

MVME147

MPU VMEmodule

Installation and Use
VME147A/IH1

Notice

While reasonable efforts have been made to assure the accuracy of this document,
Motorola, Inc. assumes no liability resulting from any omissions in this document,
or from the use of the information obtained therein. Motorola reserves the right to
revise this document and to make changes from time to time in the content hereof
without obligation of Motorola to notify any person of such revision or changes.

No part of this material may be reproduced or copied in any tangible medium, or
stored in a retrieval system, or transmitted in any form, or by any means, radio,
electronic, mechanical, photocopying, recording or facsimile, or otherwise,
without the prior written permission of Motorola, Inc.

It is possible that this publication may contain reference to, or information about
Motorola products (machines and programs), programming, or services that are
not announced in your country. Such references or information must not be
construed to mean that Motorola intends to announce such Motorola products,
programming, or services in your country.

Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S.
Government, the following notice shall apply unless otherwise agreed to in
writing by Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Motorola, Inc.
Computer Group

2900 South Diablo Way
Tempe, Arizona 85282

Preface

This manual, MVME147 MPU VMEmodule Installation and Use, provides general
information, hardware preparation and installation instructions, operating
instructions, programming information, functional description, and debugger
Þrmware information for the MVME147 MPU VMEmodule. The information
contained in this manual applies to the following MVME147 models:

This manual is intended for anyone who wants to design OEM systems, supply
additional capability to an existing compatible system, or work in a lab
environment for experimental purposes.

A basic knowledge of computers and digital logic is assumed.

To use this manual, you should be familiar with the publications listed in the
Related Documentation section in Chapter 1.

MVME147-010

MVME147-011

MVME147-012

MVME147-013

MVME147-014

MVME147-022

MVME147-023

MVME147-024

The computer programs stored in the Read Only Memory of this device contain
material copyrighted by Motorola Inc., 1995, and may be used only under a license
such as those contained in MotorolaÕs software licenses.

The software described herein and the documentation appearing herein are
furnished under a license agreement and may be used and/or disclosed only in
accordance with the terms of the agreement.

The software and documentation are copyrighted materials. Making unauthorized
copies is prohibited by law. No part of the software or documentation may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means without the
prior written permission of Motorola, Inc.

All Motorola PWBs (printed wiring boards) are manufactured by UL-recognized
manufacturers, with a ßammability rating of 94V-0.

!
WARNING

This equipment generates, uses, and can radiate
electromagnetic energy. It may cause or be susceptible to
electromagnetic interference (EMI) if not installed and used in
a cabinet with adequate EMI protection.

Motorola¨ and the Motorola symbol are registered trademarks of Motorola, Inc.
All other products mentioned in this document are trademarks or registered
trademarks of their respective holders.

© Copyright Motorola, Inc. 1996

All Rights Reserved

Printed in the United States of America

May 1996

European Notice: Board products with the CE marking comply with the EMC Directive
(89/336/EEC). Compliance with this directive implies conformity to the following
European Norms:

EN55022 (CISPR 22) Radio Frequency Interference
EN50082-1 (IEC801-2, IEC801-3, IEEC801-4) Electromagnetic Immunity
The product also fulfills EN60950 (product safety) which is essentially the requirement for the Low
Voltage Directive (73/23/EEC).
This board product was tested in a representative system to show compliance with the above
mentioned requirements. A proper installation in a CE-marked system will maintain the required
EMC/safety performance.

Safety Summary
Safety Depends On You

The following general safety precautions must be observed during all phases of operation, service, and
repair of this equipment. Failure to comply with these precautions or with speciÞc warnings elsewhere in
this manual violates safety standards of design, manufacture, and intended use of the equipment.
Motorola, Inc. assumes no liability for the customer's failure to comply with these requirements.
The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You,
as the user of the product, should follow these warnings and all other safety precautions necessary for the
safe operation of the equipment in your operating environment.

Ground the Instrument.

To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground.
The equipment is supplied with a three-conductor ac power cable. The power cable must be plugged into
an approved three-contact electrical outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate in an Explosive Atmosphere.

Do not operate the equipment in the presence of ßammable gases or fumes. Operation of any electrical
equipment in such an environment constitutes a deÞnite safety hazard.

Keep Away From Live Circuits.

Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or
other qualiÞed maintenance personnel may remove equipment covers for internal subassembly or
component replacement or any internal adjustment. Do not replace components with power cable
connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To
avoid injuries, always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone.

Do not attempt internal service or adjustment unless another person capable of rendering Þrst aid and
resuscitation is present.

Use Caution When Exposing or Handling the CRT.

Breakage of the Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion).
To prevent CRT implosion, avoid rough handling or jarring of the equipment. Handling of the CRT should
be done only by qualiÞed maintenance personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.

Because of the danger of introducing additional hazards, do not install substitute parts or perform any
unauthorized modiÞcation of the equipment. Contact your local Motorola representative for service and
repair to ensure that safety features are maintained.

Dangerous Procedure Warnings.

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual.
Instructions contained in the warnings must be followed. You should also employ all other safety
precautions which you deem necessary for the operation of the equipment in your operating environment.

!
WARNING

Dangerous voltages, capable of causing death, are present in
this equipment. Use extreme caution when handling, testing,
and adjusting.

List of Tables

MVME147 Model Designations 1-1
MVME147 Features 1-2
MVME147 SpeciÞcations 1-4
MVME712 Transition Modules 1-8
Start-up Overview 2-2
Front Panel Indicators and MVME147 Status 3-3
MVME147 Address Spaces 3-4
MC68030 Main Memory Map 3-5
Local I/O Devices 3-6
MC68882 Register Map 3-7
DRAM Address as Viewed from the VMEbus 3-9
VMEchip GCSR as Viewed from the VMEbus 3-11
PCC Overall View 4-2
DRAM Address as Viewed from the VMEbus 4-27
DRAM Accessed by the LANCE 4-29
VMEchip Local Control and Status Registers 4-36
Determining the Master AM Code 4-41
Utility Interrupts and Their Assigned Level 4-51
Encoding of the Interrupt ID 4-53
ConÞguring the Interrupt Request Level 4-54
VMEchip GCSR as Viewed from the VMEbus 4-58
VMEchip Global Control and Status Register 4-59
Example DMAC Table 5-13
MVME147 Interrupt Sources and Vectors 5-23
Diagnostic Monitor Commands/PreÞxes B-21
Diagnostic Utilities B-21
Diagnostic Test Commands B-22
ix

x

1

1General Information
Introduction
This manual provides:

❏ General information

❏ Hardware preparation and installation instructions

❏ Operating instructions

❏ Functional description

for the MVME147 series of MPU VMEmodules (referred to as the
MVME147 throughout this manual).

Model Designations
The MVME147 is available in several models which are listed in
Table 1-1. The memory maps differ for the 4, 8, 16, and 32MB
versions (refer to the Memory Maps section in Chapter 3).

Table 1-1. MVME147 Model Designations

Model
Number

Clock
Speed Memory Parity Ethernet

MVME147-010 16 MHz 4MB No No
MVME147-011 25 MHz 4MB Yes Yes
MVME147-012 25 MHz 8MB Yes Yes
MVME147-013 25 MHz 16MB Yes Yes
MVME147-014 25 MHz 32MB Yes Yes
MVME147-022 32 MHz 8MB Yes Yes
MVME147-023 32 MHz 16MB Yes Yes
MVME147-024 32 MHz 32MB Yes Yes
1-1

General Information
1

Features
Features of the MVME147 are listed in Table 1-2:

Specifications
General specifications for the MVME147 are listed in Table 1-3.

The following sections detail cooling requirements and FCC
compliance.

Table 1-2. MVME147 Features

Feature Description

Microprocessor MC68030
Floating-point coprocessor MC68882
DRAM Shared DRAM with parity (no parity on MVME147-010)
ROM Four ROM/PROM/EPROM/EEPROM sockets (organized

as 16 bits wide)
Status LEDs Four LEDs: SCON, RUN, FAIL, and STATUS
CMOS RAM 4K by 8 available with battery backup
Switches Two switches: RESET and ABORT
Remote reset connector One connector for remote access of RESET switch
Real time clock TOD clock/calendar with battery backup
Tick timers Two 16-bit tick timers for periodic interrupts
Watchdog timer One watchdog timer
Software interrupts Two software interrupts
I/O SCSI bus interface with DMA

Four serial ports EIA-232-D interface
8-bit Centronics parallel printer port
Ethernet transceiver interface (except for MVME147-010)

VMEbus interface VMEbus system controller functions
VMEbus master interface (A32/D32, A24/D16 compatible)
VMEbus interrupter
VMEbus requester
1-2

Specifications
1

Cooling Requirements

Motorola VMEmodules are specified, designed, and tested to
operate reliably with an incoming air temperature range from 0
degrees C to 55 degrees C (32 degrees F to 131 degrees F) with
forced air cooling. Temperature qualification is performed in a
standard Motorola VMEsystem- 1000 chassis. Twenty-five watt
load boards are inserted in the two card slots, one on each side,
adjacent to the board under test to simulate a high power density
system configuration. An assembly of three axial fans, rated at 100
CFM per fan, is placed directly under the MVME card cage. The
incoming air temperature is measured between the fan assembly
and the card cage where the incoming airstream first encounters the
module under test. Test software is executed as the module is
subjected to ambient temperature variations. Case temperatures of
critical, high power density integrated circuits are monitored to
ensure component vendors specifications are not exceeded.

While the exact amount of airflow required for cooling depends on
the ambient air temperature and the type, number, and location of
boards and other heat sources, adequate cooling can usually be
achieved with 10 CFM flowing over the module. Less air flow is
required to cool the module in environments having lower
maximum ambients. Under more favorable thermal conditions it
may be possible to operate the module reliably at higher than 55
degrees C with increased air flow. It is important to note that there
are several factors, in addition to the rated CFM of the air mover,
which determine the actual volume of air flowing over a module.

FCC Compliance

The MVME147 was tested in an FCC-compliant chassis, and meets
the requirements for Class A equipment. FCC compliance was
achieved under the following conditions:

1. Shielded cables on all external I/O ports.

2. Cable shields connected to earth ground via metal shell
connectors bonded to a conductive module front panel.
1-3

General Information
1

3. Conductive chassis rails connected to earth ground. This
provides the path for connecting shields to earth ground.

4. Front panel screws properly tightened.

For minimum RF emissions, it is essential that the conditions above
be implemented; failure to do so could compromise the FCC
compliance of the equipment containing the modules.

Table 1-3. MVME147 Specifications

Characteristics SpeciÞcations

Power requirements
 (MVME147 with two
 EPROMs and
 MVME712M)

+5 Vdc, 4.5A maximum (3.5 A typical)
+12 Vdc, 1.0 A maximum (100 mA maximum - no LAN)
-12 Vdc, 100 mA maximum
Note: Power must be brought in from both the P1 and P2
backplanes or connectors P1 and P2

Microprocessor MC68030
Clock signal 16/25/32 MHz to MPU and FPC (depends on version)
Addressing
 Total address range
 (on and off board)
 EPROM/EEPROM
 Dynamic RAM

4GB

Four sockets, 32 pin, for 8K x 8 to 1M x 8 devices
4/8/16/32 MB (depends on version)

I/O ports
 Serial

 Parallel

Four multiprotocol serial ports
(connected through P2 to transition module)
Parallel I/O Centronics printer port
(connected through P2 to transition module)

Timers
 Time-of-day clock
 Watchdog timer
 Tick timer

Four total
M48T18 (only 4KB SRAM accessible)
16-bit (tick timer output is watchdog timer input)
Two 16-bit programmable

Bus conÞguration Data transfer bus master, with 32-bit address (A32)
and 32-bit data (D32) (A24:D16 also supported)

Interrupt handler Any or all onboard, plus up to seven VMEbus interrupts
Bus arbitration Two modes: prioritized mode and rotating priority mode
1-4

General Description
1

General Description
The MVME147 is a double-high VMEmodule based on the
MC68030 microprocessor. It is best utilized in a 32-bit VMEbus
system with both P1 and P2 backplanes. The module has high
functionality with large onboard shared RAM, serial ports, and
Centronics printer port. The module provides a SCSI bus controller
with DMA, floating-point coprocessor, tick timer, watchdog timer,
and time-of-day clock/calendar with battery backup, 4KB of static
RAM with battery backup, four ROM sockets, and A32/D32
VMEbus interface with system controller functions.

The MVME147 can be operated as part of a VMEbus system with
other VMEmodules such as RAM modules, CPU modules, graphics
modules, and analog I/O modules. The following transition boards
are compatible with the MVME147:

❏ MVME712-12
❏ MVME712-13
❏ MVME712A
❏ MVME712AM
❏ MVME712B

Reset RESET switch which can be enabled/disabled by software.
If the MVME147 is the system controller, it also activates
SYSRESET* (system reset) on the VMEbus

Operating temperature 0 degrees to 55 degrees C at point of entry of forced air
(approximately 490 LFM)

Storage temperature -40û to 85û C
Relative humidity -5% to 90% (non-condensing)
Physical characteristics
(excluding front panel)
 Height
 Depth
 Thickness

9.187 inches (233.35 mm)
6.299 inches (160.0 mm)
0.063 inches (1.6 mm)

Table 1-3. MVME147 Specifications (Continued)

Characteristics SpeciÞcations
1-5

General Information
1

❏ MVME712M
1-6

Equipment Required
1

Equipment Required
The following equipment is required to make a complete system
using the MVME147:

❏ Terminal

❏ Disk drives and controllers

❏ Transition module(s) and connecting cables:

Ð MVME712-12

Ð MVME712-13

Ð MVME712A

Ð MVME712AM

Ð MVME712B

Ð MVME712M

(collectively referred to in this manual as MVME712 unless
separately specified).

Note The MVME712B is designed to be used only in
conjunction with an MVME712-12/-13/A/AM for
external SCSI and/or Ethernet connections.

The MVME147Bug debug monitor firmware (147Bug) is provided
in the two EPROMs in sockets on the MVME147. It provides:

❏ Over 50 debug, up/downline load, and disk bootstrap load
commands

❏ Full set of onboard diagnostics

❏ One-line assembler/disassembler

147Bug includes a user interface which accepts commands from the
system console terminal. 147Bug can also operate in a System
Mode, which includes choices from a service menu. Refer to
Appendix B, Debugger General Information.
1-7

General Information
1

The MVME712 modules provide the interface between the
MVME147 and peripheral devices. They connect the MVME147 to
EIA-232-D serial devices, Centronics-compatible parallel devices,
SCSI devices, and Ethernet devices. The MVME712 is cabled to the
MVME147 through the P2 adapter board.

The features of the MVME712 modules are shown in Table 1-4.
They include:

❏ Four multiprotocol EIA-232-D serial ports

❏ One independent printer port

❏ Small computer systems interface (SCSI) shielded connector
bus interface for connection to external devices

❏ Ethernet interface

❏ Built-in modem with front panel Telco modular jack
(MVME712-13 and MVME712AM)

❏ Electrostatic discharge (ESD) protection on front panel

❏ Radio frequency interference (RFI) protection on front panel

Table 1-4. MVME712 Transition Modules

Board Panel Size
EIA-232-D

Ports
Serial

Connector Printer Ethernet SCSI Modem

MVME712M Double 4 25 pin Yes Yes Yes No

MVME712A Single 4 9 pin Yes * * No

MVME712AM Single 4 9 pin Yes * * Yes

MVME712-12 Single 4 9 pin Yes * * No

MVME712-13 Single 4 9 pin Yes * * Yes

MVME712B Single 0 No No Yes Yes No

* These functions can be supplied by using the MVME712B
1-8

Related Documentation
1

Related Documentation
The following publications are applicable to the MVME147 and
may provide additional helpful information. If not shipped with
this product, they may be purchased by contacting your local
Motorola sales office. Non-Motorola documents may be purchased
from the sources listed.

Notes 1. Although not shown in the above list, each Motorola
Computer Group manual publication number is
suffixed with characters that represent the type and
revision level of the document, such as Ò/xx2Ó (the
second revision of a manual); a supplement bears the
same number as a manual but has a suffix such as
Ò/xx2A1Ó (the first supplement to the second revision
of the manual).

 2. Manuals shown with a superscript (2) can be ordered
as a set with the part number LK-147SET.

Document Title

Motorola
Publication

Number1

MVME147 MPU VMEmodule Installation and Use 2

(this manual)
VME147A/IH

MVME147BUG 147Bug Debugging Package User's Manual,
Parts 1 and 22

V147BUGA1/UM
V147BUGA2/UM

MVME147 SCSI Firmware User's Manual2 MVME147FW/D
MC68881/MC68882 Floating-Point Coprocessor User's Manual MC68881UM/AD
MC68030 Enhanced 32-Bit Microprocessor User's Manual MC68030UM/AD
M68000-/08-/16-/32- Bit Microprocessor UserÕs Manual M68000UM/AD
M68000 Family Reference Manual M68000FR/AD
MVME712-12, MVME712-13, MVME712A, MVME712AM, and
MVME712B Transition Modules and LCP2 Adapter Board User's
Manual

MVME712A/D

MVME712M Transition Module and P2 Adapter Board User's
Manual

MVME712M/D
1-9

General Information
1

The following publications are available from the sources
indicated:

Versatile Backplane Bus: VMEbus, ANSI/IEEE Std 1014-1987, The
Institute of Electrical and Electronics Engineers, Inc., 345 East 47th
Street, New York, NY 10017 (VMEbus Specification). This is also
available as Microprocessor system bus for 1 to 4 byte data, IEC 821
BUS, Bureau Central de la Commission Electrotechnique
Internationale; 3, rue de Varemb�, Geneva, Switzerland

SCC UserÕs Manual; Zilog, Inc., 210 East Hacienda Avenue,
Campbell, CA 95008-6600

SCSI Small Computer System Interface; draft X3T9.2/82-2 -
Revision 14; Computer and Business Equipment Manufacturers
Association, 311 First Street, N. W., Suite 500, Washington, D.C.
20001

M48T18, CMOS 8Kx8 TIMEKEEPER TM SRAM data sheet in Non-
Volatile RAM Products Databook; SGS-THOMSON Microelectronics,
Inc., 1000 East Bell Road, Phoenix, AZ 85022-2699.

WD33C93 SCSI-Bus Interface Controller; Western Digital
Corporation, 2445 McCabe Way, Irvine, CA 92714.

Local Area Network Controller Am79C90 (LANCE), Technical
Manual, order number 06363A, Advanced Micro Devices, Inc., 901
Thompson Place, P.O Box 3453, Sunnyvale, CA 94088.

Support Information
You can obtain parts lists and schematics for the MVME147 by
contacting your local Motorola sales office.
1-10

Manual Terminology
1

Manual Terminology
Throughout this manual, a convention is used which precedes data
and address parameters by a character identifying the numeric
format as follows:

Unless otherwise specified, all address references are in
hexadecimal.

An asterisk (*) following the signal name for signals which are level
significant denotes that the signal is true or valid when the signal is
low.

An asterisk (*) following the signal name for signals which are edge
significant denotes that the actions initiated by that signal occur on
high to low transition.

In this manual, assertion and negation are used to specify forcing a
signal to a particular state. In particular, assertion and assert refer
to a signal that is active or true; negation and negate indicate a
signal that is inactive or false. These terms are used independently
of the voltage level (high or low) that they represent.

Data and address sizes are defined as follows:

❏ A byte is eight bits, numbered 0 through 7, with bit 0 being the
least significant.

❏ A word is 16 bits, numbered 0 through 15, with bit 0 being the
least significant.

❏ A longword is 32 bits, numbered 0 through 31, with bit 0 being
the least significant

$ dollar speciÞes a hexadecimal character
% percent speciÞes a binary number
& ampersand speciÞes a decimal number
1-11

General Information
1

1-12

2
2Hardware Preparation
and Installation
Introduction
This chapter provides the following for the MVME147:

❏ Unpacking instructions

❏ Hardware preparation

❏ Installation instructions

The MVME712 hardware preparation is provided in separate
manuals. Refer to Related Documentation in Chapter 1.

Unpacking Instructions

Note If the shipping carton is damaged upon receipt, request
that the carrier's agent be present during unpacking
and inspection of the equipment.

Unpack the equipment from the shipping carton. Refer to the
packing list and verify that all items are present. Save the packing
material for storing and reshipping of the equipment.

!
Caution

Avoid touching areas of integrated circuitry; static
discharge can damage circuits.
2-1

Hardware Preparation and Installation

2
 Overview of Start-up Procedure
The following list identifies the things you will need to do before
you can use this board, and where to find the information you need
to perform each step. Be sure to read this entire chapter and read all
Caution notes before beginning.

Table 2-1. Start-up Overview

What you will need to do ... Refer to ... On page ...

Set jumpers on your MVME147
module.

Hardware Preparation 2-4

Ensure that ROM devices are
properly installed in the sockets.

Hardware Preparation 2-4

Install your MVME147 module
in the chassis.

Installation Instructions 2-14

Set jumpers on the transition
board; connect and install the
transition board, P2 adapter
module, and optional SCSI
device cables.

The userÕs manual you received
with your MVME712 module, listed
in Related Documentation

1-9

You may also wish to obtain the
MVME147 SCSI Firmware UserÕs
Manual, listed in Related
Documentation

1-9

Connect a console terminal to
the MVME712.

Installation Instructions 2-14
The userÕs manual you received
with your MVME712 module, listed
in Related Documentation

1-9

Connect any other optional
devices or equipment you will
be using.

The userÕs manual you received
with your MVME712 module, listed
in Related Documentation

1-9

EIA-232-D Interconnections A-1
Port Numbers B-30

Power up the system. Installation Instructions 2-14
Front Panel Indicators (DS1 - DS4) 3-1
Troubleshooting; Solving Start-up
Problems

D-1
2-2

Overview of Start-up Procedure

2

Note that the debugger prompt
appears.

Installation Instructions 2-14
Debugger General Information. B-1
You may also wish to obtain the
MVME147BUG - 147Bug Debugging
Package UserÕs Manual, listed in
Related Documentation

1-9

Initialize the clock. Installation Instructions 2-14
SET and ENV Commands C-1

Examine and/or change
environmental parameters.

Installation Instructions 2-14
SET and ENV Commands C-1

Program the PCCchip and
VMEchip.

Memory Maps 3-4
Programming 4-1

Table 2-1. Start-up Overview (Continued)

What you will need to do ... Refer to ... On page ...
2-3

Hardware Preparation and Installation

2
 Hardware Preparation
The MVME147 has been factory tested and is shipped with factory-
installed jumpers configured to provide the system functions
required for a VMEbus system. The module is operational with the
factory-installed jumpers, but to select the desired configuration
and ensure proper operation of the MVME147, certain option
modifications may be necessary.

Options are selected by installing or removing jumpers on the
following headers:

❏ ROM configuration select (J1, J2)

❏ System controller select (J3)

❏ Serial port 4 clock configuration select (J8, J9)

Instructions for setting the jumpers are given in the following
pages. Refer to Figure 2-1 for the location of:

❏ Headers

❏ Connectors

❏ LEDs

❏ Switches
2-4

Hardware Preparation

2

Figure 2-1. MVME147 Header Locations

S
1

S
2

P
1

A
1

B
1

C
1

A
32

B
32

C
32

P
2

A
32

B
32

C
32

A
1

B
1

C
1

D
S

1

21

18
J1

D
S

2
D

S
3

D
S

4

J2
1817

2

J8
J9

13

14

J3
2 1

MVME
147-0XX

FAIL

STATUS

RUN

SCON

ABORT

RESET

1513 9603

RMT RST
2-5

Hardware Preparation and Installation

2
 ROM Configuration Select Headers (J1, J2)

The MVME147 supports various sizes of EPROMs and EEPROMs.

Four 32-pin ROM/PROM/EPROM/EEPROM sockets are
provided on the module. They are organized as two banks with two
sockets per bank. Each pair of sockets may be individually
configured. Sockets U22 and U30 form bank 1. Sockets U1 and U15
form bank 2.

The banks are configured as word ports to the MPU with U22 and
U1 comprising the even bytes and U30 and U15 the odd bytes. Each
bank can be configured for 8K x 8, 16K x 8, 32K x 8, 64K x 8, 128K x
8, 256K x 8, 512K x 8, or 1M x 8 ROM/PROM/EPROM devices; or
for 2K x 8, 8K x 8, or 32K x 8 EEPROM devices.

As shipped, the module is configured for 128K x 8 ROM/PROM/
EPROM devices (Configuration #5), and the MVME147Bug
debugger software EPROMs are installed in sockets U22 and U30.

Note There are several different algorithms for
erasing/writing to EEPROM devices depending on the
manufacturer. The MVME147 supports only those
devices which have a Òstatic RAMÓ compatible
erase/write mechanism such as Xicor X28256 or
X2864H.

J1 and J2 Jumpers

The J1 and J2 headers on the MVME147 module must be configured
for the ROM device type used, as shown on the following pages.
2-6

Hardware Preparation

2

Configuration #1: 8K x 8 or 16K x 8 ROM/PROM/EPROM

Configuration #2: 32K x 8 ROM/PROM/EPROM

Configuration #3: 64K x 8 ROM/PROM/EPROM

Configuration #4: 2K x 8 or 8K x 8 EEPROM

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J1 - BANK 2

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J2 - BANK 1

J1 - BANK 2

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J2 - BANK 1

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J1 - BANK 2

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J2 - BANK 1

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J1 - BANK 2

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J2 - BANK 1
2-7

Hardware Preparation and Installation

2

Configuration #5: 128K x 8 ROM/PROM/EPROM
(Factory Configuration)

Configuration #6: 256K x 8 ROM/PROM/EPROM/EPROM

Configuration #7: 512K x 8 ROM/PROM/EPROM

Configuration #8: 1M x 8 ROM/PROM/EPROM

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J1 - BANK 2

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J2 - BANK 1

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J1 - BANK 2

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J2 - BANK 1

J1 - BANK 2

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J2 - BANK 1

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J1 - BANK 2

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J2 - BANK 1
2-8

Hardware Preparation

2

2-9

Configuration #9: 32K x 8 EEPROM

Socket Pin Definitions

The sockets are installed on the module with pins oriented as
shown in Figure 2-2. Devices with 28 pins are installed with pin 1 of
the device aligned with pin 3 of the socket as shown.

Figure 2-2. Socket Alignment

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J1 - BANK 2

2 4 6 8 12 10 14 16 18

 1 3 5 7 11 9 13 15 17

J2 - BANK 1

32313028 29 27 26 25

 1 2 35 4 6 7 8

24232220 21191817

9 10 1113 12 14 15 16

PIN 1 FOR

 1 2 35 4 6 7 89 10 1113 12 14

28 27 26 2524232220 21191817 15 16

28-PIN DEVICES

32-PIN SOCKET
PIN NUMBERS

Hardware Preparation and Installation

2
 Figure 2-3 shows the definitions of the ROM/PROM/EPROM/
EEPROM socket pins, depending upon the configuration used. The
address lines shown are local bus address lines, not device address
lines.

The configurations shown in the figure are as follows:

ConÞguration
 Number Device Type

1 8K x 8, 16K x 8 EPROM

2 32K x 8 EPROM

3 64K x 8 EPROM

4 2K x 8 (28-pin), 8K x 8 EEPROM

5 128K x 8 EPROM

6 256K x 8 EPROM

7 512K x 8 EPROM

8 1M x 8 EPROM

9 32K x 8 EEPROM
2-10

Hardware Preparation

2

2-11

H
ard

w
are Preparation and

 Installation

2-12

2

uration

4 3 2 1

V +5V +5V +5V +5V

V

8 +5V +5V +5V +5V

5 WE* A15 A15 WE*

4 A14 A14 A14 A14

A9 A9 A9 A9

0 A10 A10 A10 A10

2 A12 A12 A12 A12

* OE* OE* OE* OE*

1 A11 A11 A11 A11

* CE* CE* CE* CE*

D7 D7 D7 D7

D6 D6 D6 D6

D5 D5 D5 D5

D4 D4 D4 D4

D3 D3 D3 D3
ConÞguration ConÞg

1 2 3 4 5 6 7 8 9 9 8 7 6 5

+5V +5V +5V A20 1 32 +5V +5V +5V +5

A17 A17 A17 A17 A17 A17 A17 A17 2 31 A19 A19 +5V +5

5V +5V A16 A16 A16 A16 A16 A15 3 1 28 30 +5V A18 A18 A18 A1

A13 A13 A13 A13 A13 A13 A13 A13 A13 4 2 27 29 WE* A15 A15 A15 A1

A8 A8 A8 A8 A8 A8 A8 A8 A8 5 3 26 28 A14 A14 A14 A14 A1

A7 A7 A7 A7 A7 A7 A7 A7 A7 6 4 25 27 A9 A9 A9 A9 A9

A6 A6 A6 A6 A6 A6 A6 A6 A6 7 5 24 26 A10 A10 A10 A10 A1

A5 A5 A5 A5 A5 A5 A5 A5 A5 8 6 23 25 A12 A12 A12 A12 A1

A4 A4 A4 A4 A4 A4 A4 A4 A4 9 7 22 24 OE* OE* OE* OE* OE

A3 A3 A3 A3 A3 A3 A3 A3 A3 10 8 21 23 A11 A11 A11 A11 A1

A2 A2 A2 A2 A2 A2 A2 A2 A2 11 9 20 22 CE* CE* CE* CE* CE

A1 A1 A1 A1 A1 A1 A1 A1 A1 12 10 19 21 D7 D7 D7 D7 D7

D0 D0 D0 D0 D0 D0 D0 D0 D0 13 11 18 20 D6 D6 D6 D6 D6

D1 D1 D1 D1 D1 D1 D1 D1 D1 14 12 17 19 D5 D5 D5 D5 D5

D2 D2 D2 D2 D2 D2 D2 D2 D2 15 13 16 18 D4 D4 D4 D4 D4

Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd 16 14 15 17 D3 D3 D3 D3 D3

Figure 2-3. Socket Pin Definitions

Hardware Preparation

2
System Controller Select Header (J3)

Header J3 allows you to select the MVME147 as system controller.
With the jumper removed, the module is not used as system
controller. The module is shipped with the jumper installed
(system controller).

Serial Port 4 Clock Configuration Select Headers (J8, J9)

Serial port 4 can be configured to use clock signals provided by the
TRXC4 and RTXC4 signal lines. Headers J8 and J9 on the MVME147
module configure part of the clock signals. The remaining
configuration of the clock lines is accomplished using header J15 on
the MVME712M module. Refer to the MVME712M Transition
Module and P2 Adapter Board User's Manual for header J15
configuration. The module is shipped with the jumper on pins 2
and 3 of J8 (receiving RTXC4), and on pins 1 and 2 of J9 (driving
TRXC4).

J3 J3

SYSTEM
CONTROLLER

SYSTEM
CONTROLLER

NOT

(Factory
Configuration)

J8

DRIVES
RTXC4

RECEIVES
RTXC4

DRIVES
TRXC4

RECEIVES
TRXC4

J8 J9 J9

(Factory
Configuration)

(Factory
Configuration)

1

2

3

1

2

3

1

2

3

4

1

2

3

4

2-13

Hardware Preparation and Installation

2
 Installation Instructions
When you have configured the MVME147Õs headers and installed
the selected ROMs in the sockets as described previously, install the
MVME147 module in the system as follows:

1. Turn all equipment power OFF and disconnect the power
cable from the AC power source.

!
Caution

Connecting modules while power is applied may result
in damage to components on the module.

!
Warning

Dangerous voltages, capable of causing death, are
present in this equipment. Use extreme caution when
handling, testing, and adjusting.

2. Remove the chassis cover as instructed in the equipment
user's manual.

3. Remove the filler panel(s) from the appropriate card slot(s) at
the front and rear of the chassis (if the chassis has a rear card
cage). If the MVME147 is configured as the system controller,
install it in the left-most card slot (slot 1) to initiate the bus
grant daisy-chain correctly. The MVME147 is to be installed
in the front of the chassis; the MVME712 transition module
may be installed in the front or rear of the chassis.

Note Every MVME147 is assigned an Ethernet station
address. The address is $08003E2xxxxx where xxxxx is
the unique number assigned to the module; i.e., every
MVME147 has a different value for xxxxx.

Each Ethernet station address is displayed on a label
attached to the MVME147Õs backplane connector, P2. In
addition, the xxxxx portion of the Ethernet station
address is stored in BBRAM location $FFFE0778 as
$2xxxxx.
2-14

Installation Instructions

2
If Motorola networking software is running on an
MVME147, it uses the 2xxxxx value from BBRAM to
complete the Ethernet station address ($08003E2xxxxx).
You must ensure that the value of 2xxxxx is maintained
in BBRAM. If the value of 2xxxxx is lost in BBRAM, use
the number on the backplane connector P2 label to
restore it. Note that MVME147Bug includes the
ÒLSADÓ command for examining and updating the
BBRAM xxxxx value.

If non-Motorola networking software is running on an
MVME147, it must set up the 79C90 so that the Ethernet
station address is that shown on the front panel label to
ensure that the module has a globally unique Ethernet
station address.

4. Insert the MVME147 into the selected card slot. Be sure the
module is seated properly into the connectors on the
backplane. Fasten the module in the chassis with the screws
provided. For proper operation, a 32-bit VMEbus backplane
should be used. This ensures that power is sufficiently
distributed over enough power pins on connectors P1 and P2.

5. Remove IACK and BG jumpers from the header on chassis
backplane for the card slot in which the MVME147 is installed
(if applicable).

6. Refer to the MVME712 userÕs manual provided with your
MVME712 transition module, and install the transition
board, P2 adapter board, and any peripheral cables needed,
according to the installation instructions given there.

7. Connect the terminal which is to be used as the system
console to the serial I/O port marked SERIAL PORT 1/CONSOLE
on the MVME712 module. To use 147Bug, set up the terminal
as follows:
Ð Eight bits per character
Ð One stop bit per character
Ð Parity disabled (no parity)
Ð 9600 baud to agree with the MVME147 portsÕ default baud rate

at power-up.
2-15

Hardware Preparation and Installation

2
 After power-up, the baud rate of PORT 1 can be reconfigured
by using the Port Format (PF) command of the 147Bug
debugger.

Note In order for high-baud rate serial communication
between 147Bug and the terminal to work, the terminal
must do some handshaking. If the terminal being used
does not do hardware handshaking via the CTS line,
then it must do XON/XOFF handshaking. If you get
garbled messages and missing characters, then you
should check the terminal to make sure XON/XOFF
handshaking is enabled.

8. If you want to connect device(s) (such as a host computer
system or a serial printer) to the serial ports on your
MVME712/MVME712M, connect the appropriate cables as
described in the MVME712 userÕs manual, and configure the
port(s) as described in the section Port Numbers in Appendix
B of this manual, Debugger General Information. After power-
up, these ports can be reconfigured by using the PF command
of the 147Bug debugger.

9. Turn equipment power ON.

Notes The MVME147 provides +12 Vdc power to the Ethernet
transceiver interface through a 1-amp polyfuse located
between the P1 and P2 connectors on the MVME147
module. The polyfuse resets itself when the
overcurrent condition no longer exists. The polyfuse is
soldered down and should not need to be replaced.
When using an MVME712M module, the yellow LED
(DS1) on the MVME712M front panel will light when
LAN power is available. Note that the yellow LED may
light if a device is connected to any one of the four serial
ports on the MVME712M regardless of the state of the
fuse.

The MVME147 provides SCSI terminator power
through a 1-amp fuse (F1) located on the P2 Adapter
Board. The fuse is socketed. If the fuse is blown, the
2-16

Installation Instructions

2
SCSI devices may not operate or may function
erratically. When the P2 adapter is used with an
MVME712M and the SCSI bus is connected to the
MVME712M, the green LED (DS2) on the MVME712M
lights when there is SCSI terminator power. If the LED
flickers during SCSI bus operations, the fuse should be
checked.

10. Observe the system console. The default condition is with the
ROMboot routine enabled, so the boot routine contained in
the MVME147Õs ROMs is begun.

With the 147Bug EPROMs installed on the MVME147
module, 147Bug executes a set of self-tests and displays its
prompt, 147Bug>.The RUN LED on the MVME147 module will
be lit.

If after a delay, 147Bug begins to display test result messages
on the bottom line of the screen in rapid succession, the
MVME147 is in 147BugÕs ÒSystemÓ operating mode. To get to
the normal or ÒBugÓ operating mode, press the ABORT switch
on the front panel of the MVME147 to cause a menu to be
displayed. Enter a 3 to go to the system debugger. (Refer to
Appendix B.)

When power is applied to the MVME147, bit 1 at location
$FFFE1029 (Peripheral Channel Controller (PCC) general
purpose status register) is set to 1 indicating that power was
just applied. (Refer to Chapter 4 for a description of the PCC.)
This bit is tested within the ÒResetÓ logic path to see if the
power-up confidence test needs to be executed. This bit is
cleared by writing a 1 to it thus preventing any future power-
up confidence test execution.

If the power-up confidence test is successful and no failures
are detected, the firmware monitor comes up normally, with
the FAIL LED off.

If the confidence test fails, the test is aborted when the first
fault is encountered and the FAIL LED remains on. If possible,
2-17

Hardware Preparation and Installation

2
 one of the following messages is displayed and the firmware
monitor comes up with the FAIL LED on:

... ‘CPU Register test failed’

... ‘CPU Instruction test failed’

... ‘ROM test failed’

... ‘RAM test failed’

... ‘CPU Addressing Modes test failed’

... ‘Exception Processing test failed’

... ‘+12v fuse is open’

... ‘Battery low (data may be corrupted)’

... ‘Unable to access non-volatile RAM properly’

Refer to Appendix D, Troubleshooting: Solving Start-up
Problems.

