MOLECULAR COMPUTER

MULTIPROCESSOR COMPUTER SYSTEMS

n/STAR
Network Operating System

Programmer’s Reference Manual

Version 2.240
December 14, 1981
Copyright @ 1981
MOLECULAR Computer

Copyright© 1981 by MOLECULAR Computer

All rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer
language, in any form or by any means, electronic,
mechanical, ~magnetic, optical, chemical, manual or
otherwise, withcut the prior written permission of

MOLECULAR Computer
1841 Zanker Road
San Jose, California 95131

References are made throughout this manual to the name
cP/IM® CP/Mis a registered trademark of Digital Research,
Pacific Grove, California. n/STAR Networking Operating
System, [InfiNET, and WMegaBUS are trademarks of
MOLECULAR Computer.

MOLECULAR COMPUTER

0.1

CONTENTS

n/STAR STRUCTURE

1.1 Introduction

1.2 Internal Layout

1.3 Interrupt Vectors

1.4 Boot Sequence

1.5 Disk Buffer Pooling

| n/STAR FILE AND RECORD LOCKING
2.1 Introduction

2.2 File Locking

2.3 CP/M File Sharing

2.4 Enhanced File Sharing

i DRIVER INTERFACE GUIDE

3.1 Introduction

3.1 Disk Drivers

3.2 Bus Driver

Vv HARDWARE 1/0 PORT ASSIGNMENTS
4.1 Introduction

4.2 File Processor Port Assignments

4.3 Application Processor Port Assignments

MOLECULAR COMPUTER

0.3

PREFACE

This manual provides the information necessary to implement custom
software under the n/STAR Network Operating System.

It is recommended that new users first become familiar with CP/M and n/STAR
by reading the CP/M manuals prior to reading this document. This manual is
organized into the following sections: :

Section |

Section ||

Section Il

Section 1V

Describes the internal memory layout and structure of
n/STAR, along with functional specifications of the Boot
sequence and Sector Buffer Pooling.

Provides details .on n/STAR File and Record locking
capabilities, including additional BDOS calls available for
this purpose.

Contains details on the Disk and Bus Driver interface and
calling sequences.

Presents the hardware /O port assignments for the
Application Processor and File Processor boards with
details on 1/O programming.

MOLECULAR COMPUTER 05

SECTION |
n/STAR STRUCTURE

1.1 INTRODUCTION

The n/STAR Network Operating System is a “CP/M Derivative” operating
system. It presents an environment to the application program that is
compatible with Digital Research CP/M version 2.2.

The n/STAR Network Operating System has been designed specifically for
multiprocessor computer systems manufactured by MOLECULAR Computer,
and takes advantage of their unique hardware features. No method is provided
to implement n/STAR on other computer systems.

In order to provide the greater efficiency available in the Z80A environment,
the n/STAR Network Operating System is coded in the Z80A native instruction
set, rather than the limited 8080 instruction set. '

MOLECULAR Computer systems are composed of chiefly two types of
single-board computers: the File Processor (FP), and one or more Application
Processors {AP). The File Processor performs all of the physical disk /0 and
file handling functions while the Application Processor runs the user's
application program. Thus, each user on the system has a dedicated
Application Processor for program execution. Communication between the
Application Processors and the File Processor is handled over a unique high
speed bus, the MegaBUS Interprocessor Link.

Bus transfers are initiated automatically by n/STAR for disk related BDOS
calls. However, application programs may perform bus transfers directly to
utilize custom system resources. These bus transfers may be made from an
Application Processor to the File Processor, or directly to another Application
Processor.

The Bus Driver routines utilize Z80A Interrupt Mode 2. For this reason
application programs must not disable interrupts or change the processor
interrupt mode. Applications may, however, use Z80A Interrupt Mode 2 and
fixed vectors for the various devices on the processor board provided for this
purpose,

Applications request service from n/STAR via standard CP/M BDOS calls
through the vector at location 0005H. All BDOS functions present in CP/M
version 2.2 are supported, except function 13, Reset Disk, which is.ignored in
order to preserve data integrity in the multiple user environment.

In addition to the CP/M BDOS functions, two additional calls are supported.
The added functions, 42 and 43, Lock and Unlock Record, are useful for
implementing shared file applications where individual records need to be
protected during update without locking the entire file.

