MULT/IO 1/0 Controller

Technical Manual
Revision 4

April 1982

MULT/IO Technical Manual
Revision 4

March 1982

Table 9£ Contents

INTRODUCTION ® 6 0 0 @ 8 0 0 0 ¢ 00 000 O T O T T LSOOGV NS L S LSS L0 e e

MULT/IO ARCHITECTURE.....o-o..oooo-.looooo...0-0.0.-...00

2.1. GROUP SELECT PORT BASE+7 . ¢ ettt eeeeeenoosceenaoneanns
2.1.1. FUNCTIONS OF THE GROUP SELECT PORT..c.cc00s..
2.1.2. GROUP PORT ASSIGNMENTS. . .t eeeeeneeensaanennen

2.2. SELECTING I/0 PORT ADDRESS....c0eeececaccann et .

2.3. RAM AND EPROM== GENERAL .. s vt et eeecoooncosansonnsonss
2.3.1. ADDRESSING RAM AND EPROM.: s eeioveitaossooins
2.3.2. EXTENDED ADDRESSING .+ et v vt eeeeeenneeaoonennes
2.3.3. BANK SELECTION. . ceceeeeosccssconsanns e
2.3.4., PHANTOM v vevevnceconacsns et et
2.3.5. POWER ON JUMP....c... ettt ee et e

SERIAL PORTS . . eeececeoscsocccacssccsosscscsscsssssssssssssassses

3.1. CONFIGURING SERIAL CONNECTORS. cccessooassstoccsassses

3.2. PROGRAMMING THE 8250 .. .cvvev .. e eeeeann et
3.2.1. BAUD RATE..c:ceoescecscs et e e eeeeen

3.3. INITIALIZATION. :eeeeoreass ittt eeaseeeee e sen e
3.3.1. SAMPLE SERIAL I/O ROUTINES..::cceeeteoccncsaes

3.4. SERIAL DEVICE INTERRUPTS. .::c0ooecess e e
3.4.1. ACE INTERRUPT PROGRAMMING....:.ceveveoconacess

PARALLEL DAISY-WHEEL PRINTER PORT .. :.:cccccescccccsscccncse

4.1. PARALLEL PORT DESCRIPTION. .ttt seccecocecscossecscacscs .
4.2. PROGRAMMING THE DAISY PORT .. . cceeercnessssocccccanns
4.2.1. GENERATING AN OUTPUT STROBE....ccoccoece.. .o
4.2.2, THE DAISY PORT AND INTERRUPTS.........cccc0..
REAL TIME CLOCK:THE 1990. ...ccccccettececcescssasccccssnes
5.1. 1999 ARCHICTECTURE...cccceecens cereesence se s s eecens
5.1.1. THE CLOCK PORT:.:.cccovcccones ceeeseccesacacn s
5.1.2. CLOCK COMMANDS .. ccteeersococscssacoss cevseen
5.1.3. PROGRAMMING THE CLOCK: INTIALIZATION........
5.1.4. PROGRAMMING THE 1990 CLOCK: SETTING THE TIME.
5.1.5. PROGRAMMING THE 1990: READING THE TIME.......
5.1.6. FORMAT OF THE 1990 TIME.....tceceeccecccsssss
5.1.7. CALENDAR CLOCK IDIOSYNCRACIES..... cecseeaseen
5.1.8. TIMING CONSTRAINTS....... T T
5.1.9. THE TIMED INTERRUPT GENERATOR. ... :ccceececesne
5.1.10. CLEARING CLOCK INTERRUPTS....ccctecececcecses
5.1.11. BATTERY BACKUP .. ¢ ¢t eececescccvecscscosoonss

OO UuLd WNDN Lo

6.

Table of Contents, Cont.

INTERRUPT SYSTEMS........-.-..--a.-...o...ooo.c.o-...-too

6.1.
6.2.

6.3.

6.6.

6.7.

INTERRUPT REQUIREMENTS . ¢ ¢« e oo veeoecacsnsocscsacocscssss
PROGRAMMABLE INTERRUPT CONTROLLER (PIC)....
6.2.1. PIC INTERRUPT VECTORS....:.cc0eevene e eececann
PRIORITY MODES OF THE PIC. ...t cteteeeoccasanncns e en
6.3.1. POLLED MODE...... Gt et eseseeeeceseeenencesaanas
6.3.2. NESTED MODE. . cceecsossaccocosnsas Ceeeee e
6.3.3. FULLY NESTED MODE........ ceeeeeneaann e
6.3.4. ROTATING PRIORITY =~ MODE A...iceeeeccsncenns .
6.3.5. ROTATING PRIORITY — MODE Boee:iveeoooenoooaanns
6.3.6. SPECIAL MASK MODE. .:ceoeeesocssconacssans oo
PIC STATUS REGISTERS :ceecevosossosacsossassssocsosocesse
6.4.1. INTERRUPT MASK REGISTER (IMR):eeecocsoccenns .
6.4.2. IN-SERVICE REGISTER (ISR):ceceoccaaacnes ceeeen
6.4.3. INTERRUPT REQUEST REGISTER (IRR):ccececscccss
OTHER PROGRAMMABLE FEATURES.....ctcetecececnnonanens
6.5.1. TRIGGERED MODES....s0eaes Ceeeeeeeas ceeenan .o
6.5.2. BUFFERED MODE . ¢ ceeeeseecnscansosossssssoncscasass
6.5.3. CALL ADDRESS INTERVAL (ADI)..:cceceescccacos .
6.5.4. MICRO-PROCESSOR MODE. :¢:ceeesssss e eeeceecenn
CASCADING PIC' St eeeueoeeeeenecssssasasosssssccsssescs
6.6.1. MASTER/SLAVE MODE.: . ::scesescccecsssccnnssonss

AUTOMATIC END OF INTERRUPT MODE.........

PROGRAMMING THE 8259-A PIC..--oo-o...oo..pooo.-oo-.-o-o.t

7.1.

7.2.

7.3.

INITIALIZING THE PIC..ceccevesens ceesos e e

7.1.1. INITIALIZATION CONTROL WORDS 1 AND 2..... oo
7.1.2. INITIALIZATION CONTROL WORD 3 (ICW3)...c0.c..
7.1.3. INITIALIZATION CONTROL WORD 4 (ICW4).....0...

OPERATION CONTROL REGISTERS........ ce e

7.2.1. OPERATION CONTROL WORD 1 (OCW1l)...
7.2.2. OPERATION CONTROL WORD 2 (OCW2)....
7.2.3. OPERATION CONTROL WORD 3 (OCW3)..

SERVICE ROUTINE REQUIREMENTS.....c00¢:..

s o o o o o * e 00 o 0

CONFIGURING THE MULT/IO FOR THE PIC...ccccecccscscccansncns

8.1.
8.20
8.3

PIC IN POLLED MODE...:.cccosee ceeeeaas e

PIC AS MASTER.: ..t ceeveoaasencssascacsncsscs

PICAS SLAVE..............QQ'......O....
8.3.1. CASCADE CABLE.: .t testcacoocsscscs

30
31
31
32
33
33
34
34
34
34
36
36
36
36
36
37
37
37
37
37
38
38
38

39
39
39
41
42
43
43
43
44
45

47
47
47
47

w W

IS
[

o 00 (S}
(S O o

NNMNMNNDNDNDN

Wwwww

'S

3} (S, 0]
=
(1]

NN NNNNNY

[L L
OO U W

[
Gd Wi+

!

N =

| I L
OO T W

[N

[N

’_l

. o

LU TR 1)

89 e 00 en 00 e s o

List of Figures

Pl-P3 CONNECTOR PINOUTIO..O..IO..OQ.Q..
SERIAL CONFIGURATION JUMPERS...........

DAISY PORT P4 CONNECTOR PINOUTS........

TIME FORMAT EXAMPLE...:cceeescscccecane
1990 INTERNAL CLOCK FORMAT.:::eceoceoee

JUMPER AREAS J4 AND J5.c.ccoececccanccse
CASCADE CABLE CONNECTIONS (P5).........

® 8 069 00 00 0 0 s e o o

FOUR MULT/IO BOARDS IN MASTER/SLAVE CONFIGURATION....

List of Tables

GROUP SELECT PORT BASE+7.ccececenccccns
GROUP SELECT BITS.::.ccececascsocescscnsons
GROUP @...cccc0000as cseessesscesasenses
GROUPS 1, 2, & 3...ccceveeesrsncsanncsse
MEMORY ADDRESSING. ¢t ceeceoccocosacccces
ADDRESS SETTINGS...cccesctcacescoscooces
EXTENDED ADDRESSING.:¢esceseecs secesccace
BANK SELECT AND SWITCH 1@B-2..:cc000c..

ACE I/0 GROUP DESCRIPTION...:.:cceceoscs
ACE JUMPER CONNECTIONS.:.:ccoccseescoccs
REGISTERS OF THE 8250 ACE....ccceeeeen

@ o 0 0 s 0 0 s

e o 0 0 0 0 s 0

e o o0 00 o

® e o 0 o0

e e a e s 0 0 s

DIVISOR LATCH CONSTANTS FOR STANDARD BAUD RATES.

ACE INTERRUPT ASSIGNMENTS ON 8259 PIC..
DAISY PORT SIGNALS AND I/O MAP.:eoossooe

1990 CALENDAR/CLOCK I/O MAP...ccoceeaan
CLOCK COMMANDS ¢ e svoeovsocesocsosscncnnss

MULT/IO CONNECTIONS TO THE PIC INTERRUPT REQUEST

® o o 0 00 0 0 0

@ e oo 00 0 0 0

EXAMPLE OF JUMP TABLES FOR SERVICE ROUTINES.....

INITIALIZATION CONTROL WORD 1
INITIALIZATION CONTROL WORD 2..........
INITIALIZATION CONTROL WORD 3..........
INITIALIZATION CONTROL WORD 4 (ICW4)...
OPERATION CONTROL WORD 2.:¢:ccccecascccss
OCW2 COMMANDS (BITS 5 = 7)ceeeecececans
OPERATION CONTROL WORD 3 (OCW3).¢.eces

e e s e o0 00

e o o 0 0 0 0 0

e e 690 00 00

® o e 0 00 0 s 0

LINES.

12
12

22

27
28

47
48
49

OO D DWW

21

25
25

32

49
41
41
42
42
44
44
45

1. INTRODUCTION

The MULT/IO is a general purpose S-100 utility card that combines
all the board level features needed to form the heart of a
powerful interrupt driven, real time, multi-user system.
Included on the board are:

Three 8250 programmable ACE serial devices (Asynchronous
Communications Equipment) for communicating with RS-232
terminals or printers:;

An 8259-A programmable interrupt controller (PIC) capable of
resolving 8 levels of maskable, prioritized interrupts and of
issuing 8080/8085/2-88 CALL instructions as response for each
level;

A CMOS real time clock/calender able to cause interrupts at
software selectable intervals and with provision for battery
back-up:;

Three parallél ports (oné input and two output) configured to
plug directly into the ribbon cable connector of a parallel
Diablo type 'Daisy Wheel' printer;

2 Kbyte of 2716 EPROM and 2 Kbyte of high speed static RAM--
both RAM and EPROM being bank selectable AND able to respond
to all 24 S-100 address lines as defined in IEEE spec 696;

A power-on-jump option which allows 8 bytes of code to be
executed from on-board EPROM during system power-on or reset.

The serial, parallel, clock and PIC devices on the MULT/IO are
all I/0 mapped-- that is, they are accessed through switch
selectable I/0 port addresses. These devices may be programmed
to request service from the PIC based on a rich selection of
status conditions. The 8259-A PIC can in turn issue to the CPU
up to eight maskable, prioritized interrupt service routine call
vectors. As the sole system I/0 card, one MULT/IO board can be
configured to support three terminals and a 'Daisy Wheel' printer
while furnishing a real time, interrupt driven environment with
all interrupt service routines optionally residing in on-board
bank select RAM and EPROM. Alternatively, up to four MULT/IO
cards may be combined to accommodate as many as twelve terminals
with full interrupt support.

The on-board 8259-A interrupt controller may be Jjumpered to
monitor any three vectored interrupt lines (S-10¢ bus lines 4-11)
and can assert either the generalized interrupt request line (S-
1089 bus line 73) or any vectored interrupt line. Thus interrupts
generated from off-board devices may be routed to the MULT/IO PIC
using the vectored interrupt lines (Master Mode), or the MULT/IO
PIC can send its interrupt requests over the vectored interrupt
lines to some other interrupt controller (Slave Mode).

2. MULT /IO ARCHITECTURE

All devices on the MULT/IO, including RAM and EPROM, are
associated with some S-100 I/0 port. In all, almost 30 distinct
I/0 registers are used to control the many device functions
available on the board. Yet the MULT/IO takes up only 8 I/O port
addresses. To understand how so many registers can be accessed
through so few ports, it is useful to think of the port
addressing scheme of the MULT/IO as 'bank-select I/0'. This is
analogous to conventional bank-select memory schemes.
Specifically, banks of registers are allowed to share the same
block of consecutive I/0 addresses while a dedicated 1I/0 port is
used to enable one bank and at the same time to disable all
other similarly accessed banks.

The MULT/IO is divided into 4 1I/0 banks, called groups, with each
group occupying the same 7 I/0 port addresses. Three of these
groups are used for the serial ports. The other group addresses
the parallel ports, the clock, memory bank select and the
interrupt controller (PIC).

Each group is accessed through ports BASE to BASE+6. Port
address BASE+7 is the GROUP SELECT port, and is used to establish
which of the four I/0 groups will be active at any given time.
By outputting the correct bit pattern to the GROUP SELECT port,
the user enables the corresponding group for all subsequent I1/0
operations directed to ports between BASE and BASE+6. To enable
a different group the user must output a different bit pattern
to GROUP SELECT port BASE+7. While this port selection technique
is extremely efficient in conserving 1/0 space, it does impose on
the user the responsibility of keeping track of which I/0 group
is currently active.

2.1. GROUP SELECT PORT BASE+7

The Group Select port is a write-only register. Its functions do
not vary with the selection of different groups. Besides being
the Group Select port, it also controls bank select of on-board
memory, enables the interrupt controller and parallel ports, and
the printer restore bit. Thus, whenever a differant group is
selected, care must be taken not to change the bits that control
the other functions of the Group Select port.

Since this port is write-only, the last value output to this port
must be kept in a location in memory that is known to all the
software that needs to change the group select. Also, any
interrupt routine that changes the currently selected group must
restore it before exiting the service routine.

GROUP SELECT PORT

2.1.1. FUNCTIONS OF THE GROUP SELECT PORT

The following table outlines the bit assignment for the Group
Select Port:

Table 2-1: GROUP SELECT PORT BASE+7

Data Bit Function

This bit,and the next bit,control which
group is selected.

Memory Bank Select

Enable interrupt controller

Control printer restore (pin 13 of P4)
Enable parallel port output lines

Not used

Not used

NoOoUubhwhEQ

The uses of bits 2-5 are described later in this manual.

The actual group assignments are determined by bits @ and 1.
Each group is selected by reading the current Group Select Data
from memory, modifying bits @ and 1, outputting the byte to the
Group Select port and saving the data in memory. In the program
examples used in this manual, the memory location for saving the
current Group Select Data is called SELDAT.

The actual groups selected by bits & and 1 are defined in the
table that follows:

Table 2-2: GROUP SELECT BITS

Bit@d Bitl Group Group Description

4} 4} 7} Parallel Ports,1990 Clock,8259-A PIC
%} 1 1 Serial port 1
1) 2 Serial port 2
1 1 3 Serial port 3

As an example of using the GROUP SELECT port, suppose that we
want the I/O space taken up by the MULT/IO to extend from 80H to
87H, and that we wish first to read ACE serial device #2 and
subsequently to read "DAISY PORT" #. In order to read the data
received buffer of the second ACE serial device (serial device
number 2), the user must first output SELDAT with a 1 in bit 1
and a zero in bit @ to GROUP SELECT port 87H (to insure that I/O
GROUP 2 is selected), and then input the desired data from port
80H (assuming the serial device has been properly initialized).

To read the parallel 'Daisy' port, we would first switch to I/O
GROUP @ by outputting SELDAT with zeros in both bits @ and 1 to
port 87H, and then input the desired data from port 80H. The
important thing to note here is that the function of I/0 port 80H
in our example changes from a serial device data register to a
parallel device status register depending on the last byte that
we output to the GROUP SELECT port. It is important not to change
data bits 2-5 when outputting group select data to port BASE+7.

GROUP SELECT PORT

2.1.2.

Thispage contains a general map of the port assignments within
as control bit assignments,
are described in detail in the sections that describe each

the groups.

GROUP PORT ASSIGNMENTS

Specific details, such

device.
Table 2-3: GROUP 0O
INPUT OUTPUT
BASE DAISY@d IN DAISY@ OUT
BASE+1 not used DAISY1l oOUT
BASE+2 CLOCK 1IN CLOCK ouT
BASE+3 not used not used
BASE+4 8259~-A A0=@ REGISTER 8259-A A@=@ REGISTER
BASE+5 8259-A A0=1 REGISTER 8259-A Ad=1 REGISTER
BASE+6 not used not used
Table 2-4: GROUPS 1, 2, & 3

(8250 ACE Serial I/0 Ports)

INPUT ouTPUT
BASE RECEIVE BUFFER/LSB BAUD TRANSMIT BUFFER/LSB BAUD
BASE+1 INTERRUPT ENABLE/MSB BAUD|INTERRUPT ENABLE/MSB BAUD
BASE+2 INTERRUPT IDENTIFY not used
BASE+3 LINE CONTROL REGISTER LINE CONTROL REGISTER
BASE+4 MODEM CONTROL REGISTER MODEM CONTROL REGISTER
BASE+5 LINE STATUS REGISTER not used
BASE+6 MODEM STATUS REGISTER not used

NOTE: AN OUTPUT TO BASE+7 WILL ALWAYS ASSIGN AN I/O

GROUP BUT HAS NO FUNCTION WITHIN ANY GIVEN

I1/0 GROUP.

BASE PORT ADDRESS

2.2. SELECTING I/0 PORT ADDRESS

The base address of the MULT/IO ports is selected using Switch
7B. This switch is set to match the upper 5 bits of the port
address (A3-A7). The BASE port can be located at any 8 byte
boundary, starting at port @ and ending at port F8H. The
relationship between switch number and address bit is illustrated
below:

o SWITCH 7B
number address bit
"2 eesessscessese A7
3 teeececcasesss A6

'/4 es s s 000000 0 e AS ""ihh?‘%"
V;5 ® 0 8 & ¢ & 6 0 0 0 0 0 0 A4

6 ® e 00 000 05 0008 0 00 A3

Setting a switch ON matches a zero, and OFF matches a 1. For
example, with all switches OFF, the MULT/IO will occupy 1I/O
addresses F8H to FFH; with all switches ON it would occupy. ports
2 through 7.

2.3. RAM AND EPROM-- GENERAL

The MULT/IO is equipped to handle four kilobytes of high speed
static RAM or four kilobytes of 2716 EPROM or a combination of
each. This memory occupies two sockets at 5D and 6D on the
board. The left hand socket, 5D, is called RO, and is assigned
the first 2K of address space, and the one to the right of it,
6D, is called Rl and is assigned the last 2K of the four kilobyte
region.

This memory always functions as bank select memory (see Bank
Selection), and is addressed as a 4K unit.

No wait state is generated when accessing MULT/IO memory, which
is capable of running solid at up to 6 megahertz. There is no
provision for generating wait states as a user option. If
special uses require wait states, a Programmable Logic Array
would have to be special ordered from Morrow Designs.

2.3.1. ADDRESSING RAM AND EPROM

The MULT/IO memory may be addressed to any 4K boundary in the 64K
address region, or in the 16 megabyte address region of the full
IEEE 696 specifications. To select an address, in either region,
the higher four bits of the 16 bit address are selected by
setting the switches of 3-6 of 10B. The additional 8 bits of
extended addressing are covered in the next section.

BASE PORT ADDRESS

The

Table 2-5: MEMORY ADDRESSING
Switch Bank 10B

Address Bit Switch #
AlS 3 S Q:’
Al4 4
Al3 5
Al2 6

ON = § and OFF =1

EXAMPLE: To set RAM to begin at C@@OJH, switches 3 and 4
should be placed in the "OFF" position, and switches 5 and 6
should be placed in the "ON" position. This will cause RAM
to occupy address space from COOOH to CFFFH. The memory at
RO will range from C@@@H to C7FFH, and the memory at Rl will
begin at C80PYH and end at CFFFH.

following table gives all of the 16 possible settings of the

RAM/EPROM address switch at 10B and the corresponding beginning

and

ending addresses of on-board RAM and EPROM.

Table 2-6: ADDRESS SETTINGS
(in first 64K block)

Al5 Al4 Al3 Al2 ' RO R1

19B-3|19B-4|19B-5|10B-6 BEGIN END BEGIN END
ON ON ON ON o300 @7FF 2800 OFFF
ON ON ON OFF 1000 17FF 1800 1FFF
ON ON OFF ON 2000 27FF 2800 2FFF
ON ON OFF OFF 3000 37FF 3800 3FFF
ON OFF ON ON 4000 47FF 4800 4FFF
ON OFF ON OFF 5000 57FF 5800 5FFF
ON OFF OFF ON 6000 67FF 6800 6FFF
ON OFF OFF OFF 7000 77FF 7800 7FFF
OFF ON ON ON 8000 87FF 8890 8FFF
OFF ON ON OFF o000 97FF 9800 9FFF
OFF ON OFF ON AQO0 A7FF A800 AFFF
OFF ON OFF OFF BOOOD B7FF B8OY BFFF
OFF OFF | ON ON Coo0, C7FF Cc899 CFFF
OFF OFF ON OFF D@D D7FF D8GY DFFF
OFF OFF OFF ON EQQ0 E7FF E800 EFFF
OFF OFF OFF OFF | F0o9 F7FF F800 | FFFF

If only the lower 16 address lines are used (for a 64K address
space), the extended addressing feature must be disabled. This
is done by setting switch 1 of 19B to the ON position and
removing the IC (25LS2521) at location 3D (next to the extended
address switch at 2D) from its socket.

2.3.

2. EXTENDED ADDRESSING

BASE PORT ADDRESS

Extended addressing as applied to S-180 memory devices is simply
the ability of memory to decode more than 16 address bits in
order to become selected. The 4K block of RAM/EPROM on the
MULT/IO may be switched to decode 24 rather than 16 address
lines-- the extra 8 address lines are defined by IEEE
specification 696. This extended addressing feature allows the
RAM/EPROM on the MULT/IO to occupy any even 4K block within a 16
Megabyte address space.

To enable this extra decoding circuitry, switch 1 of DIP switch
19B must be placed in the OFF position. Since many CPU boards
currently in use do not generate address lines Al6 - A23, many
users will wish to disable the extended addressing circuitry of
the MULT/IO. This is done simply by setting switch 1 of DIP
switch 10B to the ON position. It is recommended that when
running the board in non-extended mode the IC at location 3D
(25L.S2521) be removed from its socket.

With extended addressing enabled (switch 1 of 1B OFF), the DIP
switch at location 2D determines the 64K segment wherein the 4K
of on-board RAM/EPROM will reside. The following table
illustrates the switch settings of DIP switch 2D and their
corresponding extended address bits. The S-100 bus pin numbers
assigned by the IEEE specification 696 to these extended address
bits are given in parentheses.

Table 2-7: EXTENDED ADDRESSING
DIP Switches 2D and 10B

Extended| S-199 :

Address Bus DIP Switch DIP Switch 14B-1
Bit Pin # 2D Switch # must be OFF to enable

extended addressing

A23 (16) 1
A22 (17) 2 and ON to disable
A2l (15) 3 with chip 3D removed
A20 (59) 4
Al9 (61) 5 ON = @
Al8 (62) 6 OFF = 1
Al7 (63) 7
Al6 (64) 8

Example: To set RAM/EPROM to begin at 80C@PPH, set switch 1
of 10B OFF to enable extended addressing, set the lower 16
bits (the C@PP part of this address) on DIP switch 10B as
per the instructions on the previous page, and set switch 1
of DIP switch 2D OFF, and switches 2 - 8 ON. Set in this
way, on-board EPROM/RAM will respond to all memory accesses
from 8OCPGPH to S8OCFFFH. When so addressed, RAM/EPROM will
NOT respond to memory accesses to the area from @OCPOIH to
POCFFFH, and so would in effect be permanently disabled in
any system incapable of generating extended addresses.

BASE PORT ADDRESS

2.3.3. BANK SELECTION

The RAM/EPROM block on the MULT/IO is bank select memory--that
is, an I/0 instruction can cause the memory block to become
enabled or disabled. Bit 2 of port BASE+7, the Group Select
Port, controls the bank select. The effect of outputting a zero
or one in this bit position is to turn on or off the RAM/EPROM.
The choice of which value to use (one or zero) is dependent on
the way the board is set to respond after RESET/ or POJ/.

Switch 10B-2 allows the user to determine whether MULT/IO
RAM/EPROM will be selected or not after system power-up or reset.
The setting of this switch also determines whether data bit 2
will be active high or active low when an output instruction is
directed to port BASE+7. If Switch 10B-2 is in the ON position,
then the MULT/IO RAM/EPROM bank will be enabled upon system
power-up or reset, and data bit 2 will have to be low or '@' for
Group Select port BASE+7 to enable memory, and high or 'l' to
disable. If Switch 1@9B-2 is OFF, the MULT/IO RAM/EPROM bank will
be disabled upon system power-up or reset, and will not be
accessible until an output is made to port BASE+7 with data bit 2
a 'l' or high. The following table reiterates this:

Table 2-8: BANK SELECT AND SWITCH 10B-2

Position of Condition of RAM/EPROM Bank Bank
Switch 10B-2 | after RESET/ or POJ/ Select Deselect
ON enabled g 1
OFF v disabled 1 [}

The bank select value is output along with the Select Data to
port BASE+7 to enable MULT/IO memory. The bank deselect value
disables memory. :

When disabled by bank de-selection, MULT/IO RAM/EPROM will
'‘disappear' from the bus, and so will not interfere with other
system memory occupying an identical address. Therefore other
bank select memory boards may be swapped in and out of memory
along with MULT/IO RAM/EPROM. Of course, memory cards which are
to be swapped in and out along with MULT/IO RAM/EPROM must
themselves be capable of being disabled through some software
mechanism.

EXAMPLE: To show how the MULT/IO memory would be enabled
after a RESET/, when it was disabled because Switch 10B-2 was
OFF, a 1 in bit 2 (109B or 4H) is output to the Group Select
Port, and the new value of Select Data is saved.

bank: lda seldat ;recall old group select data
ori 4 ;set bank select bit high
sta seldat :save the modified select data
out Dbase+7 :send to group select port
ret ;only bank select has changed

BASE PORT ADDRESS

CAUTION!

The Group select Port, BASE+7, is a write-only port with
multiple functions. Whenever any bit is changed, the
appropriate bit in SELDAT should be set or cleared and
saved. The example above shows how this may be done.

