HDC/DMA HARD DISK CONTROLLER

TECHNICAL REFERENCE MANUAL

Copyright (C) 1983 by Morrow Inc.

All rights reserved.

No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without prior written permission of Morrow Inc.

DISCLAIMER

No representations or warranties, express or implied, are made
with respect to the contents hereof, including, but not limited
to, the implied warranty of merchantability or fitness for a
particular purpose. Further, Morrow Inc., reserves the right to
revise this publication and to make changes from time to time in
the content hereof without obligation to notify any person of
such revision.

Morrow

600 McCormick St.
San Leandro, CA 94577

IMPORTANT WARRANTY INFORMATION

LIMITED WARRANTY

Morrow, Inc. warrants its products to be free from defects in workmanship and
materials for the periods indicated below. This warranty is limited to
the repair and replacement of parts only.

This warranty is void if, in the sole opinion of Morrow Inc., the product has
been subject to abuse or misuse, or has been interconnected to other manufac-
turer’s equipment for which compatibility has not been established in writing.

Circuit boards - Parts, including the printed circuit board, purchased as

factory assemblies, are warranted for a period of ninety (90) days from the
original invoice/purchase date.

Electro-mechanical peripherals - Peripheral equipment such as floppy or hard
disk drives, etc., not manufactured by Morrow, Inc., are included in the

limited warranty period of 90 days from the original invoice date when sold
as part of a Morrow system.

Exception - Expendable items such as printer ribbons, software media, and
printwheels are not covered by any warranty.

Software/Firmware — Morrow, Inc. makes no representations or warranties what-—
soever with respect to software or firmware associated with its products
and specifically disclaims any implied or expressed warranty of fitness for
any particular purpose or compatibility with any hardware, operating system,
or software/firmware. Morrow, Inc. reserves the right to alter or update any

program, publication or manual without obligation to notify any person of
such changes.

LIMITATION OF LIABILITY: THE FOREGOING WARRANTY IS IN LIEU OF
ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MORROW, INC. BE
LIABLE FOR CONSEQUENTIAL DAMAGES EVEN IF MORROW, 1INC. HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

WARRANTY RETURN PROCEDURE

Should a buyer experience a defect in either workmanship or materials during
the warranty period, any Morrow Authorized Service Center will replace or
repair the product at its expense only if the product is promptly returned
to the dealer or Service Center with dated proof of purchase.

Should factory repair be necessary, the Service Center shall contact Morrow
Customer Service for a Return Materials Authorization (RMA) number.

HDCDMA Hard Disk Controller
Technical Manual

Revision 1

Table of Contents

INTRODUCTION-..-..-..OOQoo..o.0000.0.0oo.o....oo....o.oo.

THE CHANNEL CONCEPT...ccccccccnsccccccsscscscscscsnsassscscsnncsas
2.1. HDCDMA Channel Command StruCtuUre..ccccccccecccccecsese
2.1.1. Start and Reset COommandS.scececcecosoccccccncccse

Link field..ceeeeeoccococsooscccscsscsscnsancscs

Stepping CommandS. cccecececccccccccssscssscsss

Homing the HeadSecccececoveccccoccocccccssoccene

Operation Portion of the Command Structure...

Select Head Byte€eceeceeoecoocecocsccccccsscosscs

DMA AQAreSS.ccccsccocecscsocsocccsssosssannssccscas

ion COdeSceeccecccceccccccccccosooscsscccsccccocsss
Read and Write DatA.cecececececcescccescscsscsosccss

Format Track OperatiOn...ccccececcccccccccccscse

Read Headers Command.ecceccececsecoscccsccscocsocs

Load Constants Operation...c.cceccececcccccocsccos

Sense Status OperatiON.cccecececccccoccoccccccs

No Operation Command.cc.ceccecococccsceccscocssces

. * o o o
. e o o o
e o * o .

O'\U'lnPle—‘g\lG\U'ltth

r

o o o o
o o o o
e o ¢ o

N

.

V]

.
NNNNNN'UONNMMMN
NN H

¢ o
¢ o

*

DMA INTERFACE......-..........oo-oo...o.oo..o.-o..-.o-.o.
3.1. Temporary Mastero...;.o.oooc-ooo.-oo.o-.o.o....o.oo.

CONFIGURATION FEATURES. ccccecseccccccccsccsccscscsscscscscsacnccsscs
4.1. DMA Priority LeVel.ccceccocecccscccccsccsccossccscoscscs
4,2, HDCDMA INterruptS.ccccccecccccsscsssccsscsssaossosses
4.3. Connecting CableS.ccscecccccccsscccsscscsssecsocsscccce

4.3.1. Cable PinOUteccececececcsoccccsscscscccancscocscs

BOOTSTRAPPING-...‘oo.o.oo......o....‘o.oo...ooooo.o.ooo..
QUICK REFERENCE GUIDE.Q.....‘.0.6..0..00..0.-...o.....o.
COMPONENT LAYOUT/SCHEMATIC

SUBJECT INDEX

COONOUTNWW

24
24
24
25
26

28
29

List of Figures

2-1: Byte Sectors - 1024 and 512 Format.ccecceceeccecocscccconcs

2-1:

List of Tables

Command Structure Format....cccccececcscccesccscscscscas

2_2: Format Of BYTE g: DRVSEL.-....-.-.......ooao-aoooooooo
2-3: Format Of the Select Head Byteooooo.o..o-o.oooooo-ooooa

-4:

|
(9]

AT HWN K e oo e0 00 o

0 00 09 90 08 0 00

NNNNMNYNNNNNN
I
H O 00N O

th'f-»h
w N =

Format of the DMA Address Byte€S..ccecceccccccccsccccccses
Operation COAEeS.cceecesccsccosccccossscoscssosossccosscccscsscs
Status COAESccccececcsccosoccccscscossssossscssscscssscnscna
Argument List for Header Information.....ccccceccecceccen
Command Structure Example for Write Data Command.......
Suggested Format for Sector Headers....c.oceececececcccceccs
Sector Size Codes for Formattinge.c.cceccececccoccccsscccee
Argument List for Format Track Operation: Code = 3....
Sector SiZeS.iecceeccescoccccsssscssscscsscsssosscscsscnsoncs
Arguments for Load Constants Command.....cccccecceccns
Argument 1 Format: Step Delay and Interrupt Bit......
Sector Size Codes for Load Constants Command.....c.c...
Status Byte after Sense Status Operation..ccccececececse

DMA Priority Jumpers: Jl-J4c--oooo.ooo....oooo..o-ooc
Data Ca.ble Pinouts..........-........................-.
34 Pin Connector................o.....................-

17

10
10
11
12
13
14
15
16
16
19
19
19
21

24

26
27

1. INTRODUCTION

The Hard Disk/Direct Memory Access (HDCDMA) Hard Disk Controller
is a single board S-108 bus subsystem. It can communicate with
up to four 5 1/4 inch or four 8" hard disks. The HDCDMA will
support a mixture of types of drives, but all must have the same
transfer rate. Variable designs, capacities and sector formats
are possible for each type of drive, allowing users to upgrade
their systems with new drives as they become available.

The HDCDMA is an intelligent controller. The arrangement of data
on the disk is not limited by a special purpose LSI controller
chip. This allows system designers the freedom to specify sector
sizes and interleave to fit the requirements of special
applications.

The controller has its own 8X300 bipolar microprocessor operating
at 7.16 megahertz which is used to supervise data transfers
between disk drives and memory without the intervention of the
main CPU. This relieves the main CPU of time consuming processes
which include head positioning, rotational delays and the usual
byte-by-byte transfer of data from the controller to main memory.
As a result, transfers are faster and more efficient. Moreover,
the main CPU has more time for data processing, and thus,
supports more users and/or tasks.

The main advantage of the HDCDMA controller over almost all the
others is its glitch free direct memory access channel. This
advanced "channel" concept allows the controller to communicate
with S-109 memory by "stealing"” bus cycles from the main CPU, or
using the bus in "burst mode" for ultra-fast data transfer. This
idea of an intelligent I/0 channel was first implemented by IBM
on their famous 370 mainframes. Now, this powerful concept has
been implemented on the S-100 bus.

The channel has the full 24-bits of memory addressing as
described in the proposed IEEE standard for the S-109 bus. Also,
a great deal of care has been taken in the design of the
interface circuitry so that it conforms in every detail to this
new standard and still allows the controller to work well with
existing systems designed before the standardization effort was
started.

The board has priority logic which allows it to contend with up
to 15 other "temporary masters" which may also want to "steal"
bus cycles from the main CPU (the permanent master).

The features associated with the intelligent channel on the
controller make it especially desirable in multi-tasking and
multi-user applications. 1In fact, many were tailored to enhance
the performance of Morrow Designs new, powerful DECISION I
multiprocessing IEEE 696/S-10@ machine. DMA style controllers
are an integral part of advanced microcomputer systems which
incorporate many of the concepts previously supported only on
mainframe systems, such as the IBM 370 series.

Introduction

The controller also provides a signal to the drives that is 1/16
the bit rate for compatibility with earlier versions of some
drives. And special low voltage detection circuitry inhibits the
WRITE ENABLE signal to the drives during power seguencing.

The operating system may be loaded by the HDCDMA by using a
simple external bootstrapping program. This program in external
ROM may be very simple because of the advanced design of the
controller. This makes it possible to boot a hard disk directly,
without the intermediate assistance of a floppy loaded operating
system.

We do not know of any S-100 bus hard disk controllers that come
anywhere near the performance and versatility of the HD-DMA. For
that matter, we here at Morrow Designs know of no other hard disk
controller on any bus that can match the HDCDMA in price, power,
performance and flexibility.

Good luck with this product! One of the purposes of this
document is to detail how the HDCDMA Hard Disk Controller can
improve the speed and performance of your system. If we've
missed anything, please let us know.