MOLECULAR COMPUTER 1.1.2

1.2 INTERNAL LAYOUT -

Upon completion of the Boot Load sequence, the File Processor memory space
is structured as follows:

FFFFH . ‘CONTENTS OF EPROM

{Driver, BOOT routines, and Interrupt Vectors)
F800H
F7FFH :

"~ DISK BUFFER POOL
7800H L |
77FFH

AP BOOT IMAGE
6800H
67FFH

BUFFERED DISK DRIVER
6500H
64FFH

HUB MODULE

4100H
40FFH

AP REQUEST TABLE
0100H
OOFFH

POST BOOT BLOCK
0OO00H

Location 0000H is the start of the Post Boot Block. It contains the Post Boot
routines for both the Application Processor and the File Processor.

At location 0100H is the start of the Appliéétion Processor Request Table.
Each Application Processor in the system has a unique 64 byte entry in the
tabie. There are 256 entries in the table.

The HUB Module starts at location 4100H. All file-oriented BDOS calls
generated by each Application Processor in the system are serviced by the
HUB Module.

The Buffered Disk Driver at location 6500H performs the dual functions of
managing the 32K buffer pool and deblocking the 1024 byte physical sectors to
128 byte blocks.

MOLECULAR COMPUTER 1.2.1

The information contained between location 6800H and 7800H is a static image
of the Application Processor routines which are loaded into the Application
Processor on each individual user's cold or warm start. By retaining the
Application Processor boot image in RAM, the Application Processor boot
operation is much faster and does not compete with disk data 1/0.

The Disk Buffer Pool occupies the area above: the Appllcatuon Processor Boot
Image from location 6800H to F800H. ’ ~

Location F800H to FFFFH is reserved in both the File Processor and the

Application Processor for the EPROM-Resident driver routines and Interrupt
~ Vectors. In addition to the parity error handler and bus drivers, this area in the
filey Processor alsc contains the disk drivers. -

The Application Processor memory is structured as follows:

FFFFH CONTENTS OF EPROM

(Driver Routines, BIOS and Interrupt Vectors)
F800H
F7FFH
STAR MODULE
ECO6H
ECO5H
COMMAND PROCESSOR
(part of Star Module)
E400H
E3FFH
APPLICATION AREA
0100H '
OOFFH
. SYSTEM PARAMETERS
0000H

The system parameter area begins at address 0000H. This is equivalent to the
system parameter area in CP/M. It contains the warm start and BDOS entry
vectors as well as the default sector buffer and FCB.

The next section is the Application Program Area. This is the portion of RAM
available to application programs which are loaded by n/STAR.

Directly above, at location E400H, is the Command Processor. This program
interprets the n/STAR commands. Application programs may overlay this
module to obtain more RAM space.

MOLECULAR COMPUTER 122

Next is the STAR module. This module processes aill BDOS calls from the
application programs. Only the console 1/O operations are actually performed
by this module. All disk- related functions are transferred by this module to
the Hub module in the File Processor via a bus request.

At the top of memory is the EPROM module containing the Bus Driver,
Memory Parity Error handling, Bootstrap routines and Interrupt Vectors. Space .
is also reserved within the EPROM area for a simulated CBIOS Jump-Vector
table. This permits programs to perform direct console /O via the
Jump-Vector Table. Any disk-related Jump-Vector calls result in an error trap
since there is no physical 1/O link from the Application Processor to the disk.

1.3 INTERRUPT VECTORS

Fixed Interrupt Vectors are provided within the EPROM space and may be used
by application programs requiring interrupt-driven /0. As part of the
initialization sequence, the EPROM routine loads the Z80A 1" register with F8H
and sets the individua! vector registers within the various on-board devices to
point to their respective fixed vectors.

Since the EPROM routines reside in RAM, the vectors may be loaded with the
addresses of user-supplied service routines. The application program need only
issue the Enable Interrupts command to the specific device to utilize the
interrupt feature.

Note: The DMA and CTC vectors on the File Processor and Application
Processor as well as one of the File Processor CTC vectors are not available
for use by applications since they perform part of the Bus Driver function.

