


MODCOMP Il COMPUTER

REFERENCE MANUAL

OCTOBER 1972

210-102000-000
PRICE: $7.00

All Specifications Subject To Change Without Notice.

Modular Computer Systems
1650 West McNab Road
Fort Lauderdale, Florida
(305) 974-1380

33309



MODCOMP II Computer with Rack open and Planes exposed.

©Copyright 1972 by Modular Computer Systems, Inc.

All rights reserved
Printed in the United States of America

-
P



II.

CONTENTS

MODCOMP II CHARACTERISTICS
GENERAL CHARACTERISTICS
Memory System

General Register File

Read-Only Memory Controller
Input/Output System
Modular Bus Control
Interrupt System
Control Panel
Physical Characteristics
MODCOMP SOFTWARE
Executive Systems
Language Processors
Diagnostics, Utilities, Math Library
MODCOMP DATA PROCESSING PERIPHERALS
MEASUREMENT, CONTROL AND COMMUNICATION EQUIPMENT
High Level Analog Input Subsystem
Wide Range Solid State Analog Input Subsystem
Wide Range Relay Analog Input Subsystem
Input/Output Interface Subsystem
MODAC Subsystems
Communications Multiplexers
Communications Channels
SYSTEM EXPANDABILITY
MULTIPROCESSOR CONFIGURATIONS
CENTRAL PROCESSOR DESCRIPTION
INFORMATION FORMATS
Basic Formats
Arithmetic Data Formats
Character Formats
REGISTER FILE
ADDRESSING
Memory Word Addressing
Byte Addressing
Bit Addressing
DEDICATED MEMORY LOCATIONS
SECOND MEMORY PORT
READ-ONLY MEMORY CONTROLLER
OPERATIONAL INTEGRITY FEATURES
Memory Parity
Overflow

Carry Save

iii

w W

W

W W W W W 0 0 3 N U 1 W W N H H W 0 00 0 ~ ~J ~J ~J 0 & O O Ul & b b b s w W



Unimplemented and Call Instructions 2-10

Undefined Instructions 2-10
Floating Point Overflow 2-10
Doubleword Operand Register Storage 2-10
Power Fail Safe/Auto Start 2-10
System Protect Feature 2-11
REAL-TIME CLOCK 2-11
IITI. INSTRUCTION SET 3- 1
OVERVIEW 3- 1
LOAD, STORE AND TRANSFER INSTRUCTIONS 3- 4
LDM 3- 4

LDI 3- 4

LDS 3- 4

LDX 3- 5

STM 3- 5

STI 3- 5

STS 3-5

STX 3- 6

LBX 3- 6
Effective Byte Address Generation 3- 6

SBX ) 3- 7

LFM 3- 7

LFS 3- 7

LFX 3-8

SFM 3- 8

SFS 3-8

SFX 3- 8

TRR 3- 9
TRRB : 3- 9
ARITHMETIC INSTRUCTIONS 3-10
ADM 3-11

ADI 3-11

ADS 3-11

ADX 3-12
ADMM 3-12
ADMB 3-12
ADSM 3-13
ADSB 3-13
ADXM 3-13
ADXB 3-14

ADR 3-14
ADRB 3-14

DAR 3-15

SUM 3-15

SUI 3-15

Sus 3-16

SUX 3-16

SUR 3-16

iv



DVM
Dvs
DVX
DVR
CRMB
CRSB
CRXB
TRO
TTR
TTRB
LOGICAL INSTRUCTIONS
ETM
ETI
ETS
ETX
ETMM
ETMB
ETSM
ETSB
ETXM
ETXB
ETR
ETRB
ORM
ORI
ORS
ORX
ORMM
ORSM
ORXM
ORR
ORRB
XOM
X0I
X0Ss
XO0X
XOR
XORB
TOR
TRMB
TRSB
TRXB



TERB

FLOATING POINT INSTRUCTIONS

Introduction
Data Formats

Floating Point Instruction Mnemonics

General Rules
Overflow
FAR
FSR
FMR
FDR
FARD
FSRD
FMRD
FDRD
FAM
FSM
FMM
FDM
FAMD
FSMD
FMMD
FDMD
SHIFT INSTRUCTIONS
LAD

LRS

BIT MANIPULATION INSTRUCTIONS

LBR

LBRB
ABMM
ABMB
ABSM
ABSB
ABXM
ABXB
ABR

ABRB
SBR

SBRB
ZBMM
ZBMB

vi

3-31
3-32
3-32
3-32
3-33
3-33
3-34
3-34
3-35
3-35
3-35
3-36
3-36
3-37
3-37
3-37
3-38
3-38
3-38
3-39
3-39
3-39
3-40
3-41
3-41
3-41
3-42
3-42
3-42
3-42
3-43
3-43
3-43
3-44
3-44
3-44
3-45
3-45
3-45
3-46
3-46
3-46
3-47
3-47
3-47
3-48
3-48
3-48



GMRB

BYTE MANIPULATION INSTRUCTIONS

MUR

IBR

UNCONDITIONAL BRANCH INSTRUCTIONS

BLM
BLI
BRU
HOP
BRX
CONTROL INSTRUCTIONS
HLT
NOP
SPR
SGP
SLP
SUP

INTERRUPT AND CALL INSTRUCTIONS

SIE
RIE
SIR
RIR
SIA
RIA
REX

vii

3-49
3-43
3-49
3-49
3-50
3-50
3-50
3-50
3-51
3-51
3-51
3-51
3-52
3-52
3-52
3-53
3-53
3-53
3-54
3-54
3-55
3-55
3-56
3-56
3-56
3-56
3-57
3-57
3-58
3-58
3-58
3-58
3-59
3-59
3-60
3-60
3-60
3-690
3-61
3-61
3-61
3-62
3-62
3-62
3-63
3-63
3-63
3-63
3-63



Iv.

RMI
CAR
CIR
INPUT/OUTPUT INSTRUCTIONS
ISA
ISB
IsC
ISD
IDA
1DB
IDC
IDD
0]67:
OCB
ocCcC
0oCD
ODA
ODB
oDC
OoDD

PRIORITY INTERRUPTS

OVERVIEW
LEVEL ASSIGNMENTS
INTERRUPT OPERATION AND PROGRAM CONTROL
INTERRUPT SUB-LEVEL OPERATION AND PROGRAM CONTROL
TRAPS
Unimplemented Instruction Trap
Memory Parity Trap
System Protect
Floating Point Overflow
POWER FAIL SAFE/AUTO START INTERRUPT

INPUT/OUTPUT

OVERVIEW
INSTRUCTION EXECUTION SEQUENCE
TRANSFER FORMATS
REGISTER I/0 TRANSFER MODES
INPUT/OUTPUT INTERRUPTS
DIRECT MEMORY PROCESSOR
I'ranster Initiation
Data Chaining
Register File
PERIPHERAL DEVICE ASSIGNMENTS
PROGRAMMING CONSIDERATIONS
REGISTER I/0 INTERRUPT MODE SEQUENCE
New Command Initiation
Response to Data Interrupt

Response to Service Interrupt

viii

oooomo‘xc\c\c\mmm‘hwwt—‘l—al—a\lmmmmm.b.wl—lo—-t—‘



REGISTER I/0 TEST AND TRANSFER MODE
DIRECT MEMORY PROCESSOR I/O MODE
New Command Initiation
Response to Data Interrupt
Response to Service Interrupt
OUTPUT COMMAND FORMATS
Select Format
Control Format
No Op Command
Interrupt Disconnection and Termination
Transfer Initiate
INPUT STATUS FORMAT
I/0 BUS INTERFACE
Signal Levels
VI. OPERATOR CONTROLS
INDICATORS
Data
Parity Error
Run
Power On
SWITCHES
Data Entry
Panel Lock
Master Clear
Fill
Run/Halt
Single Cycle
Enter
Step P
Console Interrupt
Display
Enter R
Register Select
CONTROL PANEL OPERATION
Display Register
Load Register
Load Memory
Display Memory
Start Program
Single Cycle Program
FILL

ix

|
u

5-10
5-11
5-12
5-12
5-12
5-13
5-14

w
1
=
~

o
[
G s B B B b WWwWwhNNNNNDNRNHIERHR®R H 5 |4 [



L o I o R @ T o< B ~]

FIGURES

MODCOMP II Block Diagram
MULTI-PROCESSOR CONFIGURATION
INPUT/OUTPUT SUBSYSTEM BLOCK DIAGRAM
INPUT/OUTPUT CABLE DIAGRAM

TABLES

Dedicated Memory Locations

Symbols and Abbreviations

Floating Point Register Selections
Interrupt Level Assignments

Sub-Level Assignments

Peripheral Device Interrupt Assignments

Register Data

APPENDICES

Hexadecimal to Decimal Conversion
Character Codes

Peripheral Device Commands and Status
Divide

Instruction List

Table of Powers of Two and Sixteen

1- 2
1- 9
5- 2
5-16
2- 8
3- 3
3-33
4- 2
4- 4
5- 7
6- 3
A- 1
B- 1
c-1
D- 1
E- 1



. MODCOMP || CHARACTERISTICS

MODCOMP II is an 800-nanosecond, 16-bit computer having many of the characteristics
of 32-bit computers. It is designed to be efficient in executing higher level soft-
ware including real-time multiprogramming systems, disc operating systems and inter-
active language systems. The large instruction set and general register file also

permit highly efficient machine code to be written.

MODCOMP II consists of a set of functional modules implemented with the present state
of the art in IC, MSI, LSI and core memory technology designed to be upgraded when
new advances in component technology are available. All data transfers and manipula-
tions within the computer are controlled by a highly-flexible solid state LSI memory
(ROM) controller. The ROM controller provides a rich instruction set including bit,
byte, word, doubleword, tripleword (including floating point) and file manipulation

instructions.

The MODCOMP II is the intermediate member of the MODCOMP computer family. It has the
same standard instruction set as the larger MODCOMP III computer. The same set of
optional instructions is also available with both computers. Therefore, all of the
software available with MODCOMP III is also available with MODCOMP II.

MODCOMP II is a superset of MODCOMP I. All MODCOMP I programs are executable in
MODCOMP 1II.

GENERAL CHARACTERISTICS

The organization of MODCOMP II is shown in Figure 1-1.

The machine is packaged in two basic versions. The MODCOMP II/5 contains two CPU
planes and either one or two memory planes. Each memory plane can contain a 4K, 8K,

or 16K word core memory module or 512 to 2,048 words of solid state memory.

The MODCOMP II/20 and higher numbered models contain two CPU planes, one to four
memory planes, and up to three option planes. The block diagram designates which

options are available only in the larger computer package.

MODCOMP II consists of storage, processing and input/output modules and a modular
bus through which all inter-module transfers are made. The major features of each

module are described on the following pages.



MEMORY PLANE"*

416K WORDS
MEMORY PLANE**
4-16K WORDS
MEMORY PLANE*
4-16K WORDS
MEMORY PLANE*
4-16K WORDS
MEMORY MEMORY
PARITY, 800 NANO SECOND PORT,.
CYCLE TIME
PROGRAMMERS
READ-ONLY
CONTROL PANEL > < > MEMORY
< CONTROLLER
HARDWARE FILL 256 x 40 BITS
—~
MODULAR
BUS
~—t MULTIPLY/
DIVIDE *
15 GENERAL ARITHMETIC
PURPOSE LOGICAL
REGISTERS UNIT
FLOATING
POINT  **
POWER FAIL
MODULAR SAFE/ AUTO
RUS <:> START INT. ,
CONTROL,,
INTERRUPT
SYSTEM EXECUTIVE
128 PARTY LINE FEATURES
INTERRUPTS AND
INTERRUPTS *
UNIMPLEMENTED
1/0 BUS INSTRUCTION
SYSTEM
INPUT/OUTPUT <:> TRAP PROTECT
> AND
SUB SYSTEM INTERRUPTS *
v 4 EXTERNAL
INTERRUPTS *
DIRECT
MEMORY
PROCESSOR* * OPTIONAL IN SOME OR ALL MODELS
** AVAILABLE ONLY IN MODELS 11/20
AND ABOVE
Figure 11 MODCOMP 1l BLOCK DIAGRAM




Memory System

4,096 to 65,536 16-bit words, expandable by 4K, 8K, or 16K word modules

. 400 nanosecond access time

. 800 nanosecond full cycle time

. All memory locations directly addressable

- Seven memory addressing modes provided including indirect, indexed and immediate
. Dual, concurrent access available in multiprocessor configurations

. Memory Protect option

. Memory Parity option

General Register File

- 15 addressable, 16 bit, general purpose registers
. 7 of the general registers usable as index registers
. All 15 registers usable for short indexing operations

ranceccends execution time [or typical register-to~register instructions

Arithmetic Module

. Parallel operation
Full set of arithmetic, logical, compare, and shift capabilities

Execution times

Add, Subtract, And, Or, Exclusive Or (Reg.-to-Reg.) = 0.8 u sec.
Add, Subtract, And, Or, Exclusive Or (Mem.-to-Reg.) = 1.6 u sec.
Multiply (Reg.-to-Reg.) = 6.7 u sec., (Mem.~-to-Reg.) = 7.2 u sec.
Divide (Reg. by Reg.) = 11.0 p sec., (Reg. by Mem.) = 11.4 yu sec.

. Implemented with four MSI modules

Read-Only Memory Controller

. 267 nanosecond cycle time

. 40-bit word length

. 256 words in basic computer

. Optional instructions including floating point arithmetic and fixed point mul-

tiply/divide

Input/Output System

Program controlled transfers to/from 63 peripheral devices

. Transfers synchronized by interrupts

- Transfers can be made from any general register to any device

. Transfers are made over a buffered input/output bus which isolates the computer
from external cable and controller delays

. Direct Memory Processor available for automatic block transfers to/from 8 peri-
pheral devices on a multiplexed basis

- Controller for ASR-33, ASR-35, or KSR-35 Teletype
High-Speed paper tape reader, in addition to Teletype, can be operated from the

controller.



Modular Bus Control

Permits Direct Memory Access transfers at rates up to 1.25 M words per second
. Makes all machine processing logic available to an external controller

. Enables custom macro instructions to be added to the CPU using ROM control

Interrupt System

. Up to 16 unigque priority levels

. Two standard input/output levels

- Each of these two priority levels (C,D) are connected to 17 unique sub-priority
levels which can be connected to up to 64 sublevels, each with a unique (dedi-
cated) memory pointer.

. Standard unimplemented instruction trap

. Complete program control of the Request, Enable*, and Active states of each
level

. System Protect Feature includes memory protect and privileged instruction trap
capabilities which enable the computer to operate in either a protected or an
unprotected mode.

. Executive features includes a real-time clock (200 Hz), console interrupt, task

scheduler interrupt, and floating point overflow interrupt

Control Panel

. Capability to display or modify the contents of any memory location, general
register or most non-programmable registers

. Program fill switch

. Control panel lock switch
Master Clear to clear computer and peripherals

. Optional Console Interrupt

Physical Characteristics

. 0-55°C operating ambient temperature range

. 120 + 10% vac, 48 to 62 Hz

- Packaged for mounting in a standard 19-inch cabinet. Occupies 8.75" (II/5)
or 21" (II/20) vertically.

Three Modular Application Executive (MAX) systems are available with MODCOMP II

computers to meet the requirements of a wide range of machine operating environments.

A Special Application Executive (SAX) is also available for dedicated real-time
applications.

MAX I is a core resident operating system which improves machine utilization effi-
ciency in assembling, debugging and related operations.

*Internal error exception interrupts are alway:. cnabled.

1-4



MAX II is a disc operating system which accepts a batch job input consisting of as-
CTRE S v T st ame snd/av avests 43 e A core resident wersion ia alsos availaghle
semplies, (,UulpL.Ld.t.LU 1S anda/or e€XeCutions. A COYe resiaenc version 1is aiss avdliaoie

MAX III is a real-time multiprogramming executive which provides complete task sche-
duling, initiation, termination and I/O services. This system will control the exe-
cution of any mixture of foreground/middleground and background tasks. Unprotected
(middleground) tasks can be brought on-line without disturbing other protected (fore-
ground) tasks. Batch processing can be performed in the background. A core-only

version is available for dedicated applications.

SAX is a real-time executive which provides task scheduling, I/0 services and a flexi-

ble operator communications package.

Language Processors

Several language processors are available with MODCOMP systems.

FORTRAN IV - The MODCOMP FORTRAN compiler meets the ANSI FORTRAN specifications. It
is designed to produce efficient code by using all machine capabilities such as all
registers in the register file and all instructions. It produces assembly language
output, permitting the programmer to optimize further. The programmer can also write
programs in any desired mixture of compiler and assembly languages. It is available
in a core-resident or overlay version under MAX II and MAX III.

Extended Fortran IV - This FORTRAN compiler is an extension of FORTRAN IV as defined

above containing random access I/0 operations through DEFINE FILE. This compiler
contains block level optimization to produce efficient object code. It is available

in core-resident or overlay versions under MAX II or MAX III.
BASIC - This multi-user system is a subset of the Dartmouth BASIC system operating
under either MAX II or MAX III. It enables users having no previous programming

experience to write programs in a simple, guickly learned language.

Macro Assembler - This big machine class assembler has an extensive set of directives

and error diagnostics as well as a macro processor. It accepts conditional assembly
statements, assembly time branches and macro exits. It is a two-pass assembler,
operating under MAX II and MAX III. It is available in core-resident or overlay ver-

sions.

Assembler - The assembler is a subset of the macro assembler. It generates relocatable

as well as absolute object code and operates under MAX I, II or III.

FORTRAN Coded Assembler - The assembler is available in FORTRAN source language. This

assembler operates in IBM 360/370 or CDC 6000 series computers and is compatible
with the MODCOMP II ASSEMBLER in both syntax and binary output. The user can there-
fore assemble programs on larger machines then run them on the MODCOMP II with no
modifications. It operates under 0OS or DOS in 65K bytes.



Compatible Assembler - This assembler accepts MODCOMP I Assembler source code and

produces object code executable in a MODCOMP I, II or III computer.

Diagnostics, Utilities, Math Library

An advanced set of computer and peripheral diagnostics are available as maintenance
aids. Utilities include source and object file editing, media-to-media conversion,

and program debug capabilities. The math library meets ANSI FORTRAN standards.

MODCOMP DATA PROCESSING PERIPHERALS

Modular peripherals are available for a broad spectrum of applications including pro-
gram preparation, data processing and system support functions. All peripherals are
supported by the appropriate MAX system. The basic specifications for each device

are summarized below.

Page Printers - ASR-33, ASR-35, KSR-35 Teletypes

Paper Tape Reader ~ 625 characters per second

Paper Tape Reader and Punch - 625 characters per second read, 110 characters per
second punch

Card Readers - 300-1000 cards per minute

Card Punch - 100 cards per minute

High Speed Serial Printer - 50-150 lines per minute, 132 columns

Line Printers - 600 lines per minute, 80-132 columns

Magnetic Tape Units - 12.5/45 1PS, 7/9 track, 556/800 BPI, industry com-

patible NRZ. 45 IPS, 9 track, 1600 BPI industry com-
patible Phase Encoded.

Moving-Head Discs - 20 millisecond average latency
Capacity range - over 1.2M, 13M and 26M words
Transfer rates - 97.8K words and 156K words per
second

MEASUREMENT, CONTROL AND COMMUNICATION EQUIPMENT

A complete range of analog input, analog output, digital input, digital output and
communication equipment is available to operate with MODCOMP computer systems. This
equipment has all been designed together expressly to operate with MODCOMP systems.
Therefore, hardware formats, interfaces, cabling and power supplies are the same in

all units to facilitate customer usage and minimize spares requirements.

High Level Analog Input Subsystem

Channel Capacity - 16-128 Channels single-ended or 8-128 Channels differential
Input Range - +10.24 volts full scale or +102.4 volts full scale
Throughput Rate - 50,000 Channels per second max.

Overall Accuracy - 10.05% Full Scale +1/2 LSB



Wide Range Solid State Analog

Input Subsystem

Channel Capacity
Input Range
Throughput Rate
Overall Accuracy
Auto Ranging
Zero Suppression

Wide Range Relay Analog Input

8-128 Channels

12 Programmable ranges from +5 MV to +10.24V Full Scale
20,000 Channels per second max.

+0.05% Full Scale +1/2 LSB

With 4,000 Channels per second throughput

Optional

Subsystem

Channel Capacity
Input Ranges
Throughput Rate
Overall Accuracy
Auto Ranging
Zero Suppression

8-512 Channels

12 Programmable ranges from +5 MV to +10.24V Full Scale
200 Channels per second max.

+10 Microvolts or +0.05% Full Scale

Standard

Optional

Input/Output Interface Subsystem

Channel Capacity
Digital Inputs

Digital Outputs

Analog Outputs

Serial Communica-
tions Interface
Interval Timer
I/0 Interrupts

External Interrupts

Synchronizer

MODAC Subsystem

16 Input/Output channels of 16 bits each plus expander
chassis (up to 2048, 16 bit channels)

Micrologic, positive voltage, negative voltage, bipolar
voltage, contact sense. (Isolated and filtered inputs)

Micrologic, positive voltage, negative voltage, elec-
tronic switch, contact closure, pulse output, and AC
output (TRIAC)

12 Bits binary, including sign
+10 volts, +20 volts, 1 to 5 ma, 4 to 20 ma, 10 to 50 ma

RS 232 or 20 ma current loop (TTY compatible)

Provides programmable timing interrupt or 'watchdog'
timer

Provides 8 data interrupts and/or 8 service interrupts

Provides signal conditioning and drivers for 16 external
interrupts

Provides 'handshake' data transfer

Provides a flexible combination of analog and digital data acquisition modules.

Analog Input Module
Analog Output Module

Dual Word Input Module
Dual Word Output Module

32 High level (+10.24V) channels, 20K SPS

Eight D-to-~A converters, 12 bits binary, current and
voltage outputs

Two 16-bit digital input channels
Two 16-bit digital output channels



Communications Multiplexers

Tvpes - Universal, operates in synchronous and/or asynchronous mode.

Asynchronous, operates in asynchronous mode only.

Channel Capacity - Universal, 4 to 32 full duplex channels expandable in groups
of 4 up to 64 full duplex channels.
Asynchronous, 2 to 32 full duplex channels expandable in

groups of 2 up to 128 full duplex channels.

Communications Channels

ASYNCHRONOUS
Clocking Mode - Asynchronous
Communication
Interfaces - EIA RS-232-C Modems, TTL Modems, TTY 60/20 ma Current loop
Baud Rate - Patchable from 75 to 9600 baud with a maximum of five different

baud rates per multiplexer

Codes - Program selectable - 5, 6, 7, or 8 bits plus parity
Stop bits - Program selectable - 1 or 2
Parity - Program selectable - none, odd, even
Echo - Program selectable - Echos on full duplex line
SYNCHRONOUS
Clocking Mode - Synchronous
Communications
Interfaces - EIA RS-232-C Modems, TTL Modems
Baud Rate - Patchable to 50K baud with a maximum of five different baud

rates per multiplexer

Code - Program selectable - 5, 6, 7, or 8 bits plus parity
Parity - Program selectable - none, odd, even
Sync Character - Patchable

SYSTEM EXPANDABILITY

The modular design makes the MODCOMP II computer easily expandable. The 21 inch high
assembly is capable of containing all system features. Core memory up to a total of
64K words is available on a total of four memory planes. The interrupts are also
modular and are field expandable. Even the concurrent memory access path (second
port) can be added in the field. Therefore, a MODCOMP system can be expanded as
system requirements grow. It can even be converted into a multiprocessor system if

the need for a substantial increase in computing capability arises.



MULTIPROCESSOR CONFIGURATIONS

The MODCOMP II is available as a multiprocessor having two CPU's and both private and
shared memory modules. The range of multiprocessor configurations available is shown

in Figure 1-2.

Each of the two computer cabinets can contain from 16K to 64K words of memory, and
each CPU can address up to 64K words. Memory can be connected to the CPU in the other
cabinet on a 16K word basis, except for the highest memory section which can be 4K, 8K

or 16K words.

The lower 16K memory section cannot be shared because the lower memory locations in
each computer are dedicated interrupt and I/O locations. Either one shared or two
private modules can be connected between the 16K and 32K address boundaries and also

between the 32K and 48K boundaries.

The CPU-to-CPU communication interrupt is generated by execution of the Request Multi-
processor Interrupt instruction. Whenever this instruction is executed in one CPU, an

interrupt signal is sent to Level 3 in the other CPU.

CPU 1 16K 16K*
4K or
COMMUNICATION
INTERRUPT 16K * 8K or
16K
CPU 2 16K 16K*
0 16K 32K 48K 64K
FIGURE 1-2

* Can be private or shared



Il. CENTRAL PROCESSOR DESCRIPTION
INFORMATION FORMATS

Basic Formats

The 16-bit word is the basic information format of the MODCOMP II computer. The

bit designations in the computer word are:

WORD FORMAT

WORD
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Some instructions operate on doublewords which consist of 32 bits of data stored in

two consecutive register or memory locations.

DOUBLEWORD FORMAT

EVEN
REGISTER MORE SIGNIFICANT WORD

0 15
oDD
REGISTER LESS SIGNIFICANT WORD

0 15

To be an operand for a doubleword instruction which operates on register contents,
the more significant word must be stored in a register location having an even address

and the less significant word must be stored in the next higher (odd) register.

Many instruction and peripheral devices operate on eight-bit bytes which are packed

two per register or memory location in the format:

BYTE DESIGNATIONS

BYTE 0 BYTE 1

0 78 15

Hexadecimal (base 16) digits are often used as a convenient means of representing

binary byte, word or double word values. The hexadecimal word format is:

HEXADECIMAL DIGIT DESIGNATIONS

Hy Hy Hy Hy

0 3 4 7 8 11 12 15

Where Hy is the most significant digit in the word.



Where H, is the most significant digit in the word. Hexadecimal numbers and the equi-
valent decimal numbers are listed in Appendix A. In the text hexadecimal numbers appear
in the form le.

Arithmetic Data Formats

Fixed Point Binary Integer Format - This is the standard arithmetic data format in the
MODCOMP II and consists of a sign bit and 15 or 31 data bits. The most significant
bit is the sign bit, which is defined:

Sign = 0, Positive or Zero Quantity
Sign

1, Negative Quantity

Two's complement representation is used for negative numbers. The principal fixed
point arithmetic formats are:

SINGLE PRECISION FIXED POINT DATA FORMAT

‘ 0
s| 24 2

0 1 15

DOUBLE PRECISION FIXED POINT DATA FORMAT

s| 230 ,16
0o 1 15
15
2 20
0 15

Floating Point Format - This consists of a nine bit binary exponent and a 22 or 38 bit
signed binary fraction. The exponent values are defined:

Exponent Floating-Point

Value 16 Number Value
000 2-%°% X Fraction value (1> F0)
400 20 X Fraction Value
7FC 2 255 X Fraction Value

The value of zero is represented by 00000...016. Hardware operations resulting in a
zero fraction set the exponent to all zerces. A negative number is represented as the
integer two's complement of the absolute value so that integer compare and negate
operations are valid with both fixed point and floating point operands.



The floating point formats are:

SINGLE PRECISION FLOATING POINT DATA FORMAT

S EXPONENT FRACTION

LEAST SIGNIFICANT BITS OF FRACTION

0 15

DOUBLE PRECISION FLOATING POINT DATA FORMAT

S EXPONENT FRACTION

FRACTION

LEAST SIGNIFICANT BITS OF FRACTION

Character Formats

The ASCII code is the standard character code in MODCOMP computers and peripherals.

Appendix B contains the character code definitions.

[ Y ¥l ]

REGISTER FiLE

MODCOMP II contains 16 addressable registers. Fifteen are fast access flip-flop
registers having general register capabilities. Operagds can be transferred between
any of these registers and any other register or any memory location. In addition,
the execution of many instructions produces a result stored in one or more of the
general registers. All 15 of the general registers may be used in short indexed

operations and 7 may be used as index registers.

One of the 16 addressable registers is the 16-bit switch register located on the con-
trol panel. This register is provided as one means of communication between the

operator and program.



The designations and dedicated functions of the sixteen addressable registers are:

REGISTER FILE DESIGNATIONS AND DEDICATED FUNCTIONS

LOWER GENERAL RO  Switch Reg. RS UPPER GENERAL
REGISTER FILE Rl Base Req. o~ REGISTER FILE
REGISTERS R2 R10
(Ry=Ry) R3 R11
R4 R12
RS R13
R6 R14
R7 RL5

Register Rl has a dedicated hardware function in addition to being a general register.

In one of the modes of memory address generation, a displacement value contained in

the instruction is added to the contents of register Rl to produce the effective memory
address. Registers R1-R7 may be used as index registers. All registers RO-R1l5 may be

used in short indexed operations.

The registers are designated by four-bit fields in the formats of instructions which

invoke register operation. Typical register designations are shown in the following

examples:
REGISTER-TO-REGISTER INSTRUCTION FORMAT
OP. CODE Ra Rb
0 7 8 11 12 15
INDEXED INSTRUCTION FORMAT
OP. CODE Ra I Rxx
0 7 8 11 12 13 15
SHORT INDEXED INSTRUCTION FORMAT
OP. CODE Ra Rx
0 7 8 11 12 15
Ra - Specifies one operand register (0<a ¢ 15) and the destination register.
The destination register should not be RO, the switch register, unless the
operation result is to be discarded, which is sometimes convenient in con-
ditional branch instructions.
Rb - Specifies the second operand register (0<{b <15).
RxX - Specifies the index register (1{xx < 7).

Rx - Specifies the effective address register for short indexed instructions
(0 ¢ x <15). :



ADDRESSING

Memory Word Addressing

A total of seven memory addressing modes are provided in MODCOMP II instructions which
operate on word operands. In each of these modes, a 16-bit effective word address (EWA)
is produced in the central processing unit (CPU) and sent to the memory system along

with a read or write request. The 16-bit contents of the location specified by the EWA
are then either read from memory or replaced by the word transferred from the CPU. The

l6-bit EWA provides a direct addressing range of 65,536 words.

The first four of the seven memory addressing modes are derived from this instruction

format:
BASIC MEMORY ADDRESS FORMAT
lst INSTRUCTION
NN AATT - - - WORD
VUE . LUUL Ra L RXX wiorkd
0 7 8 11 12 13 15
2nd INSTRUCTION
ADDRESS WORD
0 15
Ra - Register Address
Rxx - Index Register Address (1 { xx < 7) where 0 = no indexing
I ~ Indirect Address Bit

Direct Address Mode - If Rxx = 0 and I = 0, the 1l6-bit address contained in the second

instruction word becomes the EWA.

Indexed Address Mode - If Rxx # 0 and I = 0, the contents of register RxxXx are added
to the 16-bit address contained in the second instruction word. The least significant
16 bits of the result become the EWA. The contents of the index register may be either

positive or negative to produce either positive or negative displacement indexing.

EXAMPLE:
DISCARD | 0000 0000 0001 o01l00 ADDRESS = 20
CARRY 1111 1111 1111 0110 INDEX = -10
= 10

1 |0000 0000 0000 1010 EWA
The indexing operation does not increase instruction execution time.

Indirect Address Mode - If Rxx= 0 and I = 1, the 16-bit address contained in the second

instruction word specifies the memory location which contains the EWA. The indirect
address capability is single level. One cycle time is added to instruction execution

time by the indirect address word fetch.



Indexed and Indirect Address Mode - If Rxx # 0 and I = 1, the contents of register Rxx
are added to the 16-bit address contained in the second instruction word. The resulting
address then specifies the location of the EWA. One cycle time is added to instruction

execution time.

