

MVME10l(D2)

M V M E 1 0 1

M C 6 8 0 0 0 M 0 N 0 B 0 A R D C 0 M P U T E R

U S E R ~ S M A N U A L

The information in this document has been carefully checked and is
believed to be entirely reliable. However, no responsibility is assumed
for inaccuracies. Furthermore, Motorola reserves the right to make
changes to any products herein to improve reliability, function, or
design. Motorola does not assume any liability arising out of the
application or use of any product or circuit described herein; neither
does it convey any license under its patent rights nor the rights of
others.

Second Edition, July 1983
Copyright 1983 by Motorola GmbH

T~BLE OF CONTENTS Pn.ge

Chapter 1

1.1.
1. 2.
1. 3 •
1.4.
1.4.1.
1. 4 . 2 .
1. 4 . 3 •

Chapte:r 2

2 .1.
2.2.
2 . 3 .
2.3.1.
2 . 3 • 2 •
2 • 3 . 3 .
2.3.4.
2.4.
2.4.1.
2.4.2.
2.4.2.1.
2.4.2.2.
2.4.2.3.
2.4.2.4.
2.4.2.5.
2.4.3.
2.4.3.1.
2.4.3.2.
2.4.3.3.
2.4.3.4.
2.4.3.5.
2.4.4.
2.4.4.1.
2.4.4.2.
2 . 4 . 4 . 3 .
2 . 4 . 4 . 4 .
2 . 4 . 4 . 5 .
2.4.5.
2. 5.
2.6.
2. 7 ·•
2.7.1.
2.7.2.
2.8.
2.8.1.
2.8.2.
2.8.2.1.
2.8.2.2.
2.8.2.3.
2.8.2.4.
2.9.
2.9.1.
2.9.2.
2.9.3.

GENERAL INFORMATION

INTRODUCTION•.................................... 1-2
SPECIFICATIONS•............................... 1--2
REFERENCE MANUALS • • . 1- 5
MANUAL TERMINOLOGY • . . • • • • . 1-5

Address and Data Format l-5
Electrical Signal Levels .•......................... 1-5
Logic Signal States••.......................... l-5

FUNCTIONAL DESCRIPTION

INTRODUCTION • . . . • • . 2-2
MICROPROCESSING UNIT 2-2
MEMORY • . • • . . • • • • . • • . . . • 2 - 2

Data Orqanizn.tion In Memory 2-2
Memory Array 2-3
Memory Map • . 2-4
Memory Access Time . 2-4

INPUT/OUTPUT-DEVICES 2-4
Local I/0 Access ..•................................ 2-5
Enhanced Programmable Communication IntPrf"lr.es 2-~

General Information •............................. 2-5
Features ... 2-5
EPCI Device Description 2-5
Hardware Configuration 2--G
Programming Information 2-r;

Peripheral Interface Adapter 2-n
General Information ?.-6
Features . 2-6
PIA Device Description 2-7
Hardware Configuratio~ •.......................... 2-7
Programming Information 2-7

Programmable Timer ModulA ?-7

General Information . 2-7
Features . 7-7
PTM Device Description . 2-R
Hardware Configuration ?-8
Programming Information 2-8

Connector P2 Signals ••............................. 2-R
MODULE STATUS REGISTER 2-ll
MODULE CONTROL REG I STER . 2- J_ 3
ADDRESS DECODER ..•................................... ?.-lS

Circuit Description 2-J5
Address Map Configuration 2-16

VMEbus ARBITER AND REQUESTER . 2-:? 0
VMEbus Arbiter . 2-:?. ~­
VMEbus Requester • • • • . 2-2. 2

Bus Request Assertion •........................... 2-2~
Bus Mastership Acquisition 2-24
Bus Release•...... 2-24
Bus Grant Propagation •.......•................... 2-24

VMEbus INTERFACE .••.................................. 2-25
VMEbus Signals 2-25
VMEbus Data Transfer 2-30
Address Modifiers 2-32

I

2.9.4.
2.9.5.
2.9.5.1.
2.9.5.2.
2.9.5.3.
2.10.
2 .11.
2.11.1.
2.11.2.
2.11.3.
2.11.4.
2.11.5.
2.12.

Chapter 3

3 .1.
3 • 2 •
3 • 3 •
3 . 4 .
3.4.1.
3.4.2.
3.4.3.
3 • 4 • 4 •
3 . 4 . 5 .
3.4.6.
3.4.7.
3 . 4 . 8 .
3 • 4 • 9 •
3.4.10.
3.4.10.1.
3.4.10.2.
3.4.10.3.
3.4.10.4.
3.4.10.5.
3 . 5 .
3.5.1.
3.5.2.
3.5.3.
3 . 5 . 4 .
3 • 6 •

Chapter 4

4 .1.
4 • 2 •
4. 3.

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

Time Out Counters •.•.•............................. 2-32
Interface Options 2-33

System Controller Configuration 2-34
Standard Configuration ••.••....•..•.....•......•. 2-34
Isolated Configuration ..•..•.•..•...•....•....... 2-35

RESET AND HALT FUNCTIONS •••••....••••.•.•........•... 2-35
INTERRUPT HANDLER . • • . . • . . • • 2-3 7

Software Abort and AC Failure ••••..••.••••••....... 2-39
System Failure . 2-39
Bus Clear . 2-39
On-Board I/O Interrupts•••••.•.......... 2-39
VMEbus Interrupts•.•.......................•.• 2-39

TIMING SPECIFICATIONS . • . . • . 2-40

OPERATING INSTRUCTIONS

INTRODUCTION . 3-1
UNPACKING INSTRUCTIONS ..••...............•....•...... 3-1
INSPECTION . • 3-1
HARDWARE PREPARATION . . • . . • . 3-1

VMEbus Requester Priority 3-4
VMEbus System Control Functions•..........•. 3-5
User-Vectorized Interrupt Requests•.•......... 3-6
Auto-Vectorized Interrupt Requests 3-7
Serial Ports Configuration •...•..•...•............. 3-8
Serial Interface Control•..•..•............ 3-9
Programmable Timer Configuration •..............•..• 3-10
Memorv Sockets Configuration•.........•••..... 3-11
Local ROM Access Time • • . . . • . • • 3-15
Address Map Configuration •....•.•..............•..• 3-16

Local Memory Adrlresses ...•....................... 3-16
Local I/O Addresses ••.•••.....•.................. 3-16
VMEbus Short I/O Addresses•........•....... 3-16
VMEbus Standard Addresses •..•.•...•.••.••....•••• 3-16
Address Decoder PROM Programming •..•............. 3-17

SOFTWARE INITIALIZATION•.....•..•.•. 3-25
Serial Communication Interface Initialization •...•. 3-25
Peripheral Interface Adapter Initialization .•..•... 3-25
Programmable Timer Module Initialization• 3-25
Module Control Register Initialization •....••.•..•. 3-25

INSTALLATION . • • • . • . • • . . • • . . . • . • • . . • . • • . . • • . . 3-26

MAINTENANCE INFORMATION

INTRODUCTION•..........•.•.....•..•........•..•. 4-1
PARTS LI ST . • 4-1
ASSEMBLY DRAWING, SCHEMATIC DIAGRAMS••......•...• 4-4

APPENDICES

MC68000 MPU Data Sheet•........•................ A-1
MC68661 EPCI Data Sheet•..•................ B-1
MC6821 PIA Data Sheet•.................... C-1
MC6840 PTM Data Sheet••..•.•..••..•. D-1
BARlOl Bus Arbiter/Requester ...••.....•..•....•...... E-1

II

LIST OF TABLES Page

Table 1.1:

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 2.5:
Table 2.6:
Table 2.7:
Table ·2.8:
Table 2.9:
Table 2.10:
Table 2.11:
Table 2.12:
Table 2.13:
Table 2.14:
Table 2.15:
Table 2.16:
Table 2.17:

Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:
Table 3.8:
Table 3.9:
Table 3.10:
Table 3.11:
Table 3.12:
Table 3.13:
Table 3.14:
Table 3.15:
Table 3.16:
Table 3.17:

Table 4.1:

MVME101 Specifications•.•................•.... 1-2

Connector P2 Signal Description•.••• 2-8
Connector P2 Signal Locations•.••. 2-10
Module Status Register •..•.•..••.........•.•.••••...• 2-12
Module Control Register •••••.......•...•........•.... 2-14
Original Address Map•.••...........•••....•..... 2-18
Original I/0-Register Address Map ••...••••.••.......• 2-19
Symbol Definitions 2-25
VMEbus Signal Description •••••.••••.•..••••.•.•.•...• 2-26
Connector Pl Signal Locations•.••••.•••.••.... 2-30
Address Modifier Codes •••..•..•...••.•.•......•...••. 2-32
Reset and Halt Functions •...•.•..•.••......•.•...•... 2-36
Local Memory Read Cycle Timing •..•••••..•...•.•...•.. 2-41
Local Memory Write Cycle Timing•.........•.•.... 2-42
VMEbus Read Cycle Timing . • • • • • • . . • • • . . • . . . 2-43
VMEbus Write Cycle Timing •••••••••..•.•.•• ~. . . • • • • . . . 2-4 4
Vmebus Request and Acquisition Timing •.......•...•..• 2-45
Vmebus Release and Bus Grant Propagation Timing• 2-46

MVME101 Jumper Areas • . . • • • • • 3-3
VMEbus Requester Priority Selection•. 3-4
VMEbus System Control Configuration•.... 3-5
User-Vectorized Interrupt Selection 3-6
Auto-Vectorized Interrupt Selection •.•....••..•..•.•. 3-7
Serial Ports Configuration ••.•.••........•........•.• 3-8
Serial Interface Control •.••.•.•••.••.••.••.••.•••••. 3-9
Programmable Timer Configuration •................•..• 3-11
Signal Connections for RAM Devices ..•••....•..•....•• 3-13
Signal Connections for ROM Devices .•...••.•....••.•.. 3-14
Configurations for Popular Memories •................. 3-14
Local ROM Access Time Selection •.........•....•..•... 3-15
Address Decoder PROM Data Definition •.......••..•.... 3-17
Address Boundaries .•.•...•.....•..•..•...•.•......... 3-18
Address Decoder PROM Specification •••.....•..•...•... 3-19
Personal Address Map 3-23
Personal I/0-Register Address Map ..••..•.....•.•..... 3-24

MVMElOl Parts List • • . • • . • . • . • . . . • . • . . • • 4-1

III

LIST OF FIGURES Page

Figure 1.1:

Figure 2.1:
Figure 2. 2:
Figure 2. 3:
Figure 2. 4:
Figure 2. 5:
Figure 2.6:
Figure 2. 7:
Figure 2.8:
Figure 2.9:
Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:
Figure 2.14:
Fiqure 2.15:
Figure 2.16:
Figure 2.17:
Figure 2.18:
Figure 2.19:

Figure 3 . 1 :
Figure 3.2:
Figure 3. 3:
Figure 3 . 4 :
Figure 3. 5:
Figure 3. 6:
Fiqure 3. 7:
Figure 3. 8:
Figure 3. 9:
Figure 3.10:
Figure 3.11:
Figure 3.12:
Fiqure 3.13:
Figure 3.14:
Figure 3.15:

Figure 4.1:
Figure 4. 2:
Figure 4 . 3 :
Figure 4 . 4 :
Figure 4. 5:
Figure 4. 6:
Figure 4. 7:
Figure 4 . 8 :
Figure 4. 9:
Figure 4.10:
Figure 4.11:
Figure 4.12:

The MVMElOl Monoboard Computer•••.••.•......... 1-1

MVMElOl Block Diagram •••.•.....••••......•••.......• 2-1
Memory Array •.••••.•.....•.••.•.....•••..•......••.• 2-3
Module Status Register ••.•..........••..••.....••••. 2-11
Module Control Register•........••••..•.....• 2-13
Address Decoder ...•...........•.•.........•......... 2-15
Address Map Configuration •....•.•.••••.••.•.•••••••. 2-16
VMEbus Arbiter and Requester •........•.•...•........ 2-20
VMEbus Arbiter Operation Flow Chart ••.............•. 2-21
VMEbus Requester Operation Flow Chart•. 2-23
VMEbus Data Transfer Flow Chart 2-31
Time Out Counters 2-33
Reset Structure . 2-36
Interrupt Handler•...•.......• 2-37
Local Memory Read Cycle•.•.....•..•••........ 2-41
Local Memory Write Cycle•................... 2-42
VM.Ebus Read Cycle •••.....•.....•.........•.......•.. 2-43
VMEbus Write Cycle . • 2-4 4
VMEbus Request and Acquisition ...•.................. 2-45
VMEbus Release and Bus Grant Propagation 2-46

MVME101 Jumper Area Locations•..•.........•. 3-2
Jumper Area Kl . 3-4
JL1mper Area K2 . 3-4
Jumper Area K3 . 3-5
Jumper Area KS . 3-6
Jumper Area K6 • . 3-7
Jumper Area K7 • . • . 3-8
Jumper Area K15 . 3-8
Jumper Area K9 . 3-9
.. lumper Area KlO . 3-9
Jumper Area Kl6 . 3-10
Local Memory Organization •....•..................... 3-11
Memorv Pin Assignment•........•...•....... 3-12
Jumper Areas Kll - Kl4 ...•....•.•..........•........ 3-13
Jumper Area K4 . 3-15

Assembly Or awing 4-5
Schematic Diagram Sheet 1/11•... 4-6
Schematic Diagram Sheet 2/11 4-7
Schematic Diagram Sheet 3/11 4-8
Schematic Diagram Sheet 4/11•........•.... 4-9
Schematic Diagram Sheet 5/11 4-10
Schematic Diagram Sheet 6/11•...... 4-11
Schematic Diagram Sheet 7/11 4-12
Schematic Diagram Sheet 8/11 4-13
Schematic Diagram Sheet 9/11 .•.................•.... 4-14
Schematic Diagram Sheet 10/11 ~ .•............ 4-15
Schematic Diagram Sheet 11/11 4-16

IV

Figure 1.1: The MVME101 Monoboard Computer

1-1

CHAPTER l

GENERAL INFORMATION

1.1. INTRODUCTION

This manual provides general
installation instructions and
MVMElOl monoboard microcomputer.

information, functional description,
maintenance information for the
Figure 1.1 shows the MVMElOl module.

1.2. SPECIFICATIONS

The MVMElOl monoboard computer specifications are given in the following
table.

Table 1.1: MVME101 Specifications

+-----------------------+--+ ! CHARACTERISTIC I SPECIFICATION I
+-----------------------+--+
I Microprocessor I MC68000, 8 MHz operating frequency, 16-bit I

I data bus, 16 megabyte addresssing range I
+-----------------------+--+
I Local Memory Eight 28-pin sockets, organized as four I

pairs, for user-provided memory. Each pair I
is individually configurable to accept any I
JEDEC-standard compatible byte-wide static
RAM or ROM devices, ranging from 2K to 32K
bytes each. Local RAM is accessed without
wait cycles, local ROM access time is selec­
table.

+-----------------------+--+
Serial I/0-Ports Two Motorola MC68661 Enhanced Programmable

Communication Interfaces, featuring several
synchronous and asynchronous protocols and
software selectable baud rates from 50 to
19200 baud. Both ports are RS232C standard
compatible, may be configured as data set or
data terminal, and are available at 25-pole
connectors at the front panel.

+-----------------------+--+
Parallel I/0-Ports A Motorola MC6821 Parallel Interface Adapter I

provides two independent programmable 8-bit I
I/O ports with two handshake lines and one
interrupt output to the MPU. All peripheral I
I/O signals are available at the lower rear
connector. I

+-----------------------+--+

1-2

~
I ,_.

w

Figure 4.9: Schematic Diagram Sheet 8/11

l~PC/2.Jt

PCl'1R.XJ)• <>-------<-+-+-+--+--------------

U52 I.ISi

"""''""' M'·"•41

PCl15FL• D-----H-+-+-+----'-'l

LOCltFJ~

,

A.JU-All [>-------../

Dl'l-~6' <J----C>-------

!RPC14ik <1----------------_J

--·- 1-~--"~-*-,~1 , ... _ ~~~:~:7~

MVME101
SCHEMATIC DIAGRAM
SERIAL COMMUNICATION
INTERFACES

® MO'rOl90l.A "'*"'°8Y•._.,. ,,............,c,,_.,.. • .,,.,...,,._
'""'-~ $_. --~-·.,··

63AG3012M 8111

Table 1.1: MVMElOl Specifications (cont~d)

+-----------------------+--+
I CHARACTERISTIC I SPECIFICATION I
+-----------------------+--+

Timer/Counter l A Motorola MC6840 Programmable Timer Module I
I contains three independent 16-bit counters.

All peripheral clock, gate and output lines \
are available at the lower rear connector.
A jumper area provides gate enabling, real
time counting, bus cycle counting and timer
cascading.

+----~------------------+--+
Address Map Decoder logic devides a 2 Megabyte address

range (000000 - OFFFFF and FOOOOO - FFFFFF)
into 512 segments, each covering 4K bytes.
An address decoder PROM assigns each of
these segments to one of the four on-board
memory pairs, to the on-board I/0 devices,
or to off-boara resources on the VMEbus. All
addresses from 100000 to EFFFFF are assumed
to be off board and directed to the VMEbus.

+-----------------------+--+
VMEbus Interface The private bus interconnecting all on-board l

devices is connected to the VMEbus through I
a VMEbus interface when off-board resources I
are to be accessed. This interface is fully
compatible with the VMEbus Specification I
Rev.B. I

+-----------------------+--+
VMEbus Requester For implementation in multiprocessor systems 1

the module contains a VMEbus requester which
requests and releases the bus either under I
direct software control, or indirectly upon
decoding off-board and on-board addresses.
The bus requester is selectable to operate
on one of four prioritized bus arbitration
levels.

+-----------------------+--+
I VMEbus Arbiter For use as the system controller in a VMEbus j

system, the module contains an option ONE

I bus arbiter, supporting daisy-chained bus \
arbitration on a single level.

+-----------------------+--+
Interrupt Handler Any or all of the seven VMEbus interrupt I

request lines can be strapped to qenerate
prioritized and user-vectorized interrupts. l
The interrupt outputs of the on-board I/O I
devices and the VMEbus signals BCLR* and I
SYSFAIL* can be jumpered to any of six pri- I
oritized and auto-vectorized interrupts.
The ABORT pushbutton and the VMEbus signal
ACFAIL* generate a non-maskable auto-vecto-
r ized interrupt.

+-----------------------+--+
Time Out Counters Two software controlled time-out counters \

supervise VMEbus operations. A bus error can
be generated if a bus request is n0t qranted I
within 128 microseconds, or if a bus data I
transfer is not acknowledged within 8 micro- I
seconds. I

+-----------------------+--+

1-3

Table 1.1: MVME101 Specifications (cont'd)

+-----------------------+--+
I CHARACTERISTIC l SPECIFICATION I
+-----------------------+--+

I Display I Programmable hexadecimal LED display at the I
front panel for status indication. I

+-----------------------+--+

I Front Panel Controls I Two pushbutton switches at the front panel I
for System Reset and Software Abort.

+-----------------------+--+
System Control For use as the system controller in a VMEbus \

system, the module can be configured to
drive the bus signals SYSCLK and SYSRESET*. I

+-----------------------+--+
Control Register Through an 8-bit Module Control Register the

MPU controls the status display, the VMEbus
output SYSFAIL*, the VMEbus requester, and
the time-out counters.

+-----------------------+--+
Status Register Through an 8-bit Module Status Register the I

MPU can monitor the VMEbus signals ACFAIL*, I
SYSFAIL* and BCLR*, the VMEbus availability, I
the activation of the Software Abort switch, I
the data input of Serial Port 1, and the I
occurence of a time-out condition. l

+-----------------------+--+
Meehan. Dimensions Double height VME board with front panel

Board Size: 233 mm x 160 mm
Front Panel Size: 262 mm x 20 mm

+-----------------------+--+

I Connectors I One 96 pole DIN 41612 connector for VMEbus_,
one 64 pole DIN 41612 connector for parallel
I/O and timer signals, ·-
two 25 pole D-Subminiatur connectors for the
serial ports.

+-----------------------+--+
I Power Requirements + 5 V DC {+/- 5%), 2.0 A (typ), 3.0 A (max)

I (See Note) +12 V DC {+/- 5%), 25 mA (typ), 50 mA (max)
-12 v DC {+/- 5%) , 25 mA (typ) , 50 mA (max)

+-----------------------+--+
I Temperature Range I Operating temperature: 0 to 55 c I
, Storage temperature: -40 to 100 c
+-----------------------+--+
I Rel. Humidity Range I Operating humidity: 0% to 90% non-condensing I
+-----------------------+--+

Note: The current at +5 V DC is specified for the MVMElOl module without
any local memory. To calculate the actual required value, add the
supply current of the memory devices used.

The currents at +12 V and -12 V DC are specified for the MVMElOl
module with the serial port connectors open. The actual required
values depend on the load of the RS232C ports. All serial port
outputs are current-limited to sink or source 12 mA {max) each.

1-4

1.3. REFERENCE MANUALS

The following manuals may be used for further information about the
MC68000 microprocessor, the MC6840 timer module, the VMEbus system and
the VMEbug debugger/monitor:

* MC68000UM
* MC6840UM
* MVMEBS

MC68000 16-bit Microprocessor User~s Manual
MC6840 Programmable Timer Fundamentals and Applications
VMEbus Specification Manual

* MVMElOlBUG MVMElOlbug Debug Package User~s Manual

1.4. MANUAL TERMINOLOGY

1.4.1. Address and Data Format

Throughout this manual, unless otherwise noted,
values are given in hexadecimal format.

1.4.2. Electrical Signal Levels

all address and data

A signal line is always assumed to be in one of two levels, or in
transition between these levels. Whenever the term "high" is used, it
refers to a high TTL voltage level (> +2.0 V) • The term "low" refers
to a low TTL voltage level (< +0.8 V) • There are two possible transi­
tions which can appear on a signal line, and these will be referred to
as "edges". A "rising edge" is defined as the time period durinq which
a signal line makes its transition from a low level to a high level. The
"falling edge" is defined as the time period during which a signal line
makes its transition from a high level to a low level.

A signal is defined as "active low", if the function associated with the
signal line is valid or initiated by either a low level or a fallinq
edge on the signal line. The mnemonics of active low signals are markea
with the suffix "*".

A signal is defined as "active high", if the function associated with
the signal line is valid or initiated by either a high level or a rising
edge on the signal line.

1.4.3. Logic Signal States

The terms "assert" and "negate" describe the logic state of a signal
without indicating the associated voltage level. An active low signal
is asserted when its voltage level is low, it is negated when its
voltage level is high. An active high signal is asserted when its
voltage level is high, it is negated when its voltage level is low.

For signals which are driven by three-state or open-collector outputs,
the term "release" ·describes the high impedance state of the correspon­
ding driver. Typically these signal lines are driven to a high voltage
level by pull-up resistors when all drivers on the line are turned off.

1-5

N
I

I-'

[

(

~ VMEBVS CONNECTOR 1/0 CONNECTOR

1 .-j
~· J 1 J

VMEBllS VHEBllS VHEBU.S INTERRUPT PA/;ALLEL TIMER

A~BITE/l llEql!ESTE!l /NT£RFllCE HAIJDtER INTEttFAta HODllLE

l r • • ? ~ J~. ~ •r r > [Jl p r. ~

111rERll11n -'fr.!llE.ST.S 1--~

t-
RESET LlllES

1--
t- SELCCT LlllES 1--
t- C.LDGlf St&llALS 1--

H t- MrA n"'llSl'lll c.owrRoL 1--
.__ L-

Al>l>llEU •11S r-- I
JIA7A IJll.)

• •l ~

CLOC I(Ml' llOPROtESS I JI(, T111E-OllT DTACK A, PRE JS HEHOll'I

jGENERATOR (/NIT CfJlltlTER 6E /llE RA TOil DEC ODEil ARllAV

f---.- r

PATA •llS .DATA JllS

S'ISTEl'I STATllS ...___ -C
/SllS Alf'IJtrRATIOtl .--- AP:l>REU /811S

TIHE-0/IT lONTtrOL
~ I-

PATA TllAtlSFElt. £0t/TROL

.--- SEL£lT LltlU I-
r--

ROI FT LlltF.$ I-

Lr II/TE lltlllPT RUlllESTS I-. .. 1 • -~]
~·

i, i, •• t_ J.

CONTROL ST ATVS IUS£T SERIAL COMMllN/eATION 5£RIAL £0MMllAllCATION

RE61STER. IU61STT!l CIR£111T" INTERFACE 4 INTERFACE" 2.

1 _[1
~

HEX ABORT ltESET L[Sj SElttAL PORT -t SERIAL PORT 2.
JNSPlAY SW I Tl II

H
JW/TtH CON/I/ECTOR

I-
CON NEC TO~

\ [5 t5 l

\,

>

L[S

~

]

o::l
I-'
0
0
7'

CHAPTER 2

FUNCTIONAL DESCRIPTION

2.1. INTRODUCTION

This chapter provides a detailed description of the MVME101 monoboard
computer and its various modes of operation. The module can be regarded
as consisting of functional blocks, as shown in Figure 2.1. Each block
is described in a seperate paragraph in this chapter. For hardware
details, Chapter 4 includes the schematic diagrams and an assembly
drawing.

The MVMElOl is designed to operate either as a monoboard system, as a
single MPU controller in a VMEbus system, or as a MPU element in a
multiprocessor configuration. Hardware and software application hints
for each of these modes are given in this chapter. Detailed electrical
and timing specifications of the VMEbus connector signals allow the user
to design peripheral modules and his target hardware around the mono­
board computer without requiring measurements on the board.

2.2. MICROPROCESSING UNIT

The microprocessing unit of the MVME101 consists of the Motorola MC68000
MPU and some interfacinq hardware for other functional blocks. The
microprocessor runs at 8 MHz clock frequency.

A detailed description of the microprocessor is given in the Motorola
MC68000 Data Sheet in Appendix A of this User~s Guide.

2.3 MEMORY

2.3.1. Data Organization In Memory

The 16-bit data word of the MC68000 MPU is separated into a lower data
byte (D00-D07) and an upper data byte (D08-Dl5), corresponding to a
given memory address (A01-A23). The address line AOO is only internal to
the MPU and externally replaced by the data strobe signals LOS*
and UDS*. A detailed description of the data organization in memory can
be found in the MC68000 Data Sheet in Appendix A.

Accordingly any memory block for the MC68000 must be made up of two
identical halves, one of them connected to the lower order data lines
DOO-D07 and activated by LDS*, the other half connected to the upper
order data lines D08-Dl5 and activated by UDS*.

2-2

2.3.2. Memory Array

As shown in Figure 2.2, the memory array of the MVMElOl consists of
eight 28-pin sockets, organized as four pairs, for user-provided memory.
These sockets accept any RAM or ROM devices which meet the following
specifications:

24-pin or 28-pin dual-in-line package compatible with the JEDEC
standard pin-out for byte-wide memories,
memory size 2K, 4K, SK, 16K, or 32K bytes per device,
static operation,
single + 5 V power supply,
high impedance inputs (MOS characteristic), three-state outputs,
timing requirements accordant with the specifications given in
Paragraph 2.12.

A jumper area is associated with each memory pair to support different
device sizes and pin-outs. Paragraph 3.4.8 describes the configuration
of these jumpers.

Figure 2.2: Memory Array

--.,.
-'\ ' ~ K1't MEH4U MEN4L
-,/ ~ ,/ ,.

/"~ ~ ~~ 0 .(">

'-7 0
..-- __.

-.,
-'., ..

~ K13 ME113U " NEHJL
,/ ~ ,/

MltSEt.'lr

AD.l>RESS M3SEL* 0 A). A (

DE,ODGR M2.SEL.ilr

M45ELk L)' ~
......

/').
.

~ ' ~ K,,z MEHZU MEMZL
,/ --.,/

-vi
t<)
{\I /' ?").

~}
/';.. n '{

I
t'I

'" ~
...... •

"" ' ~ K41 HEH-111 MEM'IL
UDWR11<, LDWR.,,DRD*' --./ j

-vi

/). /). /'). 1). ?}.
~ " '->

~
It.

~ " ~ '&.
~ ~ q ~ q

HPU I I I I I
(II " ~ "' '&.
'I:- ~ ~ ISi.

" " ~ " ~

AliM-A.;f~

A .

K' Dll - 1>45" ...-

2-3

2.3.3. Memory Map

For the first four MPU cycles after a board reset, data is fetched from
the memory devices located in the socket pair 4, regardless of the
addresses assigned. Therefore, the sockets MEM4L and MEM4U must be
populated with ROM, and the first eight bytes of this ROM must contain
the initial supervisor stack pointer and program counter values.

For the socket pairs 1, 2, and 3, the user i.s free to install either ROM
or RAM or to leave them open. Each memory pair may be placed anywhere
in a 2 Megabyte address range (000000 - OFFFFF and FOOOOO - FFFFFF) by
programming an address decoder PROM according to the desired memory map.
Paragraph 2.7 gives a detailed description of the Address Decoder.

As socket pair 4 must contain ROM in any case, it is preferable that
this firmware includes at least the board initialization, system monito­
ring, and failure servicing routines, to ensure their proper execution
with a minimum of hardware involved. For the same reason the exception
vector table and the stack should reside in on-board RAM.

2.3.4. Memory Access Time

Data transfers between MPU and memory are performed in an asynchronous
manner. Having asserted address, data, and strobe signals, the MPU
inserts wait states until it receives the data transfer acknowledge
signal, and then terminates the transfer. A detailed description of the
data transfer protocol can be found in the Motorola MC68000 Data Sheet
in Appendix A.

On the MVME101 monoboard computer, data to and from the on-board RAM is
transferred without inserting wait states. For read operations from the
on-board ROM, the configuration of jumper area K4 determines the number
of wait states inserted by the MPU. The jumper must be positioned in
accordance with the access time requirements of the installed memory
devices. Paragraph 2.12 specifies the on-board memory timing. The
configuration of jumper area K4 is describec in Paragraph 3.4.9.

2.4. INPUT/OUTPUT-DEVICES

The following input/output-devices are provided on the MVMElOl monoboard
computer:

*
*
*

two programmable serial communication interfaces
a programmable parallel peripheral interface adapter
a programmable triple timer module

The serial ports are RS232C standard compatible, may be configured as
data set or data terminal, and are available at two 25-pole connectors
on the front panel. The peripheral I/O signals of the parallel inter­
face adapter and of the timer module are fed to the lower rear DIN 41612
64-pin connector.

2-4

2.4.1. Local I/O Access

All on-board I/0-devices, including the Module Control ana Status
Registers, are memory-mapped and occupy a 4 Kilobyte address segment.
This segment may be placed anywhere in a 2 Megabyte address range
(000000 - OFFFFF and FOOOOO - FFFFFF) by programming the address
decoder PROM according to the desired memory map. Paragraph 2.7 gives
a detailed description of the Address Decoder.

Data transfers between MPU and on-board I/0-devices are performed
in a synchronous manner. When the address decoder detects an address in
the local I/O address segment, it asserts the valid peripheral address
signal VPA*. This causes the MPU to terminate the current cycle after
internal synchronization with the peripheral clock signal E. A detailed
description of the synchronous data transfer protocol can be found in
the Motorola MC68000 Data Sheet in Appendix A.

2.4.2. Enhanced Programmable Communication Interfaces

2.4.2.1. General Information

On the MVMElOl monoboard computer two serial I/0-channels are installed,
each of them controlled by a Motorola MC68661C Enhanced Programmable
Communication Interface (EPCI) • The EPCis support several synchronous
and asynchronous protocols in full or half duplex mode, and software
selectable baud rates ranging from 50 to 19200 baud. Both ports are
RS232C standard compatible, may be configured as data set or data
terminal, and are available at 25-pole connectors on the front panel.

2.4.2.2. Features

Features, common to synchronous and. asynchronous operation:

*
*
*
*
*
*
*

5 to 8 bit characters
odd, even or no parity
local or remote maintenance loop back mode
16 programmable baud rates
double buffered transmitter and receiver
dynamic character length switching
half or full duplex operation

Additional features in synchronous operation:

*
*
*
*
*
*

internal or external character synchronization
transparent or non-transparent mode
transparent mode OLE stuffing and detection
single or double SYN operation
automatic SYN or OLE-SYN insertion
SYN, DLE, and OLE-SYN stripping

Additional features in asynchronous operation:

*
*
*
*

parity, overrun and framing error detection
line break detection and generation
false start bit detection
automatic serial echo mode

2-5

2.4.2.3. EPCI Device Description

A detailed description of the Enhanced Peripheral Communications Inter­
face is given in the Motorola MC68661 Data Sheet in Appendix B.

2.4.2.4. Hardware Configuration

Both serial ports may be configured independently as data terminal or as
data set on the jumper areas K7 and Kl5. The EPCI input CTS* can either
be constantly enabled or shortened with the input DSR* on the jumper
areas K9 and KlO. The same jumper areas are used to connect the EPCI
outputs TXRDY* and RXRDY* with the interrupt handler. Paragraph 3.4
includes detailed instructions how to configure the jumper areas for the
various modes of operation.

2.4.2.5. Programming Information

Prior to initiating data communications, the EPCI registers must be
loaded with a set of mode and command bytes. Detailed programming
instructions are given in the Motorola MC68661 Data Sheet in Appendix B.
The addresses of the EPCI registers are listed in Paragraph 2.7.

The serial data input of SPl can be monitored throuqh the Module Status
Register. This feature supports the automatic detection of a terminal's
baud rate: After hitting a specified character on the keyboard, the
width of the first serial data bit is measured with the Programmable
Timer Module. The result then is compared with a list of values in a
lookup table to determine the transmitter's baud rate. (The automatic
baud rate detection in MVMElOlbug is implemented in this way.)

2.4.3. Peripheral Interface Adapter

2.4.3.1. General Information

The MC6821 Peripheral Interface Adapter (PIA) provides the universal
means of interfacing peripheral equipment to the MVME101 monobbard
computer. The PIA can interface the MPU to peripherals through two
8-bit bidirectional peripheral data buses and four control lines.

2.4.3.2. Features

*
*
*

*
*
*
*
*

two bidirectional 8-bit buses for interface to peripherals
each peripheral line individually programmable as input or output
four individually controlled interrupt input lines; two usable as
peripheral control outputs
handshake control logic for input and output peripheral operation
high-impedance 3-state and direct transistor drive peripheral lines
program controlled interrupt and interrupt disable capability
CMOS drive capability on side A peripheral lines
two TTL drive capability on all A and B side buffers

2-6

2.4.3.3. PIA Device Description

A detailed description of the Peripheral Interface Adapter is given in
the Motorola MC6821 Data Sheet in Appendix C.

2.4.3.4. Hardware Configuration

All peripheral data and control lines are fed to the DIN 41612 C 96 rear
connector P2. A description of the input/output signals is qiven in
Table 2.1. Their locations at P2 are shown in Table 2.2.

Note that the peripheral input/output lines are not buffered between the
PIA and the connector P2. Therefore, the electrical characteristics
of the signals at P2 are equivalent with the values qiven in the MC6821
Data Sheet.

The interrupt outputs of the PIA may be wired to one of the Auto-Vecto­
r ized Interrupt Request lines on the jumper area K6. Paragraph 3.4.4
describes the configuration of K6.

2.4.3.5. Programming Information

The functional configuration of the PIA is programmed by the MPU during
system initialization. Each of the peripheral data lines can be
programmed to act as an input or output, and each of the four
control/interrupt lines may be programmed for one of several control
modes. Detailed programming instructions are given in the Motorola
MC6821 Data Sheet in Appendix C. The addresses of the PIA registers are
listed in Paragraph 2.7.

2.4.4. Programmable Timer Module

2.4.4.1. General Information

The MC6840 Programmable Timer Module (PTM) contains three 16-bit
binary counters, three corresponding control registers, and a status
register. The counters are under software control and may be programmed
to generate module interrupts and/or output signals. The PTM can be used
for frequency measurements, event counting, interval measuring, and
similar tasks. It can generate square waves, qated delay signals, and
single pulses of controlled or modulated duration.

2.4.4.2. Features

*
*
*
*
*

*
*

selectable prescaler on timer 3
programmable interrupt output to MPU
readable down counter indicates counts to go to time-out
selectable gating for frequency or pulse-width comparison
three asynchronous external clock and gate/trigger inputs internally
synchronized
three maskable outputs
peripheral inputs/outputs fully TTL compatible

2-7

2.4.4.3. PTM Device Description

A detailed description of the Programmable Timer Module is given in the
Motorola MC6840 Data Sheet in Appendix D.

2.4.4.4. Hardware Configuration

All peripheral clock,gate and output lines are fed to the DIN 41612 C 64
rear connector P2. A description of the input/output signals is given
in Table 2.1. Their locations at P2 are shown in Table 2.2.

Note that the peripheral input/output lines are not buffered between the
PTM and the connector P2. Therefore, the electrical characteristics
of the signals at P2 are equivalent with the values given in the MC6840
Data Sheet.

The gate inputs of the counters can be constantly enabled
jumpers on jumper area Kl6. Also~ Kl6 provides the hardware
for cascading the PTM's counters, for real time counting,
counting, or VMEbus cycle counting. Paragraph 3.4.7 gives
description of jumper area Kl6.

by setting
connections

MPU cycle
a detailed

The interrupt output of the PTM may be wired to one of the Auto-Vecto­
rized Interrupt Request lines on the jumper area KG. Paragraph 3.4.4
describes the configuration of KG.

2.4.4.5. Programming Information

The functional configuration of the PTM is programmed by the MPU during
system initialization. Detailed programming instructions are given in
the Motorola MC6840 Data Sheet in Appennix D. The addresses of the PTM
registers are listed in Paragraph 2.7.

2.4.5. Connector P2 Signals

Table 2.1 identifies the peripheral input/output signals
mnemonic, connector pin number and signal characteristics,
shows the signal locations at connector P2.

by signal
Table 2.2

Table 2.1: Connector P2 Signal Description

+-----------+-----------+--+ I SIGNAL I PIN NO. I SIGNAL DESCRIPTION I
+-----------+-----------+--+
' PAO •.. PA7 Cl2 ••. Cl9 PIA SECTION A PERIPHERAL DATA I

Eight TTL compatible peripheral data lines.
Each line can be programmed to act as an
output or input by setting the corresponding
bit in the PIA Data Direction Register A
to "0" or "l".

I
' I +-----------+-----------+--+

2-8

Table 2.1: Connector P2 Signal Description (cont'd)

+-----------+-----------+--+ I SIGNAL I PIN NO. l SIGNAL DESCRIPTION I
+-----------+-----------+--+

CAl C21 PIA SECTION A INTERRUPT I

A TTL compatible clock input line that sets
the interrupt flag of the PIA Control
Register A. The active transition of this
signal is programmed by the PIA Control
Register A.

I

+-----------+-----------+--+
CA2 C20 PIA SECTION A PERIPHERAL CONTROL

A TTL compatible line that can be programmed
by the PIA Control Register A to act as a I
peripheral control output or an interrupt I
input.

+-----------+-----------+--+
PBO ••• PB7 l C4 ••• Cll PIA SECTION B PERIPHERAL DATA I

Eight TTL compatible peripheral data lines.
Each line can be programmed to act as an
output or high impedance input by setting
the corresponding bit in the PIA Data
Direction Register B to "O" or "l".

1

I
+-----------+-----------+--+

CBl C3 PIA SECTION B INTERRUPT

A TTL compatible clock input line that sets
the interrupt flag of the PIA Control
Register B. The active transition of this
signal is programmed by the PIA Control
Register B.

+-----------+-----------+--+
CB2 C2 1 PIA SECTION B PERIPHERAL CONTROL 1

A TTL compatible line that can be programmed I
by the PIA Control Register B to act as a I
peripheral control output or a high I
impedance interrupt input. I

+-----------+-----------+--+
Cl* ... C3* C23, C26 PTM CLOCK INPUTS 1 ... 3 I

C29
Three active low TTL compatible high I
impedance clock inputs that can be used I
to decrement Timers 1 ... 3, respectively. I

+-----------+-----------+--+
Gl* •.. G3* C25, C28, PTM GATE INPUTS 1 ... 3 I

C31 I
,Three active low TTL compatible high I
impedance inputs that can be programmed /
to act as triggers or clock gating functions
to Timers .1 ••. 3, respectively. l

+-----------+-----------+--+
01 ..• 03 C24, C27 PTM OUTPUTS 1 ... 3 I

C30
Three active high TTL compatible outputs l
of Timers 1 .. 3, respectively. The output
waveform is defined by the contents of the I
PTM Control Registers 1 •.. 3, respectively.

