

Digital Research
CP1M® Manual

Vers.2.2

Section I: An Introduction to CP/M Features and •Facilities

Section II: CP/M 2.2 Interface Guide •Section III: CP/M Context Editor (ED) •Section IV: CP/M Assembler (ASM)
User's Guide •Section V: CP/M Dynamic Debugging Tool (DDT)
User's Guide •Section VI: CP/M 2.2 Alteration Guide •

.,'

.. '

AN INTRODUCTION
TO CP/M FEATURES

AND FACILITIES

COPYRIGHT (c) 1976, 1977, 1978
DIGITAL RESEARCH

I

Copyright (c) 1976, 1977, 1978 by Digital Research. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a re­
trieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written per­
mission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digial Research makes no representations or warranties
with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication
and to make changes from time to time in the content
hereof without obligation of Digital Research to notify
any person of such revision or changes.

Table of Contents

SECTION I

1. INTRODUCTION

2. AN OVERVIEW OF CP/M 2.2 FACILITIES

3. FUNCTIONAL DESCRIPTION OF CP/M

4. SWITCHING DISKS

5. THE FORM OF BUILT-IN COMMANDS
ERA
DIR
REN
SAVE
TYPE
USER

6. LINE EDITING AND OUTPUT CONTROL

7. TRANSIENT COMMANDS
STAT
ASM
LOAD
PIP
ED
SUBMIT
XSUB
DUMP

8. BDOS ERROR MESSAGES

1

Page

3

5

6

9

9
10
10
11
12
12
13

13

14
15
21
22
23
31
33
35
36

36

Introduction

CP/M is a monitor control program for microcomputer system develop­
ment which uses IBM-compatible flexible disks for backup storage. Using a
computer mainframe based upon Intel's SOSO microcomputer, CP/M
provides a general environmetnt for program construction, storage, and
editing, along with assembly and program check-out facilities. An important
feature of CP/M is that it can be easily altered to execute with any computer
configuration which uses an Intel S080 (or Zilog Z-SO) Central Processing
Unit, and has at least 16K bytes of main memory with up to four IBM­
compatible diskette drives. Although the standard Digital Research ver­
sion operates on a single-density Intel MDS SOO, several different hard­
ware manufacturers support their own input-output drivers for CP/M.

The CP/M monitor provides rapid access to programs through a com­
prehensive file management package. The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as sequential
and random file access. Using this file system, a large number of distinct
programs can be stored in both source and machine executable form.

CP/M also supports a powerful context editor, Intel-compatible assembler,
and debugger subsystem. Optional software includes a powerful Intel­
compatible macro assembler, symbolic debugger, along with various
high-level languages. When coupled with CP/M's Console Command
Processor, the resulting facilities equal or excel similar large computer
facilities.

CP/M is logically divided into several distinct parts:

BIOS

BDOS

CCP

TPA

Basic I/O System (hardware dependent)

Basic Disk Operating System

Console Command Processor

Transient Program Area

The BIOS provides the primitive operations necessary to access the diskette
drives and to interface standard peripherals (teletype, CRT, Paper Tape
Reader/Punch, and user-defined peripherals), and can be tailored by the
user for any particular hardware environment by "patching" this portion of
CP/M. .

The BnOS provides disk management by controlling one or more disk drives
containing independent file directories. The BOOS implements disk
allocation strategies which provide fully dynamic file construction while

3

minimizing head movement across the disk during access. Any particular file
may contain any number ofrecords, not exceeding the size ofany single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files. The
BDOS has entry points which include the following primitive operations
which can be programmatically accessed:

SEARCH

OPEN

CLOSE

RENAME

READ

WRITE

SELECT

Look for a particular disk file by name.

Open a file for further operations.

Close a file after processing.

Change the name of a particular file.

Read a record from a particular file.

Write a record onto the disk.

Select a particular disk drive for further operations.

The CCP provides symbolic interface between the user's console and the
remainder of the CP/M system. The CCP reads the console device and
processes commands which include listing the file directory, printing the
contents of files, and controlling the operation of transient programs, such
as assemblers, editors, and debuggers. The standard commands which are
available in the CCP are listed in a following section.

The last segment of CP/M is the area called the Transient Program Area
(TPA). The TPA holds programs which are loaded from the disk under
command of the CCP. During program editing, for example, the TPA holds
the CP/M text editor machine code and data areas. Similarly, programs
created under CP/M can be checked out by loading and executing these
programs in the TPA.

It should be mentioned that any or all of the CP/M component subsystems
can be "overlayed" by an executing program. That is, once a user's program
is loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as the
program's data area. A "bootstrap" loader is programmatically accessible
whenever the BIOS portion is not overlayed; thus, the user program need
only branch to the bootstrap loaderat the end ofexecution, and the complete
CP/M monitor is reloaded from disk.

It should be reiterated that the CP/M operating system is partitioned into
distinct modules, including the BIOS portion which defines the hardware
environment in which CP/M is executing. Thus, the standard system can be

4

easily modified to any non-standard environment by changing the
peripheral drivers to handle the custom system.

An Overview of CP1M 2.0 Facilities

CP/M 2.0 is a high-performance single-console operating system which uses
table driven techniques to allow field configuration to match a wide variety
ofdisk capacities. All of the fundamental file restrictions are removed, while
maintaining upward compatibility from previous versions of release 1.
Features of CP/M 2.0 include field specification of one to sixteen logical
drives, each containing up to eight megabytes. Any particular file can reach
the full drive size with the capability to expand to thirty-two megabytes in
future releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users ofCP/ M 2.0 are physically separated
by user numbers, with facilities for file copy operations from one user area to
another. Powerful relative-record random access functions are present in
CP/M 2.0 which provide direct access to any of the 65536 records ofan eight
megabyte file.

All disk-dependent portions of CP/M 2.0 are placed into a BIOS-resident
"disk parameter block" which is either hand coded or produced automat­
ically using the disk definition macro library provided with CP/M 2.0. The
end user need only specify the maximum number ofactive disks, the starting
and ending sector numbers, the data allocation size, the maximum extent of
the logical disk, directory size information, and reserved track values. The
macros use this information to generate the appropriate tables and table
references for use during CP/M 2.0 operation. Deblocking information is also
provided which aids in assembly or disassembly of sector sizes which are
multiples of the fundamental 128 byte data unit, and the system alteration
manual includes general-purpose subroutines which use this deblocking
information to take advantage of larger sector sizes. Use of these
subroutines, together with the table driven data access algorithms, make
CP/M 2.0 truly a universal data management system.

File expansion is achieved by providing up to 512 logical file extents, where
each logical extent contains 16K bytes of data. CP/M 2.0 is structured,
however, so that as much as 128K bytes of data is addressed by a single
physical extent (corresponding to a single directory entry), thus maintaining
compatibility with previous versions while taking full advantage ofdirectory
space.

Random access facilities are present in CP/M 2.0 which allow immediate
reference to any record ofan eight megabyte file. Using CP/M's unique data
organization, data blocks are only allocated when actually required and
movement to a record position requires little search time. Sequential file
access is upwardly compatible from earlier versions to the full eight

5

megabytes, while random access compatibility stops at 512K byte files. Due
to CP/M 2.0's simpler and faster random access, application programmers
are encouraged to alter their programs to take full advantage of the 2.0
facilities.

Several CP/M 2.0 modules and utilities have improvements which
correspond to the enhanced tile system. STAT and PIP both account for file
attributes and user areas, while the CCP provides a "login" function to
change from one user area to another. The CCP also formats directory
displays in a more convenient manner and accounts for both CRT and
hard..copy devices in its enhanced line editing functions.

Functional Description of CP1M

The user interacts with CP/M primarily through the CCP, which reads and
interprets commands entered through the console. In general, the CCP
addresses one of several disks which are online (the standard system
addresses up to four different disk drives). These disk drives are labelled A,
B, C, and D. A disk is "logged in" if the CCP is currently addressing the disk.
In order to clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by thesymbol"> "
indicating that the CCPis ready for another command. Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the
message

xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system manages,
and m.m is the CP/M version number. All CP/M systems are initially set to
operate in a 16K memory space, but can be easily reconfigured to tit any
memory size on the host system. Following system signon, CP/M automat­
ically logs in disk A, prompts the user with the symbol "A>" (indicating~hat

CP/M is currently addressing disk "A"), and waits for a command. The
commands are implemented at two levels: built-in commands and transient
commands.

General Command Structure

Built-in commands are a part of the CCP program itself, while transient
commands are loaded into the TPA from disk and executed. The built-in
commands are

ERA Erase specified tiles.

DIR Displays tile names in the directory.

6

REN

SAVE

TYPE

USER

Rename the specified file.

Save memory contents in a file.

Type the contents of a file on the logged disk.

Move to another area within the same directory.

Nearly all of the commands reference a particular file or group of files. The
. form of a file reference is specified below. .

File References
A file reference identities a particular file or group of files on a particular disk
attached to CP/M. These file references can be either "unambiguous" (ufn)
or "ambiguous" (afn). An unambiguous file reference uniquely identifies a
single file, while an ambiguous file reference may be satisfied by a number of
different files.

File references consist of two parts: the primary name and the secondary
name. Although the secondary name is optional, it usually is generic; that is,
the secondary name "ASM;' for example, is used to denote that the file is an
assembly language source file, while the primary name distinguishes each
particular source file. The two names are separated by a "." as shown below:

pppppppp.sss

where pppppppp represents the primary name ofeight characters or less, and
sss is the secondary name of no more than three characters. As mentioned
above, the name

pppppppp

is also allowed and is equivalent to a secondary name consisting of three
blanks. The characters used in specifying an unambiguous file reference
cannot contain any of the special characters

<> .. =?*[]. , , . .

while all alphanumerics and remaining special characters are allowed.

An ambiguous file reference is used for directory search and pattern
matching. The form of an ambiguous file reference is similar to an
unambiguous reference, except the symbol "?" may be interspersed
throughout the primary and secondary names. In various commands
throughout CP/M, the "?" symbol matches any character of a file name in
the "?" position. Thus, the ambiguous reference

7

X?Z.C?M

is satisfied by the unambiguous file names

and
XYZ.COM

X3Z.CAM

Note that the ambiguous reference

* *

is equivalent to the ambiguous file reference

???????? ???

while

pppppppp.*
and

*.sss

are abbreviations for

pppppppp.???
and

????'????.SSS

respectively. As an example,

DIR *.*

is interpreted by the CCP as a command to list the names of all disk files in
the directory, while

DIRX.Y

searches only for a file by the name X.Y. Similarly, the command

DIRX?Y.C?M

causesa search for all (unambiguous) file names on the disk which satisfy this
ambiguous reference.

8

The following file names are valid unambiguous file references:

x
X.Y

XYZ
XYZ.COM

GAMMA
GAMMA.!

As an added convenience, the programmer can generally specify the disk
drive name along with the file name. In this case, the drive name is given as
a letter A through Zfollowed by a colon (:). The specified drive is then "logged
in" before the file operation occurs. Thus, the following are valid file names
with disk name prefixes:

A:X.Y B:XYZ
Z:XYZ.COM B:X.A?M

C:GAMMA
C:*.ASM

It should also be noted that all alphabetic lower case letters in file and drive
names are always translated to upper case wher. they are processed by the
CCP.

Switching Disks

The operator can switch the currently logged disk by typing the disk drive
name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console input. Thus, the sequence of prompts and commands shown below
might occur after the CP/M system is loaded from disk A:

16K CP/M VER 2.0
A>DIR
SAMPLE ASM
SAMPLE PRN
A>B:
B>Dir *.ASM
DUMP ASM
FILES ASM
B>A:

List all files on disk A.

Switch to disk B.
List all "ASM" files on B.

Switch back to A.

Form of Built-In Commands

The file and device reference forms described above can now be used to fully
specify the structure of the built-in commands. In the description below,
assume the following abbreviations:

ufn
afn
cr

unambiguous file reference
ambiguous file reference
carriage return

Further, recall that the CCP always translates lower case characters to

9

upper case characters internally. Thus, lower case alphabetics are treated as
if they are upper case in command names and file references.

ERAse Command

ERAafn

The ERA (erase) command removes files from the currently logged-in disk
(i.e., the disk name currently prompted by CP/M preceding the ">"). The
files which are erased are those which satisfy the ambiguous file reference
afn. The following examples illustrate the use of ERA:

ERAX.Y

ERAX.*

ERA *.ASM

ERAX?Y.C?M

ERA *.*

ERAB:*.PRN

DIRectory Command

OIR afn

The file named X.Y on the currently logged disk
is removed from the disk directory, and the space
is returned.

All files with primary name X are removed from
the current disk.

All files with secondary name ASM are removed
from the current disk.

All files on the current disk which satisfy the
ambiguous reference X?Y.C?M are deleted.

Erase all files in the current user's directory. (See
USER n, page 13.) The CCP prompts with the
message

ALL (YIN)?
which requires a Y response before files are
actually removed.

All files on drive B which satisfy the ambiguous·
reference ????????PRN are deleted, indepen­
dently of the currently logged disk.

The OIR (directory) command causes the names ofall files which satisfy the
ambiguous file name afn to be listed at the console device. As a special case,
the command

OIR

lists the files on the currently logged disk (the command"0IR" isequivalent
to the command "DIR *.*"). Valid DIR commands are shown below.

10

DIRX.Y

DIRX?Z.C?M

DIR ??Y

Similar to other CCP commands, the afn can be preceded by a drive name.
The following DIR commandscause the selected drive to be addressed before
the directory search takes place.

DIRB:

DIRB:X.Y

DIRB:*.A?M

If no files can be found on the selected diskette which satisfy the directory
request, then the message "NOT FOUND" is typed at the console.

REName Command

REN ufnI = ufn2

The REN (rename) command allows the user to change the names of files on
disk. The file satisfying ufn2 is changed to ufnl. The currently logged disk is
assumed to contain the file to rename (ufnI). The CCP also allows the user
to type a left-directed arrow instead of the equal sign, if the user's console
supports this graphic character. Examples of the REN command are

RENX.Y=Q.R The file Q.R is changed to X.Y.

REN XYZ.COM=XYZ.XXX The file XYZ.XXX is changed to
XYZ.COM.

The operator can ''pr~Cedeeither ufn! or ufn2 (or both) by an optional drive
address. Given that Ufnl is preceded by a drive name, then ufn2 is assumed
to exist on the same drive as ufnl. Similarly, if ufn2 is preceded by a drive
name, then ufn! is assumed to reside on that drive as well. If both ufn! and
ufn2 are preceded by drive names, then the same drive must be specified in
both cases. The following RE~ commands illustrate this format.

HEN A:X.ASM = Y.ASM

REN B:ZA~BAS=ZOT.BAS

The file Y.ASM is changed to X.ASM
on drive A.

The file ZOT.BAS is changed to
ZA~BASon drive B.

11

HEN B:A.ASM = B:A.BAK The file A.BAK is renamed to A.ASM
on drive B.

If the file ufnl is already present, the HEN command will respond with the
error "FILE EXISTS" and not perform the change. Ifufn2 does not exist on
the specified diskette, then the message "NOT FOUND" is printed at the
console.

SAVE Command

SAVE n ufn

The SAVE command places n pages (256-byte blocks) onto disk from the
TPA and names this file ufn. In the CP/M distribution system, the TPA
starts at 100H (hexadecimal), which is the second page of memory. Thus, if
the user's program occupies the' area from 100H through 2FFH, the SAVE
command must specify two pages of memory. The machine code file can be
subsequently loaded and executed. Examples are:

SAVE 3 X.COM

SAVE 40 Q

SAVE 4 X.Y

Copies 100H through 3FFH to
X.COM.

Copies 100H through 28FFH to Q
(note that 28 is the page count in
28FFH, and that 28H = 2*16 + 8 =
40 decimal).

Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the afn portion of the
command, as shown below.

SAVE 10 B:ZOT.COM Copies 10 pages (lOOH through
OAFFH) to the file ZOT.COM on
drive B.

The SAVE operation can be used any number of times without altering the
memory image.

TYPE Command

TYPE ufn

The TYPE command displays the contents of the ASCII source file ufn on
the currently logged disk at the console device. Valid TYPE commands are

TYPE X.Y

12

TYPE X.PLM

TYPE XXX

The TYPE command expands tabs (clt-I characters), assuming tab
positions are set at every eighth column. The ufn can also reference a drive
name as shown below.

TYPE B:X.PRN The file X.PRN from drive B is displayed.

USER Command

USERn

Where n is an integer value in the range 0 to 15.

Upon cold start, the operator is automatically "logged" into user area
number o. The operator may issue the USER command at any time to move
to another logical area within the same directory.

Drives which are logged in while addressing one user number are automat­
ically active when the operator moves to another user number since a user
number is simply a prefix which accesses particular directory entries on the
active disks.

The active user number is maintained until changed by a subsequent USER
command, or until a cold start operation when user 0 is again assumed.

Line Editing and Output Control

The CCP allows certain line editing functions while typing command lines.
"Control" indicates that the Control key and the indicated key are to be
pressed simultaneously. CCP commands can generally be up to 255
characters in length; they are not acted upon until the carriage return key
is pressed.

rubout/delete

Control C

Control E

Remove and echo last character typed

Reboot CP/M when at beginning of line

Physical end of line: carriage is returned, but line
is not sent until the carriage return key is
depressed.

13

Control H

Control J

Control M

Control R

Control X

Backspace one character position. Produces the
backspace overwrite function. Can be changed
internally to another character, such as delete,
through a simple single byte change.

Line feed. Terminates current input.

Carriage return. Terminates input.

Retype current command line after new line.

Backspace to beginning of current line.

The line editor keeps track ofthe current prompt column position so that the
operator can properly align data input following a Control R or Control X
command.

The control functions Control P and Control S affect console output as
shown below.

Control P

Control S

Copy all subsequent console output to the
currently assigned list device (see the STAT
command). Output is sent to both the list device
and the console device until the next Control Pis
typed.

Stop the console output temporarily. Program
execution and output continue when the next
character is typed at the console (e.g., another
Control S). This feature is used to stop output on
high speed consoles, such as CRT's, in order to
view a segment of output before continuing.

Transient Commands
1'ransient commands are loaded from the currently logged disk and executed
in the TPA. The transient commands defined for execution under the CCP
are shown below. Additional functions can easily be defined by the user (see
the LOAD command definition).

STAT

ASM

List the number of bytes ofstorage remaining on
the currently logged disk, provide statistical
information about particular files, and display or
alter device assignment.

Load the CP/M assembler and assemble the
specified program from disk.

14

LOAD

DDT

PIP

ED

SUBMIT

XSUB

DUMP

Load the file in Intel "hex" machine code format
and produce a file in machine executable form
which can be loaded into the TPA (this loaded
program becomes a new command under the
CCP).

Load the CP/M debugger into TPA and start
execution.

Load the Peripheral Interchange Program for
subsequent disk file and peripheral transfer
operations.

Load and execute the CP/M text editor program.

Submit a file of commands for batch processing.

Allow submitted commands to receive input
from the submit file.

Dump the contents of a file in hex.

Transient commands are specified in the same manner as built-in commands,
and additional commands can be easily defined by the user. As an added
convenience, the transient command can be preceded by a drive name,
which causes the transient to be loaded from the specified drive into the
TPA for execution. Thus, the command

B:STAT

causes CP/M to temporarily "log in" drive B for the source of the STAT
transient, and then return to the original logged disk for subsequent
processing.

The basic transient commands are listed in detail below.

STAT
The STAT command provides general statistical information about file
storage and device assignment. It is initiated by typing one of the
following forms:

STAT
STAT "command line"

Special forms of the "command line" allow the current device assignment
to be examined and altered as well. The various command lines which can
be specified are shown below, with an explanation of each form shown to
the right.

15

STAT (er) If the user types an empty command line, the
STAT transient calculates the storage remaining
on all active drives, and prints a message

or
x: R/W, SPACE: nnnK

x: RIO, SPACE: nnnK

STAT x: (cr)

STAT afn (cr)

for each active drive x, where R/W indicates the
drive may be read or written, and RIO indicates
the drive is read only (a drive becomes RIO by
explicitly setting it to read only, as shown below,
or by inadvertently changing diskettes without
performing a warm start). The space remaining
on the diskette in drive x is given in kilobytes by
nnn.

If a drive name is given, then the drive is selected
before the storage is computed. Thus, the com­
mand "STAT B:" could be issued while logged
into drive A, resulting in the message

BYTES REMAINING ON B: nnnK

The command line can also specify a set of files to
be scanned by STAT. The files which satisfy afn
are listed in alphabetical order, with storage
requirements for each file under the heading

RECS BYTS EX
rrrr bbbK ee

D:FILENAME.TYP
d:pppppppp.sss

STAT x:afn (cr)

where rrrr is the number of 128-byte records
allocated to the file, bbb is the number of
kilobytes allocated to the file
(bbb = rrrr*128/1024), ee is the number of 16K
extensions (ee = bbbI16), d is the drive name
containing the file (A...Z), pppppppp is the (up to)
eight-character primary file name, and sss is the
(up to) three-character secondary name. After
listing the individual files, the storage usage is
summarized.

As a convenience, the drive name can be given
ahead of the afn. In this case, the specified drive
is first selected, and the form "STAT afn" is
executed.

16

STAT d:filename.typ $S (cr)
("d:" is optional drive Produces the output display format:
name and "filename.typ" Size Recs Bytes Ext Acc
is an unambiguous or 48 48 6K 1 RIO A:ED.COM
ambiguous file name) 55 55 12K 1 RIO (A:PIP.COM)

65536 128 2K 2 R/W A:X.DAT
The $S parameter causes the "Size" field to be
displayed. (The command may be used without
the $S if desired.) The Size field lists the virtual
file size in records, while the"Recs" field sums the
number ofvirtual records in each extent. For files
constructed sequentially, the Size and Recs
fields are identical. The "Bytes" field lists the
actual number of bytes allocated to the corre­
sponding file. The minimum allocation unit is
determined at configuration time, and thus the
number ofbytes corresponds to the record count
plus the remaining unused space in the last
allocated block for sequential files. Random
access files are given data areas only when
written, so the Bytes field contains the only
accurate allocation figure. In the case of random
access, the Size field gives the logical end-of-file
record position and the Recs field counts the
logical records of each extent (each of these
extents, however, may contain unallocated
"holes" even though they are added into the
record count). The "Ext" field counts the
number of local 16K extents allocated to the file.
The "Acc" field gives the RIO or R/W access
mode, which is changed using the commands
shown below. The parentheses shown around the
PIP.COM file name indicate that it has the
"system" indicatorset, so that it will not be listed
in DIR commands.

STAT d:filename.typ $R/O (cr)
Places the file or set of files in a read-only status
until changed by a subsequent STAT command.
The RIO status is recorded in the directory with
the file so that it remains RIO through inter­
vening cold start operations. When a file is
marked RIO, attempts to erase or write into the
file result in a terminal BDOS message: Bdos Err
on D: File RIO.

STAT d:filename.typ $R/W (cr)
Places the file in a permanent read/write status.

17

STAT d:filename.typ $S1S (cr)
Attaches the system indicator to the file.

STAT d:filename.typ $DIR (cr)
Removes the system indicator from the file.

STAT d:DSK: (cr)

STAT DSK: (cr)

STAT USR: (cr)

Lists the drive characteristics of the disk named
by I'd:" which is in the range A:, B:, ..., P:. The
drive characteristics are listed in the format:

d: Drive Characteristics
65536: 128 Byte Record Capacity

8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries

0: Checked Directory Entries
1024: Records/Extent
128: Records/Block
58: Sectors/Track

2: Reserved Tracks
The total record capacity is listed, followed by
the total drive capacity listed in Kbytes. The
number of checked entries is usually identical to
the directory size for removable media, since this
mechanism is used to detect changed media
during CP/M operation without an intervening
warm start. The number of records per extent
determines the addressing capacity of each
directory entry (1024 times 128 bytes, or 128K in
the example above). The number of records per
block shows the basic allocation size (in the
example, 128 records/block times 128 bytes per
record, or 16K bytes per block). The listingis then
followed by the number of physical sectors per
track and the number of reserved tracks.

Lists drive characteristics as above for all
currently active drives.

Produces a list of the user numbers which have
files on the currently addressed disk. The display
format is:

Active User: 0
Active Files: 0 1 3

where the first line lists the currently addressed
user number, as set by the last CCP USER
command, followed by a list of user numbers
scanned from the current directory. In the above
case, the active user number is 0 (default at cold
start), with three user numbers which have

18

active files on the current disk. The operator can
subsequently examine the directories of the
other user numbers by logging in with USER 1,
USER 2, or USER 3 commands, followed by a
DIR command at the CCP level.

The STAT command also allows control over the physical to logical device
assignment (see the IOBYTE function described in the "CP/M· Interface
Guide:' In general, there are four logical peripheral devices which are, at any
particular instant, each assigned to one of several physical peripheral
devices. The four logical devices are named:

CON:

RDR:

PUN:

LST:

The system console device (used by CCP for
communication with the operator)

The paper tape reader device

The paper tape punch device

The output list device

The actual devices attached to any particularcomputer system are driven by
subroutines in the BIOS portion ofCP/M. Thus, the logical RDR: device, for
example, could actually be a high speed reader, Teletype reader, or cassette
tape. In order to allow some flexibility in device naming and assignment,
several physical devices are defined, as shown below:

TTY:

CRT:

BAT:

UCl:

PTR:

URI:

UR2:

PTP:

UPl:

Teletype device (slow speed console)

Cathode ray tube device (high speed console)

Batch processing (console is current RDR:,
output goes to current LST: device)

User-defined console

Paper tape reader (high speed reader)

User-defined reader # 1

User-defined reader #2

Paper tape punch (high speed punch)

User-defined punch # 1

19

UP2:

LPT:

ULI:

User-defined punch # 2

Line printer

User-defined list device # I

It must be emphasized that the physical device names mayor may not
actually correspond to devices which the names imply. That is, the PTP:
device may be implemented as a cassette write operation, if the user wishes.
The exact correspondence and driving subroutine is defined in the BIOS
portion of CP/M. In the standard distribution version of CP/M, these
devices correspond to their names on the MDS 800 development system.

The command:

STAT"VAL: (cr)

produces a summary of the available status commands, resulting in the
output: .

Temp RIO Disk: d: =Rio

Set Indicator: d:filename.typ "$R/O $R/W $SYS $DIR

Disk Status: DSK: d:DSK:

User-Status: USR:

lobyte Assign:

CON. = TTY: CRT:
RDR: = TTY: PTR:
PUN: = TTY: PTP:
LST: = TTY: CRT:

BAT:
URI:
UPI:
LPT:

UCI:
UR2:
UP2:
ULI:

. In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line. The current logical to
physical mapping is displayed by typing the command

STAT DEV: (cr) C)

which produces a listing of each logical device to the" left, and the current
corresponding physical device to the right. For example, the list might
appear as follows:

20

CON: = CRT:
RDR: = URI:
PUN: = PTP:
LST: = TTY:

The current logical to physical device assignment can be changed by typing
a STAT command of the form

STAT ldl = pdl,ld2 = pd2, ... ,ldn = pdn (cr)

where ldl through ldn are logical device names, and pd1 through pdn are
compatible physical device names (Le., ldi and pdi appear on the same line in
the "VAL:" command shown above). The following are valid STAT
commands which change the current logical to physical device assignments:

STAT CON: = CRT: (cr)
STAT PUN: = TTY:,LST: = LPT:, RDR: = TTY: (cr)

ASMufn
The ASM command loads and executes the CP/M 8080 assembler. The ufn
specifies a source file containing assembly language statements where the
secondary name is assumed to be ASM, and thus is not specified. The
following ASM commands are valid:-

ASMX

ASMGAMMA

The two-pass assembler is automatically executed. If assembly errors occur
during the second pass, the errors are printed at the console.

The assembler produces a file

x.PRN

where x is the primary name specified in the ASM command. The PRN file
contains a listing of the source program (with imbedded tab characters if
present in the source program), along with the machine code generated for
each statement and diagnostic error messages, if any. The PRN file can be
listed at the console using the TYPE command, orsent to a peripheral device
using PIP (see the PIP command structure below). Note also that the PRN
file contains the original source program, augmented -by miscellaneous
assembly information in the leftmost 16 columns (program addresses and
hexadecimal machine code, for example). Thus, the PRN file can serve as a

21

backup for the original source file: if the source file is accidentally removed
or destroyed, the PRN file can be edited (see the ED operator's guide) by
removing the leftmost 16 characters ofeach line (this can be done by issuing
a single editor "macro" command). The resulting file is identical to the
original source file and can be renamed (REN) from' PRN to ASM for
subsequent editing and assembly. The file

x.HEX

isalso produced which contains8080 machine language in Intel "hex" format
suitable for subsequent loading and execution (see the LOAD command).
For complete details of CP/M's assembly language program, see the "CP/M
Assembler Language (ASM) User's Guide:'

Similar to other transient commands, the source file for assembly can be
taken from an alternate disk by prefixing the assembly language file name by
a disk drive name. Thus, the command

ASM B:ALPHA (cr)

loads the assembler from the currently logged drive and operates upon the
source program ALPHA.ASM on drive B. The HEX and 'PRN files are also
placed on drive B in this case.

LOADufncr
The LOAD command reads the file ufn, which is assumed to contain "hex"
format machine code, and produces a memory image file which can be
subsequently executed. The file name ufn is assumed to be of the form

x.HEX

and thus only the name x need be specified in the command. The LOAD
command creates a file named

x.COM

which marks it as containing machine executable code. The file is actually
loaded into memory and executed when the user types the file name x
immediately after the prompting character ">" printed by the CCP.

In general, the CCP reads the name xfollowing the prompting character and
looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

22

x.COM

Iffound, the machine code is loaded into the TPA, and the program executes.
Thus, the user need only LOAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name. In this
way, the user can "invent" new commands in the CCP. (Initialized disks
contain the transient commands as COM files, which can be deleted at the
user's option.) The operation can take place on an alternate drive if the file
name is prefixed by a drive name. Thus

LOADB:BETA

brings the LOAD program into the TPA from the currently logged disk and
operates upon drive B after execution begins.

It must be noted that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for
example) which begin at l00H, the beginning of the TPA. Further, the
addresses in the hex records must be in ascending order; gaps in unfilled
memory regions are filled with zeroes by the LOAD command as the hex
records are read. Thus, LOAD must be used only for creating CP/M standard
"COM" files which operate in the TPA. Programs which occupy regions of
memory other than the TPA can be loaded under DDT.

PIP
PIP is the CP/M Peripheral Interchange Program which implements the
basic media conversion operations necessary to load, print, punch, copy, and
combine disk files. The PIP program is initiated by typing one of the
following forms

PIP (cr)
PIP "command line" (cr)

In both cases, PIP is loaded into the TPA and executed. In case 1, PIP reads
command lines directly from the console, prompted with the "." character,
until an empty command line is typed (i.e., a single carriage return is issued
by the operator). Each successive command line causes some media
conversion to take place according to the rules shown below. Form 2 of the
PIP command is equivalent to the first, except that the single command line
given with the PIP command is automatically executed, and PIP terminates
immediately with no further prompting of the console for input command
lines. The form of each command line is

destination = source # 1, source #2, ... ,source #n (cr)

23

where "destination" is the file or peripheral device to receive the data, and
"source# 1, ..., source#n" represents a series of one or more files or devices
which are copied from left to right to the destination.

When multiple files are given in the command line (i.e., n > 1), the individual
files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the 0 parameter to
override this assumption). The equal symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to
improve readabilitY. Lower case ASCII alphabetics are internally translated
to upper case to be consistent with CP/M file and device name conventions.
Finally, the total command line length cannot exceed 255 characters (ctl-E
can be used to force a physical carriage return for lines which exceed the
console width).

The destination and source elements can be unambiguous references to
CP/M source files, with or without a preceding disk drive name. That is, any
file can be referenced with a preceding drive rtame (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored. When
the drive name is not included, the currently logged disk is assumed. Further,
the destination file can also appear as one or more ofthe source files, in which
case the source file is not altered until the entire concatenation is complete.
If the destination file already exists, it is removed if the command line is
properly formed (it is not removed ifan error condition arises). The following
command lines (with explanations to the right) are valid as input to PIP:

x = Y (cr)

X = Y, Z (cr)

Copy to file X from file Y, where X and
Yare unambiguous file names; Y
remains unchanged.

Concatenate files Y and Z and copy to
file X, with Y and Z unchanged.

X.ASM = Y.ASM,Z.ASM,FIN.A$M (cr)
Create the file X.ASM from the con­
catenation of the Y, Z, and FIN files
with type ASM.

NEW.ZOT = B:OLD.ZAP (cr) Move a copy of OLD.ZAP from drive B
to the currently logged disk; name the
file NEW.ZOT.

B:A.U. = B:B.VA:C.W,D.X (cr) Concatenate file B.V from drive B with
C.W from drive A and D.X. from the
logged disk; create the file A.U on drive
B.

24

For more convenient use, PIP allows abbreviated commands for transferring
files between disk drives. The abbreviated forms are

PIP x: = afn (cr)

PIP x: = y:afn (cr)

PIP ufn = y: (cr)

PIP x:ufn = y: (cr)

The first form copies all files from the currently logged disk which satisfy the
afn to the same file names on drive x (x = A...Z). The second form is
equivalent to the first, where the source for the copy is drive y (y = A...Z). The
third form is equivalent to the command "PIP ufn = y:ufn (cr)" which
copies the file given by ufn from drive y to the file ufn on drive x. The fourth
form is equivalent to the third, where the source disk is explicitly given by.y.

Note that the source and destination disks must be different in all of these
cases. If an afn is specified, PIP lists each ufn which satisfies the afn as it is
being copied. If a file exists by the same name as the destination file, it is
removed upon successful completion of the copy, and replaced by the copied
file.

The following PIP commands give examples of valid disk-to-disk copy
operations: .

B: = *.COM (cr)

A: = B:ZAP.* (cr)

ZAP.ASM = B: (cr)

B:ZOT.COM = A: (cr)

B: = GAMMA.BAS (cr)

Copy all files which have the secondary name
"COM" to drive B from the current drive.

Copy all files which have the primary name
"ZAP" to drive A from drive B.

Equivalent to ZAP.ASM = B:ZA~ASM

Equivalent to B:ZOT.COM =A:ZOT.COM

Same as B:GAMMA.BAS = GAMMA.BAS

B: = A:GAMMA.BAS (cr) Same as
B:GAMMA.BAS = A:GAMMA.BAS

PIP also allows reference to physical and logical devices which are attached
to the CP/M system. The device names are the same as given under the STAT
command, along with a number of specially named devices. The logical

25

devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and LST: (list)

while the physical devices are

TTY: (console, reader, punch, or list)
CRT: (console, or list), UCI: (console
PTR: (reader), URI: (reader), UR2: (reader)
PTP: (punch), UPI: (punch), UP2: (punch)
LPT: (list), ULI: (list)

(Note that the "BAT:" physical device is not included, since this assignment
is used only to indicate that the RDR: and LST: devices are to be used for
console input/output.)

The RDR, LST, PUN, and CON devices are all defined within the BIOS
portion of CP/M, and thus are easily altered for any particular I/O system.
(The current physical device mapping is defined by 10BYTE; see the
"CP/M Interface Guide" for a discussion of this function). The destination
device must be capable of receiving data (Le., data cannot be sent to the
punch), and the source devices must be capable of generating data.(i.e., the
LST: device cannot be read).

The additional device names which can be used in PIP commands are

NUL: Send 40 "nulls" (ASCII O's) to the device (this can be issued at the
end of punched output).

EOF: Send a CP/M end-of-file (ASCII ctl-Z) to the destination device
. (sent automatically at the end of all ASCII data transfers through
PIP).

INP: Special PIP input source which can be "patched" into the PIP
program itself: PIP gets the input data character-by-character by
CALLing location 103H, with data returned in location 109H
(parity bit must be zero).

OUT: Special PIP output destination which can be patched into the PIP
program: PIP CALLs location 106H with data in register C for each
character to transmit. Note that locations 109H through IFFH of
the PIP memory image are not used and can be replaced by special
purpose drivers using DDT (see the DDT operator's manual).

PRN: Same as LST:, except that tabs are expanded at every eighth

26

character position, lines are numbered, and page ejects are inserted
every 60 lines, with an initial eject (same as [tBnp]).

File and device names can be interspersed in the PIP commands. In each
case, the specific device is read until end-of-file (ctl-Z for ASCII files, and a
real end of file for non-ASCII disk files). Data from each device or file is
concatenated from left to right until the last data source has been read. The
destination device or file is written using the data from the source files, and
an end-of-file character (ctl-Z) is appended to the result for ASCII files. Note
that if the destination is a disk file, a temporary file is created ($$$ secondary
name) which is changed to the actual file name only upon successful
completion of the copy. Files with the extension "COM" are always assumed
to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on the
keyboard (a rubout suffices). PIP will respond with the message
"ABORTED" to indicate that the operation was not completed. Note that
if any operation is aborted, or if an error occurs during processing, PIP
removes any pending commands which were set up while using the SUBMIT
command.

It should also be noted that PIP performsa special function if the destination
is a disk file with type "HEX" (an Intel hex formatted machine code file),
and the source is an external peripheral device, such as a paper tape reader.
In this case, the PIP program checks to ensure that the source file contains
a properly formed hex file, with legal hexadecimal values and checksum
records. When an invalid input record is found, PIP reports an error message
at the console and waits for corrective action. It is usually sufficient to open
the reader and rerun a section of the tape (pull the tape about 20 inches).
When the tape is ready for the re-read, type a single carriage return at the
console, and PIP will attempt another read. If the tape position cannot be
properly read, simply continue the read (by typing a return following the
error message), and enter the record manually with the ED program after
the disk file is constructed. For convenience, PIP allows the end-of-file to be
entered from the console if the source file is a RDR: device. In this case, the
PIP program reads the device and monitors the keyboard. If ctl-Z is typed
at the keyboard, then the read operation is terminated normally.

Valid PIP commands are shown below.

PIP LST: = X.PRN (cr)

PIP (cr)

Copy X.PRN to the LST device and termin­
ate the PIP program.

Start PIP for a sequence of commands (PIP
prompts with "*").

27

*CON: = X.ASM,Y.ASM,Z.ASM (cr)
Concatenate three ASM files and copy tb the
CON device.

*X.HEX = CON:,Y.HEX,PTR: (cr)
Create a HEX file by reading the CON (until
a ctl-Z is typed), followed by data from
Y.HEX, followed by data from PTR until a
ctl-Z is encountered.

*(cr) Single carriage return stops PI~

PIP PUN: = NUL:,X.ASM,EOF:,NUL: (cr)
Send 40 nulls to the punch device; then copy
the X.ASM file to the punch, followed by an
end-of-file (ctl-Z) and 40 more null
characters.

The user can also specify one or more PIP parameters, enclosed in left and
right square brackets, separated by zero or more blanks. Each parameter
affects the copy operation, and the enclosed list of parameters must
immediately follow the affected file or device. Generally, each parameter can
be followed by an optional decimal integer value (the Sand Qparameters are
exceptions). The valid PIP parameters are listed below.

B Block mode transfer: data is buffered by PIP until an ASCII x-off
character (ctl-S) is received from the source device. This allows
transfer ofdata to a disk file from a continuous reading device, such
as a cassette reader. Upon receipt of the x-off, PIP clears the disk
buffers and returns for more input data. The amount ofdata which
can be buffered is dependent upon the memory size of the host
system (PIP will issue an error message if the buffers overflow).

Dn Delete characters which extend past column n in the transfer of
data to the destination from the character source. This parameter
is used most often to truncate long lines which are sent to a (narrow)
printer or console device.

E Echo all transfer operations to the console as they are being
performed.

F Filter form feeds from the file. All imbedded form feeds are removed.
The P parameter can be used simultaneously to insert new form
feeds.

Gn Get file from user number n. (n is the range 0-15.) Allows one user
area to receive data files from another. If the operator has issued the

28

USER 4 command at the CCP level, the PIP statement
PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 into user area number 4. You
cannot copy files into a different area than the one which is
currently addressed by the USER command.

H Hex data transfer: all data is checked for proper Intel hex file
format. Non-essential characters between hex records are removed
during the copy operation. The console will be prompted for
corrective action in case errors occur.

I Ignore ":00" records in the transfer of Intel hex format file (the I
parameter automatically sets the H parameter).

L Translate upper case alphabetics to lower case.

N Add line numbers to each line transferred to the destination,
starting at one, and incrementing by 1. Leading zeroes are
suppressed, and the number is followed by a colon. IfN2 is specified,
then leading zeroes are included, and a tab is inserted following the
number. The tab is expanded if T is set.

o Object file (non-ASCII) transfer: the normal CP/M end of file is
ignored. .

