
@MOTOROLA

MVME327 AFW IDl

MVME327A Firmware
User's Manual

MVME327A FIRMWARE

USER'S MANUAL

(MVME327AFW/Dl)

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products
herein to improve reliability, function, or design. Motorola does not assume
any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights
or the rights of others.

PREFACE

This manual describes the software interface between a host and the MVME327A
firmware. This interface is accomplished over the VMEbus and allows
communication between a process running on a host processor and the MVME327A
firmware running on the onboard processor (MC68010). The firmware, in turn,
allows communication between the host and the Small Computer System Interface
(SCSI) bus, local floppy drives, or other onboard facilities.

The mechanism used to produce this interface is the Buffered Pipe Protocol
(BPP). This manual defines channel headers, envelopes, and packets. It defines
the fields in the packets, the format of device descriptor tables, the format
of specific commands, the returned statuses, and the protocol necessary for
the interface.

This manual is intended for anyone who wants to design OEM systems, supply
additional capability to an existing compatible system, or in a lab
environment for experimental purposes.

A basic knowledge of computers and digital logic is assumed.

To use this manual, you should be familiar with the publications listed in the
related documentation paragraph in Chapter 1 of this manual.

The computer programs stored in the read only memories of this device contain
material copyrighted by Motorola Inc., first published 1988, and may be used
only under a license such as the License for Computer Programs (Article 14)
contained in Motorola's Terms and Conditions of Sale, Rev. 1/79.

First Edition August 1988

Copyright 1988 by Motorola Inc.

TABLE OF CONTENTS

CHAPTER 1 - GENERAL INFORMATION

1.1 INTRODUCTION. 1-1
1.2 FEATURES 1-1
1.3 GLOSSARY ... 1-2
1.4 SCSI BUS BACKGROUND 1-3
1.5 MVME327A FIRMWARE ARCHITECTURE 1-4
1.6 BUFFERED PIPE PROTOCOL 1-6
1.7 RELATED DOCUMENTATION . 1-8
1.8 MANUAL TERMINOLOGY 1-8

CHAPTER 2 - COMMAND/STATUS REGISTER INTERFACE

2.1 INTRODUCTION .. 2-1
2 . 2 CSR COMMAND PROTOCOL 2-1
2.3 CSR COMMANDS ... 2-3

2.3.1 Create Channel CSR Command 2-3
2.3.2 Delete Channel Command 2-4

2.4 RETURN STATUS .. 2-4
2.4.1 CSR Status Register 2-4
2.4.2 SYSFAIL Handling 2-5
2.4.3 Diagnostic Register 2-5

CHAPTER 3 - BPP DATA STRUCTURES

3.1 INTRODUCTION .. 3-1
3.2 COMMAND CHANNEL HEADER STRUCTURE 3-1
3.3 ENVELOPE . 3-3
3.4 PACKET ... 3-4

CHAPTER 4 - BUFFERED PIPE PROTOCOL

4.1 INTRODUCTION. 4-1
4.2 ESTABLISHING DRIVER/MVME327A CHANNEL COMMUNICATIONS 4-1

4.2.1 Envelope/Packet Enqueueing 4-2
4.2.2 Envelope/Packet Dequeueing 4-3
4.2.3 Buffered Pipe Protocol Summary.................... 4-3

v

TABLE OF CONTENTS (cont'd)

CHAPTER 5 - OTHER DATA STRUCTURES

5.1 INTRODUCTION.. 5-1
5.2 DEVICE DESCRIPTORS 5-1

5.2.1 Disk Descriptor Table 5-1
5.2.2 Streaming Tape Descriptor Table 5-5
5.2.3 Start/Stop Tape Descriptor Table 5-7

5.3 SCATTER/GATHER LIST 5-9

CHAPTER 6 - MVME327A COMMANDS

6.1 INTRODUCTION. 6-1
6.2 LOCAL FLOPPY COMMANDS . 6-1
6.3 SCSI BUS COMMANDS . 6-1

6.3.1 High Level Command Translation 6-1
6.3.2 SCSI Level Commands 6-2
6.3.3 SCSI Specific Packet 6-3

6.4 MVME327A COMMANDS 6-6

CHAPTER 7 - HIGH LEVEL COMMANDS

7.1 INTRODUCTION ; . 7-1
7.1.1 BPP Test Command ($OO) 7-1

7.1.1.1 BPP Test Command Packet 7-1
7.1.1.2 BPP Test Command Returned Status 7-2

7.1.2 Read Command ($01) 7-2
7.1.2.1 Read Command Packet 7-3
7.1.2.2 Read Command Returned Status 7-5

7.1. 3 Wri te Command ($02) 7-6
7.1.3.1 Write Command Packet 7-6
7.1.3.2 Write Command Returned Status 7-7

7.1.4 Read Descriptor Command ($03) 7-8
7.1.4.1 Read Descriptor Command Packet 7-8
7.1.4,2 Read Descriptor Command Returned Status 7-9

7.1.5 Write Descriptor Command ($04) 7-10
7.1.5.1 Write Descriptor Command Packet 7-10
7.1.5.2 Write Descriptor Command Returned Status 7-12

7.1.6 Format Command ($05) 7-12
7.1.6.1 Format Command Packet 7-13
7.1.6.2 Format Command Returned Status 7-15
7.1.6.3 Defect List Formats 7-16

vi

TABLE OF CONTENTS (cont'd)

7.1.7 Fix Bad Spot Command ($06) .•...................... 7-17
7.1.7.1 Fix Bad Spot Command Packet 7-18
7.1.7.2 Fix Bad Spot Command Returned Status 7-19

7.1.8 Read Status Command ($10)•............ 7-20
7.1.8.1 Read Status Command Packet 7-20
7.1.8.2 Read Status Command Returned Status 7-21

7.1.9 Load/Unload/Re-tension Command ($11) 7-22
7.1.9.1 Load/Unload/Re-tension Command Packet 7-22
7.1.9.2 Load/Unload/Re-tension Command Returned Status 7-23

7.1.10 Write Filemark ($12) 7-24
7.1.10.1 Write Filemark Command Packet 7-24
7.1.10.2 Write Filemark Command Returned Status 7-25

7.1.11 Rewind Command ($13) 7-26
7.1.11.1 Rewind Command Packet 7-26
7.1.11.2 Rewind Command Returned Status 7-27

7.1.12 Erase Command ($14) 7-28
7.1.12.1 Erase Command Packet 7-28
7.1.12.2 Erase Command Returned Status 7-29

7.1.13 Space Command ($15) 7-30
7.1.13.1 Space Command Packet 7-30
7.1.13.2 Space Command Returned Status 7-32

7.1.14 Enable Target Command ($20) 7-32
7.1.14.1 Enable Target Command Packet 7-33
7.1.14.2 Enable Target Command Returned Status 7-33

7.1.15 Disable Target Command ($21) 7-34
7.1.15.1 Disable Target Command Packet 7-34
7.1.15.2 Disable Target Command Returned Status 7-35

7.1.16 Reserve Unit Command ($22) 7-36
7.1.16.1 Reserve Unit Command Packet 7-36
7.1.16.2 Reserve Unit Command Returned Status 7-38

7.1.17 Release Unit Command ($23) 7-38
7.1.17.1 Release Unit Command Packet 7-39
7.1.17.2 Re 1 ease Un i t Command Returned Status 7 -41

7.1.18 Reset SCSI Command ($25j 7-41
7.1.18.1 Reset SCSI Command Packet 7-42
7.1.18.2 Reset SCSI Command Returned Status 7-43

7.1.19 Custom SCSI Command ($26) 7-43
7.1.19.1 Custom SCSI Command Packet 7-44
7.1.19.2 Custom SCSI Command Returned Status 7-45

7.1.20 Self Test Command ($27) 7-46
7.1.20.1 Self Test Command Packet 7-46
7.1.20.2 Self Test Command Returned Status 7-47

vii

TABLE OF CONTENTS (cont'd)

7.1.21 Target Wait Command ($28) 7-48
7.1.21.1 Target Wait Command Packet 7-48
7.1.21.2 Target Wait Command Returned Status 7-49

7.1.22 Target Execute Command ($29) 7-50
7.1.22.1 Target Execute Command Packet 7-50
7.1.22.2 Target Execute Command Returned Status 7-51

7.1.23 Set SCSI Address Command ($2B) 7-52
7.1.23.1 Set SCSI Address Command Packet 7-52
7.1.23.2 Set SCSI Address Command Returned Status 7-53

7.1.24 Open Command ($2D) 7-53
7.1.24.1 Open Command Packet 7-54
7.1.24.2 Open Command Returned Status 7-55

APPENDIX A - MVME327A SUPPORTED SCSI CONTROLLERS/DEVICES A-I

APPENDIX B - CUSTOM SCSI COMMAND EXAMPLE B-1

APPENDIX C - TARGET ROLE... C-l

APPENDIX D - FATAL ERROR CODES....................................... D-l

APPENDIX E - ADDITIONAL ERROR CODES E-l

APPENDIX F - C FUNCTION EXAMPLES OF BPP PROTOCOL F-l

INDEX IN-l

viii

GENERAL INFORMATION

CHAPTER 1 - GENERAL INFORMATION

1.1 INTRODUCTION

This manual describes the software interface between a host and the MVME327A
firmware. This interface is accomplished over the VMEbus and allows
communication between a process running on a host processor and the MVME327A
firmware running on the onboard processor (MC680IO). The firmware, in turn,
allows communication between the host and the Small Computer System Interface
(SCSI) bus, local floppy drives, or other onboard facilities.

The mechanism used to produce this interface is the Buffered Pipe Protocol
(BPP). This manual defines channel headers, envelopes, and packets. It defines
the fields in the packets, the format of device descriptor tables, the format
of specific commands, the returned statuses, and the protocol necessary for
the interface.

1.2 FEATURES

The features of the MVME327A firmware interface include:

BPP provides non-busy interface for real time and time critical
applications.

Interrupt driven or polled interfaces are provided by BPP.

Virtual channels of the BPP support multiple host interface.

Firmware preserves BPP channel priority when polling channels.

Contains both a power up diagnostic self test and a self test upon
command.

Multiprocessing supported through RESERVE and RELEASE commands.

SCSI multi-threading with full disconnect/reselect feature
implementation is supported by firmware.

Firmware provides unlimited command queuing for multiple SCSI devices.

Incorporates intelligence to interface with some of the more popular
SCSI drives.

High level command set (for SCSI disks and streaming tapes) provides
device independence for operating system drivers.

SCSI firmware conforms to ANSI specification X3T9.2/82-2, Rev. 17B.

1-1

I

a
GENERAL INFORMATION

SCSI Common Command Set (Revision 4B) is supported by high level command
set.

Custom SCSI command allows device dependent interface to any SCSI
device.

Target role supported through normal BPP channels for all eight
peripheral logical units on the SCSI bus.

Local floppy interface supports high density 1.2Mb formats with dual
speed floppy drives.

1.3 GLOSSARY

The following list is a glossary of terms used throughout this manual.

1-2

Host - a computer system which dispatches and/or accepts commands across
the VMEbus.

Initiator - a SCSI device that requests an operation to be performed by
another SCSI device.

Logical Unit - a physical or virtual device addressable through a target.

Logical Unit Number - An encoded 3-bit identifier for the logical unit.

LUN - Logical unit number.

LSW - Least significant word.

MSW - Most significant word.

SCSI Address - The binary representation of the unique address assigned to
a SCSI device.

SCSI Device - A host computer adapter, peripheral controller, or an
intelligent peripheral (embedded controller) that can be attached to a
SCSI bus.

SCSI ID - The bit significant representation of the SCSI address referring
to one of the signal lines DB 7-0.

Target - A SCSI device that performs an operation
initiator. Each target can have up to eight peripheral
associated with it.

requested by an
(LUN) devices

Thread - The path that exists between an initiator memory and a SCSI
device LUN.

User - The operator of a host system that accesses the MVME327A.

GENERAL INFORMATION

1.4 SCSI BUS BACKGROUND

The SCSI bus is a general purpose 8-bit parallel bus with standardized
transfer protocol and a wide vendor support base. SCSI devices (any device on
the SCSI bus) may gain access to the bus during the arbitration phase and
request services to be performed through a "standardized" command set. (The
arbitration phase allows one SCSI device to gain control of the SCSI bus so
that it can assume the role of initiator or target.) A SCSI device that
requests services from another SCSI device is defined as the initiator. A
SCSI device that performs the services requested by an initiator is defined as
the target. The MVME327A is a SCSI device that is capable of both the
initiator and target roles on the SCSI bus. When accessing SCSI disk and tape
formatters for mass storage transfers, the MVME327A is the initiator. When
buffering commands and messages from SCSI devices for VMEbus MPU modules, the
MVME327A is the target.

Up to eight SCSI devices may reside on the SCSI bus at the same time. Each of
these devices is assigned a unique SCSI address of 0 through 7. During the
arbitration phase, the SCSI device with the highest address has the highest
priority on the bus (if device 7, device 6, and device 0 arbitrate for the bus
at the same time, device 7 wins the arbitration).

A logical thread is a standardized communication between one initiator and one
target. Only one logical thread may be physically threaded on the bus at any
given time. Logical threads become physically threaded during the selection
phase on the SCSI bus when the initiator selects the desired target. As soon
as the target responds to selection and the initiator terminates the selection
phase, information transfer phases are performed under the control of the
target device. After the information transfer phases, logical threads are
either completed or are broken by disconnection. Threads that are
disconnected later resume when the target device reselects the initiator and
identifies itself with the established SCSI protocol. If enabled by the
initiator, the target device on the SCSI bus determines how many
disconnections and reselections are to occur for any logical thread. There
exists no limit on the number of disconnections and reselections that may
occur during the processing of an initiator command (request).

A single initiator may have more than one logical thread outstanding on the
SCSI bus (one physically threaded and others disconnected pending
reselection). This ability of an initiator to dispatch more than one logical
thread on the SCSI bus is referred to as multi-threading. Multi-threading is
only possible on the SCSI bus when the disconnect/reselect feature is enabled.
The initiator controls whether the disconnect/reselect feature is enabled
during the message-out phase immediately after the selection phase. (Bit 6 of
the identify message, if set, enables the target to disconnect and later
reselect the initiator.)

1-3

I

I
GENERAL INFORMATION

1.5 MVME327A FIRMWARE ARCHITECTURE

The MVME327A VMEbus to SCSI bus adapter architecture and design are optimized
for the VMEbus BPP interface to the SCSI bus and local floppy interface.
Hardware and firmware features are designed to achieve low overhead in
accessing SCSI devices from the VMEbus. The local floppy interface is a
secondary, low performance-oriented feature and does not require fast access.
The SCSI interface is allowed to operate unimpeded by local floppy activity.

The SCSI bus, as seen from the initiator's viewpoint, is really sequential in
nature--only one logical thread may be initiated at a time. Because multiple
SCSI threads can only be initiated one at a time, commands from the BPP
interface directed toward SCSI devices are processed sequentially on the
MVME327A. Sequential processing relieves the need for a multitasking manager
that would be required if concurrent processing was chosen for this
application. The concept of first-in-first-out is preserved when translating
a BPP request into SCSI requests. There is no guarantee, however, that the
SCSI target devices will complete their SCSI requests in such a manner that
order is preserved going back to the BPP interface. In other words, if a
single BPP channel contains three ordered requests for SCSI devices A, B, and
C (A before B before C), the MVME327A dispatches requests first to device A,
then to device B, then to device C. Because multi-threading is supported on
the MVME327A, there is no known order in which the requests are completed and
returned (in the form of completion status) to the MVME327A. Status is also
returned to the BPP interface in a first-back-first-out manner. No effort is
made to order requests to and from the BPP interface.

Channel priority is preserved for multiple BPP channels to the MVME327A.
Higher priority channels are emptied of requests before lower priority
channels. The concept of sequentiality applies only on a channel-by-channel
basis. That is, each BPP channel is serviced on a first-in-first-out basis.

Without concurrent processing requirements, the firmware for the MVME327A is
structured in a manner to lower the overhead associated with process switches.
The MC68010 microprocessor supports priority interrupt processing. This
hardware feature is a main influence in the structuring of the firmware.

The SCSI interface has the highest priority on the MVME327A. The SCSI
interface is treated as two processes for the MVME327A firmware. Process
number 1 is the DMA interface between the MVME327A SCSI FIFO buffers and the
VMEbus. Process number 2 is the SCSI bus interface to the MVME327A SCSI FIFO
buffers. Process number 1 has a higher priority than process number 2 because
DMA block switches must be capable of interrupting SCSI bus transfers to
implement scatter/gather (future feature). Consequently, the DMA interface
interrupt is assigned to levelS and the SCSI Bus Interface Chip (SBIC)
interrupt is assigned to level 4.

Because all inputs to the MVME327A come through the BPP interface to the
VMEbus, and because the SCSI bus interface is not to be pre-empted by floppy
activity, the BPP interface (process number 3) has the next higher priority on

1-4

GENERAL INFORMATION

the MVME327A. Completing SCSI activity is considered more important than
initiating new SCSI activity, so the BPP interface interrupt (refer to
attention interrupt in the CSR space control register) has priority level 3,
which is lower than the SBIC interrupt priority.

The local floppy drive interface (process number 4) has lower priority than
the SCSI bus interface. Because floppy activity is not to interfere with SCSI
activity, the floppy interface is made lower in priority than the BPP
interface, otherwise the floppy interrupts would interfere with SCSI traffic.
Therefore, the floppy interface interrupts are assigned to priority level 2.
The floppy interface consists of two 1K FIFO buffers, control logic, an
isolation buffer, and the floppy disk subsystem chip (WD37C65).

Floppy operations are supervised with operation time out interrupts. The
WD37C65 does not dedicate any of its silicon for the supervisory role
necessary for proper floppy operations. In other words, if a command is
issued to the WD37C65 to perform some function on the floppy drives, no
interrupt is generated if the floppy interface contains some exceptional
condition. To accommodate this shortcoming in the chip, the MVME327A provides
a timer to supervise floppy activity. Whenever a floppy command is issued to
the chip, the timer is programmed to interrupt the MC68010 in a predetermined
time out period. If this time out occurs and there is no outstanding floppy
interrupt pending, then the floppy operation is aborted and an error results.

In order to keep a reasonably accurate time, the timer interrupt must
supercede any other processing on the MVME327A. This is achieved by placing a
high priority on the timer interrupt (level 6). It is important to note that
the timer interrupt occurs only under three conditions that do not interfere
with SCSI traffic (because the amount of time spent in the level 6 interrupt
handler is less than 50 microseconds and this interrupt handler is not entered
very often). First, if the event programmed in the WD37C65 does not take
place before the time out period, the timer interrupt sets an error flag and
semaphore for the floppy firmware and then stops the timer; the error flag
causes the floppy firmware (running at a lower priority than the SCSI
interface and the BPP interface) to detect the error condition and act
accordingly. Second, if the traffic on the SCSI bus and BPP interface does
not allow the processor interrupt mask to be lowered below level 2, then the
floppy interface interrupt handler does not have a chance to cancel the timer
interrupt; this condition sets the floppy semaphore; but does not set the
error flag because a floppy interrupt is detected but not yet processed.
Third, if the floppy firmware does not get any new commands for the floppy
interface within a predetermined amount of time, then a MOTOR ON watchdog
timer interrupt causes the floppy motors to be turned off.

In summary, the MVME327A firmware is structured around the priority interrupt
hardware feature of the MC68010 to lower process switch overhead. No
supervisory process management is required because a sequential nature of the
SCSI bus allowed the MVME327A to process incoming requests for the SCSI bus
sequentially and to process incoming status from the SCSI bus sequentially.

1-5

I

I
GENERAL INFORMATION

Furthermore, the local floppy interface is designed not to interfere with SCSI
traffic by assigning its interrupts to a lower priority than the BPP interface
and the SCSI bus interface interrupts. Although a high priority timer
interrupt is dedicated for floppy timing functions, minimal interference on
the SCSI bus traffic is introduced by the timer interrupts.

1.6 BUFFERED PIPE PROTOCOL

The BPP is a Motorola standard for a communications mechanism between two
processors which can access a common address space in system memory.
Conceptually, information is passed as fixed length messages through pipes
shared by two processors. Each pipe serves as a one-way FIFO communication
path and is able to hold any number of messages.

The pipe is implemented as a queue, in which entries are connected as a
forward linked list. The queue is constructed such that it never becomes
empty, and therefore requires no observation by the communicating processors
prior to accessing the entries. The technique involves keeping a dummy entry
at the end of the queue at all times. The receiver never dequeues the dummy
entry. The sender adds to the queue by first adding a new dummy entry and
then using the old dummy entry to hold useful information. Because the dummy
entry buffers the queue from going empty, the data structure which contains
the messages is called a buffered pipe.

Command packets are not queued directly in the queue. Instead, a data
structure called a Buffered Pipe Envelope (BPE) is enqueued, and this envelope
is either flagged as NULL, or contains a valid packet pointer, a forward link
pointer, and a flag, as shown below.

NULL BPE
+---------------+
I I
I I
+---------------+
I I
I I
+---+---+---+---+
I * I I I I
+---+---+---+---+

* VALID FLAG = 00

FULL BPE
+---------------+
I LINK I
I (32-bit addr) I
+---------------+
IPACKET POINTER I
I (32-bit addr) I
+---+---+---+---+
I * I I I I
+---+---+---+---+

* VALID FLAG f 00

If the envelope is full, the packet pointer field contains a valid pointer.
The length is fixed at 32 bits and is a pointer to a command packet data
structure.

If the valid flag is nonzero, then the envelope is full and may be dequeued,
and LINK is the 32-bit start address of the next BPE in the queue.

1-6

GENERAL INFORMATION

If the valid flag is zero, then the envelope is NULL (i.e., it is a dummy
entry) and must not be dequeued; this entry marks the end of the queue.

It is important to keep the concept seen by the user of the buffered pipe
distinct from its physical implementation as a queue. What the user of the
interface sees is a virtual data structure called a buffered pipe into which
can be put a pointer; the pipe is sometimes empty. The physical
implementation, as shown below, is a queue of BPEs; there is always at least
one BPP in the queue, and the last BPE on the queue is always flagged as NULL.

~ PACKET
,.

PACKET

LAST ENVELOPE

(') ~ PACKET PTR. "-1t PACKET PTR.

(TAIL ~ r. HEAD

POINTER J VALID FLAG 0) I:" LINK LINK
(POINTER

SENDER __________ MESSAGE FLOW __________ RECEIVER

The BPP does not define how the pipes are physically implemented, except that
they must reside in a region of RAM shared between the communicating
processors. Also, the system design must provide some means for the host
processor to transmit the initial TAIL and HEAD pointers to the slave
processor when a new queue is established.

