MVME101/D2

VMEmodules

MC68000
® Monoboard Microcomputer
User’s Manual

- @ MOTOROLA

MVME101 (D2)

MVME1lO01
MC68000O0 MONOBOARD COMPUTER

USER”®S MANUATL

The information in this document has been carefully checked and is
believed to be entirely reliable. However, no responsibility is assumed
for inaccuracies. Furthermore, Motorola reserves the right to make
changes to any products herein to improve reliability, function, or
design. Motorola does not assume any liability arising out of the
application or use of any product or circuit described herein; neither
does it convey any license under its patent rights nor the rights of
others.

Second Edition, July 1983
Copyright 1983 by Motorola GmbH

TABLE OF CONTENTS Page

Chapter 1 GENERAL INFORMATION

1.1. INTRODUCTION ittt eeeeeeaasssasosnsesassossssssssssasoans 1-2
1.2. SPECIFICATIONS .ttt ceetesosesssossosscsoscssscssacscsassess . 1=2
1.3. REFERENCE MANUALS et escoccccccacs ces s s s s s s s s emnssencee 1-5
1l.4. MANUAL TERMINOLOGY .ttt eevcesvosmcecocaccncccocas ce e ens 1-5
l1.4.1. Address and Data FOrmat ...eeeeceecnsccccccnans ceeees 15
l1.4.2. Electrical Signal Levels ..vieeecccccceccanans ceeees 1-5
1.4.3. Logic Signal States ..ieeseeeseerscencsccnsasnsaness L=5
Chapter 2 FUNCTIONAL DESCRIPTION

2.1. INTRODUCTION .t eeeeescoscsscoscsscscscsssssssescseassoscss 2-2
2.2. MICROPROCESSING UNIT ..ceceeescsosossscscsosscscacscsases 2-2
2.3. MEMORY ...¢ceceeecscsccscsossoasosasacsasas c et et e et ce e 2=2
2.3.1. Data Organization In Memorv ceee e ceeesenees 2=2
2.3.2. Memory Array C ettt ecc et ettt 2-3
2.3.3. Memory Map coceeceecccocanes ceet et Ceete e 2-4
2.3.4. Memory AccessS Time ..eeeeeceeans ettt 2-4
2.4. INPUT/OUTPUT=DEVICES ¢ eeveeeeeenonennnoannnnnn er e e 2-4
2.4.1. LOCAl I/0 ACCESS teeeeesecnonconnnns ettt «. 2-5
2.4.2. Enhanced Programmable Communication Interfaces 2-5
2.4.2.1. General Information Ceteeeae e c et ee e 2-5
2.4.2.2. Features ...iiieeiereeeersoneceenosencacsaansscneses 2-5
2.4.2.3. EPCI Device Descriptioniiiieiiinnnnnnennnn. 2-6
2.4.2.4. Hardware Configurationieeeeeeeeeeeeeeeeneeennn 2--6
2.4.2.5. Programming Informationiiiiiiieeeeeneeennnn 2-A
2.4.3. Peripheral Interface Adapterccce.... e 2-6
2.4.3.1. General Information ...ttt inneeeeteieeennaenns 2-6
2.4.3.2. Featuresccctveveccnsnenccnnns Cees e ee. 2-6
2.4.3.3. PIA Device DesSCription t..eeeeeeeeeeeeeeeeeeennons 2-7
2.4.3.4. Hardware Configurationeeeeeeeeennnn Ceee e 2-17
2.4.3.5. Programming Information ettt ettt eee 27
2.4.4. Programmable Timer ModUle ... ieeiieeeereeeeeeennanas 2-7
2.4.4.1. General Informationccceeeeeeeenes c e e e ee 2-7
2.4.4.2. Featuresccce. cesesvesses s e es et et es s e s esans 2-7
2.4.4.3. PTM Device Description e e e e e et e e 2-8
2.4.4.4. Hardware Configuration¢ceeeeeeeess cessseesses 28
2.4.4.5. Programming Information et et et et e e . 2-8
2.4.5. Connector P2 SignNals ceeeeeeeeeeeneeceoneness ceesses 2-3
2.5. MODULE STATUS REGISTER ..t cititeeeeeeoeocoecosnceoccossns 2-11
2.6. MODULE CONTROL REGISTER .t et eeeeecosecesaneecnonss ee. 2-12
2.7. ADDRESS DECODER ..¢ceeeensneccnccas c e e st eeereaan . ee. 2-15
2.7.1. Circuit Description et e e ee et et 2-15
2.7.2. Address Map Configuration ceeeees et eee e 2-16
2.8. VMEbus ARBITER AND REQUESTER «¢.c¢eoeo.. s e e e s e s s e 2=-20
2.8.1. VMEbUuS Arbiter ..ciieeeeeceeeeceeceeeceeens e it e 2-21
2.8.2. VMEDUS ReQUESEET .t ittt eeeceececccncsneoonsooscess eee 2-22
2.8.2.1. Bus Request ASSertion ...uieeeiieeeeeeeeenennnnenns 2-22
2.8.2.2. Bus Mastership ACQuisitioneeeeeenneneneeennn 2-22
2.8.2.3. BUS RElEASE it eeeeenneescosnsssossosnscocionss .. 2-24
2.8.2.4. Bus Grant Propagationcceeeeeeeen.. e e eeee e 2-24
2.9. VMEbuS INTERFACE .¢cceeececocccnes c e et seceseanns st s 2-25
2.9.1. VMEbUS SignalsS teeeeeeeeenececacenss c e eee e 2-25
2.9.2. VMEbus Data Transfer ...cieeeeceecccececens c e e e 2-30
2.9.3. Address MOAifiersS .t.iviieeeeenneeeeeeeeeennooceennnns 2-32

2.9.4. Time Out Counters ..ceeeeeeeeeecnceenes ceeean e ceees 2-32
2.9.5. Interface OPtionNS teeeeereeeeeerionesesoocccccccnnnns 2-33
2.9.5.1. System Controller Configuration ceceeceeans 2-34
2.9.5.2. Standard Configuration ...c.ciececsccscsccccanssss 2-34
2.9.5.3. Isolated Configuration ...ceeeeceececccsccsccceaess 2-35
2.10. RESET AND HALT FUNCTIONS ..¢ceeeesscscsoccssnncccnss .. 2-35
2.11. INTERRUPT HANDLER ..c.cccecececscccscnnscansncanscoansass 2-37
2.11.1. Software Abort and AC Failurecceeveeesececcssaes 2-39
2.11.2. System Failuresevececcen. cet et eesresaaaas ceeees 2-39
2.11.3. Bus Clear ..ecec.e cesssssscsesans Cetecesereecanns eees 2-39
2.11.4. On-Board I/0 Interrupts cetstereeessesaans ees 2-39
2.11.5. VMEbUS INterruptsS ..cececceeeccecccacocnss cecesssesss 2-39
2.12. TIMING SPECIFICATIONS .vccecceecccoccccccsncccas ceeeeess 2-40
Chapter 3 OPERATING INSTRUCTIONS

3.1. INTRODUCTION ...t eeeeceoocsssssssssossssssscascsocsnsss 3-1

3.2, UNPACKING INSTRUCTIONS ...ceeeeeae ceseessne ceesesssseee 3-1

3.3. INSPECTION essesesseassesssassnvass cececsessesseass 3-1

3.4, HARDWARE PREPARATION ..¢cceseessceccscscocscnoccsos ceees 3-1

3.4.1. VMEbus Requester Priority ceeessseannenes 3-4

3.4.2. VMEbus System Control Functionsc.ceeeeceeess .. 3-5

3.4.3. User-Vectorized Interrupt RequestS ...ceceeeeeceens ess 3-6

3.4.4. Auto-Vectorized Interrupt Requests ceeeen . 3-7

3.4.5. Serial Ports Configurationceeeeeees ceesseeeeaas 3-8

3.4.6. Serial Interface Controliiceteeecenocccnnnns ees 3-9

3.4.7. Programmable Timer Configuration ceceeeens . 3-10
3.4.8. Memoryv Sockets Configurationciececeecceeeesss 3-11
3.4.9. Local ROM AcCCeSS TIME .vveeeeeessssssaconssasccnnsnas 3-15
3.4.10. Address Map Configurationceeeeenen ceeecens eees 3-16
3.4.10.1. Local Memory AdAreSSeS tueeeecerecsccncccccses ceesss 3-16
3.4.10.2. Local I/0 AAAYreSSEeS ceeeeeccvccossccanccnanas ceeesees 3-16
3.4.10.3. VMEbus Short I/0 Addresses cesecesececanens 3-16
3.4.10.4. VMEbus Standard AdAressesceececcass ceecassas . 3-16
3.4.10.5. Address Decoder PROM Programming ...eeeececececeees 3-17
3.5. SOFTWARE INITIALIZATIONcecesceescscscacscccccsesss 3—25
3.5.1. Serial Communication Interface Initialization 3-25
3.5.2. Peripheral Interface Adapter Initialization 3-25
3.5.3. Programmable Timer Module Initialization 3-25
3.5.4. Module Control Register Initializationcececcee. 3-25
3.6. INSTALLATION Ceecceecssaaacaanns Cteccaceceeaeas 3-26
Chapter 4 MAINTENANCE INFORMATION

4.1. INTRODUCTION . .iieeeecocosssooscascsscssccansasocnsoases &4=1

4.2, PARTS LIST t:tceeeesesesosossosossossssascssscscscccsscacs ees 4-1

4.3, ASSEMBLY DRAWING, SCHEMATIC DIAGRAMS ...cceeeeeccceess 4-4

APPENDICES

APPENDIX A MC68000 MPU Data Sheet¢.ceeceeee cecescsssssescscsas A-]

APPENDIX B MC68661 EPCI Data Sheet ..iiieieeeeereececsenscesoeasass B=1

APPENDIX C MC6821 PIA Data Sheet ceesscscsessesseescssess C=1

APPENDIX D MC6840 PTM Data Sheet ...iceveeecsecsccsse e o T2

APPENDIX E BAR101l Bus Arbiter/ReUESLter ..eeeeeecsececccsccnssess E-1

IT

LIST OF TABLES Page

Table 1.1: MVME101l Specifications ...i.eeeseecececenecscesennanss 1-2

Table 2.1: Connector P2 Signal Descriptioncc.. cecesassaes 2-8

Table 2.2: Connector P2 Signal Locations ce e eseess 2-10
Table 2.3: Module Status RegisSter ..uieieecereersecescccsssnssseess 2-12
Table 2.4: Module Control Register ..eeeeeee.. cttteesecssessseseess 2-14
Table 2.5: Original Address Map ceeesesneann ciecesssresseeaass 2-18
Table 2.6: Original I/O-Register Address Mapcceeeeescescesaes 2-19
Table 2.7: Symbol Definitionsiciiieeiereecceessnsssecesasensses 2-25
Table 2.8: VMEbus Signal Descriptionceeeececcecscsscscesess 2-26
Table 2.9: Connector Pl Signal LocCationsSeeseeccceosscssnsss 2-30
Table 2.10: Address Modifier Codes ...ieveeeeccroscconcsansnscnaaes 2-32
Table 2.11: Reset and Halt FUNCtionsccceeevecccecccccsnncsss 2-36
Table 2.12: Local Memory Read Cycle Timing ..ieceeensscsacsnassass 2—41
Table 2.13: Local Memory Write Cycle Timingccceeevecccccecees 2-42
Table 2.14: VMEbus Read Cycle Timing ...veeeeeeeeecscecenscconeeaes 2-43
Table 2.15: VMEbus Write Cycle Timing ...veceececeeccoccsnosaesess 2-44
Table 2.16: Vmebus Request and Acquisition Timingc.cceeeeeese 2-45
Table 2.17: Vmebus Release and Bus Grant Propagation Timing 2-46
Table 3.1: MVME1O0l JUumper Ar€aS ...ceeceessecsscososssaccaossssnse 3-3

Table 3.2: VMEbus Requester Priority Selectioncceeeeeeee. 3-4

Table 3.3: VMEbus System Control Configuration¢ccccceeeeeee 3-5

Table 3.4: User-Vectorized Interrupt Selection eees 3-6

Table 3.5: Auto-Vectorized Interrupt Selectionceeeeeeeeeee 3=7

Table 3.6: Serial Ports Configurationcceeceveeeenceneaeeeess 3-8

Table 3.7: Serial Interface Controlceceeverccesccccccnneaes 3-9

Table 3.8: Programmable Timer Configurationcccceee... 3-11
Table 3.9: Signal Connections for RAM DevViCeS .ceeeeeeeeceeseeesas 3-13
Table 3.10: Signal Connections for ROM DeviCes ...veeeeoeseaonsaas 3-14
Table 3.11: Configqurations for Popular Memoriescceeeeee... 3-14
Table 3.12: Local ROM Access Time Selectionceeeeeeeececeeses 3-15
Table 3.13: Address Decoder PROM Data Definitionceveeee.. 3-17
Table 3.14: Address BoUnNdariesS ...eeeeececcscsceccsccnscssnccnnsss 3—18
Table 3.15: Address Decoder PROM Specificationeeeeveceeeses 3-19
Table 3.16: Personal AdAresSS MAP .cceeeeecececouenccsoseasssensaseas 323
Table 3.17: Personal I/O-Register AdAresSs MaApP ...eeeeeveeeneeesses 3-24
Table 4.1: MVMEL10l Parts LiSt teieeeesececeeceosososcescncncseanss 4-1

ITX

LIST OF FIGURES

Figure

Figure
Fiqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure
Fiqure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figqure
Figure
Figure
Figure
Figure
Figure

-

DN NDN

Y A T Y S S i S

WWWWwWwWwwwwwwwwwww

e =

.

HFHWOOJIO O WD

= OO oo oo

. .
HHFRHEFOOJONUd Wi -

N O oo oo

= O o0 es W

N O e

-

ee oo o8 es s

=
S W
o oe

[
wn

es se

se oo

The MVME1l0l Monoboard Computer

MVME101l Block Diagram ceserssee

Memory Array .ceeeeeseccess treccseascnnnn
Module Status Register ...eevececcaasnns
Module Control Register Ceeereeaas
Address Decoder ...veveecsns ceeesseveees

Address Map Configurationcoc0uu
VMEbus Arbiter and Requesterccco..
VMEbus Arbiter Operation Flow Chart
VMEbus Requester Operation Flow Chart
VMEbus Data Transfer Flow Chart
Time Out Counters ..
Reset Structure
Interrupt Handler
Local Memory Read Cycle .
Local Memory Write Cycle
VMEbus Read Cycle
VMEbus Write Cycle
VMEbus Request and Acquisition
VMEbus Release and Bus Grant Propagation

MVME10l Jumper Area Locations ...ceeeeee
Jumper Area Kl
Jumper Area
Jumper Area
Jumper Area
Jumper Area
Jumper Area
Jumper Area
Jumper Area
Jumper Area
Jumper Area K16cecce0s
Local Memory Organization
Memorv Pin Assignment
Jumper Areas K1l - Kl4
Jumper Area K4

Assembly Drawing

Schematic Diagram
Schematic Diagram
Schematic Diagram
Schematic Diagram
Schematic Diagram
Schematic Diagram
Schematic Diagram
Schematic Diagram
Schematic Diagram
Schematic Diagram
Schematic Diagram

Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet

11/11 oiiiiienns

Iv

® o 0o 0

oooooooooooooo

wwwwtiowwww
|
O WOOJAULL BN

Figure 1.1: The MVME101l Monoboard Computer

CHAPTER 1

GENERAL INFORMATION

1.1, INTRODUCTION

This manual provides general information, functional description,
installation instructions and maintenance information for the
MVME101l monoboard microcomputer. Figure 1.1 shows the MVMEl0l module.

1.2. SPECIFICATIONS

The MVME1l0l monoboard computer specifications are given in the following
table.

Table 1.1: MVME101l Specifications

e T o +
| CHARACTERISTIC | SPECIFICATION |
B T T e +
Microprocessor MC68000, 8 MHz operating frequency, 16-bit |
data bus, 16 megabyte addresssing range I

T e e e +
Local Memory Eight 28-pin sockets, organized as four |

pairs, for user-provided memory. Each pair |
is individually configurable to accept any
JEDEC-standard compatible bvte-wide static
RAM or ROM devices, ranging from 2K to 32K
bytes each. Local RAM 1is accessed without
wait cycles, local ROM access time is selec-
| table.

R ettt R ettt ettt +
Serial I/O-Ports Two Motorola MC68661 Enhanced Programmable
Communication Interfaces, featuring several
synchronous and asynchronous protocols and
software selectable baud rates from 50 to
19200 baud. Both ports are RS232C standard
compatible, may be configured as data set or
data terminal, and are available at 25-pole
connectors at the front panel.

Parallel I/0-Ports A Motorola MC6821 Parallel Interface Adapter
provides two independent programmable 8-bit
I/0 ports with two handshake lines and one
interrupt output to the MPU. All peripheral
I/0 signals are available at the lower rear
connector. l
R T e +

€ET-v

Figure 4.9: Schematic Diagram Sheet 8/11

r

(27 4 use
MC 48661 ereas ,é;v
PCIZSEL® > 29T Tappt L] 48 Py
3 TXD o= 2
READ* [> 4 n Frch Py »- '!Lt—@g T xp/AXD
24| a=5L3 4 1® I RxD/TXD
RES RxD 7y . RS 1 : 4 /
aux R¥C }— 5 o 2.9 A RTS /DSR
A82 asloc, it 42 [ORCIN, DSR/RTS
A1 42 — |24 J 4 (€TS5) 1o = A
®s# DTR 23 0 CTS/pTR
Y PTR_ree. — rajers
b3 o2 2 s xc_ | - 24
r,L—' 2 e 4 P : R TXC
[222t mR|E— O {72} nolon Hrazvien
204 5] 775 |2% -4 RS CHGND
== o4 ITS ® Y
243 2 535 b8 ‘@) uss SGND
Vovr] 23 Db Ds_—l®q i
| 22t—tp2 FERB[E——O Hc 18y
201 28|, | ¢)
200 Mpy iRI|IN ‘@' carggassar s
e s o
CISPRIWRF h]
3 “
wpci2x < ¢34 lnlg 2
P2l 43
PCIMRXD ¥ <J—ro cul'nlpt 42
-
us2 use
MCigs61 MC 1488
PCIMSEL® (> M ot - L x3¥ P3
1 TXD [
23,0 e Lﬂﬁ o 2.O ; XD/ RXD
v4 Mees Rwpl> 4 . [| RxD/TXD
13 2] —l2s RTS 1o 4
LocRES K >~ wx RXCP=2 s psR 0 - RTS/DSR
FeLS4 Af2 AS] RS ;"—s 23 42 M crs) : 1] ” DSR/RTS
vs1 Are__12), PrR)2Y 13 D o CTS/DTR
444 d DTR ' 2
Ka114A Doz 8,0 21 ——2{rr/c7s
Do 3 1 2 JD> 2 L2/ oy o 2Tk
26
osciLeaTor]y J— +a2v_ | | 3
26881, — /m fos psr|2 —o— {3 R—"—® @——{+n2v/D
s. HE o | D R4 A
— ~e »y 7S D, py LZ2T)
s 2lps Pra & ! SGND
282y, FrRbE) -
PYZEET] P Py
Ap1-age D/ [By, gl | 15!
O

Dap -Do3

IRPCI1 & <

g = mcas
T Daavee S

L
[se[moem Joam [v]

ouscRITION

Toas DOCUANT 01 w6 Coman " ON|

MVME101
SCHEMATIC DIAGRAM

e g | as == | SERIAL COMMUNICATION
ool =T, | INTERFACES
v e @ moromoLa
w . = jieaieiyeehiaiphiab g
\.) G - " 63AG3012M ‘E

Table 1.1:

MVME101 Specifications (cont”d)

S o +

| CHARACTERISTIC

SPECIFICATION

|

o o e +

Timer/Counter

Address Map

VMEbus Interface

VMEbus Requester

Interrupt Handler

Time Out Counters

A Motorola MC6840 Programmable Timer Module

. contains three independent 16-bit counters.

All peripheral clock, gate and output lines
are available at the lower rear connector.
A jumper area provides gate enabling, real
time counting, bus cycle counting and timer
cascading.

Decoder logic devides a 2 Megabyte address
range (000000 - OFFFFF and F00000 - FFFFFF)
into 512 segments, each covering 4K bytes.
An address decoder PROM assigns each of
these segments to one of the four on-board
memory pairs, to the on-board I/O devices,
or to off-board resources on the VMEbus. All
addresses from 100000 to EFFFFF are assumed
to be off board and directed to the VMEbus.

The private bus interconnecting all on-board
devices 1is connected to the VMEbus through
a VMEbus interface when off-board resources
are to be accessed. This interface is fully
compatible with the VMEbus Specification
Rev.B.

For implementation in multiprocessor systems
the module contains a VMEbus requester which
requests and releases the bus either under
direct software control, or indirectly upon
decoding off-board and on-board addresses.
The bus requester is selectable to operate
on one of four prioritized bus arbitration
levels.

For use as the system controller in a VMEbus
system, the module contains an option ONE
bus arbiter, supporting daisy-chained bus
arbitration on a single level.

Any or all of the seven VMEbus interrupt

‘request 1lines can be strapped to generate

prioritized and user-vectorized interrupts.
The interrupt outputs of the on-board 1/0
devices and the VMEbus signals BCLR* and
SYSFAIL* can be jumpered to any of six pri-
oritized and auto-vectorized interrupts.
The ABORT pushbutton and the VMEbus signal
ACFAIL* generate a non-maskable auto-vecto-
rized interrupt.

Two software controlled time-out counters
supervise VMEbus operations. A bus error can
be generated if a bus request is not granted
within 128 microseconds, or if a bus data

transfer is not acknowledged within 8 micro-
seconds.

Table 1.1:

MVME10l1 Specifications (cont”d)

T P o ————————— +

| CHARACTERISTIC

SPECIFICATION

T T e e +

Status Register

Mechan. Dimensions

Power Requirements
{ See Note)

Temperature Range

Programmable hexadecimal LED display at the
front panel for status indication.

Two pushbutton switches at the front panel
for System Reset and Software Abort.

For use as the system controller in a VMEbus
system, the module can be configured to
drive the bus signals SYSCLK and SYSRESET*.

Through an 8-bit Module Control Register the
MPU controls the status display, the VMEbus
output SYSFAIL*, the VMEbus requester, and
the time-out counters.

Through an 8-bit Module Status Register the
MPU can monitor the VMEbus signals ACFAIL*,
SYSFAIL* and BCLR*, the VMEbus availability,
the activation of the Software Abort switch,
the data input of Serial Port 1, and the
occurence of a time-out condition.

Double height VME board with front panel
Board Size: 233 mm x 160 mm
Front Panel Size: 262 mm x 20 mm

One 96 pole DIN 41612 connector for VMEbus,
one 64 pole DIN 41612 connector for parallel
I/0 and timer signals,

two 25 pole D-Subminiatur connectors for the
serial ports.

+ 5VvDC (+/- 5%), 2.0 A (typ), 3.0 A (max)
+12 v DC (+/- 5%), 25 mA (typ), 50 mA (max)
-12 V DC (+/- 5%), 25 mA (typ), 50 mA (max)

Operating temperature: 0 to 55 C
Storage temperature: -40 to 100 CC

e e +

| Rel. Humidity Range

Operating humidity: 0% to 90% non-condensing

e o e +

Note: The current at +5 V DC is specified for the MVME1l0l module without

any local memory.

supply current of the memory devices used.

The currents at +12 V and -12 V DC
module with the serial port connectors open.

values depend on

To calculate the actual required value, add the

are specified for the MVME1l0l
The actual required

the load of the RS232C ports. All serial port
outputs are current-limited to sink or source 12 mA (max) each.

1.3. REFERENCE MANUALS

The following manuals may be used for further information about the
MC68000 microprocessor, the MC6840 timer module, the VMEbus system and
the VMEbug debugger/monitor:

* MC68000UM MC68000 16-bit Microprocessor User”s Manual

* MC6840UM MC6840 Programmable Timer Fundamentals and Applications
* MVMEBS VMEbus Specification Manual

*

MVME101BUG MVME1l0lbug Debug Package User”s Manual

1.4. MANUAL TERMINOLOGY

_—— — — ——— ——— - —— —— — —————— - — -

Throughout this manual, unless otherwise noted, all address and data
values are given in hexadecimal format.

1.4.2. Electrical Signal Levels

A signal line 1is always assumed to be in one of two levels, or in
transition between these levels. Whenever the term "high" is used, it
refers to a high TTL voltage level (> +2.0 V). The term "low" refers
to a low TTL voltage level (< +0.8 V). There are two possible transi-
tions which can appear on a signal line, and these will be referred to
as "edges". A "rising edge" is defined as the time period during which
a signal line makes its transition from a low level to a high level. The
"falling edge" 1is defined as the time period during which a signal line
makes its transition from a high level to a low level.

A signal is defined as "active low", if the function associated with the
signal line is valid or initiated by either a low level or a falling

edge on the signal line. The mnemonics of active low signals are marked
with the suffix "*",

A signal is defined as "active high", if the function associated with
the signal line is valid or initiated by either a high level or a rising
edge on the signal line.

1.4.3. Logic Signal States

The terms "assert" and "negate" describe the logic state of a signal
without indicating the associated voltage level. An active low signal
is asserted when its voltage level is 1low, it is negated when its
voltage level is high. An active high signal 1is asserted when its
voltage level is high, it is negated when its voltage level is low.

For signals which are driven by three-state or open-collector outputs,
the term "release" 'describes the high impedance state of the correspon-
ding driver. Typically these signal lines are driven to a high voltage
level by pull-up resistors when all drivers on the line are turned off.

VMEBYUS CONNECTOR

[L—

1/0 convecTOR

VMEBYUS VMEBUS VYMEBUS INTERRUPT PARALLEL TIMER
ARBITER |REQUESTER INTERFACE HANDLER INTERFACE MODULE
/‘r VS 3 <\ 4 /\F <>
(VTERRUPT xtgtsrs
|| RESET LINES
- SELECT LINES
| CLOCK SIGNALS
— DATA |TRAVSFER CONTROL
: ADDRESS BUS
[11 | 111l [1[] l | 1
DATA_ _BUS i
cLock MICROPROCESSING TIME-0UT Ddrack ADDRESS MEMORY
IGENERATOR, umir COUNTER GENERATO. DECODER ARRAY
DATA_BVUS DATA_3US
d3vsven svarvs |_ j

BUS ARBITRATION — ADDPRESS BusS

YiME-OuT CONTROL F patA | TRANSFER __ lconTROL

SELECT LINES -

RESET LINES |

INTERRUPT |REQUESTS —

\ V.4 AV ARV \/L
CONTROL STATYUS RESET SERIAL COMMUNICATION SERIAL COMMUNICATION
REGISTER REGISTER CIRCVIT INTERFACE 1 INTERFACE 2
| HEX ABORT RESET SERIAL PORT 4 SERIAL PORT 2
|| PisPLaY SWITCH n SWITCH CONNECTOR CONNECTOR

11

*Z 2ianb1a

weibet1q 300Td TOTIWAW

CHAPTER 2

FUNCTIONAL DESCRIPTION

2.1. INTRODUCTION

This chapter provides a detailed description of the MVME1l0l monoboard
computer and its various modes of operation. The module can be regarded
as consisting of functional blocks, as shown in Figure 2.1. Each block
is described in a seperate paragraph in this chapter. For hardware
details, Chapter 4 includes the schematic diagrams and an assembly
drawing.

The MVMEl0l is designed to operate either as a monoboard system, as a
single MPU controller in a VMEbus system, or as a MPU element in a
multiprocessor configuration. Hardware and software application hints
for each of these modes are given in this chapter. Detailed electrical
and timing specifications of the VMEbus connector signals allow the user
to design peripheral modules and his target hardware around the mono-
board computer without requiring measurements on the board.

2.2. MICROPROCESSING UNIT

The microprocessing unit of the MVMEl0l consists of the Motorola MC68000
MPU and some interfacing hardware for other functional blocks. The
microprocessor runs at 8 MHz clock frequency.

A detailed description of the microprocessor is given in the Motorola
MC68000 Data Sheet in Appendix A of this User”s Guide.

2.3 MEMORY

The 16-bit data word of the MC68000 MPU is separated into a lower data
byte (D00-D07) and an upper data byte (D08-D15), corresponding ¢to a
given memory address (A0l1-A23). The address line A0O is only internal to
the MPU and externally replaced by the data strobe signals LDS*
and UDS*. A detailed description of the data organization in memory can
be found in the MC68000 Data Sheet in Appendix A.

Accordingly any memory block for the MC68000 must be made up of two
identical halves, one of them connected to the lower order data lines
D00-D07 and activated by LDS*, the other half connected to the upper
order data lines D08-D15 and activated by UDS*.

2.3.2. Memory Array

As shown in Figure 2.2, the memory array of the MVME1l0l consists of

eight 28-pin sockets, organized as four pairs, for user-provided memory.

These sockets accept any RAM or ROM devices which meet the following

specifications:

- 24-pin or 28-pin dual-in-line package compatible with the JEDEC
standard pin-out for byte-wide memories,

- memory size 2K, 4K, 8K, 16K, or 32K bytes per device,

- static operation,

- single + 5 V power supply,

- high impedance inputs (MOS characteristic), three-state outputs,

- timing requirements accordant with the specifications given in
Paragraph 2.12.

A jumper area 1is associated with each memory pair to support different

device sizes and pin-outs. Paragraph 3.4.8 describes the configuration
of these jumpers.

Figure 2.2: Memory Array

—:> K14 |) MEML4UY ‘) MEM4L

T g U

:> K13 j MEM3UY) MEM3L
MUSELX

ADDRESs |HI3SELY
DECODER |MZSEL*
T | masELw 7 |

»
11 : > k12 :> MEM2U) MEM2L
)
N
‘ IAI TAT]:I
]
N ii
Ay ‘
X . |
A E
UDWR¥, LDWR¥*,DRDW K11 E MEMA4V o) MEMAL
9 /AT
X ¥ R S
MPU) l 1 \ &
g AY 0 x
Ay)]) a
: g <) < 19
APA~ A48 i
Kﬁhmr—n45 '
hJ

2-3

2.3.3. Memory Map

For the first four MPU cycles after a board reset, data is fetched from
the memory devices located in the socket pair 4, regardless of the
addresses assigned. Therefore, the sockets MEM4L and MEM4AU must be
populated with ROM, and the first eight bytes of this ROM must contain
the initial supervisor stack pointer and program counter values.

For the socket pairs 1, 2, and 3, the user is free to install either ROM
or RAM or to leave them open. Each memory pair may be placed anywhere
in a 2 Megabyte address range (000000 - OFFFFF and F00000 - FFFFFF) by
programming an address decoder PROM according to the desired memory map.
Paragraph 2.7 gives a detailed description of the Address Decoder.

As socket pair 4 must contain ROM in any case, it is preferable that
this firmware includes at least the board initialization, system monito-
ring, and failure servicing routines, to ensure their proper execution
with a minimum of hardware involved. For the same reason the exception
vector table and the stack should reside in on-board RAM.

2.3.4. Memory Access Time

Data transfers between MPU and memory are performed in an asynchronous
manner. Having asserted address, data, and strobe signals, the MPU
inserts wait states wuntil it receives the data transfer acknowledge
signal, and then terminates the transfer. A detailed description of the

data transfer protocol can be found in the Motorola MC68000 Data Sheet
in Appendix A.

On the MVME10l monoboard computer, data to and from the on-board RAM is
transferred without inserting wait states. For read operations from the
on-board ROM, the configuration of jumper area K4 determines the number
of wait states 1inserted by the MPU. The jumper must be positioned in
accordance with the access time requirements of the installed memory
devices. Paragraph 2.12 specifies the on-board memory timing. The
configuration of jumper area K4 is described in Paragraph 3.4.9.

2.4. INPUT/OUTPUT-DEVICES

—— - - — —————— ——— ———————— o - —

The following input/output-devices are provided on the MVME10l monoboard
computer:

* two programmable serial communication interfaces
* a programmable parallel peripheral interface adapter
* a programmable triple timer module

The serial ports are RS232C standard compatible, may be configured as
data set or data terminal, and are available at two 25-pole connectors
on the front panel. The peripheral I/O signals of the parallel inter-
face adapter and of the timer module are fed to the lower rear DIN 41612
64-pin connector.

2.4.1. Local I/0 Access

All on-board I/O-devices, including the Module Control and Status
Registers, are memory-mapped and occupy a 4 Kilobyte address segment.
This segment may be placed anywhere in a 2 Megabyte address range
(000000 - OFFFFF and F00000 - FFFFFF) by programming the address
decoder PROM according to the desired memory map. Paragraph 2.7 gives
a detailed description of the Address Decoder.

Data transfers between MPU and on-board 1I/0-devices are performed
in a synchronous manner. When the address decoder detects an address in
the local I/0 address segment, it asserts the valid peripheral address
signal VPA¥*, This causes the MPU to terminate the current cycle after
internal synchronization with the peripheral clock signal E. A detailed
description of the synchronous data transfer protocol can be found in
the Motorola MC68000 Data Sheet in Appendix A.

2.4.2. Enhanced Programmable Communication Interfaces

On the MVMEl0l monoboard computer two serial I/O-channels are installed,
each of them controlled by a Motorola MC68661C Enhanced Programmable
Communication Interface (EPCI). The EPCIs support several synchronous
and asynchronous protocols in full or half duplex mode, and software
selectable baud rates ranging from 50 to 19200 baud. Both ports are
RS232C standard compatible, may be configured as data set or data
terminal, and are available at 25-pole connectors on the front panel.

2.4.2.2. Features

Features, common to synchronous and asynchronous operation:

S to 8 bit characters

odd, even or no parity

local or remote maintenance loop back mode
16 programmable baud rates

double buffered transmitter and receiver
dynamic character length switching

half or full duplex operation

* %k ¥ % ¥ * ¥

Additional features in synchronous operation:

internal or external character synchronization
transparent or non-transparent mode
transparent mode DLE stuffing and detection
single or double SYN operation

automatic SYN or DLE-SYN insertion

SYN, DLE, and DLE-SYN stripping

* % ¥ % ¥ *

Additional features in asynchronous operation:

parity, overrun and framing error detection
line break detection and generation

false start bit detection
automatic serial echo mode

* % * *

2.4.2.3. EPCI Device Description

—————— - —————— T ———— ——— — — o -

A detailed description of the Enhanced Peripheral Communications Inter-
face is given in the Motorola MC68661 Data Sheet in Appendix B.

2.4.2.4. Hardware Configuration

- ——— " —_ ———————————— —— — - — ———— -

Both serial ports may be configured independently as data terminal or as
data set on the jumper areas K7 and K15. The EPCI input CTS* can either
be constantly enabled or shortened with the input DSR* on the jumper
areas K9 and K1l0. The same jumper areas are used to connect the EPCI
outputs TXRDY* and RXRDY* with the interrupt handler. Paragraph 3.4
includes detailed instructions how to configure the jumper areas for the
various modes of operation.

2.4.2.5. Programming Information

——— o ——— ————————— —— —— —— ——— —— T —

Prior to initiating data communications, the EPCI registers must be
loaded with a set of mode and command bytes. Detailed programming
instructions are given in the Motorola MC68661 Data Sheet in Appendix B.
The addresses of the EPCI registers are listed in Paragraph 2.7.

The serial data input of SP1 can be monitored through the Module Status
Register. This feature supports the automatic detection of a terminal’s
baud rate: After hitting a specified character on the keyboard, the
width of the first serial data bit 1is measured with the Programmable
Timer Module. The result then is compared with a list of values in a
lookup table to determine the transmitter”s baud rate. (The automatic
baud rate detection in MVMEl0lbug is implemented in this way.)

2.4.3. Peripheral Interface Adapter

———— ——— — — —— ————— — — T ——— —— ——————— — -

The MC6821 Peripheral Interface Adapter (PIA) provides the universal
means of interfacing peripheral equipment to the MVMEl0l monoboard
computer. The PIA can interface the MPU to peripherals through two
8-bit bidirectional peripheral data buses and four control lines.

2.4.3.2. Features

* two bidirectional 8-bit buses for interface to peripherals

* each peripheral line individually programmable as input or output

* four individually controlled interrupt input lines; two usable as
peripheral control outputs

handshake control logic for input and output peripheral operation
high-impedance 3-state and direct transistor drive peripheral lines
program controlled interrupt and interrupt disable capability

CMOS drive capability on side A peripheral lines

two TTL drive capability on all A and B side buffers

* * %k % *

2.4.3.3. PIA Device Description

—————————— ————— ————— —— - —————————

A detailed description of the Peripheral Interface Adapter is given in
the Motorola MC6821 Data Sheet in Appendix C.

2.4,3.4. Hardware Configuration

——— - —— — ———— — ———— — T —— - ———————

All peripheral data and control lines are fed to the DIN 41612 C 96 rear
connector P2. A description of the input/output signals is given in
Table 2.1. Their locations at P2 are shown in Table 2.2.

Note that the peripheral input/output lines are not buffered between the
PIA and the connector P2. Therefore, the electrical characteristics
of the signals at P2 are equivalent with the values given in the MC6821
Data Sheet.

The interrupt outputs of the PIA may be wired to one of the Auto-Vecto-
rized Interrupt Request lines on the Jjumper area Ké6. Paragraph 3.4.4
describes the configuration of K6.

2.4.3.5. Programming Information

— — — —————— ——— —— — — - — ——— - —— —————

The functional configuration of the PIA is programmed by the MPU during
system initialization. Each of the peripheral data 1lines can be
programmed to act as an input or output, and each of the four
control/interrupt 1lines may be programmed for one of several control
modes. Detailed programming instructions are given 1in the Motorola

MC6821 Data Sheet in Appendix C. The addresses of the PIA registers are
listed in Paragraph 2.7.

2.4.4. Programmable Timer Module

—— - —— ———————————— — ————— ——— ———

The MC6840 Programmable Timer Module (PTM) contains three 16-bit
binary counters, three corresponding control registers, and a status
register. The counters are under software control and may be programmed
to generate module interrupts and/or output signals. The PTM can be used
for frequency measurements, event counting, interval measuring, and
similar tasks. It can generate square waves, gated delay signals, and
single pulses of controlled or modulated duration.

2.4.4.2. Features

* selectable prescaler on timer 3

* programmable interrupt output to MPU

* readable down counter indicates counts to go to time-out
* selectable gating for frequency or pulse-width comparison
*

three asynchronous external clock and gate/trigger inputs internally
synchronized

three maskable outputs
peripheral inputs/outputs fully TTL compatible

* %

2-7

2.4.4.3. PTM Device Description

A detailed description of the Programmable Timer Module is given in the
Motorola MC6840 Data Sheet in Appendix D.

2.4,4.4. Hardware Configuration

All peripheral clock,gate and output lines are fed to the DIN 41612 C 64
rear connector P2. A description of the input/output signals is given
in Table 2.1. Their locations at P2 are shown in Table 2.2.

Note that the peripheral input/output lines are not buffered between the
PTM and the connector P2, Therefore, the electrical characteristics
of the signals at P2 are equivalent with the values given in the MC6840
Data Sheet.

The gate inputs of the counters can be constantly enabled by setting
jumpers on jumper area Kl6. Also, K16 provides the hardware connections
for cascading the PTM”s counters, for real time counting, MPU cycle
counting, or VMEbus cycle counting. Paragraph 3.4.7 gives a detailed
description of jumper area Kl6.

The interrupt output of the PTM may be wired to one of the Auto-Vecto-
rized Interrupt Request lines on the Jjumper area K6. Paragraph 3.4.4
describes the configuration of Ké6.

2.4.4.5. Programming Information

The functional configuration of the PTM is programmed by the MPU during
system initialization. Detailed programming instructions are given in
the Motorola MC6840 Data Sheet in Appendix D. The addresses of the PTM
registers are listed in Paragraph 2.7.

2.4.5. Connector P2 Signals

———— ——— ——————— —————— ——— —— —

Table 2.1 identifies the peripheral input/output signals by signal
mnemonic, connector pin number and signal characteristics, Table 2.2
shows the signal locations at connector P2.

Table 2.1: Connector P2 Signal Description

Fom Fommm e e e +

| SIGNAL | PIN NO. | SIGNAL DESCRIPTION |
o ——— e et ettt +

PAO...PA7 Cl2...C19 PIA SECTION A PERIPHERAL DATA

Eight TTL compatible peripheral data lines.
Each 1line can be programmed to act as an
output or input by setting the corresponding |
bit in the PIA Data Direction Register A
to llO" or "lll.