Pn Include page ejects at every n lines (with an initial page eject). Ifn
= 1or is excluded altogether, page ejects occur every 60 lines. If the
F parameter is used, form feed suppression takes place before the
new page ejects are inserted.

Qsi z Quit copying from the source device or file when the string s
(terminated by ctl-Z) is encountered.

R Read system files. Allows files with the system attribute to be
included in PIP transfers. Otherwise, system files are not
recognized.

Sstz Start copying from the source device when the string s is
encountered (terminated by ctl-Z). The Sand Q parameters can be
used to "abstract" a particular section of a file (such as a
subroutine). The start and quit strings are always included in the
copy operation.

NOTE - the strings following the sand q parameters are transla ted
to upper case by the CCP if form (2) of the PIP command is used.
Form (1) of the PIP invocatipn, however, does not perform the

29

automatic upper case translation.
(1) PIP (cr)
(2) PIP "command line" (cr)

Tn Expand tabs (ctl-I characters) to every nth column during the
transfer of characters to the destination from the source.

U Translate lower case alphabetics to upper case during the copy
operation.

V Verify that data has been copied correctly by rereading after the
write operation (the destination mlist be a disk file).

W Write over RIO files without console interrogation. Under normal
operation, PIP will not automatically overwrite a file which is set
to a permanent RIO status. It advises the user of the RIO status
and waits for overwrite approval. Wallows the user to bypass this
interrogation process.

Z Zero the parity bit on input for each ASCII character.

The following are valid PIP commands which specify parameters in the file
transfer:

PIP X.ASM = B:[v] (cr) Copy X.ASM from drive B to the current
drive and verify that the data was properly
copied.

PIP LPT: = X.ASM[ntBu] (cr)
Copy X.ASM to the LPT: device; number
each line, expand tabs to every eighth column,
and translate lower case alphabetics to upper
case.

PIp·PUN: = X.HEX[i],Y.ZOT[h] (cr) .
First copy X.HEX to the PUN: device and
ignore the trailing ":00" record in X.HEX;
then continue the transfer of data by reading
Y.ZOT, which contains hex records, including
any ":00" records which it contains.

PIP X.LIB = Y.ASM [sSUBRl:fz qJMP L3fz] (cr)
Copy from the file Y.ASM into the file X.LIB.
Start the copy when the string "SUBRl:" has
been found, and quit copying after the string
"JMP L3" is encountered.

30

PIP PRN: = X.ASM[p50] Send X.ASM to the LST: device, with line
numbers, tabs expanded to every eighth
column, and page ejects at every 50th line.
Note that nt8p60 is the assumed parameter
list for a PRN file; p50 overrides the default
value.

Note that the PIP program itself is initially copied to a user area (so that
subsequent files can be copied) using the SAVE command. The sequence of
operations shown below effectively moves PIP from one user area to the
next.

USER 0
DDTPIP.COM
(note PIP size s)
GO
USER 3
SAVE s PIP.com

login user 0
load PIP in memory

return to CCP
login user 3

where s is the integral number of memory "pages" (256 byte segments)
occupied by PI~The numbers can be determined when PIP.COM is located
under DDT, by referring to the value under the "NEXT" display. If for
example, the next available address is IDDO, then PIP.COM requires IC
hexadecimal pages (or 1 times 16+ 12= 28 pages),and thus the value ofsis 28
in the subsequent save. Once PIP is copied in this manner,.it can then be
copied to another disk belonging to the same user number through normal
PIP transfers.

ED
The ED program is the CP/M system context editor, which allows creation
and alteration ofASCII files in the CP/M environment. Complete details of
operation are given in Chapter 3 CP/M ED. In general, ED allows the
operator to create and operate upon source files which are organized as a
sequence of ASCII characters, separated by end-of-line characters (a
carriage-return line-feed sequence). There is no practical restriction on line
length (no single line can exceed the size of the working memory), which is
instead defined by the number of characters typed between (cr)'s. The ED
program has a number of commands for character string searching,
replacement, and insertion, which are useful in the creation and correction
of programs or text files under CP/M. Although the CP/M has a limited
memory work space area (approximately 5000 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is easily
"paged" through this work area.

Upon initiation, ED creates the specified source file, ifit does not exist, and
opens the file for access. The programmer then "appends" data from the

31

source file into the work area, if the source file already exists (see the A
command), for editing. The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command).
Particular points in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular portions of
a large file.

Given that the operator has typed

ED X.ASM (cr)

the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run. Upon completion of ED, the
X.ASM file (original file) is renamed to X.BAK, and the edited work file is
renamed to X.ASM. Thus, the X.BAK file contains the original (unedited)
file, and the X.ASM file contains the newly edited file. The operator can
always return to the previous version of a file by removing the most recent
version, and renaming the previous version. Suppose, for example, that the
current X.ASM file was improPerly edited; the sequence ofCCP commands
shown below would reclaim the backup file.

DIR X.* Check to see that BAK file is available.

ERA X.ASM Erase most recent version.

REN X.ASM = X.BAK Rename the BAK file to ASM.

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or Qcommand) without destroying the original file. In this case, the
BAK file is not created, and the original file is always intact.

The ED program also allows the user to "ping-pong" the source and create
backup files between two disks. The form of the ED command in this case is

ED ufn d:

where ufn is the name o(a file to edit on the currently logged disk and d is the
name of an alternate drive. The ED program reads and processes the
source file, and writes the new file to drive d, using the name ufn. Upon
completion of processing, the original file becomes the backup file. Thus, if
the oPerator is addressing disk A, the following command is valid:

32

EDX.ASMB:

which edits the file X.ASM on drive A, creating the new file X.$$$ on drive
B. Upon completion ofa successful edit, A:X.ASM is renamed to A:X.BAK,
and B:X.$$$ is renamed to B:X.ASM. For user convenience, the currently
logged disk becomes drive B at the end of the edit. Note that if a file by the
name B:X.ASM exists before the editing begins, the message

FILE EXISTS

is printed at the console as a precaution against accidentally destroying a
source file. In this case, the operator must first ERAse the existing file and
then restart the edit operation.

Similar to other transient commands, editing can take place on a drive
different from the currently logged disk by preceding the source file name by
a drive name. Examples of valid edit requests are shown below

EDA:X.ASM

ED B:X.ASM A:

Edit the file X.ASM on drive A, with new file and
backup on drive A.

Edit the file X.ASM on drive B to the temporary
file X.$$$ on drive A. On termination of editing,
change X.ASM on drive B to X.BAK, and change
X.$$$ on drive A to X.ASM.

ED takes file attributes into account. If the operator attempts to edit a
read /only file, the message

FILE IS READ/ONLY

appears at the console. The file can be loaded and examined, but cannot be
altered in any way. Normally the operator simply ends the edit session, and
uses STAT to change the file attribute to R/W. If the edited file has the
system attribute set, the message

"SYSTEM" FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted. Again, the STAT
program can be used to change the system attribute if desired.

SUBMIT
The SUBMIT command allows CP/M commands to be batched together for

33

automatic processing. The format of SUBMIT is: SUBMIT ufn
parm #l...parm #n(cr).

The ufn given in the SUBMIT command must be the filename ofa file which
exists on the currently logged disk, with an assumed file type of "SUB:' The
SUB file contains CP/M prototype commands, with possible parameter
substitution. The actual parameters parm #1 ... parm #n are substituted
into the prototype commands, and, if no errors occur, the file ofsubstituted
commands is processed sequentially by CP/M.

The prototype command file is created using the ED program, with
interspersed "$" parameters of the form

$1 $2 $3 ... $n

corresponding to the number of actual parameters which will be included
when the file is submitted for execution. When the SUBMIT transient is
executed, the actual parameters parm #1 ... parm #n are paired with the
formal parameters $1 ...$n in the prototype commands. If the number of
formal and actual parametersdoes not correspond, then the submit function
is aborted with an error message at the console. The SUBMIT function
creates a file of substituted commands with the name

$$$.8UB

on the logged disk. When the system reboots (at the termination of the
SUBMIT), this command file is read by the CCP as a source of input, rather
than the console. If the SUBMIT function is performed on any disk other
than drive A, the commands are not processed until the disk is inserted into
drive A and the system reboots. Further, the user can abort command
processing at any time by typing a rubout when the command is read and
echoed. In this case, the $$$.8UB file is removed, and the subsequent
commandscome from the console. Command processingis also aborted ifthe
CCP detects an error in any of the commands. Programs which execute
under CP/M can abort processing of command files when error conditions
occur by simply erasing any existing $$$.8UB file.

In order to introduce dollar signs into a SUBMIT file, the user may type a
"$$" which reduces to a single "$" within the command file. Further, an
up-arrow symbol" f "may precedean alphabetic character x, which produces
a single ctl-x character within the file.

The last command in a SUB file can initiate another SUB file, thus allowing
chained batch commands.

Suppose the file ASMBL.SUB exists on disk and contains the prototype

34

commands

ASM$l
DIR $1.*
ERA *.BAK
PIP $2: =$1.PRN
ERA$l.PRN

and the command

SUBMIT ASMBL X PRN (cr)

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file,
substituting "X" for all occurrences of$l and "PRN" for all occurrences of
$2, resulting in a $$$.SUB file containing the commands

ASMX
DIR X.*
ERA *.BAK
PIP PRN: = X.PRN
ERAX.PRN

which are executed in sequence by the CCP.

The SUBMIT function can access a SUB file which is on an alternate drive
by preceding the file name by a drive name. Submitted files are only acted
upon, however, when they appear on drive A. Thus, it is possible to create a
submitted file on drive B which is executed at a later time when it is inserted
in drive A.

XSUB
XSUB extends the power of the SUBMIT facility to include character input
during program execution as well as entering command lines. The XSUB
command is included as the first line ofyour submit file and, when executed,
self-relocates directly below the CCP.

All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BOOS function 10) receive·
their input directly from the submit file. For example, the file SAVER.SUB
could contain the submit lines:

35

XSUB
DDT
I$l.HEX
R
GO
SAVE 1 $2.COM

with a subsequent SUBMIT command:

SUBMIT SAVER X Y

which substitutes X for $1 and Y for $2 in the command stream. The XSUB
program loads, followed by DDT which is sent the command lines
"IX.HEX" "R" and "GO", thus returning to the CCP. The final command
"SAVE 1 Y.COM" is processed by the CC~

The XSUB program remains in memory, and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent submit
command streams do not require the XSUB, unless an intervening cold
start has occurred. Note that XSUB must be loaded after DESPOOL, ifboth
are to run simultaneously.

DUMP
The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form. The file contents are listed sixteen bytes at a time, with
the absolute byte address listed to the left ofeach line in hexadecimal. Long
typeouts can be aborted by pushing the rubout key during printout. (The
source listing of the DUMP program is given in the "CP/M Interface Guide"
as an example of a program written for the CP/M environment.)

BDOS Error Messages
There are three error situations which the Basic Disk Operating System
intercepts during file processing. When one of these conditions is detected,
the BDOS prints the message:

BDOS ERR ON x: error

where x is the drive name, and "error" is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

36

The "BAD SECTOR" message indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette. This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette. Ifyou find that your system reports this error more
than once a month, you should check the state ofyour controller electronics,
and the condition of your media. You may also encounter this condition in
reading files generated by a controller produced by a different manufacturer.
Even though controllers are claimed to be IBM-compatible, one often finds
small differences in recording formats. The MDS-BOO controller, for
example, requires two bytes of one's following the data CRC byte, which is
not required in the IBM format. As a result, diskettes generated by the Intel
MDS can be read by almost all other IBM-compatible systems, while disk
files generated on other manufacturers' equipment will produce the "BAD
SECTOR" message when read by the MDS. In any case, recovery from this
condition is accomplished by typing a ctl-C to reboot (this is the safest!), or
a return, which simply ignores the bad sector in the file operation. Note,
however, that typing a return may destroy your diskette integrity if the
operation is a directory write, so make sure you have adequate backups in
this case.

The "SELECT" error occurs when there is an attempt to address a drive
beyond the Athrough D range. In this case, the value ofxin the error message
gives the selected drive. The system reboots following any input from the
console.

The "READ ONLY" message occurs when there is an attempt to write to a
diskette which has been designated as read-only in a STAT command, or has
been set to read-only by the BDOS. In general, the operator should reboot
CP/M either by using the warm start procedure (ctl-C) or by performing a
cold start whenever the diskettes are changed. If a changed diskette is to be
read but not written, BDOS allows the diskette to be changed without the
warm or cold start,. but internally marks the drive as read-only. The status
of the drive is subsequently changed to read/write if a warm or cold start
occurs. Upon issuing this message, CP/M waits for input from the console.
An automatic warm start takes place following any input.

37

38

CP/M 2.2 INTERFACE GUIDE

COPYRIGHT (c) 1979
DIGITAL RESEARCH

•

Copyright (c) 1979 by Digital Research. All rights re­
served. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in
any form or by any means, electronic, mechanical, mag­
netic, optical, chemical, manual or otherwise, without
the prior written permission of Digital Research, Post
Office Box 579, Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties
with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Digital
Research reserves the irght to revise this publication
and to make changes from time to time in the content
hereof without obligation of Digital Research to notify
any person of such revision or changes.

Table of Contents

SECTION II

1. INTRODUCTION

2. OPERATING SYSTEM CALL CONVENTIONS

. 3. A SAMPLE FILE-TO-FILE COpy PROGRAM

4. A SAMPLE FILE DUMP UTILITY

5. A SAMPLE RANDOM ACCESS PROGRAM

6. SYSTEM FUNCTION SUMMARY

39

Page

41

43

63

66

69

76

· ::.':

Introduction

This manual describes CP/M. release 2. system organization including the
structure ofmemory and system entry points. The intention is to provide the
necessary information required to write programs which operate under
CP/M, and which u~e the peripheral and disk I/O facilities of the system.

CP/M is logically divided into four parts, called the Basic I/O System
(BIOS), the Basic Disk Operating System (BDOS), the Console command
processor (CCP), and the Transient Program Area (TPA). The BIOS is a
hardware-dependent module which defines the exact low level interface to a
particular computer system which is necessary for peripheral device I/O.
The BIOS and BDOS are logically combined into a single module with a
common entry point. and referred to as the F.DOS. The CCP is a distinct
program which uses the FDOS to provide a human-oriented interface to the
information which is cataloged on the backup storage device. The TPA is an
area of memory (i.e., the portion which is not used by the FDOS and CCP)
where various non-resistan t operatingsystem commands and user programs
are executed. The lower portion of memory is reserved for system
information and is detailed in later sections. Memory organization of the
CP/M system is shown below:

high
memory

FBASE:

CBASE:

TBASE:

BOOT:

In standard CP/M 2.0,

BDOS size:
CCP size:

FDOS (BDOS+BIOS)

CCP

TPA

System parameters

EOOH bytes
800H bytes

41

All standard CP1M versions assume BOOT = OOOOH, which is the base of
random access memory. The machine code found at location BOOT
performsa system "warmstart"which loadsand initializes the programsand
variables necessary to return control to the CCP. Thus, transient programs
need only jump to location BOOT to return control to CP1M at the
command level. Further, the standard versions assume
TBASE= BOOT+OlOOH which is normally location OlOOH. The principal
entry point to the FDOS is at location BOOT + 0005H (normally 0005H)
where a jump to FBASE is found. The address field at BOOT+OOO6H
(normally 0006H) contains the value ofFBASE and can be used to determine
the size of available memory, assuming the CCP is being overlayed by a
transient program.

Transient programs are loaded into the TPA and executed as follows. The
operator communicates with the CCP by typing command lines following
each prompt. Each command line takes one of the forms:

command
command filet
command filet file2

where "command" is either a built-in function such as DIR or TYPE, or the
name of a transient command or program. If the command is a built-in
function of CP1M, it is executed immediately. Otherwise, the CCP searches
the currently addressed disk for a file by the name

command.COM

If the file is found, it is assumed to be a memory image of a program which
executes in the TPA, and thus implicitly originates at TBASE in memory.
The CCP loads the COM file from the disk into memory starting at TBASE
and possibly extending up to CBASE.

If the command is followed by one or two file specifications, the CCP
prepares one or two file control block (FCB) names in the system parameter
area. These optional FCB's are in the form necessary to access files through
the FDOS, and are described in the next section.

The transient program receives control from the CCP and begins execution,
perhaps using the I/O facilities of the FDOS. The transient program is
"called" from the CCP, and thus can simply return to the CCP upon
completion of its processing, or can jump to BOOT to pass control back to
CP1M. In the first case, the transient program must not use memory above
CBASE, while in the latter case, memory up through FBASE-l is free.

42

The transient program may use the CP/M I/O facilities to communicate
with the operator's console and peripheral devices, including the disk
subsystem. The I/O system is accessed by passing a "function numberH and
an "information addressH to CP/M through the FDOS entry point at
BOOT +0005H. In the case ofa disk read, for example, the transient program
sends the number corresponding to a disk read, along with the address of an
FCB to the CP/M FDOS. The FDOS, in turn, performs the operation and
returns with either a disk read completion indication or an error number
indicating that the disk read was unsuccessful. The function numbers and
error indicators are given below.

Operating System Call Conventions

The purpose of this section is to provide detailed information for performing
direct operating system calls from user programs.

CP/M facilities which are available for access by transient programs fall into
two general categories: simple device I/O, and disk file I/O. The simple
device operations include:

Read a Console Character
Write a Console Character
Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character
Get or Set I/O Status
Print Console Buffer
Read Console Buffer
Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Ra~dom or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators

43

As mentioned above, access to the FDOS functions is accomplished by
passing a function number and information address through the primary
entry point at location BOOT + 0005H. In general, the function number is
passed in register C with the information addresS in the double byte pair DE.
Single byte values are returned in register A, with double byte values
returned in HL (a zero value is returned when the function number is out of
range). For reasons of compatibility, register A=L and register B =H upon
return in all cases. Note that the register passing conventions ofCP/M agree
with those of Intel's PL/M systems programming language. The list of
CP/M function numbers is given below.

o System Reset
1 Console Input
2 Console Output
3 Reader Input
4 Punch Output
5 List Output
6 Direct Console I/O
7 Get I/O Byte
8 Set I/O Byte
9 Print String

10 Read Console Buffer
11 Get Console Status
12 Return Version Number
13 Reset Disk System
14 Select Disk
15 Open File
16 Close File
17 Search for First
18 Search for Next

19 Delete File
20 Read Sequential
21 Write Sequential
22 Make File
23 Rename File
24 Return Login Vector
25 Return Current Disk
26 Set DMA Address
27 Get Addr (Alloc)
28 Write Protect Disk
29 Get R/O Vector
30 Set File Attributes
31 Get Addr (Disk Parms)
32 Set/Get User Code
33 Read Random
34 Write Random
35 Compute File Size
36 Set Random Record

(Functions 28 and 32 should be avoided in application programs to maintain
upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack pointer set to
ail eight level stack area with the CCPreturn address pushed onto the stack,
leaving seven levels before overflow occurs. Although this stack is usually
not used by a transient program (i.e., most transients return to the CCP
through a jump to location OOOOH), it is sufficiently large to make CP/M
system calls since the FDOS switches to a local stack at system entry. The
following assembly language program segment, for example, reads char­
acters continuously until an asterisk is encountered, at which time control
returns to' the CCP (assuming a standard CP/M system with
BOOT+OOOOH):

44

BDOS EQU 0005H ;STANDARO CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION

ORG 0100H ;BASEOFTPA
NEXTC: MVI C,CONIN ;REAO NEXT CHARACTER

CALL BOOS ;RETURN CHARACTER IN (A)
CPI '*' ;ENO OF PROCESSING?
JNZ NEXTC ;LOOP IF NOT
RET ;RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a logical
organization which allows any particular file to contain any number of
records from completely empty, to the full capacity of the drive. Each drive
is logically distinct with a disk directory and file data area. The disk file
names are in three parts: the drive select code, the file name consisting ofone
to eight non-blank characters, and the file type consisting of zero to three
non-blank characters. The file type names the generic category of a
particular file, while the file name distinguishes individual files in each
category. The file types listed below name a few generic categories which
have been established, although they are generally arbitrary:

ASM
PRN
HEX
BAS
INT
COM

Assembler Source
Printer Listing
Hex Machine Code
Basic Source File
Intermediate Code
CCP Command File

PLI
REL
TEX
BAK
SYM
$$$

PL/ I Source File
Relocatable Module
TEX Formatter Source
EO Source Backup
SID Symbol File
Temporary File

Source files are treated as a sequence ofASCII characters, where each "line"
of the source file is followed by a carriage-return line-feed sequence (OOH
followed by OAH). Thus one 128 byte CP/M record could contain several
lines of source text. The end of an ASCII file is denoted by a control-Z
character (lAB) or a real end of file, returned by the CP/M read operation.
Control-Z characters embedded within machine code files (e.g., COM files)
are ignored, however, and the end of file condition returned by CP/M is used
to terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65536 records of 128
bytes each, numbered from 0 through 65535, thus allowing a maximum of 8
megabytes per file. Note, however, that although the records may be
considered logically contiguous, they may not be physically contiguous in
the disk data area. Internally, all files are broken into 16K byte segments
called logical extents, so that counters are easily maintained as 8-bit values.
Although the decomposition into extents is discussed in the paragraphs
which follow, they are ofno particular consequence to the programmersince
each exteht is automatically accessed in both sequential and random access
modes.

45

In the file operations starting with function number 15, DE usually
addresses a file control block (FCB). Transient programs often use the
default file control block area reserved by CP/M at location BOOT + D05CH
(normally 005CH) for simple file operations. The basic unit of file
information is a 128 byte record used for all file operations, thus a default
location for disk I/O is provided by CP/M at location BOOT+OO80H
(normally 0080H) which is the initial default DMA address (see function 26).
All directory operations take place in a reserved area which does not affect
write buffers as was the case in release 1, with the exception of Search First
and Search Next, where compatibility is required.

The File Control Block (FCB) data area consists ofa sequence of33 bytes for
Sequential access and a series of 36 bytes in the case that the file is accessed
randomly. The default file control block normally located at 005CH can be
used for random access files, since the three bytesstartingat BOOT + 007DH
are available for this purpose. The FCB format is shown with the following
fields:

where

dr drive code (0 - 16)
0= >use default drive for file
1= > auto disk select drive A,
2= > auto disk select drive B,

16= >auto disk select drive P.

fl...f8

tl,t2,t3

ex

sl

s2

rc

contain the file name in ASCII upper case, with high bit=O

contain the file type in ASCII upper case, with high bit =0
tl', t2', and t3' denote the bit of these positions,
tl' = 1= > Read/Only file,
t2' = 1= > SYS file, no DIR list

contains the current extent number, normally set to 00 by the
user, but in range 0 - 31 during file I/O

reserved for internal system use

reserved for internaI system use, set to zero on call to OPEN,
MAKE, SEARCH

record count for extent "ex:' takes on values from 0 - 128

46

dO...dn

cr

rO,rl,r2

filled-in by CP1M, reserved for system use

current record to read or write in a sequential file operation,
normally set to zero by user

optional random record number in the range 0-65535, with
overflow to r2, rO,rl constitute a 16-bit value with low byte rO,
and high byte rl

Each file being accessed through CPIM must have a corresponding FCB
which provides the name and allocation information for all subsequent file
operations. When accessing files, it is the programmer's responsibility to fill
the lower sixteen bytes of the FCB and initialize the "cr" field. Normally,
bytes 1through 11 are set to the ASCII character values for the file name and
file tyPe, while all other fields are zero.

FCB's are stored in a directory area of the disk, and are brought into central
memory before proceeding with file operations (see the OPEN and MAKE
functions). The memory copy of the FCB is updated as file operations take
place and later recorded permanently on disk at the termination of the file
oPeration (see the CLOSE command).

The CCP constructs the first sixteen bytes of two optional FCB's for a
transient by scanning the remainder ofthe line following the transient name,
denoted by "filel" and "file2" in the prototype command line described
above, with unspecified fields set to ASCII blanks. The first FCB is
constructed at location BOOT + D05CH, and can be used as-is for subsequent
file oPerations. The second FCB occupies the dO ... dn portion of the first
FCB, and must be moved to another area of memory before use. If, for
example, the operator types

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME. COM is loaded into the TPA, and the default FCB at
BOOT + 005CH is initialized to drive code 2, file name "X" and file type
"ZOT~' The second drive code takes the default value 0, which is placed at
BOOT + 006CH, with the file name "Y" placed into location BOOT + oo6DH
and file type "ZAP" located 8 bytes later at BOOT + oo75H. All remaining
fields through "cr" are 'set to zero. Note again that it is the programmer's
responsibility to move this second file name and type to another area, usually
a separate file control block, before opening the file which begins at
BOOT + 005CH, due to the fact that the open operation will overwrite the
secondname and type.

If no file names are specified in the original command, then the fields
beginning at BOOT+005DH and BOOT+OO6DH contain blanks. In all

47

cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location BOOT + 0080H
is initialized to the command line tail typed by the operator following the
program name. The first position contains the number of characters, with
the characters themselves following the character count. Given the above
command line, the area beginningat BOOT +0080H is initiaUzed as follows:

BOOT+OO80H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 + 10 + 11 + 12 + 1:3 + 14

14 u" UB" U:" "XU u" "z" "on "T" "yu .. " "Ztt "An uP"

where the characters are translated to upper case ASCII with unintialized
memory following the last valid character. Again, it is the responsibility of
the programmer to extract the information from this buffer before any file
operations are performed, unless the. default DMA address is explicitly
changed. .

The individual functions are described in detail in the pages which follow.

FUNCTION 0: System Reset

Entry Parameters:
Register C: DOH

The system reset function returns control to the CP/M operating system at
the CCP level. The CCP re-initializes the disk subsystem by selecting and
logging-in disk drive A. This function has exactly the same effect as a jump
to locatio.n BOOT.

FUNCTION 1: CONSOLE INPUT

Entry Parameters:
Register C: OlH

Returned Value
Register A: ASCII Character

The console input function reads the next console character· to register A.
Graphic characters, along with carriage return, line feed, and backspace
(ctl-H) are echoed to the console. Tab characters (ctl-I) are expanded in
columns ofeight characters. Acheck is made for start/stop scroll (ctl-S) and
start/stop printer echo (ctl-P). The FDOS does not return to the calling
program until a character has been typed, thus suspending execution of a
character if not ready. .

48

FUNCTION 2: CONSOLE OUTPUT

Entry Parameters:
Register C: 02H
Register E: ASCII Character

The ASCII character from register E is sent to the console device. Similar to
function 1, tabs are expanded and checks are made for start/stop scroll and
printer echo.

FUNCTION 3: READER INPUT

Entry Parameters:
Register C: 03H

Returned Value
Register A: ASCII Character

The Reader Input function reads the next character from the logical reader
into register A. Control does not return until the character has been read..

FUNCTION 4: PUNCH OUTPUT

Entry Parameters:

Register
Register

C:04H
E: ASCII Character

The Punch Output function sends the character from register E to the
logical punch device.

FUNCTION 5: LIST OUTPUT

Entry Parameters:
Register C: 05H
Register E: ASCII Character

The List Output function sends the ASCII character in register E to the
logical ~sting device.

49

FUNCTION 6: DIRECT CONSOLE 1/0

Entry Parameters:
Register C: 06H
Register E: OFFH (input) or

char (output)

Returned Value
Register A: char or status

(no value)

Direct console 1/0 is supported under CP1M for those specialized
applications where unadorned console input and output is required. Use of
this function should, in general, be avoided since it bypasses all of CP1M's
normal control character functions (e.g., control-S and control-P).
Programs which Perform direct 1/0 through the BIOS under previous
releases ofCP1M, however, should be changed to use direct1/0 under BDOS
so that they can be fully supported under future releases of MPIM and
CP/M.

Upon entry to function 6, register E either contains hexadecimal FF,
denoting a console input request, or register E contains an ASCII character.
If the input value is FF, then function 6returns A = 00 ifno character is ready,
otherwise A contains the next console input character. .

If the input value in E is not FF, then function 6 assumes that E contains a
valid ASCII character which is sent to the console.

FUNCTION 7: GET 1/0 BYTE

Entry Parameters:
Register C: 07H

Returned Value:
Register A: I/O Byte Value

The Get I/O Byte function returns the current value of 10BYTE in register·
A.

FUNCTION 8: SET 1/0 BYTE

Entry Parameters:
Register C: OBH
Register E: I/O Byte Value

50

The Set I/O Byte function changes the system 10BYTE value to that given
in register E.

FUNCTION 9: PRINT STRING

Entry Parameters:
Register C: 09H
Registers DE: String Address

The Print String function sends the character stringstored in memory at the
location given by DE to the console device, until a "$" is encountered in the
string. Tabsare expanded as in function 2, and checksare made for start/stop
scroll and printer echo.

FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:
Register C: OAH
Registers DE: Buffer Address

Returned Value
Console Characters in Buffer

The Read Buffer function reads a line of edited console input into a buffer
addressed by registers DE. Console input is terminated when either the input
buffer overflows. The Read Buffer takes the form:

DE: +0 +1

where "mx" is the maximum number ofcharacters which the buffer will hold
(1 to 255), "nc" is the number ofcharacters read (set by FDOS upon return),
followed by the characters read from the console. If nc < mx, then
uninitialized positions follow the last character, denoted by"??" in the above
figure. A number of control functions are recognized during line editing:

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl-M
ctl-R
ctl-X

removes the echoes the last character
reboots when at the beginning of line
causes physical end of line
backspaces one character position
(line feed) terminates input line
(return) terminates input line
retyPes the current line after new line
backspaces to beginning of current line

Note also that certain functions which return the carriage to the leftmost

51

position (e.g., ctl-X) do so only to the column position where the prompt
ended (in earlier releases, the carriage returned to the extreme left margin).
This convention makes operator data input and line correction more legible.

FUNCTION 11: GET CONSOLE STATUS

Entry Parameters :
Register C: OBH

Return Value
Register A: Console Status

The Console Status function checks to see i(a character has been typed at
the console. If a character is ready, the value OFFH is returned in register A.
Otherwise a ooH value is returned.

FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:
Register C: OCH

Returned Value
Registers HL: Version Number

Function 12 provides information which allows version independent
programming. A two-byte value is returned, with H = 00 designating the
CP1M release (H = 01 for MP1M), and L = 00 for all releases previous to 2.0.
CP/M 2.0 returns a hexadecimal 20 in register L, with subsequent version 2
releases, in the hexadecimal range 21, 22, through 2F. Using function 12, for
exa~ple, you can write application programs which provide both sequential
and random access functions, with random access disabled when operating
under early releases of CP1M.

FUNCTION 13: RESET DISK SYSTEM

Entry Parameters:
Register C: ODH

The Reset Disk Function is used to programmatically restore the file system
to a reset state where all disks are set to readlwrite (see functions 28 and 29),
only disk drive A is selected, and the default DMA address is reset to
BOOT+ ooBOH. This function can be used, for example, by an application
program which requires a disk change without a system reboot.

52

FUNCTION 14: SELECT DISK

Entry Parameters:
Register C: OEH
Register E: Selected Disk

TheSelect Disk function designates the disk drive named in register E as the
default disk for subsequent file operations, with E = 0 for drive A, 1 for drive
B, and so-forth through 15 corresponding to drive P in a full sixteen drive
system. The drive is placed in an "on-line" status which, in particular,
activates its directory until the next cold start, warm start, or disk system'
reset operation. If the disk media is changed while it is on-line, the drive .
automatically goes to a read/only status in a standard CP/M environment .
(see function 28). FCB's which specify drive code zero (dr=OOH) automat­
ically reference the currently selected default drive. Drive code values
between 1 and 16, however, ignore the selected default drive and directly
reference drives A through P.

FUNCTION 15: OPEN FILE

Entry Parameters:
Register C: OFH
Registers DE: FCB Address

Returned Value
Register A: Directory Code

The Open File operation is used to activate a file which currently exists in the
disk directory for the currently active user number. The FDOS scans the
referenced disk directory for a match in positions 1 through 14 of the FCB
referenced by DE (byte sl is automatically zeroed), where an ASCII question
mark (3FlJ) matches any directory character in any of these positions.
Normally, no question marks are included and, further, bytes "ex" and "s2"
of t~e FCB are zero.

If a directory element is matched, the relevant directory information is
copied into bytes dO through dn of the FCB, thus allowing access to the files·
through subsequent read and write operations. Note that an existing file
must not be accessed until a successful open operation is completed. Upon
return, the open function returns a "directory code".)Yith the value 0 through
3ifthe open wassuccessful, orOFFH (255 decimal) if the file cannot be found.
Ifquestion marks occur in the FCB then the first matching FeB is activated.
Note that the current record ("cr") must be zeroed by the program if the file
is to be accessed sequentially from the first record.

53

FUNCTION 16: CLOSE FILE

Entry Parameters:
Register C: IOH
Registers DE: FCB Address

Returned Value
Register A: Directory Code

The Close File function performsthe inverse of the open file function. Given
that the FCB addressed by DE has been previously activated through an
open or make function (see functions 15 and 22), the close function
permanently records the new FCB in the referenced disk directory. The FCB
matching process for the close is identical to the open function. Thedirectory
code returned for a successful close operation is0, 1,2, or 3, while a OFFH (255
decimal) is returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information.

FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
Register C: IIH
Registers DE: FCB Address

Returned Value
Register A: Directory Code

Search First scans the directory for a match with the file given by th~ FCB
addressed by DE. The value 255 (hexadecimal FF) is returned if the file is not
found, otherwise 0, 1,2, or 3 is returned indicating the file is present. In the
case that the file is found, the current DMA address is filled with the record
containing the directory entry, and the relativestarting position is A *32 (i.e.,
rotate the A register left 5 bits, or ADD Afive times). Although not normally
required for application programs, the directory information can be
extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any position from
"fl" through "ex" matches the corresponding field of any directory entry on
the default or auto-selected disk drive. If the "dr" field contains an ASCII
question mark, then the auto disk selected function is disabled, the default
disk is searched, with the search function returning any matched entry,
allocated or free, belonging to any user number. This latter function is not
normally used by application programs, but does allow complete flexibility
to scan all current directory values. If the "dr" field is not a question mark,
the "s2" byte is automatically zeroed.

54

FUNCTION 18: SEARCH FOR NEXT

Entry Parameters :
Register C: 12H

Returned Value
Register A: Directory Code

The Search Next function is similar to the Search First function, except that
the directory scan continues from the last matched entry. Similar to
function 17, function 18 returns the decimal value 255 in A when no more
directory items match.

FUNCTION 19: DELETE FILE

Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value
Register A: Directory Code

The Delete File function removes files which match the FCB addresses by
DE. The filename and type may contain ambiguous references (i.e., question
marks in various positions), but the drive select code cannot be ambiguous,
as in the Search and Search Next functions.

Function 19 returns a decimal 255 if the referenced file or files cannot be
found, otherwise a value in the range 0 to 3 is returned.

FUNCTION 20: READ SEQUENTIAL

Entry Parameters:
Register C: 14H
Registers DE: FCB Address

Returned Value
Register A: Directory Code

Given that the FeB addressed by DE has been activated through an open or .
make function (numbers 15 and 22), the Read Sequential function reads the
next 128 byte record from the file into memory at the current DMA address..
The record is read from position "cr" of the extent, and the "cr" field is'
automatically incremented to the next record position. If the "cr" field
overflows then the next logical extent is automatically opened and the "cr"
field is reset to zero in preparation for the next read operation. The value OOH

55

is returned in the A register if the read operation was successful, while a
non-zero value is returned ifno data exists at the next record position (e.g.,
end of file occurs).

FUNCTION 21: WRITE SEQUENTIAL

Entry Parameters:
Register C: 15H
Registers DE: FCB Address

Returned Value
Register A: Directory Code

Gjven that the FCB addressed by DE has been activated through an open or
make function (numbers 15and22), the Write Sequential function writes the
128 byte data record at the current DMA address to the file named by the
FCB. The record is placed at position "cr" of the file, and the "cr" field is
automatically incremented to the next record position. If the "cr" field
overflows then the next logical extent is automatically opened and the "cr"
field is reset to zero in. preparation for the next write operation. Write
operations can take place into an existing file, in which case newly written
records overlay those which already exist in the file. Register A = OOH upon
return from a successful write operation, while a non-zero value indicates an
unsuccessful write due to a full disk.

FUNCTION 22: MAKE FILE

Entry Parameters:
Register C: 16H
Registers DE: FCB Address

Returned Value
Register A: Directory Code

The Make File operation is similar to the.open file operation except that the
FCB must name a file which does not exist in the currently referenced disk
directory (i.e., the one named explicitly by a non-zero "dr" code, or the
default disk if"dr" is zero). The FDOS creates the file and initializesboth the
directory and main memory value to an empty file. The programmer must
ensure that no duplicate file names occur, and a preceding delete operation
is sufficient if there is any possibility of duplication. Upon return, register
A= 0, 1, 2, or 3 if the operation was successful and OFFH (255 decimal) if no
more directory space is available. The make function has the side-effect of
activating the FCB and thus a subsequent open is not necessary.

56

FUNCTION 23: RENAME FILE

Entry Parameters:
Register C: 17H
Registers DE: FCB Address

Returned Value
Register A: Directory Code

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named in the
second 16 bytes. The drive code "dr" at position 0 is used to select the drive,
while the drive code for the new file name at position 16 ofthe FCB is assumed
to be zero. Upon return, register A is set to a value between 0 and 3 if the
rename was successful~ and OFFH (255 decimal) if the first file name could
not be found in the directory scan.

FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters:
Register C: ISH

Returned Value
Registers HL: Login Vector

The login vector value returned by CP1M is a 16-bit value in HL, where the
least signifi.cant bit of L corresponds to the first drive A, and the high order
bit ofH corresponds to thesixteenth drive, labelled P. A"0" bit indicates that
the drive is not on-line, while a "I" bit marks a drive that is actively on-line
due to an explicit disk drive selection, or an implicit drive select causeq by a
file operation which specified a non-zero "dr" field. Note that compatibility
is maintained with earlier releases, since registers A and L contain the same
values·upon return.

FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:
Register C: 19H

Returned Value
Register A: Current Disk

Function 25 returns the currently selected default disk number in register A.
The disk numbers range from 0 through 15 corresponding to drives Athrough
P.

57

FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Regular C: lAH
Registers DE: DMA Address

"DMA" is an acronym for Direct Memory Address, which is often used in
connection with disk controllers which directly access the memory of the
mainframe computer to transfer data to and from the disk subsystem.
Although many computer systems use non-DMA access (i.e., the data is
transferred through programmed I/O operations), the DMA address has, in
CP/M, come to mean the address at which the 128 byte data record resides
before a disk write and after a disk read. Upon cold start, warm start, or disk
system reset, the DMA address is automatically set to BOOT +0080H. The
Set DMA function, however, can be used to change this default value to
address another area of memory where the data records reside. Thus, the
DMA address becomes the value specified by DE until it is changed by a
subsequent Set DMA function, cold start, warm start, or disk system reset.

FUNCTION 27: GET ADDR (A.LLOC)

Entry Parameters:
Register C: IBH

Returned Value ..
Registers HL: ALLOC Address

An "allocation vector" is maintained in main memory for each on-line disk
drive. Various system programs use the information provided by the
allocation vector to determine the amount of remaining storage (see the
STAT program). Function 27 returns the base address of the allocation
vector for the currently selected disk drive. The allocation information may,
however, be invalid if the selected disk has been marked read /only. Although
this function is not normally used by application programs, additional
details of the allocation vector are found in the "CP/M Alteration Guide:'

FUNCTION 28: WRITE PROTECT DISK

. Entry Parameters :
Register C: lCH

The disk write protect function provides temporary write protection for the
currently selected disk. Any attempt to write to the disk, before the next cold
or warm start operation produces the message

Bdos Err on d: R/O

58

FUNCTION 29: GET READ/ONLY VECTOR

Entry Parameters:
Register C: IDH

Returned Value
Registers HL: R/O Vector Value

Function 29 returns a bit vector in register pair HL which indicates drives
which have the temporary read/only bit set. Similar to function 24, the least
significant bit corresponds to drive A, while the most significant bit
corresponds to drive P. The R/O bit is set either by the explicit call to
function 28, or by the automatic software mechanisms within CP/M which
detect changed disks.

FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters:
Register C: lEH
Registers DE: FCB Address

Returned Value
Register A: Directory Code

The Set File Attributes function allows programmatic manipulation of
permanent indicators attached to files. In particular, the R/O and System
attributes (tl' and t2') can be set or reset. The DE pair addresses an
unambiguous file name with the appropriate attributes set or reset. Function
30 searches for a match, and changes the matched directory entry to contain
the selected indicators. Indicators fl.' through f4' are not presently used, but
may be useful for applications programs, since they are not involved in the
matching process during file open and close operations. Indicators f5'
through fB' and t3' are reserved for future system expansion.

FUNCTION 31: GET ADDR (DISK PARMS)

Entry Parameters:
Register C: IFH

Returned Value
Registers HL: DPB Address

The address of the BIOS resident disk parameter block is returned in HL as
a result of this function call. This address can be used for either of two
purposes. First, the disk parameter values can be extracted for display and

59

spacecomputation purposes. or transient programs can dynamically change
the values ofcurrent disk parameters when the disk environment changes, if
required. Normally, application programs will not require this facility.

FUNCTION 32: SET/GET USER CODE

Entry Parameters:
Register C: 20H
Register E: OFFH (get or

User Code (set)

Returned Value
Register A: Current Code or

(no value)

An application program can change or interrogate the currently active user
number by calling function 32. If register E =OFFH, then the value of the
current user number is returned in register A, where the value is in the range
oto 31. If register E is not OFFH. then the current user number is changed to
the value of E (modulo 32).

FUNCTION 33: READ RANDOM

Entry Parameters:
Register C: 2lH
Registers DE: FCB Address

Returned Value
Register A: Return Code

The Read Random function is similar to the sequential file read operation of
previous releases, except that the read operation takes place at a particular
record number, selected by the 24-bit value constructed from the three byte
field following the FCB (byte positions rO at 33, rl at 34, and r2 at 35). Note
that the sequence of 24 bits is stored with least significant byte first (rO).
middle byte next (rl), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2 must be zero.
however, since a non-zero value indicates overflow past the end of file.

Thus, the rO,rl byte pair is treated as a double-byte, or "word" value, which
contains the record to read. This value ranges from 0 to 65535, providing
access to any particular record of the 8 megabyte file. In order to process a
file using random access, the base extent (extent 0) must first be opened.
Although the base extent mayor may not contain any allocated data, this
ensures that the file is properly recorded in the directory, and is visible in DIR
requests. The selected record number is then stored into the random record
field (rO,rl), and the BnOS is called to read the record. Upon return from the

60

call, register A either contains an error code, as listed below, or the value 00
indicating the operation was successful. In the latter case, the current DMA
address contains the randomly accessed record. Note that contrary to the
sequential read operation, the record number is not advanced. Thus,
subsequent random read operations continue to read the same record.

Upon each random read operation, the logical extent and current record
values are automatically set. Thus, the file can be sequentially read or
written, starting from the current randomly accessed position. Note,
however, that in this case, the last randomly read record will be re-read asyou
switch from random mode to sequential read, and the last record will be
re-written as you switch to a sequential write operation. You can, of course,
simply advance the random record position following each random read or
write to obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are listed below.

01 reading unwritten data
02 (not returning in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a data
block which has not been previously written, or an extent which has not been
created, which are equivalent conditions. Error 3 does not normally occur
under proper system operation, but can be cleared by simply re-reading, or
re-opening extent zero as long as the disk is not physically write protected.
Error code 06 occurs whenever byte r2 is non-zero under the current 2.0
release. Normally, non-zero return codes can be treated as missing data, with
zero return codes indicating operation complete.

FUNCTION 34: WRITE RANDOM

Entry Parameters:
Register C: 22H
Registers DE: FCB Address

Returned Value
Register A: Return Code

The Write Random operation is initiated similar to the Read Random call,
except that data is written to the disk from the current DMA address.
Further, if the disk extent or data block which is the target of the write has
not yet been allocated, the allocation is performed before the write operation

61

continues. As in the Read Random operation, the random record number is
not changed as a result of the write. The logical extent number and current
record positions of the file control block are set to correspond to the random
record which is being written. Again, sequential read or write operations can
commence following a random write, with the notation that the currently
addressed record is either read or rewritten again as the sequential operation
begins. You can also simply advance the random record position following
each write to get the effect of a sequential write operation. Note that in
particular, reading or writing the last record of an extent in random mode
does not cause an automatic extent switch as it does in sequential mode.

The error codes returned by arandom write are identical to the random read
operation with the addition of error code 05, which indicates that a new
extent cannot be created due to directory overflow.

FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value
Random Record Field Set

When computing the size of a file, the DE register pair addresses an FCB in
random mode format (bytes rO, rl, and r2 are present). The FCB contains an
unambiguous file name which is used in the directory scan. Upon return, the
random record bytes contain the "virtual" file size which is, in effect, the
record address of the record following the end of the file. If, following a call
to function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536. Otherwise, bytes rO and rl constitute a 16-bit
value (rO is the least significant byte, as before) which is the file size.

Data can be appended to the end ofan existing file by simply calling function
35 to set the random record position to the end of file, then performing a
sequence of random writes starting at the preset record address

The virtual size of a file corresponds to the physical size when the file is
written sequentially. If, instead, the file was created in random mode and
"holes" exist in the allocation, then the file may in fact contain fewer records
than the size indicates. If, for example, only the last record of an eight
megabyte file is written in random mode (i.e., record number 65535), then the
virtual size is 65536 records, although only one block of data is actually
allocated.

62

FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value
Random Record Field Set

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point. The function can be useful in two
ways.

First, it is often necessary to initially read and scan a sequential file to extract
the position of various "key" fields. As each key is encountered, function 36
is called to compute the random record position for the data corresponding
to this key. If the data unit size is 128 bytes, the resulting record position is
placed into a table with the key for later retrieval. After scaning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read using the
corresponding random record number which was saved earlier. The scheme
is easily generated when variable record lengths are involved since the
program need only store the buffer-relative byte position along with the key
and record number in order to find the exact starting position of the keyed
data at a later time.

A second use of function 36 occurs when switching from a sequential read or
write over to random read or write. A file is sequentially accessed to a
particular point in the file, function 36 is called which sets the record number,
and subsequent random read and write operations continue from the
selected point in the file.

Sample File-to-File Copy Program

The program shown below provides a relatively simple example of file
operations. The program source file is created as COPY.ASM using the
CP1M ED program and then assembled using ASM or MAC, resulting in a
"HEX" file. The LOAD program is then used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting the
stack pointer to a local area, and then proceeds to move the second name
from the default area at 006CH to a 33-byte file control block called DFCB.
The DFCB is then prepared for file operations by clearing the current record
field. At this point, the source and destination FCB's are ready for processing
since the SFCB at 005CH is properly set-up by the CCP upon entry to the
COpy program. That is, the first name is placed into the default FCB, with

63

the proper fields zeroed, including the current record field at 007CH. The
progra'm continues by opening the source file, deleting any existing
destination file, and then creating the destination file. Ifall this issuccessful,
the program loops at the label COpy until each record has been read from
the source file and placed into the destination file. Upon completion of the
data transfer, the destination file is closed and the program returns to the
CCP command level by jumping to BOOT.

sample file-to-file copy program

at the ccp level, the command

copy a:x.y b:u.v

copies the file named x.y (rom drive
a to a file named u.v on drive b.

,
0000 boot equ 00a0h system reboot
0005 bdos equ 000Sh bdos entry point
00Sc fcbl equ 005ch first file name
00Sc sfcb equ fcbl source feb
006c fcb2 equ 006ch second file name
0080 dbuff equ 0080h default buffer
0100 = tpa equ 0100h beginning of tpa

,
0009 printf equ 9 print buffer func'
000f openf equ 15 open file func.
0010 = closef equ 16 close file tunc'
0013 = deletef equ 19 delete file tunc'
0014 = readf equ 20 sequential read
0015 = writef equ 21 sequential write
0&16 = makef equ 22 make file func'

0100 org tpa beginning of tpa
0100 311bO 2 lxi sp,s tack; local stack

01030e10
0105 116c00
01082lda01
010b la mfcb:
010c 13
0led 77
"lee 23
010f 0d
"11" c20b" 1

move
mvi
lxi
lxi
Idax
inx
mov
inx
dcr
jnz

second file name to dfcb
c,16 half an fcb
d,fcb2 source of move
h,dfcb destination fcb
d source fcb
d ready next
m,a dest fcb
h ready next
c count 16 ••. 0
mfcb loop 16 times

0113 af
0114 32fa01

name has been moved, zero cr
xra a : a = OSh
sta dfcbcr; current rec = "
source and destination fcb's ready

0117 11 Sc08 1xi d,sfcb source file
011a cd6901 call open , error if 255
011d ·118701 1xi d,nofile; ready message
0120 3c inc a 255 becomes 0
0121 cc610l cz finis done if no file

source file open, prep destination
0124 llda01 lxi d,dfcb destination
0127 cd7301 call delete remove if present

012a Ilda01 lxi d,dfcb destination
0l2d cd820l call rrake create the tile
0130 119601 lxi d,nodir ready rr.essage

64

tUB 3c
0134 cc6UH

lnr
cz

a
finis

255 becomes 3
done if no dir space

source file open, oest file open
copy until end of file on source

0137 115c00 copy:
013a cd7801
013d b7
0l3e c25101

lxi
call
ora
jnz

d, s fcb
read
a
eof il e

source
read next record
end of file?
skip write if so

close des~ination

destination
255 if error
ready message
255 becomes 00
shouldn't happen

of file, write the record
d,dfcb destination
write write record
d,space ready message
a 00 if write ok
finis end lf so
copy loop until eof

of file,
d,dfcb
close
h,wrprot:
a
finis

: end
1 xi
call
1xi
inr
cz

not end
1xi
call
lxi
ora
cn.:
j mp

,
eofile:

0l5111da01
0154 cd6e01
0157 21bb01
015a 3c
015b cc6101

.,141 Ilda01
0144 cd7d01
0147 lla901
e14a b7
014b c46101
014e c 33701

01Se llcc0l

finis:
0161 0e09
0163 cd0500
0166 c30000

copy operation complete, end
lxi d,normal: ready ~essage

: write message given by de, reboot
mvi c,printf
call bdos : write message
jmp boot : reboot system

system interface subroutines
(all return directly from bdos)

0169 0e0f open: mvi
016b c30500 jmp

c,openf
bdos

,
016e 0e10 close: mvi
0170 c305~0 jmp

01730el) delete: mvi
~ 1 75 c305.,,, jmp

01780e14 read: mVl
0l7a c3~5J0 jmp

c,closef
bdos

c,de1etef
bdos

c, r eadf
tidos

~17d uel5 wrlte: mvi
" 1 7t c 3-' 5 ~ " j mp

0182 ue16 make: mvi
Old4 c3~5~" jmp

c,writef
odos

c, make f
bdos

~lo7 6e6t2dfnofi1e:
d196 6e6f2~9nodir:

~1a~ 6f7574tspace:
ulob 7772695wrprot:
JI~c 6j6f7-'0nor~al:

console
db
db
db
db
db

rressaaes
'no source fileS'
'no dlrectory spaceS'
'out of data spaceS'
'write protected?S'
'copy compl~teS'

illaa
tJlta

data areas
dfcb: ds 33
dfcbcr equ dfcb+32

dest inaUon fcb
current record

Ulft,

tJ 210
stack:

as

end

32 16 1eve 1 s tack

65

Note that there are several simplifications in this particular program. First,
there are no checks for invalid file names which could, for example, contain
ambiguous references. This situation could be detected by scanning the 32
byte default area starting at location 005CH for ASCII question marks. A
check should also be made to ensure that the file names have, in fact, been
included (check locations 005DH and 006DH for non-blank ASCII
characters). Finally, a check should be made to ensure that the source and
destination file names are different. Aspeed improvement could be made by
buffering more data on each read operation. One could, for example,
determine the size of memory by fetching FBASE from location 0OO6H and
use the entire remaining portion ofmemory for a data buffer. In this case, the
programmer simply resets the DMA address to the next successive 128 byte
area before each read. Upon writing to the destination file, the DMA address
is reset to the beginning ofthe buffer and incremented by 128 bytes to the end
as each record is transferred to the destination file.

Sample File Dump Utility.

The file dump program shown below is slightly more complex than the single
copy program given in the previous section. The dump program reads an
input file, specified in the CCP command line, and displays the content of
each record in hexadecimal format at the console. Note that the dump
program saves the CCP's stack upon entry, resets the stack to a local area,
and restores the CCP's stack before returning directly to the CCP. Thus, the
dump program does not perform warm start at the end of processing.

0100
-'005 =
0001 =
0002 =
0009 =
000b =
000f =
0014 =

00Sc =
0080 =

: DUMP prog r am reads input file and displays hex data

org 100h
bdos equ 0B05h :dos entry point
cons equ 1 : read console
typef equ 2 :type function
prlntf equ 9 :buffer print entry
brk f equ 11 :break key function (true if cha r
openf equ 15 : f ile open
readf equ 20 : read function.

5ch :file control block addressfcb equ
buff equ B0h :input disk buffer a<idress

000d
000a

cr
If

non graphic characters
equ 0dh :carriage return
equ Bah :line feed

control block definitions
oU5c
005d
k) 065 ::
0068 ::
006b
t'07c
007d ::

fcbdn
fcbfn
f cbf t
fcbrl
fcbrc
febcr
febln

file
equ
equ
equ
equ
equ
equ
equ

fcb+a
fcb+l
fcb+9
fcb+12
fcb+l5
fcb+) 2
feb+) 3

:disk name
: file name
:disk file type (3 characters)
:file's current reel number
: file's record count (0 to 128)
:current (next) record number (0
: feb lenQth

0100 21"000
0103 j9

set cp stack
hi h.0
dad sp
entry stack pointer in hl from the eep

66

subroutines

:print a character

file not there. give error message and return
lxi d,opnmsg
call err
)mp finis ito return

:open operation ok, set buffer index to end
mvi a,80h
sta ibp :set buffer pointer to 8Sh
hI contains next address to print
lxi h,e istart with 0000

more

ito next line number

irecall line position
;carry set by gnb if end file

:check low 4 bits

:save line position

h
a,' ,
pchar
a.b
phex
gloop

for break key
break

Isb = 1 if character ready
: into carry

finis ;don't print any

h
gnb
h
finis
b,a

hex values
for line fold

a,l
efh
nonum

line number
crlf

oldsp
to local stack area (restored at finis)
sp.stktop

and print successive buffers
setup :set up input file
255 :255 if file not present
openok :skip if open is ok

inx
mvi
call
mov
call
jmp

mov a,h
call phex
mov a.l
call phex

check
call
accum
erc
jc

:check break key (actually any key will do)
push h! push d! push b: environment saved
mvi c,brkf
call bdos
pop b! pop d! pop hi environment restored
ret

push
call
pop
jc
mov
print
check
mov
ani
jnz
print
call

end of dump, return to ccp
(note that a jmp to 0000h reboots)
call crlt
lhld oldsp
sph1
stack pointer contains ccp's stack location
ret : to the ccp

shld
set sp
lxi
read
call
cpi
jnz

" 194 221502

0107 315702

010a cdd01
D10d feff
010t c 21b01

0112 Ilf301
0115 cd9c01
0118 c35101

openok:
0Ub 3eS0
011d 321302

0120 210000
;
gloop:

0123 eS
0124 cda201
0127 e1
0128 daS101
012b 47

012c 7d
012d e60f
012f c24401

0132 cd7201

0135 cd5901

0138 0 f
0139 daSUl

01k 7c
013d cdB fel
0140 7ci
0141 cdBf01

nonum:
0144 23
0145 Je2e
~147 cd6S01
014a 78.
014b cdBf01
014e c 32301

f i ni s:

0151 cd7201
0154 2a1502
0157 f9

015B c9

,
break:

0159 e5d5c5
015c 0e0b
01Se cd05e0
0161 c1dle1
0164 c9

,
pchar:

67

"165 e5d5cS
0168 0e02
o16a Sf
016b cd0S00
o16e c1dlel
0171 c9

i
crlt:

0172 3e0d
8174 cd6S01
01773e0a
e 179 cd6S01
e 17c c9

push hi
mvi
mov
call
pop bt
ret

mvi
call
mvi
call
ret

push dt push bi saved
c,typef
e,a
bdos

pop dl pop h: restored

a,cr
pchar
a, If
pchar

,
pnib:

017d e60f
o17f f e0a
0181 d28901

0184 c630
0186 c38bU

:print nibble in reg a
ani 0fh :low 4 bits
cpi 10
j nc D10
less than or equal to 9
adi '0'
jmp prn

greater or equal to 10
adi •a' - 10
call 9char
ret

0189 c637 p10:
~18b cci6501 prn:
elSe c9

,
phex:

"18f f S
9190 0f
0191 0f
"192 0f
0193 af
0194 cd7d01
0197 fl
8198 cd7d01
019b c9

:print
push
rrc
rrc
rrc
rrc
call
pop
call
ret

hex char in reg a
psw

pnib :print nibble
psw
pnib

call
ora
jz
end
S'tc
ret

er r:

0I9c 0e09
01ge cd0S0"
"lal c9

,
gnb:

ola2 3al3e2
elaS feBe
ela7 c2b3el

0Iaa cdceel
"lad b7
olae cab3e 1

8Ibl 37
eIb2 c9

0lb3 Sf
81b4 1680
01b6 3c
0lb7 321302

0lba 2lSe00
elbd 19

0lbe 7e

:print error message
d,e addresses message ending with "$h
mvi c,printf iprint buffer function
call bdos
ret

:get next byte
Ida ibp
cpi B0h
jnz g0
read another buffer

diskr
a izero value if read Ok,
9" :for another byte

of data, return with carry set for eot

:read the byte at buff+r~ a
mov e,a :ls byte of buffer index
mvi d,e :double precision index to de
inr a :indexgindex+l
sta ibp :back to memory
pointer is incremented
save the current file address
Ixi h,buff
dad d
absolute character address is in hI
mov a,m

68

;read disk file record
push h!
lxi
mvi
call
pop bi
ret

Slbf b7
SlcS c9

01cl at
01c2327c00

SlcS llSc""
01c8 "e"t
SIca cd"500

0lcd c9

01ce e5d5c5
Oldl U5c"S
01d4 0e14
Old6 cd0500
01d9 cldlel
Sldc c9

,
setup:

~Hskr :

byte is in the accumulator
ora a :reset carry bit
ret

;set up file
open the file tor input
xra a ;zero to accum
sta fcbcr ;clear current record

lxi d,fcb
mvi c,openf
call bdos
255 in accum if open error
ret

push d 1 push b
d, fcb
c, r eadf
bdos

pop .! pop h

, fixed message area
01dd 46494c0signon: db 'file du ~ version 2.9$'
"lf3 0d0a4e00pnmsg: db cr,lf,'no' input file present on diskS'

S213
0215

0217

0257

,
ibp:
oldsp:

stktop:

variable area
ds 2
ds 2

stack area
ds 64

end

:input buffec pointer
:entry sp value from ccp

:reserve 32 level stack

Sample Random Access Program.

This manual is concluded with a rather extensive, but complete example of
random access operation. The program listed below performs the simple
function of reading or writing random records upon command from the
terminal. Given that the program has been created, assembled, and placed
into a file labelled RANDOM.COM, the CCP level command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name X.DAT (in
this particular case) and, if found, proceeds to prompt the console for input.
Ifnot found, the file is created before the prompt is given. Each prompt takes
the form

next command?

and is followed by operator input, terminated by a carriage return. The input
commands take the form

nW nR Q

69

where n is an integer value in the range 0 to 65535, and W, R, and Q are simple
command characters corresponding to random write, random read, and quit
processing, respectively. If the W command is issued, the RANDOM
program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by a
carriage return. RANDOM then writes the character string into the X.DAT
file at record n. If the R command is issued, RANDOM reads record number
n and displays the string value at the console. If the Qcommand is issued, the
X.DAT file is closed, and the program returns to the console command
processor. In the interest of brevity, the only error message is

error, try again

The program begins with an initialization section where the input file is
opened or created, followed by a continuous loop at the label "ready" where
the individual commands are interpreted. The default file control block at
005CH and the default buffer at OOBOH are used in all disk operations. The
utility subroutines then follow, which contain the principal input line
processor, called "readc:' This particular program shows the elements of
random access processing, and can be used as the basis for further program
development.

;***
:* •
;* sample random access program for cp/m 2.0 *
; * *
;***

0100 org. U0h ; base of tpa

00B0
0005 ::

0001 ::
0002 ::
0009 ::
"00a ::
000c ::
000f ::
0010 :z

0016 ::
0021 ::
0022 ::

00Sc
007d
007f
0080

000d
00Ba

,
reboot equ
bdos equ
;
coninp equ
conout equ
pstring equ
rstring equ
version equ
openf equ
closef equ
make f equ
readr equ
wr iter equ
,
fcb equ
ranrec equ
ranovf equ
bu f f equ

cr equ
If equ

0000h
0005h

1
2
9
10
12
15
16
22
33
34

BBSch
fcb+33
fcb+3S
0B80h

0dh
0ah

;system reboot
;bdos entry point

;console input function
;console output function
;print string until 'S'
;read console buffer
;return version number
;file open function
;close function
;make file function
; read random
; wr He random

;default file control"block
;random record position
;high order (overflow) byte
: bu !fer add ress

:carr iage return
:line feed

i*a************************** ••• **.*******.*********
; .
:* load SP, set-up file for random access
: *
:**************.** ••• ***.******* ••••• **** •• ***.* ••• *

70

0100 3lbc0 lxi sp,stack

:version 2.0 or better?

and go back

2.0?
c,version
bdos
20h
ve r sok

version, message
d, ba<ive r
print
reboot

version
mvi
call
cpi
jnc
bad
lxi
call
jmp

01030e0c
0105 cd050
0108 fe20
010a d 2160

010d Illb0
0110 cdda0
0113 c3000

01160e0f
0118 115c0
011b cd050
011e 3c
01lf c2370

ve r sok:
correct
mvi
hi
call
inr
jnz

version
c,openf
<i,fcb
bdos
a
ready

for random access
;open default fcb

:err 255 oecomes zero

cannot open file, so create it
~122 0e16 mvi c,makef
0124 115c0 lxi d,fcb
0127 cd050 call bdos
0l2a 3c inr a ;err 255 becomes zero
012b c2370 jnz ready

cannot create file, directory full
~ 12e l13a0 lxi d,nospace
0131 cdda0 call print
0134 c3000 jmp reboot : back to ccp

,
:***
: * *
:* loop back to "ready" after each command *
; • *
;***

ready:
file is ready for processing

0137 cde50 call readcom : read next command
013a 227d0 shld ranrec ;store i npu t record'
~ 13d 21 7f 0 lxi h, r 3novf
~14e 360~ mvi m,0 :clear high byte if set
Jl-l2 feSl cpi 'Q' :quit?
J144 c2560 jnz notq

qUit proc es sing, close file
J 1-17 l:ie10 mvi c,closef
0149 115c~ lxi d, fcb
o14c cd~5~ call bdos
o14f 3c inr a :err 255 becomes 0
~lSO cab90 jz error : err 0 r me 5 s ag e , retry
rH53 c30"0 jmp reboot : back to ccp

,
:***
: *
:* end of quit command, process write *
: *
:***
notq:

0156 fe57
~158 c2890

not the Quit command, random write?
cpi 'w'
J nz notw

~ 15b 1 14d0
015e cdda0
0161 0e7f
0163 21800

thiS
lxi
call
mvi
hi

1 S a random
d, da tmsg
print
c,127
h, bu f f

write, fill buffer until cr

data prompt
up to 127 characters
destination

71

end of read loop, store 00
mvi m,0

fill

; next to fill
;counter goes down
;end of buffer?

character

character to buff
:save counter
;next destination
;character to a
: restore counter
;restore next to
;end of line?

next
b
h
getchr
h
b
cr
er loop

end, store
m,a
h
c
r loop

: read
push
push
call
pop
pop
cpi
jz
not
mov
inx
dcr
jnz

r loop:

er lOOp:

"178 360"

0172 77
"173 23
"174 ad
"175 c266"

0166 cS
0167 eS
016B cdc20
0l6b e 1
"16c c1
"16d fe"d
"16f ca780

;error code zero?
: message if not
;for another record

"17a "e22
"17c 11Sc0
"17f cd0S0
"182 b7
"183 c2b90
0186 c3370

write
mvi
lxi
call
ora
jnz
jmp

the record
c,writer
d,fcb
bdos
a
error
ready

to selected record number

I

; ••••••••••• *.*.* •••• ** •• ***.* •••••• *•• *•• **.***.* ••
. * •
;* end of write command, .process read *
: * *
;.*.*.***.* •• **** •• ****-****.*_ ••••• *** •• **.** •• *•••
notw:

not a wr i te command, read record?
0189 feS2 cpi ' R'
0l&b c2b90 jnz error ;skip if not

read randan record
018e 0e21 mvi c, readr
0190 11 Sc0 lxi d, fcb
0193 cd0S0 call bdos
0196 b7 ora a ;return code 00?
0197 c2b90 jnz error

read was successful I write to console
019a cdcf0 call cr If ;new line
019d Se80 mvi c,128 :max 128 characters
019f 21800 lxi h, bu ff ;next to get

wloop:
01a2 7e mov a,m ;next character
0la 3 23 inx h inext to get
0la4 e67f ani 7fh ; rna S k par i t Y
01a6 ca37S jz ready ifor another command if 00
01a9 cS push b ;save counter
01aa eS push h ;save next to get
0lab fe20 cpi ;graphic?
01ad d4c80 cnc putchr :skip output if not
01b0 el pop h
oIbl cl pop b
0Ib2 0d dcr c ; coun t::coun t-I
Blb3 c2a20 jnz wloop
oIb6 c3310 jmp ready

;***.*-* ••• *•• *** •••• ******.****.**.********.*****••
:. *
:. end of read command, all errors end-up here *
; . •
;.*.* •• **** •• _*.*.*_._* •• _-*._ ••• _•• *******-_ •• __ ._.

error:
"lb9 11590
0Ibc cdda0
0Ibf c3370

lxi
call
jmp

d ,er rmsg
print
ready

72

,
;***
;* *
:* utility subroutines for console i/o *
:* *
:*****.* ••••• *•• *.*.****************.****.**********
getchr:

: read next console character to a
"lc2 "e0 I mvi c,coninp
oIc4 cd0S0 call bdos
eIc7 c9 ret

putchr:
;write character from a to console

0lc8 0e02 mvi c,conout
0lca Sf mov e,a :character to send
" lcb co0S" call bdos ;send character
"Ice c9 ret

cr If:
;send car r iage re tur n I ine feed

"lcf 3e0d mvi a,cr :carriage return
" ldl cdc80 call putchr
" Id4 3e0a mvi a, 1f :line feed
01d6 cdc80 call putchr
"ld9 c9 ret

oIda d 5
"ldb cdcf0
oIde d I
0ldf 0e09
"leI cd0S0
ole4 c9

pr in t:
; pri nt
push
call
pop
mvi
call
ret

the buffer addressed by de until S
d
cr If
d ;new line
c, ps t ring
bdos :print the string

end of read, restore value in a
adi'" ' : comma nd
cpi 'a' :transiate case?

:: * lB·

value * 2

:carry if numeric

;bc
:*4
:*8
;*2 + *8
;+digit

;for another char
: overflow
;for another char

the next command line to the conbuf
d,prompt
print ;command?
c,rstring
d,conbuf
bdos :read command line
line is present, scan it
h,e :start with 000S
d,conlin:command line
d :next command character
d ito next command position
a ;cannot be end of command

zero, numer ic?
'B'
IS
endrd

next digit
h ;*2
c,l
b,h
h
h
b
1
l,a
readc
h
readc

lxi
lxi
Idax
inx
ora
rz
not.
sui
cpi
jnc
add-in
dad
mov
mov
dad
dad
dad
add
mov
jnc
inr
jmp

readcom:
: read
1xi
call
mvi
hi
call
command

0lf3 21000
0lf6 117c0
0lf9 1a readc:
"lfa 13
"lfb b7
0lfc c8

0ltd d630
lUff fe0a
0201. d2130 .

0204 29
"20S4d
"206 44
0207 29
0208 29
02"9 09
020a 85
o2"b 6f
o20c d2 f90
820f 24
0210 c3f90

endrd:

"213 c63"
"215 fe61

0leS 116b0
ole8 cdda"
"leb 0e0a
"led 117a"
0lf" cd" 50

73

(; 217 de

0218 e65f
o21a c9

rc
lower case, mask lower case bits
ani 10 l$llllb
ret

,
:***
;* *
:* string data area for console messages *
; . .
:***
badver:

021b 536f79 db
nospace:

023a 4e6f29 db
datmsg:

024d 547978 db
er rmsg:

0259 457272 db
prompt:

826b 4e6570 db

'sorry, you need cp/m version 2S'

'no directory spaceS'

'type data: S'

'error, try again.S'

'next command? S'
,
:***
; * *
:* fixed and variable data area *
; * *
.*****--*--****************************.**.**.****-.,

027a 21 conbuf: db conlen :length of console buffer
027b consiz: ds 1 ; resul t ing size after read
027c conI in: ds 32 : length 32 buffer
0021 = conlen equ S-consiz

029c ds 32 :16 level stack
stack :

02bc end

Again, major impI:ovements could be made to this particular program to
enhance its operation. In fact, with some work, this program could evolve
into a simple data base management system. One could, for example, assume
a standard record size of 128 bytes, consisting of arbitrary fields within the
record. A program, called GETKEY, could be developed which first reads a
sequential file and extracts a specific field defined by the operator. For
example, the command

GETKEY NAMES.OAT LASTNAME 1020

would cause GETKEY to read the data base file NAMES.OAT and extract
the "LASTNAME" field from each record, startingat position 10and ending
at character 20. GETKEY builds a table in memory consisting of each
particular LASTNAME field, along with its·16-bit record number location
within the file. The GETKEY program then sorts this list, and writes a new
file, called LASTNAME.KEY, which is an alphabetical list ofLASTNAME
fields with their corresponding record numbers. (This list is called an
"inverted index" in information retrieval parlance.)

Rename the program shown above as QUERY, and massage it a bit so that
it reads a sorted key file into memory. The command line might appear as:

QUERY NAMES.OAT LASTNAME.KEY

74

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base. Since
the LASTNAME.KEY list is sorted, you can find a particular entry quite
rapidly by performing a "binary search:' similar to looking up a name in the
telephone book. That is, starting at both ends of the list, you examine the
entry halfway in between and, if not matched, split either the upper half or
the lower half for the next search. You'll quickly reach the item you're
looking for (in log2(n) steps) where you'll find the corresponding record
number. Fetch and display this record at the console, just as we have done in
the program shown above.

At this point you're just getting started. With a little more work, you can
allow a fixed grouping size which differs from the 128 byte record shown
above. This is accomplished by keeping track of the record number as well as
the byte offset within the record. Knowing the group size, you randomly
access the record containing the proper group, offset to the beginning of the
group within the record read sequentially until the group size has been
exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and
an AGE less than 45. Display all the records which fit this description.
Finally, if your lists are getting too big to fit into memory, randomly access
your key files from the disk as well. One note of consolation after all this
work: ifyou make it through the project, you'll have no more need for this
manual!

75

System Function Summary

INPUT OUTPUT
FUNC FUNCTION NAME PARAMETERS RESULTS
-------------------_._--------------._------------------------_._._-----------------------------
o System Reset none none
1 Console Input none A = char
2 Console Output E=char none
3 Reader Input none A=char
4 Punch Output E = char none
5 List Output E = char none
6 Direct Console I/O see def see def
7 Get I/O Byte none A= 10BYTE
8 Set I/O Byte E = IOBYTE none
9 Print String DE = .Buffer none

10 Read Console Buffer DE = .Buffer see def
11 Get·Console Status none A=OO/FF
12 Return Version Number none HL=Version*
13 Reset Disk System none see def
14 Select Disk E = Disk Number see def
15 Open File DE=.FCB A=Dir Code
16 Clo'se File DE = .FCB A= Dir Code
17 Search for First DE = .FCB A = Dir Code
18 Search for Next none A= Dir Code
19 Delete File DE = .FCB A = Dir Code
20 Read Sequential DE = .FCB A = Err Code
21 Write Sequential DE = .FCB A= Err Code
22 Make File DE = .FCB A= Dir Code
23 Rename File DE = .FCB A = Dir Code
24 Return Login Vector none HL = Login Vect*
25 Return Current Disk none A=Cur Disk #
26 Set DMA Address DE = .DMA none
27 Get Addr(Alloc) none HL = .Alloc
28 Write Prote.ct Disk none see def
29 Get R/O Vector none HL=R/O Vect*
30 Set File Attributes DE = .FCB see def
31 Get Addr (disk parms) none HL =.DPB
32 Set/Get User Code see def see def
33 Read Random DE = .FCB A= Err Code
34 Write Random DE=.FCB A=ErrCode
35 Compute File Size DE = .FCB rO, rl, r2
36 Set Random Record DE =.FCB rO, rl, r2

*Note that A=L, and B=H upon return

76

ED: A CONTEXT EDITOR
FOR THE CP/M DISK SYSTEM

USER'S MANUAL

COPYRIGHT (c) 1976, 1978
DIGITAL RESEARCH

I

Copyright (c) 1976, 1977, 1978 by Digital Research. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a re­
trieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written per­
mission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties
with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication
and to make changes from time to time in the content
hereof without obligation of Digital Research to notify
any person of such revision or changes.

Table of Contents

SECTION III

1. INTRODUCTION TO ED

2. ED OPERATION

3. TEXT TRANSFER FUNCTIONS

4. MEMORY BUFFER ORGANIZATION

5. MEMORY BUFFER OPERATION

6. COMMAND STRINGS

7. TEXT SEARCH AND ALTERATION

8. SOURCE LIBRARIES

9. REPETITIVE COMMAND EXECUTION

10. ED ERROR CONDITIONS

11. CONTROL CHARACTER AND COMMANDS

77

79

79

79

83

83

84

86

88

89

89

90

\

Introduction to ED

ED is the context editor for CP/M, and is used to create and alter CP/M
source files. ED is initiated in CP/M by typing

{

(filename) }

ED (filename).(filetype)

In general, ED reads segments of the source file given by (filename) or
(filename) • (filetype) into central memory, where the file is manipulated by
the operator, and subsequently written back to disk after alterations. If the
source file does not exist before editing, it is created by ED and initialized to
empty. The overall operation of ED is shown in Figure 1.

ED Operation

ED operates upon the source file, denoted in Figure 1 by x.y, and passes all
text through a memory buffer where the text can be viewed or altered (the
number of lines which can be maintained in the memory buffer varies with
the line length, but has a total capacity of about 6000 characters in a 16K
CP/M system). Text material which has been edited is written onto a
temporary work file under command of the operator. Upon termination of
the edit, the memory buffer is written to the temporary file, followed by any
remaining (unread) text in the source file. The name of the original file is
changed from x.y to x.BAK so that the most recent previously edited source
file can be reclaimed if necessary (see the CP/M commands ERASE and
RENAME). The temporary file is changed from x.$$$ to x.y which becomes
the resulting edited file.

The memory buffer is logically between the source file and working file as
shown in Figure 2.

Text Transfer Functions

Given that n is an integer value in the range 0 through 65535, the following
ED commands transfer lines of text from the source file through the memory
buffer to the temporary (and eventually final) file:

79

Figure 1. Overall ED Operation

Memory Buffer

Write
(l-l)

Backup
File

(E)

New
Source

File
x.y

After
Edit

Type
(T)

Insert
(I)

(E)After
Edit

Note: the ED program accepts both lower and upper case ASCII characters
as input from the console. Single letter commands can be typed in eithercase.
The U command can be issued to cause ED to translate lower case
alphabetics to upper case as characters are filled to the memory buffer from

. the console. Characters are echoed as typed without translation, however.
The -U command causes ED to revert to "no translation" mode. ED starts
with an assumed - U in effect.

80

Figure 2. Memory Buffer Organization

Source File Memory Buffer Temporary File

Space

1 First. Line ~ 1 First Line'

2 ,"Appended,' 2 -.2. Buffered ~
7,·.' , ,-:- '\.

3 :- L~n.e~, ,- ~ 'Text "'_
" . '-

SP 7"".'-'-'" - - - -
'----'" I I -. MP - " , " ,

I unprocessed: N~I Free

: Source I Append : Memory

I Lines: I Space :L I ~ _

Next
Write

1 '~irst Line'

2 'Processed','

3 " T~xt ", ,
'- ,--, ," ,

TP ~ " -,-, \-:-

Free File I
I
I
1
IL.. ,

Figure 3. Logical Organization of Memory Buffer

Memory Buffer

first
line

current
l~ne CL

last
line

---------<cr><lf>

--------<cr><lf>

------- ~-------<cr><lf>
Cp

--------<cr><lf>

81

nA(cr) * Append the next n unprocessed source lines from the sourca
file at SP to the end of the memory buffer at M~ Increment
SP and MP by n.

nW(cr) Write the first n lines of the memory buffer to the temporary
file free space. Shift the remaining lines n +1 through MP to

. the top of the memory buffer. Increment TP by n.

E(cr) End the edit. Copy all buffered text to temporary file, and
copy all unprocessed source lines to the temporary file.
Rename files as described previously.

H(cr) Move to head of new file by performing automatic E
command. Temporary file becomes the new source file, the
memory buffer is emptied, and a new temporary file is created
(equivalent to issuing an E command, followed by a
reinvocation of ED using x.y as the file to edit).

O(cr) Return to original file. The memory buffer is emptied, the
temporary file is deleted, and the SP is returned to position 1
of the source file. The effects of the previous editing
commands are thus nullified.

Q(cr) Quit edit with no file alterations, return to CP/M.

There are a number of special cases to consider. If the integer n is omitted in
any ED command where an integer is allowed, then 1 is assumed. Thus, the
commands A and W append one line and write 1 line, respectively. In
addition, if a pound sign (#) is given in the place of n, then the integer 65535
is assumed (the largest value for n which is allowed). Since most reasonably
sized source files can be contained entirely in the memory buffer, the
command # A is often issued at the beginning of the edit to read the entire
source file to memory. Similarly, the command # W writes the entire buffer
to the temporary file. Two special forms of the A and W commands are
provided as a convenience. The command OA fills the current memory buffer
to at least half-full, while OW writes lines until the buffer is at least half
empty. It should also be noted that an error is issued if the memory buffer size
is exceded. The operator may then enter any command (such as W) which
does not increase memory requirements. The remainder of any partial line
read during the overflow will be brought into memory on the next successful
append.

*(cr)represents the carriage-return ke~'

82

Memory Buffer Organization
The memory buffer can be considered a sequence of source lines brought in
with the Acommand from a source file. The memory buffer has an associated
(imaginary) character pointer (CP) which moves throughout the memory
buffer under command of the operator. The memory buffer appears logically
as shown in Figure 3 where the dashes represent characters of the source line
ofindefinite length, terminated by carriage return ((cr)) and line feed ((If))
characters, and ct represents the imaginary character pointer. Note that the
CP is always located ahead of the first character of the first line, behind the
last character ofthe last line, or between two characters. The current line CL
is the source line which contains the CPo

Memory Buffer Operation

Upon initiation ofED, the memory bufferisempty (i.e.,CPisbothahead and
behind the first and last character). The operator may either append lines (A
command) from the source file, or enter the lines directly from the console
with the insert command

I(cr)

ED then accepts any number ofinput lines, where each line terminates with .
a (cr) (the (If) ~ supplied automatically), until a control-z (denoted by tz)
is typed by the operator. The CP is positioned after the last character
entered. The sequence

I(cr)
NOW IS THE(cr)
TIME FOR(cr)
ALL GOOD MEN(cr)
fz

leaves the memory buffer as shown below

NOW IS THE(cr)(If)
TIME FOR(cr)(lf)
ALL GOOD MEN(cr) (If)<-t

Various commands can then be issued which manipulate the CP or display
source text in the vicinity of the CR The commands shown below with a
preceding n indicate that an optional unsigned value can be specified. When
preceded by ± , the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign (#) is replaced by 65535. If an
integer n is optional, but not supplied, then n =1is assumed. Finally, ifa plus
sign is optio'nal, but none is specified, then + is assumed.

83

± B(cr) move CP to beginning of memory buffer if + ,and to bottom
if -.

± nC(cr) move CP by ± n characters (toward front of buffer if +),
counting the (cr)(lf) as two distinct characters.

± nD(cr) delete n characters ahead of CP if plus and behind CP if
minus.

