PILOT
User’s Guide

Wl

PILOT
User’s Guide

MORROW

600 McCormick Street, San Leandro, California 94577

MORROW, INC.
600 McCormick Street
San Leandro, California 94577

Copyright 1983, 1984 by Morrow, Inc. World Rights Reserved.
No part of this publication may be stored in retrieval systems,
transmitted, or reproduced in any way, including but not limited
to photocopy, photography, magnetism, or other recording
technique, without prior agreement and written permission by
Morrow, Inc.

Produced by William Harris and John VanderWood.
CP/M is a trademark of Digital Research.

NewWord is a trademark of NewStar Software, Inc.
SuperCalc is a registered trademark of Sorcim Corporation.

PILOT User’s Guide

Contents

Chapter 1. Introduction..........coeviiiiiiiiiiiiiiinennnneneenaneans 1-1
History of PILOT i 1-1
How to Use This Manual ... 1-2
Chapter 2. Getting Started............oovoiviiiinnnennnniercrennenns 2-1
Summary of the Procedure.............................. 2-1
Formatting Diskettes and Making a Copy of PILOT............ 2-2
Chapter 3. PILOT Instructionsccceeeiiiennrieneiieeennncnns 31
A Point of Claritycooiiiiiiiiiiiii 3-1
The Basic Form of Instructions....................cooeivviin... 3-1
Some Core InStructionsooviiiiiiiiiiiiiiiiienin., 3-2
Chapter 4. Creating Sample PILOT Programs 4-1
The Simplest Useful Program...................ooooiiiiiiiin..L. 4-1
Creating the Simplest Program 4-1
Running the Simplest Program 4-4

The Next Stepsuveieni i 4-5
Creating a Program With a Label and JUMP................. 4-6
Adding USE Instructionscoovviviiiiiininnnnnn.. 4-14
USE—A Subroutine With COMPUTE 4-22
Chapter 5. A More Advanced PILOT Program..................... 5-1
Instructions That Make a PILOT Program Look Nice 5-1

A Working Example...........ooooeiiiiiiiiiiii i 5-4
Using PILOT to Run CP/M Programs 5-9
The XSTATEX File ... e, 5-10
Multiple CP/M Commands............coeviiiiiiiiiiiiiinn... 5-11
Summary of CPM...... ... e 5-12
Chapter 6. Some Programming Hints for PILOT................... 6-1
Common ReSpOnsesooeeieiiiiiiiniiiiiee i, 6-1
Matching—Various Instructions and Techniques................. 6-2

Contents

Chapter 7. PILOT Instructions—Explanations 7-1

A ACCEPt ANSWET. ...ttt et 7-1
BELL: Alert USer...ovuunteetiiieeitrinireiiiiaeeinaarnenianeas 7-1
C: COMPULE . . eeeeeet ittt 7-2
CASE: Determine Action in Each Case 7-3
(013 6! 17: 1 H PR 7-3
Conditionals.vue et e e 7-4
CPM: Execute a CP/M Command..............coooieneiiiiienn 7-5
CUR: SEt CUISOT 1 utaeetiieieiieieeeie e eriiiiaeeaeareaaens 7-6
DEF: Define the Value of a String Variable 7-7
DI: Disable ESCAPE Key.....coooiiiiiiiiiiininiiiiiiiiaanns 7-7
E: End SUbroutingcvvemiiiiiiiniiiiiiiiiiiieeeieienenes 7-7
El: Enable ESCAPE Key....cocoviiiiiiiiiiiiiiiiiian e 7-8
END: End PILOT Program........cocveeveirnreeeernnnnneecennns 7-9
ERASTR: Erase String Variable ..., 79
ESC: Define Escape Sequence..........ccoouvereieieniiieeiin... 7-10
EXIST: Check Existence of CP/M Program 7-10
HOLD: Hold SCIOH ..ttt ie e e eees 7-11
INMAX: Set Input Line Length. ..., 7-11
Jo UMD . oot 7-12
) 57210 1=) R 7-12
LE: Line Feed ..ot 7-12
1Y LY £ 7)1 P 7-13
MC: Match Including Commasoooevviiiiiinieceennnn. 7-13
OUT: Output toan VO Portoooiiiiiiiiiiiinn, 7-13
PR: Prilt. .ottt 7-13
) 230 2050 11 4 G 7-14
RESET: Reset Numeric Variables to Zero 7-14
SAVE: Save Input Textcoooiiiiiiiiiiiiii s 7-15
Special Charactersoooovveeiiiviniiiniii i, 7-15
T TYPE TeXE ot 7-15
TNR: Type Text With No Return ..., 7-16
| O F 61 7-16
WAIT: Accept Answer (Timed)...............oooeviiiiiin. 7-16
Chapter 8. Error MeSSagescceeerertitieccciioiosnoncsncnnacees 81
Appendix—Summary of PILOT Instructions...........ccooeeneenane A-1

PILOT User's Guide

Introduction

History of
PILOT

THE PILOT (Programmed Inquiry, Learning, or Teaching)
programming language was developed at the University
of California at San Francisco in the early 1970’s. It was
originally designed to enable teachers to easily program
custom-made lessons for their classrooms. As such, the
language was kept as simple as possible, and the concept
was developed that complete programs should be able

to be written using only a very few “Core” instructions.

Morrow has adapted that old version of PILOT to work
efficiently in today’s environment. However, the concept of
keeping PILOT as simple as possible has remained. As a
result, you should be able to write a simple PILOT program
in just a few minutes. Eventually, though, by increasing
the level of complexity and the kinds of instructions in
your program, you can expand PILOT’s capabilities far
beyond its original use as solely a teaching tool. You will,
for example, be able to create instruction guides, self-
teaching programs, and interactive menus.

If you’ve never done any programming before, PILOT is
the right language for you. One thing that will make the
learning easier is to have a project or goal that you want
to accomplish before you begin. Then, as you proceed,
you’ll be able to fit the pieces of information into the
bigger picture of your project. That way, when you en-
counter a new instruction, instead of saying “Oh no, more
details!” you’ll say “Aha! Just what I’ve been looking for!”

introduction

1-1

How to Use This is how the PILOT manual is organized:

This Manual . . ‘ .)
Section 2 gives a brief overview of the entire process of

writing and running a PILOT program, and describes how
to make a blank diskette with a copy of PILOT.

Section 3 introduces you to some of the “core instructions.’

Section 4 has you writing and running actual PILOT
programs.

Section 5 shows an example of a complex, functioning
PILOT program.

Section 6 gives some hints about “common answers,” and
thoroughly discusses matching.

Section 7 is an alphabetical listing of all PILOT instruc-
tions, to be used for reference.

Section 8 covers the relatively unpleasant topic of error
messages, and gives the steps to take to solve the problems.

The Appendix lists the syntax of every PILOT instruction.

1-2 PILOT User’s Guide

Getting Started

Summary of
the Procedure

IN orDER TO use the PILOT program, you will first format
a blank diskette, and then copy the PILOT interpreter
program PILOT.COM onto that diskette. After those
preliminaries, you will write PILOT programs by starting
up NewWord or some other text editor and changing your
logged disk drive to “b:” (where the PILOT.COM diskette
should be). Then you’ll type in your PILOT program just
as if you were typing a letter, saving it on the PILOT.COM
diskette.

After leaving the text editor, you will run a CP/M com-
mand consisting mainly of the word “PILOT” and the
name of the command file you created. With a Micro
Decision, you can do this from the Utility Menu. With
other CP/M machines, you would do so from the “A>” or
“B>" prompt.

Once you’ve entered the startup command, your program
begins running, displaying those things on the screen
that you’ve designed, while asking for users’ responses.

Note to MD-11 owners: In general, you will be dealing with
your A: (hard disk) drive exclusively, and no floppies will
be involved. Those places where your procedure differs
from the norm will be clearly pointed out.

If this whole business sounds complicated, we assure you,
it isn’t. You’ll get step by step instructions and examples
that will show you that it isn’t hard at all.

NOTE: PILOT programs can be created on any text
editor. For the purposes of this manual, we will
assume you are working with NewWord files.

If you are not, simply substitute your own text
editor instructions for the NewWord instructions.

Getting Started

Formatting
Diskettes and
Making a Copy
of PILOT.COM

In addition, we are assuming that you are work-
ing through the menu system of the Morrow
Micro Decision. If you are using some other
CP/M computer, we trust you know enough about
the basics of CP/M to be able to format diskettes
and copy files.

(This section does not pertain to the MD-11.) You will
need a diskette to store your PILOT programs. First, with
your CP/M system diskette in drive A: and a blank diskette
in drive B:, prepare to format the blank diskette by
selecting the Format option from the Utility Menu. Your
responses to the prompts that are displayed should be
those listed below.

1 Format a diskette

B Disk drive to be used
D Double sided format (MD-3 models only)

Then type the RETURN key.

When that is finished and the Utility Menu is back on the
screen, type C to change the “currently logged drive”. At
the “Enter new drive” prompt, respond A.

Next, select the “Copy a file or files” option from the
Utility Menu. Here are your responses:

N No, you don’t want to copy all of the files on the
current drive.

PILOT.COM A new file name, followed by RETURN.
B The drive you’re copying to.

When the copy is finished a few seconds later, you’re done
with preparing your diskette. (The more sophisticated
among you could now SYSGEN the diskette, eliminating
the need for the CP/M system diskette; however, doing so
is definitely not necessary if you aren’t sure what this
means.)

2-2

PILOT User's Guide

PILOT Instructions

A Point of
Clarity

The Basic
Form of
Instructions

ONE thing you might want to get straight before we start
discussing the makeup of PILOT programs is the difference
between the PILOT interpreter program (PILOT.COM)
and the PILOT programs you will be writing.

PILOT.COM is a program that you have to load into your
computer before it can understand the PILOT instructions
that you have written with your text editor. It reads your
commands and sees to it that the terminal, computer,
and disk drives respond as you intend them to. You will
employ the same PILOT.COM interpreter program no
matter what kind of PILOT program you come up with.

A PILOT program consists of a series of instructions which
tell the computer exactly what to do. All of these instruc-
tions must follow a certain form to be understood by
PILOT.COM. The form (or “syntax”) of a PILOT instruc-
tion is basically composed of four different, important
parts:

1. the name before the colon,

2. the “conditional,”
3. the colon itself, and
4.

the object after the colon.
(One additional part, the “label,” we’ll introduce later).

In diagram form, then, a typical PILOT instruction looks
like this:

(<Name><Conditional*<:><0bdect>]

PILOT Instructions

3-1

Some Core
Instructions

The first part, the name of the instruction, is the part that
tells the program what action to perform (or even to do
nothing but wait). It is mandatory, of course, since the
simpleminded computer is hopelessly lost without it.

