, single or double precision
floating point) as the argument which was passed to it.
However, calling the MAKINT routine whose address is stored in
location 6 will return the inteqer in [H,L] as the value of
the function, forcing the valu'e - retur'ned by the function to be
integer. Execute the following sequence to return from the
function:

PUSH
LHLD
XTHL

RET
p

H
6

;SAVE VALUE TO BE RETURNED
iGET ADDRESS OF MAKINT ROUTINE
;SAVE RETURN ON STACK &
;GET BACK [H,L]
iRETURN

The argument of the function may be forced to an integer, no
matter what its type by calling the FRCINT'routine whose

BASIC ~.l

Apl'il, 197i

address is located in location 4 to get the integer value of
the argument in [H,L]:

LXI H,SUBI

PUSH H
LHLD 4
PCHL

SUBl:
5-4. The EDIT Command. _._-

;GET ADDRESS OF SUBROUTINE
; CONTINUATION
iPLACE ON STACK
;GET ADDRESS OF FRCINT
jCALL FRCINT

The EDIT command allows modifications and additions to be
made to existing program lines without having to retype the
entire line each time. Commands typed in the EDIT mode are,
as a rule, not echoed. That is, they usually do not appear on
the terminal screen or printout as they are ty~ed. Most
commands may be preceded by an optional numeric repetition
factor which may be used to repeat the command a number of
times. This repetition factor should be in the range 0 to 255
(0 is equivalent to 1). If the repetition factor is omitted,
it is assumed to be 1. In the f01lo t • .,ing exa."mples, a lower
case Un" before the command stands for the reoetition factor.
In the following description of the EDIT commands, the
" cursor" refers to a pointer which is posi tioned at a
character in the line being edited.

To EDIT a line, ty?e EDIT followed by the number of the
line and hit the carriage return. The line number of the line
beinq EDITed will be printed followed by a space. The cursor
will now be ~ositioned to the left of the first character in
the line.

. NOTE

The best way of getting the ufeel ll of the EDIT corn!!land
is to try EDITing a few lines yourself.

If a command not recoqnized as an EDIT command is entered, the
computer prints a bell (control/G) and the command is iqnored.

In the following examples, the lines labelled i'computer
prints" show the apt;>earance of the line after each command.

a.
to the
printed.

BASIC 4.1

April, 1977

Moving the Cursor. Typinq a space moves the cursor
right and causes the character ?assed over to be

A number preceding the s~ace (n<space» will cause

41

42

the cursor to pass over and print 'out n characters. Ty~ing a
Rubout causes the immediately"?revious character to be printed
effectivel~ backspacing the cursor.

b. Inserting Characters

WARNINGS:

Character insertion is stopped by typing Esca~e
(or Altmode on some terminals). ControllC will not
interrupt the EDIT command while it is in Insert mode,
but will be inserted into the edited line. Therefore,
ControllC should not be used in the EDIT command.

It is possible using EDIT to create a line which,
when listed with its line number, is longer than 72
characters. Punched paper tapes containing such lines
will not read prooerly. However, such lines may be
CSAVEd and CLOADed without error.

I Inserts new characters into the line being edited.
Each character typed after the I is inserted at the
current cursor position and printed on the termfnal.
Typing Escape (or-Altmode on "some terminals) stops
character insertion. If an attempt is ~ade to insert
a character that will make the line longer than 255
characters, a Control/G (bell) is sent to the terminal
and the character is not ~rinted.

~ backarrow (or Rubout) typed during an insert command
(or-) will delete the character to the left of the cursor.
Characters up tri the beginninq of the line may be deleted in
this manner, and a backarrow will be echoed for each character
deleted. However, if there are no characters to the left of
the cursor, a bell is echoed instead of a backarrow. If a
carriage return is typed during an insert command, it is as if
an escape and then carriage return were typed. That is, all
characters to the right of the cursor will be printed and the
EDITed line will reolace the original line.

.X x is similar to I, except that all characters to
the right of the cursor are printed, and the cursor
moves to the end of the line. At this point, it will
automatically enter the insert mode (see I com~and).
X is most useful whln new statements are to be added
to the' end of an existing line. For example:

BASIC 4.1

April, 1977

User types
Co,mputer prints
User types
Com"9uter prints
User types
Computer prints

EDIT 50 (carriage return)
50

X
50 X=X+l

:Y=Y+I (CR)
50 X=X+I:Y=Y+I

In the above exam~le, the original line #50 was:

50 X=X+l

The new line #50 now reads:

50 X=X+l:Y=Y+l

H H is the same as X, exce?t that all characters to
the right of the cursor are deleted (they will not be
printed) • The insert mode (see I command) will then
automatically be entered; H is most useful when the
last statements on a line are to be replaced with new
ones.

c. Deleting Characters

D nD deletes n characters to the right of the cursor~
If n is omrnitted, it defaults to 1. If there are less
than n characters to the right of the cursor,
characters will be deleted only to the end of. the
line. The cursor is positioned to the right of the
last character deleted. The characters deleted are
enclosed in backslashes (\). For exarn?le:

User types
User types
Computer prints
User types
Com?uter prints

20 X=X+l:REM JUST INCREMENT X
EDIT 20 (carriaqe return)
20 .

6D (carriaqe return)
20 \X=X+l:\REM JUST INCREMENT X

The new line 20 will no longer contain the characters which
are enclosed by ttie backslashes.

d.

s

BASIC 4.1

Ap:-il, 1977

Searching.

The nSy command searches for the nth occurrence of
the character y in the line. N defaults to 1. The
search skips over the first character to the ri9ht of
the cursor and begins with the second character to the
right of the cursor. All characters 9assed over
during the search are printed. If the character is
not found, the cursor will be at the end of the line.
If it is found, the cursor will stop to the right of
the character and all of the characters to its left

43

44

will hav~ been 9rinted.

User types
pser types
Computer 9rints
User types
Computer prints

For example:

50 REM INCREMENT X
EDIT 50
50

2SE
50 REM INCR

K nKy is equivalent to S·exce9t that all of the char-
acters passed over during the search are deleted. The
deleted characters are enclosed in backslashes. For
example:

User types
User types
Computer l?rints
User types
Corn-puter prints

e. Text Replacement.

10 TEST LINE
EDIT 10
10

KL
10 \TEST \

C A character in a line may be changed by the use of

. f.

the command Cy which changes the character to the
right of the cursor to the character y. Y is printed
on the terminal and the cursor is advanced one
position. nCy may be used to change n characters in a
line as they are typed in from the terminal. (See
example below.) If an attempt is made to chan.ge a
character which does not exist, the change mode will
be exited. Example:

User types 10 FOR I=l TO 100
User types EDIT 10
Computer "9 rin ts 10
User types 2S1
Comr;>uter ?rints 10 FOR I=l TO
User tYlJes 3C256
Computer prints 10 FOR I=l TO 256

Ending and Restarting

Carriage Return Terminates editing and 9rints the re-

E

Q

mainder of the line. The edited line re?laces the
original line.

E is the same as a carriage return except the
remainder of the line is not printed.

Q restores the original line and causes BASIC to
return to command level. Chanqes do no~ take effect
until an E or carriage return is typed, so Q allows
the user to restore the original line without any

BASIC 4.1

April, 19i;

changes which may have been made.

L L causes the remainder of the line to be printed,
and then prints the line number and restarts editinq
at the beginning of the line. The cursor wil! be
positioned to the left of the first character in the
line. L allows monitoring the effect of changes on a
line. Example:

User types 50 REl4 INCREMENT X
User types EDIT 50
Coml?uter prints 50
User ty?es 25M
Computer prints 50 REM INCRE
User types L
COlnl;>uter l?rints 50 RE~I INCRE~lENT X

50

A A causes the original line to be restored
and editing to be restarted at the beginning of the
line. For example:

User types 10 TEST
User types EDIT 10
Computer prints 10
User types 10D
Computer prints 10 \TEST
User types
Computer prints 10 \TEST

10

Suppose in the above example, that
mistake when he deleted TEST LINE.
A command, the original line 10 is
ready for further editing.

IMPORTANT

LINE

LINE\
A

LINE\

the user made a
As a result of the
reentered and is

Whenever a SYNTAX ERROR is discovered durina the execution of
a source ?rograrn , BASIC will automaticail~ begin EDITing the
line that caused the error as if an EDIT command had been
typed. Examl?le:

10 APPLE
RUN
SYNTAX ERROR IN 10
10

Com?lete editing of a line causes the line edited to be
reinserted. Reinserting a line causes all variable values to
be deleted. To 9reserve those values for examination, the
EDIT command mode may be exited with the Q command after the

BASIC ~.l 45

April, 19'7i

46

line number is ?rinted. If this is done, BASIC will return to
co~~and level and all variable values will be ~reserved.

The features of the EDIT command may be used on the ~ine
currently being typed. To do this, type ControllA insteaa of
Carriage Return. The com~uter will respond with a carriaqe
return, an exclamation point (1) and a s~ace. The cursor will
be ~ositioned at the first character of the line. At this
point, any of the EDIT subcornmands except ControllA may be
used to correct the line. Example:

User types
Corn~uter prints
User tY'ges
Computer prints

S# 2C12
10 IF X GO TO 12

The current line number may be designated by a period (.)
in any command requiring a line number. Examples:

User tyr;>es
User ty?es
Computer r;>rints

5-5. PRINT USING Stat~ment.

10 FOR I= 1 TO 10
EDIT •
10

The PRINT USING statement can be employed in situations
where a specific output format is desired. This situation
might be encountered in such aQr;>lications as printing payroll
checks or accounting reports. The general format for the
PRINT USING statement is as follows:

PRINT USING <string>;<value list>

The <string> may be a string variable , string expression or a
string constant which is a precise copy of the line to be
printed. All of the characters in the string will be ?rinted
just as they appear with the exception of the formatting
characters. The <value list> is a list of the items to be
printed. The string will be re~eatedly scanned until: 1) the
string ends and there are no values in the value list or, 2) a
.field is scanned in the string, but the value list is
exhausted. The string is constructed according to the
following rules:

BASIC 4.1

April, 19i7

47

a. String Fields.

specifies a single character string field. The string itself
is specified in the value list.

\n spaces\ specifies a string field consisting of 2+n char­
acters. Backslashes with no ·spaces between them
indicates a field 2 character s wide, one s-pace betw-een
them indicates a field 3 characters wide, etc.

In both cases, if the stritig has more characters than the
field width, the extra characters will be ignored. If the
string has fewer characters than the field width, extra s?aces
will be 9rinted to fill out the entire field. Trying to print
a number in a string field will cause a TYPE MISM~TCH error to
occur. Examl?le:

10 A$:II ABCDE" : B$:" FGH"
20 PRINT USING U!UiAiB
30 PRINT USING "\ \";B$;A$
RUN

(the above prInts out)

AF
FGH ABCD

Note that where the "!II was used only the first letter of each
string was printed. Where the backslashes enclosed two
spaces, four letters from each strino were ~rinted (an ~xtra
space was ~rinted for B$ which has only three characters).
The extra characters in the first case and for A$ in the
second case were ignored.

b. Numeric Fields. With the PRINT USING
numeric printouts may be altered 'to suit
application. Strings for formatting numeric
constructed from the following characters:

statement,
almost any

fields are

Numeric fields are specified by the * sign, each of
which represents a di9it position. These digit
positions are always filled. The nu~eric field is
~ight justified~ th~t is, if the number printed is
too small to fill all of the digit 90sitions
specified, leading s9aces are printed as necessary to
fill the entire field.

The decimal point may be specified in any position
in the field. Rounding is ?erformed as necessary. If
the field format s?ecifies that a digit is to precede
the decimal point, the diqit is always printed (as 0
if necessary).

SA-SIC 4.1

A.pril, 1977

48

The following program will help i1lust~ate these rul~s:

+

10 INPUT A$,A
20 PRINT USING AS:A
30 GOTO 10
RUN
? **,12

12
? ###,12

12
? ####*,12

12
?##.*#,12
12.00

? ###. ,12'
12.

? #.##*,.02
0.020

?##.#,2.36
2.4

?###,-12
-12

?#.##,-.12
-.12

?*###,-12
-12

The +
end of
the +
number.
printed

sign may be used at either the beginning or:
the-numeric field. If the number is positive,
sign is printed at the specified end of the
If the number is negative, a sign is

at the specified end of the number.

The - sign, when used to the ri9ht of the numeric
field designation, forces the minus sign to be printed
to the right of the number if it is negative. If the
number is positive, a space is printed.

** The ** placed at the beginning of a numeric field
designation causes any unused s?aces in the leading
portion of the number printed out to be filled with
asterisks. The ** also s~ecifies oositions for 2 more
digi ts. (Termed ,I aster isk fill")

When the $$ is used at the
field desiqnation, a $ sign
immediately preceding the
$$ also sp~cifies positions
that the $ itself takes
Exponential format cannot
signs.

beginning of a numeric
is 9rinted in the space
number printed. Note that
for two more digits, but

up one of these spaces.
be used with leadinq $

BASIC 4.1

April, 19i':'"

· ,

**$ The **$ used at the beginning of a numeric field

,

desiqnation causes both of the above (** and $$) ~to be
performed on the number being ~rinted out. All of the
?revious conditions apply, except that **$ allows for
3 additional digit positions, 'one of which is the $
sign.

A comma appearing to the left of the decimal point
ih a numeric field desiqnation causes a comma to be
printed ,to the left of every third digit to the left
of the decimal point in the number being printed. rhe
comma also specifies another digit ~osition. A comma
to the right of the decimal point in a numeric field
designation is considered a part of the string itself
and is treated as a printing character.

(+++t on some terminals) 'Exponential Format.
If ex~onential format is desired in the printout, the
numeric field designation should be followed bv
(allows. space for E+XX) • Any decimal point
arrangement is allowed. The significant digits are
left justified and the ex?onent is adjusted. Unless a
leading + or a trailin? + or - is used, one position
to the left of the decimal point is used to crint a
space or minus sign. Examples: . '

PRINT USING U[*,- _ ...].,; 13,17,-8
[lE+0l] [2E+01] [-8E+00] .

OK
PRINT USING d[.#####i~~""~-]; 12345,-123456
[.123450E+05] [.123456E+06-]
OK
P R IN T US IN G .• [+. # #] "; 123, -12 6
[+ • l2E+0 3] [-. 13 E+0 3]

OK

% If the number to be ~rinted out is larger than the

BASIC -l.l

specified numeric field, a % character is printed
followed by the number itself in standard Altair BASIC
format". (The entire number is printed.) If roundi!"l9 a
number causes it to exceed the specified field, the %
character is printed followed by the rounded number~
If, for example, A=.999, then

PRINT USING II. ##" , A

prints

%1.00.

If the number of digits specified exceeds 24, an
ILLEGAL FUNCTION CALL error will occur.

49

50

The following Qrogram will help illustrate the ?reoeding
rules.

Program: 10 INPUT A$,A
20 PRINT USING A$iA
30 GOTO 10
RUN

The computer will start
designator and value list
dis~layed as follows:

by typing a 1. The numeric field
are entered and· the output is

? +#,9
+9
? +#,10
%+10
1 ##,-2
-2
? +#,-2
-2
1 #,-2
%-2
? +.###,.02
+.020
? ####.#,100
100.0

1 ##+,2
2+

? THIS IS A NUMBER ##,2
THIS IS A NUMBER 2
? BEFORE ## AFTER,12.
BEFORE 12 AFTER
? ####,44444
%44444
? **##,1
***1
? **##,12
**12
? **##,123
*123
? **##,1234
1234
? ***#,12345
%12345
? **,1
*1
? **,22
22
? **.##,12
12.00
? **####,1
*****1

BASIC ~.1

April, 1911

(note: not floating $)

(note: floating $)

? #,6.9
7
? #.#,6.99
7.0
? *#-,2

2
? **-,-2
2-

? ##+,2
2+

? ##+,-2
2-

? **·"''"' ,2
2E+00

? ##"'''''''' ,12
lE+¥Jl

? t####.##t~-"-,2.45678
2456.780E-03

? #. t#t ".", ,123
0.l23E+03
? #.#~f"""" ,-123
-.12E+03
? ~#####,###.#~,1234S67.89

1,234,570.0

? $####.##,12.34
$ 12.34 '
? $$###*.##,12.56

$12.56
? $$.##,1.23
$1.23
? $$.##,12.34
%$12.34
? $$#**,0.23

$0
? $$####.##,0

$0.00
? **$###.##~1.23
****$1.23
? **$.##,1.23
*$1.23
? **$###,1
****$1

Typing Controlle will stop the ?rogram.

"S-6. Disk File O~erations.

As many as sixteen f1o??y disks may be connected to a
single ALTAIR disk controller. These disks have been assigned
the physical disk numbers 0 through 15. Users with one drive
should address the drive at zero, and users with two drives

BASIC 4.t

April, 1977

52

should ~ddress them at zero and one, etc.

In the following descriptions, <disk number> is an
integer expression whose value is the physical number of one
of the disks in the system. If the <disk number> is omitted
from a statement other than l10UNT or UNLOAD, the <disk numb-er>
defaults to 0. If the <disk number> is omitted from a MOUNT
or UNLOAD statement, disks 0 through the highest disk number
specified at initialization are affected.

a. Opening, Closing and Naming Files. To initialize
disks for reading and writing, the the MOUNT command is issued
as follows:

MOUNT [<disk number>[,<disk number> •••]]

Example:

MOUNT 0

mounts the disk on drive zero, and

MOUNT 0,1

mounts the disks on drives zero and one. If there is already
a disk MOUNTed on the s~ecified drive(s) a
DISK ALREADY MOUNTED message will be printed. Before remo.ving
a disk which has been used for reading and writing by Disk
Altair BASIC, the user should give an UNLOAD command:

UNLOAD [<disk number>[,<disk number> •••]]

UNLOAD closes all the files open on a disk, and marks the disk
as not mounted. Before any further I/O is done on an UNLOADed
disk, a ~10UNT command must be .given.

NOTE

MOUNT, UNLOAD or any other disk command may be used as
a program statement.

All data and program files on the disk have an associated file
name. This name is the result of evaluating a string
expression and must be one to eight characters in length. The
first character of the file name cannot be a nUll.(0) byte or
a byte of 255 decimal. An attempt to use a null file nane
(zero characters in length) , a file name over 8 characte~s in
length or containing a 0 or 255 in the first character

BASIC 4.1

April. 1977

position will cause a BAD FILE NAME error. Any other sequence
of one to eiqht characters is acc~?table.

Examples of valid file names:

ABC
abc
filename
file.ext
12345678
INVNTORY
FILE##22

(Not the same as ABC)

NOTE

Commands that require a file name will use <file name>
in the appropriate ~osition. Remember that a <file
name> can be any string ex?ression as long as the
resulting string follows the rules given above.

b.
~rint
disk.

The FILES Command. The .FILES command is used to
out the names of the files residing on a 9articul3r
The format of the FILES command is:

FILES <disk number>

Example:

FILES (prints directory of files on disk 0)

STRTRK PIP CURFIT CISASM

Execution of the FILES command may be interrupted by ty~ing
Control/C. A more complete listing of the information stored
in a particular file may be obtained by runninq the PIP
utility program (see Appendix I).

c. SAVEing and LOADing proqrams. Once a program has
been written, it is often desirable to save it on a disk for
use at a later time. This is accomplished by issuing a SAVE
command:

SAVE <file narne>[,<disk number>[,A]]

Example:

SAVE "TEST U ,0

BASTC 4.1 53

April, 1977

54

or

SAVE atTEST"

would save the oroqram TEST on disk zero. Whenever a program
is SAVEd, any existing copy of the program previously SAVEd
will be deleted, and the disk space used by the ~revious
program is made available. See section 5-6d for a discussion
of saving with the lA' o~tion.

The LOAD statement reads a file from disk and loads it
into memory. The syntax of the LOAD statement is:

LOAD <file name>[,<disk number>[,R]]

Corres-pondingly:

LOAD ~TEST",0 or LOAD "TEST~

loads the program TEST from disk zero. If the file does not
exist, a FILE NOT FOUND error will occur.

LOAD I'TE~T", 0, R

OK

LOADs .the program TEST from disk zero and runs it. The ~OAD
command with the fiR" option may be used to chain or segment

. programs into small pieces if the whole program is too large
to fit in the computer's memory. All variables and ?rogram
lines are deleted by LOAD, but all data files are kept
OPEN (see below) if the "R j

• option is used. Therefore,
information may be passed between programs through the use of
disk data files. If the "R~ o9tion is not used, all files are
automatically CLOSEd {see below} by a LOAD.

Exarn1;)le:

NEW
10 PRINT I' FOOl d

: LOAD .1 F002 11 ,0 ,R
SAVE tlFOOllI,0

OK
10 PRINT I' F002 i. : LOAD II FOOl il ,0 ,R
SAVE It F002 I' ,0

OK
RUN
F002
FOOl
F002

BASIC 4.1

April, 1!?77

FOOl
.••• etc.