+-----------+-----------+--+

2-9

Table 2.1: Connector P2 Signal Description (cont'd)

+-----------+-----------+--+
l SIGNAL l PIN NO. l SIGNAL DESCRIPTION !
+-----------+-----------+--+

+5V Cl, C22, I + s VOLTS I
C32

I + S Volts power supply output I
+-----------+-----------+--+

GND Al •.. A32 GROUND 1

Power supply ground lines I
+-----------+-----------+--+

Table 2.2: Connector P2 Signal Locations

+------+---------+---------+------+
I PIN I ROW A I ROW C I PIN I
l NO. SIGNALS SIGNALS I NO. I
+------+---------+---------+------+

1 GND +SV 1
2 GND CB2 2
3 GND CBl 3
4 GND PB7 4
s GND PB6 5
6 GND PBS 6
7 GND PB4 7
8 GND PB3 8
9 GND PB2 9

10 GND PBl 10
11 GND PBO 11
12 GND PA7 12
13 GND PA6 13
14 GND PAS 14
15 GND PA4 15
16 GND PA3 16
17 GND PA2 17
18 GND PAl 18
19 GND PAO 19
20 GND CA2 20
21 GND CAl 21
22 GND +5V 22
23 GND C3* 23

I 24 GND 03 24
25 GND G3* 25
26 GND C2* 26
27 GND 02 27
28 GND G2* 28
29 GND Cl* 29
30 GND 01 30
31 GND Gl* 31
32 GND +5V 32

' +------+---------+---------+------+

2-10

2.5. MODULE STATUS REGISTER

Through the Module Status Register (MSR) the current status of several
on-board signals and VMEbus lines can be monitored. By that the MPU can
detect certain system conditions and branch to the appropriate servicing
routines.

The MSR appears as an 8-bit register in the on-board I/0-devices address
segment. Paragraph 2.7 gives more detailed addressing information.

Figure 2.3 shows how the MSR is interconnected with VMEbus signals and
with other functional blocks on the MVMElOl. During a read operation,
the outputs of the MSR are enabled and put on the lower order data lines
000-007. The outputs MSRO-MSR5 represent the current states of the
signals ACFAIL*, SYSFAIL*, ABORT*, BCLR*, BAV* and PCilRXO*. MSR6
and MSR7 are Flip-Flop outputs which are set to 0 when a bus request
time-out (MSR6) or a data transfer time-out (MSR7) occured. Any
write operation to the MSR clears MSR6 and MSR7 to 1, regardless of the
data transferred.

All signals represented in the MSR are active low.
indicates that the corresponding signal is asserted,
that it is negated.

A bit value of 0
a value of 1 means

Figure 2.3: Module Status Register

;::..
VMEOUS V

INTERF/4£E f'.._
~ -/

G8ERR*

I DATA
t!JEflR"' DTTOI<

TRAl./SFER ~

~ BRTOI< TIME-OUT I

BU.S

REQUEST

TIME-OUT

ACFAIL.f< L___ PC/'1 VI
::>

SYSFA!t*'
qi

IN TERRI/PT ...
HANDLE/l i.- ASORT:k ~

L.. lJCLR...-

VHEIWS V
R'Q.UESTER !'- -;,

MSR BCLR>lr -'

fiTil..o DTrO_f< ... BERRJlr RITT'~
ABORT

.... rmi.. BRTOJf< SWITCH

IPLfl/« - IPL ZJlr
MPV Rm i.._

v- M5R1 L.. P'MRXD# Kl
JJl/Tll- .D/41

DS ...- ro-o,
f..,.-

H$flt/
D" i. _BAV* I I SYSFAIL:/t ..._
.D3 I... BCLR• 1'"' '"'1

lJ D2i.
AlJOllT.>lr 00

D<fro-
.SV$F,Ji//.Jlt 'o o'

ADDRESS
MSRRDI< _. RiAD D#j+

"4CFAIL:lt 'o o' - ...
DECODER.

HSRwRc AC FAIL"' ...
7

2-11

Table 2.3 shows the allocation of signals in the MSR and explaines the
information contained in each bit.

Table 2.3: Module Status Register

+------+----------+--+
l BIT l SIGNAL I DESCRIPTION l
+------+----------+--+

MSR7 I DTTO* MSR7 = 0: A Data Transfer Time-Out occured. l
MSR7 = 1: A Data Transfer Time-Out did not occur.

Note: Paragraph 2.9.4 describes the Data
I Transfer Time Out counter in detail.
+----·--+----------+--+ I MSR6 BRTO* MSR6 = 0: A Bus Request Time-Out occured.

MSR6 = 1: A Bus Request Time-Out did not occur.

Note: Paragraph 2.9.4 describes the Bus
Request Time Out counter in detail.

+------+----------+--+
MSR5 l PCilRXD* 1 MSR5 reflects the current state of the data input

of Serial Port 1.

I Note:

I
Paragraph 2.4.2.5
can be used for
detection.

describes how MSR5
automatic baud rate

+------+----------+--+
l MSR4 BAV* MSR4 = 0: The VMEbus is available.

MSR4 = 1: The VMEbus is not available.

Note: Paragraph 2.8.2 describes how the BAV* I
signal is used for bus arbitration. · I

+------+----------+--+
MSR3 I BCLR* MSR3 = 0: The VMEbus signal BCLR* is asserted. I MSR3 = 1: The VMEbus signal BCLR* is negated.

Note: Paragraph 2.8.2 describes how the BCLR* I I signal is used for bus arbitration. I
+------+----------+--+
I MSR2 I ABORT* MSR2 = 0: The ABORT switch is pressed. I

MSR2 = 1: The ABORT switch is released. I
Note: Paragraph 2.11.1 describes the ABORT I

function.
+------+----------+--+

MSRl SYSFAIL* MSRl = 0: The VMEbus signal SYSFAIL* is asserted.
MSRl = 1: The VMEbus signal SYSFAIL* is negated.

Note: Paragraph 2.11.2 describes the SYSFAIL
function.

+------+----------+--+
MSRO ACFAIL* MSRO = 0: The VMEbus signal ACFAIL* is asserted.

MSRO = 1: The VMEbus signal ACFAIL* is negated.

Note: Paragraph 2.11.1 describes the ACFAIL
function.

+------+----------+--+

2-12

2.6. MODULE CONTROL REGISTER

.The Module Control Register (MCR) contains eight bits for controlling
various module functions and the hexadecimal STATUS display. To support
single bit manipulations, the data byte in the MCR can be both written
and read.

The MCR appears as an 8-bit register in the on-board I/0-devices address
segment. Paragraph 2.7 gives more detailed addressing information.

Figure 2.4 shows how the MCR is interconnected with other functional
blocks on the MVMElOl. During a write operation, the bit pattern on the
lower order data lines D00-D07 is stored in the MCR. The four bits
MCR0-MCR3 represent the hex number to be shown on the STATUS display in
binary data format. In addition, when MCRO-MCR3 all are set to 1, i.e.
when the hex number F is displayed, the VMEbus signal SYSFAIL* is
asserted. MCR4 is used to switch the display on and off. MCRS controls
the bus block transfer mode of the VMEbus Requester. The bits MCR6 and
MCR7 are used to enable or disable the time-out counters.

After a system reset all bits in the MCR are cleared to 0. Also,
the MPU has halted due to a double bus error, the MCR is cleared,
both decimal points on the STATUS display are lit.

when
and

All signals controlled by the MCR are active high. A bit value of 1
causes the assertion of the corresponding signal, a value of 0 causes
its negation.

Figure 2.4: Module Control Register

.DATA
i'"-TRAN5FER

TIHE - our

BU.S
..al REQUE5T

TIME-our

YME8V.S ~ ~ REQUESTER /

MC R. Dl5PLAY "' ::>
HALT# FDJJTO '""

l!l
., REiir Q'1 __.. 8LAfllK ...

_,..,
~ HPU _..

M~R~ Qh EBRTO

Dllll - DD'I-)I Ml RP QS BBTR ...aJ LCFT POINT

Q'I DPON
__.. Rl6HT POINT

TI QJ DPD3
--=- DJ

Q2 DPJJZ ...i D2
MCRRJL:r<. ADDllESS ~Rm Q-4 DP.D'f ...aJ D-1

DECODER
MCRWR'4< WiiTi QJI DP.DI DI

K3

l'h_
ro-o,
I I 5V5FA1l*

~
~ 1" I

,o o,
,o o,

7 Lo_ o_,

2-13

Table 2.4 shows the allocation of signals in the MCR and explaines the
function of each bit.

Table 2.4: Module Control Register

+------+--------+--+
I BIT I SIGNAL I DESCRIPTION I
+------+--------+--+

I

MCR7 I EDDTO MCR7 = 0: Disable Data Transfer Time-Out counter.
MCR7 = 1: Enable Data Transfer Time-Out counter.

Note: Paragraph 2.9.4 describes the Data Trans­
fer Time-Out counter in detail.

+------+--------+--+
MCR6 EBRTO MCR6 = 0: Disable Bus Request Time-Out counter.

MCR6 = 1: Enable Bus Request Time-Out counter.

Note: Paragraph 2.9.4 describes the Bus Request
Time-Out counter in detail.

+------+--------+--+
MCR5 BBTR MCR5 = 0: Negate Bus Block Transfer Request. I

MCR5 = 1: Assert Bus Block Transfer Request.

I Note: Paragraph 2.8.2 describes the function of
the BBTR signal.

+------+--------+--+
MCR4 SOON I MCR4 = 0: Blank STATUS Display.

MCR4 = 1: Lit STATUS Display.

Note: The STATUS Display is also blanked after I
system reset and when the MPU has halted. I

+------+--------+--~---+
I MCR3 I SDD3 I SDD3,SDD2,SDD1,SDDO = 0,0,0,0: Display "0" I

MCR2 SDD2 l SDD3, SDD2, SDDl, SDDO = 0, 0, 0, 1: Display "l" I
MCRl I SDDl l
MCRO , SDDO

SDD3,SDD2,SDD1,SDDO = 1,1,l,O:
SDD3,SDD2,SDD1,SDDO = l,1,1,1:

Display "E"
Display "F" and
assert SYSFAIL*

The bits SDDO-SDD3 are the binary equivalent of the
hexadecimal number on the STATUS display. Also,
these bits are used to assert the SYSFAIL* signal on
the VMEbus by setting them all to 1, i.e. by writing
"F" into the STATUS display.

Note: Paragraph 2.11.2 describes the SYSFAIL
function.

+------+--------+--+

2-14

2.7. ADDRESS DECODER

2.7.1. Circuit Description

The Address Decoder logic is responsible for selecting the various on­
board devices or the VMEbus Interface, depending on the address asserted
by the MPU. Also, it contains circuitry to generate the data transfer
handshake signals for on-board operations.

Figure 2.5 shows how the Address Decoder is interconnected with on-board
devices and other functional blocks on the MVMElOl. The data contained
in the Decoder PROM determines the address map configuration and assigns
each address either to one of the on-board devices or to the VMEbus.
The Device Selector receives signals from the Decoder PROM, the MPU,
the Interrupt Handler and the Reset Circuit, and determines the current
cycle to be either a VMEbus data transfer, a data transfer to or from
one of the on-board ROM or RAM devices, an access to the on-board
I/0-devices, a VMEbus interrupt acknowledge cycle, an auto-vectorized
interrupt acknowledge cycle, or a reset vector fetch. For VMEbus
operations, the Device Selector enables the VMEbus Requester and the
VMEbus Interface. When on-board memory is accessed, the Device Selector
enables the addressed memory pair and causes the DTACK Generator to
assert the data transfer acknowledge signal. When one of the on-board
1/0-devices is accessed, or in case of an auto-vectorized interrupt
acknowledge cycle, the Device Selector asserts the VPA* signal. After
receiving VPA*, the MPU synchronizes internally with the peripheral
clock signal and then asserts VMA*. This enables the Local I/O-Address
Decoder, which selects the addressed 1/0-device.

Figure 2.5: Address Decoder

;::...

DFCODER PROM ~
YNEBfJS V ''\

REQUESTER I\. ,/
J-.

AZpJ-A23 -./ c.s 1 _,. DIJ-D3 AD~ -ADJ

A42 -A2f!J Af)-A8 .BADR*
VMEBUS K' ~ -v

SHIOA>i<
INTERFACE' j ...

FC{JI -FC2
--"-,
./

DEVICE

SELECTOll. _,_
INTERRUPT AVl~Qc-

EHEH'1>1 - EHEH4~ MEHORY

HANDUR
..

ARRAY ,,
MPU

LOCROH'IC ... DTACK DTACK*
"' LOClfFS* RESET RESVE(.'11:

£0£ R,AH'IC
~ GENERATOR "' !"'" 'II

AS* CIRCUIT
... VPA'fC

~
VPA*

~ JJTACI(*'
f"'

MODULI<

PIA PTM CONTROL

1U61ST£R

VHA« LOCAL TI TI {>
"""\ 1/0-ADR.

A(ll'f-"'4~6 -;/ DECODER li -u 1z
NODVLE"

PCl-1 PC/2. STATt/S

REGISTER "' 7

2-15

2.7.2. Address Map Configuration

The Address Decoder logic first devides the 16M
MPU into three blocks, as shown in Figure 2.6.
lower lM bytes address range (000000-0FFFFF) ,
the following 14M bytes (100000-EFFFFF) , and
uppermost lM bytes address range (FOOOOO-FFFFFF

byte address map of the
The Lo Block covers the
the Mid Block comprises
the Hi Block covers the
) .

All addresses in the Mid Block are
MPU asserts an address in the ranqe
initiates a VMEbus data transfer
the VMEbus Interface.

supposed to be off-board. When the
100000-EFFFFF, the Device Selector
by enablinq the VMEbus Requester and

The Lo Block and the Hi Block are further subdivided into address
segments of 4K bytes. Each of these 512 segments corresponds to one
location of the Decoder PROM. This PROM, organized as 512 x 4 bits,
assigns each address segment either to one of the on-board memory pairs,
to the on-board I/0-devices, or to the VMEbus. When on-board memory is
addressed, the PROM also determines whether the ROM or the RAM access
time is used by the DTACK generator. For transferring data to or from
global I/0-modules on the VMEbus, the address modifier code for Short
I/O Address may be specified for a 64K address field.

Figure 2.6 illustrates how the MPU address map is divided into blocks
and segments, and how the segments are represented in the Decoder PROM.
The figure also specifies the data to be programmed in the PROM for
appointing the devices to the address segments.

Figure 2.6: Address Map Configuration

MPV ADDRESS

F F F x x I<

F F E"' I(x . . SELECTED DEVICE'
HI BLOCK . . - VME' STANDARD ADDf?ESS . . !'

F l!J 4
])EC ODER PROH

)()()(

F fl/ fJ/ x x x ADDR DATA
£FF It x "

..... '1 /: F F VME 5TANDAR.D ADDR£$5 .. -,.....

E' F fxxx 1 F t E -i>I VME SHORT 1/0 ADDRESSD
MID BLOCK

. . . . c B NOTUSID
• . . . A

,, ft1 ,,
)(" "

_/ ::> 1 li1 1 .,
"1/lfl)(X 1 J?J J?J 8 LOCAL 1/0 DEt'ICES)(... ..
llf /: F)t ")(

.... fl F F ~ ::> ROl1 IN SOCKET PA/fl 't ..
II F £)(")(

..... (I} F £" ' -i>' ROH IN SOCKrT PAIR 3 s -,..::> R.OM IN SOCKfT PAIR Z
LO BLOCK

. . . .
" - ROM IN SOGK£T PIHR 1 3 INVALID -. • . . 2. ,_ RAH IN SOCKET PAIR. 3

fJ1 !II ,, _,_
(4 fl ,, .., - RAH IN SOCKET PAIR 2. " ")C

/J fl (If " 1("
..... m fl fl e - RAM IN SOC.KET PAIR 1

2-16

The address decoding scheme of the MVMElOl allows the user to place each
memory pair and the on-board I/0-devices anywhere in the Lo Block or the
Hi Block of the memory map. All address segments that are not occupied
by on-board devices can be defined to be either standard addresses or
short I/O addresses on the VMEbus. By that the user may create indepen­
dent areas for ROM, RAM and I/0-devices, with contiguous on-board and
off-board allocation for each area.

The MVME101 module is delivered with a Decoder PROM which contains the
address map configuration shown in Table 2.5. This address map is
designed to accomodate the MVMElOlbug Debug Package firmware and in
addition lOK bytes RAM for user programs. The addresses 000000-002FFF
are assigned to RAM in the memory socket pairs 1-3, where the addresses
000000-0003FF are occupied by the MPU exception vector table, and the
addresses 000400-0007FF are used as a temporary data storage area for
the MVMElOlbug parameters. The addresses 000800-002FFF are available for
user programs and data. The addresses FOOOOO-F03FFF are assigned to ROM
in memory socket pair 4, which may be the MVMElOlbug package or, after
the dubugging phase, any user-provided firmware-resident program. The
on-board I/O-devices are located in the address segment FEOOOO-FEOFFF.
The upper 64K bytes in the address map are dedicated to I/0-devices on
the VMEbus which are accessed using Short I/O Address encoding in the
address modifiers. All other addresses in the mao are decoded as VMEbus
Standard Addresses for access to off-board memory or memory-mapped
devices.

The registers of the on-board I/0-devices occupy a 4K bytes segment in
the address map. The register addresses are listed in Table 2.6. As the
data width of all I/0-devices is 8 bits, their registers are located on
odd addresses, and data transfers to and from the MPU are performed via
the lower order data lines D00-D07. The even address locations in the
local I/0 address segment are redundant and should not be accessed.

The addresses of the on-board I/0-registers are not fully decoded. The
upper order 3 digits of the 6-digit address indicate the 4K bytes
address segment that is reserved for the local I/0-devices. Then the
address lines A04-A06 are decoded to determine the specific device to be
selected. As the Local I/0-Address Decoder does not care about the
address lines A07-All, the I/0-registers appear virtually multiplied
in address increments of hex 80 in the local I/0-address segment. Thus
the I/0-register listing in Table 2.6 can be regarded to be one of 32
possible sets of addresses.

If the original address map configuration, as described above, does not
meet the user's requirements, he may specifv any other configuration,
and program the Decoder PROM accordingly. A detailed step-by-step
description of this ?rocedure is given in Paragraph 3.4.10.

2-17

Table 2.5: Original Address Map

+----------+-----------------------------+-------------------·----------+ I ADDRESS I CONTENTS I SELECTED DEVICES I
+----------+-----------------------------+-----------------------------+

FFFFFF I I I
VMEbus Short I/O Addresses \ Global I/0-devices I

FFOOOO I I
+----------+-----------------------------+-----------------------------+

FEFFFF I Global Memory I
VMEbus Standard Addresses I or I

FElOOO Memory-mapped Devices I
+----------+-----------------------------+-----------------------------+

FEOFFF l I
On-board I/O Registers Local I/0-devices I

FEOOOO (Only odd addresses used) I
+----------+-----------------------------+-----------------------------+

FDFFFF I Global Memory \
VMEbus Standard Addresses or

F04000 I Memory-mapped Devices I
+----------+-----------------------------+-----------------------------+

F03FFF MVMElOlbug Debug Package 2 x SK bytes Local ROM
or in

FOOOOO User-provided Program Memory Socket Pair 4
+----------+-----------------------------+-----------------------------+

EFFFFF I l

VMEbus Standard Addresses

003000

Global Memory
or

Memory-mapped Devices

I
I

+----------+-----------------------------+-----------------------------+
002FFF j 2 x 2K bytes Local RAM l

User Program/Data in
002000 I Memory Socket Pair 3 I

+----------+-----------------------------+-----------------------------+
OOlFFF 2 x 2K bytes Local RAM

User Program/Data in
001000 Memory Socket Pair 2

+----------+-----------------------------+-----------------------------+
OOOFFF I I

User Program/Data

+--~~~~~~--+-----------------------------1 I
0007FF I 2 x 2K bytes Local RAM I

l MVMElOlbug Data/Stack in
Memory Socket Pair 1 000400

+----------+-----------------------------+
0003FF I

I MPU Exception Vectors
I 000000

+----------+-----------------------------+-----------------------------+

2-18

Table 2.6: Original I/0-Register Address Map

+------+--------+-------+--+
\DEVICE\ADDRESS I MODE I REGISTER I
+------+--------+-------+--+
I MCR I FEOOFl I r/w I Module Control Register I
+------+--------+-------+--+
l MSR I FEOOEl I r/w I Module Status Register I
+------+--------+-------+--+

PTM FEOODF read LSB buffer register I
FEOODF write Timer t3 latches \
FEOODD read Timer #3 counter
FEOODD write MSB buffer register l
FEOODB read LSB buffer register
FEOODB write Timer #2 latches I
FEOOD9 read Timer #2 counter
FEOOD9 write MSB buffer register
FEOOD7 read LSB buff er register
FEOOD7 write Timer #1 latches
FEOODS read Timer #1 counter
FEOODS write MSB buffer register
FEOOD3 read status register
FEOOD3 write control register #2
FEOODl read no operation
FEOODl write I CR20 = 1: control register il I
FEOODl write CR20 = 0: control register #3

+------+--------+-------+--+
PIA FEOOC7 r/w Section B control register I

FEOOCS r/w CRB-2 = 1: Section B peripheral register
FEOOCS r/w CRB-2 = 0: Section B data direction register l
FEOOC3 r/w Section A control register l
FEOOCl r/w CRA-2 = 1: Section A peripheral register I
FEOOCl r/w CRA-2 = 0: Section A data direction register .

+------+--------+-------+--+
PCI2 FEOOB7 r/w command register j

FEOOBS r/w mode register #1 I mode register #2
FEOOB3 read status register I
FEOOB3 write SYNl register I SYN2 register I DLE register I
FEOOBl read receive holding register I
FEOOBl write transmit holding register

+------+--------+-------+--+
PCil I FEOOA7 r/w command register I

FEOOAS r/w mode register #1 I mode register #2
FEOOA3 read status reqister I
FEOOA3 write SYNl register I SYN2 register I DLE register I
FEOOAl read receive holding register I
FEOOAl write transmit holding register

+------+--------+-------+--+

2-19

2.8. VMEbus ARBITER AND REQUESTER

Bus arbitration is a technique to request, be qranted, and acknowledge
bus mastership in a system, where multiple master-type modules share
common resources on the bus. For that purpose the MVMElOl monoboard
computer contains a VMEbus Arbiter and a VMEbus Requester. Most of the
logic is included in the BAR101 Bus Arbiter/Requester device, which is
described in Appendix E.

On the MVMElOl, all on-board devices are interconnected by a local bus
which is connected to the VME data transfer bus only when off-board
devices are to be accessed. This feature allows on-board processing at
full speed, while another module transfers data on the VMEbus.

Figure 2.7: VMEbus Arbiter and Requester

.it. >-
., BB5 Y:/t ~ ...- -_.,_ 'BR3Jlt
~

._
K~

VMEBllS r0-01

ARBITER 100 1

100 1

100 1
I I BG31N >It .
i..;_~, ...,

INTERRVPT i..._ JJCJ.Rllr _._
HANDLER. I'"" ")..I

K2.

~-:-i B~e*
I VI BR-f~

...,
-j'-' v I

BR2«

MOl)/JLE' t-"-jO v-1
BR3Jk -

CONT!f.OL
BBTR _.. ;9_'-'.J

-..
RE61ST£R. K-1

- I"'. - , BGl!IN1fi< .. ~ I""" I I
ADlJI(CS5 SADR* i° o,

BGt1our11r . cq
.....

DECOl>ER
/36'1 INJk _... .t::

j'-' I
....

~v, B6"'0VrJ1c . ~
BGZ 1/1/Jlc

.......
~

v

VMEBV.5 ~I 13620VT* .
I '-'1

......
RE QI/ESTER

863/N::,, ~

!'-' v,
6G3ovr~ . .___L.o _ _J

~ AS
~ I"""

BBSY-lk

14-
BR(IJ>t. -.....

~ BR-t.11t ... ,....
Bf!Z1': 14 -

L. SR3.W -I'"" ._

MOlJVLF
BAV.ll'

5T;'ITU5 I+
RE615TER

"
V' " VME BVS v- ~ ' MPV ~ -v' ~

DATA TR.AN Sf: ER svs ./ 1NrERFA(£

"" 7

2-20

2.8.1. VMEbus Arbiter

For use as the System Controller in a VMEbus System, the MVME101 module
contains an option ONE single level arbiter which arbitrates bus
requests on level 3. Figure 2.7 shows the interconnections of the bus
signals with the Arbiter, and the flow chart in Figure 2.8 illustrates
its operation. When the VMEbus Arbiter receives a bus request at the
input BR3*, it monitors the BBSY* line. A low level on BBSY* indicates
that another master module is currently using the bus, and the bus
request is made pending. When BBSY* is high, the VMEbus Arbiter grants
the request by asserting BG3IN*. This signal is propagated along the
bus gtant daisy-chain through all modules participating in the bus
arbitration until the first bus requester is reached which has asserted
BR3*. This requester acknowledges the bus grant by asserting BBSY* and
negating BR3*. Upon detecting that, the VMEbus Arbiter negates BG3IN*
and is ready for another arbitration sequence.

When the MVMElOl is used as the System Controller, it must be located
in slot 1 of the VMEbus backplane to ensure that the VMEbus Arbiter
resides to the left of ~11 bus requesters. In this configuration, the
VMEbus Requester on the MVME101 is the first in the daisy-chain, and
therefore has the highest priority.

When installed on lower bus priorities in a multi-processor system, the
VMEbus Arbiter on the MVMElOl must be disabled by removing the according
jumper from jumper area K3, as described in Paragraph 3.4.2.

Figure 2.8: VMEbus Arbiter Operation Flow Chart

+----------------+
v I

</--;;;:-~~~~~~~~-;\>~~--->!
\-----------------!

lyes
+--------------->!
I v
I no /-----------------\
+------< BBSY* negated ? >

\-----------------/
Ives
v

+-------------------+ I Assert BG3IN* I
+-------------------+

I
+--------------->!
I no /--------~--------\ +------< BBSY* asserted ? >

\-----------------!
lyes
v

+-------------------+
I Negate BG3IN* I
+-------------------+

I +----------------+

2-21

2.8.2. VMEbus Requester

The VMEbus Requester on the MVME101 is responsible for performing the
following tasks:

Assert a bus request when the MPU needs access to off-board devices,
Acquire bus mastership when the bus request is qranted,
Release the bus upon another request when it is no longer needed,
Propagate not requested bus grants to the next bus requester.

Each of these functions is described in detail in the following para­
graphs. Figure 2.7 shows how the VMEbus Requester is interconnected with
the bus signals and with other functional blocks on the MVMElOl. The
flow chart in Figure 2.9 illustrates the operation sequence.

The VMEbus Requester can be configured to operate on anyone of the four
bus arbitration levels. This is done by setting the appropriate jumpers
on the jumper areas Kl and K2, as nescribed in Paragraph 3.4.1.

2.8.2.1. Bus Request Assertion

There are two methods by which the MVME101 can request the VMEbus: The
indirect, or software transparent method, and the direct method, by
which a specific request can be programmed.

An indirect bus request is initiated by the Address Decoder. When the
MPU starts either a VMEbus data transfer cycle, or a VMEbus interrupt
vector fetch, the Address Decoder asserts the signal BADR*. If the
MVMElOl is not the current bus master, the VMEbus Requester then
asserts BR* on the jumpered level. The MPU inserts wait states until
the bus arbitration is performed and the addressed slave module acknow­
ledges the data transfer.

In applications where
the Bus Request Time-Out
Control Register. This
the started MPU cycle if
The Bus Request Time-Out

a long idle state of the MPU is not acceptable,
counter can be enabled through the Module
counter supervises the bus request and aborts

it is not acknowledged within 128 microseconds.
counter is described in Paragraph 2.9.4.

The direct bus request is initiated under program control by setting the
Bus Block Transfer Request bit (BBTR) in the Module Control Register.
This causes the VMEbus requester to assert BR* and, after being granted,
to retain bus mastership as long as BBTR is set. This method protects
routines against interruption by other bus requests, and therefore is
useful for tasks such as data block transfers, system control, or
emergency servicing.

Once having requested the bus, the VMEbus Requester keeps BR* asserted
until it receives a bus grant on the same priority level, regardless of
further transitions on the signals BBTR and BADR*. This is necessary to
obey the bus arbitration protocol as specified for the VMEbus.

2-22

Figure 2.9: VMEbus Requester Operation Flow Chart

+--+
v

!---------------\
I BBTR asserted \ no

< or >------------------------+
\ BADR* asserted ?/ I
\-------1;~;----/ I

v
+-------------------+
I Assert BR* I
+-------------------+

+---------------->! I

l no /--------~--------\
+-------< BGIN* asserted ? >

\-----------------!
+---------------->lyes

I no /--------~--------\
+-------< AS* negated ? >

\-----------------!
lyes
v

+-------------------+
Negate BR*
Assert BBSY*
Assert BAV*

+-------------------+

+---------------->!

\ no /--------~--------\
+-------< BGIN* negated ? >

\-----------------!
+---------------->lyes

v
no /-----------------\

<------< BBTR negated ? >
\-----------------!

I
I
I
I
I
v

!-----------------\ no
< BGIN* asserted ? >------>
\-----------------!

yes

v
+-------------------+
I Assert BGOUT* I
+-------------------+

I
+---------------->!
I v

no /-----------------\
+-------< BGIN* negated ? >

\-----------------/
lyes

v
+-------------------+
I Negate BGOUT* I
+---------~---------+

I
I

l

lyes
v

I I
+---------------->!

no /-----------------\
<------< Cycle terminated ?> I

\-----------------!
lyes
v I

!---------------\ I
I BRO* or BRl* \ yes

< or BR2* or BR3* >------------------------+
\ asserted ? I v
\---------------! +-------------------+ I

+-----------------lno I ::~:~: ::~;* l-------1
+-------------------+

2-23

2.8.2.2. Bus Mastership Acquisition

When the VMEbus Requester has a bus request pending and it receives a
bus grant on the same priority level, it acquires bus mastership. After
the previous bus master has finished its last VMEbus cycle and negated
AS*, the VMEbus Requester acknowledges the bus grant by negating BR*
and asserting BBSY*, and it enables the VMEbus Interface.

The availability of the VMEbus can be checked by the MPU in the Module
Status Register. This feature is useful in programs where the execution
of on-board and off-board tasks does not require a fixed sequence. For
example, the MPU can prepare an off-board task by setting the BBTR bit
in the Module Control Register, and then execute on-board tasks. Now
and then it tests the BAV* bit in the Module Status Register, and when
it detects that the bus is available, it starts executing the off-board
task.

2.8.2.3. Bus Release

As long as the BBTR bit in the Module Control Register is set, the
MVME101 never releases the bus. However, in a system with a multilevel
bus arbitration scheme, the VMEbus Arbiter can interrupt the current
program with the BCLR* signal upon a higher level bus request. When
the MVMElOl operates as bus master in the block-transfer mode, the
assertion of BCLR* causes a maskable auto-vectorized interrupt request
at the MPU, and it depends on the executed software, whether and
when the BBTR bit is cleared and the VMEbus is released.

The BBTR bit may be set or cleared at any time. If it is set although
the MVMElOl is already the bus master, it has no effect on the VMEbus
Requester, but it protects the execution of the following task.

When BBTR is negated, the VMEbus Requester operates in the release­
on-request mode. In this mode, it retains bus mastership until another
module asserts a bus request on any of the four levels. When that
happens, the VMEbus Requester waits until the MPU has terminated the
current cycle, and then releases the bus by disabling the VMEbus Inter­
face and negating BBSY*.

This release-on-request scheme provides maximum system efficiency, as
unnecessary bus arbitration cycles are avoided.

2.8.2.4. Bus Grant Propagation

When the VMEbus Requester receives a
and it has no bus request pending, the
signal is produced and propagated to
keeps asserted as long as BGIN* is low.

bus grant on its priority level,
corresponding bus grant output

the next bus requester. BGOUT*

The BGIN* and BGOUT* lines which are not on the module's priority level
are connected directly on the jumper area Kl.

2-24

2.9. VMEbus INTERFACE

The VMEbus Interface provides the signal path between the local bus of
the MVME101 computer and the VMEbus backplane. The interface complies
with all requirements for the signal driver/receiver characteristics,
and for the bus operation protocol timings, as specified in the VMEbus
Specification Manual Rev.B. Any VMEmodule which is designed according
to these specifications will run with the MVME101 Monoboard Computer
without restrictions.

This chapter gives detailed
signals that are handled by the
hardware options. The timinq
are included in Paragraph 2.12.

functional descriptions of all VMEbus
MVME101, and explains the available
specifications for the VMEbus Interface

2.9.1. VMEbus Signals

All VMEbus signals are available at the upper rear connector Pl.
Table 2.8 identifies all these signals by mnemonics, pin numbers at Pl,
and electrical characteristics, and it describes the signal functions
on the MVMElOl. The abbreviations used in Table 2.8 are explained in
Table 2.7. The locations of the VMEbus signals at connector Pl are
shown in Table 2.9.

VMEbus signals that are not driven by the MVME101 module appear as being
high at other modules on the bus, due to the termination resistors on
the VMEbus backplane. Such signals are put in parantheses in the
following tables.

For some VMEbus signals
or ignores them, by
termed optional signals.

the user can choose whether the MVMElOl handles
setting or removing jumpers. Such signals are

Table 2.7: Symbol Definitions

+--------+---+ I SYMBOL I DEFINITION I
+--------+---+

TP totem-pole bus driver output I
TS three-state bus driver output I
OC open-collector bus driver output
ST schmitt-trigger bus receiver input with hysteresis I

+--------+---+
IOH minimum high-level output current at 2.4 V l
IOL minimum low-level output current at 0.5 V I
IOZH maximum off-state output current at 2.7 v I
IOZL maximum off-state output current at 0.4 V l
IIH maximum high-level input current at 2.7 V
IIL maximum low-level input current at 0.4 V l

+--------+---+
Note: The values for the input/output currents listed

result in the sum of the driver-, receiver-,
resistor-currents for each signal.

2-25

in
and

Table 2.8
?Ull-up-

Table 2.8: VMEbus Signal Description

+----------+----------+---------------------------------+--------------+ I SIGNAL l PIN NO. I SIGNAL DESCRIPTION 1 ELEC. SPEC. I
+----------+----------+---------------------------------+--------------+

DOO .. D07 \ Al .. A8 I DATA BUS I !OH -3 mA I
D08 .. Dl5 Cl •• C8 I IOL 48 mA

16-bit TS-output/ST-input bidi- IOZH 20 uA I
rectional data bus for trans- IOZL -400 uA I
ferring data to and from slave IIH 20 uA

I modules. !IL -400 uA l
+----------+----------+---------------------------------+--------------+

A01 •. A07 I A30 .. A24 ADDRESS BUS !OH -3 mA I
A08 .. A23 C30 .. Cl5 IOL 48 mA

23-bit TS-output address bus IOZH 20 uA
capable of addressing up to 16M IOZL -400 uA
bytes directly.

+----------+----------+---------------------------------+--------------+
AMO .. AM2 I Bl6 .. Bl8 I ADDRESS MODIFIERS I !OH -3 mA
(AM3) (Bl9) IOL 64 mA

AM4 A23 Six TS-output signals providing IOZH 50 uA
(AM5) (Cl4) additional address information. IOZL -50 uA

AM3 and AM5 are not connected.
+----------+----------+---------------------------------+--------------+

(LWORD*) I (Cl3) LONG WORD I

I LWORD* is not connected. I
+----------+----------+---------------------------------+--------------+

WRITE* Al4 WRITE I IOH -3 mA I
l IOL 64 mA I

An active-low TS-output that IOZH 50 uA
specifies the direction of a I IOZL -50 uA I
data transfer: A high level I
indicates a read operation, a I I
low level indicates a write
operation. l I

+----------+----------+---------------------------------+--------------+
AS* Al8 ADDRESS STROBE I IOH -3 mA I

IOL 64 mA
An active low bidirectional TS- I IOZH -250 uA l
output/ST-input signal. During I IOZL -750 uA 1·
a data transfer the falling IIH -250 uA
edqe indicates a valid address II !IL -750 uA I
on the bus. During bus arbi-
tration the rising edge indica- I I
tes the end of the last cycle.

+----------+----------+---------------------------------+--------------+
DSO* Al3 DATA STROBE 0 l !OH -3 mA

IOL 64 mA
An active low TS-output that I IOZH 50 uA

I indicates a data transfer on IOZL -50 uA
the data lines DOO-D07. I

+----------+----------+---------------------------------+--------------+
I DSl* Al2 I DATA STROBE 1 I !OH -3 mA l
I IOL 64 mA I

An active low TS-output that I IOZH 50 uA I
indicates a data transfer on IOZL -50 uA I
the data lines D08-Dl5. I

+----------+----------+---------------------------------+--------------+

2-26

Table 2.8: VMEbus Signal Description (cont~d)

+----------+----------+---------------------------------+--------------+ I SIGNAL I PIN NO. I SIGNAL DESCRIPTION I ELRC. SPEC. I
+----------+----------+---------------------------------+--------------+

DTACK* Al6 DATA TRANSFER ACKNOWLEDGE I IIH -250 uA I
I !IL -700 uA I

An active low ST-input that I .
indicates the successful com- I
pletion of a data transfer. I

+----------+----------+---------------------------------+--------------+
I BERR* Cll BUS ERROR IIH -250 uA I
I !IL -700 uA I

An active low ST-input that
indicates that an unrecoverable I I error has occured during a data l
transfer. I

+----------+----------+---------------------------------+--------------+
BRO* Bl2 BUS REQUEST LEVEL 0-3 IOL 48 mA I
BRl* Bl3 IOZH -250 uA
BR2* Bl4 One of these active low signals IOZL -750 uA
BR3* BlS is an optional CC-output at the IIH -250 uA

jumpered bus priority level and IIL -750 uA
indicates that the MVMElOl
module requests bus mastership.

All four signals are inputs at
the VMEbus Requester to support
the release-on-request mode.

BR3* is also an input at the
MVMElOl VMEbus Arbiter.

+----------+----------+---------------------------------+--------------+ BGOIN*
BGlIN*
BG2IN*
BG3IN*

B4
B6
BB
BlO

BUS GRANT INPUTS LEVEL 0-3

One of these active low signals
is an optional ST-input at the
jumpered bus priority level. It
indicates to the MVMElOl VMEbus
Requester that a bus request on
the same level has been granted
by the bus arbiter. The remai­
ning three bus grant inputs are
jumpered directly to the re­
spective bus grant outputs.

IIH -250 uA I
IIL -700 uA j

BG3IN* is also an optional TP- I
output of the MVMElOl VMEbus I
Arbiter. I

+----------+----------+---------------------------------+--------------+
BGOOUT* BS BUS GRANT OUTPUTS LEVEL 0-3 IOH -800 uA l
BGlOUT* B7 IOL 16 mA
BG20UT* B9 One of these active low signals I
BG30UT* Bll is an optional TP-output at the I

jumpered bus priority level. It I
indicates to the next module in I
the bus grant daisy-chain that I
it may become bus master. The
remaining three bus grant out-
puts are jumpered directly to l
the respective bus grant inputs.I

+----------+----------+---------------------------------+--------------+

2-27

Table 2.8: VMEbus Signal Description (cont'd)

+----------+----------+---------------------------------+--------------+ I SIGNAL I PIN NO. I SIGNAL DESCRIPTION I ELEC. SPEC. I
+----------+----------+---------------------------------+--------------+

BBSY* Bl BUS BUSY \ IOL 48 mA \
IOZH -250 uA

This active low bidirectional
signal indicates that a master
module is using the data trans­
fer bus. It is an QC-output of
the VMEbus Requester and an ST-

I IOZL -900 uA I
IIH -250 uA

l IIL -900 uA

i npu t at the VMEbus Arbiter.
+----------+----------+---------------------------------+--------------+

BCLR* \ B2 BUS CLEAR \ IIH -250 uA
IIL -700 uA

This active low ST-input signal \
is driven by a multilevel bus
arbiter when a bus request of a I
higher than the current bus \
master's level is pending. On
the MVME101 BCLR* can be used I
for generating an interrupt in I I
this event. I .