±nK(cr)

± nL(cr)

±nT(cr)

± n(cr)

kill (i.e. remove) ± n lines of source text using CP as the
current reference. IfCP is not at the beginning of the current
line when K is issued, then the characters before CP remain
if + is specified, while the characters after CP remain if - is
given in the command.

ifn = 0, move CP to the beginning of the current line (if it is
not already there). If.n :1= 0, first move the CP to the beginning
of the current line, and then move it to the beginning of the
line which is n lines down (if +)or up (if -). The CP will stop
at the top or bottom ofthe memory buffer if too large a value
is specified.

Ifn =0 then type the contents of the current line up to CPo If
n =1then type the contents ofthe current line from CP to the
end of the line. If n>1 then type the current line along with
n-llines which follow, if + is specified. Similarly, ifn>1 and
- is given, type the previous n lines, up to the C~ The break
key can be depressed to abort long type-outs.

equivalent to ± nLT, which moves up or down and types a
single line.

Command Strings

Any number of commands can be typed contiguously (up to the capacity of
the CP/M console buffer), and are executed only after the (cr) is typed.
Thus, the operator may use the CP/M console command functions to
manipulate the input command.

Rubout remove the last character

Control-X delete the entire line

Control-C re-initialize the CP/M System

84

Control-E return carriage for long lines without transmitting buffer
(max 128 chars)

Suppose the memory buffer contains the characters shown in the previous
section, with the CP following the last character of the buffer. The command
strings shown below produce the results shown to the right.

Command String Effect Resulting Memory Buffer

B2T(cr) move to beginning of
buffer and type 2 lines:
"NOW IS THE
TIME FOR"

<t NOW IS THE(cr)(lf)
TIME FOR(cr) (If)
ALL GOOD MEN(cr)(lf)

5COT(cr) move CP 5 characters and NOW letS THE (cr)(lf)
type the beginning of the
line "NOW I"

2L-T(cr)

-L#K(cr)

I(cr)
TIME TO(cr)
INSERT(cr)
tz

move two lines down and
type previous line
"TIME FOR"

move up one line, delete
65535 lines which follow

insert two lines
of text

NOW IS THE (cr)(lf)
TIME FOR(cr)(If)

<tALL GOOD MEN(cr)(If)

NOW IS THE(cr) (If)tt

NOW IS THE(cr)(lf)
TIME TO(cr)(lf)
INSERT(cr) (If)ct

-2L#T(cr) move up two lines, and type NOW IS THE(cr) (If)et
65535 lines ahead ofCP TIME TO(cr)(If)
"NOW IS THE" INSERT(cr) (If)

(cr) move down one line
and type one line
"INSERT"

85

NOW IS THE(cr)(If)
TIME TO(cr) (If)ct
INSERT (cr)(lf)

Text Search and Alteration

ED also has a command which locates strings within the memory buffer. The
command takes the form

{
(cr)}nF CIC2' .• Ck tz

where Cl through Ck represent the characters to match followed by either a
(cr) or control-z~ED starts at the current position of CP and attempts to
match all k characters. The match is attempted n times, and ifsuccessful, the
CP is moved directly after the character Ck. If the n matches are not
successful, the CP is not moved from its initial position. Search strings can
include tl (control-I), which is replaced by the pair of symbols (cr) (If).

The following commands illustrate the use of the F command:

Command String Effect Resulting Memory Buffer

B#T(cr)

FS T(cr)

move to beginning
and type entire
buffer

find the end of
the string "S T"

et NOW IS THE (cr)(lf)
TIME FOR(cr)(If)
ALL GOOD MEN(cr)(If)

NOW IS Tc"tHE(cr)(If)

FItzOTT find the next "I" and type NOW IS THE(cr)(lf)
to the CP then type the TIcAME FOR(cr)(If)
remainder of the current ALL GOOD MEN(cr)(lf)
line: "TIME FOR"

An abbreviated form of the insert-command is also allowed, which is often
used in conjunction with the F command to make simple textual changes.
The form is:

I CIC2'" cntz or
I CIC2 ••• cn(cr)

where Cl through Cn are characters to insert. If the insertion string is
terminated by a tz, the characters Cl through Cn are inserted directly
following the CP, and the CP is moved directly after character cn.The action
is the same if the command is followed by a (cr) except that a (cr)(lf) is
automatically inserted into the text following character en' Consider the
following command sequences as examples of the F and I commands:

*The control·z is used if additional commands will be typed following the fz.

86

Command String Effect Resulting Memory Buffer

BITHIS IS T z(cr)
lnsert "THIS IS"
at the beginning
of the text

FTIME tz-4DIPLACE Tz(cr)
find "TIME" and delete
it; then insert "PLACE"

3FOt z-3D5DICHANGEST(cr)
find third occurrence of
"0" (i.e. the second "0" in
GOOD), delete previous 3
characters; then insert'
"CHANGES"

THIS ISclNOW THE(cr)(lf)
TIME FOH (cr) (If)
ALL GOO"D MEN(cr)(lf)

THIS IS NOW THE(cr)(lf)
PLACE t FOR(cr)(lf)
ALL GOOD MEN(cr) (If)

THIS IS NOW THE(cr)(lf)
PLACE FOR(cr)(lf)
ALL CHANGES ct (cr)(lf)

-8CISOURCE(cr)
move back 8 characters
and insert the line
"SOURCE(cr) (If)"

THIS IS NOW THE(cr)(lf)
PLACE FOR(cr)(If)
ALL SOURCE(cr)(If)

~CHANGES(cr)(lf)

ED also provides a single command which combines the F and I commands
to perform simple string substitutions. The command takes the form

{
(cr)}n S clC2 ... Ck t z d Id2... dm t z

and has exactly the same effect as applying the command string

{
(cr)}F CIC2' .. Ck Tz-kDld1d2· .. dm tz

a total of n times. That is, ED searches the memory buffer starting at the
current position of CP and successively substitutes the second string for the
first string until the end of buffer, or until the substitution has been
performed n times.

As a convenience, a c9mmand similar to F is provided by ED which
automatically appends and writes lines as the search proceeds. The form is

{
(cr)}n N CIC2' .. Ck tz

87

which searches the entire source file for the nth occurrence of the string CIC2

••• Ck (recall that F fails if the string cannot be found in the current buffer).
The operation of the N command is precisely the same as F except in the case
that the string cannot be found within the current memory buffer. In this
case, the entire memory contents is written (i.e., an automatic #Wisissued).
Input lines are then read until the buffer is at least half full, or the entire
source file is exhausted. The search continues in this manner until the string
has been found n times, or until the source file has been completely
transferred to the temporary file.

A final line editing function, called the juxtaposition command takes the
form

with the following action applied n times to the memory buffer: search from
the current CP for the next occurrence ofthe string CIC2 .•• Ck. Iffound,insert
the string d1,d2 ...,dm, and move CP to follow dm•Then delete all characters
following CP up to (but not including) the string eb e2, ... eq, leaving CP
directly after dm. If e., ee' ... eq cannot be found, then no deletion is made. If
the current line is

~ NOW IS THE TIME(cr)<If)

Then the command

JW fzWHATfztl (cr)

Results in

NOW WMAT ct (cr)(lf)

(Recall that tl represents the pair (cr)(lf) in search and substitution
strings).

It should be noted that the number of characters allowed by ED in the F, S,
N, and J commands is limited to 100 symbols.

Source Libraries
ED also allows the inclusion of source libraries during the editing process
with the R command. The form of this command is

88

where f1f2 .. fn is the name ofa source file on the disk with an assumed filetype
of 'LIB: ED reads the specified file, and places the characters into the
memory buffer after CP, in a manner similar to the I command. Thus, if the
command

RMACRO(cr)

is issued by the operator, ED reads from the file MACRO.LIB until the
end-of-file, and automatically inserts the characters into the memory buffer.

Repetitive Command Execution

The macro command M allows the ED user to group ED commands together
for repeated evaluation. The M command takes the form:

M f(cr>}n CtC2' .. Ck t f z

where cl C2 ••• Ck represent a string of ED commands, not including another
M command. ED executes the command stringn timesifn)l. Ifn =Oor 1, the
command string is executed repetitively until an error condition is
encountered (e.g., the end of the memory buffer is reached with an F
command).

As an example, the following macro changes all occurrences of GAMMA to
DELTA within the current buffer, and types each line which is changed:

MFGAMMA t z-5DIDELTA fzOTT(cr)

or equivalently

MSGAMMATzDELTAfzOTT(cr)

ED Error Conditions

.1 error conditions, ED prints the last character read before the error, along
with an error indicator:

? unrecognized command

89

> memory buffer full (use one of the commands D, K, N, S, or
W to remove characters), F, N, or S strings too long.

cannot apply command the number of times specified (e.g., in
F command)

o cannot open LIB file in R command

Cyclic redundancy check (CRC) information is written with each output
record under CP/M in order to detect errors on subsequent read operations.
If a CRC error is detected, CP/M will type

PERM ERR DISK d

where d is the currently selected drive (A, B, ...). The operator can choose
to ignore the error by typing any character at the console (in this case, the
memory buffer data should be examined to see ifit was incorrectly read), or
the user can reset the system and reclaim the backup file, ifit exists. The file
can be reclaimed by first typing the contents of the BAK file to ensure that
it contains the proper information:

TYPE x.BAK(cr)

where x is the file being edited. Then remove the primary file:

ERA x.y(cr)

and rename the BAK file:

REN x.y=x.BAK(cr)

The file can then be re-edited, starting with the previous version.

Summary of Control Characters

The following table summarizes the Control characters and commands
available in ED:

Control Character Function

t c system reboot

te physical (cr)(lf) (not actually entered in
command)

90

ti

tl

tx

tz

rubout

break

logical tab (cols 1, 8, 15, ...)

logical (cr) (If) in search and substitu te strings

line delete

string terminator

character delete

discontinue command (e.g., stop typing)

Summary of ED Commands

Command

nA

±B

=nC

±nD

E

nF

H

I

nJ

±nK

±nL

nM

nN

Function

append lines

begin bottom of buffer

move character positions

delete characters

end edit and close files (normal end)

find string

end edit, close and reopen files

insert characters

place strings in juxtaposition

kill lines

move down/up lines

'macro definition

find next occurrence with autoscan

91

o

±nP

Q

R

nS

±nT

±U

nW

nZ

± n(cr)

return to original file

move and print pages

quit with no file changes

read library. file

substitute strings

type lines

translate lower to upper case if U, no translation if
-U

write lines

sleep

move and type (± nLT)

ED Text Editing Commands

The ED context editor contains a number of commands which enhance its
usefulness in text editing. The improvements are found in the addition ofline
numbers, free space interrogation, and improved error reporting.

The context editor issued with CP/M produces absolute line number prefixes
when the "V" (Verify Line Numbers) command is issued. Following the V
command, the line number is displayed ahead of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535. If the
memory buffer is empty, or if the current line is at the end of the memory
buffer, then nnnnn appears as 5 blanks.

The user may reference an absolute line number by preceding any command
by a number followed by a colon, in the same format as the line number
display. In this case, the ED program moves the current line reference tothe
absolute line number, if the line exists in the current memory buffer. Thus
the command

92

345:T

is interpreted as "move to absolute line 345, and type the line:' Note that
absolute line numbers are produced only during the editing process, and are
not recorded with the file. In particular, the line numbers will change
following a deleted or expanded section of text.

The user may also reference an absolute line number as a backward or
forward distance from the current line by preceding the absolute line number
by a colon. Thus, the command

:400T

is interpreted as "type from the current line number through the line whose
absolute number is 400:' Combining the two line reference forms, the
command

345::400T

for example, is interpreted as "move to absolute line 345, then type through
absolute line 400:' Note that absolute line references of this sort can precede
any of the standard ED commands. .

A special case of the V command, "OV:' prints the memory buffer statistics
in the form:

free/total

where "free" is the number of free bytes in the memory buffer (in decimal),
and "total" is the size of the memory buffer.

ED also includes a "block move" facility implemented through the "X"
(Xfer) command. The form

nX

transfers the next n lines from the current line to a temporary file called

X$$$$$$$.LIB

which is active only during the editing process. In general, the user can
reposit10n the current line reference to any portion of the source file and
transfer lines to the temporary file. The transferred lines accumulate one
after another in this file, and can be retrieved by simply typing:

93

R

which is the trivial case of the library read command. In this case, the entire
transferred set of lines is read into the memory buffer. Note that the X
command does not remove the transferred lines from the memory buffer,
although a K command can be used directly after the X, and the R command
does not empty the transferred line file. 'That is, given that a set of lines has
been transferred with the X command, they can be re-read any number of
times back into the source file. The command

OX

is provided, however, to empty the transferred line file.

Note that upon normal completion of the ED program through Qor E, the
temporary LIB file is removed. If ED is aborted through Control-C, the LIB
file will exist if lines have been transferred, but will generally be empty (a
subsequent ED invocation will erase the temporary file).

Due to common typographical errors, ED requires several potentially
disastrous commands to be typed as single letters, rather than in composite
commands. The commands

E (end), H (head), 0 (original), Q (quit)

must be typed as single letter commands.

ED also prints error messages in the form

BREAK "x" AT c

where xis the error character, and cis the command where the error occurred.

94

CP/M ASSEMBLER (ASM)
USER'S GUIDE

COPYRIGHT (c) 1976,1978
DIGITAL RESEARCH

•

Copyright (c) 1976, 1977, 1978 by Digital Research. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a re­
trieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written per­
mission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties
with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication
and to make changes from time to time in the content
hereof without obligation of Digital Research to notify
any person of such revision or changes.

Table of Contents

SECTION IV

1. INTRODUCTION

2. PROGRAM FORMAT

3. FORMING THE OPERAND

4. ASSEMBLER DIRECTIVES

5. OPERATION CODES

6. ERROR MESSAGES

7. A SAMPLE SESSION

95

Page

97

99

100

105

110

114

116

,

· .'

Introduction

The CP/M assembIer reads assembly language source fi les from the diskette,
and produces 8080 machine language in Intel hex format. The CP/M
assembler is initiated by typing

ASM filename
or

ASM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the
name

filename.ASM

which contains an 8080 assembly language source file. The first and second
forms shown above differ only in that the second form allows parameters to
be passed to the assembler to control source file access and hex and print file
destinations.

In either case, the CP/M assembler loads, and prints the message

CP/M ASSEMBLER VER n.n

where n.n is the current version number. In the case ofthe first command, the
assembler reads the source fi Ie with assumed file type "ASM" and creates two
output files.

filename.HEX
and

filename.PRN

The "HEX" file contains the machine code corresponding to the original
program in Intel hex format, and the "PRN" file contains an annotated
listing showing generated machine code, error flags, and source lines. Iferrors
occur during translation, they will be listed in the PRN file as well as at the
console.

The second command form can be used to redirect input and output files
from their defaults. In this case, the "parms" portion of the command is a
three letter group which specifies the origin of the source file, the destination
of the hex file, and the destination of the print file. The form is

filename.plp2p3

97

where pI, p2, and p3 are single letters

pI: A,B, ..., Y designates the disk name which contains
the source file

p2: A,B, ..., Y designates the disk name which will receive
the hex file

Z skips the generation of the hex file

p3: A,B, ..., Y designates the disk name which will receive
the print fi Ie

X places the listing at the console
Z skips generation of the print file

Thus, the command

ASM X.AAA

indicates that the source file (X.ASM) is to be taken from disk A, and that
the hex (X.HEX) and the print (X.PRN) files are to be created also on disk
A. This form of the command is implied if the assembler is run from disk A.
That is, given that the operator is currently addressing disk A, the above
command is equivalent to

ASMX

The command

ASMX.ABX

indicates that the source file is to be taken from disk A, the hex file is placed
on disk B, and the listing file is to be sent to the console. The command

ASM X.BZZ

takes the source file from disk B, and skips the generation ofthe hex and print
files. (This command is useful for fast execution of the assembler to check
program syntax.)

The source program format is compatible with both the Intel 8080 assembler
(macros are not current ly implemented in the CP/M assembIer, however), as
well as the Processor Technology Software Package # 1 assembler.. That is,
the CP/M assembler accepts source programs written in either format.
There are certain extensions in the CP/M assembler which make it
somewhat easier to use. These extensions are described below.

98

Program Format

An assembly language program acceptable as input to the assembler consists
of a sequence of statements of the form

line# label operation operand ;comment

where any or all of the fields may be present in a particular instance. Each
assembly language statement is terminated with a carriage return and line
feed (the line feed is inserted automatically by the ED program), or with the
character "!" which is treated as an end-of-line by the assembler (thus,
multiple assembly language statements can be written on the same physical
line if separated by exclamation symbols).

The line# is an optional decimal integer value representing the source
program line number, which is allowed on any source line to maintain
compatibility with the Processor Technology format. In general, these line
numbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
or

identifier:

. and is optional, except where noted in particular statement types. The
identifier is a sequence of alphanumeric characters (alphabetics and
numbers), where the first character is alphabetic. Identifiers can be freely
used by the programmer to label elements such as program steps and
assembler directives, but cannot exceed 16 characters in length. All
characters are significant in an identifier, except for the embedded dollar
symbol ($) which can be used to improve readability of the name. Further, all
lower case alphabetics are treated as if they were upper case. Note that the
u:" following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid
instances of labels

x x y long$name
x : y xl: longer$named$data:
X 1 Y 2 X 1 x 2 x234$5678$9012$3456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8080 machine operation code. The pseudo operations and
machine operation codes are described below.

99

The operand field ofthestatement, in general, contains an expression formed
out ofconstants and labels, along with arithmetic and logical operations on
these elements. Again, the complete details of properly formed expressions
are given below.

The comment field contains arbitrary characters following the ";" symbol
until the next real or logical end-of-line. These characters are read, listed,
and otherwise ignored by the assembler. In order to maintain compatibility
with the Processor Technology assembler, the CP/M assemoler alSo treats
statements which begin with a "." in column one as comment statements,
which are listed and ignored in the assembly process. Note that the Processor
Technology assembler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. This causes an
ambiguous situation when attempting to be compatible with Intel's
language, since arbitrary expressions are allowed in this case. Hence,
programs which use this side effect to introduce comments, must be edited
to place a ";" before these fields in order to assemble correctly.

The assembly language program is formulated as a sequence of statements
of the above form, terminated optionally by an END statement. All
statements following the END are ignored by the assembler.

Forming the Operand

In order to completely describe the operation codes and pseudo operations,
it is necessary to first present the form of the operand field, since it is used in
nearly all statements. Expressions in the operand field consist of simple
operands (labels, constants, and reserved words), combined in properly
formed subexpressions by arithmetic and logical operators: The expression
computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a 16-bit value during the assembly. Further, the
number of significant digits in the result must not exceed the intended use.
That is, if an expression is to be used in a byte move im~ediateinstruction,
then the most significant 8 bits of the expression must be zero. The
restrictions on the expression significance are given with the individual
instructions.

Labels

As discussed above, a label is an identifier which occurs on a particular
statement. In general, the label is given a value determined by the type of
statement which it precedes. If the label occurs on a statement which
generates machine code or reserves memory space (e.g, a MOV instruction,
or a DS pseudo operation), then the label is given the value of the program
address which it labels. If the label precedes an EQU or SET, then the label

100

is given the value which results from evaluating the operand field. Except for
the SET statement, an identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the
assembler. This value can then be combined with other operands and
operators to form the operand field for a particular instruction.

Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called
the radix of the constant, is denoted by a trailing radix indicator. The radix
indicators are

B binary constant (base 2)
o octal constant (base 8)
Q octal constant (base 8)
D decimal constant (base 10)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal numbers since the letter 0 is easily
confused with the digit o. Any numeric constant which does not terminate
with a radix indicator is assumed to be a decimal constant.

A constant is thus composed as a sequence of digits, followed by an optional
radix indicator, where the digits are in the appropriate range for the radix.
That is binary constants must be composed of0 and 1digits, octal constants
can contain digits in the range 0 - 7, while decimal constants contain decimal
digits. Hexadecimal constants contain decimal digits as well as hexadecimal
digits A (lOD), B (lID), C (l2D), D (l3D), E (l4D), and F (l5D). Note that the
leading digit of a hexadecimal constant must be a decimal digit in order to
avoid confusing a hexadecimal constant with an identifier (a leading 0 will
always suffice). A constant composed in this manner must evaluate to a
binary number which can be contained within a 16-bit counter, otherwise it
is truncated on the right by the assembler. Similar to identifiers, imbedded
"$" are allowed within constants to improve their readability. Finally, the
radix indicator is translated to upper case if a lower case letter is
encountered. The following are all valid instances of numeric constants

1234
1234H
33770

1234D BOOB
OFFEH 33770
Ofe3h 1234d

101

1111$OOOO$IBl$OOOOB
33$77$22Q
Offffh

Reserved Words

There are several reserved character sequences which have predefined
meanings in the operand field ofa statement. The names ofBOBO registers are
given below, which, when encountered, produce the value shown to the right.

A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

(Again, lower case names have the same values as their upper case
equivalents.) Machine instructions can also be used in the operand field, and
evaluate to their internal codes. In the case of instructions which require
operands, where thespecific operand becomes a part ofthe binary bit pattern
of the instruction (e.g, MOV A,B), the value of the instruction (in this case
MOV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g, MOV produces 40H).

When the symbol "$" occurs in the operand field (not imbedded within
identifiers and numeric constants) its value becomes the address of the next
instruction to generate, not including the instruction contained within the
current logical line.

String Constants

String constants represent sequences of ASCII characters, and are
represented by enclosing the characters within apostrophe symbols ('). All
strings must be fully contained within the current physical line (thus
allowing U!" symbols within strings), and must not exceed 64 characters in
length. The apostrophe character itself can be included within a string by
representingit asa double apostrophe (the two keystrokes "), which becomes
a single apostrophe when read by the assembler. In most cases, the string
length is restricted to either one or two characters (the DB pseudo operation
is an exception), in which case the string becomes an B or 16 bit value,
respectively. Two ch~racter strings become a 16-bit constant, with the
second character as the low order byte, and the first character as the high
order byte.

102

The value of a character is its corresponding ASCII code. There is no case
translation within strings, and thus both upper and lower case characters
can be represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

'A'
''''

'AB'
'a'"

'ab'
"''''

'c'
"'I"

'Walla Walla Wash.'
'She said "Hello" to me.'
'I said "Hello" to her.'

Arithmetic and Logical Operators

The operands described above can be combined in normal algebraic notation
using any combination of properly formed operands, operators, and
parenthesized expressions. The operators recognized in the operand field are

a+b
a-b
+b
-b

a*b
alb
aMODb
NOTb

aANDb
aORb
aXORb
aSHLb

aSHRb

unsigned arithmetic sum of a and b
unsigned arithmetic difference between a and b
unary plus (produces b)
unary minus (identical to 0 - b)
unsigned magnitude multiplication of a and b
unsigned magnitude division of a by b
remainder after a I b
logical inverse ofb (aIlO's become l's, l's becomeO's),
where b is considered a 16-bit value
bit-by-bit logical and of a and b
bit-by-bit logical or of a and b
bit-by-bit logical exclusive or of a and b
the value which results from shifting a to the left by
an amount b, with zero fill
the value which results from shifting a to the right
by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric constants,
reserved words, and one or two character strings), or fully enclosed
parenthesized subexpressions such as

10+20 10h +37Q L1 I 3 (L2+4) SHR 3
('a' and 5th) + '0' ('B'+ B) OR (PSW +M)
(l + (2 + c)) shr (A-(B + 1))

Note that all computations are performed at assembly time as 16-bit
unsigned operations. Thus, -1 is computed as 0-1 which results in the value
Offfth (i.e., all 1's). The resulting expression must fit the operation code in
which it is used. If, for example, the expression is used in a ADI (add

103

immediate) instruction, then the high order eight bits of the expression must
be zero. As a result, the operation "ADI -I" produces an error message (-1
becomes Offffb which cannot be represented as an 8 bit value), while "ADI
(-1) AND OFFH" is accepted by the assembler since the "AND" operation
zeroes the high order bits of the expression.

Precedence of Operat~r8

As a convenience to the programmer, ASM assumes that operators have a
relative precedence of application which allows the programmer to write
expressions without nested levels of parentheses. The resulting expression
has assumed parentheses which are defined by the relative precedence. The
order of application of operators in unparenthesized expressions is listed
below. Operators listed first have highest precedence (they are applied first
in an unparenthesized expression), while operators listed last have lowest
precedence. Operators listed on the same line have equal precedence, and are
applied from left to right as they are encountered in an expression

* / MOD SHL SHR
-+
NOT
AND

ORXOR

Thus, the expressions shown to the left below are interpreted by the
assembler as the fully parenthesized expressions shown to the right below

a * b + c
a + b * c
a MOD b * c SHL d
a OR b AND NOT c + d SHL e

(a * b) + c
a + (b * c)
«a MOD b) * c) SHL d
a OR (b AND (NOT (c + (d SHL e»»

Balanced parenthesizedsubexpressions can always be used to override the
assumed parentheses, and thus the last expression above could be rewritten
to force application of operators in a different order as

(a OR b) AND (NOT c) + d SHL e

resulting in the assumed parentheses

(a OR b) AND «NOT c) + (d SHL e»

104

Note that an unparenthesized expression is well-formed only if the
expression which results from inserting the assumed parentheses is
well-formed.

Assembler Directives

Assembler directives are used to set labels to specific values during the
assembly, perform conditional assembly, define storage areas, and specify
starting addresses in the program. Each assembler directive is denoted by a
"pseudo operation" which appears in the operation field of the line. The
acceptable pseudo operations are

ORG set the program or data origin
~ND end program, optional start address
EQU numeric "equate"
SET numeric "set"
IF begin conditional assembly
ENDIF end of conditional assembly
DB define data bytes
DW define data words
DS define data storage area

The ORG Directive

The ORG statement takes the form

label ORG expression

where "label" is an optional program label, and expression is a 16-bit
expression, consisting of operands which are defined previous to the ORG
statement. The assembler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements
within a particular program, and there are no checks to ensure that the
programmer is not defining overlapping memory areas. Note that most
programs written for the CP/M system begin with an ORG statement of the
form

ORG lOOH

which causes machine code generation to begin at the base of the CP/M
transient program area. If a label is specified in the ORG statement, then the
label is given the value of the expression (this label can then be used in the
operand field of other statements to represent this expression).

105

The END Directive

The END statement is optional in an assembly language program, but if it
is present it must be the last statement (all subsequent statements are
ignored in the assembly). The two forms of the END directive are

label
label

END
END expression

where the label is again optional. If the first form is used, the assembly
process stops, and the default starting address of the program is taken as
0000. Otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code "hex" file which results from the assembly).
Thus, most CP/M assembly language programs end with the statement

END lOOH

resulting in the default starting address of IOOH (beginning of the transient
program area).

The EQU Directive

The EQU (equate) statement is used to set up synonyms for particular
numeric values. The form is

label EQU expression

where the label must be present, and must not ~abel any other statement.
The assembler evaluates the expression, and assigns this value· to the
identifier given in the label field. The identifier is usually a name which
describes the value in a more human-oriented manner. Further, this name is
used throughout the program to "parameterize" certain functions. Suppose
for example, thatdata received from a Teletypeappears on a particular input
port, and data is sent to the Teletype through the next output port in
sequence. The Series ofequate statEtments could be used to define these ports
for a particular hardware environment

TTYBASE EQU IOH ;BASE PORT NUMBER FOR TTY
TTYIN EQU TTYBASE ;TTY DATA IN
rTYOUT EQU TTYBASE +1;TTY DATA OUT

At a later point in the program, the statements which access the Teletype
could appear as

106

IN TTYIN

OUTTTYOUT

;READ TTY DATA TO REG - A

;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute I/O ports had been
used. Further, if the hardware environment is redefined to start the Teletype
communications ports at 7FH instead of 10H, the first statement need only
be changed to

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other
statements.

The SET Directive

The SET statement is similar to the EQU, taking the form

label SET expression

except that the label can occur on otherSETstatements within the program.
The expression is evaluated and becomes the current value associated with
the label. Thus, the EQU statement defines a label with a single value, while
the SET statement defines a value which is valid from the current SET
statement to the point where the label occurs on the next SET statement.
The use of the SET is similar to the EQU statement, but is used most often
in controlling conditional assembly.

The IF and ENDIF Directives

The IF and ENDIF statements define a range of assembly language
statements which are to be included or excluded during the assembly
process. The form is

IF expression
statement # 1
statement # 2

statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the
expression following the IF (all operands in the expression must be defined
ahead of the IF statement). If the expression evaluates to a non-zero value,
then statement# 1 through statement# n are assembled; if the expression

107

evaluates to zero, then the statements are listed but not assembled.
Conditional assembly is often used to write a single "generic" program which
includes a number of possible run-time environments, with only a few
specific portions of the program selected for any particular assembly. The
following program segments for example, might be part of a program which
communicates with either a Teletype or a CRT console (but not both) by
selecting a particular value for TTY before the assembly begins

EQU OFFFFH ;DEFINE VALUE OF TRUE
EQU NOT TRUE ;DEFINE VALUE OF FALSE

TRUE
FALSE

TTY EQU TRUE ;TRUE IF TTY, FALSE IF CRT
,
TTYBASE EQU 10H
CRTBASE EQU 20H

IF TTY

;BASE OF TTY I/O PORTS
;BASE OF CRT I/O PORTS
;ASSEMBLE RELATIVE TO
TTYBASE

CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT EQU TTYBASE +1;CONSOLE OUTPUT

ENDIF

IF NOT TTY ;ASSEMBLE RELATIVE TO
CRTBASE

CONIN EQU CRTBASE ;CONSOLE INPUT
CONOUT EQU CRTBASE +1;CONSOLE OUTPUT

ENDIF

OUT CONOUT

IN CONIN ;READ CONSOLE DATA

;WRITE CONSOLE DATA

In this case, the program would assemble for an environment where a
Teletype is connected, based at port 10H. The statement defining TTY could
be changed to

TTY EQU FALSE

and, in this case, the program would assemble for a CRT based at port 20H.

The DB Directive

The DB directive allows the programmer to define initialized storage areas in
single precision (byte) format. The statement form is

label DB e#l, e#2, ..., e#n

108

where e#l through e#n are either expressions which evaluate to 8-bit values
(the high ordereight bits must be zero), or are ASCII stringsoflength no greater
than 64 characters. There is no practical restriction on the number of expres­
sions included on a single source line. The expressions are evaluated and placed
sequentially into the machine code file following the last program address
generated by the assembler. String characters are similarly placed into memory
starting with the first character and ending with the last character. Strings of
length greater than two characters cannot be used as operands in more
complicated expressions (i.e., they must stand alone between the commas).
Note that ASCII characters are always placed in memory with the parity bit
reset (0). Further, recall that there is no translation from lower to upper case
within strings. The optional label can be used to reference the data area
throughout the remainder ofthe program. Examplesofvalid DB statementsare

data: DB 0,1,2,3,4,5
DB data and Offh,5,377Q,1 +2+3+4

Slgnon: DB 'please type your name',cr,lf,O
DB 'AB' SHR 8, 'C', 'DE' AND 7FH

The DW Directive

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label DW e#l, e#2, ... , e#n

where e#l through e#n are expressions which evaluate to 16-bit results.
Note that ASCII strings of length one or two characters are allowed, but
strings longer than two characters disallowed. In all cases, the data storage
is consistent with the 8080 processor: the least significant byte of the
expression is stored first in memory, followed by the most significant byte.
Examples are

doub: DW
DW

The DS Directive

Offefh,doub + 4,signon-$,255 + 255
'a', 5, 'ab', 'CD', 6 shl8 or lIb

The DS statement is used to reserve an area of uninitialized memory, and
takes the form

label DS expression

where the label is optional. The assembler begins subsequent code
generation after the area reserved by the DS. Thus, the DS statement given
above has exactly the same effect as the statement

109

label: EQU
ORG

$;LABEL VALUE IS CURRENT CODE LOCATION
$ + expression ;MOVE PAST RESERVED AREA

Operation Codes

Assembly language operation codes form the principal part of assembly
language programs, and form the operation field of the instruction. In
general, ASM accepts all the standard mnemonics for the Intel 8080
microcomputer, which are given in detail in the Intel manual 8080Assembly
Language Programming Manual. Labels are optional on each input line
and, ifincluded, take the value ofthe instruction address immediately before
the instruction is issued. The individual operators are listed briefly in the
following sections for completeness, although it is understood that the Intel
manuals should be referenced for exact operator details. In each case,

e3 represents a 3-bit value in the range of 0-7 which can be
one of the predefined registers A, B, C, D, E, H, L, M, SP,
orPSW.

e8 represents an 8-bit value in the range 0-255

e16 represents a 16-bit value in the range 0-65535

which can themselves be formed from an arbitrary combination ofoperands
and operators. In some cases, the operands are restricted to particular values
within the allowable range, such as the PUSH instruction. These cases will
be noted as they are encountered.

In the sections which follow, each operation code is listed in its most general
form, along with a specific example, with a short explanation and special
restrictions.

Jumps, Calls and Returns

The Jump, Call and Return instructions allow several different forms which
test the condition flags set in the 8080 microcomputer CPU. The forms are

JMB e16 JMP L1 Jump unconditionally to label
JNZ e16 JMP L2 Jump on ~on zero condition to label
JZ e16 JMP 100H Jump on zero condition to label
JNC e16 JNC L1+4 Jump no carry to label
JC e16 JC L3 Jump on carry to label
JPO e16 JPO $+8 Jump on parity odd to label

·JPE e16 JPE L4 Jump on even parity to label
JP e16 JP GAMMA Jump on positive result to label

110

JM e16
CALL e16
CNZ e16
CZ e16
CNC e16
CC e16
CPO e16
CPE e16
CP e16
CM e16

RST e3

JM al
CALL SI
CNZ S2
CZ l00H
CNC SI+4
CC S3
CPO $+8
CPE S4
CP GAMMA
eM bl$c2

RST 0

Jump on minus to label .
Call subroutine unconditionally
Call subroutine if non zero flag
Call subroutine on zero flag
Call subroutine if no carry set
Call subroutine if carry set
Call subroutine if parity odd
Call subroutine if parity even
Call subroutine if positive result
Call subroutine if minus flag

Programmed "restart:' equivalent to
CALL 8*e3, except one byte call

RET
RNZ
RZ
RNC
RC
RPO
RPE
RP .
RM

Immediate Operand Instructions

Return from subroutine
Return if non zero flag set
Return if zero flag set
Return if no carry
Return if carry flag set
Return if parity is odd
Return if parity is even
Return if positive result
Return if minus flag is set

Several instructions are available which load single or double precision
registers, or single precision memory cells, with constant values, along with
instructions which perform immediate arithmetic or logical operations on
the accumulator (register A).

MVI e3,e8 MVI B,255 Move immediate data to register A,
B, C, D, E, H, L, or M (memory)

ADIe8 ADI 1 Add immediate operand to A with-
out carry

ACIe8 ACI OFFH Add immediate operand to A with
carry

. SUI e8 SUI L+3 Subtract from A without borrow
(carry)

SBIe8 SBI LAND liB Subtract from Awith borrow (carry)
ANIe8 ANI $ AND 7FH Logical "and" A with immediate

data
XRIe8 XRI 1111$()()()()B "Exclusive or" A with immediate

data
ORIe8 ORI ·LAND 1+1 Logical "or" A with immediate data

III

CPI e8 CPl· 'a'

LXI e3,e16 LXI B,lOOH

Compare A with immediate data
(same as SUI except register A not
changed)

Load extended immediate to register
pair (e3 must be equivalent to
B,D,H, or SP)

Increment and Decrement Instructions

Instructions are provided in the 8080 repertoire for incrementing or
decrementing single and double precision registers. The instructions are

INRe3

DCRe3

INXe3

DCXe3

INR E

DCR A

INX SP

DCX B

Single precision increment register
(e3 produces one of A, B, C, D, E, H,
L,M)
Single precision decrement register
(e3 produces one of A, B, C, D, E, H,
L,M)
Double precision increment register
pair (e3 must be equivalent to
B,D,H, or SP)
Double precision decrement register
pair (e3 must be equivalent to
B,D,H, or SP)

Data Movement Instructions

Instructions which move data from memory to the CPU and from CPU to
memory are given below

MOV e3,e3

LDAX e3

STAX e3

LHLD e16

SHLO e16

MOV A,B

LOAXB

STAX D

LHLO Ll

SHLD L5+x

112

Move data to leftmost element
from rightmost element (e3
produces one of A, B, C, 0, E, H,
L, or M). MOV M,M is disallowed
Load register A from computed
address (e3 must produce either B
orD)
Store register A to computed
address (e3 must produceeither B
orO)
Load HL direct from location el6
(double precision load to Hand
L)
Store HL direct to location e16
(double precision store from H
and L to memory)

LDA e16
STA e16

POP e3

PUSH e3

IN e8

OUT e8

XTHL

PCHL

SPHL

XCHG

LDA Gamma
STA X3-5

POP PSW

PUSHB

IN 0

OUT 255

Load register A from address e16
Store register A into memory at
e16
Load register pair from stack, set
SP (e3 must produce one ofB, D,
H, or PSW)
Store register pair into stack, set
SP (e3 must produce one of B, D,
H,orPSW)
Load register A with data from
port e8
Send data from register A to port
e8
Exchange data from top of stack
with HL
Fill program counter with data
from HL
Fill stack pointer with data from
HL
Exchange DE pair with HL pair

Arithmetic Logic Unit Operations

Instructions which act upon the single precision accumulator to perform
arithmetic and logic operations are

ADC e3 ADC L

SUB e3 SUB H

SBB e3 SBB 2

ANA e3 ANA 1+1

XRA e3. XRA A
ORA e3 ORA B

CMP e3 CMP H

DAA

CMA

ADD e3 ADD B Add register given by e3 to ac­
cumulator without carry (e3
must produce one ofA, B, C, D, E,
H, or L)
Add register to A with carry, e3 as
above
Subtract reg e3 from A without
carry, e3 is defined as above
Subtract register e3 from A with
carry, e3 defined as above
Logical "and" reg with A, e3 as

"above
"Exclusive or" with A, e3 as above
Logical "or" with A, e3 defined as
above
Compare register with A, e3 as
above
Decimal adjust register A based

" upon last arithmetic logic unit
operation
Complement the bits in register A

113

STC
CMC
RLC

RRC

RAL

RAR

DAD e3 DADB

Set the carry flag to 1
Complement the carry flag
Rotate bits left, (re)set carry as a
side effect (high order A bit
becomes carry)
Rotate bits right, (re)set carry as
side effect (low order A bit
becomes carry)
Rotate carry / A register to left
(carry is involved in the rotate)
Rotate carry/ A register to right
(carry is involved in the rotate)

Double precision add register
pair e3 to HL (e3 must produce B,
D, H,orSP)

Control Instructions

The four remaining instructions are categorized as control instructions, and
are listed below

HLT
DI
EI
NOP

Error Messages

Halt the 8080 processor
Disable the interrupt system
Enable the interrupt system
No operation

When errors occur within the assembly language program, they are listed as
single character flags in the leftmost position of the source listing. The line
in error is also echoed at the console so that the source listing need not be
examined to determine if errors are present. The error codes are

D Data error: element in data statement cannot be
placed in the specified data area

E Expression error: expression is ill-formed and
cannot be computed at assembly time

L Label error: label cannot appear in this context
(may be duplicate label)

N Not implemented: features which will appear in
·future ASM versions (e.g., macros) are recognized,
but flagged in this version

114

o Overflow: expression is too complicated (Le., too
many pending operators) to compute; simplify it

P Phase error: label does not have the same value on
two subsequent passes through the program

R Register error: the value specified as a register is not
compatible with the operation code

V Value error: operand encountered in expression is
improperly formed

Several error messages are printed which are due to terminal errorconditions

NO SOURCE FILE
PRESENT

NO DIRECTORY SPACE

SOURCE FILE NAME
ERROR

SOURCE FILE READ
ERROR

OUTPUT FILE WRITE
ERROR

CANNOT CLOSE FILE

The file specified in the ASM command does
not exist on disk

The disk directory is full; erase files which are
not needed, and retry

Improperly formed ASM file name (e.g., it is
specified with "?" fields)

Source file cannot be read properly by the
assembler, execute a TYPE to determine the
point of error

Output files cannot be written properly, most
likely cause is a full disk; erase and retry

Output file cannot be closed, check to see if
disk is write protected

115

A Sample Session

The following session shows interaction with the assembler and debugger in the
development of a simple assembly language program.

Ian SORT Assemble SORT. ASM

• I 5t next free address
ee3H USE FA': TO Jio 'of table used 00 to FF (hexadecimal)
END OF ASSEn8lV

OJR SORT.