Table 2.1:

o ———— fomm e ————— e +
| SIGNAL | PIN NO. SIGNAL DESCRIPTION |
et ittt e T e it +
CAl Cc21 PIA SECTION A INTERRUPT |
A TTL compatible clock input line that sets
the interrupt flag of the PIA Control
Register A. The active transition of this
signal 1is programmed by the PIA Control
Register A.
Fmmm e T it ittt +
CA2 Cc20 PIA SECTION A PERIPHERAL CONTROL
A TTL compatible line that can be programmed
by the PIA Control Register A to act as a
peripheral control output or an interrupt
input.
ittt e T e ettt +
PBO...PB7 C4...Cl1 PIA SECTION B PERIPHERAL DATA
Eight TTL compatible peripheral data lines.
Each 1line can be programmed to act as an
output or high impedance input by setting
the corresponding bit in the PIA Data
Direction Register B to "0" or "1".
e e Fmm e e +
CB1l C3 PIA SECTION B INTERRUPT
A TTL compatible clock input line that sets
the interrupt flag of the PIA Control
Register B. The active transition of this
signal 1is programmed by the PIA Control
| Register B.
Fomm e e et e +
CB2 C2 PIA SECTION B PERIPHERAL CONTROL
A TTL compatible line that can be programmed
by the PIA Control Register B to act as a
peripheral control output or a high |
impedance interrupt input. |
i e e - +
Cl*,..C3* | c23, C26 PTM CLOCK INPUTS 1...3
Cc29
Three —active low TTL compatible high |
impedance clock inputs that can be wused |
to decrement Timers l1l...3, respectively. |
i e e e +
Gl*...G3* | C25, C28, | PTM GATE INPUTS 1...3
C3l
.Three active low TTL compatible high |
impedance inputs that can be programmed
to act as triggers or clock gating functions
to Timers 1...3, respectively.
ittt Rt T T +
0l...03 c24, C27 PTM OUTPUTS 1...3
C30
Three active high TTL compatible outputs
of Timers 1..3, respectively. The output
waveform 1is defined by the contents of the
PTM Control Registers l1l...3, respectively.
R et e dommm e R et +

Connector P2 Signal Description

(cont”d)

2-9

Table 2.1: Connector P2 Signal Description (cont”d)

Fmmm e e e +
| SIGNAL | PIN NO. | SIGNAL DESCRIPTION
R dmm e e e +

+5V Cl, C22, ‘ + 5 VOLTS

Cc32
| + 5 Volts power supply output
----------- o e e}
GND Al...A32 GROUND
Power supply ground lines

Rt Fom e o +

Table 2.2: Connector P2 Signal Locations

tme———— Fomm e o +om——— +
PIN ROW A ROW C PIN |
NO. SIGNALS | SIGNALS NO. |

$om——— R tmmm————— - +

1 GND +5V 1]
2 GND CB2 2
3 GND CB1 3
4 GND PB7 4
5 GND PB6 5
6 GND PB5 6
7 GND PB4 7
8 GND PB3 8
9 GND PB2 9
10 GND PB1 10
11 GND PBO 11
12 GND PA7 12
13 GND PA6 13
14 GND PAS 14
15 GND PA4 15
16 GND PA3 16
17 GND PA2 17
18 GND PAl 18
19 GND PAO 19
20 GND CA2 20
21 GND cal 21
22 GND +5V 22
23 GND C3* 23
24 GND 03 24
25 GND G3* 25
26 GND C2* 26
27 GND 02 27
28 GND G2* 28
29 GND Cl* 29
30 GND 01 30
31 GND Gl* 31
32 GND +5V 32
t————— o ——— T e e +

2.5. MODULE STATUS REGISTER

Through the Module Status Register (MSR) the current status of several
on-board signals and VMEbus lines can be monitored. By that the MPU can
detect certain system conditions and branch to the appropriate servicing
routines.

The MSR appears as an 8-bit register in the on-board I/0-devices address
segment. Paragraph 2.7 gives more detailed addressing information.

Figure 2.3 shows how the MSR is interconnected with VMEbus signals and
with ‘other functional blocks on the MVME1l01l. During a read operation,
the outputs of the MSR are enabled and put on the lower order data lines
D00-D07. The outputs MSRO-MSR5 represent the current states of the
signals ACFAIL*, SYSFAIL*, ABORT*, BCLR*, BAV* and PCI1RXD*. MSR6
and MSR7 are Flip-Flop outputs which are set to 0 when a bus request
time-out (MSR6) or a data transfer time-out (MSR7) occured. Any
write operation to the MSR clears MSR6 and MSR7 to 1, regardless of the
data transferred.

A bit value of 0
a value of 1 means

All signals represented 1in the MSR are active low.
indicates that the corresponding signal is asserted,
that it is negated.

Figure 2.3: Module Status Register

2-11

VMEBUS
INTERFACE
ERR*
BERR® i;:x DATA
TRANSFER
BRTO® FIME -0UT
BUS
REQUEST
TIME - QUT
ACFAIL % PC11 a
INTERRUPT [4—SYSEAILY by
HANDLER ABORTH N
BDCLRx
ey K
REQUESTER
MSR BCIR W <
SETF DITOX -
e BERRX | REST be ABOR
| SETE BRTOX SWITCH
IPLBR ~ IPL2X
moy K rme=ipeax | o
a hsR# D5 je—PEI1RXDx K3 .
k‘ Dog - DI} : Do bg—BAVH 00 SvsrAnE
MRS 23 le—BCLR® neXe <
U D2 ABORTH* 'O \
Dt SYSEAIL* . 0|
ADDRESS MIRRDY READ Dple—tLFAlL* 00,
DECODER H3RWR* ACFAIL®

Table 2.3 shows the allocation of signals in the MSR and explaines the
information contained in each bit.

Table 2.3: Module Status Register

fm————— o ——————— e +

| BIT | SIGNAL DESCRIPTION |

o e e +
MSR7 DTTO¥* MSR7 = 0: A Data Transfer Time-Out occured.

MSR7 = 1: A Data Transfer Time-Out did not occur.

Note: Paragraph 2.9.4 describes the Data
Transfer Time Out counter in detail.

e ————— S T it ittt e P T +
MSR6 BRTO* MSR6 = 0: A Bus Request Time-Out occured.

MSR6 = 1: A Bus Request Time-Out did not occur.

Note: Paragraph 2.9.4 describes the Bus
Request Time Out counter in detail.

Fmm———— T T +
MSRS PCI1RXD¥* MSR5 reflects the current state of the data input

of Serial Port 1.

Note: Paragraph 2.4.2.5 describes how MSR5
can be used for automatic baud rate
detection. |

fmm o e e +
MSR4 BAV* MSR4 = 0: The VMEbus is available.

MSR4 = 1: The VMEbus is not available.

Note: Paragraph 2.8.2 describes how the BAV*
signal is used for bus arbitration.

dmm———— e +
MSR3 | BCLR* MSR3 = 0: The VMEbus signal BCLR* is asserted.

MSR3 = 1: The VMEbus signal BCLR* is negated.

Note: Paragraph 2.8.2 describes how the BCLR*
signal is used for bus arbitration. |

dmm———— e R T P +
MSR2 ABORT* MSR2 = 0: The ABORT switch is pressed.

MSR2 = 1l: The ABORT switch is released.

Note: Paragraph 2.11.1 describes the ABORT
function.

Fmm———— ittt b ittt PP P +
MSR1 SYSFAIL* MSR1 = 0: The VMEbus signal SYSFAIL* is asserted.

MSR1 = 1: The VMEbus signal SYSFAIL* is negated.

Note: Paragraph 2.11.2 describes the SYSFAIL
function.

to———— R s Rttt ettt i TP PR +
MSRO ACFAIL* MSRO = 0: The VMEbus signal ACFAIL* is asserted.

MSRO = 1: The VMEbus signal ACFAIL* is negated.

Note: Paragraph 2.11.1 describes the ACFAIL
function.

R Fom e e e +

2-12

2.6. MODULE CONTROL REGISTER

The Module Control Register (MCR) contains eight bits for controlling
various module functions and the hexadecimal STATUS display. To support

single bit manipulations, the data byte in the MCR can be both written
and read.

The MCR appears as an 8-bit register in the on-board I/0O-devices address
segment. Paragraph 2.7 gives more detailed addressing information.

Figure 2.4 shows how the MCR is interconnected with other functional
blocks on the MVMEl0l. During a write operation, the bit pattern on the
lower order data lines D00-D07 is stored in the MCR. The four bits
MCRO-MCR3 represent the hex number to be shown on the STATUS display in
binary data format. In addition, when MCRO-MCR3 all are set to 1, i.e.
when the hex number F is displayed, the VMEbus signal SYSFAIL* 1is
asserted. MCR4 is used to switch the display on and off. MCRS controls
the bus block transfer mode of the VMEbus Requester. The bits MCR6 and
MCR7 are used to enable or disable the time-out counters.

After a system reset all bits in the MCR are cleared to 0. Also, when
the MPU has halted due to a double bus error, the MCR is cleared, and
both decimal points on the STATUS display are lit.

All signals controlled by the MCR are active high. A bit value of 1
causes the assertion of the corresponding signal, a value of 0 causes
its negation.

Figure 2.4: Module Control Register

DATA /\

TRANSFER
TIME -oUT

BuS
REQUEST
TIME-our

VYMEBUS
requesrer K

MCR DISPLAY 3
— ‘ @
HALT* Reser Q3p—ERRIO h@——uamw ¥
o
Hev A Y N >
DPP - DOP? H
MCRY Qs BBTR LEFT POINT
Q4 ﬁ::: RIGHT POINT
Q3
U 2| —2r22 zi
ADDRESS L1ERRD® Réap Q42221 b1
DECODER HMCRWRY WRITE Qs DPDY Dy
_3
D 00
L5 of SYSFAIL*
lO OI
‘O O

2-13

Table 2.4 shows the allocation of signals in the MCR and explaines the
function of each bit.

Table 2.4: Module Control Register

$————— tmmm————— o e e +
| BIT | SIGNAL | DESCRIPTION
pomm Fmm— o - +

MCR7 | EDDTO MCR7 = 0: Disable Data Transfer Time-Out counter.
MCR7 = 1l: Enable Data Transfer Time-Out counter.
Note: Paragraph 2.9.4 describes the Data Trans-

fer Time-Out counter in detail.
$om——— Fommm T T e +
MCR6 EBRTO MCR6 = 0: Disable Bus Request Time-Out counter.
MCR6 = 1: Enable Bus Request Time-Out counter.
Note: Paragraph 2.9.4 describes the Bus Request
Time-Out counter in detail.
e b e e +

MCRS | BBTR MCR5 = 0: Negate Bus Block Transfer Request. |

MCR5 = 1: Assert Bus Block Transfer Request.
Note: Paragraph 2.8.2 describes the function of
the BBTR signal.
$em——— fomm e +
MCR4 SDON MCR4 = 0: Blank STATUS Display.
MCR4 = 1: Lit STATUS Display.
Note: The STATUS Display is also blanked after |
svstem reset and when the MPU has halted. |
e e o e +

MCR3 SDD3 spbp3,sbb2,sSbpl,spp0 = 0,0,0,0: Display "0O"

MCR2 SDD2 sbp3,sbop2,sppl,sppo0 = 0,0,0,1: Display "1"

MCR1 SDD1 : :

MCRO SDDO : :
sbop3,sbp2,sppl,sop0 = 1,1,1,0: Display "E"
spp3,sbp2,sbpl,spp0 = 1,1,1,1: Display "F" and

assert SYSFAIL*
The bits SDD0-SDD3 are the binary equivalent of the
hexadecimal number on the STATUS display. Also, |
these bits are used to assert the SYSFAIL* signal on |
the VMEbus by setting them all to 1, i.e. by writing |
"F" into the STATUS display.
Note: Paragraph 2.11.2 describes the SYSFAIL
function.
o Fommm e +

2.7. ADDRESS DECODER

The Address Decoder logic is responsible for selecting the various on-
board devices or the VMEbus Interface, depending on the address asserted
by the MPU. Also, it contains circuitry to generate the data transfer
handshake signals for on-board operations.

Figure 2.5 shows how the Address Decoder is interconnected with on-board
devices and other functional blocks on the MVME1l0l. The data contained
in the Decoder PROM determines the address map configuration and assigns
each address either to one of the on-board devices or to the VMEbus.
The Device Selector receives signals from the Decoder PROM, the MPU,
the Interrupt Handler and the Reset Circuit, and determines the current
cycle to be either a VMEbus data transfer, a data transfer to or from
one of the on-board ROM or RAM devices, an access to the on-board
I/0-devices, a VMEbus interrupt acknowledge cycle, an auto-vectorized
interrupt acknowledge cycle, or a reset vector fetch. For VMEDbus
operations, the Device Selector enables the VMEbus Requester and the
VMEbus Interface. When on-board memory is accessed, the Device Selector
enables the addressed memory pair and causes the DTACK Generator to
assert the data transfer acknowledge signal. When one of the on-board
I/0-devices 1is accessed, or 1in case of an auto-vectorized interrupt
acknowledge cycle, the Device Selector asserts the VPA* signal. After
receiving VPA¥*, the MPU synchronizes internally with the peripheral
clock signal and then asserts VMA¥*, This enables the Local I/O-Address
Decoder, which selects the addressed I/O-device.

Figure 2.5: Address Decoder

DECODER PROM | YMEBUS :j\
REQUESTER

[Azpg-423) 3 .
n-_.——__'\
‘ p9-p3| ADB - AD3
A2 - NAg-a8 "
A28 I} BADR* VMEBUS
SHIOA INTER FACE :>

FCg-FC2 >

DEVICE
SELECTOR

INTERRUPT | avirax N w MEHORY
HANDLER e ARRAY

OCROMX
LOCRO DTACK DTAL K%
LOCRAMX

*
LOCRES RESET RESVEC X GENERATOR
ASx o circviT vrAx

MPU

YMEBUS

o VPAX
DTACK %

MODULE
CONTROL
REGISTER

YMAX

tocAat

NETTEZY.Ta B
| _Agu-AL DECODER

S I

i
2

MODULE
PCI1 Pc12 STATUS

REGISTER \/

2.7.2. Address Map Configuration

The Address Decoder logic first devides the 16M byte address map of the
MPU into three blocks, as shown in Figure 2.6. The Lo Block covers the
lower 1M bytes address range (000000-OFFFFF), the Mid Block comprises
the following 14M bytes (100000-EFFFFF), and the Hi Block covers the
uppermost 1M bytes address range (F00000-FFFFFF).

All addresses in the Mid Block are supposed to be off-board. When the
MPU asserts an address in the range 100000-EFFFFF, the Device Selector
initiates a VMEbus data transfer by enabling the VMEbus Requester and
the VMEbus Interface.

The Lo Block and the Hi Block are further subdivided into address
segments of 4K bytes. Each of these 512 segments corresponds to one
location of the Decoder PROM. This PROM, organized as 512 x 4 bits,
assigns each address segment either to one of the on-board memory pairs,
to the on-board 1/0-devices, or to the VMEbus. When on-board memory is
addressed, the PROM also determines whether the ROM or the RAM access
time is used by the DTACK generator. For transferring data to or from
global I/O-modules on the VMEbus, the address modifier code for Short
I1/0 Address may be specified for a 64K address field.

Figure 2.6 illustrates how the MPU address map is divided into blocks
and segments, and how the segments are represented in the Decoder PROM.
The figure also specifies the data to be programmed in the PROM for
appointing the devices to the address segments.

Figure 2.6: Address Map Configuration

MPU ADDRESS

" [FFF x x
FF E x x x
. . SELECTED DEVICE
HI BLOCK < s £>{ VME STANDARD ADDRESS |
. .
£ o4 x x x DECODER PROM
> FO & x x x ADDR | DATA
EF F x x x —{>{1 F F F f—————————{A VME STANDARD ADDRESS
EF E x x x — Le—>1F £| E |————1{> vME SHORT 1/0 ADDRESS
. . . . D
. . . : c
MID BLOCK < .: E E ; 2 NOT USED
. . . . A
104 x x xp— —{>{1 2 1 9
> 1080 x x x / >4 80| 8 |———1>t0ocaL 1/0 DevicEs
B FF »xx x @ F F| 3 |——————1>{ ROM IN SOCKET PAIR 4
P F EF x x x @ F E b6 > ROM IN SOCKET PAIR 3
. : : . 5 p——————>{ ROM IN SOCKET PAIR 2
L0 BLOCK < . : . : 4 p———— > ROM IN SOCKET PAIR 1
: : : : 3 INVALID
. . . . 2 fp————————> RAM IN SOCKET PAIR 3
gF 1 x x x T>g 2 1 4 p————————> RAM IN SOCKET PAIR 2
_ |2 24 x x x > PP @0 |————7> RAM IN SOCKET PAIR1

The address decoding scheme of the MVME10Ol allows the user to place each
memory pair and the on-board I/0O-devices anywhere in the Lo Block or the
Hi Block of the memory map. All address segments that are not occupied
by on-board devices can be defined to be either standard addresses or
short I/0 addresses on the VMEbus. By that the user may create indepen-
dent areas for ROM, RAM and 1/0-devices, with contiguous on-board and
off-board allocation for each area.

The MVMEl10l module 1is delivered with a Decoder PROM which contains the
address map configuration shown in Table 2.5. This address map is
designed to accomodate the MVME1l0Olbug Debug Package firmware and in
addition 10K bytes RAM for user programs. The addresses 000000-002FFF
are assigned to RAM in the memory socket pairs 1-3, where the addresses
000000-0003FF are occupied by the MPU exception vector table, and the
addresses 000400-0007FF are used as a temporary data storage area for
the MVMEl0Olbug parameters. The addresses 000800-002FFF are available for
user programs and data. The addresses F00000-FO3FFF are assigned to ROM
in memory socket pair 4, which may be the MVMEl0Olbug package or, after
the dubugging phase, any user-provided firmware-resident program. The
on-board I/0-devices are located in the address segment FEQ0QO0-FEOFFF.
The upper 64K bytes in the address map are dedicated to I/O-devices on
the VMEbus which are accessed using Short I/0 Address encoding in the
address modifiers. All other addresses in the map are decoded as VMEbus

Standard Addresses for access to off-board memory or memory-mapped
devices.

The registers of the on-board I/O-devices occupy a 4K bytes segment in
the address map. The register addresses are listed in Table 2.6. As the
data width of all I/O-devices is 8 bits, their registers are located on
odd addresses, and data transfers to and from the MPU are performed via
the lower order data lines D00-DO07. The even address locations in the
local I/0 address segment are redundant and should not be accessed.

The addresses of the on-board I/O-registers are not fully decoded. The
upper order 3 digits of the 6-digit address indicate the 4K bytes
address segment that is reserved for the local I1/0-devices. Then the
address lines A04-A06 are decoded to determine the specific device to be
selected. As the Local I/0-Address Decoder does not <care about the
address lines A(07-All, the I/O-registers appear virtually multiplied
in address increments of hex 80 in the local I1/0-address segment. Thus

the I/O-register listing in Table 2.6 can be regarded to be one of 32
possible sets of addresses.

If the original address map configuration, as described above, does not
meet the user®s requirements, he may specifv any other configuration,
and program the Decoder PROM accordingly. A detailed step-by-step
description of this procedure is given in Paragraph 3.4.10.

Fmmm e Lt ettt +
| ADDRESS | CONTENTS SELECTED DEVICES
fmmm e ———— e e o e +
FFFFFF ‘
: VMEbus Short I/0 Addresses Global I/0-devices
FF0000 |
o - e e +
FEFFFF Global Memory
: VMEbus Standard Addresses or
FE1000 Memory-mapped Devices
o e et
FEOFFF ‘
: On-board I/0 Registers Local I/O-devices
FEO000O (Only odd addresses used)
e R i Rttt
FDFFFF Global Memory
: VMEbus Standard Addresses or
F04000 Memory-mapped Devices
e ettt e S +
FO3FFF MVME10lbug Debug Package 2 x 8K bytes Local ROM
: or in
F00000 User-provided Program Memory Socket Pair 4
Fmm et tatatater R e
EFFFFF
: Global Memory
: VMEbus Standard Addresses or ‘
: Memory-mapped Devices
003000
e R ittt e T e it it
002FFF 2 x 2K bytes Local RAM
: User Program/Data in
002000 Memory Socket Pair 3
et e etttk ettt
001FFF 2 x 2K bytes Local RAM
: User Program/Data in
001000 Memory Socket Pair 2
tmmm - ittt e e
O0O0FFF
: User Program/Data
000800
tommm - R ettt +
0007FF 2 X 2K bytes Local RAM
: MVME10lbug Data/Stack in
000400 Memory Socket Pair 1
o Rt ettt +
0003FF
: MPU Exception Vectors
000000
o R ettt e sttt +

Table 2.5:

18

Original Address Map

Table 2.6: Original I/O-Register Address Map
Fom———— $omm e ———— tmm———— o ————_————— e e +
| DEVICE|ADDRESS | MODE | REGISTER l
o fmm e —— pommm e e E e e +
| MCR | FEOOFL | r/w | Module Control Register |
fmm tmm————— pmm————— T T et Lt T L +
| MSR | FEOOEl | r/w | Module Status Register |
fomm——— fommmm Fomm T T +
PTM FEOODF | read LSB buffer register |
FEOODF | write | Timer #3 latches
FEOODD read Timer #3 counter
FEOODD write MSB buffer register
FEOODB read LSB buffer register
FEOODB write Timer #2 latches
FEOOD9 read Timer #2 counter
FEOODY write MSB buffer register
FEOOD?7 read LSB buffer register
FEQOOD7 write Timer #1 latches
FEOODS read Timer #1 counter
FEOODS write MSB buffer register
FEOOD3 read status register
FEOOD3 write control register #2
FEOOD1 read no operation
FEOOD1 write CR20 = 1: control register #1
FEOOD1 write CR20 = 0: control register #3
Fmmm———— fommm e ——— Fomm e e e +
PIA FEOOC7 r/w Section B control register
FEQO0CS r/w CRB-2 = 1l: Section B peripheral register
FEOOCS r/w CRB-2 = 0: Section B data direction register
FEOOC3 r/w Section A control register
FEOOC1 t/w CRA-2 = 1: Section A peripheral register
FEOOC1 r/w CRA-2 = (0: Section A data direction register
Fomm Fommm $omm o e +
PCI2 FEOOB7 r/w command register
FEOOBS r/w mode register #1 / mode register #2
FEOOB3 read status register
FEOOB3 write SYN1 register / SYN2 register / DLE register
FEOOB1 read receive holding register
FEOOBl | write transmit holding register
fmm———— fomm tmm————— o e +
PCI1 | FEOOA7 r/w command register
FEOOQOAS r/w mode register #1 / mode register #2
FEOOA3 read status register
FEOOA3 write SYN1l register / SYN2 register / DLE register
FEOOAl read receive holding register
FEOOAl | write transmit holding register
o ———— pommm b o e e +

2.8. VMEbus ARBITER AND REQUESTER

—— - ———————— - — - — - —————————————

Bus arbitration is a technique to request, be granted, and acknowledge
bus mastership in a systenm, where multiple master—-type modules share
common resources on the bus. For that purpose the MVMElOl monoboard
computer contains a VMEbus Arbiter and a VMEbus Requester. Most of the
logic is included in the BAR10l Bus Arbiter/Requester device, which is
described in Appendix E.

On the MVME101l, all on-board devices are interconnected by a local bus
which 1is connected to the VME data transfer bus only when off-board
devices are to be accessed. This feature allows on-board processing at
full speed, while another module transfers data on the VMEbus.

Figure 2.7: VMEbus Arbiter and Requester

BRI ¥ 11
K3 -
YMEBUS R5751
ARBITER 'O OI
F)Ol
::E.))—Coir_ BG3INX
INTERRUPT BCLR»
HANDLER | X2 N
B O BREX R

IC | BRA ¥
1 ! C%l BR2 %
—0O O

MODULE ! | BR3¥
CONTROL BBTR r LO_O_I
REGISTER x4
o
ADDRESS BADRX O O Q
| | BGAINX W
DECODER ﬁo| 7ours ¥ §
) ! G' JBBZZ/N&
'OO! B620UTx <
YMEBUS 0-—'0 (x 3
REQUESTER 'C>C>r——§§;£%§:7<—
LO_O_I
ASx .
BBSY*
BRI X P
BRA X% .
BRZ % pi
BR3* ;
MODULE BAV®
STATUS
REGISTER

VMEBUS |
MPU < DATA TRANSFER BUS
INTERFALE

.

2.8.1. VMEbus Arbiter

For use as the System Controller in a VMEbus System, the MVME1l0l module
contains an option ONE single 1level arbiter which arbhitrates bus
requests on level 3. Figure 2.7 shows the interconnections of the bus
signals with the Arbiter, and the flow chart in Figure 2.8 illustrates
its operation. When the VMEbus Arbiter receives a bus request at the
input BR3*, it monitors the BBSY* line. A low level on BBSY* indicates
that another master module 1is currently using the bus, and the bus
request is made pending. When BBSY* is high, the VMEbus Arbiter grants
the request by asserting BG3IN¥*, This signal is propagated along the
bus grant daisy-chain through all modules participating in the bus
arbitration until the first bus requester is reached which has asserted
BR3*, This requester acknowledges the bus grant by asserting BBSY* and
negating BR3*, Upon detecting that, the VMEbus Arbiter negates BG3IN¥*
and is ready for another arbitration sequence.

When the MVME1l0l is used as the System Controller, it must be located
in slot 1 of the VMEbus backplane to ensure that the VMEbus Arbiter
resides to the left of all bus requesters. In this configuration, the
VMEbus Requester on the MVMEl0Ol is the first in the daisy-chain, and
therefore has the highest priority.

When installed on lower bus priorities in a multi-processor system, the
VMEbus Arbiter on the MVME1l0l must be disabled by removing the according
jumper from jumper area K3, as described in Paragraph 3.4.2.

Figure 2.8: VMEbus Arbiter Operation Flow Chart

i +
v
[e \ no
< BR3* asserted ? >-——---- >
\mmmmmmmm oo /
lyes
Fmm e > |
| v
| NO /====———m e \
N —— < BBSY* negated ? >
\=mmmmm - /
|yes
v
Fom e +
| Assert BG3IN* |
B LT T T SRS +
|
e > |
v
no /===—=m—m—— e \
tmm———— < BBSY* asserted ? >
\mmmmm e /
lyes
v
e +
| Negate BG3IN* |
e T T —p——— +
| ,

2.8.2. VMEbus Requester

- — i — - —— - ——————— ——— —

The VMEbus Requester on the MVME1l0l 1is responsible for performing the
following tasks:

- Assert a bus request when the MPU needs access to off-board devices,
- Acquire bus mastership when the bus request is granted,

- Release the bus upon another request when it is no longer needed,

- Propagate not requested bus grants to the next bus requester.

Each of these functions 1is described in detail in the following para-
graphs. Figure 2.7 shows how the VMEbus Requester is interconnected with
the bus signals and with other functional blocks on the MVME1l0l. The
flow chart in Figure 2.9 illustrates the operation sequence.

The VMEbus Requester can be configured to operate on anyone of the four
bus arbitration levels. This is done by setting the appropriate jumpers
on the jumper areas K1 and K2, as described in Paragraph 3.4.1.

2.8.2.1. Bus Request Assertion

There are two methods by which the MVME1l0l can request the VMEbus: The
indirect, or software transparent method, and the direct method, by
which a specific request can be programmed.

An indirect bus request is initiated by the Address Decoder. When the
MPU starts either a VMEbus data transfer cycle, or a VMEbus interrupt
vector fetch, the Address Decoder asserts the signal BADR*, If the
MVME1l0l1l 1is not the current bus master, the VMEbus Requester then
asserts BR* on the jumpered level. The MPU inserts wait states until
the bus arbitration is performed and the addressed slave module acknow-
ledges the data transfer.

In applications where a long idle state of the MPU is not acceptable,
the Bus Request Time-Out counter can be enabled through the Module
Control Register. This counter supervises the bus request and aborts
the started MPU cycle if it is not acknowledged within 128 microseconds.
The Bus Request Time-Out counter is described in Paragraph 2.9.4.

The direct bus request is initiated under program control by setting the
Bus Block Transfer Request bit (BBTR) in the Module Control Register.
This causes the VMEbus requester to assert BR* and, after being granted,
to retain bus mastership as long as BBTR is set. This method protects
routines against interruption by other bus requests, and therefore is
useful for tasks such as data block transfers, system control, or
emergency servicing.

Once having requested the bus, the VMEbus Requester keeps BR* asserted
until it receives a bus grant on the same priority level, regardless of
further transitions on the signals BBTR and BADR*, This is necessary to
obey the bus arbitration protocol as specified for the VMEbus.

+
+
+
+
+
+
+
+

Figure 2.9:

VMEbus Requester Operation Flow Chart

e e e ———————— e e e e e
\
[mmmmmmmmmmmm e \
/ BBTR asserted \ no
< or D ittt T T +
\ BADR* asserted ?/
\m===mmmmmmmme /
|yes
v
Fomm e +
| Assert BR*
Hommmm e et
________________ >
\ v
no /=—=—=m=mee———————- \ [fomm e e \ no
------- < BGIN* asserted ? > < BGIN* asserted ? >------>
R / T /
yes yes
________________ >
v
no [==-m=—m—————————— \
——————— < AS* negated ? >
e /
| yes
v
e + v
Negate BR* Fom e e +
Assert BBSY* | Assert BGOUT* |
Assert BAV¥* il e L L +
ettt + ‘
———————————————— > T R ——
: v I v
NOo /==———me——————— e \ no /=-—-—cem— - \
_______ < BGIN* negated ? > +—-—=—==--=< BGIN* negated ? >
e e / e e o /
yes yes
________________ >
v v
no [=-=-m=—em—— e \ Frm e +
P < BBTR negated ? > | Negate BGOUT* |
\m=——mmmmm e m e / . +
lyes |
v e >
no [/—-——=—m——mm————ee \
Cmmemm—— < Cycle terminated ?>
e e /
lyes
v
e —— \
/ BRO* or BR1* \ vyes
< or BR2* or BR3* >-——r—emmmmrmmm e +
\ asserted ? / v
\==—mmm e / Fom e +
|no I Negate BAV*
————————————————— + | Negate BBSY* ———————
e e T +

2.8.2.2. Bus Mastership Acquisition

When the VMEbus Requester has a bus request pending and it receives a
bus grant on the same priority level, it acquires bus mastership. After
the previous bus master has finished its last VMEbus cycle and negated
AS*, the VMEbus Requester acknowledges the bus grant by negating BR*
and asserting BBSY*, and it enables the VMEbus Interface.

The availability of the VMEbus can be checked by the MPU in the Module
Status Register. This feature is useful in programs where the execution
of on-board and off-board tasks does not require a fixed sequence. For
example, the MPU can prepare an off-board task by setting the BBTR bit
in the Module Control Register, and then execute on-board tasks. Now
and then it tests the BAV* bit in the Module Status Register, and when
it detects that the bus is available, it starts executing the off-board
task.

2.8.2.3. Bus Release

As long as the BBTR bit in the Module Control Register 1is set, the
MVME1l0l never releases the bus. However, in a system with a multilevel
bus arbitration scheme, the VMEbus Arbiter can interrupt the current
program with the BCLR* signal upon a higher level bus request. When
the MVMElOl operates as bus master in the block-transfer mode, the
assertion of BCLR* causes a maskable auto-vectorized interrupt request
at the MPU, and it depends on the executed software, whether and
when the BBTR bit is cleared and the VMEbus is released.

The BBTR bit may be set or cleared at any time. If it is set although
the MVME1l01l is already the bus master, it has no effect on the VMEbus
Requester, but it protects the execution of the following task.

When BBTR 1is negated, the VMEbus Requester operates in the release-
on-request mode. In this mode, it retains bus mastership until another
module asserts a bus request on any of the four levels. When that
happens, the VMEbus Requester waits until the MPU has terminated the
current cycle, and then releases the bus by disabling the VMEbus Inter-
face and negating BBSY*,

This release-on-request scheme provides maximum system efficiency, as
unnecessary bus arbitration cycles are avoided.

2.8.2.4. Bus Grant Propagation

—— - — — —— —— ————— — ———————————— ————

When the VMEbus Requester receives a bus grant on its priority level,
and it has no bus request pending, the corresponding bus grant output
signal 1is produced and propagated to the next bus requester. BGOUT*
keeps asserted as long as BGIN* is low.

The BGIN* and BGOUT* lines which are not on the module”s priority level
are connected directly on the jumper area Kl.

2-24

2.9. VMEbus INTERFACE

The VMEbus Interface provides the signal path between the local bus of
the MVME101l computer and the VMEbus backplane. The interface complies
with all requirements for the signal driver/receiver characteristics,
and for the bus operation protocol timings, as specified in the VMEbus
Specification Manual Rev.B. Any VMEmodule which is designed according

to these specifications will run with the MVME101 Monoboard Computer
without restrictions.

This chapter gives detailed functional descriptions of all VMEbus
signals that are handled by the MVME1lO01l, and explains the available
hardware options. The timing specifications for the VMEbus Interface
are included in Paragraph 2.12.

2.9.1. VMEbus Signals

All VMEbus signals are available at the upper rear connector Pl.
Table 2.8 identifies all these signals by mnemonics, pin numbers at Pl,
and electrical characteristics, and it describes the signal functions
on the MVME1lO0l. The abbreviations used in Table 2.8 are explained in
Table 2.7. The locations of the VMEbus signals at connector Pl are
shown in Table 2.9.

VMEbus signals that are not driven by the MVME1l0l module appear as being
high at other modules on the bus, .due to the termination resistors on
the VMEbus backplane. Such signals are put 1in parantheses in the
following tables.

For some VMEbus signals the user can choose whether the MVMEl0l handles

or 1ignores thenm, by setting or removing jumpers. Such signals are
termed optional signals.

Table 2.7: Symbol Definitions

Fmm e T +
| SYMBOL | DEFINITION |
fommm———— e +
TP totem-pole bus driver output I
TS three-state bus driver output '
ocC open-collector bus driver output
ST schmitt-trigger bus receiver input with hysteresis |
tmmm————— ittt i LT +
I0H minimum high-level output current at 2.4 V I
IOL minimum low-level output current at 0.5 V |
IOZH maximum off-state output current at 2.7 V '
I0ZL maximum off-state output current at 0.4 V ‘
IIH maximum high-level input current at 2.7 V
IIL maximum low-level input current at 0.4 V |
o et et e T +

Note: The values for the input/output currents 1listed in Table 2.8
result in the sum of the driver-, receiver-, and pull-up-
resistor-currents for each signal.

2-25

Table 2.8: VMEbus Signal Description

Fmmm——————— Fmmm e e T +
| SIGNAL | PIN NO. | SIGNAL DESCRIPTION | ELEC. SPEC. |
e B e Fom +
D00..DO7 Al. .A8 DATA BUS IOH -3 mA
D08..D15 Cl..cC8 IOL 48 mA
16-bit TS-output/ST-input bidi- I0ZH 20 uA
rectional data bus for trans- I0ZL =400 uA
ferring data to and from slave IIH 20 uA
modules. IIL -400 uA |

Fmm e ——— T e - domm e +
A0l..A07 A30..A24 ADDRESS BUS IOH -3 mA
AO08..A23 C30..Cl15 I0L 48 mA

23-bit TS-output address bus IOZH 20 uA
capable of addressing up to 1l6M IOZL -400 uA
bytes directly.

R e Fmm e Fmm e +
AMO. .AM2 Bl6..B18 ADDRESS MODIFIERS | 1OH -3 mA
(AM3) (B19) I0L 64 mA
AM4 A23 Six TS-output signals providing I0ZH 50 uA
(AMS) (Cl4) additional address information. I0ZL =50 uA

AM3 and AMS are not connected. |

Fmm e dmmm - bt Fmmm +

(LWORD*) (C13) LONG WORD |
LWORD* is not connected.

Fmmm e e - R et e L +

WRITE* Al4 WRITE I0H -3 mA

An active-low TS-output that I0ZH 50 uA
specifies the direction of a IOZL -50 uA
data transfer: A high 1level '
indicates a read operation, a
low 1level indicates a write
operation.

O - e e +
AS* Al8 ADDRESS STROBE I0H -3 mA
I0L 64 mA
An active low bidirectional TS- I0ZH -250 uA

output/ST-input signal. During I0ZL -750 uA
a data transfer the falling ITH =250 uA
edge indicates a valid address IIL =750 uA
on the bus. During bus arbi-
tration the rising edge indica-
tes the end of the last cycle.

DSO* Al3 DATA STROBE 0 IOH -3 mA

An active low TS-output that IOZH 50 uA
indicates a data transfer on IOZL =50 uA
the data lines D00-D07. |

DS1* Al2 DATA STROBE 1 IOH -3 mA

An active low TS-output that I0ZH 50 uA
indicates a data transfer on IOZL =50 uA
the data lines D08-D1S5. |

ittt T R R e +

Table 2.8:

VMEbus Signal Description (cont

‘d)

e o o e e +

SIGNAL

PIN NO.

SIGNAL DESCRIPTION

| ELEC.

SPEC. |

fmm e ———— T - e e +

DTACK*

—— - - - o~ —

BGOIN*
BGlIN*
BG2IN*
BG3IN*

—— e - —— —— - ——

BGOOUT*
BGlouT*
BG20UT*
BG30UT*

DATA TRANSFER ACKNOWLEDGE

An active 1low ST-input that
indicates the successful com-
pletion of a data transfer.

BUS ERROR

An active 1low ST-input that
indicates that an unrecoverable
error has occured during a data
transfer.

BUS REQUEST LEVEL 0-3

One of these active low signals
is an optional OC-output at the
jumpered bus priority level and
indicates that the MVME101
module requests bus mastership.

All four signals are inputs at
the VMEbus Regquester to support
the release-on-request mode.

BR3* is also an input
MVME101 VMEbus Arbiter.

at the

- —— ——————— —— —— " — —— — — ——— - — - — —

BUS GRANT INPUTS LEVEL 0-3

One of these active low signals
is an optional ST-input at the
jumpered bus priority level. It
indicates to the MVME10l1l VMEbus
Requester that a bus request on
the same level has been granted
by the bus arbiter. The remai-
ning three bus grant inputs are
jumpered directly to the re-
spective bus grant outputs.

BG3IN* 1is also an optional TP-
output of the MVME1l0l VMEbus
Arbiter.

BUS GRANT OUTPUTS LEVEL 0-3

One of these active low signals
is an optional TP-output at the
jumpered bus priority level. It
indicates to the next module in
the bus grant daisy-chain that
it may become bus master. The
remaining three bus grant out-
puts are jumpered directly to
the respective bus grant inputs.

ITH
IIL

ITIH
IIL

IOL
I0ZH
I0ZL
ITH
IIL

ITH
IIL

IOH
IOL

-250 uA
-700 uA

-250
~-700

48
-250
-750
-250
=750

=250 uA
-700 uA

~-800 uA
16 mA

T T —— T T i e T S B T T +

2-27

Table 2.8: VMEbus Signal Description (cont”d)
S N R — S S A S +

| SIGNAL | PIN NO. | SIGNAL DESCRIPTION | ELEC. SPEC. |

——— —— — - —— —

IRQ1*...
.o .IRQ7*

IACKIN*
IACKOUT*

——— — ———— — ———

ACFAIL*

- —— — ————

- - - —— ——

BUS BUSY

This active low bidirectional
signal indicates that a master
module is using the data trans-
fer bus. It is an OC-output of
the VMEbus Requester and an ST-
input at the VMEbus Arbiter.

—— — ———— — ————— ——— — — — - —— - ——— -

BUS CLEAR

This active low ST-input signal
is driven by a multilevel bus
arbiter when a bus request of a
higher than the current bus
master”s level is pending. On
the MVME1l0l BCLR* can be used
for generating an interrupt in
this event.

—— — ———— —————— —————————— -

INTERRUPT REQUEST LEVEL 1-7

Seven optional active low input
signals that generate a prio-
ritized interrupt request at
the MPU. Level seven 1is the
highest priority.

