5221 CENTRAL AVENUE
RICHMOND, CA 94804
{415) 524-2101

RBECISIO

MICROCOMPUTER

PRELIMINARY

Product Relerence Manual

and Performance Specifications

DECISION I MICROCOMPUTER SYSTEM

VERSATILE AND COST EFFECTIVE.- THE DECISION I WAS DESIGNED
TO BE THE MOST VERSATILE AND COST EFFECTIVE MULTI-
USER, MULTI-TASKING MICROCOMPUTER AVAILABLE TODAY.
THE DECISION I IS IDEAL FOR BOTH SMALLER BUSINESS
AND WORD PROCESSING APPLICATIONS. THE DECISION I'S
"UNIVERSAL" CHARACTER PROVIDES THE SYSTEMS DEV-
ELOPER WITH A SINGLE HARDWARE PACKAGE THAT CAN
ACCOMMODATE THE WIDEST VARIETY OF NEEDS. FROM
SINGLE USER, DEDICATED APPLICATIONS TO MULTI-
USER, MULTI-APPLICATICH ENVIROWMENTS. PLUS,
["ODULAR EXPANDABILITY WHICH PROVIDES MAXIMUM
UPWARD COMPATABILITY.

BIG SYSTEM FEATURES IN MICROCOMPUTER.- THE DECISION I CPU
FEATURES A 4-TO-6 MEGAHERTZ Z80A, SOPHISTICATED
MEMORY MANAGEMENT HARDWARE AND A FLOATING POINT
PROCESSOR. THE SOFTWARE FEATURES uNIX-FUNCTIONALLY
IDENTICAL TO BELL LAB'S UNIX.* PLUS CP/M,** A
HOST COF LANGUAGES (INCLUDING C), BUSINESS APPLI-
CATIONS AND WORD PROCESSING PACKAGES.

A SYSTEMS APPROACH.- MEMORY MANAGEMENT HARDWARE INCLUDES A
MEMORY MAP THAT SUPPORTS UP TO 16 TASKS WITHOUT
SWAPPING (MORE WITH SWAPPING). EACH TASK ENJOYS
COMPLETE MEMORY PROTECTION AND AUTOMATIC MEMORY
ALLOCATION. ONE OF THE TASKS MAY BE DELEGATED
AS THE SUPERVISOR TO EANDLE PRIVILEGED SYSTEM
FUNCTIONS THAT HAVE BEEN FORBIDDEN TO ORDINARY
TASKS. SUCH FUNCTIONS (I/O CALLS, UNAUTHORIZED
MEMORY ACCESS, ETC.), WILL TRAP TCO THE SUPER-
VISOR FOR PROPER HANDLING. A SWITCH ARRAY ON

- THE CPU BOARD ALLOWS TURNKEY CONFIGURATION OF THE
SYSTEM IF THE SOFTWARE DOES HOT REQUIRE THE FULL
RANGE OF SUPERVISOR FUNCTIONS.

AN UNMATCHED SOFTWARE BASE.- THE DECISION I'S uNIX
OPERATING SYSTEM SUPPORTS UNIX SYSTEM CALLS
IN A MANNER THAT IS SOURCE COMPATIBLE WITH
UNIX. THUS, UNIX PROGRAMS WILL COMPILE DIRECTLY
AND UNIX DOCUMENTATION IS ALMOST TOTALLY

APPLICABLE. OUR CP/M HAS ALSO BEEN CONFIGURED
TO RUN UNDER uNIX AND TC COMMUNICATE WITH

BOTH CP/M AND UNIX-STANDARD MEDIA FOR MAXIMUM
PORTABILITY. MORRCW DESIGHNS FEELS THAT EXISTING
Cp/M AND UNIX SOFTWARE, TOGETHER WITH THE GROW-
ING REALIZATION OF THE POWER OF UNIX, GIVES THE
DECISION I A SCFTWARE BASE UNMATCHED IN THE
DECISION I'S PRICE/PERFORMANCE ARENA.

FEATURES:

1. uNIX (UNIX IDENTICAL)

2. CpP/M

3. 32K TO 1 MEGABYTE OF HARDWARE MANAGED MEMCRY
4, FLOATING PFOINT PROCESSOR (OPTICNAL)

5. SUPERVISOR CONTROL IN HARDWARE AND SOFTWARE
6. 64K ADDRESSES SPACE FOR EACH PROCESS

7. Z88A MICROPROCESSOR

8. 20gK TO 1¢4 MEGABYTES OF DISK MEMORY

9. MODULAR EXPANDABLITY
19. 3 SERIAL POETS AND 2 PARALLEL PORTS MINIMUM

#UNIX is a trademark of Bell Labs.