(Control/C may be used to stop execution at this point)

In this example, program F002 is RUN. F002 prints the
message UP002" and then calls the 9roqram FOOl on disk. FOOl
prints "FOOl" and calls the program F002 which prints UF002"
and so on indefinitely.

RUN may also be used with a file name to load and run a
program. The format of the command is as follo\'1s:

RUN<file name>[,<disk number>[,R]]

All files are closed unless ,R is specified after the disk
number.

d. SAVEin9 and LOADing Program Files in ASCII. Often it
is desirable to save a program in a form that allows the
program text to be read as data by another program, such as a
text editor or resequencing ~roqramc Unless otherwise
specified, Altair BASIC saves its programs in a com~ressed
binary format which takes a minimum of disk space and loads
very quickly. To save a program in ASCII, specifY the nAif
option on the SAVE command:

SAVE "TEST",0 ,A

OK

LOAD IiTEST",0

OK

Information in,the file tells the LOAD command the format
in which the file is to be· loaded. The ·first character of an
ASCII file is never 255, and a binary program file always
starts with 255 (377 octal). Remember, loading an ASCII file
is much slower than loadinq a binary file.

e. The MERGE Command. Sometimes it is very useful to
·put parts of two prQgrams together to form a new ?rogram
combining elements of both programs. The MERGE com~and is
provided for this pu rpose. A.s soon as the r1EHGE com:nand has
been executed, BASIC returns to command level .. Therefore, it
is more likely that MERGE would be used as a direct com~and
than as a statement in a ~rogram. The format of the MERGE

BASIC 4.1 55

April, 1977

56

statement is as follows:

MERGE <file name>[,<disk number>]

Example:

MERGE "PRINTSUB",l
OK

Th~ <file name> specified is merged into the program already
in memory. The <file name> must sQecify an AStII format saved
program or a BAD FILE MODE error will occur. If there are
lines in the program on disk which have the same line numbers
as lines in the program in memory, the lines from the file on
disk will re~lace the corresponding program lines in memory.
It is as if the program lines of the file on disk were typed
on the user terminal.

f. Deleting Disk Files. The KILL statement deletes a
file from disk and returns disk s?ace used by the file to free
disk space. The format of the KILL statement is as follows:

KILL <file name>[,<disk nu~ber>]

If the file does not exist, a FILE NOT FOUND error will occur.
If a KILL statement is given for a file that is currently OPEN
(see below), a FILE ALREADY OPEN error occurs.

g. Renaming Files the NAME Statement. The NAr1E
statement is used to change the name of a file:

NAME <old file name> AS <new file name>[,<disk number>]

Example:

NAME "OLDFILE" AS uNEWFILE"

The <old file name> must exist, or a FILE NOT FOUND error will
occur. A file with the same name as <new file name> must not
exist or a FILE ALREADY EXISTS error will occur. After the
NAME statement is executed, the file exists on the same disk
in the same area of disk space. Only the name is changed.

h. OPENing Data Files. Before a ?[ogram can read or
write data to a disk file, it must first OPEN the file on the
ap~ropriate disk in one of several modes. The general form of
the OPEN statement is:

OPEN <mode>, [#]<file number>,<file name>[,<disk number>]

BASIC 4.1

April, 1977

<mode> is a string expression whose first character is one of
the following:

o
I
R

Specifies sequential output mode
Specifies sequential input mode
Specifies random Input/Output mode

A sequential file is a stream of characters that is read or
written in order much like INPUT and PRINT statements read
from and write to the terminal. Random files are divided into
groups of 128 characters called records. The nth record of a
file m~y be read or written at any time. Random files have
other attributes that will be discussed later in more detail.

<file number> is an integer expression between one and
fifteen. The number is associated with the file being OPENed
and is used to refer to the file in later I/O operations.

Examples:

OPEN "O",2,IIOUTPUT u ,0
OPEN It I" ,1, " INPUT"

The above two statements ogen the file OUTPUT for sequential
output and the file INPUT for sequential input on disk zero.
The following statement opens the file whose ~ame 'is in the
string F$ in mode M$ as file number N on disk D.

OPEN M$,N,F$,D

i. Sequential ASCII file I/O Sequential input and output
files are the simplest form of disk input and out?ut since
they involve the use of the INPUT and PRINT statements with a
file that has been ?reviously OPENed.

1) INPUT is used to read data from a disk file as
follo\vs:

INPUT #<file number>,<variable list>

where <file number> represents the number of the file that was
OPENed for input and <variable list> is a list of the
-variables to be read, as in a normal INPUT statement. When
data is read from a sequential input file using an INPUT
statement, no question mark (?) is printed on the terminal.
The format of data in the file should appear exactly as it
would be typed to a standard INPUT statement to the terminal.

3ASIC 4.1 57

April, 197i

58

When reading numeric values, leading s?aces, carriage return?
and line feeds are ignored. When a non-space, non-carriage
return, non-line-feed character is found, it is assumed to be
part of a, number in Altair BASIC format. The number
~erminates on a space, a carriage return, line-feed or a
comma.

Leading blanks, carriage returns and line-feeds are also
ignored when scanning for string items. When a character
which is not a leading blank, carriage return or line-feed is
found, it is assumed to be the start of a string item.If this
first character is a quotation mark ("), the item is taken as
being a quoted string, and all characters between the first
quotation mark (It) and a matching quotation mark are returned
as characters in the string value. This means that a auoted
string in a file may contain any characters except double
quote. If the first character of a string item is not a
quotation mark, then it is assumed to be an unquoted string
constant. The string returned will terminate on a comma,
carriage return or line feed. The string is immediately
terminated after 255 characters have been read.

For both numeric and string items, if end of file (EOF)
is reached when the item is being INPUT, the item is
terminated 'regardless of whether or not a closing quote was
seen.

Sequential I/O commands destroy the input buffer so .they
may not be edited by Control/A for re-execution.

Example of sequential I/O (numeric items):

500 OPEN IfOIf,1,"FILEIt,0
510 PRINT #l,X,Y,Z
520 CLOSE 1
53 0 OP EN .. I II , ~ , U F I LEt. , 0
540 INPUT tl",X,Y,Z

Note that CLOSE is used so that a file which has just been
written may be read. When FILE is re-OPENed, the data pointer
for that file is set back to the beginning of the file so that
the first INPUT on the file will read data ,from the start of
the file.

2) PRINT and PRINT USING statements
data into a sequential output file.
follows:

are used to write
Their formats are as

PRINT #<file number>,<ex?ression list>

BASIC .1.1

April, 1917

or

PRINT #<file number>, <line feed>
USING <string expression>;<expression list>

Example of seciuential I/O (quoted string items):

500 OPEN itO", 1, II FILE'I
510 PRINT *l,CHR$(34) ;X$iCHR$(34) i
515 PRINT #1,CHR$(34):Y$iCHR$(34)iCHR$(34) :Z$;CHR$(34)
520 CLOSE 1
530 OPEN "I" ,1,"FILE",0
540 INPUT #l,XS,YS,Zs

In this exarn~le, the strings being output (X$, Y$,· Z$) are
surrounded with double quotes through the use of the CHR$
function to generate the ASCII value for a double quote. This
technique must be used if a string which is-being output to a
sequential data file contains commas, carriage returns,
line-feeds or leading blanks that are significant. When
leading blanks are not significant and there are no commas,
carriage returns or line-feeds in the strings to be out~ut, it
is sufficient to insert commas between the strings being
output as in the following exam~le:

500 OPEN "O~,l,~FILEu

510 PRINT il,X$i",ltiY$i","iZ$
520 CLOSE 1
5 3 0 OPEN " I It , 1 , , FILE il ,"
540 INPUT *l,X$,Y$,Z$

3) CLOSE. The format of the CLOSE statement is as
follows:

CLOSE [<file number>[,<file number> •••]]

CLOSE is used to finish I/O to a particular Altair BASIC data
file. After CLOSE has been executed for a file, the file may
be rebPENed for in?ut or out?ut on the same or different <file
number>. A CLOSE for a seauential outnut file writes the
firial buffer of output. A ~LOSE to any bPEN file finishes the
connection between the <file nurober> and the <file name> given
in the OPEN for that file. It allows the <file number> to be
used again in another OPEN statement.

A CLOSE with no argument CLOSEs all OPEN files.

BASIC 4.1 59

April, 197'7

60

NOTE

A FILE can be OPENed for sequential in~ut Qr random
access on more than one <file number> at a time but
may be OPEN for output on only one <file number> at a
time.

END and NEW always CLOSE all disk files automatically.
does not CLOSE disk files.

STOP

4) LINE INPUT. It is often desirable to read a whole
line of a file into a string without ,using quotes, commas or
other characters as delimiters. This is es~ecially true if
certain fields of each line are being used to contain data
items, or if a BASIC program saved in ASCII roode is being read
as data by another ?rogram. The facility provided to gerform
this function is the LINE INPUT statement:

LINE INPUT #<fi1e number>,<string variable>

A LINE INPUT from a data file will return all characters uQ to
a carriage return in <string variable>.. LINE INPUT then skips
over the following carriage return/line-feed sequence so that
a subsequent LINE INPUT from the file will return the next
line.

5) End of File (EOF)" Detection. When reading a
sequential data file with INPUT statements, it is usually
desirable to detect when there is no ~ore data in the disk
file. The mechanism for detecting this condition is the' EOF
function:

X=EOF«file number»

EOF returns TRUE (-1) when there is no more data in the file
and FALSE (0) otherwise. If an attempt is made to INPUT past
the end of a data file, an INPUT PAST' END error will occur~

Example:

100
110
120
130
140
150
160

OPEN uIu,1,"DATAu,0
1=0
IF EOF(l) THEN 160
INPUT #l,A (I)
I=I+l
GOTO 120

In this example, numeric data from the sequential in?ut file
DATA is read into the array A. When end of file is detected,
the IF statement at line 120 branches to line 160, and the
var iable I "po ints" one' beyond the last elernen t of A that was
INPUT from the file.

BASIC 4.1

April, 1977

The following is a program that will calculate the number
of lines in a BASIC program file that has been SAVEd in ASCII
mode:

10 INPUT otHHAT IS THE NAf4E OF THE PROGRAr-1 d
; P$

20 OPEN' II I" ,1, P$,0
30 I=0
40 IF EOF(l) THEN 70
50 I=I+l:LINE INPUT Il,L$
60 GOTO 40
70 PRINT .. PROG&.~J4 " i p$ i It IS .. i I;" LINES LONG"
80 END

This example uses the LINE INPUT statement to read each line
of the program into the Udummy" string L$ which is used just
to INPUT and ignore that part of the file.

6) Finding the ~mount of Free Disk S?ace (DSKF). It is
sometimes necessary to determine the amount of free disk space
remaining on a particular disk before writing a file. -The
DSKF function provides the user with the number of free groups
left on a given disk after the disk has been MOUNTed. A grou~
is the fundamental unit of file allocation. That is, files
are always allocated in groups of eight sectors at a time.
Each sector contains 128 characters (bytes). Therefore, the
minimum size for a file is 1024 bytes.

Syntax for the DSKF function:

DSKF«dlsk number»

Examr;>le:

PRINT DSKF(0)
200

The above example shows that there are 200*1024=204800
characters (bytes) that can still be stored on disk zero.

j. RANDOM FILE I/O. Previously, we have discussed how
data may be PRINTed or INPUT from sequential data files.
However, it is often desirabl~ to access data in a random
fashion, for instance, to retrieve information on a particular
part number or customer from a large data base stored on a
floppy disk. If sequential files were used, the whole file

·would have to be scanned from the start until the oarticular
item was found. Random files remove this restriction and
allow a program to access any record from the first to the
last in a s~eedy fashion. Also, random files transfer data
from variables to the disk ouput records and vice versa in a
m"uch faster, more efficient fashion than sequential files.

BASIC 4.1 61

April, 1971

62

Random file I/O is more complex than seauential I/O, and it is
r~commended that beginners try sequential I/O first.

I) OPENing a FILE for Random I/O. Random I/O files ':-are'
OPENed just like sequential files.

OPEN uRn ,1,uRANDOr1 u ,0

When a file is OPENed for random I/O, it is always OPEN for
both input and output simultaneously.

2) CLOSING Random Files. Like sequential files, random
files must be closed when I/O ooerations are finished. To
CLOSE a random file, use the CLOSE command as described
previously.

CLOSE <file number>[,<file ~umber> ••.]

3) Reading and writing data to a random file
PUT. Each random file has associated with
buffer" of 128 bytes. When a GET or PUT
performed, data is transferred directly from the
data file or from the data file to the buffer.
The syntax of GET and PUT is as follows:

PUT [#]<file number> [,<record number>]

GET [#]<file number>[,<record number>]

GET and
it a "random

operation.' is
buffer to the

If <record number> is omitted from a GET or PUT statement, the
record number that is one higher than the previous GET or PUT
is read into the random buffer. Initially a GET or PUT
without a record number will read or write the' first record.
The largest possible record number is 2046. If an attem~t is
made to GET a record which has never been PUT, all zeroes are
read into the record, and no error occurs.

4) LOC and LOP. LOC is used to determine what the
current record number is for random files. In other words, it
returns the record number that will be used if a GET or PUT is
executed with the <record number> parameter omitted. '

BASIC 4.1

April, 1977

LOC«file number»

PRINT LOC(l)
15

LaC is also valid for sequential files, and gives the number
of sectors (128 byte blocks) read or written since the OPEN
statement was executed.

LOF is used to determine the last record number written to a
random file:

LOF«file number»

PRINT LOF(2)
200

An attem~t to use LOF on a seQuential file will cause a BAD
FILE MODE error.

The value returned by LOP is always 5 MOD 8. That is , when
the value LOF returns is divided by 8, the remainder is always
5. Therefore,the values returned by LOF are 5, 13, 21, 29
etc. This is due to the way random files are allocated.

NOTE

It is important to note that the value returned by LOF
may be a record that has never been written in by a
user program. This is because of the way random files
are pre-extended.

5) Moving Data In and but of the Random Buffer. So far
we have described techniques for writing (PUT) and reading
(GET) data from a file into its associated random buffer. Now
we will describe how data from string variables is moved to
and from the random buffer itself. This is accomplished
through the use of the FIELD, LSET and RSET statements.

6) FIELD. The FIELD statement associates some or all of
a file'S randbrn buffer with a particular string variable.
Then, when the file buffer is read with GET pr written with
PUT, string variables which have been FIELDed into the buffer
will automatically have their contents read or written. The

B.\SIC 4.1 63

April, 1977

64

format of the FIELD statement is:

FIELD [#] <file number>,<field size>,AS <string variable>[•••]

<file number> is used to specify the ffle number of the file
whose random buffer is being referenced. If the file is not a
random file, a BAD FILE MODE error will occur. <field size>
sets the length of the string in the random buffer. <string
variable> is the string variable which is associated with a
certain number of characters (bytes) in the buffer. Multiple
fields may be associated with string variables in a given
FIELD statement. Each successive string variable is assigned
a successive field in the random buffer. Exarn9le:

FIELD 10 AS A$, 20 AS S$, 30 AS C$

The statement above would assign the first 10 characters of
the random buffer to the string variable A$, the next 20
characters to S$ and the next 30 characters to the variable
C$. It is important to note that the FIELD statement does not
cause any data to be transferred to or from the ra~dom buffer.
It only causes the string variables given as arguments to
"point I' into the random buffer.

Often, it is necessary to divide the random buffer into a
number of sub-records to make more efficient use of disk
space. For instance, it might be desirable to divide the 128
character record into two identical subrecords. To accomolish
this a Itdummy variable" would be placed in the FIELD statement
to re?resent one of the subrecords. One of the following
statements would be executed, depending on whether the first
or second subrecord were needed:

or

FIELD #1,64 AS 0$, 20 AS NAME$,
20 AS ADDRESSE$, 24 AS OCCUPATIONS

FIELD #1,20 AS NAME$, 20 AS ADDRESSE$,
24 AS OCCUPAT10N$, 64 AS D$

where the dummy variable D$ is used to skip over one of the
subrecords. Another way to do the same thing would be to set
a variable I that would select the first or second subrecord:

FIELD *1,64*{I-l) AS D$,
20 AS NAME$, 20 AS ADDRESS$, 24 AS OCCUPATIONS

Here, if the variable I is one, I-I *64 =0 characters will be
skipped over, selecting the first subrecord. If I is two, 64
characters will be skipged over, selecting the second

BASIC 4.1

April, 1977

subrecord. Another useful technique is to use a FOR ••• NEXT
loop and an array to set u~ subrecords in the random buffer:

1000 FOR 1=1 TO 16
1010 FIELD #1, (I-I) *8 AS 0$, 4 AS A$ (I),

4 AS B$(I)
1020 NEXT I

In this example, we have divided the random buffer into 16
subrecords composed of two fields each. The first 4-character
field is in A$(X) X is the subrecord number.

NOTE

The FIELD statement may be executed any number of
times on a given file. It doesnbt cause any
allocation of string space. The only space allocation
that occurs is for the string variables mentioned in
the FIELD statement. These string variables have a
one byte count and two byte oointer set up which
points into the random buffer for the s~ecified file.

7) Using Numeric Values in Random Files: MKI$, MKS$,
MKD$ and CVI, CVS, CVD. As we have seen, data is always
stored in the random buffer through the use of string
variables. In order to convert between strings and numbers
and vice versa, a number of special functions have been
"9rovided.

To convert between numbers and st.r in9S:

MKI$«integer value»

MKS$«single ~recision value»
MKD$«double 9recision value»

Returns a two byte string
(FC error if value is not
>=-32768 and <=+32767.
Fractional part is lost)
Returns a four byte string
Returns an eight byte string

To convert between strings and numbers:

·CVI«two byte string»
CVS{<four byte string»
CVD«eight byte string»

Returns an integer value
Returns a single ?recision value
Returns a double orecision value

eVI, CVS, and CVD all give an ILLEGAL FUNCTION CALL error if

BASIC 4.1 . 65

66

the string given as the argument is shorter than required. If
the string argument is longer than necessary, the extra
characters are ignored. These functions are extremely fast
since they convert between Altair BASIC's internal
representations of integers, single and double precision
values and strings. Conventional sequential I/O must oerform
time-consuming character scanning algorithms when converting
between numbers and strings.

8) LSET and RSET. When a GET o?eration is performed, all
string variables which have been FIELDed into the random
buffer for that file automatically have values assigned to
them. The CVI, CVS and CVD functions may be used to convert
any numeric fields in the record to their numeric values.
When going the other way, i.e. inserting strings into the
random buffer before performinq a PUT statement, a problem
arises. This is beca~se of th~ way string assignments ~sually
take ?lace. For exam?le:

LET A$=B$

When a LET statement is executed, B$ is copied into string
space, A$ is ~ointed to the new string and the string length
of A$ is modified. However, for assignments into the random
buffers we do not want this to happen. Instead, we want the
string being assigned to be stored where the string variable
was FIELDed. In order to do this, two s~ecialassiqnment
statements have been provided, LSET and RSET: .

LSET <string variable>=<string expression>

RSET <string variable>=<string ex?ressicn>

Exam?les:
LSET A$=MKS$(V)
RSET B$=uTEST u

LSET C$(I)=MKD$(D#)

The difference between LSET and RSET concerns what haocens if
the strinq value being assigned is shorter than the length
s~ecified for the string variable in the FIELD statement.
LSET. left justifies the string, adding blanks (octal 40,
decimal 32) to Qad out the right side of the string if it is
too short. RSET right justifies the string, padding on the
left. If the string value is too long, the extra characters
at the end of the string are ignored.

BASIC 4.1

April, 1977

NOTE

Do not use LSET or RSET on str ing var iables which have-­
not been mentioned in a FIELD statement, or a SET TO
NON DISK STRING error will occur.

k. The DSKI$ and DSRO$ Primitives. Often it is
necessary for the user to ?erform disk I/O o~erations directly
without using any of the normal file structure features of
Altair BASIC. To allow this, two s?ecial functions have been
provided. These are the DSKI$ function and the OSRO$
statement. First, examples will be ~rovided on how to perform
sim9le disk I/O commands using Altair SASLC statements.

To Enable disk 0:

OUT 8,0

To Enable disk N:

OUT 8,N

TO ste~ the disk head out one track:

WAIT 8,2,2:0UT"9,2

To step the disk head in one track:

WAIT 8,2,2:0UT 9,1

To test for track 0:

IF (INP(8) AND 64)=0 THEN <statements or line number>

The above will execute the statements or branch to the line
number if the head is positioned at track ~. This is the
outermost track on the disk.