The BPP specification allows both interrupt driven and polled modes of
operation for the receiver to get messages from the pipe. Also, even though
messages are received in the order that are sent, the receiving processor may
process the messages in any useful order.

The protocol in no way restricts the content of the information sent. The
messages in the MVME327A firmware are pointers to command packet data
structures.

1-7

I

I
GENERAL INFORMATION

1.7 RELATED DOCUMENTATION

The following publications may provide additional helpful information. If not
shipped with this product, they may be purchased from Motorola Literature
Distribution Center, 616 West 24th Street, Tempe, AZ 85282; telephone (602)
994-6561.

DOCUMENT TITLE
MOTOROLA

PUBLICATION NUMBER
==

MVME327A VMEbus to SCSI Bus Adapter with Floppy
Interface User's Manual

MVME327A

NOTE: Although not shown in the above list, each Motorola MCD manual
publication number is suffixed with characters which represent the
revision level of the document, such as "/D2" (the second revision of
a manual); supplement bears the same number as the manual but has a
suffix such as "/A1" (the first supplement to the manual).

The following publications are available from the sources indicated.

SCSI Small Computer Systems Interface; draft X3T9.2/82-2 - Revision 17B;
Computer and Business Equipment Manufacturers Association, 311 First Street,
N.W., Suite 500, Washington, D.C. 20001

Common Command Set (CCS) of the Small Computer System Interface (SCSI)
X3T9.2/85-52 - Revision 4B; Computer and Business Manufacturer's Association,
311 First Street, N.W., Suite 500, Washington, D.C. 20001

1.8 MANUAL TERMINOLOGY

Throughout this manual, a convention has been maintained whereby data and
address parameters are preceded by a character which spec'ifies the numeric
format as follows:

$
%
&

dollar
percent
ampersand

specifies a hexadecimal number
specifies a binary number
specifies a decimal number

Unless otherwise specified, all address references are in hexadecimal
throughout this manual.

An asterisk (*) following the signal name for signals which are level
significant denotes that the signal is true or valid when the signal is low.

1-8

GENERAL INFORMATION

An asterisk (*) following the signal name for signals which are edge
significant denotes that the actions initiated by that signal occur on high to
low transition.

In this manual, assertion and negation are used to specify forcing a signal to
a particular state. In particular, assertion and assert refer to a signal
that is active or true; negation and negate indicate a signal that is inactive
or false. These terms are used independently of the voltage level (high or
low) that they represent.

1-9

I

CSR INTERFACE

CHAPTER 2 - COMMAND/STATUS REGISTER INTERFACE

2.1 INTRODUCTION

This chapter describes the interface between the host CPU and the MVME327A.
The interface consists of a set of basic commands sent through the
Command/Status Register (CSR) interface and a set of commands sent in packets
via virtual channels. The CSR commands establish and maintain the virtual
channels for host/MVME327A communications. After one or more virtual channels
are created, all other commands are transmitted between the host CPU and the
MVME327A on these channels. A virtual channel consists of a channel header
structure which defines the attributes of the channel, and two pipes. On one
pipe, the command pipe, the host CPU enqueues command packets for the
MVME327A. On the other pipe, the status pipe, the MVME327A enqueues status
packets for the host. A pipe is simply a queue or singly linked list with one
CPU manipulating the head pointer and another CPU manipulating the tail
pointer. This interface is called a non-busy interface because, once the
channels are established, the host CPU never finds the interface to be in a
busy state. This means that the host never has to wait to send a command.

2.2 CSR COMMAND PROTOCOL

This paragraph contains a discussion of the protocol followed by a driver when
issuing a CSR command to the MVME327A.

The CSR space is accessible from the VMEbus as well as from local RAM space.
This permits both the host CPU and the MVME327A CPU to read and write any
location in this CSR space. The table below shows the MVME327A CSR space as
viewed by the VME system bus driver software. The MVME327A control register
and the MVME327A TAS register are registers in this space which are used when
CSR commands are issued to the MVME327A.

BYTE OFFSET PARAMETER DESCRIPTION

$00 MVME327A address register (MSW)
$02 MVME327A address register (LSW)
$04 MVME327A address modifier MVME327A data bus width
$06 MVME327A control register
$08 MVME327A status register MVME327A diagnostic register
$OA not used
SOC not used
$OE TAS register

NOTE: Byte offset from MVME327A VME system base address.
==

2-1

I

I

CSR INTERFACE

The bit definitions for the MVME327A control register and the MVME327A TAS
register are shown in the following figures:

Bit ->1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
I 5 1 4 1 3 1 2 I 1 1 0 1 9 1 8 1 7 161 5 1 4 1 3 1 2 1 1 101
+---+

1 1 1 1 \ I
1 1 1 1 V
1 1 1 1 1
1 1 1 1 +- - RESERVED and UNUSED
I 1 1 1
1 1 1 +-- INHIBIT SFAIL* Bit (1 Inhibits)
1 1 +-- ATTENTION Bit (1 Generates Local MVME327A Interrupt)
1 1+-- RESET Bit (1 Resets the MVME327A)
1+-- BUSY Bit (1= MVME327A is BUSY--Status to Host only)

MVME327A Control Register at Offset $06

Bit ->1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 I 0 1
151 4 131 2 1 1 1 0 1 9 1 8 1 7 1 6 1 5 1 413 1 2 1 1 101
+---+

1 1 1 1 \ I
1 1 1 1 V
1 1 1 1 1
1 1 1 1 +-- TEST AND SET COMMANDS
I 1 1 +-- COMMAND COMPLETE Flag
1 1 +------ VALID STATUS Flag
1 +---------- VALID COMMAND Flag
+-------------- TEST AND SET Bit

MVME327A TAS Register at Offset $OE

The protocol to be followed when issuing a CSR command to the MVME327A is as
foll ows:

2-2

a. Driver checks that the BUSY bit in the CSR control register is clear.
If the BUSY bit is set, the driver must wait until it is cleared to
continue this handshaking with the MVME327A.

b. Driver gains access to the MVME327A CSR space by using the test and set
instruction on the MVME327A TAS register TAS bit (bit 15). When TASing
of this bit indicates that the bit was clear prior to the TAS the
driver has "possession" of the CSR space.

c. Driver writes the CSR command op-code in the MVME327A TAS register
(bits 0 through 11), MVME327A address register, MVME327A address
modifier register, and MVME327A data bus width register.

CSR INTERFACE

d. Driver sets the VALID COMMAND flag in the MVME327A TAS register (bit
14).

e. Driver generates an attention bit interrupt on the MVME327A by setting
bit 13 of the MVME327A control register.

f. Driver polls the VALID STATUS flag until set.

g. Driver reads the MVME327A status register.

h. Driver sets the COMMAND COMPLETE flag (bit 12 of the MVME327A TAS
register).

i. Driver generates another attention bit interrupt on the MVME327A.

2.3 CSR COMMANDS

Initial communications between a driver and the MVME327A firmware are
performed using the MVME327A CSR space. When channels are created there is
generally no need for the host and MVME327A to communicate using the CSR
commands.

CSR Test And Set Commands

COMMAND FIELD

$000
$001
$002

$003-$FFF

TEST AND SET COMMAND

Not Used
Create Channel
Delete Channel

Reserved

The table above lists the commands that are issued through the CSR space.

2.3.1 Create Channel CSR Command

Channels consist of a command pipe, a status pipe, and a channel header.
Channel command packets are shipped by a driver to the MVME327A via command
pipes. Channel status packets are returned to drivers via status pipes.

To create a channel a driver builds a channel structure and informs the
MVME327A of the existence of the structure. It does this by issuing a "create
channel" CSR command to the MVME327A.

2-3

I

I

CSR INTERFACE

The parameters passed with this CSR command are the address of the channel
header structure, the address modifier associated with the channel structure,
and the data bus width. These are placed in the MVME327A address register,
the MVME327A address modifier register, and the MVME327A data bus width
register, respectively.

Upon successful execution of the CSR command, the MVME327A firmware adds the
channel to its internally kept list of existing channels and assigns a unique
channel number which is used if the channel is later deleted. This channel
number is written in the channel header by the MVME327A firmware. Refer to
the table in the CSR Status Register paragraph in this chapter for the
possible returned command status values in response to a "create channel"
command. Up to 255 channels may be created.

2.3.2 Delete Channel Command

The delete channel command is used to free up resources when a channel is not
needed for further communications. It MUST be used to delete a channel if the
memory, pipes, etc., associated with the previously active driver are
deallocated by the driver memory manager. Failure to do this may result in
unrecoverable errors because the MVME327A firmware continues to poll the
command pipe of a previously existing channel. The command pipe head pointer
and status pipe tail pointer could be pointing to memory which may now be
reused for another task.

To delete a channel a driver issues a "delete channel" CSR command to the
MVME327A.

The parameters passed with this CSR command are the address of the channel
header structure, the address modifier associated with the channel structure,
and the data bus width. These are placed in the MVME327A address register,
the MVME327A address modifier register, and the MVME327A data bus width
register, respectively.

Refer to the table in the CSR Status Register paragraph in this chapter for
the possible returned command status values in response to a "delete channel"
command.

2.4 RETURN STATUS

The following paragraphs discuss the return status.

2.4.1 CSR Status Register

The CSR status register is used to return the status of the a CSR command.
The status register is valid when the VALID STATUS bit is set in the CSR TAS
register. A status of zero signifies correct command completion and nonzero
status indicates an error. If a catastrophic failure occurs, the MVME327A
asserts SYSFAIL and inserts an MVME327A error code into the CSR status
register. The table below lists the possible status values issued in response
to a CSR command.

2-4

VALUE

$00
$01
$02
$03
$04
$05
$06
$07
$AA
$AC
$BB
$CC
$EE

CSR Status Register Values

ERROR

Correct Command Completion
Invalid Command

Could Not Read Channel Header
Could Not Write Channel Header

VME DMA Read failed
VME DMA Write failed
No more free channels
Channel does not exist

Local Address Error
AC Fail Condition

Local Bus Error
Confidence Test Error

Unexpected Exception Error

NOTE $AA through $EE are catastrophic errors.

2.4.2 SYSFAIL Handling

CSR INTERFACE

SYSFAIL is asserted on MVME327A power up and remains set until the MVME327A
has completed its internal diagnostics and initialization sequence. If the
MVME327A suffers a non-recoverable internal error during operation, SYSFAIL is
asserted and the cause of the failure is posted in the CSR status register.
The MVME327A must be reset and reinitialized before operation can be resumed.

2.4.3 Diagnostic Register

The diagnostic register is used to return test completion and error codes for
the power up confidence tests and for host invoked diagnostics. The bit
definitions for the status byte in the diagnostic register are listed below.

Bit 0 - MPU Failure

If bit 0 is set, then the MPU has failed to execute instructions properly.

The MPU test loads the registers with test values, performs various
operations, and checks that the results are correct.

Bit 1 - RAM Failure

If bit 1 is set, then the onboard RAM has failed.

The power up test uses a limited set of test patterns for its checks. The
self test command does a more extensive set of tests. If the test passes,
then the contents of the RAM is the same as before the self test was
initiated.

2-5

I

I

CSR INTERFACE

Bit 2 - ROM Failure

If bit 2 is set, then the onboard ROM has failed.

The ROM test does an exclusive-OR checksum of the entire ROM and compares
the result to O. The actual checksum of the ROM is stored in the last 2
bytes of ROM.

Bit 3 - MAP Decoder Failure

If bit 3 is set, then the self test has not been able to access the PIIT,
module status register, SCSI controller, the bus interface module, or the
floppy disk controller.

Bit 4 - IRQ Failure

If bit 4 is set, then the IRQ has failed the test.

The IRQ test checks for the correct level and vector from the PIIT timer,
the data channel controller, the SCSI interface, the CSR attention bit,
the SWI3 bit, the floppy disk controller, and the SWIl bit.

Bit 5 - Timer Failure

If bit 5 is set, the timer has failed the test.

The power up self test does not check the timer prescaler, but the IPC
self test does.

Bit 6 - SCSI Failure

If bit 6 is set, the SCSI interface has failed.

The SCSI interface chip (but not the SCSI bus) is reset and the proper
status and interrupts are checked.

Bit 7 - Reserved.

2-6

BPP DATA STRUCTURES

CHAPTER 3 - BPP DATA STRUCTURES

3.1 INTRODUCTION

This chapter describes and illustrates the data structures associated with the
Buffered Pipe Protocol (BPP). They are the channel header, envelope, and
packet.

3.2 COMMAND CHANNEL HEADER STRUCTURE

A single channel is composed of a command pipe and a status pipe. Each of
these pipes is composed of a head pointer and a tail pointer that point to
envelopes. Pipes must always contain at least one envelope (called the NULL
envelope) in which case both the head and tail pointer point to the same
envelope. A NULL envelope is an envelope that has a NULL link pointer. The
following represents the channel structure expected by the MVME327A:

Command Channel Header Structure

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$00

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16

command pipe head pointer (MSW)
command pipe head pointer (LSW)
command pipe tail pointer (MSW)
command pipe tail pointer (LSW)
status pipe head pointer (MSW)
status pipe head pointer (LSW)
status pipe tail pointer (MSW)
status pipe tail pointer (LSW)

interrupt level interrupt vector number
channel pri ority address modifi er
channel number valid flag
data bus width reserved

DESCRI PTION

Command Pipe

The command pipe structure consists of two 32-bit pOinters. The
first pointer points to the envelope at the head of the command
pipe. The second pointer points to the envelope at the tail of
the command pipe which is always a NULL envelope.

3-1

I

I

BPP DATA STRUCTURES

$08

$10

$11

$12

$13

$14

$15

$16

$17

3-2

Status Pipe

The status pipe structure consists of two 32-bit pointers. The
first pointer points to the envelope at the head of the status
pipe. The second pointer points to the envelope at the tail of
the status pipe which is always a NULL envelope.

Interrupt Level

This interrupt level is the level at which the MVME327A
interrupts the host CPU when execution of a command packet is
complete.

If the interrupt level is zero, no interrupts are issued by the
MVME327A for this channel and the host CPU must poll the status
pipe to determine when a status packet has been returned.

Interrupt Vector

This is the interrupt vector used by the MVME327A for all
interrupts issued by the MVME327A to the host CPU for this
channel.

Channel Priority

This priority is used by the MVME327A when it polls all active
channels looking for valid command packets. The highest
priority is $00 and the lowest priority is $FF.

Address Modifier

This address modifier is used by the MVME327A when accessing all
envelopes a~d-packets on the VMEbus for this channel.

Channel Number

This is a unique channel number assigned by the MVME327A at the
time a channel is created.

Valid Flag

This flag is set by the MVME327A to a nonzero value when the
channel is created to indicate to the host that the MVME327A now
recognizes this channel and is ready to accept command packets
on it.

Data Bus Width

This field is not used by the MVME327A.

Reserved -

This field is reserved.

BPP DATA STRUCTURES

3.3 ENVELOPE

The envelope format is as shown in the table below.

Envelope Format

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$00

$04

$08

$09-$OB

$00
$02
$04
$06
$08
$OA

DESCRIPTION

Link

link pointer (MSW)
link pointer (LSW)

MVME327A command/status packet pointer (MSW)
MVME327A command/status packet pointer (LSW)

valid flag reserved
reserved

The link field points to the next envelope in the pipe.

Packet Pointer

This 32-bit field points to the packet which contains the
information specific to the command being issued.

Valid Flag

This 8-bit field is the last field in an envelope to be
modified. A zero value indicates that the envelope is INVALID,
a nonzero value indicates that the envelope is VALID.

The valid flag should only be set by a driver when a packet
contains a valid command to be processed by an MVME327A. At all
other times the valid flag is cleared. The host CPU should
never enqueue an envelope on a command pipe with the valid flag
set to a nonzero value unless all other data in the envelope and
packet is valid.

Reserved.

3-3

I

I

BPP DATA STRUCTURES

3.4 PACKET

The packet format is as shown in the table below.

MVME327A Packet Format

BYTE OFFSET PARAMETER DESCRIPTION

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$lA

$lC
$lE
$20
$22
$24
$26
$28
$2A
$2C
$2E

command
device type

Command Parameters

reserved

command control
unit number

address modifier data bus width
primary address (MSW)
primary address (LSW)

secondary address (MSW)
secondary address (LSW)

transfer count (MSW)
transfer count (LSW)
scatter/gather count
command parameter 1
command parameter 2
command parameter 3

Status Parameters

fatal error code recovered error status
additional error code/status

retry count reserved
error status address (MSW)
error status address (LSW)

termination transfer count (MSW)
termination transfer count (LSW)

status parameter 1
status parameter 2
status parameter 3

The following are descriptions of the command channel packet parameters:

OFFSET

$00

3-4

DESCRI PTION

Command

The command field specifies the command the MVME327A is to
execute. The table below is a list of commands supported by the
MVME327A.

$01

BPP DATA STRUCTURES

MVME327A Command Codes
==

VALID FOR DEVICE TYPE
LOCAL SCSI SCSI SCSI LOCAL

COMMAND FLOPPY DISK TAPE 327A 327A
CODE OPERATION ($01) ($05) ($05) ($05) ($OF)

==

$00 BPP Test X X X X X
$01 Read X X X
$02 Write X X X
$03 Read Descriptor X X X
$04 Write Descriptor X X X
$05 Format X X
$06 Fix Bad Spot X
$10 Read Status X
$11 Load/Unload/Re-tension X
$12 Write Fil emark X
$13 Rewind X
$14 Erase X
$15 Space X
$20 Enable Target X
$21 Disable Target X
$22 Reserve Unit X X X
$23 Release Unit X X X
$25 Reset SCSI X X X
$26 Custom SCSI Command X X X
$27 Self Test X
$28 Target Wait X
$29 Target Execute X
$2B Set SCSI Address X
$2D Open X X

==

Command Control

This field contains flags that are used by the command. the use
of this field is command specific.

3-5

I

I

BPP DATA STRUCTURES

$02

$03

$06

$07

3-6

Device Type

This field specifies a unique type of device for the primary
device. The MVME327A valid device types are listed below.

Device Type Assignments

DEVICE
TYPE

DEVICE
DESCRIPTION

$01 Local Floppy Disk
$05 SCSI Bus
$OF MVME327A

Unit Number

This is the unit number for the peripheral device to be accessed
in a transfer between a device and host memory. SCSI bus device
types break this field into two nibbles; the high order nibble
represents the SCSI bus address (SCSI controller), and the low
order nibble represents the SCSI peripheral device address or
often referred to as the Logical Unit Number (LUN) for that
controller's device.

Address Modifier

The address modifier is used by the MVME327A when accessing all
data structures pointed to by the packet (e.g., user data
buffers and disk descriptors).

Command packets are transferred using the address modifier
written into the address modifier register when the channel is
created by the host CPU. This approach gives the host software
the freedom to put packets in one address space and data in
another address space, if desired.

Data Bus Width -

This field tells the MVME327A the width of the VMEbus data path.
The MVME327A attempts to do 32-bit data transfers if told to in
this field. If data is long word aligned, transfers are more
efficient; data that is odd word aligned is transferred 16 bits
at a time.

Data Bus Width Codes

BUS WIDTH CODE BUS WIDTH

1
2

16-Bit
32-Bit

$08

$OC

$10

$14

$16

$lC

$lD

$lE

BPP DATA STRUCTURES

Primary Address

Command dependent. Refer to individual command description for
usage.

Secondary Address

Command dependent. Refer to individual command description for
usage.

Transfer Count

Command dependent. Refer to individual command description for
usage.

Scatter/Gather Count

This field is the scatter/gather count and flag. If it is zero,
the command is not using the scatter/gather feature.

Command Parameters 1, 2,.and 3

These fields may be used by a device for specific commands as
needed. If these fields are required, they are described in the
paragraphs for each command.

Fatal Error Code

If this field is nonzero, a fatal error occurred, and the value
is the error code (refer to Appendix D).

Recovered Error Status

If a recovered error occurs, the MVME327A can return status
indicating what the nature of the problem was, and perhaps what
action was taken to correct it. The recovered error status
field is set to a nonzero value to indicate that error recovery
was performed by the MVME327A.

Additional Error Code/Status

The status word is returned in one of two formats. In format 1,
the upper byte is nonzero because a request sense (SCSI) command
was issued at the request of the target. (A request sense
(SCSI) command returns formatted error information about the
last SCSI command to the target.) The upper byte contains the
FM bit, EOM bit, ILl bit, and sense key (byte 02 of the sense
data). The lower byte contains the additional sense code (byte
12 of the sense data), if available, from the sense data. The
additional sense code byte is device dependent. Refer to
Appendix E for a partial list of these error code definitions.

3-7

I

I

BPP DATA STRUCTURES

$20

$22

$26

$2A,2C

$2E

In format 2, the upper byte is clear and the lower byte contains
a specific MVME327A fatal error code that is relative to the
current fatal error. Refer to Appendix D for a list of these
error code definitions.

Additional Error Code/Status
Format 1

+-----+-----+-----+-----+-------------+------------------------+
I 15 I 14 I 13 I 12 I Bits 11-8 I Bits 7-0 I

+-----+-----+-----+-----+-------------+------------------------+
I FM I EOM I ILl I Res I Sense Code I Additional Sense Code I

+-----+-----+-----+-----+-------------+------------------------+
Format 2

+------------------------------+-------------------------------+
I Bits 15-8 I Bits 7-0 I

+------------------------------+-------------------------------+
I 0 I Error Code I

+------------------------------+-------------------------------+
Retry Count

If retries were required during this operation, this field will
indicate the number of retries attempted.

Error Status Address

If a transfer terminates because of an error, this field has the
logical block (or sector) address at which the error occurred.
For example, when a disk error occurs this contains the logical
block where the error occurred.

Termination Transfer Count

This field contains the number of bytes successfully
transferred, regardless of the completion status of the command.

Status Parameters 1, 2 are not used.

Status Parameter 3

If fatal error code $01 (bad descriptor) or $02 (bad command) is
returned, then this status word contains the byte offset where
the bad field is located. If the offset is -1 ($FFFF), then the
bad field is not indicated.

It should be noted that only the "command" portion of the packet (offsets $00
through $IB) are read by the firmware, and that the firmware returns values in
(or alters) only the "status" portion of the packet (offsets $IC through $2F).

3-8

BUFFERED PIPE PROTOCOL

CHAPTER 4 - BUFFERED PIPE PROTOCOL

4.1 INTRODUCTION

This chapter describes and illustrates how a host and MVME327A communicate
using the Buffered Pipe Protocol (BPP).

4.2 ESTABLISHING DRIVER/MVME327A CHANNEL COMMUNICATIONS

The following paragraphs deal with setting up a channel that is used to send
packets between a host and an MVME327A. Communications between a driver and I
an MVME327A are handled almost exclusively via command/status packets which ~
are exchanged along these channels. The channel header contains a command
pipe and a status pipe. Host drivers pass packets to the MVME327A via the
command pipe; the MVME327A returns processed packets via the status pipe.

