“Wunderbuss Input/Output Controller

Technical Manual

CONTENTS

INTRODUCTIONOOO'00..too...ooo'..ooooco.....oo.ooo0'00000
WB I/O ACTIVE TERMINATION.OOO..'.ooto...o-...o..oo.o.ooo

I/O ADDRESSINGO.‘Q....'..O..O".C..‘....Q.C.OO.....O....
3010 I/O Port AddreSSing.a...........-..............o...

6.

3.2. GROUP SELECT POrt BASE+7.¢ccecetessececcscscosesons

THE INTERRUPT SYSTEM::cceecceosccococscsscosossscososscscsssss
4.1. The Programmable Interrupt Controller (PIC)....

4.2. PIC Interrupt VeCtOrS..cceeeesceesossssssccssssscss
4.3. PIC MOA@S e eetoeoesecscosocsasscsssasosssssnsasssssse
4.3.1. Triggered MOdE@S .. ccceeeccccccccscsaccssscas
4.3.2. Master/Slave MOAE€.e:eceeceeeceoscoccescanns
4.3.3. Buffered Mode....cceeeeeceeccocssaosccnsoasnss
4.3.4. End of Interrupt (EOI) Mod€.:eeceeeeecn cee
4.3.5. Polled MOAE.+ e e eoeeseessecccscssasocccsssnss
4.3.6. Nested MOdE.eeteeeececeocsoccossosscansocss
4.3.7. Rotating Priority — Mode A...iieeeceesosos
4.3.8. Rotating Priority — Mode Be:eeeeeoeeoocoons
4.4. PIC Status RegistersS...cceeececssecsssscssscscsane
4.4.1. Interrupt Mask Register (IMR)...c.ceceeas
4.4.2. In-Service Register (ISR)..ceseeeeccccccss
4.4.3. Interrupt Request Register (IRR)...ceo0ce.

PROGRAMMING THE PIC.O0.0..-....0000000000...0

5.1.

5.2.

Initialization Registers...cececerescecccccccces
5.1.1. Initialization Control Word 1 (ICWl)....
5.1.2. Initialization Control Word 2 (ICW2)....

5.1.3.
5.1.4.

Operation Control Registers....c.cece..
Control Word 1 (OCW1l).

5.2.1. Operation
5.2.2. Operation

Control Word 2

(ocw2) .

Initialization Control Word 3 (ICW3)....
Initialization Control Word 4 (ICW4)....

* e 0 0 0 o

5.2.3. Operation Control Word 3 (OCW3).ceeeeeeons
5.3. Interrupt Status Registers..c.c.ccececceccccccccecss
5.3.1. Interrupt Mask Register (IMR).....eceeeeee
5.3.2. Interrupt Request Register (IRR)..sceeeess
5.3.3. In-service Register (ISR):cecesccsssccaass
5.4. System Software RequirementsS...c.cceeeeeccscccccns

ACE SERIAL PORTS..000.--.o.oto.oo..'oo..--..

PROGRAWING THE 825@....C.......‘..0.0.'....

7.1. Baud Rate:..iceeeecsrcececcecscsccssesoscsossococoasosasscse
7.2. Initialization.:.cceeeeeeecessecocscssssssscsssscssas
7.3. Serial Device InterruptS.eccceccecesccscsccscsssaces
7.4. ACE Interrupt Programming.:..cceeceecescssscscccsccccscs

® o0 00 000900

wwN

WOWVWOWOOOIoOWU

20

21
22
23
26
26

TABLE OF CONTENTS, CONT.

8. THE PARALLEL DAISY-WHEEL PRINTER PORT::cccececcoscccscscs
8.1. Programming The Daisy-Wheel Printer Port............
8.2. Generating an Output Strobe..cceceececcscrsessccsacccse
8.3. The Daisy-Wheel Printer Port and InterruptS.cccec.ec.

90 THE AUXILIARY PARALLEL PoRT...o.o.o.o...oQ'..ll...oc..oo.

10. THE 1990 CALENDAR/CLOCK CHIP:ceooeoscocscsosacsonscscsccsns
10.1. Clock InitializatiOn.cececcecesoetocccoscsscsoscsoccsns
18.2. Clock Programming...cceceececcsssescccsocsssccscoscsccses
13.3. Calendar Clock IdiosyncracieS.:cccceececesseoscccccosss
10.4. Strobe and Clock Timingecceesoeescoscscccsoscosccscasses
10.5. Time/Date SOftWaArE.:.ccceseececsccssosssccsssssssssesos
10.6. Software Flow for Reading the Time/Date.....ccceess
10.7. The Timed Interrupt Generator.....ccceeeececacccnsas
13.8. Generating a Timed Interruptec.icececesceccccccccsscscs
10.9. Clearing the Timed InterruptS..cccececccccescccoccecs
10.10. A Good Random Bit..ccececeeeceesossssosssssscsccccnsocs
19.11. Generating Interrupts at Non-standard Intervals...

11. LIST OF REFERENCES.....0.00‘0..00.......0'..‘.0..’.0..0..

Appendices

A. SOME NOTES AND CAUTIONS .¢eccecececssccoscccsssosessses A=l
B. WB I/0O CONNECTORS, SWITCHES AND JUMPER OPTIONS...... B-1
C. TIME DISPLAY/SET SOFTWARE PROGRAM................... C—l

PARTS LIST
COMPONENT LAYOUT/SCHEMATICS
SUBJECT INDEX

27
31
32
32

33

35
37
38
41
41
41
42
42
43
43
43
44

45

N
|
[

(1]

wwww

1
s o0 e0 o

BWN -

>

(S, C, C, C, WO, W)

I

[IO B - S I -
o e 00 ee 00 0

o O
N
o o

UL}
H W+

NN

e 00 00 00

H W

LIST OF TABLES

S-lag Power COnnectionSOoo.-o.ooo..-oooo.ooo.ooo..to..o

DIP SWitCh 7C. it ceeieeccecscccesocosccnacsosccsssesscssse
Output to GROUP SELECT Port BASE+7.c.cccecccccccccccnns
I/0 Map-0ut BASE+7 ...t eeeeesccccsosscsoscssossossnocnnses
GROUP ASSigNMeNtS..ccccececcecccscsscosssscscsesssssssscsse

Map of the Hardware Devices Associated With PIC Input..

ICW]1 Bit AssignmentS.cececcseccccsoccccccccccccscscsoscsscs
ICW2 Bit AssSignmente.ceccccccccecsccsosscccsscssssscscscsse
OCW2 Bit AssignmentSiecececccsccccscscccccsscsscssssscssssnse
OCW3 Bit AsSSignmentS:.cececcccecccccccscccscsccsssscscsscnsese
Typical Initialization SequencCeecceccceccccccccsssccsss
Interrupt Service VeCtOrS.ccccesescccssscscssscsscscssss

ACE I/O GROUP Description ® ® © 6060 00 00 ¢ 000 00 00 s 00000000
ACE Serial COnnectors...lo..o0..0..oo....o...o.o.oooo.c

Registers for the 8250 .ccecececcsccccssccsccsccnscscocssne
Divisor Latch Constants for Standard Baud RatesS.eese.e
Sample I/0 ROULINESesesessecssescescsscacssasssccscnnns
ACE Interrupt Assignments — 8259 PICicececccecccosccccns

Printer Strobe LinNeS.ccececceccsscsccssacssscscssccsssssas
Printer Line CommManNdS.ceccecescescsescssscscscncscsanscssssas
Daisy-Wheel Printer Signals and I/O MaPeecesoosscoososes
Printer Port P5 - Connector PinoOUutSeccececceaccsoscscnses

Parallel Port Switch Configuration ecececeeecececcccscsccses
GROUP @ BASE+6 Output Port Assignment.ecccecececcsscsescoss

1990 Calendar/Clock I/O Mapeceeesesccsesossacccns
uPD199@C Pinout DefinitionsS...cceccecccscccancsoes
Time Format of the 1990 40-Bit FIFOe:.:ccoceoccces
Setting the Timed PulsS€....ccccecececccscccccascs

® e o0 0

e & o o

® o0 00

b bW

oo}

1. INTRODUCTION

The Wunderbuss Input/Output Controller (WB I/O) is the heart of a’'
general purpose S-100 system that combines all the features
necessary for an efficient interrupt-driven, multi-user system.
The WB I/O is built on a motherboard capable of holding up to 14
additional S-100 utility cards. 1Its features include:

1. A patented active termination system that reduces n01se‘
inherent to connection of S-108 signal lines.

2. An 8259-A Programmable Interrupt Controller (PIC) device
designed to monitor up to eight peripheral devices and
set priorities for their service.

3. Three 40-pin programmable Asynchronous Communication Elements
(8250 ACE serial interfacing devices) capable of generating
CPU interrupts in response to RS 232 signals and communica-
tion events.

4. A 5@0-pin connector for a daisy-wheel printer.
5. A bi-directional, undedicated, multi-purpose parallel port.

6. A CMOS crystal-controlled, multi-functional calendar/clock
chip.

The serial, parallel, clock and PIC devices on the WB I/0 are all
I/0 mapped. They are accessed through switch selectable I/0 port
addresses. These devices may be programmed to generate interrupts
to the CPU via the PIC based on a rich selection of status
conditions.

The design and versatility of the WB I/0O ensures the user of a
long useful life, even in a system subject to frequent upgrading.
Like all Morrow Design products, it should give the user years of
satisfaction.

2. WB I/0 ACTIVE TERMINATION

The WB I/0 features a 14 slot IEEE 696 standard S-10¢ motherboard
with a patented active termination system referred to as Noise
Guard. The structure and pinout of the S-100 bus normally lends
itself to crosstalk and signal noise in an inproperly or
unterminated bus. But the WB I/O eliminates this problem by the
use of active termination. All IEEE 696 signal lines are actively
pulled up through 180 Ohm resistors. One exception to this is
PRESET, line 75. This line is pulled high on the MPZ80 CPU card.
The table below depicts the power connections for the S-100 pins.

Table 2-1: S-108 Power Connections

Pins Connection

1,51 + 8 V unregulated
2 + 16 V unregulated
52 - 16 V unregulated
20 ground
50 ground
70 ground

160 ground

The design of the WBI /O motherboard allows the bus to meet or
exceed all the specifications for the S-10@ bus at 6 Mhz making
the board the heart of a powerful, reliable and expandable sys-
tem. For a complete description of the S-100 bus, refer to the
reference on specifications for the S-10@ bus interface devices.

3. I/0 ADDRESSING

All devices on the WB I/0 are associated with some S$-100 I/O
port. In all, almost 30 distinct I/0 registers are used to
control the many device functions available on the board. Yet
the WB I/O takes up only eight I/0 port addresses. To understand
how so many registers can be accessed through so few ports, it is
useful to think of the port addressing scheme of the WB I/0 as
'pbank-select I/0O'. As the name suggests, this is analogous to
conventional bank-select memory schemes. Specifically, banks of
registers are allowed to share the same block of consecutive I/0
addresses while a dedicated I/0O port is used to enable one bank,
and at the same time, disable all other similarly addressed
banks.

The WB I/0 is divided into four I/0 banks, (hereafter called
groups) with each group occupying the same eight I/0 port
addresses - BASE to BASE+7. Port address BASE+7 is the GROUP
SELECT port, and establishes which of the four I/0 groups will be
active at any given time. By outputting some number between @
and 3 to the GROUP SELECT port the user enables operations direc-
ted to ports between BASE and BASE+6. To enable a different
group, the user must output a different group number to GROUP
SELECT port BASE+7. While this port selection technique is
extremely efficient in conserving I/O space, it does impose the
responsibility of keeping track of which I/0 group is currently
active.

3.1. I/0 Port Addressing

DIP switch 7C is used to determine the BASE port address of the
I/0 groups on the WB I/0. Paddles 2 through 6 of switch 7C are
compared with S-100 address lines A3 through A7 allowing BASE to
be located at any eight byte I/0 boundary. The relationship
between the the paddles and the address lines are as follows:

Table 3-1: DIP Switch 7C

Paddle Number Address Line
2 A7
3 A6
4 A5
5 A4
6 A3

Setting a paddle to the ON position causes a match to occur when
its associated address line is a low logic level. If all five
switches are ON, the BASE address is at port @. The standard
address in all Morrow Design systems is port 48 hex.

3.2. GROUP SELECT Port BASE+7

Once the base address has been established by setting DIP switch
7C, the addresses of all I/0 functions on the WB I/0 are
determined (see I/O MAP on the following page). In order to gain
access to a specific device function, however, the group number
of that device function must first be output to I/0 port BASE+7.
The I/0 group is selected by executing an output instruction to
port BASE+7 with data bits @ and 1 set as follows:

Table 3-2: Output to GROUP SELECT Port BASE+7

Data Bit-1 Data Bit-@ Group Number
7] (%] /]
4] 1 1
1 %] 2
1 1 3

Use of the group select port is best described by example. Sup-
pose you want the I/0 space taken by the WB I/O to extend from
48 hex to 4F hex and you want to access serial port and daisy-
wheel printer port 4. First set the I/0 base by turning 7C,
paddles 3 and 6 ON and paddles 2, 4 and 5 OFF. With this base
address selected, the GROUP SELECT port is at BASE+7, or port 4F
hex. 1In order to read serial device number two, the user first
outputs a 2 to the GROUP SELECT port. Further outputting or
inputting to ports 48 hex through 4F hex controls the registers
for the number two ACE serial device. To access the parallel
daisy-wheel printer port, the user would then output a @ to the
GROUP SELECT port. It is important to remember that the func-
tions of ports at BASE to BASE+6 change from device to device
depending upon the last value sent to the group select port. The
following chart depicts the configuration of the GROUP SELECT
port.

Table 3-3: I/O Map-out BASE+7

D1 D@ Gp.# Device

p 4/ xd x0 xDAISY ports, 1990 clock, PIC, aux. par. port
) 1 1 Serial port 1 (IC 6D, cable connector P1l)
1] 2 Serial port 2 (IC 5D, cable connector P2)
1 1 3 Serial port 3 (IC 4D, cable connector P3)

The GROUP control register is I/O port BASE+7. To select an I/0
group, output to port BASE+7 with data bits @ and 1 set as
indicated above. Once a group is selected, ports are assigned as
follows:

Table 3-4: GROUP Assignments

GROUP @
1/0 Address Input ‘ Output
BASE DAISY @ IN (STATUS) DAISY @4 OUT
BASE+1 Switch/Parallel port flags DAISY 1 OUT
BASE+2 R.T. Clock IN/RESET CLK. Int. R.T. Clock OUT
BASE+3 Parallel data IN Par. data OUT
BASE+4 8259 @ register 8259 @ register
BASE+5 8259 1 register 8259 1 register
BASE+6 not wused Par. port cntrl.

GROUPS 1, 2 & 3 - 8250 ACE Serial I/0 Ports

Input Output

BASE Receive buffer Transmit buffer/LSB baud
BASE+1 Interrupt Enable Interrupt Enable/MSB baud
BASE+2 Interrupt Identify not used

BASE+3 Line Control register Line Control register
BASE+4 Modem Control register Modem Control register
BASE+5 Line status register not used

BASE+6 Modem status register not used

Note that an output to BASE+7 always assigns an I1/0 group but has
no function within any given I/0 group.

4. THE INTERRUPT SYSTEM

Microcomputer systems in general are required to communicate with
peripheral devices such as printers, CRT terminals and various
types of parallel devices. There are classically two ways of
approaching the way a CPU may service these devices - polled and
interrupt.

In a polled mode, every device in the system is periodically
querried about its service requirements. When a device requires
servicing (for example, a person has just typed a character on a
CRT terminal), the CPU stops polling all other devices until it
has finished servicing the user's request. From a system view-
point the CPU should handle these requests as quickly as
possible. The total system throughput is a function of the
number of devices on the system, the length of time to poll each
device and service each device request. The operating system is
never idle; it is always polling the devices searching for
activity.

There is a direct analogy here to hardware design: This type of
operation is said to be synchronous, meaning the CPU may branch
to a service request subroutine only after it has determined from
the device, through polling, that it is necessary to do so.
There are certain problems with this approach, though. These lie
in the amount of time needed to service each request. Another
disadvantage lies in the lack of priority-setting for the peri-
pheral devices. In a polled system, each device has equal
status, which is unfortunate because in a real environment some
devices require faster, more frequent service response than
others. Polling high priority devices more frequently is one
solution, but this burdens the system I/0 subroutines with com-
plex algorithms. Another disadvantage is that the processor is
always occupied with the polling process and not able to perform
other tasks.

An interrupt-driven system is much different in its
implementation. Although requiring more hardware and more
complex software, the system has none of the problems associated
with a polled system. With correct hardware, the devices are all
prioritized according to their service requirements and the CPU
is free to handle other tasks until a device requires service.
The I/0 devices themselves in this system interrupt whatever the
CPU is presently doing only when they require something from the
host processor. This type of system is more analogous to an
asynchronous hardware design - one where events can occur at
random intervals not related to the CPU's operations. Its random-
ness corresponds nicely with the relative randomness of device
requirements tied into the system and allows maximum system
response to these peripherals.

4.1. The Programmable Interrupt Controller (PIC)

This section describes the use of the PIC in the WB I/0, but
before going any further, one assumption must be made: If using a
280 CPU chip, an Enable Interrupt (EI) instruction must be
executed and the Z80 set to Interrupt Mode @ (8084 mode). The
PIC instructions and modes are described in further detail in the
following pages.