Immediate Mode - This two word memory reference instruction accesses operands or stores
operands in the second instruction word. The program register is advanced by two to skip

this location. The instruction format is:
IMMEDIATE OPERAND FORMAT
1st INSTRUCTION

OP. CODE Ra L, /// // WORD
12 15

0 7 8 11

2nd INSTRUCTION
IMMEDIATE OPERAND WORD

0 15

Short Displaced Mode - This single-word memory reference instruction format is provided

for processing lists of operands occupying 16 or less consecutive memory locations. The

instruction format is:

SHORT DISPLACEMENT FORMAT

OP. CODE Ra DF

0 7 8 11 12 15
DF = Displacement Field (0 < DF < 15)

In this mode of addressing memory, the positive displacement quantity DF and the contents
of register Rl are added, to generate the 16-bit EWA. The contents of Rl are not modi-
fied by the EWA computation:

(R1) + DF = EWA

The 16-bit contents of Rl specify the base location (lowest address) of the list stored

in memory.

When Branch instructions are executed in the short displaced mode, the Program Register

rather than register Rl is used as the base register.

Short Indexed Format - This single-word memory reference instruction enables the contents
of any of the 16 addressable registers to become the EWA. The instruction format is:

SHORT INDEXED FORMAT

OP. CODE Ra Rx

0 7 8 11 12 15

» where Rx specifies the register which contains the EWA.



Byte Addressing

A byte may be addressed in any memory word with a special form of the short indexed
format. In this case Rx specifies an even/odd pair of general registers.

BYTE ADDRESS FORMAT

INSTRUCTION
OP. CODE Ra Rx

0 7 8 11 12 15

BASE WORD ADDRESS EVEN REGISTER

SIGNED BYTE DISPLACEMENT

ODD REGISTER
S DISPLACEMENT WORD ADDRESS B
0 1 14 15
B = 0 Specifies the byte contained in bits 0-7, and
B =1 Specifies the byte contained in bits 8-15 of the

memory location specified by the EWA

The effective byte address EBA is obtained by adding the 16-bit base address to the
signed byte displacement which is first shifted right one bit position. This produces
an EWA which enables the accessing of the location containing the specified byte. The

proper byte is then accessed from this location depending upon the state of B.

Bit Addressing

Any bit in memory can be addressed by the instruction format:

BIT ADDRESSING FORMAT

OP. CODE BIT NO. I Rxx

0 7 8 11 12 15

WORD ADDRESS

0 15

BIT NO. = 0 to 15, where 0 specifies the bit at the most significant end of the word.

The register-to-register, short displaced and short indexed forms are also used with

these instructions.



BIT IN
OP. CODE R BIT # REGISTER

(&)
~J
o
[
[
[
3%

[
w

BIT IN MEMORY
OP. CODE BIT # Rx SHORT INDEXED
0 7 8 11 12 15
BIT IN MEMORY
OP. CODE BIT # DF SHORT DISPLACED
0 7 8 11 12 15

DEDICATED MEMORY LOCATIONS

Table 2-1 shows the area of memory which is dedicated to interrupt linkages and input/

output transfer parameters.

Memory ) Dedicated
Locations 16 Function
00-1F Bootstrap Loader (00-2D),
(Overlaps Interrupt Locations 20-2D)
20-5F Interrupt Entry and Return
60-6F DMP Transfer Count
70-7F DMP Transfer Address
80-BF I/0 Data Interrupt Entry
CO-FF I/0 Service Interrupt Entry

Table 2-1 Dedicated Memory Locations

SECOND MEMORY PORT

This optional feature provides a second memory port, or access path. Each port can
have access to all 64K words (max.) contained in one MODCOMP I1/20 or II/25. The CPU
packaged with the memory is connected to the first (higher priority) port. The second
port, connected to an external CPU can be connected to any combination of 16K word
memory sections. (0-16K, 16-32K, 32-48K, 48-64K).

Each port can obtain a memory access in a different memory section simultaneously.

If a simultaneous access is attempted in the same 16K section by both ports, the higher
priority port will obtain the next cycle and the lower priority port the following
cycle.



READ-ONLY MEMORY CONTROLLER

All standard MODCOMP II instructions are executed by a sequence of micro instructions

stored in a 256 X 40 bit solid-state LSI read-only memory (ROM) module. In addition
the operations performed by the Direct Memory Processor are controlled by ROM stored
micro instructions. Micro instrnctions are executed at the rate of 3.75 million in-

structions per second, which corresponds to three ROM cycles per main memory cycle.

The ROM can be expanded on a CPU option plane to enable macro instructions to be

added to the standard instruction set.

OPERATIONAL INTEGRITY FEATURES

Continuous checking is performed for the principal conditions, for which valid checks
can be made, that can cause machine stoppage or abnormal program operation. The error
signals are connected to interrupt levels, either as standard or optional features, to

facilitate operatiocn of the computer in real-time environments.

Memory Parity

A parity bit is stored in all memory word locations, when the memory parity checking
feature is present. Each time a memory access is made, either for a byte or a word,
the parity of both bytes in the word is generated or checked. If an error is detected,
the execution of the instruction is aborted, further execution is halted, and the
machine attempts to trap to the optional parity priority interrupt level. (Level 1)

If the optional System Protect Feature is included in the computer, the parity error
signal is connected to the interrupt level (Level 1). Since the instruction execu-
tion is aborted when the error is detected, the signal which interrupts the computer
is classified as a trap, rather than an interrupt signal. (See Traps - Pg. 4-5)

The parity error light is reset by the interrupt.

The parity error indicator is set whenever a parity error is detected and will re-
main on until a priority interrupt occurs or the machine is normalized.

Overflow

An overflow signal is generated in arithmetic operations if the result exceeds the
capacity designated for the result. The specific overflow conditions are defined with
the individual instruction descriptions. The general instruction types which can

cause overflow are: Add, Subtract, Divide, Two's Complement, and Left Arithmetic Shift.

If an overflow occurs during the execution of one of these instructions, the overflow

latch will be set regardless of its previous condition. A special machine instruction
(TRO,R) is used to read the latch and reset it. Another instruction (GMR,R,0) may be

used to set the overflow latch unconditionally. (Displayed in register #3D bit 0).

Carry Save
A carry save signal is generated in arithmetic operations if the result produces a
carry. The general instruction types which can produce a carry are: Add, Subtract,

Multiply, Divide, and Two's Complement.

If a carry occurs as a result of execution of one of these instructions, the carry

save latch (Register #3D bit 15) will be set regardless of its previous state. Con-
versely, if no carry is generated, the latch is reset regardless of its previous state.
A special instruction (TRO,R) is used to read the latch. Any GMR,R instruction will
unconditionally reset the carry save latch.



Unimplemented and Call Instructions

Optional instructions such as floating point and custom macro op code groups are
trapped in MODCOMP II computers not containing these options. The trap routine can
execute all of these instructions as subroutines. Therefore, programs which contain

these optional instructions can be executed in all MODCOMP II computers.

The trap level, which is present in all machines, is Level 4.

A special instruction Request Executive Service (REX) always generates the Unimple-
mented Instruction trap. This instruction is used for communication with the resi-

dent executive.

Undefined Instructions

All undefined instruction op codes and unassigned op codes will execute as No Operation
(NO OP) instructions in 800 nsec.

Floating Point Overflow

Floating point overflow is a separate trap from Overflow (above). Floating point
overflow/underflow will occur if the resultant exponent of a floating point operation
cannot be expressed within the range of the nine (9) bit binary exponent field of the
floating point format.

The floating point unit trap mechanism used to indicate an overflow or underflow con-
dition is the same function as the CPU trap implementation. The trap mechanism ter-
minates the normal FPU flow of events and does not allow any results to be transferred
back to the CPU register file. Therefore, the original register operands are main-
tained in the CPU register file and may be interrogated for further overflow-under-

flow clarification.
The trap level, when present in the system, is Level 5.

Doubleword Operand Register Storage

Doubleword operands must be stored in register pairs in which the more significant
word is stored in an even numbered register and the 1less significant word is stored

in the next higher (odd register). The even register number must be used in the
instruction to designate the doubleword. The use of an odd register number to desig-
nate doublewords will produce unspecified results except for multiplication operations.
Refer to the descriptions of multiply instructions for more information.

Power Fail Safe/Auto Start

When the a-c power is turned on or off in MODCOMP II computers having the PFS/AS
feature, an interrupt is generated which overrides all other machine conditions, ex-

cept the Halt condition.



This level is always enabled. When power fails, a minimum of 200 execution cycles
are available after the interrupt occurs. After this time interval, memory writing
is disabled to insure that the magnetic states of all cores remain unchanged when
the power is turned off. When power is applied to the system, memory writing is
also inhibited until proper initial conditions have been established for operation.
At this time an interrupt is generated which can be used for automatic program
initialization if the Halt/Run switch is in the RUN position or the CP is locked.

The PFS/AS interrupt level is Level 0.

System Protect Feature

The MODCOMP II offers a hardware system protect option which may utilize either a
triple boundary method or a single (MCIII compatible) boundary method to assign
protected memory. The rules governing the allocation of memory are as follows:

Triple Protect Boundary Registers

Two nine bit and one eight bit hardware registers are provided with the option to
allow the selection of the protection boundaries for the memory system. These re-
gisters allow the boundaries to be assigned at any 128 word increment from 128 to
64K words of memory for the lower protect boundary, from 64K to 128 words of memory
for the upper protect boundary, and at any 256 word increment from 256 to 64K words

of memory for the third protect boundary.

1. For the Lower Boundary:
(LPR) x (128) + 128 = Lower Boundary

-Where LPR = Contents of the 9 bit Lower Protect Boundary Register.

All memory below the lower boundary is protected (or privileged).

2. For the Upper Boundary:
(UPR) x (128) + 128 = Upper Boundary

-Where UPR = Contents of the 9 bit Upper Protect Boundary Register
All memory at or above the upper boundary but below the third boundary is protected
(or privileged).

3. For the Third Boundary:
(B3R) x (256) + 256 = Third Boundary

-Where B3R = Protect Boundary Register #3.
Therefore, all memory at and above the lower boundary but below the upper boundary

or all memory at or above the third boundary is unprotected (or unprivileged).

Single Protect Boundary Register

One five bit hardware register is provided to allow selection of the protection
boundary for the memory system. This register allows the boundary to be assigned

at any 2K word increment from 2K to 64K words of memory.



(PBR) x (2K) + 2K = Protect Boundary
-Where PBR = Protect Boundary Register

All memory below the protect boundary is protected (or privileged) and all memory

at and above the boundary is unprotected (or unprivileged).
This protect scheme is program compatible with the system used in the MCIII.

General Program Protect Characteristics

These options provide the capability to prevent a background program(s) (located
outside of protected memory) from erroneously altering, executing or permanently
inhibiting the foreground (or protected) program(s). In addition, the protect

logic is connected to an optional priority level to notify the computer of any

attempt on its part to violate the protect structure even though the attempt was
aborted (except for branch violations) by the hardware. When the protect option
is invoked, the protect logic traps the execution of I/O, Interrupt and Halt in-

structions if the program is operating in unprotected memory.

The Master Clear Console switch and Power Normalization signals always fill all
three protect registers thereby yielding all of existent memory protected.

The System Protect Feature consists of two types of'protection:

Memory Write Protection is included to prevent programs from modifying other resident

programs. In MODCOMP II, two boundaries can be established by program control at any
128 word boundaries in memory. Programs stored between these boundaries cannot modify
or branch into locations outside of these two boundaries. If an illegal attempt is

made, a trap is generated at interrupt Level 2.

The Request Executive Service instruction is used for communication between programs

in unprotected memory and the resident executive, which is located in protected memory.

Privileged Instruction Execution capability is provided to prevent unprotected pro-

grams from executing any input/output, protect status, interrupt instructions or the
Halt instruction. A trap is generated at interrupt Level 2 if the execution of any

privileged instruction is attempted.
The standard memory parity error is connected to interrupt Level 1, as part of the

System Protect Feature. This grouping of integrity features is the result of monitor

requirements and the physical grouping of the interrupts.

REAL-TIME CLOCK

The real-time clock, which is part of the Executive Features, produces an interrupt

signal at five millisecond intervals. The real-time clock interrupt is Level 6.



lll. INSTRUCTION SET

OVERVIEW

All MODCOMP II instructions are described in this chapter. The instructions are
grouped in the functional classes:
Load, Store and Transfer
. Arithmetic
. Floating Point
. Logical
Shift
Bit Manipulation
Byte Manipulation
Unconditional Branch
Control
Interrupt and Call
Input/Output

The principal MODCOMP instruction formats are:

0 7 8 11 12 15
OP CODE a b

Single Word Format

(e}
~
o
[
[
=
N
i
vl

OP CODE a b

IMMEDIATE OPERAND

Immediate Operand Format

0 7 8 11 12 13 15

OP CODE a I b

MEMORY ADDRESS

Two Word Format

Where: a and b define operand registers, index registers, bit address within a word,
displacement address (up to 16 locations) with respect to a base address, shift count,

interrupt level or peripheral device address and I specifies indirect addressing.



The general format for the instruction description is:

MNEMONIC INSTRUCTION NAME EXECUTION TIME

0 3 4 7 8 11 12 15
oP CODE Ra Rb

Execution Description

Affected:

The Mnemonic is a three or four letter representation of the instruction name.

The Instruction Name briefly describes the function performed by the execution of

the instruction.

The Execution Time is maximum (not average or minimum) and includes access time.

The Operation Code value is shown as two hexadecimal digits. The two right digits

contain binary coded register addresses in many instructions and other binary coded
fields in other instructions, as described. 1In all instructions in which the con-
tents of register Rb, either with or without manipulation, are transferred to

register Ra, the two register addresses may be made the same to produce a single
register operation. For example, the contents of a register can be one's comblemented
by making the Ra and Rb addresses equal in the instruction Transfer One's Complement
Register to Register.

Many instructions contain a second and some a third instruction word used for 1l6-bit
memory addresses or immediate operands. The address in the Program Register (PR)
referenced in the description of these instructions is that of the first instruction

word.

The Execution Description covers all program controlled functions performed in the

computer which comprise the instruction execution. In addition, the contents of the

Program Register are advanced to the first word of the next instruction.

The Affected line lists all general registers and memory cells in which the contents
are modified as a result of the execution of the instruction. In addition, if the
execution of the instruction can cause overflow, the word "overflow" is included in
the listing.



The symbols and abbreviations used in the instruction descriptions are listed

alphabetically in the following table.

B - Byte designator bit (0 = left byte, 1 = right byte)

DF - Displacement Field, which is used in the short displaced
addressing mode and has the value range 0 < DF < 15

BEA -~ Effective memory address, which is the address that results

after all specified address manipulation operations have been

completed
I - Indirect address bit
PR - Program Register, which is a 16-bit register containing the

Ra - General register Ra, which is the operand destination register
for many instructions

Ra, Ravl - Doubleword consisting of the concatenated values stored in
register Ra (more significant half) and register Ravl (less
significant half), where Ra is even numbered register*

Ran - Bit n of register Ra

Rb - General register Rk, which is the operand source register for
many instructions

Rxx - General register Rxx, (1 < xx < 7) is the index register for

many instructions. When Rxx = 0, no index operation occurs

Rx - Effective address register for short indexed instructions
(0 < x < 15)

S - Sign bit

us - Microseconds

- Contents of
- - Replace the contents of
+ - Addition operator
- - Subtraction operator
X - Multiplication operator

£ - Division operator

A -~ Logical AND operator

v ~ Logical OR operator
(:) - Logical Exclusive OR operator

r3 - Logical NOT (One's complement) operator*

TABLE 3-1 Symbols and Abbreviations

*Ra,RaVvl normally indicate an even/odd register pair, 4 and 5 for example. RaVl indi-
cates that a binary one is logically OR'ed with Ra (hex value) so it follows that
Ra,RaVl cannot describe an even/odd register pair. If Ra = 5 then RaVl also = 5.

**The 'Contents of' symbol ( )is shown merely to show the physical position of the
overline and is not necessarily part of the NOT symbol.



Load, Store, Transfer

Instructions

LOAD, STORE AND TRANSFER INSTRUCTIONS'

This instruction group provides the capability to transfer information from memory

to the general register file (load), from the general register file to memory (store)
and from register to register (transfer). Either a byte, word or file consisting of
from one to eight words can be transferred by single instruction execution. The word
transfer instruction set includes all seven memory addressing modes - direct, indexed,
indirect, indirect and indexed, immediate, short displaced and short indexed.

LDM LOAD REGISTER FROM MEMORY 2.4 us
0 3 4 7 8 11 12 13 15 (EA) —» Ra
E 5 Ra I Rxx

ADDRESS FIELD

0 15

The contents of the effective memory location replace the contents of register Ra.

Affected: Ra

LDl LOAD REGISTER FROM MEMORY IMMEDIATE 1.6 us
0 3 4 7 8 11 12 15 ((PR) + 1) —» Ra
A
E D Ra //

IMMEDIATE OPERAND

0 15

The contents of the second instruction word replace the contents of register Ra.
Affected: Ra

L[)E; * LOAD REGISTER FROM MEMORY SHORT DISPLACED 1.87 us

0 .3 4 7 8 11 12 15 ((R1) + DF) —»Ra

The contents of the memory location specified by the displacement field DF added to the
contents of register Rl replace the contents of register Ra.

Affected: Ra



Load, Store, Transfer
Instructions
L[))( LOAD REGISTER FROM MEMORY SHORT INDEXED

3 4 7 8 il 12 15 ((Rx)) —» Ra
F D Ra Rx

(=]
G

The contents of the memory location specified by the contents of register Rx replace
the contents of register Ra.

Affected: Ra

STM . STORE REGISTER IN MEMORY 2.4 us

3 4 7 8 11 12 13 15
(Ra) —» EA

E 6 Ra I Rxx

ADDRESS_FIELD

15

The contents of register Ra replace the contents of the effective memory location.

Affected: (EA)

STI ' STORE REGISTER IN MEMORY IMMEDIATE 1.6 us

0 34 78 11 12 15 (Ra) —» (PR) + 1

E E Ra Y

IMMEDIATE OPERAND

=
w

The contents of register Ra replace the contents of the second instruction word

Affected: ((PR) + 1)

STS - STORE REGISTER IN MEMORY SHORT DISPLACED 1.87 us

0 3 4 7 8
1112 15 (Ra) —» (R1) + DF

The contents of register Ra replace the contents of the memory location specified by
the displacement field DF added to the contents of register R1.

Affected: (EA)



Load, Store, Transfer
Instructions
S IX L STORE REGISTER IN MEMORY SHORT INDEXED 1.87 us
0 3 4 7 8 11 12 15

The contents of register Ra replace the contents of the memory location specified by

the contents of register Rx.

Affected: (EA)

LBX LOAD BYTE FROM MEMORY 2.13 us
0 3 4 7 8 11 12 15
(EBA) - Ra,_
A E Ra Rx 8-15
0 > Ra0_7
0 15

REGISTER Rx
BASE WORD ADDRESS

REGISTER Rx V 1

S SIGNED WORD DISPLACEMENT B

The contents of the effective byte location replace the right byte in register Ra.
Zeroes replace the left byte in register Ra. Register Rx specifies an even/odd pair
of general registers which contain the base word address and the signed byte dis-
placement. The byte designator B specifies the byte within the memory word (0 = left,
1 = right). ’

Affected: Ra

Effective Byte Address Generation

Byte addressing is a special form of short indexed addressing. The effective byte
address is generated by the addition of the base word address and the signed byte
displacement which consists of the signed word displacement and a byte designator B.
During the instruction execution the signed word displacement is right shifted by one
bit position and is then added to the base word address to form an effective word
address. The equation can be interpreted as: EBA = Rx + Rx V 1

B = 0 Specifies the byte contained in bits 0-7 ?

B 1 Specifies the byte contained in bits 8-15



Load, Store, Transfer

Instructions

SBX STORE BYTE IN MEMORY 3.2 us

0 3 4 78 11 12 15

(Ra ) — EBA

8-15

REGISTER Rx
BASE WORD ADDRESS

REGISTER Rx V 1

S SIGNED WORD DISPLACEMENT B

The right byte in register Ra replaces the contents of the effective byte location.
The other byte in the memory word is not affected. The byte designator B specifies
the byte within the memory (0 = left, 1 = right). See Effective Byte Address Generation

under the description of the Load Byte From Memory instruction.

Affected: (EBA)

LFM . LOAD FILE FROM MEMORY 4.0 us + .8 (R-1)
0 3 4 78 11 1z 13 i5
(EA) —» Ra
A 4 Ra I RxX (EA+1) — Ra+l
(EA+N) —» R7 (If a < 7)
ADDRESS FIELD (EA+N) — R15 (If 7 <a < 15)

The contents of from one to eight consecutive memory location starting with the
effective memory location replace the contents of register Ra through R7, if a < 7,

or register Ra through R15, if 7 < a £ 15.

Affected: Ra through R7/15

LFS LOAD FILE FROM MEMORY SHORT DISPLACED 3.47 + .8 (R-1)
0 3 4 7 8 11 12 15 ((R1) + DF) + Ra
B 4 Ra DF ((RL) + DF + 1) - Ra+l

((RL) + DF + N) » R7 (If a < 7)
((R1) + DF + N) ~ RL5 (If 7 < a < 15)

The contents of from one to eight consecutive memory locations starting with the location
specified by the displacement field DF added to the contents of register Rl replace the
contents of registers Ra through R7, if a {7, or register Ra through R15, if 7 ¢ a < 15.

Affected: Ra through R7/15



<
o
'3
&)
<t
©
©

3
w

HORT INDEXED
LFX LOAD FILE FROM MEMORY SHO 347 4 .8 (R-1)
0 34 7 8 11 12 15 ((Rx)) —= Ra
((Rx)+1l) —= Ra+l
B c Ra Rx ((Rx)+N) — R7 (If a <7)
((Rx)+N) — R15 (If 7 < a <15)

The contents of from one to eight consecutive memcry locations starting with the

location specified by the contents of Rx replace the contents of registers Ra through

R7, if a £7, or register Ra through R15, if 7 € a < 15.
Affected: Ra through R7/15
SFM STORE FILE IN MEMORY 4.0 us + .8 (R—l)-.
0 3 4 7 8 11 12 13 15
(Ra) —e= EA
A 5 Ra I RXX (Ra+l) —= EA+1l
(R7) —= EA+N (If a £ 7)
ADDRESS FIELD (R15) -+ EA+N (If 7 < a <15)
0 15
The contents of registers Ra through R7, if a < 7, or registers Ra through R15, if
7 < a £15, replace the contents of from one toc eight consecutive memory locations
starting with the effective memory location.
Affected: (EA) ... (EA+N)
SFS STORE FILE IN MEMORY SHORT DISPLACED 3.47 us + .8 (R-1)
(Ra) ~+ (R1)+DF
0 3 4 78 11 12 15 (Ra+l) —= (R1l)+DF+1
B 5 Ra DF (R7) —» (R1)+DF+N (If a < 7)
(R15) —= (RL)+DF+N (If 7< a <15)

The contents of registers Ra through R7, if a < 7, or registers Ra through R15, if
7 < a £15, replace the contents of from one to eight consecutive memory locations

starting with the location specified by the displacement field DF added to the contents

of register R1.
Affected:

SFX

(EA) ... (EA+N)

STORE FILE IN MEMORY SHORT INDEXED

3.47 us + .8

(R-1)

0 3 4 8 11 12 15 (Ra) —e (Rx)
= (Ra+l) — (Rx)+1
B D
Ra Rx (R7) —e (RX)+N (If a < 7)

The contents of registers Ra through R7, if

7 <

(RL5) —e (RX)+N (If 7< a<15)

a € 7, or registers Ra through R15, if

starting with the location specified by the contents of Rx.

Affected:

(EA) ... (EA+N)

a €15, replace the contents of from one to eight consecutive memory locations



Load, Store, Transfer
Instructions

us
us

TRR - TRANSFER REGISTER TO REGISTER 0.8

0 3 4 7 8 11 12 15 (Rb) — Ra

The contents of register Rb replace the contents of register Ra.

Affected: Ra

TRRB R A TRANSFER REGISTER TO REGISTER AND BRANCH IF NONZERO 1.6 us
3 4 7 8 11 12 15
0 (Rb) —= Ra
7 D Ra Rb If Result #0, EA —e= PR
If Result =0, (PR)+2 —= PR

ADDRESS FIELD

The contents of register Rb replace the contents of register Ra.

If the results are unequal -to zero, a branch is executed to the effective word location.
If the results equal zero, the next instruction in sequence is executed.

Affected: Ra



Arithmetic Instructions

ARITHMETIC INSTRUCTIONS

This instruction group includes the add, double-precision add, subtract, multiply,

divide, compare, and two's complement instructions.

All instructions assume fixed-point operands, which may be scaled at any bit position.
The double-precision add and divide instructions assume doubleword operands. All

other instructions assume word operands.

All instructions, except the multiply and compare, produce an overflow if the condi-

tions described with each instruction are met.

The multiply/divide instructions are a compatible set. Not only is the relationship
true: (A x B) + A = B, but also the positioning of the operands and results are con-
sistent. In multiply operations, if Ra specifies an even numbered general register,
the doubleword product is then stored in the even-odd register pair consisting of Ra
and RaVl. If Ra specifies an odd numbered register, the least significant 16 bits

of the product replace the multiplier in Ra. In divide, the doubleword dividend must
be stored in an even-odd register pair Ra and RaVl. The quotient is then stored in
RaVl and the remainder in Ra. Therefore, the multiplier and quotient occupy the same
register positions, which simplifies computations.

The maximum values of the products for word operand pairs having all combinations of

signs are:

Operand Signs Maximum Operands Maximum Product
(+ x +) (213-1) x (215-1) = 230,16 50
+ x -) (215-1) x 215 = 230 _ 515
(= x ) ,15 )15 _ ,30
-where minus full scale = 1000 0000 0000 0000, = 2%5.

None of these numbers exceed the capacity of a doubleword and therefore overflow can-

not occur.

In the divide operation, overflow will occur if the quotient exceeds 16 bits in length.
Two checks are made by the overflow checking logic to determine if this error condition
exists:

(1) The sign and most significant bit of the dividend are compared. They
must be equal; otherwise overflow will occur.

(2) The dividend is shifted left one bit position and then the divisor is
subtracted from the most significant half. oOverflow will occur if the
absolute magnitude of the most significant half of the shifted dividend
is not less than the absolute magnitude of the divisor.

As a result of the overflow logic the absolute magnitude of the largest permissable

dividend is 230 _ ;15 _ ,0

3-10



Arithmetic Instructions

Divide scaling is described in Appendix D.

/\[)hﬁ ADD MEMORY TO REGISTER 2.4 us

0 3 4 7 8 11 12 13 15

(EA) + (Ra) —= Ra
E 0 Ra I Rxx

ADDRESS FIELD

The contents of the effective memory location are algebraically added to the contents
of register Ra. The result is stored in register Ra. An overflow occurs if both
operands have like signs but the result has the opposite sign.

Affected: Ra, Overflow

/\[)' ADD MEMORY TO REGISTER IMMEDIATE 1.6 us

0 3 4 78 11 12 ((PR)+1) + (Ra) —= Ra

E e ~ L

IMMEDIATE OPERAND
0 1 15

The contents of the second instruction word are algebraically added to the contents of
register Ra. The result is stored in register Ra. An overflow occurs if both operands
have like signs but the result has the opposite sign.

Affected: Ra, Overflow

/\[)5; ADD MEMORY TO REGISTER SHORT DISPLACED 1.87 us

0 3 4 7 8 11 12 15 ((R1)+DF) + (Ra) — Ra

The contents of the memory location specified by the displacement field DF added to the
contents of register Rl are algebraically added to the contents of register Ra. The
result is stored in register Ra. An overflow occurs if both operands have like signs
but the result has the opposite sign.

Affected: Ra, Overflow



Arithmetic Instructions

/\[))( ADD MEMORY TO REGISTER SHORT INDEXED 1.87 us

—e R
0 3 4 7 8 11 12 15 ((Rx)) + (Ra) @

The contents of the memory location specified by the contents of register Rx are
algebraically added to the contents of register Ra. The result is stored in register
Ra. An overflow occurs if both operands have like signs but the result has the

opposite sign.
Affected: Ra, oOverflow

ADMM ADD REGISTER TO MEMORY 3.47 us
0 3 4 7 8 11 12 13 15

(Ra) + (EA) —= EA

C 0 Ra I Rxx

ADDRESS FIELD

0 15

The contents of register Ra are algebraically added to the contents of the effective
memory location. The result is stored in the effective memory location. an over-
flow occurs if both operands have like signs but the result has the opposite sign.

Affected: Overflow , (EA)

4.27 us - BRANCH
ADMB ADD REGISTER TO MEMORY AND BRANCH IF NONZERO

0 3 4 7 8 11 12 13 15

(Ra) + (EA) —» EA
¢ 4 Ra I] Rxx If Result #0, ((PR)+2)—= PR
If Result =0, (PR)+3 —e PR

OPERAND ADDRESS FIELD

BRANCH ADDRESS FIELD
0 15

The contents of register Ra are algebraically added to the contents of the effective
memory location. The result is stored in the effective memory location. If the result
does not equal zero, a branch is executed to the location specified by the third
instruction word. Only the direct address mode without indexing is performed for the
branch address. TIf the result equals zero, the next instruction in sequence is ex-
ecuted. An overflow occurs if both operands have like signs but the result has the
opposite sign.

Affected: Overflow , (EA)



Arithmetic Instructions

/\[)E;“ﬂ ADD REGISTER TO MEMORY SHORT DISPLACED 2.67 us

0 3 4 7 8 11 12 15 (Ra) + ((R1) + DF)— (Rl) + DF

The contents of register Ra are algebraically added to the contents of the effective
memory location specified by the displacement field DF added to the contents of
register Rl. The result is stored in the effective memory location. An overflow

Affected: Overflow , (EA)

/\[)E;E; ADD REGISTER TO MEMORY SHORT DISPLACED AND 3.47 us-BRANCH
BRANCH IF NONZERO
0 3 4 7 8 11 12 15

(Ra) + ((Rl) + DF) — (R1) + DF
If Result #0,( (PR)+1l)=—= PR
If Result =0, (PR)+2 —= PR

D 4 I Ra DF

BRANCH ADDRESS FIELD

0 15

The contents of register Ra are algebraically added to the contents of the effective
memory location specified by the displacement field DF added to the contents of
register Rl. The result is stored in the effective memory location. If the result
does not equal zero, a branch is executed to the memory location specified by the
contents of the second instruction word. If the result equals zero, the next
instruction in sequence is executed. An overflow occurs if both operands have like

signs but the result has the opposite sign.

Affected: Overflow , (EA)
A M\/RA '
RAUAIVI ADD REGISTER TO MEMORY SHORT INDEXED 2.67 us
0 3 4 7 8 11 12 (Ra) + ((Rx)) — (Rx)
D 8 Ra Rx

The contents of register Ra are algebraically added to the contents of the effective
memory location specified by the contents of register Rx. The result is stored in
the effective memory location. An overflow occurs if both operands have like signs
but the result has the opposite sign.

Affected: Overflow , (EA)



ADXB ADD REGISTER TO MEMORY SHORT INDEXED '3.47 us-BRANCH
AND BRANCH IF NONZERO

0 3 4 7 8 11 12 15

(Ra) + ((Rx)) — (Rx)
D c Ra Rx If Result #0,((PR)+1)—= PR
If Result =0, (PR)+2 —e= PR

BRANCH ADDRESS FIELD

15

The contents of register Ra are algebraically added to the contents of the effective
memory location specified by the contents of register Rx. The result is stored in the
effective memory location. If the result does not equal zero, a branch is executed
to the memory location specified by the contents of the second instruction word. If
the result equals zero, the next instruction in sequence is executed. An overflow

occurs if both operands have like signs but the result has the opposite sign.

Affected: Overflow , (EA)
ADR ADD REGISTER TO REGISTER 0.8 us
0 3 4 7 8 11 12 15 (Rb) + (Ra) —= Ra

6 8 Ra Rb

The contents of register Rb are algebraically added to the contents of register Ra.
The result is stored in register Ra. An overflow occurs if both operands have like
signs but the result has the opposite sign.