To read sector Y (Y may be any expression, minimum sector =0,
maximum = 31):

A$=DSKI$(Y)

The statement

OSKOS <string expression>,<sector expression>

BASIC 4.1 67

Apri:!., 197-.:'

68

writes the string expression on the sector s~ecified. The
high order bit (most signifigant) of the first character
output will always be set to one when the string is written on
the sector and will always be one when the sector is read back
in using OSKI$. A maximum of 137 characters are written~
giving a string whose length exceeds 137 characters will cause
an ILLEGAL FUNCTION CALL error. If the string argument is
less than 137 characters in length, the end of the string will
be padded with zeros to make a string of length 137.

BASIC 4.1

April, 19ii

6. LISTS AND DIRECTORIES

6-1.. Commanas.

Commands airect Altair BASIC to arrange memory and
input/output facilities, to list and edit programs "and 'to
handle other housekeeping 'details in support of program
execution. Altair BASIC accepts commands after it prints 'OK'
and is at command level. The table below lists the commands
in alphabetical order. The notation to the right of the
command name indicates the'versions to which it applies.

,Command Version(s)

CLEAR All

Sets all program variables to zero ..

CLEAR[<expression>] 8K , Extended, Disk

Same as CLEAR but sets string space to the value of the
expression.. .If no argument is given, str ing space will remain
unchanged. When Altair 'BASIC is loaded, string space is set
to 50- bytes in 8K and 200 bytes in Extended and Disk ..

CLOAD<string expression> 8K(cassette) , Extended, Disk

Causes the program on cassette tape designated by the first
character of STRING expression> to be loaded into memory. A
NEW'command is issued before the program is loaded.

CLOAD~<array name> 8K(cassette} , Disk

Loads the specified array from cassette tape. May be used as
a program statement.

CLOAD?<string expression) 8K(cassette), Extended, Disk

Compares the program in memory with the corresponding file on
cassette tape. If the files are the same, CLOAD? prints OK.
If not, it prints NO GOOD. The <string expression> must be
given, but it is ignored.

.CONT 8K, Extended, Disk

Continues program execution after a ControllC has been typed
or a STOP or END statement has been executed.. Execution
resumes at the statement after the break occurred unless input
from the terminal was interrupted. In that case, execution
resumes with the reprinting of the prompt (? or prompt
string). CONT is useful in debugging, especially where an

BASIC l,1 69

April, !97i

70

'infinite loop' is suspected. An infinite loop is a series of
statements from which there is no escape. Typing ControllC
causes a break in execution and puts BASIC in command ,level.
Direct mode statements can then be used to print intermediate
values, change the values of variables, etc. Execution can be
restarted by typing the £ONT command, or by executing a direct
mode GOTO statement, which causes execution to resume at the
specified line number.

In 4K and 8K Altair BASIC, execution cannot be continued
if a direct mode error has occured during the break. In all
vers~ons, execution cannot continue ~f the program was
modified during the break.

CSAVE<string expression> 8K(cassette), Extended, Disk

.Causes the program currently in memory to be saved on cassette
tape under the name specified by the first character of
<string expression>.

CSAVE"<array"name> 8K(cassette), Disk

,Causes the array named to be saved on cassette tape.
used as a program statement.

DELETE~line number> Extended, Disk

r.lay be

Deletes the line in the current program with the specified
number. lIf no such I ine ex ists, an ILLEGAL FUNCTION C~LL
error occurs.

DELETE-<line number> Extended, Disk

Deletes every line of the current program up to and including
the specified line. If there is no such line, an ILLEGAL
FUNCTION CALL error OCCUIS.

DELETE<line number>-~line number> Extended, Disk

Deletes all lines of the current program from the first line
number to the second inclusive. ILLEGAL FUNCTION CALL occurs
if no line has the second number.

DSKINI<drive number> Disk

Initializes diskettes on the specified drives by marking all
sectors in tracks 6 - 77 as free. If no disk number is given,
all disks are initialized beginning with the highest disk
number. CAUTION: DSKINI destroys all files on the disk. Use
with utmost caution.

~
EDIT<line number> Extended, Disk

BASIC 4.1

April, 1977

Allows editing of the line specified without affecting any
other lines. The EDIT command has a powerful set of
sub-commands which are discussed in detail in section 5-4. '

LIST All

Lists the program currently in memory, starting with the
lowest numbered line. Listing is terminated either by the end
of the program or by typing Control/C.

The LIST command may be used to save programs on paper
tape. Simply type LIST and turn on the teletype's paper tape
punch before typing carriage return. Be sure the nulls have
been set (see NULL command) to 3 before punching the program.
To load a program from paper tape, put the tape in the
teletype's reader and turn it on. The program loads as if it
were being typed from the terminal. The NEW command may be
used to 'clear old program lines before loading the new
program.

LIST[<line number>] All

In 4K and 8K, prints the current program beginning at the
specified line. In Extended and Disk, prints the specified
line if it exists.

LIST[<line number>] [-<line number>] Extended, Disk

Allows several listing options.

1. If the second number is omi t ted, 1 ists all 11 ines wi th
numbers greater than or equal to the number specified.

2. .If the first number is omitted, lists all lines from the
beginning of the program to the specified line, inclusive.

3. If both line numbers are used, lists all lines from the
first number to the second, inclusive.

LLIST[<line number>] [-<line number>] Extended, Disk

Same as list with the same options, except prints on the line
printer.

NEW All

Deletes the current prog~am and clears all variables.
before entering a new program.

NULL<integer expression> 8K, Extended, Disk

BASIC 4.1

April, 1977

Used

71

72

Sets the number of nu11s to be printed at the end of each
line. For 10 or 30 character per second tape punches,
<integer expression) should be)=3. When tapes are not being
punched, <integer expression) should be 0 or 1 for Teletypes~
and Teletype compatible ~RT's. It should be 2 or 3 for 30 cps
hard copy printers. The default value is 0. In the-4K
version, the same affect may be achieved by patching location
46 octal to contain the number of nulls plus 1.

x Teletype is a registered trademark of the Teletype
Corporation.

RUN[<line number)] All

Starts execution of the program currently in memory at the
line specified. If the line number is omitted, execution
begins at the lowest line number. Line number specification
is not allowed in 4K.

6-2. Statements.

The following table of statements is listed in alpahabetical
order. The notation in the Version column designates the
versions to which each statement applies. In the table, X and
Y stand for any expressions allowed in the version under
consideration. I and J stand for expressions whose values are
truncated to integers. V and Ware any variable names. The
format for an Altair BASIC line is as follows:

<nnnnn) <statement)[:<statement) ...]

where nnnnn is the line number.

Name Format . Version

.CONSOLE < I) , <J) Extended, Disk

Allows terminal console device to be switched. I is the I/O
port number which is the address of the low order channel of
the new I/O board. J is the switch register setting (see
section 5-1 for the list of settings). 0<=I,J<=255.

DATA DATA<ilist) A11
~

Specifies data to be read by a READ statement. List elements
can be numbers or, except in 4K, strings. 4K allows

BASIC ~.l

April, 1911

expressions. List elements are separated by commas.

DEF DEF FNV «W» =<x> 8K, Extended, Disk

Defines a user-defined function. Function name is FN fo11dwed
by a legal variabfe name. Extended and Disk versions al16w
user-defined string functions. Definitions are restricted to
one line (72 characters in 4K and 8K, 255 characters in
extended versions) .

DEFUSR DEFOSR[<digit>]=<X> Extended, Disk

Defines starting address of assembly language subroutine. Up
to ten subroutines are allowed.

DIlvl D 1M <V> (< I > [,J . . .]) [, . . .] All

Allocates space for array variables. In 4K, only one
olmension is allowed per variable. More than one variable may
be dimensioned by one DIM statement up to the limit of the
line. The value of each expression gives the maximum
subscript possible. The smallest subscript is 0. without a
DIM statement, an array is assumed to have maximum subscript
of 10 for each dimension referenced. For example, A(I,J) is
assumed to have 121 elements, from A(0,0} to A(10,l0) unless
otherwise dimensioned in a DIM statement.

END END All

Terminates execution of a program. .Closes all files in the
Disk version.

ERASE ERASE<V>[,<W> ...] Extended, Disk

Eliminates the arrays specified. The arrays may be
redimensioned or the space made available for other uses.

ERROR ERROR<I> Extended, Disk

Forces error with code specified by the expression.
primarily for user-defined error codes.

BASIC 4.1

April, 19ii

Used

73

FOR FOR<V>=<X>TO<Y> [STEP<Z>] All

Allows repeated exepution of the same statements. First
execution sets V=X. Execution proceeds normally until NEX'I' is
encountered. Z is added to V, then, IF Z<0 and V>=Y, or if
Z>0 and V<=Y, BASIC branches back to the statement after FOR.
Otherwise, execution continues with the statement after NEXT.

GOTO GOTO<nnnnn> All

Unconditional branch to line number.

GOSUB GOSUB<nnnnn> All

Unconditional branch to subroutine beginning at line nnnnn.

IF ... GOTO IF <X) GOTO<nnnnn> SK, Extended, Disk

Same as IF ... THEN except GOTO can only be followed by a line
number and not another statement .

. IF ... THEN [ELSE] IF<X>THEN<Y> [ELSE<Z>] All

74

or IF<X)THEN<statement>[:statement ...]
[ELSE<statement>[:statement ...]

If value of X<>0, branches to line number or statement after
THEN. Otherwise, branches to the line number or statement(s)
after ELSE. If ELSE is omitted, and the value of X~0,
execution proceeds at the line after the !IF ... THEN. ..In 4K, X
can only be a numeric expression. The ELSE clause is only
allowed in Extended and Disk Altair BASIC.

INPUT INPUT<V>[,<W> ...] All

Causes BASLC to request input from terminal. Values (or, in
4K, expressions) typed on the terminal are assigned to the
variables in the list.

LET LET <V>=<X> All

Assigns the value of the expression to the variable. The word
LET is optional.

LINE INPUT LINE !INPUT(.prompt stringitj]<line feed>
<string variable name> Extended, Disk

LINE ,INPU'r pr in ts the prompt str ing on the terminal and
assigns all input from the end of the prompt string to the
carriage return to the named string variable. No other prompt
is printed ~f the prompt string is gmitted. LINE INPUT may
not be edited by Control/A.

BASIC 4.1

April t ,1917

LPRINT LPRINT X [, Y ...] Extended, Disk

Same as PRINT, but prints on the line printer. Line feeds
within strings are 19nored. A carriage return is printed
automatically after the 80th character on. a line.

LPRINT USING LPRINT USING<string>;~list> Extended, Disk

Same as PRINT USING but prints on the line printer.
detailed description, see section 5-5.

For a

MID$ MID$«X$>,<I>[,<J>])=¥$ Extended, Disk

Part of the string X$ is replaced by ~$. Replacement
with the ·Ith character of X$ and proceeds until
exhausted, the end of X$ is reached or J characters have
replaced, whichever comes first. If I is greater
LEN(X$), an lILLEGAL FUNCTION CALL error results.

starts
Y$ is

been
thap

NEXT NEXT [<V>,<W> ...] All

Last statement of a~FOR loop. V is the variable of the most
recent loop, W of the next most recent and so on. Only one
variable is allowed in 4K. Except in 4K, NEXT without a
variable terminates the most recent FOR loop.

ON ERROR GOTO ON ERROR GOTO<line number> Extended, Disk

When an error occurs, branches to line specified. sets
variable ERR to error code and ERL to line number where the
error occured. See section 6-5 for a"list of error codes. ON
ERROR GOTO 0 (or without number) disables error trapping.

ON ... GOTO ON<I>GOTO<list of line numbers> 8K, Ext., Disk

Branches to line whose number is Ith in the list. 'List
elements are separated by commas. ;1£ 11=0 or > number of
elements in the list, execution continues at next statement .
.lIf II <0 or > 255, an er ror resul ts.

ON ••• GOSUB ON <I> GOSUS <list> 8K, Extended, Disk

Same as ON ... GOTO except list elements are initial line
numbers of subroutines.

OUT OUT<.I>,<J> 8K, Extended, Disk

Sends byte J to port I. 0<=1,J<=255.

POKE POKE<I>,<J> 8K , Extended, Disk

Stores byte J in memory location der ived from ·r.

3ASIC 4.1 75

76

0<=J<=255;-32768<I<65536.' If I is negative, address is
65536+1. If I is positive, address=I.

PRINT PRINT<X>[,<Y> ...] All

Causes values of expressions in the list to be pr inted on t'he
terminal. Spacing is determined by punctuation.

Punctuation
,
;

Spacing - next printing begins:
at beginning of next 14 column zone
immediately

other or none at beginning of next line

String literals may be printed if enclosed by quotation marks
(II).. String expressions may be printed in all but 4K.

PRINT USING PRINT USING<string>;<list> Extended, Disk

Prints the values of the expressions in the list edited
according to the string. The string is an expression which
represents the line to be printed. The list contains the
constants, variable names or expressions to be printed. List
entries are separated by punctuation as in the PRINT
statement. For a list of string characters and their
functions, see section 5-5.

READ READ<V> [, <W> ...] All

Assigns values in DATA statements to variables. Values are
assigned in sequence starting with the first value in the
first DATA statement.

REH REM [<remark>] All

Allows insertion of remarks. Not executed, but may be
branched into. In Extended and Disk versions, remarks may be
added to the end of a line preceded by a single quotation mark
(.) ..

RESTORE RES 'raRE All

Allows data from DATA statements to be reread. Next READ
statement after RESTORE begins with first data of first data
statement.

RESUr.1E RESUME [<number>] Extended, Disk

Resumes program execution at the line specified after error
trapping routine. If number is omitted or zero, resumes at
statement where error occured. RESUME NEXT causes resumption
at the statement following the statement where the error was
made ..

3ASIC ~.l

April. 19i':"

RETURN RETURN All

Terminates a subro~tine. Branches to the statement after the
most recent GOSUB.

STOP STOP Ali

Stops program execution. BASIC enters command -level and,
except in 4K, prints BREAK IN LINE nnnnn. Unlike END, STOP
does not close files.

SWAP SWAP <V>, <w> Extended, Disk

Exchanges values of the variables named. Variables must be of
the same type.

TROFF TROFF Extended, Disk

Turns off trace flag. The trace flag is turn.ed on by TRON
(see below). NEW also turns off the trace flag.

TRON Extended, Disk

Turns on trace flag. Prints number of each line in square
brackets as it is executed.

WAIT WAIT<I>,(J>[,(K>] 8K, Extended, Disk

Status of port I is XOR'd with K and AND'ed with J. Continued
execution awaits non-zero result. K defaults to 0.
0<=I,J,K<=255.

6-3. Intrinsic Functions.

Altair BASIC provlces several commonly used algebraic and
string functions which may be called from any program without
further definition. If the functions are not required for a
program, they may be deleted when BASIC is loaded to conserve
memory space. The functions in the following table are listed
in alphabetical order. The notation to the right of the Call
Format is the version(s} in which the function is available.
As usual, X and Y stand for expressions, JI and J for integer
e~pressions and X$ and ¥$ for string expressions.

Function Call Format Version

ABS ABS(X) All

BASIC 4.1 77

April, 197i

78

Returns absolute value of expr~ssion X. AB~(X)=X if X>=0, -x
if X<0.

ASC ASC(X$) 8K , Extended, Disk

Returns the ASCII code of the first character of the str~.ng
X~. ASCLI codes are in appendix A.

ATN ATN(X) 8K, Extended, Disk,

Returns arctangent(X). Result is in radians in range -pi/2 to
pi/2.

The following functions are available in Extended and Disk:

CINT
CSNG
CDBL

CINT(X)
\CSNG (X)
CDBL(X)

Converts X to integer.
£onverts X to single precision.
Converts X to double precision.

If the argument
CINT(X)=INT(X) .
error .

is in the
Otherwise,

range -32768 to
CINT will produce

32767, the
an OVERFLOW

. CHR$,CHR$ (I) 8K, Extended, Disk

Returns a string whose one element has ASCII code I.
codes are in Appendix A.

ASCII

cos ,COS (X) SK, Extended, Disk

Returns cos (X) . X is in radians.

ERL Extended, Disk

Returns the number of the line in which the last error
occur red.

ERR Extended, Disk

Returns the error code of the last error.

ERR ERR(I) Disk

Returns parameters of disk errors. After a DISK I/O ERROR,
ERR(0) returns number of the disk~ ERR(l) returns the track
number (0-76) , ERR(2) returns the sector number, ERR(3) and
ERR(4) return the low and high order 8 bits of the cumulative
count of disk errors respectively.

EXP EXP(X) 8K, Extended, Disk

Returns e to the power X. X must be <=87.3365.

BASIC 4.1

April, 19ii

FIX FIX(X) Extended, Disk

Returns the truncated integer part of X. FIX(X} is equivalent
to SGN(X)~INT(ABS(X». The major difference between FIX and
INT i~ that FIX does not return the next lower number for
negative X.

FRE FRE(0} 8K, Extended, Disk

Returns number of bytes in memory not being used by BASIC. ~If
argument is a string, returns number of free bytes in string
space.

HEX$ HEX$(X} Extended, Disk

Returns a string which represents the hexadecimal of the
decimal argument.

;INP .INP(I) 8K, Eitended, Disk

Reads a byte from port I.

INSTR INSTR ([I ,] X$, Y$ L Extended, Disk

Searches for the first occurrence of string Y$ in X$ and
returns the position. Optional offset I sets position for
starting the search. 0<~I<=255. J1£ I>LEN(X$), if X$ is null
or if Y$ cannot be found, INSTR returns 0. !If Y$ is null,
iINSTR returns I or 1. Strings may be string variable values,
st~ing expressions or string literals.

INT INT(X) All

Returns the largest integer <=X

LEFT$ 8K, Extended, Disk

Returns leftmost I characters of string X$.

LEN LEN(X$)

Returns length of string X$.
blanks are counted.

LOG LOG (X)

Returns natural log of X. X>0

LPOS LPOS(X)

8K, Extended, Disk

Non-printing characters' and

8K, Extended, Disk

Extended, Disk

Returns the current position of the line printer print head
within the line printer buffer. Does not necessarily give the

BASIC 4.1 79

April, 19ii

80

physical position of the print head. The expre~sion X must be
given, but the value is ignored.

MID$ MID$ (X$, I [,J]) 8K, Extended, Disk

Without J, returns rightmost characters from X$ beginning with
the Ith character. If I>LEN(X$), MID$ returns the null
string. 0<I<255. With 3 arguments, returns a string of
length J of characters from X$ beginning with the Ith
character. If J is greater than the number of characters in
X$ to the right of I, MID$ returns the rest of the string.
0<=J<=255.

QCT$ QCT$(X) 8K, Extended, Disk

Returns a string which represents the octal value of the
decimal argument.

RND RND(X) All

Returns a random number between fa and 1.. X<0 starts a ne\y
sequence of random numbers. X>0 gives the next random number
in the sequence. X=0 gives the last number returned. In 8K ,
Extended and Disk, sequences started with the same negative
number will be the same.

POS POS(I) 8K, Extended, Disk

Returns present column position of terminal's print head.
Leftmost position =0.

RIGHT$ RIGHT$(X$,I) 8K, Extended, Disk

Returns rightmost :1 characters of string X$.
returns X$.

If I=LEN(X$),

SGN SGN (X) All

If X>0, returns 1, if X=0 returns 0, if X<0, returns -1. For
example, ON SGN(X)+2 GOTO 100,200,300 branches to 100 if X is
negative, 200 if X is 0 and 300 if X is positive.

SIN SIN (X)

Returns the sine of the
£OS(X)=SI~(X+3.14159/2) .

SPACES SPACE$(I)

value

Returns a string of spaces of length I.

All

of X in r ad ians ..

Extended, Disk

BASIC ~.l

April, i97i

SPC SPC(I) 8K, Extended, Disk

Prints I blanks on terminal. 0<=I<=255.

SQR SQR(X) All

Returns square root of X. X must be)=0

STR$ STR$(X) 8KJ Extended, Disk

Returns string representation of value of X.

STRING$ STRING$ (I, J.) Extended, Disk

Returns a str ing of length II whose characters all have ASCII
code J. See Appendix A for ASCII codes.

TAB TAB (.1) All

Spaces to position I on the terminal. Space 0 is the leftmost
space, il the rightmost. If the carriage is already beyond
space I, TAB has no effect. 0<=I<=255. May only be used in
PRINT and LPRI~T statements . .
TAN TAN (X) All

Returns tangent(X). X is in radians.

USR USR(X) All

Calls the user's machine language subroutine with argument X.

VAL VAL (X$) 8K, Extended, Disk

Returns numer ical value of str ing X$. If first char acter of
~$ is not +, -, or a dioit, VAL(X$)=0. - -'

VARPTR VARPTR(V) Extended, Disk

Returns the address of the var iable given as the argument. :1£
the variable has not been assigned a value during the
execution of the program, an ILLEGAL FUNCTION CALL error will
occur. The main use of the VARPTR function is to obtain the
address of variable or array so it may be passed to an
assembly language subroutine. Arrays are usually passed by
specifying VARPTR(A[0]) so that the lowest addressed element
of the array is returned.

