

310-103000-000

Price: $7.00

MODCOMP III COMPUTER

REFERENCE MANUAL

May 1972

Modular Computer Systems

1650 West McNab Road

Fort Lauderdale, Florida 33309

(305) 974-1380

Contents Subject To Change Without Notice

MODCOMP III COMPUTER SYSTEM

I.

II.

CONTENTS

MODCOMP III CHARACTERISTICS

GENERAL CHARACTERISTICS

Memory System

General Register File

Arithmetic Module

Read-Only Memory Controller

Input/Output System

Interrupt System

Control Panel

Physical Characteristics

MODCOMP SOFTWARE

Executive Systems

Language Processors

Diagnostics, Utilities, Math Library

MODCOMP DATA PROCESSING PERIPHERALS

MEASUREMENT, CONTROL AND COMMUNICATION EQUIPMENT

High Level Analog Input Subsystem

Wide Range Solid State Analog Input Subsystem

Wide Range Relay Analog Input Subsystem

Input/Output Interface Subsystem

Communications Multiplexers

Communications Channels

SYSTEM EXPANOARIT.ITY

MULTIPROCESSOR CONFIGURATIONS

CENTRAL PROCESSOR DESCRIPTION

INFORMATION FORMATS

Basic Formats

Arithmetic Data Formats

Character Formats

REGISTER FILE

ADDRESSING

Memory Word Addressing

Byte Addressing

Bit Addressing

DEDICATED MEMORY LOCATIONS

SECOND MEMORY PORT

READ-ONLY MEMORY CONTROLLER

OPERATIONAL INTEGRITY FEATURES

Memory Parity

ii

1- 1

1- 1

1- 3

1- 3

1- 3

1- 3

1- 3

1- 4

1- 4

1- 4

1- 4

1- 4

1- 5

1- 5

1- 6

1- 6

1- 6

1- 6

1- 7

1- 7

1- 7

1- 7

1- 9

1- 9

2- 1

2- 1

2- 1

2- 2

2- 3

2- 3

2- 5

2- 5

2- 7
2- 7

2- 8

2- 8

2- 9

2- 9

2- 9

Overflow

Unimplemented and Call Instructions

Undefined Instructions·

Floating Point O~erf1ow

Doub1eword Operand Register Storage

Power Fail Safe/Auto Start

System Protect Feature

REAL-TIME CLOCK

III. INSTRUCTION SET

OVERVIEW

LOAD, STORE AND TRANSFER INSTRUCTIONS

LDM

LDI

LOS

LOX

STM

STI

STS

STX

LBX

Effective Byte Address Generation

SBX

LFM

LFS

LFX

SFM

SFS

SFX

TRR

TRRB

ARITHMETIC INSTRUCTIONS

ADM

ADI

ADS

ADX

ADMM

ADMB

ADSM

ADSB

ADXM

ADXB

ADR

ADRB

DAR

SUM

SUI

SUS

2-10

2-10

2-10

2-10

2-11

2-11

2-11

2-12

3- 1

3- 1

3- 4

3- 4

3- 4

3- 4

3- 5

3- 5

3- 5

3- 5

3- 6

3- 6

3- 6

3- 7

3- 7

3- 7

3- 8

3- 8

3- 8

3- 8

3- 9

3- 9

3-10

3-11
3-11

3-11

3-12

3-12

3-12

.3-13

3-13

3-13

3-14

3-14

3-14

3-15

3-15

3-15

3-16

SUX 3-16

SUR 3-16

SURB 3-16

MPM 3-17

MPS 3-17

MPX 3-17

MPR 3-18

DVM 3-18

DVS 3-18

DVX 3-19

DVR 3-19

CRMB 3-19

CRSB 3-20

CRXB 3-20

TRO 3-20

TTR 3-21

TTRB 3-21

LO,;ICAL INSTRUCTIONS 3-22

ETM 3-22

ETI 3-22

ETS 3-22

ETX 3-23

ETMM 3-23

ETMB 3-23

ETSM 3-24

ETSB 3-24

ETXM 3-24

ETXB 3-25

ETR 3-25

ETRB 3-25

ORM 3-26

ORI 3-26
ORS 3-26
ORX 3-26

ORMM 3-27
ORSM 3-27
ORXM 3-27
ORR 3-27

ORRB 3-28
XOM 3-28
XOI 3-28
XOS 3-29
XOX 3-29

XOR 3-29
XORB 3-29
TOR 3-30
TRMB 3-30

iv

TRSB 3-30
TRXB 3-31
TERB 3-31

FLOATING POINT INSTRUCTIONS 3-32
Introduction 3-32
Data Formats 3-32

FLOATING POINT INSTRUCTION MNEMONICS 3-33
GENERAL RULES 3-33

Overflow 3-34
FAR 3-34
FSR 3-34
FMR 3-34
FDR 3-34
FARO 3-36
FSRD 3-36
FMRD 3-37
FDRD 3-37
FAM 3-37
FSM 3-38
FMM 3-38
FDM 3-39
FAMD 3-39
FSMD 3-39
FMMD 3-40
FDMD 3-40

SHIFT INSTRUCTIONS 3-41
LAD 3-41
RAD 3-41
LAS 3-42
RAS 3-42
LLD 3-42
RLD 3-42
LLS 3-43
RLS 3-43
LRS 3-43

BIT MANIPULATION INSTRUCTIONS 3-44
LBR 3-44
LBRB 3-44
ABMM 3-45
ABMB 3-45
ABSM 3-45
ABSB 3-46
ABXM 3-46
ABXB 3-46
ABR 3-47
ABRB 3-47
SBR 3-47

v

SBRB

ZBMM

ZBMB

ZBSM

ZBSB

ZBXM

ZBXB

ZBR

ZBRB

OBMM

OBSM

OBXM

OBR

OBRB

XBR

XBRB

TBMB

TBSB

TBXB

TBRB

CBMB

CBSB

CBXB

GMR

GMRB

BYTE MANIPULATION INSTRUCTIONS

MUR

MLR

MBR

MBL

IBR

UNCONDITIONAL BRANCH INSTRUCTIONS

BLM

BLI

BRU

HOP

BRX

CONTROL INSTRUCTIONS

HLT

NOP

SPR

INTERRUPT AND CALL INSTRUCTIONS

SIE

RIE

SIR

RIR

SIA

vi

3-48

3-48

3-48

3-49

3-49

3-49

3-49

3-50

3-50

3-50

3-50

3~51

3-51

3-51

3-51

3-52

3-52

3-52

3-53

3-53

3-53

3-54

3-54

3-55

3-55

3-56

3-56

3-56

3-56

3-57

3-57

3-58

3-58

3-58

3-58

3-59

3-59

3-60

3-60

3-60

3-60

3-61

3-61

3-61

3-62

3-62

3-62

RIA

REX

RMI
CAR

CIR

INPUT/OUTPUT INSTRUCTIONS

ISA

ISB

ISC

ISD

IDA

IDB

IDC

IDD

OCA

OCB

OCC

OCD

ODA

ODB

ODC

ODD

IV. PRIORITY INTERRUPTS

OVERVIEW

LEVEL ASSIGNMENTS

INTERRUPT OPERATION AND PROGRAM CONTROL

INTERRUPT SUB-LEVEL OPERATION AND PROGRAM CONTROL

TRAPS

Unimplemented Instruction Trap

Memory Parity Trap

System Protect

FLOATING POINT OVERFLOW

POWER FAIL SAFE/AUTO START INTERRUPT

V. INPUT/OUTPUT

OVERVIEW

INSTRUCTION EXECUTION SEQUENCE

TRANSFER FORMATS 0

REGISTER I/O TRANSFER MODES

INPUT/OUTPUT INTERRUPTS

DIRECT MEMORY PROCESSOR

Transfer Initiation

Data Chaining

Register File

PERIPHERAL DEVICE ASSIGNMENTS

PROGRAMMING CONSIDERATIONS

REGISTER I/O INTERRUPT MODE SEQUENCE

New command Initiation

vii

3-62

3-62

3-63

3-63

3-63

3-64

3-64

3-64

3-64

3-64

3-65

3-65

3-65

3-65

3-65

3-65

3-65

3-65

3-66

3-66

3-66

3-66

4- 1
4- 1

4- 1

4- 3

4- 4

4- 5

4- 5

4- 6

4- 6

4- 6

4- 7

5- 1

5- 1

5- 1

5- 3

5- 3

5- 4

5- 5

5- 5

5- 5

5- 6

5- 6

5- 6

5- 6

5- 6

5- 6

Response to Data Interrupt

Response to Service Interrupt

REGISTER I/O TEST AND TRANSFER MODE

DIRECT MEMORY PROCESSOR I/O MODE

New' Conunand Initiation

Response to Data Interrupt

Response to Service Interrupt

OUTPUT COMMAND FORMATS

Select Format

Control Format

No Op Conunand

Interrupt Disconnection and Termination

Transfer Initiate

INPUT STATUS FORMAT

VI. OPERATOR CO~TROLS

INDICATORS

Data

Parity Error

Run

Power On

SWITCHES

Data Entry

Panel Lock

Master Clear

Fill

Run/Halt

Single Cycle

Enter

Step P

Console Interrupt

Display

Enter R

Register Select

CONTROL PANEL OPERATION

Display Register

Load Register

FILL

Load Memory

Display Memory

Start Program

Single Cycle Program

viii

5- 8

5- 8

5- 9

5- 9

5- 9

5- 9

5-10

5-10

5-10

5-11

5-12

5-12

5-12

5-13

6- 1

6- 1

6- 1

6- 1

6- 1

6- 1

6- 1

6- 1

6- 1

6- 2

6- 2

6- 2

6- 2

6- 2

6- 2

6- 2

6- 3

6- 3

6- 3

6- 4

6- 4

6- 4

6- 4

6- 4

6- 4

6- 4

6- 5

1-1

5-1

2-1

3-1

3-2

4-1

4-2

5-1

6-1

A

B

C

D

E

F

G

FIGURES

MODCOMP III Block Diagram

INPUT/OUTPUT SUBS~STEM BLOCK DIAGRAM

Dedicated Memory Locations

Symbols and Abbreviations

TABLES

Floating Point Register Selections

INTERRUPT LEVEL ASSIGNMENTS

Sub-Level Assignments

Peripheral Device Interrupt Assignments

REGISTER DATA

APPENDICES

Hexadecimal to Decimal Conversion

Character Codes

Peripheral Device Commands and Tests

Divide

Instruction List

Table of Powers of Two and Sixteen

Floating Point Number Examples

ix

1- 2

5- 2

2- 8

3- 3

3-33

4- 2

4- 4

5- 7

6- 3

A- 1

B- 1

C- 1

D- 1

E- 1

F- 1

G- 1

I. MODCOMP III CHARAClERISllCS

MODCOMP III is an BOO-nanosecond, l6-bit computer having many of the characteristics

of 32-bit computers. It is designed with unique processing capabilities and with

the capacity to be gracefully upgraded with new features and performance abilities

as computer and component technologies advance.

MODCOMP III consists of a set of functional modules implemented with the present

state of the art in MSI, IC, and core memory technology and designed to be upgraded

with LSI and other advanced technologies when available. All data transfers and

manipulations within the computer are controlled by a highly-flexible read-only
memory (ROM) controller. The ROM controller provides a rich instruction set

including bit, byte, word, doubleword, tripleword (including floating point) and

file manipulation instructions. It also provides an open-ended design which enables

user firmware and new macro instructions to be added to the computer.

MODCOMP III is available in several configurations starting with the basic model 111/5.

The descriptions in this text apply to both the MODCOMP 111/5 and III/IS unless other­

wise noted. The only differences between MODCOMP 111/5 and III/IS are the optional

Direct Memory Access Channels and Second Memory Port which are not available on the

111/5. Configurations with increasing processing capabilities are available from

a single MODCOMP III computer having up to 64K words of directly addressable memory

to a multi-processor configuration having up to l20K words of memory. The broad

range of configurations available means that there is a MODCOMP III system ideally
suited for any of a wide spectrum of real-time applications including measurement,

control and communications. And this spectrum is extended on the lower side by com­

patible members of the MODCOMP family - the 16 bit MODCOMP II in the middle and the

16 bit mini, MODCOMP I, at the lower end.

GENERAL CHARACTERISTICS

The organization of MODCOMP III is shown in Figure 1-1. The components which comprise

the MODCOMP 111/5 are shown within the dashed lines. Other systems consist of the

basic component set plus different combinations of the components shown outside of the
dashed lines.

MODCOMP III consists of storage, processing and input/output modules and a modular

bus through which all inter-module transfers are made. The major features of each

module are described on the following pages.

1-1

4K WORDS (64 ~

4K WORDS (60)

4K WORDS '(56)

FLOATING
POINT

INSTRiJCTIONS
MULTIPLY/

DIVIDE
INSTRUCTIONS

4K WORDS (16) I - - - - -,
4K WORDS (12) I I
!K ~R~ ~) W CONTROL I
.4K WORDS PANEL L

• CORE I MEMORY
SECOND I SYSTEM WITH

1\
<==>! BYTE PARITY ~ j<;

MEMORY !
PORT :,., ____ ...

I GENERAL
I REGISTER ~
I FILE V,
15 GEN. REGS. F"--....------.././ I I 'f v

•

I
I

I/O BUS IIINPUT/OUTPUT
SYSTEM

~ WITH TTY

I AND PTR
CONTROLLER

I \;

MODULAR
BUS

256 CUSTOM(1,024)

256 CUSTOM

128 CUSTOM I/O

128 DMP
1---1-------1--,

128 BASIC I

')
v

128
INSTRUCTION I

SET

READ-ONLY
MEMORY

CONTROLLER

ARITHMETIC

MODULE

INTERRUPT
SYSTEM

WITH POWER
FAIL SAFE/AUTO

START

I
I
I
I

. I
I
I
I
t
I
I
I
I

LI1 I ~- r--- _ -I-. I- _ .!.. L~L~ _ • I-..J

.... ___ I r---1 A;:;.K--'~ I SYSTEM

L I PROTECT
'-I- - -, - - - ~ FEATURE

4 LEVELS (8)

4 LEVELS (12)

4 LEVELS (16)
DIRECT
MEMORY

PROCESSOF I-
16 CHANS.

DIRECT
MEMORY

CHANNELS I­
(1-4)

EXECUTIVE I-­
FEATURES

4 LEVELS (20)

4 LEVELS (24) -r 625 CPS J I-.._....jl PT READER

.... -
4 LEVELS (28)

4 LEVELS (32)

Figure 1-1 MODCOMP III Block Diagram

1-2

Memory System

• 4,096 to 65,536 l6-bit words, expandable by 4K word modules

• 400 nanosecond access time
800 nanosecond full cycle time

Parity bit per byte standard in all models (even parity)

• All memory locations directly addressable
Seven memory addressing modes provided including indirect, indexed and immediate

• Dual, concurrent access available in multiprocessor configurations
Memory protect option

General Register File

• 15 addressable, 16 bit, general purpose registers

• 7 of the general registers us.able as index registers

• All 15 registers usable for short indexing operations

• 800 nanoseconds execution time for typical register-to-register instructions

Arithmetic Module

Parallel operation
Full set of arithmetic, logical, compare, and shift capabilities

Execution times

Add, Subtract, And, Or, Exclusive Or (Reg. -to-Reg.)

Add, Subtract, And, Or, Exclusive Or (Mem.-to-Reg.)

Multiply (Reg. -to-Reg.) = 6.0 u sec., (Mem.-to-Reg.)

Divide (Reg. by Reg.) =11.0 u sec.,

Implemented with four MSI modules

Read-Only Memory Controller

200 nanosecond cycle time

40-bit word length

(Mem. by Reg.)

256 words in basic computer, expandable to 1,024

0.8 u sec.

1.6 u sec.

7.2 u sec.

12.2 u sec.

optional instructions including floating point arithmetic and fixed point

multiply/divide

User firmware can be added

Input/Output System

Program controlled transfers to/from 63 peripheral devices

Transfers synchronized by interrupts

Transfers can be made from any general register to any device

Transfers are made over a differentially buffered input/output bus which isolates

the computer from external cable and controller delays

Direct Memory Processor available for automatic block transfers to/from 16

peripheral devices on a multiplexed basis

Direct Memory available for transfers at rates up to 1.25M words/sec.

Controller for ASR-33, ASR-35, or KSR-35 Teletype contained in basic computer

High-speed paper tape reader, in addition to Teletype, can be operated from the

integral controller

1-3

Interrupt System

Four standard levels-two input/output, Power Fail Safe/Auto Start, and Un­

implemented Instruction trap

Interrupts expandable in groups of four levels to a total of 32 levels. In

addition, each of the two priority levels (OC,OD) are connected to 17 unique

psuedo-priority levels which can be connected to up to 128 sublevels, each

with a unique (dedicated) memory pointer •

• Complete program control of the Request, Enable*, and Active states of each level

System Protect Feature includes memory protect and privileged instruction trap

capabilities which enable the computer to operate in either a protected or an

unprotected mode
• Executive features include a real-time clock (120 Hz), console interrupt, task

scheduler interrupt, and one external interrupt

Control Panel

Capability to display or modify the contents of any memory location, general

register or most non-programmable registers

Program fill switch

Control panel lock switch

Master Clear to clear computer and peripherals

Optional Console Interrupt executive feature causing an interrupt request to

Level E

Physical Characteristics

0-55°C operating ambient temperature range

120 :!:. 10% vac, 50 :!:. 2 Hz or 60 ± 2 Hz

Packaged for mounting in a standard 19-inch wide cabinet. Occupies 26 inches

vertically

Standard package will hold 32K words of memory and all computer options

MODCOMP SOFTWARE

Executive Systems

Three ~odular ~pplication E~ecutive (MAX) systems are available with MODCOMP III

computers to meet the requirements of a wide range of machine operating environments.

MAX I is a core resident operating system which improves machine utilization

efficiency in assembling, debugging and related operations.

MAX II is a disc operating system which accepts a batch job input consisting of

assemblies, compilations and/or executions. A core resident version is also available

for non-disc systems.

*Levels 0 and 4 are always enabled, as are 1, 2 and 5 when present in the system.

1-4

~ !!! is a real-time multiprogramming executive which provides complete task

scheduling, initiation, termination and I/O services. This system will control the

execution of any mixture of foreground/middleground and background tasks. Unpro­

tected (middleground) tasks can be brought on-line without disturbing other protected

(foreground) tasks. Batch processing can be performed in the background. A core­

only version is available for dedicated applications.

Language Processors

Several language processors are available with MODCOMP systems.

FORTRAN IV - The MODCOMP FORTRAN compiler meets the full ANSI FORTRAN specifications.

It is designed to produce efficient code by using all machine capabilities such as

all registers in the register file and all instructions. It produces assembly

language output, permitting the programmer to optimize further. The programmer can

also write programs in any desired mixture of compiler and assembly languages. Avail­

able in a core-resident or overlay version under MAX II and MAX III.

Extended Fortran IV - This FORTRAN compiler is an extension of FORTRAN IV as defined

above containing random access I/O operations through DEFINE FILE. This compiler

contains block level optimi~ation to produce efficient object code. Available in

core resident or overlay versions under MAX II or MAX III.

BASIC - This multi-user system is a subset of the Dartmouth BASIC system operating

under either MAX II or MAX III. It enables users having no previous programming

experience to write programs in a simple, quickly learned language.

Macro Assembler - This big machine class assembler has an extensive set of .directives

and error diagnostics as well as a macro processor. It accepts conditional assembly

statements, assembly time branches and macro exits. It is a two-pass assembler,

operating under MAX II and MAX III. Available in core-resident or overlay versions.

Assembler - The assembler is a subset of the macro assembler. It generates reloca­

table as well as absolute object code and operates under MAX I, II or III.

FORTRAN Coded Assembler - The assembler is available in FORTRAN source language. This

assembler operates on the IBM 360/370 and is compatible with the MODCOMP III assembler

in both syntax and binary output. The user can therefore assemble programs on the IBM

360/370 and then run them on the MODCOMP III with no modifications. Operates under

OS or DOS in 65K bytes.

Diagnostics, Utilities, Math Library

An advanced set of computer and peripheral diagnostics are available as maintenance

aids. Utilities include source and object file editing, media-to-media conversion,

and program debug capabilities. The math library meets ANSI FORTRAN standards.

1-5

MODCOMP DATA PROCESSING PERIPHERALS

Modular peripherals are available for a broad spectrum of applications including pro­

gram preparation, data processing and system support functions. All peripherals are

supported by the appropriate MAX system. The basic specifications for each device

are summarized below.

Page Printers

Paper Tape Reader

- ASR-33, ASR-35, KSR-35 Teletypes

- 625 characters per second

Paper Tape Reader and Punch - 625 characters per second read, 110 characters per

Card Readers

Card Punch

second punch

- 300-1000 cards per minute

- 100 cards per minute

High Speed Serial Printer

Line Printers

- 50-150 lines per minute, 132 columns

- 600 lines per minute, 80-132 columns

Magnetic Tape Units

Fixed-Head Discs

Moving-Head Discs

- 12.5/45 IPS, 7/9 track, 556/800 BPI, industry
compatible NRZ. 45 IPS, 9 track, 1600 BPI
industry compatible Phase Encoded.

- 8.5/17/25 millisecond average access time
Capacity range - 65K to 1M words
Transfer rates - 68K-247K words per second

- 20 millisecond average latency
Capacity range - over 1.2M, 13M and 26M words.
Transfer rates - 97.8K words and l56K words per
second

MEASUREMENT, CONTROL AND COMMUNICATION EQUIPMENT

A complete range of analog input, analog output, digital input, digital output and

communication equipment is available to operate with MODCOMP computer systems. This

equipment has all been designed together expressly to operate with MODCOMP systems.

Therefore hardware formats, interfaces, cabling and power supplies are the same in

all units to facilitate customer usage and minimize spares requirements.

High Level Analog Input Subsystem

Channel Capacity - 16-128 Channels single-ended or 8-128 Channels differential

Input Range -±10.24 volts full scale or +102.4 volts full scale

Throughput Rate - 50,000 Channels per second max.

Overall Accuracy - +0.05% Full Scale ~1/2 LSB

Wide Range Solid ~ Analog Input Subsystem

Channel Capacity

Input Ranges

Throughput Rate

Overall AcCuracy

Auto Ranging

Zero Suppression

- 8-128 Channels

- 12 Programmable ranges from ~5 MV to +10.24V Full Scale

- 20,000 Channels per second max.

- +0.05% Full Scale ~1/2 LSB

- With 4,000 Chans. per second throughput

- Optional

1-6

Wide Range Relay Analog Input Subsystem

Channel Capacity

Input Ranges

Throughput Rate

Overall Accuracy

Auto Ranging

Zero Suppression

- 8-512 Channels

- 12 Programmable ranges from ~5 MV to +10.24V Full Scale

- 200 Channels per second max.

- +10 Microvolts or +0.05% Full Scale

- Standard

- Optional

Input/Output Interface Subsystem

Channel Capacity

Digital Inputs

Digital Outputs

Analog Outputs

Serial Communica­
tions Interface

Interval Timer

I/O Interrupts

External Inter­
rupts

Synchronizer

- 16 Input/Output channels of 16 bits each plus expander chassis
(up to 2048, 16 bit channels)

- Micrologic, positive voltage, negative voltage, bipolar
voltage, contact sense. (Isolated and filtered inputs)

- Micrologic, positive voltage, negative voltage, electronic
switch, contact closure, pulse output, and AC output (TRIAC)

- 12 Bits binary, including sign

- ~10 volts, ~20 volts, 1 to 5 rna, 4 to 20 rna, 10 to 50 rna

- RS 232 or 20 rna current loop (TTY compatible)

- Provides programmable timing interrupt or 'watchdog' timer

- Provides 8 data interrupts and/or 8 service interrupts

- Provides signal conditioning and driver for 16 external
interrupts provided the Executive Feature for External
Interrupt is included in the system

- Provides 'handshake' data transfer

Communications Multiplexers

Types

Channel Capacity

- Universal, operates in synchronous and/or asynchronous mode.

Asynchronous, operates in asynchronous mode only.

Universal, 4 to32 full duplex channels expandable in groups

of 4 up to 64 full duplex channels.

Asynchronous, 2 to 32 full duplex channels expandable in

groups of 2 up to 128 full duplex channels.

Communications Channels

Clocking Mode

Communication
Interfaces

Baud Rate

Codes

Stop bits

Parity

Echo

ASYNCHRONOUS

- Asynchronous

- EIA RS-232-C Modems, TTl Modems, TTy 60/20 ma Current loop

- Patchable from 75 to 9600 baud with a maximum of five different
baud rates per multiplexer (to 50KB.on request)

- Program selectable - 5, 6, 7, or 8 bits plus parity

- Program selectable - 1 or 2

- Program selectable - none, odd, even

- Program selectable - Echos on full duplex line

1-7

Communications Channels (Cont'd)

Clocking Mode

Communications
Interfaces

Baud Rate

Code
Parity

Synch Character

SYNCHRONOUS

- Synchronous

- EIA RS-232-C Modems, TTL Modems

Patchable to 5DK baud with a maximum of five different baud
rates per multiplexer

- Program selectable - 5, 6, 7, or 8 bits plus parity

- Program selectable - none, odd, even
- Patchable

1-8

SYSTEM EXPANDABILITY

The modular design makes the MODCOMP III computer easily expandable. The basic

assembly is capable of containing all system features. Core memory up to a total of
64K words can be added by plug-in insertion of additional 4K memory modules. The

ROM and interrupts are also modular and are field expandable. Even the concurrent

memory access path (second port)*can be added in the field. Therefore, a MODCOMP

SYSTEM can always be upgraded from one model to the next higher model. It can

even be converted into a multiprocessor system if the need for a substantial increase

in computing capability arises.

MULTIPROCESSO_R CONFIGUR,ATIONS

The MODCOMP III/70 is a multiprocessor having two CPU's and both private and shared

memory modules. The range of multiprocessor configurations available is shown in

Figure 1-2.

Each of the two computer cabinets can contain from 4K to 64K words of memory, and

each CPU can address up to 64K words. Memory can be connected to the CPU in the other

cabinet on an SK word basis, except for the highest memory section which can be 4K

as well as SK.

The lower SK memory section cannot be shared because the lower 4K module in each

computer is required for the dedicated memory locations. The 4K module having

addresses 4-SK could be omitted, but this would leave a memory address gap.

The private memory in each CPU must be large enough to contain the individual

MAX III operating systems. The shared memory is used for a data communication

area through global common.

The CPU-to-CPU communication interrupt is generated by execution of the Request

Multiprocessor Interrupt instruction. Whenever this instruction is executed in one

CPU, an interrupt signal is sent to Level 3 in the other CPU.

I I I

CPU 1 SK • • • SK

1 COMMUNICATION SK
INTERRUPT SK • • • or

4K

CPU 2 SK • • • SK

I I 1

* III/1S

1-9

II. CENTRAL PROCESSOR DESCRIPTION

INFORMATION FORMATS

Basic Formats

The l6-bit word is the basic information format of the MODCOMP III computer. The

bit designations in the computer word are:

WORD FORMAT

WORD

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Some instructions operate on doublewords which consist of 32 bits of data stored in

two consecutive register or memory locations.

EVEN
REGISTER

ODD
REGISTER

o

o

DOUBLEWORD FORMAT

MORE SIGNIFICANT WORD

15

LESS SIGNIFICANT WORD

15

To be an operand for a doubleword instruction which operates on register contents,

the more significant word must be stored in a register location having an even address

and the less significant word must be stored in the next higher (odd) register.

Many instruction and peripheral devices operate on eight-bit bytes which are packed

two per register or memory location in the format:

BYTE DESIGNATIONS

BYTE 0 BYTE 1

o 7 8 15

Hexadecimal (base 16) digits are often used as a convenient means of representing

binary byte, word or double word values. The hexadecimal word format is:

HEXADECIMAL DIGIT DESIGNATIONS

o 3 4 7 8 11 12 15

2-1

Where HO is the most significant digit in the word. Hexadecimal numbers and the equi­

valent decimal numbers are listed in Appendix A. In the text, hexadecimal numbers appear

in the form N16 .

Arithmetic Data Formats

Fixed Point Binary Integer Format - This is the standard arithmetic data format in the

MODCOMP III and consists of a sign bit and 15 or 31 data bits. The most significant

bi t is the sign bit, which i's defined:

Sign

Sign

0, Positive or Zero Quantity

1, Negative Quantity

Two's complement representation is used for negative numbers. The principal fixed

point arithmetic formats are:

SINGLE PRECISION FIXED POINT DATA FORMAT

o 1 15

DOUBLE PRECISION FIXED POINT DATA FORMAT

I S I 2 30

o 1 15

o 15

Floating Point Format - This consists of a nine bit binary exponent and a 22 or 38 bit

signed binary fraction. The exponent values are defined:

Exponent Floating-Point

Value 16 Number Value

000 2-256 X Fraction Value (1)F2. 0)

100 20 X Fraction Value

lFF 2 255 X Fraction Value

The value of zero is represented by 00000 ... 016 . Hardware operations resulting in a

zero fraction set the exponent to all zeroes. A negative number is represented as the

integer two's complement of the absolute value so that integer compare and negate

operations are valid with both fixed point and floating point operands.

2-2

The floating point formats are:

SINGLE PRECISION FLOATING POINT DATA FORMAT

EXPONENT FRACTION

o 1 9 10 15

LEAST SIGNIFICANT BITS OF FRACTION

o 15

DOUBLE PRECISION FLOATING POINT DATA FORMAT

S EXPONENT FRACTION

o 1 9 10 15

FRACTION

o 15

LEAST SIGNIFICANT BITS OF FRACTION

o 15

Character Formats

The ASCII code is the standard character code in MODCOMP computers and peripherals.