The second part, the conditional, is optional, and is usually
a “Y” or an “N” to indicate yes or no. The conditional
tells the computer to do something only if certain things
match up or if some other special conditions exist. There-
fore an instruction without a conditional gets carried out
no matter what; one with a conditional may or may not get
done. This will become clearer later, when you see some
examples of conditionals at work.

The third part, the colon (“:”) itself, is also required, since
it separates the name of the instruction from the object
of the instruction.

The fourth part of the instruction, the object, is sometimes
optional and sometimes mandatory, depending on which
instruction you’re talking about. It tells the computer what
to put on the screen, what to compare an answer with, or
where to go next, to mention a few uses.

Now, we’ll take a look at some of the PILOT core instruc-
tions that follow this pattern.

As mentioned in the introduction, the original PILOT
interpreter program only recognized a few Core instruc-
tions. These instructions still form the base for the PILOT
interpreter you will be working with, and complete
programs can be constructed using only some of the

core instructions.

The core instructions we will be using to create our first
sample PILOT program in the next section are these:

NOTE: Don’t worry too much about the meanings. They
will be discussed much more thoroughly in later
sections. They’re given here simply to introduce
you to the kinds of things the first sample program
in the next section will be doing.

3-2

PILOT User’'s Guide

Instruction

T:

A:

TY:

TN:

END:

Meaning

TYPE. Instructs the computer to display
on the screen whatever follows the colon.

ACCEPT. Tells the computer to wait for
an answer from the user, and accept
whatever the user types as the answer.

MATCH. Instructs the computer to com-
pare the answer the user gave to the
answer following the colon.

TYPE IF YES. This TYPE statement,

with the addition of the conditional Y, will

display the text following the colon only
if a certain condition exists, such as if the
user’s response matches the object of an
M: instruction.

TYPE IF NO. This TYPE statement, with

the addition of the conditional N, will
display the text following the colon only if
the special conditions don’t exist.

The last statement of every PILOT pro-
gram. When running the program from
the Micro Decision Utility Menu, END:
means go back to the Utility Menu. On
other systems it normally means go back
to the CP/M prompt. You can use END:
at other places than the end of a program,
say, to allow a user to quit in the middle
of some sequence.

Using only these statements, we can write our first simple

PILOT program.

PILOT Instructions

3-3

Creating Sample PILOT
Programs

The Simplest
Useful
Program

IN its most basic form, a PILOT program asks a question,
accepts and compares an answer, and does something based
upon that answer. We’re going to create an actual PILOT
program that does just that.

Creating the Simplest Program

First, you have to start up your text editor. On the Micro
Decision Main Menu, select the option for NewWord or
a similar text editor. The system will instruct you to put
your NewWord Working Diskette in Drive A. After you
change diskettes, your system will automatically take you
into NewWord when you press RETURN.

When you have reached NewWord’s Opening Menu, insert
your newly-formatted diskette with PILOT.COM on it

into Drive B. Select L to change the logged disk drive to
“b:”. Then type N (rot “D”) to create a new non-document
file. (MD-11 owners should not change the logged drive.
However, they will select a User Area, which is up to their
discretion. They should, however, make a mental note of
which User Area they’ve chosen.)

NOTE: It is important to type your program using the
text editor’s non-document mode (“N” on
NewWord’s Opening Menu, as mentioned above).
Programs entered using the document mode
(“D” on the Opening Menu) probably will not
work correctly. What we’re saying, to the techni-
cally inclined, is that you don’t want your text
editor to use the high-order bit.

Give the “non-document” the name SIMPLEST.PIL. That
name will be the name of our sample PILOT program. The
.PIL ending is not mandatory, but is useful to identify the
file as a PILOT program on your directory listing. Also,

a program ending in “.PIL” is a little more convenient to
run, since your command line can read simply “PILOT
SIMPLEST” instead of “PILOT SIMPLEST.PIL.”

Creating Sample PILOT Programs

Now, we’ll start to write the program. A couple of things
to be aware of: PILOT instructions don’t have to be lined
up starting in the first column, and they don’t have to be
capitalized either. But for the sake of legibility, these are
good habits to get into.

First, type the question you want the user to answer as
follows:

T: The term "PILOT", as used in this manuals means:
T: 1) Airplane JocKevy

T: 2) A Computer Lansuade

T

H Tvepe the number of vour choice and Ppress RETURN

When you run this program, the “objects” of the T:
instructions (the four lines of text) will be displayed on the
screen. The T’s and colons won’t be.

Next, instruct the computer to wait for and accept an
answer:

This tells the computer to wait indefinitely for a response
and a RETURN, and to keep track of the response for use in
the next instruction.

Then tell the computer to compare (MATCH) the user’s
answer to the right answer:

4-2 PILOT User’'s Guide

This MATCH instruction tells the computer to compare
the answer the user gave to the answer given after the
colon. In this case, the computer will check the user’s
answer to see if it is “2” or not.

Now comes the important part. You can instruct the
computer to do two different things, based on whether the
answer the user has given matches the object of the M:
instruction. This is done by telling the computer to type
one thing if the answer matches, as follows:

TY:

Very

dood! My, aren’t vou the bright one!

Or type a different response, if the answer doesn’t match:

TN: Boys are vou a dunce!

The “Y” and the “N” following the T: instruction are
called conditionals, and they are some of the decision
makers of the PILOT program. Using them, the computer
can look at a user’s response and take action based upon
that response.

Finally, after all of the other commands, add the END:
statement to tell PILOT to quit and go back to the menu
or prompt that you started it up from:

END:

Creating Sample PILOT Programs 4-3

Check to see that what you have typed looks exactly like
this:

TID A

TY:

END:

: Bovs are vou a dunce!

\

The term "PILOT"s as used in this manual, means:
1) Airplane JocKevy
2) A Computer Lansguade

Tvepe the number of vour choice and press RETURN

2
Yery dood! My s aren’t vou the bridht one!

J

You have now created an actual PILOT program, and your
next step is to run it, i.e., get the computer to go through
the program and ask the question you have written. To

do this, save the program on the PILOT.COM diskette and
get out of the text editor ("KX if you’re using NewWord).

Running the Simplest Program

Let’s begin by assuming you’re looking at the Micro
Decision Main Menu. Your CP/M system diskette is in
Drive A and your PILOT.COM diskette that has SIM-
PLEST.PIL stored on it is in Drive B. (MD-11 owners:
ignore directions on diskette placement.)

From the Main Menu, proceed to the Utility Menu. Select
the “Execute a CP/M command” option.

At the “Command?” prompt, enter

(B:PILOT SIMPLEST.PIL)

and press RETURN. (MD-11 owners should not type the
“B”. Instead, they should type USER #. where “#” is the
User Area that contains SIMPLEST.PIL. Then they should
pick “Execute a CP/M command” a second time, typing
the command above without the B:.)

4-4

PILOT User's Guide

The Next
Steps

If you’re using a different CP/M computer, just enter this
same command at the A> or B> prompt.

The PILOT sign-on message will appear and then the first
“T:” statements of your program will be displayed:

The term
1)
2)

Type the

"PILDT"+ as used in this manual s means:
Airplane JocKevy

A Computer Lansuade

number of vour choice and press RETURN

Type in “2” and press RETURN. The computer will congrat-
ulate you for your erudition and end the PILOT program,
since you only asked the one question in this sample.

Next, to prove that the program will give a different
response based upon a wrong answer, run the program
again, but this time respond with a “1” to the question
instead of a “2”. When the computer chides you for being
a dunce, remind it that it was able to do so only because
you were smart enough to tell it how.

So you can see that you’ve created a computer program
that will ask a question and give a different response based
on the answer. The simple example we just wrote, of
course, isn’t very useful. However, by stringing several
questions together, and providing more elaborate routines
based upon a user’s response, you can write much more
complex programs.

The last example demonstrates that a PILOT program can
react in different ways to different responses. Our next
program will start itself over again if the user asks it to, or
skip information if the user wishes, by using a core
instruction named “J:” (JUMP), and an additional part of
a PILOT instruction called a label. After that, we’ll write a
program to produce a standard error message if the user
makes a mistake, and another program to calculate a net
price, by continuing to use labels, and adding a core
instruction named “U:” (USE).

Creating Sample PILOT Programs 4-5

Creating a Program With a Label and JUMP

First follow the instructions for using your text editor, as
outlined above for the SIMPLEST program, and start a
new non-document file called NEXT.PIL.

Okay. Let’s write some lines to ask a question, just like we
did in the previous example, as follows:

Would vyou liKe to:

A) Review Core Instructions from last example®?

B) LooK at the new instructions from this example?
Tyre the letter vou want and press RETURN

D=

You can see that so far this example follows the same
principles as the last one, namely, a multiple choice ques-
tion with branches in the action based on the answer given
to the question.

First you need to pick which response to perform the
MATCH test on.

NOTE: It doesn’t matter which answer you choose as the
answer to match. As you’ll see when you work
through the example, it just reverses the branch-
ing in a commutative way. In other words, if in
our first example we had matched against the “1”
response instead of “2”, we could have kept the
logic intact by also reversing the “TY:” and
“TN:” responses. Confused? Don’t worry; just
type what we show you and you’ll absorb the
finer points as you go along.

Also note that the MATCH statement below will

accept either a lower or upper case A as a
match.

-)

4-6 PILOT User's Guide

So, if users type “A”, they want to look at the instructions
we used last time. Now we’ll write the TYPE IF YES
instruction which will allow them to see those instructions:

TY: The core instructions we used for
TY: the last example were "T:" (TYPE):
TY: “A:* (ACCEPT)» "M:" (MATCH)"s and "END:".

Next, write the TYPE IF NO instruction that allows the
user to look at the more advanced core instructions we’ll
soon be using in this example, as follows:

TN: The new core instructions we are using in this
TN example are "J:" (JUMP) and "U:" (USE).

Fine. Now, if we didn’t add anything else, you’d have a
program essentially just like the last one we wrote. That is,
it would ask the question, act on the response, and quit.
However, by using another core instruction called JUMP,
we can go back through the program and look at the other
answer without having to run the program again. First,
write an instruction to ask the users if they wish to go
through the program again, as follows:

Do vou wish to see the other set
of instructions? YES or NO

DDA

YES

So, you've asked the users if they wish to see the other set.
Now, if they respond “yes,” they can go back to the

Creating Sample PILOT Programs 4-7

beginning of the program and ask the original question
again, using a JUMP statement:

(: JY: *¥START '

This tells the computer to jump to the label *START. We
haven’t talked much about labels yet, but they’re impor-
tant. A label provides a name for a given section of a
program. By using a particular label, you can direct the
program to go directly to that section of the program,
rather than simply following down the list of instructions.

