
USER'S MANUAL

FOR

MSC 8C)09

Infcrmaticn contained in this manual is disclosed in
confidence and may not be duplicated in full or in part by any
person without priolr written approval of Mcneli thic Systems
Corporation. Its sole purpcse is to provide the user with
adequately detailed documentation so as to efficiently
install, operate', maintain, and order spare parts for the
system supplied. The use of this doc~~ent for all other
purpcses is specifically prohibited.

C:OPYRIGHT © 1980 BY
MONOLITHIC SYSTEMS CORPORATION

84 In~erness Circle East
Englewood, Colorado, 80112

(303) 170-7400

PRELIMINARY
2-26-81

~-------------------------,--------- ,---------------------------------,--~

1 . 1
1 . 2
1 . 3
1 . 4
1 . 5

1 . 6
1 . 7

1 . 8

1 . 9

1 .10
1 . 11

1 . 12

1 . 13

1 • 14

SCOPE
SPECIFICATIONS
FUNCTIONAL DESCRIPTION
Z80A PROCESSOR

MSC 8009
TABLE OF CONTENTS

SECTION 1
INTRODUCTION

ARITHMETIC PROCESSING UNIT (Optional)
1. 5. 1 9511 APU
1. 5. 2 9512 APU

BUS INTERFACE
MODE STATUS REGISTER

1. 7. 1 Bus Exchange Modes
READ/WRITE MEMORY

1. 8. 1 Refresh Cycle
READ ONLY MEMORY

1. 9. 1 Protection PROM
DUAL MAP CONFIGURATION (Optional)
I/O INTERFACE

1.11. 1 Serial I/O Interfaces
FLOPPY DISK INTERFACE

1.12. 1 Disk Format
~.12. 2 Status Register

1.12. 2. 1 Address Marks
1.12. 2. 2 Cyclic Redundancy Check Characters (CRC)

INTERRUPT
1.13. 1 Non-Maskable Interrupt

SYSTEM CONTROL
1.14. 1 System ~lock
1.14. 2 Power Up
1.14. 3 Memory And I/O Addressing
1.14. 4 Watchdog Timer

1- 1
1- 2
1- 7
1- 7
1- 8
1- 8
1- 8
1- 9
1- 9
1- 9
1-10
1-10
1-10
1-10
1-11
1-11
1-11
1-12
1-12
1-12
1-13
1-13
1-13
1-14
1-14
1-14
1-14
1-15
1-15

2. 1
2. 2
2. 3

2. 4

2. 5

2. 6

SCOPE
INSTRUCTION AND DATA FORMAT
ADDRESS MODES

SECTION 2
zao PROCESSOR

2. 3. 1 Branching Instructions
2. 3. 2 Restart Instruction (RST)

FLAG
2. 4. 1
2. 4. 2
2. 4. 3

Carry Flag (C)
Add/Subtr' act Flag (N)
Parity/Overflow Flag (P/V)
2. 4. 3 .. 1 Arithmetic Operations
2. 4. 3 .. 2 Logical Operations

2. 4. 4 Half-Carry Flag (H)
2. 4. 5 Zero Flag (Z)
2. 4. 6 Sign Flag (S)

OP CODE SUMMARY
2. 5. 1 Mnemonic Operand Symbols

2. 5. 1. 1 8-Bit Operation
2. 5. 1~ 2 16-Bit Operation

2. 5. 2 Flag Symbols
2. 5. 3 8-Bit Data Transfer Group
2. 5. 4 16-Bit Data Transfer Group
2. 5. 5 Exchange t Block Transfer and Search Group
2. 5. 6 8-Bit Ari.thmetic And Logical Group
2. 5. 7 General Purpose Arithmetic And Control Group
2. 5. 8 16-Bit Arithmetic Group
2. 5. 9 Rotate And Shift Group
2. 5.10 Bit Set, Reset And Test Group
2. 5.11 Program Transfer Group
2. 5.12 Call And Return Group
2. 5.13 Input/Output Group

OPCODE FORMAT AND DESCRIPTION
2. 6. 1 8-Bit Data Transfer Group
2. 6. 2 16--Bit Data Transfer Group
,.. 6. 3 Exc!hange, Block Transfer And Search Group
2. 6. 4 8-Bit Arithmetic And Logical Group

2 .. 6. 4. 1 Arithmetic Instructions
2 .. 6. 4. 2 Logical Group

2. 6. 5 General Purpose Arithmetic And Control Group
2. 6. 6 16-Bit Ar'ithmetic Group
2. 6. 7 Rotate And Shift Group
2. 6. 8 Bit Set, Reset And Test Group
2. 6. 9 Program Transfer Group
2. 6.10 Call And Return Group
2. 6.11 Input/Output Group

2- 1
2- 1
2- 1
2- 2
2- 2
2- 3
2- 3
2- 4
2- 4
2- 4
2- 5
2- 5
2- 5
2- 6
2- 6
2- 7
2- 7
2- 8
2- 8
2- 9
2-10
2-11
2-12
2-13
2-14
2-15
2-17
2-18
2-19
2-20
2-21
2-21
2-23
2-35
2-41
2-41
2-53
2-59
2-63
2-67
2-81
2-85
2-94
2-106

3. 1 SCOPE

SECTION 3
MULTI BUS

3. 2 MULTIBUS CONVENTION
3. 3 MULTIBUS CONTROL

3. 3. 1 Bus Contention Resolution
3.. 3. 1. 1 Serial Bus Priority
3. 3. 1. 2 Parallel Bus Priority
3. 3. 1. 3 Bus Exchange Modes

3. 3. 2 Acknowledge Signals
3. 3. 2. 1 Transfer Acknowledge (XACK/)
3.. 3. 2. 2 Advance Acknowledge (AACK/)

3. 4 SPECIFICATIONS
3. 4. 1 Electrical Characteristics
3. 4. 2 Mechanical Characteristics
3. 4. 3 Signal Description
3. 4. 4 Data Transfer Timing

3. 5 MSC 8009 CONFIGURATION

Figure 3- 1
Figure 3- 2
Figure 3- 3
Figure 3- 4

Table 3- 1
Table 3- 2

4. 1 SCOPE

SERIAL-BUS CONTENTION CONFIGURATION
Z80 READ OPERATION
Z80 WRITE OPERATION
MULTI BUS DATA TRANSFER TIMING

MULTI BUS LEVEL SPECIFICATIONS
MULTI BUS ELECTRICAL REQUIREMENTS

SECTION 4
MEMORY

4. 2 R~~ CONFIGURATION
4. 2. 1 Addressing
4. 2. 2 Memory Read
4. 2. 3 Memory Write
4. 2. 4 Refresh Cycle

4. 3 EPROM/R~1 CONFIGU HATION
4. 3. 1 EPROM/HOM Addressing
4. 3. 2 Memory Protect

4. 4 DUAL MAP CONFIGURATION (OPTIONAL)

Table 4- 1
Table 4- 2

PROGRAM ~IEMORY JUMPER CONNECTIONS
MEMORY ALLOCATION

3- 1
3- 1
3- 2
3- 2
3- 3
3- 4
3- 4
3- 5
3- 5
3- 8
3- 8
3- 8
3- 8
3-10
3-11
3-13

3- 3
3- 6
3- 7
3-14

3- 9
3-15

4- 1
4- 1
4- 2
4- 2
4- 2
4- 3
4- 4
4- 4
4- 5
4- 5

4- 3
4- 6

SECTION 5
SERIAL I/O INTERFACE

5. 1 SCOPE 5- 1
5. 2 CONFIGURING THE SERIAL I/O PORT 5- 1

5. 2. 1 Terminal/Communication Configuration 5- 1
5. 2. 2 Programmable Timer Configuration 5- 1

5. 2. 2. 1 BAUD Rate Configuration 5- 5
5. 2. 3 Clock Configurations 5- 5
5. 2. 4 EIA RS·-232-C Configuration 5- 6
5. 2. 5 TTL Conflguration 5- 6
5. 2. 6 Current. Loop Operation 5- 1
5. 2. 1 Interrupt Configuration 5- 1

5. 3 PROGRAMMING THE SERIAL I/O INTERFACE 5- 9
5. 3. 1 Initialization 5- 9
5. 3. 2 Clock Set 5- 9
5. 3. 3 Control ~lord Programming 5- 9

5 .. 3. 3. 1 Mode Instruction 5-11
5. 3. 3. 2 Command Instruction 5-11

5. 3. 4 Status Word Format 5-13
5 .. 3. 4. 1 Parity Error 5-13
5. 3. 4. 2 Overrun Error 5-14
5 .. 3. 4. 3 Framing Error 5-14

5. 4 DATA COMMUNICATION 5-14
5. 4. 1 Asynchl"onous Transmission 5-14
5. 4. 2 Asynchronous Receive 5-14
5. 4. 3 Synchronous Transmission 5-15
5. 4. 4 Synchr onous Rece i ve 5-15

5. 5 TIMER INTERFACE 5-17
5.5. 1 JJJode Definitions 5-18

5 .. 5. 1. 1 HODE 0 - Interrupt On Tenninal Count 5-19
5.. 5. 1. 2 MODE 1 - Progralmnable One Shot 5-20
5. 5. 1. 3 MODE 2 - Rate Generator 5-21
5. 5. 1. 4 MODE 3 - Square Wave Generator 5-22
5. 5. 1. 5 MODE 4 - Software Triggered Strobe 5-23
5. 5. 1. 6 MODE 5 - Hardware Trigger Strobe 5-24

5. 5. 2 On-The--FlY Readout 5-25
5. 5. 3 BAUD Rate Generator 5-25

Figure 5-
Figure 5- 2
Figure 5- 3
Figure 5- 4
Figure 5- 5
Figure 5- 6
Figure 5- 1
Figure 5- 8
Figure 5- 9
Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13

CONTROL WORD SEQUENCE
MODE INSTRUCTION CONTROL WORD FORMAT
COMMAND INSTRUCTION CONTROL WORD FORMAT
STATUS WORD FORMAT
SYNC CHARACTER TRANSMISSION
8253 INTERVAL TIMER CONTROL WORD FORMAT
MODE 0 TIMING DIAGRAM
MODE 1 TIMING DIAGRAIJJ
MODE 2 TIMING DIAGRAM
MODE 3 TIMING DIAGRAM
MODE 4 TllV1ING DIAGRAM
MODE 5 TIMING DIAGRAM
BAUD RATE GENERATOR ROUTINE

5- 8
5-10
5-12
5-13
5-16
5-17
5-19
5-20
5-21
5-22
5-23
5-24
5-26

Table 5- SERIAL 1/0 CABLE CONNECTION FOR
DATA COM~1UNICATIONS EQUIPMENT (DCE)

Table 5- 2 SERIAL 1/0 CABLE CONNECTION FOR
DATA COMMUNICATIONS EQUIPMENT (DTE)

Table 5- 3 SERIAL I/O PORT CONFIGURATION
Table 5- 4 PRCXJ RA]-1MABLE TIME R SIGNALS
Table 5- 5 8253 TIMER PORT ADDRESSES
Table 5- 6 8253 TIMER REGISTER BAUD RATE VALUES

SECTION 6
FLOPPY-DISK FORMATTER/CONTROLLER

6. 1 SCOPE
6. 2 DESCRIPTION
6. 3 CONTROL REGISTERS

6. 3. 1 Command Hegister
6. 3. 1. 1 Unit Register
6. 3. 1. 2 Command Register

6. 3. 2 Status Register
6. 3. 3 Track Register
6. 3. 4 Sector Register
6. 3. 5 Data Register

6. 4 COMHAND STRUCTURE
6. 4. 1 Head Positioning Commands (Type 1)
6. 4. 2 Sector Comnands (Type 2)
6. 4. 3 Track Commands (Type 3)
6. 4. 4 Reset Interrupt (Type 4)
6. 4. 5 Write Precompensation

6. 5 FORMATTING THE DISK
6. 6. 1 Shugart Drives

6. 6. 1. 1 Gaps
6. 6. 1. 2 Address Marks
6. 6. 1. 3 Cyclic Redundancy Check Character
6. 6. 1. 4 Setting Up The Disk

6. 6. 2 IBM Format

Figure 6- 1
Figure 6- 2
Figure 6- 3
Figure 6- 4
Figure 6- 5
Figure 6- 6
Figure 6- 7
Figure 6- 8
Figure 6- 9
Figure 6-10

6. 6. 2. 1 IBM 3740 (Single Density)
6. 6. 2. 2 IBM System 34 (Double Density)

COMMAND FtOUTINE
STATUS REGISTER READ
DISK SECTOR FORMAT
TRACK SEEK FROM TRACK 00
TRACK SEEK
SECTOR READ ROUTINE
SECTOR WRITE ROUTINE
READ ADDRESS ROUTINE
RESET INTERRUPT ROUTINE
DISK INITIALIZATION ROUTINE

5- ?
<-

5- 3
5- 4
5- 4
5-25
5-25

6- 1
6- 1
6- 1
6- 4
6- 4
6- 4
6- 4
6- 8
6- 8
6- 8
6- 9
6- 9
6-11
6-11,.
6-15
6-15
6-15
6-17
6-18
6-19

(CRC) 6-19
6-19
6-20
6-20
6-21

6- 3
6- 5
6-17
6-22
6-24
6-26
6-28
6-30
6-32
6-33

Table 6- 1
Table 6- 2
Table 6- 3
Table 6- 4
Table 6- 5
Table 6- 6
Table 6- 7

7. 1 SCOPE

DRIVE DESIGNATION
HEAD POSITION STATUS
READ/WRITE STATUS
FLOPPY-DISK COMMAND SUMMARY
FORMATTER/CONTROLLER CONTROL BYTES
GAP DEFINITIONS
ADDRESS MARK DEFINITION

SECTION 7
INTERRUPT

7. 2 Z80 INTERRUPT CONTROL
7. 3 8214 INTERRUPT CONTROLLER

7. 3. 1 Initialization
7. 3. 2 MULTIBUS Interrupt
7. 3. 3 Progranming Multi-Level Interrupts

7. 4 8214 PRIORITY INTERRUPT CONTROLLER
7. 4. 1 Address And Bit Assignments
7. 4. 2 Vectors

7. 5 NON-MASKABLE INTEHRUPT (NMI)

Table 7- 1 DATA BIT FUNCTIONS FOR OUTPUT TO
INTERRUPT CONTROU.ER (Device Code D7)

8. 1 SCOPE
8. 2 SYSTEM DESCRIPTION

SECTION 8
THEORY OF OPERATION

8. 2. 1 Local Control Bus
8. 2. 1. 1 MULTIBUS Control

8. 2. 2 Local Address Bus
8. 2. 2. 1 MULTIBUS Addressing

8. 2. 3 Data Channel
8. 2. 4 Z80 Processor
8. 2. 5 Floppy Disk Formatter/Controller
8. 2. 6 Arithmetio Processing Unit (APU)
8. 2. 7 System Clock

6- 1
6- 6
6- 7
6-10
6-16
6-18
6-19

7- 1
7- 1
7- 2
7- 4
7- 4
7- 5
7- 6
7- 7
7- 7
7- 8

7- 3

8- 1
8- 1
8- 1
8- 1
8- 3
8- 3
8- 3
8- 3
8- 4
8- 4
8- 5

8. 3 SYSTEM OPERATION
8. 3. 1 Wait Operation

8. 3 .. 1. 1 Watchdog Timer
8. 3. 2 OP Fetch Cycle
8. 3. 3 Memory Read Or Write

8. 3. 3. 1 Address Decoding
8. 3. 4 1/0 Cycles

8. 3. 4. 1 Arithmetic Processor Cycles
8. 3. 5 Disk Formatter/Controller

8. 3. 5. 1 Register Selection
8. 3. 5. 2 Clock Circuit
8. 3. 5. 3 Data Exchange
8. 3. 5.4 Disk Read
8. 3. 5. 5 Disk Write
8. 3. 5. 6 Head Loading Delay

8. 3. 6 Acknowledge Cycle
8. 3. 7 Interrupt Request

8. 3. 7. 1 Non-Maskable Interrupt
8. 3. 8 HALT Request
8. 3. 9 System Reset

8. 4 SYSTEM CONTROL
8. 4. 1 Bus State Machine

8. 4. 1 .. 1 Bus Exchange
8. 4. 2 Memory State Machine

Figure 8- 1

Table 8- 1
Table 8- 2

9. 1 SCOPE

8. 4. 2. 1 Refresh

Z80 MICROPROCESSOR

CLOCK RATE CONFIGURATION
SYSTEM CONTROL PROM SIGNAL IDENTIFICATION

SECTION 9
ARITHMETIC PROCESSOR UNIT

g. 2 CAPABILITIES
9. 2. 1 I/O Addressing

9. 3 9511 ARITHMETIC PROCESSOR UNIT
9. 3. 1 Initialization
9. 3. 2 Stack Control
9. 3. 3 Data Format

9. 3. 3. 1 Command Format
9. 3. 3. 2 Status Register
9. 3. 3. 3 Floating Point Format

8- 6
8- 6
8- 6
8- 7
8- 7
8- 8
8- 8
8- 8
8- 9
8- 9
8-10
8-10
8-10
8-11
8-11
8-12
8-12
8-12
8-13
8-15
8-15
8-15
8-16
8-17
8-17

8- 2

8- 5
8-14

9- 1
9- 1
Q- 1
9- 2
9- 2
9- 2
9- 2
9- 4
9- 4
9- 5

9. 4 9511 INSTRUCTIONS
9. 4. 1 Data And Stack Manipulation Operations
g. 4. 2 16-Bit F:ixed-Point Operations
9. 4. 3 32-Bit F:ixed-Point Operations
9. 4. 4 32-Bit Floating-Point Primary Operations
9. 4. 5 32-Bit Floating-Point Derived Operations

9. 5 9511 OP CODE FORM1\T:S
9. 6 9512 ARITHMETIC PROCESSOR UNIT

9. 6. 1 Stack Control
9. 6. 1. 1 Double Precision

9. 6. 2 Co~~and Format
9. 6. 3 Status Register

9. 7 9512 INSTRUCTIONS
9. 7. 1 Data And Stack Manipulation Operations
9. 7. 2 Single Precision Operations
9. 7. 3. Double Precision Operation

9. 8 9512 OP CODE FORMLATS

Figure 9- 1

Table 9- 1
Table 9- 2
Table 9- 3

Appendix A
Appendix B
Appendix C
Appendix D

303-0271-000
305-0271-000

9511 INITIALIZATION SEQUENCE

STACK CONFIGURATIONS
STATUS BIT DEFINITION
STACK CONFIGURATIONS

APPENDICES

MSC 8009 PIN ASSIGNMENT
MSC 8009 JUMPER REQUIREMENT
FLOPPY-DISK JUMPER CONFIGURATION
9511 APPLICATION NOTE

DRAWINGS

MSC 8009 BOARD LAYOUT
MSC 8009 SCHEMATIC

9- 6
9- 7
9- 8
9- 8
9- 9
9- 9
9-14
9-34
9-34
9-35
9-35
9-36
9-38
9-39
9-40
9-40
9-43

9- 3

9-10
9-37
9-41

SECTION '1

INTRODUCTION

1.1 SCOPE

The Monolithic Systems Corporation MSC 8009 is a single-board OEM
computer that is dlirectly compatible with the industry standard
MULTIBUS* . As software development is a major cost of any computer
system, the 8080 software compatibility of the MSC 8009 provides an
advanced, high-speed, next-generation system without incurring the costs
and delays associatedl with developing new software. New systems can now
be designed taking full advantage of the Z80A* instruction set and
optional floating-point arithmetic unit.

The MSC 8009 operates in a multimaster system with either parallel or
serial priority resolution. An on-board bus plus the MULTIBUS structure
allows other operations to proceE~d on the MULTIBUS while the Z80A
processor uses local memory and 1/0 devices. Since the on-board memory
and 1/0 resources are extensive, bus access is usually needed only for
communication between tasks. System throughput with multiple masters is
greatly enhanced because of the light MULTI BUS traffic load. MULTIBUS
compatibility means that the MSC 8009 can be used either to expand
existing SBC 80-based systems or as the basis of a new design.

An on-board floppy-disk formatter/controller in addition to two serial
ports will increase' the computing power for most applications. Via a
17q3 Floppy-Disk FormatterlController, the floppy-disk interface of the
MSC 800Q offers a soft-sector format that can be made IBM compatible
with the proper softw'are. Variable length sectors and the self-clocking
feature of the 1793 means more data per track. The system uses Z80
block 1/0 instructions to transfer data. Write pre-compensation reduces
error rate; and the data separator is crystal controlled. Programmable
stepping rates from 3 to 15 milliseconds lets the MSC 8009 operate with
drives having different track-to-track access time.

*MULTIBUS is a registered trademark of Intel
Corporation

Z80A is a registered trademark of Zilog Inc.

100-0123-001

1-1

1.2 SPECIFICATIONS

PROCESSOR:

Z80A (4 MHz)

MULTIBUS COMPATIBILITY:

Full MULTIBUS control logic permits up to 16 bus masters
(including other MSC CPU's) to share the system bus.

BUS EXCHANGE MODES:

Three bus modes allow exchange of bus master every cycle,
every instruction (allows test and set), or never. The
program sets the bus modes for optimum control of
multi-processing systems.

CYCLE TIME:

The execution of the fastest Z80A instruction require 1.25
microseconds.

FLOPPY DISK INTERFACE:

Format:

Accomodates single- and double-density formats that
are compatible with IBM soft-sector configuration.

Read Mode:

Single/multiple sector read with automatic search or
entire track read. Either selectable 128 byte or
variable length sector.

Write Mode:

Single/multiple sector write with automatic search.
Entire track write capability for diskette formatting.

Supporting Software:

CP/M

100-0123-001

1-2

o
o
I
o
--"
£\.)
W
I
o

I 0
W

9511
FLOATING
POINT AlU

8214
INT[RRUPT
CONTROllER

&

yrCTOR PR(JIt

rlOPPV D[',!'

[10 r:ONNF r. TOR

!len
rlOPPY O[<:;K

CONTROllER

DIV IOrR

STAT[MACHINE

~.[RIAL

1/0 CONNfnOR

8253

TIMER lJSART

i

l80n
! PROCESSOR

MUl TIRUS™

MSC 8009 MICROCOMPfm'~R

<;[RJAI

J 10 r.o~mF r. TOR

USART

CLOCK
16MHI

DYNAMIC RAM
32K

ROM/EPROM

4K, BK, 16K or 3

MSC 8009

1M I MU.. T J BUS I S A ~EG I STEREO TRACE.'HARK

0- T~ INTEL CCRPCJ<Arr~

180 IS A REGISTERED TRAOCr~ CF n£

1ilOG INC.

Capability:

With proper drive options, up to eight 4- or 8-inch
disk drives intermixed can be controlled.

Model Compatibility:

The models listed can be accommodated. However, other
drives can be used and have not been included.

MEMORY CAPACITY:

Shugart SA-400
Shugart SA-450
Shugart SA-800
Shugart SA-850

RAM - 32K bytes, dynamic

EPROM - The MSC 8009 is shipped with four sockets that accomodate
most 8-bit wide memory devices with standard 24-pin callout.
Capacities include:

1) To 32K using 8K x 8 masked-ROM elements.
2) To 16K using 4K x 8 EPROM elements.
3) To 8K using 2K x 8 EPROM elements.
4) To 4K using 1K x 8 EPROM elements.

MEMORY MANAGEMENT:

RAM and ROM addressing under PROM control
Dual-address map option provides two,
selectable under program control.

on 1K-byte boundaries.
complete address maps

MEMORY PROTECTION:

A protection PROM allows the selection of system resources that are
available to other MULTIBUS masters. Any or all of the RAM, ROM or
1/0 subsystems may be protected from external access.

MEMORY REFRESH:

The memory refresh cycles are automatic and nearly transparent.

100-0123-001

1-4

DIRECT MEMORY ACCESS:

Another bus mastE~r may access the on-board memory or 1/0 devices (if
allowed by the protection PROM) :in 625 to 750 nanoseconds.

FLOATING POINT ARITHt1ETIC:

Two optional Arithmetic Processing Units are available -- the 9511
and the 9512 .. The 9511 provides 32-bit precision fixed or floating
point operations including transcendental functions. For increased
performance, the 9512 offers 32- and 64-bit arithmetic operations.

INTERRUPTS:

Vectored, 8-levels of priority interrupts plus Non-Maskable
Interrupt (NMI). All on-board interrupt sources are open collector
so that a number of devices can share the same level.

Two serial ports provide a programmable interface that can be used
for either synchronous or asynchronous operation. One port can be
configured for Ed ther EIA RS-232-C, TTL or opto-isolated 20 mA loop
signals. The other port can be configured for EIA RS-232-C or TTL
only. Signal specifications are:

Synchronous:

5- to 8-hit character; one or two programmable SYNC
characters.

Asynchronous ::

5- to 8-bit character; 1, 1-1/2, or 2 stop bits; choice of
parity or error detection.

BAUD Rates:

75 through 9600 BAUD, software selectable.

100-0123-001

1-5

TIMERS:

One 16-bit counter/timer with six operational modes.

MODE 0 - Interrupt
MODE 1 - Programmable/Retriggerable

One-shot
MODE 2 - Pulse Rate Generator
MODE 3 - Squarewave Generator
MODE 4 - Software Triggered Strobe
MODE 5 - Hardware Triggered Strobe
MODE 6 - Baud Rate Generator for

one serial port

INTERFACE SIGNALS:

MULTIBUS:

All signals conform with MULTIBUS specifications.

Floppy Disk 1/0:

All signals are TTL compatible.

Serial 1/0:

Signals fulfill either EIA RS-232-C, TTL or 20 rnA current loop
convention depending on the MSC 8009 configuration.

Interrupt Requests:

All signals are TTL compatible.

Timer:

All signals are TTL compatible.

POWER REQUIREMENTS:

The MSC 8009 operates with MULTIBUS power supply voltages of +5V,
-5V, +12V, and -12V.

100-0123-001

1-6

PHYSICAL DIMENSIONS:

12 in.(Width) X 6.75 in.(Height) X 0.5 in.(Depth).

1.3 FUNCTIONAL DESCRIPTION

The MSC 8009 design is based on the Z80A microprocessor, which is fully
upward compatible with the popular 8080A. The Z80A executes all 8080
instructions without mJdification. In fact, there are cases where 8080
progr ams in ROM and PROM can simply be plugged into the MSC 8009 with a
significant improvement in performance. However, care must be taken
when certain programming techniques have been used in 8080 application
programs due to the 4-MHz clock rate of the Z80A. Polling loops or
delay-timing routines may require adjustment. An additional flag
appears in the flag register for' the BCD subtraction feature. Flag
differences may be sign:ificant in rar'e cases where uncommon programming
techniques have been employed.

1.4 Z80A PROCESSOR

The Z80A processor itself offers features that are beyond those of the
8080 or 8085. The designer or programner can use these features to
reduce system size or further increase the speed of application
programs. These features include:

(1) 80 additional instructions
(2) Double compliment of registers
(3) Block transfer 1/0 instructions
(4) Index registers
(5) BCD subtraction
(6) Two additional interrupt modes
(7) Non-Maskable Interr'upt (NMI)
(8) Block search and block move instructions

100-0123-001

1-7

1.5 ARITHMETIC PROCESSING UNIT (Optional)

The MSC 800Q will accept one of two available Arithmetic Processor Units
(APU) •

1 .5. 1 9511 APU

The 9511 enhances the computational capability of the MSC 8009. It is
capable of performing 32-bit operations using floating point as well as
fixed-point data formats. Data transfers are to or from an internal
stack. Commands are issued to a second 1/0 address to perform an
operation on the data that is contained in this stack. The status of
the 9511 can be read out at any time from the same 1/0 address. The
results are then made available for retrieval, or an additional command
may be entered. If the 9511 is busy, it will cause the Z80 to wait if
the CPU tries to access the 9511.

Some of the arithmetic and transcendental functions in addition to
control and conversion commands that can be performed with the 9511
include:

1.5.2 9512 APU

(1) Basic Arithmetic Operations (Addition" Subtraction,
Multiplication and Division).

(2) Trigonometric Functions.
(3) Logarithmic Functions (Common and Natural).
(4) Constant Pi ('It) -y'

(5) Exponential Functions (e ~ or X).
(6) Stack Control (single, double or floating).
(1) Square Root.
(8) Change Signs (single, double or floating).

The 9512 provides single-precision (32-bit) and double-precision
(64-bit) add, subtract, multiply and divide operations. All operand
result, status and command information transfers take place over an
8-bit bidirectional data bus. Using programmed I/O, the user can handle
all data transfers between the Z80 and the 9512. Operands are pushed
onto an internal stack by the Z80; and a command is issued to perform an
operation on the data stack. By popping the stack, the final result is
then made available to the Z80.

100-0123-001

1-8

1.6 BUS INTERFACE

The MSC 8009 uses an internal bus for access to the on-board memory,
arithmetic processor, floppy-disk formatter/controller and I/O. Since
these on-board tasks do not require the MULTIBUS, the MSC 8009 is able
to perform internal operations and not interfere with the MULTIBUS
activities. This means that up to 16 bus masters (including other MSC
8009' s) can share' thE~ MULTIBUS and provide the user with the benefits of
multiprocessing.

1.7 MODE STATUS REGISTER

An internal 8-bit register sets up the MSC 8009 via software control for
the following indicated modes of operation.

~I_O_7~~IO_6 __ +-I_O~ I~~IO_3 ____ ~_02 __ ~ ______ IOO __

MEMORY HAP
INTERRUPT MODE

1.7.1 Bus Exchange Modes

INTERRUPT PRIORITY
BUS EXCHANGE MODE

Through program control, the user can use bits 4 and 5 (104 and 105) to
select one of three bus modes for optimum control of a multiprocessing
system. These modes are:

105 104

0 0

0

X

X = don't care

BUS OPERATION

Bus released to higher priority
on every data transfer.

Bus exchange only on M1 processor
cycle (Fetch Instruction).

MSC 8009 keeps the bus.

100-0123-001

1-9

1.8 READ/WRITE MEMORY

In the basic system, the dual-ported dynamic RAM provides the MSC 8009
with up to 32K-byte storage capacity_ The sixteen-chip memory array is
partitioned into two, 16K-byte sections. Either the address lines of
the Z80A processor or the MULTIBUS (Direct Memory Access) address these
arrays. The refresh cycle of the dynamic RAM is automatic. So that
requested memory operations can be performed with minimum time delay,
the refresh cycle is hidden.

1.8.1 Refresh Cycle

If either a memory read or write operation of the dynamic RAM is in
progress, the refresh cycle is inhibited. When the memory cycle is
complete, a refresh cycle may be initiated. The refresh control logic
attempts to initiate a refresh during an M1 machine cycle, making the
refresh transparent. However, if an M1 cycle is not available, the
refresh is still inserted.

1.9 READ ONLY MEMORY

Four ROM/EPROM sockets accommodate the most popular 8-bit wide, 24-pin
memory devices. These devices normally hold the commonly used
subroutines, standard support software and programs for specific
applications. By using the 2108 and 2158 (1K X 8EPROM), the MSC 8009
can hold up to 4K bytes of program storage. The 2516 or 2116 (2K X 8
EPROM) provides 8K bytes while either the 2532 or 2132 4K X 8 EPROM
offers the user 16K bytes. For 32K byte capacity, the user can use the
8K X 8 masked ROMs.

Since each ROM/EPROM device may vary in power configuration, hardware
jumpers provide the required voltages. Different chips may be
intermixed, but three of the four sockets must contain the same devices.
For example, standard support software may require three 2116's (2K X 8
EPROM) and one 8K X 8 Masked ROM -- total capacity of 14K bytes.

1.9.1 Protection PROM

A special PROM protects any or all RAM, ROM or I/O subsystems from
external access. This device generates an internal enabling signal that
permits the bus to address the MSC 8009 only when called for. A pin on
the auxilliary connector totally disables access to the MSC 8009 board,
allowing multiple processors to be paged into the same memory space.

100-0123-001

1-10

1.10 DUAL MAP CONFIGURATION (Optional)

The optional DUAL MAP feature provides the MSC B009 with two complete
address maps. The system always powers up using the first map. Since
the system has to have a ROM at location zero to start properly, a ROM
should be mapped into low memory. For example, the user can switch to a
map that contains RAM in low memory. This is achieved through a bit
sent with the same output instruction used for programming the interrupt
controller (See paragraph 1.7). A "0" in bit position six represents a
s tart up condition :, and a " 1" switches the map. This capabi Ii ty
permits the use of soft.ware written for BOBO and ZBOA processors that
previously could not be run on a single-board computer.

1.11 I/O INTERFACE

Two serial 110 interfaces provide the MSC B009 with serial-data
communication channels that are programmable and will operate either
synchronously or asynchronously based on the current serial-data
transmission protocols. The floppy disk interface can support up to
eight soft-sector drives. Since an address decoder PROM defines the MSC
BOOQ address structure, any 1/0 device on-board may be assigned any of
the 256 device address codes used by the BOBO or ZBOA instruction set.

1.11.1 Serial 110 Interfaces

The two serial 110 interfaces are designed around two
software-programmable devices -- an 8251 USART (Universal/Asynchronous
Receiver/Transmitter) and an B253 Prograrrnnable Timer. The user can
configure one channel only for either EIA RS-232-C, TTL or opto-isolated
20 rnA current-loop operation. The other channel can be configured for
either EIA RS-232-C or TTL operation.

NOTE: For current loop operation,
supplies the current source for

the external device
proper operation.

The user' s progr~am selects the mode of operation, data format, control
character format, par:L ty and BAUD rate. The B251 provides full duplex,
double-buffered transmit and receive capabilities. Also, parity,
overrun and framing error detection are incorporated within the USART.
One section of the B2~)3 supplies the BAUD rate clock under program
control to all channels optionally or additional sections can be used
for different baud rates on the other serial channels.

100-0123-001

1-11

1.12 FLOPPY DISK INTERFACE

An onboard chip allows the MSC 8009 to interface with up to eight 4- or
8-inch drives intermixed. The commands listed in the following Table
Can be used to perform the desired floppy-disk operation.

1.12.1 Disk Format

Restore
Seek
Step
Step In
Step Out
Read Sector
Write Sector
Read Address
Read Track
Write Track

Disks may be formatted to be compatible with either Shugart drives, IBM
3740 or System 34 formats with Sector lengths of 128, 256, 512, or 1024
bytes.

Basically a recorded sector on disk consists of two fields -- the ID
FIELD and the DATA FIELD. The ID FIELD contains the ID Address Marks,
track number, side number, sector number, sector length, and the Cyclic
Redundant Check bits (CRC). The information contained within the ID
FIELD must be found within four revolutions of the disk; otherwise, a
"record-not-found" condition will be set up. The sector length defines
the number of bytes per sector.

The DATA FIELD consists of its Address mark, data and CRC bits. For
double-density operation, there will be three bytes preceding the
Address Marks of the ID FIELD and DATA FIELD with the clock transition
missing between bits 4 and 5.

1.12.2 Status Register

An 8-bit Status Register, internal to the formatter/controller chip,
provides the user with the status of the floppy-disk operation. During
the execution of a command, a status bit will be set, which can be
monitored. This bit is reset when the current instruction terminates.
The remaining bits are updated in accordance to the instruction.

100-0123-001

1-12

1.12.2.1 Address Marks

For synchronization, each track
clock bits called "Address Marks".

has a unique combination of data and
These four distinct marks are:

Index
ID Address
Data Address
Deleted Address

1.12.2.2 Cyclic Redundancy Check Characters (eRC)

All information beginning with an address mark and up to the actual CRC
characters themselves establishes the contents of the Cyclic Redundancy
Check characters. Each field recorded on disk is appended with two CRC
character bytes. These bytes are generated from a cyclic permutation of
the data bits starting w:i th bit zero of the address mark and terminating
with bit zero of the last byte within a field (excluding CRC bytes).
When a field is read, the data bits are divided by the same general
polynomial. A nonzero remainder indicates invalid data, while a zero
remainder denotes that correct data has been read.

1.13 INTERRUPT

The MSC 8009 provides veetoring for eight levels of priority interrupt
in addition to a Non-Masl<able Interrupt (NMI). Three operating modes nd
priority assignments may be configured anytime during system opertion
via software control. 1hese modes include:

(1) MODE 0 generates RST instructions, identical with 8080
vectoring.

(2) MODE 1 vectors all levels to location 38H (RST7)
independent of the interrupt vector hardware.
This mode is useful
because all interrupts
locat:Lon 38H.

for debugging purposes
execute a restart at

100-0123-001

1-13

(3) HaDE 2 uses a PROM to specify the eight, low-order bits
of interrupt-vector address for each of the
eight, priority levels. The Z80A interrupt
vector register defines the eight, high-order
bits that are set by the program. Consequently,
any interrupt can be vectored to any location in
memory under program control.

1.13.1 Non-Maskable Interrupt

The Non-Maskable Interrupt (NMI) feature of the Z80A provides the MSC
ROOq with an effective and efficient method of dealing with system power
failure or for diagnosing certain hardware and software problems. A
power-fail service routine can be added to an existing SBC 80 program
without major changes because the NMI functions independently of
existing interrupt hardware.

A pin of the SBC auxiliary connector P2 is assigned to NMI. Also, NMI
may be connected to pin 33 of P1 (MULTIBUS connector), but this is a
reserved bus pin and may conflict with some applications. NMI can be
used to detect error conditions or abnormal system situations, but
should not be used in the course of normal program execution. The
power-fail module can make use of NMI so that system status is saved and
used for restart information. NMI always vectors to location 66H.

1.14 SYSTEM CONTROL

The majority of MSC 8009 logic is synchronous with the master clock.
Additional independent system-timing functions include power up
initialization and a Watchdog Timer.

1.14.1 System Clock

The MSC 800q uses a standard, master-clock frequency of 16 MHz to derive
the 8-MHz Bus clock. A number of MSC 8009 functions are synchronized
with the master clock (K1115A device).

1.14.2 Power Up

When powering up the MSC 8009 for operation, the -5V must be stable
prior to applying +12V. During the power down sequence, the +12V must
be removed before the -5V.

100-0123-001

1-14

An open-collector driver produces the initializing signal INIT/. This
signal is held for at least 50 milliseconds after power up, conditioning
the MSC 8009 for ope:ration. In place of the driver, an external device
can also be used to initialize the system via the MULTIBUS.

1.14.3 Memory And 110 Addressing

A bipolar, fusible-link PROM defines the memory address and 110
structure, for the MSC 8009. Jumpers and switches have been eliminated
to increase reliability and provide more flexibility in memory
allocation. Any memory device may be assigned to start on any 256-byte
boundary in the 64K addressable space. The memory and 110 allocations
of the standard figure are suitable for most applications. However, if
care is taken to avoid overlapping device addresses, the address­
decoder PROM contents may be reprogrammed to satisfy even the most
unusual memory o)~ I/O address mapping requirements. Two complete
address maps may be stor'ed in an optional extended PROM.

1.14.4 Watchdog Timer

The Watchdog Timer is set to 4 seconds so that certain program and
system failures can be detected and evaluated. An example is the
referencing of non-E~xi.stent memory or 110 devices. The Watchdog Timer
may be disconnected from NMI/. If desired, the timing can be changed by
replacing one capacitor.

100-0123-001

1-15

SECTION 2

Z80 PROCESSOR

2.1 SCOPE

This section discusses and summarizes the Z80 instruction set that is
used in programming the MSC 8009. The instructions are grouped
according to the type of instruction. Each instruction is described
using the assembly language mnemonic operation code; the instruction
name; the symbolic operation; a description; the binary fields and
pattern that make up the machine instruction; and the number of memory
cycles, machine states and affected flags.

The mnemonic operation codes used here differ in some cases from those
used by Zilog so as to be compatible with commonly used 8080 (Intel)
mnemonics. The equivalent Zilog operation codes appear to the upper
right of each instruction description.

2.2 INSTRUCTION AND DATA FORMAT

The program instruction may be 1, 2, 3 or 4 bytes (8 bits = 1 byte) in
length. A multiple-byte instruction is stored in successive memory
locations with the first byte address as the instruction address. The
exact format depends on the operation that is to be performed.

As with instructions, multi-byte data are stored in successive memory
locations with the least-significant byte first.

2.3 ADDRESS MODES

There are four modes of addressing data that are stored either in me:nory
or in processor registers.

1) DIRECT Mode uses byte 2 and byte 3 of the instruction to define the
desired memory location of the data. Byte 2 contains the low-order
bits of the address and byte 3, the high-order bits.

2) REGISTER Mode uses a 2 or 3 bit field in the instruction to specify
the register or register pair containing the data.

3) REGISTER INDIRECT Mode uses a 2 or 3 bit field in the instruction to
define a register pair that contains the memory address of the data
location. The first register holds the high-order bits of the
address and the second, the low-order bits.

100-0123-001

2-1

4) IMMEDIATE Mode uses additional instruction bytes to store the data.
Data can be either 8 bits or 16 bits in length (least-significant
byte first followed by the most-significant byte).

2.3.1 Branching Instructions

I~ormally t the execution of an instruction procedes sequentially through
increasing memory address. However, a branching instruction can specify
the address of the next instruction to be executed in one of . two ways.
Jumps and Calls are branching instructions.

1) The branch instruction holds the address of the next instruction
that is to be executed, where byte 2 contains the low-order address
and byte 3 the high-order.

2) The branch instruction defines a register pair that contains the
address of the next instruction to be executed. The first register
provides the high-order bits of the address and the second, the
low-order bits.

An exception to these two cases is the 'RST' instruction.

2.3.2 Restart Instruction (RST)

This is a special 1 byte call instruction that is usually used during
interrupt sequences. A 3 bit field in the RST instruction determines
one of eight fixed vector addresses. The program control is transferred
to the instruction that has an address eight times the contents of this
3 bit field.

100-0123-001

2-2

2.4 FLAG

The flag regi.ster' (F and F') supply information regarding the Z80 status
at any specific time. Bit position for each flag is shown below:

where:

765 432 1 0

S Z X H X P/V N C

C = CARRY FLAG
N = ADD/SUBTHACT FLAG

P/V = PARITY/OVERFLOW FLAG (1 indicates even parity).
H = HALF-CARHY FLAG
Z = ZERO FLAG
S = SIGN FLAG
X = NOT USED

Each of the two zao Flag Registers contain 6 bits of status information
that are either set or reset by CPU operations. Bits 0, 2, 6 and 7 are
testable and used with conditi.onal Jump, Call or Return instructions.
Flags Hand N are associated with BCD arithmetic and are not directly
testable.

2.4.1 Carry Flag (C)

Either an ADD instruction that generates a carry or a SUBTRACT
instruction that generates a borrow, sets the CARRY FLAG. This flag is
then reset if a carr'y is not generated or a borrow does not occur. This
is convenient for extended preclslon arithmetic. Also, the 'DAA'
instruction sets the CARRY FLAG if the conditions for a decimal
adjustment are fulfllled.

For Rotate and Shift instructions, the CARRY FLAG provides a link
between the least.-significant and most-significant bit for any register
or memory location. For example, the carry holds the last bit shifted
from bit 7 of the register or memory location during a Rotate or Shift
Left instruction. For a Rotate or Shift Right, the carry represents bit
o of the register or' memory location.

Logical instruction AND, OR, and XOR reset the CARRY FLAG. Also, the
CARRY FLAG can be set through instruction 'SCF' or complemented with
'CCF' •

100-0123-001

2-3

2.4.2 Add/Subtract Flag (N)

The Decimal Adjust Accumulator instruction (DAA) uses the ADD/SUBTRACT
FLAG to distinguish between 'ADD' and 'SUBTRACT' operations. For all
'ADD' operations, this flag is reset and for all 'SUBTRACT' operations,
this flag is set.

2.4.3 Parity/Overflow Flag (P/V)

The PARITY/OVERFLOW FLAG is set to a specific state that depends on the
operation.

2.4.3.1 Arithmetic Operations

An overflow condition sets this flag to indicate that the result in the
accumulator is either greater than the maximum number (+127) or less
than the minimum number (-128). The sign bit of the operand denotes the
overflow condition.

For addition, operands with different signs never cause an overflow
condition. When adding operands with like signs, a sum with a different
sign sets the PARITY/OVERFLOW FLAG. The following example illustrates
this situation.

ADDEND: +120 (decimal) = 0111 1000 (binary)
AUGEND: +105 (decimal) = 0110 1001 (binary)

SUM: +225 (decimal) = 1110 0001 (binary)

The binary sum represents -95, which is incorrect, therefore the
PARITY/OVERFLOW FLAG is set.

An overflow can occur for operands of unlike signs in a subtraction
operation. Consider the following example.

MINUEND: +127 (decimal) = 0111 1111 (binary)
SUBTRAHEND:(-)-64 (decimal) = 1100 0000 (binary)

DIFFERENCE: +191 (decimal) = 1011 1111 (binary)

The minuend sign has changed from a positive to a negative, giving an
incorrect difference -- an overflow condition.

Another way to predict overflow is to observe the carry to and from the
sign bit. If there is a carry in and no carry out, or if there is no
carry in and a carry out, then overflow has occurred.

100-0123-001

2-4

2.4.3.2 Logical Operations

The PARITY/OVERFLOW FLAG finds use as a parity indicator for logical and
rotate operations. The number of "1" bits in a byte are counted and an
odd number sets the flag to "0" -- odd parity. If the total is even,
the parity flag is set to "1". Also, when inputting a byte from an I/O
device, certain input instructions affect the parity flag to indicate
the parity of the incoming data.

2.4.4 Half-Carry Flag (H)

The carry and borrow status between accumulator bits 3 and 4 during an
8-bit arithmetic operation affects the condition of the HALF-CARRY FLAG.
The Decimal Adjust Accumulator instruction (DAA) uses this flag to
correct the result of a packed BCD add or subtract operation. This flag
is set according to the following table.

H

o

2.4.5 Zero Flag (Z)

ADD

There is a carry from
bit :3 to bit 4.

There i.s no carry from
bit :3 to bit 4.

SUBTRACT

There is no borrow from
bit 4.

There is a borrow from
bit 4.

If the result when executing an appropriate instruction is 0, the ZERO
FLAG is set.. The ZERO FLAG is always "1" if the resulting byte in the
accumulator is 0 \.Jhen performing an 8-bi t arithmetic operation. A non-O
result resets the flag.

When performing block-compare (search) instructions, a subtract is
performed without affecting the accumulator contents. The Z flag is set
to a "1" if an equivalence is found between the accumulator value and
the memory location pointed to by the contents of the register pair HL.
The ZERO FLAG jLndicates the complemented state of specific bits when
testing a bit in a memory location or register.

If the result of B -, 1 is 0 when inputting or outputting a byte between
a memory location and I/O device using a block I/O instruction, the ZERO
FLAG is set, otherwise it is reset. Also when using the input
instruction INP r I' the ZERO FLAG :is set to indicate a 0 byte input.

100-0123-001

2-5

2.4.6 Sign Flag (S)

The SIGN FLAG stores the state of the most-significant bit of the
accumulator (bit 7). When the processor performs arithmetic operations
on signed numbers, binary two's complement notation is used to represent
and process numeric information. A "0" in bit 7 denotes a positive
number and a "1ft signifies a negative number. The binary equivalent of
a positive number is stored in bits 0 thru 6 for a total range of 0 to
127. The two's complement of the positive number represents a negative
number with a total range of -1 to -128. When inputting a byte from an
1/0 device to a register, input instruction INP r, the SIGN FLAG
indicates either positive (S = 0) or negative (S = 1) data.

2.5 OP CODE SUMMARY

The following symbols, abbreviations and mnemonics will be used to
describe the instruction set with exceptions noted where appropriate.
So that the information is easy to use, a shorthand notation is employed
for describing the assembler format of the instruction and its actual
operation. All capital letters and special characters in the mnemonic
descriptions are required. The lower-case characters indicate a class
of values that can be inserted in the instruction at that point. A
single, lower-case letter indicates an eight-bit quantity or register;
while a double, lower-case letter denotes a sixteen-hit quantity or
register. A symbol enclosed in parenthesis under the NOTATION heading
indicates that the value whose address is specified ·is used.

100-0123-001

2-6

2.5.1 Mnemonic Operand Symbols

2.5.1.1 8-Bit Operation

BYT
CYC
PG
S
b

e
n
i
d
r
rr

p

s
IFF
CY
ZF
v[n]
v[n-m]
Iv
Ov
w<:v
w<:)v

REGISTER

A
B
C
D
E
H
L
I
R
M

PATTERN
DESIGNATION

111
000
001
010
011
100
101

110

NumbE~r of bytes.
Number of cycles.
Sectton 2 page number.
Number of states.

DESCRIPTION

Accumulator
B Register
C Register
D Register
E Register
H Register
L Register
Interrupt Vector Register
Refresh Register
Memory Location
addressed by HL pair

A bi.t position in an 8-bit byte, where the bits are
numbered from right to left 0 to 7.
Relative 8-bit address (-126 to +129).
Any 8-bit absolute value.
An index register reference, either X or Y
An 8-bit index displacement where -128<d<127
8-bit register
B for the BC register pair, D for the DE pair, H for
the HL pair, and SP for the stack pointer.
interrupt vector number (0-7)

Vector Address
o OOH
1 08H
2 10H
3 18H
4 20H
5 28H
6 30H
7 38H

Any of r (defined above) or M.
Interrupt flip-flop.
Carry flip-flop.
Zero flag.
Bit n of the 8-bit value or register v.
Bits n through m of the 8-bit value of register v.
An input operation on port v.
An output operation on port v.
The value of w is replaced by the value of v.
The value of w is exchanged with the value of v.

100-0123-001

2-7

2.5.1.2 16-Bit Operation

PSW
B
H
SP
PG
PC
IX
IY
zz
nn
qq

tt

uu

vvH

vvL

AF Register Pair processor status word
BC Register Pair
HL Register Pair
Stack Pointer Register
Section 2 page number.
Program Counter
X-Index Register
Y-Index Register
B for the BC register pair, D for the DE pair.
Any 16-bit value, absolute or relocatable.
B for the BC register pair, D for the DE pair, H for
the HL pair, and PSW for the A/Flag pair.
B for the BC register pair, D for the DE pair, SP for
the stack pointer, and X for index register IX.
B for the BC register pair, D for the DE pair, SP for
the stack pointer, and Y for index register IY.
The most-significant byte of the 16-bit value or
register vv.
The least-significant byte of the 16-bit value or
register vv.

2.5.2 Flag Symbols

X - Flag affected.
* - Flag unaffected.
P - Parity flag affected according to parity result of operation.
V - Overflow flag affected according to the overflow result.
o - Flag reset.
1 - Flag set.
? - Flag unspecified.

100-0123-001

2-8

2.5.3 8-Bit Data Transfer Group

INSTRUCTION FLAG
NOTATION CYC S BYT

OP CODE PG S Z H P/V N C

MOV r,r' 22 r<=r' 1 4 1 * * * * * *
MOV r,M 22 r<=(HL) 2 7 1 * * * * * *
MOViR d,r ~?2 (i-Ki) <=r 5 19 3 * * * * * *
MOV M,r 23 (HL)<=r 2 7 1 * * * * * *
MOVRi r,d 23 r<=(i-Ki) 5 19 3 * * * * * *
MVI r,n 24 r(=n 2 7 2 * * * * * *
MVI M,n 24 (HL)<=n 3 10 2 * * * * * *
MVIi d,n 25 (i+d)(=n 5 19 4 * * * * * *
LOA nn 25 I A<=(nn) 4 13 3 * * * * * *
STA nn 26

I

(nn)<=A 4 13 3 * * * * * *
LOAX zz 26 A<=(zz) 2 7 1 * * * * * *
STAX zz 26 (zz)(=A 2 7 1 * * * * * *
LOAI 27 A<=I 2 9 2 X X 0 IFF 0 *
LOAR 27 I A(=R 2 9 2 X X 0 IFF 0 *
STAI 28 I<=A 2 9 2 * * * * * *
STAR ~~8 R<=A 2 9 2 * * * * * *

100-0123-001

2-9

2.5.4 16-Bit Data Transfer Group
-

INSTRUCTION
NOTATION

OP CODE PG

LXI rr,nn 29 rr<=nn
LXIi nn 29 i<=nn
LBCD nn 30 B<=(nn+1)

C<=(nn)
LDED nn 30 D<=(nn+1)

E<=(nn)
LHLD nn 30 H<=(nn+1)

L<=(nn)
LliD nn 32 IiH<=(nn+1)

IiL<=(nn)
LSPD nn 30 SPH<=(nn+ 1)

SPL<=(nn)
SBCD nn 31 (nn+1)<=B

(nn)<=C
SDED nn 31 (nn+1)<=D

(nn)<=E
SHLD nn 31 (nn+1)<=H

(nn)<=L
SliD nn 32 (nn+1)<=IiH

(nn)<=IiL
SSPD nn 31 (nn+1)<=SPH

(nn)<=SPL
SPHL 33 SP<=HL
SPli 33 SP<=Ii
PUSH qq 34 (SP-1)<=qqH

(SP-2) <=qqL
SP<=SP-2

PUSHi 34 (SP-1)<=iH
(SP-2)<=iL
SP<=SP-2

POP qq 35 qqH<=(SP+1)
qqL<=(SP)
SP<=SP+2

POPi 35 iH<=(SP+ 1)
iL<=(SP)
SP<=SP+2

CYC S BYT

3 10 3
4 14 4
6 20 4

6 20 4

5 16 3

6 20 4

6 20 4

6 20 4

6 20 4

5 16 3

6 20 4

6 20 4

1 6 1
2 10 2
3 11 1

3 15 2

3 10 1

4 14 2

FLAG ~
S Z H P/V N C

* * * * * *
* * * * * *
* * * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *
* * * * * * .~
* * * * * *

* * * * * *

* * * * * *

* * * * * *

100-0123-0

2-10

2.5.5 Exchange, Bloc~~ Transfer and Search Group
~--------------~ i

INSTRUCTION

OP CODE

XCHG
EXAF
EXX
XTHL

XTli

LDI

LDIR

LDD

LDDR

CCI

CCIR

CCO

CCDR

NOTATION
PG

-
36 L<=)DE
36 SW<=)PSW'
36

H
P
B
H

C DE HL<=)BC'DE'HL'
37

37

38

<=)(SP+ 1)
'L

I
I
(

<=)(SP)
iH<=)(SP+ 1)
il<=)(SP)
OE)<=(HL)

D IE<= DE+1
L<=HL+1 H

B C<=BC-1
38 R

u
epeat LOI
ntil BC=O.

