MVME332XT

-Serial Intelligent
Peripheral Controller
Firmware User’s Manual

.t

@ MOTOROLA INC.

MVME332XTFW/D2
MARCH 1992

MVME332XT
SERIAL INTELLIGENT PERIPHERAL CONTROLLER
FIRMWARE USER’S MANUAL

The information in this document has been carefully checked and is
believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies. Furthermore, Motorola reserves the right
to make changes to any products herein to improve reliability,
function, or design. Motorola does not assume any 1iability arising
out of the application or use of any product or circuit described
herein; neither does it convey any license under its patent rights
or the rights of others.

SYSTEM V/68 and VMEmodule are trademarks of Motorola Inc.
UNIX is a registered trademark of AT&T.

Second Edition

Copyright 1988, 1992 by Motorola Inc.

P ot ok ok ek ek
o o

P~

(S, WS, W3, N3, W WS N3, N,
e o o o e o

AN O

1

o e e e
WP NON .

S WWWWMN .

NNNO\M#WNWN'—-O
o e

DU WWWN .
P

INTRODUCTION

.1
.2

SCOPE

TABLE OF CONTENTS

GENERAL
CONVENTIONS

General Conventions

Command Packet Conventi

GLOSSARY L) . L]
REFERENCE DOCUMENTATION

e o o o o o o o o o

ERROR HANDLING
ERROR HANDLING

HARDWARE ARCHITECTURE .

.1
.1.1 CSR Commands Possible Errors

FIRMWARE ARCHITECTURE

HOST/IPC INTERFACE

.1
.2
.3

GENERAL
CPU BUS OPERATIONS .
VMEbus OPERATIONS .
Bus Release . . .
Bus Error Handling

0

ns

o e o o

SERIAL DEVICE CONSIDERATIONS

PRINTER DEVICE CONSIDERATIONS

MVME332XT MEMORY MAP

IPC CONTROL/STATUS REGISTERS (IPC_(

IPC CSR Register Descriptions .

MVME332XT START-UP SEQUENCE

FIRMWARE OPERATION . . .
WRITE/READ OPERATION

Write Operation .

Read Operation . .
CONTROL OPERATION .
GATE OPERATION . . .
DUAL-PORT MEMORY . .

GENERAL . « « + « .« .

MVME332XT HOST INTERFACE

BASIC CSR COMMANDS
CSR Command Protocol .

Create Channel CSR Command Descnptwn
Delete Channel CSR Command Description

CREATING CHANNELS FOR HOST/IPC

COMMUNICATIONS

.

* o XJe e e o e e o o o .

® o e o o o o

e o o o o o o o

bt bk ot ot ot ok
[R T T |
GTW WM N -

] [} 1]] 1
—— —

ONOO PP WwWWwwr—

[T T T T B B B |
NOYOY IO &t

Y OO VICITICIUINUINU bbb bbphbbppd WW N
LI D D D R
00 N WMNMN — =

'
(¥

6.4.1 Setting Up Queue Structures For ‘create channel’

Command e e o e e o o o ©° o & o e o o o 6‘9
6.4.2 Enqueueing Packets On The Command Pipe 6-11
6.4.3 Dequeueing Packets From The Status Pipe 6-13
6.4.4 Buffered Pipe Protocol Summary . « « « « « o ¢ o & 6-14
6.5 IPC CHANNEL COMMUNICATIONS . . « ¢« « « ¢« o o « o « +» 6-15
6.5.1 Establishing Driver/IPC Channel

Communications . « « « ¢« ¢« ¢« « « o « . 6-15
6.5.2 Command Packet Queueing And Notification

PY‘OCGdUY‘e ® o 8 o ¢ o 9 e o e o o o o o 6'15
6.5.3 Status Packet Queueing And Notification

