@

Digital Research

P.O. Box 579

Pacific Grove, CA 93950
(408) 373-3403

CP/M 22
Manual

Section I:

Section I1:
Section I1I:

Section IV:

Section V:

Section VI:

Digital Research
CP/M® Manual
Vers. 2.2

An Introduction to CP/M Features and
Facilities

CP/M 2.2 Interface Guide
CP/M Context Editor (ED)

CP/M Assembler (ASM)
User’s Guide

CP/M Dynamic Debugging Tool (DDT)
User’s Guide

CP/M 2.2 Alteration Guide

AN INTRODUCTION
TO CP/M FEATURES
AND FACILITIES

COPYRIGHT (c) 1976, 1977, 1978
DIGITAL RESEARCH

Copyright (c) 1976, 1977, 1978 by Digital Research. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a re-
trieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written per-
mission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digial Research makes no representations or warranties
with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication
and to make changes from time to time in the content
hereof without obligation of Digital Research to notify
any person of such revision or changes.

Table of Contents

SECTION I

ot

ARl R

INTRODUCTION

AN OVERVIEW OF CP/M 2.2 FACILITIES
FUNCTIONAL DESCRIPTION OF CP/M
SWITCHING DISKS

THE FORM OF BUILT-IN COMMANDS
ERA

DIR

REN

SAVE

TYPE

USER

. LINE EDITING AND OUTPUT CONTROL
. TRANSIENT COMMANDS

STAT
ASM
LOAD
PIP

ED
SUBMIT
XSUB
DUMP

BDOS ERROR MESSAGES

Page

© o ot W

10
11
12
12
13

13

14
15
21
22
23
31
33
35
36

36

Introduction

CP/M is a monitor control program for microcomputer system develop-
ment which uses IBM-compatible flexible disks for backup storage. Using a
computer mainframe based upon Intel’s 8080 microcomputer, CP/M
provides a general environment for program construction, storage, and
editing, along with assembly and program check-out facilities. An important
feature of CP/M is that it can be easily altered to execute with any computer
configuration which uses an Intel 8080 (or Zilog Z-80) Central Processing
Unit, and has at least 16K bytes of main memory with up to four IBM-
compatible diskette drives. Although the standard Digital Research ver-
sion operates on a single-density Intel MDS 800, several different hard-
ware manufacturers support their own input-output drivers for CP/M.

The CP/M monitor provides rapid access to programs through a com-
prehensive file management package. The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as sequential
and random file access. Using this file system, a large number of distinct
programs can be stored in both source and machine executable form.

CP/M also supports a powerful context editor, Intel-compatible assembler,
and debugger subsystem. Optional software includes a powerful Intel-
compatible macro assembler, symbolic debugger, along with various
high-level languages. When coupled with CP/M’s Console Command
Processor, the resulting facilities equal or excel similar large computer
facilities.

CP/M is logically divided into several distinct parts:

BIOS Basic I/0 System (hardware dependent)
BDOS Basic Disk Operating System

CCP Console Command Processor

TPA T‘rénsient Program Area

The BIOS provides the primitive operations necessary to access the diskette
drives and to interface standard peripherals (teletype, CRT, Paper Tape
Reader/Punch, and user-defined peripherals), and can be tailored by the

user for any particular hardware environment by “patching” this portion of
CP/M. L

The BDOS providesdisk management by controlling one or more disk drives
containing independent file directories. The BDOS implements disk
allocation strategies which provide fully dynamic file construction while

3

minimizing head movement across the disk during access. Any particular file
may contain any number of records, not exceeding the size of any single disk.
Inastandard CP/M system, each disk can contain up to 64 distinct files. The
BDOS has entry points which include the following primitive operations
which can be programmatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open a file for further operations.

CLOSE Close a file after processing.

RENAME Change the name of a particular file.

READ Read a record from a particular file.

WRITE Write a record onto the disk.

SELECT Select a particular disk drive for further operations.

The CCP provides symbolic interface between the user’s console and the
remainder of the CP/M system. The CCP reads the console device and
processes commands which include listing the file directory, printing the
contents of files, and controlling the operation of transient programs, such
as assemblers, editors, and debuggers. The standard commands which are
available in the CCP are listed in a following section.

The last segment of CP/M is the area called the Transient Program Area
(TPA). The TPA holds programs which are loaded from the disk under
command of the CCP. During program editing, for example, the TPA holds
the CP/M text editor machine code and data areas. Similarly, programs
created under CP/M can be checked out by loading and executing these
programs in the TPA.

It should be mentioned that any or all of the CP/M component subsystems
can be “overlayed” by an executing program. That is, once a user’s program
is loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as the
program’s data area. A “bootstrap” loader is programmatically accessible
whenever the BIOS portion is not overlayed; thus, the user program need
only branch to thebootstrap loader at the end of execution, and the complete
CP/M monitor is reloaded from disk.

It should be reiterated that the CP/M operating system is partitioned into
distinct modules, including the BIOS portion which defines the hardware
environment in which CP/M is executing. Thus, the standard system can be

4

easily modified to any non-standard environment by changing the
peripheral drivers to handle the custom system.

An Overview of CP/M 2.0 Facilities

CP/M 2.0is a high-performance single-console operating system which uses
table driven techniques to allow field configuration to match a wide variety
of disk capacities. All of the fundamental file restrictions are removed, while
maintaining upward compatibility from previous versions of release 1.
Features of CP/M 2.0 include field specification of one to sixteen logical
drives, each containing up to eight megabytes. Any particular file can reach
the full drive size with the capability to expand to thirty-two megabytes in
future releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.0 are physically separated
by user numbers, with facilities for file copy operations from one user area to
another. Powerful relative-record random access functions are present in
CP/M 2.0 which provide direct access to any of the 65536 records of an eight
megabyte file.

All disk-dependent portions of CP/M 2.0 are placed into a BIOS-resident
“disk parameter block” which is either hand coded or produced automat-
ically using the disk definition macro library provided with CP/M 2.0. The
end user need only specify the maximum number of active disks, the starting
and ending sector numbers, the data allocation size, the maximum extent of
the logical disk, directory size information, and reserved track values. The
macros use this information to generate the appropriate tables and table
references for use during CP/M 2.0 operation. Deblockinginformationis also
provided which aids in assembly or disassembly of sector sizes which are
multiples of the fundamental 128 byte data unit, and the system alteration
manual includes general-purpose subroutines which use this deblocking
information to take advantage of larger sector sizes. Use of these
subroutines, together with the table driven data access algorithms, make
CP/M 2.0 truly a universal data management system.

File expansion is achieved by providing up to 512 logical file extents, where
each logical extent contains 16K bytes of data. CP/M 2.0 is structured,
however, so that as much as 128K bytes of data is addressed by a single
physical extent (corresponding to asingle directory entry), thus maintaining
compatibility with previous versions while taking fulladvantage of directory
space.

Random access facilities are present in CP/M 2.0 which allow immediate
reference to any record of an eight megabyte file. Using CP/M’s unique data
organization, data blocks are only allocated when actually required and
movement to a record position requires little search time. Sequential file
access is upwardly compatible from earlier versions to the full eight

5

megabytes, while random access compatibility stops at 512K byte files. Due
to CP/M 2.0’s simpler and faster random access, application programmers
are encouraged to alter their programs to take full advantage of the 2.0
facilities.

Several CP/M 2.0 modules and utilities have improvements which
correspond to the enhanced file system. STAT and PIP both account for file
attributes and user areas, while the CCP provides a “login” function to
change from one user area to another. The CCP also formats directory
displays in a more convenient manner and accounts for both CRT and
hard-copy devices in its enhanced line editing functions.

Functional Description of CP/M

The user interacts with CP/M primarily through the CCP, which reads and
interprets commands entered through the console. In general, the CCP
addresses one of several disks which are online (the standard system
addresses up to four different disk drives). These disk drives are labelled A,
B,C,and D. A disk is “logged in” if the CCP is currently addressing the disk.
In order to clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by the symbol “ >
indicating that the CCPisready for another command. Upon initialstart up,
the CP/M system is brought in from disk A, and the CCP displays the
message

xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system manages,
and m.m is the CP/M version number. All CP/M systems are initially set to
operate in a 16K memory space, but can be easily reconfigured to fit any
memory size on the host system. Following system signon, CP/M automat-
ically logsin disk A, prompts the user with the symbol “A> " (indicating that
CP/M is currently addressing disk “A”), and waits for a command. The
commands are implemented at two levels: built-in commands and transient
commands.

General Command Structure

Built-in commands are a part of the CCP program itself, while transient
commands are loaded into the TPA from disk and executed. The built-in
commands are

ERA Erase specified files.

DIR Displays file names in the directory.
6

REN Rename the specified file.

SAVE Save memory contents in a file.
TYPE Type the contents of a file on the logged disk.
USER Move to another area within the same directory.

‘Nearly all of the commands reference a particular file or group of files. The
form of a file reference is specified below.

File References

A file reference identifies a particular file or group of files on a particular disk
attached to CP/M. These file references can be either “unambiguous” (ufn)
or “ambiguous” (afn). An unambiguous file reference uniquely identifies a
single file, while an ambiguous file reference may be satisfied by a number of
different files.

File references consist of two parts: the primary name and the secondary
name. Although the secondary name is optional, it usually is generic; that is,
the secondary name “ASM;’ for example, is used to denote that the fileis an
assembly language source file, while the primary name distinguishes each
particular source file. The two names are separated by a “.” as shown below:

PPPPPPPP.SSS

where pppppppp represents the primary name of eight characters or less, and

sss is the secondary name of no more than three characters. As mentioned
above, the name

PPPPPPPP

is also allowed and is equivalent to a secondary name consisting of three
blanks. The characters used in specifying an unambiguous file reference
cannot contain any of the special characters

<>.,;:=?72*[]

while all alphanumerics and remaining special characters are allowed.

An ambiguous file reference is used for directory search and pattern
matching. The form of an ambiguous file reference is similar to an
unambiguous reference, except the symbol “?” may be interspersed
throughout the primary and secondary names. In various commands
throughout CP/M, the “?”’ symbol matches any character of a file name in
the “?” position. Thus, the ambiguous reference

7

X?Z.C"M
is satisfied by the unambiguous file names

XYZ.COM
and

X3Z.CAM

Note that the ambiguous 'reference

is equivalent to the ambiguous file reference

29992992.999

while
pPpPPPPPPP.-*
and
* sss
are abbreviations for
ppppppPPP.???

and

respectively. As an example,
DIR *.*

is interpreted by the CCP as a command to list the names of all disk files in
the directory, while

‘DIR X.Y
searches only for a file by the name X.Y. Similarly, the command
DIR X?Y.C’M

causes asearch for all (unambiguous) file names on the disk which satisfy this
ambiguous reference.

The following file names are valid unambiguous file references:

X XYZ GAMMA
XY XYZ.COM GAMMAL

As an added convenience, the programmer can generally specify the disk
drive name along with the file name. In this case, the drive name is given as
aletter A through Z followed by a colon (:). Thespecified driveis then “logged
in” before the file operation occurs. Thus, the following are valid file names
with disk name prefixes:

A: XY B:XYZ C:GAMMA
Z:XYZ.COM B:X.A’M C:*.ASM

It should also be noted that all alphabetic lower case lettersin file and drive

names are always translated to upper case wher they are processed by the
CCP.

Switching Disks

The operator can switch the currently logged disk by typing the disk drive
name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console input. Thus, the sequence of prompts and commands shown below
might occur after the CP/M system is loaded from disk A:

16K CP/M VER 2.0

A>DIR List all files on disk A.
SAMPLE ASM

SAMPLE PRN

A>B: Switch to disk B.

B>Dir *. ASM List all “ASM” files on B.

DUMP ASM
FILES ASM
B>A: Switch back to A.

Form of Built-In Commands

The file and device reference forms described above can now be used to fully
specify the structure of the built-in commands. In the description below,
assume the following abbreviations:

ufn unambiguous file reference
afn ambiguous file reference
cr carriage return :

Further, recall that the CCP always translates lower case characters to

9

upper case charactersinternally. Thus, lower case alphabetics are treated as
if they are upper case in command names and file references.

ERAse Command
ERA afn

The ERA (erase) command removes files from the currently logged-in disk
(i.e., the disk name currently prompted by CP/M preceding the “>"). The
files which are erased are those which satisfy the ambiguous file reference
afn. The following examples illustrate the use of ERA:

ERA XY 7 The file named X.Y on the currently logged disk
isremoved from the disk directory, and the space
is returned.

ERA X.* All files with primary name X are removed from
the current disk.

ERA * ASM All files with secondary name ASM are removed
from the current disk.

ERA X?Y.C’M All files on the current disk which satisfy the
ambiguous reference X?Y.C?M are deleted.

ERA *.* Erase all filesin the current user’s directory. (See
USER n, page 13.) The CCP prompts with the
message

ALL (Y/N)?
which requires a Y response before files are
actually removed.

ERA B:*.PRN All files on drive B which satisfy the ambiguous -

dently of the currently logged disk.

DIRectory Command
DIR afn

The DIR (directory) command causes the names of all files which satiéfy the
ambiguous file name afn to be listed at the console device. As a special case,
the command

DIR

lists the files on the éurrently logged disk (the command “DIR” isequivalent
to the command “DIR *.*”). Valid DIR commands are shown below.

10

DIR X.Y
DIR X?Z.C?M
DIR 77.Y

Similar to other CCP commands, the afn can be preceded by a drive name.
The following DIR commands cause the selected drive to be addressed before
the directory search takes place.

DIR B:
DIR B:X.Y
DIR B:*.A?’M
If no files can be found on the selected diskette which satisfy the directory

request, then the message “NOT FOUND” is typed at the console.

REName Command
REN ufnl = ufn2

The REN (rename) command allows the user to change the names of files on
disk. The file satisfying ufn2 is changed to ufnl. The currently logged disk is
assumed to contain the file to rename (ufnl). The CCP also allows the user
to type a left-directed arrow instead of the equal sign, if the user’s console
supports this graphic character. Examples of the REN command are

REN X.Y=Q.R The file Q.R is changed to X.Y.

REN XYZCOM=XYZXXX The file XYZXXX is changed to
. XYZ.COM.

The operator can precede either ufnl or ufn2 (or both) by an optional drive
address. Given that ufnl is preceded by a drive name, then ufn2 is assumed
to exist on the same drive as ufnl. Similarly, if ufn2 is preceded by a drive
name, then ufnl is assumed to reside on that drive as well. If both ufnl and
ufn2 are preceded by drive names, then the same drive must be specified in
both cases. The following REN commands illustrate this format.

REN A:X.ASM = Y.ASM The file Y.ASM is changed to X.ASM
on drive A.

REN B:ZAPBAS=ZO0OT.BAS The file ZOT.BAS is changed to
ZAP.BAS on drive B.

11

REN B:A.ASM = B:A.BAK The file A.BAK is renamed to A.ASM
on drive B.

If the file ufnl is already present, the REN command will respond with the
error “FILE EXISTS” and not perform the change. If ufn2 does not exist on
the specified diskette, then the message “NOT FOUND?” is printed at the
console.

SAVE Command

SAVE nufn

The SAVE command places n pages (256-byte blocks) onto disk from the
TPA and names this file ufn. In the CP/M distribution system, the TPA
starts at 100H (hexadecimal), which is the second page of memory. Thus, if
the user’s program occupies the area from 100H through 2FFH, the SAVE
command must specify two pages of memory. The machine code file can be
subsequently loaded and executed. Examples are:

SAVE 3 X.COM Copies 100H through 3FFH to
X.COM.
SAVE 40 Q Copies 100H through 28FFH to Q

(note that 28 is the page count in
28FFH, and that 28H = 2*16+8 =
40 decimal).

SAVE 4 XY Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the afn portion of the
command, as shown below.

SAVE 10 B:ZOT.COM Copies 10 pages (100H through
0AFFH) to the file ZOT.COM on
drive B.

The SAVE operation can be used any number of times without altering the
memory image.

TYPE Command
TYPE ufn

The TYPE command displays the contents of the ASCII source file ufn on
the currently logged disk at the console device. Valid TYPE commands are

TYPE XY
12

TYPE X.PLM
TYPE XXX

The TYPE command expands tabs (clt-I characters), assuming tab
positions are set at every eighth column. The ufn can also reference a drive
name as shown below.

TYPE B:X.PRN The file X.PRN from drive B is displayed.
USER Command
USERn

Where n is an integer value in the range 0 to 15.

Upon cold start, the operator is automatically “logged” into user area
number 0. The operator may issue the USER command at any time to move
to another logical area within the same directory.

Drives which are logged in while addressing one user number are automat-
ically active when the operator moves to another user number since a user
number is simply a prefix which accesses particular directory entries on the
active disks.

The active user number is maintained until changed by a subsequent USER
command, or until a cold start operation when user 0 is again assumed.

Line Editing and Output Control

The CCP allows certain line editing functions while typing command lines.
“Control” indicates that the Control key and the indicated key are to be
pressed simultaneously. CCP commands can generally be up to 255
characters in length; they are not acted upon until the carriage return key
is pressed.

rubout/delete Remove and echo last character typed

Control C Reboot CP/M when at beginning of line

Control E Physicalend of line: carriageis returned, but line
is not sent until the carriage return key is
depressed.

13

Control H

Control J
Control M
Control R

Control X

Backspace one character position. Produces the
backspace overwrite function. Can be changed
internally to another character, such as delete,
through a simple single byte change.

Line feed. Terminates current input.
Carriage return. Terminates input.
Retype current command line after new line.

Backspace to beginning of current line.

Theline editor keeps track of the current prompt column position so that the
operator can properly align data input following a Control R or Control X

command.

The control functions Control P and Control S affect console output as

shown below.

Control P

Control S

Copy all subsequent console output to the
currently assigned list device (see the STAT
command). Output is sent to both the list device
and the console device until the next Control Pis
typed.

Stop the console output temporarily. Program
execution and output continue when the next
character is typed at the console (e.g., another
Control S). This feature is used to stop output on
high speed consoles, such as CRT’s, in order to
view a segment of output before continuing.

Transient Commands

Transient commands are loaded from the currently logged disk and executed
in the TPA. The transient commands defined for execution under the CCP
are shown below. Additional functions can easily be defined by the user (see
the LOAD command definition).

STAT

ASM

List the number of bytes of storage remaining on
the currently logged disk, provide statistical
information about particular files, and display or
alter device assignment.

Load the CP/M assembler and assemble the
specified program from disk.

14

LOAD Load the file in Intel “hex” machine code format
and produce a file in machine executable form
which can be loaded into the TPA (this loaded
program becomes a new command under the

CCP).

DDT Load the CP/M debugger into TPA and start
execution.

PIP Load the Peripheral Interchange Program for
subsequent disk file and peripheral transfer
operations.

ED . Load and execute the CP/M text editor program.

SUBMIT Submit a file of commands for batch processing.

XSUB Allow submitted commands to receive input

from the submit file.
DUMP Dump the contents of a file in hex.

Transient commands are specified in the same manner as built-in commands,
and additional commands can be easily defined by the user. As an added
convenience, the transient command can be preceded by a drive name,
which causes the transient to be loaded from the specified drive into the
TPA for execution. Thus, the command

B:STAT

causes CP/M to temporarily “log in” drive B for the source of the STAT
transient, and then return to the original logged disk for subsequent
processing.

The basic tranéient commands are listed in detail below.

STAT

The STAT command provides general statistical information about file
storage and device assignment. It is initiated by typing one of the
following forms:

STAT
STAT “command line”

Special forms of the “command line” allow the current device assignment
to be examined and altered as well. The various command lines which can
be specified are shown below, with an explanation of each form shown to
the right.

15

STAT (er)

STAT x: (cr)

STAT afn (cr)

STAT x:afn (cr)

If the user types an empty command line, the
STAT transient calculates thestorageremaining
on all active drives, and prints a message

x: R/W, SPACE: nnnK
or

x: R/0, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and R/0O indicates
the drive is read only (a drive becomes R/0 by
explicitly setting it to read only, as shown below,
or by inadvertently changing diskettes without
performing a warm start). The space remaining
on the diskette in drive x is given in kilobytes by
nnn,

If a drive name is given, then the drive is selected
before the storage is computed. Thus, the com-
mand “STAT B:” could be issued while logged
into drive A, resulting in the message

BYTES REMAINING ON B: nnnK

The command line can also specify a set of files to
be scanned by STAT. The files which satisfy afn
are listed in alphabetical order, with storage
requirements for each file under the heading

RECS BYTS EX D:FILENAME.TYP
rrrr bbbK ee d:pppppppp.sss

where rrrr is the number of 128-byte records
allocated to the file, bbb is the number of
kilobytes allocated to the file
(bbb=rrrr*128/1024), ee is the number of 16K
extensions (ee=bbb/16), d is the drive name
containingthefile (A...Z), ppppppppisthe (upto)
eight-character primary file name, and sss is the
(up to) three-character secondary name. After
listing the individual files, the storage usage is
summarized.

As a convenience, the drive name can be given
ahead of the afn. In this case, the specified drive
is first selected, and the form “STAT afn” is
executed.

16

STAT d:filename.typ $S (cr)

(“d:” is optional drive Produces the output display format:

name and “filename.typ” Size Recs Bytes Ext Acc

is an unambiguous or 48 48 6K 1 R/OA:ED.COM
ambiguous file name) 55 5 12K 1 R/O (A:PIP.COM)

65536 128 2K 2 R/W A:X.DAT

The $S parameter causes the “Size” field to be
displayed. (The command may be used without
the $S if desired.) The Size field lists the virtual
filesizeinrecords, while the “Recs’ field sums the
number of virtual recordsin each extent. For files
constructed sequentially, the Size and Recs
fields are identical. The “Bytes” field lists the
actual number of bytes allocated to the corre-
sponding file. The minimum allocation unit is
determined at configuration time, and thus the
number of bytes corresponds to the record count
plus the remaining unused space in the last
allocated block for sequential files. Random
access files are given data areas only when
written, so the Bytes field contains the only
accurate allocation figure. In the case of random
access, the Size field gives the logical end-of-file
record position and the Recs field counts the
logical records of each extent (each of these
extents, however, may contain unallocated
“holes” even though they are added into the
record count). The “Ext” field counts the
number of local 16K extents allocated to the file.
The “Acc” field gives the R/0O or R/W access
mode, which is changed using the commands
shown below. The parenthesesshown around the
PIP.COM file name indicate that it has the
“system” indicator set,so that it will not be listed
in DIR commands.

STAT d:filename.typ $R/0 (cr)
Places the file or set of files in a read-only status
until changed by a subsequent STAT command.
The R/0 statusis recorded in the directory with
the file so that it remains R/O through inter-
vening cold start operations. When a file is
marked R/O, attempts to erase or write into the

file resultin a terminal BDOS message: Bdos Err
on D: File R/0.

STAT d:filename.typ $R/W (cr) :
Places the file in a permanent read /write status.

17

STAT d:filename.typ $S 7S (cr)

Attaches the system indicator to the file.

STAT d:filename.typ $DIR (cr)

STAT d:DSK: (cr)

STAT DSK: (cr)

STAT USR: {cr)

Removes the system indicator from the file.

Lists the drive characteristics of the disk named
by “d:” which is in the range A:, B:, ..., P:. The
drive characteristics are listed in the format

d: Drive Characteristics

65536: 128 Byte Record Capacity
8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries
0: Checked Directory Entries
1024: Records/Extent
128: Records/Block
58: Sectors/Track

2: Reserved Tracks
The total record capacity is listed, followed by
the total drive capacity listed in Kbytes. The
number of checked entries is usually identical to
the directory size for removable media, since this
mechanism is used to detect changed media
during CP/M operation without an intervening
warm start. The number of records per extent
determines the addressing capacity of each
directory entry (1024 times 128 bytes, or 128K in
the example above). The number of records per
block shows the basic allocation size (in the
example, 128 records/block times 128 bytes per
record, or 16K bytes perblock). Thelistingisthen
followed by the number of physical sectors per
track and the number of reserved tracks.

Lists drive characteristics as above for all
currently active drives.

Produces a list of the user numbers which have
files on the currently addressed disk. The display
format is:

Active User : 0

Active Files: 013
where the first line lists the currently addressed
user number, as set by the last CCP USER
command, followed by a list of user numbers
scanned from the current directory. In the above
case, the active user number is 0 (default at cold
start), with three user numbers which have

18

active files on the current disk. The operator can
subsequently examine the directories of the
other user numbers by logging in with USER 1,
USER 2, or USER 3 commands, followed by a
DIR command at the CCP level.

The STAT command also allows control over the physical to logical device
assignment (see the IOBYTE function described in the “CP/M Interface
Guide’ In general, there are four logical peripheral devices which are, at any
particular instant, each assigned to one of several physical peripheral
devices. The four logical devices are named:

CON:

RDR:

PUN:

LST:

The system console device (used by CCP for
communication with the operator)

The paper tape reader device
The paper tape punch device

The output list device

Theactual devicesattached toany particular computersystem aredriven by
subroutinesin the BIOS portion of CP/M. Thus, the logical RDR: device, for
example, could actually be a high speed reader, Teletype reader, or cassette
tape. In order to allow some flexibility in device naming and assignment,
several physical devices are defined, as shown below:

TTY:

CRT:

BAT:

UC1:

PTR:

URI1:

UR2:

PTP:

UPIL:

Teletype device (slow speed console)
Cathode ray tube device (high speed console)

Batch processing (console is current RDR:,
output goes to current LST: device)

User-defined console

Paper tape reader (high speed reader)
User-defined reader #1

User-defined reader #2

Paper tape punch (high speed punch)

User-defined punch #1
19

UP2: User-defined punch #2
LPT: Line printer

UL1: User-defined list device #1

It must be emphasized that the physical device names may or may not
actually correspond to devices which the names imply. That is, the PTP:
device may be implemented as a cassette write operation, if the user wishes.
The exact correspondence and driving subroutine is defined in the BIOS
portion of CP/M. In the standard distribution version of CP/M, these
devices correspond to their names on the MDS 800 development system.

The command:
STAT VAL: {cr)

produces a summary of the available status commands, resulting in the
output:

Temp R/0 Disk: d:=R/O
Set Indicétor: d:filename.typ $R/0 $R/W $SYS $DIR

Disk Status: DSK: d:DSK:

User Status: USR:
Iobyte Assign:

CON. = TTY: CRT: BAT: UC1:
RDR: = TTY: PTR: URLl: UR2:
PUN: = TTY: PTP: UP1l: UP2:
LST: = TTY: CRT: LPT: UL1L

- In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line. The current logical to
physical mapping is displayed by typing the command

STAT DEV: {cr) G

which produces a listing of each logical device to the left, and the current
corresponding physical device to the right. For example, the list might
appear as follows:

20

CON: = CRT:

RDR: = UR1:
PUN: = PTP:
LST: = TTY:

The current logical to physical device assignment can be changed by typing
a STAT command of the form

STAT Id1 = pdl,1d2 = pd2, ..., ldn = pdn (cr)

where 1d1 through ldn are logical device names, and pdl through pdn are
compatible physical device names (i.e., Idi and pdi appear on the same line in
the “VAL:” command shown above). The following are valid STAT
commands which change the current logical to physical device assignments:

STAT CON: = CRT: (cr)
STAT PUN: = TTY:,LST: = LPT:, RDR: = TTY: {(cr)

ASM ufn

The ASM command loads and executes the CP/M 8080 assembler. The ufn
specifies a source file containing assembly language statements where the
secondary name is assumed to be ASM, and thus is not specified. The
following ASM commands are valid:

ASM X
ASM GAMMA

The two-pass assembler is automatically executed. If assembly errors occur
during the second pass, the errors are printed at the console.

The assembler produces a file
x.PRN

where x is the primary name specified in the ASM command. The PRN file
contains a listing of the source program (with imbedded tab characters if
present in the source program), along with the machine code generated for
each statement and diagnostic error messages, if any. The PRN file can be
listed at the console using the TYPE command, or sent to a peripheral device
using PIP (see the PIP command structure below). Note also that the PRN
file contains the original source program, augmented by miscellaneous
assembly information in the leftmost 16 columns (program addresses and
hexadecimal machine code, for example). Thus, the PRN file can serve as a

21

backup for the original source file: if the source file is accidentally removed
or destroyed, the PRN file can be edited (see the ED operator’s guide) by
removing the leftmost 16 characters of each line (this can be done by issuing
a single editor “macro” command). The resulting file is identical to the
original source file and can be renamed (REN) from PRN to ASM for
subsequent editing and assembly. The file

x.HEX

isalso produced which contains 8080 machine languagein Intel “hex” format
suitable for subsequent loading and execution (see the LOAD command).
For complete details of CP/M’s assembly language program, see the “CP/M
Assembler Language (ASM) User’s Guide.’

Similar to other transient commands, the source file for assembly can be
taken from an alternate disk by prefixing the assembly language file name by
a disk drive name. Thus, the command

ASM B:ALPHA (cr)

loads the assembler from the currently lbgged drive and operates upon the
source program ALPHA.ASM on drive B. The HEX and PRN files are also
placed on drive B in this case.

LOAD ufn cr

The LOAD command reads the file ufn, which is assumed to contain “hex”
format machine code, and produces a memory image file which can be
subsequently executed. The file name ufn is assumed to be of the form

x.HEX

and thus only the name x need be specified in the command. The LOAD
command creates a file named

x.COM

which marks it as containing machine executable code. The file is actually
loaded into memory and executed when the user types the file name x
immediately after the prompting character “>>" printed by the CCP.

In general, the CCP reads the name x following the prompting character and
looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

22

x.COM

If found, the machine codeisloaded into the TPA, and the program executes.
Thus, the user need only LOAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name. In this
way, the user can “invent” new commands in the CCP. (Initialized disks
contain the transient commands as COM files, which can be deleted at the
user’s option.) The operation can take place on an alternate drive if the file
name is prefixed by a drive name. Thus

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and
operates upon drive B after execution begins.

It must be noted that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for
example) which begin at 100H, the beginning of the TPA. Further, the
addresses in the hex records must be in ascending order; gaps in unfilled
memory regions are filled with zeroes by the LOAD command as the hex
records areread. Thus, LOAD must be used only for creating CP/M standard
“COM?” files which operate in the TPA. Programs which occupy regions of
memory other than the TPA can be loaded under DDT.

PIP

PIP is the CP/M Peripheral Interchange Program which implements the
basic media conversion operations necessary to load, print, punch, copy, and
combine disk files. The PIP program is initiated by typing one of the
following forms

PIP {cr)
PIP “command line” {cr)

In both cases, PIP is loaded into the TPA and executed. In case 1, PIP reads
command lines directly from the console, prompted with the “*” character,
until an empty command line is typed (i.e., a single carriage return is issued
by the operator). Each successive command line causes some media
conversion to take place according to the rules shown below. Form 2 of the
PIP command is equivalent to the first, except that the single command line
given with the PIP command is automatically executed, and PIP terminates
immediately with no further prompting of the console for input command
lines. The form of each command line is

destination = source #1, source #2, ..., source #n (cr)

23

where “destination” is the file or peripheral device to receive the data, and
“source#1, ..., source#n” represents a series of one or more files or devices
which are copied from left to right to the destination.

When multiple files are given in the command line (i.e.,n > 1), theindividual
files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the O parameter to
override this assumption). The equal symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to
improvereadability. Lower case ASCII alphabetics areinternally translated
to upper case to be consistent with CP/M file and device name conventions.
Finally, the total command line length cannot exceed 255 characters (ctl-E
can be used to force a physical carriage return for lines which exceed the
console width).

The destination and source elements can be unambiguous references to
CP/M source files, with or without a preceding disk drive name. That is, any
file can be referenced with a preceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored. When
the drive nameis not included, the currently logged disk is assumed. Further,
the destination file can also appear as one or more of the source files, in which
case the source file is not altered until the entire concatenation is complete.
If the destination file already exists, it is removed if the command line is
properly formed (it is not removed if an error condition arises). The following
command lines (with explanations to the right) are valid as input to PIP:

X =Y (cer) Copy to file X from file Y, where X and
Y are unambiguous file names; Y
remains unchanged.

X =Y,Z{cr) Concatenate files Y and Z and copy to
file X, with Y and Z unchanged.

X.ASM = Y.ASM,Z.ASM,FIN.ASM (cr)
Create the file X.ASM from the con-
catenation of the Y, Z, and FIN files
with type ASM.

NEW.ZOT = B:OLD.ZAP (cr) Move a copy of OLD.ZAP from drive B
to the currently logged disk; name the
file NEW.ZOT.

B:A.U. = B:BVA:CW,D.X (cr) Concatenate file B.V from drive B with
C.W from drive A and D.X. from the

logged disk; create the file A.U on drive
B.

24

For more convenient use, PIP allows abbreviated commands for transferring
files between disk drives. The abbreviated forms are

PIP x: = afn {cr)
PIP x: = y:afn (cr)
PIP ufn = y: {cr)
PIP x:ufn = y: {cr)

The first form copies all files from the currently logged disk which satisfy the
afn to the same file names on drive x (x = A...Z). The second form is
equivalent to the first, where the source for the copyisdrivey (y = A...Z). The
third form is equivalent to the command “PIP ufn = y:ufn {cr)” which
copies the file given by ufn from drive y to the file ufn on drive x. The fourth
form is equivalent to the third, where the source disk is explicitly given by y.

Note that the source and destination disks must be different in all of these
cases. If an afn is specified, PIP lists each ufn which satisfies the afn as it is
being copied. If a file exists by the same name as the destination file, it is

removed upon successful completion of the copy, and replaced by the copied
file.

The following PIP commands give examples of valid disk-to-disk copy
operations: '

B: = *.COM (cr) Copy all files which have the secondary name
“COM?” to drive B from the current drive.

A: = B:ZAP.* (cr) Copy all files which have the primary name
“ZAP” to drive A from drive B.

ZAP.ASM = B: {(cr) Equivalent to ZAP.ASM = B:ZAPASM
B:ZOT.COM = A: (cr) Equivalent to B:ZOT.COM =A:ZOT.COM
B: = GAMMA BAS (cr) Same as B.GAMMA.BAS=GAMMA.BAS

B: = A:GAMMA.BAS {(cr) Same as
B:GAMMA.BAS=A:GAMMA.BAS

PIP also allows reference to physical and logical devices which are attached
tothe CP/M system. The device names are thesame as given under the STAT
command, along with a number of specially named devices. The logical

25

devices given in the STAT command are
CON: (console), RDR: (reader), PUN: (punch), and LST: (list)
while the physical devices are

TTY: (console, reader, punch, or list)

CRT: (console, or list), UC1: (console
PTR: (reader), URI: (reader), UR2: (reader)
PTP: (punch), UPIL: (punch), UP2: (punch)
LPT: (list), UL1: (list)

(Note that the “BAT:” physical device is not included, since this assignment
is used only to indicate that the RDR: and LST: devices are to be used for
console input/output.)

The RDR, LST, PUN, and CON devices are all defined within the BIOS
portion of CP/M, and thus are easily altered for any particular 170 system.
(The current physical device mapping is defined by IOBYTE; see the
“CP/M Interface Guide” for a discussion of this function). The destination
device must be capable of receiving data (i.e., data cannot be sent to the
punch), and the source devices must be capable of generating data (i.e., the
LST: device cannot be read).

The additional device names which can be used in PIP commands are

NUL: Send 40 “nulls” (ASCII 0’s) to the device (this can be issued at the
end of punched output).

EOF: Send a CP/M end-of-file (ASCII ctl-Z) to the destination device
- "(sent automatically at the end of all ASCII data transfers through
PIP).

INP: Special PIP input source which can be “patched” into the PIP
program itself: PIP gets the input data character-by-character by
CALLing location 103H, with data returned in location 109H
(parity bit must be zero).

OUT: Special PIP output destination which can be patched into the PIP
program: PIP CALLslocation 106H with data in register C for each
character to transmit. Note that locations 109H through 1FFH of
the PIP memory image are not used and can be replaced by special
purpose drivers using DDT (see the DDT operator’s manual).

PRN: Same as LST:, except that Atabs are expanded at every eighth
26

character position, lines are numbered, and page ejects are inserted
every 60 lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP commands. In each
case, the specific device is read until end-of-file (ctl-Z for ASCII files, and a
real end of file for non-ASCII disk files). Data from each device or file is
concatenated from left to right until the last data source has been read. The
destination device or file is written using the data from the source files, and
an end-of-file character (ctl-Z) is appended to the result for ASCII files. Note
that if the destination is a disk file, a temporary fileis created ($$$ secondary
name) which is changed to the actual file name only upon successful
completion of the copy. Files with the extension “COM"” are always assumed
to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on the
keyboard (a rubout suffices). PIP will respond with the message
“ABORTED?” to indicate that the operation was not completed. Note that
if any operation is aborted, or if an error occurs during processing, PIP
removes any pending commands which were set up while using the SUBMIT
command.

Itshould also be noted that PIP performsaspecial functionif the destination
is a disk file with type “HEX” (an Intel hex formatted machine code file),
and the source is an external peripheral device, such as a paper tape reader.
In this case, the PIP program checks to ensure that the source file contains
a properly formed hex file, with legal hexadecimal values and checksum
records. When an invalid input record is found, PIP reports an error message
at the console and waits for corrective action. It is usually sufficient to open
the reader and rerun a section of the tape (pull the tape about 20 inches).
When the tape is ready for the re-read, type a single carriage return at the
console, and PIP will attempt another read. If the tape position cannot be
properly read, simply continue the read (by typing a return following the
error message), and enter the record manually with the ED program after
the disk file is constructed. For convenience, PIP allows the end-of-file to be
entered from the console if the source file isa RDR: device. In this case, the
PIP program reads the device and monitors the keyboard. If ctl-Z is typed
at the keyboard, then the read operation is terminated normally.

Valid PIP commands are shown below.

PIP LST: = X.PRN (cr) ' Copy X.PRN to the LST device and termin-
ate the PIP program.

PIP (cr) Start PIP for a sequence of commands (PIP
prompts with “*”).

27

*CON: = X.ASM,Y.ASM,Z.ASM (cr) |

Concatenate three ASM files and copy to the
CON device.

*X.HEX = CON:,Y.HEX,PTR: (cr)
Create a HEX file by reading the CON (until
a ctl-Z is typed), followed by data from
Y.HEX, followed by data from PTR until a
ctl-Z is encountered.

*(er) Single carriage return stops PIP.

PIP PUN: = NUL:, X.ASM,EOF: NUL: (cr)
Send 40 nulls to the punch device; then copy
the X.ASM file to the punch, followed by an
end-of-file (ctl-Z) and 40 more null
characters.

The user can also specify one or more PIP parameters, enclosed in left and
right square brackets, separated by zero or more blanks. Each parameter
affects the copy operation, and the enclosed list of parameters must
immediately follow the affected file or device. Generally, each parameter can
be followed by an optional decimalinteger value (the S and Q parameters are
exceptions). The valid PIP parameters are listed below.

B Block mode transfer: data is buffered by PIP until an ASCII x-off
character (ctl-S) is received from the source device. This allows
transfer of data to a disk file from a continuous reading device, such
as a cassette reader. Upon receipt of the x-off, PIP clears the disk
buffers and returns for more input data. The amount of data which
can be buffered is dependent upon the memory size of the host
system (PIP will issue an error message if the buffers overflow).

Dn Delete characters which extend past column n in the transfer of
data to the destination from the character source. This parameter
is used most often to truncate longlines which aresent to a (narrow)
printer or console device.

E Echo all transfer operations to the console as they are being
performed.

F Filter form feedsfrom the file. Allimbedded form feeds are removed.
The P parameter can be used simultaneously to insert new form
feeds.

Gn Get file from user number n. (n is the range 0-15.) Allows one user

area toreceive data files from another. If the operator hasissued the

28

Pn

Qs'z

Sstz

USER 4 command at the CCP level, the PIP statement

PIP XY = X.Y[G2]
reads file X.Y from user number 2 into user area number 4. You
cannot copy files into a different area than the one which is
currently addressed by the USER command.

Hex data transfer: all data is checked for proper Intel hex file
format. Non-essential characters between hex records are removed
during the copy operation. The console will be prompted for
corrective action in case errors occur.

Ignore “:00” records in the transfer of Intel hex format file (the I
parameter automatically sets the H parameter).

Translate upper case alphabetics to lower case.

Add line numbers to each line transferred to the destination,
starting at one, and incrementing by 1. Leading zeroes are
suppressed, and the number is followed by a colon. If N2is specified,
then leading zeroes are included, and a tab is inserted following the
number. The tab is expanded if T is set.