+----------+----------+---------------------------------+--------------+
IRQl*... B30... INTERRUPT REQUEST LEVEL 1-7 l IIH -250 uA I
... IRQ7* ... a24 IIL -900 uA

Seven optional active low input
1
1 I

signals that generate a prio-
ritized interrupt request at I
the MPU. Level seven is the I
highest priority. I

+----------+----------+---------------------------------+--------------+
IACK* A20 INTERRUPT ACKNOWLEDGE IOH -3 mA I

An active low TS-output that
indicates an interrupt vector
fetch on the data transfer bus.

IOL 48 mA
IOZH 20 uA
IOZL -400 uA

+----------+----------+---------------------------------+--------------+
IACKIN* A21 INTERRUPT ACKNOWLEDGE INPUT I
IACKOUT* A22 INTERRUPT ACKNOWLEDGE OUTPUT I

These signals form an interrupt I
acknowledge daisy-chain through I
the interrupt requesters. On I
the MVMElOl module IACKIN* and I
IACKOUT* are directly connected. I

+----------+----------+---------------------------------+--------------+
l ACFAIL* B3 AC POWER FAILURE I IIH -250 uA I
I IIL -700 uA

An active low ST-input that I
is driven by the power supply
module. It indicates that the
DC supply voltages may be out
of the specified limits after
10 milliseconds and generates a
non-maskable interrupt.

+----------+----------+---------------------------------+--------------+

2-28

Table 2.8: VMEbus Signal Description (cont'd)

+----------+----------+---------------------------------+--------------+
I SIGNAL I PIN NO. I SIGNAL DESCRIPTION I ELEC. SPEC. I
+----------+----------+---------------------------------+--------------+

SYSFAIL* ClO SYSTEM FAILURE I IOL 48 mA I
I IOZH -250 uA I

IOZL -900 uA
IIH -250 uA
IIL -900 uA

This active low signal indica­
tes that a failure has occured
in the system. On the MVME101
it is an optional bidirectional
QC-output/ST-input, and can be
jumpered to generate an inter-
rupt at the MPU.

+----------+----------+---------------------------------+--------------+
SYSRESET* Cl2 SYSTEM RESET IOL 48 mA I

IOZH -250 uA I
This active low signal causes a IOZL -900 uA I
complete VME system reset. On IIH -250 uA I
the MVME101 it is an optional IIL -900 uA I
QC-output that is activated by
the Reset Switch and upon power I
up. Also, it is an optional I
ST-input that causes a board I
reset when asserted by another
module. I

+----------+----------+---------------------------------+--------------+
SYSCLK AlO I SYSTEM CLOCK I IOH -3 mA I

I IOL 60 mA I
An optional TP-output that de- I l
liveres the 16 MHz system clock I l
signal. I

+----------+----------+---------------------------------+--------------+
(SERCLK) I (B21) SERIAL COMMUNICATION BUS CLOCK I I
(SERDAT) (B22) SERIAL COMMUNICATION BUS DATA I

SERCLK and SERDAT are not con- I
nected. I

+----------+----------+---------------------------------+--------------+
GND A9, All, I GROUND I

AlS, Al7,
Al9, B20,
B23, C9

+----------+----------+---------------------------------+--------------+

I +5V I A32, B32,, + 5 VOLTS POWER I I
C32 I I

+----------+----------+---------------------------------+--------------+
(+5VSTB) (B31) + 5 VOLTS STAND BY POWER \ I

+SVSTB is not connected. I I
+----------+----------+---------------------------------+--------------+
I +12V I C31 I + 12 VOLTS POWER I I
+----------+----------+---------------------------------+--------------+
! -12V I A31 I - 12 VOLTS POWER I I
+----------+----------+---------------------------------+--------------+

2-29

Table 2.9: Connector Pl Signal Locations

+------+---------+---------+---------+------+

I PIN I ROW A I ROW B I ROW c I PIN I
NO. SIGNALS SIGNALS SIGNALS NO.

+------+---------+---------+---------+------+
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

I DOO
DOl

I 002
003
004
DOS
DOG
D07
GND

SYSCLK
GND
DSl*
DSO*

WRITE*
GND

DTACK*
GND
AS*
GND

!ACK*
I ACK IN*
IACKOUT*

AM4
A07
A06
AOS
A04
A03
A02
AOl

-12V
+SV

BBSY* DOB
BCLR* 009

ACFAIL* DlO
BGOIN* Dll
BGOOUT* 012
BGlIN* 013
BGlOUT* 014
BG2IN* 015
BG20UT* GND
BG3IN* SYSFAIL*
BG30UT* BERR*

BRO* SYSRESET*
BRl* (LWORO*)
BR2* (AMS)
BR3* A23
AMO A22
AMl A21
AM2 A20

(AM3) Al9
GNO Al8

(SERCLK) I Al 7
(SERDAT) Al6

GND Al5
IRQ7* Al4
IRQ6* Al3
IRQS* Al2
IRQ4* All
IRQ3* AlO
IRQ2* A09
IRQl* AOB

(+SVSTB) +12V
+sv +sv

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

+------+---------+---------+---------+------+

2.9.2. VMEbus Data Transfer

The category of VMEbus signals which is responsible for transferring
data between master and slave modules is termed the Data Transfer Bus
(DTB) . On the MVMElOl module, the OTB drivers and receivers are
enabled and disabled by the VMEbus Requester upon acknowledging and
releasing bus mastership. For meeting the data transfer protocol and
timing requirements of the VMEbus Specification, the VMEbus Interface
logic generates its own signal handshaking and timing, independently of
the MPU. Figure 2.10 shows a flow chart of the DTB interface operation.

2-30

Figure 2.10: VMEbus Data Transfe~ Flow Chart

+---+
v l

/-----------------\ no J
< Bus available ? >-----------------------+

+~~~~~~~~~~:::~~~~~~+ +---------1---------+ I
Assert A01-A23, Release A01-A23 I
AM0-AM2, AM4, AM0-AM2, AM4, -------->
IACK*, WRITE* !ACK*, WRITE* I

+-------------------+ +-------------------+ I
~ l

+-------------------+
I Assert AS* I
+-------------------+

I
v

/---------------\
I Read cycle \ write

< or >-----------------------+
\ write cycle ? I I
\---------------1 I

+--------------->!read +---------------> <---------------+
v v I

no //-----~;~~~;----\\ /!-----~;~~~;----\\ no l
+------< and BERR* > < and BERR* >------+

\ negated ? I \ negated ? I
\---------------/ \---------------/

lyes Ives
v v

+-------------------+ +-------------------+
I Assert DSO*/DSl* I I Assert DOO-Dl5 I
+-------------------+ +-------------------+

+--------------->! I
I /-------~-------\ +---------~---------+
I no I DTACK* \ I Assert DSO*/DSl* I
+------< or BERR* > +-------------------+

\ asserted ? I !<---------------+
\---------------! v I

lyes /---------------\ I
v I DTACK* \ no I

+-------------------+ < or BERR* >------+
! Negate DSO*/DSl* I \ asserted ? /
+-------------------+ \---------------! I

~ ~yes I
//-----;~~~=-----\\ yes j--;~i~~~~-~~~=~i;--+I I

< modify-write >------+ I Negate DSO*/DSl* l
\ cycle ? I +-------------------+ I
\----------~----! I

nol +---------~---------+ l
+---------------------->! Negate AS* 1---------+

+-------------------+

2-31

2.9.3. Address Modifiers

The address modifier signals are used to provide slave modules on the
VMEbus with additional addressing information, as defined in the VMEbus
Specification Manual. The VMElOl supports a subset of the specified
address modifier codes which is listed in Table 2.10. Note that the
signals AM3 and AMS are not driven by the VMEbus Interface, but kept in
the high state by the termination resistors on the VMEbus backplane.

Table 2.10: Address Modifier Codes

+------+--------------------+--+
I AM I ADDRESS MODIFIER I l

CODE- 5 4 3 2 l 0 FUNCTION I
+------+--------------------+--+

3E 1 1 1 1 1 O standard supervisory program access l
30 l 1 1 1 O 1 standard supervisory data access
3A 1 1 1 0 1 O standard non-privileged program access
39 1 l 1 0 0 1 standard non-privileged data access
2D 1 0 1 1 0 1 short supervisory I/O data access

I 29 1 0 1 0 0 1 short non-privileqed I/O data access
+------+--------------------+--+

2.9.4. Time-Out Counters

The MVME101 contains two time-out counters for supervising VMEbus
accesses: the Bus Request Time-Out Counter, and the Data Transfer Time­
out Counter. Both counters can be independently enabled and disabled
under software control. Figure 2.11 shows how the time out counters are
interconnected with other functional blocks on the MVMElOl.

The Bus Request Time-Out (BRTO) Counter is enabled when bit 6 in the
Module Control Register is set. It starts running when the MPU has
asserted an off-board address, and the module is not currently the bus
master, i. e. when a bus request is initiated by the Address Decoder.
Note that if a Bus Block Transfer Request was asserted, the BRTO Counter
is not started until the first off-board access. Once being started,
the BRTO Counter asserts a Bus Error at the MPU and sets bit 6 in the
Module Status Register, if the bus does not become available within 128
microseconds.

The Data Transfer Time-Out (OTTO) Counter is enabled when bit 7 in the
Module Control Register is set. It starts running when the MPU has
asserted a data strobe signal, and the bus is available, i. e. at the
beginning of an off-board data transfer cycle. The OTTO Counter asserts
a Bus Error at the MPU and sets bit 7 in the Module Status Register, if
the data transfer is not acknowledged within 8 microseconds.

Any assertion of BERR* causes the MPU to abort the started cycle and to
enter an exception routine. In this routine the MPU should test bit 6
and bit 7 in the Module Status Register to determine the source of the
Bus Error to be either the BRTO Counter, or the OTTO Counter, or the
addressed device, and then branch to the appropriate service routine.
After testing the bits, the MPU should perform a dummy write into the
Module Status Register to clear the bits 6 and 7.

2-32

Figure 2.11: Time Out Counters

UDS*' CLOCK -tMH"i!

:d OSCILLATOR. L.DSJ#!

D5 DATA

_
,..])TTQ'I!

MODULE tlDTrO EDTTO TRAN.5/:£1(

c oN r1toL. HSlffO ABAY.,. j -., TIHE-01/T

R.£6/STE/1,
'-'

fiBRTO BUS

BADR,,.. ::.:r RE'QUHr
BRTO:&-

HODUt..E w_])TTOlt

srArus ~ 8RT0ot ABAV• J. TIME-our

REGISTER I"" '
MPU "" :::.

<q
Ir. BRro,,.. ,.., t:

BERRJlr h. JJTTO'I' ::..
I"'

~ GB~RR"'
f'F

ADDRES!> VHE'BVS v-) ''\
Z>ECOl>EP.

-...
REQUESTER. 1' v

l
j_

"' VMEBVS
~ DATA TRANS UK BUS ~ INTERFACE t'\.

7

The Bus Request Time-Out Counter should be used with care. If the
MVMElOl module does not reside on the highest bus arbitration level,
and if another module occupies the bus for transferring large blocks of
data, it may often take more than 128 microseconds until a bus request
of the MVMElOl is granted. As software recovery from a Bus Error is a
problematic task under certain conditions, it might sometimes not be
allowed to abort an off-board cycle. In such cases the BRTO Counter
must be disabled, or the off-board access must be embedded in a routine
that is protected by a Bus Block Transfer Request.

The Data Transfer Time-Out Counter should be constantly enabled in all
systems that do not contain very slow slave modules with access times of
more than 8 microseconds. This prevents the MPU from being hung up in
case of system malfunctioning, such as addressing defect devices or non
existant locations.

2.9.5. Interface Options

Several VMEbus signals are optionally used by the MVMElOl Monoboard
Computer. By setting or removing jumpers, the module can be configured
either as the system controller module in a VMEbus system (System Con­
troller Configuration) , or as an MPU module on a selectable priority
in a multiprocessor VMEbus system (Standard Configuration) , or as an
isolated monoboard system that resides only physically on a VMEbus
backplane (Isolated Configuration) . The jumper configurations for
these different modes of operation are described in Chapter 3.

2-33

2.9.5.1. System Controller Configuration

When the MVMElOl is configured as the VMEbus system controller, the
following options are selected:

VMEbus Arbiter:

VMEbus Requester:

Interrupt Handler:

System Utilities:

The VMEbus Arbiter arbitrates bus requests on
level 3 and drives BG3IN*.

The VMEbus Requester operates on level 3. It
receives BG3IN* from the VMEbus Arbiter and drives
BG30UT*. The remaining three bus grant outputs are
not connected.

The Interrupt Handler receives interrupt requests
on the jumpered levels.

SYSFAIL*
Register
Register.
interrupt.

is both driven through the Module Control
and received through the Module Status
Also, it may be jumpered to generate an

SYSRESET* is bidirectional. It is driven by the
Reset Switch and upon power-up. When received from
a power supply module, it causes a board reset.

SYSCLK is driven bv the on-board clock oscillator.

2.9.5.2. Standard Configuration

When the MVME101 is configured as a non-controller MPU module in a
VMEbus system, the following options are selected:

VMEbus Arbiter:

VMEbus Requester:

Interrupt Handler:

System Utilities:

The VMEbus Arbiter is disconnected from BG3IN* and
thus disabled.

The VMEbus Requester receives BGIN* an0 drives
BGOUT* on the selected priority level. The remai­
ning three bus grant inputs are jumpered directly
to the respective bus grant outputs.

The Interrupt Handler receives interrupt requests
on the jumpered levels.

SYSFAIL*
Register
Register.
interrupt.

is both driven through the Module Control
and receivea through the Module Status
Also, it may be jumpered to generate an

SYSRESET* is an input only. When received from
another module, it causes a board reset. The Reset
Switch has no effect on the bus.

SYSCLK is not connected.

2-34

2.9.5.3. Isolated Configuration

When the MVME101 is configured as an isolated monoboard computer, it
can be placed on a VMEbus backplane without effecting other modules in
the system. In this configuration, the MVME101 takes its power supply
from the VMEbus, but neither drives nor responds to any bus signal,
with the exception of ACFAIL*.

VMEbus Arbiter:

VMEbus Requester:

Interrupt Handler:

System Utilities:

The VMEbus Arbiter is disconnected from BG3IN* and
thus disabled.

The VMEbus Requester is disconnected from the bus.
Thus the DTB drivers remain constantly in the high­
impedance state. All bus grant inputs are jumpered
directly to the respective bus grant outputs.

The Interrupt Handler does not receive any inter­
rupt requests from the VMEbus.

SYSFAIL* is not connected.

SYSRESET* is not connected. The board is reset by
Reset Switch and upon power-up.

SYSCLK is not connected.

2.10. RESET AND HALT FUNCTIONS

The reset structure of the MVME101 is shown in Figure 2.12. There are
four sources on the module which perform reset functions: The Power-Up
Reset cicuit, the Reset Switch, the MPU executing a RESET operation,
and the MPU being halted. The interaction between the on-board reset
signals and the VMEbus depends on the configuration of jumper area K3.

For the three selectable VMEbus Interface options that are described in
Paragraph 2.9.5, the effects of all reset sources on the on-board
devices and on the VMEbus signals SYSRESET* and SYSFAIL* are listed in
Table 2.11.

The Power-Up Reset cicuit and the Reset Switch have identical functions:
MPU, PCil, PCI2, PIA, PTM, MCR, and VMEbus Requester are reset,
and the Address Decoder is initialized for the reset vector fetch. When
configured as System Controller, the VMEbus SYSRESET* is asserted.

In the System Controller and in the Standard Configuration the assertion
of SYSRESET* on the VMEbus produces the same effects as the Reset
Switch. In the Isolated Configuration a VMEhus reset is ignored.

When the MPU executes a RESET instruction, only the on-board I/0-devices
(PCil, PCI2, PIA, PTM) are reset. No other devices are affected.

When the MPU is halted because of a double bus fault,
for negating an eventual Bus Block Transfer Request,
points on the Display are lit to indicate the halted
System Controller and in the Standard Confiquration
signal SYSFAIL* is asserted. -

2-35

the MCR is reset
and the decimal
state. In the
also the VMEbus

Figure 2.12: Reset Structure

ADDRESS .A ;::....

H ROM Re5£T VECToR)j MPU
DECODER v

T + r
+ ~

POWER·UP LOlll£SJk PTM,PIA1

RESEr
~

PCl1,Pl12

·--'

MODULE' ~
HALT'/: CONTROL. IQ - ...

RE6/STER ~

KJ

L-f>
ro-o,
~ ,...._1 SYSFAIL*

RES£r REJOUT"'
1'"' ~I

SW/TOI RESIN"' 1-C n ~Y$RESET"" ..._
I '"'"1-
Lo_o_.

5YSRES'1r V/"IE6U5 v
R£QUE5TER ,,

<ii 7

Table 2.11: Reset and Halt Functions

+-------------------+----------------------+---------------------------+
I RESET SOURCE I MODULE CONFIGURATION I AFFECTED DEVICES I
+-------------------+----------------------+---------------------------+
I Power-Up Reset, System Controller \ MPU, PCil, PCI2, PIA, PTM, I

Reset Switch MCR, Addr.Decoder, VMEbus I
I I Requester, VME SYSRESET*

+----------------------+---------------------------+
Standard Config. I MPU, PCil, PCI2, PIA, PTM,\

I MCR, Addr.Decoder, VMEbus j
Requester

+----------------------+---------------------------+
I Isolated Config. I MPU, PCil, PCI2, PIA, PTM,I
I MCR, Address Decoder I

+-------------------+----------------------+---------------------------+
VMEbus SYSRESET* System Controller, MPU, PCil, PCI2, PIA, PTM,\

Standard Config. MCR, Addr.Decoder, VMEbus \
Requester

+----------------------+---------------------------+
I Isolated Conf ig. I none l

+-------------------+----------------------+---------------------------+
I RESET Instruction I any I PCil, PCI2, PIA, PTM I
+-------------------+----------------------+---------------------------+
I MPU Halted j System Controller I MCR, VMEbus SYSFAIL* I

Standard Config. I
I +----------------------+---------------------------+
I I Isolated Config. I MCR I
+-------------------+----------------------+---------------------------+

2-36

2.11. INTERRUPT HANDLER

The Interrupt Handler is responsible for encoding interrupt requests
coming from on-board devices or from the VMEbus, for asserting the
highest pending interrupt request at the MPU, and for managing the
interrupt acknowledge cycle. The MC68000 Data Sheet in Appendix A
gives a detailed description how the MPU processes interrupts. A block
diagram of the Interrupt Handler and its interconnections with the
VMEbus and the on-board devices is shown in Figure 2.13.

Figure 2.13: Interrupt Handler

A80Rr

..:. ;::.. sw1rcH

... ACFAIL *

MODULE
BBTR

C.ONTROL

1 /t.tGISTtR

~CL/l!.JK ,...

PCIZ

PCl'f

PIA

K6 AVIRQ~ ...
~

IRBC'R* r - ,., A\llRQo-*'

PTH IRPCIZ.>I. 1'"' '""I AVIRQS-,t
~

"' IR'PCl'f.!I< j'-' vi AVIR041k
~ i'-' V" Ill !RPIA* ;{) I AVIRQ3« -ti 1<3
l:. ro-6' IR. PTl"1¥r I '-'"1 AVlllQZ• ::..

IRFAIL_., '(; v, AV1RQ-1* _. SY.SFAIL.1/r :0 o' [>
10 o 1 L -""'-'

io o1 INTERRuPr

~o_o~ HANDLER
KS

--" IRQ? .. BIRQ'I* !:cJ- :'1 uv1RQ'1J1C ~

... '"'a',. Bl ltGH•* 1'"' ~I l./VIRQ(, .. -.
..>.

1RQ5"' ,BIRQS'1< ~ '-'"1 l)VIRQS¥
.....

IPL 1/1'1(- IPLZ~) ...
IRQ4'1t BIRQ4* I-' '-'"1 UVIRQ4•

.....
A -,, ..

11<'03.,. BIRQJ« '(::;vi UV/R().3•-. FC{7-FC.Z

1RQZ * /SIRQZa. I VI UVIR02."'-.
'f"

A ..
IRQ-f'1 BlflQ-4.Jt j-' vi UV/RQ,f., AJl;t-A63 _.

;::-'_v_,

}VIRQ• MPV

~
VM£8U5 BAJJR* AD.MESS VPA,,.-

K _.
REQUESTER,.-])£CO'Dl11.

u
YMEBU.S A~

K INrf/llFACt 1\..- VECTOR NO. ACQl./15/TION ..,, v

"' 7

2-37

Interrupt requests are categorized into two groups: seven prioritized
Auto-Vectorized Interrupt Requests (AVIRQl* - AVIRQ7*) , which are
acknowledged in the automatic vectoring mode, and seven prioritized
User-Vectorized Interrupt Requests (UVIRQl* - UVIRQ7*) , where the
interrupt vector number is supplied by the interrupting device. Auto­
Vectorized Interrupt Requests may be caused by the on-board I/0-devices,
by the Abort switch, or by the VMEbus signals ACFAIL*, SYSFAIL* and
BCLR*. The User-Vectorized Interrupt Requests represent the VMEbus
interrupt signals IRQl* - IRQ7*.

The Interrupt Handler arbitrates incoming interrupt requests according
to their priority levels, and encodes the highest pending request on the
interrupt inputs of the MPU. When the interrupt is acknowledged, the
Interrupt Handler decodes the priority level of the MPU and compares it
with the interrupt requests. If an Auto-Vectorized Interrupt Request is
pending on the acknowledged priority, the Interrupt Handler asserts the
VPA* signal, and the MPU uses the interrupt autovector of this priority
level as a pointer to the exception routine. Otherwise, the Interrupt
Handler assumes an off-board interrupter, and initiates an interrupt
acknowledge cycle on the VMEbus for acquiring the user-vector number.

The priority sequence of the fourteen available interrupt requests can
be represented as follows:

Highest level:

Lowest level:

AVIRQ7*
UVIRQ7*
AVIRQ6*
UVIRQ6*
AVIRQ5*
UVIRQ5*
AVIRQ4*
UVIRQ4*
AVIRQ3*
UVIRQ3*
AVIRQ2*
UVIRQ2*
AVIRQl*
UVIRQl*

(non-maskable
(non-rnaskable

The devices capable of asserting Auto-Vectorized Interrupt Requests are
not fixed at appointed priority levels, with exception of the Abort
switch and the ACFAIL* signal, which are hard-wired to AVIRQ7*. All
other devices may be jumpered to any of the six interrupt request inputs
AVIRQl* - AVIRQ6* on the jumper area K6. Also, two or more of the
interrupt outputs of these devices may be connected in a wired-or
configuration on one common priority level.

VMEbus interrupt requests used by the Interrupt Handler must be jumpered
to the according User-Vectorized Interrupt Requests of the same priority
level in a one-to-one configuration on the jumper area KS. Also, they
must not be wire-or connected, as that would short the interrupt request
signals on the VMEbus.

The configuration of the jumper areas K5 and K6 is described in
Paragraphs 3.4.3 and 3.4.4.

2-38

2.11.1. Software Abort and AC Failure

The Abort switch on the front panel and the VMEbus signal ACFAIL* are
both connected with the Auto-Vectorized Interrupt Request AVIRQ7*, thus
causing a non-rnaskable interrupt of the highest oriority. To determine
the appropriate service routine, the status of the ABORT* and ACFAIL*
signals can be read in the Module Status Register.

2.11.2. System Failure

When the MVME101 is configured as the System Controller, the VMEbus
signal SYSFAIL* can be jurnpered to generate an Auto-Vectorized Interrupt
Request on a selectable priority. In case of a system failure, lower
priority programs would then be interrupted, and the MVME101 enters a
service routine. The status of SYSFAIL* can be read in the Module
Status Register.

2.11.3. Bus Clear

If the MVMElOl resides in a system that contains other modules with a
higher bus priority, the VMEbus signal BCLR* should be jumpered to
an Auto-Vectorized Interrupt Request. This provides the bus arbiter
with the means to interrupt lower priority programs on the MVME101 that
are executed in the block-transfer mode, when another module has a bus
request of a higher priority pending. BCLR* can only cause an interrupt
when the Bus Block Transfer Bit in the Module Control Register is set.
Otherwise BCLR* is ignored, as the VMEbus Requester then operates in
the release-on-request mode. However, the status of BCLR* can be read
at any time in the Module Status register.

2.11.4. On-Board I/O Interrupts

All interrupt request outputs of the on-board I/0-devices can be
jumpered to generate Auto-Vectorized Interrupt Requests on selectable
levels.

2.11.5. VMEbus Interrupts

Any or all of the VMEbus interrupt request signals IRQl* - IRQ6* may be
jumpered to generate User-Vectorized Interrupt Requests on the according
priorities. The appropriate interrupt vector numbers are fetched from
the interrupter in a VMEbus interrupt acknowledge cycle.

2-39

2.12. TIMING SPECIFICATIONS

This paragraph provides detailed timing specifications of the MVMElOl
module for local memory access and for VMEbus operations. The tabulated
maximum and minimum times are guaranteed over the recommended operating
conditions, as specified in Table 1.1. Whenever possible, typical
times for operation at 25 C temperature and. 5.00 V supply voltage are
given.

The following list summarizes the operations described in this paragraph
and the respective figures and tables:

Local Memory Read Cycle Figure 2.14, Table 2.12, Page 2-41
Local Memory Write Cycle Figure 2.15, Table 2.13, Page 2-42
VMEbus R1ead Cycle Figure 2.16, Table 2.14, Page 2-43
VMEbus W:r i te Cycle Figure 2 .17, Table 2.15, Page 2-44
VMEbus R1equest and Acquisition· .•. Figure 2.18, Table 2.16, Page 2-45
VMEbus R1elease and BG Propagation Figure 2.19, Table 2.17, Page 2-46

For local memory accesses, the specifications include both the timing
supplied by the MPU and the Address Decoder, and the timing requirements
for the installed memory devices. As the number of wait cycles inserted
by the MPU during local ROM accesses is selectable, the specification
of the local memory read cycle timing includes all available options
from O to 3 wait cycles (in the tables abbreviated W.C.) • For read
operations from local RAM, the times specified for 0 w.c. are valid.

For VMEbus operations, this paragraph specifies the timings that are
supplied by the MVMElOl module for interactions with other modules on
the bus. No timing requirements for these modules are qiven, but it is
assumed that they comply with the VMEbus Specification Rev.B. Whenever
possible, the timing relations between MPU signals and VMEbus signals
are specified for bus operations.

The signal mnemonics used in the following figures and tables are
identical with the signal names used in the schematic diagrams in
Chapter 4. To distinguish between on-board and off-board signals, the
mnemonics of all on-board signals are put in parantheses.

2-40

Figure 2.14: Local Memory Read Cycle

{8MllZ)

(Au)

(Dx")

(AS«)

Table 2.12: Local Memory Read Cycle Timing

+----+------------------------------------+-----+-----+-----+-----+----+
I NO I PARAMETER I w.c. I MIN I TYP I MAX JUNITI
+----+------------------------------------+-----+------+-----+-----+----+

1
2
3

4

Supplied Memory Access Timing:

(Axx) Valid to (MxSEL*) Low
(Axx) Valid to (DRD*) Low
(MxSEL*) Wiath Low

(DRD*) Width Low

0-3 90 ns
0-3 35 ns

0 190 260 ns
1 315 385 ns
2 440 510 ns
3 565 635 ns
0 240 310 ns
1 365 435 ns
2 490 560 ns
3 615 685 ns

5 (MxSEL*) High to (Axx) Invalid 0-3 10 ns
6 (DRD*) High to (Axx) Invalid 0-3 25 ns

+----+------------------------------------+-----+-----+-----+-----+----+
I ~=~~::_~==~~~==-~=~~~:=~=~~=~ I I I

7 (DRD*) Low to (Dxx) Low Impedance 0-3 0 I 1
1

nnss I

8 (MxSEL*) Low to (Dxx) Low Imped. 0-3 0
9 (Axx) Valid to (Dxx) Valid 0 290 I ns

1 415 I ns
2 540 I ns
3 665 ns

10 (DRD*) Low to (Dxx) Valid 0 225 ns
1 350 ns
2 475 ns
3 600 ns

11 (MxSEL*) Low to (Dxx) Valid 0 155 ns
1 280 ns
2 405 ns
3 530 ns

12 (DRD*) High to (Dxx) Invalid 0-3 0 ns
13 (MxSEL*) High to (Dxx) Invalid 0-3 0 ns
14 (DRD*) High to (Dxx) High Imped. 0-3 140 ns
15 I (MxSEL*) High to (Dxx) High Imped. 0-3 125 ns

~----+------------------------------------+-----+-----+-----+-----+----+

2-41

Figure 2.15: Local Memory Write Cycle

SD S< 52 53 s~ ,, 56 S'> .SD

(AMHL)

{A><><)

(D"")

(WRITE¥.)

(AH)

(1JP5f.1 LJ15•)

(J>TACI<«) ,.
{11><5EL ..)

5"

(l/l>WIC ... , I f)WR•)

{DRD•) zm \\\\\\\\\\\

Table 2.13: Local Memory Write Cycle Timing

+----+--+-----+-----+-----+----+
I NO I PARAMETER I MIN I TYP I MAX lUNITI
+----+--+-----+-----+-----+----+

1 l (Axx) Valid to (MxSEL*) Low 90 I I ns
2 (Axx) Valid to (LDWR*), (UDWR*) Low 115 I ns
3 (Dxx) Valid to {LDWR*), (UDWR*) Low 35 I ns
4 (MxSEL*) Width Low 315 I 385 ns
5 (LDWR*), (UDWR*) Width Low 240 310 ns
6 (LDWR*), (UDWR*) High to (Dxx) Invalio 10 I ns
7 (MxSEL*) High to (Axx) Invalid 10 l ns
8 (LDWR*), (UDWR*) High to (Axx) Invalid 10 I ns

+----+--+-----+-----+-----+----+

2-42

Figure 2.16: VMEbus Read Cycle

(3HHl)

(AM)

(Dn)

(1mru)

(AHJ

(VDS«, LDS«)

(DTACIU1)

D.xx

IJIUTE't<
~----l'li\..---~ , ___ ___.. __

Ah:

..

Table 2.14: VMEbus Read Cycle Timing

+----+------------------------------------+-----+-----+-----+-----+----+
I NO I PARAMETER !NOTES! MIN I TYP I MAX IUNITI
+----+------------------------------------+-----+-----+-----+-----+----+

1 (AS*) Low to AS* Low I l 60 l 75 I 90 I ns
2 Axx Valid to AS* Low 40 l ns
3 DTACK* High to DSO*, DSl* Low 1 20 I 45 75 ns
4 Dxx High Imped. to DSO*, DSl* Low 180 ns
5 WRITE* High to DSO*, DSl* Low 120 I ns
6 AS* Low to DSO*, DSl* Low 2 5 15 35 ns
7 Dxx Valid to (Dxx) Valid 5 I 10 15 ns
8 DTACK* Low to (DTACK*) Low 10 I 20 35 ns
9 DTACK* Low to AS* High 10 ns

10 DTACK* Low to DSO*, DSl* High 10 I 250 ns
11 AS* High to Axx Invalid 0 ns
12 DSO*, DSl* High to WRITE* Invalid 65 I ns
13 AS* Width High 195 l ns
14 DSO*, DSl* Width High 210 I ns

+----+------------------------------------+-----+-----+-----+-----+----+
Note 1
Note 2

Provided that AS* is low.
Provided that DTACK* is high.

2-43

Figure 2.17: VMEbus Write Cycle

so s~ sz .l.3 H so

(BM/./l)

(A,.,,) ~t77t1 ----~~~~~~~~~~~~~~~~~---> «ITIT <
(.DJtX) t22t~~2222~ < '--~~~~~~~~~~~~~~~~~~---'>~~~~-
(WRIT"E !Ir) 71__1111;zz \ !7ZIOlll/l
(AS.-)

lf//)5 "'I L D.S •)

(DTAC/(Jk)

Table 2.15: VMEbus Write Cycle Timing

+----+-------------------------------------+-----+-----+-----+-----+----+
I NO I PARAMETER !NOTES! MIN I TYP I MAX IUNI~I
+----+------------------------------------+-----+-----+-----+-----+----+

1 (AS*) Low to AS* Low I I 60 75 I 90 ns
2 Axx Valid to AS* Low 40 I ns
3 DTACK* High to Dxx Low Impedance 1 25 50 75 ns
4 DTACK* High to DSO*, DSl* Low 1 95 125 l 160 ns
5 WRITE* Low to DSO*, DSl* Low 165 . ns
6 Dxx Valid to DSO*, DSl* Low 45 I ns
7 AS* Low to DSO*, DSl* Low 2 65 160 260 ns
8 DTACK* Low to (DTACK*) Low 10 20 I 35 ns
9 DTACK* Low to AS* High 10 ns

10 DTACK* Low to DSO*, DSl* High 10 250 ns
11 AS* High to Axx Invalid 0 ns
12 DSO*, DSl* High to Dxx Invalid -20 ns
13 DSO*, DSl* High to WRITE* Invalid 15 ns
14 AS* Width High 195 ns
15 DSO*, DSl* Width High 340 ns

+----+------------------------------------+-----+-----+-----+-----+----+
Note 1
Note 2

Provided that AS* is low.
Provided that DTACK* is high.

2-44

Figure 2.18: VMEbus Request and Acquisition

(8MH!)

(Axx)

(D;.x)

{llRITH.)

(IJTACI<#<)

Table 2.16: VMEbus Request and Acquisition Timing

+----+------------------------------------+-----+-----+-----+-----+----+
I NO I PARAMETER INOTESI MIN I TYP I MAX !UNIT!
+----+------------------------------------+-----+-----+-----+-----+----+
I 1 (AS*) Low to BRx* Low I 80 I 265 I ns I

2 BGxIN* Low to BRx* High 1 140 I 335 ns
3 BGxIN* Low to BBSY* Low 1 55 l 250 ns
4 BGxIN* Low to Axx, WRITE* Valid 1 25 225 ns
5 BGxIN* Low to Dxx Valid (write) 1,3 30 235 ns
6 BGxIN* Low to Strobes Low Imped. 1 15 200 ns
7 AS* High to BBSY* Low 2 55 250 ns
8 AS* High to Axx, WRITE* Valid 2 25 225 ns
9 AS* High to Dxx Valid (write) 2,3 30 235 ns

10 AS* High to Strobes Low Imped. 2 15 200 ns
11 Axx, WRITE* Valid to AS* Low 40 60 90 ns
12 AS* Low to DSO*, DSl* Low (read) 3 5 15 35 ns
13 DTACK* High to DSO*,DSl* Low (read) 4 20 45 75 ns
14 DTACK* High to Dxx Valid (write) 4 25 50 75 ns
15 Dxx Valid to DSO*,DSl* Low (write) 45 80 120 ns

+----+------------------------------------+-----+-----+-----+-----+----+
Note 1
Note 2
Note 3
Note 4

Provided that the previous master has released the bus.
Provided that the bus request has been granted.
Provided that DTACK* is high.
Provided that AS* is low.

2-45

Figure 2.19: VMEbus Release and Bus Grant Propagation

(SMHt)

(A~~) ---------~> ««<««««
-------~~>>------~~H((~((~((~<~<<~G~«~----~---

(WRIT£*) 011700/tlX\\\\\\\\\'\\
(A.S.lt)

(llDJJl:1 lD$1:) _________ __,/ \\\\\\\\\\\\\\\\\\\\\\\\\

{]JTA CI(¥)

Table 2.17: VMEbus Release and Bus Grant Propagation Timing

+----+--+-----+-----+-----+----+
I NO I PARAMETER I MIN I TYP I MAX \UNIT\
+----+--+-----+-----+-----+----+
I 1 I DSO*, DSl* High to Dxx Invalid (write) -20 I ns

2 DSO*, DSl* High to DTB High Impedance 5 35 80 ns
3 AS* High to DTB High Impedance 5 220 ns
4 DTB High Impedance to BBSY* High 20 40 60 ns
5 BGxIN* Low to BGxOUT* Low 45 225 ns
6 BGxIN* High to BGxOUT* High . 45 225 ns ,

+----+--+-----+-----+-----+----+

2-46

CHAPTER 3

INSTALLATION

3.1. INTRODUCTION

This chapter provides the user of the MVMElOl monoboard computer with
the unpacking, inspection, hardware preparation and installation pro­
cedures.

3.2. UNPACKING INSTRUCTIONS

+--+
IF THE SHIPPING CARTON IS DAMAGED UPON RECEIPT, REQUEST THAT
CARRIER'S AGENT BE PRESENT DURING UNPACKING AND INSPECTION OF
THE MODULE.

+--+
Unpack the MVMElOl monoboard computer from its shipping carton. Refer to
the packing list and verify that all items are present. Save the packing
material for storing or reshipping the module.

+--+ l AVOID TOUCHING AREAS OF MOS CIRCUITRY. STATIC DISCHARGE CAN I
DAMAGE INTEGRATED CIRCUITS. I

+--+

3.3. INSPECTION

The module should be inspected upon receipt for broken, damaged or
missing parts and for physical damage to the printed circuit board.

3.4. HARDWARE PREPARATION

This paragraph describes the hardware preparation of the MVMElOl module
prior to system installation. That includes configuring the jumper
areas to select the various optional functions of the module, and pro­
gramming the Address Decoder PROM according to the desired address map.

Figure 3.1 illustrates the physical location of each jumper area on the
module. Table 3.1 lists the function of each jumper area and refers to
the detailed descriptions in Paragraphs 3.4.1 through 3.4.9.

3-1

Figure 3.1: MVME101 Jumper Area Locations

·u ..
'15

:oKZ

:o·,
1<4

·o·· c=J ..,
"'

'13

·o·· 1'1

K'13 KJflf

.-------. --' ----''~---Ill'--~I ..._I ---I ., 1(41/ 6 ., .,., ., ,,, ,, ..,, .., ""

4 nK.f5
..,5LJ

3-2

Table 3.1: MVMElOl Jumper Areas

+--------+--------------------+-------------------------------+--------+
I JUMPER l FUNCTION I OPTIONS I PARAGR. I
+--------+--------------------+-------------------------------+--------+
I

Kl, I VMEbus Requester 1 Select level 0, 1, 2, or 3, \ 3. 4 .1 I' ..

K2 Priority Level or isolated configuration. I
+--------+--------------------+-------------------------------+--------~·

1
K3 VMEbus System Enable/disable SYSCLK output, j 3.4.2 /

Control Functions enable/disable SYSFAIL*, I
enable/disable RESET* output,
enable/disable RESET* input,
enable/disable VMEbus Arbiter.

+--------+--------------------+-------------------------------+--------+
l K4 I L<;>cal ROM Access I Insert 0, 1, 2, or 3 wait I 3.4.9 I

Time cycles. l
+--------+--------------------+-------------------------------+--------+

KS User-Vectorized Enable/disable VMEbus inter- \ 3.4.3 I
Interrupt Requests rupt request inputs IRQl*, I

IRQ2*, IRQ3*, IRQ4*, IRQ5*, I I
IRQ6*, IRQ7*.

+--------+--------------------+-------------------------------+--------+
K6 Auto-vectorized Enable/disable interrupt re- I 3.4.4 I

Interrupt Requests quest inputs from PCil, PCI2, I
PIA, PTM, SYSFAIL*, BCLR*,
and select their priorities. I

+--------+--------------------+-------------------------------+--------+
K7, Serial Ports Configure SPl and SP2 as Data I 3.4.5 I

Kl5 Configuration Set or Data Terminal, and for
synchronous or asynchronous
operation.

+--------+--------------------+-------------------------------+--------+
K9, Serial Interface Configure interrupt outputs \ 3.4.6

KlO Control and control inputs of PCil
and PCI2. I

+--------+--------------------+-------------------------------+--------+
l Kll, Memory Sockets Configure signal locations at I 3.4.8 I

Kl2, Configuration the memory socket pairs MEMl, I I
Kl3, MEM2, MEM3 and MEM4 according l
Kl4 to the used devices. \

+--------+--------------------+-------------------------------+--------+ I Kl6 I PTM Connections l ~onfigure PTM clock and gate I 3.4.7 l
inputs. I

+--------+--------------------+-------------------------------+--------+

3-3

3.4.1. VMEbus Requester Priority

The jumper areas Kl and K2 determine the priority level on which the
VMEbus Requester will operate. On K2 the bus request output signal of
the VMEbus Requester is connected with the appropriate bus request line,
on Kl it is placed in the corresponding bus grant daisy-chain. Also, on
K;" the unused bus grant inputs are jumpered to the respective bus grant
outputs.

When the MVME101 is used as the VMEbus system controller, and in any
system containing an option ONE single level VMEbus arbiter, the VMEbus
RE~quester must be placed on level 3. For use with a multilevel arbiter,
any one of the four priority levels may be selected. When configured as
iBolated module, the VMEbus Requester is disconnected from the bus.

