MVMEI135BUG/D2

-
O
o
e
-
on
=
D
0
A
e
o
L)
W

O
&0
=

4
0
5

A
on

g
5D
80
3

D
0

A
o0
=

M

N

e

v

@ MOTOROLA

PRELIMINARY MVME135BUG/D2
MARCH 1988

MYME135 DEBUG MONITOR
135Bug DEBUGGING PACKAGE

The information in this document has been carefully checked and is
believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies. Furthermore, Motorola reserves the right
to make changes to any products herein to improve reliability,
function, or design. Motorola does not assume any liability arising
out of the application or use of any product or circuit described
herein; neither does it convey any license under its patent rights
or the rights of others.

EXORmacs, VERSAdos, VMEmodule, VME/18, and 135Bug are trademarks of
Motorola Inc. '

UNIX is a registered trademark of AT&T.

‘Second Edition
Copyright 1988 by Motorola Inc.
First Edition April 1987

ek et Bt fd fd ok fod Gt fd Pk Gt G P fod fd b b
.

RPN RN NN NN NN
o 6 o o e e e s s & s s © o o o © s e e o o o o e o

m\lmmmmhh&h#thNo—l

NYNYNNNNYIINO OO UTUITUTUT £ W R et bt b

.1 Syntactic Variables
.1.1 Expression as a Parameter" .
.1.2 Address as a Parameter

1
2
.2.1 Using 135Bug’s Target Vector Table . .
2.
2.

TABLE OF CONTENTS

GENERAL INFORMATION
Description of 135Bug . .
How To Use This Manual .
Installation and Start-Up
MVME135 Board Operation With

.1 MVME135 Switch Settings .
.1.1 BOOT Switch
.1.2 ENV@ and ENV] Switches .
.1.3 MPSUP Switch
.2 MVME135 Port Configuration
.3 78@36 CIO Timer Registers
Memory Requirements

.1 EPROM Mapping « « « « .« .

.2 RAM Allocation
AUTOBOOT . & o ¢ o o « o &
Multi-Processing Support (MPSUP)
Reference Documentation

USING THE 135Bug DEBUGGER
Entering Debugger Command Lines . . .

3

e e o o Ule o o o
(o]
(=3
Q

® o o o o o o o o o

e o o 0 0o Ve o 4 4 ae o o o
© © o ¢ o o o o & © o o o o o o o
@ © o o o o o o ® o o o & o o o o
e © o o o o & 0 0 ° o o o o e o o

e @ o o o o .0 o o o o o

Terminal Input/Output Control . . .
Entering and Debugging Programs . .
System Utility Calls from User Programs

e e o o o o o
e ® o @ o o o o

Reset ¢ ¢« ¢ ¢« o ¢« ¢ ¢ ¢ o o o o @ e o e

1
L2 Abort . . . 4 s e e e e e e e e e e e e
3

Break . . « o .
Preserving Debugger Operating Environment
135Bug Vector Table and Workspace . . .
Exception Vectors Used By 135Bug

2 Creating a New Vector Table . .
3 135Bug Generalized Exception Hand'ler .

.1 10P (Physical I/0toDisk)

.3 10C (I/0 Control)
.4 BO (Bootstrap Operating System) c e e .
.5 BH (BootstrapandHalt) « « . &
Disk I/0 via 135Bug System Calls . .

WNNNNNNU—‘

- -

e e o o o o o o o o
® e o o o o o o o o o o o
e o o o e o o o o o

e o o o o
.

Restarting the System . . . ¢ & ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o &

Disk I/0 SUPPOFE » « o v o o o e w e e v
Blocks Versus Sectors e e e e s e e e s
Disk I/0 via 135Bug Commands . . « « « & « & & . . e

.2 10T (1/0 Teach) o e o v e . o e e .

0 0 Ut b e e et et et Gt b et Pt fed

Dl el e L B Y T T B |
NOTWRRRWOWO D P

b et Pt ot fd bk

@) L

0 0 NN NN NN

NN

[ASNASN SR SN SN S) ~N
P .

. . o o -
WOONAOAUIHE WM —

— et s
N

WWWWWWWLWWWWWWWWWWWWWwWwWwWwWwwWwWwwwLwWwwwwwwwwwwww
“ e & e o & e e o e e e & e s+ s+ e & s & s e & o e e o o e o o o s o

00 00 00 00 00 ~

.4
5

1
2
.3
4

Default 135Bug Controller and Device

Parameters

Disk I/0 Error Codes

Additional Support Features .
Function Code Support

Diagnostic Facilities . . . :
Floating Point Coprocessor Support
Paged Memory Management Unit Coproces

Support

Introduction
Block of Memory Fill .

Bootstrap Operating System an
Block of Memory Move
Bootstrap Operating System
Breakpoint Insert/Delete

Block of Memory Search .

Block of Memory Verify
Data Conversion . . .
Dump S-Records

Go To Next Instruction

Go Execute User Program

Go To Temporary Breakpoin

Help

e o o o o

Load S-Records From Host . .
Macro Define/Display/Delete

Macro Edit

e o o o

Enable/Disable Macro Expans1on

Save/Load Macros
Memory Display .
Memory Modify . .
Memory Set . . .
Printer Attach/Detach
Port Format

.1 Listing Current Port
.2 Configuring a Port

.3 Parameters Configura
.4 Assigning a New Port

Register Display . .
Cold/Warm Reset . . .
Register Modify . . .
Switch Directories .
Trace . « ¢ & ¢ o o &
Trace On Change Of Cont

Go Direct (Ignore Breakpo'nis)

* e e o

I1/0 Control For Disk
1/0 Physical toDisk
I1/0 Teach Disk Configuration .

Ass1§nhents

S e o o o o o T

THE 135Bug DEBUGGER COMMAND SET

¢ e s o s e e Qe e

i
t

Offset Registers Disﬁlgy/Médlf

e o o o o o

e o o o o o

ol Flow

- i1 -

—to

e by Port

lad

o o o o o o o O e o o o o o o o o

-
e e o o o o s T e o s e o o o o o

.
es

e o o o e o e o o

e o o o o o o o

3
Q-*°® * e

a

. V) e e o o e o

e o ¢ o o e o e o o o

e @ o o e o o Cteo o o o o o 6 & o s 6 0+ e s o s s o s o e

e e s s o o

e ® ® e 8 o ¢ © 6 e 8 9 © 6 & & 8 & & e ® e e & ® 6 © & e e & e e e e e e s e =

ooooo

@ ® o 6 @ o © o e 6 e e o o e 6 © © 0 6 ° 6 0 0 & o ® o e e s s s e & s e e &

e o - e ® & 8 e o e e e 9 o o ° 6 & 5 & o 6 6 & 8 & 0 6 6 & e ° o ® e e s e e o

@ & & 8 e ¢ & o o o o 8 s 6 o & s e o e o

e ® ® & o e o o e e e & o o o o o

@ e o6 e o o o 6 o o e e & ° o & e e o 6 & e+ & & e s e & s e o & e s o

e ® e e 6 8 8 ® 8 e e e e ® e e o e e o 8 e e e o ¢ o & ° % e e 6 & e o e e e o

@ e o o o o e o o o e o o

o o e o 6 & ¢ o 8 8 e e o s e e e & e & o ° & o & e o

Dy
3

IOV VITITVTAUICIUIYT AP APEDRALLRLALDE HEHREEDL WWW

.36 TransparentMode &+ ¢ ¢ ¢ ¢ ¢ o o o s o o« &« +» .3-97
.37 Trace To Temporary Breakpoint . . « ¢« ¢« ¢ ¢ v ¢ &« « & 3-98
.38 Verify S-Records Against Memory « « & « . . 3-100

USING THE ONE-LINE ASSEMBLER/DISASSEMBLER
Introduction . . ¢« ¢« ¢ ¢ ¢« ¢« ¢ ¢ o o &
.1 MC68020 Assembly Language . . . « . .
.1.1 Machine-Instruction Operation Codes
.1.2 Directives ¢ & ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o &
.2 Comparison with MC680820 Resident Struct
A Assembler
Source Program Coding
Source Line Format
.1 Operation Field .
.2 Operand Field . .
.3 Disassembled Source Line
.4 Mnemonics and Delimiters
.5 Character Set
Addressing Modes
DC.W Define Constant Directive
SYSCALL System Call Directive . .
Entering and Modifying Source Program
.1 Invoking the Assembler/Disassembler
.2 Entering a Sourceline.
.3 Entering Branch and Jump Addresses .
.4 Assembler Output/Program Listings .

SYSTEMCALLS . . . ¢ ¢ ¢ ¢ & &

Introduction &

.1 Invoking System Calls Through T

.2 String Formats for I/0 .

System Call Routines
.INCHR Function . .
.INSTAT Function ..
.INLN Function . .

. L] [] L] o
. L] . L] .
L] . L] . .
* o o o o
. . . L] L]
[B B B)
[e

red

e o o o o
e o o o o
e o o o

LI N R |

¢ o o o o o o o o
1)

e o o o o o o o o

.
.
3
.
.
.
.
.
.
.

e o o o o o o o o
e o e o o o o o o o

B2 GO P et bt bt Bt et et

® o 8 o o @ 6 o @ e o o o o o o £ 0 o o o o
e o © o © ® © o o 9 o o o o o o Do o o o o

L A A B B I R RN R R X E_ R R R
'

el et o fpod ok ook b |

2 e e o o 8 o ° e o o o o o o o
® e o o o o o o o 0o o o o o o o
e 9 e e o o o o o o o o e o o o
e e o o o o o o & o o o e o o o
@ © o e ® o o e o o o o o o o o

TINnHLWWRNOONOTEERWWWN

.
.
.
.
.
.
.
.
.
.
.
.
.
°
.

R R

*, ,
—

A

.READSTR Function

.READLN Function

.CHKBRK Function .
.DSKRD, .DSKWR Function
.DSKCFIG Function . . .
.DSKFMT Function . . .
.10 .DSKCTRL Function . . .
.11 .OUTCHR Function . . .
.12 .OUTSTR, .OUTLN Function
.13 .WRITE, .WRITELN Function
.14 _PCRLF Function
.15 .ERASLN Function
.16 .WRITD, .WRITDLN Function
.17 .SNDBRK Function
.18 .TM_INI Function

e e o o o o o
L

o o o o o o o

—WOOONAOUIEWN -~

L Ly ToToTortotgtotohotan
°

WWWNIN NN N b s)

© ¢ o o o o e o o s o o s 6 6 6 6 0 o s e o
]

® o o 0 o o o o o 6 6 6 o 6 o e o e s s 0, .

© o 0o o o o e o o o s s o e s s e 0 s s e o o
@ © 8 o o o e 3 & @ 6 o o 6 & o 0 0 e o o o o
® @ o o o o 0 o o e o e o o e ® e o o ® e o
@ © o o ¢ & o & o e & o e 0 © 0 o 6 o o o e o
® ® 6 o o o o o o o o o o 6 & ° o o o 0 o o
© 8 o o o o o o o 6 6 o o o © & 6 0 o 6 o o &
o ® o o o o o o s e e e o e & 6 6 6 e o o &
WNROUOOOTNHLENOLERRWOONOYUTE NN

e o & ¢ o o e o o o o e ¢ e & ° 0 o o o

TooTnnonnotonnoToTgtotot o

e © o o o o e o o o o ¢ o+ 0o 6 0o e o o o Xe o

NN N NN N RN RN =
e« o e o o o o o o

0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

® @ ¢ e o o o e ° o e o o o o o o o o o

- iii -

.19 .TM_STR@ Function
.20 .TM RD Function .
.21 .DELAY Function .
.22 .REDIR Function .
.23 .REDIR_I, .REDIR O
.RETURN Function
.25 .BINDEC Function
.26 .CHANGEV Function
.27 .STRCMP Function
.28 .MULU32 Function
.29 .DIVU32 Function

nct

stortorgrotorgTtoTtoTovn
e o e e e s e e e o -
.
~N
F-3

¢ e o e o s e e e .
=

APPENDIX A - S-RECORD OUTPUT FORMAT

_APP‘ENDiX B - INFORMATION USED BY B0O/BH COMMANDS

ooooo

APPENDIX C - DiSK CONTROLLERDATA+ . .

APPENDIX D
APPENDIX E
APPENDIX F

DISK COMMUNICATION STATUS CODES . .
VME135 STATUS REGISTER (STAT1) . .
MAPPING SWITCH (S3) . . « « « . . .

APPENDIX G - VME135 CONFIDENCE TEST STATUS CODES

- jv -

e o o o o

e o o o o

e o e o o e o o .

e e o o o o

FIGURE 1-1.

LIST OF FIGURES

FLOW DIAGRAM OF 135Bug OPERATION MODE

1-2

TABLE 1-1.
TABLE 1-2.
TABLE 2-1.
TABLE 2-2.
TABLE 3-1.
TABLE 4-1.
TABLE 5-2.

LIST OF TABLES

135Bug ENVIRONMENT OPTIONS . . .
RESERVED CIO REGISTERS
DEBUGGER ADDRESS PARAMETER FORMATS
EXCEPTION VECTORS USED BY 135Bug
DEBUGGER COMMANDS
135Bug ASSEMBLER ADDRESSING MODES
135Bug SYSTEM CALL ROUTINES . . .

- vi -

PRELIMINARY MVME135BUG/D2

CHAPTER 1
GENERAL INFORMATION

1.1 Description of 135Bug

The 135Bug package (MVME135BUG) is a powerful evaluation and
debugging tool for systems built around the MVME135 processor
module. Facilities are available for loading and executing user
programs under complete operator control for system evaluation.
135Bug includes commands for display and modification of memory,
breakpoint capabilities, a powerful assembler/disassembler useful
for patching programs, and a self test on power up feature which
verifies the integrity of the system. Various 135Bug routines that
handle I/0, data conversion, and string functions are available to
user programs through the TRAP #15 handler.

135Bug consists of three parts; (1) a command-driven user-
interactive software debugger, described in Chapter 2 and hereafter
referred to as the debugger, (2) a command-driven diagnostic package
for the VME135 hardware, described in the- MVME135 Diagnostic
Firmware User’s Guide (Motorola Publication MVME135DIAG) and
hereafter referred to as the diagnostics, and (3) a user interface
which accepts commands from the system console terminal.

When using 135Bug the .user will either operate out of the debugger
directory or out of the diagnostic directory. If the user is in the
debugger directory then the debugger prompt 135Bug>, will be
displayed and the user will have all of the debugger commands at his
disposal. If the user is in the diagnostic directory then the
diagnostic prompt 135Diag>, will be displayed and the user will have
all of the diagnostic commands at his/her disposal as well as all of
the debugger commands. The user may switch between directories by
.using the SD command, described in Chapter 3, or may examine the
commands in the part1cu1ar d1rectory that he/she is currently in by
using the HE command, also described in Chapter 3.

Since 135Bug is command-driven, it performs its various operations
in response to user commands entered at the keyboard. Figure 1-1
illustrates the flow of control in 135Bug. When a command is
entered, 135Bug will execute the command and the prompt will
reappear. However, if a command is entered which causes execution
of user target code (i.e., GO) then control may or may not return to
135Bug, depending on the outcome of the user program.

Those users who have used one or more of Motorola’s other debugging
packages will find 135Bug very similar. There are two noticeable
‘differences. Many of the commands are more flexible and powerful.
Also, the debugger in general is more "user-friendly", with more
detailed error messages and an expanded on-line help fac111ty -

1-1

PRELIMINARY MVME135BUG/D2

Power-Up
Reset

Run Confidence Test
(Save Status)

l ‘Nor-Destructively Init First 16K of RAM after VBR I

I Set Base Per ENVIR Switches I

| Init Debugger Vector Table]

Warm * - Cold
l—-l Warm or Coid Restart? |

Reload Disk Controller Descriptor Tables
Init Serial VO

Init Usar Vector Table
Output Name & Version Message Init Static Variables
Output Cont Test Fail Code (It any) Check FPC and PMMU
Output Warm Start Message Init Serial VO

Output Name & Varsion Message
Output Cont Test Fail Code (if any)
Output FPC & PMMU Status Messages
Output Local Memory Status Message

! ot 1 Check BOOT Switch On
’ Zero

Non-Zero r

1 Check ROM Boot Addresses
: Not
Load PC & SP Found
1 Search for Vaiid Bootable Device |

Found

[ExecumROMCode)| Output Error Message |

[Boot Operating System]

FIGURE 1-1. FLOW DIAGRAM OF 135Bug OPERATION MODE

1-2

PRELIMINARY

Execute User-instalied

7

Display
Debugger
Prompt

v

Examine MPSUP Switch

MVME135BUG/D?2

l ot

Yos SIGHP, SIGLP, LMO
or MPIRQ Asserted?

Multi-Processor
Exception Handier

No

-
l—@

O Hi

Wait for Input |

Does Command | Yes

Cause Target
Code Execution?

No

Execute
Command

Display Target Registers |

FIGURE 1-1. FLOW DIAGRAM OF 135Bug OPERATION MODE (cont.)

1-3

PRELIMINARY MVME135BUG/D2

1.2 How To Use This Manual

If the user has never used a debugging package before, then he/she
should read all of Chapters 1 and 2 before attempting to use 135Bug.
This will give an idea of 135Bug’s structure and capabilities.

Section 1.3, entitled "Installation and Start-up", describes a
step-by-step procedure to follow to power up the module and obtain
the 135Bug prompt on the terminal screen.

For a question about syntax or operation of a particular 135Bug
command, the user may turn to the entry for that particular command
in the section describing the command set (Chapter 3).

Some debugger commands take advantage of the built-in one-line
assembler/disassembler. The command descriptions in Chapter 3
assume that the user already understands how the
assembler/disassembler works. Refer to the assembler/disassembler
description in Chapter 4 for details on its use.

NOTE: In the examples shown, all user input is given in bold script.
This is done for clarity in understanding the examples (to
distinguish between character input by the user and character
output by 135Bug). The symbol < CR> represents the carriage
return key on the user’s terminal keyboard. Whenever this
symbol appears it means that a carriage return should be
entered by the user. .

1.3 Installation and Start-Up

To enable 135Bug to operate properly with the MVME135 module, the
following set-up procedure must be followed:

CAUTION

INSERTING OR REMOVING MODULES WHILE POWER
IS APPLIED COULD DAMAGE MODULE COMPONENTS.

1. Refer to the MVME135 User’s Manual (Motorola Publication Number
MVME135) and configure the mini-jumpers on the module as required
for the user’s particular application. The only mini-jumper
configuration which is specifically dictated by 135Bug is J7.
Jumper J7 must be configured with a jumper pin across pins (2-3).

NOTE: This jumper block configures the EPROM sockets at U54 (odd
byte) and U56 (even byte) to accept 64K x 8 devices. This
is the configuration of the MVME135 module as shipped from
the factory.

1-4

PRELIMINARY MVME135BUG/D2

2.

Configure status switches S3 and S4 on the MVME135 as required
for the user’s particular application. Refer to Appendices E and
F for configuration details. Configure the BOOT switch (S4-10),
the MPSUP switch (S4-9), and the ENV@, ENV]1 switches (S4-3,4) to
select the desired power-up/reset mode. These switches are
described in detail in section 1.4.1.

. Be sure that the two 135Bug EPROM’s are installed in locations

U54 and U56 of the MVME135 module.

. Refer to the set-up procedure for the user’s particular chassis

or system for details concerning the installation of the MVME135.

. Connect the terminal which is to be used as the 135Bug’s system

console to the connector 1abled Ser Port 1 on the MVME135. Set up
the terminal as follows:

Step A - Eight bits per character.
Step B - One stop bit per character.
Step C - Parity disabled.

Step D - Baud rate for the terminal connected to MVME135 port 1
must be set to 9688. After power-up, the baud rates as
well as other port characteristics may be changed via
software using the debugger’s PF (Port Format) command.

NOTE: In order for high-baud rate serial communication between
135Bug and the terminal to work, the terminal must do some
"handshaking". If the terminal being used does not do
hardware handshaking via the CTS Tine (EXORterms do
hardware handshaking) then it must do XON/XOFF -
handshaking. If the user gets garbled messages and missing
characters then he/she should check the terminal to make
sure XON/XOFF handshaking is enabled.

If it is desired to connect up some device (i.e., a host computer
system or a serial printer) to port 2, connect the RS-232 cable
for the device to the connector labled Ser Port 2 on the MVME135.
The characteristics for this port may be reconfigured later using
135Bug’s PF command.

Power up the system. 135Bug will execute some self-checks and
display the debugger prompt 135Bug> . The messages displayed will

" vary depending on the system configuration and integrity. These

.. messages are explained below:

1-5

PRELIMINARY MVME135BUG/D2

a)

b)

A Confidence Test is unconditionally run at power up/reset. If
the Confidence Test passes, a message is not displayed, but if
any section of the test fails, the message, followed by a code
indicating the failure mode is displayed as follows:

Confidence Test Failed, Code XX

Refer to Appendix G for an explanation of the Confidence Test
failure codes. The code is also available in the MP Comm Byte
of the MP-CSR. A non-zero value indicates a failure. The
board FAIL Tight will remain 1it, on Confidence Test failure.

If the MVME135 contains a MC68881 Floating’ Point Co-
Processor, a FPC Confidence Test will be executed. If the FPC
Confidence test executes without error, the message ...

FPC passed
. is displayed, otherwise the message ...
FPC failed

.... is displayed. If a FPC is not detected, the following
message is displayed.

No FPC detected

If the MVME135 contains a MC68851 Paged Memory Management
Unit, a PMMU Confidence Test will be executed. If the PMMU
Confidence test executes without error, the message .

PMMU passed
. is displayed, otherwise the message .
PMMU failed

. is displayed. If a PMMU is not detected, the following
message is displayed.

No PMMU detected

1-6

PRELIMINARY MVME135BUG/D2

d) Automatic sizing of Tocal memory is performed to determine if
the MVME135 contains a 1- or 4-Megabyte DRAM. Depending on the
amount of local memory found, the following message will be
displayed.

Local Memory size is 1 MEG (4 MEG)

e) If the local memory fails to respond correctly, the following
message will be displayed.

Local Memory Failure

An example of the display from power up/reset for a healthy
MVME135 containing a FPC, PMMU, and 1IMEG of local DRAM follows:

-VME135 Debugger/Diagnostics Release Version V.r - MM/DD/YY
FPC passed

PMMU passed

Local Memory size is 1 MEG

13SBug>

Messages pertaining to the AUTOBOOT function are explained in
section 1.6 Autoboot.

1.4 MVME135 Board Operation With 135Bug

This section describes all switch and jumper settings used by 135Bug
that directly affect its operation. The terminal port assignments
are also defined in this section. All. component initialization
critical to the function of 135Bug is d1scussed in the last portion
of this section.

1.4.1 MVME135 Switch Settings

The 135Bug will read the user switch settings and 1n1t1a11ze the
hardware control registers accordingly. Four switch positions are
used to alter the operation of the 135Bug. These are the
BOOT, ENV@, ENV1, and the MPSUP switches. _

1.4.1.1 BOOT Switch

DIP switch S4 on the MVME135 contains a mode control switch, BOOT, at
switch position 18. This switch controls the autoboot function of
135Bug. When the switch is in the ON position, the 135Bug is in
manual boot mode. In manual boot mode, the debugger is entered after
.appropriate:start-up (see next sectxon), and the user is presented
with a prompt To bootstrap an operating system, the explicit boot

1-7

PRELIMINARY MVME135BUG/D2

commands (BO or BH) ‘must be entered by the user. When this switch is
in the OFF position, the 135Bug is in automatic boot mode. In
automatic boot mode, the 135Bug attempts to boot from a pre-
programmed location in the EPROM or to read a proper boot block from
any devices connected in the system. The autoboot procedure is
defined in detail in section 1.6.

In either BOOT mode, the user needs to be aware that all address
information used by the Boot procedure, mainly the target program
counter and stack pointer, is required to be accessible over the
VMEbus. For example, when. using OPT@ or OPT1l, 1local memory
addresses must be translated to the address accessible over VME.

NOTE: Translations are done unconditionally when using the 135Bug
Disk I/0 routines.

1.4.1.2 ENVO and ENV1 Switches

DIP switch S4 on the MVME135 contains the mode control switches,
ENV@ and ENV1, at switch positions 3 and 4, respectively. This
switch selects one of four possible operating environments, or
"options" of 135Bug. 135Bug sets up certain default conditions at
power-up or restart based on these switches. In particular, the
ENV@, ENV1 switches dictate the location of 135Bug’s vector table
and reserved workspace (see section 1.5, "Memory Requirements" for
‘more details on 135Bug memory allocation).

The settings for this switch are shown in the following table. BASE
refers to the first address of allocated RAM as seen by 135Bug.

TABLE 1-1. 135Bug ENVIROﬁHENT’OPTIONS

OPT ENV@ ENV1 Restart Function

g ON ON 135Bug operates locally at BASE = 4.

1 ON OFF 135Bug operates locally at High memory,
BASE = $FFX00000.

2 OFF ON 135Bug operates over VMEbus BASE, BASE =
@ + OFFSET, with the OFFSET calculated by
(BOARDn - 1)*16K. (n=1, 2, 3, etc.)

3 OFF OFF 135Bug operates in first off-board VMEbus .
memory, with the OFFSET calculated by ID
byte * 16K.

1-8

PRELIMINARY MVME135BUG/D2

Refer to Appendices E and F, MVME135 Status Register STAT1 (S4) and
the Board ID-Mapping switch (S3), for specifics on setting these
switches to obtain the desired power-up/restart conditions.

1.4.1.3 MPSUP Switch

DIP switch S4 on the MVME135 contains a mode control switch, MPSUP,
at switch position 9. This switch enables/disables the feature
which allows a MVME135 or other CPU board to transfer control from
the 135Bug currently executing to a previously specified location.
When this mode is enabled, continuous polling occurs of several MP-
CSR bits, as well as MPIRQ, resulting in a psuedo-interrupt under
certain conditions into target code. This is explained in complete
detail in section 1.7.

1.4.2 MVME135 Port Configurations

Some 135Bug commands give the user the option of choosing the port
which will be used for input or output. The valid port numbers which
may be used for these commands are:

@ - MVME135 Terminal Port (MVME135 " Serial Port 1")
1 - MVMEI35 Host/Printer Port (MVME135 " Serial Port 2")

NOTE: These logical port numbers (8 and 1) are referred to as
"Serial Port 1" and "Serial Port 2", respectively, by the
MVME135 hardware documentation.

For example, the command DU@ (Dump S-Records to Port @) would
actually output data to the device connected to the serial
port labeled "Ser Port 1" on the MVME135 front panel.

1.4.3 78036 CIO Timer Registers

The 78836 CIO counter-timer device on-board the MVME135 module
contains 48 internal registers. Some of these registers are used by
the MVME135 hardware to maintain status and control information.”
135Bug uses two 8-bit registers of the CIO to store the upper word of
the address of its workspace memory. These registers would normally
hold the interrupt vectors to be returned by the CI0 (they are unused
because the vectors are returned by a PROM on the MVME135 module).
The value in these registers is used by 135Bug to locate its vector
table, variables, and stack.

If the user elects to use these particular CIO registers containing

the workspace start address then 135Bug will not operate. Using
other.CIO registers will impair MVME135 hardware operation.

1-9

PRELIMINARY MVME135BUG/D2

If the user wishes to take advantage of the broadcast IRQ mechanism’
in the 135Bug (S4 position 9, MPSUP = OFF, as explained in section
1.7), then the CIO PORT B operation must remain configured as per the
135Bug setup. The Interrupt Pending bit in the Port B Control and
Status register, is used for BRIRQ polling and should never be set
when the bug is in operation unless a BRIRQ operation is desired.

The following table summarizes the CIO registers.

TABLE 1-2. RESERVED CIO REGISTERS

Address - CIO Register 'MVME135/135Bug Function

$FFFB@AAG2 Port A IRQ Vector Used by 1‘3SBug'to store ubper byte of
workspace memory start address.

$FFFBAPA3- Port B IRQ Vector - Used by 135Bug to store upper-mid byte
- of workspace memory start address.

$FFFBO@ED Port A Data M\(ME)35 Status Register STATIL. :
SFFFBOPPE Port B Data MVME138 Control Register CNT1..

1.5 Memory Requirements

The program portion of 135Bug is approximately 128K bytes of code.
In addition, 135Bug requires a minimum of 16K bytes of read/write
memory to operate.)

1.5.1 EPROM Mapping

The EPROM sockets on-board the MVME135 module are mapped at
locations $FFFO@@P@ to S$FFF1FFFF. The 135Bug code is position-
independent and will execute anywhere in memory.

1.5.2 RAM Allocation

135Bug requires a minimum of 16K bytes of read/write memory to
operate. This memory may either be an off-board system memory
(i.e., on an external memory board such as the MVME284, MVME284-1 or
MVME284-2) or 135Bug may utilize its own or another MVME135’s on-
board read/write memory.

On power-up or restart, 135Bug examines the setting of the
ENV@, ENV1 switches-of the MVME135’s STAT] status register (refer
to Appendix E) to determine if the user desires to run out of MVME135
memory or from system memory.

OPRELIMINARY MVME135BUG/D2

Four environment options are available for selecting the location
for the 135Bug’s stack and work area. The MVME135 allows local
memory to be accessed at either a high or Tow memory address, as well
as over the VMEbus. Deciding which option to use depends on the
system memory available, and whether the app11cat1on requires the
use of local memory to run more efficiently.

The four options as previous1y mentioned in section 1.4.1.2 are
described below. BASE refers to the first address of allocated
memory as seen by 135Bug.

In the first two options, 135Bug may see local DRAM at a different
address range than seen by other VMEbus masters.

OPTION @: ggcate the 135Bug locally at the 1ow memory BASE address

OPTION 1: Locate the 135Bug locally at the high memory address.
~ With 1 MEG of local memory the BASE address is $FFE@B0G0
and for 4 MEG of 1local memory the BASE address is
SFFBEEﬂﬂﬂ

The next two optith‘allow,the user to locate the 135Bug at one of two
base addresses over the VMEbus. To allow multiple MVME135's to
select the same option simultaneously, each of the 135Bug space must
have a unique offset from the base address selected.

~OPTION 2: 'Locate the 135Bug space at VMEbus address $0 + offset.
S -This mode assumes some type of memory mapped over VME at
address $@, whether it is local or external memory. For
‘Option 2, the offset is calculated by multiplying the
VME135’s board number - 1 (i.e., 1st, 2nd, 3rd ... from
Towest to upper VMEbus address range; the lowest-mapped
VME135 is board #1, the next lowest is board #2, etc.) by
16K. This is to enable multiple- VME135’'s Bug stack and
variable space to be continuous from address zero, even
if the boards are not mapped contiguously over the
'VMEbus.

OPTION 3: Locate the 135Bug space at the first off-board system
memory location plus the offset. The offset is

. calculated by multiplying the 5 Teast significant bits of

the ID byte by 16K ((ID byte & $1F) * $408088). The ID byte

is an image of the Board ID mapping switch S3. This mode

assumes - memory mapped contiguously following the

MVME135’s DRAM as it appears over the VMEbus. _

1-11

PRELIMINARY | MVME135BUG/D2

NOTE: In order to accurately size past local memory using
Option 3, all VME135’s in the system must have the
same local memory size.

Regardless of where the 16K bytes are located, the first 12K bytes
are used for 135Bug stack and static variable space and the next 4K
bytes are reserved as user space. Whenever the MVME135 is reset the
target program counter is initialized to the address corresponding
to the beginning of the user space and the target stack pointers are
initialized to addresses within the user space, with the target ISP
set to the top of the user space. The target VBR is set equal to the
BASE plus the offset.

The following examples illustrate 135Bug memory allocation.

Example 1: Option @ selected, with two 1 MEG MVME135’s in the system,
and a VME204-2 mapped at $200000 over the VMEbus. .

ENV@ ENVI S3 135Bug Stack & VarsJ Target PC Target ISP

BD#1 ON ON 00 $00000000-SP00P2FFF $00003008 $00004000
BD#2 ON ON @1 $00000000-SO00B2FFF $00PA3000 $00004000

Example 2: Option 1 selected, with two 1 MEG MVME135’s in the system,
and a VME204-2 mapped at $200008 over the VMEbus.

ENV@ ENV1 S3 135Bug Sfack & Vars Target PC Target ISP

BD#1 ON OFF 9@ SFFEQO@OD-SFFEQ2FFF SFFEG300@ $FFEG4000
BD#2 ON OFF @1 SFFEQO@@B-SFFEO2FFF SFFE@3000 SFFEG4000

Example 3: Option 2 selected, with two 1 MEG MVME135’s in the system,
and a VME204-2 mapped at $200008 over the VMEbus. In this
example, both boards’ bug space is allocated in BD#1’s
DRAM.

ENV@ ENV1 $3 135Bug Stack & Vars Target PC Target ISP

BD#1 OFF ON @0 $00000000-S00002FFF $00003000 $O0004000
BD#2 OFF ON 01 $00004000-S00007FFF $00007008 $00008000

PRELIMINARY MVME135BUG/D2

Example 4: Option 2 selected, with two 1 MEG MVME135’s in the system,
and a VME204-2 mapped at $8 over the VMEbus. In this
sagggleé both boards’ bug space is allocated on the

4-2.

ENV@ ENV] §§ 135Bug Stack & Vars Target PC Target ISP

BD#1 OFF ON @2 $00000000-SBO002FFF $O0003000 $00004000
BD#2 OFF ON @3 $0P0P4000-SOPBO6FFF $O0P07000 $00PBA00

Example 5: Option 3 selected, with two 1 MEG MVME135’s in the system,
and a VME204-2 mapped at $20080808 over the VMEbus.

ENVE ENV1 §§ 135Bug Stack & Vars Target PC Target ISP

BD#1 OFF OFF 09 $00200000-$00202FFF $00203000 $00284000
BD#2 OFF OFF @1 $00204000-$00206FFF $00207000 $00208000

Example 6: Option 3 selected, with two 1 MEG MVME135’s in the system,
- and a VME2P#4-2 mapped at $0 over the VMEbus.

ENVD ENV1 S3 135Bug Stack & Vars Target PC Target ISP

iBD#] OFF 'OFF @2 $00008000- SOGAPAFFF $SOGAPBODE $OPOACODH
‘BD#2 OFF OFF @3 $00GACO00- SOOBPEFFF . SOPOFOO0 SOPO100AD

Example 7: Option 3 selected, with two 4 MEG MVME135's in the system,
: o+ - and a VME2P4-2 mapped at $8008P0 over the VMEbus. .
ENVB ENV] 83 1358ug:Stack & Vars Target PC Target ISP

BD#1 OFF OFF 0@ Sﬂﬂéﬂﬂﬂﬂﬂ;SGQBEZFFF $00803008 $AESG4AA00
‘BD#2 OFF OFF 01 $00804000- SOPSAE6FFF $PP8E7000 $0P808ARH

1.6 AUTOBOOT

AUTOBOOT is a switch selectable function that provides an operator
independent mechanism for booting from a pre-programmed location in
the EPROM or an operating system. When enabled, AUTOBOOT will first
determine if a preselected EPROM location is non-zero, and if so,
control will be transfered to the address. .contained in that
- location. Otherwise, AUTOBOOT will scan for controllers and devices
in a specified sequence until a valid bootable.device is found or

1-13

PRELIMINARY MVME135BUG/D2

until the Tist is exhausted. If a valid bootable device is found, a
boot from that device is started. The controller scanning sequence
goes from the lowest controller Logical Unit Number (LUN) detected
to the highest controller LUN detected. At the controller level,
scanning goes from the lowest device LUN configured to the highest
device LUN configured. Autoboot operation can be enabled or
disabled with the BOOT switch as follows :

Switch ON = manual boot (Using BO or BH commands).
Switch OFF = auto boot or ROM boot (At power-on/reset).

Example 1: With the BOOT switch set to ON, the RESET pushbutton is
pressed: '

VME135 Debugger/Diagnostics Release Version V.r - MM/DD/YY
FPC passed test

No PMMU detected

Local Memory Size is 1 MEG

135Bug>

Example 2: With the BOOT switch set to OFF, the RESET pushbutton is
pressed. A ROM BOOT Stack Pointer and Program Counter
have been preprogrammed in EPROM addresses $FFF1FFF4 and
SFFF1FFF8, respectively. The following is displayed then
control is transfered to the address in SFFF1FFF8.

-

VME135 Debugger/Diagnostics Release Version V.r - MM/DD/YY
FPC passed test

No PMMU detected

Local Memory Size is 1 MEG

Booting from ROM address $XXXXXXXX

Example 3: With the BOOT switch set to OFF, the RESET pushbutton is
pressed. EPROM location $FFF1FFF4 contains a zero value.
The first bootable device is a streamer tape on the
VME350, controller 4, device §:

1-14

PRELIMINARY MVME135BUG/D2

VME135 Debugger/Diagnostics Release Version V.r - MM/DD/YY
FPC passed test

No PMMU detected

Local Memory Size is 1 MEG

Autoboot in progress... To abort hit <BREAK>

Booting from VME358 CLUN=4 DLUN=@

IPL loaded at: $00050000

NOTE: A vertical parity checksum word at $FFF1FFFE must be updated
each time the 135Bug EPROMs are patched. The new checksum is
calculated by performing the Boolean exclusive OR operation
over the new contents for the EPROMs. A method for
calculating the new checksum is described below.

1. Transfer the intended new contents for the EPROMs to system
memory. One way is to download from development system, EPROM
programmer, etc. into memory using 135Bug’s LO command:

135Bug> LO;x=COPY NEWPROMS> MX,# < cr>

Another way is to copy the contents of the current EPROMs.out
into. system memory with 135Bug’s BM command and then make the
desired changes. The following command sequence copies the
EPROM code out to address $50000:

135Bug>BM FFFO0000 : 20000 56000 ;b
Effective address: FFFO@8@0
Effective count " : &131872
Effective address: 00050000
135Bug>MM < addr to change> ; DI <cr>

2. Enter the following program segment at some location other than
that containing the new EPROM contents. Running this program
segment calculates the proper checksum for the new EPROM
contents and Teaves it in the lower word of register DI1.

LEA <start addr of code>,A8 Point to new code.
MOVE.L #$1FFFE,D@ This is the byte count for
.Joop.
MOVEQ.L #-1,D1 Load initial checksum‘value.
GETWORD MOVE.W (A@)+,D2 Get a word. :
EOR.W D2,D1 o Accumulate checksum.

SuBQ.L #2,D@

PRELIMINARY ' MVME135BUG/D2

BNE.B GETWORD .
ANDI.L #SOOQQFFFF,D1 : Mask off upper word.
SYSCALL .RETURN (D1.W contains checksum)

3. Run the program segment using 135Bug’s GO command. Use 135Bug’s
RD command to view the checksum in the Tower half of D1.

4., Install new checksum in last word of code.

5. Upload modified code to development system or EPROM programmer
using 135Bug’s DU command.

1.7 Multi-Processing Support (MPSUP)

There are four methods of transfering control to a target program
from the 135Bug, in the Multi-Processing psuedo interrupt Support
mode (MPSUP = OFF). Three bits in the MP-CSR are available for use,
LM@, SIGLP, and SIGHP, in addition to the MPIRQ bit in Control
Register 1.

Since the 135Bug operates in non-interrupt mode, when the MPSUP mode
is enabled, these bits will be polled regularly. When one of the
four bits is asserted, it is processed as if an exception occurred,
creating a normal four word stack frame, then jumping indirectly
through the vector table. The polling operation is handled in the
system console driver module.

Before setting any of the four bits, the location to which control
will be transferred, must be loaded in the associated vector table
address. The 135Bug’s Interrupt Vector Base is $40@ offset from the
target VBR value (Base + Offset). The vector table addresses for the
four bits are as follows:

LMg 135Bug VBR+$128 " Location Monitor @
SIGLP 135Bug VBR+$12C Low Priority Signal
SIGHP 135Bug VBR+$114 High Priority Signal
MPIRQ 135Bug VBR+$108 Broadcast IRQ

If the user plans to return to 135Bug using an "RTE" instruction
after processing of the signal or broadcast -has been completed, it
is the user’s responsibility to preserve the exception stack frame
as well as 135Bug’s register state.

Control can also be returned to the 135Bug by préssing the ABORT
pushbutton.

PRELIMINARY MVME135BUG/D2

Before 135Bug exits through the vector table to the pre-loaded
target address, the bit causing the transfer of control will be
negated. This is done to prevent an interrupt from occurring when
the interrupt mask is lowered, and to prevent a re-transfer of
control if 135Bug is re-entered.

The bits supported in the MPSUP mode, and how they operate is
described below:

LM@: This bit is low true, and can be set through the MP-CSR,
or by a broadcast cycle to the associated location in
Short 1/0.-

SIGLP(HP): This bit is high true, and is set by writting directly to
the MP-CSR location.