Labels can be made up of any combination of numbers
and letters, but they must start with an asterisk, and they
must either be the first statement on a line, or on a line by
themselves.

So far, we’ve told the computer to JUMP to a label that
doesn’t yet exist. So you should go back to the beginning
of our NEXT.PIL program and add the label, as follows:

*START

T: Would vou liKe to:

T: A) Review Core Instructions from last example?
T: (etc.)

NOTE: Remember, the label you use this time must be
exactly the same as the one you gave the com-
puter in the JUMP statement. For example, we
could also have told the computer to JY: *BE-
GIN, but then we would have had to write the
label at the beginning of the program as
*BEGIN.

Now, if the user answers “yes” to the question about seeing
the other set of core instructions, the program will auto-
matically jump back to the beginning and ask the question
over again.

4-8 PILOT User’s Guide

What if the user doesn’t want to see the other set? This
ik issue brings us back to the END: instruction:

J¥: *S8TART
END:

So you see you didn’t have to cover the possibility of the
user answering “NO” by having a JUMP IF NO or TYPE
IF NO or any such conditional. While these avenues are
certainly open to you, this example shows that PILOT will
simply ignore the JY: command if the match test failed,
and go on to the next instruction. In this case, that is the
END: statement.

Now let’s check your program. Does it look like this?

\
*START
T Would vou liKe to:
T A) Review Core Instructions from last example?
T: B) LooK at the Instructions for this example?
T Tvepe the letter vyou want and press RETURN.
A:
M: A
TY: The core instructions we used for the last
TY: example were "T:" (TYPE): "A:" (ACCEPT) .
TY: "M:" (MATCH): and "END:".
TN: The new core instructions we are using in this
TN: example are "J:" (JUMP) and "U:" (USE).
T: Do vou wish to see the other set
T: of instructions? YES or NO
A
M: YES
JY: #START
END:
J

You have now written your first program with a JUMP,
that takes you back through the program to ask the same
question over again, instead of simply ending after asking
a question.

Creating Sample PILOT Programs

49

Now, run this program following the instructions outlined
for program SIMPLEST.PIL. Be sure to choose all of
the different options involved, and you will verify that the
program does what we want it to do.

* * *

Now that you have finished verifying that the program
works, you’ve seen that a JUMP statement may be used to
go back and repeat a sequence in the program. To make
things really fancy, we’re going to add another JUMP
statement, one that jumps us “forward” (i.e., skips over a
section that the user doesn’t wish to see), so that you

can see a different way the flow of the program can be
controlled.

Return to the NEXT.PIL program, using your text editor,
and get ready to modify it.

Let’s assume that the user has finished with the question
about the core instructions, and has typed “NO”. This
means he doesn’t want to “loop” back through the question
again. With the way the program is now written, that
means END.

First, delete the END: instruction so the program doesn’t
end at this point. You’re going to add another question
about PILOT, as shown:

DA
T

YES

Would vou liKe to review the history of PILOT?
YES or NO

4-10

PILOT User’s Guide

If the user types “YES,” he does want a review, so we’ll
add:

T:
T:
T:

PILOT is a Programming landuade develorped at
UCSF to aid in constructing ComPuter Assisted
Instruction materials.

However, if the user types “NO,” he doesn’t want to see
that information, so we’ll instruct the computer to skip the
information by inserting a JN: (JUMP IF NO) instruction
before the T: instruction:

M:
JN:
T:
T:

YES

*FORWARD
PILOT is a prodramming landuade develored at
UCSF (Etc.)ooooo

Now, we have to use the “*FORWARD?” label, to give the
computer a place to jump to:

*FORWARD

After this label, you can END or continue as you wish.
The information about the history of PILOT has been
skipped.

Creating Sample PILOT Programs

4-11

Let’s finish this program by asking the user once more if
he might find a review of the information to be

entertaining:
T Would vou liKke to g0 throudh these auestions
T: adain? YES or NO
A
M YES

JUMP back to the start if the user wants to, as follows:

(: JY: ¥8TART :)

We have already placed the *START label in the program,
so we don’t need to do that now. So, END the program
with an END: statement. Check to see that the program
looks like this:

4-12 PILOT User’s Guide

*START
T: HWould vyou liKe to:
T: A) Review Core Instructions from last example?
T: B) LooKk at the instructions for this example?
T: Type the letter vou want and press RETURN.
A:
M: A
TY:s The core instructions we used for
TY: the last example were "T:" (TYPE):
TY: "A:" (ACCEPT)s "M:" (MATCH): and "END:".
TN: The new core instructions we are usindg in this
TN: example are "J:" (JUMP) and "U:" (USE).
T: Do vou wish to see the other set
H of instructions? YES or NO
: YES
JYs:s *START
: Would vou liKe to review the history of PILOT?
: YES or NO
A:
M: YES
: *FORWARD

PILOT is a prodramming landuade develored at
UCSF to aid in constructing Computer Assisted
Instruction materials.

ORWARD

Would vyou liKe to d0 throudh this lesson
adain? YES or NO

YES
*START

M T D~k — - L.
SF s we wx oas T] as a we

=R

J

(The blank line in the program is there to make it more
readable. Blank lines, even several in a row, don’t break
the flow of the program in any way.)

Save the program on the same diskette as PILOT.COM
and SIMPLEST.PIL. Then run it (following the instructions
given for SIMPLEST.PIL) giving various responses, and
you’ll see how the JUMP statement works. Notice that the
information about PILOT and UCSF would never appear
if the right sequence of answers was given, i.e., the JUMP
instruction can cause the program to simply skip those
statements.

Creating Sample PILOT Programs

413

Adding USE Instructions—Creating Subroutines

You could continue adding more JUMP statements to

the program, but they would still function in the same way,
that is, go to a label and start going downward through
the program from there. However, as your programs
increase in complexity, you will often find it useful to go to
a certain place in the program, do the instructions con-
tained there, and then return to the spot in the main flow
of the program from where you left. We’ll now continue
with the next PILOT core instruction, one called “U:”
(USE), which allows us to go to a set of instructions called
a subroutine, use those instructions, and jump back to
where we came from.

To start, let’s create a program called USE.PIL, following
the instructions for SIMPLEST.PIL to set up the text
editor.

This program will be for a menu system, where clerks
would be choosing different options. If the clerks select an
option that does not exist, or they mistype their selection,
we want to ignore their entry and tell them to retype the
answer.

Now, how can the “U:” (USE) instruction help us? For
one thing, it lets you write instructions only once for a
situation that will occur over and over again. For example,
in this sample program, we’ll assume that we have several
places in the program where we wish to give users a
standard message if they do not enter any of the single
digits 1, 2, or 3 in response to a multiple choice among
those numbers. We could write statements into the program
at each place where the error message would occur, but
that’s making work for ourselves. It’s easier to place the
statements that give the message in one place in the
program, and go use those statements each time we need
them. This is called using a subroutine. The error message
section of the program is the soubroutine.

4-14

PILOT User’'s Guide

Let’s begin as follows:

*START

*WHICHMENU

T: Select one of the following options:

T: 1) Review Company Policy on this

T: tyrpe of Sale

T 2) Review Current Inventory

T: 3) Review Customer Status

T: by typind its number and pressing RETURN.,
A

_ Y,

If the clerks were unfamiliar with the conventions of exact
data entry, they might type the name of the number instead
of its digit, e.g, “ONE” instead of “1,” in which case the
program would not work if we wrote it so that it needed
the single-digit number. (There’s a couple of ways to get
around the exact match principle. However, we’ll leave
that discussion until later, and in any case the principle of
what to do in case of no match remains the same.)

This type of understandable human error can quickly lead
to computer-frustration, so we want to indicate to the clerk
exactly how the answer must be formatted. Furthermore,
given the vagaries of clerks, it’s possible that they might
answer this question with a single digit, but later in the
program answer a similar three-choice request with a
“ONE,” or “#1”. So, whenever the three choices exist, and
the clerks make a mistake, or simply mistype an answer,
we want to inform them of the error.

First we’ll MATCH the digits, to set up the program’s
reactions to correct entries:

NOTE: MATCH instructions can be tricky sometimes,
and we’ll postpone discussing them for the
moment. For now, please be sure that the follow-
ing instruction is typed exactly as follows, i.e.,
space-1-space (comma), space-2-space (comma),
space-3-space.

Creating Sample PILOT Programs 4-15

(M:Iy'ﬂra]

If a clerk types one of the three digits, the MATCH will
occur and we’ll instruct the program to continue by JUMP-
ing to another MATCH instruction:

(i JY: *MATCHACCEPT1 :)

We’ll write the instructions that go with the label
*MATCHACCEPT]I in a moment, but first we’ll instruct
the computer to USE the subroutine *ERROR3 if the
clerk doesn’t type one of the three digits (USE IF NO):

(i UN: *ERROR3 j)

Let’s write that subroutine now:

*ERROR3
T: I'm sorrv. I need the number 1, 2+ or 3,
T: Please reread the Qquestion and tvpPe Just

T: the sindle didit,

A wrong entry will now take us to the subroutine and type
the statement on the screen. Now, we need to signal the
computer to end the subroutine (but NOT the whole
program) and return to the main program. This is done by
using another core instruction, the “E:” instruction.
Simply type:

C)

4-16 PILOT User's Guide

NOTE: Do not type “END:”. That would end the whole
program, instead of just the subroutine.

The E: instruction, when used with a subroutine called by
a U: (USE) instruction, will automatically return us to
the next instruction in the program following the U:
instruction that led to it. The same is true of UN:

and UY: instructions, too.

In this case, we want to ask the question again, so we’ll
write a jump statement to return to the start of the
question:

J: *WHICHMENU

and then we could continue with the main program, in this
case by defining what to do for each of the three choices,

e.g.

()

*MATCHACCEPT1

M: 1

JY: *POLICY

JN: *MATCHACCEPTZ2

*POLICY
T: MWhat Kind of Sale is it?
T: 1) Eauipment
T: 2) Software
T: 3) Documentation
A
\§ J

Once again you can USE the subroutine *ERROR3 that
we have already written, if the user doesn’t answer the
type-of-sale prompt correctly:

Creating Sample PILOT Programs

4-17

M: 1+ 2 4+ 3
JY: *SALETYPE
UN: *ERROR3

If the user answered correctly with one of the three digits,
the program would jump to the label *SALETYPE, and
continue down the program from there, thus skipping the
UN: instruction and the subroutine. If they answered
incorrectly, the *ERROR3 subroutine would print our
standard message, and then would return us to the
*WHICHMENU label at the beginning of the main
program.