SORT AS" source file
SO RT BAK backup from last edit
SO RT PRN print file (contains tab characters)
SOFT HE>: machine code file
A) TYPE SORT PrtN

,A~D~ESS SWITCH TQGClE
.~ET TQ t FOP FlreST ITERATION
.AIIlIHSS I,UlEx
, I ,. e

IN CP~" A$SE"8LY LANCUAGE
BECtNHINC CF THE TRAH$IEHT PROCRA" ~~

H. S"
11, I
H, I
M. 8

lin
MVI
L;(J

""I

Source line
~

SORT PROCrcA"
START AT THE
ORC l&9H

machine code location '

8188..-/
generated machine code

BUe 2IH"I.-/ ~O~T
8103 3681
8185 214781
8188 3699

BORROW SiT IF AY(It I)) AY(I>
JC INCI ,SKIP IF IN PrtOPER ORDER

"OY HAND L TO HDDRESS AY()+l>
I HX H

INCRE"ENT SYITCH COUNT
LXI H,SY! IHI"

conPAR£ VALUE WITH REes CONTAININC AY<I>
SUB "I "OV D.AI "OY A.B! lNX HI 588" ,SUBTRACT

,co TO THE DEBUCCER INSTEAD nF REtRST 7

CONTINUE THIS PHSS
ADDRESSINCa J. SO LCIAD AV(J) INTO REGISTERS
MOY LAI "VI 0.8 1 LXI H.A'''I DAD DI DAD D
MOY C,,,! PlOY A. t I I HX H I HOY B·"
LOW ORDER B'fTE IN A AND C. HltH ORDER BYTE IN 8

CHECK FO~ EQUAL VALUES
ORA DI JZ 111ft .St(If' IF AV(J) IS Ayel.t>

"OY D."! PlOY ".B! DCX HI PlOY E."
PlDY ",C! bCK HI "OY PI,DI Dtx HI HOY ",E

END OF ONE PASS THROUCH DATA
LX 1 H. SW • CHE tK FOR ZEr<O SUI TeHES
PI°Y A,"! DRA A I J H Z SO RT , Etn 0F SO RT IF SW.8

CO"PARE t Ull~ ARRAY SIZE
MOY ~," ,A REGISTER ~ I
e.PI N-l ,tv ~ET IF I < (N-I)
JNC e.ONT ,CONTINUE IF I (& (H-2)

eUA 7E CO"P:
eUB FE99·
81&0 0219tH

8t 18 214681
ell J 7E&7C2U81

8118 FF

/: truncated

8119 5FI6882148CONT:
e121 4E7n346

8125 23

812' 965778239E

812B DAH81

Bt2E B2CAlF81

8132 5679285E
et36 7128722B13

8138 214'8134

116

813F 21478134C31HCI.
IHCRE"EHT I
LX I H. I! I HR "I J"P CO"P

el46 ee Sill:
el47 I.
el48 85B964881E~v

88&A - N
8 I 5 C --- equate value

A>T-:"PE SORT HEX

DATA
DB
DS
DW
EQU
END

DEFINITION SECTION
8 .~ESERVE SPACE FOR SWITCH COUNT
I ;S~ACE FOR INDEX
5. U8. 3&. SQ. 2&.7.1808.198, lU. -32767
('-AV)~2 .CO~PUTE H INSTEAD OF PRE

.leele8e82146eIJ68121478IJ6e87EFE&9D219814e

. 18&118e82146e17E87C2eeelFF5fI68e~148eI19&3
: 18el2e8el94E79234623965778239EDAJFBI82CAA7
: leel38883F81S6782BSE712B72287J2146813421C7
: 87814B8847BI34C38Ae18e6E
: l88148888S8864881E88328814898788E88J2C8l88
.848158886489&1888£
.8~&&8(1eee&

A>II II T S0RT. HEX start debug run

Ute ODT YER I e
HEXT PC
8 I 5C 8 e88 default address (no address on END statement)
-xp

paseee US change PC to 100

machine code
in HEX format

- UFFFF untrace for 65535 steps

CeZ8"8E818 A-88 8=&888 DgS888 H-e88e S=8188 p~8l~e LXI
- Tie trace IOlllsteps

abort with

/rubout

H. 8146 .rna~

ceZ8"BE818 A-Bl Baeeee D-e88B H-8146 S-III8 P-B 188 LXI H.81U
C8Z8"BE81 A-el 8 a8888 0-8888 Ha 8146 S=811U pa eU3 "VI ".81
C8Ze"8Eel Aa 81 8-8888 D-e888 H·8146 S·8188 P"Bl&5 LXI H.B147
C8Z8"8E81 A-81 8-8888 D-e888 Ha 8147 S-.e188 Pa 8U8 "'/1 ".88
C8ZB ..8E81 A-81 8 11 8888 D-8889 H-8IH 5=8188 PII81lhe "OY A."CeZ&"8EeJ A"88 BgEl888 D-8&&8 He8147 S=el8e P:a8UB CPI 89
C128"1£81 A=88 8:8e88 o-a 8 88 H=8147 5"818& Pll9IBD JHe 9119
CIZ8 .. 1E81 A"8& BaB8e9 D"8808 H=8J47 5=8188 f::81U LXI H.91.6
CIZ8"IE81 A-88 8-88e8 D-88 88 H-eI4, s-el8e pile 113 HOY A."CIZO .. 1E81 A-81 8 a 8888 D-8888 H-8146 S-818e p-el14 ORA A
C8Z8"8E81 A-OI 8-e8e8 0-8888 H-8146 S-8188 paOli ~ .1HZ eU8
C8Z8"8E81 A-81 8-8888 D-808S H-8146 5·8188 P-8188 L1U H.8146
C8Z8"8E81 A-81 8-8888 O-e888 H-8146 S-8188 P"818J "YI ".81C9Z8"8E81 Aa 81 B-8888 O-e8ee H-8146 S"8188 P=818~ LX I H, 8147
C&Z8"8E81 A"81 8·8888 Dgae88 H:08147 S.. e188 Pa 81E18 "VI ".E18C8Z8"8E81 Aaa I 8-8888 D"8888 Ha&.I47 S"8188 pllet&A I10Y A• .,·ltlll&
-A 19D

stopped at -llteD JC 119 change to a jump on carry
0110 10SH

-Xf'

p-et88 188 reset program counter back to beginning of program

-TIe trace execution for 10H steps

C828"IE818 A-88 8-8888 D-8888 H-8147 S·8188 p-e 188 LXI H,e146
CeZ8"8£819 A-88 BaB888 D-8888 Ha 8146 s-e188 P-8UJ "YI ... BI
C828"8E818 A.. e8 8"988e DaS8Be H"8146 511 8188 P"8U~ LXI H.8147
C8Z8 .. BE818 A-B8 811See8 0-8888 H=8147 $"8188 P"8U8 "YI ",e8 altered instructionCeZ8"8E818 Aa e8 8·&888 D"888& H-8147 5"8188 P"8I8A 110Y A," ,/C82e"BE818 A.. e8 8 a888e 0-8888 H-8147 S.. 818e p.. al88 CPI 89
C12B"1£818 A-B8 8-e88e 0-8888 H1I8147 S-81e8 P~8 18D JC el I 9
CIZ8"IE818 A-88 B=8888 II-B&8& H=8 147 S::z81€t8 P"8119 110Y E,A
CIZe"IE&18 Alle8 a-e898 0-S888 Ha 8147 $=9188 Pa 8llA "'/I D,e&
C1Z8"1£818 A-S& BaBee8 o -a 888 H"8147 S·8188 Pa 811 C LXI H.8148
CI Z8"JE818 A-ee a-e8e8 0-8&&8 H-8148 5-8188 P-811 F OAD 0
·e8ZB"lE818 A-e8 8-9888 0-a8ee Hc 8149 S·el88 paelZe DAD 0

117

A=00 8=8888 D=8eee H=0148 5=0100 P=~121 "O~

A-88 8=8885 D=888i "=8148 S=eI0~ f=1122 ~Ov

Ac8S 8=8885 D=8988 H-8148 5=8188 P=8123 IHX
A-as e.a885 n-e88e H-8149 S.Blee P-8124 noy

C,f1
64.t:.
H
BTft.e I 25

/Automatic
breakpoint

list some code
from IOOH

H,eI4,
PI. 81
H,8147
",88
A,"
89
'8119
H,81.'
A,"
A
(JU8

el88 LXI
8183 "YI
818S LXI
818e "YI
818A ftOY
818& CPI
a18D JC
8118 LXI
8llJ "DY
8114 ORA
811S JHZ
-L

8 I I & RST 8 7 ~ list more
81" "OY LA
81lA "YI 0,89
81lC LXI H,8148
- abort list with rubout

~l'ze ... E0U
C9Z9ftlE919
C8Z8"IE818
CeZ8"IE818
-Ll&8

- C. I I 8 start program from current PC (0 125H) and run in real time to IIBH

S-8188 P-8121 "oy
S-8188 P-8128 "oy
5.8188 P=1129 INK
S.1118 P=812A S8B

/ data is sorted. but program doesn t stop

8148 85 88 87 88 14 8e IE e8
81'8 32 88 64 88 64 8& 2C 81 E8 ~l 81 88 88 88 Ie 88 2 D D ,
8168 88 88 88 88 ee 88 88 88 Be 'oIJ 88 &8 88 8i Ill; IU

.9127 stopped with an extemal interrupt 7 from front pal leI (program was looping indefinitely)

- T4 look at looping program in trade mode ~

CeZI"8E818 R-J8 8-8864 D-Bee, H-8IS'
C8Z8"8EeIB A-J8 8-8864 D-3886 H-BIS6
C8Z8"eE818 A-8e 8-1864 D-3886 H-8156
CeZ&ft8E818 Ac88 8-8e64 D-3886 H=eIS7
-11148

- GO retum to CP/M

DDt SORT. HEX reload the memory image

161(IItlT YER 1. 8
NEXT PC
BISC B888
-XP

P- 88 e" 1eI Set PC to beginning of program

-LUI)
list bad opcode

Bl8D JNC 9119/
8119 LXI H,8146
- abort list with rubout

- A19 II assemble new opcode

aUD JC 119

8118

- L 18 e list starting section of program

8188 LXI H,8146
8183 "YI ",81
8185 LXI H,8147
8188 "VI ft.89
- abort list with rubout

- Ale J change "switch" initialization to 00

118

- ~ Co return to CP / M with ctk (GO works as well)

SAVE I SORT. CO" save t page (256 bytes. from 100H to IFFMH) on disk in case
we have to reload later

A>DDT SORT. CO" restart DDT with 11',

saved memory image
16K IJDT YER l. 8
NEXT PC
&t8e e lee ··COM·· file always starts with address 100H
- G run the program from PC = 100H

-8118 programmed stop (RST 7) encountered
-DUB

data property sorted
/

el48 es e8 87 ee 14 ee IE 88
91Se 32 88 64 ee 64 89 2C 8 I E8 81 81 89 98 98 i8 e9 2 D D ,
8168 88 88 88 e8 08 88 £Ie 8& 8e oe 88 £18 Be 88 98 e8
e 178 88 89 98 d8 98 88 8e 88 811 08 88 &~ o~ 8tl 98 ee

- GO return to CP/M
ED SI) RT AS" make changes to original program
ctl.Z~

.H.~TT find next ".0'·
tty 1 ".8 ,I z e

• - up one line in text
LXI H, I ,ADDRESS INDEX

• - up another line
"YI ''1.1 ,SET TO I FOR FIreST ITEPATIOH

• I(T kill line and type next line
LXI H, I ,ADDRESS IHDEX

• 1 insert new line
1'1 YI ".8 , ZERO S W

.T
LXI H, I , AD Dlic ESS I HDEX

.HJHcQU
JNC.T
COHT ,CONTINUE IF I (z (H-2)

.-2DI~LT
JC COHT ,COHTIHUE IF I (: (H-2J

• E I source from disk A
~ hex to disk A

r. S11 SO rc T AAZ+- skip pm file

& 1 'S C next address to assemble
8tlJH USE FACTOR'
ENII OF ~SSE"BLY

tID T SO RT H£ X test program changes

16K Dr.r VEl("
HE :"T foe
OI'S(8 (1 (1&
- (, I (,,,

• till .:-
-D148 r-- data sorted

e148 es 88 87 8e 14 98 IE &&
8158 32 80 64 B8 64 88 2C 81 E8 e3 81 80 oe 88 ee 88 2 0 D
8168 Oi' £Ie 8e lit" tle 88 &8 &8 8tl €1ft tftl &0 (0) &If !;I, til;

- abort with rubout

- Gi & retum to CP / M - program checks OK.

119

120

CP/M DYNAMIC DEBUGGING TOOL (DDT)
USER'S GUIDE

COPYRIGHT (c) 1976,1978
DIGITAL RESEARCH

I

Copyright (c) 1976, 1977, 1978 by Digital Research. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a re­
trieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written per­
mission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties
with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication
and to make changes from time to time in the content
hereof without obligation of Digital Research to notify
any person of such revision or changes.

Table of Contents

SECTION V

1. INTRODUCTION

2. DDT COMMANDS

3. IMPLEMENTATION NOTES

4. AN EXAMPLE

121

Page

123

125

133

133

Introduction

The DDT program allows dynamic interactive testing and debugging of
programs generated in the CP1M environment. The debugger is initiated by
typing one of the following commands at the CP1M Console Command level

DDT
DDT filename.HEX
DDT filename.COM

where "filename" is the name ofthe program to be loaded and tested. In both
cases, the DDT program is brought into main memory in the place of the
Console Command Processor (refer to the CP1M Interface Guide for
standard memory organization), and thus resides directly below the Basic
Disk Operating System portion ofCP/M. The BDOSstartingaddress, which
is located in the address field of the JMP instruction at location 5H, is altered
to reflect the reduced Transient Program Area size.

The second and third forms of the DDT command shown above perform the
same actions as the first, except there is a subsequent automatic load of the
specified HEX or COM file. The action is identical to the sequence of
commands

DDT
Ifilename.HEX or lfilename.COM
R

where the I and R commands set up and read the specified program to test.
(See the explanation of the I and R commands below for exact details.)

Upon initiation, DDT prints a sign-on message in the format

nnK DDT-s VER m.m

where nn is the memory size (which must match the CP/M system being
used), s is the hardware system which is assumed, corresponding to the codes

D Digital Research standard version
M MDS version
I IMSAI standard version
o Omron systems
S Digital Systems standard version

and m.m is the revision number.

123

Following the sign on message, DDT prompts the operator with the
character"-" and waits for input commands from the console. The operator
can type any ofseveral single character commands, terminated by a carriage
return to execute the command. Each line of input can be line-edited using
the standard CP/M controls

rubout
Control-X
Control-C

remove the last character typed
remove the entire line, ready for re-typing
system reboot

Any command can be up to 32 characters in length (an automatic carriage
return is inserted as the 33rd character), where the first character determines
the command type

A enter assembly language mnemonics with operands

D display memory in hexadecimal and ASCII

F fill memory with constant data

G begin execution with optional breakpoints

I set up a standard input file control block

L list memory using assembler mnemonics

M move a memory segment from source to destination

R read program for subsequent testing

S substitute memory values

T trace program execution

U untraced program monitoring

X examine and optionally alter the CPU state

The command character, in some cases, is followed by zero, one, two, or three
hexadecimal values which are separated by commas or single blank
characters. All DDT numeric output is in hexadecimal form. In all cases, the
commands are not executed until the carriage return is typed at the end of
the command. .

At any point in the debug run, the operator can stop execution of DDT using
either a Control-C or GO (jmp to location OOOOH), and save the current
memory image using a SAVE command of the form

124

SAVE n filename.COM

where n is the number of pages (256 byte blocks) to be saved on disk. The
number of blocks can be determined by taking the high order byte of the top
load address and converting this number to decimal. For example, if the
highest address in the Transient Program Area is 1234H then the number of
pages is 12H, or 18 in decimal. Thus the operator could type a Control-C
during the debug run, returning to the Console Processor level, followed by

SAVE 18 X.COM

The memory image is saved as X.COM on the diskette, and can be directly
executed by simply typing the name X. If further testing is required, the
memory image can be recalled by typing

DDTX.COM

which reloads the previously saved program from location 100H through
page 18 (l2FFH). The machine state is not a part of the COM file, and thus
the program must be restarted from the beginning in order to properly test
it.

DDT Commands

The individual commands are given below in some detail. In each case, the
operator must wait for the prompt character (-) before entering the
command. If control is passed to a program under test, and the program has
not reached a breakpoint, control can be returned to DDT by executing a
RST 7 from the front panel (note that the rubout key should be used instead
if the program is executing a Tor U command). In the explanation of each
command, the command letter is shown in some cases with numbers
separated by commas, where the numbers are represented by lower case
letters. These numbers are always assumed to be in a hexadecimal radix, and
from one to four digits in length (longer numbers will be automatically
truncated on the right).

Many of the commands operate upon a "CPU state" which corresponds to
the program under test. The CPU state holds the registers of the program
being debugged, and initially contains zeroes for all registers and flags except
for the program counter (P) and stack pointer (S), which default to IOOH.
The program counter is subsequently set to the starting address given in the
last record of a HEX file if a file of this form is loaded (see the I and R
commands).

125

The A (Assemble) Command

DDT allows inline assembly language to be inserted into the current
memory image using the A command which takes the form

As

where s is the hexadecimal starting address for the inline assembly. DDT
prompts the console with the address of the next instruction to fill, and reads
the console, looking for assembly language mnemonics (see the Intel BOBO
Assembly Language Reference Card for a list of mnemonics), followed by
register references and operands in absolute hexadecimal form. Each
successive load address is printed before reading the console. The A
command terminates when the first empty line is input from the console.

Upon completion of assembly language input, the operator can review the
memory segment using the DDT disassembler. (See the L command.)

Note that the assembler/disassembler portion of DDT can be overlayed by
the transient program being tested, in which case the DDT program
responds with an error condition when the A and L commands are used.

The D (Display) Command

The D command allows the operator to view the contents of memory in
hexadecimal and ASCII formats. The forms are

D
Ds
DS,f

In the first case, memory is displayed from the current display address
(initially lOOH), and continues for 16 display lines. Each display line takes
the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc

where aaaa is the display address in hexadecimal, and bb represents data
present in memory starting at aaaa. The ASCII characters starting at aaaa
are given to the right (represented by the sequence ofc's), where non-graphic
characters are printed as a period (.) symbol. Note that both upper and lower
case alphabetics are displayed, and thus will appear as upper case symbols on

. a console device that supports only upper case. Each display line gives the
values of 16 bytes ofdata, except that the first line displayed is truncated so
that the next line begins at an address which is the multiple of 16.

126

The second form ofthe D command shown above is similar to the first, except
that the display address is first set to address s. The third form causes the
display to continue from address s through address f. In all cases, the display
address is set to the first address not displayed in this command, so that a
continuing display can be accomplished by issuing successive D commands
with no explicit addresses.

Excessively long displays can be aborted by pushing the rubout key.

The F (Fill) Command

The F command takes the form

where s is the starting address, f is the final address, and c is a hexadecimal
byte constant. The effect is as follows: DDT stores the constant c at address
s, increments the value of s and tests against f. If s exceeds f then the
operation terminates, otherwise the operation is repeated. Thus, the fill
command can be used to set a memory block to a specific constant value.

The G (Go) Command

Program execution is started using the G command, with up to two optional
breakpoint addresses. The G command takes one of the forms

G
Gs
GS,b
GS,b,c
G,b
G,b,c

The first form starts execution of the program under test at the current value
of the program counterin the current machine state, with no breakpoints set
(the only way to regain control in DDT is through a RST 7execution). The
current program counter can be viewed by typing an X or XP command. The
second form is similar to the first except that the program counter in the
current machine state is set to address s before execution begins. The third
form is the same as the second, except that program execution stops when
address b is encountered (b must be in the area of the program under test).
The instruction at location b is not executed when the breakpoint is
encountered. The fourth form is identical to the third, except that two
breakpoints are specified, one at b and the other at c. Encountering either
breakpoint causes execution to stop, and both breakpoints are subsequently

127

cleared. The last two forms take the program counter from the current
machine state, and set one and two breakpoints, respectively.

Execution continues from the starting address in real-time to the next
breakpoint. That is, there is no intervention between the starting address
and the break address by DDT. Thus, if the program under test does not
reach a breakpoint, control cannot return to DDT without executing a RST
7 instruction. Upon encountering a breakpoint, DDT stops execution and
types

*d

where d is the stop address. The machine state can be examined at this point
using the X (Examine) command. The operator must specify breakpoints
which differ from the program counter address at the beginning of the G
command. Thus, if the current program counter is 1234H, then the
commands

and
G,1234

G400,400

both produce an immediate breakpoint, without executing any instructions
whatsoever.

The I (Input) Command

The I command allows the operator to insert a file name into the default file
control block at 5CH (the file control block created by CP/M for transient
programs is placed at this location; see the CP/M Interface Guide). The
default FCB can be used by the program under test as if it had been passed
by the CP/M Console Processor. Note that this file name is also used by DDT
for reading additional HEX and COM files. The form of the I command is

Ifilename
or

lfilename.fi letype

If the second form is used, and the filetype is either HEX or COM, then
subsequent R commands can be used to read the pure binary or hex format
machine code (see the R command for further details).

128

The L (List) Command

The L command is used to list assembly language mnemonics in a particular
program region. The forms are

L
Ls
Ls,f

The first command lists twelve lines of disassembled machine code from the
current list address. The second form sets the list address to s, and then lists
twelve lines of code. The last form lists disassembled code from s through
address f. In all three cases, the list address is set to the next unlisted location
in preparation for a subsequent L command. Upon encountering an
execution breakpoint, the list address is set to the current value of the
program counter (see the G and T commands). Again, long typeouts can be
aborted using the rubout key during the list process..

The M (Move) Command

The M command allows block movement of program or data areas from one
location to another in memory. The form is

Ms,f,d

where s is the start address of the move, f is the final address of the move, and
d is the destination address. Data is first moved from s to d, and both
addresses are incremented. If s exceeds f then the move operation stops,
otherwise the move operation is repeated.

The R (Read) Command

The R command is used in conjunction with the I command to read COM
and HEX files from the diskette into the transient program area in
preparation for the debut run. The forms are

R
Rb

where b is an optional bias address which is added to each program or data
address as it is loaded. The load operation must not overwrite any of the
system parameters from OOOH through OFFH (i.e., the first page of memory).
Ifb is omitted, then b = 0000 is assumed. The R command requires a previous
I command, specifying the name of a HEX or COM file. The load address for

129

each record is obtained from each individual HEX record, while an assumed
load address of l00H is taken for COM files. Note that any number of R
commands can be issued following the I command to re-read the program
under test, assuming the tested program does not destroy the default area at
5CH. Further, any file specified with the filetype "COM" is assumed to
contain machine code in pure binary form (created with the LOAD or SAVE
command), and all others are assumed to contain machine code in Intel hex
format (produced, for example, with the ASM command).

Recall that the command

DDT filename.filetype

which initiates the DDT program is equivalent to the commands

DDT
-Ifilename.filetype
-R

Whenever the R command is issued, DDT responds with either the error
indicator "1" (file cannot be opened, or a checksum error occurred in a HEX
file), or with a load message taking the form

NEXT PC
nnnn pppp

where nnnn is the next address following the loaded program, and pppp is the
assumed program counter (lOOH for COM files, or taken from the last record
if a HEX file is specified).

The S (Set) Command

The S command allows memory locations to be examined and optionally
altered. The form of the command is

Ss

where s is the hexadecimal starting address for examination and alteration
of memory. DDT responds with a numeric prompt, giving the memory
location, along with the data currently held in the memory location. If the
operator types a carriage return, then the data is not altered. If a byte value
is typed, then the value is stored at the prompted address. In either case,
DDT continues to prompt with successive addresses and values until either
a period (.) is typed by the operator, or an invalid input value is detected.

130

The T (Trace) Command

The T command allows selective tracing of program execution for 1to 65535
program steps. The forms are

T
Tn

In the first case, the CPU state is displayed, and the next program step is
executed. The program terminates immediately, with the termination
address displayed as

*hhhh

where hhhh is the next address to execute. The display address (used in the
D command) is set to the value of Hand L, and the list address (used in the
L command) is set tohhhh. The CPU state at program termination can then
be examined using the X command.

The second form of the T command is similar to the first, except that
execution is traced for n steps (n is a hexadecimal value) before a program
breakpoint occurs. A breakpoint can be forced in the trace mode by typing
a rubout character. The CPU state is displayed before each program step is
taken in trace mode. The format of the display is the same as described in the
X command.

Note that program tracing is discontinued at the interface to CP/M, and
resumes after return from CP/M to the program under test. Thus, CP/M
functions which access I/O devices, such as the diskette drive, run in
real-time, avoiding I/O timing problems. Programs running in trace mode
execute approximately 500 times slower than real time since DDT gets
control after each user instruction is executed. Interrupt processing routines
can be traced, but it must be noted that commands which use the breakpoint
facility (G, T, and U) accomplish the break using a RST 7instruction, which
means that the tested program cannot use this interrupt location. Further,
the trace mode always runs the tested program with interrupts enabled,
which may cause problems if asynchronous interrupts are received during
tracing.

Note also that the operator should use the rubout key to get control back to
DDT during trace, rather than executing a RST 7, in order to ensure that the
trace for the current instruction is completed before interruption.

131

The U (Untrace) Command

The U command is identical to the T command except that intermediate
program steps are not displayed. The untrace mode allows from 1 to 65535
(OFFFFH) steps to be executed in monitored mode, and is used principally to
retain control of an executing program while it reaches steady state
conditions. All conditions of the T command apply to the U command.

The X (Examine) Command

The X command allows selective display and alteration of the current CPU
state for the program under test. The forms are

X
Xr

where r is one of the 8080 CPU registers

C Carry Flag
Z Zero Flag
M Minus Flag
E Even Parity Flag
I Interdigit Carry
A Accumulator
B BC register pair
D DE register pair
H HL register pair
S Stack Pointer
P Program Counter

(0/1)
(0/1)
(0/1)
(0/1)
(0/1)
(O-FF)
(O-FFFF)
(O-FFFF)
(O-FFFF)
(O-FFFF)
(O-FFFF)

In the first case, the CPU register state is displayed in the format

CfZfMfEflf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a double byte
quantity corresponding to the register pair. The "inst" field contains the
disassembled instruction which occurs at the location addressed by the CPU
state's program counter.

The second form allows display and optional alteration of register values,
where r is one of the registers given above (C, Z, M, E, I, A, B, D, H, S, or Pl.
In each case, the flag or register value is first displayed at the console. The
DDT program then accepts input from the console. If a carriage return is
typed, then the flag or register value is not altered. If a value in the proper
range is typed, then the flag or register value is altered. Note that BC, DE,

132

and HL are displayed as register pairs. Thus, the operator types the entire
register pair when B, C, or the BC pair is altered.

Implementation Notes

The organization of DDT allows certain non-essential portions to be
overlayed in order to gain a larger transient program area for debugging large
programs. The DDT program consists of two parts: the DDT nucleus and
the assembler/disassembler module. The DDT nucleus is loaded over the
Console Command Processor, and, although loaded \vith the DDT nucleus,
the assembler/disassembler is overlayable unless used to assemble or
disassemble.

In particular, the BDOS address at location 6H (address field of the JMP
instruction at location 5H) is modified by DDT to address the base location
ofthe DDT nucleus which, in turn, containsaJMPinstruction to the BDOS.
Thus, programs which use this address field to size memory see the logical
end of memory at the base of the DDT nucleus rather than the base of the
BDOS.

The assembler/disassembler module resides directly below the DDT
nucleus in the transient program area. If the A, L, T, or X commands are used
during the debugging process then the DDT program again alters the address
field at 6H to include this module, thus further reducing the logical end of
memory. If a program loads beyond the beginning of the
assembler/disassembler module, the A and L commands are lost (their use
produces a "?" in response), and the trace and display (T and X) commands
list the "inst" field of the display in hexadecimal, rather than as a decoded
instruction. '

Sample Session

The following example shows an edit, assemble, and debug for a simple
program which reads a set ofdata values and determines the largest value in
the set. The largest value is taken from the vector, and stored into "LARGE"
at the termination of the program

ED SCAN. AS"

• .L ;tab character rubout rubout echo

tl ORG tI!!Jli ~L~RT OF TRAMS lENT AREA
~ ~ iLEHGTH OF VECTOR TO SCANm £.J iJ:..e.!il!_RU YALUE SO fAR

UUlr-_P_U_l ~ H. VEeT iBASE Of VECTOR
L~'.!!.2! .LJ1 i GET YALUE
rubout 1 la -'- ; b ARMER YA lUE IN- C?
deletes ~He .!i.E..Q..Y..HJ, J II "P I r: L~RGER " ALV E NOT f' 0 It''' D

_characters ME" l ARGEST YALUE, STOR E ITT 0 (:

W ~.

133

MFOUND: INK H iTO NEXT ElEftENT Create Source '.m i i "ORE TO SCAM?
m. -w.e iFOR ANQTHER Program -underlined

characters typed
£ by programmer.
2. END OF SCAN, STORE C

"OY A,C iCET LARGEST VALUErn LARGE
.iI!t ..I. ~

.L
;

YEeT:
liM
LARGE:

fZ~

TEST DATA
!l 2,8,4,3,S,6,1,5
£QU '. '-YECT j LENGTH
is .! _.;: "RGEST YALUE ON EXIT
.ua
ORC 181M iSTART OF TRANSIENT AREA
"VI B,LEM iLEHGTH OF YECTOR TO SCAN
"YI ·C,.' ;LARGEST VALUE SO FAR
LXI H,YECT iBAS£ OF YECTOR

lOOP: "OY A," ; GET YALUE
SUB C iLARGER YALUE' IN C?
JNC NFOUND iJU"' IF LARGER YALUE NOT FOUND
NEY LARGEST VALUE. STORE I T TO C
MaY C,A

NFOUND: INX H iTO NEXT ELE"ENT
DCR B ;"08£ TO SCAN?·
JNZ LOOP iFOR ANOTHER
END OF SCAN, STORE C
"oy A,C iCET LARGEST VALUE.
STA LARGE
J"P 8 iREBOOT

YEeT;
LEN
LARGE;

TEST DATA
DB 2,1,4,3,5,6,1,5
EGU .-YEeT iLEHGTH
DS 1 iLARCEST YALUE ON EXIT
END
+--End of Edit

Start Assembler

CP/" ASSE"BLER - YER 1.8

8122'
eS2H USE FACTOR
EHD OF ASSEMBLY Assembly Complete - Look at Program Usting

Tm SCAN. fiRM

iTO HEXT ELE"EHT
i"ORE TO SCAN?
iFOR ANOTHER

Ilec 4F
81lD 23
118E IS
lieF C28781

Code Address Source Program

1188' Machine Code (ORG leaH .; START OF TRAHS 1ENT AREA
8181 '688) "Y I B, LEN I LENGTH OF VECTOR TO SCAN
11121E.I "YI C,8 ,L~~GES~ YALUE SO FAR
811. 211981 LXI H,VECT. ,BASE OF VECTOR
1187 7£ LOOP: "oy A," .GET VALUE
8118 91 SUB C iLHRGER YALUE IN C?
1189 D28D&1 JHC HFOUND iJU"P IF LARGER V~LUE HOT FOUND

HEW LA~GEST \lALUE~ STORE IT TO C
"oy C,A

HFOUND: . IN>: H
DCR B'
JHZ LOOP

8112 :79
1113 322181
8116 C31118

Code/ data listing
truncated---.

8119 82888.83ISYECT:

END OF SCAN,· STORE C
"OY A~C iGET LARGEST YALUE
STA LARGE
J"P a . . PEBOOT

:rEST DATA
D8 2,8,4,,3,5,6,1,5

134

.-VEeT ,LENGTH
1 iLARGEST YALUE ON EXIT

last load address + 1

Start Debugger using hex format machine code

LEN EQU
LARCE: DS

END

1'1(DDT YEI 1. e
NEXT PC
8121 88••
-~ '--------~ / next instruction

~ to execute at
C8Z8"8E818 A-18 B-e818 D2 8888 H=8818 S=8lee p=8e8e OUT 7F pc=O

-~ "
""'-- Examine registers before debug run

.8.8 - ~
8 I 2 1 Value of 1
e122 Equate'

A>
DDT SCAN. HEX

p=8e8e !!!
Change PC to 100

-It Look at registers again rPC changed

("&Z8118£818 A=88 8:11888 D=88e8 H=888e 5=11 ge P=8191 '1'il 8, 88~
-U!.!. Next instruction ,

to execute at PC = 100

Disassembled Machine
Code at 100H
(See Source Listing
for comparison)

A little more
machine code
(note that Program
ends at location 116
with a JMP to 0000)

8,88
C/II
H.. 8119
A,"
C
118D
C,A
H
8
8187
'~L C

STA el~l

J"P 8888
STAX B
HOP
1 HR 8
INX B
DCR 8
"YI 8,81
DCR 8
LXI D,2288
LXI H,8288

enter inline assembly mode to change the JMP to 0000 into a RST 7. which
will cause the 'program under test to retum to DDT if 116H
is ever executed.& 116

81e8 "YI
8182 "VI
8184 LXI
8187 "Oy
8188 SUB
8189 JNC
Bile "Oy
818D INX
"leE DeR
e18F JHZ
8112 "Oy
-.!:.

if 113
811 ,
8119
ellA
1118
BllC
111 D
eliE
8121
8121
8124
-~

8117 (single carriage return stops assembly mode)

-ll1l List Code at 113H to check that RST 7 was properly inserted

8
B

8 1 2l~ in place of JMP
11 ~

81 13
8116
e t 17
8118
8119
ellA
8118
81lC

STA
1ST
NOP
HOP
STAX 8
HOP
J NI
J HX

-,! Look at registers

C8Z8"IE818 Aal8 8=8888 D=8188 H2 8888 S-8188 P 2 8118 "VI
-L

Execute Program for one step. initial CPU state. before, is executed

C8Ze"8E818 A=88 8=8888 D=8888 H=lee8 S=1188 p=llee "VI 8/88*8182
-T I
- Trace one step again (note 08H in B) automatic breakpointJ

C8ZI"8E818 A-II 8a8888 D-8188 H-8ill S-8188 p-81e2 "YI e,e •• lle4

135

-L
Trace again (Register C is cleared)

CIZI"8EIII A~81 8=8888 D~8818 H=lele 5=8190 P=8184 LXI H,8119*8187

-ll Trace three steps

Data is displayed
in ASCII with a .·0··
in the position of
non-graphic
characterS

H

5=1188 P=118? "OY A,"
5=8181 P=8188 SU8 C
5 e 8108 P=8109 JHC eleD.'lID

Automatic breakpoint at 10DH"';-

~
...-- Lower case x --. Cl

EB 88 8 BI,..... w. •. .,~.

88 88 8 8 e .') .
88 88 88 8e
88 88 88 8e
Ie 18 18 Be
88 18 18 88
88 88 81 88
88 88 81 88
88 88 88 81
88 8e 88 81 .
88 18 18 88 .

CeZ8"IEI18 A=18 B=888e D-8818 H=8119
C8Z8"IE8J8 A=12 8=8888 D=8818 H=1119
C8ZI"8E8Jl A=12 8=1888 D-1188 H=8119

-~ Display memory starting at 119H.

8119 82 81 84 83 85 86 81 ~r?9r~~~ata
8128 85 1 Ie 22 21 88 82 7£ EB 77 13 23
81J8 C2 27 81 C3 83 29 88 8e 88 88 88 88
8141 88 88 88 88 88 88 88 81 88 81 88 88
8151 88 81 8e 88 88 Ie 88 8e ee e8 88 88
8168 88 18 II 88 88 88 18 88 88 88 88 88
8178 88 18 II 88 88 88 88 88 88 88 88 88
8188 B8 e8 88 88 88 88 88 88 88 88 88 18
8191 88 18 88 88 88 88 88 88 81 88 88 88
BlAB 88 Ie 81 II II 81 18 88 88 II 88 88
8188 8e 88 18 88 Be 8e 88 88 88 81 81 8e
81C8 88 88 Ie 88 88 88 88 88 88 ee 8' 88

-.l£. Current CPU state \

CeZ8"8E8I1 Az 82 8=9888 D-8888 H=8119 Sm8le8 pa81eD IHX
-!.l

Trace S steps from current CPU state

c

H

8 Automatic
I 1e7 Breakpoint

AI~U.,~)
C.'~

Trace without listing intermediate states

C8Z1"8EIJl Az 88 8=8788 D-8188 H-ellA Sa 8lee P=8189 JHC
-~ CPU State at end of US ~

C8Z8"8EIJI A=8. 8=1688 Dz81e8 H=e118 S=818e pelle8 SUB

-~ Run program from current PC until completion (in real-time)
breakpoint at 116H. caused by executing RST 7 in machine code

CIZ8"8EIII A=82 8=8888 Da 8888 H-I119 Sellee P=8l8D IHX
C8ZI"8E811 A=82 8=8888 D=8118 H=eliA S=8188 P=811E DCR
C8Z8"8E8JI A=82 8=8788 Da 8818 H=811A 5=8188 P=818F JHZ
C8Ze"8E8I1 A=82 8=8788 D=8888 H=811A Sa l181 P=8117 "oy
C8Z8"8E8Jl A~8e 8=8788 D-1188 HmliiA Salill P=8188 SUB

-~

examine and change program counter

CPU state at end of program

C8Z1"8EIll A=le 8=8888 D=8818 H=8121 S=8198 P=8116 RST
-~

17

pall16 ill.

-~

CIZ1"8ElI1 A=8e 8=&888 D=88e8 H=8121 S=e108 p~91eQ MVI B~88

-ill Trace 10 (hexadecimal). steps subtext for comparison
first data element current largest value A(C

CeZl"IE111 A=88 8=8888 D=8 e H=8121 s- 1~~ P=8108 "VI e,ey
C8Z1"8El11 A=88 8=8888 D see H=81~ 5=8108 P=118Z "VI Cle8
C8Z1"8El11 A=el 8=888 =888e H 121 S=8100 P=8l84 LXI H,elt'
C8Z1"8El11 A=ee 8- s~ D= H=el19 S=018e p=ele7 MOY A,"
C821"8EIJI ~~ =8~ =8818 H=0119 S=~100 P=118S SUB C

136

C8Z8"IE811 A=82 8=0888 Da 8888 H=e119 S=il0e p=81e9 JHC ileDCeZ8"8E811 A=82 8=8888 D=8088 H=0119 S=8100 p=8leD I NJ< H
CeZ8"8E8Il A=82 8=8888 D=8888 H=811 A S=8190 P=918E DCR B
CeZ8"IE8Il A=92 8=8780 D=Be 8& H=, II A S=0100 P=818F JHZ 8187
C8Z8"BE8Il A=82 8=8788 D=8898 H=ellA ~=8100 p=e187 t10Y AI'"C8Z8"8E811 A=es B=078e D=e 9 0a H=el 1A S=0100 P=8108 SUB C
CeZl"8El11 A=e8 8=8788 D=8e0e H=ell A S=8100 P=810~ JHC 0leD
CeZI"8Elll A=ee 8=8780 D=888e H=ell A S=01ae peeleD I NX H
CeZl"BElJI A=e0 B=878t' D=8088 H=0 11 B S=8t00 P=810E DCR 8
C8Z8"8EIII A=ee &=8688 D=8 0ee H=8 11 B S=810e p=e18F JHZ 8187
C8Z8"IEIJI A=e8 8=8688 D=88 ee H= ell B S=0108 p=ele7 P10Y AIt1.8188-lltl

Insert a "hot patch" into Program should have moved the
£1109 JC leD the machine code value from A into C since A)C.

to change the Since this code was not executed.
9leC JNC toJC it appears that the JNC should

have been a JC instruction
-f!.! Stop DDT so that a·version of

the patched program can be saved

SA'iE 1 SCAN. CO"

A)DDT SCAN. (:0"

Program resides on first page. so save 1 page.