MPIRQ: This bit is low true. In order to use this signal, the
user must give up control of VME Interrupt Level 1, since
the hardware uses this path for the BRIRQ cycle. When the
MPSUP mode 1is selected, VMSKl is wunconditionally
enabled. Polling for the MPIRQ bit will not be done
unless VMSK1 is enabled. Also, as previously mentioned,
the Z8836 CIO PORT B configuration must be programmed as
it is in the 135Bug initialization.

Since the MPIRQ bit will be reset when BRIRQO goes away,
polling will be done using the 28836 PORT B CSR Interrupt
Pending bit.

1.8 Reference Documentation

The following publications may provide additional information. If
not shipped with this product, they may be purchased from Motorola’s
Literature Distribution Center, 616 West 24th Street, Tempe,
Arizona 85282; telephone (602) 994-6561.

PRELIMINARY

MVME135BUG/D2

Document Title

Document Number

MVME135 Diagnostic Firmware User’s Guide

MVME135 32-Bit Multiprocessing Board User’s Manual
MVME2@4-1/-2 Dual Ported Dynamic Memory User’s Manual
VSB Device Specification

-M68KVMMB851 Memory Management Board Usef’ s Manual
-MC68028 32-Bit Microprocessor User’s Manuai

MC68851 Paged Memory Management Unit USer"é Manual
MCe8881 Floating-Point Coproce:ssor User's Manual

MCe8882 EnhantedvFloating-Point Coprocessor Technical
‘Summary

MVME319 Inté‘ﬂ igent Disk/Tape Controller User’s Manual
MVME320 VMEbus Disk Controller Module User’s Manual
MVME321 IPC Firmware User’s Guide (Preliminary)
MVME327 IPC Firmware User’s Guide (Preliminary)
MVME358 IPC Firmware User’s Guide (fPreHmin‘ary)
MVME360 Storage Drive Disk Controller User’s Manual

MVME135DIAG
MVME135
MVME204

TBD
M68KVMMBSS51
MC68@208UM/AD
MC68851UM/AD
MC68881UM/AD
BR589/D

MVME319
MVME320
MVME321FW
MVME327FW
MVME3S@FW
MVME364

PRELIMINARY MVME135BUG/D2

CHAPTER 2
USING THE 135Bug DEBUGGER

2.1 Entering Debugger Command Lines

135Bug is command-driven and performs its various operations in
response to user commands entered at the keyboard. When the
debugger prompt 135Bug> appears on the terminal screen then the
debugger is ready to accept commands.

As the command line is entered it is stored in an internal buffer.
Execution begins only after the carriage return is entered, thus
allowing the user to correct entry errors, if necessary, using the
control characters described in section 2.2.

When a command is entered the debugger will execute the command and
the prompt will reappear. However, if the command entered causes
execution of user target code, (i.e., GO), then control may or may
not return to the debugger, depending on what the user program does.
For example, if a breakpoint has been specified, then control will
return to the debugger when the breakpoint is encountered during
execution of the user program. Alternately, the user program could
return control to the debugger by means of the TRAP #15 function
.RETURN (described in Chapter 5). For more about this, refer to the
description in Chapter 3 for the GO commands.

In general, a debugger command is made up of the following parts:

- 1. The command identifier (i.e., MD or md for the memory display
command). Note that either upper- or lower-case is allowed.

2. A port number if the command is set up to work with more than one
port. | ‘ -

3. At least one intervening space before the first argument.

4. Any required arguments, as specified by command.

5. An option field, set off by a semicolon (;) to specify conditions
other than the default conditions of the command.

The commands are shown using a modified Backus-Naur form syntax.
The meta-symbols used are:

< > The angular brackets enclose a symbol, known as a syntactic
variable, that is replaced in a command 1ine by one of a class of
symbols it represents.

[] Square brackets enclose a symbol that is optional.

2-1

PRELIMINARY . MVME135BUG/D2

| This symbol indicates that a choice is to be made. One of
several symbols, separated by this symbol, should be selected.

/ The slash indicates that one or more of the symbols separated by
this symbol can be selected.

{) These brackets enclose an optional symbol that may occur zero or
more times.

2.1.1 Syntactic Variables

The following syntactic variables will be encountered in the command
descriptions which follow. In addition, other syntactic variables
may be "used and will be defined in the particular command
description in which they occur. :

 - Dehmter either a comma or a space.
< EXP> - Expression (descmbed in detail in section 2.1.1. 1).
< ADDR> - Address (described in detail in section 2.1. 1 2).

< COUNT> Count; the syntax is the same as for < EXP> .

< RANGE> - A range of memory addresses which may be specified either
by < ADDR> < DEL> < ADDR> or by < ADDR> :< COUNT> .

- < TEXT> - An ASCII string of up to 255 characters, delimited at each
- end by the single quote mark (’).

2.1.1.1 Expressionas a Parameter

An expression can be one or more numeric values separated by the
arithmetic operators plus (+) or minus (-), multiplied by (*),
divided by (/), logical AND (&), shift left (<<), or shift right
(>>).

Numeric values may be expressed in either hexadecimal, decimal,
octa],for binary by immediately preceding them with the proper base
identifier.

Numeric value examples:

Base Identifier Examples
Hexadecimal $ SFFFFFFFF
Decimal & &1974, &410-44
Octal @ @ 456
Binary % %1000110

2-2

PRELIMINARY MVME135BUG/D?2

If no base identifier is specified, then the numeric value is
assumed to be hexadecimal.

A numeric value may also be expressed as a string literal of up to
four characters. The string literal must begin and end with the
single quote mark (‘). The numeric value is interpreted as the
concatenation of the ASCII values of the characters. This value is
right-justified, as any other numeric value would be.

String lTiteral examples:

String Literal Numeric Value (in Hex)
‘A’ 4]
'ABC’ 414243
"TEST’ 54455354

Evaluation of an expression is always from left to right unless
parentheses are used to group part of the expression. There is no
operator precedence. Sub-expressions within parentheses are
evaluated first. Nested parenthetical sub-expressions are
evaluated from the inside out.

Examples of valid expressions are:

. Expression Result (in Hex)
FF@@11 FF@@11
45+99 - DE
445+899 90
@ 35+@ 67+C 10 5C
%10011110+%1001 A7
88<< 44 88¢
AA&F@ Ag

The total value of the expression must be between B and SFFFFFFFF,

2.1.1.2 Address as a Parameter

Many commands use < ADDR> as a parameter. The syntax accepted by .
135Bug is similar to the one accepted by the 68028 one-line
assembler. A1l control addressing modes are allowed. An "address+
offset register” mode is also provided.

2-3

PRELIMINARY MVME135BUG/D2

2.1.1.2.1 Address Formats. Table 2-1 summarized the address
formats which are acceptable for address parameters in debugger
command lines. ’

TABLE 2-1. DEBUGGER ADDRESS PARAMETER FORMATS

Format Example Description

N 14 Absolute address+contents of auto-
matic offset register.

N+Rn 138+R5 Absolute address+contents of the
specified offset register (not an
assembler-accepted syntax).

(An) (A1) Address register indirect.

(d,An) or (128,A1) Address register indirect with dis-
d(An) 128(A1) placement (two formats accepted).
(d,An,Xn) or (&120,A1,D2) Address register indirect with index
d(An,Xn) &128(A1,D2) and displacement (two formats

accepted).
([bd,An,Xn],od) ([C,A2,A3],&%108) Memory indirect pre-indexed.
([bd,An},Xn,0od) ([12,A3],D2,&18) Memory indirect post-indexed.

For the memory indirect modes, fields can be omitted. For example,
three of many permutations are as follows:

([,An],od) - ([,A1],4)
([bd]) ([FCIE])
([bd,,Xn]) ([s,,D2])
Notes: N - Absolute address (any valid expression).

An - Address registern.

Xn - Index register n (An or Dn).

d - Displacement (any valid expression).

bd - Base displacement (any valid expression).
od - Outer displacement (any valid expression).
n - Register number (@ to 7).

Rn - Offset register n.

2-4

PRELIMINARY | MVME135BUG/D2

2.1.1.2.2 Offset Registers. Eight pseudo-registers (R@ through R7)
called offset registers are used to simplify the debugging of
relocatable and position-independent modules. The listing files in
these types of programs usually start at an address (normal]y g)
that is not the one in which they are loaded, so it is harder to
correlate addresses in the listing with addresses in the loaded
program. The offset registers solve this problem by taking into
account this difference and forcing the display of addresses in a
relative address+offset format. Offset registers have adjustable
ranges and may even have overlapping ranges. The range for each
offset register is set by two addresses: base and top. Specifying
the base and top addresses for an offset register sets its range. In
the event that an address falls in two or more offset registers’
ranges, the one that yields the least offset is chosen. For
additional information about the offset registers, see the OF
command description.

NOTE: Relative addresses are limited to 1 megabyte (5 d1gvts),
regardless of the range of the closest offset register.

Example: A portion of the listing file of a relocatable module
assembled with the MC6802@8 VERSAdos -Resident Assembler
is shown below:

1

2 *

3 * MOVE STRING SUBROUTINE

4) *

5 0 00000000 48E78080 MOVESTR MOVEM.L DB/AB, - (A7)
6 0 00000004 4280 - CLR.L D@

7 @ 00000006 1018 - MOVE.B (Ad)+,D@

8 0 PPPAOPA8 5340 SUBQ.W #1,D0

9 0 PPGGAOOA 12D8 Loop MOVE.B (A@)+, (Al)+
10 0 20P0090C 51C8FFFC MOVS DBRA D@, LOOP

11 0 9PPE019 4CDFA101 MOVEM.L (A7)+,DB/AD
12 0. 00000P@14 4E75 RTS

13

14 END

sxxxxx TOTAL ERRORS g--
*xxxxx TOTAL WARNINGS @--

The above program was loaded at address #@@1327C.

2-5

PRELIMINARY MVME135BUG/D2

1:he disassembled code is shown next:

135Bugp>MD 1327C;DI CR>

$001327C 48E78080 MOVEM.L D@/Ad, - (A7)
00013280 4280 . CLR.L 0@

$0913282 10918 MOVE.B (A®)+,DP
00213284 5340 SuBQ.W #1,D@
90013286 12D8 MOVE.B (Ad)+, (Al)+
$@@13288 51C8FFFC DBF 0@,513286
$@@1328C 4CDF@141 MOVEM.L (A7)+,D8/Ad
70013298 4ET75 RTS

135Bug>

By using one of the offset registers, the disassembled code
addresses can be made to match the listing file addresses as
follows:

135Bug>0F R CR>
RO =P0000000 0000000@? 1327C:16. <CR>
135Bup>MD B+R3;DI <CR>

00000+R0 48E78080 MOVEM.L D@/Ad, - (A7)
00004+RE 4280 CLR.L D@

00006+R0 1018 MOVE.B (Ad)+,D8
00008+RO 5340 SUBQ.W #1,08
POBOA+RS 1208 MOVE.B (Ad)+, (Al)+
POOOC+RE S1CBFFFC DBF D@, SA+RO
gog10+R9 4CDFP1Q1 MOVEM.L (A7)+,D8/Ad
00014+R8 4ET5 RTS

135Bug>

2-6

PRELIMINARY MVME135BUG/D2

2.2 Terminal Input/Output Control

When entering a command at the prompt the following control codes
may be entered for 1imited command 1ine editing.

NOTE: The presence of the upward caret, "*", before a character
indicates that the Control or CTRL key must be held down while
striking the character key.

A X (Cancel line) - The cursor is backspaced to the beginning
of the line. If the terminal port is
configured with the hardcopy or TTY
option (see PF command) then a carriage
return and line feed is issued along with
another prompt.

~H (backspace) - The cursor is moved back one position.
The character at the new cursor position
is erased. If the hardcopy option is
selected a " /" character is typed along
with the deleted character.

 (delete/rubout) - Performs the same function as "~H".

AD (redisplay) - The entire command 1ine as entered so far
is redisplayed on the following Tine.

When observing output from any 135Bug command, the XON and XOFF
characters which are in effect for the terminal port may be entered
to control the oeutput, if the XON/XOFF protocol is enabled
(default). These characters are initialized to "~S" and "~Q"
respectively by 135Bug but may be changed by the user using the PF’
command. In the initialized (default) mode operation is as follows: =

~S - (wait) - Console output is halted.
AQ (resume) - Cohso]e:output is resumed.

2.3 Entering and Debugging Programs

There are various ways to enter a user program into system memory for
execution. One way is to create the program using the MM (Memory
Modify) command with the assembler/disassembler option. The
program is entered by the user one source 1ine at a time. After each
source line is entered, it is assembled and the object code is loaded
to memory. Refer to Chapter 4 for complete details of the I3SBug
Assemb1er/D1sassemb1er

2-7

PRELIMINARY Co MVME135BUG/D2

Another way to enter a program is to download an object file from a
host system (i.e., an EXORmacs). The program must be in S-Record
format (described in Appendix A) and may have been assembled or
compiled on the host system. Alternately, the program may have been
previously created using the 135Bug MM command as outlined above and
stored to the host using the DU (Dump) command. [f a communication
link exists between the host system and the VME135, then the file can
be downloaded into memory via the debugger’s LO command.

Another way is by reading in the program from disk, using one of the
disk commands (i.e., BO, BH, or IOP). Once the object code has been
loaded into memory, the user can set breakpoints if desired and run
the code or trace through it.

2.4 SystemUtility Calls from User Programs

A convenient way of doing character input/output, and many other
useful operations has been provided so that the user does not have to
write these routines into the target code. The user has access to
various 135Bug routines via the MC68@28 TRAP #15 instruction.
Refer to Chapter 5 for details on the various TRAP #15 utilities
available and how to invoke them from within a user program.

2.5 Restarting the System

There are three methods available to the user of initializing the
system to a known state. Each has characteristics which make it more
appropriate than another in certain situations.

2.5.1 Reset

Pressing and releasing the RESET pushbutton on the front panel of
the VME135 will initiate an on-board reset. Two reset modes are
available: COLD and WARM. By default, 135Bug is in COLD mode (refer
to the RESET command description). During COLD reset, a total
system initialization takes place, as if the VME135 module had just
been powered up. All static variables are restored to their default
states.

On-board serial ports are reconfigured to their default state. The
breakpoint table is cleared. The offset registers are cleared. The
target registers are invalidated. Input and output character queues
are cleared. On-board devices (timer, serial ports, etc) are reset.

During WARM reset, 135Bug variables and tables are preserved, as
well as the target state registers and breakpoints. If the
particular VME135 is the system controller, then a system reset is
issued to.the VMEbus and other modules in the system are reset as
well.

2-8

PRELIMINARY MVME135BUG/D2

Reset must be used if the processor ever halts (as evidenced by the
VME135’s illuminated HALT LED) for example, after a double bus
fault, or if the 135Bug environment is ever lost (vector table is
destroyed, etc).

2.5.2 Abort

Abort is invoked by pressing and releasing the ABORT pushbutton on
the VME135 front panel. Whenever Abort is invoked while running
target code, a "snapshot" of the processor state is captured and
stored in the target registers. For this reason Abort is most
appropriate when terminating a user program that is being debugged
Abort should be used to regain control if the program gets caught in
a loop, etc. The target PC, stack pointers, etc will help to
pinpoint the malfunction.

Abort generates a level seven interrupt (non-maskable). The target
registers, reflecting the machine state at the time the abort
pushbutton was pushed, will be displayed to the screen. Any
breakpoints installed in the user code will be removed and the
breakpoint table will remain intact. Control will be returned to
the debugger.

2.5.3 Break : g

K "Break" is generated by pressing and releasing the BREAK key on the
terminal keyboard. Break does not generate an interrupt. The only
time break is recognized is when characters are sent or received by
the debugger console. Break will remove any breakpoints in the user
code and will keep the breakpoint table intact. Break does not,
however, take a snapshot of the machine state nor does it display the
target registers. It is useful to terminate debugger commands that
output Targe blocks of data before completion.

2.6 Preserving Debugger Operating Environment

This section explains how to avoid contaminating the operatlng
environment of the debugger. 135Bug uses certain of the VME135's
on-board resources and uses on-board memory to contain temporary
variables, exception vectors, etc. If the user disturbs resources
which 1358?? depends on, then the debugger may function unreliably
or not at all.

2.6.1 135Bug Vector Table and Workspace

As described in section 1.5, "Memory Requirements", 135Bug needs
© 14.5K bytes of read/write memory to operate and also allocates
another 1.5K bytes as user space for a total of 16K bytes allocated.
On power-up or reset, 135Bug decides where this memory will be.
Starting at this point, 135Bug reserves a 1824-byte area for a user

2-9

PRELIMINARY MVME135BUG/D2

program vector table area and then allocates another 1024-byte area
and builds an exception vector table for the debugger itself to use.
Next, 135Bug reserves space for static variables and initializes
these static variables to predefined default values. After the
static variables, 135Bug allocates space for the system stack, then
initializes the system stack pointer to the top of this area.

With the exception of the first 1824-byte vector table area, the
user must be extremely careful not to use the above-mentioned memory
areas for other purposes. The user should refer to section 1.5.2 to
determine how to dictate the location of the reserved memory areas.
If, for example, a user program inadvertently wrote over the static
variable area containing the serial communication parameters, these
parameters would be lost, resulting in a loss of communication with
the system console terminal. If a user program corrupts the system
stack, then an incorrect value may be loaded into the processor’s
program counter, causing a system crash.

2.6.2 Exception Vectors Used By 135Bug

The exception vectors used by the debugger are listed below. These
vectors must reside at the specified offsets in the target program’s
vector table for the associated debugger facilities (breakpoints,
trace mode, etc) to operate.

TABLE 2-2. EXCEPTION VECTORS USED BY 135Bug

Vector Offset Exception 135Bug Facility

$08 Bus Error Retries accesses when conflict
bit active and RMC cycle caused
error.

$10 I11egal Instruction Breakpoints (Used by GO, GN, GT)

$24 Trace Trace operations (such as T)

$7C Level 7 Interrupt ABORT pushbutton

$BC TRAP #15 System calls (See Chapter 5)

When the debugger handles one of the exceptions 1isted in Table 2-2,
the target stack pointer is left pointing past the bottom of the
exception stack frame created; that is, it reflects the system stack
pointer values just before the exception occurred. In this way, the
operation of the debugger facility (through an exception) is
transparent to the user.

PRELIMINARY MVME135BUG/D2

Example: Trace one instruction using debugger.

135Bug>RD <CR>

PC =PP@O3EAP SR =27@B=TR:OFF_S. 7_.....

USP =p0@@3830 MSP =PPPP3C18 ISP* =@APP40PP VBR =00000000
SFC =B=F@ DFC =p=Fg@ CACR =p=.. CAAR =00000000
D¢ =P0000000 D1 =0000PPOS D2 =DPOPOAGE D3 =POPPAAG0
D4 =PPPA000P D5 =000PBE00 D6 =000GPE00 D7 =0P300000
A0 =00000000 Al =PPP00GA0 A2 =PR30000E A3 =P00PAA00
A4 =00000000 A5 =PP00POB0 A6 =PE00PPOE A7 =000B4000
PO003EGS 203900100000 MOVE.L ($100000).L,D0

135Bug>T <CR>

PC =P@@E3EG6 SR =270B=TR:OFF S. 7_.....

USP =00P@383¢ MSP =pPPB3C18 ISP* =PPPP4ges VBR =03000000
SFC =@=Fg DFC =p=Fg@ CACR =p=.. CAAR =00000900
DB =12345678 D1 =PpPPO00PG D2 =0PPPAOAS D3 =000P00AP
D4 =pPPPP3AE DS =PPPPAGAGS D6 =0000000P D7 =PP00000P
Ad =000000P8 Al =PO0OPAG0 A2 =BEA00000 A3 =00300000
A4 =00000300 AS =DPEOPPR0 A6 =DRPOOOOE AT =P0004000
P20083EB6 D280 ADD.L Dg,D1

135Bug>

Notice that the value of the target stack pointer register (A7) has
not changed even though a trace exception has taken place. The user
program may either use the exception vector table provided by 135Bug
. or it may create a separate exception vector table of its own. The
two following sections detail these two methods.

2.6.2.1 Using 135Bug’s Target Vector Table

135Bug initializes and maintains a vector tabie area for target
programs. A target program is any user program started by the bug,
either manually with GO or TRace type commands or automatically with
the BOot command. The start address of this target vector table area
is the base address of the VME135 module, determined as described in
section 1.5.2. This address is loaded into the target-state VBR at
power-up and cold-start reset and can be observed by using the RD
command to display the target-state registers immediately after
power-up.

135Bug initializes the target vector table with the debugger vectors
listed in Table 2-2 and fills the other vector locations with the
address of a generalized exception handler (refer to section
2.6.2.3). The target program may take over as many vectors as
desired by simply writing its own exception vectors into the table.

2-11

PRELIMINARY MVME135BUG/D2

1 If the vector. 1ocat10ns listed in Table 2-2 are overwritten then the
accompanying debugger functions will be lost.

135Bug ma1nta1ns a separate vector table for its own use in a 1K-byte
space elsewhere in the reserved memory space. In general, the user
does not have to be aware of the existence of the debugger vector
table. It is completely transparent to the user and the user should
never make any modifications to the vectors contained in it.

2.6.2.2 Creating a New Vector Table

A user program may create a separate vector table in memory to
contain its exception vectors. If this -is done, the user program
must change the value of the VBR to point at the new vector table. In
order to use the debugger facilities the user can copy the proper
- vectors from the 135Bug vector table into the corresponding vector
1ocations in the user vector table

" The vector for the 135Bug generalized exception handler (described
in detail in section 2.6.2.3) may be copied from offset $88 (Trap #0
vector) in the target vector table to all locations in the user’s
vector table where a separate exception handler is not used. This
will provide diagnostic support in the event that the user program
is stopped by an unexpected exception. The generalized exception
handler gives a formatted display of the target registers and
identifies the type of the exception.

PRELIMINARY

MVME135BUG/D2

The following is an example of a user routine which builds a separate
vector table and then moves the VBR to point at it:

%
Jeded
*

BUILDX MOVEC.L VBR,AB

BUILDX - Build exception vector table ***

Get copy of VBR.

LEA $19000,A1 New vectors at $108008.
MOVE.L $88(A8),DP Get generalized exception vector.
MOVE.W $3FC,D1 Load count (all vectors).

Loop MOVE.L Dg, (A1,D1) Store generalized exception vector.
SUBQ.W #4,D1
BMI.S LooP Initialize entire vector table.
MOVE.L $8(Ad@),$8(Al) Copy bus error vector.
MOVE.L $18(AP),$10(Al1) Copy breakpoints vector.
MOVE.L $24(A@),$24(Al) Copy trace vector.
MOVE.L $BC(AB),$BC(Al) Copy system call vector.
LEA.L COPROCC(PC),A2 Get user exception vector.
MOVE.L A2,$2C(Al) Install as F-Line handler.
MOVEC.L Al,VBR Change VBR to new table.
RTS
END

It may turn out that the user program uses one or more of the
exception vectors that are required for debugger operation.
Debugger facilities may still be used, however, if the user’s
exception handler can determine when to handle the exception itself
and when to pass the exception to the debugger.

When an exception occurs which ‘the user wants to pass on to the
debugger (i.e., ABORT) the user’s exception handler must read the
vector offset from the format word of the exception stack frame.
This offset is added to the address of the 135Bug target program
vector table (which the user program saved), yielding the address of
the 135Bug exception vector. The user program then jumps to the
address stored at this vector location (i.e., which is the address
of the 135Bug exception handler).

The user program must make sure that there is an exception stack
frame in the stack and that it is exactly the same as the processor
would have created for the particular exception before jumping to
the address of the exception handler.

2-13

PRELIMINARY MVME135BUG/D2

The following is an example of a user. except1on handler which can
pass an exception along to the debugger:

*

*** EXCEPT - Exception handler *¥**

*

EXCEPT SUBQ.L #4,A7 Save space in stack for a PC value.
LINK A6,#0 Frame pointer for accessing PC space.
MOVEM.L A@-A5/D@-D7,-(SP) = Save registers.

: decide here if user code wi11.hand1e exception, if so, branch...

MOVE.L BUFVBR,Ad Pass exception to debugger; Get VBR. ,
MOVE.W 14(A6),D@ . Get the vector offset from stack frame.
AND.W #$@FFF,D8 ' Mask off the format information. ‘
MOVE.L (A@,DB.W), 4(A6) Store address of debugger exc handler.
UNLK A6 C :
RTS SR Put addr of exc handler into PC and go.

2.6.2.3 135Bug Generalized Exception Handler _‘

135Bug has a generalized exception handler which it uses to hand]e
all of the exceptions not :Tisted in Table 2-2. For all these
exceptions, the target stack pointer is left pointing to the top of
the exception stack frame created. In this way, if an unexpected
exception occurs during execution of a user code segment, the user
is presented with the exception stack frame to help determine the
cause of the exception. The following example illustrates this:

PRELTMINARY MVME135BUG/D2

Example: Bus error at address $FO@@@B. It is assumed for this
example that an access of memory location $FPPAGGB will
initiate Bus Error exception processing.

135Bug>RD <CR>
PC =0PPO3EGE SR =27@P=TR:OFF S. 7

USP =P@@E3830 MSP =p@PA3C18 ISP* =pPPP4EAg VBR =2000000p
SFC =P=F@ DFC =B=F@ CACR =B=.. CAAR =£0000@00
DF =00PAOE0 D1 =PEG0OORE D2 =PAOO0OPE D3 =QO0PEO0D
D4 =00PPOO0 D5 =PA00OPAG D6 =PAAG0PEE D7 =£PPPOO0D
AD =00000000 Al =0POB00DE A2 =0OPOO0D A3 =PE00POO0
A4 =0POBO0O0 AS =DB00BO0 A6 =0DOODDOO AT =B00D4B00
0PPB3EQD 203900FOA00P MOVE.L ($F00900).L,00

135Bug>T <CR>

Exception: Long Bus Error

Format/Vector=B@Ag8

SSW=@145 Fault Addr. =@@F@PPPP Data In=0000PGGG Data Out=PPPB2006
PC =P0PP3EG6 SR =A7@B=TR:ALL_S. 7_.....

USP =0P@@383¢ MSP =p@P@3C18 ISP* =@PP@E3FA4 VBR =00000000

SFC =p=Fg@ DFC =p=F@ CACR =@=.. CAAR =PP000000

D8 =0pPP@eoEe D1 =PPO00DE0 D2 =pAP00O0Y D3 =000AA00

D4 =p000PPP00 D5 =00000000 D6 =P000GARR D7 =P0000R00

A =00000008 Al =00000000 A2 =00000000 A3 =00000000

A4 =000000B8 AS =00000000 A6 =00000000 A7 =POPB3FA4

- DOPO3ESE 203900FP0A0D MOVE.L ($Fooo@g).L,D8

* 135Bug> ' . : ‘
Notice that the target stack pointer is different. The target stack
pointer now points to the last value of the exception stack frame

that was stacked. The exception stack frame may now be examined
using the'MD command.

135Bug>MD (A7):844 <CR> \

00PO3FA4 AT00 OPOP 2000 BOPS 3E2C P145 PPPS @927 ‘... .0.>,.E...’
00003FB4 OFOO POPP OFOC OO0 OPPP 1BCC 2039 @99 .p...p..... L9..
00003FC4 PO00 200A POP0 2008 000D 2006 000D OO0
0O003FD4 OOFP POPG 100F 0487 OOOP ATO0 4003 0P .p........ e...
POOO3FE4 PPPP TFFF 0OPO 0P00 COLP 0000 0000 4000 e.....0.
00003FF4 00PP PPPO FFF8 @86C ... x.1

135Bug>

PRELIMINARY - MVME135BUG/D2

2.7 Disk I/0 Support

135Bug can initiate disk Input/Qutput by communicating with
intelligent disk controller modules over the VMEbus. Disk support
facilities built into 135Bug consist of command-level disk
operations, disk I/0 system calls (via the TRAP #15 instruction) for
use by user programs, and automatic bootstrap at power-up or reset.
Parameters such as the address where the module is mapped and the
type and number of devices attached to the controller module are
kept in tables by 135Bug. Default values for these parameters are
assigned at power-up and cold-start reset, but may be altered as
described in section 2.7.5.

Appendix C contains a 1list of the controllers presently supported,
as well as a 1ist of the default configurations for each controller.

2.7.1 Blocks Versus Sectors

The logical block defines the unit of information for disk devices.
A disk is viewed by 135Bug as a storage area divided in logical
blocks. By default, the logical block size is set to 256 bytes for
every block device in the system. The block size can be changed on a
. per device basis with the 10T command.

The sector defines the unit of information for the media itself, as
viewed by the controller. The sector size will vary for different
controllers, and the value for a specific device can be displayed
and changed with the I0T command.

When a disk transfer is requested, the start and size of the transfer
is specified in blocks. 135Bug translates this into an equivalent
sector specification, which is then passed on to the controller to
initiate the transfer. If the conversion from blocks to sectors
yields a fractional sector count, an error is returned and no data is
transferred.

2.7.2 Disk 1/0 via 135Bug Commands

These following 135Bug commands are provided for disk I/0. Detailed
instructions for their use may be found in Chapter 3. When a command
is issued to a particular controller LUN and device LUN, these LUNs
are remembered by 135Bug so that the next disk command will default
to use the same controller and device.

2.7.2.1 10P (Physical 1/0 to Disk)

This command allows the user to read or write blocks of data, or to
format the specified device in a certain way. I0P creates a command
packet from the arguments specified by the user, and then invokes
the proper system call function to carry out the operation.

2-16

PRELIMINARY MVME135BUG/D2

2.7.2.2 10T (1/0 Teach)

10T allows the user to change any configurable parameters and
attributes of the device. In addition, it allows the user to see the
controllers available in the system.

2.7.2.3 10C (1/0 Control)

I0C allows the user to send command packets as defined by the
particular controller directly. This command can also be used to
look at the resultant device packet after using the 10P command.

2.7.2.4 BO (Bootstrap Operating System)

BO reads an operating system or control program from the specified
device into memory, and then transfers control to it.

2.7.2.5 BH (Bootstrap and Halt)

BH reads an operating system or control program from the specified'
device into memory, and then returns control to 135Bug. It is used
as a debugg1ng tool.

2.7.3 Disk 1/0 via 13SBug System Calls

A11 operations that actually access the disk are done directly or
indirectly by 135Bug system calls. (The command-level disk
operations provide a convenient way of us1ng these system calls
without writing and executing a program).

The following system calls have been (vovided to allow user Pprograms
to do disk I/0: . .

.DSKRD Disk Read. Sysﬁem call to read blocks from a disk into
~ memory. - :

.DSKWR Disk Write. Syﬁtém-cé11 to write blocks from memory onto
a disk. ‘

.DSKCFIG Disk Configure. This function allows the user to change
the configuration of the specified device.

.DSKFMT Disk format. This function allows the user to send a
format command to the specified device.

.DSKCTRL Disk Control. This function is used to implement any
special device control functions that can not be
accomodated easily with any of the other disk functions.

Refer to Chapter 5 for 1nformat1on on using these and other system
calls.

PRELIMINARY MVME135BUG/D2

To perform a disk operation, 135Bug must eventually present a
particular disk controller module with a controller command packet
which has been especially prepared for that type of controller
module. A command packet for one type of controller module usually
does not have the same format as a command packet for a different
type of module. The system call facilities which do disk I/0 accept
a generalized packet format as an argument, and translate it into a
controller specific packet, which is then sent to the specified
device. Refer to the system call descriptions in Chapter 5 for
.details on the format and construction of these standardized "user"
‘packets.

2.7.4 Default 135Bug Controller and Device Parameters

135Bug initializes the parameter tables for a default configuration
of controllers and devices (refer to Appendix C). If the system
needs to be configured differently than this default configuration
(for example, to use a 7@-Megabyte Winchester drive where the
default is a 40-Megabyte Winchester drive), then these tables must
be changed.

There are three ways to change the parameter tables. If BO or BH is
invoked, the configuration area of the disk is read and the
parameters corresponding to that device are rewritten according to
the parameter information contained in the configuration area
(refer to Appendix B for more information on the disk’s
configuration area). This is a temporary change. If a cold-start
reset occurs then the default parameter information will be written
back into the tables.

Alternately,.the 10T command may be used to manually reconfigure the
parameter table for any controller and/or device that is different
from the default. This is also a temporary change and will be
overwritten if a cold-start reset occurs. Finally, the user may
change the configuration files and rebuilt 135Bug so that it has
different defaults. This last option is described in detail in the
é3SBug Customer Letter. Refer to Appendix C for disk controller
ata.

2.7.5 Disk 1/0 Error Codes

135Bug returns an error code if an attempted disk operation is
unsuccessful. Refer to Appendix D for an explanation of disk I/0
error codes.

2-18 .

PRELTMINARY MVME135BUG/D2

2.8 Additional Support Features

In addition to the features already discussed, the 135Bug supports
other specialized functions of the VME135 module. These features
are detailed in the following sections.

2.8.1 Function Code Support

The function codes identify the address space being accessed on any
given bus cycle, and in general, they are an extension of the
address. This becomes more obvious when using a memory management
unit 1ike the MC68851, where two identical logical addresses can be
made to map to two different physical addresses. In this case, the
function codes provide the additional information required to find
the proper memory location.

For this reason, the following debugger commands were changed to
allow the specification of function codes:

MD . Memory Display

MM Memory Modify

MS ~ Memory Set

GO Go to target program

GD Go direct (no breakpoints)

GT Go and set temporary breakpoint
GN Go to next instruction

BR - Set breakpoint: v

The symbol "~"following the address field indicates that a function
code specification follows. The function code can be entered by
specifing a valid function code mnemonic or by specifying a number
between @ and 7. The syntax for an address and function code
specification is:

<ADDR> A< FC>

PRELIMINARY‘ MVME135BUG/D2

The valid function code mnemonics are:

Function Code Mnemonic Description
g Fo ‘Unasigned, reserved
1 ub User Data
2 up User Program
3 F3 Unassigned, reserved
4 F4 Unassigned, reserved
5 SD Supervisor Data
6 SP Supervisor Program
7

cs CPU Space Cycle

»

Example: To change data.at location $5868 in the user data space.

135Bugp>m 5008*ud < CR>
(0035000 ~UD 2003 ? 1234. <CR>
135Bug>

2.8.2 Diagnostic Facilities

As part of the 135Bug debugging package, the MVME135DIAG Diagnostic
Firmware User’s Guide provides a complete set” of hardware
diagnostics intended for the testing and troubleshooting of the
VME135. In order to use the diagnostics the user must switch
directories to the diagnostic directory. If in the debugger
directory, the user can switch to the diagnostic directory by
entering the debugger command SD for "switch directories". The
diagnostic prompt 135Bug> should appear. Refer to the MVME135DIAG
Diagnostic Firmware User’s Guide for complete descriptions of the
diagnostic routines available and instructions on how to invoke
them. Note that some diagnostics depend on restart defaults that
are set up only in a particular restart mode. Refer to the
documentation on a particular diagnostic for the correct
positioning of switches.

2.8.3 Floating Point Coprocessor Support

The MC68881 (Floating Point Coprocessor) and the MC68882 (Enhanced
Floating Point Coprocessor) are supported in this version of 135Bug.
An MC6888X confidence check is run at reset time to verify that the
part is - present and that all registers can be accessed. It also
insures that a context switch can be done sucessfully. The commands

2-20

PRELIMINARY _ MVME135BUG/D2

RD, RM, MD, and MM have been extended to allow display and
modification of floating point data in registers and in memory.
Floating point instructions can be assembled/disassembled with the
DI option of the MD/MM commands. Finally, the MC6888X target state
is saved and restored along with the processor state as required
when switching between the target program and 135Bug.

At power-up/reset an FPC confidence check is executed. Initially, a
read of one of the floating point registers is attempted. If a bus
error timeout is received then the test is aborted and the message
"No FPC detected” is displayed. Otherwise the test continues. If
an error is detected the test is aborted and the message "FPC failed
test" is displayed. If the test runs without errors then the message
"FPC passed test" is displayed and an internal flag is set. This
flag is later checked by the bug when doing a task switch. The FPC
state will be saved and restored only if this flag is set. This
allows proper bug operations in systems that do not have an FPC.

Valid data types that can be used when modifying a floating point
data register or a floating point memory location:

Integer Data Types

12 Byte
1234 Word
12345678 Long

Floating Point Data Types

1_FF_7FFFFF Single Precision Real Format
1_7FF_FFFFFFFFFFFFF Double Precision Real Format
1 7FFF_FFFFFFFFFFFFFFFF Extended Precision Real Format

1111_2163_123456789ABCDEF@1 Packed Decimal Real Format
-3.12345678901234501 E+123 Scientific Notation Format (Decimal)

When entering data in single, double, extended, or packed decimal,
the following rules must be observed:

1. The sign field is the first field and is a binary field.

2. The exponent field is the second field and is a hexadecimal
field.

2-21

PRELIMINARY | MVME13SBUG/52

3. Themantissa field is the last field and is a hexadecimal field.

4. The sign field, the exponent field, and at least the first digit
of the mantissa field must be present (any unspecified digits in
the mantissa field are set to zero).

5. Each field must be separated from adjacent fields by an
underscore.

6. A1l the digit positions in the sign and exponent fields must be
present.

Single Precision Real

This format would appear in memory'as:‘

1-bit sign field . (1 binary digit)

8-bit biased exponent field (2 hex digits. Bias=$7F)
23-bit fraction field (6 hex digits)

A single precision number takes 4 bytes in memory.

Double Precision Real

This format would appear in memory as:

1-bit sign field - : (1 binary digit)
11-bit biased exponent field (3 hex digits. Bias=$3FF)
52-bit fraction field (13 hex digits)

A double precision number takes 8 bytes in memory.

Extended Precision Real

This format would appear in memory as:

1-bit sign field (1 binary digit)
15-bit biased exponent field (4 hex digits. Bias=$3FFF)
64-bit mantissa field (16 hex digits)

An extended precision number takes 12 bytes in memory. This is
because there is a 16-bit undefined field following the exponent
field. This field is never displayed nor required to be entered when
modifying extended precision data.

2-22

PRELIMINARY MVME135BUG/D2
NOTE: The single and double precision formats have an implied
integer bit (always 1).

Packed Decimal Real

This format would appear in memory as:

4-bit sign field (4 binary digits)
16-bit exponent field (4 hex digits)
68-bit mantissa field (17 hex digits)

A packed decimal number takes 12 bytes in memory.

Scientific Notation

This format provides a convenient way to enter and display a
floating point decimal number. Internally, the number is assembled
into a packed decimal number and then converted into a number of the
specified data type.

Entering data in this format requires the following fields:

An optional sign bit (+ or -).
One decimal digit followed by a decimal point.
Up to 17 decimal digits (at least one digit must be entered).
An optional Exponent field that consists of:
An optional underscore.
The Exponent field identifier, letter " E".
An optional Exponent sign (+, -).
From 1 to 3 decimal digits.

The MC68881 registers are:

3 system registers:
FPCR - Floating-point Control Register
FPSR - Floating-point Status Register
FPIAR - Floating-point Instruction Address Register

8 data registers:
FPB-FP7 - Floating-point Data Registers

For more information about the MC68881 coprocessor, refer to the
MC68881 Floating Point Coprocessor User’s Manual.

2-23

PRELIMINARY ., MVME1358UG/DZ

2.8.4 Paged Memory Management Unit Coprocessor Support

The Paged Memory Management Unit Coprocessor (MC68851) is supported
in this version of 135Bug. An MC68851 confidence check is run at
reset time to verify that the part is present and that all registers
can be accessed. It also insures that a context switch can be done
sucessfully. The commands RD, RM, MD, and MM have been extended to
allow display and modification of PMMU data in registers and in
memory. PMMU instructions can be assembled/disassembled with the DI
option of the MD/MM commands. In addition, the MC68851 target state
is saved and restored along with the processor state as required
when switching between the target program and 135Bug. Finally,
there is a set of diagnostics to test functionality of the PMMU.

At power-up/reset a PMMU confidence check is executed. Initially, a
read of one of the PMMU registers is attempted. If a bus error
timeout is received then the test is aborted and the message "No PMMU
detected" is displayed. Otherwise the test continues. If an error
is detected the test is aborted and the message "PMMU failed test"is
displayed. If the test runs without errors then the message "PMMU
passed test" is displayed and an internal flag is set. This flag is
later checked by the bug when doing a task switch. The PMMU state
will be saved and restored only if this flag is set. This allows
proper bug operations in systems that do not have a PMMU.

The PMMU defines the Double Longword data type, which is used when
accessing the root pointers. All other registers are either byte,
word, or longword registers. .