NOTE: Just to clarify things for you a little, if you are
wondering what’s the difference between a U:
with subroutine and a J:, this is it: You could use
two JUMPS to display an error message and
then go back to the prompt. However, this
method only allows you to go back to ONE
SPECIFIC place, because with a jump you would
need to name a label to return to. A U: and
subroutine are far more flexible since they let
you go back to wherever you came from without
naming a certain place in the program.

Okay. After returning to the main program from the

subroutine, we would want to jump back again to the
question, as follows:

(J: *POLICY)

4-18

PILOT User’s Guide

Now you need to write a section labeled *SALETYPE:

4)

*SALETYPE

M: 1

TY: Charde a markup of 25% on eauiPment.
M: 2

TY: Charde a markur of 157 on software.
M: 3

TY: We do not sell documentation onlvy.,
J: *MOREQUESTIONS

_ J

This section will give us the policy answers, and then jump
us to a *"MOREQUESTIONS section which we will place
at the end of the program.

Just to finish the program quickly, let’s write our options 2
and 3 as follows:

~

*#MATCHACCEPTZ2

M: 2

TY: Sorry, The Current Inventory part of this erosram
TY: has not vet been written.

JN: *MATCHACCEPT3

J: *MOREQUESTIONS

*MATCHACCEPT3

T: Sorrv. The Customer Status part of this Prosram
T: has not vet been written.

J: *MOREQUESTIONS

Creating Sample PILOT Programs

4-19

Now, we’ll end it by adding the standard question, as

follows:

*MOREQUESTIONS

T: Do vou need to review other Company Policvy:,

T: Current Inventorrs or Customer Status?

A:

M: YES

JY: *START

END:
\

Check your program to see that it looks like this:

(

*START

*WHICHMENU

T: Select one of the following ortions:

T: 1) Review Company Policy on this

T: type of Sale

T: 2) Review Current Inuventory

T: 3) Review Customer Status

T: by typingd its number and pressing RETURN.,

A:

M: 1 +» 2 + 3
JY: MATCHACCEPT!
UN: *ERROR3

J: *WHICHMENU

#ERROR3

Tz I'm sorry. I need the number 1 2 or
T: 3, Please trpe Just the sindle digit,
E:

*MATCHACCEPT1

M: 1

JY: *POLICY
JN: *MATCHACCEPTZ2

4-20 PILOT User’s Guide

*POLICY
T: What Kind of Sale is it?

T: 1) Eauipment

T: 2) Software

T: 3) Documentation
Az

M: 1 + 2 + 3

JY: #SALETYPE

UN: *ERROR3

J: *POLICY

*SALETYPE

M: 1

TY: Charge a markup of 25% on eauipPment.
M: 2

T¥: Charde a markupr of 15% on software.
M: 3

T¥: We do not sell documentation only.
J: *MOREQUESTIONS*MATCHACCEPTZ

M: 2

T¥Y: Sorry. The Current Inventory part of this prodgram
TY: has not vet been written.

JN: *MATCHACCEPT3

J: #MOREQUESTIONS

*MATCHACCEPT3

T: Sorry. The Customer Status part of this program
T: has not vet been written.

J: *MOREQUESTIONS

*MOREQUESTIONS
T: Do vou need to review other Company Policy:
T: Current Inventory, or Customer Status?

A:

M: Yes

JY: *START
END:

J

Save and run the program, and you’ll see how the error
message appears appropriately.

Now you have seen one way to use a U: instruction. When
common information is to be used over and over again, a
subroutine can be extremely helpful.

Creating Sample PILOT Programs

4-21

USE-—A Subroutine With a COMPUTE Instruction

We’ll write one more program using a U: (USE) instruc-
tion, but this time we’ll also introduce the “C:” (COM-
PUTE) instruction.

The C: (COMPUTE) instruction gives us a way to deal
with numbers. Using C: you we can make your program
add or subtract sums, or count right answers, or figure
sales totals.

NOTE: There are some limitations on the COMPUTE
instruction. It can only add or subtract whole
numbers whose results are in the range 32,567
and —32,568. Also, do not use commas within
numbers in C: commands.

For this example, let’s assume that a clerk wants to know
what to charge for a given part, and that a surcharge on
the part is necessary depending on which division of the
factory it comes from. Name the program COMPUTE.PIL,
and start as follows:

*START
T: MWhat is the cost of the Product?
A: #PRODUCTCOST

The A: instruction, when used as above, has stored the
cost of the product as entered by the user under the name
#PRODUCTCOST, which later can be used in the compu-
tation. Numbers stored under names with a “#” sign in
front of them are called numeric variables, and may be
used in various ways in COMPUTE statements. We’ll use
two of them in this program, and others will be explained
more thoroughly in the reference section under C:
COMPUTE.

4-22 PILOT User's Guide

For now, let’s continue with another question and answer
to find out which division the product came from:

r D

T: MWhich division is the product from?

T: A) Oakland

T: B) New York

T: Tvee the letter of vour cheoice and pPress RETURN

A:

M: B

UY: *NYCHARGE

_ J

This part of the program, like the programs we have
already written, will accept the user’s response and, if the
response is “B”, will go to the section of the program
labeled “*NYCHARGE?”, use the instructions there, and
then jump back to the next instruction in the main
program.
Now, we’ll write the *NYCHARGE section of the
program:

*NYCHARGE

T: Will there be additional shirprpind chardes?

T: If so+ how much (Enter O if none)

A: #SHIP

C: SURCHARGE = SHIP + 10

E:

J

After the initial question, and the storage of the response
in the numeric variable #SHIP, we have written our first
example of the COMPUTE instruction. The program

will use the value of the number stored in the numeric
variable #SHIP, add 10 to that number, and store the result
in the numeric variable SURCHARGE (when numeric
variables are used in COMPUTE instructions, they do not
have to have the # sign in front of them).

After the computer has done that computation, it will end
the subroutine and return to the main program.

Creating Sample PILOT Programs

4-23

Continuing with the main program:

C: PRICE = PRODUCTCOST + SURCHARGE
T: The pPrice to charde for the pProduct is
T: #PRICE dollars.

Here’s our second example of a COMPUTE instruction.
We have just told the computer to add together the num-
bers stored in PRODUCTCOST and SURCHARGE
(rembember, we just computed the SURCHARGE in the
*NYCHARGE subroutine), and store the result in the
numeric variable PRICE. Then, in our TYPE statement,
we told the computer to print the value of the numeric
variable #PRICE. Note the use of the “#” sign. In any
other instruction than a COMPUTE statement, the # sign
is necessary.

Special note on special characters: $, #

If we wanted to print a “$” in front of the PRICE in
the above example, we would have to place two dollar
signs in front of #PRICE in the T: command
($$#PRICE, in other words). The PILOT program
uses a single dollar sign for a special purpose (string
variables; we’ll talk about them soon), so we have to
put two signs in the program in order to say that this
is not a special symbol, it’s really a dollar sign. Simi-
larly, if you want to print a pound sign (#) to indicate
a quantity, say, you would need to put two of them in
front of a variable contained within a TYPE command.
In summary, if you want to display the line “How to
Make $$$” your instruction would be:

(: T: How to Make $$$%%% '

4-24 PILOT User’s Guide

We’ve written a program that will compute and display a
price, based upon a C: statement and some numeric
variables. Now, in our standard question asking if the user
wants to ask for more prices, we’ll introduce two more
wrinkles: a DEF: (DEFINE) instruction and string
variables.

DEF: $YES ves v

T: Do vou need to ask about another Price?
At

M: $YES

The DEF: instruction above indicates to the computer that
either a “yes” or a “y” will be accepted as the value of

the string variable $YES. String variables begin with a “$”,
and may contain words or individual characters. They can
be used as above, to allow multiple answers, or they may
save a user’s name to be used later to give the impression
that the computer is talking to the user, etc. In this case, if
the user types either a “y” or “yes,” the computer will
consider it as a match for the string variable §YES.

So, if users type a “y” or “yes,” they do wish to find
another price, and we’ll jump back to the start. If they
type any other response, we’ll assume we should end the
program:

JY: *START
END:

We still have a few instructions left to write. If the program
jumps back to the start, we will be using the numeric
variables over again to compute some more prices. When a
numeric variable is used, the value that is assigned to it
remains there until we do something about it, i.e., either
assign it another value or reset all numeric variables to
Zero.

Creating Sample PILOT Programs

4-25

In our example, the old shipping charges and surcharges
would remain as the variables and be added to any new
costs. For example, if we had first computed a New York
price, the old value for #SURCHARGE would still be
there when we came back through the program again. If
we then asked for an Oakland price, the program would
add the value left in #SURCHARGE to the cost of the
product, and thus give us a wrong answer. Therefore, we
must make sure the value of the variable #SURCHARGE
(and all other variables) is equal to zero. There are two
alternate ways to do this:

1) If you’re using a PILOT version later than Version
5.1, the instruction “RESET:” may be used. This
instruction sets the value of all numeric variables to
zero.

2) If you’re using PILOT version 5.1 or earlier, then
you must reset each numeric variable separately by
computing its value as equal to zero.

So, in this program, we’re going to use several C: (COM-
PUTE) instructions. If you can use RESET:, one RESET:
instruction would take the place of all of the C: instruc-
tions we’re going to write.

Since we want to be certain that all variables are correct

when we recompute them, we’re going to insert the C:
instructions right after the start:

4 A

*START
C: PRODUCTCOST = O
C: SURCHARGE = 0
C: SHIP = 0
C: PRICE = 0
T: What is the cost of the product?
T: (etc.)
\ W,

4-26

PILOT User’s Guide

All of the numeric variables in our program have now
been set to zero, and will be set to zero each time you
start again. The prices will thus be computed correctly
each time.

Check your program to see if it looks like this:

*START

C: PRODUCTCOST =
C: SURCHARGE = 0
C: SHIP = 0

C: PRICE = 0O

T: What is the cost of the product?

A: #PRODUCTCOST

T: MWhich division is the Product from?

T: A) OaKland

T: B) New York

T: Tvyepe the letter of vour choice and pPress
T: RETURN

© (or simply

RESET:
for appropriate versions)

M: B

UY: *NYCHARGE

C: PRICE = PRODUCTCOST + SURCHARGE

T: The price to charde for the Product is
T: #PRICE dollars.