Restart DDT with the saved memory image to continue testing

161l DDT VErt 1.9
NEXT PC
8288 8181
- L 18 e List some code

8188
8182
1184
i18?
8188
8189
818(,
BleD
818E
818F
8112
-XF

p=81ee

9188
clee
H" e1/19 Previous patch is present in X-COM
AI"
C
BleJl
(. ~ ~

H
B
8187
AJ C

Trace to see how patched version operates-ill

(.8Z""8E8J8
CeZ8"8E8J8
C.8Z8"8E8J8
C8Z'"8E818
r:8Z8"8E8Ie
('8Z8"8£811
C8Z8"8E811
C8Z8"8E811
C8Z8"8E811
C.8Z8"8E811
('8Z8"8£811
C.8Z8"8£811
CIZ'''IE818
CIZ8"IE818
(.128"IE818
(:IZ8P18£111
-x

A=&e
~=88

A=88
~=88

A 8"
A=82
A=82
A=82
A=82
A=82
A=82
A=88
A=FE
~=FE

A=FE
A=FE

B=ee88
8=8888
8=8S88
8=888~

8=8S8l'
B S8e
8=8 88
8=8 8
8=8S 2
8=8782
B=8782
8=8782
8=8782
8=8782
8=8782
8=8682

II =f 8 08
D=8888
D=8888
D=8888
D=leee
D:z88
D 88
D=8ee8
D=8888
D=8888
D=10'18
D=8 e ee
D=ae88
II =8 0 Ie
D=8988
D=leee

~=~~e~

H=eee9
H=ee8e
H=8119
H=8

1 19
H=8 1 19
M=a 119
H=811 A
H= ell A
H=13 1 1A
~=~n IA
H=8 11 ~

M=8 I I A
H=e I 18
H =e1 18

=lill 8e
=81
= lee

... =81 ~e

'3=8188
s=e10e
S=llae
'~=elee

S=81&8
S=elle
S=Bli'0
-::= 8 1ee
':,= 8180
S=81d0
S=8188
$=1188

Data is moved from A to C

=81e~ "I~I 9,88
P=i182 "'II : .. 88
p=ele4 LXI H,8113
P=~187 PlOY A."
P='318S SUB C
P=8119 JC 818D
P=818C "tOy C.A
P=8t8D INX ~

P=~18E nCR B
P=818F J"Z a187
P=@187 ~Oy ~~" ;
P=8188 SUB C
P=4j189 JC B18D
p=el8D INX H
p=el8E DCR B
P=818F JHZ 8187-8187

breakpoint after 16 steps /

CIZ8P19ElI1 A=FE 9~8682 D=eeee H=el 18 ~=01e8 p=lle7 ~OY A,"
- G. 1'''' 8 Run from current PC and breakpoint at 108H

·9188
-K r next data item

(.lZe"8EII1 A=84 8=8682 D=8888 H=e118 S=1108 P=8188 SUB C

137

-1
Single step for a few cycles

C1Z8"8E111 A=84 B=9682 D=eeee H=el1& S=810e P=8188 ~U8

-T

C~Z9"8Eell R=82 8=8682 D=888~ H=9118 S=81ee P=i189 JC
-x

C9Z9"8E811 A=82 8=8682 D=8808 H=8118 S=8100 p=8tee "oy

-i Run to completion

-8116
-x

(821"8ElI1 A=83 8=8883 D=8888 H=8121 S=8108 P=1116 RST 87

-!Jl.! look at the value of "LARGE"

8121 83 Wrong Value!

&122 ee

Et123 22

8124 21

9125 99

/" End of the 5 commandti126 92

ft127 7E .!.

-L100

010Et M'~ I
(1102 MYI
0104 L X I
81~7 MOY
el~B SlIB
0109 ",Ie

e 10C MOV
e1 e[1 1NX
010E DCf<
el~F JHZ
tt 112 MOY
-L

819a
c,e~

H, e119
A.I ,.,

e-
910D
C I A
H
8
8107
A.(Review the code

e113 STA
e 116 RST
01 17 HOP
& 118 HOP
€t 119 STAX
(\ 11 A HOP
ell E< IHR
€' 1 1(J H>:
otill DCR
I) liE MVI
t1t2£t DCR
-;, p

P =8 1 16 lee

8121
87

B
B
B
B,ei
8

Reset the PC

- T Single step, and watch data values

ceZ1M8EIIl ~=e3 8=eee3 D=80ee H=~121 S=~le0 p=e109 MVI 8·ea-0182
- T

C8Z1M8Elll ~=e3 B~e883 D=8e8e H=0121' S=0100 p=e10Z "~l C.ee-ale4
- T count set

I ~ "Iar~est" set
C~ZlM8El11 ~=&3 B=&ae~ ~=ee~~ ~=e121 S=el~8 P~~104 ~~I ~·~113.81e7

-1

138

~ base address of data set

(~21~8Elll q=~3 B~~ae& D=&~e~ H=01 19 S=010~ P~&l~? MOV ~·M.el~8

-T
,r first data item brought to A

C~ZlMeEl)l A=82 8=8Sae D=80ee H=8119 S=9108 P=81&8 SU8
-~

[eZ&M8E811 ~=82 B=8ee8 D=88i8 H=0119 S=9100 P=0189 JC
-T

t? first data item moved to C correctly

t0Z8M9E911 ~=e2 8~8~e~ D=8e08 H=0119 S=e10~ p=~leD IHX
-1

[028M8E811 ~=e2 8=8880 D=8eee H=Q119 S=0180 P=818C "0\1
-T

(0Z8M&E011 A=82 8=8se2 D=800e H=011A S=01&i P=~l~E DC~

-.!.

C0Z0MBE011 A=82 8=0782 D=ee08 H=ellA S=e10e P=810F JHZ
-T

tI"" subtract destroys data value which was loaded!!!

Cl:eM1E910 A=FE B~e782 D=808e ~=QI1A 5=0100 P=0189 JC
-T

/ second data item brought to A

C0Z0M9E0Jl ~=ee 8=8782 D=88ee H=911A ~=elee p~e188 sue
-T

C8Z8118E011 A=~2 B:~7~2 D=ee~e ~=el 1~ S~i10~ P=0167 ~CV

-l

(lZ8M1E910 A=FE B~e78~ D=8008 H=011~ S=010& P=810D INX
-L181!'

hot patch at I08H changes SUB to CMP

8.£18
C.00
H. e 119

~.'"
C +--
918D
C.' A
H
B
8187
A.• C

01~0 ~YI

8102 ,.....)

8104 LXI
8107 MOY
el~8 SLl8
0199 JC
Etl~(, 110\/
0! ~~I I H)r.
Etl~E DCR
e 10F ,,1HZ
Et 112 "0\/
-MlElE«

~1~£< £.!!L.l
el~~

This should have been a CMP so that register A
would not be destroyed.

-i! stop DDT for SAVE

~:H"'E 1 Sc.~H COM
save memory image
Restart DDT

lof(IlrlT VEl< 1 0
UEXT PC
&208 elSe
-XF

139

-h.!..!.!

8116 RST 97
€ttl? HOP
ell8 HOP
0119 STAX B
ellA HOP
- (rubout)

Look at code to see if it was properly loaded
(long typeout aborted with rubout)

-Ull Run from 100H to completion

·0116
-~ Look at Carry (accidental typo)

C1

- x Look at CPU state

(IZ1M8£111 A=06 B=~0e6 D=8000 H=0121 S=01~0 P=0116 RST 07

-~ Look at "Large" - it appears to be correct.

0121 86

£1122 08

0123 22 •

-~ stop DDT

Re-edit the source program, and make both changes

iL~RGER YALUE IN C~

JL~R~ER VALUE IN C~

HFOUHD ,JU"P IF L~RGER YALUE NOT FOUND

NFOU~D ,JUMP IF LARGER VALUE ~OT FOUND

H'; " ~~ CAN. AA~ Re.assemble, selecting source from disk A
hex to disk A

Cf' .,' 1'1 f4 SSE 118 LER - \IE R 1 e print to Z (selects no print file)

~122

C10~H USE FACTOR
EN!' OF ASSEMBLY

Reo-run debugger to check changes

~6~' DIIT \lEI< 1.9
HE.<T PC
~121 8808
-Ll16

til 16 "I MP 0'"e0 check to ensure end is still at 116H
£1 t 19 STA~: B
\2tllA HOP
if liB I NR B
- (rubout)

- (,1 Et J!t ~ 1 16 Go from beginning with breakpoint at end

140

" ell ~ breakpoint reached
-E..!1l Look at "LARGE" correct value computed

('I~I~2 7E EB 77 13 23 EB 0B 7& BI
.:' 1 ~ 0 C2 2? ~ 1 C3 0 3 2;' et €I (1 e en; ee e0 Et 0 0 8 ea 0 0 ee
~140 00 00 00 00 ~0 e~ ee ee ee e~ oe ee ee 00 00 ~e

- (rubout) aborts long typeout

- I~ ~t stop DDT, debug session complet~

141

II I ~I. I. ~:

.") .

-,'i-

:'0{ ... i

- .. :--

CP/M 2.2 ALTERATION GUIDE

COPYRIGHT (c) 1979
DIGITAL RESEARCH

•

Copyright

Copyright (c) 1979 by Digital Research. All rights re­
served. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in
any form or by any means, electronic, mechanical, mag­
netic, .optical, chemical, manual or otherwise, without
the prior written permission of Digital Research, Post
Office Box 579, Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties
with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication
and to make changes from time to time in the content
hereof without obligation of Digital Research to notify
any person of such revision or changes.

Trademarks

CP1M is a registered trademark of Digital Research.
MP1M, MAC, and SID are trademarks of Digital
Research.

(All Information Contained Herein is Proprietary to Digital Research.)

Table of Contents

SECTION VI

1. INTRODUCTION

2. FIRST LEVEL SYSTEM REGENERATION

3. SECOND LEVEL SYSTEM GENERATION

4. SAMPLE GETSYS AND PUTSYS PROGRAMS

5. DISKETTE ORGANIZATION

6. THE BIOS ENTRY POINTS

7. A SAMPLE BIOS

8. A SAMPLE COLD START LOADER

9. RESERVED LOCATIONS IN PAGE ZERO

10. DISK PARAMETER TABLES

11. THE DISKDEF MACRO LIBRARY

12. SECTOR BLOCKING AND DEBLOCKING

APPENDIX A
APPENDIXB
APPENDIXC
APPENDIXD
APPENDIXE
APPENDIXF
APPENDIXG

143

145

146

150

154

155

157

164

164

164

166

170

174

Introduction

The standard CP/M system assumes operation on an Intel MDS-800
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware operating
environment. In this way, the user can produce a diskette which operates
with any IBM-3741 format compatible drive controller and other peripheral
devices.

Although standard CP/M 2.2 is configured for single density floppy disks,
field-alteration features allow adaptation to a wide variety of disk
subsystems from single drive minidisks through high-capacity "hard
disk" systems. In order to simplify the following adaptation process, we
assume that CP/M 2.2 will first be configured for single density floppy
disks where minimal editing and debugging tools are available. If an
earlier version of CP/M is available, the customizing process is eased
considerably. In this latter case, you may wish to briefly review the
system generation process, and skip to later sections which discuss
system alteration for non-standard disk systems.

In order to achieve device independence, CP/M is separated into three
distinct modules:

BIOS - basic I/O system which is environment dependent
BDOS - basic disk operating system which is not dependent upon

the hardware configuration
CCP - the console command processor which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular
hardware. That is, the user can "patch" the distribution version of CP/M
to provide a new BIOS which provides a customized interface between the
remaining CP/M modules and the user's own hardware system. The
purpose of this document is to provide a step-by-step procedure for
patching your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first time, the
new BIOS requires some relatively simple software development and
testing. The standard BIOS is listed in Appendix B, and can be used as a
model for the customized package. A skeletal version of the BIOS is given
in Appendix C which can serve as the basis for a modified BIOS. In
addition to the BIOS, the user must write a simple memory loader, called
GETSYS, which brings the operating system into memory. In order to
patch the new BIOS into CP/M, the user must write the reverse of
GETSYS, called PUTSYS, which places an altered version of CP/M back
onto the diskette. PUTSYS can be derived from GETSYS by changing the
disk read commands into disk write commands. Sample skeletal GETSYS
and PUTSYS programs are described in Section 3, and listed in Appendix
D. In order to make the CP/M system work automatically, the user must

145

also supply a cold start loader, similar to the one provided with CP/M
(listed in Appendices A and B). A skeletal form of a cold start loader is
given in Appendix E which can serve as a model for your loader.

First Level System Regeneration

The procedure to follow to patch the CP/M system is given below in
several steps. Address references in each step are shown with a following
"H" which denotes the hexadecimal radix, and are given for a 20K CP/M
system. For larger CP/M systems, add a "bias" to each address which is
shown with a "+b" following it, where b is equal to the memory size ­
20K. Values for b in various standard memory sizes are

24K: b = 24K - 20K = 4K = 1000H
32K: b = 32K - 20K = 12K = 3000H
40K: b = 40K - 20K = 20K = 5000H
48K: b = 48K - 20K = 28K = 7000H
56K: b = 56K - 20K = 36K = 9000H
62K: b = 62K - 20K = 42K = A800H
64K: b = 64K - 20K = 44K = BOOOH

Note: The standard distribution version of CP/M is set for operation
within a 20K memory system. Therefore, you must first bring up the 20K
CP/M system, and then configure it for your actual memory size (see
Second Level System Generation).

(1) Review Section 4 and write a GETSYS program which reads the first
two tracks of a diskette into memory. The data from the diskette
must begin at location 3380H. Code GETSYS so that it starts at
location 100H (base of the TPA), as shown in the first part of
Appendix d.

(2) Test the GETSYS program by reading a blank diskette into memory,
and check to see that the data has been read properly, and that the
diskette has not been altered in any way by the GETSYS program.

(3) Run the GETSYS program using an initialized CP1M diskette to see
if GETSYS loads CP1M starting at 3380H (the operating system
actually starts 128 bytes later at 3400H).

(4) Review Section 4 and write the PUTSYS program which writes
memory starting at 3380H back onto the first two tracks of the
diskette. The PUTSYS program should be located at 200H, as shown
in the second part of Appendix D.

(5) Test the PUTSYS program using a blank uninitialized diskette by
writing a portion of memory to the first two tracks; clear memory and
read it back using GETSYS. Test PUTSYS completely, since this

146

program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution version of the
BIOS given in Appendix B, and write a simple version which performs
a similar function for the customized environment. Use the program
given in Appendix C as a model. Call this new BIOS by the name
CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(7) Test CBIOS completely to ensure that it properly performs console
character I/O and disk reads and writes. Be especially careful to
ensure that no disk write operations occur accidently during read
operations, and check that the proper track and sectors are addressed
on all reads and writes. Failure to make these checks may cause
destruction of the initialized CP/M system after it is patched.

(8) Referring to Figure 1 in Section 5, note that the BIOS is placed
between locations 4AOOH and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed
in step (6) and tested in step (7). This replacement is done in the
memory of the machine, and will be placed on the diskette in the next
step.

(9) Use PUTSYS to place the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

(10) Use GETSYS to bring the copied memory image from the test
diskette back into memory at 3380H, and check to ensure that it has
loaded back properly (clear memory, if possible, before the load).
Upon successful load, branch to the cold start code at location
4AOOH. The cold start routine will initialize page zero, then jump to
the CCP at location 3400H which will call the BDOS, which will call
the CBIOS. The CBIOS will be asked by the CCP to read sixteen
sectors on track 2, and if successful, CP/M will type "A ", the
"System prompt.

When you make it this far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (10), CP/M has prompted the console for a
command input. Test the disk write operations by typing

SAVE 1 X.COM

(recall that all commands must be followed by a carriage return).

147

CP1M should respond with another prompt (after several disk
accesses):

A

If it does not, debug your disk write functions and retry.

(12) Then test the directory command by typing

DIR

CP/M should respond with

A:X COM

(13) Test the erase command by typing

ERAX.COM

CP1M should respond with the A prompt. When you make it this far,
you should have an operational system which will only require a
bootstrap loader to function completely.

(14) Write a bootstrap loader which is similar to GETSYS, and place it on
track 0, sector 1 using PUTSYS (again using the test diskette, not
the distribution diskette). See Sections 5 and 8 for more information
on the bootstrap operation.

(15) Retest the new test diskette with the bootstrap loader installed by
executing steps (11), (12), and (13). Upon completion of these tests,
type a control-C (control and C keys simultaneously). The system
should then execute a "warm start" which reboots the system, and
types the A prompt.

(16) At this point, you probably have a good version of your customized
CP1M system on your test diskette. Use GETSYS to load CP1M
from your test diskette. Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital
Research.

(17) Load your modified CP1M system and test it by typing

DIR

CP1M should respond with a list of files which are provided on the

148

initialized diskette. One such file should bethe memory image for the
debugger, called DDT.COM.

NOTE: from now on, it is important that you always reboot the CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced by
another diskette, unless the new diskette is to be read only.

(18) Load and test the debugger by typing

DDT

(see the document "CP/M Dynamic Debugging Tool (DDT)" for
operating procedures. You should take the time to become familiar
with DDT, it will be your best friend in later steps.)

(19) Before making futher CBIOS modifications, practice using the editor
(see the ED user's guide), and assembler (see the ASM user's guide).
Then recode and test the GETSYS, PUTSYS, and CBIOS programs
using ED, ASM, and DDT. Code and test a COpy program which
does a sector-to-sector copy from one diskette to another to obtain
back-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement; it specifies your legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research

on each copy which is made with your COpy program.

(20) Modify your CBIOS to include the extra functions for punches,
readers, signon messages, and so-forth, and add the facilities for
additional disk drives, if desired. You can make these changes with
the GETSYS and PUTSYS programs which you have developed, or
you can refer to the following section, which outlines CP/M facilities
which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have developed belongs
to you, the modified version of CP/M which you have created can be
copied for your use only (again, read your Licensing Agreement), and
cannot be legally copied for anyone else's use.

I t should.be noted that your system remains file-compatible with all other
CP/M systems, (assuming media compatibility, of course) which allows
transfer of non-proprietary software between users of CP/M.

149

Second Level System Generation

Now that you have the CP/M system running, you will want to configure
CP/M for your memory size. In general, you will first get a memory image
of CP/M with the "MOVCPM" program (system relocator) and place this
memory image into a named disk file. The disk file can then be loaded,
examined, patched, and replaced using the debugger, and system
generation program. For further details on the operation of these programs,
see the "Guide to CP/M Features and Facilities" manual.

Your CBIOS and BOOT can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and BOOT.HEX, which contain
the machine code for CBIOS and BOOT in Intel hex format.

To get the memory image of CP/M into the TPA configured for the desired
memory size, give the command:

MOVCPM xx'"

where "xx" is the memory size' in decimal K bytes (e.g., 32 for 32K). The
response will be:

CONSTRUCTING xxK CP/M VERS 2.0
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx.COM"

At this 'point, an image of a CP/M in the TPA configured for the requested
memory size. The memory image is at location 0900H through 227FH.
(Le., The BOOT is at 0900H, the CCP is at 9BOH, the BDOS starts at
11BOH, and the BIOS is at 1FBOH.) Note that the memory image has the
standard MDS-BOO BIOS and BOOT on it. It is now necessary to save the
memory image in a file so that you can patch your CBIOS and CBOOT
into it:

SAVE 34 CPMxx.COM

The memory image created by the "MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus does
not interfere with the operation of CP/M in higher memory. This memory
image can be subsequently loaded under DDT and examined or changed in
preparation for a new generation of the system. DDT is loaded with the
memory image by typing:

DDT CPMxx.COM

150

Load DDT, then read the CPM
image

DDT should respond with

NEXT PC
23000100

(The DDT prompt)

You can then use the display and disassembly commands to examine
portions of the memory image between 900H and 227FH. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the actual address.
Track 00, sector 01 is loaded to location 900H (you should find the cold
start loader at 900H to 97FH), track 00, sector 02 is loaded into 980H (this
is the base of the CCP), and so-forth through the entire CP/M system load.
In a 20K system, for example, the CCP resides at the CP/M address
3400H, but is placed into memory at 980H by the SYSGEN program.
Thus, the negative bias, denoted by n, satisfies

3400H + n = 980H, or n = 980H - 3400H

Assuming two's complement arithmetic, n = D580H, which can be
checked by

3400H + D580H = 10980H =0980H ignoring high-order
overflow).

Note that for larger systems, n satisfies

(3400H +b) + n = 980H, or
n = 980H - (3400H + b), or
n = D580H - b.

The value of n for common CP/M systems is given below

memory size bias b negative offset n

20K OOOOH D580H - OOOOH = D580H
24K 1000H D580H - 1000H = C580H
32K 3000H D580H - 3000H = A580H
40K 5000H D580H - 5000H = 8580H
48K 7000H D580H - 7000H = 6580H
56K 9000H D680H - 9000H = 4580H
62K A800H D580H - A800H = 2D80H
64K BOOOH D580H - BOOOH = 2580H

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system. First type

Hx,n

151

Hexadecimal sum and difference

and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in the
image where the data or code will be found. The input

H3400,D580

for example, will produce 980H as the sum, which is where the CCP is
located in the memory image under DDT.

Use the L command to disassemble portions the BIOS located at
(4AOOH +b)-n which, when you use the H command, produces an actual
address of 1F80H. The disassembly command would thus be

L1F80

It is now necessary to patch in your CBOOT and CBIOS routines. The
BOOT resides at location 0900H in the memory image. If the actual load
address is "n", then to calculate the bias (m) use the command:

H900,n Subtract load address from target
address.

The second number typed in response to the command is the desired bias
(m). For example, if your BOOT executes at OOBOH, the command:

H900,80

will reply

09800880 Sum and difference in hex.

Therefore, the bias, "m" would be 0880H. To read-in the BOOT, give the
command:

Then:

ICBOOT.HEX

Rm

Input file CBOOT.HEX

Read CBOOT with a bias of
m (=900H-n)

You may now examine your CBOOT with:

L900

We are now ready to replace the CBIOS. Examine the area at 1F80H where
the original version of the CBIOS resides. Then type

ICBIOS.HEX

152

Ready the "hex" file for loading

assume that your CBIOS is being integrated into a 20K CP/M system,
and thus is originated at location 4AOOH. In order to properly locate the
CBIOS in the memory image under DDT, we must apply the negative bias
n for a 20K system when loading the hex file. This is accomplished by
typing

RD580 Read the file with bias D580H

Upon completion of the read, re-examine the area where the CBIOS has
been loaded (use an "L1F80" command), to ensure that it was loaded
properly. When you are satisfied that the change has been made, return
from DDT using a control-C or "GO" command.

Now use SYSGEN to replace the patched memory image back onto a
diskette (use a test diskette until you are sure of your patch), as shown in
the following interaction

SYSGEN Start the SYSGEN program
SYSGEN VERSION 2.0
SYSGEN VERSION 2.0 Sign-on message from SYSGEN
SOURCE DRIVE NAME (OR RETURN TO SKIP)

Respond with a carriage return to
skip the CP/M read operation
since the system is already in
memory.

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
Respond with "B" to write the new
system to the diskette in drive B.

DESTINATION ON B, THEN TYPE RETURN
Place a scratch diskette in drive B,
then type return.

FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then perform a coldstart to
bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

153

Sample GETSYS and PUTSYS Program
The following program provides a framework for the GETSYS and
PUTSYS programs referenced in Section 2. The READSEC and
WRITESEC subroutines must be inserted by the user to read and write
the specific sectors.

GETSYS PROGRAM - READ TRACKS 0 AND 1 TO MEMORY AT 3380H
REGISTER USE

A (SCRATCH REGISTER)
B TRACK COUNT (0, 1)
C SECTOR COUNT 0,2, ... ,26)
DE (SCRATCH REGISTER PAIR)
HL LOAD ADDRESS
SP SET TO STACK ADDRESS

,
START: LXI

LXI
MVI

RDTRK:
MVI

RDSEC:
CALL
LXI
DAD
INR
MOV
CPI
JC

SP,3380H
H,3380H
B,O

C,l

READSEC
D,128
D
C
A,C
27
RDSEC

;SET STACK POINTER TO SCRATCH AREA
;SET BASE LOAD ADDRESS
;START WITH TRACK 0
;READ NEXT TRACK (INITIALLY 0)
;READ STARTING WITH SECTOR 1
; READ NEXT SECTOR
;USER-SUPPLIED SUBROUTINE
;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
;HL = HL + 128
;SECTOR = SECTOR + 1
;CHECl< FOR END OF TRACK

;CARRY GENERATED IF SECTOR 27

ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CPI 2
JC RDTRK ;CARRY GENERATED IF TRACK 2

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

; USER-SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:

ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

PUSH B ;SAVE BAND C REGISTERS
PUSH H ;SAVE HL REGISTERS

perform disk read at this point, branch to

label START if an error occurs

POP H
POP B
RET

END START

;RECOVER HL
;RECOVER BAND C REGISTERS
;BACK TO MAIN PROGRAM

154

Note that his program is assembled and listed in Appendix C for reference
purposes, with an assumed origin of 100H. The hexadecimal operation
codes which are listed on the left may be useful if the program has to be
entered through your machine's front panel switches.

The PUTSYS program can be constructed from GETSYS by changing
only a few operations in the GETSYS program given above, as shown in
Appendix D. The register pair HL become the dump address (next address
to write), and operations upon these registers do not change within the
program. The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opposite function: data from address HL is
written to the track given by register B and sector given by register C. It is
often useful to combine GETSYS and PUTSYS into a single program
during the test and development phase, as shown in the Appendix.

Diskette Organization

The sector allocation for the standard distribution version of CP1M is
given here for reference purposes. The first sector (see table on the follow­
ing page) contains an optional software boot section. Disk controllers are
often set up to bring track 0, sector 1 into memory at a specific location
(often location OOOOH). The program in this sector, called BOOT, has the
responsibility of bringing the remaining sectors into memory starting at
location 3400H +b. If your controller does not have a built-in sector load,
you can ignore the program in track 0, sector 1, and begin the load from
track 0 sector 2 to location 3400H +b.

As an example, the Intel MDS-800 hardware cold start loader brings
track 0, sector 1 into absolute address, 3000R. Upon loading this sector,
control transfers to location 3000H, where the bootstrap operation
commences by loading the remainder of track 0, and all of track 1 into
memory, starting at 3400H +b. The user should note that this bootstrap
loader is of little use in a non-MDS environment, although it is useful to
examine it since some of the boot actions will have to be duplicated in your
cold start loader.

155

Tracki Sector# Paget Memory Address CP/M Module name

00

00

00

01.,

II

..

..

..

..

01

01..
II

01

01

02
03
04
05
06
07
a8
09
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

20
21
23
24
25
26

00

01

02

03

04
II

as

06

07

08
II

09

10

11

12

13

14

15

16

17

18

19..
20

21

22
II

23
II

24
II

(boot address)

3400H+b
3480H+b
3500H+b
35th)H+b
3600H+b
3680H+b
3700H+b
3780H+b
3800H+b
3880H+b
3900H+b
3980H+b
3A00H+b
3A80H+b
3B00H+b
3B80H+b

3C00H+b
3C80H+b
3D00H+b
3D80H+b
3E00H+b
3E80H+b
3F00H+b
3F80H+b
40~0H+b

4080H+b
4100H+b
4180H+b
4200H+b
4280H+b
4300H+b
4380H+b
4400H+b
4480H+b
4500H+b
4580H+b
4600H+b
4680H+b
470f1JH+b
4780H+b
4800H+b
488f1JH+b
4900H+b
498f1JH+b

(A00H+b
4A80H+b
4BflJ0H+b
4B80H+b
4C00H+b
4C80H+b

Cold Start Loader

CCP

CCP

BOOS

II

II

..
II

..

..
II

BOOS

BIOS
II

II

II

BIOS

"2-76 01-26 (directory and data)

(All Information Contained Herein is proprietary to Digital Research.)

156

The Bios Entry Points
The entry points into the BIOS from the cold start loader and BDOS are
detailed below. Entry to the BIOS is through a "jump vector" located at
4AOOH+b, as shown below (see Appendices Band C, as well). The jump
vector is a sequence of 17 jump instructions which send program control to
the individual BIOS subroutines. The BIOS subroutines may be empty
for certain functions (Le., they may contain a single RET operation)
during regeneration of CP/M, but the entries must be present in the jump
vector.

The jump vector at 4AOOH + b takes the form shown below, where the
individual jump addresses are given to the left:

4AOOH+b
4A03H+b
4A06H+b
4A09H+b
4AOCH+b
4AOFH+b
4A12H+b
4A15H+b
4A18H+b
4AIBH+b
4AIEH+b
4A21H+b
4A24H+b
4A27H+b
4A2AH+b
4A2DH+b
4A30H+b

JMPBOOT
JMPWBOOT
JMPCONST
JMPCONIN
JMPCONOUT
JMP LIST
JMPPUNCH
JMPREADER
JMPHOME
JMP SELDSK
JMP SETTRK
JMP SETSEC
JMPSETDMA
JMP READ
JMP WRITE
JMP LISTST
JMP SECTRAN

: ARRIVE HERE FROM COLD START LOAD
: ARRIVE HERE FOR WARM START
: CHECK FOR CONSOLE CHAR READY
; READ CONSOLE CHARACTER IN
; WRITE CONSOLE CHARACTER OUT
: WRITE LISTING CHARACTER OUT
: WRITE CHARACTER TO PUNCH DEVICE
: READ READER DEVICE
: MOVE TO TRACK 00 ON SELECTED DISK
: SELECT DISK DRIVE
; SET TRACK NUMBER
: SET SECTOR NUMBER
: SET DMA ADDRESS
: READ SELECTED SECTOR
; WRITE SELECTED SECTOR
; RETURN LIST STATUS
: SECTOR TRANSLATE SUBROUTINE

Each jump address corresponds to a particular subroutine which performs
the specific function, as outlined below. There are three major divisions in
the jump table: the system (re)initialization which results from calls on
BOOT and WBOOT, simple character I/O performed by calls on CONST,
CONIN, CONOUT, LIST, PUNCH, READER, and LISTST, and diskette
I/O performed by calls on HOME, SELDSK, SETTRK, SETSEC,
SETDMA, READ, WRITE, and SECTRAN.

All simple character I/O operations are assumed to be performed in
ASCII, upper and lower case, with high order (parity bit) set to zero. An
end-of-file condition for an input device is given by an ASCII control-z
(lAH). Peripheral devices are seen by CP/M as "logical" devices, and are
assigned to physical devices within the BIOS.

In order to operate, the BDOS needs only the CONST, CONIN, and
CONOUT subroutines (LIST, PUNCH, and READER may be used by
PIP, but not the BDOS). Further, the LISTST entry is used currently
only by DESPOOL, and thus, the initial version of CBIOS may have
empty subroutines for the remaining ASCII devices.

157

The characteristics of each device are

CONSOLE The principal interactive console which communicates with
the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or Teletype.

LIST The principal listing device, if it exists on your system,
which is usually a hard-eopy device, such as a printer or
Teletype.

PUNCH The principal tape punching device, if it exists, which is
normally a high-speed paper tape punch or Telety~e.

READER The principal tape reading device, such as a simple optical
reader or Teletype.

Note that a single peripheral can be assigned as the LIST,
PUNCH, and READER device simultaneously. If no
peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does not
"hang" if the device is accessed by PIP or some other user
program. Alternately, the PUNCH and LIST routines can
just simply return, and the READER routine can return
with a lAH (ctl-Z) in reg A to indicate immediate end-of­
file.

For added flexibility, the user can optionally implement the
"IOBYTE" function which allows reassignment of physical
and logical devices. The IOBYTE function creates a
mapping of logical to physical devices which can be altered
during CP/M processing (see the STAT command). The
definition of the IOBYTE function corresponds to the Intel
standard as follows: a single location in memory (currently
location 0003H) is maintained, called IOBYTE, which
defines the logical to physical device mapping which is in
effect at a particular time. The mapping is performed by
splitting the IOBYTE into four distinct fields of two bits
each, called the CONSOLE, READER, PUNCH, and LIST
fields, as shown below:

most significant least significant

IOBYTE AT 0003H I LIST I PUNCH I READER I CONSOLE I

bits 6,7 bits 4,5

158

bits 2,3 bits 0,1

The value in each field can be in the range 0-3, defining the
assigned source or destination of each logical device. The
values which can be assigned to each field are given below

CONSOLE field (bits 0, I)
o - console is assigned to the console printer device (TTY:)
I - console is assigned to the CRT device (CRT:)
2 - batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)
3 - user defined console device (UCI:)

READER field (bits 2,3)
o- READER is the Teletype device (TTY:)
2 - READER is the high-speed reader device (RDR:)
2 - user defined reader # I (URI:)
3 - user defined reader # 2 (UR2:)

PUNCH field (bits 4,5)
o - PUNCH is the Teletype device (TTY:)
I - PUNCH is the high speed punch device (PUN:)
2 - user defined punch # I(UPI:)
3 - user defined punch # 2 (UP2:)

LIST field (bits 6,7)
o- LIST is the Teletype device (TTY:)
I - LIST is the CRT device (CRT:)
2 - LIST is the line printer device (LPT:)
3 - user defined list device (ULI:.)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of your CBIOS.
No CP/M systems use the IOBYTE (although they tolerate
the existence of the IOBYTE at location 0003H), except for
PIP which allows access to the physical devices, and STAT
which allows logical-physical assignments to be made
and/or displayed (for more information, see the "CP/M
Features and Facilities Guide"). In any case, the IOBYTE
implementation should be omitted until your basic CBIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities.

Disk I/O is always performed through a sequence of calls
on the various disk access subroutines which set up the
disk number to access, the track and sector on a particular
disk, and the direct memory access (DMA) address involved
in·the I/O operation. After all these parameters have been
set up, a call is made to the READ or WRITE function to
perform the actual I/O operation. Note that there is often a
single call to SELDSK to select a disk drive, followed by a

159

BOOT

WBOOT

number of read or write operations to the selected disk
before selecting anoither drive for subsequent operations.
Siniilarly, there may be a single call to set the DMA
address, followed by several calls which read or write from
the selected DMA address before the DMA address is
changed. The track and sector subroutines are always
called before the READ or WRITE operations are
performed.

Note that the READ and WRITE routines should perform
several retries (10 is standard) before reporting the error
condition to the BDOS. If the error condition is returned to
the BDOS, it will report the error to the user. The HOME
subroutine mayor may not actually perform the track 00
seek, depending upon your controller characteristics; the
important point is that track 00 has been selected for the
next operation, and is often treated in exactly the same
manner as SETTRK with a parameter of 00.

The exact responsibilities of each entry point subroutine
are given below:

The BOOT entry point gets control from the cold start
loader and is responsible for basic system initialization,
including sending a signon message (which can be omitted
in the first version). If the IOBYTE function is im­
plemented, it must be set at this point. The various system
parameters which are set by the WBOOT entry point must
be initialized, and control is transferred to the CCP at
3400H+ b for further processing. Note that reg C must be
set to zero to select drive A.

The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user program
branches to location OOOOH, or when the CPU is reset from
the front panel. The CP1M system must be loaded from the
first two tracks of drive A up to, but not including, the
BIOS (or CBIOS, if you have completed your patch).
System parameters must be initialized as shown below:

location 0,1,2

location 3

location 5,6,7

set to JMP WBOOT for warm
starts (OOOOH: JMP 4A03H + b)

set initial value of IOBYTE, if
implemented in your CBIOS

set to JMP BDOS, which is the
primary entry point to CP1M for
transient programs. (0005H: JMP
3C06H+b)

160

CONST

CONIN

CONOUT

LIST

PUNCH

READER

HOME

SELDSK

(see Section 9 for complete details of page zero use) Upon
completion of the initialization, the WBOOT program must
branch to the CCP at 3400H +b to (re)start the system.
Upon entry to' the CCP, register C is set to the drive to
select after system initialization.

Sample the status of the currently assigned console device
and return OFFH in register A if a character is ready to
read, and OOH in register A if no console characters are
ready.

Read the next console character into register A, and set the
parity bit (high order bit) to zero. If no console character is
ready, wait until a character is typed before returning.

Send the character from register C to the console output
device. The character is in ASCII, with high order parity
bit set to zero. You may want to include a time-out on a line
feed or carriage return, if your console device requires some
time interval at the end of the line (such as a TI Silent 700
terminal). You can, if you wish, filter out control characters
which cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear the
screen, for example).

Send the character from register C to the currently assigned
listing device. The character is in ASCII with zero parity.

Send the character from register C to the currently assigned
punch device. The character is in ASCII with zero parity.

Read the next character from the currently assigned reader
device into register A with zero parity (high order bit must
be zero), an end of file condition is reported by returning an
ASCII control-z (1AH).

Return the disk head of the currently selected disk (initially
disk A) to the track 00 position. If your controller allows
access to the track 0 flag from the drive, step the head until
the track 0 flag is detected. If your controller does not
support this feature, you can translate the HOME call into
a calIon SETTRK with a parameter of o.

Select the disk drive given by register C for further
operations, where register C contains 0 for drive A, 1 for
drive B, and so-forth up to 15 for drive P (the standard
CP1M distribution version supports four drives). On each
disk select, SELDSK must return in HL the base address of
a 16-byte area, called the Disk Parameter Header, described

161

SETTRK

SETSEC

SETDMA

READ

in the Section 10. For standard floppy disk drives, the
contents of the header and associated tables does not
change, and thus the program segment included in the
sample CBIOS performs this operation automatically. If
there is an attempt to selct a non-existent drive, SELDSK
returns HL=OOOOH as an error indicator. Although
SELDSK must return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/O function (seek, read or write) is
actually performed, since disk selects often occur without
ultimately performing any disk I/O, and many controllers
will unload the head of the current disk before selecting the
new drive. This would cause an excessive amount of noise
and disk wear.

Register BC contains the track number for subsequent disk
accesses on the currently selected drive. You can choose to
seek the selected track at this time, or delay the seek until
the next read or write actually occurs. Register BC can take
on values in the range 0-76 corresponding to valid track
numbers for standard floppy disk drives, and 0-65535 for
non-standard disk subsystems.

Register BC contains the sector number (1 through 26) for
subsequent disk accesses on the currently selected drive.
You can choose to send this information to the controller at
this point, or instead delay sector selection until a read or
write operation occurs.

Register BC contains the DMA (disk memory access)
address for subsequent read or write operations. For
example, if B = OOH and C = BOH when SETDMA is
called, then all subsequent read operatons read their data
into BOH through OFFH, and all subsequent write
operations get their data from BOH through OFFH, until
the next call to SETDMA occurs. The initial DMA address
is assumed to be BOH. Note that the controller need not
actually support direct memory access. If, for example, all
data is received and sent through I/O ports, the CBIOS
which you construct will use the 12B byte area starting at
the selected DMA address for the memory buffer during
the following read or write operations.

Assuming the drive has been selected, the track has been
set, the sector has been set, and the DMA address has been
specified, the READ subroutine attempts to read one
sector based upon these parameters, and returns the
following error codes in register A:

162

o
1

no errors occurred
non-recoverable error condition occurred

Currently, CP/M responds only to a zero or non-zero value
as the return code. That is, if the value in register A is 0
then CP/M assumes that the disk operation completed
properly. If an error occurs, however, the CBIOS should
attempt at least 10 retries to see if the error is recoverable.
When an error is reported the BDOS will print the message
"BOOS ERR ON x: BAD SECTOR". The operator then
has the option of typing <cr> to ignore the error, or ctl-C
to abort.

WRITE Write the data from the currently selected DMA address to
the currently selected drive, track, and sector. The data
should be marked as "non deleted data" to maintain
compatibility with other CP/M systems. The error codes
given in the READ command are returned in register A,
with error recovery attempts as described above.

LISTST Return the ready status of the list device. Used by the
DESPOOL program to improve console response during its
operation. The value 00 is returned in A if the list device is
not ready to accept a character, and OFFH if a character can
be sent to the printer. Note that a 00 value always suffices.

SECTRAN Performs sector logical to physical sector translation in
order to improve the overall response of CP/M. Standard
CP1M systems are shipped with a "skew factor" of 6, where
six physical sectors are skipped between each logical read
operation. This skew factor allows enough time between
sectors for most programs to load their buffers without
missing the next sector. In particular computer systems
which use fast processors, memory, and disk subsystems,
the skew factor may be changed to improve overall response.
Note, however, that you should maintain a single density
IBM compatible version of CP1M for information transfer
into and out of your computer system, using a skew factor
of 6. In general, SECTRAN receives a logical sector number
in BC, and a translate table address in DE. The sector
number is used as an index into the translate table, with the
resulting physical sector number in HL. For standard
systems, the tables and indexing code is provided in the
CBIOS and need not be changed.

163

A Sample BIOS

The program shown in Appendix C can serve as a basis for your first
BIOS. The simplest functions are assumed in this BIOS, so that you can
enter it through the front panel, if absolutely necessary. Note that the user
must alter and insert code into the subroutines for CONST, CONIN,
CONOUT, READ, WRITE, and WAITIO subroutines. Storage is reserved
for user-supplied code in these regions. The scratch area reserved in page
zero (see Section 9) for the BIOS is used in this program, so that it could be
implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print the initial
sign-on message and perform better error recovery. The subroutines for
LIST, PUNCH, and READER can be filled-out, and the IOBYTE function
can be implemented.