39 (OE)<=(HL)
E<=OE-1
'L<=HL-1

D
H
B ,C<=BC-1

39 R epeat LOO
u ntil BC=O

41 A .-(HL)
H
B

L<=HL+1
C<=BC-1

111 R epeat CCI until
A .=(HL) or BC=O

llO A .-(HL)
'L<=HL-1 H

B C<=BC-1
llO R 'epeat CCO until

A = (HL) or BC=O

-

CYC S

1 4
1 4
1 4
5 19

6 23

4 16

5/4 21/16

4 16

5/4 21/16

4 16

5/4 21/16

4 16

5/4 21/16

BYT

1
1
1
1

2

2

2

2

2

2

2

2

2

FLAG

S Z H P/V N C

• * • *

• • * * • *

• • 0
X o *

* * 0 0 o *

* * 0 X o *

* * 0 0 o *
X X X X * *

X X X X 1 *
X X X X 1 *

X X X X 1 *

100-0123-001

2-11

2.5.6 8-Bit Arithmetic And Logical Group

INSTRUCTION
NOTATION

OP CODE PG

ADD r 42 A<=A+r
ADD M 42 A<=A+(HL)
ADDi d 43 A<=A+(i+d)
ADI n 43 A<=A+n
ADC r 43 A<=A+r+CY
ADC M 44 A<=A+(HL)+CY
ADCi d 45 A<=A+(i+d)+CY
ACI n 44 A<=A+n+CY
SUB r 45 A<=A-r
SUB M 46 A<=A-(HL)
SUBi d 41 A<=A-(i+d)
SUI n 46 A<=A-n
SBa r 41 A<=A-r-CY
SBB M 48 A<=A-(HL)-CY
SSBi d 49 A<=A-(i+d) -CY
SB! n 48 A<=A-n-CY
ANA r 54 A<=A&r
ANA M 54 A<=A&(HL)
ANAi d 55 A<=A&(i+d)
ANI n 55 A<=A&n
ORA r 56 A<=A!r
ORA M 56 A<=A! (HL)
ORAi d 51 A<=A! (i+d)
ORr n 56 A<=A!n
XRA r 51 A<=A"r
XRA M 58 A<=AA(HL)
XRAi d 59 A<=AA(i+<1)
XRI n 58 A<=AAn
CMP r 49 A-r
CMP M 50 A-(HL)
CMPi d 51 A-(i+d)
CPI n 50 A-n
INR r 51 r<=r+1
INR M 52 (HL)<=(HL)+1
INRi d 52 (i+<1)<=(i+d)+1 ,
DCR r 52 r<=r-1
DCR M 53 (HL)<=(HL)-1
DCRi d 53 (i+d)<=(i+d)-1

CYC S BYT

1 4 1
2 1 1
5 19 3
2 1 2
1 4 1
2 1 1
5 19 3
2 1 2
1 4 1
2 1 1
5 19 3
2 1 2
1 4 1
2 1 1
5 19 3
2 1 2
1 4 0
2 1 1
5 19 3
2 1 2
1 4 1
2 1 1
5 19 3
2 1 2
1 4 1
2 1 1
5 19 3
2 1 2
1 4 1
2 1 1
5 19 3
2 1 2
1 4 1
3 10 1
6 23 3
1 4 1
3 11 1
6 23 3

FLAG

S Z H P/V N C

X X X V o X
X X X V o X
X X X V o X
X X X V o X
X X X V o X
X X X V o X
X X X V o X
X X X V o X
X X X V 1 X
X X X V 1 X
X X X X 1 X
X X X V 1 X
X X X V 1 X
X X X V 1 X
X X X V 1 X
X X X V 1 X
X X 1 P 1 0
X X 1 P o 0
X X 0 P 1 0
X X 1 P o 0
X X 1 P o 0
X X 1 P o 0
X X 1 P o 0
X X 1 P o X
X X 1 P o 0
X X 1 P o 0
X X 1 P o 0
X X 1 P o 0
X X X V 1 X
X X X V 1 X
X X X V 1 X
X X X V 1 X
X X X V o *
X X X V o *
X x X V o *
X X X V 1 *
X X X V 1 *
X x x V 1 *

100-0123-0C

2-12

2.5.7 General Pul"pos~~ Arithmetic And ContrO'l GrO'up

INSTRUCTION
NOTATION eye

OP CODE PG
-

DAA 60 CO'nvert A to' 1
packed BCD
after an add
or subtract of
packed BCD
operands

CMA 60 A<=flA 1
NEG 61 A<=-A 2
CMC 61 CY<=flCY 1
STC 61 CY<=1 1
NOP 62 No OperatiO'n 1
HLT 62 Halt 1
01 62 IFF<=O 1
EI 62 I IFF<=1 1
IMO 63 I Interrupt 2 I

! Mode 0
IM1 63 Interrupt 2

Mode 1
1M2 63 Interrupt 2

Mode 2

-

S BYT

4 1

4 1
8 2
4 1
4 1
4 1
4 1
4 1
4 1
8 2

8 2

8 2

FLAG

S Z H P/V N C

X X X P o X

* * 1 * 1 *
X X X V 1 X
* * * * o X
* * 0 * o 1
* * * * * *
* * * * * * * * * * * *
* * * * * *
* * * * * *

* * * * * *

* * * * * *

100-0123-001

2-13

2.5.8 16-Bit Arithmetic Group

INSTRUCTION
NafATION CYC

OP CODE PG

DAD rr 64 HL<=ffi..+rr 3
DADC rr 64 HL<=HL+rr+CY 4
DSBC rr 65 HL<=HL-rr-CY 4
DADX tt 65 IX<=IX+tt 4
DADY uu 65 IY<=IY+uu 4
INX rr 66 rr<=rr+1 1
INXi 67 i<=i+1 2
DCX rr 66 rr<=rr-1 1
DCXi 67 i<=i-1 2

-

S BYT

10 1
15 2
15 2
15 2
15 2
6 2

10 2
6 1

10 2

FLAG

S Z H P/V N C

• • X • o X
X X X V o X
X X X V 1 X

• • X • o X

• • X * o X
• • • * * * • • • • * •
• * * * • *
• * * * * *

100-0123-001

2-1·.

2.5.9 Rotate And Shift Group
-

INSTRUCTION
NOTATION

OP CODE PG
- ..

RLC 68 A[n+ 1]<=A[n]
A[0]<:A[7]
GY<=A[7]

RAL 68 A[n+1]<=A[n]
A[O]<=CY
GY<=A[7]

RRC 69 A[n]<=A[n+ 1]
A[7]<=A[O]
GY<=A[O]

RAR 69 A[n]<=A[n+1]
A[7]<=CY
GY<=A[O]

RLCR r 70 r~[n+ 1]<=r En]
r[O]<=r[7]
GY<=r[7]

RLCR M 70 OiL) [n+1]<=(HL) En]
(HL)[0]<=(HL)[7]
GY<=(HL) [7]

RLCRi d '71 (i+d)[n+1]<=(i+d)[n]
(i+d) [0]<= (i+d) [7]
GY<=(i+d)[7]

RALR r 71 r[n+1]<=r[n]
r" [O]<=CY
GY<=r[7]

RALR M '72 (HL)[n+1]<=(HL)[n]
(HL)[O]<=CY
GY<=(HL) [7]

RALRi d '72 (i+d) [n+ 1]<= (i+d) [n]
(i+d) [O]<=CY
CY<=(i+d)[7]

RRCR r '73 r"[n]<=r[n+1]
r"[7]<=r[O]
GY<=r[O]

RRCR M '73 (HL)[n]<=(HL)[n+1]
(HL)[7]<=(HL)[0]
CY<=(HL)[O]

RRCRi d 74 (i+d)[n]<=(i+d)[n+1]
(i+d) [7]<=(i+d) [0]
CY<=(i+d)[O]

--

CYC S BYT

1 4 1

1 4 1

1 4 1

1 4 1

2 8 2

4 15 2

6 23 2

2 8 2

4 15 2

6 23 2

2 8 2

4 15 2

6 23 2

FLAG

S Z H P/V N C

* * 0 * o X

* * 0 * o X

* * 0 * o X

* * 0 * o X

X X 0 p o X

X X 0 p o X

X X 0 P o X

X X 0 P o X

X X 0 P o X

X X 0 p o X

X X 0 P o X

X X 0 p o X

X X 0 P o X

100-0123-001

2-15

2.5.10 Rotate And Shift Group (cont'd)

INSTRUCTION
NOTATION

OP CODE PG

RARR r 74 r[n]<=r[n+1]
r[7]<=CY
CY<=r[O]

RARR M 75 (HL)[n]<=(HL)[n+1]
(HL)[7]<=CY
CY<=(HL)[O]

RARRi d 75 (i+d)[n]<=(i+d)[n+1]
(i+d)[7]<=CY
CY<= (i+d) [0]

SLAR r 77 r[n+1]<=r[n]
r[O]<=O
CY<=r[7]

SLAR M 78 (HL)[n+1]<=(HL)[n]
(HL)[O]<=O
CY<=(HL)[7]

SLARi d 78 (i+d)[n+1]<=(i+d)[n]
(i+d)[O]<=O
CY<=(i+d)[7]

SHAR r 79 r[nJ<=r[n+1J
r[7J<=r[7J
CY<=r[OJ

SRAR M 79 (HL)[n]<=(HL)[n+1J
(HL)[7]<=(HL)[7J
CY<=(HL)[O]

SRARi d 80 (i+d)[n]<=(i+d)[n+1]
(i+d)[7J<=(i+d)[7]
CY<=(i+d)[OJ

SRLR r 76 r[n]<=r[o+1J
r[7]<=0
CY<=r[OJ

SRLR M 76 (HL)[nJ<=(HL)[n+1J
(HL)[7J<=0
CY<=(HL)[O]

SRLRi d 77 (i+d)[nJ<=(i+d)[n+1]
(i+d)[7J<=0
CY<=(i+d)[OJ

RLD 80 A[0-3J<=(HL)[4-7J
(HL)[4-7J<=(HL)[O-3J
(HL) [O-3]<=A[0-3J

RRD 81 (HL)[0-3]<=(HL)[4-7]
(HL)[4-7J<=A[0-3J
A[0-3]<=(HL)[O-3]

CYC S BYT

2 8 2

4 15 2

6 23 2

2 8 2

4 15 2

6 23 2

2 8 2·

4 15 2

6 23 2

2 8 2

4 15 2

6 23 2

5 18 2

5 18 2

FLAG I

S Z H P/V N C

X X 0 P o X

X X a P a X

X X 0 P a X

X X a p o X

X X 0 P o X

X X 0 P o x

X X 0 P o x

X X 0 p a X

X X a P a x

X X a p a X

X X 0 p a x

X X 0 P o X

X X a p a X

X X 0 p a X

100-0123-00 "

2-16

2.5. 10 Bit Set, Rese't .And Test Group
-

INSTRUCTION
NOTATION CYG

OP CODE PG

BIT b,r 82 :ZF<=11r [b] 2
BIT b,M 82 :ZF< = IIC HL) [b] 3
BITi b,d 83 :ZF<=II(i+Ci)[b] 5
SETB b,r 83 lr[b]<=1 2
SETB b,M 84 (HL)[b]<=1 4
SETi b,d 84 (i+Ci)[b]<=1 6
RES b,r 85 Jr[b]<=0 2
RES b,M 85 (HI..) [b]<=O 4
RESi b,d 85 (i+Ci) [b]<=0 6

S BYT

8 2
12 2
20 4
8 2

15 2
23 2
8 2

15 2
23 2

FLAG

S Z H P/V N C

? X 1 ? o *
? X 1 ? o *
? X 1 ? o *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *

100-0123-001

2-17

2.5.11 Program Transfer Group

INSTRUCTION
NOTATION CYC

OP CODE PG
-

JMP nn 86 PC<=nn 3
JZ nn 86 If 0, then JMP 3

else continue
JNZ nn 87 If not 0 3
JC nn 88 If carry 3
JNC nn 87 If not carry 3
JPO nn 88 If parity odd 3
JPE nn 89 If parity even 3
JP nn 89 If sign positive 3
JM nn 90 If sign negative 3
JO nn 90 If overflow 3
JNO nn 91 If not overflow 3
JMPR e 92 PC<=e where 3

-126<e-PC<+129
JRZ e 92 If 0, then JMPR 3

else continue
JRNZ e 92 If not 0 3
JRC e 93 If carry 3
JRNC e 93 If not carry 3
DJNZ e 94 B<=B-1 If 8=0 3

then continue
else JMPR

PCHL 91 PC<=HL 1
PCIi 91 PC<=Ii 2

S BYT

10 3
10 3

10 3
10 3
10 3
10 3
10 3
10 3
10 3
10 3
10 3
12 2

12 2

12 2
12 2
12 2
13 2

4 1
8 2

" FLAG

S Z H P/V N C

* * * * * *
* * * .* * *

* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *

* * * * * *

* * * * * *
* * * * * *
* * * * * *
* * * * * *

* * * * * *
* * * * * *

100-0123-001

2-18

2.5.12 Call And Return Group _.
INSTRUCTION

NOTATION
OP CODE PG

CALL nn 94 (SP-1)<=PC\H
(SP-5) <=PC\L
SP<=SP-2
PC<=nn

CZ nn 95 If 0, then CALL
else continue

CNZ nn 95 If not 0
CC nn 96 I If carry
CNC nn 96 i If not carry
CPO nn 97 If parity odd
CPE nn 97 If parity even
CP nn 98 I If sign positive
CM nn 98 If sign negative
CO nn 99 ; If overflow
CNO nn 99 If not overflow
RET 100 PC\H<= (SP+ 1)

PC\L<=(SP)
SP<=SP+2

RZ 102 If 0, then RET
else continue

RNZ 102 If not 0
RC 102 If carry
RNC 103 If not carry
RPO 103 If parity odd
RPE 103 If parity even
RP 104 If sign positive
RM 104 If sign negative
RO 104 If overflow
RNO 105 If no overflow
RETI 101 Return from

interrupt
RETN 101 Return from Non

Maskable Interrupt
RST n 100 (SP-1)<=PC\H

(SP-2) <= PC\L
PC<=8*n where
0<=n<8

-

CYC S BYT

5 17 3

3/5 10/17 3

3/5 10/17 3
3/5 10/17 3
3/5 10/17 3
3/5 10/17 3
3/5 10/17 3
3/5 10/11 3
3/5 10/17 3
3/5 10/17 3
3/5 10/17 3
3 10 1

1/3 5/11 1

1/3 5/11 1
1/3 5/11 1
1/3 5/11 1
1/3 5/11 1
1/3 5/11 1
1/3 5/11 1
1/3 5/11 1
1/3 5/11 1
1/3 5/11 1
4 14 2

4 14 2

3 11 1

FLAG

S Z H P/V N C

* * * * * *

* * * * * *

* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *

* * * * * *

* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *

* * * * * *
* * * * * *

100-0123-001

2-19

2.5.'3 Input/Output Group

INSTRUCTION
NOTATION

OP CODE PG

IN n '09 A<=In
INP '09 r<=I(C) ,
INI "1 (HL)<=T(C)

B<=8-1
HL<=HL+1

INIR 111 Repeat INT until
B=O

IND "0 (HL)<=I(C)
B<=8-1
HL<=HL-1

INDR '10 Repeat IND until
B=O

OUT n 106 On<=A
OUTP r 106 O(C)<=r
OUTT 101 O(C)<=(HL)

B<=B-1
HL<=HL+'

OUTIR 101 Repeat OUTI until
B=O

auTO 108 O(C)<=(HL)
B<=8-1
HL<=HL-1

OUTDR 108 Repeat OUTD until
B=O

-

cye S BYT

3
"

2
3 '2 2
4 '6 2

5/4 21/16 2

4 16 2

5/4 21/16 2

3 l' 2
3 12 2
4 16 2

5/4 21/16 2

4 16 '2

5/4 21/16 '2

FLAG

S Z H P/V N C

* * * * * *
X X 0 P o *
? X ? ? , *

? 1 ? ? 1 *
? X ? ? , *

? , ? ? 1 *
* * * * * *
* * * * * *
? X ? ? 1 *

? 1 ? ? 1 *
? X ? ? 1 *

? 1 ? ? 1 *

100-0123-001

2-20

2.6 OPCODE FORMAT AND DESCRIPTION

2.6.1 8-Bit Data Transfer Group

This group of instructions transfers data to and from registers and
memory. Condition flags are not affected by any instruction in this
group.

LD rd ,rs
MOV r,r' Move register to register

r(=r'

Move contents of source register rs to rlestination register rd.

cycles: 1 states: 4
fl;::Jgs: none

MOV M,r Move register to memory

r(=(HL)

LD (HL), rs

Move contents of register rs to the memory location addressed by the HL
register pair.

cycles: 2 states: 1
flags: none

MOV r ,M Move memory to register

r(=(HL)

LD rd, (HL)

Move contents of the memory location, whose address is in registers H
and L, to register rd.

cycles: 2 states: 1
flags: none

100-0123-001

2-21

MOVXR i,r
MOVYR i,r Move register to indexed memory

(IX + i)(=r
(IY + i)(=r

LD (IX+i) ,rs
LD (IY+i) ,rs

Move contents of source register to the memory location addressed by the
sum of the index register and the two's complement displacement i.

1 1 * 1

0 1 1 1

i

cycles: 5 states: 19
flags: none

*O=IX 1=IY

1 1 0 1

0 rs rs rs

MOVRX rd,i
MOVRY rd,i Move indexed memory to register

r(=(IX + i)
r(=(IY + i)

DD/FD

LD rd,(IX+i)
LD rd, (IY+i)

Move contents of memory location addressed by the sum of the index
register and the two's complement displacement i to the destination
register.

1 1 * 1

0 1 rd rd

i

cycles: 5 states: 19
flags: none

*O=IX 1=IY

1 1 0

rd 1 1

1

0

DD/FD

100-0123-001

2-22

MVI r,n Move irrrllediate to register

r(=n

Move contents of byte 2 of the instruction to register rd.

I--°_...-._ ~Ird I rd o
data

~------------,----------------------
cycles: 2 states: 1
flags: none

MVI M,n Move to memory immediate

(HL)(=n

LD rd ,d8

LD (HL) ,d8

Move contents of byte 2 of the instruction to the memory location
addressed by the HL register pair.

cycles: 3 states: 10
flags: none

100-0123-001

2-23

MVIX i,n
MVIY i,n Move immediate to indexed memory

(IX + i)<=n
(IY + i)<=n

LD (IX+i) ,d8
LD (IY+i),d8

Move byte 4 of the instruction to the memory location addressed by the
sum of the index register and the two's complement displacement.

1 1 * 1

0 0 1 1

i

data

cycles: 5 states: 19
flags: none

*O=IX 1=IY

1 1

0 1

LDA nn Load accumulator direct

A<=(nn)

0 1 DD/FD

1 0 36

LD A, (a16)

Move contents of the memory location, addressed by byte 2 and byte 3 of
the instruction, to the A register.

o

low-order addr

high-order addr

cycles: 4 states: 13
flags: none

o 3A

100-0123-001

2-24

STA nn Store acc:umulator direct
LD (a16),A

(nn)(=A

Move contents of the accumulator to the memory location addressed by
byte 2 and byte 3 of the instruction.

0 1 I1 0 32

lo~,-order addr

high-order addr

cycles: 4 states: 13
flags: none

LD A,(rp)
LDAX zz Load accumulator indireet

A(=(zz)

Move contents of the memory loeation, addressed by the register pair rp,
to register A. Note: Only register pairs rp = B (registers B and C) or
rp = D (registers D and E) may be specified.

cycles: 2 states: 1
flags: none

STAX zz Store accumulator indirect

(zz)(=A

LD (rp) ,A

Move contents of register A to the memory location addressed by the
register pair rp. Note: Only register pairs rp = B (registers B and C)
or rp = D (registers D and E) may be specified.

cycles: 2 states: 1
flags: none

100-0123-001

2-25

LDAI Load accumulator interrupt vector

A(=I

Load the interrupt vector register into the accumulator.

cycles: 2
flags: S Z

X X

states: 9
H P/V N C
o IFF 0 *

LD A,I

*The P/V flag is set to the value of the interrupt enable flip-flop.

LDAR Load accumulator refresh register

A(=R

Load the refresh register into the accumulator.

cycles: 2
flags: S Z

X X

states: 9
H P/V N C
o IFF 0 *

LD A,R

*The P/V flag is set to the value of the interrupt enable flip-flop.

100-0123-001

2-26

STA! Store accumulator interrupt vector

!(=A

Store the contl3nts of the accumulator in the interrupt

1 1 1
0 1 0 1-:--+-:-1--; -tHE :~

cycles: 2 states: 9
flags: none

STAR Store accumulator refresh register

R(=A

LD I,A

vector register.

LD R,A

Store the (:ontlents of the accumulator in the refresh register.

1_:---I1--1--+ __ tHE :: 1 1 1

0 1 0

cycles: 2 states: 9
flags: none

100-0123-001

2-27

2.6.2 16-Bit Data Transfer Group

LXI r,nn

rr<=nn
(r)<=n

Load register pair immediate

LD BC,d16
LD DE,d16
LD HL,d16
LD SP,d16

Move byte 3 of the instruction into the high-order register (rh) of the
register pair rp. Move byte 2 of the instruction into the low-order
register (rl) of the register pair rp.

o

low-order data

high-order data

cycles: 3 states: 10
flags: none

LXIX
LXIY Load index register immediate

IX<=nn
IY<=nn

LD IX,d16
LD IY,d16

Load the immediate data in byte 4 to the high-order half of the index
register and the immediate data in byte 3 to the low-order half.

1 1 * 1 1 1

0 0 1 0 0 0

low-order data

high-order data

cycles: 4 states: 14
flags: none

*O=IX 1=IY

0 1

0 1

DD/FD

21

100-0123-001

2-28

LBCD nn
LDED nn
LSPD nn Load register pair direct

rp<=(a16)

LD BC, (a 16) .
LD DE, (a16)
LD HL, (a16)
LD SP,(a16)

Move contents of memory location nn into the low-order byte of the
register pair Clnd the contents of the next higher memory location into
the high-or'der byte of the register pair.

-
1 1 1 ° 1 1

° 1 rp rp 1 0

10 w-order addr

hj .gh-order addr

cycles: 6 states: 20
flags: none

Lffi..D nn Load Hand L direct

L<=(nn)
H<=(nn + 1)

° 1 ED

1 1

LD HL, (a16)

Move contents of the memory location, addressed by byte 2 and byte 3 of
the instruction, to register L. Move contents of the memory location at
the next htgher address to reg:ister H.

o I 0 I 1 I 0 I 1 I 0 _,'--1_____..0---1

low-order addr

high-order addr

cycles: 5 states: 16
flags: none

2A

100-0123-001

2-29

SBCD nn
SDED nn
SSPD nn Store register direct

(nn) <=rp

LD (a16),BC
LD (a16),DE
LD (a16),SP

Move contents of register pair low-order byte to memory location nn and
high-order byte in the next higher memory location.

1 1 1 0 1 1

0 1 rp rp 0 0

low-order addr

high-order addr

cycles: 6 states: 20
flags: none

SHLD nn Store HL direct

(nn)<=L
(nn + 1)<=H

0 1 ED

1 1

LD (a16) ,IlL

Move contents of register L to the memory location addressed by byte ~
and byte 3. Move contents of register H to the next higher rnemr)r y
location.

o

low-order addr

high-order addr

cycles: 5 states: 16
flags: none

o 22

L1XD nn
L!YD nn Load index register direct

1Xl<=(nn)
1Xh<=(nh + 1)

LD 1X,(a16)
LD 1Y, (a16)

Move contents of memory location nn into the index register low-order
byte and the contents of memory location nn ... 1 into the index register
high-order bytE~.

1 1 * 1 1 1

0 0 1 0 1 0

10 w-order addr
-

hi gh-order addr

cycles: 6 states: 20
flags: none

*O=1X 1=1Y

0

1

S1XD nn
S1YD nn Store index register direct

(nn)<=1Xl
(nn + 1)<=IXh

1

0

DD/FD

2A

LD (a16),IX
LD (a16),1Y

Move contents of index register low-order byte to memory location nn and
index register high-order byte to memory location nn + 1.

1 1 * " 1 1 -
0 0 1) 0 0

-
low -order addr

I. ~h-order addr

cycles: 6 states: 20
flags: none

*O=1X 1=1Y

0 1

1 0

DD/FD

22

100-0123-001

2-31

SPHL Move HL to SP

SP(=HL

Move contents of registers Hand L (16 bits) to register SP.

SPIX

~I _1 ~1_1~_1~1._1~1~_0~0~~IF9
cycles: 1 states: 6
flags: none

SPIY Move index register to stack pointer

SP(=IX
SP(=1Y

Move index register contents to stack pointer.

cycles: 2 states: 10
flags: none

*O=IX 1=IY

LD SP,HL

LD SP ,IX
LD SP ,1Y

100-0123-001

2-32

PUSH qq Push

(SP - 1)<=qqH
(SP - 2)<=qqL
SP<=SP - 2

PUSH Be
PUSH DE
PUSH HL
PUSH AF

Move contents of the high-order ,register of register pair rp to the
memory location whose address:is one less than the content of register
SP. Move contents of the low··order register of register pair rp to the
memory location whose address :is two less than the content of register
SP. Decrement the contents of register SP by 2. Note: Register pair
rp = SP may not be specified.

cycles: 3 states: 11
flags: none

rp: B=OO D=01 H=10 PSW=11

PUSHX
PUSHY Push index register

SP - 1<=IXh
SP - 2<=IXI
SP<=SP - 2

o 1

PUSH IX
PUSH IY

Push the contents of the index register high-order byte into the memory
location SP - 1 and push the contents of index register low-order byte
into memory location SP - 2 and decrement the stack pointer by 2.

~* ~ ~DD/FD
~ 1 ,~ ~ E5

cycles: 3 states: 15
flags: none

*O=IX 1=IY

100-0123-001

2-33

POP qq Pop

qqL<=SP
qqH<=SP + 1
SP<=SP + 2

POP Be
POP DE
POP HL
POP AF

Move contents of the memory location, whose address is specified by the
content of register SP, to the low-order register of register pair rp.
Move contents of the memory location, whose address is one more than the
contents of register SP, to the high-order register of register pair rp.
Increment the contents of register SP by 2.

Note: Register pair rp = SP is not valid.

cycles: 3 states: 10
flags: none except POP PSW affects all flags

rp: B=OO D=01 H=10 PSW=11

POPX
POPY Pop index register from the stack

IXI=SP
IXh=SP + 1
SP<=SP + 2

POP IX
POP IY

Pop the contents of the memory location addressed by the stack pointer
into the contents of the next higher memory location into the high-order
byte of the index register and increment the stack pointer by 2.

cycles: 4 states: 14
flags: none

*=IX 1=IY

100-0123-001

2-34

2.6.3 Exchange, Block Transfer And Search Group

XCHG Exchange HL with DE
EX DE,HL

HL<=)DE

Exchange the contents of the HI.. register pair with the contents of
register pair DE.

cycles: 1 states: 4
flags: none

EXAF Exchange accumulator and flags

PSW<=)PSW'

EB

EX AF,AF'

Exchange the processor status word (consisting of the accumulator and
flags) with the alternate processor status word.

I 0 I 0 I 0 I 0 I 1 I 0] 0 I 0 I 08

cycles: 1 states: 4
flags: none

EXX Exchange registers

BC<=)BC'
DE<=)DE'
HL<=)HL'

EXX

Exchange the B, C~ D, E, Hand L registers with the alternate set.

cycles: 1 states: 4
flags: none

100-0123-001

2-35

XTHL Exchange stack top with Hand L

L<=)SP
H<=)SP +

EX (SP),HL

Exchange the contents of the L register with the contents of the memory
location addressed by the contents of register SP. Exchange the
contents of the H register with the contents of the memory location
addressed by one greater than the contents of register SP.

XTIX

I' I' I' 10 10

cycles: 5 states: 19
flags: none

o

EX (SP), IX
EX (SP),IY

XTIY Exchange stack top with index register

IXL<=SP
IXH<=SP + 1

Exchange the contents of the memory location addressed by the SP with
the index register low-order byte and exchange the memory location one
greater than the SP with the index register high-order byte.

cycles: 6 states: 23
flags: none

*O=IX 1=IY

100-0123-001

2-36

LDI Load and dOUible increment

DE<=I-ll...
DE<=(DE + 1)
HL<=(HL + 1)
BC<=(BC - 1)

LDI

Move the memory location addressed by HL to the memory location
addressed by DE; then increment pointers HL and DE and decrement byte
counter BC.

) [Q2J 1 ~
~1~ 0

states: 16

1

0

cycles: 4
flags: S Z

* *
H P/V N C
o X 0 *

1

0

P/V flag = 0 when BC - 1 = 0
= 1 when BC - 1 =1 0

~ED
~AO

LDIR Load and double increment and repeat

DE<=HL
DE<=(DE + 1)
HL<=(HL + 1)
BC<=(BC - 1)
PC<=(PC - 2 until BC = 0)

LDIR

Move the rnemot'y location addressed by HL to the memory location
addressed by DE; then increment pointers HL and DE and decrement byte
counter BC and repeat the instruction until BC = O.

1 1

1 0

cycles: 5/4
flags: S Z

* *

-
~1 ~ED 1

1 [~BO
states: 21/16
H P/V N C
o 00*

100-0123-001

2-31

LDD Load and double decrement

DE<=HL
DE<=(DE - 1)
HL<=(HL - 1)
BC<=(BC - 1)

LDD

Move the memory location addressed by HL to the memory location
addressed by DE; then decrement pointers DE and HL and decrement byte
counter BC.

cycles: 4 states: 16
flags: S Z H P/V N C

* * 0 X o *
P/V flag = o when BC - 1 = 0

= 1 when BC - 1 =1 0

LDDR Load, double decrement and repeat

DE<=HL
DE<=(DE - 1)
HL<=(HL - 1)
BC<=(BC - 1)
PC<=(PC - 2 until BC = 0)

LDDR

Move the memory location addressed by HL to the memory location
addressed by DE; then decrement pointers DE and HL and decrement byte
counter BC and repeat the instruction until BC = o.

cycles: 5/4
flags: S Z

* *

states: 21/16
H P/V N C
o 00*

100-0123-001

2-38

CCD Compare memory contents and decrement

A - (HL)
HL < = (HL - 1!)
BC<=(BC - 1)

CPD

Subtr act the contents of the m(~mory location addressed by HL from the
accumulator; dE~crement the memory pointer HL and the byte counter BC.

1 1 1

1 0 1 f: I' 1 a I: I, I::
cycles: 4 states: 16
flags: S Z H P/V N C

X X X X 1 *
P/V flag = o when BC - 1 = 0

= 1 when BC - 1 =/ 0

CCDR Compare memory contents, decrement and repeat

A = (HL)
HL<=(HL - 1)
BC<=(BC - 1)
PC<=(PC - 2 until BC = 0)

CPDR

Subtract the contents of the memory location addressed by HL from the
accumulator; decrement the memory pointer HL and the byte counter BC and
repeat the instruction until Be = 0 or until A = (HL).

1 1 1 -
1 0

cycles: 5/~·
flags: S Z

X X

1

states: 21/16
H P/V N C
X X 1 *

100-0123-001

2-39

CCl Compare memory contents and increment

A - OiL)
HL<=HL + 1
BC<=BC - 1

CPl

Subtract the contents of the memory location addressed by HL from the
accumulator; increment the memory pointer HL and decrement the byte
counter BC.

cycles: 4 states: 16
flags: S Z H P/V N C

X X X X * *
P/V flag = o when BC - 1 = 0

= 1 ·when BC - 1 =1 O.

CClR Compare memory contents, increment and repeat

A = (HL)
HL<=HL - 1
BC<=BC - 1
PC<=PC - 2 until BC = 0

CPlR

Subtract the contents of the memory location addressed by HL from the
accumulator; increment the Inemory pointer HL and decrement the byte
counter BC and repeat the instru~tion until BC = 0 or until A = (HL).

cycles: 5/4 states: 21/16
flags: S Z H P/V N C

X X X X 1 *
P/V flag = o when BC - 1 = 0

= 1 when BC - 1 =1 0

100-0123-001

:2-40

2.6.4 8-Bit Arithmetic And Logical Group

2.6.4.1 Arithmetic Instructions

This group of lnstructions performs arithmetic operations between data
in accumulator and data registers or memory.

Unless indicated otherwise, all instructions in this group affect the
Zero, Sign, lParity, Carry, and Half-Carry flags according to the
standard rules.

All subtraction operations are performed via two's complement arithmetic
and set the Cal"ry flag to one to indicate a borrow and clear it to
indicate no bor·row.

ADDr Add register' to accumulator

A<=A + r

Add register rs to the accumulator.
accumulator.

I 1 I 0 ~o, I 0 I r~ rs I rs: I
cycles: 1 states: 4
flags: S Z H P/V N C

X X X V o X

ADDM Add memory to accumulator

A<=A + (HL)

ADD A,rs

Place the result in the

ADD A, (HL)

Add the contents of the memory location addressed by the HL register
pair to the contents of the accumulator. Place the result in the

. accumulator'.

I 1 I 0 I~o I a
cycles: 2 states: 7
flags: S Z t.l P/V N C

X X X V o X

I 1] 1 0 86

100-0123-001

2-41

ADDX i
.ADDY i Add indexed memory to accumulator

A<=A + (IX + i)
A<=A + (IY + i)

ADD A, (IX+i)
ADD A, (IY+i)

Add the contents of the memory location addressed by the sum of index
register and two's complement offset i, to the accumulator.

1 1

1 0

cycles: 5
flags: S Z

X X

*O=IX 1=IY

* 1 1

0 0 0

i

states: 19
H P/V N C
X V 0 X

1 0 1 DD/FD

1 1 0 86

ADC r Add register with carry to accumulator

A<=A+r + CY

ADC A,rs

Add the contents of register rs and the contents of the Carry bit to the
contents of the accumulator. Place the result in the accumulator.

I 1 I 0

cycles: 1
flags: S Z

X X

0 I 0 I
states: 4

H P/V N C
X V o X

Irs Irs Irs

100-0123-001

2-42

ADI n Add immediate to accumulator

A(=A + n

Add the contents of the second byte of the instruction to
of the accumulator. Place the result in the accumulator •

.....-1 ~-a...._O I 0 1 0 1 1 "EEJ C6

data ~
cycles: 2
flags: S Z

X X

states: 1
H P/V N C
X V 0 X

ADC M Add memory ~o/ith carry to accumulator

A(=A + (HL) + CY

ADD A,n

the contents

ADC A, (HL)

Add the contents of the memory location addressed by the HL register
pair and the eontents of the CY flag to the accumulator. Place the
result in the acc~umulator.

11 0 ~Io I 0 8E

cycles: 2 states: 1
flags: S Z H P/V N C

X X X V o X

ADC A,n
ACI n Add immed:iate with carry to accumulator

A(=A + n + CY

Add the contents of the second byte of the instruction and the contents
of the CY flag to the contents of the accumulator. Place the result in
the accumulator".

cycles: 2
flags: S Z

X X

0 10 I 1

data

st.atE~S: 1
H P/V N C
X V o X

I 1~ 0 CE

100-0123-001

2-43

ADCX i
ADCY i Add indexed memory with carry to accumulator.

A(=A +(1X + i) + CY
A(=A +(1Y + i) + CY

ADC A,(1X+i)
ADC A, (1Y+i)

Add the contents of the Carry bit and the memory location addressed by
the sum of the index register and two's complement displacement i to the
accumulator.

1 1

1 0

cycles: 5
flags: S Z

X X

*O=1X 1=1Y

-
* 1 1

0 0 1

i
-

states: 19
H P/V N C
X V 0 X

1 0 1

1 1 0

SUB r Subtract register from accumulator

A(=A - r

DD/FD

8E

SUB rs

Subtract the contents of register rs from the contents of the
accumulator. Place the result in the accumulator.

I 1 I 0 I 0 I 1 I 0

cycles: 1 states: 4
flags: S Z H P/V N C

X X X V 1 X

I rs rs rs

100-0123-001

2-44

SUB (HL)
SUB M Subtract from accumulator

A<=A - (HL)

Subtract the contents of the memory location addressed by the HL
register pair from the contents of the accumulator. Place the result in
the accumulator.

I 1 I 0 I 0 [1 I 0 I 1 0 96

cycles: 2 states: 7
flags: S Z H P/V N C

X X X V 1 X

SUB n
SUI n Subtract immediate from accumulator

A<=A - n

Subtract the contents of the second byte of the instruction from the
contents of the accumulator. Place the result in the accumulator.

cycles: 2
flags: S Z

X X

states: 7
H P/V N C
x: V 1 X

100-0123-001

2-45

SUBX i
SUBY i Subtract indexed memory from accumulator

A<=A - (IX + i)
A<=A - (IY + i)

SUB A, (IX+i)
SUB A, (IY+i)

Subtract the contents of the memory location addressed by the sum of the
index register and the two's complement displacement i from the
accumulator.

1 1

1 0

cycles: 5
flags: S Z

X X

*O=IX 1=IY

* 1 1

0 1 0

i

states: 19
H P/V N C
X V 1 X

1 0 1 DD/FD

1 1 0 96

SBB r Subtract register with borrow from accumulator

A<=A - r - CY

SBC rs

Subtract the contents of register rs and the contents of the CY flag
from the accumulator. Place the result in the accumulator.

cycles: 1
flags: S Z

X X

states: 4
H P/V N C
X V 1 X

rs rs rs

100-0123-001

2-46

sac (HL)
SSB M Subtract memory with borrow from accumulator

A(=A - (HL) - CY

Subtract the contents of the memory location addressed by the HL
register pair and the contents of the CY flag from the accumulator.
Place the result in the accumulator.

11 I a liI1 I 1 I <I 1 0 9E

cycles: 2 statE~S: 7
flags: S Z H P!V N C

X X X V 1 X

SBC n
SS! n Subtract :imrnediate with borrow

A(=A - n - CY

Subtract the contents of the second byte of the instruction and the
contents of the CY flag from the accumulator. Place the result in the
accumulator' •

cycles: 2
flags: S Z

X X

states: 7
H P!V N C
X V 1 X

100-0123-001

2-47

SBBX i
SBBY i Subtract indexed memory with borrow from accumulator

A<=A - (IX + i) - CY
A<=A - (lY + i) - CY

SBC A,(IX+i)
SBC A, (IY + i)

Subtract the Carry bit and the contents of the memory location addressed
by the sum of the index register and the two's complement displacement i
from the accumulator.

1 1

1 0

cycles: 5
flags: S Z

X X

* 1 1

0 1 1

i

states: 19
H P/V N C
X V 1 X

1 0 1

1 1 0

CMP r Compare register with accumulator

A - r

DD/FD

9E

CP rs

Subtract the contents of register rs from the accumulator. The
accumulator remains unchanged. The condition flags are set as a result'
of the subtraction. The Z flag is set to 1 if (A) = (rs). The CY flag
is set to 1 if (A) < (rs).

I 1 I 0 I
cycles: 1
flags: S Z

X X

1 I 1 1

states: 4
H P/V N C
X V 1 X

rs rs rs

100-0123-001

2-48

CP (HL)
CMP M Compare memory with accumulator

A - (HL)

Subtract the contents of the memory location addressed by the HL
register pair from the accumulator. The accumulator remains unchanged.
The conditton flalgs are set as a result of the subtraction. The Z flag
is set to 'I if (A) = (HL). The CY flag is set to 1 if (A) < (HL).

I 1 I 0 ~I 1 I 1 I 1_[1 lOBE
cycles: 2
flags: S Z

X X

states: 7
H P/V N C
X V 1 X

CPI n Compar'e irrnnediate with accumulator

A - n

CP n

Subtract the contents of the second byte of the instruction from the
accumulator'. The accumulator remains unchanged. The condition flags
are set by the result of the subtraction. The Z flag is set to 1 if (A)
= (byte 2). The CY flag is set to 1 if (A) < (byte 2).

cycles: 2
flags: S Z

X X

states: 7
H P/V N C
X V 1 X

FE

100-0123-001

2-49

CMPX i
CMPY i Compare accumulator with indexed memory

A - (IX + i)
A - (lY + i)

CP (IX+i)
CP (IY+i)

Subtract the contents of the memory location addressed by the sum of the
index register and the two's complement displacement i, from the
accumulator. The accumulator remains unchanged.

1 1

1 0

cycles: 5
flags: S Z

X X

*O=IX 1=IY

* 1 1

1 1 1

i

states: 19
H P/V N C
X V 1 X

INR r Increment register

r(=r + 1

1 0 1 DD/FD

1 1 0 BE

INC rd

Increment the contents of register rd by one. Note: All condition
flags except CY are affected.

I 0 I 0 I rd I rd I rd I 1 0 0

cycles: 1 states: 4
flags: S Z H P/V N C

X X X V o *

100-0123-001

2-50

INC (HL)
INR M Increment memory

(HL)<=(HL) + 1

Increment the c:ontents of the memory location addressed by the HL
register pair by one. Note: All condition flags except CY are
affected.

cycles: 3
flags: S Z

X X

states: 10
H P/V N C
)(V 0 *

INRX i
INRY i Increment indexed memory

(IX + i)<=(IX + i) + 1
(IY + i)<=(IY + i) + 1

INC (IX+i)
INC (IY+i)

Increment the (~ontents of the memory location addressed by the sum of
the index register and the two's complement displacement i.

1 1

0 0

cycles: 6
flags: S Z

X X

* 1 1

1 1 0

i

statE~s: 23
H P/V N C
X V 0 *

DCR r Decrement register

r<=r-1

1 0 1 DD/FD

1 0 0 34

DEC rd

Decrement the eontents of register rd by one. Note: All condition
flags except CY are affected.

cycles: 1
fl;:'lgs: S Z

X X

st.ates: 4
H P/V N C
X V 1 *

100-0123-001

2-51

DEC (HL)
DCR M Decrement memory

(HL)<=(HL) - 1

Decrement the contents of the memory location addressed by the HL
register pair by one. Note: All condition flags except CY are
affected.

I 0 I 0 I 1 I 1 I 0 I 1

cycles: 3 states: 11
flags: S Z H P/V N C

X X X V 1 *

DCRX i
DCRY i Decrement indexed memory

(IX + i)<=(IX + i) - 1
(IY + i)<=(IY + i) - 1

o 1 1 35

DEC (IX+i)
DEC (IY+i)

Decrement the contents of the memory location addressed by the sum of
the index register and the two's complement displacement i.

1 1

0 0

cycles: 6
flags: S Z

X X

*O=IX 1=lY

* 1 1

1 1 0

i

states: 23
H P/V N C
X V 1 *

1 0 1

1 0 1

DD/FD

35

100-0123-001

2-52

2.6.4.2 Logical Group

This group of instructions performs logical (Boolean) operations between
data in accumulator and data in registers or memory and on condition
flags.

Unless indicated otherwise, all instructions in this group affect the
Zero, Sign, Parity, Half-Carry, and Carry flags according to the
standard rules.

AND rs
ANA r AND register with accumulator

A<=A v r

logical AND the contents of register rs with the contents of the
accumulator. Place the result in the accumulator. The CY flag is
cleared and AC is set.

I 1 I 0 11 E 1
0 Irs ~Fs Irs

cycles: 1 states: 4
flags: S Z H P/V N C

X X 1 P o 0

AND (HL)
ANA M AND memory with accumulator

A<=A v (HL)

Logical AND the contents of the memory location addressed by the HL
register pair with the contents of the accumulator. Place the result in
the accumulator. The CY flag i,s cleared and H is set.

cycles: 2
flags: S Z

X X

states: 7
H P/V N C
1 P 0 0

100-0123-001

2-53

AND dB
ANI n AND immediate with accumulator

A(=A v n

Logically AND the contents of the second byte of the instruction with
the contents of the accumulator. Place the result in the accumulator.
The CY flag is cleared and H is set.

I 1

1 1 I 0 I 0] 1 1 0

data

cycles: 2 states: 7
flags: S Z H P/V N C

X X 1 P o 0

ANAX i
ANAY i AND indexed memory with accumulator

A(=A v (IX + i)
A(=A v (IY + i)

E6

AND (IX+i)
AND (IY+i)

Logical AND the contents of the memory location addressed by the sum of
the index register and the two's complement displacement i with the
accumulator.

1 1

1 0

cycles: 5
flags: S Z

X X

*O=IX 1=IY

* 1 1

1 0 0

i

states: 19
H P/V N C
1 P 0 0

1 0

1 1

1

0

DD/FD

A6

100-0123-001

2-54

OR rs
ORA r OR accumulator with register

A(=A A r

Logical OR the contents of register rs with the contents of the
accumulator. Place the result in the accumulator. The CY and H flags
are cleared.

I 1 I 0 I 1 I1 I 0 I rs] rs rs

cycles: 1 states: 4
flags: S Z H P/V N C

X X 1 P o 0

OR (HL)
ORA M OR accumulator with memory

A(=A A (HL)

Logical OR the contents of the memory location addressed by the HL
register pair ~ri th the contents of the accumulator. Place the result in
the accumulator'. The CY and H flags are cleared.

cycles: 2
flags: S Z

X X

states: 7
HI P/V N C
1 P 0 0

ORI data OR accumulator with immediate data

A(=A A n

86

OR d8

Logical OR the contents of the second byte of the instruction with the
contents of the a(~cumulator. Place the result in the accumulator. The
CY and H flags are cleared.

foo--1 -....._[1_1_0 _11_r~ F6
data ~

cycles: 2
flags: S Z

X X

states: 7
H P/V N C
1 POX

100-0123-001

2-55

ORAX i
ORAY i OR accumulator with indexed memory

A(=A A (IX + i)
A<=A A (IY + i)

()R (IX+i)
OR (IY+i)

Logical OR the accumulator with the contents of the memory location
addressed by the sum of the index register and the two's complement
displacement i.

1 1

1 0

cycles: 5
flags: S Z

X X

*O=IX 1=IY

* 1 1

1 1 0

i

states: 19
H P/V N C
1 P 0 0

1 0

1 1

1

0

DD/FD

B6

XRA r Exclusive OR accumulator with register
XOR rs

Logical Exclusive OR the contents of register rs with the contents of
the accumulator. Place the result in the accumulator. The CY and H
flags are cleared.

I 1 I 0 I
cycles: 1
fl~gs: S Z

X X

1 I 0 I 1]
states: 4

H P/V N C
1 P o 0

rs rs rs

100-0123-001

2-56

XOR (HL)
XRA M Exclusive OR accumulator with memory

A(=A @ (HL)

Logical Exclusive OR the contents of the memory location addressed by
the HL register pair with the contents of the accumulator. Place the
result in the aceumulator. The CY and H flags are cleared.

I 1 I 0 ~Io I 1 1 -I 0 AE

cycles: 2 statE~S: 1
flags: S Z H P/V N C

X X 1 P o 0

XOR d8
XRI n Exclusive OH accumulator with immediate data

A(=A (f) n

Logical Exclusive OR the contents of the second byte of the instruction
with the contents of the accumulator. Place the result in the
accumulato:r. The CY and H flags are cleared.

1

cycles: 2
flags: S :z

X X

10 I 1

data

states: 1
H P/V N C
1 P o 0

I ~
EE

100-0123-001

2-51

XRAX i
XRAY i Exclusive OR accumulator with indexed memory

A<=A 9 (IX + i)
A<=A(t) (IY + i)

XOR (IX+i)
XOR (IY+i)

Logical Exclusive OR the accumulator with the contents of the memory
location addressed by the sum of the index register and the two's
complement displacement i.

1 1

1 0

cycles: 5
flags: S Z

X X

* 1 1

1 0 1

i

states: 19
H P/V N C
1 P 0 0

1 0

1 1

1

1

DD/FD

AE

100-0123-001

2-58

2.6.5 General Purpose Arithmetic And Control Group

DAA
DAA Decimal adjust accumulator

Adjust the a-bit binary number in the accumulator to form two 4-bit
Binary-Coded-Decimal digits by the following process:

1 . If the value of the least·-significant 4 bits of the accumulator is
greater t.han 9 or if the H flag is set, 6 is added to the
accumulator.

2. If the value of the most-significant 4 bits of the accumulator is
now great.er than 9, or' if the C flag is set, 6 is added to the
most-significant 4 bits of the accumulator.

NOTE: All fla.gs are affected except Subtract flag.

loloEJolol 27

cycles: 1
flags: S Z

X X

states: 4
H P/V N C
X POX

CMA Complement aceumulator

A<=flA

CPL

Complement the contents of the accumulator (zero bits become one, one
bits become zero).

cycles: 1
flags: S Z

* *

states: 4
H P/V N C
1 * 1 *

2F

100-0123-001

2-59

NEG
NEG Negate accumulator

A<= - A

Subtract the contents of the accumulator from zero (one's complement).

1 1

0 1

cycles: 2
flags: S Z

X X

1 0

I
1

0 0 0

states: 8
H P/V N C
X V 1 X

CMC Complement carry

CY<=IICY

I
1

I
0

1 0 I
1

0 I
ED

44

Complement the CY flag. No other flags are affected.

I 0 I 0 I 1 I 1 I 1 I 1 1 1 3F

cycles: 1 states: 4
flags: S Z H P/V N C

* * * * o X

STC Set carry

CY<=1

Set the CY flag to one. No other flags are affected.

I 0 I 0 I I 1 I 0 I 1 1 37

cycles: 1 states: 4
flags: S Z H P/V N C

* * 0 * o 1

CCF

SCF

100-0123-001

2-60

NOP
NOP No operation

No operation j.s performed. The registers and flags are unaffected.

cycles:' states: 4
flags: none

HLT Halt

00

HALT

Stop the program counter upon completion of the instruction, and enter
the 'HALT' state. The registers and flags are unaffected.

I 0 I 1 EJ,_' --1.1_° --Io1_, ______ -a-°--'
cycles:' states: 4
flags: none

E1 Enable interrupts

1FF(='

76

E1

Enable the interrupt system following the execution of the next
instruction.

cycles:' states: 4
flags: none

DI Disable interrupts

IFF(=O

FB

D1

Disable the inter~rupt system immediately following the execution of the
DI instruction.

cycles:' states: 4
flags: none

100-0'23-001

2-61

1M 0
IMO Interrupt Mode 0

Place the processor interrupt system in interrupt Mode O.
interrupt device to force any instruction onto data bus.)

(Allow

I: I: I: I: I: I 1 I ~ I: I::
cycles: 2 states: 8
flags: none

IM1 Interrupt Mode 1
1M 1

Place the processor interrupt system in interrupt Mode 1. (Allow
interrupt device to force restart to location 38H.)

I 0 I 1 I ~ I ~ I ~ I 1 I 0 I ~ I::
cycles: 2 states: 8
flags: none

1M2 Interrupt Mode 2
1M ~

Place the processor interrupt system in interrupt Mode 2. (Allow
interrupt device to use interrupt vector registers and data bus to form
call address.)

I: I 1 I 0 I 0 I: I I 0 I 0 I::

cycles: 2 states: 8
flags: none

100-0123-001

2-62

2.6.6 16-Bit Arithmetjlc Group

DAD rr Double add

(HL) <=(HL) + r'r

ADD HL,BC
ADD HL,DE
ADD HL,HL
ADD HL,SP

Add the cont.ents of the tegister pair rp to the contents of the HL
register pair. Place the result in the HL register pair. Note: The
Carry flags are affected. C is set if there is a carry from bit 15;
otherwise it is reset.

cycles: 3
flags: S Z

* *

states: 10
H P/V N C
X * 0 X

DADC rr lX>uble add with carry

(HL)<=(HL) + rr + CY

ADC HL ,BC
ADC HL,DE
ADC HL,HL
ADC HL,SP

lX>uble precision add the register pair and carry bit to the HL register
pair.

1 1

0 1

cycles: 4
flags: S Z

X X

1

rp ±,_:_p ~_1--..._0_1 _EHB ED

states: 15
H P/V N C
X V 0 X

100-0123-001

2-63

DSBC rr Double Subtract with carry

(HL)<=(HL) - rr - CY

SBC HL,BC
SBC HL,DE
SBC HL,HL
SBC HL,Si

Double precision subtract the carry bit and the register pair from the
HL register pair. C is set if no borrow occurs from bit 15.

cycles: 4
flags: S Z

X X

states: 15
H P/V N C
X V 1 X

DADX tt
DADY uu Double add index register

IX<=(IX + tt)
IX<=(IX + uu)

ADD IX,BC
ADD IX,DE
ADD IX,IX
ADD IX,SP
ADD IY,BC
ADD IY,DE
ADD IY,IY
ADD IY,SP

Double precision add the register pair to the index register. H set by
carry from bit 11, C set by carry from bit 15.

I 0 I ~ I:p I :p I I 0 I: I ~ I DD/FD

cycles: 4 states: 15
flags: S Z H P/V N C

* * X * o X

*O=IX 1=IY

NOTE: rp register pair code
B BC no
D DE 01
X IX 10
SP SP 11

100-0123-001

2-64

INX rr Increment register pair

rr<=(rr + 1)

INC BC
INC DE
INC HL
INC SP

Increment th~~ contents of the register pair rp by one. Note: No
condition flags are affected.

I 0 loEJrPI 0 0 1 1

cycles: 1 stat.es: 6
flags: none

NOTE: rp reg:Lst.er pair code
B BC no
D DE n1
H HL 11"\

SP SP 11

DCX rr Decr'ement register pair

rr<=(rr - 1)

Decrement the contents of the register pair rp by one.
condition flags are affected.

I 0 I 0 I nJ_r_p """,--1 ~o_ _""",,-.....
cycles: 1 stat.es: 6
flags: none

NOTE: rp reg:Lst.er pair
B BC
D DE
H HL
SP SP

code
00
01
10
11

DEC Be
DEC DE
DEC HL
DEC SP

Note: No

100-0123-001

2-65

INX X
INX Y Increment index register

IX<=(IX + 1)
IX<=(IX + 1)

INC IX
INC IY

Increment the 16-bit index register. Do not affect the flags.

cycles: 2 states: 10
flags: none

*O=IX 1=IY

DCX X
DCX Y Decrement register pair

IX<=(IX - 1)
IX<=(IX -1)

DEC IX
DEC IY

Decrement the 16-bit index register. Do not affect the flags.

cycles: 2 states: 10
flags: none

*O=IX 1=IY

100-0123-001

2-66

2.6.7 Rotate And Shift. Group

RLC Rotate accumulator left to carry

A(n + l)<::A n
A O<=A 7
CY<=A 7

RLCA

Rotate the a-bit accumulator left one position shifting the high-order
bit into the low-order position and into the Carry flag. The previous
carry bit is lost.

10 10 IiJ,_0~1_0~1_1 ___ 1~1~
cycles: 1
flags: S Z

st.ates: 4

* *
H P/V N C
o * 0 X

RAL Rotate accumulator left through carry

A(n + 1) <=,A n
A O<=CY
CY<=A 7

07

RLA

Rotate the 8-b:i t accumulator and Carry flag left. (9-bi t rotate)

I 0 I 0 I 0 11 I a
cycles: 1 states: 4
flags: S Z H P/V N C

* •• () * o X

I
1 17

100-0123-001

2-67

RRC Rotate accumulator right to carry

A n<=.A(n + 1)
A(7)<=A(O)
CY<=A(O)

RRCA

Rotate the 8-bit accumulator right one position shifting the low-order
bit into the high-order position and into the Carry flag. The previous
carry bit is lost.

cycles: 1
flags: S Z

* *

1

states: 4
H P/V N C
o * 0 X

RAR Rotate right through carry

A n<=A(n + 1)
A 7<=CY
CY<=A 0

1 1 OF

RRA

Rotate the 8-bit accumulator and Carry flag right. (9-bit rotate)

cycles: 1
flags: S Z

* *

o 1 11
states: 4

H P/V N C
o * 0 X

1F

100-0123-001

2-68

RLCR r Rotate register left to carry

r(n '+ 1) <=r n
r O<=r 7
CY<=r 7

RLC r

Rotate the 8-bit register left one position shifting the high-order bit
into the low-<)rcier position and into the Carry flag. The previous carry
bit is lost.

cycles: 2
flags: S Z

X X

0 1

0 0

states: 8
H P/V N C
o POX

0

r

I2:IiJ CB

EEJ

RLCR M Rotate memory register left to carry

(HL)(n + 1)<=(HL) n
(HL) O<=(HL) '7
CY<=(HL) '7

RLC (HL)

Rotate the a-bit memory register left one position shifting the
high-ordel" bit l.nto the low-order position and into the Carry flag. The
previous carry bit is lost.

1 1

0 0

cycles: 4
flags: S Z

X X

0
I

0 1

0 0 0

stat.es: 15
H P/V N C
o POX

0

1

I2:IiJ CB

~06

100-0123-001

2-69

RLCRX i
RLCRY i Rotate indexed memory register left to carry

(IX + i)(n + 1)<=(IX + i) n
(IX + i) O<=(IX + i) 1
CY<=(IX + i) 1

RLC (IX+i)
RLC (IY+~

Rotate the 8-bit memory location addressed by the sum of the index
register and the two's complement displacement i, left one position
shifting the high-order bit into the low-order position and into the
Carry flag. The previous carry bit is lost.

1 1 * 1 1

1 1 0 0 1

i

0 0 0 0 0

cycles: 6 states: 23
flags: S Z H P/V N C

X X 0 POX

*O=IX 1=IY

1 0

0 1

1 1

RALR r Rotate register left thru carry

r(n + 1)<=r n
r O<=CY
CY<=r 1

1 DD/FD

1 CB

0 06

RL r

Rotate the 8-bit register and Carry flag left one position (9 - bit
rotate) .

cycles: 2 states: 8
flags: S Z H P/V N C

X X 0 POX

100-0123-001

2-10

RALR M Rotate lnemory register left thru carry

(HL)(n + 1)<=(HI..) n
(HL) O<=CY
CY<=(HL) 7

RL (HL)

Rotate the 8-bit memory location and Carry flag left one position (9-bit
rotate) •

1 1 0

0 0 0 3_
0

1 --'-~---L_~_m ~:
cycles: 4 states: 15
flags: S Z H P/V N C

RALRX i
RALRY i

X X 0 POX

Rot.ate indexed memory register left thru carry

(IX + i)(n + 1)<=(IX + i) n
(IX + i) O<=CY
CY<=(IX + i) 7

RL (IX+i)
RL (IY+i)

Rotate the Carry flag and 8-bit memory location addressed by the sum of
the index register and two's complement displacement i, left one
position. (9-·bit rotate)

1 1 * 1 1

1 1 0 0 1

i

0 0 0] 1 I 0

cycles: 6 states: 23
flags: P Z H P/V N C

X X 0 POX

1 0
-

0 1

1< 1

1

1

0

DD/FD

CB

16

100-0123-001

2-71

RRCR r Rotate register right to carry

r n<=r(n + 1)
r 1<=r 0
CY<=r 0

RRC rs

Rotate the 8-bit register right one position shifting the low-order bit
into the high-order position and into the Carry flag. The previous
carry bit is lost.

cycles: 2 states: 8
flags: S Z H P/V N C

X X 0 POX

RRCR M Rotate memory register right to carry

(HL) n<=(HL)(n + 1)
(HL) 1<=(HL) 0
CY<=(HL) 0

CB

RRC (HL)

Rotate the 8-bit memory register contents right one position shiftin!
the low-order bit into the high-order position and into the Carry flag.
The previous carry bit is lost.