Object file (non-ASCII) transfer: the normal CP/M end of file is
ignored. '

Include page ejects at every n lines (with an initial page eject). If n
=] oris excluded altogether, page ejects occur every 60 lines. If the
F parameter is used, form feed suppression takes place before the
new page ejects are inserted.

Quit copying from the source device or file when the string s
(terminated by ctl-Z) is encountered.

Read system files. Allows files with the system attribute to be
included in PIP transfers. Otherwise, system files are not
recognized.

Start copying from the source device when the string s is
encountered (terminated by ctl-Z). The S and Q parameters can be
used to “abstract” a particular section of a file (such as a
subroutine). The start and quit strings are always included in the
copy operation.

NOTE — thestrings following thesand q parametersare translated
to upper case by the CCP if form (2) of the PIP command is used.
Form (1) of the PIP invocation, however, does not perform the

29

Z

automatic upper case translation.
(1) PIP (cr)
(2) PIP “command line” {cr)

Expand tabs (ctl-I characters) to every nth column during the
transfer of characters to the destination from the source.

Translate lower case alphabetics to upper case during the copy
operation.

Verify that data has been copied correctly by rereading after the
write operation (the destination must be a disk file).

Write over R/O files without console interrogation. Under normal
operation, PIP will not automatically overwrite a file which is set
to a permanent R/O status. It advises the user of the R/0 status
and waits for overwrite approval. W allows the user to bypass this
interrogation process.

Zero the parity bit on input for each ASCII character.

The following are valid PIP commands which specify parameters in the file

transfer:

PIP X.ASM = B:[v]{(cr) Copy X.ASM from drive B to the current

drive and verify that the data was properly
copied.

PIP LPT: = X.ASM[nt8u] {cr)

Copy X.ASM to the LPT: device; number
eachline,expand tabstoevery eighth column,
and translate lower case alphabetics to upper
case.

PIP-PUN: = X.HEX[i],Y.ZOT[h] {cr)

First copy X.HEX to the PUN: device and
ignore the trailing “:00” record in X.HEX;
then continue the transfer of data by reading
Y.ZOT, which contains hex records, including
any “:00” records which it contains.

PIP X.LIB = Y.ASM [sSUBR1:tz gJMP L31z] (cr)

Copy from the file Y. ASM into the file X.LIB.
Start the copy when the string “SUBR1:” has
been found, and quit copying after the string
“JMP L3” is encountered.

30

PIP PRN:=X.ASM[p50] Send X.ASM to the LST: device, with line
numbers, tabs expanded to every eighth
column, and page ejects at every 50th line.
Note that nt8p60 is the assumed parameter
list for a PRN file; p50 overrides the default
value.

Note that the PIP program itself is initially copied to a user area (so that
subsequent files can be copied) using the SAVE command. The sequence of
operations shown below effectively moves PIP from one user area to the
next.

USER 0 login user 0

DDT PIP.COM load PIP in memory
(note PIP size s)

GO return to CCP
USER 3 login user 3

SAVE s PIP.com

where s is the integral number of memory “pages” (256 byte segments)
occupied by PIP. The numbers can be determined when PIP.COM is located
under DDT, by referring to the value under the “NEXT” display. If for
example, the next available address is 1D00, then PIP.COM requires 1C
hexadecimal pages (or 1 times 16 + 12 =28 pages), and thus the value of sis 28
in the subsequent save. Once PIP is copied in this manner, it can then be
copied to another disk belonging to the same user number through normal
PIP transfers.

ED

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII filesin the CP/M environment. Complete details of
operation are given in Chapter 3 CP/M ED. In general, ED allows the
operator to create and operate upon source files which are organized as a
sequence of ASCII characters, separated by end-of-line characters (a
carriage-return line-feed sequence). There is no practical restriction on line
length (no single line can exceed the size of the working memory), which is
instead defined by the number of characters typed between {cr)’s. The ED
program has a number of commands for character string searching,
replacement, and insertion, which are useful in the creation and correction
of programs or text files under CP/M. Although the CP/M has a limited
memory work space area (approximately 5000 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is easily
“paged” through this work area.

Upon initiation, ED creates the specified source file, if it does not exist, and
opens the file for access. The programmer then “appends” data from the

31

source file into the work area, if the source file already exists (see the A
command), for editing. The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command).
Particular points in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular portions of
a large file.

Given that the operator has typed
ED X.ASM (cr)
the ED program creates an intermediate work file with the name

X.583%

to hold the edited data during the ED run. Upon completion of ED, the
X.ASM file (original file) is renamed to X.BAK, and the edited work file is
renamed to X.ASM. Thus, the X.BAK file contains the original (unedited)
file, and the X.ASM file contains the newly edited file. The operator can
always return to the previous version of a file by removing the most recent
version, and renaming the previous version. Suppose, for example, that the
current X.ASM file was improperly edited; the sequence of CCP commands
shown below would reclaim the backup file.

DIR X.* Check to see that BAK file is available.
ERA X.ASM Erase most recent version.

REN X.ASM=X.BAK Rename the BAK file to ASM.

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or Q command) without destroying the original file. In this case, the
BAK file is not created, and the original file is always intact.

The ED program also allows the user to “ping-pong” the source and create
backup files between two disks. The form of the ED command in this case is

ED ufnd:

where ufn is the name of a file to edit on the currently logged disk and d is the
name of an alternate drive. The ED program reads and processes the
source file, and writes the new file to drive d, using the name ufn. Upon
completion of processing, the original file becomes the backup file. Thus, if
the operator is addressing disk A, the following command is valid:

32

ED X.ASM B:

which edits the file X.ASM on drive A, creating the new file X.$$$ on drive
B. Upon completion of a successful edit, A:X.ASM isrenamed to A:X.BAK,
and B:X.$$$ is renamed to B:X.ASM. For user convenience, the currently
logged disk becomes drive B at the end of the edit. Note that if a file by the
name B:X.ASM exists before the editing begins, the message

FILE EXISTS

is printed at the console as a precaution against accidentally destroying a
source file. In this case, the operator must first ERAse the existing file and
then restart the edit operation.

Similar to other transient commands, editing can take place on a drive
different from the currently logged disk by preceding the source file name by
a drive name. Examples of valid edit requests are shown below

ED A:X.ASM Edit the file X.ASM on drive A, with new fileand
backup on drive A.

ED B:X.ASM A: Edit the file X.ASM on drive B to the temporary
file X.$$$ on drive A. On termination of editing,
change X.ASMondrive Bto X.BAK,and change
X.$$$ on drive A to X.ASM.

ED takes file attributes into account. If the operator attempts to edit a
read/only file, the message

FILE IS READ/ONLY

appears at the console. The file can be loaded and examined, but cannot be
altered in any way. Normally the operator simply ends the edit session, and
uses STAT to change the file attribute to R/W. If the edited file has the
system attribute set, the message

“SYSTEM” FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted. Again, the STAT
program can be used to change the system attribute if desired.

SUBMIT
The SUBMIT command allows CP/M commands to be batched together for

33

automatic processing. The format of SUBMIT is: SUBMIT ufn
parm #1..parm #n{cr).

The ufn given in the SUBMIT command must be the filename of a file which
exists on the currently logged disk, with an assumed file type of “SUB?’ The
SUB file contains CP/M prototype commands, with possible parameter
substitution. The actual parameters parm #1 ... parm #n are substituted
into the prototype commands, and, if no errors occur, the file of substituted
commands is processed sequentially by CP/M.

The prototype command file is created using the ED program, with
interspersed “$” parameters of the form

$1 $2 $3 .. $n

corresponding to the number of actual parameters which will be included
when the file is submitted for execution. When the SUBMIT transient is
executed, the actual parameters parm #1 ... parm #n are paired with the
formal parameters $1 ...$n in the prototype commands. If the number of
formal and actual parameters does not correspond, then the submit function
is aborted with an error message at the console. The SUBMIT function
creates a file of substituted commands with the name

3.SUB

on the logged disk. When the system reboots (at the termination of the
SUBMIT), this command file is read by the CCP as a source of input, rather
than the console. If the SUBMIT function is performed on any disk other
than drive A, the commands are not processed until the disk is inserted into
drive A and the system reboots. Further, the user can abort command
processing at any time by typing a rubout when the command is read and
echoed. In this case, the $$$.SUB file is removed, and the subsequent
commands come from the console. Command processingis also aborted if the
CCP detects an error in any of the commands. Programs which execute
under CP/M can abort processing of command files when error conditions
occur by simply erasing any existing $$$.SUB file.

In order to introduce dollar signs into a SUBMIT file, the user may type a
“$$” which reduces to a single “$” within the command file. Further, an
up-arrow symbol “1” may precede an alphabetic character x, which produces
a single ctl-x character within the file.

The last command in a SUB file can initiate another SUB file, thus allowing
chained batch commands.

Suppose the file ASMBL.SUB exists on disk and contains the prototype
34

commands

ASM $1

DIR $1.*

ERA *.BAK

PIP $2: =$1.PRN
ERA $1.PRN

and the command

SUBMIT ASMBL X PRN (cr)

isissued by the operator. The SUBMIT program readsthe ASMBL.SUB file,
substituting “X" for all occurrences of $1 and “PRN” for all occurrences of
" $2, resulting in a $$$.SUB file containing the commands

ASM X

DIR X.*

ERA * BAK

PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT function can access a SUB file which is on an alternate drive
by preceding the file name by a drive name. Submitted files are only acted
upon, however, when they appear on drive A. Thus, it is possible to create a
submitted file on drive B which is executed at a later time when it isinserted
in drive A.

- XSUB
XSUB extends the power of the SUBMIT facility toinclude character input
during program execution as well as entering command lines. The XSUB

command is included as the first line of your submit file and, when executed,
self-relocates directly below the CCP. .

All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 10) receive -
their input directly from the submit file. For example, the file SAVER.SUB
could contain the submit lines:

XSUB

DDT

I$1.LHEX

R

GO

SAVE 1 $2.COM

with a subsequent SUBMIT command:
SUBMIT SAVER X Y

which substitutes X for $1 and Y for $2 in the command stream. The XSUB
program loads, followed by DDT which is sent the command lines
“IX.HEX” “R” and “G0”, thus returning to the CCP. The final command
“SAVE 1 Y.COM?” is processed by the CCP.

The XSUB program remains in memory, and prints the message
(xéub active)

on each warm start operation to indicate its presence. Subsequent submit
command streams do not require the XSUB, unless an intervening cold
start hasoccurred. Note that XSUB must be loaded after DESPOOL, if both

are to run simultaneously.

DUMP

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form. The file contents are listed sixteen bytes at a time, with
the absolute byte address listed to the left of each line in hexadecimal. Long
typeouts can be aborted by pushing the rubout key during printout. (The
source listing of the DUMP program is given in the “CP/M Interface Guide”
as an example of a program written for the CP/M environment.)

BDOS Error Messages

There are three error situations which the Basic Disk Operating System
intercepts during file processing. When one of these conditions is detected,
the BDOS prints the message:

BDOS ERR ON x: error
where x is the drive name, and “error” is one of the three error messages:

" BAD SECTOR
SELECT
READ ONLY

36

The “BAD SECTOR” message indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette. This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette. If you find that your system reports this error more
than once a month, youshould check the state of your controller electronics,
and the condition of your media. You may also encounter this condition in
reading files generated by a controller produced by a different manufacturer.
Even though controllers are claimed to be IBM-compatible, one often finds
small differences in recording formats. The MDS-800 controller, for
example, requires two bytes of one’s following the data CRC byte, which is
not required in the IBM format. As a result, diskettes generated by the Intel
MDS can be read by almost all other IBM-compatible systems, while disk
files generated on other manufacturers’ equipment will produce the “BAD
SECTOR” message when read by the MDS. In any case, recovery from this
condition is accomplished by typing a ctl-C to reboot (this is the safest!), or
a return, which simply ignores the bad sector in the file operation. Note,
however, that typing a return may destroy your diskette integrity if the
operation is a directory write, so make sure you have adequate backups in
this case.

The “SELECT” error occurs when there is an attempt to address a drive
beyond the A through D range. In this case, the value of xin the error message
gives the selected drive. The system reboots following any input from the
console.

The “READ ONLY” message occurs when there is an attempt to write to a
diskette which has been designated asread-only in a STAT command, or has
been set to read-only by the BDOS. In general, the operator should reboot
CP/M either by using the warm start procedure (ctl-C) or by performing a
cold start whenever the diskettes are changed. If a changed diskette is to be
read but not written, BDOS allows the diskette to be changed without the
warm or cold start, but internally marks the drive as read-only. The status
of the drive is subsequently changed to read/write if a warm or cold start
occurs. Upon issuing this message, CP/M waits for input from the console.
An automatic warm start takes place following any input.

37

38

CP/M 2.2 INTERFACE GUIDE

COPYRIGHT (c) 1979
DIGITAL RESEARCH

Copyright (c) 1979 by Digital Research. All rights re-
served. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in
any form or by any means, electronic, mechanical, mag-
netic, optical, chemical, manual or otherwise, without
the prior written permission of Digital Research, Post
Office Box 579, Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties
with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Digital
Research reserves the irght to revise this publication
and to make changes from time to time in the content
hereof without obligation of Digital Research to notify
any person of such revision or changes.

Table of Contents

SECTION II

oA A o 2

INTRODUCTION

OPERATING SYSTEM CALL CONVENTIONS
A SAMPLE FILE-TO-FILE COPY PROGRAM
A SAMPLE FILE DUMP UTILITY

A SAMPLE RANDOM ACCESS PROGRAM
SYSTEM FUNCTION SUMMARY

39

Page
41
43
63
66
69
76

Introduction

This manual describes CP/M, release 2, system organization including the
structure of memory and system entry points. Theintentionisto provide the
necessary information required to write programs which operate under
CP/M, and which use the peripheral and disk I/0 facilities of the system.

CP/M is logically divided into four parts, called the Basic I/0 System
(BIOS), the Basic Disk Operating System (BDOS), the Console command
processor (CCP), and the Transient Program Area (TPA). The BIOS is a
hardware-dependent module which defines the exact low level interface to a
particular computer system which is necessary for peripheral device 1/0.
The BIOS and BDOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP is a distinct
program which uses the FDOS to provide a human-oriented interface to the
information which is cataloged on the backup storage device. The TPA is an
area of memory (i.e., the portion which is not used by the FDOS and CCP)
where various non-resistant operating system commands and user programs
are executed. The lower portion of memory is reserved for system
information and is detailed in later sections. Memory organization of the
CP/M system is shown below:

high
memory

FDOS (BDOS + BIOS)
FBASE:

CCP
CBASE:

TPA

TBASE:

BOOT: System parameters

In standard CP/M 2.0,

BDOS size: EOOH bytes
CCP size: 800H bytes

41

All standard CP/M versions assume BOOT =0000H, which is the base of
random access memory. The machine code found at location BOOT
performsa system “warmsstart” which loads and initializes the programs and
variables necessary to return control to the CCP. Thus, transient programs
need only jump to location BOOT to return control to CP/M at the
command level. Further, the standard versions assume
TBASE =BOOT +0100H which is normally location 0100H. The principal
entry point to the FDOS is at location BOOT +0005H (normally 0005H)
where a jump to FBASE is found. The address field at BOOT + 0006H
(normally 0006H) contains the value of FBASE and can be used to determine
the size of available memory, assuming the CCP is being overlayed by a
transient program.

Transient programs are loaded into the TPA and executed as follows. The
operator communicates with the CCP by typing command lines following
each prompt. Each command line takes one of the forms:

command
command filel
command filel file2

where “command” is either a built-in function such as DIR or TYPE, or the
name of a transient command or program. If the command is a built-in
function of CP/M, it is executed immediately. Otherwise, the CCP searches
the currently addressed disk for a file by the name

command.COM

If the file is found, it is assumed to be a memory image of a program which
executes in the TPA, and thus implicitly originates at TBASE in memory.
The CCP loads the COM file from the disk into memory starting at TBASE
and possibly extending up to CBASE.

If the command is followed by one or two file specifications, the CCP
prepares one or two file control block (FCB) names in the system parameter
area. These optional FCB’s are in the form necessary to access files through
the FDOS, and are described in the next section.

The transient program receives control from the CCP and begins execution,
perhaps using the 1/0 facilities of the FDOS. The transient program is
“called” from the CCP, and thus can simply return to the CCP upon
completion of its processing, or can jump to BOOT to pass control back to
CP/M. In the first case, the transient program must not use memory above
CBASE, while in the latter case, memory up through FBASE-1 is free.

42

The transient program may use the CP/M 1/0 facilities to communicate
with the operator’s console and peripheral devices, including the disk
subsystem. The 170 system is accessed by passing a “function number” and
an “information address” to CP/M through the FDOS entry point at
BOOT + 0005H. In the case of a disk read, for example, the transient program
sends the number corresponding to a disk read, along with the address of an
FCB to the CP/M FDOS. The FDOS, in turn, performs the operation and
returns with either a disk read completion indication or an error number
indicating that the disk read was unsuccessful. The function numbers and
error indicators are given below.

Operating System Call Conventions

The purpose of this section is to provide detailed information for performing
direct operating system calls from user programs.

CP/M facilities which are available for access by transient programsfallinto
two general categories: simple device 1/0, and disk file I/0. The simple
device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character

Get or Set I/0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators

43

As mentioned above, access to the FDOS functions is accomplished by
passing a function number and information address through the primary
entry point at location BOOT + 0005H. In general, the function number is
passed in register C with the information addressin the double byte pair DE.
Single byte values are returned in register A, with double byte values
returned in HL (a zero value is returned when the function number is out of
range). For reasons of compatibility, register A =L and register B=H upon
returnin all cases. Note that theregister passing conventions of CP/M agree
with those of Intel’s PL/M systems programming language. The list of
CP/M function numbers is given below.

0 System Reset 19 Delete File
1 Console Input 20 Read Sequential
2 Console Output 21 Write Sequential
3 Reader Input 22 Make File
4 Punch Output 23 Rename File
5 List Output 24 Return Login Vector
6 Direct Console I/0 25 Return Current Disk
7 Get 170 Byte 26 Set DMA Address
8 Set 170 Byte 27 Get Addr (Alloc)
9 Print String 28 Write Protect Disk
10 Read Console Buffer 29 Get R/0 Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr (Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record

18 Search for Next

(Functions 28 and 32 should be avoided in application programs to maintain
upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack pointer set to
an eight level stack area with the CCP return address pushed onto the stack,
leaving seven levels before overflow occurs. Although this stack is usually
not used by a transient program (i.e., most transients return to the CCP
through a jump to location 0000H), it is sufficiently large to make CP/M
system calls since the FDOS switches to a local stack at system entry. The
following assembly language program segment, for example, reads char-
acters continuously until an asterisk is encountered, at which time control
returns to the CCP (assuming a standard CP/M system with
BOOT + 0000H):

44

BDOS EQU 0005H ;STANDARD CP/M ENTRY

CONIN EQU 1 ;CONSOLE INPUT FUNCTION
ORG 0100H ;BASE OF TPA

NEXTC: MVI C,CONIN ;READ NEXT CHARACTER
CALL BDOS ;RETURN CHARACTER IN (A)
CPI o ;END OF PROCESSING?
JNZ NEXTC ;LOOPIF NOT
RET ;RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a logical
organization which allows any particular file to contain any number of
records from completely empty, to the full capacity of the drive. Each drive
is logically distinct with a disk directory and file data area. The disk file
 names arein three parts: the drive select code, the file name consisting of one
to eight non-blank characters, and the file type consisting of zero to three
non-blank characters. The file type names the generic category of a
particular file, while the file name distinguishes individual files in each
category. The file types listed below name a few generic categories which
have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/1 Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File

COM CCPCommand File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each “line”
of the source file is followed by a carriage-return line-feed sequence (0ODH
followed by 0AH). Thus one 128 byte CP/M record could contain several
lines of source text. The end of an ASCII file is denoted by a control-Z
character (1AH) or a real end of file, returned by the CP/M read operation.
Control-Z characters embedded within machine code files (e.g., COM files)

are ignored, however, and the end of file condition returned by CP/M is used
to terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65536 records of 128
bytes each, numbered from 0 through 65535, thus allowing a maximum of 8
megabytes per file. Note, however, that although the records may be
considered logically contiguous, they may not be physically contiguous in
the disk data area. Internally, all files are broken into 16K byte segments
called logical extents, so that counters are easily maintained as 8-bit values.
Although the decomposition into extents is discussed in the paragraphs
which follow, they are of no particular consequence to the programmersince

each extent is automatically accessed in both sequential and random access
modes.

45

In the file operations starting with function number 15, DE usually
addresses a file control block (FCB). Transient programs often use the
default file control block area reserved by CP/M at location BOOT + 005CH
(normally 005CH) for simple file operations. The basic unit of file
information is a 128 byte record used for all file operations, thus a default
location for disk 170 is provided by CP/M at location BOOT + 0080H
(normally 0080H) which is theinitial default DMA address (see function 26).
All directory operations take place in a reserved area which does not affect
write buffers as was the case in release 1, with the exception of Search First
and Search Next, where compatibility is required.

The File Control Block (FCB) data area consists of a sequence of 33 bytes for
Sequential access and a series of 36 bytes in the case that the file is accessed
randomly. The default file control block normally located at 005CH can be
used for random access files, since the three bytesstartingat BOOT + 007DH

are available for this purpose. The FCB format is shown with the following
fields:

dr|fl |2}/ 7}f8|tl1 |t2]|t3|ex|sl|s2|rc]do]/ 7/ldn]|cr|ro]| 1] r2

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35
where
dr drive code (0 - 16)

0= >use default drive for file
1=>auto disk select drive A,
2=>auto disk select drive B,

16= >auto disk select drive P.

fl...f8 contain the file name in ASCII upper case, with high bit=0

t1,t2,t3 contain the file type in ASCII upper case, with high bit=0
t1’, t2’, and t3’ denote the bit of these positions,
tl’=1=>Read/Only file,
t2’=1=>SYS file, no DIR list

ex contains the current extent number, normally set to 00 by the
user, but in range 0 - 31 during file I70

sl reserved for internal system use

s2 reserved for internal system use, set to zero on call to OPEN,
MAKE, SEARCH

rc record count for extent “ex,’ takes on values from 0 - 128

46

do. . .dn filled-in by CP/M, reserved for system use

cr current record to read or write in a sequential file operation,
normally set to zero by user

r0,r1,r2 optional random record number in the range 0-65535, with
overflow tor2,r0,rl constitute a 16-bit value with low byte r0,
and high byte r1

Each file being accessed through CP/M must have a corresponding FCB
which provides the name and allocation information for all subsequent file
operations. When accessing files, it is the programmer’s responsibility to fill
the lower sixteen bytes of the FCB and initialize the “cr” field. Normally,
bytes 1through 11 are set to the ASCII character values for the filename and
file type, while all other fields are zero.

FCB’s are stored in a directory area of the disk, and are brought into central
memory before proceeding with file operations (see the OPEN and MAKE
functions). The memory copy of the FCB is updated as file operations take
place and later recorded permanently on disk at the termination of the file
operation (see the CLOSE command).

The CCP constructs the first sixteen bytes of two optional FCB’s for a
transient by scanning the remainder of the line following the transient name,
denoted by “filel” and “file2” in the prototype command line described
above, with unspecified fields set to ASCII blanks. The first FCB is
constructed at location BOOT + 005CH, and can be used as-is for subsequent
file operations. The second FCB occupies the d0 . . . dn portion of the first
FCB, and must be moved to another area of memory before use. If, for
example, the operator types

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME. COM is loaded into the TPA, and the default FCB at
BOOT + 005CH is initialized to drive code 2, file name “X” and file type
“ZOT> The second drive code takes the default value 0, which is placed at
BOOT +006CH, with the filename “Y” placed into location BOOT + 006 DH
and file type “ZAP” located 8 bytes later at BOOT +0075H. All remaining
fields through “cr” are set to zero. Note again that it is the programmer’s
responsibility to move thissecond filename and type to another area, usually
a separate file control block, before opening the file which begins at
BOOT + 005CH, due to the fact that the open operation will overwrite the
second name and type.

If no file names are Speciﬁed in the original command, then the fields
beginning at BOOT +005DH and BOOT +006DH contain blanks. In all

47

cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

Asan added convenience, the default buffer area at location BOOT + 0080H
is initialized to the command line tail typed by the operator following the
program name. The first position contains the number of characters, with
the characters themselves following the character count. Given the above
command line, the area beginning at BOOT + 0080H is initialized as follows:

BOOT + 0080H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14
14 “ »n uBn u:” uxn u.'i uZn uon uTn won ..Yn n." uZN uA" uP"

where the characters are translated to upper case ASCII with unintialized
memory following the last valid character. Again, it is the responsibility of
the programmer to extract the information from this buffer before any file
operations are performed, unless the default DMA address is explicitly
changed.

- The individual functions are describéd in detail in the pages which follow.
FUNCTION 0: System Reset

Entry Parameters:
Register C: 00H

The system reset function returns control to the CP/M operating system at
the CCP level. The CCP re-initializes the disk subsystem by selectmg and
logging-in disk drive A. This function has exactly the same effect as a jump
to location BOOT.

FUNCTION 1: CONSOLE INPUT

Entry Parameters
Register C: 01H

Returned Value :
Register A: ASCII Character

The console input function reads the next console character to register A.
Graphic characters, along with carriage return, line feed, and backspace
(ctl-H) are echoed to the console. Tab characters {ctl-I) are expanded in
columns of eight characters. A check is made for start/stop scroll (ctl-S) and
start/stop printer echo (ctl-P). The FDOS does not return to the calling
program until a character has been typed, thus suspendmg execution of a
character if not ready.

48

FUNCTION 2: CONSOLE OUTPUT

Entry Parameters:
Register C: 02H
Register E: ASCII Character

The ASCII character from register E is sent to the console device. Similar to
function 1, tabs are expanded and checks are made for start/stop scroll and
printer echo.

FUNCTION 3: READER INPUT

Entry Parameters:
Register C: 03H

Returned Value : '
Register A: ASCII Character

The Reader Input function reads the next character from the logical reader
into register A. Control does not return until the character has been read. -

FUNCTION 4: PUNCH OUTPUT

Entry Parameters:

Register C:04H
Register E: ASCII Character

The Punch Output function sends the character from register E to the
logical punch device.

FUNCTION §: LIST OUTPUT

Entry Parameters:
Register C: 05H
Register E: ASCII Character

The List OQutput function sends the ASCII character in register E to the
logical listing device.

49

FUNCTION 6: DIRECT CONSOLE 1/0

Entry Parameters:
Register C: 06H
Register E: OFFH (input) or
char (output)

Returned Value
Register A: char or status
(no value)

Direct console 170 is supported under CP/M for those specialized
applications where unadorned console input and output is required. Use of
this function should, in general, be avoided since it bypasses all of CP/M’s
normal control character functions (e.g., control-S and control-P).
Programs which perform direct I/0 through the BIOS under previous
releases of CP/M, however, should be changed to usedirect I/0 under BDOS
so that they can be fully supported under future releases of MP/M and
CP/M.

Upon entry to function 6, register E either contains hexadecimal FF,
denoting a console input request, or register E contains an ASCII character.
If theinput valueis FF, then function 6 returns A = 00if no characterisready,
otherwise A contains the next console input character. ‘

_ If the input value in E is not FF, then function 6 assumes that E contains a
valid ASCII character which is sent to the console.

FUNCTION 7: GET1/0 BYTE

Entry Parameters:
Register C: 07H

Returned Value:
Register A: 170 Byte Value

The Get 170 Byte function returns the current value of IOBYTE in register
A

FUNCTION 8: SET1/0 BYTE

Entry Parameters:
Register C:08H
Register E: I/0 Byte Value

50

The Set 170 Byte function changes the system IOBYTE value to that given
in register E.

FUNCTION 9: PRINT STRING

Entry Parameters:
Register C: 09H
Registers DE: String Address

The Print String function sends the character string stored in memory at the
~ location given by DE to the console device, until a “$” is encountered in the
string. Tabs are expanded asin function 2,and checks are made for start/stop
scroll and printer echo.

FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:
Register C:0AH
Registers DE: Buffer Address

Returned Value
Console Characters in Buffer

The Read Buffer function reads a line of edited console input into a buffer
addressed by registers DE. Consoleinput is terminated when either theinput
buffer overflows. The Read Buffer takes the form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 ... +n
mx{nc|cl|c2|c3|cd]|c5]c6]c7]...]1?7

where “mx” is the maximum number of characters which the buffer will hold
(1t0255), “nc” is the number of characters read (set by FDOS upon return),
followed by the characters read from the console. If nc < mzx, then
uninitialized positions follow the last character, denoted by “??”in the above
figure. A number of control functions are recognized during line editing:

rub/del removes the echoes the last character
ctl-C reboots when at the beginning of line
ctl-E causes physical end of line

ctl-H backspaces one character position
ctl-J (line feed) terminates input line

ctl-M (return) terminates input line

ctl-R retypes the current line after new line
ctl-X backspaces to beginning of current line

Note also that certain functions which return the carriage to the leftmost

51

position (e.g., ctl-X) do so only to the column position where the prompt
ended (in earlier releases, the carriage returned to the extreme left margin).
This convention makes operator datainput and line correction more legible.

FUNCTION 11: GET CONSOLE STATUS

Entry Parameters:
Register C: 0BH

Return Value : '
~ Register A: Console Status

The Console Status function checks to see if a character has been typed at
the console. If a character is ready, the value OFFH is returned in register A.
Otherwise a 00H value is returned.

FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:
Register C:0CH

Returned Value :
Registers HL: Version Number

Function 12 provides information which allows version independent
programming. A two-byte value is returned, with H=00 designating the
CP/M release (H =01 for MP/M), and L. =00 for all releases previous to 2.0.
CP/M 2.0 returns a hexadecimal 20 in register L, with subsequent version 2
releases in the hexadecimal range 21, 22, through 2F. Using function 12, for
example, you can write application programs which provide both sequential
and random access functions, with random access disabled when operating
under early releases of CP/M.

FUNCTION 13: RESET DISK SYSTEM

Entry Parameters:
Register C:0DH

The Reset Disk Function is used to programmatically restore the file system
to a reset state where all disks are set to read/write (see functions 28 and 29),
only disk drive A is selected, and the default DMA address is reset to
BOOT +0080H. This function can be used, for example, by an application
program which requires a disk change without a system reboot.

52

FUNCTION 14: SELECT DISK

Entry Parameters:
Register C:0EH
Register E: Selected Disk

The Select Disk function designates the disk drive named in register E as the
default disk for subsequent file operations, with E =0 for drive A, 1 for drive
B, and so-forth through 15 corresponding to drive P in a full sixteen drive
system. The drive is placed in an “on-line” status which, in particular,
activates its directory until the next cold start, warm start, or disk system -
reset operation. If the disk media is changed while it is on-line, the drive -
automatically goes to a read/only statusin a standard CP/M environment
(see function 28). FCB’s which specify drive code zero (dr =00H) automat-
ically reference the currently selected default drive. Drive code values
between 1 and 16, however, ignore the selected default drive and directly
reference drives A through P. '

FUNCTION 15: OPEN FILE

Entry Parameters:
Register C: OFH
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

The Open File operation is used to activate a file which currently existsin the

disk directory for the currently active user number. The FDOS scans the -

referenced disk directory for a match in positions 1 through 14 of the FCB
referenced by DE (bytesl isautomatically zeroed), where an ASCII question
mark (3FH) matches any directory character in any of these positions.
Normally, no question marks are included and, further, bytes “ex” and “s2”
of the FCB are zero.

If a directory element is matched, the relevant directory information is

copied into bytes dO through dn of the FCB, thus allowing access to the files -

through subsequent read and write operations. Note that an existing file
must not be accessed until a successful open operation is completed. Upon
return, the open function returnsa “directory code” with the value 0 through
3if the open was successful, or OFFH (255 decimal) if the file cannot be found.
If question marks occurin the FCB then the first matching FCBis activated.
Note that the current record (“cr”’) must be zeroed by the program if the file

is to be accessed sequentially from the first record.

53

FUNCTION 16: CLOSE FILE

Entry Parameters:
Register C: 10H
Registers DE: FCB Address

Returned Value
Register A: Directory Code

The Close File function performsthe inverse of the open file function. Given
that the FCB addressed by DE has been previously activated through an
open or make function (see functions 15 and 22), the close function
permanently records the new FCBin the referenced disk directory. The FCB
matching process for the closeisidentical to the open function. The directory
codereturned for a successful close operationis0, 1,2, or 3, while a OFFH (255
decimal) is returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information.

FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
Register C:11H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

Search First scans the directory for a match with the file given by the FCB
addressed by DE. The value 255 (hexadecimal FF)is returned if the fileisnot
found, otherwise 0, 1, 2, or 3 is returned indicating the file is present. In the
case that the file is found, the current DMA address is filled with the record
containing thedirectory entry,and therelativestarting positionis A *32(i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not normally
required for application programs, the directory information can be
extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any position from
“f1” through “ex” matches the corresponding field of any directory entry on
the default or auto-selected disk drive. If the “dr” field contains an ASCII
question mark, then the auto disk selected function is disabled, the default
disk is searched, with the search function returning any matched entry,
allocated or free, belonging to any user number. This latter function is not
normally used by application programs, but does allow complete flexibility
to scan all current directory values. If the “dr” field is not a question mark,
the “s2” byte is automatically zeroed.

54

FUNCTION 18: SEARCH FOR NEXT

Entry Parameters:
Register C:12H

Returned Value :
Register A: Directory Code

The Search Next function is similar to the Search First function, except that
the directory scan continues from the last matched entry. Similar to
function 17, function 18 returns the decimal value 255 in A when no more
directory items match.

FUNCTION 19: DELETE FILE

Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value
Register A: Directory Code

The Delete File function removes files which match the FCB addresses by
DE. The filename and type may contain ambiguous references (i.e., question
marks in various positions), but the drive select code cannot be ambiguous,
as in the Search and Search Next functions.

Function 19 returns a decimal 255 if the referenced file or files cannot be
found, otherwise a value in the range 0 to 3 is returned.

FUNCTION 20: READ SEQUENTIAL

Entry Parameters:
Register C: 14H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or
make function (numbers 15 and 22), the Read Sequential function reads the
next 128 byte record from the file into memory at the current DM A address..
The record is read from position “cr” of the extent, and the “cr” field is’
automatically incremented to the next record position. If the “cr” field
overflows then the next logical extent is automatically opened and the “cr”
field isreset to zeroin preparation for the next read operation. The value 00H

55

is returned in the A register if the read operation was successful, while a
non-zero value is returned if no data exists at the next record position (e.g.,
end of file occurs).

FUNCTION 21: WRITE SEQUENTIAL

Entry Parameters:
. Register C: 15H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or
make function (numbers 15 and 22), the Write Sequential function writes the
128 byte data record at the current DMA address to the file named by the
FCB. The record is placed at position “cr” of the file, and the “cr” field is
automatically incremented to the next record position. If the “cr” field
overflows then the next logical extent is automatically opened and the “cr”
field is reset to zero in preparation for the next write operation. Write
operations can take place into an existing file, in which case newly written
records overlay those which already exist in the file. Register A =00H upon
return from a successful write operation, while a non-zero valueindicates an
unsuccessful write due to a full disk.

FUNCTION 22: MAKE FILE

Entry Parameters:
Register C: 16H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

The Make File operation is similar to the open file operation except that the
FCB must name a file which does not exist in the currently referenced disk
directory (i.e., the one named explicitly by a non-zero “dr” code, or the
default disk if “dr” is zero). The FDOS creates the file and initializes both the
directory and main memory value to an empty file. The programmer must
ensure that no duplicate file names occur, and a preceding delete operation
is sufficient if there is any possibility of duplication. Upon return, register
A=0,1,2,or 3if the operation was successful and OFFH (255 decimal) if no
more directory space is available. The make function has the side-effect of
activating the FCB and thus a subsequent open is not necessary.

56

FUNCTION 23: RENAME FILE

Entry Parameters:
Register C:17H
Registers DE: FCB Address

Returned Value :
Register A: Directory Code

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named in the
second 16 bytes. The drive code “dr” at position 0 is used to select the drive,
while the drive code for the new file name at position 16 of the FCB is assumed
to be zero. Upon return, register A is set to a value between 0 and 3 if the
rename was successful, and OFFH (255 decimal) if the first file name could
not be found in the directory scan.

FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters:
Register C: 18H

Returned Value :
Registers HL: Login Vector

The login vector value returned by CP/M is a 16-bit value in HL, where the
least significant bit of L corresponds to the first drive A, and the high order
bit of H correspondsto thesixteenth drive, labelled P. A “0” bitindicatesthat
the drive is not on-line, while a “1” bit marks a drive that is actively on-line
due to an explicit disk drive selection, or an implicit drive select caused by a
file operation which specified a non-zero “dr” field. Note that compatibility
is maintained with earlier releases, since registers A and L contain the same
values upon return.

FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:
Register C: 19H

Returned Value :
Register A: Current Disk

Function 25 returns the currently selected default disk numberin register A.

The disk numbers range from 0 through 15 corresponding to drives A through
P.

57

FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Regular C:1AH
Registers DE: DMA Address

“DMA” is an acronym for Direct Memory Address, which is often used in
connection with disk controllers which directly access the memory of the
mainframe computer to transfer data to and from the disk subsystem.
Although many computer systems use non-DMA access (i.e., the data is
transferred through programmed I/0 operations), the DMA address has, in
CP/M, come to mean the address at which the 128 byte data record resides
before a disk write and after a disk read. Upon cold start, warm start, or disk
system reset, the DMA address is automatically set to BOOT + 0080H. The
Set DMA function, however, can be used to change this default value to
address another area of memory where the data records reside. Thus, the
DMA address becomes the value specified by DE until it is changed by a
subsequent Set DMA function, cold start, warm start, or disk system reset.

FUNCTION 27: GET ADDR (ALLOC)

Entry Parameters:
Register C: 1BH

Returned Value : .
Registers HL: ALLOC Address

An “allocation vector” is maintained in main memory for each on-line disk
drive. Various system programs use the information provided by the
allocation vector to determine the amount of remaining storage (see the
STAT program). Function 27 returns the base address of the allocation
vector for the currently selected disk drive. The allocation information may,
however, beinvalid if the selected disk has been marked read/only. Although
this function is not normally used by application programs, additional
details of the allocation vector are found in the “CP/M Alteration Guide”

FUNCTION 28: WRITE PROTECT DISK

_Entry Parameters:
Register C:1CH

The disk write protect function provides temporary write protection for the
currently selected disk. Any attempt to write to the disk, before the next cold
or warm start operation produces the message

Bdos Errond: R/0
58

FUNCTION 29: GET READ/ONLY VECTOR

Entry Parameters:
Register C:1DH

Returned Value :
Registers HL: R/0 Vector Value

Function 29 returns a bit vector in register pair HL which indicates drives
which have the temporary read/only bit set. Similar to function 24, the least
significant bit corresponds to drive A, while the most significant bit
corresponds to drive P. The R/0O bit is set either by the explicit call to
function 28, or by the automatic software mechanisms within CP/M which
detect changed disks.

FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters:
Register C:1EH
Registers DE: FCB Address

Returned Value
Register A: Directory Code

The Set File Attributes function allows programmatic manipulation of
permanent indicators attached to files. In particular, the R/0 and System
attributes (tI’ and t2’) can be set or reset. The DE pair addresses an
unambiguous file name with the appropriateattributesset or reset. Function
30searches for a match, and changes the matched directory entry to contain
the selected indicators. Indicators f1’ through f4’ are not presently used, but
may be useful for applications programs, since they are not involved in the
matching process during file open and close operations. Indicators f5’
through f8’ and t3’ are reserved for future system expansion.

FUNCTION 31: GET ADDR (DISK PARMS)

Entry Parameters:
Register C: 1FH

Returned Value :
Registers HL: DPB Address

The address of the BIOS resident disk parameter block is returned in HL as
a result of this function call. This address can be used for either of two
purposes. First, the disk parameter values can be extracted for display and

59

space computation purposes, or transient programs can dynamically change
the values of current disk parameters when the disk environment changes, if
required. Normally, application programs will not require this facility.

FUNCTION 32: SET/GET USER CODE

Entry Parameters:
Register C: 20H
Register E: OFFH (get or

User Code (set)
Returned Value :
Register A: Current Code or
(no value)

An application program can change or interrogate the currently active user
number by calling function 32. If register E =0FFH, then the value of the
current user number is returned in register A, where the valueisin the range
0 to 31. If register E is not OFFH, then the current user number is changed to
the value of E (modulo 32).