2.3.4. PHANTOM

SWITCH 1 of 19B is the Phantom enable switch. When placed in the

vOFF position, the MULT/IO will ignore bus pin 67, or "Phantom".
In the ON position, this switch causes the RAM/EPROM section of
the MULT/IO board to become disabled and logically removed from
the system bus whenever bus pin 67 is at a low logic state. When
pin 67 becomes high, MULT/IO memory will be enabled if it was
previously bank selected.

Certain systems rely on the Phantom line to temporarily disable
RAM memory in order to execute from ROM a special system start-up
routine. Once this routine is executed, the ROM holding the
routine vanishes and the Phantom line returns high to allow RAM
memory to be accessed. MULT/IO memory is compatible with such a
scheme.

The PHANTOM/ line is also used during interrupt acknowledge
sequences. While the 8259-A PIC is placing the low and high
bytes of the vector address on the bus, PHANTOM/ can be made
true to disable memory. This is because during the first cycle
of interrupt acknowledge Z-80's assert INTA/ which disables
memory boards. However, during the next two cycles, the Z-89
will not assert INTA/. The MULT/IO board can be configured to
assert PHANTOM/ during these two cycles. Please refer to the
section on configuring the MULT/IO for the PIC.

2.3.5. POWER ON JUMP

Switch 10B-7 controls the power-on jump circuitry of the MULT/IO.
When placed in the ON position, this switch will cause the
MULT/IO to force the host processor to execute the last 8
instructions of a MULT/IO EPROM.

To use the Power on Jump feature, there must be at least one
EPROM in either RO or Rl, the two MULT/IO memory sockets. Switch
19B-2 must be ON, so that the memory is enabled on RESET/ (see
Bank Select above). Then, Switch 19B-8 must be set tochoose
which of the two memories, RO or R1l, will be read. Setting 10B-8
ON selects RO, and turning it OFF selects Rl (the memory chip at
6D, on the right).

When the MULT/iO power on jump is used, the last 8 bytes of an
EPROM will be read. Typically, the last three bytes will be a
jump instruction to the user's bootstrap routine.

BASE PORT ADDRESS
NOTE: 1In order to use the power on jump, all four of these
conditions must be met:

There must be an EPROM on the MULT/IO with instructions in
the last eight bytes;

This EPROM must be selected by using switch 10B-8;

The MULT/IO memory must be enabled on RESET/, that is Switch
190B-2 must be ON;

The power on jump switch 190B-7 must be ON.

19

SERIAL PORTS

3. SERIAL PORTS

The MULT/IO has three 8250 programmable Asynchronous Communica-
tions Elements (ACE's) which can be connected to RS-232 devices
via three 26 pin ribbon cable connectors. Each ACE has an I/0
group dedicated to it-- namely, GROUPS 1, 2 and 3. The ACE's
are completely programmable and must be initialized in software
before they can be used. Initialization includes setting the
baud rate, word length, parity, number of stop bits, and
interrupt conditions.

All three ACE's are configured as Data Communications Equipment
(DCE) from the factory, and so may be connected with standard RS-
232 CRT terminals and printers. All may be re-strapped to be
used as Data Terminal Equipment (DTE) if they need to be
connected to modems or other computers.

Each ACE can be programmed to generate an interrupt in response
to up to ten conditions (e.g., data available, transmitter buffer
empty, etc.). The interrupt is sent directly to the MULT/IO PIC
which can in turn pass it on to the host CPU. The interrupt
handling routine can then interrogate the interrupt status
register of the ACE responsible for generating the interrupt, and
is thus able to determine the precise cause of the interrupt.

The following chart describes the ACE devices on the MULT/IO,
including the location of the 8250 on the circuit board, the
location of the 26 pin ribbon cable connector associated with
each ACE, the I/0 GROUP controlling each ACE, and the interrupt
level assigned to each device by the 8259-A PIC.

Table 3-1: ACE I/O GROUP DESCRIPTION

I/0 26-pin Board Interrupt
GROUP # connector location Level
ACE # 1 1 Pl 2C 3
ACE # 2 2 P2 2B 4
ACE # 3 3 P3 2A 5

Pl is the connector on the top left corner of the board; P2 and
P3 are the next two connectors to the right of Pl.

11

SERIAL PORTS

3.1. CONFIGURING SERIAL CONNECTORS

The pins on ribbon cable connectors P1-P3 are numbered so that
the first 25 pins correspond exactly to the numbering of a
standard DB-25 connector (i.e., first row left to right, 1 to 13,
second row left to right, 14 to 25). This makes it a simple
matter to attach each ACE to a serial device-- cables with flat
ribbon cable connectors at one end and DB-25 connectors on the
other are available off the shelf from many vendors.

Figure 3-1: P1-P3 Connector Pinout

Top View
back
. 5
14 15 16 17 18 18 20 21 22 23 24 25 26
left right
1 2 3 4 5 6 7 8 910 11 12 13

front

Directly below each 26 pin connector is an array of 7 pairs of
jumper headers labeled J1, J2, and J3. They are used to
configure Pl through P3 as modem (factory strapped) or as
terminal. Six slip-on connectors are used to supply the standard
arrangements of pin assignments. Other non-standard assignments
may be made using wire-wrap. The figures that follow show the
two normal configurations of Jl1, J2 and J3.

Figure 3-2: SERIAL CONFIGURATION JUMPERS
Serial Port as modem (Data Communication Equipment), standard

v 0o
weY|A B [« C D E F G

[

shm] |1h 5 [x] |u [m]| [~n]

Serial Port as terminal (Data Terminal Equipment)

Al |B] cC D E F G
H| [1] J K L M N

The two serial configurations represent the opposite ends of a
connecting cable: transmit data from one end goes to receive
data at the other end, and request to send is connected with
clear to send, etc. Normally, computers are configured as modems
(for connection with terminals). In order to tie two computers
together, you would configure a serial port on one computer as a
terminal. This correctly transposes all the handshaking and
transmit/receive lines.

12

SERIAL PORTS

All of the active lines on the 26 pin connectors, with the
exception of pins 1 and 7 which are tied to ground, are brought
to the jumpers. In the same way, the transmit/receive and
control pins of the 8250 ACE are brought to the jumpers. This
allows the easy interchange of signals when configuring each 8250
as terminal or modem. The illustrations on the previous page show
the standard configurations of these jumpers. The following
table describes the connections of pins to the jumper.

Table 3-2: ACE JUMPER CONNECTIONS

26 pin connector Jdl, J2 or J3 pin of 8250 ACE |signal or
Pl, P2 or P3 jumper pins 2C 2B 2A DCE name
2 Ay’ RXD

B 11 11 11 sout
8 c * * * DCD
D 33 33 33 dtr
6 E ‘ DTR
F 32 32 * % rts
5 G RTS
HY 19 10 19 sin
3 I TXD
* J 38. | 38 38 rlsd
20 K DSR
L 37 37 37 dsr
4 M CTS
N 36 36 36 cts

* These pins are hardwired together.

** RS-232 line 4 (request to send) is implemented only on ACE #1
and 2, NOT on ACE # 3. Also, Ring Indicator, RS-232 pin 22, is
not implemented. Though this function has a dedicated line on
the 8250 ACE and has its own status bit in the Modem Status
Register, the 8250 RI pin (31) is tied high on the MULT/IO, and
so sampling it would be meaningless.

Here is an illustration of Jl configured as a modem (as it comes
from the factory):

[o] [e] [r] el

B]

|

i
1]

13

SERIAL PORTS

3.2. PROGRAMMING THE 8250

Any 8250 ACE device on the MULT/IO can be accessed only if its
I/0 GROUP is currently selected. Once a 1, 2 or 3 has been
output to GROUP SELECT port BASE+7, ACE device number 1, 2 or 3
can then be accessed. Each ACE contains internal 8 bit registers
which occupy the first 7 I/0 ports of the MULT/IO 1/0 space--
that is, ports BASE to BASE+6. The list below identifies all the
internal registers of the 8250 and the I/0 port address assigned
to those registers by the MULT/IO.

It should be noted that the first two ports, BASE and BASE+1 have
dual use. When the ACE is initialized, it is necessary to
specify the baud rates. This is done by first setting up the
LINE CONTROL REGISTER (BASE+3) with bit 7 set to 1. This makes
the first two 8250 registers the low and high byte of the baud
rate divider. After outputting the divider to these two
registers, the line control word is again output to BASE+3 with
bit 7 reset (to @). This switches the first two registers to
their normal use. Baud rates are described in the following
section.

Table 3-3: REGISTERS OF THE 8250 ACE

I/0 PORT OPERATION bit 7 8250 ACE Register
of BASE+3
BASE Write] Transmitter Buffer
BASE Read 7} Receive buffer
BASE Read/Write 1 Baud rate divisor - low byte
BASE+1 Read/Write 2 Interrupt enable mask
BASE+1 Read/Write 1 Baud rate divisor - high byte
BASE+2 Read b Interrupt ID register
BASE+3 Read/Write X Line Control Register
BASE+4 Read/Write X MODEM Control Register
BASE+5 Read/Write X Line Status Register
BASE+6 Read/Write X MODEM Status Register

For a complete description of these registers, refer to the data
manual on the 8250. x means "don't care".

NOTE: Auxiliary OUT1 and OUT2 are not available in
MODEM control register; also, bits 2 and 6 of MODEM
status register, Ring Indicator, are meaningless.

3.2.1. BAUD RATE

The 8250's on the MULT/IO have been hard wired so that the baud
rate for data coming in is the same as for data going out. The
crystal used to provide the reference frequency for the three ACE
devices on the MULT/IO is 1.8432 MHz. The data sheets give a
broad sample of the divisors which must go into the Divisor Latch
in order to generate the most common baud rates, and generally
any baud rate may be generated from DC (a zero in the divisor

14

SERIAL PORTS

latch-- this will inhibit all data transmission) up to 56,0900
baud. The formula for determining the divisor constant to
produce a given baud rate is :

DIVISOR = 1.8432 M/(BAUD RATE X 16)

Although in most applications the user will simply look up the
baud rate divisor in the data sheet table, there are instances
when 'odd ball' baud rates may be useful-- if, for example, an
ACE is being used solely to generate interrupts at timed
intervals based on the Transmitter Holding Register Empty
interrupt (see Serial Device Interrupts).

The following is a list of divisor latch constants for standard
baud rates. The baud rate is given in decimal, followed by the
divisor in decimal. The next two values are the hex numbers
actually output to BASE and BASE+l, when bit 7 of BASE+3 is a 1.

Table 3-4: DIVISOR LATCH CONSTANTS FOR STANDARD BAUD RATES

Baud Rate Divisor Low Byte High Byte
({Decimal) (Decimal) (Hex) (Hex)
75 1536] 6

110 1947 17 4

159 768 %] 3

300 384 89 1

609 192 Cco 0
1200 26 69 %]
2400 48 30 %]
4809 24 18 (7]
9600 12 C 0
19209 6 6 %]
38400 3 3 9
56000 2 2 N

3.3. INITIALIZATION

Though the reset pin (MR) of each 8250 will be asserted during
power-on or reset, no assumptions should be made about the
contents of any 8250 register unless that register has been
initialized. Keep in mind that an on-board ACE cannot be
accessed, far less initialized, unless its I/O group is selected.
Furthermore, the Line Control, Modem Control, Interrupt Enable
and Divisor Registers will normally have to be initialized before
any data can be transferred to or from an 8254.

The following three software routines are brief samples of how a
MULT/IO ACE device could be driven in a CP/M* type environment.
All these routines adhere to CP/M* I1/0 protocol. The INIT

* CP/M is a trademark of Digital Research.

15

SERIAL PORTS

routine sets up ACE # 1 to run at 9600 baud with an 8 bit word,
no parity and 2 stop bits. The Interrupt Enable Register will be
set to generate no interrupts, and the Modem Control Register
"will be ignored. This initialization would be appropriate for
most RS-232 CRT terminals in a non-interrupt driven environment.
Assume that the MULT/IO I1/0 has been set to begin at 48H. The
cluster of assembler directives (equ's) at the beginning of
these routines establish constants which hold for all 3 specimen
routines. The comments included with these routines may be used
as a general flow analysis of ACE programming.

3.3.1. SAMPLE SERIAL I/0 ROUTINES

groupl equ 1 ;code for first ACE (attached to Jl)
base equ 48h :base I/0 address set by SW-8C

grpctl equ base+7 ;board group control port

dlil equ base ;ACE baud rate divisor (1sb)

dlm equ base+l ;ACE baud rate divisor (msb)

ier equ base+l ;ACE interrupt enable register

lcrx equ base+3 ;ACE line control register

1sr equ base+5 ;ACE line status register

rbr equ base ;ACE receiver buffer register

thr equ base ;:ACE transmitter holding register
dlab equ 8Jh ;divisor latch access bit

thre equ 20h ;line status register THRE bit

dr equ 1 :line status register DR bit

baudl equ 12 ;divisor latch low byte-- 9600 baud
baudh equ] :divisor latch high byte-- 9600 baud
wlsd equ 1 ;word length select bit @-- 8 bit word
wlsl equ 2 ;word length select bit 1-- 8 bit word
stb equ 4 ;stop bit count-- 2 stop bits

imask equ 1% ;interrupt mask-- disable all

3
’

16

SAMPLE SERIAL I/O ROUTINES

;The following routine initializes the ACE as described above

.
’

init: mvi a,groupl ;set up desired I/O group
out grpctl ;select first serial device
;next set up format and set dlab
mvi a,dlab+wls@+wlsl+stb
out ler ;base reg is now lsb baud rate reg
mvi a,baudl ;low byte of baud rate constant
out dll ;into low baud rate register
mvi a,baudh ;high byte of baud rate constant
out dlm ;into high baud rate register
;set up format and clear dlab
mvi a,wl@+wll+stb
out lcr ;into line control register
Xra a 1zero register a
out lsr ;clear data available flag in line status
mvi a,imask ;interrupt mask set up
out ier - ;base+l now ‘interruptmask- not baud
ret ;end of initialization routine
:The following routine will return in the accumulator any new
;character typed to ACE # 1
conin: mvi a,groupl
out grpctl ;put a 1 into MULT/IO GROUP SELECT port
;make sure dlab is cleared
mvi a,wlsf@+wlsl+stb
out lcr ;make base port the ACE data register
coninl: in lsr ;get line status register
ani dr ;any new data from terminal?
jz coninl ;if no then keep waiting
in rbr ;get data
ani 7fh ;strip off bit 7 of input character
ret ;return with data in accumulator

-
4

:The following routine will output the character in Register C
:;to ACE # 1

.
’

conout: mvi a,groupl ,
out grpctl ;put a 1 into MULT/IO GROUP SELECT port
;make sure dlab is low
mvi a,wlsf+wlsl+stb
out lerx ;make base port the ACE data register
conoutl: in 1lsr - ;get line status
ani thre ;is ACE ready to transmit?
jz conoutl ;if not then keep waiting
nov a,c ;transfer data from reg c to reg a
out thr ;output character typed from terminal
ret ;return to calling program

~e

17

SAMPLE SERIAL I/O ROUTINES

:The following routine will return an FF in the Register A if ACE
;device # 1 has received a new character (i.e., DR is set in the
;ACE line status register). Otherwise, return a 9.

-
r

status: mvi a,groupl
out grpctl ;put a 1 into MULT/IO GROUP SELECT port
in 1sr ;get line status.
ani dr ;check DR bit
rz ;return if reg a is zero-- no character
mvi a,%9ffh ;ff into reg a since character is ready
ret

In the above examples, it should be noted that the GROUP SELECT
port is re-initialized at the beginning of every routine. This
is done to insure against inadvertently sending serial I/0
instructions to the clock, parallel ports or interrupt controller
of the MULT/IO.

In this example please note that before accessing the ACE data
register, the format word is sent again to the Line Control
Register. This is done so that port BASE of GROUP 1 will be
interpreted as a data port rather than as a divisor port. This
guards against a situation such as losing access to the console
device due to writing of the Divisor Latch (from a monitor or
front panel, for example) without subsequently clearing bit 7 of
BASE+3, DLAB. This precaution may be unnecessary in most
non-developement systems.

3.4. SERIAL DEVICE INTERRUPTS
The three 8250 ACE devices on the MULT/IO each have a dedicated
interrupt request line on the 8259 PIC. The chart below desribes

the PIC interrupt level assigned to each ACE:

Table 3-5: ACE INTERRUPT ASSIGNMENTS ON 8259 PIC

Serial Device PIC Interrupt
Request Line

ACE # 1 IR3
(I/0 Group 1)

ACE # 2 IR4
(I1/0 Group 2)

ACE # 3 IRS
(1/0 Group 3) :

18

SERIAL DEVICE INTERRUPTS

3.4.1. ACE INTERRUPT PROGRAMMING

As explained in the data sheet on the 8250, each ACE device can
be programmed to generate an interrupt on any of four general
conditions. These conditions are, in order of descending
priority: Receiver Line Status, Received Data Available,
Transmitter Holding Register Empty, and Modem Status. The
Received Data Available and the Transmitter Holding Register
Empty interrupts can be identified directly from the Interrupt ID
Register of the source ACE.

The remaining two interrupts must use the Interrupt ID Register
to point to either the Receiver Line Status Register or the Modem
Status Register. These two registers each have four interrupt
flags which can be read to identify the source of an ACE
generated interrupt. (The third interrupt of the Modem Status
Register-- The Trailing Edge of Ring Indicator, or TERI-- is not
usefully supported by the MULT/IO, since the Ring Indicator line
of each ACE is tied to +5V.) ‘ ‘ ‘ ‘ ‘

Because the 8250 prioritizes its interrupts, the Interrupt ID
Register will ‘freeze' the highest priority interrupt pending by
ignoring all further interrupts until the previous interrupt has
been serviced. For detailed information of the interrupt
structure of the 8250 see the data sheets.

When using the 8258's ACE devices on the MULT/IO to generate
interrupts, it is advisable to set the 8259-A PIC to operate in
level mode, rather than edge mode. In edge mode, it is possible
under certain circumstances for an ACE generated interrupt to be
'lost'~-- that is, to go unrecognized. The 8250 produces one low
going edge for each interrupt produced. If the 8259-A PIC is
currently servicing a different 8250 interrupt, it will miss the
edge and be unable to detect that the line is now low. Using
level mode avoids this.

19

PARALLEL PORT

4. PARALLEL DAISY-WHEEL PRINTER PORT

The MULT/IO contains parallel I/O ports configured to accomodate
a standard DIABLO type daisy wheel R/0O printer. These ports are
brought out to the 50 pin ribbon cable connector at P4 for easy
attachment to a Diablo style printer. The pin assignments of P4
correspond exactly to those of an internal Diablo 59 conductor
flat cable connector, so simply tying the Diablo to the MULT/IO
via a ribbon cable with female sockets at either end is the only
hardware requirement for interfacing the two devices.

Altogether, two latched output ports (plus an extra latched
output bit) and one transparent input port are used to
communicate with the Daisy Wheel printer. Of course, these ports
may be used with practically any parallel device (e.g., a
Centronics style printer or a keyboard) provided that the I/0
lines are properly routed from the MULT/IO connector at P4 to the
target device. This additional cabling burden is standard in
parallel I/0 interfacing, and so should not be considered as a
major disadvantage by those using the DAISY PORT with a non-
Diablo parallel device.

4.1. PARALLEL PORT DESCRIPTION

The MULT/IO DAISY PORT occupies I/0 ports BASE and BASE+1l, both
within I/0 GROUP 4. Bit 5 of the Group Select Port (BASE+7)
enables the output ports. A single input line (BASE+@ bit 5, or
the Print Wheel Ready line when interfacing with a Daisy Wheel
printer) is, after going to the DAISY PORT, inverted and then
brought to IRQ 6 of the 8259-A interrupt controller, and so can
be used to generate an interrupt whenever it goes to a low logic
state.

BASE+7 bit 5 enables all DAISY PORT output lines. If this bit is
low, all output lines controlled by I/O ports BASE and BASE+1
will remain in a high impedance state regardless of other
software commands.

The eight input lines brought to DAISY PORT BASE are also pulled
up to +5V through 180 Ohms (nominal), and so may be used with
open-collector devices. These eight input lines are inverted by
an input buffer, and so if left unconnected will appear to
software to be low.

The parallel ports have no special facility for generating a
strobe on output or latching a strobe on input. All data lines
operate as levels, so strobes must be generated in software.

The following page depicts the parallel lines available on the
MULT/IO, including the I1/0 port and bit number controlling each
line and the function assigned to each line on a standard
parallel Diablo type interface. Remember that these functions
have no inherent meaning to the MULT/IO, which simply sees so
many latches, and so do not preclude interfacing the MULT/IO with
parallel devices other than Daisy Wheel printers.

20

PARALLEL PORT

Table 4-1: DAISY PORT SIGNALS AND I/O MAP

I/0 GROUP 0

I/0 Data MULT/IO and Diablo Function
Port Bit Diablo Pin #
Input BASE %] 4 End of Ribbon (-)
1 3 Paper Out (-)
(these 8 2 5 Cover Open (-)
input lines 3 34 Paper Feed Ready (-)
pulled up 4 26 Carriage Ready (-)
to +5V by 5 27 * Print Wheel Ready (-)
@180 Ohms 6 12 Check (-)
& inverted) 7 28 Printer Ready (-)
Output BASE 7] 46 Data Bit 9 (256) (-)
1 1 Data Bit 1@ (512) (-)
2 9 “Data Bit 11 (1924) (=)
3 10 Data Bit 12 (2048) (-)
4 15 Paper Feed Strobe (-)
5 17 Carriage Strobe (-)
6 21 Print Wheel Strobe (-)
7 23 Ribbon 1ift (-)
Output BASE+1 0 37 Data Bit 1 (1) (=)
1 36 Data Bit 2 (2) (-)
2 39 Data Bit 3 (4) (-)
3 33 Data Bit 4 (8)(-)
4 49 Data Bit 5 (16) (-)
5 42 Data Bit 6 (32) (-)
6 43 Data Bit 7 (64) (-)
7 45 Data Bit 8 (128) (-)
Output BASE+7 4 13 Restore (-)

*In addition to being associated with bit 5 of Input Port Base,
pin number 27 of P4 (the Diablo Print Wheel Ready line) is also
connected through an inverter to Interrupt Request line 6 (pin
24) of the 8259-A PIC. Thus this line may be used to generate an
interrupt whenever any external device brings it low (e.g., when
the print wheel is ready).

The following lines on MULT/IO connector P4 are tied to ground as
prescribed by the Diablo Interface:

2, 8, 11, 14, 16, 18, 28, 22, 25, 396, 31, 32, 35, 38, 41, 44, 47.
Line 24, defined by Diablo as Select (-), is also grounded.

Line 48 of MULT/IO connector P4 is defined by Diablo as +5V
(Reference Out). This line is not used by the MULT I/O0.

Unimplemented (left floating) are lines 6, 7, 29, and 50.

21

PARALLEL PORT

Figure 4-1: DAISY PORT P4 CONNECTOR PINOUTS

Top View
back
49 47 45 43 41 ... 9 7 5 3 1
left right
50 48 46 44 42 ... 16 8 6 4 2
front

4.2. PROGRAMMING THE DAISY PORT

As with all I/0O devices on the MULT/IO, the user must be careful,
when accessing the DAISY PORT, to initialize the correct I/0O
group-- in this case, GROUP @. Once the proper I/0 Group has
been selected, all data output from the CPU to the parallel ports
is latched. By latched is meant that the data output to a
parallel port will appear on the appropriate pins on the P4
connector, and will remain there until either different data is
output to the port in question or until Driver Enable (bit 5 of
Select Group Port BASE+7) is brought low. When this occurs, all
17 parallel output pins of connector P4 will enter a high
impedance state.

The 8 input lines of the DAISY PORT are available to the CPU
through an inverter, so that when an input instruction is
directed at DAISY PORT @, the CPU will read the complement of
whatever data is on the appropriate lines of connector P4 at the
time the input instruction is executed. There is no provision
for strobing data into the parallel input buffer for later
examination after the data to be read has gone away.

The MULT/IO DAISY PORT inverts its input lines but does NOT
invert its output lines. Daisy Wheel printers use negative
logic, so that a low signal is taken as active. Thus to assert,
or make active, any output line when talking to a Daisy Wheel
printer, the software must put the line low. Input lines from a
Daisy Wheel printer, on the other hand, are inverted in hardware,
and so will appear to software to be active high.

22

PARALLEL PORT

4.2.1. GENERATING AN OUTPUT STROBE

To generate an output strobe off any of the parallel output ports
on the MULT/IO, it is necessary to use a software mask. This
means that the line to be strobed must be output three times in
succession, changing state each time, while the data lines
associated with the same port must be allowed to remain
unchanged. For example, to output a strobe going high-low-high
on bit 7 of port BASE without changing the other 7 bits being
output from that port, the following routine could be used:

lda seldat ;get old select data

ani @FCh ;select group @, w/o modifying other bit
sta seldat ;save new select data

mvi a,c ;joriginal data into register A

ori 86@h ;preserve data but bring bit 7 high
out Dbase ;output data with bit 7 high

ani ©@7fh ;preserve data but bring bit 7 low
out base ;output data with bit 7 low
ori 86h ;preserve data but bring bit 7 high
out Dbase ;output data with bit 7 high

ret

This routine would be appropriate for Centronics style printers
expecting a strobe in data bit 7.

Caution!

Remember that the Group Select Port, BASE+7, has other
functions besides selecting the current group. As
described in this section, bringing bit 5 low disables
the parallel output ports. Bank select, Interrupt
Enable and printer Restore are also controlled by this
port. Please read the appropriate sections of this
manual.

4.2.2. THE DAISY PORT AND INTERRUPTS

The Print Wheel Ready status line of the DAISY port (P4 connector
pin 27, BASE input port bit 5) is brought through an inverter to
Interrupt Request line 6 of the 8259-A PIC. The PIC can therefore
generate an interrupt whenever this line goes to an active (i.e.
logic low) state. To take full advantage of this interrupt
option when interfacing with a Daisy Wheel printer, and to
exploit the Diablo printer's ability to buffer motion commands,
printer driver software should be written so that the Print Wheel
Strobe (P4 pin 21, BASE output port bit 6) is not activated until
all carriage positioning commands have first been sent to the
printer. Print after space will execute significantly faster
than space after print. When the Print Wheel Ready line goes
active the printer should be able to accept another motion-then-
print sequence.

A sample Diablo printer driver for the MULT/IO can be found in
the Appendix of this manual.

23

REAL TIME CLOCK

5. REAL TIME CLOCK: THE 1990

The 1990 CMOS crystal-controlled calendar/clock chip at location
at 15D supports a real-time environment by providing two
functions:

1) a calendar clock accessible from software able to run on
battery backup when the system is shut down;

2) a timed interrupt generator capable of providing real-time
interval interrupts with three software programmable lengths.