The MC68851 registers are shown below, along with their data types
in parentheses:

1

Address Translation Control Registers:

CRP - CPU Root Pointer (DL)
SRP - Supervisor Root Pointer (DL)
DRP - DMA Root Pointer (DL)
TC - Translation Control (L)

Status Information Registers:

PCSR - PMMU Cache Status Register (W)
PSR - PMMU Status Register (W)

2-24

PRELIMINARY MVMEIBSBUG)DZ

Protection Mechanism Control Registers:

CAL - Current Access Level (B)
VAL - Validate Access Level (B)
SCC - Stack Change Control (B)
AC - Access Control (W)

Breakpoint Registers:

BADP-BAD7 Breakpoint Acknowledge Data Registers (W)
BAC@-BAC7 Breakpoint Acknowledge Control Registers (W)

For more information about the MC68851 coprocessor, refer to the
MC68851 Paged Memory Management Unit User’s Manual.

2-25

PRELIMINARY MVME135BUG/D2

THIS PAGE INTENTIONALLY LEFT BLANK

2-26

PRELIMINARY MVME135BUG/D?2

CHAPTER 3
THE 135Bug DEBUGGER COMMAND SET

3.1 Introduction

This chapter contains descriptions of each of the debugger commands
and provides one or more examples of each. Table 3-1 summarizes the
135Bug debugger commands.

TABLE 3-1. DEBUGGER COMMANDS

Command Mnemonic Title Section
BF Block of Memory Fill 3.2
BH Bootstrap Operating System and Halt 3.3
BI Block of Memory Initialize 3.4
BM Block of Memory Move 3.5
BO ‘Bootstrap Operating System 3.6
BR/NOBR ‘Breakpoint Insert/Delete 3.7
BS Block of Memory Search 3.8
BV . Block of Memory Verify 3.9
bC Data Conversion 3.10
DU ' Dump S-Records 3.11
GD ~ Go Direct (Ignore Breakpoints) 3.12
GN " Go to Next Instruction 3.13
GO , ~ Go Execute User Program 3.14
GT ' Go To Temporary Breakpoint 3.15
HE . Help v 3.16
10C 1/0 Control for Disk S 3.17
10P ~ 1/0 Physical (Direct Disk Access) 3.18
10T 1/0 "TEACH" for Disk Configuration 3.19
LO . Load S-Records from Host 3.20
MA/NOMA Macro Define/Display/Delete 3.21
MAE : Macro Edit ' 3.22
MAL/NOMAL Enable/Disable Macro Expansion Listing 3.23
MAW/MAR Save/Load Macros 3.24
MD Memory Display 3.25
MM Memory Modify -3.26

- MS ' Memory Set ©13.27
OF ‘ Offset Registers Display/Modify .3.28

3-1

PRELIMINARY MVME135BUG/D2

TABLE 3-1. DEBUGGER COMMANDS (cont.)

Command Mnemonic Title Section
PA/NOPA Printer Attach/Detach 3.29
PF - Port Format 3.30
RD Register Display 3.31
RESET Cold/Warm Reset 3.32
RM Register Modify 3.33
SD Switch Directories 3.34
T Trace 3.35
TC Trace On Change of Control Flow 3.36
™ Transparent Mode 3.37
1T Trace To Temporary Breakpoint 3.38
VE Verify S-Records Against Memory . 3.39

Each command is described in the following text. The command’s
syntax is shown using the symbols explained in section 2.1. In the
examples shown, all user input is shown in bold font. This is done
for clarity in understanding the examples (i.e., to distinguish
between character input by the user and character output by 135Bug).
The symbol < CR> represents the carriage return key on the user’s
terminal keyboard. Whenever this symbol appears it means that a
carriage return should be entered by the user.

3-2

PRELIMINARY MVME135BUG/D2

3.2 Block of Memory Fill BF

BF < RANGE> < DEL> < data> [< increment>] [; B|W|L]
where:

< data> and < increment> are both expression parameters

options:
B - Byte -
W - Word

L - Longword

The BF command fills the specified range of memory with a data
pattern. If an increment is specified, then <data> is incremented
by this value following each write, otherwise <data> remains a
constant value. A decrementing pattern may be accomplished by
entering a negative increment. The data entered by the user is
right-justified in either a byte, word, or longword field (as
?Bec;§ied by the option selected). The default field length is W
ord).

If the user-entered data does not fit into the data field size then
leading bits are truncated to make it fit. If truncation occurs then
a message will be printed stating the data pattern which was
actually written (or initially written if an 1increment was
specified).

If the user-entered increment does not fit into the data field size
then leading bits are truncated to make it fit. If truncation occurs
then a message will be printed stating the increment which was
actually used.

It the upper address of the range is not on the correct boundary for
an integer multiple of the data to be stored then data is stored to
the last boundary before the upper address. No address outside of
the specified range will ever be disturbed in any case. The
"Effective address" messages displayed by the command will show
exactly where data was stored.

3-3

PRELIMINARY =~ - MVME135BUG/D2

Example 1: (Assume memory from $20000 to $2002F is clear).

' 135Bug>BF 2000d,2001F 4E71 <CR>

Effective address: 80020000

Effective address: 00@2001F

135Bugp>MD 20999:18 < CR>

00020000 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 NgNgNgNgNgNgNgNq
g00208018 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 NgNgNgNgNgNgNaNgq
00020020 9000 0000 0000 0000 0000 0000 0000 0000
135Bug>

Since no option was specified, the length of the data field
defaulted to word.

Example 2: (Assume memory from $20000 to $2002F is c]éar).

135Bug>BF 20999,18 4E71 ;B <CR>

Effective address: 00020000

Effective count : &16

Data = §71

135Bup>MD 20008:38;B <CR>]

20020008 7171 7171 7117 7171 7171 7171 7171 7171 4999999999949494949
00020010 2000 0000 0000 0000 0000 0000 0000 0008
00020020 0000 0000 0000 0000 0008 0000 0000 0068
135Bug>

The specified data did not fit into the specified data field size.
The data was truncated and the "Date =" message was output.

Example 3: (Assume memory from $200080 to $2002F is clear).

135Bug>BF 20000,20006 12345678 ; L <CR>

Effective address: 80820000

Effective address: 0020003

135Bug>MD 20008:C;L <CR>

790200008 1234 5678 0000 0000 0000 0000 0000 0G0 AV
90020010 0000 0900 0000 0000 0000 0000 0000 9008
90020020 00090 9000 0003 0000 0000 0000 0000 0000
135Bug>

3-4

PRELIMINARY MVME135BUG/D2

The longword pattern would not fit evenly in the given range. Only
one longword was written and the "Effective address" messages
reflect the fact that data was not written all the way up to the
specified address.

Example 4: (Assume memory from $20800 to $26882F is clear).

135Bug>BF 20998,18 8 1 <CR> (default size is Word)
Effective address: 90020000

Effective count : &24

135Bug>MD 20998:18 <CR>

00020000 0000 0001 0002 PPP3 0004 G005 6AP6 6067 ,
90020010 9008 G009 PPGA APPB OOAC @PGD GPPE GBBF
00020020 0010 6011 0012 6013 @G14 @O15 @416 6817
135Bug>

3-5

PRELIMINARY MVMEI135BUG/D2

3.3 Bootstrap Operating System and Halt BH
BH [< Device LUN> j[< DEL> < Controller LUN> J[< DEL> < String>]

Device LUN - Is the logical unit number of the device to boot
from. Defaults to LUN 4. -

Controller LUN - Is the logical unit number of the controller to
which the above device is attached. Defaults to

LUN 8.
< DEL> - Is afield delimiter: Comma (,) or spaces. ().
< String> - Is a string that is passed to the operating system

or control program loaded. " Its syntax and use is
completely defined by the Toaded program.

The BH command is used to 1oad an operating system or control program
from disk into memory. This command works in exactly the same way as
the BO command, except that control is not given to the loaded
program. Since control is retained by 135Bug, all the 135Bug
facilities are available for debugging the loaded program if
necessary.

Examples:

135Bug>BH 1,8 <CR> (Boot and halt from device LUN 1,)
135Bug> (controller 4.)
135Bug>BH A,3,test2;d <CR> (Boot and halt from device LUN $A,)
135Bug> (controller 3, and pass the string)

(" test2;d" to the loaded program.)

Refer to the BO command description for more deta11ed information
about what happens during bootstrap loading.

3-6

PRELIMINARY MVME135BUG/D2

3.4 Block of Memory Move © BM

BM < RANGE> < DEL> < ADDR> [; B|W|L]
options:

B - Byte

W - Word

L - Longword

The BM command copies the contents of the memory addresses defined
by < RANGE> to another place in memory, beginning at < ADDR> .

The option field is only allowed when < RANGE> was specified using a
count. In this case the B, W, or L defines the size of data that the
count is referring to. For example a count of four with an option of
L would mean to move four longwords (or 16 bytes) to the new
location. If an option field is specified without a count in the:
range an error results.

Example 1: (Assume memory from $20008 to $2002F is clear).

135Bug>M 21090:18 <CR>

00021000 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!!
00021010 POPO 0000 0000 G000 0000 0000 OOO0 POPE
135Bug>

135Bug>BM 21009 2180F 20008 <CR>
Effective address: 09921000
Effective address: 0P02100F
Effective address: 00020000
135Bug>

135Bug>MD 20000:10 < CR>

00020000 5448 4953 2049 5320 4120 5445 5354 2121 . THIS IS A TEST!!
PPO20010 0000 DOOP O000 POO0 OPOC PO00 0O0P PPP0
135Bug>

3-7

PRELIMINARY

MVME135BUG/D2

. 'Example 2: This utility is very useful for patching assembly code in
a . memory. Suppose the user had a short program in memory at

address 20000.
' 135Bug>MD 20000 5;DI <CR>

70020008 D48H ADD.L
g0020002 E2A2 ASR.L
pod20004 2602 MOVE.L
00020006 4E4FPP21 SYSCALL
P0@2000A 4ET1 , NoP
135Bug>

0@,D2
01,02
02,03
.QUTSTR

Now suppose the user would like to insert a NOP between
the ADD.L instruction and the ASR.L instruction. The
user should Block Move the obJect code down two bytes to

make room for the NOP.

" 135Bug>BM 20082 20008 20084 < CR>
Effective address: 900200082
Effective address: 08020008
Effective address: 00020004
135Bug>

135BugMD 20808:6;D1 <CR>
00020000 D4SP ADD.L—

p0@20002 E2A2 ASR.L
g0020004 E2A2 ASR.L
700920006 2602 MOVE. L
00020008 4E4F0@21 SYSCALL
$0082000C 4E71 NOP
135Bug>

3-8

Dd,D2
01,D2
01,D2
Dz,D3
.QUTSTR

PRELIMINARY

MVME135BUG/D2

Now the user need simply to enter the NOP at address 20002.

135Bug>MM 20902;DI <CR>

pPg200802 E2A2 ASR.L
00020002 4E71 NOP
00020004 E2A2 ASR.L
135Bug>

135Bug>MD 20908:6;D1 <CR>

00020000 D4SY ADD.L
00020002 4E71 NOP
00020084 E2A2 ASR.L
00020006 2602 MOVE.L
00020008 4E4FPP2] SYSCALL
PPO2000C 4E71 NOP
135Bug>

D1,D2 ? NOP <CR>

D1,D02 ? . <CR>

D@,D2

D1,D2
D2,D3
.OUTSTR

3-9

PRELIMINARY MVME135BUG/D2

3.5 Bootstrap Operating System = . | ' . BO
BO [< Device LUN>]J[< DEL> < Controller LUN>][< DEL> < String>]

Device LUN - Is the logical unit number of the device to boot
from. Defaults to LUN @.

Is the logical unit number of the controller to
which the above device is attached. Defaults to

Controller LUN

LUN 2. , ,
< DEL> - Is afielddelimiter: Comma (,) or spaces ().
< String> - Is a string that is passed to the operating system

or control program loaded. Its syntax and use is
completely defined by the loaded program.

The BO command is used to load an opérating system or contro] program
from disk into memory-and give control to it. Where to find the
program and where in memory to load it is contained in block @ of the

device LUN specified. The device and controller configurations used
when BO is initiated can be examined and changed via the 10T command.

The following sequence of events occur when BO is invoked:

1. Block @ of the device LUN and control]er LUN ‘'specified is read
into memory.

2. Locations $F8(248) to $FF(255) of block ﬂ are checked to contain
the string "MOTOROLA" or "EXORMACS".

3. The following information is extracted from block 8:
$90(144)-$93(147) : Configuration area starting block.
$94(148) : Configuration area length in blocks.
If any of the above two fields is zero, the present controller

configuration is retained; otherwise the first block of the
configuration area is read and the controller reconfigured.

PRELIMINARY MVME135BUG/D2

4. The program is read from disk into memory. The following
locations from block @ contain the necessary information to
initiate this transfer:

$14(20)-$17(23) : Block number of first sector to load from disk.
$18(24)-$19(25) : Number of blocks to 1oad from disk.
$1E(30)-$21(33) : Starting memory location to load.

5. The first eight lTocations of the loaded program must contain a
"pseudo reset vector", which is 1oaded into the target registers:

@-3: Initial value for target system stack pointer.

4-7: Initial value for target program counter. If less than
load address+8 then it represents a displacement that when
added to the starting 1oad address yields the initial value
for the target PC.

6. Other target registers are initialized with certain arguments.
The resultant target state is shown below:

PC= Entry point of loaded program (loaded. from "pseudo reset
vector").

SR=$2798.

DB = Device LUN.

Dl = Controller LUN.

D4 "IPLx’, with x=$8C ($49504C@C).

The ASCII string ‘IPL’ indicates that this is the Initial
Program Load sequence; the code $8C indicates TRAP #15
support with stack parameter passing and TRAP #15 disk
support.

Af@ = Address of disk controller.
Al = Entry point of loaded program.

A2 = Address of media configuration block. Zero if no
configuration loaded.

A5 = Start of string (after command parameters).
A6 = End of string+l (if no string was entered A5 = A6).
A7 Initial stack pointer'(1oaded from "pseudo reset vector"”).

3-11

PRELIMINARY MVME135BUG/D2

7. Control is given to the loaded program. Note that the arguments
passed to the target program, as for example, the string
pointers, may be used or ignored by the target program.

Examples:
135Bug>B0 < CR> (Boot from device LUN @,)
(controller 4.)
135Bug>B0 3 <CR> (Boot from device LUN 3,)
(controller 3.)
135Bug>B0 , 3 <CR> (Boot from device LUN @,)
(controller 3.)
135Bug>B0 8 @,test <CR> (Boot from device LUN 8,)
~(controller @, and pass the string)
(" test" to the booted program.)

PRELIMINARY MVMEf3SBUG/DZ

3.6 Breakpoint Insert/Delete BR
NOBR

BR [< ADDR> [:< COUNT> 1]
NOBR [< ADDR>]

The BR command allows the user to set a target code instruction
address as a "breakpoint address" for debugging purposes. If during
target code execution a breakpoint with @ count is found, the target
code state is saved in the target registers and control is returned
back to 135Bug. This allows the user to see the actual state of the
processor at selected instructions in the code.

Up to eight breakpoints can be defined. The breakpoints are kept in
a table which is displayed each time either BR or NOBR are used. If
an address is specified with the BR command that address is added to
the breakpoint table. The count field specifies how many times the
instruction at the breakpoint address must be fetched before a
breakpoint is taken. The count, if greater than zero, is
decremented with each fetch. Every time that a breakpoint with zero
count is found, a breakpoint handler routine prints the CPU state on
the screen and control is returned to 135Bug.

-NOBR is used for deleting breakpoints from the breakpoint table. If
an address is specified then that address will be removed from the
breakpoint table. If NOBR < CR> is entered then all entries will be
deleted from the breakpoint table and the empty table will be
displayed.

Example:

135Bug>BR 14090,14200 14708:412 <CR> -~ (Set some breakpoints.)
'BREAKPOINTS

00014000 PPP14209

peB14700:C

135Bug>NOBR 14208 <CR> (Delete one breakpoint.)
BREAKPOINTS
20014000 00014708:C

135Bug>NOBR < CR> ' (Delete all breakpoints.)
BREAKPOINTS :
135Bug>

3-13

PRELIMINARY MVME135BUG/D2

3.7 Block of Memory Search BS

BS < RANGE> < DEL> < TEXT> [;B|W|L] or
BS < RANGE> < DEL> < data> [<mask>] [;B|W|L,N,V]

The BS command searches the specified range of memory for a match
with a user-entered data pattern. This command has three modes, as
described below.

Mode 1 - LITERAL STRING SEARCH -- In this mode a search is carried out
for the ASCII equivalent of the literal string entered by the user.
This mode is assumed if the single quote (’) indicating the
beginning of a < TEXT> field is encountered following < RANGE> . The
size as specified in the option field tells whether the count field
of < RANGE> refers to bytes, words, or longwords. If < RANGE> is not
specified using a count then no options are allowed. If a match is
found then the address of the first byte of the match is output.

Mode 2 - DATA SEARCH -- In this mode a data pattern is entered by the
user as part of the command line and a size is either entered by the
user in the option field or is assumed (the assumption is word). The
size entered in the option field also dictates whether the count
field in < RANGE> refers to bytes, words, or longwords. The
following actions occur during a data search:

1. The user-entered data pattern is right-justified and leading
bits are truncated or leading zeros are added as necessary to
make the data pattern the specified size.

2. A compare is made with successive bytes, words, or longwords
(depending on the size in effect) within the range for a match
with the user-entered data. Comparison is made only on those
bits at bit positions corresponding to a "1" in the mask. If no
mask is specified then a default mask of all one’s is used (all
bits will be compared). The size of the mask is taken to be the
same size as the data.

3. If the "N" (non-aligned) option has been selected then the data is
searched for on a byte-by-byte basis, rather than by words or
longwords regardless of the size of <data>. This is useful if a
word (or longword) pattern is being searched for, but is not
expected to 1ie on a word (or longword) boundary.

4. If amatch is found then the address of the first byte of the match
is output along with the memory contents. If a mask was in use
then the actual data at the memory location is displayed, rather
than the data with the mask applied.

PRELIMINARY MVME13SBUG)DZ

Mode 3 - DATA VERIFICATION -- If the "V" (verify) option has been
selected, then displaying or addresses and data will be done only
when the memory contents do NOT match the user-specified pattern.
Otherwise this mode is identical to Mode 2.

For all three modes, informations on matches is output to the screen
in a four-column format. If more than 24 lines of matches are found
then output is inhibited to prevent the first match from rolling off
of the screen. A message is printed at the bottom of the screen
indicating that there is more to display. To resume output the user
should simply press any character key. To cancel the output and exit
the command the user should press the BREAK key.

If a match is found (or, in the case of Mode 3, a mismatch) with a
series of bytes of memory whose beginning is within the range but
whose end is outside of the range then that match will be output and a
message will be output stating that the last match does not lie
entirely within the range. The user may search non-contiguous
memory with this command without causing a Bus Error.

Examples: (Assume the following data is in memory).

P0030004 0008 BO45 7272 €F72 2053 7461 7475 733D ...Error Status=
PPO30010 3446 2F2F 436F 6E66 6967 5461 626C 6563 4F//ConfigTableS
PeB30020 7461 7274 3A00 0000 0000 G000 0000 PPBO tart:..... ...

135Bug>BS 30000 3@P2F 'Task Status’ <CR>

Effective address: p@@30000 ‘ Mode 1: the string is not
Effective address: @P@3002F ' found, so a message is
-not found- output.

135Bug> '

135Bug>BS 30008 30@2F ‘Error Status’ <CR>

Effective address: 00030008 Mode 1: the string is found,
Effective address: @B@30@2F and the address of its first
00030003 byte is output.

135Bug> :

3-15

PRELIMINARY

135Bug>BS 30008 30A1F ’‘ConfigTableStart’ <CR>

Effective address: 00030000
Effective address: @0030081F
00030014

-last match extends over range boundary-

135Bug>

135Bug>BS 30009:38 ‘t’ ; B <CR>
Effective address: 80030000
Effective count : &48
PO03000A 0P03000C B0030020
135Bug>

135Bug>BS 30009:18,2F2F < CR>
Effective address: 9¢930000
Effective count : &24
90030012 | 2F2F

135Bug>

135Bug>BS 30909,30802F 3034 <CR>
Effective address: $@@30000
Effective address: 00@3@02F
-not found-

135Bug>

135Bug>BS 30009,3802F 3034 ;N <CR>

Effective address: 90030000
Effective address: @0@3002F
g003000F | 3034

135Bug>

MVME135BUG/D2

Mode I: the string is found,
but it ends outside of the
range, so the address of its
first byte and a message are
output. '

Mode 1, using <RANGE> with
count and size option: count
is displayed in decimal, and
address of each occurrence
of the string is output.

»

Mode 2, using <RANGE> with
count: count is displayed
in decimal, and the data
pattern is found and
displayed.

Mode 2: the default size is
word and the data pattern
is not found, so a message
is output.

Mode 2: the default size is
word and non-aligned option
is used, so the data pattern
is found and displayed.

PRELIMINARY

135Bug>BS 30998:30 60,F8 ;B <CR>
Effective address: 00030000

Effective count : &48

pPB300A6 | 6F peg3000B |61 0030015 | 6F
0030017 |66 9003001869 9003001967
PPO3PP1C |62 Pe@3001D|6C POO30PP1E |65
135Bug>

3-17

MVME135BUG/D2

00030016 | 6E
00030918|61
00030021 |61

Mode 2, using <RANGE> with
count, mask option, and size
option: count is displayed
in decimal, and the actual
unmasked data patterns found
are displayed.

PRELIMINARY MVME135BUG/D2

3.8 Block of Hemory Verify ' BV

BV < RANGE> < DEL> < data> [< increment>]J[;B|W|L]
where:

< data> and < increment> are both expression parameters

options: ‘
B . Byte
W - Word
L - Longword

The BV command compares the specified range of memory against a data
.pattern. If an increment is specified, then <data> is incremented
by this value following each comparison, otherwise < data> remains a
constant value. A decrementing pattern may be accomplished by
entering a negative increment. The data entered by the user is
right-justified in either a- byte, word, or longword field (as
?pec;;’ied by the option selected). The default field length is W
word).

If the user-entered data or increment (if specified) does not fit
into the data field size then leading bits are truncated to make the
fit. If truncation occurs, then a message will be printed stating
theddata pattern and, if applicable, the increment value actually
used.

If the range is specified using a count then the count is assumed to
be in terms of the data size.

If the upper address of the range is not on the correct boundary for
an integer multiple of the data to be verified, then data is verified
to the last boundary before the upper address. No address outside of
the specified range will be read from in any case. The "Effective
address" messages displayed by the command will show exactly the
extent of the area read from.

PRELIMINARY MVME135BUG/D2

Example 1: (Assume memory from 20808 to 20@2F is as indicated).

135Bug>MD 20000:18 <CR>

00020000 4E71 4E71 4ET1 4E71 4E71 4E71 4E71 4E71 NgNgNgNgNgNgNgNq
09020018 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 NgNgNgNgNgNgNgNg
00020020 4E71 4E71 4ET1 4E71 4ET71 4E71 4E71 4E71 NgNgNgNgNgNgNgNg

135Bug>BV 20008 2001F 4E71 <CR> (default size is Word)
Effective address: 90020000
Effective address: PPO20@1F
135Bug> (verify successful, nothing printed)

Example 2: (Assume memory from 20000 to 2002F is as indicated).

135Bug>MD 29909:38;B <CR> '

00020000 0000 0000 0000 0000 0000 0000 OP00 6008 e
00020010 0000 0000 PO00 P00 0000 0000 6000 9998
00020020 0000 0000 G000 PO00 POOP 4AFB 4AFB 4AFB J.Jd.J.
135Bug>BV 20090:306,8;B < CR> ' :

Effective address: 00020000

Effective count : &48 ' ‘

PPP28B2A | 4A 0020028 | FB p002002C | 4A 9002002D|FB .

PAP2002E | 4A P002002F | FB ‘ ‘

135Bug> (mismatches are printed out.)

Example 3: (Assume memory from 20098 to ZMZF is as 1nd1cated)

135Bug>MD. zom 18 <CR> ,

g0020000 0000 0081 0002 003 0004 0%5 poge mm
f0@20010 0P8 FFFF PPOA 0PPB 0QGC 0@0D POGE POOF e
P0020020 9010 B011 @012 6413 0014 @015 @416 @817 e
135Bug>BV 20999:18,0,1 <CR> (default size is Word)
Effective address: 00020000 ‘ ‘ ‘
Effective count : &24

00020012 | FFFF

135Bug>) (mismatch is printed out)

PRELIMINARY MVME135BUG/D2

3.9 Data Conversion DC

DC < EXP> | < ADDR>

The DC command is used to simplify an expression into a single
numeric value. This -equivalent value is displayed in its
hexadecimal and decimal representation. If the numeric value could
be interpreted as a signed negative number (i.e., if the most
significant bit of the 32-bit internal representation of the number
is set) then both the signed and unsigned interpretations are
displayed. ‘

DC can also be used to obtain the equivalent effective address of an
MC68828 addressing mode.

Examples:f

135Bug>DC. 18 <CR> |
00000010 = $10 = 416
1358ug> :

135Bugp>DC &19-829 <CR>

SIGNED : FFFFFFF6 = -$A = -&10

UNSIGNED: FFFFFFF6 = $FFFFFFF6 = 84294967286
135Bug>

135Bug> DC 123+4345+0 67+%1108001 < CR>
‘ 09990314 = $314 = 4788
135Bug>

135Bug>DC (2*3*8) /4 <CR>
00000@0C = $C = &12
135Bug>

135Bug>DC 55&F < CR>
90000005 = $5 = &5
135Bug>

3-20

PRELIMINARY MVME135BUG/D2

135Bug>DC 55>>1 < CR>
PPPPBB2A = $2A = &42
135Bug>

The subsequent examples assume AB=0@830@00 and the following data
resides in memory:

Po@30000 11111111 22222222 33333333 44444444 ... """"3333DDDD

135Bug>DC (AB) < CR>
00003000 = $30000 = &196608
135Bug>

135Bug>DC ([,AB]) <CR>
11111111 = $11111111 = &286331153
135Bug>

135Bug>DC (4,AB) <CR>
00030004 = $30004 = &196612
135Bug>

135Bug>DC ([4,AB]) <CR>
22222222 = $22222:.. = 8572662306
135Bug> ~ ,

3-21

PRELIMINARY MVME135BUG/D2

3.10 Dump S-Records DU
DU [<port> J< DEL><RANGE> [< TEXT>] [<ADDR>] [<OFFSET>] [;B|W]|L]

The DU command outputs data from memory in the form of Motorola S-
Records to a port specified by the user. If port is not specified
then the S-Records are sent to the host port.

The option field is allowed only if a count was entered as part of the
range and defines the units of the count (bytes, words, or
longwords). ’

The optional < TEXT> field is for text that will be incorporated
into the header (SO) record of the block of records that will be
dumped.

The optional < ADDR> field is to allow the user to enter an entry
address for code contained in the block of records. This address is
incorporated into the address field of the block’s termination
record. If no entry address is entered then the address field of the
termination record will consist of zeros. The termination record
will be an S7, S8, or S9 record, depending on the address entered.
Refer to Appendix A for additional information on S-Records.

An optional offset may also be specified by the user in the < OFFSET>
field. The offset value is added to the addresses of the memory
locations being dumped to come up with the address which is written
to the address field of the S-Records. This allows the user to
create an S-Record file which will load back into memory at a
different location than the location from which it was dumped. The
default offset is zero.

CAUTION: If an offset is to be specified but no entry address is to
be specified then two commas (indicating a missing field)
must precede the offset to keep it from being interpreted
as an entry address.

Example 1: Dump memory from $29000 to $20@2F to port 1.

135Bugp>DU 20008 20d2F < CR>
Effective address: 00020000
Effective address: @002002F
135Bug>

3-22

PRELIMINARY MVME135BUG/D2

Example 2: Dump 18 bytes of memory beglnnlng at $30000 to the
terminal screen (port @).

135Bug>DU@ 30000:510 <CR>
Effective address: 00020000
Effective count : &18.
SP@306008FC
S20EP300PP26025445535466084E4F7B
S9@30008FC

135Bug>

Example 3: Dump memory from $200068 to $2882F to host (port 1).
Specify a file name of "TEST" in the header record and
specify an entry point of $2000A.

135Bug>DU 20008 2002F 'TEST’' 2000A <CR>
Effective address: 00020000

Effective address: B0@2002F

135Bug>

The following example shows how to upload S-Records to a host
computer (in this case an EXORmacs running the VERSAdos operating
system), storing them in the file "FILEl.MX" wh1ch the user will
create with the VERSAdos utility UPLOADS.

l358ug>TM <CR>, “(Go into transparent mode to establish)

Escape character: $61="A (communication with the EXORmaces.)
<BREAK> - " (Press BREAK key to get VERSAdos login)
(prompt.)

(1ogin) (User must Tog onto VERSAdos and enter the)
" (catalog where FILE1.MX will reside.)
=UPLOADS FILEl <CR> (At VERSAdos prompt, invoke the UPLOADS)

(utility and tell it to create a file)
(named " FILE1" for the S-Records that)
(will be uploaded.)

3-23

PRELIMINARY MVME135BUG/D?2

The UPLOADS utility will at this point display some messages like
the following:

UPLOAD " S" RECORDS
. Version x.y
Copyrighted by MOTOROLA, INC.

volume=xxxx
cat1g=xxxx
file=FILEl
ext=MX

UPLOADS Allocating new file
Ready for " S" records, ...

=<*A> : - (When the VERSAdos prompt returns,)
(enter the escape character to return)
(to 135Bug.)

Now enter the command for 135Bug to dump the S-Records to the port.

135Bugp DU 20008 2000F 'FILE1l’ <CR>
Effective address: 90020000
Effective address: 00@2000F
135Bug>

135Bug>TM <CR> (Go into transparent mode again.)
Escape character: $1f="A

QUIT <CR> (Tell UPLOADS to quit looking for)
(records.)

3-24

PRELIMINARY MVME135BUG/D2

The UPLOADS utility will now dfsp]ay some more messages like this:

UPLOAD " S" RECORDS
Version x.y
Copyrighted by MOTOROLA, INC.

volume=xxxx
catlg=xxxx
file=FILEl
ext=MX

STATUS No error since start of program
Upload of S-Records complete.

=0FF <CR> (The VERSAdos prompt should return.)

(Log off of the EXORmacs.)
=<"A> (Enter the escape character to return)
135Bug> (to 135Bug.)

3-25

PRELIMINARY MVME135BUG/D2

3.11 Go Direct (Ignore Breakpoints) GD

GD [< ADDR>]

The GD command is used to start target code execution. If an address
is specified, it is placed in the target PC. Execution starts at the
target PC address. As opposed to GO, breakpoints are not inserted.

Once execution of target code has begun, control may be returned to
135Bug by various conditions:

1. The user presses the ABORT or RESET pushbuttons on the VME135
front panel.

2. An unexpected exception occurs.
3. By execution of the .RETURN TRAP #15 function.

Example: (The following program resides at $1000d).
135Bug>MD 10004:D1 <CR>

000100008 2200 - MOVE.L D@,D1
900100082 4282 CLR.L D2 .
79910004 D4d1 ADD.B D1,D2
99910006 E289 LSR.L #1,D1
700810008 66FA BNE.B $10004
g001000A E20A LSR.B #1,D2
9@@190@8C 55C2 SCS D2
$001000E 60FE BRA.B $1400E

135Bug>RM D3 <CR>

Initialize D@ and start target program:

D@ =(0000000 ? 52A9C. <CR>
135Bug>GD 10008 < CR>
Effective address: 00010000

3-26

PRELIMINARY

To exit target code, press ABORT pushbutton.

Exception: Abort
Format Vector = §109

PC =pOB1PPPE SR =2711=TR:0FF_S._7 X...C

USP =P@P@F830 MSP =PAAAFC18 ISP*
CACR

SFC =B=F@ DFC =@=Fg

D@ =pPP52A9C D1 =P@B00BEA0 D2
D4 =p0PP00PE D5 =000ACOAE D6
A0 =000000080 Al =DDPPO00E A2
A4 =(000P000 A5 =0P000000 A6

001000E
135Bug>

BRA.B

=PPBOFFF8 VBR
P . CAAR

=P@@eooFF D3
=300080908 D7
=00000000 A3
=p000eaop A7
$1P00E

=00008000
=3000a000
=300000800
=0A00ea00
=00000000
=P@0PFFF8

Set PC to start of program and restart target code:

135Bug>RM PC <CR>

PC =0pPP1000E ? 10088. <CR>
135Bug>@D <CR>

Effective address: 20010000

3-27

MVME135BUG/D2

.PRELIMINARY MVME135BUG/D2

3.12 Go To Next Instruction , : GN

GN

The GN command sets a temporary breakpoint at the address of the next
instruction, that is, the one following the current instruction, and
then starts target code execution. After setting the temporary
breakpgint, the sequence of events is similar to that of the GO
command.

~ GN is especially helpful when debugging modular code because it

allows the user to "trace" through a subroutine call as if it were a
single instruction. _

Example: The following section of code resides at $64000.
135Bug>MD 60000:4;D1 <CR> '

00006000 7083 MOVE.L #3,D0
00006002 7281 : MOVEQ.L #1,D1
00006004 6100FFA BSR.W $7000
p0006008 2600 MOVE.L D@,D3
135Bug>

The following simple subroutine resides at address $7004.

135Bug>MD 70980:2;D1 <CR>

00087009 D@81 ~ ADD.L D1,Dd
00087002 4ET5 RTS
135Bug>

3-28

PRELIMINARY MVME135BUG/D2
Execute up to the BSR instruction.

135Bug>RM PC <CR>

PC =00P00000 ? 6008. <CR>

135Bug>GT 6094 < CR>

Effective address: 00006004

Effective address: 00006000

At Breakpoint

PC =p0006PP4 SR =270@=TR:OFF S. 7_.....

USP =pP@p3830 MSP =PPP@3C18 ISP* =P@PP4psg VBR =000p0000
SFC =f=F@ DFC =p=Fg@ CACR =f=.. CAAR =pp000000
De =Pp000A03 D1 =P000GEAG1 D2 =PPP0OG0A% D3 =PPPO0000
D4 =PP000OPP D5 =00000P08 D6 =PPOCOG0AS D7 = =PPPPOG0H
AG =00000P08 Al =00000000 A2 =PO000000 A3 =00000000
A4 =00000P00 AS =00000000 A6 =PO000OP0 A7 =00004000

00006004 61900FFA
1358ug>

Use the GN command to "trace"through the subroutlne ca11 and display

the results.

135Bug>BN <CR>
Effective address: 00006008
Effective address: 00006004
At Breakpoint

. D@
- D4

00006008 2600
135Bug>

BSR.W

. MOVE.L

$7000

D@,D3

3-29

PC =pP@P6BP8 SR =270B=TR:OFF S. 7_..... :
USP =p@@@3838 MSP =PPPB3C18. ISP*'=0ﬂﬂﬂ4ﬂﬂﬁ VBR =00p00800
- SFC '=p=Fp = DFC =p=F@ . 'CACR =@-.. CAAR =00000000
=0p0g00g4 D1 =00000001 D2 =0P000060 D3 =PAPAGA00
=pppogeee D5 =pPPP0008 D6 =PP00A0RP D7 =PP00BOA0
AG- =P0000R0 Al =00000000 A2 =-P000080 A3 =80000000
A4 =PPO0O0RG AS =PO000000 A6 =000000BE AT =00004000

PREL IMINARY | ~ MVME135BUG/D2

3.13 Go Execute User Program _ o - i GO

GO [< ADDR>]

The GO command (alias G) is used to initiate target code execution.
A1l previously set breakpoints are enabled. If an address is
specified, it is placed in the target PC. Execution starts at the
target PC address.

The sequence of events is as follows:

1. First, if an address is specified, it is lToaded in the target PC.

2. Then, if a breakpoint is set at the target PC address, the
instruction at the target PC is traced (executed in trace mode).

3. Next, all breakpoints are inserted in the target code.
4. Finally, target code execution resumes at the target PC address.

At this point control may be returned to 135Bug by various
conditions:

1. A breakpoint with a count of zero is found.

2. The user presses the ABORT or RESET pushbuttons on the VME135
front panel.

3. An unexpected exception occurs.
4. By execution of the .RETURN TRAP #15 function.

Example: (The following program resides at $10000).
135Bug>MD 10008;DI <CR>

900190008 2200 MOVE.L D@,D1
00010002 4282 CLR.L D2
90010004 D4g1 ADD.B D1,D2
90010006 E289 LSR.L #1,D1
90010008 66FA BNE.B $14004
f001000A E20A LSR.B #1,D2
#901900C 55C2 - SCs D2
9001000t 6QFE BRA.B $1000E
135Bug>

3-39

PRELIMINARY MVME135BUG/D2

Initialize D@, set some breakpoints, and start target program:

135Bug>RM DB < CR>

Dd =PPG0PAAP ? 52A9C. <CR>

135Bug>BR 19000,1000E < CR>

BREAKPOINTS

00010000 9001000E

135Bug>G0 19008 < CR>

Effective address: 00010000

At Breakpoint

PC =POP1@PPE SR =2P11=TR:OFF S. @ X...C

USP =P0@@F830 MSP =@@@GFC18 ISP* =PP@1000A¢ VBR =PPP00000
SFC =p=F@ DFC =p=F@ CACR =@=. ., CAAR =00000000
D¢ =PP@52A9C D1 =POOPGPRP D2 =PPOOOGFF D3 =0PPPOR00
D4 =p0000000 D5 =00000000 D6 =000 D7 =PPPGPR0P
Ad =00000008 Al =00PP0PR3 A2 =0P0PPPRB A3 =0PP00000
A4 =00PPPPPG AS =PO0P0000 A6 =PP000000 A7 =00010000
0P01000E 60FE BRA.B $1000E

135Bug> '

Note that in this case breakpoints are inserted after tracing the
first instruction, therefore the first breakpoint is not taken.

Continue target program execution.

135BugpG < CR>

Effective address: 0@01000E

At Breakpoint

PC =PPP10@GE SR =2011=TR:OFF_S. @ X...C

USP =PPOGAFS30@ MSP =0APBFC18 ISP* =pP@1000@ VBR =00000000
SFC =p=Fp DFC =@=F@ CACR =@=.. CAAR =00000000
DF =PP@52A9C D1 =00000000 D2 =PPOOGOFF D3 =P0000000
‘D4 =PO0O00PP D5 =P0000000 D6 =0000P008 D7 =00000000
AG =00000008 Al =00000000 A2 =00000000 A3 =00000000
A4 =p0000000 AS =00000000 A6 =00000000 A7 =00010000
POO1000E 68FE BRA.B $1000E

135Bug>

3-31

PRELIMINARY

Remove breakpoints and restart target code.

135Bug>NOBR < CR>
BREAKPOINTS
135Bug>G0 10009 < CR>

Effective address: 00010000

To exit target code, press the ABORT pushbutton.

Exception: Abort
Format Vector = 41008
PC =@@010@GE SR
USP =p0gaF838 MSP
SFC =@=F@ DFC
D@ =@P@52A9C D1
D4 =pP0APAAd D5
Ad =00000000 Al
A4 =00000008 AS
f001000E 60FE
135Bug>

=2011=TR:0FF_S. 4 X...C

=00@gFC18 ISP* =g001000d VBR

=f=Fp
=00000000 D2
=00000008 D6
00000000 A2
=00000008 A6
BRA.B

CACR =@=.. - CAAR

=30@@0gFF D3
=00000000 D7
=00030008 A3
=00000000 A7
$1000E

3-32

=00000000
=00000000
=30000000
=00000000
=(30000000
=J@0@FFF8

MVME135BUG/D2

PRELIMINARY . MVME135BUG/D2

3.14 Go To Temporary Breakpoint GT

GT < ADDR>

The GT command allows the user to set a temporary breakpoint and then
start target code execution. A count may be specified with the
temporary breakpoint. Control is given at the target PC address.
A1l previously set breakpoints are enabled. The temporary
breakpoint is removed when any breakpoint with @ count is
encountered.