Affected: Ra, dverflow

ADRB ADD REGISTER TO REGISTER AND BRANCH IF NONZERO 1.6 us

0 3 4 7 8 11 12 15

(Rb) + (Ra) — Ra
7 8 Ra Rb If Result #0, EA —e PR
If Result =0, (PR)+2 —e PR

ADDRESS FIELD

The contents of register Rb are algebraically added to the contents of register Ra.
The result is stored in register Ra. If the result does not equal zero, a branch is
executed to the effective word location. If the result equals zero, the next instruc-
tion in sequence is executed. An overflow occurs if both operands have like signs

but the result has the opposite sign.

Affected: Ra, Overflow

3-14



Arithmetic Instructions
DAR DOUBLE PRECISION ADD REGISTER TO REGISTER 2.13 us

(Rb, RbV1l) + (Ra, RaVl) —
0 3 4 7 8 11 12 15 Ra, Ravl )

The contents of registers Rb and Rbvl (with register Rb containing the more significant
half and register RbvVl containing the less significant half of a double precision data
word) are algebraically added to the contents of registers Ra and RaVl (with register

Ra containing the more significant half and register RaVl containing the less significant
half of a double precision data word). The sum replaces the contents of registers Ra

and Ravl. Ra and Rb must specify even-numbered general registers.

Affected: Ra, Ravl, Overflow

ESLJAA SUBTRACT MEMORY KFROM REGISTER 2.4 us
0 3 4 7 8 11 12 13 15
(Ra) - (EA) — Ra
E 1 Ra I Rxx

ADDRESS FIELD

The contents of the effective memory location are algebraically subtracted from the
contents of register Ra. The result is stored in register Ra. An overflow occurs

when the result is the same as the sign of the subtrahend but is different from the
sign of the minuend. '

'~ Affected: Ra, Overflow

st
O

S;LJ' SUBTRACT MEMORY FROM REGISTER IMMEDIATE us

0 3 4 7 8 11 15 (Ra) - ((PR)+1) —e Ra

E [ w Do

IMMEDIATE OPERAND
0 15

The contents of the second instruction word are algebraically subtracted from the con-
tents of register Ra. The result is stored in register Ra. An overflow occurs when

the result is the same as the sign of the subtrahend but is different from the sign
of the minuend.

Affected: Ra, Overflow



Arithmetic Instructions

SUS SUBTRACT MEMORY FROM REGISTER SHORT DISPLACED 1.87 us

0 3 4 7.8 11 12 15 (Ra) - ((R1) +DF) — Ra

F 1 Ra DF

The contents of the memory location specified by the displacement field added to the
contents of register Rl are algebraically subtracted from the contents of register
Ra. The result is stored in register Ra. An overflow occurs if the sign of the re-
sult is the same as the sign of the subtrahend but is different from the sign of the
minuend.

Affected: Ra, Overflow

SUX 4 ' SUBTRACT MEMORY FROM REGISTER SHORT INDEXED : 1.87 us

0 3 4 7 8 11 12 15 (Ra) - ((Rx)) —= Ra

The contents of the memory location specified by the contents of register Rx are
algebraically subtracted from the contents of register Ra. The result is stored in
register Ra. An overflow occurs when the sign of the result is the same as the sign
of the subtrahend but is different from the sign of the minuend.

Affected: Ra, oQverflow

/"/ L
SUR { ™/ SUBTRACT REGISTER FROM REGISTER 0.8 us

0 34 7 8 11 12 15 (Ra) - (Rb) — Ra
6 9 Ra Rb '

The contents of register Rb are algebraically subtracted from the contents of register
Ra. The result is stored in register Ra. An overflow occurs when the sign of the re-
sult is the same as the sign of the subtrahend but is different from the sign of. the

minuend.

Affected: Ra, Overflow

SURB ¢ SUBTRACT REGISTER FROM REGISTER AND BRANCH IF NONZERO 1.6 us

0 3 4 7 8 11 12 15 (Ra) - (Rb) — Ra

If Result #0, EA — PR
If Result =0, (PR)+2 —= PR

7 9 Ra Rb
ADDRESS FIELD

The contents of register Rb are algebraically subtracted from the contents of register
Ra. The result is stored in register Ra. If the result does not equal zero, a branch

is executed to the effective word location. If the result equals zero, the next



Arithmetic Instructions

instruction in sequence is executed. An overflow occurs when the sign of the result
is the same as the sign of the subtrahend but is different from the sign of the

minuend.

Affected: Ra, Overflow

MPM MULTIPLY MEMORY BY REGISTER 7.74 us

0 3 4 7 8 11 12 13 15

(EA) x (RAV1)-——w=Ra, Ravl
A 0 Ra I Rxx
ADDRESS FIELD
0 15

The contents of the effective memory location (multiplicand) are multiplied by the
contents of register RaVl (multiplier). Ra normally specifies an even register so that
the more significant half of the product replaces the contents of register Ra and the
less significant half of the product replaces the contents of register Ravl. The sign
of the product replaces the sign bit of register Ra. If Ra specifies an odd numbered
register, the least significant 16 bits of the product replace the contents of register
Ra.

Affected: Ra, RaVl

MPS MULTIPLY MEMORY BY REGISTER SHORT DISPLACED 7.21 us

0 34 7 8 11 12 15

((R1)+DF) x (RaVl)—s=Ra, Ravl

The contents of the memory location specified by the displacement field DF added to
the contents of register Rl (multiplicand) are multiplied by the contents of register

Ravl(multiplier). Ra normally specifies an even register so that the more significant
hal
of the product replaces the contents of register RaVl. The sign of the product replaces

1
f of the product replaces the contents of register Ra and the less significant half

the sign bit of register Ra. If Ra specifies an odd numbered register, the least
significant 16 bits of the product replace the contents of register Ra.

Affected: Ra, RaVvl

MPX MULTIPLY MEMORY BY REGISTER SHORT INDEXED 7.21 us

0 3 4 7 8 11 12 15

((Rx)) % (RaVl)—e Ra, RaVl

The contents of the memory location specified by the contents of Rx (multiplicand) are
multiplied by the contents of register Ravl(multiplier). Ra normally specifies an even
numbered register so that the product replaces the contents of register Ra and the less
significant half of the product replaces the contents of register RaVl. The sign of the



Arithmetic Instructions

product replaces the sign bit of register Ra. If Ra specifies an odd numbered register,
the least significant 16 bits of the product replace the contents of register Ra.

Affected: Ra, RaVl

MPR MULTIPLY REGISTER BY REGISTER 6.67 us

0 3 4 7 8 11 12 15 (Rb) x (Ravl)—=Ra, RaVl

2 0 Ra Rb

The contents of register Rb (multiplicand) are multiplied by the contents or register
Ravl (multiplier). Ra normally specifies an even numbered register so that the more
significant half of the product replaces the contents of register Ra and the less
significant half of the product replaces the contents of register RaVl. The sign of
the product replaces the sign bit of register Ra. If Ra specifies an odd numbered
register, the least significant 16 bits of the product replace the contents of Ra.

Affected: Ra, RaVl

DVM DIVIDE REGISTER BY MEMORY 12.2 us
0 3 4 7_8 11 12 13 15 (Ra, Ravl) +(EA)—seRa, RaVl
A 1 Ra I RXX

ADDRESS FIELD
0 15

The contents of the effective memory location (divisor) are divided into the contents
of registers Ra and Ravl (dividend). The quotient replaces the contents of register
RaVl and the remainder replaces the contents of register Ra. The sign of the quotient
replaces the sign bit of register Ravl. Ra must specify an even numbered register.

Overflow will occur if the quotient exceeds 16 bits.

Affected: Ra, Ravl Overflow

[)\/E; DIVIDE REGISTER BY MEMORY SHORT DISPLACED 11.4 us

0 3 4 7 _8 11 12 (Ra, RaVvl)+((Rl)+DF)—sRa, RaVl

B 1 Ra DF

The contents of the memory location specified by the displacement field DF added to
the contents of register Rl (divisor) are divided into the contents of registers Ra
and RaVl (dividend). The quotient replaces the contents of register Ravl and the re-

mainder replaces the contents of register Ra. The sign of the quotient replaces the



Arithmetic Ins tructions

sign bit of register RaVl. Ra must specify an even numbered register. Overflow will

occur if the quotient exceeds 16 bits.
Affected: Ra, RaVl Overflow

DVX DIVIDE REGISTER BY MEMORY SHORT INDEXED 11.4 us

R T ((Rx Ra 1

0 3 4 7 g 11 12 15 (Ra, Ravl) +((Rx)) —= Ra, RaVv
B 9 Ra Rx

The contents of the memory location specified by the contents of register Rx (divisor)
are divided into the contents of registers Ra and Rayl (dividend). The quotient re-
places the contents of register Ravl and the remainder replaces the contents of register
Ra. The sign of the quotient replaces the sign bit of register Ravl. Ra must specify
an even numbered register. Overflow will oceur if the guotient exceeds 16 bits.

Affected: Ra, RavVl Overflow

DVR DIVIDE REGISTER BY REGISTER 11.9 us

0 3 4 7 g 11 12 15 (Ra, Ravl)+(Rb) —= Ra, RaVl

The contents of register Rb (divisor) are divided into the contents of registers Ra
and Ravl (dividend). The quotient replaces the contents of register RaVl and the re-
mainder replaces the contents of register Ra. The sign of the quotient replaces the
sign bit of register Ravl. Ra must specify an even numbered register. Overflow will
occur if the quotient exceeds 16 bits. .

Affected: Ra, RaVl Overflow

CRMB COMPARE MEMORY AND REGISTER 4.53 us
0 3 4 7 8 11 12 13 15
If (Ra) - (EA) =0, ((PR)+2) — PR
o] 7 Ra I RXX If (Ra) - (EA)< 0, ((PR)+3) — PR
If (Ra) - (EA) >0, (PR)+4 — PR

OPERAND ADDRESS FIELD

BRANCH ADDRESS FIELD (Ra) = (EA)

BRANCH ADDRESS FIELD (Ra) < (EA)

The contents of the effective memory location are algebraically subtracted from the
contents of register Ra. If the result equals zero, a branch is executed to the
location specified by the third instruction word. If the result is negative, a
branch is executed to the location specified by the fourth instruction word. Only
the direct addressing mode without indexing is permitted for the branch operation.
If the result is greater than Zero, the next instruction in sequence is executed.
Affected: None



Arithmetic Instructions

(:F‘S;EB COMFARE MEMORY AND REGISTER SHORT DISPLACED 4.0 us

11 12 15 If (Ra)-((R1)+4DF)=0, ((PR)+l)—=PR
2 = 1 If (Ra)-((R1)+DF)<0, ((PR)+2)-=PR
D 7 Ra DF If (Ra)-((RL)+DF)>0, (PR)+3-=PR

BRANCH ADDRESS FIELD (EA)=(Ra)

BRANCH ADDRESS FIELD (EA)>(Ra)

15

The contents of the memory location specified by the displacement field added to the
contents of register Rl are algebraically subtracted from the contents of register
Ra. If the result equals zero, a branch is executed to the location specified by the
second instruction word. If the result is negative, a branch is executed to the
location specified by the third instruction word. Only the direct addressing mode
without indexing is permitted for the branch operation. If the result is greater
than zero, the next instruction in sequence is executed.

Affected: None

CRXB COMPARE MEMORY AND REGISTER SHORT INDEXED 4.0 us
0 3 4 7 8 11 12 15 If (Ra)-((Rx))=0, ((PR)+l)— PR
If (Ra)-((Rx))<0, ((PR)+2)— PR
D F Ra Rx If (Ra)-((Rx))>0, (PR)+3—= PR

BRANCH ADDRESS FIELD (EA)=(Ra)

BRANCH ADDRESS FIELD (EA)>(Ra)

The contents of the memory location specified by the contents of register Rx are
algebraically subtracted from the contents of register Ra. If the result equals

zero, a branch is executed to the location specified by the second instruction word.
If the result is negative, a branch is executed to the location specified by the third
instruction word. Only the direct addressing mode without indexing is permitted for
the branch operation. If the result is greater than zero, the next instruction

in sequence is executed.

Affected: None

TRO TRANSFER AND RESET OVERFLOW STATUS 0.8 us
0 3 4 7 8 11 12 15 (OVERFLOW) ~ Ra,
0 E Ra / (CARRY SAVE) -+ Ra .

0 -~
OVERFLOW, Ral—l4

The content of the overflow latch is transferred into the most significant bit of
Ra and the last adder carry out saved is transferred into the least significant bit
of Ra. Bits 1-14 of register Ra are set to zero and the overflow latch is reset by
the execution of this instruction.

Affected: Ra, Overflow



Arithmetic Instructions

I IF‘ TRANSFER TWO'S COMPLEMENT REGISTER TO REGISTER 0.8 us
6 F Ra Rb

The contents of register Ra are replaced by the two's complement of register Rb. An
overflow occurs if the operand is minus full scale.
Affected: Ra, Overflow

[TRB TRANSFER TWO'S COMPLEMENT REGISTER TO REGISTER AND BRANCH 1.6 us
IF NONZERO
0 3 4 78 11 12 15

. (Rb) +1 —® Ra
r Ra KD If Result #0, EA — PR
If Result =0, (PR)+2 —= PR

~J

ADDRESS FIELD

The contents of register Ra are replaced by the two's complement of the contents of
register Rb. If the result does not equal zero, a branch is executed to the effective
word location. If the result equals zero, the next instruction in sequence is executed.
An overflow occurs if the operand is minus full scale.

Affected: Ra, Overflow



Logical Instructions

LOGICAL INSTRUCTIONS

This group consists of the Extract {AAB), OR (AV B), Exclusive OR (AQDB), One's
Complement, and Test instructions. All of these instructions operate on 16-bit
operands. They produce a logical product (Extract), sum (OR), modulo-two sum (Ex-
clusive OR), or complement and all but the Test instructions store the result in a
general register or memory location. The Test instructions enable a comparison to be

made between two operands without modifying either.

E1P“A : EXTRACT MEMORY FROM REGISTER 2.4 us
0 3 4 7 8 11 12 13 15
E 2 Ra I Rxx (EA) A (Ra) —» Ra

ADDRESS FIELD

The one's complement of the contents of the effective memory location are logically
multiplied (AND function) by the contents of register Ra. The result is stored in
register Ra.

Affected: Ra

E1-| EXTRACT MEMORY FROM REGISTER IMMEDIATE 1.6 us

0 3 4 7_8 11 12 15 ((PR)+1) A (Ra) — Ra

] » I A

IMMEDIATE OPERAND
0 15

The one's complement of the contents of the second instruction word are logically
multiplied (AND function) by the contents of register Ra. The result is stored in
register Ra.

Affected: Ra

ETS  EXTRACT MEMORY FROM REGISTER SHORT DISPLACED 1.87 ue
0 3 4 7 8 11 12 15 ((R1)+DF) A (Ra) — Ra
F 2 Ra DF

The one's complement of the contents of the memory location specified by the dis-
placement field DF added to the contents of register Rl are logically multiplied
(AND function) by the contents of register Ra. The result is stored in register Ra.

Affected: Ra



Logical Instructions
ETX EXTRACT MEMORY FROM REGISTER SHORT INDEXED 1.87 us

0 3 4 7 8 11 12 15 ((Rx)) A (Ra) —= Ra

The one's complement of the contents of the memory location specified by the contents
of register Rx are logically multiplied (AND function) by the contents of register Ra.
The result is stored in register Ra.

Affected: Ra

ETMM (5) EXTRACT REGISTER FROM MEMORY 3.47 us
0 3 4 7 8 11 12 13 15

~ . . _ _ (Ra) A (EA) —» EA

- 1 xa 1 KXX

ADDRESS FIELD

The one's complement of the contents of register Ra are logically multiplied (AND
function) by the contents of the effective memory location. The result is stored in
the effective memory location.

Affected: (EA)

4.27 us-NO BRANCH
ETMB EXTRACT REGISTER FROM MEMORY AND BRANCH IF NONZERO C

0 3 4 7 8 11 12 13 15

(Ra) A (EA) — EA
C 5 : Ra I Rxx If Result #0,( (PR)+2) — PR
1f Result =0, (PR)+3 —= PR

OPERAND ADDRESS FIELD

BRANCH ADDRESS FIELD

The one's complement of the contents of register Ra are logically multiplied (AND
function) by the contents of the effective memory location. The result is stored in
the effective memory location. If the result does not equal zero, a branch is ex-
ecuted to the location specified by the third instruction word. Only the direct
address mode without indexing is performed. If the result equals zero, the next
instruction in sequence is executed.

Affected: (gap)



Logical Instructions

ETSM - EXTRACT REGISTER FROM MEMORY SHORT DISPLACED 2.67 us

0 3 4 7 8 11 12 15 (Ra) A ((R1)+DF) —= (R1)+DF

The one's complement of the contents of register Ra are logically multiplied (AND
function) by the contents of the effective memory location specified by the dis-
placement field DF added to the contents of register Rl. The result is stored in
the effective memory location.

Affected: (Ea)

ETSB EXTRACT REGISTER FROM MEMORY SHORT DISPLACED AND BRANCH 3.47 us
IF NONZERO
0 3 4 7 8 11 12 15 (Ra) A ((R1)+DF) —= (R1)+DF

If Result #0 ((PR)+l) —= PR
If Result =0 (PR)+2 -+ PR

D 5 Ra DF

BRANCH ADDRESS FIELD
0 15

The one's complement of the contents of register Ra are logically multiplied (AND
function) by the contents of the effective memory location specified by the displace-
ment field DF added to the contents of register Rl. The result is stored in the
effective memory location. If the result does not equal zero, a branch is executed
to the location specified by the second instruction word. Only the direct address
mode without indexing is performed. If the result equals zero, the next instruction
in sequence is executed. '

Affected: (EA)

ETXM EXTRACT REGISTER FROM MEMORY SHORT INDEXED 2.67 us

0 3 4 7 8 11 12 15 (Ra) A ((Rx)) —= (Rx)

The one's complement of the contents of register Ra are logically multiplied (AND
function) by the contents of the effective memory location specified by the contents
of register Rx. The result is stored in the effective memory location.

Affected: (EA)



Logtical Instructions

ETXB EXTRACT REGISTER FROM MEMORY SHORT INDEXED AND BRANCH 3.47 us
IF NONZERO

(Ra) A ((Rx)) —= (Rx)
If Result #0 ((PR)+1)—PR
If Result =0 (PR)+2—e PR

0 3 4 7 8 11 12 15

D D Ra Rx
BRANCH ADDRESS FIELD

0 15

The one's complement of the contents of register Ra are logically multiplied (AND
function) by the contents of the effective memory location specified by the contents
of register Rx. The result is stored in the effective memory location. If the re-
sult does not equal zero, a branch is executed to the location specified by the
second instruction word. Only the direct address mode without indexing is performed.
If the result equals zero, the next instruction in sequence is executed.

Atfected: (EA)

ETR EXTRACT REGISTER FROM REGISTER 0.8 us

0 3 4 7 8 11 12 15 (Rb) A (Ra) — Ra

The one's complement of the contents of register Rb are logically multiplied (AND
function) by the contents of register Ra. The result is stored in register Ra.
Affected: Ra

ETRB EXTRACT REGISTER FROM REGISTER AND BRANCH IF NONZERO 1.6 us
0 34 78 11 12 15 ) A (Ra) — Ra
A Ra Rb If Result #0, EA — PR
’ If Result =0, (PR)+2—= PR

ADDRESS FIELD

15

The one's complement of the contents of register Rb are logically multiplied (AND
function) by the contents of register Ra. The result is stored in register Ra.

If the result does not equal zero, a branch is executed to the effective word location.
If the result equals zero, the next instruction in sequence is executed.

Affected: Ra



Logical Instructions

ORM OR MEMORY AND REGISTER 2.4 us

0 3 4 7 8 11 12 13 15

E 3 Ra 1| Rxx (EA) V (Ra) —= Ra

ADDRESS FIELD

The contents of the effective memory location are logically added (OR function) to the
contents of register Ra. The result is stored in register Ra.
Affected: Ra

ORI OR MEMORY AND REGISTER IMMEDIATE 1.6 us

R R
0 34 7 g 11 ((PR)+1) V (Ra) —= Ra

E ; ~ L

IMMEDIATE OPERAND
0 1 15

The contents of the second instruction word are logically added (OR function) to the
contents of register Ra. The result is stored in register Ra.
Affected: Ra

ORS OR MEMORY AND REGISTER SHORT DISPLACED 1.87 us

0 3 4 7 8 11 12 15 ((R1)+DF) V (Ra) —= Ra

F 3 Ra DF

The contents of the memory location specified by the displacement field DF added to
the contents of register Rl are logically added (OR function) to the contents of
register Ra. The result is stored in register Ra.

Affected: Ra

ORX OR MEMORY AND REGISTER SHORT INDEXED 1.87 us

0 3 4 78 11 12 15 ) ({Rx)) V (Ra) — Ra

The contents of the memory location specified by the contents of register Rx are
logically added (OR function) to the contents of register Ra. The result is stored
in register Ra.

Affected: Ra



Logical Instructions

ORMM OR REGISTER AND MEMORY 3.47 us

0 3 4 7 8 11 12 13 15
(Ra) V (EA) — EA

The contents of register Ra are logically added (OR function) to the contents of the

effective memory location. The result is stored in the effective memory location.

ORSM OR REGISTER AND MEMORY SHORT DISPLACED 2.67 u
. S

0 3 4 78 11 12 15 (Ra) V ((R1)+DF) —» (R1)+DF

The contents of register Ra are logically added (OR function) to the contents of the
effective memory location specified by the displacement field DF added to the contents
of register Rl. The result is stored in the effective memory location.

Affected: (EA)

()F?)(“A OR REGISTER AND MEMORY SHORT INDEXED 2.67 us

0 3 4 7 8 11 12 15 (Ra) V ((Rx)) — (Rx)

The contents of register Ra are logically added (OR function) to the contents of the
effective memory location specified by the contents of register Rx. The result is
stored in the effective memory location.

Affected: (Ea)

ORR OR REGISTER AND REGISTER 0.8 us

0 3 4 7 8 11 12 15 (Rb) V (Ra)—= Ra

The contents of register Rb are logically added (OR function) to the contents of
register Ra. The result is stored in register Ra.
Affected: Ra



Logical Instructions

ORRB OR REGISTER AND REGISTER AND BRANCH IF NONZERO 1.6 us
0 34 7 8 11 12 1 (Rb) V (Ra) — Ra
If Result #0, EA —» PR
! B Ra Rb If Result =0, (PR)+2— PR

ADDRESS FIELD

.

The contents of register Rb are logically added (OR function) to the contents of regis-
ter Ra. The result is stored in register Ra. If the result does not equal zero, a
branch is executed to the effective word location. If the result equals zero, the next

instruction in sequence is executed.

Affected: Ra

)(C)“A EXCLUSIVE OR MEMORY AND REGISTER 2.4 us

0 3 4 7 8 11 12 13 15

e 4 ra . (Ea) (V) (Ra) — Ra

ADDRESS FIELD

The contents of the effective memory location are logically added modulo two (Exclusive
Or function) to the contents of register Ra. The result is stored in register Ra.
Affected: Ra

)(C)l EXCLUSIVE OR MEMORY AND REGISTER IMMEDIATE 1.6 us

0 3 4 78 11 ((erR)+1) (V) (Ra) — Ra

: : =~ L7

IMMEDIATE OPERAND

0 1 15

The contents of the second instruction word are logically added modulc two (Exclusive
Or function) to the contents of register Ra. The result is stored in register Ra.
Affected: Ra



Logical Instructions

XOS EXCLUSIVE OR MEMORY AND REGISTER SHORT DISPLACED 1.87 us

0 3 4 7.8 11 12 15 ((RL)+DF) (V) (Ra) — Ra

The contents of the memory location specified by the displacement field DF added to the
contents of register Rl are logically added modulo two (Exclusive Or function) to the
contents of register Ra. The result is stored in register Ra.

Affected: Ra

XOX EXCLUSIVE OR MEMORY AND REGISTER SHORT INDEXED 1.87 us

4] 3 4 7 8 il iz 135 ((rRx)} (¥) (Ra) — Ra

The contents of the memory location specified by the contents of register Rx are
logically added modulo two (Exclusive Or function) to the contents of register Ra.
The result is stored in register Ra.

Affected: Ra

XOR EXCLUSIVE OR REGISTER AND REGISTER 0.8 us

0 34 7 8 11 12 15 (Rb) (V) (Ra) — Ra

6 C Ra Rb

The contents of register Rb are logically added modulo two (Exclusive Or function) to
the contents of register Ra. The result is stored in register Ra.
Affected: Ra

XORB EXCLUSIVE OR REGISTER AND REGISTER AND BRANCH IF NONZERO 1.6 us
0 3 4 7 8 11 12 15 (Rb) ¥ (Ra) — Ra
Rb If Result #0, EA — PR
! ¢ Ra If Result =0, (PR)+2 — PR

ADDRESS FIELD

The contents of register Rb are logically added modulo two (Exclusive Or function) to

the contents of register Ra. The result is stored in register Ra.

If the result does not equal zero, a branch is executed to the effective word location.

If the result equals zero, the next instruction in sequence is executed.

Affected: Ra
3-29



Logical Instructions

-r()F‘ TRANSFER ONE'S COMPLEMENT REGISTER TO REGISTER 0.8 us

0 3 4 7 8 11 12 15 (Rb) —= Ra

The one's complement of the contents of register Rb replaces the contents of register
Ra.
Affected: Ra

TRMB ‘TEST REGISTER AND MEMORY AND BRANCH IF ANY ONES COMPARE 3.73 us

0 3 4 7 8 11 12 13 15

(Ra) A (EA)#0, ((PR)+2) —= PR
< 6 Ra 1 Rxx (Ra) A (EA)=0, (PR)+3 —e PR

OPERAND ADDRESS FIELD

BRANCH ADDRESS FIELD

The contents of the effective memory location are logically multiplied (AND function)
by the contents of register Ra. The result is not stored.

If the result does not equal zero, a branch is executed to the location specified by

the third instruction word. Only the direct address mode without indexing is performed.

1f the result equals zero, the next instruction in sequence is executed.
Affected: None

-rF*E;E3 TEST REGISTER AND MEMORY SHORT DISPLACED AND BRANCH 2.99 us
IF ANY ONES COMPARE

(Ra) A ((R1)+DF)#0, ((PR)+1)—=PR
° - 18 ‘ e = (Ra) A ((R1)+DF)=0, (PR)+2 —=PR

D 6 Ra DF

BRANCH ADDRESS FIELD
0 15

The contents of the memory location specified by the displacement field added to the
contents of register Rl are logically multiplied (AND function) by the contents of

register Ra. The result is not stored.

If the result does not equal zero, a branch is executed to location specified by the
second instruction word. Only the direct address mode without indexing is performed.

If the result equals zero, the next instruction in sequence is executed.

Affected: None



Logical Instructions

TRXB TEST REGISTER AND MEMORY SHORT INDEXED AND BRANCH 2.931 us
IF ANY ONES COMPARE

g 3 4 7 8 11 12 15 (Ra) A ((Rx))#0, ((rr)+1)— PR
— ¥ b}
D E na Ry (Ra) A ((Rx))=0, (PR)+2 —=PR
BRANCH ADDRESS FIELD
0 15
n fied by the contents of register Rx are

ar
register Ra. The result is

not stored.

If the result does not equal zero, a branch is executed to location specified by the
second instruction word. Only the direct address mode without indexing is performed.
If the result equals zero, the next instruction in sequence is executed.

Affected: None

TERB TEST REGISTER AND REGISTER AND BRANCH IF ANY ONES 1.6 us
COMPARE
0 3 4 7 8 11 12 15 (Rb) A (Ra) —s RESULT
7 E R If Result #0, EA —= PR
a Rb If Result =0, (PR)+2 —= PR

ADDRESS FIELD
0 15

The contents of register Rb are logically multiplied (AND function) by the contents of

register Ra. The result is not stored.

If the result does not equal zero, a branch is executed to the effective word location.

If the result equals zero, the next instruction in sequence is executed.

Affected: None



Floating Point
Instructions

FLOATING POINT INSTRUCTIONS

INTRODUCTION

The optional floating point arithmetic instructions provide the capability to process

very large or very small magnitude operands with precise results.

Floating point numbers consist of three parts: a sign, an exponent and a fraction.
The sign bit applies only to the fraction. The exponent is a biased nine-bit binary
number. The fraction is a binary number with an assumed radix point to the left of
the high-order digit. The quantity that the floating-point number represents is ob-

tained by raising the fraction value to the power expressed in the exponent value.

Data Formats

Floating point numbers are fixed in length and are either two word single precision

or three word double precision in format.

The first bit (bit 0) in both formats is the sign of the fraction. A one (1) bit
represents a minus sign and a zero bit (0) represents a positive sign. The next

nine bits (21—210) represent a biased binary exponent. The fraction contains a 22
bit binary number (single-precision format) or a 38 bit binary number (double pre-

cision format).

The single precision format allows faster processing and uses less storage. The
double precision format while providing greater precision, requires more processing

time and use of an additional register and/or memory location.

Single Precision Floating Point Number

EA/Ra/Rb EA+1/RaVl/RbVl

!
st EXPONENT® FRACTION 22
|

0 1 10 11 16'0 16

Double Precison Floating Point Number

EA/Ra/Rb EA+1/RaV1l/RbVl EA+2/RaVvV2/RbV2

38

S EXPONENT FRACTION

|
1 9 I
§

0 1 10 11 16 0 16°0 16



Floating Point

Instructions

Ra OR Rb SINGLE PRECISION DOUBLE PRECISION
FIELD OPERAND (OR RESULTS) OPERAND (OR RESULTS)
REGISTERS USED REGISTERS USED

0 0, 1 0, 1, 2

1 1, 1 1, 1, 3

2 2, 3% 2, 3, 2

3 3, 3 3, 3, 3

4 4, 5* 4, 5, 6

5 5,5 5, 5, 6

6 6, 7* 6, 7, 6

7 7, 7% 7, 7, 7

8 8, 9% 8, 9, A*

9 9, 9 9, 9, B

A A, B* A, B, A

B B, B B, B, B

o C, D* c, D, E*

D D, D D, D, F

E E, F* E, F, E

F F, F F, F, F

* Indicates all normally useful selections

TABLE 3-2 Floating Point Register Selections

FLOATING POINT INSTRUCTION MNEMONICS

This group of 16 optional instructions is made up of the four arithmetic operations;

add, subtract, multiply and divide. Each of the four arithmetic operations can be

executed in register-to-register or memory-to-register formats with either single
precision or double precision operands.

Add Subtract Multiply Divide

FAR FSR FMR FDR Reg-Reg

FARD FSRD FMRD FDRD R-R Double

FAM FSM FMM FDM Mem-Reg

FAMD FSMD FMMD FDMD M-Reg Double

GENERAL RULES

When floating point instructions specify Ra,RaVl and Rb,RbV1, Ra and Rb must specify
even numbered registers which will contain the more significant half of a single
precision floating point operand, and RaVl, RbVl will specify the next sequential
odd numbered registers and hold the less significant half of a single precision
floating point operand. Refer to Table 3-2 for normally useful register selections.

Operands presented to the Floating Point Unit will be in normalized form and likewise,

operation results will always be normalized.




Floating Point

Instructions

The exceptions to this rule are when an unnormalized number is presented to the
Floating Point Unit for normalization (e.g. 0 + an unnormalized number will yield

the same number in a normalized format), and when a zero fraction is used.

The storage of floating point operands, both in CPU registers and in memory, follow
the same rules uscd for fixed point operands handled in the standard MODCOMP II.
That is, the most significant word of the operands is stored in the lower memory

location or lower general purpose register number.