Before packets can be sent to an MVME327A, a create channel command has to be
issued by the host driver.

A channel header structure is built in memory with a NUll envelope on the
command pipe, a NUll envelope on the status pipe, and additional parameters. A
NUll envelope is an envelope that does not have the valid flag set and has a
NUll link pointer. It's packet pointer can either be NUll or be pointing to a
packet. The figure below illustrates what the channel header structure with
empty channels looks like.

As shown below, the channel header has one envelope on the command pipe and
one envelope on the status pipe. The link fields of the envelopes are NUll.
The valid flag in the envelopes are zero, meaning that these are the last
envelopes in the pipes. Having NUll link pointers and the valid flags set to
zero defines them as NUll envelopes.

4-1

I

BUFFERED PIPE PROTOCOL

channel header env
+------------------+ +------+
ICMD pipe head ptr 1--------->1 link I----->NULL
+------------------+ +--->+------+
ICMD pipe tail ptr 1-----+ env
+------------------+ +------+
ISTAT pipe head ptrl--------->I link I----->NULL
+------------------+ +--->+------+
ISTAT pipe tail ptrl-----+
+------------------+
1 interrupt level 1
+------------------+
1 interrupt vector 1
+------------------+
Ipriority 1
+------------------+
laddress modifier 1
+------------------+
Ichannel number 1
+------------------+
Ivalid flag 1
+------------------+
Idata bus width 1
+------------------+

The rest of the fields in the channel header are initialized with the
appropriate values, except for the valid flag and the channel number. The
channel number and valid flag are set by the MVME327A at the successful
completion of the create channel command.

After the channel header has been set up the host executes the create channel
command. This is a CSR command, therefore, the driver must set the TAS bit in
the MVME327A TAS Register. When the TAS bit has been set, the driver can
proceed with the CSR command protocol. This protocol is described in detail
in the Chapter 2, CSR Interface.

After checking the CSR status register to ensure that no problem arose in
creating the channel, the driver can begin sending commands to the MVME327A.

4.2.1 Envelope/Packet Enqueueing

The protocol to be followed by the host when enqueueing an envelope onto the
command pipe is as follows:

4-2

a. Fill in all necessary fields in a packet, and initialize the envelope
pointed to by the command tail pointer with the packet address in the
packet pointer field. This envelope is referred to as the command
envelope and is the old NULL envelope. The command envelope should
have a NULL link field and the valid flag should be zero.

BUFFERED PIPE PROTOCOL

b. Set the link field of the envelope pointed to by the command pipe tail
pointer field (the command envelope) to the address of a new NULL
envelope. This new NULL envelope must have a link field of zero and
valid flag cleared to zero.

c. Set the valid flag in the command envelope. This should be the last
field that is accessed in the envelope.

d. Set the command pipe tail pointer field to the new NULL envelope.

e. Interrupt the MVME327A by setting the attention bit in the MVME327A
control register. Note that the TAS bit and register are not needed
for BPP communications.

4.2.2 Envelope/Packet Dequeueing

The protocol to be followed by the host when dequeueing an envelope from a
pipe is as follows:

a. Access the envelope pointed to by the pipe head pointer field.

b. If the valid flag of this envelope is set, then the packet associated
with this envelope has been processed by the MVME327A at the other end
of the pipe, and is ready to be dequeued. To dequeue it, set the pipe
head pointer field to the value in the envelope link pointer field.

c. If the valid flag is not set in the envelope, then the MVME327A at the
other end of the pipe has not completed the processing of a packet and
the envelope is not ready for dequeueing.

It is possible for more than one processed envelope to be on a pipe waiting to
be dequeued. A driver can dequeue envelopes and process their associated
packets until it encounters an envelope with the valid flag clear.

4.2.3 Buffered Pipe Protocol Summary

Packets are always enqueued on the tail of a pipe and dequeued from the head
of a pipe.

The host driver only updates the command pipe tail pointer and the status pipe
head pointer; it never updates the command pipe head pointer or the status
pipe tail pointer. The host driver always enqueues envelopes at the tail of
the command pipe and dequeues envelopes from the head of the status pipe.

4-3

I

I

BUFFERED PIPE PROTOCOL

The MVME327A only updates the command pipe head pointer and the status pipe
tail pointer; it never updates the command pipe tail pointer or the status
pipe head pointer. The MVME327A always dequeues envelopes from the head of
the command pipe and enqueues envelopes at the tail of the status pipe.

The original command pipe head pointer and status pipe tail pointer in the
host channel header are never updated by the MVME327A firmware; only a copy of
them in the MVME327A local memory are kept current.

4-4

OTHER DATA STRUCTURES

CHAPTER 5 - OTHER DATA STRUCTURES

5.1 INTRODUCTION

This chapter sets forth several other data structures or tables which are used
by the firmware.

5.2 DEVICE DESCRIPTORS

Device descriptors define the characteristics of a device. There is a single
descriptor defined to handle all disk drive types and two descriptors defined
to handle tape drive types. A particular device may not use all of the fields
in a descriptor. If a field is not needed, it should be ignored.

5.2.1 Disk Descriptor Table

This descriptor is specific to disk devices. Disk descriptors are used for
SCSI disks and the local floppy disk interface of the MVME327A.

BYTE OFFSET

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$lA
$lC
$IE
$20
$22

Disk Descriptor Table

PARAMETER DESCRIPTION

controller type peripheral type
number of heads fixed/removable media

number of cylinders (MSW)
number of cylinders (LSW)

bytes per sector
logical block size

logical sectors per track reserved sectors per zone
hard/soft sector flag interleave factor
format init character retry count

step rate floppy format
pre-compensation cylinder

reduced write current cylinder
zone type alternate unit number of alternates

ECC flag spiral offset
reserved
reserved
reserved

cylinder skew cache entry size
==

5-1

I

I

OTHER DATA STRUCTURES

OFFSET

$00

$01

$02

$03

$04

$08

$OA

SOC

SOD

$OE

5-2

DESCRI PTION

Cont ro 11 er type

A predefined (SCSI) controller type code. Refer to Appendix A.

Peripheral type

A predefined (SCSI) peripheral type code. Acceptable codes are:

$01 - Floppy disk
$02 - Rigid disk

Number of heads

This is the number of heads a disk has.

Fixed/removable media (NOTE 1)

This is a flag indicating that the media is fixed or removable
(0 = fixed, 1 = removable).

Number of cylinders

The number of physical cylinders that the disk contains.

Bytes per sector

The number of bytes per sector.

Logical block size

The size of data transfers to and from the device. The logical
block size must be equal to, or an integral multiple of, the
sector size.

Logical sectors per track

The number of logical sectors per track. Ine logical sectors
per track plus the reserved sectors per track equal the number
of physical sectors per track.

Reserved sectors per zone

The number of alternate sectors (slipped sectors) per zone.
Refer to offset $18 for zone type.

Hard/soft sector flag (NOTE 1)

A flag which indicates whether the disk drive is soft or hard
sector format (0 = soft, 1 = hard).

OTHER DATA STRUCTURES

$OF Interleave factor

The interleave factor determines the physical separation of
logical sectors. For example, a disk with interleave factor of
2 has logical sectors 1 and 2 one physical sector apart rather
than being physically contiguous as they would be with
interleave of 1. A value of zero specifies the drive default
interleave factor.

$10 Format init character

$11

The format init character is the character used to fill in the
data field when a format command is performed. Many SCSI drives
do not offer a choice, in which case this field is ignored.

Retry count

The number of times a command which accesses the disk can retry.

$12 Step rate (NOTE 1)

$13

Specifies the stepping rate, in units of time, for the drive
(floppy unit = 200 microseconds, Winchester unit 10
microseconds). The MVME327A, if the step rate is not exactly
what the drive expects, rounds up to the next appropriate step
rate that the drive expects.

Floppy format (NOTE 2)

Specifies the floppy disk characteristics. This field is used
along with the bytes per sector field. See the figure below.

Floppy Format Field
+-----+-----+-----+------------+-----------+---------+-----------+----------+
17161514 13 1211 101
+-----+-----+-----+------------+-----------+---------+-----------+----------+
I res I res I res I trk 0 dens I media tpi I drv tpi I data rate I encoding I

+-----+-----+-----+------------+-----------+---------+-----------+----------+

BIT DESCRIPTION

7 res - reserved.

6 res - reserved.

5 res - reserved.

4 track 0 dens - specifies the density of track 0 relative to the
rest of the floppy (0 = one half of the rest of floppy, 1 = same
as the rest of floppy).

5-3

I

I

OTHER DATA STRUCTURES

$14

$16

$18

$19

$1A

$1B

$22

$23

5-4

3 media tpi - specifies the density (tracks per inch) of the media
(0 = 48 tpi, 1 = 96 tpi).

2 drv tpi - specifies the density (tracks per inch) of the drive
(0 = 48 tpi, 1 = 96 tpi).

o

data rate - specifies what the data rate is (0 = 5-1/4 inch, 1 =
8-inch).

encoding - specifies what the encoding is (0 = FM, 1 = MFM).

Pre-compensation cylinder number (NOTE 1)

Reduced write current cylinder number (NOTE 1)

Zone type (upper nibble)

o = zone is track.
1 = zone is cylinder.

Alternate unit (lower nibble)

Indicates what unit the number of alternates field is in (0
tracks, 1 = cylinders).

Number of alternates

The number of alternates reserved for bad spot mapping.

ECC correction

This flag enables the automatic correction of errors with ECC.
If ECC is not enabled then ECC is still used to detect errors
but does not correct the errors (0 = disable automatic error
correction, 1 = enable automatic error correction).

Spiral offset (NOTE 1)

The spiral offset is the number of sectors that sector 0 for
each track is offset from the previous track.

Cylinder skew (NOTE 1)

The cylinder skew is the number of sectors to offset the logical
sector 0 of the next cylinder from logical sector 0 of the
current cylinder.

Cache entry size (NOTE 3)

The size of the cache entries, in units of logical blocks, for
this drive.

OTHER DATA STRUCTURES

NOTES: 1. Ignored by embedded SCSI controllers.
2. Used for floppy disk only. Ignored for rigid disk.
3. Ignored unless cache feature is present on drive.

5.2.2 Streaming Tape Descriptor Table

This descriptor is specific to streaming tape devices.

Streaming Tape Descriptor Table
==

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$00

$01

$02

$03

$00
$02
$04
$06
$08
$OA
SOC
$OE
$10
$12
$14
$16
$18
$1A
$IC
$IE
$20
$22

controller type peripheral type = $05
number of drive tracks number of media tracks
extend on wri te fl ag byte swap fl ag
buffered mode fl ag reserved

physical bytes per block
logical block size

QIC format
streaming count

reserved retry count

DESCRI PTION

Contro 11 er type

minimum read transfer size
minimum write transfer size

reserved
reserved
reserved
reserved
reserved
reserved
reserved

A predefined controller type code. Refer to Appendix A.

Peripheral type

A predefined device type code of $05 for streaming tape.

Number of drive tracks

This field specifies the number of tracks on a drive.

Number of media tracks

This field specifies the number of tracks on a tape.

5-5

I

I

OTHER DATA STRUCTURES

$04

$05

$06

$08

$OA

$OC

$OE

$11

$12

$14

5-6

Extend on write flag

Indicates the use of extend on write mode. In the extend mode,
the tape controller continues streaming, even if the data buffer
has been exhausted (O=non-extend, l=extend).

Byte swap flag

Controls the byte swap mode (O=no byte swap, l=byte swap).

Buffered mode flag

Controls the buffered mode of write operation. Non-buffered
mode causes the tape controller to report status when all data
blocks have been written to tape. Buffered mode causes the tape
controller to report status as soon as the data has been
transferred to the tape controller's buffer (O=non-buffered,
l=buffered).

Physical bytes per block

The number of physical bytes per block.

Logical block size

The size of data transfers to and from the tape device. The
logical block size has to be a multiple of the physical block
size.

QIC format

Specifies the standardized recording
QIC-ll, the field contains an eleven,
contains twenty-four, for QIC-120,
hundred-twenty, etc.

Streaming count

format on the media. For
for QIC-24, the field

the field contains one-

Specifies the number of times the tape controller re-writes the
last block during a write operation in the event the data buffer
is exhausted. Use of this field is controller dependent.

Retry count

The number of times a command which accesses the tape can retry.

Minimum read transfer size

Use of this field is controller specific.

Minimum write transfer size

Use of this field is controller specific.

OTHER DATA STRUCTURES

5.2.3 Start/Stop Tape Descriptor Table

This description is specific to start/stop tape devices.

Start/Stop Tape Descriptor Table

BYTE OFFSET PARAMETER DESCRIPTION

$00
$02
$04
$06

$08
$OA

$OC
$OE

$10
$12
$14
$16
$18
$IA
$IC
$IE
$20
$22

contro 11 er type
speed select code

fl ag 1
reserved

peripheral type = $06
density select code

flag 2
retry count

physical block size

logical block size

reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved

==

OFFSET

$00

$01

$02

DESCRI PTION

Controller type

A predefined controller type code. Example: $16 - Kennedy 8124
(1/2-inch)

Peripheral type = $06 (start/stop tape)

A predefined device type code of $05 for streaming tape.

Speed select code

On controllers/drivers which support more than one tape speed,
the following codes are used to select a particular speed:

5-7

I

I

OTHER DATA STRUCTURES

$03

$04

$05

$07

5-8

$00 - use default speed
$01 - use lowest speed
$02 - use next higher speed

(codes in ascending order of speeds, as many as necessary)

$OF - use highest speed

Density select code

This code value defines the tape width, reel-to-reel or
cartridge, number of tracks, BPI, recording method, and if the
tracks are recorded in parallel or in series. Codes from X3T9.2
are:

$00 - use default
$01 - 1/2-inch reel-to-reel, 9-track parallel, 800 BPI NRZI
$02 - 1/2-inch reel-to-reel, 9-track parallel, 1600 BPI PE
$03 - 1/2-inch reel-to-reel, 9-track parallel, 6250 BPI GCR
$06 - 1/2-inch reel-to-reel, 9-track parallel, 3200 BPI PE

Flag 1

This is bit encoded as follows:

Bit Definition

7-1 reserved

Flag 2

o buffered write

record is not written until internal tape
controller buffer is full. Status returns on
completion of data transfer across the SCSI bus.

This is bit encoded as follows:

Bit Definition

7-1 reserved

o byte swap

perform a byte swap on data.

Retry count

The number of times a command which accesses the tape can retry.
A zero value means use the default.

$08

$OC

OTHER DATA STRUCTURES

Physical block size

This value is the number of bytes per physical block. Zero
specifies variable length blocks.

Logical block size

This value specifies the size of block data transfers to/from
the tape device in bytes. It must be an integer multiple of the
physical block size. Zero specifies variable length records.

5.3 SCATTER/GATHER LIST

A scatter/gather list may be used in several high level or SCSI level
commands. Basically, this list of one or more entries substitutes for the
single source or destination address for data movement. Each entry in the
scatter/gather list consists of a long word (32-bit) address followed by a
long word byte count. The total number of these 8-byte entries in the list
must be shown in the command packet "scatter/gather count" parameter.

No ending entry or flag is necessary in the scatter/gather list. A pointer to
the scatter/gather list is put in place of the VME buffer address in the
command packet. If a scatter/gather list is not being used, the
scatter/gather count must be zero.

The total byte count of all scatter/gather list entries must equal the packet
"transfer block count" multiplied by the device logical block size (as
described in the descriptor table).

5-9

I

MVME327A COMMANDS

CHAPTER 6 - MVME327A COMMANDS

6.1 INTRODUCTION

This chapter discusses the two types of commands used with the BPP interface
to the MVME327A: high level and SCSI level. These commands may be sent to
one of three possible destinations as defined in the command packet "device
type" field:

$01 - local floppy disk drive(s)
$05 - SCSI bus
$OF - MVME327A

6.2 LOCAL FLOPPY COMMANDS

All commands to the local floppy disk drive(s) are of the high level command
type. These commands are summarized in the packet paragraph in Chapter 3 and
fully documented in Chapter 7. These high level commands to floppy directly
control the operation of the one or more local floppy drives.

6.3 SCSI BUS COMMANDS

There are two ways to communicate a command to a SCSI bus peripheral with the
MVME327A: high level commands and SCSI level commands. Each method is
discussed in the following paragraphs.

6.3.1 High Level Command Translation

There are two ways to communicate a command to a SCSI bus or local floppy
peripheral via the MVME327A: high level commands and SCSI level commands.
These paragraphs cover briefly the high level command method.

In previous chapters, the BPP envelope was shown to contain a pointer to a
command/status packet. In this packet is the particular high level command
along with necessary parameters and pointers. This packet is built by the
process issuing the command and resides in memory under control of that
process.

When this packet is sent to the MVME327A via BPP (actually only a pointer to
this packet is sent), the firmware copies the command portion of the packet
over the VMEbus into MVME327A local RAM memory. The firmware then decides the
device that the command is meant for and queues the packet appropriately.

6-1

I

I

MVME327A COMMANDS

When the command packet's turn comes up to be processed, the high level
command is translated into zero to many SCSI packets, sending each to the SCSI
bus. In the case of the local floppy, the high level command is passed onto
the portion of firmware dedicated to this operation, and no SCSI packets or
SCSI bus utilization is done.

As an example, with a READ command for a SCSI controller having a Winchester
disk drive, normally only one SCSI packet would be built. The exception would
be if the amount of data requested exceeded either the SCSI CDB parameter size
or the number of bytes could not be expressed by a 24-bit number (limitation
of SCSI controller chip), then the firmware builds two or more SCSI packets to
perform the one high level READ command.

Some high level commands may result in several different SCSI packets being
built and issued. For instance, on certain supported controllers, the WRITE
DESCRIPTOR high level command could result in SCSI commands "test unit ready",
"mode sense", "mode sense", and "mode select" being issued over the SCSI bus.
Other high level commands, such as READ DESCRIPTOR, may not even access the
SCSI bus.

Because of the wide latitude given in using SCSI controllers, various
controllers can comply with the SCSI standard and yet differ in parameters,
format of parameters, etc. The Common Command Set (CCS) narrows these
differences down, but still (i n its present form) 1 eaves chance for
implementing things differently. The MVME327A firmware supports, with its
high level commands, certain SCSI controllers. The controller/device type
code is given to the firmware in the initial WRITE DESCRIPTOR (or READ
DESCRIPTOR) command. The firmware keeps track of this information for
succeeding high level commands to the associated SCSI address/logical unit,
and can compensate for the different implementations of SCSI based upon this
information.

One controller type code (hexadecimal OF) has been assigned for CCS disk
controllers. When this code is specified in a WRITE (or READ) DESCRIPTOR, the
firmware expects the SCSI controller to comply with the CCS specifications
(Common Command Set, Rev. 4B), and builds SCSI packets for further high level
commands based on the standard and information it can obtain from the
controller by the way of "mode sense" command return data.

Refer to Appendix A for controller type codes and other information on
supported controllers.

6.3.2 SCSI Level Commands

The second type of command to the MVME327A is what might be termed a low level
command. This is implemented in the MVME327A firmware as high level commands
CUSTOM SCSI and TARGET EXECUTE which allow the user to specify on a low level
exactly the command and data being sent via the SCSI bus.

Both commands contain a pointer in its command packet which points to a SCSI
packet. The SCSI packet contains the low level SCSI bus command and other
pertinent data.

6-2

MVME327A COMMANDS

6.3.3 SCSI Specific Packet

The SCSI specific packet supplied by the user is in the same form as the
packet built by the firmware. In this packet are such necessary data as the
SCSI Command Descriptor Block (COB), data length, the data pointer, the
message(s) to be sent to the SCSI device, the buffer addresses to store
message(s) and the status from the SCSI device, and a script. Various other
SCSI and firmware specific data are also passed through the SCSI specific
packet. For more information regarding the use of SCSI specific packets refer
to Appendix B (Custom SCSI Command Example), and Appendix C (Target Role).

The table below defines the SCSI specific packet parameters.

BYTE OFFSET

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$IA
$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E
$30
$32
$34
$36
$38
$3A
$3C
$3E

SCSI Specific Packet Description

command length
COB 0
COB 2
COB 4
COB 6
COB 8
COB A

SCSI status
message in flag

PARAMETER DESCRIPTION

link pointer (MSW)
link pointer (LSW)

control word

data length (MSW)
data length (LSW)
data pointer (MSW)
data pointer (LSW)

reserved
COB 1
COB 3
COB 5
COB 7
COB 9
COB B

initiator 10
message out flag

message in length
message in pointer (MSW)
message in pointer (LSW)

message in byte 1 message in byte 2
message in byte 3 message in byte 4
message in byte 5 message in byte 6

message out length
message out pointer (MSW)
message out pointer (LSW)

message out byte 1 message out byte 2
message out byte 3 message out byte 4
message out byte 5 message out byte 6

script byte 1 script byte 2
script byte 3 script byte 4
script byte 5 script byte 6
script byte 7 script byte 8

6-3

I

I

MVME327A COMMANDS

OFFSET

$00

$04

DESCRIPTION

Link pointer is for users wanting to perform linked SCSI
commands. This pointer is used to forward link another SCSI
specific packet. This linking process may go on indefinitely,
depending on the support provided by the SCSI target. The link
bit in the COB control byte must be properly set for the proper
linkage by the SCSI target and the MVME327A firmware. Refer to
the SCSI specification X3T9.2/82-2 Rev. 17B, paragraph 6.2.6 for
a description of the control byte and linked commands.
Currently not supported. Must be zero.

The control word contains the control information needed to
transfer data across the MVME327A.

Custom SCSI Command Control Word Bit Definitions
+-----+------+-----+------+--------+--------+----+------+--------+--------+
I 15 I 14 I 13 I 12 I 11 I 10 I 9 I 8 I 7 I 6-0 I
+-----+------+-----+------+--------+--------+----+------+--------+--------+
I DMA I SYNC I PAR I SCHK I LWDATA I B SWAP I SG I LINK I NO ATN I res I
+-----+------+-----+------+--------+--------+----+------+--------+--------+

6-4

BIT

15

14

13

12

11

10

DESCRI PTION

DMA - if set, SCSI data phase uses the DMA controller
to transfer data from the SCSI bus to VME memory.
This bit should only be set for reads and writes.

SYNC - if set, the SCSI data phase is synchronous.

PAR - if set, parity checking is enabled.

SCHK - if set, status checking is done by the user.

LWDATA - if set, data phase can use 32-bit (long word)
transfers.