I
1

I
1

I
0

I
0

I
1

0 0 0 0 1

cycles: 4 states: 15
flags: S Z H P/V N C

X X 0 POX

I
0

I
1

I 1 1

1

I 0

CB

OE

100-0123-001

2-72

RRCRX i
R.RCRY i Rotate~ indexed memory register right to carry

(IX + i) n<=(IX + i)(n + 1)
(IX + i) 1<=(IX + i) 0
CY<=(IX + i) 0

RRC (IX+i)
RRC (IY+i)

Rotate the 8-bit memory location addressed by the sum of the index
register and the two's complement displacement i, right one position
shifting the low-order bit into the high-order position and into the
Carry flag. The previous carry bit is lost.

1 1 * 1 1

1 1 a 0 1

i

0 o~ I 0 I 1

cycles: 6 states: 23
flags: S Z H P/V N C

X X 0 POX

*O=IX 1=IY

1 0 1

0 1 1

I 1 1 0
-

RARR r Rotate register right thru carry

r n<=r(n 1)
r 1<=CY
CY<=r 0

DD/FD

CB

OE

RR rs

Rotate the 8-1::>it register and Carry flag right. (9-bit rotate)

1 1 0 0 1

0 0 0 1 1

cycles: 2 states: 8
flags: S Z H P/V N C

X X 0 POX

0

rs

~CB

EEJ

100-0123-001

2-13

RARR M Rotate memory register right thru carry

(HL) n<=(HL)(n + 1)
OiL) 1<=CY
CY<=(HL) 0

RR (HL)

Rotate the 8-bit memory location and Carry flag right one position. (9
bit rotate)

cycles: 4 states: 15
flags: S Z Ii P/V N C

RARRX i
RARRY i

X X 0 POX

Rotate indexed memory register right thru carry

(IX + i) n<=(IX + i)(n + 1)
(IX + i) 1<=CY
CY<=(1X + i) 0

RR (rX+i)
RR (1Y+i)

Rotate the Carry flag and 8-bit memory location addressed by the sum of
the index register and two's complement displacement i, right or:
position. (9·bit rotate)

1 1 * 1 1

1 1 0 0 1

i

0 0 0 1 1

cycles: 6 states: 23
flags: ·S Z H P/V N C

X X 0 POX

*O=1X 1=1Y

1 0

0 1

1 1

1

1

0

DD/FD

CB

1E

100-0123-001

2-14

SRLR r Shift tight logical

r n<=r(n + 1)
r 7<=0
CY<=r 0

SRL rs

Shift the' 8-hi t register right one position, shifting a zero into the
high-order pos:ition and shifting the low-order bit into the Carry flag.
The previous carry is lost.

1 1

0 0

cycles: 2
flags: S Z

X X

0

1

0 1 0

1 1 rs
:E8 CB

EEJ
states: 8

H P/V N C
o POX

SRLR M Shift right logical memory

(HL) n<=(HL)(n + 1)
(HL) 7<=0
CY<=(HL) 0

SRL (I-[.)

Shift the 8-bit memory contents right one position, shifting a zero into
the high-order position and shifting the low-order bit into the Carry
flag. The previous carry is lost.

1 1

0 0

cycles: 4
flags: S Z

X X

3 ~ 10EIClCB

1.~3E
0

1

states: 15
H P/V N C
o POX

100-0123-001

2-75

SRLRX i
SRLRY i Shift right logical indexed memory

(IX + i) n<=(IX + i)(n + 1)
(IX + i) 7<=0
CY<=(IX + i) 0

SRL (IX+i)
SRL (IY+i)

Shift the 8-bit memory contents addressed by the sum of the index
register and the two's complement displacement i, right one position. A
zero is shifted into the high-order position and the low-order bit is
shifted into the Carry flag. The previous carry is lost.

1 1 * 1 1

1 1 0 0 1

i

0 0 1 1 1

cycles: 6
flags: S Z

X X

states: 23
H P/V N C
o POX

*O=IX 1=IY

SLAR r Shift left arithmetic

r(n + 1)<=r n
r 0<=0
CY<=r 7

1 0

0 1

1 1

1

1

0

DD/FD

CB

3E

SLA rs

Shift the 8-bit register left one position, shifting a zero into the
low-order position and shifting the high-order bit into the Carry flag.
The previous carry bit is lost.

cycles: 2
flags: S Z

X X

states: 8
H P/V N C
o POX

100-0123-001

2-76

SLAR M Shift lE!ft arithmetic meroory

(HL)(n + 1)<=(HL) n
(HL) 0<=0
CY<=(HL) 7

SLA (HL)

Shift the 8-bi.t memory location left one position, shifting a zero into
the low-order postion and shifting the high-order bit into the Carry
flag. The pr€!vious carry bit is lost.

1: ~ ~ BE:: 1 1 0

0 0 1

cycles: 4 states: 15
flags: S Z H P/V N C

SLARX i
SLARY i

X X 0 POX

Shift left arithmetic tndexed memory

(IX + i)(n + 1)<=(IX + i) n
(IX + i) 0<=0
CY <= (IX + i) 7'

SLA (IX+i)
SLA (IY+i)

Shift the memory location addressed by the sum of the index register and
the two's complement displacement i, left one position. A zero is
shifted into the low-order position and the high-order bit is shifted
into the Carry flag. The previous carry bit is lost.

1 1

~ 1 1

1 1

0 1

i

0 o I 1 I 0 I 0

cycles: 6 states: 23
flags: S Z H P/V N C

X X 0 POX

*0- IX 1=IY

1 0

0 1

I 1 1

1

1

0

DD/FD

CB

26

100-0123-001

2-77

SRAR r Shift right arithmetic

r n<=r(n + 1)
r 7<=r 7
CY<=r 0

SRA rs

Shift the 8-bit register right one position, shifting the low-order bit
into the Carry flag. The high-order bit is retained and copied into the
next lower-order bit. The previous carry is lost.

cycles: 2
flags: S Z

X X

states: 8
H P/V N C
o POX

SRAR M Shift right arithmetic memory

(HL) n<=(HL)(n + 1)
(HL) 7<=(HL) 7
CY<=(HL) 0

SRA (HL)

Shift the 8-bit memory contents one position, shifting the low-order bi~
into the Carry flag. The high-order bit is retained and copied into th~
next lower-order bit. The previous carry is lost.

cycles: 4
flags: S Z

X X

states: 15
H P/V N C
o POX

100-0123-001

2-78

SRARX i
SRARY i Shift right arithmetic! indexed memory

(IX + i) n<=(IX + i)(n + 1)
(IX + i) 7<=(IX + i) 7
CY<=(IX + i) 0

SRA (IX+i)
SRA (IY+i)

Shift the 8-b:l t memory location addressed by the sum of the index
register and the two's complement displacement i, right one position,
shifting the low-order bit into the Carry flag. The high-order bit is
retained and copied into the next lower-order bit. The previous carry
is lost.

1 1 * 1 1

1 1 0 0 1

i

0 012] I 0 I 1

cycles: 6
flags: S Z

X X

states: 23

*0 IX 1=1Y

H P/V N C
o POX

RLD Rotate left digit

A(O - 3)<:(HL)(4 - 7)
(HL)(4 - 7)<=(HL)(0 - 3)
(HL)(O - 3)<=(A)(0 - 3)

1 0

0 1
-

I 1 1

1

1

0

DD/FD

CB

2E

RLD

Rotate the high-order 4 bits of the memory location into the low-order 4
bits of the accumulator and rotate the low-order 4 bits of the memory
location into the high-order 4 bits and rotate the low-order 4 bits of
the accumulator into the low-order 4 bits of the memory location.

1 1

0 1

cycles: 5
flags: S Z

X X

3: l]~EJ ED

1 ~ 6F

1

1

states: 18
H P/V N C
o POX

1no-0123-o01

2-79

RRD Rotate right digit

(HL)(O - 3)<=(HL)(4 - 7)
(HL)(4 - 7)<=A(0 - 3)
A(O - 3)<=(HL)(0 - 3)

RRD

Rotate the low-order 4 bits of the accumulator into the high-order 4
bits of the memory location and rotate the high-order 4 bits of the·
memory location into the low-order 4 bits of the memory location and
rotate the low-order 4 bits of the memory location into the low-order 4
bits of the accumulator.

I
1

I
1

I 0 1

cycles: 5
flags: S Z

X X

1

I
0

I
1

1 0 0

states: 18
H P/V N C
0 POX

I I
0

I 1

1

I
ED

67

100-0123-001

2-80

2.6.8 Bit Set, Reset And Test Group

BIT b,r Bit test register

ZF<=flr b

Set the Zero flag if the register bit is zero,

0 1

b b

cycles: 2 states: 8
flags: S Z H P/V N C

? X 1 ? 0 *

BIT b,M Bit test memory

ZF<=fI{HL) b

0

rs

.~CB
E0

BIT b ,rs

else reset the Zero flag.

BIT b, (HL)

Set the Zero flag if the memory bit is zero, else reset the Zero flag.

1 1

0 1

cycles: 3
flags: S Z

? X

3: : ~f8BCB 0

b

states: 12
H P/V N C
1 ? 0 *

100-0123-001

2-81

BITX b,i
BITY b,i Bit test indexed memory

ZF<=II(IX + i) b
Z<=II(IY + i) b

BIT b,(IX+i)
BIT b,(IY+i)

Set the Zero flag if the bit in the memory location addressed by the sum
of the index register and the two's complement displacement i, is a
zero, else reset the Zero flag.

1 1

1 1

0 1

cycles: 5
flags: S Z

? X

*O=IX 1=IY

* 1 1

0 0 1

i

b b b

states: 20
H P/V N C
1 ? 0 *

SETB b,r Set bit register

r b<= 1

Set bit in 8-bit register.

cycles: 2 states: 8
flags: none

1 0

0 1

1 1

1

1

0

DD/FD

CB

SETS b ,rs

100-0123-00 '1

2-82

SETB b,M Set bit memory

(HL) b<=1

Set bit in B-bit memory location.
.......,

1 1 0 1

1 1 b b

cycles: 4 states: 15
flags: none

1 0

b 1

~CB

~

SETX b,i
SETY b,i Set bjL t indexed memory

(IX + i) b<=1
(IY + i) b<=1

SET 6, (HL)

SET b,(IX+i)
SET b,(IY+i)

Set bit j.n B··bi t memory location addressed by sum of index register and
two's complement displacement.

1 1 * 1

1 1 0 0

i

1 1E] b
1

cycles: 6 states: 23
flags: none

*O=IX 1=IY

1 1

1 0

b I'

0 1

1 1

1 0

DD/FD

CB

100-0123-001

2-B3

RES b,r Reset bit register

r b<=O

Reset bit in 8-bit register

cycles: 4 states: 8
flags: none

RES b,M Reset bit memory

(HL) b<=O

Reset bit in 8-bit memory location.

cycles: 4 states: 15
flags: none

RESX b,i
RESY b,i Reset bit indexed memory

(IX + i) b<=O
(IY + i) b<=O

RES b,rs

RES B, (HL)

RES b, (IX+i)
RES b,(IY+i)

Reset bit in 8-bit memory location addressed by sum of index register
and two's complement displacement.

1 1 * 1 1

1 1 0 0 1

i

1 0 b b b

cycles: 6 states: 23
flags: none

*O=IX 1=IY

1 0

0 1

1 1

1

1

0

DD/FD

100-0123-001

2-84

2.6.9 Program Transfer Group

JP a16
JMP nn Jump

PC<=nn

Load the progl: am counter wi th the 16-bi t address in byte 2 and :byte 3.

low-order addr
~-----------,------------.--------~

hi.gh-order addr

cycles: 3 states: 10
flags: none

JZ nn Jump on zero

if ZF=1, PC<=nn

C3

JP Z,a16

Load the program counter with the 16-bit address in byte 2 and byte 3 if
the Zero flag is set.

low-order addr

high-order addr

cycles: 3 states: 10
flags: none

CA

1nO-0123-001

2-85

JNZ nn Jump on non-zero
JP NZ,a16

if ZF=O, PC<=nn

Load the program counter with the 16-bit address in byte 2 and byte 3 if
the Zero flag is reset.

low-order addr·

high-order addr

cycles: 3 states: 10
flags: none

JNC nn Jump on no carry

if CY=O, PC<=nn

o C2

JP NC,a16

Load the program counter with the 16-bit address in byte 2 and byte 3 if
the Carry flag is reset.

low-order addr

high-order addr

cycles: 3 states: 10
flags: none

o D2

100-0123-001

2-86

JP CY,a16
JC nn Jump on carry

if CY= 1, PC<=nn

Load the program counter with the 16-bit address in byte 2 and byte 3 if
the Carry flag :is set.

____ ----a-I' I' I o~ I' I a DA

low-order addr

h:igh-order addr'

cycles: 3 states: 10
flags: none

JPO nn Jump on parity odd

if PN=O, PC<=nn

JP 0,a16

Load the prograrn counter with the 16-bit address in byte 2 and byte 3 if
the Parity/Overflow flag is r'eset.

low-order addr
~-----------------------.--------~

h:igh-order addr
~-------------------
cycles: 3 states: 10
flags: none

E2

100-0123-001

2-87

JPE nn Jump on parity even
JP PE,a16

if P/V= 1, PC<=nn

Load the program counter with the 16-bit address in byte 2 and byte 3 if
the Parity/Overflow flag is set.

low-order addr

high-order addr

cycles: 3 states: 10
flags: none

JP nn Jump on plus

if S=O, PC<=nn

o EA

JP P,a16

Load the program counter with the 16-bit address in byte 2 and byte 3 if
the Sign flag is reset.

low-order addr

high-order addr

cycles: 3 states: 10
flags: none

o F2

1nO-0123-001

2-88

JM nn Jump on minus
JP M,a16

if S= 1, PC<=nn

Load the program counter with the 16-bit address in byte 2 and byte 3 if
the Sign flag is set.

I 0

low-order addr
~-------------------------------~ high-order addr

~---------------------------------cycles: 3 states: 10
flags: none

JO nn Jump on overflow

if P/V= 1, PC<=:nn

FA

JP PE,a16

Load the progr'am counter with the 16-bi t address in byte 2 and byte 3 if
the Parity IOv€!rflow flag is set.

low-order addr
~-----------------------------~

high-order addr
~-------------------------"------~
cycles: 3 states: 10
flags: none

EA

100-0123-001

2-89

JP PO,a16
JNO nn Jump on no overflow

if P/V=O, PC<=nn

Load the program counter with the 16-bit address in byte 2 and byte 3 if
the Parity/Overflow flag is reset.

low-order addr

high-order addr

cycles: 3 states: 10
flags: none

° E2

JP (HL)
PCHL Load program counter from HL

PCIX

PC<=(HL)

Load the program counter with the content of the HL register pair.

I a
cycles: 1 states: 4
flags: none

1 1 a o E9

JP (IX)
JP (IY)

PCIY Load program counter from index register

PC<=(IXH)
"C<=(IXL)

Load the program counter with the content of the 16-bit index register.

cycles: 2 states: 8
flags: none

*O=IX 1=IY

100-0123-001

2-90

JR e
JMPR e Jump relative

PCL<=PCL + e

Add the 8·-bit t\«IO'S complement relative address to the lower 8 bits of
the program counter.

°
relative addr - 2

0] 1 11 l~_~o 18

cycles: 3 states: 12
flags: none

JRZ e Jump relative on zero

if ZF= 1
PCL<=PCL + e

JR Z,e

If the Zero flag is set, add the 8-bit two's complement relative address
to the lower 8 bits of the program counter.

~o 11 1<~28
~ relative addr -~
cycles: 3 states: 12
flags: none

JRNZ e Jump relative on non-zero

if ZF=O
PCL<=PCL + e

JR NZ,e

If the Zero flag is reset, add the 8-bit two's complement relative
address to the lower 8 bits of the program counter.

1--°---,,---,-_1], 0 I 0 1 0 _~ 20

relative addr -~
cycles: 3
flags: none

states: 12

100-0123-001

2-91

JRC e Jump relative on carry

if CY= 1
PCL<=PCL + e

JR C,e

If the Carry flag is set, add the 8-bit two's complement relative
address to the lower 8 bits of the program counter.

o

relative addr - 2

cycles: 3 states: 12
flags: none

JRNC e Jump relative on no carry

if CY=O
PCL<=PCL + e

o 38

JR NC,e

If the Carry flag is reset, add the 8-bit two's complement relative
address to the lower 8 bits of the program counter.

o

relative addr - 2

cycles: 3 states: 12
flags: none

o 30

100-0123-001

2-92

DJNZ e Decrement and jump relative on non-zero

B<=B - 1
if B<>O
PCL<=PCL ... e

DJNZ e

Decrement the B register and if the result is not zero, add the 8-bit
two's complement relative address to the lower 8 bits of the program
counter.

~1 10 IOEB10
~ relative addr -~
cycles: 3 states: 13
flags: none

1nO-0123-001

2-93

2.6.10 Call And Return Group

CALL nn Call

(SP - 1) <=PCH
(SP - 5)<=PCL
SP<=(SP - 2)
PC<=nn

CALL a16

Push the program counter onto the stack and load the program counter
with the 16-bit address in byte 2 and byte 3.

1

low-order addr

high-order addr

cycles: 5 states: 17
flags: none

CZ nn CalIon zero

if z::1
(SP - 1) <=PCH
(SP - 2) <=PCL
PC<=nn

1 CD

CALL Z,a16

Push the program counter onto the stack and load the program counter
with the 16-bit address in byte 2 and byte 3 if the Zero flag is set.

1

low-order addr

high-order addr

cycles: 3/5 states: 10/17
flags: none

o CC

100-0123-001

2-94

CNZ nn CalIon non-zero

if z=O
(SP - 1)<=PCL
(SP - 2)<=PCH
PC<=nn

CALL NZ,a16

Push the progr'am counter onto the stack and load the program counter
with the 16-bit address in byte 2 and byte 3 if the Zero flag is reset.

low-order addr

high-order addr
~-------------------------------~ cycles: 3/5 states: 10/11
flags: none

CNC nn Call on no carry

if c=O
(SP - 1)<=PCH
(SP - 2)<=PCL
PC<=nn

C4

CALL NC,a16

Push the program counter onto the stack and load the program counter
with the 16-bit address in byte 2 and byte 3 if the Carry flag is reset.

t--~_""--O] 1 1 0 11 I 0 I 0 D4

low-order addr

high-order addr

cycles: 3/5 states: 10/11
flags: none

100-0123-001

2-95

CC nn CalIon carry

if c= 1
(SP - n<=PCH
(SP - 2) <=PCL
PC<=nn

CALL C,a16

Push the program counter onto the stack and load the program counter
with the 16-bit address in byte 2 and byte 3 if the Carry flag is set.

low-order addr

high-order addr

cycles: 3/5 states: 10/17
flags: none

CPO nn CalIon parity odd

if P/V=O
(SP - 1) < = PCH
(SP - 2)<=PCL
PC<=nn

o DC

CALL PO,a16

Push the program counter onto the stack and load the program counter
with the 16-bit address in byte 2 and byte 3 if the Parity/Overflow flag
is reset.

1

low-order addr

high-order addr

cycles: 3/5 states: 10/17
flags: none

o E4

100-0123-001

2-96

CPE nn CalIon parity even

if P/V= 1
(sP - 1) < = PCH
(SP - 2)<=PCL
PC<=nn

CALL PE,a16

Push the program counter onto the stack and load the program counter
with the 16-bit address in byte 2 and byte 3 if the Parity/Overflow flag
is set.

t-----Ao1_1 ~-I 0 1 1 11 1 0 I 0 EC

low-order addr
~----_-----,----------_---------~

high-order addr'

cycles: 3/5 states: 10/17
flags: none

CP nn CalIon plus

if S=O
(SP - 1)<=PCH
(SP - 2) <=PCL
PC<=nn

CALL P,a16

Push the progr·am counter onto the stack and load the program counter
with the 16-bit address in byte 2 and byte 3 if the Sign flag is reset.

1 1 1 B 1 I 0 11 I. 0 I 0 F4

low-order addr

high-order addr

cycles: 3/5 states: 10/17
flags: none

100-0123-001

2-97

CM nn CalIon minus

if S=1
(SP - 1)<=PCH
(SP - 2)<=PCL
PC<=nn

CALL M,a16

Push the program counter onto the stack and load the program counter
with the 16-bit address in byte 2 and byte 3 if the Sign flag is set.

1

low-order addr

high-order addr

cycles: 3/5 states: 10/17
flags: none

CO nn CalIon overflow

if P/V= 1
(SP - 1)<=PCH
(SP - 2)<=PCL
PC<=nn

o FC

CALL PE,a16

Push the program counter onto the stack and load the program counter
with the 16-bit address in byte 2 and byte 3 if the Parity/Overflow flag
is set.

low-order addr

high-order addr

cycles: 3/5 states: 10/17
flags: none

o EC

100-0123-001

2-98

CNO nn CalIon no overflow

if P/V=O
(SP - 1) < = PCH
(SP - 1) < = PCL
PC<=nn

CALL PO,a16

Push the program counter onto the stack and load the program counter
with the 16-bit address in byte 2 and byte 3 if the Parity/Overflow flag
is reset.

o

low-order addr 1-----,------- -----of
hi.gh-order addr

-----------------------.--------~
cycles: 3/5 states: 10/17
flags: none

RST P Restart

(SP - 1) <::PCH
(SP - 2) <::PCL
PCH<=O
PCL<=8p

E4

RST 8p

Push the progr'am counter onto the stack and load the program counter
with one of 8 interrupt vector addresses.

cycles: 3 states: 11
flags: none

100-0123-001

2-99

RET Return

PCH<=(SP + 1)
PCL<=(SP)
SP<=(SP + 2)

RET

Pop the top of the stack into the program counter. The previous
contents of the program counter are lost.

cycles: 3 states: 10
flags: none

o 1

RETN Return from non~askable interrupt

PCH<=(SP + 1)
PCL<=(SP)
SP«SP + 2)
IFF1<=IFF2

cg

RETN

Pop the top of the stack into the program counter and copy the state of
interrupt flip-flop 2 back into flip-flop 1.

I 0 I 1 I 0 I: I 0 I 1 I: I 1 I::
cycles: 4 states: 14
flags: none

100-0123-001

2-100

RETI Return from :i.nterrupt

PCH<=(SP + 1)
PCL<=(SP)
SP<=(SP + 2)
IFF1<=O
IFF2<=O

RETI

Pop the top of the stack into the program counter and reset the
interrupt flip-flops 1 and 2.

1 1 1

0 1 0

cycles: 4 states: 14
flags: none

RZ Return on zero

if ZF=1
PCH<=(SP + 1)
PCL<=(SP)
SP<=(SP + 2)

RET Z

Pop the top of the stack into the program counter if the Zero flag is
set.

cycles: 1/3 states: 5/11
flags: none

o I C8

1nO-0123-001

2-101

RNZ Return on non-zero

if ZF=O
PCH<=(SP + 1)
PCL<=(SP)
SP<=(SP + 2)

RET NZ

Pop the top of the stack into the program counter if the Zero flag is
reset.

cycles: 1/3 states: 5/11
flags: none

RC Return on carry

if C=1
PCH<=(SP + 1)
PCL<=(SP)
SP<=(SP + 2)

o o o co

RET C

Pop the top of the stack into the program counter if the Carry flag is
set.

1 o 1 1

cycles: 1/3 states: 5/11
flags: none

RNC Return on no carry

if CY=O
PCH<=(SP + 1)
PCL<=(SP)
SP<=(SP + 2)

o o o DB

RET NC

Pop the top of the stack into the program counter if the Carry flag is
reset.

o

cycles: 1/3 states: 5/11
flags: none

o o o DO

100-0123-001

2-102

RPO Return on parity odd

if P/V=O
PCH<=(SP -+ 1)
PCL<=(SP)
SP<=(SP + 2)

RET PO

Pop the top of the stack into the program counter if the Parity/Overflow
flag is reset.

I' I' EJ 0 1 0 1 o~ I 0

cycles: 1/3 states: 5/11
flags: none

RPE Return on pat"ity even

if P/V= 1
PCH<= (SP ... 1)
PCL<=(SP)
sp<=(SP + 2)

o EO

RET PE

Pop the top of the stack into the program counter if the Parity/OVerflow
flag is set.

cycles: 1/3 states: 5/11
flags: none

RP Return on plus

if S=O
PCH<=(SP of- 1)
PCL<=(SP)
SP<=(SP + 2)

E8

RET P

Pop the top of the stack into the program counter if the Sign flag is
reset.

I' l'EJI_1~lo~_0,~0~0~
cycles: 1/3 states: 5/11
flags: none

FO

100-0123-001

2-103

RM Return on minus

if S=1
PCH<=(SP + 1)
PCL<=(SP)
SP<=(SP + 2)

RET M

Pop the top of the stack into the program counter if the Sign flag is
set.

1 I 1 1

cycles: 1/3 states: 5/11
flags: none

RO Return on overflow

if P/V= 1
PCH<=(SP + 1)
PCL<=(SP)
SP<=(SP + 2)

o o o F8

RET PE

Pop the top of the stack into the program counter if the Parity/Overflow
flag is set.

I 1 I 1 1 I 0 I 0 0 0 0 EO

cycles: 1/3 states: 5/11
flags: none

100-0123-001

2-104

RNO Return on no overflow

if P/V=O
PCH<=(SP + 1)
PCL<=(SP)
SP<=(SP + 2)

RET PO

Pop the top of the stack into the program counter if the Parity/Overflow
flag is reset.

cycles: 1/3 states: 5/11
flags: none

E8

100-0123-001

2-105

2.6.11 Input/Output Group

IN n Input to accumulator

A<: (In)

Input 8-bit data from input port to accumulator.

1 o

port addr

cycles: 3 states: 11
flags: none

INP r Input to register

r<:I (C)

o 1 DB

TN rd, (C)

Input 8-bit data from input port addressed by the C register to register
rd.

1 1

0 1

cycles: 3
flags: S Z

X X

1 0 1

rd rd rd

states: 12
H P/V N C
o P 0 *

1 0

0 0

1

0

ED

100-0123-001

2-106

INI Input to memory and increment

(HL)(=I (C)
B(=B - 1
(HL)(=(HL) + 1

INI

Input 8-bit data from input port addressed by the C register to the
meroory location addressed by the HL register pair. Decrement the B
register and inerement the HL register pair.

1 1

1 0

cycles: 4
flags: S Z

? X

1 0 1

1 0 0

states: 16
H P/V N C
? ? 1 *

z = 0 when B-1 =1 0
Z = 1 when 8 - 1 = 0

m:: 1

0

INIR Input to memory, increment and repeat

(HL)(= (C)
8(=8 - 1
(HL)(=(HL) + 1
PC(=PC - 2 until 8=0

INIR

Input 8-bit data from input port addressed by the C register to memory
location addressed by HL regi.ster pair. Increment the HL register pair.
Decrement the 8 register and repeat until the 8 register becomes zero.

r2IiIi_ EEl ED

~ ~B2
cycles: 5/4 states: 21/16
flags: S Z H P/V N C

? 1 ? ? 1 *

100-0123-001

2-107

IND Input to memory and decrement

(HL)<=I (C)
B<=B - 1
(HL)<::(HL) - 1

IND

Input 8-bit data from input port addressed by the C register to the
memory location addressed by the HL register pair. Decrement the HL
register pair and the B register.

cycles: 4
flags: S Z

? X

states: 16
H P/V N C
? ? 1 *

Z = 0 when 8 - 1 =1 0
Z = 0 when 8 - 1 = 0

INDR Input to memory, decrement and repeat

(HL) <= (C)
8<=8 - 1
(HL)<=(HL) - 1
PC<=PC - 2 until 8=0

INDR

Input 8-bit data from input port addressed by the C register to the
memory location addressed by the HL register pair. Decrement the HL
register pair and the 8 register and repeat until 8 becomes zero.

I 101 1

0

1 I 0 I 0 I 0 I ~
cycles: 5/4
flags: S Z

? 1

states: 21/16
H P/V N C
? ? 1 *

100-0123-001

2-108

OUT n Output aecLimulator

On<=A

Output 8-bit data to output port from accumulator.

~1 10 1<~D3 c= port addr ~
cycles: 3 states: 11
flags: none

OUTP r Output r"egister

O(C)<=r

OUT (a8),A

OUT (C),rs

Output 8-bit data to output port addressed by the C register from
register rs.

cycles: 3 states: 12
flags: none

100-0123-001

2-109

OUTI Output memory and increment

O(C)<=(HL)
B<=B - 1
(HL)<=(HL) + 1

OUTI

Output 8-bit data to output port addressed by the C register from the
memory location addressed by the HL register pair. Decrement the B
register and increment the HL register pair.

I 1 I: I: I: I: I: I ~ I 1 I ~
cycles: 4
flags: S Z

? X

states: 16
H P/V N C
? ? 1 *

z = 0 when B-1 =1 0
Z = 1 when B-1 = 0

OUTIR Output memory, increment and repeat

(C)<=(HL)
B<=B - 1
(HL)<=(HL) + 1
PC<=PC - 2 until B=O

OUTIR

Output 8-bit data to output port addressed by the C register from memory
location addressed by HL register pair. Increment the HL register pair.
Decrement the B register and repeat until the B register becomes zero.

cycles: 5/4
flags: S Z

? 1

states: 21/16
H P/V N C
? ? 1 *

100-0123-001

2-110

ourD Output me!mory and decrement

O(C)<=(HL)
B<=B - 1
(HL)<=(HL) - 1

OUTD

Output 8-bit da1~a from output port addressed by the C register from the
memory location addressed by the HL register pair. Decrement the HL
register pair and the B register.

EEffij i8B ::
cycles: 4
flags: S Z

? X

states 16
H P/V N C
? ? 1 *

z = 0 when B .• 1 =1 0
Z = 1 when B •• 1 = 0

OUTDR Output memory, decrement and repeat

(C)<=(HL)
B<=8 - 1
(HL)<=(HL) - 11

PC<=PC - 2 until 8=0

OTDR

Output 8-bit data to output port addressed by the C register from the
memory location addressed by the HL register pair. Decrement the HL
register pair and the 8 register and repeat until B becomes zero.

1 1

1 0

cycles: 5/4
f a-s: S Z

? 1

1

1 1~ 0 !HE::
states: 21/16
H P/V N C
'? ? 1 *

100-0123-001

2-111

3.1 SCOPE

SECTION 3

MULTI BUS

This section des.cribes the MULTIBUS convention and how the MSC 8009
operates in a MULTIBUS environment.

3.2 MULTIBUS CONVENTION

The MULTlBUS convention is a set of standard signal lines that
interconnect a family of system modules. These modules include
processors, memories and 1/0 interfaces. Some modules, such as the MSC
8009, may be a combination of all three. The physical structure of the
system bus takes the form of a backplane that system modules plug into.
Interconnections between modules are normally made via printed-circuit
lines or wire-wrapped connections on a backplane.

Twenty address lines, sixteen bidirectional data lines, eight parallel
interrupt lines, bus control Signals, data transfer Signals and power
distribution lines make up the MULTIBUS. Many compatible modules use
only eight data li.nes and sixteen address lines, including the MSC 8009.

The Control sect. ion consists of the memory control (MORCI and MWTC/) ,
1/0 control (IORCI and IOWC/), Bus Contention Resolution controls
(BCLKI, BPRN/, BPROI, BREQI and BUSY/), Handshaking controls (XACKI and
AACK/) , Interrupt lines (INTOI thru INT7/), constant clock (CCLK/) and
the initialization signal (INIT/).

A system bus convention may be considered as three buses -- the Data
bus, the Address bus, and the Control bus. The Data bus provides the
path over which data is transmitted between sources and destinations.
Data travels on the Data bus between the CPU and memory, between CPU and
1/0 devices, between memory and 110 devices, or even between peripheral
devices.

The Address bus specifies the soul'''ces and destinations of liD devices or
memories located externally to the CPU. When transferring data between
a CPU register and an external liD device or memory, the CPU places the
addresses, and then the data transfer takes place.

100-0123-001

3-1

The Control bus- establishes direction and timing of the data to or from
the selected I/O device or memory location. Separate control signals
are provided for memory read (MRDC/), memory write (MWTC/), I/O read
(IORC/), and I/O write (IOWC/) operations. At a minimum, the slave will
respond with XACK/ to indicate the completion of a particular read or
write operation.

3.3 MULTIBUS CONTROL

All modules connected to the MULTIBUS behave in a master/slave
relationship. At any given time, only one device has control of the
MULTIBUS, and this device is referred to as the Bus Master. The Bus
Master drives the address bus and the control lines. Also, it can
initiate data transfers with other devices on the bus called slaves.
Either the master or slave can drive the data bus depending on the
direction of the data transfer. A slave never drives the address bus.
It merely responds to addresses that are asserted onto the bus by a Bus
Master. Examples of a slave module are memory and simple I/O interfaces
that cannot control the bus.

A bus arbitration scheme grants control of the bus to only one Bus
Master when more than one device requests MULTIBUS control. Generally,
Direct Memory Access (DMA) has priority over a processor. Data may be
lost in a transfer from an unstoppable device such as a disk if access
is delayed more than a few microseconds. "When two processors vie for
bus control, one is assigned a lower priority, and bus arbitration
grants control based on priority. The position of each module in a
serial-priority resolution configuration determines it's priority. If
parallel-priority resolution is used, the order of connection to the
priority resolution module establishes priority.

3.3.1 Bus Contention Resolution

Since the MULTI BUS can interconnect several devices that are capable of
being a Bus Master, two or more of these devices could request bus
control simultaneously. Thus, MULTIBUS control must be allocated so
that important activities are performed more quickly than unimportant
activities. Four MULTIBUS signals resolve bus contention Bus
Priority In (BPRIJl), Bus Priority Out (BPRO/), Bus Request (BREQ/) and
Bus Busy (BUSY/). Each signal is synchronized with the Bus Clock BCLKI
to insure that two modules do not have control of the bus
simultaneously.

100-0123-001

3-2

3.3.1.1 Serial Bus Pr:Lority

In serial-bus configuration, the MSC 8009 is connected between two
neighboring unit:s, and it receives BPRNI from the unit with the
highest-priority and sends BPROI to the lower-priority unit (See Figure
3-1). A common bus ties BCLK/ and BUSYI to all units, and BREQ/ is not
used in a serial-bus contention techniques. When the MSC 800Q requests
control of the MULTIBUS, it sends a 'high' on BPROI to all
lower-priority modules to indicate that the bus is not available. To
insure that the highest-priority module's request is passed to the
lowest-priority unit., the MSC 8009 essentially tORs' its internal
request with BRPN/ from the higher-priority unit to generate BPROI. The
highest-priority modules BPRNI must be wired to a logic "low" condition.

'ORIIT LOWEST PRI
MASTER Me IDULE

INTERNAL
REQUEST

IORITY ~IGHEST -;:
MASTER MO DULE

--

BPROI t-- (N/C)
BLCK/
BUSY/
BPRNI

BPROI
BCLKI
BUSYI
BPRNI

BPRO/
BCLKI
BUSYI
BPRNI

- -
BPROI
BCLKI
BUSYI
BPRNI

Figure 3-1
SEHIAL-BUS CONTENTION CONFIGURATION

BUSYI BCLKI

100-0123-001

3-3

Once a request has been made, the MSC 8009 waits until BPRN/ goes 'low'
(no higher-priority request is pending) and BUSY/ goes 'high' indicating
that the current Bus Master has relinquished MULTIBUS control. The MSC
8009 now asserts BUSY/ to take control and initiate the requested data
transfer operation. A problem still exists, however, if two Bus Masters
request the bus. If both see BUSYI go 'high' simultaneously and the
higher-priority modules' request signal has not propogated down the
chain to the lower-priority module, then both could conceively try to
gain control of the MULTIBUS. Synchronizing all of the bus contention
lines to a single clock resolves this problem. The Bus Clock (BCLK/)
has a minimum period of 100 nanoseconds. The data on the bus contention
lines should change, if necessary, on the high-to-Iow transition of the
clock. In fact, to avoid the problem of two bus masters attempting to
gain bus control simultaneously, a module should bid for bus control
(setting BPROI 'high') on one clock cycle, but do not attempt to claim
control of the bus (setting BUSYI 'low') until the next clock cycle.
This provides sufficient time for all higher-priority requests to
propogate down the serial chain.

NOTE: It is not recommended to chain more than three
devices with a BCLKI of 100 ns. To support more
devices, either increase the pulse-width of BCLKI
or use the parallel scheme.

3.3.1.2 Parallel Bus Priority

The parallel bus configuration requires an external printed-circuit
board wired into the backplane. This board accepts the bus request
signals from all bus rnasters and determines which signal has the highest
priority. The arbitration circuit on this board consists of a parallel
priority encoder such as a 14148 followed by a data selector chip such
as 14S138. In turn, these circuits grant the MULTIBUS to the bus master
having the highest priority.

3.3.1.3 Bus Exchange Modes

Bits 4 and 5 of the Board Configuration register (U22) lets the user
program three bus-exchange modes (Refer to paragraph 1.4.1). The normal
mode of operation (both bits are '00') allows the bus master to be
changed every operation. This mode permits fast DMA response.

If the pattern for bits 5 and 4 is
bus control with each instruction.
instructions (i.e., INR M) to
multiprocessor environment so that
without software delays.

'10' respectively, the bus to change
This mode lets read-modify-write

be used to test and set flag in a
external resources may be shared

100-0123-001

3-4

When bit 4 is a '1', the MSC 8009 keeps the bus once it gains control.
This mode prevents other bus masters from acquiring the bus, which can
be useful at system initialization time.

NOTE: Thi.s mode must be used with caution.
processors or DMA deviees may time out
cannot gain bus control.

3.3.2 Acknowledge Signals

Other
if they

The MULTIBUS use's two types of acknowledge -- Transfer Acknowledge
(XACK/) and Advance Acknowledge (AACK/). The Z80 timing characteristics
and the slave unit d:ictate the use of these acknowledge signals. Care
must be taken to insure that all modules on the MULTI BUS meet all timing
requirements.

The MSC 8009 with the Z80A processor runs faster than the 8080 master
modules with which AACKI was intended for. Jumpers on existing memory
and I/O boards that generate AACKI in advance of XACKI may have to be
changed to assure proper operation if the CPU is changed from an 8080A
to a Z80A. On the standard MSC 8009, AACKI is disconnected and may be
incorporated via jumper 66 to 67.

NOTE: AACKI does not replace XACK/. XACKI must always be
used.

3.3.2.1 Transfer Acknowledge (XACK/)

When a memory or I/O port completes a read/write operation, it responds
with XACKI. If the requested operation is a read, XACKI signifies that
the requested data is available on the MULTIBUS. The MSC 8009 accepts
and loads the requested data upon receipt of XACK/. The Z80 samples the
WAITI input approxi.mately one cycle prior to the actual transfer of
data. If WAIT is 'low', the Z80 enters one or more Wait states until
WAITI goes 'high'. 1~en the Z80 readies the data during the next cycle.
As shown in Figure 3-2, the slave device has up to Twsp (command to Z80
Wait sample point) to indicate valid data on the MULTIBUS when the Z80
needs it for entry after a no wait state.

For a write oper'ation, the slave places a 'low' on XACKI after
accepting and latching the data into the addressed I/O port or memory.
At this time, the MSC 8009 terminates the cOl111land, ready for another
transaction.

100-0123-001

3-5

CLOCK ~. T'I ___ I·_ T2 - : ... 1.- T3 _________ -IIoo-o--

ADDRESS XXXXX"-_________ M_E_MO_R_Y_AD_DR_E_SS_V_AL_ID_

MRDC/

DATA

AACKI

XACK/

~ 141--__ Tacc ___ 1

I

=VALIDXXXXXXX
l.- lWsp -J I

I I
la..--_I __ 1-.1

I I

I l
Z80 SAMPLES Z80 READS

WAIT DATA

Figure 3-2
Z80 READ OPERATION

100-0123-001

3-6

ADDRESS 'ltl/X.., _____ . _____ ME.._M_O_RY_AD_D_R_E_SS_V_AL_I_D_

MIUTC/

AACK/ L __ ___
XACK/

1 / t
Z80 SAMPLES SLAVE ACCEPTS Z80 COMPLETES

WAIT DATA WRITE

Figure 3-3
Z80 WRITE OPERATION

100-0123-001

3-7

3.3.2.2 Advance Acknowledge (AACK/)

To speed read/write operations, some MULTIBUS devices use the optional
Acknowledge signal AACKI to reduce the number of WAIT states. If the
slave module accepts data after the WAIT sample point (See Figure 3-3)
and prior to the termination of a write command, AACK/ can be used to
eliminate an extra Wait state. This signal is useful when XACKI is too
late for detection by the Z80 at the Wait sample point. Nevertheless,
valid data is available on the MULTIBUS when the Z80 needs it; or the
slave will accept the data before the Z80 completes a write operation.

During a read, many systems have a well-defined time lag between the
receipt of the acknowledgement and the actual acceptance of data from
the MULTlBUS. An Advance Acknowledge signal (AACK/) can be used for
these conditions. This signal speeds throughput of certain systems such
as the MSC 8009, and may occur prior to XACKI by a time period equal to
the time lag. Since the master module may not actually sample data as
soon as acknowlege is received, a time lag could result. The master
module must have consistent time lag in order to properly use AACK/ in
cases where the time lag is not well defined, the speed improvement
offered by AACKI may have to be abandoned in favor of the slower, but
reliable XACKI signal.

3.4 SPECIFICATIONS

The MSC 8009 is designed to use the MULTIBUS convention. All signals
listed in paragraph 3.3.3 are interfaced via a single, 86-pin connector
(P1).

3.4.1 Electrical Characteristics

A 'low' (nominal OV) on the active-low bus indictes a logic '1'. A
slash (I) following the signal mnemonic indictes that the bus signal is
active low. Timing and electricl specifications for all signals sent by
the MSC 8009 are listed in Tables 3-1 and 3-2

3.4.2 Mechanical Characteristics

The bus connector is an 86-pin edge connector (two rows of 43 pins) with
n.156-inch spacing between pins. Board thickness of the MSC 8009 is
nominally 0.062-inches, and spacing between installed boards should be
0.6-inches. Odd-numbered pins are located on the component side or top
side of the board, and even-numbered pins on the circuit side or bottom.
When viewing the board with the bus connector P1 down, pin 1 is located
on the component side to the left.

100-0123-001

3-8

1) Input Volt.age Levels: High 2.0V to 5.0V
Low O.OV to 0.8V

2) Output Voltage Levels: High 2.4V to 5.25V
Low O.OV to 0.45V

3) Leakage Current of an Input: 0.04 rnA

4) Leakage Current of an Output: O. 1 rnA

5) Maximum Bus Capacitance: 300 pf on anyone line

6) The National DS 8303 and DS 8304 octal bidirectional
transce:L vers have excellent characteristics and fully
comply \>li t.h this specification.

Table 3-1
MULTIBUS LEVEL SPECIFICATIONS

100-0123-001

3-9

3.4.3 Signal Description

Bus connector P1 provides the signal path between the MSC 8009 and the
MULTIBUS for the following signals.

ADROI thru ADRFI

DATal thru DAT71

BCLKI

CCLKI

INITI

IORCI

IOWCI

MRDCI

MWTCI

XACK/

Sixteen address
memory location
accessed. Bit
significant.

lines identify either
or 1/0 port to be

a (ADRO/) is least

Eight bidirectional data lines transmit
or receive data to and from addressed
memory location or 1/0 port. Bit a
(DATO/) is least significant.

Bus Clock synchronizes bus contention
logic when the MSC 8009 controls the
MULTIBUS.

Clock signal available for other system
modules.

System Initialization signal conditions
the MSC 8009 and any other module to a
known state.

Read Command signal indicates the
address of an 1/0 port is on the
MULTIBUS address lines, and data read
via that port is to be placed onto the
MULTIBUS data lines.

Write Commands allows the MSC 8009 to
send data via MULTIBUS to the 1/0 port
designated on the address lines.

Memory Read command indicates that the
address of the memory location is on the
MULTI BUS and data readd from that
location is to be placed on the
MULTIBUS.

Memory Write command transfers data from
the data lines of the MULTI BUS into the
memory location contained on the address
lines.

Transfer Acknowledge signal tells the
MSC 8009 that the memory or 1/0
operation is complete.

100-0123-001

3-10

AACK/

INTOI thru INT11

BPRNI

BPROI

BUSYI

BREQI

NMII

3.4.4 Data Transfer Timing

Optional Advance Acknowledge signal
notifies the MSC 8009 that data will be
available for the zao. This signal must
be used with caution because newer
processors are faster than the 8080 for
which many systems were designed.

Activating one of these eight,
interrupt-request lines produced an
interrupt operation. An interrupt must
be held until the software releases the
requesting module. INTOI has the
highest priority, and INT71 has the
lowest.

Bus Priority signal indicates that there
is no master module with higher priority
request and MULTIBUS control.

Bus Priority Out signal indicates that
neither the MSC 8009 nor any higher
priority master wants control of the
MULTIBUS (for serial arbitration).

Busy signal signifies that some bus
master has control of the MULTI BUS when
assE~rted .

Bus request signal is asserted when the
MSC 8009 wants control of the MULTIBUS.

Non Maskable Interrupt is not a standard
MULTIBUS signal, but can be connected to
the MULTI BUS. It has highest interrupt
priority.

The MULTIBUS data transfer operates on a handshaking principle so that
no one module depends on another's internal timing. When the MSC 8009
issues a command to either read from or write into the location
specified on the' address line8, the MSC 8009 waits in a state of
suspension until the slave module acknowledges that the transfer is
complete.

100-0123-001

3-11

The sequence of a data transfer operation is as follows (Refer to Figure
3-4):

1) When the MSC 8009 gains control of the MULTIBUS, the memory or 1/0
address is asserted onto the adddress lines.

2) If da'ta is to be written into the slave, data is placed on the data
bus.

3) After address and data lines have become stable for at least 100
nanoseconds, one of the following commands is then asserted:

Memory Write Command (MWTC/)
Memory Read Command (MRDC/)
1/0 Write Command (IOWC/)
1/0 Read Command (lOCI)

4) The command remains on the MULTIBUS until the request slave module
acknowledges. For a write operation, this occurs when the slave
accepts the data. If the requested operation is a read,
acknowledgement comes when the slave has stable data on the
MULTIBUS. To prevent an errant module from delaying the system
operation, the MSC 8009 has a Watchdog Timer that reclaims control
after 10 milliseconds.

5) When the MSC 8009 receives the acknowledge, the command is then
removed from the MULTIBUS. In turn, the slave must remove its
acknowledge within 100 nanoseconds.

The maximum data transfer rate for the MULTIBUS is 5 MHz. There is a
50-nanosecond address
signal must be at least
data-hold requirement.
time of 200 nanoseconds
bus-arbitration timing
on the order of 1 MHz.

and data set up requirement, and the command
100 nanoseconds in addition to a 50-nanosecond
These yield a theoretical minimum data-transfer

if the memory-access time is zero. Due to
and memory-access time, the actual rate is more

100-0123-001

3-12

3.5 MSC 8009 CONFIGURATION

There are many applications that use the standard MULTIBUS. The
following list summar'izes the MSC 8009 as a MULTI BUS module:

MODULE TYPE: Master or Slave.

PRIORITY: Depends on location within the priority structure
of the system.

DATA BUS: Uses l()WE~r 8-bi ts only (DATa thru DAT1). Data lines
DAT81 t.hy'u DATFI are not connected.

INHIBITS: INH11 and INH21 are not used.

CLOCK: Standal"d frequency for both BCLKI and CCLKI is 8 MHz.

ACKNOWLEIXiE: Jumpers 66 and 61 disconnect AACKI from the MULTIBUS
when rrndules designed for slower processors are used.

POWER SUPPLIES:
1)
2)
3)

-10V is not used.
-t2V is used with RS-232-C Serial 1/0 option.
+ 1 ;2V s. +5V and -5V are used.

LEVEL SPECIFICATIONS: TTL Compatible

100-0123-001

3-13

E~ ~X~ ____ S_~_L_E ____ ~X~

DATA BUS ,..---------------- Z7
(Wr~~r~g) ILL X STABLE X Z
MEMORY
OR I/O
COMMAND

ACKNOWLEDGE
OF DATA TRANSFR

1)50 ns 2

(10 ms
-)0 ns

)100 ns

MEMORY ACCESS

TIME

)50 ns 5

4

3 ////////
)0

)0

xWZZ/

MEMORY OR I/O COMMAND = IORC, IOWC, MRDC AND MWTC
ACKNOWLEDGEMENT OF DATA TRANSFER = XACK AND AACK

Figure 3-4
MULTIBUS DATA TRANSFER TIMING

100-0123-001

3-14

r-------~--------,-----SIGNAL

BLCK

ADROI­
ADRFI

DATOI­
DATFI

ADROI­
ADRFI

DATOI­
DATFI

DATOI­
DATFI

DATOI­
DATFI

XACK! ,
AACKI

XACK!

DATOI­
DATFI

MRDC/,
MWTC

IORC/,
IOWCI

INH1/,
INH2

XACK!

DESCRIPTION

Bus Clock

Address Line S et Up

Write Data Set Up

Address Line H old

Write Data Bol d

Read Data Se!t Up

Read Data Hold

Acknowledge Ho ld

Acknowledge De lay

Read Data Aece ss

Command Pulse Width

Inhibit Delay

Slave Ackno1rllE ~dge
Delay

MIN. MAX. REMARKS

1000s DC 35-65% duty cycle

50ns Relative to command
assertion

50ns Relative to command
assertion

50ns Relative to command
removal

50ns Relative to command
removal

Ons Relative to XACK!

Ons Relative to command
removal

100ns Relative to command
removal

10ns With optional Watch-
dog Timer enabled

Ons Maximum is DC with
Watchdog Timer disabled

100ns

100ns Relative to address
assertion

* Inhibiting Slave must
delay acknowledge

Table 3-2
MULTIBUS ELECTRICAL REQUIREMENTS

100-0123-001

3-15

BUS
SIGNALS

LOCATION

INIT/ Master

BCLKI Master
CCLKI

BREQ/ Master

BPRN/ Any

BPRO/ Master

BUSYI Master

MRDC/ Master
MWTC/

IORC/ Master
IOWCI

XACKI Slave
AACKI

DATO/- Any
DATF/

ADROI Master
ADRFI

INT7/- Any
INTOI

DRIVER RECEIVER

-- --
DRIVE LOCATION SOURCING

Open ColI Any 1.8 rnA
32 rnA

TTL Master 2.0 rnA
48 rnA

TTL Any 2.0 rnA
10 rnA

TIL Master 2.0 rnA
16 rnA

TTL Master 2.0 rnA
32 rnA

Open ColI Master 2.0 rnA
20 rnA

Tri-State Slave 2.0 rnA
32 rnA

Tri-State Slave 2.0 rnA
32 rnA

Tri-State Master 2.0 rnA
16 rnA

Tri-State Any 0.5 rnA
15 rnA

Tri-State Slave 0.5 rnA
15 rnA

Open ColI Master 2.0 rnA
16 rnA

Table 3-2 (cont.)
MULTIBUS ELECTRICAL REQUIREMENTS

TERMINATED
ON BACKPLANE

2.2K Ohm

220/330
Ohm

1.0K Ohm

None

None

1.0K Ohm

1.0K Ohm

1.0K Ohm

510 Ohm

2.2K Ohm

2.2K Ohm

1.0K Ohm

100-0123-001

3-16

4.1 SCOPE

SECTION 4

MEMORY

This section descr:ibes the possible memory configurations of the MSC
8009, and how each can be employed to the user's advantage. In the
basic system, a sixteen-chip dynamic RAM array provides up to 32K-byte
storage capacity. 111ese arrays are addressed by either the address
lines of the Z80A processor or the MULTIBUS (Direct Memory Access).

Four on-board ROWEPROM sockets allow up to 32K bytes of storage for
commonly used subroutines, standard support software and specific user
applications • ThesE~ sockets accorrmodate the most popular 8-bi t wide,
24-pin meroc>ry devices.

4.2 RAM CONFIGURATION

Di vided into two 16K .. byte sections, the sixteen-ch ip merrory array comes
unloaded, or in one of the following configurations using industry
standard, 16-pin devices.

CAPACITY

32K
16K

ORGANIZATION -----

16K X 1
16K X 1

REQUIRED NUMBER

16
8

NOTE: If the device supplied is replaced with another,
care must be taken to insure pin compatibility, and
that the access time from CHIP ENABLE is less than
200 nanoseconds for use with the Z80A.

Separate MULTIBUS compatible memory cards such as the MSC 4602 (up to
64K bytes of RAM, 8K bytes of EPROM); the MSC 8103 (up to 8K bytes of
RAM, four ROM/EPROH sockets); or the MSC 8104 (up to 32K bytes of RAM,
four ROM/EPROM sockets) are available for special applications that
require more than ·32K bytes.

100-0123-001

4-1

4.2.1 Addressing

Memory space allotment for the MSC 8009 is zero to 64K and can be
accessed either directly by the Z80A or remotely from another bus master
via the MULTI BUS. Inasmuch as on-board RAM access does not require use
of the MULTlBUS, concurrent operations requiring the MULTIBUS can be
performed.

During RAM operation, the fourteen address bits required to define one
of 16,384 address locations are multiplexed onto the internal MA BUS
(MAO thru MA6). These bits are latched into on-chip address latches
under control of two Signals -- Row Address Strobe (RAS) and Column
Address Strobe (CAS). RAS 11 and RAS 21 designate the 16K byte section
as defined by signal RMBNK (RAM bank) from the program PROM. A 3480
RAS/CAS Timing chip (U6?) generates all necessary control and timing for
these two signals.

4.2.2 Memory Read

The execution of any program is a sequence of read and write cycles that
transfer a byte of unique information to and from an addressed location
in memory. There are two operations that require data to be transferred
from memory -- instruction FETCH cycle and a data or read command.· The
contents of the program counter, which points to the current
instruction, provides the memory address for the FETCH cycle while the
address for a read command can have several origins. Also, data read
during the read command is placed in a designated location, and the
FETCH cycle places the data into the instruction register.

During the read cycle, the data output lines MRDO thru MRD? go from a
high-impedance state to an active state so that the data read from the
selected memory location is available on the internal data bus. This
data remains on the bus until CAS returns to a "high" level. The memory
data is latched so that refresh cycles can occur. The latch output is
placed on the internal data bus and sent either to the MULTIBUS or the
Z80A, depending upon the operation.

4.2.3 Memory Write

The combination of WRTI and CASI latches the data that is to be written
into a selected memory location in an on-chip register while RASI is
active. The signals WRTI and CASI go "low" Simultaneously to strobe the
data on the 1/0 BUS (100 thru 107) into the memory elements. This data
is placed on the 1/0 BUS by either the MULTIBUS (DATOI thru DAT?/) or
the Z80A (DO thru D7).

100-0123-001

4-2

4.2.4 Refresh Cycle

Refresh of the' dynamic storage cell requires each row address to be
cycled wi thin t'r/O milliseconds, or a minimum of 128 cycles every two
milliseconds. When either a memory read or write operation is in
progress, th~~ refrE~sh cycle is inhibited. When the designated cycle is
complete, a refresh may begin following a short-time delay.

If a refresh has .just taken place, another refresh will not start for
approximately six microsecondsG During the next ten microseconds, an M1
cycle (M1/ goes "low") will generate a refresh. On the other hand, if
no M1 cycle oecurs durtng the ten microseconds, a refresh is then
forced.

U28 JUMPER POSTS
CHIP ORGANIZATION E :PROM/ ROM SOCKET

2708
(EPROM)

2716
(EPROM)

TMS2532
(EPROM)

Gnd -5V +12V +5V LAA

1K X 8 U101 11-12 4-13 1-14 - -
u 102 thru U104 11-8 4-9 1-10 - -

2K X 8 U101 11-12 - - 5-9 2-14
u 102 thru U104 11-8 - - 5-13 2-10

4K X 8 U101 - - - 5-9 2-14
U 102 thru U104 - - - 5-13 2-10

NOTE: There are other 24-pin compatible EPROM/ROM that
can be used. Ground, +5V, -5V, +12V and -12V in
addition to LAA, LAB and LAC (used with 8K X 8
chi.ps) are available on the JUMPER POSTS of U28
(See Drawing 305-0261-000, Sheet 7 for POST
identification). Before installing a new device,
remove all jumpers from U28.

Table 4-1
PRCGRAN MEMORY JUMPER CONNECTIONS

LAB

-
-
-
-

3-12
3-8

100-0123-001

4-3

4.3 EPROM/ROM CONFIGURATION

Four EPROM/ROM sockets accommodate the most popular 8-bit wide, 24-pin
memory devices. Table 4-1 lists some of the devices that can be used
with jumper-post call-out for socket U28. Different chips may be
intermixed, but three of the four sockets must contain the same
EPROM/ROM (U102 thru U104) and the fourth with another type (U101). For
example, commonly used subroutines or standard support software may be
installed in U102 thruU104 using three 2716's (2K X 8 EPROM) with one
Masked ROM (8K X 8) in U101 -- total capacity of 18K bytes.

The use of a 4 MHz, Z80A requires memories that have a maximum access
time of approximately 275 nanoseconds. This means that fast ROM,
fusible-link PROM or VMOS EPROM must be used for program storage to
eliminate wait states. One such chip is the Signetics 82S2708 (bipolar
1K X 8 PROM). This unit is compatible with the 2708 and has a maximum
access time of 70 nanoseconds. Selected EPROM parts are available from
Texas Instruments and Motorola too. Generally, the speed penalty
imposed by a wait state on the M1 cycle is insignificant for system
applications. The Mse 8009 is set up to insert one wait state on M1
cycles. This allows the popular 450-nanosecond PROM to be used.