PY‘OCBdUY'e e o o ® @ o o o o ¢ o o o o o 6'15
7- DATA STRUCTURES e ®© e e o 8 8 © o e o s & ° o o o o+ o 7'1
7.1 INTRODUCTION ¢« & & o o « o o o o o o o s o o o o o » 7-1
7.2 CHANNEL HEADER STRUCTURE & ¢ ¢ ¢« ¢ o o o ¢ o o o o & 7-1
7.3 ENVELOPE STRUCTURE « ¢ ¢ ¢ ¢ o o o o o o o o o o o @ 7-4
7.4 PACKET STRUCTURE « « ¢ ¢ o ¢ ¢ o o o o o o o o o o @ 7-6
7.5 TERMIOSTRUCTURE & « & « o o « o o o o o o o o o« o« 1-18
7.6 SGTTYB STRUCTURE e o o o e o o e o o o o o o o . o o 7‘12
7.7 TERMCB STRUCTURE « v « ¢ o o o o o o o o o o o o o o 1-13
7.8 RINGSTRUCTURE & « « ¢ ¢ o o o « o o o o o o o o o« 1-14
7.9 INIT INFOSTRUCTURE &« & ¢ & ¢ ¢ ¢ o o 0 o o o o o @ 7-16
7.1“ DL_INFO STRUCTURE e © 6 o o o ® e o o o & o o o o o 7'18
7.11 CONFIDENCE TEST DESCRIPTOR .« « & & o ¢ o ¢ o « o o & 7-29
7.12 FRAME FORMAT e © ® o e o ® o o o e o o©o ° o o s o o o 7’22
8. COMMAND PACKETS e o o ° o * o . e o o o o e o o 3 . 8‘1
8.1 INTRODUCTION ¢ & &« ¢ ¢ ¢ o ¢ o o o o o o o o o o o 8-1
8.2 INITIALIZATION e © e ® 8 e e 8 e o e e o e o o o o o 8"2
8-2.1 INIT PaCket e o e o e © o e e o o o s e o oo s o o 8‘3
8.202 Init_info Array e e e o o o e e o o o o e o o o o 8'4
8.2.3 EVENT Packet « ¢« ¢« ¢ ¢ ¢ ¢ o o o o o o o o o ¢ o 8-5
8.2.4 Initialization Example « « « ¢ o ¢ ¢ o ¢ o o o o & 8-7
8-3 OPEN DEVICE e © e e e e o e o 8 o o s e o s o s o o 8‘9
8.3-1 OPEN Packet e ® o © ® e e o o o o o o o o s o+ o o 8'1ﬂ
8-3.2 Open Examp]e e ®© © © ® e o e o e o o e o o o s o o 8’11
804 CLOSE DEVICE e ®© o ©® © o o o o o o o o o oo o e o o o 8'12
8-4-1 CLOSE PaCket e © © o o o o o o o o o o o o o o o o 8'13
8-4.2 C]OSE Examp]e e ®© © e o © o o o o © o o & o s o o 8'14
8.5 READ CHARACTERS . e o e o o o o s o . e o e o . . . 8'15
8.5.1 READ WAKEUP Packet . . « « ¢« o ¢ o ¢ o ¢ o v o o 8-16
8.5.2 Read Characters Example . ¢ ¢ « ¢ ¢ ¢ ¢ o o o o & 8-17
8.6 WRITECHARACTERS &« « « & o o o o o o o o o o o « « « 8-18
8.6.1 WRITE_WAKEUP Packet . . « ¢« ¢ ¢ ¢ ¢ o ¢ 0 o o o & 8-19
8.6.2 Write Character Example . . . ¢ « ¢ ¢ ¢ ¢ o o o & 8-21
8.7 CONTROLADEVICE « o« ¢ ¢ o ¢ ¢ ¢ o o o o o o o o o 8-21
8.7.1 IOCTL PaCket e ® o o e o o o o o o o o o o . 8'23
8.7.2 IOCTL commaﬂd Examp]e e e e 8 o o 6 e o o o o o o 8'27
8.7.3 TCGETA And TCGETDF Commands « « « « « « « & « « » - 8-27

- §i -

TCSETA, TCSETAW, TCSETAF, And TCSETDF

8.7.4

8-28
8-28
8-29
8-30
8-31
8-31
8-32
8-33
8-34
8-35
8-36
8-37
8-38
8-39

Commands

TCSBRK Command « « o « o o o ¢ o o o o o o o o

e o o o o o o o o o o o o
e e e o o o o o o e o o o
e o o e o o ° e o o o o o

TCXONC Command « « o « o o o o o o o o o o o
TCFLSHCommand « ¢« ¢ ¢ o ¢« ¢ o o o o o o &
4 TCGETSYMCommand « « « o o o o o o o o o o o o
5 TCWHAT Command . « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o & o o
16 TIOCGETP Command . « ¢ « « ¢ « o o o o o o o o
TIOCSETP Command « « « « & « o &
LDOPEN, LDCLOSE, LDCHG, LDGETT, And LDSETT

w0

o

=

<

1=

13

o

(8]

=

X

o

NnOT ©

OEECE c

- < [}
EE |

T EE 13

[=2~ o

OO (&)

=2J0 o

o< >

O -

Wl w

[LEL Y] (1.}

OO (8}

= = - -

SV~ N N~ 00
D WO 00 OV —t rt r—t =t vt =t —

oooooooooooooo

oooooooooooooo

©0 €0 00 €O 00 CO 00 CO CO ©O0 €O OO0 C0

2
g

8-4
8-4

Commands

8.7.19 TCGETDS Command

1111334666666667777778888899999
[[L e R e R e e O e I
9999999999999999999999999999999