MOLECULAR COMPUTER 1.3.1

The Fixed Interrupt Vectors for the File Processor are as follows:

ADDRESS VECTOR
F80C ~ PIO Channel A
F8OE PIO Channel B
F810 SIO Vector O
F812 SIO Vector 1
F814 i SI0 Vector 2
F816 SIO Vector 3
F818 SIO Vector 4
F81A SIO Vector 5
F81C SIO Vector 6
F81E SIO Vector 7 -
F820 . CTC A, Channel A
F822 CTC A, Channel B
F824 CTC A, Channe! C
F826 CTC A, Channel D
--.F828 - F82E CTC B (Do Not Use)

F830 - DMA (Do Not Use)

The Fixed Interrupt Vectors for the Application Processcr are as follows:

ADDRESS VECTOR

F80C PIO Channel A
F80E PIO Channe!l B
F810 DMA (Do Not Use)

F818 - F81E CTC (Do Not Use)
F820 SiO Vector 0O
F822 SIC Vector 1
F824 SIO Vector 2
F826 SIO Vector 3
F828 ~ SIO Vector 4
F82A SIO Vector 5
F82C SIO Vector 6
F82E SIO Vector 7

MOLECULAR COMPUTER

1.3.2

1.4 BOOT SEQUENCE

The boot sequence has been designed to allow loadmg custom software
without requmng a change to the system EPROM programs. This is

The‘bootstrap loadhmg, ,seque_nce for. both the Flle Processor and the
Application-Processor begins in the EPROM..After the processor is reset, or
the system is powered, on, the EPROM: is physically -mapped into all
addressable memory space repeating at every 2K byte boundary. The first
operation performed by. the EPROM is to copy its. contents into -RAM at
location F800H, jump to the next location relative to that ;ad,dress,, disable the
EPROM.and continue.running in RAM..

The next operation performed. is.processor initialization.. This .involves setting
up. all of the programmable peripheral controllers on the processor board {S10,
CTC, etc.) and initializing the parity RAM with the correct pattern. Following
processor . initialization,. the bootstrap load ;operation .is performed. The
bootstrap load operation differs between the File Processor and Application
Processor.

In the File Processor, the EPROM first sets the bus Busy indicator, which will
prevent any Application Processor from attempting to boot before the File
Processor has completed its boot sequence. Following the busy indication,
processor initialization is completed and the first sector of the disk is read
into location 0000H in the File Processor RAM. The flrst 128 bytes of this
sector contam the Post-Boot block whrch is structured as follows

O07FH

FP POST BOOT VECTOR
007DH C ‘
007CH

'FP POST BOOT ROUTINE
variable
variable . 4

AP POST BOOT TABLE
0003H
0002H

AP ENTRY VECTOR

OO0O00H

The File Processor then jumps to the Post Boot Vector at location 007DH which
transfers contro! to the beginning of the FP Post Boot Routine. This routine
reads the File Processor image into RAM at the proper address and transfers
control to that address.

MOLECULAR ’CO’MPUTER | 1.4.1

The n/STAR system loads at location 4100H and, on entry, initializes the
request table and logs in all logical drives. When this is done, it clears the bus
fBusy mdrcator, and warts for Apphcatron Processor service requests

The Applrcatnon Proce’s’sfor'booft'Strap operation dces not invOlve disk ‘1/0. After
processor initialization, the bootstrap routine in the Application Processor
EPROM performs a bus request to obtain the post boot block from the File
“Processor, and places it at location"0000H. in the Application’ Processor Thrs
operatron does not occur untrl the bus Busy mdrcator has cleared : o

When the i‘niti'al"bus reqUest has cOmpleted;fanother request is issued using the
-tabie now at location 0003H: This table contains the addréss of the Application
Processor image in File Processor RAM; and’ the intended address in the
Application Processor RAM, at which the image is to be placed. Upon
‘completion, the Application Processor jumps to the Entry’ Vector at location
‘0000H. This transfers control to the newly loaded Application Processor image.

This procedure enables the single Post Boot Block to contain all the variable
information needed to load-the entire system.

1.5 DISK BUFFER Poour\rd

All hard drsk I/O rs performed by the Buffered Disk Driver. This routine
"“manages a 32K byte sector buffer pool which serves to ehmmate redundant
disk 110, thereby greatly rmprovmg the performance of the system without
detracting from the user's 64K memory space. The driver is also responsible
for converting logical 128 byte sectors to physical 1024 byte sectors.

The Hub module makes ‘disk requests to-read or write logical 128 byte sectors.
The Buffered Disk Driver first determines which physical 1024 byte sector
contains the requested block, then checks to see whether that block is already
in the 32K buffer. If it rs, the data is transferred to or from the buffer with no
disk 1/0.