FUNCTION 33: READ RANDOM

Entry Parameters:
Register C:21H
Registers DE: FCB Address

Returned Value :
Register A: Return Code

The Read Random function is similar to the sequential file read operation of
previous releases, except that the read operation takes place at a particular
record number, selected by the 24-bit value constructed from the three byte
field following the FCB (byte positions r0 at 33, r1 at 34, and r2 at 35). Note
that the sequence of 24 bits is stored with least significant byte first (r0),
middle byte next (r1), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2 must be zero,
however, since a non-zero value indicates overflow past the end of file.

Thus, the r0,r1 byte pairis treated as a double-byte, or “word” value, which
contains the record to read. This value ranges from 0 to 65535, providing
access to any particular record of the 8 megabyte file. In order to process a
file using random access, the base extent (extent 0) must first be opened.
Although the base extent may or may not contain any allocated data, this
ensures that the fileis properly recorded in the directory, andis visiblein DIR
requests. The selected record number is then stored into the random record
field (r0,r1), and the BDOS is called to read the record. Upon return from the

- 60

call, register A either contains an error code, as listed below, or the value 00
indicating the operation was successful. In the latter case, the current DMA
address contains the randomly accessed record. Note that contrary to the
sequential read operation, the record number is not advanced. Thus,
subsequent random read operations continue to read the same record.

Upon each random read operation, the logical extent and current record
values are automatically set. Thus, the file can be sequentially read or
written, starting from the current randomly accessed position. Note,
however, thatin this case, the last randomly read record willbere-read asyou
switch from random mode to sequential read, and the last record will be
re-written as you switch to a sequential write operation. You can, of course,
simply advance the random record position following each random read or
write to obtain the effect of a sequential I/0 operation.

Error codes returned in register A following a random read are listed below.

01 reading unwritten data

02 (not returning in random mode)
03 cannot close current extent

04 seek to unwritten extent

05 (not returned in read mode)

06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a data
block which hasnot been previously written, or an extent which hasnot been
created, which are equivalent conditions. Error 3 does not normally occur
under proper system operation, but can be cleared by simply re-reading, or
re-opening extent zero as long as the disk is not physically write protected.
Error code 06 occurs whenever byte r2 is non-zero under the current 2.0
release. Normally, non-zero return codes can be treated as missing data, with
* zero return codes indicating operation complete.

FUNCTION 34: WRITE RANDOM

Entry Parameters:
Register C:22H
Registers DE: FCB Address

Returned Value :
Register A: Return Code

The Write Random operation is initiated similar to the Read Random call,
except that data is written to the disk from the current DMA address.
Further, if the disk extent or data block which is the target of the write has
not yet been allocated, the allocation is performed before the write operation

61

continues. Asin the Read Random operation, the random record number is
not changed as a result of the write. The logical extent number and current
record positions of the file control block are set to correspond to the random
record which is being written. Again, sequential read or write operations can
commence following a random write, with the notation that the currently
addressed record is either read or rewritten again as the sequential operation
begins. You can also simply advance the random record position following
each write to get the effect of a sequential write operation. Note that in
particular, reading or writing the last record of an extent in random mode
does not cause an automatic extent switch as it does in sequential mode.

The error codes returned by arandom write areidentical to the random read
operation with the addition of error code 05, which indicates that a new
extent cannot be created due to directory overflow.

FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value :
Random Record Field Set

When computing the size of a file, the DE register pair addresses an FCB in
random mode format (bytes r0, r1, and r2 are present). The FCB contains an
unambiguous file name which is used in the directory scan. Upon return, the
random record bytes contain the “virtual” file size which is, in effect, the
record address of the record following the end of the file. If, following a call
to function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536. Otherwise, bytes r0 and rl constitute a 16-bit
value (10 is the least significant byte, as before) which is the file size.

Data can be appended to the end of an existing file by simply calling function
35 to set the random record position to the end of file, then performing a
sequence of random writes starting at the preset record address

The virtual size of a file corresponds to the physical size when the file is
written sequentially. If, instead, the file was created in random mode and
“holes” exist in the allocation, then the file may in fact eontain fewer records
than the size indicates. If, for example, only the last record of an eight
megabyte file is written in random mode (i.e., record number 65535), then the
virtual size is 65536 records, although only one block of data is actually
allocated.

62

FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value :
Random Record Field Set

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or

written sequentially to a particular point. The function can be useful in two
ways.

First,itis often necessary toinitially read and scan asequential file to extract
the position of various “key” fields. As each key is encountered, function 36
is called to compute the random record position for the data corresponding
to this key. If the data unit size is 128 bytes, the resulting record position is
placed into a table with the key for later retrieval. After scaning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read using the
corresponding random record number which was saved earlier. The scheme
is easily generated when variable record lengths are involved since the
program need only store the buffer-relative byte position along with the key
and record number in order to find the exact starting position of the keyed
data at a later time.

A second use of function 36 occurs when switching from a sequential read or
write over to random read or write. A file is sequentially accessed to a
particular pointin the file, function 36is called which sets the record number,
and subsequent random read and write operations continue from the
selected point in the file.

Sample File-to-File Copy Program

The program shown below provides a relatively simple example of file
operations. The program source file is created as COPY.ASM using the
CP/M ED program and then assembled using ASM or MAC, resultingin a
“HEX?” file. The LOAD program is then used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting the
stack pointer to a local area, and then proceeds to move the second name
from the default area at G06CH to a 33-byte file control block called DFCB.
The DFCB is then prepared for file operations by clearing the current record
field. At this point, the source and destination FCB’s are ready for processing
since the SFCB at 005CH is properly set-up by the CCP upon entry to the
COPY program. That is, the first name is placed into the default FCB, with

63

the proper fields zeroed, including the current record field at 007CH. The
program continues by opening the source file, deleting any existing
destination file, and then creating the destination file. If all thisis successful,
the program loops at the label COPY until each record has been read from
the source file and placed into the destination file. Upon completion of the
data transfer, the destination file is closed and the program returns to the
CCP command level by jumping to BOOT.

sample file-to-file copy program
at the ccp level, the command
copy a:x.,y b:u.v

copies the file named x.y from drive
a to a file named u.v on drive b,

~e Nu e we ms N0 wo we

boot

0009 = equ 0060h ; system reboot
0085 = bdos equ 0005h ; bdos entry point
@05¢c = fcbl equ 905¢ch ; first file name
085c = sfcb equ fcbl ; source fcb
#06¢c = fcb2 equ p@6ch ; second file name
0088 = dbuff equ 8088h ; default buffer
0100 = tpa equ 01806h ; beginning of tpa
’
0089 = printf equ 9 : print buffer funcé
806t = openf equ 15 ; open file func#
0019 = closef equ 16 ; close file func#
pel3 = deletef equ 19 ; delete file funcs
0014 = readf equ 20 ; sequential read
0015 = writef equ 21 ; sequential write
8Bl6 = make £ equ 22 ; make file func#
’
0lee org tpa ; beginning of tpa
0100 311bB2 1xi sp,stack; local stack
; move second file name to dfcb
90103 deleo mvi c,l6 : half an fcb
9105 116ca0 1xi d,fcb2 ; source of move
0108 21dadl 1xi h,dfcb ; destination fcb
210b la mfcb: ldax d ; source fcb
9loc 13 inx d ; ready next
gled 77 mov m,a ; dest fcb
010e 23 inx h : ready next
010f 8d dcr c ; count 16...9
0110 c20bol jnz mfch ; loop 16 times
’
H name has been moved, zero cr
2113 af . xra a ; a = @6h
0114 32fadl sta dfcbcr ; current rec = @
; source and destination fcb's ready
8117 115c80 1xi d,sfcb ; source file
Plla cd6981 call open ; ercor if 255
911d 118701 1xi d,nofile; ready message
0120 3c inrc a : 255 becomes 0
0121 cc6101 cz finis ; done if no file
H source file open, prep destination
0124 11da081l 1xi d,dfcb ; destination
0127 cd7301 call delete ; remove if present
012a 11dadl 1xi d.dfcb ; destination
8l2d cds2ol call rake ; create the tile
9130 119601 1xi d,nodir ; ready message

64

0133
0134

0137
013a

213d
813e

V141
0144
0147
0l4a
814b
d14de

p151
0154
0157
f215a
215b

015e

161
0163
0166

0169
016b

01l6e
8179

0173
0175

0178
gl7a

¢gl7d
d17f

0182
0ls4

dln7
4196
Jlay
vlob
dlce

dlua
dlta
U1fL

v2lo

3¢
cchlul

O Se we e s

115ce0
cd7801
b7

c25101

~ ae

11da01l
cd7del
11a901
b?

c46101
c337e1

eofile:
11dagl
cdéedl
21bbo1l
3c
cc6lal

e ae

llccol

e

inis:
8ed9

cdos0e
clovoe

©Q ~e ~e s we

Oedf
c30500

pen:

feld élose:

c30590

Pell éelete:
cl0500
deld read:
c36590
vels erte:
Cc39590
vels iake:
c3¥590

H

bebt2dfnofile:
6e6£299nodir:
6t7574tspace:
7772695wrprot:
636f7d0normal:

’

dfcb:
= afcber

stack:

inc a H
cz finis ;

source file open,
copy until end of

1xi d,sfcb ;
call read H
ora a H
jnz eofile
not end of file,

1xi d,dfcb
call write B
1xi d,space ;
ora a H
cne finis :
imp copy :

255 becomes 2
done 1f no dir space

dest file open
file on source

source
read next record

end of file?
skip write if so

write the record

destination
write record
ready message
00 if write ok
end 1f so

loop until eof

; end of file, close destination

1xi d,dfcb ;
call close :
1xi h,wrprot;
inc a H
cz tinis :

destination

255 if error
ready message
255 becomes 06
shouldn't happen

copy operation complete, end

Ixi d,normal;

ready message

; write message given by de, reboot

mvi c,printf
call bdos :
jmp boot :

write message
reboot system

system interface subroutines
(all return directly from bdos)

mvi c,opent

jmp bdos

mvi c,closef

jmp bdos

mvi c,deletef

jmp bdos

mvi c,readf

jmp tdos

mvi c,writef

jmp ndos

mvi c,makef

jmp bdos

console wmessages

db ‘no source files$'

db ‘no directory space$’
db ‘out of data spaceS’
db ‘write protected?s’
db ‘copy completeS'

data areas

ds 33 ; destination fcb
equ dfcb+32 ; curcent record

as 32 ; 16 level stack

end

65

Note that there are several simplifications in this particular program. First,
there are no checks for invalid file names which could, for example, contain
ambiguous references. This situation could be detected by scanning the 32
byte default area starting at location 005CH for ASCII question marks. A
check should also be made to ensure that the file names have, in fact, been
included (check locations 605DH and 006DH for non-blank ASCII
characters). Finally, a check should be made to ensure that the source and
destination file names are different. A speed improvement could be made by
buffering more data on each read operation. One could, for example,
determine the size of memory by fetching FBASE from location 0006H and
use the entire remaining portion of memory for a data buffer. In this case, the
programmer simply resets the DMA address to the next successive 128 byte
area before each read. Upon writing to the destination file, the DMA address
isreset to the beginning of the buffer and incremented by 128 bytes to the end
as each record is transferred to the destination file.

Sample File Dump Utility.

The file dump program shown below is slightly more complex than the single
copy program given in the previous section. The dump program reads an
input file, specified in the CCP command line, and displays the content of
each record in hexadecimal format at the console. Note that the dump
program saves the CCP’s stack upon entry, resets the stack to a local area,
and restores the CCP’s stack before returning directly to the CCP. Thus, the
dump program does not perform warm start at the end of processing.

; DUMP program reads input file and displays hex data

0100 org 196h)
80es = bdos equ p805h ;dos entry point
egol = cons equ 1 ;read console
0002 = typef equ 2 ;type function
0099 = printf equ 9 ;buffer print entry
0006b = brkf equ 11 ;break key function (true if char
poof = openf equ 15 ;file open
0014 = readf equ 20 ;read function
085¢c = fcb equ 5ch ;file control block address
0080 = puff equ 88h ;input disk buffer address
; non graphic characters
2004 = cr equ 0dh ;carriage return
0ooa = 1f equ fah ;line feed
; file control block definitions
Qusc = fcbdn egu fcb+0 ;disk name
205d = fcbfn equ fcb+l ;file name
0065 = fcbft equ fcb+9 ;disk file type (3 characters)
0068 = fcbrl equ fcb+l2 ;file's current reel number
9d6b = fcbre equ fcb+l5 ;file's record count (8 to 128)
807¢c = fcber equ fcb+32 ;current (next) record number (9
0e7d = fcbln equ fcb+33 ;fcb lenath
; set up stack
0120 210000 1xi h,o
0183 59 dad sp

H entry stack pointer in hl from the ccp

66

0104
0107
9lea

oled
0l10f

[~N-~X-~]
bt e
—
NN

0llb
8lld

8129

0123
0124
0127
0128
812b

#l2c
plad
g12f

8132

0135

2138
8139

013c
0134
0140
0141

80144
0145
9147
014a
014b
01l4e

2151
8154
8157

2158

0159
@15¢c
915e
016l
0164

221502
315702

cdcleol
feff
c2lb@l

11€301
cd9col
clislol

3e80
3213082

210000

es
cda20l
el
das51d@1l
47

7d
e60f
c24401

cd7201

cds5901

0f
daslel

1c¢
cdsfal
74
cdsfal

23
Je20
cd6501
78
cdsfol
ciz23el

cd7201
2alse2
£9

c9

es5dscS
febb
cdesaee
cldlel
c9

~

~

openok:

~

gloop:

~ e

-~ ~ we

nonum:

inis:

P N . o

O ~e v sene

reak:

échar:

shld olds A o
set sp to local stack area (restored at finis)
1xi sp.stktop

read and print successive buffers

call setup ;set up input file

cpi 255 :255 if file not present

jnz openok ;skip if open is ok

file not there, give error message and return
1xi d,opnmsg

call err

jmp finis ;t0 return

;open operation ok, set buffer index to end
mvi a,8eh

sta ibp ;set buffer pointer to 86h

hl contains next address to print

1xi h,@ ;start with 0000

push h ;save line position

call gnb

pop h ;recall line position

je finis ;carry set by gnb if end file
mov b,a

print hex values
check for line fold

mov a,l
ani 0fh ;check low 4 bits
jnz nonum

print line number
call crlf

check for break key

call break

accum lsb = 1 if character ready

rec ;into carry

jc finis ;don't print any more
mov a,h

call phex

mov a,l

call phex

inx h ;t0 next line number
mvi a,' "’

call pchar

mov a,b

call phex

jmp gloop

end of dump, return to ccp

(note that a jmp to 8800h reboots)
call celf

lhld oldsp

sphl
stack pointer contains ccp's stack location
ret ;to the ccp

subroutines

;check break key (actually any key will do)

push h! push d! push b; enviromment saved
mvi c,brkf

call bdos

pop b! pop 4! pop h; enviromment restored
ret

;print a character

67

9165
0168
@16a
0l6b
016e
p171

0172
0174
a177
0179
8l7c

pl7d
017t
181

0184
8186

9189
¥18b
018e

018f
0190
0191
8192
8193
2194
0197
2198
219b

819¢c
@19%e
fglal

0la2
61las
8la?

flaa
?lad
flae

#1bl
01b2

p1b3
91b4
01b6
21b7

flba

e5d5¢S
Ped 2
Sf
cdos500
cldlel
c9

3edd
cd6501
leda
cdé6s5@e1l
c9

e60f
feda

crilf:

H
pnib:

d28901

c630
c38b#1l

c637
cd65081
c9

£S5
of
of
of
of
cd7d401
fl
cd7del
c9

0ed9
cdesed
c9

3aliez2
fe80
c2b3el

cdcedl
b?
cab3@l

37
c9

S5f
1680
3¢
321302

218000

#1lbd 19

0 1lbe

Te

ple:
prn:

phex:

gnb:

~e~e we

~

go:

push h! push d! push b; saved
mvi c,typef

mov e,a

call bdos

pop b! pop d! pop h; restored

ret

mvi a,cr

call pchar

mvi a,lf

call pchar

ret

;print nibble in reg a
ani 9fh :1low 4 bits
cpi 190

jnc pl@

less than or equal to 9
adi ‘e’

jmp ptn

greater or equal to 10
adi ‘a' - 10

call pchar

ret

;print hex char in reg a
push psw

rrc

rec

rec

rrc

call pnib ;print nibble
pop psw

call pnib

ret

;print error message
d.e addresses message ending with "§*

mvi c,printf ;print buffer function
call bdos
ret

:get next byte

lda ibp
cpi 80h
jnz 90

read another buffer

call diskr

ora a ;zero value if read ok,

jz gl ;for another byte

end of data, return with carry set for eof
stc

ret

;rtead the byte at buff+reg a

mov e,a ;1s byte of buffer index

mvi 4,0 ;double precision index to de
inr a ;index=index+l

sta ibp ;back to memory

pointer is incremented

save the current file address

1xi h,buff ‘

dad d

absolute character address is in hl
mov a,m

68

01bf

byte is in the accumulator

b7 ora a ;reset carry bit
0lcd c9 ret
setup ;set up file
H open the file for input
8lcl af xra a ;2ero to accum
Qlc2 327c00 sta fcber ;clear current record
01c5 115c00 1xi d,fchb
01c8 Qelf mvi c,openf
flca cdes500 call bdos
H 255 in accum if open error
9lcd c9 ret
H
diskr: ;read disk file record
B#lce e5d5cS push h! push d! push b
8141 115co00 1xi d,fcb
01d4 @eld mvi c,readf
91d6 cdesoee call bdos
0149 cldlel pop b! pop ‘! pop h
81ldc c9 ret
H fixed message area
91dd 46494c@signon: db ‘file du > version 2,8$°
01f3 0d@adefopnmsg: db cr,lf,'no input file present on disk$"*
: variable area
9213 ibp: ds 2 sinput buffer pointer
8215 oldsp: ds 2 ;entry sp value from ccp
; stack area
8217 ds 64 ;reserve 32 level stack
stktop:
0257 end

Sample Random Access Program.

This manual is concluded with a rather extensive, but complete example of
random access operation. The program listed below performs the simple
function of reading or writing random records upon command from the
terminal. Given that the program has been created, assembled, and placed
into a file labelled RANDOM.COM, the CCP level command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name X.DAT (in
this particular case) and, if found, proceeds to prompt the console for input.
If not found, the fileis created before the prompt is given. Each prompt takes
the form

next command?

andis followed by operatorinput, terminated by a carriage return. Theinput
commands take the form

nW nR Q
69

where nis aninteger valuein the range 0t0 65535,and W, R, and Q are simple
command characters corresponding to random write, random read, and quit
processing, respectively. If the W command is issued, the RANDOM
program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by a
carriagereturn. RANDOM then writes the character stringinto the X.DAT
file at record n. If the R command is issued, RANDOM reads record number
nanddisplays the string value at the console. If the Q command isissued, the
X.DAT file is closed, and the program returns to the console command
processor. In the interest of brevity, the only error message is

error, try again

The program begins with an initialization section where the input file is
opened or created, followed by a continuous loop at the label “ready” where
the individual commands are interpreted. The default file control block at
005CH and the default buffer at 0080H are used in all disk operations. The
utility subroutines then follow, which contain the principal input line
processor, called “readc?” This particular program shows the elements of
random access processing, and can be used as the basis for further program
development.

;'iQ'lttttt'.tl.ttittiiti.t!tn'ﬁh.t!ﬁ’!itﬂﬁt.'tiﬁtlt
i * *

:* sample random access program for cp/m 2.0 *
;t L]
;O.'iﬁt'itttt!.!t."!lﬁtttltttnitt..k‘tlt!tilltt!ttt

0100 org, 186h ;base of tpa

0008 = reboot equ poéeh ;system reboot

00085 = bdos equ 0005h ;bdos entry point
H

0eel = coninp equ 1 ;console input function

0002 = conout egu 2 ;console output function

0009 = pstring equ 9 ;print string until 'S’

0006a = rstring equ 10 ;read console buffer

00c = version equ 12 ;return version number

000f = openf equ 15 ;file open function

0010 = closef equ 16 ;close function

0016 = makef equ 22 ;make file function

0021 = readr equ 33 ;read random

0022 = writer equ 34 ;write random

005c = fcb equ 985ch ;default file control block

0074 = ranrec egqu fcb+33 ;random record position

007f = ranovf equ fcb+35 ;high order (overflow) byte

2080 = buff equ 0086h ;butfer address

eged = cr equ 8dh ;jcarriage return

goda = 1f equ Qah :line feed
;ttlt!ttttti.lﬁittlltttit'!*ﬁlti!tt.t'*tt*'.il.ttttt
N L]
;* load SP, set-up file for random access *
«® -
;!!'ttttlitlttﬁ.!'l."!tlttﬁ...llli.t.l"ttt.tttttt-

70

100

0103
0105
8108
plBa

plod
0lle
8113

0116
2118
011lb
0lle
a11f

0122
0124
0127
f012a
01l2b

912
0131
2134

8137
d13a
d13d
9149
d1432
2144

9147
2149
0l4c
014f
9150
4153

2]
——
v
o o

¢15b
215e
0161
0163

31bco

febdc
cdese
fe20
d216@

111be
cddad
cloo0e0

Oedf
115co
cdes5e
3¢
c2370

Pelé
115c0
cdese
3c
c2379

113a0
cddag
c39000

cde50
227d0
217€9
3699
fes1
c2560

veld
115c0
cdadse
3¢
cab90
cldde

fes?7
c2890

114de
cdda@
fe7f

21800

~

N

:
versok:

.
B

. e

~ >

S s FY me we we we we v ne

o s e we e e

n

~ s

Ixi sp,stack

version 2.8?

mvi c,version

call bdos

cpi 20h ;version 2.0 or better?
jnc versok

bad version, message and go back

1xi d,badver

call print

jmp reboot

correct version for random access

mvi c,openf ;open default fcb

1xi d,fcb

call bdos

inrc a ;err 255 pecomes zero
jnz ready

cannot open file, so create it

mvi c,makef

1xi d,fcb

call bdos

inr a ;err 255 becomes zero
jnz ready

cannot create file, directory full
1xi d,nospace

call print

jmp reboot ;back to ccp

AR R AN RN R RN AR AN AR R AR R R R AN AR R AN AR R AN R R R AR AR RN AR R AR AN

*

»

loop back to “ready" after each command

L]
®
*

RARN R AN NN R AR KRR AR RN A RANARRRRRANRENAANARRNRR RN AANNNRARR

eady:

file is ready for processing

call readcom ;read next command

shld ranrec ;store input record#
1xi h,ranovf

mvi m,Q ;clear high byte if set
cpi 'Q’ ;quit?

jnz notq

qult processing, close file

mvi c,closef

1x1 d,fcb

call bdos

inr a ;ercr 255 becomes @

jz error ;error message, retry
jmp reboot ;back to ccp

ARXRRRANNANKRAANRN AR AR R A AR RN RRRRTRARRAANRAANNNNNNR AN

*

* end of quit command, process write

*
R]
L]

R R SR RN A AN RN AR RN R R AR R AR AR AN N A AR R RN AARNARNARR RN

otg:

not the quit command, random write?

cpl ‘W'
jnz notw

this is a random write, fill buffer until cr

1x1 d,datmsg

call print ;data prompt

mvi c,127 ;up to 127 characters
1xi h,buff ;destination

71

rloop: ;read next character to buff

0166 c5 push b ;save counter

0167 e5 push h ;next destination

0168 cdc20 call qetchr ;character to a

9l6b el pop h ;jrestore counter

8léc cl pop b ;restore next to fill

0l6d febd cpi cr ;end of line?

0l6f ca780 jz erloop
; not end, store character

8172 717 mov m,a

0173 23 inx h ;next to fill

2174 0d dcr c ;counter goes down

P175 c26680 jnz rloop ;end of buffer?
erloop:
H end of read loop, store 2@

8178 3600 mvi m,8
: write the record to selected record number

8l17a Qe22 mvi c,writer

017c 115¢c0 1xi d,fcb

017f cdese call bdos

9182 b7 ora a jecror code zero?

0183 c2b9e jnz error ;message if not

0186 c3370 jmp ready ;for another record
;ttttittiatttttittﬁittitiitttttttittttlt‘.titttt.t't
oK ®
:* end of write command, process read *
R *
:-t'!t.lltttQﬁtllitﬂi!iti'."ikl't.tttt!.it‘ﬁltttt!l.
notw:
: not a write command, read record?

0189 fe52 cpi ‘R’

016b c2b9e@ jnz ercor :skip if not
H read random record

018e Be2l mvi c,readr

0190 115c0 1xi d,fcb

0193 cdose call bdos

0196 b7 ora a ;return code 098?

8197 c2b9e jnz error
: read was successful, write to console

019a cdcfo call crlf ;new line

0194 0Ge89 mvi c,128 ;max 128 characters

B819f 21800 1xi h,buff ;next to get
wloop:

@la2 7e mov a,m ;next character

fla3 23 inx h ;next to get

0lad e67f ani 7fh ;mask parity

0la6 ca3ve)z ready ;for another command if @0

8lad9 c5 push b ;save counter

@laa e5 push h ;save next to get

0lab fe20 cpi ' igraphic?

8lad d4cse cne putchr ;skip output if not

01bd el pop h

01bl cl pop b

81b2 od dcr c ;count=count-1

01b3 caze jnz wloop

81b6 c3370 jmp ready

A RARNRRAANRAR RN RN AR A RN R R AR A ARNRRARAAR R AN R AN AN RN AR
]

end of read command, all errors end-up here :

® % % * »

RAR AR R RN AN AR A NN R R AR R AR RN A AR AN R AN AARR R RN AN AR RN

M we ~¢ ne “e = ws we

rror:
81b9 11590 1xi d,grrmsg
81bc cddad call print
01bf c3370 jmp ready

72

i

;t*tttﬁ!k.ltttlut!!ttt!ttittttltttltiiiitittttlltttt
o R *
H
- X
'
«®

utility subroutines for console i/o *
®
;ttlﬂt-.tltti!t-tttttﬁitﬂt't.tﬁlttttﬁ!ttttt.!littttt
getchr:
;read next console character to a
0lc2 0edl mvi c,coninp
@1lc4 cdese call bdos
2lc? c9 ret
putchr:
;write character from a to console
dlcB @ed2 mvi c,conout
dlca 5f mov e,a ;character to send
0lcb cdese call bdos ;send character
flce ¢c9 ret
crlf:
;send carriage return line feed
@1lct 3e@d mvi a,cr ;carriage return
91d1 cdcse call putchr
0134 leda mvi a,lf ;line feed
#1d6 cdcse call putchr
9149 c9 ret
print:
;print the buffer addressed by de until §$
#1da 45 push d
01db cdcfo call crlf
81lde dl pop d ;new line
pldf deB9 mvi c,pstring
flel cdese call bdos ;print the string
Bled c9 ret
readcom:
;read the next command line to the conbuf
0leS5 116b0 1xi d,prompt
fle8 cddab call print ;command?
fleb deda mvi c,rstring
Pled 117a0 Ixi d,conbuf
01£0 cdese call bdos sread command line
: command line is present, scan it
01£f3 21000 1xi h,® ;start with 8000
01f6 117ce 1xi d,conlin;command line
P1£9 1la readc: ldax d ;next command character
01fa 13 inx d ;to next command position
P1lfb b7 ora a ;cannot be end of command
Blfc c8 rz
: not zero, numeric?
01fd deé3e sui ‘9’
81ff fepa cpi 10 ;carry if numeric
0201 42130 jne endrd
' : add-in next digit
0204 29 dad h ;%2
0205 44 mov c,l '
9206 44 mov b,h ibc = value * 2
90207 29 dad h ;%4
9288 29 dad h :*8
0209 09 dad b ;%2 + *8 = *]19
820a 85 .. add 1 ;+digit
820b 6f mov 1l,a
020c d2£98 jnc readc ;for another char
020f 24 inr h soverflow
0219 c3f90 jmp readc ;for another char
endrd: .
H end of read, restore value in a
9213 c638 adi ‘e’ s command
8215 feé6l cpi ‘a’ ;translate case?

73

6217 48 re

: lower case, mask lower case bits
9218 eb5f ani 10181111b
02la c9 ret

-‘"i'..!!ﬂ.ﬁ"t"’**i'ﬂi*lit!itttl!t"kﬁttt’ktﬁt*"
L]

.~ e

~e o

:* string data area for console messages *
* ®
AR RN R R R R R R A AR AR AR R A R R R R AR RN AR R AR RN KRR R RNNRRRAARNNRR R

adver:

PR

o

921b 536£79 db ‘sorcy, you need cp/m version 2$°
nospace:

B23a 4e6f£29 db 'no directory spaces$’
datmsg:

024d 547978 db ‘type data: §'
errmsgqg:

0259 457272 db ‘error, try again.$’®
prompt:

026b 4e6579 db ‘next command? $°'
;ﬁtttti."ttttttkiitiiii'tt.tﬁttﬁ.'tt.ﬁttit'.***ﬁ"'
I'RJ]
;* fixed and variable data area *
«W *
;ﬂi..!’ttﬁ‘ﬁkﬁttl.ﬁlhtii!kt'ﬁt!titttt!tﬁtt'ttttﬁttﬁ!

827a 21 conbuf: db conlen ;length of console buffer

8270 consiz: ds 1 ;jresulting size after read

g27c conlin: ds 32 :1length 32 buffer

0021 = conlen equ $-consiz

029¢ ' ds 32 :16 level stack
stack:

0 2bc end

Again, major improvements could be made to this particular program to
enhance its operation. In fact, with some work, this program could evolve
into a simple data base management system. One could, for example, assume
a standard record size of 128 bytes, consisting of arbitrary fields within the
record. A program, called GETKEY, could be developed which first reads a
sequential file and extracts a specific field defined by the operator. For
example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the “LASTNAME?" field from each record, starting at position 10 and ending
at character 20. GETKEY builds a table in memory consisting of each
particular LASTNAME field, along with its 16-bit record number location
within the file. The GETKEY program then sorts this list, and writes a new
file, called LASTNAME KEY, which is an alphabetical list of LASTNAME
fields with their corresponding record numbers. (This list is called an
“inverted index” in information retrieval parlance.)

Rename the program shown above as QUERY, and massage it a bit so that
it reads a sorted key file into memory. The command line might appear as:

QUERY NAMES.DAT LASTNAME KEY
74

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base. Since
the LASTNAMEL.KEY list is sorted, you can find a particular entry quite
rapidly by performing a “binary search,’ similar to looking up a namein the
telephone book. That is, starting at both ends of the list, you examine the
entry halfway in between and, if not matched, split either the upper half or
the lower half for the next search. You’ll quickly reach the item you're
looking for (in log2(n) steps) where you’ll find the corresponding record
number. Fetch and display this record at the console, just as we have done in
the program shown above.

At this point you're just getting started. With a little more work, you can
allow a fixed grouping size which differs from the 128 byte record shown
above. Thisis accomplished by keeping track of the record number as well as
the byte offset within the record. Knowing the group size, you randomly
access the record containing the proper group, offset to the beginning of the

group within the record read sequentially until the group size has been
exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such asa LASTNAME between HARDY and LAUREL, and
an AGE less than 45. Display all the records which fit this description.
Finally, if your lists are getting too big to fit into memory, randomly access
your key files from the disk as well. One note of consolation after all this

work: if you make it through the project, you’ll have no more need for this
manual!

75

System Function Summary

INPUT ouTPUT

FUNC FUNCTION NAME PARAMETERS RESULTS

0 System Reset none none

1 Console Input none A =char

2 Console Output E=char none

3 Reader Input none A =char

4 Punch Output E =char none

5 List Output E =char none

6 Direct Console I/0 see def see def

7 Get 170 Byte none A=]0BYTE

8 Set I/0 Byte E=IOBYTE none

9 Print String DE =.Buffer none
10 Read Console Buffer DE = .Buffer see def
11 Get Console Status none A=00/FF
12 Return Version Number none HL = Version*
13 Reset Disk System none see def
14 Select Disk E =Disk Number see def
15 Open File DE=.FCB A =Dir Code
16 Close File DE=.FCB A =Dir Code
17 Search for First DE=.FCB A =Dir Code
18 Search for Next none A =Dir Code
19 Delete File DE=.FCB A =Dir Code
20 Read Sequential DE=.FCB A=Err Code
21 Write Sequential DE=.FCB A=Err Code
22 Make File DE=.FCB A =Dir Code
23 Rename File DE=.FCB A =Dir Code
24 Return Login Vector none HL =Login Vect*
25 Return Current Disk none A=Cur Disk#
26 Set DMA Address DE=.DMA none
27 Get Addr(Alloc) none HL=.Alloc
28 Write Protect Disk none see def
29 Get R/0 Vector none HL=R/0 Vect*
30 Set File Attributes DE=.FCB see def
31 Get Addr (disk parms) none HL=.DPB
32 Set/Get User Code see def see def
33 Read Random DE=.FCB A=Err Code
34 Write Random DE=.FCB A=Err Code
35 Compute File Size DE=.FCB r0, rl, r2
36 Set Random Record DE=.FCB ro, rl, r2

*Note that A=L, and B=H upon return

76

ED: A CONTEXT EDITOR
FOR THE CP/M DISK SYSTEM
USER’'S MANUAL

COPYRIGHT (c) 1976, 1978
DIGITAL RESEARCH

Copyright (c) 1976, 1977, 1978 by Digital Research. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a re-
trieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written per-
mission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950. :

Disclaimer

Digital Research makes no representations or warranties
with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication
and to make changes from time to time in the content
hereof without obligation of Digital Research to notify
any person of such revision or changes.

Table of Contents

SECTION III

10.
11.

£ ® NS ok »DN

INTRODUCTION TO ED

ED OPERATION

TEXT TRANSFER FUNCTIONS
MEMORY BUFFER ORGANIZATION
MEMORY BUFFER OPERATION
COMMAND STRINGS

TEXT SEARCH AND ALTERATION
SOURCE LIBRARIES

REPETITIVE COMMAND EXECUTION
ED ERROR CONDITIONS

CONTROL CHARACTER AND COMMANDS

77

79
79
79
83
83
84
86
88
89
89
90

Introduction to ED

ED is the context editor for CP/M, and is used to create and alter CP/M
source files. ED is initiated in CP/M by typing

(filename)
ED
(filename)+(filetype)

In general, ED reads segments of the source file given by (filename) or
(filename) « (filetype) into central memory, where the file is manipulated by
the operator, and subsequently written back to disk after alterations. If the
source file does not exist before editing, it is created by ED and initialized to
empty. The overall operation of ED is shown in Figure 1.

ED Operation

ED operates upon the source file, denoted in Figure 1 by x.y, and passes all
text through a memory buffer where the text can be viewed or altered (the
number of lines which can be maintained in the memory buffer varies with
the line length, but has a total capacity of about 6000 characters in a 16K
CP/M system). Text material which has been edited is written onto a
temporary work file under command of the operator. Upon termination of
the edit, the memory buffer is written to the temporary file, followed by any
remaining (unread) text in the source file. The name of the original file is
changed from x.y to x.BAK so that the most recent previously edited source
file can be reclaimed if necessary (see the CP/M commands ERASE and
RENAME). The temporary file is changed from x.$$$ to x.y which becomes
the resulting edited file.

The memory buffer is logically between the source file and working file as
shown in Figure 2.

Text Transfer Functions

Given that n is an integer value in the range 0 through 65535, the following
ED commands transfer lines of text from the source file through the memory
buffer to the temporary (and eventually final) file:

79

U

Source

File

X.y

¢

After

Edit (E)

()

Backup
File

(i

Figure 1. Overall ED Operation

Append

(A)

Source
Libraries

Memory Buffer

Insert
(I)

=

Type
(T)

()

U

Temporary
File

x.$88 /

{

After

Edit (E)

New
Source
File

X.y

(

Note: the ED program accepts both lower and upper case ASCII characters
asinput from the console. Single letter commands can be typed in either case.
The U command can be issued to cause ED to translate lower case
alphabetics to upper case as characters are filled to the memory buffer from
the console. Characters are echoed as typed without translation, however.
The -U command causes ED to revert to “no translation” mode. ED starts
with an assumed -U in effect.

w N -

SP

Figure 2. Memory Buffer Organization

Source File

First Line.

\'Appended . *
ToATLY N
— Lines{ \~

T N TN

Source

I) MP +
| L~ .
| Unprocessedl N

ext

1 Append

Memory Buffer

' First Line®

| * Buffered) |

AIEN AN
Text -
R \\

Ny ~ AN ~

Free

Nex
Write

TP

>

Temporary File

N First Line\

\ Processed "

L T
. \Text\\ \
T N

\ T

Free File

LNY \ \

| Space

Figure 3. Logical Organization of Memory Buffer

Memory Buffer

first
line

current
line CL

last
line

-===—=----<cr><1£>

———————=<cr><lf>

——————— A —mme——=<cr><1£f>

cp

———————-—<cr><1f>

81

nA{cr)* Append the next n unprocessed source lines from the source
file at SP to the end of the memory buffer at MP. Increment
SP and MP by n.

nW{cr) Write the first n lines of the memory buffer to the temporary
file free space. Shift the remaining lines n +1 through MP to
the top of the memory buffer. Increment TP by n.

E{cr) End the edit. Copy all buffered text to temporary file, and
copy all unprocessed source lines to the temporary file.
Rename files as described previously.

H{cr) Move to head of new file by performing automatic E
command. Temporary file becomes the new source file, the
memory bufferisemptied, and a new temporary fileis created
(equivalent to issuing an E command, followed by a
reinvocation of ED using x.y as the file to edit).

O{cr) Return to original file. The memory buffer is emptied, the
temporary fileis deleted, and the SP is returned to position 1
of the source file. The effects of the previous editing
commands are thus nullified.

Q{cr) Quit edit with no file alterations, return to CP/M.

There are a number of special cases to consider. If the integer n is omitted in
any ED command where an integer is allowed, then 1 is assumed. Thus, the
commands A and W append one line and write 1 line, respectively. In
addition, if a pound sign (#) is given in the place of n, then the integer 65535
is assumed (the largest value for n which is allowed). Since most reasonably
sized source files can be contained entirely in the memory buffer, the
command # A is often issued at the beginning of the edit to read the entire
source file to memory. Similarly, the command # W writes the entire buffer
to the temporary file. Two special forms of the A and W commands are
provided as a convenience. The command OA fills the current memory buffer
to at least half-full, while OW writes lines until the buffer is at least half
empty. It should also be noted that an errorisissued if the memory buffer size
is exceded. The operator may then enter any command (such as W) which
does not increase memory requirements. The remainder of any partial line
read during the overflow will be brought into memory on the next successful

append.

*{cr)represents the carriage-return key

82

Memory Buffer Organization

The memory buffer can be considered a sequence of source lines brought in
with the A command from a source file. The memory buffer hasan associated
(imaginary) character pointer (CP) which moves throughout the memory
* buffer under command of the operator. The memory buffer appears logically
asshown in Figure 3 where the dashes represent characters of the source line
of indefinite length, terminated by carriage return ({cr)) and line feed (1))
characters, and & represents the imaginary character pointer. Note that the
CPis always located ahead of the first character of the first line, behind the
last character of the last line, or between two characters. The current line CL
is the source line which contains the CP.

Memory Buffer Operation

Uponinitiation of ED, the memory bufferisempty (i.e., CPisboth ahead and
behind the first and last character). The operator may either append lines (A
command) from the source file, or enter the lines directly from the console
with the insert command

I{cr)

ED then accepts any number of input lines, where each line terminates with
a (cr) (the (If) is supplied automatically), until a control-z (denoted by 1z)

is typed by the operator. The CP is positioned after the last character

entered. The sequence

I{cr)

NOW IS THE(cr)
TIME FOR({cr)

ALL GOOD MEN(er)
Tz

leaves the memory buffer as shown below

NOW IS THE(cr)(If)
TIME FOR({cr){If)
ALL GOOD MEN({cr)(IfyA

Various commands can then be issued which manipulate the CP or display
source text in the vicinity of the CP. The commands shown below with a
preceding nindicate that an optional unsigned value can be specified. When
preceded by + , the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign (#) is replaced by 65535. If an
integer nis optional, but not supplied, then n =1is assumed. Finally, if a plus
sign is optional, but none is specified, then + is assumed.