The additional hardware design requirements in an interrupt
system have been kept to a minimum in this system by using an
8259-A programmable interrupt controller integrated circuit chip.
By using this chip in conjunction with standard integrated
circuits a powerful interrupt driven system has been implemented.
This section describes the software requirements necessary to
utilize the PIC to its fullest.

The PIC can directly monitor the requirements of eight separate
devices and prioritize them according to system requirements.
The system has three serial channels (the hardware uses three
Universal Asynchronous Receive Transmit integrated circuits
called UARTs) which are normally connected to CRT terminals or
a serial printer. These three devices are tied directly to the

PIC to provide a signal when they require servicing. The WB I/O
also has a DAISY port which can generate a signal for the printer
whenever it requires servicing. Besides the UARTs and the DAISY
port, the on-board real-time clock may be programmed to generate
interrupts at precise, software-selected intervals. Multi-user
systems in general require a real-time clock to insure proper
allocation of the CPU's time among various tasks. .

So far we have described five of eight possible events the PIC
may monitor. Besides these, the system provides the user with
the option to monitor three of the S-100 vectored interrupt
lines. These lines are jumper options on the WB I/O which allow
the the on-board PIC to monitor and prioritize interrupts gener-
ated by boards plugged into the S-100 bus such as disk control-
lers or MultI/O boards.

4.2. PIC Interrupt Vectors

To signal the host CPU that one of the monitored devices requests
service, the PIC must issue a signal called PINT (processor
interrupt, line-73 of the S-100 bus) to the host CPU. The host
CPU completes its current instruction and issues a signal called
SINTA (interrupt acknowledged, line-96 of the S-160 bus)
indicating it has recognized the requested interrupt and is
willing to receive its next instruction from the interrupting
device, in this case, the PIC. '

At this point, a device may generate any instruction it wishes
and the host CPU will execute it. Two logical instructions might
be asked of the CPU in such a case - a Restart or a Call. These
are logical choices because both of them predictably alter the
current flow of instruction by changing the value of the Program
Counter to a given address, then saves the location where the CPU
is to return afterwards by pushing the current Program Counter
onto the stack. The Restart instruction is limited to eight
locations where the program may branch, making this instruction
dependent on hardware and software environments and leaves us
with the Call instruction.

The PIC has been designed to generate a Call instruction upon
receiving the SINTA response from the host CPU. The CPU then
fetches a 16-bit address of the location of the interrupt vector.
Hardware on the WB I/0 counts the next two CPU fetches (the
address vector) and enables the PIC to output this address to the
data-in bus. When programmed, the PIC has eight vector addresses
associated with it that correspond to the eight interrupt devices
it monitors. The vector contains a jump instruction to the ad-
dress of the routine responsible for handling it.

The PIC generates interrupt vectors at either eight-byte or four-
byte intervals in the 16-bit address space, limited by both the
PIC and the CPU to a 64K address space. For compactness, most
routines use the four-byte separation since a jump instruction is
only three bytes long and few interrupt service routines fit in

less than an eight byte address space. The eight-byte interval
is provided for compatibility with the use of the 8089 and Z80
restart instructions which are spaced eight bytes apart. The
following is a map of the hardware devices associated with the
PIC input 1line.

Table 4-1: Map of the Hardware Devices Associated With PIC Input Lines

IRQ Line Device
Highest %] S-10@0 vectored interrupt 0
1 S-109 vectored interrupt 1
2 S-100 vectored interrupt 2
3 Serial Device #1
4 Serial Device #2
5 Serial Device #3
6 DAISY print wheel ready
Lowest 7 Real-time clock TP 1line

4.3. PIC Modes

The PIC, being a software programmable device, can be set up in
many different modes allowing itself to be tailored to any
operating environment. The Decision 1 environment takes
advantage of some of these features and the user is free to
explore others. This section explores some of the more common
PIC modes. For a rigorous description of the different modes
please refer to the Intel Data Sheet and Application Note.

4.3.1. Triggered Modes

The PIC may be programmed to monitor the eight devices in
either edge-triggered or level-triggered mode. In the edge-
triggered mode, the PIC generates an interrupt when it senses
a change on one of its eight input lines (IRQ@ - IRQ7). This
is suitable for events that do not latch their interrupt
requests to the PIC. However, this does cause a problem when
the UARTs generate one edge only for one or more interrupts.
The result is a possible loss of some interrupt requests.
For this reason, all Morrow Designs software use only the
level-triggered mode.

4.3.2. Master/Slave Mode

The PIC may be programmed to be either a single system PIC or
part of a larger interrupt system involving up to four PICs.
This would be the case in a system where more I/0 is required
and one or more Morrow Designs I/0 controller boards has been
installed. In a multiple configuration, one PIC is designated
as the Master and is the only .device which may control the
PINT line on the S-100 bus. All other PICs drive the
selected S-100 vectored interrupt lines monitored by the
Master PIC. However, cascading of multiple PICs is not
supported in the WB I/O hardware implementation.

4.3.3. Buffered Mode

The buffered mode option for the PIC is not implemented on
the WB I/0 board.

4.3.4. End of Interrupt (EOI) Mode

An in-service bit (IS) on the PIC indicates a pending
interrupt. This may be reset manually by the interrupt
service routine of the CPU, or automatically after the third
byte of the Call instruction has been sent by the PIC. An
automatic End of Interrupt (AEOI) instruction is programmable
at the time of initialization only, so once set, the PIC must
be re-initialized to change this mode. 1In AEOI mode, the
full nesting capabilities of the PIC are lost. For this
reason, and for maximum system flexibility, all Morrow
Designs software has been written with the AEOI feature
disabled.

4.3.5. Polled Mode

The PIC may be configured to resemble a polled I/0 system by
setting the Poll bit to a logic 'l'. In this mode, the PIC
does not generate an interrupt with a change in state on any
of its IRQP - IRQ7 lines. The CPU issues a Poll command to
the PIC, the PIC then gates a byte onto the data-in lines to
the CPU indicating the highest priority interrupt pending.
The lower three bits of the byte are used to indicate which
device requires service. The highest bit, if set, indicates
a device is requesting service.

4.3.6. Nested Mode

The nested mode of the PIC allows service requests from I/0
devices to be prioritized. When a device is in need of
service, the PIC issues an interrupt to the host CPU only if
there are no higher priority devices requesting service via
the PIC. If a lower priority device requires service, it
must wait until all higher priority devices are serviced and
the interrupt-handling subroutine has issued an EOI command
to that PIC. If a device of higher priority requires
service, the lower priority device's service subroutine is
interrupted until the higher priority device has been ser-
viced. Although this requires intricate software routines to
keep track of the signals, this mode allows maximum system
response to devices which require immediate service. All
Morrow Designs software take advantage of the PIC nesting.

4.3.7. Rotating Priority - Mode A

In the nested mode, devices are prioritized and the device
with highest priority obtains service. The priorities are
assigned according to which input line (IRQ® - IRQ7) a device
is connected. This scheme works well for devices not
inherently equal. In some instances all eight devices
connected to the PIC have the same priority. The PIC may be
programmed to rotate the priority through all devices. In
this mode, each device gets rotated to the lowest priority
after it has been serviced; all other devices are raised one
level in the priority ladder. At present, Morrow designs
software does not implement the rotating priority option.

4.3.8. Rotating Priority - Mode B

This mode is very similar to Mode A, the difference being
rotation in Mode B can be controlled with software as opposed
to a fixed rotation controlled by hardware internal to the
PIC, as in Mode A. The software is only allowed, however, to
set that device with the lowest priority. All other devices
are ordered by priority via the PIC. The next lowest priority
device is then shifted into the highest priority spot. For
instance, if IRQ2 was set as the lowest priority, the PIC
automatically sets IRQ3 as the highest.

4.4. PIC Status Registers

The PIC status registers may be read to determine the current
state of the PIC. These registers place IRQZ - IRQ7 status on
data-in bits, @ - 7 respectively. IRQO is assumed to be the
highest priority and IRQ7 the lowest.

4.4.1. Interrupt Mask Register (IMR)

The PIC has the capability of masking any one of eight
interrupt inputs - i.e. not allowing that particular device
to generate an interrupt. The mask register contains eight
bits, any of which, when high, shut off the appropriate IRQ
input to the PIC. If all the bits are set high, no
interrupts are generated. If all are set low, all devices
are recognized in their normal prioritized sequence. This
allows the software complete control over each individual
device's service requests. The register can be written and
read by the system software.

4.4.2. In-Service Register (ISR)

The in-service register allows the software to query the PIC
for those devices currently being serviced. Each of the
eight lines are associated with eight bits. A high level
indicates that device being serviced. Bits in this register
are reset by the software issuing an EOI (either specific or
non-specific) at the end of the associated interrupt service
routine.

19

4.4.3, Interrupt Request Register (IRR)

This eight-bit register is read to determine which of the
eight devices is requesting service. The highest pending
priority is reset whenever an interrupt from the PIC has
been acknowledged by the CPU. (This register is not affected
by the IMR - a device may request an interrupt and be masked
out.)

5. PROGRAMMING THE PIC

The PIC is a programmable device and must be initialized for
correct operation.

NOTE: If the PIC is not initialized, it is still possible for it
to generate spurious interrupt requests to the host CPU.
Programs such as DDT - the Dynamic Debugging Tool by Digital
Research - only aggravate this problem by issuing Enable Inter-
rupt instructions whenever the 'GO' command is invoked. This
caution should be followed in systems where interrupts are not
implemented as well.

The PIC is accessed through system ports BASE+4 and BASE+5.
Since context plays an important role in determining what each of
these ports control, remember this rule: outputting to BASE+4
sets PIC address bit-A0 to a '@' or low logic level; outputting
to BASE+5 sets PIC address line A to a 'l' or high logic level.
There are two types of registers internal to the PIC. Registers
referred to as ICW are initialization registers and are typically
accessed only when the PIC has been first powered up. Registers
referred to as OCW are operation control registers and are read
from and written to during regular PIC operation (subsequent to
initialization).

5.1. Initialization Registers

The PIC is ready to accept commands for initialization on power-
up. There are a minimum of two registers in the PIC which must
be initialized for the PIC to begin servicing interrupt requests.
Depending on the mode the user operates 1in, as many as four
registers must be initialized prior to operation. These
registers are detailed below.

5.1.1. Initialization Control Word 1 (ICW1l)

The first word written to initialize the PIC is ICWl. It is
specified by outputting to port BASE+4 a value with data bit-
4 set logic high. This informs the PIC that the
initialization sequence is beginning. In addition to bit-4
being set, the other bits are assigned the following
function:

11

Table 5-1: ICWl1l Bit Assignments

Bit Function

7 Part of the high byte of the beginning address of
the interrupt vectors; bit-A7 of the call address.

6 Part of the low byte of the beginning address of
the interrupt vectors; bit-A6 of the call address.

5 Part of the low byte of the beginning address of
the interrupt vectors; bit-A5 of the call address.

4 Set high to begin initialization sequence.

3 LTIM - set to 1 for level-triggered mode (normally

high for all Morrow Designs software).

2 ADI - Call address interval. Low for call address
at eight-byte intervals, high for four-byte inter-
vals (normally high for all Morrow Designs sof-

tware).
1 SNGL - Single or multiple PICs in the system to be
used in cascade mode. Since WB I/O0 does not

support cascading, this bit set to a 1.

7} ICW4 - This bit set high allows access to the

’ Initialization Control Word 4 for selection of

operation modes. If this bit is set low, the PIC

initialized as master, non-buffered mode, no AEOI

and in the normal nested mode (normally low for all

Morrow Designs software; set this bit 1low when
initializing).

5.1.2. Initialization Control Word 2 (ICW2)
Initialization Control Word 2 is available at BASE+5 after
ICW1 has been selected and initialized. The ICW2 register

contains the high byte of the call address vector starting
address. The bits are configured as follows:

12

‘Bit

Table 5-2: ICW2 Bit Assignment
Function

Part of the high byte of the beginning address
the interrupt vectors. This is bit-Al5 of
call address.

Part of the high byte of the beginning address
the interrupt vectors. This is bit-Al4 of
call address.

Part of the high byte of the beginning address
the interrupt vectors. This is bit-Al3 of
call address.

Part of the high byte of the beginning address
the interrupt vectors. This is Dbit-Al2 of
call address.

Part of the high byte of the beginning address
the interrupt vectors. This is bit-All of
call address.

Part of the high byte of the beginning address

the interrupt vectors. This is bit-Al@ Dbit

the call address.

Part of the high byte of the beginning address
the interrupt vectors. This is bit-A9 of
call address.

Part of the high byte of the beginning address

the interrupt vectors. This is bit-A8 of
call address.

13

of
the

of
the

of
the

of
the

of
the

of
of

of
the

of
the

5.2.

One

5.1.3. 1Initialization Control Word 3 (ICW3)

Morrow Designs implementation does not require the initiali-
zation of ICW3. If the cascade feature is absolutely re-
quired within a system configuration, a Morrow Designs Mult
I/0 board should be installed to become the master PIC for
the system. The user is free to explore this option and is
referred to the Mult I/0O manual for detalls on both that
board and on cascading PICs.

5.1.4. Initialization Control Word 4 (ICwW4)

This register is available at BASE+5 if the ICW4 access bit
of register ICW1l (bit-#) was not set when beginning the PIC
initialization routine. Normally, this register need not be
accessed as all bits are automatically cleared to the mode
that Morrow Design's software uses. If the user wishes to
change to AEOI, buffered, slave or fully nested mode, he is
free to program this register appropriately.

Operation Control Registers

the PIC is initialized, it is ready to function as the system

interrupt controller. Further changes in the PIC operating
parameters are accomplished by programming a set of registers
referred to as the Operation Control Registers.

5.2.1. Operation Control Word 1 (OCW1)

This register contains a software mask that allows the
operating system to mask out any of the eight interrupt
inputs and is available any time after initialization
sequence through port BASE+5. Setting any of the bits high
forces the PIC to ignore the interrupt request line
associated with that bit. The bits are arranged with data
bit-7 corresponding to IRQ7 and data bit-@ corresponding with
IRQA. As indicated, a bit set high masks the interrupt
request; a bit set low unmasks it. The PIC clears this
register to ¢ (all enabled) on power up.

14

5.2.2. Operation Control Word 2 (OCW2)

Operation Control Word 2 (OCW2) is selected by outputting to
BASE+4 with bits 3 and 4 reset (logic 9) any time after the
initialization sequence. On power up, these bits are all
reset (logic @). This registers allows control over the
following functions:

Table 5-3: OCW2 Bit Assignments

Bit Function
4 Must be low to access OCW2.
3 Must be low to access OCW2.
2 L2 - Specific end of interrupt bit-2 (MSB)
1 L1 - Specific end of interrupt bit-1
] L@ - Specific end of interrupt bit-@ (LSB)

Bits 5, 6 and 7 are multiplexed and have the following
functions:

Function Bit-5 Bit-6 Bit-7

Clears rotate

priority -

Mode A flip-flop (%] %]]
End of Interrupt 1 @ 14}
Specific Interrupt 1 1 %]
Sets rotate

priority -

Mode A flip-flop] 7] 1
EOI causes

rotate -

priority Mode A 1 [1

Sets rotate
priority Mode B] 1 1

EOI causes rotate
priority Mode B 1 1 ' 1

15

5.2.3. Operation Control Word 3 (OCW3)

Operation Control Word 3 (OCW3) is selected by outputting to
BASE+4 with data bit-3 set and bit-4 reset (logic @) any
time after the initialization sequence. On power up, these
bits are all reset (logic ©). Morrow Designs software does
not use this register and leaves all bits reset. -This regis-
ter allows control over the following functions:

Table 5-4: OCW3 Bit Assignments

Bit Function
7 Not used
6 ESMM - Enable Special Mask Mode when high.
5 SMM - Special Mask Mode when high.
4 Must be @ to access OCW3
3 Must be 1 to access OCW3
2 Enter poll mode when high, interrupt mode.when

low. A high on this line allows the next read
BASE+5 to read the BCD code of the highest
interrupt request pending (in non-interrupt
environments).

1 SRIS - allows access to the Interrupt
Request register (IRR) and the In-service
register (ISR).

1} RIS - whén low, allows access to the
IRR by reading port BASE+5. When high, al-
lows access to the ISR by reading port BASE+5.

5.3. Interrupt Status Registers

During normal PIC operation it may be desirable to examine the
status and operating parameters of the device. There are three
readable registers on the PIC which contain status information. -
They are accessed by inputting from the appropriate port and are
defined as follows:

16

5.3.1. Interrupt Mask Register (IMR)

The interrupt mask register may be read at any time by
inputting from WB I/O port BASE+5. This eight-bit port
contains a map of the IRQ lines which have been previously
masked by outputting to BASE+5, the OCWl. If no IRQ lines
are masked, all bits are low (logic @) which is the normal
condition on power-up. Any IRQ line that is masked has its
appropriate bit set. IRQ7 is data bit-7 and IRQM is data
bit-4.

NOTE: The following two status registers are
selected by setting the appropriate bits with OCW3.
The registers is then available through BASE+4. The
state of OCW3 bits @ and 1, (SRIS and RIS) once set,
will allow continuous access to the selected register
until the bits are changed (bits are internally
latched by the PIC).