After setting the temporary breakpoint, the sequence of events is
similar to that of the GO command. At this point control may be
returned to 135Bug by various conditions:

1. A breakpoint with a count of zero is found.

2. The user presses the ABORT or RESET pushbuttons on the VME135
front panel. ;

3. An unexpected exception occurs.
4, By execution of the .RETURN TRAP #15 function.

Example: (The following program resides at $10000).
135Bug>M 10088;DI <CR>

09010009 2200 MOVE.L D@,D1
00010002 4282 CLR.L D2
09010004 D4P1 ADD.B DI,D2
00010006 E289 LSR.L #1,D1
pO210008 66FA BNE.B $10004
0O01000A E20A LSR.B #1,D2
p9010909C 55C2 SCS D2
POP1000E 6OFE BRA.B $1000E
135Bug>

Initialize D@ and set a breakpoint:

135Bug>RM D8 < CR>

Dd =00000008 ? 52A9C. <CR>
135Bug>BR 1009E < CR>
BREAKPOINTS

2001000E

135Bug>

3-33

PRELIMINARY

MVME135BUG/D2

Set PC to start of program, set temporary breakpoint, and start

target code:

135Bug>RM PC < CR>
PC =0PO1000E ? 10099. <CR>
135Bug>

135Bug>GT 18986 < CR>

Effective address: 00010006
Effective address: 90010000

At Breakpoint

PC =00010006 SR =2711=TR:OFF_S.

USP =p@@@383@ MSP =00@@3C18 ISP* =0p0d400d VBR
=f=. . CAAR

SFC. =0=Fg DFC =@=F@ CACR
D@ =0@@52A9C D1 =04@@0PB29 D2
D4 =00000000 DS =00000008 D6
Ad =00000008 Al =00000008 A2
A4 =00000000 AS =0P003008 A6
90010006 E289 LSR.L
135Bug>

7.X...C

=000900@9 D3
=§0008600 D7
=00008000 A3
=000000008 A7
#1,01

=@0000000
=#0000000
=(0000000
=30000000
=000000008 -
=00004000

Set another temporary breakpoint at $10@82 and continue the target

program execution.

135Bug>GT 10082 <CR>

Effective address: 00010006

At Breakpoint

PC =00d100P6 SR =2711=TR:OFF_S.

7X...C

USP =@@gg3830 MSP =g@gA3C18 1SP* =4@0P4000 VBR =08000000
=f=. . CAAR =00000000

SFC =p=F@ DFC =g=F8 CACR
D@ =PPP52A9C D1 =(@@900e8 D2
D4 =g0@0000d D5 =p00g9ded D6
AG =00000000 Al =00000000 A2
A4 =00000008 A5 =00000000 A6
g901000E 60FE BRA.B
135Bug>

Note that a breakpoint from the breakpoint

before the temproary breakpoint.

=000@00FF D3
=00000000 D7
=00000080 A3
=00000000 A7
$1000E

3-34

=00000000
=$0000000
=00000000
=30004000

table was encountered

PRELIMINARY MVME135BUG/D2

3.15 Help . HE

HE [< COMMAND>]

HE is the 135Bug help facility. HE < CR> displays the command name
of all available commands along with its appropriate title.
HE < COMMAND> displays only the command name and title for that
particular command.

Examples:

135Bug>HE <CR>

BF Block Fill

BH Boot Operating System and Halt

BI Block Initialize

BM Block Move

BO Boot Operating System

BR Breakpoint Insert

NOBR Breakpoint Delete

BS Block Search

BV Block Verify

DC Data Conversion and Expression Evaluation
DU Dump S-Records

GD Go Direct (no breakpoints)

GN Go and Stop after Next Instruction
GO Go to Target Code

G " Alias" for previous command

GT Go and Insert Temporary Breakpoint
HE Help facility

10C 1/0 Control for Disk
10P 1/0 to Disk

10T 1/0 " Teach"

LO Load S-Records

MA Macro Define/Display
NOMA Macro Delete

MAE Macro Edit

MAL Enable Macro Expansion Listing
NOMAL Disable Macro Expansion Listing
MAW Save Macros

MAR Load Macros

3-35

PRELIMINARY

MD Memory Display
MM . Memory Modify
MS Memory Set
_ OF Offset Registers
PA Printer Attach
NOPA Printer Detach
PF Port Format
RD Register Display
RESET Cold/Warm Reset
RM Register Modify
SD Switch Directory
T Trace Instruction
TC Trace on Change of Flow
™ Transparent Mode
1T Trace to Temporary Breakpoint
VE Verify S-Records

To display the command T, enter:

135Bug>HE T <CR>
T ~Trace Instruction
135Bug>

3-36

MVME135BUG/D2

PRELIMINARY MVME135BUG/D2

3.16 1/0 Control For Disk 10C

(1]

The 10C command allows a user to send command packets directly to a
disk controller. The packet to be sent must already reside in memory
and must follow the packet format of the particular disk controller.

This command may be used as a debugging tool to issue commands to the
disk controller to Tocate problems with either drives, media, or the
controller itself.

The default controller LUN and device LUN when 'IOC is invoked are
those most recently specified for 10P, 10T, or a previous invocation
of 10C. The same special characters used by the MM command to access
a previous field (%), reopen the same location (=), or exit (.), can
be used with I0C. The power-up default for the packet address is the
area which is also used by the BO and IOP commands for building
‘packets.

Example: Send the packet at $10000 to a VME319 controller board
, configured as CLUN #8. Specify an operation to the hard
disk which is at DLUN #1.

.135Bug> 10C <CR> .

Controller LUN =p@? <CR>

Device LUN -~ =f@? 1 <CR>

Packet address . =@@p012BC? 18998 <CR>

gog1000g 8219 1500 1081 0902 9108 3000 3000 8090 =0...
0Pp10010 0000 0000 6300 000P 009 0200 B3
Send Packet=Y (Y/N)? <CR>

135Bug>

3-37

PREL IMINARY ' MVME1358BUG/D2

3.17 1/0 Physical to Disk ' - 10P

Iop

The 1I0P command allows the user to read, write, or format any of the
supported disk devices. When invoked, this command goes into an
interactive mode, prompting the wuser for all the parameters
necessary to carry out the command. The user may change the
displayed value by typing a new value followed by <CR>, or may
simply enter < CR>, which leaves the field unchanged.

The same special characters used by the MM command to access a
previous field (%), reopen the same location (=), or exit (.), can be
used with I0P. After IOP has prompted the user for the Tlast
parameter, the selected function is executed. The disk SYSCALL
functions (described in chapter 5) are used by IOP to access the
specified disk.

Initially (after a cold reset), all the parameters used by I0P are
set to certain default values. However, any new values entered will

be saved and will be displayed the next time that the I0P command is
invoked. :

The information that the user is prompted for is as follows:

1. Controller LUN =807

The Logical Unit Number of the controller to access is specified
in this field.

2. Device LUN =08?

The Logical Unit Number of the device to access is specified in
this field.

3. Read/Write/Format =R?

In this field the user specifies the desired function by entering
a one character mnemonic as follows:

a. R for Read. This will read blocks of data from the selected
device into memory.

b. W for Write. This will write blocks of data from memory to
the selected device.

3-38

PRELIMINARY : MVME135BUG/D2

c. F for Format. This will format the selected device. For disk
devices, either a track or the whole disk can be selected by a
subsequent field.

)

. Memory Address =p@0083000?

This field selects the starting memory address for the block to
be accessed. For disk read operations, data is written starting
at this location. For disk write operations, data is read
starting at this location.

5. Starting Block =p@@00000?

This parameter specifies the starting disk block number to
access. For disk read operations, data is read starting at this
block. For disk write operations, data is written starting at
this block. For disk track format operations, the track that
contains this block is formatted.

6. Number of Blocks =027

This field specifies the number of data blocks to be transferred
on a read or write operation.

7. Address Modifier =007

This field contains the VMEbus address modifier to use for DMA
(Direct Memory Access) data transfers by the selected,
controller. If zero is specified, a valid default value is*™
selected by the driver. If a non-zero'value is spec1f1ed, then it
w111 be used by the driver for data transfers

©

. Track/Disk =T (T/D)?

_This field specifies whether a disk track or the entire disk will
be formatted when the format operation is setected.

9. File Number =pg0e?

For streamer tape devices, this field specifies the starting file
number to access.

. 3-39

PRELIMINARY - MVME135BUG/D2

14. Flag Byte - =08?

11.

The flag byte is used to specify variations of the same command,
and to receive special status information. Bits @ through 3 are
used as command bits, bits 4 through 7 are used as status bits. At
the present, only streamer tape devices use this field. The
following bits are defined for streamer tape read and write
operations.

Bit7 File Mark flag. If 1, a file mark was detected at the end
of the last operation.

Bit 1 Ignore File Number flag. If @, the file number field is
used to position the tape before any reads or writes are
done. If 1, the file number field is ignored, and reads
or writes start at the present tape position.

Bit@#@ End Of File flag. If @, reads or writes are done until the
specified block count is exhausted. If 1, reads are done
until the count is exhausted or until a file mark is
found. If 1, writes are terminated with a filemark.

Retension/Erase =R (R/E)?

For streamer tape devices, ithis field indicates whether a
retension of the tape or an erase should be done when a format
operation is selected.

Retension: This will rewind the tape to BOT, advance the tape
without interruptions to EOT, and then rewind it
back to BOT. Tape retension is recommended by
cartridge tape suppliers before writing or reading
data when a cartridge has been subjected to a change
in environment or a physical shock, has been stored
for a prolonged period of time or at extreme
temperature, or has been previously used in a
start/stop mode.

Erase: This will completely clear the tape of previous data
and at the same time will retension the tape.

After all the required parameters are entered, the disk access will
be initiated. If an error occurs, an error status word will be
displayed. Refer to Appendix D for an explanation of returned error
status codes.

3-49

PRELIMINARY ’ MVME135BUG/D2

Example 1: Read 25 blocks starting at block 378 from device 2 of
controller @ into memory beginning at address $500008.

135Bug> 10P < CR>

Controller LUN =@@? <CR>

Device LUN =3@? 2 <CR>
Read/Write/Format=R? <CR>

Memory Address =PP0@3000? 50900 <CR>
Starting Block =000000@@? &378 <CR>
Number of Blocks =0@@2? &25 <CR>
Address Modifier =@@? <CR>

135Bug>

Example 2: Write 14 blocks starting at memory location $7088 to file
6 of device @, controller 4. Append a filemark at the end
of the file.

135Bug>I0P <CR>

Controller LUN =@@? 4 <CR>

Device LUN =@2? 8 <CR>
Read/Write/Format=R? W <CR>

Memory Address =p@@500007 7008 <CR>
File Number =ppPaa172? 6 <CR>
Number of Blocks =@@19? e <CR>

Flag Byte =p@? %81 <CR>
Address Modifier =@@? <CR>

135Bug>

3-41

PRELIMINARY : MVME135BUG/D2

3.18 1/0 Teach Disk Configuration 10T

10T [;[HI[A]]

The IOT command allows the user-to "teach" a new disk configuration
to 135Bug for use by the TRAP #15 disk functions. IOT lets the user
modify the controller and device descriptor tables used by the TRAP
#15 functions for disk access. Note that since 135Bug commands that
access the disk use the TRAP #15 disk functions, changes in the
descriptor tables will affect all those commands. These commands
include 10P, BO, BH, and also any user program that uses the TRAP #15
disk functions.

Before attempting to access the-disks with the IOP command, the user
should verify the parameters and, if necessary, modify them for the
specific media and drives used 1n the system

Note that during 'a boot, the configurat1on sector is norma1}y read
from the disk and the dev1ce descriptor table for the LUN used
.modified accordingly. If the user desires to read/write using IOP
from a disk that has been booted, IOT will not be required, unless
the system is reset.

I0T may be invoked with the H (Help) option specified. This option
instructs IOT to list the -disk controllers which are currently
‘availab1e in the system.

Example:

135Bug> I0T;H < CR>

Disk Controllers Available
Lun Type Address # dev
@ VME320 SFFFFBO@@ 4
4 VME35@ SFFFF5000 1
135Bug>

10T may be invoked with the A (A11) option specified. This option
instructs I0T to 1ist all the disk controllers which are currently
supported in 135Bug. When invoked without options, the 10T command
enters an interactive sub-command mode where the descriptor table
values currently in effect are displayed one-at-a-time on the
console for the operator to examine. The operator may change the
displayed value by entering a new value or may leave it unchanged by
typing only a carriage return. The same special characters used by
the MM command to access a previous field (%), reopen the same
location (=), or exit (.), can be used with I0OT. A11 numerical values
are 1nterpreted as hexadecima] numbers. Decimal values may be
entered by preceding the number with an "&".

3-42

PRELIMINARY : MVME135BUG/D2

The first two items of information that the user is prompted for are
the Controller LUN and the Device LUN (LUN = Logical Unit Number).
These two LUNs specify one particular drive out of many that may be
present in the system.

If the Controller LUN and Device LUN selected do not correspond to a
valid controller and device, then 10T will output the message
"Invalid LUN"and the user will be prompted for the two LUNs again.

After the parameter table for one particular drive has been selected
via a Controller LUN and a Device LUN, IOT will begin displaying the
v:]ues in the attribute fields, allowing the user to enter changes
if desired.

The parameters and attributes that are associated with a particular

device are determined by a parameter and an attribute mask that is
part of the device definition.

The device that has been selected may have any combination of the
following parameters and attributes:

1. Sector Size:

p-128 1-256
2-512 3-1024 =g1?

The physical sector size specifies the number of data bytes per
sector.

2. Block Size:

$-128 1-256
2-512 3-1024 - =p1?

The block size defines the units in which a transfer count is
specified when doing a disk/tape block transfer. The block size
can be smaller, equal to, or greater than the physical sector
size, as long as the following relationship holds true:

(Block Size)*(Number of Blocks)/(Physical Sector Size) must be an
integer.

3. Sectors/Track =p020?
This field specifies the number of data sectors per track, and is

a function of the device being accessed and the sector size
specified. :

3-43

PRELIMINARY MVME135BUG/D2

18.

Starting Head =107

This field specifies the starting head number for the device. It
is normally zero for winchester and floppy drives. It is non-
zero for dual volume SMD drives.

Number of Heads =@5?

This field specifies the number of heads on the drive.

Number of Cylinders =0337?

- This field specifies the number of cylinders on the device. For

floppy disks, the number of cylinders depends on the media size
and the track density. General values for 5-1/4" floppy disks
are show below:

48 TPI - 48 Cylinders

96 TPI - 8@ Cylinders

Precomp. Cylinder =0008?

This field specifies the <cylinder number at which
precompensation should occur for this drive. This parameter is
normally specified by the drive manufacturer.

Reduced Write Current Cylinder =000@?

This field specifies the cylinder number at which the write
current should be reduced when writing to the drive. This
parameter is normally specified by the drive manufacturer.

Interleave Factor =0@?

This field specifies how the sectors are formatted on a track.:
Normally, consecutive sectors in a track are numbered
sequentially in increments of 1 (Interleave factor of 1). The
interleave factor controls the physical separation of logically
sequential sectors. This physical separation gives the host
time to prepare to read the next 1logical sector without
requiring the loss of an entire disk revolution.

Spiral Offset =3g?
The spiral offset controls the number of sectors that the first

sector of each track is offset from the index pulse. This is
used to reduce latency when crossing track boundaries.

3-44

PRELIMINARY MVME135BUG/D2

11.

12.

13.

14.

15.

ECC Data Burst Length=0087?

This field defines the number of bits to correct for an ECC error
when supported by the disk controller.

Step Rate Code =0@?

The step rate is an encoded field used to sbecify the rate at
w:icdh t{ne read/write heads can be moved when seeking a track on
the disk.

The encoding is as follows:

Step Rate Winchester 5-1/4" 8"

Code (Hex) Hard Disks Floppy Floppy
1] B msec 12 msec 6 msec
g1 6 msec 6 msec 3 msec
g2 10 msec 12msec 6 msec
a3 15 msec 20 msec 16 msec
74 20 msec 30 msec 15 msec

Single/Double DATA Density =D (S/D)?

Single (FM) or double (MFM) data density should be specified by
typing S or D, respectively.

Single/Double TRACK Density=D (S/D)?

Used to define the density across a recording surface. This
usually relates to the number of tracks per inch as follows:

48 TPI - Single Track Density
96 TPI .- Double Track Density

Single/Equal_in_all Track Zero density =S (S/D)?

This flag specifies whether the data density of track # is single
density or equal to the density of the remaining tracks. For the
"Equal_in_all" case, the. Single/Double data density flag
indicates the density of track 8.

3-45

PRELIMINARY MVME135BUG/D2

16.

17.

18.

19.

20.

21.

22.

23.

Slow/Fast Data Rate =S (S/F)?

This flag selects the data rate for floppy disk devices as
follows:

S = 25@kHz data rate
F = S5@P@kHz data rate

Gap 1 =@7?

This field contains the number of words of zeros that are written
before the header field in each sector during format.

Gap 2 =087 _
This field contains the number of words of zeros that are written

between the header and data fields during format and write
commands.

.

Gap 3 =082

This field contains the number of words of zeros that are written
after the data fields during format commands.

Gap 4 =00?

This field contains the number of words of zeros that are written
after the last sector of a track and before the index pulse.

Spare Sectors Count =007
This field contains the number of sectors per track allocated as

spare sectors. These sectors will only be used as replacements
for bad sectors on the disk.

Reserved Area Units:Tracks/Cylinders =T (T/C)?

This field specifies the units (tracks or cylinders) used for
the next two fields.

< UNITS> Reserved for Alternates=0000?

This field specifies the number of <UNITS> reserved for the
alternate mapping area on the disk. The token <UNITS> s
replaced by the word "Tracks" or the word "Cylinders", as
specified by the "Reserved Area Units" field.

3-46

PRELIMINARY MVME135BUG/D2

24. < UNITS> Reserved for Controller=0000?
This field specifies the number of <UNITS> reserved for use by
the controller. The token <UNITS> is replaced by the word

"Tracks" or the word "Cylinders”, as specified by the "Reserved
Area Units" field. v

Example 1: Examining the default parameters of a 5-1/4"Floppy Disk.
135Bug> 10T <CR>

Controller LUN = @@? <CR>
Device LUN = Pp? 2 <CR>
Sector Size:

$-128 1-256

2-512 3-10@24 = @17 <CR>
Block Size:

g-128 1-256

2-512 3-1024 = f1? <CR>
Sectors/Track = §g1e? <CR>
Number of ‘Heads = @27 <CR>

Number of Cylinders = @@58? <CR>

Precomp. Cylinder = P@28? <CR>

Step Rate Code = @p? <CR>
Single/Double DATA Density =D (S/D)? <CR>
Single/Double TRACK Density =D (S/D)? <CR>
135Bug> ' '

3-47

PRELIMINARY MVME135BUG/D2

Example 2: Changing from a 4@ Megabyte Winchester to a 7@ Megabyte

Winchester. (Note that reconfiguration such as this is
only necessary when a user wishes to read or write a disk
which is different than the default wusing the I0P
command. Reconfiguration is normally done automatically
by the BO or BH command when booting from a disk which is

different from the default).

135Bug> 10T <CR>

‘Controller LUN = @@? <CR>
‘Device LUN : = §f? 2 <CR>
Sector Size:

@-128 1-256

2-512 3-1024 = f#1? <CR>
Block Size:

B-128. 1-256

2-512 3-1p24 = 1? <CR>
Sectors/Track = §@20? <CR>
Starting Head = @87 <CR>
Number of Heads = §6? 8 <CR>

Number of Cylinders = @33E? 480 <CR>
Precomp. Cylinder = (@@g? 401 <CR>
Reduced Write Current Cylinder= @@@8@? <CR>
Interleave Factor = 1?7 @B <CR>

Spiral Offset = @@? <CR>

ECC Data Burst Length= 3@@9? @00B <CR>

. 135Bug

3-48

PRELIMINARY MVME135BUG/D2

Example 3: Changing from Fuji drive to Fixed/Removable CDC drive.
It is necessary to reconfigure two devices, one
corresponding to the fixed disk and one corresponding to
the removable disk of the CDC drive.

135Bug> 10T <CR> (Fixed Disk)
Controller LUN = 0@? 2 <CR>
Device LUN = @p? <CR>
Sector Size:

P-128 1-256

2-512 3-1024 = @27 1 <CR>
Block Size:

p-128 1-256

2-512 3-1@24 = @17 <CR>
Sectors/Track = Pp4p? <CR>
Starting Head = f@? 18 <CR>
Number of Heads = PA? 5 <CR>
Number of Cylinders = @337? <CR>

Interleave Factor = @17 <CR>

Spiral Offset = @@? <CR> : .
Gap 1 = 18?2 7 <CR>

Gap 2 ' = 20?7 8 <CR>

Spare Sectors Count = @87 <CR>

135Bug>

3-49

PRELIMINARY

135Bug> 10T < CR>
Controller LUN
Device LUN
Sector Size:
@-128 1-256
2-512 3-1024
Block Size:
g-128 1-256
2-512 3-1024
Sectors/Track
Starting Head
Number of Heads

= 927 <CR>
= 007 1 <CR>

Number of Cylinders .=

Interleave Factor
Spiral Offset
Gap '1

Gap 2

Spare Sectors Count

135Bug>

g1? <CR>

g1? <CR>
g948? <CR>
gg? <CR>
gg? 1 <CR>
9337? <CR>
g1? <CR>
g9? <CR>
7?7 <CR>

8? <CR>
gg? <CR>

3-50

(Removable Disk)

MVME135BUG/D2

FRELIMINARY MVME135BUG/D2

3.19 Load S-Records From Host LO

LO [n]J[< ADDR> J[;< X/-C/T> J[=< text>]

This command is used when data in the form of a file of Motorola S-
Records is to be downloaded from a host system to the VME135 module.
The LO command accepts serial data from the host and loads it into
memory. »

The optional port number "n"allows the user to specify which port is
to be used for the downloading. If this number is omitted, port 1
will be assumed.

The optional < ADDR> field allows the user to enter an offset
address which is to be added to the address contained in the address
field of each record. This will cause the records to be stored to
memory at different Tlocations then would normally occur. The
contents of the automatic offset register are not added to the S-
Record addresses. If the address is in the range $8 to $1F and the
port number is omitted, enter a comma before the address to
distinguish it from a port number.

The optional text field, entered after the equals sign (=), will be
sent to the host before 135Bug begins to look for S-Records at the
host port. This allows the user to send a command to the host device
to initiate the download. This text should NOT be delimited by any
kind of quote marks. The text is understood to begin immediately
following the equals sign and terminate with the carriage return.
If the host is ~perating full duplex, the string will also be echoed
back to the i\ t port by the host and will appear on the user’s
terminal scree...)
In order to accommodate host systems that echo all received
characters, the above-mentioned text string is sent to the host one
character at a time and characters received from the host are read:
one at a time. After the entire command has been sent to the host LO
will keep looking for a <LF> character from the host, signifying
the end of the echoed command. No data records will be processed
until this <LF> is received. If the host system does not echo
characters, LO will still keep looking for a <LF> character before
data records are processed. For this reason it is required in
situations where the host system does not echo characters that the
first record transferred by the host system be a header record. The
header record is not used but the < LF> after the header record
serves to break LO out of the loop so that data records will be
processed.

3-51

PRELIMINARY MVME135BUG/D2

The other options have the following effects:

-C option - Ignore checksum. A checksum for the data contained
within an S-Record is calculated as the S-Record is read
in at the port. Normally, this calculated checksum is
compared to the checksum contained within the S-Record
and if the compare fails, an error message is sent to
the screen on completion of the download. If this
option is selected then the comparison is not made.

"X option - Echo. This option echoes the S-Records to the user’s
terminal as they are read in at the host port.

T option - TRAP #15 code. This option causes LO to set the target
register D4 = ‘LO’x, with x = $4C ($4C4F206C). The
ASCII string ’'LO ' indicates that this is the LO
command; the code $8C indicates TRAP #15 support with
stack parameter/result passing and TRAP #15 disk
support. This code can be used by the downloaded
program to select the appropriate calling convention
when invoking debugger functions, since some Motorola
debuggers use conventions different from 135Bug, and
they will set a different code in D4.

The S-Record format (refer to Appendix A) allows for an entry point
to be specified in the address field of the termination record of an
S-Record block. The contents of the address field of the
termination record (plus the offset address, if any) will be put
into the target PC. Thus aftef a download the user need only enter G
or GO instead of G < addr> or GO < addr> to execute the code that
was downloaded.

If a non-hex character is encountered within the data field of a data
record then the part of the record which had been received up to that
time will be printed to the screen and 135Bug’s error handler will be
invoked to point to the faulty character.

As mentioned, if the embedded checksum of a record does not agree
with the checksum calculated by 135Bug AND if the checksum
comparison has not been disabled via the "-C" option then an error
condition exists. A message will be output stating the address of
the record (as obtained from the address field of the record), the
calculated checksum and the checksum read with the record. A copy of
the record is also output. This is a fatal error and causes the
command to abort.

3-52

PRELIMINARY ‘ MVME135BUG/D2

When a 1oad is in progress, each data byte is written to memory and
then the contents of this memory location are compared to the data to
determine if the data is stored properly. If for some reason the
compare fails then a message is output stating the address where the
data was to be stored, the data written and the data read back during
the compare. This is also a fatal error and will cause the command to
abort.

Since processing of the S-Records is done character-by-character,

any data that was deemed good will have already been stored to memory
if the command aborts due to an error.

Examp]és:

Suppose a host system (a VME/10 with VERSAdos in this case) was used
to create a program that looks 1ike this:

1 * Test Program.

2 *

3 65040000 ORG © $65040000
4

5 6504000 7001 MOVEQ.L #1,D@

6 6504002 DP8S ADD.L Ag,DP

7 6504004 4AQ0 TST.B D@

8 65P4006 4E75 RTS

9 END

*xxkxk TOTAL ERRORS 8--
*kkkkk TOTAL WARNINGS @--

Then this program was converted into an S-Record file named TEST.MX
as follows:

SPPFAPAE5445535453335337202001015E
S30D650400007001DP884ABP4ETSB3
S7056504000091

3-53

PRELIMINARY MVME135BUG/D2

Load this file into the VME135’s memory for execution at address
$40000 as follows:

135Bug>T™ <CR> - (Go into transparent mode to establish)
Escape character: $41="A (communication with the VME/1@.)
< BREAK> (Press BREAK key to get VERSAdos login)

(prompt.)
(Togin) (User must log onto VERSAdos and enter the)

(proper catalog to access the file TEST.MX.)

=D (Enter escape character to return to)
(135Bug prompt. e)

135Bug>LO -65000000 ;X=COPY TEST.MX,# <CR>
COPY TEST.MX,#
SOOFO0005445535453335337202001015E
S30D65040000700100884A0P4E75B3
7056504000091

135Bug>

The S-Records are echoed to the terminal because of the "X"option.

The offset address of -650000080 was added to the addresses of the
records in FILE.MX and caused the program to be loaded to memory
starting at $400@8. The text "COPY TEST.MX,#" is a VERSAdos command
line that caused the file to be copied by VERSAdos to the VME/1d port
which is connected with the VME135’s host port.

135Bug>MD 40099:4;D1 <CR>

pOp41000 7001 MOVEQ.L #1,00
P0040002 DOS8 ADD.L A®,D@
00040004 4ADD TST.B D@
00040006 4ET5 RTS

135Bug>

The target PC now contains the entry point of the code in memory
($40009) .

3-54

PRELIMINARY MVME135BUG/D2

- 3.20 Macro Define/Display/Delete MA

NOMA

MA [<name>]
NOMA [<name>]

<name> : any combination of 1-8 alphanumeric characters

The MA command allows the user to define a complex command
consisting of any number of 135Bug primitive commands with optional
parameter specifications.

NOMA is used to delete either a single macro or all macros.

Entering MA without specifying a macro name causes 135Bug to list
all currently defined macros and their definitions.

When MA is invoked with the name of a currently defined macro, that
macro’s definition will be displayed. Line numbers are shown when
displaying macro definitions to facilitate editing via MAE (see
section 3.21).

If MA is invoked with a valid macro name that does not currently have
a definition, then 135Bug will enter the macro definition mode. In
response to each macro definition prompt "M=", enter a 135Bug
command, including a carriage return. Commands entered are not
checked for syntax until the macro is invoked. To exit the macro
definition mode, enter only a carriage return (null 1line) in
response to the prompt. If the macro contains errors, it can either
be deleted and redefined or it can be edited with the MAE command. A
macro containing no primitive 135Bug commands (i.e., no definition)
will not be accepted.

Macro definitions are stored in a string pool of fixed size. If the
string pool becomes full while in the definition mode, the offending
string will be discarded, a message "STRING POOL FULL, LAST LINE
DISCARDED" will be printed and the user will be returned to the
135Bug command prompt. This will also happen if the string entered
would cause the string pool to overflow. The string pool has a
capacity of 255 characters. The only way to add or expand macros
when the string pool is full is to either edit or delete macro(s).

135Bug commands contained in macros may reference arguments
supplied at invocation time. Arguments are denoted in macro
definitions by embedding a back slash character "\' followed by a
numeral. Up to 10 arguments are permitted. A definition containing
a back slash followed by a zero would cause the first argument to
that macro to be inserted in place of the "\@" characters.

3-55

PRELIMINARY o MVME135BUG/D2

The. second argument would be used wherever the sequence "\l"
occurred. Entering "ARGUE 3008 1 ;B" on the debugger command line
would invoke the macro named "ARGUE" with the text strings "3404",
"1", and ";B" replacing "\g", "\I", and "\2" (respectively) within
the body of the macro. -

To delete a macro, invoke NOMA followed by the name of the macro.
Invoking NOMA without specifying a macro name deletes all macros.
If NOMA is invoked with a valid macro name that does not have a
definition, an error message will be printed.

Examples:

135Bug>MA ABC < CR> Define macro ABC
M=MD 3008 <CR>.

M=G0 @ <CR>

M= <CR>

135Bug>

135Bug>MA DIS <CR> Define macro DIS
M=MD V@:17;DI <CR>

M= <CR>

135Bug>

135Bug>MA < CR> List macro definitions
MACRO ABC

@19 MD 3000

720 GO \@

MACRO DIS

g16 MD \g:17;D1

135Bugp>

135Bug>MA ABC <CR> List definition of macro ABC
MACRO ABC

719 MD 3000

7926 GO \g

135Bug>

135Bug>NOMA DIS < CR> Delete macro DIS
135Bug>

3-56

PRELIMINARY

135Bug>MA ASM < CR>
M=MM \@;DI <CR>

M=< CR>

135Bug>

135Bug>MA <CR>
MACRO ABC

g1¢ MD 3000
020 GO \@
MACRO ASM

910 MD \@;DI
135Bug>

135Bug>NOMA < CR>
135Bug>

135Bug>MA < CR>
NO MACROS DEFINED
135Bug>

MVME135BUG/D2

Define macro ASM

List all macros

Delete all macros

List all macros

3-57

PRELIMINARY MVME135BUG/D2

3.21 Macro Edit MAE
MAE <name> <line # [<string]

<name> : any combination of 1-8 alphanumeric characters
<line # : line number in range 1-999
<string> : replacement line or line to be inserted

The MAE command permits modification of the macro named on the
command line. MAE is line oriented and supports the following
actions: insertion, deletion, and replacement.

To insert a line, specify a 1line number between the numbers of the
lines that the new line is to be inserted between. The text of the
new line to be inserted must also be specified on the command line
following the 1ine number.

To replace a line, specify its 1ine number and enter the replacement
text after the 1ine number on the command 1ine.

A line will be deleted if its line number is specified and the
replacement line is omitted.

Attempting to delete a nonexistant line will result in an error
message being printed. MAE will not permit deletion of a 1ine if the
macro consists of only that line. NOMA must be used to remove a
macro. To define new macros, use MA; the MAE command operates only
on previously defined macros.

Line numbers serve one purpose - specifying the location within a
macro definition to perform the editing function. After the editing
is complete, the macro definition is displayed with a new set of line
numbers.

Examples:

135Bug>MA ABC < CR> List definition of macro ABC
MACRO ABC

@18 MD 3000

920 GO \@

135Bug>

3-58

FRELIMINARY MVME135BUG/D2

135Bug>MAE ABC 15 RD <CR> Add a line to macro ABC
MACRO ABC

g1¢ MD 3000 :

@208 RD This line was inserted
230 GO \g

135Bug>

135Bug>MAE ABC 10 MD 18+R8 <CR> Replace line 18

MACRO ABC

716 MD 10+R@ This line was overwritten
@26 RD

@230 GO \@

135Bug>

135Bug>MAE ABC 38 <CR> Delete line 38
MACRO ABC ’
§16 MD 10+RO

" 1§20 RD
" 135Bug>

3-59

PRELIMINARY MVME135BUG/D2

3.22 Enable/Disable Macro Expansion Listing : MAL
. | NOMAL

MAL

NOMAL

The MAL command allows the user to view expanded macro lines as they
are executed. This is especially useful when errors result, as the
line that caused the error will appear on the display.

The NOMAL command is used to suppreﬁs the Tisting of the macro lines
during execution.

The use of MAL and NOMAL is a convenience for the user: and in no way
interacts with the function of the macros.

3-60

FRELIMINARY MVME135BUG/D2

3.23 Save/Load Macros MAW
MAR

MAW [<Device LUN>][[<Controller LUN>][<Block #>]]
MAR [<Device LUN>][[<Controller LUN>][<Block #>]]

Device LUN - Is the 1logical unit number of the device to
saVﬁgload macros to/from. Initially defaults to
LUN @.

Controller LUN - Is the logical unit number of the controller to
which the above device is attached. Initially

defaults to LUN 6.
DEL - Is afield delimiter: Comma (,) or spaces ().

Block # - Is the number of the block on the above device that
is the first block of the macro Tist. Initially
defaults to block 2.

The MAW command allows the user to save the currently defined macros
to disk/tape. A message is printed listing the block number,
controller LUN, and device LUN before any writes are made. This
message is fo]]owed by a prompt ("OK to proceed (y/n)?"). The user
may then decline to save the macros by typing the letter "N"
(uppercase or lowercase). Typing the letter "Y" (uppercase or
lTowercase) permits MAW to proceed and write the macros out to
disk/tape. The list is saved as a series of strings and may take up
to three blocks. If no macros are currently defined, no writes are
done to disk/tape and "NO MACROS DEFINED" is printed.

The MAR command allows the user to load macros that were saved by
MAW. Care should be taken to avoid attempting to load macros from a
location on the disk/tape other than that written to by the MAW
command. While MAR checks for invalid macro names and other
anomalies, the results of such a mistake are unpredictable.

NOTE: MAR will discard all currently defined macros before 1oad1ng
from disk/tape.

Defaults change each time MAR and MAW are invoked. Once either
command has been used, the default device, controller, and block
number are set to those used for that command. If macros were loaded
from controller @, device 2, block 8 via command MAR, . then the
defaults for a]ater 1nvocat1on of MAW or MAR wou]d be contro]ler a,

device 2, and block 8.

Errors encountered during I/0 are reported a]ong with the 16 bit
status word returned by the disk I/0 routines. .

3-61

PRELIMINARY MVME135BUG/D2

Example: (Assume that device 2, controller @ is accessable). R

135Bug>MARR 2,0,3 <CR> Load macros from block 3
135Bug>

135Bug>MA <CR> List macros
MACRO ABC

p18 MD 3000

920 GO \@

135Bug>

135Bug>MA ASM < CR> . Define macro ASM
M=MM \@;DI <CR>

M= <CR>

135Bug>

135Bug>MA <CR> . List all macros
MACRO ABC : ' o
@19 MD 3000

g20 GO \g

MACRO ASM

g1 MD \g;DI

135Bug>

135Bup>MAW ,,8 <CR> Save macros to block 8, previous
device

WRITING TO BLOCK $8 ON CONTROLLER $4, DEVICE $2

OK to proceed (y/n)? Y Carriage return not needed
135Bug>

3-62

-

FRELIMINARY MVME135BUG/D2

3.24 Memory Display MD

MD[S] < ADDR> [:< COUNT> |< ADDR> 1[; [B|W|L|S|D|X|P|DI]]

This command is used to display the contents of multiple memory
locations all at once. MD accepts the following data types:

Integer Data Type Floating Point Data Types

B - Byte S - Single Precision
W - Word D - Double Precision
L - Longword X - Extended Precision

P - Packed Decimal

The default data type is word. Also, for the integer data types, the
data is always displayed in hex along with its ASCII representation.
The DI option enables the one line MC68828 assembler/dlsassemb‘ler
No other option is allowed if DI is selected.

The optional count argument in the MD command specifies the number
of data items to be displayed (or the number of disassembled
instructions to display if the disassembly option is selected)
defaulting to 8 if none is entered. The default count is changed to
128 if the S (sector) modifier is used. Entering only <CR> at the
prompt immediately after the command has completed will cause the
command to re-execute, displaying an equal number of data items or
Tines beginning at the next address.

Example 1:

135Bugp>MD 12099 <CR>

20012000 2800 1942 298¢ 1942 28% 1842 2900 2846 (..B)..B(..B).(F
135Bug>< CR>

gPp1201@ FC20 @PSG EDP7 9F61 FFOO OPPA E86Q FOEB . |..Pm..a....h'p’
135Bug>

3-63

PRELIMINARY MVME135BUG/D2

Example 2: Assume the following processor state: AZ2=00813500,
D5=53F@@127.

135Bug>MD (A2,D5):419;B < CR>

§0@13627 4F82 @@CS 9819 337A DF@1 6C3D 4B5@ GFOF g..E..3z_.1=KP..
98013637 31AB 8@ +1.

135Bug>

Example 3: To display memory at location 50008 with disassembly
enabled, the user enters the following.

135Bug>MD 50008:;DI <CR>

P0@A50008 46FC2700 MOVE.W $2748,SR
00@5000C 61FFPBAA23E BSR.L #5@24C

$@@50@12 4E7ADSYL . MOVEC.L VBR,AS o
P@058@16 41EDTFFC LEA.L STFFC(AS),Ad
20@5001A 5888 ADDQ.L #4,A8

$0@5001C 2E48 MOVE.L A8,A7

POOSeA1E 2C48 MOVE.L Ad,A6

A0@50@28 13CT7FFFBA@3A MOVE.B : D7, (SFFFBA@3A).L
135Bug> . '

Example 4: To display eight double precision floating point numbers
at location 500808, the user enters the following command
line.

135Bup>MD 50008;D <CR>

00005000 @ _3F6_44C1DOFB4TFC2= 2.4777000000000002 _E- 23003
00005008 8_423_DAEFF@4800000= 1.2749000000000000 E+0011
00005010 0_000 0000000000000= @.0000000000000000 E+0000
$0005018 @ 403 _0000000000000= 1.6000000000000000 E+0001
#0005020 @_3FF_@000000000000= 1.0000000000000000 E+0000
000085028 0 000 POOABFFFFFFFF= 2.1219957904712067_E+0314
700d0503@ @_44D_FDE9F10A8D361= 6.0200000000000000 E+00823
PPPg5038 B_3CH_79CA18C924223= 1.5999999999999999_E+0019
135Bug>

3-64

PRELIMINARY MVME135BUG/D2

3.25 Memory Modify MM

MM < ADDR> (50 [BIWILISIDIX]PI[AT[N]]][DI]]

This command is used to examine and change memory locations. MM
accepts the following data types:

Integer Data Type Floating Point Data Types

B - Byte S - Single Precision
W - Word D - Double Precision
L - Longword X - Extended Precision

P - Packed Decimal

The default data type is word. The MM command (alias M) reads and
displays the contents of memory at the specified address and prompts
the user with a question mark ("?"). The user may enter new data for
the memory location, followed by <CR>, or may simply enter < CR>,
which leaves the contents unaltered. That memory location will be
closed and the next memory location will be opened.

The user may also enter one of several special characters, either at
the prompt or after writing new data, which change what happens when
the carriage return is entered. These special characters are as
follows: ‘

Vorv - The next successive memory location will be opened. (This
is the default. It is in effect whenever MM is invoked and
remains in effect until changed by entering one of the
other special characters).

A - MM will back up and open the previous memory location.

= - MM will re-open the same memory location (this is useful
for examining I/0 registers or memory locations that are
changing over time).

- Terminates MM command. Control will return to 135Bug.

The N option of the MM command disables the read portion of the
command. The A option forces alternate location accesses only.

3-65

PRELIMINARY) MVME135BUG/D2

Example 1:

135Bug>MM 10999 < CR> ' Access location 10000

00010008 123427 <CR>’

00010002 56787 4321 <CR> Modify memory

g0010004 9ABC? 8765" <CR> Modify memory and backup
00010002 43217 <CR>

g0019000 1234? abed. <CR> Modify memory and exit
135Bug> : :

Example 2:

135Bug>MM 10801;LA <CR> = = - Longword access to location 18001
00010001 CD432187? <CR> o - (Alternate location accesses)
00910009 PPP68A107 68810+18= < CR>" Modify and re-open location
00010009 000680282 <CR> o

90010009 9006802827 . <CR> Exit MM

-'135Bug>

The DI option enables the one-line assembler/disassembler. A1l
other options are invalid if DI is selected. The contents of the
specified memory location will be disassembled and displayed and the
user will be prompted with a question mark ("?") for input. At this
point the user has three options:

1. Enter <CR>. This will close the present location and will
continue with disassembly of next instruction.

2. Enter a new source instruction followed by <CR>. This invokes
the assembler, which will assemble the instruction and generate a
"listing file"of one instruction.