INTERRUPT ACKNOWLEDGE

An active low TS-output that
indicates an interrupt vector
fetch on the data transfer bus.

INTERRUPT ACKNOWLEDGE INPUT
INTERRUPT ACKNOWLEDGE OUTPUT

These signals form an interrupt
acknowledge daisy-chain through
the interrupt requesters. On
the MVME10l module IACKIN* and
IACKOUT* are directly connected.
AC POWER FAILURE

An active 1low ST-input that
is driven by the power supply
module. It indicates that the
DC supply voltages may be out
of the specified limits after

10 milliseconds and generates a
non-maskable interrupt.

ITH
ITL

IOL
I0OZH
IOZL

IIH
IIL

-250
-900

48
20
-400

-250 uA
-700 uA

T S ——— o e . +

Table 2.8:

VMEbus Signal Description

(cont”4d)

e Fmmmm—————— e e Fommm - +
| SIGNAL | PIN NO. | SIGNAL DESCRIPTION | ELEC. SPEC. |
Fomm e ———— tommm e ——— o - e +
SYSFAIL* Clo0 SYSTEM FAILURE I0L 48 mA
IOZH -250 uA
This active low signal indica- I0ZL -900 uA
tes that a failure has occured IIH -250 uA
in the system. On the MVME1l(0l IIL =900 uA
it is an optional bidirectional
OC-output/ST-input, and can be
jumpered to generate an inter- |
rupt at the MPU. |

Frmm R ittt T T ettt fmm +

SYSRESET*| C12 SYSTEM RESET I0L 48 mA |

I0ZH -250 uA |

This active low signal causes a I0ZL -900 uA
complete VME system reset. On IIH -250 uA
the MVME10l1 it is an optional IIL -900 uA
OC-output that is activated by
the Reset Switch and upon power
up. Also, it is an optional
ST-input that causes a board
reset when asserted by another |
module. |

o o e - Fmm +
SYSCLK Al0 SYSTEM CLOCK | IOH -3 mA

| 1IOL 60 mA
An optional TP-output that de- |
liveres the 16 MHz system clock
signal.

Fommm Fomm e o T e +
(SERCLK) (B21) SERIAL COMMUNICATION BUS CLOCK | |
(SERDAT) (B22) SERIAL COMMUNICATION BUS DATA

SERCLK and SERDAT are not con-
nected. |

$mmm tomm et ittt Fomm e +

GND A9, All, GROUND |
Als5, Al7,
Al9, B20,
B23, C9

e R ittt e fomm +
+5V A32, B32,| + 5 VOLTS POWER

C32

I atatatatae Fmm R Fommm e +
(+5VSTB) (B31) + 5 VOLTS STAND BY POWER l

+5VSTB is not connected.

e Etatattatatat it ittt Fmmm e +

| +12v | c31 | + 12 VOLTS POWER [

Fomm e pom e Rt ittt P ettt +

| -12v | a31 | - 12 VOLTS POWER ! [

ettt Fmmm e Fmmm e +

Table 2.9: Connector Pl Signal Locations

Fem———— o —————- Fmmmm - ittt - +
PIN ROW A ROW B ROW C PIN
NO. SIGNALS SIGNALS SIGNALS NO,

Fo———— e Fom S ittt Fom———- +

| 1 D00 BBSY* D08 1

2 DOl BCLR* D09

3 D02 ACFAIL* D10 3
4 D03 BGOIN* D11 4
5 D04 BGOOUT* D12 5
6 DOS BG1lIN* D13 6
7 D06 BGlOUT* D14 7
8 D07 BG2IN* D15 8
9 GND BG20UT* GND 9
10 SYSCLK | BG3IN* SYSFAIL*| 10
11 GND BG30UT* BERR* 11
12 DS1* BRO* |SYSRESET*| 12
13 DSO* BR1* (LWORD*) 13
14 WRITE* BR2* (AMS) 14
15 GND BR3* a23 15
16 DTACK* AMO A22 16
17 GND AM1 A21 17
18 AS* AM2 A20 18
19 GND (AM3) Al9 19
20 IACK* GND Al8 20
21 TACKIN* (SERCLK) Al7 21
22 IACKROUT* (SERDAT) Al6 22
23 AM4 GND Als5 23
24 A07 IRQ7* Al4 24
25 A06 IRQ6* Al3 25
26 A05 IRQ5* Al2 26
27 A04 IRQ4* All 27
28 A03 IRQ3* Al0 28
29 A02 IRQ2* A09 29
30 A0l IRQ1* A08 30
31 ~12V (+5VSTB) +12V 31
32 +5Vv +5V +5V 32

Fom———— S it R ittt R o ——— +

2.9.2. VMEbus Data Transfer

-t - — —— o~ —— —— ————— — o —

The category of VMEbus signals which is responsible for transferring
data between master and slave modules is termed the Data Transfer Bus
(DTB). On the MVME1l0l module, the DTB drivers and receivers are
enabled and disabled by the VMEbus Requester upon acknowledging and
releasing bus mastership. For meeting the data transfer protocol and
timing requirements of the VMEbus Specification, the VMEbus Interface
logic generates its own signal handshaking and timing, independently of
the MPU. Figure 2.10 shows a flow chart of the DTB interface operation.

v
[mm———— e \ no
Bus available ? >
\mmmmmmmmmmmm oo /
|yes
v
___________________ +
Assert A01-A23,
AMO-AM2, AM4,
IACK*, WRITE*
o e +
I
v
___________________ +
Assert AS*
——————————————————— +
|
v
[mmmmmmmmmm e \
/ Read cycle \ write
or >
\ write cycle ? [/
\ === mmmm e
——————————————— >|read dom e
v
[mmmmmmmm e ee \
no / DTACK* \
------ and BERR¥* >
\ negated ? /
T /
lyes
v
e T +
Assert DS0*/DS1* |
e +
——————————————— > |
no / DTACK* \
—————— or BERR* >
\ asserted ? /
\---mmmmmm oo /
lyes
v
e +
Negate DSO0*/DS1* |
Rl +
l
v
[mmmmmmmmmm e \
/ Read- \ yes
< modify-write Semm——— +
\ cycle ? /
\m-mmmooom oo /
no
e

Figure 2.10:

VMEbus Data Transfer Flow Chart

v
___________________ +
Release A01-A23
AMO-AM2, AM4, |===—==-- >
IACK*, WRITE*
___________________ +
I
---------- P R ettt &
v |
[mmmmmmmmmmm e \
/ DTACK* \ no
and BERR* Semmm——— +
\ negated ? /
N /
lyes
v
e +
Assert D00-D15 |
e LT +
|
v
e +
Assert DSO*/DS1* |
e +
| e +
v |
fmmmmm e \ |
/ DTACK* \ no |
or BERR¥* Semm——— +
\ asserted ? /
e /
|ves
\'%
o e +
Release D00-D15
Negate DSO0*/DS1*
i T +
|
v
e +
Negate AS* = |----—-—--
Oy +

The address modifier signals are used to provide slave modules on the
VMEbus with additional addressing information, as defined in the VMEbus
Specification Manual. The VMEl0l supports a subset of the specified
address modifier codes which 1is listed in Table 2.10. Note that the
signals AM3 and AM5 are not driven by the VMEbus Interface, but kept in
the high state by the termination resistors on the VMEbus backplane.

Table 2.10: Address Modifier Codes

- o e B T ettt +
AM ADDRESS MODIFIER
CODE 5 4 3 2 1 0 FUNCTION
tmm——— o e +
3E 1 1 1 1 1 O standard supervisory program access |
3D 1 1 1 1 0 1 standard supervisory data access
3A 1 11 0 1 O standard non-privileged program access
39 1 1 1 0 0 1 standard non-privileged data access
2D 1 0 1 1 0 1 short supervisory I/0 data access
29 1 0 1 0 0 1 short non-privileged I/0 data access
+mmm——— T ittt - +

2.9.4. Time-Out Counters

———— ———————— T ———

The MVME1l0l contains two time-out counters for supervising VMEbus
accesses: the Bus Request Time-Out Counter, and the Data Transfer Time-
Out Counter. Both counters can be independently enabled and disabled
under software control. Figure 2.11 shows how the time out counters are
interconnected with other functional blocks on the MVMElO0l.

The Bus Request Time-Out (BRTO) Counter 1is enabled when bit 6 in the
Module Control Register is set. It starts running when the MPU has
asserted an off-board address, and the module is not currently the bus

master, i. e. when a bus request is initiated by the Address Decoder.
Note that if a Bus Block Transfer Request was asserted, the BRTO Counter
is not started until the first off-board access. Once being started,

the BRTO Counter asserts a Bus Error at the MPU and sets bit 6 in the

Module Status Register, 1if the bus does not become available within 128
microseconds.

The Data Transfer Time-Out (DTTO) Counter is enabled when bit 7 in the
Module Control Register is set. It starts running when the MPU has
asserted a data strobe signal, and the bus is available, i. e. at the
beginning of an off-board data transfer cycle. The DTTO Counter asserts
a Bus Error at the MPU and sets bit 7 in the Module Status Register, if
the data transfer is not acknowledged within 8 microseconds.

Any assertion of BERR* causes the MPU to abort the started cycle and to
enter an exception routine. In this routine the MPU should test bit 6
and bit 7 in the Module Status Register to determine the source of the
Bus Error to be either the BRTO Counter, or the DTTO Counter, or the
addressed device, and then branch to the appropriate service routine.
After testing the bits, the MPU should perform a dummy write into the
Module Status Register to clear the bits 6 and 7.

Figure 2.11: Time Out Counters

uDs ¥ cLock AMHE {\
LDS* ji:::>_——_ﬁ——__7 05CILLATOR
ATA
22 o ? DITO*
MODULE EDITO EDTTO N\ TRANSFER
CONTROL EBRTO ABAV* J rIME-OUT
REGISTER a
£BRTO BUS
BRTOw
MODULE DTTO BADR® REQUEST
STATUS BRTO% ABAVE FME-OUr
REGISTER
mMpPU i
3
BRTO® 3
BERRX DpITOX £
GBERR¥
: ADDRESS VmEBUS
DECODER REQUESTER <::)
5 S et B Y, VOS5 S—
Y < — /| INTERFACE

The Bus Request Time-Out Counter should be used with care. If the
MVME101l module does not reside on the highest bus arbitration 1level,
and if another module occupies the bus for transferring large blocks of
data, it may often take more than 128 microseconds until a bus request
of the MVMEl0l is granted. As software recovery from a Bus Error is a
problematic task under certain conditions, it might sometimes not be
allowed to abort an off-board cycle. In such cases the BRTO Counter
must be disabled, or the off-board access must be embedded in a routine
that is protected by a Bus Block Transfer Request.

The Data Transfer Time-Out Counter should be constantly enabled in all
systems that do not contain very slow slave modules with access times of
more than 8 microseconds. This prevents the MPU from being hung up in

case of system malfunctioning, such as addressing defect devices or non
existant locations.

Several VMEbus signals are optionally used by the MVMEl1l0l Monoboard
Computer. By setting or removing jumpers, the module can be configqured
either as the system controller module in a VMEbus system (System Con-
troller Configuration), or as an MPU module on a selectable priority
in a multiprocessor VMEbus system (Standard Configuration), or as an
isolated monoboard system that resides only physically on a VMEbus
backplane (Isolated Configuration). The Jjumper configurations for
these different modes of operation are described in Chapter 3.

2-33

2.9.5.1. System Controller Configuration

—— —————————— — — ———————— —— ——————— ——— —— T ————— —

When the MVME10l1 1is configured as the VMEbus system controller, the
following options are selected:

VMEbus Arbiter: The VMEbus Arbiter arbitrates bus requests on
level 3 and drives BG3IN*,

VMEbus Requester: The VMEbus Requester operates on level 3. It
receives BG3IN* from the VMEbus Arbiter and drives
BG30UT*. The remaining three bus grant outputs are
not connected.

Interrupt Handler: The Interrupt Handler receives interrupt requests
on the jumpered levels.

System Utilities: SYSFAIL* 1is both driven through the Module Control
Register and received through the Module Status

Register. Also, it may be jumpered to generate an
interrupt.

SYSRESET* is bidirectional. It is driven by the
Reset Switch and upon power-up. When received from
a power supply module, it causes a board reset.

SYSCLK is driven bv the on-board clock oscillator.

2.9.5.2. Standard Configuration

When the MVMEl0l 1is configqured as a non-controller MPU module in a
VMEbus system, the following options are selected:

VMEbus Arbiter: The VMEbus Arbiter is disconnected from BG3IN* and
thus disabled.

VMEbus Requester: The VMEbus Requester receives BGIN* and drives
BGOUT* on the selected priority level. The remai-

ning three bus grant inputs are jumpered directly
to the respective bus grant outputs.

Interrupt Handler: The Interrupt Handler receives interrupt requests
on the jumpered levels.

System Utilities: SYSFAIL* 1is both driven through the Module Control
Register and received through the Module Status
Register. Also, it may be jumpered to generate an
interrupt.

SYSRESET* is an input only. When received from
another module, it causes a bhoard reset. The Reset
Switch has no effect on the bus.

SYSCLK is not connected.

2.9.5.3. Isolated Configuration

When the MVMEl0l 1is configured as an isolated monoboard computer, it
can be placed on a VMEbus backplane without effecting other modules in
the system. In this configuration, the MVME1l0l takes its power supply
from the VMEbus, but neither drives nor responds to any bus signal,
with the exception of ACFAIL*.

VMEbus Arbiter: The VMEbus Arbiter is disconnected from BG3IN* and
thus disabled.

VMEbus Requester: The VMEbus Requester 1is disconnected from the bus.
Thus the DTB drivers remain constantly in the high-
impedance state. All bus grant inputs are jumpered
directly to the respective bus grant outputs.

Interrupt Handler: The Interrupt Handler does not receive any inter-
rupt requests from the VMEbus.

System Utilities: SYSFAIL* is not connected.

SYSRESET* is not connected. The board is reset by
Reset Switch and upon power-up.

SYSCLK is not connected.

2.10. RESET AND HALT FUNCTIONS

—— —— —— - — —— — —— ——— ——— - - —

The reset structure of the MVMElOl is shown in Figure 2.12. There are
four sources on the module which perform reset functions: The Power-Up
Reset cicuit, the Reset Switch, the MPU executing a RESET operation,
and the MPU being halted. The interaction between the on-board reset
signals and the VMEbus depends on the configuration of jumper area K3.

For the three selectable VMEbus Interface options that are described in
Paragraph 2.9.5, the effects of all reset sources on the on-board

devices and on the VMEbus signals SYSRESET* and SYSFAIL* are listed in
Table 2.11.

The Power-Up Reset cicuit and the Reset Switch have identical functions:
MPU, PCIl, PCI2, PIA, PTM, MCR, and VMEbus Requester are reset,
and the Address Decoder is initialized for the reset vector fetch. When
configured as System Controller, the VMEbus SYSRESET* is asserted.

In the System Controller and in the Standard Configuration the assertion
of SYSRESET* on the VMEbus produces the same effects as the Reset
Switch. 1In the Isolated Configuration a VMEbus reset is ignored.

When the MPU executes a RESET instruction, only the on-board I/0-devices
(PCI1, PCI2, PIA, PTM) are reset. No other devices are affected.

When the MPU is halted because of a double bus fault, the MCR is reset
for negating an eventual Bus Block Transfer Request, and the decimal
points on the Display are lit to indicate the halted state. In the

System Controller and in the Standard Configuration also the VMEbus
signal SYSFAIL* is asserted.

2-35

Figure 2.12: Reset Structure

ROM RESET VECTOR MPU {\

ADDRESS
DECODER
2R
POWER-UP NG N LOCRES % PTM,PIA,
RESEI % % PCI1,PCI2
MODULE g
I HALT % CONTROL a
v REGISTER §
X3
‘oo
[: | 0l SYSFAILX
RESET NG RESOUT *x | |
SWITCH I M RESIN¥* 'g g‘ | SysRESET# ;J
J 1 "
Lo_.o.l
SYSRES® VMEBUS :
REQUESTER
Table 2.11: Reset and Halt Functions
Fom o o +
| RESET SOURCE | MODULE CONFIGURATION | AFFECTED DEVICES |
e it e e +
Power-Up Reset, System Controller MPU, PCIl, PCI2, PIA, PTM, |
Reset Switch MCR, Addr.Decoder, VMEbus
| Requester, VME SYSRESET*
et e +
Standard Config. | Mpu, PCI11, PCI2, PIA, PTM, |
MCR, Addr.Decoder, VMEbus ‘
Requester
o e e e +
Isolated Config. MPU, PCI1l, PCI2, PIA, PTM, |
MCR, Address Decoder |
T et T +
VMEbus SYSRESET* System Controller, MPU, PCI1l, PCI2, PIA, PTM, |
Standard Configqg. MCR, Addr.Decoder, VMEbus
Requester
e ettt Rttt +
| Isolated Config. | none |
o e B T T +
| RESET Instruction | any | PCI1, PCI2, PIA, PTM |
T et Fomm R +
MPU Halted System Controller MCR, VMEbus SYSFAIL* |
Standard Config. |
| Fmm o +
| | Isolated Config. | MCR |
e - A +

2.11. INTERRUPT HANDLER

The Interrupt Handler 1is responsible for encoding interrupt requests
coming from on-board devices or from the VMEbus, for asserting the
highest pending interrupt request at the MPU, and for managing the
interrupt acknowledge cycle. The MC68000 Data Sheet in Appendix A
gives a detailed description how the MPU processes interrupts. A block
diagram of the Interrupt Handler and 1its interconnections with the
VMEbus and the on-board devices is shown in Figure 2.13.

Figure 2.13: Interrupt Handler

ABORT N
/} SWITCH L
ACFAIL % N
> V
MODULF BBTR
CONTROL
REGISTER
L BCLRX¥
; L
pPci2
Pci1
PIA
Ké AVIRQ 3
IRBCLR* ("1 AVIRQ6X |
PTM I1RPCI2% ' AviRa sx
@ IRPCI1% lo | AvVIRQ@4 %
a 3 I1RPIA® | | AvIRQ3%
T roXeo) (RPTIE | W AVIRGZX |
SYSFAIL* ! ! R IRFAIL¥ | ' AVIRQA*
- 0 o—> 0 o Aastn
|o OI
oo INTERRUPT
1 |
00, HANDLER
KS
L IRQI R BIRQ@I% T"(S) UVIRAF X
>
) /RQAG* BIRQ6* lo | UvIRQ6*
. IRQ5* BiRasx ! | UVIRQSH I1PL*® = 1PL2%
. -L2. BIRQG* 'O CI UVIRQY®
o IRQ3* BIRQ3x lO OI UVIRQ3® FC@-FC2
»
. IRO2= B/rR@2x | | yvir@2*
»- —0 O ‘
. IR@AW BIRQAX lo | UvIRQ4« | A@1-AP3
” [t |
AVIR@ % MPYU
<:_________> VMEBUS BADR® ADDRESS VPAX
REQUESTER DECODER
VMEBUS
VECTOR .
C— BV ¢ NO_ ACGUISITION)

Interrupt requests are categorized into two groups: seven prioritized

Auto-Vectorized Interrupt Requests (AVIRQ1l* - AVIRQ7*), yhigh.are
acknowledged 1in the automatic vectoring mode, and seven prioritized
User-Vectorized Interrupt Requests (UVIRQl* - UVIRQ7*), where the

interrupt vector number is supplied by the interrupting device. Auto-
Vectorized Interrupt Requests may be caused by the on-board I/O-devices,
by the Abort switch, or by the VMEbus signals ACFAIL*, SYSFAIL* and
BCLR*, The User-Vectorized Interrupt Requests represent the VMEbus
interrupt signals IRQ1l* - IRQ7*,

The Interrupt Handler arbitrates incoming interrupt requests according
to their priority levels, and encodes the highest pending request on the
interrupt inputs of the MPU. When the interrupt is acknowledged, the
Interrupt Handler decodes the priority level of the MPU and compares it
with the interrupt requests. If an Auto-Vectorized Interrupt Request is
pending on the acknowledged priority, the Interrupt Handler asserts the
VPA* signal, and the MPU uses the interrupt autovector of this priority
level as a pointer to the exception routine. Otherwise, the Interrupt
Handler assumes an off-board interrupter, and initiates an interrupt
acknowledge cycle on the VMEbus for acquiring the user-vector number.

The priority sequence of the fourteen available interrupt requests can
be represented as follows:

Highest level: AVIRQ7* (non-maskable)
UVIRQ7* (non-maskable)
AVIRQ6*
UVIRQ6*
AVIRQS*
UVIRQS*
AVIRQ4*
UVIRQA4*
AVIRQ3*
UVIRQ3*
AVIRQ2*
UVIRQ2*
AVIRQ1*
Lowest level: UVIRQ1*

The devices capable of asserting Auto-Vectorized Interrupt Requests are
not fixed at appointed priority levels, with exception of the Abort
switch and the ACFAIL* signal, which are hard-wired to AVIRQ7*, All
other devices may be jumpered to any of the six interrupt request inputs
AVIRQ1l* - AVIRQ6* on the jumper area K6. Also, two or more of the
interrupt outputs of these devices may be connected in a wired-or
configuration on one common priority level.

VMEbus interrupt requests used by the Interrupt Handler must be jumpered
to the according User-Vectorized Interrupt Requests of the same priority
level in a one-to-one configuration on the jumper area KS5. Also, they
must not be wire-or connected, as that would short the interrupt request
signals on the VMEbus.

The configuration of the jumper areas K5 and K6 is described in
Paragraphs 3.4.3 and 3.4.4.

2.11.1. Software Abort and AC Failure

The Abort switch on the front panel and the VMEbus signal ACFAIL* are
both connected with the Auto-Vectorized Interrupt Request AVIRQ7*, thus
causing a non-maskable interrupt of the highest oriority. To determine
the appropriate service routine, the status of the ABORT* and ACFAIL*
signals can be read in the Module Status Register.

——— . —— ————————————————

When the MVME1l0l1 1is configured as the System Controller, the VMEbus
signal SYSFAIL* can be jumpered to generate an Auto-Vectorized Interrupt

Request on a selectable priority. In case of a system failure, lower
priority programs would then be interrupted, and the MVMEl0l enters a
service routine. The status of SYSFAIL* can be read in the Module

Status Register.

If the MVMElOl resides in a system that contains other modules with a
higher bus priority, the VMEbus signal BCLR* should be jumpered to
an Auto-Vectorized Interrupt Request. This provides the bus arbiter
with the means to interrupt lower priority programs on the MVME1l0l that
are executed in the block-transfer mode, when another module has a bus
request of a higher priority pending. BCLR* can only cause an interrupt
when the Bus Block Transfer Bit in the Module Control Register 1is set.
Otherwise BCLR* 1is ignored, as the VMEbus Requester then operates in
the release-on-request mode. However, the status of BCLR* can bhe read
at any time in the Module Status register.

2.11.4. On-Board I/0 Interrupts

All interrupt request outputs of the on-board I/0-devices can be

jumpered to generate Auto-Vectorized Interrupt Requests on selectable
levels.

2.11.5. VMEbus Interrupts

Any or all of the VMEbus interrupt request signals IRQl* - IRQ6* may be
jumpered to generate User-Vectorized Interrupt Requests on the according

priorities. The appropriate interrupt vector numbers are fetched from
the interrupter in a VMEbus interrupt acknowledge cycle.

2.12. TIMING SPECIFICATIONS

This paragraph provides detailed timing specifications of the MVME1Ol
module for local memory access and for VMEbus operations. The tabulated
maximum and minimum times are guaranteed over the recommended operating
conditions, as specified in Table 1.1. Whenever possible, typical
times for operation at 25 C temperature and 5.00 V supply voltage are
given.

The following list summarizes the operatlons descrlbed in this paragraph
and the respective figures and tables:

Local Memory Read Cycle «.. Figure 2.14, Table 2.12, Page 2-41
Local Memory Write Cycle Figure 2.15, Table 2.13, Page 2-42
VMEbus Read Cycle:eeeeeeesse. Figure 2.16, Table 2.14, Page 2-43
VMEbus Write Cycle¢eeeeeeses. Figure 2.17, Table 2.15, Page 2-44
VMEbus Request and Acquisition ... Figure 2.18, Table 2.16, Page 2-45
VMEbus Release and BG Propagation Figure 2.19, Table 2.17, Page 2-46

For local memory accesses, the specifications include both the timing
supplied by the MPU and the Address Decoder, and the timing requirements
for the installed memory devices. As the number of wait cycles inserted
by the MPU during local ROM accesses is selectable, the specification
of the local memory read cycle timing includes all available options
from 0 to 3 wait cycles (in the tables abbreviated W.C.). For read
operations from local RAM, the times specified for 0 W.C. are valid.

For VMEbus operations, this paragraph specifies the timings that are
supplied by the MVME1l0l module for interactions with other modules on
the bus. No timing requirements for these modules are given, but it is
assumed that they comply with the VMEbus Specification Rev.B. Whenever
possible, the timing relations between MPU signals and VMEbus signals
are specified for bus operations.

The signal mnemonics used in the following figures and tables are
identical with the signal names used 1in the schematic diagrams in
Chapter 4. To distinguish between on-board and off-board signals, the
mnemonics of all on-board signals are put in parantheses.

2-40

Figure 2.14: Local Memory Read Cycle

50 s1 52 53 Sy [56 53
V2 U WY/ WA WA W/ WA A

(8MHZ)
) S R L
—{ H
(Dxx) IO 4 i LLLL LKL
- ® .
wairew ZZZTTZTT —o JARARAANARAARARARANARNARY
s 17 \ @- ATATARAANARARARNRAAVANNAY
(vpsx,0s¢) [/ \ AARAALRAARARRRRARRRSRRANY
/ \5!555}5)}‘)\
(DTACK®) W - ~ \ o /@_.
(meseen) L1/ k__ 4 AALARRRREARRRRARNY
. AN
(vDWR, LDWR)[ZZZ/ o - M
(DRD#) [/ Y (- AAARARARANY
Table 2.12: Local Memory Read Cycle Timing
i Eata ittt LT S tm———— e tm——— -
| NO | PARAMETER MIN | TYP | MAX |UNIT|
e e tm———— . e tm———
Supplied Memory Access Timing: |
1 (Axx) Valid to (MxSEL*) Low ns
2 (Axx) Valid to (DRD*) Low ns
3 (MXSEL*) Width Low 260 ns
| 385 ns
510 ns
635 ns
4 (DRD*) Width Low 310 ns
435 | ns
560 | ns
685 ns
5 (MxSEL*) High to (Axx) Invalid ns
6 (DRD*) High to (Axx) Invalid | ns
e Fm———— - TS
Memory Response Requirements:
7 (DRD*) Low to (Dxx) Low Impedance ns
8 (MXSEL*) Low to (Dxx) Low Imped. ns
9 (Axx) Valid to (Dxx) Valid 290 | ns
415 ns
540 ns
665 ns
10 (DRD*) Low to (Dxx) Valid 225 ns
350 ns
475 ns
| 600 ns
11 (MxSEL*) Low to (Dxx) Valid | 155 ns
280 ns
405 ns
530 ns
12 (DRD*) High to (Dxx) Invalid ns
13 (MXSEL*) High to (Dxx) Invalid ns
14 (DRD*) High to (Dxx) High Imped. 140 ns
15 (MXSEL*) High to (Dxx) High Imped. | 125 ns
b e e Fmm——— t——— Fm——— Fm———— te———t

Figure 2.15:

Local Memory Write Cycle

so 51 52 s3 S4 55 56 s* so

(8MH2)
» N VIIIIIIIIITIIIIITY
(Axx) %——4‘ £ TEEERRSSSSSSSE
(Dxx) » <&
XX
(WRITER) \\\X&\XX\\X\\ \\\XL\ /7227777;7;;7;;7;;;;727
(As4) Y4 \ / AARRRRARRANNY
(wose,cose) LL/ \ / ARRARRRARRNNY
(racks) LLLLL ® \ @ /@.
PO ////4 iy T
@ : —® @
(UDWR %, DWR¥) 7 - £
(DRD#) Ul ANRRRRARRANY
Table 2.13: Local Memory Write Cycle Timing

bl R et R - - +————t
| NO | PARAMETER | MIN | TYP | MAX |UNIT|
e e T o t———— +-———+

1 (Axx) Valid to (MxSEL*) Low 90 | ns

2 (Axx) Valid to (LDWR*), (UDWR*) Low 115 | ns

3 (Dxx) Valid to (LDWR*), (UDWR*) Low 35 | ns

4 (MXSEL*) Width Low 315 385 ns

5 (LDWR*) , (UDWR*) Width Low 240 310 ns

6 (LDWR*) , (UDWR*) High to (Dxx) Invalid 10 | ns

7 (MXSEL*) High to (Axx) Invalid 10 | ns

8 (LDWR*) , (UDWR*) High to (Axx) Invalld 10 | ns
R e e T e - e +-——=4%

Figure 2.16: VMEbus Read Cycle

so s s2 s3 s« s s6 53 s0
2 N2 A U N A A W A W A

(8MHZ)
(Axx) 27— <K
N
(Dex) I
(WRITER) W m
(As®) Ur X /-
(wose,ipse) LL/ \ /
\ /
(pTACK %) /g WoW o
2
Axx @ @l >
IIIIIIIIIII [XD
Dxx LLLLLLLL L LA & K-
f FARAY
wnirex [T o o - |
K /
ASk Lﬂbgf ® : " S—
Dsdx, dsax LLLLF 5 3 o~ il
sraces LTI ITITTTTTR . Y
Table 2.14: VMEbus Read Cycle Timing
o to——— +———— R e e
| NO | PARAMETER INOTES| MIN | TYP | MAX |UNIT]|
Fm e e e e +—m——— Fom——— tom——— to———- d————t
1 | (AS*) Low to AS* Low 60 75 90 | ns
2 Axx Valid to AS* Low 40 ns
3 DTACK* High to DSO0*, DS1* Low 1 20 45 75 ns
4 Dxx High Imped. to DSO*, DS1* Low 180 ns
5 | WRITE* High to DSO*, DS1* Low 120 ns
6 | AS* Low to DSO*, DS1* Low 2 5 15 35 | ns
7 Dxx Valid to (Dxx) Valid 5 | 10 15 ns
8 DTACK* Low to (DTACK*) Low 10 20 35 ns
9 DTACK* Low to AS* High 10 ns
10 DTACK* Low to DSO*, DS1* High 10 250 ns
11 AS* High to Axx Invalid 0 ns
12 DSO0*, DS1* High to WRITE* Invalid 65 ns
13 AS* Width High 195 ns
14 | DSO*, DS1* Width High 210 | ns
Fo b e to——— e +o———— - +————+
Note 1 : Provided that AS* is low.
Note 2 : Provided that DTACK* is high.

Figure 2.17: VMEbus Write Cycle

so 54 52 53 Sq ss s6 53 50
e/ N/ N/ N/

(Axx) m < s /\m//j/
(Dxx) IOV —~ /
wrirex) [L11111/] AN i
(ASx) ,_{Z/ _ j
(UDS*, DS %) i/ \ /
/ } /
(oracke) (L[]/]
Axx ¢ - W
2 3
SSSISSSSSSSSS [
Dxx CLLLLLLULL LI 7 L . 5 4——@
wrires TZITTTTTT X | | Yz
e @ —O— ~— e
Asx i _ X 4
In 9
DSPx, Ds12 ZZZ[}‘) .- — jf
‘_——_—‘:’———- .—"
vracn LTI T X [T
Table 2.15: VMEbus Write Cycle Timing
T —————— e R tm——— Fm———— T
| NO | PARAMETER |[NOTES| MIN | TYP | MAX |UNIT|
e e e tm——— R te——— e
1 (AS*) Low to AS* Low 60 75 90 ns
2 Axx Valid to AS* Low 40 ns
3 DTACK* High to Dxx Low Impedance 1 25 50 75 ns
4 DTACK* High to DSO*, DS1* Low 1 95 125 160 ns
5 WRITE* Low to DSO*, DS1* Low 165 ns
6 Dxx Valid to DSO*, DS1* Low 45 ns
7 AS* Low to DSO*, DS1* Low 2 65 160 260 ns
8 DTACK* Low to (DTACK*) Low 10 20 35 ns
9 DTACK* Low to AS* High 10 ns
10 DTACK* Low to DSO0*, DS1* High 10 250 ns
11 AS* High to Axx Invalid 0 ns
12 DSO*, DS1* High to Dxx Invalid -20 ns
13 DS0*, DS1* High to WRITE* Invalid 15 ns
14 AS* Width High 195 ns
15 DS0*, DS1* Width High 340 ns
i it e S tmm——— e tm———— +m——t
Note 1 : Provided that AS* is low.

Note 2 : Provided that DTACK* is high.

2-44

Figure 2.18: VMEbus Request and Acquisition

(8MHZ)
(Axx) 20—
SRS ENENSOSINSS A —
{Dxx) 2222722727227727727277
(wrirex) L] \
(A5%) iy X
(vose,upse) [L/ . \
(DTACK®) W _
[))
SO SNIR S NN SONSNINNE NN SOSASSNANINS(NT AN AN ;. d
Axx s LLLLLLL L L L. e LLLLL yryd . k-
P DDV IIIIIIIIIIIIII DRI DIIIIIIIII I DI Z*%qun>€3% S
S N S S O N S S N S O OO N S S S S S S S S S S S S SSSNSSSSSSSSSSSSNNISNS 0 K @ @
WRITEXx LLLL LLLELLLL L7 LI IS 2277, L2277 PN
SSSSSSSSSSSSSSSSSSSUYSSIUSSISSSSSS SSSSSSSSSSSSISSSS aj;»’_ Y\
ASX IIBIPS 2222, 2. D277 X772
SO OSSO N N IS NSNS SISNSONSSSOSNSSNSNN SOSNNSNSSSNNNNSN N = == !’L N
DS‘I’,D,H* LLL L LLLLLLLL LS L L 2 LLLL L4 LLLLIX 7 K
OD—= fo—()—»
s LTI T2 T T T T T T T T T I T
BBSY X LTI T 1 L T T T K
*——@-1 f—C—
BRx ¥
BexInx . [T 7777
Table 2.16: VMEbus Request and Acquisition Timing
o +————= e +————- tmm—— 4————t
| NO | PARAMETER |[NOTES| MIN | TYP | MAX |UNIT|
i it e T e +———— tmm—— fom——— +-———t
1 (AS*) Low to BRx* Low 80 265 ns
2 BGxIN* Low to BRx* High 1 140 335 ns
3 BGxIN* Low to BBSY* Low 1 55 250 ns
4 BGxIN* Low to Axx, WRITE* Valid 1 25 225 ns
5 BGxIN* Low to Dxx Valid (write) 1,3 30 235 ns
6 BGxIN* Low to Strobes Low Imped. 1 15 200 ns
7 AS* High to BBSY* Low 2 55 250 ns
8 AS* High to Axx, WRITE* Valid 2 25 225 ns
9 AS* High to Dxx Valid (write) 2,3 30 235 ns
10 AS* High to Strobes Low Imped. 2 15 200 ns
11 Axx, WRITE* Valid to AS* Low 40 60 90 ns
12 AS* Low to DSO*, DS1* Low (read) 3 5 15 35 ns
13 DTACK* High to DSO0*,DS1* Low (read) 4 20 45 75 ns
14 DTACK* High to Dxx Valid (write) 4 25 50 75 ns
15 Dxx Valid to DSO0*,DS1* Low (write) 45 80 120 ns
o +-———- +-—m—- tmm—— - +————t
Note 1 : Provided that the previous master has released the bus.
Note 2 : Provided that the bus request has been granted.
Note 3 : Provided that DTACK* is high.
Note 4 : Provided that AS* is low.

2-45

Figure 2.19: VMEbus Release and Bus Grant Propagation

55 56 53 so ‘ ‘
(8MKE) _m\ / \ / (- / \ / \— /S \ /-
(Axx) DR

o VIS IIIIIIIIIZ 4
(Dxx) 7 R NNSANARANRNNNY

(WRITER) ' VALPEIIIAS S NN\\N\\\\\\
(hse | / ARLARARANANY
(us%, 1DS %) / | A RARRARRRARARARARARARANN G
(rackx) \ /

Axx #

ESESSSSSSS)
Dxx 72222222727

o)1 -
WRITE X A
As ¥ v Ac *
4—@-——&
l—'—_\

X

DSgx, DA+ V,

DTacks \ AL

C @ ,
885y x i A \ i
BRx x _ J
Box IN® “ ¥

—— kﬂ3~}_______
Box OUT% \k

Table 2.17: VMEbus Release and Bus Grant Propagation Timing

R it ittt - t———— t———— et &
| NO | PARAMETER | MIN | TYP | MAX |UNIT|
o e o +o——— R ===+

1 DSO0*, DS1* High to Dxx Invalid (write) -20 ‘ ns

2 DS0*, DS1* High to DTB High Impedance 5 35 80 ns

3 AS* High to DTB High Impedance 5 220 ns

4 DTB High Impedance to BBSY* High 20 40 60 ns

5 BGxIN* Low to BGxXOUT* Low 45 225 ns

6 | BGxIN* High to BGxOUT* High | 45 | 225 | ns
o 4= +———— +-——— +-———+

CHAPTER 3

INSTALLATION

3.1. INTRODUCTION

—— e ——— ——— —— ——- - ———

This chapter provides the user of the MVMEl0l monoboard computer with
the unpacking, inspection, hardware preparation and installation pro-
cedures.

3.2. UNPACKING INSTRUCTIONS

- ————— - - ———————— —— ——— —— ——

IF THE SHIPPING CARTON IS DAMAGED UPON RECEIPT, REOUEST THAT
CARRIER”S AGENT BE PRESENT DURING UNPACKING AND INSPECTION OF
THE MODULE.

Unpack the MVME1l0l monoboard computer from its shipping carton. Refer to
the packing list and verify that all items are present. Save the packing
material for storing or reshipping the module.

AVOID TOUCHING AREAS OF MOS CIRCUITRY. STATIC DISCHARGE CAN l
DAMAGE INTEGRATED CIRCUITS. '

3.3. INSPECTION

The module should be inspected upon receipt for broken, damaged or
missing parts and for physical damage to the printed circuit board.

3.4. HARDWARE PREPARATION

This paragraph describes the hardware preparation of the MVME1l0l module
prior to system installation. That includes configuring the jumper
areas to select the various optional functions of the module, and pro-
gramming the Address Decoder PROM according to the desired address map.

Figure 3.1 illustrates the physical location of each jumper area on the
module. Table 3.1 lists the function of each jumper area and refers to
the detailed descriptions in Paragraphs 3.4.1 through 3.4.9.

1 (0o

Figure 3.1: MVMEl0l Jumper Area Locations

K4
15 __|
)
K2
; —
1}
K3
q S —
)
Ky
] ks
] 3
13
4 | -
K6
1|
4
K¥
K9 K44 K42 K13 KAY4
| I |
15
1 K18 6 4 19 1 19 1 19 1 19
4
e
K15
15
K16

4L r"—

Table 3.1:

MVME10l1 Jumper Areas

tmm—————— Fmm T Tt et +
| JUMPER | FUNCTION | OPTIONS | PARAGR. |
o ———— o T e e fmm e ——— +
K1, VMEbus Requester Select level 0, 1, 2, or 3, 3.4.1 |
K2 Priority Level or isolated configuration. l
dmm Fmm e o —— e R ¥
K3 VMEbus System Enable/disable SYSCLK output, 3.4.2 |
Control Functions enable/disable SYSFAIL*, !
enable/disable RESET* output,
enable/disable RESET* input,
enable/disable VMEbus Arbiter
o R T o ———— +
K4 Local ROM Access Insert 0, 1, 2, or 3 wait 3.4.9
Time cycles.
$emmmmm il e R +
K5 User-Vectorized Enable/disable VMEbus inter- 3.4.3
Interrupt Requests rupt request inputs IRQl*,
IRQ2*, IRQ3*, TIRQ4*, TIRQ5*,
IRQ6*, IRQ7*.