5.3.2. Interrupt Request Register (IRR)

The IRR is an eight-bit register which, when read by input-
ting from WB I/0 BASE+4, tells which of the IRQ lines are
currently asserted at a high logic level and are awaiting
acknowledgement. By reading this register, it is possible to
determine which interrupt requests have been recognized and
which have yet to be acknowledged. Bit-7 maps to IRQ7 and
bit-0 maps to IRQ@. After initialization, this register may
be read from BASE+5 as long as OCW3 is not changed (i.e. OCW3
bits ERIS = 1 and RIS = @). The register is updated each
time an interrupt request is acknowledged by the CPU.

5.3.3. In-service Register (ISR)

The in-service register (ISR) is an eight-bit register
containing information on which priority levels are currently
being serviced. By reading this register (inputting BASE+4
with the OCW3 bits ERIS =1 and RIS = 1), the user determines
the number of the IRQ lines being serviced. IRQ7 maps to
data bit-7 and IRQQ maps to data bit-@. A logic high level
on any bit indicates that the associated IRQ line is in
service. The register is updated each time an EOI is issued.

17

Table 5-5: Typical Initialization Sequence

khkhhhhkdhdkhkhkhkdkdhhkhkhkhkhkhkhkhkhkhkkhkhhhkhkkhhkkhhkhhhhhhkhkhkkhkhkkhhkhkhkdkhkhkhkkkd

This routine will initialize the PIC as a single,
master PIC, non-buffered mode, level-triggered, no
automatic End of Interrupt (AEOI disabled), regular
nested mode with the call vectors at 4 byte inter-
vals. Although ICW4 and OCWl1l are cleared to zero on
power-up,the routine initializes them for complete-
ness.

khkkhkhkhhkhkkkhhkkkhhkhkhkhkkhkkhkhkhkhkhkkhkhkkhkkhhkhhhkhkhhhkhhkhkkkhkkdhhhkdhkhkhkhkhkkkkk

base equ @48h ;base port address
grpsel equ base + 7 ;group select port
groupd equ]
init equ 910h :bit high to initialize the PIC
icwl equ base + 4 sinitialization control word 1
icw2 equ base + 5 sinitialization control word 2
icw3 equ base + 5 sinitialization control word 3
icwéd equ base + 5 sinitialization control word 4
ltim equ 28 ;Level-triggered mode
adi - equ o4 ;Call address interval = 4 bytes
sngl equ @2 ;one PIC in the system
I1C4 equ g1 ;ICW4 access bit
lovect equ PEOh :low byte of interrupt vector address
hivect equ Pffh thigh byte of interrupt vector address
normal equ] ;master/reg. nest/non-buffered/no
;AE01/8@85
; —normal mode for Morrow software

ocwl equ base + 5 ;operation control word 1 - MASK
begin: mvi a,groupd

out grpsel :

mvi a,lovect + init + 1ltim + adi + sngl + IC

out icwl

mvi a,hivect

out icw2 ;vectors begin at address FFE@h

mvi a,normal

out icwé

out ocwl

ret

This code initializes the PIC to generate the call instructions
to addresses at four byte intervals beginning at FFE@h. Jump
vectors to the interrupt service routines must be placed in these
locations by the system software. The interrupt service vectors
are as follows:

18

Table 5-6: Interrupt Service Vectors

IRQ Line Device Call Vector (hex address)
) S-100 V@ FFEQ
1 S-109 V1 FFE4
2 S-100 V2 FFES8
3 Serial Device 1 FFEC
4 Serial Device 2 . FFF@
5 Serjial Device 3 FFF4
() Daisy PWR line FFF8
7 RT Clock TP line FFFC

5.4. System Software Requirements

A typical system interrupt service routine (ISR) to service the
PIC on the WBI/O must perform the following functions:

1. Enable interrupt instructions to the CPU.

2. When the interrupt occurs, the ISR saves the registers to
be restored when the interrupt routine returns to the
routine it interrupted.

3. Service the device which generated the interrupt.

4. Send an Enable Interrupt (EI) instruction to the CPU. This
is necessary because interrupts are automatically disabled
by the CPU whenever an interrupt has Dbeen received.
Failure to do so prevents further interrupts to be acknow-
ledged by the CPU. Once enabled, higher priority inter-
rupts than the one being serviced are honored by CPU.

5. Send and EOI (end of interrupt) to the PIC. This would mean
sending a 20h to WB I/O port BASE+4 of GROUP @. This
allows the current ISR to be interrupted by a device of same
or lower priority.

6. Restore all the registers of the interrupted routine and
return to that routine. Since the ISR was invoked
through use of a Call instruction, a Return in-
struction must Dbe executed to restore the Stack Pointer
to its original position.

19

6. ACE SERIAL PORTS

The WB I1/0 has three 8250 pProgrammable Asynchronous
Communications Elements (ACE's) which can be connected to RS-232

devices via three 25-pin D-type connectors. Each ACE has an 1I/0
group dedicated to it - GROUPS 1, 2 and 3. The ACE's are pro-
grammable and must be initialized before they can be used. Ini-

tialization includes setting the baud rate, word length, parity,
number of stop bits, and interrupt conditions. Each ACE can be
programmed to generate an interrupt in response to up to ten
conditions (e.g., data available, transmitter buffer empty,
etc.). The interrupt is sent directly to the WB I/O PIC which
can in turn pass it on to the host CPU. The interrupt handling
routine then interrogates the interrupt status register of the
ACE responsible for generating the interrupt, and is thus able
to determine the precise cause of the interrupt.

The following chart describes the ACE devices on the WB 1I/O,
including the 1location of the 8250 on the circuit board, the
location of the 26-pin ribbon cable connector associated with
each ACE, the I/0 GROUP controlling each ACE, and the interrupt
level assigned to each device by the 8259-A PIC.

Table 6-1: ACE I/O GROUP Description

I/0 25-pin Board Interrupt
GROUP # Connector Location Level
ACE # 1 1 Pl 6D 3
ACE # 2 2 P2 5D 4
ACE # 3 3 P3 4D 5

Pl is the right-most connector with the board-oriented connectors
facing you. P2 is the connector immediately left of Pl and P3 is
to the left of P2.

The pins on the DB25-S type connectors P1-P3 are configured as
follows (as viewed from the rear of the computer):

13 12 11 10 9 8 7 6 5 4 3 2 1
25 24 23 22 21 29 19 18 17 16 15 14
The pins have been arranged to conform as closely as possible to

the IEEE RS-232 communications equipment standards for data

terminal equipment. The following is a pinout guide for the DB-
25 connector.

20

Table 6-2: ACE Serial Connectors

Connector Pin Definition ACE Mnemonic
Output 3 Transmit data sout
From 4 Request to Send RTS
WB I/0 20 Data Terminal
Ready DTR
Input 2 Receive data SIN
To 5 Received Signal
Detect RCSD
WB I/0
6 Data Set Ready DSR
8 Clear to Send CTS
1 (chassis ground)
7 (signal ground)

7. PROGRAMMING THE 8250

Any 8250 device on the WB I/0 can be accessed if its I/O group is
currently selected. Once a 1, 2 or 3 has been output to GROUP
SELECT port BASE+7, ACE device number 1, 2 or 3 can be accessed.
Each ACE contains internal 8-bit registers which occupy the first
seven I1/0 ports of the WB I/0 space, or ports BASE to BASE+6.
The ACE registers accessed after the correct group has been
selected are dependent on the status of the Most Significant Bit
(MSB) of the line control register (BASE+3). If this bit is
high, BASE and BASE+l1l access the divisor latch low byte and high
byte, respectively. Since the ACE has programmed baud rates,
these registers must be programmed for the desired baud rate
(refer to the data sheet on the 8250 for the common divisor latch

values). If the MSB of the line control register is 1low, the
register at BASE becomes the RECEIVE buffer or TRANSMIT buffer,
depending on whether it is a read or write operation. The

register at BASE+l becomes the Interrupt Enable register. The
following is a summary of the 8250 registers:

21

Table 7-1: Registers for the 8250

Condition
I/0 Port Operation of DLAB Register
BASE Write (%} Transmitter buffer
BASE Read 2 Receiver buffer
BASE Write 1 Divisor latch - low byte
BASE+1 Read/Write] Interrupt Enable register
BASE+1 Write 1 Divisor latch - high byte
BASE+2 Read X Interrupt ID register
BASE+3 Read/Write X Line Control register
BASE+4 Read/Write X Modem Control register
BASE+5 Read/Write X Line Status register
BASE+6 Read/Write X Modem Status register

X= Not important
7.1. Baud Rate

The 825@0s on the WB I/0O have been hard wired so the baud rate for
data coming in is the same as for data going out. The crystal
used to provide the reference frequency for the three ACE devices
on the WB I/0 is 1.8432 Mhz. The data sheets give a broad sample
of the divisors which must go into the divisor latch in order to
generate the most common baud rates, and generally any baud rate
may be generated from DC to 56,008 baud (a zero in the divisor
latch inhibits all data transmission). The formula for determin-
ing the divisor constant to produce a given baud rate is:

DIVISOR = 1.8432 M/ (BAUD RATE X 16)

Although in most applications the user will simply look up the
baud rate divisor in the data sheet table, ' there are instances
when odd ball baud rates may be useful. For example, an ACE is
being used to generate interrupts at timed intervals based on the
Transmitter Holding Register Empty Interrupt (see Serial Device
Interrupts).

22

The following is a list of the divisor latch constants for the
standard baud rates (values are in decimal):

Table 7-2: Divisor Latch Constants for Standard Baud Rates

Contents Baud rate
2304 59
1536 75
1947 110

857 134.5
768 150
384 3909
192 609
926 1200
64 18499
58 2000
48 24009
32 3000
24 4809
16 7200
12 9609
6 192009
3 38400
2 56009

7.2. Initialization

Though the reset pin (MR) of each 8258 is asserted during power
ON or RESET, no assumptions should be made about the contents of
any 8250 register unless that register has been initialized.
Keep in mind that an on-board ACE cannot be accessed, much less
initialized, unless its I/0 group is selected. Furthermore, the
Line Control, Modem Control, Interrupt Enable and Divisor Regis-
ters are normally initialized before any data can be transferred
to or from an 825@.

The following three software routines are brief samples of how a
WB I/0 ACE device could be driven in a CP/M* type environment.
All these routines adhere to CP/M* I/0 protocol. The INIT
routine sets wup ACE # 1 to run at 9600 baud with an eight Dbit
word, no parity and two stop bits. The Interrupt Enable Register
is set to generate no interrupts, and the Modem Control Register
is ignored. This initialization would be appropriate for most
RS-232 CRT terminals in a non-interrupt driven environment.
Assume that the WB I/0 I/O has been set to begin at 48H. The
cluster of assembler directives (equ's) at the beginning of
these routines establish constants which hold for all three
specimen routines. The comments included with these routines may
be used as a general flow analysis of ACE programming.

*CP/M is a trademark of the Digital Research Corporation.

23

Table 7-3: Sample I/0 Routines

groupl equ 1 ;code for first ACE (attached to J1)
base equ 48h ;base I/0 address set by SW-7C

d1l equ base ;ACE baud rate divisor (1lsb)

dlm equ base+l ;ACE baud rate divisor (msb)

ier equ base+l ;ACE interrupt enable register

ler equ base+3 ;ACE line control register

lsr equ base+5 ;ACE line status register

rbr equ base ;ACE receiver buffer register

thr equ base ;ACE transmitter holding register
dlab equ 86h ;divisor latch access bit

thre equ 20h :line status register THRE bit

dr equ 1 ;line status register DR bit

baudl equ 12 sdivisor latch low byte-- 9609 baud

;interrupt mask-- disable all

baudh equ 0 sdivisor latch high byte-- 960¢ baud
wls@ equ 1 ;word length select bit @-- 8 bit word
wlsl equ 2 ;word length select bit 1-- 8 bit word
stb equ 4 ;stop bit count-- 2 stop bits

(7]

imask equ

;The following routine initializes the ACE as described above

.
’

init: mvi a,groupl ;set up desired I/0 group
out grpctl ;select first serial device
snext set up format and set dlab
mvi a,dlab+wls@+wlsl+stb '
out ler :base reg is now 1lsb baud rate reg
mvi a,baudl ;low byte of baud rate constant
out dlli ;into low baud rate register
mvi a,baudh ;high byte of baud rate constant
out dlm ;into high baud rate register
;set up format and clear dlab
mvi a,wl@+wll+stb
out lcr ;into line control register
Xra a ;zero register a
out 1sr ;clear data available flag in line status
mvi a,imask ;interrupt mask set up
out ier ;base+l now interrupt mask- not baud

ret ;end of initialization routine

24

Table 7-3 Cont.
7
:The following routine will return in the accumulator any new
:character typed to ACE # 1 '

-
,

conin: mvi a,groupl

out grpctl ;put a 1 into WB I/O group select port

smake sure dlab is cleared

mvi a,wls@+wlsl+stb

out lerx ;make base port the ACE data register
coninl: in lsr ;get line status register

ani dr ;any new data from terminal?

jz coninl ;if no then keep waiting

in rbr :get data

ani 7fh ;strip off bit 7 of input character

ret ;return with data in accumulator

.
’

:The following routine will output the character in Register C
:to ACE # 1

conout: mvi a,groupl
out grpctl ;put a 1 into WB I/O GROUP SELECT port
;make sure dlab is low

mvi a,wls@+wlsl+stb

out ler ;make base port the ACE data register
conoutl: in 1lsr ;get line status

ani thre :is ACE ready to transmit?

jz conoutl ;if not then keep waiting

mov a,c ;transfer data from reg c to reg a

out thr soutput character typed from terminal

ret s;return to calling program

.
’

;The following routine will return an FF in the Register A if ACE
:device # 1 has received a new character (i.e., DR is set in the

;ACE line status register). Otherwise, return a 0.

’

status: mvi a,groupl
out grpctl ;put a 1 into WB I/O GROUP SELECT port
in lsr sget line status
ani dr :check DR bit
rz sreturn if reg a is zero-- no character
mvi a,fdffh :;ff into reg a since character is ready
ret

25

In the above examples, it should be noted that the GROUP SELECT
port 1is re-initialized at the beginning of every routine. This
is done to insure against inadvertently sending serial I/0°
instructions to the clock, parallel ports or interrupt controller
of the WB I/0. Further note that before accessing the ACE data
register, the format word is sent again to the Line Control
Register. This is done so that port BASE of GROUP 1 will be
interpreted as a data port rather than as a divisor port. This
guards against a situation such as losing access to the console
device due to a careless reading of the divisor latch (from a
monitor or front panel, for example) without subsequently clear- -
ing DLAB. :

7.3. Serial Device Interrupts

The three 8250 ACE devices on the WB I/0 each have a dedicated
interrupt request 1line on the 8259 PIC. The chart below de-
scribes the PIC interrupt level assigned to each ACE:

Table 7-4: ACE Interrupt Assignments - 8259 PIC

PIC Interrupt

Serial Device Request Line
ACE # 1 IR3
ACE # 2 IR4
ACE # 3 IR5

7.4. ACE Interrupt Programming

As explained in the data sheet on the 8250, each ACE device can
be programmed to generate an interrupt on any of four general
conditions. These conditions are, in order of descending
priority: Receiver Line Status, Received Data Available,
Transmitter Holding Register Empty, and Modem Status. The
Received - Data Available and the Transmitter Holding Register
Empty interrupts can be identified directly from the Interrupt ID
Register of the source ACE.

The remaining two interrupts must use the Interrupt ID Register
to point to either the Receiver Line Status Register or the Modem
Status Register. These two registers each have four interrupt
flags which can be read to identify the source of an ACE-gener-
ated interrupt. (The third interrupt of the Modem Status
Register - The Trailing Edge of Ring Indicator, or TERI - is not
usefully supported by the WB I/0, since the Ring Indicator 1line
of each ACE is tied to +5V.) Because the 8250 prioritizes its
interrupts, the Interrupt ID Register will 'freeze' the highest
priority interrupt pending by ignoring all further interrupts
until the previous interrupt has been serviced. See the data
shegqts for further information on the 8259.

26

When using the 825@'s ACE devices on the WB I/O to generate
interrupts, it is advisable to set the 8259-A PIC to operate 1in
level-mode, rather than edge-mode. In edge-mode, it is possible
under certain circumstances for an ACE-generated interrupt to be
'lost'— that is, to go unrecognized. The 8258 generates one edge
for an interrupt and all interrupts which occur during the time
when the first interrupt is active will not generate additional
edges. In this situation, the interrupt line of the 8250 remains
low until all interrupts have been acknowledged, but the 8259 PIC
in edge-triggered mode has seen no additional edges to indicate
the presence of further interrupts.

8. THE PARALLEL DAISY-WHEEL PRINTER PORT

The WB I/0 contains parallel I/0 ports configured to accommodate
a standard Diablo-type daisy-wheel R/O printer. These ports are
brought out to the 50-pin ribbon cable connector at P5 (board
location 8E -~ 11E) for easy attachment. The pin assignments of
P5 correspond exactly to those of an internal Diablo 58 conductor
flat cable connector, so simply tying the Diablo to the WB I/O
via a ribbon cable with female sockets at either end is the only
hardware requirement for interfacing the two devices.