The clock uses 6 bits of port BASE+2 for control and entering
time. The time can also be read through this port. Inputting
this port resets the timed pulse interrupt latch, which is
connected to the lowest priority interrupt on the 8259 PIC.

5.1. 1990 ARCHICTECTURE

The 1990 Calendar/Clock chip maintains the time in an internal
register. This register is loaded or read by sending a command
to the chip which transfers the time information between the
internal register and a shift register. The shift register is
used to set or read the time, a bit at a time.

The time is stored as in Binary Coded Decimal (BCD) format. That
is, each digit is represented as a 4 bit (one nibble) decimal
digit between @ and 9. The exception to this is the month
nibble, which is stored as a hex digit between @ and 11.

The clock automatically increments the minutes, every 69 seconds,
hours every 64 minutes and days every 24 hours. Saturday, day 6,
is followed by Sunday, day @. The hours are maintained in
24 hour notation (@ hour to 2300 hours), and months are
incremented after 31 days. Since every month is 31 days for the
clock chip, software must be used to correct for shorter months.

Setting the time is done by shifting in 40 bits of information,
using the Clk pin as a strobe, and then issuing a command to load
the shift register into the internal register, using the STB bit
as a strobe. Reading the time operates in reverse order. The
section on programming the 1990 gives more exact details. Also,
there is a software example in the back of this manual.

5.1.1. THE CLOCK PORT

Seven pins of the 1990 Calendar/Clock chip are connected to port
BASE+2. One output bit is for data, two are for strobes and
three are for control of the chip. Only one input bit is
available, for reading the time. Reading and writing the clock
is done by an internal shift register. The section on
programming the 1990 explains accessing the clock.

24

REAL TIME CLOCK

The charts that follow give a description of the correspondance
between 1990 pin and data bits in the Clock Port, the meanings of
the pins and the various control codes.

Table 5-1: 199¢ CALENDAR/CLOCK I/O MAP

I/0 Port | BASE+2 199G Pin #
BASE+2 Data Bit| & Mnemonic 1990 Function
INPUT] 9 Data out Output of shift register
OUTPUT 2 6 Data in Input to shift register
1 8 Clk Strobe for shift register
to 2 3 Co Command bit g
3 2 Cl Command bit 1
1999 4 1 C2 Command bit 2
5 4 Stb Strobe for command

'5.1.2. CLOCK COMMANDS

The 19980 clock has two sets of commands: the first, with C2 set
to a @, controls the shift register; the second, with C2 set to
1, sets the timed pulse or test mode. The table which follows
describes the possible commands:

Table 5-2: CLOCK COMMANDS

Function c2 Ccl Cco
Shift register hold 14} 1} 2 Control
Enable shift register]] 1 Shift
Load clock from shift reg.] 1 %] Register
Load shift reg. from clock] 1 1
TP = 64 Hz. 1 2 1%/ Set
TP = 256 Hz. 1 g 1 Timed
TP = 2048 Hz. 1 1 4] Pulse
Test Mode (32 Hz.) 1 1 1

Commands to the 1990 must be strobed in, that is, the Stb pin,
bit 5 of the clock port, must be changed from a zero to a one and
back to a zero while the command remains unchanged. The
transitionofthe Stb bit from high to low actually latches the
command into the clock chip.

5.1.3. PROGRAMMING THE CLOCK: INTIALIZATION

When power is first applied to the clock chip, it goes into test
mode. If a battery backup is used, it should remain in the last
command mode issued. Before any shift register commands can Dbe
issued, one of the three timed pulse intervals (TP) must be
selected. In fact, whenever Test Mode is entered, a TP interval
must be selected before the clock will accept any shift register
commands.

25

REAL TIME CLOCK

NOTE: The 1990 Calendar/Clock chip always generates
Timed Pulses. This 1is connected to IRQ 7, and will
generate an interrupt unless it is masked in the 82580
PIC, or interrupts are disabled.

To select a Timed Pulse interval, the three command bits are
output with the strobe bit low, then high, then low again. The
clock chip uses the low going edge of the strobe (Stb) to latch
the command. To set the clock for 64 Hz. Timed Pulse interval,
the following sequence should be followed:

Set the Stb, C# and Cl bits to @, and the C2 bit to a 1 and
output to BASE+2 of group 9;

Set the Stb bit to a 1, and output the command again, with
the other bits unchanged;

Set the Stb bit to a @ without changing the other bits and
output it.

Once this has been done, the clock will accept shift register
commands. Shift register commands are read by the clock in the
same manner, that is, each command is issued with the Stb bit
low, then high, and then low again.

5.1.4. PROGRAMMING THE 1990 CLOCK: SETTING THE TIME
The 1999 time is set by giving it a shift register command,
shifting in 40 bits of time and date, and issueing the load clock
from shift register command. Bits are shifted into the shift
register in a manner similar to strobing in the commands. Each
data bit is output to the clock port with the Clk bit first set
to @, then to 1, and back to @. Just as in the command sequence,
it uses the Clk bit, bit 1 of BASE+2 (group @), to latch each
data bit on the high going edge of Clk. When all 40 bits have
been strobed in, the load clock from shift register command is
strobed in using Stb.
The sequence for shifting bits is:

Strobe in shift register command;

Output first data bit with Clk set to 9;

Output first data bit with Clk set to 1;

Output next data bit with Clk set to @;

Output same data bit with Clk set to 1;

Repeat the two previous steps until all 40 bits are shifted;

Output the last data bit with Clk set to 4;

Strobe in the load-clock-from-shift-register command.

26

REAL TIME CLOCK

When setting or reading the clock, it is suggested that
interrupts are disabled.

5.1.5. PROGRAMMING THE 1999: READING THE TIME

The time is read from the 1999 in much the same manner that it
was set: the load shift register from clock command is strobed
in: the shift register command is strobed in; the Clk bit is
brought low, high, low to strobe the shift register; and the data
bit is read on bit @ of the clock port. One point should be
noted: the first data bit is available before the shift register
has been shifted and can be read immediately. This sequence is
outlined below:

Strobe in load shift register from clock command;

Output Clk bit set to 9;

Strdbe in shift register command;

Input data bit in bit @ of port BASE+2 Group 9:

Output Clk bit set to 1;

Output Clk bit set to 0;

Repeat previous three steps until 4@ bits have been read.

The format of the data bits shifted out of or into the shift
register is described in the next section.

5.1.6. FORMAT OF THE 1999 TIME

The 1990 Clock/Calendar chip stores the time as 40 bits ina FIFO
shift register. FIFO means that the first bit shifted in is the
first bit shifted out. In the case of the 1990, the least
significant bit (LSB) of the seconds units is shifted in first,
and the most significant bit (MSB) of the month is shifted in
last. In reading the clock, the same order is maintained, the
first bit out being the LSB of the seconds units.

The format of the time is in BCD digits. For example, Thursday,
the 29 of October, 1:08::50 P.M. is represented by:

Figure 5-1: TIME FORMAT EXAMPLE
Time OCT THUR 29 l: g8:: 50 ‘ P.M.
Decimal 9 4 2 9 1 3 g 8 5 4]

BCD 1001 0100 0010 1991 0001 90911 0000 1000 0101 2009
MSB LSB

27

REAL TIME CLOCK

There are several things to note in the format. First, the
months November and December are entered as hex digits Ah and Bh.
The first day of the week is Sunday (coded as @), and the last is
Saturday (coded as 6). The clock keeps the hours in 24 hour
notation: 1 o'clock is 1300 hours and 11 o'clock is stored as 23.

The following figure goes into more precise detail the format of

the internal clock of the 1990:

Figure 5-2: 1999 INTERNAL CLOCK FORMAT

NAME MONTH DAY DATE/TENS DATE/UNITS
BIT # 49 . . 37 36 . . 33 32 . . 29 28 . . 25
Shift IN->
BCD 1901 0100 00190 1001
Example: October Thursday 2)
NAME HOUR/TENS HOUR/UNITS MINS/TENS MINS/UNITS
BIT # 24 . . 21 20 . . 17 16 . . 13 12 ... 9
BCD 9 001 0911 9 9 0 9 1000
Example: 1 3 s 2 8
NAME SECS/TENS SECS/UNITS
BIT # 8.. 5 4 .. 1
-=> Shift OUT

BCD 4101 9 090 0
Example: 5 2

Sunday = 9 January = 0 1:00 PM = 13

Monday = 1 February =1 2:90 PM = 14

Saturday = 6 December = 11 12:00 PM = 00

When setting the time, bit 1, the LSB of the seconds/units, would
be shifted in first, (a @ in this case), and bit 40, the MSB of
the month, a 1, would be shifted in last. When reading the time,
bit 1 would come out first (@), bit 40 last (1 in this example).
5.1.7. CALENDAR CLOCK IDIOSYNCRACIES

Once the 40 bit shift register of the 1990 has been set with the
desired date and time, and loaded into the internal register, it
automatically increments the time and date for later references.
Note, however, that the 1999 considers all months to have 31
days, so September, April, June and November -- and of course
February -- require a special update at the end of each month to
keep the calendar current. The end of the year also requires a
special update. After New Year's Eve, the clock wakes up quite
confused about what day it is, and should be reloaded.

28

REAL TIME CLOCK

5.1.8. TIMING CONSTRAINTS

The 1990 is not capable of reading or writing serial data fast
enough to keep up with the CPU unless the Clk and Stb bits are
prolonged for about 4@ micro-seconds. The software routines
descibed above accomplish this.

5.1.9. THE TIMED INTERRUPT GENERATOR

In addition to being a calendar/clock, the 1998 is capable of
generating interrupts at timed intervals. The interrupts
generated by the 1990 are routed to Interrupt Request number 7 of
the 8259-A PIC. In order for these interrupts to be received
properly, the PIC must be set to operate in the level, rather
than the edge, mode. The 1990 continously generates timed
pulses, so it is important to mask out these interrupts if they
are not desired. Three intervals are available:

1) Once every .488 milliseconds, or 2048 interrupts per second
2) Once every 3.9 milliseconds, or 256 interrupts per second
3) Once every 15.0 milliseconds, or 64 interrupts per second.

Please refer to the section on Clock Commands for setting the
Timed Pulse intervals.

5.1.16. CLEARING CLOCK INTERRUPTS

Any input instruction directed at I1/0 port BASE+2 of group 9
clears the interrupt request generated by the 1990. This action
does not involve the 1999 clock chip, but clears the flip-flop
throughwhich the 1990 TP output is latched and converted to a
constant level before reaching the 8259-A PIC. The data obtained
from this instruction should be ignored.

5.1.11. BATTERY BACKUP

Provision has been made for battery backup to the real time
clock. By providing 3 volts to the 1999, the clock will continue
running for approximately the shelf life of the battery. The
1999 is a CMOS device which draws very little current. It also
should be protected from voltages higher than 3.3 volts.

If a nickel-cadmium battery is used, it can be trickle recharged
by installing a resister (18 kohm suggested). The trace to the
left of the 1999 should be cut, and the resistor installed.

The header at P6 (located at D14) is used to supply backup power
to the 1999. The middle pin is for +3 volts, and the two side
pins are connected to ground.

Please refer to the 1998 specifications for more information on
battery backup details.

29

PROGRAMMABLE INTERRUPT CONTROLLER

6. INTERRUPT SYSTEMS

Microcomputer systems in general are required to communicate with
peripheral devices such as printers, CRT terminals and various
types of parallel devices. There are classically two ways of
approaching the way a CPU may service these devices - polled and
interrupt.

In a polled mode, every device in the system is periodically
querried about its service requirements. When a device requires
servicing (for example, a person has just typed a charactor on a
CRT terminal), the CPU stops polling all other devices until it
has finished servicing the user's request. Often times, a device
must be serviced within a critical time period, or data is lost.
Serialdata from a modem would be an example of this: if a
charactor is not read before the next charactor is received, it
is lost.

From a system viewpoint, the CPU should handle these requests as
quckly as possible. The total system throughput is a function of
the number of devices on the system, the length of time to poll
each device and service each device request. The operating
system is continually polling the devices searching for activity,
even in the midst of other tasks. This reduces the time
available for actual computation.

There is a direct analogy here to hardware design: this type of
operation is said to synchronous. This means that the CPU may
branch to a device service routine only after it has determined
through polling that it is necessary to do so. The timing is
then dependent on the program controlling the CPU, rather on the
timing of the device that requires servicing.

There is another problem with this approach. This lies in the
lack of priority setting. 1In a polled system, each device has
equal status, which is unfortunate because in a real environment
some devices require faster, more frequent servicing than others.
Polling high priority devices more frequently is one solution,
but this burdens I/O subroutines with complex algorithms.

An interrupt-driven system is much different in its
implementation. Although requiring more hardware and more
difficult to design software, the system has none of the problems
associatedwith polled systems. With correct hardware, the
devices are all prioritized according to their service
requirements and the CPU is free to handle other tasks until a
device requires service.

The I/0 devices in this system interrupt the CPU only when they
require something from the host processor. This type of system
is more analogous to an asynchronous hardware design - one where
events can occur at random intervals not related to the CPU's
operations. 1Its randomness corresponds nicely with the relative
randomness of device requirements tied into the system andallows
maximum response to these peripherals.

30

PROGRAMMABLE INTERRUPT CONTROLLER

6.1. INTERRUPT REQUIREMENTS

8080 and Z-80 microprocessors monitor one control line, PINT/,
and expect a particular sequence of events to follow a request on
PINT/. This involves informing the CPU what section of memory
contains the code for the interrupt service routine.

When the processor receives the PINT/ signal, it completes its
current instruction, then issues a signal called INTA/. INTA/ is
the interrupt acknowledge signal. When it is asserted, the CPU
expects to receive its next instruction from the interrupting
device. The CPU's Program Counter is not incremented during
INTA/. Asserting INTA/ will also usually disable memory so that
the address lines will be ignored by most memory boards.

At this point, a device may generate any instruction it wishes
and the host CPU will execute it. Two instructions most probably
will be asked of the CPU in such a case - a Restart or a Call.
These are logical choices because both of them predictably alter
the current flow of instructions by changing the Program Counter
to a particular address, and saving the old Program Counter by
pushing it on the stack. A Restart instruction is limited to
eight locations in memory, and may interfere with other software
that uses the Restart locations. This leaves us with the Call
instruction.

There are some differences between the Z-80 and the 8080 in their
response to PINT/. The 8080 will generate, through an
intermediate device, interrupt acknowledge for the next three
memory reads. The Z-80 only issues one. This difference is
resolved by integrated logic on the MULT/IO board, which issues
address disable for two cycles, which prevents the Z-80 from
driving the address lines. PHANTOM/ will be made true during
these two cycles by jumpering the pins at J6.

The Z-80 also has three interrupt modes, so that it must be set
in in Interrupt Mode @, and an EI, enable interrupt must be
executed.

6.2. PROGRAMMABLE INTERRUPT CONTROLLER (PIC)

The programmable interrupt controller, in conjunction with
standard integrated circuits, provides the hardware requirements
for Z-80 and 8080 interrupt systems. The 8259-A PIC can directly
monitor eight devices and prioritize them according to system
requirements. It issues Call instructions in response to INTA/
and also provides addresses for eight different interrupt
routines.

31

PROGRAMMABLE INTERRUPT CONTROLLER

Program controlled functions allow the system designer flexibili-
ty in designing the operating system. Priorities may either
remain fixed or rotate automatically, or rotate under program
control. The addresses for interrupt service routines may be
assigned to anyplace in memory. The 8259-A PIC may also be
"slaved" to a "master" PIC, allowing up to four MULT/IO's in
the same system.

6.2.1. PIC INTERRUPT VECTORS

The PIC is designed to generate a Call Instruction upon receiving
the INTA/ response from the host CPU. The CPU then expects a 16
bit address of the location of the interrupt vector. Hardware on
the MULT/IO counts the next two CPU fetches (for the address
vector) and enables the PIC to put this address on the data-in
bus. When programmed, the PIC has eight addresses associated
with the eight devices it monitors. These addresses hold the
jump instruction to the service routine for each device.

The PIC generates interrupt vectors at either eight-byte or four-
byte intervals in the 16 bit address space, limited by both the
PIC and the CPU to a 64K address space. For compactness, most
systems use the four-byte interval since a jump instruction is
only three bytes long. It would be very difficult to have an
interupt routine in eight bytes. The eight byte interval was
provided for compatibility with the Restart instruction
locations, which are spread eight bytes apart.

Five of the PIC's Interrupt Request lines (IRQ@-7) are hardwired
to devices onthe MULT/IO board. These are the three serial
devices, pin 5 of the parallel input port (DAISY print wheel
ready) and the timed pulse line of the real/time clock. The
other three IRQ's are jumpered to the first three vectored
interrupt lines of the S-10@ buss: VI@, VI1 and VI2. These may
be changed by cutting the jumpers and installing new ones to
other VI lines.

Table 6-1: MULT/IO CONNECTIONS TO THE PIC INTERRUPT REQUEST LINES

Priority | Interrupt Request Line MULT/IO Device/Connection
Highest IRQO S-100 vectored interrupt @
IRQ1 S-10@ vectored interrupt 1
IRQ2 S-100 vectored interrupt 2
IRQ3 ACE #1 (serial device)
IRQ4 ACE #2
IRQ5 ACE #3
IRQ6 DAISY print wheel ready
Lowest IRQ7 Timed pulse from clock

The priority assignments in this table are for the nested mode
of the PIC, and may be varied by programming to different
priority. The order remains the same.

32

PROGRAMMABLE INTERRUPT CONTROLLER

6.3. PRIORITY MODES OF THE PIC

Much of the flexibility of the 8259-A PIC is in its array of
priority modes. Through the initialization and operation control
words, the system designer can choose between fixed priorities
and software variable priorities.

Interrupt priorities are important because they allow servicing
of time-critical devices ahead of devices with less demanding
constraints. In some cases, it may be necessary to allow lower
priority devices to interrupt a service routine after itstime-
critical section has been completed. The various priority modes
described in this section provide the programmer with solutions
to a wide variety of priority requirements.

In general, a device with a priority less than or equal to a
device which has an interrupt in progress will not be allowed to
interrupt. When the higher priority device's service routine
signals its end of interrupt, the lower (or equal) priority
device will be able to interrupt. Thus, higher priority devices
can lock-out devices with lower priority.

The end of interrupt (EOI) is the command sent to the PIC to
signal that a device's service routine is finished with its time-
critical portion, and lower priority interrupts can be enabled.
The EOI command and its variants will be explained in greater
detail later.

The priority assignment modes of the 8259-A PIC will be described
in increasing order of complexity. The first mode, the polled
mode, does not use the interrupt capability of the PIC, which
must be disabled by changing jumpers on the MULT/I10 board. . All
other modes use the interrupt capabilities of the PIC. The
differences between them are in the manner in which the
priorities are maintained in the PIC. :

6.3.1. POLLED MODE

The PIC may be configured to resemble a polled I/0 system by
setting the polled mode bit. Interrupts must be disabled in this
mode. The PIC may generate an interrupt in this mode with a
change in state of any of its IRQ lines. To prevent interrupt
requests from the MULT/IO, the jumper between B of J5 and PINT/
should not be connected. (The section on configuring interrupt
jumpers gives a more detailed explanation of this.) The CPUmust
poll the PIC to see if any device is requesting service. If a
device is requesting service, the most significant bit is set to
1, and the highest priority device requesting service is encoded
in the lowest three bits.

In polled mode, the command that enables polling must be output
each time before the status information can be input.

33

PROGRAMMABLE INTERRUPT CONTROLLER

6.3.2. NESTED MODE

The nested mode of the PIC allows service requests from I/0
devices to be prioritized. When a device is in need of service,
the PIC issues an interrupt to the CPU only if there are no
higher priority devices requesting service via the PIC. If a
lower priority device requests service, it must wait until all
higher priority devices are serviced and the interrupt handling
routine has issued an end of interrupt command to the PIC.

If a device with a higher priority requires service, the lower
priority device's service routine is interrupted until the higher
priority device has been serviced. However, before the lower
priority device's service routine can be interrupted, an EI
(enable interrupt) command must be issued. This mode provides
maximum system response to devices which require immediate
service. All Morrow Designs software takes advantage of the PIC
nesting.

6.3.3. FULLY NESTED MODE

The fully nested mode is used when one PIC is used as a master to
several slave PIC's and priority is to be maintained in each PIC.
In other words, an interrupt request can be granted at the same
priority. This means that when a slave PIC that has interrupted
the master PIC has a higher priority interrupt pending, the
higher priority interrupt (within the slave) will be serviced
first.

In nested mode, the request from the slave is masked while the
previous request is in service. In fully nested mode, the
slave's higher priority request will be handled before the lower
priority request at the same IRQ line. In this case, all of the
slave's requests must be serviced before an end of interrupt is
sent to the master PIC.

6.3.4. ROTATING PRIORITY - MODE A

In the nested mode, devices are prioritized and the devicewith
the highest priority obtains service. The priorities are
assigned according to which request line (IRQZ-IRQ7) the device
is connected. The scheme works well for devices not inherently
equal. In some instances, all devices connected to the PIC
should have the same priority.

The PIC may be programmed to rotate the priority through all
devices. In this mode, each device gets rotated to the lowest
priority after it has been serviced. The next device in order
becomes the highest priority device. This prevents devices from
"hogging" service when it should be evenly distributed.

6.3.5. ROTATING PRIORITY - MODE B

This mode is very similar to Mode A, the difference being that
the rotation can programmed rather than fixed by hardware.

34

PROGRAMMABLE INTERRUPT CONTROLLER

Instead of the priority being rotated so that the last serviced
device is lowest, the device that has the lowest priority is
selected by software. The device that would have the second
lowest priority is now highest.

35

PROGRAMMABLE INTERRUPT CONTROLLER

6.3.6. SPECIAL MASK MODE

The special mask mode is a way of temporarily altering the
interrupt priority. By setting the special mask mode and
altering the interrupt mask, devices of any priority may be
serviced before the currently in-service interrupt has been
ended. The mask is used to inhibit interrupts of specific
levels, while enabling all others. This allows lower priority
devices to be serviced before a higher priority device has issued
an end of interrupt command. The interrupt service routine that
invokes the spec1al mask mode should also return the interrupt
mask to its previous state before ending.

6.4.
PIC STATUS REGISTERS

The PIC status registers may be read to determine the current
state of the PIC. These registers place IRQ@ - IRQ7 status on the
data-in bits, @ - 7 respectively. IRQO is the highest priority
and IRQ7 the lowest in nested mode. Accessing of these registers
is explained in the next chapter.

6.4.1. INTERRUPT MASK REGISTER (IMR)

The PIC has the capablllty of masking any of the eight interrupt
inputs - that is, not allowing that device to generate an
interrupt. The mask register contains eight bits, any of which,
when high, shut off the appropriate IRQ input to the PIC. If all
the bits are set high, no interrupts are generated. If all are
set low, all devices are recognized in their normal prioritized
sequence. This allows the software complete control over each
individual device's service requests.

This register can both be read and written to by system software.
It is also called Operation Control Word 1 (OCW1l).

6.4.2. IN-SERVICE REGISTER (ISR)

The in-service register allows the software to query the PIC
about which devices are currently in service. Anytime an
interrupt is generated by the PIC, the bit corresponding to the
request line granted the interrupt is set. Thus, any interrupt
routine currently in progress, and any routine that was
interrupted by a higher priority routine, will have a bit set .
high. These bits are reset by an end of interrupt command issued
by the associated interrupt service routine.

6.4.3. INTERRUPT REQUEST REGISTER (IRR)

This elght—blt register is read to determine which of the elght
devices is requesting service. The highest pending priority is
reset whenever an interrupt from the PIC has been acknowledged
by the CPU (INTA/ issued). Bits representing still pending
interrupt requests stay high (set to 1).

36

PROGRAMMABLE INTERRUPT CONTROLLER

6.5. OTHER PROGRAMMABLE FEATURES

The 8259-A has other software programmable features besides
arranging interrupt priorities. These are directly related to
hardware design and the number of PIC's in use. Some of the
hardware related features are mainly dictated by design, such as
Buffered Mode and Level Triggered Mode. The implementation of
multiple PIC's on several MULT/IO's is also affected by the
design of the MULT/IO. The next sections explain these modes.

6.5.1. TRIGGERED MODES

The PIC may be programmed to monitor the eight request lines in
either edge-triggeed or level-triggered mode (LTIM). In edge
triggered mode, the PIC generates an interrupt after a high to
low transition on the request lines (IRQZ - IRQ7). This is
suitable for devices that do not latch their interrupt requests.
However, this does cause a problem because UART's may only
generate one edge for one or more interrupts. The result is the
loss of some interrupt requests. For this reason, all Morrow
Designs software uses the level-triggered mode.

6.5.2. BUFFERED MODE

The buffered mode allows the PIC to generate a buffer enable
signal during interrupt acknowledge cycles. This signal is used
only in multiple MULT/IO systems. When the PIC is programmed to
be a slave, it places the two vector address bytes on the data-in
bus during the second and third cycles of the interrupt
acknowledge sequence. The buffered mode is used to enable the
data-in buffers on the slave MULT/IO during this sequence.

6.5.3. CALL ADDRESS INTERVAL (ADI)

The spacing between the call vectors for the interrupt service
routines can be programmed at either four or eight byte
intervals. Normally, four-byte intervals are used because jump
instructions require three bytes. The eight byte interval is
provided for compatibility with Restart instructions.

6.5.4. MICRO-PROCESSOR MODE

This mode allows the use of an 8086 microprocessor. The 8086
expects a two byte interrupt acknowledge sequence, as opposed to
the three byte sequence of the Z-80 and the 8080/8085. When this
modeis selected, only the five most significant bits of the
interrupt control vector are sent as the second byte of the
interrupt acknowlegement. This feature is not used by Morrow
Designs software. It is also not compatible with Z-80 Interrupt
Mode 2.

37

PROGRAMMABLE INTERRUPT CONTROLLER

6.6. CASCADING PIC'S

More than one MULT/IO may be used in the same system by cascading
the 8259-A PIC's. When this is done, one PIC is the master. It
controls the PINT/ line to the CPU and acknowledges the slave
interrupt requests through the cascade lines. The other PIC's
are configured as slaves. Their interrupt lines are connected to
the Vectored Interrupt lines (VI@ - VI7) and their requests are
mediated by the master PIC. The architecture of the MULT/IO
allows up to three slaves in interrupt mode.

The cascade lines are outputs on the master PIC and inputs to the
slaves. During an interrupt acknowledge sequence, the master
PIC places the Call instruction on the data-in bus and signals
the slave, by driving the cascade lines, to place the vector
address on the data-in bus during the second and third INTA/
cycle. '

When the master is initialized, a control word is issued that
tells it which IRQ lines are connected to slaves. When a request
is received on one of these lines, the master asserts the BCD
code of the request line on the cascade lines. Each slave must
be initialized with the code of the request line it is connected
to on the master. In the case of the MULT/IO, the only possible
code for slaves is @, 1 or 2, because these are the request lines
that may be used.