SAStC ..l..1 81

April. 1.9'7:'

82

NOTE

All simple variables should be assigned values in a
program before calling VARPTR for any array.
Otrierwise, allocation of a new simple variable will
cause the addresses of all arrays to change.

6-4. Special Characters

Altair BASIC recognizes several characters in the ASCII
font as having special functions in carriage control, editing
and program interruption. Characters such as Control/C,
Control/S, etc. are typed by holding down the £ontrol key and
typing the designated letter. The special characters in the
table are listed in the order of the versioris to which they
apply, starting with those common to all versions and ending
with those that apply only to extended versions.

Typed ~..:. Printed as:

The following Special Characters are available
versions.

@ @

Erases current line and executes carriage reiurn.

in ALL

Erases last character typed. If there is no last character
types a carriage return.

(underline)

same as backarrow.

Car r iage Return

Returns print head or curser to beginning of the next line.

Cantrol/C ~C (in Extended and Disk)

Interrupts execution of current program or list command.
Takes effect after execution of the current statement or after
listing the current line. BASIC goes to command level and
types OK. CONT command resumes execution. See section 6-1.

Separates statements in a line.

BASIC -+.i

.~pril, 19i:"

The following special characters are available in 8K, Exte~ded
and Disk versions only.

Control/O ~O (in Extended and Disk)

Suppresses all output until an ,INPUT statement is encountered,
another ControllO is typed, an error occurs or BASIC returns
to command level.

? ?

Equivalent to PRINT statement.

Rubout see explanation

Deletes previous character on an input line. First Rubout
prints \ and the last character to be printed. Each
successive Rubout prints the next character to the left.
Typing a new character causes another \ and the new character
to be printed. All characters between the backslashes are
deleted ..

ControllU AU (in extended)

Same as @.

Control/S

Causes program execution to pause until £ontrol/Q or Control/C
is typed.

Control/Q

Causes execution to resume after Control/S. ControllS and
Control/Q have no effect if no program is being executed.

The following special characters are available in Extended and
Disk versions only.

Controll A

Allows use of the EDIT command on the line currently being
typed. ControllA is typed instead of Carriage Return. See
section 5-4.

Control/I 1 .to 8 spaces

Tab character. Causes print head or curser to move to the
beginning of the next 8 column field. Fields begin at columns

BASIC 4.1 83

April, 1977

1, 9, 17, etc. The tab character is especially useful for
formatting lines broken with line feeds.

100<tab>FOR 1=1 TO l0:<line feed>
<tab><tab>FOR J=l TO l0:<line feed>
<tab><tab><tab>A(I,J)=0:~line feed>
<tab>NEXT J,1<carriage return>

lists as:

100 FOR i1=l TO 10:
FOR J=l TO 10:

A(I,J)=0:
NEXT J,I

Control/G bell

Rings terminal's bell.

LINE FEED

Breaks a long iline into shorter parts. The result is still
one BASIC line.

Denotes the number of the current line. May be used wherever
a line number is to be specified.

[,] [,]

Brackets are interchangeable with parentheses as delimiters
for array subscripts.

Lower £ase Input

Lower case alphabetic characters are always echoed as lower
case, but LIST, LLIST, PRINT and LPRINT will translate lower
case to upper case if the lower case characters are not part
of -string literals, REM statements or remarks delineated by
single quotation marks (').

6-5. Error Messages.

After an error occur s, BASIC returns to command ilevel and
-types OK. Variable values and the program text remain intact,
out the program cannot be continued by the CONT command. In
4K and 8K versions, all GOSUB and FOR context is lost~ The
program may be continued by direct mode GOTO, however. When

84 BASIC -+.1

A.pril, 19'7i

an error occurs in a direct statement, no line number is
printed. Format of error messages:

?XX ERROR Direct Statement
.Indirect Statement ?XX ERROR IN YYYYY

where XX is the error coce and YYYYY is the line number where
the error occurred. The following are the possible error
codes and their meanings:

ERROR COD'E EXTENDED ERROR MESSAGE NUMBER

The following error codes apply in ALL versions.

as SUBSCRIPT OUT OF RANGE 9

An attempt was made to reference an array element which is
outside the dimensions of the array. In the 8K and)larger
versions, this error can occur if the wrong number of
dimensions are used in an array reference. For example:

LET A(l,l,l)=Z

when A has already been dimensioned by DIM A(10,10)

DD REDIMENSIONED ARRAY 10

After an array was dimensioned, another dimension statement
for the same array was encountered. This error often occurs
if an array has been given the default olmension of 10 and
later in the program a DIM statement is found for the same
array.

FC ILLEGAL FUNCTION .CALL 5

The parameter passed to a math or string function was out of
range. FC errors can occur due to:

1. a negative array subscript (LETA(-1)=0)

2~ an unreasonably large array subscript (>32767)

3. LOG with negative or zero argument

4. SQR with negative argument

5. AwB with A negative and 8 not an integer

BASIC 4.1 85

April, 197i

6. a call to USR before the address of a machine language
subroutine has been entered.

7. calls to MID$, LEFT$, RIGHT$, INP, OUT, WAIT, PEEK, PO~E,
TAB, SPC, STRING$, SPACES, INSTR or ON ... GOTO with an
improper argument.

ID ILLEGAL DIRE.CT 12

,INPUT and DEF are illegal in the direct mode. In extended

86

versions, however, INPUT is legal in direct.

NF NEXT WITHOUT FOR 1

The variable in a NEXT statement corresponds to no previously
executed FOR statement.

00 OUT OF DATA, 4

A READ statement was executed but all of the DATA statements
in the program have already been read. The program tried to
read too much oata or insufficient data was included in the
program.

OM OUT OF MEt-10RY 7

Program is too large, has too many variables, too many FOR
loops, to many GOSUBs or too complicated expressions. See
Appendix C.

OV OVERFLOW 6

The result of a calculation was too large to be represented in
Altair BASIC's number format. If an underflow occurs, zero is
given as the result and execution continues without any error
message being printed.

SN SYNTAX ERROR 3

Missing parenthesis in an expression, illegal character in a
line, incorrect punctuation, etc.

RG RETURN WITHOUT GOSUB 3

A RETURN statement was encountered before a previous GOSUB­
statement was executed.

UL UNDEFINED LINE 8

The line reference in a GOTO, GOSUB, IF ... THEN ... ELSE or
DELETE was to a line which does not exist.

BASIC 4.1

April, 1977

/0 DIVISION BY ZERO 11

Can occur with integer division and MOD as well as floating
point division. 0 to a negative power also causes a DIVISION
BY ZERO error.

CN

The following error messages apply to
8K, Extended and Disk version! only

CAN'T CONTINE Ii

Attempt to continue a program when none exists, an error
occurred or atter a modification was made to the program.

LS STRING TOO LONG 15

An attempt was made to create. a string more than 255
char acters long.

OS OUT OF STRING SPACE 14

String variables exceed amount of string space allocated for
them. Use the £LEAR command to allocate more string space or
use smaller strings or fewer string variables.

ST STRING FORMULA TOO ·.COr1PLEX 16

A string expression was too long or too complex.
into two or more shorter ones.

TM TYPE r1 ISMAT.CH 13

Break it

The left hand side of an assignment statement was a numeric
variable and the right hand side was a string, or vice-versa;
or a function which expected a string argument was given a
numeric one or vice-versa.

UF UNDEFINED USER FUNCTION 18

Reference was made to a user defined function which had never
been defined.

The following error messages are available in Extended and
Disk versions only.

MISSING OPERAND 20

During evaluation of an expression, an operator was found with

BASIC -+.1 87

April, 1977

88

no operand following it.

NO RESU~lE 19

B-ASJ:C entered an error trapping routine, but the program ended
before a RESUME statement was encountered.

RESUME WITHOUT ERROR 21

A RESUME statement was encountered, but no error trapping
routine had been entered.

UNPRINTABLE ERROR 22

An error condition exists for which there is no error message
available. Probably there is an ERROR statement with an
undefined error. code.

LINE BUFFER OVERFLOW 23

An attempt was made to input a program or data line which has
too many characters to be held in the line buffer. Shorten
the line or divide it into two or more parts.

Disk Altair BASIC Error Messages

FIELD OVERFLOW 50

An attempt was made to allocate more than 128 characters of
string variables in a single FIELD statement.

INTERNAL ERROR 51

:Internal error in Disk BASIC. R~port conditions under which
error occurred and all relevant data to MITS software
department. This error can also be caused by certain kinds of
disk :I/O er ror s.

BAD FILE 52

An attempt was made to use a file number which specifies a
file that is not OPEN or that is greater than the number of
files entered during the Disk Altair BASIC initialization
dialog.

FILE NOT FGUND 53

BASIC ~.1

April, 1977

FILE NO'!' FOUND 53

Reference was made in a LOAD, KILL or OPEN statement to a file
which did not exist on the disk specified.

BAD FILE t-l0DE 54

An attempt was made to peDform a PRINT to a random file, to
OPEN a random file for sequential output, to perform a PUT or
GET on a sequential file, to load a random ~file or to execute
an OPEN statement where the file mode is not I, 0, or R.

FILE ALREADY OPEN 55

A sequential output mode OPEN for a file was issue,d for a file
that was already OPEN and had never been CLOSEd or a KILL
statement was given for an OPEN file.

DISK NOT MOUNTED 56

An I/O operation was issued ,for a file that was not MOUNTed.

DISK I/O ERROR 57

An I/O error occured on disk X. A sector read (checksum)
error occurred eighteen (18) consecutive times.

SET TO NON-DISK STRING 58

An LSET or RSET was given for a string variable which had not
previously been mentioned in a FIELD statement.

DISK ALREADY MOUNTED 59

A MOUNT was issued for a DISK that was already MOUNTed but
never UNLOADed.

DISK FULL 60

All disk storage is exhausted on the disk. Delete some old
disK files and try again.

INPUT PAST END 61

An INPUT statement was executed after all the data in a file
had been INPUT. This will happen immediately if an INPUT is
executed for a null (empty) file. Use of the EOF function to
detect End Of File will avoid thjs error.

BASIC 4.1 89

.!.pril, 19i7

90

BAD RECORD NUMBER 62

In a PUT or GET statement, the record number is either greater
than the allowable maximum (2046) or equa~ to zero.

BAD FILE NAME 63

A file name of 0 characters (null) or a file name whose first
byte was 0 or 377 octal (255 decimal) or a file name with more
than 8 characters was used as an argument to LOAD, SAVE, KILL
or OPEN.

MODE -~l ISMATCB 64

Sequential OPEN for output was executed for a file that
already existed on the disk as a random (R) mode file, or vice
versa.

DIRECT STATEMENT IN FILE 65

A direct statement was encountered during a LOAD of a program
in AS.CLI format. The LOAD is terminated.

TOO MANY FILES 66

A SAVE or OPEN (0 or R) was executed which would create a new
file on the disk, but all 255 directory entries were already
full. Delete some files and try again.

OUT OF RANDOM BLOCKS 67

An attempt was made to have more random files OPEN at once
than the number of random blocks that were allocated during
initialization by the response to the
"NUtvlBER OF RAN DOf.'1 £I LES? II que s t io n (se e Append ix H).

FILE ALREADY EXISTS 68

The new file name specified in a NAME statement had the same
name as another file that already existed on the disk. Try a
different name.

FILE LINK ERROR 69

D~ring the reading of a file, a sector was read which did not
belong to the tile.

BASIC 4.1.

April, 1977

6-6. Reserved Words.

Some words are reserved by the Altair BASIC interpreter for
use as statements, commands, operators, etc. and thus may not
be used for variable or function names. The reserved words
are listed below in order of the versions for which they are
reserved, starting with those reserved in all versions and
ending with those reserved only in Disk Altair BASIC. Words
reserved in larger versions may be. used in smaller versions,
although one may want to avoid all reserved words in the
interest of compatibility. In addition to the words listed
below, intrinsic function names are reserved words in all
versions in which they are available.

RESERVED WORDS

Words reserved in all versions .

. ,CLEAR NEW
DATA NEXT
DIM PRINT
END READ
FOR REM
GOSUB RETURN
GOTG RUN
IF STOP
INPUT TO
LET TAB
LIST 'IIHEN

USR

Words reserved in SK, Extended and Disk versions. All the above
plus:

AND
,CaNT
DEF
FN
NOT
NULL

ON
OR
OUT
POKE
SPC
WAIT

Words reserved in Extended and Disk versions. All the above plus:

AUTO
CONSOLE
DEFDBL
DEEINT
DE~"SNG

DEFSTR
DELETE
EDIT
ELSE

BASiC 4.1

April, 1977

LINE
LLIST
LPRINT
MOD
RENUM
RESUME
SPACE$
STRINGS
SvvAP

91

ERASE
ERL
ERR
IMP
INSTR

TROFF
'R:ON
VARPTR
WIDTH
XOR

Words reserved in Disk. All the above plus:

.CLOSE
DSKIS
DSKO$
FIELD
F·ILES
GET
KILL
LOAD

92

LSET
MERGE
MOUNT
NAME
OPEN
PUT
RSET
UNLOAD

BASIC 4.1

April, 1977

APPENDIX A
ASCII CHARACTER-CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR. "
000 NUL 043 + 086 V
001 SOH 044 , 087 W
002 STX 045 088 X
003 ETX 046 . 089 y
004 EOT 047 / 090 Z
005 ENQ 048 0 091 [
0e6 ACK 049 1 092 \
007 BEL 050 2 093 1
008 BS 051 3 094 (or +)
009 HT 052 4 095 < (or)
010 LF 053 5 096
011 VT 054 6 097 a
012 FF 055 7 '098 b
013 CR 056 8 099 c
014 SO 057 9 100 d
015 SI 058 101 e
016 DLE 059 102 f
017 DCl 1-'1 060 < k-t,,- 103 9
018 DC2 $ 061 = ott..r' 104 h
019 DC3 ~ 062 > tteJClG- 105 i
020 DC4 7+ 063 ? 106 j
021 NAK 100 064 @ 107 k
022 SYN 065 .z:\ 108 1
023 ETB 066 B 109 Tn

024 C.AN 067 C 110 n
025 EM 068 D III 0

026 SUB 069 E 112 l?
027 ESCAPE 070 F 113 0

028 FS 071 G 114 r
029 GS 072 H 115 s
'130 RS 073 I 116 t
031 US 074 J 117 u
032 SPACE 075 K 118 v
033 076 L 119 w
034 II 077 M 120 x
035 # 078 N 121 y
036 $ 079 0 122 z
037 % 080 P 123 {
038 & 081 Q 124, I
039 082 R 125
-040 (083 S 126
041) 084 T 127 DEL
042 * 085 U
LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

BASIC 4.1 93

April, 1977

94

Using ASCII codes -- the CHR$ function.

CHR$(X) returns a string whose one character is that with
ASCII code X. ASC(X$) converts the first character of a
string to its ASCII decimal value.

One of the most common uses of CHR$ is to send a special
character to the user's terminal. The most often used of
these characters is the BEL (ASCII 7). Printing this
character will caqse a bell to ring on some terminals and a
beep on many CRT's. This may be used as a preface to an error
message, as a novelty, or just to wake u? the user if he has
fallen asleep. Example:

PRINT CHR$(7);

Another major use of CHR$ is on those CRT's that have
cursor positioning and other special functions (such as
turning on a hard copy orinter). For example, on most CRT's a
form feed (CHR$(12» will cause the screen to erase and the
cursor to "home" or move to the upper left corner.

Some CRT's give the user the capability of drawing gra?hs
and curves in a special point-plotter mode. This feature may
easily be taken advantage of through use of Altair BASIC's
CHR$function.

BASIC 4.1

April, :977

APPENDIX B
LOADING AND INITIALIZING BASIC

A. Loading BASIC from paper tape or cassette.

This appendix details the ~rocedure for loading BASIC in
4K, 8K and Extended versions from paper tape or tape cassette.
For instructions on loading Disk BASIC, see appendix H.

The programs below are entered into memory through the
front panel switches. Rather than specify the switch
~ositions as "Up" and "down", it is convenient to denote the
up position as 1 and the down position as 0. Taken in qroups
of three the switches can represent octal digits. To save
space, the switch positions in the following .loader program
listings are shown in octal notation. The leftmost two
switches in an 8 bit set are represented by the first digit,
the next three by the second digit and the low-order three
switches by the last digit.

For example, if we wish to enter octal 315 on
switch register, the switches would have the
positions:

the data
following

7 6
up up

3

543
down dOvln u9

1

2
up

1
down

5

10
up

For data entry, only tpe rightmost 8 switches of the 16
switches on the ALTAIR 8800 front panel switch register are
used. All 16 switches would be used to enter a memory
address.

The following is the procedure fo~ loadinq BASIC from
pa~er tape or cassette:

1.

2.

3.

4.

BASIC 4.1

April, 197'i

Turn the power switch on

Raise the STOP switch and RESET switch simultaneously

Switch the terminal to LINE

Enter one of the following prograMs on the front panel
switches. The SS-MBL Multi-Boot Loader PROM contains the
necessary loader programs, so it is not necessary to enter
a loader from the front ?anel if it is installed. Refer
to the 8S-MBL manual for more information.

95

a. loading from pa~er tape with the SIO board (REV 1)

Octal Add:ress Octal Data
000 041
001 302
002 0xx (17 for 4K, 37 for 8K, 77 for
003 061 Extended & Disk)
004 022
005 000
006 333
007 000
010 017
011 330
012 333
013 001
014 275
01;5 310
016 055
017 167
020 300
021 351
022 003
023 000

b. loading from cassette
Octal Address Octal Data
000 041
001 302
002 0xx (17 for 4K, 37 for 8K, 77 for
003 061 Extended and Disk)
004 022
005 000
006 333
007 006
010 017
011 330
012 333
013 007
014 275
015 310
016 055
017 167
020 300
021 351
022 003
023 000

96 BASIC 4.1

April, 1977

c. loading with the
Octal Address
000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024

88 PIa board
Octal Data
041
302
0xx (17 for 4K, 37 for 8K, 77 for
061 Extended and Disk)
023
000
333
004
346
001
310
333
005
275
310
055
167
300
351
003
000

d. loading with the 2S10 board

BASIC 4.1

April, 19i7

Octal Address

000
001
002
003
004
005
006
007
010
'111
012
013
014
015
016
017
020
021
022
023
024
025
026

Octal-Data

076
003
323
020
076
021 (=2 stop bits, 025=1 stO? bit)
323
020
041
302
0xx (17for 4K, 37 for 8K, 77 for
061 Extended and Disk)
032
000
333
020
017
320
333
021
275
310

. 055

97

027 167
1330 3013
031 351
1332 013
033 1300

e. loading with the 4PIO board

Octal Address Octal Data
1300 257
001 323
002 040
003 323
004 041
005 076
006 054
0137 3'23
010 040
011 041
012 302
013 0xx (17 for 4K, 37 for 8K, 77 for
014 061 Extended and Disk)
015 033
016 000
017 333
020 040
021 007
022 330
023 333
024 041
025 275
026 310
027 055
030 167
031 300
032 351
033 014
034 000

f. Loading with the High Speed-Tape Reader

Octal Address Octal Data
000 257
001 323
002 044
003 323
004 045
005 323
006 046
007 057
010 323

98 BASIC 4.1

April, 1977

011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050

047
076
014
323
044
076
004
323
046
323
047
041
302
0xx (17 for 4K, 37 for 8K, 77 for
061 Extended and Disk)
047
000
333
044
346
100
310
333
045
275
310
055
167
300
351
027
000

To enter these programs:

1. Put switches 0 to 15 in the down ~ositions

2. Raise EXAMINE

3. Put the data for address zero in switches 0 through 7

4. Raise DEPOSIT

5. Put the data for the next address in the switches

6~ Depress DEPOSIT NEXT

7. Repeat ste9s 5 and 6 until the whole loader is toggled in

BASIC .. L 1 99

. Ap!"il, 1977

100

8. Put switches 0 through 15 in the down position

9. Raise EXAMINE

10. Check to see that the lights D0 through D7 show the ~ata
that should be in location 000. Light on =1, light off =
0. If the correct value is there, go to step 13: if not,
go to 11.

11. Put the correct value in the switches

12. Raise DEPOSIT

13. Depress EXAMINE NEXT

14. Repeat steps 10 through 13 to check the entire loader

15. If there were any mistakes, check thi entire loader again
to make sure they were corrected.

16. If a paper tape is being loaded, ~ut it into the reader
and make sure that it is positioned at the beginning of
the leader. The leader is the section of' tape at the
beginning with 302 octal punched in each column. If an
audio, cassette is being loaded, put it in the cassette
recorder and make sure it is fully rewound.