11. At the 147Bug prompt, use the SET command to initialize the
clock and set the time and date. Refer to Appendix C, SET and
ENV Commands.

!
Caution

Performing the next step will change some parameters
that may affect your system operation.

12. Use 147BugÕs ENV command to verify and/or change the
environmental parameters in NVRAM. The ENV;D command
can be used to return the NVRAM parameters to the default
values. Refer to Appendix C, SET and ENV Commands.

If you wish to use 147BugÕs Autoboot routine in order to boot
automatically from another controller and device, use the AB
command (Appendix B).

To program the MVME147 moduleÕs PCCchip and VMEchip, refer
to the memory maps in Chapter 3 and to Chapter 4, Programming.
2-18

3
3Operating Instructions
Introduction
This chapter provides information on using the MVME147 in a
system configuration. The following topics are presented:

❏ Controls and Indicators, page 3-1
❏ Memory Maps, page 3-4

Controls and Indicators
There are two switches on the front panel of the MVME147:

ABORT Switch (S1)
The front panel software ABORT switch is normally used to abort
program execution and return to the debugger.

The Peripheral Channel Controller (PCC) provides the ABORT
switch interface. The ABORT switch signal is debounced and sent to
the level-7 interrupter. When it is enabled, the ABORT causes a level-
7 interrupt to the MC68030. The interrupter returns a status/ID
vector when requested.

The ABORT switch is enabled when using 147Bug. It is enabled/
disabled by software.

❏ ABORT
❏ RESET

There are four LED status indicators on the
MVME147 front panel:

❏ FAIL
❏ STATUS
❏ RUN
❏ SCON

Each is described below and the indicators
are summarized in Table 3-1.

FAIL

STATUS

RUN

SCON

ABORT

RESET

RMT RST
3-1

Operating Instructions

3

RESET Switch (S2)

The front panel RESET switch S2 generates a local reset, when
enabled. It also generates a VMEbus System Reset, if the MVME147
is the system controller.

If the MVME147 is not the system controller, this switch should not
be used when the local MPU is executing VMEbus cycles.

The PCC provides the RESET switch interface. The RESET switch
signal is debounced and when it is enabled, it causes a reset out
signal.

The RESET switch is enabled at power-up, and 147Bug leaves it
enabled. It is enabled/disabled by software.

RMT RST Switch Connector (J4)

The remote reset connector J4, marked RMT RST, allows the front
panel reset function to be provided remotely by a user-
supplied/installed switch/cable assembly. Shorting the two pins
has the same effect as pressing the front panel RESET switch.

When the remote switch and cable is installed, the MVME147 can
be reset by the remote switch or by the front panel RESET switch.

FAIL Indicator (DS1)

The red FAIL LED, DS1, indicates the status of the BRDFAIL bit in
the VMEchip. The FAIL LED lights when the BRDFAIL bit is set or
when watchdog time-out occurs in the PCC. Also, if the FAIL LED is
lit and SYSFAIL inhibit bit in the VMEchip is not set, the MVME147
drives SYSFAIL on the VMEbus.

STATUS Indicator (DS2)

The yellow STATUS LED, DS2, lights whenever the MC68030
STATUS* pin is low. When the yellow LED is fully lit, the processor
has halted.
3-2

Controls and Indicators

3

RUN Indicator (DS3)

The green RUN LED, DS3, is connected to the MC68030 address
strobe (AS*) signal and indicates that the MPU is executing a bus
cycle.

SCON Indicator (DS4)

The green SCON LED, DS4, lights when the MVME147 is the
VMEbus system controller.

Table 3-1. Front Panel Indicators and MVME147 Status

FAIL
DS1

(Red)

STATUS
DS2

(Yellow)

RUN
DS3

(Green) MVME147 Status

off off off No power is applied to the module, or the MPU is not the
current local bus master.

off off ON MPU is waiting for a cycle to complete.
off ON (bright) off MPU is halted.
off ON (normal) off MPU is executing out of its onchip cache only.
off ON ON Normal operation.
ON off off MPU is not current local bus master and is not executing

out of onchip cache. Also, [BRDFAIL] has not been
cleared since reset or has been set by software.

ON off ON [BRDFAIL] has not been cleared since reset or has been set
by software. Also, MPU is waiting for a cycle to complete.

ON ON (bright) off MPU is halted and [BRDFAIL] has not been cleared since
reset or has been set by software.

ON ON (normal) off [BRDFAIL] has not been cleared since reset or has been set
by software. Also, MPU is executing out of onchip cache
only.

ON ON ON [BRDFAIL] has not been cleared since reset or has been set
by software.
3-3

Operating Instructions

3

Memory Maps
There are two possible perspectives or points of view for memory
maps:

❏ The mapping of all resources as viewed by the MC68030
(MC68030 memory map)

❏ The mapping of onboard resources as viewed by VMEbus
masters (VMEbus memory map).

MC68030 Memory Map

The MC68030 memory map is split into different address spaces by
the function codes. The MVME147 has different groups of devices
that respond depending on the address space as shown in Table 3-2.

Table 3-2. MVME147 Address Spaces

 FC (2-0) Address Space MVME147 Devices that Respond

0 Reserved None (causes local time-out)
1 User data All except interrupt handler and MC68882
2 User program All except interrupt handler and MC68882
3 Reserved None (causes local time-out)
4 Reserved None (causes local time-out)
5 Supervisor data All except interrupt handler and MC68882
6 Supervisor program All except interrupt handler and MC68882
7 CPU (IACK) Interrupt handler
7 CPU (coprocessor) MC68882
3-4

Memory Maps

3

Program and Data Address Spaces

The memory map of devices that respond in user data, user
program, supervisor data, and supervisor program spaces is shown
in the following tables. The entire map from $00000000 to
$FFFFFFFF is shown in Table 3-3. The I/O devices are further
defined in Table 3-4.

Table 3-3. MC68030 Main Memory Map

Address Range Devices Accessed Port Size Size

H/W
Cache
Inhibit Notes

00000000-DRAMsize Onboard DRAM D32 4-
32MB

No 1, 2

DRAMsize-EFFFFFFF VMEbus A32/A24 D32 3GB Yes 3, 4
F0000000-F0FFFFFF VMEbus A24 D16 16MB Yes
F1000000-FF7FFFFF VMEbus A32 D16 232MB Yes
FF800000-FF9FFFFF ROM/EEPROM bank 1 D16 2MB Yes
FFA00000-FFBFFFFF ROM/EEPROM bank 2 D16 2MB Yes
FFC00000-FFFDFFFF Reserved N/A 4MB Yes 3
FFFE0000-FFFE4FFF Local I/O devices D8/D16/D32 20KB Yes
FFFE5000-FFFEFFFF Reserved N/A 44KB Yes
FFFF0000-FFFFFFFF VMEbus short I/O D16 64KB Yes
Notes
1. Onboard ROM/PROM/EPROM/EEPROM bank 1 for the Þrst 4 cycles after a reset,
onboard DRAM thereafter.
2. DRAM size varies from 4MB to 32MB depending on the MVME147 model.
3. Size is approximate.
4. This A24 only applies to VMEbus space that falls below $01000000. VMEbus space
below $01000000 only occurs on MVME147 models that have DRAMsize smaller than
16MB.
3-5

Operating Instructions

3

Table 3-4. Local I/O Devices

Address Range Devices Accessed Port Size Size Notes

FFFE0000-FFFE07F7 BB RAM D8 2040 bytes
FFFE07F8-FFFE07FF BB TOD clock D8 8 bytes 3
FFFE0800-FFFE0FFF BB RAM (additional) D8 2048 bytes
FFFE1000-FFFE100F PCC 32-bit registers D32 16 bytes
FFFE1010-FFFE102F PCC 16-bit registers D16 32 bytes
FFFE1030-FFFE17FF PCC registers (repeated) D32/D16
FFFE1800-FFFE1803 LANCE (AM7990) D16 4 bytes 3, 4
FFFE1804-FFFE1FFF LANCE (repeated) D16
FFFE2000-FFFE201F VMEchip registers D16 32 bytes
FFFE2020-FFFE27FF VMEchip registers (repeated) D16
FFFE2800 Printer data (write only) D8 1 byte
FFFE2800 Printer status (read only) D8 1 byte
FFFE2801-FFFE2FFF Printer registers (repeated) D8
FFFE3000-FFFE3001 Serial 2 D8 2 bytes 1, 3
FFFE3002-FFFE3003 Serial 1 D8 2 bytes 1, 3
FFFE3004-FFFE37FF Serial 2, 1 (repeated) D8
FFFE3800-FFFE3801 Serial 4 D8 2 bytes 2, 3
FFFE3802-FFFE3803 Serial 3 D8 2 bytes 2, 3
FFFE3804-FFFE3FFF Serial 4, 3 (repeated) D8
FFFE4000-FFFE401F SCSI registers (WD33C93) D8 32 bytes 3, 5
FFFE4020-FFFE4FFF SCSI registers (repeated) D8 5
Notes
1. Serial ports 1 and 2 are sections A and B, respectively, of the Þrst Z8530.
2. Serial ports 3 and 4 are sections A and B, respectively, of the second Z8530.
3. For a complete description of the register bits, refer to the data sheet for the
speciÞc chip.
4. The LAN chip is not installed on the MVME147-010. Access to these addresses
results in a local bus time-out.
5. The WD33C93 is interfaced in non-multiplexed mode. Only addresses $FFFE4000
(address/status register) and $FFFE4001 (data register) are necessary for operation.
All accesses to the WD33C93 go through the PCC.
3-6

Memory Maps

3

CPU Address Space

The MVME147 responds to two types of CPU space cycles:
❏ Coprocessor
❏ Interrupt acknowledge

The MC68030 is capable of generating other types of CPU space
cycles (using breakpoint acknowledge, access level control, or
MOVES instructions), but the MVME147 has no devices that
respond to them.

Coprocessor Register Map

The MC68882 is the only coprocessor on the MVME147. The map
decoder selects the MC68882 any time the MPU executes a
coprocessor cycle with Cp-ID of %001 (FC2-FC0 =%111 and A19-
A13 =%0010001). The MC68882 registers are selected by A4-A0 as
shown in Table 3-5.

Table 3-5. MC68882 Register Map

A4-A0
(in Binary) MC68882 Register Comments Port Size

%0000x Response Read only D16
%0001x Control Write only D16
%0010x Save Read only D16
%0011x Restore Read/write D16
%0100x Reserved D16
%0101x Command Write only D16
%0110x Reserved D16
%0111x Condition Write only D16
%100xx Operand Read/write D32
%1010x Register select Read only D16
%1011x Reserved D16
%110xx Instruction address Read/write D32
%111xx Operand address Read/write D32

Note
Writes to the MC68882 read-only registers are ignored and reads to write-
only registers return all 1s.
3-7

Operating Instructions

3

Interrupt Acknowledge Map

The MC68030 distinguishes interrupt acknowledge cycles from
other CPU space cycles by placing the binary value %1111 on A19-
A16. It also specifies the level that is being acknowledged using
A03-A01. The interrupt handler selects which device within that
level is being acknowledged. Refer to Interrupt Handler in Chapter 5.

VMEbus Memory Map

The following paragraphs describe the mapping of MVME147
resources as viewed by VMEbus masters.

The MVME147 onboard DRAM, VMEchip global registers, and
VMEbus interrupter respond to accesses by VMEbus masters. No
other devices on the MVME147 respond to such accesses.

VMEbus Accesses to MVME147 Onboard DRAM

When a VMEbus master accesses the MVME147 onboard DRAM, it
must do so using the address modifier selected by a control register
in the VMEchip and the base address selected by a control register
in the PCC. Refer to Table 3-6.

3-8

Memory Maps

3

Table 3-6. DRAM Address as Viewed from the VMEbus

RBA4 RBA3 RBA2 RBA1 RBA0
Beginning
Address

Ending
Address Notes

0 0 0 0 0 $00000000 (1 x DRAMsize)-1
0 0 0 0 1 1 x DRAMsize (2 x DRAMsize)-1 1, 2
0 0 0 1 0 2 x DRAMsize (3 x DRAMsize)-1 1, 2
0 0 0 1 1 3 x DRAMsize (4 x DRAMsize)-1 1, 2
0 0 1 0 0 4 x DRAMsize (5 x DRAMsize)-1 1, 2
0 0 1 0 1 5 x DRAMsize (6 x DRAMsize)-1 1, 2
0 0 1 1 0 6 x DRAMsize (7 x DRAMsize)-1 1, 2
0 0 1 1 1 7 x DRAMsize (8 x DRAMsize)-1 1, 2
0 1 0 0 0 8 x DRAMsize (9 x DRAMsize)-1 1, 2
0 1 0 0 1 9 x DRAMsize (10 x DRAMsize)-1 1, 2
0 1 0 1 0 10 x DRAMsize (11 x DRAMsize)-1 1, 2
0 1 0 1 1 11 x DRAMsize (12 x DRAMsize)-1 1, 2
0 1 1 0 0 12 x DRAMsize (13 x DRAMsize)-1 1, 2
0 1 1 0 1 13 x DRAMsize (14 x DRAMsize)-1 1, 2
0 1 1 1 0 14 x DRAMsize (15 x DRAMsize)-1 1, 2
0 1 1 1 1 15 x DRAMsize (16 x DRAMsize)-1 1, 2
1 0 0 0 0 16 x DRAMsize (17 x DRAMsize)-1 1, 2
1 0 0 0 1 17 x DRAMsize (18 x DRAMsize)-1 1, 2
1 0 0 1 0 18 x DRAMsize (19 x DRAMsize)-1 1, 2
1 0 0 1 1 19 x DRAMsize (20 x DRAMsize)-1 1, 2
1 0 1 0 0 20 x DRAMsize (21 x DRAMsize)-1 1, 2
1 0 1 0 1 21 x DRAMsize (22 x DRAMsize)-1 1, 2
1 0 1 1 0 22 x DRAMsize (23 x DRAMsize)-1 1, 2
1 0 1 1 1 23 x DRAMsize (24 x DRAMsize)-1 1, 2
1 1 0 0 0 24 x DRAMsize (25 x DRAMsize)-1 1, 2
1 1 0 0 1 25 x DRAMsize (26 x DRAMsize)-1 1, 2
1 1 0 1 0 26 x DRAMsize (27 x DRAMsize)-1 1, 2
3-9

Operating Instructions

3

VMEbus Short I/O Memory Map

The VMEchip Global Control and Status Register (GCSR) Set
appears at odd addresses in the VMEbus short I/O memory map.
A map decoder in the VMEchip monitors the address and the
address modifier lines and requests the VMEchip global registers
when they are selected. Note that the GCSR can only be accessed in
Supervisor Data Space; no User Mode accesses are available.

The VMEchip GCSR base address is selected using a control
register (GCSR base address configuration register) in the VMEchip
Local Control and Status Register (LCSR) as shown in Table 3-7. A
MVME147 may access its own VMEchip GCSR via the VMEbus.

The MVME147 (and the MVME147Bug default) powers up with the
GCSR base address programmed with $F. This is intentionally done
so that the GCSR set is not mapped on the VMEbus.

1 1 0 1 1 27 x DRAMsize (28 x DRAMsize)-1 1, 2
1 1 1 0 0 $00000000 (1 x DRAMsize)-1 1, 3, 4
1 1 1 0 1 1 x DRAMsize (2 x DRAMsize)-1 1, 3, 4

Notes
1. DRAMsize = the size of the DRAM. For example, if the 4MB version is used, then
DRAMsize = $400000, and (3 x DRAMsize)-1 = $BFFFFF.
2. When beginning address is less then 16MB, the DRAM responds to standard or
extended address modiÞers. When beginning address is 16MB or greater, the DRAM
responds to extended address modiÞers only. Note that bits 4 and 5 in the VMEchip
Slave Address ModiÞer Register further control response to standard and extended
address modiÞers.
3. This combination pertains only to DRAMsize of 16MB or 32MB.
4. The values shown in the table refer to extended addresses only. In the standard
address range the DRAM responds to $000000 through $7FFFFF.

Table 3-6. DRAM Address as Viewed from the VMEbus (Continued)

RBA4 RBA3 RBA2 RBA1 RBA0
Beginning
Address

Ending
Address Notes
3-10

Memory Maps

3

VMEbus Interrupt Acknowledge Map

The VMEbus distinguishes interrupt acknowledge cycles from
other cycles by activating the IACK* signal line. It also specifies the
level that is being acknowledged using A03-A01. The VMEchip
monitors these lines and after receiving IACKIN*, it responds by
asserting IACKOUT* if it was not generating an interrupt at the
acknowledged level, or by returning a status/ID vector if it was.
The MVME147 may handle a VMEbus interrupt generated by its
own VMEchip.

Table 3-7. VMEchip GCSR as Viewed from the VMEbus

LCSR
Register Bits

Short I/O Address
of GCSR

$0 $0000-000F
$1 $0010-001F
$2 $0020-002F
$3 $0030-003F
$4 $0040-004F
$5 $0050-005F
$6 $0060-006F
$7 $0070-007F
$8 $0080-008F
$9 $0090-009F
$A $00A0-00AF
$B $00B0-00BF
$C $00C0-00CF
$D $00D0-00DF
$E $00E0-00EF
$F Does not respond
3-11

Operating Instructions

3

3-12

4
4Programming
Introduction
This chapter provides the information needed to program the
Peripheral Channel Controller (PCC) and the VMEchip.

Programming the Peripheral Channel
Controller

These sections contain a description of the PCC internal registers
and the bit assignments within each register. All registers may be
written or read as bytes. Some restrictions apply to bit set and clear
instructions and they should not be used, where indicated. An
overall view of the PCC is shown in Table 4-1.

Note In the tables for the 8-bit PCC register definitions that
follow, the characters in the bottom line define the
operations possible on the register bits, as follows:

R This bit is a read-only status bit.
R/W This bit is readable and writable.
C Writing a 1 to this bit clears it. This bit reads 0.
R/C This bit is readable. Writing a 1 to this bit clears it.
4-1

Programming

4

Table 4-1. PCC Overall View

32-BIT REGISTERS

Address Register Function

FFFE1000 Table address (bits 1 and 0 are zeros) DMA
FFFE1004 Data address DMA
FFFE1008 Link -- 0000 -- DFC2-0 -- Byte count (24 bits) DMA
FFFE100C Data holding register DMA

16-BIT REGISTERS

Address Register Function

FFFE1010 Timer 1 preload Timer 1
FFFE1012 Timer 1 count Timer 1
FFFE1014 Timer 2 preload Timer 2
FFFE1016 Timer 2 count Timer 2

8-BIT REGISTERS

Address
Register

Name
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FFFE1018 IntStat Enable IL2 IL1 IL0 Timer 1 Int. Cntrl

FFFE1019 Ovf3 Ovf2 Ovf1 Ovf0 ClrOvf EnaCnt Enable Timer 1 Control

FFFE101A IntStat Enable IL2 IL1 IL0 Timer 2 Int. Cntrl

FFFE101B Ovf3 Ovf2 Ovf1 Ovf0 ClrOvf EnaCnt Enable Timer 2 Control

FFFE101C IntStat ACFail Enable AC Fail Int. Cntrl

FFFE101D WdL3 WdL2 Wd WdL0 WdTO WdRst WdClr Enable WÕdog Timer Cntrl

FFFE101E IntStat FaltInt ACKInt ACKPol Enable IL2 IL1 IL0 Printer Int. Cntrl

FFFE101F InPrim Strobe StbTim Mode Printer Control

FFFE1020 IntStat Enable IL2 IL1 IL0 DMA Int. Control

FFFE1021 DONE 8BitEr TblSizEr DMABEr TWBEr MS/SM* TW Enable DMA Cntrl & Stat.

FFFE1022 IntStat Enable Bus Error Int. Cntrl

FFFE1023 Inc4 Inc3 Inc2 Inc1 UU UM LM LL DMA Status

FFFE1024 IntStat Abort Enable Abort Int. Control

FFFE1025 TblFC2 TblFC1 TblFC0 Tbl. Ad. Func. Cntrl

FFFE1026 IntStat Int/Ext* Enable IL2 IL1 IL0 Serial Prt Int. Cntrl
4-2

Programming the Peripheral Channel Controller

4

FFFE1027 RsDis2 RsDis1 RsDis0 MIntEn LbToEn WWPar
(Note)

ParEn1
(Note)

ParEn0
(Note)

Gen. Purpose Cntrl

FFFE1028 IntStat Enable IL2 IL1 IL0 LAN Int. Cntrl

FFFE1029 PuReset ParErr Gen. Purpose Stat.

FFFE102A IntStat RstInt SCSIRst RstSCSI Enable IL2 IL1 IL0 SCSI Prt Int. Cntrl

FFFE102B LANA25 LANA24 WAITRMC RBA4 RBA3 RBA2 RBA1 RBA0 Slave Base Addr.

FFFE102C IntStat Enable IL2 IL1 IL0 S/W Int. 1 Control

FFFE102D IVB 7 IVB6 IVB5 IVB4 Int. Vector Base

FFFE102E IntStat Enable IL2 IL1 IL0 S/W Int. 2 Control

FFFE102F RevL7 RevL6 RevL5 RevL4 RevL3 RevL2 RevL1 RevL0 Revision Level

FFFE2800 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 Printer Data

FFFE2800 ACK FAULT SELECT PE BSY LOW STAT12 Printer Status

Note These bits are duplicated in the General Control Chip (GCC) and serve their
real function there. PCC is only an image now.

8-BIT REGISTERS (Continued)

Address
Register

Name
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
4-3

Programming

4

Table Address Register

This 32-bit read/write register points to a table of physical
addresses and byte counts that are used during DMA transfers
when table mode is selected. The table address must be longword
aligned because bits 0 and 1 are always zero. If the table address has
bit 0 or 1 set, they are truncated and no error is generated. These bits
are not affected by reset. Refer to Chapter 5 for details on Table
Address.

Data Address Register

This 32-bit read/write register points to the physical address where
data is to be transferred. Data can only be transferred to/from
onboard DRAM or VMEbus memory. These bits are not affected by
reset.

FFFE1000 Table Address 0 0

FFFE1004 Data Address
4-4

Programming the Peripheral Channel Controller

4

Byte Count Register

This 32-bit read/write register contains a 24-bit byte counter in bits
0-23, a 3-bit function code in bits 24-26, and a link bit in bit 31. The
byte counter contains the number of bytes to be transferred. The
function code bits are used when data is transferred. When set in a
table entry, the link bit indicates there are more entries in the DMA
table. This bit is cleared in the last table entry. The link bit is only
used in table mode and is never set by the MC68030. These bits are
not affected by reset.

Data Holding Register

This read only register holds data passing between the SCSI and
local buses. These bits are not affected by reset.

ADDRESS BIT 31 BIT 30 BIT 29 BIT 28 BIT 27 BIT 26 BIT 25 BIT 24 BITS 23-0

FFFE1008 L 0 0 0 0 DFC2 DFC1 DFC0 Byte Count

FFFE100C Data Holding Register
4-5

Programming

4

Timer 1 Preload Register

This 16-bit read/write register holds the tick timer preload value.
When the counter reaches $FFFF, it is loaded with this value and if
interrupts are enabled, an interrupt is generated. When running,
the counter is incremented every 6.25 microseconds. The following
equation should be used to determine the counter value (n) for a
periodic interrupt of time t where t is in seconds.

The timer may be programmed to generate interrupts at intervals
between 6.25 microseconds and 0.4096 seconds. These bits are not
affected by reset.

Timer 1 Counter Register

This 16-bit read register is the output of the tick counter. Reads are
not synchronized with counter updates.

Timer 2 Preload Register

This 16-bit read/write register holds the tick timer preload value.
Refer to the Timer 1 Preload Register section in this chapter.

Timer 2 Counter Register

This 16-bit read register is the output of the tick counter. Reads are
not synchronized with counter updates.

FFFE1010 Tick 1 preload

n = 65536 -

t

6.25 x 10**-6

FFFE1012 Tick 1 counter

FFFE1014 Tick 2 preload

FFFE1016 Tick 2 counter
4-6

Programming the Peripheral Channel Controller

4

Timer 1 Interrupt Control Register

Note Bit set and clear instructions should not be used on this
interrupt control register. Because an interrupt is
cleared by writing a 1 to the status bit and the status bit
is a 1 to indicate a pending interrupt, the read-modify-
write sequence may clear a pending interrupt.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE1018 IntStat Enable IL2 IL1 IL0

R/C R/W R/W R/W R/W

Bits 0-2 These bits program the interrupt level the tick timer generates.
Because level 0 does not generate an interrupt, this level is
intended for polling software. These bits are cleared by reset.

Bit 3 When this bit is high, the interrupt is enabled. The interrupt is
disabled when this bit is low. This bit is cleared by reset.

Bit 7 When this bit is high, a tick timer interrupt is being generated at
the level programmed in bits 0-2. This bit is edge sensitive and it
is set by a carry out of the tick timer when interrupts are
enabled. This bit is cleared when a 1 is written to it or when the
interrupt is disabled. When cleared, it remains cleared until the
next carry out. This bit is cleared by reset.
4-7

Programming

4

Timer 1 Control Register

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE1019 Ovf3 Ovf2 Ovf1 Ovf0 ClrOvf EnaCnt Enable

R R R R C R/W R/W

Bit 0 When this bit is low, the timer is disabled and the counter is
loaded with the preload value. When the bit is high, the counter
is enabled and it starts counting up if the counter enable bit (bit
1) is high. This bit is cleared by reset.

Bit 1 When this bit is low, the counter is stopped. The counter value is
not changed when the counter is stopped and started with this
bit. When this bit is high, the counter is enabled. This bit is
cleared by reset.

Bit 2 The overßow counter is cleared by writing a 1 to this bit.
Bits 4-7 These read only bits are the output of the overßow counter. The

overßow counter is incremented each time the tick timer rolls
over. These bits are cleared by reset.
4-8

Programming the Peripheral Channel Controller

4

Timer 2 Interrupt Control Register

Note Bit set and clear instructions should not be used on this
interrupt control register. Because an interrupt is
cleared by writing a 1 to the status bit and the status bit
is a 1 to indicate a pending interrupt, the read-modify-
write sequence may clear a pending interrupt.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE101A IntStat Enable IL2 IL1 IL0

R/C R/W R/W R/W R/W

Bits 0-2 These bits program the interrupt level the tick timer generates.
Because level 0 does not generate an interrupt, this level is
intended for polling software. These bits are cleared by reset.

Bit 3 When this bit is high, the interrupt is enabled. The interrupt is
disabled when this bit is low. This bit is cleared by reset.

Bit 7 When this bit is high, a tick timer interrupt is being generated at
the level programmed in bits 0-2. This bit is edge sensitive and it
is set by a carry out of the tick timer when interrupts are
enabled. This bit is cleared when a 1 is written to it or when the
interrupt is disabled. When cleared, it remains cleared until the
next carry out. This bit is cleared by reset.
4-9

Programming

4

Timer 2 Control Register

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE101B Ovf3 Ovf2 Ovf1 Ovf0 ClrOvf EnaCnt Enable

R R R R C R/W R/W

Bit 0 When this bit is low, the timer is disabled and the counter is
loaded with the preload value. When the bit is high, the counter
is enabled and it starts counting up if the counter enable bit (bit
1) is high. This bit is cleared by reset.

Bit 1 When this bit is low, the counter is stopped. The counter value is
not changed when the counter is stopped and started with this
bit. When this bit is high, the counter is enabled. This bit is
cleared by reset.

Bit 2 The overßow counter is cleared by writing a 1 to this bit.
Bits 4-7 These read only bits are the output of the overßow counter. The

overßow counter is incremented each time the tick timer rolls
over. These bits are cleared by reset.
4-10

Programming the Peripheral Channel Controller

4

AC Fail Interrupt Control Register

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE101C IntStat ACFail Enable

R/C R R/W

Bit 3 When this bit is high, the interrupt is enabled. The interrupt is
disabled when this bit is low. This bit is cleared by reset.

Bit 6 When this bit is low, the VMEbus ACFAIL* signal is not active.
When this bit is high, the VMEbus ACFAIL* signal is active.

Bit 7 When this bit is high, an AC Fail interrupt is being generated at
level 7. This bit is edge sensitive and it is set on the leading edge
of interrupt enable and AC Fail. This bit is cleared when a 1 is
written to it or when the interrupt is disabled. When cleared, it
remains cleared until the next leading edge of interrupt enable
and AC Fail. This bit is cleared by reset.
4-11

Programming

4

Watchdog Timer Control Register

Notes 1. Bit set and clear instructions should not be used on
this control register. Because the WD time-out bit is
cleared by writing a 1 to it and the status bit is a 1 to
indicate a time-out, the read-modify-write sequence
may clear the WD time-out.

2. The recommended use of this register is first to set all
the control bits as desired but with the enable bit low.
Next, write this register again with the same data, but
this time with the enable bit high; this access will
actually start the watchdog timer.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE101D WdL3 WdL2 WdL1 WdL0 WdTO WdRst WdClr Enable

R/W R/W R/W R/W R/C R/W C R/W

Bit 0 When this bit is low, the watchdog timer is disabled. When this
bit is high, the watchdog timer is enabled, and increments each
time tick timer 1 rolls over. This bit is cleared by reset.

Bit 1 The watchdog timer is cleared by writing a 1 to this bit.
Bit 2 When this bit is low, the watchdog timer does not activate the

reset signal if a time-out occurs. When this bit is high, the
watchdog timer activates the reset signal if a time-out occurs.
This bit is cleared by reset. This bit should only be set if the
MVME147 is system controller.

Bit 3 This bit is set if the watchdog timer times out. This bit is cleared
by writing a 1 to it. This bit is cleared by reset.

Bits 4-7 These bits set the watchdog limit. When the watchdog timer
value is equal to the watchdog limit, the WdTO bit (bit 3) is set.
These bits are cleared by reset.
4-12

Programming the Peripheral Channel Controller

4

Printer Interrupt Control Register

Note Bit set and clear instructions should not be used on this
control register. Because the interrupt is cleared by
writing a 1 to the status bit and the status bit is a 1 to
indicate a pending interrupt, the read-modify-write
sequence may clear a pending interrupt.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE101E IntStat FaltInt ACKInt ACKPol Enable IL2 IL1 IL0

R R/C R/C R/W R/W R/W R/W R/W

Bits 0-2 These bits program the interrupt level the printer generates.
Level 0 does not generate an interrupt. These bits are cleared by
reset.

Bit 3 When this bit is high, the interrupt is enabled. The interrupt is
disabled when this bit is low. This bit is cleared by reset.

Bit 4 When this bit is low, the rising edge of ACK* generates an
interrupt. When this bit is high, the falling edge of ACK*
generates an interrupt. This bit is cleared by reset.

Bit 5 When interrupts are enabled, this bit is set by the rising or
falling edge of ACK* as selected by bit 4. This bit is edge
sensitive and is cleared by writing a 1 to it or when printer
interrupts are disabled.

Bit 6 When interrupts are enabled, this bit is set by the falling edge of
FAULT*. This bit is edge sensitive and is cleared by writing a 1
to it or when printer interrupts are disabled.

Bit 7 When this bit is high, a printer interrupt is being generated at
the level programmed in bits 0-2. This bit is the OR of bits 5 and
6. This bit is cleared by reset.
4-13

Programming

4

Printer Control Register

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE101F InPrim Strobe StbTim Mode

R/W R/W R/W R/W

Bit 0 This bit selects the auto or manual mode for the printer strobe.
When this bit is low, the printer strobe is generated by a write to
the printer data register (auto mode). When this bit is high, the
printer strobe is not generated by a write to the printer data
register (manual mode). This bit is cleared by reset.

Bit 1 This bit controls the printer strobe timing in the auto mode.
When this bit is low, the strobe time in the auto mode is 2
microseconds. When this bit is high, the strobe time in the auto
mode is 8 microseconds. The strobe time is also the time delay
from the write to the printer data register to the assertion of the
printer strobe. This bit is cleared by reset.

Bit 2 This bit controls the printer strobe in the manual mode. In the
manual mode, the software must control the timing. When this
bit is low, the printer strobe is not activated. When this bit is
high, the printer strobe is activated. This bit is cleared by reset.

Bit 3 This bit controls the Input Prime signal. When this bit is low, the
Input Prime signal is not activated. When this bit is high, the
Input Prime signal is activated. The software must control the
timing of the printer Input Prime signal. This bit is cleared by
reset.

STB*

2/8 µs 2/8 µs
4-14

Programming the Peripheral Channel Controller

4

DMA Interrupt Control Register

Note Bit set and clear instructions should not be used on this
control register. Because the interrupt is cleared by
writing a 1 to the status bit and the status bit is a 1 to
indicate a pending interrupt, the read-modify-write
sequence may clear a pending interrupt.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE1020 IntStat Enable IL2 IL1 IL0

R/C R/W R/W R/W R/W

Bits 0-2 These bits program the interrupt level the DMA controller
generates. Level 0 does not generate an interrupt. These bits are
cleared by reset.

Bit 3 When this bit is high, the interrupt is enabled. The interrupt is
disabled when this bit is low. This bit is cleared by reset.

Bit 7 When this bit is high, a DMA interrupt is being generated at the
level programmed in bits 0-2. This bit is edge sensitive and it is
set on the leading edge of interrupt enable and DMA DONE (in
DMA Control and Status Register). This bit is cleared when a 1
is written to it or when the interrupt is disabled. When cleared,
it remains cleared until the next leading edge of interrupt enable
and DMA DONE. This bit is cleared by reset.
4-15

Programming

4

DMA Control and Status Register

Note All bits are cleared by reset.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE1021 DONE 8BitEr TblSizEr DMABEr TWBEr MS/SM* TW Enable

R R R R R R/W R/W R/W

Bit 0 When this bit is low, the DMA controller is disabled and status
bits 3-7 are reset. When this bit is high, the DMA controller is
enabled.

Bit 1 This bit controls the mode of the DMA controller. When this bit
is low, the DMA controller uses the address and byte count in
the address and byte count registers. When this bit is high, the
DMA controller uses address and byte counts in a table pointed
to by the table address register.

Bit 2 This bit controls the direction the data is transferred. When this
bit is low, the DMA controller transfers data from the SCSI bus.
When this bit is high, the DMA controller transfers data to the
SCSI bus.

Bit 3 This bit is set if a bus error occurred while the DMA controller
was accessing the address table. This bit is reset when the DMA
controller is disabled.

Bit 4 This bit is set if a bus error occurred while the DMA controller
was transferring data. This bit is reset when the DMA controller
is disabled.

Bit 5 This bit is set if the DMA controller accesses a table entry that is
not located in 32-bit memory. This bit is reset when the DMA
controller is disabled.

Bit 6 This bit (8-bit error) is set if the DMA controller receives a
handshake indicating the port was 8 bits. This bit is reset when
the DMA controller is disabled.

Bit 7 This bit is set when the DMA controller has stopped because all
the data has been transferred or an error has occurred. This bit is
reset when the DMA controller is disabled.
4-16

Programming the Peripheral Channel Controller

4

Bus Error Interrupt Control Register

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE1022 IntStat Enable

R/C R/W

Bit 3 When this bit is high, the interrupt is enabled. The interrupt is
disabled when this bit is low. This bit is cleared by reset.

Bit 7 When this bit is high, a bus error interrupt is being generated at
Level 7. This bit is set when the processor receives a bus error
and the interrupt is enabled. This bit is cleared when a 1 is
written to it or when the interrupt is disabled. When cleared, it
remains cleared until the next bus error. This bit is cleared by
reset.
4-17

Programming

4

DMA Status Register

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE1023 Inc 4 Inc 3 Inc 2 Inc 1 UU UM LM LL

R R R R R R R R

Bits 0-3 The PCC has a 32-bit register which is used to hold data that is
transferred between the SCSI bus and the local bus. Bits 0-3
indicate the status of each byte of the holding register (byte
position in longword: UU = upper upper; UM = upper middle;
LM = lower middle; LL = lower lower). When a bit is low, the
corresponding byte is empty. When a bit is high, the
corresponding byte is full. These bits are cleared when the DMA
controller is disabled. These bits are cleared by reset.

Bits 4-7 The DMA address and byte counters may be incremented by 1,
2, 3, or 4. When the DMA counters are incremented, the
increment value is saved in these bits. Only one of the 4 bits is
set. These bits are cleared when the DMA controller is disabled.
These bits are cleared by reset.
4-18

Programming the Peripheral Channel Controller

4

Abort Interrupt Control Register

Note Bit set and clear instructions should not be used on this
control register. Because the interrupt is cleared by
writing a 1 to the status bit and the status bit is a 1 to
indicate a pending interrupt, the read-modify-write
sequence may clear a pending interrupt.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE1024 IntStat Abort Enable

R/C R R/W

Bit 3 When this bit is high, the interrupt is enabled. The interrupt is
disabled when this bit is low. This bit is cleared by reset.

Bit 6 This bit indicates the current state of the ABORT switch. When
this bit is low, the ABORT switch is not pressed. When this bit is
high, the ABORT switch is pressed.

Bit 7 When this bit is high, an abort interrupt is being generated at
Level 7. This bit is edge sensitive and it is set on the leading
edge of interrupt enable and abort. This bit is cleared when a 1
is written to it or when the interrupt is disabled. When cleared,
it remains cleared until the next leading edge of interrupt enable
and abort. This bit is cleared by reset.
4-19

Programming

4

Table Address Function Code Register

Note DMA is enabled by the DMA Control and Status
Register.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE1025 TblFC2 TblFC1 TblFC0

R/W R/W R/W

Bits 0-2 This function code is placed on the local bus when the DMA
address table is accessed. Note that a value of 1, 2, 5, or 6 must
be placed in Tbl FC2-FC0 for proper operation of the MVME147
during table walking. These bits are cleared by reset.
4-20

Programming the Peripheral Channel Controller

4

Serial Port Interrupt Control Register

Note All bits are cleared by reset.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE1026 IntStat Int/Ext* Enable IL2 IL1 IL0

R R/W R/W R/W R/W R/W

Bits 0-2 These bits program the interrupt level that the serial ports
generate. Level 0 does not generate an interrupt.