6.6.1. MASTER/SLAVE MODE

At the beginning of initialization, a bit is set (SNGL)that
establishes whether there are one or more PIC's in the system.
When there is only one, SNGL is set to a 1. When there are
more than one SNGL is set to @ and an additional two control
words must be issued for initialization. The first word is for
control of the cascade lines, which is described above. The
second word is used to establish whether this PIC is a master or
a slave.

6.7. AUTOMATIC END OF INTERRUPT MODE

The automatic end of interrupt mode (AEOI) allows the PIC to
clear the most recent in-service bit. Normally, the interrupt
service routine must send an end of interrupt control word to the
PICto clear the in-service bit and allow lower or same priority
interrupts. Setting the AEOI bit to a 1 automatically clears the
highest priority in-service bit at the end of an interrupt
acknowledge sequence (INTA/). This allows other interrupt
requests to be serviced immediately if the CPU has had its
interrupt enable flip-flop reset (EI instruction).

38

PROGRAMMABLE INTERRUPT CONTROLLER

7. PROGRAMMING THE 8259-A PIC

Before the 8259-A PIC can be used, it must initialized with at
least two control words. If the operating system is not using
interrupts, it is a good idea to set up the PIC or physically
disable its connection to PINT/.

Bit 3 of the Group Select Port is used to enable/disable
interrupts. Whenever a byte is output to port BASE+7 with bit 3
set to a 1, interrupts are enabled. If this bit is reset (2),
interrupt requests will never reach the bus.

All of the flexibility of the 8259-A is programmed by theoutput
of Initialization Control Words (ICW) and Operation Control Words
(OCW). The PIC has only two ports associated with it, but uses
seven control registers and four status registers. To access
this multitude of registers, the correct sequence of control
words must be adhered to. ‘

The Initialization Control Words are issued whenever the system
is reset or powered up. At least the first two ICW's must be
issued at this time. Any time after initialization Operation
Control Words may be issued. These are used for active control
of the prioritizing scheme within the PIC and for selecting which
status register is read.

7.1. INITIALIZING THE PIC

The PIC is initialized by outputting the first Initialization
Control Word, ICWl. ICWl is issued by outputting a byte to port
BASE+4 of Group @ with bit 4 set to 1. Anytime a byte is output
to this port with bit 4 set to 1, an initialization sequence
begins. Once the sequence begins, port BASE+5 of Group Select 0
becomes ICW2. ICW2 always follows ICWl. It contains the high
byte of the interrupt vector address and will always be used.

The next two ICW's, 3 and 4, will need to be intialized according
to the bits set in the first ICW. They are also at BASE+5 of
Group @. If there are more than one PIC in the system, SNGL will
be set to @ (false) and ICW3 will need to be output. If the bit
named ICW4 is set to 1, then ICW4 will need be to programmed.
This follows ICW2 in single PIC systems and ICW3 in multiple PIC
systems.

7.1.1. INITIALIZATION CONTROL WORDS 1 AND 2

ICWl always begins an initialization sequence. It controls the
sequencing of registers at BASE+5. It is also used to set
triggered modes and address interval, and to set the address
lines A7, A6 and A5 of the low byte of the vector address.

39

PROGRAMMABLE INTERRUPT CONTROLLER

'ICW2 always follows ICW1. It contains the high byte of the
vector address. Bit 7 of ICW2 corresponds to AlS5 of the vector
address and bit @ to AS. During an interrupt acknowledge
sequence, the PIC will enable two bytes onto the data-in bus.
The first byte is the low byte of the vector address. This byte
is made from the address bits A7-A5 of ICW1l and an offset. This
offsetis determined by which interrupt request has been granted
and the interval selected between address.

The offset is determined by multiplying the interrupt request
line number by the address interval (IRQn x ADI). For example,
if the ADI is four-bytes and the interrupt request being
acknowledged is IRQ4, the offset will be 16. If the ADI were
eight bytes and the IRQ was 7, the offset would be 56. When an
ADI of eight bytes is used, address bit 5 of ICW1l is determined
by the offset, because AP to A5 are used to represent addresses
in the range of @ to 63.

Interrupt vector addresses will always be on 32 or 64 byte
boundaries. This is because the offset explained above will set
low bits of the first vector address to all zeroes.

EXAMPLE: The memory between 2400H and 2420H has been set
aside for the jump table to interrupt service routines, with
the ADI set to four bytes. IRQPW is attached to a disk
controller interrupt line through VI@, IRQ1 and IRQ2 are not
used, and the other IRQ lines are connected to the MULT/IO
devices. The jump table would look like this:

Table 7-1: EXAMPLE OF JUMP TABLES FOR SERVICE ROUTINES

Address Instruction | IRQ line | Device
2409 JUMP DSKSER 7] Disk controller
2494 JUMP SURPZ1 1 No connection
24098 JUMP SURPZ2 2 No connection
240C JUMP SERDV1 3 ACE #1
2410 JUMP SERDV2 4 ACE #2
2414 JUMP SERDV3 5 ACE #3
2418 JUMP PRNTWH 6. Parallel printer
241C JUMP TIMOUT 7 Real/time clock

Each JUMP is to a service routine, except SURPZ1l and SURPZ2
which should never occur. Note that a JUMP instruction is
only three bytes long, so that a byte must be inserted
after each JUMP address. Also, remember that if an area
outside of the program area is selected for this jump table,
these instructions must be written before the PIC is
initialized.

ICW1 controls the sequence of initialization. ICW2 always
follows ICW1l. If bit 1 (SNGL) is set to a @, then ICW3 follows
ICW2. When bit @ (ICW4) is set to 1, then ICW4 will be the last
Initialization Control Word.

49

PROGRAMMABLE INTERRUPT CONTROLLER

ICW1 has three other functions. Bits 7, 6 and 5 are used to set
A7, A6 and A5 of the vector address. The interval between vector
address is set by ADI, bit 2. When ADI is set to 1 then address
interval is four-bytes; when it is @, the interval is eight-
bytes. (The four-byte interval is normal for Morrow Designs
software.) Bit 3 is LTIM. This is used to choose between edge
and level triggered modes. Level triggered mode (LTIM = 1) is
used on the MULT/IO.

ICW2 is output to BASE+5 of Group @ immediately after ICWl. ICW2
contains the high byte of the interrupt vector address. This
word must always be output, even if polling mode is to be used.
The following tables recaps the bit assignments of ICW1 and ICW2.

Table 7-2: INITIALIZATION CONTROL WORD 1
PORT BASE+4 (whenever bit 4 = 1)
Bit Name Function
7 A7
6 A6 These bits make up three msb of low byte
5 A5 of interrupt vector address.
4 ICwWl Set to 1 to signify beginning of initialization.
3 LTIM Set to 1 for level triggered mode (@ = edge).
2 ADI Four-byte interval if 1, eight-byte if @.
1 SNGL Set to 1 for single PIC, @ for multiple PIC's.
a2 ICW4 Set to 1 allows access to ICW4. If set to 4, PIC
is initialized as master, non-buffered mode, no
AEOI and in nested mode. :
Table 7-3: INITIALIZATION CONTROL WORD 2
PORT BASE+5 (Immediately after ICW1)
Address Bit 15 14 13 12 11 19 9 8
Bit of ICW2 7 6 5 4 3 2 1 0

7.1.2. INITIALIZATION CONTROL WORD 3 (ICW3)

This word is used for cascading several MULT/IO PIC's together.
Its purpose is to identify which interrupt request lines (IRQ)
have slaves attached when initializing a master. When
initializing a slave, this is used to program the slaves identity
number. The slave's identity is the binary representation of the
IRQ line it 1is attached to. Only IRQ®, IRQ1l or IRQ2 are
available on the MULT/IO, so the only slave identities are 0, 1,
or 2.

ICW3 is output to BASE+5 after ICW2 if SNGL of ICW1l was set to g.
The table that follows outlines the bit assignments.

41

PROGRAMMABLE INTERRUPT CONTROLLER

Table 7-4: INITIALIZATION CONTROL WORD 3
BIT # 7 6 5 4 3 2 1 g
MASTER X X X X X IRQ2 IRQl IRQH

SLAVE X X X X X X nl n@

IRQ2, IRQ1l or IRQ¥ are set to a 1l if there is a slave attached,
or a zero if there is no slave attached.

X means this bit is not used on MULT/IO. nl and n@ are the
binary equivalent of @, 1 or 2, depending on which IRQ the slave
is attached to.

7.1.3. INITIALIZATION CONTROL WORD 4 (ICW4)

This word is output to BASE+5 of Group 9 whenever ICW4 of ICW1
was set toal. It follows ICW3 when SNGL = @, or ICW2 when SNGL
is true. If this word is not output, all its bits are cleared
(set to @'s). This word should always be initialized.

Only bits @ - 4 are used in ICW4. Bit @ is micro-processor mode.
If the MULT/IO is used with an 8086 processor, this bit is set to
l. Bit 1 is used to set the automatic end of interrupt mode.
When this bit is a 1, the in-service bit of the ISR is cleared at
the end of the interrupt acknowledge sequence.

Bits 2 and 3 work together. If bit 3 is a 1, the PIC is a Master
when bit 2 is set to 1. When bit 3 is 1 and bit 2 is set to a @
the PIC is a Slave. If bit 3 is set to a @, pin 16 becomes an
input. This is not supported in the MULT/IO.

Bit 4 of ICW4 is used to select the fully nested mode. When this
bt is set to a 1, interrupts of the same priority as a request
already in-service are allowed. This fully nested mode is used
when a PIC is Master to eight Slaves. This mode is not used in
Morow Designs software. The table that follows recaps the bit
assinments of ICW4:

Table 7-5: INITIALIZATION CONTROL WORD 4 (ICwW4)

Bit Function

7 Not used

6 Not used

5 Not used

4 Set to 1 to select fully nested mode

3 Set to 1 to select Master/Slave

2 Set to 1 for Master, set to O for Slave

1 Set to 1 to select AEOI

7] Set to @ for 80/85, Z-80 mode, 1 for 8086 mode

42

PROGRAMMABLE INTERRUPT CONTROLLER

7.2. OPERATION CONTROL REGISTERS

Once the PIC is initialized, it is ready to function as the
system interrupt controller. Further changes in the PIC
operating parameters are accomplished by programming a set of
registers referred to as Operation Control Registers. These
registers are used to affect the priority of interrupt requests
and to issue end of interrupt (EOI) commands to the PIC.

7.2.1. OPERATION CONTROL WORD 1 (OCW1l)

This is the mask register of the PIC. Setting bits to 1 in this
register "mask out" corresponding interrupt requests. This
register may be input or output at any time after initialization
at BASE+5 of Group 4.

Setting any of the bits high forces the PIC to ignore the
interrupt request line associated with that bit. The bits are
arranged with bit 7 corresponding to IRQ7 and bit @ to IRQH. The
PIC clears this register to all @'s (all interrupt requests
enabled) on power up. It is a good practice to set this register
after initialization.

7.2.2. OPERATION CONTROL WORD 2 (OCW2)

Thisregister is selected at BASE+4 of Group @ whenever a word is
output to this port with bits 3 and 4 set to @. This word is
used to signal end of interrupt (EOI). It is also used for
sending specific end of interrupt and for using the rotating
priority modes.

Every interrupt service routines sends an end of interrupt to the
PIC. This command clears the appropriate bit in the in-service
register (ISR) allowing same or lower priority interrupts to
occur. The non-specific EOI clears the in-service bit with
highest priority. This is used for clearing the PIC of
interrupts while in nested mode.

When using other modes, such as rotating or special masked mode,
the specific end of interrupt must be used. Both of these modes
allow the dynamic alteration of priority levels. When the
service routine clears its in-service bit, it sends the BCD code
of its IRQ in the lowest three bits along with the specific EOI.
This is no more complicated than using the non-specific EOI,
since each routine services a particular IRQ.

Rotating priority modes A and B are set using OCW2. These are
both previously described in the section on operating modes of
the PIC. The table that follows describes the bit assignments of
OCW2:

43

PROGRAMMABLE INTERRUPT CONTROLLER

Table 7-6: OPERATION CONTROL WORD 2

Bit Name Function

7] LO

1 L1l These three bits are used for specific

2 L2 EOI or in rotate mode B

3 OCW2=0 Both of these bits must be zero

4 OCW2=0 to access OCW2

5 .

(3]]These three bits are decoded to determine
7 which command is being transmitted

Table 7-7: OCW2 COMMANDS (BITS 5 - 7)
Function Bit-5 Bit-6 Bit-7

Clear rotate - Mode A

End of Interrupt (EOI)

Specific EOI (use L@, L1, L2)

Set rotate - Mode A

EOI causes rotate - Mode A

Set rotate - Mode B

EOI causes rotate - Mode B
(use LO, L1, L2)

FarFQ S
FReaFa®
FRRFRa®

EXAMPLE: In nested mode, a service routine that has
completed its critical section and wants to enable interrupts
would output a 20H to port BASE+4 of Group 0.

In special mask mode, a routine servicing IRQ 5 and is ready
to enable lower priority interrupts would send 65H to port
BASE+4 of Group @ for a specific EOI of IRQS.

7.2.3. OPERATION CONTROL WORD 3 (OCW3)

Operation Control Word 3 is used to further extend the flexiblity
of controlling the PIC. It is used to access the polling
register, the ISR and IRR registers, and to use the special mask
mode. OCW3 is selected by outptting to port BASE+4 with bit 4
set to # and bit 3 set to 1. :

NOTE: Three different control words use BASE+4: ICW1,
OCW2 and OCW3. Whenever bit 4 of BASE+4 is set to a 1,
an initialization sequence begins. Whenever bit 4 is
set to @, OCW2 is selected when bit 3 is a @, and OCW3
is accessed when bit 3 is set to a 1.

After initialization thelInterrupt Request Register (IRR) is
accessed by reading port BASE+4 of Group #. The In-Service
Register (ISR) can also be accessed at this port by using OCW3.
Bits @ and 1 are used to select which register is accessed at
BASE+5. Whenever the selection is made, it remains the same
until a different register is selected through OCW3.

44

PROGRAMMABLE INTERRUPT CONTROLLER

When bit 1 (SRIS) is set, the register accessed will be IRR if
bit @ is a @ and ISR when bit @ is set to a 1.

OCW3 is also used to select the polled mode. Whenever a CH, that
is bit 2 and 3 set to a 1, is output to BASE+4, the NEXT input
from BASE+5 of Group @ will be the BCD code (binary
representation) of the highest priority interrupt pending. Every
time the PIC is polled, an OCW3 with bits 2 and 3 set must be
output just previous.

Special mask mode is also selected using OCW3. When both bits 5
and 6 are set high, special mask mode is selected. This allows
use of the mask register to mask out selected requests AND
enables lower and same priority requests. To deselect this mode,
output OCW3 with both these bits reset (set to a).

The following table recaps the bit assignments of OCW3:

Table 7-8: OPERATION CONTROL WORD 3 (OCW3)
Bit Function
7 Not used
6 ESSM - Enable Special Mask Mode when 1
5 SMM - Also must be set to 1 for SMM
4 Always @ for accessing OCW3
3 Always 1 for accessing OCW3
2 Enter Poll mode on NEXT input of BASE+5 when 1
1 SRIS - Enable selection of IRR or IRS when 1
a RIS - Selects IRR at BASE+5 when @, ISR when 1

7.3. SERVICE ROUTINE REQUIREMENTS

The following steps are necessary for any interrupt service
routine working with the 8259-A PIC. In order to start up the
interupt system, the operating system initializes the PIC and
sends it operation control words if necessary, enables interrupts
in the CPU (EI instruction), and gives an EOI command. Bit 3 of
the Group Select Port is set to a 1 to enable interrupts. Then:

When the interrupt occurs, the ISR (interrupt service
routine) saves the registers to be restored when control is
returned to the interrupted routine; since an ISR may occur
at anytime, no registers can be changed; the Group select
port must also be returned to its previous state before
exiting this routine;

Service the device which generated the interrupt;

Send an EOI command to the PIC; this allows the lower or same
priority devices to be granted interrupt requests;

Restore all registers and the group select port to their
state upon entry:;

45

PROGRAMMABLE INTERRUPT CONTROLLER

Enable interrupts (EI) in the CPU; this is necessary because
the CPU automatically disables interrupts whenever an
interrupt has been acknowledged;

Return to the interrupted program by issueing an RET command.

The EOI and EI commands may be issued before the ISR is completed
if other lower or same priority interrupts are to be
acknowledged.

Normally, registers are saved by pushing them on the stack. All
the registers used in an ISR must be preserved in this manner.
Before exiting the ISR, the registers are popped off the stack
in reverse order.

Since it 1is necessary to change the Group Select port while

servicing a device, this must also be restored before exiting
the ISR.

46

CONFIGURING THE MULT/IO FOR THE PIC

8. CONFIGURING THE MULT/IO FOR THE PIC

Before the PIC can be used to generate interrupts, at least two
jumpers must be installed on the MULT/IO board. When the MUL/IO
contains the only interrupt generating devices in the system,
only two jumpers must be made. At J4, located to the left of the
LSP4 at 12C, the slide-on jumper is used to connect pins B and C.
At J5, located below 3D, pad B is connected to PINT/ with a wire
to enable interrupts onto the S$-10@ bus. :

5

J
c
e
V—I¢1£34NINT
* * % *x * %

Figure 8-1: JUMPER AREAS J4 AND J5

w

A
*

¢ FIH > d

Pads C, D and E are already connected to VI &, 1 and 2.

If the PIC is used to monitor other vectored interrupt lines than
Vi@, VIl and VI2, then the trace between these pads and pads C, D
and E of J5 must be cut and a new wire installed.

There are three other modes that affect the configuration of the
MULT/IO: polled mode, PIC as Master and PIC as Slave.

8.1. PIC IN POLLED MODE

If the PIC is to be used in polled mode, it will continue to
generate interrupt requests at its interrupt pin. By leaving B
of J5 unconnected, these requests will never reach the S-1900 bus,
or the CPU. The slide-on connector at J4 should be used to
connect together pins A and B. Connecting together these pins
prevents the PIC from gating an address vector onto the bus
during an interrupt acknowledge cycle (INTA/).

Making these changes physically disables the PIC's interrupt
capabilities.

8.2. PIC AS MASTER

When the PIC is configured as Master, the physical connections
are the same as when it is configured as a single board. If
slaves are connected to vectored interrupt lines other than VIg,
VIl or VI2, then the jumper between pads C, D and E of J5 and the
vectored interrupt lines must be changed to correspond to the
vectored interrupt lines used. The cascade lines must also be
connected.

8.3. PIC AS SLAVE
The PIC configured as Slave has much the same connections as the

Master. The only differance is that instead of connecting pad B
of J5 to PINT/, pad B is connected to the vectored interrupt line

47

CONFIGURING THE MULT/IO FOR THE PIC

that the Master PIC is monitoring for that slave. Slaves are not
allowedto generate PINT/. The Master receives the request from
the Slave and issues PINT/ according to the priority of the
Slave's request. The cascade lines must also be connected.

8.3.1. - CASCADE CABLE

The cascade cable is used by the Master to communicate with its
Slaves. During an interrupt acknowledge sequence (INTA/), the
master enables a CALL instruction on the data-in bus. Then it
uses the cascade lines to command the Slave to put the vector
address of the service routine on the bus during the next two
cycles. The Master knows a Slave should do this because a bit
corresponding to the IRQ line the Slave is attached to was set in
ICW3. And the Slave recognizes the code on the cascade lines
because it was programmed with the BCD code of the IRQ line it is
connected to with ICW3.

The cascade cable is connected to P5, located between the 8259-A
PIC and P4, the parallel connector. It consists of four pins.
One pin is connected to pad A in the J5 area. It may be used to
route an interrupt request from a Slave to a IRQ line (pads C, D
or E) if the other VI lines are all used. The other three pins
are the cascades lines. The figure below illustrates P5, the
cascade cable connection:

Figure 8-2: CASCADE CABLE CONNECTIONS (P5)

pad A To PIC To PIC To PIC
of J5 Cas2 Casl Cas9d
([] 1] [4 [

\ ‘ %

The BCD code that activates the Slave is asserted on the Cascade
Lines by the Master during the second and third interrupt
acknowledge cycles. The cascade cable can be made using three
wires connected in the same order on each MULT/IO board. The
leftmost pin is not essential. Even though the Master PIC will
never bring Cas2 high (it only monitors IRQ®, IRQ1l and IRQ2 for
exernal requests), it should be connected and not allowed to
float.

The illustration on the following page shows the PIC on a MULT/IO
as Master connected to three Slaves on other MULT/IO boards.

48

CONFIGURING THE MULT/IO FOR THE PIC

Figure 8-3: FOUR MULT/IO BOARDS IN MASTER/SLAVE CONFIGURATION

Cascade Cable

Mosfer XXl B

S-100 Bus

—\ —
TO CPU
Slave O G999
B
—\ —
Slave 1 reeep
R
Vie Ve 4
— ’__J

Slave2 Jdid.

49

Software Samples

The following program tests the PIC's ability to co-ordinate
interrupts generated from the bus vectored interrupt lines 0-2,
from ACE serial device # 1 (controlling connector J1), and from
the MULT/IO's clock/calender. The program assumes a working CP/M
system with a terminal already interfaced and working. It also
assumes a MULT/IO board addressed to begin at I1/0 port 48H in a
system with no other enabled interrupt controller. The PIC is
jumpered as the Master Controller (see section on configuring the
PIC). :

This program should cause the CP/M terminal device to print
continuous asterisks (ASCII 2Ah), punctuated every second by an
exclamation point caused by the clock's TP interrupt 1line.
Grounding one of the first three vectored interrupt lines (VO-V2)
will cause a message identifying that line. A terminal attached
to connector J1 should meanwhile echo any character typed on it.
The terminal attached to Jl should be set for 9600 baud with an
8 bit word length and two stop bits.

This program should be exited via a system reset. Notice
that the routines START and SLOOP dynamically allocate the 32
byte vectored interrupt table (TABLE) to begin at an even 32 byte
boundary. The PIC will only issue ISR CALL's to a table
beginning at an even 32 byte boundary, and this is one of many
ways to deal with this characteristic of the PIC.

000D
oooa

0048
004F
0o04cC
004D

0010
0008
0004
0002
0040
0020

0080
0001
0002
0004
ooocC
0002
0001
0001
0006

004A
004B

0014
0020

0049
004A
004B
0048
0049
0048
0048

0100

0100
0101
0104
0107
103 H0).
010B
010D
010E
Ol10F
0110
0111
0112
0115
Ol1le

n

W

(L I 1 1

i

318303
118401
218001
ES
OE20
1A

77

23

13

oD
C20D01
El

AF

ACR
ALF
BASE
GRPSEL
PICO
PIC1
D4
LTIM
ADDI
SNGL
IMASK
EOI

DLAB
WLSO
WLS1
STB
BRATE
ETBEI
ERBF1I
INTPEND
INTTYP
CLK
CLRCLK
TP256
CSTB
IER
IIR
LCR
DLL
DLM
RBR
THR

’

START:

SLOOP:

EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

ORG

DI
LXI
LXI
LXI
PUSH
MVI
LDAX
MOV
INX
INX
DCR
JNZ
PoOP
XRA

ODH
OAH

48H

BASE+7
BASE+4
BASE+5

10H
8
4
2
40H
20H

80H

AN BN
N

BASE+2
BASE+3

14H
20H

BASE+1
BASE+2
BASE+3
BASE
BASE+1
BASE
BASE

100H

SP, STACK

;carriage return
s;line feed

:mult/io i/o base
:igroup select port
:pic port a=0
:pic port a=1

:bit to signify pic init command
;level trigger interrupt mode
scall address interval is 4
;only one pic in system
;jinterrupt mask-- no p.w rdy
;end of interrupt command to pic

;divisor latch access bit

;word length select bit 0

sword lenngth select bit 1

:stop bit code for 2 stop bits

;baud rate constant for 9600

;renable tbe interrupt

;enable dav interrupt

;interrupt pending status, 0 if pending
;int. id bits 1 and 2-- 0 means bad int

sport to clear clock interrupt

;256 Hz tp pulse
;clock command strobe

rinterrupt enable register
;interrupt id register

:line control register

;least significant baud rate byte
smost significant baud rate byte
;read buffer register

srtransmit buffer register

;disable interrupts

D, TABLE ;de points to old table

H, TABLE

H
C, 32

M,A

AND OFFEQH ;table add. even 32 bytes

;new table address onto stack

:32 byte count into reg c

;beginning of old table into reg a
;move byte of old table to new table
supdate pointer into new table
;update pointer into old table
;update 32 byte counter

;continue until all 32 bytes moved
thl points to beginning of new table
;zero reqg a

G117
0119
01l1a
0l1cC
Ol11E
“1F

0121
0123

0125
0126
0128
0l12A
0l2C
O012E
Ol12F
0131
0132

0134
0136
0138
013A
013C
013E
0140
0141
0143
0145
0147

.49
uvl4B

014D
014E
0150
0152
0154

0155
0156
0158
015A
015D
O15E

0lé61l
0161l
0le6l
Olel

0l64
01e6C

D34F
7D
F6lE
D34cC
7C
D34D

3EFF
D34D

AF
D34F
3El14
D34A
OE20
A9
D34A
A9
D34A

3EOQO1
D34F
3E87
D34B
3EOC
D348
AF

D349
3EO07
D34B
3EO01
D349
DB48

~e

CINIT:

~

~e

MAIN:

UART1
UART?2
DAISY

WRONGO:

0000000000SPACE:
0000000000

ouT
MoV
ORI
out
MOV
ouT

MVI
ouT

XRA
ouT
MV1
ouT
MVI
XRA
ouT
XRA
ouT

MVI
ouT
MVI
outT
MVI
ouT
XRA
ouT
MVI
ouT
MVI
outT
IN

XRA
OouT
MVI
ouT
EI

DI
MVI1
MVI
CALL
EI
JMP

EQU
EQU
EQU

JMP

DwW

GRPSEL ;select group O

AL ;low address of table in reg a
D4+LTIM+ADDI+SNGL ;icwl set up
PICO ;icwl out to pic

A,H shigh address of table into hl
PIC1 ;icw2 out to pic

A, OFFH ;mask out all interrupts

PIC1 :send ocwl to pic-- mask out all
A ;Zero reg a

GRPSEL ;select group zero
A, TP256 ;256 hz tp signal

CLK :set clock for tp mode

C,CSTB ;clock strobe bit set in reg c

C ;put strobe bit high in reg c

CLK ;strobe in tp command with strobe high
Cc :strobe bbit low again

CLK ;complete setting of tp to 256 hz

Al sgroup 1 code

GRPSEL :select uartO

A, DLAB+WLSO+WLS1+STB ;baud rate set up

ICR ;set up line control reg for baud rate
A, BRATE AND OFFH ;low baud into reg a
DLL sbaud rate into low baud rate divisor
A ;zero into a

DLM :high baud rate divisor

A, WLSO+WLS1+STB ;init. line cntrl. reqg for data
ICR ;line control register initialized

A, ERBFI ;dav interrupt enabled

IER ;output interrupt enable mask

RBR ;clear dav bit

A

GRPSEL ;select group 0 for pic command
A, IMASK ;interrupt mask for pic
PIC1 ;output mask to pic

:watch out- interrupts enabled

;disable interrupts

c,2 ;print code for bdos

E'l*l

5

MAIN ;simple loop

$

$

$

0 ;pic picked got interrupt-- warm boot
0,0,0,0 ;8 bytes .