3. Enter . <CR>. Thiswill close the present location and will exit
the MM command.

I1f a new source line is entered (#2 above), the present line will be
erased and replaced by the new source line entered. If a hardcopy
terminal is being used, port @ should be reconfigured for hardcopy
operation with the PF command. In the hardcopy mode, a line feed
will be done instead of erasing the line.

3-66

PRELIMINARY MVME135BUG/D2

If an error is found during assembly, the symbol "~" will appear
below the field suspected of the error, followed by an error
message. The location being accessed will be redisplayed.

Refer to Chapter 4 for additional information about the assembler.

The examples below were made-in the hardcopy mode.

Example 3:

Assemble a new source line.

135Bug>M¥ 1000C;DI <CR>

po01000C 46FC2400 MOVE.W $2408,SR ? DIVS.W -(A2),D2 <CR>
PpP14AAC 85E2 DIVS.W -(A2),D2
POP1000E 2400 MOVE.L D@,D2 ?

135Bug>

Example 4:
New source line with error.

MMMMB 4ETADBP1 MOVEC.L VBR,A5 ? BCHG #$12,9(A5,D6)) <CR>

20010008 . BCHG #$12,9(A5,D6))
Baiakel Unknowﬁ Field *** :
. 00010008 4ETAD8SA1 MOVEC.L VBR,A5 ?
. 135Bug> . ,
| Example 5:

Step to next location and exit MM.

135Bug>M 10AAC;DI <CR> : :
9001000C G00PPBFF - OR.B #255,00 ? <CR>

00319010 20C9 MOVE.L Al,(AB)+ ? . <CR>
135Bug> :

3-67

PRELIMINARY : MVME135BUG/D2

Example 6:

135Bug>M 7009:X < CR>

00007000 ¢ 0008 FFFFFFFFO0000000? 1 3C10 84782 < CR>
900@700C 1_7FFF_@O00GOOBFFFFFFFF? 9 9B1A F <CR>
70007918 0 0000 FFFFFFFFO@000008? 6.82E23= < CR>
$PP@7818 @ 404D _FEF4F885469B@888? * <CR>

290a790C 0 931A_FO00300000000008? < CR>

90007000 1_3C10_8478200000000008? . <CR>

135Bug> -

3-68

PRELIMINARY MVME135BUG/D2

3.26 Memory Set MS

MS < ADDR> {Hexadecimal number}/ (‘string’)

The MS command is used to write data to memory starting at the
specified address. Hex numbers are not assumed to be of a particular
size, so they can contain any number of digits (as allowed by command
line buffer size). If an odd number of digits are entered, the least
significant nibble of the last byte accessed will be unchanged.

ASCII strings can be entered by enclosing them in single quotes
o To include a quote as part of the string two consecutive
quotes should be entered.

Example: Assume that memory is initially cleared:

135Bug>MS 25090 @123456789abcDEF ‘This is ’‘atest’’ 23456 <CR>
135Bug>MD 25008:20;B < CR>

Pp@25000 9123 4567 89AB CDEF 5468 6973 2069 7320 .#Eg.+MoThis is
PP@25010 2761 2074 6573 7427 2345 6000 0000 0000 ‘a test’#E’....
135Bug>

3-69

PRELIMINARY) ' ' MVME135BUG/D2

3.27 Offset Registers Display/Modify OF

OF [Rn[;A]]

The OF command allows the user to access and change pseudo-registers
called offset registers. These registers are used to simplify the
debugging of relocatable and position independent modules (refer to
offset registers in section2.1.1.2.2).

There are 8 offset registers (R@ through R7), but only R@ through R6
can be changed. R7 always has both base and top addresses set to 4.
This allows the automatic register function to be effectively
disabled by selecting R7 as the automatic register.

Each offset register has two values: base and top. The base is the
absolute least address that will be used for the range declared by
the offset register. The top address is the absolute greatest
address that will be used. When entering the base and top, the user
may use either an address/address format or an address/count format.
If a count is specified, it refers to bytes. If the top address is
omitted from the range, then a count of l-megabyte is assumed. The
top address must equal or exceed the base address. Wrap-around is
not permitted.

Command usage:

OF - To display all offset registers. An asterisk indicates
which register is the automatic register.

OFRn - To display/modify Rn. The user can scroll through the
registers in a way similar to that used by the MM command.

OF Rn;A - To display/modify Rn and set it as the automatic
register. The automatic register is one that is
automatically added to each absolute address argument of
every command except if an offset register is explicitly
added. An asterisk indicates which register is the
automatic register.

Range entry:

Ranges may be entered in three formats: base address alone, base and
top as a pair of addresses, and base address followed by byte count.
Control characters "A", "v", "V" "a" and "." may be used. Their
function is identical to that of the RM (Reg1ster Modify) and MM
(Memory Modify) commands.

3-79

FRELIMINARY MVME135BUG/D2

Range syntax:

[<base address> [<top address>]] [*|v]|=].]
or
[<base address> [’:’ <byte count> 1 1 [Alv|=].]

Offset register rules:

. At power-up and cold start reset, R7 is the automatic register.
. At power-up and cold start reset, all offset registers have both

base and top addresses preset to #. This effectively disables
them.

. R7 always has both base and top addrésses set to @, it cannot be

changed.

. Any offset register can be set as the automatic register.
. The automatic register is always added to every absolute address

argument of every 135Bug command where there is not an offset
register explicitly called out.

. There is always an automatic register. Note that a convenient

way to disable the effect of the automatic register is by setting
R7 as the automatic register. This is the default condition.

Examples:

Display of offset registers.

135Bug>0F <CR>
RO = 00PPPP00 PPBEEOGY R1 = 0OOPA00D APB000LE

R2
R4
- R6

= 00030000 000PAGE0 R3 = @PO00000 PAGARR0H
= P0000000 PPRPPS RS = 0P0G0R0 OOOAP00S
= 00000000 PO0PP00E R7*- 0AA00ER0 PACAR00

135Bug>

Modify some offset registers.

135Bug>OF R <CR>

RO
R1
RO

= 09000000 00PP0P00? 20000 200FF <CR>
00000000 0OOPOPPD? 25090:208" < CR>
= P0020000 OPP20BFF? . <CR>

135Bug>

3-71

PRELIMINARY MVME135BUG/D2

Look at location $20004.

135Bug>M 20098;D1 <CR> .
90000+RA 41F95445 5354 LEA.L ($54455354).L,A0 . <CR>

135Bug>M RO;DI <CR> -
g00P@+RA 41F95445 5354 LEA.L ($54455354).L,A0 . <CR>
135Bug>

Set R@ as the automatic register.

" 135Bug>OF R3;A < CR> :
RO*=00020000 OPO200FF? . <CR>
1358ug>

To Took at location $20000.

135Bug>M 8;DI <CR>
00000+RA 41F95445 5354 LEA.L ($54455354).L,A0 . <CR>
135Bug>

To Took at location @, override the automatic offset.

135Bug>M B4R7;DI < CR>
00000000 FFF8 DC.W SFFF8 . <CR>
135Bug>

3-72

PRELIMINARY MVME135BUG/D?2

3.28 Printer Attach/Detach PA
NOPA

PA [n]

NOPA [n]

These two commands "attach" or "detach" a printer to the specified
port. When the printer is attached, everything that appears on the
system console terminal is also echoed to the "attached” port’s
printer. PA is used to attach, NOPA is used to detach. If no port is
specified, PA will attach port 1 by default, NOPA will detach all
attached ports.

If the port number specified is not currently assigned, PA will
display an error message. If NOPA is attempted on a port that is not
currently attached, an error message will be displayed.

The port being attached must already be configured. This is done
using the PF (Port Format) command. On the VME135, it is necessary
to disable the hardware handshake mechanism. This is done by
executing the following sequence prior to "PAl".

135Bug>PF1 <CR>

Baud rate [110,300,600,1200,2400,4800,9608,19208] = 96088? <CR>
Even, 0dd, or No Parity [E,O0,N] = N? <CR>

‘Char Width [5,6,7,8] = 87 <CR>

Stop bits [1,2] = 1? <CR>

‘Async Mono, Bisync, Gen, SDLC, or HDLC [A,M,B,G,S,H] = A? <CR>
Syncl = $087 <CR> :
Sync2 = $087 <CR>) ‘

DTE or DCE [T,C] = C? <CR>

Auto Xmit enable on CTS* [Y,N] = Y? N. <CR>

135Bug>

RECOVERING FROM A "HUNG" PRINTER: attached ports are not detached by
exceptions (bus errors, abort, etc). If printer attach is invoked
to an incorrectly set-up device, or a fault such as a paper jam
occurs, the only means of recovery is the RESET switch on the VME135
module.

3-73

PRELIMINARY

Examples:

CONSOLE DISPLAY:
135Bug>PA <CR>
_ (attaching port 1 by default

135Bug>HE NOPA <CR>
NOPA Printer detach

135Bug>NOPA < CR>
(detach all attached printers)
135Bug>

MVME135BUG/D2

PRINTER OUTPUT:

(printer now attached)

135Bug>HE NOPA
NOPA Printer detach

135Bug>NOPA
(printer now detached)

3-74

PRELIMINARY MVME135BUG/D2

3.29 Port Format - PF

PF[n]

The PF command allows the user to examine and change the serial
input/output environment. PF may be used to display a list of the
current port assignments, configure a port that is already assigned,
or assign and configure a new port. Configuration is done
interactively, much like modifying registers or memory (RM and MM
commands). An interlock is provided prior to configuring the
hardware - the user must explicitly direct PF to proceed.

ONLY EIGHT PORfS MAY BE ASSIGNED AT ANY GIVEN TIME. PORT #'s MUST BE
RANGE @ to $1F.

3.29.1 Listing Current Port Assignments

PF will 1ist the names of the board and port for each assigned port
number (LUN) when the command is invoked with the port .number
omitted.

Example:

135Bug>PF < CR>

Current port assignments: (Port #: Board name, Port name)
@@: VME135, " 1" @1: VME135, " 2" '
135Bug>

3.29.2 Configuring a Port

The primary use of PF is changing baud rates, stop bits, etc. This
may be accomplished for assigned ports by invoking the command with
the desired port number. Assigning and configuring may be
accomplished consecutively. Refer to the section "Assigning a New
Port".

When PF is invoked with the number of a previously assigned port, the
interactive mode 1is entered immediately. To exit from the
interactive mode, enter a period by itself or following a new
val*e/setting. While in the interactive mode, the following rules
apply:

Only listed values are accepted when a 1ist is shown. The sole
exception is that upper or lower case may be interchangeably
used when a list is shown. Case takes on meaning when the
Tetter itself is used, such as XON character value.

3-75

PRELIMINARY MVME135BUG/D2

A Control characters are accepted by Hexadecimal value or by a
letter preceded by a caret (i.e., Control-A would "~A").

The caret, when entered by itself or following a value, will
cause PF to issue the previous prompt after each entry.

v Either an upper or lowercase "v" will cause PF to resume
prompting in the original order (i.e., Baud Rate, then Parity
type, ...).

= Entering an equal sign by itself or when following a value

will cause PF to issue the same prompt again. This is
supported to be consistent with the operation of other
debugger commands. To assume prompting in either normal or
reverse order, enter the letter "v" or a caret "*
respectively.

Entering a period by itself or following a value causes PF to
exit from the interactive mode and issue the "OK to proceed
(Y/N)2".

< CR> Pressing carriage return without entering a value preserves
the current value and causes the next prompt to be displayed.

Example: Changing number of stop bits on port number 1.

135Bug>PF1 <CR>

Baud rate [110,30d,600,1200,2400,4800,9600,19200] = 9608? <CR>
Even, 0dd, or No Parity [E,0,N] = N? <CR>

Char Width [5,6,7,8] = 8? <CR>

Stop bits [1,2] = 1?2 2 <CR> . (new value entered)

(the next response is to demonstrate reversing the order of prompting)

Async Mono, Bisync, Gen, SDLC, or HOLC [A,M,B,G,S,H] = A? ~ <CR>

Stop Bits [1,2] = 2?2 . <CR> (value acceptable, exit interactive. mode)
OK to proceed (Y/N)? Y (Note: Carriage return not required)
135Bug>

3-76

PRELIMINARY . MVME135BUG/D2

3.29.3 Parameters Configurable by Port Format

Port base address:
Upon assigning a port, the option is provided to set the base
address. This is useful for support of boards with adjustable
base addressing, i.e., the VME@58. Entering no value will select
the default address shown.

Baud rate:
The wuser may choose from the following: 110,300,600,1200,
2400 ,4800,9600,19200.

Parity type:
Parity may be even (choice E), odd (choice 0), or disabled
(choice N).

Character width:
The user may select 5-, 6-, -7, or 8-bit characters.

Number of stop bits:
Only 1 and 2 stop bits are supported.

Synchronization type:

As the debugger is a polled serial input/output environment, most
users will use only asynchronous communication. Synchronous
modes are permitted but no synchronous protocols are supported by
135Bug.

Synchronization character values:
Any'8-b1t‘va1Ue or ASCII character may be entered.

Data equipment type:

Driver authors may require knowledge of the port’s data equipment
type. Types DTE (Data Terminal Equipment) and DCE (Data
Communication Equ1pment) are perm1tted but ignored by current
drivers. ,

Automatic hardware hardshake:

Some .devices and connection circuitry support hardware
handshake. Transmitters may be set up to enable only when the
RS-232 signal Clear-to-send is asserted. Receivers may be set up
to negate the RS-232 signal Request-to-send when the receiver’s
FIFO (First-In/First-Out) buffer is full.

3-77

PREL IMINARY o MVME135BUG/D2

Automatic software handshake

Current drivers have the capab111ty of responding to XON/XOFF

. characters sent to the debugger ports. Receiving a XOFF causes a -
driver to cease transmission until a XON character is received.
None of the current drivers utilize FIFO buffering, therefore,
none initiate an XOFF condition.)

Software handshake character values:

The values used by a port for XON and XOFF may be redefined to be
any 8-bit value. ASCII control characters or hexadecimal values
are accepted.) ‘

3.29.4 Assigning a New Port

PF supports a set of drivers for a number of different boards and the
ports on each. : To assign one of these to a previously unassigned
port number, invoke the command with that number. A message will
then be printed to indicate that the port is unassigned and a prompt
will be issued to request the name of the board (i.e., VMEI13S5,

VME@5@, etc). Presing RETURN at this point will cause PF to 1ist the
currently supported boards and ports. Once the name of the board has
been entered, a prompt will be issued for the name of the port. After
the port name has been entered, PF will attempt to supply a default
configuration for the new port.

‘Once a valid port has been specified, default parameters are
supplied. The base address of this new port is one of these default
parameters. Before entering the interactive configuration mode,
the user is allowed to change the port base address. Pressing RETURN
will retain the base address shown.

If the configuration of the new port is not fixed, then the
interactive configuration mode is entered. Refer to section 3.26.2
above regarding configuring assigned ports. If the new port does
have a fixed configuration, then PF will issue the "0K to proceed
(Y/N)?"prompt immediately.

PF will not initialize any hardware until the user has responded
with the letter "Y" to prompt "OK to proceed (Y/N)?". Pressing BREAK
any time prior to this step or responding with the letter "N" at the
prompt will leave the port unassigned. This is only true of ports
not previously assigned.

3-78

FRELIMINARY

Example:

135Bug>PF 2 <CR>
Logical unit $82 unassigned
Name of board? <CR>

Boards and ports supported:

VMEI35: 1, 2

VME@S5@: 1, 2, PTR

Name of board? VME®S# <CR>

Port base address = $FFFF1080? <CR>

OK to proceed (Y/N)? Y
135Bug>

3-79

MVME135BUG/D2

"Assigning port 2 to the VME@50 printer port.

(cause PF to list supported boards,
ports)

(Note: Upper or lowercase accepted)
(Note: Interactive mode is not
entered as hardware has fixed
configuration)

PRELIMINARY ' MVME135BUG/D2

3.30 Register Display Lo - o RD

RD {[+|-|=1[< DNAME> J[/1) ([+]-]=1[< REG1> [-< REG2>]1[/])

The RD command is used to display the target state, that is, the
register state associated with the target program (refer to the GO
command). The instruction pointed to by the target PC is also
disassembled and displayed. Internally, a register mask specifies
which registers will be displayed when RD < CR> is executed. At
reset time this mask is set to display all MPU registers. This
register mask can be changed with the RD command. . The optional
arguments allow the user the capability to enable or disable the
display of any register or group or registers. This is useful for
showing only the registers of interest, minimizing unnecessary data
on the screen, and also to save screen space, which is reduced
particularly when coprocessor registers are displayed.

The arguments are as follows:

+ is a qualifier indicating that a device or reg1ster range
is to be added.

- is a qualifier indicating that a dev1ce or register range
is to be removed, except when used between two register
names. In this case it indicates a register range.

- is a qualifier indicating that a device or register range
is to be set.
/ is a delimiter between device names and register ranges.

< REG1> is the first register in a range of registers.
< REG2> is the Tast register in a range of registers.

< DNAME> 1is a device name. This is used to quickly enable or disable
all the registers of a device. The available device names

are:
MPU. Microprocessor Unit
FPC Floating Point Coprocessor
PMMU Paged Memory Management Unit

3-89

PRELIMINARY MVME135BUG/D?2

The following notes should be observed when specifying any arguments
in the command line:

HWw N -

The qualifier is applied to the next register range only.
If no qualifier is specified, a + qualifier is assumed.

. A11 device names should appear before any register names.
. The command line arguments are parsed from left to right, with

each field being processed after parsing, thus, the sequence in
which qualifiers and registers are organized has an impact on the
resultant register mask.

. When specifying a register range, < REG1> and < REG2> do not have

to be of the same class.

. The register mask used by RD is also used by all the exception

handler routines, including the trace and breakpoint exception
handlers.

The MPU registers in ordering sequence are:

Number of

registers '
19 System Registers (PC,SR,USP,MSP,ISP,VBR,SFC,DFC,CACR,CAAR)
8 Data Registers (DB-D7)

The FPC registers in ordering sequence are:

8 Address Registers (A@-A7)

Number of ¢
registers -

3 System Registers - (FPCR,FPSR,FPIAR)

8 Data Registers (FPB-FP7)

The PMMU registers in ordering sequence are:

Number of
registers
4 Address Translation Control (CRP,SRP,DRP,TC)
6 Control/Status/Access Level . (PCSR, PSR, AC,CAL, VAL, SCC)
8 Breakpoint Acknowledge Data (BADZ-BAD7)
8 Breakpoint Acknowledge Control (BAC@-BAC7)

3-81

PRELIMINARY MVME135BUG/D?2

Example 1:

135Bug>RD < CR>

PC =0PP@30P0 SR =270@=TR:OFF S. 7 _.....

USP =g@OOFs3@ MSP =p@p@3C18 ISP* =pppg4ggs VBR =00p00a0g
SFC =p=F@ DFC =P=F@ CACR =#=.. CAAR =00000000
D0 =0000Pee DI =0000POde D2 =poPPecds D3 =000oess
D4 =@00OPOE0 DS =0P0POO0g D6 =000000g0 D7 =000poaod
AD =00000000 Al =00000000 A2 =000P0000 A3 =00000000
A4 =00000000 A5 =00000P00 A6 =00000000 A7 =00004000
P00O3000 424F DC.W $424F

135Bug>

Notes:

An asterisk following a stack pointer name indicates that it is the
active stack pointer. The status register includes a mnemonic
portion to help in reading it:

Trace Bits

Tl T0 Mnemonic Description

') TR:OFF Trace off

g 1 TR:CHG Trace on change of flow

1) TR:ALL Trace all states

1 1 TR: INV Invalid mode

S, MBits: The bit name appears (S,M) if the respective bit

is set, otherwise a "." indicates that it is
cleared. '

Interrupt Mask: A number from @ to 7 indicates the current
processor priority level.

Condition Codes: The bit name appears (X,N,Z,V,C) if the
respective bit is set, otherwise a "." indicates
that it it cleared.

3-82

-~

PRELIMINARY MVME135BUG/D2

The source and destination function code registers (SFC, DFC)
include a two character mnemonic:

Function Code Mnemonic Description
@ F@ Undefined
1 ub User Data
2 up User Program
3 F3 Undefined
4 F4 Undefined
5 SD Supervisor Data
6 SP Supervisor Program
7 CS CPU Space

The CACR register shows mnemonics for two bits: Enable and Freeze.
The bit name (E,F) appears if the respective bit is set, otherwise a
"." indicates that it is cleared.

Example 2: To set the display to D6 and A3 only.

135Bug>RD =D6/A3 <CR>
D6 =POPPPEOs A3 =0P00POOP
003000 4AFC ILLEGAL
135Bug>

Note that the above sequence sets the display to D6 only and then
adds register A3 to the display.

Example 3: To restore all the MPU registers.

135BUp RO #PU < CR>
-PPPE3PP6 SR =270B=TR:OFF S. 7

usp -00003830 MSP =@@PP3C18 ISP* -PEO40RE VBR =0POO000D
SFC =P=F@ DFC =P=F@ CACR =p=.. CAAR =0P000000
DF =00000000 D1 =PPPGERCD D2 =POPPEEES D3 =BO000PEP
D4 =PPPO0000 D5 =000PPPOD D6 =0000POOS D7 =POOA0000
A0 =POOOOO00 Al =POO0DDO0 A2 =DO00000D A3 =00PPOBO0
A4 =DODOOOO0 AS =PO00DDOD A6 =PO00000D AT =0PPP4PE0
. 0POO30B0 4AFC ILLEGAL

135Bug>

Note that an equivalent command would have been RD PC-A7.

3-83

PRELIMINARY MVME135BUG/D2

Example 4:

135Bug>RD +FPC < CR>

PC =000@3008 SR =27@@=TR:OFF S. 7 _.....

USP =@0@@3830 MSP =p@@@3C18 ISP* =@@ggaged VBR =00000000
SFC =@=F@ DFC =P@=F@ CACR =§=.. CAAR =00000000
Dg =00000@0@ D1 =00000003 D2 =0P000008 D3 =PPP00000
D4 =00000000 D5 =00000003 D6 =00000008 D7 =00000000
Ad =00000000 Al =00000000 A2 =00000008 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
FPCR =0000000@8 FPSR =000000@8- (CC=....) FPIAR=00000000
FP@ =@ 7FFF_FFFFFFFFFFFFFFFF= @.FFFFFFFFFFFFFFFF_E-@FFF
FP1 =@ 7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF_E-BFFF
FP2 =@ 7FFF_FFFFFFFFFFFFFFFF= B@.FFFFFFFFFFFFFFFF_E-BFFF
FP3 AB_JFFF_FFFFFFFFFFFFFFFF- B.FFFFFFFFFFFFFFFF_E-@FFF
FP4 =@ TFFF_FFFFFFFFFFFFFFFF= @.FFFFFFFFFFFFFFFF_E-BFFF
FP5 =@ 7FFF_FFFFFFFFFFFFFFFF= @.FFFFFFFFFFFFFFFF_E-BFFF
FP6 =@ 7FFF_FFFFFFFFFFFFFFFF= @.FFFFFFFFFFFFFFFF_E-BFFF
FP7 =@ 7FFF_FFFFFFFFFFFFFFFF= @.FFFFFFFFFFFFFFFF_E-@FFF
00003008 4AFC ILLEGAL

135Bug>

The floating point data registers are always displayed in extended
precision and in scientific notation format. The floating point
status register display includes a mnemonic portion for the
condition codes. The bit name appears (N, X, I, NAN) if the
respective bit is set, otherwise a ™."indicates that it is cleared.

3-84

PRELIMINARY | MVME135BUG/D2

Example 5: To display only the PMMU registers.

135Bug>RD =PMMU < CR>

CRP =D000000_BO0DBO00 SRP =000PO000_00000000
DRP =00000000_pO000000 ¢ =B00sages

PCSR =0800-.. @ PSR =000D-......... N
AC =0808 CAL =g VAL =gp SCC =08

BADg =@000 BAD1 =p00P BAD2 =009 BAD3 =0000
BAD4 =P@@0 BADS =009 BAD6 =0000 BAD7 =000@
BAC# =0000 BAC1 =p00p BAC2 =009 BAC3 =0g00
BAC4 =0000 BAC5 =p00p BAC6 =0000 BAC7 =0000
135Bug>

The PCSR and PSR registers above include a mnemonic portion. For the
PCSR register, the bits are:

F Flush bit
LW Lock Warning bit
TA Task Alias field (3 bits)

For the PSR register, the bits are:

Bus Error

Limit Violation
Supervisor Only

Access Level Violation
Write Protected

Invalid

Modified

Gate i

Globally Sharable
Number of Levels (3 bits)

Z2 O 60O X — T > n row

3-85

PRELIMINARY MVME135BUG/D2

RESET
3.31 Cold/Warm Reset

RESET

The RESET command allows the user to specify the level of reset
operation that will be in effect when a RESET exception is detected
by the processor. A reset exception can be generated by pressing the
RESET pushbutton on the VME135’s front panel.

Twp RESET levels are available:

COLD - This is the standard mode of operation, and is the one
defaulted on power on. In this mode all the static variables
are initialized every time a reset is done. :

WARM - In this mode all the static variables are preserved when a
reset exception occurs. This is convenient for keeping
breakpoints, offset register values, the target register
state, the port configurations, and any other static
variables in the system.

NOTE: If the VME135 is the system controller, pressing the RESET
pushbutton will reset all the modules in the system, including
disk controllers like the VME320 or VME364. This may cause
the disk controller configuration to be out of phase with
respect to the disk configuration tables in memory.

Example:

135Bug> RESET < CR>
Cold/Warm Start = C (C/W)? W Set to warm start
135Bug>
Press the RESET pushbutton
VME135 Debugger/Diagnostic Version 2.8 - 3/2/88
Warm Start
135Bug>

3-86

PRELIMINARY MVME135BUG/D2

3.32 Register Modify RM

RM < REG>
The RM command allows the user to display and change the target
registers. It works in essentially the same way as the MM command,

and the same special characters are used to control the
display/change session (refer to the MM command).

Example 1:

135Bug>RM D4 <CR>

D4 =123456787 ABCDEF* <CR> Modify register and backup
D3 =0p0000000? 3908. <CR> Modify register and exit
135Bug>

Example 2:

135Bug>RM SFC <CR> . . ,

SFC =7=CS ? 1= <CR> ~ " Modify register and re-open
SFC =1=UD ? . <CR> Exit

135Bug>

3-87

PRELIMINARY : MVME135BUG/D2

The RM command is also used to modify the Floating Point Coprocessor
registers (the MC68881).

Example 3:

135BugRM FPSR < CR>

FPSR =gO0Q00@0- (CC=....) ? FOOGOOD <CR>

FPIAR=0000000 ? <CR>

FPO =0_TFFF_FFFFFFFFFFFFFFFF= @.FFFFFFFFFFFFFFFF_E-BFFF? 012345 <CR>
FP1 =g_TFFF_FFFFFFFFFFFFFFFF= @.FFFFFFFFFFFFFFFF_E-BFFF? 1.25E3 <CR>
FP2 =@_TFFF_FFFFFFFFFFFFFFFF= @.FFFFFFFFFFFFFFFF_E-@FFF? 1 7F 3FF <CR>
FP3 =B_JFFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-@FFF? 110092613 <CR>
FP4 =@ TFFF_FFFFFFFFFFFFFFFF= @.FFFFFFFFFFFFFFFF_E-OFFF? 4564 <CR>

FP5 =0_JFFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-@FFF? 0 SFF FOAB < CR>
FP6 =@ TFFF_FFFFFFFFFFFFFFFF= @.FFFFFFFFFFFFFFFF_E-@FFF? 3.1415 <CR>

FP7 =g_TFFF_FFFFFFFFFFFEFFFF= @.FFFFFFFFFFFFFFFF_E-QFFF? -2.74638369E-36. < CR>
- 135Bug> »

135Bug>RD +FPC <CR>

PC =0@002008 SR =27@@=TR:OFF S. 7_.....

USP - =0@p@383@ MSP =00@@3C18 ISP* =g00@4aogg VBR =00000000
SFC =@=F@ DFC =@=F@ CACR =0@=.. CAAR =0@000000
D¢ =00000000 D1 =00000008 D2 =00000000 D3 =00000000
D4 =00000008 DS =000P0008 D6 =00000000 D7 =00P30000
Ad =00000000 Al =00000000 A2 =00000008 A3 =00000000
A4 =00000000 AS = =00000009 A6 =00000008 A7 =00004000
FPCR =0@@00008 FPSR =0F@00008- (CC=NZI[NAN]) FPIAR=00300000
FP8 =@_1234_5000000000000000= 6.625838537@745493 E-3530
FP1 =p_4009 9C49000000000000= 1.2500000000000000 E-0003
FP2 =1 _3FFF_BFF@@00000000000=-1.4995117187500000_E -3000
FP3 =1_3C9D_BCEECF12D@61BED9=-3.000000000000000d E-0261
FP4 =0 4008 8D0P0000AA00AA00= 5.6400000000000000 E-00@2
FPS =@ 41FF_F855800000000000= 2.6012612226385672_E-0154
FP6 =0_4000 CIPE5604189374BC= 3.1415000000000000 E -0000
FP7 =1 _3F88_E9A2FPB8D678C318=-2.7463836900000000 E-03036
00002000 00000000 OR.B #90,00

135Bug>

3-88

PRELIMINARY MVME135BUG/D2

The RM command is also used to modify the Paged Memory Management
Unit registers (the MC68851).

Example 4:

135Bug>RM CRP < CR>

CRP =p0000000 00000000 ? <CR>
SRP =00000000 080008000 ? <CR>
DRP =p0000000 00000000 ? 12345678 12345678 <CR>
TC =00000P00 ? 87654321 <CR>

PCSR =0@@B-.. B? <CR>

PSR =0@0B-......... _0? <CR

AC =p0@@ ? <CR>

CAL =08 ? <CR>

VAL =8 ? <CR>

SCC =@8 ? <CR>

BADZ =000 ? <CR>

BAD1 =pp@g ? <CR>

BAD2 =0009 ? <CR>

BAD3 =0p0g ? <CR>

BAD4 =ppog ? <CR>

BAD5 =P80 ? <CR>

BAD6 =0000 ? <CR>

BAD7 =088 ? <CR> j .
BACZ =0p00 ? <CR>

BAC1 =0000 ? <CR>

BAC2 =000 ? <CR>

BAC3 =0000 ? <CR>

BAC4 =ppog ? <CR>

BAC5 =0p08 ? <CR>

BAC6 =p@0d ? <CR>

BAC7 =000 ? . <CR>

135Bug>

3-89

PRELIMINARY . MVME135BUG/D2

135Bug>RD +PMMU < CR>

PC =@0002000 SR =2700=TR:OFF S. 7

USP =0@0@3830 MSP =@0@p3C18 ISP* =0gggagdd VBR =00000000
SFC =g=Fg@ DFC =@=Fg CACR =@=.. CAAR =00000000
DF =0Pg00ge0 DI =00000000 D2 =00000008 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
AD =00000000 Al =00000000 A2 =00000090 A3 -00000000
A4 =0p@00000 AS =00000000 A6 =00000008 A7 =00004000

CRP =@000000¢ 00000008 SRP =(0000000 09000000
DRP =12345678_12345678 TC =87654321 _
PCSR =000@-.. @ PSR =0@@@-......... P
AC =g0ao CAL =09 VAL =0d SCC =09

BADS 0000 BADl =0@08 BAD2 =@00@ BAD3 =$000
BAD4 =000@ . BADS =0@0 BAD6 -0008 BAD7 =0000
BACO =0000 BACl =0P0@ = BAC2 =0000 BAC3 =0000
BAC4 =0P00 BACS =0P@0 BAC6 =0000 BAC7 -0000
00002000 20000000 "~ OR.B #0,08 -
135Bup> , '

3-99

PRELIMINARY MVME135BUG/D2

L)
3.33 Switch Directories

sD

The SD command is used to change from the debugger directory to the
diagnostic directory or from the diagnostic directory to the
debugger directory.

The commands in the current directory (the directory that the user
is in at the particular time) may be listed using the HE (Help)
command.

The way the directories are structured, the debugger commands are
available from either directory but the diagnostic commands are only
available from the diagnostic directory.

Example 1:

135Bug>SD "< CR>

135Diag> (The user has changed from the debugger)
(directory to the diagnostic directory,)
(as can be seen by the " 135Diag>")
(prompt.)

Example 2:

135Diag>SD <CR>

135Bug> (The user is now back in the debugger)
(directory.)

3-91

PRELIMINARY) MVME135BUG/D2

3.34 Trace T

T [< COUNT>]

The T command allows execution of one instruction at a time,
displaying the target state after execution. T starts tracing at
the address in the target PC. The optional count field (which
defaults to 1 if none entered) specifies the number of instructions
to be traced before returning control to 135Bug.

Breakpoints are monitored (but not inserted) during tracing for all
trace commands, which allows the use of breakpoints in ROM or write
protected memory. In all cases, if a breakpoint with @ count is
encountered, control will be returned to 135Bug.

The trace functions are implemented with the trace bits (T8, T1) in

the MC68028 status register; therefore, these bits should not be
modified by the user while using the trace commands.

Example: (The following program resides at location $10000)
135Bup>MD 19999;DI <CR>

00010000 2200 MOVE.L D@,Dl
00010002 4282 CLR.L D2
00010004 D4B1 " ADD.B D1,D2
00010006 E£289 LSR.L #1,D1
00010008 66FA BNE.B- $10004
POP10P0A E20A LSR.B #1,02
9001000C 55C2 sCS D2
POO10POE 60FE BRA.B S1POPE
135Bug>

Initialize PC and D@:

135Bug>RM PC <CR>

PC =00008000 ? 10009. <CR>
135Bug>RM D@ <CR>

D0 =00000P0B ? 8F41C. <CR>
135Bug>

3-92

00010004 DAG1
135Bug>

ADD.B

D1,D2

3-93

PRELIMINARY MVME135BUG/D2
Display target registers and trace one instruction:
135Bug>RD <CR>

PC =pPP100GG SR =27@@=TR:OFF S. 7_.....

USP =@p@@382C MSP =@@@@3C14 ISP* =pPPR40AG VBR =PP000000
SFC =B=F@ DFC =@=F0 CACR =@=.. CAAR =00000000
D8 =pg@@8F41C D1 =PPPPPPOP D2 =PPPPPOPP D3 =00000000
D4 =00000006 D5 =P0000008 D6 =PPPPGEAS D7 =0P00000H
A0 =00000008 Al =00000000 A2 =0PPPP0B0 A3 =00000000
A4 =00000000 AS =00000000 A6 =00000000 A7 =00004000
20010000 22060 MOVE.L Dg,Dl1

135Bug>T <CR>

PC =00P100008 SR =27@0@=TR:0FF S. 7_.....

USP =p@@@382C MSP =@PPA3C14 ISP* =pP034000 VBR =00000000
SFC =@=F@ DFC =@=F@ CACR =§=.., CAAR =P0000000
D¢ =PP@A8F41C D1 =PPP8F41C D2 =PPO0PEGE D3 =00P00000
D4 =0PPP00ee DS =0PPPP0e8 D6 =00000000 D7 =00000000
Ad =00000000 Al =00000000 A2 =PP0P0000 A3 =0P000000
A4 =00000P00 AS =00000000 A6 =0P000008 A7 =00004000
Pp010002 4282 CLR.L D2

135Bug>

Trace next instruction:

135Bug>< CR>

PC =PpPP10004 SR =2704=TR:OFF_S. 7_..Z..

USP =pPp@382C MSP =pP@@3C14 ISP* =pP0P40@G VBR =00000000
SFC =@=Fg@ DFC =@=F@ CACR =@=.. CAAR =0p000000
D6 =PPESF41C D1 =POGASF41C D2 =0PP0000@A¢ D3 =P0000A00
D4 =0P0000g¢ D5 =PPPPP000 D6 =0P0PPG00 D7 =03000000
AG =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =P000R00G AS =P0000000 A6 =00000000 A7 =00004000

PRELIMINARY

Trace the next two instructions:

135Bug>T 2 <CR>

PC =0@@19000 SR
USP =@@@@382C MSP
SFC =@=F@ DFC
0D =@P@sF41C D1
D4 =@000@0a0 DS
A8 =00000000 Al
A4 =00000300 A5

$A@100906 E289

PC =00P10008 SR
USP =@@@p382C MsP
SFC =@=Fp DFC
D3 =0@@8F41C D1
04 =P0@PORRB DS
A8 =00000008 Al
A4 =(00000800 AS

00010008 66FA
135Bug>

=2700=TR:OFF_S.

=@@@d3Cc14 1SpP*
=@=F0 CACR
=@@@8F41C D2
=0000000@ D6
=00000000 A2
=00000000 A6
LSR.L

=27@@=TR:OFF_S. 7

=@0P0@3C14 ISp*
=@=Fp CACR
=00047A0E D2
=00000000 D6
=00000000 A2
=00000008 A6
BNE.B

R

=00004008 VBR
=P=.. CAAR
=0@@@e@a1C D3
=00000000 D7
=00000000 A3
=00000008 A7
#1,D1
=00d04008 VBR
=f=.. CAAR
=¢00p@e1C D3
=00000008 D7
=00000008 A3
=00000008 A7
410004

3-94

=$0000000
=00000000
=00000000
=00000000
=00000000
=$00a4000

=00000000
=00000000
=00000000
=00000000
=00000000
=00004000

MVME135BUG/D2

PRELIMINARY MVME135BUG/D2

3.35 Trace On Change Of Control Flow TC

TC [< COUNT>]

The TC command will start execution at the address in the target PC
and will begin tracing upon the detection of an instruction that
causes a change of control flow, such as JSR, BSR, RTS, etc. This
means that execution will be in real time until a change of flow
instruction is encountered. The optional count field (which
defaults to 1 if none entered) specifies the number of change of flow
instructions to be traced before returning control to 135Bug.

Breakpoints are monitored (but not inserted) during tracing for all
trace commands, which allows the use of breakpoints in ROM or write
protected memory. Note that the TC command will recognize a
breakpoint only if it is at a change of flow instruction. In all
cases, if a breakpoint with @ count is encountered, control will be
returned to 135Bug.

The trace functions are implemented with the trace bits (T8, T1) in

the MC68@20 status register, therefore, these bits should not be
modified by the user while using the trace commands.

Example: (The following program resides at location $10000)

135Bug>MD 10098;D1 <C

20010000 2200 : MOVE.L - D@,Dl
Po010002 4282 — : CLR.L D2
P0010084 D4O1 - : ADD.B D1,D2
#0@10006 E289 "~ LSR.L #1,D1
go010008 66FA "o~ 'BNE:B $100p4
PO01000A E20A : ~ LSR:B #1,D2
#0@10@8C 55C2 ' - SCS D2 .
POP1000E 6BFE © BRAB $1000E
135Bug> :

3-95

PRELIMINARY

Initialize PC and D@:

135Bug>RM PC < CR>

PC =00008000 ? 19008. <CR>
135Bug>RM D@ < CR>

00 =0000PP0D ? SFAIC. <CR>
135Bug>

Trace on change of flow:

135Bug>TC < CR>
pP010008 66FA

BNE.B

$10004

PC =0@010004 SR =27P@=TR:OFF S. 7

USP =0pp@382C MSP =0@@@3C14 ISP*
CACR

SFC =@=F@ DFC =@=F@
D@ =0o@8F41C D1 =00047A8

E D2

D4 =00000000 D5 =00000008 D6
A8 =00000000 Al =00000000 A2
A4 =00000000 AS =00000000 A6

00010004 Dagl
135Bug>

ADD.B

-00P04008 VBR
=g=.. CAAR
=gpagegIc D3
=00000000 07
00000000 A3
00000008 AT
D1,D2

=00000000
=00000000
=00000000
=00000000
=00000000
=000084000

MVME135BUG/D2

Note that the above display also shows the change of flow

instruction.

3-96

FRELIMINARY MVME135BUG/D2

3.36 Transparent Mode . T™

TM [n] [< ESCAPE>]

The TM command essentially connects the console serial port and the
host port together, allowing the user to communicate with a host
computer. A message displayed by TM shows the current escape
character, i.e., the character used to exit the transparent mode.
The two ports remain "connected" until the escape character is
received by the console port. The escape character is not
transmitted to the host and at power up or reset is initialized to
$B1="A.