4.3.1 EPROM/ROM Add~essing

A PROM in conjunction with two decoders control all I/O and address
mapping -- reducing the amount of discrete logic. Inasmuch as the
on-board PROM/EPROM or RAM may be addressed for a unique 256-byte
boundary in the 64K addressable space, anyone of 256 device codes may
be assigned to the I/O devices on the Mse 8009. The memory and I/O
allocation for a standard configuration fulfills a number of
applications. However, the PROM content may be altered to perform
special memory and I/O mapping needs.

The eight, high-order address bits (LA8 thru LAF) are routed to a
high-speed 256 X 8 PROM. This PROM may be mapped for any combination of
the eight, most-significant address bits into any other pattern. This
means that memories can be relocated to begin at an arbitrary 256-byte
page boundary within the addressing space. The low-order addressing
bits (LAO thru LAF) go to the appropriate memory devices, allowing
individual word selection.

The 1/0 instruction (one of 256 port addresses) reference all 1/0 ports
that exist in the addressing space rather than being memory mapped.
Decoder U21 accepts the levels on pins 7 thru 9 (D2 thru D4,
respectively) of U54 and translates them into an enabling signal (eSO
thru eS5) when IOSELI is asserted.

100-0123-001

4-4

To retrieve data from the EPROM (or ROM), the processor asserts a 16-bit
address on the L/A BUS. This address selects one of four ROM/EPROM
devices (ROMSEL 1 thru ROMSEL 4), and the data contained in the
addressed location is then sent to the processor via the 1/0 BUS -­
RCXv1/EPROM outputs are bussed together.

4.3.2 Memory Protect

A "true" on EXTRQI (pin 11 of U53) indicates that an off-board master
can access theMSC 8009 memory or 1/0 devices. The Protect PROM (U53)
selects which MSC 8009 addresses may be accessed from off the board.

4.4 DUAL MAP CONFIGURATION (OPTIONAL)

A 512 X 8 PROM and a flip-flop make up the Dual Map feature. This
combination provides the MSC 8009 with two, complete address maps; and
the system always powers up under the first map. A proper start
requires location "0" to be in ROM. Then the program switches to the
other map that may contain RAM in low memory. Bit 6 on the 1/0 BUS sets
the MAP flip-flop 1]22 with an 1/0 output instruction. This same
instruction programs the interrupt controller as discussed in Section 7.
An output device code D7H with bit 6 set switches the system to the
alternate address map. If bit 6 is reset, an output to D7H returns the
system to the main-address map.

Selecting the alt(~rnate map wi thout the proper PROM disables all
on-board resources. Care must be taken not to interfere with the
interrupt system that is controlled by bit 7, and bits 0 thru 3.

Primarily, the eight-output signals of PROM U54 select ROM, RAl"1, and 1/0
port (See Table 1~-2). PRCXv1 U45 accepts and uses the output signal
RAMSELI to generate the RAM request signal RMRQ/, which initiates the
requested memory cycle.

100-0123-001

4-5

SELECT
SIGNAL

ROMSEL 1
ROMSEL 2
ROMSEL 3
ROMSEL 4

PROM ADDRESS

DC-DF
CE-CF
ED-EF

D7
D4-05
CO-C7

C4

ADDRESS SPACE

4K BK

00OO-03FF 00OO-07FF
0400-07FF OBOO-OFFF
OBOO-OBFF 1000-17FF
OCOO-OFFF 1BOO-1FFF

(a) PROM/ROM Allocation

SELECT SIGNAL

CSO
CS1
CS2
CS3
CS4
CS5
CS6

(b) RAM & I/O Allocation

Table 4-2
MEMORY ALLOCATION

16K 32K

OOOO-OFFF 0000-1FFF
1000-1FFF 2000-3FFF
2000-2FFF 4000-5FFF
3000-3FFF 6000-7FFF

I/O PORT

TIMER
SERIAL (USART) 112
SERIAL (USART) 111
INTERRUPT
APU
FLOPPY DISK INTERFACE
FLOPPY DISK INTERFACE

100-0123-001

4-6

5.1 SCOPE

SECTION 5

SERIAL IIO INTERFACE

This section explains the serial I/O interface operation that provides
the MSC 8009 with twro serial-data communication channels. Using program
control, the user can operate the MSC 8009 with synchronous or
asynchronous byte-..oriented, serial-data-transmission protocols via these
I/O interfaces. Both channels can be configured for EIA RS-232-C and
TTL; and only ore can be used for opto-isolated 20mA current loop: The
8251 USART (Universal Synchronous/Asynchronous Receiver/Transmitter)
lets the user select the data format using programming techniques with
the 8253 Progran~able Timer providing the transmit and receive clock
(BAUD rate) for the USART.

5.2 CONFIGURING THE SERIAL IIO PORT

Normally, the MSC 8009 will be shipped configured per customer's
requirement. In the event that the user requires another configuration,
the following ki teo can be ordered"

301-0072-016
301-0072-017
301-0072-018

EIA RS-232-C
20 rnA current loop
TTL

These kits have all the necessary components that are needed for the
designated configUiration for the 75188 power jumper requirement and
component placement, refer to Table 5-3.

5.2.1 Terminal/ColllTlunication Configuration

Interfacing information for connecting the MSC 8009 to Data
Communication Equipment (DCE) and Data Terminal Equipment (DTE) is given
in Tables 5-1 and 5-2 respectively.

5.2.2 Programmable Timer Configuration

The 8253 Programmabl~~ Timer provides the MSC 8009 with three 16-bi t
timers, each progr~runed for a specific mode of operation. Each counter
has separate mode confi gurati·:)Y"s ard courtirg operations -- binary or
BCD.

100-0123-001

5-1

PIN NO.

1
2*
3
4

5
6*
7
8

9
10*
11
12
13
14
15

16-20
21*
22-23
24*
25*
26

-- --''''---'''''' -

MSC 8009 RS-232 Standard
EDGE CONNECTORS DB-255 (Female)

J 213 SIGNALS PIN NO. RS-232-C SIGNAL

NC
+Rx20MA 14 SSA-Secondary Transmitted
RS-232-Rx 3 3 SS Received Data
RS-232 CLK OUT 15 DB-Transmission Signal

Element Timing
RS-232~TxD 2 SA-Transmitted Data
+Tx20MA 16 SSB-Secondary Received Data
RS-232 CTS 5 CB-Clear to Send
RS-232 CLK IN 17 DO-Received Signal

Element Timing
RS-232 RTS 4 CA-Request to Send
-Rx20MA 18 Unassigned
RS-232 DTR 20 CD-Data Terminal Ready
NC
Signal Ground 7 AB-Signal Ground
*RS-232 DSR 6 CC-Data Set Ready
ON 8 CF-Received Line Signal

Detector
NC
-Tx20MA 11 Unassigned
NC
-RDCTL 13 SCB-Secondary Clear To Send
+RDCTL 25 Unassigned
NC

1) Pins marked with an astrisk are for current-loop
operation only. When the 110 port is configured for
RS-232-C, they are not connected. Also, these pins
are not connected on edge-connector J2.

2) Pin 14 can be used as the RS-232-C "DB Transmission
Signal Element Timing" depending on the jumper
configuration.

Table 5-1
SERIAL 110 CABLE CONNECTION FOR

DATA COMMUNICATIONS EQUIPMENT (DCE)

100-0123-001

5-2

PIN NO.

1
2*

3
4

5
6*
7
8

q
10*
11
12
13
14
15

16-20
21*
22-23
24*
25*
26

MSC 8009
EIXJE CONNECTORS --

J2/3 SIGNALS PIN NO.

RS-232 Standard
DB-255 (Female)

RS-232-C SIGNAL
------~~-~- ~.------------------------~

NC
+Rx20MA

RS-232 RXD
RS-232 CLK OUT

RS-232 TxD

14 SBA-Secondary Transmitted
Data

2 BA-Transmitted Data
15 DB-Transmission Signal

Element Timing
3 BB-Received Data

+Tx20MA 16 SBB-Secondary Received Data
RS-232 CTS
RS-232 CLK IN

RS-232 RTS
-Rx20MA
RS-232 DTR
NC
Signal Ground
*RS-232 DSR.
ON

NC
-Tx20MA
NC

4 CA-Request to Send
17 DO-Received Signal

Element Timing
5 CB-Clear to Send

18 Unassigned
6 CC-Data Set Ready

7 AB-Signal Ground
20 CD-Data Terminal Ready
8 CF-Received Line Signal

Detector

11 Unassigned

-RDCTL 13 SCB-Secondary Clear To Send
+RDCTL 25 Unassigned
NC

--
1) Pins mar'ked wi th an astrisk are for current-loop

operation only. When the 110 port is configured for
RS-232-C, they are not connected. Also, these pins
are not connected on edgE~-connector J2.

2) Pin 14 can be used as th~~ RS-232-C "DB Transmission
Signal Element Timing" depending on the jumper
configuration.

3) This configuration may be implemented with mass
termi,natl.on connectors and flat ribbon cable.

Table 5-2
SERIAL 1/0 CABLE CONNECTION FOR

DATA COMMUNICATIONS EQUIPMENT (DTE)

100-0123-001

5-3

M'Jo!!i": ._ • .:.:_.:.....<-":.~~ •. ~IDJIIII:,,~ ... ,,c- '

COMPONENTS
~. --

COMPONENT RS-232-C CURRENT LOOP Tn..
"'~6!';:::!!"~'_~~

U9A/B 75189 * 75189
U10A/B 75188 * 74LSOO

U11 * 74LS04 * U12 * 4N33 *
U13 * 4N33 * U14 * 4N33 *

75188 POWER JUMPERS

PINS RS-232-C CURRENT LOOP TTL

43,44,45 43-44 NIA 44-45
45,46,47 46-47 N/A 45-46

NOTE: 1. Each serial 1/0 port has a set of pins
(A and B).

2. For detail of other jumpers, refer to
either specific paragraph or Appendix
B of this manual.

Table 5-3
SERIAL 1/0 PORT CONFIGURATION

Each counter has a set of three signal lines (See Table 5-3) -- CLK
INPUT (clock), GATE INPUT and OUTPUT. CLK INPUT sets up the counting
rate (2 MHz maximum); and GATE INPUT enables the counting action, which
generates the resultant OUTPUT signal. The use of GATE INPUT depends
upon the mode (0 thru 5) selected by software.

COUNTER FUNCTION SIGNAL

0
0
0
1
1
1
2
2
2

Floppy Disk Clock OUT 0
Input GATE 0
Clock CLK 0

Port 112 Clock OUT 1
Input GATE 1
Clock CLK 1

Port 111 Clock OUT 2
Input GATE 2
Clock CLK 2

Table 5-4
PROGRAMMABLE TIMER SIGNALS

100-0123-001

5-4

5.2.2. 1 BAUD Rate Configulrat~ion

Counter 2 of the 8t~53 (U17) supplies the transmit and receive clock for
each 8251 USART of the MSC 8009. Normally, a 1 MHz clock (jumper 48 to
49) is used as the "I/O CLK". ~or 2 MHz operation, jumper 48 to 49 is
removed; and a jumper is inserted between 50 and 51. The MSC 8009 is
capable of 9600-baucl asynchronous operation.

NOTE: All confj.gurations (EIA, TTL and current loop)
requir~e either jumper 48 to 49 or 50 to 51, but not
both for the I/O clock.

5.2.3 Clock Configurations

The following table lists available clocks and required jumpers.

JUMPEHS

42A to L~OA *
42A to L~ 1A
39A to LWA
9'7A to 98A
98A to 99A*
42B to L~ 1 B
39B to L~08
9'7B to 988
98B to 99B

CLOCK

Programmable Timer (8253)
RS-232 TXCLK OUT (Port #1)
RS-232 RXCLK IN (Port #1)
DSR/=TXC (Port #1)
TXC=RXC (Port #1)
TXCLK OUT (Port #2)
RXCLK IN (Port #2)
DSR/=TXC (Port #2)
TXC=RXC (Port #2)

*:standard MSC 8009 Configuration

To use the ProgrcltTmabIe Timer as the clock, insert jumper 40 (A, 8
depending on Port) to 42 for USART operations, and jumper 41 to 42 makes
it available for ~external applications. If the USART operation requires
an external clock, tnsert jumper 39 to 40. Jumper 98 to 99 permits the
same clock to be used for both transmitting and receiving functions.
Jumper 97 to 98 allows RS-232-C DSR for transmit clock (TXC).

100-0123-001

5-5

5.2.3 EIA RS-232-C Configuration

Both ports can be set up for EIA RS-232-C operation. In this
configuration, all signals fulfill the EIA specifications, including
clock signals. However, care must be taken when installing the jumpers
that involve power (+5Vand +12V). To configure the MSC 8009 for the
RS-232-C convention, it requires the installation of a 75189 (U9A or B
depending on the port) and a 75188 (U10A or B depending on the port) in
addition to the following jumpers:

JUMPERS CLOCK

40A to 42A Port 1 Internal Clock
40B to 42B Port 2 Internal Clock
43A to 44A -12V for U10A
43B to 44B -12V for U10B
46A to 47A +12V for U10A
46B to 47B +12V for U10B
q6A to 97A Port 1 Data Set Ready (DSR/)
968 to 97B Port 2 Data Set Ready (DSR/)
98A to 99A TXC=RXC (Port 1)
98B to 99B TXC=RXC (Port 2)

5.2.4 TTL Configuration

Replacing the 75188 devices with 75LSOO lets the MSC 8009 accept TTL
compatible signals. Care must be taken when inserting jumpers that are
associated with power. If improperly installed, power application could
inflict damage to the drivers. The TTL configuration requires the
following jumpers:

JUMPERS

40A to 42A
40B to 42B
44A to 45A
44B to 45B
45A to 46A
45B to 46B
96A to 97A
96B to 97B
98A to 99A
98B to 99B

CLOCK

Port 1 Internal Clock
Port 2 Internal Clock
+5V input to U10A
+5V input to U10B
+5V power for U10A
+5V power for U10B
Port 1 Data Set Ready
Port 2 Data Set Ready
TXC=RXC (Port 1)
TXC=RXC (Port 2)

(DSR/)
(DSR/)

100-0123-001

5-6

5.2.5 Current Loop Operation

Only Port 1 has Current Loop capabilities. When configuring Port 1 for
current loop oper.atjLon, correct signal polarity must be observed. This
configuration requjLres three 4N33 Darlington Optical Isolators in U12
thru U14, and a 74LS04 Inverter in U11 as well as jumper 98A to 99A
(TXC=RXC) •

NOTE: Only the six signals applied to the opto-isolators
are available on one connector (J3). The internal
BAUD rate clock is not available and external BAUD
rate to the 8251 is also not available.

Maximum open-(~ircui t voltage for the 4N33 is 30V DC with less than 40 mA
closed-circui t cm"rent. The external device must supply the current
source for oper,atlng in current loop mode. An isolated device should
not be connected to ground on the computer board.

5.2.6 Interrupt Configuration

Pins 3 (A,B) and 4 (A,B) make the inverse of USART-generated signals
TXRDY and RXRDY available for an interrupt operation. An open-collector
driver lets the user jumper these signals into the MULTIBUS interrupt
system using pins 7,~ thru 87. The odd-number pins assert these signals
onto the MULTIBU:S; and the even-numbers go to the Z80 processor. Since
the drivers are open-collector, a number of interrupts can be handled on
the same level.

100-0123-001

5-1

Flow Diagram:

RESET
(40H)

MODE
INSTRUCTION

COMHAND
INSTRUCTION

DATA
TRANSFER

sync

no

SYNC
CHAR

SYNC
CHAR

Source Program:

LDI
OUT
XTHL
XTHL
OUT
XTHL
XTHL
LDI
OUT
XTHL
XTHL

A,30H
OEDH

OEDH

A,40H
OEDH

;80H IN ACCUMULATOR
;SEND OUT 1st 80H
;TIME DELAY

;SEND OUT 2nd 80H
;TIME DELAY

;RESET COMMAND
;RESET 8251
;TIME DELAY

Select Mode Now (Assume Standard
Asynchronous)

LDI
OUT
XTHL
XTHL

A,OCDH
OEDH

;SELECT MODE
;SEND OUT MODE INSTRUCTION
;TIME DELAY

If synchronous mode is selected,
insert SYNC character definition
at this time

LDI
OUT
XTHL
XTHL

A ,037H
OEDH

;COMMAND INSTRUCTION
;SEND OUT COMMAND INSTRUCTION
;TIME DELAY

MSC'3009 is ready to send or
receive data

Figure 5-1
CONTROL WORD SEQUENCE

100-0123-001

5-8

5.3 PROGRAMMING THE SERIAL 1/0 INTERFACE

The ensuing paragraphs give the recommended procedure for programming
the serial 1/0 interface of the ~1SC 8009. The sequence of operation is
illustrated in Figure 5-1 -- assuming that the hardware assuming that
the hardware configuration is assembled as described in the preceding
paragraphs.

5.3.1 Initialization

On power up, the MISC 8009 system-r'eset signal INIT forces the 8251 USART
into an "idle" condition. Loading the Control Word register with three
consecutive zero instructions, or two consecutive 80 H, followed by one
40 H command instructions via software will also reset USART (Refer to
Figure 5-1) . Whe'never setting or changing modes, the software approach
is recommended. Succeeding the initialization sequence, the next
control-word entry must be a Mode instruction. The following table
lists the standard port addresses for selecting the USART functions.

PORT ADDRESS

1 ED,EF
1 EC,EE
2 CF
2 CE

5.3.2 Clock Set

READ

Status
Data In
Status

Data In

WRITE

Control or Mode
Data Out

Control or Mode
Data Out

USART

U19A
U19A
U198
U198

The BAUD rate should be set before the 8251 control word. Paragraphs
5.2.1.1 and 5.5.3 provide more detail in BAUD rate generation.

5.3.3 Control Word Programming

A set of control ~rords, which are sent to the USART, define the mode and
connnunication format. These formats are:

1 MODE INSTRUCTION
2 COMMAND INSTRUCTION

The Mode Instruction is loaded first. If a synchronous mode of
operation is to be~ executed, one or two SYNC-character control word (s)
must follow the Mode Instructl.on (See Figure 5-1). The last control
word is a Command Instruction.

100-0123-001

5-9

, scs I ESol [P I PUc Il2 , Ll , 'J "J
I

II

..
..

(a) SYNCHRONOUS MODE

CHARACTER LENGTH

B 1 e 1

~ ~ 1 1

5 6 7 8
BITS BITS BITS BITS

PARITY ENABLE P · EIiABLE)
e • DISABLE)

EVEN PARITY GENERATION/C HECK
1 • [~E N
13 • 000

EXTERNAL SYNC DETECT
1 • SYNO£T IS AN INPUT
~ • SYNOET IS AN OUTPUT

SINGLE CHARACTER SYNC
1 • SINGLE SYNC CHARACTER
e • OOueLE SYNC CHARACTER

I 52 1 51 I EP I PEII I LZ I L I I BZ I 81 I
8AUD RATE rACTOR

.i3 1 (}

Z ~ 1

SYNC (ll) (l6X) fo()O[

C"~RACT[~ lEN~TH

g 1 8

D a 1

!I 6 7
BITS Bin BITS

PAAllY ENA.BLE

1

1

(64X)

1

1

6
BITS

1 • [NABLE e • DISABLE

E~EN PARITy GENERATI~N/CHECK
1 • EVEN e • 000

NuMBER or STOP BITS

lJ 1 .e 1

D e 1 1

(b) ASYNCHRONOUS MODE lH~AlIO 1 11 2
BIT Bin BITS

Figure 5-2
MODE INSTRUCTION CONTROL WORD FORMAT

100-0123-001

5-10

S.3.3.1 Mode Instruction

The Mode Instruct.ion, shown in Figure 5-2, defines the operational
characteristics of the serial 1/0 interface. These characteristics
include synchronous or asynchronous operation, BAUD rate factor,
character length, parity, number of stop-bits and number of SYNC
characters. A Mode Instruction must follow a reset operation. Once the
Mode Instruction has been received, SYNC characters or Command
Instructions must t.hen be inserted, depending on the contents of the
Mode Instruction.

5.3.3.2 Command Instruction

Once the Mode Instruction has defined the operational characteristics
and SYNC char acter (s) have been loaded (i f in SYNC mode), the 8251 USART
is now ready to receive the Command Instruction and begin data
communications.. A Command Instruction (See Figure 5-3) controls the
specific operation that the Mode Instruction designates. These
operations are::

1) ENABLE TRANSMIT (TxEN)
2) ENABLE RECEIVE (RxEN)
3) ERROR RESET (ER)
4) MODEM CONTROL

If the preceeding Mode Instruction is in a synchronous format, the
Command Instruction will be interpreted as a SYNC character. Following
the SYNC charactE~r (s) or Asynchronous Mode Instruction, subsequent
control words will then be considered as an update to the Command
Instruction. A Command Instruction may occur any time prior to reset
during the data block.. To guarantee that the cOl'Tl'nand is acceptable, it
is recol1mendec1 that two 80H commands be sent. Bit 6 (40H) is then set
in the Command Instruction to modify the Mode Instruction. This bit
initiates an internal reset that conditions the USART for receiving a
new Mode Instruction. Figure 5-1 shows this reset procedure and Control
Word sequence. With 1/0 clock at 1 MHz and CPU running at 4 HHz, it is
possible for the CPU to return and access the 8251 before the bus
completes the prE~vious operation. Therefore, a short delay is
reconmended between each command (pair of XTHL).

100-0123-001

5-11

D7

*Normally "1"

D6 D5 D4 D3 D2 D1 DO

TRANSMIT ENABLE
* 1 = ENABLE
o = DISABLE

DATA TERMINAL READY
---...... *"HIGH" FORCES DTRI

OUTPUT TO ZERO

RECEIVE ENABLE
*1 = ENABLE
o = DISABLE

SEND BREAK CHARACTER
'---------1 ... 1 = FORCES TxD "LOW"

o = NORMAL OPERATION

ERROR RESET
'-------.--; ... *1 = RESET ALL ERROR

FLAGS PE,OE,FE

REQUEST TO SEND
'-----------..*"HIGH" FORCES RTSI

OUTPUT TO ZERO

Figure 5-3

INTERNAL RESET
"HIGH" RETURNS 8251 TO MODE

INSTRUCTION FORMAT

ENTER HUNT MODE
*1 = ENABLE SEARCH FOR SYNC

CHARACTERS. NEVER "1" IN
ASYNCHRONOUS MODE

COMMAND INSTRUCTION CONTROL WORD FORMAT

100-0123-001

~_1?

OVERRUN ERROR -­
FRAMING ERROR -~
(ASYNC ONLY)

SYNC DETEC~ 7
DATA SET//

01 D6 05 ot~

r--- PARITY ERROR
..--- TRANSMI TTER EMPTY

03

~< I FE OE_-_I_p_E __ T i E_I_RX.J~DY I TxRDY* I

5.3.4 Status Word Format

SAME DEFINITIONS
AS 1/0 PINS

Figure ~5-4
STATUS WORD FORMAT

*NOT TOTALLY EQUIVALENT
TO TxRDY OUTPUT PIN.

TxRDY STATUS BIT =
BUFFER EMPTY
TxRDY PIN 18 = (BUFFER
EMPTY) (CTS) (TxEN)

Frequently, the Z80 must be aware of any errors or other conditions that
require a CPU r'esponse. The 8251 USART allows the CPU to read the
device status at anytime. Since many of the Status register bits (See
Figure 5-4) have the same meanings as the external output pins, the
USART can be used in both polling and interrupt environments. To
examine the Status register, the CPU issues a read command and places a
"high" on the CID lnput.

NOTE: Status update can have a maximum delay of 16 clock
periods.. Therefore, a software delay should be
inserted before attempting to read the status
register after any operation that affects it.

5.3.4.1 Parity Error

A parity error sets bit 3 (PE Flag), which does not inhibit USART
operation. The setting of bit 4 or the ER bit of a subsequent Command
Instruction clears the PE Flag.

100-0123-001

5-13

5.3.4.2 Overrun Error

The OE Flag (bit 4) denotes that the processor failed to read a data
character prior to availability of the succeeding bit. Although the
setting of the OE Flag does not inhibit USART operation, the previously
received character is overwritten and lost. The ER bit (bit 4) of a
subsequent Command Instruction resets this bit.

5.3.4~3 Framing Error

If a valid STOP bit is not detected at the end of a character, the FE
Flag or bit 5 is set. This action does not inhibit USART functions.
The ER bit (bit 4) of a subsequent Command Instruction resets the FE
Flag.

NOTE: Asynchronous mode only.

5.4 DATA COMMUNICATION

The 8251 USART provides the MSC 8009 with a serial 1/0 interface for
either synchronous or asynchronous data communications.

5.4.1 Asynchronous Transmission

Before a character is placed onto the 1/0 bus, the 8251 USART sets TxRDY
to signal the CPU that the USART is ready to accept information for
transmission. This ready signal (TxRDY) is automatically reset when the
Z80 sends a character to the USART. Also, the USART adds the START bit
and the requested number of STOP bits (bits 6 and 7 of the Mode
Instruction) to each character. If there is a request for parity
consideration (bits 4 and 5 of the Mode Instruction), these bits are
then inserted before the STOP bits. The USART asserts the character in
a serial format onto the TxD line at the programmed BAUD rate. WHen the
CPU stops sending data to the USART, TxD output will remain "high"
unless a BREAK (continuous "low") has been programmed.

5.4.2 Asynchronous Receive

A high-to-low transition on the RxD input line triggers a START bit
operation, and the 8251 automatically confirms the validity of the START
bit. If the bit is valid, the bit counter begins to count the received
bits. This counter defines bit locations so that error conditions can
be flagged in the Status register. Receipt of the STOP bit transfers
the serial data into a parallel 1/0 register and sets the RxRDY signal.
Now the CPU can read the data.

100-0123-001

5-14

5.4.3 Synchronous Transmission

As in the asynchronous transmission, the TxD output remains "high"
(marking) until the CPU sends the first character -- usually a SYNC
character. After a Command Instruction sets TxEN and CTS/ goes "low",
the first character' is transmitted serially. The rising edge of TxC
(clock) shifts the data out on TxD at the programmed rate.

Once transmission has begun, the serial-data must continue at TxC
(clock) rate to maintain synchronization. If the 8251 does not receive
data before the Tr ansmi tter Buffer' becomes empty, the SYNC character (s)
that were loaded after the Mode Instruction (Refer to Figure 5-1) are
automatically ins€'rted into the data stream. These inserted Sync
characters maintain synchronization until the CPU sends new data for
transmission. If SYNC character(s) must be transmitted, the USART
asserts TxEMPTY at the center of the list data bit (See Figure 5-5) to
notify the CPU that the Transmission Buffer is empty and SYNC characters
are being transmitted. The next character from the CPU automatically
resets TxEMPTY.

5.4.4 Synchronous Receive

For synchronous reception, a Sync mode must be programmed, and the ENTER
HUNT bit (bit 7) of the Command Instruction set. These conditions cause
the receiver circuit of the 8251 to enter a hunt mode looking for
character synchronization.

Incoming data on the RxD input is sampled on the leading edge of RxCI
and the resultant stored in the Receiver Buffer. The Receiver Buffer
content is then compared with the first SYNC character after each bit
has been loaded until a match is found. If two SYNC characters are
programmed, the next eharacter receivej is also compared. When the SYNC
character(s) that have been programmed are detected, the 8251 exits the
HUNT mode and goes lnto character synchronization. In event that
synchronization is lost, the CPU may command the receiver to enter the
HUNT t1X)de with a Command Instruction that has bit 7 set (ENTER HUiJT
bit).

100-0123-001

5-15

TxD =x DATA X DATA X SYNC X SYNC

DATA flRITE n
TxEMPTY m ffl

CENTER OF LAST BIT
FOR DOUBLE SYNC CHARACTER OPERATION

TxD =x DATA X SYNC 1 X SYNC 2 X DATA

DATA WRITE n n
TxEMPTY m

CENTER OF LAST BIT

TxD =x DATA X SYNC 1 X SYNC 2 X DATA

DATA WRITE n n
TxEMPTY Jll ftl

CENTER OF LAST BIT

Figure 5-5
SYNC CHARACTER TRANSMISSION

X DATA

n
(BISYNC)

X DATA

n

X DATA

n

X DATA

n

X

X

100-0123-001

5-16

D7 I. D6 D5 D4

SELECT READY/LOAD
COUNTER CONTROL ----------_,"----L- _

00 COUNTER 0
01 COUNTER 1
10 COUNTER ~~
11 INVALID

00 LATCH CURRENT
COUNTER VALUE

10 MSB WORD ONLY
01 LSB WORD ONLY
11 LSB THEN MSB

Figure 5-6

D3 D2

MODE
SELECT

1
000 MODE 0
001 MODE 1
X10 MODE 2
X11 MODE 3
100 MODE 4
101 MODE 5

8253 INTERVAL TIMER CONTROL WORD FORMAT

~.5 TIMER INTERFACE

D1 DO

BCD
SELECT

o BINARY
(16 BITS)
1 BCD
(4 DECADES)

The 8253 Programmable Timer does not require a hardware or software
reset. To program the Timer, it requires a single Control Word that is
followed by one or two register counter words. The Control Word (See
Figure 5-6) specifies the counter, the nu.l1ber of words that are to be
read or loaded as well as in what order, operational mode of the
selected counter and counting oper'ation -- BCD or binary.

The status of this device is not available for examination. The
standard port addresses are shown in Table 5-5. Each 16-bit counter
register can be refel"enced as two sequential 8-bi t word

READ WRITE ADDRESS

Read () Load 0 DC
Read 'I Load 1 DD
Read 2 Load 2 DE
Invalid Control DF

Table 5-5
8253 TIMER PORT ADDRESSES

100-0123-001

5-17

5.5.1 Mode Definitions

The processor loads the appropriate Control Word (See Figure 5-6) into
the Control Word register (for each counter separately) to establish the
mode of operation. The three counters are identical The modes of
operation are:

MODE 0 - Output (Interrupt) on the count 0
MODE 1 - Programmable/Retriggerable One Shot
MODE 2 - Pulse Rate Generator
MODE 3 - Square Wave Generator (BAUD rate)
MODE 4 - Software-Triggered Strobe
MODE 5 - Hardware-Triggered Strobe

For the ti~ing relationship of each mode, refer to Figures 5-7 thru
5-12.

NOTE: 1) All references to "high" and "low" signals in the
following paragraphs refer to the level at the chip.
Refer to Drawing 305-0261-000, Sheet 9 for information
regarding inverting buffers.

2) The WR pulse is the write strobe for a command or data
byte to be latched into the timer. When two bytes are
to be transferred the operation is finished after the
second WR pulse.

100-0123-001

5-18

CLOCK JlJ1JlJlJlJ
5 4 3 2 0

WHn/ L~~ L. n ..1

OUTPUT
(Interrupt) --

WRm/ L:m=~

GATEn l
OUTPUT -l

4 3 4 3 2 1 0

Figure 5-7
MODE 0 TIMING DIAGRAM

5.5. , . 1 MODE 0 - Interrupt On Terminal Count

The initial MODE SET operation forces the output "low". When a counter
is loaded with a count value, it begins counting. The output remains
"low" until the terminal count sets it "high". It remains in the "high"
state until the trailing edge of the second WR pulse loads in new count
data. If the data is loaded during the counting process, the first WR
stops the count. Counting starts with the falling clock edge after the
second WR triggering the new count data. If GATE is asserted while
counting. the count is terminated for the duration of GATE. The
falling edge of CLK following the removal of GATE Restarts counting from
the full count valuE~. See Figure 5-7 for the timing of MODE o.

100-0123-001

5-19

CLOCK

WHn/ l (n=5)

GATEn
(Trigger)

5 4 3 2 1 0

OUTPUT l
GATE
(Trigger)

5 4 5 4 3 2 1 0

OUTPUT

Figure 5-8
MODE 1 TIMING DIAGRAM

5.5.1.2 MODE 1 - Programmable One Shot

The trailing edge of CLOCK following the rising edge of GATE sets the
output "low" (See Figure 5-8). The output is set "high" at the terminal
count. The output pulse is not affected if new data is loaded while the
one-shot is running. The assertion of a trigger pulse while the
one-shot is running, resets and retriggers the one-shot The output will
remain "low" for the full count value after the leading edge of TRIGGER.

100-0123-001

5-20

· CLOCK

WRn

OUTPUTn
(n=4)

GATE/
(Reset)

OUTPUT
(n=3)

JlJ1
L~::4)

4 3
,..
t:. 1

u
Figure 5-9

I (n=3) I
0(4) 3 2 1 0(3)

U U

3 2 1 0(3)2 1 0(3) 2

u u
MODE 2 TIMING DIAGRAM

5 .5 • 1 .3 MODE 2 - Rate! Gener ator

The Rate Generator is a variable modulus counter. The output goes "low"
for one, full clock period as shown in Figure 5-9. The count data sets
the time between output pulses. Changes in count data are reflected in
the output as soon ;as the new data has been loaded into the count
registers. The output remains "high" for the duration of a "low" GATE
input. Normal operation resumes on the falling edge of CLOCK following
the rising edge of GATE.

100-0123-001

5-21

CLOCK

0(4) 3 2 1 0(4) 3 2 1 0(4) 3 2 1 0(4)

OUTPUTn .-J (n=4) I L
O(5) 4 3 2 1 0(5) 4 3 2 1 O(5) 4 3

OUTPunn .-J (n=5)

GATE
(Reset)

0(4) 4 3 2 1 0(4) 3 2 1 0(4)

OUTPUTn J (n=4)

Figure 5-10
MODE 3 TIMING DIAGRAM

5.5.1.4 MODE 3 - Square Wave Generator

MODE 3 resembles MODE 2 except the output is "high" for half of the
count and "low" for the other half (for even values of data). For odd
values of count data, the output is "high" one clock cycle longer than
when it is "low". In other words, the "high" period is for N+1 or
(N+1)/2 clock cycles and the "low" period is for N-1 or (N-1)/2 clock
periqds, when N is the decimal value of the count data (Refer to Figure
5-10). Changes in count data are reflected in the output as soon as the
new data has been loaded into the count registers. The output remains
"high" during the loading of new count data. Counting resumes with that
data after the second WR.

The output will be held in the "high" state while GATE (RESET) is "low".
Counting starts from the full count value after GATE rises.

100-0123-001

5-22

CLOCK Jill
WRn/ ~n=4)

--
OUTPUTn

WRmI 1 (n=~
GATEm
OUTPUTIn

4 3 2 1 0

LJ
43210

--------------------·----------------~L

Figure 5-11
MODE 4 TIMING DIAGRAM

5.5.1.5 MODE 4 - Software Triggered Strobe

----I

The output goes "Ihigh" when MODE 4 is set, and counting begins after the
second byte of data has been loaded. When the terminal count is
reached, the output goes "low" for one clock period (See Figure 5-11).
Changes in count data are reflected in the output as soon as the new
data has been loaded into the count registers. During the loading of
new data, the output is held "high" and counting is inhibited. The
output is held "high" for the duration of GATE. The counters are reset
and counting begins from the full data value after GATE is removed.

100-0123-001

5-23

CLOCK

GATEn
(Trigger)

4 3 2 0

OUTPUTn (n=4) U
GATEn
(Tr igger)

4 3 4 3 2 0

OUTPUTn U
Figure 5-12

MODE 5 TIMING DIAGRAM

5.5.1.6 MODE 5 - Hardware Trigger Strobe

Loading MODE 5 sets the output "high". Counting begins when count data
is loaded and GATE goes "high". After terminal count is reached, the
output goes "low" for one clock period. Subsequent trigger pulses
restart the counting sequence with the output pulsing "low" on terminal
count following the last leading edge of the trigger input. See Figure
5-12 for the timing diagram of MODE 5 operation.

100-0123-001

5-24

5.5.2 On-the-Fly Readout

Bits RL1 and HLO of the Control Word (Refer to Figure 5-6) can be
employed to contlrol a status read of any selected counter without
interrupting th~e counting sequence. If RL 1 and RLO are anything other
than "00", the l~ea~~t-significant bit (LSB) or the most significant bit
MSB or both can be read on-the-fly. However, the validity of the
reading cannot be guaranteed unless the counter operation is inhibited
via the GATE or eLK input prior to the attempted read operation. If RL1
and RLO are "'00"', a counter can be reliably read on-the-fly because the
current value is retained in an internal storage register before being
read out.

5.5.3 BAUD Rate Gener'ator'

1

Counter 2 of the 8253 Programmable Timer generates both the transmit and
receive clocks (TxC and RxC respectively) for the USART. Therefore,
Counter 2 operat~~s in MODE 3 (Square-Wave Generator), and the counter is
loaded with the (!ount down values listed in Table 5-7. Figure 5-13
illustrates the flow diagram with source program for setting up the BAUD
rate generator.

Either Monolith:Lc System's MSC 8301 Uniform Monitor (2K bytes stand
alone monitor) Ol~ MSC 8303 MSOS (6K byte disk monitor) includes a code
that automatically sets the required BAUD rate for the user's terminal.
Since the source code is available with these software packages, they
provide useful exampes for the system designer.

BAUD RATE COUNTER REGISTER 2

MHz Clock ~~ MHz Clock Upper Byte Lower Byte
(H) (L)

4800 9600 00* OD*
2400 4800 00 1A
1200 2400 00 34
600 1200 00 68
300 600 00 DO
150 ~OO 01 AO
110 220 02 ~8
75 150 03 40

110 04 10

-Hex Notation

Table 5-6
R2:d TIMER REGISTER BAUD RATE VALUES

100-0123-001

5-25

Flow Diagram:

Sour ce Pr ogr am:

MVI A,OB6H
OUT ODFH
MVI A, xx
OUT ODEH
MVI A, xx
OUT ODEH

LOAD CONTROL
WORD(B6)

LOAD LOWER 8 BITS
(L)

LOAD HIGH 8 BITS
(H)

;LOAD CONTROL WORD B6H
;XFR TO COUNTER 2
;LOAD LOW 8-BITS OF BAUD RATE
;XFR TO COUNTER 2
;LOAD HIGH 3-BITS OF BAUD RATE
;XFR TO COUNTER 2

Figure 5-13
BAUD RATE GENERATOR ROUTINE

10Q-0123-001

5-26

6.1 SCOPE

SECTION 6

FLOPPY-DISK FORMATTER/CONTROLLER

This section provides the information the user needs to understand and
program the onboard floppy-disk controller of the MSC 8009.

6.2 DESCRIPTION

One chip gives the MSC 8009 a means for communicating with up to eight
5- or 8- inch floppy·-disk drives. In addition, the Z80 block I/O
instructions allow the user to quickly transfer data to and from the
drive via the formatter/controller. Another instruction will not be
accepted until the exchange of data is complete. To set up the MSC 8009
for floppy-disk operation, see Appendix C of this manual for the
required jumper conf:Lguration.

6.3 CONTROL REGISTERS

There are six registE~r s that provide status, temporary storage and
control -- five internal to the formatter/controller chip and one
external. These registers and addresses are:

ADDRESS REGISTER OPERATION
(HEX) Read Write

CO COMMAND X
CO STATUS X
C1 TRACK X X
C2 SECTOR X X
C3 DATA X X
C4 UNIT X X
C7 DATA (delay) X X

A read or write opE~ration to I/O addresses OCOH thru OC4H should not be
attempted during execution of a command. The only exception is the
Status register (Refer to paragraph 6.3.1).

100-0123-001

6-1

BIT

1

6

5

4

3

2

1

0

NAME DESCRIPTION

COMP A "1" enables write precompen-
sation.

DRIVE SELECT A "1" denotes a 5-inch drive;
and a " 0" specifies an 8-inch
drive.

RECORDING DENSITY A " 0" selects single-density
mode (FM); and a "1" signifies
double-density (MFM).

HEAD SELECT This line can be used to select
the desired head.

DC MOTOR CONTROL This bit can be used either with
drives having separate DC motor
control capability or as a unit
select bit (UNIT 3).

UNIT 2 A "1" selects Drive 2.

UNIT 1 A "1" selects Drive 1 .

UNIT 0 A "1" selects Drive o.

Table 6-1
DRIVE DESIGNATION

100-0123-001

6-2

Flow Diagram:

GET ~

Yes

No

SPECIFY D~

COMMAND TO DEVICE I

____ RE_T_U_R~

Source Program:

1
2
3
4
5 0000 CD OF 00
6 0003 3A O~I 00
7 0006 D3 CL~
8 0008 2A 10 00
9 OOOB 7E

10 OOOC D3 CO
11 OOOE cg
12 OOOF
13 0010

;GET A COMMAND
;ENTRY: NOTHING NEEDED
;EXIT: COMMAND & UNIT READY . ,
GET: CALL

LDA
OUT
LHLD
MOV
OUT
RET

STAT: DS
COMM: DS

Figure 6-1
COMMAND ROUTINE

STAT
01H
OC4H
COMM
A,M
OCOH

1
1

;DEVICE NOT BUSY
;A=UNIT DESIGNATION
;SET UP DRIVE
;COMMAND LOC.
;GET COMMAND
;TO DEVICE:
; DONE
jSTATUS ROUTINE
; COMMAND

100-0123-001

6-3

6.3.1 Command Register

The execution of a command requires the loading of two 8-bit registers
-- the UNIT register and the COMMAND register. One approach to calling
a command is shown in Figure 6-1.

6.3.1.1 Unit Register

Drive requirements such as unit designation, head selection, recording
density and write precompensation are entered into a register that is
external to the formatter/controller chip. These drive specifications
are sent on I/O address OC4H. If a sequence of instructions are to be
performed on one drive, the selected drive does not have to be set up
for each instruction once it has been designated. For a description of
each bit in this register, see Table 6-1.

6.3.1.2 Command Register

The instruction that is to be executed is held in a register onboard the
forroatter/controller chip. The commands are sent on I/O address OCHO;
and commands will be ignored if the chip is busy.

6.3.2 Status Register

The status of a command just executed will be held in an 8-bit register
called the STATUS register. Access (read only) to this register can be
attempted any time.

Since Bit 0 or the Busy bit is a logic "1" during the execution of a
command, this bit can be monitored to determine if a command is in
process; and the other bits hold invalid information. Bits 1 thru 7
should be read only when the command is complete. At this time, the
meaning of these bits will be a function of the previously executed
command.

NOTE: If two sequential read operations of the Status register are
attempted following the execution of a command, the value of
the second bits read will be a valid Type 1 status (Refer to
Table 6-2).

Figure 6-2 gives a sample routine that reads the Status register. For
the definition of each bit, see Tables 6-2 (Head Position Status) arrj
6-3 (Read/Write Status).

100-0123-001

6-4

Flow Diagram:

START~

READ STATU~

~ __ D_=S_T A_T~

_______ RE_T_U_R~

Source Program::

1
2
3
4
5 0000 DB CO
6 0002 ~)7
7 0003 f:6 80
8 0005 CA 00 00
9 0008 C9

jREAD STATUS REGISTER
;ENTRY: NOTHING NEEDED
;D HAS FINAL STATUS
,
STATUS: IN

MOV
ANI
JZ
RET

Figure 6-2
STATUS REGISTER READ

OCOH
D,A
80H
STATUS

;READ STAT
;D=STATUS
; BUSY?

jDONE

Yes

No

100-0123-001

6-5

BIT

7

6

5

4

3

2

1

0

NAME DESCRIPTION

NOT READY The drive is not ready if a "1".

WRITE PROTECT If a "1", the Write Protect is
activated.

HEAD LOADED Ifa"1", the head is loaded and
engaged.

SEEK ERROR If a "1", the selected track was
not verified. Reset when updated.

CRC ERROR If a "1", the CRe byte was in-
valid.

TRACK 00 If a "1", the head is positioned
at Track 00.

INDEX The index mark from the drive is
set if a "1".

BUSY A command is in progress if
a "1".

Table 6-2
HEAD POSITION STATUS

100-0123-001

6-6

BIT

7

6

5

4

3

2

1

0

I ~AM E
-
NOT 1 ,DY ~EA

WRITI • F ~ROTECT

-
HECOI

RECOI
FaUN!

~D

~D
) (

TYPE

NOT
RNF)

eRC I' 'OR :RR

LOST DA TA

DATA RE :QUEST

BUSY

-

-

--

DESCRIPTION

A logic "1", indicates the drive
is not ready.

For a write operation, a "1" in-
dicates a Write protect condi-
tion. It will be "0" for a read
operation. Reset when updated.

For read, it indicates a record
type code from the DATA FIELD
address mark. For write, it will
always be "0" • Reset when up-
dated.

One indicates the desired track,
sector or side was not found.
Reset when updated.

If Bit 4 is a "1" an error was
detected. Reset when updated.

A "1" indicates the Z80 did not
respond to the Data Request sig-
nal in one-byte time. Reset to
zero when updated.

If a "1", the Data Register is
either full during a read or
empty during a write. Generally
this bit will be a "1" if Bit 2
is a "1". A "0" denotes a suc-
cessful command. Reset when up-
dated.

Ifa"1", a command is in prog-
ress.

Table 6-3
READ/WRITE STATUS

100-0123-001

6-7

6.3.3 Track Register

The 8-bit TRACK register holds the track number of the current
Read/Write corrrnand. The data transfer to and from this register is on
I/O address OC1H. If the update flag is 1t1", the register is either
incremented by one every time the head is stepped in toward Track 76; or
decremented by one when the head is stepped out toward Track 00.

When the Verify flag is a "1", the contents of the Track register will
be compared with the recorded track number during either a disk read or
write operation. No verification will be performed if the flag is "0".
Using this flag the user can quickly determine if the head is or is not
on the proper track.

6.3.4 Sector Register

The 8-bit SECTOR register holds the address of the desired sector
position. Register contents are compared with the recorded sector
number during either disk read or write operations. The data is either
loaded in or transferred from the Sector register via I/O address OC2H.

6.3.5 Data Register

The transfer of data to and from the formatter/controller chip takes
place on I/O addresses OC3H and OC7H. the register asociated with
adress OC3H holds the support data needed for the Seek comnand; and th
other address (OC7H) is used when transferring data to and from the
disk.

For a Seek operation, the number of the the desired. track must be
entered into the Data register prior to executing the command. Unless
there is a misstep or a similar fault, the track number is not normally
set into the Data register. If such a fault does occur, the user can
read the current track number from the Track register of I/O address
OC1H. The desired track then can be entered into the Data register on
I/O address OC3H; and the Read/Write head can be positioned to the
proper track via a Seek command. Essentially this procedure eliminates
the need of performing a "Restore". Figures 6-4 and 6-5 illustrate two
ways of performing a Seek operation.

For read and write operations, I/O address OC7H is used. In other
words, address OC7H is used where the request of data is under control
of the interface.

100-0123-001

6-8

6.4 COMMAND STRUCTURE

The commands that are acceptable by the formatter/controller chip are
summarized in Table 6-4. For prE~sentation purposes, the contnands will
be segregated into t.he following groups.

Type 1
Type 2
Type 3
Type 4

HE~ad Positioning
&~ctor Operation Group
Track Operation Group
Reset Interrupt

6.4.1 Head Positioning Commands (Type 1)

A "0" in Bit 1 of the command word identifies the commands that are used
to position the Read/Write head. These commands are:

Restore

Seek

Step

Step In

Step Out

Find Tr ack 00.

Find the designated track.

Generate one stepping pulse in the direction of
the previous stepping command.

One step in toward Track 16.

One step out toward Track 00.

With reference to Table 6-4, the following paragraphs discuss the use of
each bit as related to the head-positioning commands.

Bits 1 and 0 (Stepping Rate)

These bit.s provide the user with a choice of four stepping rates.
These selecti<on~~ are:

BIT 1 BIT 0

0 0
0 1
1 0
1 1

*The "10" bit pattern is

STEPPING RATE

3 ms
6 ms

10 ms*
15 ms

recommended for Shugart 800.

100-0123-001

6-9

BITS

COMMAND 7 6 5 4 3 2 1 0

Restore 0 0 0 0 h V r1 rO
Seek 0 0 0 1 h V r1 rO
Step 0 0 1 u h V r1 rO
Step In 0 1 0 u h V r1 rO
Step Out 0 1 1 u h V r1 rO
Read Sector 1 0 0 m S E C 0
Write Sector 1 0 1 m S E C aO
Read Address 1 1 0 0 0 E 0 0
Read Track 1 1 1 0 0 E 0 0
Write Track 1 1 1 1 0 E 0 0
Reset Interrupt 1 1 0 1 0 0 0 0

(a) Command Word Format

FLAG DESCRIPTION

rO,r1 Specifies stepping motor rate
aO Data Address Mark
V Verification of destination track
h Head load at beginning of command
u Update Flag
E Designate 15 ms delay
C Side Compare Flag
S Side Select Flag
m Single/multiple designation

*For Shugart 800 drive, set "r 1rO = 10" (10 ms).

(b) Bit Description

Table 6-4
FLOPPY-DISK COMMAND SUMMARY

100-0123-001

6-10

Bit 2 (Verify Flag)

If this bit is a "1" the track address will be read automatically
forverificat:Lon.

Bit 3 (Head Load)

Whenever this bit is a "1", the read/write head will be loaded at
the start of the connnand. For a seek operation, the actual time
that the head is loaded depends upon this bit, and the Verify Flag
(Bit 2). If this bit is a "1", the head is loaded; then moved to
the desired track. If this bit is a "0", the head moves to the
designated tr'ack; then is loaded whenever the Verify Flag is a "1".

Bit 4 (Update Flag)

When this bit is a "1" the track register is increment by one for
each step. The track register is not updated when the bit is "0".

Bit 5 thru 1 (Command)

These bits designate which command is to be performed.

6.4 .2 Sector Command s (Type ;2)

Two commands make up this group. They are:

Read Sector: The head is loaded upon receipt of READ SECTOR; and
the search for the proper recorded ID field is
initiated. When the correct field is found, the
recorded data from the data field is read and sent
to the Z80. If the Data Address Mark is not found
withjLn 30 bytes (single density) or 43 bytes
(double density), the Record-Not-Found bit (Refer
to Table 6-3) is set; and the operation is
terminated.

100-0123-001

6-11

Write Sector: After the head has been loaded and positioned at
the correct track and sector, the unit requests
data from the Z80. The formatter/controller counts
off either 11 bytes if single density or 22 bytes
if double density from the Cyclic Redundacy
Characters (CRC). !f the request for data has been
serviced, the write gate is activated. If the
request has not been serviced, the command is
terminated; and the Lost Data bit is set (Refer to
Table 6-3).

Either six bytes (if single density) or 12 bytes
(if double density) of zeros are written onto the
disk when write becomes active. At this time, the
Data Address Mark will be written if Bit 0 is a
tI 0" •

The data is written into the data field of the
sector; then another request is made for more
information from the Z80. If the request is not
serviced in time for continuous writting, the Lost
Data bit will be set; and a byte of zeros is
written onto the disk. However, the command is not
terminated. Following the last recorded data byte,
a two-byte CRC is computed internally and recorded
on the disk followed by one byte of "1's" in either
FM (single density) or MFM (double density) format.
The write gate is then deactivated.

Prior to loading either sector command, the sector number must be
entered into the Sector register -- sample routines are shown in Figures
6-6 and 6-7. The definition of each bit will be given in the following
discussion (Refer to Table 6-4).

Bit 0 (Data Address Mark)

If a "0", the Data Address Mark will be recorded. During
a Sector Read, the mark must be found within either 30
bytes (single density) or 43 bytes (double density). The
type of Data Address Mark encountered is recorded in Bit 5
of the Status register as shown below:

1 Deleted Data Mark
o Data Mark

100-0123-001

6-12

Bi t 1 (Side SE~lect, Compare)

This bit is used for double-sided disk operation only.
When it is a 1111'11, the least-significant bit of the Side
field is read and compared with Bit 3 (Side Compare Flag).

Bi t 2 (Head Load Delay)

If this bit 1.s a "1", there will be an automatic
15-millisecond delay in loading the Read/Write head,
allowing it to be fully engaged. Thus, when the head is
not loaded, this bit should be "0" prior to reading from
the disk ,) Otherwise, data can be read incorrectly.
However, in the case of consecutive reads, a "0" (no
delay) will speed up the access since the head will be
already loaded.

Bit 3 (Side Compare Flag)

This bit is for double-sided disk operation only. If Bit
1 is a "1", this bit will be compared with the side number
recorded in the ID FIELD. If a comparision is not made
within five :Lndex pulses, the conmand will be terminated;
and Bit 4 (Record-Not-Found) of the Status register will
be set.

Bit 4 (Multiple SE~ctors)

A "0" indicate's that a s:ingle sector is to be read or
written, ~/hilE~ a "1" denotes that multiple sectors are to
be read or written. Since the Z80 is fast enough to
handle most transfers of successive vectors, it is
recommended that a "0" be used in this bit.

Bits 5 thru 7 (Conwand)

These bits designate the command that is to be executed.

100-0123-001

6-13

6.4.3 Track Commands (Type 3)

This group of instructions may be used as tools for diagnostic and disk
formatting. The three commands are:

Read Address:

Read Track:

Write Track:

READ ADDRESS provides a means for establishing the
location of the Read/ Write head. The six bytes of
data that contains this information is read from
the disk and transferred to the Z80 during the
execution of this command. For systems having
multiple drives or sides, this command also offers
a means for determining which drive or side is
selected.

NOTE: At the completion of the command,
the Track address is entered into
the Sector register -- destroying
the previous Sector address. Thus,
prior to executing a Read Address
operation, the Sector register must
be loaded with the desired Sector
address (Refer to Figure 6-8).

READ TRACK is mainly for diagnostic applications. This
command can be used as a means to procure data for hard
copy. Gaps, address marks, and all data are loaded into
the Data register and transferred to the Z80 through I/O
address OC7H. The user can now quickly inspect the disk
for valid formatting and data fields as well as address
marks. It should be pointed out however, that byte
synchronization is not performed until an ID Address
Mark is detected. Thus, data prior to the address mark
will not be valid.

One application of WRITE TRACK is disk formatting. The
actual recording begins when the first byte is loaded
into the Data register on I/O address OC7H. From this
point, it is up to the software to have data available
when the formatter/controller requests it. If the Data
register has not been loaded before encountering the
next index pulse, the command will terminate; and Bit 2
(Lost Data) of the Status register will be set.

Bit 2 is the only controlling bit (See Table 6-4). This bit defines the
head-loading delay as described in the Sector command section. Figure
6-7 is an example routine using the Track instructions.

100-0123-001

6-14

6.4.4 Reset Interrupt (TYP,e IJ)

There are situat:ions where certain conditions can cause the
formatter/controll~~r chip and interface circuits to malfunction or
freeze. Through the use of the RESET INTERRUPT (Refer to Table 6-4),
the current cOnInand or condition can be terminated; and the Busy bit
will be reset. One approach to a Interrupt Reset is outlined in Figure
6-9.

6.4.5 Write Precompensation

Write precompensation is a techniques where the data is recorded in a
direction opposite of the anticipated bit shift. Normally, this is
required for double-density recording on 8-inch drives. As a general
rule write precompensation is performed on tracks 44 thru 77; but may
be required on all tracks if specified by the drive manufacturer. To
enable the write pr'ecompensation feature, Bit 7 of the Unit Designation
byte (I/O address OC4H) must be a "1".

6.5 FORMATTING THE DISK

To format the di,sk, the Read/Write head should be positioned over the
the desired track; and a Write Track command issued. For every byte of
data written, a data request will be generated. This sequence should
continue from one i,ndex mark to the next. Normally, the data pattern
loaded into the Data register will be recorded with a normal clock
pattern (See Table 6-5). However, a data pattern of F5 thru FE in the
data register will be interrupted as Data Address marks with missing
clocks or CRC generation. For instance, the formatter/controller chip
interprets an FE in a single-density operation as an ID address mark;
and CRC will be initialized. An F1 pattern generates two CRC characters
in both single- or double-density operation. Thus patterns F5 thru FE
must not appear in the gaps, Data fields or ID fields. Also, an F7
pattern must be used to generate the CRe's.

100-0123-001

6-15

DATA PATTERN SINGLE DENSITY DOUBLE DENSITY
(HEX)

00 thru F4 Write 00 thru F4 Write 00 thru F4, in MFM
with CLK = FF

F5 Not Allowed Write A1. in MFM

F6 Not Allowed Write C2** in MFM

F1 Generate 2 CRC bytes Generate 2 CRC bytes

F8 thru FB Write F8 thru FB, Write F8 thru FB, in MFM
Clk=C1, Preset CRC.

FC Write FC with Clk=D1 Write FC in MFM

FD Write FD with Clk=FF Write FD in MFM

FE Write FE, Clk=C1, Write FE in MFM
preset CRC.

-
FF Write FF with Clk=FF Write FF in MFM

* Missing clock transition between bits 4 and 5.
** Missing clock transition between bits 3 and 4.