The daisy-wheel interface standard requires 12 bits of data
information and four strobe lines which determine the meaning of
the data lines. These four strobes are:

Table 8-1: Printer Strobe Lines

RESTORE

Send the print head to the ‘'home' position
(position assumed when the printer is powered

up) .

PRINT WHEEL Indicates 12 bits of data on data lines con-
STROBE tain characters to be printed and the strike
intensity of the hammer.

CARRIAGE - Indicates that data lines contain the

STROBE appropriate number of steps and direction the
print head is to be moved.

PAPER FEED - Indicates that data lines contain valid number

: representing amount of paper to advance or
retract.

RIBBON - Lifts the ribbon cartridge in preparation to
print a character.

SELECT - Low to select the printer.

27

The 1last two lines are additional daisy-wheel printer control
lines. They are accessed through GROUP @ BASE+2 output port.
Bit-6 generates the ribbon lift signal and bit-7 is an inverted
version of the select signal. All software must account for this
inversion for correct selection. (For more information on printer
standards for Diablo-type systems, see referenced manual.)

Two latched output ports (plus an extra latched output bit) and
one transparent input port are used to communicate with the
daisy-wheel printer. These ports can be used with almost any
parallel device (e.g., a Centronics-style printer or a keyboard)
provided that the I/0 lines are properly routed from the WB I/0O
connector at P5 to the target device. This additional cabling
burden is standard in parallel I/0 interfacing, and so should not
be considered as a major disadvantage by those using the DAISY
port with a non-Diablo parallel device.

The WB I/O0 daisy-wheel printer port occupies I/O ports BASE and
BASE+1 plus a part of BASE+2 - all within I/0O GROUP @. A single
input 1line (BASE+l bit-5, or the Print Wheel Ready 1line when
interfacing with a daisy-wheel printer) is, after going to the
DAISY port, inverted, then brought to IRQ 6 of the 8259-A
interrupt controller to generate an interrupt whenever it goes
to a low logic state. The eight input lines brought to daisy-
wheel printer port BASE are also pulled up to +5V through 180
Ohms (nominal), and may be used with open-collector devices.

These eight input lines are inverted by an input buffer; if left
unconnected, appear to software as a high.

The signal returning from the daisy-wheel printer indicates
whether it can accept a new command from the WB I/0. The lines
are defined as:

Table 8-2: Printer Line Commands

PRINTER READY ~ Power 1is ON and printer is ready to
accept commands.

CHECK - Fault condition indicating either a
software error (e.g. sending the print
head too far in one direction) or
hardware failure in the printer.

P.W. READY - Print wheel can accept a new character
address.

28

Table 8-2 Cont.

CARRIAGE READY - Carriage is ready to be repositioned.

P.F. READY - Platen motor ready to advance or
retract the paper.

COVER OPEN - Case cover was removed.

OUT OF PAPER - Printer has run out of paper.

RIBBON OUT - A print ribbon cartridge has not

been inserted or has run out.

Connector P5, 1line 48, enables all daisy-wheel printer port
output drivers. If this line is not tied to nominal +5 volts (if
it 1is grounded or allowed to float) the DAISY port output 1lines
controlled by I/0 ports BASE, BASE+l1 and BASE+2, remain at a high
impedance state regardless of any software commands. (Note that
some printers such as C. Itoh do not supply this level and are
non-standard Diablo interfaces.) In the event you have chosen
such a printer and are not able to jumper pin-48 of the daisy-
wheel printer connector to +5 volts, you may lift 4 of chip 16C
and tie it to pin 7 of 10C using a short piece of 30 gauge
insulated wire. :

WARNING: In no way does Morrow Designs support this
modification or take responsibility for products
which have been modified. This solution is provided
here in the unlikely event you have purchased a non-
standard daisy-wheel printer and have no way in which
to modify the printer itself. It should be
considered a temporary solution. :

The parallel ports have no special facility for generating a
strobe on output or latching a strobe on input. All data lines
operate as levels, so strobes must be generated in software.

The following page depicts the parallel lines available on the WB
I/0, including the I/0 port and bit number controlling each line
and the function assigned to each line on a standard parallel
Diablo-type interface. Remember, these functions have no
inherent meaning to the WB I/O; it only sees so many latches. Do
not preclude interfacing the WB I/O with parallel dev1ces other
than daisy-wheel printers.

29

Table 8-3: Daisy-Wheel Printer Signals and I/0 Map
I/0 Group 9

1/0 Data WB I/0O and Diablo Function
Port Bit Diablo Pin #

T —— — ——— o ———— | - ———— —————— —— o — v ———— -

| I |
Input BASE* | @ | 4 | End of Ribbon (-)
I 3 | Paper out (-)
| 2 | 5 | Cover Open (-)
I3 | 34 | Paper Feed Ready (-)
| 4 | 26 | carriage Ready (-)
b5 | 27 ** | Print Wheel Ready (-)
I 6 | 12 | Check (-)
} 7 { 28 { Printer Ready (-)
Output BASE | o | 46 | Data Bit 9 (256) (-)
|1 | 1 | Data Bit 10 (512) (-)
I 2 | 9 | Data Bit 11 (1024) (-)
I 3 | 10 | Data Bit 12 (2048) (-)
| 4 | 15 | Paper Feed Strobe (-)
| 5 | 17 | carriage Strobe (-)
| 6 | 21 | Print Wheel Strobe (-)
;} 7 } 13 l Restore (-)
Output BASE+l1 | @ | 37 | Data Bit 1 (1) (-)
| 1 | 36 | pata Bit 2 (2) (-)
I 2 | 39 | Data Bit 3 (4) (-)
I 3 | 33 | Data Bit 4 (8) (-)
I 4 | 49 | Data Bit 5 (16) (-)
I 5 | 42 | Data Bit 6 (32) (-)
| 6 | 43 | Data Bit 7 (64) (-)
: 7 : 45 } Data Bit 8 (128) (-)
Output BASE+2 | 6 | 23 | Ribbon Lift (=)
7 24 Select (-)

*These eight input lines are pulled up to +5 volts by 180 Ohms and

inverted.

**In addition to being associated with bit-6 of the input port
BASE, the Diablo Print Wheel Ready line (pin-27 of P5) is
connected through an inverter to Interrupt Request line 6 (pin-
24) of the 8259-A PIC. Thus, this line may be used to generate
an interrupt whenever any external device brings it low (e.g.,
when the print wheel is ready).

The following lines on WB I/O connector P5 are tied to ground as
described by Diablo interface standards:

2, 8, 11, 14, 18, 20, 22, 25, 394, 31, 32, 35, 38, 41, 44, 47.
(Line 24, defined by Diablo as Select (-), is also grounded.)

Unimplemented (left floating) are lines 6, 7, 29, and 50.

30

Table 8-4: Printer Port P5 - Connector Pinouts
Top View
Back

49 47 45 43 41 ... 9 7 5 3 1
Right Left -

50 48 46 44 42 ... 10 8 6 4 2

Front

8.1. Programming the Daisy-Wheel Printer Port

As with all I/O devices on the WB I/O, the user must be careful
when accessing the daisy-wheel printer port to initialize the
correct I1/0 group - in this case, GROUP @. Once the proper I/O
group has been selected, all data output from the CPU to the
parallel ports will be latched (if P5, pin-48 is at a high level)
or ignored (if P5, pin-48 is grounded or allowed to float).
Latched means the data output to a parallel port appears on the
appropriate pins on the P5 connector, and remains there until
either different data is output to the port in question or until
pin-48 is floated or grounded. When pin-48 is grounded or
allowed to float, all 17 parallel output pins of connector P5
enter a high impedance state.

The eight input 1lines from the daisy-wheel printer port are
available to the CPU by reading BASE+8 (48h in standard
configuration) with GROUP @ selected. When an input instruction
is directed at daisy-wheel printer port @, the CPU reads whatever
data 1is on the appropriate lines of connector P5 at the time the
instruction is executed. There is no provision for latching the
daisy-wheel printer port input data because this data is buffered
only. The input daisy-wheel printer port/pin assignments are
listed in the tables beginning on page 27.

The WB I1/0 daisy-wheel printer port inverts its input lines but
does not invert its output lines. Daisy-wheel printers use
negative logic: a low signal is taken as active. To activate any
output 1line when talking to a daisy-wheel printer, the software
must put the line low. Input lines from a daisy-wheel printer,
on the other hand, are inverted in hardware, and so will appear
to software to be active high.

31

8.2. Generating an Output Strobe

Generating an output strobe off any of the parallel output ports
on the WB I/0 requires the use of a software mask. This means
the 1line to be strobed must be output (at most) three times in
succession, changing state each time, while the data lines
associated with the same port be allowed to remain unchanged.
For example, to output a strobe going high-low-high on bit-6 of
port BASE without changing the other seven bits being output from
that port, the following routine could be used:

mvi a,data soriginal data into register A

ori 406h ;preserve data but bring bit-6 high
out base ;output data with bit-6 high

ani @bfh ;preserve data but bring bit 6 low
out Dbase ;output data with bit-6 low

ori 40h ipreserve data but bring bit 6 high
out base ;output data with bit-6 high

NOTE: GROUP @ port BASE+2 is shared with another
device on the WB I/0-- the real time clock. Be
careful when outputting to this port.

8.3. The Daisy-Wheel Printer Port and Interrupts

The Print Wheel Ready status line of the daisy-wheel printer port
(P5 connector, pin-27, BASE input port bit-5) is brought through
an inverter to Interrupt Request line 6 of the 8259-A PIC. The
PIC can generate an interrupt whenever this line goes to an
active (i.e. 1logic low) state. To take full advantage of this
interrupt option, the printer driver software should be written
so that the Print Wheel Strobe (P5, pin-21, BASE output port bit-
6) is not activated until all carriage positioning commands have
first Dbeen sent to the printer. Print-after-space will execute
significantly faster than space-after-print. When the Print
Wheel Ready line goes active the printer should be able to accept
another motion-then-print sequence.

A sample Diablo printer driver, including source code for the WB
I1/0, can be obtained from Morrow Designs.

32

9. THE AUXILIARY PARALLEL PORT

Besides the daisy-wheel printer port, the WB I/O contains an
eight-bit, bi-~directional parallel port with handshaking. The
port 1is available at the DB15-S type connector P4 (location 12
and 13E) on the PC board.

Since the port has only a 15-pin connector, the data lines are
bi-directional. The WB I/O and the external device time share
the eight-bit bus. This means software must keep track of when
the external device is trying to drive the eight lines to prevent
both the WB I/O and the external parallel device from driving the
lines simultaneously.

The port is available by accessing (read or write) port BASE+3 of
GROUP @. There are two Dbits of status available from the
external parallel device, FLAGl and FLAG2. These two latched
status lines, when high, indicate the external parallel device is
ready to receive a character. Switch 7C determines which polarity
the handshaking lines acknowledge. Switches are configured as
follows:

Table 9-1: Parallel Port Switch Configuration

S7 paddle 8 - ON if handshaking from the external parallel
device is a positive-going strobe, OFF if it
is a negative-going strobe. The output of

this latch is referred to as FLAGl and is
high active.

S7 paddle 7 - ON if handshaking from the external parallel
device is a positive-going strobe, OFF if it
is a negative-going strobe. The output of

this latch is referred to as FLAG2 and ' is
high active.

The bits may be read from GROUP @ port BASE+l as bits @ and 1
respectively. Most parallel devices require the use of only one
of these handshaking lines. These status lines are latched and
cleared by software (output to BASE+6 with bit~l1 low for FLAGI,
bit-2 low for FLAG2). In addition to the two status flags, there
are five port control lines available at BASE+6 of GROUP 4.
These lines are configured as follows:

33

Table 9-2: GROUP @ BASE+6 Output Port Assignment

Bit Active
o “high
1l low
2 low
3 low
4 low

Signal name

POE

RST1

RST2

ATTN1*

ATTN2*

Description

Enable data from the WB I/O
auxiliary parallel output
port latch onto the bi-
directional data bus on P4.

Resets the handshaking latch
(FLAG1) from the external
device.

Resets the handshaking 1latch
(FLAG2) from the external
device.

This bit gets inverted when
sent out to P4 to become a
positive-going edge. This in-
forms the external parallel
device that the WB I/O has a
character it wishes to send
out to the external device.

This bit gets inverted when
sent out to P4 to become a
positive going edge. This
informs the external parallel
device that the WB I/O has a
character it wishes to send
out to the external device.

*Most parallel devices require only one attention line.

The pinout of the 15-pin DB15-S connector is as follows:

Pin

A= OO W

12

14
15

Polarity

Positive
Positive
Positive
Positive
Positive
Positive
Positive
Positive

Positive
Positive

Switch

selectable

Switch

selectable

Name

Data
Data
Data
Data
Data
Data
Data
Data

QFENDWHEONO

ATTN1
ATTN2

FLAG1

FLAG2

1. THE 1990 CALENDAR/CLOCK CHIP

The 1990 CMOS crystal-controlled calendar/clock chip at location
12A supports a real-time environment by providing two functions:
1) a calendar clock accessible from software able to run off a
battery, and 2) a timed interrupt generator able to provide real-
time interval interrupts with three = possible software
programmable interval lengths. The clock uses six bits of port
BASE+2, Select Line and Ribbon Lift Line of the daisy-wheel
printer port. The chart below shows the WB I/0 I/O0 ports and
data bits used by the 1998, and indicates the correspondence
between data bit and 1996 pin number/function.

Table 10-1: 1998 Calendar/Clock I/0O Map

I/0 Port BASE+2 1990 Pin #

BASE+2 Bit # & Mnemonic 1990 Function
Input 0 9 - Data Out Output of 40-bit shift register
to CPU: 1 19 - TP Timed pulse output
Output %] 6 - Data In Input of 48-bit shift register
from CPU: 1 8 - Clk Shift clock for 4@-bit register
2 3 - C0o Command input bit-0
3 2 -C1 Command input bit-l
4 1 -.C2 Command input bit-2
5 4 - STB Strobe input

35

Name

c2

Cl

Co

STB

CSs

Data In

GND

CLK

Data Out

TP

Table 10-2: uPD199@C Pinout Definitions:

Pin #

1

10

Definition

Mode select pin. When high, this pin selects
the time pulse output register. When 1low,
this pin selects the calendar clock mode.
This pin is set low to read or set the time
and high to set the time pulse interrupt
frequency.

This pin is used to select the time pulse
interrupt if C2 is high or enable the shift
register if C2 is low.

This pin is used to select the time pulse
interrupt frequency if C2 is high. If C2 is
low, and CO is low, the contents of the shift
register is written into the clock. If C@ is
high and C2 is low, the clock contents are
written into the shift registers for reading.

This 1line is used to strobe the contents of
the CO - C2 1lines into the clock chip,
for selecting the various command modes.

When high allows the CLK, STB and OE lines to
reach the internal circuitry of the clock
chip. Morrow Designs hardware ties this line
high unless there is a system power failure.

The serial data input to the chip allowing
the clock's shift register to be altered for
setting the clock.

Ground pin (@ volts)

This pin is used to clock data into or out of

the clock shift register. Data is clocked
into the shift register on the rising edge of
the clock. Data is clocked out of the shift

register on the falling edge of the clock.

The serial data output line of the clock
allowing contents of the shift register to be
clocked into the system CPU. This data is
available by reading bit-@ of WB I/O port
BASE+2.

Time pulse output provides interrupts at

preset intervals. This output is available
by reading bit-1 of WB I/0 port BASE+2.

36

Table 18-2, Cont.

OE 11 Output enable pin, when high, allows the TP
and data out pins to be read. Morrow Designs
hardware ties this pin high unless there is a
system power failure. '

XTAL1 12 Crystal clock input (32.768 Khz). -

XTAL2 13 Crystal clock input (32.768 Khz).
VDD 14 Power supply input (3.6 V max.).

The C@ - C2 inputs can be summarized as follows:

Function Cc2 C1i Cco

Register hold] (%} N G
Register shift] 4] 1 g
Write shift register | g
into the clock 4] 1]

Read the clock time °
into shift register 2 1 1

TP = 64 Hz 1 %]] G
TP = 256 Hz 1) 1 g
TP = 2048 Hz : 1 i a g
Test mode (32 Hz) 1 1 1 1

1.1. Clock Initialization

The clock powers up in the test mode. The TP output is clocking

at 32 Hz. The clock TP pulse must be set to one of the three TP
values before any clock Group @ (any command with C2 set 1low)
command will execute. If at any time during operation the user

sets the clock to 'Test Mode', he must again select one of the
other TP values before attempting any clock Group & commands.
The test mode should NOT be considered as one of the possible
timed interrupt values unless these peculiarities are
acknowledged through software.

37

For a 64 Hz TP the power up sequence would look like:

Set STB bit, CO and Cl bits low and C2 bit high
(16h) and output to WB I/O port BASE+2. Then,
with the CO - C2 bits unchanged, set the STB bit
high (36h) and output to WB I/O port BASE+2.
Then, again with the C@# - C2 bits unchanged,
set the STB bit low and output to WB I/O port
BASE+2. From this point on, any one of the clock
commands may be executed.