If the sector is not in the buffer, a check is made to see if there is an unused
block available in the buffer. If not, the least recently used block is taken and
its contents are written to the disk if there is a pending write request. The
requested sector is then read in from the disk and that block is marked as the
most recently used.

If the requested operation is to write to an unused portron of the disk, the
pre-read operation is not performed. Also, each request to update the directory
flushes all outstanding write requests to ensure that the disk is properly
updated ‘

MOLECULAR COMPUTER 1.5.1

SECTION 1i
n/STAR FILE AND RECORD LOCKING

2.1 INTRODUCTION

The n/STAR multiple user environment allows different users to access data
simultaneously .in three different ways. These are termed "File Locking”,
”CP/M File Sharing”, and “Enhanced File Sharing”.

2.2 FILE LOCKING

The default option is called “File Locking” mode. Mulitiple users may read from
the same file, but as soon as any user writes to the file, no other user may
write to that file until the first user closes it. No special programming is
required at this level.

2.3 CP/M FILE SHARING

The next option is called “CP/M File Sharing”. This is provided for standard
CP/M programs. It is invoked by the "SHARE"” command, which sets F5' in the
FCB. Subseqguent reads to the file cause the record which is read to be locked
automatically, so that it cannot be read by another user. The record is
unlocked when the first user writes the record (updates it), reads another
record, or closes the file. The "SHARE” command should be used only for files
which are to be processed randomly, and not sequentially. Also, in the case of
indexed files, large portions of the file may become locked due to the locking
of an index record when it is read. No special programming is required at this
level. :

2.4 ENHANCED FILE SHARING

The third option is for users who wish to tailor their application programs to
take full advantage of the n/STAR record locking facilities, and is called
"Enhanced File Sharing”. This level is invoked by the "Unlock” command,
which sets F6' in the FCB. Alternatively, the application program may set F6’ in
the FCB by calling BDOS function 30. Once the file has been unlocked in this
way, it is the responsibility of the application program to control the locking
and unlocking of records through the use of BDOS calls described below. This
level provides for the most efficient file sharing impiementation, and is
recommended for applications which use indexed files and for any new
application programs which are written, to share files under n/STAR.

MOLECULAR COMPUTER 2.1.2

Record locking in "Enhanced File Sharing” mode is provided as follows:

&

FUNCTION 42: LOCK RECORD

Entry Parameters:
+ Register G~ ¢ " 2AH e
Registers DE: © - '+ ‘FCB-Address

Returned Value:
Register A: Return Code

The Lock Record:function allows the application program to-7own' individual
records (sectors) 'within - a random-access file, thereby: preventing other
application programs within: the system from ‘actessing the: record while it is
being updated. The File Control Block (FCB) must refer to a file ‘which has‘been
declared “untocked” by setting indicator F6'. The FCB must also contain the 24
bit random record number (bytes r0, rl, and r2). The indicated record must
reside in an allocated block of the file. ‘

The Lock. Record function verifies that.the. indicated record has not. been
locked by another application program before proceedmg to attempt a record
lock. All locked records for a. g:ven application program are freed by the Close
File function or upon warm start.

The Lock Record function returns zero in reglster A |f the operatron was
successful or. 08H. if the record is already locked by another application
program. If the file is not declared unlocked” lockmg wrll not be performed
and register A will always contam zZero.

FUNCTION 43: UNLOCK RECORD

Entry Parameters:
Register C: ... 2BH.
Registers DE: FCB Address

Returned Value: -
Register A: Return Code

The Unlock Record function allows the application to “free” records previously
locked with function 42. Entry parameters are similar to function 42. The
record referred to by the random record count (bytes r0, r1, and r2) must have
been previously locked with function 42. Register A always contains zero.

MOLECULAR COMPUTER 241

SECTION 1l
DRIVER INTERFACEWGUIDE

3.1 INTRODUCTION

This section provides detailed -information reégarding application._or: tustom
operating system calls to the basic Disk and Bus. Driver EPROM routines:.

3.2 DISK DRIVERS

Apptications running in the File Processor may access the EPROM- resident
‘Disk: Driver routines by simply loading register, pair H&L with the:-address of"a
-user-supplied-request:block and calling-the:vector at location F806H. Access:to
;the Diskette -Driver is:provided using the. same: request block format but hy
.calling location F809H.: These routinés ‘save the contents of:registers B&C: and
.D&E. The. format -of ‘the request block for.both, disk:and diskette drivers:is as
follows: .