The Channel Concept

2. THE CHANNEL CONCEPT

The IBM 370 mainframe was the first computer system to make use
of the channel concept. Previously, an I/O controller, even one
that could do direct memory accesses, was given commands and
would report status by means of I/O ports. Usually, the commands
were sent one at a time and status was reported through the
status port.

The idea of storing both data and instructions in memory is what
gave birth to the computers of today. IBM decided to extend this
concept to DMA Controllers, which expanded the controllers
capabilities in much the same way that computers became more
power ful by being programmable.

Channel controllers differ from the CPU in that their task is to
transfer data when it is required. Therefore,the CPU must have
some way of starting the channel when it has tasks for it to
perform. Using a memory location is not reliable because the
contents of solid state memory are unknown whenever the power is
first turned on. Also, polling a memory location is inefficient.
The solution is to use an I/0 port to start execution.

Using an I/0 port to start the channel controller does not void
the main advantage of this design: using memory to store
commands for the controller. The channel controller carries out
this list of commands without the supervision of the CPU. At the
end of the commands, the controller writes its completion status
in memory, and waits for another start command from the CPU.

Obviously, a channel type of controller needs some kind of on-
board intelligence. At the time IBM first built this kind of
device, it was expensive both in terms of dollars and in circuit
board real estate to implement this intelligence. Today,
however, the situation is quite different. Microprocessors are
inexpensive and take only a modest amount of space on a circuit
board.

In theory, the only limitation to the power and flexibility of a
channel driven controller is the size of memory local to the
resident microprocessor. Since memory is getting cheaper and
denser, it would seem that time will favor the channel approach
to I/0 controllers.

2.1. HDCDMA Channel Command Structure

Command execution for the HDCDMA consist of a fixed three part
sequence: reading a link field that points to the next command,
seeking and executing an operation code. Every time the
controller is started it follows this sequence. It is possible
for the command to be null, that is, the heads will not be
stepped and no operation will be performed. The link field must
always be present because it is used to find the command when the
controller is started.

Command Structure

The operation of the controller parallels the structure of the
commands in memory. When the controller is started, it reads the
address in the link field of the last command executed. This is
the address of the next command to be executed.

Next the drive number, step direction and number of steps are
transferred from memory pointed to by the link field to the
controller. If the number of steps is greater than zero, the
channel releases the bus and begins seeking.

When the seeking operation is complete, the controller collects
the next group of parameters from the command structure. These
consist of the DMA address, a set of four arguments and the
operation code. The controller then performs the intended
operation, and writes a status code into the main memory location
following the operation code.

At this point the controller halts and awaits the next start
command. ‘A pointer internal to the controller retains the loca-
tion of the link field. At the next start command, the contents
of the 1link field are loaded by the controller as the beginning
address of the new command.

The format of the channel commands is outlined below. Each of
the three parts will be explained in detail in the sections that
follow.

Table 2-1: Command Structure Format

BYTE NAME FUNCTION

S] SELDRV Select drive and step direction

E 1 STEP-L Low byte of number of steps

E 2 STEP-H High byte of number of steps

K

3 SEL-HD Select drive, head, write

pre—-compensation and low-current

(0] 4 DMA-L Low byte of DMA address

p 5 DMA-H High byte of DMA address

E 6 DMA-E Extended address byte of DMA

R 7 ARG-0

A 8 ARG-1 Parameter list for

T 9 ARG-2 Operation codes

I A ARG-3

0 B OPCODE Operation code

N C STATUS Completion status is stored here

L D NEXT-L Low byte of link address

I E NEXT-H High byte of link address

N F NEXT-E Extended address byte of link address

K

Command Structure

2.1.1. Start and Reset Commands

These are the only two functions that make use of port
addresses. The Reset command has the same effect as a POC¥*
or a RESET* on the bus, which is to return the controller to
.1its reset state. This command would be used if the
controller became hung up trying to read an unformatted
track.

The Start Command is used to initiate controller activity.
The first Start Command after a reset fetches three bytes
beginning at 0@U@G50H as a pointer to the beginning of a
command structure. Stepping and command execution begin by
reading the command structure at the address indicated by
this pointer.

In subsequent commands, the controllers internal pointer is
set to the address of the link field of the last command
interpreted. This link field can be modified any time before
the next start command is issued.

Care must be taken, however, to see to it that the link field
always points to a valid command. Although it is unlikely,
an undefined link field could point to a location in memory
that contains the code for a Format Operation, resulting in a
strangely formatted track and loss of data.

The port address used by the start command is 55H. Any
OUTPUT to this port results in the initiation of controller
activity. The value output to this port is ignored. The
Start signal is named ATTN (for attentlon) on the HDCDMA
schematics.

The port address for the Reset Command is 54H. Once again,
any output instruction to this port has the immediate affect
of resetting the controller regardless of its current
activity. The value output to this port is ignored.

After a Reset Command, a 19 microseconds delay must occur
before a Start Command may be issued.

2.1.2. Link field

The Link Field is a three byte address that points to the
beglnnlng of the next command structure to be executed. It
is stored in the last three bytes of the previous command
structure.

* An asterisk (*) following a signal name indicates that this
signal uses negative logic. Thus, low (or @) is true and
high (or 1) is false. ‘

Command Structure

The controller maintains the address of the last command
structure and reads the fourteenth, fifteenth and sixteenth
bytes when it is restarted. There are only two ways of
changing where the controller expects to find the Link Field:
1) Resetting the controller, or 2) starting the controller
and using the Link Field to point to an address of its own
structure. When the controller is Reset, it expects the
first Link Field to begin at @@0@50H.

2.1.3. Stepping Commands

Stepping commands make up the first part of the channel
command structure. After the controller has read the Link
Field, it transfers the first three bytes of the command
structure from main memory. If the number of steps is zero,
then control is passed onto the operation part of the command
structure. If the number of steps is non-zero, the
controller releases the bus and commences stepping.

The first byte in the command structure is the SELDRV byte.
It is constructed of two parts: The drive number and the
stepping direction. The drive number is a binary number
between @ and 3, and is stored in the least significant two
bits. .

The stepping direction is stored in bit 4. When this bit is
a @, the heads are stepped in, away from track @. If this
bit is a 1, the heads are stepped out, toward track 4. When
stepping-out, if track © is encountered before the number of
steps has been completed, stepping ends, and the controller
begins the next part of the command. Since most drives do
not detect over-stepping IN, care must be taken to prevent
stepping past the inner-most cylinder.

Table 2-2: Format of BYTE @: DRVSEL
Bit # 7 6 5 4 3 2 1 7]
BYTE @: 7]] g In/Out @ () Drl Dr@

Bits @ and 1 (Dr@ and Drl) are used to select drives
with a binary number between @ and 3.

Bit 4 is used to select stepping DIRECTION: if
it equals @, step in; if bit 4 = 1, step out.

Bits 2,3,5,6 and 7 are not used; may be the same as
Byte 3 in drives with four heads or less.

The second and third bytes of the command structure are the
low and high bytes of the number of steps. The number of
steps can be any integer between # and 65535. If the number
of steps is zero, no action is taken.

Command Structure

If the number of steps to be taken in the out direction is
greater than the number of steps before track 9, stepping
halts at track @. Stepping in beyond the innermost cylinder
should never be attempted as this may damage the drive.

NOTE: It is the operating system's responsibility never to step
past the innermost track. Most drives do not produce a signal
indicating this. Over-stepping-in may damage the drive. It may
also result in positioning the heads over a non-formatted track,
which requires that the controller be reset.

EXAMPLE: Suppose we wish to move the heads of drive 3 to
cylinder 65H, (101 in decimal), and we are currently over
cylinder 32H (50). We need to step IN 33H steps on drive
number three. The first three bytes of the command structure
would be as follows: '

BYTE O: 0090 0011 ;Bit 4 is 0 to step in
BYTE 1: 0011 9911 ;low byte contains 33H
BYTE 2: 0000 0999 ;high byte contains d.

Because the HDCDMA is designed to handle a variety of drives,
the time delay between steps and the head settle time are
both under software control. These are explained in the
section on the Load Constants Command.

2.1.4. Homing the Heads

The HDCDMA has built the Home function into the basic command
structure, rather than having a separate operation for it.
The Heads are homed by setting the Direction bit to a 1 for
stepping OUT, and storing a value in the number of steps word
that is greater than the maximum number of tracks for that
drive. OFFFH is a suggested value for ST506 drives.

When the heads reach track @, stepping ceases and the
controller executes the next portion of the command
structure. In drives with fast seeking capabilities, a step
delay time sufficient to produce slow stepping should be
specified using the Load Constants command. The on-board
drive intelligence that controls ramping up or down for fast
seeking is not aware of the location of the heads. Using
fast seek for recalibration may result in the heads reaching
track @ while still accelerating and cause damage to the
drive.

Command Structure

2.1.5. Operation Portion of the Command Structure

At the completion of stepping, the controller requests the
bus, and then holds it while transferring the next nine bytes
of the command into the controller's processor. The bus is
then released if the controller is not ready to transfer
data.

The nine bytes just read by the controller may be separated
into four groups: the head select byte, the DMA address, the
argument list and the operation code. It is important to
set every byte to the correct value for each operation. The
controller does not retain the DMA address, or any other
argument, from the previous operation. The only values
retained are those set by a Load Constants Command.

The first two groups, the head select byte and the DMA
address, will be described first, as they are the same for
all the commands. The argument lists will be explained in
conjunction with the operation they are associated with.

At the end of any operation, successful or not, a status code
is written into the byte following the operation code. This
byte should be set to @ initially, and can be monitored by
the main CPU for completion of the disk operation in non-
interrupt systems. A @ in the status byte indicates the
controller is busy.

2.1.6. Select Head Byte

The fourth byte of the command structure is the select head
byte. This byte specifies both the drive number and the head
to be used. It also contains information that is used when
writing to the disk, write-precompensation and low current.