Any command issued to the clock requires the STB bit to be low
initially, then brought high and then low again with the data
unchanged. This is all accomplished by manipulating bit-5 of
port BASE+2. 1In order to write data into the shift register, the
user first uses the Register Shift mode to enable the shift
register (strobe-in with C@ high, Cl and C2 low). Now data may
be clocked into the shift register. After all the bits have been
clocked into the shift register, the user then enters the Time
Set mode (strobe-in with Cl high, C@ and C2 low). This writes
the contents just shifted into the shift register into the clock
itself. Conversely, when reading the clock, the Time Read mode
must be entered first (CO and Cl high, C2 low). This takes the
clock's internal time and places it in the shift register. The
data may then be clocked out from the shift register.

19.2. Clock Programming

The data sheets on the 1990 chip should be studied before
attempting to program this device. The 1990 stores the time of
day, day of week, and month of year in an internal 48-bit shift
register which is accessible to the WB I/0O user through bit-@ of
I/0 port BASE+2 of GROUP @. Commands to set or read time must be
strobed into this port using bit-4 as the strobe bit. The 40 bits
of time data must be clocked in or out using bit-1 as the clock
bit. The format of this internal 40-bit shift register is seven
four-bit binary coded decimal nibbles and, for the month of the
year, one hex nibble. The 40-bit shift register is a FIFO -
first 1in, first out - the first being the Least Significant Bit
(LSB). Thus, the first bit in or out is always the LSB of the
single seconds nibble, and the last bit out is always the Most
Significant Bit (MSB) of the month of the year nibble.

Note in the following table how each individual nibble seems to
coded backwards. :

38

Table 10-3: Time Format of the 1998 4@¢-Bit FIFO

Bits 1 to 8 -- Seconds (@ to 59)
Seconds Units Tens of Seconds
1998 bits 1 2 3 4 5 6 7 8
LSB MSB LSB MSB

Example: 38 seconds would be stored as follows:

1990 bits 1 2 3 4 5 6 7 8
Logic Level 2 @ 9 1 1 1 o @
Interpretation: 8 ‘ 3

Bits 9 to 16 -- Minutes (8 to 59)

Minutes Units Tens of Minutes
1999 bits 9 19 11 12 13 14 15 16
LSB MSB LSB MSB

Example: 41 minutes would be stored as follows:

19906 bits 9 10 11 12 13 14 15 16

Logic Level 1 %} 1] (%) 7] a2 1 1]

Interpretation: 1 4

Bits 17 to 24 —- Hours (@ to 23)

Hours Units Tens of Hours
19990 bits 17 18 19 29 21 22 23 24
LSB MSB LSB MSB

Example: 11 o'clock p.m. (2309 hours) would be stored as follows:

1990 bits 17 18 19 20 21 22 23 24
logic Level, 1 1 @ 0 - g 1 8 o
Interpretation: 3 2

39

Bits
D

1999 bits 25 26
LSB

Example: the 14th

1990 bits 25

logic level]

Interpretation:
Bits

1990 bits 33 34
LSB

Example: Thursday

1999 bits 33

Logic Level %}

Interpretation:
Bits

1990 bits 37 38
LSB

Example: July

1990 bits 37
Logic Level 1
Interpretation:

Table 19-3 Cont.

25 to 32 -- Day of Month (1 to 31)

ay Units Tens of Days
27 28 29 30 31 32
MSB LSB MSB

of the month

33 to 36 -- Day of the Week (@ to 6)

35 36 Sunday
MSB Garbage Bit Monday
Tuesday
Saturday
34 35 36
] 1]
4
37 to 40 -- Month of the Year (@ to
39 409 January
MSB Garbage Bit February
March
November
December
38 39 49
1 1 2
7

40

o

N

w

Hex)

A Hex
B Hex

19.3. Calendar Clock Idiosyncracies

Once the 4@0-bit shift register of the 1990 has been set with the
desired time and date, it automatically increments the time and
date for later reference. Note, however, that the 1990 considers
all months to have 31 days, so September, April, June and
November - and certainly February - require a special update at
the end of the month to keep the calendar current.

19.4. Strobe and Clock Timing

The 1990 is not capable of reading or writing serial data fast
enough to keep up with the CPU unless the clock and strobe bits
are prolonged for about 708 micro-seconds. This can be easily
accomplished in software. '

10.5. Time/Date Software
Writing the time to the 1990 requires a four step procedure:
1: Select I/0 GROUP @ of the WB I/O.

2: Strobe the Register Shift Command to I/O port BASE+2.
This is done outputting first a @4H, then a 24, then a @4H
to port BASE+2 (but see note below).

3: Clock forty consecutive bits to the data-in pin of the
1994. Each Dbit is sent via three output instructions
to I/0 port BASE+2 with suitable delays in between. The
the data-bit (bit-0) stays the same, the Strobe Bit (bit-
5) stays low, and the Clock Bit (bit-1l) is first 1low,
then high, then low again (see note below).

4: Strobe the Set Time Command to I/0 port BASE+2. This is
done by outputting first an 8H, then a 28H, then an 8H
to port BASE+2 (see note below).

NOTE: Bits 6 and 7 of WB I/0 port BASE+2 of GROUP 0
control the Ribbon Lift Line of the daisy-wheel
printer port and the Printer Select Line. These bits
should not be carelessly altered when outputting to
the clock.

41

19.6. Software Flow for Reading the Time/Date
Reading the time from the 1990 requires a four step procedure:
1: Select I/0 GROUP @ of the WB I/O.

2: Strobe the Read Time Command to I/O port BASE+2. This is
done by outputting first a CH, then a 2CH, then a CH to
port BASE+2 (see note on previous page).

3: Strobe the Register Shift Command to I/O port BASE+2.
This is done outputting first a 24H, then a 4, then.a 24H
to port BASE+2 (see note on previous page.)

4: Clock forty consecutive bits from the data-out pin of the
1994. Each bit is read via two output and one input
instructions from I/O port BASE+2, with suitable delays
in between, in which the Strobe Bit (bit-5) stays low, and
the Clock Bit (bit-1) is first 1low, then high, then low
again (see note on previous page).

The appendix contains a source listing of a CP/M compatible
program which can write the time to the 1990 clock or read it
back.

It 1is probably a good idea to have interrupts disabled when
writing to or reading from the clock, since a lengthy interrupt
service routine could cause the data read or written to be inac-
curate. .

10.7. The Timed Interrupt Generator

In addition to being a calendar/clock, the 1990 is capable of
generating interrupts at timed intervals. The interrupts
generated by the 1990 are routed to Interrupt Request number 7 of
the 8259-A PIC. In order for these interrupts to be received
properly, the PIC must be set to operate in level, rather than
edge, mode. Three interval times are available and are selected
under software control. The intervals are:

1) Once every -488 milliseconds, or 2048 interrupts per second
2) Once every 3.9 milliseconds, or 256 interrupts per second

3) Once every 15.0 milliseconds, or 64 interrupts per second

42

18.8. Generating a Timed Interrupt

As indicated in the data sheet on the 1999, the TP (Timed Pulse)
output, which 1is the source of the 1998 interrupts, can be
programmed to oscillate with a 50% duty cycle at one of three
frequencies. These frequencies are selected by strobing the
appropriate data into 1I/0 port BASE+2. The data to be strobed
out to the clock port and the corresponding oscillation frequency
of the 1990 TP line are shown below:

To set TP to the desired time, strobe the following bytes
consecutively to I/0 port BASE+2 of GROUP @. (Note that the last
column indicates time between interrupts.)

Table 10-4: Setting the Timed Pulse

Output string

to BASE+2 TP Frequency Interrupts
30H, 1©QH, 30H 64 Hz 15.0 msec
31H, 11H, 31H 256 Hz 3.9 msec
34H, 14H, 34H 2,048 Hz .488 msec

NOTE: Bits 6 and 7 of 1/0 port BASE+2 of GROUP @
control the Ribbon Lift Line of the DAISY printer
port and Printer Select Line. These bits should not
be carelessly altered when outputting to the clock.

14.9. Clearing the Timed Interrupts

Any input instruction directed at I/0 port BASE+2 clears the
interrupt request generated by the 1994. This action does not
involve the 1998 clock chip, but clears the flip-flop through
which the 1990 TP output is latched and converted to a constant
level Dbefore reaching the 8259-A PIC. The data obtained from
this instruction may be ignored.

18.16. A Good Random Bit

The output of the 1990 TP has a 50% duty cycle; it is at a high
logic state for the same length of time it is at a low logic
state. The state of this line may be examined at any time by
reading bit-1] of I/O port BASE+2 of GROUP @, the same port used
for reading and writing clock data. If examined immediately
after the occurrence of a TP interrupt, the line will be high
since it is the high-going edge of TP that generates the inter-
rupt. ' '

43

10.11. Generating Interrupts at Non-standard Intervals

If the interval selection available on the 1990 does not fit the
user's application, a broader selection is possible by using an
on-board 8250 ACE - just program the ACE to generate an interrupt
whenever the Transmitter Buffer is empty.

44

11.

LIST OF REFERENCES
INS 8250 Asynchronous Communications Element, (National
Semiconductor Corporation, 1978).

8259A Programmable Interrupt Controller, (Intel
Corporation, 1978).

MOS Digital Integrated Circuit PD 1990C, (NEC Electron,
Inc., undated).

Standard Specifications for S-109 Bus Interface
Devices, (IEEE, 1979).

Mult I/O User's Reference Manual, (Morrow Designs,
preliminary edition available only).

Model 1200 Hytype Printer Reference Manual, (Diablo
Systems, undated).

45

APPENDIX A
SOME NOTES AND CAUTIONS

In situations where one ISR is interrupted by another ISR, care
should be taken to preserve CPU registers which might be altered,
and so, sabotage the interrupted service routine. The same holds
for routines that are time-dependent. They should be written to
preserve their integrity in case they are interrupted. For
example, if two routines use the same ACE device, it is possible
for a routine to check, say, the TBE status bit, find the device
to be ready, prepare to send data to the device, get interrupted,
and proceed, when control is regained, to send data to a device
that may no longer be ready.

If the CPU sends an INTA pulse (an Interrupt Acknowledge) to the
master PIC when no IRQ line on the PIC is asserted, the PIC will
issue the CALL vector associated with IRQ7. It is very easy to
induce this situation by grounding by hand the vectored interrupt
lines.

The CP/M * operating system contains a ultility program, DDT,
which can be useful in developing software. This program has the
provocative feature of enabling interrupts (issuing an EI
command) whenever the "G" command is given. Under the right
circumstances this can cause havoc if the user is caught unaware.

The following page gives a graphic illustration of the program
flow which occurs when a program is interrupted and the ISR which
results is itself interrupted.

*CP/M is a copyright of Digital Research

Al:

A2:

A3:

Bl:

B2:

B3

B4:

B5:

A4

AS5:

ILLUSTRATIONS OF PRIORITY INTERRUPT LEVELS

Main program -->

------- e e A] e e >
/ \
/ \
/ \
/ \
/ \
/ \
/ \

/ ISR A ——> \\
/--A2--A3-Bl-—~A4---A5
/\

/ \

/ \

/ -\

/ \

/ \

/ \

/ . ISR B --> \\
/=-B2==B3=—m——a B4---B5

Main program is interrupted by Interrupt Request A and PIC
vectors program off to Interrupt Service Routine A (ISR A).

ISR A removes the cause of its interrupt.

ISR A issues an EI (Enable Interrupts) command to the CPU.
This permits the servicing of a HIGHER priority interrupt.

IRQ B (Interrupt Request B), a higher priority than IRQ A,
causes ISR A to be interrupted, and the PIC vectors the
program OFF to ISR B.

ISR B removes the cause of its interrupt.

ISR B issues an EI command to the CPU. ISR B may now in
turn be interrupted by a higher priority IRQ.

ISR B issues an EOI (End of Interrupt) command to the PIC.
ISR B may be interrupted by SAME or LOWER priority IRQ.

ISR B exits its service routine with a RET instruction.
Control returns to ISR A.

ISR A issues an EOI command to the PIC.

ISR A’ exits its service routine with a RET instruction.
Control returns to the main program.

APPENDIX B
WB I/0O CONNECTORS, SWITCHES AND JUMPER OPTIONS

The following is a list of connectors, switch settings and jumper
options and their function:

The WB I/0 board has the following I/O connectors available at
the rear of the board. As viewed from the rear of the Decision 1
cabinet they are left to right:

Connector PC Location Function

P4 12E - 13E Auxiliary 8-bit multi-purpose
' bi-directional parallel port.

P5 8E - 12E Although not actually visible
from the rear panel, this 5@-pin
header on the WB I/O is the
connection for the daisy-wheel
printer.

P3 9E - 10E ACE Serial Device #3 - This port
is usually reserved for printers
in systems which require a serial
printer.

P2 6E - 7E ACE Serial Device #2 - normally
the second CRT terminal port.

Pl 2E - 3E ACE Serial Device #1 - This port
is the standard console I/0 port
for all Morrow Designs software.

P6 : icC Although not visible from the
rear this connector 1is visible
when the Decision 1 cover is
open. This connector 1is the
power input to the WB I/O. See
table below for pin configura-
tion.

Pin Configuration - Power Input

- + 16V
- + 16V
- + 8V

- + 8V

ground
- ground
- ground
- ground

VOV WN -
|

-

Switch at board location 7C is used by Morrow Design's software
to set the BASE port address, wait states and polarity of
auxiliary parallel port handshaking inputs. The normal base
address for all Morrow Designs software is 48 hex. The following
summarizes this switch:

Paddle Function

1 ON causes the WB I/O to generate a wait state on
I/0 and Interrupt Acknowledged cycles during
which the WB I/0 has been selected. The ACE
and PIC chips have a minimum access time of 250
ns. Systems which require faster access times
should have this switch ON. This switch is
normally ON in Decision 1 systems.

2 Maps to CPU address line A7 for address of BASE
port (normally ON for Morrow Designs software).
3 Maps to CPU address line A6 for address of BASE
Port (normally OFF for Morrow Designs

software).

4 Maps to CPU address line A5 for address of BASE
port (normally ON for Morrow Designs software).

5 Maps to CPU address line A4 for address of BASE
port (normally ON for Morrow Designs software).

6 Maps to CPU address line A3 for address of BASE
port (normally OFF for Morrow Designs software).

7 When OFF allows parallel handshake latch to
respond to a strobe of negative polarity.

8 When OFF allows parallel handshake latch to
respond to a strobe of negative polarity.

Switch at board location 1@A is used to determine the baud rate
for the on-board serial channels. The software reads these
switches (at GROUP @ BASE+l) after a power-up or reset sequence
and initializes the proper baud rates to perform the following:

Paddle

1

N O

(00}

Function

Serial channels baud rate select -
normally ON

Serial channels baud rate select -
normally ON

Serial channels baud rate select -
normally ON

Not yet dedicated
Not yet dedicated
Not yet dedicated
Not connected

Not connected

The baud rates are determined as follows:

Paddle 1

OFF
OFF
OFF
OFF
ON
ON
ON
ON

Paddle 2

OFF
OFF
ON
ON
OFF
OFF
ON
ON

Paddle 3 Baud rate
OFF 1109
ON 300
OFF 1200
ON 2400
OFF 4800
ON 9600 (default)
OFF 19200
ON Automatic

Jumpers on the WB I1/0 Board
Jumper Board location Function

Jl 8A IN causes the data read from the auxil-
iary parallel port input latch (BASE+3
of GROUP @) to be latched into the
auxiliary parallel port output latch
(BASE+3 of GROUP @). Normally this jumper
is not installed.

J2 8C Jumper between B and C of the WB I/0 PIC
is not a master and is not to respond to
the CPU Interrupt Acknowledge signal.
Jumper between A and B if the WB I/0 is
the master PIC and is to recognize the
Interrupt Acknowledge line. This jumper
is normally installed between A and B.

J3 8cC IN allows the INTR output of the PIC to
drive the S-10@0 PINT line. This jumper
must be IN if the WB I/0 PIC is to be the
master. If this PIC is a slave, the pad
closest to chip 8C is connected to one of
the S-100 VI lines at location 3C and the
jumper is removed. This Jjumper is
normally installed. Remove in systems
where no interrupts are used.

J4 2C Selects which S-100 vectored interrupt
line (if any) will be monitored by the
PIC of the WB I/O. Pad A connects to PIC
IRQPY line. Pad B connects to PIC IRQl
line. Pad C connects to PIC IRQ2 1line.
The pc etch has these lines hard wired to
the VIO - VI2 lines respectively so no
jumpers are required for normal opera-
tion. Pads are provided for wuser re-
configuration if necessary.

J5 13A Battery backup for the WB I/0 on-board
clock. A 3 - 5 volt source (5 V battery
maximum) with 15 to 20K Ohm series
resistors for circuit protection may be
connected to J5 to supply power to the
clock when AC power has been removed from
the system. The connector is labeled for
correct polarity, please take note.

J6 8E RESET switch inputs to the WB 1/0.
Shorting switch across these pins causes
RESET of the CPU board and most bus
slaves. The front panel RESET switch of
the Decision 1 connects to these lines.
The factory configuration in brief:

Switch 7C Paddle:

- ON
- ON
- OFF
- ON
ON
- OFF
- OFF
- OFF

o~NOULbdWN
i

Switch 19A Paddle:

Jl
J2
J3
J4
J5

J6

- ON
- ON
- ON
- ON
OFF
- ON
- OFF
- OFF

o~ b W
|

Not installed

Jumpered A to B
Installed

No jumpers

Battery - user supplied

Connected to front panel reset

APPENDIX C
TIME SET SOFTWARE

The following program sets and reads the clock/calendar. The
program runs under CP/M and assumes the I/0 board to be addressed
at I/0 port 48h.