Fm——————— o e tmm—————— +
K6 Auto-vectorized Enable/disable interrupt re- | 3.4.4
Interrupt Requests quest inputs from PCI1, PCI2,

PIA, PTM, SYSFAIL*, BCLR*,
and select their priorities. |
e Fmm e - tmmm——— +
K7, Serial Ports Configure SP1 and SP2 as Data | 3.4.5 |
K15 Configuration Set or Data Terminal, and for
synchronous or asynchronous
operation.
e R ettt Fmmm e ——— +
K9, Serial Interface Configure interrupt outputs 3.4.6
K10 Control and control inputs of PCIl
and PCI2. |
e R i T T o +
K11, Memory Sockets Configure signal locations at 3.4.8 |
K12, Configuration the memory socket pairs MEM],
K13, MEM2, MEM3 and MEM4 according
K14 to the used devices.

dmm e ——— it et T TP e +
K16 PTM Connections Configure PTM clock and gate 3.4.7
inputs.

dmm it o e e +

3-3

3.4.1. VMEbus Requester Priority

——— . ——— —_——————_ —— i ——— —— ——— o — - —— -

The Jjumper areas Kl and K2 determine the priority level on which the
VMEbus Requester will operate. On K2 the bus request output signal of
the VMEbus Requester is connected with the appropriate bus request line,
on K1 it is placed in the corresponding bus grant daisy-chain. Also, on
Ki the unused bus grant inputs are jumpered to the respective bus grant
outputs.

When the MVME1l0l 1is used as the VMEbus system controller, and in any
system containing an option ONE single level VMEbus arbiter, the VMEbus
Requester must be placed on level 3. For use with a multilevel arbiter,
any one of the four priority levels may be selected. When configured as
isolated module, the VMEbus Requester is disconnected from the bus.

Original configuration: VMEbus Requester on level 3

Figure 3.2: Jumper Area K1 Figure 3.3: Jumper Area K2
VMEbus VMEbus VMEbus VMEbus
Requester K1l Signals Requestert K2 Signals
BGIN* ————- :_I-——E—i—--— BGOIN* BROUT* ----I—I-_—;—: ------ BRO*
BGOUT* ----l 3 4 4+--- BGOOUT* BROUT* —---l 3 4 l ------ BR1*
BGIN* ————- l 5 6 l—-—- BGLIN* BROUT* ----l 5 6 l —————— BR2*
BGOUT* —-—-l 7 8 +--- BGlOUT* BROUT* -—--l 7 8 l ------ BR3*
BGIN¥* ————- l 9 10 l—--— BG2IN* T '

BGOUT* ——-—l 11 12 l—-— BG20UT*

BGIN* ————- l 13 14 l—-—— BG3IN*

BGOUT* ——-—l 15 16 +--- BG30UT*
o ———— +

Table 3.2: VMEbus Requester Priority Selection

A e e +
| K1 and K2 CONNECTIONS | SELECTED PRIORITY LEVEL
T T ittt o e +
K1 1-2, 3-4, 6-8, 10-12, 1l4-16 VMEbus Requester on level 0
K2 1-2
o e e T e +
Kl: 2-4, 5-6, 7-8, 10-12, 14-16 VMEbus Requester on level 1
K2: 3-4
e T e e +

Kl1: 2-4, 6-8, 10-12, 13-14, 15-16 VMEbus Requester on level 3,
: 7-8

K2 - System Controller Configuration

e e e +
Kl: 2-4, 6-8, 10-12, 14-16 Module isolated from VMEbus
K2: none

e e ———— e +

3.4.2. VMEbus System Control Functions

The jumper area K3 is used to enable or disable various VMEbus system
control functions. The VMEbus signals SYSCLK, SYSFAIL*, RESET*, and
the VMEbus Arbiter output are fed through K3, and can be independently
selected to be handled by the MVME10l module.

When the MVMEl0Ol is used as the VMEbus system controller, all optional
system control outputs must be enabled to provide the system clock,
system failure, system reset, and bus arbiter functions. When the
board is a non-controller MPU module in the standard configuration, the
system clock, system reset, and bus arbiter outputs must be disabled.
In the isolated configuration, all system control signals must be dis-
connected from the VMEbus, to ensure proper stand-alone operation.

Original configuration: VMEbus System Controller

Figure 3.4: Jumper Area K3

Local Signals K3 VMEbus Signals

SYSCLK —==—==—=—m—- :-1———;-: ————————— SYSCLK

SYSFAIL* —-—=————- -1- 3 4 41- ——————— SYSFAIL¥*

RESETOUT* ——-—-- l 5 6 l --------- RESET*

RESETIN* ——————- l 7 8 l --------- RESET*

BARBG* ————————— l 9 10 l --------- BG3IN*
$m +

Table 3.3: VMEbus System Control Configuration

e e et e e LT - +
| K3 CONNECTIONS | ENABLED FUNCTIONS | MODULE CONFIGURATION
e R ettt T e ittt +
1-2, SYSCLK output, VMEbus System Controller
3-4, SYSFAIL* in/out,
5-6, RESET* output,
7-8, RESET* input,
9-10 VMEbus Arbiter
Fom et R e L e +
3-4, SYSFAIL* in/out, Standard Configuration
7-8 RESET* input
Fom e e it L e Fm - +
none | none | Isolated Configuration
Fom e atatat e o - +

3.4.3. User-Vectorized Interrupt Requests

The jumper area K5 determines which of the seven interrupt request lines
on the VMEbus may interrupt the on-board MPU. Originally, all interrupt
levels are enabled on K5 and handled by the MVME1Ol. If any other
modules capable of handling VMEbus interrupts are present in the system,
the user must assign the interrupt levels to the interrupt handlers such
that not more than one MPU responds to a given VMEbus interrupt. If a
VMEbus interrupt is not to be received by the MVMEl0Ol, the corresponding
jumper must be removed from K5.

VMEbus interrupt requests cannot be wired to a different on-board inter-
rupt level. The jumpers must be installed straight across the pins on
jumper area K5.

Original configuration: All VMEbus interrupt requests enabled

Figure 3.5: Jumper Area K5

VMEbus Signals K5 Interrupt Handler
IRQ7* —————mmmeoe o :_1—_—;-: ——————————— UVIRQ7*
TRQ6* —mmmmmmmmmmem l 34 l ----------- UVIRQ6*
IRQ5* ———cm—mmmm e l 5 6 l ——————————— UVIRQS*
IRQ4* ————mmmm— l 7 8 l ——————————— UVIRQ4*
IRQ3* ————mmmmm—e l 9 10 l ——————————— UVIRQ3*
IRQ2* ————m—mm— l 11 12 l ——————————— UVIRQ2*
IRQL* = l 13 14 % ——————————— UVIRQ1*
fommmm e

Table 3.4: User-Vectorized Interrupt Selection

17%s connmcTIONS | ENABLED INTERRUPTS i
T | VMEbus Interrupt Request level 7 i
T | WMEbus Interrupt Request level & |
TS | VMEDus Interrupt Request level s |
TR | WMEbus Interrupt Request level 4 i
T T | VMEbus Interrupt Request level 3 |
TN T | VMEbus Interrupt Request level 2 |
1‘_'“’15312 """"" | WMEbus Interrupt Request level 1 1

---------------- Tt T T T T

3.4.4. Auto-Vectorized Interrupt Requests

On

the jumper area K6 the interrupt request outputs of the on-board

1/0-devices and the VMEbus signals SYSFAIL* and BCLR* may be jumpered to
interrupt the MPU in the auto-vectorized mode. Any of these interrupters

may be connected with any of the six lower MPU interrupt levels. Also,
two or more interrupters may be jumpered in a wired-or configuration on
one common interrupt request level.
The non-maskable auto-vectorized interrupt on level 7 1is not available
for the user. Instead, it is reserved for software abort and AC power
failure.
Original configuration: SYSFAIL* on interrupt level 1,
© PTM on interrupt level 2,

PIA on interrupt level 3,

PCI1 on interrupt level 4,

PCI2 on interrupt level 5,

BCLR* on interrupt level 6

Figure 3.6: Jumper Area K6

Interrupters K6 Interrupt Handler
BCLR* ————mmmmmmmmom :—1——_5-: ------------ AVIRQ6*
PCI2 ——m———mmmmmmee l 3 4 l ------------ AVIRQS*
PCIl —=—=——=——m—m—- l 5 6 l ———————————— AVIRQ4*
PIA —=——mmmmmmm l 7 8 l ------------ AVIRQ3*
PTM ———mm—mmmmmmm e l 9 10 l ------------ AVIRQ2*
SYSFAIL*————=——=——= l 11 12 l ------------ AVIRQL*
R +

Table 3.5: Auto-Vectorized Interrupt Selection

N S e + o e e +
| K6 PIN | INTERRUPTER | | K6 PIN | INTERRUPT REQUEST |
¥ S T + Fmmm e +
| 1 | VMEbus signal BCLR* | | 2 | Interrupt level 6 |
b T I e +
| 3 | PCI2 interrupt output | | 4 | Interrupt level 5 |
e ——— e + Hmmm o e +
| 5 | PCI1 interrupt output | | 6 | Interrupt level 4 !
T o e I o e e +
| 7 | PIA interrupt output |] 8 | Interrupt level 3 l
O e + Fmmmm e T +
| 9 | PTM interrupt output | | 10 | Interrupt level 2 [
R T + e o e +
| 11 | VMEbus signal SYSFAIL* | | 12 | Interrupt level 1 |
oo T I e e +

3.4.5. Serial Ports Configuration

- ———— — ———— — ———— - — - ———————

The

of SP1,

peripheral

independently

as

input/output signals
Interfaces are fed to the connectors on
jumper areas K7 and K15.
the jumpers on K15 that of SP2,
Data Terminal
synchronous data transmission.

optionally be supported.

Original configuration:

Also,

the

or Data Set,

the

DSR

of the Programmable Communication
front panel
The jumpers on K7 determine the pin assignment
Both ports may be configured

through the

and for asynchronous or

and CTS

inputs may

SP1 configured as asynchronous Data Set,

SP2 configured as asynchronous Data Terminal.

Figure 3.7: Jumper Area K7 Figure 3.8: Jumper Area K15
T + pom————— +
SP1-PIN8 ---+ 1 2 +==——- + 12 V SP2-PIN8 ---+ 1 2 4-———= + 12 V
SP1-PIN24 ——l 3 4 l——— PCI1-TXC SP2-PIN24 ——l 3 4 l——— PCI2-TXC
PCI1-DTR ———l 5 6 l—— SP1-PIN20 PCI2-DTR ———l 5 6 l-— SP2-PIN20
SP1-PING6 ———l 7 8 l——— PCI1-CTS SP2-PING6 ———l 7 8 +--—- PCI2-CTS
PCI1-DSR ———i 9 10 l——— SP1-PIN5S PCI2-DSR --—l 9 10 l——- SP2-PIN5S
SP1-PIN4 ———l 11 12 l——- PCI1-RTS SP2-PIN4 ———l 11 12 l--— PCI2-RTS
PCI1-RXD ———l 13 14 l——— SP1-PIN3 PCI2-RXD ———l 13 14 l—-— SP2-PIN3
SP1-PIN2 ———l 15 16 l—-— PCI1-TXD SP2-PIN2 ———l 15 16 l——- PCI2-TXD
b + b +
Table 3.6: Serial Ports Configuration

o e e et s +
| X7 / K15 CONNECTIONS | SP1 / SP2 CONFIGURATION |
17122, 7527, 10-12, 13-15, 14-16 | Port configured as Data Set i
1Tes T | DSR/CTS controlled by Data Terminal |
1oy T | DSR/CTS controlled by Data Terminal |
17172, 576, 11-12, 13-14, 15-16 | Port configured as Data Terminal |
e T | DSR/CTS controlled by Data Set |
1Tocto T | DSR/CTS comtrolled by Data Set |
173 and 4 open T | Asynchronous data transmission i
I’SIZ """"""""""""""" 1‘§§;ZEZSESSQ'Q;E;'EEQS;;E;;I;; """"" 1
___ +

3.4.6. Serial Interface Control

On the jumper areas K9 and K10 the interrupt outputs and the CTS*
inputs of the Programmable Communication Interfaces may be configured
for different modes of operation. K9 belongs to PCIl, K10 belongs to
PCI2. For each interface, either one of the PCI interrupt outputs
TXRDY* and RXRDY*, or both can be connected with the interrupt request
line which is fed to the jumper area K6, There it may be jumpered on any
auto-vectorized interrupt request. The CTS* inputs of the PCIs can be

either constantly enabled, or shorted with the DSR* inputs, to support
control from peripherals.

Original configuration: Interrupt outputs open,
CTS* inputs enabled

Figure 3.9: Jumper Area K9 Figure 3.10: Jumper Area K10
e+ | +-——+
PCI1-DSR ——-=--- + 6 +-- SP1-DSR/CTS PCI2-DSR —=—=—- + 6 +-—- SP2-DSR/CTS
PCI1-CTS —-—=-- l 5 PCI2-CTS ----- l 5
4 Hmmmmmm e GND R GND
PCI1-TXRDY -=--+ 3 PCI2-TXRDY ~---+ 3
2 +————- PCI1-IRQ 2 +=————- PCI2-IRQ
PCI1-RXRDY =—==-+ 1 PCI2-RXRDY ---+ 1
+-——+ +-——+

Table 3.7: Serial Interface Control

Frmrr—— e

K5 / K10 CONNECTIONS | PCIL / PCI2 CONFIGURATION 1
T | Tnterrupt asserted by RXRDY i
TS | Tnterrapt assertea by TxmoY i
TS T | Tnterrupt asserted by RKRDY amd TXRDY 1
TS 17Crs input constantly emabled i
1""'____'538 """"""" I'EEQ'IS;GE’;;;BIQQ'BQ—QQZIEEQ;;i’EQSZZQ ________ |
___ H

3.4.7. Programmable Timer Configuration

The peripheral clock, gate, and output signals of the Programmable Timer
Module may be configured for several modes of operation on the jumper
area K16, The gate inputs can be connected with ground and thus be
constantly enabhled. For real time counting, the clock input of counter
3 can be connected with the 2 MHz free running clock signal. VMEbus
cycles can be counted by connecting the VMEbus address strobe with the
clock input of counter 2. MPU cycles can be counted by connecting the
MPU address strobe with the clock input of counter 1. Counters can be

cascaded by connecting a counter”s input with the output of the previous
counter. '

For other applications of the Programmable Timer Module, all peripheral
clock, gate, and output signals are also available at connector P2.

Original configuration: No jumpers set

Figure -3.11: Jumper Area K16

e =
PTM C3* —-—=+ 1
2 +—————- 2 MHz
PTM G3* —---+ 3
4 l ———————— GND
PTM 03 ----+ 5
PTM C2* ——-l 6
7 +---- VME AS*
PTM G2* ---+ 8
l 9 Hmmmmmmmm GND
PTM 02 ----+ 10
PTM Cl* -——l 11
‘ 12 +---- MPU AS*
PTM G3* ---+ 13
‘ 14 +=—eeeeene GND
+-———+

3-10

Table 3.8: Programmable Timer Configurations

1"k16 conwmcTIONS | PTM cowPrGURATION 1
TR 1 Gate input of counter 3 is comstantly emabled |
T T | Gate input of counter 2 is comstantly emabled I
T | "Gate input of counter 1 is comstantly emabled |
T | Counter 3 1s clocked with 2 Mhz real time clock |
TR | Counter 2 is clocked with VMEbus address strobe |
TN T | “Counter 1 is clocked with MPU address strobe 1
TS T | Counter 3 and counter 2 are cascadea i
T | Counter 2 and counter 1 are cascaded i
o o +

3.4.8. Memory Sockets Confi

guration

The jumper areas K11, K12, K13, and K14 are used to configure the memory
sockets on the MVME1l0l for the various types of memory devices which mav
be installed. The memory array consists of eight 28-pin sockets,
nized as four pairs. Each memory pair is configured individually on its

associated jumper area.

Figure 3.12: Local Memory Organization

o + e + dmee—————— + te———————— +
K1l I | K12 | K13 | K14
1 19 1 19| |1 19 |1 19]
o + +-—————————t tmm——————— + m———————— +
o + de———————— + de———————— + pm—————— +
15 14 15 14 15 14 15 14|
Us3 U54 Uss Useé l
MEM1U MEM2U MEM3U MEMA4U
even bytes even bytes even bytes even bytes|
28 1 28 1 28 1 28 1|
o ————— + dem——————— + ——————— + b +
o ———— + emem—————— + + pmmm—————— +
15 14 15 14 15 14 15 14]
l
U6l U62 U63 U64 l
MEM1L MEM2L MEM3L MEM4L |
odd bytes odd bytes odd bytes odd bytes]|
28 1 28 1 28 1 28 1|
e e + e + e + A +

orga-

The memory sockets accept 24-pin dual-in-line packages as well as 28-pin
packages, provided the devices are compatible with the JEDEC standard
pin-out for byte-wide memories. 28-pin devices are inserted with pins
1 - 28 of the device matching pins 1 - 28 of the socket, 24-pin devices
are inserted with pins 1 - 24 of the device matching pins 3 - 26 of the
socket. By that the memory address inputs A0 - Al0 are connected with
the MPU address ouputs A0l - All, the lower order (odd bytes) memory
data lines DO - D7 are connected with the MPU data lines D00 - D07, and
the upper order (even bytes) memory data lines DO - D7 are connected
with the MPU data lines D08 - D15. For supporting different device
sizes and pin-outs, the signals at pins 18, 20, and 21 of 24-pin
memories, and the signals at pins 1, 2, 20, 22, 23, 26, and 27 of
28-pin memories are fed to the configuration jumper areas, where they
have to be connected with the appropriate address and control signals.
Figure 3.13 1illustrates a memory socket pair and the signal connections
for 28-pin and 24-pin devices.

Figure 3.13: Memory Pin Assignment

MEMxU

ittt ettt +
MPU-D11 ----+15 (13) D3 GND (12) 1l4+4------—- GND
MPU-D12 ----+16 (14) D4 D2 (11) 13+---- MPU-D10
MPU-D13 ----+17 (15) D5 D1 (10) 12+---- MPU-DO09
MPU-D14 ----+18 (16) D6 DO (9) 1ll4+---- MPU-DO8
MPU-D15 ----+19 (17) D7 A0 (8) 10+---- MPU-AOl
K1x-P20 ----+20 (18) Al (7) 9+4---- MPU-A02
MPU-Al1l ----+21 (19) AlO A2 (6) 8+---- MPU-AO03
K1x-P22 ----+22 (20) A3 (5) 74+---- MPU-A04
K1x-UP23 ---+23 (21) A4 (4) 6+——--- MPU-A05
MPU-Al1Q ----+24 (22) A9 AS (3) 5+---- MPU-A0Q6
MPU-AQ9 ----+25 (23) A8 A6 (2) 4+---- MPU-AQ7
K1x-P26 —----+26 (24) A7 (1) 3+---- MPU-AQ0S8
K1x-P27U -==+427 ———-=——mmmmmm e 24=————= K1x-P2
+5V —=-———mm +28 +5V l+=—=mm- K1lx-P1l

ittt e T +

MEMxL

e +
MPU-D03 ----+15 (13) D3 GND (12) 14+4--—-==——==- GND
MPU-D04 —----+16 (14) D4 D2 (11) 13+————- MPU-D02
MPU-D05 ----+17 (15) D5 D1 (10) 12+----- MPU-DO1
MPU-D06 —----+18 (16) D6 DO (9) ll+—=--- MPU-DO0O
MPU-D07 ----+19 (17) D7 A0 (8) 10+----- MPU-AO1
K1x-P20 —----+20 (18) Al (7)) 94---—- MPU-A02
MPU-All ----+21 (19) AlO A2 (6) 8B4=———- MPU-AO3
K1x-P22 ----+22 (20) A3 (5) T4+-=——- MPU-A04
K1x-P23L ---+23 (21) A4 (4) 64+————- MPU-A0S5
MPU-Al10 ----+24 (22) A9 AS (3) S54=-——- MPU-AO06
MPU-AQ9 ----+25 (23) A8 A6 (2) 4+4--——- MPU-AQ7
K1x-P26 ----+26 (24) A7 (1) 34---—- MPU-A(08
K1x-P27L ===+427 =—--mm-—crrcccmcc—e——- 24=—=mmm- K1x-P2
+5V —=——e——— +28 +5V l+==emm Klx-Pl

R it +

Note: The letter "x" reflects the number of the socket
pair, and may have a value of 1, 2, 3, or 4.

3-12

Figure 3.14 shows the signal assignment on the jumper areas K11l - Kl4.
On the local bus side, these signals are the address lines Al2 - Als,
the memory select signal MxS*, the output enable signal OE*, the upper

byte and lower byte write pulses WRU* and WRL*, and the +5V power supply

voltage. On the memory side, the socket pins 1, 2, 20, 22, 230, 23L,
26, 27U, and 27L are fed to the jumper areas.
Figure 3.14: Jumper Areas K11 - K14
Pin Numbers: Signals:
e -+ o +
21 20 19 Al3 P23L Al2
18 17 16 P2 +5V P20
15 14 13 Al4 Pl MxS*
12 11 10 P26 AlS P22
9 8 7 +5V P27L OE*
6 5 4 P27L WRL* P23L |
3 2 1 P27U WRU* P23U |
Fmm + Fomm e -—+
After having selected the devices to be installed in a memory socket
pair, the user has to configure the according jumper area. Table 3.9

and Table 3.10 1list which signals must be connected on the jumper areas
for RAMs and ROMs of different sizes.

Table 3.9: Signal Connections for RAM Devices
o e - +
| MEMORY TYPE | SIGNAL CONNECTIONS ON CONFIGURATION JUMPER AREA |
o ettt et T B P +

2K x 8 RAM MxS* to CS* of both RAMs, OE* to OE* of both RAMs, !
WRU* to WR* of upper RAM, WRL* to WR* of lower RAM |
ittt o +
4K x 8 RAM MxS* to CS* of both RAMs, OE* to OE* of both RAMs, |
WRU* to WR* of upper RAM, WRL* to WR* of lower RAM,
Al2 to All of both RAMs
tommm e B ettt ittt et +
8K x 8 RAM MxS* to CS* of both RAMs, OE* to OE* of both RAMs,
WRU* to WR* of upper RAM, WRL* to WR* of lower RAM,
Al2 to All of both RAMs, Al3 to Al2 of both RAMs
+ __
16K RAM MxS* to CS* of both RAMs, OE* to OE* of both RAMs,
WRU* to WR* of upper RAM, WRL* to WR* of lower RAM,
Al2 to All of both RAMs, Al3 to Al2 of both RAMs,
Al4 to Al3 of both RAMs
e, e e e e e e e e e e e e = = e = = =
32K RAM MxS* to CS* of both RAMs, OE* to OE* of both RAMs,
WRU* to WR* of upper RAM, WRL* to WR* of lower RAM,
Al2 to All of both RAMs, Al3 to Al2 of both RAMs,
Al4 to Al3 of both RAMs, Al5 to Al4 of both RAMs
o e - +

Table 3.10: Signal Connections for ROM Devices

Fmmm e Tttt et L L Tt T +
| MEMORY TYPE | SIGNAL CONNECTIONS ON CONFIGURATION JUMPER AREA |
et T ittt +
| 2K x 8 ROM | MxS* to CS* of both ROMs, OE* to OE* of both ROMs, |
o o ————— e —————————— -
4K x 8 ROM MxS* to CS* of both ROMs, OE* to OE* of both ROMs, |
Al2 to All of both ROMs
S O P U e —————————— +
8K x 8 ROM MxS* to CS* of both ROMs, OE* to OE* of both ROMs,
Al2 to All of both ROMs, Al3 to Al2 of both ROMs
et it ettt T L L T +
16K x 8 ROM MxS* to CS* of both ROMs, OE* to OE* of both ROMs,
Al2 ‘to All of both ROMs, Al3 to Al2 of both ROMs,
| Al4 to Al3 of both ROMs
ettt e R T ittt +
32K x 8 ROM MxS* to CS* of both ROMs, OE* to OE* of both ROMs,
Al2 to All of both ROMs, Al3 to Al2 of both ROMs,
Al4 to Al3 of both ROMs, Al5 to Al4 of both ROMs |
o T T T ittt +

Table 3.11 lists several popular RAM and EPROM devices that may be

installed in the 1local memory sockets. If any of these devices, or
device types having identical pin-outs, are selected for use, the
specified connections must be made on the according jumper areas. When

devices with different pin-outs are installed, the user should refer to
Tables 3.9 and 3.10 to determine the appropriate jumper configuration.

Table 3.11: Configurations for Popular Memories

e et ettt B ettt +
| K11, K12, K13, K14 CONNECTIONS | MEMORY DEVICE |
LT T T it R +
1-2, 4-5, 7-10, 9-12, 13-16 1 A 2128 2K x 8 RAM
1T 419 5128 2K x 8 RAM
e ettt e e e e L e P e P P PP e et ——————— et et it +
1-4, 2-3, 5-6, 7-10, 9-12, TEEE 5188 8K x 8 RAM
13-16, 18-21, 19-20 1 1119
e e +
1-4, 7-10, 9-12, 13-16, 17-20 R 2516 2K x 8 EPROM
1C 1119119 2716 2K x 8 EPROM
B et et ———e e +
1-4, 9-12, 10-13, 16-19, 17-20 selTees 2532 4K x 8 EPROM
1. 19
e it +
1-4, 7-10, 9-12, 13-16, 19-20 el Ji e 2732 4K x 8 EPROM
171119
it ettt e L et ettt +
1-4, 3-6, 7-10, 8-9, 13-16, S I 00 - 2764 8K x 8 EPROM |
14-17, 18-21, 19-20 1 —119 |
e Rt et R it T +
1-4, 3-6, 7-10, 8-9, 12-15, —] b 27128 16K x 8 EPROM ‘
13-16, 14-17, 18-21, 19-20 1 1119
et ettt e fa +
1-4, 3-6, 7-10, 8-11, 12-15, B] N 27256 32K x 8 EPROM ‘
13-16, 14-17, 18-21, 19-20 1 119
e e R et +

3-14

3.4.9. Local ROM Access Time

The jumper area K4 is used to select the number of wait cycles inserted
by the MPU when accessing local ROM. K4 must be configured such that
the timing of a read operation from local ROM meets the requirements of
the slowest ROM device installed in the memory sockets. For each jumper
position on K4, Table 3.12 lists the maximum output delay times of the
ROM devices that can be tolerated for proper operation.

More detailed timing specifications of the local memory access are given
in Paragraph 2.12, '

Original configuration: 3 wait cycles inserted

Figure 3.15: Jumper Area K4

ROMDEL ---+ 8 7 +--- 0 W.C.

ROMDEL =---+ 6 5 +--- 1 W.C.
| !

ROMDEL -—_T 4 3 T—-— 2 W.C.

ROMDEL ---+ 2 1 +--- 3 W.C.
N — +

Table 3.12: Local ROM Access Time Selection

o B et e +
| K4 CONNECTIONS | WAIT CYCLES | MAXIMUM ROM DELAY TIMES |
e B T B T T T T DT P +
1-2 3 Addr. Valid to Data Valid max. 665 ns
OE* Low to Data Valid max. 600 ns
CS* Low to Data Valid max. 530 ns
o T o e +
3-4 2 Addr. Valid to Data Valid max. 540 ns
OE* Low to Data Valid max. 475 ns
CS* Low to Data Valid max. 405 ns
L T T Ty e T T Tyepmu— +
5-6 1 Addr. Valid to Data Valid max. 415 ns
OE* Low to Data Valid max. 350 ns
CS* Low to Data Valid max. 280 ns
Formmm e e T e e - +
7-8 0 Addr. Valid to Data Valid max. 290 ns
OE* Low to Data Valid max. 225 ns
CS* Low to Data Valid max. 155 ns
o T LTy e +

3.4.10. Address Map Configuration

The original configuration of the MVME1l0l address map, as shipped from
the factory, 1is shown in Table 2.5. If this map does not meet the
requirements of the actual application, a new Address Decoder PROM must
be programmed according to the demands. For a good comprehension of the
following procedure, the user should be familiar with the functional
description of the Address Decoder in Paragraph 2.7.

3.4.10.1. Local Memory Addresses

——— - ———— ———— ——— — ——— — — ———————— —

After the user has selected the RAM and ROM devices to be used for local
memory, the addresses to be contained within each memory socket pair
must be specified. To avoid address swapping, the base address of each
memory pair must reside on the correct boundary. These boundaries are
integer multiples of the memory pair size. Each memory pair occupies
an address range of twice the size of a single device. Table 3.14 can
assist in the selection of local memory base addresses for the wvarious
sizes of memory devices. The position of the local memories may be
registered in the personal address map in Table 3.16.

3.4,10.2. Local I/0 Addresses

The local 1I/0-devices occupy one 4K bytes segment in the address map.
Any 4K boundary in Table 3.14 may be specified as the base address of
the I/0O-registers. After the user has selected this base address, he
may obtain his personal I/O-register address map by wusing Table 3.17
and adding the chosen base address to the values listed in the ADDRESS
column. The position of the local I/O-devices segment may be registered
in the personal address map in Table 3.16.

3.4.10.3. VMEbus Short I1/0 Addresses

When I/O-modules using the address modifier code for Short I/O Address
are installed in the system, an address field of 64K bytes must be
reserved in the address map for accessing them. Such modules decode
only the address lines AQOl - Al5 on the VMEbus, i.e. a 64K address
range, when they are enabled by the address modifier lines. The user
may specify any 64K boundary in Table 3.14 as the base address of these
global I/0 devices. Their addresses in the MVMEl(Ol memory map, as seen
from the MPU, can then be calculated by adding the selected base
address as an offset to their 16-bit addresses. The position of the

Short I/0 Address field may be registered in the personal address map in
Table 3.16.

3.4.10.4. VMEbus Standard Addresses

All address segments in the Lo Block and in the Hi Block which are not
selected as local memory, local 1/0, or VMEbus short I/O addresses,
should be specified as VMEbhus Standard Addresses in the personal address
map. By that, on-board and off-board address fields for RAM, ROM, and
memory-mapped I/O-devices may be contiguously allocated.

3.4.10.5. Address Decoder PROM Programming

- - —— ——— — ——— —— ————— — — —— — — - — — ———————— — ——

After the user has configured his personal address map, he must specify
the contents of the Address Decoder PROM. This PROM is organized as
512 x 4 bits. The PROM locations 000 - OFF represent the Lo Block, the
locations 100 - 1FF represent the Hi Block of the address map. Each
PROM location corresponds to one 4K bytes address segment.

For each of these 512 address segments, the Address Decoder PROM must be
programmed to define which device is selected. These devices may be
either local RAM or local ROM in one of the four memory socket pairs,
or local 1I/0-devices, or VMEbus I/0 modules responding to short I/O
addresses, or VMEbus modules responding to standard addresses. The
PROM defines the devices using the encoding scheme shown in Table 3.13.

To determine the data to be recorded in each PROM location, the user
refers to his personal address map in Table 3.16 and specifies for each
MPU address segment in Table 3.15 the device to be selected by entering
the appropriate hexadecimal code number of Table 3.13.

The Address Decoder PROM may be a Signetics N82S130 or any electrically
and physically compatible bipolar PROM. For proper operation, the
maximum address access time of the used PROM must not exceed 50 ns, the
maximum chip select access time must not exceed 30 ns.

Table 3.13: Address Decoder PROM Data Definition

Fomm o e +
| PROM DATA | SELECTED DEVICES |
Fommm e o +
0 Local RAM in socket pair 1
1 Local RAM in socket pair 2
2 Local RAM in socket pair 3 |
fommm e o e +
| 3 | Invalid |
ittt e o e e e e e e e +
4 Local ROM in socket pair 1 |
5 Local ROM in socket pair 2 |
6 Local ROM in socket pair 3 |
7 Local ROM in socket pair 4 |
tmm e ——— A e e e e +
8 | Local I/0-devices |
i e e e +
9 Invalid
A Invalid
B Invalid
C Invalid
D Invalid
ettt T e +
E VMEbus Short I/0 Address
F VMEbus Standard Address
Fom A +

Table 3.14: Address Boundaries

e e Fomm +
ADDRESS FIELD SIZE | BOUNDARY |
ettt ittt Fomm e +

4K bytes FxF000

8K bytes 4K bytes FxE000

4K bytes FxD000

16K bytes 8K bytes 4K bytes FxC000

4K bytes FxB00O

8K bytes 4K bytes FxA000

4K bytes Fx9000

32K bytes 16K bytes 8K bytes 4K bytes Fx8000

4K bytes Fx7000

8K bytes 4K bytes Fx6000

4K bytes Fx5000

16K bytes 8K bytes 4K bytes Fx4000

4K bytes | Fx3000

8K bytes 4K bytes Fx2000

4K bytes Fx1000

64K bytes 32K bytes 16K bytes 8K bytes 4K bytes Fx0000
e dmmm +

4K bytes 0xF000

8K bytes 4K bytes 0xE000

4K bytes 0xD000

16K bytes 8K bytes 4K bytes 0xC000

4K bytes 0xB00O

8K bytes 4K bytes 0xA000

4K bytes 0x9000

32K bytes 16K byvtes 8K bytes 4K bytes 0x8000

4K bytes 0x7000

8K bytes 4K bytes 0x6000

4K bytes 0x5000

16K bytes 8K bytes 4K bytes 0x4000

4K bytes 0x3000

8K bytes 4K bytes 0x2000

4K bytes 0x1000

64K bytes 32K bytes 16K bytes 8K bytes 4K bytes 0x0000
e e +

Note: The letter "x" in the BOUNDARY column may have any hex value.

—.

FFFxxxX
FFExxx
FFDxxx
FFCxxx
FFBXxX
FFAXXX
FFI9xxx
FF8xxx
FF7xxx
FF6xXxx
FF5xxx
FF4xxx
FF3xxx
FF2xxx
FF1xxx
FFOxXxx

FEFxxx
FEExxx
FEDxxx
FECxxx
FEBxXxx
FEAxXxX
FE9xXxx
FE8xxx
FE7xxx
FE6xXXX
FE5xxx
FE4xxx
FE3xxx
FE2xXxx
FElxxx
FEOxxx

Note:

Table 3.15:

FDFxXxx
FDExxx
FDDxxXx
FDCxxx
FDBxxx
FDAxxxX
FD9xxx
FD8xxx
FD7xxx
FD6xxXxX
FD5xxx
FD4xxx
FD3xxx
FD2xxx
FD1lxxx
FDOxxx

FCFxxx
FCExXxxX
FCDxxx
FCCxxx
FCBxxx
FCAxxx
FCOxxx
FC8xxx
FC7xxx
FC6xxx
FC5xxx
FC4xxx
FC3xxx
FC2xxx
FClxxx
FCOxxx

P —— N Y S

3-19

FBFxxXx
FBExXxX
FBDxXxXX
FBCxxx
FBBXXX
FBAXXX
FB9xxx
FB8xxx
FB7xxx
FB6xxxX
FB5xxx
FB4dxxx
FB3xxx
FB2xxx
FB1xxx
FBOxXxX

FADXxXX
FACxxx
FABxxXX
FAAXXX
FA9xxx
FA8xxx
FA7xxx
FA6XXX
FASxxx
FA4xxx
FA3xxx
FA2xxx
FAlxxx
FAOXXX
f———_———

1A8
1A7
126
1A5
1a4
1A3
1A2
1A1
| 1a0
Fe—

Address Decoder PROM Specification

FOFxxx
F9ExXXX
FO9Dxxx
F9Cxxx
FI9Bxxx
FO9AXXX
F99xxx
F98xxx
F97xxx
F96xxx
F95xxx
F94xxx
F93xxx
F92xxx
F91xxx
FO0xxx

F8Fxxx
FBExxxX
F8Dxxx
F8Cxxx
F8Bxxx
F8Axxx
F89xxx
F88xxx
F87xxx
F86xxx
F85xxx
F84xxx
F83xxx
F82xxx
F81lxxx
F80xxx

Fmm e L

The letter "x" in the MPU ADDR column represents any hex value.

Table 3.15:

F7Fxxx
F7Exxx
F7Dxxx
F7Cxxx
F7Bxxx
F7AxXxxX
F79xxx
F78xxx
F77xxx
F76xxx
F75xxx
F74xxx
F73xxx
F72xxx
F71xxx
F70xxx

F6FxxXx
F6Exxx
F6Dxxx
F6Cxxx
F6BxXxXx
F6AxxX
F69xxx
F68xxx
F67xxx
F66xXXX
F65xxx
F64xxx
F63xxx
F62xxx
F61lxxx
F60xxx

Note:

Address Decoder PROM Specification

F5Fxxx
F5ExxxX
FS5Dxxx
F5Cxxx
F5Bxxx
F5AXxXx
F59%xxx
F58xxx
F57xxx
F56xxx
F55xxx
F54xxx
F53xxx
F52xxx
F51xxx
F50xxx

FAFxxX
F4Exxx
F4Dxxx
F4Cxxx
F4Bxxx
F4AXXX
F49xxx
F48xxx
F47xxx
F46xxx
F45xxx
F44xxx
F43xxx
F42xxx
F41xxx
F40xxx

e

14F
14E
14D
14C
14B
14A
149
148
147
146
145
144
143
142
141
140

F3Fxxx
F3ExXxXx
F3Dxxx
F3Cxxx
F3Bxxx
F3AxXxx
F39xxx
F38xxx
F37xxx
F36xxx
F35xxx
F34xxx
F33xxx
F32xxx
F3lxxx
F30xxx

F2Fxxx
F2Exxx
F2Dxxx
F2Cxxx
F2Bxxx
F2Axxx
F29xxx
F28xxx
F27xxx
F26xxx
F25xxx
F24xxx
F23xxx
F22xxx
F2lxxx
F20xxx

F1Fxxx
FlExxx
F1Dxxx
FlCxxx
F1BxXxx
F1lAxXxX
F19xxx
F18xxx
F17xxx
Fl6exxx
Fl5xxx
Fl4xxx
F13xxx
Fl2xxx
Fllxxx
F10xxx

FOFxxx
FOExxX
FODxxx
FOCxXxx
FOBxxx
FOAxXxX
FO09xxx
FO8xxx
FO7xxx
FO6xxx
FO5xxx
FO04xxx
FO3xxx
FO02xxx
FOlxxx
FOOxxx

(cont”d)

The letter "x" in the MPU ADDR column represents any hex value.

Table 3.15:

OFDxxXx
OFCxxx
OFBxxx
OFAXxxX
0F9xxx
0F8xxx
OF7xxx
0F6xxXx
O0F5xxx
OF4xxx
OF 3xxx
OF2xxx
OF1xxx
0F0xxx

0EExxx
0EDxxXx
OECxxx
0OEBxxX
OEAXxX
0E9xxx
0E8xxx
0E7xxx
OE6xxX
0ESxxx
OE4xxx
O0E3xxx
O0E2xxx
OElxxx
OEOxxx

Note:

Address Decoder PROM Specification

ODFxxx
0DExxx
0DDxxx
0DCxxx
0DBxxx
ODAXxX
0D9xxx
0D8xxx
0D7xxx
0D6xxXxX
0D5xxx
0D4xxx
0D3xxx
0D2xxx
0D1lxxx
0DOxxx

0CFxxx
0CExxx
0CDxxx
0CCxxx
0CBxxx
0CAxxx
0C9xxx
0C8xxx
0C7xxx
0C6xxx
0C5xxx
0C4xxx
0C3xxx
0C2xxx
0Clxxx
0COxxx

OBFxxx
OBEXXX
0BDxxx
0BCxxx
0BBxxx
OBAxXxX
0B9xxx
0B8xxx
0B7xxx
0B6xxX
OB5xxx
0B4xxx
0B3xxx
0B2xXxX
0Blxxx
0BOxxx

OAFxxX
OAExXXX
0ADXxXX
0ACxxXx
0ABxxx
OAAXXX
0A9xxX
0A8xxx
OA7xxX
OA6xXxX
0A5xxx
OA4xxx
0A3xxx
0A2xxx
0Alxxx
OAO0xxx

R e

0Bl
| 0BO

R Fmm bt

| 0AF
OAE
0AD
0AC
OAB
0AA
0A9
0A8
0A7
0A6
0A5
0A4
0A3
0A2
0Al
0AOQ

09Fxxx
09Exxx
09Dxxx
09Cxxx
09Bxxx
09AxXxXxX
099xxx
098xxx
097xxx
096xxx
095xxx
094xxx
093xxx
092xxx
091xxx
090xxx

08Fxxx
08ExxXx
08Dxxx
08Cxxx
08Bxxx
08Axxx
089xxx
088xxx
087xxx
086xxx
085xxx
084xxx
083xxx
082xxx
081lxxx
080xxx
b ——

(cont”d)

bmmm bt

The letter "x" in the MPU ADDR column represents any hex value.