Example: EWA EWA+1 EWA+2
Ra/Rb Ravl Rav2
MSB'S OF
LEAST SIGNIFICANT
s | ExpoNENT | FRACTION FRACTION BITS On DRAGTION
0 1 9 10 15 0 15 0 15
FOR REGISTERS R4 RS R6
FOR MEMORY (EA) X X+1 X+2
Qverflow

Floating point overflow/underflow occurs if the resultant exponent of a floating
point operation cannot be expressed within the range of the nine bit binary exponent
field of the floating point format. :

A trap occurs at interrupt level 5 if floating point overflow/underflow is detected.
See Sections II and IV for a detailed explanation of traps.

FAR FLOATING POINT ADD REG. TO REG.
0 3 4 78 11 12 15 15 us
3 0 Ra Rb

(Rb) , (RbV1)+(Ra), (Ravl)~+Ra,RaVl

The contents of registers Rb and RbVl (with register Rb containing the more signifi-
cant half and register RbV1l containing the less significant half of a single preci-
sion floating point operand) are algebraically added to the contents of registers

Ra and RaVl (with register Ra containing the more significant half and register RaVl
containing the less significant half of a single precision floating point operand).
The sum replaces the contents of registers Ra and RavVl. Ra and Rb must specify even-
numbered registers. A floating point overflow will occur if the resultant exponent
cannot be expressed within the range of the nine (9) bit binary exponent field of the

floating point format.

Affected: Ra,Ravl



Floating Point

Instructions

15 us

(Ra), (RaV1) - (Rb), (RbV1l)+Ra,Ravl

The contents of registers Rb and RbVl (with register Rb containing the more signifi-
cant half and register RbVl containing the less significant half of a single preci-
sion floating point operand) are algebraically subtracted from the contents of regis-
ters Ra and RaVl (with register Ra containing the more significant half and register
RaVl containing the less significant half of a single precision floating point oper-
and) . The result is stored in registers Ra and RaVl. Ra and Rb must specify even
numbered registers. A floating point overflow will occur if the resultant exponent
cannot be expressed within the range of the nine (9) bit binary exponent field of the
floating point format.

Affected: Ra,RaVl

FMR FLOATING POINT MULTIPLY REG BY REG

12.5 us

(Rb) , (RbV1)x(Ra), (RaVl)+Ra,RaVl

The contents of registers Rb and RbVl (with register Rb containing the more signifi-
cant half and register RbV1l containing the less significant half of a single pre-
cision floating point multiplicand) are multiplied by the contents of registers

Ra and RaVl (with register Ra containing the more significant half and register

RaVl containing the less significant half of a single precision floating point multi-
plier). The product is stored in registers Ra and RaVl. Ra and Rb must specify even
numbered registers. A floating point overflow will occur if the resultant exponent
cannot be expressed within the range of the nine (9) bit binary exponent field of the

floating point format.

Affected: Ra,RaVl

FDR FLOATING POINT DIVIDE REG BY REG

13 us

(Ra), (Ravl): (Rb), (RbV1l)+»Ra,RaVvl

The contents of registers Rb and RbV1l (with register Rb containing the more signifi-
cant half and register RbVl containing the less significant half of a single pre-
Ccision floating point divisor) are divided into the contents of registers Ra and

RaVl (with register Ra containing the more significant half and register RaVl



Floating Point

Instructions

containing the less significant half of a single precision floating peoint dividend).
The quotient replaces the contents of registers Ra and RavVl. Ra and Rb must specify
even-numbered registers. A floating point overflow will occur if the divisor is
equal to zero or if the resultant exponent cannot be expressed within the range

of the nine (9) bit binary exponent field of the floating point format.

Affected: Ra,Ravl

FARD  FLOATING POINT ADD REG TO REG DOUBLE

3 4 Ra Rb 20.5 us

(Rb), (RbV1l), (RbV2)+(Ra), (Ravl), (Rav2)+Ra,Ravl,Rav2

The contents of registers Rb,RbV1l, and RbV2 (with these registers arranged in signi-
ficance as described in Table 3-2 under floating point double precision operand
formats) are algebraically added to the contents of registers Ra,RaVl, and RaV2
(with these registers arranged in significance as described in Table 3-2 under
floating point double precision operand formats). The sum replaces the contents of
registers Ra,RaVl, and RaVvV2. Ra and Rb must specify general purpose register four

(416), eight (816)’ or C A floating point overflow will occur if the resultant

16°
exponent cannot be expressed within the range of the nine (9) bit binary exponent

field of the fleoating point format.

Affected: Ra,RaVl,Rav2

FESFQ[) FLOATING POINT SUBTRACT REG FROM REG DOUBLE

3 5 Ra Rb 20.5 us

{Ra), (Ravl), (Rav2)~(Rb), (RbV1l), (RbV2)+Ra,RaVvl,RaVv2

The contents of registers Rb,RbV1,RbV2 are algebraically subtracted from the contents
of registers Ra,RaVl,Rav2. The result is stored in registers Ra,RaVl,RaVvV2. Ra and

Rb must specify general purpose register four (4 eight (816) or (ch)‘ Floating

16/
point overflow may occur as described previously.



Floating Point

FMRD  FLOATING POINT MULTIPLY REG BY REG DOUBLE Instructions

16 us

3 6 Ra Rb

(Rb) , (RbV1l), (RbV2)x(Ra), (Ravl, (RaV2)+Ra,RaVvl,Rav2

The contents of registers Rb,RbV1,RbV2 containing a double precision floating point
multiplicand are multiplied by the contents of Ra,RaVl,RaV2 which hold the double
precision floating point multiplier. The product is stored in registers Ra,RaVl,
Rav2. Ra and Rb must specify general purpose registers four (416), eight (816) or
(Cle)' Floating point overflow may occur as described previously.

FDRD FLOATING POINT DIVIDE REG BY REG DOUBLE

'._I
o))
U

3 7 Ra Rb us

(Ra), (Ravl), (Rav2) : (Rb), (RbV1l) , (RbV2)}+Ra,RaVvl,Rav2

The contents of registers Rb,RbV1,RbV2 containing a double precision floating point
divisor are divided into the contents of registers Ra,RaVl,Rav2 which hold the
double precision floating point dividend. The quotient replaces the contents of
registers Ra,RaVl,RaV2. Ra and Rb must specify general purpose registers four (416),
eight (8

or (C Floating Point overflow may occur as described previously.

16) 16)'
Affected: Ra,RaVl,RaV2

FAM FLOATING POINT ADD MEMORY TO REGISTER

3 8 Ra Rx 17.5 us

ADDRESS WORD

The contents of the effective memory location and the effective memory location plus
one (with (EA) containing the less significant half of a single precision floating
point operand and (EA+l) containing the more significant half of a single precision
floating point operand) are algebraically added to the contents of registers Ra and
RaVl (with register Ra containing the more significant half and register RaVl con-
taining the less significant half of a single precision floating point operand). The
sum replaces the contents of Ra and RaVl. Ra must specify an even-numbered register.
A floating point overflow will occur if the result exponent cannot be expressed
within the range of the nine (9) bit binary exponent field of the floating point

format.

Affected: Ra,RaVvl

(EA) , (EA+1)+(Ra), (RaV1l)+Ra,RaVvVl



FSM

Floating Point

Instructions

FLOATING POINT SUBTRACT MEMORY FROM REGISTER

9

Ra

Rx

17.5 us

ADDRESS WORD

(Ra), (Ravl)-(EA), (EA+1)»Ra,RaVvl

The contents of the EA and EA+l are algebraically subtracted from the contents of

Ra,RaVvl.

numbered register.

The remainder replaces the contents of Ra,RaVl.

Ra must specify an even

Floating point overflow may occur as described previously.

Affected:

FMM

Ra,Ravl

FLOATING POINT MULTIPLY MEMORY BY REGISTER

A

Ra

Rx

14.5 us

ADDRESS WORD

(ER)

(EA) , ~.A+l)x(Ra), (Ravl)-Ra,Ravl
The contents of the EA and EA+l containing a single precision fixed point multipli-
cand are multiplied by the contents of Ra,RaVl containing a single precision floating
Ra must specify an

point multiplier. The product replaces the contents of Ra,RaVl.

even numbered register.

Floating point overflow may occur as described previously.

Affected: Ra,RaVl

FDM

FLOATING POINT DIVIDE MEMORY INTO REGISTER

15.5

3 B Ra

ADDRESS WORD

(Ra), (Ravl): (EA), (EA+1)>Ra,Ravl

The contents of Ra and RaVl containing a single precision floating point dividend are

divided by the contents EA and EA+lL point

Tie on

of

O]
[G]

divisor. The quotient replaces the contents of Ra,RaVl. Ra must specify an even

numbered register.

Floating point overflow may occur as described previously.

Affected: Ra,RavVl



Floating Point

Instructions

F:/\BV|[) FLOATING POINT ADD MEMORY TO REGISTER DOUBLE

3 C Ra Rx

22.5 us

ADDRESS WORD

(EA) , (EA+1) , (EA+2)+(Ra), (RaVl), (RaV2)+Ra,RaVl,RaV2

The contents of EA,EA+l,EA+2 containing a double precision floating point augend are
algebraically added to the contents of Ra,RaVl,RaVv2 containing a double precision.
floating point addend. The sum replaces the contents of Ra,RaVl,RaV2. Ra must
specify general purpose register four (416), eight (816) or (C16).

Floating point overflow may occur as described previously.

Affected: Ra,RaVl,RaV2

FSMD  FLOATING POINT SUBTRACT-MEMORY FROM REG DOUBLE

3 D Ra Rx

22.5 us

ADDRESS WORD

(Ra), (Ravl), (RaVv2) - (EA), (EA+1l) , (EA+2)+Ra,RaVl,Rav2

The contents of EA,EA+l and EA+2 contain a double precision floating point subtrahend
which is subtracted from Ra,RaVl,RaV2 containing a double precision floating point
minuend. The remainder replaces the contents of Ra,RaVl,RaV2. Ra must specify

general purpose register four (416), eight (816) or (ch)'

Floating point overflow may occur as described previously.

Affected: Ra,RaVvl,RaVv2

FMMD FLOATING POINT MULTIPLY MEMORY BY REGISTER DOUBLE

3 E Ra Rx 18 us

ADDRESS WORD

(EA),(EA+1),(EA+2)x(Ra),(RaVl),(RaV2)+Ra,RaV1,RaV2

The double precision floating point multiplicand contained in EA,EA+1 and EA+2 is
multiplied by the double precision floating point multiplier contained in registers
Ra,RaVl and Rav2. The product replaces the contents of Ra,RaVl and RaV2. Ra must
specify general purpose register four (416), eight (816)’ or (C16)'

Floating point overflow may occur as described previously.

Affected: Ra,RaVl,RaVv2



Floating Point

Instructions

FDMD  FLOATING POINT DIVIDE MEMORY INTO REG DOUBLE

3 F Ra Rx 19 us

ADDRESS WORD

(Ra), (Ravl), (RaVv2) + (EA) , (EA+1) , (EA+2)+Ra,RaVl,Rav2

The double precision floating point dividend contained in Ra,RaVl and RaV2 is divided
by the double precision floating point divisor contained in EA,EA+l and EA+2. The
quotient replaces the contents of Ra,RaVl and RaVv2. Register Ra must specify general

purpose register four (416), eight (816) or (Cls)'

Floating point overflow may occur as described previously.

Affected: Ra,RaVl,RaVv2



Shift Instructions

SHIFT INSTRUCTIONS

The ten instructions in this group are used to reposition bits left or right within a
single or a pair of adjacent registers. All combinations of arithmetic and logical,
left and right, and single register and double register shift operations are pro-

vided. In addition, a left rotate instruction is included.

The execution of each shift instruction may shift the operand zero to 15 bit positions
as defined by the binary coded shift field (bits 12-15) in each instruction except LRS.
In the re
must be the even register of an even-odd register pair consisting of two adjacent re-
gisters in the general register file (Ra (even) and RaVvVl (odd)). In doubleword arith-
metic shifts, the more significant half of the operand is assumed to be in the even
register and the less significant half in the odd register.

LAD SHIFT LEFT ARITHMETIC DOUBLE 1.87 us + 267 (N-1) ns

0 34 7 8 11 12 15 0 1 15 0 15
2 E Ra SHIFTS s Ra < RaVl <

v

The contents of register Ra and register Ravl are shifted left zero to 15 bit position(s)
as specified by the shift count control field. The sign bit of Ra does not change either
during or after the shift. Zeros are shifted into the LSB position of RaVl and the MSB
of Ravl is shifted into the least significant bit position of Ra with each shift step.
The next to MSB of Ra (bit position 1) is shifted out of the register and is lost. Ra

nust specify an even general register.

Affected: Ra, RaVvVl, Overflow

RAD SHIFT RIGHT ARITHMETIC DOUBLE 1.87 us + 267(N-1)ns

0 3 4 7 8 11 12 15 0 1 15 0 15
2 A Ra SHIFTS sT% Ra Ravl

v

The contents of register Ra and register Ra+l are shifted right zero toc 15 bit position(s)
as specified by the shift count control field. The sign bit of Ra does not change either
during or after the shift.* The LSB(s) of Ra are shifted to the MSB position of Ravl and
the LSB(s) of RaVl are shifted out of the register and are lost. Ra must specify an even
general register.

Affected: Ra, Ravl

*The sign bit is propogated right the number of places specified by the shift count.



1.6 us + 267{n-1l)ns

LAS

SHIFT LEFT ARITHMETIC SINGLE

11 12 15 0 1 15
SHIFTS s le— 0

v

The contents of register Ra are shifted left zero to 15 bit position(s) as specified
by the shift count control field. The sign bit of Ra does not change either during
or after the shift. The next to MSB of Ra (bit position 1) is shifted out of the
register and is lost. Zeros are shifted into the LSB position(s) of Ra.

Affected: Ra, (Overflow)

RAS

SHIFT RIGHT ARITHMETIC SINGLE 1.6 us + 267(N-1) ns

11 12

15

[

15

Ra

SHIFTS

The contents of register Ra are shifted right zero to 15 bit position(s) as specified

by the shift count control field.
or after the shift#

gister and are lost.

The sign bit of Ra does not change either during

The least significant bit(s)

of Ra are shifted out of the re-

Affected: Ra *See previous page.
LLD SHIFT LEFT LOGICAL DOUBLE 1.87 us + 267 (N-1) ns
0 3 4 11 12 15 15 15
0
2 C Ra SHIFTS Ra Ravl —

The contents of register Ra and register Ra+l are shifted left zero to 15 bit position(s)
as specified by the shift count control field. Zeros are shifted into the least signif-
icant bit position(s) of RaVl and the most significant bit(s) of RaVl are shifted into
the least significant bit position(s) of Ra. The most significant bit(s) of Ra are
shifted out of Ra and are lost. Ra must specify an even general register.
Affected: Ra, RaVvl

RLD

SHIFT RIGHT LOGICAL DOUBLE 1.87 us + 267(N-1) ns

11 12 15 0 15 0 15
SHIFTS 0 Ra Ravl

The contents of register Ra and register RaVl are shifted right zero to 15 bit position(s)
as specified-by the shift count control field. Zeros are shifted into the most signif-
icant bit position(s) of Ra and the least significant bit position(s) of Ra are shifted
into the most significant bit position(s) of RavVl. The least significant bit(s) of RaVvl
are shifted out of RaVl

Affected: Ra, Ravl

and are lost. Ra must specify an even general register.



LLS

SHIFT LEFT

T
ad

11 12

15

SHIFTS

Shift Instructions

o
o))
o
n

0o
[&)]
~

-~
2
I

[
~—

=

n

The contents of register Ra are shifted left zero to 15 bit position(s) as specified
by the shift count control field.

position(s) and the most significant bit position(s) are shifted out of RaG and are

Affected:

RLS

Ra

SHIFT RIGHT LOGICAL SINGLE

11 12

15

Ra

SHIFTS

The contents of register Ra are shifted right zero to 15 bit positions as specified
by the shift count control field.

position(s) and the least significant bit position(s) are shifted out of Ra

are lost.
Affected:

LRS

Ra

LEFT ROTATE SINGLE

Zeros are shifted into the most significant bit

11 12

15

[en]

]

0 15
<+ 0
Zeros are shifted into the least significant bit
1.6 us + 267(N-1) ns
0 15
15 and
(1) 0.8 us
1
4
(2) l— (Rb) 1
(3)
Rb Ra
(RbOITlS) _-‘Raoo_l4 .
(Rboo) Ra, o

The contents of register Ra are replaced by the contents of register Rb shifted left

one bit position with the most significant bit of Rb rotated into bit position 15 of

register Ra.

Affected:

Ra

The contents of Rb are unaffected.



Bit Manipulation

Instructions

BIT MANIPULATION INSTRUCTIONS

The bit manipulation instruction group includes the Load, Add, Subtract, Zero, OR,

Exclusive OR, Test, and Compare instructions. In all instructions except Zero and

Test, one operand is a bit literal of value one and the other operand is the 1l6-bit
contents of the effective memory location or designated register. For example the

Add Bit In Memory instruction causes a bit of value one to be added to the contents
of the effective memory location. Carry is propagated through to the left through

the sign bit.

The position of the bit literal is designated by the four bit, binary coded Bit Field
in each instruction. Any bit in the word can be designated. The value of the Bit

Field (n) specifies a 16-bit binary number of value +215—n.

Since the value of the bit literal is always one in the OR instruction, execution of
this instruction causes the designated bit in memory or a general register to be set
to one. For the same reason, execution of the Exclusive OR instruction causes the

designated bit to be complemented (inverted) .

LBR - LOAD BIT IN REGISTER 0.8 us
0 34 7 8 11 12 15 1 —Raj
6 5 Ra BIT FIELD 0's = Ra;_ (1)
0's —Ra .1).15

A one is stored in register Ra in bit position n, where n is specified by the contents
of the Bit Field. Zeros are stored in all other bit positions in register Ra.
Affected: Ra

LBRB '* " '~ Loap BIT IN REGISTER AND BRANCH UNCONDITIONALLY 1.6 us
0 34 7 8 11 12 15 1 —Ra_
L}
7 5 Ra BIT FIELD 0's —=Rag_ (.
L}
ADDRESS FIELD O's == Ra . 1).15
EA —= PR

Ja\
15 -

[

A one is stored in register Ra in bit position n, where n is specified by the contents
of the Bit Field. Zeros are stored in all other bit positions in register Ra.

A branch is then executed unconditionally to the location specified by the contents

of the second instruction word.

Affected: Ra



Bit Manipulation

Instructions

/\ES“A“A ADD BIT IN MEMORY 3.47 us

[t 7 8 11 12

W
e
[
W
[
o

8 0 BIT FIELD Rxx

—

ADDRESS FIELD

The contents of the effective memory location are incremented by one in the bit
position (n) designated in the Bit Field of the first instruction word. The result
is stored in the effective memory location. Overflow will occur if the result is

greater than 215-1.

Affected: (Overflow), (EA)

ABMB ADD BIT IN MEMORY AND BRANCH IF NONZERO 4.27 us
0 3 4 7 8 1112 13 15
15-n
8 4 BIT FIELD | I Rx (EA)+2 o
X If Result #0, ((PR)+2) —=PR

= +
OPE D ADDRESS FIELD If Result =0, (PR)+3 -—= PR

BRANCH ADDRESS FIELD

The contents of the effective memory location are incremented by one in the bit
position (n) designated in the Bit Field of the first instruction word. The result
is stored in the effect
If the result is unequal to zero, a branch is executed to the location specified by
the contents of the third instruction word. Only the direct address mode without
indexing is performed. If the result equals zero, the next instruction in sequence
is executed. Overflow will occur if the result is greater than 215-1.

Affected: Overflow, (EA)
ABSM ADD BIT IN MEMORY SHORT DISPLACED 2.67 us

0 34 7 8 11 12 15 ((R1)+DF) +21°™® o (R1) +DF

9 0 BIT FIELD DF

The contents of the effective memory location specified by the displacement field DF
added to the contents of register Rl are incremented by one in the bit position- (n)

designated by the Bit Field. The result is stored in the effective memory location.
Overflow will occur if the result is greater than 215-1.

Affected: Overflow, (Ea)



Lot A gn o a T
But Mavctpulation

Tnetryctions

/\E3£;E3 ADD BIT IN MEMORY SHORT DISPLACED AND BRANCH IF NONZERO 3.74 us
15-n
0 3 4 7 8 11 12 15 ((R1) +DF) +2 —e (R1) +DF
If Result #0, ((PR)+l) —= PR
° , 4 BIT FIELD l DF If Result =0, (PR)+2 —= PR

BRANCH ADDRESS FIELD

The contents of the effective memory location specified by the displacement field DF
added to the contents of register Rl are incremented by one in the bit position (n)
designated by the Bit Field. The result is stored in the effective memory location.

Overflow will occur if the result is greater than 215-1.

If the resulting word is unequal to zero, a branch is executed to the location
specified by the second instruction word. The branch address may only be generated
by the direct address mode without indexing. If the result equals zero, the next

instruction in sequence is executed.

Affected: Overflow , (EA)
ABXM ADD BIT IN MEMORY SHORT INDEXED 2.67 us
15-n
0 34 7 8 11 12 15 C((Rx))+2 —= (Rx)
9 8 BIT FIELD Rx

The contents of the effective memory location specified by the contents of register
Rx are incremented by one in the bit position (n) designated by the Bit Field. The
result is stored in the effective memory location. Overflow will occur if the result

is greater than 2%9-1. k
Affected: Overflow , (EA)
ABXB ADD BIT IN MEMORY SHORT INDEXED AND BRANCH IF NONZERO 3.74 us
0 3 4 7 8 11 12 15 ((Rx))+21%77 o (rx)
9 If Result #0 ((PR)+1l) —= PR
¢ BIT FIELD Rx If Result =0 (PR)+2 —= PR

BRANCH ADDRESS FIELD
0 15

The contents of the effective memory location specified by the contents of register
Rx are incremented by one in the bit position (n) designated by the Bit Field. The
result is stored in the effective memory location. Overflow will occur if the result

is greater than 215-1.

If the resulting word is unequal to zero, a branch is executed to the location
specified by the second instruction word. The branch address may only be generated
by the direct add.ess mode without indexing. If the result equals zero, the next

instruction in sequence is executed.

Affected: Overflow, (EA)



Bit Manipulation

Instructions
ABR ADD BIT IN REGISTER 0.8 us
3 4 7 8 11 12 ] (Ra)+21° ™ _oRa

6 0 Ra BIT FIELD

The contents of register Ra are incremented by one in the bit position (n) designated
in the Bit Field of the instruction word. The result is stored in register Ra. Over-
flow will occur if the result is greater than 215—1.

Affected: Ra, Overflow

ABRB ADD BIT IN REGISTER AND BRANCH IF NONZERO 1.6 us
0 34 7 8 11 12 15 (Ra)+21° ™ = Ra
- P . e e If Result #0, EA —e PR
! N ra pit riebb If Result =0, (PR)+2 — PR

ADDRESS FIELD

The contents of register Ra are incremented by one in the bit position (n) designated
in the Bit Field of the instruction word. The result is stored in register Ra. Over-
flow will occur if the result is greater than 215—1.

If the result is unequal to zero, a branch is executed to the effective memory location.

If the result equals zero, the next instruction in sequence is executed.

Affected: Ra Overflow
oanmn )
obn ' SUBTRACT BIT IN REGISTER 0.8 us

15-n
0 3 4 78 11 12 15 (Ra) -2 —> Ra

6 1 Ra BIT FIELD

The contents of register Ra are decremented by one in the bit position (n) designated
in the Bit Field of the instruction word. The result is stored in register Ra. Over-
flow will occur if the result is less than --215
Affected: Ra, Overflow



Bit Manipulation

Irnstructions

SBRB SUBTRACT BIT IN REGISTER AND BRANCH IF NONZERO 1.6 us
15-n
(Ra)-2 —e Ra
0 3 4 78 11 12 15 If Result #0, EA —e PR
7 1 Ra BIT FIELD If Result =0, (PR)+2—e PR

ADDRESS FIELD

The contents of register Ra are decremented by one in the bit position (n) designated

in the Bit Field of the instruction word. The result is stored in register Ra. Over-

flow will occur if the result is less than —215.

If the result is unequal to zero, a branch is executed to the effective memory lo-

cation. If the result equals zero, the next instruction in sequence is executed.

Affected: Ra, (Overflow)

ZBMM ZERO BIT IN MEMORY 3.47 us

ro
[
[¥%)

0 24 7 8 11 1

8 1 BIT FIELD

[
w
=}

-

Rxx

ADDRESS FIELD

15

The bit contained in the position in the effective memory location designated by the
contents of the Bit Field (n) is cleared to zero. The other bits contained in the

word are unaffected.

Affected: ' (EA)
ZBMB ZERO BIT IN MEMORY AND BRANCH IF NONZERO 4.8 us
0 3 4 7 8 11 12 15 0 — (EA)n
8 5 BIT FIELD I |Rxx If Result #0, ((PR)+2) —» PR
If Result =0, (PR)+3 —= PR

OPERAND ADDRESS FIELD

BRANCH ADDRESS FIELD

15

The bit contained in the position in the effective memory location designated by the
contents of the Bit Field (n) is cleared to zero. The other bits contained in the
word are not affected. If the resulting word is unequal to zero, a branch is executed
to the location specified by the contents of the third instruction word. Only the
direct address mode without indexing is performed. If the result equals zero, the
next instruction in sequence is executed.

Affected: (EA)



Bit Manipulation

Instructions

ZBSM ZERO BIT IN MEMORY SHORT DISPLACED 2.67 us
0 3 4 7 8 11 12 15 0 — ((RL+DF),
9 1 BIT FIELD DF

The bit n, designated by the Bit Field, contained in the memory location specified by
the displacement field DF added to the contents of register Rl is cleared to zero. The
other bits contained in the word are unaffected.

Affected: (EA)

ZBSB ZERO BIT IN MEMORY SHORT DISPLACED AND BRANCH IF NONZERO 4,27 us
0 34 7 8 11 12 15
9 5 BIT FIELD DF 0 — ((RL)+DF) A
If Result #0, (PR)+1l)—= PR
BRANCH ADDRESS FIELD il Result =0, (PR)+2 —» PK

The bit n, designated by the Bit Field, contained in the memory location specified by
the displacement field DF added to the contents of register Rl is cleared to zero. The
other bits contained in the word are unaffected. If the resulting word is unequal to
zero, a branch is executed to the location specified by the second instruction word.
The branch address may only be generated by the direct address mode without indexing.
If the result equals zero, the next instruction in sequence is executed. '

Affected: (EA)

ZBXM ZERO BIT IN MEMORY SHORT INDEXED 2.93 yg

0 3 4 7 8 11 12 15 0 — (Rx)
9 9 BIT FIELD Rx '

The bit n, designated by the Bit Field, contained in the memory location specified by
the contents of register Rx is cleared to zero. The other bits contained in the word
are unaffected.
Affected: (EA)

ZBXB ' ZERO BIT IN MEMORY SHORT INDEXED AND BRANCH IF NONZERO 4.27 us

0 3 4 7 8 11 12 15
9 D BIT FIELD Rx

0 ---((RX))n

If Result #0, (PR)+1l)—» PR
If Result =0, (PR)+2 —e PR

BRANCH ADDRESS FIELD
0 15

The bit n, designated by the Bit Field, contained in the memory location specified by
the contents of register Rx is cleared to zero. The other bits contained in the word
are unaffected. If the resulting word is unequal to zero, a branch is executed to the
location specified by the second instruction word. The branch address may only be gen-
erated by the direct address mode without indexing. If the result equals zero, the
next instruction in sequence is executed.

Affected: (EA)



ZBR

ZERO BIT IN REGISTER

11 12

15

Ra

BIT FIELD

Bit Manipulaticn

Tt e m b 3 23
LS LLUCLLONE

0.8 us

0 —= Ra
n

The bit contained in the position in register Ra designated by the contents of the Bit

Field
Affected: Ran

ZBRB

(n) is cleared to zero.

‘ ZERO BIT IN REGISTER AND BRANCH IF NONZERO

The other bits in register Ra are not affected.

1.6 us

0 34 7 8 11 12 15 O»Ran
7 2 Ra BIT FIELD If Result #0, EA —e PR
If Result =0, (PR)+2 — PR
ADDRESS FIELD
0 15

The bit contained in the position in register Ra designated by the contents of the

Bit Field (n) is cleared to zero. The other bits in register Ra are not affected.

If the contents of Ra are not equal to zero, a branch is executed to the effective
memory location. If the contents of Ra equals zero, the next instruction in sequence

is executed.

Affected: Ran

OBMM OR BIT IN MEMORY 3.47 us
0 3 4 78 11 12 13 15
8 2 BIT FIELD | I RxxX L= (EA),
ADDRESS FIELD
0 15

The bit contained in the position in the effective memory location designated by the
contents of the Bit Field (n)
are unaffected.
Affected: (EA)

OBSM

is set to one. The other bits contained in the word

OR BIT IN MEMORY SHORT DISPLACED 2.67 us

7 8 11 12 15

BIT FIELD DF

1 - ((Rl)+DF)n

The bit n, designated by the Bit Field, contained in the memory location specified by
the displacement field DF added to the contents of register Rl is set to one. The
other bits contained in the word are unaffected.

Affected: (EA)



Bit Manipulation

Instructions

OBXM (s) OR BIT IN MEMORY SHORT INDEXED 2.94 us
0 3.4 78 11 12 1l —= ((Rx))n
9 A BIT FIELD Rx

The bit n, designated by the Bit Field, contained in the memory location specified by
the contents of register Rx is set to one. The other bits contained in the word are
unaffected.

Affected: (EA)

OBR OR BIT IN REGISTER 0.8 us
0 3 4 78 11 12 15 l — Ran
6 3 Ra DIT FIELD

The bit contained in the position in register Ra designated by the contents of the Bit

Field (n) is set to one. The other bits in register Ra are not affected.
Affected: Ra

OBRB OR BIT IN REGISTER AND BRANCH UNCONDITIONALLY 1.6 us
0 3 4 78 11 12 15 1 — Ra_
7 3 Ra BIT FIELD EA — PR

ADDRESS FIELD

The bit contained in the position in register Ra designated by the contents of the
Bit Field (n) is set to one. The other bits in register Ra are not affected.

An unconditional branch is then executed to the effective memory location.

Affected: Ran

XBR EXCLUSIVE OR BIT IN REGISTER 0.8 us
0 3 4 7.8 11 12 15 (Ran) — Ran
6 4 Ra BIT FIELD

The bit contained in the position in register Ra designated by the contents of the
Bit Field (n) is complemented. The other bits in register Ra are not affected.
Affected: Ran ‘



Bit Manipulation
Irnctruction
)(E;F‘EB EXCLUSIVE OR BIT IN REGISTER AND BRANCH IF NONZERO 1.6 us
0 34 7 8 11 12 15 (Ran) — Ran
7 4 Ra BIT FIELD If Result #0, EA —= PR
If Result =0, (PR)+2 —= PR

ADDRESS FIELD
0 15

The bit contained in the position in register Ra designated by the contents of the Bit
Field (n) is complemented. The other bits in register Ra are not affected.

Tf the contents of Ra are unequal to zero, a branch is executed to the effective
memory location. If the contents of Ra equal zero, the next instruction in sequence

is executed.

Affected: Ran

TBMB “TEST BIT IN MEMORY AND BRANCH IF ONE
3.47 us
0 3 4 78 11 12 13 15
If Effective Bit =1
8 6 BIT FIELD | I Rxx ((PR)+2) —= PR

If Effective Bit =0,

OPERAND ADDRESS FIELD (PR)+3 —» PR

BRANCH ADDRESS FIELD

0 15

The bit contained in the position in the effective memory location designated by the
contents of the Bit Field(n)is tested. If the bit is equal to one, a branch is ex-
ecuted to the location specified by the contents of the third instruction word. Only
the direct address mode without indexing is performed. If the tested bit is equal

to zero, the next instruction in sequence is executed.