*¥*Cp/M is a trademark of Digital Research .
*

Technical Manual

Decision CPU

Introduction

The Morrow Designs Decision CPU circuit board is an S-
198 bus single board computer conforming to the proposed IEEE
696 standards for interface. The CPU features:
* 4 Mhz Z8¢ microprocessor chip (6 Mhz optional)

* Hardware floating point (9512 floating point processor)

*# Full 23 bits of address space allowing access to over 8
megabytes of physical memory

* On board memory consisting of 2K bytes of EPROM and
1 K bytes of RAM memory

* Sophisticated hardware memory management circuitry
which is dynamically alterable by the operating
system.

* Sophisticated hardware trap mechanisms allowing the

operating system to control user operations and access

The CPU board requires only power from the +8 volt and
+16 wvolt for operation. The Decision CPU is made up of the
following system blocks:

1. Bus Control Logic - all logic necessary to make the 2789
processor conform to the S-1¢9@ standards for interface. This
circuitry provides the addresses, data and control signals
required by external memory and I/0 devices.

*

2. DMemory Mapping Logic - this block consists of all the logic
required to provide the 23 bits of address space (the Z8¢ 1is
hardware limited to 64K bytes at any one time). The circuitry
allocates memory by tasks (64K maximum per task) and segments
(4K segments). Mapping 1is implemented by use of very high
speed memory. This memory provides the addresses as well as
the protection attributes of these addresses.

3. Trap Logic - The Decision CPU may be set to trap on an
occurance of any of the following conditions:

a) Halt - user has attemped to execute a halt
instruction

b) Interrupt - interrupt has occured during a
users program.

c) Reset - the reset button has been pushed.

d) Illegal Memory - the user has tried to read or
write memory which has yet to be
allocated to him.

e) I/0 - user has attempted to execute an
I/0 operation

d) Stop - front panel stop has been executed

f) Auxiliary — user defined trap. On systems

with 9512 option this can be
connected to the 9512 status
line ERROR. The board may also
be strapped with this line tied
to the S-1¢¢ NMI, PWRFAIL or
ERROR lines.

Upon trapping on any one of the above conditions, it is up to
the operating system to decide what to do. In some instances
the program may be allowed to continue. In others, the program
may be interupted from executions. The traps can be set in any
configuration of the above or in the case where the user is
running only one task (e.g. CPM), disabled completely.

4. Local Logic - logic which provides all the onboard clocks and
strobes for devices on the CPU card itself.

Decision Memory Management Hardware

For the purposes of this section, all memory size references
will be listed as decimal unless otherwise stated.

The Decision CPU can access a full 8 megabytes of address space.
This memory 1is devided into sections referred to as tasks and
segments. Segments are the smallest increments a memory may be
devided into and are 4 K bytes. Tasks may consist of a minimunm
of 1 segment to a maximum of 16 segments. Therefore the maximum
addressable memory by any one task 1is 64 K bytes (this
limitation is imposed by the address space of the Z80
processor).

The total memory space is 8 M bytes but 16 tasks of 64K each
only maps 512 X bytes of this space. The other 4 bits of the
address space (A28 - A23) are selectable by the operating system
as a bank select scheme. Therefore any of the 16 tasks may

be situated anywhere in the 8 M byte range of the CPU card.

O0f the 16 tasks available, the 280 can execute only one at a
time and therefore the tasks actually time share the CPU chip.
It is the responsibility of the operating system to allocate the
CPU's time adequately. The operating system (from now on this
will be referred to as the supervisor) runs in a special task,
task @, which allows it access to the special features available

on the CPU. These special features include access to the trap
registers, map RAMs, floating point processor and the on-board
EPROM and RAM memory. These devices are permanently memory

mapped into task f#'s memory space starting at ¢ (4 K Dbytes
total) and cannot be accessed by any of the other tasks.