. L] . . . L] . . L] L] L] L] . . . e e e o e L]
. . . . L] L] L] . L . . L] L] . L] . . . Ll L]
. . . Ll L] L] L] L] . L] L] L L] L] L .
L . . . L] L] L] e e e o o o o . . L] . L] L] . . Ll . L]
. L] L] L] L] Ll L] L] L] L] . L] L] . L] L] L]
. L] L] L] Ll L] . L] L] L] L] . L] Ll L] . . . L] L] L] . L] . L] L] L]
L] L] L] L] L] L] L] L] . L] L] L] L] . L] L] . L] . L] . . L] . . L] L] L] L] . .
L] L] L] L] L] L] L] . . L] L] L] L] . L] . L] L] L] L] . L] . L] . L] L] L] L] . .
L] . . . L] . L] L] L] L] L] . . L] L] . L] . L] L] ° . L] L] L] L] L]
. . L] . . . L] L] L] L] . . . L] L L] L] L] L] L] L] . . L] . . .
L] . L] L] L] L] . L . L] L] L] . L] L] . L] L] L] L] . L] . . . e L] . . L]
. . L] L] L] L] L] L] . L] L] . L] L] L] . . . L] L] L] L] L] . . L] L]
L] L] Ll L] . L] . . L] L] L] . L] L] L] L] L] . . L] L] L] L] L] L] . L] L] L] L] L]
L] L] L] . .R L] L] L] L] . L] L] L] L] L] L] L] . L] L] L] L] L] . . L] . L] .
o -
L] L] L] L] .T L] . L] L] L] L] L] L] . Ll L] L] L] L] . . . L] . . p L
oo - S
L] L] . L] .Ir L] L] L] L] . L] L] L] L] L] L] L] . L] . L] L] L .snr .
o O = @ = S
e o o o QX=X * ° * ¢ ¢ o o e O o o o o o s e DN o —— °
> O - = —-
e o o QAES e o o 8 o o o e°r4d o o o o ® - 0 oron °
—0 3 0 o) [Ty
e o o o - e e N e o e U o on . OESS o o 4D .
Ao - S S s i @ v X X
. NP DO O ® rtT o ¢ - Tr o« e o
F_o QUL ORLE” PR aE" O oS
NBW T g OPEETE JAEL-S DT - QX X
wOx K YEcSSTwmaoc—~EmY pacgunek--n
oo DY SsSsocoo0cow —~ . o w i
FE=xaf Tz ooo o XE DO =k _ X
ECAOTINS o dtDPeeA o= ORD QD 0 (Ve R Ve RVe]
OO WOoU —s U Grmegr-r\NCEgOuW— agtwinnx
Z0 Lo era”o— 0T aa X0U 00 QV00NDM
wo —HEDOP S r AU EELd— P Sd I ZEVNOVOON
O WL O MO MS% M X AUrdr— O<C T > U<l O X)X MM
N NNZOEALWLLEZENVNOOIODEZEOILIFOWWOEEZEO
LZwWwWwo <C o O D> 4 [}
Zrb-—-0 = — — 0w = =
o — o — o™
© ~ANMSDOND —N —aN™M . . .
........ WS o~ N
—ANMETOWOWOWOWOWWWOWWOWONNENER 0 O rmtrt et et ettt

[e W X N W N W W N N N N W W W W W N W W e R Mo e T e R T o)

9
9

-iii -

WWOYWWWY

18.
19.
19.
14.
14.
14.
14.
14.9.
18.

19.
19.
10.
19.
19.
18.
18.
10.
10.

J12.
.12.
.12,
.12,
.13
.14

18.
10.
19.
19.
18.

10.

1
2
3
4
5
6
7
8
8
8
8
8
8
.8.
8
8
8
8
8
8
8
8
9
9
9
9

18.
18.
11
12

(o] NoO O HEWwN

W N

LINE DISCIPLINES . ¢« « ¢ ¢ ¢ ¢ o & & &

.
—

.9
.1
.1
.1
.1
.1

1
.2

.3
%g KERNEL FUNCTION PRIMITIVES .
10.
10.

MC68230 Register Test . .
MC6823d Counter Test . . .
M68230 Timer Interrupt . . .
MC682308 Printer Interrupt .

CSRTEST « ¢« ¢« v ¢ o o o o &
ATTENTION INTERRUPT TEST . .