83

+ B(cr)
* nC{cr)
+nD{cr)

+=nK(cr)

= nL({cr)

+=nT{cr)

+n{cr)

move CP to beginning of memory buffer if +,and to bottom
if -.

move CP by +n characters (toward front of buffer if +),
counting the {cr){If) as two distinct characters.

delete n characters ahead of CP if plus and behind CP if
minus.

kill (i.e. remove) *n lines of source text using CP as the
current reference. If CP is not at the beginning of the current
line when K is issued, then the characters before CP remain
if + is specified, while the characters after CP remain if - is
given in the command.

if n = 0, move CP to the beginning of the current line (if it is
notalready there). If n #0, first move the CP to the beginning
of the current line, and then move it to the beginning of the
line which is n lines down (if +) or up (if -). The CP will stop
at the top or bottom of the memory buffer if too large a value
is specified.

If n =0 then type the contents of the current line up to CP. If
n =1then type the contents of the current line from CP to the
end of the line. If n>1 then type the current line along with
n-1 lines which follow, if + isspecified. Similarly,if n>1 and
- is given, type the previous n lines, up to the CP. The break
key can be depressed to abort long type-outs.

equivalent to = nLT, which moves up or down and types a
single line.

Command Strings

Any number of commands can be typed contiguously (up to the capacity of
the CP/M console buffer), and are executed only after the (cr) is typed.
Thus, the operator may use the CP/M console command functions to
manipulate the input command.

Rubout

remove the last character

Control-X delete the entire line

_Control-C

re-initialize the CP/M System
84

Control-E return carriage for long lines without transmitting buffer
(max 128 chars)

Suppose the memory buffer contains the characters shown in the previous
section, with the CP following the last character of the buffer. The command
strings shown below produce the results shown to the right.

Command String Effect Resulting Memory Buffer

B2T{(cr) move to beginning of & NOW IS THE(cr)(If)
buffer and type 2 lines: TIME FOR/er)(If)
“NOW IS THE ALL GOOD MEN({ecr)(If)
TIME FOR”

5C0T{cr) move CP 5 charactersand NOW I AS THE (cr)(If)
type the beginning of the
line “NOW I”

2L-T{(cr) move two linesdown and NOW IS THE (cr)(If)
type previous line TIME FOR({cr)(If)
“TIME FOR” A ALL GOOD MEN({cr){If)

-L#K({cr) move up one line, delete ~ NOW IS THE(cr)(If) 4
65535 lines which follow

Kcr) insert two lines NOW IS THE((cr)(If)

TIME TO{cr) of text TIME TO(cr)}If)

INSERT(cr) INSERT(cr)<If)4

Tz

-2L#T(cr) move up two lines, and type NOW IS THE(cr)(If) 4
, 65535 lines ahead of CP TIME TO{cr)If)

“NOW IS THE” INSERT{cr)(If)

(er) move down one line NOW IS THE(cr)(lf)
and type one line TIME TO(cr){If) 4
“INSERT” INSERT (cr)({If)

Text Search and Alteration

ED also hasa command which locates strings within the memory buffer. The
command takes the form
nF cicq. .. ck {<$;>}

where c; through cy represent the characters to match followed by either a
(cr) or control -z* ED starts at the current position of CP and attempts to
match all k characters. The matchisattempted n times, and if successful, the
CP is moved directly after the character cy. If the n matches are not
successful, the CP is not moved from its initial position. Search strings can
include t1 (control-1), which is replaced by the pair of symbols {cr) (If).

The following commands illustrate the use of the F command:

Command String Effect Resulting Memory Buffer
B#T(cr) move to beginning ANOW IS THE (cr)(If)

and type entire TIME FOR({cr)(If)

buffer ALL GOOD MEN(cr)(lf)
FS T{cr) " find the end of NOW IS TAHE(cr){If)

the string “S T”

FItz0TT find the next “I” and type NOW IS THE(cr){If)
to the CP then type the TIAME FOR({cr)(If)
remainder of the current ALE. GOOD MEN {cr)If)
line: “TIME FOR”

An abbreviated form of the insert-command is also allowed, which is often
used in conjunction with the F command to make simple textual changes.
The form is:

Iciep...chtz or
Icjey. .. cpler)

where c¢; through c, are characters to insert. If the insertion string is
terminated by a 1z, the characters ¢, through c, are inserted directly
following the CP, and the CP is moved directly after character c,,. The action
is the same if the command is followed by a {cr) except that a {cr)(If) is
automatically inserted into the text following character c,. Consider the
following command sequences as examples of the F and I commands:

*The control-z is used if additional commands will be tvped following the 'z.

86

Command String Effect
BITHISIS 1 z(cr%

of the text

FTIME1z-4DIPLACEz{cr)

nsert “THIS IS”
at the beginning

Resulting Memory Buffer

THIS IS A NOW THE(cr)(lf)
TIME FOR (cr)(If)
ALL GOOD MEN({cr)(If

THIS IS NOW THE(cr)(If)

find “TIME” and delete ~ PLACE A FOR(cr)(If)
it; then insert “PLACE” ALL GOOD MEN{cr)(Ify

3F01z-3D5DICHANGES{cr) THIS IS NOW THE {cr){If)
find third occurrence of = PLACE FOR(cr)(If)
“0” (i.e. the second “0”in ALL CHANGES A (cr)(If)
GOOD), delete previous 3
characters; then insert

“CHANGES”
-8CISOURCE(cr)
move back 8 characters THIS IS NOW THE(cr)(lf)
and insert the line PLACE FOR(cr)(If)
“SOURCE(cr)(If)” ALL SOURCE(cr){If)
A CHANGES(cr)(If)

ED also provides a single command which combines the F and I commands
to perform simple string substitutions. The command takes the form

n SC]CQ. . .CkTZdldg. . 'dm {<$;>}
and has exactly the same effect as applying the command string

Fepey. .. lz-kDIdd, .. . dp, { <$;>}

a total of n times. That is, ED searches the memory buffer starting at the
current position of CP and successively substitutes the second string for the

first string until the end of buffer, or until the substitution has been
performed n times.

As a convenience, a command similar to F is provided by ED which
automatically appends and writes lines as the search proceeds. The form is

nNecjcy... ¢ {<$;>}

87

which searches the entire source file for the nth occurrence of the string c,cz
... ¢k (recall that F fails if the string cannot be found in the current buffer).
The operation of the N command is precisely the same as F except in the case
that the string cannot be found within the current memory buffer. In this
case, the entire memory contentsis written (i.e.,an automatic # W isissued).
Input lines are then read until the buffer is at least half full, or the entire
source file is exhausted. The search continues in this manner until the string
has been found n times, or until the source file has been completely
transferred to the temporary file.

A final line editing function, called the juxtaposition command takes the
form

ndcjcg...cxtz didy...dp'z eje;...¢eq 3<$Z>€

with the following action applied n times to the memory buffer: search from
the current CP for the next occurrence of thestringc;cs. . . ¢. If found, insert
thestringd,.d, . . .,d;,, and move CP to follow d,,,. Then delete all characters
following CP up to (but not including) the string ey, ey, . . . ey, leaving CP
directly after dp,,. If e}, e, . . . 5 cannot be found, then no deletion is made. If
the current line is

ANOW IS THE TIME(cr){If)
Then the command

JW 1zZWHAT1zl (cr)

Results in
NOW WHAT CAP {er){If)

(Recall that 'l represents the pair {(cr){If) in search and substitution
strings).

It should be noted that the number of characters allowed by ED in the F, S,
N, and J commands is limited to 100 symbols.

Source Libraries

ED also allows the inclusion of source libraries during the editing process
with the R command. The form of this command is

88

Rfify..fytz or
R fify. . f{cr)

wherefifs . . f;, is the name of a source file on the disk with an assumed filetype
of ‘LIB! ED reads the specified file, and places the characters into the
memory buffer after CP, in a manner similar to the I command. Thus, if the
command

RMACRO({cr)

is issued by the operator, ED reads from the file MACRO.LIB until the
end-of-file,and automatically inserts the charactersinto the memory buffer.

Repetitive Command Execution

The macro command M allows the ED user to group ED commands together
for repeated evaluation. The M command takes the form:

nM cc,. -_Ck{<cr)}

Tz

where c;cs. . . ¢y represent a string of ED commands, not including another
Mcommand. ED executes the command string n timesifn)1.Ifn=0o0r 1, the
command string is executed repetitively until an error condition is
encountered (e.g., the end of the memory buffer is reached with an F
command).

As an example, the following macro changes all occurrences of GAMMA to
DELTA within the current buffer, and types each line which is changed:

MFGAMMA1z-5DIDELTAtz0TT(cr)
or equivalently

MSGAMMAT1zDELTA1z0TT(cr)

ED Error Conditions

. error conditions, ED prints the last character read before the error, along
with an error indicator:

? unrecognized command

89

> memory buffer full (use one of the commands D, K, N, S, or
W to remove characters), F, N, or S strings too long.

cannot apply command the number of times specified (e.g.,in
F command)

0 cannot open LIB file in R command

Cyeclic redundancy check (CRC) information is written with each output
record under CP/M in order to detect errors on subsequent read operations.
If a CRC error is detected, CP/M will type

PERM ERR DISK d

where d is the currently selected drive (A, B, .. .). The operator can choose
to ignore the error by typing any character at the console (in this case, the
memory buffer data should be examined to see if it was incorrectly read), or
the user can reset the system and reclaim the backup file, if it exists. The file
can be reclaimed by first typing the contents of the BAK file to ensure that
it contains the proper information:

TYPE x.BAK(cr)
where x is the file being edited. Then remove the primary file:
ERA x.y(cr)
and rename the BAK file:
REN x.y=x.BAK({cr)

The file can then be re-edited, starting with the previous version.

Summary of Control Characters

The following table summarizes the Control characters and commands
available in ED:

Control Character Function

fc system reboot
fe physical {cr){If) (not actually entered in
command)

80

L logical tab (cols 1, 8, 15, . . .)

1! logical {cr)(If) in search and substitute strings
Tx line delete
Tz string terminator

rubout character delete

break discontinue command (e.g., stop typing)

Summary of ED Commands

Command Function
nA append lines
+B begin bottom of buffer
=nC move character positions
+=nD delete characters
E end edit and close files (normal end)
nF find string
H end edit, close and reopen files
I insert characters
nd place strings in juxtaposition
+nK - kill lines
*nL move down/up lines
nM macro definition
nN find next occurrence with autoscan

91

0O return to original file

+nP move and print pages
Q quit with no file changes
R read library. file
nS substitute strings
+nT type lines
+U tlsnslate lower to upper case if U, no translation if
nW write lines
nZ sleep
*n{cr) move and type (£ nLT)

ED Text Editing Commands

The ED context editor contains a number of commands which enhance its
usefulnessin text editing. The improvements are found in the addition of line
numbers, free space interrogation, and improved error reporting.

The context editorissued with CP/M produces absolute line number prefixes
when the “V” (Verify Line Numbers) command is issued. Following the V
command, the line number is displayed ahead of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535. If the
memory buffer is empty, or if the current line is at the end of the memory
buffer, then nnnnn appears as 5 blanks.

The user may reference an absolute line number by preceding any command
by a number followed by a colon, in the same format as the line number
display. In this case, the ED program moves the current line reference to the
absolute line number, if the line exists in the current memory buffer. Thus
the command

92

345:T
is interpreted as “move to absolute line 345, and type the line’ Note that
absolute line numbers are produced only during the editing process, and are

not recorded with the file. In particular, the line numbers will change
following a deleted or expanded section of text.

The user may also reference an absolute line number as a backward or
forward distance from the current line by preceding the absolute line number
by a colon. Thus, the command

:400T

isinterpreted as “type from the current line number through the line whose
absolute number is 400" Combining the two line reference forms, the
command

345::400T

for example, is interpreted as “move to absolute line 345, then type through
absolute line 400" Note that absolute line references of this sort can precede
any of the standard ED commands. '

A special case of the V command, “0V’’ prints the memory buffer statistics
in the form:

free/total

where “free” is the number of free bytes in the memory buffer (in decimal),
and “total” is the size of the memory buffer.

ED also includes a “block move” facility implemented through the “X”
(Xfer) command. The form

nX
transfers the next n lines from the current line to a temporary file called
X5$$$388.LIB

which is active only during the editing process. In general, the user can
reposition the current line reference to any portion of the source file and
transfer lines to the temporary file. The transferred lines accumulate one
after another in this file, and can be retrieved by simply typing:

93

R

which is the trivial case of the library read command. In this case, the entire
transferred set of lines is read into the memory buffer. Note that the X
command does not remove the transferred lines from the memory buffer,
although a K command can be used directly after the X, and the R command
does not empty the transferred line file. That is, given that a set of lines has
been transferred with the X command, they can be re-read any number of
times back into the source file. The command

0X
is provided, however, to empty the transferred line file.

Note that upon normal completion of the ED program through Q or E, the
temporary LIB fileis removed. If ED is aborted through Control-C, the LIB
file will exist if lines have been transferred, but will generally be empty (a
subsequent ED invocation will erase the temporary file).

Due to common typographical errors, ED requires several potentially
disastrous commands to be typed as single letters, rather than in composite
commands. The commands

E (end), H (head), O (original), Q (quit)
must be typed as single letter commands.
ED also prints error messages in the form
BREAK “x” AT ¢

where xis theerror character, and cis the command where the error occurred.

94

CP/M ASSEMBLER (ASM)
USER'’S GUIDE

COPYRIGHT (c) 1976, 1978
DIGITAL RESEARCH

Copyright (c) 1976, 1977, 1978 by Digital Research. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a re-
trieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written per-
mission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties
with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication
and to make changes from time to time in the content
hereof without obligation of Digital Research to notify
any person of such revision or changes.

Table of Contents

SECTION IV

S T o

INTRODUCTION
PROGRAM FORMAT
FORMING THE OPERAND
ASSEMBLER DIRECTIVES
OPERATION CODES
ERROR MESSAGES

A SAMPLE SESSION

95

Page
97
99

100
105
110
114
116

Introduction

The CP/M assembler reads assembly language source files from the diskette,
and produces 8080 machine language in Intel hex format. The CP/M
assembler is initiated by typing

ASM filename
or
ASM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the
name

filename.ASM

which contains an 8080 assembly language source file. The first and second
forms shown above differ only in that the second form allows parameters to
be passed to the assembler to control source file access and hex and print file
destinations.

In either case, the CP/M assembler loads, and prints the message
CP/M ASSEMBLER VER n.n

where n.nis the current version number. In the case of the first command, the
assembler reads the source file with assumed file type “ASM” and creates two
output files.

filename. HEX
and
filename.PRN

The “HEX” file contains the machine code corresponding to the original
program in Intel hex format, and the “PRN” file contains an annotated
listingshowing generated machine code, error flags, and source lines. Iferrors
occur during translation, they will be listed in the PRN file as well as at the
console.

The second command form can be used to redirect input and output files
from their defaults. In this case, the “parms” portion of the command is a
three letter group which specifies the origin of the source file, the destination
of the hex file, and the destination of the print file. The form is

filename.plp2p3

97

where pl, p2, and p3 are single letters

pl: AB, .., Y designates the disk name which contains
the source file

p2: AB, .., Y designates the disk name which will receive

the hex file
Z skips the generation of the hex file
p3: AB, .., Y designates the disk name which will receive
the print file
X places the listing at the console
Z skips generation of the print file
Thus, the command
ASM X.AAA

indicates that the source file (X.ASM) is to be taken from disk A, and that
the hex (X.HEX) and the print (X.PRN) files are to be created also on disk
A. This form of the command is implied if the assembler is run from disk A.
That is, given that the operator is currently addressing disk A, the above
command is equivalent to

ASM X
The command
ASM X.ABX

indicates that the source file is to be taken from disk A, the hex file is placed
on disk B, and the listing file is to be sent to the console. The command

ASM X.BZZ

takes the source file from disk B, and skips the generation of the hex and print
files. (This command is useful for fast execution of the assembler to check
program syntax.)

The source program format is compatible with both the Intel 8080 assembler
(macrosarenot currently implemented in the CP/M assembler, however), as
well as the Processor Technology Software Package # 1 assembler. That is,
the CP/M assembler accepts source programs written in either format.
There are certain extensions in the CP/M assembler which make it
somewhat easier to use. These extensions are described below.

98

Program Format

An assembly language program acceptable asinput to the assembler consists
of a sequence of statements of the form

line# label operation operand ;comment

where any or all of the fields may be present in a particular instance. Each
assembly language statement is terminated with a carriage return and line
feed (the line feed is inserted automatically by the ED program), or with the
character “!” which is treated as an end-of-line by the assembler (thus,
multiple assembly language statements can be written on the same physical
line if separated by exclamation symbols).

The line# is an optional decimal integer value representing the source
program line number, which is allowed on any source line to maintain
compatibility with the Processor Technology format. In general, these line
numbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
or
identifier:

.and is optional, except where noted in particular statement types. The
identifier is a sequence of alphanumeric characters (alphabetics and
numbers), where the first character is alphabetic. Identifiers can be freely
used by the programmer to label elements such as program steps and
assembler directives, but cannot exceed 16 characters in length. All
characters are significant in an identifier, except for the embedded dollar
symbol ($) which can be used toimprove readability of the name. Further, all
lower case alphabetics are treated as if they were upper case. Note that the
“.” following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid
instances of labels

X Xy long$name
X: yx1: longer$named$data:
X1Y2 X1x2 x234%5678$3012$3456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8080 machine operation code. The pseudo operations and
machine operation codes are described below.

99

The operand field of the statement, in general, contains an expression formed
out of constants and labels, along with arithmetic and logical operations on
these elements. Again, the complete details of properly formed expressions
are given below.

The comment field contains arbitrary characters following the “;” symbol
until the next real or logical end-of-line. These characters are read, listed,
and otherwise ignored by the assembler. In order to maintain compatibility
with the Processor Technology assembler, the CP/M assembleér also treats
statements which begin with a “*” in column one as comment statements,
which are listed and ignored in the assembly process. Note that the Processor
Technology assembler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. This causes an
ambiguous situation when attempting to be compatible with Intel’s
language, since arbitrary expressions are allowed in this case. Hence,
programs which use this side effect to introduce comments, must be edited
to place a “;” before these fields in order to assemble correctly.

The assembly language program is formulated as a sequence of statements
of the above form, terminated optionally by an END statement. All
statements following the END are ignored by the assembler.

Forming the Operand

In order to completely describe the operation codes and pseudo operations,
it is necessary to first present the form of the operand field, since it is used in
nearly all statements. Expressions in the operand field consist of simple
operands (labels, constants, and reserved words), combined in properly
formed subexpressions by arithmetic and logical operators: The expression
computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a 16-bit value during the assembly. Further, the
number of significant digits in the result must not exceed the intended use.
That is, if an expression is to be used in a byte move immediate instruction,
then the most significant 8 bits of the expression must be zero. The
restrictions on the expression significance are given with the individual
instructions.

Labels

As discussed above, a label is an identifier which occurs on a particular
statement. In general, the label is given a value determined by the type of
statement which it precedes. If the label occurs on a statement which
generates machine code or reserves memory space (e.g, a MOV instruction,
or a DS pseudo operation), then the label is given the value of the program
address which it labels. If the label precedes an EQU or SET, then the label

100

is given the value which results from evaluating the operand field. Except for
the SET statement, an identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the
assembler. This value can then be combined with other operands and
operators to form the operand field for a particular instruction.

Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called
the radix of the constant, is denoted by a trailing radix indicator. The radix
indicators are

binary constant (base 2)

octal constant (base 8)

octal constant (base 8)

decimal constant (base 10)
hexadecimal constant (base 16)

ToOoO0OW

Qisan alternate radix indicator for octal numbers since the letter O is easily
confused with the digit 0. Any numeric constant which does not terminate
with a radix indicator is assumed to be a decimal constant.

A constant is thus composed as a sequence of digits, followed by an optional
radix indicator, where the digits are in the appropriate range for the radix.
That is binary constants must be composed of 0 and 1 digits, octal constants
can contain digitsin the range 0 - 7, while decimal constants contain decimal
digits. Hexadecimal constants contain decimal digits as well as hexadecimal
digits A (10D), B (11D),C (12D), D (13D), E (14D), and F (15D). Note that the
leading digit of a hexadecimal constant must be a decimal digit in order to
avoid confusing a hexadecimal constant with an identifier (a leading 0 will
always suffice). A constant composed in this manner must evaluate to a
binary number which can be contained within a 16-bit counter, otherwise it
is truncated on the right by the assembler. Similar to identifiers, imbedded
“$” are allowed within constants to improve their readability. Finally, the
radix indicator is translated to upper case if a lower case letter is
encountered. The following are all valid instances of numeric constants

1234 1234D 1100B 1111$0000$1111$0000B
1234H OFFEH 33770 33$77$22Q
33770 Ofe3h 1234d Offffh

101

Reserved Words

There are several reserved character sequences which have predefined
meaningsin the operand field of a statement. The names of 8080 registers are
given below, which, when encountered, produce the value shown to the right.

LRrmmoow>
OOV e WN = O

o
wn
=

(Again, lower case names have the same values as their upper case
equivalents.) Machine instructions can also be used in the operand field, and
evaluate to their internal codes. In the case of instructions which require
operands, where the specific operand becomes a part of the binary bit pattern
of the instruction (e.g, MOV A,B), the value of the instruction (in this case
MOV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g, MOV produces 40H).

When the symbol “$” occurs in the operand field (not imbedded within
identifiers and numeric constants) its value becomes the address of the next
instruction to generate, not including the instruction contained within the
current logical line.

String Constants

String constants represent sequences of ASCII characters, and are
represented by enclosing the characters within apostrophe symbols (’). All
strings must be fully contained within the current physical line (thus
allowing “!” symbols within strings), and must not exceed 64 characters in
length. The apostrophe character itself can be included within a string by
representingit asa double apostrophe (the two keystrokes ”’), which becomes
a single apostrophe when read by the assembler. In most cases, the string
lengthisrestricted to either one or two characters (the DB pseudo operation
is an exception), in which case the string becomes an 8 or 16 bit value,
respectively. Two character strings become a 16-bit constant, with the
second character as the low order byte, and the first character as the high
order byte.

102

The value of a character is its corresponding ASCII code. There is no case
translation within strings, and thus both upper and lower case characters
can be represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

!A’ ’AB’ ’ab) ’c’
9 ’a”7 939 327
'Walla Walla Wash.’

'She said "Hello” to me.’
'T said "Hello” to her.’

Arithmetic and Logical Operators

The operands described above can be combined in normal algebraic notation
using any combination of properly formed operands, operators, and
parenthesized expressions. The operators recognized in the operand field are

a+b unsigned arithmetic sum of a and b

a-b unsigned arithmetic difference between a and b
+b unary plus (produces b)
-b unary minus (identical to 0 - b)

a*'b unsigned magnitude multiplication of a and b

a’b unsigned magnitude division of a by b

aMODb remainder aftera /b

NOTb logicalinverse of b (all0’s become 1’s, I’'sbecome 0’s),

where b is considered a 16-bit value
aANDbD bit-by-bit logical and of a and b

aORb bit-by-bit logical or of a and b

a XORb bit-by-bit logical exclusive or of a and b

aSHLb the value which results from shifting a to the left by
an amount b, with zero fill

aSHRb the value which results from shifting a to the right

by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric constants,
reserved words, and one or two character strings), or fully enclosed
parenthesized subexpressions such as

10+ 20 10h +37Q L1/3 (L2+4)SHR 3
(’a’ and 5fh) + 'O’ ('B’+B) OR (PSW + M)
(1+(2+c)) shr (A-(B+1))

Note that all computations are performed at assembly time as 16-bit
unsigned operations. Thus, -1 is computed as 0-1 which results in the value
Offfth (i.e., all 1’s). The resulting expression must fit the operation code in
which it is used. If, for example, the expression is used in a ADI (add

103

immediate) instruction, then the high order eight bits of the expression must
be zero. As a result, the operation “ADI -1” produces an error message (-1
becomes Offffh which cannot be represented as an 8 bit value), while “ADI
(-1) AND OFFH” is accepted by the assembler since the “AND” operation
zeroes the high order bits of the expression.

Precedence of Operators

As a convenience to the programmer, ASM assumes that operators have a
relative precedence of application which allows the programmer to write
expressions without nested levels of parentheses. The resulting expression
has assumed parentheses which are defined by the relative precedence. The
order of application of operators in unparenthesized expressions is listed
below. Operators listed first have highest precedence (they are applied first
in an unparenthesized expression), while operators listed last have lowest
precedence. Operatorslisted on the same line have equal precedence, and are
applied from left to right as they are encountered in an expression

* / MOD SHL SHR
-+
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the
assembler as the fully parenthesized expressions shown to the right below

a*b+c (a*b) +c¢
a+b*c a+(b*c)
aMODb *c¢SHLd ((aMODb) *¢c) SHLd

aORbANDNOTc + dSHLe aOR (bAND (NOT (c + (d SHL e))))

Balanced parenthesized.subexpressions can always be used to override the
assumed parentheses, and thus the last expression above could be rewritten
to force application of operators in a different order as

(aORb) AND (NOT<c) + dSHL e
resulting in the assumed parentheses

(a OR b) AND ((NOT ¢c) + (d SHL e))

- 104

Note that an unparenthesized expression is well-formed only if the
expression which results from inserting the assumed parentheses is
well-formed.

Assembler Directives

Assembler directives are used to set labels to specific values during the
assembly, perform conditional assembly, define storage areas, and specify
starting addresses in the program. Each assembler directive is denoted by a
“pseudo operation” which appears in the operation field of the line. The
acceptable pseudo operations are

ORG set the program or data origin
END end program, optional start address
EQU numeric “equate”

SET numeric “set”

IF begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

DwW define data words

DS define data storage area

The ORG Directive

The ORG statement takes the form
label ORG expression

where “label” is an optional program label, and expression is a 16-bit
expression, consisting of operands which are defined previous to the ORG
statement. The assembler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements
within a particular program, and there are no checks to ensure that the
programmer is not defining overlapping memory areas. Note that most
programs written for the CP/M system begin with an ORG statement of the
form

ORG 100H

which causes machine code generation to begin at the base of the CP/M
transient program area. If a label is specified in the ORG statement, then the
label is given the value of the expression (this label can then be used in the
operand field of other statements to represent this expression).

105

The END Directive

The END statement is optional in an assembly language program, but if it
is present it must be the last statement (all subsequent statements are
ignored in the assembly). The two forms of the END directive are

label END
label END expression

where the label is again optional. If the first form is used, the assembly
process stops, and the default starting address of the program is taken as
0000. Otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code “hex” file which results from the assembly).
Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H (beginning of the transient
program area).

The EQU Directive

The EQU (equate) statement is used to set up synonyms for particular
numeric values. The form is

label EQU expression

where the label must be present, and must not label any other statement.
The assembler evaluates the expression, and assigns this value to the
identifier given in the label field. The identifier is usually a name which
describes the value in a more human-oriented manner. Further, this name is
used throughout the program to “parameterize” certain functions. Suppose
forexample, that data received from a Teletype appears on a particularinput
port, and data is sent to the Teletype through the next output port in
sequence. The series of equate statements could be used to define these ports
for a particular hardware environment

" TTYBASE EQU 10H ;BASE PORT NUMBER FOR TTY
TTYIN EQU TTYBASE ;TTY DATAIN
TTYOUT EQU TTYBASE+1;TTY DATA OUT

At a later point in the program, the statements which access the Teletype
could appear as

106

IN TTYIN ;READ TTY DATA TO REG - A
6UT TTYOUT ;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute I/0 ports had been
used. Further, if the hardware environment is redefined to start the Teletype
communications ports at 7FH instead of 10H, the first statement need only
be changed to

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other
statements.

The SET Directive

The SET statement is similar to the EQU, taking the form
label SET expression

except that the label can occur on other SET statements within the program.
The expression is evaluated and becomes the current value associated with
the label. Thus, the EQU statement defines a label with a single value, while
the SET statement defines a value which is valid from the current SET
statement to the point where the label occurs on the next SET statement.
The use of the SET is similar to the EQU statement, but is used most often
in controlling conditional assembly.

The IF and ENDIF Directives

The IF and ENDIF statements define a range of assembly language
statements which are to be included or excluded during the assembly
process. The form is

IF expression
statement #1
statement #2

stazément#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the
expression following the IF (all operands in the expression must be defined
ahead of the IF statement). If the expression evaluates to a non-zero value,
then statement #1 through statement#n are assembled; if the expression

107

evaluates to zero, then the statements are listed but not assembled.
Conditional assembly is often used to write a single “generic” program which
includes a number of possible run-time environments, with only a few
specific portions of the program selected for any particular assembly. The
following program segments for example, might be part of a program which
communicates with either a Teletype or a CRT console (but not both) by
selecting a particular value for TTY before the assembly begins

TRUE EQU OFFFFH ;DEFINE VALUE OF TRUE
FALSE EQU NOT TRUE ;DEFINE VALUE OF FALSE

b

TTY EQU TRUE ;TRUE IF TTY, FALSE IF CRT
"I‘TYBASE EQU 10H ;BASE OF TTY 170 PORTS
CRTBASEEQU 20H ;BASE OF CRT 1/0 PORTS
IF TTY ;ASSEMBLE RELATIVE TO
TTYBASE

CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT EQU TTYBASE+1;CONSOLE OUTPUT
ENDIF

IF NOTTTY ;ASSEMBLE RELATIVE TO
CRTBASE
CONIN EQU CRTBASE ;CONSOLE INPUT
CONOUT EQU CRTBASE+1;CONSOLE OUTPUT
ENDIF
IN CONIN ;READ CONSOLE DATA

OUT CONOUT ;WRITE CONSOLE DATA

In this case, the program would assemble for an environment where a
Teletypeis connected, based at port 10H. The statement defining TTY could
be changed to

TTY EQU FALSE

and, in this case, the program would assemble for a CRT based at port 20H.

The DB Directive

The DB directive allows the programmer to define initialized storage areas in
single precision (byte) format. The statement form is

label DB e#l,e#2, ..,e#n
108

where e#1 through e#n are either expressions which evaluate to 8-bit values
(the high order eight bits must be zero), or are ASCII strings of length no greater
than 64 characters. There is no practical restriction on the number of expres-
sions included on a single source line. The expressions are evaluated and placed
sequentially into the machine code file following the last program address
generated by the assembiler. String characters are similarly placed into memory
starting with the first character and ending with the last character. Strings of
length greater than two characters cannot be used as operands in more
complicated expressions (i.e., they must stand alone between the commas).
Note that ASCII characters are always placed in memory with the parity bit
reset (0). Further, recall that there is no translation from lower to upper case
within strings. The optional label can be used to reference the data area
throughout the remainder of the program. Examples of valid DB statements are

data: DB 01,2345
DB data and 0ffh,5,377Q,1 +2+ 3 +4
signon: DB ’please type your name’,cr,lf,0
DB °’AB’SHRS,’'C’,’DE’ AND 7FH

The DW Directive

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label DW e#l e#2,..,e#n

where e#1 through e#n are expressions which evaluate to 16-bit results.
Note that ASCII strings of length one or two characters are allowed, but
strings longer than two characters disallowed. In all cases, the data storage
is consistent with the 8080 processor: the least significant byte of the
expression is stored first in memory, followed by the most significant byte.
Examples are

doub: DW Offefh,doub + 4,signon-$,255 + 255
DW 'a’, 5, ’ab’, 'CD’, 6 shl 8 or 11b

The DS Directive

The DS statement is used to reserve an area of uninitialized memory, and
takes the form

label DS expression

where the label is optional. The assembler begins subsequent code
generation after the area reserved by the DS. Thus, the DS statement given
above has exactly the same effect as the statement

109

label: EQU $;LABEL VALUE IS CURRENT CODE LOCATION
ORG § + expression ;MOVE PAST RESERVED AREA

Operation Codes

Assembly language operation codes form the principal part of assembly
language programs, and form the operation field of the instruction. In
general, ASM accepts all the standard mnemonics for the Intel 8080
microcomputer, which are given in detail in the Intel manual 8080 Assembly
Language Programming Manual. Labels are optional on each input line
and, ifincluded, take the value of theinstruction addressimmediately before
the instruction is issued. The individual operators are listed briefly in the
following sections for completeness, although it isunderstood that the Intel
manuals should be referenced for exact operator details. In each case,

e3 represents a 3-bit value in the range of 0-7 which can be
one of the predefined registers A, B,C, D, E, H, L, M, SP,
or PSW.

e8 represents an 8-bit value in the range 0-255

el6 represents a 16-bit value in the range 0-65535

which can themselves be formed from an arbitrary combination of operands
and operators. Insome cases, the operands are restricted to particular values
within the allowable range, such as the PUSH instruction. These cases will
be noted as they are encountered.

In the sections which follow, each operation code is listed in its most general
form, along with a specific example, with a short explanation and special
restrictions.

Jumps, Calls and Returns

The Jump, Call and Return instructions allow several different forms which
test the condition flags set in the 8080 microcomputer CPU. The forms are

JMB el6 JMP L1 Jump unconditionally to label
JNZ elé JMP L2 Jump on non zero condition to label
JZ el6 JMP 100H Jump on zero condition to label
JNC el6 JNC L1+4 Jump no carry to label
JC el6 JC L3 Jump on carry to label
JPO elé JPO §$+8 Jump on parity odd to label

- JPE elé JPE L4 Jump on even parity to label

Jp el6 JP GAMMA Jump on positive result to label
110

JM el6 JM al
CALL el6 CALL 81
CNZ el6 CNZ Ss2
CZ el6 CZ 100H
CNC el6 CNC S1+4
CC el6 CC S3
CPO el6 CPO $+8
CPE el6 CPE S4
CP el6 CP GAMMA
CM el6 CM Dbi$c2
RST e3 RST 0
RET

RNZ

RZ

RNC

RC

RPO

RPE

RP -

RM

Immediate Operand Instructions

Jump on minus to label -

Call subroutine unconditionally
Call subroutine if non zero flag
Call subroutine on zero flag
Call subroutine if no carry set
Call subroutine if carry set

Call subroutine if parity odd
Call subroutine if parity even
Call subroutine if positive result
Call subroutine if minus flag

Programmed “restart,’ equivalent to
CALL 8*e3, except one byte call

Return from subroutine
Return if non zero flag set
Return if zero flag set
Return if no carry

Return if carry flag set
Return if parity is odd
Return if parity is even
Return if positive result
Return if minus flag is set

Several instructions are available which load single or double precision
registers, or single precision memory cells, with constant values, along with
instructions which perform immediate arithmetic or logical operations on

the accumulator (register A).

MVIe3,e8 MVI B255

ADI €8 ADI 1

ACIe8 ACI OFFH
.SUT 8 SUI L+3
SBIe8 SBI LAND1B
ANI e8 ANI $ AND 7FH
XRI e8 XRI 1111$0000B
ORI e8 LAND1+1

ORI

Move immediate data to register A,
B,C,D,E,H, L, or M (memory)
Add immediate operand to A with-
out carry

Add immediate operand to A with
carry

Subtract from A without borrow
(carry)

Subtract from A with borrow (carry)
Logical “and” A with immediate
data

“Exclusive or” A with immediate
data

Logical “or” A with immediate data

111

CPI e8 CPI ’a’

LXIe3,e16 LXI B,100H

Compare A with immediate data
(same as SUI except register A not
changed)

Load extendedimmediate toregister
pair (e3 must be equivalent to
B,D,H, or SP)

Increment and Decrement Instructions

Instructions are provided in the 8080 repertoire for incrementing or
decrementing single and double precision registers. The instructions are

INR E

INR e3
DCR e3 DCR A
INX e3 INX SP
DCX e3

DCX B

Data Movement Instructions

Single precision increment register
(e3 producesoneof A,B,C,D,E, H,
L, M)

Single precision decrement register
(e3 produces one of A,B,C,D,E, H,
L, M)

Double precision increment register
pair (e3 must be equivalent to
B,D,H, or SP)

Double precision decrement register
pair (e3 must be equivalent to
B,D,H, or SP)

Instructions which move data from memory to the CPU and from CPU to

memory are given below

MOV e3,e3 MOV AB
LDAX e3 LDAX B
STAX e3 STAX D
LHLD el6 LHLD 11
SHLD el6 SHLD L5+x

Move data to leftmost element
from rightmost element (e3
produces one of A, B,C,D,E, H,
L,or M). MOV M,M isdisallowed
Load register A from computed
address (e3 must produce either B
or D)

Store register A to computed
address (e3 must produceeither B
or D)

Load HL direct from location e16
(double precision load to H and
L)

Store HL direct to location el6
(double precision store from H
and L to memory)

112

LDA el6
STA el6

POP e3

PUSH e3

IN e8
OUT 8
XTHL
PCHL
SPHL
XCHG

LDA Gamma
STA X3-5

POP PSW

PUSHB

IN 0
OUT 255

Arithmetic Logic Unit Operations

Load register A from address el6
Store register A into memory at
el6

Load register pair from stack, set
SP (e3 must produce one of B, D,
H, or PSW)

Store register pair into stack, set
SP (e3 must produce one of B, D,
H, or PSW)

Load register A with data from
port e8

Send data from register A to port
e8

Exchange data from top of stack
with HL

Fill program counter with data
from HL

Fill stack pointer with data from
HL

Exchange DE pair with HL pair

Instructions which act upon the single precision accumulator to perform
arithmetic and logic operations are

ADD e3

ADC e3
SUB e3
SBB e3
ANA' e3

XRA e3.
ORA 3

A CMP e3
- DAA

CMA

ADD B

ADC L
SUB H
SBB 2

ANA 1+1

XRA A
ORA B

CMP H

113

Add register given by e3 to ac-
cumulator without carry (e3
must produceoneof A,B,C,D,E,
H,orL)

Add register to A with carry, e3 as
above

Subtract reg e3 from A without
carry, e3 is defined as above
Subtract register e3 from A with
carry, e3 defined as above
Logical “and” reg with A, e3 as

“above

“Exclusive or” with A,e3asabove
Logical “or” with A, e3 defined as
above)
Compare register with A, e3 as
above '
Decimal adjust register A based

- upon last arithmetic logic unit

operation
Complement the bitsin register A

STC
CMC
RLC

RRC

RAL
RAR

DAD e3

Set the carry flag to 1
Complement the carry flag
Rotate bits left, (re)set carry as a
side effect (high order A bit
becomes carry)

Rotate bits right, (re)set carry as
side effect (low order A bit
becomes carry)

Rotate carry/A register to left
(carry is involved in the rotate)
Rotate carry/A register to right
(carry is involved in the rotate)

DAD B Double precision add register
pair e3 to HL (e3 must produce B,
D, H, or SP)

Control Instructions

The four remaining instructions are categorized as controlinstructions, and

are listed below

HLT Halt the 8080 processor

DI Disable the interrupt system
EI Enable the interrupt system
NOP No operation

Error Messages

When errors occur within the assembly language program, they are listed as
single character flags in the leftmost position of the source listing. The line
in error is also echoed at the console so that the source listing need not be
examined to determine if errors are present. The error codes are

D

Data error: element in data statement cannot be
placed in the specified data area

Expression error: expression is ill-formed and
cannot be computed at assembly time

Label error: label cannot appear in this context
(may be duplicate label)

Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version

114

0] Overflow: expression is too complicated (i.e., too
many pending operators) to compute; simplify it

P Phase error: label does not have the same value on
two subsequent passes through the program

R Register error: the value specified as a register is not
compatible with the operation code

A% Value error: operand encountered in expression is
improperly formed

Several error messages are printed which are due to terminal error conditions

NO SOURCE FILE The file specified in the ASM command does
PRESENT not exist on disk

NO DIRECTORY SPACE Thedisk directory is full; erase files which are
not needed, and retry

SOURCE FILE NAME Improperly formed ASM file name (e.g., it is
ERROR specified with “?” fields)

SOURCE FILE READ Source file cannot be read properly by the
ERROR assembler, execute a TYPE to determine the
point of error

OUTPUT FILE WRITE Output files cannot be written properly, most
ERROR likely cause is a full disk; erase and retry

CANNOT CLOSE FILE Output file cannot be closed, check to see if
disk is write protected

115

A Sample Session

The following session shows interaction with the assembler and debugger in the
development of a simple assembly language program.