DEF: $YES ves:vy

T: Do vou need to ask about another price?
A

M: $YES

JY: *#START

END:

*NYCHARGE

T: Will there be additional shiprping chardes?
T: If sos how much (For nones enter Q)

A: #SHIP

C: SURCHARGE = SHIP + 10

E:

/

Note that the subroutine has been placed at the end of the
program. Often, this is one good way of keeping your
program organized.

Creating Sample PILOT Programs

4-27

L |

Now, save and run the program to verify that it works.
Choose the different New York and Oakland options, and
use different prices, and you will see how the price changes
correspondingly. Also, type in both “yes” and “y” in
response to the question about more prices, and you will

see that both of them work.

You now have the basic tools to make the PILOT language
work for you. There are some other commands that are
useful (we’ll talk about some that make your programs
prettier in the next section), but you have learned the
basics of the system. Unfortunately, no manual on how to
write computer programs (and that is what you have
been doing) can teach you all that you need to know. It is
necessary, and a lot more fun, to learn to program by
writing programs. Experiment, and play, with the PILOT
language, and you will find that soon you will be able

to write useful programs very quickly.

4-28 PILOT User's Guide

A More Advanced PILOT
Program

Instructions
That Make a
PILOT
Program Look
Nice—R:, LF:,
CLRS:, CUR:,
TNR:, and
Braces

Up 10 Now, we have been working with small PILOT
programs that we have written ourselves. Now, it’s time to
take a look at a functioning PILOT program that someone
else has written.

The programs which control the menus for your Micro
Decision are written in PILOT. We’re going to look at
excerpts from the main menu-controlling program, which is
called MICRO.PIL. This program contains several addi-
tional PILOT instructions which we haven’t discussed yet.
In particular, there are several PILOT instructions which
help make either the program listing itself or the display

on the console more readable.

First, there is an instruction called R: (REMARK) which
allows the PILOT programmer to put remarks into the
PILOT program which will not appear on the console when
the program is run. Such remarks are useful for indicating
the different sections of the program. For example, you
could write:

Rz

T:

This section displavs the Welcome Screen
*START
Welcome to Pilot! We hore vou endov using {(etc.)

The statement following the colon in the R instruction
would not display on the screen, but would display when
you looked at the program. You will see other examples of
R: instructions in the upcoming example.

A More Advanced PILOT Program

5-1

There are several instructions which make the display of a
PILOT program on the screen more pleasant to view.
You may have noticed a tendency for the screen to look a
little crowded when our programs were run. Three instruc-
tions which can counteract that crowdedness are “LF:”
(LINE FEED), “CLRS:” (CLEAR SCREEN), and
“CUR:” (SET CURSOR).

LF: (LINE FEED) simply instructs the computer to move
down the screen the indicated number of lines, leaving
those lines blank. You can tell the computer to move down
as many lines as you want, but remember that a value
greater than the number of lines on your screen will roll
any old information off the top of your screen.

For example, if you wanted 2 blank lines between a user’s
response and the next question, you could write:

TY: That’s a correct answer.

LF: 2

T: What does the PILOT instruction "LF:" do?

Putting adequate line feeds into a screen display helps to
make it easier to read.

NOTE: A T: (TYPE) instruction, with no characters
after the colon, will also insert one blank line per
instruction.

The CLRS: (CLEAR SCREEN) instruction simply tells the
computer to blank the screen and put the cursor in the
upper left hand corner. This is useful when going to a
completely new subsection of the program, or when starting
a series of questions over. No characters are typed after
the colon, so the command is simply:

(=)

5-2

PILOT User’'s Guide

The next instruction, the CUR: (SET CURSOR) command,
will place the cursor on the indicated column and line of
the screen. This command is useful when you want the
user to type his/her information in a particular place on the
screen. After the colon, write the column number first, so
that if you wanted the cursor to appear in the fourth
column and twelfth line of the screen, you would write:

[CUR: 3,11)

This is because the first line and column of the screen are
considered to have the number zero instead of one.

The TNR: (TYPE WITH NO RETURN) instruction allows
a response to be typed on the same line as a question.
For example:

(TNR: MWhich option do vou want? DOeption ##]

This would allow the option number to be entered directly
after the “#” sign. Note that “#” is a special character,
thus two in a row are required for one to be displayed.

Finally, if your particular terminal can “highlight” charac-
ters (i.e., cause them to appear brighter or dimmer), there
are two special characters used in the following example
which will also change the display. A left brace ({), when
written after the colon in a T: instruction, will be translated
into a blank, but anything following it will be highlighted.
Similarly, a right brace (}), when written after the colon

in a T: instruction, will return the screen to normal inten-
sity. Thus, you can highlight special words on the screen
display.

A More Advanced PILOT Program

5-3

A Wor

king

Example—Part
of the
Program

MICRO.PIL

Now we can examine MICRO.PIL. There will still be
instructions you don’t understand. You can look them up
in Section 7 if you want, but don’t worry too much about
them. You should be able to follow much of the main
flow of the program.

Here’s the first few lines we’ll discuss from the MICRO.PIL
program:

R: display main menu
*BEGIN

ESC:*EXITMENU

U: *MENU1

As you can see, the programmer started off this section
with a remark to indicate that the next few lines would
display the main menu. Then he labeled the beginning of
the program with the label *BEGIN, to give a place to

go back to. The next command, “ESC:”, we haven’t talked
about yet, but simply gives a little routine (which would
appear after the label *EXITMENU further on in the
program) to do in case the ESCAPE key is pressed. Refer to
the detailed explanations of each instruction for further
information.

Then, the programmer has written the first USE: instruc-
tion, telling the program to go to the subroutine *MENU1,
and perform the instructions there. Let’s display that
subroutine (it is actually located quite a bit later down in
the program). That subroutine is:

5-4

PILOT User's Guide

R::
R: Menu diseplavs

R:

*MENU1

CLRS:

Tz {(MAIN MENLUX

T: This menu is vour road map throudh the CP/M oPperating svystem. To
T: prerform these functionss Just enter the approPpriate number after
T: the prompt belows, then follow the instructions diven,

LF:1

T: {1 NewhWord} Word Processing

T: {2 SuprperCalc? Financial Analvsis

T: {3 Correct-ItY} Spelling ChecKer / Corrector
T: {4 Personal Pearl? Data Base Manader

T: {5 Questd BooKKkeerper System

T: {6 MBASIC-801%} Microsoft BASIC

T: {7 BaZicl} North Star Compatible BASIC
T: {8 CP/M Tutorial menul CP/M Learning Tool

T: {9 Create workKing disKettes}

T: {U Utility menul

T: {ESC Exit to CP/M}

LF:l

T: {Enter vour selection:}

E:

First of all, note that the programmer has inserted a line of
“=" just above the display, simply to visually separate the
display when he is looking at the program listing itself.
Then comes a blank R: line, so that the REMARK “Menu
displays” may be read more easily. Following another
blank REMARK line, we have the actual label indicated
by the USE: statement, *MENUI.

Then, the programmer clears the screen so that there will
be room for the Main Menu, and the menu appears. Note
the two LF: instructions, which insert a blank line in the
display so that it’s easier to read. After the display of

the menu, the subroutine ends. Note the last REMARK
line of “=" signs to separate the display from the rest

A More Advanced PILOT Program

of the program. The program now returns to the statement
after the U: *MENUT1 instruction, which is:

(: U: *5TATUS :)

Once again, we’ll perform a subroutine before continuing
down the main line of the program. In this case, it is the
subroutine labeled *STATUS, which looks like this:

*5TATUS

R: This routine refreshes the status lines (20-24) on the screen

CUR:0+19

L
T:{CURRENT DRIVE:}$DRIVE:

T:
T:
TNR:
E:

~

The R: instruction tells us what the subroutine does. Note
that the CUR: instruction places the cursor on the far

left side of the screen (Column 0) 20 lines down. Then,
after the highlighting of the CURRENT DRIVE message
(by use of brackets), the current drive is given by the

use of the string variable $DRIVE, which was set to the
actual value of the current drive earlier in the program.
Finally, after T: and TNR: (Type with no carriage return)
instructions which contain blank spaces to help blank out
all the old status information, the subroutine ends. We
automatically return to the main program, which continues
with the next subroutine, as follows:

(: U: *CHANGEMSG *:)

5-6

PILOT User's Guide

This subroutine looks like this:

R::
#*CHANGEMSG
R: This routine simply Puts a messade in the status area to indicate

what to
R: press to change the current drive.
CUR: 15,22
T: To chande the current drives press "C".
E:

J

and once again, the REMARK explains what the subrou-
tine does. (Careful, just-plain-English documentation
within the program listing itself is always a good idea.)
Note that the cursor position is defined so that the change
message is placed at the right spot on the screen. Then
we return to the main program.

Continuing on down the program, we reach the following:

(")

*INPUTLOOP3
INMAX:1
CUR:26417

Az

M: C
JN:*LABEL1
UY: *#CHANGE
J:*INPUTLOOP3

_ J

This little routine uses another instruction, INMAX:, to
limit the maximum input allowable to 1 character, and then
continue without waiting for a RETURN. This is like an A:
instruction that just takes the first key pressed as the
answer and moves on. The CUR: statement places the
cursor at the correct spot on the screen (after the “Enter
your selection” statement), and the ACCEPT and MATCH
statements accept the user’s response and check if it’s the
letter “C”. If it is a “C,” it means the user wishes to change

A More Advanced PILOT Program

the correctly logged drive, so the UY: instruction (USE if
YES) is activated, and we jump to a subroutine that is a
bit too complicated to follow at this point. Let it suffice to
say that that subroutine allows us to change the current
logged drive, and then returns control to the main program,
which loops back through (i.e., jumps back to
*INPUTLOOP3) to go through the whole change message
again, until the user indicates by some other response

that s/he does not want to change the drive.

Then, the program jumps to *LABEL1, which looks like
this:

4)
*LABEL1
Mz 1 » 2 43 3y 94 » 5 + B » 7 +8 + 89 » U
JN:#INPUTLOOP3
CLRS:
Mz 1
JY¥: *NEWWORD
M: 2
JY¥Y: *SUPERCALC
M: 3
JY¥: *CORRECT
M: 4
(etc.)
N\ J

The routine is comparing the user’s response, and looking
for the number to match, at which point it will JUMP to
the new section. For example, if the user typed a “1”,

it will MATCH the M: instruction above the JY: *NEW-
WORD statement, and therefore the program will JUMP
to the section labeled *NEWWORD. That section will
display the message about preparing to run NewWord and
take us to NewWord after pausing to allow insertion of
the NewWord working diskette.