INTRODUCTION . & o « ¢ ¢ o & .
LINE @ - STANDARD UNIX LINE DISCIPLINE .
LINE 1 - PURE RAW LINE DISCIPLINE . . .
LINE 2 - INTERNATIONAL SUPPORT PACKAGE (I
DISCIPLINE
LINES 3 THROUGH 6 - USER DOWNLOADABLE LIN

LINE

P

e 0 o o o

e Mo (he o o o

DISCIPLINE« o ¢ o & o &
LINE SWITCHTABLE « . .
TIYSTRUCTURE '« v v ¢ ¢ ¢ o o o o+ &
FIRMWARE FUNCTION SUB-ROUTINES . . .

And 0CP1 Funct1ons
BPPRTN Function
TTYWAIT Function
TTYFLUSH Function
CHANGE RACT Function . e e e e o s e e e .

OPEN@, CLOSE®, 10CTL@, GATE®, CTL@, ICPD, obpb JICP1,

BCOPY, WCOPY, And LCOPY Functwns e e s e e o o o s

BZERO, LZERO, BFILL, And LFILL
Functions

SPL[@-7],SPLX,SPLATTN,SPLPR,SPLTIMER,SPLTTY, And
SPLHI Functions . & ¢ ¢« ¢ ¢ ¢« ¢ ¢ o o &

GETVBR And GETSR Functions . « & ¢ ¢« ¢ ¢« ¢ ¢ « « &
B SETVEC FUNCLIiON ¢ v ¢ ¢ o o o o o o o o o o « o
1 STRNCMP, STRCOPY, And STRLEN Functions

2 M546PUTC And M23@PUTC Functions . . .
3 PRINTF And SPRINTF Functions
4 PRINT Function « « ¢« ¢« ¢ ¢ ¢« ¢ ¢ o &
FIRMWARE STATIC VARIABLES . .« « « . .
TIYTABTable « & ¢« ¢« ¢ ¢ ¢ ¢ o ¢ o @
LINESW, LINECNT, MAXLINE, And ROMLINES
Variables . « ¢« « ¢« « . .
ATTN STATUS And TIMER STATUS Variables .
1 _DELAY Primitive
2 _WAIT Primitive
3 SIGNAL Primitive
6

4 "SLEEP Primitive .
5 "WAKEUP Primitive
DOWNLOAD LINE DISCIPLINE EXAMPLE

DONNLOAD PROCEDURE UNDER SYSTEM V/68
APPENDIX A - DUAL PORT MEMORY MAP « & v v v v v o v v o . .

- v -

APPENDIX B - IPC CONTROL/STATUS REGISTER SPACE
APPENDIX C - CONFIDENCE TEST ERROR CODES . . .
APPENDIX D - CHANNEL HEADER STRUCTURE
APPENDIX E - BPP ENVELOPE AND PACKET STRUCTURES
APPENDIX F - DEVICE NUMBER . ¢« « « « o &« o &
APPENDIX G - MVME332XT COMMAND SUMMARY
APPENDIX H - MVME332XT ERRORCODE
APPENDIX I - MVME332XT COMPONENT PLACEMENT . .

APPENDIX J - GENERAL TERMINAL INTERFACE (TERMIO)

APPENDIX K - MVME332XT DEVICE DRIVER INTERFACE
APPENDIX L - m332xctl CONTROL UTILITY
APPENDIX M - IOCTL COMMAND OUTPUT (TCWHAT) . .
APPENDIX N - IOCTL COMMAND OUTPUT (TCGETSYM) .
APPENDIX O - FIRMWARE FUNCTION SUB-ROUTINES .

APPENDIX P - KERNEL FUNCTION PRIMITIVES

FIGURE 1-1.
FIGURE 4-1.
FIGURE 4-2.
FIGURE 4-3.
FIGURE 4-4.
FIGURE 4-5.

FIGURE 5-1.
FIGURE 5-2.
FIGURE 5-3.
FIGURE 5-4.
FIGURE 6-1.
FIGURE 6-2.

FIGURE 6-3.
FIGURE 6-4.

FIGURE 6-5.

FIGURE 6-6.

FIGURE 6-7.

FIGURE 6-8.

LIST OF FIGURES

MVME332XT FIRMWARE FEATURES . . .
MVME332XT HARDWARE ARCHITECTURE .
DUAL-PORT IPC REGISTER (IPC_CSR)
CONTROL REGISTER BIT DEFINITIONS
STATUS REGISTER BIT DEFINITIONS .