B SWAP - if set, byte swap is enabled for data phase.
Only use I6-bit transfers when byte swap is turned on
(the MVME327A does not perform word swapping).

9 SG - if set, the data transfer uses scatter/gather and
a scatter/gather list is used for the transfers.

8 LINK - if set, a linked SCSI command is to be
performed. Linked commands are only used in custom
SCSI applications. Currently not supported.

7 NO ATN - if set, do not assert ATN during selection.
Message protocol will not be instituted.

6-0 res - reserved.

$06

$07

$08-13

$14

$18

$IC

$10

$IE

$IF

$20

$22

$26-2B

$2C

$2E

MVME327A COMMANDS

Command length is the length of the command descriptor block.
This value is usually 6, 10, or 12 (decimal).

Reserved for future use.

COB is the command descriptor block. If the MVME327A is
operating in initiator role, this COB is passed to the threaded
SCSI target. If the MVME327A is operating in target role, the
COB received from the initiator is loaded in this area.

Data length is the length of the data transfer (in bytes) which
is located in this field.

Data pointer points to the buffer where the data is to be
read/written. If scatter/gather is used, this field points to
the scatter/gather list.

SCSI status byte is either read or written from/to this
location. In initiator role, the status byte that is received
from the target is stored in this location. In the target role,
the contents of this location are passed to the initiator.

Initiator 10 byte is used for target role only. When a WAIT
target command is given to the MVME327A, a SCSI specific packet
is given to the MVME327A to hold the received COBs. When a
selection of the MVME327A takes place, a COB is written to this
SCSI specific packet and returned to the user for processing.
The initiator on the SCSI bus that selected the MVME327A may
need to be identified for implementing the RESERVE and RELEASE
commands. The SCSI address of the selecting initiator is passed
to the user in this byte.

Message in flag signals that the message is in this SCSI
specific packet ($00) or that there is a pointer to a message
buffer ($FF).

Message out flag signals that the message is in this SCSI
specific packet ($00) or that there is a pointer to a message
buffer ($FF).

Message in length is the message length in bytes.

If message in pointer flag is set ($FF), then this location
contains a pointer to a message buffer in VME memory.

If message in bytes flag is not set ($00), then these locations
contain the message.

Message out length is the message length in bytes.

If message out pointer flag is set ($FF), then this location
contains a pointer to a message buffer in VME memory.

6-5

I

I

MVME327A COMMANDS

$32-37

$38-3F

If message out bytes flag is not set ($00), then these locations
contain the message.

Script byte locations contain the script for the indicated SCSI
command. Scripts and script codes are defined in Appendix Band
C.

6.4 MVME327A COMMANDS

There are several high level commands (including "custom SCSI command" which
then allows a SCSI level command) which are either exclusively for the
MVME327A adapter board (such as self test) or shared with the SCSI bus (such
as "reserve unit"). These commands are summarized in the packet paragraph in
Chapter 3 and detailed in Chapter 7.

6-6

HIGH LEVEL COMMANDS

CHAPTER 7 - HIGH LEVEL COMMANDS

7.1 INTRODUCTION

The MVME327A high level commands are described in this chapter.

In the following description of the commands, any field that is marked XX or
XXXX is a don't care field for that particular command. To assure upward
compatibility with future revisions of MVME327A firmware, it is recommended
that all don't care (XX and XXXX) areas of the command packet be cleared to
zero, particularly the "command control" byte at offset $01. For the status
section of the packet, which is returned to the user after completion of a
command, the don't care areas denote invalid data and should be ignored by the
user.

7.1.1 BPP Test Command ($00)

The BPP test command is used to assure the functionality of a channel and BPP
protocol. It is essentially a No Operation (NOP) and is useful in driver
software development.

7.1.1.1 BPP Test Command Packet

The table below defines the BPP test command packet parameters.

BPP Test Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

$00 command = $00 XX
$02 device type xx
$04 XXXX
$06 XXXX
$08 XXXX
$OA XXXX
$OC XXXX
$OE XXXX
$10 XXXX
$12 XXXX
$14 XXXX
$16 XXXX
$18 XXXX
$lA XXXX

7-1

I

I

HIGH LEVEL COMMANDS

OFFSET

$00

$02

7.1.1.2

DESCRIPTION

Command value for BPP test ($00).

Device type. Valid types are $01, $05, and $OF.

BPP Test Command Returned Status

The table defines the BPP test command status packet parameters.

BPP Test Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$lC

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code XX
XXXX

XX XX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

DESCRIPTION

A nonzero fatal error code if the command did not complete
successfully.

7.1.2 Read Command ($01)

A read command is issued to read logical blocks of data from the media.

7-2

HIGH LEVEL COMMANDS

7.1.2.1 Read Command Packet

The table defines the read command packet parameters.

Read Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$IA

command = $01 command control
device type unit number

XX XX
address modifier data bus width

logical block number (MSW)
logical block number (LSW)

VME buffer address (MSW)
VME buffer address (LSW)

transfer block count (MSW)
transfer block count (LSW)

scatter/gather count
XXXX
XXXX
XXXX

==

OFFSET

$00

$01

DESCRIPTION

Command value for read ($01).

Command control specifies the options for the read command.

+--------+------+-----+-----+-----+-----+-----+-----+
I 7 161 5 I 4 I 3 I 2 I 1 101
+--------+------+-----+-----+-----+-----+-----+-----+
I NC I RR I SIL I res I res I res I res I res I
+--------+------+-----+-----+-----+-----+-----+-----+

BIT DESCRIPTION

7 NC - If set, bypass the cache.
6 RR - Read reverse. If set, read in reverse direction

on tape. Ignored by disk devices and tape devices
not supporting reverse reading.

5 SIL - Suppress illegal length indicator. If set,

4
3
2
1
o

res
res
res
res
res

suppress the illegal length indication on tape
drives supporting it. Ignored otherwise.

- reserved.
- reserved.
- reserved.
- reserved.
- reserved.

7-3

I

•

HIGH LEVEL COMMANDS

$02

$03

$06

$07

$08

$OC

$10

$14

7-4

Device type.

Unit number to which the command applies.

Address modifier of the memory space where the VME read buffer
is located.

Data bus width is a code to indicate the width of the data bus.
$01 indicates a 16-bit data bus, $02 indicates a 32-bit data
bus.

Logical block number is the source of the read data for direct
access devices. This field indicates the starting block number.
For sequential devices this field is ignored. The block size is
defined in the descriptor.

VME buffer address is a pointer to the destination VME memory
where a read buffer ;s located. However, if the scatter/gather
count (offset $14) is nonzero, this field is a pointer to a
scatter/gather table that contains a number of entries specified
by the scatter/gather count.

Transfer block count ;s the number of blocks of data to be
transferred from device media to VME memory. With variable
length blocks (available on some tape drives), this count
effectively becomes the length of the block in bytes.

Scatter/gather count is the number of entries in the
scatter/gather table. If the count is zero, the command is not
using the scatter/gather feature.

HIGH LEVEL COMMANDS

7.1.2.2 Read Command Returned Status

The table defines the read command status packet parameters.

Read Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$IC

$ID

$IE

$20

$22

$26

$2A

$2E

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code recovered error status

DESCRIPTION

additional error code/status
retry count XX

error status address (MSW)
error status address (LSW)

termination transfer count (MSW)
termination transfer count (LSW)

filemark position (MSW)
filemark position (LSW)

status parameter 3

A nonzero fatal error code if the command did not complete
successfully.

A nonzero recovered error status if the command completed
successfully after retries.

Additional status error information if the fatal error code is
nonzero.

The number of retries that were performed by the MVME327A.

This is error status address. If a transfer terminates because
of an error, this field has the logical block address at which
the error occurred.

The number of bytes successfully transferred.

For sequential devices (e.g., tape), filemark position count.
If value returned is $FFFFFFFF, position is indeterminate. This
field is unused for random access devices (e.g., disk).

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7-5

I

•

HIGH LEVEL COMMANDS

7.1.3 Write Command ($02)

A write command is issued to write logical blocks of data to the media.

7.1.3.1 Write Command Packet

The table below defines the write command packet parameters.

BYTE OFFSET

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$lA

Write Command Packet

PARAMETER DESCRIPTION

command = $02 XX
device type unit number

XX XX
address modifier data bus width

DESCRI PTION

logical block number (MSW)
logical block number (LSW)

VME buffer address (MSW)
VME buffer address (LSW)

transfer block count (MSW)
transfer block count (LSW)

scatter/gather count
XXXX
XXXX
XXXX

$00 Command value for write ($02).

$02 Device type.

$03 Unit number to which the command applies.

$06 Address modifier of the memory space where the data buffer is
located.

$07 Data bus width is a code to indicate the width of the data bus.
$01 indicates a 16 bit data bus, $02 indicates a 32 bit data
bus.

$08 Logical block number is the destination of the write data for
direct access devices. This field indicates the starting block
number. For sequential devices this field is ignored. The
block size is defined in the descriptor.

7-6

SOC

$10

$14

7.1.3.2

HIGH LEVEL COMMANDS

VME buffer address is a pointer to the source VME memory where
the write data is located. However, if the scatter/gather count
(offset $14) is nonzero, this field is a pointer to a
scatter/gather table that contains a number of entries specified
by the scatter/gather count.

Transfer block count is the number of blocks of data to be
transferred from VME memory to device media. With variable
length blocks (available on some tape drives), this count
effectively becomes the length of the block in bytes.

The scatter/gather count is the number of entries in the
scatter/gather table. If the count is zero, the command is not
using the scatter/gather feature.

Write Command Returned Status

The table defines the write command status packet parameters.

Write Command,Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$IC

$10

$IE

$20

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code recovered error status

DESCRI PTION

additional error code/status
retry count XX

error status ad~ress (MSW)
error status address (LSW)

termination transfer count (MSW)
termination transfer count (LSW)

filemark position (MSW)
filemark position (LSW)

status parameter 3

A nonzero fatal error code if the command did not complete
successfully.

A nonzero recovered error status if the command completed
successfully after retries.

Additional status error information if the fatal error code is
nonzero.

The number of retries that were performed by the MVME327A.

7-7

I

•

HIGH LEVEL COMMANDS

$22 This is error status address. If a transfer terminates because
of an error, this field has the logical block address at which
the error occurred.

$26 The number of bytes successfully transferred.

$2A For sequential devices (e.g., tape), filemark position count.
If value returned is $FFFFFFFF, position is indeterminate. This
field is unused for random access devices (e.g., disk).

$2E If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7.1.4 Read Descriptor Command ($03)

If the read descriptor command is sent before the first write descriptor
command for a device type/unit number combination, the device descriptor table
must contain the controller type code and peripheral type code prior to
issuing the read descriptor command. In this case, this command queries the
device/unit and returns available information in the descriptor table.

Otherwise, if a write descriptor command has been previously issued for a
device type/unit number combination, the read descriptor command returns a
copy of the information existing in the internally kept descriptor table, put
there by the write descriptor command .

7.1.4.1 Read Descriptor Command Packet

The table below defines the read descriptor command packet parameters.

Read Descriptor Command Packet

BYTE OFFSET PARAMETER DESCRIPTION
==

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$IA

command = $03
device type

XX
address modifier

xxx X
XXXX

XX
unit number

XX
data bus width

pointer to device descriptor table (MSW)
pointer to device descriptor table (LSW)

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

==

7-8

OFFSET

$00

$02

$03

$06

$07

$OC

7.1.4.2

DESCRIPTION

Command value for read descriptor ($03).

Device type.

Unit number to which the command applies.

HIGH LEVEL COMMANDS

Address modifier of the memory space where the device descriptor
table is located.

Data bus width is a code to indicate the width of the data bus.
$01 indicates a 16 bit data bus, $02 indicates a 32 bit data
bus.

Pointer to the device descriptor table is a pointer into VME
memory where the device descriptor table begins.

Read Descriptor Command Returned Status

The table defines the read descriptor command status packet parameters.

Read Descriptor Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$lC

$1D

$IE

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code recovered error status
additional error code/status

retry count XX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

status parameter 3

DESCRIPTION

A nonzero fatal error code if the command did not complete
successfully.

A nonzero recovered error status if the command completed
successfully after retries.

Additional status error information if the fatal error code is
nonzero.

7-9

I

I

HIGH LEVEL COMMANDS

$20 The number of retries that were performed by the MVME327A.

$2E If fatal error code is $01 (bad descriptor) or $02 (bad
command), then this field contains an offset into the descriptor
table or command packet of the offending parameter.

7.1.5 Write Descriptor Command ($04)

The write descriptor command defines the characteristics of a device. The
host builds a device descriptor table and passes the table to the MVME327A via
the write descriptor command. Usually, the first command issued by the host
to a device is the write descriptor command. In fact, a successful write
descriptor command is required before most other high level commands can be
sent to the specific device. (Exceptions are Read Descriptor, BPP Test, and
Open commands.)

7.1.5.1 Write Descriptor Command Packet

The table below defines the write descriptor command packet parameters.

BYTE OFFSET

$00
$02
$04
$06
$08
$OA
SOC
$OE
$10
$12
$14
$16
$18
$lA

Write Descriptor Command Packet

PARAMETER DESCRIPTION

command = $04
device type

XX
address modifier

XXXX
XXXX

XX
unit number

XX
data bus width

pointer to device descriptor table (MSW)
pointer to device descriptor table (LSW)

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

==

$00

$02

$03

7-10

DESCRIPTION

Command value for write descriptor ($04).

Device type.

Unit number to which the command applies.

$06

$07

$OC

HIGH LEVEL COMMANDS

Address modifier of the memory space where the device descriptor
table is located.

Data bus width is a code to indicate the width of the data bus.
$01 indicates a 16-bit data bus, $02 indicates a 32-bit data
bus.

Pointer to the device descriptor table is a pointer into VME
memory where the device descriptor table begins.

7-11

I

I

HIGH LEVEL COMMANDS

7.1.5.2 Write Descriptor Command Returned Status

The table defines the write descriptor command status packet parameters.

Write Descriptor Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

$lC
$lE
$20
$22
$24
$26
$28
$2A
$2C
$2E

OFFSET

$lC

$lD

$lE

$20

$2E

fatal error code recovered error status
additional error code/status

retry count XX
XXXX
XXX X
XXXX
XXXX
XXXX
XXXX

status parameter 3

DESCRIPTION

A nonzero fatal error code if the command did not complete
successfully.

A nonzero recovered error status if the command completed
successfully after retries.

Additional status error information if the fatal error code is
nonzero.

The number of retries that were performed by the MVME327A.

If fatal error code is $01 (bad descriptor) or $02 (bad
command), then this field contains an offset into the descriptor
table or command packet of the offending parameter.

7.1.6 Format Command ($05)

The format command ensures that the medium is formatted as specified by the
write descriptor parameters. A list of defects may be supplied by the user so
they can be locked out. This list, if supplied, is in one of two formats:
defect list type 1 is a physical sector format, defect list type 2 is a bytes
from index format. All data is lost on the area of the disk that is
formatted. Many SCSI drives permit formatting the entire disk only.

Primary defect list:

7-12

Refers to the list of defects recorded on the medium (if any) by the
manufacturer or written later by a specific command.

HIGH LEVEL COMMANDS

Grown defect list:

Includes defects identified to or by the controller. This list does not
include the primary list of defects. These defects are classified as
flaws appearing when the medium has been formatted and used to store and
retrieve data.

Certification:

During format, after the format pattern is written, the disk is verified.

7.1.6.1 Format Command Packet

The table below defines the format command packet parameters.

Format Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$IA

command = $05 command control
device type unit number

XX XX
address modifier data bus width

starting cylinder
starting head reserved

DESCRIPTION

pointer to defect list (MSW)
pointer to defect list (LSW)

number of tracks (MSW)
number of tracks (LSW)

XXXX
defect list type

defect list count
XXXX

Command value for format ($05).

OFFSET

$00

$01 Command control specifies the options for the format command.

+-----+-----+-----+-----+-----+-----+-----+-----+
17161514131211101
+-----+-----+-----+-----+-----+-----+-----+-----+
1 CL 1 DP 1 DC 1 SF 1 res 1 res 1 res 1 res 1
+-----+-----+-----+-----+-----+-----+-----+-----+

7-13

I

•

HIGH LEVEL COMMANDS

$02

$03

7-14

BIT DESCRIPTION

7 CL Complete list

clear and no defect list is supplied: use
existing grown defect list, no user list is
supplied.

clear and defect list is supplied: use existing
grown defect list, add user list to the grown
list.

set and no defect list is supplied: do not use
existing grown defect list, no user list is
supplied.

set and defect list is supplied: do not use
existing grown defect list, use user list as the
complete defect list.

6 DP Disable primary list of defects

clear: use manufacturer's primary list if the
controller/drive supports it.

set: do not use manufacturer's primary list.

5 DC Disable certification process

clear: use certification if the controller/drive
supports it. (Drive is certified at format
time.)

set: do not use certification.

4 SF Stop format

clear: stop formatting when any of the
controller/drive defect lists cannot be accessed.

set: format even if a controller/drive defect
list cannot be accessed.

3 res - reserved.
2 res - reserved.
1 res - reserved.
o res - reserved.

Device type.

Unit number to which the command applies.

$06

$07

$08

$OA

SOC

$10

$16

$18

HIGH LEVEL COMMANDS

Address modifier of the memory space where the defect list is
located.

Data bus width is a code to indicate the width of the data bus.
$01 indicates a 16-bit data bus, $02 indicates a 32-bit data
bus.

Cylinder number where formatting is to start. This field is
ignored if the entire disk is to be formatted.

Starting head number where formatting is to start. This field
is ignored if the entire disk is to be formatted.

Pointer to defect list is a pointer to the defect list in VME
memory. This field is ignored if the defect list count is zero.

Number of tracks to format. If the value is $FFFFFFFF, the
entire disk is to be formatted, and the starting cylinder and
head numbers are ignored.

Format of the defect list: $01 - physical sector format (defect
list type 1), $02 - cylinder, head, and bytes from index format
(defect list type 2). Refer to the Fixed Bad Spot Command
paragraph in this chapter. This field is ignored if the defect
list count is zero.

Defect list count is the number of entries in the defect list.
If no defect list is supplied, this value must be zero.

7.1.6.2 Format Command Returned Status

The table defines the format command status packet parameters.

BYTE OFFSET

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

Format Command Status Packet

PARAMETER DESCRIPTION

fatal error code recovered error status
additional error code/status

retry count XX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

status parameter 3

7-15

I

I

HIGH LEVEL COMMANDS

OFFSET

$lC

$10

$lE

$20

$2E

7.1.6.3

DESCRI PTION

A nonzero fatal error code if the command did not complete
successfully.

A nonzero recovered error status if the command completed
successfully after retries.

Additional status error information if the fatal error code is
nonzero.

The number of retries that were performed by the MVME327A.

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

Defect List Formats

The defect list formats used by the format, read manufacturer's defect list
and write manufacturer's defect list command, are defined in the following
paragraphs.

Physical Sector Defect List (Type 1)

Each defect descriptor for the physical sector format specifies the beginning
of a defect location on the medium. Each defect descriptor is comprised of
the cylinder number, head number, and sector (within the track) of the defect.
The defect descriptors MUST be in ascending order. For determining ascending
order, the cylinder number is considered the most significant part of the
address and the sector is considered the least significant. A defect sector
of $FFFFFFFF indicates that the entire track shall be reassigned.

Physical Sector Format

BYTE NUMBER DEFECT DESCRIPTOR

$00 cylinder number of defect (MSB)
$01 cylinder number of defect
$02 cylinder number of defect
$03 cylinder number of defect (LSB)
$04 head number of defect (MSB)
$05 head number of defect (LSB)
$06 defect sector on track(MSB)
$07 defect sector on track
$08 defect sector on track
$09 defect sector on track (LSB)

==

7 -16

HIGH LEVEL COMMANDS

Bytes from Index Defect List (Type 2)

Each defect descriptor for the bytes from index format specifies the beginning
of a defect location on the medium. Each defect descriptor is comprised of
the cylinder number, head number, and bytes from index of the defect. The
defect descriptors MUST be in ascending order. For determining ascending
order, the cylinder number is considered the most significant part of the
address and the bytes from index is considered the least significant. A
defect bytes from index of $FFFFFFFF indica~es that the entire track shall be
reassigned.

Bytes From Index Format

BYTE NUMBER DEFECT DESCRIPTOR

$00 cylinder number of defect (MSB)
$01 cylinder number of defect
$02 cylinder number of defect
$03 cylinder number of defect (LSB)
$04 head number of defect (MSB)
$05 head number of defect (LSB)
$06 defect bytes from index (MSB)
$07 defect bytes from index
$08 defect bytes from index
$09 defect bytes from index (LSB)

7.1.7 Fix Bad Spot Command ($06)

The fix bad spot command fixes
whatever means the controller uses.
any other method it needs. The
The fix bad spot command allows the
reformatting the disk.

a defective sector or track on the disk by
It could map a sector, a track, or use

location of the bad spot must be supplied.
host to fix bad spots on a disk without

7-17

I

I

HIGH LEVEL COMMANDS

7.1.7.1 Fix Bad Spot Command Packet

The table below defines the fix bad spot command packet parameters.

Fix Bad Spot Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$00

$01

7-18

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$1A

command = $06
device type

XX
address modifier

XXXX
XXXX

command control
unit number

XX
data bus width

pointer to defect list (MSW)
pointer to defect list (LSW)

XXXX

DESCRI PTION

XXXX
XXXX
XXX X

defect list count
XXXX

Command value for fix bad spot ($06).

Command control specifies the options for the fix bad spot
command.

+-----+-----+-----+-----+-----+-----+-----+----------+
17161514131211101
+-----+-----+-----+-----+-----+-----+-----+----------+
1 res 1 res 1 res 1 res 1 res 1 res 1 res 1 alt type 1
+-----+-----+-----+-----+-----+-----+-----+----------+

BIT DESCRIPTION

7 res - reserved.
6 res - reserved.
5 res - reserved.
4 res - reserved.
3 res - reserved.
2 res - reserved.
1 res - reserved.
o alt type - defines the type of alteration to use. A

zero indicates that MVME327A should attempt
to do sector mapping, a one indicates that
the MVME327A should map the entire track to
an alternate track.

$02

$03

$06

$07

$OC

$18

7.1.7.2

HIGH LEVEL COMMANDS

Device type.

Unit number to which the command applies.

Address modifier of the memory space where the defect list is
located.

Data bus width is a code to indicate the width of the data bus.
$01 indicates a 16-bit data bus, $02 indicates a 32-bit data
bus.

Pointer to defect list in the VME memory. The defect list is in
the form of a list of logical sectors sorted in ascending order.
Note that the MVME327A returns a logical sector number if an
error occurs on data transfer commands. This returned value may
be placed in the (sorted) defect list to fix the bad spot. Each
entry in the defect list is a long word (32 bits).