The least significant two bits of this byte are used to
specify the drive number. The format used is identical to
that in the SELDRV byte: the least significant two bits are
set to a binary number between @ and 3. The next three Dbits,
2, 3 and 4, are used to specify the head number, which is a
binary number between @ and 7. The ST506 uses negative logic
to select heads. Thus, 7 selects head 9, 1 selects 6, etc.
This is drive dependent, so refer to the drive manual.

"Bit 7 turns on write-precompensation. When this bit is true

(set to a 1), the controller changes the timing of write
pulses sent to the drive. This is done because as the cylin-
ders get closer to the center of the disk, their
circumferences become smaller and the packing density becomes
greater.

Information is stored on the disk as transitions in the
polarity of magnetization, and as these fields come closer
together, they result in a time shift in the received data.
Write-precompensation logic turns on the write gate slightly

Command Structure

earlier or later than normal to compensate for this

interaction between fields. Write-precompensation is
normally used beginning with cylinder 128 (80H) for the
ST506. Please refer to the manufacturer's specificatons for

other drives.

Bit 6 is low current control. When this bit is low (set to
@), the amount of current used in writing on the disk is
reduced. The purpose of this is similar to write-
precompensation: to reduce the interaction between data cells
in the cylinders near the center of the disk. Low current
reduces the intensity of the magnetic fields written on the
disk. It is used starting with cylinder 128 (80H) for the
ST506. Refer to the drive manual for other products.

Neglecting to use write-precompensation and low current
control may result in the loss of reliability of data on the
inner cylinders of the disk. For those writing their own
driver software, use the drive manufacturer's specification
to determine when to enable write-precompensation and low
current.

Table 2-3: Format of the Select Head Byte
Bit # Description

These two bits specify the
drive number.
These three bits
specify the
head number.
Not used. :
Turns on low current when d.
Turns on write-precompensation when 1.

NoubhwhhH®

2.1.7. DMA Address

The DMA (Disk Memory Access) address is the beginning
location for data transfers. When reading or writing data to
the disk, and also when formatting, these three bytes point
to the first byte of the data buffer in main memory.

The DMA address is not maintained by the controller from one
operation to the next. The controller never alters the DMA
address in the command structure, so consecutive commands
that refer to the same buffer and structure need not rewrite
these bytes.

The controller asserts all 24 address bits of the IEEE 696/S-
199 bus specification. 1In systems that do not decode the
upper eight address lines, the extended page byte must still
appear in the command structure, as the format of the
structure is fixed at three bytes of information.

Command Structure

When data transfers cross 65K boundaries, the extended page
address byte is incremented by 1. In systems not responding
to the extended page address, this results in wrap-around,
that is, the address after the highest 65K byte is #.

Table 2-4: Format of the DMA Address Bytes

Byte 4 Low byte of DMA address
Byte 5 High byte of DMA address
Byte 6 Extended address byte of DMA address

2.2. Operation Codes

The HDCDMA controller responds to seven operation codes. The
codes provide access to all of the functions programmed into the
controller. Each operation code uses some or all of the eight
' parameters that precede the code. The seven valid codes are as
follows:

Table 2-5: Operation Codes

CODE FUNCTION

g Read data

1 Write data

2 Read header

3 Format track

4 Load constants

5 Sense status

6 No operation (NOP)

Read Data and Write Data will be discussed together. These are
the most commonly used operations. Format Track is used in
formatting disks, and is of special interests to those interested
in designing systems with special timing or data organization
constraints.

The Load Constants command sets up the step delay and head settle
time, which are important in getting the maximum response from
the new intelligent drives in terms of decreased seek latency.
The Load Constants command also sets sector sizes, and must be
used any time the controller is reset.

Read Header, Sense Status and No Operation codes are provided for
the other essential control operations, and are discussed
separately.

The status codes returned in the byte after the operation code
are the same for all operations except Sense Status. When the
operating system writes the command structure, it should store a
@ in the status byte. At the completion of a command, the
channel transfers the status to this byte in the structure. The
status codes are defined in the table that follows.

19

Command Structure

Table 2-6: Status Codes

Code Description

09 Busy

g1 Drive not ready

24 Sector header not found

a5 Data not found (no data preamble)
26 Data overrun (channel error)
27 Data CRC error ‘
28 Write fault

29 Sector header CRC error

AD Illegal command

FF Successful completion

2.2.1. Read and Write Data

These are the basic HDCDMA controller commands. Their
operation is almost identical. Each time the controller is
started, it commences stepping, if requested, then transfers
the parameters and the operation code. The controller then
reads headers until it finds the header that matches the
description in the four bytes of argument. If it fails to do
so after reading 128 headers, it reports an error in the
status byte, and halts.

Once the matching header is found and its CRC is correct, the
controller requests the bus. The Dbus has about 20
microseconds to finish its current operation and respond to
the controller. This is the time between checking the header
CRC word and the detection of the mark that begins the data
field. The controller will hold the bus until the entire
sector has been transferred. Data transfers by the control-
ler are in burst mode. This means that once the channel
becomes the temporary bus master, it holds the bus until it
has transferred one sector. The data rate of a ST506, for
example, is one byte every 1.6 microseconds. This would be
1.64 milliseconds for a 1024 byte sector to be transferred on
the ST506.

The controller uses a three T-state bus cycle to transfer a
byte of data. A fourth T-state may be required because the
bus and the disk are running asynchronously. If the bus is
unable to respond in time, a data overrun occurs and the read
or write operation will terminate by reporting an overrun
error in the status byte. The section on the DMA interface
goes into more detail on the timing considerations.

In cases where the controller has reported an unsuccessful
completion, such as CRC errors or overrun, the operating
system should be prepared to retry the last command. This is
done by pointing the Link Field to the beginning of the
failed command, setting the number of steps to 4, and
repeating it until it is successful or the number of retries
has been exhausted. Ten retries are suggested, although more
or less can be used.

11

Command Structure

The Read and Write Data operations both use the previously
described Select Head Byte and DMA address. The other
variable that needs to be discussed in their use is the
sector header. The four bytes of the argument list contain
an image of the header to be matched. It is normally written
as follows:

Table 2-7: Argument List for Header Information
(Recommended Format)

Byte# Arg# Description
7] Low byte of cylinder address
8 1 High byte of cylinder address
9 2 Head number
10 3 Sector number-

When the drives are initially formatted, it is possible to
write ANY four bytes of data in the sector header. The
purpose of this data is to verify that the correct cylinder
and head is being accessed, and to identify sectors. If
other sector header formats are desired, they may be written
during formatting and successfully found during read header
operations as long as the data in the argument list matches
the written data in the sector header. This feature
accommodates a wide variety of designs limited only by the
four byte field and the designer's imagination.

The operation code for Read Data is 0; the code for Write
Data is 1. As an illustration, the following command struc-
ture will write the buffer located at 999080H to drive A,
head number 2, cylinder number 64H, sector number 15. For
this example, we will assume that some previous operation has
left the heads positioned over cylinder 5AH and the previous
link field contains 990@43H.

12

Command Structure

Table 2-8: Command Structure Example for Write Data Command

BYTE# LOCATION CONTENT DESCRIPTION
[43(hex) @9 (hex) Select drive A, step in.
1 44 gA Low byte: step 10 steps.
2 45 29 High byte: @ * 256 steps.
3 46 48 Select driveA, head2.
4 47 849 Low byte of DMA address.
5 48 {414} High byte of DMA address.
6 49 29 Extended address byte of DMA.
7 4A 64 Low byte of cylinder address.
8 4B 090 High byte of cylinder address.
9 4C g2 Head number.
19 4D OF Sector number 15.
11 4E g1 - Write Data Operation Code.
12 4F 747] Space for status byte.
13 50 43 Low byte of link address.
14 51 29 High byte of link address.
15 52 09 Extended address byte of link.

When a start command is given, the heads of drive A step in
19 cylinders. The controller next reads sector headers until
a match is found, then data is written to the disk from
memory starting at 80H. The sector size has been set by a
Load Constants command, so the write operation continues
until an entire sector has been written. The write-precom-—
pensation and low-current bits are turned off because the
cylinder number is less than 80H.

Please note the address in the link address field. When this
operation finishes, the next start command points the
controller back to the beginning of the command structure.
When used in this manner, the command structure resembles a
table where the data for the desired operation is filled in,
and the link field remains the same.

2.2.2. Format Track Operation
This operation is used in formatting disks. As in any
formatting operation, any data written to the disk previously

will be obliterated. Therefore, great care must be taken in
the use of this command.

13

Command Structure

The Format Track operation formats a single track. This
track is specified by the cylinder address and the head
selected. During the operation, a four byte set of variable
data is read for each sector from a buffer starting at the
DMA address and written into the sector header.

To format an entire cylinder, each track is formatted by
selecting a head with the Select Head Byte and providing
header data.

Each sector header contains four bytes of variable data. The
data that is to be written in the sector headers is located
in a buffer pointed to by the DMA address. Four bytes of
data that will uniquely define each sector of a particular
drive must be written in the buffer before each track is
formatted. A suggested format is given in the table that
follows, but any four byte format may be used.

Table 2-9: Suggested Format for Sector Headers

Byte# Description
4] Low byte of cylinder address
1 High byte of cylinder address
2 Head number
3 Sector number

EXAMPLE: The following is a memory dump of the data that
would be used while formatting cylinder 41H and head 3 for 9
1924 byte sectors, with the DMA field of the command
structure set to 50@00H, and using the suggested format.

5000 : 4100 @3 08 41 00 @3 @1 41 00 03 92 41 00 @3 @3
5010: 41 09 03 04 41 90 @3 05 41 09 03 06 41 00 @3 @7
5020: 41 00 03 08 41 00 @3 @9

The normal strategy for numbering sectors is to allow the
operating system to map the physical sectors to logical
sectors. The sectors on the disk are then numbered
sequentially during formatting.