17. Lower switches 0 through 15

18. Raise EXAMINE

19. Enter the sense switch settings.
section B.

See the table in

20. If loading is through a SIOA, B or C or an 8SPIO, turn on
the tape reader and then depress RUN. If a cassette is
being loaded, turn on the recorder, put it in PLAY mode
and wait 15 seconds. Then press RUN on the computer. If
loading is through a 4PIO, 2SIO or High Speed Tape Reader,
depress RUN and then start the read device.

21. Wait for the tape to read. Paper tape takes about 25
minutes for Extended, 12 minutes for 8K and 6 minutes for
4K. Cassettes take about 8 minutes for Extended, 4
minutes for 8K and 2 minutes for 4K. Do not move any of
the switches while the tape is being read.

22. If a loading error occurs,
start over from step 1.
conditions.

the loading procedure must
See section C below for error

BASIC 4.1

April, 1977

23. When the tape is read, BASIC should start u~ and ?rint
MEMORY SIZE? See section 0 below for what to do next.

24. If BASIC will not load from cassette, the ACR module may
need realignment. The Input Test Program described in the
ACR Manual, pages 22 and 28, may be ~sed to test the ACR.

B. Sense Switch Settings

Sense switches (switches A8 through A15) must be set
before tape or cassette loading begins. The settings depend
on the terminal and input interface boards in use. The low
order (rightmost) four switches contain the load board
setting, and the high order four switches contain the terminal
board setting. In the table below, the setting is given for
each I/O board option. As above, the setting is an octal
number which signifies the switch positions. The Terminal'
Switch and Load Switch columns show the switches that are
raised for each of the load and terminal device option~.

Sense Switch Terminal Load
Device Setting Switches Switches Channels

2SIO 0 none none 20, 21
(2 stop bits)

2SIO 1 A12 A8 20, 21
(1 stop bit)

SIa 2 A13 A9 0, 1
ACR 3 A13,A12 A9,A8 6, 7
4PIO 4 A14 A10 40, 41, 42,
PIO 5 A14,A12 A10,A.8 4, 5
HSR 6 A14,A13 A10,A9 46, 47
non-standard 14

terminal
no terminal 15

Examples:

Input from audio cassette through ACR and CRT terminal
through 2SIO with 1 stop bit.
Switch 15 14 13 12 11 10 9 8
Position 0 0 0 1 0 0 1 1

Input from high speed ?aper tape reader, terminal
through SIO.
Switch 15 14 13 12 11 10 9 8
Position 0 0 1 0 0 1 1 0

43

- BASIC 4.1
101

April, 1977

102

C. Error Detection

The checksum loader turns on the Interru?t Enable liqht
on the front panel when a loading er~~r occurs. The ASCII
code of the error letter is stored ~n location 0. _ In
addition, the error letter is sent out over all the terminal
channels and anpears on whatever terminal is connected to the
terminal. The'error letters are as follows:

C checksum error. Bad tape data.
M memory error. Data won't store ?roperly.

The address of the bad memory location is stored
in locations 1 and 2.

o overlay error. Attempt was made to load data on t09
of the loader.

I invalid load device. Invalid setting on the
sense switches.

D. Initialization Dialog

Upon starting, BASIC ~rints

MEMORY SIZE?

To this, the user responds by ty?ing the number of bytes of
memory to be used by BASIC and BASIC programs. Remember ~hat
the BASIC interpreter itself takes 3.4K in the 4K version,
6.2K in 8K and l4.6K in Extended. If the response is just a
carriage return, BASIC will use all the memory it can find,
starting at location zero UP to the last byte of read/write
memory. Then BASIC asks,

TERMINAL WIDTH?

to which the user responds with the width of the ~rinting line
of whatever output device is in use. Typing a carriage return
sets the terminal width to 72. Extended and Disk Altair BASIC
set the terminal width throuqh the WIDTH command, so the
TERMINAL WIDTH question is not asked at initialization and an
initial width of 72 is assumed.

In 4K, the response to MEMORY SIZE? and TERMINAL WIDTH?
must be less than 6 digits.

The Extended and Disk versions now ask what kind of line
printer is in use.

LINEPRINTER?

The user answers with 0 if the 80LP nrinter is in use, C for

BASIC 4.1

April, !977

the C700 and Q for the Q70. One of these letters must be
typed whe~her or not a lineprinter is connected to the system.

At this point .BASIC asks several questions about
mathematical functions. The functions may be kept if needed
or deleted to save space. 4K asks,

SIN? Answer Y to save SIN, SQR and RND
Answer N to delete SIN and see the
next question

SQR? Y keeps SQR and RND

RND?
N deletes SQR, asks next question
Y keel?s RND
N deletes RND

8K and Extended BASIC ask,

WANT SIN-COS-TAN-ATN?

Now BASIC prints,

XXXX BYTES FREE

ALTAIR BASIC VERSION 4.0
[FOUR-K VERSION]

or
[EIGHT-K VERSION]

or
[EXTENDED VERSION]
COPYRIGHT 1977 BY MITS, INC.
OK

Y keeps all four
N deletes all four
A deletesorily ATN
C (in extended) retains

CONSOLE and all other
functions. Other an­
swers delete CONSOLE.

BASIC is now in command level and is ready for use.

E. Echo Routines.

The Altair input/output channels work in a full-duolex
mode. This means that characters entered on an in?ut/out?ut
terminal will not, as a rule, be printed as they are entered
unless the com~uter is programmed to return them. The
following echo programs may be used to test the in~ut/output
·devices. To test an input-only device, dum? the echoed
characters on an out?ut device or store them in memory for
later examination. To test an output-only device, send the
echo characters through the front panel Aswitches .or send a
constant character. Be sure to check the ready-to-receive bit

103
BASIC 4.1

April, 19i7

104

of the output terminal before attem~ting output. If the echo
program works, but 8ASIC does not, make sure the load device's
I/O board is strapped for 8 data bits and that the
ready-to-reci~ve bit is set properly on the terminal device.

SS-PIO
OCTAL ADDRESS

001
002
003
004
005
006
007
010
011
012
013
014
015

25IO
OCTAL ADDRESS

000
001
002
003
004
005
006
007
010
011
012
013
0i4
015
016
017
020
021
022
023
024

·4PIO
OCTAL ADDRESS

000
001
002
003
004

OCTAL DATA
004
346
001
312
000
000
333
005
323
005
303
000
000

OC:r'AL DATA
076
003
323
020 (flag ch.)
076
021 (=2 stop bits,
323 025=1 stop bit)
020
333
020
017
322
010
000
333
021 (data channel)
323
021
303
010
000.

OCTAL DATA
257
323
040
323
041

BASIC 4.1

Apl"il, 1977

105

005
006
007
010
011
012
013
014
015
016
017
'120
021
'122
023
024
025
026
027
030
031
'132
033
034
035
036
037
040
041
042
043
044

323
042
057
323
043
076
054
323
040
323
042
333
040
346
200
312
020
000
333
042
346
200
312
027
000
333
041
323
043
303
020
000

BASIC 4.1

April, 1977

106

APPENDIX C
SPACE AND SPEED-HINTS

A. Space Allocation

The memory s~ace required for a ~rogram depends, of
course, on the number and kind of elements in the ~rogram.
The following table contains information on the space required
for the various program elements.

Element

variables
numeric

Space Required

integer 5 bytes
single precision 7 bytes in Extended and Disk

6 bytes in 4K and 8K

Arrays

double precision
string 6 bytes

11 bytes

integer (# of elements)* 2 + 6 +(t of dimensions) *2 bytes
single precision 4
double precision 8
string 3
8K and 4K
strings and floating pt. 6 + 5

Functions
intrinsic 1 byte for the call (2 bytes in Extended and Disk)
user-defined 6 bytes for the definition

Reserved Words 1 byte each
2 bytes for ELSE in Extended and Disk

Other Characters
1 byte each

Stack Space
active FOR

loop 17 bytes in Extended and Disk,
16 bytes in 4K and 8K

active GOSUB 5 bytes
parentheses 6 bytes each set
temporary

result 12 bytes in Extended and Disk
10 bytes in 4K and 8K

BASIC ..t.l

April, 19ii

BASIC itself takes about 3.4K in the 4K version, 6.2K in
SK, 14.6K in Extended and 20 K in Disk.

B. Space Hints

The space required to run a ?rogram may be significantly
reduced without affecting execution by following a few of' the
following hints:

1. Use multiple statements per line. Each line has a 5 byte
overhead for the line number, etc., so the fewer lines
there are, the less storage is required.

2. Delete unnecessary s?aces. Instead of writing

10 PRINT X, Y, Z

use

10 PRINTX,Y,Z

3. Delete REM statements to save 1 byte for REM and 1 byte
for each character of the remark.

4. Use variables instead of constants, expecially when the
same value is used several times. For examp1e, using the
constant 3.14159 ten times in a program uses 40 bytes more
space than assigning

10 P=3.l4l59

once and using P ten times.

5. Using END as the last statement of a program is not
necessary and takes one extra byte.

6. Reuse unneeded variables instead of defining new
variables.

7. Usa subroutines instead of writing the same code several
times.

8. Use the smallest version of- BASIC that will run the
program .

. 9. Use the zero elements of arrays.
dimensioned by

100 DIM A(10)

Remember the array

has eleven elements, A(0) through A(10).

BASIC 4.1 107

~?ril, 197i

10. In Extended and Disk, use integer variables wherever
possible.

C. Speed Hints

1. Deleting spaces and REM statements gives a small but
significant decrease in execution time.

2. Variables are set up in a table in the order of their
first appearance in the program. Later in the program,
BASIC searches the table for the variable at each
reference. Variables at the head of the table take less
time to search for than those at the end. Therefore,
'reuse variable names and keep. the list of variables as
short as possible.

3. In 8K, Extended and Disk use NEXT without the index
variable.

4. 8K, Extended and
arithmetic than 4K.
larger versions.

Disk have faster floating point
If space is not a limitation, use the

5. The math functions in 8K, Extended and Disk are faster
than those in 4K.

6. ' In the 4K and BK versions,
constants, especially in FOR
must be executed repeatedly.

use variables 'instead of
loops and other code that

7. In Extended and Disk, use integer variables wherever
possible.

8. String variables set UP a descriptor which contains the
length of' the strin~ and a pointer to the first 'memory
location of the string. As strings are mani~ulated,
string space fills U9 with intermediate results and
wextraneous material as well as the desired string
information. When this happens, BASIC's ~garbaqe
collection" routine clears out the unwanted material. The
frequency of gargbage collection is inversely 9roportional
to the amount of string s~ace. The more string space
there is, the longer it takes to fill with garbage. The
time garbage collection takes is proportional to the
square of the number of string variables. Therefore, to
minimize garbage collection time, make string s~ace as
largge as possible and use as few string variables as
possible.

108 BASIC 11.1

April t 1971

APPENDIX D
t1ATHEHATICAL FUNCTIONS

1. Derived Functions.

The following functions, while not intrinsic to ALTAIR BASIC,
can be calculated using the existing BASIC functions:

Function:

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

BASIC equivalent:

SEC{X) = l/COS(X)
CSC(X) = l/SIN(X)
COT (X) = l/TAN(X)
ARCSIN (X) = ATN(X/SQR{-X*X+l»
ARCCOS (X) = -ATN X{X/SQR(-X*X+l)}

+1.5708
ARCSEC(X) = ATN(XSQR(X*X-l»

+SGN(SGN(X)-1)*1.570S
ARCCSC(X) = ATN(l/SQR(X*X-l»

+(SGN(X)-1)*1.5708
ARCCOT(X) = ATN(X)+1.5708
SINH(X) = (EXP(k)-EXP{-X»/2
COSH(X) = (EXP(X)+EXP(-X»/2
TANH (X) = EXP{-X)/EXP(X)+EXP{-X»

*2+1
SECH(X) = 2/(EXP(X)+EXP(=X»
CSCH(X) = 2/(EXP(X)-EXP(-X»
COTH(X) = EXP(-X)/(EXP(X)-EXP{-X»

*2+1

ARCSINH(X) = LOG(X+SQR(X*X+l»

ARCCOSH{X) = LOG{X+SQR(X*X+-l»

ARCTANH (X) = LOG «(l+X) / (I-X))"/2

~RCSECH(X) = LOG({SQR(-X*X+l)+l)/X)

ARCCSCH(X) = LOG«SGN(X)*
SQR{X*X+l)+l)/X

ARCCOTH(X) = LOG({X+l)/(X-l»/2

"2. Simulated Math Functions.

The following subroutines are intended for 4K BASIC users who
want to use the transcendental functions not built into 4K
BASIC. The corresponding routines for these functions in the

BASIC ~.1 109

April. 1977

8K version are much faster and more accurate. The REM
statements in these subroutines are given for documentation
?urposes only, and should not be ty~ed in because they take u~
a large amount of memory. The following . are the subroutine
calls and their 8K equivalents:

SK EQUIVALENT 4K SUBROUTINE CALL

P9=X9 Y9 GOSUB 60030
L9=LOG(X9) GOSUB 60090
E9=EXP(X9) GOSUB 60160
C9=COS(X9) GOSUB 60240
T9=TAN(X9) GOSUB 60280
A9=ATN(X9) GOSUB 60310

The unneeded subroutines should not be typed in. Please note
which variables are used by each subroutine. Also note that
TAN and COS require that the SIN function be retained when
BASIC is loaded and initialized.

6~000 REM EXPONENTIATION: P9=X9 Y9
60010 REM NEED: EXP, LOG
60020 REM VARIABLES USED: A9,B9,C9,E9,L9,P9,X9,Y9
60030 REM P9 =1 : E9=0 : IF Y9=0 THEN RETURN
60040 IF X9<0 THEN IF INT(Y9)=Y9 THEN P9=1-2*Y9+4*INT(Y9/2)

: X9=-X9
60050 IF X9<>0 THEN GOSUB 60090 : X9=Y9*L9 : GOSUB 60160
60060 P9=P9*E9 : RETURN
60070 REM NATURAL LOGARITHM: L9=LOG(X9)
60080 REM VARIABLES USED: A9~B9,C9,E9,L9,X9
60090 E9=0 : IF X9<=0 THEN PRINT "LOG FC ERROR It

; : STOP
60100 A9=1: B9=2: C9=.5: REM THIS WILL SPEED THE FOLLOWING
60110 IF X9>=A9 THEN X9=C9*X9 : E9=E9+A9 : GOTO 60100
60120 X9=(X9-.707107)/(X9+.7077l07) : L9=X9*X9
60130 L9=«(.598979*L9+.961471)*L9+2.88539)*X9+E9-.5)*

.693147
60135 RETURN
60140 REM EXPONENTIAL: E9=EXP(X9)
60150 REM VARIABLES USED: A9,E9,L9,X9
60160 L9=INT(1.4427*X9)+1 : IF L9<127 THEN 60180
60170 IF X9>0 THEN PRINT "EXP OV ERROR" ~ : STOP
60175 E9=0 : RETURN
60180 E9=.693147*L9-X9 : A9=1.32988E-3-l.413l6E-4*E9
60190 A9=«A9*E9-8.30136E-3)*E9+4.16574E-2)*E9
60195 E9=«A9-.166665)*E9-1)*E9+1 : A9=2
·60197 IF L9<=0 THEN A9=.5 : L9=-L9 : IF L9=0 THEN. RETURN
60200 FOR X9=1 TO L9 : E9=A9*E9 : NEXT X9 : RETURN
60210 REM COSINE: C9=COS(X9)
60220 REM N.B. SIN MUST BE RETAINED AT LOAD-TIME
60230 REM VARIABLES USED: C9,X9
60240 C9=SIN(X9+1.5708) : RETURN
60250 REM TANGENT: T9=TAN(X9)

110 BASIC 4.1

April, 1917

60260
60270
60280
60290
60300
60310
60320

60330
60340

BASIC 4.1

April, 1977

REM NEEDS COS. (SIN MUST BE RETAINED AT LOAD-TIME)
REM VARIABLES USED: C9,T9,X9
GOSUB 60240 : T9=SIN(X9)/C9 : RETURN
REM ARCTANGENT: A9=ATN(X9)
REM VARIABLES USED: A9,B9,C9,T9,X9
T9=SGN(~9): X9=ABS(X9) :C9=0: IF X>l THEN C9-1: X9=1/X9
A9=X9*X9 : B9=«2.86623E-3*A9-1.61657E-2)*A9

+4.29096E-2)*A9
B9=««B9-7.5289E-2)*A9+.106563)*A9-.1142089)*A9+.199936)*A9
A9=«B9-.333332)*A9+1)*X9 : IF C9=1 THEN A9=1.5708-A9

III

112

APPENDIX E
BASIC AND ASSEMBLY-LANGUAGE

All versions of Altair BASIC have provisions for
interfacing with assembly language routines. The USR function
allows Altair BASIC ~rograms to call assembly language
subroutines in the same manner as BASIC functions.

The first step in setting up a machine language
subroutine for an Altair BASIC program is to set aside memory
space. When BASIC asks, "MEMORY SIZE?H during initialization,
the response should be the size of memory available minus the
amount needed for the assembly language routine. BASIC uses
all the bytes it can find from location zero up, so only the
to~most locations in memory can be used for user su?plied
routines. If the answer to the MEMORY SIZE? question is too.
small, BASIC will ask the question again until it gets all the
memory it needs. See Appendix C for Altair BASIC's memory
requirements.

The assembly language routine may be loaded into memory
from the front ?anel switches or from a BASIC orogram by means
of the POKE statement.

The starting address of the assembly language routine
goes in USRLOC, a two byte location in memory which varies
from version to version. USRLOC for 4K and 8K Altair BASIC
version 4.0 is III octal. In Extended and Disk, USRLOC rieed
not be known explicitly since it is defined automatically by
DEFUSR (section 5-3b). The function USR calls the routine
whose address is in USRLOC. Initially, USRLOC contains the
address of ILLFUN, the routine which gives the FC or ILLEGAL
FUNCTION CALL error. If USR is called without an' address
loaded in USRLOC,an ILLEGAL FUNCTION CALL error results.

When USR is called, the stack 90inter is set up for 8
levels (16 bytes) of stack storage. If more s~ack space is
needed, BASIC's stack can be saved and a n~w stack set UP for
use by the assembly language routine. BASIC's stack must be
restored, however, before returning from the user routine.

All memory and all the registers can be changed by a
user's assembly language routine. Of course, memory locations
within BASIC ought not to be changed, nor should more bytes be
pop~ed off the stack than were put on it.

USR is called with a single argument. The assembly
language routine can retrieve this argument by calling the
routine whose address is in locations 4 and 5 decimal. The
low-order byte of the address is in 4 and the high-order in S.
In 4K and 8K, this routine (DEINT) stores the argument in the
register pair [D,E]. In Extended and Disk, the araument is

BASIC 4.1

April, 1977

passed in pair [H,L]. The argument is truncated to integer in
4K and SK, and if it is not in the range -32768 to 32767, an
FC error occurs. In Extended and Disk, the register ~air
[H,L] contains a pointer to the Flo~ting Point Accumulator
where the argument is stored (see section 5-3b. for more
information about use of the Floating Point Accumulator).

To pass a result back from an assembly language routine~
load the value in register pair [A,B] in 4K and aK, or [H,L]
in Extended. This value must be a signed, 16 bit integer as
defined above. Then call the routine whose address is in
locations 6 and 7. If this routine is not called, USR(X)
returns X. To return to BASIC, then, the assembly language
routine executes a RET instruction.

Assembly language routines can be written to handle
interrupts. Locations 56, 57 and 58 are used to hold a JMP
instruction to a user su~plied interrupt handling routine.
Location 56 initially holds a RET, so it must be set up by the
user or an interrupt will have no effect.

All interrupt handling routines should save the stack,
registers A-L and the PSW. They 'should also reenable
interrupts before returning since an interrupt automatically
disables all further interrupts once it is received.

There is only one way to call an assembly language
routine in 4K and 8R, but this does not limit the programmer
to only one assembly language routine. The argument of USR
can be used to designate which routine is being called. In
8K, additional arguments can be passed through the use of POKE
and values may be passed back by PEEK.

In Extended and Disk BASIC, up to ten routines may be
called with the USR0 - USR9 functions. For more information
on this feature, see section 5-3b.

BASIC 4.1 113

April, 1977

114

APPENDIX F
USING THE ACR INTERFACE

NOTE

The cassette features , CLOAD and CSAVE , are only
present in 8K Altair BASICs which are distributed on
cassette and in Extended and Disk versions. 8K BASIC
on ?aper tape will give the user about 250 additional
bytes of free memory, but it will not recognize the
CLOAD or CSAVE commands.