Bit 3 When this bit is high, the interrupt is enabled. The interrupt is
disabled when this bit is low.

Bit 4 This bit controls the vector source. When this bit is low, the
interrupt status/id vector comes from the serial chip. When this
bit is high, the interrupt status/id vector comes from the PCC.

Bit 7 When this bit is high, a serial port interrupt is being generated
at the level programmed in bits 0-2. This bit is level sensitive
and it is active when interrupt enable and serial port interrupt
are active.
4-21

Programming

4

General Purpose Control Register

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE1027 RsDis2 RsDis1 RsDis0 MIntEn LbToEn WWPar ParEn1 ParEn0

R/W R/W R/W R/W R/W R/W R/W R/W

Bits 0-1 These bits control local RAM parity checking. These bits should
not be enabled on the MVME147-010. These bits are cleared by
reset.
4-22

Programming the Peripheral Channel Controller

4

Note The DRAM parity on the MVME147 is in an undefined
state after power-up. Reads to uninitialized memory
with parity checking enabled causes bus errors. All
DRAM locations should be written to ensure correct
parity before checking is enabled.

0 Local RAM parity checking is disabled.
1 Local RAM parity checking is enabled and BERR is asserted

during the current DRAM access cycle (adds 1 wait cycle).
2 Local RAM parity checking is disabled.
3 Local DRAM parity checking is enabled. BERR is asserted

on the current cycle (adds 1 wait cycle) for LANCE, VME,
and PCC accesses to DRAM. BERR is asserted on the next
DRAM access cycle for MC68030 accesses to DRAM (adds 0
wait cycles). Note that not only is BERR asserted during the
next MC68030 DRAM access cycle but it is asserted during
all subsequent MC68030 DRAM access cycles. This helps
stop the MC68030 from proceeding when DRAM is bad.

Bit 2 This bit is used to test the parity generating and checking logic.
When this bit is low, correct parity is written to the DRAM;
when high, incorrect parity is written to the DRAM. This bit is
cleared by reset.

Bit 3 When set, this bit is used to enable the local bus timer that is
part of the PCC. Because the VMEchip also contains a local bus
timer, this bit should be cleared, turning off the PCC local bus
timer. This bit is cleared by reset.

Bit 4 This bit is the master interrupt enable. When this bit is low, all
interrupts on the MVME147 are disabled; when high, all
interrupts are enabled. This bit is cleared by reset.

Bits 5-7 When the pattern %101 is written to these bits, the front panel
RESET switch is disabled. The RESET switch is enabled for any
other pattern. These bits are cleared by reset.
4-23

Programming

4

LAN Interrupt Control Register

Note The LAN interrupt is not used on the MVME147-010
and should not be enabled.

Note All bits are cleared by reset.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE1028 IntStat Enable IL2 IL1 IL0

R R/W R/W R/W R/W

Bits 0-2 These bits program the interrupt level the LAN chip generates.
Level 0 does not generate an interrupt.

Bit 3 When this bit is high, the interrupt is enabled. The interrupt is
disabled when this bit is low.

Bit 7 When this bit is high, a LAN port interrupt is being generated at
the level programmed in bits 0-2. This bit is level sensitive and it
is active when interrupt enable and LAN interrupt are active.
4-24

Programming the Peripheral Channel Controller

4

General Purpose Status Register

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE1029 PuReset ParErr

R/C R/C

Bit 0 This bit is set when a parity error occurs while the local
processor is accessing RAM. This bit is cleared by writing a 1 to
it. This bit is cleared by reset.

Bit 1 This bit is set when a power-up reset occurs. It is cleared by
writing a 1 to it. When the MVME147BUG is installed, its
initialization code clears this bit.
4-25

Programming

4

SCSI Port Interrupt Control Register

Note Bit set and clear instructions should not be used on this
control register. Because the interrupt is cleared by
writing a 1 to status bit and the status bit is a 1 to
indicate a pending interrupt, the read-modify-write
sequence may clear a pending interrupt.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE102A IntStat RstInt SCSIRst RstSCSI Enable IL2 IL1 IL0

R R/C R R/W R/W R/W R/W R/W

Bits 0-2 These bits program the interrupt level the SCSI port generates.
Level 0 does not generate an interrupt. These bits are cleared by
reset.

Bit 3 When this bit is high, the interrupt is enabled. The interrupt is
disabled when this bit is low. This bit is cleared by reset.

Bit 4 This bit is used to control the reset signal on the SCSI bus. When
this bit is low, the SCSI reset signal is not driven by MVME147.
When this bit is high, the SCSI reset is driven by MVME147.
This bit is cleared by reset.

Bit 5 This bit indicates the state of the SCSI reset signal. When this bit
is low, the SCSI reset signal is not active. When this bit is high,
the SCSI reset signal is active.

Bit 6 When this bit is high, a SCSI reset interrupt is being generated at
the level programmed in bits 0-2. This bit is edge sensitive and it
is set on the leading edge of interrupt enable and SCSI reset.
This bit is cleared when a 1 is written to it or when the interrupt
is disabled. When cleared, it remains cleared until the next
leading edge of interrupt enable and SCSI reset. This bit is
cleared by reset.

Bit 7 When this bit is high, a SCSI port interrupt is being generated at
the level programmed in bits 0-2. This bit is the OR of bit 6 and
the SCSI chip interrupt. This bit is cleared by reset.
4-26

Programming the Peripheral Channel Controller

4

Slave Base Address Register

Note All bits are cleared by reset.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE102B LANA25 LANA24 WAITRMC RBA4 RBA3 RBA2 RBA1 RBA0

R/W R/W R/W R/W R/W R/W R/W R/W

Bits 0-4 These bits set the slave RAM base address, or the address of
onboard RAM as viewed from the VMEbus.

Table 4-2. DRAM Address as Viewed from the VMEbus

RBA4 RBA3 RBA2 RBA1 RBA0
Beginning
Address

Ending
Address

Notes

0 0 0 0 0 $00000000 (1 x DRAMsize)-1
0 0 0 0 1 1 x DRAMsize (2 x DRAMsize)-1 1, 2
0 0 0 1 0 2 x DRAMsize (3 x DRAMsize)-1 1, 2
0 0 0 1 1 3 x DRAMsize (4 x DRAMsize)-1 1, 2
0 0 1 0 0 4 x DRAMsize (5 x DRAMsize)-1 1, 2
0 0 1 0 1 5 x DRAMsize (6 x DRAMsize)-1 1, 2
0 0 1 1 0 6 x DRAMsize (7 x DRAMsize)-1 1, 2
0 0 1 1 1 7 x DRAMsize (8 x DRAMsize)-1 1, 2
0 1 0 0 0 8 x DRAMsize (9 x DRAMsize)-1 1, 2
0 1 0 0 1 9 x DRAMsize (10 x DRAMsize)-1 1, 2
0 1 0 1 0 10 x DRAMsize (11 x DRAMsize)-1 1, 2
0 1 0 1 1 11 x DRAMsize (12 x DRAMsize)-1 1, 2
0 1 1 0 0 12 x DRAMsize (13 x DRAMsize)-1 1, 2
0 1 1 0 1 13 x DRAMsize (14 x DRAMsize)-1 1, 2
0 1 1 1 0 14 x DRAMsize (15 x DRAMsize)-1 1, 2
0 1 1 1 1 15 x DRAMsize (16 x DRAMsize)-1 1, 2

4-27

Programming

4

1 0 0 0 0 16 x DRAMsize (17 x DRAMsize)-1 1, 2
1 0 0 0 1 17 x DRAMsize (18 x DRAMsize)-1 1, 2
1 0 0 1 0 18 x DRAMsize (19 x DRAMsize)-1 1, 2
1 0 0 1 1 19 x DRAMsize (20 x DRAMsize)-1 1, 2
1 0 1 0 0 20 x DRAMsize (21 x DRAMsize)-1 1, 2
1 0 1 0 1 21 x DRAMsize (22 x DRAMsize)-1 1, 2
1 0 1 1 0 22 x DRAMsize (23 x DRAMsize)-1 1, 2
1 0 1 1 1 23 x DRAMsize (24 x DRAMsize)-1 1, 2
1 1 0 0 0 24 x DRAMsize (25 x DRAMsize)-1 1, 2
1 1 0 0 1 25 x DRAMsize (26 x DRAMsize)-1 1, 2
1 1 0 1 0 26 x DRAMsize (27 x DRAMsize)-1 1, 2
1 1 0 1 1 27 x DRAMsize (28 x DRAMsize)-1 1, 2
1 1 1 0 0 $00000000 (1 x DRAMsize)-1 1, 3, 4
1 1 1 0 1 1 x DRAMsize (2 x DRAMsize)-1 1, 3, 4

Notes 1. DRAMsize = the size of the DRAM. For example, if the 4MB
version is used, then DRAMsize = $400000, and (3 x DRAMsize)-
1 = $BFFFFF.

2. When beginning address is less then 16MB, the DRAM
responds to standard or extended address modifiers. When
beginning address is 16MB or greater, the DRAM responds to
extended address modifiers only. Note that bits 4 and 5 in the
VMEchip Slave Address Modifier Register further control
response to standard and extended address modifiers.

3. This combination pertains only to DRAMsize of 16MB or 32MB.

4. The values shown in the table refer to extended addresses only.
In the standard address range the DRAM responds to $000000
through $7FFFFF.

Table 4-2. DRAM Address as Viewed from the VMEbus (Continued)

RBA4 RBA3 RBA2 RBA1 RBA0
Beginning
Address

Ending
Address

Notes
4-28

Programming the Peripheral Channel Controller

4

Bit 5 WAITRMC controls the MVME147 implementation of multiple
address RMC (MARMC) cycles. When WAITRMC is set, the
MVME147 always waits for VMEbus mastership before executing
an MARMC cycle. WAITRMC should be set if it is desired to
guarantee indivisibility of MARMC cycles (only guaranteed if the
other master implements MARMC cycles the same way as the
MVME147).
When WAITRMC is cleared, the MVME147 only waits for VMEbus
mastership if the MARMC cycle starts out by going to the VMEbus.

Note Regardless of the state of the WAITRMC bit, if the
MVME147 obtains VMEbus mastership during an
MARMC, it maintains it until all of the cycles of
the MARMC are completed.

WAITRMC operation is effective only if MASWP bit in the VMEchip
LCSR (bit 5 $FFFE2005) is cleared (MASWP posting is disabled.)

Bits 6-7 These bits determine the section of local DRAM that is accessible to
the LANCE during DMA.

Table 4-3. DRAM Accessed by the LANCE

LANA25 LANA24
Section of DRAM

Accessible to LANCE

0 0 $00000000-00FFFFFF
0 1 $01000000-01FFFFFF
1 0 $02000000-02FFFFFF
1 1 $03000000-03FFFFFF
4-29

Programming

4

Software Interrupt 1 Control Register

Note All bits are cleared by reset.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE102C IntStat Enable IL2 IL1 IL0

R R/W R/W R/W R/W

Bits 0-2 These bits program the interrupt level that is generated. Level 0
does not generate an interrupt.

Bit 3 When this bit is high, the interrupt is enabled. The interrupt is
disabled when this bit is low.

Bit 7 This bit is low when the interrupt is disabled and it is high
when the interrupt is enabled.
4-30

Programming the Peripheral Channel Controller

4

Interrupt Vector Base Register

Note The serial port interrupt status/ID vector source is
determined by bit 4 of the Serial Port Interrupt Control
Register ($FFFE1026).

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE102D IVB7 IVB6 IVB5 IVB4

R/W R/W R/W R/W

Bits 4-7 These bits are used to form the base interrupt status/ID vector
for interrupts whose vectors originate from the PCC. The lower
four bits of the vector are determined by the interrupting
device. These bits are cleared by reset.

Bits 3-0 3 2 1 0
AC Fail 0 0 0 0
BERR 0 0 0 1
Abort 0 0 1 0
Serial port (when enabled by PCC) 0 0 1 1
LANCE 0 1 0 0
SCSI port 0 1 0 1
SCSI DMA 0 1 1 0
Printer port 0 1 1 1
Tick timer 1 1 0 0 0
Tick timer 2 1 0 0 1
Software interrupt 1 1 0 1 0
Software interrupt 2 1 0 1 1
4-31

Programming

4

Software Interrupt 2 Control Register

Note All bits are cleared by reset.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE102E IntStat Enable IL2 IL1 IL0

R R/W R/W R/W R/W

Bits 0-2 These bits program the interrupt level that is generated. Level 0
does not generate an interrupt.

Bit 3 When this bit is high, the interrupt is enabled. The interrupt is
disabled when this bit is low.

Bit 7 This bit is low when the interrupt is disabled and it is high
when the interrupt is enabled.
4-32

Programming the Peripheral Channel Controller

4

Revision Level Register

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE102F RevL7 RevL6 RevL5 RevL4 RevL3 RevL2 RevL1 RevL0

R R R R R R R R

Bits 0-7 These bits represent the revision level of the PCC. Initial parts
are released as level 0. If functional changes are required in
future parts, the revision level is incremented. This allows the
software to conÞgure itself should functional changes be
required in the PCC.
4-33

Programming

4

Printer Data Register

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE2800 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0

W W W W W W W W

Bits 0-7 These bits form the printer data lines. They are write only.
Reading this address accesses the printer status register. These
bits are not affected by reset.
4-34

Programming the Peripheral Channel Controller

4

Printer Status Register

Note All of these bits are read only. Writing this address
accesses the printer data register. These bits are not
affected by reset.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE2800 ACK FAULT SELECT PE BSY LOW STAT12

R R R R R R R

Bit 0 STAT12 indicates the status of the fused +12V power for
Ethernet transceiver power and for serial port pull up power.

Bit 1 LOW is always 0.
Bit 3 BSY is 1 when the printer is busy and 0 when it is not.
Bit 4 PE is 1 when the printer is in the paper empty state and 0 when

it is not.
Bit 5 SELECT is 1 when the printer is selected and 0 when it is not.
Bit 6 FAULT is 1 when the printer is in the fault state and 0 when it is

not.
Bit 7 ACK is 1 when printer acknowledge is true and 0 when it is not.
4-35

Programming

4

Ad

FFF .

FFF .

FFF n

FFF

FFF

FFF

FFF d.

FFF

FFF

FFF

FFF

FFF

FFF

FFF .
Programming the VMEchip
The VMEchip has two groups of registers: the Local Control and
Status Registers (LCSR) and the Global Control and Status
Registers (GCSR).

Programming the LCSR

There are 14 LCSR registers as shown in Table 4-4.

Note The bottom line in the table for each of the following
LCSR register definitions defines the operations
possible on the register bits, as follows:

Table 4-4. VMEchip Local Control and Status Registers

dress
Register

Name
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

E2001 ROBIN BRDFAIL SRESET SCON Sys. Controller Cnfg

E2003 DWB DHB RONR RWD RNEVER RQLEV1 RQLEV0 VMEbus ReqÕr Cnfg

E2005 DDTACK 020 MASWP CFILL MASUAT MASA16 MASA24 MASD16 Master ConÞguratio

E2007 SLVEN SLVWP SLVD16 Slave ConÞguration

E2009 ARBTO VBTO1 VBTO0 ACTO1 ACTO0 LBTO1 LBTO0 Timer ConÞguration

E200B SUPER USER EXTED STND SHORT BLOCK PRGRM DATA Slave Address Mod.

E200D AMSEL AM5 AM4 AM3 AM2 AM1 AM0 Master Address Mo

E200F IEN7 IEN6 IEN5 IEN4 IEN3 IEN2 IEN1 Int. Handler Mask

E2011 WPERREN SFIEN SIGHEN LM1EN IACKEN LM0EN SIGLEN Utility Int. Mask

E2013 UVB7 UVB6 UVB5 UVB4 UVB3 UID2 UID1 UID0 Utility Int. Vector

E2015 IL2 IL1 IL0 Interrupt Request

E2017 D07 D06 D05 D04 D03 D02 D01 D00 VMEbus Status/ID

E2019 RMCERR VBERR ACTO LBTO Bus Error Status

E201B GCSRA7 GCSRA6 GCSRA5 GCSRA4 GCSR Base Ad. Cnfg

R This bit is a read-only status bit.
R/W This bit is readable and writable.
C Writing a 1 to this bit clears it. This bit reads 0.
R/C This bit is readable. Writing a 1 to this bit clears it.
4-36

Programming the VMEchip

4

System Controller Configuration Register

Note These bits are not affected by reset.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE2001 ROBIN BRDFAIL SRESET SCON

R/W R/W W R

Bit 0 The SCON status bit is a reßection of the conÞguration of
header J3. When J3 pins 1 and 2 are connected, enabling the
MVME147 to act as the VMEbus system controller, then SCON
= 1. When J3 pins 1 and 2 are not connected, the MVME147 is
not the VMEbus system controller and SCON = 0.

Bit 1 This bit allows the software to initiate a global reset sequence.
Setting the SRESET bit activates the SYSRESET* signal on the
VMEbus which in turn resets the MVME147. This bit clears
automatically after the reset is complete. This bit is cleared by
any reset.

Bit 2 Setting BRDFAIL to 1 causes the VMEchip to attempt to activate
the SYSFAIL* signal on the VMEbus. The GCSR bit Inhibit
SYSFAIL (ISF), in global register 1, enables the MVME147 to
cause SYSFAIL* to be activated as a result of the state of
BRDFAIL. In addition, when the bit is set, the FAIL LED is lit. (A
watchdog time-out from the PCC also lights the FAIL LED.)
This bit is set by any reset.

Bit 3 The ROBIN bit conÞgures the VMEbus arbitration mode.
ROBIN = 1 forces the round-robin mode. ROBIN = 0 forces the
priority mode. Both modes can be used by the MVME147. This
bit is cleared by SYSRESET.
4-37

Programming

4

VMEbus Requester Configuration Register

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE2003 DWB DHB RONR RWD RNEVER RQLEV1 RQLEV0

R/W R R/W R/W R/W R/W R/W

Bits 0-1 These control bits conÞgure the VMEbus requester level as
shown in the table below:

RQLEV1 RQLEV0 Level

0 0 0
0 1 1
1 0 2
1 1 3

These bits are set to 1, 1 by any reset.
Note that writes to REQLEV1,0 do not change the actual
requester level until the MVME147 goes through the action of
having VMEbus mastership and releasing it. This means that
there are times when the value written into REQLEV1,0 do not
match the current requester level (the request level is lagging).
During such times, reads to REQLEV1,0 reßect the actual
requester level, not the value written into REQLEV1,0.

Bit 3 Setting this bit to 1 prevents the requester from releasing the
VMEbus. However, unlike the DWB control bit, setting the
RNEVER bit does not cause the requester to request the
VMEbus. Clearing the RNEVER bit allows the requester to
relinquish the VMEbus in accordance with the other control bits
of the requester conÞguration register. This bit is cleared by any
reset.
4-38

Programming the VMEchip

4

Bit 4 The RWD bit allows software to conÞgure the requester release
mode. When the bit is set, if RNEVER and DWB are both
cleared to 0, the requester releases the VMEbus after the
MC68030 completes a VMEbus cycle. When the bit is cleared, if
RNEVER and DWB are both cleared to 0, the requester operates
in the Release-On-Request (ROR) mode. After acquiring control
of the VMEbus, it maintains control until it detects another
request pending on the VMEbus. This bit is cleared by any reset.

Bit 5 The RONR bit controls the manner in which the VMEchip
requests the VMEbus. When the bit is set; anytime the
MVME147 has bus mastership, then gives it up, the VMEchip
does not request the VMEbus again until it detects the bus
request signal BR*, on its level, negated for at least 150 ns.
When the VMEchip detects BR* negated, it refrains from
driving it again for at least 200 ns.
This bit is cleared by any reset.

Bit 6 The DHB status bit is 1 when the MVME147 is VMEbus master
and 0 when it is not.

Bit 7 Setting the DWB control bit to 1 causes the VMEchip to request
the VMEbus (if not already bus master). When VMEbus
mastership has been obtained, it is not relinquished until after
the DWB and RNEVER bits are both cleared. This bit is cleared
by any reset.
4-39

Programming

4

Master Configuration Register

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE2005 DDTACK 020 MASWP CFILL MASUAT MASA16 MASA24 MASD16

R/W R/W R/W R/W R/W R/W R/W R/W

Bit 0 Setting the MASD16 bit forces the MVME147 to perform only
D8 and D16 data transfers on the VMEbus. Clearing the
MASD16 bit allows D8, D16, and D32 transfer capability on the
VMEbus when the MC68030 accesses in the range below
$F0000000. (Accesses to VMEbus locations above $F0000000 are
always restricted to D8/D16 regardless of the MASD16 bit.)
This bit is cleared by SYSRESET.

Bit 1 If either the MASA24 bit is set, or the MC68030 accesses the
VMEbus in the range below $1000000, the master drives one of
the standard (24-bit) address modiÞer codes during VMEbus
cycles (unless the master is conÞgured to use the master address
modiÞer register as described in the Master Address Modifier
Register section in this chapter). The specific standard AM code
is determined from the levels that the MC68030 drives on the
three function code lines during the cycle, as shown in the table
below. This bit is cleared by SYSRESET.

Bit 2 If either the MASA16 bit is set, or the MC68030 accesses the
VMEbus in the range above $FFFF0000, a short (16-bit) AM
code is used regardless of the state of the MASA24 bit (unless
the master is conÞgured to use the master address modiÞer
register as described in the Master Address Modifier Register
section in this chapter). The speciÞc short AM code is
determined from the levels that the MC68030 drives on the
three function code lines during the cycle, as shown in the
following table. This bit is cleared by SYSRESET.
4-40

Programming the VMEchip

4

Table 4-5. Determining the Master AM Code

VMEbus Address ModiÞer

M
A
S
A
1
6

A
D
R
1
6

M
A
S
A
2
4

A
D
R
2
4

F
C
2

F
C
1

F
C
0

A
M
5

A
M
4

A
M
3

A
M
2

A
M
1

A
M
0 Code

0 F 0 F 0 0 1 0 0 1 0 0 1 $09
0 F 0 F 0 1 0 0 0 1 0 1 0 $0A
0 F 0 F 1 0 1 0 0 1 1 0 1 $0D
0 F 0 F 1 1 0 0 0 1 1 1 0 $0E
1 X X X 0 0 1 1 0 1 0 0 1 $29
1 X X X 0 1 0 1 0 1 0 1 0 $2A
X T X X 0 0 1 1 0 1 0 0 1 $29
X T X X 0 1 0 1 0 1 0 1 0 $2A
1 X X X 1 0 1 1 0 1 1 0 1 $2D
1 X X X 1 1 0 1 0 1 1 1 0 $2E
X T X X 1 0 1 1 0 1 1 0 1 $2D
X T X X 1 1 0 1 0 1 1 1 0 $2E
0 F 1 X 0 0 1 1 1 1 0 0 1 $39
0 F 1 X 0 1 0 1 1 1 0 1 0 $3A
0 F 1 X 1 0 1 1 1 1 1 0 1 $3D
0 F 1 X 1 1 0 1 1 1 1 1 0 $3E
0 F X T 0 0 1 1 1 1 0 0 1 $39
0 F X T 0 1 0 1 1 1 0 1 0 $3A
0 F X T 1 0 1 1 1 1 1 0 1 $3D
0 F X T 1 1 0 1 1 1 1 1 0 $3E

T = True, F = False, X = Don't Care

Notes
 AM2, 1, 0 track FC2, 1, 0.
 ADR16 = T represents MC68030 accesses to the VMEbus above $FFFF0000.
 ADR16 = F represents MC68030 accesses to the VMEbus below $FFFF0000.
 ADR24 = T represents MC68030 accesses to the VMEbus below $01000000.
 ADR24 = F represents MC68030 accesses to the VMEbus above $01000000.
4-41

Programming

4

Bit 3 The MASUAT bit allows software to conÞgure the master to
provide the UAT data transfer capability. Setting the MASUAT
bit to 1 conÞgures the master to execute unaligned VMEbus
cycles when necessary.
If the bit is cleared, the MC68030 is acknowledged so as to break
the unaligned transfer into multiple aligned cycles. This bit is
cleared by SYSRESET.

Note While making it optional for the master to provide the
UAT data transfer capability, the VMEbus
specification requires that all D32 slaves support it.

Bit 4 This bit is cleared by SYSRESET. It should remain cleared.
Bit 5 Setting the MASWP bit speeds up MC68030 writes to the

VMEbus. However, it should be used with caution. When
MASWP (Master Write Posting) is set, MC68030 write cycles to
the VMEbus are acknowledged by the VMEchip, before they
have actually Þnished on the VMEbus. The VMEchip Þnishes
the write cycles on its own, allowing the MC68030 to continue
with new cycles. If the SLVEN bit is cleared (slave disabled), the
VMEchip acknowledges VME writes even before it has obtained
VMEbus mastership. If the SLVEN bit is set, then it waits until it
has obtained VMEbus mastership. This bit is cleared by
SYSRESET.

Note The MC68030 is not notified via BERR* if an error
occurs while the VMEchip is finishing a write posted
cycle. The VMEchip can be programmed to interrupt
the MC68030 if such an event occurs (WPERREN bit in
the Utility Interrupt Mask Register). Keep in mind that
interrupt notification could be well after the occurrence
of the error.

Bit 6 020 - This bit should always be cleared.
Bit 7 DDTACK - This bit should always be cleared for 25 MHz boards

and set for 32 MHz boards.
4-42

Programming the VMEchip

4

Slave Configuration Register

Note The bits in the slave configuration must be changed
only when the VMEchip has control of the VMEbus.
The recommended procedure for changing the slave
configuration is:

a. Set the DWB bit in the requester conÞguration
register to 1.

b. Read the DHB status bit until it is 1.

c. Change the slave conÞguration register.

d. Clear the DWB bit to 0.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE2007 SLVEN SLVWP SLVD16

R/W R/W R/W

Bit 0 SLVD16 should always be cleared. Setting SLVD16 to 1
conÞgures the VMEchip slave to provide only D08 (EO) and
D16 data transfer capabilities. It is typically set when the local
bus is only 16 bits wide. Clearing the SLVD16 bit to 0 conÞgures
the VMEchip slave to provide the D08 (EO), D16, and D32/UAT
data transfer capabilities. This bit is cleared by SYSRESET.

Bit 5 Setting the SLVWP bit speeds up VMEbus writes to the onboard
DRAM. When SLVWP (slave write posting) is set, VMEbus
write cycles to the onboard DRAM are acknowledged by the
VMEchip before the data has been written into the DRAM. This
allows the VMEbus master to end its cycle quickly, placing the
burden on the VMEchip to complete the write to onboard
DRAM on its own. This bit is cleared by SYSRESET.

Bit 7 Setting SLVEN to 1 enables other VMEbus masters to access the
MVME147 onboard DRAM. This bit is cleared by SYSRESET.
4-43

Programming

4

Timer Configuration Register

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE2009 ARBT0 VBTO1 VBTO0 ACTO1 ACTO0 LBTO1 LBTO0

R/W R/W R/W R/W R/W R/W R/W

Bits 0-1 These two bits conÞgure the local time-out period. They are set
to 1 by any reset.

LBTO1 LBTO0 Time-Out Period

0 0 102 microseconds
0 1 205 microseconds
1 0 410 microseconds
1 1 Timer disabled

The local bus timer activates bus error to the MC68030 when it
tries to access nonexistent locations in the local memory map.

Bits 2-3 These two bits conÞgure the VMEbus access time-out period.

They are set to 1 by any reset.

ACTO1 ACTO0 Time-Out Period

0 0 102 microseconds
0 1 1.6 millisecond
1 0 51 milliseconds
1 1 Timer disabled

The VMEbus access timer activates bus error to the MC68030
(except on write posted time-outs) when the VMEchip is
unsuccessful in obtaining the VMEbus within the time-out
period.
4-44

Programming the VMEchip

4

Bits 4-5 These two bits conÞgure the VMEbus global time-out period.
VBTO1 is set to 1 and VBTO0 is cleared to 0 by SYSRESET.

VBTO1 VBTO0 Time-Out Period

0 0 102 microseconds
0 1 205 microseconds
1 0 410 microseconds
1 1 Timer disabled

The VMEbus global timer activates BERR* on the VMEbus.

Bit 6 Setting ARBTO to 1 enables the VMEbus arbitration timer. The
VMEbus arbitration timer activates BBSY* if it is not activated
within 410 µs after the MVME147 arbiter issues a bus grant. The
timer deactivates BBSY* as speciÞed in the VMEbus
speciÞcation. This causes the arbiter to arbitrate any pending
requests for the bus. This bit is set to 1 by SYSRESET.
4-45

Programming

4

Slave Address Modifier Register

Note This register allows software to configure which
address modifier codes the VMEbus masters must use
to access the onboard DRAM. The 8 bits of the register
are organized into three groups. At least one of the bits
in each group must be set, otherwise the address
modifier used by the master is ignored.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE200B SUPER USER EXTED STND SHORT BLOCK PRGRM DATA

R/W R/W R/W R/W R/W R/W R/W R/W

Bits 0-2 These three bits form the Þrst group which conÞgures the slave
AM code. Setting any of the bits to 1 enables the slave to
respond to cycles as described in the example below. Note
BLOCK should never be set. These bits are cleared by
SYSRESET.

Bits 3-5 These three bits form the second group. Setting any of the bits to
1 enables the slave to respond to cycles as described in the
example below. These bits are cleared by SYSRESET.

Bits 6-7 These two bits form the third group. Setting any of the bits to 1
enables the slave to respond to cycles as described in the
example below. These bits are cleared by SYSRESET.

Example: If the SUPER, STND, and DATA bits are set, then the only AM
code accepted is $3D, standard supervisor data access. When
more than one bit is set in a group, the accepted AM codes
include all permutations of the bits that are set. For example, if
the SUPER, USER, EXTED, PRGRM, and DATA bits are set, the
accepted AM codes are $09, $0A, $0D, and $0E. These are
extended user data access, extended user program access,
extended supervisor data access, and extended supervisor
program access. The normal recommended conÞguration of the
bits is all set except for BLOCK ($FB).
4-46

Programming the VMEchip

4

Note Although all bits in the slave address modifier register
may be changed dynamically, they must be changed
only when the VMEchip has control of the VMEbus.

The recommended procedure for changing the slave
address modifier is:

a. Set the DWB bit in the requester configuration
register to 1.

b. Read the DHB status bit until it is 1.

c. Change the slave address modifier register.

d. Clear the DWB bit to 0.
4-47

Programming

4

Master Address Modifier Register

Note The register allows software to program the address
modifier code that is driven by the MVME147 during a
VMEbus cycle.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE200D AMSEL AM5 AM4 AM3 AM2 AM1 AM0

R/W R/W R/W R/W R/W R/W R/W

Bits 0-5 These Þve bits, in conjunction with AMSEL, allow software to
select dynamically the address space that the master accesses
during VMEbus cycles. Setting any of these Þve bits to 1 causes
the master to drive the corresponding address modiÞer line to
high (if the AMSEL bit is set to 1).
Clearing any of the bits to 0 causes the master to drive the
corresponding line to low (if the AMSEL bit is set to 1).
These bits are cleared by SYSRESET.

Bit 7 Software uses the AMSEL control bit to deÞne what is the
source of the AM code driven by the master during a VMEbus
cycle.
Setting the bit to 1 causes the master to drive the contents of the
lower six bits onto the address modiÞer lines. No attempt is
made to check the value stored in this register for reserved or
illegal address modiÞers.
Clearing the AMSEL bit causes the master to determine the AM
code dynamically.
AMSEL should normally be cleared to 0. This bit is cleared by
SYSRESET.
4-48

Programming the VMEchip

4

Interrupt Handler Mask Register

Notes This register is used to enable the MC68030 to respond
to specific VMEbus interrupt requests. Note that the
master interrupt enable bit in the PCC must also be set
for VMEbus IRQs to get through to the MC68030.

Setting any of bits 1 through 7 unmasks an interrupt
request from the VMEbus IRQ signal at the
corresponding level. Keep in mind that only one
VMEbus master is allowed to handle each level of
VMEbus IRQ. The software should set these bits
accordingly. These bits are cleared by any reset.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE200F IEN7 IEN6 IEN5 IEN4 IEN3 IEN2 IEN1

R/W R/W R/W R/W R/W R/W R/W
4-49

Programming

4

Utility Interrupt Mask Register

Note This register is used to enable the VMEchip interrupt
handler to respond to specific utility interrupt requests.
When the interrupt handler detects an interrupt request
from one of the enabled functions, it responds by request-
ing the MC68030 to initiate an interrupt acknowledge cycle
if the master interrupt enable bit is set in the PCC. All the
bits in this register are cleared by any reset.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE2011 WPERREN SFIEN SIGHEN LM1EN IACKEN LM0EN SIGLEN

R/W R/W R/W R/W R/W R/W R/W

Bit 1 As described in the Programming the GCSR section in this
chapter, the GCSR provides two global attention interrupt bits:
SIGLP and SIGHP, which allow other VMEbus masters to
interrupt the MC68030 on a low priority (Level 1) and on a high
priority (Level 5). Setting the SIGLEN control bit to 1 unmasks
the SIGLP interrupt.

Bit 2 As described in the Programming the GCSR section in this
chapter, the GCSR provides four location monitors. Two of
them, location monitor 0 and 1, cause a local interrupt when the
VMEbus address they are conÞgured to monitor is accessed.
The LM0EN control bit allows software to mask the interrupt
requested when an access is detected to the address monitored
by location monitor 0. The level of local interrupt is shown in
Table 4-6. Setting the LM0EN bit to 1 unmasks the interrupt.

Bit 3 The VMEchip allows software to program the interrupt handler
to generate a local interrupt after it concludes a VMEbus IACK
cycle. The level of the local interrupt is shown in Table 4-6.
Setting the IACKEN control bit to 1 enables the IACK interrupt.
This function is intended to be coupled with the use of the
VMEchip global interrupt function. If this bit is set, a local
interrupt (to the MC68030) is generated when a VMEbus IACK
cycle acknowledges the interrupt (refer to the Interrupt Request
Register section in this chapter).
4-50

Programming the VMEchip

4

Bit 4 As described in the Programming the GCSR section in this
chapter, the GCSR provides four location monitors. Two of
them, location monitor 0 and 1, cause a local interrupt when the
VMEbus address they are conÞgured to monitor is accessed.
The LM1EN control bit allows software to mask the interrupt
requested when an access is detected to the address monitored
by location monitor 1. The level of local interrupt is shown in
Table 4-6. Setting the LM1EN bit to 1 unmasks the interrupt.

Bit 5 As described in the Programming the GCSR section in this
chapter, the GCSR provides a global high priority attention
interrupt bit SIGHP which allows other VMEbus masters to
interrupt the MC68030. The level of the local interrupt is shown
in Table 4-6. Setting the SIGHEN control bit to 1 unmasks the
SIGHP interrupt.

Bit 6 Setting SFIEN to 1 enables a low level on the VMEbus SYSFAIL*
line to cause an interrupt to the MC68030. The level of the
SYSFAIL* interrupt is shown in Table 4-6.

Bit 7 The VMEchip allows software to conÞgure the VMEbus master
to operate in a write posted mode (i.e., acknowledge the
MC68030 VMEbus bound write cycle before it has actually been
executed on the VMEbus). If the VMEchip encounters a
VMEbus bus error as it attempts to complete the write posted
cycle, the VMEchip notiÞes the MC68030 via Level 7 interrupt if
the WPERREN bit is set.

Table 4-6. Utility Interrupts and Their Assigned Level

Utility Interrupt Assigned Priority

SIGLP Level 1
LM0 Level 2
IACK Level 3
LM1 Level 4

SIGHP Level 5
SYSFAIL Level 6
WPBERR Level 7
4-51

Programming

4

Utility Interrupt Vector Register

Notes The utility interrupt vector register provides the local
CPU with a unique vector for each of the utility
interrupts. Close examination reveals that the assigned
level of each of the utility interrupts, as defined in the
Utility Interrupt Mask Register section in this chapter, is
the same as its assigned ID. This is implemented by
reflecting the state of the address lines A01-A03, that
the local CPU drives when it acknowledges an
interrupt, onto bits 0-2 of the utility vector register.
When accessing this register in the course of a normal
CPU read cycle, bit 0-2 yields the register offset value
(which is %xxxxx001).

The contents of the utility interrupt vector register
must not be changed while one of the utility interrupts
is active.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE2013 UVB7 UVB6 UVB5 UVB4 UVB3 UID2 UID1 UID0

R/W R/W R/W R/W R/W R R R

Bits 0-2 The lower three bits of the utility interrupt vector register are
encoded by the VMEchip to uniquely identify the function that
caused the utility interrupt request as shown in Table 4-7.

Bits 3-7 UVB3 through UVB7 are utility vector base bits.
The upper Þve bits of the register are programmable by
software to provide a unique base for the vector provided in the
course of acknowledging one of the utility interrupts. These bits
are cleared by any reset.
4-52

Programming the VMEchip

4

Table 4-7. Encoding of the Interrupt ID

Utility
Interrupt Source

Bit 2 Bit 1 Bit 0

SIGLP 0 0 1
LM0 0 1 0
IACK 0 1 1
LM1 1 0 0

SIGHP 1 0 1
SYSFAIL 1 1 0
WPBERR 1 1 1
4-53

Programming

4

Interrupt Request Register

Note This register is used to configure the interrupt request
line that the interrupter activates to request an
interrupt on the VMEbus.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE2015 IL2 IL1 IL0

R/W R/W R/W

Bits 0-2 The three interrupt level select lines are encoded as shown in
Table 4-8. Writing a non-0 value to these three bits causes the
interrupter to activate the corresponding VMEbus IRQ line.
Because the interrupter operates in the Release-On-
Acknowledge (ROAK) mode, the interrupt request register is
cleared, deactivating the IRQ line when the chip responds to a
VMEbus interrupt acknowledge cycle. These bits are cleared by
SYSRESET.