ASN SORT Assemble SORT. ASM

CPs/N ASSEMBLER - YVER 1 B

815C next free address

003H USE FACUTOR % of table used 00 to FF (hexadecimal)

END OF ASSEMBLY

DIR SORT =«
SORT ASH source file
SORT BAK backup from last edit
SORT PRN print file (contains tab characters)
SORT HEX machine code file
AXTYPE SORT P&HN
Source line
N

machine code location *

6!90‘-’//

generated machine code
8180 214601+ SORT
0103 3601
0165 214761
0188 3600

Q19A 7E Conp.
816B FEBY-
816D D21981

8110 214681
8113 ?EB7C20001

8118 FF
' truncated

8119 SF16802148CONT.
8121 4E?792346
8125 23

)

8126 965778239

N

8128 DAlFo1

BI12E B2CAIFOI

8132 567028SE
8136 7128722873

2130 21460134

SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE -
START AT THE BEGINNING CF THE TRANSIENT PROGRAR bk
ORG 160H

Lxl H, SV +ADDKESS SUITCH TOGGLE

LA n, 1 LSET TO | FOR FIKRST ITERATION
Lyl H. 1 +ADDRESS 1WDEX

LI M. 8 1 =0

COMPARE 1 WlTn AKRAY SI12E

nov AN +A REGISTER = 1
Ccril N-1 ,CY SET IF 1 ¢ (N-1)
JHNC CONT +CONTINUE IF 1 <= (N-2)

END OF ONE PASS THROUGH DATA
LX1 H, SV s CHECK FOR ZEKRO SWITCHES
nOV A, M! DRA A' JUNZ SORT ,END OF SORT IF Su=8

RST 7 ,GO TO THE DEBUGGER INSTEAD NF RE:

CONTINUE THIS PHuSS

ADDRESSING 1, SO LOAD AVCI) INTD REGISTERS

MOY E.A! HMVI D, 0Ot LX1 H.AY! DAD D' DARD D

MOV C.M! MOV A, C' INX H' MOV B.N

LOV ORDER BYTE IN A AND C., HIGH ORDER BYTE IN B

MOY H AND L TQ WDDRESS AV(1+1l)
1HX H

COMPARE VALUE VITH REGS CONTAINING AV(I)
SUB M! MOV D.A!' MOV A, B! INX H' SBB A +SUBTRACT

BORROV SE&T 1F AVC(1el) > AVII)
JC ' INCI +SKIP IF IN PKOPER ORDER

CHECK FOr EQUAL VALUES
ORA D! JZ THCL .SKIP IF AYVC(1) = av(le+t)

MOV D.N! MOV N, B! DCX H' MOV E.N
novy M, C! DCX H! MOV N, D' DCX H' WOV M, E

IRCRENENT SUITCH COUNT
LX1 H,SW! INR M

116

’ INCREMENT |
21470134C3INCI.

813F LK1 H. 1! INR M! JMP COMP
i DATA DEFINITION SECTION
0146 00 Sy 1] -]
8147 1. |13 1 iSFACE FOR INDEX
9148 OSOGV640BLERY oy
006/ = N EGU ($-aV)’s2
015C ™ equate value END

AYTYPE SORT. HEX

- 100100008214601360121470136007EFEBSD2196140
1 106118002146017ED7C20001FF5F16002148011983
:10012800194E79234623965778239EDA3IFBIBZCAATY

machine code

+RESEKYE SPACE FOR SWUITCH COUNT

5.180.36.56. 26,7, 19008, 390,100, -32767
+CONMPUTE N INSTEAD OF PRE

198130883F0156702B5E71287228732146813421C7 [" HEXformat
:07014000470134C30A01006E
:10014886050064001E00320014000700E8032C01808
. 840158006400601808E
. 00006060000
AXDDT SORT. HEX start debug run
16K DDT VEKk 1. @
NEXT PC
815C 0008 default address (no address on END statement)
-XP
P=0800 1808 change PCto 100

abort with
-~UFFFF untrace for 65535 steps rubout
Co2OMOEQ]IO A=Pd B=0000 D=D0O0 H=0Q@AOO €=9190 P=81@8 LX] H.B146'61689
=T18 trace 10,, steps
CO26NMBEBIO A=P) B20BBO D=BOOO H=a]46 S=0109 P=9180 LX1 H,083146
COZONBEDIO A=D1l B=00PE D=0000 H=Q146 $=0100 P=2183 MVl n,081)
CO0ZeNOERI@ A=P] B:=0BBO DaBBOR H=0l46 €=0100 P=@16S LX] H,B147
COZBNOED]IO® A=P1 B=00EO D=PBOO H=Q147 $=0100 P22168 NY]l M,08
CO026MOEBI® A=P) B:=8000 D=0000 H=08147 S$=01080 P=810hn MOV A.N
Co2Z6MOELI® A=00 B360OO D=90BOD H-=Q147 $=0106 P=816B CPl! 09
C126M1EOI® A=PO B=060B8 D=2008 H=0147 $=20100 P=B16D JNC 01)9
C120M1EO1@ R=00 B=0000 D=0000 H:=0147 $=01006 FP=8116 LX! H,6146
C1ZeM1EOI® A=PO B=PAOO D=8000 H=8146 S=8100 P=8113 OV A, N
C1ZBM1EQI® A=01 B=BABE D=BROR H=0146 S=0100 P=8114 ORA A
COZBMREGIP A=01 P=0Q00 D=8000 H=0146 S=08100 Pa@115 JUJNZ 0100
CO28MREOI® A=B) B=9QOO D=3000 H=0146 S=8100 P=0190 LXI H.0146
CO20MBEOI® A=B] B=2000 D=3000 Hs0146 S=0100 Pad103 NV! n,p)
C620MBEOI® A=D1 B=00BO D=000 H=0146 3:0100 P=0105 LXI H,8147
C6ZeMDEBID® A=D1 B=00OO D=8006 H=0147 S=0100 P29 108 MVI M, 00
CO2BMREGIR A=B1 B:9Q90 D=PB08 Hz26147 S=0100 P=816A MOV A.MeR)BdH
~A16D “}
816D JC 119 chan e to a jump on carry stopped at
0110 9 J 10BH
-XF
P=91088 100 reset program counter back to beginning of program
-T18 trace execution for 10H steps
COZOMAEDID® A=80 B=B00D D=0000 H=0147 $=0100 P=9180 LXI H.0146
COZOMPESI® A=80 B=008P D=800D H=0}46 $=08100 P=8163 NVI N,01
COZBMPEOI® R=60 B=0080 D=BBOB H=Q146 $=0109 P=0165 LX] H,0147
COZOMPEOGIO® A=DO B=DOBO D3PBAE H=B147 €=0100 P=8108 MYl M,80 . :
COZOMDE@ID A=060 B:60BD D=0006 H=0147 S=0100 P=plea MOV a,n 2reredinstruction
COZ6MBEOI® A=50 B=8BAB D=P0EL H=0147 $S=0100 P=9188 CP! 99
C1Z26NIEGI® A=9p0 B=00BD D=8000 H=9147 S=0180 P=018D JC 09119
C1Z2BMIEGIO A=0@ P=00B0 D=B0OL H=Q]147 €=0100 P=281319 MOV E.A
C1ZeMIEG]I® R=00 B=5000 D=RPOB H=20147 $=0100 P=011A NY]l D,00
C1ZOMIEQLl® A=80 B=P0BO D=000O0 H=Q|47 €20100 P=011C LX!l H,0148
C128M1EOG1® A=80 B=0000 D=00A0 H=0148 $s0160 P=@11F DAD D
fO2ZBN1EQ1O A=00 B20000 D=9800 H=@148 $=2910@ P=912Q9 DAD O

117

tezemiEele
cozemiEelD
CozZoMiEB]®
cozenicEole
-L160

8100 LXI
8103 MVI
8185 LXI1
8108 MVl
o184 MOV
9188 CPI
e1eb JC
8118 LXI
8113 MOV
8114 OKA
6115 UNZ
-L

8116 RST
8119 Mnov
B1LlA nvl
811C Lx}

A=09 B=pe0oe
A=80 B=800S
A=0S B=0003
A=@S B=000S

H, 9146
M. 01
H, 0147
N, 080
AN

e9

9119

H.8146
AN

a

8188

07

E.R
D.8o
H.B148

- abort list with rubout

-G, 118

D=8000 H=0148 S=elee P=@lz1 MoV (.n
D=08008 H=9148 S=8180 F=2122 WOV w.L
D=9008 H=0148 $30100 P26123 INX H

D=B008 H=0149 S=@100 P=8124 nNOV B-N+0123

Automatic /

breakpoint

list some code
from 100H

list more

start program from current PC (0125H) and run in real time to 11BH

*9127 stopped with an extemal interrupt 7 from front panel (program was looping indefinitely)

-T4

CO20M0EQ1O® A=30 B=D0064
COZBNOER]I® A=38 B=0064
C020MOEG]IO A=00 DB=D0CH
C026MOED1O® A=00 B=00864
-D148

@148 85 60 67 90 14 B0
8156 32 PO 64 0D 64 8O
8160 00 60 06 90 00 B0
- GO retum to CP/M

DDT SORT. HEX

16K DDT VER 1.0

NEXT PC
81SC o008
-XP

look at looping program in trade mode

D=0006 H=08156 S=0100 P=0127 MOV D.A
D=3806 H=0156 S=0100 P=3128 MOV A.B
D=3806 H=0156 S=0180 P=0129 INX H
D=3806 H=0157? S=0160 P3B812A SBB Ns6128

data is sorted, but program doesn t sto
— prog P
1E @80
2C 01 E8 @3 81 80 P €9 68 80 2 D D .
o0 00 03 .. PO 06 60 &9 o6 ve

reload the memory image

P=000@ 108 Set PC to beginning of program

-L18D
910D JNC
e1te LX1

list bad opcode

0119
H,0146

- abont list with rubout

assemble new opcode

H,B146
n,01
H, 0147

-A18D

e1ed JC t19
8118

-L160

8168 LXI
8103 nvl
0185 LX1
8168 MVl

Hlae

- abort list with rubout

-Ale3

list starting section of program

change “"switch™ initialization to 00

118

8133 MYl n. @
8165

~-~¢ retumn to CP/M with ctl-c (GO works as well)

SAYE 1 SORTV.COM save | page (256 bytes, from 100H to 1FFMH) on disk in case

we have to reload later

A>DDT SORT.COM restart DDT with g
saved memory image

16K DDT VERK 1.8

NEXT FC

6206 8100 “COM' file always starts with address 100H

-G run the program from PC=100H

¢8118 programmed stop (RST 7) encountered
~D140

data properly sorted

8148 85 00 07 00 14 00 I1E 08O

8156 32 60 64 80

64

2C 01 E8 93 91 50 90 08 980 98 2 D D .

81c0 00 60 00 0P V3 B 6O 06 @2 0D PO 6O PO 68 96 2O
8170 90 0 806 90 00 60 80 08 83 ve 90 69 By @9 08 89

= GO retum to CP/M

ED SORT ASH
ctl-Z

make changes to original program

oN, TT findnext ".0"

nvl M.0 1 = @
¢ - up one line in text

LX1 H,1 +ADDRESS INDEX
¢~ up another line

nvi n.1 +SET TO 1 FOR FIKST ITERATION
+K T kill line and type next line

LX1 H, 1 +ADDRESS INDEX
¢1 insert new line :

nvl LPY] +ZERO Su
o7

LX1 H. 1 +ADDRESS INDEX
enuncer

JNCeT

CONHT +CONTINUE IF | <= (N-2)
e-201cCpLT

JC CONT +CONTINUE [F [<= (N-2)
¢E source from disk A

» hexto disk A

ASN SOKT ARAZe— skip pm file
CPs/N ASSEMBLER - VER 1 @

615C next address to assembie
60ZH USE FACTOR
END OF ASSENMBLY

80T SORT HEX test program changes

16x DDY VEK 1 @
NE*T PC(C

6150 peeo
~hlby

e011¥

-Diss data sorted

8148 85 60 87 080

~ abort with rubout

14 00 . .
8130 32 60 64 00 €4 B8O 2C ©) EB O3 P! 80 00 @8 06 90 2 D D .
Bl166 00 608 00 96 V6 60 @0 60 09 06 bV 6O OV Gy Ab we

1€ 66

-G6@ retum to CP/M — program checks OK.

119

120

CP/M DYNAMIC DEBUGGING TOOL (DDT)
USER’S GUIDE

COPYRIGHT (c) 1976, 1978
DIGITAL RESEARCH

Copyright (c) 1976, 1977, 1978 by Digital Research. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a re-
trieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written per-
mission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties
with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication
and to make changes from time to time in the content
hereof without obligation of Digital Research to notify
any person of such revision or changes.

Table of Contents

SECTION V Page
1. INTRODUCTION 123
2. DDT COMMANDS 125
3. IMPLEMENTATION NOTES 133

4. AN EXAMPLE 133

121

Introduction

The DDT program allows dynamic interactive testing and debugging of
programs generated in the CP/M environment. The debugger isinitiated by
typing one of the following commands at the CP/M Console Command level

DDT
DDT filename.HEX
DDT filename.COM

where “filename” is the name of the program to be loaded and tested. Inboth
cases, the DDT program is brought into main memory in the place of the
Console Command Processor (refer to the CP/M Interface Guide for
standard memory organization), and thus resides directly below the Basic
Disk Operating System portion of CP/M. The BDOS starting address, which
islocated in the address field of the JMPinstruction at location 5H, is altered
to reflect the reduced Transient Program Area size.

The second and third forms of the DDT command shown above perform the
same actions as the first, except there is a subsequent automatic load of the
specified HEX or COM file. The action is identical to the sequence of
commands

DDT
Ifilename.HEX or Ifilename.COM
R

where the I and R commands set up and read the specified program to test.
(See the explanation of the I and R commands below for exact details.)

Upon initiation, DDT prints a sign-on message in the format -

nnK DDT-s VER m.m

where nn is the memory size (which must match the CP/M system being
used), s is the hardware system which is assumed, corresponding to the codes

Digital Research standard version
MDS version

IMSAI standard version

Omron systems

Digital Systems standard version

nwo—zuy

and m.m is the revision number.

123

Following the sign on message, DDT prompts the operator with the
character “~” and waits for input commands from the console. The operator
can type any of several single character commands, terminated by a carriage
return to execute the command. Each line of input can be line-edited using
the standard CP/M controls

rubout remove the last character typed
Control-X remove the entire line, ready for re-typing
Control-C system reboot

Any command can be up to 32 characters in length (an automatic carriage
returnisinserted as the 33rd character), where the first character determines
the command type

A enter assembly language mnemonics with operands
display memory in hexadecimal and ASCII

fill memory with constant data

@ = g

begin execution with optional breakpoints

P

set up a standard input file control block

list memory using assembler mnemonics

move a memory segment from source to destination
read program for subsequent testing

substitute memory values

trace program execution

untraced program monitoring

X o 3 » oW oz

examine and optionally alter the CPU state

The command character, in some cases, is followed by zero, one, two, or three
hexadecimal values which are separated by commas or single blank
characters. All DDT numeric output isin hexadecimal form. In all cases, the
commands are not executed until the carriage return is typed at the end of
the command.

Atany point in the debug run, the operator can stop execution of DDT using
either a Control-C or GO (jmp to location 0000H), and save the current
memory image using a SAVE command of the form

124

SAVE n filename.COM

where n is the number of pages (256 byte blocks) to be saved on disk. The
number of blocks can be determined by taking the high order byte of the top
load address and converting this number to decimal. For example, if the
highest address in the Transient Program Area is 1234H then the number of
pages is 12H, or 18 in decimal. Thus the operator could type a Control-C
during the debug run, returning to the Console Processor level, followed by

SAVE 18 X.COM

The memory image is saved as X.COM on the diskette, and can be directly
executed by simply typing the name X. If further testing is required, the
memory image can be recalled by typing

DDT X.COM

which reloads the previously saved program from location 100H through
page 18 (12FFH). The machine state is not a part of the COM file, and thus
the program must be restarted from the beginning in order to properly test
it.

DDT Commands

The individual commands are given below in some detail. In each case, the
operator must wait for the prompt character (-) before entering the
command. If control is passed to a program under test, and the program has
not reached a breakpoint, control can be returned to DDT by executing a
RST 7 from the front panel (note that the rubout key should be used instead
if the program is executing a T or U command). In the explanation of each
command, the command letter is shown in some cases with numbers
separated by commas, where the numbers are represented by lower case
letters. These numbers are always assumed to bein a hexadecimal radix, and
from one to four digits in length (longer numbers will be automatically
truncated on the right).

Many of the commands operate upon a “CPU state” which corresponds to
the program under test. The CPU state holds the registers of the program
being debugged, and initially contains zeroes for all registers and flags except
for the program counter (P) and stack pointer (S), which default to 100H.
The program counter is subsequently set to the starting address given in the
last record of a HEX file if a file of this form is loaded (see the I and R
commands).

125

The A (Assemble) Command

DDT allows inline assembly languagé to be inserted into the current
memory image using the A command which takes the form

As

where s is the hexadecimal starting address for the inline assembly. DDT
prompts the console with the address of the next instruction to fill, and reads
the console, looking for assembly language mnemonics (see the Intel 8080
Assembly Language Reference Card for a list of mnemonics), followed by
register references and operands in absolute hexadecimal form. Each
successive load address is printed before reading the console. The A
command terminates when the first empty line is input from the console.

Upon completion of assembly language input, the operator can review the
memory segment using the DDT disassembler. (See the L command.)

Note that the assembler/disassembler portion of DDT can be overlayed by
the transient program being tested, in which case the DDT program
responds with an error condition when the A and L. commands are used.

The D (Display) Command

The D command allows the operator to view the contents of memory in
hexadecimal and ASCII formats. The forms are

D
Ds
Ds,f

In the first case, memory is displayed from the current display address
(initially 100H), and continues for 16 display lines. Each display line takes
the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb ccceeceeeccecece

where aaaa is the display address in hexadecimal, and bb represents data
present in memory starting at aaaa. The ASCII characters starting at aaaa
are given to theright (represented by the sequence of c’s), where non-graphic
characters are printed as a period (.) symbol. Note that both upper and lower
case alphabetics are displayed, and thus will appear as upper case symbols on

-a console device that supports only upper case. Each display line gives the
values of 16 bytes of data, except that the first line displayed is truncated so
that the next line begins at an address which is the multiple of 16.

126

The second form of the D command shown aboveissimilar to the first, except
that the display address is first set to address s. The third form causes the
display to continue from address s through address f. In all cases, the display
address is set to the first address not displayed in this command, so that a
continuing display can be accomplished by issuing successive D commands
with no explicit addresses.

Excessively long displays can be aborted by pushing the rubout key.

The F (Fill) Command

The F command takes the form
Fs,f,c

where s is the starting address, f is the final address, and c is a hexadecimal
byte constant. The effect is as follows: DDT stores the constant c at address
s, increments the value of s and tests against f. If s exceeds f then the
operation terminates, otherwise the operation is repeated. Thus, the fill
command can be used to set a memory block to a specific constant value.

The G (Go) Command

Program execution is started using the G command, with up to two optional
breakpoint addresses. The G command takes one of the forms

G

Gs
Gs,b
Gs,b,c
G,b
G,b,c

The first form starts execution of the program under test at the current value
of the program counterin the current machinestate, with no breakpointsset
(the only way to regain control in DDT is through a RST 7 execution). The
current program counter can be viewed by typingan X or XP command. The
second form is similar to the first except that the program counter in the
current machine state is set to address s before execution begins. The third
form is the same as the second, except that program execution stops when
address b is encountered (b must be in the area of the program under test).
The instruction at location b is not executed when the breakpoint is
encountered. The fourth form is identical to the third, except that two
breakpoints are specified, one at b and the other at c. Encountering either
breakpoint causes execution to stop, and both breakpoints are subsequently

127

cleared. The last two forms take the program counter from the current
machine state, and set one and two breakpoints, respectively.

Execution continues from the starting address in real-time to the next
breakpoint. That is, there is no intervention between the starting address
and the break address by DDT. Thus, if the program under test does not
reach a breakpoint, control cannot return to DDT without executinga RST
7 instruction. Upon encountering a breakpoint, DDT stops execution and
types

*d

where d is the stop address. The machine state can be examined at this point
using the X (Examine) command. The operator must specify breakpoints
which differ from the program counter address at the beginning of the G
command. Thus, if the current program counter is 1234H, then the
commands

G,1234
and

G400,400

both produce an immediate breakpoint, without executing any instructions
whatsoever.

The I (Input) Command

The I command allows the operator to insert a file name into the default file
control block at 5CH (the file control block created by CP/M for transient
programs is placed at this location; see the CP/M Interface Guide). The
default FCB can be used by the program under test as if it had been passed
by the CP/M Console Processor. Note that this file nameis also used by DDT
for reading additional HEX and COM files. The form of the I command is

Ifilename
or
Ifilename.filetype

If the second form is used, and the filetype is either HEX or COM, then
subsequent R commands can be used to read the pure binary or hex format
machine code (see the R command for further details).

128

The L (List) Command

The L command is used to list assembly language mnemonicsin a particular
program region. The forms are

L
Ls
Lsf

The first command lists twelve lines of disassembled machine code from the
current list address. The second form sets the list address to s, and then lists
twelve lines of code. The last form lists disassembled code from s through
addressf. In all three cases, the list addressis set to the next unlisted location
in preparation for a subsequent L command. Upon encountering an
execution breakpoint, the list address is set to the current value of the
program counter (see the G and T commands). Again, long typeouts can be
aborted using the rubout key during the list process.

The M (Move) Command

The M command allows block movement of program or data areas from one
location to another in memory. The form is

Ms,f,d

where sis the start address of the move, fis the final address of the move, and
d is the destination address. Data is first moved from s to d, and both
addresses are incremented. If s exceeds f then the move operation stops,
otherwise the move operation is repeated.

The R (Read) Command

The R command is used in conjunction with the I command to read COM
and HEX files from the diskette into the transient program area in
preparation for the debut run. The forms are

R
Rb

where b is an optional bias address which is added to each program or data
address as it is loaded. The load operation must not overwrite any of the
system parameters from G00H through OFFH (i.e., the first page of memory).
Ifbis omitted, then b=0000is assumed. The R command requires a previous
I command, specifying the name of a HEX or COM file. The load address for

129

each record is obtained from each individual HEX record, while an assumed
load address of 100H is taken for COM files. Note that any number of R
commands can be issued following the I command to re-read the program
under test, assuming the tested program does not destroy the default area at
5CH. Further, any file specified with the filetype “COM” is assumed to
contain machine code in pure binary form (created with the LOAD or SAVE
command), and all others are assumed to contain machine code in Intel hex
format (produced, for example, with the ASM command).

Recall that the command
DDT filename.filetype
which initiates the DDT program is equivalent to the commands

DDT
-Ifilename.filetype
-R

Whenever the R command is issued, DDT responds with either the error
indicator “?” (file cannot be opened, or a checksum error occurred in a HEX
file), or with a load message taking the form

NEXT PC
nnnn pppp

where nnnn is the next address following the loaded program, and ppppis the
assumed program counter (100H for COM files, or taken from the last record
if a HEX file is specified).

The S (Set) Command

The S command allows memory locations to be examined and optionally
altered. The form of the command is

Ss

where s is the hexadecimal starting address for examination and alteration
of memory. DDT responds with a numeric prompt, giving the memory
location, along with the data currently held in the memory location. If the
operator types a carriage return, then the data is not altered. If a bvte value
is typed, then the value is stored at the prompted address. In either case,
DDT continues to prompt with successive addresses and values until either
a period (.) is typed by the operator, or an invalid input value is detected.

130

The T (Trace) Command

The T command allows selective tracing of program execution for 1 to 65535
program steps. The forms are ‘

T
Tn

In the first case, the CPU state is displayed, and the next program step is
executed. The program terminates immediately, with the termination
address displayed as

*hhhh

where hhhh is the next address to execute. The display address (used in the
D command) is set to the value of H and L, and the list address (used in the
L command)isset to hhhh. The CPU state at program termination can then
be examined using the X command.

The second form of the T command is similar to the first, except that
execution is traced for n steps (n is a hexadecimal value) before a program
breakpoint occurs. A breakpoint can be forced in the trace mode by typing
a rubout character. The CPU state is displayed before each program step is
taken in trace mode. The format of the display is the same as described in the
X command.

Note that program tracing is discontinued at the interface to CP/M, and
resumes after return from CP/M to the program under test. Thus, CP/M
functions which access 1/0 devices, such as the diskette drive, run in
real-time, avoiding I/0 timing problems. Programs running in trace mode
execute approximately 500 times slower than real time since DDT gets
control after each userinstruction is executed. Interrupt processing routines
can be traced, but it must be noted that commands which use the breakpoint
facility (G, T, and U) accomplish the break using a RST 7 instruction, which
means that the tested program cannot use this interrupt location. Further,
the trace mode always runs the tested program with interrupts enabled,
which may cause problems if asynchronous interrupts are received during
tracing.

Note also that the operator should use the rubout key to get control back to
DDT during trace, rather than executinga RST 7,in order to ensure that the
trace for the current instruction is completed before interruption.

131

The U (Untrace) Command

The U command is identical to the T command except that intermediate
program steps are not displayed. The untrace mode allows from 1 to 65535
(OFFFFH) steps to be executed in monitored mode, and is used principally to
retain control of an executing program while it reaches steady state
conditions. All conditions of the T command apply to the U command.

The X (Examine) Command

The X command allows selective display and alteration of the current CPU
state for the program under test. The forms are

X
Xr

where r is one of the 8080 CPU registers

C Carry Flag (0/1)

Z Zero Flag (0/1)

M Minus Flag (0/1)

E Even Parity Flag (0/1)

I Interdigit Carry (0/1)

A Accumulator (0-FF)

B BC register pair (0-FFFF)
D DE register pair (0-FFFF)
H HL register pair (0-FFFF)
S Stack Pointer (0-FFFF)
P Program Counter (0-FFFF)

In the first case, the CPU register state is displayed in the format
CfZfMfEfIf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where fis a 0 or 1 flag value, bb is a byte value, and dddd is a double byte
quantity corresponding to the register pair. The “inst” field contains the
disassembled instruction which occurs at the location addressed by the CPU
state’s program counter.

The second form allows display and optional alteration of register values,
where ris one of the registers given above (C,Z, M, E, I, A,B,D, H, S, or P).
In each case, the flag or register value is first displayed at the console. The
DDT program then accepts input from the console. If a carriage return is
typed, then the flag or register value is not altered. If a value in the proper
range is typed, then the flag or register value is altered. Note that BC, DE,

132

and HL are displayed as register pairs. Thus, the operator types the entire
register pair when B, C, or the BC pair is altered.

Implementation Notes

The organization of DDT allows certain non-essential portions to be
overlayedin order to gain a larger transient program area for debugging large
programs. The DDT program consists of two parts: the DDT nucleus and
the assembler/disassembler module. The DDT nucleus is loaded over the
Console Command Processor, and, although loaded with the DDT nucleus,
the assembler/disassembler is overlayable unless used to assemble or
disassemble.

In particular, the BDOS address at location 6H (address field of the JMP
instruction at location 5H) is modified by DDT to address the base location
of the DDT nucleus which, in turn, containsaJMPinstruction to the BDOS.
Thus, programs which use this address field to size memory see the logical
end of memory at the base of the DDT nucleus rather than the base of the
BDOS.

The assembler/disassembler module resides directly below the DDT
nucleusin the transient program area. If the A, L, T, or X commands are used
during the debugging process then the DDT program again alters the address
field at 6H to include this module, thus further reducing the logical end of
memory. If a program loads beyond the beginning of the
assembler/disassembler module, the A and L commands are lost (their use
produces a “?” in response), and the trace and display (T and X) commands
list the “inst” field of the display in hexadecimal, rather than as a decoded
instruction.

Sample Session

The following example shows an edit, assemble, and debug for a simple
program which reads a set of data values and determines the largest value in
the set. The largest valueis taken from the vector,and stored into “LARGE”
at the termination of the program

ED SCAMN.AS
L /tab character rubout rubout echo
| ORG 1] 100H L-LiSTART OF TRANSIENT AREA

nvl B.LEN sLENGTH OF VECTOR TO SCAN
v .0 /LARGER_RST VALUE S0 FAR

LOQP._P.0.0.L Lx1 W, YECT ;BASE OF YECTOR

LOQP . X MmOV A iGET VALUE

rubout Sug L P N

RV ?
deletes _JNC NFOUND ,JUMP I1F LARGER VALUE NOT FQUND
_charactersNEW LARGEST VALUE, STORE 1T TG €

A0V C.a.

133

;7O NEXT ELEMENT

————————e e

iMORE_TO SCAN?
;FOR ANOTHER

Create Source "

Program — underlined

characters typed
by programmer.

;GET LARGEST VALUE

‘REBOOT

iLENGTH

i ARGEST VALUE ON EXIT

iSTART OF TRANSIENT AREA
iLENGTH OF VECTOR TO SCAN

iLARGEST VALUE

S0 FAR

iBASE OF VECTOR

iGET VALUE

;LARGER VALUE IN C?

. iJUNP IF LARGER
LARGEST VALUE, STORE IT TO0 C

iTO NEXT ELEMENT

iMORE TO SCAN? -

iFOR ANOTHER

iGET LARGEST VALUE

REBOOT

iLENGTH
iLARGEST VALUE

NFOUND: INX L}
peR B
NI'H L00P
4
i END OF SCAN, STORE ¢
MOV a.cC
FAL) LARGE
.4 Y
a4 TEST DATA
VECT. DB 2,0,4,3,5,6,1.5
CEN EQu.. ¥-vECT
LARGE: DS 1
£END
1Z 280P
ORG 100H
LAA! B, LEN
L12] -C.,0
LX1 H,VECT
LOOP.: nov AN
sus c .
JNC NFOUND
NEW
nov C.A
NFOUND. INX H
DCR 8
JN2 LoopP
; END OF SCAN, STORE C
nov A, C
STA LARGE
JHP]
H TEST DATA
VECT I']:] 2,0,4,3,5,6,1.5
LEN EQU $-VECT
LARGE: DS 1
END
*E <«——End of Edit
ASh SCAN Start Assembler
CPs/M ASSEMBLER - VER 1.0

8122
082H USE FACTOR
END OF AS3EMBLY

TYPE SCAN.FRN

ON EXIT

Assembly Complete — Look at Program Listing

Code Address Source Program

01089 Machine Code ORG 100H i START OF TRANSI
0100 6608 Myl B, LEN .LENGTH OF VYECTOD
0102 OERO LLA¢ c.e »LARGEST VALUE S
8104 211901 LK1 H, YECT iBARSE OF VECTOR
0187 7E LOOP. MOV A, M .GET vaLUE

8188 91 sus C ;i LARGER VALUE IN
8109 D2eDe! JNC NFOUND , JUMP 1F LARGER
. i NEW LARGEST VALUE. STORE IT 70 C
818C 4F MOV C.A

818D 23 NFOUND:. INX H iTO NEXT ELEMENT
018E 85 DCR B sMORE TO SCAN?
918F C20781 JNZ LooP iFOR ANOTHER

; END OF SCAN, STORE C

8112 79 MOV A, C JGET LARGEST VAL
8113 322181 STA LARGE

9116 C304Q00 JHP 0 . -REBOOT

Code/data listing ' .
truncated —» - TEST DATA
8119 0200040305VECT. 1]

2,9,4.3,

134

5,6,1,5

YALUE NOT FOUND

ENT ARER
R TO SCAN
0 FAR

c?
YALUE NOT FOUND

UE

8008 = LEN EQU $-VECT ,LENGTH
cor)

8121 Valu LARGE : DS 1 sLARGEST VALUE ON EXIT
8122 Equate' END
A

DDT SCAN. HEX
I e— Start Debugger using hex format machine code

16K DDT VER 1.0

NEXT PC

8121 0000

-X ™~ . —lastload address +1 next instruction
to execute at

C626MPEGI® A=p@ B=00BO D=808@ H=0608 S=016@ P=8QE8 OUT ?7F PC=0

-XP

- Examine registers before debug run

Change PC to 100
-x

2 Look at registers again PC changed

P=0p068 180

(6Z8MBEGIO® A=D0 B=0089 D=800¢ H=000d S=0100 P=0100 MY! B.8S
-L106@ Next instruction

to execute at PC=100
6196 MVl B,68

8182 MVl C.,00
81084 LXI H.,08119

01087 MOV A.M Disassembled Machine
8188 SsuB ¢ Code at 100H

8189 JUNC e1eD (See Source Listing
a1eC mMov C.A for comparison)

818D INX H
WIOE DCR B
610F JUNZ @1e7?
8112 MOV A.C
-L

8113 STA @tzi
8116 JNP 0000
8119 STAX B

A little more
g11a NOP machine code
811B INR B (note that Program
e11C INx B ends at location 116
811D DCR B with a JMP to 0000)
B611E MVl B.01
8126 DCR @&

8121 LXI D,2280
8124 LXI H.0200

-A116 enterinline assembly mode to change the JMP to 0000 into a RST 7. which
will cause the program under test to retum to DDT if 116H
B116 RST 7 is ever executed.

8117 (single carriage retum stops assembly mode)

-L113 List Code at 113H to check that RST 7 was properly inserted

8113 STA @121 in place of JMP
8116 RST 87 “/— P

8117 NOP

8118 NOF

8119 STAX B

8118 NOP

@118 INR B
811C INX B

-X Look at registers

COZOMBERGI® A=00 B=8000 D=0B0D H=0008 S=0100 P=8108 MVI B,08
-T

Execute Program for one step. initial CPU state. before / is executed
COZOMBEQI® A=00 B=0080 D=-0000 H=0008 S=0100 P=818@ MV] B.028+0102

Trace one step again (note 08H in B) automatic breakpoint
CO2BMPEOI® A=00 B=9880 D=PpBOO H=000P S=0100 P=23182 MV] C.e0¢0104

135

Trace again (Register C is cleared) .
COZBMPERI® A=00 B=A800 D=6808 H=0000 S=0100 P=08184 LX] H.8119+0187
“I3 Tracethree steps

C@ZBMBEO]I® A=00 B=080P D=8006 H=6G119 $S=8180 P=0107 MOV A.N
C8ZBMBEBI® R=82 B=068P0 D=8008 H=0119 $=0100 P=0108 SUB C
COZBMBEOI1 A=02 B=08008 D=8BBO H=0119 S=@128 P=0185 JUNC @1@De@d1@D

"ELL2 Display memory starting at 119H. Automatic breakpoint at 10DH

811982 60_84 83 05 8¢ o) rogramdata o Lovercasex —,
8120\@5/T1 80 22 21 86 82 7E EB 77 13 23 EB ea) @
8138 €2 27 81 C3 63 29 80 06 08 60 00 60 06 08 Te 50 .

B148 86 00 60 60 00 00 00 00 00 60 o 60 00 G0 08 50

2150 80 B0 00 08 06 00 00 00 00 00 BE B 8O 08 98 80 Daais displayed
168 80 80 00 00 00 BB 20 90 03 00 0O 00 PO 08 00 8O in ASClwitha 0"
2170 00 90 86 08 00 00 0@ 80 00 00 B0 8@ 8@ @8 @8 O inthe position of
8180 86 80 80 00 00 00 00 88 00 00 B 00 0 @8 @8 B8 nongraphic

8196 80 9@ 80 90 @0 B0 0@ 80 88 @0 BO 00 08 08 88 B8 chaacters

P1A0 B3 8O 8O 88 80 PP 0O B0 98 00 BO 80 00 08 8B 0O

9180 08 80 90 @0 @0 0P BO 00 68 00 PO 6O 09 88 88 PO

P1CE B8 80 90 @8 08 BO 89 90 @0 @8 2@ B9 88 98 98 PO

-X Current CPU state

COZBMOEOGI] A=82 B=0880 D=P@80 H=0119 S=010@ P=816D INK H
=15

Trace 5 steps from current CPU state

COZBMBEGI1 A=82 B=880806 D=pBO8 H=0119 S=0108 P=018D INX H

CBZOMBE®]]1 A=82 B=8800@ D=-BB08 H=811n $=010@ P=@1B8E DCR 8 Automatic
COZBMBEBI1 A=82 B=8700@ D=B80O H=011A S=010@ P=816F JNZ 8187 Breakpoint
COZBMBEBI] A=02 B=087806 D=808O H=011Aa S=0108 P=8187 MOV A,M
COZBMBEB]I1 A=60 B=0700 D=RBOB H=011A S=018@ P=8188 SUB C*8189

~-us

Trace without listing intermediate states

COZINMBEII]l A=P0 B=078% D=B000 H=011A S=0120 P=0169 JNC ©10D+0108
-X_ CPU State at end of US

CBZBMBE111 A=B4 B=8630 D=POO® H=011B S=@100 P=8108 SUB C

-6 Run program from current PC until completion (in real-time)

p breakpoint at 116H, caused by executing RST 7 in machine code
«011
-X

CPd state at end of program
COZIMBELIl A=00 B=0080 D=800® H=0121 S=0100 P=@116 RST @7

-%F examine and change program counter

P=0116 1880

“X

COZINBEIIl A=060 B=0088 D=pBOG H=0121 S=3186 P=01&9 MYl B.88

-718 . subtext for comparison
Trace 10 (hexadecimal).steps first data element _current largest value A(C

= S>&1lve P=0100 MYl B,08

CB21MBEL]]l A=6@ B=00B6 D=0

COZ1MBELIl AR=00 B @100 P=801062 MYl C.,@®0
COZIMBE1IILl A=008 B €=0100 FP=0164 LXI H.0119
CeZIMBELII1 A=80 Bs b =010@e P=9167 MOY A.,N

CeZINBEL]L ﬂ=(02§ H=0119 ‘3 8106 P=8108 3uUB C

136

C8ZAHBEBI1 A=B2 B=0888 D=B0O8 H=0119 S=0106 P=0109 JUNC 810D
COZBMBEDI1 A=B2 B=68B8 D=@@AB H=0119 $=8180 P=818D INX
C62B8MAE@I1 A=B2 B-A8BO D=8088 H=011A S=0180 F=B1BE DCR B
COZBMBEBI! A=B2 B=078Q D=B00H H=011A S=0100 P=018F JUNZ ©1&7
COZBMBEOI1 AR=82 B=B7P6 D=B@AA H=@11A S=010@ P=@1@7 MOV A.M
CoZeMBEBI1 A=B@ B=0789 D=00O® H=011A S=010@ P=8168 SUB C
COZIMBEIT]1 A=B8 B=0780 D=PBOU H=011A S=6100 P=0183 JNC 018D
COZIMPEII1 A=60 B=8780 D=PB8@ H=@11A S=0188 P=018D INX H
CeZIMBEIll A=P0 B=p70P D=R00E H=911B $=0120 P=B18E DCR B
CO6ZBMBE111 A=p0O B-=06P@ D=60A® H=811B $=@160 P=B16F UNZ 0187
COZBMBE111 A=0@ B=868F D=B@OB H=011B S=01¢9 P=8187 MOV A,M*B108
-A189
i Insert a "*hot patch™ into Program should have moved the
#1899 JC tep the machine code value from A into C since A)C.
= tochangethe Since this code was not executed,
910C JINC to JC it appears that the JNC should

have been a JC instruction
-Go Stop DDT so that a'version of
the patched program can be saved

SAYE 1 SCAN.COM Program resides on first page, so save 1 page.

A>DDT SCAN. COM Restart DDT with the saved memory image to continue testing
16k DDT VEK 1.6

NEXT PC

82006 B1080

-Li6@ List some code

8108 MYl B,88
8102 MVl C,e0
104 LXI H,0119

Previous patch is present in X-COM
187 MOV a,n
81068 SuB ¢

0109 JC eien
8108C nov C. A
819D INX H
819E DCKk &
B818F JUNZ 8187
811z MOY «.C
-1E

F=010606

-T180 Trace to see how patched version operates Data is moved from A to C

6169 mvl B,08

C6Z6MBEGI O A=-606 B=69P6 D=P00H H=980%

C6ZBMBEO] D A=80 B=-6880 D=6896 H=9B03 S= 8162 MYl C.080
COZBMREOIO® ~=-00 B=0806 [=0806 4=0608 S P=8104 LXI H.08113
C8ZOMBEG]I D «=09 B=688@ D=8686 H=6119 <=0129 P=2167 MOY Aa.N
£0ZeMBERID a€RZ B=888° D=8000 $=01898 P=3168 3uB ¢
COZ6MPEGI1 A=82 B™g&86 D=86 119 5=0106 P=3109 JC 816D
(O0ZOMBEGI1 AR=82 B=0Y D 86 H=06119 <=0180 P=816C MOV C.A
CozZendeovll A=082 B=83 D=00988 H=0119 %=0100 P=016D INX H
C6Z6MBE®G]) a=082 B=88Bz D=80086 H4=0119 S=9169 P=@1BE DCR B
C628MBEQG]1 A=P2 B=0782 D=8008 H=011A $=0106 P=018F JUNZ 3187
COZBMBERG]I! A=02 B=B7B2 D=8m0A H=811a <=@1@e F=2187 MOV Aa.M
COZBNBE@I! A=P0 B=6782 D=0B88 H=611A <=0188 P=8188 SUB C
C1ZBM1E®I® A=FE B=6782 D=00088 H=011r :=01090 P=9189 JC 818D
C1Z6M1EBGIQ A=FE B=06782 D=80608 H=011a $=013% P=918D INX H
C126M1EQ]1@ AR=FE B=878z D=P08080® H=@11B $=8106 P=8918E DCR B
C1Z6MBEL1]1]1 A=FE B=8682 D=0008@ 4=611B <=0189 P=918F UNZ 0810701087

-x breakpoint after 16 steps—""

C128MBEL1]1 A=FE 5=066z D=8000 H=0118 <=8186 P=0187 "0V A, M

-G.168 Run from current PC and breakpoint at 108H
«01068
-X next data item

C1Z6MBEL1]1 A=84 B=P68Z D=PBOB H=06116 <=019086 P=21@88 3UB

(%]

137

-1

Single step for a few cycles
C1ZBMBEL]1 4=04 B=BEBZ D=BBOB H=9v11B S=81098 P=8163 5UB
-1

COZ6MBEB]I) A=BZz B=B6B2 D=BGEY H=wl1B S-6lee P=e1863 JC
-X

C6ZGMBEDO]I! A=02 B=068z D=800B H=wl118 ::-0180 P=018C MOV
& Run to completion

*8116

-%

COZIMBE1Il R=83 B=0003 D=0000 H=0121 S=0100 P=8116 RST
-slat look at the value of “LARGE "

8121 83 Wrong Value!