Original configuration: VMEbus Requester on level 3

Figure 3.2: Jumper Area Kl

VMEbus
Re?quester Kl

+-------+
VMEbus

Signals

BGIN* -----+ 1 2 +---- BGOIN*
I I

BGOUT* ----+ 3 4 +--- BGOOUT*
I I

BGIN* -----+ 5 6 +---- BGlIN*
I I

BGOUT* ----+ 7 8 +--- BGlOUT*
I I

BGIN* -----+ 9 10 +---- BG2IN*
I I

BGOUT* ----+ 11 12 +--- BG20UT*
I I

BGIN* -----+ 13 14 +---- BG3IN*
I I

BGOUT* ----+ 15 16 +--- BG30UT*
+-------+

Figure 3.3: Jumper Area K2

VMEbus
Requester K2

VMEbus
Signals

+-------+
BROUT* ----+ 1 2 +------ BRO*

I I
BROUT* ----+ 3 4 +------ BRl*

I I
BROUT* ----+ 5 6 +------ BR2*

I I
BROUT* ----+ 7 8 +------ BR3*

+-------+

Table 3.2: VMEbus Requester Priority Selection

+------------------------------------+---------------------------------+
I Kl and K2 CONNECTIONS I SELECTED PRIORITY LEVEL I
+------------------------------------+---------------------------------+
I Kl: 1-2, 3-4, 6-8, 10-12, 14-16 I VMEbus Requester on level 0 I

K2: 1-2
+------------------------------------+---------------------------------+
I Kl: 2-4, 5-6, 7-8, 10-12, 14-16 I VMEbus Requester on level 1 I

K2: 3-4 I
+------------------------------------+---------------------------------+
I Kl: 2-4, 6-8, 9-10, 11-12, 14-16 l VMEbus Requester on level 2 l

K2: 5-6
+------------------------------------+---------------------------------+
I Kl: 2-4, 6-8, 10-12, 13-14, 15-16 l VMEbus Requester on level 3, l

K2: 7-8 System Controller Configuration
+------------------------------------+---------------------------------+ I Kl: 2-4, 6-8, 10-12, 14-16 I Module isolated from VMEbus I

K2: none
+------------------------------------+---------------------------------+

3-4

3.4.2. VMEbus System Control Functions

The jumper area K3 is used to enable or disable various
control functions. The VMEbus signals SYSCLK, SYSFAIL*,
the VMEbus Arbiter output are fed through K3, and can be
selected to be handled by the MVMElOl module.

VMEbus system
RESET*, and

independently

When the MVME101 is used as the VMEbus system controller, all optional
system control outputs must be enabled to provide the system clock,
system failure, system reset, and bus arbiter functions. When the
board is a non-controller MPU module in the standard configuration, the
system clock, system reset, and bus arbiter outputs must be disabled.
In the isolated configuration, all system control signals must be dis­
connected from the VMEbus, to ensure proper stand-alone operation.

Original configuration: VMEbus System Controller

Figure 3.4: Jumper Area R3

Local Signals K3 VMEbus Signals
+-------+

SYSCLK ---------+ 1 2 +--------- SYSCLK
l I

SYSFAIL* -------+ 3 4 +------- SYSFAIL*
I I

RESETOUT* ------+ 5 6 +--------- RESET*

1 ' RESETIN* -------+ 7 8 +--------- RESET*
1 I

BARBG* ---------+ 9 10 +--------- BG3IN*
+-------+

Table 3.3: VMEbus System Control Configuration

+----------------+-------------------+---------------------------------+
! K3 CONNECTIONS I ENABLED FUNCTIONS I MODULE CONFIGURATION I
+----------------+-------------------+---------------------------------+

1-2, SYSCLK output, VMEbus System Controller I
3-4, SYSFAIL* in/out,
5-6, RESET* output,
7-8, RESET* input,
9-10 VMEbus Arbiter

+----------------+-------------------+---------------------------------+
I 3-4, I SYSFAIL* in/out, I Standard Configuration I

7-8 RESET* input
+----------------+-------------------+---------------------------------+
I none I none I Isolated Configuration I
+----------------+-------------------+---------------------------------+

3-5

3.4.3. User-Vectorized Interrupt Requests

The jumper area KS determines which of the seven interrupt request lines
on the VMEbus may interrupt the on-board MPU. Originally, all interrupt
levels are enabled on KS and handled by the MVMElOl. If any other
modules capable of handling VMEbus interrupts are present in the system,
the user must assign the interrupt levels to the interrupt handlers such
that not more than one MPU responds to a given VMEbus interrupt. If a
VMEbus interrupt is not to be received by the MVMElOl, the corresponding
jumper must be removed from KS.

VMEbus interrupt requests cannot he wired to a different on-board inter­
rupt level. The jumpers must be installed straight across the pins on
jumper area KS.

Original configuration: All VMEbus interrupt requests enabled

Figure 3.S: Jumper Area KS

VMEbus Signals KS Interrupt Handler
+-------+

IRQ7* -------------+ 1 2 +----------- UVIRQ7*
I I

IRQ6* -------------+ 3 4 +----------- UVIRQ6*
I I

IRQS* -------------+ 5 6 +----------- UVIRQS*
l I

IRQ4* -------------+ 7 8 +----------- UVIRQ4*
I I

IRQ3* -------------+ 9 10 +----------- UVIRQ3*
I I

IRQ2* -------------+ 11 12 +----------- UVIRQ2*
I I

IRQl* -------------+ 13 14 +----------- UVIRQl*
+-------+

Table 3.4: User-Vectorized Interrupt Selection

+----------------+---+ I KS CONNECTIONS I ENABLED INTERRUPTS I
+----------------+---+ I 1-2 I VMEbus Interrupt Request level 7 I
+----------------+---+ I 3-4 I VMEbus Interrupt Request level 6 l
+----------------+---+
l S-6 I VMEbus Interrupt Request level S I
+----------------+---+ I 7-8 I VMEbus Interrupt Request level 4 I
+----------------+---+
I 9-10 l VMEbus Interrupt Request level 3 l
+----------------+---+ I 11-12 I VMEbus Interrupt Request level 2 l
+----------------+---+
I 13-14 I VMEbus Interrupt Request level 1 l
+----------------+---+

3-6

3.4.4. Auto-Vectorized Interrupt Requests

On the jumper area K6 the interrupt request outputs of the on-board
I/0-devices and the VMEbus signals SYSFAIL* and BCLR* may be jumpered to
interrupt the MPU in the auto-vectorized mode. Any of these interrupters
may be connected with any of the six lower MPU interrupt levels. Also,
two or more interrupters may be jumpered in a wired-or configuration on
one common interrupt request level.

The non-maskable auto-vectorized interrupt on level 7 is not available
for the user. Instead, it is reserved for software abort and AC power
failure.

Original configuration: SYSFAIL* on interrupt level 1,
PTM on interrupt level 2,
PIA on interrupt level 3 ,
PCil on interrupt level 4,
PCI2 on interrupt level 5,
BCLR* on interrupt level 6

Figure 3.6: Jumper Area K6

Interrupters K6 Interrupt Handler
+-------+

BCLR* -------------+ 1 2 +------------AVIRQ6*
I I

PCI2 --------------+ 3 4 +------------AVIRQS*
I I

PCil --------------+ 5 6 +------------AVIRQ4*
I I

PIA ---------------+ 7 8 +------------AVIRQ3*
I I

PTM ---------------+ 9 10 +------------AVIRQ2*
I I

SYSFAIL*-----------+ 11 12 +------------AVIRQl*
+-------+

Table 3.5: Auto-Vectorized Interrupt Selection

+--------+------------------------+ +--------+-------------------------+
I KG PIN I INTERRUPTER I I K6 PIN I INTERRUPT REQUEST I

+--------+------------------------+ +--------+-------------------------+
I 1 I VMEbus signal BCLR* I I 2 I Interrupt level 6 I

+--------+------------------------+ +--------+-------------------------+
I 3 I PCI2 interrupt output I I 4 l Interrupt level 5 l

+--------+------------------------+ +--------+-------------------------+
I 5 I PCil interrupt output I I 6 I Interrupt level 4 I
+--------+------------------------+ +--------+-------------------------+
I 7 I PIA interrupt output I I 8 I Interrupt level 3 I
+--------+------------------------+ +--------+-------------------------+
I 9 I PTM interrupt output I I 10 I Interrupt level 2 I
+--------+------------------------+ +--------+-------------------------+
I 11 I VMEbus signal SYSFAIL* I I 12 I Interrupt level 1 I
+--------+------------------------+ +--------+-------------------------+

3-7

3.4.5. Serial Ports Configuration

The peripheral input/output signals of the Programmable Communication
Interfaces are fed to the connectors on the front panel through the
jumper areas K7 and KlS. The jumpers on K7 determine the pin assignment
of SPl, the jumpers on KlS that of SP2. Both ports may be configured
independently as Data Terminal or Data Set, and for asynchronous or
synchronous data transmission. Also, the DSR and CTS inputs may
optionally be supported.

Original configuration: SPl configured as asynchronous Data Set,
SP2 configured as asynchronous Data Terminal.

Figure 3.7: Jumper Area K7 Figure 3.8: Jumper Area KlS

+-------+ +-------+
SP1-PIN8 ---+ 1 2 +----- + 12 v SP2-PIN8 ---+ 1 2 +----- + 12 v

I I I I
SP1-PIN24 --+ 3 4 +--- PCil-TXC SP2-PIN24 --+ 3 4 +--- PCI2-TXC

I I I I
PCil-DTR ---+ 5 6 +-- SP1-PIN20 PCI2-DTR ---+ 5 6 +-- SP2-PIN20

I I I I
SP1-PIN6 ---+ 7 8 +--- PCil-CTS SP2-PIN6 ---+ 7 8 +--- PCI2-CTS

I I I I
PCil-DSR ---+ 9 10 +--- SPl-PINS PCI2-DSR ---+ 9 10 +--- SP2-PINS

I I I I
SP1-PIN4 ---+ 11 12 +--- PCil-RTS SP2-PIN4 ---+ 11 12 +--- PCI2-RTS

I I I I
PCil-RXD ---+ 13 14 +--- SP1-PIN3 PCI2-RXD ---+ 13 14 +--- SP2-PIN3

I I I I
SP1-PIN2 ---+ 15 16 +--- PCil-TXD SP2-PIN2 ---+ 15 16 +--- PCI2-TXD

+-------+ +-------+

Table 3.6: Serial Ports Configuration

+-------------------------------+--------------------------------------+ I K7 I Kl5 CONNECTIONS I SPl I SP2 CONFIGURATION I
+-------------------------------+--------------------------------------+ I 1-2, 5-7, 10-12, 13-15, 14-16 I Port configured as Data Set I
+-------------------------------+--------------------------------------+
I 6-8 I DSR/CTS controlled by Data Terminal I
+-------------------------------+--------------------------------------+
I 9-11 I DSR/CTS controlled by Data Terminal I
+-------------------------------+--------------------------------------+ I 1-2, 5-6, 11-12, 13-14, 15-16 I Port configured as Data Terminal I
+-------------------------------+--------------------------------------+
I 7-8 I DSR/CTS controlled by Data Set I
+-------------------------------+--------------------------------------+
I 9-10 I DSR/CTS controlled by Data Set I
+-------------------------------+--------------------------------------+ I 3 and 4 open I Asynchronous data transmission I
+-------------------------------+--------------------------------------+ I 3-4 I Synchronous data transmission I
+-------------------------------+--------------------------------------+

3-8

3.4.6. Serial Interface Control

On the jumper areas K9 and KlO the interrupt outputs and the CTS*
inputs of the Programmable Communication Interfaces may he configured
for different modes of operation. K9 belongs to PCil, KlO belongs to
PCI2. For each interface, either one of the PCI interrupt outputs
TXRDY* and RXRDY*, or both can be connected with the interrupt request
line which is fed to the jumper area K6. There it may be jumpered on any
auto-vectorized interrupt request. The CTS* inputs of the PCis can be
either constantly enabled, or shorted with the DSR* inputs, to support
control from peripherals. ·

Original configuration: Interrupt outputs open,
CTS* inputs enabled

Figure 3.9: Jumper Area K9

+---+
PCil-DSR -----+ 6 +-- SPl-DSR/CTS

l
PCil-CTS -----+ 5

4 +---------- GND

PCil-TXRDY ---+ 3

2 +----- PCil-IRQ

PCil-RXRDY ---+ 1 I
+---+

Figure 3.10: Jumper Area KlO

+---+
PCI2-DSR -----+ 6 +-- SP2-DSR/CTS

PCI2-CTS -----l 5 I
4 +---------- GND

PCI2-TXRDY ---+ 3

2 +----- PCI2-IRQ

PCI2-RXRDY ---+ 1 I
+---+

Table 3.7: Serial Interface Control

+----------------------+---+ l K9 I KlO CONNECTIONS I PCil I PCI2 CONFIGURATION I
+----------------------+---+ I 1-2 l Interrupt asserted by RXRDY I
+----------------------+---+ I 2-3 I Interrupt asserted by TXRDY I
+----------------------+---+ I 1-2-3 l Interrupt asserted by RXRDY and TXRDY I
+----------------------+---+ I 4-5 I CTS input constantly enabled I
+----------------------+---+ I 5-6 I CTS input enabled by peripheral device l
+----------------------+---+

3-9

3.4.7. Programmable Timer Configuration

The peripheral clock, gate, and output signals of the Programmable Timer
Module may be configured for several modes of operation on the jumper
area Kl6. The gate inputs can be connected with ground and thus be
constantly enabled. For real time counting, the clock input of counter
3 can be connected with the 2 MHz free running clock signal. VMEbus
cycles can be counted by connecting the VMEbus address strobe with the
clock input of counter 2. MPU cycles can be counted by connecting the
MPU address strobe with the clock input of counter 1. Counters can be
cascaded by connecting a counter's input with the output of the previous
counter.

For other applications of the Programmable Timer Module, all peripheral
clock, gate, and output signals are also available at connector P2.

Original configuration: No jumpers set

Figure 3.11: Jumper Area Kl6

+----+
PTM C3* ---+ 1 I

2 +------ 2 MHz
I

PTM G3* ---+ 3 I
I

4 +-------- GND

PTM 03 ----+ 5 I
I I PTM C2* ---+ 6

I
7 +---- VME AS*

I
PTM G2* ---+ 8 I

l I
9 +-------- GND

I
PTM 02 ----+ 10

I
PTM Cl* ---+ 11

I 12 +---- MPU AS*
I I PTM G3* ---+ 13
I I
I 14 +-------- GND
+----+

3-10

Table 3.8: Programmable Timer Configurations

+-----------------+--+ I Kl6 CONNECTIONS I PTM CONFIGURATION I
+-----------------+--+ I 3-4 I Gate input of counter 3 is constantly enabled I
+-----------------+--+ I 8-9 l Gate input of counter 2 is constantly enabled I
+-----------------+--+ l 13-14 I Gate input of counter 1 is constantly enabled l
+-----------------+--+
I 1-2 I Counter 3 is clocked with 2 Mhz real time clock I
+-----------------+--+
I 6-7 I Counter 2 is clocked with VMEbus address strobe I
+-----------------+--+
I 11-12 I Counter 1 is clocked with MPU address strobe I
+~----------------+--+ I S-6 I Counter 3 and counter 2 are cascaded I
+-----------------+--+ I 10-11 I Counter 2 and counter 1 are cascaded I
+-----------------+--+

3.4.8. Memory Sockets Configuration

The jumper areas Kll, Kl2, Kl3, and Kl4 are used to configure the memory
sockets on the MVMElOl for the various types of memory devices which ma~'
be installed. The memory array consists of eight 28-pin sockets, orga­
nized as four pairs. Each memory pair is configured individually on its
associated jumper area.

Figure 3.12: Local Memory Organization

+----------+ +----------+ +----------+ +----------+
I Kll I

1 19 I Kl2 I
1 191

I Kl3 I
11 191

I K14 I
11 191

+----------+ +----------+ +----------+ +----------+
+----------+ +----------+ +----------+ +-----------+

lS 14 11s 14 llS 141 llS 14\

US3 US4 USS
MEMlU MEM2U MEM3U I US6 I

MEM4U
even bytes even bytes even bytes \even bytes\

28 1 28 1 28 1 128 lJ
+----------+ +----------+ +----------+ +----------+
+----------+ +----------+ +----------+ +----------+
llS 14 lS 14 11s 141 115 141

I I
U61 U62 U63 I U64 I

MEMlL MEM2L MEM3L I MEM4L I
odd bytes odd bytes odd bytes odd bytes\

ii I I
28 1 28 1 28 128 ll

+----------+ +----------+ +----------+ +-----------+

3-11

The memory sockets accept 24-pin dual-in-line packages as well as 28-pin
packages, provided the devices are compatible with the JEDEC standard
pin-out for byte-wide memories. 28-pin devices are inserted with pins
1 - 28 of the device matching pins 1 - 28 of the socket, 24-pin devices
are inserted with pins 1 - 24 of the device matching pins 3 - 26 of the
socket. By that the memory address inputs AO - AlO are connected with
the MPU address ouputs AOl - All, the lower order (odd bytes) memory
data lines DO - D7 are connected with the MPU data lines DOO - D07, and
the upper order (even bytes) memory data lines DO - D7 are connected
with the MPU data lines D08 - Dl5. For supporting different device
sizes and pin-outs, the signals at pins 18, 20, and 21 of 24-pin
memories, and the signals at pins 1, 2, 20, 22, 23, 26, and 27 of
28-pin memories are fed to the configuration jumper areas, where they
have to be connected with the appropriate address and control signals.
Figure 3.13 illustrates a memory socket pair and the signal connections
for 28-pin and 24-pin devices.

Figure 3.13: Memory Pin Assignment

MEMxU
+---------------------------+

MPU-Dll ----+15 (13) D3 GND (12) 14+-------- GND
MPU-Dl2 ----+16 (14) D4 D2 (11) 13+---- MPU-DlO
MPU-Dl3 ----+17 (15) D5 Dl (10) 12+---- MPU-D09
MPU-Dl4 ----+18 (16) D6 DO (9) 11+---- MPU-D08
MPU-Dl5 ----+19 (17) D7 AO (8) 10+---- MPU-AOl
Klx-P20 ----+20 (18) Al (7) 9+---- MPU-A02
MPU-All ----+21 (19) AlO A2 (6) 8+---- MPU-A03
Klx-P22 ----+22 (20) A3 (5) 7+---- MPU-A04
Klx-UP23 ---+23 (21) A4 (4) 6+---- MPU-AOS
MPU-AlO ----+24 (22) A9 AS (3) 5+---- MPU-A06
MPU-A09 ----+25 (23) A8 A6 (2) 4+---- MPU-A07
Klx-P26 ----+26 (24) A7 (1) 3+---- MPU-A08
Klx-P27U ---+27 --------------------- 2+----- Klx-P2
+SV --------+28 +5V l+----- Klx-Pl

+---------------------------+

MEMxL
+---------------------------+

MPU-D03 ----+15 (13) D3 GND (12) 14+--------- GND
MPU-D04 ----+16 (14) D4 D2 (11) 13+----- MPU-002
MPU-D05 ----+17 (15) D5 Dl (10) 12+----- MPU-DOl
MPU-D06 ----+18 (16) D6 DO (9) 11+----- MPU-DOO
MPU-D07 ----+19 (17) D7 AO (8) 10+----- MPU-AOl
Klx-P20 ----+20 (18) Al (7) 9+----- MPU-A02
MPU-All ----+21 (19) AlO A2 (6) 8+----- MPU-A03
Klx-P22 ----+22 (20) A3 (5) 7+----- MPU-A04
Klx-P23L ---+23 (21) A4 (4) 6+----- MPU-AOS
MPU-AlO ----+24 (22) A9 AS (3) 5+----- MPU-A06
MPU-A09 ----+25 (23) A8 A6 (2) 4+----- MPU-A07
Klx-P26 ----+26 (24) A7 (1) 3+----- MPU-A08
Klx-P27L ---+27 --------------------- 2+------ Klx-P2
+5v --------+28 +sv l+------ Klx-Pl

+---------------------------+

Note: The letter "x" reflects the number of the socket
pair, and may have a value of 1, 2, 3, or 4.

3-12

Figure 3.14 shows the signal assignment on the jumper areas Kll - Kl4.
On the local bus side, these signals are the address lines Al2 - Al5,
the memory select signal MxS*, the output enable signal OE*, the upper
byte and lower byte write pulses WRU* and WRL*, and the +5V power supply
voltage. On the memory side, the socket pins 1, 2, 20, 22, 23U, 23L,
26, 27U, and 27L are fed to the jumper areas.

Figure 3.14: Jumper Areas Kll - Kl4

Pin Numbers: Signals:
+-----------.-+ +------------------+

21 20 19 Al3 P23L Al2 I
18 17 16 P2 +5V P20 I
15 14 13 Al4 Pl MxS* I
12 11 10 P26 Al5 P22

9 8 7 +5V P27L OE*

6 5 4 P27L WRL* P23L

3 2 1 P27U WRU* P23U
+------------+ +------------------+

After having selected the devices to be installed in a memory socket
pair, the user has to configure the according jumper area. Table 3.9
and Table 3.10 list which signals must be connected on the jumper areas
for RAMs and ROMs of different sizes.

Table 3.9: Signal Connections for RAM Devices

+-------------+--+
I MEMORY TYPE I SIGNAL CONNECTIONS ON CONFIGURATION JUMPER AREA I
+-------------+--+

I 2K x 8 RAM I MxS* to CS* of both RAMs, OE* to OE* of both RAMs, !
WRU* to WR* of upper RAM, WRL* to WR* of lower RAM I

+-------------+--+
4K x 8 RAM MxS* ,to CS* of both RAMs, OE* to OE* of both RAMs, I

WRU* to WR* of upper RAM, WRL* to WR* of lower RAM, I
Al2 to All of both RAMs I

+-------------+---+
BK x 8 RAM MxS* to CS* of both RAMs, OE* to OE* of both RAMs, I

WRU* to WR* of upper RAM, WRL* to WR* of lower RAM, I
Al2 to All of both RAMs, Al3 to Al2 of both RAMs I

+-------------+--+
16K x 8 RAM I MxS* to CS* of both RAMs, OE* to OE* of both RAMs, I

WRU* to WR* of upper RAM, WRL* to WR* of lower RAM, I
I Al2 to All of both RAMs, Al3 to Al2 of both RAMs, I

Al4 to Al3 of both RAMs I
+-------------+--+

32K x 8 RAM MxS* to CS* of both RAMs, OE* to OE* of both RAMs, I
WRU* to WR* of upper RAM, WRL* to WR* of lower RAM, I
Al2 to All of both RAMs, Al3 to Al2 of both RAMs, I
Al4 to Al3 of both RAMs, Al5 to Al4 of both RAMs

+-------------+--+

3-13

Table 3.10: Signal Connections for ROM Devices

+-------------+---~--------+ I MEMORY TYPE I SIGNAL CONNECTIONS ON CONFIGURATION JUMPER AREA I
+-------------+--+ I 2K x 8 ROM I MxS* to CS* of both ROMs, OE* to OE* of both ROMs, I
+-------------+--+ I 4K x 8 ROM \ MxS* to CS* of both ROMs, OE* to OE* of both ROMs, II

Al2 to All of both ROMS

+-------------+------------------------------------~-------------------+ I BK x 8 ROM I MxS* to CS* of both ROMs, OE* to OE* of both ROMs, I
. I Al2 to All of both ROMs, Al3 to Al2 of· both ROMs
+-------------+--+

16K x 8 ROM I MxS* to CS* of both ROMs, OE* to OE* of both ROMs, I
Al2 to All of both ROMs, Al3 to Al2 of both ROMs,

I Al4 to Al3 of both ROMs I
+-------------+--+

32K x 8 ROM MxS* to CS* of both ROMs, OE* to OE* of both ROMs, I
Al2 to All of both ROMs, Al3 to Al2 of both ROMs,
Al4 to Al3 of both ROMs, Al5 to Al4 of both ROMs I

+-------------+--+
Table 3.11 lists several popular RAM and EPROM devices that may be
installed in the local memory sockets. If any of these devices, or
device types having identical pin-outs, are selected for use, the
specified connections must be made on the according jumper areas. When
devices with different pin-outs are installed, the user should refer to
Tables 3.9 and 3.10 to determine the appropriate jumper configuration.

Table 3.11: Configurations for Popula~ Memories

~--+-----------------------+ I Kll, Kl2, Kl3, Kl4 CONNECTIONS I MEMORY DEVICE I
+--+-----------------------+
1

1-2, 4-5, 7-10, 9-12, 13-16 •• ::: I 2128 2K x 8 RAM l
l • 19 I 5128 2K x 8 RAM

+--+-----------------------+ I 1-4, 2-3, 5-6, 1-10, 9-12, j I R:Y: I 51aa SK x a· RAM l
13-16, 10-21, 19-20 l_ ~ :U19 I

+--+-----------------------+ I 1-4, 7-10, 9-12, 13-16, 17-20 : : •• : 0 • I 2516 2K x 8 EPROM I
l o 19 2716 2K x 8 EPROM

+--+-----------------------+
1

1-4, 9-12, 10-13, 16-19, 17-20 :: •• :·" l 2532 4K x 8 EPROM I
1 • 19 I

+--+-----------------------+
11-4, 7-10, 9-12, 13-16, 19-20 1:: •• ::·19 I 2732 4K x 8 EPROM I
+--+-----------------------+
I 1-4, 3-6, 7-10, 8-9, 13-16, w 1:=: I 2764 SK x 8 EPROM I

14-11, 10-21, 19-20 lE::J t:::iJ19 I
+--+-----------------------+ I 1-4, 3-6, 7-10, 8-9~ 12-15, \? 5?±1 I 27128 16K x 8 EPROM I

13-16, 14-17, 18-21, 19-20 ll:::J '.:I=jj19
+---·--+-----------------------+
I 1-4, 3-6' 7-10' 8-11, 12-15' 1 .. i-1 11 1 I I 27256 32K x 8 EPROM I

13-16, 14-17, 18-21, 19-20 l_ - - __ 19
+--+-----------------------+

3-14

3.4.9. Local ROM Access Time

The jumper area K4 is used to select the number of wait cycles inserted
by the MPU when accessing local ROM. K4 must be configured such that
the timing of a read operation from local ROM meets the requir~ments of
the slowest ROM device installed in the memory sockets. For each jumper
position on K4, Table 3.12 lists the maximum output delay times of the
ROM devices that can be tolerated for proper operation.

More detailed timing specifications of the local memory access are given
in Paragraph 2.12.

Original configuration: 3 wait cycles inserted

Figure 3.15: Jumper Area K4

+-------+
RO MD EL ---+ 8 7 +--- 0 w.c.

I I
ROMDEL ---+ 6 5 +--- 1 w.c.

I I
RO MD EL ---+ 4 3 +--- 2 w.c.

I I
ROMDEL ---+ 2 1 +--- 3 W.C.

+-------+

Table 3.12: Local ROM Access Time Selection

+----------------+-------------+---------------------------------------+ I K4 CONNECTIONS I WAIT CYCLES I MAXIMUM ROM DELAY TIMES l
+----------------+-------------+---------------------------------------+

1-2 I 3 Addr. Valid to Data Valid max. 6~5 ns I
OE* Low to Data Valid max. 600 ns

I CS* Low to Data Valid max. 530 ns I
+----------------+-------------+---------------------------------------+

3-4 2 Addr. Valid to Data Valid max. 540 ns
OE* Low to Data Valid max. 475 ns
CS* Low to Data Valid max. 405 ns

+----------------+-------------+---------------------------------------+
I 5-6 1 I Addr. Valid to Data Valid max. 415 ns

l I OE* Low to Data Valid max. 350 ns
CS* Low to Data Valid max. 280 ns

+----------------+-------------+---------------------------------------+
7-8 0 Addr. Valid to Data Valid max. 290 ns

OE* Low to Data Valid max. 225 ns
CS* Low to Data Valid max. 155 ns

+----------------+-------------+---------------------------------------+

3-15

3.4.10. Address Map Configuration

The original configuration of the MVME101 address map, as shipped from
the factory, is shown in Table 2.5. If this map does not meet the
requirements of the actual application, a new Address Decoder PROM must
be programmed according to the demands. For a good comprehension of the
following procedure, the user should be familiar with the functional
description of the Address Decoder in Paragraph 2.7.

3.4.10.1. Local Memory Addresses

After the user has selected the RAM and ROM devices to be used for local
memory, the addresses to be contained within each memory socket pair
must be specified. To avoid address swapping, the base address of each
memory pair must reside on the correct boundary. These boundaries are
integer multiples of the memory pair size. Each memory pair occupies
an address range of twice the size of a single device. Table 3.14 can
assist in the selection of local memory base addresses for the various
sizes of memory devices. The position of the local memories may be
registered in the personal address map in Table 3.16.

3.4.10.2. Local I/O Addresses

The local I/0-devices occupy one 4K bytes segment in the address map.
Any 4K boundary in Table 3.14 may be specified as the base address of
the I/0-registers. After the user has selected this base address, he
may obtain his personal I/0-register address map by using Table 3.17
and adding the chosen base address to the values listed in the ADDRESS
column. The position of the local I/0-devices segment may be registered
in the personal address map in Table 3.16.

3.4.10.3. VMEbus Short I/O Addresses

When I/0-modules using the address modifier code for Short I/O Address
are installed in the system, an address field of 64K bytes must be
reserved in the address map for accessing them. Such modules decode
only the address lines AOl - Al5 on the VMEbus, i.e. a 64K address
range, when they are enabled by the address modifier lines. The user
may specify any 64K boundary in Table 3.14 as the base address of these
global I/O devices. Their addresses in the MVMElOl memory map, as seen
from the MPU, can then be calculated by adding the selected base
address as an offset to their 16-bit addresses. The position of the
Short I/O Address field may be registered in the personal address map in
Table 3.16.

3.4.10.4. VMEbus Standard Addresses

All address segments in the Lo Block and in the Hi Block which are not
selected as local memory, local I/O, or VMEbus short I/O addresses,
should be specified as VMEhus Standard Addresses in the personal address
map. By that, on-board and off-board address fields for RAM, ROM, and
memory-mapped I/0-devices may be contiguously allocated.

3-16

3.4.10.5. Address Decoder PROM Programming

After the user has configured his personal address map, he must specify
the contents of the Address Decoder PROM. This PROM is organized as
512 x 4 bits. The PROM locations 000 - OFF represent the Lo Block, the
locations 100 - lFF represent the Hi Block of the address map. Each
PROM location corresponds to one 4K bytes address segment.

For each of these 512 address segments, the Address Decoder PROM must be
programmed to define which device is selected. These devices may be
either local RAM or local ROM in one of the four memory socket pairs,
or local I/0-devices, or VMEbus I/O modules responding to short I/O
addresses, or VMEbus modules responding to standard addresses. The
PROM defines the devices using the encoding scheme shown in Table 3.13.

To determine the data to be recorded in each PROM location,
refers to his personal address map in Table 3.16 and specifies
MPU address segment in Table 3.15 the device to be selected by
the appropriate hexadecimal code number of Table 3.13.

the user
for each
entering

The Address Decoder PROM may be a Signetics N82Sl30 or any electrically
and physically compatible bipolar PROM. For proper operation, the
maximum address access time of the used PROM must not exceed 50 ns, the
maximum chip select access time must not exceed 30 ns.

Table 3.13: Address Decoder PROM Data Definition

+-----------+--+ I PROM DATA I SELECTED DEVICES I
+-----------+--+

o Local RAM in socket pair 1 l
1 Local RAM in socket pair 2
2 Local RAM in socket pair 3 I

+-----------+--+
I 3 I Invalid I
+-----------+--+

4 Local ROM in socket pair 1 I
5 Local ROM in socket pair 2 I
6 Local ROM in socket pair 3 I
7 Local ROM in socket pair 4 I

+-----------+--+ I 8 I Local I/0-devices I
+-----------+--+

9 Invalid
A Invalid
B Invalid
C Invalid
D Invalid

+-----------+--+
I E I VMEbus Short I/O Address I

F VMEbus Standard Address I
+-----------+--+

3-17

Table 3.14: Address Boundaries

+---+----------+ I ADDRESS FIELD SIZE I BOUNDARY I
+---+----------+

4K bytes FxFOOO
SK bytes 4K bytes FxEOOO

4K bytes FxDOOO
16K bytes SK bytes 4K bytes FxCOOO

4K bytes FxBOOO
SK bytes 4K bytes FxAOOO

4K bytes Fx9000
32K bytes 16K bytes SK bytes 4K bytes FxSOOO

4K bytes Fx7000
SK bytes 4K bytes Fx6000

4K bytes FxSOOO
16K bytes SK bytes 4K bytes Fx4000

4K bytes Fx3000
SK bytes 4K bytes Fx2000

4K bytes FxlOOO
64K bytes 32K bytes 16K bytes SK bytes 4K bytes FxOOOO

+---+----------+
4K bytes OxFOOO

SK bytes 4K bytes OxEOOO
4K bytes OxDOOO

16K bytes SK bytes 4K bytes OxCOOO
4K bytes OxBOOO

SK bytes 4K bytes OxAOOO
4K bytes Ox9000

32K bytes 16K bytes SK bytes 4K bytes OxSOOO
4K bytes Ox7000

SK bytes 4K bytes Ox6000
4K bytes OxSOOO

16K bytes SK bytes 4K bytes Ox4000
4K bytes Ox3000

SK bytes 4K bytes Ox2000
4K bytes OxlOOO

64K bytes 32K bytes 16K bytes SK bytes 4K bytes OxOOOO
+---+----------+
Note: The letter "x" in the BOUNDARY column may have any hex value.

3-lS

Table 3.15: Address Decoder PROM Specification

+------+------+

I MPU I PROM I
ADDR A D !

+------+---+--+
FFFxxx lFF
FFExxx lFE
FFDxxx lFD
FFCxxx lFC
FFBxxx lFB
FFAxxx lFA
FF9xxx 1F9
FF8xxx 1F8
FF7xxx 1F7
FF6xxx 1F6
FFSxxx lFS
FF4xxx 1F4
FF3xxx 1F3
FF2xxx 1F2
FFlxxx lFl
FFOxxx lFO

+------+---+--+
FEFxxx lEF
FEExxx lEE
FEDxxx lED
FECxxx lEC
FEBxxx lEB
FEAxxx lEA
FE9xxx 1E9
FE8xxx 1E8
FE7xxx 1E7
FE6xxx 1E6
FE5xxx 1E5
FE4xxx 1E4
FE3xxx 1E3
FE2xxx 1E2
FElxxx lEl
FEOxxx lEO

+------+---+--+

+------+------+

I MPU I PROM l
ADDR A D

+------+---+--+
FDFxxx lDFj
FDExxx lDE
FDDxxx lDO
FDCxxx lDC
FOBxxx lDB
FDAxxx lDA
F09xxx 109
FD8xxx 108
FD7xxx 107
F06xxx 106
F05xxx 105
F04xxx 104
F03xxx 103
F02xxx 102
FDlxxx lDl
FDOxxx 100

+------+---+--+
FCFxxx lCF
FCExxx lCE
FCDxxx lCD
FCCxxx lCC
FCBxxx lCB
FCAxxx lCA
FC9xxx 1C9
FC8xxx 1C8
FC7xxx 1C7
FC6xxx 1C6
FC5xxx 1C5
FC4xxx 1C4
FC3xxx 1C3
FC2xxx 1C2
FClxxx lCl
FCOxxx lCO

+------+---+--+

+------+------+

I MPU I PROM I
AODR A D I

+------+---+--+
FBFxxxllBFI
FBExxx lBE
FBDxxx lBD
FBCxxx lBC
FBBxxx lBB
FBAxxx lBA
FB9xxx 1B9
FB8xxx 1B8
FB7xxx 1B7
FB6xxx 1B6
FB5xxx 1B5
FB4xxx 1B4
FB3xxx 1B31
FB2xxxllB2
FBlxxxllBll
FBOxxx lBO

+------+---+--+

IFAFxxx lAFI
FAExxx lAEI
FADxxx lADI
FACxxx lAC
FABxxxllAB
FAAxxxllAA
FA9xxx,1A9
FA8xxx 1A81
FA7xxx,1A7
FA6xxx 1A6
FA5xxx 1A5
FA4xxx 1A4
FA3xxx 1A3
FA2xxx 1A2
FAlxxx lAl
FAOxxxllAO

+------+---+--+

+------+------+

I MPU I PROM I
ADDR I A D I

+------+---+--+
F9Fxxx l 19F I I
F9Exxx 19E
F9Dxxx 190
F9Cxxx 19C
F9Bxxx 19B
F9Axxx 19A
F99xxx 199
F98xxx 198
F97xxxll97
F96xxxl196
F95xxx 195
F94xxxl194
F93xxxl193
F92xxxl1921
F9lxxx,191
F90xxx 1901

+------+---+--+
F8Fxxx II 18F I I
F8Exxx 18EI
F8Dxxx,18DI
F8Cxxx 18CI
F8Bxxxl18BI
F8Axxx,18AI
F89xxx 1891
F88xxx1l88
F87xxx 1871
F86xxxll86

IF85xxxll85I
IF84xxx,184
IF83xxx.183
F82xxx 182
F8lxxx 181
F80xxx 180

+------+---+--+

Note: The letter "x" in the MPU ADDR column represents any hex value.

3-19

Table 3.15: Address Decoder PROM Specification

+------+------+

l MPU I PROM I
ADDR A D !

+------+---+--+
F7Fxxx 17F I
F7Exxx 17E
F7Dxxx 17D
F7Cxxx 17C
F7Bxxx 17B
F7Axxx 17A
F79xxx 179
F78xxx 178
F77xxx 177
F76xxx 176
F75xxx 175
F74xxx 174
F73xxx 173
F72xxx 172
F7lxxx 171
F70xxx 170

+------+---+--+
F6Fxxx1l6F I
F6Exxx 16E
F6Dxxx 16D
F6Cxxx 16C
F6Bxxx 16B
F6Axxx 16A
F69xxx 169
F68xxx 168
F67xxx 167
F66xxx 166
F65xxx 165
F64xxx 164
F63xxx 163
F62xxx 162
F6lxxx 161
F60xxx 160

+------+---+--+

+------+------+

I MPU I PROM I
ADDR A D

+------+---+--+
F5Fxxxll5F
FSExxx 15E
F5Dxxx 15D
FSCxxx 15C
FSBxxx 15B
F5Axxx 15A
F59xxx 159
F58xxx 158
F57xxx 157
F56xxx 156
F55xxx 155
F54xxx 154
F53xxx 153
F52xxx 152
F5lxxx 151
FSOxxx 150

+------+---+--+
F4Fxxx 14FI
F4Exxx 14E
F4Dxxx 140
F4Cxxx 14C
F4Bxxx 14BI
F4Axxx 14A
F49xxx 149
F48xxx 148
F47xxx 147
F46xxx 146
F45xxx 145
F44xxx 144
F43xxx 143
F42xxx 142

IF4lxxx 141
F40xxx 140

+------+---+--+

+------+------+

I MPU I PROM I
ADDR A D

+------+---+--+
F3Fxxx 13FI
F3Exxx 13E
F3Dxxx 130
F3Cxxx 13C
F3Bxxx 13B
F3Axxx 13A
F39xxx 139
F38xxx 138
F37xxx 137
F36xxx 136
F35xxx 135
F34xxx 134
F33xxx 133
F32xxx 132
F3lxxx 131
F30xxx 130

+------+---+--+

I F2Fxxx 12F I l
F2Exxx 12EI
F2Dxxx 12D
F2Cxxx 12C
F2Bxxx 12B
F2Axxx 12A
F29xxx 129
F28xxx 128
F27xxx 127
F26xxx 126
F25xxx 125
F24xxxll24
F23xxx 123
F22xxxll22
F21xxxl121
F20xxxl120

+------+---+--+

cont'd)

+------+------+

I MPU I PROM '
ADDR A D I

+------+---+--+
FlFxxx llF I
FlExxx llE
FlDxxx llD
FlCxxx llC
FlBxxx llB
FlAxxx llA
Fl9xxx 119
F18xxx 118
Fl7xxx 117
F16xxx 116
Fl5xxx111s
Fl4xxx 114
Fl3xxxll13
Fl2xxx,112
Fllxxx 111
FlOxxxlllO

+------+---+--+
FOFxxx,lOFI
FOExxx lOE
FODxxx lOD
FOCxxx lOC
FOBxxx lOB
FOAxxx lOA
F09xxx 109
F08xxx 108
F07xxx 107
F06xxx 106
F05xxx 105
F04xxx 104
F03xxx 103
F02xxx 102

IFOlxxxllOl
FOOxxx!lOO

+------+---+--+

Note: The letter "x" in the MPU ADDR column represents any hex value.