0,0,0,0 ;8 more bytes for a grand total of 16

0174 0000000000 DW 0,0,0,0 ;8 more bytes for a grand total of 24
017C 0000000000 DW 0,0,0,0 ;8 more bytes for a grand total of 32
0184 C3A401 TABLE: JMP INTO ;irq0 vector

0187 00 DB 4] ;1 byte £ill

0188 C3B101 JMP INT1 ;irql vector

018B 00 DB (o) :1 byte fill

018C C3BEO1l JMP INT2 :irg2 vector

018F 00 DB 0 :1 byte fill

0190 C3ES801 JMP UARTO ;irq3 vector

0193 00 DB 0 :1 byte fill

0194 C36101 JMP UART1 ;irq4 vector

0197 00 DB 0 :1 byte fill

0198 C36101 JMP UART2 ;irq5 vector

019B 00 DB 0 :1 byte fill

019C C36101 JMP DAISY :irg6 vector

019F 00 DB 0 :1 byte fill

01A0 C3CBO1 JMP CLOCK :irq7 vector

01lA3 00 DB o - :1 byte fill

01A4 ES5 INTO: PUSH H

01AS5 DS PUSH D

01A6 C5 PUSH B

01A7 F5 PUSH PSW

01A8 113702 LXI D, VOMSG

Ol1AB CD1CO2 CALL PMSG

OlAE C30F02 JMP INTRET ;return through uart0 mechanism
01B1l ES5 INT1: PUSH H

01iB2 D5 PUSH D

01B3 C5 PUSH B

01B4 F5 PUSH PSW

01B5 115002 LXI D, V1IMSG

01B8 CD1lCO2 CALL PMSG

01BB C30F02 JMP INTRET ;return through uart0 mechanism
O1BE E5 INT2: PUSH H

O1BF D5 PUSH D

01CO0 C5 PUSH B

01C1 FS5 PUSH PSW

01C2 116902 LXI D, V2MSG

01C5 CD1lCO02 CALL PMSG

01C8 C30F02 JMP INTRET ;return through uart0O mechanism
01CB E5 CLOCK: PUSH H

01CC D5 PUSH D

01CD C5 PUSH B

O1CE F5 PUSH PSW

01CF AF XRA A

01DO0 D34F ourt GRPSEL ;select groupO

01D2 3A8202 LDA TIMER

01D5 3C INR A

01D6 328202 STA TIMER

01D9 CCE101 CZ SECONDS _

01DC DB4B IN CLRCLK ;remove tp interrupt

01DE C30F02 JMP INTRET ;:return through uart0 mechanism

OlEl
O1lE3
O1lE5

"E8
..E9
OlEA
OlEB
Ol1EC
Ol1EE
O1FO
O1lF2
O1F3
Ol1F5
Ol1F8
01F9
O1FB
O1FD
0200

0201
0202
0205

0208
020A
020C

.OF
u210
0212
0214
0216
0217
0218
0219
021A
021B

021cC
O21E

0221
0223
0234

0237
0239
024D

0250
0252
0266

OEO2
1E21
C30500

E5

D5

C5

F5
3EO0L
D34F
DB4A
F5
E601
C20102
Fl
E606
FEO4
CA0802
F5

Fl
112102
CDh1CO02

DB48
D348
C30F02

AF
D34F
3E20
D34C
Fl
Cl
D1
El
FB
co

OE09
C30500

ODOA

496C6C6567

ODOA24

ODOA

766563746F

ODOA24

ODOA

766563746F
ODOA24 .

SECONDS:
MVI
JMP

UARTO: PUSH
PUSH
PUSH
PUSH
MVI
ouT
IN
PUSH
ANI
JNZ
POP
ANI
CPI
JZ
PUSH

BADINT: POP
LXI
CALL

NEWCH: 1IN
ouT
JMP

~ S0~

INTRET: XRA
ouT
MVI
ouT
POP
POP
POP
POP
EI
RET

PMSG: MVI
JMP

BAD: DB
DB
DB
VOMSG: DB
DB
DB
ViMSG: DB
DB
DB

PSW
Al
GRPSEL
IIR
PSW
INTPEND
BADINT
PSwW
INTTYP
4
NEWCH
PSW. .

PSW
D, BAD
PMSG

RBR
THR
INTRET

C,2

; jump to bdos

;set up uart0O group

;select uartO

;read interrupt id reg

;save flags

;check for valid interrupt

;this clears dav flag

srestore flags

;sonly interested in bits 1 and 2

;:if not dav then bad interrupt

s;read character from selected uart
s;echo character from selected uart
;exit through interrupt return routine

routine below is a good general purpose exit routine

A :select groupO
. GRPSEL
A, EOI ;signal end of interrupt to pic
PICO
PSW
B
D
H
;enable interrupts
:back to main program or next interrupt
c,9 ;print string pointed to by de
5 ;and ending with §
ACR, ALF
'Illegal interrupt'
ACR,ALF,'$"’
ACR,ALF
'vectored interrupt O'
ACR,ALF,'S$"'
ACR, ALF

'vectored interrupt 1'

ACR, ALF,

I$l

0269
026B
027F
0282

0283
0383

A>

ODOA
766563746F
ODOA24

00

il

V2MSG:

TIMER:

’

STACK

DB
DB
DB

DB

Ds
EQU

ACR,ALF
'vectored interrupt 2°
ACR,ALF, 'S$"'

0 ;initial timer value

100H ;room for stack
$;top of stack goes here

Software Samples

The following program both sets and reads the clock/calender
of the MULT/I0O board. The program runs under CP/M and assumes
the MULT/IO board to be adressed at I/O port 48h.

To set the time using this program, type:
WATCH www MMM dd hh mm ss (pm/am)

where 'www' are the first three letters of the day of the week,
'MMM' are the first three letters of the month, 'dd' are the
decimal day of the month, 'hh' are the decimal hour of the day,
'mm' are the decimal minutes of the hour, and 'ss' are the
decimal seconds of the minute. Twelve hour format may be used if
either 'PM' or 'AM' is typed at the end of this string, otherwise
data will be assumed to be in 24 hour format. Spaces should
separate the data fields. Day of week and month of year may
exceed three characters, but only the first three will be
~ analyzed. Leading zero's may be omitted as long as one character
appears in the field in question.

For example, typing:
WATCH MON NOV 17 7 30 0 AM
would set the clock/calgnder to Monday, November 17, 7:30:00 a.m.
To read the clock, simply type:

WATCH

* . *
: Time display/set program for Thinker Toys Mult/IO board. *
*
* Bobby Dale Gifford. *
* 9/25/80 *
* *

rev equ 10 ;Revision # x.x
base equ 48h ;Base of Mult 1I/0 ports
grpsel equ " base+7 ;Group select
clk equ base+2 3Clock port
clkeclk equ 2 :Clock clk bit
clkcl equ 8 :Clock cl bit
rclk equ Och ;Read clock command
cstb equ 20h . ;Clock strobe bit
shft equ 4 :Shift bits command
tp64 equ 10h ;Output tick pulse at 64 hz
reghld equ 0 ;Register hold command
wclk equ 8 ;Write clock command
bdos equ 5 :Bdos entry point
cbuff equ 81h ;Command buffer string
~clen equ 80h ;Command length byte
wboot equ 0 :Warm boot location
const equ 11 ;Get constat function #
pstr equ 9 ;Print string function #
readcon equ 10 ;Read console buffer
acr equ 0dh ;Carriage return
alf equ Oah ;Line feed
org 100h ;Transient program area
start 1hld bdos+1 ;Set up stack
sphl
call skipb ;Skip command line blanks
jz display :No command line
sett 1xi h,days tArray of string pointers to match
call match3 ;:Look for match
jz exit :No match
1xi d, ~days ;Form index
dad d
mov a,l :Get low byte
stc ;Clear the carry
cme
rar ;Divide index by 2
sta mthday :Day of week finished
1xi h,months ;Array of string pointers to match
call match3 ;Look for match
jz exit ;No match
1xi d, -months ;Form index

dad
mov
stc
cme
ral
ral
ral
mov
1da
ora
sta
call
jc
sta
call
jc
sta
call
je
sta
call
jc
sta
call
jz
call
cpi
push
cz
pop
cpi
cz
call
call
jnz

noap mvi
call
mvi
call
1xi
call
1xi
mvi
call
call
1xi
call
call
jmp

b,a
mthday
b
mthday
bcd2
exit
date
bcd?2
exit
hour
bcd?2
exit
minutes
bcd?2
exit
seconds
skipb
noap
scan
lpl
pPSw
uphrs
pPsw

lAl
dwnhrs
skipc
skipb
exit

a,reghld
setup
a,tp64
setup
d,waitmsg
pmsg
d,ibuff
c,readcon
bdos
writec
d,acralf
pmsg
displl
wboot

:Get low b
:Clear the

:Save in B

yte

carry

;Or in with day

:Scan for

:New date
:Scan for

sNew hour
:Scan for

:New minut
;Scan for

:New secon
;Skip trai

;Check for

two valid bcd digits
two more valid bed digits

two more valid bed digits

es
last valid bcd digits

ds
ling blanks

AM or PM

;If anything remaining, then error

;Issue reg

ister hold command

;Set up clock pulse

;Wait for carriage return

sRead console

:Write the

time

;Display the current time

:All done

khkhkdkhkhkhkhkhhhhkhkhhhhkhhkhkhhhkhhhhkhkhkhkhkhkhkhkhkhkhhkhkhhkkhkhhkhkhkhhkkkhkhkhkhkkkkkkkdk

*

*

* Writec does the actual clock time writing. This routine must *
* not be interrupted.

*

* ' *
Y I I T ITmMmM TI TTIIIIIIImMT T ™ Y ™™

o~

writec xra a ;Select group O

out grpsel

mvi a,shft ;Shift command

call setup

push h ;Save clock data address
wbyte mvi e,8 ;Bit shift counter

inx h :Bump to next byte of data
wbit mov a,m ;Get current byte of data

rar :LSB into carry

mov m,a ;Save current byte

ral ;Carry into LSB

ani 1 ; Through away useless bits

xthl ;Recover address of clock data

ora m :Get current state

xthl ;Recover current byte counter

call clkstb ;Strobe in one bit

der e ;Update bit counter

jnz wbit ;Same byte ?

dcr da ;Update bye counter

jnz wbyte :All done ?

pPop h ‘ : :Recover address of clock data

mov a,m :Get current state

ori wclk ;Set write clock bit

call clkemd ;Issue write time command

xri wclk ;Turn off write time command

jmp clkcmd
222X 22222 X222ZX 2222222222 2222222222 22 222 2222 2222 X 2 2R XX 2 2 2 X X2 2 R R 4
* *
* Bcd2 scans the command line for up to two valid ascii digits *
* and returns the result as a packed bcd byte in reg A. *
* *

khkhkhkkhkkhkhhhkhkhhkkkhkkkhkhkhkhkhkhhkhhkhhkhhkhkkhkhkhkkhkhkkkhhhkkhhkhkhhkkhhhhhhkkhkkkdik

bed?2 call skipb ‘ ;Skip any preceeding blanks
call scan :Get first char of day of month
stc ;Carry is error
rz
cpi ‘e
jz bcd2
Cpi |’|
jz bcd2
call digit ;Check for valid decimal digit
rc :
mov b,a :Save in B
call scan
jz okd .
cpi ', :Check for end of day of month
jz okd
cpi L] L]
jz okd

cpi :

jz okd

call digit
rc
stc ;Clear the carry
cme
push psSw :Save low nibble
mov a,b
ral :Put previous digit into high nibble
ral :
ral
ral
mov b,a ;Save in B
pop psw :Recover low digit
ora b ;Form byte
mov b,a ;Save in B
okd mov a,b :Recover day of month
stc ;No error
cme
ret

* *
* Digit checks if the char in reg A is a valid ascii digit. *
* *

digit cpi ‘0’ ;Less than O
rc -
cpi '9'+1 ;Greater than 9
cmc
rc
sui 0! ;Strip off ascii bias
ret ’

* *
* Match3 guarantees that at least three characters are matched *
* with the command line. *
* %

match3 mvi a,3 ;Clear match count
sta mcnt
mov e,m ;Get current string pointer
inx h
mov d,m
inx h
mov a,e ;Check if all done
ora d
rz ;No match
push h ;Save current array pointer
1hld scanpnt ;Save current scan pointer
push h
lda clen ;Save current command length

push psw

mtchmo call scan o :Scan and convert to upper case

jz nomat.ch ;:No match if out of chars

call toupper

mov b,a :Save in B

ldax d :Get next char in string

inx d ;Bump string pointer

call toupper ;Convert to upper case

cmp b ;Does it match ?

jnz nomatch ;No match

lda mcnt :Get match count

dcr a ;Matched three ?

sta mcnt ;Save match count

jnz mtchmo ;Match more ?

call skipc ;:Skip rest of characters

pop h ;Throw away ©l1d scan pointer

pop h ;Throw away old command length

pop h ;Recover array pointer

dcx h ;Backup array pointer

dcx h

rnz » ;No error return

inr a ;No error return

ret
nomatch pop psw ; Recover command length

sta clen ;Restore command length

pop h ;Recover scan pointer

shld scanpnt :Restore scan pointer

pop h :Recover array pointer

jmp match3 ;Try again
khhhkhkhhhkkhkhhhhkhkhhkhdhkhhdhkhkhkhkhkhkhkdhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkkhkdhkhkiddkddkikik
* *
* Display continually displays the time as long as nothing is *
* typed on the console. *
* . *

dhkkhkdhkhkhkhkhkhhkhhkhkhkhkhhkhkkhkkhkhkkhhkhkhkkhhkhkhkkhkhkdkdhhhidhhdkhhkhhkihhhkikhkdkikhkkki

display call displl ;Display one time line

mvi c,const :Check console for char

call bdos

ana a :If anything typed then reboot

jnz wboot

1xi d,acrmsg :Print carriage return only

call pmsg .

jmp display :Go print the time again
khkkhkhkhhhkhkkhkkkkkkhkhkhkhhkdhhkhhhkhkhhkhhkhkhkhkhkhkhhkkhkhkkhkhkhhkhkhkhkhkhkhhkkkhkkkkhkk
%* *
* Displl displays the current time once. *
* %*

khkkkhkhhkkhhkhhhhkhkhkkkkhkhkhkhhkhkhkhkhkkhkhhkkkhhkkhhkkhkhkkhkhkhkhkhkkhhkhkhkhkhkkkk

displl call readc ;Read the clock - watch out if interrupts or
1da mthday :Get the day of the week
ani 7 ;:Through away irrelevent bits

okday ral sMultiply by 2

mov
nvi
1xi
dad
mov
inx
mov
mov
ora
jz
call

l1da
rar
rar
rar
ani

mov
mvi
ixi
dad
mov
inx
mov
mov
ora
jz
call

1xi
push
lda
rar
rar
rar
rar
ani
cnz
lda
call
mvi
call
mvi
call

lda
cpi
cnc
ora
cz
call
mvi
call
lda

Lo

oo
<

0

L

o3

-

[T o T N M e Ti= g o Y 0}
g

o}
[
0n
o]
=
|t

pmsg

mthday

h,tbuff
h
date

0fh
putlow
date
putlow
a'l'l
put
a,’
put

hour
13h
subhr

a
makl?2
puthi
a,':"'
put
minutes

:Form 16 bit offset

;Array of string pointers

;Form absolute address of string
;Get low string address byte
;Point to high byte

;Get high byte

;Check for invalid day

;Start over again if invalid
;Print the day

:Get the month
;Adjust for proper offset

:Multiply by two and throw out
: irrelevent bits

:Form 16 bit offset

;Array of string pointers

:Form absolute address of string
;Get low string address byte
:Point to high byte

;Get high byte

:Check for invalid month

;Start over again if invalid
;Print the month

;Pointer to temporary storage
;Save for printing

;Convert the date to ascii

;Get high digit into low nibble

;Don't print leading zero
;Get the low digit

;Stuff it in the buffer
:And the comma and space

:Get the hour

;Check for AM or PM

:Convert PM from 13-24 into 0-12
;Check for 12 midnight

;Put both digits into the buffer
;Put the colon in the buffer

;:Get the minutes

call
mvi
call
1da
call
mvi
call
lda
cpi
mvi
jc
mvi
isam call
mvi
call
sploop mov
cpi
jz
mvi
call
jmp

endsp pop
jmp

put
hour
12h
a,'a
isam
a,'p
put
a,'m
put
a,m
IS!
endsp
a'l L]
put

sploop

d
pmsg

;Put both minutes digits in the buffer
; Put another colon in the buffer

;Get the seconds
;Put both second digits in the buffer
;One space into the buffer

;Check hours for AM or PM

:Print 'A' or 'P‘’

;Put the 'A’ or 'P' in the buffer
;Put the 'M' in the buffer

;Get the next char in the buffer
;Is it the end ?

:All done

:Get a space

;Put it in the buffer

;Finish padding with spaces

; Recover the Buffer address
:Print the buffer

khkhkhkhhhkhkhhkhkhkhhkkkhkhkhkhhkhkhhkhkhhkhkkkhkhkhkkkhkkkhkhkhkkhkhkkkhkkhhkkkhhkhkkhkkkk

*

* Readc does the actual clock reading (40 bits) from the
If interrupts are enabled, then care must be taken
* to assure that this routine is not interrupted until it

* hardware.

* completes.
*

* * % % % %

hkkhhkhkhkkhhkhhhhhkkhhkhkhkhkhhkkhkhhkhkhkhkhkhkhkhkkkhkhkhkkkhkhkhkhkhkhkhkhhkhhkhkkhkhkhkhkdikkkk

readc xra
out
mvi
call
push
xri
call

rbyte mvi
inx

rbit in
rar
mov
rar
mov
xthl
mov
xthl
call
der
jnz
der

a
grpsel.
a,rclk
setup
h
clkcl
clkcm
e,8 .
h .
clk

a,m
m,a
a,m
clkstb
e

rbit
d

:Select group zero
;Read clock into 40 bit shift register

: Save address of clkdata
:Issue shift command

;Prep for 8 bits

;Bump to next address of clock data
: Read one bit

;Put bit into carry

;Get partially assembled byte
:Shift in the bit just read
;Save partially assembled byte
;Get address of clkdata

;Get clock data

;Save address of clock data
;Strobe the shift register
;All done with this byte ?
:Read another bit if not
;Completely done ?

jnz rbyte ;Read another byte if not

pop h ;Recover address of clkdata
clkemd mvi c,cstb ;Get clock strobe bit
clkstb out clk ;Output strobe low
call delay ;Wait for chip to see the strobe low
xra c " ;Turn strobe high
out clk ;Output strobe high
call delay :Wait for chip to see the strobe high
Xra c ;Turn strobe low
out clk ;Output strobe low
call delay
mvi c,clkeclk ;Clock clk bit
‘ret
setup mvi d,5 ;Count of bytes to read
1xi h,clkdata ;Address of clock data
ora m :Get current bit state
jmp clkemd ;Issue the command
delay mvi b,0 ;Worst case is 700 usec
delayl dcr b
jnz delayl
ret

khkhkdhdkhddhhhhhkhkhhkhhhdhhhhkhhhhhrhkhdhhkhkhkhhhhhhhhkhhhbhhhhhkhhhhhkhkhkkkx

* *
* puthi puts the high and low nibbles of the bcd number in *
* the a reg in the temporary buffer. *
%* *

puthi push psw ;Save low nibble
rar ;Put high nibble into low nibble
rar
rar
rar 7
call putlow ;Print the low nibble of a reg
pop psw ;Recover the low nibble
putlow ani 0fh ;Strip off irrelevent bits
adi ‘0! ;Form Ascii character
put mov m,a ;:Put char in buffer
inx h ;Bump buffer pointer
ret

khkhhhdhhkhhhhhkhhhhhhkhhkhhhhhhhhkhhhhhhhhkhhkhhhhhhhhhdhkhdhhhhhhhhhkhkdk

%* %*
* Exit is the standard error message for invalid command. *
* %*

khkdkkhhkhkhhhhhhkhhhdhkhhhhhhkhhkhkhhhhrhkhhhhhkhhkkhkkhhhkhkhhkkhrhkhkhkhkhhhhkhhkikk

exit 1xi d,badtmsg
call pmsg
jmp wboot

kdkdkkdhhkhkhkhhkdhhkdhhdhhhkkhhkhhkhhhhhkkhhdhhhhkhhhkhhhhhhhkkdhhhhhhkhhhkhhkdhhkhhdkkkk

* *

* Pmsg is the CP/M print string function. *
* *

pmsg mvi c,pstr
jmp bdos
subhr adi 88h ;Subhr adjusts the BCD number to
daa ; be between 1 and 12
ret
mak1l2 mvi a,12h
ret
uphrs lda hour
cpi 12h
rz
adi 12h
sta hour
ret
dwnhrs 1lda hour
cpi 12n
rnz
xra a
sta hour
ret
skipc call scan :Get next char
rz ;Return if no more chars
cpi o ;:Check for space
jnz skipc ;:Continue if not
ret
skipb call scan :Get next char
rz ;Return if no characters left
cpi vt :Is it a space
jz skipb ;Skip it
unscan push h ;Save HL
1hid scanpnt :Get command scan pointer
dcx h ;Back it up
shld scanpnt ;Save updated char
lda clen ;Update length
inr a , _
sta clen ;Save updated length
pop. h ;Restore HL
ret
scan lda clen ;:Check if anything left
ana a
rz ;Return with Z set if no more
decr. a ;Update length
sta clen

push h 1Save HL

lhla scanpnt ;Get command pointer
mov a,m

inx h : ;Update command pointer
shld scanpnt

pop h

ora a :Clear Z flag

ret

toupper cpi 'a' ;Is it lower case ?
rc
cpi ‘z'+1
rnc
su i 1 1
ret

khkdkkkdkhkhkhhkhhkhhhhkhkhkhhkhkhhkhkhkhhhhhkhkhkhhkhkhhhhhkkhhhkhkhhhhkhhkhhkhkkhkdkhhhkkikik

*) *
* The following are data used within the program. *
* . *

clkdata: db 0 ;Current state of clk port
seconds: db 0] ;Seconds read

minutes: db 0 ;Minutes read

hour db 0 ;Hours read

date db 0 ;Date read

mthday db 0 ;Week day and month read

kkhkhkhkdkdhhhhhhkhhhhhhhhhhhhhhhhhkhkhkhhkdhhhhhhhkhhhkkkhhkhkhkhhhhkhhkhkhrdkki

* *
* Days is an array of pointers to strings, used to prlnt the *
* engllsh version of the day of the week. . *
%* *

khkkhhhhkhkhkhhhhhhkhhkhhkhhkhkhhhhhhhhkhkhhhkhkhhhhkhkhhhkhhhkhkhkhhhhhkhhkhhdhdkkik

days dw sun
dw mon
daw tue
dw wed
dw thu
dw fri
dw sat .
dw 0 ;Illegal day
sun db 'Sunday, $'
mon db 'Monday, $'
tue db 'Tuesday, §$'
wed db 'Wednesday, §$'
thu db 'Thursday, $'
fri db 'Friday, $'
sat db ‘'Saturday, $'

hhkhkdkhkhhhddkkddedddddddddddeddeddddddddkkdhkdkddkdddkddddkkddkikkdddkddiri
* ' *
* Months is an array of pointers to strings, used to print the *

* english version of the month of the year. *
* *

months dw jan
dw feb
dw mar
dw apr
dw may
dw jun
dw jul
dw aug
dw sep
aw oct
dw nov
aw dec _ :
dw 0,0,0,0 ;Illegal months
jan db 'January $'
feb db 'February §$°'
mar db 'March §'
apr db 'April §$°
may db ‘May §$'
jun db 'June $'
jul db 'July §$'
aug db 'August $'
sep db 'September §$'
oct db 'October §'
nov db ' 'November $°'
dec db 'December $'
acrmsg db acr, 'S’
acralf db acr,alf,'s'
khkhhkhhkhhdkhhkhdhkhkhkhkhhkhkhkhhhhhhhhhkhhhhhhhhhkhkhhkhkhhkrkhhhkhkhhhhhkhhhkhkkkkk
* : *
* Tbuff is used to prepare the day of the month, hours, minutes,*
* and seconds prior to printing. *
* : *

khkkdkhkhhkhhkhkhhhkhkhkhhhkhhhkhhhhhhdkhkhhhhhhkhkkkhkhkhhkhkkhhkdkhhhhhhhkhkhhkkhkhkkii

tbuff db '00, 00:00:00 am $'
badtmsg db acr,alf
db 'Invalid Time specified.$'
waitmsg db acr,alf
db 'Press return to set the time: §$'
ibuff db 10,10
ds 10
scanpnt dw cbuff
" mcnt db 0

end

Software Samples

The following program is an example of the use of the Daisy
ports of the MULT/IO board. The program assumes there is a
standard Diablo Htype II connected to the 50 pin ribbon cable.

000D
000A
0003
0006
001B
0008
0009
000C
0007
0020
0000
O0TF
O01E
001F
000B

0007
0004
0005
0001
0040

0010
0008
0004
0002
0066

LI L O L T T T O [O | IO [O

nwn oy

R o

69636 3 3 3 3 I I I I 3 I I I I I I I I I I I 3 I I I I I I I I I I I I I I W I I KKK KKK XN

*

* Diablo 1610 simulator for the Morrow Designs / Thinker Toys
* Mult I/0 board. The simulator makes the parallel Hityp II

* look like a serial 1610.

*

3 This interface is designed to work with the INSTALL.COM
* program which is available from Morrow Designs / Thinker
;¥ Toys. For an explanation of how this works consult the

3 * INSTALL documentation.
*

* Bobby Dale Gifford.