Appendix B contains the character code definitions.

REGISTER FILE

MODCOMP III contains 16 addressable registers. Fifteen are fast access flip-flop

registers having general register capabilities. Operands can be transferred between

any of these registers and any other register or any memory location. In addition,

the execution of many instructions produces a result stored in one or more of the

general registers. All 15 of the general registers may be used in short indexed

operations and RI-R7 may be used as index registers.

One of the 16 addressable registers (RO) is the l6-bit switch register located on the

control panel. This register is provided as one means of communication between the

operator and program.

2-3

The designations and dedicated functions of the sixteen addressable registers are:

LOWER GENERAL
REGISTER FILE
AND INDEX
REGISTERS

REGISTER FILE DESIGNATIONS AND DEDICATED FUNCTIONS

RO Switch Reg. R8

Rl Base Reg. R9

R2 RIO

R3 Rll

R4 R12

R5 R13

R6 R14

R7 R15

UPPER GENERAL
REGISTER FILE

Register Rl has a dedicated hardware function in addition to being a general register.

In the short displaced mode of memory address generation, a displacement value con­

tained in the instruction is added to the contents of register Rl to produce the

effective memory address. Only registers RI-R7 may be used as index registers in all

indirect address formats. All registers RO-R15 may be used in short indexed operations.

The registers are designated by four-bit fields in the formats of instructions which

invoke register operation. Typical register designations are shown in the following

examples:

REGISTER-TO-REGISTER INSTRUCTION FORMAT

OP. CODE Ra Rb

0 7 8 11 12 15

INDEXED INSTRUCTION FORMAT

OP. CODE Ra I Rxx

0 7 8 11 12 13 15

SHORT INDEXED INSTRUCTION FORMAT

OP. CODE Ra Rx

0 7 8 11 12 15

Ra Specifies one operand register (0 ~ a ~ 15) and the destination register.

The destination register should not be RO, the switch register, unless the

operation result is to be discarded, which is sometimes convenient in con­

ditional branch instructions.

Rb Specifies the second operand register (0 ~ b ~15) .

Rxx Specifies the index register (1 ~xx ~ 7) .

Rx Specifies the effective address register for short indexed instructions

(0 < x < 15) .

2-4

ADDRESSING

Memory Word Addressing

A total of seven memory addressing modes are provided in MODCOMP III instructions which

operate on word operands. In each of these modes, a 16-bit effective word address (EWA)

is produced in the central processing unit (CPU) and sent to the memory system along

with a read or write request. The 16-bit contents of the location specified by the EWA

are then either read from memory or replaced by the word transferred from the cpu. The

16-bit EWA provides a direct addressing range of 65,536 words.

The first four of the seven memory addressing modes are derived from this instruction

format:

BASIC MEMORY ADDRESS FORMAT

OP. CODE I I I
1st INSTRUCTION

Ra Rxx WORD

o 7 8 11 12 13 15

2nd INSTRUCTION
ADDRESS WORD

o 15

Ra Register Address

Rxx Index Register Address (1 ~ xx {7) where 0 no indexing

I Indirect Address Bit

Direct Address Mode - If Rxx = 0 and I

instruction word becomes the EWA.

0, the 16-bit address contained in the second

Indexed Address Mode - If Rxx ~ 0 and I = 0, the contents of register Rxx are added

to the 16-bit address contained in the second instruction word. The least significant

16 bits of the result become the EWA. The contents of the index register may be either

positive or negative to produce either positive or negative displacement indexing.

EXAMPLE:

DISCARD
CARRY

1

0000
1111
0000

0000
1111
0000

0001
1111
0000

0100
0110
1010

ADDRESS
INDEX
EWA

20
-10

10

The indexing operation does not increase instruction execution time.

Indirect Address Mode - If Rxx= 0 and I = 1, the 16-bit address contained in the second

instruction word specifies the memory location which contains the EWA. The indirect

address capability is single level. One memory cycle time (800 ~s) is added to

instruction execution time by the indirect address word fetch.

2-5

Indexed and Indirect Address Mode - If Rxx ~ 0 and I = 1, the contents of register Rxx

are added to the l6-bi t address contained in the second instruction word. The resul'ting

address then specifies the location of the EWA. One memory cycle time (800 ~s) is added

to instruction execution time.

Immediate Mode - This two word memory reference instruction accesses operands or stores

operands in the second instruction word. The program register is advanced by two to skip

this location. The instruction format is:

IMMEDIATE OPERAND 'FORMAT

OP. CODE Ra

o 7 8 11 12

IMMEDIATE OPERAND

o

15

15

1st INSTRUCTION
WORD

2nd INSTRUCTION
WORD

Short Displaced Mode - This single-word memory reference instruction format is provided

for processing lists of operands occupying 16 or fewer consecutive memory locations. The
instruction format is:

SHORT DISPLACEMENT FORMAT

OP. CODE Ra DF~
~------------------~--------~------o 7 8 11 12 15

DF = Displacement Field (0 ~ DF ~ 15)

In this mode of addressing memory, the positive displacement quantity DF and the contents

of register Rl are added, to generate the l6-bit EWA. The contents of Rl are not modi­
fied by the EWA computation:

(Rl) + DF =EWA

The l6-bit contents of Rl specify the base location (lowest address) of the list stored
in memory.

When Branch instructions are executed in the short displaced mode, the Program Register
rather than register Rl is used as the base register.

Short Indexed Format - This single-word memory reference instruction enables the contents

of any of the 15 addressable registers (RO is Switch Register) to become the EWA. The
instruction format is: SHORT INDEXED FORMAT

OP. CODE Ra Rx

o 7 8 11 12 15

, where Rx specifies the register which contains the EWA.

2-6

Byte Addressing

A byte may be addressed in any memory word with a special form of the short indexed

format. In this case Rx specifies an even/odd pair of general registers.

BYTE ADDRESS FORMAT

OP. CODE Ra

o 7 8 11 12

BASE WORD ADDRESS

o
SIGNED BYTE DISPLACEMENT

S DISPLACEMENT WORD ADDRESS

o 1

B 0 Specifies the byte contained in bits 0-7, and

B 1 Specifies the byte contained in bits 8-15 of the

memory location specified by the EWA

INSTRUCTION
Rx

15

EVEN REGISTER

15

ODD REGISTER

14 15

The effective byte address EBA is obtained by adding the l6-bit base address to the

signed byte displacement which is first shifted right one bit position. This produces

an EWA which enables the accessing of the location containing the specified byte. The

proper byte is then accessed from this location depending upon the state of B.

Bit Addressing

Any bit in memory can be addressed by the instruction format:

BIT ADDRESSING FORMAT

OP. CODE BIT NO. Rxx

o 7 8 11 12 15

WORD ADDRESS

o 15

BIT NO. = 0 to 15, where 0 specifies the bit at the most significant end of the word.

The register-to-register, short displaced and short indexed forms are also used with

these instructions.

2-7

OPe CODE R BIT #

I·
~------------------~--------~--------~

OPe CODE BIT # Rx

OPe CODE BIT # DF

DEDICATED MEMORY LOCATIONS

BIT IN
REGISTER

BIT IN MEMORY
SHORT INDEXED

BIT IN MEMORY
SHORT DISPLACED

Table 2-1 shows the area of memory which is dedicated to interrupt linkages and input/

output transfer parameters.

Memory Dedicated

Locations 16 Function

O-lF Bootstrap Loader (0-2D) ,

(Overlaps Interrupt Locations

20-SF Interrupt Entry and Return

60-6F DMP Transfer Count
70-7F DMP Transfer Address

80-BF I/O Data Interrupt Entry

CO-FF I/O Service Interrupt Entry

Table 2-1 Dedicated Memory Locations

SECOND MEMORY PORT

This optional feature provides a second memory port, or access path.

have access to all 64K words (max.) contained in one MODCOMP 111/15.

20-2D)

Each port can

The CPU
package with the memory is connected to the first (higher priority) port. The second

port, connected to an external CPU can be connected to any combination of 8K word

memory sections. (0-8K, 8-l6K, l6-24K, 24-32K, 32-40K, 40-48K,48-S6K, S6-64K).

Each port can obtain a memory access in a different memory section simultaneously. If

a simultaneous access is attempted in the same 8K section by both ports, the higher

priority port will obtain the next cycle and the lower priority port the following
cycle.

READ-ONLY MEMORY CONTROLLER

All standard MODCOMP III instructions are executed by a sequence of micro instructions

stored in the basic 256-word read-only memory (ROM) module. Micro instructions can be

executed at the rate of five million instructions per second. Sequences of CPU instruc­

tions executed from core memory can be coded as sequences of micro instructions and

executed much faster. For example, the CPU multiply and divide subroutines require

about ten times the execution time as the sequence of micro instructions required to

perform the same operations.

Up to three additional 256-word ROM modules are available for expanding computer cap­

abilities. One ROM module is used for the Direct Memory Processor and special I/O

macro routines. A minimum of two full modules are reserved for implementing user -

defined instructions and macro routines.

The ROM word length is 40 bits. The format is:

o

Execution
Control

6 7

Strobe
Control

10 11

ROM FORMAT

Concurrent
Control

18 19 21. 22

OPERATIONAL INTEGRITY FEATURES

27 28 31

Destination
Control

32 39

Continuous checking is performed for the principal conditions for which valid checks

can be made, that can cause machine stoppage or abnormal program operation. The error

signals are connected to interrupt levels, either as standard or optional features, to

facilitate operation of the computer in real-time environments.

Memory Parity

An even parity bit per byte is stored in all memory word locations. Each time a memory

access is made, the parity of both bytes in the word is checked. If an error is detected,

the execution of the instruction is aborted and the machine attempts to trap to the op­

tional parity priority interrupt level. (See Traps - Pg. 4-5).

If the optional System Protect Feature is included in the computer, the parity error

signal is connected to an interrupt level (Levell). An interrupt signal is generated

when the error is detected. Since the instruction execution is aborted when the error

is detected, the signal which interrupts the computer is classified as a trap, rather
than an interrupt signal. (See Traps - Pg. 4-5) The parity error light is reset by

the interrupt.

The parity error indicator is set whenever a parity error is detected and will remain

on until a priority interrupt occurs or the machine is normalized.

2-9

Overflow

An overflow signal is generated in arithmetic operations if the result exceeds the

capacity designated for the result. The specific overflow conditions are defined with

the individual instruction descriptions. The generic instruction types which can cause

overflow are:

Add
Subtract
Divide
Two's Complement
Left Arithmetic Shift

If an overflow occurs during the execution of one of these instructions, the overflow

latch will be set regardless of its previous condition. A special machine instruction

(TRO,R) is used to read the latch and reset it. Another instruction (GMR,R,O) may be

used to set the overflow latch unconditionally. (Displayed in register #37 bit 0.)

Unimplemented and Call Instructions

Optional instructions such as multiply, divide, floating point and custom macro op code

groups are trapped in MODCOMP III computers not containing these options. The trap rou­

tine can execute all of these instructions as subroutines. Therefore programs which

contain optional instructions can be executed in all MODCOMP III computers.

The trap level, which is present in all machines, is Level 4.

A special instruction Request Executive Service (REX) always generates the Unimplemented

Instruction trap. This instruction is used for communication with the resident executive.

Undefined Instructions

A No Operation is executed when some undefined operation codes are encountered in a

program. The undefined operation codes and corresponding No Operation execution times

are:

66 - 0.8 us

6E - 0.8

83 - 2.4

93 - 1.6 us

9B - 1.6

C3 - 2.4

D3 - 1.6 us

DB - 1.6

Machine states can be changed by execution of other undefined operation codes.

Floating Point Overflow

Floating point overflow is a separate trap from Overflow (above). Floating point

overflow/underflow will occur if the resultant exponent of a floating point operation

cannot be expressed within the range of the nine (9) bit binary exponent field of the

floating point format.

The floating point unit trap mechanism used to indicate an overflow or underflow con­

dition is the same function as the CPU trap implementation. The trap mechanism ter­

minates the noram1 FPU flow of events and does not allow any results to be transferred

2-10

back to the CPU register file. Therefore, the original register operands are main­

tained in the CPU register file and may be interrogated for further overflow-under­

flow clarification.

The trap level, when present in the system, is LevelS.

Doubleword Operand Register Storage

Doubleword operands must be stored in register pairs in which the more significant

word is stored in an even numbered register and the less significant word is stored

in the next higher {odd register}. The even register number must be used in the

instruction to designate the doubleword. The use of an odd register number to designate

doublewords will produce unspecified results except for multiplication operations.

Refer to the descriptions of multiply instructions for more information.

Power Fail Safe/Auto Start

When the a-c power is turned on or off in all MODCOMP III computers, an interrupt is

generated which overrides all other machine conditions, except the Halt condition.

This level is always enabled. When power fails, a minimum of 200 execution cycles are

available after the interrupt occurs. After this time interval, memory writing is

disabled to insure that the magnetic states of all cores remain unchanged when the

power is turned off. When power is applied to the system, memory writing is also

inhibited until proper initial conditions have been established for operation. At

this time an interrupt is generated which can be used for automatic program

initialization if the Halt/Run switch is in the RUN position or the CP is locked.

The PFS/AS interrupt level is Level O.

System Protect Feature

The optional System Protect Feature enables programs to be run in a manner which

minimizes the risk of altering other core resident programs or machine states. The

feature is provided to enable safe foreground/middleground/background operating

environments to be established by the higher level software systems. This feature

is manually enabled and disabled by operation of the console key switch.

The System Protect Feature consists of two types of protection:

Memory Write Protection is included to prevent programs from modifying other resident

programs. In MODCOMP III a boundary can be established by program control at any 2K

word boundary in memory. Programs stored above this boundary cannot modify or branch

into a location below the boundary. If an illegal attempt is made, a trap is generated

at interrupt Level 2.

The Request Executive Service instruction is used for communication between programs

in unprotected memory and the resident executive, which is located in protected memory.

2-11

Privileged Instruction :Execution capability is provided to prevent unprotected pro­

grams from executing any input/output, protect status, interrupt instructions or the

Halt instruction. A trap is generated at interrupt Level 2 if the execution of any
privileged instruction is attempted.

The standard memory parity error is connected to interrupt Levell, as part of the

system protect feature. This grouping of integrity features is .. the result ofmoni tor
requirements and the physical grouping of the interrupts.

REAL-TIME CLOCK

The real-time clock produces an interrupt signal at twice the frequency of the a..,.c power

line (120 HZ). It is part of the optional Executive Features. When this option is in­

cluded in the computer, the real-time clock interrupt is connected to Level 6.

2-],2

III. INSTRUCTION SET

OVERVIEW

All MODCOMP III instructions are described in this chapter. The instructions are

grouped in the functional classes:

• Load, Store and Transfer

• Arithmetic

• Floating Point

• Logical

• Shift
• Bit Manipulation
• Byte Manipulation

• Unconditional Branch

• Control
• Interrupt and Call

• Input/Output
The principal MODCOMP instruction formats are:

0 7 8 11 12 15

OP CODE I a I b I
Single Word Format

0 7 8 11 12 l'

OP CODE I a r b

IMMEDIATE OPERAND

Immediate Operand Format

0 7 8 11 12 13 15

OP CODE a I I I b I
MEMORY ADDRESS I
Two Word Format

where: a and b define operand registers, index registers, bit address within a word,

displacement address (up to 16 locations) with respect to a base address, shift count,

interrupt level or peripheral device address and I specifies indirect addressing.

3-1

The general format for the instruction description is:

MNEMONIC INSTRUCTION NAME Execution Time

o 3 4 7 8 11 12 15

OP CODE Ra Rb

Execution Description

Affected:

The Mnemonic is a three or four letter representation of the instruction name.

The Instruction Name briefly describes the function performed by the execution of

the instruction.

The Execution Time is maximum (not average or minimum) and includes access time.

The Operation Code value is shown as two hexadecimal digits. The two right digits

contain binary coded register addresses in many instructions and other binary

coded fields in other instructions, as described. In all instructions in which the

contents of register Rb, either with or without manipulation, are transferred to

register Ra, the two register addresses may be made the same to produce a single

register operation. For example, the contents of a register can be one's comple­

mented by making the Ra and Rb addresses equal in the instruction Transfer One's

Complement Register to Register.

Many instructions contain a second and some a third instruction word used for

l6-bit memory addresses or immediate operands. The address in the Program

Register (PR) referenced in the description o.f these instructions is that of

the first instruction word.

The Execution Description covers all program controlled functions performed in

the computer which comprise the instruction execution In addition, the contents
of the Program Register are advanced to the first word of the next instruction.

The Affected line lists all general registers and memory cells in which the con­

tents are modified as a result of the execution of the instruction. In addition,
if the execution of the instruction can cause overflow, the word "overflow" is
included in the listing.

3-2

The symbols and abbreviations used in the instruction descriptions are listed

alphabetically in the following table.

B

DF

EA

I

PR

Ra

Ra, RaV1

Ra
n

Rb

Rxx

Rx

S

us

()

+

x

A
V

®
(~

- Byte designator bit (0 = left byte, 1 = right byte)

- Displacement Field, which is used in the short displaced

addressing mode and has the value range 0 ~ DF < 15

- Effective memory address, which is the address that results

after all specified address manipulation operations have been

completed

- Indirect address bit

- Program Register, which is a 16-bit register containing the

current program location.

- General register Ra, which is the operand destination register

for many instructions

- Doub1eword consisting of the concatenated values stored in

register Ra (more significant half) and register RaV1 (less

significant half), where Ra is even numbered register*

- Bit n of register Ra

General register Rb, which is the operand source register for

many instructions

General register Rxx, (1 ~ xx ~ 7) is the index register for

many instructions. When Rxx = 0, no index operation occurs

- Effective address register for short indexed instructions

(0 ~ x < 15)

- Sign bit

- Microseconds

- Contents of

- Replace the contents of

- Addition operator

- Subtraction operator

- Multiplication operator

Division operator

- Logical AND operator

- Logical OR operator

- Logical Exclusive OR operator

- Logical NOT (one's complement) operator**

Table 3-1 Symbols and Abbreviations

*Ra,RaV1 normally indicate an even/odd register pair, 4 and 5 for example. RaV1 indi­

cates that a binary one is logically OR'ed with Ra (hex value) so it follows that

Ra,RaV1 cannot describe an odd/even register pair. If Ra = 5 then RaV1 also = 5.

(0101 V 0001 = 0101)

** the 'Contents of' symbol () is shown merely to show the physical position of the

over line and is not necessarily part of the NOT symbol.

3-3

LOAD, STORE AND TRANSFER INSTRUCTIONS

Load, Store, Transfer

Instruations

This instruction group provides the capability to transfer information from memory

to the general register file (load), from the general register file to memory (store)

and from register to register (transfer). Either a byte, word or file consisting of

from one to eight words can be transferred by single instruction execution. The word

transfer instruction set includes all seven memory addressing modes - direct, indexed,

indirect, indirect and indexed, immediate, short displaced and short indexed.

LDM LOAD REGISTER FROM MEMORY 2.4]JS

3 4 7 8 11 12 13 15
(EA) ... Ra

5 I Ra II I Rxx

I ADDRESS FIELD

E

o 15

The contents of the effective memory location replace the contents of register Ra.

Affected: Ra

LDI LOAD REGISTER FROM MEMORY IMMEDIATE 1.6]JS

0 3 4 7 8 11 12 15 ((PR) + 1) ... Ra

I
E D Ra VJ~

IMMEDIATE OPERAND
0 15

The contents of the second instruction word replace the contents of register Ra.

Affected: Ra

LDS LOAD REGISTER FROM MEMORY SHORT DISPLACED 1. 6]JS

o 3 4 7 8 11 12 15 ((Rl) + DF) ... Ra

F 5 Ra DF

The contents of the memory location specified by the displacement field DFadded to

the contents of register Rl replace the contents of register Ra.

Affected: Ra

3-4

LOX

o 3 4

F

LOAD REGISTER FROM MEMORY SHORT INDEXED

7 8 11 12 15

D Ra Rx

Load, Store, Transfer

Instructions

1. 6]lS

((Rx» ->- Ra

The contents of the memory location specified by the contents of register Rx replace

the contents of register Ra.

Affected: Ra

STM STORE REGISTER IN MEMORY 2.4]lS

o 3 4 7 8 11 12 13 15 (Ra) ->- EA

E 6 Ra I I I Rxx

ADDRESS FIELD

o 15

The contents of register Ra- replace the contents of the effective memory location.

Affected: (EA)

STI STORE REGISTER IN MEMORY IMMEDIATE 1. 6]lS

o 3 4 77 8 11 12 15 (Ra) ->- (PRJ + 1

E E Ra

IMMEDIATE OPERAND
o 15

The contents of register Ra replace the contents of the second instruction word.

Affected: «PR) + 1)

STS STORE REGISTER IN MEMORY SHORT DISPLACED 1. 6]lS

o 3 4 7 8 11 12 15 (Ra) ->- (Rl) + DF

F 6 Ra DF

The contents of register Ra replace the contents of the memory location specified by

the displacement field DF added to the contents of register RI.

Affected: (EA)

3-5

STX
o 3 4

F

STORE REGISTER IN MEMORY SHORT INDEXED

7 8 11 12 15

E I Ra Rx

Load, Store, Transfer

Instruations

1. 6)JS

(Ra) -+- Rx

The contents of register Ra replace the contents of the memory location specified by

the contents of register Rx.

Affected: (EA)

LBX LOAD BYTE FROM MEMORY 2.0)JS

o 3 4 7 8 11 12 15 (EBA) -+- Ra 8_l5

A E Ra Rx o

o 15 REGISTER Rx

BASE WORD ADDRESS

o 1 14 15 REGISTER Rx V 1

SIGNED WORD DISPLACEMENT

The contents of the effective byte location replace the right byte in register Ra.

Zeroes replace the left byte in register Ra. Register Rx specifies an even/odd pair

of general registers which contain the base word address and the signed byte dis­

placement. The byte designator B specifies the byte within the memory word (0 = left,

1 = right) .

Affected: Ra

Effective Byte Address Generation

Byte addressing is a special form of short indexed addressing. The effective byte

address is generated by the addition of the base word address and the signed byte

displacement which consists of the signed word displacement and a byte designator B.

During the instruction execution the signed word displacement i's arithmetic right"

shifted by one bit position and is then added to the base word address to form an

effective word address. The equation can be interpreted as: EBA = Rx + Rx V 1

The byte designator Bit 15 of register Rx V 1 is interpreted as:

B 0 Specifies the byte contained" in bits 0-7

B 1 Specifies the byte contained in bits 8-15

3-6

2

Load, Store, Transfer

Instruations

SBX STORE BYTE IN MEMORY 2.6 llS

0

I A

3 4 7 B 11 12 15 (RaB- 15) -+ EBA

F I Ra I Rx I

0 15 REGISTER Rx

I BASE WORD ADDRESS

0 1 14 15 REGISTER Rx V 1

Is I SIGNED WORD DISPLACEMENT

The right

The other

byte in register Ra replaces the contents of the effective byte location.

byte in the memory word is not affected. The byte designator B specifies

the byte within the memory (0 = left, 1 = right). See Effective Byte Address Genera­

tion under the description of the Load Byte From Memory instruction.

Affected: (EBA)

LFM LOAD FILE FROM MEMORY 1 REG 3.4
>1 REG 2.2 +.BR

0 3 4 7 B 11 12 13 15 (EA) -+ Ra

I I I I
I

(EA+1) -+ Ra+1
A 4 Ra Rxx (EA+N) -+ R7 (If a < 7)

(EA+N) -+ R15 (If 7 <" a <
ADDRESS FIELD

The contents of from one to eight consecutive memory locations starting with the

effective memory location replace the contents of register Ra through R7, if a < 7,

or register Ra through R15, if 7 < a < 15.

Affected: Ra through R7/15

LFS LOAD FILE FROM MEMORY SHORT DISPLACED

o 3 4 7 B 11 12 15

B 4 Ra DF

((R1)
((R1)
((R1)
((R1)

1
1

REG 2.6
REG 1.4 + .BR

+ DF) -+ Ra
+ DF + 1) -+ Ra+1
+ DF + N) -+ R7
+ DF + N) -+ R15

The contents of from one to eight consecutive memory locations starting with the

location specified by the displacement field DF added to the contents of register

(If
(If

R1 replace the contents of registers Ra through R7, if a ~ 7, or register Ra through

Rl5, if 7 < a < 15.

Affected: Ra through R7/15

3-7

15)

a ~ 7)
7 <a < 15) -

LFX LOAD FILE FROM MEMORY SHORT INDEXED

o 3 4 7 8 11 12 15

B c Ra Rx

Load, Store, Transfer

Instruction

1 REG 2.6)lS
>1 REG 1.4 + .8R

«Rx)) Ra
«Rx) +1) Ra+l
«Rx)+N) R7 (If a 9)
((Rx)+N) R15 (If 7 < a ::,15)

The contents of from one to eight consecutive memory locations starting with the

location specified by the contents of Rx replace the contents of registers Ra through

R7, if a ~7, or register Ra through R15, if 7 < a ~15.

Affected: Ra through R7/l5

SFM STORE FILE IN MEMORY 1 REG 3.8)ls
>1 REG 2.6 + .8R

0 3 4 7 8 11 12 13 15 (Ra) EA

I
I I I

I
(Ra+l) EA+l

A 5 Ra I Rxx (R7) EA+N (If a < 7)

(R15) EA+N (If 7 < a ~15)
ADDRESS FIELD

0 15

The contents of registers Ra through R7, if a ::. 7, or registers Ra through R15, if

7 < a ::'15, replace the contents of from one to eight consecutive memory locations

starting with the effective memory location.

Affected: (EA). .. (EA+N)

SFS STORE FILE IN MEMORY SHORT DISPLACED 1 REG 3.0)lS
>1 REG 1.8 + .8R

0 3 4 7 8 11 12 15 (Ra) (Rl)+DF

I I I I I
(Ra+l) (Rl)+DF+l

B 5 Ra DF (R7) (Rl)+DF+N (If a <7)
(R15) (Rl) +DF+N (If 7 <-a::'l 5)

The contents of registers Ra through R7, if a ::. 7, or registers Ra through R15, if

7 < a ::,15, replace the contents of from one to eight consecutive memory locations

starting with the location specified by the displacement field DF added to the contents

of register Rl.

Affected: (EA). •. (EA+N)

SFX STORE FILE IN MEMORY SHORT INDEXED 1 REG = 3.0)ls
1 REG = 1. 8 + .8R

o 3 4 7 8 11 12 15 (Ra) (Rx)
(Ra+l) (Rx)+l
(R7) (Rx)+N (If a < 7)

B D Ra I Rx

(R15) (Rx)+N (If 7 <a ::,15)

The contents of registers Ra through R7, if a ~ 7, or registers Ra through R15, if

7 < a ::'15, replace the contents of from one to eight consecutive memory locations

starting with the location specified by the contents of Rx.

Affected: (EA) ••. (EA+N)

3-8

TRR TRANSFER REGISTER TO REGISTER

o 3 4 7 8 11 12

6 D Ra I Rb

15

Load, Store, Transfer

Instruation

0.8]lS

(Rb) Ra

The contents of register Rb replace the contents of register Ra.

Affected: Ra

TRRB TRANSFER REGISTER TO REGISTER AND BRANCH IF NONZERO 1. 6]lS

o 3 4 7 8 11 12 15 (Rb) Ra
If Result iO, EA PR
If Result =0, (PR)+2 PR 7 I D Ra I Rb

ADDRESS FIELD

The contents of register Rb replace the contents of register Ra.

If the results are unequal to zero, a branch is executed to the effective word loca­

tion. If the results equal zero, the next instruction in sequence is executed.

Affected: Ra

3-9

Arithmetic Instructions

ARITHMETIC INSTRUCTIONS

This instruction group includes the add, double-precision add, subtract, multiply,

divide, compare, and two's complement instructions.

All instructions assume fixed-point operands, which may be scaled at any bit position.

The double-precision add "and divide instructions assume doubleword operands. All

other instructions assume word operands.

All instructions, except the multiply and compare, produce an overflow if the condi­

tions described with each instruction are met.

The multiply/divide instructions are a compatible set. Not only is the relationship

true: (A x B) + A = B, but also the positioning of the operands and results are con­

sistent. In multiply operations, if Ra specifies an even numbered general register,

the doubleword product is then stored in the even-odd register pair consisting of Ra

and RaVl. If Ra specifies an odd numbered register, the least significant 16 bits

of the product replace the multiplier in Ra. In divide, the doubleword dividend must

be stored in an even-odd register pair Ra and RaVl. The quotient is then stored in

RaVl and the remainder in Ra. The multiplier and quotient occupy the same register

positions, which simplifies computations.

The maximum values of the products for word operand pairs having all combinations of

signs are:

°Eerand Signs Maximum °Eerands Maximum Product

(+ x +) (215_1) x (2 15_1) 230 - 216 + 20

(+ x -) (215_1) x 215 230 _ 215

(- x -) 215 x 215 230

-where minus full scale 1000 0000 0000 0000 = 215
2

None of these numbers exceed the capacity of a doubleword and therefore overflow can­

not occur.

In the divide operation, overflow will occur if the quotient exceeds 16 bits in length.

Two checks are made by the overflow checking logic to determine if this error condition

exists:

(1) The sign and most significant bit of the dividend are compared. They

must be equal; otherwise overflow will occur.

(2) The dividend is shifted left one bit position and then the divisor is

subtracted from the most significant half. Overflow will occur if the

absolute magnitude of the most significant half of the shifted dividend

is not less than the absolute magnitude of the divisor.