Programs may be saved on cassette tage by means of the
CSAVE command. CSAVE may be used in either direct or indirect
mode, and its format is as follows:

CSAVE <string expression>

The program currently in memory is saved on cassette under the
name specified by the first character of the <strinq
ex?ression>. CSAVE writes throuqh channel 7 when the write
Buffer Em?ty bit (bit 7) of channel 6 is low. After CSAVE is
com~leted, BASIC always returns to command level. Programs
are written on tape in BASIC's internal representation.
Variable values are not saved on tape, although an indirect
mode CSAVE does not affect the variable values of the nrogram
currently in memory. The number of nulls (see NULL command)
has no affect on the operation of CSAVE. Before using CSAVE,
turn on the cassette recorder. Make sure the tape is in the
9roper position then put the recorder in RECORD moce.

Programs may be loaded from cassette tape by means of the
CLOAD command, which has the same format as CSAVE. The effect
of CLOAD is to execute a NEW command, clearing memory and all
variable values and loading the specified file into memory.
When done reading and loading, BASIC returns to command level.
CLOAD reads a byte from channel 7 when the Read Data Ready bit
(bit 0) in channel 6 is low. Reading continues until 3
consecutive zeros are read. BASIC will not return to command
"level after a CLOAD if it could not find the requested file,
or if the file was found but did not end with 3 zeros. In
that case, the com~uter will continue to search until it is
stop?ed and restarted at location 0.

BASIC 4.1

Ap-ril, 1977

In the 8K cassette and Extended versions of ALTAIR BASIC,
data may be read and written with the CSAVE* and CLOAD*
commands. The formats ,are as follows:

CSAVE*<array variable name)

and

CLOAD*<array variable name)

See section 2-4d for a discussion of CSAVE* and CLOAD* for
array data.

CLOAD?<string expression) compares the program currently
in memory with the specified file on cassette. If the two
files match, BASIC prints OK. If not, BASIC orints NO GOOD.

Data may also be read from and written on cassette in the
pa?er tape version of 8K Altair BASIC. To write data, execute
a WAIT 6,128 statement to check for the Write Buffer Em?ty b.it
and then write with an OUT 7,<Qyte) statement. To read,
execute a WAIT 6,1 to check for Read Data Ready and then read
with an INP(7). The end of a block of data may be
conveniently des£gnated by a special character. Data should
be stored in array form since there is no time during reading
and writing for computation.

BASIC 4.1 115

April. 1977

116

APPENDIX G
CONVERTING BASIC WROGRAMS

NOT WRITTEN FOR THE ALTAIR COMPUTER

Though implementations of BASIC on different computers
are in many ways similar, there are some incompatibilities
between ALTAiR BASIC and the BASIC used on other c6mputers.

1) Strings.

A number of BASICs require the length of strings to be
declared before they are used. ~~l dimension statements of
this type should ,be removed from the ~rograrn. In some of
these BASICs, a declaration of the form DIM A$(I,J) declares a
string array of J elements each of which has a length I.
Convert DIM statements of this type to equivalent ones in
Altair BASIC: DIM A$(J). Altair BASIC uses" + »for string
concatenation, not ~ ," or " & ." ALTAIR BASIC uses LEFT$,
RIGHT$ and MID$ to take substrings of strings. Some other
BASICs use A$(I) to access the Ith character of the strinq A$,
and A$(I,J) to take a substring of A$ from character position
I to character position J. Convert as follows:

OLD
A$ (I)
A$(I,J)

NEW
MID$(A$,I,l)
MID$(A$,I,J-I+l)

This assumes that the reference to a subscript of AS is in an
expression or is on the right side of an assignment. If the
reference to A$ is on the left hand side of an assignment, and
X$ is the string ex~ression used to replace characters in A$,
convert as follows:

In 4K and 8K
OLD
A$(I)=X$
A$(I,J)=X$

Extended and Disk
OLD
A$(I)=X$
A$(I,J)=X$

2) Multiple assignments.

NEW
A$=LEFT${A$,I-l)+X$+MID$(A$,I+l)
A$=LEFTS(A$,I-l)+X$+MID$(A$,J+l)

NEW'
MID$(A$,l,l)=X$
MID$(A$,I,J-I+l)=X$

Some BASICs allow statements of the form:

500 LET B=C=0

BASIC 4.1

April, 19ii

This statement would set the variables Band C to zero. In 8K
Altair BASIC, this has an entirely different effect. All the
.. = ",signs to the right of the first one would be interoreted
as logical comparison ocerators. This would set the va~iable
B to -1 if C equaled 0. If C did not equal 0, B would be set
to 0. The easiest way to convert statements like this one- is
to rewrite them as follows.

500 C=0:B=C

3) Some BASICs use
statements on a
program.

II \ tt

line.
instead of .• :

Change each
If to delimit multi9le

II \ It toll: .1 in the

4) Pa~er tapes punched by other BASICs may have no nulls at
the end of each line instead of the three per line recommended
for use with Altair BASIC. To get around this, try to use the
tape feed control on the Teletvpe to' stop the ta?e from
reading as soon as Altair BASIC prints a carriage return at
the end of the line. Wait a moment, and then continue feedinq
in the tape. When ~eading has finished, be sure to punch a
new tape in Altair BASIC's format.

A progra~ for convertinq taQes to ~ltair BASIC's
was published in MITS Computer No~es, November 1976, 9.

format
25.

5) Programs which use the MAT functions available in some
BASICs will have to be rewritten using FOR ••• NEXT loo?~ to
perform the appropriate o?erations.

BASIC 4.1 117

April, 19i7

118

APPENDIX H
DISK INFORMATION

Format of Altair Floppy Disk

Track Allocation:

Tracks
0-5
6-69
70
71-76

Use
Disk BASIC memory image.
Space for either random or sequential files.
Directory track. See below.
Space for sequential files only.

Format of DISK BASIC Memory Image (Tracks 0-5):

BASIC is loaded starting at track 0 sector 0 then track 0
sector 1, etc. Each sector contains 128 bytes of BASIC. The
first 128 bytes are loaded first, second 128 second, etc.

Sector format (Tracks 0-5):

Byte
o
1-2

3-130
131
132

Use
Track Number+128 decimal.
Sixteen bit address of the next
higher byte of memory than the highest memory location
saved on this sector.
128 bytes of BASIC.
255 decimal stop byte.
Checksum - sum of bytes 3-130 with no carry in 8 bits.

Sector format (Tracks 6-76):

Byte
o

1
2

3

Use
Most Significant Bit always on.
Contains track number ~lus 200 octal.
Sector number * 17 MOD 32.
File number in directory. Zero file number means
that the sector is not part of any file. If the
sector is the first file of a qroup of 8 sectors
o means the whole group of 8 sectors is free.
Number of data bytes written (0 to 128) • Always
128 for random files. (Except for the random file
index blocks in which case this byte indicates how many

BASIC 4.1

April, 1977

4

5,6

grouQs are allocated to the file.)
Checksum. The sum of all the data on the sector
except for the track number, the sector
number and the terminating 255 byte.
Pointer to the next grou~ of data. This is set u? for
random files and sequential files, and is even valld
in the middle of a grou? If it is zero it means there
is no more-data in the file. The track is the first byte
and the sector number is the second byte.

7-134
135

Data
A 255 (octal 377) to make sure the right number
of data bytes were read.

136 Unused.

Directory Track (70) Format:

Each sector of the directory (which is all of track 70)
is composed of up to 8 file ~ame slots, 16 bytes per slot.
Each slot can contain a file name (8 bytes), a link to the
start of file data (2 ~ytes) and a byte which specifies the
mode of a file (Random=4, Sequential=2). The rema~n~ng 5
bytes are not currently used. Any slot which has the first
file name byte equal to zero contains a file which has been
deleted. If the first byte of a slot is a 255 , it is the
last slot currently in use in the directory. Slots beyond the
"stopper H are garbage. File -numbers are calculated by
multiplying the sector number of the directory track the fil~
is in by 8 and adding the position of the slo·t in the sector
(0-7) plus 1.

NOTE

The ith logical sector on a track is actually map?ed
to the i*17 MOD 32 physical sector to shorten access
time in BASIC I/O operations.

Format of Random Files

Each random file starts with two random index blocks. The
~number of data bytes~ field in the first block indicates how
many groups are currently allocated to this random file. The
next 256 bytes in the two random index blocks give the
-location of each group in the random file in order of their
position in the file. The u?per two bits give -the group
number , and the lower six bits give the track number - 6.

BASIC 4.1 119

120

Assembly Code to Read and Write a Sector

The following· code has been provided to help users w~ite their
own assembly language subroutines to read and write data on
the floppy disk. It is assumed that the disk being used has
already been enabled and positioned to the correct track. Two
data bytes are always read or written at a time so that the
CPU can keep up with the data rate (32 microseconds/byte) of
the floppy disk. After two bytes are read or written, the CPU
re-synchronizes with the next 'byte ready' status from the
floppy disk controller.

; CALL WITH NUMBER OF DATA BYTES TO WRITE IN [A]
; AND POINTER TO DATA BUFFER IN [H,L]
; ALL REGS DESTROYED.

OSKO:

. ,

MOV
MVI
SUB
MOV
CALL
MVI
OUT

C,A
A,136
C
B,A
SECGET
A,128
9

jSAVE # OF BYTES IN C
jCALCULATE NUMBER OF ZEROS TO WRITE
iSUBTRACT THE NUMBER OF DATA BYTES
jNUMBER OF ZEROS+1
iLATENCY
iENABLE WRITE WITHOUT SPECIAL CURRENT

; CALL WITH [B]=NUMBER OF ZEROS [C]=NUMBER OF DATA BYTES
AND [H,L] POINTING AT OUTPUT OAT~ . ,

OHLDSK: ~1VI

MVI
ORA
MOV
INX

NOTYTD: IN
ANA
JNZ
ADD
OUT
MOV
INX
t·10V
INX
OCR
JZ
DCR
OUT
JNZ

ZRLOP: IN
ANA
JNZ
OUT
OCR

D,l
A,128
r1
E,A
H
8
D
NOTYTD
E
10
A,M
H
E,M
H
C
ZRLOP
C
10
NOTYTD
8
D
ZRLOP
10
B

;SETUP A MASK (READY TO WRITE)
iHIGH BIT (D7) ALWAYS ON IN FIRST BYTE
iOR ON D.ATA BYTE
iSAVE FOR LATER
iINCREMENT BUFFER POINTER
iGET WRITE DATA READY STATUS
~TEST STATUS BIT
;NOT READY TO WRITE, WAIT
:ADD BYTE WE WANT TO SEND TO ZERO
~SEND THE BYTE
iGET NEXT BYTE TO SEND
~MOVE BUFFER POINTER ~HEAD
:GET NEXT DATA BYTE
iMOVE BUFFER POINTER AHE~D AGAIN
~DECREMENT COUNT OF CHARS TO SEND
~IF DONE, QUIT & GO TO ZRLOP
;DECREMENT COUNT OF CHARS AGAIN
iSEND THIS BYTE
iSTILL MORE CHARS, DO THEM.
:GET READY TO WRITE
:IS IT READY
:IF NOT, LOOP
:KEEP SENDING FIN~L BYTE
:DECREMENT COUNT OF BYTES TO SEND

BASIC 4.1

April, 1977

JNZ
EI
MVI
OUT
RET

ZRLOP

A,S
9

:KEEP WAITING
iRE-ENABLE INTERRUPTS.
:UNLOAD HEAD
i SEND COr-1MAND
iDONE

i DISK INPUT ROUTINE. ENTER WITH POINTER
7 OF 137 BYTE BUFFER IN [H,L]. ALL REGS DESTROYED.
DSKI: CALL SECGET iPOINT TO RIGHT SECTOR

'MVI C,137 :GET * OF CHARS TO .READ
READOK: IN 8 iGET DISK STATUS

ORA A iREADY TO READ BYTE
JM READOK
IN 10
MOV !vI,A
INX H
DCR C
JZ RETDO
DCR C

. NOP
10
M,A

iREAD THE STUFF
iSAVE IN 8UFFER
iBUMP DESTINATION POINTER
:LESS CHARS
iIF OUT OF 'CHARS, RETURN
iDECREMENT COUNT OF CHARS
iDELAY INTO NEXT BYTE
iGET NEXT BYTE
iSAVE BYTE IN BUFFER
iMOVE BUFFER POINTER

RETDO:

IN
MOV
INX
JNZ
EI

H
READOK iIF CHARS STILL LEFT, LOOP BACK

:RE-ENABLE INTERRUPTS
.MVI
OUT
RET

SECGET: r1VI
OUT
DI

SECLP2: IN
RAR
JC
ANI
C!1P
JNZ
RET

A,a
9

A,4
9

9

SECLP2
31
E
SECLP2

:UNLOAD HEAD
iSEND COMMAND

iLOAD THE HEAD

iDISABLE INTERRUPTS
iGET SECTOR INFO
iFIX UP SECTOR *
iIF NOT, KEEP WAITING
:GET SECTOR *
iIS IT THE ONE WE WANTED
iTRY TO FIND IT

The Disk PROM Bootstrap Loader

The Disk Bootstrap Loader ~ROM must be installed in the
.highest position on the PROM board and the PROM board must be
strapped at the proper address. The proper position is the
PROM IC socket on the opposite side of the board from the
black finned heat sink. The black dot or '1' on the PROM
should be in the u~?er left corner. The address jumpers on
the PROM board must be in the II' position.

BASIC 4.1 121

April, 19i'7

122

To use the Disk Bootstrap Loader, turn the computer's power
on. kaise RESET' and -STOP simultaneously. Lower RESET and
then STOP. EXAMINE location 177400 (address switches A15-A8
up, rest down) and then set the sense switches for the
terminal I/O board as explained in Appendix B. Depress the
RUN switch. BASIC should print (or dis~lay):

MEMORY SIZE?

For the rest of the initialization procedure, see below.

Using the Cassette and Paper Tape Bootstraps

If the Disk Bootstrap Loader PROM is not in use, a ?aper tage
or cassette ?rogram must be loaded which then reads in BASIC
from the disk. This is done by following the procedure below:

1. Key in the ap9licable paper tape or cassette bootstra9
loader from the listings in AQpendix B. Make
location 2=077 octal. Set the sense switches for the
terminal.

2. Start the pa~er tape or cassette (labeled DISK LOADER)
reading, and then start the com~uter as in the
instructions for loading BASIC from ?aper ta?e from
cassette as given in Appendix B.

BASIC should respond:

MEr-lORY S I Z E?

For the rest of the initialization ~rocedure, see below.

Disk Initialization Dialog

The initialization dialog has been expanded to allow the user
to select the proper amount of memory needed to use the
disk(s) on the system. After the the MEMORY SIZE question is
answered, BASIC will ask:

HIGHEST DISK NUMBER?

The user should answer with the highest physical disk address
in the system or with a carriage return. The default is 0.
Each additional disk uses 40 bytes of memory_

BASIC 4.1

.:"pril, 19'7i

Examl?le:

HIGHEST DISK NUMBER? 1

BASIC next asks how many files are to be OPEN at one time in
the program. This number includes both random and sequential
files. If the user types carriage return, the default is
zero. Each file allocated requires 138 bytes for buffer
s9ace. Example:

HOW MANY FILES? 2

Finally, BASIC asks how many random files are to be OPEN at
one time. The amount of memory allocated is the answer*257.
This memory space is used to keep track of the location on the
floppy disk where groups of a random file reside. Thus, the
total memory required for each random--file is 138+257=395
bytes. Example:

HOW r-1ANY RANDOM FILES? 1

A typical dialog might appear as follows:

BASIC 4.1

April, 1977

MEMORY SIZE? <carriage return>
HIGHEST DISK NUMBER? <carriage return>
HOW MANY FILES? 2 <carriage return>
HOW MANY RANDOM FILES? 1 <carriage return>

xxxxx BYTES FREE
ALTAIR BASIC REV. 4.0
[DISK EXTENDED VERSION]
COPYRIGHT 1976 BY MITS INC.

OK

123

124

APPENDIX I

THE PIP UTILITY PROGRAM

A BASIC Utility program has been provided to perform such such
common functions as printing directories, initializing disks,
copying disks etc.

NOTE

Some of the PIP commands (LIS, DIR) require that one
<file number> be configured during the Disk BASIC
initialization dialog. This is done by answering the
"HOW MANY FILES?" question with a value qreater than
zero. If an attempt is made to perform a LIS or DIR
without following this procedure, a BAD FILE NUMBER
error will occur.

Once the BAS~C disk has been mounted, type the following
command:

RUN "PIpu<carriage return>
"(PIP will ty-pe)
*

PIP is now ready to accept commands. To exit PIP, tYQe a
carriage return to the -prompt asterisk. To initialize the
floppy disk in drive 0, type:

*INI0

PIP will type IIDONE iI when it is finished. Any disk number may
be substituted for the 0 in the above command and PIP will
format the disk in that drive. Any previous files on the disk
initialized will be lost. If you wish to use blank disks with
Disk BASIC, they must be initialized in this fashion before
they can be MOUNTed.

NOTE

DO NOT INITIALIZE THE DISK WITH DISK EXTENDED BASIC ON
IT. THIS WILL WIPE OUT ALL THE FILES PROVIDED ON THE
DISK.

BASIC 4.1

April, 19ii

Printing a Directory

Giving PIP the command:

*DIR<disk number>

?rints out a directory of the files on the specified disk.
The name of each file is pr inted along wi th the file' s I'mode"
(S for sequential, R for random) and the starting track and
sector number of the first block .in the file.

SRT<disk number>

prints a sorted directory of the files on the specified disk.

LISting Sequential Files

The LIS command is used to list the contents of a sequential
data file on the terminal:

Syntax:

LIS<disk number>,<file name>

Example:

*LIS0,PIPA
7 CLEAR 1000

*

user tYT?es
computer prints

COPying Disks

The COP command is used to COpy a disk placed in one drive to
a disk on another drive. Nei~6er disk need be MOUNTed for the
COP command to work ?roperly.

Syntax:

COP<old disk number>,<new disk number>

BASIC 4.1 125

Apr:l, 1977

126

Before the copy is done, PIP verifies the action by ?rinting
the following massage:

FROM<disk number>TO<disk number>

Typing Y followed by a carriage return causes
proceed. Any other response aborts the command.

*COP0,l
FROM 0 TO 1? Y<carriage return)
DONE
*

The DAT command

execution
Example:

to

The DAT command is used to dum? out a ?articular sector of the
disk in octal.

Syntax:

DAT<disk number>

When the OAT command is issued, PIP asks for the numbers of
the track and sector to be dum~ed. Example:

*OAT0 (DAT is equivalent)
TRACK? 0
SECTOR? "
000 000 000 000 000 000 000 000
000 000 000 000 000 etc.

The CNV command

. CNV converts disks written under Altair BASIC version 3.4 and
3.3 to a format useable by version 4.0. The format of the
command is as follows:

CNV<disk number>

CNV makes sure that the next to last byte of each sector is
·255.

Other Programs Provided on the System Disk

BASIC 4.1

.<\pril ~ 1977

Program Name
STARTREK

BASIC ~.l

April, 19i7

Use
Plays game based on TV series.

127

128

~PPENDIX J

RSTLESS VERSIONS OF BASIC

Altair BASIC uses the so-called RST locations (locations
o through 100 octal) at the bottom of memorv. This saves
memory space, but precludes the use of the Vector Interrupt
board for real-time programming ap~lications. Speci~l.
versions of Altair BASIC are available which do not use the
RST locations, however. These versions leave the RST
locations free to be used for assembly language routines in
the same was as any other locations in high memory.

To restart the standard versions of Altair BASIC, it is
necessary simply to actuate the RESET switch on the com?uter's
front panel. This causes a jump to location 0. In the
RSTLESS version, BASIC is restarted by jumping to location 100
octal. The usual procedure for doing this is as follows:

1. Raise STOP and RESET simultaneously, then release them

2. Raise switch A6

3. Actuate EXAMINE

4. Push RUN

BASIC restarts and prints ~OK.~

BASIC 4.1

April, 197i

APPENDIX K

USING Altair BASIC ON THE
°INTELLEC* a/MOD 80 ~ r4DSSYSTEMS

This appendix covers procedures for loading and 6~erating
Altair BASIC on Intellec and MDS development systems.

A. Loading BASIC.

To load Altair BASIC, put the hex pa?er tape of SASIC in
the system reader device. Enter the System and assign the
CONSOLE I/O device as desired (see Section 4.2.1 of the
Intellec 8/Mod 80 'Operator's Manual). Now read in BASIC with
the following Rcommand •

• R(Cr)

The BASIC tape will be loaded into memory, and the system
monitor will type a period on the CONSOLE device. If you are
only using contiguous RAM memory below the system monitor
(3800H) or are using BASIC on a MDS System, proceed to step 2.
If you have RAM memory above the PROM Intellec monitor which
you wish BASIC to use for ~rogram and variable storage, you
must patch the two locations known as INTLOC to point to the
bottom (lowest address) of memory. The is' most easily
accomplished by using the System Monitor S command. INTLOC is
given below under "Memory Requirements."