Defect list count is the number of entries in the defect list.

Fix Bad Spot Command Returned Status

The table defines the fix bad spot command status packet parameters.

Fix Bad Spot Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$IC

$10

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code recovered error status
additional error code/status

retry count XX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

status parameter 3

DESCRI PTION

A nonzero fatal error code if the command did not complete
successfully.

A nonzero recovered error status if the command completed
successfully after retries.

7-19

I

I

HIGH LEVEL COMMANDS

$IE Additional status error information if the fatal error code is
nonzero.

$20 The number of retries that were performed by the MVME327A.

$2E If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7.1.8 Read Status Command ($10)

The read status command applies to tape media only and returns "drive not
ready", "tape write protected", and filemark position information.

7.1.8.1 Read Status Command Packet

The table below defines the read status command packet parameters.

BYTE OFFSET

$00
$02
$04
$06
$08
$OA
SOC
$OE
$10
$12
$14
$16
$18
$IA

Read Status Command Packet

PARAMETER DESCRIPTION

command = $10
device type = $05

XX
XX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XX
unit number

XX
XX

==

$00

$02

$03

7-20

DEseRI PTION

Command value for read status ($10).

Device type must be SCSI ($05).

Unit number to which the command applies.

HIGH LEVEL COMMANDS

7.1.8.2 Read Status Command Returned Status

The table defines the read status command status packet parameters.

Read Status Command Status Packet
==

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$IC

$10

$IE

$20

$2A

$2E

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code recovered error status

DESCRI PTION

additional error code/status
retry count XX

XXXX
XXXX
XXXX
XXXX

filemark position (MSW)
filemark position (LSW)

status parameter 3

A nonzero fatal error code if the command did not complete
successfully. The minimum status is drive not ready, write
protected, or no error.

A nonzero recovered error status if the command completed
successfully after retries.

Additional status error information if the fatal error code is
nonzero.

The number of retries that were performed by the MVME327A.

For sequential devices (e.g., tape), filemark position count.
If value returned is $FFFFFFFF, position is indeterminate. This
field is unused for random access devices (e.g., disk).

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7-21

I

I

HIGH LEVEL COMMANDS

7.1.9 load/Unload/Re-tension Command ($11)

This command performs a tape load, unload, or are-tension.

7.1.9.1 load/Unload/Re-tension Command Packet

The table below defines the load/unload/re-tension command packet parameters.

Load/Unload/Re-tension Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$00

$01

7-22

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$lA

command = $11
device type = $05

XX
XX

DESCRIPTION

XXXX
xxx X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXX X
XXXX

command control
unit number

XX
XX

Command value for load/unload/re-tension ($11)

This command control field contains flags that are used by the
load/unload/re-tension command.

+-----+-----+-----+-----+-----+-----+-----+------+
17161514131211101
+-----+-----+-----+-----+-----+-----+-----+------+
1 I 1 res I res I res 1 res 1 res 1 RET 1 LOAD 1
+-----+-----+-----+-----+-----+-----+-----+------+

BIT DESCRIPTION

7 I (immediate) - If this bit is set, status is returned
after command is accepted (before operation is
complete).

6 res - reserved.
5 res - reserved.
4 res - reserved.

$02

$03

7.1.9.2

HIGH LEVEL COMMANDS

3 res - reserved.
2 res - reserved.

1 RET If this bit is set, tape re-tension is performed
on the tape media before the completion of this
command. Re-tension usually forces the tape to
move from BOT to EOT and back to BOT. This
command option may not be available on all tape
devices. On those not supporting are-tension,
this bit is ignored.

o LOAD - If this bit is set, the tape is positioned at
BOT after the execution of the command. If this
bit is not set, the tape may be positioned
either at the BOT or the EOT, depending on the
particular tape controller.

Device type must be SCSI ($05).

Unit number to which the command applies.

Load/Unload/Re-tension Command Returned Status

The table defines the load/unload/re-tension command status packet parameters.

Load/Unload/Re-tension Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

$lC
$lE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code recovered error status
additional error code/status

retry count XX
XXXX
XXXX
XXXX
XXXX

filemark position (MSW)
filemark position (LSW)

status parameter 3
==

$lC

$10

OEseR I PTION

A nonzero fatal error code if the command did not complete
successfully.

A nonzero recovered error status if the command completed
successfully after retries.

7-23

I

•

HIGH LEVEL COMMANDS

$lE

$20

$2A

$2E

Additional status error information if the fatal error code is
nonzero.

The number of retries that were performed by the MVME327A.

For sequential devices (e.g., tape), filemark position count.
If value returned is $FFFFFFFF, position is indeterminate. This
field is unused for random access devices (e.g., disk).

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7.1.10 Write Filemark ($12)

The write filemark command is used to write one or more filemarks to the tape.

7.1.10.1 Write Filemark Command Packet

The table below defines the write filemark command packet parameters.

Write Filemark Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$00

$02

$03

$10

7-24

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$lA

command = $12
device type = $05

XX
XX

DESCR I PTION

XXXX
XXXX
XXXX
XXXX

filemark count
filemark count

XXXX
XXX X
XXXX
XXX X

(MSW)
(LSW)

Command value for write filemark ($12).

Device type must be SCSI ($05).

Unit number to which the command applies.

XX
unit number

XX
XX

Number of sequential filemarks to be written on the tape.

HIGH LEVEL COMMANDS

7.1.10.2 Write Filemark Command Returned Status

The table defines the write filemark command status packet parameters.

Write Filemark Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$lC

$lD

$lE

$20

$2A

$2E

$lC
$lE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code recovered error status

DESCRIPTION

additional error code/status
retry count XX

XXXX
XXXX
XXXX
XXXX

filemark position (MSW)
filemark position (LSW)

status parameter 3

A nonzero fatal error code if the command did not complete
successfully.

A nonzero recovered error status if the command completed
successfully after retries.

Additional status error information if the fatal error code is
nonzero.

The number of retries that were performed by the MVME327A.

For sequential devices (e.g., tape), filemark position count.
If value returned is $FFFFFFFF, position is indeterminate. This
field is unused for random access devices (e.g., disk).

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7-25

I

I

HIGH LEVEL COMMANDS

7.1.11 Rewind Command ($13)

The rewind command causes the tape to be rewound to beginning-of-tape.

7.1.11.1 Rewind Command Packet

The table below defines the rewind command packet parameters.

Rewind Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$00

$01

$02

$03

7-26

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$IA

command = $13
device type = $05

XX
XX

DESCRI PTION

Command value for rewind ($13)

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

command control
unit number

XX
XX

Command control specifies the options for the rewind command.

+-----+-----+-----+-----+-----+-----+-----+-----+
I 7 I 6 I 5 I 4 I 3 I 2 I 1 101

+-----+-----+---~~+~~~~~+---~-+-----+-----+-----+

I I I res I res I res I res I res I res I res I

+-----+-----+-----+-----+-----+-----+-----+-----+

BIT DESCRIPTION

6-0 res - reserved.

7 I (immediate) - if set, completion status is returned
immediately upon acceptance of command by the
controller (before rewind is complete).

Device type must be SCSI ($05).

Unit number to which the command applies.

HIGH LEVEL COMMANDS

7.1.11.2 Rewind Command Returned Status

The table defines the rewind command status packet parameters.

Rewind Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$IC

$10

$IE

$20

$2A

$2E

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code recovered error status

DESCRI PTION

additional error code/status
retry count XX

XXXX
XXXX
XXXX
XXXX

filemark position (MSW)
filemark position (LSW)

status parameter 3

A nonzero fatal error code if the command did not complete
successfully.

A nonzero recovered error status if the command completed
successfully after retries.

Additional status error information if the fatal error code is
nonzero.

The number of retries that were performed by the MVME327A.

For sequential devices (e.g., tape), filemark position count.
If value returned is $FFFFFFFF, position is indeterminate. This
field is unused for random access devices (e.g., disk).

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7-27

I

•

HIGH LEVEL COMMANDS

7.1.12 Erase Command ($14)

The erase command is used to erase a complete tape or if the controller is
capable, a part of the tape.

7.1.12.1 Erase Command Packet

The table below defines the erase command packet parameters.

Erase Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$00

$01

7-28

$00
$02
$04
$06
$08
$OA
SOC
$OE
$10
$12
$14
$16
$18
$lA

command = $14
device type = $05

XX
XX

DESCRIPTION

Command value for erase ($14).

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

command control
unit number

XX
XX

Command control specifies the options for the rewind command.

+-----+-----+-----+-----+-----+-----+-----+-----+
17161514131211101
+-----+-----+-----+-----+-----+-----+-----+-----+
I res I res I res I res I res I res I res I S I

+-----+-----+-----+-----+-----+-----+-----+-----+

BIT DESCRIPTION

7-1 res - reserved.

o S (short erase) if set, controller attempts to
perform an erase of several inches of tape at the
current position. The amount is controller dependent.

HIGH LEVEL COMMANDS

$02 Device type must be SCSI ($05).

$03 Unit number to which the command applies.

7.1.12.2 Erase Command Returned Status

The table defines the erase command status packet parameters.

Erase Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$IC

$10

$IE

$20

$2A

$2E

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code recovered error status

DESCRI PTION

additional error code/status
retry count XX

XXXX
XXXX
XXXX
XXXX

filemark position (MSW)
filemark position (LSW)

status parameter 3

A nonzero fatal error code if the command did not complete
successfully.

A nonzero recovered error status if the command completed
successfully after retries.

Additional status error information if the fatal error code is
nonzero.

The number of retries that were performed by the MVME327A.

For sequential devices (e.g., tape), filemark position count.
If value returned is $FFFFFFFF, position is indeterminate. This
field is unused for random access devices (e.g., disk).

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7-29

I

•

HIGH LEVEL COMMANDS

7.1.13 Space Command ($15)

The space command is used to position the tape. The tape can be positioned
forward or backward. The positioning can be relative to the current position
or to the beginning-of-tape.

7.1.13.1 Space Command Packet

The table below defines the space command packet parameters.

Space Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$00

$01

7-30

$00
$02
$04
$06
$08
$OA
SOC
$OE
$10
$12
$14
$16
$18
$lA

command = $15
device type = $05

XX
XX

XXXX
XXXX
xxx X
XXXX

number of filemarks/blocks
number of filemarks/blocks

XXXX
XXXX
XXXX
XXXX

command control
unit number

XX

(MSW)
(LSW)

XX

DESCRIPTION

Command value for space ($15)

This command control field contains flags that are used by the
space command.

Command Control Field
+-----+-----+-----+-----+-----+------+-----+------+
1716151413121110 I
+-----+-----+-----+-----+-----+------+-----+------+
I res I res I res ! res ! res ! mode ! space type !
+-----+-----+-----+-----+-----+------+-----+------+

BIT DESCRIPTION

7 res - reserved.
6 res - reserved.
5 res - reserved.
4 res - reserved.
3 res - reserved.

$02

$03

$10

HIGH LEVEL COMMANDS

2 mode - 0 = space relative to current position, 1 =
space relative to beginning-of-tape.

For mode = 0, the tape is positioned on the EOT
side of the last block or filemark upon
completion of the command for spacing in the
forward direction (a positive value in the
number of filemarks/blocks field). It is
positioned on the BOT side of the last block or
filemark upon the completion of the command for
spacing in the reverse direction (a negative
value in the number of filemarks/blocks field).

For mode = 1, the tape is positioned on the EOT
side of the last block or filemark upon the
completion of the command for spacing in the
forward or reverse direction.

o and 1 space type - Defines how the number of
filemarks/blocks field is interpreted.

00 - the field is in units of logical
blocks.

01 - the field is in units of filemarks.

10 - the field is in units of sequential
filemarks. The tape is scanned for the
number of sequential filemarks specified. I
This option is not supported by all tape
controllers. Tape movement is in forward
direction only.

11 - the tape is to be spaced to the
physical end-of-data. The number of
filemarks/blocks field is not used when
this option is chosen. Tape movement is
in forward direction only.

Device type must be SCSI ($05).

Unit number to which the command applies.

The number of filemarks/blocks to space the tape. Refer to
space type in the command control field of the packet for the
interpretation of this field. The number of filemarks/blocks
field is interpreted as a signed (2's complement) integer,
necessary for backward tape movement. .

7-31

I

HIGH LEVEL COMMANDS

7.1.13.2 Space Command Returned Status

The table defines the space command status packet parameters.

Space Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$lC

$lD

$lE

$20

$2A

$2E

$IC
$lE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code recovered error status

DESCRIPTION

additional error code/status
retry count XX

XXX X
XXXX
XXXX
XXXX

filemark position (MSW)
filemark position (LSW)

status parameter 3

A nonzero fatal error code if the command did not complete
successfully.

A nonzero recovered error status if the command completed
successfully after retries.

Additional status error information if the fatal error code is
nonzero.

The number of retries that were performed by the MVME327A.

For sequential devices (e.g., tape), filemark position count.
If value returned is $FFFFFFFF, position is indeterminate. This
field is unused for random access devices (e.g., disk).

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7.1.14 Enable Target Command ($20)

Enable target command initializes a LUN on the MVME327A for target mode
operation. This command executes an implicit channel reservation command.
Only the host that issued the command is able to access and service this LUN.

7-32

HIGH LEVEL COMMANDS

7.1.14.1 Enable Target Command Packet

The table below defines the enable target command.

Enable Target Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$00

$02

$03

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$IA

command = $20
device type = $05

XX
XX

DESCRIPTION

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

Command value for enable target ($20).

Device type must be SCSI ($05).

XX
unit number

XX
XX

Unit number: the most significant nibble corresponds to the
SCSI address (0-7) of the MVME327A on the SCSI bus (refer to Set
SCSI address command). The least significant nibble corresponds
to the target LUN that is being accessed (0-7). Any nibble with
a value greater than 7 results in an error.

7.1.14.2 Enable Target Command Returned Status

The table defines the enable target command status packet parameters.

Enable Target Command Status Packet
==

BYTE OFFSET

$IC
$IE
$20
$22
$24
$26
$28

PARAMETER DESCRIPTION

fatal error code XX
additional error code/status

XX XX
XXXX
XXXX
XXXX
XXXX

7-33

I

I

HIGH LEVEL COMMANDS

Enable Target Command Status Packet (cont'd)

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$lC

$IE

$2E

$2A
$2C
$2E

DESCRIPTION

XXXX
XXXX

status parameter 3

A nonzero fatal error code if the command did not complete
successfully.

Additional status error information if the fatal error code is
nonzero.

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7.1.15 Disable Target Command ($21)

Disable target command releases an MVME327A target LUN. After this command is
executed, the LUN no longer exists until another target enable ($20) command
is executed for that LUN. This command executes an implicit channel release
command to free this LUN.

7.1.15.1 Disable Target Command Packet

The table below defines the disable target command.

BYTE OFFSET

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$IA

Disable Target Command Packet

PARAMETER DESCRIPTION

command = $21
device type = $05

XX
XX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XX
unit number

XX
XX

==

7-34

HIGH LEVEL COMMANDS

OFFSET DESCRIPTION

$00 Command value for disable target ($21)

$02 Device type must be SCSI ($05).

$03 Unit number: the most significant nibble corresponds to the
SCSI address (0-7) of the MVME327A on the SCSI bus (refer to Set
SCSI Level Command). The least significant nibble corresponds
to the target LUN that is being accessed (0-7). Any nibble with
a value greater than 7 results in an error.

7.1.15.2 Disable Target Command Returned Status

The table defines the disable target command status packet parameters.

Disable Target Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$IC

$IE

$2E

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code XX
additional error code/status

XX XX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

status parameter 3

DESCRIPTION

A nonzero fatal error code if the command did not complete
successfully.

Additional status error information if the fatal error code is
nonzero.

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7-35

I

I

HIGH LEVEL COMMANDS

7.1.16 Reserve Unit Command ($22)

Reserve unit command allows a host exclusive access to a target LUN.

7.1.16.1 Reserve Unit Command Packet

The table below defines the reserve unit command.

Reserve Unit Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$00

$01

7-36

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$lA

command = $22
device type

XX
XX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

command control
unit number

XX
XX

DESCRIPTION

Command value for reserve unit ($22).

Command control: the following bits are used by the reserve
unit command:

Command Control Field
+-----+-----+-----+-----+-----+-----+------+------+
1716151413121110 I
+-----+-----+-----+-----+-----+-----+------+------+
I res I res I res I res I res I res Ilevel11levelOI
+-----+-----+-----+-----+-----+-----+------+------+

BIT DESCRIPTION

7 res - reserved.
6 res - reserved.
5 res - reserved.
4 res - reserved.
3 res - reserved.
2 res - reserved.

HIGH LEVEL COMMANDS

1 Level 1 - If set, this bit indicates reservation level
1. This is used on the MVME327A to reserve on the
SCSI bus. The MVME327A reserves the SCSI unit
specified in the packet for the MVME327A by sending
the RESERVE command to that unit.

o Level 0 - If set, this bit indicates reservation level
o (VMEbus reservation) and subsequent commands from
the BPP channels other than the one reserved are
rejected with a reservation error. This bit is used
to lock out other VMEbus channels and to prevent them
from using a reserved unit.

At least one of the levels must be set. If
neither is set, an error is returned.

Relevant bit combinations for SCSI devices:

Reservations for SCSI Devices
+-----+-----+-----+-----+-----+-----+-----+-----+----------------------------+
I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I not allowed I
I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I VMEbus reservation only I
I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 0 I SCSI reservation only I
I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 1 I VMEbus and SCSI reservationl
+-----+-----+-----+-----+-----+-----+-----+-----+----------------------------+

Relevant bit combinations for local devices:

Reservations for Local Devices
+-----+-----+-----+-----+-----+-----+-----+-----+----------------------------+
I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I not allowed I
I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I VMEbus reservation only I
+-----+-----+-----+-----+-----+-----+-----+-----+----------------------------+

$02

$03

Device type.

Unit number.

7-37

I

I

HIGH LEVEL COMMANDS

7.1.16.2 Reserve Unit Command Returned Status

The table defines the reserve unit command status packet parameters.

Reserve Unit Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$lC

$10

$lE

$20

$2E

$lC
$lE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code recovered error status
additional error code/status

retry count XX
XXXX
XXXX
XXXX
XXX X
XXXX
XXXX

status parameter 3

DESCRIPTION

A nonzero fatal error code if the command did not complete
successfully.

A nonzero recovered error status if the command completed
successfully after retries.

Additional status error information if the fatal error code is
nonzero.

The number of retries that were performed by the MVME327A.

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7.1.17 Release Unit Command ($23)

Release unit command relinquishes a host from exclusive access to a target
LUN.

7-38

HIGH LEVEL COMMANDS

7.1.17.1 Release Unit Command Packet

The table below defines the release unit command.

Release Unit Command Packet
==

BYTE OFFSET PARAMETER DESCRIPTION
==

OFFSET

$00

$01

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$IA

command = $23
device type

XX
XX

DESCRI PTION

xxxx
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

Command value for release unit ($23)

command control
unit number

XX
XX

Command control: the following bits are used by the release
unit command:

Command Control Field
+-----+-----+-----+-----+-----+-----+------+------+
1716151413121110 I
+-----+-----+-----+-----+-----+-----+------+------+
I res I res I res I res I res I res IlevellllevelOI
+-----+-----+-----+-----+-----+-----+------+------+

BIT DESCRIPTION

7 res - reserved.
6 res - reserved.
5 res - reserved,
4 res - reserved.
3 res - reserved.
2 res - reserved.
1 Level 1 - If set, this bit indicates release level 1.

This is used on the MVME327A to release the SCSI bus.
The MVME327A releases the SCSI unit specified in the
packet for the MVME327A by sending the RELEASE command
to that unit.

7-39

I

•

HIGH LEVEL COMMANDS

o Level 0 - If set, this bit indicates release level 0
(VMEbus release) and subsequent commands from the BPP
channels other than the one released are accepted.
This bit is used to release and allow other VMEbus
channels to use a released unit.

At least one of the levels must be set. If
neither is set, an error is returned.

Relevant bit combinations for SCSI devices:

Release for SCSI Devices
+-----+-----+-----+-----+-----+-----+-----+-----+----------------------------+
I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I not allowed I
I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I VMEbus release only I
I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 0 I SCSI release only I
I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 1 I VMEbus and SCSI release I
+-----+-----+-----+-----+-----+-----+-----+-----+----------------------------+

Relevant bit combinations for local devices:

Release for Local Devices
+-----+-----+-----+-----+-----+-----+-----+-----+----------------------------+
I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I not allowed I
I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I VMEbus release only I
+-----+-----+-----+-----+-----+-----+-----+-----+----------------------------+

$02

$03

7-40

Device type.

Unit number.

HIGH LEVEL COMMANDS

7.1.17.2 Release Unit Command Returned Status

The table defines the release unit command status packet parameters.

Release Unit Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$lC

$lE

$2E

$lC
$lE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code XX
additional error code/status

U U
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

status parameter 3

DESCRI PTION

A nonzero fatal error code if the command did not complete
successfully.

Additional status error information if the fatal error code is
nonzero.

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7.1.18 Reset SCSI Command ($25)

Reset SCSI command either resets all devices on the SCSI bus or attempts to
reset a specified device.

7-41

I

•

HIGH LEVEL COMMANDS

7.1.18.1 Reset SCSI Command Packet

The table below defines the reset SCSI command.

Reset SCSI Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$00

$02

$03

7-42

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$lA

command = $25
device type = $05

XX
XX

DESCRIPTION

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

Command value for reset SCSI ($25)

Device type must be SCSI ($05).

XX
unit number

XX
XX

Unit number: the most significant nibble corresponds to the
SCSI address (0-7) of the device to be reset on the SCSI bus.
The least significant nibble is not used. If the most
significant nibble is 8, the entire SCSI bus is reset. If a bus
reset is performed, any outstanding SCSI commands are returned
to the callers with a reset status. If only a SCSI device is
reset, then all pending commands to that SCSI device are aborted
by the target. Resetting the SCSI device corresponding to the
MVME327A (its own address, that is) results in an error.

CAUTION

RESETTING THE SCSI BUS CAUSES CURRENT COMMANDS
BY OTHER INITIATORS OR OTHER HOSTS (IN A MULTI­
PROCESSING ENVIRONMENT) TO BE TERMINATED.

HIGH LEVEL COMMANDS

7.1.18.2 Reset SCSI Command Returned Status

The table defines the reset SCSI command status packet parameters.

Reset SCSI Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION
==

OFFSET

$IC

$IE

$2E

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code XX
additional error code/status

XX XX
xxxx
xxxx
xxxx
xxxx
xxxx
XXXX

status parameter 3

DESCRI PTION

A nonzero fatal error code if the command did not complete
successfully.

Additional status error information if the fatal error code is
nonzero.