The optional port number "n" allows the user to specify which port
will be the "host"port. If omitted, port 1 will be assumed.

The ports do not have to be at the same baud rate, but the terminal
port baud rate should be equal to or greater than the host port baud
rate for reliable operation. To change the baud rates use the PF
command. : -

The optional escape argumeht allows the user to specify the
character to be used as the exit character. This can be entered in
three different formats:

"ASCII code : $83 Set escape character to ~ C
ASCII character : '‘c Set escape character to ¢
~ control character: ~C Set escape character to * C

1f the port number is omitted and the escape argument is entered as a -
numeric value, precede the escape argument with a comma to
distinguish it from a port number. .

Example 1:

135Bup>™ <CR> - Enter TM

Escape character: $@1=* A Exit code is ;1ways displayed
<A B Exit transparent mode

135Bug>

Example 2: ,

135Bug>T ~G < CR> Enter TM and set escape character
Escape character: $87="G to ~ G 4

<AG> T ‘ _ Exit transparent mode

135Bug>

3-97

PRELIMINARY MVME135BUG/D2

3.37 Trace To Temporary Breakpoint 1T

TT < ADDR>

The TT command will set a temporary breakpoint at the specified
address and will trace until a breakpoint with @ count s
encountered. The temporary breakpoint is then removed (TT is
analogous to the GT command) and control is returned to 135Bug.
Tracing starts at the target PC address.

Breakpoints are monitored (but not inserted) during tracing for all
trace commands, which allows the use of breakpoints in ROM or write
protected memory. If a breakpoint with # count is encountered,
control will be returned to 135Bug.

The trace functions are implemented with the trace bits (T4, T1) in

the MC68@28 status register; therefore, these bits should not be
modified by the user while using the trace commands.

Example: (The following program resides at location $18009)
135Bug>MD 10008;D1 <CR>

00010008 2200 MOVE.L D@,D1
79010002 4282 : CLR.L D2
20010004 D401 ADD.B D1,D2
$0810006 E289 LSR.L #1,D1
90910008 66FA BNE.B $10004
0001000A E20A LSR.B #1,D2
#00180@C 55C2 SCS D2
$001000E 6@FE BRA.B $1000E
135Bug>

Initialize PC and D@:

135Bug>RM PC <CR>

PC =0P@@dsgos ? 10089. <CR>
135Bug>RM D@ <CR>

D8 =-0000P30d ? 8F41C. <CR>
135Bug

3-98

PRELIMINARY

Trace to temporary

135Bug>TT 10086 <CR>

PC =00010882 SR
USP =P@@p382C MSP
SFC =@=Fp DFC
D@ =P@@8F41C DI
D4 =PAPACOPE DS
A =00000008 Al
A4 =p00AAER0 A5

0PP10002 4282

PC =@00106@84 SR
USP =Pp@@@A382C MSP
SFC =p=F0 DFC
D@ =P@P@SF41C DI
D4 =PPEOOBES D5
A0 =00000000 Al
A4 =pPPPEB0B AS

0010004 D4G1
At Breakpoint

PC =P0010002 SR
UsP =p@@@382C MSP
SFC. =p=F@ DFC
D8 =pO@8F41C DI
D4 =0P0PAPG D5
AB =0P0P0008 Al
A4 =0P00@B00 A5

0010006 E289
135Bug>

breakpoint:

=2708=TR:OFF S.
=0PPP3C14 1SP*
=B=F6 CACR
=0PO8F41C D2
00000000 D6
00000000 A2
-00000000 A6
CLR.L
=2704=TR:OFF S.
=pPPP3C14 ISP*
=B=F8 CACR
=pOO8F41C D2
-0000P000 D6
=00000000 A2
=0app0000 A6
ADD.B

=27@@=TR:OFF _S.

=pPPP3C14 ISP*
=p=F@ CACR
=PP@8F41C D2
=pPP0voep D6
=P0000000 A2
=pPP00ea0 A6
LSR.L

T
00004000 VBR
=f=.. CAAR

=00000000 D3
=00000000 D7
=00000000 A3
00000000 A7
D2
7_..1..
=0P0P4000 VBR
=f=.. CAAR
=0P000000 D3
00000000 D7
00000000 A3
00000000 A7
D1,D2

~0B004000 VER
=p=.. CAAR
=0000001C D3
=00000000 T
~00000000 A:
~0p000000 A7
#1,01

3-99

=0pApa000
=PPP00000
=0P000000
=00000008
=0PAgae00
=0PP04000

=00000000
=0papa000

=p00p0000

=00000008
=p00pe00s
=00004008

=000a0000
=ppa00000
=00000000
=PPp00008
=00000008
=0P0g4000

MVME135BUG/D2

PRELIMINARY o MVME135BUG, D2

3.38 Verify S-Records Against Memory ' VE

VE[n][<ADDR>][;<X/fc>][=<tex;>]

This command is identical to the LO command with the exception that
data is not stored to memory but merely compared to the contents of
memory. .

The VE command accepts serial data from a host system in the form of a
file of Motorola S-Records and compares it to data already in
memory. If the data does not compare then the user is alerted via
information sent to the terminal screen.

The optional port number "n" allows the user to specify which port
is to be used for the downloading. If this number is omitted, port 1
will be assumed. . .

The. optional < ADDR> field allows the user to enter an offset
address which is to be added to the address contained in the address
field of each record. This will cause the records to be compared to
memory at different locations then would normally occur. The
contents of the automatic offset register are not added to the S-
Record addresses. If the address is in the range $8 to $1F and the
port number is omitted, precede the address with a comma to
distinguish it from a port number.

The optional text field, entered after the equals sign (=), will be
sent to the host before 135Bug begins to look for S-Records at the
host port. This allows the user to send a command to the host device
to initiate the download. This text should NOT be delimited by any
kind of quote marks. The text is understood to begin immediately
following the equals sign and terminate with the carriage return.
If the host is operating full duplex, the string will also be echoed
back to the host port by the host and will appear on the user’s
terminal screen.

In order to accommodate host systems that echo all received
characters, the above-mentioned text string is sent to the host one
character at a time and characters received from the host are read
one at a time. After the entire command has been sent to the host VE
will keep looking for a <LF> character from the host, signifying
the end of the echoed command. No data records will be processed
until this <LF> is received. If the host system does not echo
characters, VE will still keep looking for a < LF> character before
data records are processed.

For this reason it is required in situations where the host system

does not echo characters that the first record transferred by the
host system be a header record. The header record is not used but the

3-100

PRELIMINARY MVME135BUG/D2

< LF> after the header record serves to break VE out of the loop so
that data records will be processed.

The other options have the following effects:

-C option - Ignore checksum. A checksum for the data contained
within an S-Record is calculated as the S-Record is read
in at the port. Normally, this calculated checksum is
compared to the checksum contained within the S-Record
and if the compare fails, an error message is sent to
the screen on completion of the download. If this
option is selected then the comparison is not made.

X option - Echo. This option echoes the S-Records to the user’s
terminal as they are read in at the host port.

During a verify operation, an S-Record’s data is compared to memory
beginning with the address contained in the S-Record’s address field
(plus the offset address, if it was specified). If the verification
fails then the non-comparing record is set aside until the verify is
complete and then it is printed out to the screen. If three non-
comparing records are encountered in the course of a verify
operation then the command is aborted.

If a non-hex character is encountered within the data field of a data
record then the part of the record which had been received up to that
time will be printed to the screen and 135Bug’s error handler will be
invoked to point to the faulty character.

As mentioned, if the embedded checksum of a record does not agree
with the checksum calculated by 135Bug AND if the checksum
comparison has not been disabled via the "-C" option then an error
condition exists. A message will be output stating the address of
the record (as obtained from the address field of the record), the
calculated checksum and the checksum read with the record. A copy of
the record is also output. This is a fatal error and causes the
command to abort.

3-101

PRELIMINARY ’ MVME135BUG/D2

Examples:

This short program was developed on a host system.

1 * Test Program.

2 *

3 65040000 ORG $65040000
4

5 .6504000 7001 MOVEQ.L #1,D8

6 6504002 D@88 ADD.L Ag,Dd

7 6504004 4AQQ - TST.B D@

8 6504006 4E75 RTS

9 END

*xxkxse TOTAL ERRORS 8--
*xskxk TOTAL WARNINGS @--

Then this program was converted into an S-Record fi1é named TEST.MX
as follows: ' o ’

SP@ro00@5445535453335337202081015E
S30D650400007081D0884A0B4E7583
S7@56504000091

This file was downloaded into memory at address $400@8@8. The program
may be examined in memory using the MD (Memory Display) command.

135Bug>M 40999:4;D1 <CR>

p0041000 7901 MOVEQ.L #1,D@
90040002 DISS ADD.L Ad,D@
00040004 4AD TST.B D@
00040006 4E75 RTS

135Bug>

3-1082 .

PRELIMINARY MVME135BUG/D2

Suppose that the user wants to make sure that the program has not
been destroyed in memory. The VE command will be used to perform a
verification.

135Bug>VE -650000008;X=COPY TEST.MX,# <CR>
SOPFOPPP5445535453335337202001015E
S30D650400007001DA884ARPAETSB3
S70856504000091

Verify passes.

135Bug>

The verification passes. The program stored in memory was the same
as that in the S-Record file that had been downloaded.

Now change the program in memory and perform the verification again.

135Bug>M 49982 < CR>

p0p4p0P2 DPBS ? DP8Y. <CR>

135Bug>VE -65000000;X=COPY TEST.MX,# <CR>
SOPFAPPA5445535453335337202001015E
S36D650400007001DP884ABG4E 7583
S705650840600091

$30D65040000 - - - - - - 88-------- B3
135Bug>

The byte which was changed in memory does not compare with the
corresponding byte in the S-Record.

3-183

PRELIMINARY ' MVME135BUG/D2

THI SFPAGE. :INTENTIONALLV LEFT BLANK

3-104

PRELIMINARY MVME135BUG/D2

CHAPTER 4
USING THE ONE-LINE ASSEMBLER/DISASSEMBLER

4.1 Introduction

Included as part of the 135Bug firmware is an assembler/disassembler
function. The assembler is an interactive assembler/editor i1n which
the source program is not saved. Each source line is translated into
the proper MC68020/MC68851/MC68881 machine language code and is
stored in memory on a line-by-line basis at the time of entry. Ir
order to display an instruction, the machine code is disassembled
.and the instruction mnemonic and operands are displayed. All viiic
MC68020 instructions are transliated.

The 135Bug assembler is effectively a subset of the MC68020 Resident
Structured Assembler. It has some limitations as compared with the
Resident Assembler, such as not allowing 1ine numbers and labels;
however, it is a powerful tool for creating, modifying, and
debugging MC680828 code.)

4.1.1 MC68020 Assembly Language

The symbolic language used to code source programs for processing by
the assembler is MC6882@ assembly. This language is a collection of
mnemonics representing:

e Operations
- MC68020 machine-instruction operation code
- Directives (pseudo-ops)

e Operators
e Special symbols

4.1.1.1 Machine-Instruction Operation Codes

The part of the assembly language that provides the mnemonic
machine-instruction operation codes for the
MC6802@/MC68851/MC68881 machine instructions are described in the
MC68@2QUM, MC68851UM, and MC68881UM Technical User’s Manuals.
Refer to these manuals for any question concerning operation codes.

4.1.1.2 Directives

- Normally, assembly language can contain mnemonic directives which
specify auxiliary actions to be performed by the assembler. The
135Bug assembler recognizes only two directives called DC.W (define

4-1

PRELIMINARY : MVME135BUG/D2

constant) and SYSCALL. These two directives are used to define data
within the program and to make calls to 135Bug utilities (refer to
paragraphs 4.2.3 and 4.2.4, respectively).

4.1.2 Comparison with MC68020 Resident Structured Assembler

There are several major differences between the 135Bug assembler and
the MC68028 Resident Structured Assembler. The resident assembler
is a two-pass assembler that processes an entire program as a unit,
while the 135Bug assembler processes each line of a program as an
individual unit. Due mainly to this basic functional difference,
the capabilities of the 135Bug assembler are more restricted:

1. Label and line numbers are not used. Labels are used to reference
other lines and locations in a program. The one-line assembler
has no knowledge of other lines and, therefore, cannot make the
required association between a label and the label definition
located on a separate line.

2. Source lines are not saved. In order to read back a program after
it has been entered, the machine code is disassembled and then
displayed as mnemonic and operands.

3. Only two directives (DC.W and SYSCALL) are accepted.
4. No macro operation capability is included.
5. No conditional assembly is used.

6. Several symbols recognized by the resident assembler are not
included in the 135Bug assembler character set. These symbols
include > and <. Three other symbols have multiple meaning to
the resident assembler, depending on the context. These are:

a. Asterisk (*) -- Multiply or current PC.
b. Slash (/) -- Divide or delimiter in a register list.
c. Ampersand (&) -- And or decimal number prefix.

Although functional differences exist between the two assemblers,
the one-line assembler is a true subset of the resident assembler.
The format and syntax used with the 135Bug assembler are acceptable
to the resident assembler except as described above.

4-2

PRELIMINARY : MVME135BUG/D2

4.2 Source Program Coding

A source program is a sequence of source statements arranged in a
logical way to perform a predetermined task. Each source statement
occupies a line and must be either an executable instruction, a DC.W
directive, or a SYSCALL assembler directive. Each source statement
follows a consistent source 1ine format.

4.2.1 Source Line Format

Each source statement is a combination of operation and, as
required, operand fields. Line numbers, labels and comments are NOT
used.

4.2.1.1 Operation Field

Since there is no label field, the operation field may begin in the
first available column. It may also follow one or more spaces.
Entries can consist of one of three categories:

1. Operation codes -- Which correspond to the
MC680206/MC68851/MC68881 instruction set.

2. Define Constant directive -- DC.W is recognized to define a
constant in a word location.

3. System Call directive -- SYSCALL is used to call 135Bug system
utilities.

"The size of the data field affected by an instruction is determined
" by 'the data size codes. Some instructions and directives can
~operate on.more than one data size. For these operations, the data
. size code must be specified or a default size applicable to that
“instruction will be assumed. The size code need not be specified if
-only one data size is permitted by the operation. The data size code
- is specified by a period (.), appended to the operation field, and
followed by B, W, or L, where:

B = Byte (8-bit data) v
W = Word (the usual default size; 16-bit data)
L = Longword (32-bit data)

The data size code is not permitted, however, when the instruction
or directive does not have a data size attribute.

4-3

PRELIMINARY ‘ MVME135BUG/D2

Examples (1éga]):

LEA (A2),Al Longword size is assumed (.B, .W not allowed); this‘
instruction loads the effective address of the
first operand into Al.

ADD.B (AB),D@ This instruction adds the byte whose address is
(Ag) to the Towest order byte in D@.

ADD D1,D2 This instruction adds the low order word of D1 to
the low order word of D2. (W is the default size
code.)

ADD.L A3,D3 This instruction adds the entire 32-bit (longword)
contents of A3 to D3.

Example (illegal): .

SUBA.B #5,Al1 I11egal size specification (.B not allowed on
SUBA). This instruction would have subtracted the
value 5 from the low order byte of Al; byte
operations on address registers are not allowed.

4.2.1.2 Operand Field

If present, the operand f1e1d ‘follows the operation filed and is
separated from the operation field by at least one space. When two
or more operand subfields appear within a statement, they must be
separated by a comma. In an instruction 1ike ' ADD D1,D2’, the first
subfield (D1) is called the source effective address field, and the
second subfield (D2) is called the destination < EA> field. Thus,
the contents on D1 are added to the contents of D2 and the result is
saved in register D2. In the instruction ’ MOVE D1,D2’, the first
subfield (D1) is the sending field and the second subfield (D2) is
the receiving field. In other words, for most two-operand
instructions, the format

4.2.1.3 Disassembled Source Line

The disassembled source line may not look identical to the source
line entered. The disassembler makes a decision on how it
interprets the numbers used. If the number is an offset off of an
address register, it is treated as a signed hexadecimal offest.
Otherwise, it is treated as a straight unsigned hexadecimal.

4-4

PRELIMINARY MVME135BUG/D2

For example,

MOVE.L #1234,5678
MOVE.L FFFFFFFC(Ad),5678

disassembles to

0PP@30@8 21FCOPPB 12345678 MOVE.L #$1234,($5678).W
pOGA30P8 21EBFFFC 5678 MOVE.L -$4(Ad),($5678).W

Also, for some instructions, there are two valid mnemonics for the
same opcode, or there is more than one assembly language equivalent.
The disassembler may choose a form different from the one originally
entered. As examples:

a. BRA is returned for BT
b. DBF is returned for DBRA

NOTE

The assembler recognizes two forms of mnemonics for two branch
instructions. The BT form (branch conditionally true) has the same
opcode as the BRA instruction. Also, DBRA (decrement and branch
always) and DBF (never true, decrement, and branch) mnemonics are
different forms for the same instruction. In each case, the
assembler will accept both forms.

4.2.1.4 Mnemonics and Delimiters

The assembler recognizes all 68828 instruction mnemonics. Numbers
are recognized as binary, octal, decimal, and hexadecimal, with
hexadecimal as the default case.

a. Decimal - is a string of decimal digits (@ to 9) preceded by an
ampersand (&). Examples are:

&12334
-8987654321

b. ‘Hexadecimal - is a string of hexadecimal digits (8 to 9, A to F)
preceded by an optional dollar sign ($). An example is:

SAFES

PRELIMINARY . MVME135BUG/D2

One or more ASCII characters enclosed by apostrophes (' ')
‘constitute an ASCII string. ASCII strings are right-justified and
zero filled (if necessary), whether stored or used as immediate
operands.

0003008 21FCPAIP 12345678 MOVE.L #51234,($5678).W

205000 2053 DC.W 'S’
g@5002 223C41424344 MOVE.L #’ABCD’,D1

285008 3536 DC.W 56’

The following register mnemonics are recognlzed/referenced by the
assembler/disassembler:

~ Pseudo Registers

R@-R7 User Offﬁet‘ Registers.

Main Processor Registers:

PC Program Counter.
Used only in forcing program counter- rel ative addressmg

SR Status Register.

CCR Condition Codes Register (lower eight blts of SR)
usp User Stack Pointer.

MSP Master Stack Pointer.

Isp Interrupt Stack Pointer.

VBR . Vector Base Register.

SFC Source Function Code Register.

DFC Destination Function Code Register.

CACR Cache Control Register.

CAAR Cache Address Register.

D@-D7 Data Registers.

Ag-A7 Address Registers.
Address register A7 represents the active system stack pointer,
that is, one of USP, MSP, or ISP, as specified by the M and S bits
in the status register (SR).

4-6

PRELIMINARY MVME13'SBUG/DZ

Floating Point Coprocessor Registers

FPCR Control Register.
FPSR Status Register.
FPIAR Instruction Address Register.
FPB-FP7 Floating Point Data Registers.
Paged Memory Management Unit Coprocessor Registers
PSR Status Register.
PCSR Cache Status Register.
AC Access Control Register.
CRP CPU Root Pointer.
SRP Supervisor Root Pointer.
DRP DMA Root Pointer.
TC Translation Control Register.
BAC@-BAC7 Breakpoint Acknowledge Control Registers.
BAD@-BAD7 Breakpoint Acknowledge Data Registers.
CAL Current Access Level.
VAL Validate Access Level.
ScC Stack Change Contrp] .

‘4.2.1.5 Chéracter Set

The character set recognized by the 135Bug assembler is a subset of
ASCII, and is Tisted below:

1. The Tetters A through Z (uppercase and lowercase)

2. The integers @ through 9

3. Arithmetic operators: + - * /<< >> | &

4. Parentheses ()

4-7

PRELIMINARY

. MVME135BUG/D2

5. Characters used as special prefixes:

#
$
&
e
%

’

(pound sign) specifies the immediate form of addressing.
(dollar sign) specifies a hexadecimal number.

(ampersand) specifies a decimal number.

(commercial at sign) specifies an octal number.

(percent sign) specifies a binary number. ’
(apostrophe) specifies an ASCII Titeral character string.

6. Five separating characters:

- Space
, (comma)
(period)
/ (slash)
- (dash)

7. The character * (asterisk) indicates current location.

4.2.2 Addressing Modes

Effective address modes, combined with operation codes, define the
particular function to performed by a given instruction. Effective
addressing and data organization are described in detail in Section
2, "Data Organization and Addressing Capabilities"”, of the MC68@20
User’s Manual.

Table 4-1 summarizes the addressing modes of the MC6882@ which are
accepted by the 135Bug one-line assembler.

4-8

PRELIMINARY

MVME135BUG/D2

TABLE 4-1. 135Bug ASSEMBLER ADDRESSING MODES

Format Description

Dn Data register direct.

An Address register direct.

(An) Address register indirect.

(An)+ Address register indirect with post-increment.

-(An) Address register indirect with pre-decrement.

d(An) Address register indirect with displacement.

d(An,Xi) Address register indirect with index, 8-bit
displacement.

(bd,An,Xi) Address register indirect with index, base
displacement.

([bd,An},Xi,od) Address register memory indirect post-indexed.

([bd,An,Xi],od) Address register memory indirect pre-indexed.

ADDR(PC) Program counter indirect with displacement.

ADDR(PC,Xi) Program counter indirect with index, 8-bit
displacement.

(ADDR, PC,Xi) Program counter indirect with index, base
displacement.

([ADDR,PC],Xi,od) Program counter memory indirect post-indexed.

([ADDR,PC,Xi],0d) Program counter memory indirect pre-indexed.

(xxxx).W Absolute word address.

(xxxx).L Absolute long address.

XXXX Immediate data.

The user may use an expression in any numeric field of these
addressing modes. The assembler has a built in expression evaluator
that supports the following operands types and operators:

1) Binary numbers (%10)
2) Octal numbers (@765..0)
3) Decimal numbers (8987..0)

4) Hexadecimal numbers ($FED..D)

5) String literals (’CHAR’)
6) Offset registers (RB-R7)
7) Program counter (*)

4-9

PRELIMINARY MVME135BUG/D2

Allowed operators are:

1) Addition

2) Subtraction
3) Multiply

4) Divide

5) Shift left

6) Shift right
.7) Bitwise or

8) Bitwise and

— VvV A
20 VA\:(-|+

The order of evaluation is strictly left to right with no precedence
granted to some operators over others. The only exception to this is
when the user forces the order of precedence via the use of
parentheses. -

Possible points of confusion:

1.

The user should keep in mind that where a number is intended and
it could be confused with a register, it must be differentiated
in some way. For example:

CLR D@ means CLR.W register D@. On the other hand,
CLR $D9 ’

CLR gD9

CLR +D@ . .

CLR Do+8 all mean CLR.W memory location $D@.

. With the use of "*" to represent both multiply and program

counter, how does the assembler know when to use which
definition?

For parsing algebraic expressions, the order of parsing is

<OPERAND ><OPERATOR ><OPERAND ><OPERATOR >...

with a possible left or right parenthesis.

Given the above order, the assembler can distinguish by placement
which definition to use. For example:

PRELIMINARY MVME135BUG/D2

1) *x* Means PC * PC
2) *4* Means PC + PC
3) 2** Means 2 * PC
4) *&&16 Means PC AND &l6

When specifying operands, the user may skip or omit entries with the
following addressing modes.

1) Address register indirect with index, base displacement.
2) Address register memory indirect post-indexed.

3) Address register memory indirect pre-indexed.

4) Program counter indirect with index, base displacement.
5) Program counter memory indirect post-indexed.

6) Program counter memory indirect pre-indexed.

For modes Address register/Program counter indirect with index,
base displacement, the rules for omission/skipping are as follows:

1. The user may terminate the operand at any time by spec1fy1ng "y,
Example:

-

CLR () or
CLR (s,) is equivalent to
CLR (0.N,ZA0,208.0*1)
2. The user may Sklp a field by "stepping pést" itjwith a comma. -
jExamp]e o : C
CLR (D7) is equivalent to
: CLR ($D7,ZAB,2D0.W*1)
but . ‘
' CLR (,,D7) is equivalent to
CLR _(B.N,ZAB,D7.W*1)

3. If the user does not specify the base reg1ster the default "ZAE"
is forced.

4, If the user does not specxfy the index register, the default
"ZD@.W*1" is forced.

4-11

PRELIMINARY MVME135BUG/D2

5. Any unspecified displacements are defaulted to "@.N".

The rules for parsing the memory indirect addressing modes are the
same as above with the folldwing additions.

1. The subfield that begins with "[" must be terminated with a
., matching "]".

2. If the text given is insufficient to distinguish between the
pre-indexed or post-indexed addressing modes, the default is the
pre-indexed form.

4.2.3 DC.W Define Constant Directive
The format for the DC.W directive is:

DC.W <operand >

The function of this directive is to define a constant in memory.
The DC.W directive can have only one operand (16-bit value) which
can contain the actual value (decimal, hexadecimal, or ASCII).
Alternatively, the operand can be an expression which can be
assigned a numeric value by the assembler. The constant is aligned
on a word boundary if word (.W) size is specified. An ASCII string is
recognized when characters are enclosed inside single quotes (').
Each character (7 bits) is assigned to a byte of memory with the
eighth bit (MSB) always equal to zero. If only one byte is entered,
the byte is left justified. A maximum of two ASCII characters may be
entered for each DC.W directive.

Examples are:

90010022 2402 DC.W° 1234 Decimal number

p0010d24 AAFE DC.W SAAFE Hexadecimal number

90010026 4142 DC.W 'AB’ ASCII String

90010028 5443 DC.W ‘TB’+1 Expression

P0081002A 0043 DC.W ¢’ ASCII character is right justified

4.2.4 SYSCALL System Call Directive

The function of this directive is to aid the user in making the TRAP
#15 calls to the system functions. The format for this directive is:

SYSCALL <function name >

4-12

PRELTMINARY MVME135BUG/D2

For example, the following two pieces of code will produce identical
results.

TRAP #SF
DC.W g

or
SYSCALL .INCHR

Refer to Chapter 5 (SYSTEM CALLS), for a complete 1isting of all the
functions provided.

4.3 Entering and Modifying Source Program

User programs are entered into the memory using the one-line
assembler/disassembler. The program 1is entered in assembly
language statements on a 1line-by-line basis. The source code is not
saved as it is converted immediately to machine code upon entry.
This imposes several restrictions on the type of source line that
can be entered. .

Symbols and labels, other than the defined instruction mnemonics,
are not allowed. The assembler has no means to store the associated
values of the symbols and labels in Tookup tables. This forces the
programmer to use memory addresses and to enter data directly rather
than use labels.

Also, editing is accomplished by retyping the entire new source
line. Lines can be added or deleted by moving a block of memory data
to free up or delete the appropriate number of]ocat1ons (refer to
the BM command)

4.3.1 Invoking the Assembler/Dlsassemb1er

The assembler/disassembler is invoked using the ;D1 optlon of the MM
(Memory Modify) and MD (Memory Display) commands:

MM <ADDR > ;DI
where

<CR> sequences to next instruction
.<CR> exits command

and
MD[S] <ADDR>[:<count>|<ADDR>];DI

4-13

PRELIMINARY T MVME135BUG/D2

The MM (;DI option) is used for program entry and modification. When
this command is used, the memory contents at the specified locatign
are disassembled and displayed. A new or modified line can be
entered if desired.

The disassembled 1ine can be an MC68828 instruction, a SYSCALL, or a
DC.W directive. If the disassembler recognizes a valid form of some
instruction, the instruction will be returned; if not (random data
occurs), the DC.W $XXXX (always hex) is returned. Because the
disassembler gives precedence to instructions, a word of data that
corresponds to a valid instruction will be returned as the
instruction.

4.3.2 Entering a Source Line

A new source line may be entered immediately following the
disassembled 1ine, using the format discussed in paragraph 4.2.1:

135Bug>MM 19008;D1 <CR> .
00410000 2600 MOVE.L D@,03 ? ADDQ.L #1,A3 <CR>

When the carriage return is entered terminating the line, the old
source line is erased from the terminal screen, the new line is
assembled and displayed, and the next instruction in memory is
disassembled and displayed:

135Bug>MM 10009;DI <CR>
go010008 5288 ADDQ.L #1,A3
g0010092 4282 CLR.L D2 ?

If a hardcopy terminal is being used, port # should be reconfigured
for hardcopy mode for proper operation (refer to the PF command). In
this case, the above example will 1ook as follows:

135Bugp>MM 100808;D1 <CR>

00010008 2600 MOVE.L 0D@,D3 ? ADDQ.L #1,A3 <CR>
90010908 5288 ADDQ.L #1,A3
peo100d2 4282 CLR.L D2°?

Another program line can now be entered. Program entry continues in
Tike manner until all lines have been entered. A period is used to
exit the MM command. If an error is encountered during assembly of
the new line, the assembler will display the 1ine unassembled with a
"A" ynder the field suspected of causing the error and an error
message.

4-14

"

PRELIMINARY MVME135BUG/D2

The location being accessed is redisplayed:

135Bug>MM 10099;di < CR>
00010000 5288 ADDQ.L #1,A3 ? lea.l 5(aB,d8),aé <CR>
00010009 LEA.L 5(A®,D8),A4

A

*** Unknown Field ***
20010008 528B ADDQ.L #1,A3 ?

4.3.3 Entering Branch and Jump Addresses

When entering a source line containing a branch instruction (BRA,
BGT, BEQ, etc) do not enter the offset to the branch’s destination in
the operand field of the instruction. The offset will be calculated
by the assembler. The user must append the appropriate size
extension to the branch instruction.

To reference a current location in an operand expression, the
character "*" (asterisk) can be used. Examples are:

0030000 60084094 BRA *+$4(96
00030000 60FE BRA.B * -
00030000 4EF90003 0000 JMP *
00030000 4EFPO130 Y3000 JMP (*,Ad,D0)

In the case of forward branches or jumps, the absolute address of the
destination may not be known as the program is being entered. The
user tay temporarily enter an "*" for branch to self in order to
reserve space. After the actual address is discovered, the line
containing the branch instruction can be re-entered using the

correct value.

NOTE: Branch sizes must be entered as ".B" or ".W" as opposed to
".S" and.".L".

4.3.4 Assembler Output/Program Listings

A listing of the program is obtained using the MD (Memory Display)
command with the ;DI option. The MD command requires both the
starting address and the line count to be entered in the command
line. When the ;DI option is invoked, the number of instructions
disassembled and displayed will be equal to the 1ine count.

To obtain a hard-copy listing of a program, use the PA (Printer
Attach) command to activate the Port 1 printer. A MD (Memory

4-15

PRELIMINARY MVME135BUG/D2

Display) to the terminal will then cause a listing on the terminal
and on the printer. .

Note again, that the listing may not correspond exactly to the
program as entered. As discussed in paragraph 4.2.1.3, the
disassembler displays in signed hexadecimal any number it
interprets as an offset of an address register; all other numbers
are displayed in unsigned hexadecimal.

4-16

PRELIMINARY MVME135BUG/D2

CHAPTER &
SYSTEM CALLS

5.1 Introduction

This chapter describes the 135Bug TRAP #15 handler, which allows
system calls from user programs. The system calls can be used to
access selected functional routines contained within 135Bug,
including input and output routines. TRAP #15 may also be used to
transfer control to 135Bug at the end of a user program (refer to the
.RETURN function).

In the descriptions of some input and output functions, reference is
made to the "default input port"or the "default output port". After
power-up or reset, the default input and output port is initialized
to be the VME135 board’s console port. The defaults may be changed,
however, using the .REDIR_I and .REDIR_O functions.

5.1.1 Invoking System Calls Through TRAP #15 -

To invoke a system call from a user program simply insert a TRAP #15
instruction into the source program. The code corresponding to the
particular system routine is specified in the word following the
TRAP opcode, as shown in the following example.

Format in user program:

TRAP #15 System call to 135Bug
DC.W $xxxx Routine being requested (xxxx = code)

In some of the examples shown in the following descriptions, a
SYSCALL macro is used. This macro automatically assembles the TRAP
#15 call followed by the Define Constant for the function code. For
clarity, the SYSCALL macro is as follows:

SYSCALL MACRO

TRAP #15
DC.W \l
ENDM

Using the SYSCALL macro, the system call would appear in the user
program as follows:

SYSCALL <routine name>

5-1

PRELIMINARY , | MVME135BUG/D2

It is, of course, necessary to create an equate file with the routine
names equated to their respective codes.

When using 135Bug’s one-line assembler/disassembler, the SYSCALL

macro and the equates are predefined. Simply write in "SYSCALL"
followed by a space and the function, then the carriage return.

Example:

135Bug>M 3p09;D1 <CR> : :
0000 3000 00000000 ORI.B #%$0,08? SYSCALL .OUTLN <CR>

9000 3000 4E4FPP22 SYSCALL .OUTLN -
9000 3004 00000000 ORI.B #$0,08? . <CR>
135Bug> : :

5.1.2 Str1ng Formats for 1/0

Within the context of the TRAP #15 handler there are two formats for
strings: ‘

Pointer/Pointer Format - The string is defined by a pointer to the
first character and a pointer to the last
character + 1.

Pointer/Count Format - The string is defined by a pointer to a
count byte which contains the count of
characters in the string followed by the
string itself.

A line is defined as a string followed by a carriage return and a Tine
feed.

5.2 System Call Routines

Table 5-1 summarizes the TRAP #15 functions. Refer to the write-ups
on the utilities for specific use information.

5-2

PRELIMINARY MVME135BUG/D2
TABLE 5-2. 135Bug SYSTEM CALL ROUTINES
Code Function Description
$0000 . INCHR Input character
$0001 . INSTAT Input serial port status
$9002 . INLN Input line (pointer/pointer format)
$0003 .READSTR Input string (pointer/count format)
$0004 .READLN Input line (pointer/count format)
$0005 .CHKBRK Check for break
$0010 .DSKRD Disk read
$0011 .DSKWR Disk write
$0012 .DSKCFIG Disk configure
$0014 .DSKFMT Disk format
$0P15 .DSKCTRL Disk control
$0020 .OUTCHR Output character
$0021 .OUTSTR Output string (pointer/pointer format)
$0022 .OUTLN Output 1ine (pointer/pointer format)
$6@23 .WRITE Output string (pointer/count format)
$0024 .WRITELN Output Tine (pointer/count format)
$0@25 .WRITDLN Output line with data (pointer/count format)
$0026 .PCRLF Output carriage return and line feed
$0027 .ERASLN Erase line .
$0028 .WRITD Output string with data {(pointer/count format)
$0029 . SNDBRK Send break ’ :
$9p40 .TM_INI Timer initialization
$0041 .TM_STR@ Start timerat T=0
30042 .TM_RD Read timer
$0843 .DELAY Wait for the specified delay
0060 .REDIR Redirect 1/0 of a TRAP 15 function
$9061 .REDIR_I Redirect input ,
$0062 .REDIR O Redirect output
$0063 .RETURN Return to 135Bug
30064 .BINDEC Convert binary to Binary Coded Decimal (BCD)
$0067 .CHANGEV Parse value
$0068 .STRCMP Compare two strings (pointer/count format)
$0069 .MULU32 Multiply two 32-bit unsigned integers
$O06A .DIVU32 Divide two 32-bit unsigned integers

5-3

PRELIMINARY : MVME135BUG/D2

5.2.1 .INCHR Function : L o <INCHR

TRAP FUNCTION: .INCHR - Input character routine-
CODE: $0000

DESCRIPTION: Will read a character from the default input port. The
character is returned in the stack.

ENTRY CONDITIONS:

SP ==> Space for character <byte>
Word fill <byte>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Character <byte>
Word fill <byte>

EXAMPLE:
SuBQ.L #2,SP Allocate space for result
SYSCALL .INCHR Call .INCHR

MOVE.B (SP)+,00 Load character in D@

5-4

PRELIMINARY ' MVME135BUG/D2

5.2.2 .INSTAT Function .INSTAT

TRAP FUNCTION: .INSTAT - Input serial port status-
CODE: $0001

DESCRIPTION: Used to see if there are character in the default input
port buffer. The condition codes are set to indicate
the result of the operation.

ENTRY CONDITIONS:

No arguments or stack allocation required

EXIT CONDITIONS DIFFERENT FROM ENTRY:

Z(ero) =1 if the receiver buffer is empty

EXAMPLE:.

LooP SYSCALL . INSTAT Any characters?
BEQ.S = EMPTY No, branch -
'SUBQ.L #2,A7 o Yes, then
'SYSCALL = .INCHR " Read them
MOVE.B - (SP)+, (AB)+ In buffer
BRA.S LOOP" Check for more

EMPTY ' I

5-5

PRELIMINARY ' v MVME135BUG/D2

5.2.3 .INLN Function . INLN

TRAP FUNCTION: .INLN - Input line routine-
CODE: $0002

DESCRIPTION: Used to read a line from the default input port. The
buffer size should be at least 256 bytes.

ENTRY CONDITIONS:

SP ==> Address of string buffer <long

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Address of last character in the string+l <long>

EXAMPLE:

If AD contains the address where the string is to go:

SUBQ.L #4,A7 Allocate space for result
PEA (Ad) Push pointer to destination
TRAP #15 (May also invoke by SYSCALL
DC.W 2 macro (" SYSCALL .INLN")

MOVE.L (A7)+,Al Retrieve address oﬁ last character+l

NOTES:

A line is a string of characters terminated by <CR>. The maximum
allowed size is 254 characters. The terminating <CR> is not
included in the string. Control character processing as described
in section 2.2, Terminal Input/Output Control, is in effect.

5-6

PRELIMINARY MVME135BUG/D2

5.2.4 .READSTR Function) .READSTR

TRAP FUNCTION: .READSTR - Read string into variable-length buffer-
CODE: $0083

DESCRIPTION: Used to read a string of characters from the default
input port into a buffer. On entry, the first byte in
the buffer indicates the maximum number of characters
that can be placed in the buffer. Note that the
buffer’s size should be no less than this number + 2.
The maximum number of characters that can be placed in
a buffer is 254 characters. On exit, the count byte
indicates the number of characters in the buffer.
Input terminates when a <CR> 1is received. All
printable characters will be echoed to the default
output port. The < CR> will not be echoed.

ENTRY CONDITIONS:

SP ==> Address of input buffer <long>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

P ==> Top of stack)
L 2 count byte contains the number of bytes in the buffer.

EXAMPLE:

If AB contains the string buffer address;

PEA _(AD) Push buffer address
TRAP #15 (May also invoke by SYSCALL
DC.W 3 : macro (" SYSCALL .READSTR")

NOTES:

This routine allows the caller to dictate the maximum length of
input up to 254 characters. If more than characters are entered,
“ then the buffer input is truncated. Control character processing as

described in section 2.2, Terminal Input/Output Control, is in
effect. ' : ‘ :

5-7

PRELIMINARY MVME135BUG/D2

5.2.5 .READLN Function .READLN

TRAP FUNCTION: .READLN - Read line to fixed-length buffer-
CODE: $0004

DESCRIPTION: Used to read a string of characters from the default
input port. Characters are echoed to the default
- output port. A string consists of a count byte
followed by the characters read from the input. The
count byte indicates the number of characters read
from the input. The count byte indicates the number of
characters in the input string, excluding <CR> < LF> . ~
A string may be up to 254 characters.

ENTRY CONDITIONS:

SP ==> Address of input buffer <long>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
The first byte in the buffer indicates the string length.

EXAMPLE:
If A@ points to a 256 byte Buffer;

PEA (AQ) Long buffer address
SYSCALL .READLN And read a line from default input port

NOTES:

The caller must allocate 256 bytes for a buffer. Input may be up to
254 characters. <CR><LF> is sent to default output following echo
of input. Control character processing as described in section 2.2,
Terminal Input/Output Control, is in effect.

5-8

PRELIMINARY MVME135BUG/D?

5.2.6 .CHKBRK Function - .CHKBRK

TRAP FUNCTION: .CHKBRK - Check for break-
CODE: $0005

DESCRIPTION: Returns "Zero" status in condition code register if
break status detected at default input port.