As a result of the overflow logic the absolute magnitude" of the largest permissable
dividend is 230 _ 215 - 20.

Divide scaling is described in Appendix D.

3-10

Arithmetia Instruations

ADM ADD MEMORY TO REGISTER 2.4].lS

o 3 4 7 8 11 12 13 15 (EA) + (Ra) -+ Ra

E o Ra Rxx

ADDRESS FIELD

o 15

The contents of the effective memory location are algebraically added to the contents

of register Ra. The result is stored in register Ra. An overflow occurs if both

operands have like signs but the result has the opposite sign.

Affected: Ra, Overflow

ADI ADD MEMORY TO REGISTER IMMEDIATE 1.6].lS

0 3 4 7 8 11 12 15 ((PR)+l) + (Ra) -+ Ra

E 8 Ra 9 IMMEDIATE OPERAND
0 1 15

The contents of the second instruction word are algebraically added to the contents of

register Ra. The result is stored in register Ra. An overflow occurs if both operands

have like signs but the result has the opposite sign.

Affected: Ra, Overflow

ADS ADD MEMORY TO REGISTER SHORT DISPLACED 1.6].lS

o 3 4 7 8 11 12 15 ((Rl)+DF) + (Raj -+ Ra

F o Ra DF

The contents of the memory location specified by the displacement field DF added to

the contents of register Rl are algebraically added to the contents of register Ra.

The result is stored in register Ra. An overflow occurs if both operands have like

signs but the result has the opposite sign.

Affected: Ra, Overflow

3-11

Arithmetic Instructions

ADX ADD MEMORY TO REGISTER SHORT INDEXED 1.6 us

o 3 4 7 8 11 12 15
«Rx» + (Ra) - Ra

F 8 Ra I Rx

The contents of the memory location specified by the contents of register Rx are

algebraically added to the contents of register Ra. The result is stored in register

Ra. An overflow occurs if both operands have like signs but the result has the

opposite sign.

Affected: Ra, Overflow

ADMM ADD REGISTER TO MEMORY 3.4 us

o 3 4 7 8 11 12 13 15

(Ra) + (EA) - EA
C o Ra I Rxx

ADDRESS FIELD

o 15

The contents of register Ra are algebraically added to the contents of the effective

memory location. The result is stored in the effective memory location. An over­

flow occurs if both operands have like signs but the result has the opposite sign.

Affected: Overflow, (EA)

ADMB ADD REGISTER TO MEMORY AND BRANCH IF NONZERO
3.4 llS-NO BRANCH
4.2 us- BRANCH

o 3 4 7 8 11 12 13

C I 4 I Ra I I I
OPERAND ADDRESS FIELD

BRANCH ADDRESS FIELD

o

15

Rxx

15

(Ra) + (EA) -- EA
If Result ~O, «PR)+2)- PR
If Result =0, (PR)+3 -- PR

The contents of register Ra are algebraically added to the contents of the effective

memory location. The result is stored in the effective memory location. If the result

does not equal zero, a branch is executed to the location specified by the third

instruction word. Only the direct address mode without indexing is performed for the

branch address. If the result equals zero, the next instruction in sequence is ex­

ecuted. An overflow occurs if both operands have like signs but the result has the

opposite sign.

Affected: Overflow, (EA)

3-12

Arithmetic Instructions

ADSM ADD REGISTER TO MEMORY SHORT DISPLACED 2.6 us

o 3 4 7 8 11 12 15

D o Ra I DF
(Ra) + ({Rl) + DF) - (Rl) + DF

The contents of register Ra are algebraically added to the contents of the effective
memory location specified by the displacement field DF added to the contents of

register Rl. The result is stored in the effective memory location. An overflow

occurs if both operands have like signs but the result has the opposite sign.

Affected:

ADSB
o

D

o

Overflow, (EA)

ADD REGISTER TO MEMORY SHORT DISPLACED AND
BRANCH IF NONZERO

2.6 us-NO BRANCH
3.4 us-BRANCH

3 4 7 8 11 12 15

4 Ra DF

BRANCH ADDRESS FIELD

15

(Ra) + ({Rl) + DF) - (Rl) + DF
If Result ~O,{(PR)+l)- PR
If Result =0, (PR)+2 - PR

The contents of register Ra are algebraically added to the contents of the effective

memory location specified by the displacement field DF added to the contents of

register Rl. The result is stored in the effective memory location. If the result

does not equal zero, a branch is executed to the memory location specified by the

contents of the second instruction word. If the result equals zero, the next

instruction in sequence is executed. An overflow occurs if both operands have like

signs but the result has the opposite sign.

Affected: Overflow, (EA)

ADXM ADD REGISTER TO MEMORY SHORT INDEXED 2.6 us

o 3 4 7 8 11 12 15
D 8 Ra I Rx (Ra) + «Rx» - (Rx)

The contents of register Ra are algebraically added to the contents of the effective

memory location specified by the contents of register Rx. The result is stored in

the effective memory location. An overflow occurs if both operands have like signs

but the result has the opposite sign.

Affected: Overflow, (EA)

3-13

o

o

o

o

o

Arithmetic Instruations

ADXB ADD REGISTER TO MEMORY SHORT INDEXED
AND BRANCH IF NONZERO

2.6 us-NO BRANCH
3.4 us-BRANCH

3 4 7 8

D C Ra

BRANCH ADDRESS FIELD

11 12 15

Rx

15

(Ra) + «Rx» -- (Rx)
If Result ~O,«PR)+l)-- PR
If Result =0, (PR)+2 -- PR

The contents of register Ra are algebraically added to the contents of the effective

memory location specified by the contents of register Rx. The result is stored in the

effective memory location. If the result does not equal zero, a branch is executed

to the memory location specified by the contents of the second instruction word. If

the result equals zero, the next instruction in sequence is executed. An overflow

occurs if both operands have like signs but the result has the opposite sign.

Affected: Overflow, (EA)

ADR ADD REGISTER TO REGISTER 0.8 us

3 4 7 8 11 12
6 8 Ra I ~

15

1
(~) + (Ra) -- Ra

The contents of register ~ are algebraically added to the contents of register Ra.

The result is stored in register Ra. An overflow occurs if both operands have like

signs but the result has the opposite sign.

Affected: Ra, Overflow

ADRB ADD REGISTER TO REGISTER AND BRANCH IF NONZERO 1.6 us

3 4 7 8 11 12 15
(Rb) + (Ra) -- Ra

7 8 Ra ~ If Result ~O, EA -- PR
If Result =0, (PR)+2 -- PR

ADDRESS FIELD

15

The contents of register Rb are algebraically added to the contents of register Ra.

The result is stored in register Ra. If the result does not equal zero, a branch is

executed to the effective word location. If the result equals zero, the next instruc­

tion in sequence is executed. An overflow occurs if both operands have like signs

but the result has the opposite sign.

Affected: Ra, Overflow

3-14

DAR
o 3 4

2

Arithmetic Instructions

DOUBLE PRECISION ADD REGISTER TO REGISTER 1.8 us

7 8

2 Ra

11 12

I Rb

15 (Rb, RbVl) + (Ra, RaVl -

Ra, RaVl

The contents of registers Rb and RbVl (with register Rb containing the more significant

half and register RbVl containing the less significant half of a double precision data

word) are algebraically added to the contents of registers Ra and RaVl (with register

Ra containing the more significant half and register RaVl containing the less significant

half of a double precision data word). The sum replaces the contents of registers Ra

and RaVl. Ra and Rb must specify even-numbered general registers.

Affected: Ra, RaVl, Overflow

SUM SUBTRACT MEMORY FROM REGISTER 2.4 us

o 3 4 7 8 11 12 13 15

E 1 Ra I Rxx
(Ra) - (EA) -. Ra

ADDRESS FIELD

o 15

The contents of the effective memory location are algebraically subtracted from the
(

contents of register Ra. The result is stored in register Ra. An overflow .occurs

if the sign of the result is the same as the sign of the subtrahend but is different

from the sign of the minuend.

Affected: Ra, Overflow

SUI SUBTRACT MEMORY FROM REGISTER IMMEDIATE 1.6 us

o 3 4 7 8 11 12 15

E 9 Ra (Ra) - «PR)+l) - Ra

IMMEDIATE OPERAND

o 15

The contents of the second instruction word are algebraically subtracted from the con­

tents of register Ra. The result is stored in register Ra. An overflow occurs

if the sign of the result is the same as the sign of the subtrahend but is different

from the sign of the minuend.

Affected: Ra, Overflow

3-15

Arithmetia Instruations

sus SUBTRACT MEMORY FROM REGISTER SHORT DISPLACED 1. 6 lls

a 11 .2 (Ra) - «Rl) + DF) + Ra

F 1 Ra DF

The contents of the memory location specified by the displacement field added to the

co~t~nts of register Rl are alg~braicallY sUbtacted from the contents of register

Ra. The result is stored in register Ra. An overflow occurs if the sign of the re­

sult is the same as the sign of the subtrahend but is different from the sign of the

minuend.
Affected: Ra, Overflow

SUX SUBTRACT MEMORY FROM REGISTER SHORT INDEXED 1. 6 llS

a 3 4 7 8 11 12 15 (Ra) - «Rx» + Ra

F 9 Ra Rx I

The contents of the memory location specified by the contents of register Rx are

algebraically subtracted from the contents of register Ra. The result is stored in

register .Ra. An. overflow occurs if the sign of the result is the same as the sign

of the subtrahend but is different from the sign of the minuend.

Affected: Ra, Overflow

SUR SUBTRACT REGISTER FROM REGISTER 0.8 lls

a 3 4 7 8 11 12 15 (Ra) - (Rb) + Ra

~I __ 6 __ ~I ___ 9 __ ~I __ R~a~~I ___ Rb~~1
The contents of register Rb are algebraically subtracted from the contents of register

Ra. The result is stored in register Ra. An overflow occurs if the sign of the re­

sult is the same as the sign of the subtrahend but is different from the sign of the

minuend.
AffectE!!d: Ra, Overflow

SURB SUBTRACT REGISTER FROM REGISTER AND BRANCH IF NONZERO 1.6 lls

a 3 4 7 8 11 12 15
(Ra) - (Rb) + Ra

7 9 Ra Rb If Result F: 0, EA + PR
If Result = 0, (PR) +2 + PR

ADDRESS FIELD

The contents of register Rb are algebraically subtracted from the contents of register

Ra. The result is stored in register Ra. If the result does not equal zero, a branch

is executed to the effective word location. If the result equals zero, the next

3-16

Arithmetic Instructions

lnstruction in sequence is executed. An overflow occurs if the sign of the result

is the same as the sign of the subtrahend but is different from the sign of the

minuend.
Affected: Ra, Overflow

MPM MULTIPLY MEMORY BY REGISTER 7.2 us

o 3 4 7 8 11 12 13 15
(EA) x (RaVl)_Ra, RaVl

A o Ra I Rxx

ADDRESS FIELD

o 15

The contents of the effective memory location (multiplicand) are multiplied by the

contents of register RaVl (multiplier). Ra normally specifies an even register so that

the more significant half of the product replaces the contents of register Ra and the

less significant half of the product replaces the contents of register RaVl. The sign

of the product replaces the sign bit of register Ra. If Ra specifies an odd numbered

register, the least significant 16 bits of the product replace the contents of register

Ra.

Affected: Ra, RaVl

MPS MULTIPLY MEMORY BY REGISTER SHORT DISPLACED 6.4 us

o 3 4 7 8 11 12 15
((Rl)+DF) x (RaVl)~Ra, RaVl

B o Ra DF

The contents of the memory location specified by the displacement field DF added to

the contents of register Rl (multiplicand) are multiplied by the contents of register

RaVl (multiplier). Ra normally specifies an even register so that the more significant

half of the product replaces the contents of register Ra and the less significant half

of the product replaces the contents of register RaVl. The sign of the product replaces

the sign bit of register Ra. If Ra specifies an odd numbered register, the least

significant 16 bits of the product replace the contents of register Ra.

Affected: Ra, RaVl

MPX MULTIPLY MEMORY BY REGISTER SHORT INDEXED 6.4 us

o 3 4 7 8 11 12 15 ((Rx)) x (RaVl)_ Ra, RaVl
B 8 Ra Rx

The contents of the memory location specified by the contents of Rx (multiplicand) are

multiplied by the contents of register RaVl(multiplier). Ra normally specifies an even

numbered register so that the product replaces the contents of register Ra and the less

significant half of the product replaces the contents of cegister RaVl. The sign of the

3-17

Arithmetic Instructions

product replaces the sign bit of register Ra. If Ra specifies an odd numbered register,

the least significant 16 bits of the product replace the contents of register Ra.

Affected: Ra, RaVl

MPR MULTIPLY REGISTER BY REGISTER 6.0 us

o 3 4 7 8 11 12 15 (Rb) x (RaV1) -Ra, RaV1

2 o Ra I Rb

The contents of register Rb (multiplicand) are multiplied by the contents of register

RaV1 (multiplier). Ra normally specifies an even numbered register so that the more

significant half of the product replaces the contents of register Ra and the less

significant half of the product replaces the contents of register RaV1. The sign of

the product replaces the sign bit of register Ra. If Ra specifies an odd numbered

register, the least significant 16 bits of the product replace the contents of Ra.

Affected: Ra, RaVl

DVM DIVIDE REGISTER BY MEMORY 12.2 us

0 3 4 7 8 11 12 13 15

I
A I 1 I Ra II Rxx

I ADDRESS FIELD

(Ra, RaVl) 7(EA)~Ra, RaVl

0 15

The contents of the effective memory location (divisor) are divided into the contents

of registers Ra and RaVl (dividend). Theqliotient replaces the contents of register

RaVl and the remainder replaces the contents of register Ra. The sign of the quotient

replaces the sign bit of register RaV1. Ra must specify an even numbered register.

Overflow will occur if the quotient exceeds 16 bits.

Affected: Ra, RaVl, Overflow

DVS DIVIDE REGISTER BY MEMORY SHORT DISPLACED 11. 4 us

o 3 4 7 8 11 12

I DF

15 (Ra, RaV1)7«Rl)+DF)~Ra, RaVl
B 1 Ra

The contents of the memory location specified by the displacement field DF added to

the contents of register R1 (divisor) are divided into the contents of registers Ra

and RaV1(dividend). The quotient replaces the contents of register RaV1 and the re-

.. mainder replaces the contents of register Ra. The sign of the quotient replaces the

3-18

Arithmetic Instructions

sign bit of register RaV1.. Ra must specify an even numbered register. Overflow will

occur if the quotient exceeds 16 bits.

Affected: Ra, RaV1 Overflow

DVX DIVIDE REGISTER BY MEMORY SaORT INDEXED 11.4 us

0 3 4 7 8 11 12 15 (Ra, RaV1) T((Rx}) - Ra, RaV1

I B I 9 I Ra I Rx I:

The contents of the memory location specified by the contents of register Rx (divisor)

are divided into the contents of registers Ra and RaV1 (dividend). The quotient re­

places the contents of register RaV1 and the remainder replaces the contents of register

Ra. The sign of the quotient replaces the sign bit of register RaV1. Ra must specify

an even numbered register. Overflow will occur if the quotient exceeds 16 bits.

Affected: Ra, RaV1 Overflow

DVR DIVIDE REGISTER BY REGISTER 11..0' us

o 3 4 7 8 11 12 15 (Ra, RaVU';' (Rb) - Ra, RaVl

2 1 Ra Rb

The contents of register Rb (divisor) are divided into the contents of registers Ra

and RaVl (dividend). The quotient replaces the contents of register RaV1 and the re­

mainder replaces the contents of register Ra. The sign of the quotient replaces the

sign bit of register RaVl. Ra must specify an even numbered register. Overflow will

occur if the quotient exceeds 16 bits.

Affected: Ra, RaVl, Overflow

CRMB COMPARE MEMORY AND REGISTER

o 3 4 7 8 11 12 13

C I 7 I Ra I I I
OPERAND ADDRESS FIELD

BRANCH ADDRESS FIELD (Ra) = (EA)

BRANCH ADDRESS FIELD (Ra) < (EA)

15

Rxx

4 • 0 us NO BRANCH
4.0 us BRANCH 0
4.2 us BRANCH -

If (Ra) - (EA) =0, «PR) +2) - PR
If (Ra) - (EA) < 0, «PR) +3} - PR
If (Ra) - (EA) > 0, (PR) +4 _ PR

The contents of the effective memory location are algebraically subtracted from the

contents of register Ra. If the result equals zero, a branch is executed to the

location specified by the third instruction word. If the result is negative, a

branch is executed to the location specified by the fourth instruction word. Only

the direct addressing mode without indexing is permitted for the branch operation.

If the result is greater than zero, the next instruction in sequence is executed.

Affected: None

3-19

CRSB

o
D

o

Arithmetia Instruations

COMPARE MEMORY AND REGISTER SHORT DISPLACED
3 . 2 us NO BRANCH
3.2 us BRANCH 0
3 • 4 us BRANCH -

3 4 7 8

I 7 I Ra

BRANCH ADDRESS FIELD

BRANCH ADDRESS FIELD

11 12

I
(EA) ='(Ra)

(EA»(Ra)

15

DF

15

If (Ra)-«Rl)+DF)=O, «PR)+l)-PR
If (Ra)-«Rl)+DF)<O, «PR)+2)-PR
If (Ra)-«Rl)+DF»O, (PR)+3-PR

The contents of the memory location specified by the displacement field added to the

contents of register Rl are algebraically subtracted from the contents of register

Ra. If the result equals zero, a branch is executed to the location specified by the

second instruction word. If the result is negative, a branch is executed to the

location specified by the third instruction word. Only the direct addressing mode

without indexing is permitted for the branch operation. If the result is greater

than zero, the next instruction in sequence is executed.

Affected: None

CRXB

0 3 4
D I

BRANCH

BRANCH
o 1

COMPARE MEMORY AND REGISTER SHORT INDEXED
3.2 us NO BRANCH
3.2 us BRANCH 0
3.4 us BRANCH -

If (Ra) - «Rx» =0, «PR) +1) - PR
If (Ra) - «Rx» <0, «PR) +2) - PR
If (Ra) - ((Rx) »0, (PR) +3- PR

7 8 11 12 15

F I Ra I Rx

ADDRESS FIELD (EA)= (Ra)

ADDRESS FIELD (EA) > (Ra)

15

The contents of the memory location specified by the contents of register Rx are

algebraically subtracted from the contents of register Ra. If the result equals

zero, a branch is executed to the location specified by the second instruction word.

If the result is negative, a branch is executed to the location specified by the third

instruction word. Only the direct addressing mode without indexing is permitted for

the branch operation. If the result is greater than zero, the next instruction

in sequence is executed.

Affected: None

TRO TRANSFER AND RESET OVERFLOW STATUS 0.8 us

o 3 4 7 8 11 12 15

o E Ra
(OVERFLOW)_Rao

0- OVERFLOW, Ra l _15

The content of the overflow latch is transferred into the most significant bit of

Ra. Bits 1-15 of registerRa are set to zero and the overflow latch is reset by the
execution of this instruction.

Affected: Ra, Overflow

3-20

Arithmetic Instructions

ITR TRANSFER TWO'S COMPLEMENT REGISTER TO REGISTER 0.8 us

~0 ________ ~3~4~ ______ ~7-r~8~ ____ ~1~1~~1~2~ ____ ~1~5 (Rb)+l -. Ra

I 6 I F Ra Rb I

The contents of register.Ra are replaced by the two's complement of register Rb. An

overflow occurs if the operand is minus full scale.

Affected: Ra, Overflow

ITRB TRANSFER TWO'S COMPLEMENT REGISTER TO REGISTER AND BRANCH
IF NONZERO

1.6 us

0 3 4 7 8 11 12 15

I
I I

I
(Rb)+l - Ra

7 F Ra Rb If Result ~O, EA -. PR
If Result =0, (PR)+2 - PR

ADDRESS FIELD

0 15

The contents of register Ra are replaced by the two's complement of the contents of

register Rb. If the result does not equal zero, a branch is executed to the effective

word location. If the result equals zero, the next instruction in sequence is executed.

An overflow occurs if the operand is minus full scale.

Affected: Ra, Overflow

3-21

Logical Instructions

LOGICAL INSTRUCTIONS

This group consists of the Extract (All. B), OR (AV B), Exclusive OR (AG)B), One's

Complement, and Test instructions. All of these instructions operate on 16-bit

operands. They produce a logical product (Extract), sum (OR), modulo-two sum (Ex­

clusive OR), or complement and all but the Test instructions store the result in a

general register or memory location. The Test instructions enable a comparison to be

made between two operands without modifying either.

ETM EXTRACT MEMORY FROM REGISTER 2.4 us

o 3 4 7 8 11 12 13 15

E 2 Ra I Rxx (EA) 1\ (Ra) - Ra

ADDRESS FIELD

The one's complement of the contents of the effective memory location are logically

multiplied (AND function) by the contents of register Ra. The result is stored in

register Ra.

Affected: Ra

ETI EXTRACT MEMORY FROM REGISTER IMMEDIATE 1.6 us

r
3 4 7 8 11 12 15

E A Ra
«PR) +1) 1\ (Ra) - Ra

IMMEDIATE OPERAND

o 15

The one's complement of the contents of the second instruction word are logically

mUltiplied (AND function) by the contents of register Ra. The result is stored in

register Ra.

Affected: Ra

ETS EXTRACT MEMORY FROM REGISTER SHORT DISPLACED 1.6 us

~O ________ ~3~~4~ ______ ~7-r~8 ______ ~1~1~1~2~ ______ ~1,5 «Rl)+DF) 1\ (Ra) - Ra

I F I 2 I Ra I DF I

The one's complement of the contents of the memory location specified by the dis­

placement field DF added to the contents of register Rl are logically multiplied

(AND function) by the contents of register Ra. The result is stored in register Ra.

Affected: Ra

3-22

Logiaal Instruations

ETX EXTRACT MEMORY FROM REGISTER SHORT INDEXED 1.6 us

~O~ ______ ~3Lr~4 ______ ~7-r8~ ____ ~1~1~1~2~ ____ ~1,5 «Rx» A (Ra) ~ Ra

I F I A I Ra I Rx I

The one's complement of the contents of the memory location specified by the contents

of register Rx are logically multiplied (AND function) by the contents of register Ra.

The result is stored in register Ra.

Affected: Ra

ETMM EXTRACT REGISTER FROM MEMORY 3.4 us

o 3 4 7 8 11 12 13 15

C 1 Ra I Rxx
(Ra) A (EA) - EA

ADDRESS FIELD

The one's complement of the contents of register Ra are logically multiplied- (AND

function) by the contents of the effective memory location. The result is stored in

the effective memory locatfon.

Affected: (EA)

ETMB
o 3 4

C I

EXTRACT REGISTER FROM MEMORY AND BRANCH IF NONZERO
3.8 us NO BRANCH
4 .6 us BRANCH

7 8 11 12 13

5 I Ra I I I
OPERAND ADDRESS FIELD

BRANCH ADDRESS FIELD

15

Rxx
(Ra) /I. (EA) - EA
If Result ~O, ((PR) +2) - PR
If Result =0, (PR)+3 -PR

The one's complement of the contents of register Ra are logically multiplied (AND

function) by the contents of the effective memory location. The result is stored in

the effective memory location. If the result does not equal zero, a branch is ex­

ecuted to the location specified by the third instruction word. Only the direct

address mode without indexing is performed. If the result equals zero, the next

instruction in sequence is executed.

Affected: (EA)

3-23

Logical Instructions

ETSM EXTRACT REGISTER FROM MEMORY SHORT DISPLACED 2.6 us

o 3 4 7 8 11 12 15

o 1 Ra I OF
(Ra) A ((Rl) +DF) _ (Rl) +DF

The one's complement of the contents of register Ra are logically multiplied (AND

function) by the contents of the effective memory location specified by the dis-

. placement field OF added to the contents of register Rl. The result is stored in

the effective memory location.

Affected: (EA)

ETSB

o 3 4

D I
o

3.0 us NO BRANCH
EXTRACT REGISTER FROM MEMORY SHORT DISPLACED AND BRANCH 3.8 us BRANCH

IF NONZERO

7 8 11 12 15

5 Ra I DF

I
(Ra) A ((Rl)+DF) _ (Rl)+DF
If Result r60 ((PR) +1) - PR

BRANCH ADDRESS FIELD
If Result =0 (PR)+2- PR

15

The one's complement of the contents of register Ra are logically multiplied (AND

function) by the contents of the effective memory location specified by the displace­

ment fiBld DF added to the contents of register Rl. The result is stored in the

effective memory location. If the result does not equal zero, a branch is executed

to the location specified by the second instruction word. Only the direct address

mode without indexing is performed. If the result equals zero, the next instruction

in sequence is executed.

Affected: (EA)

ETXM EXTRACT REGISTER FROM MEMORY SHORT INDEXED 2.6 us

o 3 4 7 8 11 12 15 (Ra) A ((Rx» - (Rx)

D 9 Ra Rx

The one's complement of the contents of register Ra are logically multiplied (AND

function) by the contents of the effective memory location specified by the contents

of register Rx. The result is stored in the effective memory location.

Affected: (EA)

3-24

ETXB

0 3 4

I
D I

0

Logicat Instructions

EXTRACT REGISTER FROM MEMORY SHORT INDEXED AND BRANCH
IF NONZERO

3 • 0 us NO BRANCH
3.8 us BRANCH

7 8 11 12 15 (Ra) A «Rx» - (Rx)

I [
I

If Result ;olO «PR) +1)- PR

D Ra Rx If Result =0 (PR)+2 - PR

BRANCH ADDRESS FIELD

15

The one's complement of the contents of register Ra are logically multiplied (AND

function) by the contents of the effective memory location specified by the contents

of register Rx. The result is stored in the effective memory location. If the re­

sult does not equal zero, a branch is executed to the locati,on specified by the
second instruction word. Only the direct address mode without indexing is performed.

If the result equals zero, the next instruction in sequence is executed.

Affected: (EA)

ETR EXTRACT REGISTER FROM REGISTER 0.8 us

o 3 4 7 8 11 12 15 (Rb) A (Ra) - Ra

6 I A Ra I Rb

The one's complement of the contents of register Rb are logically multiplied (AND

function) by the contents of register Ra. The result is stored in register Ra.

Affected: Ra

ETRB EXTRACT REGISTER FROM REGISTER AND BRANCH IF NONZERO 1.6 us

o 3 4 7 8 11 12 15 (Rb) 1\ (Ra) - Ra
7 A Ra If Result ;olO, EA - PR

If Result =0, (PR) +2 - PR Rb

ADDRESS FIELD
o 15

The one's complement of the contents of register Rb are logi.cally multiplied (AND

function) by the contents of register Ra. The result is stored in register Ra.

If the result does not equal zero, a branch is executed to the effective word location.
If the result equals zero, the next instruction in sequence is executed.

Affected: Ra

3-25

LogiaaZ Instpuations

ORM OR MEMORY AND REGISTER 2.4 us

o 3 4 7 8 11 12 13 15

E 3 Ra I Rxx (EA) V (Ra) - Ra

ADDRESS FIELD .

The contents of the effective memory location are logically added (OR function) to the

contents of register Ra. The result is stored in register Ra.

Affected: Ra

ORI OR MEMORY AND REGISTER IMMEDIATE 1.6 us

3 4
«PR) +1) V (Ra) - Ra

E B I Ra

IMMEDIATE
o 1 15

The contents of the second instruction word are logically added (OR function) to the

contents of register Ra. The result is stored in register Ra.

Affected: Ra

ORS OR MEMORY AND REGISTER SHORT DISPLACED 1.6 us

o 3 4 7 8 11 12 15 ((Rl) +DF) V (Ra) - Ra

F 3 Ra DF

The contents of the memory location specified by the displacement field DF added to

the contents of register Rl are logically added (OR function) to the contents of
register Ra. The result is stored in register Ra.
Affected: Ra

ORX OR MEMORY AND REGISTER SHORT INDEXED 1.6 us

o 3 4 7 B 11 12 15 ((Rx» V (Ra) - Ra
F B Ra I Rx

The contents of the memory location specified by the contents of register Rx are

logically added (OR function) to the contents of register Ra. The result is stored
in register Ra.

Affected: Ra

LogiaaZ In8t~uction8

ORMM OR REGISTER AND MEMORY 3.4 us

o 3 4 7 8 11 12 13 15
(Ra) V (EA) - EA

C 2 Ra I Rxx

ADDRESS FIELD

The contents of register Ra are logically added (OR function) to the contents of the

effective memory location. The result is 'stored in the effective memory location.

Affected: (EA)

ORSM OR REGISTER AND MEMORY SHORT DISPLACED 2.6 us

o 3 4 7 8 11 12 15 (Ra) V «Rl) +DF) - (Rl) +DF
D 2 Ra DF

The contents of register Ra are logically added (OR function) to the contents of the

effective memory location specified by the displacement field DF added to the contents

of register Rl. The result is stored in the effective memory location.

Affected: (EA)

ORXM OR REGISTER AND MEMORY SHORT INDEXED 2.6 us

o 3 4 7 8 11 12 15 (Ra) V «Rx» - (Rx)

D A I Ra I Rx

The contents of register Ra are logically added (OR function) to the contents of the

effective memory location specified by the contents of register Rx. The result is

stored in the effective memory location.

Affected: (EA)

ORR OR REGISTER AND REGISTER 0.8 us

o 3 4 7 8 11 12 15 (Rb) V (Ra) - Ra
6 B I Ra I Rb

The contents of register Rb are logically added (OR function) to the contents of

register Ra. The result is stored in register Ra.