3-20

Table 3.lS: Address Decoder PROM Specification

+------+------+

l MPU I PROM I
ADDR A D !

+------+---+--+
OFFxxx OFF'
OFExxx OFE
OFDxxx OFD
OFCxxx OFC
OFBxxx OFB
OFAxxx OFA
OF9xxx OF9
OF8xxx OF8
OF7xxx OF7
OF6xxx OF6
OFSxxx OFS
OF4xxx OF4
OF3xxx OF3
OF2xxx OF2
OFlxxx OFl
OFOxxx OFO

+------+---+--+
OEFxxx OEF
OEExxx OEE
OEDxxx OED
OECxxx OEC
OEBxxx OEB
OEAxxx OEA
OE9xxx OE9
OE8xxx OE8
OE7xxx OE7
OE6xxx OE6
OESxxx OES
OE4xxx OE4
OE3xxx OE3
OE2xxx OE2
OElxxx OEl
OEOxxx OEO

+------+---+--+

+------+------+

I MPU l PROM I
ADOR A D

+------+---+--+
ODFxxx ODF
ODExxx ODE
ODDxxx ODD
ODCxxx ODC
ODBxxx ODB
ODAxxx ODA
OD9xxx 009
ODSxxx ODS
007xxx 007
006xxx OD6
OOSxxx ODS
004xxx OD4
003xxx 003
002xxx 002
ODlxxx ODl
ODOxxx ODO

+------+---+--+
OCFxxx OCFl
OCExxx OCEI
OCOxxx OCD
occxxx ace
OCBxxx OCB
OCAxxx OCA
OC9xxx OC9
OCSxxx OCS
OC7xxx OC7
OC6xxx OC6
OCSxxx OCS
OC4xxx OC4
OC3xxx OC3
OC2xxx OC2
OClxxx OCl
OCOxxx OCO

+------+---+--+

+------+------+

l MPU I PROM I
ADDR A D I

+------+---+--+
OBFxxx OBF
OBExxx OBE
OBDxxx OBD
OBCxxx OBC
OBBxxx OBB
OBAxxx OBA
0B9xxx OB9
OB8xxx OBS
OB7xxx OB7
OB6xxx OB6
OBSxxx OBS
OB4xxx OB4
OB3xxx OB3
OB2xxx OB2
OBlxxx OBl
OBOxxx!OBO

+------+---+--+
OAFxxx l OAF I l
OAExxx OAE!
OADxxx OAD
OACxxx OAC
OABxxx OAB
OAAxxx OAA
0A9xxx 0A9
OA8xxx OAS
OA7xxx 0A7
0A6xxx OA6
0A5xxx OAS
OA4xxx OA4
0A3xxx,OA3
0A2xxx OA2
OAlxxx,OAl
OAOxxx OAO

+------+---+--+

cont'd)

+------+------+

I MPU I PROM I
ADDR I A D

+------+---+--+
09Fxxx 09FI
09Exxx 09E
09Dxxx 09D
09Cxxxl09C
09Bxxxl0913
09Axxxl09Al
099xxx 099
09Sxxx 09S
097xxx 097
096xxx 096
09Sxxx,09S
094xxx 094
093xxxj093
092xxx 092
091xxxl091
090xxx 0901

+------+---+--+
08Fxxxl08FI
08Exxxl08EI
08Dxxx 080
08Cxxx 08C
08Bxxx 08B
OSAxxx 08A
089xxx,089
08Sxxx 088
087xxx 087
OS6xxx 086
085xxx 08S
084xxxl084
083xxx 083
082xxx 082
08lxxx 081
080xxxl080

+------+---+--+

Note: The letter "x" in the MPU ADDR column represents any hex value.

3-21

Table 3.15: Address Decoder PROM Specification

+------+------+

l MPU l PROM I
ADDR A D !

+------+---+--+
07Fxxx 07F
07Exxx 07E
07Dxxx 07D
07Cxxx 07C
07Bxxx 07B
07Axxx 07A
079xxx 079
078xxx 078
077xxx 077
076xxx 076
075xxx 075
074xxx 074
073xxx 073
072xxx 072
07lxxx 071
070xxx 070

+------+---+--+
06Fxxxl06F I
06Exxx 06E
06Dxxx 060
06Cxxx 06C
06Bxxx 06B
06Axxx 06A
069xxx 069
068xxx 068
067xxx 067
066xxx 066
065xxx 065
064xxx 064
063xxx 063
062xxx 062
06lxxx 061
060xxx 060

+------+---+--+

+------+------+

l MPU l PROM I
ADDR A D

+------+---+--+
05Fxxx OSF
OSExxx OSE
05Dxxx 050
05Cxxx 05C
05Bxxx OSB
05Axxx 05A
059xxx 059
058xxx 058
057xxx 057
056xxx 056
055xxx 055
054xxx 054
053xxx 053
052xxx 052
05lxxx 051
OSOxxx 050

+------+---+--+
04Fxxx 04F l
04Exxx 04E
04Dxxx 040
04Cxxx 04C
04Bxxx 04BI
04Axxx 04A
049xxx 049
048xxx 048
047xxx 047
046xxx 046
045xxx 045
044xxx 044
043xxx 043
042xxx 042
04lxxx 041

I040xxx 040
+------+---+--+

+------+------+

I MPU I PROM I
ADDR I A D

+------+---+--+
03Fxxx 03F
03Exxx 03E
03Dxxx 030
03Cxxx 03C
03Bxxx 03B
03Axxx 03A
039xxx 039
038xxxl038
037xxx 037
036xxx 036
035xxx 035
034xxx 034
033xxx 033
032xxx 032
03lxxx 031
030xxx 030

+------+---+--+
02Fxxxl02Fl
02Exxx 02E
02Dxxx 020
02Cxxx 02C
02Bxxx 02B
02Axxx 02A
029xxx 029
028xxxl028
027xxxl027
026xxx 026
025xxxl025
024xxx 024
023xxx 023
022xxx 022

I02lxxx 021
I020xxxj020
+------+---+--+

cont'd)

+------+------+

I
MPU I PROM I
ADDR I A D

+------+---+--+
OlFxxxlOlF
OlExxx OlE
OlDxxx OlD
OlCxxx OlC
OlBxxx OlB
OlAxxx OlA
019xxx 019
018xxx 018
017xxx 017
016xxx 016
015xxx 015
014xxx 014
013xxx 013
012xxx 012
Ollxxx 011
OlOxxx 0101

+------+---+--+
OOFxxx OOF
OOExxx OOE
OODxxx OOD
OOCxxx OOC
OOBxxx OOB

IOOAxxx OOA
009xxx 009

1
008xxx 008
007xxx 007

1
006xxx 006
005xxx!005
004xxx 004
003xxx 003
002xxx 002
OOlxxx 001
OOOxxx 000

+------+---+--+

Note: The letter "x" in the MPU ADDR column represents any hex value.

3-22

Table 3.16: Personal Address Map

+----------+-----------------------------+-----------------------------+ I ADDRESS I CONTENTS I SELECTED DEVICES I
+----------+-----------------------------+-----------------------------+

FFFFFF I I

I l F • • • +----------+-----------------------------+-----------------------------+
I I

I I
F • • • • •

F • ..
+----------+-----------------------------+-----------------------------+

F ••• I

F • • • I
+----------+-----------------------------+-----------------------------+

F • . • I
F • • I +----------+-----------------------------+-----------------------------+
F • .. I

F •• I +----------+-----------------------------+-----------------------------+
F • • • • •

FOOOOO
+----------+-----------------------------+-----------------------------+

EFFFFF I 1,

Global Memory
VMEbus Standard Addresses

100000

or
Memory-mapped Devices

+----------+-----------------------------+-----------------------------+
OFFFFF I I
0 • •• I I +----------+-----------------------------+-----------------------------+ o. I

0 •• I +----------+-----------------------------+-----------------------------+
o •.

0 . ..
+----------+-----------------------------+-----------------------------+

I
0 • ••

0 . ..
+----------+-----------------------------+-----------------------------+

0 • ••

000400
+----------+-----------------------------+-----------------------------+

0003FF
MPU Exception Vectors

000000
+----------+-----------------------------+-----------------------------+

3-23

Table 3.17: Personal I/0-Register Address Map

+------+--------+-------+--+
IDEVICEIADDRESS l MODE I REGISTER l
+------+--------+-------+--+
l MCR l ... OFl l r/w l Module Control Register l

+------+--------+-------+--+
l MSR l ... OEl I r/w l Module Status Register I

+-------+--------+-------+--+
PTM •.. ODF read LSB buffer register

.•. ODF write Timer #3 latches
••• ODD read Timer #3 counter
•.. ODD write MSB buffer register
.•• ODB read LSB buffer register
.•. ODB write Timer #2 latches
••. OD9 read Timer #2 counter
... OD9 write MSB buffer register
••. OD7 read LSB buffer register
••• OD7 write Timer #1 latches
••. ODS read Timer #1 counter
... ODS write MSB buffer register
... OD3 read status register
... OD3 write control register #2
.•• ODl read no operation
•.• ODl write CR20 = 1: control register #1
.•• ODl write l CR20 = 0: control register #3

+------+--------+-------+--+
PIA ••. OC7 r/w Section B control reqister

.•. OCS r/w CRB-2 = 1: Section B peripheral register
•.. OCS r/w CRB-2 = 0: Section B data direction register
••• OC3 r/w Section A control register
•.• OCl r/w CRA-2 = 1: Section A peripheral register
•.• OCl r/w CRA-2 = 0: Section A data direction register

+------+--------+-------+--+
PCI2 I ••• OB7 I r/w command register I

... OBS r/w mode register #1 /mode register #2

... OB3 read status register
•.• OB3 write SYNl register I SYN2 register/ DLE register
•.• OBl read receive holding register
•.. OBl write transmit holding register

+------+--------+-------+--+
PCil .•. OA7 r/w command register I

•.. OAS r/w mode register #1 I mode register #2
•.. OA3 read status register J

•.. OA3 write SYNl register I SYN2 register/ DLE register
.•. OAl read receive holding register I
•.. OAl write transmit holding register

+------+--------+-------+--+

3-24

3.5. SOFTWARE INITIALIZATION

In the reset routine, the user has to provide routines for initializing
the Serial Communication Interfaces, the Peripheral Interface Adapter,
the Programmable Timer Module and the Module Control Register of the
MVME101 monoboard computer.

3.5.1. Serial Communication Interface Initialization

Prior to transmitting data via the serial ports, the user has to program
the MC68661 devices by initializing their mode and command registers
and, for synchronous operation, their SYNl, SYN2 and DLE registers.
The Motorola MC68661 EPCI Data Sheet in Appendix B provides detailed
programming instructions. The original addresses of the EPCI registers
are listed in Table 2.6.

3.5.2. Peripheral Interface Adapter Initialization

The direction of the peripheral input/output lines and the function of
the peripheral control lines at the connector P2 are controlled by the
data direction and control registers of the MC6821 device. The Motorola
MC6821 PIA Data Sheet in Appendix C provides detailed programming
instructions. The original addresses of the PIA registers are listed in
Table 2.6.

3.5.3. Programmable Timer Module Initialization

The initialization of the MC6840 Programmable Timer Module is described
in the Motorola MC6840 PTM Data Sheet in Appendix D. The original
addresses of the PTM registers are listed in Table 2.6.

3.5.4. Module Control Register Initialization

The Module Control Register controls the hexadecimal status display,
the bus block transfer request, and the time out counters. Paragraph
2.6 gives a detailed description of the MCR functions. The device is
originally located at address FEOOFl.

3-25

3.6. INSTALLATION

The MVME101 may be used either as the system controller module in a
VMEbus system (System Controller Configuration) , or as an MPU module
on a selectable priority in a multiprocessor VMEbus system (Standard
Configuration) , or as an isolated monoboard system that resides only
physically on the VMEbus backplane (Isolated Configuration). The
hardware preparation for these different modes of operation is described
in Paragraph 3.4.

In the Isolated Configuration, the MVMElOl module may also be used as a
monoboard computer system without a VMEbus backplane. In this case, the
power supply voltages must be connected to the respective terminals of
Pl by a female DIN 41612 C 96 connector. The location of the power
supply inputs at Pl is outlined in Table 2.9.

+--+

l PRIOR TO INSERTING OR REMOVING THE MVMElOl MODULE, ENSURE THAT I
SYSTEM POWER IS SWITCHED OFF, AS COMPONENTS COULD BE DAMAGED.

+--+

At the connector P2 the peripheral input/output signals of the PIA and
the PTM are available. Note that these lines are not buffered and do
not have any overvoltage protection. Therefore the characteristics of
the signals applied at P2 must meet the specifications of the MC6821 and
MC6840 devices. In addition to the I/O signals, the +SV power voltage
is available at P2 and may be used to supply interface buffers. As the
maximum +SV input current at Pl is limited to 1.5 Ampere per terminal by
the DIN 41612 connector specifications, the maximum +SV output current
at P2 must not exceed 4.5 Amperes minus the MVMElOl supply current.

3-26

CHAPTER 4

MAINTENANCE INFORMATION

4.1. INTRODUCTION

This chapter provides the parts list, the assembly drawing,
schematic diagrams for the MVME101 monoboard computer.

and the

4.2. PARTS LIST

Table 4.1 reflects
time of printing.

the latest issue of hardware for the MVME101 at the
The parts locations are shown in Figure 4.1.

Table 4.1: MVME101 Parts List

+----+-------------+-------------+--------~----------------------------+

I QU I DESIGNATION I PART NUMBER l DESCRIPTION I
+----+-------------+-------------+-------------------------------------+

2 Cl,C2 23-G9618M05 100 uF/ 10 V Electrolytic Capacitor \

2

4

37

1

2

1

2

1

1

1

3

4

1

1

2

C3 ,C4

C34-C37

C5-C33,
C38-C45

CR

K9,Kl0

Kl6

K2,K4

K3

KG

KS

Kl,K7,Kl5

Kll-Kl4

Pl

P2

P3,P4

23-G9618M03

21NW9604A58

21NW9702A09

48NW9616A03

28NW9802D58

28NW9802F52

28NW9802C43

28NW9802C52

28NW9802C63

28NW9802C36

28-G9802M01

28NW9802C36
+28NW9802F51

28-G9802M03

28-G9802M04

28-G9802M05

22 uF I 35 V Electrolytic Capacitor

330 pF I 50 V Ceramic Capacitor

0.1 uF I 50 V Ceramic Capacitor

1N4148 Rectifier

Header Single Row I 1 x 6 Pins

Header Single Row I 1 x 14 Pins

Header Double Row / 2 x 4 Pins

Header Double Row / 2 x 5 Pins

Header Double Row I 2 x 6 Pins

Header Double Row I 2 x 7 Pins

Header Double Row I 2 x 8 Pins

Header Triple Row I 3 x 7 Pins
(2 x 7 Pins + 1 x 7 Pins)

DIN 41612 C 96 Male Connector

DIN 41612 C 64 Male Connector

Sub-D 25-pole Female Connector

1 Rl 06SW-124Al7 47 ohm I 0.25 W Carbon Resistor
+----+-------------+-------------+-------------------------------------+

4-1

Table 4.1: MVMElOl Parts List (cont"d)

+----+-------------+-------------+-------------------------------------+
I QU I DESIGNATION I PART NUMBER I DESCRIPTION I
+----+-------------+-------------+-------------------------------------+

2 R4,R5 06SW-124A41 470 ohm I 0.25 W Carbon Resistor I
2

1

1

5

2

1

1

1

1

1

1

1

2

1

1

2

1

1

1

1

1

2

1

1

R2,R3

RP4

RP7

RP1-RP3,
RP5,RP6

SW1,SW2

at SWl

at SW2

Ul9

U51

U36

U49

U48

U52,U60

U57

U65

U50,U59

U58

Ul2

U7

us

U24

U45,U46

U29

U26

06SW-124A43

51NW9626A69

51NW9626A47

51NW9626A49

40NW9801B27

38NW9404A56

38NW9404B96

48NW9606A33

48AW1014B06

51-G5017M01

51-G5008M01

51NW9615G97

51NW9615Hl9

51NW9615B27

51NW9615D81

51NW9615B29

51NW9615B30

01NW9804B83

01NW9804B35

01NW9804C33

51NW9615E91

51NW9615C22

51NW9615H53

51NW9615E88

560 ohm I 0.25 W Carbon Resistor

7 x 1.0 kohrn SIL Resistor Network

7 x 4.7 kohm SIL Resistor Network

7 x 10 kohm SIL Resistor Network

Momentary Action Pushbutton Switch

Switch Cap Black

Switch Cap Red

Klll4A 16.000 MHz Crystal Osc.

Klll4A 5.0688 MHz Crystal Osc.

BAR101B Bus Arbiter/Requester

MAD101 Address Decoder PROM

MC68000L8 Microprocessor

MC68661PC Progr. Comm. Interface

MC6821P Periph. Interf. Adapter

MC6840P Programmable Timer Module

MC1488P Quad RS232 Driver

MC1489AP Quad RS232 Receiver

PE21198 Delay Module 50 ns

PE21199 Delay Module 100 ns

PE21264 Delay Module 3 x 40 ns

SN74LSOON Quad 2-NAND Gate

SN74LS08N Quad 2-AND Gate

SN74LS09N Quad 2-AND Gate OC

SN74LS10N Triple 3-NAND Gate

1 U4 51NW9615E93 SN74LS14N Hex Schmitt-Trigger Inv.
+----+-------------+-------------+-------------------------------------+

4-2

Table 4.1: MVMElOl Parts List (cont ... d)

+----+-------------+-------------+-------------------------------------+
j QU j DESIGNATION j PART NUMBER I DESCRIPTION I
+----+-------------+-------------+-------------------------------------+

3 Ul8,U27,U30 51NW9615C24 I SN74LS32N Quaa 2-0R Gate \

l U39 51NW9615C69 SN74LS138N 3-Bit Binary Decoder I
I

1 U44 51NW9615Gl0 SN74LS148N 8-Bit Priority Encoder I

l U47 51NW9615E86 SN74LS151N 8-Input Multiplexer

2 U2 ,U23 51NW9615F41 SN74LS164N 8-Bit Shift Register

3 U8,U32,U33 51NW9615F02 SN74LS244N Octal Bus Driver TS

l U43 51NW9615F09 SN74LS266N Quad 2-EXNOR Gate oc

2 U34,U35 51NW9615F52 SN74LS273N 8-Bit D-Register I
I

2 U25,U31 51NW9615F38 SN74LS393N Dual 4-Bit Bin.Counter I
I

l U20 51NW9615H83 SN74LS641-1N Octal Bus Transc. 0C I
I

5 U9,Ul0,U22, 51NW9615H89 SN74LS645-1N Octal Bus Transc. 'l'S I
U37 ,U38 I

I
3 Ul3,U28,U40 51NW9615C94 SN74SOON Quad 2-NAND Gate !

I
1 Ul6 51NW9615D32 SN74S02N Quad 2-NOR Gate I

I
l Ul4 51NW9615C96 SN74S04N Hex Inverter I

I
l Ul7 51NW9615E27 SN74Sl0N Triple 3-NAND Gate I

I
1 Ul5 51NW9615D90 SN74SllN Triple 3-AND Gate I

I

I
l U42 51NW9615Fl5 SN74Sl5N Triple 3-AND Gate oc I

I
1 U6 51NW9615D27 SN74S32N Quad 2-0R Gate I

I
1 Ul 51NW9615C95 SN74S74N Dual D-Flip-Flop

1 U41 51NW9615K80 SN74Sl39N Dual 2-bit Binary Dec.

l U3 51NW9615Jll SN74Sl40N Dual 4-NAND Driver

l U21 51NW9615F65 SN74S241N Octal Bus Driver TS

1 Ull 72NW9624A03 TIL311 Hexadecimal L'ED Display

1 at U48 09NW9811A30 64-Pin DIL IC Socket

l at U57 09NW9811A22 40-Pin DIL IC Socket

11 at U52-U56, 09NW9811A21 28-Pin DIL IC Socket
U60-U65

+----+-------------+-------------+-------------------------------------+

4-3

Table 4.1: MVME101 Parts List (cont"'d)

+----+-------------+-------------+-------------------------------------+ I QU I DESIGNATION l PART NUMBER l DESCRIPTION I
+----+-------------+-------------+-------------------------------------+

1 at U49 09NW9811A04 I 16-Pin DIL IC Socket \

1 at Ull 09-G9811M01 I 14-Pin OIL Display Socket I
1 at Ul9,U51 09NW9811A46 4-Pin Oscillator Socket

7 at Pl,P2, 03SW993D210 DIN 84 M 2.5 x 10 Flat Head Srew
Front Panel

4 at P3,P4 03SW993D310 DIN 84 M 3 X 10 Flat Head Screw

7 at Pl,P2, 02SW990D001 DIN 934 M 2.5 Hexagonal Nut
Front Panel

4 at P3,P4 02SW990D002 DIN 934 M 3 Hexagonal Nut

1 84-G8012M01 MVMElOl Printed Circuit Board

1 64-G4073M01 MVME101 Front Panel

80 29NW9805Bl7 Jumper

+----+-------------+-------------+-------------------------------------+

4.3. ASSEMBLY DRAWING, SCHEMATIC DIAGRAMS

The Assembly Drawing in Figure 4.1 shows all part locations on the
MVMElOl monoboard computer.

The Figures 4.2 to 4.12 show the schematic diagram sheets 1/11 to 11/11.

4-4

ii::.
I

U1

Figure 4.1: Assembly Drawing

•
V'2

PE2·1'1'18

C6 (9;21
v~•

1<4-1-f~A

• 16.000H

--·- -ooc.-., , __ ... ~_

=-...:--=~
-·- .. ---.....-=-_...,,._.._, __
--~ ---·----- ASSEMBLY DRAWING
.._,. .-. 00 ...-..... oo;

01AG3012M

Figure 4.2: Schematic Diagram Sheet 1/11

JPARE llESISTOllJ:

+SV +SV

~ ... ~ ...
NC NC.

.lPARF G.A rrs :

D<~ n»...,s-
D<• n D"''r
D<> n D,,J
D<Z !1' /J.41.
D« ~· ,-41
D<J' Sf])fl
D,,., " ...
Dll ,., /JI

DI> ,, ,,
DA ..S D• ,,,,.

·~])S' ,,..
< D•

D .. 2 ...
Dia J .. ,
DI< . ,,.
I>N s ,,,

_,....

~
~
~
~

Fto~2~1-f-+-+-+-+-----l-f-+-+--------{>
,, • .,·~'-+-+-+--+-+-----l-+-+-+--------l'>
,, • .,•~'-+-+-+--+-+-----l-+-+-+--------l'>

ll'LOl'2"-'-+-+-+--+-+-----lH-+-+--------<1
,~,,1'2~•-+-+-+--+-+-----lH-+-+----------<l
~~·~·--t-+-+-+-+-----ll-+-+-+--------<l
aE~~~·~'-f-+-+-+-+-----li-+-+-+--------<J

FCI
Fe<

"' /Pl.I•

IPL 1'

IPLZ•

8ER1'•

ff.A f.£!.4 -f-+-+-+-+-----li-+-+-+--------<J_..., VP.A•
W "' _r-~ V/'fA1'

m• ~·~·
";;;;;7 .ti- CJ--{>- I-I.Al.Tr

n ·O r <J DTA,I<•
j'i;AUi:<::.Z_._,__._..._ ____ _, ""

ii~ ~· DTJll(M~<~l--l--4---+--1------~ 7-:s#~
-D REAi>•

~~·'--+-+-1-1,__ ______ _. ____ ----l:> _,...
..::: Zii~''-+--1-<~--------------1'>

v.>sµ''-+-..._1-1--------------1'> J;::'
>..>

DH

-D

_,-.,

~t ~~:~:.-.-,-.--------C>
~,

-c

1,,11urF•

LD.S*

/JDS•

llJWR•

lJJ)l.J(•

DRDl/f

1'5

AJDEL2.•

'--------------------------{>Al4-AZl
'-------------------------~c~:1-C>o11-.D•~

"'"''"*

--·- .,._,..,~...,.,.,,""--..,.-=-!"I MVME101
--~--G-"""'::-.::;;:.:,:u~ SCHEMATIC DIAGRAM
:-...:= ::...f =:z.:::.-:. MICROPROCESSING UNIT

63AG3012M 1/11

FigurP. 4.3: Schematic Diagram Sheet 2/11

£DTTO

A&AV

E~RTO

[)5

(,8El?Rft

lDUOM

LOlR.A."1

GDTACKJ/k

+SV +SW'

v•
..----.---·"1 :;O"'----''-l '<>-"--<":> R.ESOur..-

"'

..
l.!_.....l _ _;JLl~,~.~,s~<-•~-+-------------------------{::>[)rTD•

.-1-----------------------~C>!Rro•

Bt!tR•

--·-
=-..:=~

... DOC..-•otC<J••--~­
-!-•<'~-­_,..., .. """ .. _._ -.... --------·---ClfC-.0.-

lllVlatOll

MVME101
SCHEMATIC DIAGRAM
CLOCK, RESET, TIMEOUT,
DTACK

63AG3012M 2111

Figure 4.4: Schematic Diagram Sheet 3/11

lfl8CL/l(lflr

tRPCIZ. .1t

!RPC/'1.C

!APIA'*

IRPTl'f41

5Y5f,41/..

81RfJ1¥

f31f?Q6•
flillQf#

a111o;"1•

8111Q3•

51~Q2•

a1~Q...,•

2MHl

UH
1"iLS"'.)-1

~Al
~A<f
~A,I

"12.. D~

-1.3 D6

,,,. D~

,,~ D"i

a!L
II '

.._....._. ____ -"J, PJ

~'-------"-'' DZ
"'---------"'' ,, ..