Affected: None

TBSB TEST BIT IN MEMORY SHORT DISPLACED AND BRANCH IF ONE 3.2 us
0 3 4 7 8 1112 15 If Effective Bit =1,
((PR)+1) —= PR
2 6 BIT FIELD DF If Effective Bit =0,
BRANCH ADDRESS FIELD (PR)+2 —» PR

15
43

The bit n, designated by the Bit Field, contained in the memory location specified by
the displacement field added to the contents of register Rl is tested. If the bit is
equal to one, a branch is executed to the location specified by the contents of the
second instruction word. Only the direct address mode without indexing is performed.
If the tested bit is equal to zero, the next instruction in sequence is executed.
Affected: None



Bit Manipulation

Instructions

-rE3)(E3 TEST BIT IN MEMORY SHORT INDEXED AND BRANCH IF ONE 3.2 us
if Effective Bit =1,
9 3 4 I & 1112 ((PR)+1) —= PR

9 E BIT FIELD Rx If Effective Bit =0,
(PR)+2—= PR

BRANCH ADDRESS FIELD

0 15

The bit n, designated by the Bit Field, contained in the memory location specified by
the contents of register Rx is tested. If the bit is equal to one, a branch is ex-
ecuted to the location specified by the contents of the second instruction word. Only
the direct address mode without indexing is performed. If the tested bit is equal to
zero, the next instruction in sequence is executed.

Affected: None

TBRB TEST BIT IN RECISTER AND BRANCH IF ONE 1.6 us
0 3 4 7 8 11 12 15 If (Ran)=l, EA -+ PR
7 6 Ra BIT FIELD If (Ran)=0, (PR)+2 —= PR

ADDRESS FIELD
0 15

The bit contained in the position in Ra designated by the contents of the Bit Field
(n) is tested. If the bit is equal to one, a branch is executed to the effective

memory location. If the bit equals zero, the next instruction in sequence is exe-

cuted.

Affected: None

CBIVIB COMPARE BIT AND MEMORY 4.27 us

0 3 4 7 8 11 12 13 15 15-n
If 2
15-n

If 2

OPERAND ADDRESS FIELD

BRANCH ADDRESS FIELD (EA)=21>"7

n

BRANCH ADDRESS FIELD (EA)>215-

The contents of the effective memory location are algebraically subtracted from the
value +215-n’ where n is designated by the Bit Field in the first instruction word.

If the result equals zero, a branch is executed to the location specified by the third
instruction word. If the result is negative, a branch is executed to the location
specified by the fourth instruction word. Only the direct addressing mode without
indexing is permitted for the branch operation. If the result is greater than zero,
the next instruction in sequence is executed. The contents of the memory location are
not altered.

Affected: None

-(EA)=0 ((PR)+2) —= PR
8 7 BIT FIELD I RXX If 27:_ - (EA)<O ((PR)+3) —= PR
-(EA)>0 (PR)+4 —e PR



Bit Manipulation

Instructions

CBSB COMPARE BIT AND MEMORY SHORT DISPLACED 3.7 us
0 3 4 7 8 11 12 15 If 2%2:2 -(EA)=0 ((PR)+2) —= PR
1f 27077 -(EA)<0  ((PR)+3) —=PR
9 7 BIT FIELD DF If 2 -(EA)>0 (PR)+4 - PR
BRANCH ADDRESS FIELD (EA)=215_n
n

BRANCH ADDRESS FIELD (EA)>2-°"

The contents of the memory location specified by the displacement field DF added to
the contents of register Rl are algebraically subtracted from the value 215-n' where
n is designated by the Bit Field in the first instruction word. If the result equals
zero, a branch is executed to the location specified by the second instruction word.
If the result is negative, a branch is executed to the location specified by the

third instruction word.

Only the direct addressing mode without indexing is permitted for the branch operation.
If the result is greater than zero, the next instruction in sequence is executed. The
contents of the memory location are not altered.

Affected: None

CBXB COMPARE BIT AND MEMORY SHORT INDEXED 3.7 us
1f 2707 - (EA)=0 ((PR)+2) — PR
0 3 4 78 11 12 15 If 27070 -(EA)<O ((PR)+3)—= PR
9 F BIT FIELD Rx If 2 -(EA)>0 (PR)+4 — PR
BRANCH ADDRESS FIELD (EA) =215_n
BRANCH ADDRESS FIELD (EA)>21°71
0 15
The contents of the memory location specified by the contents of register Rx are
algebraically subtracted from the value 215-n’ where n is designated by the Bit Field

in the first instruction word. 1If the result equals zero, a branch is executed to the
location specified by the second instruction word. If the result is negative,

a branch is executed to the location specified by the third instruction word.

Only the direct addressing mode without indexing is permitted for the branch operation.
If the result is greater than zero, the next instruction in sequence is executed. The
contents of the memory location are not altered.

Affected: None



Bit Manipulation

Instructions

GMR GENERATE MASK IN REGISTER 0.8 us

0 3 4 7 8 11 12 15
6 7 Ra BIT FIELD

l's —=Rag_.

0's —Raji-15

Ones are stored in register Ra in bit position Ra, through Ra ., where n is specified
by the contents of the bit field. Zeroes are stored in register Ra in bit positions

Ra through Rals. overflow will result and PRo will be set if n = 0.

n+1l
Affected: Ra, (Overflow)

GMRB GENERATE MASK IN REGISTER AND BRANCH UNCONDITIONALLY 1.6 us
0 3 4 7 8 11 12 15
l's — Ra,_
7 7 Ra BIT FIELD n
u's Kap+1-15
ADDRESS FIELD
EA —= PR

Ones are stored in register Ra in bit positions Ra, through Ra , where n is specified
by the contents of the bit field. Zeroes are stored in register Ra in bit positions

R through Ra;c. Overflow will result and be set if n=0.

An+l

A branch is then executed unconditionally to the location specified by the contents

of the second instruction word.

Affected: Ra, Overflow

3-55



Byte Manipulation

Instructions

BYTE MANIPULATION INSTRUCTIONS

These instructions enable bytes to be moved and interchanged in the general register

file.
Ra equal to Rb,

Ra unequal to Rb bytes can be moved from register to register.

All of these instructions contain two register addresses Ra and Rb.

either byte or both bytes can be moved within one register.

By making
By making

The move instructions

cause one byte to be cleared to zero in the destination register, whether Ra=Rb or

Ra#Rb.

MUR MOVE UPPER BYTE REGISTER TO REGISTER 0.8 us
Rb Ra
0 34 7.8 11 12 15 (Rbg_;) —=Ra;_,
0 Ra
0 B Ra Rb " Rlg_15

The more significant byte
byte position of register
position in register Ra.

Register" instruction.

stored in register Rb is transferred to the more significant
Ra.
If Ra=Rb, the instruction becomes a "Clear Lower Byte in

Zeros are transferred to the less significant byte

Affected: Ra
MLR MOVE LOWER BYTE REGISTER TO REGISTER 0.8 us
0 3 4 7 g 1112 15 (Rbg_15) —= Rag_;q
0 C Ra Rb 0 == Ra,

The less significant byte
byte position of register
position in register Ra.

Register" instruction.

stored in register Rb is transferred to the less significant
Ra.
If Ra=Rb, this instruction becomes a "Clear Upper Byte in

Zeros are transferred to the more significant byte

Affected: Ra
NdE;F‘ MOVE BYTE RIGHT REGISTER TO REGISTER 0.8 us
0 3 4 78 11 12 15 (Rb,_-) — Rag .
0 8 Ra Rb 0 _’Ra0_7

The more significant byte
byte position of register

position in register Ra.

stored in register Rb is transferred to the less significant
Ra. Zeros are transferred to the more significant byte

If Ra=Rb, this instruction becomees a fast "Logical Right

Shift Eight Bits" instruction.

Affected: Ra



Byte Manipulation
Instructions

MBL MOVE BYTE LEFT REGISTER TO REGISTER 0.8 us
0 3 4 7 .8 11 12 15 (Rbg_1.) —= Rag_
0
9 Ra Rb 0 — Ra8—15

The less significant byte stored in register Rb is transferred to the more significant
byte position of register Ra. Zeros are transferred to the less significant byte
position in register Ra. If Ra=Rb, this instruction becomes a fast "Logical Left
Shift Eight Bits® instruction.

Affected: Ra

IBR INTERCHANGE BYTES REGISTER TO REGISTER 0.8 us .
0 2 4 7 S 11 12 i3
(Rog_;) —+Rag_; 4
0 A Ra Rb
(Rb8—15)"Ra0—7

The less significant byte stored in register Rb is transferred to the more significant
byte position in register Ra, and the more significant byte stored in register Rb is
transferred to the less significant byte position in register Ra. If Ra = Rb, this
instruction becomes a "Rotate Eight Bits" instruction.

Affected: Ra



Unconditional Branch
Instructions
UNCONDITIONAL BRANCH INSTRUCTIONS

This group includes the Branch and the Branch and Link instructions. All are un-

conditional branch instructions. Each time a branch is executed all 16 bits of the

Program Register, are replaced.

BLM BRANCH AND LINK 1.6 us

0 3 4 7 8 11 12 13 15
E 7 Ra I Rxx

(PR)+2 — Ra
EA —» PR

ADDRESS FIELD

0 15

The 16-bit contents of the Program Register replace the contents of register Ra and
then the effective memory address replaces the contents of the Program Register.

Affected: Ra

BLI BRANCH AND LINK IMMEDIATE 0.8 us
0 3 4 7 8 11 12 15 (PR)+2 —»Ra
E F Ra 0 (PR) +1 ~» PR

The 16-bit contents of the Program Register replace the contents of register Ra and
then the next instruction in sequence is executed.
Affected: Ra

E;F%LJ BRANCH UNCONDITIONALLY 1.6 us

0 3 4 7 8 11 12 13 15

EA —= PR

E 7 0000 I Rxx

ADDRESS FIELD

The 16 bits of the effective memory address replace the contents of the Program
Register.
Affected: None



Unconditional Branch

Instructions

HOP BRANCH SHORT DISPLACED 1.07 us
0 3 4 7 8 11 12 15 (PR) +DF -—= PR

F 7 0 DF
0 15

The contents of the displacement field DF are added to the contents of the Program
Register. The result is then stored in the Program Register. Therefore a branch is
executed which has a range of from zero to +15 locations with respect to the current

program location.
Affected: None

BRX BRANCH SHORT INDEXED 1.07 us

(Rx) —= PR

The 16 bit contents of register Rx replace the contents of the Program Register.

Affected: None



Control Instructions

CONTROL INSTRUCTIONS

This group includes Halt, No Operation, Set Protect Register, Set Lower Protect Regis-

ter and set Upper Protect Register.

HLT HALT

0 3 4 7

NN /77 /A

Program Execution is halted until the program is manually restarted. The halt occurs

after the Program Register is advanced and the next instruction is transferred to the

instruction register.

Affected: None

NOP NO OPERATION 0.8 us

— 1 L

The execution of this instruction does not modify the contents of any general register

or memory location.

Affected: None

SPR SET PROTECT REGISTER 0.8 us
0 34 78 91011 12 13 14 15 PO ~ B3RO
P1 + B3Rl
0 2 0| X X PO(PlP2P3 P4
P2 - B3R2
P3 ~ B3R3
P4 + B3R4

1 - B3R5-B3R7

The five least significant bits of the Instruction Word (IR11-IR15) are transferred

ific
directly to the Protect Boundary Register #3 (Bits 0 thru 4).

LI |

1es are loaded into
bits five thru seven of this register therby yielding a 2K word protect granularity.

Affected: Protect Boundary Register #3.



E;(SF) SET GLOBAL PROTECT REGISTER 0.8 us

0 3 4 7 8 9 10 11 12 13 14 15 {Rb)o B3RO
0 2 1 X X X Rb (Rb) , B3R1

3

(Rb)4 B3R4

(Rb) 5 B3R5

(Rb)6 B3R6

(Rb) ,  B3R7
The eight most significant bits of the GPR specified by the Rb field are transferred
directly to Protect Boundary Register #3 (Bits 0 thru 7) thereby yielding a 256 word
protect granularity.
Affected: Protect Boundary Register #3.
SLP SET LOWER PROTECT REGISTER 0.8 us

0 3 4 7 8 11 12 15

: M A

The nine most significant bits of the GPR specified by the Rb field are transferred

(Rb)0 -+ LPRO

(Rb)8 - LPR8

directly to Lower Protect Boundary Register, (Bits 0 thru 8) thereby yielding a 128
word protect granularity.

Affected: Lower Protect Boundary Register.

SUP SET UPPER PROTECT REGISTER 0.8 us
0 34 7 8 11 12 15 (Rb) . > UPRO
v 0
0 4 ] w Do
(Rb) g > UPR8

The nine most significant bits of the GPR specified by the Rb field are transferred
directly to the Upper Protect Boundary Register, (Bits 0 thru 8) thereby yielding a
128 word protect granularity.

Affected: Upper Protect Boundary Register.

3-61



o

Interruptl and Call

Instructions

INTERRUPT AND CALL INSTRUCTIONS

actions provide the capability for complete program manipulation of

The interrupt instr
+ The Request

1
hree latches present in each prinrity interrupt level.

the gtates of all

ne

Executive Service is the executive call instruction and the Request Multiprocessor

Interrupt instruction enables each CPU in a multiprocessor configuration to produce

an interrupt in the other cpu.

Each interrupt instruction contains a binary coded level field. This field permits

each of the 16 (maximum) levels to be addressed and operated on individually.
E;IE SET INTERRUPT ENABLE 1.33 us

0 3 4 7 8 11 12 15 1 — ENA
2 6 0100 LEVEL

G, Level

Enable the priority interrupt level specified by the Level selection field.

The PFS/AS, Memory Parity, Unimplemented Instruction, System Protect and Floating
Point Overflow Trap interrupt levels are always enabled when present in the system.

The Enable latch state of these levels cannot be altered by instruction execution.

Affected: None

RIE RESET INTERRUPT ENABLE ‘ 1.33 us

0 34 7 —
8 11 12 15 0—=ENA, L o

b 7 0100 LEVEL

Disable the priority interrupt level specified by the Level selection field.

The PFS/AS, Memory Parity, Unimplemented Instruction, System Protect and Floating
Point Overflow Trap interrupt levels are always enabled when present in the system.

The Enable latch state of these levels cannot be altered by instruction execution.



Interrupt and Call

Instructions

S'R SET INTERRUPT REQUEST 1.33 us

0 34 7.8 10 11 15 1 —= REQ
2 6 100 LEVEL

G, Level

Set the Request latch of the priority interrupt level s

field. NOTE: Levels Cig and D

pecified ly the Level selection
16 should not be requested by the program.

Affected: None
RiR RESET INTERRUPT REQUEST 1.33 us

o
w
-3
~

8 10 11 15 0 —= REQ
2 7 100 LEVEL

G, Level

Reset the Request latch of the priority interrupt level specified by the Level selection
field.

Affected: None

S'A SET INTERRUPT ACTIVE 1.33 us

0 34 7 8 10 11 15 == ACT;  1ovel

2 & 000 LEVEL

Activate the priority interrupt level specified by the Level selection field.
NOTE: Level 0 (Power Fail/Auto Start) may not be set active by the program.
Affected: None

RIA RESET INTERRUPT ACTIVE 1.33 us

0 3 4 7 8 10 11 15 0 —= ACT
2 7 000 LEVEL

G, Level

Deactivate the priority interrupt level specified by the Level selection field.
Affected: None

REX

REQUEST EXECUTIVE SERVICE 1.07 us

15 1 — REQUI

2 3 Service Field

An interrupt request signal is sent to the Unimplemented Instruction Trap level. The
executive service requested is defined by the contents of the Service Field.
gram count is not advanced before the trap is generated.
contains the address of the REX service.

The pro-
Therefore the stored PSW



Interrupt and (all

Instruec

o

T,

one

The Unimplemented Instruction Trap level will become active and the interrupt routine
entered at the completion of execution of the REX instruction, provided that neither
this level nor any higher level is already active. If this level or a higher level
is active, execution of the REX cannot be completed. The machine must be manually
cleared and restarted if this error condition occurs.

Affected: None

thﬂl REQUEST MULTIPROCESSOR INTERRUPT 0.8 us
0 3 4 7

0 L /8////;[//////1/5/ 1 REQ

A pulse is generated by the executing CPU which requests the interprocessor communi-

X in other CPU

cation interrupt in the other CPU.

Affected: None

CAR CLEAR ACTIVE AND RETURN 1.

[0e]
~J
0]

o

0 3 4 7 8 11 12 15

0 —» ACT,,. ;
5 4 0 0 Highest Active

The Active latch of the highest active interrupt level is cleared and the 16 bit con-
tents of the memory location dedicated to the highest active level and transferred to

the Program Register. If no interrupt is active when the CAR instruction is executed,
the contents of location 0 are transferred to the Program Register. If an Interrupt

is requesting when the CAR instruction is executed, (the interrupt) will not go in
service until 1 instruction after the CAR is executed.

Affected: None

CIR CLEAR INTERRUPT AND RETURN 1.87 us

0 3 4 7 8 11 12 15

Both the Active and Request latches of the highest active interrupt level are cleared
and the 16 bit contents of the memory location dedicated to the highest active level
are transferred to the Program Register. If no interrupt is active when the CIR

instruction is executed, the contents of location 0 are transferred to the Program
Register.

Affected: None



Input/Output
Instructions

INPUT/OUTPUT INSTRUCTIONS

Two input instructions are provided to enable a data or status word to be transferred
from any peripheral device to any general register. Twoc output instructions are pro-
vided to enable a data or command word to be transferred from any general register to
any peripheral device. Some peripheral devices such as the disc transfer data only
under control of the Direct Memory Processor. Therefore, only command and status

words are transferred under program control to/from these devices.

Up to 64 peripheral devices, consisting of four groups of 16 each, are addressable by
each instruction. The group address is obtained from the two least significant bits
of the operation code field. Therefore four operation codes and mnemonics are assigned

to each instruction.

I/0 GROUP A Consists of device addresses 00-0F
I/O GROUP B Consists of device addresses 1l0-1F
I/O GROUP C Consists of device addresses 20-2F
I/O GROUP D Consists of device addresses 30-3F

All instructions are executed in the fixed length of time contained in each instruction

description.

'f;/\ ISA (48) Input Status From I/O Group A

IE;E3 ISB  (49) Input Status From I/0 Group B

IE;(: ISC (4A) Input Status From I/O Group C

IE;[) ISD (4B) Input Status From I/0 Group D

1.6 us
0 e
3 io > 6 7 8 11 12 15 G, D—» I/0 Address Lines
4 2 G Ra D Device Status —e Ra

The group (G) and device (D) numbers contained in the instruction word are placed on
the I/0 bus address lines.

Up to 16 bits of status are then transferred from the addressed device over the I/0
bus to replace the contents of register Ra.
Affected: Ra



Input/Output

Instructions

l[)/\ IDA (4C) Input Data From I/O Group A
I[)E3 IDB (4D) Input Data From I/O Group B
IDC IDC (4E) Input Data From I/0O Group C
I[)[) IDD (4F) Input Data From I/0O Group D
1.6 us
0 3 4 5 6 7 8 11 12 15 G, D— I/O Address Lines
4 112 G Ra D Device Data—e Ra

The group (G) and device (D) numbers contained in the instruction word are placed on
the I/0O bus address lines.

Up to 16 bits of data are then transferred from the addressed device over the I/0O
bus to replace the contents of register Ra.
Affected: Ra

()(:/\ OCA  (40) Output Command To I/O Group A
C)(:E3 OCB (41) Output Command To I/O Group B
C)(:(: OCC (42) Output Command To I/O Group C
C)(:[) OCD (43) Output Command To I/0 Group D
1.33 us
0 3 4 5 6 7 8 11 12 15 G, D — I/0 Address Lines
4 00 ) G Ra D (Ra) —e I/0 Data Lines

The group (G) and device (D) numbers contained in the instruction word are placed on
the I/O bus address lines.

The 16 bit output command stored in register Ra is then transferred to the I/0
register and placed on the I/0 bus data lines.



()[)/\ ODA (44) Output Data To I/O Group A

ODB ODB (45) Output Data To I/O Group B

()[)(: ODC (46) Output Data To I/O Group C

C)[)[) ODD (47) Output Data To I/O Group D

0 3 4 5 6 8 11 12 15
4 01, G Ra D

The
the

The
and

Three signals are needed to enable command decode.

I/0 bus address lines.

placed on the 1I/0 bus data lines.

group (G) and device (D) numbers contained in

DRIOFN - Input/Output Function

DRCDFN - Command/Data Function
DRIOSN - I/O Sync

Data flow is determined by DRIOFN.

is false (high), data is output.

They are:

If DRIOFN is true (low), data is input.

DFCDFN determines whether the instruction is a command or data.

(low) , the instruction is data.

command (or status).

If DRCDFN is false

These lines are interrogated at I/0O sync time, DRIOSN.

ODA

DRCDFN DRCDFN
Input Data Input Status
DRIOFN IDA IsA
DRIOFN Output Data Output Command

OoCA

Input/Output
Instructions

1.33 us

G, D ~—» I/0 Address Lines
(Ra) — I/0 Data Lines

l6 bit data word stored in register Ra is then transferred to the I/0 register

If DRIOFN

If DFCDFN is true

(high), the instruction is a



IV. PRIORITY INTERRUPTS

OVERVIEW

The MODCOMP II priority interrupt system contains three standard levels expandable

in increments of four levels up to a total of 16 levels including the optional Power

Fail Safe/Auto Start. Each ex 1l level can be ;7 enabled and disabled
under program control. Internal levels 0, 1, 2, 4, and 5, when present, are always
enabled. 1In addition, the recognition of interrupt signals can be deferred for all
interrupt levels below a selected level. Furthermore, interrupt request signals can

be generated by instruction execution.

Of the three standard interrupt levels, two are I/0 interrupt levels which have party

line interrupt structures with 17 sub-priorities each and automatic source identifi-

cation for up to 64 devices.

Each priority level is assigned two dedicated memory locations for the entry and re-
turn addresses unique to that level. The entry address of the interrupt processing
routine is stored in one dedicated location. The return address, which is the contents
of the Program Register (PR), is stored in the other dedicated location at the time

the interrupt routine was entered. The 64 sub-levels of each I/0 interrupt level

share the return address of that level but are assigned unique entry address locations.

Nested interrupt routine execution is automatically handled for the 16 priority levels.
The sub-levels of each I/O priority interrupt level cannot interrupt each other, but
if several attempt to interrupt at the same time, the highest priority sub-level is

recognized first.

LEVEL ASSIGNMENTS

The dedicated memory locations for each interrupt level and the signals connected to

these levels are shown in Table 4-1.

There are three‘standard interrupt levels (4,C, and D) present in each MODCOMP II and
they are connected to Unimplemented Instruction Trap and to the I/O Data and Service
party lines. Power Fail Safe/Auto Start is standard in some models and optional in
others. It is connected to the highest priority level (0).

The first optional group of interrupts (5,6,E, and F) are dedicated to the Executive
Features Option. The second opticnal group of interrupts (1,2,3, and 7) are assigned
tc the System Protect option with level 7 available for an external interrupt signal.
Priority level F is dedicated to the Task Scheduler Interrupt which allows the MAX III
Executive to maintain a software task priority queue below the hardware priority queue.

Levels 8,9,A,B are available as an optional group for connection to external equipment.



MODEL MEMORY PROGRAM
HNUMBER LOCATION16 EE!EEIG LINKAGE INTERRUPT SIGNAL
3739 20 0 Return Power Fail Safe/Auto Start
21 Entry
3731 22 1 Return Memory Parity
23 Entry
3731 24 2 Return System Protect
25 Entry
3731 26 3 Return Multiprocessor Communications
27 Entry
STD. 28 4 Return Unimplemented Instruction Trap
29 Entry
3730 2A 5 Return Floating Point Overflow
2B Entry
3730 2C 6 Return Real Time Clock
2D Entry
3731 2E 7 Return External
2F Entry
3732 30 8 Return External
31 Entry
3732 32 9 Return External
33 Entry
3732 34 A Return External
35 Entry
3732 36 B Return External
37 Entry
STD. 38 c Return I/0 Data Party Line
39 Not Used
STD. 3A D Return I/0 Service Party Line
3B Not Used
3730 3C E Return Console Interrupt
3D Entry
3730 3E F Return Task Scheduler
3F Entry

TABLE 4-1 INTERRUPT LEVEL ASSIGNMENTS




INTERRUPT OPERATION AND PROGRAM CONTROL

Each interrupt level contains three flip-flops which collectively define the state

of the level.
The Request flip-flop is set by the external interrupt request signal or by execution
of the Set Interrupt Request (SIR) instruction. The purpose of this flip-flop is to
store the request until it can be processed by the computer. It is reset by execu-
tion of either the Clear Interrupt and Return (CIR) or the Reset Interrupt Request

(RIR) instruction.

The Enable flip-flop, when set, permits the stored request to interrupt the program.
This flip-flop is set by execution of the Set Interrupt Enable (SIE) instruction and
reset by execution of the Reset Interrupt Enable (RIE) instruction.

The Active flip-flop is set when the program interrupt signal is generated. It is

not reset, except by execution of the Reset Interrupt Active (RIA) instruction, until
the Clear Interrupt and Return (CIR) instruction is executed to exit an interrupt
routine. Therefore, it indicates that an interrupt was being processed at this level
and enables program control to be returned to the level if one or more higher priority
interrupts occurred while the level was being serviced. The Clear Active and Return
(CAR) operates just as the Clear Interrupt and Return (CIR) except that the request
latch is not reset, thus allowing new reponses to be acknowledged that may have
occurred while the level was active. The Set Interrupt Active (SIA) and Reset
Interrupt Active (RIA) instructions are provided to enable a level to be made active
without causing a program interruption. Program interruption can be deferred from

the level made active down through all lower levels by execution of these two instruc-

tions.

Operation of the Master Clear switch resets all three flip~-flops in each level,

e€xcept the Enable flip-flops for levels 0, 1, 2, 4, and 5 (Power Fail-Safe/Auto Start,
Memory Parity, System Protect, Unimplemented Instruction Trap and Floating Point Over-
flow).

Based on the operation of the three interrupt level flip-flops, the conditions
necessary for interrupting the computer from a given interrupt level are:

. The level must be enabled

. A request signal must have occurred

. No higher priority level must be active

. The execution of the current instruction must be completed

When these conditions are met, program switching occurs. The current 16-bit contents
of the Program Register are stored in the Return location assigned to the interrupting
level. The 16-bit contents of the Entry location assigned to the level are then
transferred to the Program Register, and the execution of the interrupt routine is

started. Program switching requires 2.4 usec.



The interrupt level is cleared by execution of the Clear Interrupt and Return
instruction. Execution of this instruction clears the Request and Active flip-flops
of the highest active level and transfers the 16-bit contents of the dedicated

return location to the Program Register.

INTERRUPT SUB-LEVEL OPERATION AND PROGRAM CONTROL

The I/0 data and Service Interrupt levels, C and D, each provide 17 sub-priorities
which are assigned to peripheral devices and to external equipment (refer to Table
4-2). Addresses and dedicated memory locations are available for a total of 64 sub-
levels for each of the two interrupt levels. The higher transfer rate devices such
as the discs and analog input subsystems are assigned to the higher priurity sub-
levels. The data and service interrupt priorities are identical for each peripheral
device. Each data and service sub-level is identified by the dedicated memory loca-
tions for storing subroutine entry addresses. Sub-levels of a given priority inter-
rupt level cannot interrupt each other, but if several attempt to interrupt at the
same time, the highest priority sub-level is recognized first. Any data interrupt
sub-level can interrupt any service interrupt sub-level so that data transfers have

precedence over error or status checking routines.

I/0 PRIORITY INTERRUPT LOCATION PERIPHERAL DEVICE
SUB-LEVEL DATA SERVICE
0 81 Cl Moving Head Disc
1 82 Cc2 Fixed Head Disc
2 90,91 D1l High Level Analog Input Subsystems
3 98,99 D8,D9 Communications Multiplexer
4 83 C3 High Performance Magnetic Tape
5 92,93 D3 Wide Range Analog Input Subsystem (#1)
6 AO0-~-AF EO-E7 Input/Output Interface Subsystem (#1)
6 AQ0-AB EO-EB MODAC Subsystem (#1)
7 84 C4 Moderate Performance Magnetic Tape
8 85 C5 Card Readers (300-1000 CPM)
9 86 Cé6 Card Punch
10 94 D4 Wide Range Relay Analog Input Subsystem
11 87 c7 Line Printer (600 LPM)
12 88 C8 X-Y Plotter
12 88 c8 Electrostatic Printer/Plotter
13 89 c9 High Speed Paper Tape Punch
14 8B CB Line Printer 50-150 LPM
15 8A (67:9 Teletype/Paper Tape Reader
16 BO-BF FO-FF Input/Output Interface Subsystem (#2)
16 BO-BB FO-FB MODAC Subsystem (#2)

TABLE 4-2 Sub-Level Assignments




When a Data Interrupt is serviced (level C16)’ the contents of the Program Register
are stored in memory location 38 and are replaced by the contents of the data
interrupt entry location (80 to BF) for the highest priority peripheral device. The
contents of the entry location point to the unique interrupt subroutine for that I/0

device.

The interrupt subroutine is exited with a CIR instruction which clears the interrupt
level and branches to the address contained in memory location 38. If another Data
Interrupt request is pending, the interrupt processing routine is re-entered

immediately.

When a Service Interrupt is serviced, the operation is identical except that the

entry and return addresses are 3A and 3B with dedicated sub-level interrupt loca-
tions CO-FF.

For additional information on the programming of the I/Q intcrrupts, re

V.

TRAPS

Traps are defined as conditions which cause the execution of the current instruction
to be aborted before completion and generate an interrupt request signal. Only these

internal conditions operate as traps:

Unimplemented Instruction
Memory Parity

System Protect Violation
Floating Point Overflow

Unimpiemented Instruction Trap

An Unimplemented Instruction Trap occurs upon the execution of a REX instruction or

3X or 5X. ) are attempted. The floating

16’ 16’ 16
point set belongs to the macro group and therefore floating point instructions are

when macro instructions (Op Codes 1X

trapped when this option is not present in a computer.

When this trap occurs, the contents of the Program Register point to the memory
location which contains the unimplemented instruction. Therefore, the instruction
can be examined and be simulated by a subroutine. Keeping the contents of the
Program Register from being advanced until the Unimplemented Instruction interrupt
(level 4) becomes active, means that unimplemented instructions must not be present

in any higher level interrupt routines.

The Unimplemented Instruction interrupt level is always enabled. It cannot be
disabled by instruction execution. This condition prevents the possibility of
stalling the machine due to an unimplemented instruction occurring when the level
is disabled.



The Opcodes which have no assigned mnemonic are undefined instructions and their
operation is unspecified. These undefined instructions will not generate an unimple-
mented instruction trap nor will they be executed as NOPs. These Opcodes should

not be used.

Memory Parity Trap

Instructions which result in a memory parity trap are aborted. If the optional
memory parity inlerrupt level is not present, the computer will suspend all opera-
tions until the master clear switch is depressed. If the memory parity interrupt
level is present, the interrupt will be processed in the normal fashion. If a
parity error occurs during a higher priority interrupt subroutine (Power Fail Safe/
Auto Start) the interrupt will not occur until the higher level is cleared. The

memory parity interrupt is always enabled.

System Protect

This trap is used by the MAX III Modular Applications Executive to allow the checkout
and execution of programs in unprotected areas of memory without interfering with

the execution or integrity of programs residing in the protected areas of memory .
This trap occurs if a memory protect violation, privileged instruction violation,

or illegal branch is attempted by the unprotected program. The trap mechanism
returns control to MAX III and results in the immediate aborting of the offending

program.

A memory protect violation occurs when an attempt is made to write into protected

memory by an instruction contained in unprotected memory. At this time a trap will
occur and prevent the illegal write operation from occurring. If a branch is
attempted into protected memory either directly or indirectly (a short indexed
operation, for example), by an instruction or indirect address contained in unpro-
tected memory, the branch occurs before the trap is implemented. The PR will be
updated by the branch and will contain the address of protected memory into which

the branch was made.