ENTRY CONDITIONS:

No arguments or stack allocation required
EXIT CONDITIONS DIFFERENT FROM ENTRY:
Z flag set in CCR if break detected

EXAMPLE:

SYSCALL .CHKBRK -
BEQ BREAK

5-9

PRELIMINARY . MVME135BUG/D2

5.2.7 .DSKRD, .DSKWR Function : .DSKRD
.DSKWR

TRAP FUNCTION: .DSKRD - Disk read function-
.DSKWR - Disk write function-

CODE: $0019
$0011

DESCRIPTION: These functions are used to read and write blocks of
data to the specified disk device. Information about
the data transfer is passed in a command packet which
has been built somewhere in memory. The address of the
packet is passed as an argument to the function. The
same command packet format is used for .DSKRD and
.DSKWR. These functions will automatically invoke
.DSKINIT if the specified controller has not been -
previously initialized. They will also call .DSKCFIG
if the: specified device has not been previously
configured. The command packet is eight words in
Tength and is arranged as follows:

R R T R +
$00 | Controller LUN | Device LUN |
R et e R L LR TP P R P R
$02 | Status Word |
| |
$04
R ELE R R Memory Address = 0o -------------- +
$06 | |
R R e et R +
$98 | Block Number (Disk) |
$ommmemmeaas or eeeeeeeeeeaa-- +
$OA | File Number (Streamer tape) |
et e R P e P PP P PP PP +
$ac | Number of Blocks |
fmmmm e e Fmmm e +
$OE | Flag Byte | Address Modifier |
R R e R R R R +

PRELIMINARY

Field descriptions{
Controller LUN
Device LUN

Status Word

Memory Address

Block Number

File Number

Number of Blocks

Flag Byte

MVME135BUG/D?2

Logical Unit Number (LUN) of controller to use.
Logical Unit Number (LUN) of device to use.

This status word will reflect the result of the
operation. It will be zero if the command
completed without errors. Refer to Appendix D
for meanings of returned error codes.

Address of buffer in memory. On a disk read data
will be written starting at this address. On a
disk write data will be read starting at the
address.

For disk devices, this is the block number where
the transfer will start. On a disk read data
will be read starting at this block. On a disk
write data will be written starting at this
block.

For streamer tape devices, this is the file
number where the transfer will start. This field
is used if the IFN bit in the Flag Byte is cleared
(refer to the Flag Byte description). On a disk
read, data will be read starting at this file.
On a disk write, data will be written starting at
this file.

This field indicates the number of blocks to read
from the disk (.DSKRD) or to write to the disk
(.DSKWR). For streamer tape devices, the actual
number of blocks transferred is returned in this
field.

The flag byte is used to specify variations of
the same command, and to receive special status
information. Bits @ through 3 are used as
command bits, bits 4 through 7 are used as status

*bits. For disk devices this field must be set to

@. For streamer tape devices, the following bits
are defined:

5-11

PRELIMINARY MVME135BUG/D2

Bit 7 File Mark flag. If 1, a file mark was
detected at the end of the last operation.

Bit 1 Ignore File Number flag. If @, the file

’ number field is used to position the tape

before any reads or writes are done. If 1,

the file number field is ignored, and

reads or writes start at the present tape
position.

Bit @ End Of File flag. If @, reads or writes
are done until the specified block count
is exhausted. If 1, reads are done until
the count is exhausted or until a file mark
is found. If 1, writes are terminated with
a filemark.

Address Modifier VMEbus address modifier to use while
transferring data. If zero, a default value is
selected by the bug. If non-zero, the specified
value will be used.

ENTRY CONDITIONS:

SP ==> Address <long> Address of command packet

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack

Status word of command packet is updated.

Data will be written into memory as a result of .DSKRD function.
Data will be written to disk as a result of .DSKWR function.
Z(ero) = Set to 1 if no errors.

PRELIMINARY

EXAMPLE:

MVME135BUG/D2

If A8, Al point to packets formatted as specified above.

ERROR

PEA
SYSCALL
BNE
PEA
SYSCALL
BNE

XXXXX
XXXXX

(A9)
.DSKRD
ERROR
(A1)
.DSKWR
ERROR

XXX
XXX

Read from disk
Branch if error

Write to disk
Branch if error

Handle error

5-13

PRELIMINARY ‘ MVME135BUG/D2

5.2.8 .DSKCFIG Function . . : .DSKCF1G

TRAP FUNCTION: ;DSKCFIG - Disk configure function-
CODE: $0012

DESCRIPTION: This function allows the wuser to change the
configuration of the specified device. It
effectively performs an " I0T under program control".
A1l the required parameters are passed in a command
packet which has been built somewhere in memory. The
address of the packet is passed as an argument to the
function. This function is provided for use in

special applications, since .DSKCFIG 1is invoked-

automatically the first time that a device is accessed
by .DSKRD, .DSKWR, or .DSKFMT. The packet format is as
follows: '

R iR e R e R +
$09 | Controller LUN | Device LUN |
R e R TR P R e B +
$92 | Status Word |
T-~o;-------q-------------------~------------------o-----é ------- T
$94 o
R LR LR LT Memory Address. = = ------e------- +
$06 | ' |
T e mesmeeememeemma———a- +
$a8 | |
e R . g eeeeeeeeeee- +
$OA | |
LT T R +
soc | 0 |
fmmmmmm e e eeeedaceeccaaoaas Fmmmmmmmemmemeeeaeeeeeeeoooooo +
$OE | 9 | Address Modifier |
fmmmmeme e emeeeceeaeeaeaaoo dmmm e meemeemeeecaeeaaaoooo +

Field descriptions:
Controller LUN Logical Unit Number (LUN) of controller to use.

Device LUN Logical Unit Number (LUN) of device to use.

.,

PRELIMINARY MVME135BUG/D2

Status Word This status word will reflect the result of the
operation. It will be zero if the command
completed without errors. Refer to Appendix D
for meanings of returned error codes.

Memory Address Contains a pointer to a Device Descriptor Packet
that contains the configuration information to
be changed.

Address Modifier VMEbus address modifier to use while
transferring data. If zero, a default value is
selected by the bug. If non-zero, the specified
value will be used.

The Device Descriptor Packet is as follows:

F E D C B A 9 8 7 6 5 4 3 2 1 ¢

R e L e +
$00 | Controller LUN | Device LUN |
e o e +
$82 | ‘) |
R T T T T ————4
$84 | |
o-moeeo- ‘Parameters Mask s +
$86 | ‘ |
e e it ---4
$98 | ' ‘ |
$ommmom- _ ' Attributes Mask . , memeieood
$OA | : o : . . ; ‘ |
. L R B L ---=4
$gc | . o
' temmmmmo-- Attributes Flags = = -=------ +
" $OE | i
B B Rt R e T +
$10
Parameters
T et +

PRELIMINARY . MVME135BUG/D2

Most of the fields in the Device Descriptor Packet are equivalent to
the fields defined in the CFGA -Configuration Area block, as
described in Appendix B. In the field descriptions below, reference
is made to the equivalent field in the CFGA whenever possible. For
additional information on these fields, refer to Appendix B.

Controller LUN Same as in command packet.
Device LUN Same as in command packet.

Parameters Mask Equivalent to the IOSPRM and IOSEPRM fields,
with the Jeast significant word equivalent to
IOSPRM, and the most significant word equivalent
to IOSEPRM

Attributes Mask "Equivalent to the IOSATM . and IOSEATM fields,
with the Jleast significant word equivalent to
.I0SATM, and the most 519n1f7cant word equ1va]ent
to I0SEATM. :

Attributes Flags Equivalent to the I0SATW and IOSEATW fie]ds,
with the Jeast significant word equivalent to
I0SATW, and the most srgn1f1cant word equ1valent
to I0SEATW.

Parameters The parameters used for device reconfiguration
are specified in this area. Most parameters have
an exact CFGA equivalent. The following chart
shows the field name, offset from start .of
packet, length, equivalent CFGA field, and short
description of each field. Those parameters
that do not have an exact equivalent are
igdicated with "*" and are explained after the
chart.

PRELIMINARY MVME135BUG/D2

|

Field Offset Length CFGA Description

Name (Bytes) (Bytes) Equiv.
P_DDS* $1¢ 1 --- Device descriptor size
P_DSR $11 1 I0SSR Step rate
P _DSS* $12 1 10SPSM Sector size (encoded)
P _DBS* $13 1 JOSREC Block size (encoded)
P DST* $14 2 10SSPT Sectors/track
PDIF $16 1 I0SILV Interleave factor
P_DSO $17 1 10SSOF Spiral Offset
P_DSH* $18 1 I0OSSHD Starting head
P_DNH $19 1 IOSHDS Number of heads
P _DNCYL $1A 2 IOSTRK Number of cylinders
P_DPCYL $1C 2 10SPCOM Precompensation cylinder
P_DRWCYL S1E 2 JOSRWCC Reduced write current cylinder
P_DECCB $20 2 10SECC ECC data burst length
P_DGAP1 $22 1 10SGPB1 Gap 1 size
P_DGAP2 $23 1 10SGPB2 Gap 2 size
P_DGAP3 $24 1 I0OSGPB3 - Gap 3 size
P_DGAP4 $25 1 10SGPB4 Gap 4 size
pDSSC $26 1 10SSSC Spare sectors count
P DRUNIT $27 1 IOSRUNIT Reserved area units
P DRCALT: $28 2 IOSRSVC1 Reserved count for alternates
P_DRCCTR $2A 2 IOSRSVC2 Reserved count for.controller

Chart Notes:

P_DDS

P_DSS

P DBS

This field is for internal use on1y, and does not have an

- equivalent CFGA field. Should be set to @.

This is a one-byie'enCoded field, whereas the IOSPSM field
is a two byte unencoded field containing the actual
number of bytes per sector The P DSS field is encoded as
follows:

$00 128 bytes
$01 256.bytes
$02 512 bytes
$03 1024 bytes

$04-$FF Reserved encodings.

This is a one byte encoded field, whereas the IOSREC field
is a two byte unencoded f1e1d conta1n1ng the actual
number of bytes per record (b]ock) The P DBS field is
encoded as follows:

PRELIMINARY MVME135BUG/D2
$80 128 bytes
$81 256 bytes
$02 512 bytes
$83 1824 bytes
$04-$FF Reserved encodings.
P_DSH' This is a one byte field, whereas thé IOSSHD field is two

bytes. This field is equivalent to the JTeast significant
byte of IOSSHD.

P DST This is two bytes, whereas the IOSSPT field is a one byte
field.

ENTRY CONDITIONS:

SP ==> Address <long> Addresﬁ of command packet

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack

Status word of command packet is updated.
The device configuration will be changed.
Z(ero) = Set to 1 if no errors.

EXAMPLE:

If AB points to a packet formatted as specifieﬂ above.

PEA.L

SYSCALL

BNE

ERROR xxxxx
XXXXX

(AB) Load command packet
.DSKCFIG reconfigure device
ERROR Branch if error
XXX Handle error

XXX

PRELIMINARY MVME135BUG/D2

5.2.9 .DSKFMT Function , .DSKFMT

TRAP FUNCTION: .DSKFMT - Disk Format Function
CODE: $0014

DESCRIPTION: This function allows the user to send a format command
to the specified device. The parameters required for
the command are passed in a command packet which has
been built somewhere in memory. The address of the
packet is passed as an argument to the function. The
format of the packet is as follows:

F £E D C B A 9 8 7 6 5 4 3 2 1 @

Fommmm e B R T TP R e L P LR PP +
$00 | Controller LUN | Device LUN |
: e et R +
$82 |) Status Word |

B e R +
$p4 | . . |

AL ELELEL LR : Memory Address = = ----------e---- +
$26 | : j |

R e e T +
$o8 | |

4eeeerrcccncona- Block Number (Disk) = =------ccceon--- +
$OA | I

R e i e T P +
$ac | . g l

et e TR E T et +
$OE | Flag Byte | Address Modifier [

R R L P PP PP R e e e TP P +
Field descriptions:

Controller LUN Logical Unit Number (LUN) of contro]]ér to use.
Device LUN Logical Unit Number (LUN) of device to use.
Status Word This status word will reflect the result of the

operation. It will be zero if the command
completed without errors. Refer to Appendix D
for meanings of returned error codes.

PRELIMINARY

Memory Address

Block Number

Flag Byte

Address Modifier

MVME135BUG/D2

Address of buffer in memory. On a disk read data
will be written starting at this address. On a
disk write data will be read starting at the
address.

For disk devices, when doing a format track, the
track that contains this block number is
formatted. This field is ignored for streamer
tape devices.

Contains additional control information. Bit @
is interpreted as follows for disk devices:

- If @, it indicates a "Format Track" operation.
The track that contains the specified block is
formatted.

- If 1, it indicates a "Format Disk" operation.
A11 the tracks on the disk will be formatted.

For streamer tapes, bit # is interpreted as
follows:

- If @, it selects a "Retension Tape" operation.
This will rewind the tape to BOT, advance the
tape without interruptions to EOT, and then
rewind it back to BOT. Tape retension is
recommended by cartridge tape suppliers
before writing or reading data when a
cartridge has been subjected to a change in
environment or a physical shock, has been
stored for a prolonged period of time or at
extreme temperature, or has been previously
used in a start/stop mode.

- If 1, it selects an "Erase Tape" operation.
This will completely clear 'the tape of
previous data and at the same time will
retension the tape.

VMEbus address modifier to use while
transferring data. If zero, a default value is
selected by the bug. If non-zero, the specified
value will be used.

5-20

-~

PRELIMINARY MVME135BUG/D2

ENTRY CONDITIONS:

SP ==> Address <long> Address of command packet

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
Status word of command packet is updated.
Z(ero) = Set to 1 if no errors.

EXAMPLE: '
1f AB points to a packet formatted as specified above.

PEA.L (AB) Load command packet
SYSCALL .DSKFMT format device

BNE ERROR 1f errors, branch
%*
*
*

ERROR xxxxx XXX Handle error
XXXXX XXX

5-21

PRELIMINARY

MVME135BUG/D2

5.2.19 .DSKCTRL Function : -DSKCTRL

TRAP FUNCTION: .DSKCTRL - Disk control function-

CODE: $0015
DESCRIPTION: This function is used to implement any special device
control functions that can not be accommodated easily
with any of the other disk functions. At the present,
the only defined function is SEND packet, which allows"
the user to send a packet in the specific format of the
controller. The required parameters are passed in a
command packet which has been built somewhere in
memory. The address of the packet is passed as an
argument to the function.
The packet is as follows: ' ’
F £E D C B A 9 8 7 6 5 4 3 2 1 ¢
R T P R R it ————— +
| Controller LUN | Device LUN |
Rt Rt R R e L PP +
| Status Word |
T -- +
|
T --------------- Memory Address = = = @ s--e-c-c-e----- I
R e R e L L LT PP +
I I
R e ahn R e R +
l |
L LT R e L L P TR +
| o I
R LR EEE R e +
| '] | Address Modifier [
T T ittt +
Field descriptions:
Controller LUN Logical Unit Number (LUN) of controller to use.

Device LUN

Logical Unit Number (LUN) of device to use.

5-22

PRELIMINARY MVME135BUG/D2

Status Word - This status word will reflect the result of the
operation. It will be zero if the command
completed without errors. Refer to Appendix D
for meanings of returned error codes.

Memory Address Contains a pointer to the controller packet to
send. Note that the controller packet to send
(as opposed to the command packet) is controller
and device dependent. Information about this
packet should be found in the user’s manual for
the controller and device being accessed.

Address Modifier VMEbus address modifier to use while
transferring data. If zero, a default value is
selected by the bug. If non-zero, the specified
value will be used.

ENTRY CONDITIONS:

SP ==> Address <long> Address of command packet

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack

Status word of command packet is updated.

Additional side effects depend on the packet sent to the controller.
Z(ero) = Set to 1 if no errors.

EXAMPLE:
If Al points to a packet formatted as specified above.

PEA.L (A1) Load command packet
SYSCALL .DSKCTRL invoke control function

BNE ERROR If errors, branch
ERROR XXXXX XXX Handle error
XXXXX XXX

5-23

PRELIMINARY MVME135BUG/D2

5.2.11 .OUTCHR Function - .OUTCHR

‘TRAP FUNCTION: .OUTCHR - Qutput character routine-
CODE: $0020

DESCRIPTION: This function will output a character to the default
output port.

ENTRY CONDITIONS:
SP ==> Character <byte>
Word fill <byte> (Placed automatically by MPU)
EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack)
Character is sent to the default I/0 port.

EXAMPLE:

MOVE.B D@,-(SP) . Send character in D@
_SYSCALL .OUTCHR To default output port

5-24

PRELIMINARY . MVME135BUG/D2

5.2.12 .OUTSTR, .OUTLN Function .OUTSTR
.OUTLN

TRAP FUNCTION: .OUTSTR - Output string to default output port-
.OUTLN - Output string along with CR/LF-

CODE: $0821
$8022

DESCRIPTION: .OUTSTR will output a string ‘of characters to the
default output port. .OUTLN will output a string of
characters followed by a < CR> < LF> sequence.

ENTRY CONDITIONS:

SP ==> Address of first character <long>
+4 Address of last character + 1 <long

EXIT CONDITIONS DIFFERENT FROM ENTRY:
SP ==> Top of stack
EXAMPLE:

If AB = start of string
Al = end of string+l

MOVEM.L A@/Al,-(SP) Load pointers to string
_SYSCALL .OUTSTR And print it

5-25

PRELIMINARY . MVMEl358UG/Di

5.2.13 .WRITE, .WRITELN Function .WRITE
-WRITELN

TRAP FUNCTION: .WRITE - Output string with no CR of LF-
.WRITELN - Output string with CR and LF-

CODE: $0023
$0024

DESCRIPTION: These output functions are designed to output strings
’ formatted with a count byte followed by the characters
of the string. The user passes the starting address of
the string. The output goes to the default output
port.

ENTRY CONDITIONS:
Four bytes of parameter positioned in stack as follow:

SP ==> Address of string <long>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack

5-26

—_—~

PRELIMINARY) MVME135BUG/D2

EXAMPLE:

For example, the following section of code

MESSAGE1 DC.B 9, ’MOTOROLA '

MESSAGE2 DC.B 9, ‘QUALITY !’/
PEA MESSAGE1(PC) Push address of string
SYSCALL .WRITE Use TRAP #15 macro
PEA MESSAGE2(PC) Push address of other string
SYSCALL .WRITE Invoke function again

..... would print out the following message:

MOTOROLA QUALITY !

Using function .WRITELN, however, instead of function .WRITE would
output the following message:

MOTOROLA
QUALITY !

NOTES:
The string must be formatted such fhat the first byte (the byter

pointed to by the passed address) contains the count (in bytes) of
the string. -

5-27 .

PREL IMINARY MVME135BUG,/D2

5.2.14 .PCRLF Function .PCRLF

TRAP FUNCTION: .PCRLF - Print < CR> < LF> sequence-
CODE: $8026

DESCRIPTION: .PCRLF will send a < CR>< LF> sequence to the default
output port.

ENTRY CONDITIONS:

No arguments or stack allocation required.

EXIT CONDITIONS DIFFERENT FROM ENTRY:

None

EXAMPLE:
SYSCALL .PCRLF Output CRLF

5-28

PRELIMINARY MVME135BUG/D2

5.2.15 .ERASLN Function .ERASLN

TRAP FUNCTION: .ERASLN - Erase line-
CODE: $0027

DESCRIPTION: .ERASLN is used to erase the 1ine at the present cursor
position. If the terminal type flag is set for
hardcopy mode a < CR> < LF> 1is issued instead.

ENTRY CONDITIONS:

No arguments required.

EXIT CONDITIONS DIFFERENT FROM ENTRY:

The cursor is positioned at the beginning of a blank line.

EXAMPLE:

SYSCALL .ERASLN

5-29

PRELIMINARY MVME135BUG/D2

5.2.16 .WRITD, .WRITDLN Function -WRITD
’ ‘ -WRITDLN

TRAP FUNCTION: .WRITD - Output string with data-
.WRITDLN : Output string with data and CRLF-

CODE: $0028
$0025

DESCRIPTION: These trap functions take advantage of the monitor 1/0
routine which outputs a wuser string containing
embedded variable fields. The wuser passes the
starting address of the string and the address of a
data stack containing the data which will be inserted
into the string. The output goes to the default output
port. .

ENTRY CONDITIONS:

Eight bytes of parameter positioned in stack as follow:

SP ==> Address of string <long>
Data 1ist pointer <long>

A separate data stack or data list arranged as follows:
Data list pointer => Data for 1st variable in string <long

Data for next variable <long
Data for next variable <long

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack

5-39

rd

PRELIMINARY MVME135BUG/D2

EXAMPLE:
The following section of code
ERRMESSG DC.B $14,'ERROR CODE = |10,8Z|’
MOVE.L #3,-(A5) Push error code on data stack
PEA (A5) Push data stack location
PEA ERRMESSG(PC) Push address of string
SYSCALL .WRITDLN Invoke function
TST.L (A5)+ De-allocate data from data stack
....would print out the following message:

ERROR CODE = 3

NOTES:

1.

The string must be formatted such that the first byte (the byte
pointed to by the passed address) contains the count (in bytes)
of the string (including the data field specifiers, described in
#2 below). :

. Any data fields within the string must be represented as follows:

‘|<radix> ,< fieldwidth> [Z]]|’ where <radix> is the base that
the data is to be displayed in (in hexadecimal, i.e., "A" is base
16, "18" is base 16, etc) and < fieldwidth> is the number of
characters this data is to occupy in the output. The data is
right-justified and left-most characters are removed to make the
data fit. The "Z" is included if it is desired to suppress
leading zeros in output.

. A1l data is to be placed in the stack as Tongwords. Each time a

data field is encountered in the user string, a Tongword will be
read from the data stack to be displayed.

. The data stack is not destroyed by this routine. If it is

necessary for the space in the data stack to be deallocated, it
must be done by the calling routine, as shown in the above
example.

5-31

PRELIMINARY s MVME135BUG/D2

5.2.17 .SNDBRK Function . SNDBRK

TRAP FUNCTION: .SNDBRK - Send break-
CODE: $@029

DESCRIPTION: Used to send break to default output port(s).

ENTRY CONDITIONS:

No arguments or stack allocation required
EXIT CONDITIONS DIFFERENT FROM ENTRY:

Each serial port specified by current default port list will have
sent "break".

EXAMPLE:

SYSCALL .SNDBRK

5-32

PRELIMINARY MVME135BUG/D2

5.2.18 .TM_INI Function .TM_INI

TRAP FUNCTION: .TM_INI - Timer initialization routine-
CODE: 38040

DESCRIPTION: This routine initializes the on-board timers, and
also calculates a calibration factor used by the other
timer functions. This routine should be used the
first time that the timer functions are used.

ENTRY CONDITIONS:

No arguments required.

EXIT CONDITIONS DIFFERENT FROM ENTRY:

TM.CAL1(A5) loaded with calibration factor.
Timers are configured for 24-bit operation.

EXAMPLE:

SYSCALL .TM_INI Initialize timer

5-33

PRELIMINARY MVME135BUG/D2

5.2.19 .TM_STR@ Function .TM_STRD

TRAP FUNCTION: .TM_STR@ - Start timer at T=0-
CODE: $0041

DESCRIPTION: This routine will first reset the timer to # and then
it will start it.

ENTRY CONDITIONS:

No arguments required.

EXIT CONDITIONS DIFFERENT FROM ENTRY:

Timer is started.

EXAMPLE:

SYSCALL' .TM_STR@

5-34

g

PRELIMINARY . MVME135BUG/D2

5.2.20 .TM_RD Function . .TM_RD

TRAP FUNCTION: .TM_RD - Timer read function-
CODE: $8042

DESCRIPTION: This routine is used to read the value of the timer
(microseconds).

ENTRY CONDITIONS:

SP ==> Space for result <long>

EXIT CONDITIONS DIFFERENT FROM ENTRY:
SP ==> Time in microseconds <long>
* EXAMPLE:
SUBQ.L #4,A7 Allocate space for result

SYSCALL .TM_RD Read timer
MOVE.L (SP)+,D8 Load time in microseconds

5-35

PRELIMINARY

5.2.21 .DELAYF

TRAP FUNCTION:
CODE:

DESCRIPTION:

ENTRY CONDITIO

MVME135BUG/D2

unction . | .DELAY

.DELAY - Timer delay function-
$0043

.DELAY is used to generate accurate timing delays that
are independent of the processor frequency and
instruction execution rate. This function uses the
on-board timer for operation. The user specifies the
desired delay count in microseconds. .DELAY will
return to the caller after the specified delay count
is exhausted. The on-board timer has to be
initialized once before this function is called by
invoking the .TM_INI trap function.

NS:

SP ==> Delay time in microseconds <1ong}

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack

EXAMPLE:

SYSCALL
PEA.L
SYSCALL

e
*
*

PEA.L
SYSCALL

.TM_INI Initialize timer
415000008 Load a 15 second delay
.DELAY

450000 Load a 50 millisecond delay
.DELAY

5-36

PRELIMINARY MVME135BUG/D2

5.2.22 .REDIR Function .REDIR

TRAP FUNCTION: .REDIR - Redirect 1/0 function-
CODE: $0068

DESCRIPTION: This routine is used to select an I/0 port and at the
same time invoke a particular I/0 function. The
invoked I/0 function will read or write to the
selected port.

ENTRY CONDITIONS:

SP == Port <word>
I/0 function to call <word>
Parameters of I/0 function <size specified by function>

Space for results <size specified by function>

EXIT CONDITIONS DIFFERENT FROM ENTRY: o .
SP ==> Result <size specified by function>

EXAMPLE:

None

NOTES:

To use .REDIR, the caller should first allocate space and push the
parameters required by the desired 1/0 function onto the stack:

SUBQ.L #2,A7 Allocate space (no parameters required by
. INCHR)

Then the parameters required by .REDIR should be pushed and the call
made to .REDIR.

5-37

PRELIMINARY ’ MVME135BUG/D2

MOVE.W #.INCHR, - (SP) Load function code
MOVE. W #1,-(SP) Load port number
SYSCALL .REDIR Redirect I/0 function

Finally, the results should be popped‘from the stack:

MOVE.B (SP)+,D0 Read character

The above example reads a character from port 1 using .REDIR.

5-38

PRELIMINARY MVME135BUG/D2

5.2.23 .REDIR I, .REDIR 0 Function .REDIR I
. .REDIRTO

TRAP FUNCTION: .REDIR_I - Redirect input-
.REDIR O - Redirect output-

CODE: $8061
$0062

DESCRIPTION: The .REDIR_I and .REDIR_O functions are used to change
the default port number of the input and output ports,
respectively. This is a permanent change, that is, it
will gemain in effect until a new .REDIR command is
issued.

ENTRY CONDITIONS: .

SP ==> Port Number <word>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
.SIO_IN - Loaded with a new mask if .REDIR_I called
.SI0O_OUT - Loaded with a new mask if .REDIR_O called

¢

EXAMPLE:
MOVE.W #1,-(SP) Load port number
SYSCALL .REDIR_I Set it as new default

5-39

PRELIMINARY ' MVME135BUG/D2

5.2.24 .RETURN Function .RETURN

TRAP FUNCTION: .RETURN - Return to 135Bug-
CODE: $0063

DESCRIPTION: This function is used to return control to 135Bug from
the target program in an orderly manner. First, any
breakpoints inserted in the target code are removed.
Then the target state is saved in the register image
area. Finally, the routine returns to 135Bug.

ENTRY CONDITIONS:

No arguments required.

EXIT CONDITIONS DIFFERENT FROM ENTRY:

Control is returned to 135Bug.

EXAMPLE:

SYSCALL ~ .RETURN Return to 135Bug

5-49

PRELIMINARY MVME135BUG/D2

5.2.25 .BINDEC Function .BINDEC

TRAP FUNCTION: .BINDEC - Used to calculate the BCD equivalent of the
binary number specified-

CODE: $0064

‘ DESCRIPTION: This function takes a 32-bit unsigned binary number
and changes it to an equivalent BCD (Binary Coded
Decimal Number).

ENTRY CONDITIONS:

SP ==> Argument:Hex number <long>
Space for result <2 long

EXIT CONDITIONS DIFFERENT FROM ENTRY:"

SP ==> Decimal number (2 Most Significant Digits) <long>
(8 Least Significant Digits) <long>

EXAMPLE:
SUB.L #8,A7 Allocate space for result
MOVE.L D@, - (SP) Load hex number
SYSCALL .BINDEC Call .BINDEC

MOVEM.L (SP)+,D1/D2 Load result

5-41

PRELIMINARY MVME135BUG/D2

5.2.26 .CHANGEV Function .CHANGEV

TRAP FUNCTION: .CHANGEV - Parse value, assign to variable-

CODE: $0067

DESCRIPTION: Attempt to parse value in user specified buffer. If
" user’s buffer is empty, prompt user for new value,
otherwise update integer offset into buffer to skip
"value". Dlsplay new value and assign to var1ab1e
unless user’s input is an empty string.

ENTRY CONDITIONS:

SP ==> Address of 32-bit offset into user’s buffer
Address of user’s buffer (pointer/count format string)
Address of 32-bit integer variable to " change"
Address of string to use in prompting and displaying value

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack

EXAMPLE:

PROMPT DC.B $E,’COUNT = |18,8]’

GETCOUNT PEA PROMPT(PC) Point to prompt string
PEA . COUNT Point to variable to change
PEA POINT Point to offset into buffer
PEA BUFFER Point to buffer
SYSCALL .CHANGEV Make the system call
RTS COUNT changed, return

5-42

PRELIMINARY " MVME135BUG,/D2

If the above code was called with BUFFER containing "1 3" in
pointer/count format and POINT containing 2 (longword), then COUNT
would be assigned the value 3, and POINT would contain 4 (pointing to
first character past "3"). Note that POINT is the offset from the
start address of the buffer (not the address of the first character
in the buffer!) to the next character to process. In this case, a
value of 2 in POINT indicates that the space between "1" and "3" is
the next character to be processed. After calling .CHANGEV, the
screen would display the following line:

COUNT = 3

If the above code was called again, nothing could be parsed from
BUFFER, so a prompt would be issued. For purpose of example, the
string "5"is entered in response to the prompt.

COUNT = 32 § <CR>
COUNT = §

If in the previous example nothing had been entered at the prompt,
COUNT would retain its prior value.

COUNT = 3?7 <CR>
COUNT = 3

5-43

PRELIMINARY MVME135BUG/D2

5.2.27 .STRCMP Function ' , . .STRCMP

TRAP FUNCTION: .STRCMP - Compare two strings (pointer/count)-

CODE: $0068

DESCRIPTION: Comparison for equality is made and a‘boolean flag is
returned to the caller. The flag will be $80 if the
strings are not identical, otherwise it will be $FF.

ENTRY CONDITIONS:

SP ==> Address of string 1
Address of string 2 ’
Three bytes (unused) *
Byte to receive string comparison result
EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Three byfes (unused)
Byte to receive string comparison result

EXAMPLE:

If Al and A2 contain addresses of the two strings.

SUBQ.L #4,SP Allocate longword to receive result
PEA (A1) Push address of one string

PEA (A2) Push address of the other string
SYSCALL .STRCMP Compare the strings

MOVE.L (SP)+,Dd Pop boolean flag into data register
TST.B D@ Check boolean flag

BNE ARE_SAME Branch if strings are identical

5-44

B

PRELIMINARY MVME135BUG/D2

5.2.28 .MULU32 Function .MULU32

TRAP FUNCTION: .MULU32 - Unsigned 32 x 32 bit multiply-

CODE: $0069

DESCRIPTION: Two 32-bit unsigned integers are multiplied and the
product is returned on the stack as a 32-bit unsigned
integer. No overflow checking is performed.

ENTRY CONDITIONS:

SP ==> 32-bit multiplier
32-bit multiplicand
32-bit space for result

CEXIT CONDITIONS DIFFERENT FROM ENTRY:

SP == 32-bit product (result from multiplication)
EXAMPLE: , _
Multiply D@ by DI, load result into D2.

SUBQ.L #4,SP Allocate space for result

MOVE.L = D@,-(SP). . Push multiplicand
MOVE.L DI,-(SP). Push multiplier
SYSCALL .MULU32 ~ Multiply D@ by DI
MOVE.L (SP)+,D2 Get product

5-45

PRELIMINARY

MVME135BUG/D2

5.2.29 .DIVU32 Function o .DIVU32

TRAP FUNCTION:

CODE:

DESCRIPTION:

.DIVU32 - Unsigned 32 x 32 bit divide-

$0A6A

Unsigned division is performed on two 32-bit integers
and the quotient is returned on the stack as a 32-bit -
unsigned integer. The case of division by zero is
handled by returning the max1mum unsigned value
SFFFFFFFF.

ENTRY CONDITIONS:

SP ==>

32-bit divisor (value to divide by)
32-bit dividend (value to divide)
32-bit space for result

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==>

EXAMPLE:

32-bit qudtient (result from division) .

Div}de D@ by D1, load result into D2.

SUBQ. L #4,SP Allocate space for result
MOVE.L 0@, - (SP) Push dividend

MOVE.L D1,-(SP) Push divisor

SYSCALL .DIVU32 Divide D@ by D1

MOVE.L (SP)+,D2 Get quotient

5-46

PRELIMINARY MVME135BUG/D2

APPENDIX A - S-RECORD OUTPUT FORMAT

The S-record format for output modules was devised for the purpose
of encoding programs or data files in a printable format for
transportation between computer systems. The transportation
process can thus be visually monitored and the S-records can be more
easily edited.

S-RECORD CONTENT

When viewed by the user, S-records are essentially character strings
made of several fields which identify the record type, record
length, memory address, code/data and checksum. Each byte of binary
data is encoded as a 2-character hexadecimal number: the first
character representing the high-order 4 bits, and the second the
low-order 4 bits of the byte.

The five fields which comprise an S-record are shown below:

where the fields are composed as foliows:'

S-RECORD FIELD DESCRIPTIONS

, Printable ,
Field -~ ' Characters o " .Contents

type 2 S-records type -- S@, S1, etc.

record length.: 2 The count of the character pairs in the
record, excluding type and records
length.)

address 4, 6, 0or8 The 2-, 3-, or 4-byte address at which the
data field is to be 1oaded into memory.

code/data @-2n From @ to n bytes of executable code,
memory-loadable data, or descriptive
information. For compatibility with

teletypewriters, some programs may limit
the number of bytes to as few as 28 (56
printable characters in the S-record).

A-1

PRELIMINARY . MVME13SBUE/DZ

S-RECORD FIELD DESCRIPTIONS (cont.)

Printable
Field Characters Contents
checksum 2 The least significant byte of the one’s

complement of the sum of the values
represented by the pairs of characters
making up the records length, address,
and the code/data fields.

Each record may be terminated with a CR/LN/NULL. Additionally, an
~S-record may have an initial field to accommodate other data such as
line numbers generated by some time-sharing system.

_Accuracy of transmission is ensured by the record length (byte
count) and checksum fields. :

* $-RECORD TYPES

Eight types of S-records have been defined to accommodate the
several needs of the encoding, transportation and decoding
functions. The various Motorola upload, download and other records
transportation control programs, as well as cross assemblers,
linkers and other file-creating or debugging programs, utilize only
those S-records which serve the purpose of the program. For
specific information on which S-records are supported by a
particular program, the user’s manual for the program must be
consulted. 1@xBug supports S@, S1, S2, S3, S7, S8, and S9 records.

An S-Record format module may contain S-records of the following
types:

S# The header record for each block of S-records. The code data
field may contain any descriptive information identifying the
following block of S-records. Under VERSAdos, the resident
linker’s IDENT command can be used to designate module name,
version number, revision number, and description information
which will make up the header records. The address field is
normally zeros.

S1 A record containing code/data and the 2-byte address at which
the code/data is to reside. '

S2 A record containing code/data and the 3-byte address at which
the code/data is to reside.

A-2

PRELIMINARY MVME135BUG/D2

S3 A record containing code/data and the 4-byte address at which
the code/data is to reside.

S5 A record containing the number of S1, S2, and S3 records
transmitted in a particular block. This count appears in the
address field. There is no code/data field.

S7 A termination record for a block of S3 records. The address
field may optionally contain the 4-byte address of the
}ns%ruction to which control is passed. There is no code/data

jeld.

S8 A termination record for a block of S2 records. The address
field may optionally contain the 3-byte address of the
}ns%ruction to which control is passed. There is no code/data

ield.

S9 A termination record for a block of S1 records. The address
field .may optionally contain the 2-byte address of the
instruction to which control is passed. Under VERSAdos, the
resident linker’s ENTRY command can be used to specify this
address. If not specified, the first entry point specification
encountered in the object module input will be used. There is no
code/data field.

Only one termination record is used for each block of S-records. S7
and S8 records are usually used only when control is to be passed to a
3- or 4-byte address. Normally, only one header record is used,
although it is possible for multiple header records to occur.

CREATION OF S-RECORDS

S-record-format files may be produced by several dump utilities,
debuggers, VERSAdos’ resident linkage editor, or several cross
assemblers or cross linkers. On VERSAdos, the Build Load Module
(MBLM) utility allows an executable load module to be built from S-
records, and has a counterpart utility in BUILDS, which allow an S-
record file to be created from a 1oad module.

Several programs are available for downloading a file in S-record
format from a host system to an 8-bit microprocessor-based or a 16-
bit microprocessor-based system. Programs are also available for
uploading an S-record file to or from an EXORmacs system.

A-3

PRELIMINARY MVME135BUG/D2

EXAMPLE

Shown below is a typical S-record-format module, as printed or
displayed:

SAG6000048445218
S11300P0285F245F2212226A0004242900@38237C2A
S113001000020008001#82629091853812341001813
S1130@2041E9000@84E4223430018234200@824A952
S113093000144ED492

S9@30030FC

The module consists of one SO record, four S1 records, and an S9
record.

The S@ record is comprised of the following character pairs:
S# S-record type S@, indicating that it is a header record.

§6 Hexadecimal @6 (decimal 6), 1nd1cat1ng that six character pairs
(or ASCII bytes) follow.

L)

g8 Four-character Z-byte address field, zeros in this example.
48 :

44 ASCII H, D and R - "HDR".

52

1B The checksum.

The first S1 record is explained as follows:

S1 S-record type S1, indicating that it is a code/data record to be
loaded/verified at a 2-byte address.

13 Hexadecimal 13 (decimal 19), indicating that 19 character pairs,
representing 19 bytes of binary data, follow.

@@ Four-character 2-byte address field; hexadecimal address #0040,
P8 where the data which follows is to be Toaded.

A-4

PRELIMINARY MVME135BUG/D2

The next 16 character pairs of the first S1 record are the ASCII
bytes of the actual program code/data. In this assembly language
example, the hexadecimal opcodes of the program are written in
sequence in the code/data fields of the S1 records:

Opcode Instruction

285F MOVE.L (A7)+,A4

245F MOVE.L (A7)+,A2

2212 MOVE.L (A2),D1

226A0004 MOVE.L 4(A2),Al

24290008 MOVE.L FUNCTION(A1),D2

37C MOVE.L #FORCEFUNC,FUNCTION(A1)

(The balance of this code is continued in the code/data
fields of the remaining S1 records and stored in memory
location 8010, etc).

2A The checksum of the first S1 record.

The second and third S1 records also each contain $13 (19) character
pairs and are ended with checksums 13 and 52 respectively. The
fourth S1 record contains @7 character pairs and has a checksum of
92.

The S9 record is explained as follows:
S9 S-record type S9, indicating that it is a termination record.

@3 Hexadecimal @3, indicating that three character pairs (3 bytes)
follow.

(]}
@@ The address field, zeros.

FC The checksum of the S9 record.

Each printable character in an S-record is enclosed in hexadecimal
(ASCII in this example) representation of the binary bits which are
actually transmitted.

PRELIMINARY MVME135BUG/D2

For example, the first S1 record above is sent as:

____Code/Data :
""" R R - e e
YT 27T 8] 73T 5777 6 |°
_oo11 [oo1p | a1l | 1000 | 6011 | 0141] @128 [2118] ...

""""" Checksum

...... ARREOELEEC SLRt el

A-6

PRELIMINARY

MVME135BUG/D2

APPENDIX B - INFORMATION USED BY BO/BH COMMANDS

VOLUME ID BLOCK (VID)

-Always at Block 6-

Label Offset Length (bytes) Contents
VIDOSS $14(206) 4 Starting block number of
operating system.
VIDOSL $18(24) 2 O?eratlng system length in
VIDOSA $1E(30) 4 Starting memory location to load
operating system.
VIDCAS $90(144) 4 g$d1a configuration area starting
ock.
VIDCAL $94(148) 1 Media configuration area length
n blocks.
VIDMOT $F8(248) 8 Contains the string "MOTOROLA" or

" EXORMACS".

B-1

PRELIMINARY MVME135BUG/D2

CONFIGURATION AREA BLOCK (CFGA)
Label Offset Length (bytes) Contents

I0SATM $04(4) 2 Attributes mask:

I0SPRM $06(6) 2 Parameters mask.

I0SATW $08(8) 2 Attributes word.

I0SREC $OA(10) 2 Record (block) size in bytes.

I0SSPT $18(24) 1 Sectors/Track.

[0SHDS $19(25) 1 Number of heads on drive.

I0STRK $1A(26) 2 Number of cylinders.

I0SILV $1C(28) 1 Interleave factor on media.

10SSOF $1D(29) 1 Spiral offset.