(>--------!0-@ ,,_~A~"~·~··~·~- _______ ._.
~~fl•~' -"'AV~l~R"LJ'~*-------l--i-.
~ ~""-'---"'~"~·~··~·,__ ______ _,__._,._..
~~~"'-'--"'~--~·~·~'''--------_,__,__.__,_. 
~&>-~·-:~·~,,~,·~·'~·-------_,__,__,_.__._.. 

vz• 
_" -~"'' _-, -:~:~::~~~:~:-------+-1-1--1--+-+-• 
• 
HLSlf 

@[$J@~@@ 
K~ 12 J l't !i ' 1 & 

-----r~-~~•''----'u~v~,R~u~>~·~l>--1--l._+->-4-+--+----' 
~ d"'•-' ~u~v~,R~'~'~*-+-+-1-1-+-+--~ 
S'>---~ ~.~:~u~v~,~,,~,;~·•'---0-<>--4-+--+----__J 
~ ~•'--"~·~1R~u~•~·'-------<'-I-+--+------' 

£4~ 

u,. 
2 

3 
A 

,..,1.$#4 
U<b 

~ • 
l'fLHll 

u•• 
,,,~ • 

1C.tS#I 

"" 
:~ << 

1"'tSI• 

"" ,, ,. ,;_] 
1"LSl4 

"" ~ 3 V,.,Lsn 
""' ~~...-:-~~:.~:~::~:~:'-----''-'---+--------' 

C>---------;@~ ...... '--'-"~"~~~-~·,__ ____ _._ __________ ___c'""' 
~-'<:i:i 

. 
,i] 8 

1'11.J;a 

l 

u< 

~ 
+fV ~ffr 

~---'~'';::..LK Q~l>I' 
-'12. D QI-'''------------!'->> ,AV1RQ c 

L--------~ill 
~ 

-·----- -DOC-•C<J••---
1-=---------"'"":,:..~~~-~--1:-~~~ 

MVME101 
SCHEMATIC DIAGRAM 
INTERRUPT HANDLER 

lii ... --....... ~~~~~~~~~-1 
®MO"'°llla&A. ~..,._ 

.......,..._,~DI.,,.,_. 

63AG3012M 3111 



,,. 
I 
~ 

Figure 4.5: Schematic Diagram Sheet 4/11 

SYS~CJ' 

AVIQQ• 

A.SDfl.2• 

LDwe~ 

DRDll' 

lD.5• 

VMA« 

~l't-.A23 

FCZ 

FU 
Fl# 

v•• 
~ 

~ ,,,.,,.., 
.. ,,, .fS A1 

lrA~·~·----~---------------~' A• 
lrA~·~·---------~---------~----'"12 A< 
lrA~·~·---------------------"13 A• 
l.r"A~<S,___~----~--------------"l'AJ 
1r•~·~•----------------------"•Az 

- ~M 
1.-'-A~<~Z-----------------------""SAI 

,---;!lli1 
'-----

"'' 
USVU• ~I~·!..,_-,-,-,-----' 

"" J 

:;:_ 
_,._ 

~ 

-c 

-c 

_,.-, 

~ . '"''--------' 
5 '"H~ 

!£: 2 3 

~ 
~~ 
5 

JlfJ#l 
U2' 

Cc-

~ 
r->-~~1--~~~~~~~~~~~~~~-+-~~~~~~-~-~~~~~~~~~~~~~~~--i--t_L~c;,: 

L--' 

"" 1'tLSAJI U2' 

~~1 Q1r1----tC--~H~<~<•=------------------------+~ 
t>--.+-------+.---~·~ff Q,r•----t~-'-H~JR~•"-------------------------+-J 

,, 
• 1"Hjl 

_,.--,. 

"" 

~ji QS q prH• 
... I ··~"'-------jr-----"P~M~•:__ ______________________ -+----~----c> 

Qlr"'"----t'---'-'~"~2~·-----------------------+----. 
,,..,_A~'~'------1--~'~ .... 2 ozr'3"----t--'-'~"~'~·-----------------------+-~ 

~ l.-'-Al~S------1---'~A~ Q4~~C 
·~·~"~-----+---~~-"Al Q.I~ ,,,, 

"" L____J 

1.-->t>--------';o=.J~ P"·~---------~i.-------------------------------------l:> 
[>--------'-!.;] ¥'fl.HI 

~ 

Ml.iSlL• 

M'HUt 
M2.HLf' 
M4J{I..• 

8ADll• 
VPA* 

lDl1'01'1 

LO,ltAM 

SHIOAitr 

MCllRD• 

MCRhfll 

MSff.R.b• 

HSRWll-fr 

Prl'f5EL• 
PllU£L• 

PC125£L# 

Pl./'fJFL,,, 

IACJ< .. 

__ [,.., __ _ 
-·-•o-...oc:------------........ -______ _, 

MVME101 
SCHEMATIC DIAGRAM 
ADDRESS DECODER 

® MOTOROLA lnk:iroey•..,... 
~ClroMle•DI.,,,..,_. 
lQI ___ ---... •• 

63AG3012M 4111 



~ 

I ..... 
0 

Figure 4.6: Schematic Diagram Sheet 5/11 

M'JJEL• 

MlJrL« 

M-1.SELJ/t 

U53 

~ 
M.ftlPlJ Zl JJ f'HUPZ'I-

,,, 
" Al ., ... 

D<Z .. ,, D<I ,,, 

All ... . ,. .. ... ,,, 
Dl2 

All "' 

HZPZZ Z 

MZPZI ~ 

Ml 

ZS 

All 

,., 

AIZ 

~ 

"" 

, .. 
.. .. , .. D<Z 

,, 
<Z .,. 

Dll 

~ 
I~"~'~'~'~"~'"<~ n MZ£P21' 

HZ~22 

H1.P2 

HZP" _/ 

.. ,,, ... .,, 
Ml ,, 

H'JP22 1.2 

1'13PZI ~ ,. 

Al• 

'--­
U'3 

~ 

,,,,.. 

,, .. . ., 

M~P2J l-3 ~z~·~=~'I 

MJPZZ 

,,, ,,, 

~·~;-----! 
,, -... .. Dl2 ... 

AM ,,, 

US6 

~ 
l'f'-("Zl ZJ Z1 M"'IJPZ~ 

,. 
,, 

D<3 

D<Z 

,, ... 
"' ... 

... " 
.,. ,,, 

"' ... 
Dl6-D<< <<l-01---C-C:O~l--~~~~~~~~~~~~-'--l-~~~~~~~~~~~~~"--+--~~~~~~~~~~~~-'---!~~~~~~~~~~~~~../ 
Al~-A~SCC>~~"--~~~~~~~~~~~~~-'-~~~~~~~~~~~~~~..L-~~~~~~~~~~~~~~"--~~~~~~~~~~~~~-' 

-ax.-.. , ... _...._.._ _,_.,,.,....... __ _ .., .. __ __ 
--~ 

_____ ._ __ ___ ,._..._ 

MVME101 
SCHEMATIC DIAGRAM 
MEMORY ARRAY 

@MOFGlllDLA ,,.._ .. ".-., .. 
lrKep.._,~ DI.,,,.._. 

63AG3012M 5111 



"'" I ,...... 
,...... 

Figure 4.7: Schematic Diagram Sheet 6/11 

f'-fCRRDt 

HALT# 

~-----------------------+-------+----------------<::>£~110 
~----------------------+-------+----------------<::>£8~TO 

,, 
,, 

•P> 
f-0'---+-+-+--1~-+-t-+-.-------+---~54••• +5V 

UJ2 
?litLS2.,'t 

• sv 

'--+--<::J DTTOfl 

'--------+--<::J 8RTO¥ 

t"------------------<JA8AV~ 

~----------------<~8'''* 
..-----------------'-J A.!ORT• 

P'----------------::J 5'1.$J""AJL• 

f-'-'-----------------::JA,fA1J..• 

---- -00::.-.,,,(W<, ___ _ 

-·- "' ..,,.-;r.... - _, -OC>•Ol-D-·-·-_ _,_, __ 00 

_oc..... .. -.oo._.. 
_.,~oo.....-....oc; 

MVME101 
SCHEMATIC DIAGRAM 
CONTROL REGISTER, 
STATUS REGISTER 

63AG3012M 6111 



Figure 4.8: Schematic Diagram Sheet 7/11 

lMH~ 

5AS11'/K 

l'oSl1El-f• C>---------------, 

.... 
PrMS££' G•--------~""I 
1RPr1-1w 

PClK 

WlllT£~ 

l0C1'£S.-

Al-1-A,-J 

A#J 

ltd PZ 

+SV 

,. .. 

--·- -om;-t(,,.., __ '°' 

~=~ 
-·-·~..,..,..._,. __ -.oei··-----· -~---Oll•-.....,._. • ..,-..,..c 

MVME101 
SCHEMATIC DIAGRAM 
TIMER MODULE 
PARALLEL INTERFACE 
® MOTOflOC..A ....... 0.., ....... 
--~-
63AG3012M 7111 



~ 
I ,_. 

w 

Figure 4.9: Schematic Diagram Sheet 8/11 

IRPC/2. Jt <~o::J.------+++-f--+--------_J 

PCHR.XJ)# <<.J::J-----+++-+-f-------------__. 

A.JU-All [:>-------../ 

!RPC/4¥ <<-..r::J-----------------_J 

--·- ... _-~---.. -.~---*----I·~ 
--·-"·~oc-_.."°, ..... D-•-­
-...,,;:--~ 
-..~•-..oo•-
~-oo-..c 

MVME101 
SCHEMATIC DIAGRAM 
SERIAL COMMUNICATION 
INTERFACES 

,..,,_. ....... ,...., -~_. . .,,. 
63AG3012M 8111 



Figure 4.10 Schematic Diagram Sheet 9/11 

!JCiR« 

aarR* V3' 
PAL-f6Li 

s MTR 
f185YIN« ~ 

B/JSV 

8C.1N• 2 E(;ffi v~ 

!A.Siii• '-m PE'Z-rZH 

O<.d• 'w 
DR'1• ; ffi 

81tZ• 'm 
!U• "jij 

AS l iiiITTii 
8MH~ -f CLK 

S'f$R.U• 
~ Rim 

< 

~ BA.DN~ 

I 
I-' DS 

~ 

vz< 
A2 ,, (l(/3CL~.f' 

'1'rJ..5.I• 

8ROt!T1< 

B,,.RBC,>t 

Boour• 

fJ/JS!Pi.11'~ 

8ASOur,, 
VH 

v• ,, 
A8AV 

1't5""#' 

H53Z 

"''-"""""" 
D!IAV-" 

-·----- -~,, ___ ._ 

=-=.:1=~ -·-"·--=--..oci··-----· -..-.-.ao•---...-a....-....: 

MVME101 
SCHEMATIC DIAGRAM 
VMEBUS ARBITER 
REQUESTER, INTERFACE 

® MOTD'JIQLA ..-. .. V...._ 

............ ~°' ......... 

63AG3012M 9111 



Figure 4.11: Schematic Diagram Sheet 10/11 

A.&AV..r 
Al.AV 
~fAD• 

D8AV.iil: 

BR3fr 

IRZ.• 
SR.,• 
IR,I• 

l>ROUT• 

88S'IOUr• 

F'A!LOIJ'T• 

'f£S0UT• 

H,At..1"¥ 

1.0,f?(j• 

.S'IJIUS .. 

5YS,LK 

BAR8Gtt" 

BGOUT"1' 

~ 

I 
...... 

5Y5FAIL'lt 
U1 88SYIAJll!< 

~f:JINlll 

8Cl.R• 

A(FAIL"' 

BBFRli• 

8DTACK* 

~A,S1N• 

81RQ1 « 

81tr06• 

1J1RQ5"" 

81RQi,,,_ 

81RQJ-. 

811lQZ• 

f/llUJ'1"-

e~s,, .. 
/Hjd« 

,.,f?,r£• 

B~Sen Y• C-
FU!· r;cz 
$/o/1C'A• r-
IJ.14- D"5 
IA(~ ot 

Al,,·A2j 

------- __ ..... _.,._, __ _ 
=-...:i=~ 

-,-,,.-~c--..,.•-a-•-----Oii -~--- .. ·------...-
MVME101 
SCHEMATIC DIAGRAM 
VMEBUS INTERFACE 

63AG3012M 10/11 



Figure 4.12: Schematic Diagram Sheet 11/11 

------- _....,,,_.., _____ _ 
=""'...:'=~ 

-!-•roCl-..,"C--.. ,·-----=-"" -~-_..,,. .. _ _._._..._ 
MVME101 
SCHEMATIC DIAGRAM 
POWER SUPPLY 

@ MOTDllCN.A ........ "'.-..... 
,,,........_, ~ °'""-"-' 

63AG3012M 11111 



A P P E N D I X A 

MC68000 16-BIT MICROPROCESSING UNIT 

A-1 





(M MOTOROLA 

SEMICONDUCTORS 
3501 ED BLUESTEIN BLVD. AUSTIN. TEXAS 78721 

Advance Information 

16-BIT MICROPROCESSING UNIT 

Advances in semiconductor technology have provided the capability 
to place on a single silicon chip a microprocessor at least an order of 
magnitude higher in performance and circuit complexity than has been 
previously available. The MC68000 is the first of a family of such VLSI 
microprocessors from Motorola. It combines state-of-the-art 
technology and advanced circuit design techniques with computer 
sciences to achieve an architecturally advanced 16-bit microprocessor. 

The resources available to the MC68000 user consist of the following: 
• 32-Bit Data and Address Registers 

• 16 Megabyte Direct Addressing Range 
• 56 Powerful Instruction Types 

• Operations on Five Main Data Types 

• Memory Mapped 1/0 

• 14 Addressing Modes 

As shown in the programming model, the MC68000 offers seventeen 
32-bit registers in addition to the 32-bit program counter and a 16-bit 
status register. The first eight registers (D0-D7l are used as data 
registers for byte (S-bitl, word (16-bitl, and long word (32-bitl data 
operations. The second set of seven registers (A0-A6l and the system 
stack pointer may be used as software stack pointers and base address 
registers. In addition, these registers may be used for word and long 
word address operations. All seventeen registers may be used as index 
registers. 

31 

31 

PROGRAMMING MODEL 

1615 87 0 

1615 0 

15 8 7 0 
!system Byte: User Byte I 

DO 
01 

02 

03 

04 

05 

06 

07 

AO 

Al 

A2 

A3 

A4 

A5 

A6 

Eight 
Data 
Registers 

Seven 
Address 
Registers 

Two Stack 
Pointers 

Program 
Counter 

Status 
Register 

This document contains information on a new product. Specifications and information herein 
ere subject to change without notice. 

MC68000L4 
(4 MHz) 

MC68000L6 
(6 MHz) 

MC68000L8 
(8 MHz) 

MC68000L10 
(10 MHz) 

HMOS 
(HIGH-DENSITY, N-CHANNEL, 

SILICON-GATE DEPLETION LOAD) 

16-BIT 
MICROPROCESSOR 

L SUFFIX 

04 

03 

01 

DO 

AS 

UDS 

LOS 

R/W 
Dl'ACK 

BG 
BGACi< 

BR 

Vee 
CLK 

GND 

HALT 

RESET 

VMA 

E 
VPA 

BERA 
IPL2 

IPL1 

Al 

A2 

A3 

CERAMIC PACKAGE 
CASE 746 

PIN ASSIGNMENT 

©MOTOROLA INC., 1981 ADl-814R2 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

MAXIMUM RATINGS 

Rating Symbol 

Supply Voltage Vee 
Input Voltage Vin 
Operating Temperature Range TA 
Storage Temperature Tstg 

THERMAL CHARACTERISTICS 
Characteristic Symbol 

Value 

-0.3 to + 7.0 

-0.3 to +7.0 

0 to 70 

- 56 to 150 

Value 

Unit 

v 
v 
oc 
oc 

Unit 

This device contains circuitry to protect the 
inputs against damage due to high static 
voltages or electhc fields; however, 11 is advis­
ed that normal precautions be taken to avoid 
appl1cat1on of any voltage higher than 
maximum-rated voltages to this h1gh­
impedance circuit. Reliability of operation 1s 
enhanced if unused inputs are tied to an ap­
propriate logic voltage level le.g., either Vss 
or Vee 

Thermal Resistance 
Ceramic Package 6JA 30 °C/W 

POWER CONSIDERATIONS 

The average chip-junction temperature, T J, in cc can be obtained from: 

TJ=TA+tPo•8JAl 
Where: 

TA•Ambient Temperati~re, cc 

8JA •Package Thermal Resistance, Junction-to-Ambient, cc;w 

Po•PINT+Pl/O 
P1NT• ICC x Vee. Watts - Chip Internal Power 
P1;0 s Power Dissipation on Input and Output Pins - User Determined 

For most applications P1/0<C PINT and can be neglected. 

An approximate relationship between Po and T J (if P110 is neglected) is: 

Po= K-+- (T J + 273 ccl 

Solving equations 1 and 2 for K gives: 

K = Po•(T A+ 273ccl +8JA•Po2 

11 I 

121 

131 

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring Po lat equilibrium I 
for a known TA- Using this value of K the values of Po and T J can be obtained by solving equations ( 11 and 121 1terat1vely for any 
value of TA· 

DC ELECTRICAL CHARACTERISTICS I Vee= 5 0 Vdc ± 5%. Vss = 0 Vdc; TA= 0°C to 70°C. See Figures 1, 2, and 31 

Characteristic Symbol Min Max Unit 

Input High Voltage V1H 2.0 vcc v 

Input Low Voltage V1L vss-o 3 0.8 v 

Input Leakage Current@ 5.25 V BERA, BGACK, g'°R, DTACK, 
CLK, N-IPL2, VPA lin - 2.5 µA 

'H'ALi', R ES ET - 20 

Three-State !Off State) Input Current@ 2.4 V /0.4 V AS, A1-A23, D0-015 
ITSI 20 µA FCO-FC2, LOS, R/W, UDS, VMA 

-

Output High Voltage lloH = -400 µAl E* Vcc-o 75 -
AS, A1-A23, BG, D0-015 VoH v 

FCO-FC2, LOS, R/W, UDS, VMA 2.4 -
Output Low Voltage 

llQL = 1.6 mAI HALT - 0.5 
lloL = 3.2 mAI A1-A23, BG, FCO-FC2 

Vol 
- 0.5 

v 
llOL = 35.0 mAI RESET - 0.5 
llOL = 5.3 mAI E, AS, D0-015, LDS, R/W - 0.5 

UDS,VMA 

Power Dissipation (Clock Frequency= 8 MHz I Po - 1.5 w 
Capacitance (Vin= 0 V, TA= 25°C; Frequency= 1 MHz I Cm - 100 pF 

*With external pullup resistor of 470 0 

® MOTOROLA ~emiconductor Products Inc. 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

FIGURE 1 - RESET TEST LOAD FIGURE 2 - HALT TEST LOAD 

+5V +5V 

910 0 2.9 kO 

I 130pF I70pF 

CLOCK TIMING !See Figure4) 

Characteristic Symbol 

Frequency of Operation F 

Cycle Time tcy_c 

Clock Pulse Width tcL 
tcH 

Rise and Fall Times tcr 
tct 

FIGURE 3 - TEST LOADS 

+5V 

Test MMD6150 

Point or Equivalent 

CLI 
RL 

CL= 130 pF 
(Includes all Parasitics) 

RL =6.0 kO for 
AS, A1-A23, BG, D0-015, E 
FCO-FC2, LDS, RiW, UDS, VMA 

·R=1.22k0forA1-A23, BG, 
E, FCO-FC2 

R·=740D 

MMD7000 
or Equivalent 

4MHz 6MHz 8 MHz 10 MHz 
MC68000L4 MC68000L6 MC68000L8 MC68000L10 Unit 
Min Max Min Max Min Max Min Max 

2.0 4.0 2.0 6.0 2.0 8.0 2.0 10.0 MHz 

250 500 167 500 125 500 100 500 ns 

115 250 75 250 55 250 45 250 
115 250 75 250 55 250 45 250 

ns 

- 10 - 10 - 10 - 10 
ns - 10 - 10 10 - 10 

FIGURE 4 - INPUT CLOCK WAVEFORM 

1----tCH 

tct 

--------® MOTOROLA Semiconductor Products Inc. 
3 



AC ELECTRICAL SPECIFICATIONS(Vcc=5.0 Vdc ± 5%, Vss=O Vdc; TA =0°C to 70°C, See Figures 5 and 61 

4MHz 6 MHz SMHz 10 MHz 
Number Characteristic Symbol MC6IKIOOL4 MC6IKIOOL6 MC6IKIOOL8 MC6IKIOOL 10 Unit 

Min ~x ~n ~x Min Max Min !!ax 
1 Clock Period tcyc 250 500 167 500 125 500 100 500 ns 

2 Clock Width Low tCL 115 250 75 250 55 250 45 250 ns 

3 Clock Width High tcH 115 250 75 250 55 250 45 250 ns 

4 Clock Fall Time tcf - 10 - 10 - 10 - 10 ns 

5 Clock Rise Time tcr - 10 - 10 - 10 - 10 ns 

6 Clock Low to Address tCLAV - 90 - 80 - 70 - 55 ns 

6A Clock High to FC Valid tCHFCV - 90 - 80 - 70 - 60 ns 

7 Clock High to Address Data High Impedance 
tCHAZx - 120 - 100 - 80 - 70 ns 

!Maximum) 

8 Clock High to Address/FC Invalid (Minimum) tcHAZn 0 - 0 - 0 - 0 - ns 
91 Clock High to AS, OS Low (Maximum) tCHSLx - 80 - 70 - 60 - 55 ns 

10 Clock High to A"""S, DS Low (Minimum) tCHSLn 0 - 0 - 0 - 0 - ns 
112 Address to AS, i5S !Read) Low/AS Write .!8Y..S..L 55 - 35 - 30 - 20 - ns 

11A2 FC Valid to AS, OS, !Read) Low/AS Write tFCVSL 80 - 70 - 60 - 50 - ns 
121 Clock Low to AS, DS High tCLSH - 90 - 80 - 70 - 55 ns 

w AS, DS High to Address/FC Invalid tSHAZ 60 - 40 - 30 - 20 - ns 
142, 5 AS, DS Width Low !Read)/ AS Write .!.S_L 535 - 337 - 240 - 195 - ns 

14A2 DS Width Low (Write) - 285 - 170 - 115 - 95 - ns 

152 AS, OS Width High tSH 285 - 180 - 150 - 105 - ns 

16 Clock High to AS, DS High Impedance tCHSZ - 120 - 100 - 80 - 70 ns 

172 AS, DS High to R/W High tSHRH 60 - 50 - 40 - 20 - ns 
181 Clock High to R/W High (Maximum) tCHRHx - 90 - 80 - 70 - 60 ns 

19 Clock High to R/W High (Minimum) tCHRHn 0 - 0 - 0 - 0 - ns 
201 Clock High to R/W Low tCHRL - 90 - 80 - 70 - 60 ns 
212 Address Valid to R/W Low tAVRL 45 - 25 - 20 - 0 - ns 

21A2 FC Valid to R/W Low tFCVRL 80 - 70 - 60 - 50 - ns 
222 R/W Low to DS Low (Write) tRLSL 200 - 140 - 80 - 50 - ns 

23 Clock Low to Data Out Valid tcLDO - 90 - 80 - 70 - 55 ns 

2s2 DS High to Data Out Invalid tSHDO 60 - 40 - 30 - 20 - ns 

262 Data Out Valid to DS Low (Write) tDOSL 55 - 35 - 30 - 20 - ns 

276 Data In to Clock Low !Setup Time) tDICL 30 - 25 - 15 - 15 - ns 

282 AS, DS High to DTACK High tSHDAH 0 240 0 160 0 120 0 90 ns 

29 DS High to Data Invalid (Hold Time) tSHDI 0 - 0 - 0 - 0 - ns 

30 AS, DS High to BEAR High tSHBEH 0 - 0 - 0 - 0 - ns 

312. 6 DTACK Low to Data In (Setup Time) tDALDI - 180 - 120 - 90 - 65 ns 

32 HALT and RESET Input Transition Time tRHrf 0 200 0 200 0 200 0 200 ns 

33 Clock High to BG Low tcHGL - 90 - 80 - 70 - 60 ns 

34 Clock High to BG High tCHGH - 90 - 80 - 70 - 60 ns 
35 ID1 Low to BG Low tBRLGL 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 Clk. Per. 

36 BR High to BG High tBRHGH 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 Clk. Per. 

37 BGACK Low to B"""G High tGALGH 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 Clk Per. 

38 BG Low to Bus High Impedance (With AS High) tGLZ - 120 - 100 - 80 - 70 ns 

39 BG Width High tGH 1.5 - 1.5 - 1.5 - 1.5 - Clk. Per. 

46 BGACK Width tBGL 1.5 - 1.5 - 1.5 - 1.5 - Clk. Per. 
476 Asynchronous Input Setup Time tASI 30 - 25 - 20 - 20 - ns 

48 BEAR Low to DTACK Low !Note 3l tBELDAL 50 - 50 - 50 - 50 - ns 
53 Data Hold from Clock High tCHDO 0 - 0 - 0 - 0 - ns 
55 R/W to Data Bus Impedance Change tRLDO 55 - 35 - 30 - 20 - ns 

56 Halt/RESET Pulse Width !Note 4) tHRPW 10 - 10 - 10 - 10 - Clk. Per. 

NOTES: 
1. For a loading capacitance of less than or equal to 500 picofarads, subtract 5 nanoseconds from the values given in these columns. 
2. Actual value depends on clock period. 
3. If #47 is satisfied for both DTACK and BERA, #48 may be 0 ns. 
4. After Vee has been applied for 100 ms. 
5. For T6E, BF4, and R9M mask sets #14 and #14A are one clock period less than the given number. 
6. If the asynchronous setup time (#471 requirements are satisfied, the DT ACK low-to-data setup time (#31 l requirement can be ignored. The 

data must only satisfy the data-in to clock-low setup time (#271 for the following cycle . 

.___ _____ @ MOTOROLA Semiconductor Products Inc. 
4 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

NOTES: 

Asynchronous 
Inputs 
(Note 11 

FIGURE 5 - READ CYCLE TIMING 

BERA/BR---------------. 
(Note 21 

Dataln---- - -- - - - - __ _ 

1. Setup time for the asynchronous inputs BGACK, IPLO-IPL2, and VPA guarantees their recognition at the next falling edge of fhe clock. 
2. ~ need fall at this time only in order to insure being recognized at the end of this bus cycle. 
3. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 

,____ ____ @ MOTOROLA Semiconductor Products Inc. 
5 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

FIGURE 6 - WRITE CYCLE TIMING 

so S1 S2 53 S4 S5 S6 S7 SO .. 

A1-A23 
~IC_ r----+ ~~ I-.~ k-

--i+ ~® --... ~ ..,_ 14 -
AS _/t. ~ 1' I-' - @)-+ ~ 

1~ 
__,,, 

_____.. ~ t0 -
- 9 

LDS/UDS _} 
,_ 

@ 1' ____.. 
~ l'c:._ 

i.-@ ..... t- @____..... ~ 

i I-+ ~@ 
R/W "=-

fll.. ~8---> ~ ..... 
r--------1 ~ Data Out 

@* ~ 
"~~'lc:. __________ __, ______ ---1..,_. _______ _ 

FCO-FC2 p -----
Asynchronous 

Inputs 

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted . 

.___ _____ ® MOTOROLA Semiconductor Products Inc. 
6 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

AC ELECTRICAL SPECIFICATIONS - BUS ARBITRATION!Vcc=5.0 Vdc ±5%. Vss=O Vdc; TA=0°C to 70°C. See Figure 7) 

4 MHz 6 MHz 8MHz 10 MHz 

Number Characteristic Symbol MC61mOL4 MC61:KJOOL6 MC61:KJOOLB M C61:KJOOL10 Unit 

Min Max Min Max Min Max Min Max 

33 Clock High to BG Low tCHGL - 90 - 80 - 70 - 60 ns 

34 Clock Hig_h to BG High l.cJ::l.G.J:i - 90 - 80 - 70 - 60 ns 

35 BR Low to BG Low tBRLGL 1.5 3.5 1.5 3.5 1.5 3.5 1.5 3.5 Clk. Per. 

36 BR H!.ll_h to~ H!.ll_h !!IB.HGH 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 Clk. Per. 

37 BGACK Low to BG High IGALGH 1.5 3.0 1.5 3.0 1.5 3.0 1 5 3.0 Clk. Per. 

38 BG Low to Bus High Impedance (with AS Highl tGLZ - 120 - 100 - 80 - 70 ns 

39 BG Width High IGH 1 5 - 1 5 - 1.5 - 1 5 - Clk. Per. 

46 BGACK Width tBGL 1.5 - 1.5 - 1.5 - 1.5 - Clk. Per. 

FIGURE 7 - AC ELECTRICAL WAVEFORMS - BUS ARBITRATION 

These waveforms should only be referenced in regard to the edge-to-edge measurement of the timing specifications. They are not 
intended as a functional description of the input and output signals. Refer to other functional descriptions and their related 
diagrams for device operation. 

Strobes 
and R/W 

--@--

-----1@ 
~ __ ,__ ______________ ~----~--@-1------ ,..---------------1--

--0---·I 

CLK 

NOTES: 

1. Setup time for the asynchronous inputs BEAR, BGACK. BR, DTACK, IPLO-IPL2, and VPA guarantees their recognition at the next falling 
edge of the clock. 

2. Waveform measurements for all inputs and outputs are specified at: logic high= 2.0 volts, logic low= 0.8 volts . 

..__ _____ ® MOTOROLA Semiconductor Products Inc. 
7 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

SIGNAL DESCRIPTION 

The following paragraphs contain a brief description of the 
input and output signals. A discussion of bus operation dur­
ing the various machine cycles and operations is also given. 

SIGNAL DESCRIPTION 
The input and output signals can be functionally organized 

into the groups shown in Figure 8. The following paragraphs 
provide a brief description of the signals and also a reference 
(if applicable) to other paragraphs that contain more detail 
about the function being performep. 

FIGURE 8 - INPUT AND OUTPUT SIGNALS 

~V'.i;c;_gciQ21_) J----...,~ A1 -A23 
GND(2) ~· 

Processor { 
Status 

M6800 { 
Peripheral 

Control 

CLK ~ 
~D0-015 

FCO 

FC1 
FC2 

E 
VMA 
VPA 

BEAR 
RESET 

MC68000 
Microprocessor ~~ ~}Asynchronous 

LDS Bus 
DTACK Control 

BR 
BG \Bus Arbitration 

BGACK J Control 

IPLO 

Syste~{ 
Control HALT 

IPL1 }Interrupt 
i-;;.IP'""L2.,__ Control 

~~L_ _ __J~=--

ADDRESS BUS (A1 THROUGH A23l. This 23-bit, 
unidirectional, three-state bus is capable of addressing 8 
megawords of data. It provides the address for ~us operation 
during all cycles except interrupt cycles. During interrupt 
cycles, address lines A 1, A2, and A3 provide information 
about what level interrupt is being serviced while address 
lines A4 through A23 are all set to a logic high. 

DATA BUS (00 THROUGH 015). This 16-bit, bidirec­
tionc1I, three-state bus is the general purpose data path. It 
can transfer and accept data in either word or byte length. 
During an interrupt acknowledge cycle, an external device 
supplies the vector number on data lines DO-D7. 

ASYNCHRONOUS BUS CONTROL. Asynchronous data 
transfers are handled using the following control signals: ad­
dress strobe, read/write, upper and lower data strobes, and 
data transfer acknowledge. These signals are explained in 
the following paragraphs. 

Address Strobe (AS). This signal indicates that there is a 
valid address on the address bus. 

Read/Write (R/W). This signal defines the data bus 
transfer as a read or write cycle. The R/W signal also works 
in conjunction with the upper and lower data strobes as ex­
plained in the following paragraph. 

Upper And Lower Data Strobes IUDS, LOS). These 
signals control the data on the data bus. as shown in Table 
1. When the R/W line is high. the proce~or will read from 
the data bus as indicated. When the R/W line is low, the 
processor will write to the data bus as shown. 

TABLE 1 - DATA STROBE CONTROL OF DATA BUS 

-oos ~ R/W DB-D15 DO-D7 
High High - No valid data No valid data 

High 
Valid data bits Valid data bits 

Low Low 
8-15 0-7 

High No valid data Valid data bits High Low 0-7 

Low High High 
Valid data bits 

No valid data 8-15 

Low 
Valid data bits Valid data bits 

Low Low 8-15 0-7 

Low 
Valid data bits Valid data bits High Low 

0-7* 0-7 

High Low 
Valid data bits Valid data bits 

Low 
8-15 8-15* 

*These conditions are a result of current implementation and may 
not appear on future devices. 

Data Transfer Acknowledge (DTACK). This input in­
dicates that the data transfer is completed. When the pro­
cessor recognizes DT ACK during a read cycle, data is 
latched and the bus cycle terminated. When DTACK is 
recognized during a write cycle, the bus cycle is terminated. 

An active transition of data transfer acknowledge, 
DT ACK. indicates the termination of a data transfer on the 
bus. 

If the system must run at a maximum rate determined by 
RAM access times, the relationship between the times at 
which DTACK and DAT A are sampled are important. 

All control and data lines are sampled during the 
MC68000's clock high time. The clock is internally buffered, 
which results in some slight differences in the sampling and 
recognition of various signals. MC68000 mask sets prior to 
CC1 (R9M and T6E), allowed DTACK to be recognized as 
early as S2 (bus state 2). and all devices allow ~ or 
DT ACK to be recognized in S4, S6, etc .• which termi~a~es 
the cycle. The DTACK signal, like other control signals, 1s in­
ternally synchronized to allow for valid operation in an asyn­
chronous system. If the required setup time (#47) is met dur­
ing S4, DT ACK will be recognized during S5 and S6, and 
data will be captured during S6. The data must meet the re­
quired setup time (#27). 

If an asynchronous control signal does not meet the re­
quired setup time, it is possible that it may not be recognized 
during that cycle. Because of this, asynchronous systems 
must not allow DT ACK to precede data by more than 
parameter #31 . 

Asserting DTACK (or BERRI on the rising edge of a clock 
(such as S4) after the assertion of address strobe will allow a 
MC68000 system to run at its maximum bus rate. If setup 
times #27 and #47 are guaranteed, #31 may be ignored. 

MOTOROLA Semiconductor Products Inc. 
8 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

BUS ARBITRATION CONTROL. These three signals form 
a bus arbitration circuit to determine which device will be the 
bus master device. 

Bus Request IBRI. This input is wire ORed with all other 
devices that could be bus masters. This input indicates to the 
processor that some other device desires to become the bus 
master. 

Bus Grant IBGI. This output indicates to all other potential 
bus master devices that the processor will release bus con­
trol at the end of the current bus cycle. 

Bus Grant Acknowledge IBGACK). This input indicates 
that some other device has become the bus master. This 
signal cannot be asserted until the following four conditions 
are met: 

1. a Bus Grant has been received 

2. Address Strobe is inactive which indicates that the 
microprocessor is not using the bus 

3. Data Transfer Acknowledge is inactive which in­
dicates that neither memory nor peripherals are using 
the bus 

4. Bus Grant Acknowledge is inactive which indicates 
that no other device is still claiming bus mastership. 

INTERRUPT CONTROL llPLO, IPL1, IPL2l. These input 
pins indicate the encoded priority level of the device re­
questing an interrupt. Level seven is the highest priority 
while level zero indicates that no interrupts are requested. 
The least significant bit is given in IPLO and the most signifi­
cant bit is contained in IPL2. 

SYSTEM CONTROL. The system control inputs are used 
to either reset or halt the processor and to indicate to the 
processor that bus errors have occurred. The three system 
control inputs are explained in the following paragraphs. 

Bus Error (BERRI. This input informs the processor that 
there is a problem with the cycle currently being executed. 
Problems may be a result of: 

1. nonresponding devices 
2. interrupt vector number acquisition failure 
3. illegal access request as determined by a memory 

management unit 
4. other application dependent errors. 

The bus error signal interacts with the halt signal to deter­
mine if exception processing should be performed or the cur­
rent bus cycle should be retried. 

Refer to BUS ERROR AND HALT OPERATION paragraph 
for additional information about the interaction of the bus er­
ror and halt signals. 

Reset (RESET). This bidirectional signal line acts to reset 
(initiate a system initialization sequence) the processor in 
response to an external reset signal. An internally generated 
reset (result of a RESET instruction) causes all external 
devices to be reset and the internal state of the processor is 
not affected. A total system reset (processor and external 
devices) is the result of external HALT and RESET signals 
applied at the same time. Refer to RESET OPERATION 
paragraph for additional information about reset operation . 

Halt (HAL Tl. When this bidirectional line is driven by an 
external device, it will cause the processor to stop at the 
completion of the current bus cycle. When the processor has 
been halted using this input, all control signals are inactive 
and all three-state lines are put in their high-impedance state. 
Refer to BUS ERROR AND HALT OPERATION paragraph 
for additional information about the interaction between the 
halt and bus error signals. 

When the processor has stopped executing instructions, 
such as in a double bus fault condition, the halt line is driven 
by the processor to indicate to external devices that the pro­
cessor has stopped. 

M6800 PERIPHERAL CONTROL. These control signals are 
used to allow the interfacing of synchronous M6800 
peripheral devices with the asynchronous MC68000. These 
signals are explained in the following paragraphs. 

Enable (E). This signal is the standard enable signal com­
mon to all M6800 type peripheral devices. The period for this 
output is ten MC68000 clock periods (six clocks low; four 
clocks high). 

Valid Peripheral Address (VPAI. This input indicates that 
the device or region addressed is a M6800 family device and 
that data transfer should be synchronized with the enable (El 
signal. This input also indicates that the processor should 
use automatic vectoring for an interrupt. Refer to INTER­
FACE WITH M6800 PERIPHERALS. 

Valid Memory Address (VMA). This output is used to in­
dicate to M6800 peripheral devices that there is a valid ad­
dress on the address bus and the processor is synchronized 
to enable. This signal only responds to a valid peripheral ad­
dress (VPA) input which indicates that the peripheral is a 
M6800 family device. 

PROCESSOR STATUS (FCO, FC1, FC2l. These function 
code outputs indicate the state (user or supervisor) and the 
cycle type currently being executed, as shown in Table 2. 
The information indicated by the function code outputs is 
valid whenever address strobe (AS) is active. 

TABLE 2 - FUNCTION CODE OUTPUTS 

FC2 FC1 FCO Cycle Type 

Low Low Low (Undefined, Reserved) 

Low Low High User Data 

Low High Low User Program 

Low High High (Undefined, Reserved) 

High Low Low (Undefined, Reserved) 

High Low High Supervisor Data 

High High Low Supervisor Program 

High High High Interrupt Acknowledge 

CLOCK ICLK). The clock input is a TTL-compatible signal 
that is internally buffered for development of the internal 
clocks needed by the processor. The clock input shall be a 
constant frequency. 

SIGNAL SUMMARY. Table 3 is a summary of all the 
signals discussed in the previous paragraphs. 

....___ _____ ® MOTOROLA Semiconductor Products Inc. 
9 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

TABLE 3 - SIGNAL SUMMARY 

Signal Name Mnemonic Input/ Output Active State Three 
State 

Address Bus A1-A23 output high yes 

Data Bus D0-015 input/ output high yes 

Address Strobe AS output low yes 

Read/Write R/W output read-high yes 
write-low 

Upper and Lower Data Strobes mm.m output low yes 
Data Transfer Acknowledge 15Un input low no 
Bus Request ITT!' input low no 
Bus Grant BG output low no 
Bus Grant Acknowledge ~ input low no 
Interrupt Priority Level wrn. TPCT. m input low no 
Bus Error BEAR input low no 
Reset RESET input/ output low no* 
Halt HALT input/ output low no* 
Enable E output high no 
Valid Memory Address VMA output low yes 
Valid Peripheral Address VPA input low no 
Function Code Output FCO, FC1, FC2 output high yes 
Clock CLK input high no 
Power Input Vee input - -
Ground GND input - -

*open drain 

REGISTER DESCRIPTION AND DATA ORGANIZATION 

The following paragraphs describe the registers and data 
organization of the MC68000. 

OPERAND SIZE 
Operand sizes are defined as follows: a byte equals 8 bits, 

a word equals 16 bits, and a long word equals 32 bits. The 
operand size for each instruction is either explicitly encoded 
in the instruction or implicitly defined by the instruction 
operation. All explicit instructions support byte, word or long 
word operands. Implicit instructions support some subset of 
all three sizes. 

DATA ORGANIZATION IN REGISTERS 

The eight data registers support data operands of 1, 8, 16, 
or 32 bits. The seven address registers together with the ac­
tive stack pointer support address operands of 32 bits. 

DATA REGISTERS. Each data register is 32 bits wide. 
Byte operands occupy the low order 8 bits, word operands 
the low order 16 bits, and long word operands the entire 32 
bits. The least significant bit is addressed as bit zero; the 
most significant bit is addressed as bit 31. 

When a data register is used as either a source or destina­
tion operand, only the appropriate low-order portion is 
changed; the remaining high-order portion is neither used 
nor changed. 

ADDRESS REGISTERS. Each address register and the 
stack pointer is 32 bits wide and holds a full 32 bit address . 

Address registers do not support byte sized operands. 
Therefore, when an address register is used as a source 
operand, either the low order word or the entire long word 
operand is used depending upon the operation size. When 
an address register is used as the destination operand, the 
entire register is affected regardless of the operation size. If 
the operation size is word, any other operands are sign ex­
tended to 32 bits before the operation is performed. 

STATUS REGISTER 

The status register contains the interrupt mask (eight 
levels available) as well as the condition codes; extend (X), 
negative (N), zero (Z), overflow (V), and carry (Cl. Addi­
tional status bits indicate that the processor is in a trace (Tl 
mode and/or in a supervisor (S) state. 

STATUS REGISTER 

System Byte User Byte 

---...J"' "''----.... 

Negative 
Interrupt Zero 

Mask Overflo 
Carry 

....___ _____ ® MOTOROLA Semiconductor Products Inc. 
10 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

DATA ORGANIZATION IN MEMORY 
Bytes are individually addressable with the high order byte 

having an even address the same as the word, as shown in 
Figure 9. The low order byte has an odd address that is one 
count higher than the word address. Instructions and 
multibyte data are accessed only on word (even byte) boun­
daries. If a long word datum is located at address n (n even), 
then the second word of that datum is located at address 
n+2. 

The data types supported by the MC68000 are: bit data, in­
teger data of 8, 16, or 32 bits, 32-bit addresses and binary 
coded decimal data. Each of these data types is put in 
memory, as shown in Figure 10. 

BUS OPERATION 

The following paragraphs explain control signal and bus 
operation during data transfer operations, bus arbitration, 
bus error and halt conditions, and reset operation. 

DATA TRANSFER OPERATIONS. Transfer of data be-
tween devices involves the following leads: 

• Address Bus A 1 through A23 

• Data Bus DO through D15 

• Control Signals 

The address and data buses are separate parallel buses used 
to transfer data using an asynchronous bus structure. In all 
cycles, the bus master assumes responsibility for deskewing 
all signals it issues at both the start and end of a cycle. In ad­
dition, the bus master is responsible for deskewing the 
acknowledge and data signals from the slave device. 

The following paragraphs explain the read, write, and 
read-modify-write cycles. The indivisible read-modify-write 
cycle is the method used by the MC68000 for interlocked 
multiprocessor communications. 

NOTE 

The terms assertion and negation will be used extensively. 
This is done to avoid confusion when dealing with a mixture 
of "active-low" and "active-high" signals. The term assert or 
assertion is used to indicate that a signal is active or true in­
dependent of whether that voltage is low or high. The term 
negate or negation is used to indicate that a signal is inactive 
or false. 

Read Cycle. During a read cycle, the processor receives 
data from memory or a peripheral device. The processor 
reads bytes of data in all cases. If the instruction specifies a 
word (or double word) operation, the processor reads both 
bytes. When the instruction specifies byte operation, the 
processor uses an internal AO bit to determine which byte to 
read and then issues the data strobe required for that byte. 
For byte operations, when the AO bit equals zero, the upper 
data strobe is issued. When the AO bit equals one, the lower 
data strobe is issued. When the data is received, the pro­
cessor correctly positions it internally. 

A word read cycle flow chart is given in Figure 11. A byte 
read cycle flow chart is given in Figure 12. Read cycle timing 
is given in Figure 13. Figure 14 details word and byte read cy­
cle operations. 

FIGURE 9 - WORD ORGANIZATION IN MEMORY 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Word 000000 
Byte 000000 J Byte 000001 

Byte 000002 
Word 

1
000002 

Byte 000003 . . . . . 
Word FFFFFE 

Byte FFFFFE I Byte FFFFFF 

......__ _____ @ MOTOROLA Semiconductor Products Inc. 
11 



FIGURE 10 - DATA ORGANIZATION IN MEMORY 

Bit Data 
1 Byte= 8 Bits 

7 6 5 4 3 2 0 

Integer Data 
1 Byte = 8 Bits 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I MSB 
Byte 0 

LSBI 
Byte 1 

Byte 2 Byte 3 

1 Word= 16 Bits 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

MSB Word 0 
LSB 

Word 1 

Word 2 

1 Long Word= 32 Bits 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
MSB 

High Order 
- -Long Word 0- - -

Low Order 
LSB 

-Long Word 1- - - - - - - - - - - - - - - - - - - - -

- - Long Word 2 - - - - - - - - - - - - - - - - - - - - -

Addresses 
1 Address= 32 Bits 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
MSB 

High Order 
- - Address 0 - - - - - - - - - - - - - - - - - - - - -

Low Order 
LSB 

- - Address 1 - - - - - - - - - - - - - - - __ _ 

--~~2---------------------

MS B = Most Significant Bit 
LSB =Least Significant Bit 

15 14 13 12 11 
MSD 

BCD 0 

BCD 4 
.. 

MSD =Most Significant D1g1t 
LSD= Least Significant Digit 

Decimal Data 
2 Binary Coded Decimal Digits= 1 Byte 

10 9 8 7 6 5 4 3 2 

BCD 1 LSD BCD 2 BCD 3 

BCD 5 BCD 6 BCD 7 

ffJ::i MOTOROLA Semiconductor Products Inc. v.:.y 12 

0 



MC60000L4•MC60000L6•MC68000L8•MC68000L 10 

RGURE 11 - WORD READ CYCLE FLOW CHART 

BUS MASTER 

Address Device 
1l Set R/W to Read 

SLAVE 

2) Place Function Code on FCO-FC2 
3) Place Address on A1-A23 
4) Assert Address Strobe (ASl 
5l Assert Upper Data Strobe (~) and Low­

er Data Strobe (LOS) 

Acquire Data 
1l Latch Data 
2l Negate UDS and LOS 
3) Negate~ 

t 
Start Next Cycle 

Input Data 
1 l Decode Address 
2l Place Data on D0-015 
3) Assert Data Transfer Acknowledge 

!i5i'ACKl 

' Terminate Cycle 

1) Remove Data from 00-015 
2l Negate i5i'm 

FIGURE 12 - BYTE READ CYCLE FLOW CHART 

BUS MASTER SLAVE 

Add1'981 Device 
1) Set R/W to Read 
2) Place Function Code on FCO-FC2 
3) Place Address on A 1-A23 
4) Assert Address Strobe (i\S) 

5) Assert Upper Data Strobe (~) or Lower 
Data Strobe iCDSl (based on AOl 

H Latch Data 

I 

t 
Input Data 

1) Decode Address 
2) Place Data on 00-07 or 08-015 (based on 

UDS or LDSl 
3) Assert Data Transfer Acknowledge 

(DTACKl 

• Acquire Data 

2) I-legate iJDS or IDS 
3l Negate AS 

Terminate Cycle 

1) Remove Data from 00-07 or 08-015 
2l Negate i5i'ACK 

t 
Start Next Cycle 

FIGURE 13 - READ AND WRITE CYCLE TIMING DIAGRAM 

SO S1 S2 S3 S4 S5 S6 S7 SO Sl 52 S3 S4 55 S6 57 SO 51 52 S3 54 w w w w 55 56 57 

CLK 

~~~~~~~__.:::~~~~-;:--...!:~~~~~~~-;:~ 
...._~~~~~~--~ \ I \ I \ AS

um \
rn \
R/W

DTACK

08-016

00-07

F~2::J(

J.- -

--®

I \ I \ --~~~~~~---r-
I \ I \ 1

\ I \ I '-----
x x -------------J>-

-Read- - 4 -Write - ~ •Slow Read- - ->I

MOTOROLA Semiconductor Products Inc.
13

MC68000L4•MC68000L6•MC68000L8•MC68000L 10

FIGURE 14 - WORD AND BYTE READ CYCLE TIMING DIAGRAM

SO Sl S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 SO S1 52 S3 S4 S5 S6 S7

CLK

AO*

AS ____ I \ I \..._ ____ r-\
--~~-'--____:=======--~\ r-UDS \

LOS

R/W

DTACK \ I \ I \ I
08-015 () <)---
D0-07 -~~~~"\.~~~~~--

x FC0-2 :::J(..._ ______ _ x >-
*Internal Signal Only

!-+ - -Word Read· ->k- - Odd Byte Read- ~ -Even Byte Read - .J

Write Cycle. During a write cycle, the processor sends
data to memory or a peripheral device. The processor writes
bytes of data in all cases. If the instruction specifies a word
operation, the processor writes both bytes. When the ·in­
struction specifies a byte operation, the processor uses an
internal AO bit to determine which byte to write and then
issues the data strobe required for that byte. For byte opera­
tions, when the AO bit equals zero, the upper data strobe is
issued. When the AO bit equals one, the lower data strobe is
issued. A word write cycle flow chart is given in Figure 15. A
byte write cycle flow chart is given in Figure 16. Write cycle
timing is given in Figure 13. Figure 17 details word and byte
write cycle operation.

Read-Modify-Write Cycle. The read-modify-write cycle
performs a read, modifies the data in the arithmetic-logic
unit, and writes the data back to the same address. In the
MC68000 this cycle is indivisible in that the address strobe is
asserted throughout the entire cycle. The test and set IT AS)
instruction uses this cycle to provide meaningful com­
munication between processors in a multiple processor en­
vironment. This instruction is the only instruction that uses
the read-modify-write cycles and since the test and set in­
struction only operates on bytes, all read-modify-write cycles
are byte operations. A read-modify-write cycle flow chart is
given in Figure 18 and a timing diagram is given in Figure 19.

BUS ARBITRATION. Bus arbitration is a technique used
by master-type devices to request, be granted, and
acknowledge bus mastership. In its simplest form, it consists
of:

1. Asserting a bus mastership request.
2. Receiving a grant that the bus is available at the end

of the current cycle.
3. Acknowledging that mastership has been assumed.

Figure 20 is a flow chart showing the detail involved in a
request from a single device. Figure 21 is a timing diagram
for the same operations. This technique allows processing of
bus requests during data transfer cycles.

The timing diagram shows that the bus request is negated
at the time that an acknowledge is asserted. This type of
operation would be true for a system consisting of the pro­
cessor and one device capable of bus mastership. In systems
having a number of devices capable of bus mastership, the
bus request line from each device is wire ORed to the pro­
cessor. In this system, it is easy to see that there could be
more than one bus request being made. The timing diagram
shows that the bus grant signal is negated a few clock cycles
after the transition of the acknowledge (BGACKI signal.

However, if the bus requests are still pending, the pro­
cessor will assert another bus grant within a few clock cycles
after it was negated. This additional assertion of bus grant
allows external arbitration circuitry to select the next bus
master before the current bus master has completed its re­
quirements. The following paragraphs provide additional in­
formation about the three steps in the arbitration process.