Any other number, of course, would be matched to its
corresponding program. We suggest at this point you sign
on the system again, using the CP/M system disk, and run
through the first few steps of the Micro Menu, to see once
again what the above program accomplishes.

5-8

PILOT User’s Guide

Using PILOT
to Run CP/M
Programs

So, you see how the program has accomplished the first
few steps of the Main Menu. It is somewhat complicated,
but at this point we simply wanted to show that a PILOT
program can drive a complicated, interactive system such as
the Micro Menus. We hope that, with further practice,

you can find similar uses that will fit your needs.

The main purpose of a menu system like MICRO.PIL is to
link new users to the less-than-friendly operating system,
CP/M. Using the PILOT command CPM:, you can con-
struct menus and “scripts” that run CP/M commands and
programs for you.

A simple example is a menu that formats a diskette if you
select 1 from a list of options. An excerpt might look like:

M: 1
CPMY: format b d

This line means “Format the diskette in drive B as double-
sided.” The format command is easy to work with, in that
it allows you to put parameters like b and d on the com-
mand line. Compare this with a strictly interactive program
like sysgen. If you use the command CPM: SYSGEN, the
user will be prompted for source and destination drives,
just as if he were running sysgen directly from CP/M.

This doesn’t make full use of PILOT’s automation capabili-
ties, however. If you are always sysgening from a certain
drive to a certain other drive, you can feed this information
to sysgen directly using a special form of the CPM:
command:

(CPM: sysdeniait)

Here you are saying “Read the system tracks on disk A
and copy them onto disk B.” The semicolons stand for the

A More Advanced PILOT Program

5-9

carriage returns that sysgen expects after drive letters are
input.

For the most part, you probably won’t be running this sort
of utility program from a menu. To run an application
program like NewWord, use a command line like this one:

(CPM: B:NWi]

This introduces a new symbol, the vertical bar. It tells
PILOT to quit reading the PILOT program until the user
exits from NewWord. If you leave out the vertical bar,
NewWord sees the next PILOT command as input, and
strange things will happen.

The XSTATEX File

When PILOT initiates the running of a program like
NewWord, it has to clear most of itself out of the comput-
er’s memory. When the user is done with NewWord,
PILOT reloads itself and picks up where it left off in the
.PIL program. So how does PILOT keep track of where it
was when it went to sleep?

Whenever PILOT calls a CP/M .COM program, it creates
a file called XSTATEX.PIL that includes the point in the
program where it left off, the locations of all the PILOT
program’s labels, and the current values of any variables
that had been defined. This file is stored on the disk that is
currently logged. Whenever PILOT is started, either from
scratch or after you exit from a program called by PILOT, it
first checks to see whether an XSTATEX file is present. If
so, it reads the file and acts according to its contents.

This can occasionally have a curious result. Suppose you’re
running NewWord from a PILOT menu, and for some
reason or other, you'’re forced to reset your computer. The
next time you run the PILOT program, it acts as though
you’ve just exited from NewWord, in effect starting in the
middle. We’re telling you this in case you’ve seen this

5-10

PILOT User's Guide

happen and were confused; it seldom happens and gener-
ally clears itself up, since PILOT automatically erases the
XSTATEX file after reading it.

Multiple CP/M Commands

It is a simple matter (usually) to string several CP/M
commands onto a single CPM: line. For example, this
command formats a diskette, copies several files onto it,
and reports available space:

(CPM: format b di pipj bi:za:*,comj b:=a:*.Pilfi stat b:)

Note the double semicolons near the end of the line. This
is for the special case of using pip in its interactive mode—
a carriage return is needed to get out of pip back into the
PILOT sequence. Remember that PILOT interprets
semicolons as carriage returns. Also, excessively long CPM:
lines can cause the computer to lock up, forcing you to
reset. Use several CPM: commands in a row if this
happens.

The trickiest thing in this whole topic of CPM: comes
when interactive programs like NewWord and sysgen are
intermingled with other programs on the same CPM:
command line. You can get around this by using separate
CPM.: lines for each program, adhering to the rules covered
so far. But if you like to get fancy, examine this example:

[CPM: dir a:s dir b:j Bi:nw! stat a:i svsden!)

While obviously nonsensical, this demonstrates how you
need to pay attention to the placement of semicolons and
vertical bars. This command displays the directories, and
then runs NewWord. When the user exits from NewWord,
drive statistics for disk A appear and sysgen goes into
interactive mode, that is, the user is prompted for drive
letters and an exit command.

A More Advanced PILOT Program 5-11

As a final example, notice the use of double semicolons
here:

CPM: sysdenji aji cii sci

This command runs sysgen without any operator action.
The double semicolons feed sysgen the extra carriage
return it needs for quitting. Then PILOT runs SuperCalc.
If you had used a single semicolon, sysgen would interpret
s and c as drive letters being sent to it. If you used a
vertical bar in place of the semicolons, the program would
work, but the user would have to press RETURN to tell
sysgen to quit.

Summary of CPM:

1. Use semicolons to separate programs on the same
CPM: line.

2. Use semicolons to separate data being used to
simulate keyboard input with interactive programs.

3. Use semicolons to simulate carriage returns with
interactive programs.

4. Use vertical bars to allow keyboard input with
interactive programs.

PILOT User's Guide

Some Programming Hints for
PILOT

Common
Responses

ONE OF THE surest ways to promote computer-frustration
from a user is to have too many normal human responses
judged as errors. In that light, it is good programming
technique to channel the user toward entering information
correctly.

One way to accomplish this is to be consistent in your re-
quirements for answers. For example, if there are a lot

of yes/no choices in your program, establish the pattern of
response in the very first yes/no question, i.e., indicate

to the user how the data is to be entered. One way could
be as follows:

T: Is this the prodram vou wanted?
T: Tyvee Y for Yes
T: N for No

This can help establish a pattern, so that fewer data entry
errors are made.

Another way to channel the user’s responses is to provide
multiple choice questions:

T Which option would vou liKe?

T: A) Check Regulations

T: B) CompPute Tax

T: C) Review Personnel Records

T Pick an option and tvre its letter

This technique also leads to the building of interactive
menus, where the user continues to pick from a choice of
several options.

Some Programming Hints for PILOT

Finally, another way to help cover the normal range of
user responses is to include DEF: instructions, where a
range of responses is defined as equalling the response

needed. For example, you could ask the question:

DEF: $YES5 Yess v » sure +» oK » 0.Ks » Y » ves
T: Is it all ridht to continue with this Prodram?
A:

M: $YES

JY: *CONTINUE

Matching—
Various
Instructions
and
Techniques

In this example, any of the responses listed in the DEF:
instruction would allow the MATCH instruction to consider
that the question had been answered in the affirmative,
and the program would continue.

MATCH statements are very important in PILOT pro-
grams. They allow the computer to inspect and compare

a user’s response, and make a decision based upon that
response. Therefore, you have to be careful that you match
the answers you want to, and don’t match the answers

you don’t want to. There is the obvious solution of only
allowing an exact, character-by-character match, but it

is likely that, as you write more complex programs, you
will find that matching a pattern will be more useful.

The first thing to understand is how a MATCH instruction
works with commas and spaces to interpret a pattern.
Commas are considered to separate different elements from
each other, and spaces are used to define how the individ-
ual elements are matched.

The first pattern we’ll examine is one where an exact match
is required for each element in the pattern. For example,
let’s suppose that we want only the single-digit numbers 1,
2, and 3 to be valid in response to a question. In this
case, we must surround each individual element of the
pattern with spaces, to indicate that no character is accept-
able either before or after the desired character. We

6-2

PILOT User’s Guide

would type the MATCH instruction as follows (pay close
attention to the spaces):

[H:le'B’)

This statement would match only the characters 1, 2, or 3,
and an entry of 12 or 21 or 43 would not be matched
(i.e., would cause an “N” condition to be true after the
MATCH statement). The spaces before and after each
digit indicate that it must be a single digit only.

What if we wanted to match only the first letters of words,
for example? In that case, we would place a space in front
of each element:

[M: A: By C»)

This instruction would match any word beginning with an
A, B, or C. The comma without a space after each element
indicates that any characters after the first ones would be
acceptable. “APPLES”, “B-52’S”, and just plain “C” are
fine; lower case letters would also match.

Next, we could allow any word to match two ending letters
by not putting any spaces before each element, but putting
spaces afterwards, as follows:

[M:it sen sor)

1]

This statement would match any word ending in “it”, “en”,
or “or”.

Some Programming Hints for PILOT

6-3

Finally, we could allow any entry which contained one of
the desired elements in it to match. For example:

T: Give me a word with a vowel in it.

A

Miasesrisosus

TY: RIGHT!

TN: 111 bet vour word has the letter "¥" in it.

In this instance, any word with one of the five normal
vowels would cause a match, and thus get the RIGHT!
response.

One other consideration when matching patterns is the
DEF: statement talked about above. The DEFINE instruc-
tion can be used to extend the number of matches allowed,
by allowing any of several responses to satisfy the require-
ments of a MATCH.

There are two additional MATCH instructions which you
may find useful. The first, MC: (Match including commas),
is useful when you are trying to match text which contains
commas. Since the comma is normally used to separate
the elements of the match, a user-entered comma would
confuse the match. In that instance, if there is a chance
that a comma might be entered, use the instruction MC:
and enter the character “*” as the separator between the
elements of the match.

Finally, one more useful MATCH instruction is the MY:
(MATCH if YES) instruction. This instruction allows the
progressive testing of responses, so that a series of matches
can be required for any given element. For example, if
you wanted to accept a nearly correct answer from the user,
you could write:

6-4

PILOT User's Guide

*TRYAGAIN

T: What is the lardest river in the U.5.A.7
Ax

M: M

TN: Sorrvys that’s not ridht.

JN: *TRYAGAIN

MYz Mis

MYzipPs

TN: Sorrys that’s not ridht.,

JN: *¥TRYAGAIN

TY: Ridht! The Mississippi! Did vou seell it exactly
TY: right?

J

In this case, the program first checks to see if the answer
starts with “M”. If it doesn’t, it asks the question again. If
the answer does start with “M”, the program then checks if
it starts with “Mis,” and if it contains an “ip” in it. If it
does, the user has almost certainly answered correctly,
even if s’he had misspelled the word slightly. In this way,
progressive MY: statements can be used to allow for
inexact spelling.

Some Programming Hints for PILOT

6-5

PILOT Instructions—
Explanations

A: Accept
Answer

BELL: Alert
User

IN THIS SECTION, you will find all of the instructions in the
PILOT program in alphabetical order, and information
on how to use them. Also included are definitions of “la-
bels,” “conditionals,” and “special characters.”