Table 3.15:

07Fxxx
07Exxx
07Dxxx
07Cxxx
07Bxxx
07AxXxXX
079xxx
078xxx
077xxx
076xxx
075xxx
074xxx
073xxx
072xxx
071xxx
070xxx

06Fxxx
06Exxx
06DxxxX
06Cxxx
06BxXxXxX
06AXXX
069xxx
068xxx
067xxx
066xxxX
065xxx
064xxx
063xxx
062xxx
061xxx
060xxx

Note:

The letter

Address Decoder PROM Specification (cont”d)

o m——— Fmm———— + B o + tmmm——— tm————— +
MPU PROM MPU | PROM MPU PROM
ADDR | A D ADDR | A D ADDR | A D

Fmm———— et tmm———— tm—mmp——t tmmm——— tm——t -t
05Fxxx | O5F 03Fxxx|03F 01Fxxx|O1lF
05Exxx | 05E 03Exxx|03E 0lExxx|01lE
05Dxxx| 05D 03Dxxx | 03D 01Dxxx|01D
05Cxxx|05C 03Cxxx|03C 01Cxxx|01C
05Bxxx| 05B 03Bxxx| 03B " |01Bxxx|{01lB
05Axxx| 05A 03Axxx|03A 0lAaxxx|01lA
059xxx|059 039xxx|039 019xxx{019
058xxx {058 038xxx{038 018xxx|018
057xxx|057 037xxx|037 017xxx|017
056xxx|056 036xxx{036 0l6xxx|016
055xxx| 055 035xxx|{035 015xxx|015
054xxx|054 034xxx|{034 014xxx|014
053xxx| 053 033xxx|{033 013xxx|(013
052xxx|052 032xxx{032 012xxx{012
051xxx|{051 031xxx|031 0llxxx|011
050xxx{050 030xxx|{030 010xxx|010

R T et Fm————— tm——f fm————— T TP N
04Fxxx | 04F 02Fxxx|02F 00Fxxx|O0F
04Exxx | 04E 02Exxx | 02E 00Exxx | O0E
04Dxxx | 04D 02Dxxx | 02D 00Dxxx| 00D
04Cxxx|04C 02Cxxx|{02C 00Cxxx|00C
04Bxxx|04B 02Bxxx|02B 00Bxxx|00B
04Axxx|04A 02Axxx|02A 00Axxx|00A
049xxx|049 029xxx|029 009xxx|009
048xxx|048 028xxx|028 008xxx|008
047xxx|047 027xxx|027 007xxx{007
046xxx|046 026xxx|026 006xxx|006
045xxx| 045 025xxx|025 005xxx| 005
044xxx|044 024xxx|024 004xxx|004
043xxx|043 023xxx{023 003xxx|{003
042xxx|{042 022xxx{022 002xxx (002
041xxx|{041 021xxx!1021 001xxx|{001
040xxx| 040 | 020xxx| 020 000xxx| 000

Fmm———— T T tm————— T S Fmm——— T R

"xll

in the MPU ADDR column represents any hex value.

o —— ettt T e ittt +
| ADDRESS | CONTENTS l SELECTED DEVICES
e e T DT +
FFFFFF
Fl'...
e B T e
F..l!l
FI.II.
S Y - e U s
F.'l.‘
F....l
- e e e Sy
Fooeoo
Fl....
R e g
F.....
F'..'Q
RS- T P gy gy S
Fl....
F00000
O e gy
EFFFFF
: Global Memory
: VMEbus Standard Addresses or
: Memory-mapped Devices
100000
S T T S
OFFFFF
0.....
RN e e e e
0.....
0uuw..
e e
0.....
0...0.
Fommmm e ———— U e
0.....
0-....
R g Bt Tty Uy S
0.....
000400
R O e S
0003FF
s MPU Exception Vectors
000000
o T T T TR o e +

Table 3.16:

3-23

Personal Address Map

fmm fomm fmmm———— e e +
| DEVICE | ADDRESS | MODE | REGISTER |
T o fmm e e +
| MCR | ...0Fl | r/w | Module Control Register |
+————— dmm $mm————— D el +
| MSR | ...0El1 | r/w | Module Status Register |
tmm——— Fomm e ——— Fmm e —— e +
PTM ...0DF read LSB buffer register
...0DF write Timer #3 latches
...0DD read Timer #3 counter
...0DD write MSB buffer register
...0DB read LSB buffer register
...0DB write Timer #2 latches
...0D9 read Timer #2 counter
...0D9 write MSB buffer register
...0D7 read LSB buffer register
...0D7 write Timer #1 latches
...0D5 read Timer #1 counter
...0D5 write MSB buffer register
...0D3 read status register
...0D3 write control register #2
...0D1 read no operation
...0D1 write CR20 = 1: control register #1
...0D1l | write | CR20 = 0: control register #3
+mm——— fomm——— tom————— e et T +
PIA ...0C7 r/w Section B control register
...0C5 r/w CRB-2 = 1l: Section B peripheral register
...0C5 r/w CRB-2 = 0: Section B data direction register
...0C3 t/w Section A control register
...0C1 r/w CRA-2 = 1: Section A peripheral register
...0C1 r/w CRA-2 = 0: Section A data direction register
tmm——— pmm Fomm———— e ittt +
PCI2 ..0B7 r/w command register
...0BS r/w mode register #1 / mode register #2
...0B3 read status register
...0B3 write SYN]1 register / SYN2 register / DLE register
...0B1 read receive holding register
...0Bl write transmit holding register
o Fmm Fommm———— e e +
PCI1 ..0A7 r/w command register
...0A5 r/w mode register #1 / mode register #2
...0A3 read status register
...0A3 write SYN1l register / SYN2 register / DLE register
...0A1 read receive holding register
...0AL write transmit holding register
+-———— pom—————— tm————— o +

Table 3.17:

Personal I/0-Register Address Map

—

3.5. SOFTWARE INITIALIZATION

———— — — o —— ——— ——— - — V) " - — - ——

In the reset routine, the user has to provide routines for initializing
the Serial Communication Interfaces, the Peripheral Interface Adapter,
the Programmable Timer Module and the Module Control Register of the
MVME101l monoboard computer.

3.5.1. Serial Communication Interface Initialization

- ——— - —— — ————— — — - —— — ———— —— O ——— o —— - —— v ——

Prior to transmitting data via the serial ports, the user has to program
the MC68661 devices by initializing their mode and command registers
and, for synchronous operation, their SYN1l, SYN2 and DLE registers.
The Motorola MC68661 EPCI Data Sheet 1in Appendix B provides detailed

programming instructions. The original addresses of the EPCI registers
are listed in Table 2.6.

3.5.2. Peripheral Interface Adapter Initialization

- — — - ———— ———— - — ——— ——————— ————— -~ —— - ———————

The direction of the peripheral input/output lines and the function of
the peripheral control lines at the connector P2 are controlled by the
data direction and control registers of the MC6821 device. The Motorola
MC6821 PIA Data Sheet in Appendix C provides detailed programming
instructions. The original addresses of the PIA registers are listed in
Table 2.6.

3.5.3. Programmable Timer Module Initialization

- — - —— —— ——— — — ————————— — - —— ————————— - —— —— ——

The initialization of the MC6840 Programmable Timer Module is described
in the Motorola MC6840 PTM Data Sheet in Appendix D. The original
addresses of the PTM registers are listed in Table 2.6.

3.5.4. Module Control Register Initialization

The Module Control Register controls the hexadecimal status display,
the bus block transfer request, and the time out counters. Paragraph
2.6 gives a detailed description of the MCR functions. The device is
originally located at address FEOOF1.

3.6. INSTALLATION

The MVME1l0l may be used either as the system controller module in a
VMEbus system (System Controller Configuration), or as an MPU module
on a selectable priority in a multiprocessor VMEbus system (Standard
Cenfiguration), or as an isolated monoboard system that resides only
physically on the VMEbus backplane (Isolated Configuration). The
hardware preparation for these different modes of operation is described
in Paragraph 3.4.

In the Isolated Configuration, the MVME1l0l module may also be used as a
monoboard computer system without a VMEbus backplane. 1In this case, the
power supply voltages must be connected to the respective terminals of
Pl by a female DIN 41612 C 96 connector. The location of the power
supply inputs at Pl is outlined in Table 2.9. ,

PRIOR TO INSERTING OR REMOVING THE MVME10l MODULE, ENSURE THAT

SYSTEM POWER IS SWITCHED OFF, AS COMPONENTS COULD BE DAMAGED.
e e +

At the connector P2 the peripheral input/output signals of the PIA and
the PTM are available. Note that these lines are not buffered and do
not have any overvoltage protection. Therefore the characteristics of
the signals applied at P2 must meet the specifications of the MC6821 and
MC6840 devices. In addition to the I/0 signals, the +5V power voltage
is available at P2 and may be used to supply interface buffers. As the
maximum +5V input current at Pl is limited to 1.5 Ampere per terminal by
the DIN 41612 connector specifications, the maximum +5V output current
at P2 must not exceed 4.5 Amperes minus the MVME10l supply current.

CHAPTER 4

MAINTENANCE INFORMATION

4.1, INTRODUCTION

This chapter provides the parts list, the assembly drawing, and the
schematic diagrams for the MVMEl10l monoboard computer.

4.2, PARTS LIST

—— ———————— ——— —— —

Table 4.1 reflects the latest issue of hardware for the MVMElOl at the
time of printing. The parts locations are shown in Figure 4.1.

Table 4.1: MVMEl0l Parts List

17qu | DESIGNATION | PART NUMBER | DESCRIPTION i
172 e 1 23-Go618M05 | 100 uF/ 10 v Electrolytic Capacitor |
2 Cc3,C4 23-G9618M03 22 uF / 35 V Electrolytic Capacitor
4 C34-C37 21NW9604A58 330 pFF / 50 V Ceramic Capacitor
37 C5-C33, 21NW9702A09 0.1 uF / 50 V Ceramic Capacitor
C38-C45
1 | CR 48NW9616A03 1IN4148 Rectifier
2 K9,K1l0 28NW9802D58 Header Single Row / 1 x 6 Pins
1 K16 28NW9802F52 Header Single Row / 1 x 14 Pins
2 K2,K4 28NW9802C43 Header Double Row / 2 x 4 Pins
1 K3 28NW9802C52 Header Double Row / 2 x S5 Pins
1 K6 28NW9802C63 Header Double Row / 2 x 6 Pins
1l | K5 28NW9802C36 | Header Double Row / 2 x 7 Pins
3 K1,K7,K15 28-G9802M01 Header Double Row / 2 x 8 Pins
4 K11-K14 28NW9802C36 Header Triple Row / 3 x 7 Pins
+28NW9802F51 (2 x 7 Pins + 1 x 7 Pins)
1 Pl 28-G9802M03 DIN 41612 C 96 Male Connector
1 P2 28-G9802M04 DIN 41612 C 64 Male Connector
2 P3,P4 28-G9802M05 Sub-D 25-pole Female Connector
1 R1 06SW-124A17 47 ohm / 0.25 W Carbon Resistor
dom b dom e it +

4-1

Table 4.1: MVMElOl Parts List (cont”d)

R R et R o +
| QU | DESIGNATION | PART NUMBER | DESCRIPTION
R ettt I e e i et et e L e e +

2 R4,R5 06SW-124A41 470 ohm / 0.25 W Carbon Resistor

2 R2,R3 06SW-124A43 560 ohm / 0.25 W Carbon Resistor

1 | RP4 51NW9626A69 7 x 1.0 kohm SIL Resistor Network

1 RP7 51NW9626A47 7 x 4.7 kohm SIL Resistor Network

5 RP1-RP3, S1INW9626A49 7 x 10 kohm SIL Resistor Network

RP5,RP6

2 SW1,SW2 40NW9801B27 Momentary Action Pushbutton Switch

1 at SWl 38NW9404A56 Switch Cap Black

1 at Sw2 38NW9404B96 Switch Cap Red

1 Ul9 48NW9606A33 K1114A 16.000 MHz Crystal Osc.

1 US1 48AW1014B06 K1114A 5.0688 MHz Crystal Osc.

1 U36 51-G5017M01 BAR101B Bus Arbiter/Requester

1 U49 Sl—GSOOBMOl MAD101 Address Decoder PROM

1 U48 51NW9615G97 MC68000L8 Microprocessor

2 U52,060 51NW9615H19 MC68661PC Progr. Comm. Interface

1 us7 51NW9615B27 MC6821P Periph. Interf. Adapter

1 U65 51NW9615D81 MC6840P Programmable Timer Module

2 U50,U059 51NW9615B29 MC1488P Quad RS232 Driver

1 Us58 51NW9615B30 MC1489AP Quad RS232 Receiver

1 Ul2 01NW9804B83 PE21198 Delay Module 50 ns

1 U7 01NW9804B35 PE21199 Delay Module 100 ns

1 Us 01NW9804C33 PE21264 Delay Module 3 x 40 ns

1 U24 51NW9615E91 SN74LSOON Quad 2-NAND Gate

2 U45,U046 51NW9615C22 SN74LS08N Quad 2-AND Gate

1 U29 51NW9615H53 SN74LS09N Quad 2-AND Gate OC

1 U26 51NW9615E88 SN74LS10N Triple 3-NAND Gate

1 U4 51NW9615E93 SN74LS14N Hex Schmitt-Trigger Inv.
R e Fom e Fo +

Table 4.1: MVMEl0l Parts List (cont”d)
et s Eatatatatte e e T T PP
| QU | DESIGNATION | PART NUMBER | DESCRIPTION l
et e e e e —mm e +
3 Ul8,uU27,030 51NW9615C24 SN74LS32N Quad 2-OR Gate
1 U39 51NW9615C69 SN74LS138N 3-Bit Binary Decoder
1 | U44 51NW9615G10 | SN74LS148N 8-Bit Priority Encoder
1 u47 51NW9615E86 SN74LS151N 8-Input Multiplexer
2 U2,U023 51INW9615F41 SN74LS164N 8-Bit Shift Register
3 U8,U32,U033 51NW9615F02 SN74LS244N Octal Bus Driver TS
1 U43 51NW9615F09 SN74LS266N Quad 2-EXNOR Gate OC
2 U34,035 51NW9615F52 SN74LS273N 8-Bit D-Register i
2 U25,031 51NW9615F38 SN74LS393N Dual 4-Bit Bin.Counter
1 | vU20 51NW9615H83 | SN74LS641-1N Octal Bus Transc. NC |
5 u9,u1l0,U022, 51NW9615H89 SN74LS645-1N Octal Bus Transc. TS |
U37,038
3 Ul3,028,040 51NW9615C94 SN74S00N Quad 2-NAND Gate ;
Uleé 51INW9615D32 SN74S02N Quad 2-NOR Gate :
1 Ul4 51NW9615C96 SN74S04N Hex Inverter :
1 Uul? 51NW9615E27 SN74S10N Triple 3-NAND Gate ;
1 Uls 51NW9615D90 SN74S11N Triple 3-AND Gate !
1 U42 51NW9615F15 SN74S15N Triple 3-AND Gate OC ;
1 U6 51NW9615D27 SN74S32N Quad 2-OR Gate ’
1| vl S5INW9615C95 | SN74S74N Dual D-Flip-Flop ;
1 U4l 51NW9615K80 SN74S139N Dual 2-bit Binary Dec. }
1 U3 51NW9615J11 SN74S140N Dual 4-NAND Driver !
1 U21 51NW9615F65 SN74S241N Octal Bus Driver TS :
1 | ull 72NW9624A03 | TIL311 Hexadecimal LED Displav ;
1 at uU4s8 O9NW9811A30 64-Pin DIL IC Socket :
1 at U57 09NW9811A22 40-Pin DIL IC Socket !
11 at U52-U56, 09NW9811A21 28-Pin DIL IC Socket }
U60-U65 |
R R e o e ———— +

Table 4.1: MVMEl0l Parts List (cont”d)
e e e T et T —-_———
| QU | DESIGNATION | PART NUMBER | DESCRIPTION
T e T T o +
1l at U49 O9NW9811A04 16-Pin DIL IC Socket
1 at Ull 09-G9811M01 14-Pin DIL Display Socket
1 at Ul9,US1 09NW9811A46 4-Pin Oscillator Socket
7 at P1l,P2, 03SW993D210 DIN 84 M 2.5 x 10 Flat Head Srew
Front Panel
4 at P3,P4 03SW993D310 DIN 84 M 3 X 10 Flat Head Screw
7 at Pl,P2, 02SW990D001 DIN 934 M 2.5 Hexagonal Nut
Front Panel
4 at P3,P4 02SW990D002 DIN 934 M 3 Hexagonal Nut
1 84-G8012M01 MVME101 Printed Circuit Board
1 64-G4073M01 MVME101l Front Panel
80 29NW9805B17 Jumper
e S T T T T o i T P p—— +

4.3.

ASSEMBLY DRAWING,

SCHEMATIC DIAGRAMS

- ———— - ———— e ———— ————— - ————— —————— —— — o —

The

Assembly Drawing in

MVME101 monoboard computer.

Figure 4.1

shows all part locations on the

The Figures 4.2 to 4.12 show the schematic diagram sheets 1/11 to 11/11.

S-v

Figure 4.1:

Assembly Drawing

[

. MEVISION
[earmve [om [v | pr——
DIN 4164209 MaLE Al'L DIN 41612C6% MALE
: @” @~
cs WP 1K) || T aTYEIr®)] E=Acz?
[(x1 2ea] Jez2ed] [r32:5] [rs2xz | [[x62:6] B
(71 < vés
@ . D MC 6824 (= & MC§842 =
Pusseas—1 20l Ss 1 c12 MAsui 4J 2ubsas
1) c23
! @ ' uné =) vaq
;u“hs Ed n,szk»v ;u;su«; A F4L 508 MAD 104
usé véy
c16 €22 MEMuY ==:.z MEMYL ﬁ
@ ' v36 l vss
4 520 Muu« 1 BAR101 341508
PE2TI I=' aussz] P ausav] E 403293] b 205148] vss vé3 =
MEMIL r:"c' MEMSL
EAcro @Acs F ﬂ
it
P
5:1«532 1P ust E xt«saa IE 1ui3373 J:ugauszu]
<l x12 Z2] A vé2 -
MEMZ C
us 20 UZ3 T33 Tz ved -2 bl I iihad B nenze
. PE21244 74502 FLLS32 FaL5244 IS 15 Mc 68000 26 Q
g | - F
egca E=Ac1v czs@A]
L3 v~ v26 vz Uhkd
39L514 74514 #4510 245264 45439 Kae us3 c vér
:n :.“ 3e3c nemty ‘ﬂ” FEHAL [=
E] R
N
|. ! vso l:
t:’usﬁo b 250 | '3 :ussu] E susisa3 l F’ 34500] "
c19 N
3] =K
52 véo
02 .u g43 U2y U30 l U39 N ¢ v
Eﬂgl_A-] E&J % 741500 IE 740532] I'—" 3445138 o 18] NCEsésT 5 MC68661 =
¥ Y *
= - Bl
c4h‘l KA1 14 4 MC 1489 MCA4RE | Cus
cs &3 o S-0888M . l
e] 000000 o g
25 w{57s%)
® 16.000M Sw4 Sw2 ®)
5
"}_[*L_H® - B
U494 TIL344 T D-SUBMIN 25 FEM D-SuBMIN 25 PEM
c IH
ASSEMBLY DRAWING

®

A microsystems
Sntegrated Circuits Division

3002 N T STREET CEA AIOM WO U T4

01AG3012M

Figure 4.2: Schematic Diagram Sheet 1/11

REVIBION

2
[l om [o] prr—

unNs
MC 63000

—> Fer
Fcq
Fez
1PLEw
PL1r
pL2e
BERAR®
VPA X
VMAX
LOCRES ¥
HA(T =
DTACK ®

é
! E EXX7 1 Reape
—>
g
1>

A@éVAAAAAVV

[
N
3
3
)
-

wWRITE®
LDsw
Ups=

~
3

SPARE RESISTORS:

<
Y
“l

j

Fees3z > LowRe

waw
LA FYETY & vp

S) > R
WSHE ya

L]
I3
vy PE21418
“

e (]

SPARE GATES :

u1ts
A2\

[l 2w

L7 341532

Fusoy

(> ASDELZ»

4‘1~c
FuLS266

ASDELA

45

—> A3

> PCix
~J SMme

L - —{> AB1-A23
—<3—> DeF - D15

. e e

TS oo st vt

e] MVME101
— e =neman | SCHEMATIC DIAGRAM
— e R~ | MICROPROCESSING UNIT

s e b @
VT T - microsystems
om t vtograted Circuits Division

hnad

el TR ACHT™ S STRREY OBER WAL WOW V34
van ¢

aad

) G 63AG3012M e

Figure 4.3: Schematic Diagram Sheet 2/11

REVISION

ﬁ [Ell-m-- oare | arwo | oescamenion

ot RESOUT ¥
Sw2 FuLS 14
4 c1
o
v 9
K1144% A v3
4
DICILLATOR |8 _ ~ 3 —> Syscix
16,009 M 11w vas s 140
F415313
e gald —C> dMnHe
(1Y
acls — > 2nHe
rimn) L—W
— o aafu
v2s aB 2w
£prro >— ‘j acne h
aBAv — ! a2 22|05 an|d 31r><% > prro=
FyLsem FaLSaYy
> 8RTox
v31 vis
415313 4
LMo qaPne 3 BERR ¥
F3R70 as ™ we v23 3 F4541
s TuLs 16k
—ne
ABAVE Llees oo r——‘ s
@
BADRY ~c oa ne a
as P Zne as
ac Pwe vl —‘: cx an
Zlees ap | 1 2 ~res 03
FeLS 14 D2 Q2
£ D4 ar
Ds = DrACK x
GBERRW [
L0CROM

LOCRAM [>—
GDTACK® [=>

MVME 101

SCHEMATIC DIAGRAM
CLOCK, RESET, TIMEOUT,
DTACK

antegrated Circuite Divieion
3000 RORTH T T AR IO B8 U3 4

63AG3012M am

8-

Figure 4.4: Schematic Diagram Sheet 3/11

f 1 aEvisIon
Ele=Tom Tow] preee=e>
1ACK® >
ASDELTE [
AS D—
Ag1-463 [>—
7224
L5254
sy 4l
AL 18 At
AL 11 s
4 12ip3 o=
3 s ale —— > AviRax
P
s
251 b4
s
ABORT® <3— i,z
24
“\ o
IRBCLR % AVIRRS * L3
IRPCIZ % AVIRQS*
e Avisose
AVIR
IRPIA %
IRPTH & AViRGZ%
AvIRA4% vub
AVIRQlS zr\ 3
41‘ VaLTIY /]
SYsEaiL® vus
frers “N,
vae Fuis08
223
i q
ACFAILE [> l' M)
0509 E2) o
1 re3 e
2 Ead
RINIRENT NI 43,
N jl)
SIS §}§ Y “;uun v3s 22
‘s ‘[z wIse]? 42 F4t5273 2413148
g2
BiRa3x T - S Lusdln) sypyn L YR 2 Az
BiRase [~ () @ LLIRQE oes L rRaix 4of,, gy m
Brgse T @ o Yvirase ease 3l gyle 2l s
Braous [@ @ YrIRUGE mave 8l o.la ZIP
BiRQ3* [@ @—YLYIRUIE [wase a3l o odaz 23] 05
[
Bimaze @ g Luitize MNa I e L L o e B
BRGAY @ @—UriRade | 3uises 1mate 13, P&z L) PP L] > pran
A
- »sv@-c4: e asftu—Zl wi 1P
RES 65 ~NC
2mnE [— 24} i i P
e r——rTE—
v] e
[e———y
e === MVMEI101
e —f==oosmte | SCHEMATIC DIAGRAM
=l etk
. =T | INTERRUPT HANDLER
T e b ® N
e o w
- d e e s s e, s s 38
ey —— =
ks
. ‘ b 63AG3012M am
J e —

6-v

Figure 4.5:

Schematic Diagram

Sheet 4/11

ﬁ

| AEVISION
|-u|-4u-|un]“] Seschenon
use
225438 -
4 1414 1 RPYy
a1 a5
- P A7 AIRIRIN
“é le x||x
gau 2| s NI vea
o Ao 23 |+ ve F4S 439
Y ass 4 N as{=
43 D3 _:,47)——1 0’P——————D MusiLx
[z L YR e) 74 74532 et > mM3sELx
13 6lag pajtt_ADY <] PO Y] ¢ —— S ST T 7 Y
a1z A palt2_ADE g PR > MasELE
sV 23155
” AF ot £> BADPRX%
7] S N7 Y ¥
ae adS
vei 2 ay s L] 241
s 1 2
LocroM
P . IusH
3] Javseo vy
h s LoCRAM
Ivspy
vz
Abbe
FeLS 46 £> sHIoA®
a2 we
o122 ne uv2
o6t ne 2
a5 ne 4
o ouls RESVECH a1] |] #4545
@
Uz asb-we vz v
oz g2ft-mc 2 2
Tusis Thssz
&l
Aviage > ‘lu\‘
ASDEL2® [s 4 McRWR
Lowew > "
peoe — 430N
e - 2] P2 MSRRD =
o 7/ 340532
141438 &
18|
2 P e ‘__,DJ___.D HMSRWR®
7 VT R S — SIS S LS HIRE, [740532
D aske :m- —{> PTMSEL®
P 2 . ——C> PIASEL®
42 rei2e vzr
s —— S,
| a0 E) PR P reitw j'___JD‘——-DPuzsfu
LS 2| ” a i'.y; uz‘?‘lLSJZ
ALY Nar o ne
AB4-A2) v2e 3 PCI1SELR
es ‘s T #4i332
10 4
Fca (o= —L> 1Al *
s 2l Jreisae
T (R At ot v
[————
e e === MVME101
I====F1=555==| SCHEMATIC DIAGRAM
g
, cmammme~ | ADDRESS DECODER
I st ® A
[P "
vtograted Cirouits Divislon
:-.: o 0 KO T ST OBR RIOM EOM U A
e — —
wal
63AG3012M an

h 0T S e

0T-v

Figure 4.6: Schematic Diagram Sheet 5/11

[I REVIBION
[ssve]mccnmo Toan [awo] ‘oescaerion
UDwWR® [
LDwWwR¥ [>
DRD= o
MusEL® [
MISELe [
MisELx >
MASEL v L7 s yDWRR sy e
p x4z g P]
MayD2?. 1227 Iy n rMauP2Z? M3IuPZ3 [puvp23
MALPLS 5 : |MALRP27 M2L P23 —® : M2LP27 ML P23 | ruipP23
DRD* - DRD® ' @,J@
MAP22 @0 @ M1P24 12022 : @' M2P26 r3P26 |_rMup2s
MASEL® ® T M1P1 M2SEL -—-—‘:n & o L—rr2et A 3P4 Mupa
MaP2E ® T MiP2Z an»za ® @ M2P2 r3P2 mupz
A12 - b A3 412 - i A13 A3 A13
A15 R Ar4 A3 &= Aty Ay A1y
4 us3 usy uss R
MEMAY MEM2V MEMIY
MqyP23 23| 3 _MryP2} mavrzs 2 23 _rzup2d M3uP23_ 2 27 M3UP2Y 29 _muyp23
MAD22 E 28 MAP26 M2P22 2. 26 M2r24 M3IP22 22 26 M3P24 /J 26 __M4P26
r m1P28 z!] 2 MAP2 2 r2p2 N_r13p28 24 2 13P2 2 My P2
A1 21 1 rmar1 A 1 M2P4 A4 24 (1 AL 4 MiyP1
A 24| Al 24 Al 24
Age 25, /: AXY 251 T 25
A8 3 il D15 ASS 3| 49 D15 A 3 19 D15 ﬁ 498 3 19 D15
A0 4 14 D1y ASF L] 14 D4 AN “ 18 D1y pril 4 18 D1y
1 as 5 12 243 V1 as6 5§ 13 D43 Al s 42 Db13 AL _ s 17 D13
ArS ‘ . 323 V1 ass 4 16 D12 Ads 7 16 273 pris ‘ 16 D12 1
] ARy v 15 D11 V AlY 7 1§ D11 Al 7 15 D14 4 Aty ?| 15 D11
A3 1 3 y-274 b Af3 s 13 D ~r3 5| 13 y 274 A1] 13 y.273
o Ar2 9 12 p:Tal A2 AJ (12 p-74d V—r Af2 Ll 12 P74l a Af2 9 12 a9
V1T aee) 11 J-77] N AP 42 e 208 V1 as " s EN AR, E7] 11 pes |
[)
U vez vés Uy
MEMAL MEMZ2L MEMIL MEMYL
M12P23 23 23 rMacp23 23 _M21PZ¥ A N M3p23 23 23 _M3cp23 N_ruep2s 23| 23 MuLpaz
rmap22 22 2% rM1P286 28 M2p24 M3P22 22 26 M3P26 A mupzz 22 26 mupzé
1128 28] 2z MAP2 2 H2P2 N\ 1320 24 2 M3P2 Murzg 2 N4P2
A 21] 1 11t 1 M2Pe A1 271 1 H3Py A 21 1 My P
r A1 24 Al 24| A1l 24
YAl 25} A 23] AR gsH
ALs 3 1 plid 19 DA ARS8 3 19 .7 {3 AN E) 19 b3
pYid v il y:Y73 18 286 ar “, 2 206 ArY “ tr) 26
r agé 5 13 2as .3 oS r A 5 43 IS 3 AL 5| 13 245
495 s i Doy % 204 " aes . les e ASS ‘ 3 Dty
Asy] 15 203 15 283 " are 3 45 Dr3 ¢ ARy 3 hs D#3
A1z a 13 D#2 3 e = s) o2 v s] 13 D2
sl B 12 2ot 12 I ar a 12 o1 V' ar 9] B D1
Ar1 4, 1 p.Y) 14 by /1 w AHe s e pY/4 Yl 9, 14 208 N
N
bog-D15 <—1>—1 J 2
Ag1- 415 o> -
— e 4
e e MVMEI101
e { SCHEMATIC DIAGRAM
wromamaiaa~ | MEMORY ARRAY
@ A
v il Srtegrated Circuits Division
bl 3UGT MO AT STREEY VIR ARLICR SR0W U S A
ol a— —
L2
_ R 63AG3012M w1

1T-v

Figure 4.7: Schematic Diagram Sheet 6/11

’ - REVISION
[w Joame [ave | provre—
MSRwR® >
MSRRD# [
v33
Ls2ub
] > EDTTO
MCRRD & l>—————-—EEE —{=> EBRTO
B4 A1l
82 A
LEIE > BBTR *
B4 aall
Bs asfs
Be aipd Uty
83 a3fL 23 2 > FaLour =
DEo 3 88 A8 137 %’ﬁ
v N
s
HALT # ARL 2| |}a2 S @ +sv +5v
E_—E 23| | ruses
#0532
u3N v32 4
I4L5233 FaLS 2494 MLSI{ ;
MCRWR > 2ein 1Yz s o
ALz] ﬂ_ *
287 _a3lpy gall 81 arfr L— < prrow
PYZENPT] S P7) 52 Az —<] BRTO®
yﬁ—%m Qs :: B3 A3 < PCI1RXD
DS Qs B4 A4 <] ABAVa
223 ip, qufe Bs AspL —) BLiR
202 3py qslt 86 A <] az0RTR
201 _4lp; qzff FURPR] ELd) SYSFAIL®
200 __3ps qaf2 s asf2 ~Q Acran
oop - DAP <> L
MVME101
SCHEMATIC DIAGRAM
CONTROL REGISTER,
STATUS REGISTER

® A
Mtegrated Clrcuits Division
112 e P s s Ao moa 34

63AG3012M

e

¢T-¥

Figure 4.8: Schematic Diagram Sheet 7/11

r i REVISION
e[Tom T] oo
us?
PIASEL® [reeszs r2 Pz
IRPIA® <} — osve-:“zu cazft 2752)
Z4csq cpaftt ST =7
2mHE 257 paaftd < s H
BAsSINE [3 %as Paete 1£1 0y = YT
ASDEL1® [> M)i7aa rasfE 55 255w
Hc‘/“‘i’ sz- ra 4% c? Y Ab 7]
s Pz P2] N P st 5.3 A
ssv@—18csy G N\ (L] gy, 3T rezjid £ 5az L2 oy
PrHsELx > b ‘o' 2 70s T L L i ary 22 6wp
RerME <3 Nw o DoV W21 oy 2. Slase pasl __CT50y L
1He r—'@' AL sy pazlt = A2
21 v ST ‘> oY) LN 1) o ry A1 ™50
81z & ! c26 TCaw DI 26 03 pashd 1y AT LLH puryvre
A 12{,5; VORI + 42 oy y 2063355 paglé €T ATNTID
A92 o, =12 I’&L (27) gy yid L] N 2 73 e Valiid purevry
AT loss o' 22 p, parft —E7T a7 ANUG0
e A e e el i oo
Voee e T o o e Lol rowr B prr K20
V2205 . il ": ro1 2 b1 <Az P a2 GwD
ﬁ‘"" ipy Gifd IG 2Ll prorpe @‘D’ cas| €20 AT
bo3 2205, 5! aza——
pprz_nly, g2 Az
FYZINT I - Az
y1/4 Siow AT
=)
AL
Pcix > ALRE0p
wRITE® [A0
L0CRES ® > 225 wp
1% 15y L1 pyery
AFT-AT3 > QE sV ke
32 I A32 oD
Dov - Dy <> Ll
MVME101
SCHEMATIC DIAGRAM
TIMER MODULE
PARALLEL INTERFACE
@ A
Mvtegrated Ciroulte Divieion
520 e e s o, s e 038
\ 63AG3012M ™)

3 Bl 4

Figure 4.9:

Schematic Diagram

Sheet 8/11

r

74 use 12
MCisés1 Mc148a v
PeizsELw > 2oy 2 ? r x1s 24
i 3 XD o= 2
READ¥ [) o) P 1D o ’__\; : TXD/AXD
[R*D/TXD
24 pes XD} 2 . RTS 'g—}' 4 A
PR 74 L4 s sz 2.0 < RTS /DSR
AN2 a8 5023 42 J ONOIN; DSR/RTS
RS4 RTS 2 (€T3) 1o = 8
g AL1_ 42) ey BRFIL [1 TR 2. 1Y CTS/pTR
QW DTR/CTS
R84 p, 2 3 e 1R2. > 24—
D 3 2 K8 — +42V_ o ! L]
PYZERT) PO R [—{ } © @ {e2v/en
204 5] 75 2% = RS CHGND
oy @) L)
F74) I‘DJ Fra] <0 - "Uf:
LT/ PO 7 SL - —
201 28, ‘o é 4
P7T W [T R T
iy RAR, O
> 4 l-o-l ‘ [L7
CISPRIVWRF hJ
FETE—I .
1RPCI2 % < c3amp 33 2
a4 13
PCI1RXD ¥ <J— ,c_»"s_!zﬂ_aj}
-—
us2 use
MCs8 661 MC 1488
%) [ES—— 7 9 X3 r3
PCITSELR (> T T * | L] X2 e o 217D/ "xD
Yo THCL = RX>_iave! El pyryrs
4 2 ees Rvp} x ¢ AT oG L, ';f;'r“
LockESK =& 12 O F 258 g, 2 YT /:7
FuLsay | A#2 a8l .0, 77522 43 a1 «rs) 3 I3 2
A TR i«] ® &———{crs/DrR
vs1 Ag4 12 Rs# DTR 74 3 TR T T 2
K4114A r Los s, , 5 =7 —Q@ {oresers
| S -
p-r23 *oe I +a2v_ | G\ 3 Tx¢
oscitearor) g 2, toe pER|2 [N L {waR—"—® @—={+n2v/cD
saes8nne|, v hted % TN R4 2 CHGND
Mowe | [Sy TEE G
Pl 2
[2£2 Loy m—-———@—.l"
D82 1 P 1310
p2 TrRME——(
V' oer__23 4 >yl
J— [l
ADA-AgL e 2 23,, Fwp | @,

bap -0y <>

IRPCI1® <

s = sc>as
T Camsen & MABMems

REVISION

L
(e[[om Lo]

DescRwnIon

Toes DO a1 LOv1a, w Ommaa" O

MVME101
SCHEMATIC DIAGRAM

s o |=sswme~=] SERIAL COMMUNICATION
— L meomsmoane | INTERFACES
E;: : il T bn..-t.‘c:vdtl Division

) G

63AG3012M

&

Figure 4.10:

Schematic Diagram Sheet 9/11

REVISION

[mven o [oo [oo

vi-v

vAg vae
Rl d 42
BCLR® 3 EDﬂ > IRBCLR K
FyLS32 19LSTY
BBTR® 273 v
. PAL16LE
ToLsos S\iaR arour |1 > BROUT X
BBsYINK [~ ABl55ey saREG |2 = BARBOX
Bonx > 2Usem we 22 me vs
P pad 19 PE2124%
Basiye [>— 84 NC = NC
BrO® > e FGouF 2 s} > Boourx
BR1¥ [3 g7
gz e o> LIFT vs
se3x > LIFr .74 <1 L2 4ows A2 > BBsroure
AS [~ 3 SRELFN PETIZEN
SMHE >— e > BasouT#
SySRES™ A2 RETET o8 |11 us
3 a0
ows vé
PE2124% s 3
«
154
#4532
> DBAVSA
BADRE [
Ds o
v
pE21199
READ® [vae
2
3
4
#4580
v
r L] 6
Bosax
P — 5L recssz —=
223
]
2] > Bpsac
cbsu & = ruis3z
vé
- a2 L
DIACKE
‘ 3#512‘({43 ——<] BDTALK X
8 A0
GBERRS < { q < saers
74532 &

MVME101

SCHEMATIC DIAGRAM
VMEBUS ARBITER
REQUESTER, INTERFACE

63AG3012M am

STI-v

Figure 4.11: Schematic Diagram Sheet 10/11

r | REVISION
== Ten =T e
ABAY® >
ABAY >
READE [>—
pBAVE [
BRIX < 35 ez
BR2% <3
BRa® <} x |3l M flaellwll vl
BRA® <7 3 ; 3 = § ¥ =
v x2 FAERCRLATRE P1 vaq vaz
L5 eud-4 e l e 45241 FeLSbus-4
+sv @——: oir : : R ppaw ‘: 13 @7:4 o
;!—14‘ a6 D ’fl og2e 2251 13 2 42, il A2} 2 £ 18 ¢4 -l
BrRouTw [>——-A3 s < _@J BR3% ez 84 DS1a a1 f Ll gy
sasyours o—2aq pa[S 21 T asve DOSME 51, pafS AMMTp e A 31,, ppied iy
Fanovre [o——3az p2ft wRITE® 11],, FO LIELL! vryrron az1 & a3 B L YT
rEsOUT R £las a5t x3 BAs0TE 23le3 a3 AN %—;1"’ Pl ey
>_:A‘t By L @ @~ L T L7 | PP Y, < B L1 ey A1 blas ps[SIS
hare <388 asfL Lo o< [5v5mans L PY) - L1 oy ZXTE] pYR TIPS o v
cocresw <3—2Ligy arl2 ‘o oL —g<22 £€2___8l,, gt 28757 e L e WP
SvsREsm 3as s : @-J: SHiAR 8],y [Y]-ENEEH gy AT 9,4s paft LTS
38—
- vas
syscex o>— 1 F4Ls44s -4 ;u:u; 4
BARBG* [—® O—-24 segmr 1 @—.l
Beours [> -~ nolon ﬂ ~ ":F Y an
Py
e D*5Y apa 2 ©; e BeriN" /;hu »1 e Y7
4 = DO 32 202 'rAz b 1g A3 o1
E4 x| i1y —@ 1 B62/Nw =3 23 92
19] = NIRIN R |\ [prq) 39 283 5] 15 A4
;i YEREESL ; L= GBI 273
SysFalLe <} 1Zlg, aufE—] WSRPEPE] ¢—0 o —eZ25sme (2L tlas aspe ATy,
BBSYINK <} LI PR L @ @:——'—’iu:wh (285244 Yy A ER.LE ryry
sone < j—2g3 a3pk - 206 8L, ar e AT
scire <3—gs aqfd B2 ke EYEIE] DY PR o
ACFalLe <J——318% AL B3 [cranw
sBeRew <J——2ps AG (23 AT vy
Bpracks <j——21p8 Ag p2 A1 L Tk TuLsérs -4
Basine <3—— g5 asfH AT A i @—"Vm A A Cxine
I3 AUF Aucxovts]
BIRQE R < B2y ore | 2L 244 FY) AL ey IACKe 21,4, pep2E AMTL A
Biegse < 222 [rgr 25 a; szt 2 Thge A3, pz[fr AL
PiROSe < Bzt ase DA 4.3 a3l oy =S A3 B3aé ALS 0T
BiRQuR <) L T 271 Sl pefE <4 pas 425 s puE AL
Bicazs <} EE proews 212 & asle_es5o7 /Alh s psfteAZI—
BiRQZ# <> B24 TRaze 213 VA‘ el2 cé 13 A3 aA‘ MQAN 273
b1RaIn e B34 Rarw 244 8. sf2 c? Y L/Alz l‘, aslf2 A% Y7y
LAAMEL] PP B L T L YR R
EDS1x o~
BDSH ® ~
WRITEw ~
BasouTs [
Frg-Fez >
SHiCAR [
D#p- pas < >
ALK » [
AB4-A23 [/
B e ‘
BSAA/ME“O“ c
HEMATIC DIAGRAM
VMEBUS INTERFACE
) MOTOROLA microsyatems
Mrtegrated Cirowts Division
160 norm e Tt menen smr ot
— =
_ 63AG3012M 1011