B12z 90

= o<
- -
n n
» “l
L ne
- N

o<
-
)
wn
@
(<)

8z End of the S command

)
—
o
o

196 MYl B.03
182 MYl C,00
614 LXI H,08119
8137 MOV A.M
a1ag Ssue ¢

818 MOV C.A
8180 INX H
@10E DCk B .
@19F JUNZ el1erv

11z MOV A.C Review the code
-L

a113 STA @t1zi
6116 RST @7
a117 NOP

B6118& NOP

2119 STaAX B
011A NOP

dilk INR B
aric INX B
¢t DCR B
111E LED! 6,01
#1ze DCkR &

F=6116 1#66 Resetthe PC

-1 Single step. and watch data values

(B821MPELI1 A=03 B=0003 D=6000 H=@12] <=91@0@ P=01@88 MVI]
-7

(BZI1MBELIIl AR=63 B=6303 D=00088 H=0121 $=01@406 F=916@2 NYI
-1 count set

- / — “largest” set
(B2IMBEL]I1l “=@3 EB=-8300 D=069% H=9121 <=06106 F=9l64 _¥I
-1

Ce8189

8i1eDed18C

C.A

87

8.83+0102

C.60e0104

H.h119+6187

(6Z21MBEL]
-
CeZIMOELI
-1
(BZOMREGT Y
-1

(e2aMBEGI Y

Ce2emMeERl Y
-T

te2aMbEoOl

Z@MBEQI L

(aleMeEcl]
-1

(e2emMpERl Y
-1

(1ZeMi1EB]l @
T

C1ZeMiEQ]®
-Lian

N base address of data set

R=63 B-w3de D=-poos H=@119

first data item brought to A

=82 B=@3806 D=hobw H=0119 $=0100 P=@Glas

A=@2 B=0806 D=6606 H=0119 S=@180 P=01@Y

A=@2 B=0890@ D=0608 H=8119 5=0186 P=016C
' first data item moved to C correctly

A=B2 B=P8BZ D=0080B H=911Y S=@10@ P=al@D

A=82 B=@a3Bez D=puwoE

H=011A S=0106 P=@1eE

A=@2 B=078z D=P00® H=911R 5-0100 P=016F

K=@Z 2=@7B2 D=@@ed M=y
second data item brought to A

A=@00 B=078¢ D=P0OBE H=011R 5=016@ F=201@8
subtract destroys data value which was loaded!"!

R=FE B=@782

Teelen P=elev

A=FE B=078z D=0000 H=011A =8B106 P=e16]

@136 MYl B.@3
6192 MYl C.Q@
8184 LX1 H,011¢
8137 MOV A.M '
@198 SUB ¢ <«—— Thisshould have been a CMP so that register A
2199 JC p1ep would not be destroyed.
@13t MOV C.A
81901 INx H
@18 DCR B
a19F JUNZ @1e7
a1tz mMov A.C
-HlEg
n19E CMP L hot patch at 108H changes SUB to CMP
a1a9
-59 stop DDT for SAVE
SHYE 1 SCAN COM
save memory image
w>DDT SCAN. COM Restart DDT
15k DDT VEK 1. @
HNEXT PC
0206 6100
-xF
F=hlaa

139

D=f@08 4=011A S=-@100 P=@1@)3

t=81@ea F=@lu? MOV

SUE

.

Jo

MoV

INX

DLk

JNZ

Sue

INX

R.M+B10BE

Cx@109

6l1@aDsG16C

C.A*018D

H*@18E

B+*a18F

0167+2107

s, Mealee

C»0109

818D+«010@D

H*@1BE

8116 RST @7

A117 NOP

aILE NOP Look at code to see if it was properly loaded
@119 STAX B (long typeout aborted with rubout)

Bl11A NOP

= (rubout)

-G. 116 Run from 100H to completion

s0lle
-X6 Look at Carry (accidental typo)

[

-X Look at CPU state

(1Z1MBEL]] A=06 E=@@dE D=0006 H=@121 =@1d4@ P=0115 RST
AT RN Look at “‘Large” — it appears to be correct.

w121 86

aizz @e

@123 2z ,

-Ga stop DDT

ED SCANgASH Re-edit the source program, and make both changes

L4
‘LT /ctI-Z
Su C iLARGER VALUE IN C~
* '5'5-'.'4 :!HiyLT
o] c sLARGER VALUE IN C~
NC NFOURND »JUMP IF LARGER VALUE NOT FOUND

JC NFOUND »JUMP IF LARGER VALUE NCT FOUND
£
H5M SCAN RAZ Re-assemble, selecting source from disk A
hex to disk A
{F-M AWSSEMBLEK - YER 1 © print to Z (selects no print file)

ayze

Q0ZH USE FACTOR

END OF ASSEMBLY

DDT _3CuN HEX Rerundebugger to check changes

15K DDOT YER 1.0

HELT PC

w1zl eaee

-Litg

4116 JMP @a@ea checkto ensure end is still at 116H
4119 SThAX B

“1lA NOF

a1l INFR B
© (rubout)

-G1@a. 116 Go from beginning with breakpoint at end

140

-3

<

selie
-Dhizi

121 (@9 o =

e
1146@

breakpoint reached

Look at “"LARGE™ __ correct value computed

¢ TE EB 77 13
% @@ op @2 oa

2 21 09 @
Cz a7 @81 £2 83 2
ae 9 Be 0@ @@ 8O @9

28 @6

- (rubout) aborts long typeout

-G

stop DDT, debug session complete

23 EB @B 78 B}
#6 6@ @@ a2 96 B0
B9 @0 0@ 38 °9 a6

141

.

LW

CP/M 2.2 ALTERATION GUIDE

COPYRIGHT (c) 1979
DIGITAL RESEARCH

Copyright

Copyright (c) 1979 by Digital Research. All rights re-
served. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in
any form or by any means, electronic, mechanical, mag-
netic, optical, chemical, manual or otherwise, without
the prior written permission of Digital Research, Post
Office Box 579, Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties
with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication
and to make changes from time to time in the content
hereof without obligation of Digital Research to notify
any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research.
MP/M, MAC, and SID are trademarks of Digital
Research.

(All Information Contained Herein is Proprietary to Digital Research.)

Table of Contents

SECTION VI

=

[
[R

S A T A A o R

INTRODUCTION

FIRST LEVEL SYSTEM REGENERATION
SECOND LEVEL SYSTEM GENERATION
SAMPLE GETSYS AND PUTSYS PROGRAMS
DISKETTE ORGANIZATION

THE BIOS ENTRY POINTS

A SAMPLE BIOS

A SAMPLE COLD START LOADER
RESERVED LOCATIONS IN PAGE ZERO
DISK PARAMETER TABLES

. THE DISKDEF MACRO LIBRARY
. SECTOR BLOCKING AND DEBLOCKING

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G

143

145
146
150
154
155
157
164
164
164
166
170
174

. : v .
B ‘ ' |

Introduction

The standard CP/M system assumes operation on an Intel MDS-800
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware operating
environment. In this way, the user can produce a diskette which operates
with any IBM-3741 format compatible drive controller and other peripheral
devices.

Although standard CP/M 2.2 is configured for single density floppy disks,
field-alteration features allow adaptation to a wide variety of disk
subsystems from single drive minidisks through high-capacity “hard
disk” systems. In order to simplify the following adaptation process, we
assume that CP/M 2.2 will first be configured for single density floppy
disks where minimal editing and debugging tools are available. If an
earlier version of CP/M is available, the customizing process is eased
considerably. In this latter case, you may wish to briefly review the
system generation process, and skip to later sections which discuss
system alteration for non-standard disk systems.

In order to achieve device independence, CP/M is separated into three
distinct modules:

BIOS — basic 1/0 system which is environment dependent

BDOS — basic disk operating system which is not dependent upon
the hardware configuration

CCP — the console command processor which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular
hardware. That is, the user can “patch” the distribution version of CP/M
to provide a new BIOS which provides a customized interface between the
remaining CP/M modules and the user’s own hardware system. The
purpose of this document is to provide a step-by-step procedure for
patching your new BIOS into CP/M. :

If CP/M is being tailored to your computer system for the first time, the
new BIOS requires some relatively simple software development and
testing. The standard BIOS is listed in Appendix B, and can be used as a
model for the customized package. A skeletal version of the BIOS is given
in Appendix C which can serve as the basis for a modified BIOS. In
addition to the BIOS, the user must write a simple memory loader, called
GETSYS, which brings the operating system into memory. In order to
patch the new BIOS into CP/M, the user must write the reverse of
GETSYS, called PUTSYS, which places an altered version of CP/M back
onto the diskette. PUTSYS can be derived from GETSYS by changing the
disk read commands into disk write commands. Sample skeletal GETSYS
and PUTSYS programs are described in Section 3, and listed in Appendix
D. In order to make the CP/M system work automatically, the user must

145

also supply a cold start loader, similar to the one provided with CP/M
(listed in Appendices A and B). A skeletal form of a cold start loader is
given in Appendix E which can serve as a model for your loader.

First Level System Regeneration

The procedure to follow to patch the CP/M system is given below in
several steps. Address references in each step are shown with a following
“H” which denotes the hexadecimal radix, and are given for a 20K CP/M
system. For larger CP/M systems, add a “bias” to each address which is
shown with a “+Db” following it, where b is equal to the memory size —
20K. Values for b in various standard memory sizes are

24K: b = 24K — 20K = 4K = 1000H
32K: b = 32K — 20K = 12K = 3000H
40K: b = 40K — 20K = 20K = 5000H
48K: b = 48K — 20K = 28K = 7000H
56K: b = 56K — 20K = 36K = 9000H
62K: b = 62K — 20K = 42K = A800H
64K: b = 64K — 20K = 44K = B000H

Note: The standard distribution version of CP/M is set for operation
within a 20K memory system. Therefore, you must first bring up the 20K
CP/M system, and then configure it for your actual memory size (see
Second Level System Generation).

(1) Review Section 4 and write a GETSYS program which reads the first
two tracks of a diskette into memory. The data from the diskette
must begin at location 3380H. Code GETSYS so that it starts at
location 100H (base of the TPA), as shown in the first part of
Appendix d. .

(2) Testthe GETSYS program by reading a blank diskette into memory,
and check to see that the data has been read properly, and that the
diskette has not been altered in any way by the GETSYS program.

(3) Run the GETSYS program using an initialized CP/M diskette to see
if GETSYS loads CP/M starting at 3380H (the operating system
actually starts 128 bytes later at 3400H).

(4) Review Section 4 and write the PUTSYS program which writes
memory starting at 3380H back onto the first two tracks of the
diskette. The PUTSYS program should be located at 200H, as shown
in the second part of Appendix D.

(5) Test the PUTSYS program using a blank uninitialized diskette by
writing a portion of memory to the first two tracks; clear memory and
read it back using GETSYS. Test PUTSYS completely, since this

146

(6)

(7)

(8)

(9)

(10)

(11)

program will be used to alter CP/M on disk.

Study Sections 5, 6, and 7, along with the distribution version of the
BIOS given in Appendix B, and write a simple version which performs
a similar function for the customized environment. Use the program
given in Appendix C as a model. Call this new BIOS by the name
CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

Test CBIOS completely to ensure that it properly performs console
character 1/0 and disk reads and writes. Be especially careful to
ensure that no disk write operations occur accidently during read
operations, and check that the proper track and sectors are addressed
on all reads and writes. Failure to make these checks may cause
destruction of the initialized CP/M system after it is patched.

Referring to Figure 1 in Section 5, note that the BIOS is placed
between locations 4A00H and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed
in step (6) and tested in step (7). This replacement is done in the
memory of the machine, and will be placed on the diskette in the next
step.

Use PUTSYS to place the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

Use GETSYS to bring the copied memory image from the test
diskette back into memory at 3380H, and check to ensure that it has
loaded back properly (clear memory, if possible, before the load).
Upon successful load, branch to the cold start code at location
4A00H. The cold start routine will initialize page zero, then jump to
the CCP at location 3400H which will call the BDOS, which will call
the CBIOS. The CBIOS will be asked by the CCP to read sixteen
sectors on track 2, and if successful, CP/M will type “A ", the
system prompt.

When you make it this far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

Upon completion of step (10), CP/M has prompted the console for a
command input. Test the disk write operations by typing

SAVE 1 X.COM

(recall that all commands must be followed by a carriage return).

147

CP/M should respond with another prompt (after several disk
accesses):

A
If it does not, debug your disk write functions and retry.

(12) Then test the directory command by typing

DIR
CP/M should respond with
A X COM

(13) Test the erase command by typing
ERA X.COM

CP/M should respond with the A prompt. When you make it this far,
you should have an operational system which will only require a
bootstrap loader to function completely.

(14) Write a bootstrap loader which is similar to GETSYS, and place it on
track 0, sector 1 using PUTSYS (again using the test diskette, not
the distribution diskette). See Sections 5 and 8 for more information
on the bootstrap operation.

(15) Retest the new test diskette with the bootstrap loader installed by
executing steps (11), (12), and (13). Upon completion of these tests,
type a control-C (control and C keys simultaneously). The system
should then execute a “warm start” which reboots the system, and
types the A prompt.

(16) At this point, you probably have a good version of your customized
CP/M system on your test diskette. Use GETSYS to load CP/M
from your test diskette. Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital
Research.

(17) Load your medified CP/M system and test it by typing
DIR

CP/M should respond with a list of files which are provided on the

148

initialized diskette. One such file should be the memory image for the
debugger, called DDT.COM.

NOTE: from now on, it is important that you always reboot the CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced by
another diskette, unless the new diskette is to be read only.

(18) Load and test the debugger by typing
DDT |

(see the document “CP/M Dynamic Debugging Tool (DDT)” for
operating procedures. You should take the time to become familiar
with DDT, it will be your best friend in later steps.)

(19) Before making futher CBIOS modifications, practice using the editor
(see the ED user’s guide), and assembler (see the ASM user’s guide).
Then recode and test the GETSYS, PUTSYS, and CBIOS programs
using ED, ASM, and DDT. Code and test a COPY program which
does a sector-to-sector copy from one diskette to another to obtain
back-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement; it specifies your legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research

on each copy which is made with your COPY program.

(20) Modify your CBIOS to include the extra functions for punches,
readers, signon messages, and so-forth, and add the facilities for
additional disk drives, if desired. You can make these changes with
the GETSYS and PUTSYS programs which you have developed, or
you can refer to the following section, which outlines CP/M facilities
which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have developed belongs
to you, the modified version of CP/M which you have created can be
copied for your use only (again, read your Licensing Agreement), and
~ cannot be legally copied for anyone else’s use.

It should be noted that your system remains file-compatible with all other

CP/M systems, (assuming media compatibility, of course) which allows
transfer of non-proprietary software between users of CP/M.

149

Second Level System Generation

Now that you have the CP/M system running, you will want to configure
CP/M for your memory size. In general, you will first get a memory image
of CP/M with the “MOVCPM?” program (system relocator) and place this
memory image into a named disk file. The disk file can then be loaded,
examined, patched, and replaced using the debugger, and system
generation program. For further details on the operation of these programs,
see the “Guide to CP/M Features and Facilities” manual.

Your CBIOS and BOOT can be modified using ED, and assémbled using
ASM, producing files called CBIOS.HEX and BOOT.HEX, which contain
the machine code for CBIOS and BOOT in Intel hex format.

To get the memory image of CP/M into the TPA configured for the desired
memory size, give the command:

MOVCPM xx *

where “xx” is the memory size'in decimal K bytes (e.g., 32 for 32K). The
response will be:

CONSTRUCTING xxK CP/M VERS 2.0
READY FOR “SYSGEN” OR
“SAVE 34 CPMxx.COM”

At this point, an image of a CP/M in the TPA configured for the requested
memory size. The memory image is at location 0300H through 227FH.
(i.e., The BOOT is at 0900H, the CCP is at 980H, the BDOS starts at
1180H, and the BIOS is at 1F80H.) Note that the memory image has the
standard MDS-800 BIOS and BOOT on it. It is now necessary to save the
memory image in a file so that you can patch your CBIOS and CBOOT
into it:

SAVE 34 CPMxx.COM

The memory image created by the “MOVCPM” program is offset by a
negative bias so that it loads into the free area of the TPA, and thus does
not interfere with the operation of CP/M in higher memory. This memory
image can be subsequently loaded under DDT and examined or changed in
preparation for a new generation of the system. DDT is loaded with the
memory image by typing:

DDT CPMxx.COM Load DDT, then read the CPM
image

150

DDT should respond with

NEXT PC
2300 0100
— (The DDT prompt)

You can then use the display and disassembly commands to examine
portions of the memory image between 900H and 227FH. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the actual address.
Track 00, sector 01 is loaded to location 900H (you should find the cold
start loader at 900H to 97FH), track 00, sector 02 is loaded into 980H (this
is the base of the CCP), and so-forth through the entire CP/M system load.
In a 20K system, for example, the CCP resides at the CP/M address
3400H, but is placed into memory at 980H by the SYSGEN program.
Thus, the negative bias, denoted by n, satisfies

3400H + n = 980H, or n = 980H — 3400H

Assuming two’s complement arithmetic, n = D580H, which can be
checked by

3400H + D580H = 10980H = 0980H ignoring high-order
overflow).

Note that for larger systems, n satisfies
(3400H+b) + n = 980H, or
n = 980H — (3400H + b), or
n = D580H — b.

The value of n for common CP/M systems is given below

memory size bias b negative offset n
20K 0000H D580H — 0000H = D580H
24K 1000H D580H — 1000H = C580H
32K 3000H D580H — 3000H = A580H
40K 5000H D580H — 5000H = 8580H
48K 7000H D580H — 7000H = 6580H
56K 9000H D680H — 9000H = 4580H
62K A800H D580H — A800H = 2D80H
64K B000H D580H — B000H = 2580H

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system. First type

Hx,n Hexadecimal sum and difference

151

and DDT will respond with the value of x+n (sum) and x—n (difference).
The first number printed by DDT will be the actual memory address in the
image where the data or code will be found. The input

H3400,D580

* for example, will produce 980H as the sum, which is where the CCP is
located in the memory image under DDT.

Use the L command to disassemble portions the BIOS located at
(4A00H +b)—n which, when you use the H command, produces an actual
address of 1F80H. The disassembly command would thus be

L1F80

It is now necessary to patch in your CBOOT and CBIOS routines. The
BOOT resides at location 0900H in the memory image. If the actual load
address is “n”, then to calculate the bias (m) use the command:

H900,n Subtract load address from target
address.

The second number typed in response to the command is the desired bias
(m). For example, if your BOOT executes at 0080H, the command:

H900,80
will reply
0980 0880 Sum and difference in hex.

Therefore, the bias, “m” would be 0880H. To read-in the BOOT, give the
command:

ICBOOT.HEX Input file CBOOT.HEX
Then:
Rm Read CBOOT with a bias of
m (=900H—n)

You may now examine your CBOOT with:
LS00

We are now ready to replace the CBIOS. Examine the area at 1IF80H where
the original version of the CBIOS resides. Then type

ICBIOS.HEX Ready the “hex” file for loading

152

assume that your CBIOS is being integrated into a 20K CP/M system,
and thus is originated at location 4A00H. In order to properly locate the
CBIOS in the memory image under DDT, we must apply the negative bias
n for a 20K system when loading the hex file. This is accomplished by
typing

RD580 Read the file with bias D580H

Upon completion of the read, re-examine the area where the CBIOS has
been loaded (use an “L1F80” command), to ensure that it was loaded
properly. When you are satisfied that the change has been made, return
from DDT using a control-C or “G0” command.

Now use SYSGEN to replace the patched memory image back onto a
diskette (use a test diskette until you are sure of your patch), as shown in
the following interaction

SYSGEN Start the SYSGEN program
SYSGEN VERSION 2.0
SYSGEN VERSION 2.0 Sign-on message from SYSGEN
SOURCE DRIVE NAME (OR RETURN TO SKIP)
Respond with a carriage return to
skip the CP/M read operation
since the system is already in
memory.
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
Respond with “B” to write the new
system to the diskette in drive B.
DESTINATION ON B, THEN TYPE RETURN
Place a scratch diskette in drive B,
then type return.
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then perform a coldstart to
bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

153

Sample GETSYS and PUTSYS Program

The following program provides a framework for the GETSYS and
PUTSYS programs referenced in Section 2. The READSEC and
WRITESEC subroutines must be inserted by the user to read and write
the specific sectors.

GETSYS PROGRAM — READ TRACKS 0 AND 1 TO MEMORY AT 3380H

; REGISTER USE

; A (SCRATCH REGISTER)

; B TRACK COUNT (0, 1)

; C ' SECTOR COUNT (1,2,. . .,26)

; DE (SCRATCH REGISTER PAIR)

; HL LOAD ADDRESS

; SP SET TO STACK ADDRESS

START: LXI SP,3380H ;SET STACK POINTER TO SCRATCH AREA
LXI H, 3380H ;SET BASE LOAD ADDRESS
MVI B,0 ;START WITH TRACK 0

RDTRK: ;READ NEXT TRACK (INITIALLY 0)
MVI Ci1 ;READ STARTING WITH SECTOR 1

RDSEC: ; READ NEXT SECTOR

CALL READSEC ;USER-SUPPLIED SUBROUTINE

LXI D,128 ;iMOVE LOAD ADDRESS TO NEXT 1/2 PAGE

DAD D ;HL = HL + 128

INR C ;SECTOR = SECTOR + 1

MOV AC ;CHECK FOR END OF TRACK

CPI 27 .

JC RDSEC ;iCARRY GENERATED IF SECTOR 27
; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK

INR B

MOV AB ;TEST FOR LAST TRACK

CPI 2

JC RDTRK ;CARRY GENERATED IF TRACK 2

; ARRIVE HERE AT END OF LOAD, HALT FOR NOW

HLT

; USER-SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:
; ENTER WITH TRACK NUMBER IN REGISTER B,

SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL
PUSH B ;$SAVE B AND C REGISTERS
PUSH H i{SAVE HL REGISTERS

perform disk read at this point, branch to

label START if an error occurs

POP H ;RECOVER HL
POP B ;RECOVER B AND C REGISTERS
RET ;BACK TO MAIN PROGRAM

154

Note that his program is assembled and listed in Appendix C for reference
purposes, with an assumed origin of 100H. The hexadecimal operation
codes which are listed on the left may be useful if the program has to be
entered through your machine’s front panel switches.

The PUTSYS program can be constructed from GETSYS by changing
only a few operations in the GETSYS program given above, as shown in
Appendix D. The register pair HL become the dump address (next address
to write), and operations upon these registers do not change within the
program. The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opposite function: data from address HL is
written to the track given by register B and sector given by register C. Itis
often useful to combine GETSYS and PUTSYS into a single program
during the test and development phase, as shown in the Appendix.

Diskette Organization

The sector allocation for the standard distribution version of CP/M is
given here for reference purposes. The first sector (see table on the follow-
ing page) contains an optional software boot section. Disk controllers are
often set up to bring track 0, sector 1 into memory at a specific location
(often location 6000H). The program in this sector, called BOOT, has the
responsibility of bringing the remaining sectors into memory starting at
location 3400H +b. If your controller does not have a built-in sector load,
you can ignore the program in track 0, sector 1, and begin the load from
track 0 sector 2 to location 3400H +b.

As an example, the Intel MDS-800 hardware cold start loader brings
track 0, sector 1 into absolute address, 3000H. Upon loading this sector,
control transfers to location 3000H, where the bootstrap operation
commences by loading the remainder of track 0, and all of track 1 into
memory, starting at 3400H +b. The user should note that this bootstrap
loader is of little use in a non-MDS environment, although it is useful to
examine it since some of the boot actions will have to be duplicated in your
cold start loader.

155

Track$ Sector# Page# Memory Address Cp/M Module name

/] 01l (boot address) Cold start Loader
(1’] 82 00 3400H+b ccp
. p3 " 3480H+b .

. B4 g1 3500H+b “

" g5 . 3580H+b .

" 26 B2 3600H+D "

" 87 . 3680H+b -

” 28 03 37080H+b -

. 09 " 3780H+b .

. 19 04 3800H+b .

" 11 “ 3880H+b “

" 12 25 3900H+b .

" 13 " 3980H+b .

. 14 26 3A00H+b "

. 15 " 3A80H+b -

* 16 b7 3BOOH+b "
00 17 * 3B8@H+b cce
90 18 08 3CagH+b BDOS

“ 19 " 3C80H+b .

" 20 99 3D00H+b *

" 21 “ 3D8@H+Db .

. 22 10 3E@0H+b .

. 23 " 3E80H+b .

" 24 11 3F00H+b "

. 25 " 3F80H+b .

. 26 12 4000H+b o
g1 91 “ 4080H+b -

" 02 13 41060H+b "

" 03 " 4180H+b “

. 04 14 4200H+b ”

* 25 . 4280H+b "

" 06 15 4300H+b "

" 07 . 4380H+b .

" g8 16 4400H+b .

. 09 . 4480H+b "

“ 10 17 4500H+b “

. 11 " 4580H+b .

" 12 18 4600H+b »

- 13 . 4688H+b .

. 14 19 4700H+b

) 15 . 4780H+b "

° 16 20 4800H+b "

* 17 " 4880H+b *

* 18 21 4900H+b "

Pl 19 » 4980H+b BDOS

g1 20 22 4A00H+b BIOS

" 21 » 4A80H+b v

“ 23 23 4BAOH+D v

- 24 . 4B8OH+b .

" 25 24 4CO0H+b "

21 26 - 4C80H+b BIOS

02-76 p1-26 (directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

156

The Bios Entry Points

The entry points into the BIOS from the cold start loader and BDOS are
detailed below. Entry to the BIOS is through a “jump vector” located at
4A00H +b, as shown below (see Appendices B and C, as well). The jump
vector is a sequence of 17 jump instructions which send program control to
the individual BIOS subroutines. The BIOS subroutines may be empty
for certain functions (i.e., they may contain a single RET operation)
during regeneration of CP/M, but the entries must be present in the jump
vector.

The jump vector at 4A00H+b takes the form shown below, where the
individual jump addresses are given to the left:

4A00H+b JMP BOOT ;: ARRIVE HERE FROM COLD START LOAD
4A03H+b JMP WBOOT ; ARRIVE HERE FOR WARM START
4A06H +b JMP CONST ; CHECK FOR CONSOLE CHAR READY
4A09H +b JMP CONIN ; READ CONSOLE CHARACTER IN

4A0CH +b JMP CONOUT ; WRITE CONSOLE CHARACTER OUT
4A0FH +b JMP LIST ; WRITE LISTING CHARACTER OUT
4A12H+b JMP PUNCH ; WRITE CHARACTER TO PUNCH DEVICE
4A15H+Db JMP READER ; READ READER DEVICE

4A18H+Db JMP HOME ; MOVE TO TRACK 00 ON SELECTED DISK
4A1BH+b JMP SELDSK ; SELECT DISK DRIVE

4A1EH+b JMP SETTRK ; SET TRACK NUMBER

4A21H +b JMP SETSEC ; SET SECTOR NUMBER

4A24H +b JMP SETDMA ; SET DMA ADDRESS

4A27H +b JMP READ ; READ SELECTED SECTOR

4A2AH +b JMP WRITE ; WRITE SELECTED SECTOR

4A2DH +b JMP LISTST ; RETURN LIST STATUS

4A30H +b JMP SECTRAN ; SECTOR TRANSLATE SUBROUTINE

Each jump address corresponds to a particular subroutine which performs
the specific function, as outlined below. There are three major divisions in
the jump table: the system (re)initialization which results from calls on
BOOT and WBOOT, simple character I/0 performed by calls on CONST,
CONIN, CONOUT, LIST, PUNCH, READER, and LISTST, and diskette
I1/0 performed by calls on HOME, SELDSK, SETTRK, SETSEC,
SETDMA, READ, WRITE, and SECTRAN.

All simple character I/0 operations are assumed to be performed in
ASCII, upper and lower case, with high order (parity bit) set to zero. An
end-of-file condition for an input device is given by an ASCII control-z
(1AH). Peripheral devices are seen by CP/M as “logical” devices, and are
assigned to physical devices within the BIOS.

In order to operate, the BDOS needs only the CONST, CONIN, and
CONOUT subroutines (LIST, PUNCH, and READER may be used by
PIP, but not the BDOS). Further, the LISTST entry is used currently
only by DESPOOL, and thus, the initial version of CBIOS may have
empty subroutines for the remaining ASCII devices.

157

The characteristics of each device are

CONSOLE

LIST

PUNCH

READER

The principal interactive console which communicates with
the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or Teletype.

The principal listing device, if it exists on your system,
which is usually a hard-copy device, such as a printer or -
Teletype.

The principal tape punching device, if it exists, which is
normally a high-speed paper tape punch or Teletyve.

The principal tape reading device, such as a simple optical
reader or Teletype.

Note that a single peripheral can be assigned as the LIST,
PUNCH, and READER device simultaneously. If no
peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does not
“hang” if the device is accessed by PIP or some other user
program. Alternately, the PUNCH and LIST routines can
just simply return, and the READER routine can return
with a 1AH (ctl-Z) in reg A to indicate immediate end-of-
file.

For added flexibility, the user can optionally implement the
“IOBYTE” function which allows reassignment of physical
and logical devices. The IOBYTE function creates a
mapping of logical to physical devices which can be altered
during CP/M processing (see the STAT command). The
definition of the IOBYTE function corresponds to the Intel
standard as follows: a single location in memory (currently
location 0003H) is maintained, called IOBYTE, which
defines the logical to physical device mapping which is in
effect at a particular time. The mapping is performed by
splitting the IOBYTE into four distinct fields of two bits
each, called the CONSOLE, READER, PUNCH, and LIST
fields, as shown below:

most significant least significant

bits 6,7 bits 4,5 bits 2,3 bits 0,1

158

The value in each field can be in the range 0-3, defining the
assigned source or destination of each logical device. The
values which can be assigned to each field are given below

CONSOLE field (bits 0,1)
0 — console is assigned to the console printer device (TTY:)
1 — console is assigned to the CRT device (CRT:)
2 — batch mode: use the READER as the CONSOLE input,
and the LIST device as the CONSOLE output (BAT:)
3 — user defined console device (UC1:)

READER field (bits 2,3)
0 — READER is the Teletype device (TTY:)
2 — READER is the high-speed reader device (RDR:)
2 — user defined reader # 1 (UR1:)
3 — user defined reader # 2 (UR2:)

PUNCH field (bits 4,5)
0 — PUNCH is the Teletype device (TTY:)
1 — PUNCH is the high speed punch device (PUN:)
2 — user defined punch # 1(UP1:)
3 — user defined punch # 2 (UP2:)

LIST field (bits 6,7)
0 — LIST is the Teletype device (TTY:)
1 — LIST is the CRT device (CRT:)
2 — LIST is the line printer device (LPT:)
3 — user defined list device (UL1:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of your CBIOS.
No CP/M systems use the IOBYTE (although they tolerate
the existence of the IOBYTE at location 0003H), except for
PIP which allows access to the physical devices, and STAT
which allows logical-physical assignments to be made
and/or displayed (for more information, see the “CP/M
Features and Facilities Guide”). In any case, the IOBYTE
implementation should be omitted until your basic CBIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities.

Disk 170 is always performed through a sequence of calls
on the various disk access subroutines which set up the
disk number to access, the track and sector on a particular
disk, and the direct memory access (DMA) address involved
in the 1/0 operation. After all these parameters have been
set up, a call is made to the READ or WRITE function to
perform the actual 1/0 operation. Note that there is often a
single call to SELDSK to select a disk drive, followed by a

159

BOOT

WBOOT

number of read or write operations to the selected disk
before selecting anoither drive for subsequent operations.
Similarly, there may be a single call to set the DMA
address, followed by several calls which read or write from
the selected DMA address before the DMA address is
changed. The track and sector subroutines are always
called before the READ or WRITE operations are
performed.

Note that the READ and WRITE routines should perform
several retries (10 is standard) before reporting the error
condition to the BDOS. If the error condition is returned to
the BDOS, it will report the error to the user. The HOME
subroutine may or may not actually perform the track 00
seek, depending upon your controller characteristics; the
important point is that track 00 has been selected for the
next operation, and is often treated in exactly the same
manner as SETTRK with a parameter of 00.

The exact responsibilities of each entry point subroutine
are given below:

The BOOT entry point gets control from the cold start
loader and is responsible for basic system initialization,
including sending a signon message (which can be omitted
in the first version). If the IOBYTE function is im-
plemented, it must be set at this point. The various system
parameters which are set by the WBOOT entry point must
be initialized, and control is transferred to the CCP at
3400H +Db for further processing. Note that reg C must be
set to zero to select drive A.

The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user program
branches to location 0000H, or when the CPU is reset from
the front panel. The CP/M system must be loaded from the
first two tracks of drive A up to, but not including, the
BIOS (or CBIOS, if you have completed your patch).
System parameters must be initialized as shown below:

location 0,1,2 set to JMP WBOOT for warm
starts (0000H: JMP 4A03H+Db)

location 3 set initial value of IOBYTE, if
implemented in your CBIOS

location 5,6,7 set to JMP BDOS, which is the

primary entry point to CP/M for
transient programs. (0005H: JMP
3C06H +b)

160

CONST

CONIN

CONOUT

LIST

PUNCH

READER

HOME

SELDSK

(see Section 9 for complete details of page zero use) Upon
completion of the initialization, the WBOOT program must
branch to the CCP at 3400H+b to (re)start the system.
Upon entry to the CCP, register C is set to the drive to
select after system initialization.

Sample the status of the currently assigned console device
and return OFFH in register A if a character is ready to
read, and 00H in register A if no console characters are
ready.

Read the next console character into register A, and set the
parity bit (high order bit) to zero. If no console character is
ready, wait until a character is typed before returning.

Send the character from register C to the console output
device. The character is in ASCII, with high order parity
bit set to zero. You may want to include a time-out on a line
feed or carriage return, if your console device requires some
time interval at the end of the line (such as a T1 Silent 700
terminal). You can, if you wish, filter out control characters
which cause your console device toreact in a strange way (a
control-z causes the Lear Seigler terminal to clear the
screen, for example).

Send the character from register C to the currently assigned
listing device. The character is in ASCII with zero parity.

Send the character from register C to the currently assigned
punch device. The character is in ASCII with zero parity.

Read the next character from the currently assigned reader
device into register A with zero parity (high order bit must
be zero), an end of file condition is reported by returning an
ASCII control-z (1AH).

Return the disk head of the currently selected disk (initially
disk A) to the track 00 position. If your controller allows
access to the track 0 flag from the drive, step the head until
the track 0 flag is detected. If your controller does not
support this feature, you can translate the HOME call into
a call on SETTRK with a parameter of 0.

Select the disk drive given by register C for further
operations, where register C contains 0 for drive A, 1 for
drive B, and so-forth up to 15 for drive P (the standard
CP/M distribution version supports four drives). On each
disk select, SELDSK must return in HL the base address of
a 16-byte area, called the Disk Parameter Header, described

161

SETTRK

SETSEC

SETDMA

READ

in the Section 10. For standard floppy disk drives, the
contents of the header and associated tables does not
change, and thus the program segment included in the
sample CBIOS performs this operation automatically. If
there is an attempt to selct a non-existent drive, SELDSK
returns HL=0000H as an error indicator. Although
SELDSK must return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/0 function (seek, read or write) is
actually performed, since disk selects often occur without
ultimately performing any disk 1/0, and many controllers
will unload the head of the current disk before selecting the
new drive. This would cause an excessive amount of noise
and disk wear.

Register BC contains the track number for subsequent disk
accesses on the currently selected drive. You can choose to
seek the selected track at this time, or delay the seek until
the next read or write actually occurs. Register BC can take
on values in the range 0-76 corresponding to valid track
numbers for standard floppy disk drives, and 0-65535 for
non-standard disk subsystems.

Register BC contains the sector number (1 through 26) for
subsequent disk accesses on the currently selected drive.
You can choose to send this information to the controller at
this point, or instead delay sector selection until a read or
write operation occurs.

Register BC contains the DMA (disk memory access)
address for subsequent read or write operations. For
example, if B = 00H and C = 80H when SETDMA is
called, then all subsequent read operatons read their data
into 80H through OFFH, and all subsequent write
operations get their data from 80H through OFFH, until
the next call to SETDMA occurs. The initial DMA address
is assumed to be 80H. Note that the controller need not
actually support direct memory access. If, for example, all
data is received and sent through I/0 ports, the CBIOS
which you construct will use the 128 byte area starting at
the selected DMA address for the memory buffer during
the following read or write operations.

Assuming the drive has been selected, the track has been
set, the sector has been set, and the DMA address has been
specified, the READ subroutine attempts to read one
sector based upon these parameters, and returns the
following error codes in register A:

162

WRITE

LISTST

SECTRAN

0 no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M responds only to a zero or non-zero value
as the return code. That is, if the value in register A is 0
then CP/M assumes that the disk operation completed
properly. If an error occurs, however, the CBIOS should
attempt at least 10 retries to see if the error is recoverable.
When an error is reported the BDOS will print the message
“BDOS ERR ON x: BAD SECTOR”. The operator then
has the option of typing <cr> to ignore the error, or ctl-C
to abort.

Write the data from the currently selected DMA address to
the currently selected drive, track, and sector. The data
should be marked as “non deleted data” to maintain
compatibility with other CP/M systems. The error codes
given in the READ command are returned in register A,
with error recovery attempts as described above.

Return the ready status of the list device. Used by the
DESPOOL program toimprove console response during its
operation. The value 00 is returned in A if the list device is
not ready to accept a character, and OFFH if a character can
be sent to the printer. Note that a 00 value always suffices.

Performs sector logical to physical sector translation in
order to improve the overall response of CP/M. Standard
CP/M systems are shipped with a “skew factor” of 6, where
six physical sectors are skipped between each logical read
operation. This skew factor allows enough time between
sectors for most programs to load their buffers without
missing the next sector. In particular computer systems
which use fast processors, memory, and disk subsystems,
the skew factor may be changed to improve overall response.
Note, however, that you should maintain a single density
IBM compatible version of CP/M for information transfer
into and out of your computer system, using a skew factor
of 6. In general, SECTRAN receives a logical sector number
in BC, and a translate table address in DE. The sector
number is used as an index into the translate table, with the
resulting physical sector number in HL. For standard
systems, the tables and indexing code is provided in the
CBIOS and need not be changed.

163

A Sample BIOS

The program shown in Appendix C can serve as a basis for your first
BIOS. The simplest functions are assumed in this BIOS, so that you can
enter it through the front panel, if absolutely necessary. Note that the user
must alter and insert code into the subroutines for CONST, CONIN,
CONOUT, READ, WRITE, and WAITIO subroutines. Storage is reserved
for user-supplied code in these regions. The scratch area reserved in page
zero (see Section 9) for the BIOS is used in this program, so that it could be
implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print the initial
sign-on message and perform better error recovery. The subroutines for
LIST, PUNCH, and READER can be filled-out, and the IOBYTE function
can be implemented.