To set the time using this program, type:

TIME www MMM dd hh mm ss (pm/am)

where www are the first three letters of the day, MMM are the
first three letters of the month, dd are the decimal minutes of
the hour and ss the decimal seconds of the minute.

A twelve hour format may be used if either am or pm is typed at
the end of the string. Otherwise data is assumed to be in 24
hour format. Spaces should separate the data fields. Day of
week and month of year may exceed three characters but only the
first three are analyzed. Leading zeros may also be omitted as
long as one character appears in the field in question.

For example, typing:

TIME MON NOV 17 7 30 @ AM

would set the clock/calendar to Monday, November 17, 7:30:00
a.m.

To read the clock, simply type:

TIME

'Decision 1 Real-time Clock Software’ MACRO-80 3.36 17=-0ct-81 PAGE 1

'(c) Morrow Designs Inc.'

0000
000A

0048
00U4F
00uA
0002
0008
000C
0020
0004
0010
0000
0008

0005
0081
0080
0000
000B
0009
000A
000D
0004

0100
0103
o104
0107

2A 0006
F9

CD 03B6
CA 0261

SUBTTL '(c) Morrow Designs Inc.'
Title ‘'Decision 1 Real-time Clock Software'’

CERERRERRRR RN E R R R RN ERE R RN R RERRERRERRRRERERERNRRRRRRRRERR R NN

,
o *
)
;: Time display/set program for Thinker Toys WBI/O board. :
;* Bobby Dale Gifford. *
;¥ 9/25/80 *
i *
;*# Revised for Decision I/0 on 10/5/81 BJG *
¥ . *
;**n**n**§*&**********************;***************************u***
aseg
rev equ 10 ;Revision # x.x
base equ 48h ;Base of Mult I/O ports
grpsel equ base+7 ;Group select
clk equ base+2 ;Clock port
clkelk equ 2 ;Clock clk bit
clke1 equ 8 ;Clock c¢1 bit
relk equ Och ;Read clock command
cstb equ 20h ;Clock strobe bit
shft equ L ;Shift bits command
tpbl equ 10h ;Output tick pulse at 64 hz
reghld equ 0 ;Register hold command
welk equ 8 ;Write clock command
bdos equ 5 ;Bdos entry point
cbuff equ 81h ;Command buffer string
clen equ 80h ;Command length byte
wboot equ 0 ;Warm boot location
const equ 11 ;Get constat function #
pstr equ 9 ;Print string function #
readcon equ 10 ;Read console buffer
acr equ 0dh ;Carriage return
alf equ Oah ;yLine feed
org 100h ;Transient program area.
start: 1lhld bdos+1 ;3et up stack
sphl
call skipb ;Skip command line blanks
Jjz display ;No command line

'Decision 1 Real-time Clock Software’!
'(c) Morrow Designs Inc.'!

010A
010D
0110
0113
0116
o7
0118
0119
011A
011B

011E
0121
0124
0127
012A
012B
012C
012D
012E
012F
0130
0131
0132
0135
0136
0139
013C
013F
0142
0145
0148
014B
O14E
0151
0154
0157
015A
015D
0160
0163
0166
0168
0169
016C

21
CD
CA
11
19
7D
37
3F
1F
32

21
CD
CA
11
19
7D
37
3F
17
17
17
47
3A
BO
32
CD
DA
32
CD
DA
32
CD
DA
32
CD
DA
32
CDh
CA
CD
FE
F5
ccC
F1

03F4
0218
0380
FcocC

03F3

o4uB
0218
0380
FBB5

03F3

03F3
01CE
0380
03F2
01CE
0380
03F1
01CE
0380
03F0
01CE
0380
03EF
03B6
017B
03D0
50

0395

sett:

MACRO-80 3.36

1xi
call
Jjz
1xi
dad
mov
stc
cme
rar
sta

1xi
call
jz
1xi
dad
mov
ste
cme
ral
ral
ral
mov
lda
ora
sta
call
je
sta
call
je
sta
call
je
sta
call
Jje
sta
call
jz
call
epi
push
cz
pop

h,days
match3

exit

d,0 - days
d

a,l

wekmon

h,months
match3

exit

d,0 - months
d

a,l

b,a
wekmon
b
wekmon
bed?2
exit
date
bed?2
exit
hour
bed2
exit
minutes
bed2
exit
seconds
skipb
noap
scan ¢
IPI
psw
uphrs
psw

17-0ct-81 PAGE -~ 1-1

;Array of string pointers to match
;Look for match

;No match

;Form index

;Get low byte
;Clear the carry

;Divide index by 2
;yDay of week finished

;Array of string pointers to match
;Look for match

;No match

;Form index

;Get low byte
;Clear the carry

;Save in B
;0r in with day
;Scan for two valid bed digits

;New date
;Scan for two more valid bed digits

;New hour
;Scan for two more valid bed digits

;New minutes
;Scan for last valid bed digits

;New seconds
;Skip trailing blanks

;Check for AM or PM

'Decision 1 Real-time Clock Software' MACRO-80 3.36 17-0ct-81 PAGE 1=2
'(c) Morrow Designs Inc.'

016D FE 41 cpi A
016F CC 03A1 cz dwnhrs
0172 CD 03AC call skipe
0175 CD 03B6 call skipb
0178 C2 0380 jnz exit ;If anything remaining, then error
017B - 3E 00 noap: mvi a,reghld ;Issue register hold command
017D CD 0360 call setup
- 0180 3E 10 mvi a,tpbl ;Set up clock pulse
0182 CD 0360 call setup
0185 11 0513 Ixi d,waitmsg ;Wait for carriage return
0188 CD 0389 call pmsg »
018B 11 0534 1xi d,ibuff ;Read console
018E OE 0A mvi c,readcon
0190 CD 0005 call bdos
0193 CD 01A2 call writec ;Write the time
0196 11 OU4CE 1xi d,acralf
0199 CD 0389 call pmsg
019C CD 0276 call displ1 ;Display the current time
019F C3 0000 Jjmp wboot ;All done

AR R E R R R R R R R R RN AR RN R RN RN RN RR RN R R RN RN RN RRRRRRRRRH
* *
;¥ Writec does the actual clock time writing. This routine must ¥

*

¥ not be interupted.
* *
o J 20 I I I N I IE I N I N e I NI I I I I I N I NI I IE I I I I AN IEIE I I 6NN NI N NNERE

s we e

~s e e

01A2 AF writec: xra a ;Select group O

01A3 D3 4F out grpsel

01A5 3E 04 mvi a,shft ;Shift command

01AT CD 0360 call setup

01AA E5 push h ;Save clock data address

01AB 1E 08 wbyte: mvi e,8 ;Bit shift counter

01AD 23 inx h ;Bump to.next byte of data
01AE 7E wbit: mov a,m ;Get current byte of data
01AF 1F ' rar ;LSB into carry

01BO 77 mov m,a ;Save current byte

01B1 17 ral ;Carry into LSB

01B2 E6 01) ani 1 sThrough away useless bits
01B4 E3 xthl ;Recover address of clock data
01B5 B6 ora m ;Get current state

01B6 E3 xthl ;Recover current byte counter
01B7 CD 0346 call clkstb ;Strobe in one bit

01BA 1D der e ;Update bit counter

01BB C2 01AE Jjnz wbit ;Same byte ?

'Decision 1 Real-time Clock Software!

'(c) Morrow Designs Inc.'

01BE
01BF
01Cc2
01C3
01C4
01C6
01C9
01CB

01CE
01D1
01D4
01D5
01D6
01D8
01DB
01DD
01E0
01E3
01EY
01E5
01E8
01EB
01ED
01F0
01F2
01F5
01F7
01FA
01FD
01FE
01FF
0200
0201
0202
0203
0204
0205
0206

15
c2
E1
7E
Fé
cD
EE
C3

CD
CD
37
c8
FE
CA
FE
CA
CD
D8
47
CD
CA
FE
CA
FE
CA
FE
CA
CcD
D8
37

F5
78
17
17
17
17
47

01AB

08
0344
08
034k

03B6
03D0

3A
O1CE
2C
01CE
020E

03D0
020A
2C
020A
20
020A

020A
020E

MACRO-80 3.36 17-0ct-81 PAGE 1-3

der d ;Update bye counter

jnz wbyte ;All done ?

pop h ;Recover address of clock data

mov a,m ;Get current state

ori welk ;Set write clock bit

call clkemd ;Issue write time command

xri welk ;Turn off write time command

Jmp clkemd
;***#***!***************
. % ' *
?
;¥ Becd2 scans the command line for up to two valid ascii digits #
;¥ and returns the result as a packed bed byte in reg A. *
* *

.
1]

;*l**l**************************************!*********************

becd2:

call
call
ste
rz
cpi
Jjz
cpi
jz
call
re
mov
call
jz
cpi
jz
cpi
jz
cpi-
jz
call
re
ste
cme
push
mov
ral
ral
ral
ral
mov

skipb ;Skip any preceeding blanks
scan ;Get first char of day of month
;Carry is error

l:l

bed2

|,'

bed?2

digit ;Check for valid decimal digit

b,a ;Save in B

scan

okd

! ;Check for end of day of month
okd

t

okd
':'
okd
digit
;Clear the carry
psw ;Save low nibble

;Put previous digit into high nibble

b,a ;Save in B

'Decision 1 Real-time Clock Software’ MACRO-80 3.36 17-0ct-81 PAGE 1-4

"(c) Morrow Designs Inc.'

0207
0208
0209
020A
020B
020C
020D

020E
0210
0211
0213
0214
0215
0217

0218
021A
021D
021E
021F
0220
0221
0222
0223
0224
0225
0228
0229
022C
022D
0230
0233

FE
D8
FE
3F
D8
D6
C9

30
3A

30

03
0542

0540
0080
03D0

0255
03E5

pop psSw sRecover low digit
ora b ;Form byte
mov b,a ;Save in B

okd: mov a,b . ;Recover day of month
ste ;No error
cme
ret

cRRERERREREREEEERRELERRREREREEEREERERRRERXRRRRERREEXRERRERRRRARRE X
* *

’
: v
;¥ Digit checks if the char in reg A is a valid ascii digit. *
. % *
’
A I I A R IR R R R R R e R A A I a A R A L g L
digit: ocpi o ;Less than 0

re

cpi 941 ;Greater than 9

cme

re

sui 0! ;Strip off ascii bias

ret

R R RN R RN RN RN R RN R RN R RN R R RRRRRRRRRRR AR RN RRRRRRRR R
* *
;¥ Match3 guarentees that at least three characters are matched ¥

;¥ with the command line. *
M

*
(2222222222222 22222222223 2R 22X X222 222X AR 2R S R X R

“r e

.o we e

match3: mvi a,3 ;Clear match count
sta ment
mov e,m ;Get current string pointer
inx h
mov d,m
inx h : ’
mov a,e - ;Check if all done
ora d
rz ;No match
push h ;Save current array pointer
lhld scanpnt ;Save current scan pointer
push h
lda clen ;3ave current command length
push psw

mtchmo: call scan ;yScan and convert to upper case

jz nomatch ;No matech if out of chars
call toupper

'Decision 1 Real-time Clock Software’ MACRO-80 3.36 17-0ct-81 PAGE 1-5
'(c) Morrow Designs Inc.'

0236 y7 mov b,a ;Save in B

0237 1A ldax d ;Get next char in string

0238 13 inx d ;Bump string pointer

0239 CD 03ES call toupper ;Convert to upper case

023C B8 cmp b ;Does it match ?

023D C2 0255 jnz nomatch ;No match

0240 3A 0542 lda ment ;Get match count

0243 3D der a +Matched three ?

o244 32 0542 sta ment ;Save match count

o247 C2 022D jnz mtchmo ;Match more ?

024A CD 03AC call skipe ;Skip rest of characters

024D E1 pop h ;Through away old scan pointer

024E E1 pop h ;Through away old command length

024F E1 pop h ;Recover array pointer

0250 2B dex h ;Backup array pointer

0251 2B dex h

0252 co rnz ;No error return

0253 3C inr a ;No error return

0254 C9 ret

0255 nomatch:

0255 F1 pop psw ;Recover command length

0256 32 0080 sta clen ;Restore command length

0259 E1 pop h ;Recover scan pointer

025A 22 0540 shld scanpnt ;Restore scan pointer

025D E1 . pop h ;Recover array pointer

025E C3 0218 Jjmp match3 ;Try again
;***
% *
?
;¥ Display continually displays the time as long as nothing is *
;¥ typed on the console. *
o *
?

;**&********************

0261 display:

0261 CD 0276 call displi ;Display one time line

0264 OE 0B mvi c,const ;Check console for char

0266 CD 0005 call bdos

0269 A7 ana a ;If anything typed then reboot
026A C2 0000 jnz wboot

026D 11 o4ccC 1xi d,acrmsg ;Print carriage return only
0270 CD 0389 call pmsg

0273 C3 0261 Jmp display . ;Go print the time again

;********l******************************!*************************
o ¥ *
’ .

'Decision 1 Real-time Clock Software!

'*(c) Morrow Designs Inc.'

0276
0279
027C
027E
027F
0280
0282
0285
0286
0287
0288
0289
028A
028B
028E

0291
0294
0295
0296
0297

0299
0294
029C
029F
02A0
02A1
02A2
02A3
02A4
02A5
02A8

02AB
02AE
02AF
02B2
02B3
02B4
02B5
02B6

CD
3A
E6
17
5F
16
21
19
5E
23

7B
B2
cA
CD

3A
1F
1F
1F
E6

S5F
16
21
19
5E

23

56
TA
B3

CD

21
E5
3A
1F
1F
1F
1F
E6

031B
03F3
o7

00
03F 4

0276
0389

03F3

1E

00
044B

0276
0389

ouD1

03F2

OF

;: Displ1 displays the current time once.

MACRO-80 3.36

17-0ct-81 PAGE 1-6

*
*

’
;***

displt:

okday:

call
lda
ani
ral
mov
mvi
1xi
dad
mov
inx
mov
mov
ora
jz
call

lda
rar
rar
rar
ani

mov
mvi
1xi
dad
mov
inx
mov
mov
ora
Jjz
call
1xi
push
lda
rar
rar
rar
rar
ani

readc
wekmon

-3

[*NekY

“ v .
1)
<
w

'gQQ.mQ.:Y(DQ-D'Q(D
[IR -
n W o3 3
Qe ©
—
—_

wekmon

OLATSTOOTO0
[oWg=] 3

Q
=
wn
e
=
-

pmsg
h,tbuff

date

0fh

;Read the clock - watch out if interupts are on
;Get the day of the week

;Through away irrelevent bits

;Multiply by 2

;Form 16 bit offset

sArray of string pointers

;Form absolute address of string
;Get low string address byte
;Point to high byte

;Get high byte

;Check for invalid day

;Start over again if invalid
;Print the day

;Get the month
;Adjust for proper offset

;Multiply by two and through out
H irrelevent bits
;Form 16 bit offset

;Array of string pointers

;Form absolute address of string
;Get low string address byte
;Point to high byte

;Get high byte

;Check for invalid month

;Start over again if invalid
;Print the month

;Pointer to temporary storage
;Save for printing

;Convert the date to ascii

;Get high digit into low nibble

'Decision 1 Real-time Clock Software!
'(c) Morrow Designs Inc.'

02B8
02BB
02BE
02C1
02C3
02C6
02C8

02CB
02CE
02D0
02D3
02D4
02D7
02DA
02DC
02DF
02E2
02E5
02ET7
02EA
02ED
02F0
02F2
02F5
02F 8
02FA
02FC
02FF
0301
0304
0306
0309
0304
030C
030F
0311
0314

0317
0318

cy
3A
CD
3E
CcD
3E
CcD

34
FE
DY
B7
cc
)
3E
cD
3A
)
3E
cD
3A
)
3E
)
3A
FE
3E
DA
3E
)
3E
cD
TE
FE
CA
3E
ch
C3

D1
C3

0379
03F2
0379
2C

037D
20

037D

03F1
13
038E

0392
0370
3A
037D
03FO0
0370
3A
037D
03EF
0370
20
037D
03F1
12
61
0301
70
037D
6D
037D

24
0317
20
037D
0309

0389

MACRO-80 3.36

17-0ct-81 PAGE 1-7

cnz putlow ;Don'T print leading zero
lda date ;Get the low digit
call putlow ;3tuff it in the buffer
mvi a,',! ;And the comma and space
call put
mvi a,' !
call put
lda hour ;Get the hour
cpi 13h ;Check for AM or PM
cne subhr ;Convert PM from 13-24 into 0-12
ora a ;Check for 12 midnight
cz mak 12
call puthi ;Put both digits into the buffer
mvi a,':! ;Put the colon in the buffer
call put
lda minutes ;Get the minutes
call puthi yPut both minutes digits in the buffer
mvi a,':! ;Put another colon in the buffer
call put
lda seconds ;Get the seconds
call puthi ;sPut both second digits in the buffer
mvi a,' ! ;One space into the buffer
call put
lda hour ;Check hours for AM or PM
cpi 12h
mvi a,'a’ ;Print 'A' or 'P!
Jje isam
mvi a,'p'
isam: call put ;Put the 'A' or 'P' in the buffer
mvi a,'m' ;yPut the '™M' in the buffer
call put
sploop: mov a,m ;Get the next char in the buffer
cpi '3 ;Is it the end ?
Jjz endsp ;All done
mvi a,' ! ;Get a space
call put ;sPut it in the buffer
Jjmp sploop ;Finishing padding with spaces
endsp: pop d ;Recover the Buffer address
jmp pmsg ;Print the buffer
SRR RN R R R R RN RN RN RN RN RN R RN R RN RN R RN RN RN RRRR NN
. ¥ *
?
;* Readc does the actual clock reading (40 bits) from the *

;¥ hardware.