Affected: Ra

3-27

Logical Instructions

ORRB OR REGISTER AND REGISTER AND BRANCH IF NONZERO 1. 6 u.s

o 3 4 7 8 11 12 15 (Rb) V (Ra) -- Ra
If Result ~O, EA -- PR
If Result =0, (PR) +2 -- PR

7 I B 1 Ra I Rb

ADDRESS FIELD

o 15

The contents of register Rb are logically added (OR function) to the contents of regis­

ter Ra. The result is stored in register Ra. If the result does not equal zero, a

branch is executed to the effective word location. If the result equals zero, the next

instruction in sequence is executed.

Affected: Ra

XOM EXCLUSIVE OR MEMORY AND REGISTER 2.4 us

o 3 4 7 8 11 12 13 15

E 4 Ra I Rxx
(EA) @) (Ra) -- Ra

ADDRESS FIELD

The contents of the effective memory location are logically added modulo two (Exclusive

Or function) to the contents of register Ra. The result is stored in register Ra.

Affected: Ra

XOI EXCLUSIVE OR MEMORY AND REGISTER IMMEDIATE 1.6 us

3 4
7 8 11rY7 ~

c I Ra i'W/%
((PR) +1) (Ra) - Ra

E

IMMEDIATE OPERAND

o 1 15

The contents of the second instruction word are logically added modulo two (Exclusive

Or function) to the contents of register Ra. The result is stored in register Ra.

Affected: Ra

3-28

LogicaZ Instructions

: xos EXCLUSIVE OR MEMORY AND REGISTER SHORT DISPLACED 1.6 us

I

I OF

IS ((Rl) +DF) @ (Ra) - Ra o 3 4 7 8 11 12

F 4 I Ra

The contents of the memory location specified by the displacement field OF added to the

contents of register Rl are logically added modulo two (Exclusive Or function) to the

contents of register Ra. The result is stored in register Ra.

Affected: Ra

XOX EXCLUSIVE OR MEMORY AND REGISTER SHORT INDEXED 1.6 us

F C I Ra I Rx

J 5 «Rx)) @ (Ra) - Ra o 3 4 7 8

The contents of the memory location specified by the contents of register Rx are

logically added modulo two (Exclusive Or function) to the contents of register Ra.

The result is stored in register Ra.

Affected: Ra

XOR EXCLUSIVE OR REGISTER AND REGISTER 0.8 us

o 3 4 7 8 11 12 15 (Rb) @ (Ra) - Ra

6 C Ra Rb

The contents of register Rb are logically added modulo two (Exclusive Or function) to

the contents of register Ra. The result is stored in register Ra.

Affected: Ra

XORB EXCLUSIVE OR REGISTER AND REGISTER AND BRANCH IF NONZERO 1.6 us

0 3 4 7 8 11 12 IS (Rb) <2> (Ra) - Ra
7 C I Ra I Rb

I
If Result ~O, EA - PR
If Result =0, (PR) +2 - PR

ADDRESS FIELD

0 IS

The contents of register Rb are logically added modulo two (Exclusive Or function) to

the contents of register Ra. The result is stored in register Ra.

If the result does not equal zero, a branch is executed to the effective word location.

If the result equals zero, the next instruction in sequence is executed.

Affected: Ra

3-29

LogiaaZ Instruations

TOR TRANSFER QNE'.s COMPLEMENT ~GISTERTo. REGISTER 0.8 us

o 3 4 7 8 11 12 15 (Rb) - Ra

o D I Ra I Rb

The one's complement of the contents of register Rb replaces the contents of register

Ra.

Affected: Ra

TRMB
o 3 4

C I

o 1

TEST REGISTER AND MEMo.RY AND BRANCH IF ANY o.NES Co.MPARE
3.4 us NO. BRANCH
3 • 6 us BRANCH

7 8 11 12 13

6 I Ra I I I
o.PERAND ADDRESS FIELD

BRANCH ADDRESS FIELD

15

Rxx

15

If (Ra) A (EA) #0, «PR) +2) - PR
If (Ra) A (EA) =0, (PR) +3 - PR

The contents of the effective memory location are logically multiplied (AND function)

by the contents of register Ra. The result is not stored.

If the result does not equal zero, a branch is executed to the location specified by

the third instruction word. o.nly the direct address mode without indexing is performed.

If the result equals zero, the next instruction in sequence is executed.

Affected: None

TRSB TEST REGISTER AND MEMo.RY SHo.RT DISPLACED AND BRANCH
IF ANY o.NES Co.MPARE

2.6 us NO. BRANCH
2.8 us BRANCH

3 4 7 8 11 12 15 If (Ra) A «Rl)+DF)#O, ((PR)+l)_PR
(Ra) «Rl)+DF)=O, (PR) +2 -PR

I I
I

If A
D 6 Ra DF

BRANCH ADDRESS FIELD

15 o

The contents of the memory location specified by the displacement field added to the

contents of register Rl are logically multiplied (AND function) by the contents of

register Ra. The result is not stored.

If the result does not equal zero, a branch is executed to location specified by the

second instruction word. o.nly the direct address mode without indexing is performed.

If the result equals zero, the next instruction in sequence is executed.

Affected: None

3-30

TRXB TEST REGISTER AND MEMORY SHORT INDEXED AND BRANCH
IF ANY ONES COMPARE

Logical Instructions

2.6 us NO BRANCH
2.8 us BRANCH

o 3 4 7 8 11 12 If (Ra) " ((Rx» ~O, ((PR) +1) - PR
If (Ra) 1\ ((Rx» =0, (PR) +2 - PR D E I Ra Rx

BRANCH ADDRESS FIELD

o 15

The contents of the memory location specified by the contents of register Rx are

logically multiplied (AND function) by the contents of register Ra. The result is

not stored.

If the result does not equal zero, a branch is executed to location specified by the

second instruction word. Only the direct address mode without indexing is performed.

If the result equals zero, the next instruction in sequence is executed.

Affected: None

TERB TEST REGISTER AND REGISTER AND BRANCH IF ANY ONES
COMPARE

1.6 us

0 3 4 7 8 11 12 15 (Rb) /\ (Ra) - RESULT

I
7 I E I Ra I Rb

I
If Result ~O, EA - PR
If Result =0, (PR)+2 - PR

ADDRESS FIELD

0 15

The contents of register Rb are logically mUltiplied (AND function) by the contents of

register Ra. The result is not stored.

If the result does not equal zero, a branch is executed to the effective word location.

If the result equals zero, the next instruction in sequence is executed.

Affected: None

3-31

FLOATING POINT INSTRUCTIONS

INTRODUCTION

FZoating Point

Instructions

The optional floating point arithmetic instructions provide the capability to process

very large or very small magnitude operands with precise results.

Floating point numbers consist of three parts: a sign, an exponent and a fraction.

The sign bit applies only to the fraction. The exponent is a biased nine-bit binary

number. The fraction is a binary number with an assumed radix point to the left of

the high-order digit. The quantity that the floating-point number represents is ob­

tained by raising the fraction value to the power expressed in the exponent value.

Data Formats

Floating point numbers are fixed in length and are either two word single precision

or three word double precision in format.

The first bit (bit 0) in both formats is the sign of the fraction. A one (1) bit

represents a minus sign and a zero bit (0) represents a positive sign. The next nine

bits (21 _2 10) represent a biased binary exponent. The fraction contains a 22 bit

binary number (single-precision format) or a 38 bit binary number (double precision

format) .

The single precision format allows faster processing and uses less storage. The

double precision format while providing greater precision, requires more processing

time and use of an additional register and/or memory location.

Single Precision Floating Point Number

EA/Ra/Rb

EXPONENT 9

i EA+l/RaVl/RbV1

FRACTION

o 1 10 11 16 0 16

Double Precision Floating Point Number

EA/Ra/Rb EA+l/RaVl/RbVl

i

EA+2/RaV2/RbV2

I 81 EXPONENT 91 FRACTION 38
1

0 1 10 11 16 0 16 0 16

3-32

Ra OR Rb SINGLE PRECISION
FIELD OPERAND (OR RESULTS)

REGISTERS USED

0 0, 1

1 1, 1

2 2, 3*

3 3, 3

4 4, 5*

5 5, 5

6 6, 7*

7 7, 7

8 8, 9*

9 9, 9

A A, B*

B B, B

C C, 0*

0 0, 0

E E, F*

F F, F

*Indicates all normally useful selections

Floating Point Register Selections

TABLE 3-2

FLOATING POINT INSTRUCTION MNEMONICS

FZoating Point

Instrouations

DOUBLE PRECISION
OPERAND (OR RESULTS)

REGISTERS USED

0, 1, 2

1, 1, 3

2, 3, 2

3, 3, 3

4, 5, 6*

5, 5, 6

6, 7, 6

7, 7, 7

8, 9, A*

9, 9, B

A, B, A

B, B, B

C, 0, E*

0, 0, F

E, F, E

F, F, F

This group of 16 optional instructions is made up of the four arithmetic operations;

add, subtract, multiply and divide. Each of the four arithmetic operations can be

executed in register-to-register or memory-to-register formats with either single

precision or double precision operands.

Add

FAR

FARO

FAM

FAMD

GENERAL RULES

Subtract

FSR

FSRD

FSM

FSMD

Multiply

FMR

FMRD

FMM

FMMD

Divide

FOR

FORD

FDM

FDMD

Reg-Reg

R-R Double

Mem-Reg

M-Reg Double

When flowing point instructions specify Ra,RaV1 and Rb,RbV1, Ra and Rb must specify

even numbered registers which will contain the more significant half of a single

precision floating point operand, and RaV1, RbV1 will specify the next sequential

odd numbered registers and hold the less significant half of a single precision

floating point operand. Refer to Table 3-2 for normally useful register selections.

Operands presented to the Floating Point unit will be in normalized form and likewise,

operation results will always be normalized.

3-33

FZoating Point

Instructions

The exceptions to this rule are when an unnormalized number is presented to the

Floating Point Unit for normalization (e.g. 0 + an unnormalized number will yield

the same number in a normalized format), and when a zero fraction is used.

The storage of floating point operands, both ~n CPU registers and in memory, follow

the same rules used for fixed point operands handled in the standard MODCOMP III.

That is, the most significant word of the operands is stored in the lower memory

location or lower general purpose register number.

Example: EWA EWA+l EWA+2
Ra/Rb RaVl RaV2

EXPONENT
MSB's of FRACTION

LEAST SIGNIFICANT
FRACTION BITS OF FRACTION

0 1 9 10 lS 0 lS 0 lS

FOR REGISTERS R4 RS R6

FOR MEMORY (EA) X X+l X+2

Overflow

Floating point overflow/underflow occurs if the resultant exponent of a floating

point operation cannot be expressed within the range of the nine bit binary exponent

field of the floating point format.

A trap occurs at interrupt level S if floating point overflow/underflow is detected.

See Sections II and IV for a detailed explanation of traps.

FAR Floating Point Add Reg to Reg

o 3 4 7 8 11 12 lS

I Rb I
~----~----~--~-~--~

3 o Ra

Min.

6.4)JS

Avg.

9.S)JS

Max.

12.6)JS

(Rb),(RbVl)+(Ra) ,(RaVl)+Ra,RaVl

The contents of registers Rb and RbVl (with register Rb containing the more signifi­

cant half and register RbVl containing the less significant half of a single preci­

sion floating point operand) are algebraically added to the contents of registers

Ra and RaVl (with register Ra containing the more significant half and register RaVl

containing the less significant half of a single precision floating point operand).

The sum replaces the contents of registers Ra and RaVl. Ra and Rb must specify even­

numbered registers. A floating point overflow will occur if the resultant exponent

cannot be expressed within the range of the nine (9) bit binary exponent field of the

floating point format.

Affected: Ra,RaVl

3-34

FSR Floating Point Subtract Reg from Reg

3 1 Ra Rb

Floating Point

Instruations

Min. Avg. Max.

6.4 ~s 9.5 ~s 12.6 ~s

(Ra), (RaVl)-(Rb) , (RbVl)+Ra,RaVl

The contents of registers Rb and RbVl (with register Rb containing the more signifi­

cant half and register RbVl containing the less significant half of a single preci­

sion floating point operand) are algebraically subtracted from the contents of regis­

ters Ra and RaVl (with register Ra containing the more significant half and register

RaVl containing the less significant half of a single precision floating point oper­

and). The result is stored in registers Ra and RaVl. Ra and Rb must specify even

numbered registers. A floating point overflow will occur if the resultant exponent

cannot be expressed within the range of the nine (9) bit binary exponent field of the

floating point format.

Affected: Ra,RaVl

FM R Floating Point Multiply Reg by Reg

14. 4 ~s

3 2 Ra Rb (Rb), (RbVl)x(Ra),(RaVl) Ra,RaVl

The contents of registers Rb and RbVl (with register Rb containing the more signifi­

cant half and register RbVl containing the less significant half of a single pre­

cision floating point multiplicand) are multiplied by the contents of registers

Ra and RaVl (with register Ra containing the more significant half and register

RaVl containing the less significant half of a single precision floating point multi­

plier). The product is stored in registers Ra and RaVl. Ra and Rb must specify even

numbered registers. A floating point overflow will occur if the resultant exponent

cannot be expressed within the range of the nine (9) bit binary exponent field of the

floating point format.

Affected: Ra,RaVl

FOR Floating Point Divide Reg by Reg

15.4].Js

3 3 Ra Rb (Ra) , (RaVl)+(Rb), (RbVl)+Ra,RaVl

The contents of registers Rb and RbVl (with register Rb containing the more signifi­

cant half and register RbVl containing the less significant half of a single pre­

cision floating point divisor) are divided into the contents of registers Ra and

RaVl (with register Ra containing the more significant half and register RaVl

3-35

Floating Point

Instructions

containing the less significant half of a single precision floating point dividend) •

The quotient replaces'the contents of registers Ra and RaVl. Ra and Rb must specify

even-numbered registers. A floating , point overflow will occur if the divisor is

equal to zero or if the resultant exponent cannot be expressed within the range of

the nine (9) bit binary exponent field of the floating point format.

Affected: Ra,RaVl

FARO Floating Point Add Reg to Reg Double

3 4 Ra Rb

Min.

6.4]lS

Avg.

11.7]lS

Max.

17.4 jlS

(Rb) , (RbVl) ,(RbV2) +(Ra) , (RaVl) ,(RaV2) +Ra,RaVl,RaV2

The contents of registers Rb,RbVl, and RbV2 (with these registers arranged in signi­

ficance as described in Table 3-2 under floating point double precision operand

formats) are algebraically added to the contents of registers Ra,RaVl, and RaV2

(with these registers arranged in significance as described in Table 3-2 under

floating point double precision operand formats). The sum replaces the contents of

registers Ra,RaVl, and RaV2. Ra and Rb must specify general purpose register four

(4 16), eight (816), or C16 • A floating point overflow will occur if the resultant

exponent cannot be expressed within the range of the nine (9) bit binary exponent
field of the floating point format.

Affected: Ra,RaVl,RaV2

FSRO Floating Point Subtract Reg from Reg Double

3 5 Ra Rh

Min.

6.4 jlS

Avg.

11.7 jlS

Max.

17.4 its

(Ra) , (RaVl),(RaV2)-(Rb) ,(RbVl), (RbV2)+Ra,RaVl,RaV2

The contents of registers Rb,RbVl,RbV2 are algebraically subtracted from the contents

of registers Ra,RaVl,RaV2. The result is stored in registers Ra,RaVl,RaV2. Ra and

Rb must specify general purpose register four (4 16), eight (8 16) Or (C16). Floating

point overflow may occur as described previously.

Affected:' Ra,RaVl,RaV2

3-36

FMRD: Floating Point Multiply Reg By Reg Double

3 6 Ra Rb

Floating Point

Instructions

20.8 JJS

(Rb),(RbVl),(RbV2)x(Ra),(RaVl,(RaV2)+Ra,RaVl,RaV2

The contents of registers Rb,RbVl,RbV2 containing a double precision floating point

multiplicand are multiplied by the contents of Ra,RaVl,RaV2 which hold the double

precision floating point multiplier. The product is stored in registers Ra,RaVl,
RaV2. Ra and Rb must specify general purpose registers four (4 16), eight (8 16) or

(C16). Floating point overflow may occur as described previously.

Affected: Ra,RaVl,RaV2

FDRD Floating Point Divide Reg by Reg Double

21. 8 JJS

3 7 Ra Rb

(Ra) , (RaVl) , (RaV2)~(Rb) , (RbVl) , (RbV2)+Ra,RaVl,RaV2

The contents of registers Rb,RbVl,RbV2 containing a double precision floating point

divisor are divided into the contents of registers Ra,RaVl,RaV2 which hold the

double precision floating point dividend. The quotient replaces the contents of

registers Ra,RaVl,RaV2. Ra and Rb must specify general purpose registers four (416),
eight (8 16) or (C16). Floating point overflow may occur as described previously.

Affected: Ra.RaVl,RaV2

F~M Floating Point Add Memory to Register

3 8 Ra Rx

ADDRESS WORD

Min.

8.6 JJS

Avg.

11. 7 JJS

Max.

14.8 JJS

(EA) , (EA+l)+(Ra) ,(RaVl)+Ra,RaVl

The contents of the effective memory location and the effective memory location plus

one (with (EA) containing the less significant half of a single precision floating

point operand and (EA+l) containing the more significant half of a single precision

floating point operand) are algebraica~ly added to the contents of registers Ra and

RaVl (with register Ra containing the more significant half and register RaVl con-

3-37

FZoating Point

Instructions

taining the less significant half of a single precision floating point operand). The

sum replaces the contents of Ra and RaVl. Ra must specify an eve~-numbered register.

A floating point overflow will occur if the resultant exponent cannot be expressed

within the range of the nine (9) .bit binary exponent field of the floating point

format.

Affected: Ra,R~Vl

FS M Floating Point Subtract Memory from Register

3 9 Ra Rx

ADDRESS WORD

Min.

8.6].lS

Avg.

11.7].lS

Max.

l4.8].ls

(Ra) ,(RaVl)-(EA),(EA+l)~Ra,RaVl

The contents of the EA and EA+l are algebraicaliy subtracted from the contents of

Ra,RaVl. The remainder replaces the contents of Ra,RaVl. Ra must specify an even

numbered register.

Floating point overflow may occur as described previously.

Affected: Ra,RaVl

F M M Floa ting Point Multiply Memory by Register

16.6].lS

3 A Ra Rx

ADDRESS WORD (EA)

(EA), (EA+l)x(Ra), (RaVl)~Ra,RaVl

The contents of the EA and EA+l containing a single precision fixed point multipli­

cand are multiplied by the contents of Ra,RaVl containing a single precision floating

point multiplier. The product replaces the contents of Ra,RaVl. Ra must specify

an even numbered register.

Floating point overflow may occur as described previously.

Affected: Ra,RaVl

3-38

FDM Floating Point Divide Memory into Register

3 B Ra Rx

ADDRESS WORD

FZoating Point

Instructions

17.6]JS

(Ra) ,(RaVl)~(EA), (EA+l)+Ra,RaVl

The contents of Ra and RaVl containing a single precision floating point dividend are

divided by the contents of EA and EA+l containing a single precision floating point

divisor. The quotient replaces the contents of Ra,RaVl. Ra must specify an even
numbered register.

Floating point overflow may occur as described previously.

Affected: Ra,RaVl

FAM D Floating Point Add Memory to Register Double
Min.

B.6]Js

3 c Ra Rx

ADDRESS WORD

Avg.

13.9]JS

Max.

19.6]JS

(EA),(EA+l),(EA+2)+(Ra),(RaV2)+Ra,RaVl,RaV2

The contents of EA,EA+l,EA+2 containing a double precision floating point augend are

algebraically added to the contents of Ra,RaVl,RaV2 containing a double precision

floating point addend. The sum replaces the contents of Ra,RaVl,RaV2. Ra must

specify general purpose register four (4 16), eight (8 16) or (Cl6).

Floating point overflow may occur as described previously.

Affected: Ra,RaVl,RaV2

FSMD Floating Point Subtract Memory from Reg Double

3 D Ra Rx

ADDRESS WORD

Min.

8.6]JS

Avg.

13.9]JS

Max.

19.6]JS

(Ra), (RaVl),(RaV2)-(EA), (EA+l),(EA+2)+Ra,RaVl,RaV2

The contents of EA,EA+l and EA+2 contain a double precision floating point subtrahend

3-39

FZoating Point

Instructions

which is subtracted from Ra,RaVl,RaV2 containing a double precision floating point

minuend. The remainder replaces the contents of Ra,RaVl,RaV2. Ra must specify

general purpose register four (416), eight (816) or (C16).

Floating point overflow may occur as described previously.

Affected: Ra,RaVl,RaV2

F M M D Floating Point Multiply Memory by Register Double

23.0 llS

3 E Ra Rx

ADDRESS WORD

(EA),(EA+l),(EA+2)x(Ra) ,(RaVl),(RaV2)+Ra,RaVl,RaV2

The double prec~s~on floating point multiplicand contained in EA,EA+l and EA+2 is

multiplied by the double precision floating point multiplier contained in registers

Ra,RaVl and RaV2. The product replaces the contents of Ra,RaVl and RaV2. Ra must
specify general purpose register four (416), eight (816), or (C16).

Floating point overflow may occur as described previously.

Affected: Ra,RaVl,RaV2

FD M D Floating Point Divide Memory into Reg Double

24.0 llS

F Ra Rx

ADDRESS WORD

(Ra),(RaVl),(RaV2)+(EA),(EA+l),(EA+2)+Ra,RaVl,RaV2

The double precision floating point dividend contained in Ra,RaVl and RaV2 is divided

by the double precision floating point divisor contained in EA,EA+l and EA+2. The

quotient replaces the contents of Ra,RaVl and RaV2. Register Ra must specify general
purpose register four (4 16), eight (8 16) or (C16).

Floating point overflow may occur as described previously.

Affected: Ra,RaVl,RaV2

3-40

Shift Instructions

SHIFT INSTRUCTIONS

The ten instructions in this group are used to reposition bits left or right within a

single or a pair of adjacent registers. All combinations of arithmetic and logical,

left and right, and single register and double register shift operations are pro­

vided. In addition, a left rotate instruction is included.

The execution of each shift instruction may shift the operand zero to 15 bit positions

as defined by the binary coded shift field (bits 12-15) in each instruction except LRS.

In all double register shift operations, the register specified by the instruction word

must be the even register of an even-odd register pair consisting of two adjacent re­

gisters in the general register file (Ra (even) and RaVl (odd)). In doubleword arith­

metic shifts, the more significant half of the operand is assumed to be in the even

register and the less significant half in the odd register.

LAD SHIFT LEFT ARITHMETIC DOUBLE 2.2 + .4 (Shifts-l

o 3 4 7 8 11 12 15 ~0-Tl~ ____ ~1~5~ rO ______ ~1~5~

L-I S.....&..I..----Ra_--'H RaVl ~
~

2 E I Ra SHIFTS I

The contents of register Ra and register RaVl are shifted left zero to 15 bit position(s)

as specified by the shift count control field. The sign bit of Ra does not change either

during or after the shift. Zeros are shifted into the LSB position of RaVl and the MSB

of RaVl is shifted into the least significant bit position of Ra with each shift step.

The next to MSB of Ra (bit position 1) is shifted out of the register and is lost. Ra

must specify an even general register.

Affected: Ra, RaVl, Overflow

RAD SHIFT RIGHT ARITHMETIC DOUBLE 1.8 + .4 (Shifts-l

o 3 4 7 8 11 12 15 r0-Tl~ ____ ~1~5~ rO ______ ~1~5~

IL-S.....&..F_R_a -----1~1 RaVl ~ 2 A Ra SHIFTS I

The contents of register Ra and register RaVl are shifted right zero to 15 bit position(s)

as specified by the shift count control field. The sign bit of Ra does not change either

during or after the shift.* The LSB(s) of Ra are shifted to the MSB position of RaVl and

the LSB(s) of RaVl are shifted out of the register and are lost. Ra must specify an even

general register.

Affected: Ra, RaVl,

*The sign bit is propogated right the number of places specified by the shift count.

3-41

Shift Instructions

LAS SHIFT LEFT ARITHMETIC SINGLE 2.4 + .2 (Shifts-I)

° 3 4 7 8 11 12

2 Ra SHIFTS I F

15 ° 1
15

~ls~I~ ________ ~~o ..
The contents of register Ra are shifted left. zero to 15 bit position(s) as specified

by the shift count control field. The sign bit of Ra does not change either during

or after the shift. The next to MSB of Ra (bit position 1) is shifted out of the

register and is lost. Zeros are shifted into the LSB position(s) of Ra.

Affected: Ra, Overflow

RAS SHIFT RIGHT ARITHMETIC SINGLE 2.0 + .2 (Shifts-I)

° 3 4 7 8 11 12

SHIFTS] 2 Ra B

15

The contents of register Ra are shifted right zero to 15 bit position(s) as specified

by the shift count control field. The sign bit of Ra does not change either during

or after the shift.* The least significant bites) of Ra are shifted out of the re­

gister and are lost.

Affected: Ra *See previous page.

LLD SHIFT LEFT LOGICAL DOUBLE 2.2 + .4 (Shifts-I)

° 3 4 7 8 11 12 15 o 15 ° 15

2 C Ra SHIFTS
~r----R-a------~~~---R-a-V-l----~r-- °

The contents of register Ra and register Ra+l are shifted left zero to 15 bit position(s)

as specified by the shift count control field. Zeros are shifted into the least signif­

icant bit position(s) of RaVl and the most significant bites) of RaVl are shifted into

the least significant bit position(s) of Ra. The most significant bites) of Ra are

shifted out of Ra and are lost. Ra must specify a.n even general register.

Affected: Ra, RaVl

RLD SHIFT RIGHT LOGICAL DOUBLE 1.8 + .4 (Shifts-I)

° 3 4 7 8 11 12 15

2 SHIFTS I 8 Ra
.-:0"--__ ---=1:.:5:., ° 15

° -1 Ra H RaVl ~

The contents of register Ra and register RaVl are shifted right zero to 15 bit position(s)

as specified by the shift count control field. Zeros are shifted into the most signif­

icant bit position(s) of Ra and the least significant bit position(s) of Ra are shifted

into the most significant bit position(s) of RaVl The l~ast significant bit(s) of RaVl

are shifted out of RaVl and are lost. Ra must specify an even general register.

Affected: Ra, RaVl

3-42

Shift Instruations

LLS SHIFT LEFT LOGICAL SIN~LE 2.4 + .. 2 . (Shifts-l)

o 3 4 7 8 11 12 15

2 D Ra SHIFTS ~~ ______________________________ ~~o
o 15

The contents of register Ra are shifted left zero to 15 bit position(s) as specified

by the shift count control field. Zeros are shifted into the least significant bit

position(s) and the most significant bit position(s) are shifted out of RaO and are

lost.

Affected: Ra

RLS SHIFT RIGHT LOGICAL SINGLE 2.0 + .2 (Shifts-l)

o 3 4 7 8 11 12 15 o 15
2 9 Ra SHIFTS I oj L

.....,'--. ----------',

The contents of register Ra are shifted right zero to 15 bit positions as specified

by the shift count control field. Zeros are shifted into the most significant bit

position(s) and the least significant bit position(s) are shifted out of Ra15 and

are lost.

Affected: Ra

LRS LEFT ROTATE SINGLE

0 3 4 7 8 11 12 15 (1) 0.8]..Is

I 0 I F I Ra I Rb I
(2)

Rb Ra

(RbOl-15)------~~ Ra OO - 14
(Rb OO)) Ra15

The contents of register Ra are replaced by the contents of register Rb shifted left

one bit position with the most significant bit of Rb rotated into bit position 15 of

register Ra. The contents of Rb are unaffected.

Affected: Ra

3-43

BIT MANIPULATION INSTRUCTIONS

Bit Manipulation

Instructions

The bit manipulation instruction group includes the Load, Add, Subtract, Zero, OR,

Exclusive OR, Test, and Compare instructions. In all instructions except Zero and

Test, one operand is a bit literal of value o~e and the other operand is the 16-bit

contents of the effective memory location or designated register. For example the

Add Bit In Memory instruction causes a bit of value one to be added to the contents

of the effective memory location. Carry is propagated through to the left through

the sign bit.

The position of the bit literal is designated by the four bit, binary coded Bit Field

in each instruction. Any bit in the word can be designated. The value of the Bit

Field (n) specifies a 16-bit binary number of value +215 - n .

Since the value of the bit literal is always one in the OR instruction, execution of

this instruction causes the designated bit in memory or a general register to be set

to one. For the same reason, execution of the Exclusive OR instruction causes the

designated bit to be complemented (inverted).

iLBR LOAD BIT IN REGISTER 0.8 us

3 4 7 8 11 12 12
1

0

I I 6 I 5 I Ra I BIT FIELD D's

D's

- Ran

- RaO_(n_l}

- Ra(n+l}-15

A one is stored in register Ra in bit position n, where n is specified by the contents

of the Bit Field. Zeros are stored in all other bit positions in register Ra.

Affected: Ra

LBRB LOAD BIT IN REGISTER AND BRANCH UNCONDITIONALLY 1.6 us

7

3 4 7 8 11 12 15 1 -Ra

I I I
I

n
5 Ra BIT FIELD D's - Ra O_ (n-l)

ADDRESS FIELD D's - Ra(n+l}-15

15 EA -PR

o

o

A one is stored in register Ra in bit position n, where n is specified by the contents

of the Bit Field. Zeros are stored in all other bit positions in register Ra.

A branch is then executed unconditionally to the location specified by the contents

of the second instruction word.