It is also possible to incorporate any desired sector
interleave into the disk format simply by incrementing the
sector number by the desired skew, modulo the number of
sectors for track. The sector interleave 1is chosen to
maximize certain aspects of system performance.

14

Command Structure

The Format Track command uses all four arguments of the
command structure. The first argument is the intersector
gap. This is the number of bytes of 4E's that are written
between sectors. It is dependent upon sector size, with the
larger sectors requiring bigger gaps.

The purpose of the intersector gaps is to allow for varia-
tions in the rotational velocity of the drives. For example,
if the drive were rotating 1% faster while formatting, a
sector written when the drive is moving slower will extend it
over a longer section of the track. Suggested intersector
gaps are given in the table in this section.

The intersector gap, also called Gap 3, is calculated by
multiplying the total number of bytes per sector (this must
include fixed overhead, which is 44 bytes per sector) times
861, and taking the minimum of this value and 256. This
provides a margin of error for 3% speed fluctuations.

Gap 3 = minimum of (((bytes/sector + 44) x .@61), 256)

The second argument is the complement of the number of sec-
tors per track. Each time the Format Track command is
executed, the controller begins writing, starting at the
index for the number of sectors per track of header and
data fields, followed by 4E's, until the index. For example,
nine 1024 byte sectors will fit on one track. Nine is @000
1901 in binary, so its complement is 1111 @110 or F6H.

The third argument is a code for the number of data bytes in
each sector. Sector size codes are the complement of the
codes used in the Load Constants Operation for sector sizes.
The table that follows defines these codes for the five
different sector sizes possible:

Table 2-10: Sector Size Codes for Formatting

CODE NUMBER OF BYTES
FF(hex) 128(decimal)
FE 256
FC 512
F8 19024
Fd 2048

The fourth argument is the data fill byte. While the controller
is formatting a track, it is continually writing 4E's, zeroes for
synchronization, the sector header, marks, CRC's or the data fill
byte. The data field is written with the number of bytes per
sector of the data fill byte. The data fill byte is E5 for
CP/M *. The table that follows recaps the four arguments.

* C/PM is a trademark of Digital Research.

15

Command Structure

Table 2-11: Argument List for Format Track Operation: Code = 3

Byte# Arg# Description
7 g Intersector Gap
8 1 Complement of number of sectors/track
9 2 Code for number of bytes/sector
A 3 Data fill byte

The table which follows lists the appropriate number of bytes
for various sector sizes. It also provides information for
choosing sector sizes.

Table 2-12: Sector Sizes

SECTOR SIZE: 128 256 512 1024 2048
Intersector Gap 19 18 43 65 256
Whole sectors 56 32 17 9 4
Megabytes/disk* 4,38 5.013 5.636 5.640 5.913
Intersector Gap OA (hex) 12 2B 41 FF
Complement #sector C7(hex) DF EE F6 FB
Sector size code FF(hex) FE FC F8 F@
Data Fill Byte** E5(hex) E5 E5 E5 E5

*These values are computed by multiplying number of sectors
times the number of bytes per sector times the number of
heads (4) times number of cylinders (153) for a ST506 hard
disk. Not included is a fixed overhead of 44 bytes/sector,
which includes sector header, 4 CRC bytes, 32 sync bytes (90)
and two preambles of 2 bytes each.

**The data fill byte is E5 for CP/M (a trademark of Digital
Research).

The five sets of hex values in the preceding table contain the
allowable values for all of the arguments used with theFormat
Track Command. For example, 41, F6, F8 and E5 for 1K sectors.

The figure on the following page explicitly illustrates the
format of data and headers as they actually appear on the
disk. The 1024 byte/sector format is that used by all Morrow
Designs software, and maximizes data density and system
per formance. A second example is given of a different sector
format for comparison.

Each track begins with Gap 1 followed by the required number
of sectors, which are identical except for the sector header,
and concludes with Gap 4. Gap 4 is used to fill the space
between the last intersector gap (Gap 3) and the next index
mark.

16

'\\z\b Q
(5%

of bytes
fixed data
variable data

DATA

9 Sector 1024 Byte Format

GAP 2 GAP 3
W L
Q‘ea«(\e‘o\o
et >\ P’
2> xe ool P N
3 “.b('a O ‘\o’“ 2) “‘0” S e‘b“\b o
A O AU S X
AN RST80T e T T data field
P S RS S > e A s il S M

#+ of bytes 512
fixed data |90’s|
variable data |
~N re
~ -
~ '
~

TRACK 2
TRACK 1
TRACK g

SECTOR 2
SECTOR 1
SECTOR @

(9 bytes [min] of 4E's) GAP 4
INDEX
(16 bytes of 4E's) GAP 1

17 Sector 512 Byte Format

Fig. 2-1: Byte Sectors - 1624 and 512 Format

17

Command Structure

2.2.3. Read Headers Command

This command is used to read the first eight bytes that occur
after a preamble. This may be either a sector header,
including the mark, the FE, two bytes of cylinder address,
head, sector number and 2 CRC bytes or the mark, F8 and 6
bytes at the beginning of a sector of data. These eight
bytes are transferred to the buffer pointed to by the DMA
address.

To distinguish between a sector ID field and data, the second
byte will be an FE when a sector header is read and an F8
when reading a data field. When a data field is read, a CRC
error will also be reported.

If a data field was read, retrying the Read Header command
will usually find the next sector header. The operation code
for Read Header is 2. The argument field is not used in this
operation.

2.2.4. Load Constants Operation

The Load Constants Operation is required to initialize the
controller. The HDCDMA allows software control of the two
variables that affect seek times, step delay and head settle
time, and the sector size. The sector size is used to inform
the controller of the number of bytes to be transferred in a
Read or Write Data operation. There are no default values
for these variables, so this is the initialization operation
after any reset or before using different types of drives.

A drive is considered to be a different type if it requires a
different step delay or head settle time, or different sector
size. When any of these three values change, Load Constants
must be used before selecting the drive.

The new breed of 5 1/4" and 8" hard disks may have on-board
intelligence for fast seeks. Normally, the controller sends
a step signal, waits the step delay time and sends the next
step 'signal until stepping is completed. In the newer
drives, step signals are accepted in a stream as fast as the
controller can send them. The drive will then ramp up its
stepper and ramp down again to provide the fastest possible
seek time.

At the end of this ramp up and ramp down, the drive will make
true the SEEK COMPLETE* signal. The HDCDMA controller
monitors this status line, and begins the head settle time
after SEEK COMPLETE* goes true. In some drives, SEEK
COMPLETE* will not be true until after the heads have
settled. In this case, a head settle time of @ may be used.

* The asterisk implies negative logic. When SEEK COMPLETE*
is ¥ it is true.

18

Command Structure

In drives with built-in ramping, a @ seek delay time should
be used. If the drive waits until after the heads have
settled to make SEEK COMPLETE* true, then a head settle time
of @ should be used. In drives that do not have either of
these features, the manufacturer's recommended delay and
settle times should be used.

The step delay times may vary between 11 microseconds and
12.8 milliseconds in increments of 180 microseconds. The
controller takes 11 microseconds to issue each step pulse,
so a 209 microsecond delay actually lasts 211 microseconds.
The head settle times may be in the range of @ to 25.6
milliseconds in increments of 100 microseconds.

The Load Constants Operation has a further function. By
setting bit 7 of the step delay time to a 1, an interrupt
signal will be generated at the completion of all controller
operations. This signal is reset by issuing a start command
to the HDCDMA, and is generated at the completion of all
commands until a Load Constants Command resets bit 7.

The interrupt signal is brought to a strappable pad on the
lower left of the board, and must be connected to the PINT/
or one of the vectored interrupt lines before it can reach
the bus. Please refer to the section on Configuring Features
for more information. :

Table 2-13: Arguments for Load Constants Command

Byte# Arg# Description

7 %] Not used

8 1 Stepdelaytimeandinterrupt enable
° 2 Head settle time

A 3 Sector size code

Table 2-14: Argument 1 Format: Step Delay and Interrupt Bit

Bit#: 7 6 5 4 3 2 1]

Use : Set/reset for Choose for 9 to 128 100 microsecond
Interrupts. step delay intervals.

Table 2-15: Sector Size Codes for Load Constants Command

Number of Bytes Code
128 %]
256 1
512 3
1924 7
2048 F

19

Command Structure

2.2.,5. Sense Status Operation

The Sense Status Operation returns status information from
the selected drive. Operation completion is indicated by a
non-zero value in the status byte. The meaning of this byte
is explained below. In this case, the Status Byte will not
correspond to any of the Status Codes described earlier. '

Most of the information returned in the Status byte is used
by the firmware in the controller and is not significant to
normal use. One bit in particular, however, should be
checked whenever a drive is selected.

The DRIVE READY* signal is generated by a drive whenever it
is ready and the speed of the disk(s) has stabilized.
Attempting to access the drive for a read or write operation
before it is ready may result in locking up the controller.
This is because it will be unable to synchronize with an
erratically moving disk. The controller would have to be
reset in this case.

It is suggested that the DRIVE READY* line be polled every
time a new drive is selected. This will prevent the
controller from being hung up trying to synchronize with a
not-ready drive.

Four other bits of information are provided by the Sense
Status Operation. Bit @ represents the track @ detect.
Whenever the heads are over the outermost cylinder, TRACK
ZERO* will be true, that is, @.

The WRITE FAULT* status is a signal from the drive that
reports illegal commands or conditions. Examples of these
conditions would be low voltage for a write operation, or
trying to read and write simultaneously. The manufacturer's
specification for the drive should be referred to for more
exact meaning of this bit. Software may want to check this
bit at the end of all Write operations.

The SEEK COMPLETE* has been mentioned in connection with the
Load Constants Operation. It is made to be true either after
a step, stepping or head settling is complete. Again, please
refer to the drive manufacturer's specifications for the
exact timing of this signal.