91-v

Figure 4.12:

Schematic Diagram

Sheet 11/11

|
me= e []

‘sevcawion
Fusi4 FaLS164 Iy STl IniLSAy PE21264 #4532 PE21199 FULS244 F4LS645~1 FHLSE45-1 TiL311 MC1438 MC1488
u1 vz v3 23 us vé 124 ve ve 224 (244 uso use
P
¥ |14 ¥ |14 ? [1y 7 |1e 7 |1y 3 |14 ¥ [1% 18|28 191200 {#|28 ? |1 * |1 [1e EREB L])
o S s il e 5 2. e
- i i L
T 2] I
PE21198 ISy FusShy F4S11 4510 IqLS532 KA144A F4LS641-4 45244 FyLSéu5-1| FIyLs164 L2rT /4 A31 2V
v12 u13 (244 v1s u1é | (%44 v18 (244 1274 va1 v22 vas vzy c3
v 22
7 [] Jj». ;J:~ 11« 7 [4~ 7 [4'4 aﬂu vlﬂ wl?ﬂ 41121 1020 71« # 1%
1 It A=
-—C? ‘;l - - -6 -—C 1 -—C2 - 73 225
Gud o A Bur) ” B Y2 2
T [T [T + Tr [T |F T Sy
345393 FyLsm L8532 14508 I4LS By 1532 F4L5393 TaiS244 FyLS24k F4LS33) F4L3333 BARAGA ILS6LS- Sc2
A
v2s v2s va# 24 v2q v v31 v32 v33 v3y u3s use v3r
7 J14 vl»ﬂ« ’J’: alw ¥ [14 a[w v{« ulzd MIZH wl?' g 10]20
——-f p oy P>y e cor
— T b wlaid bl L ad
F4LS6u5-4 F4LS138 4S9 45139 F4S1S5 FuLs2é6 FuLs148 Fyis08 uLSHE F4LSISH MCE8EEE MADAFA KA4444
v38 v39 27 4 (224 ' ve2 23] 227 273 vué v4eE 22} vae uss
192 g 8 |16 7 [1% ju ;lm F [1v ‘I" vl« 314«, 8 [1¢ [46]53]14 [0 a[a ;‘F»,
8 cr9 P T a2t -—C22 -c23 -—C 24 - . c28
by oleaitd by kM S ol Ta T (P T L A Th Bt
MC68661 MEMAY MEM2Y MEMIU MEMYY MC6821 MC 1489 MC68661 MEMAL MEM2L MEM3L MEMUL NC684O A ——r
A11 GND
vs2 usd usy uss usé us? uss (274 vét véz vé3 23] ves A15 oND
A=
PRED) 14|28 411: jze 14]28 4170 31y "I“ 1428 14.11: ”I" 1428 FRE] 419 GNI:
N,
14 8207"5Np
caa c3g -—C 37 - C32 - 33 -—C2F -—C 38 c37 - C40 - T - (42 - Y3 s230n
T gt | Por ([Pow [Wpy. [Eas T Bt | Wg | g | Wges ot col-22
-
T
e oo ma
ey | SCHEMATIC DIAGRAM
===l i~ POWER SUPPLY

1M oace t

B

smacsosc . ¢ - T
an 1t o
ot

L)

0T v e

63AG3012M

11

APPENDTIZX A

MC68000 16-BIT MICROPROCESSING UNIT

\@ MOTOROLA MC68000L4

(4 MHz)
3501 ED BLUESTEIN BLVD.. AUSTIN, TEXAS 78721 Mc(s MHZ)
Advance Information (8 MHz)
16-BIT MICROPROCESSING UNIT (10 MHz)
Advances in semiconductor technology have provided the capability
to place on a single silicon chip a microprocessor at least an order of
magnitude higher in performance and circuit complexity than has been I'IMOS
previously available. The MCB8000 is the first of a family of such VLSI (HIGH-DENSITY, N-CHANNEL,
microprocessors from Motorola. It combines state-of-the-art SILICON-GATE DEPLETION LOAD)
technology and advanced circuit design techniques with computer
sciences to achieve an architecturally advanced 16-bit microprocessor. 16-BIT
The resources available to the MC68000 user consist of the following: MICROPROCESSOR

@ 32-Bit Data and Address Registers

® 16 Megabyte Direct Addressing Range

® 56 Powerful Instruction Types

@ Operations on Five Main Data Types

® Memory Mapped |I/0

@ 14 Addressing Modes L SUFFIX

As shown in the programming model, the MC68000 offers seventeen CERAMIC PACKAGE
32-bit registers in addition to the 32-bit program counter and a 16-bit CASE 746
status register. The first eight registers (DO-D7) are used as data

isters for byte (8-bit), word (16-bit), and long word (32-bit) data
:)elgerationsc., Th:se::ond)set gf se(ven registers (A(?—AG) and the system) PIN ASSIGNMENT
stack pointer may be used as software stack pointers and base address osch@®@
registers. In addition, these registers may be used for word and long

word address operations. All seventeen registers may be used as index g:; g gg
reglsters. D1 4 08
pods D9
Eg 6 D10
PROGRAMMING MODEL upsqy D11
31 16,15 87 0 LDSJs D12
B | | DO R/WC]9 D13
N | | o DTA2< 0o D14
» I I _Jo2 __BeOm D15
— | | "Jos Eight BGACK CJ12 GND
| | D4 g:;sters BRLYS AZs
B | | i D5 Vech4 A22
D6 cLkdis A21
- ! | 1o GNDEJ16 vee
1 1 HALT Q17 A20
L 1615 9 RESETCJ18 A19
L | —jA0 VMA L9 A8
- | A Ecd20 A17
- | A2 seven V_PAE 21 A16
| I A3 Address BERR CJ2 A15
- | _|na Tegisters PL20]23 A14
n | i TPLiCj4 A13
L A6 IPLOCY25 A2
_______________ Fc20y26 AN
[~ User Stack Pointer JM Two Stack Fogd2 38PA10
L _ _ _ _SuperviorStckPoner " Ponters Feorgos 37 a0
3 0 Broar A1§m 3B [IA8
1 cﬁfg‘ A2 a7
15 87 0 A3 CP‘\ K7 6
[System Byte, User Byte | ::;‘i::er A4 337 5
This document contains information on a new product. Specifications and information herein ©MOTOROLA INC., 1981 ADI-814R2

are subject to change without notice.

MC68000L4¢MC68000L6® MC68000L8e MC68000L10

MAXIMUM RATINGS

Rating Symbol Value Unit This device contains circuitry to protect the
_ inputs against damage due to high static
Supply Voltage Vee 0.3t +70 v voltages or electtic fields; however, it is advis-
Input Voltage Vin |-03w0+70] V ed that normal precautions be taken to avoid
Operating Temperature Range TA 0t 70 °C application of any voltage higher than
Storage Temperature Tstig —55to 150 oC maximum-rated voltages to this high-
impedance circuit. Reliability of operation is
enhanced if unused inputs are tied to an ap-
THERMAL CHARACTERISTICS propriate logic voltage level (e.g., either Vgg
Characteristic Symbol Value Unit or Vee.
Thermal Resistance
Ceramic Package 04 30 °C/W
POWER CONSIDERATIONS
The average chip-junction temperature, T, in °C can be obtained from:
Ty=Ta+(Ppedja) (1)

Where:
T = Ambient Temperature, °C
0)A = Package Thermal Resistance, Junction-to-Ambient, °C/W
PD=PINT+PI/O
PINT=ICcc x Vcc, Watts — Chip Internal Power
P70 = Power Dissipation on Input and Output Pins — User Determined

For most applications P);0<€P|NT and can be neglected.

An approximate relationship between Pp and Ty (if Pj;Q is neglected) is:

PD=K + (T +273°C) (2)
Solving equations 1 and 2 for K gives:
K=Ppe(Ta+273°C) + 6 a°Pp2 (3

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring Pp (at equilibrium)

for a known TA. Using this value of K the values of Pp and T j can be obtained by solving equations (1) and (2) iteratively for any
value of TA.

DC ELECTRICAL CHARACTERISTICS (Vcc=5.0 Vde +5%, Vs =0 Vdc; Tao=0°C to 70°C. See Figures 1, 2, and 3)

Characteristic Symbol Min Max | Unit
Input High Voltage VIH 2.0 vee | v
Input Low Voltage ViL Vgs—-03 | 08 \
Input Leakage Current @ 5.25 V BERR. BGACK, BR, DTACK,
CLK, IPLO-IPL2, VPA lin - 25 | uA
HALT, RESET — 20
Three-State (Off State) Input Current @ 2.4V/0.4V AS, A1-A23, D0-D15 | 20
FCO-FC2, LDS, R/W, UDS, VMA TSI B A
Output High Voltage (lgH = — 400 gA) _ E%* Vce-0.75] -
AS, A1-A23, BG, DO-D15 | VoH \
FCO-FC2, LDS, R/W, UDS, VMA 2.4 -
Output Low Voltage
{loL="1.6mA) __ HALT - 05
(loL=3.2mAl A1-A23,8G, FCO-FC2| |, - 05 |
(oL =36.0mA) _ RESET | 'OL - 05
(loL=5.3mA) E, AS, DO-D15, LDS, R/W - 0.5
UDS, VMA
Power Dissipation (Clock Frequency =8 MHz) Pp - 15 | W
Capacitance (Vi =0V, TA=25°C; Frequency =1 MHz) Cin - 10.0 | pF

* With external pullup resistor of 470 @

@ MOTOROLA Semiconductor Products Inc.
2

MC68000L4¢ MC68000L6*MC68000L8¢MC68000L10

FIGURE 1 — RESET TEST LOAD

FIGURE 2 — HALT TEST LOAD

FIGURE 3 — TEST LOADS

+5V
+5V
oV R*=7400
Test MMD6150
Point or Equivalent
RESET HALT CL HL
I MMD7000
— or Equivalent
130 pF 70 pF - -
| | CL=130pF
— — (Includes all Parasitics)
- - RL=6.0 k@ for —
AS, A1-A23, BG, DO-D15, E
FCO-FC2, LDS, R/W, UDS, VMA
*R=1.22 k@ for A1-A23, BG,
E, FCO-FC2
CLOCK TIMING (See Figure 4)
4 MHz 6 MHz 8 MHz 10 MHz
Characteristic Symbol | MCE8000L4 | MCE8000L6 | MCEB000LS | MCEB000L10 | Unit
Min | Max | Min | Max | Min | Max | Min | Max
Frequency of Operation F 201401 20| 60| 20| 80] 2.0 | 10.0 |MHz
Cycle Time teye 250 | 500 | 167 | 500 | 125 | 500 | 100 | 500 | ns
) tcL 15[250 | 75 | 250 | 66 | 250 | 45 | 250
Clock Pulse Width ton | 15| 250 | 75 | 250 | 55 | 260 | 45 | 20 | S
)) tcr | — | W] —[10] -0 =110
Rise and Fall Times tof _ 10| - 10 0l - L
FIGURE 4 — INPUT CLOCK WAVEFORM
tcyc———ﬁ
€—— ICL —» tcH—H
20V
08 \ JZ
Cr—» |€&—— —» |t

MOTOROLA Semiconductor Products Inc.

3

AC ELECTRICAL SPECIFICATIONS(Vcc=5.0 Vdc +5%, Vgg=0 Vdc; TA=0°C to 70°C, See Figures 5 and 6)

4 MHz 6 MHz 8 MHz 10 MHz
Number Characteristic Symbol | MC68000L4 | MC6EB000L6 | MCE8000LS | MCE8000L10| Unit
["Min | Max | Min | Max | Min | Max | Min | Max
1 Clock Period tcyc | 250 | 500 | 167 | 500 | 126 | 500 | 100 | 500 ns
2 Clock Width Low tcL 15| 250 75 | 250 | 55 | 250 | 45 | 260 ns
3 Clock Width High tCH 15| 250 | 75 | 250 | 55 | 260 | 45 | 250 ns
4 Clock Fall Time tct - 10 - 10 - 10 - 10 ns
5 Clock Rise Time tCr - 10 - 10 - 10 - 10 ns
6 Clock Low to Address ICLAV | — 90 - 80 — 70 - 55 ns
6A Clock High to FC Valid ICHFCV | — 90 - 80 - 70 - 60 ns
7 CI?:Aka:E: n:? Address Data High Impedance temazx| = | 120] = J1wo| - | s] - | 70 ns
8 Clock High to Address/FC Invalid (Minimum) tCHAZn| O — 0 - 0 - 0 - ns
91 Clock High to AS, DS Low (Maximum) tcHsix|] — | 80| — 70] - (e | - | 55 ns
10 Clock High to A5, DS Low (Minimum) tCHSLn | O - 0 - 0 - 0 — ns
112 Address to AS, DS (Read) Low/AS Write tavsL | 55 - 35 — 30 — 20 — ns
11A2 | FC Valid to A5, D3, (Read) Low/AS Write tfevsL| 80 | - | 70| - |60 | — | 50 | — ns
121 Clock Low to AS, DS High tcL,sH | — [0] - [8 | -] 720] -] 55 ns
132 AS, DS High to Address/FC Invalid tsuaz | 60| - | @0 | - | 30| - [20| - ns
142. 5 | AS, DS Width Low (Read)/AS Write tgp | 53| — | 337] - [240] - |195] — ns
14A2 | DS Width Low (Write) - 25| — [170]| — 115 — | 6| — ns
152 | AS, DS Width High ts4 286 — [8[| — [1ws0] - [105] - ns
16 Clock High to AS, DS High Impedance tCHSZ - 120 - 100 | — 80 - 70 ns
172 | AS, DS High to R/W High tSHRH | 80 | - | 680 | — [40 | - [20| - ns
181 Clock High to R/W High (Maximum) tCHRHx | - 90| - |8 | —-]70] -] 60 ns
19 Clock High to R/W High (Minimum) tCHRHn| O - 0 — 0 - 0 — ns
201 Clock High to R/W Low tCcHRL | — | 90| - | 80 | - | 70| — | 60 ns
212 Address Valid to R/W Low tAVRL | 45 - 25 - 20 - 0 - ns
21A2 | FC Valid to R/W Low trcvRL| 80 [- [70] - [e0 | - [s0] — ns
222 R/W Low to DS Low (Write) tResL 200 — | 140 - [80| - | 50| - ns
23 Clock Low to Data Out Valid tcoo | — 90 — 80 - 70 - 55 ns
252 | DS High to Data Out Invalid tshpo | 80| — | 90 | - [30] - | 20| - ns
262 | Data Out Valid to DS Low (Write) tposL | 5| — | 3 | - 3| - | 2] - ns
276 Data In to Clock Low (Setup Time) tDICL 30 - 25 — 15 — 15 — ns
282 | AS, DS High to DTACK High tSHDAH| 0 | 240 o [0 | 0 [120 0 | 90 ns
29 DS High to Data Invalid (Hold Time) tSHDI 0 - 0 - 0 - 0 - ns
30 AS, DS High to BERR High tSHBEH| O - 0 - 0 - 0 - ns
312. 6 | DTACK Low to Data In (Setup Time) tpALDlI | — 180 | — 120 | - 90 - 65 ns
32 HALT and RESET Input Transition Time tRHrf 200/ 0 [200] o [200] o | 200 ns
33 Clock High to BG Low tCHGL 90 80 - 70 60 ns
K3 Clock High to BG High tCHGH - 90 - 80 - 70 - 60 ns
35 BR Low to BG Low tBRLGL| 15| 30| 16 | 3016] 30 15| 3.0 [CIk. Per.
36 BR High to BG High tBRHGH| 15| 30| 15 1 30 | 15| 30| 15| 3.0 |Cik. Per.
37 BGACK Low to BG High 1GALGH| 15] 30 15 | 30 | 15| 30| 15| 3.0 | Ck Per.
38 BG Low to Bus High Impedance (With AS High) | tgiz | — 120 | = [100 | = | =0 70 ns
39 BG Width High tGH 1.5 — 1.5 - 1.5 — 1.5 — | Clk. Per.
46 BGACK Width 1BGL 1.5 - 1.5 - 1.5 - 1.5 — | Clk. Per.
476 | Asynchronous Input Setup Time tAS| 30 - 25 - 20 - 20 — ns
48 BERR Low to DTACK Low (Note 3) tBewpaL] 50| - [50 | - [80] - [80| - ns
53 Data Hold from Clock High tCHDO 0 - 0 - 0 - 0 - ns
55 R/W to Data Bus Impedance Change tRipo | 55] - [3| - [30] -] 20 - ns
56 | Halt/RESET Pulse Width (Note 4) tHRpw | 0] = J 10 f — 110 - | 0] - |CKk Per.
NOTES:

1. For a loading capacitance of less than or equal to 500 picofarads, subtract 5 nanoseconds from the values given in these columns.

OO0 A WN

. Actual value depends on clock period.
. |f #47 is satisfied for both DTACK and BERR, #48 may be O ns.
. After V¢ has been applied for 100 ms.
. For T6E, BF4, and RO9M mask sets #14 and #14A are one clock period less than the given number.
. If the asynchronous setup time (#47) requirements are satisfied, the DTACK low-to-data setup time (#31) requirement can be ignored. The

data must only satisfy the data-in to clock-low setup time (#27) for the following cycle.

4

@ MOTOROLA Semiconductor Products Inc.

MC68000L4¢ MC68000L6° MC68000L8eMC68000L10

FIGURE 5 — READ CYCLE TIMING

SO S1 s2 S3 sS4 S5 sg S7
e >4
7 —
i alng <©
A1-A23 |) S
> > 1 — 1
AS -/ 2 & 19
—>
IO <>
R
L[03/003 A . @ ’E
2
RIW (7
|
FCO-FC2)I
1
Asynch
Hots I X
{Note 1)
ote ' |
FATT) RESET \
(32 —»{ k(3
':-)\EI L.
BERR/BR NN‘ S E)
{Note 2)
4
DTACK \
Data In — — — — — —— — — . — — — — ﬁ;__

NOTES:

1. Setup time for the asynchronous inputs BGACK, IPLO-IPL2, and VPA guarantees their recognition at the next falling edge of the clock.
2. BR need fall at this time only in order to insure being recognized at the end of this bus cycle.
3. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

MOTOROLA Semiconductor Products Inc.
5

MC68000L4¢ MC68000L6°MC6E8000L8*MCE8000L10

FIGURE 6 — WRITE CYCLE TIMING

SO S1 S2 S3 sS4 S6 S6 S7 S0...

_ > @ Y)
R/W
BONNANhg @
Data Out B
@) > —> —®
FCO-FC2
Asynchronous X
Inputs a3
HALT/RESET ;_/1’__; < ‘@

—> @) @) —>
BTACK]"-_—

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

@ MOTOROLA Semiconductor Products Inc.
6

MC68000L4« MC68000L6* MC68000L8*MCE8000L10

AC ELECTRICAL SPECIFICATIONS — BUS ARBITRATION(Vcc=5.0 Vdc +5%, Vgg=0 Vdc; TAo=0°C to 70°C, See Figure 7)

4 MHz 6 MHz 8 MHz 10 MHz
Number Characteristic Symbol | MC68000L4 | MC68000L6 | MC68000LS MC68000L 10 Unit
Min [Max | Min [Max | Min | Max | Min | Max

33 Clock High to BG Low tcHeL | - | 90| -] 8 | -] 70] - | 60 ns
34 Clock High to BG High tcHg ! - 1 90| - [8 | — | 70] -] 60 ns
35 BR Low to BG Low tBRLGL| 15|35 | 15|36 | 15| 35| 16| 35 Clk. Per.
36 BR High to BG High tRRHGH| 156130 15] 30 | 15|30 15] 30 Clk. Per.
37 BGACK Low to BG High tGALGH] 15) 30| 15301530/} 15| 30 Clk. Per.
38 BG Low to Bus High Impedance (with AS High) gtz | = 120 — J1w0] -] 8] -] 70 ns
39 BG Width High tGH 15 - |15 - |18 - 16 | - Cik. Per.
46 BGACK Width gL | 15 - | 18] - [15] -]18] - Clk. Per.

FIGURE 7 — AC ELECTRICAL WAVEFORMS — BUS ARBITRATION

These waveforms should only be referenced in regard to the edge-to-edge measurement of the timing specifications. They are not

intended as a functional description of the input and output signals. Refer to other functional descriptions and their related
diagrams for device operation.

Strobes / —
and R/W
(3 ——
I
@ —
BGACK X /
—®— @—@

®

@_—,,

NOTES:

1. Setup time for the asynchronous inputs BERR, BGACK, BR, DTACK, iPLO-IPL2, and VPA guarantees their recognition at the next falling
edge of the clock.
2. Waveform measurements for all inputs and outputs are specified at: logic high=2.0 volts, logic low=0.8 volts.

MOTOROLA Semiconductor Products Inc.
7

MC68000L4¢ MC68000L6e MCE8000L8*MCE8000L10

SIGNAL DESCRIPTION

The following paragraphs contain a brief description of the
input and output signals. A discussion of bus operation dur-
ing the various machine cycles and operations is also given.

SIGNAL DESCRIPTION

The input and output signals can be functionally organized
into the groups shown in Figure 8. The following paragraphs
provide a brief description of the signals and also a reference
(if applicable) to other paragraphs that contain more detail
about the function being performed.

FIGURE 8 — INPUT AND OUTPUT SIGNALS

Vec(2) Address|
GND(2) Bus >A1-A23
CLK
DatzBusyoo-o1s
AS
—————
MC68000 RIW
FCo Microprocessor | _UDS __ {Asynchronous
Bus
Processor FC1 LDS Control
Status FC2 DTACK
E BR
M6800 e —aaae f————))
Peripheral < IMA_ BG . \Bus Arbitration
Control | —VPA] <« BGACK Control
BERR IPLO
—— e
System RESET PL1 lr(\:terru;:t
HAL ontro
Control HALT IPL2

ADDRESS BUS (A1 THROUGH A23). This 23-bit,
unidirectional, three-state bus is capable of addressing 8
megawords of data. It provides the address for bus operation
during all cycles except interrupt cycles. During interrupt
cycles, address lines A1, A2, and A3 provide information
about what level interrupt is being serviced while address
lines A4 through A23 are all set to a logic high.

DATA BUS (DO THROUGH D15). This 16-bit, bidirec-
tional, three-state bus is the general purpose data path. It
can transfer and accept data in either word or byte length.
During an interrupt acknowledge cycle, an external device
supplies the vector number on data lines DO-D7.

ASYNCHRONOUS BUS CONTROL. Asynchronous data
transfers are handled using the following control signals: ad-
dress strobe, read/write, upper and lower data strobes, and
data transfer acknowledge. These signals are explained in
the following paragraphs.

Address Strobe (AS). This signal indicates that there is a
valid address on the address bus.

Read/Write (R/W). This signal defines the data bus
transfer as a read or write cycle. The R/W signal also works
in conjunction with the upper and lower data strobes as ex-
plained in the following paragraph.

@ MOTOROLA

Semiconductor Products Inc.

8

Upper And Lower Data Strobes (UDS, LDS). These
signals control the data on the data bus, as shown in Table
1. When the R/W line is high, the processor will read from
the data bus as indicated. When the R/W line is low, the
processor will write to the data bus as shown.

TABLE 1 — DATA STROBE CONTROL OF DATA BUS

UDS | LDS | RIW D8-D15 DO-D7
High | High - No valid data No valid data
. Valid data bits Valid data bits
Low Low | High 8.15 0-7
High | Low | High | Novalid data | Vaid gf‘;" bits
Low | High | High V""";?}; bits | No valid data
Valid data bits Valid data bits
Low Low Low 8-15 0-7
. Valid data bits Valid data bits
High | Low [Low 0-7%* 0.7
. Valid data bits Valid data bits
Low | High | Low 815 8 15%

*These conditions are a result of current implementation and may
not appear on future devices.

Data Transfer Acknowledge (DTACK). This input in-
dicates that the data transfer is completed. When the pro-
cessor recognizes DTACK during a read cycle, data is
latched and the bus cycle terminated. When DTACK is
recognized during a write cycle, the bus cycle is terminated.

An active transition of data transfer acknowledge,
DTACK, indicates the termination of a data transfer on the
bus.

If the system must run at a maximum rate determined by
RAM access times, the relationship between the times at
which DTACK and DATA are sampled are important.

All control and data lines are sampled during the
MC68000's clock high time. The clock is internally buffered,
which resuits in some slight differences in the sampling and
recognition of various signals. MC68000 mask sets prior to
CC1 (R9M and T6E), allowed DTACK to be recognized as
early as S2 (bus state 2), and all devices allow BERR or
DTACK to be recognized in S4, S6, etc., which terminates
the cycle. The DTA%R signal, like other control signals, is in-
ternally synchronized to allow for valid operation in an asyn-
chronous system. |f the required setup time (#47) is met dur-
ing S4, DTACK will be recognized during S5 and S6, and
data will be captured during S6. The data must meet the re-
quired setup time (#27).

If an asynchronous control signal does not meet the re-
quired setup time, it is possible that it may not be recognized
during that cycle. Because of this, asynchronous systems
must not allow DTACK to precede data by more than
parameter #31.

Asserting DTACK (or BERR) on the rising edge of a clock
(such as S4) after the assertion of address strobe will allow a
MCB8000 system to run at its maximum bus rate. If setup
times #27 and #47 are guaranteed, #31 may be ignored.

MC68000L4* MC68000L6® MC68000L8¢ MCE68000L10

BUS ARBITRATION CONTROL. These three signals form
a bus arbitration circuit to determine which device will be the
bus master device.

Bus Request (BR). This input is wire ORed with all other
devices that could be bus masters. This input indicates to the
processor that some other device desires to become the bus
master.

Bus Grant (BG). This output indicates to all other potential
bus master devices that the processor will release bus con-
trol at the end of the current bus cycle.

Bus Grant Acknowledge (BGACK). This input indicates
that some other device has become the bus master. This
signal cannot be asserted until the following four conditions
are met:

1. a Bus Grant has been received

2. Address Strobe is inactive which indicates that the
microprocessor is not using the bus

3. Data Transfer Acknowledge is inactive which in-
dicates that neither memory nor peripherals are using
the bus

4. Bus Grant Acknowledge is inactive which indicates
that no other device is still claiming bus mastership.

INTERRUPT CONTROL (IPLO, IPL1, TPL2). These input
pins indicate the encoded priority level of the device re-
questing an interrupt. Level seven is the highest priority
while level zero indicates that no interrupts are requested.
The least significant bit is given in IPLO and the most signifi-
cant bit is contained in IPL2.

SYSTEM CONTROL. The system control inputs are used
to either reset or halt the processor and to indicate to the
processor that bus errors have occurred. The three system
control inputs are explained in the following paragraphs.

Bus Error (BERR). This input informs the processor that
there is a problem with the cycle currently being executed.
Problems may be a result of:

1. nonresponding devices

2. interrupt vector number acquisition failure

3. illegal access request as determined by a memory
management unit

4. other application dependent errors.

The bus error signal interacts with the halt signal to deter-
mine if exception processing should be performed or the cur-
rent bus cycle should be retried.

Refer to BUS ERROR AND HALT OPERATION paragraph
for additional information about the interaction of the bus er-
ror and halt signals.

Reset (RESET). This bidirectional signal line acts to reset
(initiate a system initialization sequence) the processor in
response to an external reset signal. An internally generated
reset (result of a RESET instruction) causes all external
devices to be reset and the internal state of the processor is
not affected. A total system reset (processor and external
devices) is the result of external HALT and RESET signals
applied at the same time. Refer to RESET OPERATION
paragraph for additional information about reset operation.

@ MOTOROLA Semiconductor Products Inc.

Halt (HALT). When this bidirectional line is driven by an
external device, it will cause the processor to stop at the
completion of the current bus cycle. When the processor has
been halted using this input, all control signals are inactive
and all three-state lines are put in their high-impedance state.
Refer to BUS ERROR AND HALT OPERATION paragraph
for additional information about the interaction between the
halt and bus error signals.

When the processor has stopped executing instructions,
such as in a double bus fault condition, the halt line is driven
by the processor to indicate to external devices that the pro-
cessor has stopped.

M6800 PERIPHERAL CONTROL. These control signals are
used to allow the interfacing of synchronous M6800
peripheral devices with the asynchronous MC68000. These
signals are explained in the following paragraphs.

Enable (E). This signal is the standard enable signal com-
mon to all M6800 type peripheral devices. The period for this
output is ten MC68000 clock periods (six clocks low; four
clocks high).

Valid Peripheral Address (VPA). This input indicates that
the device or region addressed is a M6800 family device and
that data transfer should be synchronized with the enable (E)
signal. This input also indicates that the processor should
use automatic vectoring for an interrupt. Refer to INTER-
FACE WITH M6800 PERIPHERALS.

Valid Memory Address (VMA). This output is used to in-
dicate to M6800 peripheral devices that there is a valid ad-
dress on the address bus and the processor is synchronized
to enatgle_.This signal only responds to a valid peripheral ad-
dress (VPA) input which indicates that the peripheral is a
M6800 family device.

PROCESSOR STATUS (FCO, FC1, FC2). These function
code outputs indicate the state (user or supervisor) and the
cycle type currently being executed, as shown in Table 2.
The information indicated by the function code outputs is
valid whenever address strobe (AS) is active.

TABLE 2 — FUNCTION CODE OUTPUTS

FC2 FC1 FCO Cycle Type
Low Low Low (Undefined, Reserved)
Low Low High User Data

Low | High Low
Low High | High
High Low Low
High Low High
High | High Low
High | High | High

User Program
(Undefined, Reserved)
(Undefined, Reserved)

Supervisor Data
Supervisor Program

Interrupt Acknowledge

CLOCK (CLK). The clock input is a TTL-compatible signal
that is internally buffered for development of the internal
clocks needed by the processor. The clock input shall be a
constant frequency.

SIGNAL SUMMARY. Table 3 is a summary of all the
signals discussed in the previous paragraphs.

MC68000L 4+ MC68000L6® MCE8000L8* MCE8000L10

TABLE 3 — SIGNAL SUMMARY

Signal Name Mnemonic Input/Output | Active State ;ht;:
Address Bus A1-A23 output high yes
Data Bus DO-D15 input/output high yes
Address Strobe AS output low yes
Read/Write R/W output read-high yes

write-low

Upper and Lower Data Strobes D3, D3 output low yes
Data Transfer Acknowledge DTACR input low no
Bus Request BR input low no
Bus Grant BG output low no
Bus Grant Acknowledge BGACK input low no
Interrupt Priority Level m input low no
Bus Error BERR input low no
Reset RESET input/output low no¥
Halt HALT input/output low no¥*
Enable E output high no
Valid Memory Address VMA output low yes
Valid Peripheral Address VPA input low no
Function Code Output FCO, FC1, FC2 output high yes
Clock CLK input high no
Power Input vce input - -
Ground GND input - -
*open drain

REGISTER DESCRIPTION AND DATA ORGANIZATION

The following paragraphs describe the registers and data
organization of the MC68000.

OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits,
a word equals 16 bits, and a long word equals 32 bits. The
operand size for each instruction is either explicitly encoded
in the instruction or implicitly defined by the instruction
operation. All explicit instructions support byte, word or long
word operands. Implicit instructions support some subset of
all three sizes.

DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16,
or 32 bits. The seven address registers together with the ac-
tive stack pointer support address operands of 32 bits.

DATA REGISTERS. Each data register is 32 bits wide.
Byte operands occupy the low order 8 bits, word operands

Address registers do not support byte sized operands.
Therefore, when an address register is used as a source
operand, either the low order word or the entire long word
operand is used depending upon the operation size. When
an address register is used as the destination operand, the
entire register is affected regardless of the operation size. If
the operation size is word, any other operands are sign ex-
tended to 32 bits before the operation is performed.

STATUS REGISTER

The status register contains the interrupt mask (eight
levels available) as well as the condition codes; extend (X),
negative (N), zero (Z), overflow (V), and carry (C). Addi-
tional status bits indicate that the processor is in a trace (T)
mode and/or in a supervisor (S) state.

STATUS REGISTER

the low order 16 bits, and long word operands the entire 32 System Byte User Byte
bits. The _lgast signi_ficant bit is addrgssed as bit zero; the / " ’\j 5 W 4’¥
most significant bit is addressed as bit 31. . g -
When a data register is used as either a source or destina- &ﬂs\\\lﬂlﬂm\\\\\m
tion operand, only the appropriate low-order portion is N~
Trace Mode Extend

changed; the remaining high-order portion is neither used
nor changed.

ADDRESS REGISTERS. Each address register and the
stack pointer is 32 bits wide and holds a full 32 bit address.

@ MOTOROLA Semiconductor Products Inc.

10

Supervisor
State Interrupt

Mask

MC68000L4* MC6E8000L6e MC68000L8¢MC68000L10

DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high order byte
having an even address the same as the word, as shown in
Figure 9. The low order byte has an odd address that is one
count higher than the word address. Instructions and
multibyte data are accessed only on word (even byte) boun-
daries. If a long word datum is located at address n (n even),
then the second word of that datum is located at address
n+2.

The data types supported by the MC68000 are: bit data, in-
teger data of 8, 16, or 32 bits, 32-bit addresses and binary
coded decimal data. Each of these data types is put in
memory, as shown in Figure 10.

BUS OPERATION

The following paragraphs explain control signal and bus
operation during data transfer operations, bus arbitration,
bus error and halt conditions, and reset operation.

DATA TRANSFER OPERATIONS. Transfer of data be-
tween devices involves the following leads:

® Address Bus A1 through A23
® Data Bus DO through D15
@ Control Signals

The address and data buses are separate parallel buses used
to transfer data using an asynchronous bus structure. In all
cycles, the bus master assumes responsibility for deskewing
all signals it issues at both the start and end of a cycle. In ad-
dition, the bus master is responsible for deskewing the
acknowledge and data signals from the slave device.

The following paragraphs explain the read, write, and
read-modify-write cycles. The indivisible read-modify-write
cycle is the method used by the MC68000 for interlocked
multiprocessor communications.

NOTE

The terms assertion and negation will be used extensively.
This is done to avoid confusion when dealing with a mixture
of ""active-low” and "‘active-high” signals. The term assert or
assertion is used to indicate that a signal is active or true in-
dependent of whether that voltage is low or high. The term
negate or negation is used to indicate that a signal is inactive
or false.

Read Cycle. During a read cycle, the processor receives
data from memory or a peripheral device. The processor
reads bytes of data in all cases. If the instruction specifies a
word (or double word) operation, the processor reads both
bytes. When the instruction specifies byte operation, the
processor uses an internal AO bit to determine which byte to
read and then issues the data strobe required for that byte.
For byte operations, when the A0 bit equals zero, the upper
data strobe is issued. When the AQ bit equals one, the lower
data strobe is issued. When the data is received, the pro-
cessor correctly positions it internally.

A word read cycle flow chart is given in Figure 11. A byte
read cycle flow chart is given in Figure 12. Read cycle timing
is given in Figure 13. Figure 14 details word and byte read cy-
cle operations.

FIGURE 9 — WORD ORGANIZATION IN MEMORY

15 14 13 12 1" 10 9 6 5 4 3 2 1 0
Word 000000
Byte 000000 | Byte 000001
Word 000002
Byte 000002 Byte 000003

Byte FFFFFE

Word FFFFFE

|

Byte FFFFFF

MOTOROLA Semiconductor Products Inc.

1"

FIGURE 10 — DATA ORGANIZATION IN MEMORY

Bit Data
1 Byte=8 Bits
7 6 5 4 3 2 1 0
Integer Data
1 Byte =8 Bits
15 14 13 12 1 10 9 8 7 6 5 4 2 1 0
MSB Byte 0 LSB Byte 1
Byte 2 Byte 3
1 Word= 16 Bits
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSB Word 0 LsB
Word 1
Word 2
1 Long Word = 32 Bits
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
MSB .
High Order
— —longWord0— —
Low Order LSB
— —longWordl— —
— —LlongWod2——— — — — — — — — — — — — — — — — - - —
Addresses
1 Address =32 Bits
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
MSB)
High Order
— — Address) — — — — — — — — — — — — — — —_———_—— — — —
]
Low Order LSB
— — Address] — — — — — — — — — — — — — — — — — — —_—— —
— — Address2 — — — — —m — — — — — — — — — —_—— —_—— — — —
MSB = Most Significant Bit
LSB = Least Significant Bit
Decimal Data
2 Binary Coded Decimal Digits=1 Byte
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSD
BCD O BCD 1 LSD BCD 2 BCD 3
BCD 4 BCD 5 BCD 6 BCD 7

MSD = Most Significant Digit
LSD = Least Significant Digit

MOTOROLA Semiconductor Products Inc.

12

MC68000L4e MC68000L6* MC68000L8¢MC68000L10

FIGURE 11 — WORD READ CYCLE FLOW CHART

BUS MASTER SLAVE

Address Device
1) Set R/W to Read
2) Place Function Code on FCO-FC2
3) Place Address on A1-A23
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UDS) and Low-
er Data Strobe (LDS)

L

'

Input Data
1) Decode Address
2) Place Data on DO-D15
3) Assert Data Transfer Acknowledge
(DTACK)

Acquire Data
1) Latch Data
2) Negate UDS and LDS
3) Negate AS l

Terminate Cycle
1) Remove Data from DO-D156
2) Negate DTACK

Start Next Cycle

FIGURE 12 — BYTE READ CYCLE FLOW CHART

BUS MASTER SLAVE
Address Device

1) Set R/W to Read

2) Place Function Code on FCO-FC2

3) Place Address on A1-A23

4) Assert Address Strobe (AS)

5) Assert Upper Data Strobe (JDS) or Lower
Data Strobe (LDS) (based on AQ)

L
Input Data
1) Decode Address
2) Place Data on DO-D7 or D8-D15 (based on
UDS or LDS)
3) Assert Data Transfer Acknowledge
{DTACK)
J

Acquire Data
1) Latch Data

2) iNegate UDS or LDS
3) Negate AS

'

Terminate Cycle
1) Remove Data from DO-D7 or D8-D15
2) Negate DTACK

Start Next Cycle

FIGURE 13 — READ AND WRITE CYCLE TIMING DIAGRAM

SO S1 S2S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2S3 S4 w w w w S5 S6 S7

CLK

a1-a3 __ <

<

S Y S — N

ubs
103
R/W _

DTACK
D8-D15

DO-D7

Fco2 _ X X

Y¥[jwj

D¢

lq-— — -Read— — —-Pld— — —Wirite — -bl(— — — -SlowRead— — —

13

MOTOROLA Semiconductor Products Inc.

Y

MC68000L4* MC68000L6® MC68000L8*MC68000L 10

FIGURE 14 — WORD AND BYTE READ CYCLE TIMING DIAGRAM

SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3- S4 S5 86 S7 SO S1 S2 S3 S4 S5 S6 S7

FCO-2 3

*Internal Signal Only

I(- — -Word Read~ —41— — 0Odd Byte Read—)'(- —Even Byte Read —)I

Write Cycle. During a write cycle, the processor sends
data to memory or a peripheral device. The processor writes
bytes of data in all cases. If the instruction specifies a word
operation, the processor writes both bytes. When the ‘in-
struction specifies a byte operation, the processor uses an
internal AO bit to determine which byte to write and then
issues the data strobe required for that byte. For byte opera-
tions, when the AQ bit equals zero, the upper data strobe is
issued. When the AO bit equals one, the lower data strobe is
issued. A word write cycle flow chart is given in Figure 15. A
byte write cycle flow chart is given in Figure 16. Write cycle
timing is given in Figure 13. Figure 17 details word and byte
write cycle operation.