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7.1.19 Custom SCSI Command ($26)

Custom SCSI command allows the user absolute control of commands dispatched
over the SCSI bus. For more information regarding this command, refer to
Appendix B.

7-43

I

I

HIGH LEVEL COMMANDS

7.1.19.1 Custom SCSI Command Packet

The table below defines the custom SCSI command.

Custom SCSI Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

$00 command = $26 XX
$02 device type = $05 unit number
$04 XX XX
$06 address modi fi er data bus wi dth
$08 SCSI specific packet pointer (MSW)
$OA SCSI specific packet pointer (LSW)
SOC pointer to scatter/gather 1 ist (MSW)
$OE pointer to scatter/gather list (LSW)
$10 XXXX
$12 XXXX
$14 scatter/gather count
$16 XXX X
$18 XXXX
$IA XXXX

==

OFFSET

$00

$02

$03

$06

$07

$08

SOC

7-44

DESCRIPTION

Command value for custom SCSI ($26)

Device type must be SCSI ($05).

Unit number: the most significant nibble corresponds to the
SCSI address (0-7) of the device to be accessed. The least
significant nibble corresponds to the peripheral device LUN that
is being accessed (0-7). Any nibble with a value greater than 7
results in an error. If the MVME327A SCSI address is used in
the primary unit, an error results.

Address modifier: if the particular action requested by the
command requires data transfers over the VMEbus, this address
modifier is used for the transfers.

Data bus width: (01 = 16-bit, 02 = 32-bit).

This address points to a SCSI specific packet. The SCSI
specific packet is defined in the SCSI specific packet paragraph
in Chapter 6.

If the scatter/gather count (offset $14) is nonzero, this field
is a pointer to a scatter/gather table that contains a number of
entries specified by the scatter/gather count.

HIGH LEVEL COMMANDS

$14 Scatter/gather count is the number of entries in the
scatter/gather table. If the count is zero, the command is not
using the scatter/gather feature.

7.1.19.2 Custom SCSI Command Returned Status

The table defines the custom SCSI command status packet parameters.

Custom SCSI Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$IC

$10

$IE

$20

$22

$26

$2E

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code recovered error status

DESCRIPTION

additional error code/status
retry count XX

error status address (MSW)
error status address (LSW)

termination transfer count (MSW)
termination transfer count (LSW)

XXX X
XXXX

status parameter 3

A nonzero fatal error code if the command did not complete
successfully.

A nonzero recovered error status if the command completed
successfully after retries.

Additional status error information if the fatal error code is
nonzero.

The number of retries that were performed by the MVME327A.

This is error status address. If a transfer terminates because
of an error, this field has the logical block address at which
the error occurred.

The number of bytes successfully transferred.

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7-45

I

I

HIGH LEVEL COMMANDS

7.1.20 Self Test Command ($27)

The extended self test, called as a high level command stores a $00 value in
the fatal error code field of the status packet upon a successful completion.

If the self test fails, a $CC value is stored in the fatal error code field of
the status packet, and an extended status byte is stored in the diagnostic
register and the additional status field of the status packet.

When self test is called as a high level command, it waits for all pending
command packet operations to complete before executing, and all following
commands are blocked until the self test completes, EXCEPT ANOTHER SELF TEST
COMMAND.

If a second self test command is issued before the first command has
completed, the results and further operation of the MVME327A is undefined.

7.1.20.1 Self Test Command Packet

The table below defines the self test command.

Self Test Command Packet
==

$00

$02

7-46

BYTE OFFSET PARAMETER DESCRIPTION

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$1A

command = $27
device type = $OF

XX
XX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

DESCRIPTION

Command value for the self test ($27)

Device type must be ($OF).

XX
XX
XX
XX

HIGH LEVEL COMMANDS

7.1.20.2 Self Test Command Returned Status

The table defines the self test command status packet parameters.

Self Test Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$IC

$IE

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code XX
additional error code/status

XX XX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

status parameter 3

DESCRI PTION

A nonzero fatal error code if the command did not complete
successfully.

This additional status information is the same as the diagnostic
register with bit definition as follows:

Bit 0 - MPU failure

If bit 0 is set, then the MPU has failed to execute instructions
properly.

Bit 1 - RAM failure

If bit 1 is set, then the onboard RAM has failed.

Bit 2 - ROM failure

If bit 2 is set, then the onboard ROM has failed.

Bit 3 - Map decoder failure

If bit 3 is set, then the self test has not been able to access
the PI/T, module status register, SCSI controller, bus interface
module, or the floppy disk controller.

7-47

I

•

HIGH LEVEL COMMANDS

$2E

Bit 4 - IRQ Failure

If bit 4 is set, then the IRQ test has failed.

Bit 5 - Timer failure

If bit 5 is set, then the timer test has failed.

Bit 6 - SCSI failure

If bit 6 is set, the SCSI interface has failed.

Bits 7-15 - Reserved.

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7.1.21 Target Wait Command ($28)

The target wait command is issued in anticipation of being selected as a
target. This is the first of two BPP commands needed to execute as a target,
a single SCSI command. For more information regarding this command, refer to
Appendix C. This command does not return status until the LUN it represents
is selected .

7.1.21.1 Target Wait Command Packet

The table below defines the target wait command.

Target Wait Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

$00 command = $28 XX
$02 dev; ce type = $05 unit number
$04 XX XX
$06 address modifier data bus width
$08 SCSI specific packet pointer (MSW)
$OA SCSI specific packet pointer (LSW)
$OC XXXX
$OE XXXX
$10 XXXX
$12 XXXX
$14 XXXX
$16 XXXX
$18 XXXX
$lA XXXX

==

7-48

OFFSET

$00

$02

$03

$06

DESCRI PTION

Command value for target wait ($28)

Device type must be SCSI ($05).

HIGH LEVEL COMMANDS

Unit number: the most significant nibble corresponds to the
SCSI address (0-7) of the MVME327A. The least significant
nibble corresponds to the peripheral device LUN (0-7). Any
nibble with a value greater than 7 results in an error.

Address modifier is used for accesses to the SCSI specific
packet.

$07 Data bus width: (01 = 16-bit, 02 = 32-bit) for accesses to the
SCSI specific packet.

$08 This address points to a SCSI specific packet. It is defined in
SCSI specific packet paragraph in Chapter 6. However, for this
command, only the SYNC bit in the control word is used. The
rest of the SCSI specific packet should be cleared.

7.1.21.2 Target Wait Command Returned Status

The table defines the target wait command status packet parameters.

BYTE OFFSET

$IC.
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

Target Wait Command Status Packet

PARAMETER DESCRIPTION

fatal error code XX
additional error code/status

XX XX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

status parameter 3
==

DESCRI PTION

$IC A nonzero fatal error code if the command did not complete
successfully.

$IE Additional status error information if the fatal error code is
nonzero.

7-49

I

I

HIGH LEVEL COMMANDS

$2E If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7.1.22 Target Execute Command ($29)

The target execute command is the second of two BPP commands needed to
execute, as a target, a single SCSI command. For more information regarding
this command, refer to Appendix C.

7.1.22.1 Target Execute Command Packet

The table below defines the target execute command.

Target Execute Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$00

$02

$03

7-50

$00
$02
$04
$06
$08
$OA
SOC
$OE
$10
$12
$14
$16
$18
$IA

command = $29 XX
device type = $05 unit number

XX XX
address modifier data bus width

DESCRI PTION

SCSI specific packet pointer (MSW)
SCSI specific packet pointer (LSW)

pointer to scatter/gather list (MSW)
pointer to scatter/gather list (LSW)

XXXX
XXXX

scatter/gather count
XXXX
XXXX
XXXX

Command value for target execute ($29).

Device type must be SCSI ($05).

Unit number: the most significant nibble corresponds to the
SCSI address (0-7) of the SCSI device to be accessed. The least
significant nibble corresponds to the peripheral device LUN that
is being accessed (0-7). Any nibble with a value greater than 7
results in an error.

$06

$07

$08

HIGH LEVEL COMMANDS

Address modifier: the address modifier is used for accesses to
the SCSI specific packet.

Data bus width: (01 = 16-bit, 02 = 32-bit) access to the SCSI
specific packet may use 32-bit data transfers if this byte is
02, otherwise only 16-bit or 8-bit accesses are used.

This address points to a SCSI specific packet. It is defined in
SCSI specific packet paragraph in Chapter 6.

$OC If the scatter/gather count (offset $14) is nonzero, this field
is a pointer to a scatter/gather table that contains a number of
entries specified by the scatter/gather count.

$14 Scatter/gather count is the number of entries in the
scatter/gather table. If the count is zero, the command is not
using the scatter/gather feature.

7.1.22.2 Target Execute Command Returned Status

The table defines the target execute command status packet parameters.

Target Execute Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$lC

$IE

$22

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code XX

DESCRI PTION

additional error code/status
XX XX

XXXX
XXXX

termination transfer count (MSW)
termination transfer count (LSW)

XXXX
XXXX

status parameter 3

A nonzero fatal error code if the command did not complete
successfully.

Additional status error information if the fatal error code is
nonzero.

This is error status address. If a transfer terminates because
of an error, this field has the logical block address at which
the error occurred.

7-51

I

I

HIGH LEVEL COMMANDS

$26

$2E

The number of bytes successfully transferred.

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7.1.23 Set SCSI Address Command ($28)

The MVME327A defaults to the SCSI address selected by header J8. This command
changes the SCSI address of the MVME327A. Care must be taken when issuing
this command. For example, if any outstanding commands are disconnected on
the SCSI bus with pending reselection, this command would destroy those
pending threads. If reservations on the SCSI address are also pending on the
SCSI bus, the system may experience disastrous results. This command is
intended to be used during system initialization before any activity on the
SCSI bus is initiated.

7.1.23.1 Set SCSI Address Command Packet

The table below defines the set SCSI address command.

Set SCSI Address Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$IA

command = $2B
device type = $05

XX
XX

XXXX
XXXX
XXXX
xxxx
XXXX
XXXX
XXXX

SCSI address
XXXX
XXXX

XX
unit number = $80

XX
XX

==

OFFSET

$00

$02

$03

$16

7-52

DESCRIPTION

Command value for set SCSI address ($2B).

Device type must be SCSI ($05).

Unit number: must be $80.

SCSI address is the new address (0 to 7).

HIGH LEVEL COMMANDS

7.1.23.2 Set SCSI Address Command Returned Status

The table defines the set SCSI address command status packet parameters.

Set SCSI Address Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$IC

$2E

$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code XX
XXXX

XX XX
XXXX
XXXX
XXXX
XXXX
XXXX
XXX X

status parameter 3

DESCRI PTION

A nonzero fatal error code if the command did not complete
successfully.

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7.1.24 Open Command ($2D)

The open command is used as a "safe" access to SCSI devices at system
initialization time in order to obtain system configuration information which
may be on the device.

With this command, the user is able to specify the maximum number of blocks
and bytes needed without previous knowledge of the logical or physical block
size of the device. No previous write descriptor command is required to the
device. The read always starts with the first block on the media.

If the block count specified is too high for the number of bytes requested,
only the requested number of bytes are transferred to the caller's buffer.
The remaining bytes are still read from the device but not transferred across
the VMEbus. No fatal error is returned for this condition unless attempt to
read past end of media is made.

If the block count specified is too low for the number of bytes requested, a
fatal error is returned after the fewer bytes are transferred.

7-53

I

•

HIGH LEVEL COMMANDS

7.1.24.1 Open Command Packet

The table below defines the open command.

Open Command Packet

BYTE OFFSET PARAMETER DESCRIPTION

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$1A

command = $2D
device type = $05

XX

command control = $00
unit number

XX
address modifier data bus width

XXXX
XXXX

VME buffer address (MSW)
VME buffer address (LSW)

transfer block count (MSW)
transfer block count (LSW)

scatter/gather count = $0000
XXXX

transfer byte count (MSW)
transfer byte count (LSW)

==

OFFSET

$00

$01

$02

$03

$06

$07

DESCRIPTION

Command value for open ($2D) .

Command control must be $00.

Device type must be SCSI ($05).

Unit number to which the command applies.

Address modifier of the memory space where the data buffer is
located.

Data bus width is a code to indicate the width of the data bus.
$01 indicates a 16-bit data bus, $02 indicates a 32-bit data
bus.

$OC VME buffer address is a pointer to the destination VME memory
where the data buffer is located.

$10 Transfer block count is the number of blocks of data to be read
(maximum).

$14

$18

7-54

Scatter/gather count must be zero. Scatter/gather cannot be
used with this command.

Transfer byte count is the requested number of bytes for this
command to transfer. The user must assure that the buffer is of
adequate size.

HIGH LEVEL COMMANDS

7.1.24.2 Open Command Returned Status

The table below defines the open command status packet parameters.

Open Command Status Packet

BYTE OFFSET PARAMETER DESCRIPTION

OFFSET

$lC

$10

$lE

$20

$22

$26

$2E

$1C
$lE
$20
$22
$24
$26
$28
$2A
$2C
$2E

fatal error code recovered error status

DESCRIPTION

additional error code/status
retry count XX

error status address (MSW)
error status address (LSW)

termination transfer count (MSW)
termination transfer count (LSW)

XXXX
XXXX

status parameter 3

A nonzero fatal error code if the command did not complete
successfully.

A nonzero recovered error status if the command completed
successfully after retries.

Additional status error information if the fatal error code is
nonzero.

The number of retries that were performed by the MVME327A.

This is error status address. If a transfer terminates because
of an error, this field has the physical block address at which
the error occurred.

The number of bytes successfully transferred.

If fatal error code is $02 (bad command), then this field
contains an offset into the command packet of the offending
parameter.

7-55

I

SUPPORTED SCSI CONTROLLERS/DEVICES

APPENDIX A - MVME327A SUPPORTED SCSI CONTROLLERS/DEVICES

The following controllers/devices are supported in release 2.0 of the
firmware.

CONTROLLER
TYPE CODE

$OF

$10

$11

$12

$13

$14

$15

$17

$18

PERIPHERAL
TYPE CODE

$02

$02

$02

$05

$02

$02

$02

$02

$05

DESCRIPTION

CCS Rev. 4B Winchester Disk Drives
(Refer to list of tested controllers/
drives below)

CDC 94161 Winchester Disk Drive (Wren III)

Micropolis 1375 Winchester Disk Drive

Archive 2060S QIC24 Tape Drive
Archive 2125S QIC24/120 Tape Drive
Archive 2150S QIC24/120/150 Tape Drive

CDC 94171 Winchester Disk Drive (Wren IV)

Seagate ST-251N Winchester Disk Drive

CCS Rev. 4A Winchester Disk Drives

CCS Rev. 4B Synchronous Data Transfer
Winchester Disk Drives

Exabyte 8200 Tape Drive

Common Command Set (CCS Rev. 48) Tested Controllers/Drives

Some manufacturers SCSI Winchester drives are CCS compatible, but conform to
an earlier revision of CCS (earlier than 4B).

Controller types $10, $11, and $13 may use the CCS controller type code of
$OF, but suffer loss of features not included under the CCS specification. As
an example, type $13 (Wren IV) is not able to use caching when operated as a
CCS controller type (code $OF).

A-I

I

I
SUPPORTED SCSI CONTROLLERS/DEVICES

The following have been tested and operate satisfactorily using the controller
type $OF on the MVME327A firmware, release 2.0. Inclusion in this list does
not imply endorsement by Motorola Microcomputer Division, nor does exclusion
from the list imply lack of endorsement or that a controller/drive will not
operate satisfactorily with the MVME327A.

A-2

CDC 94161 (Wren III)
CDC 94171 (Wren IV)
Maxtor XT-4380S
Micropolis 1375
Seagate ST-296N

CUSTOM SCSI COMMAND EXAMPLE

APPENDIX B - CUSTOM SCSI COMMAND EXAMPLE

INTRODUCTION

Most BPP high level commands that are initiated to a SCSI peripheral device,
such as read ($01), write ($02), or write descriptor ($04), are translated by
the MVME327A firmware into one or more SCSI bus commands in order to
accomplish the function of the defined BPP high level command. This
translation incorporates two pieces of intelligence. The first is a knowledge
of the SCSI protocol and the second is a knowledge of the physical attributes
of the peripheral and its controller. The user is relieved of knowing this
information if the high level commands exercise all the functionally that the
user requires and a firmware supported device is used. However, not all users
interface with supported devices and some users require a broader spectrum of
SCSI bus commands. The custom SCSI ($26) command is for the user who needs
more flexibility than the BPP high level commands offer.

The custom SCSI. command gives the user explicit control of commands initiated
on the SCSI bus. This BPP comm~nd also bypasses most of the translation
firmware and therefore reduces MVME327A firmware overhead time.

The key to the custom SCSI command is the SCSI specific packet (refer to SCSI
specific packet paragraph in Chapter 6). For other high level commands the
SCSI specific packet is generated by the firmware but for this command the
SCSI specific packet is supplied by the user. The data contained in this
packet controls not only the information exchanged during SCSI bus information
transfer phases but also certain hardware and firmware features.

The SCSI specification defines an initiator as a SCSI device that requests an
operation to be performed by another SCSI device (the target). However, it is
the target that dictates the sequence of information phases to be executed on
the bus. To keep track of the phase sequencing, a "script" is necessary. A
script is the expected sequence of information phases to be executed on the
SCSI bus. The script is used to resume a disconnected thread and to insure
proper phase sequencing. Without a script, the firmware would have no way of
checking whether the target performed the command that was requested because
no attempt is made by the MVME327A firmware to interpret the command.

Script Value Definitions

$00 Data out phase
$01 Data in phase
$02 Command phase
$03 Status phase
$04 Undefined phase - DO NOT USE
$05 Undefined phase - DO NOT USE
$06 Message out phase
$07 Message in phase
$08 End of script

B-1

I

CUSTOM SCSI COMMAND EXAMPLE

EXAMPLES

For the following examples, the "control word" in the SCSI specific packets
reflect the following:

Synchronous transfers will not be attempted; however, if the target
requests synchronous data rate negotiations, the MVME327A establishes an
acceptable rate. The user can read the message in the field in the SCSI
specific packet of a successfully returned BPP packet to determine what
synchronous data rate was established.

Status checking is done by the firmware. If the user checks the status
then the status byte in the SCSI specific packet for a completed custom
SCSI command should be evaluated. When the user checks the status, a
nonzero fatal error code may be returned in the BPP packet due to the
SCSI status.

The data bus width is 16 bits. The "data bus width" code in the BPP
packet is $01.

Byte swapping is not enabled.

Scatter/gather is not used.

Li n ked commands are not supported.

Additionally, the target device resides at SCSI address 2, LUN O. The
"primary unit number" in the BPP packet is $20.

For initiator mode, the message out bytes are what the user wants to send to
the target (usually an "identify" message). The message in bytes, for a
returned packet, are what the target sent the initiator.

B-2

CUSTOM SCSI COMMAND EXAMPLE

Test Unit Ready Example

The test unit ready command provides a means of checking if the logical unit
is ready. The table below defines the SCSI specific packet parameters.

SCSI Specific Packet Description

BYTE OFFSET PARAMETER DESCRIPTION
==

$00
$02
$04
$06
$08
$OA
SOC
$OE
$10
$12
$14
$16
$18
$IA
$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E
$30
$32
$34
$36
$38
$3A
$3C
$3E

$06
$00
$00
$00

XX
XX
XX

XX
$00

xx
xx
XX

$CO
XX
XX

$06
$03
$08

XX

$0000
$0000
$0000

$0000
$0000
$0000
$0000

XXXX
XXXX
XXXX

$0001
XXXX
XXXX

The COB for this command is six bytes long.
COB = $00, $00, $00, $00, $00, $00.
No data is transferred.

xx
$00
$00
$00

XX
XX
XX

XX
$00

XX
XX
XX

XX
XX
XX

$02
$07

XX
XX

The $CO message out is an "identify" message and indicates that the
initiator supports disconnects and is addressing LUN 0 of the selected
device.
Script = $06, $02, $03, $07, $08.

B-3

I

I

CUSTOM SCSI COMMAND EXAMPLE

Extended Read Example

The read command requests that the target transfer data to the initiator. Not
all controllers support the extended read command. The table below defines
the SCSI specific packet parameters.

BYTE OFFSET

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$lA
$lC
$lE
$20
$22
$24
$26
$28
$2A
$2C
$2E
$30
$32
$34
$36
$38
$3A
$3C
$3E

SCSI Specific Packet Description

$OA
$28
$00
$00
$00
$00

XX

XX
$00

xx
XX
XX

$CO
XX
XX

$06
$01
$07

XX

PARAMETER DESCRIPTION

$0000
$0000
$8000

$0020
$0000
$0003
$0000

XXXX
XXXX
XXXX

$0001
XXXX
XXXX

XX
$00
$07
$00
$10
$00

XX

XX
$00

XX
XX
XX

XX
XX
XX

$02
$03
$08

XX
===========~~~~~~~~~~~~===

8-4

DMA is enabled.
The CDB for this command is ten ($OA) bytes long.
CDB = $28, $00, $00, $07, $00, $00, $00, $10, $00, $00.
$1000 blocks of data transferred from logical sector $70000 to VME address
$30000.
For this device, each block equals $200 bytes.
"Identify with reselection" message is in the SCSI specific packet.
Script = $06, $02, $01, $03, $07, $08.

CUSTOM SCSI COMMAND EXAMPLE

Request Sense Example

The request sense command requests that the target transfer sense data to the
initiator. A request sense command is issued in response to a "check B
condition" status for the previous command. A check condition status is sent
because of an error, exception, or abnormal condition. The sense data is
device specific and its length and content vary from controller to controller.
The table below defines the SCSI specific packet parameters.

BYTE OFFSET

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$lA
$lC
$lE
$20
$22
$24
$26
$28
$2A
$2C
$2E
$30
$32
$34
$36
$38
$3A
$3C
$3E

SCSI Specific Packet Description

$06
$03
$00
$14

XX
XX
XX

XX
$00

xx
XX
XX

XX
XX
XX

$02
$03
$08

XX

PARAMETER DESCRIPTION

$0000
$0000
$0080

$0000
$0014
$0004
$0000

XXXX
XXXX
XXXX

$0000
XXXX
XXXX

XX
$00
$00
$00

XX
XX
XX

XX
$00

XX
XX
XX

XX
XX
XX

$01
$07

XX
XX

==

Message protocol has been turned off.
Transfers of less then $100 bytes are inefficient using DMA, therefore it
is turned off.
The CDB for this command is six ($06) bytes long.

B-5

I

CUSTOM SCSI COMMAND EXAMPLE

B-6

COB = $03, $00, $00, $00, $14, $00.
This controller returns $14 bytes of sense data to VME address $40000.
Script = $02, $01, $03, $07, $08.
(Message in phase is still used for "command complete" message).