Affected: Ra

3-44

ABMM ADD BIT IN MEMORY

0 3 4 7 8

[8 ° IBIT FIELD

ADDRESS FIELD

11 12 13

I Rxx

15

Bit ManipuZation

Instructions

3.4 us

(EA)+2 15- n -. EA

The contents of the effective memory location are incremented by one in the bit

position (n) designated in the Bit Field of the first instruction word. The result

1 t ' Overflow w1'll occur if the result is is stored in the effective memory oca 10n.

greater than 215_1.

Affected: Overflow, (EA)

ABMB ADD BIT IN MEMORY AND BRANCH IF NONZERO

o 3 4 7 8 11 12 13 15

8 I 4 I BIT FIELD I I I Rxx

OPERAND ADDRESS FIELD

BRANCH ADDRESS FIELD

o 15

(EA) +2 15- n
If Result 7'0,
If Result =0,

4.2 us

- EA
((PR) +2) -PR
(PR)+3 - PR

The contents of the effective memory location are incremented by one in the bit

position (n) designated in the Bit Field of the first instruction word. The result

is stored in the effective memory location.

If the result is unequal to zero, a branch is executed to the location specified by

the contents of the third instruction word. Only the' direct address mode without

indexing is performed. If the result equals zero, the next instruction in sequence
15 is executed. Overflow will occur if the result is greater than 2 -1.

Affected: Overflow, (EA)

ABSM ADD BIT IN MEMORY SHORT DISPLACED 2.6 us

o 3 4 7 8 11 12 15 ((R1)+DF)+21s - n -(R1)+DF

9 o I BIT FIELD I DF

The contents of the effective memory location specified by the displacement field DF

added to the contents of register R1 are incremented by one in the bit position (n)

designated by the Bit Field. The result is stored in the effective memory location.

Overflow will occur if the result is greater than 215 _1.

Affected: OverflOW, . (EA)

3-45

Bit ManipuZation

Instruations

ABSB. ADD.BIT IN MEMORY SHORT DISPLACED AND BRANCH IF NONZERO 3.4 us

o 3 4

9 I
o

7 8 11 12

4 IBIT FIELD I
BRANCH ADDRESS FIELD

15

DF

15

«Rl) +DF) +2 15- n _ (Rl) +DF
If Result ~O, «PR) +1) - PR
If Result =0, (PR) +2 - PR

The contents of the effective memory location specified by the displacement field DF

added to the contents of register Rl are incremented by one in the bit position (n)

deSignated by the Bit Field. The result is stored in the effective memory location.
15 Overflow will occur if the result is greater than 2 -1.

If the resulting word is unequal to zero, a branch is executed to the location speci­

fied by the second instruction word. The branch address may only be generated by the

direct address mode without indexing. If the result equals zero, the next instruction

is sequence is executed.

Affected: Overflow, (EA)

ABXM ADD BIT IN MEMORY SHORT INDEXED 2.6 us

o 3 4 7 8 11 12

I BIT FIELD I
15 ((Rx)) +2 15 - n _ (Rx)

9 8 Rx

The contents of the effective memory location specified by the contents of register

Rx are incremented by one in the bit position (n) designated by the Bit Field. The

result is stored in the effective memory location. Overflow will occur if the result
is greater thari 215 _1.

Affected: Overflow, (EA)

ABXB ADD BIT IN MEMORY SHORT INDEXED AND BRANCH IF NONZERO 3.4 us

o 3 4

9 I
o

7 8 11 12

C I BIT FIELD I
BRANCH ADDRESS FIELD

15

Rx

15

((Rx)) +215- n _ (Rx)
If Result ~O «PR) +1) _ PR
If ReSult =0 (PR) +2 _ PR

The contents of the effective memory location specified by the contents of register

Rx are incremented by one in the bit position (n) designated by the Bit Field. The

result is stored in the effective memory location. Overflow will occur if the result
is greater than 215 _1.

Affected: Overflow, EA

If the resulting word is unequal to zero, a branch is executed to the location

specified by the second instruction word. The branch address may only be generated

by the direct address mode without indexing. If the result equals zero, the next

instruction in sequence is executed.

Affected: Overflow, (EA)

3-46

ABR ADD BIT IN REGISTER

o 3 4 7 8

I Ra 6 o
JJ 12 1<;

I BIT FIELD I

Bit ManipuZation

Instructions

0.8 us

(Ra) +2 l5 - n _ Ra

The contents of register Ra are incremented by one in the bit position (n) designated

in the Bit Field of the instruction word. ~he result is stored in register Ra. Over­

flow will occur if the result is greater than 215_1.

Affected: Ra, Overflow

ABRB ADD BIT IN REGISTER AND BRANCH IF NONZERO 1.6 us

7

3 4 7 8 11 '12

FIELD'1 I 0 I Ra [BIT

ADDRESS FIELD

(Ra)+2 15- n _ Ra
If Result ~O, EA - PR
If Result =0, (PR)+2 - PR

o

o 15

The contents of register Ra are incremented by one in the bit position (n) designated

in the Bit Field of the instruction word. The result is stored in register Ra. Over­

flow will occur if the result is greater than 215_1.

If the result is unequal to zero, a branch is executed to the effective memory location.

If the result equals zero, the next instruction in sequence is executed.

Affected: Ra Overflow (See Note)

SBR SUBTRACT BIT IN REGISTER 0.8 us

6 1 I Ra

11 12 J 5

I BIT FIELD

15-n (Ra) -2 _ Ra o 3 4 7 8

The contents of register Ra are decremented by one in the bit position (n) designated

in the Bit Field of the instruction word. The result is stored in register Ra. Over­

flow will occur if the result is less than _2 15 .

Affected: Ra, Overflow

NOTE: ABRB and SBRB are used to increment/decrement index registers.

3-47

Bit ManipuZation

Instructions

SBRB SUBTRACT BIT IN REGISTER AND BRANCH IF NONZERO 1.6 us

o 3 4 7 8 11 12 15

I 1 I Ra I BIT FIELD 7

(Ra) _2 15- n _ Ra
If Result ~O, EA - PR
If Result =0, (PR) +2 - PR

ADDRESS FIELD

o 15

The contents of register Ra are decremented by one in the bit position (n) designated

in the Bit Field of the instruction word. The result is stored in register Ra. Over­

flow will occur if the result is less than _215 .

If the result is unequal to zero, a branch is executed to the effective memory lo­

cation. If the result equals zero, the next instruction in sequence is executed.

Affected: Ra, Overflow (See note on previous page.)

ZBMM ZERO BIT IN MEMORY

o 3 4 7 8 ·11 12 13

8 I 1 IBIT FIELD 1 I·lRXX

ADDRESS FIELD

15

15

o - EA n

3.4 us

The bit contained in the position in the effective memory location designated by the

contents of the Bit Field (n) is cleared to zero. The other bits contained in the

word are unaffected.

Affected: (EA)

ZBMB ZERO BIT IN MEMORY AND BRANCH IF NONZERO

o 3 4 7 8 11 12 15

8 I 5 I BIT FIELD I I IRxX

OPERAND ADDRESS FIELD

BRANCH ADDRESS FIELD

15.

o _ EA
n

3.8 us NO BRANCH
4 • 6 us BRANCH

If Result ~O, ((PR)+2) - PR
If Result =0, (PR) +3 - PR

The bit contained in the position in the effective memory location designated by the

contents of the Bit Field (n) is cleared to zero. The other bits contained in the

word are not affected. If the resulting word is unequal to zero, a branch is executed

to the location specified by the contents of the third instruction word. Only the

direct address mode without indexing is performed. If the result equals zero, the

next instruction in sequence is executed.

Affected: (EA)

3-48

ZBSM

o 3 4

9

ZERO BIT IN MEMORY SHORT DISPLACED

7 8 11 12 15

1 I BIT FIELD I DF

Bit ManipuZation

Instruations

2.6 us

O-[(Rl)+DF]n

The bit n, designated by the Bit Field, contained in the memory location specified by

the displacement field DF added to the contents of register Rl is cleared to zero. The

other bits contained in the word are unaffected.

Affected: (EA)

ZBSB
o 3 4

9 I

ZERO BIT IN MEMORY SHORT DISPLACED AND BRANCH IF NONZERO

7 8

5 IBIT FIELD

11 12

I DF
o _ [(Rl) +DF]

n

3.0 us NO BRANCH
3.8 us BRANCH

BRANCH ADDRESS FIELD
If Result ~O, (PR)+l)- PR
If Result =0, (PR)+2 _ PR

The bit n, designated by the Bit Field, contained in the memory location specified by

the displacement field DF added to the contents of register Rl is cleared to zero. The

other bits contained in the word are unaffected. If the resulting word is unequal to

zero, a branch is executed to the location specified by the second instruction word.

The branch address may only be generated by the direct address mode without indexing.

If the result equals zero, the next instruction in sequence is executed.

Affected: (EA)

ZBXM ZERO BIT IN MEMORY SHORT INDEXED 2.6 us

o 7 8 11 12 15 3 4

9 9 I BIT FIELD I Rx
0- (Rx) n

The bit n, designated by the Bit Field, contained in the memory location specified by

the contents of register Rx is cleared to zero. The other bits contained in the word

are unaffected.

Affected: (EA)

ZBXB

o 3 4

9 I

ZERO BIT IN MEMORY SHORT INDEXED AND BRANCH IF NONZERO 3.0 us NO BRANCH
3.8 us BRANCH

7 8 11 12 15
D IBIT FIELD [Rx

o - (Rx) n

BRANCH ADDRESS FIELD I
If Result ~O, (PR)+l)- PR
If Result =0, (PR)+2 _ PR

o 15

The bit n, designated by the Bit Field, contained in the memory location specified by

the contents of register Rx is cleared to zero. The other bits contained in the word

are unaffected. If the resulting word is unequal to zero, a branch is executed to the

location specified by the second instruction word. The branch address may only be gen­

erated by the direct address mode without indexing. If the result equals zero, the

next instruction in sequence. is executed.

Affected: (EA)

3-49

ZBR ZERO BIT IN REGISTER

o 3 4 7 8

6 2 I Ra

11 12 15

I BIT FIELD I

Bit ManipuZation

Instruations

o - Ra n

0.8 us

The bit contained in the position in register Ra designated by the contents of the Bit

Field (n) is cleared to zero. The other bits in register Ra are not affected.
Affected: Ra

n

ZBRB

o 3 4

7

o

ZERO BIT IN REGISTER AND BRANCH IF NONZERO

7 8 11 12 15

2 Ra I BIT FIELD I
ADDRESS FIELD

15

O-Ra n

1.6 us

If Result ~O, EA _ PR
If Result =0, (PR)+2 - PR

The bit contained in the position in register Ra designated by the contents of the

Bit Field (n) is cleared to zero. The other bits in register Ra are not affected.

If the contents of Ra are not equal to zero, a branch is executed to the effictive

memory location. If the contents of Ra equals zero, the next instruction in sequence
is executed.

Affected: Ra
n

OBMM OR BIT IN MEMORY 3.4 us

0 3 4 7 8 11 12 13 15

I l- EA
8 2 BIT FIELD I Rxx n

ADDRESS FIELD

0 15

The bit contained in the position in the effective memory location designated by the

contents of the Bit Field (n) is set to one. The other bits contained in the word

are unaffected.

Affected: (EA)

OBSM

o 3 4

9

OR BIT" IN MEMORY SHORT DISPLACED

7 8 11 12

2 IBIT FIELD I DF

15 1 - [(Rl) +DF] n

2.6 us

The bit n, designated by the Bit Field, contained in the memory location specified by

the displacement field DF added to the contents of register Rl is set to one. The

other bits contained in the word are unaffected.

Affected: (EA)
3-50

OBXM OR BIT IN MEMORY SHORT INDEXED

o 3 4 7 8 11 12

9 A IBIT FIELD I .Rx

15 1-

Bit ManipuZation

Instruations

2.6 us

(Rx)n

The bit n, designated by the Bit Field, contained in the memory location specified by

the contents of register Rx is set to one. The other bits contained in the word are

unaffected.

Affected: (EA)

OBR OR BIT IN REGISTER 0.8 us

o 3 4 7 8 11 12 15

I BIT FIELD I 6 3 I Ra

The bit contained in the position in register Ra designated by the contents of the Bit

Field (n) is set to one. The other bits in register Ra are not affected.

Affected: Ra
n

OBRB OR BIT IN REGISTER AND BRANCH UNCONDITIONALLY 1.6 us

o 3 4 7 8 11 12 15 1- Ra

I I
I

n
3 Ra BIT FIELD EA- PR

ADDRESS FIELD

7

o 15

The bit contained in the position in register Ra designated by the contents of the

Bit Field (n) is set to one. The other bits in register Ra are not affected.

An unconditional branch is then executed to the effective memory location.

Affected: Ran

XBR

o 3 4

6

EXCLUSIVE OR BIT IN REGISTER

7 8

4 Ra I BIT FIELD I - Ra n

0.8 us

The bit contained in the position in register Ra designated by the contents of the

Bit Field (n) is complemented. The other bits in register Ra are not affected.

Affected: Ra
n

3-51

Bit Manipu Zation

Instructions

XB~B EXCLUSIVE OR BIT IN REGISTER AND BRANCH IF NONZERO 1.6 us

7

3 4 7 8 11 12 15 (Ra)
_ Ra

I I I
I

n n
4 Ra BIT FIELD If Result riO, EA -PR

If Result =0, (PR)+2 - PR
ADDRESS FIELD

o

o 15

The bit contained in the position in register Ra designated by the contents of the Bit

Field (n) is complemented. The other bits in register Ra are not affected.

If the conents of Ra are unequal to zero, a branch is executed to the effective memory

location. If the contents of Ra equal zero, the next instruction in sequence is exe­

cuted.

Affected: Ra n

TBMB TEST BIT IN MEMORY AND BRANCH IF ONE

o 3 4 7 8 11 12 13 15

8 I 6 I BIT FIELD I I I Rxx

OPERAND ADDRESS FIELD

BRANCH ADDRESS FIELD

o 15

3 . 4 us NO BRANCH
3.6 us BRANCH

If Effective Bit =1,
((PR)+2) - PR

If Effective Bit =0,
(PR)+3 - PR

The bit contained in the position in the effective memory location designated by the

contents of the Bit Field (n)is tested. If the bit is equal to one, a branch is ex­

ecuted to the location specified by the contents of the third instruction word. Only

the direct address mode without indexing is performed. If the tested bit is equal

to zero, the next instruction in sequence is executed.

Affected: None

TBSB TEST BIT IN MEMORY SHORT DISPLACED AND BRANCH IF ONE 2.6 us NO BRANC
2.8 us BRANCH

o 3 4 7 8 11

9 I 6 I BIT FIELD

BRANCH ADDRESS FIELD

o

12

I DF

I')

15

If Effective Bit =1,
((PR) +1) - PR

If Effective Bit =0,
(PR)+2 - PR

The bit n, designated by the Bit Field, contained in the memory location specified by

the displacement field added to the contents of register Rl is tested. If the bit is

equal to one, a branch is executed to the location specified by the contents of the

second instruction word. Only the direct address mode without indexing is performed.

If the tested bit is equal to zero, the next instruction in sequence is executed.

Affected: None

3-52

Bit ManipuZation

Instructions

TBXB TEST BIT IN MEMORY SHORT INDEXED AND BRANCH IF ONE 2.6 us

o 3 4

9 I
o

7 R 11 12

E I BIT FIELD I Rx

BRANCH ADDRESS FIELD

LS

15

If Effective Bit =1,
((PR) +1) - PR

If Effective Bit =0,
(PR) +2- PR

The bit n, designated by the Bit Field, contained in the memory location specified by

the contents of register Rx is tested. If the bit is equal to one, a branch is ex­

ecuted to the location specified by the contents of the second instruction word. Only

the direct address mode without indexing is performed. If the tested bit is equal to

zero, the next instruction in sequence is executed.

Affected: None

TBRB TEST BIT IN REGISTER AND BRANCH IF ONE 1.6 us

o 3 4 7 8 11 12 15

7 I Ra I BIT FIELD I 6

ADDRESS FIELD

o 15

If (Ran)=l, EA - PR

If (Ran)=O, (PR)+2 - PR

The bit contained in the position in Ra designated by the contents of the Bit Field

(n) is tested. If the bit is equal to one, a branch is executed to the effective

memory location. If the bit equals zero, the next instruction in sequence is exe­

cuted.

Affected: None

CBMB COMPARE BIT AND MEMORY 4.2 us

o 3 4 7 8 11 12 l3 15

8 I 7 I BIT FIELD I I I Rxx
If 215 - n -(EA)=O
If 2 l5 - n - (EA)<O
If 2l5 - n -(EA»O

((PR) +2) - PR
((PR)+3) -PR
(PR) +4 - PR

OPERAND ADDRESS FIELD
f-----

BRANCH ADDRESS FIELD (EA)=2 15- n

BRANCH ADDRESS FIELD (EA) >2 l5 - n

o 15

The contents of the effective memory location are algebraically subtracted from the

value +2 15- n , where n is designated by the Bit Field in the first instruction word.

If the result equals zero, a branch is executed to the location specified by the third

instruction word. If the result is negative, a branch is executed to the location

specified by the fourth instruction word. Only the direct addressing mode without

indexing is permitted for the branch operation.

the next instruction in sequence is executed.

not altered.

Affected: None

3-53

If the result is greater than zero,

The contents of the memory location are

CBSB

o
9

u

COMPARE BIT AND MEMORY SHORT DISPLACED

3 4 7 8 11 12 15

I
7 IBIT FIELD

I
DF

BRANCH ADDRESS FIELD (EA)=2.L::>-n

BRANCH ADDRESS FIELD (EA»2.L::>-Jl

.l!:>

Bit Manipulation

Instructions

3.4 us

If 2l5 - n -(EA)=O
If 2l5 - n -(EA)<O
If 2 l5- n - (EA»O

«PR) +2) - PR
((PR) +3)- PR
(PR)+4 _ PR

The contents of

the contents of

n is designated

the memory location specified by the displacement field DF added to
lS-n register Rl are algebraically subtracted from the value 2 , where

by the Bit Field in the first instruction word. If the result equals

zero, a branch is executed to the location specified by the second instruction word.

If the result is negative, a branch is executed to the location specified by the

third instruction word.

Only the direct addressing mode without indexing is permitted for the branch operation.

If the result is greater than zero, the next instruction in sequence is executed. The

contents of the memory location are not altered ..

Affected: None

CBXB COMPARE BIT AND MEMORY SHORT INDEXED

o 3 4 7 8 11 12 15

9
I

F I BIT FIELD J Rx

BRANCH ADDRESS FIELD (EA)=2l5- n

BRANCH ADDRESS FIELD (EA»2l5- n

o 15

3.4. us

If 2l5 - n -(EA)=O
If 2lS- n - (EA)<O
If 2l5 - n -(EA»O

«PR) +2) - PR
«PR) +3) - PR
(PR)+4 - PR

The contents of the memory location specified by the contents of register Rx are
lS-n algebraically subtracted from the value 2 , where n is designated by the Bit Field

in the first instruction word. If the result equals zero, a branch is executed to the

location spec~fied by the second instruction word. If the result is negative,

a branch is executed to the location specified by the third instruction word.
Only the direct addressing mode without indexing is permitted for the branch operation.

If the result is greater than zero, the next instruction in sequence is executed. The

contents of the memory location are not altered.

Affected: None

3-54

o 3 4

6

GENERATE MASK IN REGISTER

7 8

7 I Ra

11 12 15

I BIT FIELD I

Bit Manipul.ation

Instruotions

l's - RaO- n
O's - Ran+l - ls

0.8 us

Ones are stored in register Ra in bit position RaO through Ran' where n is specified
by the contents of the bit field. Zeroes are stored in register Ra in bit positions

Ran+l through Rals . Overflow will result and PRO will be set if n = O.

Affected: Ra, (Overflow)

GMRB GENERATE MASK IN REGISTER AND BRANCH UNCONDITIONALLY 1.6 us

o 3 4 7 8 11 12 15

7 I BIT
l's - RaO_n

7 Ra FIELD
O's - Ran+l - ls

ADDRESS FIELD
EA - PR

o 15

Ones are stored in register Ra in bit positions RaO through Ran' where n is specified

by the contents of the bit field. Zeroes are stored in register Ra in bit positions

3-55

BYTE MANIPULATION INSTRUCTIONS

Byte ManipuZation

Instructions

These instructions enable bytes to be moved and interchanged in the general register

file. All of these instructions contain two register addresses Ra and Rb. By making

Ra equal to Rb, either byte or both bytes can be moved within one register. By making

Ra unequal to Rb bytes can be moved from register to register. The move instructions

cause one byte to be cleared to zero in the destination register, whether Ra=Rb or

Ra~Rb.

MUR

o 3 4

o

MOVE UPPER BYTE REGISTER TO REGISTER

7 8 11 12

I Rb

15

B I Ra

0.8 us

(RbO- 7) - Ra O_ 7
o - Ra 8_IS

The more significant byte stored in register Rb is transferred to the more significant

byte position of register Ra. Zeros are transferred to the less significant byte

position in register Ra. If Ra=Rb, the instruction becomes a "Clear Lower Byte in

Register" instruction.

Affected: Ra

MLR

o 3 4

o

MOVE LOWER BYTE REGISTER TO REGISTER

C

7 8

I Ra

]] 12

I Rb

0.8 us

(Rb 8- IS) ~ Ra 8_IS

o - RaO_7

The less significant byte stored in register Rb is transferred to the less significant

byte position of register Ra. Zeros are transferred to the more significant byte

position in register Ra. If Ra=Rb, this instruction becomes a "Clear Upper Byte in

Register" instruction.

Affected: Ra

MBR

o 3 4

o

MOVE BYTE RIGHT REGISTER TO REGISTER

7 8

I Ra

11 J 2 15

8 Rb

0.8 us

(RbO- 7) - Ra 8 _ IS
o - Ra O_ 7

The more significant byte stored in register Rb is transferred to the less sigriificant

byte position of register Ra. Zeros are transferred to the more significant byte

position in register Ra. If Ra=Rb, this instruction becomees a fast "Logical Right

Shift Eight Bits" instruction.

Affected: Ra

3-56

MBl

o 3 4

o

MOVE BYTE LEFT REGISTER TO REGISTER

7 8

I Ra

lJ] 2 15

9 Rb

Byte ManipuLation

Instzouations

O.S us

(RbS- IS) ~ RaO- 7

o - RaS- IS

The less significant byte ·stored in register Rb is transfe.rred to the more significant

byte position of register Ra. Zeros are transferred to the less significant byte

position in register Ra. If Ra=Rb, this instruction becomes a fast "Logical Left

Shift Eight Bits" instruction.

Affected: Ra

IBR

o 3 4

o

INTERCHANGE BYTES REGISTER TO REGISTER

7 8

I Ra

II 12
A Rb

0.8 us

(RbO- 7) -+ RaS- IS

(RbS- IS)-+RaO- 7

The less significant byte stored in register Rb is transferred to the more significant

byte position in register Ra, and the more significant byte stored in register Rb is

transferred to the less significant byte position in register Ra. If Ra = Rb, this

instruction becomes a "Rotate Eight Bits" instruction.

Affected: Ra

3-57

UNCONDITIONAL BRANCH INSTRUCTIONS

Unconditional Branch

Instructions

This group includes the Branch and the Branch and Link instructions. All are un­

conditional branch instructions. Each time a branch is executed all 16 bits of the

Program Register are replaced.

BLM BRANCH AND LINK 1.6 us

E

3 4 7 8 11 12 13 15

I I I
(PR) +2 -+ Ra

7 Ra Rxx
EA-+PR

o

ADDRESS FIELD

o 15

The 16-bit contents of the Program Register replace the contents of register Ra and

then the effective memory address replaces the contents of the Program Register.

Affected: Ra

NOTE: If Ra

BLI

o 3 4

E

Rxx then the effective address equals (P+l)+(P)+2.

BRANCH AND LINK IMMEDIATE

F I Ra

JJ 12 1 5

o

0.8 us

(PR) +2-+Ra

(PR)+l-+PR

The 16-bit contents of the Program Register replace the contents of register Ra and

then the next instruction in sequence is executed.

Affected: Ra

BRU BRANCH UNCONDITIONALLY 1.6 us

0 3 4 7 8 11 12 13 15

I I I
I

EA -PR
E 7 0000 Rxx

ADDRESS FIELD

0 15

The 16 bits of the effective memory address replace the contents of the Program

Register.

Affected: None

3-58

HOP BRANCH SHORT DISPLACED

o 3 4 7 8 11 12

F 7 o I DF

o

15

15

UnaonditionaZ Branah

Instruations

0.8 us

(PR)+DF - PR

The contents of the displacement field DF are added to the contents of the Program

Register. The result is then stored in the Program Register. Therefore a branch is

executed which has a range of from zero to +15 "locations with respect to the current
program location.

Affected: None

BRX BRANCH SHORT INDEXED 0.8 us

o 3 4 7 8 11 12 15 (Rx) - PR

F F o Rx

The 16 bit contents of register Rx replace the contents of the Program Register.
Affected: None

3-59

ControZ Instructions

CONTROL INSTRUCTIONS

This group includes Halt, No Operation and Set Protect Register.

HLT HALT

o 3 4 7 8 11 12 15

o o

Program Execution is halted until the program is manually restarted. The halt occurs

after the Program Register is advanced and the next instruction is transferred to the

instruction register.

Affected: None

NOP NO OPERATION 0.8 us

o 3 4

6 6

The execution of this instruction does not modify the contents of any general register

or memory location.

Affected: None

SPR SET PROTECT REGISTER 0.8 llS

0 OP CODE 3 4 PO ->- PBRO
7 8 9 10 11 12 13 14 15 PI ->- PBRI

0 2 pol PI P41
P2 ->- PBR2

X X X P2 P3 P3 ->- PBR3
P4 ->- PBR4

The 5 least significant bits (IRII-IR15) of the instruction word are transferred direct­
ly to the Protect Boundary Register.

Affected: Protect Boundary Register

3-60

INTERRUPT AND CALL INSTRUCTIONS

Inteppupt and Call

Instpuctions

The interrupt instructions provide the capability for complete program manipulation of

the states of all three latches present in each·priority interrupt level. The Request

Executive Service ·is the executive call instruction and the Request Multiprocessor

Interrupt instruction enables each CPU in a multiprocessor configuration to produce

an interrupt in the other CPU.

Each interrupt instruction contains a binary coded level field. This field permits

each of the 32 (maximum) levels to be addressed and operated on individually.

SIE SET INTERRUPT ENABLE 1.2 us

o 3 4 7 8 10 11 15 1 - ENAG, Level
2 6 o 1 0 LEVEL

Enable the priority interrupt level specified by the Level selection field.

The PFS/AS, Memory Parity, Unimplemented Instruction, System Protect and Floating Point

Overflow Trap interrupt levels are always enabled when present in the system. The En­

able latch state of these levels cannot be altered by instruction execution.

Affected: None

RIE RESET INTERRUPT ENABLE 1.2 us

o 3 4 7 8 10 11 15 o - ENAG, Level
2 7 o 1 0 LEVEL

Disable the priority interrupt level specified by the Level selection field.

The PFS/AS, Memory Parity, Unimplemented Instruction, System Protect and Floating Point

Overflow Trap interrupt levels are always enabled when present in the system. The En­

able latch state of these levels cannot be altered by instruction execution.

Affected: None

3-61

SIR

o 3 4

2

SET INTERRUPT REQUEST

7 8

11 0 0

J 0 J J

6 LEVEL

Interrupt and CaZZ

Instruations

1.2 us

1 - REQG, Level

Set the Request latch of the priority interrupt level specified t¥ the Level selection

field. NOTE: Levels C16 and D16 should not be requested by the program.

Affected: None

RIR RESET INTERRUPT REQUEST 1.2 us

0 3 4 7 8 10 11 15

I 2 I 7 I 100 I LEVEL I o - REQG, Level

Reset the Request latch of the priority interrupt level specified by the Level selection

field.

Affected: None

SIA SET INTERRUPT ACTIVE 1.2 us

o 3 4 7 8 10 11 15

2 6 100 0 LEVEL 1 - ACTG, Level

Activate the priority interrupt level specified by the Level selection field.

NOTE: Level o (Power Fail/Auto Start) may not be set active by the program.

Affected: None

RIA RESET INTERRUPT ACTIVE 1.2 us

0 3 4 7 8 lQ II J 5

I 2 I 7 I o 0 0 I I 0- ACTG, Level LEVEL

Deactivate the priority interrupt level specified by the Level selection field.

Affected: None

REX REQUEST EXECUTIVE SERVICE 0.8 us

o 3 4 7 8 15

2 3 I Service Field I

An interrupt request signal is sent to the Unimplemented Instruction Trap level. The

executive service requested is defined by the contents of the Service Field. The pro­

gram count is not advanced before the trap is generated. Therefore the stored PSW

contains the address of the REX instruction.

3-62

In.terrupt and CaZZ
Instructions

The Unimplemented Instruction Trap level will become active and the interrupt routine

entered at the completion of execution of the REX instruction, provided that neither

this level nor any higher level is already active; If this level or a higher level

is active, execution of the REX cannot be completed. The machine must be manually

cleared and restarted if this error condition occurs.

Affected: None

RMI REQUEST MULTIPROCESSOR INTERRUPT 0.8 us

o 3 4 7 8 15

1

A pulse is generated by the executing CPU which requests the interprocessor

communication interrupt in the other CPU.