Table 4-8. Configuring the Interrupt Request Level

Interrupt Request
Line Driven

IL2 IL1 IL0

None 0 0 0
IRQ1* 0 0 1
IRQ2* 0 1 0
IRQ3* 0 1 1
IRQ4* 1 0 0
IRQ5* 1 0 1
IRQ6* 1 1 0
IRQ7* 1 1 1
4-54

Programming the VMEchip

4

Note When the bits are set to drive one of the IRQ lines, they
must not be changed. The three bits may be changed
only when they are all cleared, signifying that the
previous interrupt request has been serviced.

An added function provided by setting IACKEN (refer
to the Utility Interrupt Mask Register section in this
chapter) is provided by the VMEchip to signal the local
processor when the interrupt request (generated
through this register) has been acknowledged on the
VMEbus.
4-55

Programming

4

VMEbus Status/ID Register

Note This register allows software to program dynamically
the status/ID that the interrupter provides during an
interrupt acknowledge cycle. D00-D03 are set by
SYSRESET, D04-D07 are cleared by SYSRESET.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE2017 D07 D06 D05 D04 D03 D02 D01 D00

R/W R/W R/W R/W R/W R/W R/W R/W
4-56

Programming the VMEchip

4

Bus Error Status Register

Note This register allows the MC68030 to determine the
cause of a bus error condition flagged by the VMEchip.
Reading the register causes all of its bits to be cleared to
0. The bus error status register is designed to only
indicate the cause of the latest bus error condition (i.e.,
when there is cause to set any of the bits, all other bits
are cleared).

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE2019 RMCERR VBERR ACTO LBTO

R R R R

Bit 0 When set, this status bit indicates that the local timer has timed
out.

Bit 1 When set, this status bit indicates that the VMEbus access timer
has timed out.

Bit 2 When set, this status bit indicates that the VMEbus BERR*
signal was activated in the course of a non write posted cycle
that was initiated by the VMEchip. It should be noted that this
bit is not set if the VMEbus global timer timed out in response to
a VMEbus cycle that was initiated by another VMEbus master.

Bit 3 This bit should be ignored.
4-57

Programming

4

GCSR Base Address Configuration Register

Note This register allows software to set the base address of the
GCSR set of registers in the VMEbus supervisor short I/O
map.

The value contained in bits 0-3 of this register configures
bits 4-7 of the GCSR base address. Address lines A08-A15
are fixed at $0. Refer to Table 4-9. Bits 1-3 of the VMEbus
address select the specific registers in the GCSR. These bits
are set to 1 by SYSRESET, therefore, unless otherwise
programmed, the GCSR set does not respond to VMEbus
accesses. GCSR functions are not enabled when the GCSR
is mapped not to respond to VMEbus accesses. For
example: location monitors SIGHP and SIGLP.

ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
FFFE201B GCSRA7 GCSRA6 GCSRA5 GCSRA4

R/W R/W R/W R/W

Table 4-9. VMEchip GCSR as Viewed from the VMEbus

GCSRA7-4
Short I/O Address of

GCSR
$0 $0000-000F
$1 $0010-001F
$2 $0020-002F
$3 $0030-003F
$4 $0040-004F
$5 $0050-005F
$6 $0060-006F
$7 $0070-007F
$8 $0080-008F
$9 $0090-009F
$A $00A0-00AF
$B $00B0-00BF
$C $00C0-00CF
$D $00D0-00DF
$E $00E0-00EF
$F Does not respond
4-58

Programming the VMEchip

4

Programming the GCSR

There are eight GCSR registers as shown in Table 4-10. The
VMEbus address is in the supervisor short I/O map.

Note The bottom two lines in the table for each of the
following GCSR register definitions defines the
operations possible on the register bits, from the
MC68030 and the VMEbus, as follows:

Table 4-10. VMEchip Global Control and Status Register

MVME147
Address

VMEbus
Address

Register
Name

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
FFFE2021 00x1 LM3 LM2 LM1 LM0 CHIPID3 CHIPID2 CHIPID1 CHIPID0 Global 0

FFFE2023 00x3 R&H SCON ISF BRDFAIL SIGHP SIGLP Global 1

FFFE2025 00x5 BRDID7 BRDID6 BRDID5 BRDID4 BRDID3 BRDID2 BRDID1 BRDID0 Board ID

FFFE2027 00x7 General Purpose Control and Status Register 0

FFFE2029 00x9 General Purpose Control and Status Register 1

FFFE202B 00xB General Purpose Control and Status Register 2

FFFE202D 00xD General Purpose Control and Status Register 3

FFFE202F 00xF General Purpose Control and Status Register 4

Note The x denotes the value in the GCSR base address configuration register bits 0-3.

R This bit is a read-only status bit.
R/W This bit is readable and writable.
C Writing a 1 to this bit clears it. This bit reads 0.
R/C This bit is readable. Writing a 1 to this bit clears it.
R/S This bit is readable. Writing a 1 to this bit sets it; it

cannot be cleared.
4-59

Programming

4

Global Register 0

MVME147
ADDRESS

VMEbus
ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

FFFE2021 00X1 LM3 LM2 LM1 LM0 CHIPID3 CHIPID2 CHIPID1 CHIPID0

MC68030 R R R R R R R R

VMEbus R R R R R R R R

Bits 0-3 These bits provide a unique identiÞcation number for the
VMEchip. The VMEchip presents a hardwired ID of %0001.

Bit 4 Location monitor 0 is conÞgured to monitor double-byte
accesses to the supervisor short I/O address $00F0, and single-
byte accesses to the short I/O address $00F1. When cleared,
LM0 indicates that an access to address $00F0 or $00F1 was
detected. At such a time, utility interrupt level 2 is requested (if
the interrupt is enabled). LM0 is set when the interrupt is
acknowledged or when software writes a 1 to it. This bit is set to
1 by SYSRESET. See Note below.

Bit 5 Location monitor 1 is conÞgured to monitor double-byte
accesses to the supervisor short I/O address $00F2, and single-
byte accesses to the short I/O address $00F3. When cleared,
LM1 indicates that an access to address $00F2 or $00F3 was
detected. At such a time, utility interrupt level 4 is requested (if
the interrupt is enabled). LM1 is set when the interrupt is
acknowledged or when software writes a 1 to it. This bit is set to
1 by SYSRESET. See Note below.

Bit 6 Location monitor 2 is conÞgured to monitor double-byte
accesses to the supervisor short I/O address $00F4, and single-
byte accesses to the short I/O address $00F5. When cleared,
LM2 indicates that an access to address $00F4 or $00F5 was
detected. LM2 is set when software writes a 1 to it. This bit is set
to 1 by SYSRESET. See Note below.
4-60

Programming the VMEchip

4

Note The GCSR Base Address Configuration Register must

be programmed to allow the GCSR set of registers to
respond to VMEbus accesses for this function to be
enabled.

The VMEbus master that executes the location monitor
cycle must generate the DTACK signal to terminate the
cycle.

Bit 7 Location monitor 3 is conÞgured to monitor double-byte
accesses to the supervisor short I/O address $00F6, and single-
byte accesses to the short I/O address $00F7. When cleared,
LM3 indicates that an access to address $00F6 or $00F7 was
detected. LM3 is set when software writes a 1 to it. This bit is set
to 1 by SYSRESET. See Note below.
4-61

Programming

4

Global Register 1

MVME147
ADDRESS

VMEbus
ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

FFFE2023 00X3 R&H SCON ISF BRDFAIL SIGHP SIGLP
MC68030 R/W R R/W R R/C R/C
VMEbus R/W R R/W R R/S R/S

Bit 0 The SIGLP control signal allows other VMEbus masters to
interrupt the MC68030. SIGLP can only be set from the
VMEbus. It can only be cleared by the MC68030. When a
VMEbus master sets SIGLP to a 1, the VMEchip requests a level
1 interrupt to the MC68030 (if such interrupts are enabled). The
interrupt request remains until the MC68030 writes a 1 to it.
This bit is cleared by SYSRESET. See Note 1 below.

Bit 1 The SIGHP control signal allows other VMEbus masters to
interrupt the MC68030. SIGHP can only be set from the
VMEbus. It can only be cleared by the MC68030. When a
VMEbus master sets SIGHP to a 1, the VMEchip requests a level
5 interrupt to the MC68030 (if such interrupts are enabled). The
interrupt request remains until the MC68030 writes a 1 to it.
This bit is cleared by SYSRESET. See Note 1 below.

Bit 4 BRDFAIL is a reßection of the BRDFAIL* input/output signal
line. The status bit is set to 1 whenever the signal line is
activated by either the VMEchip, or by a watchdog time-out
from the PCC. The bit is cleared when the BRDFAIL* signal is
deactivated.

Bit 5 The ISF control bit allows other VMEbus masters to cause the
VMEchip to release its contribution to the VMEbus SYSFAIL*
line. This is provided so that software can determine how many
boards have failed. It should be noted that the ISF bit has no
effect on the BRDFAIL status bit. Setting the bit to 1 inhibits the
VMEchip from activating the VMEbus SYSFAIL* line. This bit is
cleared by SYSRESET.
4-62

Programming the VMEchip

4

Notes 1. The GCSR Base Address Configuration Register
must be programmed to allow the GCSR set of registers
to respond to VMEbus accesses for this function to be
enabled.

2. If the MVME147 sets its own R&H, it causes itself to
be maintained in a reset state until some other master
clears the bit to 0.

3. Software must never activate R&H for shorter than
35 microseconds.

4. The R&H bit should not be set while the local MPU
is executing a VMEbus cycle.

Bit 6 The SCON status bit is a reßection of the conÞguration of
header J3. When J3 pins 1 and 2 are connected, enabling the
MVME147 as system controller, the SCON bit is 1. Otherwise it
is 0.

Bit 7 The R&H bit allows other VMEbus masters to reset the
MVME147. The MVME147 is held in the reset state for as long
as the R&H bit is set. This bit is cleared by SYSRESET.
4-63

Programming

4

Board Identification Register

Note The MC68030 can both read and write to this register.
The VMEbus can only read it. This register allows the
software to uniquely identify boards. The whole
register is cleared by SYSRESET.

MVME147
ADDRESS

VMEbus
ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

FFFE2025 00X5 BRDID7 BRDID6 BRDID5 BRDID4 BRDID3 BRDID2 BRDID1 BRDID0
MC68030 R/W R/W R/W R/W R/W R/W R/W R/W
VMEbus R R R R R R R R
4-64

Programming the VMEchip

4

General Purpose CSR 0

Note General purpose CSR 0 is both readable and writable
from the MC68030 and from the VMEbus. All of its bits
are set to 1 at SYSRESET.

MVME147
ADDRESS

VMEbus
ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

FFFE2027 00X7 General Purpose Control and Status Register 0
MC68030 R/W R/W R/W R/W R/W R/W R/W R/W
VMEbus R/W R/W R/W R/W R/W R/W R/W R/W
4-65

Programming

4

General Purpose CSR 1-4

Note General purpose CSR 1-4 are both readable and
writable from the MC68030 and from the VMEbus. All
of their bits are cleared to 0 at SYSRESET.

MVME147
ADDRESS

VMEbus
ADDRESS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

FFFE2029 00X9 General Purpose Control and Status Register 1
FFFE202B 00XB General Purpose Control and Status Register 2
FFFE202D 00XD General Purpose Control and Status Register 3
FFFE202F 00XF General Purpose Control and Status Register 4

MC68030 R/W R/W R/W R/W R/W R/W R/W R/W
VMEbus R/W R/W R/W R/W R/W R/W R/W R/W
4-66

5
5Functional Description
Introduction
This chapter provides a functional description of the MVME147.
The functional description provides an overview of the module,
followed by a detailed description of each section of the module.
The block diagram of the MVME147 is shown in Figure 5-1.

Functional Description
The MVME147 is a complete microcomputer system. The module
contains the following:

❏ MC68030 MPU

❏ 4MB or more of DRAM (accessible from the VMEbus)

❏ MC68882 Floating-Point Coprocessor

❏ VMEchip

❏ 4088 bytes of static RAM with battery backup

❏ Time-of-day clock with battery backup

❏ Four serial ports with EIA-232-D interface,

❏ Two tick timers

❏ Watchdog timer

❏ Four ROM sockets

❏ SCSI bus interface with DMA

❏ Ethernet transceiver interface

❏ Centronics printer port

❏ A32/D32 VMEbus interface

❏ VMEbus system controller

❏ Numerous control functions

Note that the Ethernet interface is not included on the MVME147-
010.
5-1

Functional Description

5

MC68030 MPU
The MC68030 is the main processor of the MVME147. The MC68030
has onchip instruction and data caches. The MVME147 prevents the
MC68030 from caching accesses to any other device than local
DRAM by activating the cache inhibit in pin (CIIN*) during the
accesses. Refer to the MC68030 Enhanced 32-Bit Microprocessor
User's Manual.

The MC68030 includes a software reset instruction; however, the
MVME147 does not support this instruction.

MC68882 FPC
The MC68882 Floating-Point Coprocessor (FPC) is connected to the
MC68030 as a 32-bit port. It runs at the same frequency as the
MC68030. Refer to the MC68881/MC68882 Floating-Point
Coprocessor User's Manual for a detailed description of its operation.

VMEchip
The VMEchip is an Application Specific IC (ASIC) device designed
to reduce the real estate required to interface with the VMEbus. It
provides the following:

❏ VMEbus system controller functions

❏ VMEbus interrupt handler

❏ VMEbus and local time-out functions

❏ MC68030 to VMEbus interface

❏ VMEbus control signal drivers and receivers.
5-2

VMEchip

5

Figure 5-1. MVME147 Block Diagram

11
41

6.
00

 9
60

4

TO
 V

M
E

B
U

S
A

N
D

P
E

R
IP

H
E

R
A

LS

P
2

S
E

R
IA

L
P

O
R

T
S

 1
 A

N
D

 2

S
E

R
IA

L
P

O
R

T
S

 3
 A

N
D

 4

LA
N

C
E

P
C

C
, R

E
S

E
T

A
N

D
 A

B
O

R
T

S
E

R
IA

L
P

O
R

T
B

U
F

F
E

R
S

 1
 A

N
D

 2

S
E

R
IA

L
P

O
R

T
B

U
F

F
E

R
S

 3
 A

N
D

 4

S
C

S
I I

N
T

E
R

FA
C

E

F
P

C

G
C

C
 A

S
IC

E
P

R
O

M
/E

E
P

R
O

M
B

B
R

A
M

V
M

E
C

H
IP

S
LA

V
E

M
A

P
 D

E
C

O
D

E
R

S

R
A

M
 A

R
R

AY

C
LO

C
K

S

LE
D

S

P
R

IN
T

E
R

B
U

F
F

E
R

S

S
IA

B
U

F
F

E
R

S

TO
 V

M
E

B
U

S

P
1

M
P

U

5-3

Functional Description

5

VMEbus System Controller

One of the many functions provided by the VMEchip is the
VMEbus system controller function. The system controller includes
the following:

❏ VMEbus global time-out timer

❏ System Clock (SYSCLK*) driver

❏ Arbiter

❏ Interrupt Acknowledge (IACK*) daisy-chain driver.

The system reset utility is also described here because it is enabled
when the MVME147 is system controller. The system controller
function is enabled/disabled by header J3. When the MVME147 is
system controller, the System Controller (SCON) LED is turned on.

VMEbus Time-Out

The VMEbus timer is started when either Data Strobe (DS0* or
DS1*) goes active and is disabled when they both go inactive. If the
timer times out before the data strobes go inactive, the Bus Error
(BERR*) signal is activated. The time-out period is controlled by the
timer interval register and may be 102 µs, 205 µs, 410 µs, or infinite.

System Clock Utility

The 16 MHz system clock is driven onto the VMEbus SYSCLK*
signal line by the VMEchip system clock driver.

Arbiter

The VMEchip implements two different arbitration modes. They
are prioritized and round-robin. The mode is software selectable.

In the prioritized mode, the arbiter prioritizes the bus request
signals and responds with grant to the highest priority requester.
The arbiter also informs the current bus master by activating the
Bus Clear (BCLR*) signal when a request from a higher priority
master has been received.
5-4

VMEchip

5

In the round-robin mode, the arbiter assigns the bus on a rotating
priority basis. The BCLR* signal is not used in the round-robin
mode.

The arbiter also contains a time-out feature. It activates Bus Busy
(BBSY*) on its own if BBSY* is not activated by the requester within
the time-out period. The time-out period is software selectable and
may be set to 410 µs or infinite.

IACK* Daisy-Chain Driver

The IACK* daisy-chain driver activates the interrupt acknowledge
daisy-chain whenever an interrupt handler acknowledges an
interrupt request.

System Reset Function (SYSRESET*)

Even though SYSRESET* is not a VMEbus system controller
function, the MVME147 enables/disables its SYSRESET* function
at the same time that it enables/disables its system controller
functions. When the MVME147 is system controller, it drives the
SYSRESET* signal line whenever an onboard reset is generated (it
does not fully implement the SYSRESET* timing of a VMEbus
power monitor).

VMEbus Interrupter

The VMEchip incorporates a flexible, multilevel bus interrupter
module. This module can activate an interrupt on the VMEbus at
any of the seven interrupt levels.

The VMEchip interrupter also monitors the VMEbus to determine
when an interrupt acknowledge cycle is in process. When the
VMEchip receives an interrupt-acknowledge-in signal from the
VMEbus and it is currently interrupting at the acknowledge level,
it responds with a status/ID vector. Otherwise, it generates an
interrupt-acknowledge-out signal to the VMEbus. The VMEchip is
a 8-bit interrupter and consequently responds to all sizes of
interrupt acknowledge cycles.
5-5

Functional Description

5

Local Bus Time-Out

The VMEchip provides a time-out function for the MC68030 local
bus. When the timer times out, a bus error signal is sent to the
MC68030. The time-out value is selectable in software for 102 µs,
205 µs, 410 µs, or infinite.

Note The local bus timer does not operate during VMEbus
bound cycles. VMEbus bound cycles are timed by the
VMEbus access timer and by the global timer (not
necessarily on the module).

VMEbus Access Time-Out

The VMEchip provides a VMEbus access time-out timer. If the
MVME147 is not granted the VMEbus within the selected time
period, the MC68030 receives a bus error signal (unless the cycle is
write posted). The time period is selectable in software for 102 µs,
1.6 ms, 51 ms, or infinite.

VMEbus Master Interface

The VMEbus master interface is provided by the VMEchip.
Depending on the VMEbus address, the MVME147 master
interface may be A32/D32, A24/D16, or A16/D16. When the
MC68030 needs the VMEbus for a read, write, read-modify- write,
or interrupt acknowledge cycle, it requests the VMEchip to obtain
bus mastership. The VMEchip requests the bus and after it receives
mastership, it activates the VMEbus signals as requested by the
MC68030. When the slave responds, the VMEchip passes this
information to the MC68030.
5-6

VMEchip

5

VMEbus Requester

The VMEbus requester is used to obtain and relinquish mastership
of the VMEbus. Its operation is affected by software programmable
bits in the VMEchip.

The requester requests VMEbus mastership at the programmed
level when the board is not the current VMEbus master and one of
the following happens:

❏ The MC68030 executes a program space cycle that is bound
for the VMEbus.

❏ The MC68030 executes a data space cycle that is bound for the
VMEbus.

❏ The MC68030 executes an IACK cycle that is bound for the
VMEbus.

❏ The MC68030 sets the DWB bit in the VMEchip.

❏ The MC68030 executes a Òmultiple address RMCÓ cycle that
is bound for the local DRAM and the WAITRMC bit is set in
the PCC.

Requesting VMEbus mastership is also affected by the RONR bit in
the VMEchip LCSR.
5-7

Functional Description

5

The requester maintains VMEbus mastership as long as one of the
following conditions is met:

❏ The MC68030 is executing a VMEbus cycle.

❏ The RWD bit is cleared in the VMEchip and no other VMEbus
master is activating a bus request.

❏ The RNEVER bit is set in the VMEchip.

❏ The DWB bit is set in the VMEchip.

❏ The MC68030 is performing an RMC sequence to the
VMEbus.

❏ The MC68030 is finishing an RMC sequence that started in
local DRAM while the WAITRMC bit was set in the PCC.

VMEbus Slave Interface

The VMEchip provides the VMEbus slave interface for the
MVME147. When the VMEbus wants to access the DRAM or
VMEchip control registers, the VMEbus map decoder selects the
VMEchip.

For a DRAM access, the VMEchip requests the local bus and after
obtaining mastership, the VMEchip activates the proper signals to
access the DRAM. The DRAM notifies the VMEchip and the
VMEchip notifies the VMEbus when the DRAM has completed.

Mastership of the local bus is not required to access the VMEchip
Global Control and Status Registers. The VMEbus cannot access
any other resources than DRAM on the MVME147.
5-8

General Control Chip (GCC)

5

General Control Chip (GCC)
The GCC is a CMOS ASIC designed to replace 16 PALs and 19 other
devices on the previous MVME147 single board computers. It
provides the interface between the MC68030, VMEchip, PCC,
LANCE, and DRAM on the MVME147. While preserving the
original function of the MVME147, the GCC lowers part and
manufacture cost and reduces power consumption.

The GCC includes the following features:

❏ Local DRAM controller:

Ð Control signals to DRAM array

Ð MPU to DRAM interface

Ð PCC to DRAM interface

Ð LANCE to DRAM interface

Ð VMEchip to DRAM interface

Ð Local bus map decoder for MPU and PCC to DRAM

Ð Refresh controller

Ð Byte parity generator/checker

❏ External selectable internal/external local bus arbiter

❏ MC68030 to MC68882 interface logic

❏ Local bus BERR* generation from parity and other errors

❏ Support for WAITRMC function

❏ MC68030 to VMEbus map decoder

❏ Other miscellaneous control logic: CIIN*, SCIRST*,
ASYNCH*

SCSI Reset

Because the WD33C93 does not implement SCSI bus Reset (RST),
the GCC has separate signals to sense and drive it.
5-9

Functional Description

5

RAM Refresh Timer

The DRAM used on the MVME147 must be refreshed at least every
15.6 µs. The GCC provides a refresh signal to the DRAM at least
once every 15.6 µs.

Local Bus Multiport Arbiter

Because the local address and data buses are used to access the
onboard DRAM and the VMEbus, any devices that use these
resources must become the local bus master first. The MC68030
arbitration logic (Bus Request (BR*), Bus Grant (BG*), Bus Grant
Acknowledge (BGACK*)) is used by the GCC multiport arbiter to
transfer local bus mastership from the current master to the next
master. During normal operation the MC68030 is the local bus
master.

When the PCC, the LANCE, or the VMEbus requests use of the local
bus, the GCC multiport arbiter activates BR* to the MC68030. The
MC68030 responds by activating BG*, finishing its current cycle (if
one is in progress), and giving up local bus mastership.

At this point, the GCC multiport arbiter grants local bus mastership
to the highest priority requesting device. The granted device uses
the local bus and then relinquishes local bus mastership. If another
device is requesting local bus mastership at this time, the GCC
multiport arbiter grants it to the device; otherwise the MPU
resumes local bus mastership.

The arbitration priority in high to low order is: LANCE, PCC,
VMEbus, and MPU.

Duplication of PCC Functions

Several registers and functions that exist in the PCC have been
duplicated in the GCC. Access to these registers and functions is
still through the PCC addresses. However, some pins on the PCC
are now unconnected because the logic is inside the GCC.
5-10

Peripheral Channel Controller (PCC)

5

Peripheral Channel Controller (PCC)
The PCC is an ASIC device designed for the MVME147. The PCC
includes the following features:

❏ DMA channel for SCSI data

❏ 8-bit to 32-bit converter for SCSI data

❏ SCSI chip interface

❏ Local processor interrupter/handler

❏ Peripheral chip map decoder

❏ Two programmable tick timers

❏ Watchdog timer

❏ Parallel (Centronics) printer interface

❏ Control and status registers

❏ RESET and ABORT switch interface

❏ Power-up reset interface

❏ AC Fail interrupter

❏ Refresh timer for local DRAM (function duplicated in GCC;
PCC function not used)

DMA Channel Controller (DMAC)

The PCC includes a DMA Channel Controller (DMAC) to move
data between the SCSI chip and memory. The DMA channel
features a 32-bit address pointer for data transfers, a 32-bit pointer
for the command chaining table, and a 24-bit byte counter.

Because of its 8-bit to 32-bit data bus width conversion, the chip
moves SCSI data at rates up to 1.5MB/second while using less than
25 percent of the local bus bandwidth when doing a DMA to local
DRAM.
5-11

Functional Description

5

DMAC Initiation Mode

The DMAC has two initiation modes: direct and command
chaining (scatter-gather).

In the direct mode, the data address pointer and the byte count are
loaded into the chip.

In the command chaining mode, a table of data addresses and byte
counts is placed in local RAM and the address of the table is loaded
into the chip. The chip walks through the addresses and byte counts
from the local RAM to move each block of data as indicated by the
table. Scatter-gather operations are supported by command
chaining.

The PCC can DMA to/from local DRAM and VMEbus memory
only. Any other access results in a local bus time-out.

DMAC Operation States

The DMAC is always in one of three operational states: idle state,
table walk state, or data transfer state. The DMA sequences through
the three depending upon the contents of the DMA control register
which is initialized by the MPU.

Idle State

The DMAC starts out from reset in the idle state. It stays in the idle
state until the DMAC is enabled (DMAEN set to 1). It returns to the
idle state when the DMAC has completed the requested operations
(normally or with error). It does not leave the idle state again until
all error status bits are cleared and DMAEN is again set to 1.

Data Transfer State

When DMAEN is set, the DMAC goes directly to the data transfer
state unless the Table Walk (TW) bit is set. If TW is set, the DMAC
table walks before entering the data transfer state.

In either event, when the data transfer state is entered, the DMAC
moves data between local DRAM and the WD33C93 (SCSI bus
interface controller). The DMAC reads/writes data in local DRAM
5-12

Peripheral Channel Controller (PCC)

5

using the address contained in the data address register. Data
transfers continue until the byte count register reaches 0.

At this point, the DMAC sets the done bit and enters the idle state
unless more table walking is indicated by the link bit in the byte
count register.

Table Walk State

The table address and table function code registers point to the
DMAC table. Table 5-1 is an example. The table has two entries for
each data block: the data address and the byte count.

When the DMAC table walks, it copies the first longword from the
table into the table address register, and the second longword from
the table into the byte count register. It then goes to the data transfer
state. If the table walk caused the link bit to be set, the DMAC table
walks again after the data transfer state has ended.

Note The DMAC table must always be placed within 32-bit
memory. The PCC terminates if 8-bit or 16-bit memory
is encountered during a table walk.

DMAC Error Conditions

If any error is encountered during the table walk or the data
transfer state, the DMAC goes immediately to the idle state. In
addition, it sets the done bit and the appropriate error bit.

Table 5-1. Example DMAC Table

Memory
Address Data Comments

$00010000 $00020000 The Þrst block of data starts at $20000
$00010004 $85000100 There are more entries, FCs = 5, move $100 bytes
$00010008 $00128000 The second block of data starts at $128000
$0001000C $83001000 There are more entries, FCs = 3, move $1000 bytes
$00010010 $00045000 The third block of data starts at $45000
$00010014 $03000050 There are no more entries, FCs = 3, move $50 bytes
5-13

Functional Description

5

SCSI Data Bus Converter

The WD33C93 connects to a separate 8-bit data bus on the PCC and
not to the local MC68030 bus. This allows the PCC to collect one
longword of data by transferring one byte at a time from the
WD33C93 without using the processor bus. When a longword is
ready, the chip requests the local bus and transfers it. This scheme
lightens the load on the MC68030 local bus.

SCSI Chip Interface

The PCC provides the interface for MC68030 accesses of the
WD33C93. It uses the nonmultiplexed mode which requires that
the software use the WD33C93 pointer registers to access its
internal registers. The WD33C93 registers are accessible indirectly
through the address register at $FFFE4000.

Programmable Tick Timers

The PCC features two 16-bit programmable tick timers. A timer
generates a periodic interrupt to the MC68030 at the programmed
rate. The period is 6.25 µs to 0.4 seconds in 6.25 µs increments. The
timer may also be disabled. The timer interrupt level is
programmable and it provides a status/ID vector when its
interrupt is acknowledged.

Watchdog Timer

The PCC includes a watchdog timer function. When enabled by
software, the watchdog timer may be programmed to reset the
module if it is system controller. Whenever the watchdog timer
times out, the FAIL LED is lit (in addition to when the BRDFAIL bit
is set in the VMEchip).

The watchdog timer counts outputs from tick timer 1. If the
watchdog timer is not reset by software within the programmed
number of ticks, it times out.
5-14

Peripheral Channel Controller (PCC)

5

Printer Interface

The PCC has a Centronics compatible printer interface. The printer
interface interrupts the MC68030 when it is ready for data or when
a fault occurs. The interrupt level is programmable and it provides
a status/ID vector when requested.

Control and Status Registers

The PCC has input and output signal lines for controlling various
functions on the MVME147. There are control lines for DRAM
parity enable, parity test and parity error status, VMEbus map
select, multiple address RMC mode, and LANCE address select.

RESET and ABORT Switches

The PCC provides the RESET and ABORT switch interface.

The RESET switch signal is debounced and when it is enabled, it
causes a reset out signal. The RESET switch can be enabled/disabled
by software.

The ABORT switch signal is debounced and sent to the level 7
interrupter. When it is enabled, the ABORT switch causes a level 7
interrupt to the MC68030. The interrupter returns a status/ID
vector when requested. The ABORT switch can be enabled/disabled
by software.

Power-Up Reset

When the PCC receives a power-up reset signal, it generates a reset
out signal and sets the power-up bit in the control register. The
power-up bit can be used by software to determine when a power-
up reset has occurred.
5-15

Functional Description

5

AC Fail Interrupter

When the AC Fail interrupt is enabled and the PCC receives an AC
Fail signal, a Level 7 interrupt is sent to the MC68030. The AC Fail
interrupt can be enabled/disabled by software. The AC Fail
interrupter provides a status/ID vector when requested.

Serial Port Interface
The MVME147 uses two Z8530 Serial Communications Controller
(SCC) devices to implement the four serial ports. A 5 MHz clock is
used to generate the baud rate clock and the serial ports support the
standard baud rates (110 through 19,200). Serial port 4 also
supports synchronous modes of operation.

The four serial ports on the MVME147 are different functionally
because of the limited number of pins on the P2 connector. Serial
port 1 is a minimum function asynchronous port. It uses RXD, CTS,
TXD, and RTS. Serial ports 2 and 3 are full function asynchronous
ports. They use RXD, CTS, DCD, TXD, RTS, and DTR. Serial port 4
is a full function asynchronous or synchronous port. It uses RXD,
CTS, DCD, TXD, RTS, and DTR. It also interfaces to the
synchronous clock signal lines.

All four serial ports use EIA-232-D drivers and receivers located on
the MVME147 and all the signal lines are routed to P2. The
configuration headers are located on the MVME147 and the
MVME712. An external I/O transition board such as the MVME712
must be used to convert the P2 pin out to industry standard
connectors.

Headers on the MVME712 provide jumper selectable options for
each EIA-232-D interface to be configured to connect to DTE or
DCE.

For additional information on the SCCs, refer to the Zilog literature
listed in Related Documents.
5-16

Ethernet Interface

5

Ethernet Interface
The Ethernet interface is not used on the MVME147-010.

The MVME147 uses the AM79C90 Local Area Network Controller
for Ethernet (LANCE) and the AM7992 Serial Interface Adapter
(SIA) to implement the Ethernet transceiver interface. The balanced
differential transceiver signal lines from the AM7992 are coupled
via an onboard transformer to signal lines that go to the P2
connector and eventually to the MVME712 transition board, where
they are connected to an industry standard DB-15 connector.

The AM79C90 performs DMA operations to perform its normal
functions. The MVME147 restricts AM79C90 DMA to local DRAM
only. The AM79C90 cannot access the VMEbus. If the DRAM size is
less than 16MB then it repeats itself in the AM79C90 16MB memory
map. If it is more than 16MB, then the AM79C90 accesses the
section of DRAM defined by the LANA24 and LANA25 bits in the
PCC Slave Base Address Register (bits 6 and 7 of $FFFE102B).

Every MVME147 is assigned an Ethernet station address. The
address is $08003E2xxxxx where xxxxx is the unique number
assigned to the module (i.e., every MVME147 has a different value
for xxxxx).

Each Ethernet station address is displayed on a label attached to the
MVME147Õs backplane connector P2. In addition, the xxxxx portion
of the Ethernet station address is stored in BBRAM, location
$FFFE0778 as $2xxxxx.

If Motorola networking software is running on an MVME147, it
uses the 2xxxxx value from BBRAM to complete the Ethernet
station address ($08003E2xxxxx). The user must assure that the
value of 2xxxxx is maintained in BBRAM. If the value of 2xxxxx is
lost in BBRAM, the user should use the number on the label on the
P2 connector to restore it. Note that MVME147bug includes the
ÒLSADÓ command for examining and updating the BBRAM xxxxx
value.
5-17

Functional Description

5

If non-Motorola networking software is running on an MVME147,
it must set up the AM79C90 so that the Ethernet station address is
that shown on the label to ensure that the module has a globally
unique Ethernet station address.

SCSI Interface
The MVME147 has a SCSI mass storage bus interface. The SCSI bus
is provided to allow mass storage subsystems to be connected to the
MVME147. These subsystems may include hard and floppy disk
drives, streaming tape drives, and other mass storage devices.

The SCSI interface is implemented using the WD33C93 controller.
DMA to/from the WD33C93 is implemented through the PCC.

Data Bus Structure
The data bus structure on the MVME147 is arranged to
accommodate the 8-bit, 16-bit, 32-bit, and 16/32-bit ports that
reside on the board. The 8-bit ports are connected to D24-D32 of the
local bus, 16-bit ports are connected to D16- D32 of the local bus and
32-bit ports are connected to D00-D32 of the local bus.

Battery Backed Up RAM and Clock
The SGS-Thompson M48T18 RAM and clock chip is used on the
MVME147. This chip provides a time-of-day clock, oscillator,
power fail detection, memory write protection, and 8184 bytes of
RAM. However, only 4088 bytes of RAM are accessible on the
MVME147. The battery and crystal plug into the M48T18.

The clock provides seconds, minutes, hours, day, date, month, and
year in BCD 24-hour format. Corrections for 28, 29 (leap year), and
30 day months are automatically made. No interrupts are generated
by the clock.
5-18

ROM/PROM/EPROM/EEPROM

5

Note Versions of the MVME147 that use the MK48T02 only
have 2040 bytes of RAM available. Any programs
written to use RAM in the address range above the
TOD clock will not work on an earlier version
MVME147.

The internal battery has a typical life span of 3 to 5 years when the
clock is running and a minimum of 10 years when the clock has not
been put in operation.

Note The clock is shipped from the factory in the power-save
mode.

ROM/PROM/EPROM/EEPROM
There are four 32-pin ROM/PROM/EPROM/EEPROM sockets on
the MVME147. They are organized as 2 banks with two sockets per
bank.

The banks are configured as word ports to the MPU. Each bank can
be separately configured for 8K x 8, 16K x 8, 32K x 8, 64K x 8, 128K
x 8, 256K x 8, 512K x 8, or 1M x 8 ROM/PROM/EPROM devices or
2K x 8, 8K x 8, or 32K x 8 EEPROM devices.

There are several different algorithms for erasing/writing to
EEPROM devices depending on the manufacturer. The MVME147
supports only those devices which have a static RAM compatible
erase/write mechanism such as the Xicor X28256 or X2864H.

Device Timing Requirements

The ROM/PROM/EPROM/EEPROM devices must meet the
timings shown in Figure 5-2.

The ROM/PROM/EPROM/ EEPROM devices are guaranteed the
timings shown in Figure 5-3.
5-19

Functional Description

5

Figure 5-2. Timings Required by the MVME147

Symbol Description Minimum Maximum Unit

 tacc Address valid to data valid 250 ns

 tce CE* low to data valid 250 ns

 toe OE* low to data valid 200 ns

 toh Address invalid, CE* or OE* high to data not
valid

0

 tdz CE* or OE* high to data high impedance 100 ns

2.0V
0.8V

2.0V
0.8V

READ

VALID

t acc

t ce

toe

2.0V
0.8V VALID

tdz

2.0V
0.8V

1269 9312

A0 - A15

CE *

OE *

D0 - D7

toh
5-20

ROM/PROM/EPROM/EEPROM

5

Figure 5-3. Timings Guaranteed by MVME147

Symbol Description Minimum Maximum Unit

 tas Address valid to WE* low 50 ns

 tcs CE* low to WE* low 50 ns

 toes OE* high to WE* low 70 ns

 tah Address invalid after WE* low 200 ns

 twp WE* low pulse width 190 ns

 tds Data valid to WE* high 160 ns

 tdh WE* high to data not valid 5 ns

 toeh WE* high to OE* low 100 ns

 tch WE* high to CE* high 10 ns

2.0V
0.8V

2.0V
0.8V

WRITE

tcs

2.0V

0.8V

1270 9312

A0 - A15

CE *

D0 - D7

t ah t ch

tas t wp

VALID

VALID
2.0V

0.8V

toes

t ds

t dh

toeh

WE *

OE *
5-21

Functional Description

5

EEPROM Power-Up/Power-Down Considerations

The MVME147 provides no protection against inadvertent writes to
EEPROM that might happen at power-up or power-down time.
Most devices provide some level of internal protection. To gain
Òabsolute protectionÓ devices with additional Òsoftware
protectionÓ are recommended.