CSR COMMAND INTERFACE FLAGS IN TAS
REGISTER « ¢ « ¢ ¢ ¢ ¢ ¢ ¢ o « &

FIRMWARE PROCESSES « « « « « o &
WRITE/READ OPERATION
CONTROL OPERATION
DUAL-PORT MEMORY MAP
IPC_ CSR REGISTERS . « « . o « . &

CSR CONTROL REGISTER BIT
ASSIGNMENTS .« . ¢ ¢« ¢ ¢ ¢ ¢ & &

IPC_CSR TAS REGISTER

IPC_CSR REGISTERS WITH THE VALID COMMAND BIT

SET e o e e e o e o & e o s s 8 e & o o o

IPC_CSR REGISTERS WITH THE VALID STATUS BIT

SET e ® o e ® o © © o o o o o o

IPC CSR REGISTERS WITH THE COMMAND COMPLETE

BIT—SET . L] L] L] L] L]

STRUCTURE FOR FREE ENVELOPE QUEUE AND FREE

PACKETQUEUE . . & ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o &

CHANNEL HEADER STRUCTURE WITH EMPTY
CHANNELS « ¢ ¢ ¢ ¢« ¢ ¢ o o o o o o o o &

-vi -

1-2
4-2
4-6
4-8
4-8

4-9
5-2
5-4
5-6
5-8
6-3

6-4
6-4

6-5

6-6

6-7

FIGURE 6-9.

FIGURE 6-1@.

FIGURE 6-11.

FIGURE 7-1.
FIGURE 7-2.
FIGURE 7-3.
FIGURE 7-4.
FIGURE 7-5.
FIGURE 7-6.
FIGURE 7-7.
FIGURE 7-8.
FIGURE 7-9.
FIGURE 7-1@.
FIGURE 7-11.
FIGURE 7-12.
FIGURE 8-1.
FIGURE 8-2.
FIGURE 8-3.
FIGURE 8-4.
FIGURE 8-5.
FIGURE 8-6.
FIGURE 8-7.
FIGURE 8-8.
FIGURE 8-9.

CHANNEL HEADER STRUCTURE WITH PACKET BEING

ADDED TO THE COMMAND

CHANNEL

e o o o o s o o

CHANNEL HEADER STRUCTURE WITH ONE PACKET ON

THE COMMAND PIPE .

CHANNEL HEADER STRUCTURE WITH ONE PACKET ON

THE STATUS PIPE . .
CHANNEL FORMAT . .
ENVELOPE FORMAT .
PACKET FORMAT

TERMIO STRUCTURE FORMAT . . .
SGTTYB STRUCTURE FORMAT . .

TERMCB STRUCTURE FORMAT
RING STRUCTURE FORMAT
INIT_INFO STRUCTURE FORMAT . .

DL_INFO STRUCTURE FORMAT
CONFIDENCE TEST DESCRIPTOR FORMAT

FRAME FORMAT . . .
FRAME IN A READ RING
GENERAL COMMAND FLOW

BOARD INITIALIZATION SEQUENCE .

INIT PACKET FORMAT
INIT_INFO ARRAY . .
EVENT PACKET FORMAT

INITIALIZATION EXAMPLE
OPEN DEVICE SEQUENCE

OPEN PACKET FORMAT
OPEN EXAMPLE

- vi

i-

e o e o o o o o

000000

6-13

6-14

FIGURE 8-10.
FIGURE 8-11.
FIGURE 8-12.
FIGURE 8-13.
FIGURE 8-14.
FIGURE 8-15.
FIGURE 8-16.
FIGURE 8-17.
FIGURE 8-18.
FIGURE 8-19.
FIGURE 8-20.
FIGURE 8-21.
FIGURE 8-22.

FIGURE 8-23.
FIGURE 8-24.
FIGURE 8-25.
FIGURE 8-26.
FIGURE 8-27.
FIGURE 8-28.
FIGURE 8-29.
FIGURE 8-30.
FIGURE 8-31.
FIGURE 8-32.
FIGURE 8-33.
FIGURE 8-34.

CLOSE DEVICE SEQUENCE . .
CLOSE PACKET FORMAT . . .
CLOSE EXAMPLE
READ DEVICE SEQUENCE . .
READ_WAKEUP PACKET FORMAT
READ CHARACTERS EXAMPLE .
WRITE CHARACTERS SEQUENCE
WRITE_WAKEUP PACKET FORMAT
WRITE CHARACTERS EXAMPLE
CONTROL A DEVICE SEQUENCE

IOCTL PACKET FORMAT

TCGETA/TCGETDF COMMAND EXAMPLES .

TCSETA, TCSETAW, TCSETAF, AND TCSETDF COMMAND

EXAMPLES . .« . + « ¢« + &
TCSBRK COMMAND EXAMPLE

TCXONC COMMAND EXAMPLE . .

TCFLSH COMMAND EXAMPLE .

TCGETHW/TCSETHW COMMAND EXAMPLES

TCGETDL COMMAND EXAMPLE

TCDLOAD COMMAND EXAMPLE .
TCLINE COMMAND EXAMPLE .
TCEXEC COMMAND EXAMPLE .
TCGETVR COMMAND EXAMPLE .
TYPICAL SYMBOL TABLE . .
TCGETSYM COMMAND EXAMPLE
TYPICAL FILE LISTING . .