Read-Modify-Write Cycle. The read-modify-write cycle
performs a read, modifies the data in the arithmetic-logic
unit, and writes the data back to the same address. In the
MC68000 this cycle is indivisible in that the address strobe is
asserted throughout the entire cycle. The test and set (TAS)
instruction uses this cycle to provide meaningful com-
munication between processors in a multiple processor en-
vironment. This instruction is the only instruction that uses
the read-modify-write cycles and since the test and set in-
struction only operates on bytes, all read-modify-write cycles
are byte operations. A read-modify-write cycle flow chart is
given in Figure 18 and a timing diagram is given in Figure 19.

MOTOROLA Semiconductor Products Inc.

14

BUS ARBITRATION. Bus arbitration is a technique used
by master-type devices to request, be granted, and
acknowledge bus mastership. In its simplest form, it consists
of:

1. Asserting a bus mastership request.

2. Receiving a grant that the bus is available at the end
of the current cycle.

3. Acknowledging that mastership has been assumed.

Figure 20 is a flow chart showing the detail involved in a
request from a single device. Figure 21 is a timing diagram
for the same operations. This technique allows processing of
bus requests during data transfer cycles.

The timing diagram shows that the bus request is negated
at the time that an acknowledge is asserted. This type of
operation would be true for a system consisting of the pro-
cessor and one device capable of bus mastership. In systems
having a number of devices capable of bus mastership, the
bus request line from each device is wire ORed to the pro-
cessor. In this system, it is easy to see that there could be
more than one bus request being made. The timing diagram
shows that the bus grant signal is negated a few clock cycles
after the transition of the acknowledge (BGACK) signal.

However, if the bus requests are still pending, the pro-
cessor will assert another bus grant within a few clock cycles
after it was negated. This additional assertion of bus grant
allows external arbitration circuitry to select the next bus
master before the current bus master has completed its re-
quirements. The following paragraphs provide additional in-
formation about the three steps in the arbitration process.

MC68000L4e M C68000L6¢ M C63000L8*MC68000L10

FIGURE 15 — WORD WRITE CYCLE FLOW CHART FIGURE 16 — BYTE WRITE CYCLE FLOW CHART
BUS MASTER SLAVE BUS MASTER SLAVE
Address Device
Address Device 1) Place Function Code on FCO-FC2
1) Place Function Code on FCO-FC2 2) Place Address on A1-A23
2) Place Address on A1-A23 3) Assert Address Strobe (AS)
3) Assert Address Strobe (AS) 4) Set R/W to Write
4) Set R/W to Write 5) Place Data on DO-D7 or D8-D15 (according
6) Place Data on DO-D15 to A0) .
6) Assert Upper Data Strobe (UDS) and 6) Assert Upper %a Strobe (UDS) or Lower
Lower Data Strobe (LDS) Data Strobe (LDS) {based on AQ)

l

J

Input Data
1) Decode Address B
2) Store Data on DO-D7 if LDS is asserted
Store Data on D8-D15 if UDS is asserted
3) Assert Data Transfer Acknowledge

Input Data
1) Decode Address
2) Store Data on DO-D15
3) Assert Data Transfer Acknowledge

(DTACK) J GTACK)

Terminate OQutput Transfer ‘
1) Negate UDS and LDS Terminate Output Transfer
2) Negate AS 1) Negate UDS and DS
3) Remove Data from DO-D15 2) Negate AS
4) Set R/W to Read 3) Remove Data from DO-D7 or D8-D15

4) Set R/W to Read
M Terminate Cycle
1) Negate DTACK I 1) Negate DTACK
Start Next Cycle Start Next Cycle

FIGURE 17 — WORD AND BYTE WRITE CYCLE TIMING DIAGRAM
SO S1 S2 S3 S4S5 S6 S7 SO S1 S2S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7

a1-a23 Y~ Damd D)
AO¥ [—

FCO-2 y — X X)

¥internal Signal Only

j&— — —— Word Write —— —»}€=——0dd Byte Write - —9}€—— Even Byte Write— — |

MOTOROLA Semiconductor Products Inc.

15

MC68000L4¢ M C68000L6* MC68000L8¢ MC68000L10

FIGURE 18 — READ-MODIFY-WRITE CYCLE FLOW CHART

BUS MASTER SLAVE
Address Device
1) Set R/W to Read

2) Place Function Code on FCO-FC2 Input Data

3) Place Address on A1-A23 1) Decode Address

4) Assert Address Strobe (AS) 2) Place Data on DO-D7 or D8-D15

5) Assert Upper Data Strobe (UDS) or 3) Assert Data Transfer Acknowledge
Lower Data Stlrobe (LDS) (DTACK)

Acquire Data
1) Latch Data. __
2) Negate UDS or LDS
3) Start Data Modification Terminate Cycle
1) Remove_Data from DO-D7 or D8-D15
2) Negate DTACK

J
Start Output Transfer
1) Set R/W to Write
2) Place Data on DO-D7 or D8-D15 Input Data

3) Assert Upper Data Strobe (UDS) or Lower

1) (
Data Strobe (LDS) Store Data on DO-D7 or D8-D15

2) Assert Data Transfer Acknowledge
(DTACK)

Terminate Output Transfer
1) Negate UDS or LDS
2) Negate AS
3) Remove Data from DO-D7 or D8-D16
4) Set R/W to Read

Terminate Cycle
——ER
1) Negate DTACK

Start Next Cycle

FIGURE 19 — READ-MODIFY-WRITE CYCLE TIMING DIAGRAM
SO S1 S2 S3 S4 S5 S6 S7 S8 S9S10S11S12513S14S15516S17S18S519

CLK
a1-a3 - A
A T\ /-
obsor s N\ / ~___/
R/W \ /-
DTACK \ / n_____/

eors ——) ____—
Fo2 X X

e ——————— ‘Indivisible Cycle: —— ———————— _>|

MOTOROLA Semiconductor Products Inc.
16

MC68000L4¢ MC68000L6¢ MC68000L8*MC68000L10

FIGURE 20 — BUS ARBITRATION CYCLE FLOW CHART
PROCESSOR REQUESTING DEVICE

Request the Bus

1) Assert Bus Request (BRI
]

Grant Bus Arbitration
1) Assert Bus Grant (BG)
L

Acknowledge Bus Mastership

1) External arbitration determines next bus
master

2) Next bus master waits for current cycle to
complete

3) Next bus master asserts Bus Grant
Acknowledge (BGACK) to become new
master —

4) Bus master negatesl BR

Terminate Arbitration

1) Negate BG (and wait for BGACK to be
negated)

Operate as Bus Master
1) Perform Data Transfers (Read and Write
cycles) according to the same rules the pro-
Cessor uses.

Release Bus Mastership

1) Negate BGACK
J

Re-Arbitrate or Resume Processor
Operation

Requesting the Bus. External devices capable of becoming
bus masters request the bus by asserting the bus request
(BR) signal. This is a wire ORed signal (although it need not
be constructed from open collector devices) that indicates to
the processor that some external device requires control of
the external bus. The processor is effectively at a lower bus
priority level than the external device and will relinquish the
bus after it has completed the last bus cycle it has started.

When no acknowledge is received before the bus request
signal goes inactive, the processor will continue processing
when it detects that the bus request is inactive. This allows
ordinary processing to continue if the arbitration circuitry
responded to noise inadvertently.

_Receiving the Bus Grant. The processor asserts bus grant
(BG) as soon as possible. Normally this is immediately after
internal synchronization. The only exception to this occurs
when the processor has made an internal decision to execute
the next bus cycle but has not progressed far_enough into
the cycle to have asserted the address strobe (AS) signal. In
this case, bus grant will not be asserted until one clock after
address strobe is asserted to indicate to external devices that
a bus cycle is being executed.

The bus grant signal may be routed through a daisy-
chained network or through a specific priority-encoded net-
work. The processor is not affected by the external method
of arbitration as long as the protocol is obeyed.

Acknowledgement of Mastership. Upon receiving a bus
grant, the requesting device waits until address strobe, data
transfer acknowledge, and bus grant acknowledge are
negated before issuing its own BGACK. The negation of the
address strobe indicates that the previous master has com-
pleted its cycle, the negation of bus grant acknowledge in-
dicates that the previous master has released the bus. (While
address strobe is asserted no device is allowed to “'break in-
to" a cycle.) The negation of data transfer acknowledge in-
dicates the previous slave has terminated its connection to
the previous master. Note that in some applications data
transfer acknowledge might not enter into this function.
General purpose devices would then be connected such that

FIGURE 21 — BUS ARBITRATION CYCLE TIMING DIAGRAM

a1-a23 I < ——< D & —< X
AS
LDS/UDS
R/W) U o U n____/
DTACK \n_/ \ / \ / \ / _/'_‘
DO-D15 <) ¢ > -)) J\:__
Fco-2_X — —) &) A
wm N/ \ [
BT\ / ./
BGACK! \ / \
Processor— M€ —DMA Device— 'Pk— — -Processor— — —>}€&— -DMA Device: — —

MOTOROLA Semiconductor Products Inc.

MC68000L4¢ MC68000L6 MC68000L8* MC68000L10

they were only dependent on address strobe. When bus
grant acknowledge is issued the device is bus master until it
negates bus grant acknowledge. Bus grant acknowledge
should not be negated until after the bus cyclels) is (are)
completed. Bus mastership is terminated at the negation of
bus grant acknowledge.

The bus request from the granted device should be drop-
ped after bus grant acknowledge is asserted. If a bus request
is still pending, another bus grant will be asserted within a
few clocks of the negation of bus grant. Refer to Bus
Arbitration Control section. Note that the processor does not
perform any external bus cycles before it re-asserts bus
grant.

BUS ARBITRATION CONTROL. The bus arbitration con-
trol unit in the MC68000 is implemented with a finite state
machine. A state diagram of this machine is shown in Figure
22. All asynchronous signals to the MC68000 are synchroniz-
ed before being used internally. This synchronization is ac-
complished in a maximum of one cycle of the system clock,
assuming that the asynchronous input setup time (#47) has

FIGURE 22 — STATE DIAGRAM OF MC68000 BUS
ARBITRATION UNIT

R = Bus Request Internal

A= Bus Grant Acknowledge Internal

G=Bus Grant

T = Three-State Control to Bus Control Logic
X=Don’t Care

* State machine will not change state if bus is in SO. Refer to
BUS ARBITRATION CONTROL for additional information.

MOTOROLA Semiconductor Products Inc.

18

been met (see Figure 23). The input signal is sampled on the
falling edge of the clock and is valid internally after the next
falling edge.

As shown in Figure 22, input signals labeled R and A are
internally synchronized on the bus request and bus grant
acknowledge pins respectively. The bus grant output is
labeled G and the internal three-state control signal T. If T is
true, the address, data, and control buses are placed in a
high-impedance state when AS is negated. All signals are
shown in positive logic (active high) regardless of their true
active voltage level.

State changes (valid outputs) occur on the next rising
edge after the internal signal is valid.

A timing diagram of the bus arbitration sequence during a
processor bus cycle is-shown in Figure 24. The bus arbitra-
tion sequence while the bus is inactive (i.e., executing inter-
nal operations such as a multiply instruction) is shown in
Figure 25.

If a bus request is made at a time when the MPU has
already begun a bus cycle but AS has not been asserted (bus
state SO), BG will not be asserted on the next rising edge. In-
stead, BG will be delayed until the second rising edge follow-
ing it's internal assertion. This sequence is shown in Figure
26.

BUS ERROR AND HALT OPERATION. In a bus architec-
ture that requires a handshake from an external device, the
possibility exists that the handshake might not occur. Since
different systems will require a different maximum response
time, a bus error input is provided. External circuitry must be
used to determine the duration between address strobe and
data transfer acknowledge before issuing a bus error signal.
When a bus error signal is received, the processor has two
options: initiate a bus error exception sequence or try runn-
ing the bus cycle again.

FIGURE 23 — TIMING RELATIONSHIP OF EXTERNAL
ASYNCHRONOUS INPUTS TO INTERNAL SIGNALS

Internal Signal Valid l

External Signal Sampled—l

CLK oy

R (External)

@ —

R (Internal)

\

Asychronous
Input Delay® ~1

'

*This delay time is equal to parameter #33,tcHGL.

MC68000L4e MCE8000L6 MCE8000L8e MCEB000L 10

FIGURE 24 — BUS ARBITRATION DURING PROCESSOR BUS CYCLE

Bus three stated
BG asserted

BR valid internal
BR sampled
BR asserted—1 ’

Bus released from three state and
Processor starts next bus cycle
BGACK negated internal

BGACK sampled
BGACK negated—L ‘

CLK
_ SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 SO S1
BR ﬁ /
BG \ /

BGACK \ /

ALA ——) —(e &
AS N[
ubDSsS ,_—\—./_

FCO-FC2 X~ - — X
R/IW \ /
BTACK \ / ./
DO-D15 \ /) N —
Processor Alternate Bus Master Processor

FIGURE 25 — BUS ARBITRATION WITH BUS INACTIVE

Bus released from three state and processor starts next bus cycle
BGACK negated
BG asserted and bus three stated
BR valid internal
BR asserted

CLK
SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4
BR \ /
BGACK \ e
A1-A23 — b —__

E
:

-/ \ — T\
LDS
Feo-Fcz_ K) -
RIW — —_—
DTACK
NN/ A
DO-D15 “ F\
Processor }‘ Bus Inactive }‘ Alternate Bus Master :* Processor

MOTOROLA Semiconductor Products Inc.

19

MC68000L4« MC68000L6e MC68000L8® MCE8000L10

FIGURE 26 — BUS ARBITRATION DURING PROCESSOR BUS CYCLE SPECIAL CASE

BR asserted Bus released from three state and
BR sampled Processor starts next bus cycle
Bus three stated BGACR negated internal
BG asserted BGACK sampled

BR valid internal BGACK negated ﬁ

SO S1 52 §3 S4 S5 S6 S7
R\ /
BG \ /

BGACK S\ /

A1-A28 e) —(j..(‘_‘
S A N [
oos 00 "/ A Y A
e o Y s
FcoFcs X) — X

SO S1 S2 S3 S4 S5 S6 S7 SO S

[7p)

w

R/W _ S

DTACK \ / —
T\ - -

DO-D15 4) -
. Processor | Alternate Bus Master | Processor o
1 =
Exception Sequence. When the bus error signal is 3. Reading the bus error vector table entry
asserted, the current bus cycle is terminated. If BERR is 4. Executing the bus error handler routine

asserted before the falling edge of S4, AS will be negated in
S7 in either a read or write cycle. As long as BERR remains
asserted, the data and address buses will be in the high-
impedance state. When BERR is negated, the processor will
begin stacking for exception processing. Figure 27 is a timing
diagram for the exception sequence. The sequence is com-
posed of the following elements.

The stacking of the program counter and the status
register is the same as if an interrupt had occurred. Several
additional items are stacked when a bus error occurs. These
items are used to determine the nature of the error and cor-
rect it, if possible. The bus error vector is vector number two
located at address $000008. The processor loads the new
program counter from this location. A software bus error
1. Stacking the program counter and status register handler routine is then executed by the processor. Refer to
2. Stacking the error information EXCEPTION PROCESSING for additional information.

MOTOROLA Semiconductor Products Inc.
20

MC68000L4*MC68000L6e MCE8000L8* MCE8000L 10

Re-Running the Bus Cycle. When, during a bus cycle, the the same address, the same function codes, the same data
processor receives a bus error signal and the halt pin is being (for a write operation), and the same controls. The bus error
driven by an external device, the processor enters the re-run signal should be removed at least one clock cycle before the
sequence. Figure 28 is a timing diagram for re-running the halt signal is removed.
bus cycle.

Y NOTE

T . The processor will not re-run a read-modify-write cycle.

e processor terminates the bus cycle, then puts the This restriction is made to guarantee that the entire cycle
address and data output lines in the high-impedance state. runs correctly and that the write operation of a Test-and-Set
The processor remains “halted,” and will not run another operation is performed without ever releasing AS. If

bus cycle until the halt signal is removed by external logic. and HALT are asserted during a read-modify-write bus cycle,
Then the processor will re-run the previous bus cycle using a bus error operation results.

FIGURE 27 — BUS ERROR TIMING DIAGRAM

AST \ / v \
o/Os —\ / N\ —\
R/W j,:‘. \
DTACK n____
00-016 —————(H— R‘ __________
Fco2 — X J\:

BERR \ N—"
kil Nr

Initiate . . Initiate Bus
fea d—>'|<- Response Failure -)I'l— Bus Error Detection —)‘(Error Stacking

FIGURE 28 — RE-RUN BUS CYCLE TIMING INFORMATION

rco-2 _X_ X A
m —_—\-————/
HALT N\ /

k— — — Read— — ’f‘ ————— Halt— — — — ->|<-— — Rerun— — —-b{

MOTOROLA Semiconductor Products Inc.

21

MC68000L4* MCE8000L6e MCE8000L8e MCEB000L 10

The processor terminates the bus cycle, then puts the ad-
dress, data and function code output lines in the high-
impedance state. The processor remains ‘“‘halted,”” and will
not run another bus cycle until the halt signal is removed by
external logic. Then the processor will re-run the previous
bus cycle using the same address, the same function codes,
the same data (for a write operation), and the same controls.
The bus error signal should be removed before the halt signal
is removed.

Halt Operation with No Bus Error. The halt input signal to
the MC68000 performs a Halt/ Run/Single-Step function in a
similar fashion to the M6800 halt function. The halt and run
modes are somewhat self explanatory in that when the halt
signal is constantly active the processor ““halts” (does
nothing) and when the halt signal is constantly inactive the
processor “‘runs” (does something).

The single-step mode is derived from correctly timed tran-
sitions on the halt signal input. It forces the processor to ex-
ecute a single bus cycle by entering the “run’” mode until the
processor starts a bus cycle then changing to the “halt”
mode. Thus, the single-step mode allows the user to pro-
ceed through (and therefore debug) processor operations
one bus cycle at a time.

Figure 29 details the timing required for correct single-step
operations. Some care must be exercised to avoid harmful
interactions between the bus error signal and the halt pin
when using the single cycle mode as a debugging tool. This
is also true of interactions between the halt and reset lines
since these can reset the machine.

When the processor completes a bus cycle after recogniz-
ing that the halt signal is active, most three-state signals are
put in the high-impedance state. These include:

1. address lines
2. data lines

This is required for correct performance of the re-run bus cy-
cle operation.

While the processor is honoring the halt request, bus
arbitration performs as usual. That is, halting has no effect
on bus arbitration. It is the bus arbitration function that
removes the control signals from the bus.

The halt function and the hardware trace capability allow
the hardware debugger to trace single bus cycles or single in-
structions at a time. These processor capabilities, along with
a software debugging package, give total debugging flexibili-
ty.

Double Bus Faults. When a bus error exception occurs,
the processor will attempt to stack several words containing
information about the state of the machine. If a bus error ex-
ception occurs during the stacking operation, there have
been two bus errors in a row. This is commonly referred to as
a double bus fault. When a double bus fault occurs, the pro-
cessor will halt. Once a bus error exception has occurred,
any bus error exception occurring before the execution of
the next instruction constitutes a double bus fault.

Note that a bus cycle which is re-run does not constitute a
bus error exception, and does not contribute to a double bus
fault. Note also that this means that as long as the external
hardware requests it, the processor will continue to re-run
the same bus cycle.

The bus error pin also has an effect on processor operation
after the processor receives an external reset input. The pro-
cessor reads the vector table after a reset to determine the
address to start program execution. |f a bus error occurs
while reading the vector table (or at any time before the first
instruction is executed), the processor reacts as if a double
bus fault has occurred and it halts. Only an external reset will
start a halted processor.

FIGURE 29 — HALT SIGNAL TIMING CHARACTERISTICS

MOTOROLA Semiconductor Products Inc.

22

THE RELATIONSHIP OF DTACK, BERR, AND HALT

In order to properly control termination of a bus cycle for a
re-run or a bus error condition, DTACK, BERR, and HALT
should be asserted and negated on the rising edge of the
MC68000 clock. This will assure that when two signals are
asserted simultaneously, the required setup time (#47) for
both of them will be met during the same bus state.

This, or some equivalent precaution, should be designed
external to the MC68000. Parameter #48 is intended to en-
sure this operation in a totally asynchronous system, and
may be ignored if the above conditions are met.

The preferred bus cycle terminations may be summarized
as follows (case numbers refer to Table 4):

Normal Termination: DTACK occurs first (case 1).
Halt Termination: HALT is asserted at same time, or
precedes DTACK (no BERR) cases 2 and 3.

Bus Error Termination: BERR is asserted in lieu of, at same
time, or preceding DTACK (case 4); BERR negated at same
time, or after DTACK.

Re-Run Termination: HALT and BERR asserted at the
same time, or before DTACK (cases 6 and 7); HALT must be
negated at least 1 cycle after BERR. (Case 5 indicates BERR

may precede HALT on all except R9M and T6E < early mask
sets> which allows fully asynchronous assertion).

Table 4 details the resulting bus cycle termination under
various combinations of control signal sequences. The nega-
tion of these same control signals under several conditions is
shown in Table 5 (DTACK is assumed to be negated normal-
ly in all cases; for best results, both DTACK and BERR
should be negated when address strobe is negated.)

Example A: A system uses a watch-dog timer to ter-
minate accesses to un-populated address space. The timer
asserts DTACK and BERR simultaneously after time-out.
(case 4)

Example B: A system uses_error detection on RAM con-
tents. Designer may (a) delay DTACK until data verified, and
return BERR and HALT simultaneously to re-run error cycle
(case 6), or if valid, return DTACK; (b) delay DTACK until
data verified, and return BERR at same time as DTACK if
data in error (case 4); (¢) return DTACK p dor to data verifica-
tion, as described in previous section. If data invalid, BERR is
asserted (case 1) in next cycle. Error-handling software must
know how to recover error cycle.

TABLE 4 — DTACK, BERR, HALT ASSERTION RESULTS

Asserted on Rising
Cose | Control Edge of State Result
e N+Z
DTACK A S Normal cycle terminate and continue.
1 BERR NA X
HALT NA X
DTACK A S Normal cycle terminate and halt. Continue when HALT removed.
2 BERR NA X
HALT A S
DTACK NA A Normal cycle terminate and halt. Continue when HALT removed.
3 BERR NA NA
HALT A S
DTACK X X Terminate and take bus error trap.
4 BERR A S
HALT NA NA
DTACK NA X ROM, T6E, BF4: Unpredictable results, no re-run, no error trap;
5 BERR A S usually traps to vector number 0.
HALT NA A All others: terminate and re-run.
DTACK X X Terminate and re-run.
6 BERR A S
HALT A S
DTACK NA X Terminate and re-run when HALT removed.
7 BERR NA A
HALT A S
Legend:

N — the number of the current even bus state (e.g., S4, S6, etc.)

A — signal is asserted in this bus state
NA — signal is not asserted in this state
X — don't care

S — signal was asserted in previous state and remains asserted in this state

TABLE 5 — BERR AND HALT NEGATION RESULTS

Conditions of Control Negated on Rising
Termination in Signal Edge of State Results — Next Cycle
Table A 9 N N+2
BERR [] or ® |Takes bus error trap.
Bus Error AALT o o o
Re-ru BERR [] or ® |lllegal sequence; usually traps to
n HALT [] vector number 0.
Re-r BERR [} Re-runs the bus cycle.
un HALT °
BERR [] May lengthen next cycle.
Normal HALT e o @
Normal BERR ® [If next cycle is started it will
HALT [J or ___none|be terminated as a bus error.

@ MOTOROLA Semiconductor Products Inc.

23

MC68000L4 MC68000L6°MC68000L8¢ MCE8000L 10

RESET OPERATION. The reset signal is a bidirectional
signal that allows either the processor or an external signal to
reset the system. Figure 30 is a timing diagram for reset
operations. Both the halt and reset lines must be applied to
ensure total reset of the processor.

When the reset and halt lines are driven by an external
device, it is recognized as an entire system reset, including
the processor. The processor responds by reading the reset
vector table entry (vector number zero, address $000000)
and loads it into the supervisor stack pointer (SSP). Vector
table entry number one at address $000004 is read next and
loaded into the program counter. The processor initializes
the status register to an interrupt level of seven. No other

registers are affected by the reset sequence.

When a RESET sequence is executed, the processor
drives the reset pin for 124 clock pulses. In this case, the pro-
cessor is trying to reset the rest of the system. Therefore,
there is no effect on the internal state of the processor. All of
the processor’s internal registers and the status register are
unaffected by the execution of a RESET instruction. All ex-
ternal devices connected to the reset line should be reset at
the completion of the RESET instruction.

Asserting the Reset and Halt pins for 10 clock cycles will
cause a processor reset, except when V¢ is initially ap-
plied to the processor. In this case, an external reset must
be applied for 100 milliseconds.

FIGURE 30 — RESET OPERATION TIMING DIAGRAM

Plus 5 Volts /

Vece e
RESET |

t— > 100 Milliseconds —|

FACT L B
e —>-t<4 g - 12
Bus Cycies XXM X
2 3 2 5 3
NOTES:

1) Internal start-up time 4) PC High read in here
2) SSP High read in here 5) PC Low read in here
3) SSP Low read in here

6) First instruction fetched here.

Bus State Unknown:m

All Control Signals Inactive.
Data Bus In Read Mode:

PROCESSING STATES

The MC68000 is always in one of three processing states:
normal, exception, or halted. The normal processing state is
that associated with instruction execution; the memory
of the bits in the supervisor portion of the status register are
covered: the supervisor/user bit, the trace enable bit, and
the processor interrupt priority mask. Finally, the sequence
of memory references and actions taken by the processor on
exception conditions is detailed.

The MC68000 is always in one of three processing states:
normal, exception, or halted. The normal processing state is
that associated with instruction execution; the memory
references are to fetch instructions and operands, and to
store results. A special case of the normal state is the
stopped state which the processor enters when a STOP in-
struction is executed. In this state, no further memory
references are made.

The exception processing state is associated with inter-
rupts, trap instructions, tracing and other exceptional condi-
tions. The exception may be internally generated by an in-
struction or by an unusual condition arising during the ex-
ecution of an instruction. Externally, exception processing
can be forced by an interrupt, by a bus error, or by a reset.
Exception processing is designed to provide an efficient con-
text switch so that the processor may handle unusual condi-
tions.

@ MOTOROLA Semiconductor Products Inc.

24

The halted processing state is an indication of catastrophic
hardware failure. For example, if during the exception pro-
cessing of a bus error another bus error occurs, the pro-
cessor assumes that the system is unusable and halts. Only
an external reset can restart a halted processor. Note that a
processor in the stopped state is not in the halted state, nor
vice versa.

PRIVILEGE STATES

The processor operates in one of two states of privilege:
the “user’’ state or the "“supervisor’’ state. The privilege state
determines which operations are legal, is used by the exter-
nal memory management device to control and translate ac-
cesses, and is used to choose between the supervisor stack
pointer and the user stack pointer in instruction references.

The privilege state is a mechanism for providing security in
a computer system. Programs should access only their own
code and data areas, and ought to be restricted from access-
ing information which they do not need and must not
modify.

The privilege mechanism provides security by allowing
most programs to execute in user state. In this state, the ac-
cesses are controlled, and the effects on other parts of the
system are limited. The operating system executes in the
supervisor state, has access to all resources, and performs
the overhead tasks for the user state programs.

MC68000L4¢MC68000L6¢ M C68000L8e MC68000L.10

SUPERVISOR STATE. The supervisor state is the higher
state of privilege. For instruction execution, the supervisor
state is determined by the S-bit of the status register; if the
S-bit is asserted (high), the processor is in the supervisor
state. All instructions can be executed in the supervisor
state. The bus cycles generated by instructions executed in
the supervisor state are classified as supervisor references.
While the processor is in the supervisor privilege state, those
instructions which use either the system stack pointer im-
plicitly or address register seven explicitly access the super-
visor stack pointer.

All exception processing is done in the supervisor state,
regardless of the setting of the S-bit. The bus cycles
generated during exception processing are classified as
supervisor references. All stacking operations during excep-
tion processing use the supervisor stack pointer.

USER STATE. The user state is the lower state of
privilege. For instruction execution, the user state is deter-
mined by the S-bit of the status register; if the S-bit is
negated (low), the processor is executing instructions in the
user state.

Most instructions execute the same in user state as in the
supervisor state. However, some instructions which have
important system effects are made privileged. User programs
are not permitted to execute the STOP instruction, or the
RESET instruction. To ensure that a user program cannot
enter the supervisor state except in a controlled manner, the
instructions which modify the whole status register are
privileged. To aid in debugging programs which are to be
used as operating systems, the move to user stack pointer
(MOVE USP) and move from user stack pointer (MOVE from
USP) instructions are also privileged.

The bus cycles generated by an instruction executed in
user state are classified as user state references. This allows
an external memory management device to translate the ad-
dress and to control access to protected portions of the ad-
dress space. While the processor is in the user privilege
state, those instructions which use either the system stack
pointer implicitly, or address register seven explicitly, access
the user stack pointer.

PRIVILEGE STATE CHANGES. Once the processor is in
the user state and executing instructions, only exception
processing can change the privilege state. During exception
processing, the current setting of the S-bit of the status
register is saved and the S-bit is asserted, putting the pro-
cessing in the supervisor state. Therefore, when instruction
execution resumes at the address specified to process the
exception, the processor is in the supervisor privilege state.

REFERENCE CLASSIFICATION. When the processor
makes a reference, it classifies the kind of reference being
made, using the encoding on the three function code output
lines. This allows external translation of addresses, control of
access, and differentiation of special processor states, such
as interrupt acknowledge. Table 6 lists the classification of
references.

MOTOROLA Semiconductor Products Inc.

25

TABLE 6 — REFERENCE CLASSIFICATION

Function Code Output
= =) FCo Reference Class

0 0 0 (Unassigned)

0 0 1 User Data

0 1 0 User Program

0 1 1 (Unassigned)

1 0 0 (Unassigned)

1 0 1 Supervisor Data

1 1 0 Supervisor Program

1 1 1 Interrupt Acknowledge

EXCEPTION PROCESSING

Before discussing the details of interrupts, traps, and trac-
ing, a general description of exception processing is in order.
The processing of an exception occurs in four steps, with
variations for different exception causes. During the first
step, a temporary copy of the status register is made, and
the status register is set for exception processing. In the sec-
ond step the exception vector is determined, and the third
step is the saving of the current processor context. In the
fourth step a new context is obtained, and the processor
switches to instruction processing.

EXCEPTION VECTORS. Exception vectors are memory
locations from which the processor fetches the address of a
routine which will handle that exception. All exception vec-
tors are two words in length (Figure 31), except for the reset
vector, which is four words. All exception vectors lie in the
supervisor data space, except for the reset vector which is in
the supervisor program space. A vector number is an eight-
bit number which, when multiplied by four, gives the
address of an exception vector. Vector numbers are
generated internally or externally, depending on the cause of
the exception. In the case of interrupts, during the interrupt
acknowledge bus cycle, a peripheral provides an 8-bit vector
number (Figure 32} to the processor on data bus lines DO
through D7. The processor translates the vector number into
a full 24-bit address, as shown in Figure 33. The memory
layout for exception vectors is given in Table 7.

As shown in Table 7, the memory layout is 512 words
long (1024 bytes). It starts at address O and proceeds
through address 1023. This provides 255 unique vectors;
some of these are reserved for TRAPS and other system
functions. Of the 265, there are 192 reserved for user inter-
rupt vectors. However, there is no protection on the first 64
entries, so user interrupt vectors may overlap at the discre-
tion of the systems designer.

KINDS OF EXCEPTIONS. Exceptions can be generated by
either internal or external causes. The externally generated
exceptions are the interrupts and the bus error and reset re-
quests. The interrupts are requests from peripheral devices
for processor action while the bus error and reset inputs are
used for access control and processor restart. The internally
generated exceptions come from instructions, or from ad-

FIGURE 31 — EXCEPTION VECTOR FORMAT

Word 0 New Program Counter (High) A0=0, A1=0
Word 1 New Program Counter {Low) A0=0, A1=1
FIGURE 32 — PERIPHERAL VECTOR NUMBER FORMAT
D15 D8 D7 DO
Ignored v7 vb | v4 | v3| v2]vl| V0
Where:
v7 is the MSB of the Vector Number
V0 is the LSB of the Vector Number
FIGURE 33 — ADDRESS TRANSLATED FROM 8-BIT VECTOR NUMBER
A23 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
All Zeroes vZ| v6| v6| va| v3|v2]| vi] vO] O | O

TABLE 7 — EXCEPTION VECTOR ASSIGNMENT

Vector Address .
Assignment
Number(s) | Dec Hex |Space
0 0 000 SP Reset: Initial SSP
- 4 004 SP Reset: Initial PC
2 8 008 sD Bus Error
3 12 00C SD Address Error
4 16 010 SD lllegal Instruction
5 20 014 SD Zero Divide
6 24 018 SD CHK Instruction
7 28 01C SD TRAPV Instruction
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 SO Line 1010 Emulator
1 4 02C SD Line 1111 Emulator
12° 48 030 SD (Unassigned, reserved)
13 52 034 SD (Unassigned, reserved)
14° 56 038 sD (Unassigned, reserved)
15 60 03C SD Uninitialized Interrupt Vector
16-23°* 64 04C SD (Unassigned, reserved)
95 05F -
24 96 060 SD Spurious Interrupt
25 100 064 SD Level 1 Interrupt Autovector
26 104 068 SD Level 2 Interrupt Autovector
27 108 06C sD Level 3 Interrupt Autovector
28 112 070 SD Level 4 Interrupt Autovector
29 116 074 SD Level 6 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 07C SD Level 7 Interrupt Autovector
3247 128 080 sD TRAP Instruction Vectors
191 0BF -
48-63* 192 0Co SD {Unassigned, reserved)
255 OFF —
64-255 256 100 SD User Interrupt Vectors
1023 3FF -

*Vector numbers 12, 13, 14, 16 through 23 and 48 through 63 are reserv-
ed for future enhancements by Motorola. No user peripheral devices
should be assigned these numbers.

26

MOTOROLA Semiconductor Products Inc.

MC68000L4¢ MC68000L6° MCE68000L8eMCE8000L10

dress errors or tracing. The trap (TRAP), trap on overflow
(TRAPV), check register against bounds {CHK) and divide
(DIV) instructions all can generate exceptions as part of their
instruction execution. In addition, illegal instructions, word
fetches from odd addresses and privilege violations cause ex-
ceptions. Tracing behaves like a very high priority, internally
generated interrupt after each instruction execution.

EXCEPTION PROCESSING SEQUENCE. Exception pro-
cessing occurs in four identifiable steps. In the first step, an
internal copy is made of the status register. After the copy is
made, the S-bit is asserted, putting the processor into the
supervisor privilege state. Also, the T-bit is negated which
will allow the exception handler to execute unhindered by
tracing. For the reset and interrupt exceptions, the interrupt
priority mask is also updated.

In the second step, the vector number of the exception is
determined. For interrupts, the vector number is obtained by
a processor fetch, classified as an interrupt acknowledge.
For all other exceptions, internal logic provides the vector
number. This vector number is then used to generate the ad-
dress of the exception vector.

The third step is to save the current processor status, ex-
cept for the reset exception. The current program counter
value and *he saved copy of the status register are stacked
using the supervisor stack pointer. The program counter
value stacked usually points to the next unexecuted instruc-
tion, however for bus error and address error, the value
stacked for the program counter is unpredictable, and may
be incremented from the address of the instruction which
caused the error. Additional information defining the current
context is stacked for the bus error and address error excep-
tions.

The last step is the same for all exceptions. The new pro-
gram counter value is fetched from the exception vector.
The processor then resumes instruction execution. The in-
struction at the address given in the exception vector is
fetched, and normal instruction decoding and execution is
started.

MULTIPLE EXCEPTIONS. These paragraphs describe the
processing which occurs when multiple exceptions arise
simultaneously. Exceptions can be grouped according to
their occurrence and priority. The Group O exceptions are
reset, bus error, and address error. These exceptions cause
the instruction currently being executed to be aborted, and
the exeception processing to commence within two clock
cycles. The Group 1 exceptions are trace and interrupt, as
well as the privilege violations and illegal instructions. These
exceptions allow the current instruction to execute to com-
pletion, but preempt the execution of the next instruction by
forcing exception processing to occur {privilege violations
and illegal instructions are detected when they are the next
instruction to be executed). The Group 2 exceptions occur as
part of the normal processing of instructions. The TRAP,
TRAPV, CHK, and zero divide exceptions are in this group.
For these exceptions, the normal execution of an instruction
may lead to exception processing.

Group 0 exceptions have highest priority, while Group 2
exceptions have lowest priority. Within Group 0, reset has
highest priority, followed by bus error and then address er-
ror. Within Group 1, trace has priority over external inter-
rupts, which in turn takes priority over illegal instruction and

@ MOTOROLA Semiconductor Products Inc.

27

privilege violation. Since only one instruction can be ex-
ecuted at a time, there is no priority relation within Group 2.

The priority relation between two exceptions determines
which is taken, or taken first, if the conditions for both arise
simultaneously. Therefore, if a bus error occurs during a
TRAP instruction, the bus error takes precedence, and the
TRAP instruction processing is aborted. In another example,
if an interrupt request occurs during the execution of an in-
struction while the T-bit is asserted, the trace exception has
priority, and is processed first. Before instruction processing
resumes, however, the interrupt exception is also processed,
and instruction processing commences finally in the inter-
rupt handler routine. A summary of exception grouping and
priority is given in Table 8.

TABLE 8 — EXCEPTION GROUPING AND PRIORITY

Group Exception Processing
Reset E ti ing begins
0 | suriror | St pceseng 20
Address Error 4 ’
Trace
1 Interrupt Exception processing begins before
llegal the next instruction
Privilege
2 TRAPCEHT'? APV, Exception processing is started by
normal instruction execution
Zero Divide

EXCEPTION PROCESSING DETAILED DISCUSSION

Exceptions have a number of sources, and each exception
has processing which is peculiar to it. The following
paragraphs detail the sources of exceptions, how each
arises, and how each is processed.

RESET. The reset input provides the highest exception
level. The processing of the reset signal is designed for
system initiation, and recovery from catastrophic failure.
Any processing in progress at the time of the reset is aborted
and cannot be recovered. The processor is forced into the
supervisor state, and the trace state is forced off. The pro-
cessor interrupt priority mask is set at level seven. The vector
number is internally generated to reference the reset excep-
tion vector at location O in the supervisor program space.
Because no assumptions can be made about the validity of
register contents, in particular the supervisor stack pointer,
neither the program counter nor the status register is saved.
The address contained in the first two words of the reset ex-
ception vector is fetched as the initial supervisor stack
pointer, and the address in the last two words of the reset
exception vector is fetched as the initial program counter.
Finally, instruction execution is started at the address in the
program counter. The power-up/restart code should be
pointed to by the initial program counter.

The RESET instruction does not cause loading of the reset
vector, but does assert the reset line to reset external
devices. This allows the software to reset the system to a
known state and then continue processing with the next in-
struction.

INTERRUPTS. Seven levels of interrupt priorities are pro-
vided. Devices may be chained externally within interrupt
priority levels, allowing an unlimited number of peripheral
devices to interrupt the processor. Interrupt priority levels

are numbered from one to seven, level seven being the
highest priority. The status register contains a three-bit mask
which indicates the current processor priority, and interrupts
are inhibited for all priority levels less than or equal to the
current processor priority.