This instruction tells the computer to wait indefinitely for
the user’s response. If nothing is typed after the colon, the
response will only be saved temporarily for later matching.
If a numeric or string variable is added after the colon, the
user’s response will be stored under that variable name,
and may be used when desired later in the program.

Examples:

Which option would vou liKes 1 or 27

1
Yz OKavys here’s option #13

—“4 XD~

What’s your name?
SNAME
Hi: $NAME

- -

This instruction tells the program to beep the terminal’s
buzzer or beeper. It can be used to alert the user of a
special condition. Conditionals are valid, so that BELLY:,
for example, will cause the buzzer to ring only if the
preceding statement matched the response in a MATCH
instruction.

PILOT Instructions—Explanations 7-1

Example:

T: MWhat is 1 + 17
A:

M: 2

BELLY:

TY: RIGHT!

C: Compute The COMPUTE instruction is used to get the computer to
perform mathematical computations. Only addition and
subtraction may be done, and the numbers must be whole
integers and the result must be less than 32,567 and greater
than —32,568. Operations will be performed from left to
right. Parentheses will not determine precedence, which
would be superfluous with addition and subtraction.

Examples:
Expression Operation
CX=2 Store the value “2” in the variable

“X”

C:X=X+1 Add1 to the value already stored in
“X?’.

C. TOTAL = X + Y —17
Add the value stored in the variable
“X” to the value stored in the
variable “Y”, subtract 17 from the
subtotal, and store the result in the
variable named “TOTAL”.

C: PRICE = COST + TAX
Add the value stored in the variable
COST to the value stored in the
variable TAX, and store the result in
the variable PRICE.

7-2 PILOT User's Guide

CASE:
Determine
Action in Each
Case

CH: Chain

NOTE:

When numeric variables are used in COMPUTE
instructions, they don’t have to be preceded by
a “#” sign. However, in other lines like T:, they
must have the # directly in front of the variable
name, e.g., #AMTDUE.

This instruction tells the computer to take action based on
the value of a numeric variable.

Example:

Which option

#0PTION

T:
T: 1) Parts
A
c

ASE (#0PTION):

do vou want?
2) Serwvice 3) Administration

*PARTS» *SERVICE, *ADMIN

In this example, if the option selected by the user is 1, the
numeric variable #OPTION will contain the value “1”,
and PILOT will jump to the label *PARTS.

This instruction tells the program to leave the current
PILOT program and go to another one (the other program
must be on the logged-in disk drive).

Example:
T: MWhich Prodram would vou like now?
T: A) Reference B) Tutorial
A
M: A
CHY: REF.PIL

PILOT Instructions—Explanations

7-3

If the user typed “A”, the program would go to the
REF.PIL program, and run it. The computer will not return
automatically to the old program, unless told to do so

with another CH: command at the end of REF.PIL.

CLRS: Clear This instruction completely blanks the screen, and leaves
Screen the cursor at the home position at the upper left-hand cor-
ner of the screen.
Example:
4 ™
T: MWould vou liKe to start over?
Al
M: YES
JIN: *NEXT
CLRS:
JY: *START
G _J
Conditionals A “conditional” is the part of a PILOT instruction follow-
ing the name of the instruction and before the colon. The
conditional tells the instruction to proceed if the last match
succeeded or didn’t succeed.
There are several ways a conditional may be constructed.
First, a conditional may be either a “Y” or an “N”, for yes
Or no.
Example Y/N:
T: Would vou liKe option 17 YES or NO
A
M: NO
TY: Sos vou don’‘t want te use opPtion 1.
TN: Here’s option 1:
7-4 PILOT User’'s Guide

In the above example, note how the two negative situations
are used to equal one positive.

A conditional may also be a numeric variable, which will
be considered as a match if its value is greater than zero,
or as a “no match” if its value is equal to or less than zero.
When used in this manner, a conditional can be used to
distinguish how many times a subroutine has occurred, or
whether a user has answered with a positive reply.

Example Numeric Variable:

T: MWould vou like one of the following ortions?

T: 1) Parts 2) Sales 3) Service
T: Trepe a numbers or "O" (zero) if vou wish to
T: continue to the next step.

A: #0OPTION
U(#0OPTION): *SELECTOPTION
T: The next step is:

(etc,)
- y
CPM: Execute This instruction will automatically run another CP/M
aCP/M program and then return to the PILOT text when the
Command program is ended.
Example:
(N

T: MWhich CP/M Prodgram would vou liKe to run?
T: A) Stat B)Pie
A:

M: A
CPMY: STAT
M: B
CPMY: PIP
. J

PILOT Instructions—Explanations 7-5

CUR: Set
Cursor

A CPM: instruction may also contain a “|” (vertical line)
sign after the program name. This is for use with CP/M
transient commands that require operator input from the
keyboard. PIP.COM, for example, may be called by CPM:
so that it prompts the user for files to copy:

(CPM:z PIP:)

Programs and arguments may be strung together on a
CPM: command line. Semicolons are used where carriage
returns would normally occur in the flow of running the
programs outside of PILOT. Frequently a program name
and its arguments are separated by semicolons; programs
are separated from other programs by two semicolons.

Example:

[CPM: PIP3A:=B:fileliA:=B:file2iiSTAT A:]

This instruction sets the cursor position. First type the
column number, and then the line number. The line and
column numbering starts with zero, i.e., the coordinates of
the upper lefthand corner are 0,0.

Example:

(CUR: 3:13 ’

would set the cursor in the 4th column, on the 14th line.

7-6

PILOT User's Guide

DEF: Define
the Value of a
String
Variable

This instruction will define a String Variable as being equal
to any one of the given responses.

Example:

DEF:

$JOHN John + Johannes s Jdon » Jean » Jack

DI: Disable
ESCAPE Key

E: End
Subroutine

If the variable $JOHN was later matched to a response,
any one of the names above would count as a match.

This instruction disables the ESCAPE key, so that if that key
is accidentally pressed, PILOT will not exit to CP/M.

Example:

#*BEGIN
R: Escare Kev will not cause exit to CP/M
DI:

This instruction signals the end of a subroutine, and will
return the program to the statement after the U: instruction
which took it into the subroutine.

PILOT Instructions—Explanations 7-7

El: Enable
ESCAPE Key

Example:

a)

Uy: *MESSAGE
J: *QUESTION

*MESSAGE

T: Please answer the auestion adain.
E:

\ J

After going to the subroutine *MESSAGE, the program
would type the statement, end the subroutine, and return
to the next statement after the U: instruction, in this case
the J: *QUESTION instruction.

NOTE: If E: is used where no subroutine is pending, the
PILOT program will end and control will be
returned to the CP/M operating system, i.e., the
E: instruction will function in the same way as
the END: instruction (see END:).

This instruction enables the ESCAPE key to function after it
has been disabled by the DI: command.

Example:

R: User might need ESC Key after this point
EI:

7-8

PILOT User's Guide

This instruction ends the PILOT program immediately and

PILOT returns control to the CP/M operating system.
Program
Example:
T: Are vou finished with this prodram?
A
M: YES
JN: *START
END:
ERASTR: This instruction erases all characters stored in all string
Erase String variables so that they can be used over again. Conditionals
Variable may be used.
Example:
e 2
T: HWhat’‘s vour answer?
*ANSWER
A: SANSHER
M: $0K
TN: Sorrv:s I couldn’t understand that. Could
TN: vou pPlease try adain?
ERASTRN:
JN: *ANSWER
Tz OKav: I understand.

PILOT Instructions—Explanations

ESC: Define

This instruction enables PILOT to jump to a subroutine if

Escape the EscaPE key is hit during an ACCEPT or WAIT
Sequence instruction. It must be the ﬁrsjt instruction in the program,
q except for REMARK instructions.
Example:
4 N
Rt Firsts an escare subroutine
ESC: *ESCMESSAGE
*START
*ESCMESSAGE
T: Are vou sure vou want to det out of PILOT?
A:
M: YES
ENDY:
_ J
EXIST: Check This instruction will cause the program to look at the disk
. prog ; ;
Existence of directory and note whether a certain file exists on the disk.
CPM Program You must include “.COM” in .COM filenames submitted

to EXIST:. The outcome of EXIST: automatically sets up
a conditional, as shown in the example.

Example:

T: MWhich prodgram would vou like to run?

A: $PROGRAM

EXIST: $PROGRAM

TN: Sorrvs that Prodgram is not aon the lodded-in
TN: disk drive.

7-10 PILOT User'’s Guide

HOLD: Hold
Scroll

This instruction causes the screen display to stop or hold
until the user presses ENTER or RETURN. The user may also
return to a specified label by typing “R”. This allows the
user to review material if it has scrolled off the screen.
HOLD may be used with conditionals.

Example:

*READAGAIN

T: The prodection model will assume the
T: following:

T: (etc.)

and then later in the program:

T: Do vyou remember the Prodection model

T:
T: I

assumpPptions?
f vou would liKe to review them: press "R".

T: Otherwise press RETURN to continue.

HOLD:

*READAGAIN

INMAX: Set
Input Line
Length

NOTE: The label given after the colon in the “HOLD:”
instruction could also reference a routine farther
down the program. However, the HOLD instruc-
tion is especially useful for going backwards in
the program to allow the user to review material.

This instruction determines the maximum number of input
characters allowed in a string variable. When that number
of characters is reached, the computer will automatically
go to the next instruction.

PILOT Instructions—Explanations

7-11

J: Jump

Labels

LF: Line Feed

Example:

4 A
T: Which option do vou want? 1+ 2, or 3
INMAX: 1
A:

M: 1
JY: *0PTIONI
(etc.)
_ J

This instruction tells the computer to JUMP from the
current spot to the label specified. The program will not
jump back unless told to do so with another JUMP
instruction.

Example:

¢ Which ortion would vou 1liKes» A or B?
A

T
A
M
JY: *0PTIONA

A label gives a name to a section or instruction of a PILOT
program. The label may then be referenced by another
PILOT instruction in another part of the program, thus
directing the flow of the program to the label.

Labels must begin with an asterisk (*), and be either on a

line by themselves, or the first statement on a line.

This instruction tells the program to insert the indicated
number of blank lines onto the screen.

7-12

PILOT User’s Guide

M: Match
MC: Match
Including
Commas

OUT: Output
to an 1/0 Port

PR: Print

Example:

T: Ridht!

LF: 4

T: The next Aquestion is:
(etc.)

These instructions tell the computer to compare a user’s
answer to the answer given after the colon. For a complete
description, refer to Section 6.

This instruction tells the computer to output a byte to any
I/O port to control external devices. The byte to put out
follows the colon, then a comma, then the port. Both
numbers must be two digits and must be represented in
hex.