The NRZ INDEX is connected through a divider to the index
detector of the selected drive. Each time the index is
detected, the NRZ INDEX changes state. That is, during one
revolution it is a 1, and on the next revolution, a #.

* As mentioned previously, * is used to indicate negative
logic.

20

Command Structure

The Sense Status operation returns the information in the
Status Byte, which follows the operation code. This code
should be initialized to a ¥ in the command structure. When
the operation is complete, the Status Byte will be non-zero,
and the lower 5 Dbits will represent the status of the
selected drive. No arguments are required.

Table 2-16: Status Byte after Sense Status Operation

Bit# Meaning

7} TRACK ZERO* detect

1 WRITE FAULT* signal

2 DRIVE READY* signal

3 SEEK COMPLETED* status ,

4 NRZ INDEX, alternates with each revolution
5

6 These bits set to 1 after Sense Status

7

2.2.6. No Operation Command

This command may be used for stepping the heads without
performing data transfers, or as a means of setting the link
field to point to the next command structure to be executed.
The operation code for this command is 6.

This is the command that would be used to perform a
recalibration. To recalibrate a drive, the SELDRV byte (Byte
@) is used to select the drive and the stepping-out
direction. In the next two bytes, a value for the number of
steps greater than the maximum number of tracks for that
drive is used. When the heads reach track 4, the controller
stops seeking.

Fast seeking must not be used while recalibrating. A Load
Constants command is used to set the step delay to the
appropriate interval for slow stepping. A second Load
Constants command is used to restore the drive to fast
seeking. If fast seeking were used, the heads might reach
track O while the seek speed is being ramped up and cause
damage to the drive.

21

3. DMA INTERFACE

The HDCDMA Controller uses two types of Direct Memory Access:
cycle stealing and burst mode. In cycle stealing, the channel
requests the bus to transfer one or several Dbytes. If the
controller loses control of the bus during the transfer, it
detects an overrun and will try again.

The time spent waiting for control of the bus is not critical
during cycle stealing because there is no real-time activity
ongoing. The HDCDMA uses cycle stealing for reading the command
structure and reporting status.

During disk transfers, burst mode is used. Burst mode 1is
sometimes referred to as "hogging". During burst mode, the
channel does not release the bus until it has finished the entire
data transfer. Also, interrupts and other channels requiring use
of the bus are inhibited. This should be taken into account if
other devices with specific timing constraints are used on the
bus.

Burstmode is used to accommodate the rapid data transfer rate of
hard disks. Data is transmitted at the rate of 5 million
bits*second with ST5806 drives. This translates to a byte of data
ready every 1.6 microseconds.

The channel requests the bus for burst mode when it successfully
matches the header field of the target sector. This allows
about 2@ microseconds for bus acquisition and should be
sufficient for the CPU and any other non-burst DMA devices to
finish their activities.

In systems requiring wait states, the HDCDMA will respond to the
bus RDY lines. The net speed (a combination of the bus clock
speed and wait states) must be able to keep pace with the
asynchronous data transfer rate of the disk.

The controller requires three bus T-states to transfer one byte
of disk data. Because the bus clock and the data rate of the
disk are asynchronous, an additional 1 bus T-state may be
required to synchronize the transfer of a byte of disk data. To
calculate the minimum bus clock, multiply the disk rate (in bytes
per second) times 4 plus the number of wait states. In a system
without wait states and using a ST566, this would be 2.5
megahertz. :

Minimum Bus Clock = Disk Data Rate (Bytes/Second) x
(4 (T-states) + number of wait states)

Greatest system performance will be obtained if floppy (DJDMA)
and hard disk DMA controllers are allowed to operate
concurrently. If this is done, there will occasionally be
collisions, that is, situations where both controllers require
the bus at the same time. ‘ '

22

DMA Interface

When this occurs, the floppy disk controller will probably be the
one to experience overrun, since the hard disk controller "hogs"
the bus. System software should be prepared to repeat either
operation in the event of an overrun. o

3.1. Temporary Master

The controller acts as a TMA, or temporary master. The CPU is
the permanent bus master. When a temporary master wants control
of the bus to perform a DMA operation, it requests the bus by
asserting a signal called HOLD*. The CPU, as permanent master,
monitors the HOLD* signal. When the CPU finishes the current bus
cycle, it acknowledges HOLD* by asserting the signal called pHLDA
(processor hold acknowledge).

The temporary master takes control over from the CPU in a two

step process. First, the CPU's data-out, address and status
lines are disabled using DODSB*, ADSB* and SDSB*, and enabling
the temporary master's control drivers. During this time, both

the permanent master and the temporary master are driving control
lines.

Second, CDSB* (control disable) is made true, giving the
temporary master complete control of the bus. The temporary
master has now taken the place of the CPU on the bus. Returning
control to the CPU (permanent master) is the same process in
reverse ending when HOLD* is made false.

So far, the process has been described as if only one temporary
master wanted control of the bus. There can be up to 16
temporary masters on the bus. When there are more than one
temporary master, they use the four DMA lines to decide who gets
to assert HOLD¥*,

Any device requesting the bus places its TMA priority level on
the bus if HOLD* is not already true, and circuitry on the device
decides if it has the highest priority. The device with the
highest priority (@F hex is highest) asserts HOLD* and leaves its
priority on the DMA lines until it removes HOLD¥* from the bus.
This normally results in the first TMA to request the bus getting
the bus. For a precise definition of DMA arbitration, S-
190 /IEEE696 specification should be considered the last word.
The design of the HDCDMA follows the specification.

23

4. CONFIGURATION FEATURES

There are two features of the HDCDMA Controller that are set by
changing slide-on jumpers or adding wire jumpers. These are:
the DMA priority level and the interrupt line asserted.

4.1. DMA Priority Level

The DMA priority level is set using slide on jumpers. There are
four sets of two pins each, labeled Jl1 - J4. These are located
in the lower left hand of the component side of the board.

Jl corresponds to DMA-g, J2 to DMA-1, J3 to DMA-2 and J4 to DMA-
3. When a pair of pins are not jumpered together, they represent
a high, or 1. Jumpering a pair of pins together sets that DMA
line to a zero. By selectively connecting or 1leaving
unconnected the four pairs of jumpers, any priority between 9 and
15 can be selected.

The highest DMA priority is 15. For the HDCDMA, this means
removing all four slide-on jumpers. This is the suggested
priority for the HDCDMA. To select a priority of 6, Jjumpers
would be used to connect J1 and J4. The following table
summarizes these jumpers:

Table 4-1: DMA Priority Jumpers: Jl - J4

Pair DMA Assignment

Jl DMA-0@ Least significant bit
J2 DMA-1

J3 DMA-2

J4 DMA-3 Most significant bit

4.2. HDCDMA Interrupts

The output of the controller's interrupt request buffer is
brought to a pad labled J5. This is in the same area as the DMA
priority jumpers. Located between this pad and the S-100 bus
connection are 9 pads that J5 may be connected to.

PINT* is a direct line to the interrupt input of the CPU board.
This line is normally used by a device, such as a MULT/IO board
or a programmable interrupt controller, which prioritizes
interrupt requests, and provides other interrupt support. The
HDCDMA does not have the necessary hardware to provide interrupt
support, such as gating the address of a service routine onto the
bus at interrupt acknowledge.

Therefore, J5 will normally be connected to one of the eight
vectored interrupt lines. The vectored interrupt lines must be
connected to interrupt controller circuitry before reaching the
main CPU. They are organized so that VI®* has the highest
priority, and VI7* has the lowest.

24

Configuration Features

Interrupt request generated by the HDCDMA signifies the
completion of its last command operation. At this point, the
status should be checked. If the operation was successful, tasks
that are waiting for the data or the controller may proceed.
Otherwise, the last operation should be retried.

The interrupt line of the HDCDMA is cleared by the start of the
next operation. The completion ofevery operation sets the
interrupt line until interrupts are disabled. Bit 7 of the Step
Delay Byte is used to enable/disable interrupts. Please refer
to the Load Constants Command.

4.3. Connecting Cables

There are five male connectors located along the top edge of the
HDCDMA: one 34/50 pin connector and four 20 pin connectors.
These are labeled Pl - P5 starting on the right side of the
board.

The 34/50 pin connector, labeled Pl, carries the control and
status information to all drives that are connected to the
controller. The 34 pin connectors are used with 5 1/4" drives,
and 50 pin connectors with 8" drives.

The drives are daisy-chained along this cable, and their order on
this cable is not important. For example, the fourth drive could
be connected first, the third second and so on.

The other four connectors must be attached to a particular drive.
P2 should be connected to the drive jumpered as 1, P3 to drive 2,
P4 to drive 3 and P5 to drive 4. When the controller selects a
drive, only one of these four connectors is enabled. If a drive
has been configured to respond as drive 1, it MUST be connected
to P2,

The 20 pin cables carry read and write data between the
controller and a particular drive. A clock provides a timing
signal that is 1/16 the bit rate, which is used by some of the
older hard disk designs.

When the cables are connected to the HDCDMA, they should extend
over the back (solder side) of the board. At the drive end, the
20 conductor cables should pass over the center of the back of
the drive cabinet. For cabinets with the connectors at the top,
the cable will extend down from the connector.

The control/status cable (34/590 conductors) should pass over the
center of the back of each drive cabinet, the same as the data
cables. When there are several drives connected, the
control/status cable that leads to the next drive should not
extend over the back of the drive cabinet.

25

Configuration Features

These descriptions of cable connections will work with current
Morrow Designs products. For other configurations, here are some
points to keep in mind:

1) On each connector on the HDCDMA, pin 1 is on the right.
Therefore, the other end of the cable should be attached to
the drive so that the conductor in the cable corresponding to
pin 1 is connected to pin 1 on the drive PC.