The program running in task ¢ is referred to as the 'Supervisor'
and all other tasks are referred to as 'Users'. In its role as
the system supervisor, task 0 is responsible for allocating or
de-allocating the memory space of all 16 tasks within the
system. In addition to this, the supervisor assigns access
privileges to the memory it has allocated to a particular task
and determines what types of operations a user may request the
288 chip to perform are allowed.

The supervisor allocates memory to a task by writing into the
mapping RAMs residing at 58¢ (hex) to 7FF (hex) in task @. The
*

size of each memory segment is 4 K bytes and each segment has
its own set of protection attributes. A segment may Dbe
configured as:

No access - User is not allowed any access to the
memory segment.

Execute Only - User is allowed to only execute the
code contained within the segment.

Read Only - The user is allowed to both execute and
read the memory segment.

Full access - The user is allowed unlimited access to
the memory segment.

If any of the above conditions are violated by a task (e.g. a
user has attempted to write into a read only segment) the
operation will be aborted and execution of the task running will
stop with the supervisor now executing. This is referred to as
a 'Trap' but more on them later.

The allocation of the memory segments is done dynamically, i.e.,
the supervisor can allocate memory to a task at will. In the
instance where a task requires more memory (perhaps it has
outgrown its allocated stack area) the operating system may or
may not allow the task to have more memory.

Another added feature of the Decision CPU memory management
hardware is that any task may share any number (up to 16) of
memory Segments with any other tasks. In the event the
~operating system has data to swap with a task, all that need be
done is write into the mapping rams a duplicate map image for
both tasks for that segment. This also allows one program to be
shared by up to 16 different tasks but reside in only one memory
area. The supervisor alone has access to the mapping rams which
in turn allows it to access any of the memory space of any of
the other tasks.

There 1is an additional protection bit in the Decision CPU which
doces not cause a trap to occur but does allow the operating
system to monitor user memory references. In the instance where
a task has outgrown its memory allocation and requires more
memory, the operating system can examine this bit and determine
whether or not to allow the tasks space to grow. This 1is
strictly a software protection but 1is written into the
protection attribute ram along with the other protection
attributes, The advantage of this attribute 1is that the
supervisor can allocate a full 64 K bytes to a task of which
perhaps 16 K bytes was designated as 'No Access' protection. If
*

the task outgrows this area, and the extra protection bit is
high, the supervisor will update the task's memory map to allow

it access to more memory. If this bit were low, the task would
be refused access to more memory and the supervisor would
send an error message to that user. This bit will be referred

to as the 'Grow' bit.

The versatility of the Decision CPU lies in its ability to
allocate menmory dynamically over the 8 M byte range and to trap
on the occurance of an 1illegal event occuring within a
particular task -- a good deal more sophisticated than the
typical s-1¢@¢ CPU board. This does not however, prohibit the
use of the CPU board as a standard S-10¢ bus master with a 64K
memory space. The onboard EPROM is responsible for configuring
the CPU for the user's application.

In the event a user wished the board to run a total of only one
task, (e.g. the CPM operating system in one task alone), the
EPROM would contain code which would essentially disable all the
trapping hardware on the CPU and allocate a full 54 K bytes of
unprotected memory to task 1 (remember that Twsi 3 has the low 4
K bytes taken up as the Decision CPU features and therefore
would not be able to run CPM). The switches on the CPU board
will determine the power on jump location for the operating
system or bootstrap loader. The CPU may jump to any location on
a 2K boundry. In this mode, the Decision CPU can emulate any
other standard S-18@ CPU card without these features, By simply
replacing the EPROM, the board may again be configured as a
multi-tasking, multi-user board with large system trapping and
protection features.*

Decision CPU Trap Hardware

The power of the Decision CPU lies in its ability to trap on the
occurance of an undesired event within a program. This feature
allows the operating system to control the flow of execution
within all the tasks in the system and prevent undesired
conditions from arising.

There are essentially 6 levels of trapping available with the
Decision CPU. They are configured in such a way as to allow the
operating system to restrict the execution of certain operations
within a users program and may or may not be utilized. The low
level traps consist of:

Trap Reset - Indicates the reset button has been
pushed or the CPU has just powerd up.

Trap Stop - The front panel stop switch has bheen
activated.

Trap Aux - User defined trap which may be connected
to the Floating Point Processor.

The other three traps are considered to be high level traps in
that they actually abort the occurrance of the attempted
operation. These consist of:

Trap Halt - A task has attempted to execute a 2Z8¢
Halt operation and halts are not allowed
in that task.