Example:

: Do vou want to send that bvte out?
: YES

T
A
M
ouTY: 02.,C0

This instruction tells the computer to print the text follow-
ing the colon on the currently assigned CP/M list device.

PILOT Instructions—Explanations 7-13

R: Remark

Example:

PR: This line would show uP on the Pprinter

This instruction indicates that the text following the colon
is a remark, and will not be printed on the screen when
the PILOT program is run.

Example:

R: This
R: when

text would not show up on the screen
the PILOT prodram containing it is run.

RESET: Reset
Numeric
Variables to

Zero

This instruction sets the value of all numeric variables in
the program to zero so that they may be used over again.

Example:

T: Do vou want to comPute some more totals?
A:

M: YES

RESETY :

NOTE: This instruction will only work if the PILOT
version you are using is above Version 5.1 (i.e.,
the instruction does not work in version 5.1).

PILOT User's Guide

SAVE: Save
Input Text

This instruction stores the last keyboard response into the
string variable you specify. The saved response may then
be used in another part of the program.

Example:

T: MWhat’s the title of that booK vou liKed?
SAVE: $BOOK

and then later in the program:

You mentioned that vou 1iKed the booK named:
$BO0OK. What other things do vou liKe?

Special
Characters

T: Type Text

The two special characters left brace “{” and right brace
“}” will be interpreted by PILOT as blank spaces, but the
left brace will turn highlighting on, and the right brace will
turn highlighting off.

The special character “$” represents a string variable, while
“#” precedes a numeric variable. Whenever you want to
display either of these characters, you must use two of
them in sequence to produce one.

This instruction types the text following the colon onto the
screen.

Example:

T: This text will arpear to the user

PILOT Instructions—Explanations 7-15

TNR: Type
Text With No
RETURN

U: Use

WAIT: Accept
Answer
(Timed)

This instruction types the user’s response onto the screen

on the same line as the statement.

Example:

TNR: MWhich orPtion would vou like? #

In this example, the user would enter his answer right after

the “#” sign.

This instruction tells the computer to go to the labeled

subroutine, perform the instructions there until it reaches

an E: instruction, and then return to the main flow of
the program (i.e., the next instruction after the U:
instruction).

Example:

-

*BEGIN
T: How much is 2
A

+ 27

M: 4 s four

TY: Ridht!

UN: *ERROR

etc.

*ERROR

T: Sorrvs wrond answer., Try another,
E:

\.

J

This instruction will normally give the user six seconds to

start typing an answer to a question. If the user does not

start typing by the end of six seconds, the computer will

continue as if the user had typed the word “TIMEOQUT”.

“TIMEOUT” can then be used in an M: instruction.

7-16 PILOT User’s Guide

Example:

T: MWhat’s vour name?
WAIT:
M: TIMEOUT

TY: Don’t vyou Know vour own name?

If a string variable is after the colon and the user does not
begin typing in time, then the string “TIMEOUT” is
assigned to the variable. If a numeric variable is after the
colon, and the user does not begin typing in time, then the
value “0” (zero) is assigned to that variable, and may be

used as a conditional in future statements.

Example:

How old are vou?

#AGE

J (AGE): #*NAME

What’s the matter? Afraid of me?
didn’t even start tvypind before six who
seconds were up.

Try adain
*START

vou’'re #AGE vears old.

What’s vour name?

$NAME

TIMEOUT
Don’t vyou Know vour own name?
Hi+» $NAME.

You
le

Finally, the length of time the computer waits for a re-
sponse can be adjusted by making the program loop

through the wait routine several times.

PILOT Instructions—Explanations

7-17

Example:

é)

T: Question?
C: W=3

*ANSWERMWAIT

WAIT: $ANSHER

M: TIMEOUT

JN: ®NEXT

C: W=W-1

JUW): *ANSWERWAIT

T: Time has exrired,

*NEXT
T: Thank vou for vour answer.

N\ J

In this example, we have instructed the computer to go
back through the routine three times, which would give the
user eighteen seconds to start typing.

WAIT can also be used to display a message for a certain
time before proceeding to the next instruction.

7-18

PILOT User’s Guide

Error Messages

Message

(FILENAME):
CAN'T ACCESS

(INSTRUCTION):
UNRECOGNIZED
INSTRUCTION

(LABELNAME):
LABEL NOT
FOUND

MISSING LABEL

STACK OVERFLOW

Problem and Action

A file could not be opened. Check
that you spelled the program
name exactly the same as the
name on the diskette. Check that
the proper diskette is in the
drive, and that you've included
the drive letter if needed.

A non-PILOT command was
given in the program. Check that
the colon is placed immediately
next to the instruction and that
the instruction is a legal PILOT
command.

A JUMP instruction was given to
a non-existent label. Check to

be sure that the label exists, that
it is spelled exactly the same as in
the J: command, and that there
are no spaces between the asterisk
and the label name.

PILOT encountered a JUMP
command which did not have a
label name after it. Enter the
label name after J:. If the label
exists, check to be sure there are
no spaces between the asterisk
and the label name.

Subroutines are nested too
deeply. Since PILOT allows up to
512 levels of subroutines, this
message is likely to occur only in
the event of a runaway recursive
subroutine, i.e., one that is call-
ing itself.

Error Messages

Appendix—Summary of
PILOT Instructions

THE following appendix gives the syntax of every PILOT
instruction. Any item in brackets [...] is an optional item.
The word “comments” after the colon means that text may
be placed in that position, but will simply be ignored
when the program is run. Thus, the space after the colon
may be used to document the program listing.

Instruction Syntax
A: Accept Answer

[label] A [cond] :
[label] A [cond] : $string variable
[label] A [cond] : #numeric variable

BELL: Alert User
[label] BELL [cond] :

C: Compute

[label] C [cond] : num variable = expression

CASE: Determine action in each Case
[label} CASE (num variable) : label, label, (etc.)

CH: Chain
[label] CH [cond] : program-name

CLRS: Clear Screen
[label] CLRS [cond] :

CPM: Run CPM Program

[label} CPM [cond] : command|;arguments;;
command;;etc.]

[label] CPM [cond] : command[jaccept
keyboard input]

[label] CPM [cond] :$string var...
#numeric var...

Summary of PILOT Instructions

CUR: Set Cursor
[label] CUR {cond] : column,row

DEF: Define a Variable
[label] DEF [cond] : $variable string

DI: Disable ESCAPE key
[label] DI [cond]: [comments]

E: End Subroutine; Return to Main Program

[label] E [cond] : [comments]

EIL Enable ESCAPE key
[label] EI [cond]: [comments]

END: End PILOT program; Return to CPM
[label}] END [cond] : [comments]

ERASTR: Erase String Variable
[label] ERASTR [cond] :

ESC: Define Escape Sequence
[label] ESC [cond] : [*] label

EXIST: Check existence of CPM Program
[label] EXIST {cond] : program name

HOLD: Hold Scroll
[label] HOLD [cond] : [*] label

INMAX: Set Input Line Length

[label] INMAX [cond] : integer

[label] INMAX [cond] : [*] numeric var
J: Jump

[label] J [cond] : [*] label

A-2 PILOT User’s Guide

LF:

MC:

OUT:

PR:

RESET:

SAVE:

WAIT:

Line Feed
[label] LF [cond] : decimal number

Match

{label] M [cond] : $string variable

[label] M [cond] : pattern[,pattern... etc.
Match including commas

[label] MC [cond] : pattern[,pattern... etc.

Output to an I/O port
[label] OUT [cond] : byte,port

Print
[label] PR [cond] : text

Remark

[label] R : comments

Reset Numeric variables to zero
[label] RESET [cond] : comments

Save input text
[label] SAVE [cond] : $string variable

Type text
[label] T [cond] : text

Type text with no RETURN
[label] TNR [cond] : text

Use
[label] U [cond] : [*] label

Accept Answer (Timed)

[label] WAIT [cond] : $string variable
[label] WAIT [cond] : #numeric variable
[label] WAIT [cond] :

Summary of PILOT Instructions

A-3

PILOT User’s Guide

Index

A, 3-3,4-2,7-1

Basic Procedure, 2-1
BELL:, 7-1

C:, 4-22, 426, 72

Capitalizing PILOT Instructions, 4-1
CASE:, 7-3

CH:, 7-3

CLRS:, 5-2, 74
COMPUTE, 4-22
Conditionals, 3-2, 4-3, 7-
Core instructions, 1-1, 3-
CP/M programs, 5-9
CPM:, 5-9, 7-5

CUR;, §-3, 5-6, 7-6

4
2

DEF:, 4-25, 6-2, 6-4, 7-7
DI:, 7-7
Dollar Sign, 4-24

E:, 4-16, 7-7

EIL;, 7-8

END:, 3-3, 4-9, 79
ERASTR:, 7-9
ESC:, 5-4, 7-10
EXIST:, 7-10

Formatting Diskettes, 2-2

Highlighting, 5-3
HOLD:, 7-11

INMAX:, 5-7, 7-11

1, 45,47, 7-12
JUMP, 4-5

Labels, 4-8, 7-12
LF:, 5-2,7-12

M:, 3-3, 42, 7-13

Match Patterns, 6-2
Matching, 3-3

MC:, 6-4, 7-13

Multiple Choice Options, 6-1
MY:, 6-4

NewWord, 2-1

Non-Document File, 4-1

Number Sign, 4-24

Numeric Variables, 4-22, 4-25, 4-26

OuUT:, 7-13

PILOT Instructions, 3-1
Pound Sign, 4-24
PR:, 7-13

R:, 5-1, 5-5, 7-14

Remarks, 5-5, 5-7

Reset Numeric Variables, 4-25
RESET:, 4-25, 7-14

SAVE:, 7-15

Semicolons in CPM: commands, 5-11
Special Characters, 4-24, 5-3, 7-15

String Variables, 4-25

Subroutines, 4-14, 4-16, 4-17, 4-21, 4-27, 5-6
Summary of CPM:, 5-12

T:, 3-3, 4-2, 5-2, 7-15
Text Editor, 2-1

TN:, 3-3

TNR:, 5-3, 7-16
TYPE IF NO, 3-3
TYPE IF YES, 3-3

U:, 4-5, 4-14, 4-17, 4-18, 7-16
UN:, 4-16

USE, 4-5

USE IF NO, 4-16

User numbers, 4-4

Vertical bar, 5-10
WAIT:, 7-16
XSTATEX.PIL, 5-10

Yes/No Answers, 6-1

ey

T

Index

< e
e

N

.
i
s !

]

..

-‘3.