, NA\ME“ LEN | . FUNCTION | DISK (F806H) | DISKETTE (F8O9H)
OPR fj’wayte ‘Disk_OP ‘Code’ N see below): (see below)
DRV“ 1'byte | Drive Address”~ 0 T e
CYL | 2 byte|Cylinder Address (0-554) * " | " (0-76)

TRK | 1 byte| Track (Head) , 02y (0-1)

_SEC | 1 byte 'Sector Address 1 =1 7 ,",J(1-26)

‘ijNT 1 byte | Sector Count” {1 -255)" B (N7
BUF | 2 byte|Buffer Address ;“',,(O-FFFFH) | (0-FFFFH)

Disk {(F806H) OP Codes are:

OPCODE FUNCTION

A8 | Format Disk and build Défect Map

42 Write Data

52 Write Data, Retry on. Error

43 | Read Data

53 Read Data, Retry on Error

83 | Sequence Up and Return - ‘
" 82 | Sequence Up and wait for Complet:on;

81 Sequence Down and Return ‘ " _

AB| Initialize Disk with pattern in Buffer |

A3 | Verify Disk

MOLECULAR COMPUTER 311

T T

Diskette (F809H). OP, Codes: arex:

OPCODE

FUNCTION

03

“Read Data,~Retry--on:Error -
Write Data, Retry on Error

—

321

MOLECULAR COMPUTER

T BT LY AT S T <S5 D e+ 5)

R ——— g ——y

prmeR o yrery

On return from the call, a zero condition inditatessuccessful ‘completion:
otherwise, the following_status is returned_in.register A:..

DISK (F806H):

DRIVE TYPE CODE "~

D7 D6 D5 [Da[D3] D2[DT | DO |
| I | | ! | | |
X X 0 0 0 0 ©0 0=
X X 0 0 o0 0 0 1=
X X 0 0 0 0 1 0=
X X

X X 0 1 o0 0 0 1
X X 0 1 0 0 1 0=
X X 0 1 0 0 1 1=
X X 0 1 0 1 0 1=
X X 0 1 0 1 1 0=
X X 0 1 0 1 1 1=
X X 0 1 1 0 0 0=
X X 0 1 1 0 0 1=
X X 0 1 1 0 1 0=
X X 0 1 1 0 1 1 =
X X

X X 1 0 0 0 ©0 0=
X X 1 0 o0 0 0 1=
X X 1 0 ©0 0 1 0=
X X 1 0 0 0 1 1=
X X 1 0 0 1 0 0=
X X '

X X 1 1 0 0 O0 0=
X X 1 1 0 0 0 1=
X X 1 1 0 0 1 0=
X X 1 1 0 0 1 1=
X X 1 1 0 1 0 O©
X X 1 1 0 1 0 1
X X 1 1 0 1 1 0=
X X 1 1 0 1 1 1 =
X X 1 1 1 0 0 0=
X X 1 1 1 0 0 1=
X X 1 1 17 0 1 0=
| I

0 0 =DRIVEO

0 1 =DRIVE 1

1 0 ='DRIVE 2

1 1 = DRIVE 3

00
01
02

= 11

12
13
15
16
17
18
19

>

wogy Monowon

1B

20
21
22
23
24

30
31
32
33

= 34
= 356

36
37
38
39
3A

nouwon

o on

SUCCESSFUL COMPLETION
MOTION RETRY
DATA RETRY

CRC ERROR

DRIVE SEEK FAULT

DRIVE FAULT

CYLINDER MISMATCH
INITIALIZATION COMPLETE
STACK ERROR

HARDWARE TRAP

READ LOSS SYNCHRONIZATION
RAM FAILURE

ID BUFFER FAILURE

DRIVE NOT READY

WRITE PROTECT

DRIVE NOT PRESENT

SECTOR SIZE INVALID
ALTERNATE - AREA OVERFLOW

SECTOR NOT FOUND

SMART COMMAND REJECT

DRIVE BUSY TIME-OUT

DATA TRANSFER TIME-OUT
INVALID CYLINDER/HEAD

INVALID DRIVE NUMBER

INVALID SECTOR NUMBER
COMMAND ALREADY IN PROGRESS
COMMAND DOUBLE WRITE

DRIVE COMMAND REJECT
MULTISECTOR OPERATION ERROR

DISKETTE (F809H):

| 0 = Successful, Non Zero = Hard Failure

B A Iy N N N L LILIE &

MOLECULAR COMPUTER

322

As an example, the assembler routine to read sector 4 from cylinder 10, head 1
on drlve zero would be as follows