A Sample Cold Start Loader

The program shown in Appendix D can serve as a basis for your cold start
loader. The disk read function must be supplied by the user, and the
program must be loaded somehow starting at location 0000. Note that
space is reserved for your patch so that the total amount of storage
required for the cold start loader is 128 bytes. Eventually, you will
probably want to get this loader onto the first disk sector (track 0, sector
1), and cause your controller to load it into memory automatically upon
system start-up. Alternatively, you may wish to place the cold start loader
into ROM, and place it above the CP/M system. In this case, it will be
necessary to originate the program at a higher address, and key-in a jump
instruction at system start-up which branches to the loader. Subsequent
warm starts will not require this key-in operation, since the entry point
- ‘WBOOT’ gets control, thus bringing the system in from disk
automatically. Note also that the skeletal cold start loader has minimal
error recovery, which may be enhanced on later versions.

Reserved Locations in Page Zero
Main memory page zero, between locations 00H and 0FFH, contains

several segments of code and data which are used during CP/M processing.
The code and data areas are given below for reference purposes.

Locations Contents
from to
000H — 0002H Contains a jump instruction to the warm start entry

point at location 4A03H+b. This allows a simple
programmed restart (JMP 0000H) or manual restart
from the front panel.

164

0003H — 0003H

0004H — 0004H

0005H — 0007H

0008H — 0027H
0030H — 0037H
0038H — 003AH

003BH — 003FH
0040H — 004FH

0050H — 005BH
005CH — 007CH

007DH — 007FH
0080H — 00FFH

Contains the Intel standard IOBYTE, which is
optionally included in the user’s CBIOS, as described
in Section 6.

Current default drive number (0=A,. ..,15=P).
Contains a jump instruction to the BDOS, and

serves two purposes: JMP 0005H provides the
primary entry point to the BDOS, as described in

- the manual “CP/M Interface Guide,” and LHLD

0006H brings the address field of the instruction to
the HL register pair. This value is the lowest address
in memory used by CP/M (assuming the CCP is
being overlayed). Note that the DDT program will
change the address field to reflect the reduced
memory size in debug mode.

(interrupt locations 1 through 5 not used)
(interrupt location 6, not currently used — reserved)

Restart 7 — Contains a jump instruction into the
DDT or SID program when running in debug mode
for programmed breakpoints, but is not otherwise
used by CP/M.

(not currently used — reserved)

16 byte area reserved for scratch by CBIOS, but is
not used for any purpose in the distribution version

not used for any purpose in the distribution version
of CP/M

(not currently used — reserved)

default file control block produced for a transient
program by the Console Command Processor.

Optional default random record position
default 128 byte disk buffer (also filled with the

command line when a transient is loaded under the
CCP).

Note that this information is set-up for normal operation under the CP/M
system, but can be overwritten by a transient program if the BDOS
facilities are not required by the transient.

If, for example, a particular program performs only simply 1/0 and must

165

begin execution at location 0, it can be first loaded into the TPA, using
normal CP/M facilities, with a small memory move program which gets
control when loaded (the memory move program must be control from
location 0100H, which is the assumed beginning of all transient programs).
The move program can then proceed to move the entire memory image
down to location 0, and pass control to the starting address of the memory
load. Note that if the BIOS is overwritten, or if location 0 (containing the
warm start entry point) is overwritten, the the programmer must bring
the CP/M system back into memory with a cold start sequence.

Disk Parameter Tables

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables can
be either hand-coded, as shown in the sample CBIOS in Appendix C, or
automatically generated using the DISKDEF macro library, as shown in
Appendix B. The purpose here is to describe the elements of these tables.

In general, each disk drive has an associated (16-byte) disk parameter
header which both contains information about the disk drive and provides
a scratchpad area for certain BDOS operations. The format of the disk
parameter header for each drive is shown below

Disk Parameter Header

| XLT | 0000 | 0000 | 0000 |DIRBUF| DPB| CSV | ALV |

where each element is a word (16-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT Address of the logical to physical translation vector, if used
for this particular drive, or the value 0000H if no sector
translation takes place (i.e., the physical and logical sector
numbers are the same). Disk drives with identical sector
skew factors share the same translate tables.

0000 Scratchpad values for use within the BDOS (1n1t1al valueis
unimportant).

DIRBUF Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH’s address the same
scratchpad area.

DPB Address of a disk parameter block for. this drive. Drives
with identical disk characteristics address the same disk
parameter block. .

166

CSv Address of a scratchpad area used for software check for
changed disks. This address is different for each DPH.

ALV Address of a scratchpad area used by the BDOS to keep
disk storage allocation information. This address is different
for each DPH.

Given ndisk drives, the DPH’s are arranged in a table whose first row of 16

bytes corresponds to drive 0, with the last row corresponding to drive
n—1. The table thus appears as

DPBASE:

where the label DBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base address
of the DPH for the selected drive. The following sequence of operations
returns the table address, with a 0000H returned if the selected drive does
not exist.

NDISKS EQU 4
NDISKS EQU 4 ;NUMBER OF DISK DRIVES

SELDSK:
;'SELECT DISK GIVEN BY BC
LXI H,000H ;ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS iCY IF SO
RNC ;RET IF ERROR
;NO ERROR, CONTINUE
MOV L,C ;LOW (DISK)
MOV H,B ;HIGH (DISK)
DAD H *2
DAD H *4
DAD H ;*8
DAD H *16
LXI D,DPBASE ;FIRST DPH
DAD D ;DPH (DISK)
RET

167

The translation vectors (XLT 00 through XLTn—1) are located elsewhere
in the BIOS, and simply correspond one-for-one with the logical sector
numbers zero through the sector count—1. The Disk Parameter Block
(DPB) for each drive is more complex. A particular DPB, which is
addressed by one or more DPH’s, takes the general form

where each is a byte or word value, as shown by the “8b” or “16b” indicator
below the field.

SPT is the total number of sectors per track

BSH is the data allocation block shift factor, determined by the
data block allocation size.

EXM . is the extent mask, determined by the data block allocation
size and the number of disk blocks.

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which can
be stored on this drive AL0O,AL1 determine reserved
directory blocks.

CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of the
‘(logical) disk.

The values of BSH and BLM determine (implicitly) the data llocation size
BLS, which is not an entry in the disk parameter block. Given that the
designer has selected a value for BLS, the values of BSH and BLM are
shown in the table below

BLS BSH BLM
1,024 3 - 7
2,048 4 15
4,096 5 31
8,192 6 63
16,384 7 127

where all values are in decimal. The value of EXM depends upon both the
BLS and whether the DSM value is less than 256 or greater than 255, as
shown in the following table

168

BLS DSM < 256 - DSM > 255

1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3
16,384 15 7

The value of DSM is the maximum data block number supported by this
particular drive, measured in BLS units. The product BLS times (DSM +1)
is the total number of bytes held by the drive and, of course, must be
within the capacity of the physical disk, not counting the reserved
operating system tracks.

The DRM entry is the one less than the total number of directory entries,
which can take on a 16-bit value. The values of AL1and AL1, however, are
determined by DRM. The two values ALO and AL1 can together be
considered a string of 16-bits, as shown below.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte labelled
AlOQ, and 15 corresponds to the low order bit of the byte labelled AL1. Each
bit position reserves a data block for number of directory entries, thus
allowing a total of 16 data blocks to be assigned for directory entries (bits
are assigned starting at 00 and filled to the right until position 15). Each
directory entry occupies 32 bytes, resulting in the following table

BLS Directory Entries
1,024 32 times # bits
2,048 64 times # bits
4,096 128 times # bits
8,192 256 times # bits
16,384 512 times # bits

Thus, if DRM = 127 (128 director entries), and BLS = 1024, then there are
32 directory entries per block, requiring 4 reserved blocks. In this case, the
4 high order bits of ALO are set, resulting in the values ALO = 0F0H and
AL1 = 00H.

The CKS value is determined as follows: if the disk drive media is
removable, then CKS = (DRM+1)/4, where DRM is the last directory
entry number. If the media is fixed, then set CKS = 0 (no directory records
are checked in this case).

169

Finally, the OFF field determines the number of tracks which are skipped
at the beginning of the physical disk. This value is automatically added
whenever SETTRK is called, and can be used as a mechanism for skipping
reserved operating system tracks, or for partitioning a large disk into
smaller segmented sections.

To complete the discussion of the DPB, recall that several DPH’s can
address the same DPB if their drive characteristics are identical. Further,
the DPB can be dynamically changed when a new drive is addressed by
simply changing the pointer in the DPH since the BDOS copies the DPB
values to a local area whenever the SELDSK function is invoked.

Returning back to the DPH for a particular drive, note that the two
address values CSV and ALV remain. Both addresses reference an area of
uninitialized memory following the BIOS. The areas must be unique for

each drive, and the size of each area is determined by the values in the
DPB.

The size of the area addressed by CSV is CKS bytes, which is sufficient to
hold the directory check information for this particular drive. If CKS =
(DRM+1)/4, then you must reserve (DRM+ 1)/4 bytes for dlrectory
check use. If CKS = 0, then no storage is reserved.

The size of the area addressed by ALV is determined by the maximum
number of data blocks allowed for this particular disk, and is computed as
(DSM/8)+1.

The CBIOS shown in Appendix C demonstrates an instance of these
tables for standard 8'' single density drives. It may be useful to examine
this program, and compare the tabular values with the definitions given
above.

The DISKDEF Macro Library

A macro library is shown in Appendix F, called DISKDEF, which greatly
simplifies the table construction process. You must have access to the
MAC macro assembler, of course, to use the DISKDEF facility, while the
macro library is included with all CP/M 2.0 distribution disks.

A BIOS disk definition consists of the following sequence of macro
statements:

170

MACLIB DISKDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC'’s internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with your
system, where n is an integer in the range 1 to 16. A series of DISKDEF
macro calls then follow which define the characteristics of each logical
disk, 0 through n—1 (corresponding to logical drives A through P). Note
that the DISKS and DISKDEF macros generate the in-line fixed data
tables described in the previous section, and thus must be placed in a non-
executable portion of your BIOS, typically directly following the BIOS
jump vector.

The remaining portion of your BIOS is defined following the DISKDEF
macros, with the ENDEF macro call immediately preceding the END
statement. The ENDEF (End of Diskdef) macro generates the necessary
uninitialized RAM areas which are located in memory above your BIOS.

The form of the DISKDEF macro.call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs,[0]

where
dn is the logical disk number, 0 ton—1
fsc is the first physical sector number (0 or 1)
Isc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of “checked” directory entries
ofs is the track offset to logical track 00
[0] is an optional 1.4 compatibility flag

The value “dn” is the drive number being defined with this DISKDEF
macro invocation. The “fsc” parameter accounts for differing sector
numbering systems, and is usually 0 or 1. The “Isc” is the last numbered
sector on a track. When present, the “skf” parameter defines the sector
skew factor which is used to create a sector translation table according to
the skew. If the number of sectors is less than 256, a single-byte table is
created, otherwise each translation table element occupies two bytes. No

171

translation table is created if the skf parameter is omitted (or equal to 0).
The “bls” parameter specifies the number of bytes allocated to each data
block, and takes on the values 1024, 2048, 4096,8192, or 16384. Generally,
performance increases with larger data block sizes since there are fewer
directory references and logically connected data records are physically
close on the disk. Further, each directory entry addresses more data and
the BIOS-resident ram space is reduced. The “dks” specifies the total disk
size in “bls” units. That is, if the bls = 2048 and dks = 1000, then the total
disk capacity is 2,048,000 bytes. If dks is greater than 255, then the block
size parameter bls must be greater than 1024. The value of “dir” is the total
number of directory entries which may exceed 255, if desired. The “cks”
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks the
disk read/only so that data is not subsequently destroyed). As stated in
the previous section, the value of cks = dir when the media is easily
changed, as is the case with a floppy disk subsystem. If the disk is
permanently mounted, then the value of cks is typically 0, since the
probability of changing disks without a restart is quite low. The “ofs”
value determines the number of tracks to skip when this particular driveis
addressed, which can be used to reserve additional operating system space
or to simulate several logical drives on a single large capacity physical
drive. Finally, the [0] parameter is included when file compatibility is
required with versions of 1.4 which have been modified for higher density
disks. This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions. Normally, this parameter is
not included.

For convenience and economy of table space, the special form
DISKDEF i,j

gives disk i the same characteristics as a previously defined drive j. A
standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

DISKS 4

DISKDEF 0,1,26,6,1024,243,64,64,2
DISKDEF 1,0

DISKDEF 2,0

DISKDEF 3,0

ENDEF
with all disks having the same parameter values of 26 sectors per track
(numbered 1 through 26), with 6 sectors skipped between each access,

1024 bytes per data block, 243 data blocks for a total of 243k byte disk
capacity, 64 checked directory entries, and two operating system tracks.

172

The DISKS macro generates n Disk Parameter Headers (DPH’s), starting
at the DPH table address DPBASE generated by the macro. Each disk
header block contains sixteen bytes, as described above, and correspond
one-for-one to each of the defined drives. In the four drive standard
system, for example, the DISKS macro generates a table of the form:

DPBASE EQU 3

DPEO: Dw XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0
DPE1: DwW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV1,ALV1
DPE2: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
DPES3: DwW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values contained
within the disk parameter header are described in detail in the previous
section. The check and allocation vector addresses are generated by the
ENDEF macro in the ram area following the BIOS code and tables.

Note that if the “skf” (skew factor) parameter is omitted (or equal to 0), the
translation table is omitted, and a 0000H value is inserted in the XLT
position of the disk parameter header for the disk. In a subsequent call to
perform the logical to physical translation, SECTRAN receives a
translation table address of DE = 0000H, and simply returns the original
logical sector from BC in the HL register pair. A translate table is
constructed when the skf parameter is present, and the (non-zero) table
address is placed into the corresponding DPH'’s. The table shown below,
for example, is constructed when the standard skew factor skf = 6 is
specified in the DISKDEF macro call:

XLTO: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data areas are
defined. These data areas need not be a part of the BIOS which is loaded
upon cold start, but must be available between the BIOS and the end of
memory. The size of the uninitialized RAM area is determined by EQU
statements generated by the ENDEF macro. For a standard four-drive
system, the ENDEF macro might produce

4C72 = BEGDAT EQU $
(data areas)
4DB0 = ENDDAT EQU $
013C = DATSIZ EQU $—BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends at
4DBOH—1, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your drive

173

characteristics, since STAT uses the disk parameter block to decode the
drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block fordrived (d=A, . . .,P)and displays the
values shown below:

128 Byte Record Capacity
Kilobyte Drive Capacity
32 Byte Directory Entries
Checked Directory Entries
Records/ Extent
Records/ Block

Sectors/ Track

Reserved Tracks

seogearn

Three examples of DISKDEF macro invocations are shown below with
corresponding STAT parameter values (the last produces a full 8-megabyte
system).

DISKDEF 0,1,58,,2048,256,128,128,2
r=4096, k=512, d=128, c=128, e=256, b=16, s=58, t=2

DISKDEF 0,1,58,,2048,1024,300,0,2
r=16384, k=2048, d=300, c=0, e=128, b=16, s=58, t=2

DISKDEF 0,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

Sector Blocking and Deblocking

Upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and deblocking
where the host disk subsystem has a sector size which is a multiple of the
basic 128-byte unit. The purpose here is to present a general-purpose
algorithm which can be included within your BIOS which uses the BDOS
information to perform the operations automatically.

Upon each call to WRITE, the BDOS provides the following information
in register C:

0 = normal sector write
1 = write to directory sector
2 = write to the first sector

of a new data block

174

Condition 0 occurs whenever the next write operation is into a previously
written area, such as a random mode record update, when the write is to
other than the first sector of an unallocated block, or when the write is not
into the directory area. Condition 1 occurs when a write into the directory
area is performed. Condition 2 occurs when the first record (only) of a
newly allocated data block is written. In most cases, application programs
read or write multiple 128 byte sectors in sequence, and thus there is little
overhead involved in either operation when blocking and deblocking
records since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal form
(this file is included on your CP/M disk). Generally, the algorithms map
all CP/M sector read operations onto the host disk through an intermediate
buffer which is the size of the host disk sector. Throughout the program,

values and variables which relate to the CP/M sector involved in a seek

operation are prefixed by “sek”, while those related to the host disk system
are prefixed by “hst.” The equate statements beginning on line 29 of
Appendix G define the mapping between CP/M and the host system, and
must be changed if other than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization code
starting on line 57, while the SELDSK entry point must be augmented by
the code starting on line 65. Note that although the SELDSK entry point
computes and returns the Disk Parameter Header address, it does not
physically select the host disk at this point (it is selected later at
READHST or WRITEHST). Further, SETTRK, SETSEC, and SETDMA
simply store the values, but do not take any other action at this point.
SECTRAN performs a trivial function of returning the physical sector
number.

The principal entry points are READ and WRITE, starting on lines 110
and 125, respectively. These subroutines take the place of your previous
READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST or
READHST, where all values have been prepared: hstdsk is the host disk
number, hsttrk is the host track number, and hstsec is the host sector
number (which may require translation to a physical sector number). You
must insert code at this point which performs the full host sector read or
write into, or out of, the buffer at hstbuf of length hstsiz. All other
mapping functions are performed by the algorithms.

This particular algorithm was tested using an 80 megabyte hard disk unit
which was originally configured for 128 byte sectors, producing
approximately 35 megabytes of formatted storage. When configured for -
512 byte host sectors, usable storage increased to 57 megabytes, with a
corresponding 400% improvement in overall response. In this situation,
there is no apparent overhead involved in deblocking sectors, with the

175

advantage that user programs still maintain the (less memory consuming)
128-byte sectors. This is primarily due, of course, to the information
provided by the BDOS which eliminates the necessity for pre-read
operations to take place.

176

APPENDIX A: THE MDS COLD START LOADER

MDS-800 Cold Start Loader for CP/M 2.0

® ws we we

Version 2.0 August, 1979

0900 = false equ 0
fLfff = true equ not false
0000 = testing equ false
if testing
bias equ #3400h
endif
if not testing
pooo = bias equ 0000h
endif
00060 = cpmb equ bias ;base of dos load
8806 = bdos equ 806h+bias ;entry to dos for calls
1880 = bdose equ 18808h+bias ;end of dos load
1600 = boot equ l6806h+bias ;cold start entry point
1603 = rboot egu boot+3 ;warm start entry point
30060 org 3666h :1loaded here by hardware
1880 = bdosl equ bdose-cpmb
602 = ntrks egu 2 stracks to read
p@31 = bdoss eqgu - bdosl/128 ;# sectors in bdos
0019 = bdosd equ 25 ;% on track @
0018 = bdosl equ bdoss-bdos# :# on track 1
£800 = mon89 equ 0£868h ;intel monitor base
ffof = rmon8@ equ 0ff0fh ;restart location for mon8@
0078 = base equ @78h ;'base’ used by controller
2079 = rtype equ base+l ;result type
087b = rbyte equ base+3 ;result byte
807f = reset equ base+7 ;reset controller
9078 = dstat equ base ;disk status port
9079 = ilow egu base+l ;low iopb address
007a = ihigh equ base+2 ;high iopb address
BOff = bsw equ Offh :boot switch
00803 = recal equ 3h ;recalibrate selected drive
0004 = readf eqgu 4h :disk read function
6106 = stack equ 186h ;use end of boot for stack
rstart:
3000 3108001 1xi sp,stack;in case of call to mon8#
; clear disk status
30603 db79 in rtype
3005 db7b in rbyte
: check if boot switch is off
coldstart: :
30067 dbff in bsw '
3898 56730 Ri @88 astartsviteh on?

177

360e

3810
3p12

3815
3016
3018

3019

301b

if1¢

3022
3624
3026

3028

302b

3924
302e
3031
3832

3034

3037
303a
363b
3063c

303f

4a37f

8602
214230

74
da379
1c
d37a
db78

§89830

db79

e603
feff2

az2eo36

db7b

17
dcofff
1f
eble

c206030

110700
19
85
c21530

c30016

~e we

tart:

~ e [}~

waitd:

-, ~e

-e

-

- ~e

“e we

- we we

clear the controller

out reset :logic cleared *
mvi b,ntrks ;number of tracks to read
1xi h,iopb#

read first/next track into cpmb

mov a,l

out ilow

mov a,h

out ihigh

in dstat

?21 éaitﬁ

check disk status

in rtype

ani 11b

cpi 2

if testing

cnc rmon8# ;go to monitor if 11 or 10
endif

if not testing

jne rstart j;retry the load

endif

in rbyte ;i/0 complete, check status
if not ready, then go to mon8@

ral

cc rmon8@ ;not ready bit set
rar ;restore

ani 11118b ;overrun/addr err/seek/crc
if testing

cnz rmon8d ;go to monitor

endif

if not testing

jnz rstart ;retry the load

endif

1xi d,iopbl ;length of iopb

dad d ;addressing next iopb
dcr b ;count down tracks
jnz start

jmp boot, print message, set-up jmps
jmp boot

parameter blocks

178

3042
3043
3044
3045
3046
3047
poe7

3049
304a
304b
304c
3044
304e
3650

80

iopb@:

iopbl

iopbl:

db
db
db
db
db
aw
equ

éb

end

80h ;iocw, no update

readf sread function

bdos@ ;% sectors to read trk @
('] strack @

2 ;start with sector 2, trk @
cpmb ;start at base of bdos
$-iopb#d

80h

readf

bdosl ;sectors to read on track 1
1 strack 1
1 ;1 sector 1
cpmb+bdosf*128 ;base of second rd

179

PBl4

4a00
3400
3co6
1600

4a00
4a03
4ap6
4a09
4alc

nnuwonnwnn

c3b34a
c3c34a
c3614b
c3644b
c36adb

APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS)

Ne we ws me we we G e Ne we Ne we
®
"
1]

cpmb
bdos
cpml
nsects
offset
cdisk
buff
retry

WO NS NE ME NG WO W N WE WE e WO NG We WS NG We W N W Ve N e Ve N5 wNe o

wboote:

mds-806 i/o drivers for cp/m 2.0
(four drive single density version)

version 2.6 august, 1979

equ 20 ;version 2,0
copyright (c) 1979

digital research

box 579, pacific grove
california, 93950

org 4a@bh :base of bios in 20k system

equ 3480h :base of cpm ccp

egu 3cé6h ;base of bdos in 20k system

equ $-cpmb ;length (in bytes) of cpm system
equ cpml/128;number of sectors to load

egu 2 ;number of disk tracks used by cp
equ 0094h ;address of last logged disk

equ 8080h ;default buffer address

equ 10 smax retries on disk i/o before e

perform following functions
boot cold start
wboot warm start (save i/o byte)
(boot and wboot are the same for mds)
const console status
reg-a = BP9 if no character ready
reg-a = ff if character ready
conin console character in (result in reg-a)
conout console character out (char in reg-c)
list list out (char in reg-c¢)
punch punch out (char in reg-c)
reader paper tape reader in (result to reg-a)
home move to track 60

(the following calls set-up the io parameter bloc
mds, which is used to perform subseguent reads an
seldsk select disk given by reg-c (6,1,2,..)
settrk set track address (8,...76) for sub r/w
setsec set sector address (1,....,26)

setdma set subsequent dma address (initially 86h

read/write assume previous calls to set i/o parms
read read track/sector to preset dma address
write write track/sector from preset dma addres

jump vector for indiviual routines

jmp boot

jmp wboot
jmp const
jmp conin
jmp conout

180

4aff c36d4b
4al2 c3724b
4al5 c3754b
4al8 ¢3784b
4alb c37d4b
4ale c3a74b
4a2l c3acdb
4a24 c3bb4b
4a27 c3cléb
4a2a c3cadb
4a2d c3704b
4a30 c3bldb

-

4a33+=
4a33+824a060 dped:
4a37+000000
4a3b+6ed4c?3
4a3f+0d4adee
4a43+824200 dpel:
4a47+000000
4a4b+6ed4c73
4a4f+3c4adlad
4a53+824a00 dpe2:
4a57+0066000
4a5b+6ed4c73
4a5f+6bdd4c
4a63+824a00 dpe3:
4a67+000000
4a6b+6edc73
4a6£+9a4d7b

4a73+=
4a73+1a00
4a75+03
4a76+87
4a77+00
4a78+£200
4a7a+3f00
4a7c+co
4a7d+00
4a7e+1000
4a80+02006
4a82+=
4a82+061
4a83+07
4a84+9d
4a85+13
4a86+19
4a87+05
4a88+6b
4a89+11
4a8a+l7
4a8b+03

dpb@

x1t9

dpbase

jmp
jmp
jmp
jmp
jmp
jmp
Jmp
Imp
jmp
jmp
jmp
Jjmp

maclib
disks
equ

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw
diskdef

list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst
sectran

diskdef ;load the disk definition library

4 ; four disks

$;base of disk parameter blocks
x1t0,00080h s;translate table
0000h,0000h ;scratch area
dirbuf,dpb# ;dir buff,parm block
csvd,alvd ;check, alloc vectors
x1tl,0000h s;translate table
00006h,0000h ;scratch area
dirbuf,dpbl ;dir buff,parm block
csvl,alvl ;check, alloc vectors
x1t2,00060h ;translate table
0006h,0000h ;scratch area
dirbuf,dpb2 ;dir buff,parm block
csv2,alv2 ;check, alloc vectors
x1t3,0006h stranslate table
00006h, 00000 :scratch area
dirbuf,dpb3 ;dir buff,parm block
csv3,alv3 scheck, alloc vectors
6,1,26,6,1024,243,64,64,0ffset

$;disk parm block

26 ;1sec per track

3 ;block shift

7 :block mask

] sextnt mask

242 ;disk size-l

63 ;directory max

192 ;alloch

(7] sallocl

16 ;check size

2 ;of fset

$ stranslate table

1

7

13

19

25

5

11

17

23

3

181

:list status

4a8c+09 db 9

4a8d+0f£f dab 15
4a8e+l5 db 21
4aB8f+92 db 2
4a90+08 ab 8
4a9l+0e db 14
4a92+14 db 20
4a93+1la db 26
4a94+06 db 6
4a95+0dc db 12
4a96+12 db 18
4a97+18 db 24
4a98+64 db 4
4a99+0a db 10
4a9%a+lp db 16
4a9b+16 db 22

diskdef 1,0
4a73+= dpbl eqgu dpb9 ;eguivalent parameters
01f+= alsl egu alsd ;same allocation vector size
0010+= cssl egu cssé ;same checksum vector size
4a82+= x1ltl equ x1t@ ;same translate table

diskdef 2,0
4a73+= dpb2 egu dpb# ;eguivalent parameters
BO1E+= als2 egu alsfd ;same allocation vector size
0610+= css2 equ cssP ;same checksum vector size
4a82+= x1t2 egu x1t@ ;same translate table

: diskdef 3,0

4a73+= dpb3 equ dpb# ;equivalent parameters
PB1f+= als3 equ als@ ;same allocation vector size
P010+= css3 egu cssi ;same checksum vector size
4a82+= x1t3 equ x1t@ ;same translate table

endef occurs at end of assembly

end of controller - independent code, the remaini
are tailored to the particular operating environm
be altered for any system which differs from the

the following code assumes the mds monitor exists
and uses the i/o subroutines within the monitor

® %o we we me we we Ne e wo

we also assume the mds system has four disk drive

’

gofd = revrt equ gfdh ;interrupt revert port

Pofc = intc equ #fch ;interrupt mask port

Pof3 = icon equ 6£3h ;interrupt control port

087e = inte equ 0111$1116b;enable rst @ (warm boot),rst 7
; mds monitor equates .

£8006 = mon80 equ g£800h ;mds monitor

ffof = rmon80 equ 0ffefh ;restart mon8@ (boot error)

£803 = ci equ g£f863h ;console character to reg-a

£866 = ri equ g£f8066h ;reader in to reg-a

£869 = co equ 0£f809h ;console char from ¢ to console o

f80c = po equ Ppf80ch ;punch char from ¢ to punch devic

£80f = lo equ Pf80fh ;list from c to list device

£812 = csts equ @£f812h ;console status 06/ff to register

182

4ab3
4ab6
4ab9
4abc
4abd
4ach

4ac3

4acé
4ac8

4ac9
4acc
4acf
4adl
4ad4
4ad6
4ad9
4adb

4ade
4adf

!
base
dstat
rtype
rbyte

’
ilow
ihigh

readf
writf
recal
iordy
cr
1f

signon:
#doada
3230
6b2843f
322e30
pdvago

* -e

boot:

310001
219c4a
cdd34b
af

320400
c30f4b

wo we we E we we
o
o
o
P

318000

~e

Peba
c5
wboot@:

010634
cdbb4b
febp
cd7d44b
fedd
cda74b
fed2
cdacdb

- we

cl
#62c

disk ports and commands

equ 78h :base of disk command io ports
equ base ;disk status (input)

equ base+l ;result type (input)

equ base+3 ;result byte (input)

egu base+l ;iopb low address (output)
egu base+2 ;iopb high address (output)
equ 4h ;read function

egu 6h ;write function

equ 3h ;recalibrate drive

egu 4h ;i/0 finished mask

equ #dh ;carriage return

equ Pah ;line feed

;Signon message: xxk cp/m vers y.y

db cr,lf,1f

db '29° ;sample memory size

db 'k cp/m vers '

db vers/10+'6',',."',vers mod 10+'@’

db cr,lf,8

;print signon message and go to ccp
(note: mds boot initialized iobyte at 8063h)
1xi sp,buff+80h

1xi h,signon

call prmsg ;print message

Xra a ;clear accumulator

sta cdisk ;set initially to disk a
jmp gocpm ;go to cp/m

loader on track 8, sector 1, which will be skippe
read cp/m from disk - assuming there is a 128 byt
start,

1xi sp,buff ;using dma - thus 80 thru f£f ok £
mvi c,retry ;max retries

push b

;enter here on error retries

1xi b,cpmb ;set dma address to start of disk
call setdma

mvi c,d sboot from drive @

call seldsk

mvi c,b

call settrk ;start with track @

mvi c,2 ;start reading sector 2

call setsec

read sectors, count nsects to zero
pop b ;10-error count
mvi b,nsects

183

rdsec: ;read next sector

4ael c¢5 push b ;save sector count
4ae2 cdclidb call read
4ae5 c2494b jnz booterr ;retry if errors occur
4ae8 2a6cdc 1hld iod sincrement dma address
4aeb 118000 1xi 4,128 :sector size
4aee 19 dad d sincremented dma address in hl
4aef 44 mov b,h
4afd 4d mov c,l ;ready for call to set dma
4afl cdbbdb call setdma
4af4 3aé6b4c lda ios ;sector number just read
4af7 fela cpi 26 sread last sector?
4af9 dad54b jec rdl

: must be sector 26, zero and go to next track
4afc 3a6adc lda iot ;get track to register a
4aff 3c inr a
4b00 4f mov c,a sready for call
4bg1 cda74b call settrk
4b04 af Xra a s;clear sector number
4bB5 3c rdl: inr a ;to next sector
4b06 4f mov c,a ;ready for call
4bB7 cdacdb call setsec
4bfa cl pop b ;recall sector count
4bdb 05 der b ;done?
4bdc c2elda jnz rdsec

done with the load, reset default buffer address
; (enter here from cold start boot)
enable rstf and rst7

~ Qv e
O
9
3

4bof £3 di
4bl9 3el2 mvi a,l2h ;initialize command
4bl2 d3fd out revrt
4bl4 af Xra a
4bl5 d3fc out intc ;cleared
4bl7 3e7e mvi a,inte ;rst® and rst7 bits on
4bl9 d3fc out intc
4blb af Xra a
4blc d3£3 out icon ;interrupt control
H set default buffer address to 88h
4ble $18009 1xi b,buff
4b21 cdbbdb call setdma
’
: reset monitor entry points
4b24 3ec3 mvi a,jmp
4b26 320000 sta ()]
4b29 21034a 1xi- h,wboote
4b2c 2201090 shld 1 :jmp wboot at location 00
4b2f 320500 sta 5
4b32 210663c 1xi h,bdos
4b35 220600 shld 6 ;jmp bdos at location 5
4b38 323800 sta 7*8 :jmp to mon8@ (may have been chan
4b3b 2100£8 1xi h,mon86
4b3e 223900 shld T*8+1

leave iobyte set

-

184

~e

previously selected disk was b, send varameter to

4b4l 3a0400 lda cdisk s1last logged disk number
4b44 4f mov - c,a :send to ccp to log it in
4b45 fb ei
4b46 c30034 jmp cpmb
; error condition occurred, print message and retry
booterr:
4b49 cl pop b ;recall counts
4bda 0d dcr c
4b4b ca524b jz booterd
H try again
4bde c5 push b
4b4f c3c94a jmp wbootd
booterf:
: otherwise too many retries
4b52 215b4b 1xi h,bootmsg
4b55 cdd34b call prmsg
4b58 c30fff jmp rmon80 ;mds hardware monitor
!
bootmsg:

4b5b 3£626f4 db '?boot’,8

H

;

const: ;console status to reg-a
(exactly the same as mds call)

4b61 c312£8 imp csts

conin: j;console character to reg-a
4b64 cd@3fs8 call ci
4b67 eb7f ani 7fh ;remove parity bit
4b69 c9 ret

éonout: ;console character from ¢ to console out
4b6a c309f8 jmp co

H

list: ;list device out

: (exactly the same as mds call)
4b6d c30ff8 jmp lo

i

listst:

;return list status

4b70 af Xra a
4b71 c9 ret salways not ready

punch: ;punch device out

H (exactly the same as mds call)
4b72 c30cfs8 jmp po

reader: ;reader character in to reg-a

: (exactly the same as mds call)
4b75 c306£8 jmp ri

home: ;move to home position

185

4b78
4b7a

4b7d
4b8o
4b81
4b83

4b84
4b86
4b89
4b8a
4b8c
4b8d
4b90

4b92
4b93
4b96
4b97
4b99
4b9%a

4B3R
4b9%e
4b9f
4bap
4bal
4ba2
4bas
4bab

4ba’7
4baa
4bab

4bac
4baf
4bbp

4bbl
4bb3
4bb4
4bb5
4bbé

4BB2

fed0
c3a74b

210000
79
fed4
aog

e602
32664c
79
e601
b7
caf924b
3e30

47
21684c
Te
e6cf
bd

77
9200
29

29
29
29
11334a
19
c9

216a4c
71
c9

216b4c
71
c9

g600
eb

g9

e
326b4c

6
c

: treat as track 00 seek

mvi
jmp

H
seldsk: ;select

1xi
mov
cpi
rnc

ani
sta
mov
ani
ora
jz

mvi

setdrive:

mov
1xi
mov
ani
ora
mov

ReY
dad
dad
dad
dad
1xi
dad
ret

c,8
settrk

disk given by register c

h,80800h ;return 0000 if error
a,c
ndisks ;too large?
s1leave hl = 0000
16b ;00 80 for drive 6,1 and 19 19 fo
dbank ;to select drive bank
a,c :00, 61, 10, 11
1b ;mds has 0,1 at 78, 2,3 at 88
a ;result 00?
setdrive
a,006110000b ;selects drive 1 in bank
b,a ;save the function
h,iof sio function
a,m
11461111b smask out disk number
b ;mask in new disk number
m,a ;save it in iopb
ﬁ:ﬁ shl=disk number
h %2
h ;%4
h : *8
h :1*16
d,dpbase
a shl=disk ‘header table address

settrk: ;set track address given by c

1xi
mov
ret

.
’

setsec:
1xi
mov
ret

sectran:

mvi
xchg
dad
mov
sta

mo
re

;1 set

h,iot
m,c

sector number given by ¢

h,ios
m,c

;translate sector bc using table at de

b,o ;double precision sector number i
;translate table address to hl

b ;translate(sector) address

a,m stranslated sector number to a
ios
1l,a jreturn sector number in 1

éetdma: ;set dma address given by regs b,c

186

4bbb
4bbc
4bbd
4bch

4bcl
4bc3
4bcé
4bc9

4bca
4bcc
4bcf
4bd2

4bd3
4bd4
4bds

4bde
4ba7
4bds
4bdb
4bdc
4bdd

4be@
4be3
4bed
4beb
4be?