If interupts are enabled, then care must be taken *

'Decision 1 Real-time Clock Software! MACRO-80 3.36 17-0ct-81 PAGE 1-8

'(c) Morrow Designs Inc.'

031B
031C
031E
0320
0323
0324
0326
0329
032B

032C
032D
032F
0331
0332
0333
0334
0335
0336
0337
0338
033B
033C
033F
0340
0343
0o3u4
0346
0347
0349
034B
034cC
034E
0351
0352
0354
0357
0358
035A
035D
035F

uF
oc
0360
08
0344
08

4F
4A

0346
032C
0329
20

00
4F

4a
0369

4A
0369

4A
0369
02

;¥ to assure that this routine is not interupted until it ¥
;¥ completes. *
;* *
SRR R R RN AR RN RN R RN RN RR R RN AR RRRE RN AR R RRR AR RN
reade: xra a ;Select group zero

out grpsel ’

mvi a,rclk ;Read clock into 40 bit shift register

call setup ‘

push h ;Save address of clkdata

xri clket ;Issue shift command

call clkemd
rbyte: mvi e,8 ;Prep for 8 bits

inx h ;Bump to next address of clock data
rbit: Xxra a

out grpsel

in clk ;Read one bit

rar ;Put bit into carry

mov a,m ;Get partially assembled byte

rar ;Shift in the bit just read

mov m,a ;Save partially assembled byte

xthl ;Get address of clkdata

mov a,m ;Get clock data

xthl ;Save address of clock data

call clkstb © ;Strobe the shift register

der e ;sAll done with this byte ?

jnz rbit ;Read another bit if not

der d ;Completely done ?

jnz rbyte ;Read another byte if not

pop h ;Recover address of clkdata
clkemd: mvi c,cstb ;Get clock strobe bit
clkstb: push af

mvi a,0

out grpsel

pop af

out clk ;Output strobe low

call delay ;Wait for chip to see the strobe low

Xra] ;Turn strobe high

out clk ;Output strobe high

call delay ;Wait for chip to see the strobe high

xra c ;Turn strobe low

out clk ;Output strobe low

call delay

mvi ¢,clkelk ;Clock clk bit

ret

'Decision 1 Real-time Clock Software’ MACRO-80 3.36 17-0ct-=81 PAGE 1-9

'(c) Morrow Designs Inc.'

0360
0362
0365
0366

0369
036B
036C
036F

0370
0371
0372
0373
0374
0375
0378
0379
037B
037D
037E
037F

0380
0383
0386

16
21
B6
c3

06
05
c2
€9

F5
1F
1F
1F

CD
F1
E6
Cé
77

¢9

05
03EE

0344
01
036B

0379
OF

O4F9

0389
0000

setup: mvi d,5 ;Count of bytes to read

1xi h,clkdata ;Address of clock data

ora m ;Get current bit state

jmp clkemd ;Issue the command
delay: mvi b, 1 : ;Time delay
delayi: der b

jnz delay1

ret
SRER RN R R RN RN R RN RN RN R RN RN RN R RN R R RN RN RN RN AR AR NN NN
o *
’
;* Puthi puts the high and low nibbles of the bed number in *
;* the a reg in the temporary buffer. *
% *
1

;**************************************!**!***********************

puthi: push psw ;Save low nibble

rar ;Put high nibble into low nibble

rar

rar

rar

call putlow ;Print the low nibble of a reg

pop psw ;Recover the low nibble
putlow: ani Ofh ;Strip off irrelevent bits

adi 0! ' ;Form Ascii character
put: mov m,a ;Put char in buffer

inx h ;Bump buffer pointer

ret
SRR R RN RN RN RN RN RN RN NN RN RN RN RNTRR R
. % *
’
;* Exit is the standard error message for invalid command, *
o % *
’

;*********i**************************i*******i***'****************

exit: 1xi d,badtmsg

call pmsg

jmp wboot
PEEER RN R NN RN RN RN RN RN RN NN RN RN RN
;* *
;¥ Pmsg is the CP/M print string function. *
. ¥ *
?
A Iy r s I T Ty A

'Decision 1 Real-time Clock Software'

'(¢c) Morrow Designs Inc.'

0389
038B

038E
0390
0391

0392
0394

0395
0398
0394
039B
039D
0340

03A1
03A4
0346
03A7
03A8
03AB

03AC
03AF
03B0O
03B2
03B5

03B6
0389
03BA
03BC
03BF
03€0
033
03C4
03CT
03CA
03CB
03CE
03CF

03D0

OE
€3

Cé
27
€9

3E
C9

3A
FE
Cc8
C6
32
c9

3A
FE
co
AF
32
€9

CD
Cc8
FE
c2
c9
CD
c8
FE
CA
ES
2A
2B
22

09
0005

88

03F1
12

12
03F1

03F1
12

03F1

03D0
20

03AC
03D0

20
03B6

0540

0540
0080

0080

0080

pmsg:

subhr:

mak12:

uphrs:

dwnhrs:

skipe:

skipb:

unscan:

scan:

MACRO-80 3.36

mvi
Jjmp

adi
daa
ret

mvi
ret

lda
cpi

adi
sta
ret

lda
cpi
rnz
Xra
sta
ret

call
rz
cpi
jnz
ret

call
rz
cpi
jz
push
lhld
dex
shld
lda
inr
sta
pop
ret

lda

c,pstr
bdos

88h

a, 12h

hour
12h

12h
hour

hour
12h

a
hour

Scan

]]
skipe

scan

1 L
skipb

h
scanpnt
h
scanpnt
clen

a

clen

h

clen

17-0ct-81 PAGE 1-10

;Subhr adjusts the BCD number to
H be between 1 and 12

;Get next char

;Return if no more chars
;Check for space
;Continue if not

;Get next char

;Return if no characters left
;Is it a space

;Skip it

;Save HL

;Get command scan pointer
;Back it up

;Save updated char

;yUpdate length

;Save updated length
;Restore HL

;Check if anything left

'Decision 1 Real-time Clock Software’ MACRO-80 3.36 17-0ct-81 PAGE 1-11

'(c) Morrow Designs Inc.'

03D3
03D4
03D5
03D6
03D9
03DA
03DD
03DE
03DF
03E2
03E3
‘03EY4

03E5
03E5
03E7
03E8
03EA
03EB
03ED

03EE
O3EE
03EF
03EF
03FO0
03Fo0
03F1
03F2
03F3

03F4
03F6

AT
c8
3D

32 0080

E5

2A 0540

TE
23

22 0510

E1
B7
€9

FE 61
D3
FE 7B
DO
D6 20
Cc9

00
00

00
00
00
00

ouoY
040D

ana a

rz jReturn with Z set if no more

der a ;Update length

sta clen .

push h ;ySave HL

lhld scanpnt ;Get command pointer

mov a,m v

inx h ;Update command pointer

shld scanpnt

pop h

ora a ~;Clear Z flag

ret
toupper:

cpi tal ;Is it lower case ?

re

cpi tz'+1

rnc

sui v

ret
AR iy S Y Y Y 131 2]
. ¥ *
’
;¥ The following are data used within the program. :
¥
;********************************;*x******************************
clkdata:

db 0 jCurrent state of clk port
seconds:

db 0 ;Seconds read
minutes:

db 0 sMinutes read
hour: db 0 ;yHours read
date: db 0 ;Date read
wekmon: db 0 ;Week day and month read

SRR R RN R RN NN R RN NN NN R R RN R RN R RRN RN RN RN RN RN R RN
ol *
;* Days is an array of pointers to strings, used to print the *
;* english version of the day of the week. *
. ® *

SRR KRN R R R R RN R R RRR R R ERR R R R RN R R R R RRRRRR AR RN RN RR RN NN

- e

days: dw sun
dw mon

'Decision 1 Real~time Clock Software! MACRO-80 3.36 17-0ct-81 PAGE 1-12
'*(c) Morrow Designs Inc.'

03F8 0416 dw tue

O3FA 0420 dw wed

03FC o42C dw thu

03FE o437 dw fri

0400 ouu0 dw sat

o402 0000 dw 0 ;Illegal day
ou4ouy 53 75 6E 64 sun: db 'Sunday, $'
0408 61 79 2C 20

o40cC 24

040D 4D 6F 6E 64 mon: db 'Monday, $'
ou11 61 79 2C 20

0415 24
. 0416 54 75 65 T3 tue: db 'Tuesday, $'

041A 64 61 79 2C

O41E 20 24

0420 57 65 64 6E wed: db ‘Wednesday, $°'
ou2y 65 73 64 61

o428 79 2C 20 24

o42C 54 68 75 72 thu: db 'Thursday, $'
0430 73 64 61 79

o434y 2C 20 24

0437 46 72 69 64 fri: db 'Friday, $'
043B 61 79 2C 20

043F 24

ou40 53 61 74 75 sat: db 'Saturday, $°'

ouuy 72 64 61 79
0448 2C 20 24

SERRR RN RN RN RN RN RN RN RN NN R RRRR RN RNN
;¥ : *
;¥ Months is an array of pointers to strings, used to print the ¥

’

;* english version of the month of the year. *
.« % *
s

;***%****************************&********************************

ouyB 0u46B months: dw jan
044D o4TH dw feb
O44F 047D dw mar
0451 ougy dw apr
0453 048B dw may
0455 0490 dw jun
0457 0496 dw jul
0459 o49C dw aug
045B O4AYy dw sep

045D O4AF dw oct

'Decision 1 Real-time Clock Software! MACRO-80 3.36 17-0ct-81 PAGE 1-13
'(c) Morrow Designs Inc.'

OU5F 04B8 dw nov
ous1 04C2 dw dec

0463 0000 0000 dw 0,0,0,0 ;Illegal months
0467 0000 0000

046B 4A 61 6E 75 jan: db *January $'
OU6F 61 72 79 20

0473 24

ou7y 46 65 62 75 feb: db 'Febuary $'
0478 61 72 79 20

047C 24

047D 4D 61 72 63 mar: db 'March $°!
0481 68 20 24

ou8y 41 70 72 69 apr: db 'April $°
0488 6C 20 24

048B 4D 61 79 20 may: db 'May $°
048F 24

0490 4A 75 6E 65 jun: db *June $'
o494 20 24

0496 4A 75 6C 79 jul: db tJuly $°'
049A 20 24

049C 41 75 67 75 aug: db 'August $°
04A0 73 T4 20 24

O4AY 53 65 70 T4 sep: db 'September $°

04A8 65 6D 62 65
04AC 72 20 24

OUAF 4F 63 74 6F oct: db 'October §$°
04B3 62 65 72 20

04B7 24

0uB8 4E 6F 76.65 nov: db 'November $!

04BC 6D 62 65 72

04CO 20 24

ouce 44 65 63 65 dec: db 'December $!
04co6 6D 62 65 72

Q4CA 20 24

o4cc 0D 24 acrmsg: db acr,'$!

OUCE 0D 0A 24 acralf: db acr,alf,'s$’
SRR KRR RN RN AR AR R R R KRN NN RN RN RN RN RN RNAN RN R
o *
?
;* Tbuff is used to prepare the day of the month, hours, minutes, *
;* and seconds prior to printing. *
* *

?
?
;***

04D1 30 30 2C 20 tbuff: db '00, 00:00:00 am $!

'Decision 1 Real-time Clock Software!

*(c) Morrow Designs Inc.'

04D5
04D9
o4uDD
O4E1
O4E5
O4E9
O4ED
04F 1
O4F 5

04F9
04F9
O4FB
O4FF
0503
0507
050B
050F

0513
0513
0515
0519
051D
0521
0525
0529
052D
0531

0534
0536

0540
0540
0542

30
30
20
20
20
20
20
20
20

0D
49
6C
54
20
63
65

oD
50
73
T4
20
73
7h
74
3A

0A

30
3A
61
20
20
20
20
20
20

0A
6E
69
69
73
69
64

0A
72
20
75
74
65
68
69
20

0A

0081

00

3A
30
6D
20
20
20
20
20
20

76
64
6D
70
66
2E

65
72
72
6F
T4
65
6D
24

30
30
20
20
20
20
20
20
24

61
20
65
65
69
24

73
65
6E

20
20
65

badtmsg:

waitmsg:

ibuff:

scanpnt:

ment:

MACRO-80 3.36

db
db

db
ds

db

end

17-0ct-81 PAGE

acr,alf
'Invalid Time specified.$’

acr,alf

'Press return to set the time:

10, 10
10

cbuff

$'

15

'Decision 1 Real-time Clock Software'
'*(c) Morrow Designs Inc.'

Macros:

Symbols:
ACR
APR
BCD2
CLK
CLKDAT
DATE
DELAY1
DWNHRS
FRI
ISAM
MAK12
MCNT
MTCHMO
OCT
PSTR
RBIT
READCO
SCAN
SETT
SKIPC
SUN
TP64
WAITMS
WCLK

000D
ougy
01CE
004A
03EE
03F2
036B
03A1
0437
0301
0392
0542
022D
O4AF
0009
032C

000A .

03D0
010A
03AC
ouou
0010
0513
0008

ACRALF
AUG
BDOS
CLKC1
CLKSTB
DAYS
DIGIT
ENDSP
GRPSEL
JAN
MAR
MINUTE
NOAP
OKD
PUT
RBYTE
REGHLD
SCANPN
SETUP
SPLOOP
TBUFF
TUE
WBIT
WED

No Fatal error(s)

O4CE
049C
0005
0008
0346
03F4
020E
0317
004F
046B
047D
03FO0
017B
020A
037D
0329
0000
0540
0360
0309
o4D1
ou16
O1AE
o420

ACRMSG
BADTMS
CBUFF
CLKCLK
CONST
DEC
DISPL1
EXIT
HOUR
JUL
MATCH3
MON
NOMATC
OKDAY
PUTHI
RCLK
REV
SECOND
SHFT
START
THU
UNSCAN
WBOOT
WEKMON

MACRO-80 3.36

04ccC
04F9
0081
0002
000B
o4c2
0276
0380

- 03F1

0l96
0218
040D
0255
027E
0370
000C
000A
03EF
0004
0100
042C
03BF
0000
03F3

ALF
BASE
CLEN
CLKCMD
CSTB
DELAY
DISPLA
FEB
IBUFF
JUN
MAY
MONTHS
NOV
PMSG
PUTLOW
READC
SAT
SEP
SKIPB
SUBHR
TOUPPE
UPHRS
WBYTE
WRITEC

17-0ct-81 PAGE S

000A
0048
0080
0344
0020
0369
0261
0474
0534
0490
048B
044B
04B8
0389
0379
031B
0440
O4AY4
03B6
038E
03E5
0395
01AB
01A2

-
WHROKMNO W

[
AN W NN

NWHEHBOONHFRFEFNDNDNDND -

=
NN

N
N SN

—

PARTS LIST

8-pin low profile sockets
l4-pin low profile sockets
l6-pin low profile sockets
2@0-pin low profile sockets
28-pin low profile sockets
40-pin low profile sockets

3/4 inch wide heat sink

6-32 hex machine nuts

6-32 x 3/8 machine screws

10-pin power connector

2-pin reset connector

50-pin hooded dual inline connector

26-pin right angle P.C. mount (subminiature D connectors)
15-pin right angle P.C. mount (subminiature D connectors)

10@-pin S-100 edge connectors

8 position DIP switch arrays

2 position .@25 square connector post array
3 position .025 square connector post array

3.3 Ohm 1/4 watt resistor
75 Ohm 1/4 watt resistors
13@ Ohm 1/4 watt resistors
220 Ohm 1/4 watt resistors
330 Ohm 1/4 watt resistors
360 Ohm 1/4 watt resistor
390 Ohm 1/4 watt resistor
1.5k Ohm 1/4 watt resistors
3.3k Ohm 1/4 watt resistors
4.7k Ohm 1/4 watt resistors
10k Ohm 1/4 watt resistor
100k Ohm 1/4 watt resistor
190k Ohm 1/8 watt resistor

1@-pin 180 Ohm SIP resistor array
8-pin 3.3k Ohm SIP resistor array

20 pf dipped mica capacitor

47 pf dipped mica capacitor

56 pf dipped mica capacitor

112 pf dipped mica capacitor

dipped tantalum capacitor - 20V

39 ufd axial tantulum 10V capacitor
disk ceramic by-pass capacitor

32.768 KHz clock crystal
18.432 MHz HU/18 crystal

o e W et

Wb+

HREWHNNWHEERNNFRRDDRNDFRAN

PARTS LIST CONT.