* 10/13/80

*

*

363 I3 3 363 3 I I I3 363 3 I I I3 I I 3 I I I I I I I I I3 I I I I I NI I KKK %K

WO WO WE NS Ve WE WE WP WE VI N We We we
K ok ok ok Kk k >k k k ok k k 3k

-

;**
3% *
;* Special character equates. *
;* *
;**

ACR EQU ODH ;Carriage Return
ALF EQU OAH ;Line feed
AETX EQU 3 ;ETX character
AACK EQU 6 ;ACK character
AESC EQU 33Q ;Escape character
ABS EQU 10Q ;Back Space
AHT EQU 11Q ;Horizontal tab
ABEL BQU T i
;Be
ASP EQU 40Q ; Space
ANUL EQU 0 ;Null
ADEL EQU 177Q ;Delete
ARS EQU 36Q ;RS character
AUS EQU 37Q ;US character
AVT EQU 13Q ;Vertical tab
;**
o ¥ *
b .
;: The following equates are for the Mult I/0 board. *
- *
;**
GRPSEL EQU 7 ;Group select port offset
PICO EQU 4 ;Interupt controller port O
PICH EQU 5 ;Interupt controller port 1
DAISY1 EQU 1 ;Daisy wheel port 1
IMASK EQU 40H ;Interupt enable mask
D4 EQU 10H
LTIM EQU 8 ;Level trigered interrupt mode
ADDI EQU 4 ;Address interval
SNGL EQU 2 ;Single 8259
EOQI6 EQU 66H ;End of interupt 6

0080
0004
0008
0003
1020

\
2040

0000
0003
0006
0009

..000C

OOQOF
0012
0015
0018
001B
OO1E
0021
0024
0027
002A
r 2D
v L0

0033
0036

0039

003C

LLI L L N T I TR 1}

C30000
C3F801
C32F03
C33F03
C30C00
€35803%
C31200
C31500
€31800
C31D03
C31E00
€32100
€32400
C32303
€32903
C39603%
C33000

C31F04
C3E803

C3A003

C3B803

RSTBIT EQU 080H ;Restore Bit

DATA11 EQU 4 sData bits on daisy port
DATA12 EQU 8 :
DATA910 EQU 3 '
CRSTRD EQU 1020H ;Carriage ready
PFSTRD EQU 810H ; Paper feed ready
PWSTRD EQU 2040H ;Print wheel ready
;**
.o % *
?
:* Below is a standard CP/M Cbios jump table as required by *
. % . *
;* INSTALL .
;**
JMP $;No change in the cold boot
OWBOOT: JMP NWBOOT ;New warm boot routine
OCONST: JMP NCONST ;New console status
OCONIN: JMP NCONIN sNew console input
. JMP $ 3No change in the console output
JMP NLIST ;New list device output '
JMP $;No change in the punch device outpu
JMP $;No change in the reader device outp
JMP $;No change in the home routine
OSEL: JMP NSEL ;New seldsk routine
JMP $;No change in the settrk
JMP $;No change in the setsec
JMP 3 ;No change in the setdma
ORD: JMP NRD sNew read
OWR: JMP NWR ;New write o
JMP NLSTST ;New list device status
JMP $;No change in the sectran

;**
. ¥ ' *.

; .
;* The following routines are for handshaking with the printer *
*

;* they can be used directly or by the CBIOS of CP/M.
- % . *

o 3639939 I I I I I I I I I I3 96 WK 3 I I I I I I K I I I I I I I I I I I I I I I I K

.e o

REST: JMP RESTOR ;Initialization procedure
LST: JMP - LSTDEV ;Printer character output
; character in reg C
HNDXOF: JMP XONOFF ;Printer busy test XON/XOFF
; returns. with: o
A 1 queue full
A 0 queue not full
; ' A Offh queue empty
;BETX and ACK software handshake
returns with:
: A O No ACK to tran
A Offh ACK transmi

nn

wo we ws we w

HNDETX: JMP ETXACK

e e e
i}

;**
3 *
;¥ Dynamic data locations used by the simulator. *

000A
0006
0078
0030
00AQ
0096
0630

OO3F

0040
0041

0043
0045
0047
0048
004A

004C
O04E
0050
0052
0054
0056
0057
0058
0059
005A
005B

OOFB
0191
0193

0195
019D

. ¥
’

*

H 9636 3 3 I I K I I I I I K I I I I 3 3 I I F I I I K I I I I K I I IR KKK I KK KKK

= CPERI
= LPERI
= HINC
= VINC
= NUMTABS
= MAXCHRS
= MAXRGT
02 ~ ACKXON:
48 BASE:
6E00 DFRMLN:
0OAQO DSPACE:
0600 DLINES:
00 AUTOLP:
0000 HMI:
0000 VMI:
0000 VPOS:
0000 DLVPOS:
0000 HPOS:
0000 DLHPOS:
0000 LMAR:
00 DIRFIG:
00 GRHFLG:
00 ESCFIG:
00 ETXPLG:
00 HNDFILG:

TABSTP:

QUEUE:
FBOO QUETOP:
FBOO QUEBOT:

;*

;

i
0000000000
0000000000

EQU
EQU
EQU
EQU
EQU
EQU
EQU

DB

DB
DW

Dw
Dw

DS
DW
Dw

DW
Dw

10

6
120
48
160
150
1584

2

48H
110

CPERI
LPERI

OCOO0OO0OO0OO0OO0O0O0LO O O O

m

=
3
[

>
t
7]

MAXCHRS
QUEUE
QUEUE

0,0,0,0
0,0,0,0

;Default to 10 characters per inch
;Default lines per inch

;Horizontal increments per inch
;Vertical increments per inch
;Number of horizontal tabs

;Maximum numbe¥ of printer character
;Maximum carriage position

; Default handshake is XON/XOFF
Can be changed with -Hx.
Possible handshakes are:

’

b

; 0 = none

; 1 = ETX/ACK

; 2 = XON/XOFF

; 3 = ETX/ACK through
b

(made for electr

Default Mult I/0 board base address

Can be changed with -bxx.
Default forms length 10 times the f
H length switch. Can be change
H with -fxx.
Default characters per inch.
; Can be changed with -cxx.
Default lines per inch.

Can be changed with -1xx.
Default to no Auto line feed.

; Can be changed with -ax.
Horlzontal motion index. Set by 7 3
and escape sequences.
Vertlcal motion index. Set by RESTO
and escape sequences.
Vertlcal position. Set by platen mo

;Delta vpos. Set by platen motion
;Horizontal position. Set by carriag
;Delta hpos. Set by carriage motion
;Left margin

;Direction flag

; Graphics mode flag

;Escape sequence in progress flag
;Used for ETX/ACK handshake
;Handshake in progress flag

;Tab stops array

;Circular Queue of printer character
; Queue top pointer
;Queue bottom pointer

*¥ The following data only needs to be included if the 8259
3* has not been initialized.

01A5 0000000000 DwW 0,0,0,0

01AD 0000000000 DW 0,0,0,0

01B5 C3E904 TABLE: JMP NOINT ;No interupt

01B8 00 DB 0 ‘

~1B9 C3E904 JMP NOINT

+BC 00 DB 0

01BD C3EQ04 JMP NOINT

01C0 00 DB 0

01C1 C3EQ04 JMP NOINT

01C4 00 DB 0

01C5 C3E904 JMP NOINT

01c8 00 DB 0

01C9 C3E904 JMP NOINT

01CC 00 DB 0

01CD C3ECO4 ‘ JMP PWINT

01D0O 00 DB 0

01D1 C3E904 JMP NOINT

01D4 00 DB 0

01D5 0000 HLSAVE: DW 0] ;Used by interupt routine

01D7 00 AFSAVE: DB 0 ;Used by interupt routine

01D8 8000 SCSTUF DW 80H . ‘ ;Scan buffer data

01DA DS 30 ; Stack space

01F8 = STACK EQU $
H 3696363636 96 36 3636 96 3 3 36 96 I 36 3696 3 36 36 36 3 36 36 9 T 36 39 3696 33 36 36 3 3 T 36 I 96 I 36 3 36 33 3 3 3 I K K I 36 KK K%
’
;:* New Boot routine, examine the command line put at 80H by *
;% install. *
H *) *

. **

-

01F8 3EO1 NWBOOT: MVI A1 ;Is this a second warm boot ?
0179 = WBFLG EQU $-1

O1FA A7 ANA A

O1FB 3EOQ0 MVI A,O ;Reset the warm boot flag
O1FD 32F901 STA WBFLG

0200 CA0300 JZ OWBOOT ;Don't reset if second warm boot
0203 C31102 JMP SKPDSH

0206 CD3E02 CLOOP: CALL SCAN

0209 CA3802 JZ NOMORE '

020C FE2D CPI 't ;Check for flag

020E C20602 JNZ CLOOP

0211 CD3E0Q2 SKPDSH: CALL SCAN

0214 CA3802 JZ NOMORE

0217 FE48 CPI 'H! ;New handshake routine -Hx
0219 CC4DO2 CZ NEWH

021C FE42 CPI 'B! ;New I/0 base -Bxx

021E CC6302 CZ NEWB .

0221 TE46 CPI P ;New forms length -Fxx

0223% CC8A02 C2 NEWF

0226 FE43 CPI 'C! sNew characters per inch -Cxx
0228 CCC102 C2Z NEWC ‘

N22B FE4C CPI 'L sNew lines per inch -Lxx

022D
5230
0232
0235

0238
023B

023E
023F
0242
0243
0244
0247
0248
024B
024C

024D
0250
0251

0253
0256
0258
025B
025D
0260
0262

0263
0266
0267
026A
026D
026E
026F
0270
0271
0272
0275
0276
0279
027C
027D
027E
0280
0283
0284
0287

028A
028D
0290
0293
0296

CCE402
FE41

CCF002
C30602

CD3300
30300

E5
2AD8O1
7B
A7
CA4BO2

CD3EO02
C8
FE31
DA6002
FE34
D26002
D630
323F00
3E00Q
C9

CD3EQ2
c8
CD0O503
DA6002
17
17

C36002

CD9CO02
DA6002
110A00
CDEAOT
224100

NOMORE:

SCAN:

NOQOUPDT:

NEWH:

ZRET:

NEWB:

NEWF:

CZ
CPI

JMP

CALL
JMP

PUSH
IHLD
MOV
ANA
Jz
INX
SHLD
POP
RET

CALL
CPI

CPI

NEWL
|Al
NEWA
CLOOP

REST
OWBOOT

H
SCSTUF
A,M

A
NOUPDT
H
SCSTUF
H

SCAN

l1l
ZRET
3141
ZRET
|0|
ACKXON
A,O

SCAN

OKHEX
ZRET

B,A
SCAN

OKHEX
ZRET
B

B,A

7
ZRET
A,B

BASE
ZRET

GETTIWO

- ZRET

D,10
HLTDE
DFRMLN

sNew auto line feed -Ax

;Reset the printer

;Go to the warm boot

;Return the next character in the ¢
;Pointer to next char

;Get next char

;Test error return

;No update

;Update pointer

;Save new pointer

;Restore registers

sEnd of command ?

; Invalid ?

;Set new handshake option

sEnd of command ?

;Valid hex character ?

;Valid hex character ?

;Check if divisible by 8
;New I/0 base

sNew default forms length

;Set to ten times the forms length

0299 C36002 JMP ZRET

029C CD3EO02 GETTWO: CALL SCAN ;Get two decimal digits
029F CABFO2 JZ NOGD ;No digits
N2A2 CD1303 CALL 0KO09 ;Check for 0-9

.A5 DABFO2 JC NOGD ,
02A8 87 ADD A ;Multiply by 10
02A9 47 MOV B,A
02AA 87 ADD A
02AB 87 ADD A
02AC 80 ADD B
02AD 47 MOV B, A ,
0O2AE CD3EO2 CALL SCAN ;Get next character
02B1 CABFO2 Jz NOGD ;No character
02B4 CD1303 CALL - OKO9 ;Check if 0-9
02B7 DABFO2 JC NOGD ,No good
02BA 80 ADD B ;Add into result
02BB 6F MoV L,A 1
02BC 2600 MVI H,O tMake it a 16 bit number
Q02BE C9 RET _
02BF 37 - NOGD: STC SR TN - 3Error return
02C0 C9 - RET .
02C1 CD3EO2 NEWC: CALL SCAN ;Change the default characters per :
02C4 C8 RZ
02C5 FE31 CPI " ;Must be 10 or 12
02CT7 €26002 JNZ ZRET
02CA CD3EO02 CALL SCAN
02CD C8 RZ ;Only one character’
02CE FE30 CPI 'O

2D0 2EOQOA MVI L,10 ;It was ten

.2D2 CADCO2 Jz NEWCOK
02D5 FE32 CPI 12!
02D7 2EQOC MVI L,12 ;It was 12
02D9 C26002 INZ ZRET
02DC 2600 NEWCOK: MVI ;Make 16 bit integer
02DE 224300 SHLD DSPACE i
02E1 C36002 JMP ZRET
02E4 CD9CO2 NEWL: CALL GETTWO ;New lines per inch
O2ET DA6002 JC ZRET ;Error reading digits
02EA 224500 SHLD DLINES
02ED C36002 JMP ZRET
02F0 CD3E02 NEWA: CALL SCAN ;New auto line feed
02F3 FE31 CPI "o sMust be O or 1
02F5 CAFDO2 JZ NEWAOK
02F8 FE30 CPIL 'o!
02FA C26002 ‘ JNZ ZRET
O2FD D630 NEWAOK: SUIL 0 ;Set the auto flag
02FF 324700 STA AUTOLF .
0302 C36002 JMP ZRET
0305 CD1303 OKHEX: CALL 0KO09 ;Check first if 0-9
0308 DO RNC ~Yes

0309 FE41 OKAF: CPI A Check if less than 'A!

030B
030C
030E
030F
0310
0312

0313
0315
0316
0318
0319
031A
031C

031D
031E
0321
0322

0323
0324
0327
0328

0329
032A
032D
032E

032F
0332
0334
0337
033A
033B
033C

D8
FE4T

D8
D64B
C9

FE30

FE3A
3F
D8
D630
C9

3
CD1BOO
FB

Cc9

P3
CD2700
FB

Cc9.

F3
CD2A00
FB

€9

3A3F00
FEO3
€C20600
CD0600
AT

CO
C33C00

RC ' :

CPI P+ ;Check if greater than 'F'

CMC

RC

SUI 'A'+10 sMake into binary

RET
0K09: CPI Q! ;Check for 0-9

RC ’ ;Less than 'O’

CPI AR o ;Check if greater than '9’

CcMC

RC

SUI Q! sTurn into binary

RET ‘
;**
3 L *
;: New select disk routine, disable interupts. :

?
;**

NSEL: DI

CALL OSEL sExecute 0ld disk select

BI :

.RET
NRD: DI ;Execute o0ld disk read

CALL ORD

EI

RET
NWR: DI

CALL OWR ;Execute 0ld disk write

EI

RET
;**
.* *
9
;¥ New console status routine, used with ETX/ACK handshake. :
o %

’
;**

NCONST: LDA ACKXON

CPI 3

JNZ OCONST

CALL OCONST ;Check 0ld console status

ANA A

RNZ

JMP HNDETX ;Check ETX handshake
;**
.* *
’
;* New console input routine, used with ETX/ACK handshake. *
. % *

’
;**

033F 3A3F00 NCONIN: LDA ACKXON s;Determine the type of handshake

0342 FEO3 CPI 3)

0344 C20900 JNZ OCONIN ;None, do o0ld conin

0347 CDO600 ’ CALL OCONST

“34A AT ANA A

34B €20900 JNZ OCONIN

034E CD3C00 CALL HNDETX

0351 A7 ANA A

0352 3E06 MVI AL,AACK

0354 CA3F03 JZ NCONIN

0357 C9 RET
H I 9 W 3 I I I I I N I I I I I I I W I I I I I I I I I I I I I I I I I I I KW I I I I I KK A I KK KKK
- % *
$4
;* List is the New list device output. As implemented, it uses *
s* an XON/XOFF or ETX/ACK protocal. *
-~ *

’ .
H 369 3969696 I 3 33 3 3 3 3636 36 36 I I I I F 3 I 3 3 69 I3 I I I I I I I I I I I I I K I K I I I K I KWK KX

0358 3A3F00 NLIST: LDA ACKXON

035B 3D DCR A

035C FA3600 : IM: LST

035F 3D DCR A

0360 FA6A03 JM LSTETX

0363 3D DCR A

0364 FA8003 JM LSTXON

0367 C33600 JMP LST

036A C5 LSTETX: PUSH B ;Save the character
036B CD3600 CALL LST ;Print the character
36E C1 POP B

+36F 79 MOV A,C ;Check if it was a carriage return
0370 FEOD CPI ACR

0372 CO RNZ

0373 OEO3 MVI C,AETX ;Send an ETX

0375 CD3600 CALL LST

0378 CD3C0O0 WETX: CALL HNDETX ;Check if ACK

03TB AT ANA A

037C CO RNZ

037D C37803% JMP WETX

0380 C5 LSTXON: PUSH- B ;Save char to print

0381 CD3900 CALL HNDXOF sCheck XOFF

0384 FEO1 CPI 1 ;Is it full ?

0386 CC8D03 CZ WXOFF

0389 C1 POP B sRecover char to print

038A C33600 JMP L3T

038D CD3900 WXOFF: CALL HNDXOF ;Check XON

0390 FEFF CPI OFFH

0392 €28D03 JNZ WXOFF

0395 C9 RET

3 I 93 96 3 I I 3 I I I I K I A 363 2 I I 36 I I I I I I I I I I I I I 3 I I I I 3 I 3 I K I I I K I KKK
% *
’

;* New list device status routine. Returns Offh if the printer *

0396
0399
0%9B
039D
039E
039F

O03A0
03A3
03A4
03A7T
O3AA
03AC
03AD
03BO
03B3
03B5
03B6
03B7

03B8
03B9
03BC
03BD
O3BE
03C1
03C2
03C3

CDb3900
FEO1
3800
c8

2F

C9

CDC403
EB
218C00
CDE203
3EO01
D8
210A00
CDE203
3EO0O
D8

2F

C9

F3
3A5900
47
AF
325900
FB
78
€9

;* can except another character, otherwise it returns O. *
- % *
’

;**

NLSTST: CALL HNDXOF ;Check # of characters in queue
CPI 1
MVI A,O
RZ ;Can not except another char
CMA
RET

‘o 36 33 I I I I I I I I I I I KW I I I I I I I A K I I KW I I I I I I A I I K I K kK

*
Xonoff status. Checks if there are any characters in the *
printers character queue. Returns with reg A = 1 if the *
character queue is within 10 characters of being full, or *
returns with reg A = Offh if the character gqueue is within *
10 characters from being empty, otherwise returns O. *
This can be used to implement the XON and XOFF protocal. *

*

*

e WEe W Ve W We WS e W
* ok ok Kk ok k ¥ Xk

-***

-

XONOFF: CALL QUESIZ ;Get number of characters'in queue

XCHG

LXI H,MAXCHRS-10

CALL HLCDE

MVI A,

RC

LXI H,10

CALL HLCDE

MVI A,0

RC

CMA

RET
;**
¥ *
* ETX/ACK handshake routine. *

* *
I3 33 3 I I I I I I I I I I I I I I I I K K I I I I I KW I KK I KKK A I I I I KK

we we we w

ETXACK: DI

LDA ETXFLG

MOV B,A

XRA A

STA ETXPLG

EI

MOV A,B

RET
;**
« % *
14
;¥ Quesiz returns the number of characters in the queue in HL. *
o *

b4
;**

03C4 F3 QUESIZ: DI

0%C5 2A9101 LHLD QUETOP ;Get pointer to top of queue

03C8 EB XCHG

03C9 2A9301 LHLD QUEBOT ;Get pointer to bottom of queue

03CC FB EI

0" D CDE203 CALL HLCDE ;Compare HL with DE

0_.J D2DB0O3 JNC HILMDE ;Subtract DE from HL

03D3 EB XCHG ;

03D4 CDDBO3 CALL HILMDE

03D7 EB XCHG

03D8 219600 LXI H,MAXCHRS
;**
.* *
;* Hlmde subtracts DE from HL and returns. :
.*
?

;**

s

03DB EB HIMDE: XCHG

03DC CDBAOT CALL NEGHL

O3DF EB o XCHG

03E0 19 DAD D

0%E1 C9 RET
;**
. * - *
* Hlcde compares HL with DE. On return the Z flag is set if *

we we we

;* they are equal, the Carry flag is set if HL is less than DE. *
* *

.**

.

¢ 2717C HLCDE: MOV AH

0»E3 BA CMP D

03E4 CO RNZ

03E5 TD MOV A,L

03E6 BB CMP E

03E7 C9 RET
;**
¥ *
’
;* Lstdev just puts characters in the printer queue. characters *
;* are removed from the queue by the print wheel interrupt *
;* service routine. *

¥ *
’
;**

03E8 F3 LSTDEV: DI ;Disabled while manipulating
03E9 2A9301 LHLD QUEBOT ;Get pointer to next slot
O03EC T1 MOV M,C ;Insert the character

03ED 23 INX H ;Point to next slot

O3EE 229301 SHLD QUEBOT

03F1 119101 LXI D, QUEUE+MAXCHRS ;Address of first byte beyon
03F4 CDE203 CALL HLCDE ;Compare HL with DE

03FT7 C20004 JNZ LSTDON ;No match, don't wrap around
O3FA 21FBOO LXI H,QUEUE ;First address in queue

03FD 229301 SHLD QUEBOT

0400 3A4000 LSTDON: LDA BASE ;Base address of Mult I/d

0403% C607 ADI GRPSEL ;Group select O

0405 0600 MVI B,0

0407 CDADO7 CALL QUTPUT

040A 3A4000 LDA BASE

040D C605 ADI PIC1 ;8259 mask register

O40F CDB40OT CALL INPUT ;Get current mask contents
0412 E6BF ANI OFPFH-IMASK ;Turn on print wheel interup
0414 47 MOV B,A

0415 3A4000 LDA BASE

0418 C605 ADI PICH

041A CDADOT CALL OUTPUT

041D FB EI

041E C9 RET

; I 36 I I I W I I I I I I ¥ W I W I I I I I I I I I WA I I I I I I I I I A I I I I I I I I I I I I WK K KK WK WX H K
;* . *
s+* Restore routine. Restore should be executed to reset the *
;* printer into a known state, and initialize all the ram *
;* dynamic data locations. *
. % *

H
;¥ Restore assumes that the 8259 interupt controller on the *
;* Mult I/0 board has already been initialized. *
* *
*

.o

o 363696 I 3 23 I I I I I H I A I I 36 3 I I I I I I 3 I X I K I I I I I I I I W I I I I I I I I KKK

Q041F F3 RESTOR: DI ;No interupts
;* .
;¥ If the Mult I/0 board 8259 has not yet been initialized, then
;* use the following sequence.
. W

0420 11B501 LXI D, TABLE

0423 21B501 LXI H, TABLE

0426 7D MOV A,L

0427 E6EO ANI OEOH ;Form 32 byte boundry

0429 6F MOV L,A

042A E5 PUSH H

042B 0E20 MVI c,32

042D 1A SLOOP: 1LDAX D

042E T7 MOV M,A

042F 23 INX H

0430 13 ; INX D

0431 OD DCR C

0432 C22D04 JNZ SLOOP

0435 E1 POP H

0436 0600 MVI B,0

0438 3A4000 . LDA BASE

043B C607 . ADI GRPSEL

043D CDADO7T CALL OUTPUT

0440 7D MOV A,L

0441 F61E ORI D4+LTIM+ADDI+SNGL

0443 47 MOV B,A

0444 3A4000 LDA BASE

0447 C604 ADI PICO

0449
044C
044D
0450
04”2
Cc >
04,7
045A
045C

045F
0462
0464
0466
0469
046C
046E
0471
0474
0476
0479
047C
047D
0480
0483
0486
0489
048A
044D
¢ 2
0493
0496
0499
049C
049F
04A2
04A5
04A6
04A9
04AC
O4AF

04B2
04B5
04B8

04BB
04BD
04CO
04C2
04C5
04C8
O4CA
04CD

CDADOT
44
3A4000
605
CDADO7
O6FF
3A4000
C605
CDADO7

3A4000
Cc607
0600
CDADOT
3A4000
067TF
CDADOT
3A4000
O6FF
CDADO7
2A4300
EB
217800
CDC207
224800
2A4500
EB
213000
CDC207
224A00
210000
224C00
224E00
225000
225200
225400
AF
325600
325700
325800
325A00

21FB0OO
229101
229301

0666
3A4000
C604
CDADO7T
3A4000
C605
CDB407
E6BF

CALL
MOV
LDA
ADI
CALL
MVI
LDA
ADI
CALL

LDA
ADI
MVI
CALL
LDA
MVI
CALL
LDA
MVI
CALL
LHLD
XCHG

LXI

CALL
SHLD
LHLD
XCHG
LXI
CALL
SHLD
LXI
SHLD
SHLD
SHLD
SHLD
SHLD
XRA
STA
STA
STA
STA

LXT
SHLD
SHLD

MVI
LDA
ADI
CALL
LDA
ADI
CALL
ANI

OUTPUT
B,H
BASE
PICI
OUTPUT
B, OFFH
BASE
PIC1
OUTPUT

* End of 8259 initialization

BASE
GRPSEL
B,0
OUTPUT
BASE
B, OFFH-RSTBIT
OUTPUT
BASE
B,-1
OUTPUT
DSPACE

H,HINC
HLDDE
HMI
DLINES

H,VING
HLDDE
VI
H,0
VPOS
DLVPOS
HPOS
DLHPOS
IMAR

A
DIRFLG
GRHFLG
ESCFLG
ENDFLG

H,QUEUE
QUETOP
QUEBOT

B,EO0I6
BASE

PICO
OUTPUT
BASE

PIC1H

INPUT
OFFH-IMASK

;Select group zero

;Get base I1/0 port

;Low bit on restore, others high
;Output data in register B

sBase I/0 port

;Output Restore bit high

;Output data in register B
;Characters per inch

;:DE = characters per inch

3sHL = maximum increments per inch
;Divide Hl by DE

;Save hmi = 120/(characters per inch
;Lines per inch

;DE = lines per inch o

sHL = MAximum increments per inch
;Divide HL by DE

;Save vmi = 48/(lines per inch)
;O0ther variables default to zero

;Zero the command queue
;Specific end of interupt 6

;Get the interupt mask bits

sEnable the daisy port interupt

04CF 47 MOV B,A

04D0 3A4000 LDA BASE
04D3 C605 ADI PICH '
04D5 CDADO7 CALL OUTPUT ;Output the daisy port interupt mask
04D8 FB EI ;0k for interupts now
;**
% ' *
?
;¥ Clear all tab stops. *
* *

we

o 3963636 26 I e I 63 W I I A I I K e W I W I I I I I I I K I I I A I I I I I I I I I K KK I I I I NN X

04D9 215BO0 NOTABS: LXI H,TABSTP ;Beginning of tab stop array

04DC 11A000 LXI D, NUMTABS ;Number of tab stops

04DF 3600 NOTBLP: MVI M,0 | ;Reset the tab

04E1 23 INX H ;Next tab stop

04E2 1B DCX D ;s Update repeat count

04E3 TB MOV A,E ;Test for zero

04E4 B2 ORA D

04E5 C2DF04 JNZ NOTBLP ;Continue zeroing

04E8 C9 RET
;**
ce % *
?
;¥ Noint should never be executed. If it is then just die. *
o ¥ *
;**

04E9 C3EQ04 NOINT: JMP NOINT ;Die in jump self
;**
% *
;* Pwint is the interupt service routine for the Hityp II. *
;* Remember: interupts are disabled. *
o % *

3 .
;**

04EC 32DT701 PWINT: STA AFSAVE ;Save the acumulator

04EF 22D501 SHLD HLSAVE ;Save HL

04F2 17 RAL ;Get the carry into register A
04F3 210000 LXI H,O

04F6 39 DAD SP ;Get the Stack pointer

04F7 31F801 LXI SP,STACK ;Set up new stack

O4FA E5 PUSH H ;Save o0ld stack pointer

O4FB 1F RAR ;Restore the carry

04FC 3ADTO1 LDA AFSAVE ;Get original contents of acumulator
O4FF F5 PUSH PSW ;Save acc

0500 2AD501 LHLD HLSAVE ;Get original contents of HL
0503 E5 PUSH H ;Save HL

0504 C5 PUSH B ;Save BC

0505 D5 PUSH D ;Save DE

0506 3A4000 LDA BASE ;Select group zero

0509 €607 ADI GRPSEL

050B 0600 MVI B,0

050D CDADO7 CALL OUTPUT

0510
0513
0514
0517
0514

O . E
O51F
0522
0525
0528
052B
052E
0531
0534
0536
0539
053B
O53E
053F
0540
0541
0542
0545
0546
0547
054A
054B

054C
054F
0552
0555
0557
055A
055C
055D
0560
0562
0565

249301
EB
2A9101
CDE203
CA4CO5
4

23
229101
119101
CDE203%
C23105
21FB0O
229101
CD6805
0666
344000
604
CDADOT
D1

c

E1

F
22D501

CD7808
CD0O408
3A4000
€605
CDB407
F640
47
3A4000
C605
CDADO7
€33405

LHLD
XCHG
LHLD
CALL
JZ
MOV
INX
SHLD
LXI
CALL
JdNZ
LX1
SHLD
PWDON: CALL
INTRET: MVI
LDA
ADI
CALL
POP
POP
POP
POP
SHLD
POP
SPHL
LHLD
EI
RET

QUEBOT ;Get bottom of queue

QUETOP ;Get top of queue
HLCDE ; Is there anything in the queue ?
EMPTY ;No, queue is empty
Cc,M ; Get the next character
H ;Bump gqueue pointer
QUETOP ;Save the adjusted queue top
D, QUEUE+MAXCHRS ;Address of byte past queue
HLCDE ;Need to wrap ?
PWDON
H,QUEUE ;Adjust queue top
QUETOP
DIABLO ; Process the character
B,EOI6 ;End of interupt service routine
BASE
PICO
OUTPUT
D ;Restore DE
B ;Restore BC
H ;Get original HL
PSwW ‘ ;Restore PSW
HLSAVE ;Save HL
H ;Get original SP
;Restore original SP
HLSAVE ;sRestore HL
sTurn interupts back on
; Go back

o 36363696 3 39 I I I I3 3 I3 3 3 I I3 I I I I I I I 3 I I I I I I I I I I6 I I3 I I I I I I I I K¢

*

-e we w

*

we e

*

;* Empty turns off the print wheel interupt mask bit if the - ¥
;* character queue is empty when an interupt occurs. *

*

o 3696 96 3 3 3 33 3 I 3 3 I 36 3 I3 I 36 I I 36 3 3 3 363 I I 396 I 6 3 I 2 I I 36936 36 I I 3 I I I I 336 I I I WX K

.