Trap Int - An interupt was generated during the
execution of a task which was not
allowed to honor interupt requests.

Trap Void - A task attempted to execute an I/0
instruction or an illegal memory access
has occurred.

The 1last trap, Trap Void is actually a compilation of several
types of trap condition. By reading the Trap Status Port (483H)
in task @, segment § the operating system can determine
precisely what type of trap occurred. Thus, Trap Void type traps
may be further broken down into the following conditions:

a) In Trap - A task has attempted to execute an input
instruction when I/0 was not permitted.

b) Out Trap - A task has attempted to execute an
output instruction when I/0 was not
permitted.

c) Read Trap - A task has attempted to perform a menory
read operation on memory which had
either execute only or no access

protection attributes.

d) Write Trap - A task has attempted to write into a
memory location which had Read oOnly,
Execute Only or No Access protection
attributes.

e) Exec Trap - A task has attempted to execute code
in an unallocated memory segment.

When any of the above trap conditions occur, the S5-1¢0 bus
control and status signals (sINP, sOUT, sMEMR, sWO, sMl, pwR,
PDBIN) are inhibited and do not reach the bus. This effectively
aborts the execution of the instruction. When this trap occurs,
task @ will begin execution and will decide whether or not to
allow the trapped event to occur. It is the responsibility of
the firmware on the CPU to save the trapped task's registers to
allow proper return to that task.

Whenever a trap of any kind occurs, execution of the current
task 1is suspended and code in the EPROM on the CPU (location
@BFg hex) begins execution. This code contains all the code
hecessary to save all the primary and alternate 288 registers in
the on-board CPU ram. Each task has an allocated area in this
memory for its registers and its Trap Mask. The Trap Mask is a
one byte description of the types of operation allowed within a
task and is written into the Mask Register whenever the CPU
switches to that task. The Mask Register is at location 4¢3
hex in task @, segment ¢ memory space.

The Trap Halt condition indicates a halt has been attemnpted but
the task was not allowed to perform a halt. In this case, the
trap logic must prevent the halt instruction from reaching the
280 chip. To accomplish this, the data intput driver to the CpPU
data 1lines 1is turned off whenever a halt op code (76h) is
detected during an M1l cycle. This condition also enables the
EPROM on the CPU board to gate a nop (00h) into the Z8% chip.
Therefore location @BFOh in the EPROM must contain a NOP since

this is the location executed whenever a trap occurs.
*

To re—iterate, the trap conditions for a particular task are set
just before the task begins execution by writing a value into
the Mask Register on the CPU board. This register may be set to
allow or not allow a task to execute 1I/0, Jalts or to
acknowledge interupts. In addition, this register enables the
front panel stop (this can be deactivated as well) switch, the
auxiallary enable bit and will determine if the port addresses
during the execution of I/O will be in long or short mode (long
mode putes the addresses on A§ - Al5 and A@ - A7, while short
mode puts them on the low 8 address lines only).

Upon the occurance of a trap, since the EPROM code has
successfuly stored all the registers of the trapped task, the
supervisor can examine the conditions which led to the trap and
determine a course of action. Since the program counter for the
task has been saved and contains the location of the next
instruction which would have been executed had the trap not
occurred, the supervisor may handle the trap and then return to
that task. For instance, in the event a task runs out of memory
space, the supervisor may decide to grant the task more memory
and then to return to the very instuction which caused the trap
to occur. Only this time, the execution will continue without
any traps. Another example might be when a tesk is interupted
by external interupt logic (for instance when a disk file has
been successfuly loaded) but this tasks was not allowed to
acknowledge interupts. In this case the task might have been
waiting for the contents of the file for further execution. The
condition will cause a trap to the supervisor which will handle
the interupt, transfer the data to the task and then return to
that task.

As in the case of the memory management hardware, the power of
the CPU lies in its ability to trap as described. There are
cases when the CPU may want to be configured as a standard S-108
type CPU board without any of these features. 1In this case, the
onboard EPROM will contain code to inhibit all the trapping
mechanisms from activating which will be executed before the CPU
jumps to the desired task. This would be typical in a single
type enviorment such as CPM which does not support the trap
features. By simply writing a 2Bh into the Mask register, all
traps are inhibited and the CPU board will emulate other §-106¢

28¢% CPU bus masters.
*

10