Interrupt Handler
The MC68030 may be interrupted by many sources. All interrupt
sources are software enabled/disabled. Some have software
programmable levels and all interrupt sources supply a vector
during an interrupt acknowledge cycle.

The PCC chip decodes the MC68030 address bus and function
codes to determine when an interrupt cycle is in progress. When the
PCC detects an interrupt acknowledge cycle at the level it is
interrupting on, it passes a status/ID vector. Otherwise, it
generates an interrupt acknowledge out signal to the VMEchip.

When the VMEchip detects an interrupt acknowledge in signal
from the PCC and it is interrupting at that level, it passes a
status/ID vector. Otherwise, it requests mastership of the VMEbus
(if it does not have mastership), and it drives the VMEbus signal
lines to initiate an interrupt acknowledge cycle. The interrupting
slave returns a status/ID vector.

Within a level, the interrupts from the PCC have the highest
priority followed by the VMEchip and the VMEbus interrupts have
the lowest priority.

Interrupt sources and vectors are listed in Table 5-2.
5-22

Interrupt Handler

5

Table 5-2. MVME147 Interrupt Sources and Vectors

Interrupt
Source

Path Vector Source Vector Level

ACFAIL PCC PCC %xxxx0000 7
BERR PCC PCC %xxxx0001 7
ABORT PCC PCC %xxxx0010 7

Serial Ports
PCC Z8530 devices See Z8530 data sheet Prog
PCC PCC %xxxx0011 Prog

LANCE PCC PCC %xxxx0100 Prog
SCSI Port PCC PCC %xxxx0101 Prog
SCSI DMA PCC PCC %xxxx0110 Prog
Printer Port PCC PCC %xxxx0111 Prog
Tick Timer 1 PCC PCC %xxxx1000 Prog
Tick Timer 2 PCC PCC %xxxx1001 Prog
Software Int. 1 PCC PCC %xxxx1010 Prog
Software Int. 2 PCC PCC %xxxx1011 Prog
WPBERR VMEchip VMEchip %yyyyy111 7
SYSFAIL VMEchip VMEchip %yyyyy110 6
SIGHP VMEchip VMEchip %yyyyy101 5
LM1 VMEchip VMEchip %yyyyy100 4
IACK VMEchip VMEchip %yyyyy011 3
LM0 VMEchip VMEchip %yyyyy010 2
SIGLP VMEchip VMEchip %yyyyy001 1

VMEbus IRQ7* VMEchip From interrupting
VMEbus slave

Determined by
VMEbus slave 7

VMEbus IRQ6* VMEchip Same as above Same as above 6
VMEbus IRQ5* VMEchip Same as above Same as above 5
VMEbus IRQ4* VMEchip Same as above Same as above 4
5-23

Functional Description

5

Front Panel Switches and Indicators
There are two switches on the front panel of the MVME147. The
switches are RESET and ABORT.

The RESET switch resets all onboard devices and drives SYSRESET*
if the MVME147 is the system controller. The RESET switch may be
disabled by software. Refer to the RESET and ABORT Switches
section in this chapter.

The ABORT switch generates a Level 7 interrupt when enabled. It is
normally used to abort program execution and return to the
debugger. The ABORT switch may be disabled by software. Refer to
the RESET and ABORT Switches section in this chapter.

There are four LED indicators on the front panel of the MVME147.
The indicators are RUN, STATUS, FAIL, and SCON.

❏ RUN is lit when the MC68030 Address Strobe (AS*) pin is low.

❏ STATUS is lit when the MC68030 STATUS* pin is low.

❏ FAIL is lit when the Board Fail (BRDFAIL) bit is set in the
VMEchip or when watchdog time-out occurs in the PCC.

❏ SCON is lit when the MVME147 is the VMEbus system
controller (selected by jumper J3).

VMEbus IRQ3* VMEchip Same as above Same as above 3
VMEbus IRQ2* VMEchip Same as above Same as above 2
VMEbus IRQ1* VMEchip Same as above Same as above 1
NOTES: 1. xxxx is the value programmed into the PCC interrupt base

vector register (address $FFFE102D) bits 4 through 7.
2. yyyyy is the value programmed into the VMEchip utility

interrupt vector register (address $FFFE2013) bits 3 through 7.

Table 5-2. MVME147 Interrupt Sources and Vectors (Continued)

Interrupt
Source

Path Vector Source Vector Level
5-24

Onboard DRAM

5

Onboard DRAM
The DRAM is accessible by the MC68030, PCC, LANCE, and
VMEbus. It is specifically optimized for the MC68030.

The parity feature is not implemented on the MVME147-010.

The MVME147 has parity check which operates in one of three user
selectable modes.

In mode 1, no parity checking is performed and the DRAM operates
at maximum speed.

In mode 2, parity checking is performed for all bus masters and the
DRAM operates at maximum speed when the MC68030 is bus
master. When a parity error occurs in mode 2 and the MC68030 is
the local bus master, the bus error signal is not activated during the
current cycle. The bus error is activated during all subsequent
MC68030 DRAM cycles. All other bus masters are notified of parity
errors during the current cycle, consequently their DRAM access
time increases by 1 clock.

In mode 3, parity checking is performed for all bus masters and
parity errors are reported during the current cycle. In this mode, the
DRAM access time is extended by one clock cycle to allow for parity
checking.

MC68030 DRAM Accesses

The MC68030 is the default local bus master, therefore it is the local
bus master as long as no other device requests local bus mastership.

PCC DRAM Accesses

When the PCC needs to transfer data, it requests local bus
mastership from the GCC multiport arbiter. When the PCC has
been granted local bus mastership, it executes one bus cycle and
then releases bus mastership. If a parity error is detected during a
PCC to DRAM read cycle, a bus error is returned to the PCC.
5-25

Functional Description

5

VMEbus DRAM Accesses

When the VMEbus map decoder detects an onboard DRAM select,
the VMEchip requests local bus mastership from the GCC
multiport arbiter. When the GCC multiport arbiter has granted
local bus mastership, a DRAM read or write cycle happens and the
VMEchip activates the DTACK* (or BERR* if parity is enabled and
a parity error occurs) signal on the VMEbus.

If the VMEbus master is executing a read-modify-write cycle
(RMC) to the DRAM, the GCC multiport arbiter allows re-
arbitration of the local bus between the read and write portions of
the sequence. It does not, however, allow the MC68030 to regain
local bus mastership until both the read and write cycles have
occurred to the DRAM.

When the VMEbus requests local bus mastership and the MC68030
is the current local bus master and it is executing a cycle that
requires the VMEbus, then a dual port lockup condition occurs and
the VMEchip signals a retry to the MC68030 by activating the
BERR* and HALT* signal lines together. The MC68030 responds by
aborting the current cycle, at which time it relinquishes local bus
mastership so that the GCC multiport arbiter can grant it to the
VMEbus. When the VMEbus has finished with the DRAM, the GCC
multiport arbiter returns local bus mastership to the MC68030 and
it retries the cycle that was aborted to allow the dual port access.

LANCE DRAM Accesses

When the LANCE needs to access DRAM it requests local bus
mastership from the GCC multiport arbiter. When granted, the
LANCE performs up to 16 DRAM accesses, then gives up local bus
mastership. If a parity error occurs while enabled, the DRAM
controller indicates it by not activating LANRDY* to the LANCE.
The LANCE sees this as a memory fault and gives up local bus
mastership.
5-26

Reset

5

Refresh

The DRAM devices require that each of their 4096/2048/1024 rows
be refreshed once every 64/32/16 milliseconds. To accomplish this,
once every 15 microseconds, the refresh timer requests that the
RAM sequencer perform a Column Address Strobe (CAS) before
Row Address Strobe (RAS) refresh cycle.

Reset
There are five sources of reset on the MVME147:

❏ SYSRESET* -- Resets all onboard devices.

❏ Power on reset -- Resets all onboard devices and drives
SYSRESET* if this board is system controller.

❏ Front panel RESET -- Resets all onboard devices and drives
SYSRESET* if this board is system controller.

❏ Remote reset -- When a remote switch is connected to front
panel connector J4, it functions the same as the front panel
RESET switch.

❏ Watchdog time-out -- Resets all onboard devices and drives
SYSRESET* if this board is system controller.

❏ MC68030 RESET instruction -- Does nothing.
5-27

Functional Description

5

Sources of Bus Error (BERR*)
The devices on the MVME147 that are capable of activating a local
bus error are described below.

Local Bus Time-Out

A Local Bus Time-Out (LBTO) occurs whenever an MPU or PCC
access (outside of the VMEbus range) does not complete within the
programmed time. If the system is configured properly, this should
only happen if software accesses a nonexistent location within the
onboard address range. Whenever an LBTO occurs, the LBTO
status bit is set in the VMEchip.

VMEbus Access Time-Out

A VMEbus Access Time-Out (VATO) occurs whenever a PCC or
MC68030 VMEbus bound cycle does not receive a VMEbus Bus
Grant within the programmed time. This is usually caused by
another bus master holding the bus for an excessive period of time.
When a VATO occurs, the VATO status bit is set in the VMEchip.

VMEbus BERR*

The VMEbus BERR* occurs when the BERR* signal line is activated
on the VMEbus while the MC68030 or PCC is the VMEbus master.
VMEbus BERR* should occur only if:

❏ An initialization routine samples to see if a device is present
on the VMEbus and it is not.

❏ Bad software accesses a nonexistent device within the
VMEbus range.

❏ Bad configuration tries to access a device on the VMEbus
incorrectly (such as driving LWORD* low to a 16-bit board).

❏ A hardware error occurs on the VMEbus.
5-28

Sources of Bus Error (BERR*)

5

❏ A VMEbus slave reports an access error (such as parity error).

❏ Whenever a VMEbus BERR* occurs, the VMEbus BERR*
status bit is set in the VMEchip.

Local RAM Parity Error

When parity checking is enabled, the current bus master receives a
bus error (or no LANRDY*, if LANCE) if it is accessing the local
DRAM and a parity error occurs. If the MC68030 is the local bus
master when the parity error occurs, the Parity Error (PE) status bit
is set in the PCC status register. Note that this bit is only useful if
mode 3 parity checking is set. If mode 2 parity checking is set, the
MC68030 is not able to read status after the occurrence of the parity
error.

Bus Error Processing

Because different conditions can cause bus error exceptions, the
software must be able to distinguish the source. To aid in this, the
MVME147 provides status bits in the VMEchip and PCC chip.

Generally, the bus error handler can interrogate the status bits and
proceed with the result. However, two conditions can corrupt the
status bits:

❏ An interrupt can happen during the execution of the bus
error handler (before an instruction can write to the status
register to raise the interrupt mask). If the interrupt service
routine causes a second bus error, the status that indicates the
source of the first bus error may be lost. The software must be
written to deal with this. The PCC can be programmed to
generate a Level 7 interrupt when a bus error occurs. This
may help force the MC68030 to a known place when a bus
error occurs.

❏ The PCC can take a VMEbus bound BERR* (which updates
the status bits) between the MC68030 receiving and handling
of a bus error, or vice-versa.
5-29

Functional Description

5

MVME147 Support of MC68030 Indivisible
Cycles

The MC68030 performs operations that require indivisible cycle
sequences to the local DRAM and to the VMEbus. The MVME147
requires special circuitry to support these operations. Indivisible
accesses to a single address are called Single Address Read-Modify-
Write Cycles (SARMC). Indivisible accesses to multiple addresses
are called Multiple Address Read-Modify-Write Cycles (MARMC).

SARMC cycles (caused by Test and Set (TAS) and single byte
Compare and Swap (CAS) instructions) are supported fully by the
MVME147. This is possible because the VMEbus defines such
cycles.

MARMC cycles (caused by CAS2 and multi-byte CAS instructions
and by MMU table walking) are conditionally supported by the
MVME147. The VMEbus does not define these cycles.

The WAITRMC bit in the PCC controls the support of MARMC
cycles. If WAITRMC is cleared, MARMC cycles are not guaranteed
to be indivisible. Furthermore, if MARMC cycles straddle onboard
DRAM and VMEbus memory, the MVME147 malfunctions.

If WAITRMC is set, MARMC cycles are guaranteed to be indivisible
only if the other VMEbus board implements its MARMC cycles the
same way as the MVME147 (with WAITRMC set). Note that setting
the WAITRMC bit can be a performance penalty. When the bit is
set, the MVME147 waits to become VMEbus master before it
executes any MARMC cycle (even though it may be going only to
onboard DRAM).
5-30

A
AEIA-232-D Interconnections
Introduction
The EIA-232-D standard is the most common terminal/computer
and terminal/modem interface, and yet it is not fully understood.
This may be because not all the lines are clearly defined, and many
users do not see the need to follow the standard in their
applications. Often designers think only of their own equipment,
but the state of the art is computer-to-computer or computer-to-
modem operation. A system should easily connect to any other
system.

The EIA-232-D standard was originally developed by the Bell
System to connect terminals via modems. Several handshaking
lines were included for that purpose. Although handshaking is
unnecessary in many applications, the lines themselves remain part
of many designs because they facilitate troubleshooting.

Table A-1 lists the standard EIA-232-D interconnections. To
interpret this information correctly, remember that EIA-232-D was
intended to connect a terminal to a modem. When computers are
connected to each other without modems, one of them must be
configured as a terminal (data terminal equipment: DTE) and the
other as a modem (data circuit-terminating equipment: DCE). Since
computers are normally configured to work with terminals, they
are said to be configured as a modem in most cases.

Signal levels must lie between +3 and +15 volts for a high level, and
between -3 and -15 volts for a low level. Connecting units in parallel
may produce out-of-range voltages and is contrary to EIA-232-D
specifications.
A-1

EIA-232-D Interconnections
A

Table A-1. EIA-232-D Interconnections

Pin
Number

Signal
Mnemonic Signal Name and Description

1 CHASSIS GROUND. Not always used. See section Proper
Grounding.

2 TxD TRANSMIT DATA. Data to be transmitted; input to the modem
from the terminal.

3 RxD RECEIVE DATA. Data which is demodulated from the receive
line; output from the modem to the terminal.

4 RTS REQUEST TO SEND. Input to the modem from the terminal
when required to transmit a message. With RTS off, the modem
carrier remains off. When RTS is turned on, the modem
immediately turns on the carrier.

5 CTS CLEAR TO SEND. Output from the modem to the terminal to
indicate that message transmission can begin. When a modem is
used, CTS follows the off-to-on transition of RTS after a time
delay.

6 DSR DATA SET READY. Output from the modem to the terminal to
indicate that the modem is ready to transmit data.

7 SIG-GND SIGNAL GROUND. Common return line for all signals at the
modem interface.

8 DCD DATA CARRIER DETECT. Output from the modem to the
terminal to indicate that a valid carrier is being received.

9-14 Not used.
15 TxC TRANSMIT CLOCK (DCE). Output from the modem to the

terminal; clocks data from the terminal to the modem.
16 Not used.
17 RxC RECEIVE CLOCK. Output from the modem to the terminal;

clocks data from the modem to the terminal.
18, 19 Not used.

20 DTR DATA TERMINAL READY. Input to the modem from the
terminal; indicates that the terminal is ready to send or receive
data.

21 Not used.
A-2

Levels of Implementation
A

Levels of Implementation
There are several levels of conformance that may be appropriate for
typical EIA-232-D interconnections. The bare minimum
requirement is the two data lines and a ground. The full
implementation of EIA-232-D requires 12 lines; it accommodates:

❏ Automatic dialing

❏ Automatic answering

❏ Synchronous transmission

A middle-of-the-road approach is illustrated in Figure A-1.

Signal Adaptations

One set of handshaking signals frequently implemented are RTS
and CTS. CTS is used in many systems to inhibit transmission until
the signal is high. In the modem application, RTS is turned around
and returned as CTS after 150 microseconds. RTS is programmable
in some systems to work with the older type 202 modem (half
duplex). CTS is used in some systems to provide flow control to
avoid buffer overflow. This is not possible if modems are used. It is

22 RI RING INDICATOR. Output from the modem to the terminal;
indicates to the terminal that an incoming call is present. The
terminal causes the modem to answer the phone by carrying
DTR true while RI is active.

23 Not used.
24 TxC TRANSMIT CLOCK (DTE). Input to modem from terminal;

same function as TxC on pin 15.
25 BSY BUSY. Input to modem from terminal. A positive EIA signal

applied to this pin causes the modem to go off-hook and make
the associated phone busy.

Table A-1. EIA-232-D Interconnections (Continued)

Pin
Number

Signal
Mnemonic Signal Name and Description
A-3

EIA-232-D Interconnections
A

usually necessary to make CTS high by connecting it to RTS or to
some source of +12 volts such as the resistors shown in Figure A-1.
CTS is also frequently jumpered to an MC1488 gate which has its
inputs grounded (the gate is provided for this purpose).

Another signal used in many systems is DCD. The original purpose
of this signal was to inform the system that the carrier tone from the
distant modem was being received. This signal is frequently used
by the software to display a message such as CARRIER NOT PRESENT to
help the user diagnose failure to communicate. Obviously, if the
system is designed properly to use this signal and is not connected
to a modem, the signal must be provided by a pullup resistor or
gate as described above (see Figure A-1).

Many modems expect a DTR high signal and issue a DSR response.
These signals are used by software to help prompt the operator
about possible causes of trouble. The DTR signal is sometimes used
to disconnect the phone circuit in preparation for another automatic
call. These signals are necessary in order to communicate with all
possible modems (see Figure A-1).

Sample Configurations

Figure A-1 is a good middle-of-the-road configuration that almost
always works. If the CTS and DCD signals are not received from the
modem, the jumpers can be moved to artificially provide the
needed signal.
A-4

Levels of Implementation
A

Figure A-1. Middle-of-the-Road EIA-232-D Configuration

3
TXD

RXD

RTS

CTS

DCD

TXC

RXC

-12V

TXD

RXD

RTS

CTS

DCD

TXC

RXC

OPTIONAL

HARDWARE

TRANSPARENT

MODE

LOGIC

470Ω

39kΩ

39kΩ

39kΩ

470Ω

39kΩ
-12V

2

1

5

6

8

7

7

1

20

2

3

4

5

6

CHASSIS GND

CONNECTOR
TO
TERMINAL

CONNECTOR
TO
MODEM
OR
HOST
SYSTEM

RXD

TXD

NC

CTS

DSR

DCD

SIG GND

DTR

TXD

RXD

RTS

CTS

DCD

-12V

+12V

-12V +12V

+12V
GND

+12V

SIG GND

NC

cb181 9210

470Ω

SERIAL PORT

LS08

LS08

470Ω 470Ω 470Ω

SERIAL PORT

1489A

1489A

1489A

1488

1488

1488

1489A
A-5

EIA-232-D Interconnections
A

Figure A-2 shows a way of wiring an EIA-232-D connector to enable
a computer to connect to a basic terminal with only three lines. This
is feasible because most terminals have DTR and RTS signals that
are ON, and which can be used to pull up the CTS, DCD, and DSR
signals.

Two of these connectors wired back-to-back can be used. In this
implementation, however, diagnostic messages that might
otherwise be generated do not occur because all the handshaking is
bypassed. In addition, the TX and RX lines may have to be crossed
since TX from a terminal is outgoing but the TX line on a modem is
an incoming signal.

Figure A-2. Minimum EIA-232-D Connection

CHASSIS GND 1

TxD 2

RxD 3

SIGNAL GND 7

RTS 4

CTS 5

DSR 6

DCD 8

EIA-232-D

DTR 20

. .
 .

.

CONNECTOR

.

A-6

Levels of Implementation
A

Proper Grounding

Another subject to consider is the use of ground pins. There are two
pins labeled GND. Pin 7 is the SIGNAL GROUND and must be
connected to the distant device to complete the circuit. Pin 1 is the
CHASSIS GROUND, but it must be used with care. The chassis is
connected to the power ground through the green wire in the
power cord and must be connected to the chassis to be in
compliance with the electrical code.

The problem is that when units are connected to different electrical
outlets, there may be several volts of difference in ground potential.
If pin 1 of each device is interconnected with the others via cable,
several amperes of current could result. This condition may not
only be dangerous for the small wires in a typical cable, but may
also produce electrical noise that causes errors in data transmission.
That is why Figure A-1 shows no connection for pin 1.

Normally, pin 7 should only be connected to the CHASSIS
GROUND at one point; if several terminals are used with one
computer, the logical place for that point is at the computer. The
terminals should not have a connection between the logic ground
return and the chassis.
A-7

EIA-232-D Interconnections
A

A-8

B
BDebugger General Information
Overview of M68000 Firmware
The firmware for the M68000-based (68K) series of board and
system level products has a common genealogy, deriving from the
debugger firmware currently used on all Motorola M68000-based
CPU modules. The M68000 firmware family provides:

❏ A high degree of functionality

❏ User friendliness

❏ Portability

❏ Ease of maintenance

This member of the M68000 firmware family is implemented on the
MVME147 MPU VMEmodule and is known as MVME147Bug, or
simply 147Bug.

Description of 147Bug
The MVME147Bug package is a powerful evaluation and
debugging tool for systems built around the MVME147 monoboard
microcomputer. Facilities are available for loading and executing
user programs under complete operator control for system
evaluation. 147Bug includes:

❏ Commands for display and modification of memory

❏ Breakpoint and tracing capabilities

❏ A powerful assembler/disassembler useful for patching
programs

❏ A self-test at power-up feature which verifies the integrity of
the system
B-1

Debugger General Information

B
 ❏ Various 147Bug routines that handle I/O, data conversion,
and string functions available to user programs through the
TRAP #15 system calls

!
Caution

When using the 147Bug TRAP #15 functions, the
interrupt mask is raised to level 7 and the MMU is
disabled during the TRAP #15 function.

In addition, 147Bug provides as an option a ÒsystemÓ mode that
allows autoboot on power-up or reset, and a menu interface to
several system commands used in VME Delta Series systems.

147Bug consists of three parts:

❏ A command-driven user-interactive software debugger,
described in this appendix, and hereafter referred to as Òthe
debuggerÓ or Ò147BugÓ

❏ A command-driven diagnostic package for the MVME147
hardware, hereafter referred to as Òthe diagnosticsÓ

❏ A user interface which accepts commands from the system
console terminal

When using 147Bug, you operate out of the debugger directory or
the diagnostic directory.

If you are in the debugger directory, the debugger prompt
Ò147-Bug>Ó displays and you have all of the debugger commands at
your disposal.

If you are in the diagnostic directory, the diagnostic prompt
Ò147-Diag>Ó displays and you have all of the diagnostic commands
at your disposal as well as all of the debugger commands.

You may switch between directories by using the Switch
Directories (SD) command. You may examine the commands in the
particular directory that you are currently in by using the Help
(HE) command.
B-2

147Bug Implementation

B
Because 147Bug is command-driven, it performs its various
operations in response to user commands entered at the keyboard.
When you enter a command, 147Bug executes the command and
the prompt reappears. However, if you enter a command that
causes execution of user target code (e.g., GO), then control may or
may not return to 147Bug, depending on the outcome of the user
program.

The commands are more flexible and powerful than previous
debuggers. Also, the debugger in general is more Òuser-friendlyÓ,
with more detailed error messages (refer to MVME147BUG 147Bug
Debugging Package UserÕs Manual) and an expanded online help
facility.

If you have used one or more of Motorola's other debugging
packages, you will find the 147Bug very similar. Considerable
effort has also been made to make the interactive commands more
consistent. For example, delimiters between commands and
arguments may now be commas or spaces interchangeably.

147Bug Implementation
147Bug is physically contained in two 32-pin DIP EPROMs,
providing 256KB of storage. Both EPROMs are necessary regardless
of how much space is actually occupied by the firmware, because
one device is for the even bytes and one is for the odd bytes.

147Bug is written in assembler code, providing the benefits of
maintainability and position-independence.

The executable code is checksummed at every power-on, and the
result (which includes a pre-calculated checksum contained in the
EPROMs) is tested for an expected zero. Thus, if the contents of the
EPROMs are modified, the checksum must also be modified.

!
Caution

When modifying the EPROMs, you must take re-
checksum precautions.
B-3

Debugger General Information

B
 The power-on defaults for the MVME147 debug port are:

❏ Eight bits per character

❏ One stop bit per character

❏ Parity disabled (no parity)

❏ Baud rate 9600 baud (default baud rate of all MVME147 ports
at power-up)

After power-up, the baud rate of the debug port can be
reconfigured by using the Port Format (PF) command of the 147Bug
debugger.

Autoboot
Autoboot is a software routine that can be enabled by a flag in the
battery backed-up RAM to provide an independent mechanism for
booting an operating system. When enabled by the Autoboot (AB)
command, this Autoboot routine automatically starts a boot from
the controller and device specified. It also passes on the specified
default string. This normally occurs at power-up only, but you may
change it to boot up at any board reset. NOAB disables the routine
but does not change the specified parameters.

The Autoboot enable/disable command details are described in
MVME147BUG 147Bug Debugging Package UserÕs Manual. The
default (factory-delivered) condition is with autoboot disabled.

At power-up, if Autoboot is enabled, and providing the drive and
controller numbers encountered are valid, the following message
displays on the system console:

"Autoboot in progress... To abort hit <BREAK>"

Following this message there is a delay while the debug firmware
waits for the various controllers and drives to come up to speed.
Then the actual I/O is begun: the program pointed to within the
volume ID of the media specified is loaded into RAM and control
passed to it. If, however, during this time, you want to gain control
without Autoboot, hit the BREAK key.
B-4

ROMboot

B
ROMboot
This function is enabled by the ROMboot (RB) command and
executed at power-up (optionally also at reset), assuming there is
valid code in the ROMs (or optionally elsewhere on the module or
VMEbus) to support it. If ROMboot code is installed and the
environment has been set for Bug mode (refer to Appendix C, SET
and ENV Commands), a user-written routine is given control (if the
routine meets the format requirements).

The NORB command disables the ROMboot function.

One use of ROMboot might be resetting SYSFAIL* on an
unintelligent controller module.

For your module to gain control through the ROMboot linkage,
four requirements must be met:

1. Power must have just been applied (but the RB command can
change this to also respond to any reset).

2. Your routine must be located within the MVME147 ROM
memory map (but the RB command can change this to any
other portion of the onboard memory, or even offboard
VMEbus memory).

3. The ASCII string ÒBOOTÓ must be located within the
specified memory range.

4. Your routine must pass a checksum test, which ensures that
this routine was really intended to receive control at power-
up.

To prepare a module for ROMboot, use the Checksum (CS)
command. When the module is ready it can be loaded into RAM,
and the checksum generated, installed, and verified with the CS
command.
B-5

Debugger General Information

B
 The format of the beginning of the routine is as follows:

By convention within Motorola, the checksum is placed in the two
bytes following the routine.

If you wish to make use of ROMboot you do not have to fill a
complete ROM. Any partial amount is acceptable, as long as the
length reflects where the checksum is correct.

ROMboot searches for possible routines starting at the start of the
memory map first and checks for the ÒBOOTÓ indicator. Two
events are of interest for any location being tested:

1. The map is searched for the ASCII string ÒBOOTÓ.

2. If the ASCII string ÒBOOTÓ is found, it is still undetermined
whether the routine is meant to gain control. To verify that
this is the case, the bytes starting from the beginning of
ÒBOOTÓ through the end of the routine (as defined by the
4-byte length at offset $8) are run through the checksum
routine. If both the even and odd bytes are zero, it is
established that the routine was meant to be used for
ROMboot.

Under control of the RB command, the sequence of searches for
ÒBOOTÓ is as follows:

1. Search direct address (as set by the RB command).

2. Search your non-volatile RAM (first 1KB of battery back-up
RAM).

3. Search complete ROM map.

Module
Offset Length Contents Description

$00 4 bytes BOOT ASCII string indicating possible routine.

$04 4 bytes Entry Offset Longword offset from ÒBOOTÓ.

$08 4 bytes Routine Length Longword, includes length from
module offset $00 to and including
checksum.

$0C ? Routine Name ASCII string containing routine name.
B-6

ROMboot

B
4. Search local RAM (if RB command has selected to operate on
any reset), at all 8K byte boundaries starting at $00006000.

5. Search the VMEbus map (if so selected by the RB command)
on all 8K byte boundaries starting at the end of the onboard
RAM.

The following example performs these tasks:

1. Outputs a (CR)(LF) sequence to the default output port.

2. Displays the date and time from the current cursor position.

3. Outputs two more (CR)(LF) sequences to the default output
port.

4. Returns control to 147Bug.

Example:

The target code is first assembled and linked, leaving $00 in the
even and odd locations destined to contain the checksum.

Load the routine into RAM (with S-records via the LO command,
from a disk using IOP, or by hand using the MM command):

147-Bug>mds 6000 Display entire module (zero checksums
at $0000602C and $0000602D

00006000 424F 4F54 0000 0018 0000 002E 5465 7374 BOOT........Test
00006010 2052 4F4D 424F 4F54 4E4F 0026 4E4F 0052 ROMBOOTNO.&NO.R
00006020 4E4F 0026 4E4F 0026 4E4F 0063 0000 0000 NO.&NO.&NO.c....
00006030 0000 0000 0000 0000 0000 0000 0000 0000
00006040 0000 0000 0000 0000 0000 0000 0000 0000
00006050 0000 0000 0000 0000 0000 0000 0000 0000
00006060 0000 0000 0000 0000 0000 0000 0000 0000
00006070 0000 0000 0000 0000 0000 0000 0000 0000
00006080 0000 0000 0000 0000 0000 0000 0000 0000
00006090 0000 0000 0000 0000 0000 0000 0000 0000
000060A0 0000 0000 0000 0000 0000 0000 0000 0000
000060B0 0000 0000 0000 0000 0000 0000 0000 0000
000060C0 0000 0000 0000 0000 0000 0000 0000 0000
000060D0 0000 0000 0000 0000 0000 0000 0000 0000
000060E0 0000 0000 0000 0000 0000 0000 0000 0000
000060F0 0000 0000 0000 0000 0000 0000 0000 0000
B-7

Debugger General Information

B

147-Bug>md 6018;di Disassemble executable instructions
00006018 4E4F0026 SYSCALL .PCRLF
0000601C 4E4F0052 SYSCALL .RTC_DSP
00006020 4E4F0026 SYSCALL .PCRLF
00006024 4E4F0026 SYSCALL .PCRLF
00006028 4E4F0063 SYSCALL .RETURN
0000602C 00000000 ORI.B #$0,D0
00006030 00000000 ORI.B #$0,D0
00006034 00000000 ORI.B #$0,D0

147-Bug>CS 6000 602E Perform checksum on locations 6000
Effective address: 00006000 through 602E (refer to CS command)
Effective address: 0000602D
(Even/Odd) = F99F

147-Bug> M 602C;B Insert checksum into bytes $602C,$602D
0000602C 00? F9
0000602D 00? 9F.
147-Bug>CS 6000 602E
Effective address: 00006000 Verify that the checksum is correct
Effective address: 0000602D
(Even/Odd) = 0000

147-Bug>mds 6000 Again display entire module (now with checksums)
00006000 424F 4F54 0000 0018 0000 002E 5465 7374 BOOT........Test
00006010 2052 4F4D 424F 4F54 4E4F 0026 4E4F 0052 ROMBOOTNO.&NO.R
00006020 4E4F 0026 4E4F 0026 4E4F 0063 F99F 0000 NO.&NO.&NO.cy...
00006030 0000 0000 0000 0000 0000 0000 0000 0000
00006040 0000 0000 0000 0000 0000 0000 0000 0000
00006050 0000 0000 0000 0000 0000 0000 0000 0000
00006060 0000 0000 0000 0000 0000 0000 0000 0000
00006070 0000 0000 0000 0000 0000 0000 0000 0000
00006080 0000 0000 0000 0000 0000 0000 0000 0000
00006090 0000 0000 0000 0000 0000 0000 0000 0000
000060A0 0000 0000 0000 0000 0000 0000 0000 0000
000060B0 0000 0000 0000 0000 0000 0000 0000 0000
000060C0 0000 0000 0000 0000 0000 0000 0000 0000
000060D0 0000 0000 0000 0000 0000 0000 0000 0000
000060E0 0000 0000 0000 0000 0000 0000 0000 0000
000060F0 0000 0000 0000 0000 0000 0000 0000 0000
147-Bug>

The routine is now recognized by the ROMboot function when it is
enabled by the RB command.
B-8

Restarting the System

B
Restarting the System
You can initialize the system to a known state in three different
ways. Each has characteristics which make it more appropriate
than the others in certain situations.

Reset

Pressing and releasing the MVME147 front panel RESET switch
initiates a Reset. COLD and WARM reset modes are available. By
default, 147Bug is in COLD reset mode (refer to the RESET
command description).

During COLD reset mode, a total board initialization takes place, as
if the MVME147 had just been powered up. The breakpoint table
and offset registers are cleared. The user registers are invalidated.
Input and output character queues are cleared. Onboard devices
(timer, serial ports, etc.) are reset. All static variables (including disk
device and controller parameters) are restored to their default
states. Serial ports are reconfigured to their default state.

During WARM reset mode, the 147Bug variables and tables are
preserved, as well as the user registers and breakpoints.

If the particular MVME147 is the system controller, then a System
Reset is issued to the VMEbus and other modules in the system are
reset as well.

The Local Reset feature (the MVME147 is NOT the system
controller) is a partial System Reset, not a complete System Reset
such as power-up or SYSRESET. When the Local Bus Reset signal is
asserted, a local bus cycle may be aborted. Because the VMEchip is
connected to both the local bus and the VMEbus, if the aborted
cycle is bound for the VMEbus, erratic operation may result.
Communications between the local processor and the VMEbus
should be terminated by an Abort; Reset should be used only when
the local processor is halted or the local bus is hung and Reset is the
last resort.
B-9

Debugger General Information

B
 Reset must be used if the processor ever halts (as evidenced by the
MVME147 illuminated STAT LED), for example after a double bus
fault; or if the 147Bug environment is ever lost (vector table is
destroyed, etc.).

Abort

Abort is invoked by pressing and releasing the ABORT switch on the
MVME147 front panel. Whenever Abort is invoked when executing
a user program (running target code), a ÒsnapshotÓ of the processor
state is captured and stored in the target registers. (When working
in the debugger, Abort captures and stores only the program
counter, status register, and format/vector information.) For this
reason, Abort is most appropriate when terminating a user
program that is being debugged. Abort should be used to regain
control if the program gets caught in a loop, etc. The target PC, stack
pointers, etc., help to pinpoint the malfunction.

Abort generates a level seven interrupt (non-maskable). The target
registers, reflecting the machine state at the time the ABORT switch
was pushed, are displayed to the screen. Any breakpoints installed
in your code are removed and the breakpoint table remains intact.
Control is returned to the debugger.

Reset and Abort - Restore Battery Backed Up RAM

Pressing both the RESET and ABORT switches at the same time and
releasing the RESET switch before the ABORT switch initiates an
onboard reset and a restore of key Bug-dependent BBRAM
variables.

During the start of the Reset sequence, if abort is invoked, then the
following conditions are set in BBRAM:

❏ SCSI ID is set to 7.
❏ Memory sized flag is cleared (onboard memory is sized on

this reset).
❏ AUTOboot is turned off.
❏ ROMboot is turned off.
B-10

Restarting the System

B
❏ Environment is set for Bug mode.
❏ Automatic SCSI bus reset is turned off.
❏ Onboard diagnostic switch is turned on (for this reset only).
❏ System memory sizing is turned on (System mode).
❏ Console is set to port 1 (LUN 0).
❏ Port 1 (LUN 0) is set to use ROM defaults for initialization.
❏ Concurrent mode is turned off.

In this situation, if a failure occurs during the onboard diagnostics,
the FAIL LED repeatedly flashes a code to indicate the failure. The
on/off LED time for code flashing is approximately 0.25 seconds. The
delay between codes is approximately two seconds. To complete bug
initialization, press the ABORT switch while the LED is flashing.
When initialization is complete, a failure message is displayed. LED
flashes indicate confidence test failures per the following table.

Break
A Break is generated by pressing and releasing the BREAK key on the
terminal keyboard. Break does not generate an interrupt. The only
time Break is recognized is when characters are sent or received by
the console port. Break removes any breakpoints in your code and
keeps the breakpoint table intact. Break does not, however, take a
snapshot of the machine state nor does it display the target registers.

Number of
LED Flashes Description

1 CPU register test failure
2 CPU instruction test failure
3 ROM test failure
4 Onboard RAM test (Þrst 16KB) failure
5 CPU addressing mode test failure
6 CPU exception processing test failure
7 +12 Vdc fuse failure

10 NVRAM battery low
11 Trouble with the NVRAM
12 Trouble with the RTC
B-11

Debugger General Information

B
 Many times it may be desirable to terminate a debugger command
prior to its completion, for example, during the display of a large
block of memory. Break allows you to terminate the command
without overwriting the contents of the target registers, as would be
done if Abort were used.

Memory Requirements

The program portion of 147Bug is approximately 256KB of code
and consists of the debugger and diagnostic packages. It is
contained entirely in EPROM. The EPROM sockets on the
MVME147 are mapped starting at location $FF800000. However,
the 147Bug code is position-independent and executes anywhere in
memory. SCSI firmware code is not position-independent.

147Bug requires a minimum of 16KB of contiguous read/write
memory to operate. This memory is the MVME147 on-board RAM
and is used for 147Bug stack and static variable space. The rest of
on-board RAM is reserved as user space.

Whenever the MVME147 is reset, the following takes place:

❏ User PC is initialized to the address corresponding to the
beginning of the user space ($4000).