Table 6-5
FORMATTER/CONTROLLER CONTROL BYTES

100-0123-001

6-16

Other items that should be considered when formatting a disk include:

1. Sector length must. be either 128, 256, 512, or 1,024
bytes. The following table lists the hex code that
identifies the number of bytes per sector.

SECTOR LENGTH
(Hex)

00
01
02
03

Number of Bytes
(Decimal)

128
256
512

1024

2. Gap sizes must be in accordance to Table 6-6. These sizes
are minimum values as required for proper operation of the
formatter/controller device.

6.5.1 Shugart Drives

Either one long record or several small records can be written on the
Shugart drives. An index pulse starts each track; and a unique recorded
identifier (ID fi.eld) precedes each r·ecord. The format for a recorded
sector is shown in Figure 6-3.

GAP ID
I AM

TRACK S1
NO N

DE
o

SECTOR
NO

SECTOR CRC CRC
LENGTH 1 2

I DAATMAIDAT_A_FI_E_L_D--,--_C_RC __ 1 ___ C_R_C _2--'"'-...... G_A P
III

Figure 6-3
DISK SECTOR FORMAT

GAP
II

100-0123-001

6-17

6.5.1.1 Gaps

A number of bytes containing no data is used to separate each field on a
track from the adjacent fields. These areas are referred to as gaps;
and they are provided to allow the updating of each field without
effecting adjacent fields. There are four unique gaps on each track.
The definition of the gaps is given in Table 6-6.

GAP NAME BYTES DESCRIPTION

1 Post Index 32 Gap 1 is between Index Address mark and
10 Address mark for Sector 1. It is
not affected by the updating process.

2 10 17 Gap 2 is between the ID field and the
Data field, and it may vary in size
slightly after the Data field has been
updated.

3 Data Gap 33 Gap 3 is between the Data field and the
next. ID field. As with the ID Gap, it
may vary in size slightly after updat­
ing the adjacent Data field.

4 Pre-Index 320 Gap 4 is between the last Data field on
a track and the Index Address Mark.
Initially this gap is nominally 320
bytes; however, due to write frequency
tolerances and disk speed, this gap may
again change slightly in length.

Table 6-6
GAP DEFINITIONS

100-0123-001

6-18

6.5.1.2 Address Marks

Each track has a unique combination of data and clock bits referred to
as. ADDRESS MARKSu TIlese bit patterns identify the start of the ID and
Data fields; and they are used to synchronize the interface circuitry
with the first byte Qif each field. The four types of marks are
described in Table 6-6:

--
MARK DA TA CLOCK LOCATION

-
Index FC D1 Beginning of each track
ID Address FE C1 Beginning of each ID field
Data Address FB C1 Beginning of Data field
Deleted Address F8 C1 l~ginning of deleted Data field

Table 6-1
ADDRESS MARK DEFINITION

6.5.1.3 Cyclic Redundancy Check Character (CRC)

Each field recorded on disk is appended with two CRC bytes. These bytes
are generated from a cy,clic permutation of the data bits starting wi th
bit zero of the address mark and terminating with bit zero of the last
byte wi thin a field (ex1clud ing CRC bytes). When a field is read, the
data bits are divided by the same general polynomial. A nonzero
remainder indicates invalid data, while a zero remainder denotes that
correct data has been read.

6.5.1.4 Setting Up The Disk

The program illustrat4~d in Figure 6-10 should be considered as a
starting point for formatt.ing a disk to operate on Shugart or similar
drive.

100-0123-001

6-19

6.5.2 IBM Format

The IBM 3740 and the IBM system 34 will be briefly outlined in the
following paragraphs.

6.5.2.1 IBM 3740 (Single Density)

To format a disk for the IBM single-density format with 128 bytes per
sector, a Write Track command is used; and the following values should
be entered into the Data register. For every byte written on disk,
there will be one data request.

NUMBER
OF BYTES

40
6
1

26*

6
1
1
1
1
1
1

11
6
1

128
1

27

247**

HEX VALUE OF
BYTE WRITTEN

FF
00
FC (Index Mark)
FF

00
FE (ID Address Mark)
Track Number
Side Number (00 thru 01)
Sector Number (1 thru 1A)
00
F7 (2 CRC's written)
FF
00
FB (Data Address Mark)
Data (IBM uses E5)
F7 (2 CRC's written)
FF

FF

* Write bracketed field 26 times
** Continue writing nominally 247 bytes

100-0123-001

6-20

5.2.2 IBM System 34 (Double D~n:sity)

The following values should be loaded into the Data register for the
doub~e- density format with 256 bytes per sector. For every byte
written, there will be a data request.

NUMBER
OF BYTES

80
12
3
1

50*

12
3
1
1
1
1
1
1

22
12
3
1

256
1

54

598**

HEX VALUE OF
BYTE WRITTEN

4E
00
F6
Fe (Index Mark)
4E

00
F5
FE (ID Address Mark)
Track Number (0 thru 4C)
Side Number (0 or 1)
Sector Number (1 thru 1A)
01
F7 (2 GRG's written)
4£
00
F5
FB (Data Address Mark)
DATA
F7 (2 GRG's written)
4E

4E

* Write Bracketed field 26 times
** Continue writing for nominally 598 bytes

100-0123-001

6-21

Yes

SPECIFY DRIVE

FIND TRACK 00

LOAD DATA R~
WITH TRACK ~

Figure 6-4
TRACK SEEK

FROM TRACK 00

SEEK TRACK

RETURN

ERROR
Jo--....... ROUTINE

100-0123-001

6-22

Source Program:

1
2
3
4
5 0000 CD 1D 00
6 0003 3A 01 00
7 0006 D3 C4
8 0008 3A 02 00
9 OOOB D3 CO

10 OOOD 7E
11 OOOE D3 C3
12 0010 3A 16 00
13 0013 D3 CO
14 0015 DB CO
15 0017 E6 10
16 0019 CA 1E 00
17 001C C9
18 001D
19 001E

;TRACK SEEK FROM TRACK 00
;ENTRY: TRACK ID VERIFY
;EXIT: TO ERROR ROUTINE IF NO VERIFICATION . ,
GET: CALL STAT

LDA 01H
OUT OC4H
LDA 02H
OUT OCOH
MOV A,M
OUT OC3H
LDA 16H
OUT OCOH
IN OCOH
AlJI 10H
JZ ERR
RET

STAT: DS 1
ERR: DS 1

Figure 6-4 (cont'd.)
TRACK SEEK

FROM TRACK 00

;GET STATUS, CHIP BUSY

;SET UP UNIT 0
;A=RESTORE INSTR.
; RESTORE
;A=TRACK NUMBER
;LOAD TRACK REG.
;A=SEEK INSTR.
;SEEK & VERIFY
jREAD STATUS
; VERIFY
;NO VERIFICATION
; VERIFIED

100-0123-001

6-23

Flow Diagram:

GET

SPECIFY DRIVE

LOAD DATA REG.
WITH TRACK NO.

SEEK TRACK

Yes

No

No ERROR
>-------------i ROUTINE

RETURN

Figure 6-5
TRACK SEEK

Yes

100-0123-001

6-24

Source Program:

1
2
3
4
5 0000 CD 18 00
6 0003 3A 01 00
7 0006 D3 C4
8 0008 7E
9 0009 03 C3

10 0008 3A 14 00
11 OOOE D3 CO
12 0010 DB CO
13 0012 E6 10
14 0014 CA 21 00
15 0011 C9
16 0018
11 0021

;TRACK SEEK ROUTINE
;TRACK REG. HAS CURRENT HEAD POSITION
; ENTRY:: TRACK ID WITH VERIFICATION . ,
GET: CALL STAT ;GET STATUS, CHIP BUSY?

LDA 01H
OUT OC4H
MOV A,M
OUT OC3H
LOA 14H
o lIT OCOH
IN OCOH
ANI 10H
JZ ERR
RET

STAT:: OS 9
ERR: DS 10

Figure 6-5 (cont'd.)
TRACK SEEK

;SET UP UNIT 0
;TRACK NO.
;LOAD DATA REG.

;SEEK & VERIFY
;READ STATUS
; VERIFY
;NO VERIFICATION
;VERIFIED

100-0123-001

6-25

Flow Diagram:

START

Yes

No XFR DATA FROM DISK

LOAD INSTRUCTIONS
IN A,D,E,

SET UP DRIVE

FIND TRACK 00

1st BYTE ADDRESS I
IN H,L

B=80H*

Figure 6-6
SECTOR READ ROUTINE

100-0123-001

DECREMENT B

No

Yes

VERIFY STATUS

Yes

I~o

RETURN

ERROR
ROUTINE

6-26

Source Program:

1
2
3
4
5 0000 CD 23 00
6 0003 11 06 80
7 0006 3A 01 00
8 0009 D3 C4
9 OOOB ED 51

10 OOOD 7E
11 OOOE D3 C3
12 0010 7E
13 0011 D3 C2
14 0013 E1
15 0014 01 80 C7
16 0017 ED 59
17 0019 ED BA
18 001B DB CO
19 001D F6 00
20 001F C2 24 00
21 0022 cg
22 0023
23 0024

;SECTOR READ ROUTINE
; ENTRY: NOTHING NEEDED
;SET B=80H IF SINGLE DENSITY
;SE1' B=OOH IF DOUBLE DENSITY
GET: CALL STAT ;GET STATUS, CHIP BUSY?

LXI D,8006H ;D=RESTORE,E=SECTOR READ
LDA 01H jA=UNIT
OUT OC4H ;SET UP DRIVE
OUTP D ; RESTORE
MOV A,M ;A=TRACK NO.
OUT OC3H ;DATA REG.=TRACK NO.
MOV A, M ; A=SECTOR
OUT OC2H ;SECTOR
POP H ;1ST BYTE ADDRESS
LXI B,OC780H ;B=80H*,C=IO
OUTP E ;READ SECTOR
INDR ;XFR DATA TO CPU
IN OCOH ;READ STATUS
ORI OOH ;VERIFY STATUS
JNZ ERR ;ERROR EXIT
RET jDONE

STAT:: DS 1
ERR: DS 1

Figure 6-6 (cont'd.)
SECTOR READ ROUTINE

100-0123-001

6-27

Flow Diagram:

START

Yes

No

LOAD INSTRUCTIONS
IN A,D,E,

SET UP DRIVE

FIND TRACK 00

1st BYTE ADDRESS
IN H,L

B=80H*

XFR DATA FROM DISK

DECREMENT B

No

Yes

VERIFY STATUS

Figure 6-7
SECTOR WRITE ROUTINE

RETURN

ROUTINE

100-0123-001

6-28

Source Program:

1
2
3
4
5 0000 CD 23 00
6 0003 11 06 AO
1 0006 3A 01 00
8 0009 03 C4
9 OOOB ED 51

10 0000 1E
11 OOOE 03 C3
12 0010 1E
13 0011 03 C2
14 0013 E1
15 0014 01 80 C1
16 0017 ED 59
11 0019 ED BB
18 001B DB CO
19 0010 F6 00
20 001F C2 24 00
21 0022 C9
22 0023
23 0024

;SECTOR WRITE ROUTINE
;ENTRY: NOTHING NEEDED
;SET B=80H IF SINGLE DENSITY
jSET B=OOH IF DOUBLE DENSITY
GET: CALL STAT j GET STATUS, CHIP BUSY?

LXI D,OA006H ;D=RESTORE,E=SECTOR WRITE
LOA 01H ;A=UNIT
OUT OC4H ;SET UP DRIVE
OUTP D jRESTORE
MOV A,M jA=TRACK NO.
OUT OC3H jDATA REG.=TRACK NO.
MOV A, M ; A=SECTOR
OUT OC2H ; SECTOR
POP H ;1ST BYTE ADDRESS
LXI B,OC780H ;B=80H*,C=IO
OUTP E jWRITE SECTOR
OUTDR ;XFR DATA TO CPU
IN OCOH jREAD STATUS
ORI OOH ; VERIFY STATUS
JNZ ERR jERROR EXIT
RET ;OONE

STAT: DS
ERR: DS

Figure 6-1 (cont'd.)
SECTOR WRITE ROUTINE

100-0123-001

6-29

Flow Diagram:

START

LOAD INSTRUCTIONS
IN A,B,C,D,E,

SET UP DRIVE

~FIND TRACK 00

READ ADDRESS

~~TORE ADDRESS L IN MEMORY

L RETURN

No

Figure 6-8
READ ADDRESS ROUTINE

Yes

100-0123-001

6-30

Source Program:

1
2
3
4 0000 CD 2C 00
5 0003 01 02 CO
6 0006 11 12 DO
7 0009 3A 01 00
8 OOOC D3 C4
9 OOOE ED 41

10 0010 7E
11 0011 D3 C3
12 0013 ED 51
13 0015 DB CO
14 0017 E6 10
15 0019 CA 2D 00
16 001C E1
17 001D ED 59
18 001F 01 06 C7
19 0022 ED BA
20 0024 DB CO
21 0026 E6 80
22 0028 CA 2E 00
23 002B C9
24 002C
25 002D
26 002E

;READ ADDRESS ROUTINE
; ENTRY:: NOTHING NEEDED . ,
GET: CALL STAT

LXI B,OC002H
LXI D,OD012H
LDA 011-1
OUT OC4H
OUTP B
MOV A,M
OUT OC3H
OUTP D
IN OCOH
ANI 10H
JZ ERR1
POP H
OUTP E
LXI B,OC706H
INDR
IN OCOH
ANI 080H
JZ ERR2
RET

STAT: DS 1
ERR1: DS 1
ERR2: DS 1

Figure 6-8 (contWd.)
READ ADDRESS ROUTINE

;GET STATUS, CHIP BUSY?
;B=RESTORE,C=COMMAND ADD.
;D=SEEK,E=READ ADDRESS
;A=UNIT
;SET UP DRIVE
; RESTORE
;A=TRACK
;DATA REG.=TRACK
;SEEK & VERIFY
;READ STATUS
;VERIFY
;ERROR
;1ST BYTE ADDRESS
;READ ADDRESS
;B=06H,C=IO ADDRESS
;XFR ADDRESS TO MEMORY
;READ STATUS
jCHECK CSC BIT

;OONE

100-0123-001

6-31

Flow Diagram:

Source Program:

1
2
3
4
5 0000 CD 10 00
6 0003 F5
7 0004 E6 80
8 0006 C2 OA 00
9 0009 F1

10 OOOA 3A 00 00
11 DODD D3 CO
12 OOOF C9
13 0010

GET

No
>---------11 ... NORMAL OPERATION

Yes

~ RESET SYSTEM

_. __ R_ET_U_R~

;RESET INTERRUPT
;ENTRY: NOTHING NEEDED
jSYSTEM RESET . ,
GET: CALL STAT jGET STATUS

PUSH PSW ;SAVE
ANI 80H ;CHECK BUSY
JNZ INTR ;INTERRUPT IF BUSY
POP PSW jNORMAL OPERATION

INTR: LDA ODOH
OUT OCOH ; INTERRUPT
RET jOONE

STAT: DS

Figure 6-9
RESET INTERRUPT ROUTINE

100-0123-001

6-32

Flow Diagram:

START I

No

Yes

1_ SET U

1
UNIT :=J

~FIND TRACK OO~

L FOR!~AT TRACK J

No

[---,

Figure 6-10
DISK INITIALIZATION ROUTINE

STEP INTO
NEXT TRACK

100-0123-001

6-33

Source Program:

1
2
3
4 0000 CD 81 02
5 0003 3A 01 00
6 0006 D3 C4
7 0008 3A 02 00
8 OOOB D3 CO
9 0000 06 21

10 OOOF DE C7
11 0011 2A 2B 00
12 0014 3A FO 00
13 0017 D3 CO
14 0019 ED B3
15 001B DB C1
16 001D FE 76
17 001F CA 2A 00
18 0022 3A 5A 00
19 0025 03 CO
20 0027 C3 00 00
21 002A 76
22 002B
23 0281

;DISK INITIALIZATION (256 BYTES/SECTOR)
;ENTRY: BLANK DISK . ,
GET: CALL STAT ;GET STATUS, CHIP BUSY

LDA 01H jA=UNIT
OUT OC4H ;SET UP DRIVE
LDA 02H ;A=RESTORE INSTR.
OUT OCOH ; RESTORE

LOOP: MVI B,21H ;B=21
MVI C,OC7H ;C=C7
LHLD ADD ;1st BYTE OF FORMAT
LDA OFOH ;A=WRITE TRACK INSTR.
OUT OCOH ;WRITE TRACK
OUTIR ;FORMAT SECTOR
IN OC1H ;A=TRACK NO.
CPI 76H ;A-76
JZ STOP ;INIT. DONE
LDA 5AH ;A=STEP IN INSTR.
OUT OCOH ;STEP IN
JMP LOOP ;FORMAT NEXT TRACK

STOP: HLT ;OONE
ADD: DS 256H ; FORMAT
STAT: OS 1

Figure 6-10 (cont'd)
DISK INITIALIZATION ROUTINE

100-0123-001

6-34

1.1 SCOPE

SECTION 1

INTERHUPT

The MSC 8009 interrupt system provides eight levels of priority
interrupts plus a Non-Maskable Interrupt.

This section details the programming of the Interrupt system for full
priority-interrupt servicing. Simple applications do not require this
complexity. Typically, a subset of the procedures outlined in this
section will suffiee.,

1.2 Z80 INTERRUPT CONTROL

The Z80 interrupt system operates in one of three modes.

MODE 0 generates eight, RST (RESTART) instructions (8080
interrupt response mode).

MODE 1 is usefUlI for debugging purposes because all
interrupts eXE~cUlte a restart at location 0038H (RST7).
This mode does not use vector PROM.

MODE 2 uses a PROM to specify the eight, low-order bits of
an interrupt-vector address for each of the eight,
priority levE~ls. The Z80 interrupt-vector register
defines the eight, high-order bits that are set by the
program. This means that any interrupt can be vectored to
any memory location. The page address must be set into
the Z80 interrupt vector register by the user's program.

The Z80 makes use of several instructions to control the interrupt
processing. These intructions are~

MNEMONIC

I~IO
Itvl1
I~I2
EI
DI

OPERATION

Sets Interrupt MODE 0
Sets Interrupt MODE 1
Sets Interrupt MODE 2
Enables Interrupt
Disables Interrupt

100-0123-001

7-1

The enable and disable instructions, EI and DI, are used to set or clear
the INTERRUPT ENABLE latch in the processor. The state of this latch
may be tested by loading the refresh or interrupt-vector register into
the accumulator. When executed, these instructions cause the state of
the Z80 Interrupt Enable latch to be loaded into the Parity flag.

NOTE: With the 8214 Interrupt chip on the MSC 8009 board,
a normal practice would be to use it to control the
enabling and disabling of interrupts. In this
case, the Z80's Interrupt Enable flag would
ordinarily be left enabled at all times. Thus
testing the flag in the Z80 yields no useful
information.

7.3 8214 INTERRUPT CONTROLLER

The 8214 Interrupt Controller and its associated Interrupt Vector PROM
must be set up to allow the desired interrupt response. This is
achieved by performing an "OUT OD7H" instruction with the following
information in the accumulator. The most-significant bit must be set
to correspond to the Z80's Interrupt mode.

MODE INSTRUCTION MOST-SIGNIFICANT BIT

o IMO 0
1 IM1 Don't Care
2 1M2 1

The lower-four bits (0 thru 3) define the priority level, which
corresponds to the lowest interrupt number that is disabled. The
remaining bits (4 thru 6) must remain in the desired state. This
becomes automatic if the user keeps a copy of the register setting in
memory the reason for "MASK" in the software example of paragraph
7.3.3. The following paragraphs discuss the use of these bits in more
detail.

100-0123-001

7-2

DATA BITS

DAT7

DAT6

DAT5

DAT4

DAT3

DAT2

DAT1

DATa

PURP OS E
-

Inter
Cant
-

ru
ro

pt
1

Addr
Cant

es
ro

:3

1

Bus Mo de

Bus Mo

Inten u
Cont1 "'0

Inten ~u
~o ContI

Inter
Cant

Inter
Cant

ru
ro

ru
ro

de

pt
1.

pt
1

pt
1

pt
1

-
FUNCTION

Mode Latch Control ("1" for Z80 Mode
2; "0" for Z80 Mode 0)

--
Address Map Switch ("1" for Alter-
nate; "0" for Main Map)

Select Bus Exchange mode (See para-
gr aph 3.3. 1 · 3)

-
Select Bus Exchange mode (See para-
gr aph 3.3. 1 .3)

-
Status Group Select (" 0" for priori-
ty "1" for none)

-
B2 (This line is used to determine
which level is enabled)

B1 (This line is used to determine
which lev~=l is enabled)

...
BO (This line is used
which level is enabled)

Table 7-1
DATA BIT FUNCTIONS

to determine

FOR OUTPUT TO INTERHUPT CONTROLLER
(Device Code D7)

100-0123-001

7-3

1.3.1 Initialization

The initialization of the interrupt system must be accomplished in
several places, including

1) Within the Z80 processor.

2) The 8214 Priority-Interrupt Controller and mode latch.

3) The I/O device that generates the interrupts.

After a power up, the logic states are indeterminate, and an
initialization procedure must allow for this. The following discussion
is based on MULTIBUS signal names, polarities and priorities. The
inversions and rearrangements created by the 8214 and the vector PROM
may be ignored unless improper operation is suspected. For
troubleshooting, refer to the schematic in the appendix.

The outputs of the 8214 are latched to prevent the loss of interrupts
when the Z80 produces several M1 cycles. These cycles occur during
those instructions that use the index registers.

Normally, the Z80 interrupt is enabled after the 8214, and no spurious
power up interrupt will occur because the enabling of the 8214 clears
all pending interrupts. If the order of enabling interrupts is
reversed, a spurious interrupt can happen. Notice that a device holding
down an interrupt line will generate a new interrupt immediately
following the enabling of the 8214. Therefore, no device will be
stranded.

1.3.2 MULTIBUS Interrupt

The MULTIBUS interrupts are numbered INTO/ (highest priority) thru INT?/
(lowest priority). The least-significant four-bits (STATUS GROUP, B2,
B1, and BO) define the priority number. To illustrate, consider the
following listing.

100-0123-001

7-4

OUTPUT TO
INTERRUPT CONTROLLER

o
8
1
h

5
4
3
2
1

The formula is as follows:

PRIORITY
STRUCTURE

Everything Off
Everything On
Disable 1; Enable 6 thru 0
Disable 1 and 6; Enable 5 thru 0
Disable 1 thru 5; Enable 4 thru 0
Disable 7 thru 4; Enable 3 thru 0
Disable 1 thru 3; Enable 2 thru 0
Disable 1 thru 2; Enable 1 and 0
Disable 1 thru 6; Enable 0

When an interrupt occurs on level "n", send out a mask
of "nu and re-enable the processor interrupt to enable
the htgher levels.

Output to the interrupt controller is device code D1 HEX.

1.3.3 Programming Multi-Level Interrupts

To successfully operate a multi-level, priority-interrupt scheme the
user must insure that an interrupt restores the system to the exact
state which existed prior to the interrupt. This requires that the
program keep track of the level last sent to the 8214, since there is no
way to read this back from the 8214. The following description can be
used to develop interrupt softwan~.

1) Inttialization of interrupt system:

MVI
STA
OUT
EI

User Code

A,DMASK
MASK
OD1H

;DESIRE MASK
;SAVE FOR EXACT VALUE RESTORATION
;SETUP 8214
jENABLE Z80 INTERRUPT

100-0123-001

1-5

2) At beginning of interrupt code:

PUSH PSW SAVE ACC
LDA MASK SET OLD MASK
PUSH PSW SAVE IT TOO
ANI OFOH CLEAR LO BITS
ORI LEVEL SET INTERRUPT LEVEL
STA MASK SAVE NEW MASK
OUT OD7H ,SET UP 8214
EI ;RE-ENABLE Z80

User interrupt service

NOTE: The user must save and restore any register
that is used including memory locations. The
machine must terminate in the same condition it
started in.

3) At end of interrupt code

DI*
POP
STA
OUT
POP
EI*
RTI

PSW
MASK
OD7H
PSW

;TEMPORARILY IGNORE INTERRUPTS
;SET OLD MASK
;KEEP IT
jRESORE 8214
;GET OLD ACCUMULATOR
;00 INTERRUPTS AGAIN
;RETURN TO INTERRUPT PROCESS

In the previous code*, DI and EI may be deleted, but it is easier to
understand and debug machine activity with them included.

7.4 8214 PRIORITY INTERRUPT CONTROLLER

The 8214 is an eight-level, priority-interrupt controller. The encoder
portion of the 8214 accepts up to eight, active-low interrupt requests
(ROI thru R7/) and determines which has the highest priority -- R71
having the highest priority. Once priority is established, the 8214
then compares that priority with a software-created, current-status
register on BOI thru B2/. If the incoming request is of a higher
priority than the interrupt currently being serviced, an interrupt
request to the processor is generated. Vector information that
identifies the interrupting device is also generated.

100-0123-001

7-6

7 .4. 1 Address And Bit Assignments

The 8214 is accessed by an "I/O Write To" device code D7. The three
least-significant data bits are strobed into BO thru B2 of the 8214.
The most-significant data bit sets the Mode flip flop.

7.4.2 Vectors

Data 7 equals "1" sets the PROM for MODE 2.
Data 7 equals "0" sets the PROM for MODE O.

The highest-priority MULTIBUS interrupt line is INTO/. It is connected
with R7/ -- wirewrap post 86 on the MSC 8009 board.

D7 D6 D5 D4 D3 D2
PRIORITY RST
REQUEST 1 A2 Al AO 1

INT7/ 7 1 1 1 1 1 1
INT6/ 6 1 1 1 1 0 1
INT5/ 5 1 1 1 0 1 1
INT4/ 4 1 1 1 0 0 1
INT3/ 3 1 1 0 1 1 1
INT2/ 2 1 1 0 1 0 1
INT1/ 1 1 1 0 0 1 1
INTO/ 0 1 1 0 0 0 1

CAUTION: HST () \o\,ill vector the program counter
to location o (zero) and execute the
same routine as the RESET input.

Dl

1
1
1
1
1
1
1
1

00

1
1
1
1
1
1
1
1

100-0123-001

7-7

MODE 2 Interrupt

Interrupt Level

INTOI
INT11
INT21
INT31
INT41
INT51
INT61
INT71

PROM Vector

XXFO
XXF2
XXF4
XXF6
XXF8
XXFA
XXFC
XXFE

"XX" portion of the vector is the contents of the Z80 interrupt vector
register.

7.5 NON-MASKABLE INTERRUPT (NMI)

The Non-Maskable Interrupt (NMI) has higher priority than a normal
interrupt and is sampled at the same time as the interrupt line. NMI
cannot be disabled under software control. Its usual function is to
provide immediate response to important signals such as an impending
power failure. The Z80 response to NMI is similar to a normal memory
read operation. The only difference being that the content of the data
bus is ignored while the processor automatically stores the program
counter in an external stack and jumps to location 0066 HEX. The
service routine for NMI must begin at this location if this interrupt is
to be used.

Two jumpers are associated with NMI. One jumper (64 and 65) allows the
MSC 8009 Watchdog Timer to generate NMI if an acknowledgement is not
received within 10 milliseconds during a memory or liD operation. The
other jumper (70 to 71) connects NMI to the MULTIBUS through P1, pin 33;
permitting an exgternally generated NMI to be recognized. NMII may also
be found on auxilliary connector P2, pin 4.

CAUTION: This connection to P1, pin 33 is not compatible
with the MULTIBUS standard; and this connection
may not be made if INTAI is being used.

100-0123-001

7-8

8.1 SCOPE

SECTION 8

THEORY OF OPERATION

This section disc:usses the theory of operation and system control logic
of the MSC 8009, single-board computer. This discussion is intended to
assist the user in understandJLng the overall system so that the MSC
8009 capabilities can be efficiently employed.

8.2 SYSTEM DESCRIPTION

There are five basie elements that make up the MSC 8009 -- the
processor, the arithmetic processor, the disk formatterlcontroller, the
memories, and the 1/0. These elements are interconnected by three buses
-- an Address bus, a Data bus, and a Control bus. These buses can
extend beyond the- MSC 8009 board via edge connector P1, and these buses
are MULTIBUS* compat:ible. It is through the external MULTIBUS that the
MSC 8009 interfaces with other processors, memories or 1/0 elements for
developing of a larger system.

8.2.1 Local Control Bus

Unlike the Address and Data buses, the local control is not a single,
well-defined bus; but actually a variety of signals within the MSC 8009
as well as the external signals from the MULTIBUS. This local control
bus determines the source and destination of the address- and data-bus
information.

PROM U38 accepts and decodes the Z80-generated signals MRQ/, IORQ/, RDI
and WTI to generate local-control signals LIORCI (110 Read), LIONCI (1/0
Wri te) , LMRDCl (Memory Read), and LMWTCI (Memory Write). When the MSC
8009 wants access to the MULTIBUS or another processor on the MULTIBUS,
transceiver 0.44 asserts the forementioned control signals onto the bus
as IORC/, IOWCl, MRDCI and MWTC/.

8.2.1.1 MULTIBUS Control

Transceiver U44 penmits other processors on the MULIBUS to access the
MSC 8009 through the use of control signals IORC/, IOWC/, MRDCI AND
MWTC/. When the internal-bus state machine places a "low" on EXTC and a
"high" on PROCA/, U4!l accepts and converts these bus signals to the
four, local-control signals described in paragraph 8.2.1.

100-0123-001

8-1

SY~ 11 M
CONTHOl

f'kOll~:'IlH

CUNl Rul

PROCESSOR
8US

CON1HOl

"l
l7

MRlO

10RQ

IIr
Wlf n

RF!.Ii 2S

iilLT 18

WATT 24

Z-1I0 CPU

iN'f
NHl

RESET

{ BUSRQ

~

+!iV

GND

(a) PIN CONFIGURATION

INSTRUCTION

J'-----\.. DlC~OE
\r---yI CPU

IJ CONTROL
CPU AND
SYSTEM

CUNTROL
SIGNALS

r i i
+!iV GND •

(b) BLOCK DIAGRAM

Figure 8-1
Z80 MICROPROCESSOR

10
AU

Al

A2

A J

A4

A5

A6
AUUKl~S

A7 8U~

All

Ay

AlO

All

A12

AiJ

AI4

AI!»

14 0
0

15 0
1

12
°2

8 OJ DATA

04
1105

°5
10 06
13 07

100-0123-001

8-2

8.2.2 Local Address Bus

The Local-address bus or L/A BUS is a sixteen-bit internal-address bus
that is unidirectional in nature and addresses the onboard memory and
1/0 devices. Tri-state drivers U46, 47 and 55 multiplex the Z80 address
lines onto the LIA BUS when an internal operation is being executed
(PROCAI is "low"). A high-speed address PROM (U54) in conjunction with
two, three-to-eight decoders (U21 and U27) encode the L/A BUS lines as
ROMSEL/, RAMSEL and IOSELI signals (Refer to Table 4-2). Also , the
data selectors 04", 49, 57 and 55 convert the sixteen lines of the LI A
BUS into seven-bit address lines as required by the onboard RAM array.

When executing an 1/0 operation, the lower-eight Z80 address lines
containing the P01"t address are duplicated on the upper-eight MULTlBUS
address lines. 'fhi.s assures compatibility with the 8080 microprocessor
series and always places the same 1/0 port address on both halves of the
address bus.

8.2.2.1 MULTIBUS Addressing

The bus transcei VE~rs U63 and U64 allow either another processor to
address the onboard memory (DMA) and 1/0 devices; or the Z80 address
another external unit on the MULTIBUS. The internal-bus state machine
generates PROCAI to define direction of the data flow and EXTRADR as an
enable for the transceivers.

8.2.3 Data Channel

The bidirectional··data bus of the MSC 8009 interconnects the onboard
meroory and I/O devices with eithE~r the Z80 (00 thru 07) or the MULTlBUS
(DATOI thru DAT7/). A "low" on PHOCA/ lets the transceiver U48 transfer
seven-bits of datal to and from the Z80, depending on the state of RD/.
A DMA transfer uses transceiver U65 to route data between the MULTIBUS
and the MSC 8009.

8.2.4 Z80 Processor

Whereas the Z80 (U34) executes the instruction set as well as
coordinating all bus transfers and internal functions, it is important
that the user has complete knowledge of this microprocessor. This
information may be obtained from either the user's manual or available
data sheets. Figure 8-1 shows the Z80 pin assignments with signal
designations.

100-0123-001

8-3

During each major cycle of the processor, the Z80 places a sixteen-bit
address on the ADDRESS BUS (AO thru AF). Appropriate control signals
are then generated to transfer eight bits of data (DO thru 07) to and
from the MSC 8009 using the bidirectional data bus (Refer to paragraph
8.2.3). The MSC 8009 control lines allow the Z80 to exchange data with
both internal and external memory or I/O devices.

R.2.5 Floppy Disk Formatter/Controller

The Floppy Disk Formatter/Controller U321 performs all functions as
needed to support both 8- and 5-inch drives intermixed with single- or
double-density storage capabilities. When DDEN/ (Double Density Enable)
is a logic "1", data will be either written or read based on
frequency-modulated format (FM). Both clock and data are recorded
serially on each track of the disk. A data pulse or flux transition
between clock pulses indicates a logic "1"; a "0" denotes the absence of
a pulse.

Data exchange between the Z80A and the formatter/controller chip is in
parallel via the I/O BUS. A PROM provides the necessary control. This
8-bit data is either stored in one of the registers within the chip or
translated into a serial format for tran3lUission to the drive. If the
operation is a read, the serial data from the drive will be converted
into a parallel format for assertion onto the I/O BUS.

At the start of each instruction, the PAUSE/ line will be pulled to a
"low" via the gating action of U304 (pins 1 , 2 and 4 thru 6)
"freezing" the Z80. PAUSE/ remains "low" until the requested operation
is complete; and then PAUSE/ is released. However, Bit 0 (Busy Flag) of
the Status register can be monitored to verify that the
formatter/controller device is ready to accept another command.

A.2.6 Arithmetic Processing Unit (APU)

The Arithmetic Processing Unit (U15) provides the MSC 8009 with fixed­
and floating-point arithmetic as well as transcendental functions. At
the beginning of each command, the 9511 asserts a "low" on PAUSE/,
"freezing" the Z80. PAUSE/ remains "low" until the 9511 completes the
previous operation, and then PAUSE/ is released. However, the Status
register can be monitored to verify that the 9511 is not busy (Busy
Flag) •

100-0123-001

8-4

Data exchange bletween the Z80A and the 9511 is dispatched on the I/O
BUS. Under PROM I~ontrol, signals LAO, LIORC/, and LIOWC/ establish the
following types of t.ransfers.

LAO .!JJ2!ll~ LIOWC DESCRIPTION

0 , 0 Enter data byte into stack
0 0 1 Read data byte from stack
1 , 0 Enter command
1 0 1 Read status

8.2.7 System Clock

A packaged oscillator (U23) provides a 16-MHz signal as the basic clock
for the MSC 8009. lhis signal is then fed into a four-bit counter which
divides the basie-clock frequency by two, four, eight and sixteen. The
8-MHz clock is used for the State Machines and also made available on
the MULTI BUS 0 Installed jumpers route the other clocks to the Z80A,
APU, and several I/O circuitry (See Table 8-1) .

JUMPER

68 to 69
62 to 63

*58 to 59
56 to 57

*54 to 55
52 to 53
50 to 51

*48 to 49

J:LOCK FREQUENCY

8 MHz
8 MHz
4 MHz
4 MHz
2 MHz
2 MHz
2 MHz
1 MHz

*Standard Configuration

Table 8-1

FUNCTION

MULTIBUS (CCLKI)
MULTlBUS (BLCKI)
Z80A Processor
APU (MATHCLK)
APU (MATHCLK)
Z80 Processor
I/O (IOCLK)
I/O (IOCLK)

CLOCK RATE CONFIGURATION

An open-colleetor driver (U59) buffers the divide-by-two output (8-MHz)
for jumper seleetion of MULTIBUS Signals BCLKI and/or CCLKI. For the
Z80 processor, the selected clock is inverted and then applied to the
processor. An active pull-up Q1 minimizes the rise-time delay of the
clock due to heavy,· internal-capaeitive loading of the Z80. The 2- and
1-MHz clocks are available for the user to choose from for the time base
of the interval timer. Also, either the 2- or 4-MHz clock is available
for the APU operation.

100-0123-001

8-5

8.3 SYSTEM OPERATION

Essentially, all zao cycles are a series of basic operations that
include:

1) Memory Read or Write
2) 1/0 Read or Write

Normally, these operations require three to six clock cycles or T
states. However, they can be lengthened to synchronize the Z80 with the
speed of a peripheral. Each Z80 cycle is referred to as a M (Machine)
cycle; and the first machine cycle (M1) of any instruction is the Fetch
cycle. The following paragraphs detail how the MSC 8009 handles normal
operations.

8.3.1 Wait Operation

A "low" on WAITI indicates to the zao that the addressed memory or 1/0
device is ready for a data transfer. While WAITI is active (low), the
processor executes a Wait operation. The Wait operation can be
terminated by one of several ways.

1) Watchdog Timer
2) Assertion of SAACKI during either a read or write operation
3) Assertion of SAACKI during either a M1 or Op Fetch cycle

For an Interrupt Acknowlege cycle, WAITI can not be released. This is
achieved only when M1! goes "low" (M1 cycle), causing INTA/ to go "low"
(U43, pin 11), releasing WAIT/.

8.3.1.1 Watchdog Timer

If the Z80 initiates a data-transfer operation, and the selected memory
or 1/0 device does not respond with an acknowledge, the processor could
remain in a Wait state indefinitely. The Watchdog Timer (U58) forces
the Wait condition to terminate within 3 milliseconds, preventing the
occurance of an indefinite Wait state. When an instruction begins,
either MRQI (Memory Request), IORQI (I/O Request), or EXTRQ (DMA) goes
"low", triggering the Watchdog Timer. If neither XACK/ or AACK/ is
received within the specified time period, pin 4 or U37 (timer output)
goes "low", forcing WAITI "high". The Z80 can now proceed with another
operation. If an acknowledge signal is received from the MULTIBUS, the
Wait state is terminated immediately; and the Z80 can now execute the
requested instruction. The beginning of each instruction triggers U58,
causing pin 4 of U37 to remain "high".

100-0123-001

8-6

R.3.2 OP Fetch Cycle

Each Fetch cycle requires five clock cycles. At the beginning of 1
2Fetch cycle, the address lines AD thru AF contain the output levels of
the Z80 Program counter (PC). At one-half clock cycle time later, MRQ/
(Memory Request) goes "low" (active), indicating that the data on the
address bus is valid for a merrory cycle. In turn, this signal activates
the State Machine PROM (U32 and lJ33) to set up the merrory address lines
and prepare the memory for a react cycle. Simultaneously, RDI goes "low"
(active) to indicate that the Z80 wants data from the addressed location
in merrory.

During state T2 or the second clock cycle, pins 1 thru 6 of U30 forces
WAITI "low" (Wait state) as a result of U42's gating action. At this
time, the addressed memory is not ready for a data transfer. When
SAACKI goes "low" (Hefer to paragraph 8.3.4), the clock signal sets U30,
terminating the Wait state.

As soon as the infor'mation on the data bus (DO thru D7) is received, the
Z80 clears RDI and MRQI on the rising edge of state T3. Since the major
requirements of tine Fetch cycle has now been fulfilled, it is desirable
to execute a Refresh cycle during the T3 and T4 clock cycles. At this
time, the refresh is transparent (Refer to paragraph 4.2.4).

8.3.3 Merrory Read Or Wri te

A memory read or \o/rite cycle requires three clock periods unless WAITI
is activated (low) • Signals MREQI and RDI perform the same functions
for a read operatjLon as described in the Fetch cycle. During the
memory-write cycle, MREQ/ also becomes active one-half cycle after the
leading-edge of T". When the data bus or 1/0 BUS becomes stable (State
T2), WTI becomes active (low). The addressed memory location now
recei ves data from the 1/0 BUS under control of U67. One-half cycle
prior to the termination of State T3, MREQ/ and WT; are reset,
completing the Write cycle.

100-0123-001

8-7

B.3.3.1 Address Decoding

The MSC B009 uses a 512 X B PROM (U54) for address decoding and two,
three-to-eight line decoders (U21 and U21) to generate all memory and
I/O chip-select signals. The eight, high-order bits of the Address Bus
(LAB thru LAF) address the PROM that produces from these input lines
two, four bit fields. One field selects the memory devices; and the
other, the I/O devices (Refer to Table 4-2). Decoders U21 and U21
accept the PROM outputs and generate the select signals as required by
the memory and I/O devices. One decoder (U21) supplies chip select CSO
thru CS5 to the I/O, APU and disk formatter/controller and the other
decoder (U21) selects the requested ROM (ROMSEL1 thru ROMSEL4). Two
bits from memory and one bit from the I/O field determine if the address
is a valid on-board memory or I/O address (RAMSEL, ROMSEL and IOSEL).

The Address Decode PROM can be programmed to encode any combination of
the eight, most-significant bits of the address into another bit
pattern. This allows the memories to be mapped such that they can
originate at any arbitrary 256-byte page boundary in the addressing
space. Depending on the storage capacity, low-order address bits are
routed to the appropriate memory element for individual word selection.

B.3.4 I/O Cycles

One Wait State (WAIT/ is active) is automatically inserted for an I/O
operation. The purpose of this action is to provide sufficient time for
an I/O port to decode its address, permitting the I/O devices to operate
at ZBO speed. If another Wait is required, WAIT/ is again activated.

During State T2 of the I/O cycle, IORQ/ goes "low" (active). The
Program PROM U38 accepts IORQ/ in conjunction with either RD/ or wr/,
and generates either IORC/ (I/O Read) or IOWC/ (I/O Write) respectively.
Signal rORC/ causes data to flow from the MULTIBUS onto the I/O BUS via
the addressed I/O port. For I/O write, IOWC/ reverses the data flow
through the selected I/O port.

R.3.4.1 Arithmetic Processor Cycles

Essentially, the APU (U15) acts as another I/O port when PROM U54 and
the decoding device U21 generates chip-select signal CS1. The
Arithmetic Processor then performs the requested operation that is
represented by the encoding of LAO, LIORC, and LIOWC (See paragraph
B.2.5).

100-0123-001

8-8

8.3.5 Disk Formatter/Controller

The formatter/controller device U321 and associated circuits perform
all functions that are necessary for transferring data to and from the
disk drive. At t.he beginning of each instruction, the combination of
INTRQ (Interrupt Request) and DRQ (Data Request) fran the
formatter/controller will pull SRQ/ "low", causing PAUSE/ line to go
"low".

8.3.5.1 Register Selection

There are five registers internal to the formatter/controller chip and
one external that are involved with the various disk operations.
Whether the internal or the extel"nal registers are used depends upon the
sign al level of Ed ther CS5/ or CS6/.

Drive selection update is accomplished when CS6/ and LIOWC/ go "low" -­
loading the data on the I/O BUS into the eight latches of U309. The
outputs of these latches are then sent to the designated drive (UO thru
U3) to define thE! head (HSL), reeording density (DDEN), drive size (8"/)
and write precomp (COME/). If LIOWR/ is "low" instead of LIOWC, the
outputs of t.he LJ309 latches are loaded into U316 and then asserted onto
the I/O BUS.

The Chip-select signal CS5/ in conjunction with either LIOWC/ (write) or
LIORC (read) set up the formatter/controller for register operation.
Address signals LAO and LA1 select one of the five registers that will
be used, depending on the operation. The interpretation of these
signals is as follows:

LA1 LAO Read (LIORC/) Write (LIOWC/)

0 0 Status Regi ster Command Register
0 1 Tr aek Regi ster Track Register
1 0 Sector Register Sector Register
1 1 Data Register Data Register

100-0123-001

8-9

8.3.5.2 Clock Circuit

The correct clocks needed for writing and reading are generated by the
multiplexing action of U317. The following list summarizes these clocks
and their respective application.

DRIVE

8 inch
R inch
5 inch
5 inch

8.3.5.3 Data Exchange

RECORDING

Single Density
Double Density
Single Density
Double Density

CONTROLLER RECOVERY
CLOCK CLOCK

8 MHz 2 MHz
16 MHz 2 MHz
8 MHz 1 MHz
4 MHz 1 MHz

The data exchange between the Z80 processor and the formatter/controller
takes place on the I/O BUS -- 100 thru 107. During a write, the
formatter/controller accepts and converts the parallel data on the I/O
BUS into a serial format (WD) consisting of data, clock and unique
address marks. For a read, the formatter/controller accepts the serial
data on the RAW RD/ line (pin 27 of U321) and then transfers it onto the
I/O BUS in parallel.

8.3.5.4 Disk Read

WARNING: Portions of this circuitry is PATENT PENDING.

During a read operation, RAW RD/ (U321, pin 27) indicates a flux
reversal; and RCLK (U321, pin 26) represents the flux-reversal spacing.
It is important that these signals are properly phased. In the MSC
8009, a counter-separator concept is used to achieve the necessary
phasing.

The major components making up the counter-separator circuitry are U301
and U302. The last-stage output of U302 (pin 11) in effect is RCLK; and
the other three stages of the counter provide the input gating for U301.
When there are no flux changes, U302 will free run at the clock rate as
set up by U317.

When a flux transition occurs, RAW RD/ will go "low" for two clock
periods. Simultaneously, pin 12 of U301 will be "low", preventing U302
from counting. After two clock cycles, U302 is then allowed to continue
counting, producing RCLK transitions.

100-0123-001

8-10

8.3.5.5 Disk Write

The falling edgE! of WD will cause pin 7 of U318 to go "low"; and the
outputs of the U312' latch configuration will be loaded into U310
(Parallel Access Shift Register). Following a short delay, pin 10 of
U313 will go "low'" -.- resetting U318 and terminating the loading of
U310. The pattel'°n of these levels that are loaded into U310 determines
the delay of WO/ :sent to the drive. This delay is established by
serially shifting the loaded pattern through U310 at a clock rate of
either 4-MHz (jumper' E6 to E5) or 8-MHz (jumper E6 to E7). For a normal
write operation, COMPEl will be "low", placing a "high" on pins 5 and 6
of U310, and a "l~:)wtt on pins 7 and 4. This will enter the logic pattern
of "0110" into the shift register.

The following cir,cuit conditions are then set up via the latching action
of U312 (pins 1 thru 6)

EARLY

o
1
o
1

LATE

o
o
1
1

DELAY

6
N&Delay

Illegal

where &. represents a specified delay. In turn, each of these
conditions will enter a different patterr" into U310.

8.3.5.6 Head Loading Delay

When a "low" is sent to the selected drive on HEAD/, the head will be
loaded against the disk surface. There is an internal 15~illisecond
delay within the formatter/controller chip so that the head can be fully
engaged. If more~ time is required, it must be programmed through
software. In other words this is accomplished by setting up Counter 0
of the 8253 Progr'ammable Timer for MODE 2 operation (Refer to Section
5).

When bit 2 of the command word is zero for either a read or write
operation, the built in 15-millisecond delay is disabled; and HLT is
sampled immediately for a logiC "1" from the 8253 (pin 10 of U17). The
"high" on HLD will prevent a logic "1" from appearing on HLT until the
preset pulse durati.on expires.

The clock for this operation is derived from U303, which accepts and
divides the 1-MH:z system clock by thirty-two. This concept allows the
MSC 8009 to accomodate full-size disks (50 milliseconds) to mini drives
(1.5 seconds).

100-0123-001

8-11

8.3.6 Acknowledge Cycle

When either the MSC 8009 or some other device on the MULTI BUS initiates
a data transfer, that device will assert either XACK/ or AACKI to
acknowledge the receipt of or the placement of data on the bus. Either
signal terminates the Wait state, which releases the Z80 for another
transaction.

A "low" on pin 9 of U45 indicates a RAtv1 request, allowing the assertion
of MACKI to cause pin 9 of U31 to go "high". This starts the timing
cycle for generating the acknowledge signals AACKI, XACKI and SAACKI.
For a ROM or 1/0 (LIORQ) request, either pin 1 or 9 of U45 will go "low"
to initiate the acknowledge-signal timing immediately.

8.3.1 Interrupt Request

An eight-bit vector (INTOI thru INT11) from the MULTIBUS is applied to
the Priority Interr"upt Control circuit U62 (8214). This unit determines
which input has the highest priority with INT11 being assigned the
lowest. Output INTI goes "low", resetting latch U30. This action
forces INTI to the zao "low", initiating an interrupt sequence.

The Z80 samples INTI (Interrupt) with the rising edge of the last clock
that occurs during the completion of any instruction. This signal is
accepted only when software control has not set the internal interrupt
enable flip-flop of the zao. During the Interrupt Request/Acknowledge
cycle, the zao activates M1 concurrently with IORQ/. The Wait condition
of the MSC a009 is terminated immediately; and the zao resumes operation
following two Wait states that the Z80 inserted during the
Request/Acknowledge cycle. The Interrupt vector PROM at this time sends
the Interrupt vector to the Z80.

R.3.1.1 Non-Maskable Interrupt

A unique feature of the zao is the Non-Maskable Interrupt or NMI, which
is not a MULTIBUS signal. In the standard MSC a009, the NMII signal is
normally found on pin 33 of P1 or pin 4 of P2. This signal is useful
for such purposes as power fail. If NMII conflicts with another
application that may use pin 33, the jumper between posts 10 and 11 must
be removed. The Watchdog Timer performs NMI by applying the signal
LNMII to the zao via jumper 64 to 65. If this feature is not needed; or
there are uses for the NMI feature, remove this jumper.

100-0123-001

8-12

The Z80 samples NI~II at the same time as the interrupt line INTI.
However, NMI line has the highest, interrupt priority; and it can not be
disabled under software control. The Z80 response to NMI is similar to
a meroory-read opel'·at.ion. The only difference is that the contents of
the data bus is ignored while the Z80 automatically stores the data
contents of the P140gr am Control register and jumps to location 0066 HEX
(CALL 0066H instrUiction) • The service routine for NMI must start at
this location l' if NMI is to be used.

As previously mentioned,jumper 64 to 65 must be installed if the
Watchdog Timer is to be used to generate NMI. If U58 is not retriggered
within 10 milliseconds, the level (LNMI/) 13 of U58 will be inverted to
generate the requtred negative-going edge for the Z80 NMI input.

8.3.8 HALT Request

Whenever the MSC Haag receives the software instruction HALT (OP Code
76), the Z80 internally executes NOP instructions until an interrupt is
received. If an l.nterrupt (either NMI or INT) is received, and the
internal Interrupt Enable flip-flop of the Z80 is set; the rising edge
of the next clock will terminate the HALT operation. In turn, the next
cycle will be an interrupt acknowledge corresponding to the type of
interrupt that was requested. The purpose for the NOP operation is to
provide MRQ so that DMA is still permitted. Each cycle during the HALT
operation is a nor'mal M1 cycle (Fetch) except that data read from the
memory is ignored.

100-0123-001

8-13

PIN NO.

6

7

8

9

11

12

13

14

SIGNAL

EXTERNAL!

LREQI

LIORQI

RMRQI

ACKENI

LOCMEM!

EXTDBI

RMRDI

Table 8-2

FUNCTION

Clocks BREQ latch U50 when the
MSC 8009 wants control of the
MULTIBUS.

Sets up counter U31 for XACK
and generates AACK/.

Used for 1/0 operation to
double AACK/

Signifies that a memory cycle
has been requested.

Enables line drivers (U60) to
appli AACK and XACK onto the
MULTTBUS.

Indicates that Z80 is trying
to access local RAM.

Controls the direction of data
flow between the MULTI BUS and
the MSC 8009.

Enables local RAM data latches
onto the 1/0 BUS.

SYSTEM CONTROL PROM SIGNAL IDENTIFICATION

100-0123-001

8-14

8.3.9 System Reset

When power is clpplied to the system, either a 556 (U70) generating an
100-millisecond pulse (approximately) via jumper 60 to 61; or INIT/
asserted onto the MULTIBUS by another device will initialize the MSC
8009. The signal INIT/ condition!) the Z80 as well as the circuits of
the MSC 800g for immediate operation. The buffered signal via jumper 60
to 61 also can be used to reset all other devices that may be sharing
the MULTIBUS.

R.4 SYSTEM CONTROL

The System Control PROM U45 accepts bus-control signals PROCA (Processor
Address), LMRDC/ (Local Memory Read), Ll"MTC/ (Local Memory Write),
LIORC/ (Local I/O Read) and TOWC/ (Local I/O Write), as well as the
select signals RAMSELI, ROMSEL, and IOSELI. This PROM accepts and
converts these Signals to the eight control levels listed in Table 8-2.
As an incidental function, U43 (pj.ns 4, 5 and 6) combines CS4/ with
LIOWC/ to generate LOAD/ -- the strobe for the 8214 Interrupt Controller
U62 and Bus Mode L.at(~h U22.

8.4.1 Bus State Machine

Two PROM (U32 and 1J33) and two octal latches (U39 and U40) control the
data-transfer functic:ms to and from the MULTIBUS. The following three
signals in addition to the next state address (U32, pins 6 thru 8) MRQ/
and IORQ/ set up the state machine.

1) EXTERNAL/ is PHOM generated (U45) and denotes that the address
information on L/ABUS is invalid for MSC 8009 addressing.

2) EXTRQ/ becomes a(~ti ve or "low" when another MULTIBUS master is·
requesting access to the MSC 8009 memory or I/O.

3) BGRNT/ indicates that the MSC 8009 has MULTIBUS control.

100-0123-001

8-15

The signals in this list are generated by the bus state machine:

1) PROCA signifies that the Z80 has control of the local buses. PROCA
inactive indicates a DMA cycle.

2) LIOADI permits the lower-eight bits of address to be transferred to
the upper-eight bits of the local-address bus.

3) LMADRI sends upper-eight bits of the Z80 address to the upper 8-bits
of the local-address bus.

4) EXTADRI enables local-address bus and MULTIBUS.

~) BDSMS is used to release the MULTI BUS control (See paragraph
8.4.1.1).

6} LOCC/ allows the Z80 to generate local memory or I/O commands.

7) EXTC/ lets the local command bus assert the MULTI BUS command
signals.

8) COUT/ places the output lines of the 8833 drivers (U44) at a "high"
impedence, inhibiting the MULTIBUS command signals from being
asserted onto the internal command bus.

8.4.1.1 Bus Exchange

After LOAD/ latches the level status of 104 and 105, the outputs on pins
2 and 14 of U22 define one of three bus modes (Refer to paragraphs
1.3.4.1). If both bits are "low", signal BDSMS (Bus Dismiss) from the
state machine forces both pin 9 of U50 and pin 6 of U50 ". high" This
is achieved through the gating action of U42, pins 4 thru 6. In turn,
BPRO/ is asserted and BUSY/ unasserted, releasing the MULTIBUS control
to another device. This same condition is set up when 105 is "high";
and 104 is "low", except M1/ is the controlling input of U29, pins 11
and 13. The last condition when 104 is "high" holds pin 6 of U42 "low".
In turn, BRPOI remains "high", and BUSY/ is "low", allowing the MSC 8009
to keep control of the MULTIBUS.

100-0123-001

8-16

8.4.2 Meroory State Machir.le

A PROM (U69) and an octal latch (U71) make up the memory state machine.
To start either a read or write cycle, LOCMEM/ (request from the bus
state machine) or' RDI (request from the processor) is asserted in
conjunction with a memory request (RMRQ/). A "low" is then applied to
pin 10 of U69 vial U36 (pin 1 thru 13) forcing pin 9 of U71 to go "high".
The low-to-high transition triggE~rs U58, preventing a double memory
cycle (U36, pin 13 goes "high") as well as generating MACK! for the
acknowledge operation (Refer to paragraph 8.3.4). The signal on pin 12
of U71 is sent to the memory controller U67; and the requested memory
cycle begins. 1hi:s controller generates the necessary signals as
required by the dynamic memory array. If the requested memory cycle is
a read, pin 9 (ROWE1) gates the data from the addressed location into
data latches U41, 49, 57 and 66.

The memory state m3chine becomes an arbitrating circuit in event that a
refresh and a normal memory request occurs simultaneously. Priority is
given to the requested memory cycle and allows that cycle to finish
before another cycle begins. If the requested cycle is a read, the data
is latched into the data latches, and then the system goes into a
refresh.

R.4.2.1 Refresh

The refresh cycle i!5 independent of other device or signal controls. If
no memory cycle is :in progress, the memory controller U67 asserts RFRQ/,
requesting a refresh and causing pin 6 of U71 to go "low". In turn, the
memory state mach:Lne responds with RFG; and the rising edge on pin 5,
U70 initiates the Refresh cycle. Delay line U68 provides the timing
signals as required by U67 to per'form a refresh.

100-0123-001

8-17

9.1 SCOPE

SECTION 9

ARITHMETIC PROCESSOR UNIT

This section presents the benefits and summarizes the command structure
of the Arithmetic Processor Unit (APU). Two optional APU's are
available -- the 9511 and the 9512. The 9511 provides 32-bit
floating-point and fixed-point arithmetic operation including
transcendental functions. For precise applications, the 9512 64-bit
floating-point APU can be used.