4be8
4bea
4bed
4bee
4bef

4bf o
4bf2

4bf5
4bf8

69
60
226¢c4c
c9

Pedd
cdefi4b
cdfd4b
c9

Ped6
cdef4b
cdfd4b
c9

e
b7
c8

e5
4f
cdé6a4b
el
23
c3d34b

21684c
Te
e6f8
bl

77

e620
2l6b4c
bé

717

c9

fefa

cd3f4c

cddcdc
3a664c

mov l,c
mov h,b
shld iod
ret
read: ;read next disk record (assuming disk/trk/sec/dma
mvi c,readf ;set to read function
call setfunc
call waitio ;perform read function
ret :may have error set in reg-a
H
’
write: ;disk write function
mvi c,writf
call setfunc ;set to write function
call waitio
ret :may have error set
;
r
: utility subroutines
prmsg: ;print message at h,l1 to @
mov a,m
ora a :2ero?
rz
: more to print
push h
mov c,a
call conout
pop h
inx h
jmp prmsg
’
setfunc:
: set function for next i/o (command in reg-c)
1xi h,iof s1io function address
mov a,m ;get it to accumulator for maskin
ani 111110806b ;remove previous command
ora c sset to new command
mov m,a sreplaced in iopb
: the mds-800 controller req's disk bank bit in sec
; mask the bit from the current i/o function
ani 00100000b ;mask the disk select bit
1xi h,ios ;address the sector selec
ora m ;select proper disk bank
mov m,a ;set disk select bit on/o
ret
H
waitio: ,
mvi c,retry ;max retries before perm error
rewait:
; start the i/o function and wait for completion
call intype ;in rtype
call inbyte ;clears the controller
’
lda dbank ;set bank flags

187

4bfb
4bfc
4bfe
4co0
4ch3
4¢c85
4co6
4co8

4cdb
4céd
4che

4clo
4cl3
4cls5

4cl8

4clb
4cld

4c20
4c21

4c24
4c27
4c28
4c2b
4c2c
4c2e

4c3l

4c32
4c35

b7
3e67
B64c
c208b4c
d379
78
d37a
c3104c

da389
78
d38a

cd594c
e604
calddc

cd3fdc

fed?2
ca324c

b7
c2384c

cd4cédc
17
da324c
1f
e6fe
c2384c

c9

cddcdc
c3384c

!’
iodrl:

’
waitbh:

- ~e ~e we .. we

e ws

wready:

-

£
1]
2]
~
o]
[a}

WO WME We WE N We %g W W w0

ora a ;zero if drive 0,1 and nz
mvi a,iopb and 0ffh ;low address for iopb

mvi b,iopb shr 8 s+high address for iopb
jnz iodrl ;drive bank 1?

out ilow :low address to controlle
mov a,b

out ihigh s+high address

jmp waitd sto wait for complete
sdrive bank 1

out ilow+16h :88 for drive bank 10

mov a,b

out ihigh+16h

call instat ;wait for completion

ani iordy ;ready?

jz waito

check io completion ok

call intype ;must be io complete (08)
80 unlinked i/o complete, Pl linked i/o comple
19 disk status changed 11 (not used)

cpi 16b ;ready status change?

jz wready

must be 06 in the accumulator
ora a
jnz werror ;some other condition, re

check i/o error bits
call inbyte

ral

je wr eady ;unit not ready
rar

ani 11111116b ;any other errors?
jnz werror

read or write is ok, accumulator contains zero
ret

;not ready, treat as error for now
call inbyte iclear result byte
jmp trycount

sreturn hardware malfunction (crec, track, seek, e
the mds controller has returned a bit in each pos
of the accumulator, corresponding to the conditio
2 - deleted data (accepted as ok above)

crc error

seek error

address error (hardware malfunction)
data over/under flow (hardware malfunct
write protect (treated as not ready)
write error (hardware malfunction)

not ready

SOV B WN

188

4c38
4c39

4c3c
4c3e

4c3f
4c42
4c43
4c46
4c48
4c49
4cdb

4c4c
4c4f
4c50
4c¢53
4¢c55
4¢56
4c58

4c59
4c5¢
4c5d
4c60
4c62
4c63
4c65

4c66

4c67
4¢c68
4c69
4céba
4c6b
4cé6e

od
c2f24b

3edl
c9

3a664c
b7
c2494c
db79
c9
dbg9
c9

3a664c
b7
c2564c
db7b

00

80

1
B2
1
8000

we (T we wo o %o we we

~o e

-~

intype:

intypl:

inbyte:

inbytl:

instat:

instal:

(accumulator bits are numbered 7 6 5 4 3 2 1 0)

it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable. in any case, the not ready conditio
treated as a separate condition for later improve

rycount:

register ¢ contains retry count, decrement 'til z
dcr c

jnz rewait ;for another try
cannot recover from error

mvi a,l serror code

ret

intype, inbyte, instat read drive bank 66 or 10
lda dbank

ora a

jnz intypl ;skip to bank 190
in rtype

ret

in rtype+l@h ;78 for 8,1 88 for 2,3
ret

lda dbank

ora a

jnz inbytl

in rbyte

ret

in rbyte+l6h

ret

1da dbank

ora a

jnz instal

in dstat

ret

in dstat+10h

ret

data areas (must be in ram)

db 2 -dlsk bank 00 if drive 6,1
190 if drive 2,3

;io parameter block

db 80h ;normal i/o operation

db readf ;1o function, initial read
db 1l ;humber of sectors to read
db offset ;track number

db 1l ;sector number

dw buff ;10 address

define ram areas for bdos operation

189

endef

4cbe+= begdat equ $

4cbe+ dirbuf: ds 128 ;directory access buffer
4cee+ alvh: ds 31

4404+ csvd: ds 16

4416+ alvl: ds 31

4d43c+ csvl: ds 16

4d4c+ alv2: ds 31

4d6b+ csv2: ds 16

4d7b+ alv3: ds 31

4d9a+ csv3: ds 16
4daa+= enddat equ $

B1l3c+= datsiz equ $=-begdat
4daa end

190

0014

0009
3400
3coe6
4a00
0004
00083

4200

g82c =

4a060
4a03
4a06
4a09
4afc
4a@f
4al2
4als
4al8
4alb
4ale
4a2l
4a24
4a27
4aa
4a2d
4a30

4a33
4a37
4a3b
4a3f

4a43
4a47
4a4b
4adf

4a53
4a57
4a5b
4a5f

c39cda
c3a64a
c3114b
c3244b
c3374b
c3494b
c34d4b
c34£4b
c3544b
c35a4b
c37d4b
c3924b
c3adéb
c3c34b
c3d64b
c34b4b
c3a74b

734200
000000
f04c8d
ec4d7e

734a00
000000
f04c8d
fc4d8f

734200
0000080
fB4c8d
Pcldeae

size

~e e we wo H ne we

o
-
]
2]

ccp
bdos
bios
cdisk
iobyte

’

nsects

.
’

.
’

wboote:

Q~e ~o wo we

pbase:

~-e

APPENDIX C: A SKELETAL CBIOS
skeletal cbios for first level of cp/m 2.0 altera
eqgu 20 ;cp/m version memory size in kilo

"bias" is address offset from 3406h for memory sy
than 16k (referred to as “b" throughout the text)

equ (msize-20)*1024

equ 3400h+bias ;base of ccp

egu ccp+806h ;base of bdos

equ ccp+l686h :base of bios

egu 6094h scurrent disk number #=a,...,15=p
equ PB03h ;intel i/o byte

org bios sorigin of this program

equ ($-ccp) /128 ;jwarm start sector count
jump vector for individual subroutines

jmp boot scold start

jmp wboot ;warm start

jmp const ;console status

jmp conin ;console character in
jmp conout ;console character out
jmp list :list character out

jmp punch ;punch character out

jmp reader ;reader character out
jmp home ;move head to home positi
jmp seldsk ;select disk

jmp settrk ;set track number

jmp setsec ;set sector number

jmp setdma ;set dma address

jmp read ;read disk

jmp write ;jwrite disk

jmp listst ;return list status

jmp sectran ;sector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 09

dw trans,9006h
dw p000h,0000h
dw dirbf,dpblk
dw chkfo,allee
disk parameter header for disk 91
dw trans, 8006h
dw P000h,B8060h
dw dirbf,dpblk
dw chkfl,alldl
disk parameter header for disk 62
dw trans,0000h
dw p9006h,0000h
dw dirbf,dpblk
dw chk02,all92

191

4a63
4a67
4a6b
4a6f

343
4a7b
4a7f
4a83
4a87
4a8b

4a8d
4a8f
4290
4a91
4a92
4a94
4a96
4a97
4298
4a9%a

4a9c
4a9d
4aald
4aa3l

4aab6
4aad
4aab
4aae

4abl
4ab3
4ab5s

4ab7

4aba
4abb
4abc
4abd
4abe
4acl

734a00
000000
f04c8d
lcd4ecd

258208

170309
150208
141ap6
121804
1016

lad@
83
a7
00
£200
3f00
ch
00
10006
0200

af

320300
320400
c3ef4a

318000
fedd

cdSa4b
cd544b

962c
fed0
1602

210034

c5
das
e5
4a
cd924b
cl

~e

~e we

trans:

épblk:

fo 2 TR UIE IR 1

;
wboot:

-e

~e e

loadl:

disk parameter header for disk 83

dw trans,9060h
dw 90006h,000606h
dw dirbf,dpblk
dw chk#3,alld3

sector translate vector

4B Ye7¢1311%4 i88SkQEE 4:8:9:8

db 23,3,9,15 ;sectors 9,10,11,12
db 21,2,8,14 ;sectors 13,14,15,16
db 20,26,6,12 ;sectors 17,18,19,20
db 18,24,4,10 ;sectors 21,22,23,24
db 16,22 ;sectors 25,26

;disk parameter block, common to all disks
dw 26 ;sectors per track
db 3 sblock shift factor
db 7 :block mask

db "] snull mask

dw 242 :disk size-l

dw 63 ;directory max

db 192 salloc @

db 7] ;alloc 1

dw 16 ;check size

daw 2 strack offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initi

Xra a ;zero in the accum

sta iobyte ;clear the iobyte

sta cdisk ;select disk zero

jmp gocpm ;initialize and go to cp/
;simplest case is to read the disk until all sect
1xi sp,86h ;suse space below buffer £
mvi c,9 ;select disk @

call seldsk

call home 3go to track 69

mvi b,nsects :b counts # of sectors to
mvi c,? ;¢ has the current track
mvi d,2 :d has the next sector to

note that we begin by reading track 0, sector 2 s
contains the cold start loader, which is skipped

1xi h,ccp ;base of cp/m (initial 1lo
;load one more sector

push b ;save sector count, current track
push d ;save next sector to read

push h :save dma address

mov c,d ;get sector address to register c
call setsec ;set sector address from register
pop b :recall dma address to b,c

192

4ac2
4ac3

4acé
4ac9
4acb

dace
4act
4ad2
4ad3
4add
4ad>s
4ad6

4ad9
4ada
4adb
4add

4aed
4ae2

4ae3
4ab4
4aeb
4aeb
4ae9
4aea
4aeb
daec

4aef
4afl
4af4
4af7

4afa
4afd
4b6 0o

4b03
4b06

4b09
4bda
4boad
4bge

cS5
cdad4b

cdc34b
fedo
c2abda

el
118000

caefda

14

7a
felb
dabada

1601
gc

c5
as
eb5
cd7d4b
el
dl
cl
c3bada

3ec3

320000
21834a
220100

3208500
21063c
220600

018000
cdad4b

fb
3ab4040
4f
c30034

~e we

. weo

e we

e we

~e we

Qv =~
(]
9
3

.

-.

-,

push b ;replace on stack for later recal
call setdma ;set dma address from b,c

drive set to @, track set, sector set, dma addres
call read

cpi @o6h ;any errors?

jnz wboot ;retry the entire boot if an erro
no error, move to next sector

pop h ;recall dma address

1xi 4,128 ;dma=dma+128

dad d ;new dma address is in h,l

pop d srecall sector address

pop b ;recall number of sectors remaini
der b ;sectors=sectors-1

jz gocpm ;transfer to cp/m if all have bee

more sectors remain to load, check for track chan
inr d

mov a,d ;sector=27?, if so, change tracks
cpi 27

jc loadl ;carry generated if sector<27

end of current track, go to next track

mvi 4,1 :begin with first sector of next
inr c strack=track+l

save register state, and change tracks
push b

push d

push h

call settrk ;track address set from register
pop h

pop d

pop b

jmp loadl :for another sector

end of load operation, set parameters and go to c

mvi a,8c3h ;c3 is a jmp instruction

sta)] ;for jmp to wboot

1xi h,wboote :wboot entry point

shld 1 1set address field for jmp at @
sta 5 ;for jmp to bdos

1xi h,bdos ;bdos entry point

shld 6 ;address field of jump at 5 to bd
1xi b,806h ;default dma address is 8@h

call setdma

ei ;enable the interrupt system

1da cdisk ;get current disk number

mov c,a :send to the ccp

jmp cecp :go to cp/m for further processin

193

4bl1l
4b21
4b23

4b24
4b34
4b36

4b37
4b38
4b48

4b49
4b4a

4b4b
4b4c

4b4d
4bde

4b4f
4b51
4b53

4b54
4b56
4b59

4b5a
4b5d
4b5e
4b61

3el9
c9

e67f
c9

79
c9

79
c9

3ela
e67f
c9

gedO
cd7d44b
c9

210000
79
32efdc
febd

Q) w* we %o ws w0 w

onst:

’
conin:

conout:

eader:

o I¥ we we we w0 Ne we

éeldsk:

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with s
to insert your own code

;console status, return #ffh if character ready,

ds 16h ;space for status subroutine
mvi a,foh
ret

;console character into register a

ds 16h sspace for input routine
ani 7f£h sstrip parity bit
ret

;console character output from register c

mov a,c :get to accumulator
ds 16h ;space for output routine
ret

:1list character from register c¢
mov a,c ;character to register a
ret ;null subroutine

;return list status (6 if not ready, 1 if ready)
Xra a :0 is always ok to return
ret

;punch character from register ¢
mov a,c ;character to register a
ret snull subroutine

sread character into register a from reader devic

mvi a,lah ;enter end of file for now (repla
ani 7fh ;remember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

smove to the track 00 position of current drive
translate this call into a settrk call with param

mvi c,@ ;select track 0

call settrk

ret ;we will move to @8 on first read
;select disk given by register ¢

1xi h,880806h ;error return code

mov a,c

sta diskno

cpi 4 ;must be between # and 3

194

4b63
4b64

4bé6e
4b71
4b72
4b74
4b75
4b76
4b77
4b78
4b7b
db7c

4b7d
4b7e
4b81
4b91

4b92
4b93
4b96
4ba6

4ba?7
4ba8
4ba9
4baa
4bac

4bad
4bae
4baf
4bb2
4bc2

4bc3
4bd3

4bdé6

dae

3aefdc
6f
2600
29

29

29

29
11334a
19

c9

79
32e94c

c9
79
32ebdc
c9

eb
29
6e
2600

69
60
22eddc

c9

c3e64b

rnc ;no carry if 4,5,...
: disk number is in the proper range
ds 10 ;space for disk select
; compute proper disk parameter header address
lda diskno
mov 1,a :1=disk number 0,1,2,3
mvi h,9 s+high order zero
dad h 1 %2
dad h 1 %4
dad h ;%8
dad h :*16 (size of each header)
1xi d,dpbase
dad a s+hl=,dpbase(diskno*16)

ret

’
settrk: ;set track given by register c

mov a,c

sta track

ds 16h ;space for track select
ret

’
setsec: ;set sector given by register ¢

mov a,c
sta sector
ds 16h ;space for sector select
ret
H
sectran:’

stranslate the sector given by bc using the
stranslate table given by de

xchg shl=.trans
dad b shl=.trans(sector)
mov 1,m ;1 = trans(sector)
mvi h,? +hl= trans(sector)
ret swith value in hl
’
setdma: ;set dma address given by registers b and ¢
mov 1l,c ;low order address
mov h,b shigh order address
shld dmaad ;save the address
das 16h ;space for setting the dma addres
ret

so we will allow space to set up read command, th
common code in write)

ds 16h ;set up read command

jmp waitio ;to perform the actual i/o

read: ;perform read operation (usually this is similar
H
;

’
write: ;perform a write operation
ds 16h ;set up write commanu

H

waitio: ;enter here from read and write to perform the ac
operation., return a #6h in register a if the ope
properly, and #lh if an error occurs during the r

~s o

195

4beb
4ceb
4ce8

4ce9
4ceb
4ced
4cef

4cf@
4cfo
4470
448¢F
4dae
4dcd
4dec
4dfc
4efc
4elc

de2c
#l3c
4e2c

3edl
c9

.. we W6 we W

® we we W “e we

’
track:
sector
dmaad:
diskno

’

begdat
dirbf:
allge:
allol:
alle2:
all@g3:
chkdo:
chk@l:
chkg2:
chkg3:

énddat
datsiz

in this case, we have saved the disk number in °'d

ds
mvi
ret

256

a,l

the track number in ‘track®’ (8-76
the sector number in ‘'sector’ (1-
the dma address in ‘dmaad’ (0-655
;space reserved for i/o drivers
serror condition

;replaced when filled-in

the remainder of the cbios is reserved uninitiali
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between "begdat"” and “enddat").

ds
ds
ds
ds

scratch

egu
ds
ds
ds
ds

equ
eau
end

oD

;s two bytes for expansion
;two bytes for expansion
;direct memory address
s;disk number 9-15

ram area for bdos use

$
128
31
31
31
31
16
16
16
16

;beginning of data area
;scratch directory area
tallocation vector
sallocation vector
sallocation vector
sallocation vector
scheck vector 0
scheck vector 1
;check vector 2
;check vector 3

WS

send of data area

$-begdat;size of data area

196

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

combined getsys and putsys programs from Sec 4,
Start the programs at the base of the TPA

e we

2190 org 8100h

0014 = msize equ 20 ‘ ; size of cp/m in Kbytes
“bias" is the amount to add to addresses for > 20k
(referred to as “b" throughout the text)

.
’
.
’

0800 = bias eqgu (msize=-20)*1024
3400 = cecp equ 34@Ph+bias
3clP = bdos equ ccp+8806h
4abp = bios equ ccp+1600h

: getsys programs tracks @ and 1 to memory at

: 3886h + bias

H register usage

: a (scratch register)

: b track count (@...76)

: c sector count (1...26)

: d,e (scratch register pair)

: h,1 load address

H sp set to stack address

gstart: ; start of getsys
9100 318633 Ixi sp,ccp-0080h ; convenient plac
#1963 218833 1xi h,ccp-0888h ; set initial loa
0106 0600 mvi b,0 ; start with trac

rd$trk: : read next track
0108 fedl mvi c,l : each track star

rd$sec:
6l0a cdoge3 call read$sec : get the next se
01904 118000 1xi 4,128 ; offset by one s
9116 19 dad e] ; (hl=h1+128)
8111 @c¢ inr c : next sector
9112 79 mov a,c ; fetch sector nu
$113 felb cpi 27 ; and see if la
6115 dafagdl jc rdsec : <, do one more

; arrive here at end of track, move to next track
9118 04 inr b ; track = track+l
8119 78 mov a,b ;s check for last
flla fe@2 cpi 2 ; track = 2 ?
811lc da@8ol jc rds$trk : <, do another

; arrive here at end of load, halt for lack of anything b
011f fb ei
0120 76 hlt

197

9218
8219
f2la
B2lc

021f
0220

0309

0300
p301
9302

9342
p343

3180633
218033
p60o

fell

cdonp4
118000
19

dgc

79
felb
dadad2

24

78
fed2
da@d8n2

£b
76

¢S5
e5

el

cl

«s %o we

org

put$sys:
1xi
1xi
mvi

wrStrk:
mvi

wr$sec:
call
1xi
dad
inr
mov
cpi
jc

; arrive here at end of track, move to

inr
mov
cpi
jc

-e

ei
hlt

($+8168h) and B££00h

sp,ccp-0086h
h,ccp-6680h
b,d

c,l

writeSsec
d,128

4

c

a,c

27

wr$sec

b

a,b

2
wr$trk

done with putsys, halt for lack

~ we weo

-

e “e we we W “e we

putsys program, places memory image starting at
388dh + bias back to tracks @ and 1
start this program at the next page boundary

convenient plac
start of dump
start with trac

start with sect

write one secto
length of each
<hl>=<hl> + 128
<e> = <c> + 1
see if

past end of t
no, do another

next track

~e we wo we

track = track+l
see if

last track
no, do another

of anything bette

; user supplied subroutines for sector read and write

-

org

read$sec

we we we we oo

push b
push h
; user defined read operation goes here
ds 64
pop h
pop b

move to next page boundary

($+01006h) and O££00h

read the next sector
track in ,

sector in <c>
dmaaddr in <hl>

198

6344 c9 ret
0400 org ($+0100h) and B£f£f60h ; another page bo
write$sec:

: same parameters as read$sec

9408 c5 push b
0401 eS push h
; user defined write operation goes here
9402 ds 64
0442 el pop h
0443 c1 pop b
0444 9 ret

; end of getsys/putsys program

9445 end

199

APPENDIX E: A SKELETAL COLD START LOADER

this is a sample cold start loader which, when modified
resides on track 00, sector 81 (the first sector on the
diskette). we assume that the controller has loaded
this sector into memory upon system start-up (this pro-
gram can be keyed-in, or can exist in read/only memory
beyond the address space of the cp/m version you are
running). the cold start loader brings the cp/m system
into memory at "loadp“ (34@66h + "bias")., in a 20k
memory system, the value of "bias®" is 0086h, with large
values for increased memory sizes (see section 2). afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
"bios" + "bias." the cold start loader is not used un-
til the system is powered up again, as long as the bios
is not overwritten. the origin is assumed at 0606h, an
must be changed if the controller brings the cold start
loader into another area, or if a read/only memory area

WO NB WO VO NG NG WP We We N N NE Ve N WE W6 WO WS

is used.

0000 org 2 ; base of ram in cp/m
p814 = msize equ 20 ; min mem size in kbytes
00ge = bias egu (msize—-20) *1024 ; offset from 28k system
3400 = ccp equ 34900h+bias : base of the ccp
4app = bios equ ccp+1680h ; base of the bios
0300 = biosl equ 8369h ; length of the bios
4a00 = boot egu bios
1900 = size equ bios+biosl-ccp ; size of cp/m system
0032 = sects equ size/128 : # of sectors to load

: begin the load operation

cold:
0000 010200 1xi b,2 ; b=0B, c=sector 2
8003 1632 mvi d,sects ;s d=# sectors to load
0065 210634 1xi h,ccp ; base transfer address

lsect: ; load the next sector

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,

into the address given by <hl>

N6 WO N8 e we ws we

branch to location “cold" if a read error occurs

200

goo8
000b

g06b
pdéc

g07a
807c
9874
0080

c36bdo

15
cafdda

318000
39
dc
79

felb
dad8oe

fedl
c30800

KRKRKKKRRRRRARRK AR RRKRRA KRR R KRR ARk Rhkhhkhkhhkhkhhhkkkhk
*

* user supplied read overation goes here...
*

hhkhkhkkhkkhkhkkhhhkhkhkhkhkhkhhkhhkhhkhhkkhkhkhhkkkkkhkkkhhkhkhhkhhkkk

we %o we we we

jmp past$patch ; remove this when patche
ds 60h

past$patch:

; go to next sector if load is incomplete
dcr d sects=sects-1

H
jz boot ; head for the bios
more sectors to load

we aren't using a stack, so use <sp> as scratch registe
to hold the load address increment

w6 wo we we

1xi sp,128 ; 128 bytes per sector
dad Sp ; <hl> = <hl> + 128

inr c ; sector = sector + 1
mov a,c

cpi 27 ; last sector of track?
jc lsect : no, go read another

end of track, increment to next track

-e

mvi c,l ; sector =1

inr b ; track = track + 1
jmp 1sect ;: for another group
end ; of boot loader

201

APPENDIX F: <C{P/M DISK DEFINITION LIBRARY
CP/M 2.0 disk re-detinition library

Copyright (c) 1979
Digital Rasearch
Box 579

Pacific Grove, Ca
93950

CP/M logicel disk drives are defined using the

macros given below, where the sequence of calls
is:

disks i

diskdef oarameter-list-¢
diskdef parameter-list-l
éiékdef parameter-list-n
endef

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of the ith drive (i=é,1,...,n-1)

each parameter-list-i takes the form
dn,fsc,lsc, [skf) ,bls,dks,dir,cks,ofs, [#]

BWNHSCOUIUOMBPWNHFROYCOENOUVIEWNNHD OOV & WN -
€0 90 00 60 40 G0 U €0 GO 00 06 00 G0 90 s G0 66 G0 G0 00 00 €0 S0 00 eo 00 00 4O 48 @s oe e se 00

WWWWWNNRONNNNNDNDNN e

W WO WO N NG WE WD NG NG NP NG NG We WO WP UE NG Ve Ve WO W6 WO Ne NG WG NP WO WG WO WO WO NG N WE V6 W WP VO VO WS We WO WE W W Ve U6 We %o %o We %6 Wo

where
dn is the disk number #,1,...,n-1
fsc is tue tirst sector number (usually 8 or 1)
1sc is tae last sector number on a track
skf is optional “skew factor" for sector translate
bls is tne data block size (10824,2048,...,16384)
dks is tne disk size in bls increments (word)
dir is tne number of directory elements (word)
cks is the number of dir elements to checksum
35: ofs is the number of tracks to skip (word)
36: (0] is an optional @ which forces 16K/directory en
37:
38: for convenience, the form
39: dn,dm
40: defines disk dn as having the same characteristics as
41: a previously defined disk dam.
42:;
43: a standard four drive CP/M system is defined by
44: disks 4
45: diskderf 0,1,26,6,1024,243,64,64,2
46: dsk set [/}
47 rept 3
48: dsk set dsk+l
49; diskdef %$dsk,0
50: endm
51: endect
52:
53: the value of "begdat” at the end of assembly defines t

202

54:
55:
56:
57:
58:
59:
60:

621

64:

86:
87:
88:
89:
90:
9l1:
92:
93:
94:
95:
96:
97:
98:
99:
109:
181:
162:
103:
104:
185
106:
167:
168:

Q)% v Se S0 wo we e v

khdr

~ 0

Qu~e

pe&dn:

H
disks
ndisks
dpbase
i

dsknxt

dsknxt

apbhdr
dpb&dn

beginning of the uninitialize ram area above the bios,
while the valve of “enddat" defines the next location

following the end of the data area., the size of this

area is given by the value of "datsiz" at the end of t
assembly. note that the allocation vector will be qui
large if a large disk size is defined with a small blo
size.

macro dn
Gdefine a single disk header list

dw xlt&dn,6000h ;translate table

dw 9006h,¥0606h ;scratch area

daw dirbuf,dpb&dn ;dir buff,parm block
dw csv&an,alvadn ;check, alloc vectors
endm

macro nd
define nd disks

set nd ::for later reference

equ $:base of disk parameter blocks
generate the nd elements

set "]

rept nd

dskhdr %dsknxt

set dsknxc+l

endm

endm

macro dn
equ $;disk parm block
endm

macro data,comment

define a db statement

db data comment
endm

macro data,comment

define a dw statement

dw data comment
endm

macro m,n

greatest common divisor of m,n

produces value gcdn as result

(used in sector translate table generation)

set m ::variable for m
set n ;;variable for n
set /] ;;variable for r
rept 65535

set gcdm/gcdn

set gcdm - gcdx*gcdn

if gcdr = 0

exitm

endif

203

189: gcdm set gcdn

116: gcdn set gcdr

111: endm

112 endm

113: ;

114: diskdef macro dn, fsc,1sc,skf,bls,dks,dir,cks,ofs,k1l6
115: ;; generate the set statements for later tables
116: if nul lsc

117: ;; current disk dn same as previous fsc

118: dpb&dn equ dpb&fsc ;zaguivalent parameters

119: als&dn equ als&fsc ;same allocation vector size
120: css&dn equ css&fsc ;same checksum vector size
121: x1lt&dn equ xltsfsc ;same translate table

122: else

123: secmax set lsc-(£fsc) ; 1sectors @...secmax
124: sectors set secmax+l; ;number of sectors

125: als&dn set (dks) /8 ;;:;size of allocation vector
126: if ((dks) mod ¢) ne @

127: als&dn set als&dn+l

1238: endif

129: css&dn set (cks)/4 ;;number of checksum elements
139: ;; generate the block shift value

131: blkval set bls/128 ;;number of sectors/block
132: blkshf set 0 ;;counts right #'s in blkval
133: blkmsk set /] ;3cills with 1's from right
134: rept 16 ;;once for each bit position
135: if blkval=l

136: exitm

137: . endif

138: ;; otherwise, high order 1 not found yet

139: blkshf set blkshf+l

140: blkmsk set (blkmsk shl 1) or 1

141: blkval set blkval/2

142: endm .

143: ;; generate the extent mask byte

144: blkval set bls/1024 ; snumber of kilobytes/block
145: extmsk set) ;3£iil from right with 1's
146: rept 16

147: if blkval=l

148: exitm

149: endif

158: ;; otherwise more to shift

151: extmsk set (extmsk shl 1) or 1

152: plkval set blkval/2

153: endm

154: ;; may be double byte illocation

155: if {(dks) > 256

156: extmsk set (extmsk shr 1)

157: endif

158: ;; may be optional [@#) in last position

159: if not nul klé

160: extmsk set klé6

le61l: endif

162: ;; now generate directory reservation bit vector
163: dirrem set dir ;:% remaining to process

..204

164:
165:
166:
l67:
163:
169:
179
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182
183:
184:
185:
1486:
187:
183:
189:
194
191:
192:
193:
194:
195:
196:
197:
198:
199:
200
221:

205:
206:
207
208
289:
210:
211:
212:
213:
214:
215:
216:
217:
218:

dirbks
dirblk

e we
~o we

dirblk
dirrem

dirrem

. e
e

xlt&dn

xlt&dn
i

nxtsec
nxtbas

H
eltst

o e T3 we

. ~e

r s
nelts
xlt&dn

nxtsec
nxtsec

nelts

set bls/32 ;;number of entries per block
set 7 ;;£ill with 1's on each loop
rept 16

if dirrem=9

exitm

endif

not complete, iterate once again
shift right and add 1 high order bit

set (dirblk shr 1) or 8900h
if dirrem > dirbks

set dirrem-dirbks

else

set 2

endif

endm

dpbhdr dn ;s 1g2nerate equ $
ddw $sectors,<;sec per track>
ddb gblkshf,<;blcck shift>
ddb $blkmsk,<;blcck mask>

ddb sextmsk,<;extnt mask>

ddw $(dks)-1,<;aisk size-1>
adw $(dir)-1,<;airectory max>
adb g¢dirblk shr §,<;alloc@>
ddb $dirblk ana 0ffh,<;allocl>
ddw $(cks)/4,<;check size>
ddw 3ofs,<;offset>

generate the translate table, if requested
it nul skf

egu] ;no xlate table
else

if skf = @

equ) ;no xlate table
else

generate the transiate tapole

set 0 ;;uext sector to fill
set ¢ :;mcves by one on overflow
gcd $sectors,skf

gcdn = gcd(sectors,skew)

set sectors/gcdn

neltst is number of elements to generate
before we overlap orevious elements

set neltst ;;cocunter

equ $;translate table
rept sectors ;;once for each sector
if sectors < 256

ddb $nxtsec+(£fsc)

else

ddw snxtsec+(fsc)

endif

set nxtsec+(skf)

if nxtsec >= sectors

set nxtsec-sectors

endif

set nelts-1

if nelts = ¢

205

219:
220
221:
222:
223:
224:
225:
226
227:
228:
229:
230
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244;
245;
246:
247:
248:
249:

nxtbas. .

nxtsec
nelts

defds
lab:

[Wrpy

ds

.
’

endet
HH
begdat
dirouf:
dsknxt

dsknxt

enddat
datsiz

e e
rs

set
set
set
endif
endm
endif

endif

endm
macro
ds
endm
macro
defds
endm

macro

nxtbas+i
nxtbas
neltst

;:end of nul fac test
;send of nul bls test

lab,space
space

lb,dn,val
1b&dn, $valsadn

generate the nec@2ssary ram data areas

equ
ds
set
rept
las
lds
set
endm
egu
eqgu

$

128 ;directory access buffer
"]

ndisks ;;once for eacn disk
alv,%dsknxt,als

csv, $dsknxt,css

dsknxt+l

$
$~-begdat

db @ at this point forces hex record

endm

206

e se 00 so 00 es s o0 ¢0 o0

QSOOI EWN

(-
w N -
o oo ve

14:

e
N owm
o oo ve

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS.

;******tt***************t*****************************

o % *
i Sector Deblocking Algorithms for CP/M 2.0 *
. % *
;***
;
H utility macro to compute sector mask
smask macro hblk
;s compute 1092 (hblk), return €x as result
i3 (2 ** @x = hblk on return)
Qy set hblk
ax set '}
] count right shifts of @y until =1
rept 8
if ey = 1
exitm
endif
HH @y is not 1, shift right one position
Qy set @y shr 1
@x set éx + 1
endm
endm
;***************************************t*************
'S *
!
;> CP/M to host disk constants *
o X *
;***************************************t*************
blksiz equ 2048 ;CP/M allocation size
‘hstsiz equ 512 shost disk sector size
hstspt equ 20 ;host disk sectors/trk
hstblk equ hstsiz/128 :CP/M sects/host buff
cpmspt equ hstblk * hstspt ;CP/M sectors/track
secmsk equ hstblk-1 ;sector mask
smask hstblk ;compute sector mask
secshf equ ex :11og2 (hstblk)
;***
X *
’
;¥ BDOS constants on entry to write *
'R] *
;***
wrall equ 8 iwrite to allocated
wrdir equ 1 iwrite to directory
wrual egu 2 ;write to unallocated
;***
%] *
’
:* The BDOS entry points given below show the *
: * code which is relevant to deblocking only. *
o« % *

;***

-

207

54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
180:
101:
102:
163:

: DISKDEF macro, or hand coded tables go here
dpbase egu ;disk param block base
boot:
wboot:
senter here on system boot to initialize
Xra a ;8 to accumulator
sta hstact shost buffer inactive
sta unacnt ;clear unalloc count
ret
’
seldsk:
;select disk
mov a,c ;selected disk number
sta sekdsk ;seek disk number
mov 1,a ;disk number to HL
mvi h,?
rept 4 ;smultiply by 16
dad h
endm
1xi d,dpbase sbase of parm block
dad d shl=,dpb (curdsk)
ret
’
settrk:
;set track given by registers BC
mov h,b
mov 1l,c
shld sektrk strack to seek
ret
’
setsec:
;set sector given by register ¢
mov a,c
sta seksec ;sector to seek
ret
setdma:
;set dma address given by BC
mov h,b
mov l,c
shld dmaadr
ret
sectran:
stranslate sector number BC
mov h,b
mov 1l,c
ret

-,

208

104:
185:
146:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
128:
121
122:;
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142;
143:
144:
145:
146:
147:
148:
149:;
158:
151:
152:
153:
154:
155
156:
157:
158:

;***

', *
’
s * The READ entry point takes the place of *
: * the previous BIOS defintion for READ, *
« % *
’

;****************************t************************
read:

;read the selected CP/M sector

nvi a,l

sta readop ;read operation

sta rsflag ;must read data

mvi a,wrual

sta wr type ;treat as unalloc
jmp rwoper ;to perform the read

t2 222 RS2 R Rttt 2 2 i it R
*

The WRITE entry point takes the place of *

the previous BIOS defintion for WRITE. *
*

;*********************************t*******************
write:

e We NE %o “e we
* % * * ¥

;write the selected CP/M sector

Xra a ;8 to accumulator

sta readop ;not a read operation
mov a,c ;write type in ¢

sta wr type

cpi wrual swrite unallocated?
jnz chkuna ;check for unalloc

e wo

write to unallocated, set parameters

mvi a,blksiz/128 snext unalloc recs
sta unacnt

l1da sekdsk ;disk to seek

sta unadsk s;unadsk = sekdsk
lhld sektrk

shld unatrk sunatrk = sectrk
lda seksec

sta unasec ;unasec = seksec

’
chkuna:
scheck for write to unallocated sector

lda unacnt ;any unalloc remain?
ora a
jz alloc ;skio if not

’

: more unallocated records remain
dcr a sunacnt = unacnt-l
sta unacnt
lda sekdsk ;same disk?
1xi h,unadsk
cmp m ;sekdsk = unadsk?
jnz alloc ;skip if not

~e wo

disks are the same

209

159:
160:
161l:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172
173:
174:
175:;
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192;
193:
194:
195:
196:
197:
198:
199:;
200:
201:
202:
203:
204:
285:
206:
207:
208:
209:
210:
211:
212:
213:

1xi h,unatrk

call sektrkcmp ;sektrk = unatrk?

jnz alloc ;skip if not
’
H tracks are the same

1lda seksec ;ssame sector?

1xi h,unasec

cmp m ;seksec = unasec?

jnz - alloc ;skip if not
’
H match, move to next sector for future ref

inr m ;unasec = unasec+l

mov a,n send of track?

cpi cpmspt ;count CP/M sectors

je noovf ;skip if no overflow
r
: overflow to next track

mvi m,d ;unasec =

1hld unatrk

inx h

shld unatrk sunatrk = unatrk+l
H
noovf

;match found, mark as unnecessary read

Xra a :9 to accumulator

sta rsflag ;rsflag = @

jmp rwoper ;to perform the write
r
alloc:

;jnot an unallocated record, regquires pre-read

Xra a 18 to accum

sta unacnt ;unacnt = ¢

inr a +1 to accum

sta rsflag srsflag = 1
;***
%k *
[
s * Common code for READ and WRITE follows :
o % B
;***
rwoper:

;enter here to perform the read/write

Xra a szero to accum

sta erflag ;no errors (yet)

lda seksec scompute host sector

rept secshf

ora a scarry = @

rar ;shift right

endm

sta sekhst. ;host sector to seek
’
H active host sector?

1xi - h,hstact ;host active flag

mov a,m

mvi m,l :always becomes 1

210

214:
215:
216:
217:
218:
219:
220:
221:
222
223
224;
225:
226:
227:
228:
229:
230:
231:
232;
233:
234:
235:
236:
237:
238:
239:;
240:
241:
242:;
243:
244:
245:
246:
247:
248:
249:;
250:
251:
252:;
253
254:
255
256:
257:
258
259;
260:
261:
262:
263:
264:
265:
266
267:
268:

ora a swas it already?
jz filhst :£ill host if not
’
F host buffer active, same as seek buffer?
lda sekdsk ‘
1xi h,hstdsk ;same disk?
cmp m ssekdsk = hstdsk?
jnz nomatch
’
; same disk, same track?
Ixi h,hsttrk
call sektrkcmp ;sektrk = hsttrk?
jnz nomatch
’
s same disk, same track, same buffer?
lda sekhst
1xi h,hstsec ;sekhst = hstsec?
cmp m
jz match sskip if match
’
nomatch:
;proper disk, but not correct sector
lda hstwrt shost written?
ora a
cnz writehst sclear host buff
’
filhst:
;may have to £ill the host buffer
lda sekdsk
sta hstdsk
1hld sektrk
shld hsttrk
1da sekhst
sta hstsec
1da rsflag sneed to read?
ora a
cnz readhst syes, if 1
Xra a ;18 to accum
sta hstwrt ;no pending write
r
match:
scopy data to or from buffer
lda seksec smask buffer number
ani secmsk sleast signif bits
mov l,a sready to shift
mvi h,d sdouble count
rept 7 sshift left 7
dad h
endm
H hl has relative host buffer address
1xi d,hstbuf
dad d shl = host address
xchg snow in DE
lhla dmaadr ;get/put CP/M data
mvi c,128 :length of move

211

269: 1da readop swhich way?
278: ora a

271: jnz rwmove :skip if read

272: ;

273: ; write operation, mark and switch direction

274: mvi a,l

275: sta hstwrt shstwrt = 1

276: xchg ;source/dest swap

277: ;

278: rwmove:

279: :C initially 128, DE is source, HL is dest

280 ldax d ;source character

281: inx d

282: mov m,a ;to dest

283: inx h

284: decr c ;loop 128 times

285: jnz rwmove

286: ;

287: ; data has been moved to/from host buffer

288: lda wr type ;write type

289: cpi wrdir sto directory?

290 1lda erflag ;in case of errors

291: rnz sno further processing

292: ;

293: ; clear host buffer for directory write

294: ora a ;errors?

295: rnz sskip if so

296: xra a ;0 to accum

297: sta hstwrt sbuffer written

298: call writehst

299 1lda erflag

300: ret

301: ;

352: ;****************************'k************************

383: ;* *

304: ;* Utility subroutine for 16-bit compare *
P5: % *

3;2: ;***

307: sektrkcmp:

308: sHL = ,unatrk or .hsttrk, compare with sektrk

309: xchg

310: 1xi h,sektrk .

311: ldax da ;low byte compare

312: cmp m ;same?

313: rnz sreturn if not

314: ; low bytes equal, test high 1ls

315: inx d

316: inx h

317: ldax da

318: cmp m ;sets flags

319: ret

3208: ;

212

321:
322:
323:
324:
325
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338
339:
340:
341:
342:
343:
344;
345:
346:
347:
348:
349:
350
351:
352:
353:
354:
355:
356
357:
358:
359
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:

;***
« X
’

s * WRITEHST performs the physical write to *
1 * the host disk, READHST reads the physical *
P * disk. *
o % x
;****************************t************************

writehst:
shstdsk = host disk #, hsttrk = host track #,
shstsec = host sect #, write "hstsiz" bytes
;from hstbuf and return error flag in erflag,
sreturn erflag non-zero if error

ret
H
readhst:
;hstdsk = host disk #, hsttrk = host track %,
;hstsec = host sect #. read "hstsiz" bytes
;jinto hstbuf and return error flag in erflag,
ret
;t********************t***************t***************
-k 1 1
’
i Unitialized RAM data areas *
ok *
;*************************************a***************
H
sekdsk: ds 1 ;Seek disk number
sektrk: ds 2 ;seek track number
seksec: ds 1 ;seek sector number
7
hstdsk: ds 1 shost disk number
hsttrk: ds 2 shost track number
hstsec: ds 1 shost sector number
H
sekhst: ds 1 :1seek shr secshf
hstact: ds 1 :host active flag
hstwrt: ds 1 shost written flag

.
’

unacnt: ds 1 ;unalloc rec cnt
unadsk: ds 1 :last unalloc disk
unatrk: ds 2 slast unalloc track
unasec: ds 1 :last unalloc sector

erflag: ds

1 ;error reporting
rsflag: ds 1 ;read sector flag
readop: ds 1 ;1 if read operation
wrtype: ds 1 ;write operation type
dmaadr: ds 2 :last dma address
hstbuf: ds hstsiz shost buffer

.
’

213

371: ;******************k*******t**********t*t***t*t*******

372 ;¥ *
373: ;* The ENDEF macro invocation goes here *
374: ;* *

375: ;***t***

376: end

214

	Section I: An Introduction to CP/M Features and Facilities
	Table of Contents
	Introduction
	An Overview of CP/M 2.2 Facilities
	Functional Description of CP/M
	Switching Disks
	The Form of Built-in Commands
	ERA
	DIR
	REN
	SAVE
	TYPE
	USER

	Line Editing and Output Control
	Transient Commands
	STAT
	ASM
	LOAD
	PIP
	ED
	SUBMIT
	XSUB
	DUMP

	BDOS Error Messages

	Section II: CP/M 2.2 Interface Guide
	Table of Contents
	Introduction
	Operating System Call Conventions
	A Sample File-to-File Copy Program
	A Sample File Dump Utility
	A Sample Random Access Program
	System Function Summary

	Section III: CP/M Context Editor (ED)
	Table of Contents
	Introduction to ED
	ED Operation
	Text Transfer Functions
	Memory Buffer Organization
	Memory Buffer Operation
	Command Strings
	Text Search and Alteration
	Source Libraries
	Repetitive Command Execution
	ED Error Conditions
	Control Character and Commands

	Section IV: CP/M Assembler (ASM) User's Guide
	Table of Contents
	Introduction
	Program Format
	Forming the Operand
	Assembler Directives
	Operation Codes
	Error Messages
	A Sample Session

	Section V: CP/M Dynamic Debugging Tool (DDT) User's Guide
	Table of Contents
	Introduction
	DDT Commands
	Implementation Notes
	An Example

	Section VI: CP/M 2.2 Alteration Guide
	Table of Contents
	Introduction
	First Level System Regeneration
	Second Level System Generation
	Sample GETSYS and PUTSYS programs
	Diskette Organization
	The BIOS Entry Points
	A Sample BIOS
	A Sample Cold Start Loader
	Reserved Locations in Page Zero
	Disk Parameter Tables
	The DISKDEF Macro Library
	Sector Blocking and Unblocking
	Appendix A: The MDS Cold Start Loader
	Appendix B: The MDS Basic I/O System (BIOS)
	Appendix C: A Skeletal CBIOS
	Appendix D: A Skeletal GETSYS/PUTSYS Program
	Appendix E: A Skeletal Cold Start Loader
	Appendix F: CP/M Disk Definition Library
	Appendix G: Blocking and Deblocking Algorithms