Affected·: None

C'A\R CLEAR ACTIVE AND RETURN 1.B us

o 3 4 7 8

2 4

11 12

o o

15

o ---- ACTHighest Active

(_) ... PR

The Active latch of the highest active interrupt level is cleared and the 16 bit con­

tents of the memory location dedicated to the highest active level and transferred to

the Program Register. If no interrupt is active when the CAR instruction is executed,
the contents of location 0 are transferred to the Program Register. If an Interrupt

is requesting when the CAR instruction is executed, (the interrupt) will not go in

service until 1 instruction after the CAR is executed.

Affected: None

CIR CLEAR INTERRUPT AND RETURN 1.8 us

o 3 4 7 8 11 12 15
o -+ ACTHighest Active

2 5 o o
o ---- REQHighest Active

Both the Active and Request latches of the highest active interrupt level are cleared

and the 16 bit contents of the memory location dedicated to the highest active level

are transferred to the Program Register. If no interrupt is active when the CIR

instruction is executed, the contents of location 0 are transferred to the Program

Register.

Affected: None

3-63

INPUT/OUTPUT INSTRUCTIONS

Input/Output

Instructions

Two input instructions are provided to enable a data or status word to be transferred

from any peripheral device to any general register. Two output instructions are pro­

vided to enable a data or command word to be transferred from any general register to

any peripheral device. Some peripheral devices such as the disc transfer data only

under control of the Direct Memory Processor. Therefore, only command and status

words are transferred under program control to/from these devices.

Up to 64 peripheral devices, consisting of four groups of 16 each, are addressable by

each instruction. The group address is obtained from the two least significant bits

of the operation code field. Therefore four operation codes and mnemonics are assigned

to each instruction.

I/O GROUP A Consists of device addresses OO-OF

I/O GROUP B Consists of device addresses 10-lF

I/O GROUP C Consists of device addresses 20-2F

I/O GROUP D Consists of device addresses 30-3F

All instructions are executed in the fixed length of time contained in each instruction

description.

ISA ISA (48) Input Status From I/O Group A

ISB ISB (49) Input Status From I/O Group B

ISC ISC (4A) Input Status From I/O Group C

ISO ISD (4B) Input Status From I/O Group D

2.0 us

0 3 4 5 6 7 8 11 12 15 G, D- I/O Address Lines

I 4
1102 1

G
1

Ra I D
1 Device Status -Ra

The group (G) and device (D) numbers contained in the instructio.n word are placed on

the I/O bus address lines.

Up to 16 bits of status are then transferred from the addressed device over the I/O

bus to replace the contents of register Ra.

Affected: Ra

Input/Output

Instl'uations

IDA IDA (4C) Input Data From I/O Group A

lOB IDB (4D) Input Data From I/O Group B

IDC IDC (4E) Input Data From I/O Group C

100 IDD (4F) Input Data From I/O Group D

2.0 us

0 3 4 5 6 7 B 11 12 15

1
4 1112

1
G I Ra

1
D I G, D- I/O Address Lines

Device Data- Ra

The group (G) and device (D) numbers contained in the instruction word are placed on

the I/O bus address lines.

Up to 16 bits of data are then transferred from the addressed device over the I/O

bus to replace the contents of register Ra.

Affected: Ra

DCA OCA (40) Output Command To I/O Group A

DCB OCB (41) Output Command To I/O Group B

DCC OCC (42) Output Command To I/O Group C

DCD OCD (43) Output Command To I/O Group D

1.2 us

0 3 4 5 6 7 B 11 12 15

1
4 I 00 I G I Ra I D I

G, D- I/O Address Lines
2

(Ra) - I/O Data Lines

The group (G) and device (D) numbers contained in the instruction word are placed on

the I/O bus address lines.

The 16 bit output command stored in register Ra is then transferred to the I/O

register and placed on the I/O bus data lines.

3-65

Input/Output

Instructions

aDA ODA (44) Output Data To I/O Group A

ODB ODB (45) Output Data To I/O Group B

ODe ODC (46) Output Data To I/O Group C

ODD ODD (47) Output Data To I/O Group D

1.2 us

0 3 4 5 6 7 8 11 12 15

101 2 I I I I G, D - I/O Address Lines
4 G Ra D

I/O Data Lines (Ra) -
The group (G) and device (D) numbers contained in the instruction word are placed on

the I/O bus address lines.

The 16 bit data word stored in register Ra is then transferred to the I/O register

and placed on the I/O bus data lines.

Three signals are needed to enable conunand decode. They are:

DRIOFN - input/output function

DRCDFN - conunand/data function

DRIOSN - I/O Sync

Data flow is determined by DRIOFN. If DRIOFN is true (low), data is input. If DRIOFN

is false (high), data is output.

DRCDFN determines whether the instruction is a command or data. If DRCDFN is true

(low), the instruction is data. If DRCDFN is false (high), the instruction is a

command (or status) .

These lines are interrogated at I/O sync time, DRIOSN.

DRCDFN DRCDFN

DRIOFN Input Data Input Status
IDA ISA

Output Data Output Conunand DRIOFN ODA OCA

3-66

IV. PRIORITY INTERRUPTS,

OVERVIEW
The MODCOMP III priority interrupt system contains four standard levels and is

expandable in increments of four levels up to a total of 32 levels. Each level can

be selectively enabled and disabled under program control. In addition, the recog­

nition of interrupt signals can be deferred for all interrupt levels below a selected

level. Furthermore, interrupt request signals can be generated by instruction

execution.

Of the four standard interrupt levels, two are I/O interrupt levels which have

party line interrupt structures with seventeen priority sub-levels each and automatic

source identification for up to 64 devices.

Each priority level is assigned two dedicated memory locations for the entry and

return addresses unique to that level. The entry address of the interrupt processing

routine is stored in one dedicated location. The return address, which is the contents

of the Program Register (PR), is stored in the other dedicated location at the time

the interrupt roUine was entered. The seventeen sub-levels of each I/O interrupt level
share the return address of that level but are assigned unique entry address locations.

Nested interrupt routine execution is automatically handled for the 32 priority levels.

The sub-levels of each I/O priority interrupt level cannot interrupt each other, but

if several attempt to interrupt at the same time, the highest priority sub-level is

recognized first.

LEVEL ASSIGNMENTS

The dedicated memory locations for each interrupt level and the signals connected

to these levels are shown in Table 4-1.

There are four standard interrupt levels (O,4,C, and D) present in each MODCOMP III

and they are connected to Power Fail Safe/Auto Start, Unimplemented Instruction Trap

and to the I/O Data and Service party lines.

The first optional group of interrupts (S,6,E, and F) are dedicated to the Executive

Features Option. The second optional group of interrupts (1,2,3, and 7) are assigned

to the System Protect option with level 7 available for external interrupt signals.

Priority levels F and lF are dedicated to the Task Scheduler Interrupt which allows

the MAX III Executive to maintain a software task priority queue below the hardware

priority queue. If any interrupt groups are added below level F, the group contain­

ing level lF must be included so that the Task scheduler will be the lowest interrupt

level present.

4-1

MEMORY
LOCATION16

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
SF

LEVEL16

o

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

18

19

lA

lB

lC

ID

IE

IF

PROGRAM
LINKAGE

Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Not Used
Return
Not Used
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry
Return
Entry

MODEL

Std.

3721

3721

3721

Std.

3720

3720

3721

3722

3722

3722

3722

Std.

Std.

3720

3720

3723

3723

3723

3723

3724

3724

3724

3724

3725

3725

3725

3725

3726.

3726

3726

3726

INTERRUPT SIGNAL

Power Fail Safe/Auto Start

Memory Parity

System Protect

Multiprocessor Communications

Unimplemented Instruction trap

Floating Point Overflow

Real Time Clock

External

External

External

External

External

I/O Data Party Line

I/O Service Party Line

Console Interrupt

Task Scheduler

External

External

External

External

External

External

External

External

External

External

External

External

External

External

External

Task Scheduler

*The model number represents sequential a.dditional interrupt options in groups

of four.

TABLE 4-1 INTERRUPT LEVEL ASSIGNMENTS

4-2

INTERRUPT OPERATION AND PROGRAM CONTROL

Each interrupt level contains three flip-flops which collectively define the state

of the level.

The Request flip-flop is set by the external interrupt request signal or by execution

of the Set Interrupt Request (SIR) instruction. The purpose of this flip-flop is to

store the request until it can be processed by the computer. It is reset by execu­

tion of either the Clear Interrupt and Return (CIR) or the Reset Interrupt Request

(RIR) instruction.

The Enable flip-flop, when set, permits the stored request to interrupt the program.

This flip-flop is set by execution of the Set Interrupt Enable (SIE) instruction and

reset by execution of the Reset Interrupt Enable (RIE) instruction.

The Active flip-flop is set when the program interrupt signal is generated. It is

not reset, except by execution of the Reset Interrupt Active (RIA) instruction, until

the Clear Interrupt and Return (CIR) instruction is executed to exit an interrupt

routine. Therefore, it indicates that an interrupt was being processed at this level

and enables program control to be returned to the level if one or more higher priority

interrupts occurred while the level was being serviced. The Clear Active and Return

(CAR) operates just as the Clear Interrupt and Return (CIR) except that the request

latch is not reset, thus allowing new responses to be acknowledged that may have

occurred while the level was active. The Set Interrupt Active (SIA) and Reset

Interrupt Active (RIA) instructions are provided to enable a level to be made active

without causing a program interruption. Program interruption can be deferred from

the level made active down through all lower levels by execution of these two instruc­

tions.

Operation of the Master Clear switch resets all three flip-flops in each level,

except the Enable flip-flops for levels 0, I, 2, 4, and 5 (Power Fail-Safe/Auto Start,

Memory Parity, System Protect, Unimplemented Instruction Trap and Floating Point Overflow).

Based on the operation of the three interrupt level flip-flops, the conditions

necessary for interrupting the computer from a given interrupt level are:

The level must be enabled

A request signal must have occurred

No higher priority level must be active

The execution of the current instruction must be completed

When these conditions are met, program switching occurs. The current l6-bit

contents of the Program Register is stored in the Return location assigned to the

interrupting level. The l6-bit contents of the Entry location assigned to the level

are then transferred to the Program Register, and the execution of the interrupt

routine is started. Program switching requires 2.4 ~sec.

4-3

The interrupt level is cleared by execution of the Clear Interrupt and Return

instruction. Execution of this instruction clears the Request and Active flip-flops

of the highest active level and transfers the 16-bit contents of the dedicated

return location to the Program Register.

INTERRUPT SUB-LEVEL OPERATION AND PROGRAM CONTROL

The I/O data and Service Interrupt levels, C and D, each provide 17 sub-levels which

are assigned to peripheral devices and to external equipment (refer to Table 4-2).

The higher transfer rate devices such as the discs and analog input subsystems are

assigned to the highest priority sub-levels. The data and service interrupt priorities

are identical for each peripheral device. Each data and service sub-level is iden­

tified by the dedicated memory locations for storing subroutine entry addresses.

Sub-levels of a given priority interrupt level cannot interrupt each other, but if

several attempt to interrupt at the same time, the highest priority sub-level is

recognized first. Any data interrupt sub-level can interrupt any service interrupt

sub-level so that data transfers have precedence over error or status checking

routines.

I/O PRIORITY
SUB-LEVEL

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

INTERRUPT LOCATION
DATA SERVICE

81

82

90,91

98,99

83

92,93

BO-B7

84

85

86

94

87

88

89

8B

8A

B8-BF

Cl

C2

Dl

D8,D9

C3

D3

FO-F7

C4

C5

C6

D4

C7

C8

C9

CB

CA

F8-FF

PERIPHERAL DEVICE

Moving Head Disc

Fixed Head Disc

High Level Analog Input Subsystems

Communications Multiplexer

High Performance Magnetic Tape

Wide Range Analog Input Subsystem (#1)

Input/Output Interface Subsystem (#1)

Moderate Performance Magnetic Tape

Card Readers (300-1000 CPM)

Card Punch

Wide Range Relay Analog Input Subsystem

Line Printer (600 LPM)

X-Y Plotter

High Speed Paper Tape Punch

Line Printer 50-150 LPM

Teletype/Paper Tape Reader

Input/Output Interface Subsystem (#2)

TABLE 4-2 Sub-Level Assignments

4-4

When a Data Interrupt is serviced (level Cl6), the contents of the Program Register

are stored in memory location 38 and are replaced by the contents of the data

interrupt entry location (80 to 3F) for the highest priority peripheral device. The

contents of the entry location point to the unique interrupt subroutine for that I/O

device.

The interrupt subroutine is exited with a CIR instruction which clears the interrupt

level and branches to the address contained in memory location 38. If another Data

Interrupt request is pending, the interrupt processing routine is re-entered

immediately.

When a Service Interrupt is serviced, the operation is identical except that the

entry and return addresses are 3A and 3B with dedicated sub-level interrupt loca­

tions CO-FF.

For additional information on the programming of the I/O interrupts, refer to

Section V.

TRAPS.
Traps are defined as conditions which cause the execution of the current instruction

to be aborted before completion and generate an interrupt request signal. Only these

internal conditions operate as,traps:

Unimplemented Instruction

Memory Parity

System Protect Violation

Floating Point Overflow

Unimplemented Instruction ~

An Unimplemented Instruction Trap occurs upon the execution of a REX instruction or

for certain classes of instruction which are optionally added to the basic instruc­

tion set. These Unimplemented Instruction groups include:

Multiply/Divide Instructions

Floating p'oint Instructions

Custom Defined MACRO Instructions

When this trap occurs, the contents of the Program Register point to the memory

location which contains the unimplemented instruction. Therefore, the instruction

can be examined and be simulated by a subroutine. Keeping the contents of the

Program Register from being advanced until the Unimplemented Instruction interrupt

(level 4) becomes active, means that unimplemented instructions must not be present

in any higher level interrupt routines.

The Unimplemented Instruction interrupt level is always enabled. It cannot be

disabled by instruction execution. This condition prevents the possibility of

stalling the machine due to an unimplemented instruction occurring when the level

is disabled.

4-5

The Opcodes which have no assigned mnemonic are undefined instructions and their

operation is unspecified. These undefined instructions will not generate an unimple­

mented instruction trap nor will they be executed as NOPs. These Opcodes should

not be used.

Memory Parity Trap

Instructions which resul't in a memory parity trap are aborted. If the optional

memory parity interrupt level is not present, the computer will suspend all opera­

tions until the master clear switch is depressed. If the memory parity interrupt

level is present, the interrupt will be processed in the normal fashion. If a

parity error occurs during a higher priority interrupt subroutine (Power Fail Safe/Auto

Start) the interrupt will not occur until the higher level is cleared. The memory

parity interrupt is always enabled.

System Protect

This trap is used by the MAX III Modular Applications Executive to allow the checkout

and execution of programs in unprotected areas of memory without interfering with

the execution or integrity of programs residing in the protected areas of memory.

This trap occurs if a memory protect violation, privileged instruction violation,

or illegal branch is attempted by the unprotected program. The trap mechanism

returns control to MAX III and results in the immediate aborting of the offending

program.

A memory protect violation occurs when an attempt is made to write into protected

memory by an instruction contained in unprotected memory. At this time a trap will

occur and prevent the illegal write operation from occurring. If a branch is

attempted into protected memory either directly or indirectly (a short indexed

operation, for example), by an instruction or indirect address contained in unpro­

tected memory, the branch occurs before the trap is implemented. The PR will be

updated by the branch and will contain the address of protected memory into which

the branch was made.

A privileged instruction violation occurs when a program in unprotected memory

attempts to execute any CONTROL instruction, INPUT/OUTPUT instruction or INTERRUPT

AND CALL instruction except REX.

The System Protect feature is enabled and disabled by the console key switch.

FLOATING POINT OVERFLOW

Floating point operands presented to the floating point unit must be.normalized. How­

ever, floating point overflow or underflow will occur if the resultant exponent of a

floating point operation is unable to be expr~ssed within the range of the nine bit

binary exponent field of the floating point format.

4-6

If the resultant floating point fraction must be left shifted to normalize, the binary

exponent must be decremented by one for each bit position left shifted. If the ex­

ponent decrements past all zeroes to all ones, floating point underflow has occurred.

If the resultant floating point fraction must be right shifted to be normalized, the

binary exponent must be incremented by one for each bit posttion right shifted. If

the exponent increments past all ones to all zeroes, floating point overflow has

occurred.

Either occurrence causes the floating point overflow trap mechanism to terminate the

normal FPU operation and does not allow any results to be transferred back to the

CPU register file. The original register operands are maintained in the CPU register

file and may be interrogated for further overflow/underflow clarification.

The floating point overflow trap level, when present in the system, is LevelS and is

always enabled.

POWER FAIL SAFE/AUTO START INTERRUPT

When the a-c line voltage drops below 105 volts, an interrupt is generated a minimum

of 200 memory cycles before the memory write current is disabled. This feature allows

the inclusion and execution of a user supplied power failure interrupt routine to

store all operands and I/O status, for example, which protects the integrity of the

operating program stored in memory during transient or long term power failure condi­

tions.

Upon the generation of a power failure interrupt, the Program Register is stored in

memory location 20 and the power failure routine is entered using the address stored

in location 21.

When a-c power is restored, the system is normalized, an interrupt is generated, and

the start-up routine is entered using the address st?red in location 21. The initial

address of the auto-start subroutine should be stored in location 21 by the power

failure subroutine. This level is always enabled.

4-7

V.INPUT /OUTPUT

OVERVIEW

The basic I/O facility of the MODCOMP III computer consists of a time-shared (party

line) I/O bus capable of transferring data, commands and device status. Data can

be transferred between any general register and any of up to 64 addressable

peripheral devices. Up to 16 bits can be transferred in parallel over the bus

under program control. In addition, the Direct Memory Processor (DMP) is available

as an optional I/O facility which permits transfer of blocks of data to and from

memory on a cycle stealing basis.

Figure 5-1 is the input/output subsystem block diagram. The I/O bus and a

typical peripheral device controller are shown in addition to the computer I/O

subsystem.

INSTRUCTION EXECUTION SEQUENCE

The execution sequence for all I/O instructions - Input Data, Input Status, Output

Data, .Output Command - consists of:

(1) The device address consisting of bits 6, 7 and 12-15 are transferred

from the instruction register, through the I/O Control (Figure 5-1) to

the addressed peripheral device controller.

(2) A set of control signals are sent to the addressed controller which define

the operation - Input Data, Input Status, Output Data, or Output Command.

(3) If the control signals call for an input, the device places a data word

or status word on the 16 data lines of the I/O bus and this word is then

transferred to register Ra as specified by the instruction. The fixed

execution time for all input instructions is 2.0 microseconds. If the

control signals call for an output, the contents of register Ra, as

defined in the instruction word, are transferred to the output buffer

register and then placed on the 16 data lines of the I/O bus. Execution

of all output instructions is completed in a total of 1.2 microseconds.

5-1

VI
I

IV

COMPUTER I/O I/O BUS TYPICAL DEVICE CONTROLLER
~ _______ --,I\ 1\ 1\

("\ (, ('-------,
INSTRU

REG

HODULA
BU

:::TION

ISTER

R
S

CONTROL
MEMORY
LOGIC

~ -- ..

~

--

ADDRESS
I/O -.. INSTRUCTION

CONTROL CONTROL -I
DECODE

I
I

L
I
I
I

INPUT k; I CmmAND \L
~ lA

REGISTER I
DECODE

I
I
I
I
I
I ~
I ~ DATA

TRANSFER
I .A CONTROL
I ::::~

'"
I
I
I

Ii. I ,.- -- ---~
I I I

I
DIRECT MEllORY I DMP I

STATUS
~ VI--

I PROCESSOR I
CuNTKUL I ~

CONTROL
L _______ .I

I
I
I
I
I Vt
I
~ PRIORITY I

PRIORITY

INTERRUPT / INTERRUPT

CONTROL .- P . I. I CONTROL . CONTROL

l.....oL I

I
SOURCE ID

FIGURE 5-1 INPUT/OUTPUT SUBSYS'l'EH BLOCK DIAGRAH

CONTROL ----...

VA
~

DATA .r--.......
-~

-
STATUS ...

-...

~EVICE

TRANSFER FORMATS

Data is transferred over the I/O Bus as a l6-bit word. If a peripheral device

requires or generates a data word of less than 16 bits, the device data word occupies

the least significant bits of the l6-bit CPU data word with the unused bits appearing

as zeroes. When less than 16 bits are output to a device, the outputs are taken from

the less significant end of the register Ra or memory and zeroes are stored in the

otherwise unused bits at the most significant end. This format is consistent with the

operation of the byte manipulation instructions.

BYTE TRANSFER FORMAT

I BYTE 0

. REGISTER I/O TRANSFER MODES'

REGISTER
BYTE 1

I
PERIPHERAL

DEVICE

Three transfer modes are available for program controlled transfers.

The interrupt mode can be used with any device which generates a transfer request

signal. This group of devices includes all standard computer peripherals. The

transfer request signal is connected to an interrupt level. Interrupt service

routines can perform transfers and all required overhead functions at rates up to

approximately 60K words per second.

The ~ and transfer mode is performed by first testing a device by means of the

Input Status instruction. When the "Data Ready" status bit equals zero, a transfer

can be made to or from the addressed device. The maximum transfer rate in this

mode is determined almost entirely by the timing of the device.

The ~ ~ can be used with devices which can perform a word transfer any time

the computer executes an I/O instruction addressed to the device. Output bursts

of up to 15 words (one per register) can be performed at the burst rate of 833K

words per second. Input bursts can be performed at 500K words per second. This

mode is useful in applications such as updating a group of digital-to-analog
converter registers.

5-3

INPUT/OUTPUT INTERRUPTS

Two standard I/O priority interrupts are provided to initiate transfers between

peripheral devices and the cpu. The higher priority data interrupt, level C16 '

is used to initiate a data word or byte transfer. The service interrupt, level D16 ,

is used to initi"ate service routines for end of record, error, and similar signals.

Under program control, each I/O priority interrupt can be connected or disconnected

within each peripheral device. If a peripheral device has a stored interrupt request

when a command is issued to disconnect the interrupt, the request will be reset.

No interrupt signals are stored in a disconnected controller. Therefore when a

controller is reconnected, all interrupt signals are cleared.

Even though all peripheral devices share the two standard I/O priority interrupts,

the party line system used provides rapid response to interrupt requests. When

a peripheral device requires a data transfer, the data request flip-flop in the

device controller is set. Since the data request line is common to all peripheral

devices, any data request flip-flop that is set will cause the data request line

to be true. If no higher priority interrupt level is active, the cPU I/O subsystem

will issue a data queue update command. In response to this command, all peripheral

devices that have their data request flip-flop set, place their priority level on

the data lines and their source ID on the source ID lines. The data lines are

used to provide priority sub-levels for the data interrupt. The highest sub-level

corresponds to data bit ° on the data lines and the lowest sub-level to data bit 15.

During the data queue update command each peripheral device examines all of the

data lines corresponding to a higher priority sub-level than its own. If a

higher priority sub-level is detected, the peripheral device removes its source ID

from the source ID lines. At the end of the data queue update command the following

occur:

The CPU internally stores the source ID of the highest priority peripheral

device, to be used for defining the interrupt entry location •

• The highest priority peripheral device resets its data request flip-flop

and removes its source ID from the source ID Bus.

All peripheral devices remove their priority sub-levels from the data lines.

Next, the CPU stores the current contents of the Program Register in location 38 16
and branches to the address contained in one of sixty-four dedicated locations

(80-BF)16 specified by the source ID. The subroutine is then entered to transfer

data.

The service interrupt operates in the same manner as the data interrupt, except

the dedicated return location is 3A16 and the dedicated entry locations are

C0 16 -FF16 •

Refer to Section IV for more information on the I/O interrupts.

5-4

DIRECT MEMORY PROCESSOR'

The DMP provides direct memory access capability for 16 peripheral device controllers.

All 16 controllers can perform transfers of blocks of data to/from computer memory

at the same time on an inter-leaved basis. Devices connected to DMP channels also

accept Input Data and Output Data commands when not performing DMP controlled block

transfers.

A pair of dedicated memory locations are assigned for each of the 16 controllers.

Each controller is assigned a Transfer Count (TC) location (60-6F)16 and a

Transfer Address (TA) location (70-7F)16 having the formats:

DMP TRANSFER PARAMETER FORMATS

NEGATIVE WORD COUNT ~16384 TRANSFER COUNT

o 15

ADDRESS FIELD TRANSFER ADDRESS

o 15

C 1 Transfer Single Block C o Transfer Chain of Blocks

Transfer Initiation

Once a peripheral device is appropriately selected and initialized, a data transfer

is started by storing the desired starting address for the transfer in the TA loca­

tion and the negative number~'of words to be transferred in the TC location. An out­

put command instruction in the transfer initiate format is then executed. Transfers

occur automatically at the rate requested by the device. The TA and negative TC are

incremented after each transfer. The maximum length of a single block is 16384 words.

When TC equals zero, a data interrupt is generated. If this interrupt is connected

by the program to the interrupt (level C16) party line and if the level is enabled,

the computer will be interrupted .as soon as the data level reaches the top_of the

interrupt queue.

When the device can accept a new command, the service interrupt (level D16) is

generated, if program connected to the service interrupt party line.

The use of both the data and service interrupts provides a choice between two "end

of block" signals. One occurs as soon as the last wor.d has been transferred and the

other occurs when the device is ready to be commanded again, which is often milli­

seconds after the last transfer.

Data Chaining

If bit 0 of the Transfer Count is set to zero (C=O) before the initiate command is

executed, a new block of words will be transferred automatically after the transfer

of the current block is completed. The data interrupt signifies the completion of

5-5

each block. The TA and TC parameters for the new block are obtained from the two

memory locations immediately following those occupied by the current block. TC is

taken from the first location and TA from the second location after the data block.

If c=o in the TC parameter, data chaining will continue until a TC parameter is

encountered with C=l"

Register File

The four highest priority DMP channels are supplied with registers in which the

current TA and TC are stored. Each time a block transfer is initiated, the contents

of the TA and TC dedicated memory locations are automatically transferred to the

two registers associated with the channel. Transfers can be made over these channels

at rates up to 400K words per second, which are determined by the I/O subsystem timing.

At the end of a transfer sequence just prior to 81 generation, the final TA is stored

in a dedicated location from the appropriate channel register.

The TA and TC parameters remain in the dedicated memory locations in the 12 lower

priority DMP channels. Each time a transfer is made, these parameters are updated

and stored back in memory. The maximum transfer rate for these channels is 200K

words per second.

PERIPHERAL DEVICE ASSIGNMENTS

All programming parameters for MOD CaMP peripheral devices are listed in Table 5-1.

Unassigned dedicated locations have been left for other peripheral devices, anaiog

input subsystems, communication subsystems, custom devices and future system expan­

sion.

The four pairs of registers in the DMP register file are assigned to the high level

analog input subsystem (2 pairs), disc, and high speed magnetic tape controllers.

Other devices can also be assigned register file channels in place of these units

on a special basis.

PROGRAMMING CONSIDERATIONS

The sequences of programming steps necessary to perform typical input/output functions

are described in this section. The descriptions are general purpose and therefore

are designed to cover all contengencies.

REGISTER I/O INTERRUPT MODE SEQUENCE

New Command Initiation:

Store interrupt subroutine starting addresses in the data and service

interrupt level dedicated locations •

.')-6

I/O INTERRUPT LOCATIONS DMP LOCATIONS DEVICE PERIPHERAL DEVICE
PRIORITY DATA SERVICE TC TA ADDRESS

0 81 Cl 61 71 01 Moving Head Disc

1 82 C2 62 72 02 Fixed Head Disc

2 High Level Analog Input
Subsystem

90 60 70 10 -Channel Output
91 Dl 63 73 11 -Data Input

3 Communications Multip.
98 D8 6F 7F 18 -Controller
99 D9 19 -Channels

4 83 C3 63 73 03 High Performance Mag-
netic Tape

5 Wide Range Analog Input
System

92 65 75 12 -Channel Output
93 D3 66 76 13 -Data Input

6 AO-A7 EO-E7 20-27 Input/Output Interface
Subsystem

7 84 C4 64 74 04 Moderate Performance
Magnetic Tape

8 .85 C5 05 Card Readers (300 and
1,000 CPM)

9 86 C6 06 Card Punch

10 94 D4 14 Wide Range Relay Analog
Input Subsystem

11 87 C7 07 Line Printer (600 LPM)

12 88 C8 08 X-Y Plotter

13 89 C9 09 Paper Tape Punch

14 8B CB OB Line Printer (50-l50LPM)

15 8A CA OA Teletype/Paper Tape
Reader

16 A8-AF E8-EF 28-2F Input/Output Interface
Subsystem

TABLE 5-1 Peripheral Device Interrupt Assignments

5-7

• Reset previous error and interrupt status by the execution of an Output

Command Instruction with a No Op output command, disconnecting both

interrupts.

• Test present device status by executing an Input Status instruction.

• If status indicates inoperability or an invalid (all zero) status word,

exit to error routine~ otherwise continue.

• Execute an Output Command Instruction specifying register mode, input

or output, connection of interrupts and any other modifiers required

by the particular peripheral device. Exit and wait for interrupt.

The controller is now busy and will not respond to new initiation commands. It will

respond to Input Status, Input Data and Output Data Instructions and an Output Com­

mand Instruction with a Terminate Command. The controller will produce the data

interrupt when a data transfer is required and the service interrupt if a malfunction

occurs or at the end of the media record.

Response to Data Interrupt:

The data interrupt processing routine is automatically entered when the

requesting controller has the highest priority.

• Preserve original contents of RI - execute an STM, RI,A. Repeat for all

other registers to be used as working registers.