TARGET ROLE

APPENDIX C - TARGET ROLE

INTRODUCTION

Target role is implemented on the MVME327A as a means for SCSI devices to
communicate with VMEbus MPU modules. BPP is still utilized as the interface
between the host VMEbus CPU and the MVME327A. The direction of flow on the
buffered pipes is logically reversed for target role. That is, a COB from a
SCSI initiator is sent through the MVME327A to the host CPU on a status pipe
and the response to the COB is returned to the SCSI initiator via a command
pipe between the MVME327A and the host CPU.

The MVME327A implementation of target role requires two BPP commands to
execute one SCSI command. Through the target wait command ($28), the host CPU
provides a free (empty) SCSI specific packet (refer to SCSI specific packet
paragraph in Chapter 6) to the MVME327A to receive a COB from the SCSI bus and
return the COB to the host CPU. The host CPU interprets the COB, determines
what action needs to be taken, fills out another SCSI specific packet, and
issues a target execute command ($29).

Target Driver Algorithm

Listed below is the sequence of events necessary for a VMEbus module to act
like a SCSI target device.

a. Create a BPP channel between the host and the MVME327A. A unique
vector may be desired for target role service.

b. Issue an enable target command ($20) on the channel created in step a.
The SCSI address of the MVME327A (0-7) is the most significant nibble
and the desired LUN (0-7), to be enabled for target role, is the least
significant nibble of the primary unit number in the BPP command
packet.

c. Wait for the status envelope/packet to be returned for the enable
target command of step b. If no error is encountered (fatal error code
in BPP packet = 0), the desired LUN on the MVME327A is now enabled for
target role. If the fatal error code <> 0, examine the error condition
and determine what caused the error before proceeding.

d. Issue a target wait command ($28) on the channel created in step a.
This command includes the free SCSI specific packet that is used by the
MVME327A to return target service requests back to the host CPU.
Because selection of the MVME327A as a target is at the control of the
initiator, response to the target wait command depends on the selection
of the MVME327A. If no SCSI initiator selects the enabled target LUN
on the MVME327A, no status (for the target wait command) is returned to
the host CPU. In other words, target service is totally asynchronous
and unsolicited.

C-l

I

TARGET ROLE

C-2

If and when the SCSI initiator selects this LUN on the MVME327A, the
MVME327A reads the identify message (if ATN was activated during
selection), reads in the COB, sends a disconnect message (if the
initiator supports disconnects), disconnects from the SCSI bus (if the
initiator supports disconnects), and returns via the BPP channel
(created in step a) the completion status for the target wait command.
Additionally, the SCSI specific packet now contains messages (if used),
the COB, the SCSI address of the initiator, and a partial script.

e. Upon receiving good status (fatal error code in BPP packet = 0) for the
target wait command, the host CPU has assumed the target role on the
SCSI bus through the MVME327A. The application routine on the host CPU
must now interpret the command in the COB area of the SCSI specific
packet and prepare the necessary data structures to perform the desired
service.

f. The target service routine must now prepare a target execute command
packet to allow the MVME327A to execute the desired services for the
SCSI initiator. The SCSI specific packet associated with the target
execute command contains all the information required to execute the
target services. Information transfer phases are executed according to
the script specified in the SCSI specific packet. The MVME327A
automatically reselects the disconnected initiator (if disconnected)
after receiving the target execute command. (The primary unit number
in the target execute command packet must match the primary unit number
in the enable target and target wait commands.) The MVME327A also
automatically codes the correct identify message for the identification
process after reselection, if necessary. The message in phase for the
identification message is not to be included in the script. If a data
phase is to be performed during the SCSI thread, then it is usually the
first phase specified in the script area of the SCSI specific packet
associated with the target execute command. If no data phase is to be
performed, then the status phase is usually the first phase specified
in the script. Scripts must end with an end of script code ($08) to
allow the MVME327A to complete its services. Issue the properly
prepared target execute command on the channel created in step a to
service the selecting initiator on the SCSI bus.

g. Wait for status (fatal error code in the BPP packet = 0) for the target
execute command. If no error occurred, the services were successfully
performed on the SCSI bus by the MVME327A. If an error occurred,
determine what measures to follow to correct the error condition.

h. Go to step d to continue target service or send a disable target
command ($21) if target role is to be turned off for that LUN.

TARGET ROLE

Script Value Definitions

$00 Data out phase
$01 Data in phase
$02 Command phase
$03 Status phase
$04 Undefined phase - DO NOT USE
$05 Undefined phase - DO NOT USE
$06 Message out phase
$07 Message in phase
$08 End of script
$OA Return SCSI specific packet - initiator on SCSI bus
$OB Return SCSI specific packet - initiator disconnected

The last byte in the script of the SCSI specific packet associated with a
successfully completed BPP target wait command is either $OA or $OB.

EXAMPLES

For the following examples, the control word in the SCSI specific packet of
the target execute commands reflect the following:

Synchronous transfers are not attempted but are negotiated during a
target wait command only. The SYNC bit is not set for a target wait
command.

Parity checking is not implemented.

Status is sent by the target to the initiator. No status checking.

The data bus width is 32 bits. The data bus width code in the BPP
packet is $02.

Byte swapping is not enabled.

Scatter/gather is not used.

Linked commands are not supported.

Targets do not have control over whether message protocol is used or
not.

Additionally,

The MVME327A resides at SCSI address 7.

A successful target enable command was issued to MVME327A LUN 2. The
primary unit number in the BPP packet is $72.

The target mode driver only supports SCSI processor device commands test
unit ready, send, receive, and request sense.

C-3

I

TARGET ROLE

In anticipation of being selected, the host issues a target wait command. The
content of the included SCSI specific packet is unimportant but should be
zeroed for easier interpretation after target wait status is returned.

Some time later a device on the SCSI bus selects the enabled LUN. After
successful completion status for the target wait command (fatal error code in
BPP packet = 0) is returned, the SCSI specific packet appears as follows:

SCSI Specific Packet Description
==

C-4

BYTE OFFSET

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$1A
$1C
$1E
$20
$22
$24
$26
$28
$2A
$2C
$2E
$30
$32
$34
$36
$38
$3A
$3C
$3E

$06
$00
$00
$00

XX
XX
XX

xx
xx

XX
XX
XX

XX
XX
XX

$02
XX
XX
XX

PARAMETER DESCRIPTION

XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX

XXXX
XXXX
XXXX

XX
$40
$00
$00

XX
XX
XX

$04
XX

XX
XX
XX

XX
XX
XX

$OA
XX
XX
XX

a. The CDB contains a test unit ready command. A test unit ready command
is issued to check if the LUN is ready to accept commands.

b. The initiator is at SCSI address 4.

TARGET ROLE

c. The last byte in the script is an $OA (initiator on bus) indicating
that the initiator does not support disconnection.

d. There are only two bytes in the script $02 (command phase) and $OA.

From the above information the target driver can conclude:

a. No message phases are indicated in the script. The initiator selected
without asserting ATN.

b. The message area is not valid because selecting without ATN asserted
means the initiator does not support the SCSI message protocol.

c. The CDB is valid for this driver. The driver executes this command.

It should be noted that the initiator is tying up the bus by not allowing
disconnects.

A test unit ready command is issued to check if the LUN is ready to accept
commands. Because it is, a good status is returned to the initiator. A test
unit ready command does not involve a data transfer.

In response to the test unit ready command, a BPP target execute command is
issued to MVME327A LUN 2 with the following associated SCSI specific packet.

C-5

I

TARGET ROLE

SCSI Specific Packet Description

BYTE OFFSET PARAMETER DESCRIPTION

$00 $0000
$02 $0000
$04 $0000
$06 XX XX
$08 XX XX
$OA XX XX
$OC XX XX
$OE XX XX
$10 XX XX
$12 XX XX
$14 $0000
$16 $0000
$18 XXXX
$1A XXX X
$lC $00 XX
$IE $00 $00
$20 $0001
$22 XXXX
$24 XXXX
$26 $00 XX
$28 XX XX
$2A XX XX
$2C XXXX
$2E XXXX
$30 XXXX
$32 XX XX
$34 XX XX
$36 XX XX
$38 $03 $07
$3A $08 XX
$3C XX XX
$3E XX XX

==

Upon receiving successful completion status for the target execute command
(fatal error code in the BPP packet = 0) the driver issues another target wait
command.

The MVME327A LUN 2 is selected again. After successful completion status for
the target wait command (fatal error code in the BPP packet = 0) is returned,
the SCSI specific packet appears as follows:

C-6

BYTE OFFSET

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$IA
$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E
$30
$32
$34
$36
$38
$3A
$3C
$3E

SCSI Specific Packet Description

$06
$08
$10
$00

XX
XX
XX

xx
xx

$01
$01
$04

$C2
$03
$32
$07
$07

XX
XX

PARAMETER DESCRIPTION

XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX

$0001
XXXX
XXXX

XXXX
XXXX
XXXX

TARGET ROLE

XX
$40
$00
$00

XX
XX
XX

$06
XX

$03
$32
$04

$01
$01
$04
$02
$OB

XX
XX

==

a. The CDB contains a receive command. A receive command requests that
the target transfer bytes of data to the initiator.

o. The initiator is at SCSI address 6.

c. The last byte in the script is $OB.

d. The script contains several bytes including two message-in phase bytes.

C-7

I

TARGET ROLE

From the above information the target driver can conclude:

a. The initiator supports message protocol because it is disconnected.

b. This is the first command to the LUN from that initiator since power
up. Because this initiator supports synchronous data transfers,
synchronous data transfer rate negotiation was attempted.

c. The negotiated rate can be determined by examining the message out
field. If message out byte 2 = $07 (message reject) then data
transfers are synchronous. For this example, a synchronous data rate
was established. To interpret the negotiated rate, refer to paragraph
5.5.5 Synchronous Data Transfer Request Message in the SCSI
specification.

d. The COB is valid for this driver. The driver executes this command.

The receive command is requesting that the target transfer $100000 bytes of
data to the initiator. The driver has $100000 bytes of data at VME address
$400000 that the initiator wants. A good status is to be returned to the
initiator. DMA is enabled.

In response to the receive command, a BPP target execute command is issued
with the following associated SCSI specific packet:

C-8

TARGET ROLE

SCSI Specific Packet Description
==

BYTE OFFSET

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$IA
$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E
$30
$32
$34
$36
$38
$3A
$3C
$3E

xx
XX
XX
XX
XX
XX
XX

$00
$00

$00
XX
XX

XX
XX
XX

$01
$07

XX
XX

PARAMETER DESCRIPTION

$0000
$0000
$8800

$0010
$0000
$0004
$0000

$0001
XXXX
XXXX

XXXX
XXXX
XXXX

XX
XX
XX
XX
XX
XX
XX

XX
$00

XX
XX
XX

XX
XX
XX

$03
$08

XX
XX

==

Upon receiving successful completion status for the target execute command
(fatal error code in BPP packet = 0) the driver issues another target wait
command.

The MVME327A LUN 2 is selected again. After successful completion status for
the target wait command (fatal error code in BPP packet = 0) is returned, the
SCSI specific packet appears as follows:

C-9

I

I

TARGET ROLE

SCSI Specific Packet Description

BYTE OFFSET PARAMETER DESCRIPTION

$00 XXXX
$02 XXXX
$04 XXXX
$06 $06 XX
$08 $12 $40
$OA $00 $00
$OC $20 $00
$OE XX XX
$10 XX XX
$12 XX XX
$14 XXXX
$16 XXXX
$18 XXXX
$lA XXXX
$lC XX $04
$lE XX XX
$20 XXXX
$22 XXXX
$24 XXXX
$26 XX XX
$28 XX XX
$2A XX XX
$2C XXXX
$2E XXXX
$30 XXXX
$32 XX XX
$34 XX XX
$36 XX XX
$38 $02 $OA
$3A XX XX
$3C XX XX
$3E XX XX

==

a. The COB contains an inquiry command.

b. The initiator is at SCSI address 4.

c. The last byte in the script is $OA.

From this information the target driver can conclude that the CDB is invalid
for this driver.

The driver makes no attempt to fulfill the inquiry request. A check status is
returned to the initiator indicating that there is something wrong and that
the next command that this initiator (4) sends should be a request sense.

In response to the invalid command, a BPP target execute command is issued
with the following associated SCSI specific packet:

C-10

TARGET ROLE

SCSI Specific Packet Description
==

BYTE OFFSET

$00
$02
$04
$06
$08
$OA
SOC
$OE
$10
$12
$14
$16
$18
$1A
$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E
$30
$32
$34
$36
$38
$3A
$3C
$3E

xx
XX
XX
XX
XX
XX
XX

$02
$00

$00
XX
XX

XX
XX
XX

$03
$08

XX
XX

PARAMETER DESCRIPTION

$0000
$0000
$0000

$0000
$0000

XXX X
XXXX

$0001
XXXX
XXXX

XXXX
XXXX
XXXX

XX
XX
XX
XX
XX
XX
XX

XX
$00

XX
XX
XX

XX
XX
XX

$07
XX
XX
XX

Upon receiving successful completion status for the target execute command
(fatal error code in BPP packet = 0) the driver issues another target wait
command.

The MVME327A LUN 2 is selected for the fourth time. After successful
completion status for the target wait command (fatal error code in BPP packet
= 0) is returned, the SCSI specific packet appears as follows:

C-11

I

TARGET ROLE

SCSI Specific Packet Description
==

BYTE OFFSET PARAMETER DESCRIPTION

$00 XXXX
$02 XXXX
$04 XXXX
$06 XX XX
$08 $OA $40
$OA $00 $84
$OC $00 $00
$OE XX XX
$10 XX XX
$12 XX XX
$14 XXXX
$16 XXXX
$18 XXXX
$IA XXXX
$IC XX $06
$IE XX XX
$20 XXXX
$22 XXXX
$24 XXXX
$26 $04 XX
$28 XX XX
$2A XX XX
$2C XXXX
$2E XXXX
$30 XXXX
$32 XX XX
$34 XX XX
$36 XX XX
$38 $02 $07
$3A $OB XX
$3C XX XX
$3E XX XX

==

C-12

a. The CDB contains a send command. A send command requests that the
target accept data bytes transferred by the initiator.

b. The initiator is at SCSI address 6.

c. The last byte in the script is $OB.

d. The script contains only three bytes including $02 (command phase) and
$07 (message in phase).

TARGET ROLE

From this information the target driver can conclude:

a. This initiator supports message protocol because it is disconnected.

b. The request sense data for the check status just sent is not for this
initiator.

c. The COB is valid for this driver. The driver executes this command.

The send command is requesting that the target accept $8400 bytes of data from
the initiator. The driver has a buffer at VME address $80000 for saving
incoming data. A good status is to be returned to the initiator. DMA is
enabled.

In response to the send command, a BPP target execute command is issued to the
MVME327A LUN 2 with the following SCSI specific packet:

C-13

I

TARGET ROLE

SCSI Specific Packet Description
==

BYTE OFFSET PARAMETER DESCRIPTION

$00 $0000
$02 $0000
$04 $8800
$06 XX XX
$08 XX XX
$OA XX XX
$OC XX XX
$OE XX XX
$10 XX XX
$12 XX XX
$14 $0000
$16 $8400
$18 $0008
$IA $0000
$IC $00 XX
$IE $00 $00
$20 $0001
$22 XXXX
$24 XXXX
$26 $00 XX
$28 XX XX
$2A XX XX
$2C XXXX
$2E XXXX
$30 XXXX
$32 XX XX
$34 XX XX
$36 XX XX
$38 $00 $03
$3A $07 $08
$3C XX XX
$3E XX XX

==

Upon receiving successful completion status for the target execute command
(fatal error code in BPP packet = 0) the driver issues another target wait
command.

The MVME327A lUN 2 is selected again. After successful completion for the
target wait command (fatal error code in BPP packet = 0) is returned, the SCSI
specific packet appears as follows:

C-14

BYTE OFFSET

$00
$02
$04
$06
$08
$OA
SOC
$OE
$10
$12
$14
$16
$18
$IA
$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E
$30
$32
$34
$36
$38
$3A
$3C
$3E

SCSI Specific Packet Description

XX
$03
$00
$20

XX
XX
XX

xx
xx

XX
XX
XX

XX
XX
XX

$02
XX
XX
XX

PARAMETER DESCRIPTION

XXXX
XXXX
XXX X

XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX

XXXX
XXXX
XXXX

TARGET ROLE

XX
$40
$00
$00
xx
xx
xx

$04
XX

xx
xx
xx

xx
xx
XX

$OA
XX
XX
xx

==

a. The COB contains a request sense command. A request sense command
requests that the target send sense data to the initiator.

b. The initiator is at SCSI address 4.

c. The last byte in the script is $OA.

C-lS

I

TARGET ROLE

Form this information the driver can conclude:

a. There is current sense data for this initiator.

b. The CDB is valid for this driver. The driver executes this command.

The request sense command command is requesting that the target transfer $20
bytes of sense data to the initiator. The sense data is located at VME
address $60000. For more information regarding the contents of the sense data
that should be transferred to the initiator, refer to paragraph 7.1.2 Request
Sense Command in the SCSI specification.

In response to the request sense command, a BPP target execute command is
issued to the MVME327A LUN 2 with the following SCSI specific packet:

C-16

BYTE OFFSET

$00
$02
$04
$06
$08
$OA
$OC
$OE
$10
$12
$14
$16
$18
$IA
$IC
$IE
$20
$22
$24
$26
$28
$2A
$2C
$2E
$30
$32
$34
$36
$38
$3A
$3C
$3E

SCSI Specific Packet Description

xx
XX
XX
xx
XX
XX
XX

$00
$00

$00
XX
XX

XX
XX
XX

$00
$07

XX
XX

PARAMETER DESCRIPTION

$0000
$0000
$0000

$0000
$0020
$0006
$0000

$0001
XXXX
XXXX

XXXX
XXXX
XXXX

TARGET ROLE

XX
XX
XX
XX
XX
XX
XX

XX
$00

XX
XX
XX

XX
XX
XX

$03
$08

XX
XX

==

Upon receiving successful completion for the target execute command (fatal
error code in BPP packet = 0) the driver determines that this (MVME327A LUN 2)
is no longer needed and issues a BPP disable target command.

C-17

FATAL ERROR CODES

APPENDIX D - FATAL ERROR CODES

I NTRODUCTI ON

This appendix lists the fatal error codes and a short description of each
error.

The table below defines the fatal error codes.

CODE (HEX)

$00

$01
$02
$03
$04
$05
$06
$07
$08

$10
$11
$12
$13
$14
$15
$16
$17

$20
$21
$22
$23
$24
$25

Fatal Error Codes

ERROR DESCRIPTION

Good

$01-0F Command Parameter Errors

Bad descriptor
Bad command
Unimplemented command
Bad drive
Bad logical address
Bad scatter/gather table
Unimplemented device
Unit not initialized

$10-lF Media Errors

No ID found on track
Seek error
Relocated track error
Record not found, bad ID
Data sync fault
ECC error
Record not found
Media error

$20-2F Drive Errors

Drive fault
Write protected media
Motor not on
Door open
Drive not ready
Drive busy

NOTES

1

2,3
2,3

3
3

3

3
3
3
3
3
3
3
3

3
3
3
3
3
3

D-1

I

FATAL ERROR CODES

0-2

CODE (HEX)

$30
$31
$32
$33

$40
$41
$42
$43
$44
$45

$80
$81

$82
$83
$84
$85

$86
$87
$88
$89
$8A
$8B
$8C
$80
$8E
$8F
$90
$91
$92
$93

$94
$95
$96
$97

$98
$99
$9A

Fatal Error Codes (cont'd)

ERROR DESCRIPTION

$30-3F VME DMA Errors

VMEbus error
Bad address alignment
Bus time-out
Invalid DMA transfer count

$40-4F Disk Format Errors

Not enough alternates
Format failed
Verify error
Bad format parameters
Cannot fix bad spot
Too many defects

$80-FF MVME327A Specific Errors

SCSI error, additional status available
Indeterminate media error, no additional
information
Indeterminate hardware error
Blank check (EOD or corrupted WORM)
Incomplete extended message from target
Invalid reselection by an unthreaded
target
No status returned from target
Message out not transferred to target
Message in not received from target
Incomplete data read to private buffer
Incomplete data write from private buffer
Incorrect COB size was given
Undefined SCSI phase was requested
Time-out occurred during a select phase
Command terminated due to SCSI bus reset
Invalid message received
Command not received
Unexpected status phase
SCSI script mismatch
Unexpected disconnect caused command
fail ure
Request sense command was not successful
No write descriptor for controller drive
Incomplete data transfer
Out of local resources for command
processing
Local memory resources lost
Channel reserved for another VME host
Device reserved for another SCSI device

NOTES

3,4
3
3
3

3
3
3
3
3
3

3
3

3
3
3,5
3,5

3,5
3,5
3,5
3
3
3,5
3,5
3
3
3,5
6
3
3,5,9
3

10
7
3
11

12
12

FATAL ERROR CODES

Fatal Error Codes (cont'd)

CODE (HEX) ERROR DESCRIPTION NOTES

$9B Already enabled, expecting target response 6
$9C Target not enabled 6
$9D Unsupported controller type 7
$9E Unsupported peripheral device type 7
$9F Block size mismatch S
$AO Invalid cylinder number in format defect 7

list
$Al Invalid head number in format defect list 7
$A2 Block size mismatch--nonfatal S
$A3 Our SCSI ID was not changed by command 13
$A4 Our SCSI ID has changed 6,14
$A5 No target enable has been completed 6
$A6 Cannot do longword transfers 7
$A7 Cannot do DMA transfers 7
$AS Invalid logical block size 7,S
W Sectors per track mismatch 7
$AA Number of heads mismatch 7
$AB Number of cylinders mismatch 7
$AC Invalid floppy parameter(s)
$AD Already reserved 12
$AE Was not reserved 12
$AF Invalid sector number 7
$CC Self test failed

NOTES: 1. The termination transfer count is always valid for a command
that transfers data.

2. The bad byte is indicated by its offset value in status
parameter 3. If the value is -1 ($FFFF) then the bad byte
is not indicated.

3. Additional status information may be available in the
additional error code/status field of the BPP packet.

4. VMEbus error address contained in error status address
field of BPP packet is currently not valid.

5. SCSI processing may not have finished. A SCSI bus reset
command may need to be executed to put the SCSI bus in a
known state. Refer to caution regarding SCSI bus resets.

6. Target mode only.

7. Designated parameter is in error.

S. Block size requested does not correspond to block size
of device.

D-3

a

I

FATAL ERROR CODES

0-4 .