EMPTY: CALL
CALL
LDA
ADI
CALL
ORI
MOV
LDA
ADI
CALL
JMP

we we we

* ok %k k Kk %k Xk %k

adel
anul

we we we we we

Diablo does all of the character decoding, escape sequences
forward, backward, etc. The list of escape sequences, and
special characters recognized is:

PAPER ;Print any remaining motion
CARRG

BASE ;Base of Mult I/O '
PICH ;Get the interupt mask register
INPUT ;Read the current mask
IMASK sTurn on the bit

B,A ;Data into B

BASE ; Put the mask back

PIC1

OUTPUT

INTRET

3696963 363 3 36 I I3 3 3 3 3 I I I I I I I 36 I I I I I 3 3 I I I I I I I I I I I I I I K I I I I WX

ignored
ignored

* ok k kK %k Kk Xk

0568
0569
056B
056C
056E
056F
0570
0573
0576
0577
0578
O57B
057E
0581
0583
0584
0587
058A

aack
abel
aff

aetx
aht

alf

asp

abs

acr

aesc
aesc
aesc
aesc
aesc
aesc
aesc
aesc
aesc
aesc
aesc
aesc
aesc
aesc
aesc
aesc
aesc
aesc

K %k k ok Kk k k k %k kook k K ok k Kk k Xk Kk *k *k >k *k *k k %k %k *k

backspace
carriage return

SO0 0AIEWNNND O

[
< 5
o o H

ars
aus

OO0 00

ignored
ignored

form feed

etx/ack handshake
horizontal tab
line feed

space

ignored

set tab stop at current print position
clear all tab stops

graphics mode on

graphics mode off

forward print

backward print

clear tab stop

set left margin

ignored
ignored

negative half line feed
half line feed

negative line feed
absolute horizontal tab
absolute vertical tab

set vmi
set hmi

(when received)

k Kk k Kk %k k Xk k dk k k k k k k *k Kk k k k k k % %k % k %k %

o 3 96 336 K 3 3 I 3 3 I I I I I I I K I I I K I I I K I I I I I I I I I I I I I I A KW I KX

DIABLO: MOV A,C ;Get the character to print
ANI TFH ;S9trip off parity
RZ
CPI ADEL ; Ignore delete
RZ
MOV C,A ;Save character
LpA ESCFLG
LXI H,LEVELO ;Level zero characters
ANA A
MOV A,C ;Scan for char in A
JZ LOOKUP ;Look up activity for this character
LDA ESCFLG
LXI H,LEVELA ;Single character escae sequences
CPI AESC
MOV A,C ;Scan for char in A
Jz LOOKUP ;Execute single level escape sequenc
-LXI H,LEVEL2 ;sTwo character escape sequence
LDA ESCPLG
H 36 36 3 I I I I I I I I I I I I I I I I A I KKK ¥ K
.* *
b4
;¥ Lookup scans the table pointed at by HL looking for a match ¥
+* of the character in register A. *
.« ¥ *
?
’

o 363 I I 3 3 I A I A I I I K I I I I I I I I K I I KW I KKK XK

058D
058E
058F
0592
0593

CuI7
0598
0599
059C
059D
059E
059F
05A0
05A1

05A2
05A3
05A5
05A6
05A8
05A9

05AC
O5AE
O5AF
05B1

05B2
05B4
05B5
05B7
0588
05BA
05BB

05BD
O5BE
05CO
05C1

05C3
05C4
05C6
05CT
05€9
05CA
05CC
05CD

LOOKUP: DCR M ;Test if end of table

INR M

JZ GOTHER ;Execute the default function

CMP M ;Otherwise test for a match

JZ GOTHER

INX H ;Bump over character

INX H sBump over function address

INX H

JMP LOOKUP
GOTHER: INX H sBump over character

MOV AM ;Get low byte of function address

INX H

MOV H,M ;Get high byte of function address

MOV L,A ;Form Address of function

PCHL ;Execute it
H 3696 3 36 3 96 36 I 9 36 36 I 36 I I I W W 3 I 96 I I 3 I I I I 3K I K I I 3 I I I I I I I I W I I KKK K I K
. ¥ *
?
;¥ Bach of the following tables contains entries of the form: *
H 1 byte character to match *
Had 2 bytes of address to execute *
;¥ terminated by a first byte of O. *
. ¥ ' ' *
; 36369 3 3 I I 3 I 36 I 3 W I I I I I I I I I 3 I I I W I I 36 I I I I I I I I I I I I I I I I K I I I KK
LEVELO: DB AESC

Dw DOAESC ;Beginning of an escape sequence

DB AFF

DW DOAFF s;Form feed

DB AETX

W DOAETX

DB AHT

W DOAHT shorizontal tab

DB ALF

DW DOALF s;Line feed

DB ASP

Dw DOASP 3Space

DB ABS

Dw DOABS ;Back space

DB ACR

DW DOACR ;Carriage return

DB 0

DwW DOCHAR ;Any other character
LEVEL1: DB " .

Dw SETHTAB ;Set horizontal tab

DB r2! ~

DW CILRALL ;Clear all horizontal tabs

DB 131

Dw SETGRP ;Graphics mode

DB 1 4 1] .

Dw CLRGRP ;Clear graphics mode

DB 5

W CLRDIR sForward printing

DB '6!

DW SETDIR ;Backward printing

O5CF 38 DB '8!’

05D0 4DO7 Dw CLRHTAB ;Clear horizontal tab

05D2 39 DB 9!

05D3 BAO6 Dw SETLMAR ;0et left margin

05D5 30 DB '0!

05D6 9706 DW FUNC1 ;No operation level 1

05D8 41 DB 'A?

05D9 9706 DwW FUNCH1

05DB 42 DB 'B'

05DC 9706 Dw FUNC1

OS5DE 61 DB 'a'

O5DF 9706 DW FUNC1

O5E1 62 DB 'b!

05E2 9706 DW FUNC1

O5E4 44 DB 'D!

OS5E5 E506 Dw NEGHLF ;Negative half line feed

O05E7 55 DB 'y’

05E8 DCO6 DW POSHLF ;Half line feed

O5EA OA DB ALF

O5EB 2EQ6 DW NEGLF ;Negative line feed

O5ED 09 DB AHT

OSEE 0BO6 DW SETTWO ;Iwo character escape sequence

O5F0 OB DB AVT

O5F1 OBO6 DW SETTWO

O5F3 1E DB ARS

05F4 OBO6 DW SETTWO

O5P6 1F DB AUS

05F7 0BO6 DW SETTWO

05F9 00 DB 0

O5FA 9706 DW FUNC1

O5FC 09 LEVEL2: DB AHT

O5FD FCO6 Dw ABSHTAB sAbsolute horizontal tab

OS5FF OB DB AVT

0600 1807 DW ABSVTAB sAbsolute vertical tadb

0602 1E DB ARS

0603 C806 DW SETVMI

0605 1F DB AUS

0606 D206 DW SETHMI

0608 00 DB 0

0609 9706 DW FUNC2
H 3 3 I 3 3 I 3 I K I I I I I I I I I W I I I K I I I I I I I I I I K IE I I I A I I I I I I K I I K I X% K E XK
X ; *
?
;¥ The following routines execute escape sequences, etc. *

¥* *
o 336 3 336 3 3 I H K K I 3 I I I I I I I I I I K I I I I I I I I I I I I I I I I I I ¥ I I I I I I K I K KKK XX

.o o

SETTWO:
060B 79 DOAESC: MOV A,C ;Get the escape character
060C 325800 STA ESCFLG
060F C9 PUNCO: RET
0610 3EFF DOAETX: MVI A,OFFH ;5et the handshake flag
0612 325900 STA ETXPFLG

0615 C9 RET

0616
0619
061A
061D

ozt

0622
0625
0626
0629
062A
062D

062E
0631
0634
0637

063A
063D
0640
0641
0644
0645
0648
0649
064C

044D

0651
0654
0655
0658

0659
065C
065F

0662
0663
0666
0669
066C
066D
0670
0673
0676
0679
067A
067D

067E
067F

CD2206
EB
2A4E00
19
224E00
C9

3A5700
AT
210100
Cco
2A4A00
C9

CD2206
CDBAOT
CD1906
€39706

CD4DO06
3A5600
AT
C4BAO7T
EB
2A5200
19
225200
€9

3A5700

CD4D06
CDBAO7
C33D06

AF
325600
325700
2A5000
EB
2A5400
CDDBO3
225200
3A4700
AT
21606
C9

69
2600

DOALF:
ADJVP:

LFVMI:

NEGLF:

DOASP:
SPDIR:

ADJHP:

SPHMI:

DOABS:

DOACR:

DOCHAR:

CALL
XCHG
LHLD
DAD
SHLD
RET

LDA
ANA
LXI
RNZ
LHLD
RET

CALL
CALL
CALL
JMP

CALL
LDA
ANA

XCHG
LHLD
DAD
SHLD
RET

LDA
ANA
LXI
RNZ
LHLD
RET

CALL
CALL
JMP

XRA
STA
STA
LHLD
XCHG
LHLD
CALL
SHLD
LDA
ANA
JNZ
RET

MOV
MVI

LFVMI
DLVPOS
D
DLVPOS

GRHFLG
A
H,1

VMI

LFVMI
NEGHL
ADJVP
FUNC1

SPHMI
DIRFLG
A ‘
NEGHL

DLHPOS
D
DLHPOS

GRHFLG
A
H,2

HMI

SPHMI
NEGHL
SPDIR

A
DIRFLG
GRHFLG
HPOS

LMAR
HIMDE
DLHPOS
AUTOLF
A
DOALF

L,C
H,0

;Get line feed vmi

;Get vertical motion displacement

;Only 1/48 if in graphics mode

;Get vertical motion index

;Get line feed vmi

;Get space horizontal motion
;Forward or backwards ?

;Negate HL

;Adjust Horizontal position
s Get current adjustment
;Update it

sAnd save

3In graphics mode ?

;Only 1/60 if in graphics mode

;Space increment
;Negative to start with
;Ad just backwards

;Forward printing
;No graphics mode
;Get current offset
;Get left margin

;Don't move yet though
;In Auto line feed mode ?

;Do line feed also

0681
0684
0687
0688
068B
068E
0691

0694

0697
0698
069B

069C
069E
06A1

06A4
06A5
06A8

06AB
06AC
O6AF

06B2
06B4
06B7

06BA
06BD
O6BE
06C1
06C2
06C5

06C8
06C9
06CB
06CC
06CF

06D2
06D3
06D5
06D6
06D9

06DC
O6DF
06E2

06E5
O6ES8
O6EB

CDBEO8
3A5700
A7

210000
C23D06
2A4800
C33D06

CDD904

AF
325800
C9

3E01
325700
C39706

AF
325700
C39706

AF
325600
C39706

3E07
325600
C39706

2A5000
EB

2A5200 -

19
225400
C39706

69
2600
2B
224A00
C39706

69
2600
2B
224800
€39706

CDF106
CD1906
€39706

CDF106
CDBAO7
CD1906

CLRALL:
FUNC2:
FUNC1:

SETGRP:

CLRGRP:

CLRDIR:

SETDIR:

SETLMAR: LHLD

CALL
LDA
ANA
LXI
JIN
LHLD
JMP

CALL

XRA
STA
RET

MVI
STA
JMP

XRA
STA
JMP

XRA
STA
JMP

MVI

STA
JMP

XCHG

- LHLD

SETVMI:

SETHMI:

POSHLF:

NEGHLF:

DAD
SHLD
JMP

MOV
MVI
DCX
SHLD
JMP

MOV
MVI
DCX
SHLD
JMP

CALL
CALL
JMP

CALL
CALL
CALL

WHEEL

 GRHFLG

A
H,O
SPDIR

‘HMI

SPDIR
NOTABS
A

ESCFLG

A1
GRHFLG
FUNCT

A
GRHFLG
FUNCH

A
DIRFLG
FUNCH

. A,A

DIRFLG
FUNC1

HPOS

DLHPOS
D

LMAR
FUNCH

- L,C

H,O
H

VMI
FUNC2

L,C
H,O
H

HMI
FUNC2

HLFVMI
ADJVP
FUNCH

HLFVMI
NEGHL
ADJVP

;Print the character in register C

;Don't move if in graphics mode

sClear all horizontal tabs

;Clear escape sequence flag

;Set graphics mode on

s Turn graphics mode off

;Forward print mode

;Set backward printing mode

;Get current position

;Get offset

;Set the motion index

;Half line feed vmi

;Negative half line feed

O6EE

06F1
06F4
06F5

Co 7
O6F8
06F9
O6FA
06FB

Q6FC
O6FD
O6FF
0700
0703

0706
0709
070C
070D
0710
o711
0714
o717

0718
0719
071B
0716

0722
0723
0726
o727
0724
072D

0730
0733
0735

0738
073B
073C
073F
0740
0741
0744
0745
0748
074B
074C

074D

C39706

2A4A00
TC
B7
17
67
D
1F
6F

Cc9

59
1600
1B
CDO607
C39706

2A4800
CDEAOT7

CD3807
3601
C39706

2A5000

CD3807

JMP

HLFVMI: LHLD

DIVID2: MOV
ORA
RAR
MOV
MOV
RAR
MOV
RET

ABSHTAB: MOV
MVI
DCX
CALL
JMP

NEWDLH: LHLD
CALL
XCHG
LHLD
XCHG
CALL
SHLD
RET

ABSVTAB: MOV
MVI
DCX
LHLD
CALL
XCHG
LHLD
XCHG
CALL
SHLD
JMP

SETHTAB: CALL
MVI
JMP

TABCOL: LHLD
XCHG
LHLD
DAD
XCHG
LHLD
XCHG
CALL
LXI
DAD
RET

CLRHTAB: CALL

FUNCH -
VMI ;Get vmi for full line feed
A,H ;High byte
;Clear the carry
H,A
A,L
L,A
E,C sAbsolute horizontal tab
D,0
D .Form 16 bit tab column
NEWDLH
FUNC2
HMI
HLTDE sMultiply by hmi
HPOS ;And subtract current horizontal pos
HIMDE
DLHPOS
E,C sAbsolute vertical tab
D,0
D
VMI
HLTDE sMultiply by vmi
YPOS ;And subtract the current vertical p
HLMDE
DLVPOS
FUNC2
TABCOL ;Set horizontal tab
M,1
FUNC1
HPOS ;Compute address of current characte
DLHPOS
D ;Get logical position
HMI ;And divide by hmi to get character
HLDDE
D, TABSTP
D sIndex into the tab stop array
TABCOL ;Clear horizontal tab

0750
0752

0755
Q0758
075B
075C
O75F
0762
0763
0764
0767
O76A
076D
O76E
o7
0774
o775
0778
O77B
O77E

O7TF
0782
0785
0788
078B
O78E
O78F
0792
0793
0796
0797
0798
0799
079C
079D
O79E
O79F
OTA2
O7A3
07A6
OT7AT
OTAA

O7AD
0'7BO
07B1
07B2
07B3

3600
€39706

CD3807
11FBOO
23
CDE203
D27107
TE
AT
CA5BO7
115B00
CDDBO3
EB
C30607
2A5000
EB
213006
CDDBO3
225200
C9

2A4100

113000

CDEAQ7
110A00
CDC207
E5
2A4C00
EB

D5
CDC207
EB
D1
EB
CDDBO3
EB
2A4E00
19
224E00
C37808

32B207
78
D300

9

MVI M,0
JMP FUNCH1
DOAHT: CALL TABCOL | ;Get current tab column
LXI D, TABSTP+NUMTABS
TABLOP: INX H ;3tart with next position
CALL HLCDE
JNC TOFAR ;Past last tab
MOV A,M ;Get value of current column
ANA A ;Test if it is set
Jz . TABLOP
LXI D, TABSTP ;Subtract off array address
CALL . HLMDE
XCHG
JMP NEWDLH
TOFAR: LHLD HPOS
XCHG
LXI H,MAXRGT
CALL HLMDE
SHLD DLHPOS
RET
DOAFF: LHLD DFRMLN sMultiply forms length by 48
LXI D,48 :
CALL HLTDE
LXI D,10
CALL HLDDE ;And divide it by 10
PUSH H ;Save this result
LHLD VPOS ;Get logical vertical position
XCHG
LHLD DLVPOS
DAD D
POP D
PUSH D ;Get copy of forms length
CALL HLDDE ;HL mod DE
XCHG
POP D
XCHG
CALL HLMDE
XCHG
LHLD DLVPOS
DAD D
SHLD DLVPOS
JMP PAPER
3 3 H 3 I3 I I I 3 I I I I I I I I I I I I I 3 I I 36 I I I I I K I K I I I I I I I I K I KK N
¥ *
?
;¥ Output the data in register B to the port in register A. *

- %

: *

?
; 333 33 3 I 3 3 3 I 3 I I I I H I I I I I I I I I I I I I I I I I I A I I3 I K IR N

OUTPUT: STA
MOV
ouT

OUTNUM EQU
RET

OUTNUM ; Put port number in the instruction
A,B ;Data to register A.
g 3;Self modified to port number

-1

;* 36 % I3 I I I I 36 I I3 I I K I I I I I I 6 I I I I3 I I I I I I I I I3 I I I K K I I I I I K KKK KX
o« % *
9

* Input from the port in register A. *
o ¥ *

’
’
’**

07B4 32B80T INPUT: STA INNUM ;Put port number in the instruction
O7B7 DBOO IN 0 sSelf modified port number
OTB8 = INNUM EQU $-1 ,
07B9 C9 RET
;**
o 3% *
4
;¥ Neghl forms the twos complement of HL. *
. ¥ *
H

3636 36 3 3 I3 I 36 36 3 36 I I 3636 36 3 3 3 3 I I 36 I 3 3 3 I3 I I I I I I I I I3 I I I K I I I I I KA XK

o 969 I W I I 3 I I3 I I I I I I I I 3 I I I I I3 I I I I I I I I I I I I I I K I I3 I KW I K K

O7BA 7TC NEGHL: MOV AH

O7BB 2F CMA

O7BC 67 MOV H,A

O7BD 7D MOV A,L

OTBE 2F CMA

O7BF 6F MOV L,A

07C0O 2% INX H

07C1 C9 RET
;**
o % *
’
;*¥ Divide the number in HL by the number in DE. Return the *
;¥ quotient in HL and the remainder in DE. *
. ¥ *
H
9

07C2 TA HLDDE: MOV A,D sStart by negating DE and

07C3 2F CMA H moving the left operand to B
07C4 47 MOV B,A

07C5 7B MOV A,E

Q7C6 2F CMA

OTCT7 4F MOV C,A

07¢8 03 INX B .

07C9 3E10 MVI A,16 ;Repeat count in reg A

O7CB 110000 LXI D,0 ;Initial remainder is zero

O7CE 3D DIV3: DCR A ;Test if done

O7CF P8 RM ;Al11 done ?

07D0 29 DAD H ;Shift right operand to the left
07D1 EB XCHG

07D2 F5 PUSH PSW ;Save carry

07D3 29 DAD H ;Shift left operand to the left
O7D4 1 POP P3W

07D5 D2D907 JNC DIVH ;Does it fit ?

0708 23 INX H

07D9 E5 DIVi: PUSH H

O7DA 09 DAD B

07DB D2E507 JNC DIV2

O7DE EB XCHG

O7DF
OTEO
OTE1
O7E2
O7E5S
OT7E6
O7ET

OTEA
OTEB
OT7EC
OT7EF
OTFO
O7F1
OT7F2
O7F3
O7F4
OTF5
OTF6
O7TF7
O7F8
OTF9
O7FC
O7FD
OTFE
O7FF
0802
0803

0804
0807
0808
0809
080A
080D
O80E
0811

0812
0813
0814
0817
081A
081D

23
E3
E1
C3CEQT
E1
EB
C3CEO7

4D
44
210000
8
B1
c8
78
B7
1F
47
79
1F
4F
DC0208
EB
29
EB :
C3EFO7
19
c9

2A5200
7C
B5
c8
2A5000
EB
2A5200
19
7C
A7
F22008
2A5000
CDBAO7
225200

INX H

XTHL

POP H

JMP DIV3
DIV2: POP H

XCHG

JMP DIV3

o 3636 36 3 I I 3 3 I I I I I I I I I K I I I K W I I I I I I K I I I I I I I I I I I I I NI I I IR K KN
*
;¥ Multiply the contents of HL by the contents of DE. *
. % ; : *
W 36 I I I I I I I I I I I I I I I I W I K I I I I I X

-

e we

DY IR

HLTDE: MOV
-MOV

LXI

MULT: MOV
ORA

RZ

MOV

ORA

RAR

MOV

MOV

RAR

MOV

cC

- XCHG

DAD
XCHG

JMP

DADDE: DAD
RET

ODE © vUaQ W Pr QPO

; 96 336 2 I 3 3636 I 3 I W I I I I I I I I A K A K KK I I KX K
;* . *
;¥ The routines below actually interface to the printer, *

;¥ causing paper feed, carriage, and print wheel motion. *
% *

?
; 69 336 3 I I3 I I I 336 W I3 I I I3 IE I I I3 I I I K KR

CARRG: LHLD DLHPOS ;Check for any accumulated motion

MOV AH

ORA L

RZ

LHLD HPOS ;Check for to much motion
XCHG

LHLD DILHPOS

DAD D

MOV A,H

ANA A

JP LFTOK

LHLD HPOS
CALL NEGHL
SHLD DLHPOS

0820
0823
0824
0827
0828

OB
0831

0834
0835
0838
083B
083E
0841

0842
0845
0846
0849
084C
084D
084E
0850
0853
0856
0858
0859
0858

085F

0860
5861
263
r.’§j6
0867
0869
086A
086D
O86E
0870
0871
0872
0875

0878
087B
087C
087D
O087E
O8TF
0880
0882
0885
0888
088A
088B
088D
088E

2A5000

CDE203%
DA3EO8
2A5000
EB
213006
CDDBO3
225200
2A5000
EB
2A5200
19
225000
2A5200
7C

AT
OEOO
F25808
CDBAO7T
OEO4
EB
210000
225200
7B

7D
E601
CA6A08
79
F608
4F
CDF406
7C
E603
B1

67
112010
€3C908

2A4EQ0
1C

B5

c8

7C

AT
0)31010)
F28A08
CDBAO7
OEO4
7C
E603
B1

67

LFTOK:

RGTOK:

POSH:

NOHHLF:

PAPER:

POSV:

LHLD
XCHG
LHLD
DAD
LXI
CALL
Je
LHLD
XCHG
LXI
CALL
SHLD
LHLD
XCHG
LHLD
DAD
SHLD
LHLD
MOV
ANA
MVI
JP
CALL
MVI
XCHG
LXI
SHLD
XCHG
MOV
ANI

MOV
ORI
MOV
CALL
MOV
ANI
ORA
MOV
LXI
JMP

LHLD
MOV
ORA

MOV
ANA
MVI

CALL
MVI
MOV
ANI
ORA
MOV

HPOS

DLHPOS

D
D,MAXRGT
HLCDE
RGTOK
HPOS

H,MAXRGT
HLMDE
DLHPOS
HPOS

DLHPOS
D

HPOS
DLHPOS
A,H ‘
A

c,0
POSH
NEGHL
C,DATA11

H,O
DLHPOS

AL

1
NOHHLF
A,C
DATA12
C,A
DIVID2
AH
DATA910
c

H,A

D, CRSTRD
CMND

DLVPOS
A,H

=

;O0therwise move only to maxright

;Update the horizontal position

;check if required motion is to the

;Reset the horizontal increment

;No half spaces

;Check for any paper motion

;No motion

088F
0890
0893
0894
0897
0898
0899
089C
O089F
08A2
08AS5
O8A8
O8A9
O8AA
O8AD
O8BAE
08B1

08B4
08B7
08B8
O8BB

O8BE
08BF
-08C2
08C5
08C6

08C9
08CC
08CF
08D0
08D3
08b4
08D5
08D6
08D7
08D9
08DA
08DB
O8DE
08EO
O8E1

O8E4
O8E7
O8E8
O8EB
O8EC
O8ED
O8EE
O08F1

08F4
08F5
O8F8

O8FB

CDEAO7
110A00
CDC207
D1
EB
CbC207
EB
224C00
210000
224E00
E1
111008
C3C908

E5
CD0408
CcD7808
E1
114020

3A4000
CDB407

WHEEL:

CMND:

PUSH
LHLD
XCHG
LHLD
DAD
PUSH
LHLD
LXI
CALL
LXI
CALL
POP
XCHG
CALL
XCHG
SHLD
LXI
SHLD
POP
LXI
JMP

PUSH
CALL
CALL
POP
LXI

LDA
CALL
ANA
JZ
MOV
CMA
MOV
MOV
ANI
CMA
MOV
LDA
ADI
MOV
CALL
LDA
MOV
CALL
MOV
XRA
MOV
LDA
CALL
MOV
LDA
JMP

END

H ;Save paper motion
VPOS

DLVPOS ;Get logical position
D .