2) Once the control/status cable is properly connected, the
drive will respond to select and step commands. If the drive
steps, but is unable to read or write data, the data cable
may be connected to the wrong HDCDMA connector (P2 - P5), or
the cable may need to be reversed.

3) The FORMAT program will select a drive and send stepping
pulses while attempting to format the disk. If the
formatting part of the program completes, and the verify
fails (produces a LONG 1list of errors), the data cable
connection should be examined.

4,3.1. Cable Pinout

As explained in the previous section, there are two types of

cables used with the HDCDMA: the data cables and the
control/status cable. The data cables form a direct connection
between each drive and the controller. They carry only three

signals in the form of current-loop pairs: MFM (modified
frequency modulated) Read Data, MFM Write Data and a Timing
Clock.

The Timing Clock produces a signal that is 1/16 the bit rate of

the controller. This is provided for drives which require this
signal.

Connectors P2 - P5 have identical pinouts. The description of
these follows:

Table 4-2: Data Cable Pinouts

MFM MFM TIME _
G RD+ G WD+ G CLK+ NC NC NC NC

19 17 15 13 11 9 7 5 3 1

G MFM G MFM G TIME G G G G
RD- WD- CLK-

26

Configuration Features

The control/status cable is daisy-chained between the controller
and all drives. The pinouts of the 34 pin cable are identical
with the 50 pin (for 8" drives) for the first 34 pins. Some of
the signals used in the first 34 pins are duplicated in the last
16 of the 50 pin cables. A diagram of a 34 pin connector appears
below. The pins that are repeated in the 50 pin connector appear
in brackets. The top of the drawing is located at the upper
right-hand corner of the HDCDMA board and is labeled Pl.

Table 4-3: 34 Pin Connector

LOW 2 . .1 G
HS4/ 4 . . 3 G
WRITE GATE/[406] 6 . . 5 G
SEEK DONE/ 8 . .7 G
TRACK @/ [42] 18 . . 9 G
WR FAULT/[44] 12 . . 11 G
HSO/ 14 . . 13 G
NC 16 . . 15 G
HS2/ 18 .. . 17 G
INDEX 20 . . 19 G
DRIVE READY/ 22 . . 21 G
STEP/ [36] 24 . . 23 G
DS1/ 26 . . 25 G
Ds2/ 28 . . 27 G
DS3/ 39 . . 29 G
Ds4/ 32 . . 31 G
DIRECTION/ 34 . . 33 G
G - ground

DSn/ - Drive Select n

HSm/ - Head Select m (multiplexed 1 of 8)

27

5. BOOTSTRAPPING

The HDCDMA may be bootstrapped by executing a short program
external to the controller. This program may reside either on a
floppy disk (for example, BOOTMW for C/PM¥*), or in PROM.

The Decision I PROM has a switch selected program for booting the
HDCDMA. When the system is powered up or reset, this program is
executed. Please refer to the Decision I user's manual for
instructions for setting switches.

A brief outline of a program to boot the HDCDMA follows:

A Sense Status Command is executed until the DRIVE READY/
line becomes true (bit 2 = 0);

A Load Constants Command sets the Step Delay and Head settle
time;

A Read Data command is started that Homes the heads of the
selected drive and reads sector 1 into main memory; the
status byte should be monitored for successful completion,
and retries issued if necessary:

When the Read is complete, the CPU begins executing code that
was read, starting with the first byte.

Before the HDCDMA may be booted or used, it must be formatted,
and the system software copied to it. The FORMATMW, MOVCPM and

SYSGEN programs and appropriate documentation are provided with
C/PM* systems.

* C/PM is a trademark of Digital Research.

28

QUICK REFERENCE GUIDE

COMMAND STRUCTURE FORMAT

BYTE NAME FUNCTION

7} SELDRV Select drive and step direction
1 STEP-L Low byte of number of steps

2 STEP-H High byte of number of steps

3 SEL-HD Select drive, head, write

pre-compensation and low-current

4 DMA-L Low byte of DMA address

5 DMA-H High byte of DMA address

6 DMA-E Extended address byte of DMA

7 ARG-0

8 ARG-1 Parameter list for

9 ARG-2 Operation codes

A ARG-3

B OPCODE Operation code

C STATUS Completion status is stored here
D NEXT-L Low byte of link address

E NEXT-H High byte of link address

F NEXT-E Extended address byte of link address

Format of BYTE @: DRVSEL
Bit # 7 6 5 4 3 2 1 2
BYTE @: O g @ In/Out @ @ Drl Dr#d

Bits @ and 1 (Dr@ and Drl) are used to select drives
with a binary number between @ and 3.

Bit 4 is used to select stepping DIRECTION: if
it equals @, step in; if bit 4 = 1, step out.

FORMAT OF THE SELECT HEAD BYTE: BYTE 3
Bit # Description

These two bits specify the
drive number.
These three bits
specify the
head number.
Not used.
Turns on low current when 9.
Turns on write-precompensation when 1.

NoubhwNhHE

29

QUICK REFERENCE GUIDE

OPERATION CODES: BYTE B

CODE FUNCTION

7] Read data

1 Write data

2 Read header

3 Format track

4 Load constants

5 Sense status

6 No operation (NOP)

STATUS CODES: BYTE C

CODE DESCRIPTION

1514] Busy

g1 Drive not ready

a4 Sector header not found

@5 Data not found (no data preamble)
26 Data overrun (channel error)
a7 Data CRC error

28 Write fault

29 Sector header CRC error

AQ Illegal command

FF Successful completion

NOTE: These codes are returned in the Status Byte when
executing any Opcode except Sense Status.

ARGUMENT LIST FOR READ/WRITE OPERATIONS
(Recommended Format)

Byte# Arg# Description
7 1/ Low byte of cylinder address
8 1 High byte of cylinder address
9 2 Head number
A 3 Sector number

ARGUMENT LIST FOR FORMAT TRACK COMMAND

Byte# Arg# Description
7 %] Intersector Gap
8 1 Complement of number of sectors/track
9 2 Code for number of bytes/sector
A 3 Data fill byte g

The table which follows lists the appropriate number of bytes for
various sector sizes. It also provides information for choosing
sector sizes and the legal arguments for the Format Track Com-
mand.

30

QUICK REFERENCE GUIDE

SECTOR SIZE
Intersector Gap
Whole sectors
Megabytes/disk 4

Intersector Gap
Complement #sector

Sector size code
Data Fill Byte

ARGUMENTS

Byte#

> WO 00

SECTOR SIZES

128 256 512 1924 2048
10 18 43 65 256
56 32 17 9 4
.38 5.013 5.636 5.640 5.013
@A (hex) 12 2B 41 _ FF
C7(hex) DF EE F6 FB
FF(hex) FE FC F8 Fo
E5(hex) E5 E5 E5 E5
FOR LOAD CONSTANTS COMMAND
Arg# Description

1} Not used

1 Stepdelaytimeandinterrupt enable
2 Head settle time

3 Sector size code

STEP DELAY AND INTERRUPT BIT: BYTE 8 OF LOAD CONSTANTS

Bit# 7 6 5 4 3 2 1 1}
Use Set/reset for Choose for @ to 128 100 microsecond
Interrupts. step delay intervals.
SECTOR SIZE CODES FOR LOAD CONSTANTS COMMAND
Number of Bytes Code
128]
256 1
512 3
1024 7
2048 F

STATUS BYTE AFTER SENSE STATUS OPERATION

Bit#

]

NovmibwidHE

Meaning

TRACK ZERO* detect

WRITE FAULT* signal

DRIVE READY* signal

SEEK COMPLETED* status

NRZ INDEX, alternates with each revolution

These bits set to 1 after Sense Status

31

COMPONENT LAYOUT/SCHEMATIC

oy

iy

T

|

00000000
00000000

P5 DATA PORT P4 DATA PORT P3 DATA PORT P2 DATA PORT

P1 STATUS CONTROL PORT

O
5
e e e T

" HD/DMA Component Layout

Vee

4 403 puS
A7 7,
BrQ 2 B ufd
q
e B—1,
14 5
5 RIC C
AS 2> — % 7 i o
< A
6 3C
A+ (B> 1, 2| 2esez |,
g_‘ L4 Q RESET
I
A3 BD——1, CLEAR
5cB
93
iz Vee
Az E>—— 1,
15
(]
8 2 6@
Al B>——% SET
iz 9
7 s z-OVER RUN [an @ ATTN
¢ E>——
¢ 8 N
9 4-PBYTE = @ ATTN
souT |:§>— I. CLEAR
3 . ?IE
=— -CLR ATTN
AR F———1, =
z (-3
rOC ls o Hioa
) 14
PRESET [B>————— T, O —— HLDA
|
PHLDA Z&>—— 1,
s
ATTH Irs 2-TNCR ADDR
3-ADDR STB
7 1~
017 D, Q, | DATA 7
18 19
PI 6 o, G raTA
7
DL 5 Dy Q DATA 5
3 z
o1 4 b oaTA 4
s L5374
o1 3 2, ?, DATA 3
np
4 5
o1 2 [AD>—— @, ——— DATA 2
14 15
pL | EB>—5, @, ——— pATA |
13 iz
ol ¢ [pB>—m o Qgf——— DATA @
"
Z-DBIN CLK
! ———
5-DI ENBL ENBL
14 15
DATA 7 o, &, f—@> o7
I iz
DATA & B, & ——f2> oo ¢
2l 2" e
DATA 5 B, @, po s
8 9
DATA 4 o, Q, po 4
L5374
18 19
DATA 3 0 % po3
7 6
DATA Z Dy Qy poz
3 z
DATA | D, % ——{5> oo
4 5
PATA @ — I, @, po &
i
4-BYTE lcLr
1
2-BOSCNTL— ENBL-