Fatal Error Codes (cont'd)

CODE (HEX) ERROR DESCRIPTION NOTES

9. Target device did not behave as indicated by the script in
the SCSI specific packet.

10. Error condition flagged by target device cannot be reported.
Probably due to a hardware problem.

11. Command cannot be executed because local resources required
exceed available local resources. Resubmit command when
MVME327A is less busy.

12. Valid for the reserve/release commands.

13. Set SCSI address command was unsuccessful because at least
one SCSI command was in progress.

14. Set SCSI address command was issued and all pending target
wait commands were returned. Set SCSI address command may
or may not be successful.

===

ADDITIONAL ERROR CODES

APPENDIX E - ADDITIONAL ERROR CODES

Error code definitions for "additional error code" field of BPP packet.

Hex Value

00
01
02
03
04
05
06
07
08
09
OA-OF
10
11
12
13
14
15
16
17
18
19
lA
IB
lC
ID
IE
IF
20
21
22
23
24
25
26
27
28
29
2A
2B-2F
30
31
32

Message

no additional error code
no index/sector signal
no seek complete
write fault
drive not ready
drive not defined
track ZERO not found
multiple drives selected
logical unit communications failure
track following error
are RESERVED
ID CRC or ECC error
unrecovered READ error
no address mark found for ID field
no address mark found for data area
no record found
seek positioning error
data synchronization mark error
recovered data with target read retries
recovered data with ECC correction
defect list error
parameter overrun - parameter list too long
synchronous transfer error
primary defect list not found
all bytes did not compare during a VERIFY cmd
recovered ID with ECC correction
is RESERVED
invalid command operation code
illegal logical block address
illegal function for device type
is RESERVED
illegal field in COB
invalid LUN
invalid field in parameter list
disk is write protected
medium change
power on or bus device reset
mode select parameters have changed
are RESERVED
incompatible cartridge
medium format corrupted
no defect spare location available

E-l

II

ADDITIONAL ERROR CODES

Hex Value Message

33-3F are RESERVED
40 RAM failure
41 data path diagnostic failure
42 power on diagnostic failure
43 message reject error
44 internal controller error
45 select/reselect failed
46 unsuccessful 'soft' reset
47 SCSI interface parity error
48 initiator detected error
49 inappropriate/illegal message
4A-4F are RESERVED
50-SF are RESERVED
60-6F are RESERVED
70-7F are RESERVED

I
80 through FF are vendor unique error codes

E-2

C FUNCTION EXAMPLES

APPENDIX F - C FUNCTION EXAMPLES OF BPP PROTOCOL

The following is an example file written in C illustrating one way to
implement the protocol defined in this manual. Motorola makes no claims for
this code as to suitability or fitness for the user's application.

/* This file contains example C functions for
* crechan creating a BPP channel
* del chan deleting a BPP channel
* sendpkt -- enqueuing a packet to the command pipe
* rcvpkt -- dequeuing a packet from the status pipe
*
* Also included is creation and management of a pool of BPP
* envelopes.
*/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

BASE Oxffffa600
NENV 10

/* base address of MVME327A board */
/* number of envelopes */

CREATE Ox001
DELETE Ox002
TASBIT Ox8000
CMD VALID Ox4000
STAT VALID Ox2000
CMD COMPL Ox1000
ATTENTION Ox20
BUSY Ox80
TIMEOUT Oxff
VALID 1

/* create channel command */
/* delete channel command */

/* structure definition for a command
struct cmdpkt

packet */

{
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned long
unsigned short
unsigned short
unsigned short
unsigned short

command;
cmdcntrl;
dev;
unit;
secdev;
secunit;
addmod;
dbuswidth;

*priaddr;
*secaddr;
tcount;
sgcount;
cmdpar1;
cmdpar2;
cmdpar3;

/* command */
/* command control */
/* device */
/* unit number */
/* secondary device */
/* secondary unit */
/* address modifier */
/* data bus width */
/* primary address */
/* secondary address */
/* transfer count in blocks
/* number of S/G entries in
/* command parameter 1 */
/* command parameter 2 */
/* command parameter 3 */

*/
list */

F-1

II

II

C FUNCTION EXAMPLES

unsigned char
unsigned char
unsigned short
unsigned char
unsigned char
unsigned char
unsigned long
unsigned short
unsigned short
unsigned short
} ;

fatal;
recovered;
addstat;
retrycnt;
reserved;

*errstadd;
termcnt;
statpar1;
statpar2;
statpar3;

/* fatal error code */
/* recovered error code */
/* additional error status */
/* number of retries */
/* reserved */
/* error status address */
/* termination transfer count */
/* status parameter 1 */
/* status parameter 2 */
/* status parameter 3 */

/* structure definition of a BPP envelope */
struct vmeenv

{
struct vmeenv *link;
struct cmdpkt *vpkt;
unsigned char valid;
char fil11;
short fil12;
} ;

/* structure definition
struct csrreg

of the MVME327A CSR register */

{
long
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
long
unsigned
} ;

*addreg;
char addmod;
char dbwidth;
char ctrl;
char fi 111;
char stat;
char diagreg;

fi 112;
short tasreg;

/* address register */
/* address modifier */
/* data bus width */
/* control register */

/* status register */
/* diagnostic register */

/* TAS register */

/* structure definition of a BPP channel header in VME memory */
struct vcch

F-2

{
struct vmeenv *cphp;
struct vmeenv *cptp;
struct vmeenv *sphp;
struct vmeenv *sptp;
unsigned char level;
unsigned char vector;
unsigned char prior;
unsigned char addmod;
unsigned char chan;
unsigned char valid;
unsigned char dbwidth;
unsigned char fill;
};

/* command pipe head ptr. */
/* command pipe tail ptr. */
/* status pipe head ptr. */
/* status pipe tail ptr. */
/* interrupt level */
/* interrupt vector number */
/* channel priority */
/* address modifier */
/* channel number */
/* valid flag */
/* data bus width */

C FUNCTION EXAMPLES

/* global variables */
struct vcch ch;
struct vmeenv env[NENV];
struct vmeenv *fenvptr;

/* channel header */
/* envelope pool */
/* free env ptr. */

/**********************************/
/* crechan - create a BPP channel */
/**********************************/

crechan()
{
int i;
struct vmeenv *eptr;
struct vmeenv *tptr;
struct csrreg *csrptr;
char docmd();

csrptr = (struct
ch.valid = 0;
ch.level = 3;
ch.prior = 1;
ch.vector = Ox60;
ch.addmod = Ox3d;

csrreg *)BASE;

/* interrupt level 3 */
/* channel priority 1 */
/* interrupt vector number
/* address modifier */

/* initialize the bpp envelopes */
fenvptr = env;

Ox60 */

ch.cphp = ch.cptp fenvptr; /* null envelope in command pipe */
ch.cphp->link = 0;
ch.cphp->valid = 0;
fenvptr += 1;
ch.sphp = ch.sptp = fenvptr; /* null envelope in status pipe */
ch.sphp->link = 0;
ch.sphp->valid = 0;
/* link rest of envelopes in free pool */
fenvptr += 1;
tptr = fenvptr;

for (i = 0; i < (NENV-2); i++)
{
eptr = tptr;
tptr += 1;
eptr->link = tptr;
eptr->valid = 0;
}

eptr->link = 0;
eptr->valid = 0;

/* try to open the channel */

if(docmd(CREATE,&ch,csrptr) != 0)
{
printf("Channel NOT opened due to timeout.\n");
return;
}

F-3

I

I

C FUNCTION EXAMPLES

if(csrptr->stat != 0)
{

}

printf("Channel NOT opened: status = %x\n",csrptr->stat);
return;
}

/**/
/* del chan - delete an existing channel */
/**/

delchan()
{
struct csrreg *csrptr;
char docmd();

csrptr = (struct csrreg *)BASE;

if(docmd(DELETE,&ch,csrptr) != 0)
{
printf("Channel NOT deleted due to timeout.\n");
return;
}

if(csrptr->stat != 0)
{

}

printf("Channel NOT deleted: status = %x\n",csrptr->stat);
return;
}

/********************************/

char docmd(cmd,cp,csr)
int cmd;

F-4

unsigned char *cp;
register struct csrreg *csr;

{
register unsigned int timeout;

timeout = 500000;
while «csr->ctrl & BUSY) && timeout)

timeout--;

if (timeout == 0)
{
printf("Timeout: waiting for BUSY bit in csr ctrl\n");
return(TIMEOUT);
}

C FUNCTION EXAMPLES

timeout = 500000;
while (timeout && !tas(&csr->tasreg»

timeout--;

if (timeout == 0)
(
printf("Timeout: waiting for TAS bit in csr\n");
return(TIMEOUT);
}

csr->addmod = Ox3d;
csr->dbwidth = 2;
csr->addreg = (long *)cp;
csr->tasreg = TASBIT 1 CMD VALID 1 cmd;
csr->ctrl 1= ATTENTION; -

/* poll for results */
timeout = 5000000;
while ««csr->tasreg) & STAT_VALID)

timeout--;

if (timeout == 0)
(

0) && timeout)

printf("Timeout: waiting for VALID STATUS bit in csr\n");
return(TIMEOUT);
}

csr->tasreg 1= CMD COMPL;
csr->ctrl 1= ATTENTION;

return(O);
}

/********************************/

/* tas - use the tas instruction on csr TAS bit
*
* WARNING: Do NOT use the cc optimizer (-0 option) on
* this function without checking out generated code!
* (Included here for completeness, but normally
* compiled separately.)
*/

tas(csr)
unsigned short *csr;
(
asm(" mov.l 8(%fp),%aO");
asm(" clr.l %dO");
asm(" tas.b (%aO)");
asm(" bmi.b tasdone");
asm(" sub.l &1,%dO");
asm("tasdone: ");
}

/* move 1st paramo to aO */
/* clear return value */
/* do the "tas" instruction */

/* return -I */

F-5

II

I

C FUNCTION EXAMPLES

/***/
/* sendpkt - enqueues a packet to command pipe */
/***/

int sendpkt(pktptr)
struct cmdpkt *pktptr;
{
struct csrreg *csr;
struct vmeenv *envptr;
struct vmeenv *getenv();

csr = (struct csrreg *)BASE;
envptr = ch.cptp;

/* get a null envelope and put on bpp cmd queue */
if ((envptr->link = getenv()) == 0)

{
printf("\n***** Out of bpp envelopes.\n");
return(-l);
}

envptr->vpkt = pktptr;
ch.cptp = envptr->link;
envptr->valid = VALID;
csr->ctrl 1= ATTENTION;
return(O);
}

/********************************/

/* getenv - gets an envelope from the free pool and returns
* a pointer to it; else if no more envelopes in the free
* pool, returns a zero.
*/

struct vmeenv *getenv()

F-6

{
struct vmeenv *envptr;

envptr = fenvptr;
if (envptr != 0)

{
fenvptr = envptr->link;
envptr->link = 0;
envptr->valid = 0;
return(envptr);
}

else
return(O);

}

/***/
/* rcvpkt - dequeues a packet from status pipe */
/* (returns pointer to packet unless no packet */
/* available, then returns 0) */
/***/

struct cmdpkt *rcvpkt()
{
struct vmeenv *envptr;
struct cmdpkt *pktptr;

envptr = ch.sphp;
if (envptr->valid)

{
pktptr = envptr->vpkt;
ch.sphp = envptr->link;

/* put envelope back into pool */
envptr->link = fenvptr;
fenvptr = envptr;
envptr->valid = 0;

return(pktptr);
}

else
return(O);

}

C FUNCTION EXAMPLES

F-7

INDEX

INDEX

In this index a page number indicates only where reference to a topic begins;
the reference may extend to the following page or pages.

A

Additional Error Code/Status, 3-8
ADDITIONAL ERROR CODES, E-l
assert, 1-9
asterisk, 1-8
attention interrupt, 1-5

B

BPE, 1-6 (see also Buffered Pipe Envelope)
BPP, 1-1, 1-6 (see also Buffered Pipe Protocol)
BPP DATA STRUCTURES, 3-1
BPP interface interrupt, 1-5
BPP Test Command $00, 7-1
BPP Test Command Packet, 7-1
BPP Test Command Returned Status, 7-2
BPP Test Command Status Packet, 7-2
Buffered Pipe Envelope, 1-6 (see also BPE)
Buffered Pipe Protocol, 1-1, 1-6, 4-1 (see also BPP)
Buffered Pipe Protocol Summary, 4-3
Bytes from Index Defect List Type 2, 7-17
Bytes From Index Format, 7-17

c
C FUNCTION EXAMPLES OF BPP PROTOCOL, F-l
((S, 6-2, A-I (see also Common Command Set)
Certification, 7-13
channel, 2-3
Channel command packets, 2-3
channel header, 2-3, 4-1
Channel priority, 1-4
Channel status packets, 2-3
Command Channel Header Structure, 3-1
Command Codes, 3-5
command packets, 2-1
Command Parameter Errors, D-l
command pipe, 2-1, 2-3, 4-1
Command/Status Register, 2-1 (see also CSR)
Common Command Set, 6-2, A-I (see also CCS)

IN-l

INDEX

control register, 2-2
controller type code, 7-8
Create Channel CSR Command, 2-3
CSR, 2-1 (see also Command/Status Register)
CSR COMMAND PROTOCOL, 2-1
CSR COMMANDS, 2-3
CSR Status Register, 2-4
CSR Status Register Values, 2-5
CSR Test And Set Commands, 2-3
custom SCSI command, B-1
Custom SCSI Command $26, 7-43
Custom SCSI Command Control Word Bit Definitions, 6-4
CUSTOM SCSI COMMAND EXAMPLE, B-1
Custom SCSI Command Packet, 7-44
Custom SCSI Command Returned Status, 7-45
Custom SCSI Command Status Packet, 7-45

D

Data Bus Width Codes, 3-6
Defect List Formats, 7-16
Delete Channel Command, 2-4
DEVICE DESCRIPTORS, 5-1
Device Type Assignments, 3-6
Diagnostic Register, 2-5
Disable Target Command $21, 7-34
Disable Target Command Packet, 7-34
Disable Target Command Returned Status, 7-35
Disable Target Command Status Packet, 7-35
Disk Descriptor Table, 5-1
Disk Format Errors, D-2
Drive Errors, 0-1

E

embedded controller, 1-2
Enable Target Command $20, 7-32
Enable Target Command Packet, 7-33
Enable Target Command Returned Status, 7-33
Enable Target Command Status Packet, 7-33
envelope, 3-1, 3-3, 4-1
Envelope Format, 3-3
Envelope/Packet Dequeueing, 4-3
Envelope/Packet Enqueueing, 4-2
Erase Command $14, 7-28
Erase Command Packet, 7-28
Erase Command Returned Status, 7-29
ESTABLISHING DRIVER/MVME327A CHANNEL COMMUNICATIONS, 4-1
extended read command, B-4
Extended Read Example, B-4

IN-2

F

fatal error code, 7-46
FATAL ERROR CODES, 0-1
FEATURES , 1-1
Fix Bad Spot Command $06, 7-17
Fix Bad Spot Command Packet, 7-18
Fix Bad Spot Command Returned Status, 7-19
Fix Bad Spot Command Status Packet, 7-19
floppy drive interface, 1-5
Floppy Format Field, 5-3
floppy interface, 1-4
Format Command $05, 7-12
Format Command Packet, 7-13
Format Command Returned Status, 7-15
Format Command Status Packet, 7-15

G

GLOSSARY , 1-2
Grown defect list, 7-13

H

head pointer, 3-1
header J8, 7-52
hexadecimal, 1-8
High Level Command Translation, 6-1
high level commands, 5-9, 6-1, 7-1, B-1
Host, 1-2
host computer adapter, 1-2

I

Initiator, 1-2, 1-3
intelligent peripheral, 1-2
invalid command, C-I0
IRQ Failure, 2-6

L

Least significant word, 1-2 (see also LSW)
list of defects, 7-12
Load/Unload/Re-tension Command $11, 7-22
Load/Unload/Re-tension Command Packet, 7-22
Load/Unload/Re-tension Command Returned Status , 7-23
Load/Unload/Re-tension Command Status Packet, 7-23

INDEX

IN-3

INDEX

LOCAL FLOPPY COMMANDS, 6-1
Logical Unit, 1-2
Logical Unit Number, 1-2 (see also LUN)
LSW, 1-2 (see also Least significant word)
LUN, 1-2 (see also Logical Unit Number)

M

MANUAL TERMINOLOGY, 1-8
MAP Decoder, 2-6
Media Errors, D-l
modes of operation

interrupt driven, 1-7
polled, 1-7

Most significant word, 1-2 (see also MSW)
MPU Failure, 2-5
MSW, 1-2 (see also Most significant word)
multi-threading, 1-3
MVME327A COMMANDS, 6-1, 6-6
MVME327A FIRMWARE ARCHITECTURE, 1-4
MVME327A Specific Errors, D-2

N

negate, 1-9

o
Open Command $2D, 7-53
Open Command Packet, 7-54
Open Command Returned Status, 7-55
Open Command Status Packet, 7-55
other data structures, 5-1

P

PACKET, 3-4
Packet Format, 3-4
peripheral controller, 1-2
peripheral type code, 7-8
Physical Sector Defect List Type 1, 7-16
Physical Sector Format, 7-16
Primary defect list, 7-12

IN-4

R

RAM Failure, 2-5
READ command, 6-2
Read Command $01, 7-2
Read Command Packet, 7-3
Read Command Returned Status, 7-5
Read Command Status Packet, 7-5
Read Descriptor Command $03 , 7-8
Read Descriptor Command Packet, 7-8
Read Descriptor Command Returned Status, 7-9
Read Descriptor Command Status Packet, 7-9
Read Status Command $10, 7-20
Read Status Command Packet, 7-20
Read Status Command Returned Status, 7-21
Read Status Command Status Packet, 7-21
receive command, C-8
RELATED DOCUMENTATION, 1-8
Release Unit Command $23, 7-38
Release Unit Command Packet, 7-39
Release Unit Command Returned Status, 7-41
Release Unit Command Status Packet, 7-41
request sense command, B-5, C-16
Request Sense Example, B-5
Reserve Unit Command $22, 7-36
Reserve Unit Command Packet, 7-36
Reserve Unit Command Returned Status, 7-38
Reserve Unit Command Status Packet, 7-38
Reset SCSI Command $25, 7-41
Reset SCSI Command Packet, 7-42
Reset SCSI Command Returned Status, 7-43
Reset SCSI Command Status Packet, 7-43
RETURN STATUS, 2-4
Rewind Command $13, 7-26
Rewind Command Packet, 7-26
Rewind Command Returned Status, 7-27
Rewind Command Status Packet, 7-27
ROM Failure, 2-6

s

SCATTER/GATHER LIST, 5-9
Script Value Definitions, C-3
SCSI Address, 1-2, 1-3, 7-52
SCSI bus, 1-4
SCSI BUS BACKGROUND, 1-3
SCSI BUS COMMANDS, 6-1
SCSI command, C-l
SCSI commands, 6-2
SCSI controllers, 6-2
SCSI Device, 1-2

INDEX

IN-5

INDEX

SCSI Failure, 2-6
SCSI ID, 1-2
SCSI interface, 1-4
SCSI level commands, 5-9, 6-1, 6-2
SCSI Specific Packet, 6-3, B-1
SCSI Specific Packet Description, 6-3
Self Test Command $27, 7-46
Self Test Command Packet, 7-46
Self Test Command Returned Status, 7-47
Self Test Command Status Packet, 7-47
send command, C-13
Sequential processing, 1-4
Set SCSI Address Command $2B, 7-52
Set SCSI Address Command Packet, 7-52
Set SCSI Address Command Returned Status, 7-53
Set SCSI Address Command Status Packet, 7-53
Space Command $15, 7-30
Space Command Packet, 7-30
Space Command Returned Status, 7-32
Space Command Status Packet, 7-32
Start/Stop Tape Descriptor Table, 5-7
Status checking, B-2
status packets, 2-1
status pipe, 2-1, 2-3, 4-1
Streaming Tape Descriptor Table, 5-5
SUPPORTED SCSI CONTROLLERS/DEVICES, A-I
Synchronous transfers, B-2, C-3
SYSFAIL, 2-4
SYSFAIL Handling, 2-5

T

tail pointer, 3-1
Target, 1-2, 1-3
Target Driver Algorithm, C-l
Target Execute Command $29, 7-50
Target Execute Command Packet, 7-50
Target Execute Command Returned Status, 7-51
Target Execute Command Status Packet, 7-51
TARGET ROLE, C-l
Target Wait Command $28, 7-48
Target Wait Command Packet, 7-48
Target Wait Command Returned Status, 7-49
Target Wait Command Status Packet, 7-49
TAS register, 2-2
test unit ready command, B-3
Test Unit Ready Example, B-3
Thread, 1-2, 1-3
time out interrupts, 1-5
Timer Failure, 2-6
timer interrupt, 1-5

IN-6

u

User, 1-2

v
virtual channel, 2-1
VME DMA Errors, D-2
VMEbus MPU modules, C-l

w

Write Command $02, 7-6
Write Command Packet, 7-6
Write Command Returned Status, 7-7
Write Command Status Packet, 7-7
write descriptor command, 7-8
Write Descriptor Command $04, 7-10
Write Descriptor Command Packet, 7-10
Write Descriptor Command Returned Status, 7-12
Write Descriptor Command Status Packet, 7-12
Write Filemark $12, 7-24
Write Filemark Command Packet, 7-24
Write Filemark Command Returned Status, 7-25
Write Filemark Command Status Packet, 7-25

INDEX

IN-7

SUGGESTION/PROBLEM
REPORT

Motorola welcomes your comments on its products and publications. Please use this form.

To:

Product:

Motorola Inc.
Microcomputer Division
2900 S. Diablo Way
Tempe, Arizona 85282

Attention: Publications Manager
Maildrop DW164

Manual: _______________ _

COMMENTS: __ _

(For additional comments use other side)
Please Print

Name _______________ __

Company

Street ________________ _

City ____________________________ _

State ________ _ Zip ____ __

For Additional Motorola Publications
Literature Distribution Center
616 West 24th Street
Tempe, AZ 85282
(602) 994-6561

Title _________________ _

Division _______________ _

Mail Drop ______________ _

Phone _______________ _

Count~----------------

Motorola Field Service Division/Customer Support
(800) 528-1908
(602) 438-3100

® MOTOROLA

COMMENTS: ______________________ _

_______________ ® MOTOROLA __

{f1,M1\ o MOTOROLA INC ..

Microcomputer Division
2900 South Diablo Way
Tempe, Arizona 85282
p. 0, Box 2953
Phoenix, Arizona 85062

Motorola is an Equal Employment
Opportunity/Affirmative Action Employer

Motorola and are registered
trademarks of Motorola, Inc,

10336 PRINTED IN USA (B/88) MPS 1500 68NW9209D55A

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	replyA
	replyB
	xBack