IN914 signal diode
IN5221 2.6V zener diode

2N3904 NPN transistor
2N3906 PNP transistor
TIP29/D44C4 NPN transistor
TIP3@/D45C4 PNP transistor

7805 positive 5V regulator
7812 positive 12V regulator
7912 negative 12V regulator

LM2@1 high speed operational amplifier
LM1458 dual operational amplifier
1489 quad RS232 receiver/buffer

74LSPB quad 2-input NAND gate IC

74LS@4 hex inverter IC

7406 hex open collector inverter/buffer IC
74LS32 quad 2-input OR gate IC

74LS74 dual D-type flip-flop IC

74LS75 quad dual rail transparent latch IC
74LS98 decade counter IC

74LS125 quad tri-state buffer IC

74L.S138 1 of 8 decoder ICs

74LS174 hex latch with clear IC

74LS244 octal tri-state buffer IC

74LS266 quad 2-input EXNOR gate IC

74LS273 octal latch with clear IC

74LS367 hex tri-state buffer IC

74LS373 octal transparent latch/buffer IC
8ILS95 octal tri-state buffer IC

8ILS96 octal inverting tri-state buffer IC
8259A programmable interrupt controller IC
8250 programmable UART with baud rate generator IC
1990 programmable real-time clock IC

7611 32 x 8 bi-polar PROM

COMPONENT LAYOUT/SCHEMATIC

r‘""‘“'—"——"cnncm!——"‘—-—“'"‘j

oc eyt !

[]
[]

[N
&

00000 .2 7912
REGULATOR| 00000] - 1 1 Bl M] : -) [} € REGUL;
"

&

99908000

RESET FROM
FRONT PANELy
o

b1

il

SWI0A

— — — — — — — — - -
N O I o
WUNDERBUSS with NOISEGUARD Copyright 1981 G. Morrow WB14 rev1 |

L

BATTERY BACKUP JS
00 SERIAL ¢]

@ |
\

nl

BERIAL PORT ¢
(ACE)
{CONSOLE)

lal

SERIAL PORT 2

SERIAL PORT 3
(ACE)

i

AUX.

PARALLEL

l-— - wr == == +e == == = = =CARDCAGE. .. o -_ = e = e e _‘

Wunderbuss Component Layout

TYPKAL 3.3K0

A7 B> 2
7 Q‘ OuTPUT
sour fE>—-————1,
LS75
©
NP > ————p, |1
A6 B> g WPGT
JE— 4
READ G,
38 3
2 Q, STATE |
oo | [BB—m---—1-—qn mr R
[} STATE T
As [B> 15
x Q STATE @
Do @ @ D, _ |« [P
9 Q, STATE @
WRITE B2\ 8 5 & 3
® A Gz
8 MOOE BB 34 s
LS
At BB
2
STATE T —{.se@\ 8 14 s
9 | an A, og AS0E ENBL
STATE @ ———] <
10 ENBL Ay QF— GRkauF @
A3 B> i2f 2ZA 3
ADDR 2. q CONTROLLER ENBL
| e33 2
ADDR | A, q CONTROL
@ 1
ACDR @ Ay g fo ENBL
9 IS
INPUT L5266) b
8)lse b———— [0 ENBL
ouTPUT
2z 3 | 5
A2 DN, oy, ADDR. 2. ouT PUT N 3, BASY BN
"
4| @< ADCR @ L] 3 GRSV g o
Al o>, am ADOR. | 'Y s
ADPR 1 c Q, ITATTE i
ol =27 |, 8A % 12 '
A g D>, our, [————— AP°R & 3, PAISY | ouT
LS "
— i® 9 — % [aw-TA]
PAR [>—————1N, our ARITE +]_ _|e
| GROUF @ Eg P CLOCK ouT
ENBL, 5 _ ______
- i3 E, 3, PARACLEL 1IN
WRITE @
LS@e -
12| 44 E, & PARALLEL ouT
READ
1% It 15 S
00 7 >N, auT, DATA 7 DATA 7 N, our,——f@%> 017
z 3 z 8
00 6 [@>———qIN, our DATA & DATA & ™, our ———3> o1 6
78 8b
3 14+
oos BFHo— Ny oot DATA 5 DATA § Ny our, —-—@ oLs
81Ls9s LS244
8 9 -] 13
0o+ BB>— N, out, DATA 4 DATA 4 N, ouy ——{9> o1 4
iz i n 9
Do 3 >———m; ou DATA 3 DATA 3 ———— N, ouT > o 3
4 s - e
bo 2 BE>——mw, out DATA 2 OATA & ————IN, ouT, f——eefi™> 1 2
[y 3 3 T
Dot B>—IN, ogg DATA | OATA | ————{ 1N, ou:—@nu
8 17 7 3
0o 8 BO>———me oury DATA & DATA @ Ny ogl—_> o e
1 1
ENen, s ENBL,
‘ I 19 [READ LSd8 \ . @ 9
SO ENBL, TOENBL soe 3 4| am ENBLg
3TINTAENBL —— %A
3
mreser [B>— 0 2 &
2 "Ssta RESET b. RESET !
e B LS B4
Povie [
i3 2 " o
roBIN [B> @c READ 9A READ
LS@4 LSPe

wunoereus®i/o
BUFFERS, BOARD SELECT LOQIC

PAGE 1 of &

© 1980 0. MORROW

LSKA E7 1,38 ' NOTEI USER INSTALLED OPTION
Vee 206 i -
2! ° o—O
arRn < l é
) .
wexa s nd
A s Voo "
TYe »Qa oe Z‘Pf
DATA & *Is g b LV il P9 %, = * i
(oy ' W
7
a | 1 o e *eBlox . é »pf | 32708 1HZ
] 1B e o4 3 Xe i} 188K Q2
DATA 2 o, Q, —i C‘H,’ < Vee
8 a9 iz 3 2z 18 — 12 s]
DATA 3 o, Q) c, ™ TP INT INg OuT, DATA |
o | wsers 4|, 32z . 12A pexQ
DA™ 4 o Qy > S Vee L5367
14 s 1@, S 4+ 9 4 13
PATA 5 o =% v sTB PO - INg ouTy DATA®
19 e
PATA 6 10 5 % RiIBBON Ves ? 5 éc
- 5 1~ CLOCK IN ~eme—— ENB)..°
PAT™A T % @
. 11
I-CLoeK ouT @ K ear o
IBeKL (% " I’} -
Voo ———@ SELECT
4
e —— 7400
INGI4 1K
2N36 r—-l——%
Vee
,s TYraon @ TYPa.3kQ
e)
Is Y 12 " o~ ' I ! 1 —1!
FiRoY B> - Ny o, DATA 7 » T, o ™, ST, s DATA 7
b ‘.3 Y
|9 ' 8 ? A 2]2 2
T [E>— 4 n am pATA o o~ W om DATA ¢
F-+—. ep ‘331 Fqu_ 1)
2 13) 6 |7
M ROY (> N, o, DATA § v \G g N, OUTy DATA S
b aiLs96 Cy r——}—< 8iLsie
8 . 7 et} 4| -3 : 9
T > - + Ny o DATA 4 ' ~o—¢ T DATA 4
’]
|" v 6 5 5 Is 2 — |
7 rov B> < N, o, DATA 3 ~o ™, 5 DATA 3
b
I" v 4 5 ™ o le 4
over B> + N &y OATA 2. V] N, & DATA 2
[! 8 7 - 3 .
mrer B> Ny G, DATA 1 3-FLAG 2 o, DATA 1
e 2 3 18 —
BB [? 3 N, G, DATA @ 3-FLAG | N, B, DATA &
! [P
EBL, ENBL,
| 19 I)
s -DAISY N @ BNBL,, |- STATGS M BB,
E—e 8 2 Fs s
DATA 7 D, Q, {=> re=tore DAYA 7 d | o,) 2—-@ DATA B
e “ 4 © - '+
3 2 3 12
=—e DATA & o, o—F> st pA™ & o o> oATAT
le>—9
7 ® b4 ®
| DATA 5 D, Q > cak =8 DATA § X e, —f> vaTA &
> P 7P
- 15 5
>—e DATA 4 o % —{=> Frs7e DATA 4 o, @ |——@B> o~As
B—t o wem7s |, o] =33 0L
DATA 3 o, @, —{2> caTA 12 DATA % o, e, L—@ DATA 4
|E§>_'
16 14 [—
> DaTA 2 o, o, ——1> aram DATA 2 o, o, |——> oATA 3
E>—e 3 z 3 2 e
- oamm Y e P o o> A
< [} 1] 9 U
DATA & X o> saias DATA & B qr—> oAA
' 2 3 4 |
1-DAISY OuT B ——@0—- [I-DASY ouT 1 —@0——'6
Ps L4 s . . 304
e t — P, I
B> PRENBL — BB SEer B> PTR ENBL ENBL
E>—e Vie L3iz8 4
E>—e 2N ' aaka PS
4IRQL KiseoN IOE‘5 3> roFr
reveer [@B> ——9 ZN3oE4 s .
@—n "
4 3, wunoersus®i/o PAGE 2 of 8
& é CLOCK,STATUS, & DAISY PORT™
© 1980 G. MORROW

P4
2 1l o 8 9
BE>——dm, oug PATA 7 paraA 1 ——p, q ——3>
& 9 1) 2
>——n, o, f——baTA 6 PATA 6 ———d O, oI
“ 13 7 3
e Ty OATA 5 DATA & o, q —=
6 3
37}
© 7 4 '5
E>——— i, ouy PATA 4 DATA 4 ———— D, Q —>
B8iLs95 L5373
e 15 4 5
E>——n o DATA 3 DATA 3 o, Q=
ne
4 3 17 16
BE>———n, e, DATA 2 DATA 2 ——— D, ?, —>
(-3 7 3 2
o Wy DATA | DAA | ——— D e —->
2 3 8 19
E>——m—m™, o DATA & DATA & % S —{>
1
5 3 1
9 9 a
LS50+
' ——
- Bl
1-PARALLEL 1N
P4 FLAG | Pa
5 3
> ATTH 0 [o>
5—4‘— 7406
330
GNDS = 9,11 P4
FLAG Z
! 2
=> ATTNZ D >
1406
30
7
I-WRITE L9352 n 9 2 18
i3] 3A K Yoo mmedth, OUT, {525 BINTA
1- CONTROL
[7 — 3 7
LSe4 7006 DATA 4 Dy Py ATTM 2 Vee —=11N, OuT ——TF> Swo
° a LY J¢N v " ©B @ v s
sanTA o> b o b O PP Vec DATA 3 _—ﬂ 0,] ATTN | INg o._\1-°—.® SSTACK
LS@4 426 14| LS+ s 8 "
5 o DATA 2 D, o‘ RST 2 INg ou: ——@ SM|
P B> " O N Pz 1 L5244
4 5 © 1«
DATA | kX e, RST | N, our, > souT
o z 4 16
DATA @ 2 ear PoE- IN, ouT,——_ a]> sip
" P8 .
\-RESET INg cug‘——@ SHMEMR
PrLDA 22> 5 5
Vee N, our, ——&g> SHLTA
LN &
J2 SET
A & 2z [
4-INTR 0 O— ® 4 4 ENBL,
L1582
< s cha 5 Jan INTAENBL
CLEAR
I'd
1IN
preseT B> StaTas G
23 & 5 & iPpsL Leizs
@k Q Lsds \ @
Ls98 9 +] sc
3
[3) 4+ [
R =Te A 5 wunpersus®i/o PAGE 3 of 6

PARALLEL PORT, INTERRUPT LOGIC © 180 a. -

. L4
SRt 0 —_—r
— 36|
Pl CLEAR N T, Voo
6 N42° . I 14 .
seriaL IN 2> 1D LN DIRGY, DSR "
38 ST
SETECT, fsp T
8 ACE |
DaTA 7 o,
7
DATA 6 ————{ D,
140 é v
. « NKe? - Dam § o,
L-EAR To SEND |§ > e LEAR 5
l/ A 33
DATA 4 o, R
Py
DATA 3 Dy
3
DATA 2 B
¢ 1.5KQ 4
DATA | B
' ersd
DATA @ o,
26 3¢
1-ADDR 2 Ay INTR f————INTR
27|
1-ADDR | A
. z®
1-ADDR @ As N
i+
1489 1-STATE | o,
i 3z 2
SIGNAL DETECT [§ > 4],> DETECT, s 13
1~ STATE cs,
2
1- 10 ENBL (293
J— 2 15
I- READ —={DBTR BouT j
[
I- WRITE DOSTR. RCLK
35 2z
I- RESET MR PISTB)
e 9
2 ph 4~ BAUD G-K XA, posTB
39 —es
Vee ——R ADS
7%@4 =30 .
e
® = 3.67E I
s7pfam g4z 3960 - 2 R o —
MH2 v
A v TA

Vee -j) 8 A QU BAUD CLK
I3 SET k] |

Vee——1 D]
ac
| w74
2-TP INT (=
?m
1- CLOCK IN
[7 3 4+ J43
CONTROLLER ENBL cs GINT INTR D o0——{73> PinT
21 1426
INTR, IRQ@, Dg_’ DATA 7
s 22 5
~INTR IRQ, pe, DATA &
5- INTR 2 ix oe. | P, .
. @, 5
(3 5 s
. [l 7 o—> vir
PW RDY LRQ@ pe, | DATA 4
LS@4 2% 8
—ire, op, or 3 —B> v
2
27 o8, DATA 2
1-ADDR @ o/ °—E> vis
s os, DATA |
1-READ) " .
— 2 o8, Pata @ o—{> 4
RRITE |wR.
e
SP/EN —A— Vec ° D NT 3
BESIA ee 154 c
1R, IA —o—o0—{¢> vz
2 1z 1)
28 19 LS5d4 " B
IRQ ‘_O—@
. . ' 1 [Vi
1- READ 3 _ 8 LS4 A
:@—— INTR TR ——IAK IR®y A 1A Py O—0—{*> vi ¢
3- (N7 ENBL
wunpersus® /o PAGE 4 of 6

SERIAL CHANNEL A & INTERRUPT CONTROLLER
. © 1380 G. MORROW

Pz

@ 1489
8 —
- 1489
CLEAR
s
> 3 D A
DS Rove

\ 1489
DETECT,

. 1489
DETECT.
D>
e
v

e,
5% KD,
ErELT,
BATA 7
DATA &
DATA 5
DATA 4
DATA 3
DATA 2
DATA
DATA &
| -ADDR 2
1 -ADOR 1
1.-ADDR @
1 -STATE 1
\-S$TATE @
1-TO ENBL
| -READ
|~ WRITE
|- RESET

<“4-BAUD (LK

RN
CEAR,
DS RDYe
DETECT,
DATA T
DATA &
DATA 5
DATA 4
DATA 3
DATA 2
OATA |
PATA @
'-ADDR ¢
I- ADDR 1
| ~ADDR &
\TSTATE
I~ STATE @
-10 ENAL
1-READ
I- RESET

4- BAUD CLK

csg
OISTR
PosTR
MR

XTAL,

ACEZ

4-REFEREMCE

SouT

— |32 2
RTS

INTR INTR

BouT

Zl
RCLK
vsTE

DosTB|

§

|s

ACED

4D

DISTR
POSTR
3

KTAL,

3> 2

1458

458

3z 2

3@

INTR INTR
c

BouT
3
ROk
DisTB

DosTe

+

Pz

wunperBus®i/o
SERIAL CHANNELS B & C

PAGE 5 of 8

© 1980 G. MORROW

+8v II > —qu._@
+lev [>— .
4 THRU 19

f 21 THRU 43
>—r—TJF>

. 53 THRU 69

o 7ITHRU 7
INS22! 1 ‘—’K-N59¢4 :

-ev B> -
° 76 THRUP

g
D

>
+8v | N \ ouT § + 5V D—,———._@
w I o5 Jon = >

=

Pé
B > +o
+ieV [N ouTr tizv E>—n;__—® +ev
= I 3 l
wid £ | mz | Tl =1
l aND I B>
< B 2> +ev

D8 -y

-V - IN ouT -2V P7
» = . WEsET [>— —{2> PresET
A 7912 +l 1ot J7
GND) D_l

wunpersus®ivo PAGE 8 of 6

POWER SUPPLIES & BUS TERMINATION
© 1980 G. MORROW

Subject Index

A

ACE devices, 20

accessing the auxiliary port, 33
accessing the divisor latch, 22, 23
accessing the 8250 devices, 21, 23
assembler directives, 23

AEOI mode, 9, 12

B
bank select, 2
buffered mode, 9

C
Call instruction, 7

D

"DIP switch 7C, 3
divisor constant, 22
DDTI ll ’ A"’l

E
edge-mode, 8
End of Interrupt (EOI) mode, 9

F
formula for determining baud rates, 22

L]

initializing the PIC, problems with, 11
interface standard, 27

Interrupt Mode @ (8080 mode), 6
interrupt option, 32

L

Tatched, defined, 31
latched output ports, 28
level -mode, 28

M

masking interrupts, 10
master/slave mode, 8

motion-then-print, 32

N
nested mode, 9

(o}
odd ball baud rates, 22

P .
PINT, 7, B-4

polled mode, 9
print-after-space, 32

printer ports, 7, 19, 27, 30, B-1

R
Restart instruction, 7
rules for port control, 3, 4, 11

S

SINTA, 7

software samples, 18, 24, 32, C-1
space-after-print, 32

T

TERI, 26

Timed Pulse (TP), 43
triggered modes, 8

V
vectors, PIC interrupt, 7, B-4