A Sample Cold ~tart Loader

The program shown in Appendix D can serve as a basis for your cold start
loader. The disk read function must be supplied by the user, and the
program must be loaded somehow starting at location 0000. Note that
space is reserved for your patch so that the total amount of storage
required for the cold start loader is 128 bytes. Eventually, you will
probably want to get this loader onto the first disk sector (track 0, sector
1), and cause your controller to load it into memory automatically upon
system start-up. Alternatively, you may wish to place the cold start loader
into ROM, and place it above the CP/M system. In this case, it will be
necessary to originate the program at a higher address, and key-in a jump
instruction at system start-up which branches to the loader. Subsequent
warm starts will not require this key-in operation, since the entry point
'WBOOT' gets control, thus bringing the system in from disk
automatically. Note also that the skeletal cold start loader has minimal
error recovery, which may be enhanced on later versions.

Reserved Locations in Page Zero

Mmn memory page zero, between locations OOH and OFFH, contains
several segments of code and data which are used during CP1M processing.
The code and data areas are given below for reference purposes.

Locations
from to
OOOH - 0002H

Contents

Contains a jump instruction to the warm start entry
point at location 4A03H+b. This allows a simple
programmed restart (JMP OOOOH) or manual restart
from the front panel.

164

0003H - 0003H

0004H - 0004H

0005H - 0007H

0008H - 0027H

0030H - 0037H

0038H -:- 003AH

003BH· - 003FH

0040H - 004FH

0050H - 005BH

005CH - 007CH

007DH - 007FH

0080H - OOFFH

Contains the Intel standard 10BYTE, which is
optionally included in the user's CBIOS, as described
in Section 6.

Current default drive number (O=A, ... ,15=P).

Contai~s a jump instruction to the BDOS, and
serves two purposes: JMP 0005H provides the
primary entry point to the BDOS, as described in
the manual "CP/M Interface Guide," and LHLD
0006H brings the address field of the instruction to
the HL register pair. This value is the lowest address
in memory used by CP/M (assuming the CCP is
being overlayed). Note that the DDT program will
change the address field to reflect the reduced
memory size in debug mode.

(interrupt locations 1 through 5 not used)

(interrupt location 6, not currently used - reserved)

Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for programmed breakpoints, but is not otherwise
used by CP/M.

(not currently used - reserved)

16 byte area reserved for scratch by CBIOS, but is
not used for any purpose in the distribution version
not used for any purpose in the distribution version
of CP/M

(not currently used - reserved)

default file control block produced for a transient
program by the Console Command Processor.

Optional default random record position

default 128 byte disk buffer (also filled with the
command line when a transient is loaded under the
CCP).

Note that this information is set-up for normal operation under the CP/M
system, but can be overwritten by a transient program if the BDOS
facilities are not required by the transient.

If, for example, a particular program performs only simply I/O and must

165

begin execution at location 0, it can be first loaded into the TPA, using
normal CP/M facilities, with a small memory move program which gets
control when loaded (the memory move program must be control from
location 0100H, which is the assumed beginning of all transient programs).
The move program can then proceed to move the entire memory image
down to location 0, and pass control to the starting address of the memory
load. Note that if the BIOS is overwritten, or if location 0 (containing the
warm start entry point) is overwritten, the the programmer must bring
the CP/M system back into memory with a cold start sequence.

Disk Parameter Tables
Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables can
be either hand-eoded, as shown in the sample CBIOS in Appendix C, or
automatically generated using the DISKDEF macro library, as shown in
Appendix B. The purpose here is to describe the elements of these tables.

In general, each disk drive has an associated (16-byte) disk parameter
header which both contains information about the disk drive and provides
a scratchpad area for certain BDOS operations. The format of the disk
parameter header for each drive is shown below

Disk Parameter Header

I XLT I 0000 I 0000 I 0000 IDIRBUF I DPB I CSV I ALV I

16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT

0000

DIRBUF

DPB

Address of the logical to physical translation vector, if used
for this particular drive, or the value OOOOH if no sector
translation takes place (Le., the physical and logical sector
numbers are the same). Disk drives with identical sector
skew factors share the same translate tables.

Scratchpad values for use within the BDOS (initial value is
unimportant).

Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same
scratchpad area.

Address of a disk parameter block for. this drive. Drives
with identical disk cha.racteristics address the same disk
parameter block.

166

CSV Address of a scratchpad area used for software check for
changed disks. This address is different for each DPH.

ALV Address of a scratchpad area used by the BDOS to keep
disk storage allocation information. This address is different
for each DPH.

Given n disk drives, the DPH's are arranged in a table whose first row of 16
bytes corresponds to drive 0, with the last row corresponding to drive
n-l. The table thus appears as

DPBASE:

00 t XLT 00 I 0000 10000 10000 IDIRBUF I DBP 00 I csv 00 I ALV 00 I

01 I XLT 01 I 0000 I 0000 10000 IDIRBUF I nBP 01 I CSV 01 I ALV 01 I

(and so-forth through)

n- 1 1 XLTn- 1 1 0000 10000 10000 I DIRBUF ID~Pn-11CSVn-1 IALVn-ll

where the label DBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base address
of the DPH for the selected drive. The following sequence of operations
returns the table address, with a OOOOH returned if the selected drive does
not exist.

NDISKS EQU 4

NDISKS EQU

SELDSK:

4 ;NUMBER OF DISK DRIVES

;SELECT DISK GIVEN BY BC
LXI H,OOOH ;ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS ;CY IF SO
RNC ;RET IF ERROR
;NO ERROR, CONTINUE
MOV L,C ;LOW (DISK)
MOV H,B ;HIGH (DISK)
DAD H ;*2
DAD H ;*4
DAD H ;*8
DAD H ;*16
LXI D,DPBASE ;FIRST DPH
DAD D ;DPH (DISK)
RET

167

The translation vectors (XLT 00 through XLTn-1) are located elsewhere
in the BIOS, and simply correspond one-for-one with the logical sector
numbers zero through the sector count-1. The Disk Parameter Block
(DPB) for each drive is more complex. A particular DPB, which is
addressed by one or more DPH's, takes the general form

ISPT I BSH IBLM'I EXM I DSM I DRM IALO IALl I CKS I OFF I
16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the "8b" or "16b" indicator
below the field.

SPT is the total number of sectors per track

BSH is the data allocation block shift factor, determined by the
data block allocation size.

EXM is the extent mask, determined by the data block allocation
size and the number of disk blocks.

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which can
be stored on this drive ALO,AL1 determine reserved
directory blocks.

CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of the
.(logical) disk.

The values of BSH and BLM determine (implicitly) the data llocation size
BLS, which is not an entry in the disk parameter block. Given that the
designer has selected a value for BLS, the values of BSH and BLM are
.shown in the table below

BLS
1,024
2,048
4,096
8,192

16,384

BSH
3
4
5
6
7

BLM
7

15
31
63

127

where all values are in decimal. The value of EXM depends upon both the
BLS and whether the DSM value is less than 256 or greater than 255, as
shown in the following table

168

BLS
1,024
2,048
4,096
8,192

16,384

DSM < 256
o
1
3
7

15

. DSM> 255
N/A

o
1
3
7

The value of DSM is the maximum data block number supported by this
particular drive, measured in BLS units. The product BLS times (DSM + 1)
is the total number of bytes held by the drive and, of course, must be
within the capacity of the physical disk, not counting the reserved
operating system tracks.

The DRM entry is the one less than the total number of directory entries,
which can take on a 16-bit value. The values of ALI and ALl, however, are
determined by DRM. The two values ALO and ALI can together be
considered a string of 16-bits, as shown below.

ALO I ALI

I
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte labelled
AIO, and 15 corresponds to the low order bit of the byte labelled ALl. Each
bit position reserves a data block for number of directory entries, thus
allowing a total of 16 data blocks to be assigned for directory entries (bits
are assigned starting at 00 and filled to the right until position 15). Each
directory entry occupies 32 bytes, resulting in the following table

BLS
1,024
2,048
4,096
8,192

16,384

Directory Entries
32 times # bits
64 times # bits
128 times # bits
256 times # bits
512 times # bits

Thus, if DRM = 127 (128 director entries), and BLS = 1024, then there are
32 directory entries per block, requiring 4 reserved blocks. In this case, the
4 high order bits of ALO are set, resulting in the values ALO = OFOH and
ALI = OOH.

The CKS value is determined as follows: if the disk drive media is
removable, then CKS= (DRM+1)/4, where DRM is the last directory
entry number. If the media is fixed, then set CKS = 0 (no directory records
are checked in this case).

169

Finally, the OFF field determines the number of tracks which are skipped
at the beginning of the physical disk. This value is automatically added
whenever SETTRK is called, and can be used as a mechanism for skipping
reserved operating system tracks, or for partitioning a large disk into
smaller segmented sections.

To complete the discussion of the DPB, recall that several DPH's can
address the same DPB if their drive characteristics are identical. Further,
the DPB can be dynamically changed when a new drive is addressed by
simply changing the pointer in the DPH since the BDOS copies the DPB
values to a local area whenever the SELDSK function is invoked.

Returning back to the DPH for a particular drive, note that the two
address values CSV and ALV remain. Both addresses reference an area of

. uninitialized memory following the BIOS. The areas must be unique for
each drive, and the size of each area is determined by the values in the
DPB.

The size of the area addressed by CSV is CKS bytes, which is sufficient to
hold the directory check information for this particular drive. If CKS =
(DRM+1)/4, then you must reserve (DRM+1)j4 bytes for directory
check use. If CKS = 0, then no storage is reserved.

The size of the area addressed by ALV is determined by the maximum
number of data blocks allowed for this particular disk, and is computed as
(DSM/8)+1.

The CBIOS shown in Appendix C demonstrates an instance of these
tables for standard 8" single density drives. It may be useful to examine
this program, and compare the tabular values with the definitions given
above.

The DISKJ;)EF Macro Library
A macro library is shown in Appendix F, called DISKDEF, which greatly
simplifies the table construction process. You must have access to the
MAC macro assembler, of course, to use the DISKDEF facility, while the
macro library is included with all CP1M 2.0 distribution disks.

A BIOS disk definition consists of the following sequence of macro
statements:

170

MACLIB DISKDEF

DISKS n
DISKDEF 0, .
DISKDEF 1, .

DISKDEF n-l

ENDEF

where the MACLIB statement load's the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with your
system, where n is an integer in the range 1 to 16. A series of DISKDEF
macro calls then follow which define the characteristics of each logical
disk, 0 through n-l (corresponding to logical drives A through Pl. Note
that the DISKS and DISKDEF macros generate the in-line fixed data
tables described in the previous section, and thus must be placed in a non­
executable portion of your BIOS, typically directly following the BIOS
jump vector.

The remaining portion of your BIOS is defined following the DISKDEF
macros, with the ENDEF macro call immediately preceding the END
statement. The ENDEF (End of Diskdef) macro generates the necessary
uninitialized RAM areas which are located in memory above your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs,[O]

where

dn is the logical disk number, 0 to n -1
fsc is the first physical sector number (0 or 1)
lsc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 00
[0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
macro invocation. The. "fsc" parameter accounts for differing sector
numbering systems, and is usually 0 or 1. The "lsc" is the last numbered
sector on a track. When present, the "skf" parameter defines the sector
skew.factor which is used to create a sector translation table according to
the skew. If the number of sectors is less than 256, a single-byte table is
created, otherwise each translation table element occupies two bytes. No

171

translation table is created if the sid parameter is omitted (or equal to 0).
The "bIs" parameter specifies the number of bytes allocated to each data
block, and takes on the values 1024, 2048, 4096,8192, or 16384. Generally,
performance increases with larger data block sizes since there are fewer
directory references and logically connected data records are physically
close on the disk. Further, each directory entry addresses more data and
the BIOS-resident ram space is reduced. The "dks" specifies the total disk
size in "bls" units. That is, if the bls = 2048 and dks = 1000, then the total
disk capacity is 2,048,000 bytes. If dks is greater than 255, then the block
size parameter bls must be greater than 1024. The value of "dir" is the total
number of directory entries which may exceed 255, if desired. The "cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks the
disk read/only so that data is not subsequently destroyed). As stated in
the previous section, the value of cks = dir when the media is easily
changed, as is the case with a floppy disk subsystem. If the disk is
permanently mounted, then the value of cks is typically 0, since the
probability of changing disks without a restart is quite low. The "ofs"
value determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system space
or to simulate several logical drives on a single large capacity physical
drive. Finally, the [0] parameter is included when file compatibility is
required with versions of 1.4 which have been modified for higher density
disks. This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions. Normally, this parameter is
not included.

For convenience and economy of table space, the special form

DISKDEF i,j

gives disk i the same characteristics as a previously defined drive j. A
standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

DISKS
DISKDEF
DISKDEF
DISKDEF
DISKDEF

ENDEF

4
0,1,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disks having the same parameter values of 26 sectors per track
(numbered 1 through 26), with 6 sectors skipped between each access,
1024 bytes per data block, 243 data blocks for a total of 243k byte disk
capacity, 64 checked directory entries, and two operating system tracks.

172

The DISKS macro generates n Disk Parameter Headers (DPH's), starting
at the DPH table address DPBASE generated by the macro. Each disk
header block contains sixteen bytes, as described above, and correspond
one-for-one to each of the defined drives. In the four drive standard
system, for example, the DISKS macro generates a table of the form:

DPBASE EQU $

OPEO: ow XLTO,OOOOH,OOOOH,OOOOH,OIRBUF,DPBO,CSVO,ALVO
OPEl: DW XLTO,OOOOH,OOOOH,OOOOH,OIRBUF,DPBO,CSVl,ALVl
DPE2: DW XLTO,OOOOH,OOOOH,OOOOH,DIRBUF,DPBO,CSV2,ALV2
DPE3: ow XLTO,OOOOH,OOOOH,OOOOH,DIRBUF,DPBO,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values contained
within the disk parameter header are described in detail in the previous
section. The check and allocation vector addresses are generated by the
ENDEF macro in the ram area following the BIOS code and tables.

Note that if the "skf" (skew factor) parameter is omitted (or equal to 0), the
translation table is omitted, and a OOOOH value is inserted in the XLT
position of the disk parameter header for the disk. In a subsequent call to
perform the logical to physical translation, SECTRAN receives a
translation table address of DE = OOOOH, and simply returns the original
logical sector from BC in the HL register pair. A translate table is
constructed when the skf parameter is present, and the (non-zero) table
address is placed into the corresponding DPH's. The table shown below,
for example, is constructed when the standard skew factor skf = 6 is
specified in the DISKDEF macro call:

XLTO: DB
DB

1,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data areas are
defined. These data areas need not be a part of the BIOS which is loaded
upon cold start, but must be available between the BIOS and the end of
memory. The size of the uninitialized RAM area is determined by EQU
statements generated by the ENDEF macro. For a standard four-drive
system, the ENDEF macro might produce

4C72 =

4DBO =
013C =

BEGDATEQU $
(data areas)
ENDDATEQU$
DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends at
4DBOH -1, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can us~ the STAT program to check your drive

173

characteristics, since STAT uses the disk parameter block to decode the
drive information. The STAT command form

STATd:DSK:

decodes the disk parameter block for drive d (d = A, ... ,P) and displays the
values shown below:

r: 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Records/ Extent
b: Records/ Block
s: Sectors/ Track
t: Reserved Tracks

Three examples of DISKDEF macro invocations are shown below with
corresponding STAT parameter values (the last produces a full8-megabyte
system).

DISKDEF 0,1,58,,2048,256,128,128,2
r=4096, k=512, d=128, c=128, e=256, b=16, s=58, t=2

DISKDEF 0,1,58,,2048,1024,300,0,2
r=16384, k=2048, d=300, c=O, e=128, b=16, s=58, t=2

DISKDEF 0,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

Sector Blocking and Deblocking

Upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and deblocking
where the host disk subsystem has a sector size which is a multiple of the
basic 128-byte unit. The purpose here is to present a general-purpose
algorithm which can be included within your BIOS which uses the BnOS
information to perform the operations automatically.

Upon each call to WRITE, the BDOS provides the following information
in register C:

°1
2

=
=
=

normal sector write
write to directory sector
write to the first sector
of a new data block

174

Condition 0 occurs whenever the next write operation is into a previously
written area, such as a random mode record update, when the write is to
other than the first sector of an unallocated block, or when the write is not
into the directory area. Condition 1 occurs when a write into the directory

area is performed. Condition 2 occurs when the first record (only) of a
newly allocated data block is written. In most cases, application programs
read or write multiple 128 ~yte sectors in sequence, and thus there is little
overhead involved in either operation when blocking and deblocking
records since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal form
(this file is included on your CP/M disk). Generally, the algorithms map
all CP/M sector read operations onto the host disk through an intermediate
buffer which is the size of the host disk sector. Throughout the program,
values and variables which relate to the CP/M sector involved in a seek
operation are prefixed by "sek", while those related to the host disk system

are prefixed by "hst." The equate statements beginning on line 29 of
Appendix G define the mapping between CP/M and the host system, and
must be changed if other than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization code
starting on line 57, while the SELDSK entry point must be augmented by
the code starting on line 65. Note that although the SELDSK entry point
computes and returns' the Disk Parameter Header address, it does not
physically select the host disk at this point (it is selected later at
READHST or WRITEHST). Further, SETTRK, SETSEC, and SETDMA
simply store the values, but do not take any other action at this point.
SECTRAN performs a trivial function of returning the physical sector
number.

The principal entry points are READ and WRITE, starting on lines 110
and 125, respectively. These subroutines take the place of your previous
READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST or
READHST, where all values have been prepared: hstdsk is the host disk
number, hsttrk is the host track number, and hstsec is the host sector
number (which may require translation to a physical sector number). You
must insert code at this point which performs the full host sector read or
write into, or out of, the buffer at hstbuf of length hstsiz. All other
mapping functions are performed by the algorithms.

This particular algorithm was tested using an 80 megabyte hard disk unit
which was originally configured for 128 byte sectors, producing
approximately 35 megabytes of formatted storage. When configured for
512 byte host sectors, usable storage increased to 57 megabytes, with a
corresponding 4000/0 improvement in overall response. In this situation,
there is no apparent overhead involved in deblocking sectors, with the

175

advantage that user programs still maintain the (less memory consuming)
128-byte sectors. This is primarily due, of course, to the information
provided by the BDOS which eliminates the necessity for pre-read
operations to take place.

176

APPENDIX A: THE MOS COLD START LOADER

MDS-800 Cold Start Loader for CP/M 2.0

Version 2.0 August, 1979

0000 =
ffff =
0000 =

.,
false equ
true equ
testing equ

o
not false
false

,
mon80 equ
rmon80 equ
base equ
rtype equ
rbyte equ
reset equ
;
dstat equ
ilow equ
ihigh equ
bsw equ
recal equ
readf equ
stack equ

testing
03400h

not testing
0000h

;tracks to read
;# sectors in bdos
;# on track 0
;# on track I

;base of dos load
;entry to dos for calls
;end of dos load
;cold start entry point
;warm start e~try point

;disk status port
;low iopb address
;high iopb address
;boot switch
;recalibrate selected drive
;disk read function
;use end of boot for stack

;intel monitor base
;restart location for mon80
;'base' used by controller
;result type
; result byte
;reset controller

;loaded here by hardware

base
base+l
base+2
0ffh
3h
4h
100h

bdose-cpmb
2
bdosl/128
25
bdoss-bdos0

0f800h
0ff0fh
078h
base+l
base+3
base+7

3000h

bias
806h+bias
l880h+bias
l600h+bias
boot+3

equ
equ
equ·
equ
eau

org

if
equ
endif
if
equ
endif
equ
equ
equ
equ
equ

;
bdosl
ntrks
bdoss
bdos0
bdosl

bias

bias

cpmb
bdos
bdose
boot
rboot

0000 =
000f{J
0806 =
1880 =
1600 =
l6~3

3000

1880 =
0it02 =
0031
0019 =
0018 =

f800
ff0f =
0078 =
0079
007b
007f =

0078 =
0079 =
007a =
00ff =
0003 =
0004 =
0100 =

3000 3l00~n

3003 db79
3005 db7b

3007 dbf f
111g S~1330

;
rstart:

lxi
clear
in
in

; check
coldstart:

in
aniJnz

sp,stack;in case of call to mon80
disk status

rtype
rbyte

if boot switch is off

bsw
@~~dstartswitch on?

177

300e d37f
clear the controller
out reset ;logic cleared

3010 0602
3612 214230

;
start:

mvi
lxi

b,ntrks ;nurnber of tracks to read
h, iopb0

3015 7d
3016 d379
3018 7c
3019' d37a
301b db78 wait0:

~91¥ ~~!~30

read
mov
out
mov
out
in
ani
JZ

first/next
a,l
ilow
a,h
ihigh
dstat
4 . tJwal til

track into cpmb

3022 db79
3024 e603
3026 fe02

check disk status
in rtype
ani lIb
cpi 2

3028 d20030

302b db7b

302d 17
302e dc0fff
3031 If
3032 e61e

3034 c20030

3037 110700
303a 19
303b 05
303c c21530

if
cnc
endif
if
jnc
endif

in
if not
ral
cc
rar
ani

if
cnz
endif
if
jnz
endif

lxi
dad
dcr
jnz

testing
rmon80 i90 to monitor if 11 or 10

not testing
rstart ;retry the load

rbyte ii/o complete, check status
ready, then go to mon80

rmon80 ;not ready bit set
;restore

lll10b ;overrun/addr err/seek/ere

testing
rmon80 ;go to monitor

not testing
rstart ;retry the load

d,iopbl ;length of iopb
d ;addressing next iopb
b ;count down tracks
start

303f c30016
jmp boot, print message, set-up jmps
jmp boot

parameter blocks

178

3042 80 iopb0: db 80h ; ioew, no update
3043 04 db readf ;read function
3044 19 db bdos0 ; If sectors to read trk 0
3045 00 db 0 ;track 0
3046 02 db 2 ;start with sector 2, trk 0
3047 0000 ow cprnb ;start at base of bdos
0007 = iopbl equ $-iopb0

;
3049 80 iopbl: c1b 80h
304a 04 db readf
304b 18 db bdos1 ;sectors to read on track 1
304c 01 db 1 ;track 1
304d 01 db 1 ;sector 1
304e 800c clw cprnb+bdos0*128 ;base of second rd
3050 end

179

APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS)

mds-800 i/o drivers for cp/m 2.0
(four drive single density version)

version 2.0 august r 1979

0014 = vers equ 20 :version 2.0

copyright (c) 1979
digital research
box 579 r pacific grove
california r 93950

4a00
3400 =
3c06 =
1600 =
002c =
0002 =
0004 =
0080 =
000a =

org
cpmb egu
bdos egu
cpml equ
nsects equ
offset equ
cdisk equ
buff equ
retry equ

4a00h :base of bios in 20k system
3400h :base of cpm ccp
3c06h :base of bdos in 20k system
$-cpmb :length (in bytes) of cpm system
cpml/128:number of sectors to load
2 :number of disk tracks used by cp
0004h :address of last logged disk
0080h :default buffer address
10 :max retries on disk i/o before e

following functions
cold start
warm start (save i/o byte)

and wboot are the same for mds)
console status
reg-a = 00 if no character ready
reg-a = ff if character ready
console character in (result in reg-a)
console character out (char in reg-c)
list out (char in reg-c)
punch out (char in reg-c)
paper ~ape reader in (result to reg-a)
move to track 00

conin
conout
list
punch
reader
home

perform
boot
wboot
(boot
const

(the following calls set-up the io parameter bloc
mds, which is used to perform subsequent reads an
seldsk select disk given by reg-c (0,lr2 •••)
settrk set track address (0 r ••• 76) for sub r/w
setsec set sector address (1, ••• r26)
setdma set subsequent dma address (initially 80h

read/write assume previous calls to set i/o parms
read read track/sector to preset dma address
write write track/sector from preset dma addres

4a00 c3b34a
4a03 c3c34a wboote:
4a06 c36l4b
4a09 c3644b
4a0c c36a4b

jump
jmp
jmp
jmp
jmp
jmp

vector for
boot
wboot
const
conin
conout

indiviual routines

180

4a0f c36d4b jmp list
4a12 c3724b jmp punch
4alS c37S4b jmp reader
4a18 c3784b jmp home
4alb c37d4b jmp seldsk
4ale c3a74b jmp settrk
4a2l c3ac4b jml? setsec
4a24 c3bb4b jmp setdma
4a27 c3c14b jmp read
4a2a c3ca4b jmp write
4a2d c3704b jmp listst :list status
4a30 c3b14b jmp sectran

maclib diskdef :load the disk definition library
disks 4 :four disks

4a33+= dpbase equ $:base of disk parameter blocks
4a33+824a00 dpe0: dw xlt0,0000h :translate table
4a37+000000 dw 0000h,0000h :scratch area
4a3b+6e4c73 dw d i r bu f , dpb0 :dir buff,parm block
4a3f+0d4dee dw csv0,alv0 :check, alloc vectors
4a43+824a00 dpel: dw xltl,0000h :translate table
4a47+000000 dw 0000h,000~h :scratch area
4a4b+6e4c73 dw di rbuf, dpbl :dir buff,parm block
4a4f+3c4dld dw csvl,alvl :check, alloc vectors
4aS3+824a00 dpe2: dw xlt2,0000h :translate table
4aS7+00~000 dw 0000h,0000h :scratch area
4aSb+6e4c73 dw di rbuf, dpb2 :dir buff,parm block
4a5f+6b4d4c dw csv2,alv2 :check, alloc vectors
4a63+824a00 dpe3: dw xlt3,0000h :translate table
4a67+0~0000 dw 0000h,0000h :scratch area
4a6b+6e4c73 dw di rbuf, dpb3 :dir buff,parm block
4a6f+9a4d7b dw csv3,alv3 :check, alloc vectors

diskdef 0,1,26,6,1024,243,64,64,offset
4a73+= dpb0 equ $:disk p'arm block
4a7 3+la0 0 dw 26 :sec per track
4a75+03 db 3 :block shift
4a76+07 db 7 :block mask
4a77+00 db 0 :extnt mask
4a78+f200 dw 242 :disk size-l
4a7a+3fIH~ dw 63 :directory max
4a7c+c0 db 192 :alloc0
4a7d+00 db 0 :allocl
4a7e+1000 dw 16 :check size
4a80+0200 dw 2 :offset
4a82+= xlt0 equ $:translate table
4a82+0l db 1
4a83+07 db 7
4a84+~d db 13
4a85+l3 db 19
4a86+l9 db 25
4a87+05 db 5
4a88+£ib db 11
4a89+ll db 17
4a8a+17 db 23
4a8b+03 db 3

181

;equivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table
end of assembly

;eguivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table

;eguivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table

9
15
21
2
8
14
20
26
6
12
18
24
4
10
16
22
1,0
dpb0
als0
css0
xlt0
2,0
dpb0
als0
css0
xlt0
3,0
dpb0
als0
css0
xlt0

occurs at

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
diskdef
egu
egu
egu
equ
diskdef
egu
egu
equ
egu
diskdef
egu
equ
egu
equ
endef

dpb3
als3
css3
xlt3

dpb2
als2
css2
xlt2

dpbl
alsl
cssl
xltl

4a73+=
001f+=
0010+=
4a82+=

4a73+=
001f+=
0010+=
4a82+=

4a73+=
001f+=
0010+=
4a82+=

4a8c+09
4a8d+0f
4a8e+15
4a8f+02
4a90+08
4a91+0e
4a92+14
4a93+1a
4a94+06
4a95+0c
4a96+12
4a97+18
4a98+04
4a99+0a
4a9a+10
4a9b+16

end of controller - independent code, the rema1n1
are tailored to the particular operating environm
be altered for any system which differs from the

the following code assumes the mds monitor exists
and uses the i/o subroutines within the monitor

; we also assume the mds system has four disk drive
00fd = revrt equ 0fdh ;interrupt revert port
00fc = intc equ 0fch ;interrupt mask port
00f3 = icon equ 0f3h ;interrupt control port
007e = inte egu 0lll$1110b;enable rst o (warm boot) ,rst 7

. mds monitor equates,
f800 mon80 equ 0f800h ;mds monitor
ff0f = rmon80 equ 0ff0fh ;restart mon80 (boot error)
f803 ci equ 0f803h ;console character to reg-a
f806 :;: ri equ 0f806h ;reader in to reg-a
f809 = co equ 0f809h ;console char from c to console 0
f80c po equ 0f80ch ;punch char from c to punch devic
f80f 10 equ 0f89fh ;list from c to list device
f8l2 csts equ of81.2h ;console status 09/ff to register

182

base+l ;iopb low address (output)
base+2 ;iopb high address (output)

0078 =
0078 =
0079 =
007b

0079 =
007a

;
base
dstat
rtype
rbyte
;
ilow
ihigh

disk
equ
equ
equ
equ

equ
equ

ports and
78h
base
base+l
base+3

commands
;base of disk command
;disk status (input)
;result type (input)
;result byte (input)

io ports

0004 =
0006 =
0003
0004 =
000d
000a =

;
readf
writf
reca1
iordy
cr
If

equ
equ
equ
equ
equ
equ

4h ;read function
6h ;write function
3h ;recalibrate drive
4h ;i/o finished mask
0dh ;carriage return
0ah ; line feed

s ignon: ; signon
db
db
db
db
db

4a9c
4a9f
4aal
4aad
4ab0

4ab3
4ab6
4ab9
4abc
4abd
4ac0

0d0a0a
3230
6b20.43f
322e30
0d0a00

310001
2l9c4a
cdd34b
af
320400
c30f4b

.,
boot: ;print

(note:
lxi
lxi
call
xra
sta
jmp

message: xxk cp/m vers y.y
cr,lf,lf
'20' ;sample memory size
'k cp/m vers '
vers/10+'0','.',vers mod 10+''''
cr,lf,0

signon message and go to ccp
mds boot initialized iobyte at 0003h)

sp,buff+80h
h, s ignon
prmsg ;print message
a ;clear accumulator
cdisk ;set initially to disk a
gocpm ;go to cp/m

.,
wboot:; loader on track 0, sector 1, which will be skippe

read cp/m from disk - assuming there is a 128 byt
start.

4ac3 318000 lxi sp,buff ;using dma - thus 80 thru ff ok f

4ac6 0e0a
4ac8 cS

4ac9 010034
4acc cdbb4b
4acf 0e00
4adl cd7d4b
4ad4 "e0"
4ad6 cda74b
4ad9 0e02
4adb cdac4b

wbootO:

mvi
push
;enter
lxi
call
mvi
call
mvi
call
mvi
call

c, retry
b

here on
b,cpmb
setdma
c,0
seldsk
c,0
settrk
c,2
setsec

;max retries

error retries
;set dma address to start of disk

;boot from drive 0

;start with track 0
;start reading sector 2

4ade cl
4adf 062c

read sectors, count nsects to zero
pop b i10-error count
mvi b,nsects

183

rdsec: : read next sector
4ael cS push b : save sector count
4ae2 cdc14b call read
4aeS c2494b jnz booterr :retry if errors occur
4ae8 2a6c4c lhld iod :increment dma address
4aeb 118000 lxi d,128 :sector size
4aee 19 dad d :incremented dma address in hI
4aef 44 mov b,h
4af0 4d mov c,l :ready for call to set dma
4afl cdbb4b call setdma
4af4 3a6b4c Ida ios :sector number just read
4af7 fela cpi 26 :read last sector?
4af9 da054b jc rdl

must be sector 26, zero and go to next track
4afc 3a6a4c Ida iot :get track to register a
4aff 3c inr a
4b00 4f mov c,a : ready for call
4b01 cda74b call settrk
4b04 af xra a :clear sector number
4b05 3c rdl: inr a :to next sector
4b06 4f mov c,a :ready for call
4b07 cdac4b call setsec
4b0a cl pop b :recall sector count
4b0b 05 dcr b :done?
4b0c c2el4a jnz rdsec

done with the load, reset default buffer address
gocpm: : (enter here from cold start boot)

enable rst0 and rst7
4b0f f3 di
4b10 3e12 mvi a,12h ;initialize command
4bl2 d3fd out revrt
4bl4 af xra a
4bl5 d3fc out intc :cleared
4b17 3e7e mvi a,inte : rst0 and rst7 bits on
4b19 d3fc out intc
4blb af xra a
4b1c d3f3 out icon :interrupt control

set default buffer address to 80h
4ble 018000 lxi b,buff
4b2l cdbb4b call setdma

reset monitor entry points
4b24 3ec3 mvi a,jmp
4b26 320000 sta 0
4b29 21034a lxi- h,wboote
4b2c 220100 sh1d 1 : jmp wboot at location 00
4b2f 320500 sta 5
4b32 21063c 1xi h,bdos
4b35 220600 sh1d 6 : jmp bdos at location 5
4b38 323800 sta 7*8 :jmp to mon80 (may have been chan
4b3b 2100f8 lxi h,mon80
4b3e 223900 sh1d 7*8+1

leave iobyte set

·184

previously selected disk was b, send parameter to
4b4l 3a0400 Ida cdisk :last logged disk number
4b44 4f mov c,a :send to ccp to log it in
4b45 fb ei
4b46 c30034 jmp cpmb

: error condition occurred, print message and retry
booterr:

4b49 cl pop b :recall counts
4b4a 0d dcr c
4b4b ca524b jz booter0

try again
4b4e c5 push b
4b4f c3c94a jmp wbootS

4b52 2l5b4b
4b55 cdd34b
4b58 c30fff

.,
booter0:

otherwise too many retries
lxi h,bootmsg
call prmsg
jmp rmon80 :mds hardware monitor

:
bootmsg:

4b5b 3f626f4 db '?boot',0

4b6l c3l2f8

4b64 cd03f8
4b67 e67f
4b69 c9

:
const:

con in:

:console status to reg-a
(exactly the' same as mds call)
jmp csts

:console character to reg-a
call ci
ani 7fh :remove parity bit
ret

·,conout: :console character from c to console out
4b6a c309f8 jmp co

4b6d c30ff8

4b70 af
4b7l c9

:
list:

·,
listst:

:list device out
(exactly the same as mds call)
jmp 10

:return list status
xra a
ret :always not ready

·,punch: :punch device out
(exactly the same as mds call)

4b72 c30cf8 jmp po
·,
reader: :reader character in to reg-a

(exactly the same as mds call)
4b75 c306f8 jmp ri

:
home: :move to home position

185

4b78 0e00
4b7a c3a74b

treat as track 0B seek
mvi c,0
jmp settrk

:save the function
:io function

4b7d 210000
4b8B 79
4b81 feB4
4b83 dB

4b84 e6B2
4b86 32664c
4b89 79
4b8a e601
4b8c b7
4b8d ca924b
4b9B 3e3B

4b92 47
4b93 21684c
4b96 7e
4b97 e6cf
4b99 bB
4b9a 77
tB~8 ~~00
4bge 29
4b9£ 29
4baB 29
4bal 29
4ba2 11334a
4baS 19
4ba6 c9

·,seldsk: ;select
lxi
mov
cpi
rnc

ani
sta
mov
ani
ora
jz
mvi

setdrive:
mov
lxi
mov
ani
ora
mov
m~I
dad
dad
dad
dad
lxi
dad
ret

disk given by register c
h,B0BBh :return 0BBB if error
a,c
ndisks :too large?

;leave hI = B0B0

l0b :B0 00 for drive 0,1 and 10 10 fo
dbank ito select drive bank
a,c :B0, 01, 10, 11
Ib ;mds has 0,1 at 78, 2,3 at 88
a ;result B0?
setdr ive
a,BBl1000Bb ;selects drive 1 in bank

b,a
h,iof
a,m
1100l11lb ;mask out disk number
b ;mask in new disk number
m,a ;save it in iopb
~:i ;hl=disk number
h ; *2
h ; *4
h ; *8
h ; *16
d,dpbase
d ;hl=disk'header table address

·,settrk: ;set track address given by c
4ba7 216a4c lxi h,iot
4baa 71 mov ro,c
4bab c9 ret

;
setsec: ;set sector number given by c

4bac 216b4c lxi h,ios
4baf 71 mov ro,c
4bb0 c9 ret

sectran:
;translate sector bc using table at de

4bbl 0600 mvi b,0 ;double precision sector number i
4bb3 eb xchg ;translate table address to hI
4bb4 09 dad b :translate(sector) address
4bbS 7e mov a,m ;transleted sector number to a
4bb6 326b4c sta ios
tgB~ ~~ mo! 1,a ; return sector number in 1re

·,setdma: :set dma address given by regs b,c

186

4bbb 69 mov l,c
4bbc 60 mov h,b
4bbd 226c4c shld iod
4bc0 c9 ret.,

read: : read next disk record (assuming disk/trk/sec/dma
4bcl 0e04 mvi c, readf :set to read function
4bc3 cde04b call setfunc
4bc6 cdf04b call waitio :perform read function
4bc9 c9 ret :may have error set in reg-a

.,
write: :disk write function

4bca 0e06 mvi c,writf
4bcc cde04b call setfunc :set to write function
4bcf cdf04b call waitio
4bd2 c9 ret :may have error set

utility subroutines
prmsg: : pr int message at h,l to "4bd3 7e mov a,m

4bd4 b7 ora a : zero?
4bdS c8 rz

more to print
4bd6 eS push h
4bd7 4f mov c,a
4bd8 cd6a4b call conout
4bdb el pop h
4bdc 23 inx h
4bdd c3d34b jmp prmsg

4be0/ 21684c
4be3 7e
4be4 e6f8
4be6 bl
4be7 77

4be8 e620
4bea 216b4c
4bed b6
4bee 77
4bef c9

:
setfunc:

set function for next i/o (command in reg-c)
lxi h,iof :io function address
mov a,m :get it to accumulator for maskin
ani 11111000b :remove previous command
ora c : set to new command
mov m,a :replaced in iopb
the mds-800 controller req's disk bank bit in sec
mask the bit from the current i/o function
ani 00100000b :mask the disk select bit
lxi h,ios Jaddress the sector selec
ora m :select proper disk bank
mov m,a :set disk select bit on/o
ret

start the i/o function and wait for completion
call intype :in rtype
call inbyte :clears the controller

4bf0 0e0a

4bf2 cd3f4c
4bfS cd4c4c

.,
waitio:

rewai t:
mvi c,retry :max retries before perm error

4bf8 3a664c Ida dbank

187

: set bank flags

4bfb b7
4bfc 3e67
4bfe 064c
4c00 c20b4c
4c03 d379
4c05 78
4c06 d37a
4c08 c3l04c

ora
mvi
mvi
jnz
out
mov
out
jmp

a
a,iopb
b,iopb
iodrl
ilow
a,b
ihigh
wait0

~zero if drive 0,1 and nz
and 0ffh ~low address for iopb
shr 8 ~high address for iopb
~drive bank I?

~low address to controlle

~high address
~to wait for complete

4c0b d389
4c0d 78
4c0e d38a

~

iodrl: ~drive bank 1
out ilow+10h
mov a,b
out ihigh+10h

~88 for drive bank 10

.,
4c10 cd594c wait0:
4c13 e604
4c15 ca104c

call
ani
jz

instat
iordy
wait0

~wait for completion
~ready?