SELECT LOGIC & DATA BUFFERS

13
DATA 7 1, F f——&2> Az23
7
DATA & Ig
Fs Az2
DATA & hgps
8 -3
DATA 4 I k —3Z> A s
___ 4
AZI CRY Tz
6 F ———{68> A 14
I
All CRY N 4 eRe
=-ENBL AH I Fs A3
5
Z-ENBL AE I 17
| > A
ADR CLK CLK
n
2-BUS CNTL 3 S, A5 CRY
3 AZI CRY
5
DATA 7 Iy
Fs ——{éz> Azt
DATA & Te
0B
DATA 5 1, Fe A 20
DATA 4 Is
4 A A7
Al9 CRY R
I 9
A3 CRY I AG
- z 1, leR6
3-ENBL AL @
3 [—. AS
3-ENBL AE I
L5@8 \ 3 . |
SCA ARk — ok Bl—T3> a4
Il
2-BUS CNTL E 2 _
o |—— A7 CRY
g Al7 CRY
e
DATA ¥ 14 7
5 2 At
DATA Z | I7
2| " epa
DATA | 1, F —5> Al
8
DATA @ 1,
5)
AT CRY Iy
o 4
A7 CRY 1. F, 3> A1
- z AA
3-ENBL AH Ig
2| ¢ R
3-ENBL AE I
i
ADR CLK ek 5 A8
N
2-BUS CNTL E
S A1l CRY
% A7 CRY
5
DATA 3 I, 7
8 R AT
DATA 2 7,
o epA
DATA | I, £, AlG
7
DATA & I
2|7 Y e ET
A5 CRY 1,
2
3-ENBL AL Is Fl—B> Az
3|, leRé
3-ENBL AE |
| A ——’B) Al
ADR CLK CLK
i
2-BUSCNTL E Fs AD
9
3-ENBL AH I
S AD CRY
WINCHESTER DMA CONTROLLER REV 2 PAGE 1 of 5

(© 1981 G. MORROW

Nee Vee
TYPSIPIKS TYPSIP KO
p p
J4 Iz- 3 13 |I¢> v
Vee o 0—+¢ 1o 51 A @ DMA 3
;34 >) “* 3 4 ’
SET J3 | 4 -
z 5 -0 O0—¢ Iz o, — G2> 5via 2
D gaA®@ ORQ ¥y W_‘- leL8 F—*—q,
LS74 z 5 5
) _|e O o—e L = DMA 1
c 9 zp
CLEAR | 1 Ji |5 A e |7
| Ls@e _3 O ls % | BMA &
2| 78 OVER RUN < 9
INCR ADDR z % Z ENBL
zeNBL —|! [}
9 Q[TENBL (N.C.)
& ENBL Iy o Lz
-HOLD BuUS ———AA_ ‘I, BENBL
ET APRIO I =% TMHI
IMAt z P IKQ SIP
TCA Vee =
3 L574 & 1]]
3-HoLD BUS Lse8\ & -HLDA c 7 APRIO 58 75> Fracb
__ 5cA CLEAR 7406
1-HL.DA 4
spe\ ¢ :
s| 78 4 6
Pros 72> 3-K4 IN, ouT, —————F> srEMR
£ IN T, i =y
our, —PD> 506
' IKASIP "zo
-7 LK 4 Nec —J‘ﬂ Vee — IN, ouTy (N
Fs CDENA s >
9 3 9 8 —1 1N, oupb—F> o1
*RPY B>——m1, F| BUSCNTL PETY 15 5
7 Tads 1IN, ouT, ———————————#%> sour
: 8 % SYNC 1l 9
PROY [>— 1, s p— 1N, cuty——C> sinp
“ DBIN 3| Loz44 |7
5| et T, N, T SINTA
__ 1 E __
TMHT ! 7 WR 8 1z
3D 2 1IN, outy SHLTA
I-HLDA Iz F INCR ADDR \
A 16 BU5 CNTL ENBL,
3-K4 I, FS WAIT 19
5 19 BUS CNTL ENBLg
R Iy [XFER
2
APRIO I, N
7 0 58 p——— Vee
IHOL.D BUS | Iz ENBL 4 &
; SYNC N, ouT, ————7e> Psrne
5 . 2)
@, B> 58 N, e, —25> PeTvAL
Tade 6 CE I
14 DBIN INg outy PDBIN
3-K5 A > iz 8 iz
£ ——— J— —
1 WR B N, &ur, > Fr
3 K4 Ay PPk Ve lso4 5| szeet| s
15 2B | Vee =N, &, ——t2> 5B
3-K7 A, 7 |z. v 17 3
I I, DATA 3 Vee —{Ng &, 3558
3-Ke Ag b 13 7
ARCIRESG v Yee — N, &oF, 2> Sooss
DATA 3 B, L |—+ DATA 2 0 g
4 { LT PLDA
DATA 2 | o, 9 14 V—rt |
1 T DATA 1 XFER ENBL .
DATA | 5 9
n | 3 v XFER ENBLg
DATA & Dy I -+ DATA @
- 8
3-RAM WE NE
7
RAMS | CE
1o
3-RAFTENBL 8
4 5 EY- T} TR
DATA 7 0, =% DATA 7 _— N sca RAMS o—> v
3 2 %-RAFTWE |
DATA & % o DATA & o—i>v7
I
14 15 -
DATA 5 D, = DATA 5 SIP IKQ2 Tz
(3 3
18 T Vee ——— e
DATA 4 DATA 4 —{> s
5| L3374 |2 i 2 45
DATA 3 D, & DATA 3 3-INTR b-e—0 o—{8> 3
7 6 746 -
DATA 2 0, & OATA 2 o—I{7> T3
7
DATA | oy @ DATA | o—e> Tz
8 9 S
DATA @ o, Q DATA & o—> v,
1 R
3-BUF CLK cLK o—1> T2
I
= BUF ENBL- NBL
EN £ WINCHESTER DMA CONTROLLER REV 2 PAGE 2 of 5

DMA CHANNEL LOGIC

© 1981 G. MORROW

19 14 3 z 14
ADDR 8 As S Ig Ag FPLS ENBL- MEC L K et I, Oy b——ExT R
) 13 14 3 15
ADDR 7 Ay 14-001 I, A REG ENBL sc 1, o - BUF CLK
7 1z 15 7 —_ 5 8
ADDR & Ae Ce Tz Az HoLD BUS RB pe 7 LAST ENBL
A 1 16 3 7 3
ADDR 5 | As o Iy As | INTR 4-HALT ‘e o, BUF ENBL
5 7649 \7 5 1 P18 e
ADDR 4 A, o, INS4 1, A4 ADDR 8 INS 4 ———amd L9 O SRENBC
4 & 18 “ 8 3
ADDR 3 ———o A, = I, As ADDR 7 Kl 1 o DIENBL
7 19 I 17
ADDR 2 Az S, Te Ae ADDR & K& 1 o, RAM ENBL
2 A Lé z 19
ADDR | A O, 1, Ay ADDR 5 A-BYTE lg Qg BEST 57
| 5 - 49 4 9
ADDR & Ay €5 j, BR3PP Ag f——— ADDR 4 RE Gy ENBL———] I, 1 4-DBYTE
48
14A A, ADDR 3
19 14 zi 47
ADDR 8 Ag o 1s @ ADDR. 2 8 19
8 1% 22 46 MARK Dg a, | DATA 7
ADDR 7 Aq o, 1q . ADDR | 5 2
7 8D]z 23 45 . ERROR B, °, DATA 6
ADDR 6 Ag 9 Ly » ADDR & 17 o
o 1" 24 41 AT TN D, e, | DATA 5
ADDR 5 Asg % 1, TV DATA 7 4 IZA 5
7649 9 25 40 S-NRZ INDEX Y e, DATA 4
ADDR 4 Ag) L. v, DATA 6 14| LS374 15
8 26] 5-SEEK CMP <@, PATA 3
ADDR 3 Ay S s w, DATA 5 7 .
3 7 27 38 5-DRIVE READY By Qy DATA 2
ADDR 2 Ay 9 Ls Vs | DATA 4 13 1z
z A 28 36 S-WRITE FLT % Qg DPATA |
ADDR | LA, Q s N, DATA 3 a 3
5 35 5-TRACK® — | Q% DATA &
ADDR & Ay €S Vg DATA 2 '
34 4-DBYTE cLk
43 A DATA |)
RESET RST 33 CAST ENBL ENBL
44 L\/., | DATA &
RALT AT 3
[N-30
32 — e
y5v = B NEXT CLK_E @
sc 2 sc SET
S iz 2
ZN5320 ¢ VR 30 D o HALT
TO-5 we b— 5— TcA
I az |7 s
84303 Vec =37 McLK MCLK 4-DBYTE: c @ HALT
BKOPP GND =12 g X, Xz
ol 7y m CLEAR
$;
-RESET Vee
TieMHZ 47K SIP
_ 2 s J°
NEXTCLK O NEXT CLK
8 19 17 16 Ta@e
DATA 7 D, @y D, @ | K7
3 2 4 5 5 &
DATA & = @ B =3 Kée BUF CLK B BUF CLK
7| 12C A 18) lsos
DATA 5 D, @, 2 @y KS
4 L3273 5 3 ne z
DATA 4 D,), [=) @ K4 3 4
14 15 4| 5273 |5 k3 B A CLR ATTN
DATA 3 D, Q [~ @, K3 ap s
3 © (2 % - —
7 e 7 ° Kz A g, CNTLSTB
DATA 2 =X @ o, A K2 9 _|e
13 iz 3 iz X, RAM WE
DATA | B =" Nt B, Qs K1 \ +
8] 8 9 DEST 5TB Q @) ADDR STB
DATA & A < N@ o, @, K@
il (N
NEXT CLK LK 4-DBYTE Lk 5 .
CLEAR CLEAR K7 B s ENBL AL
@
?' ?l 3.'5/4.7,«H 4 8B "
-RESET - 4/ Ke A 2, ENBL AH
|¢. e.ésmnz (B4 5139 _ |i@ —
A <, ENBL AE
8 o—¢ 15 _|2
Q, SRQA 2-[DENA E =X ENBL DO
1 14
A-TRAN Rel @, SR H '5‘” pf W
9 A 1KLL Nee
4-5R CNTL, 3, H DATA 7 == 150 F I
b P
| me |a é A+
4-SRCNTL, 2 <} DATA 6 SET
18 5 2 5
4 - CRC DATA OUT LsL F DATA S — D ® XCLK:
9 s 48
Vee —cik E PATA 4 a4, 5| 7574 |6
14 ZRCLK < B
DATA 3 CLEAR
2| L9299
4-CcELL CLK CLK c PATA 2 Vee Jl
3 [
= DATA |
i
I 2 .
SRENBL a, A DATA & WINCHESTER DMA CONTROLLER REV 2 PAGE 3 of 5