9.2 CAPABILITIES

The Z80 transfers data to and from the APU (U15) using conventional I/O
programming techniques. If the APU is busy and the Z80 tries to either
access data or send another corrnnand, the APU asserts PAUSE/ forcing the
Z80 to wait. When the APU completes the command in progress, the APU
then accepts the nE~W information and releases the Z80 for other
transactions. This simplifies programming because successive operations
can be performed without status checks. However, keep in mind that
while the Z80 is waiting on the APU, the processor cannot perform an
interrupt. If the application requires interrupts, the APU status
register must be ~)nitored and no attempt made to access data or send
another command to the APU when it is busy. The additional programming
consideration ensures that an interrupt will be serviced promptly.
Otherwise, delays up to six milliseconds can be encountered.

9.2.1 I/O Addressing

Data is transferred to and from the APU on two I/O addresses.
addresses are:

These

READ WRITE

D4 Data Data
D5 Status COIl11land

100-0123-001

9-1

9.3 9511 ARIllIMETIC PROCESSOR UNIT

9.3.1 Initialization

When power is first applied to the MSC 8009, the internal stack pointer
may not be properly aligned for the correct word boundary. The
procedure for correcting this situation is to load two bytes (16-bits)
of data representing a numerical "1" (See Figure 9-1). In other words,
the first byte will be "00000001"; and the second is eight zeros. Then
perform a 16- to 32-bit floating-point conversion using the FLTS
instruction (1DH) on this 16-bit word. Next, a read instruction is
performed to determine whether the Top-Of-Stack (TOS) is a numerical
"1" (00000001). If the byte is a numerical "1", another byte of data is
read until the byte equals some other value. Now the stack is aligned
for proper operation.

NOTE: The initialization procedure is also recommended
when a software error unaligns the internal-stack
pointer.

9.3.2 Stack Control

The 1/0 BUS interface with the 9511 includes access to an eight-level,
sixteen-bit wide data stack that operates a push-down or FILO stack.
Because fixed-point operands are sixteen-bits, eight such values may be
maintained within the stack. For 32-bit operations (fixed or floating
point), only four values can be stored. Data is transferred into the
stack a byte at a time with the least-significant byte entered first and
retrieved last. Thus, data should be moved to and from the 9511 in
multiples that are equal to the number of bytes appropriate to the
selected data format.

9.3.3 Data Format

The 9511 APU performs both 16- and 32-bit fixed-point operation. All
fixed-point operands and results are in binary two's complement format.
Numerical range for 16-bits is -32,168 to +32,161; and for the 32-bit
format, the range is -2,141,483,648 to +2,141,483,647.

The floating-point format uses a 32-bit word with bit 31
(most-significant bit) indicating sign of the mantissa; bit 30
representing the sign of the exponent; bits 24 thru 29 forming the
exponent, and bits a thru 23 providing the mantissa value.

100-0123-001

9-2

Flow Diagram:

Source Program:

1 0000 ED AD
2 0002 D3 D4
3 0004 ED AD
4 0006 D3 D4
5 0008 EDAO

6 OOOA D3 D5
7 OOOC DB D4
8 OOOE B9
9 OOOF 28 FB

LOAD NUMERICAL 1
INTO APU

(2-BYTES)

CONVER'T'TO!
FLOATING~

READ [JPU
(1-BYTE)

---........

LDI
OUT
LDI
OUT
LDI

OUT
HERE: IN

CMP
JRZ

yes

no

sro0

A,01H
OD4H
A,OOH
OD4H
A,1DH

OD5H
OD4H
01H
HERE

Figure 9-1

;BYTE 1 IN ACCUMULATOR
jSEND OUT BYTE 1
jBYTE 2 IN ACCUMULATOR
;SEND OUT BYTE 2
;FLTS COMMAND IN
ACCUMULATOR
;PERFORM FLTS
;TOS IN ACCUMULATOR
;TOS=1?
jREREAD TOS IF "1"

9511 INITIALIZATION SEQUENCE

100-0123-001

9-3

9.3.3.1 Command Format

A single byte having the following format specifies the command that is
to be executed.

~~_4 ______ 3 ____ ~y_2 ______ 1 _____ 0 __ JJ
SOREQ SINGLE FIXED OPERATION CODE

Bits 0 thru 4 specify the operation; bits 5 and 6 identify the data
format; and a "1" in bit 7 indicates that the command has been
completed.

9.3.3.2 Status Register

An internal status register having the following format provides device
status information to the MSC 8009.

L1:ILJ:bd __ 4 __ -3v~--2_. __ 1~b_lJ
BUSY SIGN ZERO ERROR CODE CARRY

If the BUSY BIT is a "1", the other status bits will not be defined.
These bits as defined are valid only when BUSY is "0" -- the operation
is complete.

SIGN (Negative = 1) represents the sign of the value that
is contained in the top of the stack.

ZERO (value is zero = 1) denotes the top of the stack value
is zero.

100-0123-001

9-4

ERROR CODE shows the validity of the last operation based on
the following codes:

0000 - no error
1000 - divide by zero
o 'j 00 - square root or log of a

negative number
1 '100 - argument of inverse sine

or cosine, or e~ too large
XX10 - underflow
XX01 - overflow

CARRY (carry/borrow = 1) indicates that the previous operation
resulted in either a carry or borrow
from the most-significant bit.

9.3.3.3 Floating Point Format

The range of values that the following format will represent is
+2.7x10-~o to 9.2x1:0'8 including ZE~ro.

MS ES EXPONENT MANTISSA

The 32-bit floating-point value is made up of a 24-bit fractional value
(mantissa); a 7-·bit exponent value including sign (ES), expressed as a
two's complement hav:ing a range of -64 to +65; and the most-significant
bit representing the sign of the mantissa (positive is "0" and negative
is "1") for a total of 32 bits.. The binary point is assumed to be to
the left of the roost-significant mantissa bit (bit 23). All
floating-point data values must be normalized. Bit 23 must be a "1",
except for the value zero, when all bits are zero.

100-0123-001

9-5

9.4 95'1 INSTRUCTIONS

To make the following information easy to use, a shorthand notation will
be employed to describe each instruction and its operation. For
instance a single, upper-case letter will represent a sixteen-bit
quantity, while a double, upper-case letter will denote a thirty-two bit
quantity. A value enclosed in parenthesis under NOTATION will indicate
floating-point. The following symbols and abbreviations will be used to
describe the instruction set in the following tables and paragraphs.

A

B

BOS
C
CC
EF
NOS
PG
R
S
SC
TOS
X

* w<=v
w<=flv

w<=>v

TOS quantity prior to executing the
instruction
NOS quantity prior to executing the
instruction
Bottom Of Stack
Carry bit of the Status register
Clock cycle
Error field of the Status register
Next Of Stack
Section 9 page numbers
Result of the executed operation
Sign bit of the Status register
Stack content as defined in Table 9-1.
Top Of Stack
Status register bit is affected
Status register bit is unaffected
Quantity "w" is replaced by quantity "v"
Quantity "w" is equal to the complement of
the quantity "v"
Quantities "w" and "v" are exchanged.

100-0123-001

9-6

9.4. 1 Data And Stack Mani.pulation Operations

INSTRUCTION

OP CODE PG

CHSD 15
CHSF 16
CHSS 16
FIXD 21
FIXS 21
FLTD 22
FLTS 22
NOP 25
POPD 25

POPF 25

POPS 27

PTOD 26

PTOF 26

PTOS 27

PUPI 27

XCHD 33
XCHF 33
XCHS 33

NO

T08
TO~'

<=
)<=

T08 <=
=(
(A

AA<:
A<::
(AI
(AI
No
TO~'

L) <
~) <
Op
)<=
)<=
)<=
)<=
)<=
)<=
;<=
)<=
)<=
)<=
)<=
)<=
)<=
)<=
L) <

BO~'
TO~'
BO~'
T~'
BO~'
TO~
N~'
TO~'
NOf
TO~'
NO~'
T~'
N~'
(AI
AA<:
A<::

=(
8

TATION

O-AA
fICAA)
O-A
AA)
A)
=AA
=A
eration
BB
AA
(BB)
(AA)
B
A
AA
AA
(AA)
(AA)
A
A
~
(AA)
=(88)
BB)

...

CC SC

26-28 D
16-20 D
22-24 M
90-336 G
90-214 0
56-342 G
62-156 Q

4
12 B

12 B

10 P

20 A

20 A

16 R

16 F

26 c
26 c
18 L

STATUS REG.

S Z ER C

XX X *
X X X *
X X X *
X X X *
X X X *
X X * *
X X * *
* * * *
X X * *

X X * *

X X * *

X X * *

X X * *
X X * *
X X * *

X X * *
X X * *
X X * *

100-0123-001

9-7

9.4.2 16-Bit Fixed-Point Operations

INSTRUCTION
NOTATION

OP CODE PG

SADD 29 TOS<=A+B
SDIV 29 TOS<=B/A

If A=O
SMUL 30 TOS<=[A X B]
SMUU 31 TOS<=[A X B]
SSUB 32 TOS<=B-A

9.4.3 32-Bit Fixed-Point Operations

INSTRUCTION
NOTATION

OP CODE PG

DADD 17 TOS<=AA+BB
DDIV 17 TOS<= BB/AA

If AA=O
DMUL 18 TOS<=[AA X BB]
DMUU 18 TOS<=[AA X BS]
DSUB 19 TOS<= SB-AA

CC SC

15-18 N
84-94 S

14 S
84-94 S
80-98 S
30-32 N

CC SC

20-22 E
196-210 H

18 H
194-210 H
182-218 H
38-40 E

STATUS REG.

S Z ER C

X X X *
X X X *
X X X *
X X X *
X X X *
X X X *

STATUS REG.

S Z ER C

X X X X
X X X *
X X X *
X X X *
X X X *
X X X X

100-0123-001

9-8

9.4.4 32-Bit Floating-Po:int Primary Operations

INSTRUCTION

OP CODE PG

FADD 20

FDIV 20

FMUL 23
FSUB 23

TATION NO

TO~' ><= (AA)+(BB)
If (A A)=O
TO~')<=
If (A

=(
)<=

TOS<
TO~'

(BB)/(AA)
A)=O
AA) x (BB)
(BB)-(AA)

CG

54-368
18

154-184
22

146-168
70-370

9.4.5 32-Bit Floating-Point Derived Operations

INSTRUCTION

OP CODE PG

ACOS 14
ASIN 14
AT AN 15
COS 16
EXP 19

LOG 24

LN 24

PWR 28
SIN 30

SQRT 31
TAN 32

NO' rATION

~os TOS<=(
TOS<=s
TOS<=t
TOS<=o
TOS<=e
If l (A
TOS<=l
If (AA
TOS<=l
If (AA
TOS<=(
TOS<=s
If I (A
TOS::!
TOS<=t
If l (A

(AA)
in (AA)
,an (AA)
,os (AA)
!

A)I>1x2
og (AA)
)<0
n (AA)
.)<0
BB)
in (AA)
A) 1<2

(AA)
an (AA)
A) t<2

CC

6304-8284
6230-7938
4992-6536
3840-4878
3794-4878

34
4474-7132

20
4298-6956

20
8290-12032
3796-4808

30
782-870

4894-5886
30

STATUS REG.
SC

S Z ER C

H X X X *
E X X X *
H X X X *
H X X X *
H X X X *
H X X X*

STATUS REG.
SC

S Z ER C

J X X X *
J X X X *
I X X * *
I X X * *
I X X X *
I X X X *
I X X X *
I X X X *
I X X X *
I X X X *
K X X X *
I X X * *
I X X * *
G X X X *
I X X X *
I X X X *

100-0123-001

9-9

BEFORE

A TOS
B

C

D

-- 32 ___ -
A

BEFORE

A TOS
B

C

c
BEFORE

A TOS

E

AFTER BEFORE

A A

A B

B C

AFTER BEFORE

B A

A B

C

AFfER BEFORE

R A
C B

D C
D

Table 9-1
STACK CONFIGURATIONS

AFTER

TOS B

C

D

B

AFTER

TOS R

B

C

o
AFfER

TOO n
A

F

100-0123-001

Q-10

BEFORE AFTER BEFORE AFTER

A TOS R A TOS R -----I
B B B C

C C C D

D D

---- 32 ____ - - 32 --- -".

G H

BEFORE AFTER BEFORE AFTER

A TOS A TOS R

B B

C C

I J
-----------------------------~.-----------------------------------

BEFORE AFTER

A TOS
B

C

K
-----------------------------~----------------------------------

Table 9-1 (cont'd)
STACK CONFIGURATIONS

100-0123-001

9-11

BEFORE

A TOO
B

C

D

E

F

G

H
~ 16 _____

L

BEFORE

A TOS
B

C

D

E

F

G

H
~ 16 ___

N

AFTER BEFORE

B A

A B

C C

D D

E E

F F

G G

H H

~16-+ ~ 16--.

AFTER BEFORE

R A

C B

D C

E D

F

G

H

A

f4-- 16 -----

Table 9-1 (cont'd)
STACK CONFIGURATIONS

TOS

M

TOS

o

AFTER

R

B

C

D

E

F

G

H
~ 16 ___

AFTER

R

Bu
Bl

Cu

Cl

100-0123-001

9-12

BEFORE AFTER BEFORE AFTER

A TOO B A TOS Ru
B C B RI
C D C B
D E D C
E F E D

F G F E
G H G

H A H

- 16 _____ - 16 _____ I+- 16

p Q
---------------------,--------1-"--------------------------------__

BEFORE AFTER BEFORE AFTER

A TOS A A TOS R

B A B C
C B C D

D C D E
E D E F
F E F G

G F G H

H G H
I+- 16 ____ 16 ____ - 16 --+ -

R s
---------------------,--------~.---------------------------------

Table 9-1 (cont'd)
STACK CONFIGURATIONS

100-0123-001

9-13

9.5 9511 OP CODE FORMATS

ACOS 32-Bit Floating-Point Inverse Cosine

The 32-bit floating-point operand A at TOS is replaced with the 32-bit
floating-point inverse cosine of A; and the other initial operands in
the stack are lost. The resultant value 1s 1n radians ranging from zero
to 'PI'. All input-data values within the limits of -1.0 to +1.0, will
be accepted. Values outside this range generate an error code of "1100"
in the error field of the Status register.'

..... 1 s_r 1_0 1_0----.1_0 __ 1"--0a-_
1 1 _1 ______ 0 1 86/06

Accuracy: Maximum relative error of 2 X 10 -., over the
valid-input range.

Clock Cycles: 6304 to 8284
Status: S, Z, EF
Stack Contents: J

ASIN 32-Bit Floating-Point Inverse Sine

The 32-bit floating-point operand A at TOS is replaced with the 32-bit
floating-point inverse sine of A; and the other initial operands in the
stack are lost. The resultant value is in radians ranging from - ~ /2
and + IT /2 radians. All 1nput-data values within the range of -1.0 to
+1.0 will be accepted. Values outside this range generate an error code
of "1100" in the error field of the Status register.

I sr I 0 I 0 I 0 'I 0 I 1 o 1

Accuracy: Maximum relative error of 4 X 10- 7 over the
valid-input range.

Clock Cycles: 6230 to 7938
Status: S, Z, EF
Stack Contents: J

85/05

100-0123-001

9-14

ATAN 32-Bit Floating-Poirlt Inverse Tangent

The 32-bit float.ing-point operand A at TOS is replaced by the 32-bit
floating-point inverse tangent of A; and operand B (NOS) is unchanged.
All other initial operands are lost. The resultant value is in radians
ranging from -, 1'(/2 to + f(/2. All input-data values must be in
floating-point for'mat.

I sr I 0 J 0 I 0 I 0 I 1 I 1 I 1 I 81101

Accuracy: Maximum. r.~lative error of 3 X 10-7 over the
input-data range.

Clock Cycles: 4992 to 6536
Status: S, Z
Stack Contents: I

CHSD 32-Bit Fixed-Point Sign Change

The 32-bit fixed,-point two t s complement integer A at TOS is subtracted
from zero; and the rE~sul tant R value replaces A at TOS. other entries
in the stack are not changed. Since no positive equivalent exists when
integer A is input a8 the most-negative value possible, an overflow
condi tion (XXO 1) will be set up in the error field of the Status
register; and :lnteger' A is then reentered into TOS unchanged.

~ 0 I_1~1 __ 1~_o~I_1~_0~ __ 0~
Clock Cycles: 26 to 2'8
Status: S, Z, EF(o"erflow)
Stack Contents:: 0

B4/34

100-0123-001

q-15

CHSF 32-Bit Floating-Point Sign Change

The sign for the mantissa of the 32-bit floating-point operand A at TOS
is inverted. The result replaces A at TOS. Other stack entries are
unchanged. If A is input as zero (mantissa most-significant bit is
zero), no change takes place .

I sr I 0 I 0 I 1 J 0 I 1 I 0 _-----._ _ ________ ---. ________ 1--...1 95/15

Clock Cycles: 16 to 20
Status: S, Z
Stack Contents: D

CHSS 32-Bit Fixed-Point Sign Change

The 16-bit fixed-point two's complement integer operand A at TOS is
subtracted from zero. The result replaces A at TOS. All other operands
are unchanged. Since no positive equivalent exists when integer A is
input as the most-negative value possible, an overflow condition (XX01)
will be set up in the error field of the Status register; and the
integet .. A is then reentered into TOO unchanged.

{ir I 1 I 1 I 1 I 0 I 1 I 0 I 0 I F4114

Clock Cycles: 22 to 24
Status: S, Z, EF(overflow)
Stack Contents: M

COS 32-Bit Floating-Point Cosine

The 32-bit floating-point operand A at TOS is replaced by a 32-bit
floating-point cosine of Aj-and the resultant value will be in radians.
All initial operands on the stack are lost except B (NOS), which remains
unchanged. Any input-data value that fulfills the data format will be
accepted. All input values are scaled to fall within the range of
- rr 12 to + 1{ 12 radians.

{ir I 0 I 0 o

Accuracy: Maximum relative error
input-data values in
+2 T{ radians.

Clock Cycles: 3840 to 4818
Status: S, Z
Stack Contents: I

of 5.0 X 10
the range of

1 83/03

for all
-2 T{ to

100-0123-001

9-16

DADD 32-Bit Fixed-Point Add

The 32-bit fixed-poi.nt two's complement integer operand A at TOS is
added to the 3:2-bit fixed-point two's complement integer operand B at
NOS. The sum replaces operand B; and then moved up into the TOS, while
operand A is tl'''ansferred to the bot tom of the stack unchanged. The
other operand:s in the stack remain unchanged except operand B, which is
lost. If a car'ry is generated, it will be recorded in the Status
register. If the rE~sult is too large and cannot be represented, the
least-signifieant 32-bits of the sum are returned; and an overflow
status (XXO,) will be recorded ~

I sr I 0 J~I _'--L-_o---'-._' ______ 1 --,--_0 ______ 0---1

Clock Cycles: 20 to 22
Status: S, Z, EF
Stack Contents: E

DDIV 32-Bit Fixed-Point Divide

AC/2C

The 32-bit fixed-point two's complement integer operand B at NOS is
divided by the 32-bit fixed-point two's complement integer operand A at
TOS. The 32-bit integer quotient. replaces B; and then the stack is
moved up so that the quotient will occupy TOS. A remainder will not be
generated. Both operands A and B are lost; and the other operands in
the stack remain unchanged. If A is zero, the quotient will be set to
equal B; and a divide-by-zero error (XX01) will be designated in the
Status register. If either A or B is the most-negative value possible,
the quotient will be meaningless; and an overflow error (XX01) will be
entered in the St.atus register.

L.1_s_r_,,--_c;-1 1

Clock Cycles: 196 to 210 (A=O)
18 (A=O)

Status: S, Z, EF
Stack Contents: H

1 1 1 AF/2F

100-0123-001

9-17

DMUL 32-Bit Fixed-Point Multiply, Lower

DMUU

The 32-bit fixed-point two's complement integer operand A at TOS is
multiplied by the 32-bit fixed-point two's complement integer operand B
at NOS. The 32-hit least-significant half of the product replaces B;
and the stack is then moved up so that the value will occupy TOS. The
most-significant half of the product will be lost as well as operands A
and B. The other operands in the stack remain unchanged.

I sr I 0 1 1 0 1 1 1 0 AE/2E

Clock Cycles: 194 to 210
Status: S, Z, EF (overflow)
Stack Contents: H

32-Bit Fixed-Point Multiply, Upper

The 32-hit fixed-point two's complement integer operand A at TOS is
multiplied by the 32-bit fixed-point two's complement integer operand B
at NOS. The 32-bit most-significant half of the product replaces Bj and
the stack is then moved up so that the resultant will be at TOS. The
least-significant half of the product is lost as well as operands A and
B. All other original operands in the stack are not affected. If
either A or B was the most-negative value possible, an overflow status
is set into the Status register; and the product will be meaningless.

o

Clock Cycles: 182 to 218
Status: S, Z, EF (overflow)
Stack Contents: H

o B6/36

100-0123-001

9-18

DSUB 32-Bi t Fixed-Point Subtract

The 32-bit fixed-point two's complement operand A at ros is subtracted
from the 32-bit f:ixed-point two's complement operand B at NOS. The
difference repla(~es operand B; and the stack is moved up so that the
differences will no~, be at ros. Operand A is transferred to the bottom
of the stack. JUI other operands in the stack are unchanged except B,
which is lost.o .

I sr I 0] 1 I, 0 [1 I 1 I 0) 1 I AD/2D

Clock Cycles: 38 to 40
Status: S, Z, carry, EF (overflow)
Stack Contents: E:

EXP 32-bi t Floating-Point e'x,.

The base of the na:tural logarithm is raised to the exponent value that
is specified by the 32-bit floating-point operand A at ros. The result
replaces A. All original operands of the stack are lost except B, which
remains unchanged. All input-data values within the range of -1.0 X
2+ 5 to + 1.0 X 2"' s w'ill be accepted. Input values outside this range will
cause a code of" 1 100" to be entered in the error field of the Status
register.

o 1 o I 1 I 0 I 8A10A

Accuracy: Max:imum rE~lative error of 5.0 X 10- 7 over the
valid input-data range.

Clock Cycles: 3794 to 4878 (IAI < 1x2 5)

:3 4 <I At> 1 x 2 s)
Status: S, Z, EF
Stack Content: I

100-0123-001

9-19

FADD 32-Bit Floating-Point Add

The 32-bit floating-point operand A at TOS is added to the 32-bit
floating-point operand B at NOS. The result replaces B; and the stack
is then moved up so that the sum occupies TOS. Operands A and Bare
lost; while the other operands in the stack remain unaffected. Exponent
alignment before the addition and normalization of the result accounts
for the variation in execution time. Both exponent overflow (XX01) and
underflow (XX01) are recorded in the Status register. In either case,
the mantissa is correct; and the exponent is offset by 128.

I sr o

Clock Cycles: 54 to 24
Status: S, Z, EF
Stack Contents: H

o

FDIV 32-Bit Floating-Point Divide

1 o o o o 80/10

The 32-bit floating-point operand B at NOS is divided by the 32-bit
floating-point operand A at TOS. The quotient replaces B; and the stack
is then moved up so that the quotient is at TOS. Operands A and Bare
lost, while the other operands in the stack remain unchanged. If
operand A is zero, the result will be equal to B; and the divide-by-zero
error (1000) will be recorded in the Status register. Either exponent
overflow (XX01) or underflow (XX01) will be reported in the Status
register. In either case, the mantissa portion of the result is
correct; and the exponent portion is offset by 128.

~sr I 0 o I 1 I 0

Clock Cycles: 154 to 184 (A=O)
22 (A=O)

Status: S, Z, EF
Stack Content: H

o 1 1 93/13

100-0123-001

9-20

FIXD 32-Bit Floating-Point to 32-Bit Fixed-Point Conversion

The 32-bit floating-point opeY'and A at TOS is converted to a 32-bit
fixed-point two's complement integer. The result replaces A. Both
operands A and D (BOS) are lost, while the other operands are not
affected. If the integer portion of A is larger than 32 bits when
converted, an overflow error (XX01) will be recorded; and A will remain
unchanged. However J operand D wi.ll still be lost.

I sr 1 0 JIL....-_0 ______ '___....._1 _______ '&-_1 ______ 0....."

Clock Cycles: 90 to 336
Status: S, Z, EF (overflow)
Stack Contents: G

FIXS 32-Bit Floating-Point to 16-Bit Fixed-Point Conversion

9E11E

The 32-bit floating-.point operand A at TOS is converted to a 16-bit
fixed-point two's complement integer. The resultant value replaces the
lower half of A; and the stack is then moved up two bytes so that the
result is at ros. Operands A and D (BOS) are lost, while operands Band
C are unchanged,. If Band Care 32-bit, they will appear as upper (u)
and lower (1) halves on the 16-bit wide stack. If the integer portion
of A is larger than '5 bits when converted, the overflow (XX01) status
will be set; and A will remain unehanged. However, operand D will still
be lost.

sr 10] 0 I' ,-,
Clock Cycles: 90 to 214
Status: S, Z, EF (overflow)
Stack Contents: 0

, , 1 9F/1F

100-0123-001

9-21

FLTD 32-Bit Fixed-Point to 32-Bit Floating-Point Conversion

The 32-bit fixed-point two's complement integer operand A at TOS is
converted to a 32-bit floating-point number. The result replaces A at
TOS. Operands A and D (BOS) are lost; and the other operands in the
stack are unchanged.

~1_s_r~~o __ ~_o __ ~_1~ __ 1 __ ~_1 __ ~_O~ __ 0--Jl 9C/lC

Clock Cycles: 56 to 342
Status: S, Z
Stack Contents: G

FLTS 16-Bit Fixed-Point to 32-Bit Floating-Point Conversion

The 16-bit fixed-point two's complement integer A at ros is converted to
a 32-bit floating-point number. The lower-half of the result operand
(Rl) replaces A; and the upper half (Ru) replaces H. The stack is then
moved down so that Ru occupies rose Operands A, F, G, and H (see Stack
Configuration Q) are lost; and operands B, C, D and E are unchanged.

I sr I 0
I

0 1 1 1 0 1 9D/1D

Clock Cycles: 52 to 156
Status: S, Z
Stack Contents: Q

100-0123-001

Q-22

FMUL 32-Bit Floating-Point Multiply

The 32-bit floating-point operand A at TOS is multiplied by the 32-bit
floating-point operand B at NOS. The normalized resultant value
replaces B and thEm the stack is moved up so that the result occupies
TOS. Operands A and B are lost; and the other operands in the stack are
unchanged. E:ithE~r exponent overflow (XX01) or underflow (XX01) will be
reported in the Status register. In either case, the mantissa portion
of the result wj.ll be correct; and the exponent portion will be offset
by 128.

sr I 0 J_o ____ 1_1 _____ _0 ______ 0 ~_1----._0--,

Clock Cycles: 146 TO 168
Status: S, Z, EF
Stack Contents: H

FSUB 32-Bit Floating-·Point Subtraction

92/12

The 32-bit floating-point operand A at ros is subtracted from the 32-bit
floating-point. operand B at NOS. The normalized difference replaces B;
and the stack is then moved up so that the difference occupies rose The
other operands tn the stack arE~ unchanged. Exponent alignment before
the subtract1.on and normalizatjLon of the result account for the
variation in eXE!cution time. Either exponent overflow (XX01) or
underflow (XXO 1) ~,ill be reported in the Status register. In either
case, the mantissa portion of the result will be correct; and the
exponent porti.on j.s offset by 128.,

1 sr 10] 0 I 1 1 > I 0

Clock Cycles: 70 to 370 (A=O)
26 (A=O)

Status: S, Z, EF
Stack Contents: H

° 1 91/11

100-0123-001

9-23

LOG 32-Bit Floating-Point Common Logarithm

The 32-bit floating-point operand A at TOS is replaced by the 32-bit
floating-point common logarithm (Base 10) of A. All the original
operands in the stack are lost; except B (NOS), which is unchanged. The
LOG function accepts any positive input-data value that can be
represented by the data format. If the LOG of a negative value is
attempted, an error status of "0100" will be set in the Status register.

sr o o o 1 o o o 88/08

Accuracy: Maximum absolute error of 2.0 X 10-7 for the input
range from 0.1 to 10; and a maximum relative error
of 2.0 X 10- 7 for positive values less than 0.1 or
greater than 10.

Clock Cycles: 4474 to 7132 (A)O)
20 (A(O)

Status: S, Z, EF
Stack Contents: I

LN 32-Bit Floating-Point Natural Logarithm

The 32-bit floating-point operand A at TOS is replaced by the 32-bit
floating-point natural logarithm (Base e) of A. All operands in the
stack are lost except B (NOS), which is unchanged. The LN function
accepts all positive input-data values that can be represented by the
data format. If LN of a negative number is attempted, an error status
of "0100" will be set in the Status register.

sr o o o 1 o o 1 89/09

Accuracy: Maximum absolute error of 2 X 10-7 for the input
range from e· 1 to e, and a maximum relative error
of 2.0 x 10-~ for positive values less than e- 1

or greater than e.
Clock Cycles: 4298 to 6956 (A)O)

20 (A(O)
Status: S, Z, EF
Stack Contents: I

100-0123-001

q-24

NOP No Operation

The NOP command pE~rforms no interna1-data manipulations. It may be used
to set or clear the~ service request interface line without changing the
stack content ..

o o 80/00

Clock Cycles: 4
Status: The status byte is reset to all zeros.

POPD 32-Bit Stack Pop

The 32-bit stack is moved up so that the original NOS becomes the new
roo. The original ros rotates to the bottom of the stack. All operand
values are unchanged. Both POPD and POPF perform the same operation.

I sr I oJ __ '~ __ ~ __ '~_o ____ o~~o~
Clock Cycles: '2
Status: S, Z
Stack Contents: 13

POPF 32-Bi t Stack Pop

B8/38

The 32-bit stack is moved up so that the original NOS becomes the new
TOS. The original ros rotates to the bottom of the stack. All operand
values are unchanged. Both POPF and POPD perform the same operation.

I sr liJ_o ___ '_I -._, ___ o __ o __ o_1 98/18

Clock Cycles: 12
Status: S, Z
Stack Contents: B

100-0123-001 .

9-25

POPS 16-Bit Stack Pop

The 16-bit stack is moved up so that the original value NOS becomes the
new TOS. The previous value in TOS rotates to the bottom of the stack.
All operand values are unchanged.

[sr 1 1 1

Clock Cycles: 10
Status: S, Z
Stack Contents: P

PTOD 32-Bit TOS Onto Stack

1 1 o o o F8/78

The 32-bit stack is moved down; and the previous TOS is copied into the
new TOS location. Operand D (BOS) is lost. All other operand values
are unchanged. Both ProD and PTOF execute the same operation.

I sr o

Clock Cycles: 20
Status: S, Z
Stack Contents: A

PTOF 32-Bit TOS Onto Stack

1 1 o 1 1 1 B7/37

The 32-bit stack is moved down; and the previous TOS is copied into the
new TOS location. Operand D (BOS) is lost. All other operand values
are unchanged. Both PTOD and PTOF execute the same operation.

I sr 0 0

Clock Cycles: 20
Status: S, Z
Stack Contents: A

1 0 1 1 1 97/17

100-0123-001

9-26

PTOS Push '6-Bit TOS Onto Stack

The '6-bit stack l.S moved down; and the previous TOS is copied into the
new TOS location. Bottom of the stack operand is lost. All other
operand values arE~ unchanged.

I sr i ' J_, ______ , _L 0 I '
Clock Cycles: 16
Status: S, Z
Stack Contents: H

PUPI Push 32-Bit Floating-Point f(

1 1 F7/77

The 32-bit stack :ls moved down so that the previous TOS occupies the new
NOS location. Th4~ 32-bi t floating-point constant f(is entered into the
new TOS location. The operand in BOS is lost. The other original
operands are unchanged.

sr ~ __ 0 __ ~_1 __ ~,_1 __ ~_0 __ ~_1 __ ~_0~

Clock Cycles: 16
Status: S, Z
Stack Contents: F

91/1A

100-0123-001

q-27

PWR 32-Bit Floating-Point XY

The 32-bit floating-point operand B at NOS is raised to the power that
is specified by 32-bit floating-point operand A at TOS. The result
replaces B; and the stack is moved up so that the result now occupies
the TOS. All original operands are lost; except operand C (See Stack
Configuration K) -- it is not changed. The PWR function accepts all
input-data values that can be represented in the data format for operand
A, and all positive values for operand B. If operand B is negative, an
error pattern of "0100" will be entered into the Status register. The
EXP and LN functions are used to generate PWR based on the relationship
of B=EXP [A(LN B)]. Thus, if the term [A(LN B)] is outside the range of
-1.0 X 2+~ to +1.0 X 2+5, an error pattern of "1100" will then be
recorded. Also underflow (XX01) and overflow (XX01) conditions can
occur.

I sr o o I 0 1 o 8B/OB

Accuracy: The error performance for PWR is a function of the LN and EXP
performance expressed by:

[(Relative Error) PWR] = [(Relative Error) EXP + [A (Absolute Error) LN]

The maximum relative error for PWR occurs when A is at its maximum value
while [A(LN B)] is near 1.0 X 2 5

; and the EXP error is also at its
maximum. For most applications, the relative error for PWR will be less
than 7.0 X 10·'7.