An interrupt request is made to the processor by encoding
the interrupt request level on the interrupt request lines; a
zero indicates no interrupt request. Interrupt requests arriv-
ing at the processor do not force immediate exception pro-
cessing, but are made pending. Pending interrupts are
detected between instruction executions. If the priority of
the pending interrupt is lower than or equal to the current
processor priority, execution continues with the next instruc-
tion and the interrupt exception processing is postponed.
(The recognition of level seven is slightly different, as ex-
plained in a following paragraph.}

If the priority of the pending interrupt is greater than the
current processor priority, the exception processing se-
quence is started. First a copy of the status register is saved,
and the privilege state is set to supervisor, tracing is sup-
pressed, and the processor priority level is set to the level of
the interrupt being acknowledged. The processor fetches
the vector number from the interrupting device, classifying
the reference as an interrupt acknowledge and displaying the
level number of the interrupt being acknowledged on the ad-
dress bus. If external logic requests an automatic vectoring,
the processor internally generates a vector number which is
determined by the interrupt level number. If external logic in-
dicates a bus error, the interrupt is taken to be spurious, and
the generated vector number references the spurious inter-
rupt vector. The processor then proceeds with the usual ex-
ception processing, saving the program counter and status
register on the supervisor stack. The saved value of the pro-
gram counter is the address of the instruction which would
have been executed had the interrupt not been present. The
content of the interrupt vector whose vector number was
previously obtained is fetched and loaded into the program
counter, and normal instruction execution commences in the
interrupt handling routine. A flow chart for the interrupt
acknowledge sequence is given in Figure 34, a timing
diagram is given in Figure 35, and the interrupt exception
timing sequence is shown in Figure 36.

FIGURE 34 — INTERRUPT ACKNOWLEDGE SEQUENCE
FLOW CHART

PROCESSOR INTERRUPTING DEVICE

Reguest Interrupt

1

Grant Interrupt

1) Compare interrupt level in status register
and wait for current instruction to complete

2) Place interrupt level on A1, A2, A3

3) Set R/W to read

4) Set function code to interrupt acknowledge

5) Assert address strobe (AS)

6) Assert lower data strobe (LDS)

Provide Vector Number

1) Place vector number of DO-D7
2) Assert data transfer acknowledge (DTACK)

Acquire Vector Number
1) Latch vector number
2) Negate LDS
3) Negate AS

Release
1) Negate DTACK

*

Start Interrupt Processing

FIGURE 35 — INTERRUPT ACKNOWLEDGE SEQUENCE TIMING DIAGRAM

"% l

J\‘
Last Bus Cycle of Instruction Stack IACK Cycle Stack and
(Read or Write) PCL _|_ (Vector Number Acquisition)] Vector Fetch |
(sSSP 7T ~~

MOTOROLA

Semiconductor Products Inc.

28

>

FIGURE 36 — INTERRUPT EXCEPTION TIMING SEQUENCE

Last Bus Cycle 1ACK
of Instruction Stack Cvele Stack Stack
(During Which PCL (VectoryNumber Status PCH
Interrupt Was (SSP) Acquisition] (SSP) (SSP)
Recognized)

Read Read Fetch First Word

Vector Vector of Instruction

High Low of Interrupt

(A16-A23) (AO-A15) Routine

Priority level seven is a special case. Level seven interrupts
cannot be inhibited by the interrupt priority mask, thus pro-
viding a “‘non-maskable interrupt’* capability. An interrupt is
generated each time the interrupt request level changes from
some lower level to level seven. Note that a level seven inter-
rupt may still be caused by the level comparison if the re-
quest level is a seven and the processor priority is set to a
lower level by an instruction.

UNINITIALIZED INTERRUPT. An interrupting device
asserts VPA or provides an interrupt vector during an inter-
rupt acknowledge cycle to the MC68000. If the vector
register has not been initialized, the responding M68000
Family peripheral will provide vector 15, the unitialized inter-
rupt vector. This provides a uniform way to recover from a
programming error.

SPURIOUS INTERRUPT. If during the interrupt acknow!-
edge cycle no device responds by asserting DTACK or VPA,
the bus error line should be asserted to terminate the vector
acquisition. The processor separates the processing of this
error from bus error by fetching the spurious interrupt vector
instead of the bus error vector. The processor then proceeds
with the usual exception processing.

INSTRUCTION TRAPS. Traps are exceptions caused by
instructions. They arise either from processor recognition of
abnormal conditions during instruction execution, or from
use of instructions whose normal behavior is trapping.

Some instructions are used specifically to generate traps.
The TRAP instruction always forces an exception, and is
useful for implementing system calls for user programs. The
TRAPV and CHK instructions force an exception if the user
program detects a runtime error, which may be an arithmetic
overflow or a subscript out of bounds.

The signed divide (DIVS) and unsigned divide (DIVU) in-
structions will force an exception if a division operation is at-
tempted with a divisor of zero.

ILLEGAL AND UNIMPLEMENTED INSTRUCTIONS. iI-
legal instruction is the term used to refer to any of the word
bit patterns which are not the bit pattern of the first word of
a legal instruction. During instruction execution, if such an
instruction is fetched, an illegal instruction exception occurs.

Word patterns with bits 15 through 12 equaling 1010 or
1111 are distinguished as unimplemented instructions and
separate exception vectors are given to these patterns to per-
mit efficient emulation. This facility allows the operating
system to detect program errors, or to emulate
unimplemented instructions in software.

MOTOROLA Semiconductor Products Inc.

29

PRIVILEGE VIOLATIONS. In order to provide system
security, various instructions are privileged. An attempt to
execute one of the privileged instructions while in the user
state will cause an exception. The privileged instructions are:

STOP AND (word) Immediate to SR
RESET EOR (word) Immediate to SR
RTE OR (word) Immediate to SR
MOVE to SR MOVE USP

TRACING. To aid in program development, the MC68000
includes a facility to allow instruction by instruction tracing.
In the trace state, after each instruction is executed an ex-
ception is forced, allowing a debugging program to monitor
the execution of the program under test.

The trace facility uses the T-bit in the supervisor portion of
the status register. |f the T-bit is negated (off), tracing is
disabled, and instruction execution proceeds from instruc-
tion to instruction as normal. If the T-bit is asserted (on) at
the beginning of the execution of an instruction, a trace ex-
ception will be generated after the execution of that instruc-
tion is completed. If the instruction is not executed, either
because an interrupt is taken, or the instruction is illegal or
privileged, the trace exception does not occur. The trace ex-
ception also does not occur if the instruction is aborted by a
reset, bus error, or address error exception. If the instruction
is indeed executed and an interrupt is pending on comple-
tion, the trace exception is processed before the interrupt ex-
ception. If, during the execution of the instruction, an excep-
tion is forced by that instruction, the forced exception is pro-
cessed before the trace exception.

As an extreme illustration of the above rules, consider the
arrival of an interrupt during the execution of a TRAP in-
struction while tracing is enabled. First the trap exception is
processed, then the trace exception, and finally the interrupt
exception. Instruction execution resumes in the interrupt
handler routine.

BUS ERROR. Bus error exceptions occur when the exter-
nal logic requests that a bus error be processed by an excep-
tion. The current bus cycle which the processor is making is
then aborted. Whether the processor was doing instruction
or exception processing, that processing is terminated, and
the processor immediately begins exception processing.

Exception processing for bus error follows the usual se-
quence of steps. The status register is copied, the supervisor
state is entered, and the trace state is turned off. The vector
number is generated to refer to the bus error vector. Since
the processor was not between instructions when the bus er-

MC68000L4¢ MC68000L6¢ MC68000L8 MC68000L10

ror exception request was made, the context of the pro-
cessor is more detailed. To save more of this context, addi-
tional information is saved on the supervisor stack. The pro-
gram counter and the copy of the status register are of
course saved. The value saved for the program counter is ad-
vanced by some amount, two to ten bytes beyond the ad-
dress of the first word of the instruction which made the
reference causing the bus error. If the bus error occurred
during the fetch of the next instruction, the saved program
counter has a value in the vicinity of the current instruction,
even if the current instruction is a branch, a jump, or a return
instruction. Besides the usual information, the processor
saves its internal copy of the first word of the instruction be-
ing processed, and the address which was being accessed
by the aborted bus cycle. Specific information about the ac-
cess is also saved: whether it was a read or a write, whether
the processor was processing an instruction or not, and the
classification displayed on the function code outputs when
the bus error occurred. The processor is processing an in-
struction if it is in the normal state or processing a Group 2
exception; the processor is not processing an instruction if it
is processing a Group O or a Group 1 exception. Figure 37 il-
lustrates how this information is organized on the supervisor
stack. Although this information is not sufficient in general
to effect full recovery from the bus error, it does allow soft-
ware diagnosis. Finally, the processor commences instruc-
tion processing at the address contained in the vector. It is
the responsibility of the error handler routine to clean up the
stack and determine where to continue execution.

If a bus error occurs during the exception processing for a
bus error, address error, or reset, the processor is halted,
and all processing ceases. This simplifies the detection of
catastrophic system failure, since the processor removes
itself from the system rather than destroy all memory con-
tents. Only the RESET pin can restart a halted processor.

ADDRESS ERROR. Address error exceptions occur when
the processor attempts to access a word or a long word
operand or an instruction at an odd address. The effect is
much like an internally generated bus error, so that the bus
cycle is aborted, and the processor ceases whatever process-
ing it is currently doing and begins exception processing.
After exception processing commences, the sequence is the
same as that for bus error including the information that is
stacked, except that the vector number refers to the address
error vector instead. Likewise, if an address error occurs dur-

ing the exception processing for a bus error, address error,
or reset, the processor is halted. As shown in Figure 38, an
address error will execute a short bus cycle followed by ex-
ception processing.

INTERFACE WITH M6800 PERIPHERALS

Motorola’s extensive line of M6800 peripherals are directly
compatible with the MC68000. Some of these devices
that are particularly useful are:

MC6821 Peripheral Interface Adapter

MC6840 Programmable Timer Module

MC6843 Floppy Disk Controller

MC6845 CRT Controller

MC6850 Asynchronous Communication Interface Adapter

MC6852 Synchronous Serial Data Adapter

MC6854 Advanced Data Link Controller

MC68488 General Purpose Interface Adapter

To interface the synchronous M6800 peripherals with the
asynchronous MC68000, the processor modifies its bus cycle-
to meet the M6800 cycle requirements whenever an M6800
device address is detected. This is possible since both pro-
cessors use memory mapped I/0. Figure 39 is a flow chart of
the interface operation between the processor and M6800
devices.

DATA TRANSFER OPERATION

Three signals on the processor provide the M6800 inter-
face. They are: enable (E), valid memory address (VMA),
and valid peripheral address (VPA). Enable corresponds to
the E or ¢2 signal in existing M6800 systems. The bus fre-
quency is one tenth of the incoming MC68000 clock frequen-
cy. The timing of E allows 1 MHz peripherals to be used with
an 8 MHz MC68000. Enable has a 60/40 duty cycle; that is, it
is low for six input clocks and high for four input clocks. This
duty cycle allows the processor to do successive VPA ac-
cesses on successive E pulses.

MB6800 cycle timing is given in Figures 40 and 41. At state
zero (SO} in the cycle, the address bus is in the high-
impedance state. A function code is asserted on the function
code output lines. One-half clock later, in state 1, the ad-
dress bus is released from the high-impedance state.

FIGURE 37 — SUPERVISOR STACK ORDER (GROUP 0)

15 14 13 12 N1 10

8 7 6 5 4 3 2 1 0

Lower Address

Function Code

— — Access Address — — — — — — —

—————— — —— — — — — — . o— —— — o]

Instruction Register

Status Register

[— - Program Counter = — — — — —

Low

R/W (read/write): write=0, read=1. I/N (instruction/not): instruction=0, not=1

MOTOROLA Semiconductor Products Inc.

MC68000L4¢MC68000L6¢MC68000L8*MCE8000L10

FIGURE 38 — ADDRESS ERROR TIMING

SO S1 82 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 SO S1 82 S3 S4 S5

il

DTACK \ ,

DO-D15 —(—{ B N __
N B S TINEL A
During state 2, the address strobe (AS) is asserted to in- FIGURE 39 — M6800 INTERFACING FLOW CHART
dicate that there is a valid address on the address bus. If the PROCESSOR SLAVE
bus cycle is a read cycle, the upper and/or lower data Initiate Cycle
strobes are also asserted in state 2. If the bus cycle is a write 1 The -
) processor starts a normal Read or
cycle, the read/write (R/W) signal is switched to low (write) Write cycle
during state 2. One half clock later, in state 3, the write data
is placed on the data bus, and in state 4 the data strobes are
issued to indicate valid data on the data bus. The processor
now inserts wait states until it recognizes the assertion of Define M6800 Cycle

VPA. B . . 1) External hardware asserts Valid Peripheral
The VPA input signals the processor that the address on Address (VPA)

the bus is the address of an M6800 device (or an area re-
served for M6800 devices) and that the bus should conform
to the ¢2 transfer characteristics of the M6800 bus. Valid
peripheral address is derived by decoding the address bus,

conditioned by address strobe. Synchronize With Enable
After the recognition of VPA, the processor assures that 1) The processor monitors Enable (E) until it is
the Enable (E) is low, by waiting if necessary, and subse- low (Phase 1)
quently asserts VMA. Valid memory address is then used as 2) The processor asserts Valid Memory Ad-
part of the chip select equation of the peripheral. This en- dress (VMA)
sures that the M6800 peripherals are selected and deselected l
at the correct time. The peripheral now runs its cycle during
the high portion of the E signal. Figures 40 and 41 depict the
best and worst case M6800 cycle timing. This cycle length is Transfer Data
dependent strictly upon when VPA is asserted in relationship 1 The peripheram is active and
to the E clock. then transfers the data

During a read cycle, the processor latches the peripheral
data in state 6. For all cycles, the processor negates the ad-
dress and data strobes one half clock cycle later in state 7,
and the Enable signal goes low at this time. Another half
clock later, the address bus is put in the high-impedance
state. During a write cycle, the data bus is put in the high-

Terminate Cycle

impedance state and the read/write signal is switched high 1) The processor waits until E goes low. (On a
The peripheral logic must remove VPA within one clock after l"ea‘_’nfzcr']‘:"‘h)e data is latched as E goes
) ow internally

ad_dr_esi_strobe is negated. — 2) The processor negates VMA

DTACK should not be asserted while VPA is asserted. 3) The processor negates AS, UDS, and LDS
Notice that the MC68000 VMA is active low, contrasted with
the active high M6800 VMA.. This allows the processor to put
its buses in the high-impedance state on DMA requests
without inadvertently selecting peripherals. Start Next Cycle

MOTOROLA Semiconductor Products Inc.
31

¥

143

"OU| $}1oNpoid 10)9Npuodiwes W IJOMOLOW

CLK

A1-A23

m

VMA

NOTE: This figure represents the best case MB800 timing where VPA falls before the third system clock cycle after the falling edge of E.

FIGURE 40 — M6800 TIMING — BEST

SO S1 S2 S3 S4 w w w w w w

B, ANVARNVAR VAR SV X/ /S
—>

CASE

S5 S6

S7

SO

/' A S

52

e

VY

¥

€€
"9U| S}oNPOId 10}9NpUOdIWeS ¥ TOHOLOW

SO S1 S2 S3 S4

w

w

FIGURE 41 — MC6800 TIMING — WORST CASE

W W W W W W W W W W W W w W w W W W w w w W w

TS0 AW Y W UV W WY WY W A WA W AR WY

S6 s6 S7 SO

S awaw

A1-A23 :)—L

A

m

— e—®

VMA

- 42

@-

—

4

g

R/W
(Read)

|
®G

Data In

UDS/LD3
Read

R/W Write

Data Out

0DS/(D3%

Write L

MC68000L4¢ MC68000L6* MC68000L8*MC68000L 10

INTERRUPT OPERATION

During an interrupt acknowledge cycle while the pro-
cessor is fetching the vector, if VPA is asserted, the
MC68000 will assert VMA and complete a normal M6800
read cycle as shown in Figure 42. The processor will then use
an internally generated vector that is a function of the inter-
rupt being serviced. This process is known as autovectoring.
The seven autovectors are vector numbers 25 through 31
(decimal).

This operates in the same fashion (but is not restricted to)
the M6800 interrupt sequence. The basic difference is that

there are six normal interrupt vectors and one NMI type vec-
tor. As with both the M6800 and the MC68000's normal vec-
tored interrupt, the interrupt service routine can be located
anywhere in the address space. This is due to the fact that
while the vector numbers are fixed, the contents of the vec-
tor table entries are assigned by the user.

Since VMA is asserted during autovectoring, the M6800
peripheral address decoding should prevent unintended ac-
cesses.

FIGURE 42 — AUTOVECTOR OPERATION TIMING DIAGRAM

SOSZS4SGSOSZF4WWﬁu¥ﬁWWWwsesosz
CLK

a-az W €W
A4-A23 I)/

B\
s ___/ \
s~ \ /~ \
R/W

oA T ___/
D8-D15)
ooor —<__)
Feo2 X Y
[J—

I
VPA T\
VMA

Normal
Cycle

@ MOTOROLA Semiconductor Products Inc.

34

\

— —p'(— — — —Autovector Operation— ~— — —)'

MC68000L4¢ MCE68000L 6 MC68000L8eMCE68000L10

AC ELECTRICAL SPECIFICATIONS (Vcc=5.0 Vdc +5%, Vgs=0 Vdc, TA=0°C to 70°C, refer to Figures 30 and 31)

4 MHz 6 MHz 8 MHz 10 MHz
Number Characteristic Symbol | MC68000L4 | MC68000L6 | MC68000LS8 | MC68000L10| Unit
Min | Max | Min | Max | Min | Max | Min | Max
24 Clock High to R/W, VMA High Impedance tcHRz | — | 120 — [100 [- | 8| - |70 | ns
40 Clock Low to VMA Low tcLvmL | — 90 - 80 - 70 - 70 | ns
41 Clock Low to E Transition tcLC — |00 | — 85 - 70 - 55 ns
42 E Output Rise and Fall Time tErf - 25 - 25 - 25 - 25 ns
43 VMA Low to E High tVMLEH | 325 | — | 240| — |20 | — 150 | - ns
44 AS, DS High to VPA High tSHvPH| O | 240 | 0 [160 | O |120]| O 9 | ns
45 E Low to Address/VMA/FC Invalid teeal | 5] - [3®] — [3| -] 10] -1 ns
49 E Low to AS, DS Invalid test [-80f - | -80] - | -8 - | -8 - ns
50 E Width High tEH 90| — | 600 — |40 | — | 30| - ns
51 E Width Low tEL 1400 | — 900 - 700 - 550 - ns
52 E Extended Rise Time tCIEHX | 80 - 80 — 80 - 80 - ns
54 Data Hold from E Low (Write) teLpoz | 60 - 40 - 30 - 20 - ns
23 Clock Low to Data Out Valid tCLDO - 90 - 80 -~ 70 - 55 ns
27 Data In to Clock Low (Setup Time) tDICL 30 - 25 - 15 - 15 - ns
47 Asynchronous Input Setup Time tAS1 30 - 25 - 20 - 20 - ns
DATA TYPES AND ADDRESSING MODES TABLE 9 — ADDRESSING MODES
Mode Generation
Five basic data types are supported. These data types are: Register Direct Addressing
@ Bits Data Register Direct EA=Dn
Address Register Direct EA=An

@ BCD Digits (4-bits)
@ Bytes (8-bits)

® Word (16-bits)

® Long Words (32-bits)

In addition, operations on other data types such as memory
addresses, status word data, etc., are provided for in the in-
struction set.

The 14 addressing modes, shown in Table 9, include six
basic types:

® Register Direct
® Register Indirect

Absolute Data Addressing
Absolute Short
Absolute Long

EA = (Next Word)
EA = (Next Two Words)

Program Counter Relative Addressing
Relative with Offset
Relative with Index and Offset

EA=(PC)+d16
EA=(PC)+(Xn)+dg

Register Indirect Addressing
Register Indirect

Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Offset

Indexed Register Indirect with Offset

EA=(An)

EA=(An), An*—An+N
An+—An—-N, EA=(An)
EA=(An)+d1g
EA=(An) +(Xn) +dg

Immediate Data Addressing
Immediate
Quick Immediate

DATA = Next Wordls)
Inherent Data

® Absolute Implied Addressing

® Immediate Implied Register EA=SR, USP, SP, PC
® Program Counter Relative NOTES:

® Implied EA = Effective Address dg = Eight-bit Offset

Included in the register indirect addressing modes is the
capability to do postincrementing, predecrementing, offset-
ting and indexing. Program counter relative mode can also
be modified via indexing and offsetting.

35

An = Address Register

Dn=Data Register

Xn = Address or Data Register used
as Index Register

SR = Status Register

PC = Program Counter

()= Contents of

MOTOROLA Semiconductor Products Inc.

(displacement)

dq6= Sixteen-bit Offset
(displacement)

N=1 for Byte, 2 for
Words and 4 for Long
Words

+— = Replaces

MC68000L4¢ MC68000L6e MC68000L8*MC68000L10

INSTRUCTION SET OVERVIEW i]
MC68000 | tion set is sh in Table 10. S long words and most instructions can use any of the 14 ad-
oy desag modes Combining nstuton ypes, da s,
d' t:? in Table 11. Special et;1ph asis has l;een ive and addressing modes, over 1000 useful instructions are pro-
tag' theeyi::t?&a::i‘on set's s;u ort of structured hi h?levr; vided. These instructions include signed and unsigned
languages to facilitate ease 2? programmit‘:g %ach Si;nstru: multiply and divide, “quick” arithmetic operations, BCD
- ? ; :) arithmetic and expanded operati h traps).
tion, with few exceptions, operates on bytes, words, and tthm P perations (through trap
TABLE 10 — INSTRUCTION SET
Mnemonic Description Mnemonic Description Mnemonic Description
ABCD Add Decimal with Extend EOR Exclusive Or PEA Push Effective Address
ADD Add EXG Exchange Registers RESET Reset External Devices
AND Logical And EXT Sign Extend ROL Rotate Left without Extend
ASL Arithmetic Shift Left JMP Jump ROR Rotate Right without Extend
ASR Arithmetic Shift Right JSR Jump to Subroutine ROXL Rotate Left with Extend
Bce Branch Conditionally LEA Load Effective Address ROXR Rotate Right with Extend
BCHG Bit Test and Change LINK Link Stack RTE Return from Exception
BCLR Bit Test and Clear LSL Logical Shift Left RTR Return and Restore
BRA Branch Always LSR Logical Shift Right RTS Return from Subroutine
BSET Bit Test and Set MOVE Move SBCD Subtract Decimal with Extend
BSR Branch to Subroutine MOVEM Move Multiple Registers Scc Set Conditional
BTST Bit Test MOVEP | Move Peripheral Data STOP Stop
CHK Check Register Against Bounds || MULS Signed Multiply SuB Subtract
CLR Clear Operand MULU Unsigned Multiply SWAP Swap Data Register Halves
Cmp Compare NBCD Negate Decimal with Extend TAS Test and Set Operand
DBcc Test Condition, Decrement and NEG Negate TRAP Trap
Branch NOP No Operation TRAPV Trap on Overflow
DIVS Signed Divide NOT One’s Complement IST Test
DIVU Unsigned Divide OR Logical Or UNLK Unlink
TABLE 11 — VARIATIONS OF INSTRUCTION TYPES
Instruction . o Instruction . .
Type Variation Description Type Variation Description
ADD ADD Add MOVE MOVE Move
ADDA Add Address MOVEA Move Address
ADDQ Add Quick MOVEQ Move Quick
ADDI Add Immediate MOVE from SR| Move from Status Register
ADDX Add with Extend MOVE to SR | Move to Status Register
AND AND Logical And MOVE to CCR | Move to Condition Codes
ANDI And Immediate MOVE USP Move User Stack Pointer
CMP CMP Compare NEG NEG Negate
CMPA Compare Address NEGX Negate with Extend
CMPM Compare Memory OR OR Logical Or
CMPI Compare Immediate ORI Or Immediate’
EOR EOR Exclusive Or sus sus Subtract
EORI Exclusive Or Immediate SUBA Subtract Address
SUBI Subtract Immediate
SuBQ Subtract Quick
suBX Subtract with Extend
MOTOROLA Semiconductor Products Inc.

36

MC68000L4¢MC68000L6*MCE8000L8*MC68000L10

The following paragraphs contain an overview of the form
and structure of the MCB8000 instruction set. The instruc-
tions form a set of tools that include all the machine func-
tions to perform the following operations:

Data Movement
Integer Arithmetic
Logical

Shift and Rotate

Bit Manipulation
Binary Coded Decimal
Program Control
System Control

The complete range of instruction capabilities combined
with the flexible addressing modes described previously pro-
vide a very flexible base for program development.

ADDRESSING

Instructions for the MC68000 contain two kinds of infor-
mation: the type of function to be performed, and the loca-
tion of the operand(s) on which to perform that function.
The methods used to locate (address) the operand(s) are ex-
plained in the following paragraphs.

Instructions specify an operand location in one of three
ways:

Register Specification — the number of the register is
given in the register field of the instruction.

Effective Address — use of the different effective
address modes. i

Implicit Reference — the definition of certain instruc-
tions implies the use of specific registers.

DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and
storage) is provided by the move (MOVE) instruction. The
move instruction and the effective addressing modes allow
both address and data manipulation. Data move instructions
allow byte, word, and long word operands to be transferred
from memory to memory, memory to register, register to
memory, and register to register. Address move instructions
allow word and long word operand transfers and ensure that
only legal address manipulations are executed. In addition to
the general move instruction there are several special data
movement instructions: move multiple registers (MOVEM),
move peripheral data (MOVEP), exchange registers (EXG),
load effective address (LEA), push effective address (PEA),
link stack (LINK), unlink stack (UNLK), and move quick
(MOVEQ). Table 12 is a summary of the data movement
operations.

INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic opera-
tions of add (ADD), subtract (SUB), multiply (MUL), and
divide (DIV) as well as arithmetic compare (CMP), clear
(CLR), and negate (NEG). The add and subtract instructions
are available for both address and data operations, with data
operations accepting all operand sizes. Address operations
are limited to legal address size operands (16 or 32 bits).
Data, address, and memory compare operations are also
available. The clear and negate instructions may be used on
all sizes of data operands.

MOTOROLA Semiconductor Products Inc.

37

The multiply and divide operations are available for signed
and unsigned operands using word multiply to produce a
long word product, and a long word dividend with word
divisor to produce a word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be ac-
complished using a set of extended instructions. These in-
structions are: add extended (ADDX), subtract extended
(SUBX), sign extend (EXT), and negate binary with extend
(NEGX).

A test operand (TST) instruction that will set the condition
codes as a result of a compare of the operand with zero is
also available. Test and set (TAS) is a synchronization in-
struction useful in multiprocessor systems. Table 13 is a sum-
mary of the integer arithmetic operations.

TABLE 12 — DATA MOVEMENT OPERATIONS

Instruction Operand Size Operation
EXG 32 Rx *=* Ry
LEA 32 EA— An
An— SP@ -
LINK - SP— An
SP+d— SP
MOVE 8, 16, 32 (EA)s— EAd
(EA)=— An, Dn
MOVEM 16, 32 An, Dn— EA
(EA)=—Dn
MOVEP 16, 32 Dn— EA
MOVEQ 8 #xxx— Dn
PEA 32 EA— SP@ -
SWAP 32 Dn(31:16] += Dn[15:0]
UNLK - sPA@n T—s'pAn
NOTES:
s =source @ — =indirect with predecrement

d = destination
[]=bit numbers

@ + =indirect with postdecrement

INSTRUCTION FORMAT

Instructions are from one to five words in length, as
shown in Figure 43. The length of the instruction and the
operation to be performed is specified by the first word of
the instruction which is called the operation word. The re-
maining words further specify the operands. These words
are either immediate operands or extensions to the effective
address mode specified in the operation word.

PROGRAM/DATA REFERENCES

The MC68000 separates memory references into two
classes: program references, and data references. Program
references, as the name implies, are references to that sec-
tion of memory that contains the program being executed.
Data references refer to that section of memory that contains
data. Generally, operand reads are from the data space. All
operand writes are to the data space.

REGISTER SPECIFICATION

The register field within an instruction specifies the
register to be used. Other fields within the instruction specify
whether the register selected is an address or data register
and how the register is to be used.

MC68000L4e MC68000L6*MCE8000L8*MC68000L10

TABLE 13 — INTEGER ARITHMETIC OPERATIONS

Instruction Operand Size Operation
8, 16, 32 Dn+(EA)=Dn
(EA)+Dn— EA
ADD (EA) + hxxx— EA
16, 32 An+(EA)— An
8,16, 32 Dx+ Dy + X— Dx
ADDX 16, 32 Ax@ - Ay@ — + X— Ax@
CLR 8, 16, 32 0—EA
8, 16, 32 Dn—(EA)
(EA) — #xxx
cmp Ax@ + - Ay@ +
16, 32 An—(EA)
DIVS 32+16 Dn/(EA)=Dn
DIVU 32+16 Dn/(EA)=— Dn
8—16 (Dn)g— Dn1g
EXT 16— 32 (Dn)16— Dn32
MULS 16°16— 32 Dn®*(EA)— Dn
MULU 16°16— 32 Dn*(EA)=* Dn
NEG 8, 16, 32 0-(EA)—EA
NEGX 8, 16, 32 0-(EA) —X—-EA
8, 16, 32 Dn—(EA)—Dn
(EA)—Dn—EA
Sus (EA) — #xxx—> EA
16, 32 An—(EA)— An
Dx - Dy—X— Dx
SUBX 8, 16, 32 AX@ — — Ay@ — — X— AX@
TAS 8 (EA) -0, 1—EA[7]
TST 8, 16, 32 (EA)-0
NOTE: []1=bit number

EFFECTIVE ADDRESS

Most instructions specify the location of an operand by us-
ing the effective address field in the operation word. For ex-
ample, Figure 44 shows the general format of the single
effective address instruction operation word. The effective
address is composed of two 3-bit fields: the mode field, and
the register field. The value in the mode field selects the dif-
ferent address modes. The register field contains the number
of a register.

The effective address field may require additional informa-
tion to fully specify the operand. This additional information,
called the effective address extension, is contained in the
following word or words and is considered part of the in-
struction, as shown in Figure 43. The effective address
modes are grouped into three categories: register direct,
memory addressing, and special.

REGISTER DIRECT MODES. These effective addressing
modes specify that the operand is in one of the 16 multifunc-
tion registers.

Data Register Direct. The operand is in the data register
specified by the effective address register field.

Address Register Direct. The operand is in the address
register specified by the effective address register field.

MEMORY ADDRESS MODES. These effective address-
ing modes specify that the operand is in memory and provide
the specific address of the operand.

Address Register Indirect. The address of the operand is in
the address register specified by the register field. The
reference is classified as a data reference with the exception
of the jump and jump to subroutine instructions.

FIGURE 43 — INSTRUCTION FORMAT

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Operation Word
(First Word Specifies Operation and Modes)
Immediate Operand
(If Any, One or Two Words)
Source Effective Address Extension
(If Any, One or Two Words)
Destination Effective Address Extension
(If Any, One or Two Words)
FIGURE 44 — SINGLE-EFFECTIVE-ADDRESS
INSTRUCTION OPERATION WORD GENERAL FORMAT
15 14 13 12 1 10 9 8 7 6 5 3 2 1 0
Effective Address
X1 x| X1 X X X | x 1 X X | X Mode 1 Register

MOTOROLA Semiconductor Products Inc.

MC68000L4* MC68000L6* MC68000L8*MC68000L10

Address Register Indirect With Postincrement. The
address of the operand is in the address register specified by
the register field. After the operand address is used, it is in-
cremented by one, two, or four depending upon whether the
size of the operand is byte, word, or long word. If the
address register is the stack pointer and the operand size is
byte, the address is incremented by two rather than one to
keep the stack pointer on a word boundary. The reference is
classified as a data reference.

Address Register Indirect With Predecrement. The
address of the operand is in the address register specified by
the register field. Before the operand address is used, it is
decremented by one, two, or four depending upon whether
the operand size is byte, word, or long word. If the address
register is the stack pointer and the operand size is byte, the
address is decremented by two rather than one to keep the
stack pointer on a word boundary. The reference is classified
as a data reference.

Address Register Indirect With Displacement. This
address mode requires one word of extension. The address
of the operand is the sum of the address in the address
register and the sign-extended 16-bit displacement integer in
the extension word. The reference is classified as a data
reference with the exception of the jump to subroutine in-
structions.

Address Register Indirect With Index. This address mode
requires one word of extension. The address of the operand
is the sum of the address in the address register, the sign-
extended displacement integer in the low order eight bits of
the extension word, and the contents of the index register.
The reference is classified as a data reference with the excep-
tion of the jump and jump to subroutine instructions.

SPECIAL ADDRESS MODE. The special address modes
use the effe@tive address register field to specify the special
addressing mode instead of a register number.

Absolute Short Address. This address mode requires one
word of extension. The address of the operand is the exten-
sion word. The 16-bit address is sign extended before it is
used. The reference is classified as a data reference with the
exception of the jump and jump to subroutine instructions.

Absolute Long Address. This address mode requires two
words of extension. The address of the operand is developed
by the concatenation of the eéxtension words. The high-order
part of the address is the first extension word; the low-order
part of the address is the second extension word. The
reference is classified as a data reference with the exception
of the jump and jump to subroutine instructions.

Program Counter With Displacement. This address mode
requires one word of extension. The address of the operand
is the sum of the address in the program counter and the
sign-extended 16-bit displacement integer in the extension
word. The value in the program counter is the address of the

extension word. The reference is classified as a program
reference.

Program Counter With Index. This address mode requires
one word of extension. This address is the sum of the
address in the program counter, the sign-extended displace-
ment integer in the lower eight bits of the extension word,
and the contents of the index register. The value in the pro-
gram counter is the address of the extension word. This
reference is classified as a program reference.

Immediate Data. This address mode requires either one or
two words of extension depending on the size of the opera-
tion.

Byte operation — operand is low order byte of exten-
sion word

Word operation — operand is extension word

Long word operation — operand is in the two extension
words, high-order 16 bits are in the first extension
word, low-order 16 bits are in the second extension
word.

Condition Codes or Status Register. A selected set of in-
structions may reference the status register by means of the
effective address field. These are:

ANDI to CCR
ANDI to SR
EORI! to CCR
EORI to SR
ORI to CCR
ORIl to SR

EFFECTIVE ADDRESS ENCODING SUMMARY

Table 14 is a summary of the effective addressing modes
discussed in the previous paragraphs.

TABLE 14 — EFFECTIVE ADDRESS ENCODING SUMMARY

Addressing Mode Mode Register

Data Register Direct 000 register number
Address Register Direct 001 register number
Address Register Indirect 010 register number
Address Register Indirect with

Postincrement 011 register number
Address Register Indirect with

Predecrement 100 register number
Address Register Indirect with

Displacement 101 register number
Address Register Indirect with

Index 110 register number
Absolute Short 1 000
Absolute Long m 001
Program Counter with

Displacement m 010
Program Counter with Index m 011
Immediate 11 100

MOTOROLA Semiconductor Products Inc.

MC68000L4¢ MC68000L6* MC68000L8¢MCE8000L10

IMPLICIT REFERENCE

Some instructions make implicit reference to the program
counter (PC), the system stack pointer (SP), the supervisor
stack pointer (SSP), the user stack pointer {(USP), or the
status register (SR).

SYSTEM STACK. The system stack is used implicitly by
many instructions; user stacks and queues may be created
and maintained through the addressing modes. Address
register seven (A7) is the system stack pointer (SP). The
system stack pointer is either the supervisor stack pointer
(SSP) or the user stack pointer (USP), depending on the
state of the S-bit in the status register. If the S-bit indicates
supervisor state, SSP is the active system stack pointer, and
the USP cannot be referenced as an address register. If the
S-bit indicates user state, the USP is the active system stack
pointer, and the SSP cannot be referenced. Each system
stack fills from high memory to low memory.

LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT
are available for all sizes of integer data operands. A similar
set of immediate instructions (ANDI, ORI, and EORI) provide
these logical operations with all sizes of immediate data.
Table 15 is a summary of the logical operations.

TABLE 15 — LOGICAL OPERATIONS

TABLE 16 — SHIFT AND ROTATE OPERATIONS

Instruce|Operand

tion Size Operation

ASL [8.16,32] [x/C 0
ASR |8, 16, 32 ——— p>»{xic
LsL [8. 16,32 [x/Cle{——— J=o0
LSR |8, 16, 32 0
ROR 8, 16, 32

!

ROXR |8, 16, 32

Instruction Operand Size Operation
DnA(EA)=— Dn
AND 8, 16, 32 (EAJADn— EA
(EA)A#xxx— EA
Dn v (EA)=— Dn
OR 8, 16, 32 (EA) v Dn—EA
(EA) v #xxx— EA
(EA) @ Dy— EA
EOR 8,16, 32 (EA) @ #xxx= EA
NOT 8, 16, 32 ~(EA)— EA
NOTE: ~ =invert

SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the
arithmetic instructions ASR and ASL and logical shift in-
structions LSR and LSL. The rotate instructions (with and
without extend) available are ROXR, ROXL, ROR, and ROL.
All shift and rotate operations can be performed in either
registers or memory. Register shifts and rotates support all
operand sizes and allow a shift count specified in the instruc-
tion of one to eight bits, or 0 to 63 specified in a data register.

Memory shifts and rotates are for word operands only and
allow only single-bit shifts or rotates.

Table 16 is a summary of the shift and rotate operations.

@ MOTOROLA Semiconductor Products Inc.

BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the
following instructions: bit test (BTST), bit test and set
(BSET), bit test and clear (BCLR), and bit test and change
(BCHG). Table 17 is a summary of the bit manipulation
operations. (Bit 2 of the status register is Z.)

TABLE 17 — BIT MANIPULATION OPERATIONS

Instruction Operand Size Operation
BTST 8, 32 ~bit of (EAI—2Z
BSET 8, 32 TroLIEA 2
BCLR 8, 32 oo EA 2
BCHG 8,32 ~bit s obfn(g«)(Eé)bi_t.ozf EA

BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded
decimal numbers are accomplished using the following in-
structions: add decimal with extend (ABCD), subtract
decimal with extend (SBCD), and negate decimal with ex-
tend (NBCD). Table 18 is a summary of the binary coded
decimal operations.

TABLE 18 — BINARY CODED DECIMAL OPERATIONS

. (o] nd N
Instruction p;i: Operation
Dx10+ Dyyg+ X— Dx
ABCD 8
AX@ —10+ Ay@ — 10+ X = Ax@
Dx10—Dy10— X—* Dx
SBCD 8
Ax@ - 10— AY@ - 10— X~ Ax@
NBCD 8 0-(EA)10—- X==EA

MC68000L4eMC68000LE6eMCE8000L8eMC68000L10

PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a
series of conditional and unconditional branch instructions
and return instructions. These instructions are summarized
in Table 19.

The conditional instructions provide setting and branching
for the following conditions:

cC

— carry clear LS — low or same
CS — carry set LT — less than
EQ - equal MI — minus
F — never true NE — not equal
GE - greater or equal PL —plus
GT - greater than T - always true
Hl — high VC - no overflow
LE - less or equal VS - overflow

TABLE 19 — PROGRAM CONTROL OPERATIONS

Instruction Operation
Conditional
Bce Branch conditionally (14 conditions)
8- and 16-bit displacement
DBcc Test condition, decrement, and branch
16-bit displacement
Sce Set byte conditionally (16 conditions)
Unconditional
BRA Branch always
8- and 16-bit displacement
BSR Branch to subroutine
8- and 16-bit displacement
JMP Jump
JSR Jump to subroutine
Returns
RTR Return and restore condition codes
RTS Return from subroutine

41

SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using
privileged instructions, trap generating instructions, and in-
structions that use or modify the status register. These. in-
structions are summarized in Table 20.

TABLE 20 — SYSTEM CONTROL OPERATIONS

MOVE EA to SR

Instruction Operation
Privileged

RESET Reset external devices

RTE Return from exception

STOP Stop program execution
ORI to SR Logical OR to status register
MOVE USP Move user stack pointer
ANDI to SR Logical AND to status register
EOR! to SR Logical EOR to status register

Load new status register

Trap Generating

MOVE SR to EA

TRAP Trap
TRAPV Trap on overflow
CHK Check register against bounds
Status Register
ANDI to CCR | Logical AND to condition codes
EORI to CCR | Logical EOR to condition codes
MOVE EA to CCR|Load new condition codes
ORI to CCR Logical OR to condition codes

Store status register

@ MOTOROLA Semiconductor Products Inc.