Check word count, if transfer not complete, perform input or output opera­

tion as required. If output, load new data into appropriate place in

register, execute Output Data Instruction and update word and byte counts

appropriately. If input, execute Input Data Instruction and move or store

data as required before updating word and byte counts.

• If the last word required was transferred, an Output Command Instruction

should be executed, issuing a Terminate Command to the controller. This

will stop further transfers and reset the data interrupt request.

• Restore the previous contents of the working registers.

Execute a CIR Instruction to exit the routine and return to the original

program.

Response to Service Interrupt:

The Service Interrupt Processing routine is automatically entered if the

requesting controller has the highest priority. This interrupt is gene­

rated after all hardware checks are complete and the controller can accept

a new initiation command.

Preserve the original contents of RI - execute an STM,RI,A. Repeat for

all registers to be used as working registers.

Check validity of the transfer by issuing an Input Status instruction.

If an abnormality is indicated, exit to error recovery routine.

If previous checks are satisfactory and no further tasks required for

controller, restore the previous contents of the working registers and

execute a CIR.

5-8

If previous checks are satisfactory and another transfer sequence is desired,

execute an Output Command Instruction with a new initiation command. This

command will reset any status conditions that may be set. Execute a CIR to

exit the subroutine.

REGISTER I/O TEST AND TRANSFER MODE

Register I/O transfers may be accomplished without the use of data interrupts. A

"Data Ready" bit is provided in the standard status word for this purpose. To

operate in this mode, the data interrupt is disconnected by the initiation command

and the data ready bit is tested during each transfer sequence. Device control is

performed in the same manner as in the interrupt mode.

DIRECT MEMORY PROCESSOR I/O MODE·

The optional DMP mode frees the program from the task of handling individula data

word transfers, and increases net throughput capabilities. The software initiation

and termination sequ~nces are described in this Section in the most general manner

possible. The differences in operation of the DMP register file and memory file are

transparent to the software so the discussion that follows applies equally to both.

New Command Initiation:

• Store interrupt subroutine starting addresses in the two dedicated interrupt

level locations.

• Reset previous error or interrupt status by execution of an Output Command,

which also disconnects both interrupt levels.

• Test present status by executing an Input status Instruction. If inoperability

is indicated or an invalid (all zero) status word, exit to error routine.

• Store a transfer address and a word count in the two DMP dedicated locations.

• Execute an Output Command Instruction with an Initiate Command specifying DMP
mode, input or output, connection of service interrupt, optional connection of

data interrupt, and any other modifiers required by the particular peripheral.

• Exit and wait for the interrupt.

The controller is now busy and will not respond to new initiation commands. It will

respond only to an Input Status Instruction or an Output Command Instruction with a
Terminate or No Op Command.

Response to ~ Interrupt:

• The data interrupt processing routine is automatically entered when the con­
troller requesting has highest priority.

• Preserve the original contents of Rl - execute an STM,Rl,A. Repeat as required
for all working registers.

The occurrence of this interrupt, in this mode, designates that the transfer

of the block of data has been completed (TC=O). The progr,am may use this fact

5-9

to gain time to manipulate data prior to the completion of the physical media

operation.

• Execute a CIR, which will return control to the point of interruption.

Response !:£ Service Interrupt:

• The service interrupt processing routine is automatically entered when the

requesting controller is the highest in the interrupt queue. This interrupt

is generated after all hardware status checks are complete and the controller

is ready to accept a new initiation command.

• Preserve the original contents of Rl - execute an STM,Rl,A. Repeat for all

other registers to be used as working registers.

• Check validity of the transfer by executing an Input Status instruction.

If an abnormality is indicated, exit to an error recovery routine.

Check final transfer address in dedicated location. If improper, exit to

error routine.

If the previous checks are satisfactory and no further tasks are required,

execute a CIR instruction to return to the original program.

• If the previous checks are satisfactory and another block transfer is desired,

load the word count and transfer address into the dedicated locations. Then

execute an Output Command Instruction with a new Initiation Command. This

command will reset any status conditions that may be set.

Execute a crR instruction to exit the routine.

OUTPUT COMMAND FORMATS

An Output Command ~nstruction transfers the 16 bit output command stored in register

Ra to the I/O register where it is placed on the I/O bus data lines. There are three

basic command formats; Select, Control and Transfer Initiate. The bit designations

for each group are defined below. All standard peripheral controllers follow these

format conventions. All Commands except End-of-Block and Terminate reset all stored

status if the device is not busy. The specific commands and tests for each periphe­

ral device are listed in Appendix C. The standard controllers interpret the command

as follows:

Select Format

012 15

BITS FUNCTION

0,1 Must both be zero. These bits specify the select format.

2-15 Specify a set up condition such as unit number (multi-unit controllers) ,

density, head number, etc.

5-10

Control Format

01234 5 15

BIT FUNCTION

o Must be zero.

1 Must be one. This bit is used in conjunction with bit 0 to specify

the control format.

2 Specifies the state of the data interrupt:

Zero - Disconnects the device controller and resets the request in

the controller if present.

One - Connects the device controller sub-level to the data interrupt

level.

If the DMP mode had previously been specified by a Transfer Initiate

command, the data interrupt will occur when the Word Count = O.

If the register I/O mode had previously been specified by a Transfer

Initiate command, the data interrupt is defined as Data Request.

3 Specifies the state of the service interrupt.

Zero - Disconnects and resets the request if active.

One - Connect the interrupt, 'allowing it to become active.

The service interrupt may be caused by a variety of conditions such

as end of record or error. The interrupt condition depends on

controller design.

4 Specifies End-of-Block command when equal to one. No effect when

equal to zero. The End-of-Block command causes the controller

(except the Teletype Controller) to immediately generate a data

interrupt if that interrupt had previously been connected. This

function is useful for diagnostic and debugging purposes. An End­

of-Block command will be accepted even when a controller is busy or

operating in theDMP mode.

The responding device ignores all bits of the control format except

0, 1, 4 and 5.

5 Specifies Terminate command when equal to one. No effect when equal

to zero. The Terminate c'ommand stops data transfer to/from the

specified device and resets any: non-active data interrupt, or DMP

Data request. A Terminate command will be accepted when a controller

is busy or in the DMP mode.'

The Terminate command will also condition a controller to generate

a service interrupt when the controller is subsequently ready to

respond to another Transfer Initiate command. If the controller

5-11

6

7*

is not busy and the service interrupt has been previously connected,

this interrupt will occur immediately. The responding device will

ignore all bits of the control format except 0, 1, 4 and 5.

If a terminate command is issued with bit 7 set to one, a controller

with DMP facilities will set its memory parity error status indicator.

This command is normally issued automatically by the DMP I/O system

if such an error is detected.

If bit 7 is set to one within a terminate command to some devices (TTY for

example), an immediate operation abort occurs.

Normally used to distinguish between a normal control command and a

No-Op. See No-Op below.

Specify a control function such as rewind, advance record, seek

cylinder, etc ..

No Op Command

When bits 4, 5 and 6 are all zero, bits 7-15 are ignored. The No Op command alters

interrupt connection per the values of bits 2 and 3 whether or not the device is

busy. The No Op command also resets all device status if the device is not busy.

Interrupt Disconnection and Termination

An interrupt may be reset by means of a Disconnect or Terminate command whenever the

interrupt level is Active. However, if the level is not active but might become

active immediately, an invalid request might occur on the I/O level. To accommodate

this situation, requests at levels 80 and CO should execute a CIR and return to the

interrupted program.

Transfer Initiate

01234 5

1 M D S I

15

BITS

o

1

FUNCTION

Must be one. This bit specifies the Transfer Initiate Format.

Specifies mode selection for subsequent data transfer.

Zero - Sets the device to the programmed register I/O mode. The

device sends a data interrupt request, if connected, each time it

requires a data transfer, including the first transfer.

One - Sets the device to the DMP transfer mode.

*Except as already noted.

5-12

2 Specifies the state of the data interrupt:

Zero - Disconnects the device controller and resets the request in

the controller if present.

One - Connects the device controller sub-level to the data interrupt

level.

If the DMP mode 'had ,previously been specified by a Transfer Initiate

command, the data interrupt will occ~~ when the TC = O.

If the register I/O mode had previously been specified by a Transfer

Initiate command, the data interrupt is defined as Data Request.

3 Specifies the state of the service interrupt.

Zero - Disconnects and resets the request if active.

One - Connects the interrupt, allowing it to become active.

The service interrupt may be caused by a variety of conditions such

as the end of the record or error. The interrupt condition depends on

controller design.

4 Specifies the direction of data transfer.

Zero - Sets the device to the output transfer mode.

One - Sets the device to the input transfer mode.

5-15 Specifies a transfer initiate function wuch as write record or

read card. (See Appendix C).

INPUT STATUS FORMAT

An Input Status instruction causes the contents of toe 16 data lines to be trans­

ferred to the specified register Ra. The controller, as selected by the device

address, puts its status word on the data lines and then the transfer occurs.

One basic format exists which is c.ommon to all controllers. This format encompasses

two groups: Errors and Events. The error group has a pointer bit indicating if

any error is set. The status format is so defined that a status word of all zeros

is invalid, indicating a malfunctioning or non-existant controller

o 1 2 3 4 567 8 9

ERROR
FIELD

EVENT
FIELD

5-1.3

BIT STATUS

o Error Pointer Bit

Zero - An error has occurred and is defined in the field of bits

1 through 6.

One - No error has occurred.

BIT STATUS

1 Data transfer error.

Zero - No error.

One - Overflow or underflow error.

2 Parity or checksum error.

Zero - No error.

One - Device parity error.

3 Inoperable.

Zero - Device operable (on-line).

One - Device inoperable (off-line, interlock open, etc.)

4 Memory parity error.

Zero - No error.

One - A memory parity error was detected during a DMP transfer.

5-6 Specify error conditions unique to a device such as seek error.

7 Busy status of device controller.

8

9-15

Zero - Device controller not busy.

One - Device controller busy.

Transfer Status.

mode) .

(Normally used when not operating in the interrupt

Zero - Device controller ready to transfer a data word.

One - Device controller not ready to transfer a data word.

Specify device unique event conditions.

5-14

VI. OPERATOR CONTROLS

The MODCOMP control panel, shown in Figure 6-1, enables programs to be loaded into

memory and executed under manual control. It also provides a number of debugging

and maintenance aids.

INDICATORS

Data

The 16 Data Indicators display the contents of the register designated by the

Register Select switches when the computer is halted. The bus traffic is displayed

when the computer is in the run mode.

parity Error

This indicator is lighted when the computer is halted due to a parity error, if

no System Protect Feature, or until the memory parity interrupt is serviced,

if the System Protect Feature is present.

Run

This indicator is lighted when the computer is in the run mode, which means not

halted manually or by execution of the Halt instruction.

Power On

This indicator is lighted when a-c power is applied to the computer. The circuit

breaker for sFitching power is located behind a hinged panel in the top front of

the system cabinet which contains the computer.

SWITCHES

The 16 Data Entry switches are used to enter data into any register or memory

location. The lowered position corresponds to a one value and the raised (normal)

position corresponds to a zero value.

Panel Lock

In the ON position; this keyswitch disables all other control panel switches except

the 16 Data Switches and the Console Interrupt switch. In the ON position it also

enables the System Protect operation. All switches are enabled and the System

Protect is disabled when the Panel Lock switch is in the OFF position.

6-1

Master Clear

Depressing this switch causes the computer and peripheral devices to be cleared.

All interrupts and control signals and the contents of the Program and Instruction

Registers are reset to the zero or cleared state.

Fill

Depressing this switch causes a bootstrap routine to be transferred to main memory

(locations 0-2D16) from read-only memory. The bootstrap routine automatically

fills from either the paper tape reader (ASR-33 or high-speed paper tape if present

and turned on) or the card reader. The device is selected oy setting the proper

device number in the Data Entry switches prior to depressing the Fill switch:

Run/Halt

Fill From

Paper Tape Reader

Card Reader

Data Entry Switches16

o 0 0 A

000 5

This switch is used to manually place the computer in either of the modes indicated

by the switch positions. When the computer is manually halted, the Program Register

points to the next instruction and the Instruction Register contains this next

instruction. To resume operation at a new location, the Master Clear switch should

be depressed to clear the Instruction Register, and the new location minus one

should be manually entered into the Program Register. The Halt/Run switch should

then be raised to the Run position.

Single Cycle

Depressing this switch causes the instruction presently stored in the Instruction

Register to be executed. The Program Register is then advanced. to the next

instruction, and this instruction is accessed from memory and transferred to the

Memory Data and Instruction Register. It can be displayed from the Memory Data

Register.

Enter

When this switch is depressed, the word corresponding to the position of the Data

Entry switches is stored in the memory location specified by the contents of the

Program Register. The Program Register is not advanced.

The contents of the Program Register are incremented by one and the contents of the

new memory location are entered into the MDR when this switch is depressed. The

switch is provided to facilitate modifying or displaying the contents of consecutive

memory locations.

Console Interrupt

Depressing this switch, in computer models having the Executive Features, causes

an interrupt request signal to be sent to interrupt Level E.

6-2

Display

The contents of the memory location designated by the contents of the Program Register

are displayed and entered into IR when this switch is depressed, providing the Register

Select switches designate the Memory Data Register.

Enter R

Depressing this switch causes the contents of the Data Entry switches to be stored

in the register specified by the Register Select switches.

Register Select

These switches are used to specify the register, the contents of which are to be dis­

played or modified. ~enever the computer is halted, the Data indicators display the

contents of the specified register. When the Enter R switch is depressed, the speci­

fied register contents are replaced by the word specified by the Data Entry switches.

The switch designations for all displayable registers are defined in Table 6-1.

REGISTER DATA

NAME OUIESCENT FULL CODE

00 Switch 0000 FFFF

Ol-OF General Purpose 0000 FFFF

11 Program 0000 FFFF

17 Memory Data 0000 FFFF

20-27 DMP File * 0000 FFFF

29 Transfer B 0000 FFFF

2A Transfer A 0000 FFFF

30 PIO Active 0000 7FFF

31 PI l Active 0000 FFFF

34 PI O Enable ECOO Note 1 FFFF

35 PI l Enable 0000 FFFF

38 PI O Re'1uest 0000 Note 2 FFFF

39 PI l Request 0000 FFFF

3C PI Queue 005F Note 3

3D I/O Bus 0000 Note 4 FFFF

3E I/O Transfer A* 0000 Note 5 FFFF

13 Memory Address 0000 Note 6 FFFF

37 Overflow 0000 Note 7 8000
3F I/O Transfer B* 0000 FFFF

*Present_ only when DMP is present.

Note 1 Interrupt levels 0, 1, 2, 4, 5 are always enabled when present in system.
Note 2 Optional Levels may set Bits.

Note 3 Dedicated Address Generation For P.I.
Note 4 Enter 3C; Display 3D.

Note 5 Enter 3D; Display 3E.

Note 6 Enter 13; Display ll.

Note 7 Bit 0 = 1 if Overflow.

REGISTER DATA

CONTROL PANEL OPERATION

DISPLAY REGISTER

1. HLT/RUN switch to HLT

2. Register select switches to the desired register (Lights display

contents of register)

LOAD REGISTER

1. HLT/RUN switch to HLT

2. Register select switches to the desired register

3. Place data into RO (switch register)

4. Press 'ENTER REGISTER'

LOAD MEMORY

1. HLT/RUN switch to HLT

2. Load RII (PR) with desired starting address

3. Load RO (switch register) with desired data

4. Press 'ENTER MEMORY"

Note: To load sequential locations, press 'STEP" one time, and repeat

steps 3 and 4.

DISPLAY MEMORY

1. HLT/RUN switch to HLT

2. Load RII (PR) with desired starting address

3. Set the register select switches to Rl7

4. Press 'DISPLAY MEMORY' (Lights will display the contents of the

selected memory location)

Note: To display sequential locations, press 'STEP' switch for ea.ch additional

location to be displayed.

START PROGRAM

1. HLT/RUN switch to HLT

2. Load RII (PR) with desired starting address

3. Press 'DISPLAY MEMORY'

4. HLT/RUN switch to RUN

SINGLE CYCLE PROGRAM

1. HLT/RUN switch to HLT

2. Register select switches to Rl7 (MDR)

3. Press 'DISPLAY MEMORY'

4. Press 'SINGLE CYCLE' for each instruction to be executed. Rl7 will

display the contents of the first word of the next instruction to

be executed.

Note: Interrupts will be ignored during single cycle.

6-4

FILL

1. HIt/RUN switch to HLT

2. RO bits 12-15 to the device address of filling device

A. 1 - moving head disc

B. 2 - fixed head disc

C. 4 - mag tape

D. 5 - card reader

E. A - TTY or paper tape

3. Mag tape only

RO bits 1-7 to file for mag tape fill

Disc only

RO bits 1-7 to Startintl~~ctor (Starting Sector divided by 100)

4. Press 'MASTER CLEAR'

5. Press 'FILL'

6. HLT/RUN switch to RUN

6-5

APPENDIX A. FIEXADECIMAL TO. DEC1MAL CONVERSION

This appendix enables direct conversion of decimal numbers to/from hexadecimal numbers

in the ranges:

HEXADECIMAL

000 to FFF

DECIMAL

0000 to 4095

For numbers outside the range of the table, add the following values to the table

figures:

HEXADECIMAL DECIMAL HEXADECIMAL DECIMAL

1000 4096 9000 36864
2000 8192 AOOO 40960
3000 12288 BOOO 45056
4000 16384 COOO 49152
5000 20480 . 0000 53248
6000 24576 EOOO 57344
7000 28672 FOOO 61440
8000 32768

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OBO 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OCO 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
000 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 026·9 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0392 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1BO 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

1CO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 04U 0462 0463
100 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 9495
1FO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

A-1

, 0 1 2 3 4 5 6 7 8 9 A B e D E F

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 062S
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2BO 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2eO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2DO 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 077~ 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0801 0802 0803 0804 0805 0806 0807 080S 0809. 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3BO 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3eO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3DO 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0997 099S 0999 1000 1001 1002 1003 1004 1005 1006 10i)7
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

0 1 2 3 4 5 6 7 8 9 A B e D E F

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 10.16 1077 1078. 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 109 "1 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 ll10 1111 ll12 1113 1114 ll15 1116 lll7 1118 lll9
460 1120 ll21 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 ll44 1145 1146 1147 ll48 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1U2 1173 1174 ll75 1176 1177 1178 ll79 1180 1181 1182 1183
4AO 1184 1185 1186 1187 118S ll89 1190 1191 1192 1193 1194 ll95 1196 1197 1198 ll99
4BO 1200 1201 1202 1203 1204 1205 1206. 1207 1208 1209 1210 1211 1212 1213 1214 1215

4eO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4DO 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345. 1346, 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 13H 1362 1363 1364 1365 1366 1367 1368 1369 13!70 1371 1372 1373 1374 1375
560 1376 .1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

,570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SAO 1440 1441 1442 1443 1444· 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5BO 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5eO 1472 1473 1474 1475 1476 1477 1478 1779 1480 1481 1482 1483 1484 1485 1486 1487
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

A-2

0 1 2 3 4 5 6 7 8 9 A B C D E F

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 16B3 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6BO 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 .1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 19QO 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7BO 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7DO 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

0 1 2 3 4 5 6 7 8 9 A B C D E F

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8BO 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
SFO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 238:] 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 24.58 2459 2460 2461 2462 2463
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9BO 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9CO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9DO 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

A-3

0 1 2 3 4 5 6 7 8 9 A B C D E F

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 '2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2569 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
Bl0 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

0 1 2 3 4 5 6 7 8 9 A B C D E F

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
Cl0 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

DOO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
Dl0 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D20 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

A-4

0 1 2 3 4 5 6 7 8 9 A B C D E F

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 3696 3697 3698 3699 3701) 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3131 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 38.05 3806 3807
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

A-5

~
I

I-'

CHAR.

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

DLE

DCl

DC2

DC3

DC4

NAK

SYN

ETB

CAN

H.P.

CODE L.P.

00

01

02

03

04

05

06

07

08

09

OA

OB

OC

OD

OE

OF

10

11

12

13

14

15

16

17

18.

Multi-punch

CARD
CODE READER

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

H.P.

M.P.

M.P.

M.P.

H.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

H.P.

H.P.

M.P.

M.P.

M.P.

M.P.

CODE
029 TTY

12-0-9-8-1 NUL

12-9-1 SOM

12-9-2 EOA

12-9-3 EOM

9-7 EDT

0-9-8-5 WRU

0-9-8-6 RU

0-9-8-7 BEL

11-9-6 FE
0

12-9-5 HT

0-9-5 LF

12-9-8-3 VT

12-9-8-4 FORH

12-9-8-5 RETURN

12-9-8-6 SO

12-9-8-7 SI

12-11-9-8-1 DCO

11-9-1 X-ON

11-9-2 TAPE

11-9-3 X-OFF

9-8-4 ~

9-8-5 ERROR

9-2 SYC

0-9-6 LEM

11-9-8 SO

CODE EBCDIC

80 NUL

81 SOH

82 STX

83 ETX

84 EOT

85 ENQ

86 ACK

87 BEL

88 BS

89 HT

8A LF

8B VT

8C FF

8D CR

8E SO

8F SI

90 DLE

91 DCl

92 DC2

93 DC3

94 DC4

95 NAK

96 SYN

97 ETB

98 CAN

COMPo
CODE CHAR.

00

01

02

03

37

2D

2E

2F

16

05

25

OB

OC

OD

OE

OF

10

11

12

13

3C

3D

32

26

18

CAN
CODE

I

»
-U
-U
rn
Z
CJ
X
OJ

('")
::c »
:::::0

~
rn
:::::0
('")
o
CJ
rn en

OJ
I

IV

CHAR. CODE L.P.

EM 19

SUB 1A

ESC 1B

FS 1C

GS 1D

RS IE
US IF

SPACE 20 SPACE

! 21 !

" 22 "
23 #

$ 24 $

% 25 %

& 26 &
, 27 I

(28 (

) 29)

* 2A *
+ 2B +
, 2C ,
- 2D -
. 2E

/ 2F /
0 30 0

1 31 1

2 32 2

3 33 3

4 34 4

5 35 5

6 36 6

M.P. Multi-punch

CARD CODE
CODE READER 029

M.P. 11-9-8-1

M.P. 9-8-7

M.P. 0-9-7

M.P. 11-9-8-4

M.P. 11-9-8-5

M.P. 11-9-8-6

M.P. 11-9-8-7

20 SPACE BAR -
21 ! 12-8-7

22 " 8-7

23 # 8-3

24 $ 11-8-3

25 % 0-8-4

26 & 12

27 I 8-5

28 (12-8-5

29) 11-8-5

2A * 11-8-4

2B + 12-8-6

2C , 0-8-3

2D - 11

2E . 12-8-3

2F / 0-1

30 0 0

31 1 1

32 2 2

33 3 3

34 4 4

35 5 5

36 6 6

COMPo CAN
TTY CODE EBCDIC CODE CHAR. CODE

Sl 99 EM 19

S2 9A SUB 3F

S3 9B ESC 27

S4 9C FS lC

S5 9D GS ID

S6 9E RS IE

S7 9F US IF

SPACE AD SPACE 40 SPACE 0

! Al ! 4F

" A2 " 7F

A3 # 7B

$ A4 $ 5B $ 39

% AS % 6C

& A6 & 50
I A7 I 7D

(A8 (4D

) A9) 5D

* AA * 5C

+ AB + 4E

, AC , 6B

- AD - 60

. AE . 4B . 38

/ AF / 61

0 BO 0 FO 0 27

1 B1 1 F1 1 28

2 B2 2 F2 2 29

3 B3 3 F3 3 30

4 B4 4 F4 4 31

5 B5 5 F5 5 32

6 B6 6 F6 6 33
- -----_ .. ---- -- - - -- --- L-_______ .. ___ .. _~ ______ ------ ---------------------- --------

b:I
I

!.AI

CHAR.

7

8

9

:

;

<

=
>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

a

P

Q

R

S

T

CODE L.P.

37 7

38 8

39 9

3A :

3B ;

3C <

3D =
3E >

3F ?

40 @

41 A

42 B

43 C

44 D

45 E

46 F

47 G

48 H

49 I

4A J

4B K

4C L

4D M

4E N

4F a

50 P

51 Q

52 R

53 S

54 T

CARD CODE
CODE READER 029

37 7 7

38 8 8

39 9 9

3A : 8-2

3B ; 11-8-6

3C < 12-8-4

3D = 8-6

3E > 0-8-6

3F ? 0-8-7

40 @ 8-4

41 A 12-1

42 B 12-2
43 C 12-3

44 D 12-4

45 E 12-5

46 F 12-6

47 G 12-7

48 H 12-8

49 I 12-9

4A J 11-1

4B K 11-2

4C L 11-3

4D M 11-4

4E N 11-5

4F a 11-6

50 P 11-7

51 Q 11-8

52 R 11-9

53 S 0-2

54 T 0-3

CaMP. CAN
TTY CODE EBCDIC CODE CHAR. CODE

7 B7 7 F7 7 34

8 B8 8 F8 8 35

9 B9 9 F9 9 36
: BA : 7A : 37

; BB ; 5E

< BC < 4C

= BD = 7E

> BE > 6E

? BF ? 6F
@ CO @ 7C

A Cl A Cl A 1 I
I

B C2 B C2 B 2
C C3 C C3 C 3
D C4 D C4 D 4
E C5 E C5 E 5
F C6 F C6 F 6
G C7 G C7 G 7
H C8 H C8 H 8
I C9 I C9 I 9
J CA J D1 J 10
K CB K D2 K 11
L CC L D3 L 12
M CD M D4 M 13
N CE N D5 N 14
a CF a D6 a 15
P DO P D7 P 16
Q Dl Q D8 Q 17
R D2 R D9 R 18
S D3 S E2 S 19
T D4 T E3 T 20

tJj
I

.1>0

CHAR. CODE L.P.

U 55 U

V 56 V

W 57 W

X 58 X

Y 59 Y

Z 5A Z

[5B [

\ 5C \
] 5D]

A 5E A

- 5F -
\ 60

a 61

b 62

c 63

d 64

e 65

f 66

g 67

h 68

i 69

j 6A

k 6B

1 6C

m 6D

n 6E

0 6F

P 70

q 71

r 72

M.P. Multi-punch

CARD
CODE READER

55 U

56 V

57 W

58 X

59 Y

5A Z

5B ¢

5C 0-8-2

5D !

5E --,

5F -
M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

M.P.

CODE COMPo CAN
029 TTY CODE EBCDIC CODE CHAR. CODE

0-4 U D5 U E4 U 21

0-5 V D6 V E5 V 22

0-6. W D7 W E6 W 23

0-7 X D8 X E7 X 24

0-8 Y D9 Y E8 Y 25

0-9 Z DA Z E9 Z 26

12-8-2 [DB ¢ 4A

0-8-2 \ DC \ EO

11-8-2) DD ! 5A

11-8-7 t DE A 5F

0-8-5 + DF - 6D

8-1 \ 79

12-0-1 a 81

12-0-2 b 82

12-0-3 c 83

12-0-4 d 84

12-0-5 e 85

12-0-6 f 86

12-0-7 g 87

12-0-8 h 88

12-0-9 i 89

12-11-1 j 91

12-11-2 k 92

12-11-3 1 93

12-11-4 m 94

12-11-5 n 95

12-11-6 0 96

12-11-7 P 97

12-11-8 q 98

12-11-9 r 99

tJj
1

\J1

CHAR.

s

t

u

v

w

x

y

z
{
1
1

}
"v

DEL

CARD
CODE L.P. CODE READER

73 M.P.

74 M.P.

75 M.P.

76 M.P.

77 M.P.

78 M.P.

79 M.P.

7A M.P.

7B M.P.

7C M.P.

7D M.P.

7E M.P.

7F M.P.

CODE CaMP. CAN
029 TTY CODE EBCDIC CODE CHAR. CODE

11-0-2 s A2

11-0-3 t A3

11-0-4 u A4

11-0-5 v A5

11-0-6 w A6

11-0-7 x A7

11-0-8 y A8

11-0-9 z A9

12-0 { CO

12-11 1
I 6A

11-0 } DO

11-0-1 "-' A1
12-9-7 RUB OUT FF DEL 07

APPENDIX C. PERIPHERAL DEVICE COMMANDS.

BIT: STANDARD STATUS BIT DEFINITIONS

o _ Error - This bit reset (0) indicates that one or more of bits 1 through 6 are set.

1 _ Underflow/Overflow _ This bit set (1) indicates that data was not transferred by CPU at a sufficient rate during write (underflow) or read (overflow).

Data transfer is terminated at detection of this error. For write, the remainder of the sector is filled with zeroes.

2 _ CS Error - This bit set (1) indicates that a check sum check error was detected upon reading a sector. During multisector (sequential) reads, data

transfer terminates at the detection of the error.

3 _ Inoperable - This bit being set (1) indicates that device power is off.

4 _ Memory Parity Error - Indicates when set (1) that the last read or write operation was terminated due to a memory parity error being detected.

5 _ write Lockout Violation - This bit set to 1 indicates that the selected track is protected. If bit zero is also Reset (zero), an attempt was

made to write to a protected group of 8 heads.

6 - Not used.

7 _ Busy _ Indicates when set to 1 that the controller is busy performing a data transfer command. The controller does not go busy due to the head

select ion command.

TRANSFER

INITIATE

CONTROL

STATUS

TR~NSFER

INITIATE

CONTROL

STATUS

':'RAl-<St~ER

INITIATE

CONTROL

ST.I'ITUS

rRrINSFE?
INITIAT[

CONTROL

0 1

1 0

0 1

1

0=
1-

ERROR
OVER-

FLOW

E'RROt<. UNOFR-
FLO\';'

2

CONN.
OT

CONN.
DT

CONN.
01

CONN.