Clock Cycles: 8290 to 12032
Status: S, Z, EF
Stack Contents: K

100-0123-001

9-28

SADD 16-Bit Fixed-Point Add

The 16-bit fixed-point two's complement integer operand A at ros is
added to 16-bit fixed-point two's complement integer operand B at NOS.
The result sum rE~places B; and the stack is then moved up so that ros
holds the final sum. Operand B is lost; and all the other operands are
unchanged. If the addition generates a carry bit, it will be recorded
in the Status register. If an overflow (XX01) occurs, it too will be
entered into 'the Status register; and the sixteen least-significant bits
of the sum are re'tur'ned to ros.

~~~_0~r_-_1~1~1 ~O~O~ 
Clock Cycles: 16 to 18 
Status: S, Z, C, EF 
Stack Contents: N 

SDIV 16-Bit Fixed-Point Divide 

EC/6C 

The 16-bit fixed-point two's complement integer operandB at NOS is 
di vided by the 16·-bi t fixed-point two's complement integer operand A at 
ros. The 16-bit integer quotient replaces B; and the stack is moved up 
S0 that the quotient occupies rose No remainder is generated. Both 
operands A and B are lost, while all other operands are unchanged. If A 
is zero, the final result will be set equal to B; and a divide-by-zero 
error (1000) will be recorded. 

Clock Cycles: 84 to 14 
Status: S, Z, EF 
Stack Contents: S 

EF/6F 

100-0123-001 

9-29 



SIN 32-Bit Floating-Point Sine 

The 32-bit floating-point operand A at TOS is replaced by the 32-bit 
floating-point sine of A whet'e A is in radians. All operands are lost 
except B, which is unchanged. Any input-data value that can be 
represented by the data format will be accepted. All input values are 
scaled to fall within the interval - ~ 12 to + ~ /2 radians. 

[ sr I 0 I 0 1 0 J 0 I 0 1 o 82/02 

Accuracy: Maximum relative error of 5.0 X 10.7 for input values in the 
range of -2 ~ to +2 ~ radians. 

Clock Cycles: 

Status: S, Z 
Stack Contents: 

3796 to 4808 
( I AI >2-11 

) 

30 (1 At <2 -u ) 

I 

SMUL 16-Bit Fixed-Point Multiply, Lower 

The 16-bit fixed-point two's complement integer operand A at TOS is 
multiplied by the 16-bit fixed-point two's complement integer operand B 
at NOS. The 16-bit least-significant half of the product replaces Bj 

and the stack is then moved up so that the result occupies TOS. The 
most-significant half of the product is lost as well as the original 
operands A and B. All other operands are unchanged. The overflow 
(XX01) status bit will be set if the discarded upper half was non-zero. 
If either A or B is the most-negative value that can be represented in 
the format, that value becomes the result; and an overflow (XX01) will 
be entered in the Status register. 

I sr 1 1 0 1 1 I 0 EE/6E 

Clock Cycles: 84 to 94 
Status: S, Z, EF 
Stack Contents: S 

100-0123-001 

9-30 



SMUU 16-Bit Fixed-Point Multiply, Upper 

The 16-bit fixed-point two's complement integer operand A at TOS is 
multiplied by the '16-bit fixed-point two's complement integer operand B 
at NOS. The 16-bit least-significant half of the result replaces Bj and 
the stack is movE~d up so that the product occupies TOS. The 
least-significant half of the product is lost as well as operands A and 
B. All other operands are unchanged. If either A or B is the 
most-negative value that can be represented in the format, that value 
will be returned as the result; and an overflow (XX01) status will be 
set up in the Status register. 

I sr I 1~~1~ __ ~._0~ __ 1~_1~_0~ 
Clock Cycles: 80 to 98 
Status: S, Z, EF 
Stack Contents: S 

SQRT 32-Bi t Floating,-Point Square Root 

F6/76 

The 32-bit floating-point operand A at TOS is replaced by the 32-bit 
floating-point squar~e root of A. ~th the original operands A and D 
(BOS) are lost. TIle other operands in the stack are not changed. SQRT 
will accept any posj~ti ve input-data value that can be represented by the 
data format. If A is negative, an error code of "0100" will be entered 
in the Status register. 

IsrLiJoloT>lo 
Clock Cycles: 782 TO 870 
Status: S, Z, EF 
Stack Contents: G 

o 1 81/01 

100-0123-001 

9-31 



SSUB 16-Bit Fixed-Point Subtract 

The 16-bit fixed-point two's complement integer operand A at TOS is 
subtracted from 16-bit fixed-point two's complement integer operand at 
NOS. The difference replaces B; and the stack is then moved up so that 
the result occupies TOS. All operands are unchanged except operand B, 
which is lost. If the subtraction generates a borrow, it will be 
reported in the carry bit of the Status register. If A is the 
most-negative value that can be represented in the format range, an 
overflow status (XX01) will be entered; and the sixteen 
least-significant bits of the result are returned to TOS. 

I sr 1 

Clock Cycles: 30 to 32 
Status: S, Z, C 
Stack Contents: N 

TAN 32-Bit Floating-Point Tangent 

a 1 1 a 1 ED/6D 

The 32-bit floating-point operand A at TOS is replaced by the 32-bit 
floating-point tangent of A (in radians). All operands in the stack are 
lost except operand B, which is unchanged. The TAN function will accept 
any input-data value that can be represented in the data format. All 
input-data values are scaled to fall within - n /4 to + n /4 radians. 
TAN is unbounded for input values near odd multiples of n /2. In such 
cases, an overflow (XX01) will be set in the Status register. For 
angles less than 2 ~ radians, TAN returns the original operand A as the 
tangent of A. 

a a o o a o 84/04 

Accuracy: Maximum relative error of 5.0 X 10 for input-data 
values in the range of -2 n to 2 ~ radians except for 
data values near odd multiples of n /2. 

Clock Cycles: 48 to 5886 (: A: >2- 12 ) 
30 (: A I <2 -u ) 

Status: s, Z, EF (overflow) 
Stack Contents: I 

100-0123-001 

9-32 



XCHD Exchange 32-Bit Stack Operands 

XCHF 

The 32-bit operand A at ros and the 32-bit operand B at NOS are 
exchanged. After execution, B is at the ros; and A is at the NOS. All 
operands are unchanged. XCHD and XCHF execute the same operation. 

I sr I 0] 1 1 r 1 0 0 1 I B9/39 

Clock Cycles: 26 
Status: S, Z 
Stack Contents: C 

Exchange 32-Bi t Staek Operands 

The 32-bit operand A at ros and the 32-bit operand B at NOS are 
exchanged. After execution, B is at the ros; and A is at the NOS. All 
operands are unchanged. XCHF and XCHD execute the same operation. 

Clock Cycles: 26 
Status: S, Z 
Stack Contents: C 

99/19 

XCHS Exchange 16-Bi t Stac~k Operands 

The 16-bit operand A at ros and the 16-bit operand B at NOS are 
exchanged. After execution, B is at the TOS; and A is at the NOS. All 
operands are unchanged. 

Clock Cycles: 18 
Status: S, Z 
Stack Contents: L 

F9/79 

100-0123-001 

9-33 



9.6 9512 ARITHMETIC PROCESSOR UNIT 

Communication between the onboard devices and the 9512 APU takes place 
on eight bidirectional I/O lines. These signals are gated to the 
internal 8-bit bus through appropriate interface and buffer circuitry. 
Multiplexing facilities exist for bidirectional communication between 
the 8- and the 17-bit buses. Both the Status and Command registers also 
interface with the 8-bit bus. 

9.6.1 Stack Control 

The 9512 performs the operands located at TOS and NOS; and the results 
are returned to the stack at NOS and then popped to TOS. These operands 
can be one of two formats -- single-precision floating-point (4 bytes) 
or double-precision floating-point (8 bytes). The results of an 
operation has the same format as the operands. In other words, 
operations using single-precision quantities always give a 
single-precision result, while double-precision quantities give 
double-precision results. 

Opet"ands are always entered into the stack least-significant byte first 
and the most-significant byte last. It should be noted that for 
single-precision operands four bytes should be pushed; but eight bytes 
must be pushed for double precision. The 9512 stack can accommodate 
either four single-precision or two double-precision quantities. 
Pushing more quantities than the stack can handle will result in loss of 
data. When the stack is popped for results, the most-significant byte 
is available first and least-significant byte last. 

When the stack is read the result is transferred from the stack to the 
I/O lines. Reading the stack does not alter the data; it only adjusts 
the byte pointer. If the data popped exceeds the stack capacity, the 
internal byte pointer will wrap around and the original data will be 
reread. The 9512 can handle floating-point quantities in two different 
formats -- single- and double-precision. The single-precision 
quantities are 32-bits in length, as shown below. 

LtI 30 I 29 I ~ I 24 I 23 I 22 I 21 

SIGN EXPONENT 
V 

MANTISSA 

2 1 

100-0123-001 

9-34 



Bits 0 thru 22 :in conjunction with bit 31 (SIGN) represents a signed 
fraction in sign-magnitude notati.on. A" 1" in bit 31 signifies a 
negative number, and a "0" means positive. Bits 23 thru 30 represents a 
biased exponent. 

There is an implied "1" beyond the most-significant bit (bit 22) of the 
mantissa. In other words, the mantissa is assumed to be a 24-bit 
normalized quantity; and the most-significant bit, which is always "1" 
due to normalization, is implied. The 9512 restores this implied bit 
internally before performing an arithmetic operation; normalizes the 
result, and strips the implied bit before returning the final value to 
the external data bus. The binary point is between the implied bit and 
bit 22 of the mantissa. 

9.6.1.1 Double Precision 

A double-prec.ision quantity consists of the mantissa sign bit(S), an 
11-bit biased exponent (E), and a 52-bit mantissa (M). The following 
diagram illustrates the double-precision format. 

SIGN EXPONENT MANTISSA 

In this format; the mantissa is 52-bits in length, and the biased 
exponent is 11-bits. There is an implied one beyond the 
most-significant ibi t or bit 51 of the mantissa. In other words, the 
mantissa is assumed to be a 53-bit normalized quantity; and the 
most-significant bit, which will always be a one due to normalization, 
is implied. Thle 9512 restores this implied bit internally before 
performing arithmletlc; normalizes the result and strips the implied bit 
before returning the result to the external data bus. The binary pOint 
is between the imiPlj.ed bit and bit 51 of the mantissa. 

9.6.2 Command Format 

The format of the 8·-bi t command is shown below. 

~ _I _5 .......--] ~: 1 ~_3 _I _2 _' --",,0 J 
SVREQ OPERATION CODE 

100-0123-001 

9-35 



The command consists of eight bits. The least-significant seven bits 
specify the operation to be performed. The most-significant bit is the 
SERVICE REQUEST ENABLE (SVREQ) bit, and it must be a "1" if SVREQ is to 
go "high" following the execution of a command 

The 9512 commands fall into three categories: Single-precision 
arithmetic, double-precision arithmetic and data manipulation. There 
are four arithmetic operations that can be performed with either 
single-precision (32 bits), or double-precision (64 bits) floating-point 
numbers -- add, subtract, multiply and divide. These operations require 
two operands. The 9512 assumes that these operands are located in the 
internal stack as Top Of Stack (TOS) and Next On Stack (NCB). The 
result will always be returned to the previous NOS, which becomes the 
new TOS. Results fr'om an operation are of the same precision and format 
as the operands; and they will be found to preserve the accuracy. In 
addition to the arithmetic operations, the 9512 can perform eight data 
manipulating operations. These include changing the sign of a double­
and single- precision operand located at TOS and NOS, as well as copying 
and popping single- and double- precision operands. 

Q.6.3 Status Register 

An internal 8-bit status register having the following format provides 
device status information to the MSC 8009. 

1 6 5 4 

BUSY S Z R 

While bit 1 (BUSY) is a "1", the other 
The definition of these bits (See Table 
"0" -- operation complete. 

3 2 1 0 

D U V R 

status bits will not be defined. 
9-2) is valid only when bit 1 is 

100-0123-001 

9-36 



Bit 0 Reserved 

Bit 1 indicates that an exponent over flow has occurred, 
othenNise the bit is cleared to zero. 

Bit 2 shows that an exponent underflow has occurred, 
othenNise the bit is to zero. 

Bit 3 denot~es that an attempt to di vide by zero is made, 
otherwise the bit is to zero. 

Bit 4 Reserved 

Bit 5 indicatE~s that a command has been completed, and 
the n~sult in TOS is all zeros. Otherwise, this 
bit is zero. 

Bit 6 signifies a negative result in T03, otherwise this 
bit will be zero. 

Bit 1 indicates that the 9512 is in the process of 
executing a ccmmand. After the command is 
terminated, this bit is reset to zero. 

Table 9-2 
STATUS BIT DEFINITION 

100-0123-001 

9-31 



9.7 9512 INSTRUCTIONS 

For a quick reference,a shorthand notation will be used in the following 
discussion and listing to describe each instruction and how it operates. 
A single lower-case letter denotes a single-precision operation; and a 
double lower-case letter represents a double-precision operation. All 
other symbols, mnemonics and abbreviations that will be used are: 

a 

b 

BOS 
CC 
D 
NOS 
PG 
R 
S 
SC 
TOS 
U 
V 
X 
Z 
* 
w<= v 
w<=itv 

w<=>v 

TOS quantity prior to executing the 
instruction 
NOS quantity prior to executing the 
instruction 
Bottom Of Stack 
Clock cycle 
Divide-by-zero bit of the Status register 
Next Of Stack 
Section 9 page numbers 
Result of the executed operation 
Sign bit of the Status register 
Stack content as defined in Table 9-3. 
Top Of Stack 
Underflow bit of the Status register 
Overflow bit of the Status register 
Status register bit is affected 
Zero bit of the Status register 
Status register bit is unaffected 
Quantity "w" is replaced by quantity "v" 
Quantity "w" is equal to the complement of 
the quantity "v" 
Quantities "w" and "v" are exchanged. 

100-0123-001 

9-38 



9.7. 1 Data And Stack Mani,pulation Operations 

INSTRUCTION 

OP CODE PG 

CHSD 43 
CHSS 43 
CLR 43 
POPS 45 

PTOD 46 

PTOS 46 

If 'a' exp=O 

XCHS 49 

NO TATION 

flaa 
fla 
Status 

TOS<= 
TOS<= 
Clear 
TOS<= 
BOS<= 
TOS<= 
NOS<= 
TOS<= 
NOS<= 
TOS<= 
NOS<= 
a<=b 

b 
a 
aa 
aa 
a 
a 
0 
a 

-"""".,,,'",'" 

STATUS REG. 
CC SC ~ 

S Z D U V 

24 C X X 0 0 0 
10 H X X X 0 0 
4 M o 0 0 0 0 

14 G X X * 0 0 

40 A X X 0 0 0 

16 I X X 0 0 0 

16 I X X 0 0 0 

26 C X X 000 

100-0123-001 

9-39 



9.1.2 Single Precision Operations 

INSTRUCTION 
NOTATION 

OP CODE PG 

SADD 47 TOS< = a+b 
SDIV 47 TOS<=b/a 
SMU 48 TOS<=[a x b] 
SSUB 48 TOS<=b-a 

9.1.3 Double Precision Operation 

INSTRUCTION 
NOTATION 

OP CODE PG 

DADD 44 TOS<=aa+bb 
DDIV 4J~ TOS<=bb/aa 

If 'aa' exp=O TOS<=bb 
DMUL 45 TOS<=[aa x bb] 
DSUB 45 TOS<=bb-aa 

CC SC 

58 F 
228 S 
198 F 
56 F 

CC SC 

518 B 
4560 E 

1748 B 
578 B 

STATUS REG. 

S Z D U V 

X X 0 X X 
X X X * * 
X X 0 X X 
X X * * * 

STATUS REG. 

S Z D U V 

X X 0 X X 
X X X X X 

X X 0 X X 
X X 0 X X 

100-0123-001 

9-40 



BEFORE 

a TOS 

A 

BEFORE 

a TOS 

C 

--

AFTER BEFORE 

~ 
a 

--

AFTER BEFuRE 

~8 
a 

Table 9-2 
STACK CONFIGURATIONS 

TOS 

B 

TOS 

D 

AFTER 

R 

AFTER 

R 

100-0123-001 

9-41 



BEFORE 

a TOS 
b 

c 

d 

E 

BEFORE 

a TOS 
b 

c 

d 

32 

G 

AFTER BiFORE 

R a 

c b 

d c 

AFJER BEFORE 

R a 
b b 
c c 

Table 9-2 (cont'd) 
STACK CONFIGURATIONS 

TOS 

F 

TOS 

H 

AFTER 

b 

c 

d 

a 

~32 .. 

AFTER 

a 
a 
b 
c 

100-0123-001 

9-42 



Q.8 9512 OP CODE FORMATS 

CHSD Change Sign, lX>uble Precision 

The sign of the double-precision operand A at TOS is complemented. The 
double-precision resultant is returned to TOS. If the double-precision 
operand A is zero, then the sign will not be affected. Status bits S 
and Z indicate the sign of the result and if the resultant value is 
zero. Status bits U, V and D are always zero. 

Clock Cycles: 24 
Status: S, Z 
Stack Contents: D 

CHSS Change Sign, Single Precision 

AD/2D 

The signal of the single-precision operand A at TOS is complemented. 
The single-pl~eci:5ion result is returned to TOS. If the exponent field 
of A is zero, the resultant value will be zero. Status bits Sand Z 
indicate the sign of the result. If the resultant value is zero, status 
bi ts U, V and D w:lll then be zero. 

Clock Cyc les: 18 
Status: S, Z 
Stack Contents: G 

CLR Clear Status 

85/05 

All status bits (S,Z,D,U,V) are set to zero; and the stack is not 
affected. Essentially this is a No Op command as far as operands are 
concerned. 

Clock Cycles: 4 
Status: S, Z, D, U, V are always zero. 

80/00 

100-0123-001 

9-43 



DADD Double-Precision Floating-Point Add 

The double-precision operand A from ros is added to the double-precision 
operand B from NOS. The result is rounded to obtain the final 
double-precision sum, which is returned to rOSe Status bits S, Z, U and 
V are used to report sign of the result; if the resultant value is 
zero; exponent underflow, and exponent overflow, respectively. 

I sr 0 I 1 I 0 r 1 J 0 0 1 A9/29 

Clock Cycles: 578 
Status: S, Z, U, V 
Stack Contents: B 

DDIV Double-Precision Floating-Point Divide 

The double-precision operand B at NOS is divided by the double-precision 
operand A at rOSe The result is rounded to obtain the final 
double-precision quotient R, which is t"eturned to rOSe Status bits S, 
Z, D,U and V are used to report sign of the result; if the resultant 
value is zero; attempt to divide by zero; exponent underflow, and 
exponent overflow, respectively. If A is zero, the resultant value at 
ros will equal the original value of operand B. 

l ____ sr --,--I _? ] ___ 1--,-~ I _1_ ,----' -.....-1 ..--..I! 1 ____ 0 ~O ] AC/2C 

Clock Cycles: 4560 
Status: S, Z, D, U, V 
Stack Contents: B 

100-0123-001 

9-44 



DMUL Double-Precision Floating-Point Multiply 

The Double-precision operand A at TOS is multiplied by the 
double-precision operand B at NOS. The result is rounded to obtain the 
final double-precision product, which is returned to TOS. Status bits 
S, Z, U and V are used to report sign of the,result; if the result is 
zero; exponent underflow, and exponent overflow, respectively. Status 
bit D will be reset to zero. 

Clock Cycles: 1748 
Status: S, Z, U, V 
Stack Contents: B 

DSUB Double-Precision Floating-Point Subtract 

AB/2B 

The double-precis:ion operand A at ros is subtracted from the 
double-precision operand B at NOS. The result is rounded to obtain the 
final double-precision difference, which is returned to rose Status 
bits S, Z, U and V are used to report sign of the result; if the result 
is zero; exponent underflow, and exponent overflow, respectively. 
Status bit Dwill be reset to zero. 

~ __ 1~0~1: __ 1_1~0~1~0_ 

Clock Cycles: 578 
Status: S, Z, U, V 
Stack Contents: B 

POPS Pop Stack, Single Precision 

AAl2A 

The single-precision operand A is popped from the stack in addition to 
being transferred to the bottom of the stack. Status bits Sand Z are 
used to report the sign of the new operand at TOS; and if it is zero. 
The other status bits are reset to zero. Note that only the exponent 
field of the updated or new TOS is checked for zero. 

Clock Cycles: 14 
Status: S, Z 
Stack Contents: F 

87/07 

100-0123-001 

9-45 



PTOD Push Stack, Double Precision 

The double-precision operand A at TOS is pushed back on to the stack. 
This effectively duplicates A two consecutive stack locations. Status 
bits Sand Z are used to report sign of the new TOS and if the new TOS 
is zero. The other status bits are reset to zero. 

sr o 

Clock Cycles: 40 
Status: S, Z 
Stack Contents: A 

1 

PTOS Push Stack, Single Precision 

o 1 1 o AE/2E 

This instruction effectively pushes the single-precision operand at TOS 
onto the stack. In other words, the original operand is duplicated in 
two locations of the stack. However, if the operand at TOS prior to the 
PTOS command has only its exponent field as zero, the new content of the 
TOS will be all zeros; and the contents of NOS will be a copy of the 
orginal TOS. Status bits Sand Z are used to report the sign of the new 
TOS and if the content of TOS is zero. The other status bits are reset 
to zero. 

[ sr I 0 

Clock Cycles: 16 
Status: S, Z 
Stack Contents: H 

o o o 1 o 86/06 

100-0123-001 

9-46 



SADD Single-Precision Floating-Point Add 

The single-precision operand A at TOS is added to the single-precision 
operand B at NOS. The result i~~ rounded to obtain the single-precision 
sum, which is returned to TOS. Status bits S, Z, U and V are used to 
report the sign of the result; if the result is zero; exponent 
underflow, and exponent overflow, respectively. Status bit D will be 
reset to zero. 

Clock Cycles: 58 
Status: S, Z, U, V 
Stack Contents: E 

SDrv Single-Precision Floating-Point Divide 

° ° 1 81/01 

The single-precision operand B at NOS is divided by the single-precision 
operand A at TOS. The result is rounded to obtain the final quotient, 
which is returned to TOS. Status bits S, Z, 0, U and V are used to 
report the sign of the result; if the result is zero; attempt to divide 
by zero; exponent underflow, and exponent overflow, respectively. If 
the exponent of the original operand A is zero, the resultant value in 
TOS will equal operand B. 

I sr [0]_0----._0 _____ 0----11--10---1'---0 _____ 0----" 

Clock Cycles: 228 
Status: S, Z, U, V 
Stack Contents: E 

84/04 

100-0123-001 

9-47 



SMUL Single-Precision Floating-Point Multiply 

The single-precision operand A at TOS is multiplied by the 
single-precision operand B at NOS. The result is rounded to obtain the 
final single-precision product, which is returned to TOS. Status bits 
S, Z, U and V are used to to report sign of the result; if the result is 
zero; exponent underflow, and exponent overflow, respectively. Status 
bit D is reset to zero. 

I- I 0 I 0 0 I 0 I 0 I 1 ~ __ ~ __ ~ __ ~ __ ~~ __ ~ __ ~ __ ~ __ 1~1 83/03 

Clock Cycles: 198 
Status: S, Z, U, V 
Stack Contents: E 

SSUB Single-Precision Floating-Point Subtract 

The single-precision operand A at TOS is subtracted from the 
single-precision operand B at NOS. The result is rounded to obtain the 
final single-precision difference, which is retut4 ned to TOS. Status 
bits S, Z, U and V are used to report the sign of the result; if the 
result is zero; exponent underflOw, and exponent overflow, respectively. 
Status bits D will be reset to zero. 

I - I 0 

Clock Cycles: 56 
Status: S, Z, U, V 
Stack Contents: E 

o o 

XCHS Single-Precision Stack Exchange 

o I ? I 1 o 82/02 

The 32-bit operand A at TOS and the 32-bit operand B at NOS al4 e 
exchanged. After execution, B is at TOS; and A is at NOS. All operands 
are unchanged. 

I sr I 0 I 0 I 0 I 1 I 0 I 0 I 0 

Clock Cycles: 26 
Status: S, Z 
Stack Contents: C 

88/08 

100-0123-001 

9-48 



Appendix A 
Appendix B 
Appendix C 
Appendix D 

APPENDICES 

MSC 8009 PIN ASSIGNMENT 
MSC 8009 JUMPER REQUIREMENT 
FLOPPY-DISK JUMPER CONFIGURATION 
9511 APPLICATION NOTE 



Appendix A 

MSC 8009 PIN ASSIGNMENT 

Wire-wrap pins allow the user to configure the MSC 8009 
for a specific application. These on-board pins are 
identified and described in Table-1 of this appendage. 

100-0123-001 

i 



PIN 

1 
2 

3A,B 
4A,B 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

-
DESCRIPTION 

NOT USED 
NOT USED 
TXRDY/, 1TXRDY/ 
RXRDY/, 1 RXRDY/ 
4 MHz/ 
WRITE PRECOMP CL 
8 MHz 
NOT USED 
SVREQ/ FROM APU 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
TSTCLK 
EXTRQ 
RG 1793 (U3~~1) 
HEAD 

P IN 

1 3 
3 
3 
3 
3 

2 

K INPUT 3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 

3 
4 
5 
6 
7 
8 
9A,B 
OA,B 
1A,B 
2A,B 
3A,B 
4A,B 
5A,B 
6A,B 
7A,B 
8 
9 
0 
1 
2 
3 
4 

HSL 74LS273 (U3C )9) 5 5 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 

5 
5 
5 
5 
6 

Table 1 

6 
7 
8 
9 
0 

DESCRIPTION 

NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
RXCLK IN 
RXC to the 8251(U19) 
TXCLK OUT 
CLK for the 75188 (U10) 
-12V 
U10-1 (75188) 
+5V 
U10-14 (75188) 
+12V 
1MHz 
I/O CLK 
2 MHz 
I/O CLK 
2 MHz 
Z80 CLK 
2 MHz 
APU CLK 
4 MHz 
APU CLK 
4 MHz 
Z80 CLK 
onboard reset generator. 

MSC 8009 PIN CONFIGURATION 

100-0123-001 

ii 



PIN DESCRIPTION PIN DESCRIPTION 

61 INIT/ P1-14 95 16K/64K REFEN 
62 BUFFE RED 8 MHz 96A,B DSR/ for the 8251 ( U19) 
63 BCLK/ P1-13 97A,B DSR/ J(2,3)-14 
64 WATCHDOG TIMER OUTPUT 98A,B TXC for the 8251 (U19) 
65 LNMI 99A,B RXC for the 8251 (U19) 
66 AACK/ LOCAL 100 Enable for HEAD-START CKT 
67 AACK/ P1-25 101 HEAD START CKT for 4MHz 
68 BUFFERED 8 MHz 102 Bus state machine 

latch 
6q CCLKI P1-31 103 MRQ/ 
70 LNMI/ 104 MRQ/ 
71 NMI/ P1-33 105 IORQ/ 
72 RO of 8214 (U62) 106 IORQ/ 
73 INT7/ P1-36 107 Bus state machine 

latch IORQ/ 
74 R1 of 8214 (U62) 108 +5V 
75 INT6/ P1-35 109 Pin 8 of RAM array 
76 R2 of 8214 (U62) 110 +12V 
77 INT5/ P1-38 111 +5V 
78 R3 of 8214 (U62) 112 Pin 9 of RAM array 
79 INT4/ P1-37 113 MA7 
80 R4 of 8214 (U62) 114 -5V 
81 INT3/ P1-40 115 Pin 1 of RAM array 
82 R5 of 8214 (U62) 116 +5V 
83 INT2/ P1-39 117 GND P1-15 
84 R6 of 8214 (U62) 118 BPRN/ 
85 INT1/ P1-42 119 Unused bit of external 
86 R7 OF 8214 (U62) 120 IRQ/ from 1793 (U321) 
87 INTO/ P1-41 121 GND 
88 ELEM SEL FOR REF 122 READY input to 1793 (U321) 
89 4K REFEN 123 Ready input from J1 pin 22 
90 16K164K ELEM SEL FOR ROW 124 Data bit 3 of Unit Select 

port (OC4H) 
91 16K/64K ROWEN 125 READY input from J1, pin 22 
92 4K ELEM SEL for ROW 126 INDEXI input to 1793 (U321) 
93 4K ROWEN 127 Pin 24 of J1 
94 16K164K ELEM SEL for REF 

Table 1 (cont'd) 
MSC 8009 PIN IDENTIFICATION 

100-0123-001 

iii 



Appendix B 

MSC 8009 JUMPER REQUIREMENT 

By interconnecting the wire-wrap pins listed in Addendum A, the 
user can easily conf:igure the MSC 8009 for a specific application. 
These pin/jumper combinations are described in Table 1 of this 
appendage. 

100-0123-001 

i 



-.".,"'''''''' ... _--> - ......-""_c ........ _ ...... _ ..... .,., .... _---···--~~"";,~n 

WIRE-WRAP POST FUNCTION 

3A,3B TXRDYI output; normally tied to 
an interrupt pin. 

4A,4B RXRDYI output; normally tied to 
an interrupt pin. 

5-6 250ns Write Precomp 

6-7 125ns Write Precomp 

9 SVRE/(Service Request) output from 
the APU; normally tied to an inter-
rupt pin when used. 

21 (TSTCLK) Test clock; rising-edge on every 
22 (EXTRQ) local-bus transaction external re-

quest; low for every MULTIBUS re-
quest for onboard resources. 

23-24 Connects pin 25 of a 1797 chip, 
when used, to the HEADI line going 
to the drive, since the pin is 
used for headselect. 

-
24-25 Connects data-bit 4 to the HEAD/ 

line going to the floppy-diskdrive. 

39A (NC) Standard Configuration: These ter-
40A-42A (TIMER INTERNAL CLK) minals configure the CLK and DSR 

41A (NC) signals associated with Serial 
96A-97A (DSRI is on J2-14) Port 111. TXC and RXG are tied 
98A-99A (TXC = RXC) and supplied by the 8253 Baud 

Rate generator section. 

39B (NC) Standard Configuration: These ter-
408-428 (TIMER INTERNAL CLK) minals configure the CLK and DSR 
41B (NC) signals associated with Serial 
968-978 (DSRI is on J3-14) Port 112. TXC and RXC are tied 
988-99B (TXC = RXC) and supplied by the 8253 Baud 

Rate generator section. 

Table 1 
MSC 8009 JUMPER CONFIGURATION 

100-0123-001 

ii 



WIRE-WRAP POST 

39A (RXCLK from U2· 
41A-42A (TXCLK to 

·8 
J2 

96A (DSRI not used) 
97A-98A (TXC from t 

99A (RXC not used) 

-
39B-40B (RXC from ~ 
41B-42B (RXC to J3-

12-

f3-
·4) 

96B (DSRI not used) 

NC) 
'-4) 

14) 

8) 

q7B-98B (TXC from ~ f3- 14) 
99B (RXC not used) 

43A-44A 

45A (NC) 

46A-47A 
-

43B-44B 

45B (NC) 

46B-47B 

48-49 

50-51 

52-53 

54-55 

56-57 

--
FUNCTION 

Serial Port 111 high-speed synch 
modem (2400 - 19.2K Baud Rate) in-
puts. TXCLK is supplied to modem 
on J2-4; RXCLK is from the modem on 
J2-8, and DSR is from the modem on 
J2-14. 

Serial Port 112 high-speed synch 
modem (2400 - 19.2K Baud Rate). in-
put:s. TXCLK is supplied to modem 
on J3-4; RXCLK is from the modem on 
J3-8, and DSR is from the modem on 
J3-14. 

-12V to pin 1 of 75188 (U10A) for 
RS-232-C voltage requirement of 
Serial Port 111. 

+5V Not used. 

+12V to pin 14 of 75188 (U10A). 

-12V to pin 1 of 75188 (U10B) for 
RS-232-C voltage requirement of 
Serial Port 112. 

+5V Not used. 
-

+12V to pin 14 of 75188 (U10B). 
-

Supplies 1 MHz to IIO devices and 
8253 Baud Rate generator • 

.. 
Supplies 2 MHz to IIO devices and 
8253 Baud Rate generator . 

.. 
Supplies 2 MHz to the Z80. 

--
Supplies 2 MHz to the APU. 

-
Supplies 4 MHz to the APU. 

-
Table 1 (cont 'd) 

MSC 8009 JUMPER CONFIGURATION 

100-0123-001 

iii 



Wirlt:-WRAP POST fUNCTION 

58-59 Supplies 4 MHz to the Z80. 

60-61 Connects onboard reset generator to 
INIT/ line on P1-14 MULTIBUS. 

62-63 Connects buffered 8 MHz to BCLK/ on 
P1-13 of the MULTIBUS. 

64-65 Connects output of Watc hdog timer 
to Z80, which generates NMI when 
Watchdog times out. 

66-67 Connects AACK/ to MULTIBUS P1-25. 
Consult manual before using. 

68-69 Connects buffered 8 MHz to CCLKI on 
P1-31 of the MULTIBUS. 

-
70-71 Connects NMI to P1-33 of MULTIBUS. 

For use with MSC Multibus chassis. 

72-73 When installed, jumpers connect the 
74-75 interrupt-controller inputs of the 
76-77 MSC 8009 to the interrupt lines on 
78-79 the MULTIBUS (P1-35, P1-36, P1-37, 
80-81 P1-38, P1-39, P1-40, P1-41 and 
82-83 P1-42). Install with discretion in 
84-85 multiprocessor system. 
86-87 

88-89 Used to program memory-control 
90-91 circuit for 4K 16K or 64K elements. 
92-93 Posts 90-91 and 94-95 select 16K 
94-95 and 64K elements. 

100-101 Enables a memory-headstart circuit 
that reduces RAM access time by a 
Wait state when the Z80 is running 
at 4 MHz. REMOVE this jumper when 
the Z80 is running at 2 MHz or when 
used in a multiprocessor system. 

-- -

Table 1 (cont'd) 
MSC 8009 JUMPER CONFIGURATION 

100-0123-000 

iv 



WIRE-WRAP POS T FUNCTION 

102-103 (MRQ/) 
106-107 (IORQ/) 

-
103-104 (MRQ/) 
105-106 (IOHQ/) 

108-109 

109-110 

-
111-112 

Routes MRQI and IORQI thru Bus 
State Machine latches. It may be 
advantageous to use these when 
using an in-circuit emulator. There 
will be an extra Wait state added 
to every processor transaction. 

Standard jumpers that route MRQ/, 
IORQ! and bypass Bus State Machine 
latches. 

+5V to pin 8 of RAM array 
(5V elements only). 

+12V to pin 8 of RAM array 
(Three-supply elements only). I ________ -+ __ , ______________________________ ~ 

+5V to pin 9 of RAM array 
(16K X 1 elements only). 

--------------~--,------------------------------~ 
112-113 

114-115 

115-116 

117-118 

119 

-
Supplies MA7 to pin 9 of RAM 
(64K X 1 elements only). 

-5V to pin 1 of RAM array 
(Three-supply elements only). 

+5V to pin 1 of R~~ array 
(Non-Three-Supply elements only). 

--,---------~-------------------------------~ 
Grounds BPRN! (P1-15). Use with 
discretion on rnultimaster systems. 

Unused external ROM bit, available 
for future design. 

, ____________ • __ ~, ______________________________ __J 

Table 1 (cont 'd) 
MSC 8009 JUMPER CONFIGURATION 

100-0123-001 

v 



WIRE-WRAP POST FUNCTION 

120 Floppy-disk interrupt request line. 

121-122 Ground READY input for 5-inch 
drives only. 

123-124 READY signal from J1, pin 22 for 
8-inch drives only. 

124-125 Unit 4 selection signal for 5-inch 
drives only. 

126-121 INDEX signal from J1, pin 24 for 
5-inch drives only. 

Table 1 (cont'd) 
MSC 8009 JUMPER CONFIGURATION 

100-0123-001 

vi 



Appendix C 

FLOPPY-DISK DRIVE JUMPER CONFIGURATION 

This appendix provides the user with the information that is needed to 
properly configure the following Shugart disk drives for use with either 
the MSC 8009 .-- single-board processor with onboard soft-sector 
inteface/controller; or the MSC 8101 -- hard-sector floppy-disk 
floppy-disk i.nteY·face/controller board. 

SA 400 
SA 800/801 
SA 850/851 

100-0123-001 

i 



JUMPER 

A 
B 
C 
D 

DC 
DS 

DS1 
DS2 
DS3 
DS4 

HL 
L 
S 

T1 
T2 
T3 
T4 
T5 
T6 

X 
Y 
Z 

800 
801 

*NOTES: 

DRIVE 0 DRIVE 1 DRIVE 2* DRIVE 3* 

PLUGGED PLUGGED PLUGGED PLUGGED 
PLUGGED PLUGGED PLUGGED PLUGGED 
PLUGGED PLUGGED PLUGGED PLUGGED 

OPEN OPEN OPEN OPEN 
OPEN OPEN OPEN OPEN 

PLUGGED PLUGGED PLUGGED PLUGGED 
PLUGGED OPEN OPEN OPEN 

OPEN PLUGGED OPEN OPEN 
OPEN OPEN PLUGGED OPEN 
OPEN OPEN OPEN PLUGGED 
OPEN OPEN OPEN OPEN 

NaTE 2 NOTE 2 NOTE 2 NOTE 2 
CUT RUN CUT RUN CUT RUN CUT RUN 
PLUGGED OPEN OPEN OPEN 
PLUGGED PLUGGED PLUGGED PLUGGED 
PLUGGED OPEN OPEN OPEN 
PLUGGED OPEN OPEN OPEN 
PLUGGED OPEN OPEN OPEN 
PLUGGED OPEN OPEN OPEN 

OPEN OPEN OPEN OPEN 
PLUGGED PLUGGED PLUGGED PLUGGED 

OPEN OPEN OPEN OPEN 
PLUGGED PLUGGED PLUGGED PLUGGED 

OPEN OPEN OPEN OPEN 

1) Drive 0 should be installed at the end of the 
interconnecting cable between drives and interface 
board, because the line terminators are in this 
drive. Drives 2 and 3 are used with the MSC 8009 
only. 

2) Position of the "L" jumper depends on the power 
supply being used (Refer to the proper Shugart 
manual for information). 

Table 1 
SA 800/801 

JUMPER/PLUG CONFIGURATION 

100-0123-001 

ii 



JUMPER 

C 
DC 
DS 

DS1 
DS2 
DS3 
DS4 

FS 
HLL II"-

A 
16-PIN B 

PRCXi RAMMABL E ~L 
SHUNT 4 I 

LOCATION R 
H4 S 

X 
~z 

IT 
IW 
DL 
RM 
RS 
S1 
S2 
S3 
TS 
y 

1B 
2B 
3B 
4B 

-15, -5 
*2S 
850 
851 

RES. PK (H3) 

DRIVE 0 DRIVE 1 DRIVE 2* DRIVE 3* 

PLLJGG ED PLUGG E ;'D PLUGGED PLUGGED 
OPEN OPEN OPEN OPEN 

PLUGGED PLUGGI ~D PLUGGED PLUGGED 
PLUGGED OPEN OPEN OPEN 

OPEN PLUGGI ~D OPEN OPEN 
OPEN OPEN PLUGGED OPEN 
OPEN OPEN OPEN PLUGGED 

PLUGGED PLUGGE ~D PLUGGED PLUGGED 
OPEN OPEN OPEN OPEN 

- -, - - - - - - Sf IUNT - - - - - - - - - - - -
- - - - - - - - S~ {UNT - - - - - - - - - - - -- - - - - - - - - ( )PEN - - - - - - - - - - - -
- -. - - - - - - SI-{UNT - - - - - - - - - - - -
- •. - - - - - - SI-IUNT - - - - - - - - - - - -
- -. - - - - - - S1-ruNT - - - - - - - - - - - -
- - - - - - - - - 0 PEN - - - - - - - - - - - -
- - - - - - - - - 0 PEN - - - - - - - - - - - -

OPEN OPEN OPEN OPEN 
:D PLUGGED PLUGGE PLUGGED PLUGGED 
:D PLUGGED PLUGGE PLUGGED PLUGGED 

OPEN OPEN OPEN OPEN 
PLUGGED PLUGGE :D PLUGGED PLUGGED 

OPEN OPEN OPEN OPEN 
PLUGGED PLUGGE :D PLUGGED PLUGGED 

OPEN OPEN OPEN OPEN 
OPEN OPEN OPEN OPEN 

PLUGGED PLUGGE .D PLUGGED PLUGGED 
OPEN OPEN OPEN OPEN 
OPEN OPEN OPEN OPEN 
OPEN OPEN OPEN OPEN 
OPEN OPEN OPEN OPEN 

- - - - - - - - - S EE NOTE 1 - - - - - - - - - -
PLUGGED 
PLUGGED 

OPEN 
INSTALL 

ED 
.D 

PLUGG 
PLUGGE 

OPEN 
REMOVE 

--

PLUGGED PLUGGED 
PLUGGED PLUGGED 

OPEN OPEN 
REMOVE REMOVE 

*NOTES: 1) Posit:ion of the jumpers depends on the power' 
supply (Refer to the Shugart manual) . 

2) 2S is plugged for double-sided, open for 
single-sided. 

3) Q.lt etch to pin 48 on ALL drives. 

Table 2 
SA 850/851 ' 

JUMPER/PLUG CONFIGURATION 

100-0123-001 

iii 



JUMPER PRIMARY DRIVE* SECONDARY DRIVE 

DS1 (2-13) OPEN OPEN 
DS2 (3-12) OPEN JUMPERED 

HSIHL (1-14) OPEN OPEN 
HM/MH (7-8) OPEN OPEN 

MX (5-10) OPEN OPEN 
MX (6-9) OPEN OPEN 

RES. PK INSTALLED REMOVED 

*NOTE: 
1) See Note 1 of Table 1 concerning drive 

requirements. 

2) The above jumpers go into IC location 
1F. 

Table 3 
SA 400 

JUMPER/PLUG CONFIGURATION 

100-0123-00 1 

iv 



Q511 ARITHMETIC PROCESSOR 
APPLICATION NOTE 

Appendix D 

The follow'ing discussion details the 9511 commands, execution 
procedures, and performance as related to each instruction. 

FUNCTIONAL DESCRIPTION 

The 9511 is addressed as two por'ts selected by the LAO line from the Z80 
processor. When LAO is "high", the Status register can be accessed via 
a r'ead operation; and a command can be entered using a write. A "low" 
on LAO causes a read instruction to access data from the Top-Of-Stack 
(TOS); and a wr:lte to enter data into TOS. Table 1 lists and defines 
the inter face signals that control the 9511. 

Data Stack 

The internal data stack operates as a true push-down stack (FILO). In 
other words, when pushing data on the stack, the least-significant byte 
must be entered fil~st and the most-significant byte last. When popping 
the stack to read the result of an operation, the most-significant byte 
will be available on the data bus first and the least-significant byte 
last. 

The data stack eonsists of eight levels, where each level is 16-bits 
wide. Since single-precision fixed-point operands are 16-bits in 
length, the data stack can hold up to eight such values. For either' 
double-precision C:32 Bits) fixed-point or floating-point formats, up to 
four' values can be maintained wi thin the stack. 

Data Entry 

To enter data ft~om the I/O BUS, it requires a "low" level on the 
chip-select line (<:S4/), command data line (LAO), and the write request 
line (LIOWC). As each new data word is entered, the previously entered 
data is pushed "do~m"; and the new byte is placed on top of the stack. 
Data on the bottom of the stack prior to the entry procedure will be 
lost. 

100-0123-001 

i 



BIT DESIGNATION 

o CARRY 

1-4 ERROR CODE 

5 ZERO 

6 SIGN 

7 BUSY 

DESCRIPTION 

Previous operation resulted in either 
a carry or borrow from the most-signi­
ficant bit. A logic "1" denotes a 
carry/borrow; and a logic "0" is a no 
carry/borrow. 

A three-bit field indicates the valid­
ity of the results of the last opera­
tion. The error codes are: 

0000 - No error 
1000 - Divide by zero 
0100 - Square root or log of 

a negative number. 
1100 - Augment of inverse 

sine,cosine, or e to 
large. 

XX10 - Underflow 
XX01 - Overflow 

TOS value is zero if a logic "1". 

A logic "1" indicates a negative 
quantity in TOS. 

If a logic "1", the 9511 is cur­
rently executing a command. 

---.--------------------------.'----------_.-----------------------------~ 

Table 1 
STATUS REGISTER DEFINITIONS 

100-0123-001 

ii 



Data Extraction 

Data is read from TOS when the chip select line (CS4/), command data 
line (LAO), and the read data line (LIORC/) go "low". As each byte at 
TOS is read from the stack, it will also be rotated to the bottom of the 
stack; then the next successive byte is pushed up into TOS. 

Command Entry 

After the appropriate number of bytes have been entered into the stack, 
a command can now be issued to perform the desired operation. The 
single-operand instructions operate on TOS only. However, some 
instructions, such as an add, operate on both TOS and NOS (Next On 
Stack) values; and they t'equire two operands. 

For a command entry, both the chip select (CS4/) and write data (LIOWC/) 
lines must be "low", and the command/data lin~ must be "high" . After' 
the 9511 accepts the conmand, the Z80 can now execute other instructions 
concurrently with the 9511 command execution. If the Z80 issues another 
command to the 951 '1 during the execution of an APU instruction, the 9511 
will not accept the new instruction until the current one is complete. 
Also, the Z80 will not be able to perform other programming tasks until 
this situation is ratified. 

Pause Operation 

A "high" on the PAUSE/ line signifies that the 9511 is in a quiescent 
state. If any of the following conditions exist, this signal will go 
"low". 

1) A previously initiated operation is in progress; and either another 
command or staek access is attempted. PAUSE/ remains "low" until 
the current command is terminated; and then it goes "high" to allow 
the entry of the new instruction. 

2) There is a Y'equest for data and the 9511 is not busy. PAUSE/ 
remains "low" for the time it takes to transfer one byte from TOS 
onto the I/O BUS. 

100-0123-001 

iii 



Status 

3) If the 9511 is not busy, and a data entry has been requested; 
PAUSE/ will go "low". It remains "low" for the time that it 
requires to ascertain the preceding byte -- if any -- has been 
written into the stack. If so, PAUSE/ returns to a "high" 
immediately. If not, PAUSE/ remains "low" until the interface 
latch is released. 

4) A status read will pull the PAUSE/ "low" for the time required to 
transfer the status of the interface latch; and then PAUSE/ will 
go "high", completing the status operation. It should be pointed 
out that status can be read even if the 9511 is busy. 

NOTE: When PAUSE/ goes "low", the control signals 
present at that time must remain stable until 
PAUSE/ goes "high". 

An on-chip Status register provides a means for examlnlng the status 
of the 9511. If the BUSY bit (Bit 7) is a logic "1", the other 
status bits will not be defined. A logic "0" means that the 
operation is complete; and the other status bits will be defined as 
listed in Table 2. 

Read Status 

To read the status register', a low is required on both the 
chip-select (CS4/) and read (LIORC/) lines in addition to a "high" 
on the command/data line (LAO). The status r'egister information 
then gated onto the I/O BUS (100 thru 107). The status of the 9511 
can be read by the Z80 and time regarJless if an operation is in 
progress or not. 

100-0123-001 

iv 



PIN 

1 

2 

3 

4 

5 

6 

7 

8-15 

16 

17 

18 

19 

SIGNJ DESCRIPTION 
-

GND Power 
----.--.--;---------------------------------------------~ 

+5V 
-

EACK/ 

SVACK/ 
-

SVREQ 

Power 

Active "low" clears the ENOl signal. If tied 
"low", the ENOl output will be a pulse that 
is less than a clock period. 

Active fOlow" resets SVREQ. 

An active "high" output signal indicates 
that corrmand execution is complete; and that 
the post-execution service was requested in 
the previous command byte. It is cleared by 
ei ther SVACK/, RESET or' end of a subsequent 
command that does not request service. 

- --.--~-------------------------------------------~ - Not used. 
--.--~--------,-----------------------------------------~ 

- Not used. 
-

DBD-DB 7 Eight bidirectional lines provide for trans­
fer of commands, status and data between the 
9511 and the CPU. The 9511 drives the data 
bus only when CSI and RDI are "low". 

----.--.--p--------------------------------------------~ 
+'12V 
-

PAUSEI 

-
CSI 

-
WRI 

Powel'~ 

Active "low" output indicates that the 9511 
has not yet completed the information trans­
fer over the data bus. For fuy·ther desct'ip­
tion r'efer to the paragraph entitled "Pause 
Operation". 

An active "low" input signal conditions the 
read and ~'ite signals; thus, enabling the 
communication with the data bus. 

--r---------------------------------------------~ 
The CSI conditions the active "low" INRI 
signal, indicating that information is to be 
transferred from the data bus into internal 
locations. RDI and WRI ar'e mutually exclusi ve 

--~----------,---------------------------------------

Table 2 
9511 INTERFACING SIGNALS 

100-0123-001 

v 



PIN SIGNAL 

20 RD/ 

21 C/D 

22 RESET 

DESCRIPTION 

The active "low" signal is conditioned by CS/ 
and indicates that information is to be 
transferred from intet'nal locations to the 
data bus. Rd/ and WR/ at'e mutually exclusi ve. 

In conjunction with the RD/ and WR/ signals, 
the C/D control line establishes the type of 
transfers that ·~re to be performed on the 
data bus. 

An active "high" provides initialization for 
the 9511 chip. Reset terminates anyopera­
tion progt'ess, cleat's the status t'egister and 
places the 9511 into the idle state. Stack 
contents are not affected. The RESET should 
be active for at least five clock periods 
following stable supply voltages and stable 
clock input. There is no internal powet'-on 
reset. 

t-----I---------+---------.---------.-----------I 
23 CLK 

24 ENO/ 

This is an input for an external timing 
sout'ce that may be asyncht'onous to the read 
and write contr'ol signals. 

An active "low", open-drain output indicates 
that execution of the pt'eviously entet'ed com­
mand is complete. It can be used an an inter'­
t'upt request and is cleared by EACK/, RESET 
or any t'ead or wt'i te access to the 9511. 

Table '2 (cont 'd) 
9511 INTERFACING SIGNALS 

100-0123-001 

vi 



COMMANDS 

All derived functions except "Square Root" use Chesbyshev polynomial 
approximating equations. 111is approach helps minimize the internal 
microprogram; minimize thE~ maximum error value; and provides a 
relati v€!ly even distribution of errors over the data range. To 
oompute the~ various Chebyshev terms, the der i ved functions use the 
basic ar'ithmetic operations that may produce error codes in the 
Status register as a resulto 

The 9511 c!ommands, mneroonics, hex code and execution cycles are 
summarized i,n Table 3. For other details, refer to Section 9 of 
this manual. Speeds given in Table 3 are in terms of clock cycles. 
To arrive at the actual time value, multiply the clock cycles by the 
clock peril)d. For example, the execution time for the SADD 
instruction is 16 to 18 cloek cycles. In a 4-MHz system, this 
tr anslates i,nto 4 to 4.5 microseconds. 

Where sUbstantial variation of execution times could occur, the 
minimum and maximum values are given; otherwise the values are 
typical. Variations in the execution cycles reflect the data 
dependency cf the algorithms. Some boundary conditions that will 
cause shorter execution times are not taken into account. 

Total execution times may require allowances for operand transfer 
into the 9511, command execution and result retrieval from the 9511. 
Except for command execution, these times will be heavily influenced 
by such items as type of data; the control interface used; memory 
speed; CPU used; the priority allotted to DMA and interr'upt 
operations; the size and number of operards to be transferred, and 
the use of chained calculations. 

100-0123-001 

vii 



i 
r 

COMMAND 
MNEMONIC 

NOP 

FIXS 
FIXD 

FLTS 
FLTD 

CHSS 
CHSD 

CHSF 

PTOS 
PTOD 
PTOF 

POPS 
POPD 
POPF 

XCHS 
XCHD 
XCHF 

PUPI 

HEX CODE HEX CODE EXECUTION SUMMARY 
(sr = 1) Csr = 0) CYCLES DESCRIPTION 

DATA AND STACK MANIPULATION OPERATIONS 

80 00 4 No Operat ion. Clear or 
set SVREQ. 

9F 1F 90 -214 Convert TOS from float-
9E 1E 90 -336 ing point format to 

fixed point format. 

9D 1D 62 -156 Convert TOS from fixed 
9C 1C 56 -342 point format to floating 

point format. 

F4 74 22 - 24 Change sign of fixed 
B4 34 26 - 28 point operand on TOS. 

95 15 16 - 20 Change sign of floating 
point operand on TOS. 

F7 77 16 Push stack. Duplicate 
B7 37 20 NOS in TOS. 
97 17 20 

F8 78 10 Pop stack. Old NOS be-
B8 38 12 comes new TOS; and old 
98 18 12 TOS rotates to bottom. 

-
F9 79 18 Exchange TOO and HOS. 
B9 39 26 
99 19 26 

9A 1A 16 Push floating point con-
stant - onto TOS. Pre-
vious TOS becomes NOS. 

Table 3 
9511 COMMAND SUMMARY 

100-0123-001 

viii 



COMMAND 
MNEMONIC 

SADD 

SSUB 

SMUL 

SMUU 

SDIV 

DADD 

DSUB 

DMUL 

DMUU 

DDIV 

HEX co~I:HEX CODE 

... 

EXECUTION SUMMARY 
(sr = 1) (sr = 0) CYCLES DESCRIPTION - -

16-BIT FIXED-POINT OPERATIONS 
-

EC 

ED 

-
EE 

-
F6 

EF 

AC 

AD 

AE 

B6 

AF 

--
6C '16 - 18 Add TOS to NOS. Result 

to Pop stack 

6D 30 - 32 Subtract TOS from NOS. 
Result to NOS. Pop stack 

6E 84 - 94 Multiply NOS by TOS. 
Lower result to NOS. Pop 
stack 

16 80 - 98 Multiply NOS by TOS. 
Upper result to NOS. Pop 
stack 

6F 84 - 94 Divide NOS by TOS. Re-
sult to NOS. Pop stack 

-
32·-BIT FIXED-POINT OPERATIONS 

2C ~)O - 22 

--
2D 38 - 40 

-
2E 194-210 

-
36 182-218 

-.-
2F 196-210 

--
Table 3 (cont'd) 

9511 COMMAND SUMMARY 

Add TOS to NOS. Result 
to NOS. Pop stack 

Subtract TOS from NOS. 
Result to NOS. Pop stack 

Multiply NOS by TOS. 
Lower result to NOS. Pop 
stack 

Multiply NOS by TOS. Up-
per result to NOS. Pop 
stack 

Divide NOS by TOS. Re-
sult to NOS. Pop stack 

100-0123-001 

ix 



COMMAND 
MNEMONIC 

FADD 

FSUB 

FMUL 

FDIV 

-~~. --~ .. -~, 

HEX CODE HEX CODE EXECUTION SUMMARY 
(sr = 1) (sr = 0) CYCLES DESCRIPTION 

32-BIT FLOATING-POINT PRIMARY OPERATIONS 

90 

91 

92 

93 

10 54 -368 

11 10 -310 

12 146-168 

13 154-184 

Table 3 (cont 'd) 
9511 COMMAND SUMMARY 

Add TOS to NOS. Result 
to NOS. Pop stack 

Subtr'act TOS from NOS. 
Result to NOS. Pop stack 

Multiply NOS by TOS. Re-
sult to NOS. Pop stack 

Divide NOS by TOS. Re-
sult to NOS. Pop stack 

100-0123-001 

x 



COMMAND 
MNEMONIC 

SQRT 

SIN 

COS 

TAN 

ASIN 

ACOS 

ATAN 

UXi 

LN 

EXP 

PWR 

-
HEX CODE HEX CODE EXECUTION SUMMARY 
(sr = 1) (sr = 0) CYCLES DESCRIPTION 

-
32-BIT FLOATING-POINT DERIVED OPERATIONS 

81 

-
82 

-
83 

84 

85 

86 

87 

-
88 

89 

-
8A 

8B 

-

01 782-870 

02 3796-4808 

03 3840-4878 

.. 
04 4894-5886 

05 6230-7938 

06 6304-8284 

o. 

07 4992-6536 

08 4474-7132 

09 4298-6956 

OA 3794-4878 

OB 8290-12032 

Table 3 (cont'd) 
9511 COMMAND SUMMARY 

Square Root of TOS. Re-
sult to NOS. 

Sine of TOS. Result to 
TOS. 

Cosine of TOS. Result to 
TOS • 

Tangent of TOS. Result 
to TOS. 

Inverse Sine of TOS. Re-
sult to TOS. 

Inverse Cosine of TOS. 
Result to TOS. 

Inverse Tangent of TOS. 
Result to TOS. 

Common Logarithm of TOS. 
Result to TOS. 

Natural Logar'ithm of TOS 
Result to TOS. 

e raised to power in 
TOS. Result to TOS. 

NOS raised to power' in 
TOS. Result to NOS. Pop 
stack 

100-0123-001 

xi 



PROGRAMMING THE 9511 

The following paragraphs provide ex..unpleroutines and algorithms 
that represent various ways of using the 9511. These programs 
however, should be considered as a useful starting point for the 
construction of 9511 supporting software for a particular 
application. They should not be considered as the only means of 
using the 9511. The comments that are included in the source 
program should help to make the code easier to adapt to a specific 
need. 

Reading the Status Register 

The contents of the Status register can be read at any time by 
inputting on 1/0 address OD5H. Keep in mind that when the Busy bit 
(Bit 7) is a logic "1", the other bits in the Status register will 
not be valid. Therefore, the program should loop until such time as 
the Busy bit becomes "0". Figure 1 gives an example program showing 
how to do a status fetching routine. 

Data Transfer 

Commands 

Data transfers to and from the 9511 occur on 1/0 address OD4H. The 
data is held in a push-down staok within the 9511. Thus, the 
least-significant byte is written first and read last. A transfer 
of data can be attempted at any time. However, if the 9511 is busy, 
it will cause the Z80 to wait until the instruction in progress is 
complete. This could cause excessive interrupt latenoy if the 
operation in progress is lengthy. The maximum latency is slightly 
over six milliseconds. If this is unacceptable, then data transfers 
should be only attempted when the 9511 is not busy. The routines 
shown in Figures 2 and 3 illustrate the transfer of 32-bit data to 
and from the 9511. 

Commands are sent on 1/0 address OD5H. As in the data transfer 
operation, there may be excessive interrupt latency if the 9511 is 
busy. However, often there is a data transfer between cornmands; and 
it is worth considering whether to call the routine in Figure 4 or 
to send the command using in-line code. While the routine in Figure 
4 always works, it is extremly slow if the 9511 is known to be idle. 

100-0123-001 

xii 



Interrupt 

Normally, it is necessary to use the 9511 in an environment where 
interrupts are enabled. It is unusual to use the 9511 as an 
interrupt device itself. There are two reasons for this. First, 
nearly all systems have one task only that is not I/O driven. This 
task can simply wait for the 9511, since the results are required to 
pt'oceed further; and nothing is gained by an interrupt from the 
q511. The second reason:is that many of the 9511 commands do not 
require a great deal of time; and the overload that is associated 
with processing and dismiss:ing an interrupt may take more time than 
simply waiting. The following technique can be used or those 
special cases where the system throughout can be improved. 

Setting the most-significant bit of the command byte will cause an 
interrupt at the completion of the instruction -- assuming that the 
interrupt output has been properly jumpered within the interrupt 
hardware. 1his interr'upt can be only released by sending another 
command with a "zero" in the most-significant bit. Since the 9511 
has means for an interrupt reset using a vectored interrupt 
acknowledge, the HULTIBUS has no such provisions. The simplest 
command to use is the NOP (No Op); but, this will clear the Status 
register. 1berefore, all flags needed should be checked prior to 
dismissing the interrupt. 

Data Conversion 

The only time that the prograrrmer must actually consider the 
floating-·point format is for conversion between it and another fonn 
such as ASCII strings. These conversions are very adaptable through 
the use of a subtract and status check. Constants can be developed 
for futur"e recall using this eonversion approach. 

The data conversion technlque to be described is not the fastest, 
but it will minimize the program's dependence on the floating-point 
format. Thi.s makes the llser 's progt'am more adaptive to other 
formats such as that used by the 9511 Arithmetic Processor. Since 
the I/O device capability to handle unique data formats is the usual 
limit on speed of the data conversion, the speed of the code that is 
associated with 9511 is not too impot'tant. 

100-0123-001 

xiii 



The sample routines outlined in Figures 5 and 6 convert to and from 
ASCII strings held in memory. Adaption to BCD is simple. Integer­
binary can be handled directly by, the 9511. 

The format to be used is: +O.ddddddE+dd 

The conversion to other formats is ofter times easier at the string 
level easier than inserting special cases at the binary 
floating-point level. 

100-0123-001 

xiv 



Flow Diagram: 

Source Pl"ogram: 

1 
2 
3 
4 
') 

6 0000 DB D5 
7 0002 B7 
8 0003 FO 
9 0004 C3 00 00 

STAQ 

RE.~ 
STATUS R~ 

Yes 

No 

RETURN 

;STATUS REGISTER READ ROUTINE 
; ENTRY: NOTHING NEEDED 
;EXIT: A REG HOLDS STATUS 
;9511 GUARANTEED NOT BUSY 
, 
STAT: IN 

ORA 
RP 
JMP 

OD5H 
A 

STAT 

Figure 4 

;GET STATUS BIT 
;SET Z80 FLAGS 
;OK, VALID STATUS 
jSTILL BUSY, TRY AGAIN 

STATUS REGISTER READ ROUTINE 

100-0123-001 

xv 



Flow Diagram: 

CALL STATUS 

MSB TO B 

NEXT TO C 

NEXT TO D 

NEXT TO E 

RETURN 

Source Program: 

1 ;GETS DATA FROM 9511 
2 ; ENTRY: NOTHING NEEDED 
3 JEXIT: A HAS STATUS, BCD!;. HAS FP NO. 
4 j9511 STACK IS POPPED 4 9YTES 
5 , 
6 0000 CD 12 00 GET: CALL STAT jGET STATUS, 9511 NOT BUSY 
7 0003 F5 PUSH PSW jSAVE IT 
8 0004 DB D4 IN OD4H 
Q 0006 47 MOV B,A jMOVE MSB 

10 0007 DB D4 IN OD4H 
11 0009 4F MOV C,A ;NEXT TO C 
12 OOOA DB D4 IN OD4H 
13 OOOC 57 MOV D,A ;NEXT TO D 
14 OOOD DB D4 IN OD4H 
15 OOOF 5F MOV E,A ;MOVE LSB 
16 0010 F1 POP PSW 
17 0011 C9 RET jOONE 
18 0012 STAT DS 1 ;CHECK BUSY 

Figure 5 
DATA TRANSFER ROUTINE 

100-0123-001 

xvi 



Flow Diagram: 

CALL STATUS 

E TO LSB 

D TO NEXT 

C TO NEXT 

B TO MSB 

RETURN 

Source Pt'ogr'am: 

1 ;PUTS BDCE ON 9511 STACK 
2 ;ENTRY: BCDE HAS FP NUMBER 
3 ;EXIT: A HAS STATUS BEFORE PUSH 
4 , 9511 STACK PUSHED 4 BYTES 
5 j 

6 0000 CD OF 00 PUT: CALL STAT jGET STATUS, 9511 NOT BUSY 
7 0003 F5 PUSH PSW ;SAVE IT 
8 0004 7B MOV A,E 
9 0005 D3 D4 OUT OD4H JOUT LSB 

10 0007 7A MOV A,D 
11 0008 D3 D4 OUT OD4H ;OUT NEXT 
12 OOOA 78 MOV A,B 
13 OOOB D3 D4 OUT OD4H JOUT MSB 
14 DODD F1 POP PSW ;RESTORE STATUS 
15 OOOE cg RET ; DONE 
16 OOOF STAT: DS 1 ;CHECK BUSY 

Figure 6 
READ DATA ROUTINE 

100-0123-001 

xvii 



Flow Diagram: 

Source Program: 

1 
2 
3 
4 
5 
6 0000 E3 
1 0001 CD DC 00 
8 0004 F5 
9 0005 1E 

10 0006 D3 D5 
11 0008 F1 
12 0009 23 
13 OOOA E3 
14 OOOB C9 
15 OOOC 

CALL STATUS 

GET COMMAND 

ADJUST RETURN 

COMMAND TO 9511 

RETURN 

;DO COMMAND 
; ENTRY: COMMAtJD FOLLOWS CALL 
;EXIT: NOTHING CHANGED, COMMAND SENT 
, 9511 BUSY 
; 
COMD: 

STAT: 

XTHL 
CALL STAT 
PUSH PSW 
MOV A,M 
OUT OD5H 
POP PSW 
INX H 
XTHL 
RET 
DS 1 

Figure 1 
COMMAND ROUTINE 

;GET RETURN ADDRESS 
;GET STATUS, 9511 NOT BUSY 
jSAVE IT 
;GET COMIv1AND 
j TO 9511 

;ADJUST RETURN 

jDONE 
;CHECK BUSY 

100-0123-001 

xviii 



Flow Diagram: 

___ e 1_TO_ BCDE ~ 

_____ P_U_S_H_BCDE ~ 

MULT]ru-] 
INC L 

--------

GET SGN OF f~ I 

CLEAR WORK SPACE I 

+ 

PO~ 
EXPONEN~ 

SAVE SIGN I 

PU~ 
ABSOLUT~ 

10 TO BCDE 

PUSH BCDE 

MULTIPLY 
DEC L 

GET SGN OF EXP 

Figur'e 5 
FLOATING POINT TO ASCII 

CONVERSION ROUTINE 100-0123-001 

xix 



,* 

CONVERT EXP TO ASCII 
BY SUCCESSIVE SUBTRACTION 

OF 10 

---
COPY TOS 

MULTIPLY BY 10 
FIX 
COpy 

POP NEXT DIGIT 
FLOAT 

SUBTRACT 

I LOOP 6 DIGITS 

I r 

I RETUHN 

1 
1 

I 
*NOTE: At this time, the exponent has been separ'aled 

out. The number 0.1 < N < 1.0 is in the 9f)11. 

Figure 5 (~ont'd) 
FLOATING POINT TO ASCII 

CONVERSION ROUTINE 

1 uu- 0 ,~) ~- OU 1 

xx 



Source Program: 

1 
2 
3 
4 
5 
6 00D4 
1 0012 
8 001F 
Q 003'7 

10 001'7 
11 0000 21 00 FF 
12 0003 DD 36 00 28 
13 0001 DD 36 01 30 
14 OOOB DD 36 02 2E 
15 OOOF DD 36 09 45 
16 0013 DD 36 OA 2B 
11 0011 CD CF 00 
18 001A DB D4 
19 001C 41 
20 001D E6 1F 
21 001F D3 D4 
22 0021 78 
23 0022 B7 
24 0023 F2 2A 00 
25 0026 DD 36 00 2D 
26 002A E6 40 
21 002C FA 49 00 
28 002F 01 00 OC 
29 0032 11 CC CC 
30 0035 CD D1 00 
31 0038 CD DO 00 
32 003B 12 
33 003C 2C 
34 003D CD CF 00 
35 0040 DB D4 
36 0042 D3 04 
37 0044 E6 40 
38 0046 CA 35 00 
39 0049 01 03 AO 
40 004C 11 00 00 

;FLOATING TO ASCII CONVERSION 
;ENTRY: IX POINTS TO BUFFER FOR ASCII . NUMBER TO CONVERT IS IN 9511 , 
JEXIT: BUFFER FILLED, 9511 EMPTIED 
, REGISTERS DESTROYED 
FPDAT: EQU OD4H 
MPLY: EQU 12H 
FIX16: EQU 1FH 
DUP: EQU 31H 
DUP16: EQU 11H 
FTOA: LXI H,OFFOOH 

MVIX 0, '+' 
MVIX 1 , '0' 
MVIX 2 ' , , . 
MVIX 9, 'E' 
MVIX 10, '+' 
CALL STAT 
IN FPDAT 
MOV B,A 
ANI 07FH 
OUT FPDAT 
MOV A,B 
ORA A 
JP FTOA1 
HVIX 0, '-' 

FTOA 1: ANI 40B 
JM FTOA3 
LXI B,OCOOH 
LXI D,OCCCCH 

FTOA2 : CALL PUT 
CALL COMD 
DB MPLY 
INR L 
CALL STAT 
IN FPOAT 
OUT FPDAT 
ANI 40H 
JZ FTOA2 

FTOA3: LXI B,OA003H 
LXI D,OH 

Figure 5 (cont'd) 
FLOATING POINT TO ASCII 

CONVERSION ROUTINE 

;CLEAR DECIMAL' EXPONENT 
JSET SIGN 
;SET LEADING ZERO 
;SET DECIMAL POINT 
jSET E 
; SET EXP SIGN 
jINSURE 9511 NOT BUSY 
;GET EXPONENT BYTE 
;SAVE SIGN OF NUMBER 
jMAKE ABSOLUTE 
;PUT IT BACK 
;GET SIGN 
;SET Z80 FLAGS 
;NO, IS POSITIVE? 
;NO, SAY IT'S NEGATIVE 
jEXTRACT EXPONENT SIGN 
JIS MINUS 

; LOAD . 1 TO BCDE 
;.1 GOES TO 9511 
; MULTIPLY BY • 1 

;BUSY WAIT 

;GET EXPONENT SIGN 
;STILL POSITIVE 

;LOAO 10 GOES TO BCDE 

100-0123-001 

xxi 



Source Program (cont'd): 

41 004F CD D1 00 
42 0052 CD DO 00 
43 0055 12 
44 0056 20 
45 0051 CD CF 00 
46 005A OB 04 
41 005C 03 04 
48 005E E6 40 
49 0060 C2 6E 00 
50 0063 10 
51 0064 B7 
52 0065 F2 80 00 
53 0068 AF 
54 0069 95 
55 006A 00 36 OA 2D 
56 006E CO 01 00 
51 0011 CD DO 00 
58 0014 12 
59 0015 20 
60 0016 CD CF 00 
61 0019 OB 04 
62 001B 03 04 
63 0010 E6 40 
64 001F C2 6E 00 
65 0082 1D 
66 0083 B1 
61 0084 F2 80 00 
68 0081 AF 
69 0088 95 
10 0089 00 36 OA 20 
11 0080 24 
12 008E OE OA 
13 0090 F2 80 00 
14 0093 C6 3A 
15 0095 DO 11 OC 
16 0098 1C 
11 0099 B1 
18 009A 00 11 OB 
19 0090 01 03 AD 
80 OOAO 11 00 00 

CALL PUT 
CALL COMD 
DB MPLY 
DCR L 
CALL STAT 
IN FPDAT 
OUT FPOAT 
ANI 40H 
JNZ FTOA4 
MOV A,L 
ORA A 
JP FTOA5 
XRA A 
SUB L 
MVIX 10, '-' 

FTOA4: CALL PUT 
CALL COMO 
DB MPLY 
OCR L 
CALL STAT 
IN FPOAT 
OUT FPOAT 
ANI 4011 
JNZ FTOA4 
MOV A,L 
ORA A 
JP FTOA5 
XRA A 
SUB L 
MVIX 10, '-' 

FTOA5: INR H 
SBI 10 
JP FTOA5 
AOI 3AH 
MOVXH 12,A 
MOV A,H 
ORA A 
MOVXR 11,A 
LXI B,OAOO3li 
LXI D,OH 

Figure 5 (cont'd) 
FLOATING POINT TO ASCII 

CONVERSION ROUTINE 

; 10 GOES TO 9511 
;MULTIPLY BY 10 

;COUNT IT 

:GET SIGN OF EXPONENT 
;IF STILL NEGATIVE 

jIF DEC EXPONENT POSITIVE 

;ABSOLUTE VALUE 
;CHANGE SIGN 

;MULTIPLY BY 10 

;COUNT IT 

;GET SIGN OF EXPONENT 
;IF STILL NEGATIVE 

jIF DEC EXPONENT POSITIVE 

jABSOLUTE VALUE 
;CHANGE SIGN 

;EXTHACT MSD 

;CONVERT TO ASCII 
:STOHE LSD 

;STORE MSD 

;FP 10 

100-0123-001 

xxii 



Source Program (cont'd): 

81 00A3 2E 06 
82 00A5 DD E5 
83 00A1 CD DO 00 
84 OOAA 31 
85 OOAB CD D1 00 
86 OOAE CD DO 00 
87 00B1 12 
88 00B2 CD DO 00 
89 00B5 1F 
90 00B6 CD DO 00 
91 00B9 17 
92 OOBA CD CF 00 
93 OOBO DB 04 
94 OOBF DB D4 
95 00C1 F6 30 
96 OOC3 DO 11 03 
91 00C6 OD 23 
98 ooca 2D 
Q9 00C9 C2 A1 00 

100 OOCC DD E1 
101 OOCE C9 
102 OOCF 
103 0000 
104 00D1 

MVI L,6 
PUSHX 

FTOA6: CALL COMD 
DB DUP 
CALL PUT 
CALL COMO 
DB MPLY 
CALL COMD 
DB FIX16 
CALL COMD 
DB DUP16 
CALL STAT 
IN FPDAT 
IN FPDAT 
ORI 30H 
MOVXR 3,A 
INXX 
DCR L 
JNZ FTOA6 
POPX 
RET 

STAT: DS 1 
COMD: DS 1 
PUT: DS 1 

Figure 5 (cont'd) 
FLOATING POINT TO ASCII 

CONVERSION ROUTINE 

;NO OF DIGITS TO DO 
;SAVE IX 
; PUSH 
:COPY TOS TO NOS 
;PUSH 10 
;MPY 

;FIX 
;FIX IT 

;SAVE IT 
;BUSY CHECK 

;OEClMAL DIGIT 
;MAKE ASCII 
;STORE DIGIT 
;BUMP TO NEXT DIGIT 

;00 IT 6 TIMES 
;RESTORE IX 
; STOP 
;CHECK BUSY 
;COMD 

100-0123-001 

xxiii 



Flow Diagram: 

A TO F 

o TO 9511 

MULTIPLY BY 10 
DIGIT TO 9511 

FLOAT 
ADD 

LOOP 6 DIGITS 

CORRECT SIGN 
OF MANTISSA 

1st EXP DIGIT 
OF 9511 

MULTIPLY BY 10 
ADD 2nd EXP DIGIT 

EXP TO Z80 
CORRECT FOR EX? 

SIGN 
SUBTRACT 6 FOR OFFSET 

Figure 6 
ASCII TO FLOATING POINT 

CONVERSION ROUTINE 

100-0123-001 

xxiv 



,....-

~ . 
I 

-
10 TO BCDE' 

-

~ ~ - -.. 

, r 
PUSH BCDE 

MULTIPLY 
DECIMAL EX} 

No 

.1 TO BCDE 

NEGATIVE EXP 
SIGN 

Yes 

RETURN 

Figure 6 (cont'd) 
ASCII TO FLOATING POINT ROUTINE 

100-0123-001 

xxv 



Source Program: 

1 
2 
3 
4 
5 
6 00D4 
1 0010 
8 0012 
q 001D 

10 006C 
11 0016 
12 0000 01 00 00 
13 0003 11 00 00 
14 0006 CD 90 00 
15 0009 01 03 AO 
16 OOOC 11 00 00 
11 OOOF DD E5 
18 0011 6E 
19 0012 CD 90 00 
20 0015 CD BE 00 
21 001B 12 
22 0019 DD 1E 03 
23 001C E6 OF 
24 001E D3 D4 
25 0020 AF 
26 0021 D3 D4 
21 0023 CD BE 00 
28 0026 1D 
29 0021 CD BE 00 
30 002A 10 
31 002B 2D 
32 002C C2 12 00 
33 002F DD E1 
34 0031 DD 1E 00 
35 0034 FE 2D 
36 0036 C2 3F 00 
31 0039 DB D4 
3B 003B F6 BO 
39 003D D3 D4 
40 003F DO 1E OB 

;ASCII TO FLOATING POINT 
jENTRY: IX POINTS TO BUFFER FOR ASCII 
;EXIT: 9511 FILLED 

REGISTERS DESTROYED 
, 
FPDAT: EQU OD4H 
ADD: EQU 10H 
MPLY: EQU 12H 
FLT16: EQU 1DH 
ADD16: EQU 6CH 
MPLY16: EQU 16H 
ATOF: LXI B,OH 

LXI D,OH 
CALL PUT 
LXI B,OA003H 
LXI D,OH 
PUSHX 
MOV L,6 

ATOF1 : CALL PUT 
CALL COMD 
DB MPLY 
MOVRX A,3 
ANI OFH 
OUT FPDAT 
XRA A 
OUT FPDAT 
CALL COMD 
DB FLT16 
CALL COMD 
DB ADD 
DCR L 
JNZ ATOF1 
POPX 
MOVRX A,O 
CPI '-, 
JNZ ATOF2 
IN FPDAT 
ORI BOH 
OUT FPDAT 

ATOF2: MOVRX A,11 

Figure 6 (cont'd) 
ASCII TO FLOATING POINT 

CONVERSION ROUTINE 

;0 TO 9511 

;FP 10 
;SAVE POINTER 
;NO. OF DIGITS 
; 10 TO 9511 

; SHIFT 
;GET DIGIT 
;MASK FROM ASCII 

;DIGIT TO 9511 

;CONVERT TO FLOATING POINT 

;ADD TO RUNNING SUM 

;00 ALL DIGITS 

;GET SIGN 

jPOSITIVE 

jFLIP SIGN OF 9511 
,FIRST DIGIT OF EXPONENT 

100-0123-001 

xxvi 



Source Program (cont 'd) : 

41 0042 E6 OF 
42 0044 D3 D4 
43 0046 AF 
44 0047 D3 D4 
45 0049 3E OA 
46 004B D3 D4 
47 004D AF 
48 004E D3 D4 
49 0050 CD 8E 00 
50 0053 76 
51 0054 CD 8F 00 
52 0057 DD 7E DC 
53 005A E6 OF 
54 005C D3 D4 
55 005E CD 8E 00 
56 0061 6C 
57 0062 CD 8F 00 
58 0065 DB D4 
59 0067 DB D4 
60 0069 DD 7E OA 
61 006C FE 2D 
62 006E C2 73 00 
63 0071 BF 
64 0072 3C 
65 0073 DE 06 
66 0075 C8 
67 0076 6F 
68 0077 F2 82 00 
69 007A BF 
70 007B 3C 
71 007C 01 00 OC 
72 007F 11 CC CC 
73 0082 CD 90 00 
74 0085 CD 8E 00 
75 0088 12 
76 0089 2D 
77 008A C2 82 00 
78 008D C9 
79 008E 
80 D08F 

81 0090 

ANI OFH 
OUT FPDAT 
XRA A 
OUT FPDAT 
MVI A,10 
OUT FPDAT 
XRA A 
OUT FPDAT 
CALL COMD 
DB MPLY16 
CALL STAT 
MOVRX A,12 
ANI OFH 
OUT FPDAT 
CALL COMD 
DB ADD16 
CALL STAT 
IN FPDAT 
IN FPDAT 
MOVRX A,10 
CPI '- , 
JNZ ATOF3 
CMP A 
INR A 

ATOF3: SBI 6 
RZ 
MOV L,A 
JP ATOF4 
CMP A 
INR A 
LXI B,OCOOH 
LXI D,OCCCCH 

ATOF4: CALL PUT 
CALL COMD 
DB MPLY 
nCR L 
JNZ ATOF4 
RET 

COMO: DS 1 
STAT: DS 1 

lPUT: DS 1 

Figure 6 (cont'd) 
ASCII TO FLOATING POINT 

CONVERSION ROUTINE 

; TO 9511 

;10 TO 9511 

; MULTIPLY 

;2ND DIGIT 

;ADD IT 

;GOT ABSOLUTE EXP. 

;SIGN OF EXP. 

;CORRECT FOR DECIMAL POINT 

; LOAD BCDE WITH • 1 

jDO DECIMAL SHIFT 

;UNTIL EXHAUSTED 

; COMMAND 
; CHECK BUSY 

100-0123-001 

xxvii 



Appendix E 

MSC 8009 MEMORY CONTROILER PIGGYBACK BOA..RD DESCRIPTION 



MEMORY CONTROLLER PIGGYBACK BOARD (303-0292-00x) DESCRIPTION 

The memory controller board has two functional blocks: a 
power-up reset generator, and the memory controller. 

The power-up reset generator consists of U4,Rl,LRl,C4 and 
C6. When power is first applied to the board, the output 
(pin 3) of U4, a 555 Timer IC, is low. After a time delay 
set by Rl and C4, the output goes high. This releases the 
reset condition that was asserted on the INIT line when 
power was applied. 

The memory controller is made up of two parts, U2, a 
74L5393 is the refrE~sh interval timer. Ul, a programmed 
l6R8 PAL and US, a 745112 dual flipflop, generate the 
memory control signals, and arbitrate between memory and 
refresh cycles~ U3, a 74L5240 provides buffering and 
additional drive for the memory array. 

A memory cycle may be started by either an externally 
generated signal, R1'1RQ/, or an internally generated refresh 
request. Refer to Fig. 1 for timing diagram of a memory 
cycle. 

A refresh cycle will be started by one of two conditions. 
Either 14 microseconds have passed without a refresh cycle 
being requested, or a processor Ml cycle has just completed 
and a refresh cycle has not occurred in the last 14 micro-
seconds. . 

A RMRQ/ memory cyclE~ will be serviced before a refresh 
cycle if requests arrive at the same time. If a refresh 
cycle is in process when a RMRQ/ cycle is requested, the 
RMRQ/ will be held off until the refresh cycle is complete. 
This situation should only occur during DMA accesses, since 
refreshes are transparent to the processor. 



~125 ns I 
CLOCK (8 MHz) r-' r-l 

UI-Pl __ L..---I..... ........ 

RMRQI 
uI-P3 

RASX r Ul P18-19 _ 

CYC r UI-P12 __ _ 

I I 

ROWEN/ -----, 
U5-P9 1 ______________ -' 

CAS I UI-PI7 _____ .... 

Figure 1-1 
MEMORY CYCLE 'IIIMING DIAGRAM 

1 



__ ---------------------------------'---------'---.1------------------------------------------. I 

SOLDER 

5IDE~ 

COMPONENT SIDE 

A 5151~t 303 - 0292 - 000 
SHEET 

2OF2 ICALE "7-; "EV ~ , .. ------------------------~.----~~----... ----~----------~----------------.. MlF-1005 REV A 



6 

15,18 C +SV 

Cl I I C2 
6.8lF I .llF I 1.9 

.eN> * 

REVISICJ6 
DESCRIPTJ~ 

INITIAL DOCUMENTATION 

TERMINAL PINS. 
RAS2/ 

JC~7---~~r-~~------~ 19 
R2 RASl/ 10 

X:r+~ __ ~AA.r-__ 7~5~ __ ~C~2 

13.14 
~~~ ______________________ -+ _________________ C~Y~CL~E~ •• 7 

ROWEN/
~--------~---------------------4) 4

RFSCNT ADV/ 5
~ __ ~11

R4
WRT/ 3

33

1 c51
+SV TO CIRCUITS

C3

.1~I .1lF I
(N)

~
TO CIRCUITS

1. ALL RESISTORS IN OHMS. 1/4 WATT, 5%.

f«JTIS. \H.£SS OnERWlSE SPECIFIED

~~ ~ MONOLITHIC ~YSTEMS CORP •
.. Q£=="'=C,...KE])=-------4----tI ...-,,-., £ngl~. Colorado 8OU2

TJn.E

r---..ft-------------t.:-.:-----..;,.--it ---_ -_ -_ -_-_ i+ -_-_ -_ -_ -~_ t+--_ -_ -_ ---~-_tl_-~---_ -~_ -j-.:-_ -_ --"-"_-..... -:. ++. -_ -_-_ -__ -_--:_ f+.-..:-_ -_ -.:-_ -j;,APPR~OVED=------l----I
NOTU~t_----_i------~------+_----~~----~~----~~~~~----~------~------------~----~

lAST USED
PCA SCHEMATIC

gOOX MEMORY CONTROLLER

• I
, I • I ,

D

~
I

c

•

A & CUSTrn£R SlPPLIED.