4c18 cd3f4c

4clb fe02
4cld ea324c

4c20 b7
4c2l c2384c

check io completion ok
call intype ~must be io complete (00)
00 unlinked i/o complete, 01 linked i/o comple
10 disk status changed 11 (not used)
cpi l0b ~ready status change?
jz wready

must be 00 in the accumulator
ora a
jnz werror ~some other condition, re

4c24 cd4c4c
4e27 17
4c28 da324c
4c2b If
4c2e e6fe
4c2e c2384c

check
call
ral
jc
rar
ani
jnz

i/o error bits
inbyte

wready

llllll10b
werror

~unit not ready

~any other errors?

read or write is ok, accumulator contains zero
4c3l c9 ret

~

wready: ~not ready, treat as error for now
4c32 cd4c4c call inbyte ~clear result byte
4c35 c3384c jmp trycount

werror: ~return hardware malfunction (ere, track, seek, e
the mds controller has returned a bit in each pos
of the accumulator, corresponding to the conditio
o - deleted data (accepted as ok above)
1 - crc error
2 - seek error
3 - address error (hardware malfunction)
4 - data over/under flow (hardware malfunct
5 - write protect (treated as not ready)
6 - write error (hardware malfunction)
7 - not ready

188

(accumulator bits are numbered 7 6 5 4 3 2 I 0)

it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable. in any case, the not ready conditio

; treated as a separate condition for later improve
trycount:

register c contains retry count, decrement 'til z
4c38 0d dcr c
4c39 c2f24b jnz rewait ;for another try

cannot recover from error
4c3c 3e01 mvi a,l ;error code
4c3e c9 ret

inbyte, instat read drive bank 00 or 10
dbank
a
intypl ;skip to bank 10
rtype

;
4c3f 3a664c intype:
4c42 b7
4c43 c2494c
4c46 db79
4c48 c9
4c49 db89 intypl:
4c4b c9 .,
4c4c 3a664c inbyte:
4c4f b7
4c50 c2564c
4c53 db7b
4c55 c9
4c56 db8b inbytl:
4c58 c9 .,
4c59 3a664c instat:
4c5c b7
4c5d c2634c
4c60 db78
4c62 c9
4c63 db88 instal:
4c65 c9

intype,
Ida
ora
jnz
in
ret
in
ret

Ida
ora
jnz
in
ret
in
ret

Ida
ora
jnz
in
ret
in
ret

rtype+10h

dbank
a
inbytl
rbyte

rbyte+10h

dbank
a
instal
dstat

dstat+10h

;78 for 0,1 88 for 2,3

; data areas (must be in ram)
4c66 00 dbank: db 0 ;disk bank 00 if drive 0,1

; 10 if drive 2,3
iopb: ;io parameter block

4c67 80 db 80h ;normal i/o operation
4c68 04 iof: db readf ;io function, initial read
4c69 01 ion: db I ;number of sectors to read
4c6a 02 iot: db offset ;track number
4c6b 01 ios: db 1 ;sector number
4c6c 8000 iod: dw buff ;io address

define ram areas for bdos operation

189

4c6e+=
4c6e+
4cee+
4d0d+
4d1d+
4d3c+
4d4c+
4d6b+
4d7b+
4d9a+
4daa+=
013c+=
4daa

begdat
dirbuf:
alv0:
csv0:
a1v1:
csv1:
alv2:
csv2:
a1v3:
csv3:
enddat
da tsiz

endef
equ
ds
ds
ds
ds
ds
ds
ds
ds
ds
equ
equ
end

$
128 ;directory access buffer
31
16
31
1~
31
16
31
16
$
$-begdat

190

APPENDIX C: A SKELETAL CBlOS

skeletal cbios for first level of cp/m 2.0 altera

0014 = msize equ 20 :cp/m version memory size in kilo

"bias" is address offset from 3400h for memory sy
than 16k (referred to as "b" throughout the text)

0000 =
340l' =
3cl'6 =
4al'l' =
0l'04 ::
0l'l'3 =

4al'0
002c =

.,
bias equ
ccp equ
bdos equ
bios equ
cdisk equ
iobyte equ

org
nsects equ

(msize-20) *1024
3400h+bias :base of ccp
ccp+806h :base of bdos
ccp+l600h :base of bios
0004h :current disk number 0=a, ••• ,15=p
0003h :intel i/o byte

bios :origin of this program
($-ccp)/128 :warm start sector count

4a00 c39c4a
4a03 c3a64a wboote:
4a06 c3ll4b
4al'9 c3244b
4a0c c3374b
4a0f c3494b
4a12 c34d4b
4a15 c34f4b
4a18 c3544b
4alb c35a4b
4ale c37d4b
4a2l c3924b
4a24 c3ad4b
4a27 c3c34b
4a2a c3d64b
4a2d c34b4b
4a3l' c3a74b

jump
jrnp
jrnp
jrnp
jmp
jmp
jmp
jrnp
jrnp
jmp
jmp
jmp
jmp
jrnp
jmp
jrnp
jrnp
jrnp

vector for
boot
wboot
const
conin
conout
list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst
sectran

individual subroutines
:cold start
:warm start
:console status
:console character in
:console character out
:list character out
:punch character out
:reader character out
:move head to home positi
:select disk
:set track number
:set sector number
:set dma address
:read disk
:write disk
:return list status
:sector translate

.,
4a33 734a00 dpbase:
4a37 00l'000
4a3b f04c8d
4a3f ec4d70

4a43 734a00
4a47 000000
4a4b f04c8d
4a4f fc4d8f

4a53 734a00
4a57 000000
4a5b f04c8d
4a5f 0c4eae

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 00
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk00,al100
disk parameter header for disk 01
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk0l,al101
disk parameter header for disk 02
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk02,al102

191

4a63 734a0fJ
4a67 000000
4a6b f04c8d
4a6f 1c4ecd

.,
tii~ !~9~9g trans:
4a7b 170309
4a7f 150208
4a83 141a06
4a87 121804
4a8b 1016

parameter header
trans,0000h
0000h,0000h
dirbf ,dpb1k
chk03,al103

for disk 03

~:~:~:3
9,10,11,12
13,14,15,16
17,18,19,20
21,22,23,24
25,26

:sectors:sectors
;sectors
;sectors
;sectors
;sectors
;sectors

block, common to all disks
;sectors per track
;b10ck shift factor
;b10ck mask
;nu11 mask
;disk size-1
;directory max
;a110c 0
;alloc 1
;check size
;track offset

translate vector

25~5;il;~7
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22

parameter
26
3
7
o
242
63
192

"16
2

;disk
dw
db
db
db
dw
dw
db
db
dw
ciw

disk
dw
dw
dw
dw

sector

88
db
db
db
db
db

;
dpb1k:

1a00
03
07
fJ0
f200
3f00
c0
00
1000
0200

4a8d
4a8f
4a90
4a91
4a92
4a94
4a96
4a97
4a98
4a9a

4a9c af
4a9d 320300
4aa0 320400
4aa3 c3ef4a

4aa6 318000
4aa9 0e00
4aab cd5a4b
4aae cd544b

.,
boot:

;
wboot:

end of fixed tables

individual subroutines to perform each function
:simp1est case is to just perform parameter initi
xra a ;zero in the accum
sta iobyte ;c1ear the iobyte
sta cdisk :se1ect disk zero
jmp gocpm ;initialize and go to cp/

; simplest case is to read the disk until all sect
1xi sp,.80h ; use space below buffer f
mvi c,0 ;se1ect disk 0
call se1dsk
call home ;go to track 00

4ab1 062c
4ab3 0e00
4ab5 1602

4ab7 210034

4aba c5
4abb d5
4abc e5
4abd 4a
4abe cd924b
4ac1 c1

10ad1:

mvi b,nsects :b counts i of sectors to
mvi c,0 :c has the current track
mvi d,2 ;d has the next sector to
note that we begin by reading track 0, sector 2 s
contains the cold start loader, which is skipped
lxi h,ccp ;base of cp/m (initial 10
:load one more sector
push b :save sector count, current track
push d :save next sector to read
push h :save dma address
mov c,d ;get sector address to register c
call setsec ;set sector address from register
pop b :recall dma address to b,c

192

4ac2 cS
4ac3 cdad4b

push
call

b 1replace on stack for later recal
setdma 1set dma address from b,c

1any errors?
1retry the entire boot if an erro

4ac6 cdc34b
4ac9 fe00
4acb c2a64a

drive set to 0, track set, sector set, dma addres
call read
cpi 00h
jnz wboot

4ace el
4acf 118000
4ad2 19
4ad3 dl
4ad4 cl
4ad5 05
4ad6 caef4a

no error, move
pop h
lxi d,128
dad d
pop d
pop b
dcr b
jz gocpm

to next sector
1recall dma address
1dma=dma+128
1new dma address is in h,l
1recall sector address
:recall number of sectors remaini
:sectors=sectors-l
:transfer to cp/m if all have bee

4ad9 14
4ada 7a
4adb felb
4add daba4a

4ae0 1601
4ae2 0c

more sectors remain to load, check for track chan
inr d
mov a,d :sector=27?, if so, change tracks
cpi 27
jc loadl 1carry generated if sector<27

end of current track, go to next track
mvi d,l 1begin with first sector of next
inr c :track=track+l

end of load operation, set parameters and go to c

4ae3 c5
4a~4 dS
4ae5 eS
4ae6 cd7d4b
4ae9 el
4aea dl
4aeb cl
4aec c3ba4a

4aef 3ec3
4afl 320000
4af4 2l034a
4af7 220100

gocpm:

save
push
push
push
call
pop
pop
pop
jmp

mvi
sta
lxi
shld

register state, and change tracks
b
d
h
settrk :track address set from register
h
d
b
loadl 1for another sector

a,0c3h :c3 is a jmp instruction
" 1for jmp to wboot
h,wboote :wboot entry point
I 1set address field for jmp at 0

4afa 320500
4afd 2l063c
4b00 220600

4b03 018000
4b06 cdad4b

4b09 fb
4b0a 3a0400
4b0d 4f
4b0e c30034

sta
lxi
shld

lxi
call

ei
Ida
mov
jmp

5
h,bdos
6

b,80h
setdma

cdisk
c,a
ccp

193

1for jmp to bdos
:bdos entry point
:address field of jump at 5 to bd

1default dma address is 80h

:enable the interrupt system
1get current disk number
:send to the ccp
19o to cp/m for further process in

4bll
4b2l 3e00
4b23 c9

4b24
4b34 e67f
4b36 c9

4b37 79
4b38
4b48 c9

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with s
to insert your own code

·,const: ~console status, return 0ffh if character ready,
ds l0h ~space for status subroutine
mvi a,00h
ret

~

conin: ~console character into register a
ds l0h ~space for input routine
ani 7fh ~strip parity bit
ret

·,conout: ~console character output from register c
mov arC :get to accumulator
ds 10h ~space for output routine
ret

4b49 79
4b4a c9

·,list: ~list character from register c
mov a,c :character to register a
ret :null subroutine

4b4b af
4b4c c9

4b4d 79
4b4e c9

4b4f 3ela
4bSl e67f
4bS3 c9

·,listst: :return list status (0 if not ready, I if ready)
xra a :0 is always ok to return
ret

·,punch: ~punch character from register c
mov arC ;character to register a
ret :null subroutine

·,reader: :read character into register a from reader devic
mvi a,lah ~enter end of file for now (repla
ani 7fh ~remember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

:move to the track 00 position of current drive
translate this call into a settrk call with param
mvi c,0 ;select track 0
call settrk
ret :we will move to 00 on first read

4bS4 0e00
4bS6 cd7d4b
4bS9 c9

4bSa 210000
4b5d 79
4bSe 32ef4c
4b6l fe04

~

home:

:
seldsk: :select

lxi
mov
sta
cpi

disk given by register ~

h,0000h ;error return code
arC
diskno
4 ;must be between 0 and 3

194

4b63 d0 rnc ;no carry if 4,5, •••
disk number is in the proper range

4b64 ds 10 ;space for disk select
compute proper disk parameter header address

4b6e 3aef4c Ida diskno
4b7l 6f mov l,a ;l=disk number 0,1,2,3
4b72 2600 mvi h,0 ; high order zero
4b74 29 dad h ;*2
4b75 29 dad h ;*4
4b76 29 dad h ; *8
4b77 29 dad h ;*16 (size of each header)
4b78 l1334a lxi d,dpbase
4b7b 19 dad d ;h1=.dpbase(diskno*16)
4b7c c9 ret

;
settrk: ;set track given by register c

4b7d 79 mov a,c
4b7e 32e94c sta track
4b8l ds l0h ;space for track select
4b91 c9 ret

4bc3
4bd3 c3e64b

4b92 79
4b93 32eb4c
4b96
4ba6 c9

4bad 69
4bae 60
4baf 22ed4c
4bb2
4bc2 c9

·,sectran: .
;trans1ate
; translate
xchg
dad b
mov I,m
mvi h,0
ret

using thethe sector given by bc
table given by de

;h1=.trans
;hl=.trans(sector)
;1 = trans(sector)
;hl= trans(sector)
;with value in hI

dma address given by registers band c
l,c ;low order address
h,b ;high order ad~ress

dmaad ;save the address
l0h ;space for setting the dma addres

sector given by register c
a,c
sector
l0h ;space for sector select

;set
mov
mov
shld
as
ret

;perform read operation (usually this is similar
so we will allow space to set up read command, th
common code in write)
ds l0h ;set up read command
jmp waitio ;to perform the actual i/o

·,read:

;
setdma:

·,setsec: ; set
mov
sta
ds
ret

eb
09
6e
2600
c9

4ba7
4ba8
4ba9
4baa
4bac

4bd6

;
write: ;perform a write operation

ds l0h ;set up write comman~

;
waitio: ;enter here from read and write to perform the ac

operation. return a 00h in register a if the ope
properly, and 0lh if an error occurs during the r

195

4be6
4ce6 3e91
4ce8 c9

in this case,

ds 256
mvi a,l
ret

we have saved the disk number in 'd
the track number in 'track' (9-76
the sector number in 'sector' (1­
the dma address in 'dmaad' (9-655
,space reserved for i/o drivers
,error condition
,replaced when filled-in

the remainder of the cbios is reserved uninitia1i
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between I'begdat" and "enddatll

)..,
4ce9 track: ds 2 ,two bytes for expansion
4ceb sector': ds 2 ,two bytes for expansion
4ced dmaad: ds 2 ,direct memory address
4cef diskno: ds 1 ,disk number 0-15

. scratch ram area for bdos use,
4cf9 ;:;: begdat equ $,beginning of data area
4cf9 dirbf: ds 128 ,scratch directory area
4d79 al199: ds 31 ,allocation vector 9
4d8f al191: ds 31 ,allocation vector 1
4dae a1l92: ds 31 ,allocation vector 2
4dcd al193: ds 31 ,allocation vector 3
4dec chk99: ds 16 ,check vector 9
4dfc chk91 : ds 16 ,check vector 1
4e9c chk92: ds 16 ,check vector 2
4e1c chk93: ds 16 ,check vector 3,
4e2c a enddat equ $,end of data area
913c ;:;: datsiz equ $-begdat,size of data area
4e2c end

196

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

combined getsys and putsys programs from Sec 4.
Start the programs at the base of the TPA

0100

0014 = msize

org

equ

0100h

20 size of cp/m in Kbytes

: ~bias" is the amount to add to addresses for> 20k
(referred to as "b U throughout the text)

0000 =
3400 =
3c00 =
4a00 =

bias
ccp
bdos
bios

equ
equ
equ
equ

(msize-20) *1024
3400h+bias
ccp+0800h
ccp+1600h

getsys programs tracks 0 and 1 to memory at
3880h + bias

register
a
b
c
d,e
h,l
sp

usage
(scratch register)
track count (0 ••• 76)
sector count (1 ••• 26)
(scratch register pair)
load address
set to stack address

gstart:
0180 318033 1xi
0103 218033 1xi
0106 0600 mvi

rd$trk:
0108 0e01 mvi

rd$sec:
010a cd0003 call
010d 118000 1xi
0110 19 dad
0111 0c inr
0112 79 mov
0113 fe1b cpi
0115 da0a01 jc

sp,ccp-0080h
h,ccp-0080h
b,.,

c,l

read$sec
d,128
d
c
a,c
27
rdsec

start of getsys
convenient p1ac
set initial loa
start with trac
read next track
each track star

get the next se
offset by one s

(h1=h1+128)
next sector
fetch sector nu

and see if 1a
<, do one more

arrive here at end of track, move to next track

0118 04
0119 78
011a fe02
011c daB801

inr
mov
cpi
jc

b
a,b
2
rd$trk

track = track+1
check for last
track = 2 ?
<, do another

011£ fb
0120 76

arrive here at end of load, halt for lack of anything b

ei
hIt

197

putsys program, places memory image starting at
3880h + bias back to tracks 0 and 1
start this program at the next page boundary

0200 org ($+0100h) and 0f~00h

put$sys:
0200 318033 1xi sp,ccp-0080h convenient p1ac
0203 218033 1xi h,ccp-0080h start of dump
0206 0600 mvi b,B start with trac

wr$trk:
0208 Be01 mvi c,l start with sect

wr$sec:
02Ba cd0BB4 call write$sec write one secto
020d 118BBB 1xi d,128 length of each
0210 19 dad d <h1>=<h1> + 128
0211 0c inr c <c> = <c> + 1
B212 79 mov a,c see if
0213 fe1b cpi 27 past end of t
B215 da0aB2 jc wr$sec no, do another

arrive here at end of track, move to next track

0218 B4
0219 78
021a fe02
021c daB802

inr
mov
cpi
jc

b
a,b
2
wr$trk'

track = track+1
see if

last track
no, do another

021f fb
0220 76

done with putsys, halt for lack of anything bette

ei
h1t

user supplied subroutines for sector read and write

move to next page boundary

B300 org

read$sec:

($+0100h) and 0ff00h

read the next sector
track in ,
sector in <c>
dmaaddr in <h1>

0300 c5
0301 e5

push
push

b
h

0302
user defined read operation goes here

ds 64

0342 e1
0343 c1

pop
pop

h
b

198

0344 c9 ret

0400 org ($+0100h) and 0ff00h another page bo

write$sec:

: same parameters as read$sec

0400 c5 push b
0401 e5 push h

user defined write operation goes here
0402 ds 64

0442 e1 pop h
0443 c1 pop b
0444 c9 ret

end of getsys/putsys program

0445 end

199

APPENDIX E: A SKELETAL COLD START LOADER

this is a sample cold start loader which, when modified
resides on track 00, sector 01 (the first sector on the
diskette). we assume that the controller has loaded
this sector into memory upon system start-up (this pro­
gram can be keyed-in, or can exist in read/only memory
beyond the address space of the cp/m version you are
running). the cold start loader brings the cp/m system
into memory at IIloadp" (3400h + "bias"). in a 20k
memory system, the value of "bias" is 0000h, with large
values for increased memory sizes (see section 2). afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
"bios" + "bias." the cold start loader is not used un­
til the system is ~owered U9 again, as long as the bios
is not overwritten. the origin is assumed at 0000h, an
must be changed if the controller brings the cold start
loader into another area, or if a read/only memory area
is used.

0000 org 0 base of ram in cp/m

0014 = msize equ 20 min mem size in kbytes

0000 = bias equ (msize-20) *1024 offset from 20k system
3400 = ccp equ 3400h+bias base of the ccp
4a00 = bios equ ccp+l600h base of the bios
0300 = biosl equ 0300h length of the bios
4a00 = boot equ bios
1900 = size equ bios+biosl-ccp size of cp/m system
0032 = sects equ size/128 # of sectors to load

begin the load operation

0000 010200
0003 1632
0005 210034

cold:
lxi
mvi
lxi

b,2
d,sects
h,ccp

b=0, c=sector 2
d=i sectors to load
base transfer address

lsect: ; load the next sector

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,
into the address given by <hI>

branch to location Hcold" if a read error occurs

200

** user supplied read o~eration goes here•••
*

"008 c36b"0
"0"b

jrn-p
ds

past$patch
6"h

: remove this when -patche

0"6b 15
""6c ca"04a

past$patch:
; go to next sector if load is incomplete

dcr d : sects=sects-l
jz boot : head for the bios

more sectors to load

we aren1t using a stack, so use <sp> as scratch registe
to hold the load address increment

0"6f 318""" 1xi sp,128 128 bytes per sector
0072 39 dad sp <hI> = <hI> + 128

0"73 "c inr c sector = sector + 1
""74 79 mov a,c
0075 fe1b cpi 27 last sector of track?
fJ077 da0800 jc 1sect no, go read another

end of track, increment to next track

0"7a 0e0l mvi c,l sector = 1
007c 04 inr b track = track + 1
007d c30800 jrnp lsect for another group
0080 end of boot loader

201

APPENDIX F: CP/M DISK DEFINITION LIBRARY

the value of "begdat" at the end of assembly defines t

CP/M logic~l disk drives are defined using the
macros given below, where the sequence of calls
is:

for convenience, the form
dn,dm

defines disk dn as having the same characteristics as
a previously defined disk dm.

disks a
diskdef oarameter-list-0
diskdef ~arameter-list-l

diskdef parameter-list-n
endef

drive CP/M system is defined by
4
0,1.26,6.1024,243,64,64,2
o
3
dsk+l
%dsk,S

is the disk number 0,1, ••••n-l
is tile first sector number (usually 0 or 1)
is t~e last sector number on a track
is o~tional Uskew factor~ for sector translate
is tne data block size (1024,2048, ••• ,16384)
is tn~ disk size in bls increments (word)
is tn£ number of directory elements (word)
is the number of dir elements to checksum
is the number of tracks to skip (word)
is an optional C which forces 16K/directory en

a standard four
disks
diskdef

dsk set
rept

dsk set
diskdef
endm
endei

where
dn
fsc
Isc
skf
bls
dks
dir
cks
ofs
[0]

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of the ith drive (i;~.l, ••• ,n-l)

each parameter-list-i takes the form
dn,foc,lsc,[skfl,bls.6ks.dir.cks.ofs,[0l

CP/M 2.0 disk re-definition library

Copyright (c) 1979
Digital R~bearch

Box 579
Pacific Grove, CA
93950

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
31a:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
58:
51:
52:
53:

.202

·,ddw

;
gcd

dsknxt

·,ddb

;disk parm block

comment

comment

header list
;translate table
;scratch area
;dir buff,parm olock
;check, alloc vectors

dn
~

dn
a s in.;;le disk

xlt&dn,0000h
0000h,0000h
dirbuf,dpb&dn
csv&dn,alv&dn

macro data, comment
define a db statement
db data
endm

macro
equ
endm

macro data, comment
define a dw statement
dw data
endm

macro nd
define nd disks
set nd ;;for later reference
equ $;base of disk parameter blocks
generate the nd elements
set l'J
rept nd
dskhdr %dsknxt.
set dsknxc+l
endm
endm

macro m,n
greatest common divisor of m,n
produces value 9cdn as result
(used in sector translate table generation)
set m ;;variable for m
set n ;;variable for n
set 0 ;;variable for r
rept 65535
set qcdm/gcdn
set gcdm - gcdx*gcdn
if gcdr = 0
exitm
endif

macro
define
dw
dw
dw
dw
endm

beginning of the uninitia1ize ram area above the bios,
while the valve of "enddat" defines the next location
following the end of the data area. the size of this
area is given by the value of "datsiz" at the end of t
assembly. note that the allocation vector will be qui
large if a large disk size is defined with a small blo
size.

·., ,
gcdm
gcdn
gcdr

gcdx
gcdr

·,dpbhdr
dpb&dn

·., ,
dsknxt

;
disks·., ,
ndisks
cipbase

·,dskhdr
·., ,
dpe&dn:

54:
55:
56:
57:
58:
59:
6l'J:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
cl3:
84:
85:
86:
8"7: ;;
88:
89:
90:
91:
92: ;;
93:
94:
95:
96:
97: ;;
98: ;;
99:

190:
101:
102:
193:
104:
195:
196:
107:
108:

203

extmsk

extmsk

css&dn

als&dn

s~me as previous fsc
~~~uivalent parameters
~same allocation vector size
~same checksum vector size
~same translate table

lsc-(fsc) ~~sectors 0 ••• secmax
secmax+l~~number of sectors
(dks)/8 ~~size of allocation vector
«dks) mod 0) ne 0
als&dn+l

gcdn
gcdr

set
set
endm
endm

macro dn,fsc,lsc,skf,b1s,dks,dir,cks,ofs,k16
generate the set statements for later tables
if nul Isc
current disk dn
equ dpb&fsc
equ als&fsc
equ css&fsc
equ xlt&fsc
else
set
set
set
if
set
endif
set (cks)/4 ~~number of checksum elements
generate the block shift value
set bls/128 ~~number of sectors/block
set 0 ~~counts right 0 1 s in blkval
set 0 ~~~ills with lis from right
reot 16 ~~~nce for each bit position
if· blkval=1 .
exitm
endif
otherwise, high ord~r 1 not found yet
se"t blk sh f+1
set (blkmsk shl 1) or 1
set blkval/2
endm
generate the extent mask byte
set bls/1024 ~~number of kilobytes/block
set ~ ;~fill from right with lis
rept 16
if blkval=l
exitm
endif
otherwise more to shift
set (extmsk shl 1) or 1
set blkval/2
endm
may be double byte lliocation
if (dks) > 256
set (extmsk shr 1)
endif
may be optional [0) in last position
if not nul k16
set k16
endif
now generate directory reservation bit vector
set dir ~~# remaining to process

i ;
dirrem

; ;
blkval
blkshf
blkmsk

·., ,
extmsk
olkva1

·., ,
blkshf
blkmsk
blkval

·,diskdef

·., ,
blkval
extmsk

gcdm
gcdn

secmax
sectors
a1s&dn

·., ,
dob&dn
ais&dn
css&dn
xlt&dn

109:
110:
Ill:
112:
113:
114:
115: ~~

116:
117:
lIB:
119:
120:
121:
122:
123:
124:
125:
126:
127:
12d:
129 :
1310:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154: ;~

155:
156:
157:
158: "
159:
160:
161:
162:
163:

..204



nelts

nxtsec

nxtsec

dirrem

;no xlate table

;no xlate table

;;nuffiber of entries per block
;;fi11 with l's on each loop

= 0

ne1ts-1
ne1ts = ta

nxtsec+ (skf)
nxtsec >= sectors
nxtsec-sectors

%nxtsec+(fsc}

skf
e

o

b1s/32
o
16
dirrem=0

set
set
rept
if
exitm
endif
not complete, iterate once again
shift right and add 1 high order bit
set (dirb1k shr ~) or 8000h
if dirrem > dirbks
set dirrem-dirbks
else
set
endif
endm
d~bhdr dn ;;gauerate equ $
ddw %sectors,<;sec per track>
ddb %blkshf,<;blcck shift>
ddb %b1kmsk,<;b1cck mask>
ddb %extmsk,<;e~tntmask>
ddw %(dks)-l,<;uisk size-I>
udw %(dir)-l,<;airectory max>
adb %dirblk shr 8,<;a110c~>

ddb %dirblk anu 0ffh,<;a1loc1>
ddw %(cks)/4,<;check size>
ddw %ofs,<;offset>
generate the translate table, if requested
if nul skf
equ ~

else
if
equ
else
generate the translate taole
set 0 ;;l1ext sector to fill
set ~ ;;meves by one on overflow
gcd %sectors,skf
gcdn = gcd(sectors,skew)
set sectors/gcdn
ne1tst is number of elements to generate
before we overlap orevious elements
set ne1tst ;;~cunter

equ $ ;trans1ate table
rept sectors ;;once for each sector
if sectors < 256
ddb %nxtsec+(fsc)
else
ddw
endif
set
if
set
endif
set
if

xlt&dn

.., ,
ne1ts
x1t&dn

x1t&dn

.., ,
nxtsec
nxtbas

dirrem

.., ,
dirb1k

dirbks
dirb1k

164:
165:
166:
167:
168:
169:
17~: ;;
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
19l:
lS2:
183:
lS4:
165:
1t36:
187:
lsa:
189:
19';: ;;
1~1:

192:
193:
194:
1!:15:
196:
197:
198:
199:
20f.i:
201: ;;
202: ne1tst
2~3: ;;
204:
205:
206:
207:
2~8:

209:
210:
211:
212:
213:
214:
215:
216:
217:
218:

205



nxtbas+.1
nxtbas
neltst

::end of nul fac test
i:end of nul bls test

Ib,dn,va1
lb&dn,%val&dn

lab,space
space

macro
aefds
endm

macro
as
endm

macro
generate the nec~ssary ram data areas
equ $
ds 12& :directory access buffer
set 0
rept ndisks :ioncc for eacn disk
las alv,%dsknxt,als
lds csv,%dsknxt,css
set dsknxt+l
endm
equ $
equ $-begdat
db 0 at this point forces hex record
endm

nxtbas· . set
nxtsec set
nelts set

endif
endm
endif
endif·
endm

·,
defas
lab:

·., ,
begdat
dirouf:
dsknxt

dsknxt

·,endet

:
Ids

enddat
datsiz

219 :
220:
221:
222:
223:
224:
225:
226:
227:
228:
229 :
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
24B:
241:
242:
243:
244:
245:
246:
247:
24t$: : i
249:

206



APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS.

0*****************************************************,
0* *,
:* Sector Deblocking Algorithms for CP/M 2.0 *
.* *,
.*****************************************************,

.,
;*****************************************************
.* *,
;* The aDOS entry points given below show the *
:* code which is relevant to deblocking only. *
.* *,
.*****************************************************,

.,

.*****************************************************,

.* *,
;* BOOS constants on entry to write *
.* *,
.*****************************************************,
wrall equ 0 ;write to allocated
wrdir equ 1 ;write to directory
wrual equ 2 ;write to unallocated

*

;CP/M allocation size
;host disk sector size
;host disk sectors/trk
;CP/M sects/host buff
;CP/M sectors/track
;sector mask
;compute sector mask
;log2(hstblk)

2048
512
20
hstsiz/128
hstblk * hstspt
hstblk-l
hstblk
@x

CP/M to host disk constants

equ
equ
equ
equ
equ
equ
smask
equ

utility macro to compute sector mask
macro hblk
compute log2(hblk), return @x as result
(2 ** @x = hblk on return)
set hblk
set 0
count right shifts of @y until = 1
rept 8
if @y = 1
exitrn
endif
@y is not 1, shift right one position
set @y shr 1
set @x + 1
endm
enam

secshf

.., ,
@y
@x

.., ,
@y
@x

o,
smask

1:
2:
3:
4 :
5:
6:
7:
8:
9: ;;

10:
11:
12 :
13: ::
14:
15:
16:
17:
18:
19:
20:
21:
22:
23: ;
24: ;*****************************************************
25: ;* *
26: ; *
27: ;* *
28: ;*****************************************************
29: blksiz
30:hstsiz
31: hstspt
32: hstblk
33: cpmspt
34: secmsk
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

207



; DISKDEF macro, or hand coded tables go here
dpbase equ $ 1disk param block base

·,sectran:
:translate sector number Be
mov h,b
mov l,c
ret

:set sector given by register c
mov a,c
sta seksec ;sector to seek
ret

dma address given by BC
h,b
l,c
dmaadr

;multiply by 16

;selected disk number
;seek disk number
;disk number to HL

;base of parm block
:hl=.dpb(curdsk)

d,dpbase
d

disk
a,c
sekdsk
I,a
h,0
4
h

here on system boot to initialize
a ;0 to accumulator
hstact ;host buffer inactive
unacnt ;clear unalloc count

track given by registers BC
h,b
l,c
sektrk ;track to seek

1set
mov
mov
shld
ret

:set
mov
mov
shId
ret

;enter
xra
sta
sta
ret

;select
mov
sta
mov
mvi
rept
dad
endm
lxi
dad
ret

·,setdma:

1
setsec:

·,boot:
wboot:

·,seldsk:

·,settrk:

54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

l0e:
101:
102:
103:

-208



.*****************************************************,

.* *,
1* The READ entry point takes the place of *
1* the previous BIOS defintion for READ. *
.* *,
.*****************************************************,
read:

1
.*****************************************************,
.* *,
1* The WRITE entry point takes the place of *
1* the previous BIOS defintion for WRITE. *
.* *,
.*****************************************************,
write:

disks are the same

icheck for write to unallocated sector
Ida unacnt ;any unalloc remain?
ora a
jz alloc iskiD if not

;sekdsk = unadsk?
;skip if not

;same disk?

1read operation
1must read data

;treat as unalloc
ito perform the read

;write unallocated?
;check for unalloc

CP/M sector
;0 to accumulator
;not a read operation.
;write type in c

CP/M sector

records remain
;unacnt = unacnt-l

the selected
a
readop
a,c
wrtype
wrual
chkuna

the selected
a,l
readop
rsflag
a,wrual
wrtype
rwoper

unallocated
a
unacnt
sekdsk
h,unadsk
m
alloc

more
dcr
sta
Ida
1xi
cmp
jnz

write to unallocated, set parameters
mvi a,blksiz/128 ;next unalloc rees
sta unacnt
Ida sekdsk ;disk to seek
sta unadsk ;unadsk = sekdsk
1h1d sek trk
shld unatrk ;unatrk = sectrk
Ida seksec
sta unasec ;unasee = seksec

1write
xra
sta
rnov
sta
cpi
jnz

1read
mvi
sta
sta
mvi
sta
jmp

.,
chkuna:

104:
105:
106:
107:
108:
109:
110:
Ill:
112:
113:
114:
115:
116:
117:
118:
119 :
120:
121:
122:
123:
124:
125:
126:
127:
128:
129 :
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:

209



1
noovf:

1rnatch found, mark as unnecessary read
xra a 10 to accumulator
sta rsf1ag 1rsf1ag = 0
jmp rwoper 1to perform the write

overflow to next track
mvi m,0 1unasec 0
1h1d unatrk
inx h
sh1d unatrk 1unatrk = unatrk+1

1
.**************************-**************************,
.* *,
1* Common code for READ and WRITE follows *
.* *,
.*****************************************************,

pre-read

1host sector to seek

1host active flag

1a1ways becomes 1

1carry = 0
1shift right

1same sector?

1sektrk = unatrk?
1skip if not

1seksec = unasec?
1skip if not

sector for future ref
1unasec = unasec+1
1end of track?
1count CP/M sectors
1skip if no overflow

record, requires
10 to accum
1unacnt = 0
11 to accum
1rsf1ag = 1

perform the read/write
1zero to accum
1no errors (yet)
1compute host sector

unallocated
a
unacnt
a
rsf1ag

h,unatrk
sektrkcmp
alloc

sekhst

here to
a
erf1ag
seksec
secshf
a

move to next
m
a,m
cpmspt
noovf

are the same
seksec
h,unasec
m
al10c

active host sector?
1xi h,hstact
mov a,m
mvi m,l

1not an
xra
sta
inr
sta

tracks
Ida
1xi
crnp
jnz

1enter
xra
sta
Ida
rept
o.ra
rar
endm
sta

match,
inr
mov
cpi
jc

1xi
call
jnz

rwoper:

.,
a11oc:

159:
160:
161:
162:
163:
164:
165:
166 :
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:

210



ora a :was it already?
jz filhst :fi11 host if not

host buffer active, same as seek buffer?
Ida sekdsk
1xi h ,hstdsk :same disk?
cmp m :sekdsk ~ hstdsk?
jnz nomatch

same disk, same track?
1xi h,hsttrk
call sektrkcmp :sektrk ~ hsttrk?
jnz nomatch

same disk, same track, same buffer?
Ida sekhst
lxi h,hstsec :sekhst ; hstsec?
cmp m
jz match :skip if match

:need to read?

:h1 ~ host address
:now in DE
:get/put CP/M data
:length of move

:yes, if 1
:0 to accum
:no pending write

buffer
:mask buffer number
:least signif bits
:ready to shift
;doub1e count
;shift left 7

the host buffer

from

disk, but not correct sector
hstwrt ;host written?
a
writehst :clear nost buff

dmaadr
c,128

relative host buffer address
d,hstbuf
d

data to or
seksec
secmsk
1,a
h,0
7
h

have to fill
sekdsk
hstdsk
sektrk
hsttrk
sekhst
hstsec
rsf1ag
a
readhst
a
hstwrt

;may
Ida
sta
1hld
sh1d
Ida
sta
Ida
ora
cnz
xra
sta

:copy
Ida
ani
mov
mvi
rept
dad
endm
hI has
1xi
dad
xchg
1hld
mvi

;
match:

.,
nomatch:

:proper
Ida
ora
cnz.,

fi1hst:

214:
215:
216:
217:
218:
219 :
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:

211



:hstwrt = 1
:source/dest swap

:which way?

:skip if read

directory write
:errors?
:skip if so
;0 to accum
:buffer written

to/from host buffer
:write type
ito directory?
:in case of errors
:no further processing

: sets flags

;low byte compare
: same?
:return if not

equal, test high Is

a
hstwrt
writehst
erflag

h,sektrk
d
m

readop
a
rwmove

host buffer for
a

has been moved
wrtype
wrdir
erflag

bytes
d
h
d
m

clear
ora
rnz
xra
sta
call
Ida
ret

write operation, mark and switch direction
mvi a,l
sta hstwrt
xchg

data
Ida
cpi
Ida
rnz

:C initially 128, DE is source, HL is dest
ldax d :source character
inx d
mov m,a ito dest
inx h
dcr c :loop 128 times
jnz rwmove

.lda
ora
jnz

.,
rwmove:

;
.*****************************************************,
.* *,
;* utility subroutine for 16-bit comp.are *
.* *,
.*****************************************************,
sektrkcmp:

;HL = .unatrk or .hsttrk, compare with sektrk
xchg
lxi
Idax
cmp
rnz
low
inx
inx
ldax
cmp
ret

269:,
278:
271:
272:
273:
274:
275:
276:
277:
278:
279:
28":
281~

282:
283:
284:
285:
286:
287:
288:
289:
298:
291:
292:
293:
294:
295:
296:
297:
298:
299:
308:
381:
302:
383:
384:
385:
386:
387:
308:
389:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319 :
328:

212



·,readhst:
:hstdsk = host disk #, hsttrk = host track i,
:hstsec = host sect I. read "hstsiz" bytes
:into hstbuf and return error flag in erflag.
ret

:
.*****************************************************,
.* *,
:* Unitialized RAM data areas *
.* *,
.*************************************A***************,

*
*

;error reporting
;read sector flag
;1 if read operation
;write operation type
;last dma address
;host buffer

;host disk number
;host track number
;host sector number

;seek shr secshf
:host active flag
;host written flag

:unalloc rec cnt
;last unalloc disk
;last unal10c track
;last una110c sector

:seek disk number
:seek track number
;seek sector number

1
1
1

1
1
2
1

1
1
1
1
2
hstsiz

1
2
1

1
2
1

WRITEHST performs the physical write to
the host disk, READHST reads the physical
disk.

erflag: ds
rsflag: ds
readop: ds
w::-type: ds
dmaadr: ds
hstbuf: ds

.,
unacnt: ds
unadsk: ds
unatrk: ds
unasec: ds

;
hstdsk: ds
hsttrk: ds
hstsec: <is.,
sekhst: ds
hstact: ds
hstwr t: ds

:
sekdsk: ds
sektrk: ds
seksec: ds

.*****************************************************,

.* *,

.*,
· *,
•*,
.* *,
.*****************************************************,
wr i tehst:

:hstdsk = host disk i, hsttrk = host track i,
:hstsec = host sect I. write "hstsiz" bytes
:from hstbuf and return error flag in erf1ag.
:return erf1ag non-zero if error
ret

321:
322:
323:
324:
325:
326:
327 :
328:
329 :
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351:
352:
353:
354 :
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:

213



end

*The ENDEF macro invocation goes here

1*****************************************************
.* *,
.*,
.* *,
.***************************.*•••*••****•••••***.*••**,

371:
372:
373:
374:
375:
376:

214


	Section I: An Introduction to CP/M Features and Facilities
	Table of Contents
	Introduction
	An Overview of CP/M 2.2 Facilities
	Functional Description of CP/M
	Switching Disks
	The Form of Built-in Commands
	ERA
	DIR
	REN
	SAVE
	TYPE
	USER

	Line Editing and Output Control
	Transient Commands
	STAT
	ASM
	LOAD
	PIP
	ED
	SUBMIT
	XSUB
	DUMP

	BDOS Error Messages

	Section II: CP/M 2.2 Interface Guide
	Table of Contents
	Introduction
	Operating System Call Conventions
	A Sample File-to-File Copy Program
	A Sample File Dump Utility
	A Sample Random Access Program
	System Function Summary

	Section III: CP/M Context Editor (ED)
	Table of Contents
	Introduction to ED
	ED Operation
	Text Transfer Functions
	Memory Buffer Organization
	Memory Buffer Operation
	Command Strings
	Text Search and Alteration
	Source Libraries
	Repetitive Command Execution
	ED Error Conditions
	Control Character and Commands

	Section IV: CP/M Assembler (ASM) User's Guide
	Table of Contents
	Introduction
	Program Format
	Forming the Operand
	Assembler Directives
	Operation Codes
	Error Messages
	A Sample Session

	Section V: CP/M Dynamic Debugging Tool (DDT) User's Guide
	Table of Contents
	Introduction
	DDT Commands
	Implementation Notes
	An Example

	Section VI: CP/M 2.2 Alteration Guide
	Table of Contents
	Introduction
	First Level System Regeneration
	Second Level System Generation
	Sample GETSYS and PUTSYS programs
	Diskette Organization
	The BIOS Entry Points
	A Sample BIOS
	A Sample Cold Start Loader
	Reserved Locations in Page Zero
	Disk Parameter Tables
	The DISKDEF Macro Library
	Sector Blocking and Unblocking
	Appendix A: The MDS Cold Start Loader
	Appendix B: The MDS Basic I/O System (BIOS)
	Appendix C: A Skeletal CBIOS
	Appendix D: A Skeletal GETSYS/PUTSYS Program
	Appendix E: A Skeletal Cold Start Loader
	Appendix F: CP/M Disk Definition Library
	Appendix G: Blocking and Deblocking Algorithms