~----- (fi:\ MOTOROLA Semiconductor Products Inc.
'CY 14

MC68000L4•MC68000L6•MC68000L8•MC68000L 10

FIGURE 15 - WORD WRITE CYCLE FLOW CHART

BUS MASTER SLAVE

Address Device

11 Place Function Code on FCO-FC2
21 Place Address on A 1-A23
31 Assert Address Strobe IAS)
41 Set R/W to Write
51 Place Data on DO-D15
61 Assert Upper Data Strobe IUDS) and

Lower Data Strobe ILDSl

I

t

t
Input Data

1 l Decode Address
21 Store Data on 00-D 15
3) Assert Data Transfer Acknowledge

IDTACKl

Terminate Output Transfer

1 l Negate UDS and LOS
21 Negate AS
3) Remove Data from 00-015
4) Set R/W to Read

f
Start Next Cycle

Terminate Cycle

1 l Negate OT ACK

FIGURE 16 - BYTE WRITE CYCLE FLOW CHART

BUS MASTER SLAVE

Address Device

11 Place Function Code on FCO-FC2
21 Place Address on A l-A23
31 Assert Address Strobe IASl
4) Set R/W to Write
51 Place Data on D0-07 or D8-D15 (according

to AO!
61 Assert Upper Data Strobe IUDS! or Lower

Data Strobe ILDSl (based on AO)

I

Input Data

1 l Decode Address
2) Store Data on D0-07 if LOS is asserted

Store Data on 08-015 if UDS is asserted
31 Assert Data Transfer Acknowledge

ID~
Terminate Output Transfer

1) Negate UDS and LOS
21 Negate AS
3) Remove Data from 00-07 or 08-015
4) Set R/W to Read