A privileged instruction violation occurs when a program in unprotect memory
attempts to execute any CONTROL instruction, INPUT/OUTPUT instruction or INTERRUPT
AND CALL instruction except REX.

The System Protect feature is enabled and disabled by the console key switch.

I'loating Point Overflow

Floating point operands presented to the floating point unit must be normalized. How-
ever, floating point overflow or underflow will occur if the resultant exponent of a
floating point operation is unable to be expressed within the range of the nine bit

binary exponent field of the floating poeint format.



If the resultant floating point fraction must be left shifted to normalize, the binary
exponent must be decremented by one for each bit position left shifted. If the ex-

ponenet decrements past all zeroes to all ones, floating point underflow has occurred.

If the resultant floating point fraction must be right shifted to be normalized, the
binary exponent must be incremented by one for each bit position right shifted. 1If

the exponent increments past all ones to all zeroes, floating point overflow has

occurred.

Either occurrence causes the floating point overflow trap mechanism to terminate the
normal FPU operation and does not allow any results to be transferred back to the

CPU register file. The original register operands are maintained in the CPU register
file and may be interrogated for further overflow/underflow clarification.

The floating point overflow trap level, when present in the system, is Level 5 and is

always enabled.

POWER FAIL SAFE/AUTO START INTERRUPT

When the a-c line voltage drops below 105 volts, an interrupt is generated a minimum
of 200 memory cycles before the memory write current is disabled. This feature allows
the inclusion and execution of a user supplied power failure interrupt routine to
store all operands and I/0 status, for example, which protects the integrity of the
operating program stored in memory during transient or long term power failure condi-

tions.

Upon the generation of a power failure interrupt, the Program Register is stored in
memory location 20 and the power failure routine is entered using the address stored

in location 21.

When a-c power is restored, the system is normalized, an interrupt is generated, and
the start-up routine is entered using the address stored in location 21. The initial
address of the auto-start subroutine should be stored in location 21 by the power

failure subroutine. This level is always enabled.



NPUT OUTPUT

<

OVERVIEW

The basic I/0O facility of the MODCOMP II computer consists of a time-shared (party
line) I/O bus capable of transferring data, commands and device status. Data can
be transferred between any general register and any of up to 64 addressable peri-
pheral devices. Up to 16 bits can be transferred in parallel over the bus under
program control. In addition, the Direct Memory Processor (DMP) is available as an
optional I/O facility which permits transfer of blocks of data to and from memory

on a cycle stealing basis.

Figure 5-1 is the input/output subsystem block diagram. The I/O bus and a typical

peripheral device controller are shown in addition to the computer I/0 subsystem.

INSTRUCTION EXECUTION SEQUENCE

The execution sequence for all I/0 instructions - Input Data, Input Status, Output
Data, Output Command - consists of:

(1) The device address consisting of bits 6, 7 and 12-15 are transferred
from the instruction register, through the I/0 Control (Figure 5-1) to
the addressed peripheral device controller.

(2) A set of control signals are sent to the addressed controller which define
the operation - Input Data, Input Status, Outpuf Data, or Output Command.

(3} If the control signals call for anm input, the device places a data word
or status word on the 16 data lines of the I/0 bus and this word is then
transferred to register Ra as specified by the instruction. The fixed
execution time for all input instructions is 1.6 microseconds. If the
control signals call for an output, the contents of register Ra, as
defined in the instruction word, are transferred to the output buffer
register and then placed on the 16 data lines of the I/O bus. Execution

of all output instructions is completed in a total of 1.33 microseconds.



COMPUTER I/0 1/0 BUS TYPICAL DEVICE CONTROLLER
/\ AN /\

r N l Y N
|
ADDRESS
INSTRUCTION I/0 D‘F #1 INSTRUCTION
REGISTER > |
CONTROL couFROL DECODE
S - ~—
|
I v
| CONTROL
MODU%SS > INPUT/OUTPUT <_DATA } COMMAND <
REGISTERS 1 DECODE
CONTROL | :> DATA DATA
DEVICE
MEMORY o TRANSFER < >
LOGIC I A CONTROL
f— | R -
4\ |
:- i | STATUS -
! DIRECT MEMORY DMP N )  — CONTROL
| PROCESSOR | CONTROL, N e @—{STATUS
I »
READ ONLY PRIORITY | PRIORITY -
MEMORY L] INTERRUPT | INTERRUPT
CONTROL -« 2-14.C - CONTROL P u—
‘ 1
SQURCE ID

Figure 5-1 Input/Output Subsystem Block Diagram



TRANSFER FORMATS

Data is transferred over the I/O Bus as a l16-bit word. If a peripheral device
requires or generates a data word of less than 16 bits, the device data word occupies
the least significant bits of the 1l6-bit CPU data word with the unused bits appearing
as zeroes. When less than 16 bits are output to a device, the outputs are taken from
the less significant end of the register Ra or memory and zeroes are stored in the
otherwise unused bits at the most significant end. This format is consistent with the

operation of the byte manipulation instructions.

REGISTER
R —

BYTE 0 BYTE 1

4

y

PERIPHERAL
DEVICE

REGISTER 1/0O TRANSFER MODES

Three transfer modes are available for program controlled transfers.

The interrupt mode can be used with any device which generates a transfer request

signal. This group of devices includes all standard computer peripherals. The
transfer request signal is connected to an interrupt level. TInterrupt service
routines can perform transfers and all required overhead functions at rates up to

- S LnTr oo R

approximately 60K words per second.

The test and transfer mode is performed by first testing a device by means of the

Input Status instruction. When the "Data Ready" status bit equals zero, a transfer
can be made to or from the addressed device. The maximum transfer rate in this

mode is determined almost entirely by the timing of the device.

The burst mode can be used with devices which can perform a word transfer any time
the computer executes an I/0 instruction addressed to the device. Output bursts
of up to 15 words (one per register) can be performed at the burst rate of 750K
words per second. Input bursts can be performed at 625K words per second. This
mode is useful in applications such as updating a group of digital-to-analog

converter registers.



INPUT/OUTPUT INTERRUPTS

Two standard 1/0 priority interrupts are provided to initiate transfers between
peripheral devices and the CPU. The higher priority data interrupt, level C16’

is used to initiate a data word or byte transfer. The service interrupt, level D16’
is used to initiate service routines for end of record, error, and similar signals.
Under program control, each I/O priority interrupt can be connected or disconnected
within each peripheral device. If a peripheral device has a stored interrupt request
when a command is issued to disconnect the interrupt, the request will be reset.

No interrupt signals are stored in a disconnected controller. Therefore when a

controller is reconnected, all interrupt signals are cleared.

Even though all peripheral devices share the two standard I/0 priority interrupts,
the party line system used provides rapid response to interrupt requests. When

a peripheral device requires a data transfer, the data request flip-flop in the
device controller is set. Since the data request line is common to all peripheral
devices, any data request flip-~flop that is set will cause the data request line

to be true. If no higher priority interrupt level is active, the CPU I/O subsystem
will issue a data queue update command. In response to this command, all peripheral
devices that have their data request flip-flop set, place their priority level on
the data lines and their source ID on the source ID lines. The data lines are

used to provide priority sub-levels for the data interrupt. The highest sub-level
corresponds to data bit 0 on the data lines and the lowest sub-level to data bit 15.
During the data queue update command each peripheral device examines all of the
data lines corresponding to a higher priority sub-level than its own. If a higher
priority sub-level is detected, the peripheral device removes its source ID from
the source ID lines. At the end of the data queue update command the following

occur:

. The CPU internally stores the source ID of the highest priority peripheral

device, to be used for defining the interrupt entry location.

. The highest priority peripheral device resets its data request flip-flop

and removes its source ID from the source ID Bus.

. All peripheral devices remove their priority sub-levels from the data lines.

Next, the CPU stores the current contents of the Program Register in location 3816
and branches to the address contained in one of sixty-four dedicated locations
(BO—BF)16 specified by the source ID. The subroutine is then entered to transfer
data.

The service interrupt operates in the same manner as the data interrupt, except
the dedicated return location is 3Al

C016—FF16.

6 and the dedicated entry locations are

Refer to Section IV for more information on the I/O interrupts.



DIRECT MEMORY PROCESSOR

The DMP provides direct memory access capability for 8 peripheral device controllers.
All 8 controllers can perform transfers of blocks of data to/from computer memory

at the same time on an inter-leaved basis. Devices connected to DMP channels also

accept Input Data and Output Data commands when not performing DMP controlled block

transfers.

A pair of dedicated memory locations are assigned for each of the 8 controllers.
Each controller is assigned a Transfer Count (TC) location (60—67)16 and a
Transfer Address (TA) location (70—77)16 having the formats:

DMP TRANSFER PARAMETER FORMATS

TRANSFER COUNT
Cql S NEGATIVE WORD COUNT <16384 *C = 1 Transfer Single Block
0 15 C =0 Transfer Chain of Blocks

TRANSFER ADDRESS

ADDRESS FIELD
0 15

Transfer Initiation

Once a peripheral device is appropriately selected and initialized, a data transfer
is started by storing the desired starting address for the transfer in the TA loca-
tion and the negative number of words to be transferred in the TC location. An out-
put command instruction in the transfer initiate format is then executed. Transfers
occur automatically at the rate requested by the device. The TA and negative TC are
incremented after each transfer. The maximum length of a single block is 16384 words.

When TC equals zero, a data interrupt is generated. If this interrupt is connected
by the program to the interrupt (level C16) party line and if the level is enabled,
the computer will be interrupted as soon as the data level reaches the top of the

interrupt queue.

When the device can accept a new command, the service interrupt (level Dl6) is
generated, if program connected to the service interrupt party line.

The use of both the data and service interrupts provides a choice between two "end
of block" signals. One occurs as soon as the last word has been transferred and the
other occurs when the device is ready to be commanded again, which is often milli-

seconds after the last transfer.

Data Chaining
If bit 0 of the Transfer Count is set to zero (C=0) before the initiate command is

executed, a new block of words will be transferred automatically after the transfer



of the current block is completed. The data interrupt signifies the completion of
each block. The TA and TC parameters for the new block are obtained from the two
memory locations immediately following those occupied by the current block. TC is

taken from the first location and TA from the second location after the data block.

If C=0 in the TC parameter, data chaining will continue until a TC parameter 1is

encountered with C=1.

Register File

All eight DMP channels are supplied with a pair of registers in which the current
TA and TC are stored. Each time a block transfer is initiated, the contents of the
TA and TC dedicated memory locations are automatically transferred to the two
registers associated with the channel. Transfers can be made over these channels
at ratesup to 416K (input) or 340K (output) words per second, which are determined

by the I/0 subsystem timing.

At the end of a transfer sequence,just prior to SI generation, the final TA is stored

in a dedicated location from the appropriate channel register.

PERIPHERAL DEVICE ASSIGNMENTS

All programming parameters for MODCOMP peripheral devices are listed in Table 5-1.
Unassigned dedicated locations have been left for other peripheral devices, analog
input subsystems, communication subsystems, custom devices and future system expan-

sion.

PROGRAMMING CONSIDERATIONS

The sequence of programming steps necessary to perform typical input/output functions
are described in this section. The descriptions are general purpose and therefore

are designed to cover all contingencies.

REGISTER 1/0O INTERRUPT MODE SEQUENCE

New Command Initiation:

. Store interrupt subroutine starting addresses in the data and service interruptl

level dedicated locations.

- Reset previous error and interrupt status by the execution of an Output Command

instruction with a No Op output command, disconnecting both interrupts.
. Test present device status by executing an Input Status instruction.

If status indicates inoperability or an invalid (all zero) status word, exit to
error routine; otherwise continue.



I/0 INTERRUPT LOCATIONS DMP LOCATIONS DEVICE PERIPHERAL DEVICE
PRIORITY DATA SERVICE TC TA ADDRESS
0 81 Cl 61 71 0l Moving Head Disc
1 82 c2 62 72 02 Fixed Head Disc
2 High Level Analog Input
Subsystem
90 60 70 10 -Channel Output
91 D1l 63 73 11 -Data Input
3 Communications Multip.
98 D8 6F 7F 18 -Controller
99 D9 19 -Channels
4 83 C3 63 73 03 High Performance Mag-
netic Tape
5 Wide Range Analog Input
System
52 65 75 iz -Channel Qutput
3 D3 6 13 -Data Input
6 A0-A7 EO0-E7 20-27 Input/Output Interface
Subsystem
7 84 c4 64 74 04 Moderate Performance
Magnetic Tape
8 85 C5 05 Card Readers (300 and
1,000 CPM)
9 86 Cé 06 Card Punch
10 94 D4 14 Wide Range Relay Analog
Input Subsystem
11 87 c7 07 Line Printer (600 LPM)
12 88 cs 08 X-Y Plotter
13 89 co 09 Paper Tape Punch
14 8B CB 0B Line Printer (50-150LPM)
15 8A ca oA Teletype/Paper Tape
Reader
16 A8~AF E8-EF 28-2F Input/Output Interface

Subsystem

TABLE 5-1 Peripheral Device Interrupt Assignments




. Execute an output Command Instruction specifying register mode, input or output,
connection of interrupts and any other modifiers required by the particular

peripheral device. Exit and wait for interrupt.

The controller is now busy and will not respond to new initiation commands. It will
respond to Input Status, Input Data and Output Data Instructions and an Output Com-
mand Instruction with a Terminate Command. The controller will produce the data
interrupt when a data transfer is reguired and Lhe service interrupl il a malfunclion

occurs or at the end of the media record.

Response to Data Interrupt:

. The data interrupt processing routine is automatically entered when the re-

questing controller has the highest priority.

. Preserve original contents of Rl - execute an STM, RL1,A. Repeat for all other

registers to be used as working registers.

. Check word count, if transfer not complete, perform input or output operation
as required. If output, load new data into appropriate place in register,
execute Output Data Instruction and update word and byte counts appropriately.
If input, execute Input Data Instruction and move or store data as required
before updating word and byte counts.

- If the last word required was transferred, an Output Command Instruction should
be executed, issuing a Terminate Command to the controller. This will stop

further transfers and reset the data interrupt request.
. Restore the previous contents of the working registers.

Execute a CIR Instruction to exit the routine and return to the original program.

Response to Service Interrupt:

- The Service Interrupt Processing routine is automatically entered if the re-
questing controller has the highest priority. This interrupt is generated after
all hardware checks are complete and the controller can accept a new initiation

command.

Preserve the original contents of Rl - execute an STM,R1,A. Repeat for all

registers to be used as working registers.

- Check validity of the transfer by issuing an Input Status instruction. If an

abnormality is indicated, exit to error recovery routine.

. If previous checks are satisfactory and no further tasks required for controller,

restore the previous contents of the working registers and execute a CIR.

. If previous checks are satisfactory and another transfer sequence is desired,
execute an Output Command Instruction with a new initiation command. This
command will reset any status conditions that may be set. Execute a CIR to
exit the subroutine.



REGISTER 1 /O TEST AND TRANSFER MODE

Register I/0 transfers may be accomplished without the use of data interrupts. A
"Data Ready" bit is provided in the standard status word for this purpose. To

operate in this mode, the data interrupt is disconnected by the initiation command
and the data ready bit is tested during each transfer sequence. Device control is

performed in the same manner as in the interrupt mode.

DIRECT MEMORY PROCESSOR 1/0 MODE

The optional DMP mode frees the program from the task of handling individual data
word transfers, and increases net throughput capabilities. The software initiation
and termination sequences are described in this Section in the most general manner

[ T
pPUDDLILLIEC .

New Command Initiation:

Store interrupt subroutine starting addresses in the two dedicated interrupt

.

level locations.

Reset previous error or interrupt status by execution of an Output Command,

which also disconnects both interrupt levels.

. Test present status by executing an Input Status Instruction. If inoperability
is indicated or an invalid (all zero) status word, exit to error routine.

Store a transfer address and a word count in the two DMP dedicated locations.

Execute an Output Command Instruction with an Initiate Command specifying DMP
mode, input or output, connection of service interrupt, optional connection of

data interrupt, and any other modifiers required by the particular peripheral.
. Exit and wait for the interrupt.
The controller is now busy and will not respond to new initiation commands. It will
respond only to an Input Status Instruction or an Output Command Instruction with a

Terminate or No Op Command.

Response to Data Interrupt:

. The data interrupt processing routine is automatically entered when the con-

troller requesting has highest priority.

Preserve the original contents of Rl - execute an STM,R1,A. Repeat as required

for all working registers.

The occurrence of this interrupt, in this mode, designates that the transfer

1

f the k of data has been completed (TC=0). The program may use this fact

~ W~
1% Lilce LivwC

to gain time to manipulate data prior to the completion of the physical media

operation.

. Execute a CIR, which will return control to the point of interruption.



Response to Service Interrupt:

The service interrupt processing routine is automatically entered when the
requesting controller is the highest in the interrupt queue. This interrupt
is generated after all hardware status checks are complete and the controller

is ready to accept a new initiation command.

. Preserve the original contents of Rl - execute an STM,R1,A. Repeat for all

other registers to be used as working registers.

Check validity of the transfer by executing an Input Status instruction. If

an abnormality is indicated, exit to an error recovery routine.

. Check final transfer address in dedicated location. If improper, exit to error

routine.

If the prcvious checks are satisfactory and no further tasks are required,

execute a CIR instruction to return to the original program.

If the previous checks are satisfactory and another block transfer is desired,
load the word count and transfer address into the dedicated locations. Then

execute an Output Command Instruction with a new Initiation Command. This

command will reset any status conditions that may be set.

. Execute a CIR instruction to exit the routine.

OUTPUT COMMAND FORMATS

An Output Command Instruction transfers the 16 bit output command stored in register
Ra to the I/0 register where it is placed on the I/0 bus data lines. There are three
basic command formats; Select, Control and Transfer Initiate. The bit designations
for each group are defined below. All standard peripheral controllers follow these
format conventions. All Commands except End-of-Block and Terminate reset all stored
status if the device is not busy. The specific commands and tests for each periphe-
ral device are listed in Appendix C. The standard controllers interpret the command

as follows:

Select Format

0 1 2 15

0 0
BITS FUNCTION

0,1 Must both be zero. These bits specify the select format.

2-15 Specify a set up condition such as unit number (multi-unit controllers),

density, head number, etc.



Control

Format

0 1 2 3 4 5 6 7 15
0 1 D S E T MPE

BIT FUNCTION

0 Must be zero.

1 Must be one. This bit is used in conjunction with bit 0 to specify the
control format.

2 Specifies the state of the data interrupt:
Zero - Disconnects the device controller and resets the request in the
controller if present.
One - Connects the device controller sub-level to the data interrupt level.
If the DMP mode had previously been specified by a Transfer Initiate command,
the data interrupt will occur when the Word Count = 0.
If the register I/0 mode had previously been specified by a Transfer Initiate
command, the data interrupt is defined as Data Request.

3 Specifies the state of the service interrupt.
Zero - Disconnects and resets the request if active.
One - Connect the interrupt, allowing it to become active.
The service interrupt may be caused by a variety of conditions such as end
of record or error. The interrupt condition depends on controller design.

4 Specifies End-of-Block command when equal to one. No effect when equal to
zero. The End-of-Block command causes the controller (except the Teletype
Controller) to immediately generate a data interrupt if that interrupt had
previously been connected. This function is useful for diagnostic and de-
bugging purposes. An End-of-Block command will be accepted even when a
controller is busy or operating in the DMP mode.
The responding device ignores all bits of the control format except 0, 1,
4 and 5.

5 Specifies Terminate command when equal to one. No effect when equal to

zero. The Terminate command stops data transfer to/from the specified
device and resets any non-active data interrupt, or DMP Data request. A
Terminate command will be accepted when a controller is busy or in the DMP

mode.

The Terminate command will also condition a controller to generate a

service interrupt when the controller is subsequently ready to respond

to another Transfer Initiate command. If the controller is not busy

and the service interrupt has been previously connected, this interrupt will
occur immediately. The responding device will ignore all bits of the con-

trol format except 0, 1, 4 and 5.



If a terminate command is issued with bit 7 set to one, a controller with
DMP facilities will set its memory parity error status indicator. This
command is normally issued automatically by the DMP I/O system if such an

error is detected.

If bit 7 is set to one within a terminate command to some devices (TTY for

example), an immediate operation abort occurs.

6 Normally used to distinguish between a normal control command and a No-Op.

See No-Op below.

7* Specify a control function such as rewind, advance record, seek cylinder,

etc..

No Op Command

When bits 4, 5 and 6 are all zero, bits 7-15 are ignored. The No Op command alters
interrupt connection per the values of bits 2 and 3 whether or not the device is

busy. The No Op command also resets all device status if the device is not busy.

Interrupt Disconnection and Termination

An interrupt may be reset by means of a Disconnect or Terminate command whenever the
interrupt level is Active. However, if the level is not active but might become

active immediately, an invalid request might occur on the I/O level. To accommodate
this situation, requests at levels 80 and CO should execute a CIR and return to the

interrupted program.

Transfer Initiate

01 2 3 4 5 15
M|DJ|S|I
BITS FUNCTION
0 Must be one. This bit specifies the Transfer Initiate Format.
1 Specifies mode selection for subsequent data transfer.

Zero - Sets the device to the programmed register I/0 mode. The device
sends a data interrupt request, if connected, each time it requires a

data transfer, including the first transfer.
One - Sets the device to the DMP transfer mode.
2 Specifies the state of the data interrupt:

Zero - Disconnects the device controller and resets the request in the

controller if present.
One - Connects the device controller sub-level to the data interrupt level.

If the DMP mode had previously been specified by a Transfer Initiate command,
the data interrupt will occur when the TC = 0.

If the register I/0 mode had previously been specified by a Transfer

Initiate command, the data interrupt is defined as Data Request.

*Except as already noted.



3 Specifies the state of the service interrupt.

- Disconnects and resets the request i
1g it to become active.
The service interrupt may be caused by a variety of conditions such as the

end of the record or error. The interrupt condition depends on controller

[0)

design.

4 Specifies the direction of data transfer.
Zero - Sets the device to the output transfer mode.
One - Sets the device to the input transfer mode.

5-15 Specifies a transfer initiate functicon such as write record or read card.

(See Appendix C).

iNPUT STATUS FORMAT

An Input Status instruction causes the contents of the 16 data lines to be transferred
to the specified register Ra. The controller, as selected by the device address, puts

its status word on the data lines and then the transfer occurs.

One basic format exists which is common to all controllers. This format encompasses
two groups: Errors and Events. The error group has a pointer bit indicating if
any error is set. The status format is so defined that a status word of all zeros

is invalid, indicating a malfunctioning or non-existant controller.

0 1 2 3 4' 5 6 7 8 9 15
E D|lP |I |M B|T
“ A J
'l v
ERROR EVENT
FIELD FIELD
BIT STATUS
0 Error Pointer Bit

Zero - An error has occurred and is defined in the field of bits 1 through
6.

One - No error has occurred.

BIT STATUS
1 Data transfer error.

Zero - No error.

One - Overflow or underflow error.
2 Parity or checksum error.

Zero - No error.

One - Device parity error.



3 Inoperable.
Zero - Device operable (on-line).
One - Device inoperable (off-line, interlock open, etc.)
4 Memory parity error.
Zero - No error.
One - A memory parity error was detected during a DMP transfer.
5-6 Specify error conditions unique to a device such as seek error.
7 Busy status of device controller.
Zero = Device controller not busy.
One - Device controller busy.
8 Transfer Status. (Normally used when not operating in the interrupt mode).
Zero - Device controller ready to transfer a data word.
One - Device controller not ready to transfer a data word.

9-15 Specify device unique event conditions.

/0 BUS INTERFACE

The MODCOMP II I/O Bus is a time-shared (party line) bi-directional bus capable of
transferring data, commands, and device status. Since the bus is a party line, each
device controller must request use of the bus on one or more of the three request
lines available. When the bus is available for use, the CPU will issue interlock

signals which inform the specified controller when it may use the bus.

The I/0 cable is connected serially (daisy chained) to each Peripheral Controller
Interface and Input Output Interface Subsystem. All controllers and the CPU are
connected to the I/O bus through a cable driver/receiver set which isolates the
logic from the effect of I/0 bus loading and delays.

The I/0 cable connection rules are:

(1) The maximum combined cable length per computer is 100 feet.

(2) All connections must be made via a cable driver/receiver set.

(3) A maximum of eight cable driver/receiver sets can be connected to the
cable.

Up tc four device controllers can be connected tc each driver/receiver set.

-~
>
~

The block diagram of the computer I/0 subsystem (Figure 5-2) shows the types of
signals in the I/O cable (which is cut by the dashed line in the figure). Thirty-
nine pairs of lines are provided for communication between the CPU and external

controllers.



The signals are described below.

Address (6 pairs DAOON through DAQ5N) - Designates which device controller is to
respond to the control lines. The six-bit binary value is obtained from the I/O
instruction word (bits 6-7, 12-15).

Control (5 pairs) - The four I/0 instruction functions are coded on two lines.

(DACSN) - Command (false) / Data (true) and (DAION) - Input (true) / Output (false).

The I/O Sync signal (IOISN) indicates that an I/0 transfer is occurring. When this
signal is true, the Command/Data, Input/Output and Address signals are valid.

The other two control signals are Master Clear (IOICB), which is generated at the
computer, and Clock (IOCLKN), which is a 5 MHZ square wave generated in the computer.
The Master Clear signal normalizes all units and the Clock signal provides a timing

signal to controllers, eliminating the need for an internal time base.

Data (16 pairs IOBOON through IOB15N) - All commands, status, data and controcller

priority are transmitted over this bi-directional bus.

DMP Control (2 pairs) - The DMP Request signal (DMRQN) is sent to the computer by
controllers operating under DMP Control. It signifies a request for a word transfer

in the direction the DMP channel was last initialized.

The DMP responds with a DMP Queue Update signal (UDDMQN). In response to this signal,
each (if more than one) controller having a current DMP request places a true signal

on one of the 16 data bus lines, indicating one of 16 DMP channel priorities.*

The Source ID of the unit, which is a six-bit pointer to the dedicated registers for
the channel is also placed on the Source ID lines. Each requesting unit examines
the data bus lines to determine if a higher priority unit is also requesting a

transfer. If so, the lower priority unit removes its priority and Source ID signals.

Priority Interrupt Control (4 pairs) - These signals consist of a Request signal

and an Update Queue signal for both of the party line interrupts. Therefore the

four signals are Data Request (DIRQN), Data Queue Update (UDDIQN), Service Request
(SIRQN) , and Service Queue Update (UDSIQN). These two pairs of signals are handled
just like the DMP Request and DMP Queue Update except they are serviced at priority
interrupt levels C16 and Dl6' and DMP Transfers are serviced in the DMP independently
of the interrupt priority structure. Each requesting controller places its priority
bit on one of the 16 data bus lines and its Source ID on the Source ID iines. All
but the highest priority requesting controller remove their signals during the Up-

date Queue signal before the Source ID signals are transferred to the computer.
Source ID (6 pairs SIDOON through SIDOSN) - Each device has a unique Source ID code
which is sent to the computer in response to an update queue command. This code

is used to identify the dedicated memory location assigned to the interrupt sub-

level or the DMP channel.

* Although 16 channel priorities are available, only eight (8) may be used.

5-15



r———-—-=-=-- 1 r— """ "—-—-"—-"—"""—-"=—=—-"=-"—-—""—"——-—= l’——'—-_—__—'———__—'-_-lI-____—_—
I w ! ! o | (]
| case | I casie | 1
Loy I |
e Py 1 +— T Loy, |
GND bt wl | ! L [
T > T T t
GND L ! N | | B
Py > } po | 1»—-{}—CT~—<-
18 bi>——+—>1 D> — !
DATA 8IT R I o 1
29 :> - I P> #]' by
H I Vo R3
>+ I I | g1
,r‘ | Ll " 1 [} [ |
toa) [ 1 1
! | [ | | |
| | [ | [N I | | [}
Lo o | |
patasiTs ! | | [ I I}
——t I . T ﬁ,«AA/\,_J
r‘? ; : : ] —+ | ] R3
P [ : (I
+vee TERMINATOR
+vCC | l +VeC wee : ] +VCC R | :
| : cat | I CR1 | e e o e - — o
RM1 R3120 t5% .25W
At | | R4 | | R4 | Cl-47uts 20%
r : | cra | | cR2 |
| q | I |
I I c1 | | c |
GND GND GND
T SV | | q | ] —AAAA ¢ e |
RM2 RM2 1 RY i
R1 |
GND GND | | | |
— I | GND ! | GND 4 |
3 4 | ! | | |
A v U I | R I 1 R TUr |
| : I | |
1 | ono . : I o 8 |
|
] I PERIPHERAL ! I PERIPHERAL I
MODCOMP 11 ] I CONTROLLER | | CONTROLLER
—_——— e — — —J S | e -]

1-§
[ mm ——m m e

RM1-220 A +3%, 140MW
RM2-330 A +3%, 140MW

D-SINKS 70 MA MIN. FOR
LOGICAL 1 {4V MAX.}

-100,A MAX. LEAKAGE
FOR A LOGICAL @.(5V MAX.)

R-@ OUT FOR INPUTS2.0V
-1 QUT FOR INPUTZ 8V
MAX SOURCE CURRENT-2MA

R1-220n. 5%, .25W

C1-.01,F, CERAMIC
(-20%, +80%)

CR1, CR2-IN4001 or EQUIV.

R4-1.2K+ 5%, .25W

FIGURE 5-2

INPUT/QUTPUT CABLE DIAGRAM

R1-220 . £5%, .25W

C1-.01,F, CERAMIC
(-20%+80%)

CR1, CR2-IN4001 OR EQUIV.

R4-1.2K+.5%, .25W



Signal Levels

Logic 0: 1 2.4 to 5.5 Volts Except IOICRBR
Logic 1: 0 to 0.4 Volts which is inverted.

Figure 5-3 illustrates a MODCOMP II I/0 Bus system with the driver/receiver sets

and the associated termination network.

The I/0 Clock (IOCLKN) a 5 MHz square wave, is distributed on the I/0O bus for general

purpose use in the controllers.

When the IOICB (Initial Condition Bus) comes true, each controller should normalize
(not busy, no interrupt or DMP Requests, no interrupt enabled, device normalized,
etc). This signal is present if the CPU power is going down and is present to nor-
malize the system when power is returned to the CPU and when the master clear switch

on the CPU console is depressed.

All signals are ground true except IOICB. This allows each controller to recognize
the absence of a current sink in the CPU and normalize when CPU power is absent.



ERROR

O

RUN

O

POWER

PANEL
LOCK

ON

(=113

O 0000 0000 0000 0000

3 L L] [ ° 10 " 12 13 4 AR
MASTER SINGLE ENTER  STEP DISPLAY ENTER +— GROUP ~—{ }— REGISTER —_— CONSOLE
CLEAR  FILL HALT  CYCLE P~ R [+] 1 2 3 4 s INTERRUPT
RUN

Figure 6-1 Control Panel




VI. OPERATOR CONTROLS

The MODCOMP II control panel enables programs to be loaded into memory and
executed under manual control. It also provides a number of debugging and

maintenance aids.

Data

The 16 Data Indicators display the contents of the register designated by the
Register Select switches when the computer is halted. The bus traffic is displayed

when the computer is in the run mode.

Parity Error
This indicator is lighted when the computer is halted due to a parity error, if

no System Protect Feature, or until the memory parity interrupt is serviced,

if the System Protect Feature is present.

Run

This indicator is lighted when the computer is in the run mode, which means not

halted manually or by execution of the Halt instruction.

Power On

This indicator is lighted when a-c power is applied to the computer. The circuit
breaker for switching power is located behind a hinged panel in the top front of

the system cabinet which contains the computer.

SWITCHES

Data Entry
The 16 Data Entry switches are used to enter data into any register or memory
location. The lowered position corresponds to a one value and the raised (normal)

position corresponds to a zero value.