-viii -

8-12
8-13
8-14
8-16
8-16
8-17
8-19
8-20
8-21
8-22
8-23
8-28

8-28
8-29
8-30
8-31
8-31
8-32
8-33
8-34
8-35
8-35
8-36
8-37
8-38

FIGURE 8-35.
FIGURE 8-36.
FIGURE 8-37.
FIGURE 8-38.
FIGURE 8-39.

FIGURE 9-1.

FIGURE 9-2.

FIGURE 9-3.
FIGURE 9-4.
FIGURE 18-1.
FIGURE 18-2.
FIGURE 18-3.
FIGURE 18-4.
FIGURE 18-5.
FIGURE 18-6.
FIGURE 18-7.
FIGURE 10-8.
FIGURE 14-9.
FIGURE 14-18.
FIGURE 18-11.
FIGURE 10-12.
FIGURE A-1.
FIGURE B-1.
FIGURE B-2.

TCWHAT COMMAND EXAMPLE . . + « « « 8-38
TIOCGETP COMMAND EXAMPLE . + » « « 8-39
TIOCSETP COMMAND EXAMPLE .+ « « & o « & . . . 8-39
LDOPEN/LDSETT COMMAND EXAMPLES 8-40
TCGETDS COMMAND EXAMPLE « « « « & o o « « . . 8-41
CONFIDENCE TESTFLON « & v ¢ o o o o o o o . 9-2
TYPICAL CONFIDENCE TEST ERROR
MESSAGE « v v v v o o o o o o o n e e e 9-3
CONFIDENCE TEST DESCRIPTOR .« « « & « « . . . 9-4
COMPOSITE STATUS v + v v v ¢ v v 0 o v o o . 9-4
LINE SWITCH TABLE FORMAT .+ « & « v v « . . . 18-3
LOPENEXAMPLE + v v v o v v o v o v o o o . 18-8
LICPEXAMPLE « « v v v v o o v o v o o o o o 185
LOCPEXAMPLE « + v v v o o v o e o v v o o . 18-6
L_IOCTL EXAMPLE e e e 18-7
LCLOSE EXAMPLE « « v & v v v o v v o v o v . 18-8
LCTLEXAMPLE « « v v v v e v e e e e e v o 18-9
LGATEEXAMPLE « v v o v v v o o v v v o v . 10-19
TTY STRUCTURE FORMAT '+ « v v v v v o o o . . 16-12
SEMAPHORE STRUCTURE « + & v v v o v o & & . 18-18
DOWNLOAD LINE DISCIPLINE EXAMPLE 18-45
DOWNLOAD PROCEDURE + « v v v v o & « o . . . 19-49
DUAL-PORT MEMORY MAP . « « & v v« o o & « & A-1
CSRREGISTERMAP « + « v v v v v o v v o .. B-1
CSR CONTROL REGISTER BIT

ASSIGNMENTS o & v v o o o o v o v e e e B-1

- iX -

FIGURE B-3.
FIGURE D-1.
FIGURE E-1.
FIGURE E-2.
FIGURE I-1.

CSR COMMAND INTERFACE FLAGS . .
COMMAND CHANNEL HEADER STRUCTURE
BPP ENVELOPE FORMAT
IPC PACKET FORMAT . . « « « . .
MVME332XT CABLE/SWITCH DIAGRAM

B-2
D-1
E-1
E-2
I-1

LIST OF TABLES

TABLE 3-1. MVME332XT ERRORCODES « . « ¢ ¢« ¢ ¢ ¢ ¢ ¢ & .« . 3-1
TABLE 4-1. MVME332XT LOCAL MEMORYMAP « « . . . 4-5
TABLE 4-2. CSR COMMAND POSSIBLE ERRORS . . .« 4-18
TABLE 6-1. CSRCOMMANDS .« & ¢ & ¢ ¢ ¢ ¢ o o o o o o o o & 6-5