OT

CONN.

01

CONN.

01

LT/DK

CARD

MOTION

ERROR

CONl\ .

DI

l=
PUNCH

ERROR

CONSOLE TTY/PAPER TAPE READER <DEVICE ADDRESS OA,6)

3 • 5 6 7

C~~. I-IN 1 ENABLE CLEAR

O=OUT KEY BD. CLOCK BUFFER

CONN.
0 TERM l=ABORT

ST

1
BUSY

PAPER TAPE PUNCH (DEVICE ADDRESS 09,6)

CONN.
ST

CONN.

ST EOB TERM.

CARD READER <DEVICE ADDRESS 05 ,6)

CONN. 1 BIN

ST O=XLATE

CONN.

51 EOB TERM.

IN OP

CARD PUilCH (DEVICE ADDRESS 0516)

CONN.
51

l_

DEV.

IN.OP

MAINT,

ONLY
l=DI

TERM.

NOT USED

1-
BUSY

OFFSET

STl\CK

1=

CaNT.
BUSY

8

OlTA
READY

9

1=
BUSY

1-
DATA HOPPER

BUFFER EMPTY/
READY STACKER

FULL

0= 1=
BUFFER HOPPER
EMPTY EMPTY/

S~~~~ER

AB *OUTPUT TRANSLATION MODES
11 ILLEGAL

10

10

0=
DATA

READY

10

11

11

1=
TAPE
LOW

11

12

12

12

1-
HOLD

10 I 11 I 12

NOT USED

NOT USED

NOT USED

01 XLATE. FROM ASCII (7 BIT) TO HOLLERITH
10 12 BIT BINARY (1 TO I)

00 8 BIT BINARY EXPANDED TO 12 COL. PUNCH

C 1

13

13

13

1=
PICK

FAIL

13

1=
TRANS-

PORT

1.

14

"

14

N/u

15

15

15

15

N/U

WRITE
TRANSFeR

INITIATE
READ

HEAD-

SELECT

TERM/
CONTROL EOB

TERM/
EOB

UNIT
SELECT

STATUS

WRITE
TRANSFER

INI'rIATE
READ

CYLINDER

SELECT

TERM
CONTROL EOB

HEAD/
DRIVE

SELGeT

STATUS

FIXED HEAD DISC (CONTROLLER ADDRESS 02,6)

0 1 2 3 • 5 6 7 8

1 M
CONN.

DI

CONN.
0

81
EOD EOF

1 M
CONN. CONN.

1 IGNORED

0 1

0 1

0 1

0 0

E
OfF
U/F

S = SECTOR

H = HEAD

DI 81

CONN. CONN.
DI SI

IGNORED

eK
IN OP

SUM

0 0 1

EOB TERM. IGN.

MPE WLO

U '" UNIT NO., UP TO 4 UNITS MAY BE CONNECTED TO A CONTROLLER

IGN

MPE

BUSY

M '" MODE, IF BIT 1 "" 0 PROGRAMMED r/o IS SELECTED RATHER THAN DMP
DMP LOCATIONS: TC '" 62, TA == 72

H

IGNORED

DR

MOVING HEAD DISC (CONTROLLER ADDRESS 01,6)

0 1 2 3 4 5 6 7 B

1 M
CONN.

DI
CONN.

SI
0 EOD EOF IGN 8e8

1 M
CONN. CONN.

1 IGNORED IGN 8e8
DI SI

0 1
CONN.

DI
CONN.

SI
0 0 1 IGN e

0 1 IGNORED .~OB TERM. IGN MPE

0 0 IGNORED
HEAD CYL

8EL SEL

, ~~~. eRe IN OP MPE WLO SE BUSY DR

S "" SECTOR
C = CYLINDER

U - UNIT NO., UP TO 4 UNITS MAY BE CONNECTED TO A CONTROLLER

M = MorE, IF BIT 1 == 0 PROGRAMMED I/O IS SELECTED RATHER THAN DMP
DMP LOCATIONS: TC '" 61, TA = 71

C 2

9 10 11 12 13 I. 15

IGNORED S S S S 8

8 8 8 8 8

H H H H H H H

IGNORED

U U

EOD EOF EOR NOT USED

9 I 10 11 12 13 I. 15

IGNORED 8 8 8 S S

IGNORED 8 8 S 8 S

c I c e e c e e

IGNORED

1-
IGNORED PREP U U

MonE

EOD I EOF EOR 08 SKe u u

LI NE PRI NTER 600 LPM <DEVI CE ADDRESS 07,6)

0 1 2 3 4 5 6 7 B 9 10 11 12 13 " 15

CONN. CONN. 0
l=VFU LINE LINE LINE LINE LINE LINE

TRANSFER 1 0
01 81 O=L.Cm COUNT COUNT COUNT COUNT COUNT COUNT

INITIATE OR VFU OR VF OR VF OR VFU

CONN. CONN. I-LINE l=VFU LINE LINE LINE LINE LINE
CONTROL 0 1

81
EOB TERM. ,."ED O=L.Cm COUNT COUNT COUNT COUNT COUNT 01

0= 1= 1- 0- 1= 1= 1=

STATUS ERROR IN OP BUSY DA"" PAPER BO'1"l'OJ< HOLD
BUPPER LON OF

READY FORM

LI NE PRI NTER 50-150 LPM <DEVI CE ADDRESS OA,6)

0 1 2 3 • 5 I 6 I 7 I 8 9 1 10 1 11 I 12 I 13 I 1. I 15

TRANSFER 1 0
CONN. CONN.

0 NOT USED
INITIATE 01 81

CONTROL 0 1
CONN. CONN.

EOB TERM I 0 I IGNORED
01 81

OUTPUT DATA IGNORED ASCII DATA

0= 1=

1'= I 0=
1- ,I 1- I NOT

I
1=

I STATUS ERROR NOT USED IN OP NOT USED CONT. DATA ~W BOT;OM USED HOLD NOT USED
BUSY READY PAPER OF

FORM

X-Y PLOTTER <DEVICE ADDRESS 08,6)

0 1 2 3 • 5 I 6 I 7 I 8 1 9 1 10 1 11 1 12 I 13 I I. I 15

TRANSFER 1 0
CONN. CONN.

0 IGNORED
INITIATE 01 SI

0 1
CONN CONN. 1= 1- I CONTROL

01 S1 EOB TERM NOT USED

l 1 PEN 1. 1 PEN 11-0RUM II-DRUM Il-CARR. 11 CARR.
OUTPUT

NOT USED
DOWN UP DOWN UP RIGHT LEFT

DATA

I .. I .. I **
0 1- I 1- I 0 I STATUS ERROR NOT USED

IN OP NOT USED BUSY DATA NOT USED

•• MUTUALLY EXCLUSIVE

f1AGNETI C TAPE

10 11 12 13 ,. 15

TRANSFER
0- 0- 1- 0- 0=

CONN. CONN. BINARY Ii-GAP SINGLE ODD 800 CPI
INITIATE M

01 S1 1= 1- CYCLE 1= 1= U WRITE
INTER- L-GAP SCAN EVEN 556 cpr
CHANGE

TRANSFER CONN. CONN.
0- 0= 0=

B11f=RY ODD 800 CPI INITIATE M D1 S1 l=SCS
1= 1= U U

READ INTER-
EVEN 556 CPI

CHANGE

CONTROl, CONN. CONN.
0=

800 CPI WRITE WRIT'!: 01 S1 l=SCS
1= EOF U

EOF
556 CPI 1

CONN. CONN. 0= 0- 0=
CONTROL

01 S1 1=SCS 800 CPI SPACE FORWARD BLOCK
SPACE 1. 1 "1= 1=

U

556 CPI REVERSE FILE

CONTROL
'rERM EOB IGNORED IGNORED 1=r~OB l=TERM IGNORED l=MPE IGNORED

CONTROL CONN. CONN. 1= REWIND
REWIND 01 S1 LOCK OU 1 U

CONTROL CONN. CONN. 1=
TRANSPORT D1 51 CON- U U
seLECT TINUOUS

SCAN

0" ,~ 1- 1" 1" 1" 1- 1- 0- 1- ,~ 1= 1= 1-
ERROR OVER/ DEVICE IN OP MEMORY FILE TAPE CON- DATA EDT EOF BOT DEVICE PARTIAL

FLOW PARITY PARITY PROTECT DEFECT TROLLER READY OFFLINE WORD
U U

STATUS
OR ERROR ERROR BUSY OR

B>C REWIND

u """ UNIT NO., UP TO 4 UNITS MAY BE CONNECTED TO A CONTROLLER
M '" MODE, IF BIT 1 = 0 PROGRAMMED I/O IS SELECTED RATHER THAN DMP

HIGH SPEED LOW SPEED

CONTROLLER ADDRESS (HEX.) 03 04
DMP LOCATIONS (filiX.) TC=63. TA=73 TC=64. TA=74

C 3

APPENDIX D. ,DIVIDE

During execution of a divide instruction, the contents of registers Ra, RaV1

(where a is an even number t- 0) form a double precision dividend and are divided

by the single-precision divisor specified by the instruction. If the dividend is

a single-precision number, RaV1 should be cleared prior to executing the divide

instruction or erroneous results may occur. Although a double-length dividend is

used, divide is a single-precision operation and should not be confused with a

double-precision divide operation that would use a double-length divisor and would

produce a double-length quotient.

After execution of the divide, the single-precision quotient replaces the contents

of RaV1 and the remaining portion of the dividend that has not been divided (undivi­

ded remainder) replaces the contents of Ra. The quotient is signed in accordance

with algebraic convention, that is, positive if dividend and divisor signs are alike,

but negative otherwise. However, only 15 magnitude bits are generated by the divide

and, if the magnitude of the quotient is so small as to require more than 15 bits to

resolve, a zero quotient may be generated regardless of the required sign, but the

remainder will still reflect the undivided portion of the original dividend. The

binary scaling of the quotient is equal to the dividend scale factor minus the di­

visor scale factor.

The undivided remainder replaces the contents of Ra and has the same sign as the di­

vidend. It has the same scaling as the divisor. By definition, the undivided re­

mainder is that quantity which must be added to the product of the divisor and the

quotient to produce the original dividend. The results of the divide instruction

are consistent with this definition. It should be noted that the remainder must be

added to the least significant part of the product of the divisor and the quotient

to maintain proper scaling. Overflow is possible and the Overflow Indicator will

be set if:

(Ra, RaV1)

(M)
> 1 Reference section on Overflow (Page 3-10).

EXAMPLE: Let (Ra, RaV1)

(M)

0004

3COO

E800

The dividend can be represented as a decimal 628 with an equivalent

binary point at 221. The divisor may be represented as a decimal 30

with its binary point at 26. The resulting binary scaling of the

quotient is 221_ 26=2 15 . The remainder is scaled at 26.

Q
15

0014 (20 10 at 2)

0-1

R
6 3800 (2810 at 2)

APPENDIX E. I NSTRUCTION LIST
MNEMONIC OP. CODE NAME

~, STORE AND TRANSFER

EXECTION

TIME ()1s)

LDM

LDI

LDS

LDX

STM

STI

STS

STX

LBX

SBX

LFM

LFS

LFX

SFM

SFS

SFX

TRR

TRRB

ARITHMETIC

ADM

ADI

ADS

ADX

ADMM

ADMB

ADSM

ADSB

ADXM

ADXB

ADR

ADRB

E5

ED

F5

FD

E6

EE

F.6

FE

AE

AF

A4

B4

BC

A5

B5

BD

6D

7D

EO

ES

FO

FS

CO

C4

DO

D4

DS

DC

6S

7S

Load Register from Memory 2.4

Load Register from Memory Immediate 1.6

Load Register from Memory Short Displaced 1.6

Load Register from Memory Short Indexed 1.6

Store Register in Memory 2.4

Store Register in Memory Immediate 1.6

Store Register in Memory Short Displaced 1.6

Store Register in Memory Short Indexed 1.6

Load Byte From Memory 2.0

Store Byte in Memory 2.6

Load File from Memory 3.0 + O.SxR

Load File from Memory Short Displaced 2.2 + O.SxR

Load File from Memory Short Indexed 2.2 + O.SxR

Store File in Memory 2.6 + O.SxR

Store File in Memory Short Displaced 1.S + O.SxR

Store File in Memory Short Indexed 1.S + O.SxR

Transfer Register to Register O.S

Transfer Register to Register and Branch 1.6

if Nonzero

Add Memory to Register

Add Memory to Register Immediate

Add Memory to Register Short Displaced

Add Memory to Register Short Indexed

Add Register to Memory

Add Register to Memory and Branch if Nonzero

Add Register to Memory Short Displaced

Add Register to Memory Short Displaced and
Branch if Nonzero

Add Register to Memory Short Indexed

Add Register to Memory Short Indexed and
Branch if Nonzero

Add Register to Register

Add Register to Register and Branch if
Nonzero

E-l

2.4

1.6

1.6

1.6

3.4

3.4 NB

2.6

2.6 NB

2.6

2.6 NB

O.S

1.6

PAGE

3-4

3-4

3-4

3-5

3-5

3-5

3-5

3-6

3-6

3-7

3-7

3-7

3-S

3-S

3-S

3-8

3-9

3-9

3-11

3-11

3-11

3-12

3-12

3-12

3-13

3-13

3-13

3-14

3-14

3-14

MNEMONIC OP. CODE NAME

ARITHMETIC (CONTINUED)

EXECUTION

TIME (us)

DAR

SUM

SUI

SUS

SUX

SUR

SURB

MPM

MPS

MPX

MPR

DVM

DVS

DVX

DVR

CRMB

CRSB

CRXB

TRO

TTR

TTRB

LOGICAL

ETM

ETI

ETS

ETX

ETMM

ETMB

ETSM

ETSB

ETXM

ETXB

ETR

ETRB

ORM

ORI

ORS

ORX

22

El

E9

Fl

F9

69

79

AD

BO

BS

20

Al

Bl

B9

21

C7

D7

DF

DE

6F

7F

E2

EA

F2

FA

Cl

C5

Dl

D5

D9

DD

6A

7A

E3

EB

F3

FB

Double Precision Add Register to Register

Subtract Memory from Register

loS

2.4

Subtract Memory from Register Immediate 1.6

Subtract Memory from Registe~ Short Displaced 1.6

Subtract Memory from Register Short Indexed 1.6

Subtract Register from Register O.S

Subtract Register from Register and Branch 1.6
if Nonzero

Multiply Memory by Register

Multiply Memory by Register Short Displaced

Multiply Memory by Register Short Indexed

Multiply Register by Register

Divide Register by Memory

Divide Register by Memory Short Displaced

Divide Register by Memory Short Indexed

Divide Register by Register

Compare Memory and Register

Compare Memory and Register Short Displaced

Compare Memory and Register Short Indexed

Transfer and Reset Overflow Status

Transfer Two's Complement Register to
Register

Transfer Two's Complement Register to
Register and Branch if Nonzero

Extract Memory from Register

Extract Memory from Register Immediate

Extract Memory from Register Short Displaced

Extract Memory from Register Short Indexed

Extract Register from Memory

Extract Register from Memory and Branch if
Nonzero

Extract Register from Memory Short Displaced

Extract Register from Memory Short Displaced
and Branch if Nonzero

Extract Register from Memory Short Indexed

Extract Register from Memory Short Indexed
and Branch if Nonzero

Extract Register from Register

Extract Register from Register and Branch
if Nonzero

OR Memory and Register

OR Memory and Register Immediate

OR Memory and Register Short Displaced

OR Memory and Register Short Indexed

E-2

7.2

6.4

6.4

6.0

12.2

11. 4

11. 4

11.0

4.0 NB

3.2 NB

3.2 NB

O.S

O.S

1.6

2.4

1.6

1.6

1.6

3.4

3.S NB

2.6

3.0 NB

2.6

3.0 NB

O.S

1.6

2.4

1.6

1.6

1.6

PAGE

3-15

3-15

3-15

3-16

3-16

3-16

3-16

3-17

3-17

3-17

3-lS

3-lS

3-lS

3-19

3-.19

3-19

3- 20

3- 20

3- ?O

3- 21

3- 21

3- 22

3- 22

3- 22

3- 23

3- 23

3- 23

3- 24

3- 24

3- 24

3- 25

"- 25

3- 25

3- 26

3- 26

3- 26

3- 26

MNEMONIC OP. CODE NAME EXECUTION

TIME (us) LOGICAL (CONTINUED)

ORMM

ORSM

ORXM

ORR

ORRB

XOM

XOI

XOS

XOX

XOR

XORB

TOR

TRMB

TRSB

TRXB

TERB

C2

D2

DA

6B

7B

E4

EC

F4

FC

6C

7C

OD

C6

D6

DE

7E

FLOATING POINT

FAR

FSR

FMR

FDR

FARD

FSRD

FMRD

FDRD

FAM

FSM

FMM

FDM

FAMD

FSMD

FMMD

FDMD

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

OR Register and Memory

OR Register and Memory Short Displaced

OR Register and Memory Short Indexed

OR Register and Register

OR Register and Register and Branch if
Nonzero

Exclusive OR Memory and Register

Exclusive OR Memory and Register Immediate

Exclusive OR Memory and Register Short
Displaced

Exclusive OR Memory and Register Short
Indexed

Exclusive OR Register and Register

3.4

2.6

2.6

0.8

1.6

2.4

1.6

1.6

1.6

0.8

Exclusive OR Register and Register and Branch 1.6
if Nonzero

Transfer One's Complement Register to
Register

Test Register and Memory and Branch if Any
Ones Compare

Test Register and Memory Short Displaced
and Branch if Any Ones Compare

Test Register and Memory Short Indexed and
Branch if Any Ones Compare

Test Register and Register and Branch if
Any Ones Compare

Floating Add Register to Register

Floating Subtract Register from Register

Floating Multiply Register by Register

Floating Divide Register by Register

Floating Add Register to Register Double

Floating Subtract Register from Register
Double

Floating Multiply Register by Register
Double

Floating Divide Register by Register
Double

Floating Add Memory to Register

Floating Subtract Memory from Register

Floating Multiply Memory by Register

Floating Divide Memory into Register

Floating Add Memory to Register Double

Floating Subtract Memory from Register
Double

Floating Multiply Memory by Register
Double

Floating Divide Memory into Register
Double

E-3

0.8

3.4 NB

2.6 NB

2.6 NB

1.6

12.6

12.6

14.4

15.4

17.4

17.4

20.8

21. 8

14.8

14.8

16.6

17.6

19.6

19.6

23.0

24.0

PAGE

3-27

3-27

3-27

3-27

3-28

3-28

3-28

3-29

3-29

3-29

3-29

3-30

3-30

3-30

3-31

3-31

3-34

3-35

3-35

3-35

3-36

3-36

3-37

3-37

3-37

3-38

3-38

3-39

3-39

3-39

3-40

3-40

MNEMONIC OP. CODE NAME EXECUTION PAGE

~

LAD

RAD

LAS

RAS

LLD

RLD

LLS

RLS

LRS

2E

2A

2F

2B

2C

28

2D

29

OF

BIT MANIPULATION

LBR

LBRB

ABMM

ABMB

ABSM

ABSB

ABXM

ABXB

ABR

ABRB

SBR

SBRB

ZBMM

ZBMB

ZBSM

ZBSB

ZBXM

ZBXB

ZBR

ZBRB

OBMM

OBSM

OBXM

OBR

OBRB

XBR

XBRB

TBMB

TBSB

TBXB

TBRB

CBMB

CBSB

CBXB

GMR

GMRB

65

75

80

84

90

94

98

9C

60

70

61

71

81

85

91

95

99

9D

62

72

82

92

9A

63

73

64

74

86

96

9E

76

87

97

9F

67

77

Shift Left Arithmetic Double

Shift Right Arithmetic Double

Shift Left Arithmetic Single

Shift Right Arithmetic Single

Shift Left Logical Double

Shift Right Logical Double

Shift Left Logical Single

Shift Right Logical Single

Left Rotate Single

Load Bit in Register

Load Bit in" Register and Branch
Unconditionally

Add Bit in Memory

Add Bit in Memory and Branch if Nonzero

Add Bit in Memory Short Displaced

Add Bit in Memory Short Displaced and
Branch if Nonzero

Add Bit in Memory Short Indexed

--..
TIME (Ils)

2.2 + 0.4(S-1) 3-41

1.8 + 0.4(S~1) 3-41
2.4 + 0.2(S-1) 3-42

2.0 + 0.2(S-1) 3-42

2.2 + 0.4(S-1) 3-42

1.8 + 0.4(S-1) 3-42

2.4 + 0.2(S-1) 3-43
2.0 + 0.2(S-1) 3-43

0.8 3-43

0.8

1.6

3.4

4.2

2.6

3.4

3-44

3-44

3-45

3-45

3-45

3-46

Add Bit in Memory Short Indexed and Branch

2.6

3.4

3-46

3-46
if Nonzero

Add Bit in Register

Add Bit in Register and Branch if Nonzero

Subtract Bit in Register

Subtract Bit in Register and Branch if
Nonzero

Zero Bit in Memory

Zero Bit in Memory and Branch if Nonzero

Zero Bit in Memory Short Displaced

Zero Bit in Memory Short Displaced and
Branch if Nonzero

Zero Bit in Memory Short Indexed

Zero Bit in Memory Short Indexed and Branch
if Nonzero

Zero Bit in Register

Zero Bit in Register and Branch if NOnzero

OR Bit in Memory

OR Bit in Memory Short Displaced

OR Bit in Memory Short Indexed

OR Bit in Register

0.8

1.6

0.8

1.6

3.4

3.8 NB
2.6

3.0 NB

2.6

3.0 NB

0.8

1.6

;3.4

2.6

2.6

0.8

OR Bit in Register and Branch Unconditionally 1.6

Exclusive OR Bit in Register 0.8

Exclusive OR Bit in Register and Branch if 1.6
Nonzero

Test Bit in Memory and Branch if One

Test Bit in Memory Short Displaced and
Branch if One

Test Bit in Memory Short Indexed and
Branch if One

Test Bit in Register and Branch if One

Compare Bit and Memory

Compare Bit and Memory Short Displaced

Compare Bit and Memory Short Indexed

Generate Mask in Register

Generate Mask in Register and Branch
Unconditionally

E-4

3.4 NB

2.6 NB

2.6

1.6

4.2

3.4

3.4
0.8

1.6

3-47

3-47

3-47

3-48

3-48

3-48

3-49

3-49

3-49

3-49

3-50

3-50

3-50

3-50

3-51

3-51

3-51

3-51
3-52

3-52

3-52

3-53

3-53

3-53

3-54

3-54
3-55

3-55

MNEMONIC OP. CODE NAME

BYTE MANIPULATION

MUR

MLR

MBR

MBL

IBR

OB

OC

08

09

OA

Move Upper Byte Register to Register

Move Lower Byte Register to Register

Move Byte Right Register to Register

Move Byte Left Register to Register

Interchange Bytes Register to Register

UNCONDITIONAL BRANCH

BLM

BLI

BRU

HOP

BRX

HLT

NOP

SPR

E7

EF

E7

F7

FF

00

66
02

INTERRUPT AND CALL -----
SIE

RIE

SIR

RIR

SIA

RIA

REX

RMI

CAR

CIR

INPUT/OUTPUT

ISA
ISB

ISC

ISO

IDA

IDB

IDC

IDD

OCA

OCB

OCC

OCD

ODA

ODB

ODC

ODD

26-1

27-1

26-2

27-2

26-0

27-0

23

01

24

25

48

49

4A

4B

4C

4D

4E

4F

40

41

42

43

44

45

46

47

Branch and Link

Branch and Link Immediate

Branch Unconditionally

Branch Short Displaced

Branch Short Indexed

Halt

No Operation
Set Protect Register

Set Interrupt Enable

Reset Interrupt Enable

Set Interrupt Request

Reset Interrupt Request

Set Interrupt Active

Reset Interrupt Active

Request Executive Service

Request Multiprocessor Interrupt

Clear Active and Return

Clear Interrupt and Return

Input Status from I/O Group A

Input Status from I/O Group B

Input Status from I/O Group C

Input Status from I/O Group D

Input Data from I/O Group A

Input Data from I/O Group B

Input Data from I/O Group C

Input Data from I/O Group 0

Output Command to I/O Group A

Output Command to I/O Group B

Output Command to I/O Group C

Output Command to I/O Group D

Output Data to I/O, Group A

Output Data to I/O Group B .
Output Data to I/O Group C

Output Data to I/O Group D

E-5

EXECUTION

TIME (Ils)

0.8

0.8

0.8

0.8

0.8

1.6

O.S
1.6

0.8

0.8

0.8
0.8

1.2

1.2

1.2

1.2

1.2

1.2

0.8

0.8

1.8

1.8

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

PAGE

3-56

3-56

3-56

3-57

3-57

3-58

3-58

3-58

3-59

3-59

3-'60

3-60
3-60

3-61

3-61

3-62

3-62

3-62

3-62

3-62

3-63

3-63

3-63

3-64

3-64

3-64

3-64

3-65

3-65

3-65

3-65

3-65

3-65

3-65

3-65

3-66

3-66

3-66

3-66

APPENDIX F. I TABLE OF POWERS OF TWO AND SIXTEEN

n k 2-n

1

2

4

8

16

32

64

128

256

512

1 024

2 048

4 096

8 192

16 384

32 768

65 536

131 072

262 144

524 288

1 048 576

2 097 152

4 194 304

8 388 608

16 777 216

33 554 432

67 108 864

134 217 728

268 435 456

536 870 912

1 073 741 824

2 147 483 648

4 294 967 296

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

o

1

2

3

4

5

6

7

8

1.0

0.5

0.25

0.125

0.062 5

0.031 25

0.015 625

0.007 812 5

0.003 906 25

0.001 953 125

0.000 976 562 5

0.000 488 281 25

0.000 244 140 625

0.000 122 070 312 5

0.000 061 035 156 25

0.000 030 517 578 125

0.000 015 258 789 062 5

0.000 007 629 394 531 25

0.000 003 814 697 265 625

0.000 001 907 348 632 812 5

0.000 000 953 674 316 406 25

0.000 000 476 837 158 203 125

0.000 000 238 418 579 101 562 5

0.000 000 119 209 289 550 781 25

0.000 000 059 604 664 775 390 625

0.000 000 029 802 322 387 695 312 5

0.000 000 014 901 161 193 847 656 25

0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5

0.000 000 001 862 645 149 230 957 031 25

0.000 000 000 931 322 574 615 478 515 625

0.000 000 000 465 661 287 307 739 257 812 5

0.000 000 000 232 830 643 653 869 628 906 25

F-1

APPENDIXG.

fXh~FLES OF FLOATING POINT NUMBERS

.MBrJ:L- -J!1A-CBlA!t--~---- .. -
R[Pf\ESENTATION

NGLL LR.LcLS tQlIL __ _
6,000
5 ... 00_0.
4.00n
3.(LQi'

.2,000

.. 1, QQ_[l

.0.000
SI.OOI.
8.000
1.000
(,.oor
5. a OC
4.000
.~.()OJ;
2.00(
1.000
0.000

-1.0 0 0
-2.0 0 ('
- 3.0 (j (i
-4.000
-5.0 0 C
- €, • 0 U l~
-7.000
-£\.0 (; I'
-9,Olir
10.00(:
1,1.(1(;(

12.00(,
13. 0 00
14. 0 C(

15. ocr
1,000
(l.9 3 f
(l • E ./:

(l.e1:
o. 7~J(;
0,651\
(1.62:
(1. ~b:'

(l. 50 I
(1.431
a .37 ~\
(\.31.::\
a.251J
c • 11\1
0,12::
0.06:.'
O.OOG

_ (!. 06::
_D.let.
-o.lEI
-0.25(;,
-c.3l~
-0 .~n
- 0 .4 3[
-o.:,[JO
-O.~b::'

-(!.E':'~'.
-OJ.ElF
-0.7!",l!
-n.el!
- (l • f, 7~·
-0.93r

41bfJOOOO
.. _4 ... UUlJ1DJL

111380000
.4 U!lO.n.n.o
41300000
4l.2-tJJOJ1.Q .
41260000
4.~2 .. 40. ooe
41200000
4 OJ 8.(!.(iO_O
4tJFOOOOO
4l)U.',OOtlQ
40EOOOOO
4 DiH1Q o (LO_
401\00000
4ljf2CIO 00 0 .

o
MfA 90_aJl.9
bl600000
[,F50GOOO
BF;>OOOOO
6[180000
EFlOOOOO
bF{)fjOOOO
hLE.OOOOO
P U' S:j)_OOO
UL/-.OOOO
bll:4000Q
E\FDOOOOO
h[CC.OOOO
HIL,/"OOOO
Ul CLiOOOO
Li {1 io 0 0 0 0 0
4 5(:_o_000
'+lJUOOOO
4 U .140 000
'+030000(}
40<::(0000
40;:'>[0000
4Cc>40000
'+u2rOOQO
.'IFf [-DaDe
6ffGOOCO
:'1 f f·OOOO
~" f (,0000
:'II:GOOOO
6ff'.LOOOO
~r6f)OOOO

a
(UI>(\OOOO
(U(OQOO()
((j~)COOOO
LO;"QOOOO
(G1hOOOG
(CHOOOO
CC0[1000()
LFf COOOO
lA [COOOO
i-.F i]tOOCO
hF fAOOOO
H liOOOOO
\,f C(OOOO
hFC(;OOOO
f:F-C40000

G-l