• SXXXX 00 40 (Cr)

The above S command would make INTLOC point to RAM, starting
at 16K.

BASIC 4.1

April, 1977

NOTE

If you are using RAM above 16K for program and
variable storage and have patched INTLOC, retain all
the math functions at initialization time (see
Appendix B). Essentially, this means that the HANT
SIN-COS-TAN-~TN? questions asked by BASIC's
initialization dialog should be answered by a Y(Cr).
Also, you must answer the MEMORY SIZE? question with
the highest decimal or RAM address in your system.

129

130

Start BASIC by giving the monitor GOTO command •

• G0000<carriage return>

NOTE

Once BASIC has· been started, it
restarted by depressing the RESET
Intellec 8 console.

may always
switch on

be
the

When BASIC types MEMORY SIZE?, tYQing carriage return will
cause BASIC to use all the RAM memory it can find above the
end of BASIC. Otherwise, if you wish to specify an exact
amount of memory, type the decimal address of the highest byte
of memory in the computer and type carriage return.

B. BASIC I/O.

The system devices used for terminal I/O in BASIC are CI ,
CO and CSTS.

C. Saving and Loading Prog~ams.

To save a ~rogram on ~a?er tape, re-enter the PROM
monitor and reassign the CO device to the paper tape punch or
other output device. Then restart BASIC by using the G0000
command and type LIST(Cr). The characters of the LIST command
will not be echoed, but the BASIC ?rogram currently saved in
memory will be put on the output device.

To load a program, enter the system monitor, re-assiqn CI
to the input device where the program resides, and then start
BASIC with a G0000. When the program has been completely read
in, reassign CI to the user console. Then re-enter BASIC with
a G0000, and start the I/O device. The program will be echoed
on CO as it is read in.

D. Memory Requirements

BASIC uses locations 0000H-0003H and 0010H-approximately
19DFH in the 8K version, and 0010H-2F0EH _in the Extended
version. For Intellec 8K and MDS 8K BASICs, INTLOC is 6520
decimal. For MDS Extended, INTLOC is 14257 decimal.

E. Calling Assembly Language Routines

USRLOC for 8K BASIC is 00558. ADR(DEINT) is stored in
locations 0043H. ADR(GIVACF) is stored -in location 0045H. In
the Extended version, these locations contain the addresses of

BASIC 4.1

April, 19i:

FRCINT and MAKINT, respectively. Interrupt driven subroutines
using RST 7 are not allowed in the Intellec/MDS version of
Altair BASIC. See Appendix C for further information on
calling assembly language subroutines.

* Intellec is a registered trademark of the I~tel
Corporation.

BASIC 4.1 131

. April t 1977

132

APPENDIX L
PATCHING BASIC'S I/O ROUTINES

BASIC's I/O routines may be changed to accommoQate
non-standard terminal equi~rnent. After BASIC is loaded and
before it has been initialized, location 71 contains a pointer
to a list of addresses. These addresses contain the I/O
routines of BASIC:

ORG
DW

IOLST: DW
O~V

DW
DW

DW

DW

DW

DW
OW
DW

TRYOUT: IN
f\NI
JNZ
POP
OUT

- PUSH
NOP
NOP
POP
RET

TRYIN: IN
ANI
JNZ
IN
ANI

701
IOLST

TRYIN
TRYOUT
ISCNTC
NEWSTT

IN2SIO

IN4PIO

LPTPOS

LPT3CD
ENDLPT
IOCHNL

o
200
TRYOUT
PSW
1
PSW

PSW

o
1
TRYIN.
1
127

iTWO BYTE ADDRESS OF ADDRESS LIST

iCHARACTER INPUT ROUTINE
iADDRESS OF OUTPUT ROUTINE
iPOLL FOR CONTROL/C CHECK
iFAST POLL FOR CONTROL/e CHECK
i8K AND LARGER ONLY

. iADORESS OF INITIALIZATION
iROUTINE FOR 2SIO BOARDS
jADDRESS OF INITIALIZATION ROUTINE FOR
i4PIO BOARDS
iADDRESS OF LPT CODE FLAGS

iSTART OF LPT CODE
;END OF LPT CODE
iADDRESS OF I/O RESET LOCATION
; (IN EXTENDED ~ND DISK ONLY)

iGET DEVICE STATUS
;AND OFF BIT 7
iWAIT UNTIL TERr1INAL CAN OUTPUT
iGET CHARACTER TO OUTPUT OFF STACK
iTRANSMIT IT
iSAVE CHARACTER BACK-ON STACK
iCHANGED TO "IN 41'1 FOR 4PIO BOARDS

jGET CHARACTER BACK OFF STACK
iALL DONE WITH CHARACTER OUTPUT ROUTINE

iGET TERMINAL STATUS
iCHARACTER READY?
iNO, KEEP WAITING
iREAD IN THE CHARACTER
;GET RID OF PARITY BIT

BASIC 4.1

APT:'l, 1977

':!!CPI
RNZ

ISCNTC: IN

ANI

RNZ

CONTO

11

:CONTROL/O?
iRETURN IF NOT

iREAD TERMINAL STATUS

iHAS THE TERMINAL A CHARACTER

iTO SEND?
:NO, RETURN

:FOLLOWING ROUTINE IS IN 8K AND LARGER VERSIONS ONLY
:AND IS EXECUTED FOR EACH STATEMENT
NEWSTT: IN 0 i~EAD TERMINAL STATUS

ANI 1 :TEST BIT 0
CZ CNTCCN :YES, SEE IF CHARACTER CONTROL/C

2*4

21

;IS IT 2510
iNO, OTHER GO DIRECTLY TO SETIO
iGET PROPER INITIALIZATION BYTE
iSAVE IT
iINITIALIZE THE 25IO

IN2SIO: CPI
RNC
ADI
PUSH
MVI
CALL
POP
Jr1P

PSW
A,3
DOI020
PSW
DOI020

iGET BACK SECOND INITIALIZATION BYTE
i PROGRAM TO DATA AND STOP 'B ITS

IN 4P IO: rvlVI
OCR
CALL

A,54Q
M
DOI020

:RESET FOR DATA TRANSFER
iCHANNEL=22

The pointers LPTPOS, LPTCD3 and ENDLPT refer to the
following sections of lineprinter code:

A. LPT code flags.

LPTLST: DB 0 ;0 r1EAN5 LAST LPT OPERATION
iWAS LINE FEED
;1 MEANS LAST LPT OP'N WAS PRINT

LPTPOS: DB 0 iCURRENT LOGICAL POSITION OF LPT
PRTFLG: DB 0 i0 MEANS OUTPUT TO CONSOLE

;1 MEANS OUTPUT TO LPT
:2 MEANS LLIST OUTPUT 'fO LPT

EASIC 4.1 133

April, 1977

HEAD

134

QPOS: DB
DB

QMOV: DB

LPTLEN: DB
NLPPOS: DB

0
0
0

0
0

;CURRENT Q700 PRINT HEAD POSITION
;IN 1/120 INCH INCREMENTS
;NUMBER OF INCREMENTS TO MOVE Q70
;PRINT HEAD IN ADDITION TO CHARACTER
;MAX. NUMBER OF LPT COLUMNS
;COLUMN BEYOND WHICH THERE .. ·ARE NO MORE
; II COMMA FIELDS II

A comma in a LPRINT statement causes the printhead to move to
the beginning of the next 14 column field. If LPTPOS is
greater than NLPPOS, a carriage return line feed sequence is
executed before printing. NLPPOS is calculated by the
following relation:

NLPPOS=INT(((LPTLEN/14)-l)*l4)

LPTLST is used only by the 80LP printer. QPOS and QMOV
are used only by the Q70. The user should not modify the
PRTFLG flag since it is modified and, referred to in several
places in BASIC. Changing it in a USR routine has
unpredictable results.

B. Start of LPT code.

LPT3CD: JMP
JMP

FINLPT
PRINTW

body of LPT code

The main body of LPT code is entered whenever PRTFLG is
determined to be non-zero. The character to be output must be
at the to~ of the stack. U?on exit from LPT code, the
character must be removed from the stack and should be loaded
into the Accumulator. This is because BASIC checks the
Accumulator for the last -character printed.

FINLPT is entered whenever BASIC returns to command
level. FINLPT calls PRINTW for a carriage return/line feed
sequence, if necessary, and resets PRTFLG to zero.

PRINTW does the carriage return/line feed.

FINLPT and PRINTW both return with zero loaded in the
Accumulator and all the condition codes set to zero.

BASIC 4.1

Apl:'il, 1977

C. End of LPT code

ENDLPT is the physical end of the linet;>rinter driver
code.

The following routines are used in with all terminal
devices:

IOCHNL: (0

o
;DEPOSIT BOARD TYPE HERE
:CHANNEL GETS DEPOSITED HERE.
;GRAB POINTER TO IT IOREST: LXI

CALL
CALL
JMP

H,IOCHNL
HELPIO
STKINI
READY

iSET gP THE NEW CONSOLE DEVICE
iMAKE STACK OK
iAND TYPE "OK" HOPEFULLY ON GOOD CONSOr

To modify the I/O routines, stO? the machine after
loading BASIC and insert the changes using the front panel
switches, or read in a tape containinq the.- patches. Restart
BAS~C at location zero with all sense switc~es u? This will
prevent BASIC from modifying the I/O routines. In general,
these quidelines should be followed in writing I/O routines:

1.

2.

3.

4.

5 •

6.

BASIC ... 1

April, 19ii

Insert a JMP at TRYOUT to the custom outpui routine. Be
sure the PSW that is saved on the stack when the ~outine
is entered is preserved. Make sure all registers are left
unchanged when the routine is exited.

Insert a JMP at TRYIN to the custom input routine. Return
the input character in the A register and do not change
any of the other registers. The PSW may be changed.

To modify ISCNTC,. insert a CALL to the custom poll
routine. This routine returns a non-zero condition code
setting if no character is present and zero if a character
is present. The A register and the condition codes may be
changed.

To change the initialization of the 28IO board, change the
., ADI 23Q" to "r1VI A,XXX" where XXX is the new
initialization "byte.

To change the initialization of the 4PIO board, change the
"MVI A,54Q" to a "MVI A,XXX" l,vhere XXX is the new
initialization byte.

To patch in a new line printer driver, chance the code at
LPT hat PRINTW is also _~he rOH~

;.§...-a..~.a.r.ti~ .. ~~~lJr(]n' 1 in e Th e cod eat
LPTCD3 must chan

J
line printer is

no characters wide.

135

136

7. To recover from an incorrect CONSOLE command, deposit the
board type in IOCHNL, the board ty?e in IOCHNL+I, and
start the machine at IOCHNL+2.

Patching Disk BASIC - the PTD ~rogram.

After Disk BASIC is loaded, de?osit the desired patches
in memory. Then examine and run PTD at location 54000 octal.
After two or three seconds, the patched version of BASIC will
be saved on disk. The save is complete when the Disk Enable
light on disk drive zero goes out. .

To save a patched version of BASIC on a disk which did
not previously contain release 4.0 Altair BASIC, track 0 must
be copied from a 4.0 disk.

PTD may also be used to save programs other than BASIC on
tracks 0-4 of a diskette by loadinq the program after BASIC is
loaded and running PTD. All memory locations between 0 and
46000 octal will be saved on tracks 0-4 on diskette zeta.

BASIC 4.1

April, 1911

APPENDIX M
USING ALTAIR DISK BASIC

An Exa~

The following is a discussion of how to program a typical
application in BASIC. The exam?le is the MITS in-house
inventory system which is designed to run on the following
hardware:

Altair 8800b corn~uter with 32K memory, PROM memory board
with the Disk PROM Bootstra~ loader and a 2SIO serial
I/O board

Two disk drives
24-line Lear-Sigler CRT terminal
Line printer

The most important part of the design "for an
is setting up the files. Files that are correctly
be easy to use and maintain. Poorly set up files
perpetual headache, causing either an eventual
more likely, abandonment of the system.

ap-plication
set up will.
will be a
rewrite or,

The first listing at the end of the a~pendix, INVEN,
contains modules from the main program in the inventory
system. INVEN shows how the central file (a random file) in
the system is set up and how it is handled. The INVEN listing
also shows the use of another random file and a sequential
file. The CALC listing s~ows how to read programs as "data
files. CODEI is a partial listing of a proqram that will be
read as a data file.

The INVEN modules listed were included to show the
following features:

1. 9rogram startup initialization and" comments about the
files used by the program (lines 1-35)

2. what the complete program does (lines 60-1000)

3. an example of how to modify records in a random file
(lines 900-1040)

4. an example of how sequential files are used (lines
1800-1868 and 2700-2820) -

,..
:>.

BASIC 4.1

April, 1977

one approach to the ~roblem of handling a random file that
spans more than one disk (lines 2000-2030)

, 137

138

6. three subroutines (lines 300-340, 9000-9020 and 9200-9220)
that are called by the INVEN modules.

The function FNY (line 6) is used to round dollar
amounts to thousandths of a cent. FNQ (line 7) is used to
round quantities to thousandths and to convert single
precision amounts to double precision.

INV3 is fielded once in the program initialization, but
INVI and INV2 are re-peatedly fielded by calls to the
subroutine at line 2000. The IF F>255 (line 60) avoids the
possibility that the program can be stoQped by an illegal
function call at line 61.

PUT statements are the very last statements executed in
the Remove from Inventory module, the Add to Inventory module,
etc. This prevents updating one file but not the other.
(This could happen if PUT Z, Rl was at line 1010.)

Line 2000 sets Z to land Rl to N if the item wanted, N,
is less than 2001. It sets Z to 2 and Rl to N-2000 if the
item wanted is greater than 2000. Line 2020 then sets the
pointers for the variables in the field statement to point
into either the buffer for INVI or the buffer for INV2,
depending on whether the item wanted is less than 2001 or
greater than 2000.

The CALC listing is a program which determines if there
are enough parts in inventory to meet projected demands. Line
60 waits while the disk comes up to speed so the message
.• ENABLE DISK 1 It will not be pr inted on the terminal. Lines
100-140 input up to fifty different product codes and the
number of each product to be built. Line 170 opens a file for
each product that contains the parts required for the product.
Lines 220-250 build up a report heading, extracting the
product description contained in line 10 of each fi19.

Lines 120-150 accumulate the number of parts required for
each product into the array Q. If more than 32767 of a pa~t
is required, a pointer is set in the array Q and the number of
the part is accumulated in the array Q!. This maneuvering is
necessary since the system does not have enouqh memory to
dimension Q as singl~ precision instead of integer.

The parts lists for a product are programs saved with the
A option. Since they are programs, their maintenance is very
easy_ For example, suppose that part 1071 in the 8800b is too
marginal and that from now on Qart 1173 should be used
instead. With the parts lists disk mounted on drive 0, the
following sequence ~i1l update the 8800b file:

BASIC 4.1

April t 1977

LOAD "CODE1"
160,1,1173
SAVE uCODEl u ,0,A

The ~rogramrner who is cramped for memory will find that
programs can still be documented adequately if comments are
set up as separate files. The memory used for variables ~hen
a program runs can be used for CQmments if the comments'"are
merged in when the program is to be listed. Alternatively,
the program could be listed in two or more parts. Additional
memory can be obtained by bringing BASIC u? without optional
functions and with no files.

The main inventory program is set up so that a carriage
return typed in response to any ~rornp.t causes the program to
dump the function descriptions on the CRT and to return to the
FUNCTION NUMBER prompt. If the program were to be run on a
printing terminal, instead of a 9600 baud CRT, it would not be
set UP to print the descriptions every time the ooerator
wanted· to get·back to the FUNCTION NUMBER 9rompt. The list of
function descriptions might be taped on the wall next to the
terminal instead.

Listing of INVEN

1 DEFINT F-N
2 DEFINT R
3 DEFINT Z
5 DEFDBL P
6 DEF FNY#(Q8#)=INT(Q8#*A#+.5#)/A*
7 DEF FNQ#(q9!)=INT(VAL(STR$(Q9!»*1000*+.5#)/1000#
8 A$=MKD$(0) :B$=MKS$(0) :A#=100000#
10 0 I r1 Q $ (2) , P $ (2)
11 I

INVI ON DRIVE 0 HOLDS ITEMS 1-2000
INV2 ON DRIVE 1 HOLDS ITEMS 2001-4000
INV3 ON DRIVE 1 HOLDS SUMS LOGGED IN AND OUT BY DEPARTMENT
12 •
WEKLYRST AND MONTHRST ARE WRITTEN WHILE THE WEEKLY,
MONTHLY ACTIVE ~TEMS LISTS ARE PRINTING~
CONTAIN THE ITEM #S THAT NEED TO BE RESET; AND ARE READ BY
THE WEEKLY,MONTHLY RESETS.
14 I

Q$() <=> THREE ON HAND QTY FOR: P$() <=> THREE PRICES
[P(0) OLDEST, pel) NEXT OLDEST, Q(0)<>0 IF Q{1)<>0,
Q(1)<>0 IF Q(2)<>0]
0$ <=> DESCRIPTION LEFT$ (D$, 3) =11 $$$1. <=> INACTVE ITEM #
15 t

Il$ <=> WEEKLY QTY IN
I2$ <=> MONTHLY QTY IN
01$ <=> WEEKLY QTY OUT

BASIC ~.l

April, 19ii

139

140

02$ <=> MONTHLY QTY OUT
T$ <=> REORDER LEVEL
OI1$ <=> WEEKLY $ IN
ID2$ <=> MONTHLY $ IN
001$ <=> WEEKLY $ OUT
OD2$ <=> MONTHLY $ OUT
17 '
DTl$ <=> WEEKLY DEPT $ TAKEN
DX2$ <=> MONTHLY DEPT $ TAKEN
DG1$ <=> WEEKLY DEPT $ GIVEN
DY2$ <=> MONTHLY DEPT $ GIVEN

20 OPEN UR",~1,UINV1"

30 OPEN "R II ,#2,IIINV2 u ,1
32 OPEN "R",#3,"INV3",1
35 FIELD #3,8 ~S DT1S,8 AS DX2$,8 AS DG1S,8 AS DY2$
60 PRINT:F=0:INPUT"FUNCTION NUMBER" iF:IFF>255THEN63
61 ON F GOTO 210,350,350,1900,600,900,1700,

2700,2500,2300,2400,1880,2900'
2 3 4 5 6 7 8 9 10 11 12 13
14 15 16

63 PRINT"l - ENTER NEW ITEM"
64 PRINT" 2 - LIST ITEM ON CRT (SHORT FORr~) II

65 PRINT" 3 - LIST ITEM ON CRT (LONG FORr"!)"
66 PRINT d 4 - PRINT ITEMS ON LINE PRINTER
67 PRINT"5 - ADD TO INVENTORY"
68 PRINT" 6 - RE~10VE FROM INVENTORY"
69 PRINT"7 - PRINT WEEKLY DEPT DOLL~R RECORD ON LINE PRINTER
70 PRINT~8 - PRINT WEEKLY ACTIVE ITEMS LIST ON LINE PRINTER
71 PRINT"9 - WEEKLY RESET
72 PRINT"10- PRINT MONTHLY DEPT DOLLAR RECORD ON LINE PRINTER
73 PRINT lt 11- PRINT MONTHLY ACTIVE ITEMS LIST ON LINE PRINTER
74 PRINT"12- MONTHLY RESET
75 PRINT"13- RESET ORDER LEVELS
76 PRINT u 14- PRINT LISTNG OF ITEMS NEEDING TO BE RE-ORDERED
77 PRINT"15- DELETE OLD ITEM
78 PRINT"16- ERRORS BACKOUT
100 GOT060
298 I

*
SUB - INPUT P~RT * & GET RECORD
*
300 PRINT:PRINT:N=0:INPUT II PART NUMBER";N:IFN<lTHENRETURN
310 IFN>4000THENPRINT:PRINT ti 11# TOO HIGH"" :GOTO 300
320 GOSUB2000:GETZ,Rl
330 IFLEFT$(D$,3)=It$$$dTHENPRINT:

PRINT'" 'NO INFORMATION ON P~RTt'II;N:GOT0300
340 RETURN
890 '
*
~6 - REMOVE FROM INVENTORY
*

BASIC 4.1

April, 1917'

900 GOSUB300:IFN=0GOT063
920 DN=-l:INPUTuNUMBER OF ITEMS REMOVED FROM INVENTORY";

DN:IFDN=-lTHEN63
950 IFCVS{Q$(0»+CVS(Q$(1»+CVS(Q$(2»<DNTHENPRINT ti

ATTEMPT TO REMOVE MORE THAN ON HAND u :PRINT:GOT063
960 D0=DN:P=0
970 IFD0<CVS{Q$(0»THEN

P=P+FNQ# (00) *Cyo (P$ (0» :LSETQ$ (0) =MKS$ (CVS"(Q$ (0» -D0) :'
GOT01000

980 P=P+FNQ#(CVS(Q$(0»)*CVO(P$(0» :D0=D0-CVS(Q$(0»:
LSETQ$(0)=Q${1) :LSETQ$(1)=Q${2) :LSETQ$(2)=B$:
LSETP$(0)=P${1) :LSETP${1)=P$(2) :LSETP$(2)=A$:IFD0THEN