Panel Lock

1n the ON position; this keyswitch disables all other control panel switches except
the 16 Data Switches and the Console Interrupt switch. In the ON position it also
enables the System Protect operation. All switches are enabled and the System

Protect is disabled when the Panel Lock switch is in the OFF position.



Master Clear

Depressing this switch causes the computer and peripheral devices to be cleared.
All interrupts and control signals and the contents of the Program and Instruction

Registers are reset to the zero or cleared state.

Depressing this switch causes a bootstrap routine to be transferred to main memory
{locaticns 72516) from read-only memory. The bootstrap routine automatically
fills from the selected device. The device is selected by setting the proper device

number in the Data Entry switches prior to depressing the Fill switch:

Fill From Data Entry Switches16

Paper Tape Reader 0
Card Reader
Mag tape

Fixed Head Disc

o O O o o

0
0
0
0

o o o o o
L S - 2

Moving Head Disc
Run/Halt
This switch is used to manually place the computer in either of the modes indicated
by the switch positions. When the computer is manually halted, the Program Register
points to the next instruction and the Instruction Register contains this next
instruction. To resume operation at a new location, the Master Clear switch should
be depressed to clear the Instruction Register, and the new location minus one
should be manually entered into the Program Register. The Halt/Run switch should

then be raised to the Run position.,

Single Cycle

Depressing this switch causes the instruction presently stored in the Instruction
Register to be executed. The Program Register is then advanced to the next
instruction, and this instruction is accessed from memory and transferred to the
Memory Data and Instruction Register. It can be displayed from the Memory Data
Register.

Enter

When this switch is depressed, the word corresponding to the position of the Data
Entry switches is stored in the memory location specified by the contents of the

Program Register. The Program Register is not advanced.

|0

step
The contents of the Program Register are incremented by one and the contents of the
new memory location are entered into the MDR when this switch is depressed. <he
switch is provided to facilitate modifying or displaying the contents of consecutive

memory locations.

Console Interrupt

Depressing this switch, in computer models having the Executive Features, causes

an interrupt request signal to be sent to interrupt Level E.

6-2



Display
The contents of the memory location designated by the contents of the Program Register
are displayed and entered into IR when this switch is depressed, providing the Register

Select switches designate the Memory Data Register.

Enter R
Depressing this switch causes the contents of the Data Entry switches to be stored

in the register specified by the Register Select switches.

Register Select

These switches are used to specify the register, the contents of which are to be dis-
played or modified. Whenever the computer is halted, the Data indicators display the
contents of the specified register. When the Enter R switch is depressed, the speci-

fied register contents are replaced by the word specified by the Data Entry switches.

SOURCE DESTINATION
(Display Register) (Enter Register)
Switch Switch
Setting Register Name Setting Register Name
g9 - gF - GPR FILE oy - NO DEST.
1¢ - 17 - UNASSIGNED 91 - gF - GPR FILE
18 - NO SOURCE 19 - AR
19 - 1IF - GPR 1-7 11 - AR & TRB
2 - 2F - AUX FILE 12, 13 - UNASSIGNED
39 - ACTIVE 14 - Ra =-» PAUSE COUNTER
31 - TRB 15 - Rb —+PAUSE COUNTER
32 - OPT PL¢ 16 - BUS ~+ PAUSE COUNTER
33 - OPT PL1 17 - Rb —# PAUSE COUNTER
34 - ENABLE 18 - HLT FF
35 - TRA- 19 - RMI FF
36 - P.I. QUEUE ia, 1B - UNASSIGNED
37 - LITERAL 1C - ROM ADDRESS REG.
38 - REQUEST 1D - UBR
39 - UNASSIGNED 1E - LBR
3A - INPUT BUFFER 1F - LBR, ZUBR
3B - UNASSIGNED 28 - 2F + - AUX FILE
3C - PR 3¢ - ACTIVE
3D - OFLO (BITQ) 31 - TRB
CARRY SAVE (BIT 15) 32 - OPT PLg
3E ~ UNASSIGNED 33 - OPT PL1
3F . - MDR 34 - ENABLE
35 - TRA
36 - MA
37 - MA & TRA
38 - REQUEST
39 - TRA & TRB
3A - OUTPUT BUFFER
3B - UNASSIGNED
3C - P & MA & TRA
3D - LSH MDR
3E - MSH MDR
3F - BOTH MDR

TABLE 6-1 REGISTER SELECT



CONTROL PANEL OPERATION

DISPLAY REGISTER

1. HLT/RUN switch to HLT
2. Register select switches to the desired register (Lights display

contents of register)

LOAD REGISTER
1. HLT/RUN switch to HLT

2. Register select switches to the desired register

3. Place data into RO (switch register)
4. Press 'LNTER REGISTER'

LOAD MEMORY
1. HLT/RUN switch to HLT
2. Load R11 (PR) with desired starting address
3. Load RO (switch register) with desired data
4., Press 'ENTER MEMORY'
Note: To load sequential locations, press 'STEP' one time, and repeat
steps 3 and 4.

DISPLAY MEMORY
1. HLT/RUN switch to HLT
2. Load R11l (PR) with desired starting address

3. ©Set the register select switches to R17
4. Press 'DISPLAY MEMORY' (Lights will display the contents of the
selected memory location)
Note: To display sequential locations, press 'STEP' switch for each additional

location to be displayed.

START PROGRAM
1. HLT/RUN switch to HLT
2. Load R1ll (PR) with desired starting address
3. Press 'UDISPLAY MEMORY'
4, HLT/RUN switch to RUN

SINGLE CYCLE PROGRAM

1. ELT/RUN switch to HLT

2. Register select switches to R17 (MDR)

3. Press 'DISPLAY MEMORY'

4. Press 'SINGLE CYCLE' for each instruction

to be executed,
display the contents of the first word of the next instruction to
be executed.

Note: Interrupts will be ignored during single cycle.



FILL
1. ILT/RUN switch to HLT
2. RO bits 12-15 to the device address of filling device

A. 1 - moving head disc
B. 2 - fixed head disc
C. 4 - mag tape

D. 5 - card reader

E., A - TTY or paper tape

3. Mag tape only
RO bits 1-7 to file for mag tape £fill

Disc_only

RO bits 1-7 to Starti?gogector (Starting Sector divided by
4, Press 'MASTER CLEAR'
5. Press 'FILL'

N
.

HLT/RUN switch to RUN



APPENDIX A. HEXADECIMAL TO DECIMAL CONVERSION

This appendix enables direct conversion of decimal numbers to/from hexadecimal numbers

in the ranges:

HEXADECIMAL DECIMAL
000 to FFF 0000 to 4095

For numbers outside the range of the table, add the following values to the table

figures:

HEXADECIMAL DECIMAL HEXADECIMAL DECIMAL
1000 4096 9000 36864
2000 8192 A000 40960
3000 12288 B0O0OO 4505686
4000 16384 C000 49152
5000 20480 D000 53248
6000 2457¢ EGGO 57344
7000 28672 F000 61440
8000 i 32768

0 1 2 3 4 5 6 7 8 9 A B C D E F

000 | 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 | 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 | 0032 0033 0034 0035 0036 0037 6038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 { 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 | 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 { 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 [ 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 | 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 | 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 | 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0AO [ 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0BO | 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

0CO { 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0DO0 | 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO | 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF0 | 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

100 | 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 [ 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 [ 0288 0289 0290 0291 0292 0293 0294 0295 029¢ 0297 0298 0299 0300 0301 0302 0303
130 | 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 [ 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
150 | 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 | 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 | 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 [ 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 | 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A0 ] 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1BO | 0432 0433.0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

1C0 | 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1D0 | 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1EO | 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1F0 | 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511




200 } 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 | 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 | 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 | 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
240 {0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0583 0550 0591
250 | 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 | 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 | 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
280 | 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 [ 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A0 | 0672 0673 0674 V675 0676 0677 0678 0679 VU680 0681 0682 0683 0684 0685 0686 0687
2B0 | 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C0 | 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D0 {0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E0 | 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F0 [ 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
300 | 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 [ 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 | 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 | 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
340 [ 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 {0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 [ 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 | 0880 0881 0882 0883 0884 0885 0886 0887 0888 0883 0890 0891 0892 0893 0894 0895
380 | 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 (0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A0 (0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B0 [ 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C0 | 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D0 | 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E0 {0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F0 | 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
0 1 2 3 4 5 6 7 8 9 A B C D E F
400 (1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 | 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 {1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
440 [1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 | 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 | 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 (1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
480 (1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 |1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A0 |1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4B0 [1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4CO0 | 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D0 | 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E0 }1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F0 11264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
500 | 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 (1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 {1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
540 |1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 |1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 11392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
580 (1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 | 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SAO0 {1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B0 |1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5CO0 [1472 1473 1474 1475 1476 1477 1478 1779 1480 1481 1482 1483 1484 1485 1486 1487
5D0 |1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E0 {1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F0 | 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535




0

1

3

4

5

9

A

B

C

E

F

600
610
620

b3U

640
650

670

680
690
620
6B0

6C0
6D0
6E0
6FO
700
710
720
730

740
750
760
770
780
790
7A0
7B0

7C0
7D0
7E0
7F0

1536
1552
1568

1584

1600
1616
1632
1648

1664
1680
1696
1712

1728
1744
1760

177
1770

1792
1808
1824
1840

1856
1872
1888
1904

1920
1936
1952
1968

1984
2000
2016
2032

1537
1553
1569

arar

1585 1

1601
1617
1633
1649

1665
1681
1697
1713

1729
1745
1761

1777
L1717

1793
1809
1825
1841

1857

1872 1

1889
1905

1921
1937
1953
1969

1985
2001
2017
2033

1539
1555
1571

Tara=-

1087

1603
1619
1635
1651

l667
1683
1699
1715

1731
1747
1763

1770
L7712

1795
1811
1827
1843

1859

4 1875

1891
1907

1923
1939
1955
1971

1987
2003
2019
2035

1540
1556
1572

oo

1588

1604
1620
1636
1652

1668
1684
1700
1716

1732
1748
1764

1700
41 /70U

1796
1812
1828
1844

1860
187¢
1892
1908

1924
1940
1956
1972

1988
2004
2020
2036

1541
1557
1573

Tcon

Lo52

1605
1621
1637
1653

1669
1685
1701
1717

1733
1749
1765

1701
i/01

1797
1813
1829
1845

1861
1877
1893
1909

1925
1941
1957
1973

1989
2005
2021
2037

1545

1561
1577

Traa

1032

1609
1625
1641
1657

1673
1689
1705
1721

1737
1753
1769

1mac
1 /00

1801
1817
1833
1849

1865

1291

1897
1913

1929
1945
1961
1977

1993
2009
2025
2041

1546
1562
1578

Tro

1594

1610
1626
1642
1658

1674
1690
1706
1722

1738
1754
1770

1700

1/00

1802
1818
1834
1850

1866

1992

ERe oA

1898
1914

1930
1946
1962
1978

1994
2010
2026
2042

1547
1563
1579
1585
1611
1627
1643
1659

1675
1691
1707
1723

1739
1755
1771

1m0~

L/70/

1803
1819
1835
1851

1867

1092

ER-R ]

1899
1915

1931
1947
1963
1979

1995
2011
2027
2043

1548
1564
1580
1558
1612
1628
1644
1660

1676
1692
1708
1724

1740
1756
1772

1700

1L /00

1804
1820
1836
1852

1868

1004

ERvEVES

1900
1916

1932
1948
1964
1980

1996
2012
2028
2044

1550
1566
1582
1598
1614
1630
1646
1662

1678
1694
1710
1726

1742
1758
1774

1200

L7V

1806
1822
1838
1854

1870

100c

LOOU

1902
1918

1934
1950
1966
1982

1998
2014
2030
2046

1551
1567
1583
1599
1615
1631
1647
1663

1679
1695
1711
1727

1743
1759
1775

P 1ol ]

1791

1807
1823
1839
1855

1871

1007
LOU s

1903
1919

1935
1951
1967
1983

1999
2015
2031
2047

800
810
820
830

840
850
]60

870

880
890
8A0
8B0

8CO
8D0
8EO0
8F0

900
910
920
930

940
950

970

980
990
9A0
9BO

9Co
9D0
9EO
9F0

2048
2064
2080
2096

2112
2128
2144
2166

2176
2192
2208
2224

2240
2256
2272
2288

2304
2320
2336
2352

2368
2384
2400
2416

2432
2448
2464
2480

2496
2512
2528
2544

2049
2065
2081
2097

2113

2129
2145

2161

2177
2193
2209
2225

2241
2257
2273
2289

2305
2321
2337
2353

2369
2385
2401
2417

2433
2449
2465
2481

2497
2513
2529
2545

2051
2067
2083
2099

2115

2131
2147

2163

2179
2195
2211
2227

2243
2259
2275
2291

2307
2323
2339
2355

2371
2387
2403
2419

2435
2451
2467
2483

2499
2515
2531
2547

2052
2068
2084
2100

2116

2132
2148

2148C

2164

2180
2196
2212
2228

2244
2260
2276
2292

2308
2324
2340
2356

2372
2388
2404
2420

2436
2452
2468
2484

2500
2516
2532
2548

2053
2069

2085

2101

2117
2133
2149

a7

2165

2181
2197
2213
2229

2245
2261
2277
2293

2309
2325
2341
2357

2373
2389
2405
2421

2437
2453
2469
2485

2501
2517
2533
2549

2057
2073
2089
2105

2121
2137

21852

L2335

2169

2185
2201
2217
2233

2249
2265
2281
2297

2313
2329
2345
2361

2377
2393
2409
2425

2441
2457
2473
2489

2505
2521
2537
2553

2058
2074
2090
2106

2122
2138

2154
2154

2170

2186
2202
2218
2234

2250
2266
2282
2298

2314
2330
2346
2362

2378
2394
2410
2426
2442
2458
2474
2490

2506
2522
2538
2554

2059
2075
2091
2107

2123
2139

21EER
LrSo

2171

2187
2203
2219
2235

2251
2267
2283
2299

2315
2331
2347
2363

2379
2395
2411
2427

2443
2459
2475
2491

2507
2523
2539
2555

2060
2076
2092
2108

2124
2140

21 E¢
L gl vy

2172

2188
2204
2220
2236

2252
2268
2284
2300

2316
2332
2348
2364

2380
2396
2412
2428

2444
2460
2476
2492

2508
2524
2540
2556

2062
2078
2094
2110

2126
2142

21 E0
L1350

2174

2190
2206
2222
2238

2254
2270
2286
2302

2318
2334
2350
2366

2382
2398
2414
2430

2446
2462
2478
2494

2510
2526
2542
2558

2063
2079
2095
2111

2127
2143

277 EQ
el I

2175

2191
2207
2223
2239

2255
2271
2287
2303

2319
2335
2351
2367

2383
2399
2415
2431

2447
2463
2479
2495

2511
2527
2543
2559




0 1 2 3 4 5 6 7 8 9 A B c D E F
A00 | 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al0 | 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 | 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 | 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A40 | 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
AS0 | 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 [ 2656 2657 2658 2569 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 | 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
AB0 | 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 | 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAQ § 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO | 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
ACO | 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO [ 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEQ | 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO [ 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
BOO | 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 | 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 | 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 | 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B40 [ 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 | 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 | 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 | 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8O | 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 | 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO | 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO [ 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BCO | 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDO [ 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO | 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO | 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
0 1 2 3 4 5 6 7 8 9 A B C D E F
C00 | 3072 3073 3074 3075 3076 3077 3078 .3079 3080 3081 3082 3083 3084 3085 3086 3087
Cl0 [ 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 | 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
€30 | 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
C40 | 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 | 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 | 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 | 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C80 | 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 | 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CA0 | 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO f 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CCO [ 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDO | 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO [ 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO [ 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
DOO | 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D10 [ 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D20 | 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D30 | 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D40 | 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3402 3404 3405 3406 3407
D50 13408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 | 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 [ 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D80 | 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 [ 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAO | 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO | 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 |
DCO | 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDO | 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO | 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO | 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583




N

7

8

9

A

B

C

E

EOO
E1l0
E20
E30

E40
ES50
E60
E70

E80
E90
EAQ
EBO

ECO
EDO
EEO
EFO0

F0O
Fl10
F20
F30

F40
F50
F60
F70

F80
F90
FAO
FBO

FCO
FDO
FEO
FFO0

3584
3600
3616
3632

3648
3664
3680
3696

3712
3728
3744
3760

3776
3792
3808
3824

3840
3856
3872
3888

3904
3920
3936
3952

3968
3984
4000
4016

4032
4048
4064
4080

3586
3602
3618
3634

3650
3666
3682
3698

3714
3730
3746
3762

3778
3794
3810
3826

3842
3858
3874
3890

3906
3922
3938
3954

3970
3986
4002
4018

4034
4050
4066
4082

3587

3603 3

3619
3635
3651
3667
3683
3699

3715
3731
3747
3763

3779
3795
3811
3827

3843
3859
3875
3891

3907
3923
3939
3955

3971
3987
4003
4019

4035
4051
4067
4083

3591

6 3607

3623
3639

3655
3671
3687
3703

3719
3735
3751
3767

3783
3799
3815
3831

3847
3863
3879
3895

3911
3927
3943
3959

3975
3991
4007
4023

4039
4055
4071
4087

3592
3608
3624
3640
3656
3672
3688
3704

3720
3736
3752
3768

3784
3800
3816
3832

3848
3864
3880
3896

3912
3928
3944
3960

3976
3992
4008
4024

4040
4056
4072
4088

3593
3609
3625
3641

3657
3673
3689
3705

3721
3737

3752

i35

3769

3785
3801
3817
3833

3849
3865
3881
3897

3913
3929
3945
3961

3977
3993
4009
4025

4041
4057
4073
4089

3594
3610

3626
3642

3658
3674
3690
3706

3722
3738
3754
3770

3786
3802
3818
3834

3850
3866
3882
3898

3914
3930
3946
3962

3978
3994
4010
4026

4042
4058
4074
4090

3595
3611

3627
3643

3659
3675
3691
3707

3723
3739
3755
3771

3787
3803
3819
3835

3851
3867
3883
3899

3915
3931
3947
3963

3979
3995
4011
4027

4043
4059
4075
4091

3596

3612 3

3628
3644

3660
3676
3692
3708

3724
3740
3756
3772

3788
3804
3820
3836

3852
3868
3884
3900

3916
3932
3948
3964

3980
3996
4012
4028

4044
4060
4076
4092

3598

= st A

3614
3630
3646

3662
3678
3694
3710

3726
3742
3758
3774

3790
3806
3822
3838

3854
3870
3886
3902

3918
3934
3950
3966

3982
3998
4014
4030

4046
4062
4078
4094




CARD CODE COMP. CAN
CHAR. CODE | L.p. CODE READER 029 TTY CODE | EBCDIC CODE CHAR. CODE
NUL 00 M.P. 12-0-9-8-1 |NUL 80 NUL 00
SOH 01 M.P. 12-9-1 SOM 81 SoH 01
STX 02 M.P. 12-9-2 EOA 82 STX 02
ETX 03 M.P. 12-9-3 EOM 83 ETX 03
EOT 04 M.P. 9-7 EDT 84 EOT 37
ENQ 05 M.P. 0-9-8-5 WRU 85 ENQ 2D
ACK 06 M.P. 0-9-8-6 RU 86 ACK 2E
BEL 07 M.P. 0-9-8-7 BEL 87 | BEL 2F
BS 08 M.P. 11-9-6 FE_ 88 BS 16
HT 09 M.P. 12-9-5 HT 89 HT 05
LF 0A M.P. 0-9-5 LF 8A | LF 25
VT 0B M.P. 12-9-8-3 VT 8B VT 0B
FF oc M.P. 12-9-8-4 FORM 8c FF oc
CR oD M.P. 12-9-8-5 RETURN 8D | CR oD
S0 OE M.P. 12-9-8-6 S0 8E S0 OE
SI OF M.P. 12-9-8-7 SI 8F | sI OF
DLE 10 M.P. 12-11-9-8-1| DCO 90 DLE 10
pCl 11 M.P. 11-9-1 X-ON 91 DpC1 11
pC2 12 M.P. 11-9-2 TAPE 92 DC2 12
DC3 13 M.P. 11-9-3 X-OFF 93 DpC3 13
DC4 14 M.P. 9-8-4 TARE 94 DC4 3c
NAK 15 M.P. - 9-8-5 ERROR 95 | NakK 3D
SYN 16 M.P. 9-2 syc 96 SYN 32
ETB 17 M.P. 0-9-6 LEM 97 ETB 26
CAN 18 M.P. 11-9-8 S0 98 CAN 18

M.P. = Multi-punch

S3d0J Y31OVHVYHO '8 XIAN3ddV




CARD CODE COMP. CAN

CHAR. CODE | L.P. CODE READER 029 TTY CODE EBCDIC CODE CHAR. CODE
EM 19 M.P. 11-9-8-1 s1 99 EM 19
SUB 1A M.P. 9-8-7 S2 9A SUB 3F
ESC 1B M.P. 0-9-7 S3 9B ESC 27
FS 1C M.P. 11-9-8-4 sS4 9C FS 1c
GS 1D M.P. 11-9-8-5 S5 9D GS 1D
RS 1E M.P. 11-9-8-6 S6 9E RS 1E
us 1F M.P. 11-9-8-7 s7 9F uUs 1F
SPACE 20 SPACE 20 SPACE BAR - SPACE A0 SPACE 40 SPACE 0
! 21 ! 21 ! 12-8-7 ! Al ! 4F
" 22 " 22 " 8-7 " A2 " 7F
# 23 # 23 # 8-3 # A3 # 7B
$ 24 $ 24 $ 11-8-3 $ A4 $ 5B $ 39
% 25 % 25 % 0-8-4 % A5 % 6C
& 26 & 26 & 12 & A6 & 50
' 27 ! 27 ! 8-5 ! A7 ! 7D
( 28 ( 28 ( 12-8-5 ( A8 ( 4D
) 29 ) 29 ) 11-8-5 ) A9 ) 5D
* 2A * 2A * 11-8-4 * AA * 5C
+ 2B + 2B + 12-8-6 + AB + 4E
, 2C ’ 2C , 0-8-3 , AC , 6B
- 2D - 2D - 11 - AD - 60

2E 2E . 12-8-3 AE 4B 38
/ 2F / 2F / 0-1 / AF / 61
0 30 0 30 0 0 0 BO 0 FO 0 27
1 31 1 31 1 1 1 Bl 1 Fl 1 28
2 32 2 32 2 2 2 B2 2 F2 2 29
3 33 3 33 3 3 3 B3 3 F3 3 30
4 34 4 34 4 4 4 B4 4 F4 4 31
5 35 5 35 5 5 5 B5 5 F5 5 32
6 36 6 36 6 6 6 B6 6 Fé6 6 33
M.P. = Multi-punch




CARD CODE COMP. CAN
CHAR. CODE L. CODE READER 029 TTY CODE EBCDIC CODE CHAR. CODE
37 7 37 7 7 B7 7 F7 7 34
38 38 8 8 B8 3 F8 8 35
39 39 9 9 B9 9 F9 9 36
3A 3A 8-2 : BA : 7A : 37
; 3B ; 3B ; 11-8-6 ; BB ; 5E
< 3C < 3c < 12-8-4 < BC < 4C
= 3D = 3D = 8-6 = BD = 7TE
> 3E > 3E 0-8-6 > BE > 6E .
? 3F ? 3F ? 0-8-7 ? BF ? 6F
@ 40 e 40 @ 8-4 @ Cco &} 7C
A 41 A 41 A 12-1 A Cl A Cl A 1
B 42 B 42 B 12-2 B c2 B c2 B 2
C 43 C 43 c 12-3 C C3 C Cc3 c 3
D 44 D 44 D 12-4 D c4 D c4 D 4
E 45 E 45 E 12-5 E C5 1) C5 E 5
F 46 F 46 F 12-6 F C6 r C6 F 6
G 47 G 47 G 12-7 G c7 G c7 G 7
H 48 H 48 H 12-8 H (o} H c8 H 8
I 49 I 49 I 12-9 I c9 I c9 I 9
J 4A J 4A J 11-1 J CA N D1 J 10
4B K 4B K 11-2 K CB K D2 K 11
4C L 4C L 11-3 L cc L D3 L 12
4D M 4D M 11-4 M CD M D4 M 13
N 4E N 4E N 11-5 N CE N D5 N 14
o] 4F (o] 4F (o] 11-6 (o] CF (o) D6 (o] 15
P 50 P 50 P 11-7 P DO P D7 P 16
Q 51 Q 51 Q 11-8 Q D1 Q D8 Q 17
R 52 R 52 R 11-9 R D2 R D9 R 18
S 53 S 53 S 0-2 S D3 S E2 S 19
T 54 T 54 T 0-3 T D4 T E3 T 20




CARD CODE COMP. CAN
CHAR CODE | L.P. CODE READER 029 TTY CODE | EBCDIC CODE CHAR. CODE
U 55 U 55 U 0-4 U D5 U E4 U 21
\% 56 v 56 \ 0-5 v D6 v E5 v 22
W 57 W 57 W 0-6 W D7 W E6 W 23
X 58 X 58 X 0-7 X D8 X E7 X 24
Y 59 Y 59 Y 0-8 Y D9 b's E8 Y 25
z S5A Z 5A bA 0-9 z DA z E9 Z 26
[ 5B [ 5B ¢ 12-8-2 [ DB ¢ 4A

\ 5C \ 5C 0-8-2 0-8-2 \ DC \ EO

1 5D 1 5D ! 11-8-2 1 DD ! 5A

A 5E A 5E — 11-8-7 + DE A 5F

—_ 5F — 5F — 0-8-5 « DF — 6D

\ 60 M.P. 8-1 \ 79

a 61 M.P. 12-0-1 a 8l

b 62 M.P. 12-0-2 b 82

c 63 M.P. 12-0-3 c 83

d 64 M.P. 12-0-4 d 84

e 65 M.P. 12-0-5 e 85

£ 66 M.P. 12-0-6 £ 86

g 67 M.P 12-0-7 g 87

h 68 M.P. 12-0-8 h 88

i 69 M.P.’ 12-0-9 i 89

3 6A M.P 12-11-1 j 91

k 6B M.P 12-11-2 k 92

1 65C M.P 12-11-3 1 93

m 6D M.P 12-11-4 m 94

n 6E M.P. 12-11-5 n 95

o 6F M.P. 12-11-6 o 96

p 70 M.P. 12-11-7 p 97

q 71 M.P. 12-11-8 q 98

r 72 M.P. 12-11-9 r 99

M.P. = Multi-punch




CARD CODE COMP. CAN
CHAR. CODE L.P. CODE READER 029 TTY CODE EBCDIC CODE CHAR. CODE
s 73 M.P. 11-0-2 [ A2
t 74 M.P. 11-0-3 - A3
u 75 M.P. 11-0-4 u A4
v 76 M.P. 11-0-5 v A5
\ 77 M.P. 11-0-6 W A6
X 78 M.P. 11-0-7 X A7
y 79 M.P. 11-0-8 v A8
z 7A M.P. 11-0-9 M4 A9
{ 7B M.P. 12-0 ; co
: 7C M.P 12-11 6A
} 7D M.P 11-0 K DO
~ 7E M.P. 11-0-1 o Al
DEL 7F M.P. 12-9-7 RUB OUT FF DEL 07




MOVING HEAD DISC (CONTROLLER ADDRESS 01,.)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
WRITE 1 M cngm || conw. 0 EoD | EOF | 16N | scs IGNORED s s s s s
TRANSFER *
INITIATE
READ 1 M cglim. cgr:N. 1 IGNORED sCs IGNORED S s s s s
CYLINDER CONN.| CONN. R
Ganinp 0 1 o o 0 0 1 c c c c c c c c c
TERM/ 0 1 IGNORED EOB |TERM.| IGN | MPE IGNORED
CONTROL | EOB
HEAD/ *HEAD | *HEAD | *HEAD | *HEAD| HEAD| CONTIN- =
DRIVE 0 0 TN | seL | sEL | sEL | SEL | SEn | UOUS IGNORED BREP | U u
SELECT SCAN MODE
NO-0P 0 R R 0 0 IGNORED
0=
= o/F SEEK = DEV. |SEEK
STATUS | ppror| uyp | CRC | INOP | MPE | wro | SEEK | 1= i;\:gy EOD | EOF | EOR |cppx | 2omp u U
1
S = SECTOR, C = CYLINDER, DMP LOCATIONS: TC = 61, TA = 71
U = UNIT NO., UP TO 4 UNITS MAY BE CONNECTED TO A CONTROLLER
M = MODE, IF BIT 1 = 0 PROGRAMMED I/0 IS SELECTED RATHER THAN DMP
* THESE BITS ARE USED ONLY IN DISC PACK MOVING HEAD DISC CONTROLLERS.
FIXED HEAD DISC (CONTROLLER ADDRESS 02,¢)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TRANSFER | WRITE 1 mo | Com- COW- 1 EOD | EOF IGNORED s s s s s
INITIATE
CONN. .
READ 1 M NN. | CONN 1 IGNORED s s s s s
DI SI
HEAD CONN. | conn.
SELECT 0 1 pI ST 0 0 1 IGN H H H H H H H H
CONTROL
ggg‘”/ 0 1 IGNORED EOB | TERM. | IGN. | MPE IGNORED
UNIT*
seLect | O 0 IGNORED U u
NO-OP 0 R R UL L 0 g IGNORED
status | 9% o/F K lmwor| wee | wro P = DA;A EOD | EoF | EOR 0 0 0 0
ERROR | U/F SuM BUSY | praty
S = SECTOR, H = HEAD, DMP LOCATIONS: =62, TA = 72
U = UNIT NO., UP TO 4 UNITS MAY BE CONNECTED TO A CONTROLLER
M = MODE, IF BIT 1 0 PROGRAMMED I/O IS SEL TED RATHER THAN DMP
* THIS COMMAND NOT USED WITH MODEL 4103, 4104, 4105.