I0SPSM $1E(30) 2 gg glcal sector size of media in

I0SSHD $20(32) .2 Starting head number.

I0SPCOM $24(36) 2 Precompensation cylinder.

IOSSR $27(39) 1 Stepping rate code.

I0OSRWCC $28(49) 2 Reduced write current cylinder

number.

I0SECC. $2A(42) 2 ECC data burst length.]

IOSEATM $2C(44) 2 Extended attributes mask.

I0OSEPRM $2E(46) 2 Extended parameters mask.

IOSEATW $30(48) 2 Extended attributes word.

10SGPB1 $32(58) 1 Gap byte 1.

10SGPB2 $33(51) 1 Gap byte 2.

10SGPB3 $34(52) 1 Gap byte 3.

10SGPB4 $35(53) 1 Gap byte 4.

10SSSC $36(54) 1 Spare sectors count.

IOSRUNIT $37(55) 1 Reserved Area Units.

IOSRSVC1 $38(56) 2 Reserved count 1.

IOSRSVC2 $3A(58) 2 Reserved count 2.

PRELIMINARY MVME135BUG/D2

I0OSATM and TOSEATM

A "1" in a particular bit position indicates that the corresponding
attribute from the attributes (or extended attributes) word should
be used to update the configuration. A "@" in a bit position
indicates that the current attribute should be retained.

TOSATM ATTRIBUTE MASK BIT DEFINITIONS

Label Bit Position Description
TOADDEN g Data density.
TIOATDEN 1 Tranck density.
IOADSIDE 2 Single/double sided.
TOAFRMT 3 Floppy disk format.
I0ARDISC 4 Disk type.
TOADDEND 5 Drive data density.
IOATDEND 6 Drive track density.
I0OARIBS 7 Embedded servo drive seek.
I0ADPCOM 8 Post-read/pre-write precompensation.
JIOASIZE 9 Floppy disk size.
I0ATKZD 13 Track zero data density.

At the pf_esent all iOSEATM bits are undefined and should be set to #.

B-3

PRELIMINARY MVME135BUG/D2

I0SPRM and IOSEPRM

A "1" in a particular bit position indicates that the corresponding
parameter from the configuration area (CFGA) should be used to
update the device configuration. A "8" in a bit position indicates
that the parameter value in the current configuration will be
retained. :

I0SPRM PARAMETER MASK BIT DEFINITIONS

Label Bit Position Description
IOSRECB '] Operating system block size.
I0SSPTB 4 Sectors per track.
10SHDSB 5 Number of heads.

I0STRKB 6 Number of cylinders.

I0OSILVB 7 Interleave factor.

I0SSOFB 8 Spiral offset.

I10SPSMB 9 Physical sector size.

I0SSHDB 18 Starting head number.

10SPCOMB 12 Precompensation cylinder number.

IOSSRB 14 ~ Step rate code.

IOSRWCCB 15 Reduced write current cylinder number and ECC

data burst length.

TIOSEPRM PARAMETER MASK BIT DEFINITIONS

Label Bit Position Description

10AGPB1 B Gap byte 1.

I0AGPB2 1 Gap byte 2.

I0AGPB3 2 Gap byte 3.

I0AGPB4 3 Gap byte 4.

I0ASSC 4 Spare sectors count.
IOARUNIT 5 Reserved area units.

I0ARVC1 6 Reserved count 1.

I0ARVC2 7 Reserved count 2.

B-4

———
N

PRELIMINARY MVME135BUG/D2

I0OSATW and IOSEATW

Contains various flags that specify characteristics of the media and
drive.

TOSATW BIT DEFINITIONS

Bit Number Description
Bit @ . Data density: @ = Single density (FM encoding)
1 = Double density (MFM encoding)
Bit 1 Track density: @ = Single density (48 TPI)
. 1 = Double density (96 TPI)
Bit 2 Number of sides: @ = Single sided floppy
1 = Double sided floppy
Bit 3 Floppy disk format: @ = Motorola format

1toNonside@

N+1 to 2N on side 1
1 = Standard IBM format

1 to N on both sides

Bit 4 Disk type: @ = Floppy disk.
1 = Hard disk
Bit 5 Drive data density: @ = Single density (FM encoding)
1 = Double density (MFM encoding)
Bit 6 Drive track density: @ = Single density
1 = Double density i
Bit 7 Embedded servo drive: § = Do not seek on head switc..
1 = Seek on head switch
Bit 8 Post-read/pre-write precompensation: @ = Pre-write
1 = Post-read
Bit 9 Floppy disk size: @ = 5-1/4" floppy
_ 1=28"floppy
Bit 13 Track zero density: @ = Single density (FM encoding)

1 = Same as remaining tracks
Unused bits A11 unused bits must be set to @.

At the present all I0SEATW bits are undefined and should be set to @. -

«

B-5

PRELIMINARY

MVME135BUG/D2

- PARAMETER FIELD DEFINITIONS

Description

Parameter

Record (Block) size

Sector/track

Number of heads

Number of cylinders

Interleave factor

Physical Sector size

Spiral Offset

Starting head number

Precompensation
cylinder

-Number of bytes per record (block). Must be

an integer multiple of the physical sector
size.

Number of sectors per track in bytes.

Number of recording

surfaces for the
specified device. -

Number of cylinders on the media.

This field specifies how the sectors are
formatted on a track. Normally consecutive
sectors in a track are numbered sequentially
in increments of 1 (Interleave factor of 1).
The interleave factor controls the physical
separation of logically sequential sectors.
This physical separation gives the host time
to prepare to read the next logical sector
without requiring the loss of an entire disk
revolution.

Actual number of bytes per sector on media.

-Used to displace the logical start of a track

from the physical start of a track. The
displacement is equal to the spiral offset
times the head number, assuming that the
first head is #. This displacement is used
to give the controller time for a head switch
when crossing tracks.

Defines the first head number for the

device.

Defines the cylinder on which precompensa-
tion will begin.

B-6

-~

PRELIMINARY

MVME135BUG/D2

PARAMETER FIELD DEFINITIONS (cont.)

Parameter

Description

Stepping rate code

Reduced Write Current
Cylinder

ECC Data Burst Length
Gap byte 1
Gap byte 2

Gap byte 3 -

Gap byte 4

The step rate is an encoded field used tc
specify the rate at wnich iLhe v2atu:wiur
heads can be moved when seeking a irack oo
the disk. The encoding is a follows:

Step Rate Winchester 5-1/4" o
Code Hard Disks Flopoy T
pog @ msec 12 msec 6 msec
001 6 msec 6 msec 3 msec
018 10 msec 12 msec 6 msec
g11 15 msec 20 msec 18 msec
1060 20 msec 30 msec 15 msec

This field specifies the cylinder number at
which the write current should be reduced
when writing to the drive. This parameter is
normally specified by the drive
manufacturer.

This field defines the number of bits to
correct for an ECC error when supported by
the disk controller.

This field contains the number of words of
zeros that are written before the header
field in each sector during format.

This field contains the number of woyvds o
zeros that are written between the header
and data fields during format and wrife
commands.

This field contains the number of words of
zeros that are written after the data fields
during format commands.

This field contains the number cf werds o~
zeros that are written after the last seciaor
of a track and before the index pulse.

B-7

PRELIMINARY

MVME135BUG/D2

PARAMETER FIELD DEFINITIONS (cont.) -

Parameter

Description

Spare sectors count

Reserved Area Units

Reserved Count 1

Reserved Count 2

This field contains the number of sectors
per track allocated as spare sectors. These
sectors will only be used as replacements
for bad sectors on the disk.

This field specifies the units used for the
next two fields (IOSRSVCI and IOSRSVC2). If
zero the units are in tracks, if 1 the units
are in cylinders.

This field specifies the number of tracks
(IOSRUNIT=@), or the number of cylinders
(IOSRUNIT=1) reserved For the alternate
mapp1ng area on the d1sk v

This field - spec1f1es the number of tracks
(IOSRUNIT=8), or the number of cylinders
(IOSRUNIT=1) reserved for use by the
controller. v

B-8

PRELIMINARY MVME135BUG/D2

APPENDIX C - DISK CONTROLLER DATA

Disk Controller Modules Supported

The following VMEbus disk/tape controlier modules are supported by
135Bug:

D L 4ommemeemea Homemmemaee- +
| CLUN #1 | CLUN #2 |
CONTROLLER TYPE docccenncnns Hoceeeoooo- +
| ADDR #1 | ADDR #2 |
R L L L L LR LR PR LR PR 4occmeeomee- oo +
$0P | $07 |
MVME319 - SCSI/Floppy/Tape Controller +4----------- Fommmm e -
| SFFFFO@PQ | SFFFFB200 |
R it P 4omemmemee omemmemeea +
| $00 | $06 |
MVME328 - Winchester/Floppy Controller +----------- e +
| SFFFFBOOS | SFFFFACES |
Hom e m e e Hommmcemmans e +
| ses | s@1 |
MVME321 - Winchester/Floppy Controller +----------- tocmmm e +
| SFFFF@500 | SFFFFO6Q0 |
et e Rt LR 4omomemmmee ommmmmmeeae +
| $08 | $09 |
MVME323 - ESDI Controller e L LT $ocmmeeoooon
| SFFFFAG@Q | SFFFFA200 |
B et 4omemeen- R +
| $08-87 | $80-87 |
MVME327 - SCSI Controller R R +
' . ‘ | SFFFFO600 | SFFFFB708 |
R e L e R T LR P ————- ommeeemeee mmmmmeeeee +
‘ | $04 | $@5 |
MVME358 - Streamer Tape Controller $e-mmmmeoeee oo +
v | $FFFF500@ | $FFFF5100 |
B T e e T TP R R R it +
l $02 | $03 [
MVME368 - SMD Controller b Hommmooooon +
| SFFFFACOP | SFFFFREQD |
B e e L L LR TP omememeem Hommmemme e +

PRELIMINARY

MVME135BUG/D2

Disk Controller Default Configurations

Controller LUN @

Controller Type : MVME319

Controller Address: $FFFFO000

Number of Devices : 8

Devices : DLUN
: DLUN
: DLUN
: DLUN
: DLUN
: DLUN
: DLUN
: DLUN

Controller LUN 7

Controller Type : MVME319

NV WN -

4@ Megabyte Winchester hard drive (see
4@ Megabyte Winchester hard drive (see
40 Megabyte Winchester hard drive (see
40 Megabyte Winchester hard drive (see

= 8" DS/DD Motorola format floppy drive
= 8" DS/DD Motorola format floppy drive
= 5-1/4" DS/DD 96 TPI floppy drive

5-1/4" DS/DD 96 TPI floppy drive

Controller Address: $FFFF@200

Number of Devices : 8

Devices : DLUN 8 = 40 Megabyte Winchester hard drive (see
: DLUN 1 = 40 Megabyte Winchester hard drive (see
: DLUN 2 = 40 Megabyte Winchester hard drive (see
: DLUN 3 = 40 Megabyte Winchester hard drive (see
: DLUN 4 = 8" DS/DD Motorola format floppy drive
: DLUN 5 = 8" DS/DD Motorola format floppy drive’
: DLUN 6 = 5-1/4" DS/DD 96 TPI floppy drive
: DLUN 7 = 5-1/4" DS/DD 96 TPI floppy drive

note)
note)
note)
note)

note)
note)
note)
note)

NOTE: Devices @ through 3 are accessed via the SCSI interface on the
MVME319. An ADAPTEC ACB-4008 Winchester Disk Controller
module is required to interface between the SCSI and the disk

drive. Refer to the MVME319 User’s Manual

information.

C-2

for further

PRELIMINARY ‘ MVME]3§BUG/DZ

Controller LUN @

Controller Type : MVME320
Controller Address: SFFFFBOOQ
Number of Devices : 4

Devices : DLUN @ = 40 Megabyte Winchester hard disk
: DLUN 1 = 40 Megabyte Winchester hard disk
: DLUN 2 = 5-1/4" DS/DD 96 TPI floppy drive
: DLUN 3 = 5-1/4" DS/DD 96 TPI floppy drive

LController LUN 6

Controller Type : MVME320
Controller Address: $FFFFACOQ
Number of Devices : 4

Devices : DLUN B = 40 Megabyte Winchester hard disk
: DLUN 1 = 40 Megabyte Winchester hard disk
: DLUN 2 = 5-1/4" DS/DD 96 TPI floppy drive
: DLUN 3 =

5-1/4" DS/DD 96 TPI floppy drive

Controller LUN @

Controller Type : MVME321

Controller Address: $FFFF@500 -

Number of Devices : 8

Devices : DLUN @ = 40 Megabyte Winchester hard disk
2 DLUN 1 = 4P Megabyte Winchester hard disk
: DLUN.2 = 40 Megabyte Winchester hard disk
: DLUN 3 = 40 Megabyte Winchester hard disk
: DLUN 4 = 5-1/4" DS/DD 96 TPI floppy drive
: DLUN 5 = 5-1/4" DS/DD 96 TPI floppy drive
: DLUN 6 = 5-1/4" DS/DD 96 TPI floppy drive
: DLUN 7 = 5-1/4" DS/DD 96 TPI floppy drive

c-3

PRELIMINARY MVME135BUG/D2

Controller LUN 1

Controller Type : MVME321
Controller Address: $FFFF@600
Number of Devices : 8

Devices : DLUN @ = 40 Megabyte Winchester hard disk
: DLUN 1 = 4@ Megabyte Winchester hard disk
: DLUN 2 = 40 Megabyte Winchester hard disk
: DLUN 3 = 40 Megabyte Winchester hard disk
: DLUN 4 = 5-1/4" DS/DD 96 TPI floppy drive

: DLUN 5 = 5-1/4" DS/DD 96 TPI floppy drive
: DLUN 6 = 5-1/4" DS/DD 96 TPI floppy drive
: DLUN 7 = 5-1/4" DS/DD 96 TPI floppy drive

Controller LUN 8
Controller Type : MVME323
Controller Address: $FFFFAGQQ
Number of Devices : 4
Devices : DLUN @ = CDC WREN III 182 Megabyte ESDI hard disk
(512 byte sectors)
: DLUN 1 = CDC WREN III 182 Megabyte ESDI hard disk
(512 byte sectors)
: DLUN 2 = CDC WREN III 182 Megabyte ESDI hard disk-
(512 byte sectors)
: DLUN 3 = CDC WREN III 182 Megabyte ESDI hard disk
i (512 byte sectors)

Controller LUN 9
Controller Type : MVME323
Controller Address: $FFFFA200
Number of Devices : 4
Devices : DLUN @ = CDC WREN III 182 Megabyte ESDI hard disk
(512 byte sectors)
: DLUN 1 = CDC WREN III 182 Megabyte ESDI hard disk
(512 byte sectors)
: DLUN 2 = CDC WREN III 182 Megabyte ESDI hard disk
(512 byte sectors)
: DLUN 3 = CDC WREN III 182 Megabyte ESDI hard disk
(512 byte sectors)

c-4

PRELIMINARY

Controller LUN @
Controller Type

Devices

Controller LUN 1
Controller Type

Devices

Controller LUN 2
Controller Type

Devices

Controller LUN 3
Controller Type

Controller Address:
Number of Devices : ‘) ‘ :
: DLUN @ = SEAGATE 80 Megabyte SCSI hard disk

Devices

Controller LUN 4
Controller Type

Controller Address:
Number of Devices : .
: DLUN @ = ARCHIVE VIPER Streaming Tape Drive

Devices

MVME135BUG/D2

: MVME327
Controller Address:
Number of Devices :
: DLUN @ = CDC WREN III 155 Megabyte SCSI hard disk

SFFFFP600
1

(512 byte sectors)

: MVME327
Controller Address:
Number of Devices :
: DLUN @ = MICROPOLIS 150 Megabyte SCSI hard disk

$SFFFFO600
1

(512 byte sectors)

: MVME327
Controller Address:
Number of Devices :

SFFFFO600

1
: DLUN @ = CDC WREN IV 300 Megabyte SCSI hard disk

(512 byte sectors)

: MVME327

SFFFFO600
] ‘

(512 byte sectors)

: MVME327

SFFFFO608
1

C-5

PRELIMINARY

Controller LUN 5
Controller Type

Controller Address:
Number of Devices :
: DLUN @ = ARCHIVE VIPER Streaming Tape Drive

Devices

Controller LUN 7
Controller Type

Controller Address:
Number of Devices :
: DLUN 8 = 5-1/4" DS/DD 96 TPI floppy drive
: DLUN 1 = 5-1/4" DS/DD 96 TPI floppy drive

Devices

Controller LUN @
Controller Type

Controller Address:
Number of Devices :
: DLUN @ = CDC WREN III 155 Megabyte SCSI hard disk

Devices

Controller LUN 1
Controller Type

Controller Address:
Number of Devices :
: DLUN @ = MICROPOLIS 150 Megabyte SCSI hard disk

Devices

Controller LUN 2
Controller Type

Controller Address:
Number of Devices : .
: DLUN @ = CDC WREN IV 300 Megabyte SCSI hard disk

Devices

; MVME327

MVME135BUG/D2

: MVME327

$FFFFO600
1

: MVME327

$FFFFO60@
1

: MVME327 -

SFFFF@700
1

(256 byte sectors)

SFFFFO700
1

(256 byte sectors)

: MVME327

SFFFFO700
1

(256 byte sectors)

C-6

PRELIMINARY

Controllier LUN 3
Controller Type

Controller Address:
Number of Devices :
: DLUN @ = SEAGATE 8¢ Megabyte SCSI hard disk

Devices

Controller LUN 4
Controller Type

Controller Address:
Number of Devices :
: DLUN @ = ARCHIVE VIPER Streaming Tape Drive

Devices

Controller LUN 5
Controller Type

Controller Address:
Number of Devices : :
: DLUN @ = ARCHIVE VIPER Streaming Tape Drive

Devices

Controller LUN 7
Controller Type

Controller Address:
Number of Devices :
: DLUN @ = 5-1/4" DS/DD 96 TPl floppy drive
: DLUN 1 = 5-1/4" DS/DD 96 TPI floppy drive

Devices

Controller LUN 4
Controller Type

Controller Address:
Number of Devices :
: DLUN @ = QIC-@2 Streaming Tape Drive

Devices

MVME135BUG/D2

: MVME327

SFFFFO700
1

(256 byte sectors)

: MVME327

SFFFFO700
1

: MVME327

SFFFF@700
1

: MVME327

SFFFFO700
1

: MVME35@

SFFFF5000
1

c-7

PRELIMINARY

Controller LUN 5
Controller Type
Controller Address:
Number of Devices :
Devices

Controller LUN 2
Controller Type
Controller Address:
Number of Devices
Devices

MVME135BUG/D2

: MVME35Q

SFFFF5100
1

: DLUN 8 = QIC-#2 Streaming Tape Drive

: MVME368

SFFFFOCO0

: 4 : .
: DLUN @ = 2333K Fuji SMD drive (512-byte sectors)

: DLUN 1 = null device
: DLUN 2 = 2322K Fuji SMD drive (512-byte sectors)
: DLUN 3 = null device

Controller LUN 3
Controller Type
Controller Address:
Number of Devices :
Devices

: MVME36Q

SFFFFOEQD
4

: DLUN @ = 2322K Fuji SMD drive (256-byte sectors)

: DLUN 1 = null device
: DLUN 2 = 80 Megabyte Fixed CMD drive
: DLUN 3 = 16 Megabyte Removable CMD drive

c-8

PRELIMINARY . MVMEIB.SBUG/DZ

APPENDIX D - DISK COMMUNICATION STATUS CODES

The status word returned by the disk TRAP #15 routines flags an error
condition if it is non-zero. The most significant byte of the status
word reflects controller independent errors, and they are generated
by the disk trap routines. The least significant byte reflects
controller dependent errors, and they are generated by the
controller. The status word is shown below:

+
| Controller Independent | Controller Dependent |
B R e R ettt +

CONTROLLER INDEPENDENT STATUS CODES

Code Definition
$0g No error detected.

$91 Invalid Controllier Type.

$02 Invalid Controller LUN.

$@3 Invalid Device LUN.

$04 Controller Initialization Failed.
$05 Command aborted via break.

$06 Invalid Command Packet.

$07 Invalid address for transfer.

D-1

PRELIMINARY . MVME21358UG/DZ

MVME319 CONTROLLER DEPENDENT STATUS CODES

Code Definition
$00 Correct execution without error.
$o1 Data CRC/ECC error.

$02 Disk write protected.

$83 Drive not ready.

$04 Deleted data mark read.

$05 Invalid drive number.

$06 Invalid disk address.

$07 Restore error.

$08 Record not found.

$09 Sector 1D CRC/ECC error.

$OA - VMEbus DMA error.,

$aF Controller error.

$10 Drive error.

$11 Seek error.

$12 1/0 DMA error.

MVME329 CONTROLLER DEPENDENT STATUS CODES

Code Definition
508 Correct execution without error.
$81 Nonrecoverable error which cannot be completed
(auto retries were attempted).
$82 Drive not ready.
$83 Reserved.
$04 Sector address out of range.
$05 Throughput error (floppy data overrun).
$06 Command rejected (illegal command).
$07 Busy (controller busy).
$08 Drive not available (head out of range).
$09 DMA operation cannot be completed (VMEbus error).
$OA Command abort (reset busy).

$0B-$FF Not used.

D-2

PRELIMINARY ‘ MVME135BUG/D2

MVME321 CONTROLLER DEPENDENT STATUS CODES

Code Definition
*** General Error Codes ***
$00 Correct execution without error.
$17 Timeout.
$18 Bad drive.
$1A Bad Command.
$1E Fatal Error.
*** Hard Disk Error Codes ***
$01 Write protected disk.
$02 Sector not found.
$43 Drive not ready.
$04 Drive fault or timeout on recalibrate.
$05 CRC or ECC error in data field.
$96 UPD7261 FIFO overrun/underrun.
$a7 End of cylinder.
$08 I11egal drive specified.
$89 I11egal cylinder specified.
$OA Format operation failed.
$0B Bad disk descriptor.
$4C Alternate track error.
$4D Seek error.
$OE UPD7261 busy.
$OF Data does not verify. R
$16 CRC error in ID field.
$11 Reset request (missing address mark).
$12 . Correctable ECC error.
$13 Abnormal command completion.
$20 Missing Data Mark.

. *** Floppy Disk Error Codes ***
$01 End-of-transfer size mismatch.
$02 Bad tpi combination specified.
$83 Drive motor not coming on.
$04 Disk door open.
$05 Command not completing.
$06 Bad restore operation.

D-3

PRELIMINARY ' MVME135BUG/D2

MVME321 CONTROLLER DEPENDENT STATUS CODES (cont.)

Code Definition
$a7 I11egal side reference on device.
$08 I111egal track reference on device.
$09 I11egal sector reference on device.
$OA I11egal step rate specified.
$08 Bad density specified.
$8C Write protected disk.
$8D Format error.
$OE Can not find side, track, or sector.
$OF CRC error in ID field(s).
$19 CRC error in data field.

- 811 DMA underrun.
$20 Bad disk size in descriptor.

MVME323 CONTROLLER DEPENDENT STATUS CODES

Code Definition
$00 Correct execution without error.
$10 Disk not ready. ’

$12 Seek error.

$13 ECC code error-data field.

$14 Invalid command code.

$15 I11egal fetch and execute command.
$16 Invalid sector command.

$17 I11egal memory types.

$18 Bus time out.

$19 Header checksum error.

$1A Disk write protected.

$1B Unit not selected.

$1C Seek error timeout.

$1D Fault timeout.

$1E Drive faulted.

$1F Ready timeout.

$20 End of media.

$21 Translation fault.

D-4

PRELIMINARY

MVME135BUG/D2

MVME323 CONTROLLER DEPENDENT STATUS CODES (cont.)

Code Definition
$22 Invalid header pad.
$23 Uncorrectable error.
$24 Translation error, cylinder.
$25 Translation error, head.
$26 Translation error, sector.
$27 Data overrun.
$28 No index pulse on write format.
$29 Sector not found.
$2A ID field error - wrong head.
$28 Invalid sync in data field.
$2C No valid header found.
$2D Seek timeout error.
$2E Busy timeout.
$2F Not on cylinder.
$30 RTZ timeout.
$31 Invalid sync in header.
$32-3E Not used. .
$3F No heads specified.
$40 Unit not initialized.
- $41 Not used. .
| $42 Gap specification error.
$43-4A Not used. |
. $48B Seek error.
© $4C-4F Not used. o :
$50 Sectors per track specification error.
$51 Bytes per sector specification error.
$52 Interleave specification error.
$53 Invalid head address.
$54 Invalid cylinder address.
$55-5C Not used.
$5D Invalid DMA transfer count.
$5E-5F Not used.:
$60 10PB failed.
$61 DMA failed.
$62

I17egal VME address.

D-5

.

PRELIMINARY

MVME135BUG/D2

MVME323 CONTROLLER DEPENDENT STATUS CODES (cont.)

Code Definition

$63-69 Not used.

$6A “Unrecognized header field.

$68B Mapped header error.

$6C-6E Not used.

$6F No spare sector enabled.

$70-76 Not used.

$77 Command aborted.

$78 AC-fail detected.

$79-EF Not used.

$F@-FE Fatal Error.

SFF Command not implemented.

MVME327 CONTROLLER DEPENDENT STATUS CODES

Code Definition
*** Command Parameter Errors ***

$41 Bad descriptor.

$02 Bad command.

$83 Unimplemented command.

$04 Bad drive.

$05 Bad logical disk address.

$06 Bad scatter-gather table.

$97 Unimplemented device.

$08 Unit not initialized.
*** Media Errors ***

$19 No ID found on track.

$11 Seek error.

$12 Relocated track error.

$13 Record not found, bad ID.

$14 Data sync fault.

$15 Non-correctable data error.

$16 Record not found.

$17

Media error.

D-6

PRELIMINARY MVME135BUG/D2

MVME327 CONTROLLER DEPENDENT STATUS CODES (cont.)

Code Definition
*** Drive Errors ***

$20 Drive fault.

$21 Write protected disk.

$22 Motor not on.

$23 Door open.

$24 Drive not ready.

$25 Drive busy.
*** YME DMA Errors ***

$30 VMEbus error.

$31 Bad address alignment.

$32 Bus timeout.

$33 Invalid DMA transfer count.
*** Disk-Format Errors ***

$40 Not enough alternates.

$41 Format failed.

$42 Verify error.

$43 Bad format parameters.

$44 Cannot fix bad spot.

$45 Too many defects.

MVME358 CONTROLLER DEPENDENT STATUS CODES

Code o ' Definition
$00 Correct execution without error.
$01 Block in error not located.

$02 Unrecoverable data error.

$@3 End of media.

$04 Write protected.

$05 Drive offline.

$06 Cartridge not in place.

$D No data detected.

SOE I11egal command.

$12 Tape reset did not occur. -

D-7

PRELIMINARY

MVME135BUG/D2

MVME350 CONTROLLER DEPENDENT STATUS CODES (cont.)

Code Definition
$17 Timeout.
$18 Bad drive.
$1A Bad Command.
$1E Fatal Error.
MVME360 CONTROLLER DEPENDENT STATUS CODES
Code Definition
$00 Correct execution without error.
$10 Disk not ready.
$12 Seek error.
$13 ECC code error-data field.
$14 Invalid command code.
$15 I11egal fetch and execute command.
$16 Invalid sector command.
$17 I11egal memory types.
$18 Bus time out.
$19 Header checksum error.
$1A Disk write protected.
$1B Unit not selected.
$1C Seek error timeout.
$10 Fault timeout.
$1E Drive faulted.
$1F Ready timeout.
$20 End of media.
$21 Translation fault.
$22 Invalid header pad.
$23 Uncorrectable error.
$24 Translation error, cylinder.
$25 Translation error, head.
$26 Translation error, sector.
$27 Data overrun.
$28 No index pulse on write format.
$29 Sector not found.

D-8

PRELIMINARY

MVME135BUG/D2

MVME360 CONTROLLER DEPENDENT STATUS CODES (cont.)

~ Code Definition
$2A ID field error - wrong head.
$2B Invalid sync in data field.
$2C No valid header found.
$2D Seek timeout error.
$2E Busy timeout.
$2F Not on cylinder.
$30 RTZ timeout.
$31 Invalid sync in header.
$32-3F Not used.
$40 Unit not initialized.
$41 Not used.
$42 Gap specification error.
$43-4A Not used.
$4B Seek error.
$4C-4F Not used.
$50 Sectors per track specification error.
$51 Bytes per sector specification error.
$52 Interleave specification error.
$53 Invalid head address.
$54 Invalid cylinder address.
$55-5C Not used.

. $5D Invalid DMA transfer count.
$5E-5F Not used. '
$60 10PB failed.
$61 DMA failed.
$62 I11egal VME address.
$63-69 Not used.
$6A Unrecognized header field.
$68B Mapped header error.
$6E Not used.
$6F No spare sector enabled.
$78-76 Not used.
$77 Command aborted.
$78 AC-fail detected.

$79-EF

Not used.

D-9

PRELIMINARY MVME135BUG/D2

MVME360 CONTROLLER DEPENDENT STATUS CODES (cont.)

Code ’ Definition
$FB-FE Fatal Error.
$SFF Command not implemented.

PRELIMINARY ” MVME135BUG/D2

APPENDIX E - VME135 STATUS REGISTER (STAT1)

STAT]1 is a software-accessible board status register on the VME135
module. It is implemented in hardware as an ten-position DIP
switch. The reference designator of this DIP switch is S4. The
contents of this register may be obtained, with the exception of
Bits 8 and 9, by reading a byte at $FFFBA@@D. STATI is a read-only
register and reflects the settings of the user configuration switch.
This status register is examined by 135Bug to determine the user’s
preferences concerning the 135Bug operating environment. Certain
control registers on the VME135 are then set up by 135Bug in
accordance with the user’s selections.

STAT1 appears to software as shown below.

Bit 9 Bit 8 Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit ﬁ
------------ R A OO S A ST St S

| SCON | PBDIS| ENVG | ENVI | D32 | A32° | VSBSC| VSBEN| MPSUPI BOOT 1
S4-1 S4-2 S4-3 S4-4 S4-5 S4-6 S4-7 S4-8 S4-9 S4-10

If a particular switch is open (OFF), the line is pulled up and the
bit will be read as a logical 1. If the switch is closed (ON), the
bit will be read as a logical @.

The board status information in STAT] is a follows:

SCON < VMEbus System Controller>

This switch is used to configure the VME135 as the VMEbus system
controller in a multi-processor environment. Only one board on a
VMEbus can be configured as the system controller. The front panel
LED 1abeled "SCON" is illuminated when the module is configured as
the system controller. Only one SCON should be on in systems that
use more than one VME135 on a single VMEbus backplane.

SCON = @ (ON): This VME135 is the system controller.
SCON = 1 (OFF): This VMEI35 is not the system controller.

E-1

PRELIMINARY MVME135BUG/D2

PBDIS < Pu#hbutton Enable/Disable Select>

This switch is wused to select ‘the ABORT/RESET pushbutton
enable/disable. When disabled, pushing the ABORT or RESET
pushbuttons, will have no effect on hardware or the ~software
currently executing.

PBDIS = @ (ON): RESET and ABORT pushbuttons enabled.
PBDIS = 1 (OFF): RESET and ABORT pushbuttons disabled.

ENV@-ENV1 < OberatingiEnvironment Select Bits>

Interpreted by 135Bug, these bits (switches S4-3 and S4-4,

respectively) determine certain defaults which are set up at power-
up/reset and dictate the 135Bug operating environment. These
. defaults include the location of 135Bug’s VBR and stack space. For
more information refer to section 1.5, "ENV@,ENV] Switches" and to
section 1.7, "Memory Requirements". :

ENVG ENV1 Description

g g 135Bug operates Tocally at BASE @
[’} 1 135Bug operates locally at high memory BASE $FFXGQEG¢
1 g 135Bug operates over VMEbus BASE @, with OFFSET calculated

by (board n - 1) * $4008. (n =1, 2, 3, etc.)

1 1 135Bug operates in first VMEbus non-mapped (DRAM) memory
space with OFFSET calculated by ID byte * $4000.

D32 < Data Bus Width Select>

This bit (switch S4-5) provides a software selectable 32- and 16-bit
VMEbus data width. This bit should be used with care because when
D32 = @, all memory references to the VMEbus can be 32 bits. When D32
=1, all memory references to VMEbus are forced to be 16 bits.

D32 = @ (ON): Selects 32-bit data.
D32 = 1 (OFF): Selects 16-bit data.

£-2

PRELIMINARY MVME135BUG/D2

A32 < Address Bus Width Select>

This bit (switch S4-6) provides a software selectable 32- and 24-bit
address option for VMEbus references. The appropriate address
modifiers are generated for 32- or 24-bit address VMEbus accesses.
A32 = @ indicates 32-bit address option; A32 = 24 indicates a 24-bit
address space.

A32 = @ (ON): Selects 32-bit addressing.
A32 = 1 (OFF): Selects 24-bit addressing.

VSBSC < VSB System Controller>

This bit (switch S4-7) is used to configure the VME135 as the VSB
system controller in a multi-processor environment. Only one board
on a VSB can be configured as the system controlier. :

VSBSC = @ (ON) : If VSB enabled, this VME135 is the VSB bus system
controller. ‘

VSBSC = 1 (OFF): If VSB disabled, this VME135 is not the VSB bus
system controller.

VSBEN < VSB Enable>

This bit (switch S4-8) is used to select the VSB bus mode. When VSBEN
=1, all VSB activity is suspended. Setting VSBEN = @, enables the
VSB bus.

VSBEN = @ (ON) : Enables VSB.
VSBEN = 1 (OFF): Disables VSB. ,
(all off-board accesses are done over VMEbus).
MPSUP < Multi-Processor Support>

This bit (switch S4-9) is used to select the MP-CSR bit psuedo
interrupt handling option. ,

MPSUP = @ (ON) : Disables polling of MP bits LM@, SIGLP, SIGHP, and

BRIRQ.
MPSUP = 1 (OFF): Enables polling of MP bits LM@, SIGLP, SIGHP, and
BRIRQ.

E-3

PRELIMINARY MVME135BUG/D2

BOOT < Bootstrap Hode>

The BOOT bit (switch S4-18) selects the mechan1sm to be used for
operating the system bootstrap.

BOOT = @ (ON) : Select manual boot (using BO/BH commands).
BOOT = 1 (OFF): Enag1e autoboot operation (BOOT from ROM, DISK or
TAPE)

£-4

PRELIMINARY

Switch S3 is the slave resource mapping switch.

APPENDIX F - MAPPING SWITCH (S3)

MVME135BUG/D?2

It is an eight-

position piano type DIP switch that maps the memory and MPCSR on the

VMEbus.
(Address): A A A A A A A A A A A A A A A A
(Bit #): 1 1 1 1 11 06 0 g 0 0 @ g 0 0 8
5 4 3 2 1 8 9 8 7 6 5 4 3 21 8
MPCSR = Ix x x| @ 8 B |x x X x x| @ g 6 0 0
Base e + R R R L P +
Addr |
I
4ommmmmemee R LT T P +
/ I \
R TR meee-- +
| 1]12]3]4]5]|6]|7]|8]| S3 Switch Positions
R LT B T PP +
‘ \ /
R e LT +
DRAM |
Base R SRR R Rt +
Addr = 0000 O 0 6]x x x x x | 0008 0008 0000 0000 0000
T AMAA A AAA AAAA AAAA AAAA AAAA AAAA AAAA
3322 2222 2222 1111 1111 1196 0000 0000
1098 7654 3216 9876 5432 10§98 7654 3210

...

F-1

PRELIMINARf : MVME135BUG/D?

The following illustrations provide various examples of MPCSR and
DRAM base addressing.

Example 1:

-------------------------- ' Switch S3
Mapping Switch
(Factory Configuration)

-------------------------- (Note: ON is @, OFF is 1)

MPCSR
Base Addr = 1 1 ﬂ‘ﬂ 0000 0000 0000 = $CO00

DRAM
Base Addr = 0000 @ @ ﬂ g 000 0 0000 0000 0000 0000 0000 = $0000 0000

Example 2:
-------------------------- Switch S3
I 3 45 6 7 8 Mapping Switch
-------------------------- (Note: ON is @, OFF is 1)
0 000 O0OUW)
F F NNNNF N
F F F

MPCSR
Base Addr = 11 00 008 109 @008 = $CO40

DRAM
Base Addr = 9000 @ 0 0 0 0 0 1 0 0000 0000 0000 0000 0000 = $0020 0000

F-2

PRELIMINARY MVMEI35BUG/D2

APPENDIX G - VME135 CONFIDENCE TEST STATUS CODES

This appendix contains information about a software-accessible
Confidence Test Status byte which is available on a Power up/Reset
sequence. The status code may be obtained by reading the MP COMM
byte in the local MP-CSR at $FFFB@B79, or the MP-CSR’s address over
the VMEbus at SFFFFXXX9 (refer to Appendix F, Mapping Switch S3).

During normal 135Bug operation, a message will be displayed on a
Confidence Test failure, indicating the failure code. If the
Confidence Test completes successfully, no message is displayed,
and the status code will be set to $8.

When the Confidence Test status check is not done in the normal
135Bug prompt mode, wait until the BSY bit in the MP-CSR is cleared,
to assure the test has completed and the status has been updated.

The Confidence Test Code assignments follow:

CONFIDENCE TEST CODE ASSIGNMENTS

Test Code Description
PASS] Confidence Test Passed
CPU A $A MPU Register Test Failure
CPU_B $B MPU Instruction Test Failure
CPu_C $C VME135 EPROM Test Failure
CPUD $D VME135 Local Ram Test Failure
CPU_E $E MPU Addressing Mode Test Failure -
CPU_F $F VME135 Status and Control Reg1ster Test Faﬂure
CPUG $18 MPU Exception Test Failure
CPU_I $12 VME135 MP-CSR Test Failure
SI0 @ $AB VME135 DUART Register Test Failure
S101 - $Al VME135 DUART Register Test Failure
S10 2 $A2. VME135 DUART Register Test Failure
SI10 3 $A3° VME135 DUART Register Test Failure
S10 4 $A4 VME135 DUART Port Register Test Failure
SI10.5 $A5 VME135 DUART Port Register Test Failure
SIO F $AF VME135 DUART Port Register Test Failure

G-1

PRELIMINARY MVME135BUG/D2

CONFIDENCE TEST CODE ASSIGNMENTS (cont.)

Test Code Description
SIOTX_ @ $B@ VME135 DUART Transmitter Test Failure
SIOTX_1 $81 VME135 DUART Transmitter Test Failure
SIOTX 3 $83 VME135 DUART Transmitter Test Failure
SIOTX 5 $B5 VME135 DUART Transmitter Test Failure
SIOTX 7 .$B7 VME135 DUART Transmitter Test Failure
SIOTX_F $BF VME135 DUART Transmitter Test Failure
SIORX @ $CO VME135 DUART Receiver Test Failure
SIORX_2 $C2 VME135 DUART Receiver Test Failure
SIORX3 $C3 VME135 DUART Receiver Test Failure
SIORX_4 $C4 VME135 DUART Receiver Test Failure
SIORX_F $CF VME135 DUART Receiver Test Failure

SIOTIM @ $08 VME135 DUART Timer Test Failure
SIOTIM 1 $D1 VME135 DUART Timer Test Failure
SIOTIM 2 $D2 VME135 DUART Timer Test Failure
SIOTIM 3 $03 VME135 DUART Timer Test Failure
SIOTIM 4 $D4 VME135 DUART Timer Test Failure
SIOTIM S $05 VMEI135 DUART Timer Test Failure
SIOTIM 6 $D06 ~ VME135 DUART Timer Test Failure
SIOTIM_F $OF ~ VME135 DUART Timer Test Failure

G-2"

SUGGESTION/PROBLEM

REPORT

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.

Microcomputer Division

2900 S. Diablo Way
Tempe, Arizona 85282

Attention: Publications Manager

Maildrop DW164

Product: Manual:
COMMENTS:

‘ (For additional comments use other side)
Please Print
Name Title
Company Division
Street Mail Drop
City Phone
State Zip Country :
For Additional Motorola Publications Motorola Field Service Division/Customer Support
Literature Distribution Center (800) 528-1908
616 West 24th Street (602) 438-3100

Tempe, AZ 85282
(602) 994-6561

@ MOTOROLA EEEER

COMMENTS:

@ MOTOROLA

@ MOTOROLA INC.

Microcomputer Division
2900 South Diablo Way
Tempe, Arizona 85282
P.O. Box 2953

Phoenix, Arizona 85062

Motorola is an Equal Employment
Opportunity/Affirmative Action Employer

Motorolaand @ are registered

trademarks of Motorola, inc.
marc.retronik.fr