❏ User stack pointers are initialized to addresses within the
user space.
B-12

Terminal Input/Output Control

B
Terminal Input/Output Control
When entering a command at the prompt, the following control
codes may be entered for limited command line editing.

Note The presence of the caret (^) before a character
indicates that the Control (CTRL) key must be held
down while striking the character key.

When observing output from any 147Bug command, the XON and
XOFF characters which are in effect for the terminal port may be
entered to control the output, if the XON/XOFF protocol is enabled
(default). These characters are initialized to ̂ S and ̂ Q respectively
by 147Bug, but you may change them with the PF command. In the
initialized (default) mode, operation is as follows:

^X (cancel line) The cursor is backspaced to the beginning of the line. If
the terminal port is conÞgured with the hardcopy or
TTY option (refer to the PF command), then a carriage
return and line feed is issued along with another
prompt.

^H (backspace) The cursor is moved back one position. The character at
the new cursor position is erased. If the hardcopy
option is selected, a Ò/Ó character is typed along with
the deleted character.

^D (redisplay) The entire command line as entered so far is
redisplayed on the following line.

Delete
key

(delete) Performs the same function as ^H.

^S (wait) Console output is halted.
^Q (resume) Console output is resumed.
B-13

Debugger General Information

B
 Disk I/O Support
147Bug can initiate disk input/output by communicating with
intelligent disk controller modules over the VMEbus. Disk support
facilities built into 147Bug consist of:

❏ Command-level disk operations

❏ Disk I/O system calls (only via one of the TRAP #15
instructions) for use by user programs

❏ Defined data structures for disk parameters

Parameters such as these:

❏ Address where the module is mapped

❏ Device type

❏ Number of devices attached to the controller module

are kept in tables by 147Bug. Default values for these parameters
are assigned at power-up and cold-start reset, but may be altered as
described in the section on default parameters, later in this chapter.

Blocks Versus Sectors

The logical block defines the unit of information for disk devices. A
disk is viewed by 147Bug as a storage area divided into logical
blocks. By default, the logical block size is set to 256 bytes for every
block device in the system. You can change the block size on a per
device basis with the IOT command.

The sector defines the unit of information for the media itself, as
viewed by the controller. The sector size varies for different
controllers, and the value for a specific device can be displayed and
changed with the IOT command.

When a disk transfer is requested:

❏ The start and size of the transfer is specified in blocks.

❏ 147Bug translates this into an equivalent sector specification
and passes the sector specification on to the controller to
initiate the transfer.
B-14

Disk I/O Support

B
If the conversion from blocks to sectors yields a fractional sector
count, an error is returned and no data is transferred.

Disk I/O via 147Bug Commands

The 147Bug commands listed in the following paragraphs are
provided for disk I/O. Detailed instructions for their use are found
in MVME147BUG 147Bug Debugging Package UserÕs Manual. When
a command is issued to a particular controller LUN and device
LUN, these LUNs are remembered by 147Bug so that the next disk
command defaults to use the same controller and device.

IOP (Physical I/O to Disk)

IOP allows you to:

❏ Read blocks of data

❏ Write blocks of data

❏ Format a specified device in a certain way

IOP creates a command packet from the arguments you have
specified, then invokes the proper system call function to carry out
the operation.

IOT (I/O Teach)

IOT allows you to change any configurable parameters and
attributes of the device. In addition, it allows you to view the
controllers available in the system.

IOC (I/O Control)

IOC allows you to send command packets as defined by the
particular controller directly. IOC can also be used to examine the
resultant device packet after using the IOP command.
B-15

Debugger General Information

B
 BO (Bootstrap Operating System)

BO reads an operating system or control program from the
specified device into memory, then transfers control to it.

BH (Bootstrap and Halt)

BH reads an operating system or control program from a specified
device into memory, then returns control to 147Bug. It is used as a
debugging tool.

Disk I/O via 147Bug System Calls

All operations that actually access the disk are done directly or
indirectly by 147Bug TRAP #15 system calls. (The command-level
disk operations provide a convenient way of using these system
calls without writing and executing a program).

The following system calls allow user programs to perform disk
I/O:

Refer to the MVME147BUG 147Bug Debugging Package UserÕs
Manual for information on using these and other system calls.

.DSKRD Disk read. Use this system call to read blocks from a disk
into memory.

.DSKWR Disk write. Use this system call to write blocks from
memory onto a disk.

.DSKCFIG Disk conÞgure. Use this system call to change the
conÞguration of the speciÞed device.

.DSKFMT Disk format. Use this system call to send a format
command to the speciÞed device.

.DSKCTRL Disk control. Use this system call to implement any special
device control functions that cannot be accommodated
easily with any of the other disk functions.
B-16

Disk I/O Support

B
To perform a disk operation, 147Bug must eventually present a
particular disk controller module with a controller command
packet which has been especially prepared for that type of
controller module. (This is accomplished in the respective
controller driver module.) A command packet for one type of
controller module usually does not have the same format as a
command packet for a different type of module. The system call
facilities which perform disk I/O:

❏ Accept a generalized (controller-independent) packet format
as an argument

❏ Translate it into a controller-specific packet

❏ Send it to the specified device

Refer to the system call descriptions in the MVME147BUG 147Bug
Debugging Package UserÕs Manual for details on the format and
construction of these standardized ÒuserÓ packets.

The packets which a controller module expects to receive vary from
controller to controller. The disk driver module for the particular
hardware module (board) must take the standardized packet given
to a trap function and create a new packet which is specifically
tailored for the disk drive controller receiving it. Refer to
documentation on the particular controller module for the format
of its packets, and for using the IOC command.

Default 147Bug Controller and Device Parameters

The IOT command, with the T (teach) option specified, must be
invoked to initialize the parameter tables for available controllers
and devices. This option instructs IOT to scan the system for all
currently supported disk/tape controllers and build a map of the
available controllers. This map is built in the Bug RAM area, but can
also be saved in NVRAM if so instructed. If the map is saved in
NVRAM, then after a reset, the map residing in NVRAM is copied
to the Bug RAM area and used as the working map. If the map is
not saved in NVRAM, then the map is temporary and the IOT;T
command must be invoked again if a reset occurs.
B-17

Debugger General Information

B
 If the device is formatted and has a configuration area, then during
the first device access or during a boot, IOT is not required.
Reconfiguration is done automatically by reading the configuration
area from the device, then the discriptor for the device is modified
according to the parameter information contained in the
configuration area.

If the device is not formatted or of unknown format, or has no
configuration area, then before attempting to access the device, you
should verify the parameters, using IOT. The IOT command may
be used to manually reconfigure the parameter table for any
controller and/or device that is different from the default. These are
temporary changes and are overwritten with default parameters, if
a reset occurs.

The IOT;T command should also be invoked any time the
controllers are changed or when ever the NVRAM map has been
damaged or not initialized ("No Disk Controllers Available" is
displayed when the IOT;H command is invoked).

Disk I/O Error Codes

147Bug returns an error code if an attempted disk operation is
unsuccessful.

Multiprocessor Support

The MVME147 dual-port RAM feature makes the shared RAM
available to remote processors as well as to the local processor.

A remote processor can initiate program execution in the local
MVME147 dual-port RAM by issuing a remote GO command
using the Multiprocessor Control Register (MPCR). The MPCR,
located at shared RAM location base address plus $800, contains
one of two longwords used to control communication between
processors. The MPCR contents are organized as follows:

Base Address + $800 * N/A N/A N/A MPCR
B-18

Disk I/O Support

B
The codes stored in the MPCR are of two types:

❏ Status returned (from 147Bug)

❏ Command set by the bus master (job requested by some
processor)

The status codes that may be returned from 147Bug are:

The command code that may be set by the bus master is:

The Multiprocessor Address Register (MPAR), located in shared
RAM location base address plus $804, contains the second of two
longwords used to control communication between processors.
The MPAR contents specify the physical address (as viewed from
the local processor) at which execution for the remote processor is
to begin if the MPCR contains a G or a B. The MPAR is organized
as follows:

At power-up, the debug monitor self-test routines initialize RAM,
including the memory locations used for multiprocessor support
($800 through $807).

HEX 0 (HEX 00) Wait. Initialization not
yet complete.

ASCII R (HEX 52) Ready. The Þrmware is
watching for a change.

ASCII E (HEX 45) Code pointed to by the
MPAR is executing.

ASCII G (HEX 47) Use Go Direct (GD) logic
specifying the MPAR
address.

ASCII B (HEX 42) Recognize breakpoints
using the Go (G) logic.

Base Address + $804 MSB * * LSB MPAR
B-19

Debugger General Information

B
 The MPCR contains $00 at power-up, indicating that initialization
is not yet complete. As the initialization proceeds, the execution
path comes to the ÒpromptÓ routine. Before sending the prompt,
this routine places an R in the MPCR to indicate that initialization
is complete. Then the prompt is sent.

If no terminal is connected to the port, the MPCR is still polled to
see whether an external processor requires control to be passed to
the dual-port RAM. If a terminal does respond, the MPCR is polled
for the same purpose while the serial port is being polled for your
input.

An ASCII G placed in the MPCR by a remote processor indicates
that the Go Direct type of transfer is requested. An ASCII B in the
MPCR indicates that previously set breakpoints are enabled when
control is transferred (as with the Go command).

In either sequence, an E is placed in the MPCR to indicate that
execution is underway just before control is passed to the execution
address. (Any remote processor could examine the MPCR
contents.)

If the code being executed is to reenter the debug monitor, a TRAP
#15 call using function $0063 (SYSCALL .RETURN) returns control
to the monitor with a new display prompt. Note that every time the
debug monitor returns to the prompt, an R is moved into the MPCR
to indicate that control can be transferred once again to a specified
RAM location.
B-20

Diagnostic Facilities

B
Diagnostic Facilities
Included in the 147Bug package is a complete set of hardware
diagnostics intended for testing and troubleshooting of the
MVME147. These diagnostics are listed in the following tables. In
order to use the diagnostics, you must switch directories to the
diagnostic directory. If you are in the debugger directory, you can
switch to the diagnostic directory by entering the debugger
command Switch Directories (SD). The diagnostic prompt appears:

147-Diag>

Note: size may be B (byte), W (word), or L (longword).

Table 5-1. Diagnostic Monitor Commands/Prefixes

Command/
PreÞx Description

HE Help menu command

ST, SST Self test preÞx/command

SD Switch directories command

LE Loop-on-error mode preÞx

SE Stop-on-error mode preÞx

LC Loop-continue mode preÞx

NV Non-verbose mode preÞx

DE Display error counters command

ZE Clear (zero) error counters command

DP Display pass count command

ZP Zero pass count command

Table 5-2. Diagnostic Utilities

Command Description

WL.size Write loop enable

RL.size Read loop enable

WR.size Write/read loop enable
B-21

Debugger General Information

B

Refer to the MVME147BUG 147Bug Debugging Package User's
Manual for complete descriptions of the diagnostic routines
available and instructions on how to invoke them. Note that some
diagnostics depend on restart defaults that are set up only in a
particular restart mode. Refer to the documentation on a particular
diagnostic for the correct mode.

Table 5-3. Diagnostic Test Commands

Command Description

MPU MPU tests for the MC68030

CA30 MC68030 onchip cache tests

MT Memory tests

MMU Memory Management Unit tests

RTC Real-time clock tests

BERR Bus error test

FPC Floating-point coprocessor (MC68882) test

LAN LANCE chip (AM7990) functionality test

LANX LANCE chip (AM7990) external test

SCC Z8530 functionality test

PCC Peripheral channel controller functionality test

VMEGA VME gate array test
B-22

Using the 147Bug Debugger

B
Using the 147Bug Debugger

Entering Debugger Command Lines

147Bug is command-driven and performs its various operations in
response to user commands entered at the keyboard. When the
debugger prompt (147-Bug>) appears on the terminal screen, then
the debugger is ready to accept commands.

As the command line is entered, it is stored in an internal buffer.
Execution begins only after the carriage return is entered, so that
you can correct entry errors, if necessary, using the control
characters described in Terminal Input/Output Control.

When you enter a command, the debugger executes the command
and the prompt reappears. However, if the command entered
causes execution of user target code, for example GO, then control
may or may not return to the debugger, depending on what the
user program does. For example, if a breakpoint has been specified,
then control returns to the debugger when the breakpoint is
encountered during execution of the user program. Alternately, the
user program could return to the debugger by means of the TRAP
#15 function Ò.RETURNÓ.

In general, a debugger command is made up of the following parts:

a. The command identifier (for example, MD or md for the
Memory Display command). Either uppercase or
lowercase is allowed.

b. A port number if the command is set up to work with
more than one port.

c. At least one intervening space before the first argument.

d. Any required arguments, as specified by command.

e. An option Þeld, set off by a semicolon (;) to specify
conditions other than the default conditions of the
command.
B-23

Debugger General Information

B
 The commands are shown using a modified Backus-Naur form
syntax. The metasymbols used are:

Syntactic Variables

The following syntactic variables are encountered in the command
descriptions which follow. In addition, other syntactic variables
may be used and are defined in the particular command
description in which they occur.

boldface strings A boldface string is a literal such as a command or a
program name, and is to be typed just as it appears.

italic strings An italic string is a Òsyntactic variableÓ and is to be
replaced by one of a class of items it represents.

| A vertical bar separating two or more items
indicates that a choice is to be made; only one of the
items separated by this symbol should be selected.

[] Square brackets enclose an item that is optional. The
item may appear zero or one time.

{ } Braces enclose an optional symbol that may occur
zero or more times.

del Delimiter; either a comma or a space.
exp Expression (described in detail in a following section).
addr Address (described in detail in a following section).
count Count; the syntax is the same as for exp.
range A range of memory addresses which may be speciÞed

either by addr del addr or by addr: count.
text An ASCII string of up to 255 characters, delimited at

each end by the single quote mark (').
B-24

Using the 147Bug Debugger

B
Expression as a Parameter

An expression can be one or more numeric values separated by the
arithmetic operators:

❏ Plus (+)

❏ Minus (-)

❏ Multiplied by (*)

❏ Divided by (/)

❏ Logical AND (&)

❏ Shift left (<<), or

❏ Shift right (>>).

Numeric values may be expressed in either:

❏ Hexadecimal

❏ Decimal

❏ Octal

❏ Binary

by immediately preceding them with the proper base identifier.

If no base identifier is specified, then the numeric value is assumed
to be hexadecimal.

Base IdentiÞer Examples

Hexadecimal $ $FFFFFFFF

Decimal & &1974, &10-&4

Octal @ @456

Binary % %1000110
B-25

Debugger General Information

B
 A numeric value may also be expressed as a string literal of up to
four characters. The string literal must begin and end with the
single quote mark ('). The numeric value is interpreted as the
concatenation of the ASCII values of the characters. This value is
right-justified, as any other numeric value would be.

Evaluation of an expression is performed according to the
following rules:

❏ Always evaluated from left to right unless parentheses are
used to group part of the expression.

❏ There is no operator precedence.

❏ Subexpressions within parentheses are evaluated first.

❏ Nested parenthetical subexpressions are evaluated from the
inside out.

 Valid expression examples:

The total value of the expression must be between 0 and
$FFFFFFFF.

String
Literal

Numeric Value
(In Hexadecimal)

'A' 41
'ABC' 414243
'TEST' 54455354

Expression
Result

 (In Hexadecimal) Notes

FF0011 FF0011
45+99 DE
&45+&99 90
@35+@67+@10 5C
%10011110+%1001 A7
88<<4 880 shift left
AA&F0 A0 logical AND
B-26

Using the 147Bug Debugger

B
Address as a Parameter

Many commands use addr as a parameter. The syntax accepted by
147Bug is similar to the one accepted by the MC68030 one-line
assembler. All control addressing modes are allowed. An Òaddress
+ offset registerÓ mode is also provided.

Address Formats

Table B-4 summarizes the address formats which are acceptable for
address parameters in debugger command lines.

Table B-4. Debugger Address Parameter Formats

Format Example Description

N 140 Absolute address+contents of
automatic offset register.

N+Rn 130+R5 Absolute address+contents of
the speciÞed offset register (not
an assembler-accepted syntax).

(An) (A1) Address register indirect (also
post-increment, predecrement)

(d,An) or
d(An)

(120,A1)
120(A1)

Address register indirect with
displacement (two formats
accepted).

(d,An,Xn) or
d(An,Xn)

(&120,A1,D2)
&120(A1,D2)

Address register indirect with
index and displacement (two
formats accepted).

([bd,An,Xn],od) ([C,A2,A3],&100) Memory indirect preindexed.

([bd,An],Xn,od) ([12,A3],D2,&10) Memory indirect postindexed.

For the memory indirect modes, Þelds can be omitted. For example, three of many
permutations are as follows:

([,An],od) ([,A1],4)

([bd]) ([FC1E])

([bd,,Xn]) ([8,,D2])
B-27

Debugger General Information

B
 Table B-4. Debugger Address Parameter Formats (continued)

Offset Registers

Eight pseudo-registers (R0 through R7) called offset registers are
used to simplify the debugging of relocatable and position-
independent modules. The listing files in these types of programs
usually start at an address (normally 0) that is not the one at which
they are loaded, so it is harder to correlate addresses in the listing
with addresses in the loaded program. The offset registers solve
this problem by taking into account this difference and forcing the
display of addresses in a relative address+offset format. Offset
registers have adjustable ranges and may even have overlapping
ranges. The range for each offset register is set by two addresses:

❏ Base

❏ Top

Specifying the base and top addresses for an offset register sets its
range. In the event that an address falls in two or more offset
registers' ranges, the one that yields the least offset is chosen.

Note Relative addresses are limited to 1MB (5 digits),
regardless of the range of the closest offset register.

Notes 1. N Absolute address (any valid expression)
An Address register n
Xn Index register n (An or Dn)
d Displacement (any valid expression)
bd Base displacement (any valid expression)
od Outer displacement (any valid expression)
n Register number (0 to 7)
Rn Offset register n

2. In commands with range speciÞed as addr del addr, and with size option
W or L chosen, data at the second (ending) address is acted on only if
the second address is a proper boundary for a word or longword,
respectively.
B-28

Using the 147Bug Debugger

B
Example:

A portion of the listing file of an assembled, relocatable module is
shown below:

 1

 2 *

 3 * MOVE STRING SUBROUTINE

 4 *

 5 0 00000000 48E78080 MOVESTR MOVEM.L D0/A0,—(A7)

 6 0 00000004 4280 CLR.L D0

 7 0 00000006 1018 MOVE.B (A0)+,D0

 8 0 00000008 5340 SUBQ.W #1,D0

 9 0 0000000A 12D8 LOOP MOVE.B (A0)+,(A1)+

10 0 0000000C 51C8FFFC MOVS DBRA D0,LOOP

11 0 00000010 4CDF0101 MOVEM.L (A7)+,D0/A0

12 0 00000014 4E75 RTS

13

14 END

****** TOTAL ERRORS 0——

****** TOTAL WARNINGS 0——

The above program was loaded at address $0001327C.

The disassembled code is shown next:

147Bug>MD 1327C;DI
0001327C 48E78080 MOVEM.L D0/A0,—(A7)

00013280 4280 CLR.L D0

00013282 1018 MOVE.B (A0)+,D0

00013284 5340 SUBQ.W #1,D0

00013286 12D8 MOVE.B (A0)+,(A1)+

00013288 51C8FFFC DBF D0,$13286

0001328C 4CDF0101 MOVEM.L (A7)+,D0/A0

00013290 4E75 RTS

147Bug>

By using one of the offset registers, the disassembled code
addresses can be made to match the listing file addresses as follows:
B-29

Debugger General Information

B

147Bug>OF R0
R0 =00000000 00000000? 1327C.
147Bug>MD 0+R0;DI
00000+R0 48E78080 MOVEM.L D0/A0,—(A7)
00004+R0 4280 CLR.L D0
00006+R0 1018 MOVE.B (A0)+,D0
00008+R0 5340 SUBQ.W #1,D0
0000A+R0 12D8 MOVE.B (A0)+,(A1)+
0000C+R0 51C8FFFC DBF D0,$A+R0
00010+R0 4CDF0101 MOVEM.L (A7)+,D0/A0
00014+R0 4E75 RTS
147Bug>

For additional information about the offset registers, refer to the
MVME147BUG 147Bug Debugging Package User's Manual.

Port Numbers

Some 147Bug commands give you the option of choosing the port
which is to be used to input or output. The valid port numbers
which may be used for these commands are:

Note These logical port numbers (0, 1, 2, 3, and 4) are
referred to as ÒSerial Port 1", ÒSerial Port 2", ÒSerial Port
3", ÒSerial Port 4", and ÒPrinter PortÓ, respectively, by
the MVME147 hardware documentation and by the
MVME712/MVME712M hardware documentation.

For example, the command DU1 (Dump S-records to
Port 1) would actually output data to the device
connected to the serial port labeled SERIAL PORT 2 on
the MVME712/MVME712M panel.

0 - MVME147 EIA-232-D (MVME712/MVME712M serial port 1)
1 - MVME147 EIA-232-D (MVME712/MVME712M serial port 2)
2 - MVME147 EIA-232-D (MVME712/MVME712M serial port 3)
3 - MVME147 EIA-232-D (MVME712/MVME712M serial port 4)
4 - MVME147 Printer Port (MVME712/MVME712M printer)
B-30

Entering and Debugging Programs

B
Entering and Debugging Programs
There are various ways to enter a user program into system
memory for execution. One way is to create the program using the
Memory Modify (MM) command with the assembler/disassembler
option. You enter the program one source line at a time. After each
source line is entered, it is assembled and the object code loads into
memory. Refer to the MVME147 BUG 147Bug Debugging Package
User's Manual for complete details of the 147Bug Assembler/
Disassembler.

Another way to enter a program is to download an object file from
a host system. The program must be in S-record format (described
in the MVME147BUG 147Bug Debugging Package User's Manual) and
may have been assembled or compiled on the host system.
Alternately, the program may have been previously created using
the 147Bug MM command as outlined above and stored to the host
using the Dump (DU) command. A communication link must exist
between the host system and the MVME147. The file is downloaded
from the host to MVME147 memory by the Load (LO) command.

Another way is by reading in the program from disk, using one of
the following disk commands:

❏ BO

❏ BH

❏ IOP

Once the object code has been loaded into memory, you can:

❏ Set breakpoints

❏ Run the code

❏ Trace through the code
B-31

Debugger General Information

B
 Calling System Utilities from User Programs
A convenient way of doing character input/output and many other
useful operations has been provided so that you do not have to
write these routines into the target code. You can access various
147Bug routines via one of the MC68030 TRAP instructions, using
vector #15. Refer to the MVME147BUG 147Bug Debugging Package
UserÕs Manual for details on the various TRAP #15 utilities available
and how to invoke them from within a user program.

Preserving the Debugger Operating
Environment

This section explains how to avoid contaminating the operating
environment of the debugger. 147Bug uses certain of the MVME147
onboard resources and uses onboard memory to contain temporary
variables, exception vectors, etc. If you disturb resources upon
which 147Bug depends, then the debugger may function unreliably
or not at all.

147Bug Vector Table and Workspace

As described in the Memory Requirements section in this appendix,
147Bug needs 16KB of read/write memory to operate. The 147Bug
reserves a 1024-byte area for a user program vector table area and
then allocates another 1024-byte area and builds an exception
vector table for the debugger itself to use. Next, 147Bug:

❏ Reserves space for static variables

❏ Initializes these static variables to predefined default values

❏ Allocates space for the system stack

❏ Initializes the system stack pointer to the top of this area
B-32

Preserving the Debugger Operating Environment

B
With the exception of the first 1024-byte vector table area, you must
be extremely careful not to use the above-mentioned memory areas
for other purposes. You should refer to the Memory Requirements
section in this appendix to determine how to dictate the location of
the reserved memory areas. If, for example, your program
inadvertently wrote over the static variable area containing the
serial communication parameters, these parameters would be lost,
resulting in a loss of communication with the system console
terminal. If your program corrupts the system stack, then an
incorrect value may be loaded into the processor Program Counter
(PC), causing a system crash.

Tick Timers

The MVME147 uses the PCC tick timer 1 to generate accurate
delays for program timing (refer to Chapter 4, Programming).

Serial Ports

The EIA-232-D ports are initialized to interface to the debug
terminal. If these ports are reprogrammed, the terminal
characteristics must be modified to suit, or the ports should be
restored to the debugger-set characteristics prior to reinvoking the
debugger.

Exception Vectors Used by 147Bug

The exception vectors used by the debugger are listed in Table B-5.
These vectors must reside at the specified offsets in the target
program's vector table for the associated debugger facilities
(breakpoints, trace mode, etc.) to operate.

When the debugger handles one of the exceptions listed in Table
B-5, the target stack pointer is left pointing past the bottom of the
exception stack frame created; that is, it reflects the system stack
pointer values just before the exception occurred. In this way, the
operation of the debugger facility (through an exception) is
transparent to users.
B-33

Debugger General Information

B

Example:

Trace one instruction using debugger.

147Bug>RD
PC =00004000 SR =2700=TR:OFF_S._7_..... VBR =00000000
USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0
CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0
D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000
00004000 7055 MOVEQ.L #$55,D0
147Bug>T
PC =00004002 SR =2700=TR:OFF_S._7_..... VBR =00000000
USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0
CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0
D0 =00000055 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000
00004002 4E71 NOP
147Bug>

Notice that the value of the target stack pointer register (A7) has not
changed even though a trace exception has taken place. Your
program may either use the exception vector table provided by
147Bug or it may create a separate exception vector table of its own.
The two following sections detail these two methods.

Table B-5. Exception Vectors Used by 147Bug

Vector
Offset Exception 147Bug Facility

$8 Bus Error

$10 Illegal instruction Breakpoints (used by GO, GN, GT)

$24 Trace Trace operations (such as T, TC, TT)

$108 Level 7 Interrupt ABORT pushbutton

$BC TRAP #15 System calls
B-34

Preserving the Debugger Operating Environment

B
Using 147Bug Target Vector Table

The 147Bug initializes and maintains a vector table area for target
programs. A target program is any program started by the bug:

❏ Manually with GO command

❏ Manually with trace commands (T, TC, TT)

❏ Automatically with the BO command

The start address of this target vector table area is the base address
($00) of the debugger memory. This address loads into the target-
state VBR at power-up or cold-start reset and can be observed by
using the RD command to display the target-state registers
immediately after power-up.

The Bug initializes the target vector table with the debugger vectors
listed in Table B-5 and fills the other vector locations with the
address of a generalized exception handler (refer to the Bug
Generalized Exception Handler section in this chapter). The target
program may take over as many vectors as desired by simply
writing its own exception vectors into the table. If the vector
locations listed in Table B-5 are overwritten, the accompanying
debugger functions are lost.

The 147Bug maintains a separate vector table for its own use. In
general, you do not have to be aware of the existence of the
debugger vector table. It is completely transparent and you should
never make any modifications to the vectors contained in it.

Creating a New Vector Table

Your program may create a separate vector table in memory to
contain its own exception vectors. If this is done, the program must
change the value of the VBR to point to the new vector table. In
order to use the debugger facilities you can copy the proper vectors
from the Bug vector table into the corresponding vector locations in
your program vector table.
B-35

Debugger General Information

B
 The vector for the Bug generalized exception handler (described in
detail in the Bug Generalized Exception Handler section in this
appendix) may be copied from offset $3C (Uninitialized Interrupt)
in the target vector table to all locations in your program vector
table where a separate exception handler is not used. This provides
diagnostic support in the event that your program is stopped by an
unexpected exception. The generalized exception handler gives a
formatted display of the target registers and identifies the type of
the exception.

The following is an example of a routine which builds a separate
vector table and then moves the VBR to point at it:

*
*** BUILDX - Build exception vector table ****
*
BUILDX MOVEC.L VBR,A0 Get copy of VBR

LEA $10000,A1 New vectors at $10000
MOVE.L $3C(A0),D0 Get generalized exception vector
MOVE.W $3FC,D1 Load count (all vectors)

LOOP MOVE.L D0,(A1,D1) Store generalized exception vector
SUBQ.W #4,D1
BNE.B LOOP Initialize entire vector table
MOVE.L $8(A0),$8(A1) Copy bus error vector
MOVE.L $10(A0),$10(A1) Copy breakpoints vector
MOVE.L $24(A0),$24(A1) Copy trace vector
MOVE.L $BC(A0),$BC(A1) Copy system call vector
MOVE.L $108(A0),$108(A1) Copy ABORT vector
LEA.L COPROCC(PC),A2 Get your exception vector
MOVE.L A2,$2C(A1) Install as F-Line handler
MOVEC.L A1,VBR Change VBR to new table
RTS
END

It may happen that your program uses one or more of the exception
vectors that are required for debugger operation. Debugger
facilities may still be used, however, if your exception handler can
determine when to handle the exception itself and when to pass the
exception to the debugger.

When an exception occurs which you want to pass on to the
debugger; e.g., Abort, your exception handler must read the vector
offset from the format word of the exception stack frame. This offset
B-36

Preserving the Debugger Operating Environment

B
is added to the address of the Bug target program vector table
(which your program saved), yielding the address of the Bug
exception vector. The program then jumps to the address stored at
this vector location, which is the address of the Bug exception
handler.

Your program must make sure that there is an exception stack
frame in the stack, and that it is exactly the same as the processor
would have created for the particular exception before jumping to
the address of the exception handler.

The following is an example of an exception handler which can pass
an exception along to the debugger:

*
*** EXCEPT - Exception handler ****
*
EXCEPT SUBQ.L #4,A7 Save space in stack for a PC value
 LINK A6,#0 Frame pointer for accessing PC space
 MOVEM.L A0-A5/D0-D7,-(SP) Save registers
 :
 : Decide here if your code handles exception, if so, branch...
 :
 MOVE.L BUFVBR,A0 Pass exception to debugger; Get saved VBR
 MOVE.W 14(A6),D0 Get the vector offset from stack frame
 AND.W #$0FFF,D0 Mask off the format information
 MOVE.L (A0,D0.W),4(A6) Store address of debugger exc handler
 MOVEM.L (SP)+,A0-A5/D0-D7 Restore registers
 UNLK A6
 RTS Put addr of exc handler into PC and go

Bug Generalized Exception Handler

The 147Bug has a generalized exception handler which it uses to
handle all of the exceptions not listed in Table B-5. For all these
exceptions, the target stack pointer is left pointing to the top of the
exception stack frame created. In this way, if an unexpected
exception occurs during execution of your code, you are presented
with the exception stack frame to help determine the cause of the
exception. The following example illustrates this:
B-37

Debugger General Information

B
 Example:

Bus error at address $F00000. It is assumed for this example that an
access of memory location $F00000 initiates bus error exception
processing.

147Bug>RD
PC =00004000 SR =2700=TR:OFF_S._7_..... VBR =00000000
USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0
CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0
D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000
00004000 203900F0 MOVE.L ($F00000).L,D0
147Bug>T

VMEbus Error

Exception: Long Bus Error
Format/Vector=B008
SSW=074D Fault Addr.=00F00000 Data In=FFFFFFFF Data Out=00004006
PC =00004000 SR =A700=TR:ALL_S._7_..... VBR =00000000
USP =00005830 MSP =00005C18 ISP* =00005FA4 SFC =0=F0
CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0
D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00005FA4
00004000 203900F0 MOVE.L ($F00000).L,D0
147Bug>

Notice that the target stack pointer is different. The target stack
pointer now points to the last value of the exception stack frame
that was stacked. The exception stack frame may now be examined
using the MD command.

B-38

Memory Management Unit Support

B

147Bug>MD (A7):&44
00005FA4 A700 0000 4000 B008 3EEE 074D FFFF 094E '...@.0.>n.M...N
00005FB4 00F0 0000 00F0 0000 0000 35EC 2039 0000 .p...p....5l 9..
00005FC4 0000 400A 0000 4008 0000 4006 FFFF FFFF ..@...@...@.....
00005FD4 00F0 0000 100F F487 0000 A700 FFFF FFFF .p....t...'.....
00005FE4 0000 7FFF 0000 0000 9F90 0000 0000 6000 '.
00005FF4 0000 0000 0000 0000
147Bug>

Memory Management Unit Support
The Memory Management Unit (MMU) is supported in 147Bug. An
MMU confidence check is run at power-up to verify that the
registers can be accessed. It also ensures that a context switch can
be done successfully. The commands RD, RM, MD, and MM have
been extended to allow display and modification of MMU data in
registers and in memory. MMU instructions can be
assembled/disassembled with the DI option of the MD/MM
commands. In addition, the MMU target state is saved and restored
along with the processor state as required when switching between
the target program and 147Bug. Finally, there is a set of diagnostics
to test functionality of the MMU.

At power-up, an MMU confidence check is executed. If an error is
detected the test is aborted and the message “MMU failed testÓ is
displayed. If the test runs without errors then the message “MMU
passed test” is displayed and an internal flag is set. This flag is later
checked by the bug when doing a task switch. The MMU state is
saved and restored only if this flag is set.

The MMU defines the Double Longword (DL) data type, which is
used when accessing the root pointers. All other registers are either
byte, word, or longword registers.

The MMU registers are shown below, along with their data types in
parentheses:
B-39

Debugger General Information

B
 Address Translation Control (ATC) Registers:

Status Information Registers:

For more information about the MMU, refer to the MC68030
Enhanced 32-Bit Microprocessor User's Manual.

Function Code Support

The function codes identify the address space being accessed on
any given bus cycle, and in general, they are an extension of the
address. This becomes more obvious when using a memory
management unit, because two identical logical addresses can be
made to map to two different physical addresses. In this case, the
function codes provide the additional information required to find
the proper memory location.

For this reason, the following debugger commands were changed
to allow the specification of function codes:

CRP CPU Root Pointer Register (DL)
SRP Supervisor Root Pointer Register (DL)
TC Translation Control Register (L)
TT0 Transparent Translation 0 (L)
TT1 Transparent Translation 1 (L)

MMUSR MMU Status Register (W)

MD Memory display

MM Memory modify

MS Memory set

GO Go to target program

GD Go direct (no breakpoints)

GT Go and set temporary breakpoint

GN Go to next instruction

BR Set breakpoint
B-40

Memory Management Unit Support

B
The symbol ^ (up arrow or caret) following the address field
indicates that a function code specification follows. The function
code can be entered by specifying a valid function code mnemonic
or by specifying a number between 0 and 7. The syntax for an
address and function code specification is:

 addr^FC

The valid function code mnemonics are:

Notes Using an unassigned or reserved function code or
mnemonic results in a Long Bus Error message.

If the symbol ^ (up arrow or caret) is used without a
function code or mnemonic, the function code display
is turned off.

Example:

Change data at location $5000 in your data space.

147Bug>M 5000^ud
00005000^UD 0000 ? 1234.
147Bug>

Function
Code

Mnemonic Description

0 F0 Unassigned, reserved

1 UD User Data

2 UP User Program

3 F3 Unassigned, reserved

4 F4 Unassigned, reserved

5 SD Supervisor Data

6 SP Supervisor Program

7 CS CPU Space Cycle
B-41

Debugger General Information

B
 The 147Bug Debugger Command Set
The 147Bug debugger commands are summarized in Table B-6. The
command syntax is shown in the table using the symbols explained
in the section Using the 147Bug Debugger, beginning on page B-23.

HE is the 147Bug help facility:

❏ Typing HE displays the command names of all available
commands along with their appropriate titles.

❏ Typing HE command displays the command name and title
for that particular command.

The SET and ENV commands are described in Appendix C.

All other command details are explained in the MVME147BUG
147Bug Debugging Package User's Manual.
B-42

The 147Bug Debugger Command Set

B
Table B-6. Debugger Commands

Command
Mnemonic Title Command Line Syntax

AB Automatic Bootstrap
Operating System

AB

NOAB No Autoboot NOAB

BC Block of Memory Compare BC range del addr [; B|W|L]

BF Block of Memory Fill BF range del data [increment] [; B|W|L]

BH Bootstrap Operating
System and Halt

BH [del controller lun] [del device lun] [del
string]

BI Block of Memory Initialize BI range [; B|W|L]

BM Block of Memory Move BM range del addr [; B|W|L]

BO Bootstrap Operating
System

BO [del controller lun] [del device lun] [del
string]

BR Breakpoint Insert BR [addr [:count]]

NOBR Breakpoint Delete NOBR [addr]

BS Block of Memory Search BS range del text [; B|W|L] or
BS range del data [del mask] [; B|W|L
[,N][,V]]

BV Block of Memory Verify BV range del data [increment] [; B|W|L]

CS Checksum CS range

DC Data Conversion DC exp | addr

DU Dump S-records DU [port] del range [del text]
[del addr] [del offset] [; B|W|L]

EEP EEPROM Programming EEP range del addr [; W]

ENV Set Environment to Bug/
Operating System

ENV [; D]

G/GO Go Execute Target Code GO [addr]

GD Go Direct (Ignore
Breakpoints)

GD [addr]
B-43

Debugger General Information

B

GN Go to Next Instruction GN

GT Go to Temporary
Breakpoint

GT addr [:count]

HE Help HE [command]

IOC I/O Control for Disk/Tape IOC

IOP I/O Physical (Direct Disk
Access)

IOP

IOT I/O ÒTEACHÓ for
ConÞguring
Disk Controller

IOT [; [A|H|T]]

LO Load S-records from Host LO [n] [addr] [; X|-C|T] [=text]

LSAD LAN Station Address
Display/Set

LSAD

MA Macro DeÞne/Display MA [name]

NOMA Macro Delete NOMA [name]

MAE Macro Edit MAE name line# [string]

MAL Enable Macro Expansion
Listing

MAL

NOMAL Disable Macro Expansion
Listing

NOMAL

MAW Save Macros MAW [controller lun] [del [device lun]
[del block #]]

MAR Load Macros MAR [controller lun] [del [device lun]
[del block #]]

M/MM Memory Modify MM addr [; [[B|W|L|S|D|X|P][A]
[N]]|[DI]]

MD Memory Display MD[S] addr [: count | addr]
[; [B|W|L|S|D|X|P|DI]]

Table B-6. Debugger Commands (Continued)

Command
Mnemonic Title Command Line Syntax
B-44

The 147Bug Debugger Command Set

B

MENU System Menu MENU

MS Memory Set MS addr [hexadecimal #] ...|[ÔstringÕ]...