TABLE 7-1. IPC COMMAND SUMMARY . . . ¢ ¢ ¢ ¢« ¢ ¢ ¢« o « & & 7-8
TABLE 7-2. DEVICE NUMBER ASSIGNMENT 7-9
TABLE 8-1. EVENTCODETABLE . « ¢« & ¢ ¢« ¢ ¢ o o ¢« o o + & 8-7
TABLE 8-2. IOCTLCOMMANDS . . . ¢ ¢ ¢« ¢ ¢ ¢« o« ¢ o o « « « 8-25
TABLE 8-3. TCXONC ARGUMENT FUNCTIONS« + « « « . . . 8-29
TABLE 8-4. TCFLSH ARGUMENT FUNCTIONS 8-30
TABLE 9-1. SUBTEST/SUBMODULE NUMBER « « . . . 9-5
TABLE 9-2. ADDRESSINGMODES . « .« « ¢« ¢ ¢ ¢ v o ¢« v « .+ & 9-8
TABLE 18-1. T_STATE BITDEFINITION ¢« ¢ « o « . . 16-13
TABLE 18-2. T_CSTATEBITDEFINITION ¢« ¢« ¢« ¢« « « . . 18-13
TABLE 18-3. T PROCCOMMANDS . . . ¢ ¢ ¢« ¢« ¢« ¢ ¢« o o o &« o o 10-15
TABLE 18-4. T RACT[]J ACTIONCODES « « o « « « . . 18-16
TABLE 18-5. FIRMWARE FUNCTION SUB-ROUTINES 18-19
TABLE 18-6. FIRMWARE GLOBAL VARIABLES 18-35

TABLE 18-7. KERNEL FUNCTION PRIMITIVES « . « . . . 16-39

- Xi -

MVME332XTFW/D2

CHAPTER 1
INTRODUCTION

1.1 GENERAL

This document describes the software interface to the MVME332XT
Intelligent Peripheral Controller (IPC). It is intended as an aid
in writing device drivers for the I/0 devices attached to the
MVME332XT. The point of view taken in this document is that of the
host CPU. There are many approaches that can be taken in interfacing
to the MVME332XT. This document is not intended to specify the
structure of the device drivers, as this structure will vary from
system to system and programmer to programmer. This user’s manual
js applicable for any operating system environment the MVME332XT may
be used in.

The MVME332XT IPC gives the host system one common interface to two
different types of peripheral devices.

The MVME332XT firmware:

e Supports one parallel printer with the Centronics interface, up
to 2000 LPM.

e Supports eight RS-232C asynchronous serial ports with the RS-232C
interface, up to 19.2K baud without handshaking protocol, and up
to 38.4K with software handshake (XON/XOFF) or hardware handshake
(RTS/CTS).

e Includes one standard UNIX line discipline @ and one fast RAW line
discipline 1.

e Includes five downloadable Tine disciplines and download support.

Figure 1-1 illustrates an MVME332XT IPC with the maximum
configuration of peripheral devices that it will support. To the
host system, these peripherals appear to be on independent
controllers. Each device driver can be written independently and
does not require any knowledge of the other devices on the
MVME332XT.

The protocol for sending commands to all devices is identical, so
routines to do this can be shared between all drivers. The protocol
consists of enqueueing a packet on a singly linked 1ist referred to
in this document as a pipe and then issuing an attention interrupt to
the MVME332XT. The packets are returned to the host with status in
the same way. The IPC enqueues the packet on another identical pipe
and interrupts the host. These pipes are initially established
using a handshake protocol through registers in the MVME332XT CSR
space.

1-1

MVME332XTFW/D2

B s e L e L T R P +---+
oo + e +
Serial Serial oo +
Port @ |---+---| Port 1 Parallel
LR + tommmmee- + Printer
Port
R + Fommmmmen + e eea +
Serial Serial
Port 2 |---+---] Port 3
4o-mmmmm- + dommmme e +
Y + mmmmmme- +
Serial Serial
Port 4 |---+---| Port 5
tommmmmm- + Fommmmm - +
Fommmmee- + R +
Serial Serial
Port 6 |---+---| Port 7
$emmmmae- + o +

FIGURE 1-1. MVME332XT FIRMWARE FEATURES

1.2 CONVENTIONS
1.2.1 General Conventions
In this manual the following conventions are used:

1. X=don’t care bit position.
2. Px, or $ = hexadecimal value.
3. % =binary value.

1-2

MVME332XTFW/D2

1.2.2 Command Packet Conventions
In the command packet descriptions the following conventions are

used:
1. Opcodes are hexadecimal.
2. Examples show the hexadecimal values required in the packet to

3.

4
5.
6.
7

perform the specified operation. These values are enclosed in
square brackets. For example, if the command is a lTogical read,
the field includes "[28081]".

Where bit positions are not indicated, the entire field
delimited by "|" is used.

Unused and optional fields are left blank.
msw = most significant word.

1sw = Teast significant word.

X =don’t care bit position.

1.3 GLOSSARY
Packet

A packet is the block of memory containing the command sent by the
host CPU to the IPC. These packets are allocated in the
MVME332XT’s dual-port memory. Some IPCs read packets in place in
global memory. Other IPCs transfer the contents of the packet to
local RAM before examining its contents. The MVME332XT IPC
firmware requires that all packet, channel, and envelope data

"structures have to be on its dual-port memory to reduce the bus

traffic.