PR S f s S,
Dlé,K_,f? ;e‘du - foFsd.sz
| READ: .. Ix1 H,RQBLK.
CALL DISK
INZ- ERROR . -
.. RQBLK: . DB 53H - JREAD SECTOR: -
4 - DB . o .DRIVE 2ERO. ... 4|,
DW 10. CYLINDER.10 .. |
-DB 4 . SSECTOR 4 oo .)
DB 1 :READ 1 SECTOR
DW BUFFER
BUFFER: DS 1024

33 BUS DRIVER

The processor boards within the system communicatevia'a high-speed lotal
network called the MegaBUS Interprocessor Link. It.employs. the. contention
‘access protocol termed CSMA/CD {Carrier Sense Multiple. Access with
Collision Detection). This approach eliminates the overhead associated with
other network architectures, such as those based on a polling echegne. ;

Externally, the bus communication between processors appears as a simple
DMA transfer to or from the target processor's RAM. The processor requesting
a transfer may either "send” a buffer to any other processor.on. the bus, or it
may request a buffer from eny other processor

Bus transactions. are performed by callmg the EPROM Bus Driver routme at
location F803H with reglsters H&L containing the address of a user-supplied
request block_in the following format:

| NAME ["LEN |~ FUNCTION ~ __VALUE
"OPR | 1 Byte Operatlon 0 = Send, 1 = Receive, | o
UAD | 1 Byte| Target Unit Address’ ’ " | (0000H - OOFFH)
SRC | 2 Byte| Source Buffer Address (0000H - FFFFH)
DST | 2 Byte| Destination Buffer Address (0000H - FFFFH)
LEN 2 Byte| Buffer Length (0002H - 0800H)

AR L+ LA e L ke R # BN RN b gem g e Dot

MOLECULAR COMPUTER aan

Yo imeome e o s

P D N O T P R T or)

R o i i msman e et

E

o aars.s2145. R e N ST Loy P YA AT ey A
—

A PR,

;Hs;—.‘-* e,y

destmatuon address in the requesting ‘processor's RAM. Operafion 0, Send,
transfers the specified buffer from the source address in the requestmg
processor's RAM to the destination'ad‘dress in the targ‘et processor’'s RAM.
Due to timing requirements, the maximum buffer size-is 2048 bytes. DMA chip
restrictions limit the minimum buffer size to 2 bytes.

The Unit Address rs a’ smgle byte representmg the Umt Address‘Number of the
Target Processoér. -The -File Processor is always unit 255 (FFH) and an
Application Protessor” may be any other unit number. Specific Apphcatlon
Processor unrt addresses may be - determined by observing the
"INITIALIZING messége containing the umt number at power-up.

i
H

The unit address for any processor is’ stored in-that processor's RAM at
location F802H and may be referenced by the application program, if desrred
but it must NOT be altered. .

The .Source, -Destination, .and-Length-are absolute. values corresponding to the
address of the buffers and their length in bytes respectively.

An example of an assembler routine call to the bus driver to retrieve the Post
‘Boot Block from the File. Processor follows:

i B
[

“MBXFR ' EQU FBO3H
©BOOT "7 LXI ' Y HRABLK
) CALL MBXFR
ANZ ERROR y
RQBLK DB " ‘"1 ' 7 RECEIVE POST-BOOT BLOCK
DB OFFH ~ ;FROM FP’
., bw 0o ;FROM 0000H IN FP
S .bw 7 07 iTO 0000H IN OUR RAM
UUpwt o 128 _1288YTES e

Upon return from the Bus Dnver routme, reglster A contams zero and the zero
ﬂag is set if the operatron was’ successful otherwise a_ non-zero condmon

indicates that the target processor d:d not respond mo the call A non-zero
return usually means the target unit address does not exnst m the system

Lo aase A W BT T I e T I I I e R e

MOLECULAR COMPUTER 8452

 rer
—

P T T

SECTION IV
HARDWARE /0 PORT ASSIGNMENTS

4.1 INTRODUCTION

This section contains a list of the hardware Input/Output devices available on
the File Processor and Application Processor boards along with their port
address assignments and usage. '

For detailed information on the programming of specific Z80A peripheral
devices, it is recommended that the reader refer to the appropriate Z80A
technical manual. ‘