OBA Set Memory Address from
VMEbus

OBA

OF Offset Registers
Display/Modify

OF [Rn [; A]]

PA Printer Attach PA [n]

NOPA Printer Detach NOPA [n]

PF Port Format PF [port]

NOPF Port Detach NOPF [port]

PS Put RTC Into Power Save
Mode for Storage

PS

RB ROMboot Enable RB

NORB ROMboot Disable NORB

RD Register Display RD {[+|-|=] [dname] [/]} {[+|-|=]
[reg1 [-reg2]] [/]}

REMOTE Connect the Remote
Modem to CSO

REMOTE

RESET Cold/Warm Reset RESET

RM Register Modify RM [reg]

RS Register Set RS reg [del exp]

SD Switch Directories SD

SET Set Time and Date SET

T Trace T [count]

TA Terminal Attach TA [port]

TC Trace on Change of Control
Flow

TC [count]

Table B-6. Debugger Commands (Continued)

Command
Mnemonic Title Command Line Syntax
B-45

Debugger General Information

B

TIME Display Time and Date TIME

TM Transparent Mode TM [n] [escape_key]

TT Trace to Temporary
Breakpoint

TT addr

VE Verify S-records Against
Memory

VE [n] [addr] [; X|-C] [=text]

Table B-6. Debugger Commands (Continued)

Command
Mnemonic Title Command Line Syntax
B-46

C
CSET and ENV Commands
Initializing the MVME147
The MVME147 module is shipped with the M48T18 RTC chipÕs
oscillator stopped, to minimize current drain from the onchip
battery. A normal cold start of the MVME147, when the 147Bug
EPROMs are installed, starts the oscillation; but before you can use
your MVME147, you will need to set the time and date correctly
with the 147BugÕs SET command.

The MVME147Õs NVRAM contains certain operating environment
parameters. Before you begin using your MVME147, you should
verify these default parameters and/or change them with 147BugÕs
ENV command.

SET - Set Time and Date
Command Input

SET

Description

Begin the SET commandÕs interactive dialog by entering SET
followed by a carriage return (CR). SET displays date, time, and
calibration values, and prompts for entry of the date in the form
MM/DD/YY. To change the displayed date, type a new date
followed by (CR); to accept the displayed date unchanged, simply
enter (CR).

Note To correct an incorrect entry, backspace or delete the
entire line before pressing the carriage return. When
the carriage return is entered, the values are stored in
the time-of-day clock.
C-1

SET and ENV Commands

C

The next prompt asks for a calibration value. This value slows
down (- value) or speeds up (+ value) the RTC in the M48T18 chip.
Refer to the M48T18 data sheet (listed in Related Documentation in
Chapter 1) for details.

The third prompt asks for the time in the form HH:MM:SS. To
change the displayed time, type a new time followed by (CR); to
accept the displayed time unchanged, simply enter (CR).

Example: The following example sets a date and time of March 16, 1996,
2:05:32 PM:
147-Bug>SET
Weekday xx/xx/xx xx:xx:xx
Present calibration = -0
Enter date as MM/DD/YY
03/16/96
Enter Calibration value +/- (0 to 31)
Enter time as HH:MM:SS (24 hour clock)
14:05:32
147-Bug>

Related Commands:

To display the current date and time of day, use the TIME
command. If you need to disable the RTC for storage, enter the PS
command.
C-2

ENV - Set Environment to Bug/Operating System

C

ENV - Set Environment to Bug/Operating
System

Command Input

ENV [;D]

Description

The ENV command allows you to select the environment in which
the debugger is to execute. When you specify ENV, the debugger
remains in the specified environment until you invoke ENV again
to change it. The selections are saved in NVRAM and used
whenever power is lost.

Note The ÒReset and AbortÓ function sets the environment
to the default ÒBugÓ mode until changed by the ENV
command.

When you invoke the ENV command, the interactive mode is
entered immediately. The following rules apply while in interactive
mode:

All numerical values are interpreted as hexadecimal
numbers.

When a list is shown, only listed values are accepted.
You may use uppercase or lowercase interchangeably.

^ Backs up to the previous option.

. Entering a period by itself or following a new
value/setting causes ENV to exit the interactive mode.
Control returns to 147Bug.

(CR) Pressing the carriage return key without entering a
value preserves the current value and causes the next
prompt to be displayed.
C-3

SET and ENV Commands

C

If NVRAM has been corrupted you can repair it by invoking the
individual command(s) that correct the bad data, or you can invoke
the ENV command with the D (defaults) option specified. This
option instructs ENV to update the NVRAM with default
environmental parameters.

Using ENV with the Defaults Option

The defaults are defined as follows:

❏ Bug Mode

❏ Automatic Bug Self Test is bypassed

❏ Execute Memory Tests

❏ Maintain Concurrent Mode through a Power Cycle/Reset

❏ System Memory Sizing (System Mode only)

❏ Set the seven VMEchip options to defaults

❏ No automatic SCSI Bus reset

❏ SCSI ID set to 7

❏ Off board Address set to zero

❏ No ROM-boot and ROM-boot address set to start of ROM

❏ No Auto-boot

❏ Set Disk Map to default

❏ Set console port to zero and all ports use default parameters.

Example 1:

147-Bug>env;d
Update with Auto-Configuration Defaults

Update Non-Volatile RAM [Y/N] = N? (CR)
WARNING: Update(s) Discarded

147-Bug>
C-4

ENV - Set Environment to Bug/Operating System

C

Example 2:

147-Bug>ENV;D
Update with Auto-Configuration Defaults

Update Non-Volatile RAM [Y/N] = N? Y

CPU clock frequency [16,20,25,32] = 25? (CR)

Reset System [Y/N] = N? (CR)
WARNING: Updates will not be in effect until a RESET is performed.
147-Bug>

Example 3:

147-Bug>env;d
Update with Auto-Configuration Defaults

Update Non-Volatile RAM [Y/N] = N? y

CPU clock frequency [16,20,25,32] = 25? (CR)

Reset System [Y/N] = N? y

The firmware now takes the reset path and initializes the
MVME147 with the defaults placed in NVRAM.

Using ENV without Options

When you invoke ENV without the D option, you are prompted for
the following modes and options:

Two modes are available:

❏ Bug Mode. This is the standard mode of operation, and is the
one defaulted to if NVRAM should fail.

❏ System Mode. This is the mode for system operation and is
defined in MVME147BUG 147Bug Debugging Package User's
Manual.
C-5

SET and ENV Commands

C

Three Bug Mode options are available:

❏ Execute/Bypass Bug Self Test:

Ð Execute. This mode enables the extended confidence tests
as defined in MVME147BUG 147Bug Debugging Package
User's Manual. This automatically puts the Bug in the
diagnostic directory.

Ð Bypass. In this mode the extended confidence tests are
bypassed, this is the mode defaulted to if NVRAM should
fail.

❏ Execute/Bypass SST Memory Test:

Ð Execute. This is the standard SST memory test mode, and
is the one defaulted to if NVRAM should fail. In this mode
the SST memory tests are executed as part of the automatic
Bug self test.

Ð Bypass. In this mode the SST memory tests are bypassed,
but the board memory is zeroed at the end of SST to
initialize parity.

❏ Maintain Concurrent Mode through a Power Cycle/Reset:

Ð Yes. If Concurrent Mode is entered, a Power Cycle or Reset
does not terminate the Concurrent Mode. This is the mode
defaulted to if NVRAM should fail.

Ð No. Power Cycle or Reset causes an exit from Concurrent
Mode.

Three System Mode options are available:

❏ Execute/Bypass System Memory Sizing:

Ð Execute. This is the standard mode of operation, and is the
one defaulted to if NVRAM should fail. In this mode the
System Memory Sizing is invoked during board
initialization to find the start and end of contiguous
system memory.

Ð Bypass. In this mode the System Memory Sizing is
bypassed and the message No offboard RAM detected is
displayed.
C-6

ENV - Set Environment to Bug/Operating System

C

❏ Execute/Bypass SST Memory Test:

Ð Execute. This is the standard SST memory test mode, and
is the one defaulted to if NVRAM should fail. In this mode
the SST memory tests are executed as part of the system
self test.

Ð Bypass. In this mode the SST memory tests are bypassed,
but the system memory is zeroed at the end of SST to
initialize parity.

❏ Maintain Concurrent Mode through a Power Cycle/Reset:

Ð Yes. If Concurrent Mode is entered, a Power Cycle or Reset
does not terminate the Concurrent Mode. This is the mode
defaulted to if NVRAM should fail.

Ð No. Power Cycle or Reset causes an exit from Concurrent
Mode.

Seven VMEchip options are available, as shown in Table C-1:

Table C-1. VMEchip Options

Option Description

Board IdentiÞcation Allows unique board identiÞcation.

GCSR Base Address
Offset

Sets the base address of the global control and status
register in the VMEbus short I/O map. This value is an
offset from the start ($FFFF0000) of the map.

Utility Interrupt Mask This is used to enable the VMEchip to respond to speciÞc
utility interrupt requests. Refer to the Programming the
VMEchip section for bit deÞnitions and functional
descriptions.

Utility Interrupt Vector
Number

Interrupt vector number ($8 to $F8) for the utility
interrupts. Must be in multiples of $8.

VMEbus Interrupt Mask This is used to enable the VMEchip to respond to speciÞc
VMEbus interrupt requests. Refer to the Programming the
VMEchip section for bit deÞnitions and functional
descriptions.
C-7

SET and ENV Commands

C

Example 1:

147-Bug>env
Bug or System environment [B,S] = B? (CR) No change
Execute/Bypass Bug Self Test [E,B] = B? e Change to execute
Execute/Bypass SST Memory Test [E,B] = E? (CR)
Maintain Concurrent Mode (if enabled) through a Power Cycle/Reset[Y/N] = Y? (CR)
Set VME Chip:
Board ID (def is 0) [0-FF] = $00? (CR)
GCSR base address offset (def is 0F) [0-0F] = $0F? (CR)
Utility Interrupt Mask (def is 0) [0-FE] = $00? (CR)
Utility Interrupt Vector number (def is 60) [8-F8] = $60? 10 Change vector
VMEbus Interrupt Mask (def is FE) [0-FE] = $FE? (CR)
VMEbus Requester Level (def is 0) [0-3] = 00? (CR)
VMEbus Requester Release (def is ROR) [ROR,RWD,NVR] = ROR? (CR)
147-Bug>

Example 2:

147-Bug> ENV
Bug or System environment [B,S] = B? (CR) No change
Execute/Bypass Bug Self Test [E,B] = E? B Change to bypass
Maintain Concurrent Mode (if enabled) through a Power Cycle/Reset[Y/N] = Y? (CR)
Set VME Chip:
Board ID (def is 0) [0-FF] = $00? 2. Change and exit
147-Bug>

Example 3:

147-Bug>ENV
Bug or System environment [B,S] = B? S Change to system
Execute/Bypass System Memory Sizing [E,B] = E? (CR)
Execute/Bypass SST Memory Test [E,B] = E? (CR)
Maintain Concurrent Mode (if enabled) through a Power Cycle/Reset[Y/N] = Y? (CR)
Set VME Chip:

VMEbus Requester Level This is used to conÞgure the VMEbus requester level (0
through 3).

VMEbus Requester Release This is used to conÞgure the VMEbus requester release
mode (Release: On Request, When Done, or Never).

Table C-1. VMEchip Options (Continued)

Option Description
C-8

ENV - Set Environment to Bug/Operating System

C

Board ID (def is 0) [0-FF] = $02? 0 Change and continue
GCSR base address offset (def is 0F) [0-0F] = $0F? (CR)
Utility Interrupt Mask (def is 0) [0-FE] = $00? (CR)
Utility Interrupt Vector number (def is 60) [8-F8] = $10? (CR)
VMEbus Interrupt Mask (def is FE) [0-FE] = $FE? ̂ Back up
Utility Interrupt Vector number (def is 60) [8-F8] = $10? 60.

Change and exit
147-Bug>

Firmware now takes the Reset path and initializes the MVME147
for the System Mode (refer to MVME147BUG 147Bug Debugging
Package User's Manual for System Mode operation details).
C-9

SET and ENV Commands

C

C-10

D
DTroubleshooting: Solving
Start-up Problems
❏ Try these simple troubleshooting steps before calling for help
or sending your CPU board back for repair.

❏ Some of the procedures will return the board to the factory
debugger environment. (The board was tested under these
conditions before it left the factory.)

❏ Selftest may not run in all user-customized environments.

Table D-1. Basic Troubleshooting Steps

Condition ... Possible problem ... Try this ...

I. Nothing works,
no display on the
terminal.

A. If the RUN LED is
not lit, the board may
not be getting correct
power.

1. Make sure the system is plugged in.

2. Check that the board is securely installed in
its backplane or chassis.

3. Check that all necessary cables are
connected to the board, per this manual.

4. Review the Installation and Start-up
procedures in Chapter 2. This includes a step-
by-step power-up routine. Try it.

B. If the LEDs are lit,
the board may be in
the wrong slot.

1. For VMEmodules, the CPU board should be
in the Þrst (leftmost) slot.

2. Also check that the Òsystem controllerÓ
function on the board is enabled, per
Chapter 2.

C. The Òsystem
consoleÓ terminal
may be conÞgured
wrong.

ConÞgure the system console terminal, per
Chapter 2.
D-1

Troubleshooting: Solving Start-up Problems

D

II. There is a
display on the
terminal, but
input from the
keyboard has no
effect.

A. The keyboard may
be connected
incorrectly.

Recheck the keyboard and power connections.

B. Board jumpers may
be conÞgured
incorrectly.

Check the board jumpers per Hardware
Preparation in Chapter 2.

C. You may have
invoked ßow control
by pressing a HOLD or
PAUSE key, or by
typing
 <CTRL>-S

Press the HOLD or PAUSE key again.
If this does not free up the keyboard, type in
 <CTRL>-Q

III. Debug
prompt
 147-Bug>
does not appear
at power-up, and
the board does
not auto boot.

A. Debugger EPROM
may be missing.

1. Disconnect all power from your system.

2. Check that the proper debugger EPROM is
installed per this manual.

3. Reconnect power.

!
Caution

Performing the next
step will change some
parameters that may affect
your system operation.

4. Restart the system by Òdouble-button resetÓ:
press the RESET and ABORT switches at the
same time; release RESET Þrst, wait Þve
seconds, then release ABORT.

5. If the debug prompt appears, go to step IV. If
the debug prompt does not appear, go to
step VI.

B. The board may
need to be reset.

Table D-1. Basic Troubleshooting Steps (Continued)

Condition ... Possible problem ... Try this ...
D-2

D

IV. Debug prompt
 147-Bug>
appears at power-
up, but the board
does not auto
boot.

A. The initial
debugger
environment
parameters may be
set wrong.

!
Caution

Performing the next
step will change some
parameters that may affect
your system operation.

1. Type in
 env;d (CR)

This sets up the default parameters for the
debugger environment.

2. When prompted to Update Non-Volatile
RAM, type in
 y (CR)

3. When prompted for CPU Clock Frequency
(in MHz), change it only if it is not correct.

4. When prompted to Reset System, type in
 y (CR)

After a cold start, the debug prompt
 147-Bug>
is displayed.

5. Change to the diagnostic directory by typing
 sd (CR)

Now the prompt should be
 147-Diag>

B. There may be
some fault in the
board hardware.

Table D-1. Basic Troubleshooting Steps (Continued)

Condition ... Possible problem ... Try this ...
D-3

Troubleshooting: Solving Start-up Problems

D

6. Run selftest by typing in
 st (CR)

The tests take as much as 10 minutes,
depending on RAM size. They are complete
when the prompt returns. (The onboard
selftest is a valuable tool in isolating defects.)

7. The system may indicate that it has passed
all the selftests. Or, it may indicate a test that
failed. If neither happens, enter
 de (CR)

Any errors should now be displayed. If there
are any errors, go to step VII. If there are no
errors, go to step VI.

V. Debug prompt
 147-Bug>
appears at power-
up, but then the
following
message appears:
*** WARNING ***
Unreliable R/W to
non-volatile RAM

The NVRAM device
was corrupted
and/or replaced,
setting bits in a status
ßag in NVRAM. This
ßag is normally zero.

!
Caution

Performing the next
step will change some
parameters that may affect
your system operation.

1. Initialize NVRAM; use the Block Fill
command to Þll the NVRAM area of the new
device with all zeros:
 BF FFFE0000 FFFE07F7 0000

2. Use the LSAD command to assign the
Ethernet address, as described in Installation
Instructions in Chapter 2.

Go to Step IV.

Table D-1. Basic Troubleshooting Steps (Continued)

Condition ... Possible problem ... Try this ...
D-4

D

VI. The debugger
is in System
Mode and the
board auto boots,
or the board has
passed selftests.

A. No problems -
troubleshooting is
done.

No further troubleshooting steps are required.

Note Even if the board passes all tests,
it may still be bad. Selftest does
not try out all functions in the
board (for example, SCSI, or
VMEbus tests).

VII. The board
has failed one or
more of the tests
listed above, and
can not be
corrected using
the steps given.

A. There may be some
fault in the board
hardware or the on-
board debugging and
diagnostic Þrmware.

1. Document the problem and return the board
for service.

2. Phone 1-800-222-5640.

Table D-1. Basic Troubleshooting Steps (Continued)

Condition ... Possible problem ... Try this ...
D-5

Troubleshooting: Solving Start-up Problems

D

D-6

Index
Symbols
^S and ^Q B-13
ÒBOOTÓ ASCII string B-5

Numerics
147Bug

command lines B-23
description of B-1
general information B-1
generalized exception handler B-37
implementation B-3
stack B-12
using B-23
vector table and workspace B-32

147Bug (see debug monitor and
MVME147Bug) 1-7

147-Bug> prompt B-2, D-2, D-3, D-4
147-Diag> prompt B-2

A
AB command 2-18
Abort Interrupt Control Register 4-19
ABORT switch B-10
ABORT switch (S1) 3-1
AC Fail Interrupt Control Register 4-11
AC Fail interrupter 5-16
address B-24
address as a parameter B-27
address formats B-27
address strobe 3-3
Address Translation Control (ATC) Reg-

isters B-40
addressing 1-4

AM7992 Serial Interface Adapter (SIA)
5-17

arbiter 5-4
arbitration logic 5-10
arbitration priority 5-10
arguments, command line B-23
arithmetic operators B-25
ASCII string B-24
assembler/disassembler 1-7, B-31
assertion 1-11
asterisk (*) 1-11
Autoboot B-4
Autoboot (AB) command B-4
Autoboot routine 2-18
Autoboot, no (NOAB) command B-4

B
backplane, VMEbus 2-15
Backus-Naur B-24
base and top addresses B-28
base identifier B-25
battery backed up RAM and clock 5-18
baud rate 2-15
baud rate, default B-4
BBRAM 5-18
BBSY* 5-5
BCLR* 5-4
BERR* 5-4, 5-28
BH (bootstrap and halt) B-16
binary B-25
binary number 1-11
bits per character 2-15, B-4
blocks vs. sectors B-14
IN-7

Index

I
N
D
E
X

BO (bootstrap operating system) B-16
Board Identification C-7
Board Identification Register 4-64
boldface strings B-24
bootstrap

and halt (BH) B-16
operating system (BO) B-16

braces B-24
BREAK key B-11
Bug generalized exception handler B-37
Bug Mode 2-17, C-5

operation C-5
options C-6

Bug Self Test C-6
bus arbitration 1-4
Bus Busy 5-5
Bus Clear 5-4
bus configuration 1-4
Bus Error 5-4
bus error example B-38
Bus Error Interrupt Control Register 4-17
Bus Error Status Register 4-57
bus errors

processing 5-29
sources of 5-28

Bus Grant 5-10
Bus Grant Acknowledge 5-10
Bus Request 5-10
byte 1-11
Byte Count Register 4-5

C
calibration values, RTC C-1
calling system utilities from user pro-

grams B-32
CAS 5-30
characters, missing 2-16
chassis ground A-7
checksum B-3
Checksum (CS) command B-5
Clock Configuration Select Headers J8, J9

2-13

clock signal 1-4
clock, time-of-day 1-4, 5-18, C-1
COLD reset B-9
command chaining (scatter-gather) 5-12
command identifier B-23
command line B-23
commands

debugger B-42
diagnostic tests B-22
diagnostic utilities B-21

commands/prefixes, diagnostic monitor
B-21

Compare and Swap (CAS) 5-30
Concurrent Mode C-6, C-7
connecting devices 2-16
Control (CTRL) key B-13
Control and Status Registers 5-15
controller/device parameters, default

B-17
controls and indicators 3-1
conventions, manual 1-11
cooling requirements 1-3
coprocessor register map 3-7
count B-24
CPU address space 3-7
creating a new vector table B-35
CTS/RTS A-4

D
D command 2-18
Data Address Register 4-4
data bus structure 5-18
data circuit-terminating equipment

(DCE) A-1
Data Holding Register 4-5
Data Strobe 5-4
data terminal equipment (DTE) A-1
data transfer state 5-12
date, displaying and setting C-1, C-2
DCE (data circuit-terminating equip-

ment) A-1
debugger
IN-8

I
N
D
E
X

address parameter formats B-27
commands B-42
prompt B-23

debugger command lines, entering B-23
debugger information B-1
debugging programs B-31
decimal B-25
decimal number 1-11
default

147Bug controller and device param-
eters B-17

baud rate B-4
delimiter B-24
description, functional 5-1
description, general 1-5
device address lines 2-8

configuring 2-7, 2-8, 2-9
device timing requirements 5-19
device type configuration table 2-10
diagnostic facilities B-21
diagnostics 1-7

monitor commands/prefixes B-21
test commands B-22
utilities B-21

disk I/O
error codes B-18
support B-14
via 147Bug commands B-15
via 147Bug system calls B-16

DMA Channel Controller (DMAC) 5-11
direct initiation mode 5-12
error conditions 5-13
initiation mode 5-12
operation states 5-12

DMA Control and Status Register 4-16
DMA Interrupt Control Register 4-15
DMA Status Register 4-18
DMA table, example of 5-13
DMAC (see DMA Channel Controller)
documentation, related 1-9
download B-31
DRAM

accessed by the LANCE 4-29
accesses 5-25
address viewed from VMEbus 3-8,

4-27
addressed from the VMEbus 4-27
controller, local 5-9
refresh 5-27
refresh timer 5-10
SYSRESET 5-27

DS0* or DS1* 5-4
DS1, DS2, DS3, DS4 3-2
DTE (data terminal equipment) A-1
Dump (DU) command B-31

E
EEPROM power up/down consider-

ations 5-22
EIA-232-D

interconnections A-1, A-2
middle-of-the-road configuration

A-5
minimum connection A-6
port(s) B-33
standard A-1

Electrostatic Discharge (ESD) protection
1-8

entering and debugging programs B-31
ENV 2-18
ENV command C-3
ENV examples C-8
ENV with Defaults option C-4
ENV without options C-5
environmental parameters, changing C-3
EPROM sockets 1-7, B-12
EPROMs, debug B-3
equipment required 1-7
erasing/writing to EEPROM 2-6, 5-19
error codes B-18
Ethernet interface 1-8, 5-17
Ethernet station address 2-14, 2-15, 5-17

locating on module 2-14
Ethernet transceiver interface power 2-16
IN-9

Index

I
N
D
E
X

exception handler, generalized B-37
exception vectors B-35
exception vectors used by 147Bug B-34
expression B-24
expression as a parameter B-25
expression evaluation B-26

F
FAIL indicator (DS1) 3-2, 5-24
FAIL LED, flashing B-11
FCC compliance 1-3
features 1-2
firmware overview B-1
Floating-Point Coprocessor (FPC) 5-2
front panel, RESET from 5-27
front panel, switches and LEDs 3-1
function codes B-40
functional description 5-1
fuses 2-16

G
GCSR Base Address Configuration Reg-

ister 4-58
GCSR Base Address Offset C-7
GCSR, programming 4-59
General Control Chip (GCC) 5-9
general information 1-1
General Purpose Control Register 4-22
General Purpose CSR 0 4-65
General Purpose CSR 1-4 4-66
General Purpose Status Register 4-25
Global Control and Status Register (GC-

SR) 3-10, 4-36
Global Register 0 4-60
Global Register 1 4-62
grounding A-7

H
half duplex A-3
handshaking A-1, A-3
hardware preparation 2-1, 2-4
header J3 2-13

header locations (illustration) 2-5
headers J1 and J2 2-6
headers J8 and J9 2-13
Help (HE) command B-2, B-42
hexadecimal B-25
hexadecimal character 1-11
host system B-31

I
I/O control, terminal B-13
I/O ports, serial and parallel 1-4
I/O support, disk B-14
IACK and BG jumpers, removing 2-15
IACK signal line 3-11
IACK* 5-4
IACK* daisy-chain driver 5-5
IACKIN 3-11
IACKOUT 3-11
idle state 5-12
indicators DS1 through DS4 3-2
indivisible cycle sequences 5-30
initializing

clock 2-18
MVME147 C-1
system B-9

installation instructions 2-1, 2-14
interactive mode C-3
interconnections

EIA-232-D A-1
implementation A-3
sample configurations A-4

Interrupt Acknowledge 5-4
interrupt acknowledge map 3-8
Interrupt Base Vector Register 4-31
Interrupt Handler 1-4, 5-22
Interrupt Handler Mask Register 4-49
Interrupt ID, encoding 4-52, 4-53
Interrupt Request Level, configuring

4-54
Interrupt Request Register 4-54
IOC (I/O control) B-15
IOP (physical I/O to disk) B-15
IN-10

I
N
D
E
X

IOT (I/O teach) B-15
italic strings B-24

J
J1 and J2 jumpers 2-6
J3 jumper 2-13
J4 connector 3-2
J8 and J9 jumpers 2-13
jumpers 2-4

L
label, Ethernet address 2-14
LAN Interrupt Control Register 4-24
LANCE 5-10, 5-17

DRAM accesses 5-26
LCSR

programming 4-36
LCSR, programming 4-36
LED indicators 5-24
LED indicators, front panel 5-24
LEDs, front panel 3-2
Load (LO) command B-31
Local Area Network Controller for

Ethernet (LANCE) 5-17
local bus arbiter 5-9
local bus BERR* 5-9
local bus multiport arbiter 5-10
local bus time-out 5-6
Local Bus Time-Out (LBTO) 5-28
Local Control and Status Register (LCSR)

3-10
Local Control and Status Registers

(LCSR) 4-36
local DRAM controller 5-9
local RAM parity error 5-29
local reset 3-2
local reset feature B-9
logical port numbers B-30
longword 1-11

M
M48T18 5-18, C-1

MARMC 5-30
Master Address Modifier Register 4-48
Master AM code, determining 4-41
Master Configuration Register 4-40
MC68030

DRAM accesses 5-25
indivisible cycle sequences 5-30
interface to VMEbus 5-2
main memory map 3-5
memory map 3-4
MPU 5-2
RESET instruction 5-27
TRAP instructions B-32

MC68030/MC68882 interface logic 5-9
MC68030/VMEbus map decoder 5-9
MC68882 FPC 5-2
MC68882 register map 3-7
Memory Management Unit (MMU) B-39
memory map

coprocessor register 3-7
program and data 3-5
VMEbus 3-8
VMEbus interrupt acknowledge 3-11
VMEbus short I/O 3-10

memory maps 3-4
memory requirements B-12
memory write protection 5-18
messages

display of 2-17
failure 2-18
garbled 2-16
MMU B-39

metasymbols B-24
MK48T02 5-19
MMU (see Memory Management Unit)

B-39
model designations 1-1
modem(s) A-1
modem, built-in 1-8
modes, operating 2-17
Multiple Address Read-Modify-Write

Cycles 5-30
IN-11

Index

I
N
D
E
X

Multiprocessor Address Register
(MPAR) B-19

Multiprocessor Control Register (MPCR)
B-18

multiprocessor support B-18
MVME147

features 1-2
front panel switches 5-24
interrupt sources and vectors 5-22
reset sources 5-27
support of MC68030 indivisible cy-

cles 5-30
MVME147Bug B-1
MVME147Bug (see 147Bug and debug

monitor) 1-7
MVME712 ports 2-16

N
negation 1-11
numeric value B-25
NVRAM parameters, verifying 2-18, C-1
NVRAM, corrupted C-4

O
object code B-31
octal B-25
offset registers B-28
onboard DRAM 5-25
operating environment parameters C-1
operating environment, debugger B-32
operating instructions 3-1
operation modes C-5
option field, command line B-23
oscillator 5-18

P
P2 adapter board, installing 2-15
parity 2-15, 5-25, B-4
Parity Error (PE) 5-29
parts lists 1-10
Peripheral Channel Controller (PCC)

2-17, 3-2, 5-9, 5-10, 5-11, 5-22

DRAM accesses 5-25
programming 4-1
RESET switch interface 3-2

physical characteristics 1-5
polyfuses 2-16
Port Format (PF) 2-16
port number(s) B-23
port numbers, valid B-30
power

Ethernet transceiver interface 2-16
SCSI terminator 2-16

Power Cycle/Reset C-6, C-7
power fail detection 5-18
power fail protection 5-18
power requirements 1-4
power-on reset 5-27
power-up process 2-17
power-up reset 5-15
power-up/power-down, effect on EE-

PROM 5-22
preserving the debugger operating envi-

ronment B-32
Printer Control Register 4-14
Printer Data Register 4-34
printer interface 5-15
Printer Interrupt Control Register 4-13
printer port 1-8, B-30
Printer Status Register 4-35
printers, connecting 2-16
prioritized arbitration mode 5-4
problems, solving 2-18, D-1
program and data address spaces 3-5
Program Counter (PC) B-33
programmable tick timers 5-14
programming

PCC 4-1
VMEchip 4-36
VMEchip GCSR, programming 4-59

programming the MVME147 4-1
programs, entering and debugging B-31
prompt, 147-Bug> B-2, D-2, D-3, D-4
prompt, 147-Diag> B-2
IN-12

I
N
D
E
X

proper grounding A-7
pseudo-registers B-28

R
Radio Frequency Interference (RFI) pro-

tection 1-8
RAM and clock chip 5-18
RAM refresh timer 5-10
range B-24
registers

offset B-28
PCC 4-2
VMEchip GCSR 4-59
VMEchip LCSR 4-36

related documentation 1-9
relative address+offset B-28
relocatable module example B-29
remote reset 3-2
Reset and Abort function C-3
RESET and ABORT switches 5-15
reset of MVME147 5-27
RESET switch 5-15, B-9, B-10
RESET switch (S2) 3-2
restarting the system B-9
restore BBRAM B-10
Revision Level Register 4-33
RMT RST connector J4 3-2
ROM Configuration Select Headers J1, J2

2-6
ROM/PROM/EPROM/EEPROM 5-19
ROM/PROM/EPROM/EEPROM sock-

ets 2-6
ROMboot B-5
ROMboot (RB) command B-5
ROMboot, no (NORB) command B-5
round-robin arbitration mode 5-4
RTC chip, calibrating C-2
RTC chipÕs oscillator C-1
RTS/CTS A-3
RUN indicator (DS3) 3-3, 5-24

S
SARMC 5-30
SCC (see Serial Communications Con-

troller)
schematics 1-10
SCON indicator (DS4) 3-3, 5-24
SCON LED 5-4
SCSI chip interface 5-14
SCSI data bus converter 5-14
SCSI devices, erratic operation 2-17
SCSI interface 5-18
SCSI Port Interrupt Control Register 4-26
SCSI reset 5-9
SCSI terminator power 2-16
sectors vs. blocks B-14
Serial Communications Controller (SCC)

5-16
Serial Interface Adapter (SIA) 5-17
Serial Port 4 Clock Configuration Select

Headers J8, J9 2-13
serial port interface 5-16
Serial Port Interrupt Control Register

4-21
serial ports 1-8, 5-16, B-30, B-33
SET command 2-18, C-1
set environment to bug/operating sys-

tem (ENV) command C-3
set time and date (SET) C-1
signal

ground A-7
levels A-1

signal adaptations A-3
Single Address Read-Modify-Write Cy-

cles 5-30
Slave Address Modifier Register 4-46
Slave Base Address Register 4-27
Slave Configuration Register 4-43
slave interface 5-8
Small Computer Systems Interface (SC-

SI) 1-8
socket alignment 2-9
socket pin definitions 2-9
IN-13

Index

I
N
D
E
X

sockets U1 and U15 2-6
sockets U22 and U30 2-6
sockets, ROM/PROM/EPROM/EE-

PROM 2-6
Software Interrupt 1 Control Register

4-30
Software Interrupt 2 Control Register

4-32
source line B-31
specifications 1-2
square brackets B-24
S-record format B-31
SST Memory Test C-6, C-7
start-up problems, solving 2-18, D-1
start-up procedure overview 2-2
static variable space B-12
station address, Ethernet 5-17
STATUS indicator (DS2) 3-2, 5-24
Status Information Registers B-40
stop bit B-4
stop bit per character 2-15
string literal B-26
support information 1-10
Switch Directories (SD) command B-2,

B-21
switch S1, ABORT 3-1
switch S2, RESET 3-2
switches, front panel 5-24
syntactic variables B-24
SYSCLK* 5-4
SYSRESET 5-5, 5-24, B-9
system calls, TRAP #15 B-16
system clock 5-4

driver 5-4
utility 5-4

system console 2-15
system console terminal 1-7
system controller 5-4

functions of 5-2
installation as 2-13
LED on 5-4

System Controller Configuration Regis-
ter 4-37

System Controller Select Header J3 2-13
System Memory Sizing C-6
System Mode 1-7, 2-17, B-2, C-5

operation C-5
options C-6

system reset 3-2
system reset function (SYSRESET*) 5-5
system utilities, calling B-32

T
Table Address Function Code Register

4-20
Table Address Register 4-4
Table Walk State 5-12
table walk state 5-13
target program vector table B-35
TAS 5-30
Telco jack 1-8
temperature 1-3, 1-5
terminal input/output control B-13
terminal(s) A-1
terminal, setup parameters 2-15
terminology 1-11
Test and Set (TAS) 5-30
tick timer 1-4
tick timers, PCC B-33
tick timers, programmable 5-14
time and date, setting 2-18
time, displaying and setting C-2
time-of-day clock 1-4, 5-18, C-1
time-out

local bus 5-6
VMEbus 5-4
VMEbus access 5-6

Timer 1 Control Register 4-8
Timer 1 Counter Register 4-6
Timer 1 Interrupt Control Register 4-7
Timer 1 Preload Register 4-6
Timer 2 Control Register 4-10
Timer 2 Counter Register 4-6
IN-14

I
N
D
E
X

Timer 2 Interrupt Control Register 4-9
Timer 2 Preload Register 4-6
Timer Configuration Register 4-44
timers 1-4
timing requirements for devices 5-19
trace example B-34
transition board, installing 2-15
transition boards 1-5
TRAP #15 B-32
TRAP #15 functions B-2
TRAP #15 system calls B-16
troubleshooting 2-16, B-22, D-1

U
U1 and U15 2-6
U22 and U30 2-6
unpacking instructions 2-1
using 147Bug target vector table B-35
Utility Interrupt Mask C-7
Utility Interrupt Mask Register 4-50
Utility Interrupt Vector Number C-7
Utility Interrupt Vector Register 4-52
utility interrupts, assigned level 4-51

V
VBR B-35
vector #15 B-32
vector table B-33
vector table area B-35
vectors, exception B-33
vertical bar B-24
VMEbus Access Time-Out (VATO) 5-28
VMEbus accesses to onboard DRAM 3-8
VMEbus and local time-out functions 5-2
VMEbus backplane 2-15
VMEbus BERR* 5-28
VMEbus control signal drivers and re-

ceivers 5-2
VMEbus DRAM accesses 5-26
VMEbus Interrupt Acknowledge map

3-11
VMEbus interrupt handler 5-2

VMEbus Interrupt Mask C-7
VMEbus interrupter 5-5
VMEbus master interface 5-6
VMEbus Memory Map 3-8
VMEbus requester 5-7
VMEbus Requester Configuration Regis-

ter 4-38
VMEbus Requester Level C-8
VMEbus Requester Release C-8
VMEbus short I/O memory map 3-10
VMEbus slave interface 5-8
VMEbus Status/ID Register 4-56
VMEbus system controller 5-4
VMEbus time-out 5-4
VMEchip 5-2

GCSR 4-59
GCSR, viewed from VMEbus 3-11,

4-58
Global Control and Status Register

(GCSR) 3-10
Local Control and Status Register

(LCSR) 3-10
Local Control and Status Registers

4-36
options C-7
programming 4-36
viewed from the VMEbus 4-58

W
Wait Read-Modify-Write Cycle 5-30
WAITMRC 5-30
WAITRMC function 5-9
WARM reset B-9
watchdog timer 1-4, 5-14
Watchdog Timer Control Register 4-12
WD33C93 controller 5-18
word 1-11
writing to EEPROM 5-19

X
XON/XOFF

handshaking 2-16
IN-15

Index

I
N
D
E
X

protocol B-13

Z
Z8530 Serial Communications Controller

(SCC) 5-16
IN-16

	MVME147
	MPU VMEmodule
	Installation and Use
	Notice
	Restricted Rights Legend
	Motorola, Inc. Computer Group 2900 South Diablo Wa...