DATA TRANSFER LOGIC

© 1981 G. MORROW

we/izka 33F
Vee NG °
z ! Vee
SO0 < < 1540
2 CTex 34 Ti500 d
B2XCLK Ls@B\ 1 5 f/‘ A O TYPICAL 7486 10 TORN [
13| 2z =c. SPREAP 2 o 3 4 aqin_
JRE— | Q A
PLo ENBL EYATSY Y3 74574 M
ac
4 7 3 [5 6 200
5-READ DATA Y % c 3 2N39¢e 2
CLEAR CLEAR
TP
3 | 33PN
Vee J q ¥ e " —
i\
Vee Vee
be &e LIRE S S o6} poesut zsert |
SET SET @ ZF MVi4P4
1z % 12 9 1] 1-BKO
HANG, P Q "7 - Q cB8 ~ 2NZ90 4 9
74574 4574
BP0,
1| 4B nl 4« la 9 8 13K < 5@l
SPREAD Avanrd c a 2C M i I
CLEAR
» - CLEAR QPN '8¢/ Lawpa
cA j 3 ?m 1zea
L5d2 \.8 [
9 V™
e zB Vee 14_
2 SET
— D Iy TRAN
74574)
1A Ko
4TKA |mq§|:>‘r IBKQ .¢¢Iﬂ{d 3 c 2z f
Vee Vee 2ZVCLK 343/47 puH
2z 1 4 5 CLEAR Vec v+ 1ddKaL
KN < p
5 Rie Cex 3 " R/c Cex Vee i ! [.
\Ic.c—— A Q B Va:——' V‘—¢— ‘°T°RN ol d
8 3B KO ==.lufd
3
26LSPL 26L5%2
4 17 iz 9 Do/ 47 H
5-RAWREAD B | Q B & el p
CLEAR CLEAR 29g:F _I. Vec
13 P!
3 i3 ¥ 3300
Vee ._? Vee ._R N Lsoe \ ! AR l P 338
S5CA 2NZMP4 b
5
8 9 6 IN914
ZVexK -4@ ZVELK ———d "Zﬁ‘” -
8 ATKO
5-FPLS ENBL ————— T 3380
20 v-
5-PRECOMP Ig
z HAN .
3-SRQH 1,
7 A
START I, A WRITE GATE
3 9B 15
(READ) 3-K§ 1, i MARK
25 8255 18
(WRITE) 3-K4 Te % CATE
7z 7
(LOAD) 3-K7 = F HANG
24 i3
(CRC) 3Ke " E; SR CoNTL
! 2
- I
(MARK) 3-K3 o = - SR CONTL 4 ATA | =&
3 |
= ==t i
T3 e 5 PLO ENBL vm__¢ cnE 3
_ 4 e LY R T 3 ERROR
Tz Is e ZERO CRC DATA IN [}
5 s
= | 4
T s 3-K2 MR z
- 6 2 P CRC DATA ouT
PATA Iy Vee
27 94|
8
TRAN Ig Nee=—— s,
PLOENB) ? Iy 5
L Nee — 5,
| 9 Ve Vee Vee 3
CELL CLK CLK ENBL. Se
_17 33K y'la5KO
. 3 £ ‘ £ "
PLO ENBL 1 2, R DBYTE —ITtbP . WK 18@P done
— el e IS ByTE DIODES 2 - WRITE PRECOMP
ZERO “ o TYPICAL z | 14 5 tizne
2 8 IN9I4 3 *
3-SRQA 1, T3 Ric cex ® N R/ Cex
o| 'eRée |7 (ATE ® -y BA
3-SRQH I, Fo T2 @ A
YoLSBZ
5 A A6LS02
2V CLK Iy [T 4 iz 2
2 % MARK B B [} WRITE DATA
5k CLK —— Ig Fs DATA CLEAR CLEAR
9 19
_ 3
HANG I, AF—— ceLL ax WRITE GATE P& T
4 iz
SPREAD 1, e CRC DATA IN
| "
CELL LK ————CLi ENBL
! WINCHESTER DMA CONTROLLER REV 2 PAGE 4 of 5

DATA SEPAR'ATION & ENCODING LOGIC

© 1981 G. MORROW

Pz
@
MFM RP + [T A + MFM WD
7 W37 Y
e < ZAB RPATA -A NDATATA
8
5]_ - MFM WD
MPM Rp - [E>—
5
) E) + TIMING CL
8 3 [2¢2e => K
rMFM RD + [~ +]
5 %37 2 T - TIMING CLK
Hea < S R DATA-B -2
3 - |**8
e Ry = [E>— y < P3
. [(> + MFM WD
P4 I 3 |9638
A WDATA-B GAA
MEM RP + (> 3 < i3> - MFM WD
3 2637
Hnéa. < 2AA RPATA-C 7
4 s + TIMIN I
MFM rp - i8> p P EVC) 2 G oL
GAA -y
P5 12> - TIMING CLK
8
MFM Rp + [T
]
e 4 RDATA=D
, , [E> + MFM WD
MPM RP - B> GROUN PINS ON P2,P3,P4 & P5 §
2,4,6,8,11,12,15)16,19,2@ [2> - MFM WD
1 R DATA-A 2 Ic 7
- . 3> + TIMING CLK
| o Z 9,38 D .
‘ 2C,
SAB 8
" Y, READ DATA - T cL
R DATA-B i, {ie> IMING CLK
. | 5
zc,
12 LSI53
RDATA-C ICqy MFM WD
.2, WomAD
ra
3 Y2 RAW READ MFM WD
; R DATA-D —E ICy
3 7
5> + TIMING CLK
2¢s = 6 z |9638 >
4-
SEL B B xeLk Aga % SAA 2
: 4 . L5393 @ - TIMING CLK
‘ SELA — A CLR o8B IN748
, —_ 15 | ! J —— Vee
' 4-PLO ENBL '@ za J‘f 33¢q 3.9 volt zener Pi
: {cA8> NGATE
2N44
I3 2 TYPICAL 7487
F % 1z 4-WRITE GATE 5B | 2
; SELB 3, WOATA- A T4®06 DR b (4> HS4
|
H 14 il
SELA A Z WDATA- B 3 4 Ny
) — p——
4 A e SEL B ﬁ‘ﬁ 3 yr @psl
' @, WDATA -C FA
: s| e o SEL A A s 3 2 .
4-lRITE DATA & Gy WDATA- D an 3, 28> 557
i L3 _ e 5\\ye
! Ve N 2T —{22> 553
! TP 220 SIP 1
; el A A @ NRZ INDEX \ 7 s .
\ - NS & = b 32> ps 4
i INDEX [Z8>~ A CLR —1
! 5 A
I 18 19
| 330 DATA 7 o Qy PRECOMP
‘ 220
! M 3 2 Pl
| SEEKDONE [B>- - SEEK CcMP DATA 6 — D, < —z>w=n
i > A
@ 7 [
i DATA 5 5 > s
“ Al
[— s
T TRACK @ @ TRACK & 4 574 5 .
x o - DATA 4 5 9 iR > 5%
) 338
’ ZE¢ 14 i1y
l ~ DATA 3 5, e, —{e> 753
SRTEFALCT [ZA— - RRITE FUT
! A 7 b
: ~ DATA 2. D, S, 4> HS @
: 226 238 A 3 —{=> 523
—) _ 5 2
i BRWVE READY [Z2> > READY DATA | = Do Ps seLe
: N 8 9
} 8 DATA & 10, <@ SELA
; TYPICAL N \
: SIPS3g 0 {L 5-INTLSTE €L ENBL '—J
|
' GROUND PINS ON PI3 1,3,5,7,...,47,49
' WINCHESTER DMA CONTROLLER REV 2 PAGE 5 of 5
1 DRIVE INTERFACE LOGIC © 1981 G. MORROW

SUBJECT INDEX

A P

Arbitration, 24 Permanent Master, 24

Attention, 5 Port addresses, 5

B R

Bootstrapping, 29 Read Headers Command, 18

Burst mode, 23 Read and Write Data, 11
Recalibrate, 7

c Recalibration, 22

Cable Pinout, 27 Reset, 18

Cables, 26 Reset command, 5

Channel, 3 Retries, 11, 29

Commands, 10 find header, 11

D S

DMA Address, 9 SEEK COMPLETE*, 19

DMA priority, 25 Seek home, 7

Select Head Byte, 8

E Sense Status Operation, 20

Error codes, 11 Start and Reset Commands, 5
Start command, 5

=

F Status codes, 11

Fast seeking, 7 Step delay time, 19

Format Track Operation, 13 Stepping Commands, 6

G T

Gap 1, 16 TMA, 24

Gap 4, 16 Temporary Master, 24
Timing, 23

H

Head settle time, 19 w

Homing the Heads, 7 Wait states, 23
Write command, 11

I Write-precompensation, 8, 9

Initialize, 18
Interleave, 14
Interrupts, 19
Intersector gap, 15

L

Tink field, 4, 5

Load Constants Operation, 18
Low current, 9

N
No Operation Command, 22

o

Opcodes, 10

Operation Portion of the Command Structure, 8
Overrun, 11 ‘