Terminate Cycle

1 l Negate OT ACK

f
Start Next Cycle

FIGURE 17 - WORD AND BYTE WRITE CYCLE TIMING DIAGRAM

SO S 1 S2 S3 S4 S5 S6 S7 SO S 1 S2 S3 S4 S5 S6 S7 SO S 1 S2 S3 S4 S5 S6 S7

CLK

AO*
~~~~~~~~~~----' 

AS~~-'~.===~~--J/r~~-'~=========/~~~~\~=-=-::::::::~~--'r­uos 
LOS 

R/W 
DTACK~~~==::::::;----~--~====~~~--'--~====:----~ 

\ \ \ r-
08-015===::::: 

00-07 --..J 

FC0-2 

H 
H 

*Internal Signal Only 

( 

> < ) 

f+- - - - Word Write - - -~-- Odd Byte Write - •I• 

< 
< 

Even Byte Write--~ 

® MOTOROLA Semiconductor Products Inc. 
15 

> 
> 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

FIGURE 18 - READ-MODIFY-WRITE CYCLE FLOW CHART 

BUS MASTER SLAVE 

Address Device 

1) Set R/W to Read 
2) Place Function Code on FCO-FC2 
3) Place Address on A 1-A23 
4) Assert Address Strobe (AS) 
5) Assert Upper Data Strobe IUDs) or 

Lower Data Strobe ILDSl 

' Acquire Data 

1 l Latch Data 
2) Negate UDS or LOS 
3) Start Data Modification 

f 
Start Output Transfer 

1l Set R/W to Write 
2) Place Data on 0(}.07 or 08-015 
3) Assert Upper Data Strobe (UDSl or Lower 

Data Strobe (ID§) 

f 
Terminate Output Transfer 

1 l Negate U!5S or LOS 
2) Negate~ 
3) Remove Data from 00-07 or 08-015 
4) Set R/W to Read 

Start Ne! Cycle 

Input Data 

1) Decode Address 
2) Place Data on 00-07 or 08-015 
3) Assert Data Transfer Acknowledge 

(OTACKl 

Terminate Cycle 

1) Remove Data from 00-07 or 08-015 
2l Negate i5i'ACK 

Input Data 

1) Store Data on 00-07 or 08-015 
2) Assert Data Transfer Acknowledge 

IDTACKl 

Terminate Cycle 

1l Negate OT ACK 

I 

FIGURE 19 - READ-MODIFY-WRITE CYCLE TIMING DIAGRAM 

CLK 

A1-A23 

AS 

UDS or LDS 

R/W 

so S1 S2 S3 S4 S5 S6 S7 sa S9S10S11 S12S13S14S15S16S17S18S19 

DTACK \ I \ r-
08-015 ---~< )>-------..... ( }-

FC(}.2 .:X~-------------------><= 
!-<------------- ·Indivisible Cycle· ------------.j 

.__ _____ fll\ MOTOROLA Semiconductor Products Inc. 
\CY 16 



' 

MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

FIGURE 20 - BUS ARBITRATION CYCLE FLOW CHART 

PROCESSOR 

t 

REQUESTING DEVICE 

Request the Bus 

1 l Assert Bus Request 181'\ I 
I 

Grant Bus Arbitration 

1) Assert Bus Grant IBGl 
I 

t 
Acknowledge Bus Mastership 

11 External arbitration determines next bus 
master 

21 Next bus master waits for current cycle to 
complete 

31 Next bus master asserts Bus Grant 
Acknowledge IBGACKl to become new 
master 

41 Bus master negates BR 
I 

' Terminate Arbitration 

ll Negate BG land wait for BGACK to be 
negated) 

' Operate as Bus Master 

ll Perform Data Transfers !Read and Write 
cycles) according to the same rules the pro-

cessor uses. f 
Release Bus Mastership 

1 I Negate BG ACK 

' Re-Arbitrate or Res.ime Processor 
Operation 

Requesting the Bus. External devices capable of becoming 
bus masters request the bus by asserting the bus request 
(BR) signal. This is a wire ORed signal (although it need not 
be constructed from open collector devices) that indicates to 
the processor that some external device requires control of 
the external bus. The processor is effectively at a lower bus 
priority level than the external device and will relinquish the 
bus after it has completed the last bus cycle it has started. 

When no acknowledge is received before the bus request 
signal goes inactive, the processor will continue processing 
when it detects that the bus request is inactive. This allows 
ordinary processing to continue if the arbitration circuitry 
responded to noise inadvertently. 

Receiving the Bus Grant. The processor asserts bus grant 
(BG) as soon as possible. Normally this is immediately after 
internal synchronization. The only exception to this occurs 
when the processor has made an internal decision to execute 
the next bus cycle but has not progressed far enough into 
the cycle to have asserted the address strobe (AS) signal. In 
this case, bus grant will not be asserted until one clock after 
address strobe is asserted to indicate to external devices that 
a bus cycle is being executed. 

The bus grant signal may be routed through a daisy­
chained network or through a specific priority-encoded net­
work. The processor is not affected by the external method 
of arbitration as long as the protocol is obeyed. 

Acknowledgement of Mastership. Upon receiving a bus 
grant, the requesting device waits until address strobe, data 
transfer acknowledge, and b~nt acknowledge are 
negated before issuing its own BGACK. The negation of the 
address strobe indicates that the previous master has com­
pleted its cycle, the negation of bus grant acknowledge in­
dicates that the previous master has released the bus. (While 
address strobe is asserted no device is allowed to "break in­
to" a cycle.) The negation of data transfer acknowledge in­
dicates the previous slave has terminated its connection to 
the previous master. Note that in some applications data 
transfer acknowledge might not enter into this function. 
General purpose devices would then be connected such that 

FIGURE 21 - BUS ARBITRATION CYCLE TIMING DIAGRAM 

Processor- ,....... -OMA Device- ~ - -Processor- - -OMA Device· - -

,___ _____ (!!\ MOTOROLA Semiconductor Products Inc. 
'CY 17 



MC68000L4• MC68000L6• MC68000L8• MC68000L 10 

they were only dependent on address strobe. When bus 
grant acknowledge is issued the device is bus master until it 
negates bus grant acknowledge. Bus grant acknowledge 
should not be negated until after the bus cycle(sl is (are) 
completed. Bus mastership is terminated at the negation of 
bus grant acknowledge. 

The bus request from the granted device should be drop­
ped after bus grant acknowledge is asserted. If a bus request 
is still pending, another bus grant will be asserted within a 
few clocks of the negation of bus grant. Refer to Bus 
Arbitration Control section. Note that the processor does not 
perform any external bus cycles before it re-asserts bus 
grant. 

BUS ARBITRATION CONTROL. The bus arbitration con­
trol unit in the MC68000 is implemented with a finite state 
machine. A state diagram of this machine is shown in Figure 
22. All asynchronous signals to the MC68000 are synchroniz­
ed before being used internally. This synchronization is ac­
complished in a maximum of one cycle of the system clock, 
assuming that the asynchronous input setup time (#47) has 

FIGURE 22 - STATE DIAGRAM OF MC68000 BUS 
ARBITRATION UNIT 

RA 

RA 

R =Bus Request Internal 
A= Bus Grant Acknowledge Internal 
G= Bus Grant 
T =Three-State Control to Bus Control Logic 
X =Don't Care 

* State machine will not change state if bus is in SO. Refer to 
BUS ARBITRATION CONTROL for additional information . 

been met (see Figure 231. The input signal is sampled on the 
falling edge of the clock and is valid internally after the next 
falling edge. 

As shown in Figure 22, input signals labeled R and A are 
internally synchronized on the bus request and bus grant 
acknowledge pins respectively. The bus grant output is 
labeled G and the internal three-state control signal T. If Tis 
true, the address, data, and control buses are placed in a 
high-impedance state when AS is negated. All signals are 
shown in positive logic (active high) regardless of their true 
active voltage level. 

State changes (valid outputs) occur on the next rising 
edge after the internal signal is valid. 

A timing diagram of the bus arbitration sequence during a 
processor bus cycle is shown in Figure 24. The bus arbitra­
tion sequence while the bus is inactive (i.e., executing inter­
nal operations such as a multiply instruction) is shown in 
Figure 25. 

If a bus request is made at a time when the MPU has 
already begun a bus cycle but AS has not been asserted (bus 
state SQ), BG will not be asserted on the next rising edge. In­
stead, BG will be delayed until the second rising edge follow­
ing it's internal assertion. This sequence is shown in Figure 
26. 

BUS ERROR ANO HALT OPERATION. In a bus architec­
ture that requires a handshake from an external device, the 
possibility exists that the handshake might not occur. Since 
different systems will require a different maximum response 
time, a bus error input is provided. External circuitry must be 
used to determine the duration between address strobe and 
data transfer acknowledge before issuing a bus error signal. 
When a bu? error signal is received, the processor has two 
options: initiate a bus error exception sequence or try runn­
ing the bus cycle again. 

FIGURE 23 - TIMING RELATIONSHIP OF EXTERNAL 
ASYNCHRONOUS INPUTS TO INTERNAL SIGNALS 

Internal Signal Valid--------

l External Signal Sampled+ 

CLK 

BR !External! ------

BR !Internal! 

® 

Asychronous 
Input Delav* 

*This delay time is equal to parameter 133,tcHGL· 

.__ _____ @ MOTOROLA Semiconductor Products Inc. 
18 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

CLK 

BGACK 

A1-A23 

AS 

UOS 

LOS 

FIGURE 24 - BUS ARBITRATION DURING PROCESSOR BUS CYCLE 

Bus three stated--------. 

BG asserted~ :: ::~,:::""'' i l 
ITTi asserted-i 

Bus released from three state and 

Processor starts next bus cycle Tl 
BGACK negated 1nternalfl1 
BGACK sampled~ 
BGACK negated ----i t 

so s 1 S2 S3 S4 S5 S6 S7 SO Sl S2 S3 S4 S5 S6 S7 SO Sl 

FCO-FC2 =-x..__ ______ )>----------~< L 
R/W .:=.========::::..:== 

OT ACK 

00-015 

CLK 

BR 

BG 

BGACK 

A1-A23 

AS 

ODS 

LOS 

FCO-FC2 

R/W 

OT ACK 

00-015 

Processor Alternate Bus Master Processor 
•I• • .. 

FIGURE 25 - BUS ARBITRATION WITH BUS INACTIVE 

Bus released from three state and processor starts next bus cycle,----------------, 
BGACK negated--------------------------., 
~ asserted and bus three stated-------__, 
BR valid internal-----------, 
ITTi asserted-----------. 

SO S1 S2 S3 S4 S5 S6 S7 

.. Processor ., .. Bus Inactive Alternate Bus Master 

r!1\ MOTOROLA Semiconductor Products Inc. 
'CY 19 

so S1 S2 S3 S4 

\__ 

I Processor . .. . 



I 

MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

FIGURE 26 - BUS ARBITRATION DURING PROCESSOR BUS CYCLE SPECIAL CASE 

~asserted 
Im sampled 

Bus released from three state and 

Bus three stated------~ 
BG asserted-----
BR valid internal 

Processor starts next bus cyclerfl 
~ negated internal 
~sampled----~ 

~negated+ 

SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 SO S1 

BR 

BG 

BGACK 

Al-A23 ( ) ( >-C 
AS \ I' ~ I 

UDS \ I' ~ I 
LDS \ r ~ I 

FCO-FC3 x ) < x= 
R/W 

DTACK 

DO-D15 .. Processor •I• Alternate Bus Master •I• Processor 

Exception Sequence. When the bus error signal is 
asserted, the current bus cycle is terminated. If BEAR is 
asserted before the falling edge of S4, AS will be negated in 
S7 in either a read or write cycle. As long as BERR remains 
asserted, the data and address buses will be in the high­
impedance state. When BERR is negated, the processor will 
begin stacking for exception processing. Figure 27 is a timing 
diagram for the exception sequence. The sequence is com­
posed of the following elements. 

1. Stacking the program counter and status register 
2. Stacking the error information 

.. 
3. Reading the bus error vector table entry 
4. Executing the bus error handler routine 

The stacking of the program counter and the status 
register is the same as if an interrupt had occurred. Several 
additional items are stacked when a bus error occurs. These 
items are used to determine the nature of the error and cor­
rect it, if possible. The bus error vector is vector number two 
located at address $CXXXJ08. The processor loads the new 
program counter from this location. A software bus error 
handler routine is then executed by the processor. Refer to 
EXCEPTION PROCESSING for additional information. 

MOTOROLA Semiconductor Products Inc. 
20 



M C68000L4• M C68000L6• M C68000L8• M C68000L 10 

Re-Running the Bus Cycle. When, during a bus cycle, the 
processor receives a bus error signal and the halt pin is being 
driven by an external device. the processor enters the re-run 
sequence. Figure 28 is a timing diagram for re-running the 
bus cycle. 

The processor terminates the bus cycle, then puts the 
address and data output lines in the high-impedance state. 
The processor remains "halted," and will not run another 
bus cycle until the halt signal is removed by external logic. 
Then the processor will re-run the previous bus cycle using 

the same address, the same function codes, the same data 
(for a write operation), and the same controls. The bus error 
signal should be removed at least one clock cycle before the 
halt signal is removed. 

NOTE 
The processor will not re-run a read-modify-write cycle. 

This restriction is made to guarantee that the entire cycle 
runs correctly and that the write operation of a Test-and-Set 
operation is performed without ever releasing AS. If 9IITT'l 
and HALT are asserted during a read-modify-write bus cycle, 
a bus error operation results. 

FIGURE 27 - BUS ERROR TIMING DIAGRAM 

CLK 

A1-A23 

AS 

I _ Initiate _I _ _ 1 _ _ 1 _ Initiate Bus 
~ - ~ - -Response Failure-~ - - Bus Error Detection - - ~ - - - ~ -

Read Error Stacking 

FIGURE 28 - RE-RUN BUS CYCLE TIMING INFORMATION 

LDS/O'~ ~~~~========~:.._~~~~~~~~~~~~~~~~~==========~~~~ 
R/W 

Di'ACK 

D0-015 

FC0-2 :X....._ _______ X'°:===========================~x:::=== 
BERR 

HAL'f 

j. - - Read- - +- - - - ·Halt- - - - +f+-- - Rerun- - ---.j 

t11\ MOTOROLA Semiconductor Products Inc. \!..:.Y 21 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

The processor terminates the bus cycle, then puts the ad­
dress, data and function code output lines in the high­
impedance state. The processor remains "halted," and will 
not run another bus cycle until the halt signal is removed by 
external logic. Then the processor will re-run the previous 
bus cycle using the same address, the same function codes, 
the same data (for a write operation), and the same controls. 
The bus error signal should be removed before the halt signal 
is removed. 

Halt Operation with No Bus Error. The halt input signal to 
the MC68000 performs a Halt/Run/Single-Step function in a 
similar fashion to the M6800 halt function. The halt and run 
modes are somewhat self explanatory in that when the halt 
signal is constantly active the processor "halts" (does 
nothing) and when the halt signal is constantly inactive the 
processor "runs" (does something). 

The single-step mode is derived from correctly timed tran­
sitions on the halt signal input. It forces the processor to ex­
ecute a single bus cycle by entering the "run" mode until the 
processor starts a bus cycle then changing to the "halt" 
mode. Thus, the single-step mode allows the user to pro­
ceed through land therefore debug) processor operations 
one bus cycle at a time. 

Figure 29 details the timing required for correct single-step 
operations. Some care must be exercised to avoid harmful 
interactions between the bus error signal and the halt pin 
when using the single cycle mode as a debugging tool. This 
is also true of interactions between the halt and reset lines 
since these can reset the machine. 

When the processor completes a bus cycle after recogniz­
ing that the halt signal is active, most three-state signals are 
put in the high-impedance state. These include: 

1. address lines 
2. data lines 

This is required for correct performance of the re-run bus cy­
cle operation. 

While the processor is honoring the halt request, bus 
arbitration performs as usual. That is, halting has no effect 
on bus arbitration. It is the bus arbitration function that 
removes the control signals from the bus. 

The halt function and the hardware trace capability allow 
the hardware debugger to trace single bus cycles or single in­
structions at a time. These processor capabilities, along with 
a software debugging package, give total debugging flexibili­
ty. 

Double Bus Faults. When a bus error exception occurs, 
the processor will attempt to stack several words containing 
information about the state of the machine. If a bus error ex­
ception occurs during the stacking operation, there have 
been two bus errors in a row. This is commonly referred to as 
a double bus fault. When a double bus fault occurs, the pro­
cessor will halt. Once a bus error exception has occurred, 
any bus error exception occurring before the execution of 
the next instruction constitutes a double bus fault. 

Note that a bus cycle which is re-run does not constitute a 
bus error exception, and does not contribute to a double bus 
fault. Note also that this means that as long as the external 
hardware requests it, the processor will continue to re-run 
the same bus cycle. 

The bus error pin also has an effect on processor operation 
after the processor receives an external reset input. The pro­
cessor reads the vector table after a reset to determine the 
address to start program execution. If a bus error occurs 
while reading the vector table (or at any time before the first 
instruction is executed), the processor reacts as if a double 
bus fault has occurred and it halts. Only an external reset will 
start a halted processor. 

FIGURE 29 - HALT SIGNAL TIMING CHARACTERISTICS 

CLK 

A'S 
LOS/ uos·---""""' 

R/W 

DTACK 

00-015 ----\.._ ____ .) 
~~=======!_~~~~~~~___.::=====;y--

F C 0-2 J======-------------;=======================-"---~=:.. 
RATI 

j.- - -Read- - - +- - - Halt - - -+ - - Read - - ~ 

--® MOTOROLA Semiconductor Products Inc. 
22 



THE RELATIONSHIP OF DTACK, BERR, AND HALT 

In order to properly control termination of a bus cycle for a 
re-run or a bus error condition, DTACK, BEAR, and HALT 
should be asserted and negated on the rising edge of the 
MC68000 clock. This will assure that when two signals are 
asserted simultaneously, the required setup time (#47) for 
both of them will be met during the same bus state. 

This, or some equivalent precaution, should be designed 
external to the MC68000. Parameter #48 is intended to en­
sure this operation in a totally asynchronous system, and 
may be ignored if the above conditions are met. 

The preferred bus cycle terminations may be summarized 
as follows (case numbers refer to Table 4): 

Normal Termination: DTACK occurs first (case 1). 
Halt Termination: HALT is asserted at same time, or 

precedes DTACK (no BEAR) cases 2 and 3. 

Bus Error Termination: BEAR is asserted in lieu of, at same 
time, or preceding DTACK (case 4); BEAR negated at same 
time, or after DTACK. 

Re-Run Termination: HALT and B"E"FfFf asserted at the 
same time, or before DT ACK (cases 6 and 7); HALT must be 
negated at least 1 cycle after "B"Etn1. (Case 5 indicates BERA 

may precede HALT on all except R9M and T6E <early mask 
sets> which allows fully asynchronous assertion). 

Table 4 details the resulting bus cycle termination under 
various combinations of control signal sequences. The nega­
tion of these same control signals under several conditions is 
shown in Table 5 (D'i"ACT° is assumed to be negated nQ!!!!!!: 
ly in all cases; for best results, both DT ACK and SERR 
should be negated when address strobe is negated.) 

Example A: A system uses a watch-dog timer to ter­
minate accesses to un-populated address space. The timer 
asserts DTACK and BEAR simultaneously after time-out. 
(case 4) 

Example B: A system uses error detection on RAM con­
tents. Designer m~delay DT ACK until data verified, and 
return BER R and HALT simultaneously to re-run error cycle 
(case 6), or if valid, return DTACK; (b) delay D'i'ACK until 
data verified, and return BEAR at same time as DTACK if 
data in error (case 41; (c) return DT ACK poor to data verifica­
tion, as described in previous section. If data invalid, BEAR is 
asserted (case 1) in next cycle. Error-handling software must 
know how to recover error cycle. 

TABLE 4 - ~.!ERR 'RArr ASSERTION RESULTS . 
Case Control 

Asserted on Rising 
Edge of State Result 

No. Signal :N: li+..1. 
DTACK A 5 Normal cycle terminate and continue. 

1 BEAR NA x 
HALT NA x 

DTACK A 5 Normal cycle terminate and halt. Continue when HALT removed. 
2 BEAR NA x 

HALT A 5 

DTACK NA A Normal cycle terminate and halt. Continue when HALT removed. 
3 BEAR NA NA 

HALT A 5 
DTACK x x Terminate and take bus error trap. 

4 BERA A 5 
HALT NA NA 

DTACK NA x R9M, TSE, BF4: Unpredictable results, no re-run, no error trap; 
5 BEAR A 5 usually traps to vector number Q_ 

HALT NA A All others: terminate and re-run_ 

DTACK x x Terminate and re-run. 
6 BEAR A 5 

HALT A 5 
DTACK NA x Terminate and re-run when HALT removed. 

7 BEAR NA A 
HALT A 5 

Legend: 
N - the number of the current even bus state (e.g., 54, 56, etc.I 
A - signal is asserted in this bus state 
NA - signal is not asserted in this state 
X - don't care 
5 - signal was asserted in previous state and remains asserted in this state 

TABLE 5 - BERR AND HALT NEGATION RESULTS 

Conditions of 
Control 

Negated on Rising 
Termination in 

Signal E~e of State Results - Next Cycle 
Table A N N+2 

Bus Error 
BEAR • or • Takes bus error trap_ 
HALT • or • 

Re-run 
EiER1f • or • Illegal sequence; usually traps to 
HALT • vector number 0. 

Re-run 
BERA • Re-runs the bus cycle. 
HALT • 

Normal 
BEAR • May lengthen next cycle . 
HALT • or • 

Normal 
BEAR • If next cycle is started it will 
HALT • or none be terminated as a bus error. 

..____ ____ ® MOTOROLA Semiconductor Products Inc. 
23 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

RESET OPERATION. The reset signal is a bidirectional 
signal that allows either the processor or an external signal to 
reset the system. Figure 30 is a timing diagram for reset 
operations. Both the halt and reset lines must be applied to 
ensure total reset of the processor. 

When the reset and halt lines are driven by an external 
device, it is recognized as an entire system reset, including 
the processor. The processor responds by reading the reset 
vector table entry (vector number zero, address $CXXXJOO) 
and loads it into the supervisor stack pointer (SSP). Vector 
table entry number one at address $000004 is read next and 
loaded into the program counter. The processor initializes 
the status register to an interrupt level of seven. No other 

registers are affected by the reset sequence. 
When a RESET sequence is executed, the processor 

drives the reset pin for 124 clock pulses. In this case, the pro­
cessor is trying to reset the rest of the system. Therefore, 
there is no effect on the internal state of the processor. All of 
the processor's internal registers and the status register are 
unaffected by the execution of a RESET instruction. All ex­
ternal devices connected to the reset line should be reset at 
the completion of the RESET instruction. 

Asserting the Reset and Halt pins for 10 clock cycles will 
cause a processor reset, except when Vee is initially ap­
plied to the processor. In this case, an external reset must 
be applied for 100 milliseconds. 

FIGURE 30 - RESET OPERATION TIMING DIAGRAM 

CLK 

Plus 5 Volts 

Vee 
RESET 

t- > 100 Milliseconds --...i _______________ _ 

i.- ~t<4 

4 6 
NOTES: 
1) Internal start-up time 4) 
2) SSP High read in here 5) 

PC High read in here Bus State Unknown: '#t#. 
PC Low read in here . . 

3) SSP Low read in here 6) 
. . . All Control Signals Inactive. 

First 1nstruct1on fetched here. Data Bus In Read Mode: }---( 

PROCESSING STATES 

The MC68000 is always in one of three processing states: 
normal, exception, or halted. The normal processing state is 
that associated with instruction execution; the memory 
of the bits in the supervisor portion of the status register are 
covered: the supervisor/user bit, the trace enable bit, and 
the processor interrupt priority mask. Finally, the sequence 
of memory references and actions taken by the processor on 
exception conditions is detailed. 

The MC68000 is always in one of three processing states: 
normal, exception, or halted. The normal processing state is 
that associated with instruction execution; the memory 
references are to fetch instructions and operands, and to 
store results. A special case of the normal state is the 
stopped state which the processor enters when a STOP in­
struction is executed. In this state, no further memory 
references are made. 

The exception processing state is associated with inter­
rupts, trap instructions, tracing and other exceptional condi­
tions. The exception may be internally generated by an in­
struction or by an unusual condition arising during the ex­
ecution of an instruction. Externally, exception processing 
can be forced by an interrupt, by a bus error, or by a reset. 
Exception processing is designed to provide an efficient con­
text switch so that the processor may handle unusual condi­
tions. 

The halted processing state is an indication of catastrophic 
hardware failure. For example, if during the exception pro­
cessing of a bus error another bus error occurs, the pro­
cessor assumes that the system is unusable and halts. Only 
an external reset can restart a halted processor. Note that a 
processor in the stopped state is not in the halted state, nor 
vice versa. 

PRIVILEGE STATES 

The processor operates in one of two states of privilege: 
the "user" state or the "supervisor" state. The privilege state 
determines which operations are legal, is used by the exter­
nal memory management device to control and translate ac­
cesses, and is used to choose between the supervisor stack 
pointer and the user stack pointer in instruction references. 

The privilege state is a mechanism for providing security in 
a computer system. Programs should access only their own 
code and data areas, and ought to be restricted from access­
ing information which they do not need and must not 
modify. 

The privilege mechanism provides security by allowing 
most programs to execute in user state. In this state, the ac­
cesses are controlled, and the effects on other parts of the 
system are limited. The operating system executes in the 
supervisor state, has access to all resources, and performs 
the overhead tasks for the user state programs. 

@ MOTOROLA Semiconductor Products Inc. 
24 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

SUPERVISOR STATE. The supervisor state is the higher 
state of privilege. For instruction execution, the supervisor 
state is determined by the S-bit of the status register; if the 
S-bit is asserted (high), the processor is in the supervisor 
state. All instructions can be executed in the supervisor 
state. The bus cycles generated by instructions executed in 
the supervisor state are classified as supervisor references. 
While the processor is in the supervisor privilege state, those 
instructions which use either the system stack pointer im­
plicitly or address register seven explicitly access the super­
visor stack pointer. 

All exception processing is done in the supervisor state, 
regardless of the setting of the S-bit. The bus cycles 
generated during exception processing are classified as 
supervisor references. All stacking operations during excep­
tion processing use the supervisor stack pointer. 

USER STATE. The user state is the lower state of 
privilege. For instruction execution, the user state is deter­
mined by the S-bit of the status register; if the S-bit is 
negated (low), the processor is executing instructions in the 
user state. 

Most instructions execute the same in user state as in the 
supervisor state. However, some instructions which have 
important system effects are made privileged. User programs 
are not permitted to execute the STOP instruction, or the 
RESET instruction. To ensure that a user program cannot 
enter the supervisor state except in a controlled manner, the 
instructions which modify the whole status register are 
privileged. To aid in debugging programs which are to be 
used as operating systems, the move to user stack pointer 
(MOVE USP) and move from user stack pointer (MOVE from 
USP! instructions are also privileged. 

The bus cycles generated by an instruction executed in 
user state are classified as user state references. This allows 
an external memory management device to translate the ad­
dress and to control access to protected portions of the ad­
dress space. While the processor is in the user privilege 
state, those instructions which use either the system stack 
pointer implicitly, or address register seven explicitly, access 
the user stack pointer. 

PRIVILEGE STATE CHANGES. Once the processor is in 
the user state and executing instructions, only exception 
processing can change the privilege state. During exception 
processing, the current setting of the S-bit of the status 
register is saved and the S-bit is asserted, putting the pro­
cessing in the supervisor state. Therefore, when instruction 
execution resumes at the address specified to process the 
exception, the processor is in the supervisor privilege state. 

REFERENCE CLASSIFICATION. When the processor 
makes a reference, it classifies the kind of reference being 
made, using the encoding on the three function code output 
lines. This allows external translation of addresses, control of 
access, and differentiation of special processor states, such 
as interrupt acknowledge. Table 6 lists the classification of 
references . 

TABLE 6 - REFERENCE CLASSIFICATION 

Function Code Output 
Reference Class 

FC2 FCl FCO 

0 0 0 !Unassigned) 

0 0 1 User Data 

0 1 0 User Program 

0 1 1 (Unassigned) 

1 0 0 (Unassigned) 

1 0 1 Supervisor Data 

1 1 0 Supervisor Program 

1 1 1 Interrupt Acknowledge 

EXCEPTION PROCESSING 

Before discussing the details of interrupts, traps, and trac­
ing, a general description of exception processing is in order. 
The processing of an exception occurs in four steps, with 
variations for different exception causes. During the first 
step, a temporary copy of the status register is made, and 
the status register is set for exception processing. In the sec­
ond step the exception vector is determined, and the third 
step is the saving of the current processor context. In the 
fourth step a new context is obtained, and the processor 
switches to instruction processing. 

EXCEPTION VECTORS. Exception vectors are memory 
locations from which the processor fetches the address of a 
routine which will handle that exception. All exception vec­
tors are two words in length (Figure 31), except for the reset 
vector, which is four words. All exception vectors lie in the 
supervisor data space, except for the reset vector which is in 
the supervisor program space. A vector number is an eight­
bit number which, when multiplied by four, gives the 
address of an exception vector. Vector numbers are 
generated internally or externally, depending on the cause of 
the exception. In the case of interrupts, during the interrupt 
acknowledge bus cycle, a peripheral provides an 8-bit vector 
number (Figure 32) to the processor on data bus lines DO 
through D7. The processor translates the vector number into 
a full 24-bit address, as shown in Figure 33. The memory 
layout for exception vectors is given in Table 7. 

As shown in Table 7, the memory layout is 512 words 
long (1024 bytes). It starts at address O and proceeds 
through address 1023. This provides 255 unique vectors; 
some of these are reserved for TRAPS and other system 
functions. Of the 255, there are 192 reserved for user inter­
rupt vectors. However, there is no protection on the first 64 
entries, so user interrupt vectors may overlap at the discre­
tion of the systems designer. 

KINDS OF EXCEPTIONS. Exceptions can be generated by 
either internal or external causes. The externally generated 
exceptions are the interrupts and the bus error and reset re­
quests. The interrupts are requests from peripheral devices 
for processor action while the bus error and reset inputs are 
used for access control and processor restart. The internally 
generated exceptions come from instructions, or from ad-

.___ _____ fiJ;:i MOTOROLA Semiconductor Products Inc. 
'CY 25 



Word 0 

Word 1 

i 

FIGURE 31 - EXCEPTION VECTOR FORMAT 

New Program Counter (High) AO=O, Al =0 

New Program Counter (Low) AO=O, A1=1 

FIGURE 32 - PERIPHERAL VECTOR NUMBER FORMAT 

Ignored T:, 1 -- I ,, I ,. I ,, I ,, I ,, I :i 015 

Where: 
v7 is the MSB of the Vector Number 
vO is the LSB of the Vector Number 

FIGURE 33 - ADDRESS TRANSLATED FROM 8-BIT VECTOR NUMBER 

All Zeroes 

TABLE 7 - EXCEPTION VECTOR ASSIGNMENT 

Vector Address 
Assignment 

Number(s) Dec Hex Space 

0 0 000 SP Reset: Initial SSP 

- 4 004 SP Reset: Initial PC 

2 8 008 SD Bus Error 

3 12 ooc SD Address Error 

4 16 010 SD Illegal Instruction 

5 20 014 SD Zero Divide 

6 24 018 SD CH K Instruction 

7 28 01C SD TRAPV Instruction 

8 32 020 SD Privilege Violation 

9 36 024 SD Trace 

10 40 028 SD Line 1010 Emulator 

11 44 02C SD Line 1111 Emulator 

12· 48 030 SD (Unassigned, reserved) 

13· 52 034 SD (Unassigned, reserved) 

14" 56 038 SD !Unassigned, reserved) 

15 60 03C SD Uninitialized Interrupt Vector 

16-23" 64 04C SD (Unassigned, reserved) 

95 05F -
24 96 060 SD Spurious Interrupt 

25 100 064 SD Level 1 Interrupt Autovector 

26 104 068 SD Level 2 Interrupt Autovector 

27 108 06C SD Level 3 Interrupt Autovector 

28 112 070 SD Level 4 Interrupt Autovector 

29 116 074 SD Level 5 Interrupt Autovector 

30 120 078 SD Level 6 Interrupt Autovector 

31 124 07C SD Level 7 Interrupt Autovector 

32-47 128 080 SD TRAP Instruction Vectors 

191 OBF -
48-63" 192 oco SD (Unassigned, reserved) 

255 OFF -
64-255 256 100 SD User Interrupt Vectors 

1023 3FF -

"Vector numbers 12, 13, 14, 16 through 23 and 48 through 63 are reserv­
ed for future enhancements by Motorola. No user peripheral devices 
should be assigned these numbers. 

MOTOROLA Semiconductor Products Inc. 
26 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

dress errors or tracing. The trap !TRAP), trap on overflow 
!TRAPVl, check register against bounds !CHKl and divide 
!DIVI instructions all can generate exceptions as part of their 
instruction execution. In addition, illegal instructions, word 
fetches from odd addresses and privilege violations cause ex­
ceptions. Tracing behaves like a very high priority, internally 
generated interrupt after each instruction execution. 

EXCEPTION PROCESSING SEQUENCE. Exception pro­
cessing occurs in four identifiable steps. In the first step, an 
internal copy is made of the status register. After the copy is 
made, the S-b1t is asserted, putting the processor into the 
supervisor privilege state. Also, the T-bit is negated which 
will allow the exception handler to execute unhindered by 
tracing. For the reset and interrupt exceptions, the interrupt 
priority mask is also updated. 

In the second step, the vector number of the exception is 
determined. For interrupts, the vector number is obtained by 
a processor fetch, classified as an interrupt acknowledge. 
For all other exceptions, internal logic provides the vector 
number. This vector number is then used to generate the ad­
dress of the exception vector. 

The third step is to save the current processor status, ex­
cept for the reset exception. The current program counter 
value and •he saved copy of the status register are stacked 
using the supervisor stack pointer. The program counter 
value stacked usually points to the next unexecuted instruc­
tion, however for bus error and address error, the value 
stacked for the program counter is unpredictable, and may 
be incremented from the address of the instruction which 
caused the error. Additional information defining the current 
context is stacked for the bus error and address error excep­
tions. 

The last step is the same for all exceptions. The new pro­
gram counter value is fetched from the exception vector. 
The processor then resumes instruction execution. The in­
struction at the address given in the exception vector is 
fetched, and normal instruction decoding and execution is 
started. 

MULTIPLE EXCEPTIONS. These paragraphs describe the 
processing which occurs when multiple exceptions arise 
simultaneously. Exceptions can be grouped according to 
their occurrence and priority. The Group 0 exceptions are 
reset, bus error, and address error. These exceptions cause 
the instruction currently being executed to be aborted, and 
the exeception processing to commence within two clock 
cycles. The Group 1 exceptions are trace and interrupt, as 
well as the privilege violations and illegal instructions. These 
exceptions allow the current instruction to execute to com­
pletion, but preempt the execution of the next instruction by 
forcing exception processing to occur (privilege violations 
and illegal instructions are detected when they are the next 
instruction to be executed). The Group 2 exceptions occur as 
part of the normal processing of instructions. The TRAP, 
TRAPV, CHK, and zero divide exceptions are in this group. 
For these exceptions, the normal execution of an instruction 
may lead to exception processing. 

Group O exceptions have highest priority, while Group 2 
exceptions have lowest priority. Within Group 0, reset has 
highest priority, followed by bus error and then address er­
ror. Within Group 1, trace has priority over external inter­
rupts, which in turn takes priority over illegal instruction and 

privilege violation. Since only one instruction can be ex­
ecuted at a time, there is no priority relation within Group 2. 

The priority relation between two exceptions determines 
which is taken, or taken first, if the conditions for both arise 
simultaneously. Therefore, if a bus error occurs during a 
TRAP instruction, the bus error takes precedence, and the 
TRAP instruction processing is aborted. In another example, 
if an interrupt request occurs during the execution of an in­
struction while the T-bit is asserted, the trace exception has 
priority, and is processed first. Before instruction processing 
resumes, however, the interrupt exception is also processed, 
and instruction processing commences finally in the inter­
rupt handler routine. A summary of exception grouping and 
priority is given in Table 8. 

TABLE 8 - EXCEPTION GROUPING AND PRIORITY 

Group Exception Processing 

Reset 
Exception processing begins 

0 Bus Error 
Address Error 

within two clock cycles. 

Trace 

1 
Interrupt Exception processing begins before 

Illegal the next instruction 
Privilege 

TRAP, TRAPV, 
Exception processing is started by 

2 CHK, 
normal instruction execution 

Zero Divide 

EXCEPTION PROCESSING DETAILED DISCUSSION 

Exceptions have a number of sources, and each exception 
has processing which is peculiar to it. The following 
paragraphs detail the sources of exceptions, how each 
arises, and how each is processed. 

RESET. The reset input provides the highest exception 
level. The processing of the reset signal is designed for 
system initiation, and recovery from catastrophic failure. 
Any processing in progress at the time of the reset is aborted 
and cannot be recovered. The processor is forced into the 
supervisor state, and the trace state is forced off. The pro­
cessor interrupt priority mask is set at level seven. The vector 
number is internally generated to reference the reset excep­
tion vector at location 0 in the supervisor program space. 
Because no assumptions can be made about the validity of 
register contents, in particular the supervisor stack pointer, 
neither the program counter nor the status register is saved. 
The address contained in the first two words of the reset ex­
ception vector is fetched as the initial supervisor stack 
pointer, and the address in the last two words of the reset 
exception vector is fetched as the initial program counter. 
Finally, instruction execution is started at the address in the 
program counter. The power-up/ restart code should be 
pointed to by the initial program counter. 

The RESET instruction does not cause loading of the reset 
vector, but does assert the reset line to reset external 
devices. This allows the software to reset the system to a 
known state and then continue processing with the next in­
struction. 

INTERRUPTS. Seven levels of interrupt priorities are pro­
vided. Devices may be chained externally within interrupt 
priority levels, allowing an unlimited number of peripheral 
devices to interrupt the processor. Interrupt priority levels 

....__ _____ @ MOTOROLA Semiconductor Products Inc. 
27 



are numbered from one to seven, level seven being the 
highest priority. The status register contains a three-bit mask 
which indicates the current processor priority, and interrupts 
are inhibited for all priority levels less than or equal to the 
current processor priority. 

An interrupt request is made to the processor by encoding 
the interrupt request level on the interrupt request lines; a 
zero indicates no interrupt request. Interrupt requests arriv­
ing at the processor do not force immediate exception pro­
cessing, but are made pending. Pending interrupts are 
detected between instruction executions. If the priority of 
the pending interrupt is lower than or equal to the current 
processor priority, execution continues with the next instruc­
tion and the interrupt exception processing is postponed. 
(The recognition of level seven is slightly different, as ex­
plained in a following paragraph.) 

If the priority of the pending interrupt is greater than the 
current processor priority, the exception processing se­
quence is started. First a copy of the status register is saved, 
and the privilege state is set to supervisor, tracing is sup­
pressed, and the processor priority level is set to the level of 
the interrupt being acknowledged. The processor fetches 
the vector number from the interrupting device, classifying 
the reference as an interrupt acknowledge and displaying the 
level number of the interrupt being acknowledged on the ad­
dress bus. If external logic requests an automatic vectoring, 
the processor internally generates a vector number which is 
determined by the interrupt level number. If external logic in­
dicates a bus error, the interrupt is taken to be spurious. and 
the generated vector number references the spurious inter­
rupt vector. The processor then proceeds with the usual ex­
ception processing, saving the program counter and status 
register on the supervisor stack. The saved value of the pro­
gram counter is the address of the instruction which would 
have been executed had the interrupt not been present. The 
content of the interrupt vector whose vector number was 
previously obtained is fetched and loaded into the program 
counter, and normal instruction execution commences in the 
interrupt handling routine. A flow chart for the interrupt 
acknowledge sequence is given in Figure 34, a timing 
diagram is given 1n Figure 35, and the interrupt exception 
timing sequence is shown 1n Figure 36. 

FIGURE 34 - INTERRUPT ACKNOWLEDGE SEQUENCE 
FLOW CHART 

PROCESSOR INTERRUPTING DEVICE 

Request Interrupt 

Grant Interrupt 
1) Compare interrupt level in status register 

and wait for current instruction to complete 
2) Place interrupt level on A 1, A2, A3 
3) Set R/W to read 
4) 

5) 
6) 

Set function code to interrupt acknowledge 
Assert address strobe IAS) 
Assert lower data strobe ILDSI 

I 
Provide Vector Number 

1) Place vector number of D0-07 
2) Assert data transfer acknowledge i"DTACKI 

r 
Acquire Vector Number 

1) Latch vector number 
2) Negate LBS 
3) Negate AS 

1) Negate Di'm 

Start Interrupt Processing 

FIGURE 35 - INTERRUPT ACKNOWLEDGE SEQUENCE TIMING DIAGRAM 

CLK 

A4-A23 

A1-A3 

AS \ I ~ \ \'--_ __,/ 
UOS 

~ 
LOS \ ~ I \ '---__ ____,;-\ I 
R/W 

~ OT ACK \ \ 
08-015 

00-07 ( )-----1\ ( 

f? FC0-2 =:x 
IPL0-2 \ 

\.___ _____ _ 
Last Bus Cycle of Instruction Stack IACK Cycle Stack and 

I !Read or Write) I PCL I !Vector Number Acqu1·s1't1·on) I Vector Fetch I 
. . . > d --~ > olf iSSPl;>~olft-~~~~~~~~-'-~~~~~~*"~l--~~~~~-~-

® MOTOROLA 
28 

Semiconductor Products Inc. 



FIGURE 36 - INTERRUPT EXCEPTION TIMING SEQUENCE 

Last Bus Cycle 
IACK of Instruction Stack Cycle Stack Stack 

(During Which ~ PCL ~ !Vector Number ~ Status ~ PCH ~ 
Interrupt Was !SSPl !SSPl !SSPI 
Recognized) Acquisition) 

....... -
Read Read 

't Vector ~ Vector 
~ High Low 

(A16-A23l !AO-A15l 

Priority level seven is a special case. Level seven interrupts 
cannot be inhibited by the interrupt priority mask, thus pro­
viding a "non-maskable interrupt" capability. An interrupt is 
generated each time the interrupt request level changes from 
some lower level to level seven. Note that a level seven inter­
rupt may still be caused by the level comparison if the re­
quest level is a seven and the processor prioritv is set to a 
lower level by an instruction. 

UNINITIALIZED INTERRUPT. An interrupting device 
asserts VPA or provides an interrupt vector during an inter­
rupt acknowledge cycle to the MC68000. If the vector 
register has not been initialized, the responding M68000 
Family peripheral will provide vector 15, the unitialized inter­
rupt vector. This provides a uniform way to recover from a 
programming error. 

SPURIOUS INTERRUPT. If during the interrupt acknowl­
edge cycle no device responds by asserting DTACK or VPA, 
the bus error line should be asserted to terminate the vector 
acquisition. The processor separates the processing of this 
error from bus error by fetching the spurious interrupt vector 
instead of the bus error vector. The processor then proceeds 
with the usual exception processing. 

INSTRUCTION TRAPS. Traps are exceptions caused by 
instructions. They arise either from processor recognition of 
abnormal conditions during instruction execution, or from 
use of instructions whose normal behavior is trapping. 

Some instructions are used specifically to generate traps. 
The TRAP instruction always forces an exception, and is 
useful for implementing system calls for user programs. The 
TRAPV and CHK instructions force an exception if the user 
program detects a runtime error. which may be an arithmetic 
overflow or a subscript out of bounds. 

The signed divide (DIVS) and unsigned divide (DIVU) in­
structions will force an exception if a division operation is at­
tempted with a divisor of zero. 

ILLEGAL AND UNIMPLEMENTED INSTRUCTIONS. Il­
legal instruction is the term used to refer to any of the word 
bit patterns which are not the bit pattern of the first word of 
a legal instruction. During instruction execution, if such an 
instruction is fetched, an illegal instruction exception occurs. 

Word patterns with bits 15 through 12 equaling 1010 or 
1111 are distinguished as unimplemented instructions and 
separate exception vectors are given to these patterns to per­
mit efficient emulation. This facility allows the operating 
system to detect program errors, or to emulate 
unimplemented instructions in software. 

Fetch First Word 

r---+1 of Instruction 
of Interrupt 

Routine 

PRIVILEGE VIOLATIONS. In order to provide system 
security, various instructions are privileged. An attempt to 
execute one of the privileged instructions while in the user 
state will cause an exception. The privileged instructions are: 

STOP AND (word) Immediate to SR 

RESET EOR (word) Immediate to SR 

RTE 

MOVE to SR 

OR (word) Immediate to SR 

MOVE USP 

TRACING. To aid in program development, the MC68000 
includes a facility to allow instruction by instruction tracing. 
In the trace state, after each instruction is executed an ex­
ception is forced, allowing a debugging program to monitor 
the execution of the program under test. 

' 

The trace facility uses the T-bit in the supervisor portion of 
the status register. If the T-bit is negated (off), tracing is 
disabled, and instruction execution proceeds from instruc­
tion to instruction as normal. If the T-bit is asserted (on) at 
the beginning of the execution of an instruction, a trc>ce ex­
ception will be generated after the execution of that instruc­
tion is completed. If the instruction is not executed, either 
because an interrupt is taken, or the instruction is illegal or 
privileged, the trace exception does not occur. The trace ex­
ception also does not occur if the instruction is aborted by a 
reset, bus error, or address error exception. If the instruction 
is indeed executed and an interrupt is pending on comple­
tion, the trace exception is processed before the interrupt ex­
ception. If, during the execution of the instruction, an excep­
tion is forced by that instruction, the forced exception is pro­
cessed before the trace exception. 

As an extreme illustration of the above rules, consider the 
arrival of an interrupt during the execution of a TRAP in­
struction while tracing is enabled. First the trap exception is 
processed, then the trace exception, and finally the interrupt 
exception. Instruction execution resumes in the interrupt 
handler routine. 

BUS ERROR. Bus error exceptions occur when the exter­
nal logic requests that a bus error be processed by an excep­
tion. The current bus cycle which the processor is making is 
then aborted. Whether the processor was doing instruction 
or exception processing, that processing is terminated, and 
the processor immediately begins exception processing. 

Exception processing for bus error follows the usual se­
quence of steps. The status register is copied, the supervisor 
state is entered, and the trace state is turned off. The vector 
number is generated to refer to the bus error vector. Since 
the processor was not between instructions when the bus er-

@ MOTOROLA Semiconductor Products Inc. 
29 



MC68000L4• MC68000L6•MC68000L8•MC68000L 10 

ror exception request was made, the context of the pro­
cessor is more detailed. To save more of this context, addi­
tional information is saved on the supervisor stack. The pro­
gram counter and the copy of the status register are of 
course saved. The value saved for the program counter is ad­
vanced by some amount, two to ten bytes beyond the ad­
dress of the first word of the instruction which made the 
reference causing the bus error. If the bus error occurred 
during the fetch of the next instruction, the saved program 
counter has a value in the vicinity of the current instruction, 
even if the current instruction is a branch, a jump, or a return 
instruction. Besides the usual information, the processor 
saves its internal copy of the first word of the instruction be­
ing processed, and the address which was being accessed 
by the aborted bus cycle. Specific information about the ac­
cess is also saved: whether it was a read or a write, whether 
the processor was processing an instruction or not, and the 
classification displayed on the function code outputs when 
the bus error occurred. The processor is processing an in­
struction if it is in the normal state or processing a Group 2 
exception; the processor is not processing an instruction if it 
is processing a Group 0 or a Group 1 exception. Figure 37 il­
lustrates how this information is organized on the supervisor 
stack. Although this information is not sufficient in general 
to effect full recovery from the bus error, it does allow soft­
ware diagnosis. Finally, the processor commences instruc­
tion processing at the address contained in the vector. It is 
the responsibility of the error handler routine to clean up the 
stack and determine where to continue execution. 

If a bus error occurs during the exception processing for a 
bus error, address error, or reset, the processor is halted, 
and all processing ceases. This simplifies the detection of 
catastrophic system failure, since the processor removes 
itself from the system rather than destroy all memory con­
tents. Only the RESET pin can restart a halted processor. 

ADDRESS ERROR. Address error exceptions occur when 
the processor attempts to access a word or a long word 
operand or an instruction at an odd address. The effect is 
much like an internally generated bus error, so that the bus 
cycle is aborted, and the processor ceases whatever process­
ing it is currently doing and begins exception processing. 
After exception processing commences, the sequence is the 
same as that for bus error including the information that is 
stacked, except that the vector number refers to the address 
error vector instead. Likewise, if an address error occurs dur-

ing the exception processing for a bus error, address error, 
or reset, the processor 1s halted. As shown in Figure 38, an 
address error will execute a short bus cycle followed by ex­
ception processing 

INTERFACE WITH M6800 PERIPHERALS 

Motorola's extensive line of M6800 peripherals are directly 
compatible with the MC68000. Some of these devices 
that are particularly useful are: 

MC6821 Peripheral Interface Adapter 

MC6840 Programmable Timer Module 
MC6843 Floppy Disk Controller 
MC6845 CRT Controller 

MC6850 Asynchronous Communication Interface Adapter 
MC6852 Synchronous Serial Data Adapter 

MC6854 Advanced Data Link Controller 

MC68488 General Purpose Interface Adapter 

To interface the synchronous M6800 peripherals with the 
asynchronous MC68000, the processor modifies its bus cycle 
to meet the M6800 cycle requirements whenever an M6800 
device address is detected. This is possible since both pro­
cessors use memory mapped I/ 0. Figure 39 is a flow chart of 
the interface operation between the processor and M6800 
devices. 

DATA TRANSFER OPERATION 

Three signals on the processor provide the M6800 inter­
face. They are: enable (E), valid memory address (VMA), 
and valid peripheral address (VPA). Enable corresponds to 
the E or c/>2 signal in existing M6800 systems. The bus fre­
quency is one tenth of the incoming MC68000 clock frequen­
cy. The timing of E allows 1 MHz peripherals to be used with 
an 8 MHz MC68000. Enable has a 60/40 duty cycle; that is, it 
is low for six input clocks and high for four input clocks. This 
duty cycle allows the processor to do successive VPA ac­
cesses on successive E pulses. 

M6800 cycle timing is given in Figures 40 and 41. At state 
zero (SQ) in the cycle, the address bus is in the high­
impedance state. A function code is asserted on the function 
code output lines. One-half clock later, in state 1, the ad­
dress bus is released from the high-impedance state. 

FIGURE 37 - SUPERVISOR STACK ORDER (GROUP 0) 

15 14 13 12. 11 10 _a_ 8 7 6 5 4 3 2 1 0 

IR/Wl l/N l Function Code Lower Address 

High 
~ - Access Address - - - - - ------- ------ - ------

Low 

Instruction Register 

Status Register 

High 
~ - Program Counter - - - - ----- -------------

Low 

R/W lread/writel: write=O, read= 1. l/N (instruction/not): instruction=O, not= 1 

._._ ____ @ MOTOROLA Semiconductor Products Inc. 
30 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

FIGURE 38 - ADDRESS ERROR TIMING 

SO S1 S2 S3 S4 S5 S6 57 SO Sl S2 S3 S4 S5 S6 S7 so s 1 52 53 54 55 

CLK 

A 1-A23 

AS 

UDS \ 
LOS 

\ 
_____ ___,/ 

R/W 

DTACK 

D0-015 

I· I Aerr I Approx. 8 Clocks I 
Read ----••-t-•----Write-----'•-· •--- Idle •· • Write Stack~ 

During state 2, the address strobe (AS) is asserted to in­
dicate that there is a valid address on the address bus. If the 
bus cycle is a read cycle, the upper and/or lower data 
strobes are also asserted in state 2. If the bus cycle is a write 
cycle, the read/write (R/W) signal is switched to low (write) 
during state 2. One half clock later, in state 3, the write data 
is placed on the data bus, and in state 4 the data strobes are 
issued to indicate valid data on the data bus. The processor 
now inserts wait states until it recognizes the assertion of 
VPA. 

The VPA input signals the processor that the address on 
the bus is the address of an M6800 device (or an area re­
served for M6800 devices) and that the bus should conform 
to the q,2 transfer characteristics of the M6800 bus. Valid 
peripheral address is derived by decoding the address bus, 
conditioned by address strobe. 

After the recognition of VPA, the processor assures that 
the Enable !El is low, by waiting if necessary, and subse­
quently asserts VMA. Valid memory address is then used as 
part of the chip select equation of the peripheral. This en­
sures that the M6800 peripherals are selected and deselected 
at the correct time. The peripheral now runs its cycle during 
the high portion of the E signal. Figures 40 and 41 depict the 
best and worst case M6800 cycle timing. This cycle length is 
dependent strictly upon when VPA is asserted in relationship 
to the E clock. 

During a read cycle, the processor latches the peripheral 
data in state 6. For all cycles, the processor negates the ad­
dress and data strobes one half clock cycle later in state 7, 
and the Enable signal goes low at this time. Another half 
clock later, the address bus is put in the high-impedance 
state. During a write cycle, the data bus is put in the high­
impedance state and the read/write signal is switched high 
The peripheral logic must remove VPA within one clock after 
address strobe is negated. 

DT ACK should not be asserted while VPA is asserted 
Notice that the MC68000 VMA is active low, contrasted with 
the active high M6800 VMA. This allows the processor to put 
its buses in the high-impedance state on OMA requests 
without inadvertently selecting peripherals. 

FIGURE 39 - M6800 INTERFACING FLOW CHART 

PROCESSOR 
Initiate Cycle 

SLAVE 

1 l The processor starts a normal Read or 

Write cycle '~------~ 
t 

Define M6800 Cycle 

1) External hardware asserts Valid Peripheral 
Address lVPAl 

Synchronize With Enable 

1 l The processor monitors Enable !El until it is 
low (Phase 1) 

2) The processor asserts Valid Memory Ad-

dress !VMAl ._I _______ ...., 

' Transfer Data 

1) The peripheral waits until E is active and 
then transfers the data 

I 

Terminate Cycle 

1) The processor waits until E goes low. (On a 
Read cycle the data is latched as E goes 
low intern«lly) 

2) The processor negates VMA 
3) The processor negates AS. UDS, and LOS 

~ 
Start Next Cycle 

,___ _____ ® MOTOROLA Semiconductor Products Inc. 
31 



FIGURE 40 - M6800 TIMING - BEST CASE 

© so S1 S2 S3 S4 w w w w w w w w w w w w S5 S6 S7 so 

~ 
~ 
~ 
~ 

A1-A23 

CLK 

AS 

E 

w (/) 
N (b 

3 
VPA 

c:;· 
0 
~ VMA 

@-
(') 

a Data Out 
~ 

~ 

~ 
(') 

Data In ------------------------------------------

&t 
5" 
~ NOTE: This figure represents the best case M6800 timing where VPA falls before the third system clock cycle after the falling edge of E. 



© 
~ 
~ 
~ .. 

~f 
3 
8' 
::3 
@-
(') 

S' ... 

l 
~ 
ta' 
5" 
f) 

FIGURE 41 - MC6800 TIMING - WORST CASE 

SO S 1 S2 S3 S4 w w w w w w w w w w w w w w w w w w w w w w w w w w w w S5 56 S7 SO 

CLK 

A 1-A23 

As----

E 

VPA 

mA 

R/W 
!Readl 

Data In 

01551~ 
Read 

R/WWrite 

@~ 
Data Out 

uDs1m 
Write 

~ ~ 1.--@ 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

INTERRUPT OPERATION 
During an interrupt acknowledge_£Lcle while the pro­

cessor is fetching the vector, if VPA is asserted, the 
MC68000 will assert VMA and complete a normal M6800 
read cycle as shown in Figure42. The processor will then use 
an internally generated vector that is a function of the inter­
rupt being serviced. This process is known as autovectoring. 
The seven autovectors are vector numbers 25 through 31 
(decimal). 

This operates in the same fashion (but is not restricted to) 
the M6800 interrupt sequence. The basic difference is that 

there are six normal interrupt vectors and one NMI type vec­
tor. As with both the M6800 and the MC68000's normal vec­
tored interrupt, the interrupt service routine can be located 
anywhere in the address space. This is due to the fact that 
while the vector numbers are fixed, the contents of the vec­
tor table entries are assigned by the user. 

Since VMA is asserted during autovectoring, the M6800 
peripheral address decoding should prevent unintended ac­
cesses. 

FIGURE 42 - AUTOVECTOR OPERATION TIMING DIAGRAM 

A4-A23 

AS 

UOS 

TI5S 

R/W 

OT ACK ~ 
08-015 --c=J 
00-07 ---c=> 
FC0-2 x y 

IPL0-2 

E L_ 
VJ5A \ ~~~~======~~~~--r-\.. 
VMA 

- - - - - - -Autovector Operation- - - __ -1 j.- Normal "1-< . 
Cycle "1 

------@ MOTOROLA Semiconductor Products Inc. 
34 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

AC ELECTRICAL SPECIFICATIONS !Vcc=5 0 Vdc ±5% Vss=O Vdc, TA=0°C to 70°C refer to Figures 30 and 31l 
- -

Number Characteristic 

24 Clock High to R/W, VMA High Impedance 

40 Clock Low to VMA Low 

41 Clock Low to E Transition 

42 E Output Rise and Fall Time 

43 VMA Low to E High 

44 AS, '[5'S" High to VPA High 

45 E Low to Address/VMA/FC Invalid 

49 E Low to AS, O"S" Invalid 

50 E Width High 

51 E Width Low 

52 E Extended Rise Time 

54 Data Hold from E Low (Write) 

23 Clock Low to Data Out Valid 

27 Data In to Clock Low (Setup Time) 

47 Asynchronous Input Setup Time 

DATA TYPES AND ADDRESSING MODES 

Five basic data types are supported. These data types are: 

e Bits 
e BCD Digits (4-bits) 

• Bytes (8-bits) 
• Word (16-bitsl 
• Long Words (32-bits) 

In addition, operations on other data types such as memory 
addresses, status word data, etc., are provided for in the in­
struction set. 

The 14 addressing modes, shown in Table 9, include six 
basic types: 

• Register Direct 
• Register Indirect 
•Absolute 
•Immediate 
• Program Counter Relative 

•Implied 
Included in the register indirect addressing modes is the 
capability to do postincrementing, predecrementing, offset­
ting and indexing. Program counter relative mode can also 
be modified via indexing and offsetting_ 

Symbol 

tcHRZ 

ICLVML 

tCLC 
tErt 

tvMLEH 

tSHVPH 

IELAI 

'ELSI 

IEH 

IEL 

ICIEHX 

IELDOZ 

ICLDO 

tOICL 

'AS1 

4 MHz 6 MHz 8MHz 10 MHz 
MC68000L4 MC68000L6 MC68000L8 MC68000L10 Unit 
Min Max Min Max Min Max Min Max 

- 120 - 100 - 80 - 70 ns 

- 90 - 80 - 70 - 70 ns 

- 100 - 85 - 70 - 55 ns 

- 25 - 25 - 25 - 25 ns 

325 - 240 - 200 - 150 - ns 

0 240 0 160 0 120 0 90 ns 

55 - 35 - 30 - 10 - ns 

-80 - -80 - -80 - -80 - ns 

900 - 600 - 450 - 350 - ns 

1400 - 900 - 700 - 550 - ns 

80 - 80 - 80 - 80 - ns 

60 - 40 - 30 - 20 - ns 

- 90 - 80 - 70 - 55 ns 

30 - 25 - 15 - 15 - ns 

30 - 25 - 20 - 20 - ns 

TABLE 9 - ADDRESSING MODES 

Mode 

Register Direct Addressing 
Data Register Direct 
Address Register Direct 

Absolute Data Addressing 
Absolute Short 
Absolute Long 

Program Counter Relative Addressing 
Relative with Offset 
Relative with Index and Offset 

Register Indirect Addressing 
Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Offset 
Indexed Register Indirect with Offset 

Immediate Data Addressing 
Immediate 
Quick Immediate 

Implied Addressing 
Implied Register 

NOTES: 
EA= Effective Address 
An= Address Register 
On= Data Register 
Xn =Address or Data Register used 

as Index Register 
SR= Status Register 
PC= Program Counter 
( l = Contents of 

Generation 

EA=Dn 
EA=An 

EA= (Next Word) 
EA=(Next Two Words) 

EA=!PCl+d15 
EA= (PC)+ (Xnl + da 

EA=(Anl 
EA=(Anl, An-An+N 
An-An-N, EA=(Anl 
EA=(Anl+d15 
EA= (An)+ (Xnl + da 

DAT A= Next Word(s) 
Inherent Data 

EA= SR, USP, SP, PC 

da =Eight-bit Offset 
(displacement) 

d15= Sixteen-bit Offset 
(displacement) 

N = 1 for Byte, 2 for 
Words and 4 for Long 
Words 

- =Replaces 

,__ _____ ® MOTOROLA Semiconductor Products Inc. 
35 



MC68000L4• MC68000L6• MC68000L8• MC68000L 10 

INSTRUCTION SET OVERVIEW 
long words and most instructions can use any of the 14 ad-

The MC68000 instruction set is shown in Table 10. Some dressing modes. Combining instruction types, data types, 
additional instructions are variations, or subsets, of these 

and addressing modes, over 1000 useful instructions are pro-
and they appear in Table 11. Special emphasis has been given 

vided. These instructions include signed and unsigned 
to the instruction set's support of structured high-level multiply and divide, "quick" arithmetic operations, BCD 
languages to facilitate ease of programming. Each instruc-

arithmetic and expanded operations (through traps). 
tion, with few exceptions, operates on bytes, words, and 

TABLE 10 - INSTRUCTION SET 

Mnemonic Description Mnemonic Description Mnemonic Description 

ABCD Add Decimal with Extend EOR Exclusive 0 r PEA Push Effective Address 
ADD Add EXG Exchange Registers RESET Reset External Devices 
AND Logical And EXT Sign Extend ROL Rotate Left without Extend 
ASL Arithmetic Shift Left JMP Jump ROA Rotate Right without Extend 
ASA Arithmetic Shift Right JSR Jump to Subroutine ROXL Rotate Left with Extend 

Bee Branch Conditionally LEA Load Effective Address ROXR Rotate Right with Extend 

BCHG Bit Test and Change LINK Link Stack RTE Return from Exception 

BCLR Bit Test and Clear LSL Logical Shift Left RTR Return and Restore 

BRA Branch Always LSR Logical Shift Right ATS Return from Subroutine 

BSET Bit Test and Set MOVE Move SBCD Subtract Decimal with Extend 
BSR Branch to Subroutine MOVEM Move Multiple Registers sec Set Conditional 
BTST Bit Test MOVEP Move Peripheral Data STOP Stop 
CHK Check Register Against Bounds MULS Signed Multiply SUB Subtract 
CLR Clear Operand MULU Unsigned Multiply SWAP Swap Data Register Halves 

CMP Compare NBCD Negate Decimal with Extend TAS Test and Set Operand 

DB cc Test Condition, Decrement and NEG Negate TRAP Trap 
Branch NOP No Operation TRAPV Trap on Overflow 

DIVS Signed Divide NOT One's Complement TST Test 
DIVU Unsigned Divide OR Logical Or UNLK Unlink 

TABLE 11 - VARIATIONS OF INSTRUCTION TYPES 

Instruction 
Variation Description 

Instruction 
Variation Description 

Type Type 

ADD ADD Add MOVE MOVE Move 
ADDA Add Address MOVEA Move Address 
ADDO Add Ouick MOVEO Move Quick 
ADDI Add Immediate MOVE from SR Move from Status Register 
ADDX Add with Extend MOVE to SR Move to Status Register 

AND AND Logical And MOVE to CCR Move to Condition Codes 

ANDI And Immediate MOVE USP Move User Stack Pointer 

CMP CMP Compare NEG NEG Negate 

CMPA Compare Address NEGX Negate with Extend 

CMPM Compare Memory OR OR Logical Or 
CMPI Compare Immediate ORI Or Immediate' 

EOR EOR Exclusive Or SUB SUB Subtract 
EORI Exclusive Or Immediate SUBA Subtract Address 

SUBI Subtract Immediate 
SUBO Subtract Quick 
SUBX Subtract with Extend 

MOTOROLA Semiconductor P ro due ts Inc. 
36 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

The following paragraphs contain an overview of the form 
and structure of the MCBOOOO instruction set. The instruc­
tions form a set of tools that include all the machine func­
tions to perform the following operations: 

Data Movement 

Integer Arithmetic 

Logical 
Shift and Rotate 

Bit Manipulation 
Binary Coded Decimal 
Program Control 
System Control 

The complete range of instruction capabilities combined 
with the flexible addressing modes described previously pro­
vide a very flexible base for program development. 

ADDRESSING 

Instructions for the MC68000 contain two kinds of infor­
mation: the type of function to be performed, and the loca­
tion of the operand(s) on which to perform that function. 
The methods used to locate (address) the operand(s) are ex­
plained in the following paragraphs. 

Instructions specify an operand location in one of three 
ways: 

Register Specification - the number of the register is 
given in the register field of the instruction. 

Effective Address - use of the different effective 
address modes. 

Implicit Reference - the definition of certain instruc­
tions implies the use of specific registers. 

DATA MOVEMENT OPERATIONS 
The basic method of data acquisition (transfer and 

storage) is provided by the move (MOVE) instruction. The 
move instruction and the effective addressing modes allow 
both address and data manipulation. Data move instructions 
allow byte, word, and long word operands to be transferred 
from memory to memory, memory to register, register to 
memory, and register to register. Address move instructions 
allow word and long word operand transfers and ensure that 
only legal address manipulations are executed. In addition to 
the general move instruction there are several special data 
movement instructions: move multiple registers (MOVEM), 
move peripheral data (MOVEP), exchange registers (EXG), 
load effective address (LEA), push effective address (PEA), 
link stack (LINK), unlink stack (UNLK), and move quick 
(MOVEOl. Table 12 is a summary of the data movement 
operations. 

INTEGER ARITHMETIC OPERATIONS 

The arithmetic operations include the four basic opera­
tions of add (ADD), subtract (SUB), multiply (MUU, and 
divide (DIV) as well as arithmetic compare (CMPl, clear 
(CLR), and negate (NEG). The add and subtract instructions 
are available for both address and data operations, with data 
operations accepting all operand sizes. Address operations 
are limited to legal address size operands (16 or 32 bitsl. 
Data, address, and memory compare operations are also 
available. The clear and negate instructions may be used on 
all sizes of data operands . 

The multiply and divide operations are available for signed 
and unsigned operands using word multiply to produce a 
long word product, and a long word dividend with word 
divisor to produce a word quotient with a word remainder. 

Multiprecision and mixed size arithmetic can be ac­
complished using a set of extended instructions. These in­
structions are: add extended (ADDX), subtract extended 
(SUBXl, sign extend (EXT), and negate binary with extend 
(NEGXl. 

A test operand (TST) instruction that will set the condition 
codes as a result of a compare of the operand with zero is 
also available. Test and set (TAS) is a synchronization in­
struction useful in multiprocessor systems. Table 13 is a sum­
mary of the integer arithmetic operations. 

TABLE 12 - DATA MOVEMENT OPERATIONS 

Instruction Operand Size Operation 

EXG 32 Rx-Ry 
LEA 32 EA-An 

An-SP@-
LINK - SP-An 

SP+d- SP 

MOVE 8, 16, 32 IEAls-EAd 

MOVEM 16, 32 
IEAl-An, Dn 
An, Dn-EA 

MOVEP 16, 32 
IEAl-Dn 
Dn-EA 

MOVEO 8 #xxx-Dn 

PEA 32 EA-SP@-

SWAP 32 Dn[31:16l- Dn[15:0] 

UNLK -
An-Sp 

SP_@_+ -An 

NOTES: 
s=source 
d = destination 

@ - =indirect with predecrement 
@ + =indirect with postdecrement 

[ ] =bit numbers 

INSTRUCTION FORMAT 

Instructions are from one to five words in length, as 
shown in Figure 43. The length of the instruction and the 
operation to be performed is specified by the first word of 
the instruction which is called the operation word. The re­
maining words further specify the operands. These words 
are either immediate operands or extensions to the effective 
address mode specified in the operation word. 

PROGRAM/DATA REFERENCES 

The MC68000 separates memory references into two 
classes: program references, and data references. Program 
references, as the name implies, are references to that sec­
tion of memory that contains the program being executed. 
Data references refer to that section of memory that contains 
data. Generally, operand reads are from the data space. All 
operand writes are to the data space. 

REGISTER SPECIFICATION 

The register field within an instruction specifies the 
register to be used. Other fields within the instruction specify 
whether the register selected is an address or data register 
and how the register is to be used. 

..___ _____ ~ MOTOROLA Semiconductor Products Inc. 
'CY 37 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

TABLE 13 - INTEGER ARITHMETIC OPERATIONS EFFECTIVE ADDRESS 

Instruction Operand Size 

8, 16, 32 

ADD 

16, 32 

ADDX 
8, 16, 32 

16, 32 

CLR 8, 16, 32 
8, 16, 32 

CMP 

16, 32 
DIVS 32+16 

DIVU 32+ 16 

EXT 0-16 
16-32 

MULS 16.16-32 

MULU 16.16-32 

NEG 8, 16, 32 

NEGX 8, 16, 32 
8, 16, 32 

SUB 

16, 32 

SUBX 8, 16, 32 

TAS 8 

TST 8, 16, 32 

NOTE: [ ] =bit number 

15 14 

15 14 

x x 

Operation 
Dn+(EA)-Dn 
!EAl+Dn-EA 

(EA)+ lxxx- EA 
An+(EA)-An 

Ox+ Dy+X-Dx 
Ax@-Ay@- +X-Ax@ 

O-EA 
Dn-(EAI 

(EA)-#xxx 
Ax@+ -Av@+ 

An-(EA) 

Dn/(EA)-Dn 

Dn/!EAl-Dn 

!Dn)9-Dn16 
!Dnl16- Dn32 
on•tEAl-Dn 

on•tEAl-Dn 

0-(EAl-EA 
0- (EA)-X- EA 
Dn-(EAl-Dn 
!EA)-Dn-EA 

!EAl-#xxx- EA 
An-(EAl-An 

Dx-Dv-X-Dx 

Most instructions specify the location of an operand by us­
ing the effective address field in the operation word. For ex­
ample, Figure 44 shows the general format of the single 
effective address instruction operation word. The effective 
address is composed of two 3-bit fields: the mode field, and 
the register field. The value in the mode field selects the dif­
ferent address modes. The register field contains the number 
of a register. 

The effective address field may require additional informa­
tion to fully specify the operand. This additional information, 
called the effective address extension, is contained in the 
following word or words and is considered part of the in­
struction, as shown in Figure 43. The effective address 
modes are grouped into three categories: register direct, 
memory addressing, and special. 

REGISTER DIRECT MODES. These effective addressing 
modes specify that the operand is in one of the 16 multifunc­
tion registers. 

Data Register Direct. The operand is in the data register 
specified by the effective address register field. 

Address Register Direct. The operand is in the address 
register specified by the effective address register field. 

Ax@- -Ay@- -X-Ax@ MEMORY ADDRESS MODES. These effective address­
ing modes specify that the operand is in memory and provide 
the specific address of the operand. !EAl-0, 1-EA[7] 

13 12 

13 12 

x x 

(EAl-0 

11 

Address Register Indirect. The address of the operand is in 
the address register specified by the register field. The 
reference is classified as a data reference with the exception 
of the jump and jump to subroutine instructions. 

FIGURE 43 - INSTRUCTION FORMAT 

10 9 8 7 6 5 4 3 2 0 
Operation Word 

(First Word Specifies Operation and Modes) 

Immediate Operand 
(If Any, One or Two Words) 

Source Effective Address Extension 
(If Any, One or Two Words) 

Destination Effective Address Extension 
(If Any, One or Two Words) 

FIGURE 44 - SINGLE-EFFECTIVE-ADDRESS 
INSTRUCTION OPERATION WORD GENERAL FORMAT 

11 10 9 8 7 6 5 3 2 0 

x x x x x x Effective Address 
Mode Register 

,___ _____ @ MOTOROLA Semiconductor Products Inc. 
38 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

Address Register Indirect With Postincrement. The 
address of the operand is in the address register specified by 
the register field. After the operand address is used, it is in­
cremented by one, two, or four depending upon whether the 
size of the operand 1s byte, word, or long word. If the 
address register is the stack pointer and the operand size is 
byte, the address is incremented by two rather than one to 
keep the stack pointer on a word boundary. The reference is 
classified as a data reference. 

Address Register Indirect With Predecrement. The 
address of the operand is in the address register specified by 
the register field. Before the operand address is used, it is 
decremented by one, two, or four depending upon whether 
the operand size is byte, word, or long word. If the address 
register is the stack pointer and the operand size is byte, the 
address is decremented by two rather than one to keep the 
stack pointer on a word boundary. The reference is classified 
as a data reference. 

Address Register Indirect With Displacement. This 
address mode requires one word of extension. The address 
of the operand is the sum of the address in the address 
register and the sign-extended 16-bit displacement integer in 
the extension word. The reference is classified as a data 
reference with the exception of the jump to subroutine in­
structions. 

Address Register Indirect With Index. This address mode 
requires one word of extension. The address of the operand 
is the sum of the address in the address register, the sign­
extended displacement integer in the low order eight bits of 
the extension word, and the contents of the index register. 
The reference is classified as a data reference with the excep­
tion of the jump and jump to subroutine instructions. 

SPECIAL ADDRESS MODE. The special address modes 
use the effeetive address register field to specify the special 
addressing mode instead of a register number. 

Absolute Short Address. This address mode requires one 
word of extension. The address of the operand is the exten­
sion word. The 16-bit address is sign extended before it is 
used. The reference is classified as a data reference with the 
exception of the jump and jump to subroutine instructions. 

Absolute Long Address. This address mode requires two 
words of extension. The address of the operand is developed 
by the concatenation of the extension words. The high-order 
part of the address is the first extension word; the low-order 
part of the address is the second extension word. The 
reference is classified as a data reference with the exception 
of the jump and jump to subroutine instructions. 

Program Counter With Displacement. This address mode 
requires one word of extension. The address of the operand 
is the sum of the address in the program counter and the 
sign-extended 16-bit displacement integer in the extension 
word. The value in the program counter is the address of the 

extension word. The reference is classified as a program 
reference. 

Program Counter With Index. This address mode requires 
one word of extension. This address is the sum of the 
address in the program counter, the sign-extended displace­
ment integer in the lower eight bits of the extension word, 
and the contents of the index register. The value in the pro­
gram counter is the address of the extension word. This 
reference is classified as a program reference. 

Immediate Data. This address mode requires either one or 
two words of extension depending on the size of the opera­
tion. 

Byte operation - operand is low order byte of exten­
sion word 

Word operation - operand is extension word 

Long word operation - operand is in the two extension 
words, high-order 16 bits are in the first extension 
word, low-order 16 bits are in the second extension 
word. 

Condition Codes or Status Register. A selected set of in­
structions may reference the status register by means of the 
effective address field. These are: 

ANDI to CCR 
ANDI to SR 
EORI to CCR 
EORI to SR 
ORI to CCR 
ORI to SR 

EFFECTIVE ADDRESS ENCODING SUMMARY 

Table 14 is a summary of the effective addressing modes 
discussed in the previous paragraphs. 

TABLE 14 - EFFECTIVE ADDRESS ENCODING SUMMARY 

Addressing Mode Mode Register 
Data Register Direct 000 register number 
Address Register Direct 001 register number 
Address Register Indirect 010 register number 
Address Register Indirect with 

Postincrement 011 register number 
Address Register Indirect with 

Predecrement 100 register number 

Address Register Indirect with 
Displacement 101 register number 

Address Register Indirect with 
Index 110 register number 

Absolute Short 111 000 

Absolute Long 111 001 

Program Counter with 
Displacement 111 010 

Program Counter with Index 111 011 

Immediate 111 100 

~ MOTOROLA Semiconductor Products Inc. v::.y 39 



I 
MC68000L4•MC68l.IQOL6•MC68000L8•MC68000L 10 

IMPLICIT REFERENCE 

Some instructions make implicit reference to the program 
counter (PC), the system stack pointer (SP), the supervisor 
stack pointer (SSPl, the user stack pointer (USP), or the 
status register (SR l. 

SYSTEM STACK. The system stack is used implicitly by 
many instructions; user stacks and queues may be created 
and maintained through the addressing modes. Address 
register seven (A7) is the system stack pointer (SP!. The 
system stack pointer is either the supervisor stack pointer 
(SS Pl or the user stack pointer (USP!, depending on the 
state of the S-bit in the status register. If the S-bit indicates 
supervisor state, SSP is the active system stack pointer, and 
the USP cannot be referenced as an address register. If the 
S-bit indicates user state, the USP is the active system stack 
pointer, and the SSP cannot be referenced. Each system 
stack fills from high memory to low memory. 

LOGICAL OPERATIONS 
Logical operation instructions AND, OR, EOR, and NOT 

are available for all sizes of integer data operands. A similar 
set of immediate instructions (ANDI, ORI, and EORI) provide 
these logical operations with all sizes of immediate data. 
Table 15 is a summary of the logical operations. 

TABLE 15 - LOGICAL OPERATIONS 

Instruction Operand Size Operetion 

DnAIEAl-Dn 
AND 8, 16, 32 IEAlADn-EA 

IEAlA#xxx-EA 

Dn v IEAl-Dn 
OR 8, 16. 32 IEAI v Dn-EA 

IEAI v #xxx- EA 

EOR 8, 16, 32 IEAl•Dy-EA 
IEA) e #xxx- EA 

NOT 8, 16, 32 -IEAl EA 

NOTE: - = inveri 

SHIFT AND ROTATE OPERATIONS 

Shift operations in both directions are provided by the 
arithmetic instructions ASA and ASL and logical shift in­
structions LSR and LSL. The rotate instructions (with and 
without extend! available are ROXR, ROXL, ROA, and AOL. 
All shift and rotate operations can be performed in either 
registers or memory. Register shifts and rotates support all 
operand sizes and allow a shift count specified in the instruc­
tion of one to eight bits, or 0 to 63 specified in a data register. 

Memory shifts and rotates are for word operands only and 
allow only single-bit shifts or rotates. 
Table 16 is a summary of the shift and rotate operations. 

TABLE 16 - SHIFT AND ROTATE OPERATIONS 

lnstruc.. Operend Operetion 
tion Size 

ASL ia. 16, 32 ~o 

ASR 8, 16, 32 ~ 
LSL is. 16, 32 ~o 

LSR 8, 16, 32 o~ 

ROL 8, 16, 32 rn~ ~ 
ROR 8, 16, 32 ~ 

ROXL 8, 16, 32 ~,_~ r- Ix~ 
~ x I •I ~ ROXR 8, 16, 32 

_,, , 

BIT MANIPULATION OPERATIONS 
Bit manipulation operations are accomplished using the 

following instructions: bit test (BTSTJ, bit test and set 
(BSETJ, bit test and clear (BCLR), and bit test and change 
(BCHGl. Table 17 is a summary of the bit manipulation 
operations. (Bit 2 of the status register is Z.) 

TABLE 17 - BIT MANIPULATION OPERATIONS 

Instruction Operend Size Operation 

BTST 8, 32 -bit of IEAl-Z 

BSET 0. 32 
-bit of IEAl-Z 
1-bit of EA 

BCLR 8, 32 
-bit of (EAl-Z 
o-bit of EA 

BCHG 8, 32 -bit of IEAl-Z 
-bit of IEAl-bit of EA 

BINARY CODED DECIMAL OPERATIONS 

Multiprecision arithmetic operations on binary coded 
decimal numbers are accomplished using the following in­
structions: add decimal with extend IABCDl, subtract 
decimal with extend (SBCDl, and negate decimal with ex­
tend (NBCDl. Table 18 is a summary of the binary coded 
decimal operations. 

TABLE 18 - BINARY CODED DECIMAL OPERATIONS 

Instruction 
Operend 

Operetion Size 

ABCD 8 Dx10+ Dy10+ x- Ox 
Ax@-·10+ Ay@-10+ X-Ax@ 

SBCD 8 Dx10- Dy10- x- Dx 
Ax@- J.Q.-Ay@-10-X-Ax@ 

NBCD 8 O-IEAl10-X-EA 

® MOTOROLA Semiconductor Products Inc. 
40 



MC68000L4•MC68000L6•MC68000L8•MC68000L 10 

PROGRAM CONTROL OPERATIONS 
Program control operations are accomplished using a 

series of conditional and unconditional branch instructions 
and return instructions. These instructions are summarized 
in Table 19. 

The conditional instructions provide setting and branching 
for the following conditions: 

cc - carry clear LS - low or same 
cs - carry set LT - less than 
EQ - equal Ml - minus 
F - never true NE - not equal 

GE - greater or equal PL - plus 
GT - greater than T - always true 
HI -high vc - no overflow 
LE - less or equal vs - overflow 

TABLE 19 - PROGRAM CONTROL OPERATIONS 

Instruction Operation 

Conditional 

Bee Branch conditionally (14 conditions) 
8- and 16-bit displacement 

DB cc Test condition, decrement, and branch 
16-bit displacement 

sec Set byte conditionally (16 conditions) 

Unconditional 

BRA Branch always 
8- and 16-bit displacement 

BSR Branch to subroutine 
8- and 16-bit displacement 

JMP Jump 

JSR Jump to subroutine 

Returns 

RTR Return and restore condition codes 

RTS Return from subroutine 

SYSTEM CONTROL OPERATIONS 
System control operations are accomplished by using 

privileged instructions, trap generating instructions, and in­
structions that use or modify the status register. These. in­
structions are summarized in Table 20. 

TABLE 20 - SYSTEM CONTROL OPERATIONS 

Instruction ~ration 

Privileged 

RESET Reset external devices 

RTE Return from exception 

STOP Stop program execution 

ORI to SR Logical OR to status register 

MOVE USP Move user stack. pointer 

ANDI to SR Logical AND to status register 

EORI to SR Logical EOR to status register 

MOVE EA to SR Load new status register 

Trap Generating 

TRAP Trap 

TRAPV Trap on overflow 

CHK Check. register against bounds 

Status Register 

ANDI to CCR Logical AND to condition codes 

EORI to CCR Logical EOR to condition codes 

MOVE EA to CCR Load new condition codes 

ORI to CCR Logical OR to condition codes 

MOVE SR to EA Store status register 

..__ _____ @ MOTOROLA Semiconductor Products Inc. 
41 