H ;Save for now

DFRMLN ;Get default form length
D, 48

HLTDE ;Multiply by 48

D,10

HLDDE ;Divide by 10

D

HLDDE ;Compute HL mod DE

VPOS ;9ave new vertical position
H,0 '

DiVPOS sReset vertical motion

H

D, PFSTRD ; Paper feed strobe
CMND

H
CARRG ;Position the carriage first
PAPER

H
D, PWSTRD

BASE
INPUT
D
CMND
AL

L,A
A,H
DATA910+DATA11+DATA12

H,A
BASE
DAISY?
B,L
OUTPUT
BASE
B,H
OUTPUT
AH

E

B,A
BASE
OUTPUT
B,H
BASE
OUTPUT

PARTS LIST, MULT/IO rev. 4

DESCRIPTION ITEM CODE QUANTITY
Diode 1N360@ [1N914] 028-1N3609 1
Transistor 2N3906 028-2N3906 2
Transistor 2N2222 928-2N2222 1
Regulator +5 volts 228-7805 2
Regulator +12 volt @#28-78L12 2
Regulator =12 volt 028~79L12 2
Resistor 3.3 ohm 1/4w 5% 930-C0205-033 1
Resistor 1K ohm 1/4w 5% 939-C0205-102 2
Resistor 10K ohm 1/4w 5% 930-C0205-103 3
Resistor 100K ohm 1/4w 5% 939-C3205-105 10
Resistor 1.5K ohm 1/4w 5% 930-C3205-152 2
Resistor 330 ohm 1/4w 5% 930-C0205-331 2
Resistor 3.3K ohm 1/4w 5% 930-C3295-332 4
Resistor 399 ohm 1/4w 5% 230-C0205-391 1
Resistor 4.7K ohm 1/4w 5% 230-C020@5-472 1
Resistor 560 ohm 1/4w 5% ' 030-CP2@5-561 1
Sip 180 1/8w 5% 8 pin ‘ 230-s0165-181-98 2
Sip 3.3K 1/8w 5% 8 pin 2390-S9105-332-08 2
Sip 3.3K 1/8w 5% 19 pin 030-S0105-332~-10 1
Capacitor .1 uf mono cap 033-M@@GIZ1C 14
Capacitor 20pf silv mica @33-SMP29 2
Capacitor 33pf silv mica @33-SM@33 1
Capacitor 56pf silv mica g33-sMB56 1
Capacitor 1@@pf silv mica @33-SM109 1
Capacitor 1 uf dip tant 933-TD@1@-35 19
Crystal 32.768 kilo hz @37-KZ32.768 1
Crystal 18.432 mega hz @37-MZ18.432 1
Inductor 2.2 uh axial J39-IND2.2 1
8 Position dip switch 941-DS@8 3
Slide-on connectors @41-SLDJMP 29
PCB Header sin str nhd 2 B943-02SSF 1
PCB Header sin str nhd 3 P43-03SSF 2
PCB Header sin str nhd 4 @43-94SSF 1
PCB Header din str nhd 14 @43-14DSF 3
PCB Header din rt> hd 26 @43-26DRH 3
PCB Header din rt> hd 59 P43-50DRH 1
Screw 632 x 5/ 16 pan phil 296-06X516PP 2
Hex nut 632 098-0632HN 2
Heatsink low prof 3 fin 994-Lg321 2
IC Socket 14 pin low prof @39-S0CLP~14 °
IC Socket 16 pin low prof @39-SOCLP-16 10
IC Socket 20 pin low prof B39-SOCLP-20 9
IC Socket 24 pin low prof @39-SOCLP-24 2
IC Socket 28 pin low prof @39-SOCLP-28 2
IC Socket 40 pin low prof @39-SOCLP-40 3
I.C. 1458 B26-1C1458 4
I.C. 1489 [75189] 926-1C1489 3
I.C. 1999 B826-1C1990 1
I.C. 25L82521 BG26-ICLS2521 1
I.C. 74LS02 B@26-I1C74LS02 1
I.C. 74LS04 @26-IC74LS04 2
I.C. 74LS125 P26-I1C74LS125 1
I.C. 74Ls174 #26-1C74LS174 1

PARTS LIST, MULT/IO rev. 4

DESCRIPTION ITEM CODE QUANTITY
I.C. 74LS175 026-1C74LS175 1
I.C. 74Ls244 026-1C74LS244 4
I.C. 74LS374 ' 026-I1C74LS374 2
I.C. 74Ls38 926-IC74LS38 1
I.C. 74LS399 026-IC74LS399 2
I.C. 74Ls42 026-1C74LS42 1
I.C. 74LS75 @26-I1C74LS75 1
I.C. 8131 926-1C8131 2
I.C. 81LS95 P26-IC81LS95 1
I.C. 81LS96 026-IC81LS96 1
I.C. 8250 026-1C8250 3
I.C. 8259 026-1C8259 1
I.C. 82S1900 FPLA REV. 3.1 026-1C82S100 1

COMPONENT LAYOUT/SCHEMATICS

(.

‘]f_p‘z-l

‘_j{::}—l

Y4_ 50

n 2 [Coe] Eoow ps =01
16 7
b 8250 (1) 825100 8259- A
) sSwW sSW
3 8250 (2) — _:'__
78 108
b 8250 (3) .
A
. :
— RO R1
2 A ‘.’J‘.’s'? £
1— Vi 0123436 7 PINT

P6

1990

—15

BOARD SELECT & DEVICE SELECT LOGIC

stp
TYP 3.3k YEC 33K
25052521 . L 2D Ycc LS
A23 B1 A 2 [7, Lo~ PHANTOM [g7>——0 ol 41 PHTH
o] 30 ln[15 2 78 SIB . |Vee
A22 By Ag EAS ——20 o2y 8131 T[___A" :'3,__4“ L 19B
| 2 15 2
sV BANK 8 T oo,
a1 [2>%8,)l H4—"eas —1-Ho o 18C .
1 w[3.7 13 3
7 A5 B, T JAs—t—20 oY
A28 [61>—- L Bg Aei13 EAL — 13004 L |
3 {3 13 4
A fee>—38, T JAY 200
ats E5>—2e; aglle—ea3 12070 2 - {
! s 6 | Y 12 5
[«) A13 [65>—8, T IA13 — 50 o2
a1s [5>—308, mft EA2 15 ~~o§ 33
{ 13 LZ_EN— 11 6
A2 >N — N~ 5
a7 >, a8 Cear {180 L % Ts me <
| 1% 9 ——
] % FE MEM ENBL
A16 B A, 8 EAB —QO\OL‘;
15 =117
_ Bg STO
PHTM HE, Eope N b |
PHTM ——0 16 R vee
sp TNFOT —4T558N_s
Tvea3kn | ‘e8 —— _ sl7C Io
8131 1_2/\,_‘ 78 OuUTPUT | . LS75
A7 B TP 155 ~~o2. cour ,{ 118
| 8B TV T e 1> B GUTPUT
A6 E>—Bs Tepe ¥) By
3
] swe B>——2o,
As E>—Ye B 13, 044 2 g, INPUT
LSB4
(5 I ‘
AL Bs TsP2 126034 MSTE 3@0‘ 6
5 6 |6 11 6 :
A3 [I>—He; 1 ob 7 9, Se
< oo 8 BE>—Hp, =
18 ~]9 9, Ss
1o T, E T0 ENBL .
3 = In -
e s
18
SIP PDBIN (78> 1s38), 8 N— 13
g2s188 TYP3.3Kkn | CC 69 o |0 READ Ga
psyne [Fo>—21 Ig 6] L/\,_-.
Fy ENBL ABUFF 33 pF Vee
26l 8A | 338N
HOLDA Iy 1w [TV LS175
Fy ENBL CNT 1 BANK
21 12 3
a1 B>y l TV — DATA 2 D3
¢ A L BUFF ENBL 148
25 ' ! 2
A2 [61> I [_2‘ v - Q ENBL INT
18 Fy |2 WAIT ENBL oATA 3 ——p, !
4
A1 Ig LS42
18[8 15 TN 13
Fa A T DSY 8 IN DATA & o, _ | S
AB I 9B el 3 a, RESTOR
o [7 V] u a,>—— bsve out
7 6 B —_ 5
SINTA 1 Og—— bsv1out DATA 5 D; 6
1[5V 3 21, o a, DVR ENBL
— 2 Fyq c G CLK IN — 9
wR [>—31, _§l, MSTB CcLK
‘ e 2[5 i 2|, & CLK ouT —ja_
J— 5 — — —
READ —3 I G, |2 ENBL INTR RESET
- 9 [—
10 23, g, ENBL CONT
—_— 28 =11 e 1
MEM ENBL Iis G MSTB Sy 3
N . e - 2 o MODE 8
10 ENBL I a5 ENBL RO Sg
MobE 8 —24 1,5 [ENBL R
5 -CONTA 8114 WAIT ENBL
S = |19 1
3-CNT @ - Is CE 213 PRDY
3-CNT 1 Iy Vee ‘ Ls125
PRESET [75 2 Bea -
LS38),3 RESET 131w>012— RESET
Foc [o9 1{7C
: MULT-1/0 INTERFACE REV.4 PaGE 10f 5

©1981 G. MORROW

2716 .

ae F>—ag op]

DATA

i

7 .
. 5D o 18 DATA 6 3 B> az3
As E>—2ae og [OATA 1 8> a2z
s
23 1% 1 262> A 21
Ag [B>—a 0 DATA &
) of 2 pam 3 ! > A 20
a1 [E>—Yay o 1 oATA 2 1 S Fo>am
A6 [F>—2]a 03 19 DATA 1 t-eaz ——4m anfl >
6 2, oATA 8 1At — 8y ot 7> ar
0; | A
As [B>—3ag 1 1-eas —Ying o2 [iE> ate
1 EnoL,
WeL,
3 A
A A,
3 vee 3 - RBOREWBL 19/EweL g
a3 E>—2as 18K LS244
1)
1- a5 —Umne ot Als
3 21 |7 18 — 5, QUTg
A2 [E>—25a vep <57 Fwr 9C)
2 78 Vo 1 - JAn 81Ny ouTy An
A1 71 A siP 1-0An Mg on 55> ana
3.3Kkn 13 7
8 — |28 8 1 -JA12 INg OUTg A12
Ap Ta>—8la € 1- READ .
o L 1“\Bc’ ¢ £ IN; OuUTy Al
ENBL RB — 124 TS vec —2iny oury (7> a0
Voo — s ourgl———[FT> A9
2716 1S 5
Ve ——{IN7 oOuUT ——{:> AB
a8 B>—ag 0gPl—— DaATA 7 "
22| 6D o, DATA 6 i 19 bty
As [B>—=ae s 3 - 'ADDR ENBL ENBLg
o6 DATA 5
23 14 LS244
A8 [B>—"Ha Og = DATA 4 r'—— >
: oS 13 DATA 3 Voo —2ik BCMY" A7
1 ‘ 18
A7 A7 0. |1 DATA 2 vcc—1: N,y our, A6
3
vec——{iNs ouTg As
a6 [B>—2ag o, 2 DATA 1 1§ 5 5
9 DATA 8 Vcc mv, M7 —-{::> A4
04) 12
AS As Yee 1IN, wu“——@ A3
e o, v 3 - FourR ——&fin; our PA{o7> a2
D 4 ce 3 - two — i, out, 2 (68> At
s [}
A3 [ED>—Sa, wka 3 - ONE 13me outglL—{70> a8
1 Jommmme
EN
a2 [B>—a, vl ™o T FwR S Y g vee
3 - ADDR ENBL END
, 78 s
3.3kn
A1 A N
_ > . 22> ADSBL
AB Ay OE [2— 1 -READ Lst2s ~
e 18 Kn
ENBL R1 [+£3 K " —WW
1-ENBLABUFF v 2N2222
L3158
LS244
. 81LS95 18
DATA 7 ™y _ ourq e3>
po7 pi>—2{N, ooy B DATA 7 ol 12D 4
18 17 DATA 6 — g ouTg P—93>
006 [A>——————tHINg 0T, DATA 6 DATA 5 Slin, ouT
16 15 ; our S —— e3>
vos [F>—EhN, our DATA 5
wl 7 "4 0ATA ¢ — NG ouTg
004 [BE>——]INg OUTg DATA 4 11
003 E>—12fine ourgft! DATA 3 DATA 3 INs ouTsf—— (T3>
ATA
ol ° o pata 2 —3iv, our, 20>
o2 [E> N, out,| DATA 2 s 1
o1 1 I \ 0ATA 1 —2iINy ouTy e {30>
@ DATA
P ’ls pATA 8 ——HIN, ouT, I8[G8>
008 [36>—JINy OUT, DATA B 1| e
1D EWBL,,
ensL, 1 - BUFF ENBL ——E' ENBLg
WO [7> 191 ENBLy

MULT-1/0 INTERFACE REV.4 rPaGE 2 of §
ADDRESS & DATA BUFFERS, MEMORY ©1981 G MORROW

1.5 KN

Ve —N\ L‘l)
4.7KA 2N3986 . oA
ol 4 ' Iu 1
TYPIB KN WF
L A—Slcs o P2 I A
Ls176 | S 200F
14 15 6 12 P6
DATA 8 — 0615806 A~ Olen F—t—
pata 1 — 2 p "0 P2 AUk |, S 2eF| 2768k
3 e
DATA 2 Mo, o, 2 —A— o —
2 2
DATA 3 Uor oy Y C4 . [—‘V-—Vcc LS125
1 In v
DATA 4 4 D2 Q2 2 Ar C2 DO p— a DATA 8
‘
DATA 5 810, a4~ — st8 vee
— 9 7 18]
1- CLK vss TP 4 151
CLKOUT LK R 47— ss i 7 a2 CLK INTR
188KN 3 1998 ’ 138
V Y
o ileu Lsat LS398
- ; _—n——-—.
1~ RESET KA 1-TKIN ol — “lcoir
2N3966 —Nj?
2 Ls398
L N ant —
1- READ 3 |l ol ADDR ENBL
]: >__T —B A
‘ PR L
13C o)
> 1 - RESET Yler Q¢ s FOUR ENBL ABUFF—o
i C B A
LS8t
CNTI ——’@03— EnTl .
Ls125 P
> 1-RESTOR — 4>t RESTORE
Ls398 (0 ‘
> ETRTR o LS
> ! - ENBLIN 8 5 DATA 7 o s P———f3> ®OFT
Qg| CNTI o 14A 2
B> 138 |, DATA 6 bg | ag |—{2T> PW STE
B> - 2} o Gc CNTO DATA 5 1y og P=—{17T>CARSTE
1 - ENBL CNT ‘ —
E>— DATA & Mo, op [&—{5>FFsTa
DATA 3 %lps as b1z
2 p——
> DATA 2 Up, o p—{3 >N
s —_—
co>— DATA 1 Yo, ep——>7W
>— DATA 8 Hoy o3 }—{@®>T3
A4 11
SIP (8PIN x2) 1 -DsV T o0t cLK
PL TYP 18001 Voo 1L 596 '_1| ENBL
__ [V
PNTR RDY [28> 12lins outg DATA 7
: s LS374 P4
. 15A . —
CHECK [12>— i< 8m, our2 DATA 6 DATA 7 ——4+ D4 13A°‘ ———4>08
V1 . ’ DATA 6 135 g 23> D7
PWRDY [27>- INg OUTy DATA 5 DATA § 14 bg 0g [[2>5%
[z 17 16 ==
TAR ROV [26> Hin, a2 DATA 4 DATA 4 o, a,[—{%@>5s
1 , DATA 3 18lps agfi— 33> D¢
FFROY Ny oty PA— 2 —
PF RDY @ 1 1 DATA 3 DATA 2 3 D1y Q4 —. D3
3V 4 5
TOVER [5 > 2 18ling ouTg L7 DATA 2 DATA 1 02 o,p—{38>707
7 s —
V1 % is DATA 8 05 o3 P—{37>D1
PAPER [3 > N, ouT, DATA 1
s 1
7 " '3 1-DSY B ouT CLK
RTBBON) INg OUTg DATA B \ - SVR-ENBL] p—
ENBL,
1-D5Y 81N ——-E'g | ENBLg
2>] MULT- 170 INTERFACE REV.4 PAGE 3 of 5
CLOCK & PRINTER LOGIC ©1981 G. MORROW

P1 J1 P1 1489 8250
A H
SERIAL IN [2> o o "b@’ Ll poen
ROUTA ——Bo ol 3> sermc out 1489 A2 [> 26} a, 2C
SIGNAL DETECT [B>>- Co o % 38| rres
RDTR, —5 K DT READY 1480 A1 [B8>—F] 1l P sooTpl— oUTs
DATA SET READY [> o ot 10465508 k2l o
F M
RRTS, ——0 o———{& > READY T0 SEND _ g9 A [> 2814,
CLEAR TOSEND [> G XM 3 U 38 &ve
DATA 7 D; OTRP>— BTR,
REFERENCE ,
23Kk DATA 8 —{Dg
: 1458
v A 51 patA 5 —Sipg
cc , .
o e ROUT, DATA & D,
OUT, -+ DATA 3 tlo; RS P2— Rsa
DATA 2 3o,
14
LIRSS pata 1 —2{0y
- , 188 S.! ROTR, DATA @ og
ot -
A 1-sp —Hcesg NRPE— gnR,
1-5 Bes,
TN 1 - {0 ENBL %l
188 D7 RRTS, P 1 - READ 25T souT|S
RTSA 51 S 18 _g___l
PWR [F7>—— 181 555TR RCLK
3s 22
. 1 - RESET " MR DISTB
5 - BAUD CLK XTALy DOSTBHE
vee 2fm apsfS
P2 J2 P2 1489 8258
SERIALIN [Z> A, oM /. "]STN
RoUTy —L2o ol SERIAL OUT w8 A2 0> 2 ,, 2B
SIGNAL DETECT [E>>— Co o '3 381705
pe—— L L] p——
RoTRg —20 DT READY 1489 A1 Ay Sout oUTg
DATA SET READY [6>> Es ot "8 kid
RR1Sg —F5 oM READY TO SEND 1,89 Ap Ag
CLEAR 7O SEND [5> G o 13 E) 1 36| =rs
DATA 7 8 D7 7R |22 DTRg
JN_1458 DATA 6 106
REFERENCE . . DATA § 6 e
1BA ROUTR 5
— : D4
ouTg DATA 4 R |
DATA 3 0; RISPE— WSy
3
1458 DATA 2 Dy
* 7 DATA 1 210,
1AB RDTRg s
0TRg 6]- DATA 2 O
1- 85 2les, nRPE — inTRg
13
SIN1458 1- 59 csy
1 1 -TO ENBL 14153,
RRTS,
: & 1- READ —2UDISTR sourlS
mg o 18l —— zl
P2 PWR [77 > DOSTR RCLK
1- ReseT — 35 piste|22
5 - BAUD CLK 16 1AL, DOSTBI'S
vee mT apsfe
MULT-1/0 INTERFACE REV.4 pPaGE 4 of 5

SERIAL PORTS

A&B

©1981 G MORROW

P3 33 P3 1499
SERULIN [T>— A & ‘Ec‘ 0 o "
ROUT, —Fo ol SERIAL OUT o A2 2814,
SIGNAL DETECT [> S ol 'bc’ RLSD
ROTC; — % of——{28> DT READY %89 At @>—2,, s ot
DATA SET READY [6 > B & 100N .8 35
M 28
READY TO ssnon uss As [78 3SA.
6. N
CLEAR TO SEND [5 > © o 63 cTsS
DATA 7 8o, O DTR¢
DATA 6 I bg
6 - REFERENCE e DATA § S1og
> RoUTe DATA 3o
—) 4
ouTc A-_Auss . ¢
DATA 3 Dy
pATA 2 ——3b,
5
* . orc DATA 1 20,
1AA R
6| ¢ P3 DATA 8 Uos
OTRe 1458 12 8
1-Sg csy INTR| INTR
1-54 Bics,
2 M 1-[0ENBL. —— 32
N 1- READ 2 SisTR Bour'_-%]
[ey, 3an PWR 18505 TR RCLK [
—l 2
56 pF_ J Toan M2pF 5 c::”: 7 1- RESET 3BSlur oistaf2
18.432MHz] D _1 BAUD CLK 16
’ 13C vee 2 7
1[5 18 AR
LSB4 1 - 3
E o q BAUD CLK
Vee
SIP
' 33KN
8259 1-enBL INT —3TS5RN 4 19
1- ENBL CONT cs INTHZ 12] 7C
1A
INTRA 21lira; BN [e— CONTA
INTRg 22 IRQ, 4
23 DBy DATA 7
PL INTR¢ IRQs s
LSB4 DBg DATA 6
PW RDY @—%‘———ﬁ IRag DBgfS DATA 5
0B, [L—— DATA & A s
3- cLk INTR —231Ra, 8 — A & o—[73> FiNT
DB, DATA 3
o8, |2 DATA 2 o— 1> V17
ho
0B DATA 1
! 5 o—{8> Vs
11 P5
08y DATA B
B — o—1{8> s
15 il
caspfs— 1o
ae [B>—=="c/5 %l it o8> V%
CASy |
1- READ UaD cAsglZ o] o—{7> VI3
PWR [>——2WR IR0, {22 18 5Fa it Es o—T6> V2
LssL .
1Ry 2 & 5 o—{ 5> W
— 26 18 AL c
1- ENBLINTR TACk IRog o@ 5 o {T> T
MULT- 170 INTERFACE REV.4 PacE 5 of §
SERIAL PORT C & CONTROLLER LOGIC ~ ©1981 G MORROW

INDEX

A

ACE INTERRUPT PROGRAMMING, 19
ADDRESSING RAM AND EPROM, 5
ADI, 37, 41

AEOI, 38

B

BANK SELECTION, 8
BATTERY BACKUP, 29
BAUD RATE, 14

BCD, 24

BUFFERED MODE, 37

C

CALENDAR CLOCK IDIOSYNCRACIES, 28
CALL ADDRESS INTERVAL (ADI), 37
CASCADE CABLE, 48

CLEARING CLOCK INTERRUPTS, 29
CLOCK COMMANDS, 25

CLOCK PORT, 25

D
DRIVER ENABLE, 22

E
EI, 34
EOI, 43
EPROM, 5
address, 6
EXTENDED ADDRESSING, 7

F

FORMAT OF THE 1999 TIME, 27

FULLY NESTED MODE, 34

FUNCTIONS OF THE GROUP SELECT PORT,

G
GENERATING AN OUTPUT STROBE, 23
GROUP PORT ASSIGNMENTS, 4

INDEX

I
I/0 map, 4
Icw, 39

IN-SERVICE REGISTER (ISR), 36
INITIALIZATION CONTROL WORD 3 (ICW3), 41
INITIALIZATION CONTROL WORD 4 (ICwW4), 42
INITIALIZATION CONTROL WORDS 1 AND 2, 39
INTA/, 31, 38

INTERRUPT MASK REGISTER (IMR), 36
INTERRUPT REQUEST REGISTER (IRR), 36
IRR, 45

ISR, 45

Intel 8889, 31

L
LTIM, 37, 41

M
MASTER/SLAVE MODE, 38
MICRO-PROCESSOR MODE, 37

N
NESTED MODE, 34

°

oCw, 39

OPERATION CONTROL WORD 1 (OCW1l), 43
OPERATION CONTROL WORD 2 (OCw2), 43
OPERATION CONTROL WORD 3 (OCW3), 44

P
PHANTOM, 31

9
’
PIC INTERRUPT VECTORS, 32
PIC

initializing, 39
POLLED MODE, 33
POWER ON JUMP, 9
PROGRAMMING THE 1994 CLOCK: SETTING THE, 26
PROGRAMMING THE 19949: READING THE TIME, 27
PROGRAMMING THE CLOCK: INTIALIZATION, 25
Phantom, 9

R

RO, 5

Rl, 5

RAM, 5

address, ©6
ROTATING PRIORITY - MODE A, 34

INDEX

ROTATING PRIORITY - MODE B, 34

S

SAMPLE SERIAL I1I/0 ROUTINES, 16

SNGL, 38
SPECIAL MASK MODE, 36

T

THE CLOCK PORT, 24

THE DAISY PORT AND INTERRUPTS,
THE TIMED INTERRUPT GENERATOR,
TIMING CONSTRAINTS, 29
TRIGGERED MODES, 37

Lo
z-80, 31

a
addressing
extended, 7

c

cascade, 38

clock, 25

clock architecture, 24
clock commands, 25

clock pinout, 25 :

d
daisy port, 20
disabling interrupts, 47

e

enable interrupts, 34

extended address
disable, 6, 7

£
format
clock, 27
g
group, 2

group select, 3

23
29

INDEX

i
in-service register, 45
input

parallel, 20, 22
interrupt acknowledge, 9
interrupt enable, 38, 45
interrupt mask, 36, 43
interrupt request register, 36, 45
interrupt vectors, 32
interrupts

z2-89, 31

m

mask, 36, 43

master, 48

memory, 5
address, ©

n
nibble, 24

gérallel input, 22
parallel port, 20
polled mode, 45, 47
port address, 2
port select

interrupt enable, 45
port

group select, 2, 3

parallel, 20
ports

assignment, 4
priority, 32, 33
program counter, 31
programming parallell ports, 22

r
ram, 5

address, ©

bank select, 8
register

mask, 36, 43
rotate mode, 44

]
setting the clock, 26
setting time, 24
shift register, 24
slave, 48

INDEX

special mask mode, 45
specific EOI, 43
status registers, 45

PIC, 36
strobe, 24, 25
switch

address, ©

v
Vector address, 32, 40, 41
vectored interrupt lines, 32,

w
wait state, 5

38