GOT0970
1000 LSET01$=MKS$(CVS(Ol$)+DN) :LSET02$=MKS$(CVS(02$)+DN}:

LSETD01$=MKD$(CVD(D01$)+P) :LSETOD2$=MKD$(CVD(OD2$)+P)
1020 GOSUB9200:IFC%=-lGOT063
1030 LSETDTl$=MKD${CVD{DTl$)+P) : LSETDX2$=MKD$ {CVD{DX2$)+P}
1040 PUT3,C%:PUTZ,R1:GOT0900
1790 •
*
F=9 - WEEKLY RESET
*
1800 PRINT"7 - WEEKLY DEPA.RTMENT RECORD
1802 PRINT"a - WEEKLY ACTIVE ITEMS
1804 Z$="~:INPUT~HAVE THE ABOVE BEEN LISTED FOR TODAY";Z$
1810 IFLEFT${Z$,l)<>uy uTHENPRINT:PRINT

iiWEEKLY RESET NOT PERFORMED ii :GOT063
1843 OPEN ii I" ,4, "WEKLYRST'*
1845 IFEOF(4)THENCLOSE4:KILL'*WEKLYRST ii :GOTOI862
1850 INPUT*4,N:IF 1<=NANDN<=4000 THENGOSUB2000:GETZ,Rl

ELSEPRINTNi i'OUT OF BOUNDS. RESET ABORTED. if : END
1855 LSETIl$=B$:LSETOl$=B$:LSETDl1$=A$:LSETDOl$=A$:PUTZ,Rl
1860 GOT01845
1862 FORI=lT020
1864 GET3,I:LSETDTl$=A$:LSETDGl$=A$:PUT3,I
1866 NEXT
1868 GOT060
1999 t

*
SUB - GET Z,Rl FOR N AND FIELD TO 1NVl,2
*
2000 Z=I- (N)2000) :Rl=N+ (Z=2) *2000
2020 FIELD Z,4 AS Q$ (0),4 AS Q$ (1),4 AS Q$ (2), 8 AS P$ (0) ,

8 AS P$ (1),8 AS P$ (2) ,40 .AS D$,4 AS 11$,4 AS I2$,
4 AS 01$,4 AS 02$,8 AS DIl$,8 AS ID2$,8 AS DOl$,8 AS OD2$

2030 RETURN
2690 t

*
F=8,11 - WEEKLY,MONTHLY ACTIVE ITEMS LIST
*
2700 N=I:GOSUB2000:GOSUB2855
2703 1FF=8THENOPEN u O", 4, "WEKLYRST"ELSEOPEN"O",4, If MONTHRSTII

BASIC 4.1

April, 1977

141

2705 IT#=0:0T#=0:TT#=0
2710 FORI=lT02000
2720 GETZ,I:IFLEFT$(D$,3)=II$$$"THEN2800
-2723 Q0=CVS(QS(0» :Q1=CVS(Q$(1»:Q2=CVS(QS(2»
2725 IFF=8THENI!=CVS(II$) :O!=CVS(OIS) :I#=CVD(Dll$) :O#=CVD(D01$)

ELSEI!=CVS(I2$) :O!=CVS(02$) :I#=CVD(ID2$) :O#=CVD(OD2$)
2727 TT#=TT#+CVD(P$(0»*Q0+CVD(P$(I»*Q1+CVD(P$(2»*Q2
2730 IFI!+O!=0THEN2800
2733 PRINT#4,N+I-l
2735 IT#=ITt+Ii:OT#=OTi+OI
2740 IFL9>59ANDKK=0THENGOSUB2850
2750 LPRINTUSING~####i#":99999!+N+I:
2770 LPRINTUSING"##,###,###":I!,O!,Q0+Ql+Q2,Q0+Ql+Q2+0!-I!;
2780 LPRINTUSING"S$,###,##i.##":Ii,Ot
2790 L9=L9+1
2795 KK=KK+l:IFKK=5THENLPRINT:L9=L9+1:KK=0
2800 NEXT
2810 IFN=lTHENN=2001:GOSUB2000:GOT02710
2811 CLOSE4
2813 LPRINT:LPRINTUSING"TOTAL INVENTORY COST =$$##,###,##i.#i":TTi
2815 REM *GOT02820 IN F=7,10
2820 LPRINT:LPRINTUSINGuTOTAL IN = $$##,#*#,i#i.##"jIT#
2830 LPRINTUSING"TOTAL OUT =$$##,i#*,#ii.##~;OT#
2837 LPRINT:LPRINT
2840 GOT050
2850 FORJ=L9T066:LPRINT:NEXT
2855 IFF=8THENLPRINT"~qEEKLY" i :ELSELPRINTuMONTHLY" i
2860 LPRINT u ACTIVE ITEMS LIST"; :GOSUB9000
2865 LPRINTTAB(39) j"STARTED u

2870 LPRINT"ITEM # QTY-IN QTY-OUT ON-HAND MO-WITH
DOLLARS-IN DOLLARS-OUT II

2880 LPRINT:KK=0:L9=6:RETURN
8990 •
*
SUB - PRINT TODAY'S DATE
*
9000 IFTD$=" "THENLINEINPUT h TODAY I S DATE 7"; TD$: IFTD$=" "THEN63
9010 LPRINT" H:TD$
9015 LPRINT
9020 RETURN
9190 •
*
INPUT DEPARTMENT * AND GET TOTALS
*
9200 C%=-l:INPUT"ENTER DEPARTMENT CODE":C%:IFC%=-lTHENRETURN
9210 IFl<=C%ANDC%<=20THENGET3,C%:RETURN
9220 PRINT"INVALID CODEd :GOT09200

Listing of CODEI
p

5 CODEI

142 BASIC 4.1

April, 1977

10 PARTS LIST FOR: 88008
20 OCT 30,1976
90 REM THIS IS THE START OF DATA
100 ,11,1042
110 ,3,1134
120 ,4,1040
130 ,1,1020
140 ,1,1021
150 ,1,1024
160 ,1,1071
170 ,1,1074
180 ,1,2105
190,24,348
200 ,2,326

Listing of CALC

10 CLEAR600
DEFINT A-Z
DIM CN (4 9) , NU (4 9) , Q (4 0 0 0) , Q! (20 0)
CLOSE:UNLOAD1

20
30
40
50
60
90
95

INPUT~PLACE DISK WITH PARTS LISTS IN DRIVE 1. HIT RETURN~~G$
FORK!=lT05000:NEXT:MOUNT1
LINEINPUTuTODAY' S ~10/DA/YR if ~DT$:H$ (0) =DT$+" P~.RTS AVAILABLE FOR: II

I

INPUT QUANTITY OF EACH PRODUCT REQUIRED

100 INPUT"CODE NUMBER(0 WHEN FINISHED)"~CN(I)
110 IF CN(I)=0 THEN 150
120 IF CN (I) <1 OR 50<CN (I) THEN PRINTilINVALID CODE NUr-lBER":

GOTO 100
130 INPUTdNUMBER OF UNITS TO BE t1ADE iI iNU (I)
140 I=I+l:IF 1<50 THEN 100
145 I

ACCUMULATE QUANTITY OF EACH PART REQUIRED

150
160
170
180
190
200
210
220
230

·240
250
260
270
280
290

BASIC .1.1

April, 197'7

F.OR K=0 TO I-I
ONERRORGOT0610
OPEN t• III ,*1, "CODE u +JI.1ID$ {STR$ (CN (K)) ,2) ,1
ONERRORGOT00
LINEINPUT#l,A$:IFA$= ilil THEN190
IFLEFT$ (A$,3) ="90 iiTHEN260
IFLEFT$ (AS ,3) <>"10 t'THEN190
IFKTHENH$ (HK) =H$ (HK) +" , "'
HH $ = S TR$ (NU (K)) + S TR $ (CN (K)) + u = C' + MID $ (A $, 20) + II) '1-

IFLEN(HH$)+LEN(H$(HK»>72THENHK=HK+1
H$ (HK)=H$ (HK)+HH$:GOTOI90
ONERRORGOT0630
IFEOF(1)THEN310
INPUT #1,A,QN,PN
IFQ(PN) <0THENQ! (-Q(PN)}=Q! (-Q(PN)+NU(K)·QN

143

144

ELSEQ(PN):Q(PN)+NU(K)*QN
300 GOT0270
310 ONERRORGOT00:CLOSE I:NEXT K
315 I

GET SECOND HALF OF INVENTORY BACK ON LINE

320 CLOSE:UNLOADI
330 INPUT"
PLACE INVENTORY DISK #1 IN DRIVE 1. HIT RETURN TO START REPORT"iG$
340 FORI!=IT05000:NEXT:MOUNTI
360 OPEN~RH,i2,«INVl"
370 FIELD #2,4 AS Ql$,4 AS Q2$,4 AS Q3$,24 AS G$,40 AS D$
375 I

PRINT REPORT

380 GOSUB570
390 FOR 1=1 TO 4000
400 IF Q(I)=0 THEN 530
410 QQ1=Q(I) :IFQ(I}<0THENQQ!=Q! (-Q(I»
420 IFL9>59ANDKK=0THENGOSUB560
430 L9=L9+1
440 RN=I
450 IFI<2000THEN4608LSERN=RN-2000:IFFLAG=0THEN

CLOSE2:0PEN"R",i2,HINV2~,1:FLAG=1:

FIELDj2,4 AS Q1$,4 AS Q2$,4 AS Q3$,24 AS G$,40 AS D$
460 GET 1f2,RN
470 IFLEFT$(D$,3)=U$$$ il THENLPRINTI+100000!i

~********* NO INFORMATION ON PART ********"i:
LPRINTUSING"*i,####i#H i QQ!:GOT0520

480 QH!=CVS(Q1$)+CVS(Q2$)+CVS(Q3$) :QD!=QH!-QQ!
500 LPRINTI+100000!iD$i" "i
510 LPRINT USING H#i,ii####~;QQ!;QH!;QD!
520 KK=KK+1:IFKK=5THENKK=0:LPRINT:L9=L9+1
530 NEXTI:CLOSE:END
560 FORK=L9T066:LPRINT:NEXT
565 I

PRINT PAGE HEADING

570 FORK=0TOHK:LPRINTH$(K) :NEXT
580 LPRINT: LPRINTTAB (52) i ~'NEEDED ON HAND
590 KK=0:L9=5+HK:RETURN

EXCESSII:LPRINT

605 I

TRAP ROUTINE: 8AD CODE NUMBER

.610 IFERR=53THENPRINT: PRINT"NO CaDEll; MID$ (STR$ (CN (K)) ,2) ; II FILE II
620 ONERRORGOT00
625 •
TRAP ROUTINE: ACCUMULATE INTO Q OVERFLOWED

630 IFERR<>60RERL<>290THENONERRORGOT00
640 NQ=NQ+l:Q!(NQ)=Q(PN)+NU{K)*QN:Q(~N)=-NQ
670 RESUME270

BASIC 4.1

April, 19ii

INDEX

@
ABS
ACR interface
AND . • • • •
Array variables .•.
ASC • • • • . • • • • . • • •
ASCII character codes
AT!\J • • . • • • • • • • •
AUTO • • . . • • • • • • •

Backarrow • • • • • • • •
Boot loaders •••••••
Branch, conditional •••
Branch, unconditional
Branching •• • • . • . • • .

9

78
114
17
14
78
93
78
6

82
95
19
19
19

Car r iage Return • • • ~, 82
Character, alphanumeric ••• 4
CHR$ • • : • • • • • . 78
CLEAR • • • • • • • • •• 69
CLOAD • • • • • • • • 69
CLOAD* for arrays 25
CLOAD? •••• 69
CLOSE • • • • • • . . •• 59
CLOSE, random files • .. 62
Command Level . • •• 4
Commands List • . . . •• 69
CONSOLE • • . . • • • •. 34
Censtants • • • • 10
CONT • • • 69
CentraliA . • • • 9
Contrel/C • • • • • . 82
ControllI .•• • • • 83
Centrol/O • . • • • • • . 83
Centrol/Q • • • . •. 83
ContraIlS • .• • •• 83
Control/U • • • • • • •• 9

'Conversion from non-Altair BASIC 116
CSAVE. ••• • 69
COS •• • • • • • • • • • 78
CSAVE* for arrays 25
CVD • • • 65
CVI • . • 65
CVS . • . 65

BASIC 4.1 .

April, 19i:

145

DATA • • • • • • • • • • • •• 24
DEF • • • • • • • • • • • 28
DEFDSL • .'. • • • 13
Definitions • • • • • •• 4
DEFINT • • • • • • 13
DEFSNG • • . • 13
DEFSTR • • • • • • •• 13
DEFUSR • • •• 39
DELETE • • .• • • • • •• 70
DIM • • • • • • • 14
Dimensions .••• 14
Direct Mode • • • 5
Disk format • • • 118
Disk number • • • 52
Disk operations ••••• 51
Disk PROM Bootstrap Loader •. 121
Disk read and write, assembly code 120
Divisioniinteger • • • • • 39
Double precision . • • • • •• 11
DSKF • • • • • . • • • • • •• 61
DSKI$ and ~SKO$ primitives 67

Echo routines · · · · 103
EDIT · · · · · · · · · · · 41
Edit, definition · · · · · 4
Editing, elementary provisions 9
END · · · 60, 73
EOF · · · · · · · · · 60
EQV · · · · · · · 17
ERASE · · · · · · 32
ERL · · · · · · · · · · · · · 35
ERR · · · · · · · 35, 78
Error codes · · · 35
Error message format · · · 8
Error messages, disk · · · · · 88
ERROR statement · · · 38
Error trapping · · · · · · 34
EXP · · · · · · · · · 78
Expression, integer · · · 5
Expressions, string · · · · · 31

FIELD · · · · · · 63
Fields, numeric · · · · · 47
Fields, string · · · · 47
File name · · · · · · 52
FILES command · · · · · · · · 53
FIX · · · · · · · · · 79
.FOR · · · · · · · · · · · · · 21
FRCINT · · · · · · · · · · 40
FRE · · · · · · · · · 79
Functions · · · · · · 28
Functions, derived · · 109
Functions, extended · · · 39
Functions, intrinsic · · · 28
Functions, simulated (for 4k) 109

146 BASIC 4.1

April, 1977

Functions, string • • • • 31
Functions, us~r-defined ••• 28

GET •• • • • . • • • • • • • 62
GOSUB . • • • • • • • • • . 22
GOTO • • • • • • • • • • • 19

HEX$ • • • • • • • • •
Hexadecimal constants

IF ••• GOTO ••••••••••
IF ••• THEN .•.•••••••
IF ••• THEN ••• ELSE •••
I~lP •• • • • • • • • • • • •
Indirect Mode ••.•••••
Initialization dialog ••••
Initialization dialog, disk
Initializing a disk •••
INP • • • • • • • • • • •
INPUT • • • . • • •
INPUT, disk
INSTR • • •
INT
Intellec systems, Altair BASIC

KILL .

LEFT$
LEN
LET
Line •.
LINE FEED
LINE INPUT •

. . . .

LINE INPUT, disk
Line Length
Line Number . • •
LIST • . • • • • • • •
Lists and Directories
LLIST •• • • • • • •
LOAD • • . • • • • • • • • • .
Loader errors •• • .
Loading 8ASIC •• . .

79
12

20
19
20
17
5
102
122
124
27
23
57
79
79

on.

56

79
79
18
6
84
32
60
7
6
71
69
71
54
102
95

Loading programs from pager tape 71
LOC . • • • • • • • ..• 62
LOP • • • • •• ••. 62

.LOG • • • • • • • 79
Loops •• • • 21
Lower case input . 84
LPOS • . • • . .• 79
LPRINT .•••.••. 75
LPRINT USING .•••• 75
LSET • • • . • • • • • • • 66

BASIC 4.1

April, 1977

129

147

148

MAKINT ••••••••••• 0.
MERGE • • • • • •• ••.
MID$ • • • • • • • • • • • • •
MID$ function .••••••••
MKD$ • • • • • • •
MKI$ • • • • • · .
MKS$ • • • • • • • • • • • • •
MOD operator •
r10UNT • • • · . . . · . .
NAME • • • • • · .
NEW • • • • • • •
NEW in disk .••
NEXT • • • •
NOT • • • • •
NULL •••

OCT$ • • • • • • • • •
Octal constants • • • • • • •
ON ERRO R GOTO • • • • • •
ON ••• GOSUB • • ••
ON ••• GOTO • • . • • • • .
OPEN • • •• •• •
OPEN, random files ••••
Operators •• • • • • • • • .
Operators, extended and disk
Operators, logical •••
O?erators, precedence of •••
Operato~s, relational
Operators, string
OR ••
OUT • • •

PEEK . . · · · · PIP utility T::'rogram
PIP, CNV command · · · PIP, COP command · · · · PIP, DAT command · · PIP, DIR command · · · PIP, INI command · · · · PIP, LIS command · · · PIP, SRT command · POKE · · . . · · · · POS · · . . Precedence, table of •
PRINT • •• .• •
PRINT USING • . • . • •
PRINT, disk .••
Prompt string
PTD program
PUT • • • • • . • • .

· · · · · ·
· · · · · · · · · · ·
· · · · · ·

40
55
75
80
65
65
65
39
52

56
71
60
22
17
71

80
12
35
22
20
56
62
15
38
16
15
16
30
17
27

27
124
126
125
126
125
124
125
125
26
80
15
23
46
59
23
136
62

BASIC 4.1

April t 197i

Random buffer • • • •
Random File I/O • • •
Random files' •••
READ • • • • • • •
Remarks •••••••
RENUM • • • • • •
Reserved Words
RESTORE • • • • • • •
RESUME .•••.••..•••
RESUHE NEXT • • .
RETURN • • • • • • • •
RIGHT$ • • • • • • • •
RND • • • • • • •
RSET • •• • • • .
RSTLESS versions • • • • •
Rubout • • • . •
RUN • • • • • •
RUN, dis k f i 1 e s •• .•

SAVE • • • • . •
Saving programs on naper tape
Scientific notation
Sense switch settings
Sequential File I/O •••
Sequential mode
SGN • • • • •• •• -.
SIN • • • • • • • • • • •
Single ~r~cision •
S,!?ace allocation
S,!?ace hints
SPACES • • • • . • • • • • . •
SPC .•. • • • • • • • .
Special Characters . .
Speed hints • • •
SQR • • • • • • •
Statements • • • • •
Statements, extende~
STOP • • • • • • • • •
STR$ • • • • •
String Literal ••••••••
STRINGS • • • • . • • . •
Strings •••

- Subroutines
.Subroutines, machine language
SWAP • • • • • • • • • • • • •

BASIC 4.1

April, 19'77

62
61
57
24
8
6
5, 91
25
.37
37
22
80
80
66
128
9" 83
72
55

53
71
11
101
57
57
80
80
11
106
107
80
81
82
108
81
72
32
60 I 77
81
5
81
30
22
112
33

149

TAB 81
TAN 81
TROFF 33
TRON 33
Type 'of constants 11
Type of variables 13
Type,definition 5

UNLOAD • 52
USR 81, 112

VAL 81
Variable types 13
Variables 12
VARPTR 81

WAIT 26
WIDTH 34

XOR 17

82
@ 82

150 BASIC 4.1

April, 1977

2450 Alamo S.E.
Albuquerque, New Mexico 87106

USER'S DOCUMENTATION REPORT

In order to improve the quality and usefulness of our publications, user feedback is
necessary. Your comments will help us effectively evaluate our documentation.

Please limit your remarks to the document, giving specific page and line references
when appropriate. Specific hardware or software questions should be directed to the MITS
Customer Service or Software Departments, respectively_

SUGGESTIONS FOR IMPROVEMENT: ___________ _

ERRORS: ______ ~ ____________________________________ ___

Narne _______________________________________ Date __________ _

Organization __________________________________ _

Street ___________________ ~~------~~----------------------~

City ___________________________ State _______ Zip ___ __

---------- FirstFoldHere----------

Second Fold Here and Staple - - - - - - - -

No Postage Stamp

Necessary If Mailed in

the United States

~BUSINESS REPLY MAIL~~~~~~~~~~~~~~~~~
First Class Permit No. 2114, Albuquerque, New Mexico

Postage Will be Paid by: MITS,Ir)c.
2450 Alamo S.E.
Albuquerque, New Mexico 87106

I jj 11] __
2450 Alamo BE
Albuquerque, NM 87106

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153