MAGNETIC TAPE (DEVICE ADDRESS, HIGH SPEED 03, LOW SPEED O4,4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0= = = = 0=
CONN. |CONN. BINARY |N-GAP|SINGLE| ODD |800 CPI .
WRITE L M DI ST 0 1= = |cvcLE = 1= 0 0 0 0 u ¢
INTER- | L-GAP|SCAN |EVEN |[556 CPI
CHANGE
TRANSFER o= - -
ONN. N. BINARY obD |800 CPI
INITIATE | READ 1 wo | CONejeon 1 A o |1=scs P ° 0 0 0 0 u u
INTER- vy lssg cpr
CHANGE
WRITE CONN. | CONN. _ 800 CPI|WRITE o u 4
ipea 0 1 b1 o1 0 0 1 1=5CS 0 - SOF 0 0
556 CPI| 1
0= 0= 0=
CONN. | CONN. _ 800 CPI SPACE | FORWARD| BLOCK
SPACE 0 1 b1 o1 0 0 1 1=sCS 0 1= 0 1 1 - U U
556 CPI REVERSE | FILE
EOB/
CONTROL TERM 0 1 16N | IGN | 1=EOB|1=TERM |IGN |1=MPE IGNORED
REWIND 0 p | CONN. |CONN. 1 0 1 |vock |REWINDL 0 0 0 0 U U
DI ST 1
ouUT
TRANSPORT CONN. | CONN. CONT.
SELECT 0 1 DI o1 0 0 1 SOAN 0 0 0 0 0 0 U U
NO-OP 0 1 C([))I;N ) C(S)[;N : 0 0 0 IGNORED
0= = 1= i= 1= 1= 1= 1= = = = = 1= 1= R
STATUS ERROR | OVER/ | DEVICE| IN OP | MEMORY| FILE |TAPE )CONT.| DATA | EOT EOF Bor | pevicE |parriaL| U v
FLOW | PARITY PARITY | PROTECT| DETECT | BUSY | READY OFFLINH WORD
OR | ERROR ERROR OR
B>C REWIND
U = UNIT NO., UP TO 4 UNITS MAY BE CONNECTED TO A CONTROLLER
M = MODE, IF BIT 1 = 0 PROGRAMMED I/O IS SELECTED RATHER THAN DMP
DMP LOCATIONS (HEX.) TC=63, TA=73 TC=64, TA=74
CARD READER (DEVICE ADDRESS 05i¢)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TRANSFER CONN. | CONN. 1=BIN
INITIATE 1 0 DI ST 1 | o=xLare IGNORED
EOB
TER& 0 1 IGNORED EOB | TERM. IGNORED
CONTROL -
CONN. | CONN.
NO-OP 0 1 DI o1 0 0 0 IGNORED
STATUS = = | . = 0= 1= 1= -
ERROR| OVER- P IN OP 0 ¢ 0 BUSY | DATA |HOPPER | 0 0 HOLD PICK 0 0
FLOW BUFFER| EMPTY/ FAIL
ERROR READY |STACKER
FULL




CARD PUNCH (DEVICE ADDRESS 0616)
0 1 2 3 4 5 6 7 8 5 io ii iz i3 14 15
TRANSFER CONN. |CONN A B 1=
INITIATE 1 0 DI ST 0 SEE OFFSET IGNORED
TABLE* STACK
T
CONTROL gggﬁ 0 1 IGNORED EOB | TERM. IGNORED
CONN. |conn
NO-0
P 0 1 DI St 0 0 0 IGNORED
amamera = 1= = = 1= 0= 1= i=
Saatis ERROR | UNDER-| PUNCH| DEV. 0 0 0 CONT. | BUFFER|HOPPER | 0 0 0 TRANS- | O 0
FLOW ERROR|{ IN.OP BUSY | EMPTY |EMPTY/ PORT
STACKER
FULL
*AB OUTPUT TRANSLATION MODES
11 ILLEGAL
01 XLATE, FROM ASCII (7 BIT) TO HOLLERITH
10 12 BIT BINARY (1 TO 1)
00 8 BIT BINARY EXPANDED TO 12 COL. PUNCH
LINE PRINTER 600 LPM (DEVICE ADDRESS 0716
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1=VFU |LINE | LINE | LINE |LINE |LINE |LINE
?S?ﬁiigg 1 0 ngN' O o IGNORED 0=L.CNT| COUNT | COUNT | COUNT |COUNT |COUNT |cCOUNT
OR VFU|OR VFU|OR VFU|OR VFU
EOB/ 1=LINE 1=VFU |LINE |[LINE | LINE |[LINE |LINE |LINE
Er | O 1 IGNORED EOB | TERM. FEED Ien 0=L.CNT| COUNT | COUNT | COUNT |COUNT |COUNT |COUNT
OR VFU|{OR VFU|OR VFU|OR VFU
CONTROL
CONN.| CONN.
NO-OP | 0 1 o1 e 0 0 D IGNORED
STATUS = 10 0 1= 0 0 0 = = = 1= 0 = 0 0 0
ERROR IN OP BUSY | DATA |PAPER| BOTTOM HOLD
BUFFER| LOW OF
READY FORM




ELECTROSTATIC PRINTER/PLOTTER (DEVICE ADDRESS 08..)

0 1 3 4 5 6 7 8 9 10 11 12 13 14 15
TRANSFER 1 w | conx. | comu. o |*pror [**spp L GNORED
INITIATE D
Foe/ 0 i 1 v IGNORED
’ - » G a A 2 - LV 19
ook GNORED EOB | TERM LGN | mbE
CONTROL
CONN. | ConN .
_ . IGNORED
NO-OP| O 1 o o 0 0 0 GN
STATUS = 0 INOP MPE 1= o PAPER 0
ERROR 0 0 susy | DATA | row 0 0 0 0 0
READY
*PLOT: 1 = PLOT **SPP: 1 = SIMULTANEOUS PRINT/PLOT
0 = PRINT 0 = NORMAL
X-Y PLOTTER (DEVICE ADDRESS 08,,)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TRANSFER i CONN.| CONN. TGNORED
INITIATE - 0 DI SI 0
EOB = =
TER& 0 1 IGNORED 208 | rERM IGNCRED
OUTPUT 1=PEN | 1=PEN|1=DRUM|1=DRUM|1=CARR. | 1=CARR.
CONTROL | "papp IGNORED pows | uvp | pown | uwP | RIGHT | rmFT
* * * % * J
_ CONN.| CONN. !
NO-0P| o 1 on o 0 0 0 IGNORED i
. = 1= = - ’ ‘
STATUS grroR | ° ° |mop 0 0 0 BUSY | DATA 0 0 0 0 0 0 0 J

**MUTUALLY EXCLUSIVE



PAPER TAPE PUNCH (DEVICE ADDRESS 09;)

0 1 2 3 4 5 6 7 g 9 10 12 12 13 14 5
TRANSFER CONN. | CONN.- GNORED
INITIATE L 0 DI ST 0 I E A
?ggg 0 1 IGNORED EOB | TERM.| IGN |-t IGNORED
CONTROL .
N. | CONN.
- IGNORED
NO-OP 0 1 pI a1 0 0 0 ,
STATUS 1 0 0 0 0 0 O | sosy | para | TapE 0 0 0 0 0 0
READY | LOW
CONSOLE TTY/PAPER TAPE READER (DEYICE ADDRESS 0A; ()
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
*
TRANSFER CONN. | CONN. | 1=IN = |evaBLE| crear 0=REV.
INITIATE 1 0 DI SI 0=ouT |kEY BDJ crock| rurrrr IGNORED 1=roR. IGNORED
?ggﬁ 0 1 IGNORED 0 | TerM | 16N |1=ABORT IGNORED
CONTROL
CONN. | conn.
NO-0OP 0 1 bI ST 0 0 0 IGNORED
STATUS 1 0 0 0 0 0 0 sUsy | para 0 0 0 0 0 0 0
READY
*NOTE: HIGH SPEED READER NORMALLY OPERATES IN REVERSE MODE.
LINE PRINTER 50-150 LPM (DEVICE ADDRESS 0B,¢)
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TRANSFER CONN.| conn.
INITIATE 1 DI SI 0 IGNORED
EOB/
B/ 0 IGNORED | EOB | TERM IGNORED
CONTROL .
ONN.{ CONN.
NO-0P | 0 o1 or 0 0 ) IGNORED
STATUS = 0 1= 0 0 0 = = = 1= 0 1= 0 0 0
ERROR IN oP CONT. | DATA LoWw |BoTTOM HOLD
BUSY |READY | PAPER| oOF
FORM




HIGH LEVEL AIS OUTPUT UNIT (DEVICE ADDRESS 10,,)
e —
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TRANSFER CONN. 1=SEQ . .
et 1 o IGN | oinan IGNORED END ADDRESS )
?g% 0 IGNORED EOB | TERM IGNORED *START ADDRESS
CONTROL —
No-oP| 0O CgbI‘N' IGN 0 0 0 IGNORED
STATUS ERROR | @smammmee ] GNORED BU;Y DATA IGNORED —-
READY
DATA WORD IGNORED * CHANNEL ADDRESS
* ADDRESSES ARE IN BINARY (0"127)
HIGH LEVEL AIS INPUT UNIT (DEVICE ADDRESS 11,4)
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TRANSFER CONN. | CONN.
INITIATE 1 DI SI IGNORED
EOB/
g ) IGNORED EOB | TERM IGNORED
CONTROL
No-op | 0O comn.- com- 0 0 0 IGNORED
STATUS EREOR IGNORED UsY [;g}'l‘\gy IGNORED
DATA
DATA WORD SIGN 0 1 1 210 | 2° | 2° | 2’ 2° l 2° 24 | 23 | 22 | 2t | 20




WIDE RANGE SOLID STATE AIS OUTPUT UNIT (DEVICE ADDRESS 12,¢)

0 1 2 3 4 5 6 7 8 9 10 11 iz i3 14 15
CONN . o
TRANSFER . RE-
I IGNORED
INITIATE 1 M DI GNORED cvCeLE
EOB 0 1 IGNORED EOB | TERM IGNORED
TERM
CONTROL CONN
NO-OP, 0 1 DI ' IGN 0 0 0 IGNORED
STATUS ERROR IGNORED Btl;;, %%Y IGNORED
GAIN 1= * CHANNEL ADDRESS (0-127),
DATA WORD =
2 ZERO NORED 5
1 IGN 53 5 51 50 R | avTo IG 26 2 4 53 52 51 50
suppsggls)lorq SIGN 16N 13 512 511 510 29 28 57 26 25 24 53 52 21 50
* ADDRESSES ARE IN BINARY (0-127)
WIDE RANGE SOLID STATE AIS INPUT UNIT (DEVICE ADDRESS 13,
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TRANSFER CONN. | CONN. T
INITIATE 1 M DT ST IGNORED
EOB/
TERM 0 1 IGNORED EOB | TERM IGNORED
CONTROL CONN. | CONN
NO-OP 0 1 bT P 0 0 0 IGNORED
DATA
ERROR IGNORED IGNORED
STATUS BUSY | crapy
GAIN DATA
3 2
DATA WORD SIGN 5 J 2 I 2l l 20 210| 29 l 28 I 57 I 26 ! 25 L 54 l 23 l 52 l 21 50




WIDE RANGE RELAY AIS (D

m
=
o
rm
L)
el
m
[¥2)
(&)
o
£
=
o
—

0 1 2 3 4 5 b 7 8 9 10 11 12 13 14 15
TRANSFER N 0 CONN. | CONN. LGNORED
INITIATE DI SI -
EOB/
IGNORED
i 0 1 IGNORED EOB | TERM
CONTROL
_ CONN. | CONN. IGNORED
NO-0P 0 1 o o 0 0 0 ?
. INPUT OUTPUT
STATUS ERROR IGNORED Busy | 2309 IGNORED Tan
READY READY
DATA WORD é;ggi. GAIN zé;o - * CHANNEL ADDRESS
1 SUPPRJ AUTO
MODE
SUPPRESSION
e SIGN on.| 13 512 )11 ,10 59 58 57 ,6 ,5 54 53 52 )1 50

* ADDRESSES ARE IN BINARY (0-511)

SUBSYSTEM 1 (DEVICE ADD. 20,,-2B,,)
MODAC ~ SUBSYSTEM 2 (DEVICE ADD. 30,.-3B, )

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TRANSTER CONN. | CONN. = == END ADDRESS START ADDRES Smmt
INITIATE AIM L M pI sI sEg | ION 24 | 23] 22 | 2t 20 24 | 23 AT [ 20
EOBg?ﬁRM 0 1 IGNORED EOB | TERM IGNORED
NO-0P CONN. | CONN.
CONTROL aim 0 1 o1 o 0 0 0 IGNORED
INTERRUPT CONN. | CONN. INTERRUPT CHANNEL
EXTENDER | ° 1 DI SI IGNORED R 0 1 |2 | 3 14 105 |6 o7
‘ 0=1IN =ouT
AIM _ [ERROR IGNORED BUSY [DATA RDY IGNORED ATA RDY
STATUS 1=XFER
- SYNCHRONIZER [ERROR | ¢ —se— T GNORED REQ IGNORED E————
INTERRUPT DATA INTERRUPT SERVICE  INTE RRUDT e
EXTENDER o | 1 | 2 | 31 41 5 1 6 | 3 o | 1 | 2 3 1 4 [.5 | 6 | 7
OUTPUT e CHANNEL st
AIM IGNORED 54 | 23 | 22 l )1 50
INPUT STGN DATA
1
ATM A R A L S L L L | .0
DATA ANALOG OUT— ADDRESS DATA
PUT (VOL-  |SIGN 1 0 CRT | CRT 10 9 8 7 .6 5 4 3 2 1 0
TAGE) < l 2 CONT. | CONT. 2 | 2 2 2 2* | 2 2 2 < I 2 2
ANALOG OUT- ADDRESS DATA
PUT R- IGN 1 IGN R
RgNT;cu 2 I 50 21117 210| 29 I 28[ 57 | 26 l 55 I 24 l 53 l 52 I 51 I 50




1/ULS#1 (DEVICE ADDRESS 20-2F, )

1/01S#2 (DEVICE ADDRESS 30-3F¢)

0 1 2 3 4 5 6 7 8 ] 10 11 12 13 14 15
1/0 INTERRUPT . CONN.| CONN. LGNORED 1=RES l INTERRUPT CHANK ELI_I_,
L COUPLER v + DI SI bt REQ. 0 1 2 | 3 | 4 | s 6 7
§ CONTROL TNTERVAT, [0=SINGLE
TIMER 0 1 - IGNORED l1-rECYCLE IGNORED
CHANNEL 0 1 IGNORED EXPANDER * CHANNEL ADDRESS
MULTIPLEXER
ADDRESS
SACI 0 1 IGNORED 0 ' IGNORED
SACI NO-OP 0 1 | COWN.[ CONN. T, 0 0 IGNORED
TRANSFER CONN. [ CONN. = 1=
" INITIATE SACI 0 DI ST N KEY BD. IGNORED
T=DATA DATA
SACI ERROR IGNORED SET NOT IGNORED BUSY READY IGNORED
READY
_______________ SYS. I =
SYNCHRONIZER CONN 1GNORED XFER IGNORED
STATUS . REQ.
. '¢ i
SUBSYSTEM CONN. IGNORED
ALOG OUTP I I '—-—-——_0.——“
¢ AN UT|SIGN | 1 _cm2 | CONT.| conT. | conT. 210 2| L8 27 25 172 | 2% | 23 | 22 |2t 2
DATA SACT IGNORED ASCII DATA




APPENDIX D. DIVIDE

During execution of a divide instruction, the contents of registers Ra, RaVl
(where a is an even number # 0) form a double precision dividend and are divided
by the single-precision divisor specified by the instruction. If the dividend is
a single-precision number, RaVl should be cleared prior to executing the divide
instruction or erroneous results may occur. Although a double-length dividend is
used, divide is a single-precision operation and should not be confused with a
double-precision divide operation that would use a double-length divisor and would

produce a double-length quotient.

After execution of the divide, the single-precision guotient replaces the contents
of RaVl and the remaining portion of the dividend_ that has not been divided (undivi-
ded remainder) replaces the contents of Ra. The quotient is signed in accordance
with algebraic convention, that is, positive if dividend and divisor signs are alike,
but negative otherwise. However, only 15 magnitude bits are generated by the divide
and, if the magnitude of the quotient is so small as to require more than 15 bits to
resolve, a zero quotient may be generated regardless of the required sign, but the
remainder will still reflect the undivided portion of the original dividend. The
binary scaling of the quotient is equal to the dividend scale factor minus the di-

visor scale factor.

The undivided remainder replaces the contents of Ra and has the same sign as the di-
vidend. It has the same scaling as the divisor. By definition, the undivided re-
mainder is that guantity which must be added to the product of the divisor and the
quotient to produce the original dividend. The results of the divide instruction
are consistent with this definition. It should be noted that the remainder must be
added to the least significant part of the product of the divisor and the quotient
to maintain proper scaling. Overflow is possible and the Overflow Indicator will

be set if:
(Ra, Ravl) :> 1 Reference section on Overflow (Page 3-9)
(M) -
EXAMPLE: Let (Ra, RaVvVl) = 0004 E800
(M) = 3C00

The dividend can be represented as a decimal 628 with an equivalent
21

binary point at 2. The divisor may be represented as a decimal 30
with its binary point at 26. The resulting binary scaling of the
& 18
quotient is 221-2"=2‘“. The remainder is scaled at 26.
Q = 0014 (20, at 21°) R = 3800 (28, at 2%)
10 10



APPENDIX E. INSTRUCTION LIST

MNEMONIC OP. CODE NAME EXECTION
LOAD, STORE AND TRANSFER ’ M
LDM ES Load Register from Memory 2.4
LDI ED Load Register from Memory Immediate 1.6
LDS F5 Load Register from Memory Short Displaced 1.87
LDX FD Load Register from Memory Short Indexed 1.87
STM E6 Store Register in Memory 2.4
STI EE Store Register in Memory Immediate 1.6
STS Fé6 Store Register in Memory Short Displaced 1.87
STX FE Store Register in Memory Short Indexed 1.87
LBX AE Load Byte From Memory 2.13
SBX AF Store Byte in Memory 3.2
LFM A4 Load File from Memory 4p + .8 (R-1)
LFS B4 Load File from Memory Short Displaced 3.47 + .8 (R-1)
LFX BC Load File from Memory Short Indexed 3.47 + .8 (R-1)
SFM A5 Store File in Memory 40 + .8 (R-1)
SFS B5 Store File in Memory Short Displaced 3.47 + .8 (R-1)
SFX BD Store File in Memory Short Indexed 3.47 + .8 (R-1)
TRR 6D Transfer Register to Register 0.8
TRRB 7D Transfer Register to Register and Branch 1.6
if Nonzero
ARITHMETIC
ADM EO Add Memory to Register 2.4
ADI ES8 Add Memory to Register Immediate 1.6
ADS FO Add Memory to Register Short Displaced 1.87
ADX F8 Add Memory to Register Short Indexed 1.87
ADMM Cco Add Register to Memory 3.47
ADMB C4 Add Register to Memory and Branch if Nonzero 4.27
ADSM DO Add Register to Memory Short Displaced 2.67
ADSB D4 Add Register to Memory Short Displaced and 3.47
Branch if Nonzero
ADXM D8 Add Register to Memory Short Indexed 2.67
ADXB DC Add Register to Memory Short Indexed and 3.47
Branch if Nonzero
ADR 68 Add Register to Register
ADRB 78 Add Register to Register and Branch if

Nonzero

3-11
3-11
3-11
3-12
3-12
3-12
3-13
3-13

3-13
3-14

3-14
3-14



MNEMONIC OP. CODE NAME EXECUTION

ARITHMETIC (CONTINUED) TIME (us) PAGE
DAR 22 Double Precision Add Register to Register 2.13 3-15
SUM El Subtract Memory from Register 2.4 3-15
SUI E9 Subtract Memory from Register Immediate 1.6 3-15
suUs Fl Subtract Memory from Register Short Displaced 1.87 3-16
SUX F9 Subtract Memory from Register Short Indexed 1.87 3-16
SUR 69 Subtract Register from Register 6.8 3-16
SURB 79 Subtract Register from Register and Branch 1.6 3-16
if Nonzero
MPM A0 Multiply Memory by Register 7.74 3-17
MPS BO Multiply Memory by Register Short Displaced 7.21 3-17
MPX B8 Multiply Memory by Register Short Indexed 7.21 3-17
MPR 20 Multiply Register by Register 6.67 3-18
DVM Al Divide Register by Memory 12.2 3-18
DVS Bl Divide Register by Memory Short Displaced 11.4 3-18
DVX B9 Divide Register by Memory Short Indexed 11.4 3-19
DVR 21 Divide Register by Register 11.0 3-19
CRMB C7 Compare Memory and Register . 4,53 3-13
CRSB D7 Compare Memory and Register Short Displaced 4.0 3-20
CRXB DF Compare Memory and Register Short Indexed 4.0 3-20
TRO OE Transfer and Reset Overflow Status 0.8 3-20
TTR 6F Transfer Two's Complement Register to 0.8 3-21
Register
TTRB 7F Transfer Two's Complement Register to 1.6 3-21
Register and Branch if Nonzero
LOGICAL
ETM E2 Extract Memory from Register ' 2.4 3-22
ETI EA Extract Memory from Register Immediate 1.6 3-22
ETS F2 Extract Memory from Register Short Displaced 1.87 3-22
ETX FA Extract Memory from Register Short Indexed 1.87 3-23
ETMM Ccl Extract Register from Memory 3.47 3-23
ETMB C5 Extract Register from Memory and Branch if 4,27 3-23
Nonzero
ETSM D1 Extract Register from Memory Short Displaced 2.67 3- 24
ETSB ‘D5 Extract Register from Memory Short Displaced 3.47 3-24
and Branch if Nonzero
ETXM D9 Extract Register from Memory Short Indexed 2.67 3-24
ETXB DD Extract Register from Memory Short Indexed 3.47 3- 25
and Branch if Nonzero
ETR 6A Extract Register from Register 0.8 °-25
ETRB 7A Extract Register from Register and Branch 1.6 3-25
if Nonzero
ORM E3 OR Memory and Register 2.4 3- 26
ORI EB OR Memory and Register Immediate 1.6 3- 26
ORS F3 OR Memory and Register Short Displaced 1.87 3- 26
ORX FB OR Memory and Register Short Indexed 1.87 3- 26



MNEMONIC OP. CODE NAME EXECUTION

LOGICAL (CONTINUED) TIME (us) PAGE

ORMM C2 OR Regyister and Memory 3.47 3-27

ORSM D2 OR Register and Memory Short Displaced 2.67 3-27

ORXM DA OR Register and Memory Short Indexed 2.67 3-27

ORR 6B OR Register and Register 0.8 3-27

ORRB 7B OR Register and Register and Branch if 1.6 3-28
Nonzero

XOM E4 Exclusive OR Memory and Register 2.4 3-28

X0I EC Exclusive OR Memcry and Register Immediate 1.6 3-28

XG0S F4 Exclusive OR Memory and Register Short 1.87 3-29
Displaced

X0X FC Exclusive OR Memory and Register Short 1.87 3-29
Indexed

XOR 6C Exclusive OR Register and Register 0. 3-29

XORB 7C Exclusive OR Register and Register and Branch 1.6 3-29
if Nonzero

TOR 0D Transfer One's Complement Register to 0.8 3-30
Register

TRMB Cé Test Register and Memory and Branch if Any 3.73 3-30
Ones Compare

TRSB D6 Test Register and Memory Short Displaced 2.99 3-30
and Branch if Any Ones Compare

TRXB DE Test Register and Memory Short Indexed and 2.93 3-31
Branch if Any Ones Compare

TERB 7E Test Register and Register and Branch if 1.6 3-31
Any Ones Compare

FLOATING POINT

FAR 30 Floating Add Register to Register 15.0 3-34

FSR 31 Floating Subtract Register from Register 15,0 3-35

FMR 32 Floating Multiply Register by Register 12.5 3-35

FDR 33 Floating Divide Register by Register 13.0 3-35

FARD 34 Floating Add Register to Register Double 20.5 3-36

FSRD 35 Floating Subtract Register from Register 20.5 3-36
Double

FMRD 36 Floating Multiply Register by Register 16.0 3-37
Double

FDRD 37 Floating Divide Register by Register 16.5 3-37
Double

FAM 38 Floating Add Memory to Register 17.5 3-37

FSM 39 Floating Subtract Memory from Register 17.5 3-38

FMM 3a Floating Multiply Memory by Register 14.5 3-38

FDM 3B Floating Divide Memory into Register 15.5 3-39

FAMD 3C Floating Add Memory to Register Double 22.5 3-39

FSMD 3D Floating Subtract Memory from Register 22.5 3-39
Double

FMMD 3E Floating Multiply Memory by Register 18-0 3-40
Double

FDMD 3F Floating Divide Memory into Register 19.0 3-40

Double



RLS [
LRS |

BIT MANIPULATION

ZBMM 2047 {1

ZBMB !

ZBSM i x ot
+ 95

ZBSB i

ZBXM biie oty
ZBXBf.‘,‘\;’ §ALe

ZBR -
ZBRB + . .
OBMM "1 .1

OBSM (1.

OBXM !
OBR N
OBRB e
XBR

XBRB

TBMB 7
TBSB =~

TBXB 7T

TBRB 711! 7
CBMB . (-
CBSB ;
CBXB

GMR -
GMRB

UP.

2E
2A
2F
2B
2C
28
2D
29
OF

65
75

80
84
20
94

28
9C

60
70
61
71

81

‘85

91

929

‘9D

62
72
82
92
9A
63
73
64
74

86
96

9E

76
87
97
9F
67
77

CUDL NAME EXECUTLON
TIME (us)
shift Left Arithmetic Double 1.87 + 267(N-1)
shift Right Arithmetic Double 1.87 + 267 (N-1)
Shift Left Arithmetic single 1.6 + 267 (N-1)
shift Right Arithmetic Single 1.6 + 267 (N-1)
shift Left Logical Double 1.867 + 267 (N-1)
shift Right Logical Double 1.867 + 267(N-1)
shift Left Logical Single 1.6 + 267(N-1)
shift Right Logical Single 1.6 * 267(N-1)
Left Rotate Single 0.8
Load Bit in Register 0.8
Ioad Bit in Register and Branch .6
Unconditionally
Add Bit in Memory 3.47
Add Bit in Memory and Branch if Nonzero 4.27
Add Bit in Memory Short pDisplaced 2.67
Add Bit in Memory Short Displaced and 3.74
Branch if Nonzero
Add Bit in Memory Short Indexed 2.67
Add Bit in Memory Short Indexed and Branch 3.74
if Nonzero
Add Bit in Register 0.8
Add Bit in Register and Branch if Nonzero 1.6
Subtract Bit in Register 0.8
Subtract Bit in Register and Branch if 1.6
Nonzero
Zero Bit in Memory 3.47
Zero Bit in Memory and Branch if Nonzero 4.8
Zero Bit in Memory Short Displaced 2.67
Zero Bit in Memory Short Displaced and 4.27
Branch if Nonzero
Zero Bit in Memory Short Indexed 2.93
Zero Bit in Memory Short Indexed and Branch 4,27
if Nonzero
Zero Bit in Register 0.8
Zero Bit in Register and Branch if Nonzero 1.6
OR Bit in Memory 3.47
OR Bit in Memory Short Displaced 2.67
OR Bit in Memory Short Indexed 2.94
OR Bit in Register 0.8
OR Bit in Register and Branch Unconditionally 1.6
Exclusive OR Bit in Register 0.8
Fxclusive OR Bit in Register and Branch if 1.6
Nonzero
Test Bit in Memory and Branch if One 3.47
Test Bit in Memory Short Displaced and 3.2
Branch if One
Test Bit in Memory Short Indexed and 3.2
Branch if One
Test Bit in Register and Branch if One 1.6
Compare Bit and Memory 4.27
Compare Bit and Memory Short Displaced 3.7
Compare Bit and Memory Short Indexed 3.7
Generate Mask in Register 0.8
Generate Mask in Register and Branch 1.6

Unconditionally

PAGE

3-41
3-41
3-42
3-42
3-42
3-42
3-43
3-43
3-43

3-44
3-44

3-45
3-45
3-45
3-46

3-46
3-46

3-47
3-47
3-47
3-48

3-48
3-48
3-49
3-49

3-49
3-49

3-53
3-53
3-54
3-54
3-55
3-55



MNEMONIC

OP. CODE NAME

BYTE MANIPULATION

Move Upper Byte Register to Register
Move Lower Byte Register to Register
Move Byte Right Register to Register
Move Byte Left Register to Register
Interchange Bytes Register to Register

M

CONTROL

SPR
SGP
SLP
suP

INTERRUPT AND CALL

02-0
02-8
03
04

SIE
RIE
SIR
RIR
SIA
RIA

RMI
CAR
CIR

INPUT/OUTPUT

ISA
ISB
IscC
ISD
DA
IDB
IDC
IDD
OCA
OCB
oCC
OCD
ODA
ODB
oDC
ODD

o

26-4

274 .
26-8 -

27-8
26-0
27-0
23

48
49
4A
4B
4C
4D
4E
4F
40
41
42
43
44
45
46
47

Branch and Link

Branch and Link Immediate
Branch Unconditionally
Branch Short Displaced
Branch Short Indexed

Halt

No Operation

Set Protect Register

Set Global Protect Register
Set Lower Protect Register
Set Upper Protect Register

Set Interrupt Enable

Reset Interrupt Enable

Set Interrupt Request

Reset Interrupt Request

Set Interrupt Active

Reset Interrupt Active

Request Executive Service
Request Multiprocessor Interrupt
Clear Active and Return

Clear Interrupt and Return

Input Status from I/O Group
Input Status from I/0O Group
Input Status from I/O Group

O QO w

Input Status from I/O Group
Input Data from I/O Group A
Input Data from I/O Group B
Input Data from I/O Group C
Input Data from I/O Group D
Output Command to I/O Group

o

Output Command to I/0 Group

(@]

Output Command to I/0 Group

o

Output Command to I/O Group
Output Data to I/O Group A
Output Data to I/O Group B
Output Data to I/O Grouﬁ C
Output Data to I/O Group D

E-5

EXECUTION PAGE
TIME (us)

0.8 3-56
0.8 3-56
0.8 3-56
0.8 3-57
0.8 3-57
1.6 3-58
0.8 3-58
1.6 3-58
1.07 3-59
1.07 3-59
——— 3-60
0.8 3-61
3-60

3-61

.8 3-61
. 3-61
1.2 3-6%
1.33 3-61
1.33 3-62
1.33 3-62
1.33 3-62
1.33 3-62
1.07 3-62
0.8 3-63
1.87 3-63
1.87 3-63
1-6 3-64
1.6 3-64
1.6 3-64
1.6 3-64
1.6 3-65
1.6 3-65.
1.6 3-65
1.6 3-65
1.33 3-65
1.33 3-65
1.33 3-65
1.33 3-65
1.33 3-66
1.33 3-66
1.33 3-66
1.33 3-66



APPENDIX F. TABLE OF POWERS OF TWO AND SIXTEEN

165
2" n k 2™n
1 0 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125
16 4 1 0.062 5
32 5 0.031 25
64 6 0.015 525
128 7 0.007 812 5
256 8 2 0.003 906 25
512 9 0.001 953 125
1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25
4 096 12 3 0.000 244 140 625
8 192 13 0.000 122 070 312 5
16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 4 0.000 015 258 789 062 5

131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5
1 048 576 20 5 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 6 0.000 000 059 604 664 775 390 625

33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25
134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 7 0.000 000 003 725 290 298 461 914 062 5

536 870 912 29 0.000 000 001 862 645 149 230 957 031 25
1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5
4 294 967 296 32 8 0.000 00C 000 232 830 643 653 869 628 906 25



21

3

tUMgER

single rrec
16,000
15,000
14,000
13,000 .
12,000
131,000
13,060
24001
2,000
7.00¢
FL 00T
5,6C¢
4,00¢
z, 00"
2.60C
1.06¢
0,00¢C
-1,000
=2,00r
-3'[10:
-4 000
-5,00(0
-6 0l
-7,00¢
-, 001
-a,0Ur
10,000
-11,0¢0¢
-12,0C¢
-13,00¢0
-14,00¢
~15,0Cr
1,00¢
n,e5+~
.81
r.e1:
9,75¢
0,6b¢
0,e2t
A N
0,50
[LIRIICN

: 2y
5,27

i bt ES (F FLOATING

MagcHINE
REPRESEMTAT1ON

o
1840

416060000
_413c0000
b1os600U
H1340000
413¢00C0
81200000
41280000
Lbiz4000¢C
41260000
4N+ &0000
GCrO000G
Gurecoel
Lyt coadoc
LHU\CCO()U
Liannoon
LGE000G
G
 HBEADOOOGO
EHEGOOCO
Lisogooc
260000
Bt 14000C
Lriceoce
EFHC&000C
Bt 0Cc000
FrLrcoooc
L+ 0000
GEELoo0o0
EFLGO0CO
FL CC00C0
LELEOO00G
B 0400006
Lie00000
Luscgooc
HBLAF00CC
Liauo0ogQ
Lisgeoet
L0000
Letrogee
w4 000c
Lyl 000Q
NI
SHELQOCU
50000
SLELLOEG
abiangec
SEALGOGO
SreLGoce
[¢
Ltrvgaec
(LeLCucu
CLaeeoeo
ciaeeoge
cci«00cec
ccr¢o00c0
CLEs0006¢C
EFECBOCco
Lri(cooc
s 0CG
trieoong
tiL00co
rLeLo6g
trescoec
Fiig00co

APPENDIX G.

FOIMNT MUMPRERS




	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01a
	6-01
	6-02
	6-03
	6-04
	6-05
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	D-01
	E-01
	E-02
	E-03
	E-04
	E-05
	F-01
	G-01