	Preface
	 Copyright Motorola, Inc. 1996
	All Rights Reserved
	Printed in the United States of America
	May 1996

	Safety Summary Safety Depends On You
	Ground the Instrument.
	Do Not Operate in an Explosive Atmosphere.
	Keep Away From Live Circuits.
	Do Not Service or Adjust Alone.
	Use Caution When Exposing or Handling the CRT.
	Do Not Substitute Parts or Modify Equipment.
	Dangerous Procedure Warnings.
	General Information

	Introduction
	Model Designations
	Table 1-1. MVME147 Model Designations

	Model Number
	Clock Speed
	16 MHz
	4MB
	No
	No
	25 MHz
	4MB
	Yes
	Yes
	25 MHz
	8MB
	Yes
	Yes
	25 MHz
	16MB
	Yes
	Yes
	25 MHz
	32MB
	Yes
	Yes
	32 MHz
	8MB
	Yes
	Yes
	32 MHz
	16MB
	Yes
	Yes
	32 MHz
	32MB
	Yes
	Yes
	Features
	Table 1-2. MVME147 Features�

	Feature
	Description
	Specifications
	Cooling Requirements
	FCC Compliance
	1. Shielded cables on all external I/O ports.
	2. Cable shields connected to earth ground via met...
	3. Conductive chassis rails connected to earth gro...
	4. Front panel screws properly tightened.
	Table 1-3. MVME147 Specifications (Continued)

	Characteristics
	Specifications
	General Description
	Equipment Required
	Table 1-4. MVME712 Transition Modules

	Related Documentation

	Document Title
	Motorola Publication Number1
	Support Information
	Manual Terminology
	Hardware Preparation and Installation
	Introduction
	Unpacking Instructions
	Overview of Start-up Procedure
	Table 2-1. Start-up Overview (Continued)

	What you will need to do ...
	Refer to ...
	On page ...
	Hardware Preparation
	Figure 2-1. MVME147 Header Locations
	ROM Configuration Select Headers (J1, J2)
	J1 and J2 Jumpers
	Socket Pin Definitions
	Figure 2-2. Socket Alignment

	Configuration Number
	Device Type
	1
	2
	3
	4
	5
	6
	7
	8
	9

	Configuration
	Configuration
	1
	2
	3
	4
	5
	6
	7
	8
	9
	9
	8
	7
	6
	5
	4
	3
	2
	1
	Figure 2-3. Socket Pin Definitions
	System Controller Select Header (J3)
	Serial Port 4 Clock Configuration Select Headers (...
	Installation Instructions
	1. Turn all equipment power OFF and disconnect the...
	2. Remove the chassis cover as instructed in the e...
	3. Remove the filler panel(s) from the appropriate...
	4. Insert the MVME147 into the selected card slot....
	5. Remove IACK and BG jumpers from the header on c...
	6. Refer to the MVME712 user’s manual provided wit...
	7. Connect the terminal which is to be used as the...
	8. If you want to connect device(s) (such as a hos...
	9. Turn equipment power ON.
	10. Observe the system console. The default condit...
	11. At the 147Bug prompt, use the SET command to i...
	12. Use 147Bug’s ENV command to verify and/or chan...
	Operating Instructions

	Introduction
	Controls and Indicators
	ABORT Switch (S1)
	RESET Switch (S2)
	RMT RST Switch Connector (J4)

	FAIL Indicator (DS1)
	STATUS Indicator (DS2)
	RUN Indicator (DS3)
	SCON Indicator (DS4)
	Table 3-1. Front Panel Indicators and MVME147 Stat...

	off
	off
	off
	off
	off
	ON
	off
	ON (bright)
	off
	off
	ON (normal)
	off
	off
	ON
	ON
	ON
	off
	off
	ON
	off
	ON
	ON
	ON (bright)
	off
	ON
	ON (normal)
	off
	ON
	ON
	ON
	Memory Maps
	MC68030 Memory Map
	Table 3-2. MVME147 Address Spaces�

	FC (2-0)
	Address Space
	MVME147 Devices that Respond
	0
	1
	2
	3
	4
	5
	6
	7
	7
	Program and Data Address Spaces
	Table 3-3. MC68030 Main Memory Map�

	Address Range
	Devices Accessed
	Port Size
	Size
	H/W Cache Inhibit
	Notes
	D32
	4- 32MB
	No
	1, 2
	D32
	3GB
	Yes
	3, 4
	D16
	16MB
	Yes
	D16
	232MB
	Yes
	D16
	2MB
	Yes
	D16
	2MB
	Yes
	N/A
	4MB
	Yes
	3
	D8/D16/D32
	20KB
	Yes
	N/A
	44KB
	Yes
	D16
	64KB
	Yes
	Table 3-4. Local I/O Devices�

	Address Range
	Devices Accessed
	Port Size
	Size
	Notes
	D8
	2040 bytes
	D8
	8 bytes
	3
	D8
	2048 bytes
	D32
	16 bytes
	D16
	32 bytes
	D32/D16
	D16
	4 bytes
	3, 4
	D16
	D16
	32 bytes
	D16
	D8
	1 byte
	D8
	1 byte
	D8
	D8
	2 bytes
	1, 3
	D8
	2 bytes
	1, 3
	D8
	D8
	2 bytes
	2, 3
	D8
	2 bytes
	2, 3
	D8
	D8
	32 bytes
	3, 5
	D8
	5
	CPU Address Space
	Coprocessor Register Map
	Table 3-5. MC68882 Register Map�

	A4-A0 (in Binary)
	MC68882 Register
	Comments
	Port Size
	%0000x
	D16
	%0001x
	D16
	%0010x
	D16
	%0011x
	D16
	%0100x
	D16
	%0101x
	D16
	%0110x
	D16
	%0111x
	D16
	%100xx
	D32
	%1010x
	D16
	%1011x
	D16
	%110xx
	D32
	%111xx
	D32
	Interrupt Acknowledge Map
	VMEbus Memory Map
	VMEbus Accesses to MVME147 Onboard DRAM
	Table 3-6. DRAM Address as Viewed from the VMEbus ...

	RBA4
	RBA3
	RBA2
	RBA1
	RBA0
	Beginning Address
	Ending Address
	Notes
	0
	0
	0
	0
	0
	$00000000
	(1 x DRAMsize)-1
	0
	0
	0
	0
	1
	 1 x DRAMsize
	(2 x DRAMsize)-1
	1, 2
	0
	0
	0
	1
	0
	 2 x DRAMsize
	(3 x DRAMsize)-1
	1, 2
	0
	0
	0
	1
	1
	 3 x DRAMsize
	(4 x DRAMsize)-1
	1, 2
	0
	0
	1
	0
	0
	 4 x DRAMsize
	(5 x DRAMsize)-1
	1, 2
	0
	0
	1
	0
	1
	 5 x DRAMsize
	(6 x DRAMsize)-1
	1, 2
	0
	0
	1
	1
	0
	 6 x DRAMsize
	(7 x DRAMsize)-1
	1, 2
	0
	0
	1
	1
	1
	 7 x DRAMsize
	(8 x DRAMsize)-1
	1, 2
	0
	1
	0
	0
	0
	 8 x DRAMsize
	(9 x DRAMsize)-1
	1, 2
	0
	1
	0
	0
	1
	 9 x DRAMsize
	(10 x DRAMsize)-1
	1, 2
	0
	1
	0
	1
	0
	10 x DRAMsize
	(11 x DRAMsize)-1
	1, 2
	0
	1
	0
	1
	1
	11 x DRAMsize
	(12 x DRAMsize)-1
	1, 2
	0
	1
	1
	0
	0
	12 x DRAMsize
	(13 x DRAMsize)-1
	1, 2
	0
	1
	1
	0
	1
	13 x DRAMsize
	(14 x DRAMsize)-1
	1, 2
	0
	1
	1
	1
	0
	14 x DRAMsize
	(15 x DRAMsize)-1
	1, 2
	0
	1
	1
	1
	1
	15 x DRAMsize
	(16 x DRAMsize)-1
	1, 2
	1
	0
	0
	0
	0
	16 x DRAMsize
	(17 x DRAMsize)-1
	1, 2
	1
	0
	0
	0
	1
	17 x DRAMsize
	(18 x DRAMsize)-1
	1, 2
	1
	0
	0
	1
	0
	18 x DRAMsize
	(19 x DRAMsize)-1
	1, 2
	1
	0
	0
	1
	1
	19 x DRAMsize
	(20 x DRAMsize)-1
	1, 2
	1
	0
	1
	0
	0
	20 x DRAMsize
	(21 x DRAMsize)-1
	1, 2
	1
	0
	1
	0
	1
	21 x DRAMsize
	(22 x DRAMsize)-1
	1, 2
	1
	0
	1
	1
	0
	22 x DRAMsize
	(23 x DRAMsize)-1
	1, 2
	1
	0
	1
	1
	1
	23 x DRAMsize
	(24 x DRAMsize)-1
	1, 2
	1
	1
	0
	0
	0
	24 x DRAMsize
	(25 x DRAMsize)-1
	1, 2
	1
	1
	0
	0
	1
	25 x DRAMsize
	(26 x DRAMsize)-1
	1, 2
	1
	1
	0
	1
	0
	26 x DRAMsize
	(27 x DRAMsize)-1
	1, 2
	1
	1
	0
	1
	1
	27 x DRAMsize
	(28 x DRAMsize)-1
	1, 2
	1
	1
	1
	0
	0
	$00000000
	(1 x DRAMsize)-1
	1, 3, 4
	1
	1
	1
	0
	1
	 1 x DRAMsize
	(2 x DRAMsize)-1
	1, 3, 4
	VMEbus Short I/O Memory Map
	Table 3-7. VMEchip GCSR as Viewed from the VMEbus�...

	LCSR Register Bits
	Short I/O Address of GCSR
	$0
	$0000-000F
	$1
	$0010-001F
	$2
	$0020-002F
	$3
	$0030-003F
	$4
	$0040-004F
	$5
	$0050-005F
	$6
	$0060-006F
	$7
	$0070-007F
	$8
	$0080-008F
	$9
	$0090-009F
	$A
	$00A0-00AF
	$B
	$00B0-00BF
	$C
	$00C0-00CF
	$D
	$00D0-00DF
	$E
	$00E0-00EF
	$F
	Does not respond
	VMEbus Interrupt Acknowledge Map
	Programming

	Introduction
	Programming the Peripheral Channel Controller
	Table 4-1. PCC Overall View�

	32-BIT REGISTERS
	Register
	Table address (bits 1 and 0 are zeros)
	Data address
	Link -- 0000 -- DFC2-0 -- Byte count (24 bits)
	Data holding register

	16-BIT REGISTERS
	Register
	Timer 1 preload
	Timer 1 count
	Timer 2 preload
	Timer 2 count

	8-BIT REGISTERS (Continued)
	Register
	Name
	Table Address Register
	FFFE1000
	Table Address
	0
	0
	Data Address Register

	FFFE1004
	Data Address
	Byte Count Register

	ADDRESS
	BIT 31
	BIT 30
	BIT 29
	BIT 28
	BIT 27
	BIT 26
	BIT 25
	BIT 24
	BITS 23-0
	FFFE1008
	L
	0
	0
	0
	0
	DFC2
	DFC1
	DFC0
	Byte Count
	Data Holding Register

	FFFE100C
	Data Holding Register
	Timer 1 Preload Register

	FFFE1010
	Tick 1 preload
	Timer 1 Counter Register

	FFFE1012
	Tick 1 counter
	Timer 2 Preload Register

	FFFE1014
	Tick 2 preload
	Timer 2 Counter Register

	FFFE1016
	Tick 2 counter
	Timer 1 Interrupt Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE1018
	IntStat
	Enable
	IL2
	IL1
	IL0
	R/C
	R/W
	R/W
	R/W
	R/W
	Timer 1 Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE1019
	Ovf3
	Ovf2
	Ovf1
	Ovf0
	ClrOvf
	EnaCnt
	Enable
	R
	R
	R
	R
	C
	R/W
	R/W
	Timer 2 Interrupt Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE101A
	IntStat
	Enable
	IL2
	IL1
	IL0
	R/C
	R/W
	R/W
	R/W
	R/W
	Timer 2 Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE101B
	Ovf3
	Ovf2
	Ovf1
	Ovf0
	ClrOvf
	EnaCnt
	Enable
	R
	R
	R
	R
	C
	R/W
	R/W
	AC Fail Interrupt Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE101C
	IntStat
	ACFail
	Enable
	R/C
	R
	R/W
	Watchdog Timer Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE101D
	WdL3
	WdL2
	WdL1
	WdL0
	WdTO
	WdRst
	WdClr
	Enable
	R/W
	R/W
	R/W
	R/W
	R/C
	R/W
	C
	R/W
	Printer Interrupt Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE101E
	IntStat
	FaltInt
	ACKInt
	ACKPol
	Enable
	IL2
	IL1
	IL0
	R
	R/C
	R/C
	R/W
	R/W
	R/W
	R/W
	R/W
	Printer Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE101F
	InPrim
	Strobe
	StbTim
	Mode
	R/W
	R/W
	R/W
	R/W
	DMA Interrupt Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE1020
	IntStat
	Enable
	IL2
	IL1
	IL0
	R/C
	R/W
	R/W
	R/W
	R/W
	DMA Control and Status Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE1021
	DONE
	8BitEr
	TblSizEr
	DMABEr
	TWBEr
	MS/SM*
	TW
	Enable
	R
	R
	R
	R
	R
	R/W
	R/W
	R/W
	Bus Error Interrupt Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE1022
	IntStat
	Enable
	R/C
	R/W
	DMA Status Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE1023
	Inc 4
	Inc 3
	Inc 2
	Inc 1
	UU
	UM
	LM
	LL
	R
	R
	R
	R
	R
	R
	R
	R
	Abort Interrupt Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE1024
	IntStat
	Abort
	Enable
	R/C
	R
	R/W
	Table Address Function Code Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE1025
	TblFC2
	TblFC1
	TblFC0
	R/W
	R/W
	R/W
	Serial Port Interrupt Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE1026
	IntStat
	Int/Ext*
	Enable
	IL2
	IL1
	IL0
	R
	R/W
	R/W
	R/W
	R/W
	R/W
	General Purpose Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE1027
	RsDis2
	RsDis1
	RsDis0
	MIntEn
	LbToEn
	WWPar
	ParEn1
	ParEn0
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	LAN Interrupt Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE1028
	IntStat
	Enable
	IL2
	IL1
	IL0
	R
	R/W
	R/W
	R/W
	R/W
	General Purpose Status Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE1029
	PuReset
	ParErr
	R/C
	R/C
	SCSI Port Interrupt Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE102A
	IntStat
	RstInt
	SCSIRst
	RstSCSI
	Enable
	IL2
	IL1
	IL0
	R
	R/C
	R
	R/W
	R/W
	R/W
	R/W
	R/W
	Slave Base Address Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE102B
	LANA25
	LANA24
	WAITRMC
	RBA4
	RBA3
	RBA2
	RBA1
	RBA0
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	Table 4-2. DRAM Address as Viewed from the VMEbus ...

	RBA4
	RBA3
	RBA2
	RBA1
	RBA0
	Beginning Address
	Ending Address
	Notes
	0
	0
	0
	0
	0
	$00000000
	(1 x DRAMsize)-1
	0
	0
	0
	0
	1
	 1 x DRAMsize
	(2 x DRAMsize)-1
	1, 2
	0
	0
	0
	1
	0
	 2 x DRAMsize
	(3 x DRAMsize)-1
	1, 2
	0
	0
	0
	1
	1
	 3 x DRAMsize
	(4 x DRAMsize)-1
	1, 2
	0
	0
	1
	0
	0
	 4 x DRAMsize
	(5 x DRAMsize)-1
	1, 2
	0
	0
	1
	0
	1
	 5 x DRAMsize
	(6 x DRAMsize)-1
	1, 2
	0
	0
	1
	1
	0
	 6 x DRAMsize
	(7 x DRAMsize)-1
	1, 2
	0
	0
	1
	1
	1
	 7 x DRAMsize
	(8 x DRAMsize)-1
	1, 2
	0
	1
	0
	0
	0
	 8 x DRAMsize
	(9 x DRAMsize)-1
	1, 2
	0
	1
	0
	0
	1
	 9 x DRAMsize
	(10 x DRAMsize)-1
	1, 2
	0
	1
	0
	1
	0
	10 x DRAMsize
	(11 x DRAMsize)-1
	1, 2
	0
	1
	0
	1
	1
	11 x DRAMsize
	(12 x DRAMsize)-1
	1, 2
	0
	1
	1
	0
	0
	12 x DRAMsize
	(13 x DRAMsize)-1
	1, 2
	0
	1
	1
	0
	1
	13 x DRAMsize
	(14 x DRAMsize)-1
	1, 2
	0
	1
	1
	1
	0
	14 x DRAMsize
	(15 x DRAMsize)-1
	1, 2
	0
	1
	1
	1
	1
	15 x DRAMsize
	(16 x DRAMsize)-1
	1, 2
	1
	0
	0
	0
	0
	16 x DRAMsize
	(17 x DRAMsize)-1
	1, 2
	1
	0
	0
	0
	1
	17 x DRAMsize
	(18 x DRAMsize)-1
	1, 2
	1
	0
	0
	1
	0
	18 x DRAMsize
	(19 x DRAMsize)-1
	1, 2
	1
	0
	0
	1
	1
	19 x DRAMsize
	(20 x DRAMsize)-1
	1, 2
	1
	0
	1
	0
	0
	20 x DRAMsize
	(21 x DRAMsize)-1
	1, 2
	1
	0
	1
	0
	1
	21 x DRAMsize
	(22 x DRAMsize)-1
	1, 2
	1
	0
	1
	1
	0
	22 x DRAMsize
	(23 x DRAMsize)-1
	1, 2
	1
	0
	1
	1
	1
	23 x DRAMsize
	(24 x DRAMsize)-1
	1, 2
	1
	1
	0
	0
	0
	24 x DRAMsize
	(25 x DRAMsize)-1
	1, 2
	1
	1
	0
	0
	1
	25 x DRAMsize
	(26 x DRAMsize)-1
	1, 2
	1
	1
	0
	1
	0
	26 x DRAMsize
	(27 x DRAMsize)-1
	1, 2
	1
	1
	0
	1
	1
	27 x DRAMsize
	(28 x DRAMsize)-1
	1, 2
	1
	1
	1
	0
	0
	$00000000
	(1 x DRAMsize)-1
	1, 3, 4
	1
	1
	1
	0
	1
	 1 x DRAMsize
	(2 x DRAMsize)-1
	1, 3, 4
	Table 4-3. DRAM Accessed by the LANCE

	LANA25
	LANA24
	Section of DRAM Accessible to LANCE
	0
	0
	$00000000-00FFFFFF
	0
	1
	$01000000-01FFFFFF
	1
	0
	$02000000-02FFFFFF
	1
	1
	$03000000-03FFFFFF
	Software Interrupt 1 Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE102C
	IntStat
	Enable
	IL2
	IL1
	IL0
	R
	R/W
	R/W
	R/W
	R/W
	Interrupt Vector Base Register

	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	IVB7
	IVB6
	IVB5
	IVB4
	R/W
	R/W
	R/W
	R/W
	3
	2
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	1
	0
	1
	1
	0
	0
	1
	1
	1
	1
	0
	0
	0
	1
	0
	0
	1
	1
	0
	1
	0
	1
	0
	1
	1
	Software Interrupt 2 Control Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE102E
	IntStat
	Enable
	IL2
	IL1
	IL0
	R
	R/W
	R/W
	R/W
	R/W
	Revision Level Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE102F
	RevL7
	RevL6
	RevL5
	RevL4
	RevL3
	RevL2
	RevL1
	RevL0
	R
	R
	R
	R
	R
	R
	R
	R
	Printer Data Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE2800
	PD7
	PD6
	PD5
	PD4
	PD3
	PD2
	PD1
	PD0
	W
	W
	W
	W
	W
	W
	W
	W
	Printer Status Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE2800
	ACK
	FAULT
	SELECT
	PE
	BSY
	LOW
	STAT12
	R
	R
	R
	R
	R
	R
	R
	Programming the VMEchip
	Programming the LCSR
	Table 4-4. VMEchip Local Control and Status Regist...

	Register
	Name
	Bit 7
	Bit 6
	Bit 5
	Bit 4
	Bit 3
	Bit 2
	Bit 1
	Bit 0
	System Controller Configuration Register
	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE2001
	ROBIN
	BRDFAIL
	SRESET
	SCON
	R/W
	R/W
	W
	R
	VMEbus Requester Configuration Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE2003
	DWB
	DHB
	RONR
	RWD
	RNEVER
	RQLEV1
	RQLEV0
	R/W
	R
	R/W
	R/W
	R/W
	R/W
	R/W

	RQLEV1
	RQLEV0
	Level
	0
	0
	0
	0
	1
	1
	1
	0
	2
	1
	1
	3
	Master Configuration Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE2005
	DDTACK
	020
	MASWP
	CFILL
	MASUAT
	MASA16
	MASA24
	MASD16
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	Table 4-5. Determining the Master AM Code�

	VMEbus Address Modifier
	M A S A 1 6
	A D R 1 6
	M A S A 2 4
	A D R 2 4
	F C 2
	F C 1
	F C 0
	A M 5
	A M 4
	A M 3
	A M 2
	A M 1
	A M 0
	Code
	0
	F
	0
	F
	0
	0
	1
	0
	0
	1
	0
	0
	1
	$09
	0
	F
	0
	F
	0
	1
	0
	0
	0
	1
	0
	1
	0
	$0A
	0
	F
	0
	F
	1
	0
	1
	0
	0
	1
	1
	0
	1
	$0D
	0
	F
	0
	F
	1
	1
	0
	0
	0
	1
	1
	1
	0
	$0E
	1
	X
	X
	X
	0
	0
	1
	1
	0
	1
	0
	0
	1
	$29
	1
	X
	X
	X
	0
	1
	0
	1
	0
	1
	0
	1
	0
	$2A
	X
	T
	X
	X
	0
	0
	1
	1
	0
	1
	0
	0
	1
	$29
	X
	T
	X
	X
	0
	1
	0
	1
	0
	1
	0
	1
	0
	$2A
	1
	X
	X
	X
	1
	0
	1
	1
	0
	1
	1
	0
	1
	$2D
	1
	X
	X
	X
	1
	1
	0
	1
	0
	1
	1
	1
	0
	$2E
	X
	T
	X
	X
	1
	0
	1
	1
	0
	1
	1
	0
	1
	$2D
	X
	T
	X
	X
	1
	1
	0
	1
	0
	1
	1
	1
	0
	$2E
	0
	F
	1
	X
	0
	0
	1
	1
	1
	1
	0
	0
	1
	$39
	0
	F
	1
	X
	0
	1
	0
	1
	1
	1
	0
	1
	0
	$3A
	0
	F
	1
	X
	1
	0
	1
	1
	1
	1
	1
	0
	1
	$3D
	0
	F
	1
	X
	1
	1
	0
	1
	1
	1
	1
	1
	0
	$3E
	0
	F
	X
	T
	0
	0
	1
	1
	1
	1
	0
	0
	1
	$39
	0
	F
	X
	T
	0
	1
	0
	1
	1
	1
	0
	1
	0
	$3A
	0
	F
	X
	T
	1
	0
	1
	1
	1
	1
	1
	0
	1
	$3D
	0
	F
	X
	T
	1
	1
	0
	1
	1
	1
	1
	1
	0
	$3E
	Slave Configuration Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE2007
	SLVEN
	SLVWP
	SLVD16
	R/W
	R/W
	R/W
	a. Set the DWB bit in the requester configuration ...
	b. Read the DHB status bit until it is 1.
	c. Change the slave configuration register.
	d. Clear the DWB bit to 0.
	Timer Configuration Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE2009
	ARBT0
	VBTO1
	VBTO0
	ACTO1
	ACTO0
	LBTO1
	LBTO0
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W

	LBTO1
	LBTO0
	Time-Out Period
	0
	0
	102 microseconds
	0
	1
	205 microseconds
	1
	0
	410 microseconds
	1
	1
	Timer disabled

	ACTO1
	ACTO0
	Time-Out Period
	0
	0
	102 microseconds
	0
	1
	1.6 millisecond
	1
	0
	51 milliseconds
	1
	1
	Timer disabled

	VBTO1
	VBTO0
	Time-Out Period
	0
	0
	102 microseconds
	0
	1
	205 microseconds
	1
	0
	410 microseconds
	1
	1
	Timer disabled
	Slave Address Modifier Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE200B
	SUPER
	USER
	EXTED
	STND
	SHORT
	BLOCK
	PRGRM
	DATA
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	a. Set the DWB bit in the requester configuration ...
	b. Read the DHB status bit until it is 1.
	c. Change the slave address modifier register.
	d. Clear the DWB bit to 0.
	Master Address Modifier Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE200D
	AMSEL
	AM5
	AM4
	AM3
	AM2
	AM1
	AM0
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	Interrupt Handler Mask Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE200F
	IEN7
	IEN6
	IEN5
	IEN4
	IEN3
	IEN2
	IEN1
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	Utility Interrupt Mask Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE2011
	WPERREN
	SFIEN
	SIGHEN
	LM1EN
	IACKEN
	LM0EN
	SIGLEN
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	Table 4-6. Utility Interrupts and Their Assigned L...

	Utility Interrupt
	Assigned Priority
	SIGLP
	Level 1
	LM0
	Level 2
	IACK
	Level 3
	LM1
	Level 4
	SIGHP
	Level 5
	SYSFAIL
	Level 6
	WPBERR
	Level 7
	Utility Interrupt Vector Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE2013
	UVB7
	UVB6
	UVB5
	UVB4
	UVB3
	UID2
	UID1
	UID0
	R/W
	R/W
	R/W
	R/W
	R/W
	R
	R
	R
	Table 4-7. Encoding of the Interrupt ID

	Utility Interrupt Source
	Bit 2
	Bit 1
	Bit 0
	SIGLP
	0
	0
	1
	LM0
	0
	1
	0
	IACK
	0
	1
	1
	LM1
	1
	0
	0
	SIGHP
	1
	0
	1
	SYSFAIL
	1
	1
	0
	WPBERR
	1
	1
	1
	Interrupt Request Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE2015
	IL2
	IL1
	IL0
	R/W
	R/W
	R/W
	Table 4-8. Configuring the Interrupt Request Level...

	Interrupt Request Line Driven
	IL2
	IL1
	IL0
	None
	0
	0
	0
	IRQ1*
	0
	0
	1
	IRQ2*
	0
	1
	0
	IRQ3*
	0
	1
	1
	IRQ4*
	1
	0
	0
	IRQ5*
	1
	0
	1
	IRQ6*
	1
	1
	0
	IRQ7*
	1
	1
	1
	VMEbus Status/ID Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE2017
	D07
	D06
	D05
	D04
	D03
	D02
	D01
	D00
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	Bus Error Status Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE2019
	RMCERR
	VBERR
	ACTO
	LBTO
	R
	R
	R
	R
	GCSR Base Address Configuration Register

	ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE201B
	GCSRA7
	GCSRA6
	GCSRA5
	GCSRA4
	R/W
	R/W
	R/W
	R/W
	Table 4-9. VMEchip GCSR as Viewed from the VMEbus

	GCSRA7-4
	Short I/O Address of GCSR
	$0
	$0000-000F
	$1
	$0010-001F
	$2
	$0020-002F
	$3
	$0030-003F
	$4
	$0040-004F
	$5
	$0050-005F
	$6
	$0060-006F
	$7
	$0070-007F
	$8
	$0080-008F
	$9
	$0090-009F
	$A
	$00A0-00AF
	$B
	$00B0-00BF
	$C
	$00C0-00CF
	$D
	$00D0-00DF
	$E
	$00E0-00EF
	$F
	Does not respond
	Programming the GCSR
	Table 4-10. VMEchip Global Control and Status Regi...

	MVME147 Address
	VMEbus Address
	Global Register 0
	MVME147 ADDRESS
	VMEbus ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE2021
	00X1
	LM3
	LM2
	LM1
	LM0
	CHIPID3
	CHIPID2
	CHIPID1
	CHIPID0
	MC68030
	R
	R
	R
	R
	R
	R
	R
	R
	VMEbus
	R
	R
	R
	R
	R
	R
	R
	R
	Global Register 1

	MVME147 ADDRESS
	VMEbus ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	FFFE2023
	00X3
	R&H
	SCON
	ISF
	BRDFAIL
	SIGHP
	SIGLP
	MC68030
	R/W
	R
	R/W
	R
	R/C
	R/C
	VMEbus
	R/W
	R
	R/W
	R
	R/S
	R/S
	Board Identification Register
	General Purpose CSR 0

	VMEbus ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	00X7
	General Purpose Control and Status Register 0
	MC68030
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	VMEbus
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	General Purpose CSR 1-4

	VMEbus ADDRESS
	BIT 7
	BIT 6
	BIT 5
	BIT 4
	BIT 3
	BIT 2
	BIT 1
	BIT 0
	00X9
	General Purpose Control and Status Register 1
	00XB
	General Purpose Control and Status Register 2
	00XD
	General Purpose Control and Status Register 3
	00XF
	General Purpose Control and Status Register 4
	MC68030
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	VMEbus
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	R/W
	Functional Description
	Introduction
	Functional Description
	MC68030 MPU
	MC68882 FPC
	VMEchip
	Figure 5-1. MVME147 Block Diagram
	VMEbus System Controller
	VMEbus Time-Out
	System Clock Utility
	Arbiter
	IACK* Daisy-Chain Driver
	System Reset Function (SYSRESET*)

	VMEbus Interrupter
	Local Bus Time-Out
	VMEbus Access Time-Out
	VMEbus Master Interface
	VMEbus Requester
	VMEbus Slave Interface

	General Control Chip (GCC)
	SCSI Reset
	RAM Refresh Timer
	Local Bus Multiport Arbiter
	Duplication of PCC Functions

	Peripheral Channel Controller (PCC)
	DMA Channel Controller (DMAC)
	DMAC Initiation Mode
	DMAC Operation States
	Idle State
	Data Transfer State
	Table Walk State
	Table 5-1. Example DMAC Table�

	Memory Address
	Data
	Comments
	$00020000
	$85000100
	$00128000
	$83001000
	$00045000
	$03000050
	DMAC Error Conditions
	SCSI Data Bus Converter
	SCSI Chip Interface
	Programmable Tick Timers
	Watchdog Timer
	Printer Interface
	Control and Status Registers
	RESET and ABORT Switches
	Power-Up Reset
	AC Fail Interrupter
	Serial Port Interface
	Ethernet Interface
	SCSI Interface
	Data Bus Structure
	Battery Backed Up RAM and Clock
	ROM/PROM/EPROM/EEPROM
	Device Timing Requirements

	Symbol
	Description
	Minimum
	Maximum
	Unit
	250
	250
	200
	0
	100
	Figure 5-2. Timings Required by the MVME147

	Symbol
	Description
	Minimum
	Maximum
	Unit
	 50
	 50
	 70
	200
	190
	160
	 5
	100
	 10
	Figure 5-3. Timings Guaranteed by MVME147
	EEPROM Power-Up/Power-Down Considerations
	Interrupt Handler
	Table 5-2. MVME147 Interrupt Sources and Vectors (...

	Interrupt Source
	Path
	Vector Source
	Vector
	Level
	PCC
	PCC
	%xxxx0000
	7
	PCC
	PCC
	%xxxx0001
	7
	PCC
	PCC
	%xxxx0010
	7
	PCC
	Z8530 devices
	See Z8530 data sheet
	Prog
	PCC
	PCC
	%xxxx0011
	Prog
	PCC
	PCC
	%xxxx0100
	Prog
	PCC
	PCC
	%xxxx0101
	Prog
	PCC
	PCC
	%xxxx0110
	Prog
	PCC
	PCC
	%xxxx0111
	Prog
	PCC
	PCC
	%xxxx1000
	Prog
	PCC
	PCC
	%xxxx1001
	Prog
	PCC
	PCC
	%xxxx1010
	Prog
	PCC
	PCC
	%xxxx1011
	Prog
	VMEchip
	VMEchip
	%yyyyy111
	7
	VMEchip
	VMEchip
	%yyyyy110
	6
	VMEchip
	VMEchip
	%yyyyy101
	5
	VMEchip
	VMEchip
	%yyyyy100
	4
	VMEchip
	VMEchip
	%yyyyy011
	3
	VMEchip
	VMEchip
	%yyyyy010
	2
	VMEchip
	VMEchip
	%yyyyy001
	1
	VMEchip
	From interrupting VMEbus slave
	Determined by VMEbus slave
	7
	VMEchip
	Same as above
	Same as above
	6
	VMEchip
	Same as above
	Same as above
	5
	VMEchip
	Same as above
	Same as above
	4
	3
	2
	1
	Front Panel Switches and Indicators
	Onboard DRAM
	MC68030 DRAM Accesses
	PCC DRAM Accesses
	VMEbus DRAM Accesses
	LANCE DRAM Accesses
	Refresh

	Reset
	Sources of Bus Error (BERR*)
	Local Bus Time-Out
	VMEbus Access Time-Out
	VMEbus BERR*
	Local RAM Parity Error
	Bus Error Processing

	MVME147 Support of MC68030 Indivisible Cycles
	EIA-232-D Interconnections

	Introduction
	Table A-1. EIA-232-D Interconnections (Continued)

	Pin Number
	Signal Mnemonic
	1
	2
	3
	4
	5
	6
	7
	8
	9-14
	15
	16
	17
	18, 19
	20
	21
	22
	23
	24
	25
	Levels of Implementation
	Signal Adaptations
	Sample Configurations
	Figure A-1. Middle-of-the-Road EIA-232-D Configura...
	Figure A-2. Minimum EIA-232-D Connection

	Proper Grounding
	Debugger General Information

	Overview of M68000 Firmware
	Description of 147Bug
	147Bug Implementation
	Autoboot
	ROMboot
	1. Power must have just been applied (but the RB c...
	2. Your routine must be located within the MVME147...
	3. The ASCII string “BOOT” must be located within ...
	4. Your routine must pass a checksum test, which e...
	1. The map is searched for the ASCII string “BOOT”...
	2. If the ASCII string “BOOT” is found, it is stil...
	1. Search direct address (as set by the RB command...
	2. Search your non-volatile RAM (first 1KB of batt...
	3. Search complete ROM map.
	4. Search local RAM (if RB command has selected to...
	5. Search the VMEbus map (if so selected by the RB...
	1. Outputs a (CR)(LF) sequence to the default outp...
	2. Displays the date and time from the current cur...
	3. Outputs two more (CR)(LF) sequences to the defa...
	4. Returns control to 147Bug.
	Example:

	Restarting the System
	Reset
	Abort
	Reset and Abort - Restore Battery Backed Up RAM
	Break
	Memory Requirements

	Terminal Input/Output Control

	(cancel line)
	(backspace)
	(redisplay)
	(delete)
	Disk I/O Support
	Blocks Versus Sectors
	Disk I/O via 147Bug Commands
	IOP (Physical I/O to Disk)
	IOT (I/O Teach)
	IOC (I/O Control)
	BO (Bootstrap Operating System)
	BH (Bootstrap and Halt)
	Disk I/O via 147Bug System Calls
	Default 147Bug Controller and Device Parameters
	Disk I/O Error Codes
	Multiprocessor Support

	Diagnostic Facilities
	Table 5-1. Diagnostic Monitor Commands/Prefixes
	Table 5-2. Diagnostic Utilities
	Table 5-3. Diagnostic Test Commands�

	Using the 147Bug Debugger
	Entering Debugger Command Lines
	a. The command identifier (for example, MD or md f...
	b. A port number if the command is set up to work ...
	c. At least one intervening space before the first...
	d. Any required arguments, as specified by command...
	e. An option field, set off by a semicolon (;) to ...

	Syntactic Variables
	Expression as a Parameter

	String Literal
	Numeric Value (In Hexadecimal)
	Expression �
	Result (In Hexadecimal)
	Notes
	FF0011
	DE
	90
	5C
	A7
	880
	shift left
	A0
	logical AND
	Address as a Parameter
	Address Formats
	Table B�4. Debugger Address Parameter Formats

	Offset Registers
	Example:

	Port Numbers
	Entering and Debugging Programs
	Calling System Utilities from User Programs
	Preserving the Debugger Operating Environment
	147Bug Vector Table and Workspace
	Tick Timers
	Serial Ports
	Exception Vectors Used by 147Bug
	Table B�5. Exception Vectors Used by 147Bug �
	Example:
	Using 147Bug Target Vector Table
	Creating a New Vector Table
	Bug Generalized Exception Handler
	Example:

	Memory Management Unit Support
	Address Translation Control (ATC) Registers:
	Status Information Registers:
	Function Code Support

	Function Code
	Mnemonic
	Description
	0
	F0
	1
	UD
	2
	UP
	3
	F3
	4
	F4
	5
	SD
	6
	SP
	7
	CS
	Example:
	The 147Bug Debugger Command Set
	Table B�6. Debugger Commands�(Continued)

	Command Mnemonic
	Title
	Command Line Syntax
	SET and ENV Commands
	Initializing the MVME147
	SET - Set Time and Date
	Command Input
	Description
	Example:�The following example sets a date and tim...
	Related Commands:

	ENV - Set Environment to Bug/Operating System
	Command Input
	Description
	Using ENV with the Defaults Option
	Example 1:
	Example 2:
	Example 3:

	Using ENV without Options
	Table C�1. VMEchip Options (Continued)

	Option
	Description
	Example 1:
	Example 2:
	Example 3:
	Troubleshooting: Solving Start-up Problems
	Table D�1. Basic Troubleshooting Steps (Continued)...

	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