The devices available on the File Processor processor board are:

Z80A FAMILY

1 CTC (for applications use)
1 CTC (used for baud rate and interrupt control) .
1 SI0 (used for serial interface ports)
1 PIO (used for bus interface)
1 DMA (used for bus transfers)

Other
WD1793 Diskette Controller
Bi-directional 16 Bit TTL Parallel Port
TTL Hard Disk Interface

The devices available on the Application Processor board are:

Z80A FAMILY
1 CTC (used for baud rate and interrupt control)
1 SI0 (used for console and printer ports)
1 PIO (used for bus interface)
1 DMA (used for bus transfers)

The following tables list the /O port assignments for the Application
Processor and File Processor boards individually.

MOLECULAR COMPUTER | 412

4.2 FILE PROCESSOR PORT ASSIGNMENTS -

PORT NAME FUNC'HON v
.00 DMA --| DMA CONTROL CHANNEL
10 CTC-0 . | (spare),
"11 cTc-1. | (spare)
12 CTC=2 .. | (spare)
~13 ~ - | CTC-3 : - 1~ (spare)
720 == | CTC=0 7" .| "SERIAL" A LLOCK
21 CTC-1 .. | .SERIAL B GLOCK
22 L CTC-2 .~ 'PARITY ERROR INTERRUPT
23 cTc=3 .| BUS INTERRUPT . ..
40 ,_;_smAD f’SERTAL A DATA CHANNEL
41 | SIOAC.- | SERIAL A.CONTROL. '"CHANNEL
42 ,»_SIOBD | SERIAL B DATA CHANNEL
43 | sioBC . SERIAL B CONTROL CHANNEL __
50 | PIQAD. | _PARALLEL A DATA .
51 PIOAC PARALLEL A CONTROL
52 PIOBD PARALLEL B DATA
53 | PIOBC PARALLEL B CONTROL
70 PLOW LOWER PARALLEL 1/O
71 PHI UPPER PARALLEL 1/0
60 FDSTAT | DISKETTE CONTROL REG
61 FCYLDR DISKETTE CYLINDER REG
62 FSECTP DISKETTE SECTOR REG
63 FDDATA | DISKETTE DATA REG
80 DSTAT HARD DISK STATUS/COMMAND
81 DDATA HARD DISK DATA
82 RIPO RESULT/PARAMETER REG 0
83 R/P1 RESULT/PARAMETER REG 1
84 RIP2 RESULT/PARAMETER REG 2
85 RIP3 RESULT/PARAMETER REG 3
86 RIP4 RESULT/PARAMETER REG 4
87 RIP5 RESULT/PARAMETER REG 5

v A N AT K NS S

MOLECULAR COMPUTER

stm—
T P e e e Yy Y RN D T Y L

pem——,

C—E R I oAy Y BB S ABAT A1

s At A T UL G W SRR T S WU L AP ke b T ey TR T e Sn A A W Y.

s e e ey R R

- e I L)

W LR R UG e ST G MRk ARSI Y OB LW (bt VY G RN W WS OB AR BN AT
——— ——r

A 1T T W Al

" T Ty LT P TRRLr . T 1Y 0 pmww., B i e -'.,‘;MM-VV"MA% D 2 arty cw,»w- L S % W, 5 3
% 4.3 APPLICATION PROCESSOR PORT ASSIGNMENTS
PORT |NAME |FUNCTION® *@ oo
I 99_w | "PIOAD .| PARALLEL " A DATA
01 PIOAC PARALLEL ‘A CONTROL
: 02 PIOBD PARALLEL ‘B DATA’ j; :
03 PIOBC _PARALLEL B CONTROL" .
.20 . {-DMA - . .| --DMA-CONTROL - CHANNEL e
30 CTC-0 | SERIAL A CLOCK "~ _ ”
31 _ CTC-1 | SERIAL B'CLOCK = -
‘32 €TC-2" | PARITY ERROR INTERRUPT
' 33 .| €TC-3 |-BUS. INTERRUPT - <"
60 _ | SIOAD__ | SERIAL A DATA CHANNEL .
61 | SIOAC | SERIAL A CONTROL CHANNEL
‘62 |"SIOBD | SERIAL B'DATA CHANNEL -
; .63~ | SIOBG - - SERIAL B CONTROL “CHARNINEL -

MOLECULAR COMPUTER

< aonto itk
e —