& Frn STAfoFING INFrnMATI()\J, REFER TO 313-0003--006 & -DO?

~----... IIi" I 7 J 6 I 5

~ 4 I 3

fCO lTR
2864 8
f-- f---
2876 C

I 2 I 1
R£V1StONS

O(SCJtPTQj 8An ~
RELEASED - REVISED PER ECO

- ------.-----.-~ J ..;.

RE" I,.. I) I>e~ e:Co
I:. t.,l ~ ~~/YI l. :'5 '"1 -1'1'/

.---..!~

~fV fClsl III I I I J I 111
St'ff T 11121 T 11 I I I I I I I I

UVISION STATUS OF SHUTS

g::;:~;~~£A':'~~ ~:i:~~(D COIIT¥CT NO.~ MONOUTHIC SYSTEMS CORP.
TOl!~ANCIS ""f ~~V fNGlfWOOD. COIOIAOO 10111
'"ACTIONS [J(C""'AlS ANGUS 1--_____ -r-_---.jI-~...1 _____________ _;
• Xl ,. ± ~AlS w.Tt TITIf.

r----------L ___ ~lI.lUC::C"=__ __ _t_OII= .. -=~-\~--,------~--,'JS"--;-t:!,,-i, PC.A.
1--________ ---i nAIAl

DRAWING

8009 REFER TO PRIM::
CH[Ctl""l~(.t(, ,t!--. .,._. ~h*,
","OVED MSC

RUTR TU Pi'< IM[
.... A.I[

RELEASED .. ,. ASS'" -.. "_
~.----=----~~--------~~

III'fllt. .. TI(jN 00 NOT SUH ORA WING

• I 1 I 211

s 4 3 2 1

• •

(

...... t ..
o c1011 a (· .. 1 0 iC'~ 2425 .-.127 J1 ••• ~.. II 98 25 .. 1 •••• 1 ••• '-J3. " 2.

~==: .;;IG VSV';' 03G5 R"~"·'."! 23=: c U307 umI "" 104."'. .--W . J~ .~ •• 3_ • • e ••••••

I ... · · .. I · · · · · · · · 97_ .B •• S 87e , A:: \2 • It.A CR1 ••••• •

I i.e tel (I U30& (I" .a' <J i 'U:~'.: .. U.! .:9.:0.ho,.:.0 •• u:~ ~1,.0:-;:;::-:::~1:.:~::U!iH4:
= .:::::::. :::':::: .. ·:::.::::.·.tt:::::::·:_~::.:.::~!:!*:::: ... :~::::~::: I' (I d' 8'. lie <DOD

1
=1 •• ('(-';"31~ -<i(--.-.-~'~(:i-.-'-----((------}~----·-;-4(··(--:---··:c···.·;'l· , •. : '! ·.··11"'·· ••. '\:' •• '1,' ·.··11'··
:: ••••••• tIt-:

ee1- •••••• ;;. e.- ft/12 •• • ;.." ft/13 ~ ..,. •• • ..,. ~ i.J31~-e ~ .e e ol,! eWe e;s' e e = ~iR= = = = • .. u:.~ ~~: !!~. iii ;. • .~~!!!!~ ... C~::.--:
7' •••••••••••••••• ID • • •• U321 •• •••••••••••••• •••••••••••••• ..: £
~.I' · til •••• ~ •••••••••••••• : •••..•••• : .•..•• :.. ...•••••••••• : .••• 0 I!!!. (I l-~

:I •••••• ••• • •• ' • • •• t · · 0 •••• {I . . { . •. · '. • , • ·""1' • 'c'" • • • .,." •• .. • • • • • • •• ! •• i .. · · ' . . . '. · · · . '. . . · · . . :"1. D ••••••• 9: 1 •••••••• !~ ., <: I • (• • , • • • • • • • • • • • • • • • • •• •••••••••••••• I .. • t:: I (

~
............... ' ••• ' •••••••••••••••••••.•••••••••••••• ••• ,,* ••••••• l; C201 101 ~101.-.c11.· - -JJ. ,

U319 0 U 20 Cl.00 U15 un ~ ... ____ .'&5 .----•• :-••••••••••• ,,~,'I·.rt\l· "c'--' ••• '1."·· ,'!
U20 Cl1l1 U21 •• U22 •• U23 0 U24 •• U25 U2& "000 + U27 + U28 110. C ••••• ~ •••••••••• -

9 •••• • • • • ... • • • • • • •• • • ~ •••••••• • - .. • .. • .. • - -I SO
CA>~t (I < I·. • (J; (~I (I • (I (••• • :-:-a~r"-." •• ., o •••• • •• ,I, •••• ". •••••••• • •••• ,i, • • •• ••••••••••••••••• •••••••• .N; I VI t=
CAl C''l,',20 • •• -----.!. R~.--. 4a. ••••• -S8~~~ .0. 8 • ANa ~1 •• ···~·········u
I 1 329.- • R21 U30 Ull.· Rr •• --•• 49···"1:1'59 ;;; .. ~.;.~ ·..!...·U34 UI04

~ : I"." " " " " " (I" " " .. "."'= (I"""""" '" '" (f· .. • .. '" .. : : : : :(I" '" ; ; (Iw:'" :1 .. · ... · ·
.... • • • • • ••• •••••••• • • • • • • •• • •••••• " If:f •••••••••• • '. • • • • • • '~~~~~~~;;::=~-:-:i I • ,-;-.C7' .~.. ANI.' C'107 • '. _ _ ' •• , '" _:. • L-.. ______ ...

C'31 U3& U31 • ~ U39 • U"O ,,'.................. 'U .. 1 ,...... '.
I ••••••• (••••••• T. I ••• •• (I (I • (•••• 0 • • C;'!3
.' 21'f2" ·.·.·tJ!8··· :~:.:.: •••••••••••

• U%2·. U.3 U44 20U4SC132 •• U.6.. U47

• • • • • • • .' • • • • • • • • • • • • •• •••••••••• •••••••••• ,.::';,..;.;..';...;,. • .:., • .:..·..::·;,..;·;..·~·n I.=...::..:....::...:...;;..:....=...::..:...j~.::...::...:...:~:;...;:.. I • T, I (I • (I • (I· I. I ' •••• pC L.I _____JI,-..;;. ____::II...-___ ---l

,..!..!..!~.!..!.!..~~~...,

.
u ,

I
I

c

• •

1 ••••••

onnnillJlliJlliJ

• A
',i 1! IlEV

(J£E JR.!)
.'£,$: llMl£,SS IJTIIERWISE SPEt'!FlED.

8
~-------.----L-----."S~H~EE~r---2----L---~

IIC~ _ 11V1. A P

I

*

A
~

W/I~ PINS

121-122

122-123

124-125

126 127 -

JUMPER TABLE

8"(STO)

JUMPER

--
I I

REFER TO '..,ANUAL OR CetHACT
USING 4, 5" DISK DRIVES.

5"

JUMPER

JUt~PER
I

MSC, ~JHEN

£ tEKlRY ARRAY JlM'ER TABLE

16K 16K 64K 64K

SV 4116 SV MB8164

TYPE TYPE TYPE (+7,-2V)

- .. - ----

{ 108-109 109-110 108-109 109-110
---1----- --

JlM'ERS 111-112 111-112 112-113 114-115
----------- ------ ---

115-116 114-115 IIS-116 112-113
- - - -------- -_. r---- --

CR4.CR5 - - - , INSTALLED·

-~ R32-R40 - - - INSTALLED
---;------- ------ ----

U201-208 INSTALLED INSTALLED i - -

INSTALL-EDbNSTALLED INSTALLED U209-216 INSTALLED
~ 321< F~ __ 3.£~__ _ _ I

* ~ IN:>ER DIODES MUST BE CUT WHEN DICOES ARE INSTALLED.

C203 Cit.') !!ld) RNll 1.1_'11
LAST UseD --- --- .--- ---_ .. _- _._--- -------

C8-99 RN2- 1 ~ I ._<~!.~1...JI:' =_ NOT USED ----- 1-- --- ._--- --- c---------
C166-199 ,'-:) • :'r) -- -;;: t~

---- -- _ ... ---'-'----

Ul21 -1 -- - --- f-----------

UI fl,IC,.1"_!'J!W,--200 --- - -- ---------- -1------------
U?l 'l" I.J? 1/- 300

.. -;-- ---::-::- •. ' .. -_.:=.:~-.:--.

REft RE.NCE-_ DES I GNA r Jrl-J':" lAST In[L-1';:J1 U:,f_O

--MSF 1052

1-------

Rt:VISHJ6
~--~---.----------------- --------------~----T_----~
g'~E~Q f-- ____ OEScPIPTICY-I ____ _ DATE APPRV·O

B 2864 RELEASED - REVISED PER ~~~_~ 1
C lB78 R€"'~tb f'E0? EC-C ~ .. f,~ IPq{,1 , ';1">_~! A.t"f/

&. REFER TO MHtJRY ARRAY JLJoPER TABLE Fa< Jlft.PER CPTICY-IS Fa<

DIFFERENT p S nco f\£M::R" c::. <="ME!\,IT<:: TY E ~ ,~ '--'-'-, n-"

ill. SEE TABLE FOR Jur-'IPER (PTICN FOR S" & 8" FLOPPY DRIVE.

E E E E --6. 0 0= JUMPER BLOCK AI'{) ()--() = JUMPER WIRE.

& EPROM/ROM MEMCRY FOR THESE LOCATIONS ARE CUSTO~R SuPPLIED.
FOR A COMP!_ E TE LIST OF USABLE DEVICES. SEE USER MANUAL OR

CONTACT MONCll_ITHIC SYST01S CORP •• 84 INVERNESS CIRCLE EAST.

Et~(,LFWOOO • COLORADO. 80112.

& ALL CAPAC I TORS N;!: IN LE.

~ PIN 1 I S CI lr-1PONENT SIDE. AND OPPOSITt::: PIN 2.

£ CAUTJr;N. ONLY ONE, U9A OR 1)]1 INSTALLED AT eN£: TIME.

I. ALL RESISTANCES IN OHM. S%. l/4W.

NOTES. IN...ESS OTt-ERWI SE SPECIFIED

REV Ie I e I B 1 B 1 ~1 B J e BJBfBf~lB1Bl 1 I I I 1 1 f J
SI~ET 11 I 2 I 3 14 I 5 I 6 I ? 819 holll 1121131 1 1 I I J 1 I I

-
REVISI(JII STATUS (F SHEETS

DRAWN,//..iL,. - jI '%I/f'O

*
MONOLITHIC SYSTEMS CORP.

Ci-ECKED
------ Englewood. Colorado 80112 ,

- -----f--- - SCHEMATIC,
--

Ai-'i-'i~ovl.15---------
I TITI.£ P.C.

APfjROVED----- -- ----+- ------ MSC8009
I

-------------- -~--- Slrr:_~~~ NJ~~271-000 Ie
'SCALE. -- 1 'S~£ET I OF J3.

i

;

I
I
1

D

·1
I

.(

-,

i
IB
!
!

I

I
I
I

i-

5

,
+S

PI-14 INIT/

+5V
CR2 Rl8 . -10 114 14!o< 5601< IN9

4

RNIO
2.2K US1 USI

3 74LSO<+ 74LS04

I 11 1 9 R28, 100

10 8
,

US9 1 § I r 1
--

75452 ~61 2.2K

.1'60 +5 1 _ 1

3 ·2 1

-_ .. _-- 8MHZ .12C5

T

41+1Z/

I :
2~'iZ/

1,.I1Z/

0/
INIT

INIT/ .
BCUV

12C~

5CS
12C~

12C5.qA~

3C5

1185
~t~l D

l-.~Pl CCLK/ "'_

III 1~~2 t .~:~ II c---i I-~dft=,-,--"--,,,--: _+_SV -----------= .. :;==-:.....~/:~; ... 5J
IrHllH-I-~I·>+!:.iL3 68691 111.1 "W~/:~~·lOCI

<Jr --, MA THCLK • 4C 1 r----~1!t==_--~:i~];====~=======tj=~i=====::::==::::====::::====::==::::::::::~~~~~::::::::==~:=======~======~~i~~-~-~-~/:4B5.12C5
$0 a 9 LAF

LA£::

:~---==-~
4f-:r3E=-J
O.lUF -.o11..F'

~
+\4
U23

K1l1SA

16
MHZ I

L.)
:~ ~ I
ARt---=-l----'
AAI 40 I A9 39

AC~38"----__ -J

13
0

70
a 12
a 6

14
0 a 15

4 D 5
17

0 ~ 16
3 D

18 D Q ~9
a

LAD
LAC
LAB
LAA
LA9
LAS

~o/

r---------------------. 3C1

UA BUS 40S.6C
_---------..-:.---- 7CS ,6C4

1(1)5.98= C
llC5.12A5
12B5

It~;73 (U4ADR/ I
~--------~~~+----------------3Bl

11 A Y 1-9'---+ ____ -----f--UF---+--=l8~_;Ll ZN;:R=I "-

Pl-33 4 N4I/
581 .!AITI'

A7 37
A6 36

AS'$-...r

A4 34

___ --0...--+--...;;8-1 A Y 12 LA.: 7 ,. 8 V"13ACRE ;3
13 A Y 7 LAD ~ A 8 1~ 46

: 1 ~ A Y 14 LAC A ~t:'15AORCJ 45

PI

A3 33 ,r---------__ ~-1---+_L_'''__lA Y 5 -LAB 4 A BEI6~ 48 Pt

r------H++--T-+--=4~ A y 16 LAA A su-l1AOR
IV. _ 4' /'

3('S" INTI' --------------------- _ ..

AZ 32 r 17 A Y 3 LA9 ~ A 801SAD59/ .SC
I 2 A Y 18 LA8 1 A U63 8b19ADR8/ .49 r::;,.; +-==~ __ ..::1:.:2:.a B U65 A.~8 ___ ~~I.:::0..:..7 ___ ~1~B 8~6~B AJ.-:.8 ____ -.-=- 13 01 07

Al 31

AfJ 30 70 OATSI'

13 883038 A 7 106 13 B 7 1 0 06
~~~~I-n 6 l' A 
+-==':;":;"' __ ...L:4<18 A 105 _.~ 8 At--=6---__ --i=-____ +_9=-lOS 

06 

:05 
U47 ~ 1-lc 83038 EN~ 

74LS244 ~ r LIOAO/ 381 
69 DAT4/ 
72 OAT3/ 

~~~-...!I~S:c1 8 A 5 104 1 c: 8 A 5 7 04 MRQ/~19::..-_--. 
~=:.:....--...!1~6:(18 A 4 103 lIS B A 4 8 03 IORQ/!--'=-2:>£-.O __ -.

104
1
03

71 DATV ~~-=-__ ..!1:.:.7.(j'- 8 A 3 102 1 B A 3 12 02 RO/~ 02 ~o
7 DATU

~ OAT81'

4+~~~_...Io11.lil<1R8 A2 101 l€S A2 15 01 WT/~ ~o
7

01

PROc:AI 381

I+-'=':":~--" «Ic.:::-n :,. T~~ 'D. ~L~ ____ T---J /R~L __ -l ______ ~=l ="~D=e====M=l/~Cl=12~7u I.j
1 !

~o
4 0

D
17 0

DO

401

I
EXTDB/

+5V - -------

11RN1oJI
RN811RN9 .1 ~. 2~ t ~. 2KJ ~. 2K

~ ~~tP~
RESISTORS

MSF - IOO'~~1 5

f

I

I/O SUS 38S.4C2,SBS.601,
785,9D5,IODS,lle5

4 1

, I

__ ~o/ .385. CD5

~.~:?(.. jr..,~. ~c)5
I I ---.!'~~.':3J,)

I
I I ~.!:!_;[)!:>
________ ~ l~ .: S[;:' • 6AS

r;r:.!v
'---------....:.-.. f)f)~)

I

3 D
18 0
I~

~_-+-_______ +-I~fl A 8 ~ 2 ADA7 52
.-.=-:'--+-____ ~+_I~I A B~~~51
~-t-----==-++-_3«A B 14 ACA5 54
......,.-t-----=:~++-~~A 8..,!:= ~~l
~~4---------~~~~A B~~~~~~
I-=--=:.--t-------=--=-++--I A U64 e ':1. M"A? 55
t-=--t-----=.:.=-++~A 8303138 V"ii ADAl 58
......-_+-___ ---'=--=:.-L-t---t1 A 8 l~ ADR8 57

11 9 exrAOR/-::::

a ~2
LA7

Q
LA6

6 LAS
0

15 LA4
0: 5 LA3
a 16 LA2 a
a 2 LA1
Q 19 LAm

G~ U25 U55
745373

7404
13 12

k T/R EN T 381

TPROC,t. 4C5
I V '* MONOLITHIC SYSTEMS CORP •

I

B

A

~. :, .. ::.... -
5 j 2

+sv
11

.~~~--~--------------~

D 2A2 {-~. ~~/ =============----=-========tt============;l - WT/

r-.....,-~
2.2K
RN9

Jl;~ D
5 4 3 .:: urnc/ 11A!;i

-t--------'-L-IOW-'--'C-/.... Il~§.
~----------= l ... =-=MRQC=;/'-" lb~5

-I
I

c

B
PI

-

A

~I--++ _____ ---'L:::.MW-'-T--"C_/ 485.

2A3 .CCN7
285- INT/
SA! INTW

COUT/

PROGRAr+1ED
U38

OZ 2 10 aa
A

19 6C5 L
DEN/ 1 ~~

201 1,-

2A3{;~::~~~-------------------------------11 I
+i, =;Al'l

~----------~~~~.2~~~11 f ~

10 9 8 7 6 5 4 3 .2

"" INT8/' 8~. 86 22 R7 A2 c.!Q
41 (8~_ .:- 80\.
42 (INTl/ 0 'O--J.-+-+-+-H-+ ___ 2-1-1 R6 U62 Al ~
39 (INTV 81r -, 82 20 R5 8214 Ai:7 fJL--

El05 EI04

El:f/> iI--, r EI02

II Ii Ui; 03 3
~'AC

13 AD 4
14 AE. 04

~ 05 5 - CS

~~

1)-ii
~

5

~
~

EXTC/

I. J:;;.p ~~~l ,
U44 ,::> lUWo...; PI-ZZ

8833 ~ 5C5

[4 MROC~ Pl-19 .r=-.:' SC5
12 MWTC/ PI-ZO

~5C5

EI06-, rrr EI03~J~bJ) II I 745374

I 2 A8 15 I I Lf 000 a C, ~=-W+------1.---------.. 2CI
~ _____ ~1 AA ~ ~9~~+------'

r--__ -:-5~AE ~ 8 0 a ~-+H-------,
181 AG I '------rf 0 U39 a 1-'1~6~++ ___ --,

SMRQ/

---.!2. AH 18 0 a ~1 ?~-H----,
I , S I 13 0 a 12 ! ~ AD 013<--.-----:-;;

,---!l AF 7 14 0 a l~ I

--.2 AC g~'""6'_+_---__'"17 0 a 6 t
• '" -l ,

~U-3-3~ ~I~l~~-HH

C

PROGRAMMED 11- 4 745374 5 PROCA/_ zas
'-++--+-+-t-+_

2
--t AS 02j..:.7-+------t-;t;-;;8:;10 00 ·l~ LIOAD/ __ ZBl B

'--~-+-+-+-t-l-! AA os1l4 0 Wu...w.-I-lH-+-4+-H+-----ILMMAAORDR/I __ 2CI

40 (INn/ 8\)· SO 19 R4 <1-'6"'--_-'

INT4/ 79,-, 78 IS R3 Vcd-~'--+5V
37 (0 17 R2 13 38 (INTS/ 170 .' 76 ETLG~

~-+-+-+_5~ AE. 01 6 3 0 U40 a 2 EXTAOR~ 2Al.

t-I--+-+-+l,:-:S:1 AG os 9
11

1 ~ 0 00 ~2 LOCC/ 4Al
~ r!2. AH 04 0 ~ 505
~ AD 07 13 7 0 a (j6L-J.-W--t-I-+-HI-++f---------
17 AF 06 12 :..1 4 0 at-!!--
~ AC 03 ~s 17 0", a 16

~~ I ItT 11' r--~ 745471 ' ~ l.!..-.J -::

3S (INT6/ 7~-',.. 74 16 Rl ENTE/~
36 (INT7/ 7~'-, 72 15 R8 ELR/~

~2A'" I/O BUS 103 4 SGS/ GND~_
~ ~ 3~ ~

............ -------1 23 74L574

.... -...,10=-:1=--_____ 2--t 8 1. ECS/ 5 11 ~, +SV'--___ -.

108 1 88 INT/I--n +--i> 0""'R~ J J
L~~ ________ ~_-_-_-~-_-_-_-_-_~ ____ ~~~======I=ir~==~2~·~~~~~511--~ t07 20 za 7

~
74L5175

9 -~NC

*
LOAD/

>U22 2Q

MONOLITHIC SYSTEMS CORP.
401

A _.C1 INIT/
--

305t~027' -0001 ~
ml{ SIZE CO~)E IDfNT NO

I
B 51513

!Mii! .
SCALE l SHEET 3

MSF -- 1008.6,.: 1 5 I 4 I .0- 3 I 2 I 1

D

I -,

C

I
I)

B

A

U54

IOSEL/

U43
74LS3Z
5

~

PFIOGRAMMED

let . l/ABUS LAF t9
1A1 01 6

04 9 l~ !~AH

~
03 a

LAC AE 02 7

LAB AD 08 14

~LM ~AC 07/
13

I A9 AS D6
12

LAS 11M 05 11

5AI soor 161 AF ~~5
I

301 I t&:IfY,

I
I ~

I 2Al _PROCA

~l{
LMWTCi'

.J..ICRC/
.LICltIC/

2Cl~1~~~~~/ ____ -+ ____ ~

3 2
--=L=O-'--'AO=/;... •• 3A5, 585

--

I

2A4
I/O BUS 10"

lOt

I02
103

I 104
I lIDS I

106

107

LA"
(SId

LlCJK/

LlOWC/

9 85.905
CSBUS 10 OS,11A5.

as.llC5 R~5ELBUS 12

EJCTOe/

RMRO/

RMRQ/

fM3N<

LOCMEM

LIORQ/ • I:.AIt:."MV

SAACIU

705
2AS

6D5
6Co

6C5

605

12A5
305.
scs

')VJ.
J2Al

+SIV
Rl1 PU3 745153 7

~yY~~+~~C2 y~4-- scs
2.'2Jt-- .3"-3

12 +5V

~ v TE 10 RNa I

MSF - 10011,\\:': 1 .5

1.... 7 6 I
PUt-.~~~L PE~

c: US2 1
~ Cl s6--iA Z.2K ~CeI

~B lOt
~~

~---------~------~--~C3 y~9~~---~------ 5A5
~p ao~

74LS163

U61

~~ -ZlF
U6I

75453

~C2
~Cl
ll!; Cel

2
Br---

14
A

s~

~ I

~_~----,-A..c.A--,-C---,l<_/,------->
6

~-----------~~~~~---------------------~
5

MONOLITHIC SYSTEMS CORP.

Silt RfV

B .B
SCALE SHEET 4

1 2

D

L r-

(

E

D

!C!

(

381 • Loce/

2A2

2Cl
ADRBUS

4

AORFI
PRO(,RAMMED

17 A7
16 Aa

~~~ ______________________________________ ~1~5 A9 
ADROl 

ADRC/ 
~~~ ______________________________________ ~5 A~ 14 

DI
ADRS/

3

UJ7

"
74LSIO

I T',TCLK 21
8

EXTRQ/
22

EII9

ADR

~~~ _____________________________ ~6 Al ~!: 1\ CRl 

f 
. ...;I:.::m:..::C/:...----------------------------------------4.,~~ U53j 1 I +5V 1 2~~~O ,._. ";\/\1\. IN~~_ I'A_lll'l'L ... I,CI 

~I~OWC/~~-------------------------------------~~~A4 D·rl~~~ ___ ~---~.----~-----6~~--------------~.--__ --------------------------~EX~~305 
, ... :"'!::~';':!!C/=!"----------------------------------------4;I:~ ~~BGRNT I RIO I Cl )PZ-29 

" 
I' - -r 

I 
I "~n 

~ +5V~,," 
825136 R25 -=-

U5I PUI 2.2K 

74LS04 4 15 14 

SAACK/ 1 2 P 5..L 3 

2 
'" Of--NC ~ Q~ 

# 
7~~~74 1 usa U60 

3 >1~ Q~ .,r<~ a~'-NC 75453 
UJ6 

I INIT/ tv- - ~ 7 

~ 6} ..... 1 
,-, Lr-.MI{. 

74S112~ I PlJ3 0 

l~, 
I 

lU I ~5 
64 65 BPRQI, 74LSI23 

11 PR 9 9 fa -J Q 
13 U29 

13 > U50_ 7 10 74L500 
12 12 K CL a" I L2U a 

ElRF~ 
USl U29 U37 

74LS04 14_PU3 74L500 4 74LSIO 
1 3 WAIT/ 

~E1I7 5V 
10 74511 2 

3 5 6 
- I 

2BS 

481 

leI 

4CI 

7406 220 11 8 U60 
~42 PU~~ U20 ~., 

3 J

PR4

0 
5 - lEII8 

BPRNI 13 ..... 12 9 
---! > U50l 

75453 BGRN7/ 

~K 0 6 I 1 
BUSY/. l&..)1 

~ 
B PI ~5 

PI-I7 

2"2 
M1/ 

LOAO/ 

~ U29 
I/O BUSt06 1;;: D V 3Q ~ 13 74LSOO 

l2r) U42 
~ 10 lQ 2 ~4S11 11 

104 t~ 40 3/4 

U22 4Q 14 
74LS17~ ~6 
I? 

401 

2A4 

381 
BDSMS 

A 481 .SXACK/ 

M5F - 100",,:': 1 S 4 

15 3 I 
I U43 U42 

74LS32 1 74511 
13 

12) ~1 
13 

2 12 

3 

INTA/ 

BOOT 

~ MONOLITHIC SYSTEMS C 

2 

JC5 
2A3 

4CS 

IlEV 

B 

D 

L 
I 

( 

B 

A 



:D 

5 

401 .RMROI 
U43 

74LS32 EIOO 
2A2 ..,:;;=<--...:9~.... ...-, El~~6 

2A2":':~:::"'--..!:.I 

401 '='P==--'=-t 

2.2K 

II 
III· 

.~ •• ,~ .. '-'-RMR~Q""/~--=-~-------! 
I 201-" 8MHZ 

7,.L5393j 

.--__ -+-_:::j3aA U~ 1 

4 

---- -I 

745374 ~ I 
U69

02 
2 3 0 un 0 2 

044 18 0 0 119 

03 3 4 DOS 
07 7 13 0 0 fo=l:.;=2'--_--' 

A1 ~~6 I! g gBl~ NC 
08 9 8 0 0 9 

S/ 01 NC 7 n ~ 6 

+5V 
16 

21220 

U68 ~~ r.!...:.4 ____ -I---....!::.O 

100 12 
150 1-!1:.:0-----+--.::l 
250 ~-----I---~ 

RASI/ 
t-=-''-------7Cl 

R~;~~ 781 

WRT/ }7Cl 

U25 
7404 

- 2 

7C5--MR--D8-U-S~rMR~D~7~--~­
MRD6 
MRD5 
MR04 

MRD3 
MRD2 
MROl-

MRDO 

~ I r-y; CC;h I I ,-I --j'--------4-I---..+--.::...::I RFRQ/ ll~ 

It i=-it--------;-+t--~-'---'_--=-~'-+l--+I_-_I_------.J 

1 

I 
tJ 

14D1 

_ __ +-~4Q8 <~-1--------t-------------------------------~~+=============ttJ 
r- 5 ac -L R23 

'I'! ~ g CL< ~ ,ptf .sv ,-t--t'-------------tt--1r----------~-------.:..------_-_-_-_-_-___ -___ -_-_-.,--------~M~A~CK~/~4B5 
!I f (! Of) a. ~ I 2CI CLAE=1j;if4?3 ~ 1 ~ 28 U58 ~NC I. rSV r I ~ I • I I A~ ? I I I R 17 (> .----l ; 4 114t-~j,'--_______ __. 

--=-LMW:.:..::::~TC/:----H--H-H-:-+r---------------------.J i +-5~~5 ~ ~ r1 MA71 74LS123 ~U36 I 1.,-- - ~ 

B 

30! 

ZCI 

2A2 

:~;~~~ttt~!r-~=============~===~-dj 9 0 12 74500 p_8K( 
L/ABUS LA6 1 3 ~ 21\ CLR h------<I----4-13 1 1 

p_L~~~_r++;-r++---------------------------~1~2 2 Yr9~ __ ~M_A~6~ ~_-_-____ 1~11~------~~12 
~1 ~ 

'----------------------=~---+--'~O A B 5 ~ 
Ll.A~5~rr~~~----------------------~3~~S153 ,_ 3 U49I :>1 94 16 95 REFEN 
~l~~~C~rr~~r_-----------------------~4 2 I 1 14 qTr----------T---~T88~~4~_~~~-~~~---------~ 
t-'l""'-AB~+Jrt-t++_--------------------.=.!5 1 5 'p-. I IT92: ,o.ll... 

LA4 

L.-____________ T~6 0 7 tJfA5 ~ 4.:.91.LROl'iEN 

~~_r++;-~-----------------~'13~3 Yr-~----r-~---~~ 16 m 2 Y r---=-9-t-__ ----<I___+------M-
A

-J4 

~l~~~-rt+~~---------~--------------11 1 15 
~--------;111------,7-4S-1-5~3--------~TOI~ 0 A B 5 ~= 

~LA~3~--+-++~---------__ ~~ U6~ ~fL-~--__ -----+~ 
LA9 q Sp.!. 
~~.A2~~+4-----------~I~fo Y~7t_------__ ------------~+-------~M~A~3 
~~~~~~ __ ---------__ ~T~l~~ I 

~2 y~9j_---------------------~+-------~M~A~2
~LU~~++1--------------~l 1 15 I

~r_T~--__ ------~U~O S~~
I 745153 A B -

~LA.-,;1~4--+-..:;j"'3 u-s7 141 ?lLL----------------..jW
LA7 -g 2 5 o!-

r-=:..:.:......~-]-::IJi 1 7
~L~A8~~~~l~~ Yr-1-__________________________________ +-~--------M~A~I~ m 2 Y f--'-9+-___________________________ -.JI!--+-I _______ M_A_O~~M_A...::8:.:U_=S... I

,-=LA:..c6~1---_~l:..!.ll 1 15 dJ; 7
85,

7
A 5 I

~ __ ..;..lO~O S :r-<..J... ' I
.. ;M~1~/ ___________ 1_4~~~2f=:===============:=~=~==~=-==--~==-~==-_==-_==~=_~-_~-_______ ' ____________________________ ~

MSF - 1008A~ 1 5 4 3 2

lI70

S r. 556 -=-
) ~----.-----'

CZ 7

"
R16 1000PF
3.3K SM

~
~

~
a2

2N3906

II ,.
C6

22PF

1

~RZ7
-c>22K

+5V

SRI4
<;>2.2K
~

SR24
C)lSK

I

I r

c

B

A

s J 2

.1 .,

III
RCMSEL BUS

RCJIo1srr-~/ 1 +iZQI4 RG1SEL 1/1 HCMs,EL 3/) RCJIo1SEL 4/j LAA 2 13

_~20 A 20 ~ 20 A20
LAB

I'--- 3 12

+SV ~~CC CS ~ +SV-~ - ----- --- --- ~ 21 -SV--04 ~
-!.2 ~OO ~ ~ - ----- --- --- Voo o-...r.. 10-

LA9 22 A9 - - -- -- - -- --- ------ PGM~LAC I 6 r 9
LA8 ~ lAs v_ 12 'i r -- - ---

I=====~ 1==-====1 '~S ~ I T7 S
LA7 11A7 1------1 UIOZ

08 17

~LA.6
UIOI U103 UI04 07~~~~: ~ LA6 ------

=-====-=
--- ---

LAS 3 AS 1\ A /\ --- --- 06 .1',-,0 - ----- U28

1 ______ 1 L~ 1-----=1 L0, 1------1 M DJ~j:~~(PAL[Ef'fs~YI

401

D

+5'1 1
L

60Z f-lRO BUS

i
i

!
18
I

I
! 6A3

MA BUS

I 2M I/O BUS

.. +5V

.(

I

!~
,-

TL'+- 14 14 I 14 14 [14 _Ll~ 4

:::::====~67;LAi~ DOOr 1= ~ ll= ='1 \- - - -- -I 1- -I - =rT~~t-I:..:I"i:r--~.......-__ RlS T

!.-'M""A.=Z:...-_-1"LA2 I _ - - I-I j---=:.3+--+-t-. _____ ---"..;vv __ 1'lR= •• ..:.;' .:.:../ :J
I .MA..=..-=3 __ 12-41\.3 U20e' __ I, U2C7 _ -' U206 - U20 1 WR rc8=-t--t-+-t..., 33
...- -- VDD9
~MA:..=...;4,----=1-=-1!"LA4 __ , _ _ - - VQ;.t-"-l-+--+-I-++-····- +5V

j,!MA=S,--.-.,;:lc..:;O-!",LAS - - - - _ - - - VEl8 t-
16
,,-+--li-+-++--

t..:MA~6,-----"1,,,,3-lA6/C!; - - - - - - - - VSS !-=-,-+--+-+-+-4- --r-

+5V ~ +5V ~ +5V ~ L-+5-V---Y-~-Z=--' +5V 2 +5V 2 +5V 2 +5V 1L..2 __ -f-t

}' R40 ~ ~ R39 .6. ~ R38 ~ ~ R. 37 /\ .l R36 A J.R35 /\ <~ .. R34 /\ 5. R33 /\ ? lK ~ t.~~ L8~ .{ lK @). ~_lK ~ tlK L!!\ tlK ~ ~ !.K_~_-+-, '\ lK ~
f14 14 I r 14 1~ 114 \14 r----.~ J~ R13 RAS 2/

MAe 5" 1:' -- -- -- -- RASt--
4 --l-+-+-+-+--+---+-________ """,--____ 602

,,",:--.;;;~--~-;:~ U216 _= =_ U215 = - U214 = == U213 = = U212 = = U211 = -= U210 = = U20~:~t-T:::..15-++--' 75
""M..::.A=3_-=lZ'1.A3 _ _ _ _ _ _ _ _ _ _ _ _ t--~-+-.-..

VOD 9
""MAc.:..:...:4 __ 1l1'-fA4 - - - - - - - - - - - - - - v:~Cf--"-I--t-+--+
L.-'Mc;.:.A~S_-=l°:..t.AS - - - - - - - - - -- - - - - VBB 16

_--:.--.....r...:;MA...;:.,.;.;::6'-----1-'-j3 A6/~N - - - - - - - - - - - - - - DINvSSF---+-+---HH-..

I/O D¥--- I/O 1~ I/O 2~ I/O 3~ I/o. 4~ I/O 5¥--- IL/O-6 ~-c:2~ I/O A ... 2-----'
109

B

+12V

f
-5V

: +5V

!A
..

+5V ..
: MA7

6A3 ..

110

~·'4;~'-t .. -". CUT IolLr"N DIODE J .. CI06,l10.lll.115.116.122.123~
.--.J . /'"~ J~ 127.128.1)1,.136.139.140.144·I I

114 ? ' IS INSTALLED & .- 145.152 -- r
~_11_5~~_IN~5_3~3~8_~~ ___________________ ~___ P,~~

116 ~ C~ -"--'---------. _----10.& Cl08,109.l12.113.117,118.

3~;V '. :!~::~~:~!~:~!~.137'138'T.& ;:~;
_---1-11-<'10--.. 112 I~~72 ~!}f

113 ~ 0 ---------------------' _---"""0 ill

-
A

MONOLITHIC SYSTEMS CORP.

SIZE IlfV

B 8
SCAlE SHEET 7

MY - J 008 A"::' 1 ~ A

5 4 3 2 1

D

r
+12V • 'I2V, 7.8 (

~C201 I<loO
.

15UF I O
.

1UF
I20V

_ 50V

J I I L
I I 1-6.81-84 (-I~V +5V I f , ,

:.L C202. 203 -L. C 1 0 1 .102. 1 Of, • 114.1 19.-.1..

I
33UF ~120.121.J26.131-133. ~
10V 135.143.1 f.e--1 ~ 1.153-

-=- -=- 160.161--165,1"7 "7""

o.lur
50V

C Pl- f-TO CIRCUITS (
(

_f~\.' -5V
9.10

IC200 1(103

.
I I t I ,",3{IF -,-O.lUF I
I ~IOV -L"ov I I -=-

i~
(-12V -12V ~ 79,80

ICI05

.
IO. 1UF
_ 50V

• (GND
CN) • 1.2.11.1? • I .

75.76.8~,
86 -

\ FILTER CAPACITOR DISTRIBlJTI[J'-J I

- -

A * MONOLITHIC SYSTEMS COl'. •
58! I {sli[s'iili 13)o5r~(0271-ooo1 R;;

SCAlF - I
ISHEE 1 8

MSf - 1001"'-1 5 I 4 I ..
3 I 2 , 1

D

1
c

B

A

s

201 INIT
LlOWC/

4

__ U_:'_A_R_T -. 26 SER I AL r /0

UI0A

75188
10

8
R9

V(C~t=~+~5~V~ ____ ~ __________ ~==========~~~~ __
ZIRESET TXO:tlt9~=========-____________ ==========~l !,\ 5V

:b!Q!~~------=r::l!]RO/ DTR/\ 74LS04 ;~~~Z==============~±3=~IICS/ RTS,ll
Z
L-
3

__________________ ,~I2~ ___ -r_
.. I C/O CTSA-I£~ ___________ _

301 { LIClK/

401 CS2/

2A4

------------, 5

4

2

R5-232 TXO') 5

+TX2OMA 6 D

47A
o----..-I2V

.-.l~I--------=11:gWR/ RXO-I'£~~4 __________ ~ /2\ UII +

07 DSRA- L-________ _

aUi;~ -:- ~j~ 96AJ , , , ~O

TXRD ~"'IIII 117~ "'':~4 E~ ! R7 I ~~~3 II _
+5V

-TXZOMA 21

RS-23Z RX~ 3

~-46A

I I ~~~81 45A C>- +5V L
L. --------0 44.1.

~3~ u--_12V I
RXRD1914 "l(:>1rO RXROY/

O

4A 19ACl U!OIA zz_.....-1 147~045 4-.ll
z

1 :~ilIIIlIIIW DO, ~ T !

I
TX:rr.2~5c==-________________________ __, 75198

=
4 <><> RX~rzo- ~ ~
'--__ C_~- L_ ~_12 ___ 11 -- ____ +-=5=------------~

C +RX2OMA 2

1~:4 -RX2~ 10

201 -

III

U17
8253 +5v

Z3' VCC ~
2zi :~ a..KS 1-9=-+-+-__ _

'---19 11 ..Jlb!./Cl,NJ~US~.J l...M~H--H+tt~-z,2oOl ARlAl GATES ~--,-+_-, 2el- -1 LAl

I

.zl CS/ I---U~--, 4Dl ~csu '--__ l~07 OJTS

'--____ Z~ 06 CU<1 ~ I-<
1.-. ___ --,3;-1 05

l/.V MHI

1)303
74LS393

1 ,
--------q)CK 1 QA --

2
r-I'-LR
13 r ~>CK

" 10f1 --

10,
(,

100 ----I
II

20A - -
10

20n ---
')

?Q(

L...------:;-103 T

--

RS-232 0l!;

+ROCT~ 7~UO" ~ Ul1 +5v :~O 1 J ~~Q ~74LS04 t/

II ~ 9 8 2, U14 LLi'2-4 ______ .. ~O i 4N33 -=r

I~ lelL I o;!~:, -RDCTL-.-::.

RS-232 RT\

RSA .-----

~ll~ll_--__ -------________ ~ I - -r 'J 13
RS-232 CTS)

- 6~~------------__________ ~ .-------t'""::--.:--.... r 4
RS-232 o~

Ull. _ '~'" '-------~---:;7~4LSO;-;::;:;:A4 11 3:.?1

I-V--" 1\ u;;:N 1

UIOA ~ ~ 40A

RS-232 RXCU< IN
:>

11

25

24

9

7

14

8

75188 4ZA r
~~3------------------ RS-Z32 TXCU< ou~ 4

R6A CN) 15 +5V·.·

J3

I L------=;:-t 04
GATEl ~. l ~~ eLK zoo B ___

L..-------::;6;-tDZ CUTl r!-r-h ~

L---------;701

01 ~ -~ ~ -~~-- 1 CU< .IOCS

• De GATE2 ~ _________ _ L-----------712~GND CU<2 tL t±~t=t=========================~--------------------------------------r CUT2 ,...L..<L;'---__ -r- I

z1()
___ GND __ -:o> 13

-!"

11Cl .4.!H-~T _______________ _ --
1101 ... 1~:!:M-~~~z-/ --------------- ----- -----------

201 •

MOfjOLITHIC SYSTEMS CORP.

SIZE [)WG fJO PfV

B 305-0271-000 B
SCALE 9

MSf - lOOU.:= 1 5 4 3 2

C

B

A

5 3 2 1 • ~_________ -----~----~----------------------------~~--------~~------------~------------________________ _L _____________________ ,g~

D

I
1

c

t

•

-

A

U19B

8251A
SERIAL [/0

r Ut08-1 R6B,
220

CJ-.I 1
201 I 75188 I +5V ~15

-c ~ 18 TXO

INIT 21ccSET vcc~ +5V
DWC/ 10 TXD ;9

301 ~---=-I ---------------}» 5

~~ '--__ ~-1-31---l 111 OTR ••

2A4 Jl""; _It_Q_7 _____ £t~E ~~~I;~ kiJ II ~ :. RT~:'I
Iii J~ OX"'lY 115 'llH-'------'I_TXRD __ Y a ~ II I ~;--; 3 _____ --0... u TXCU< OUT> 4 I
IT~~~ ~~Ol 114 6 lRXROY 3B - 968 ~ I U ~ld ~ 42B 41B

~D~ RXRDY 9 ________ .:'B :~~ II 7:!iA I 40B 3~B RXCU< IN ;) 8

4_ GND TXC 25 8 110 RXO

-=- 1..-' ___ ~_X~_~...l~--------~--I I I 1l!~J-'-:1-3--!~-----------C-T-S~::
I ! f I
I --+ ----~~ r-'_4_-+-__________

DS
_

R
-7» 14\

--- -----t--- --- J I GND ~

WR/
LIORCI 13 RO/
CSI/ 11 RXD 24

I CS/
~i~~123

,J.L.~ eus !..Ai! lL C/O

9Al .1 CLJ(

201 • I/O CU<

-- -- --- --

~~ ;) 13

.L ' ___ .-J
-

J2

* MONOLITHIC SYSTEMS CORP.

58~ I (()515~13° 1305r~0271-000 f ~~
SCAlE - I I SHEEr 10

M5F - l00U-1 5 I d. I -<).
1 I ? I 1

D

I r-

c

~

•

0.....-

A

D

J
l

C

:,

•

I

301

1281

301

401

2Cl

2Cl

tV'

2A4

301
401

LIOWc/

CS5/

LA0

LA1

INIT/

I/0"
1/01

1/02

I/U3

1/04

1/05

1/06

1/07

LlOWc/

C56/

301 LlOOc/

5

U20
7406

.SF· 1I0U.~ 1 5

E120

OIRQ/

4 3 2 1

$t.I/ ------------________________________ ~. 1285

1----------------------------------- ------~12A5
RE/

-----------------------_12A5 ,----------------------------------

+~~~ __ ~~~f- --R~;:3~: _~~_~~-- u~~___~~~ r- ... ~I~~~
~:: RCI ~~: ~~ ~~----- ------------ _____ _____ _ ________________ I -------------~~~~: ::~!

F~AF~I yi 17 __________________________ n______ _ EARLY.1285

- i 18 I LATE
LA 1 E i -------- --------------- 11I.:r-' 1285

HLr: 23 I - '-JA!.J
Hl_D1 28 • 4 U307. 7406 HLD/

- 3L t I _ 2 - T('~ Hl
T(,I;3:

29
U312 -------------tF--------+ (.

U3?1 t 74LS()0 ;7l~~t.~ +5V 8:- ~~;- T?¥3---: +5V 81 RN1 - -- - ~ ~:gi
11'1', ,2 1-,' 7, 113 1~~~n1() _.] _ 4 __ ~ '22(1/1-30 7 6 11 _~E~~:£._ READY

m~:~ ~" II 13~ ~ :: ~_ _ ~ _________ L.:_~ __ :~:---=~~~ '"- --- --I~S~22 ~?5J TRK00/:~~
Wf>Rl/ 36 ______ -./1. WPRT/ 44

TP' 3~___ 161 <J ~ 14 _ _________ l_ ____________________ II'S)EX/

c:~~l'~:t~--=~---~~------ ---------------~-~-=--~=~----
R('J ?c) ___ _ ____ ~ ______________ _

DDt fl/ ~)_7-------------------
f,21 +5V

I 33 10K _i 74L504 U307
vn) __ E/~:' ,.;\IV'- _ _ ___________ E2~] 7406

Tre-,T 2?. ~6 HEAD/

I ff~:;~~ f ;2~ ~~ 10. ~-l I E25 E~'U3Oa -, L_:: . . :::: .. I: U309 ~ 5 ~~ :~LI; U316 ~~~ ~~ l\J_3 _ _ ~I,~ _ r;-,,'? UNI~~~4 32

rIlll 4 5273 5 HSL Irll, 16' 7l.LC;244 ·4 HSL
I_ _ '__ 74L -- ----=:...- -', 1 1 UNI T2/

Al

NC

19
rv'R/

7
D0

B
DI

Q

02
10

D3
II

[]f,
12

[)~;

]:3
Df>

It,
D7

20
(,NO .r-

DOCN/ 12C5

G" :1(, ~ H16 I ~ i 2 8 / L ____ .J
r __ Hli 18 19 Io_7----3!:17 COMP[_ 13'- - -~12UNIT1/

'---+------------ - --- --------

rIll:, 17 16 If)~~-=~~~c,j I!~-~~ - ~U~-021-_------ 9
1
__ --{::::,J-_ :-~---___+30

~- --- ---~ j--+-{:::1--1 -------+ 28

11 F- I 1 : 12 LNIT0/
19 ~ ---,-{>f 1 ~~6

, U307 I -L Tt-~U 49.

-----ri 4, ___ ~
,--~

i

CUMPI::
-----__ 12R5

nlll

- .1?05

1_ I!!Q§ -1 -= 50

MONOliTHIC SYSTEMS COIP.

~'?f

JI

JI

8 B
SCALf

4 3 2

•

L
I

(

•

,

D

I
"1

c
I

I

A

5

+5V 00/13 Jl-46 ('2
11 I

• I
~ i RN1 I U306

1220/330 I 74LS244
L ___ ...J

U31?

11Bl
DOEN/ 74LS153

2D1
2M-1Z .--- 6

5
lCl

201,~Z 4 IY
1C2

3 lC3
16M-1Z

2Cl
10 2C0

Bi"HZ
201 4--

11
2C1

12 2C2
2Y

4M~Z 13
201 ~

8"/
11A2

EARLY
11C1 ...
llA2 ... COWE

llC1
LATE

-4-----
WD

1101 4---

U311
74LS04

7

I I I
9 I I -,

U304

4 3

U302
I
U318
74LS74 74LS163

U301
PAlIlDR S

[7 1'25 NS
,- - --0 E6 PRECOMP

I
__ E--_~~- I-;~~~---FNS ~4LS()O

____ .J

QA
14

08
13

12
OC

U311
74LS{)4

--l2 CK 19
-- PSI FRD/--

J A RO/~-

U310

----l14LS I qs

10 U313

7r-D---,(~L:-O-[)..., I I 74L::,02

6
_--------1 (::1 rkjol 5

4

2

1.n18
74LS74

8

A

J

K

OR

OA IS_R30
I 2.2K

LCLR +5V

9

C55/ 9 401 8 9 74LS21
~=---------1

1101 .. SRQ/

2C1
LA2

2C1 4-
LA1
WE/

1ID1 ...
RE/

1ID1 4---

401
LlffiQ/

4--

MSf - 100 _' 5

10

13
12

8

- ~-) ---- -~---

-~ -,----=; :~---~-
~ --- ----- - 11,LS21

1)311

4 3

2 1

RCLK
________________ ~_~-~~--==_---:~---~~-~ FOCL-C \1~~1

13 I?
---~---

2

_______________________________ W_I)_/_~) J 1- 38

WFDRO
--------------------... 1105

PAU5E/
-- - ---------------- ~ 4C1

* MONOlITHIC STSTEMS COl'.
~EV

B 305-0271-000 B
SCALE SHEET 12

D

I r-

c

B

A

D

c

DEVICE
TYPE NO.

I.C. 74500

I.e. 74L500

I.C. 74L504

I.C. 7406

I.C. 74L510

I.e. 74511

I.C. 74L521

I.C. 74L532

5 I

REFERENCE DESIG.

U36

U29,312

U51,311

U20,305,307,308

U37

U42

U304

U43.315

I.C. 74L574 I U30.318

I.C. 745112 U50

4 1 3

POWER 8 GROUND
Nvm-rR--.,---,,-.--,---.-.---1 REMARKS/SPARES LINE

NO.
DEVICE

TYPE NO. GND +5V -12 + 12 -5

7 14 I.C. 75180 11

7 14 2 l.r. 75452

7 14

7 14 6

7 14 -.7 I.Co MC3480

7 14 8 I.C. 556

7 14 9 I.C. Z80A

7 14 LJ315. 2 SPIIRES 10 I.C. 8214

I 7 (14 II I I.C. 8251A

8 16 12 I.e. 8253

I

REFERENCE DESIG.

U9A.1l

U59

U6B

U67

U70

U'l4

U6?

I UI9A.R

U17

2 1

POWER a GROUND
~OT~EJ----r---.--r---""'---r---'----f REMARKS/S PARES LINE

GND +5V -12 +12 -5 NO.

7 14 31

4 8 32

8 16

12 24 37

7 14 38

29 11
CENTRAL
PROCESS I NG UN IT 39

12 24 40

I 4 126 I I 41

12 24 42

D

c

~ I.C. 74L5123

I.C. 74L5138

U58

U21,27

8

8

16

16

13
83038/

I.C. 8287 U63.64.65 10 20 43 ~

r-I-.-C-'~~~~~~~6~8-/--+-U-4-8------------------+---rl-0~~2-0~---+---+--~--1---+----------------+-4-4-;~
14

B

-

A

I.C. 745153
I.C. 74L51;j3

I.C. 74L5163

I.C. 74L5175

I.C. 74L5195

745244 rn
I,C'74L5244

U41,49.52,57,t>f>
U317 8

U24,31,302 8

U22 8

U310 8

U47,306,316 10

16 15 I.C. 8833 U44

16 16 I.C. PAL16R8 U301

16 17 - --- .-- -_._-

16 18 OPTIONS
20 U3C6. 3 SPARES 19 I.e. Ml<4116-3

U20J-216
I.C. 74L5273 U309 10 20 20

PROGRAMMED PROM
I.C. 745288 323-0029-001

t------------4---------------------+--~--~--~--+---+---r---t-~~PR~O~G~R~A7.MM~ED~PR~O~M~1----1~----------~ US4
I.C. 745288 U69 8 16 323-0033-001 22

U38 8 16 21 I.C. 74S471

I.C. 74288 U26 8 16

I.C. 745373 U46,55,56 10 20

I.C. 745374 U39,40,71 10 20

I.C. 74L5393 U35,303 7

PRCJGRAMMED PHOM
323-0005-002/XXX 23

24

25

26

I.C. 74S472

I.C. 82S136 U53

I.C. AM9511
UIS

I.C. AM9512

I.C.74LS04 Ull

8 16 45

10 20 46

. -- r----1---t--+----+--t--- .-.-- ------&

16 (SEE SHT. 7)

10 20

9 18

16

7 14

MEf'JI!FY ELEMENT
16K X I DYN. RAM
MEMORY ELEMENT
64K X 1 DYN. RAM
PROGRAMMED PROM
323-0049-XXX
PRor,RAM'>1ED PROM
323--0051-XXX
PRUC,RAMMED PRCM
323-0050-XXX

ARITf-IIoIElIC
PROCESSING UNIT

ARITI-fJIETIC
PROCESS I NG UN IT
1 SPARE

49

50

51

52

53

54

55

56 * MONOLITHIC SYSTEMS CORP.
PROGRArJiMFl' PI-cOM 14

t-1_._C_. _7_4_5_4_7_1_+_U_3_2 _____________ -t __ +I_O __ r-2_°-1_-t_-+_+_-L_+:3:;:2:.::3:-::-.;:0-707:2~8-:::-0~O~I=:::_;_-+--27_1I-P-AL-L-E:-T--A-S-S-Y--'-----U2~~ _____________ -'--P_I_N--I

I ~~r~~~~~~I(~('~prl~ I.C. 745471 U33 10 ?n 1 1
I.C. 745471 U45 10 20

I.C. 75188 UI0A,8

5 I 4

f'r~r)(;RAMMrrl I 'f·'[Jr_,
1;>3--0032- on?

I

j ?R

29

~O

I 2

SI7l

B
SCAlE - I SHErr 13

I

B

A

	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	9-31
	9-32
	9-33
	9-34
	9-35
	9-36
	9-37
	9-38
	9-39
	9-40
	9-41
	9-42
	9-43
	9-44
	9-45
	9-46
	9-47
	9-48
	A-00
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	E-01
	E-02
	E-03
	E-04
	E-05
	Schem-01
	Schem-02
	Schem-03
	Schem-04
	Schem-05
	Schem-06
	Schem-07
	Schem-08
	Schem-09
	Schem-10
	Schem-11
	Schem-12
	Schem-13
	Schem-14
	Schem-15