Pipe

A pipe resembles a queue with the exception that there is always a
null entry in a pipe to buffer the sender from the receiver. This
change allows both the sender and the receiver to access the pipe
simultaneously without the need for a semaphore mechanism. A pipe
is implemented as a singly linked list since it is always
traversed in only one direction. The sender always enqueues
entries on the tail of the pipe. The receiver always dequeues
entries from the head of the pipe.

Channel

A channel consists of a pair of pipes, a command pipe and a status
pipe. A host CPU communicates with an IPC by enqueueing command
packets on the command pipe and dequeueing status packets from the
status pipe.

1-3

MVME332XTFW/D2

CSR

CSR stands for Control/Status Register and refers to address
space that can be accessed from both the VMEbus and the local IPC
bus. This space is used to convey control and status information.

Device Driver

A1l the software and firmware in the host and peripheral
controller dedicated to the service of a particular device type,
such as disk, tape, or serial ports.

IPC

IPC stands for Intelligent Peripheral Controller and refers to
boards l1ike the MVME332XT and MVME321 that have their own CPU’s
on-board. The presence of a dedicated CPU allows these
controllers to perform much more complex functions than purely
hardware controllers are capable of. This in turn takes overhead
off the host CPU and allows it to do other tasks more efficiently.

Kernel

The kernel is the multi-tasking executive routine that controls
the execution of all other routines in the IPC. It is responsible
for creating processes, killing processes, sending messages from
one process to another, deciding which process will be allowed to
run next, and several other activities.

Process

A process is a routine that controls a resource or set of
resources. It invokes the primitives that interface directly
with the hardware, monitors the status of the hardware, signals
other processes when a requested action completes, and controls
the transfer of data from one place in the system to another. A
process has its own CPU register image and is subject to be time
sliced or preempted when its quantum time expires.

Memory Management

Allocation of available memory to specific routines for their
sole use. This allocation may be static (i.e., until the system is
reset, as in the case of the queues used by the kernel) or dynamic
(i.e., until the routine deallocates it for use by other routines,
as in the case of data buffers associated with a particular
command packet).

Message

A message is generally any information that is sent from one place
in memory to another. In the MVME332XT messages most frequently
mean information sent from one process to another process via the

1-4

MVME332XTFW/D2

kernel utilities "send" and "receive". The most common message is
a pointer to a structure. This minimizes the amount of data
movgment while giving the recipient full access to the data it
needs.

PCB

PCB stands for Process Control Block and refers to the data block
used by the IPC kernel to maintain information about active
processes. This information tells the kernel about processes
that are waiting for signals from other processes, the priority of
each process, and other information needed to run the process.

Primitive
Primitives are the routines that interface directly with the
device controller chips on the IPC. These routines provide a

common interface to the rest of the software so it does not need to
know the idiosyncrasies of each device in the system.

Queue

A queue is simply a waiting Tine in which data or routines wait for
their turn to be moved or allowed to execute.

Semaphore

A semaphore implements an interlock mechanism that permits two
independent processes to access and modify the same structure in a
controlled way. This semaphore mechanism prevents two processes
from trying to modify a structure simultaneously.

1.4 REFERENCE DOCUMENTATION

The following publications may provide additional information.
They provide additional detail about the hardware and the
application of the MVME332XT firmware. If not shipped with this
product, they may be purchased from Motorola’s Literature
Distribution Center, 616 West 24th Street, Tempe, Arizona 85282;
telephone (602)994-6561.

1-5

MVME332XTFW/D2

DOCUMENT TITLE

MOTOROLA
PUBLICATION NUMBER

MVME332XT Intelligent Peripheral Controller
User’s Manual

MVME71@ Eight-Channel Serial I/0 Module
User’s Manual

SYSTEM V/68 Administrator’s Reference Manual
SYSTEM V/68 User’s Reference Manual

SYSTEM V/68 Programmer’s Reference Manual
SYSTEM V/68 Programmer’s Guide

ADC Kernel Firmware Manual (Preliminary)

MVME332XT

MVME71@

MU43812SAR
MU43816UR
MU43814PR
MU43815PG
MADCKERNEL

1-6

MVME332XTFW/D2

CHAPTER 2
SCOPE

This manual contains information on how a CPU board sends commands
to the MVME332XT. It also describes all serial port commands,
printer port commands, and IPC configuration commands. In addition
to the commands and interface protocol, this manual also contains
information on how to implement a custom line discipline and how to
download it into the MVME332XT’s local memory for execution. Some
information is provided on hardware and firmware architecture to aid
in understanding the operation of the MVME332XT. Summaries of
commands and status are provided to make it easier for the
experienced user to find frequently referenced information.

The CPU/IPC interface on the MVME332XT is the BPP or Buffered Pipe
Protocol. Readers who are already familiar with this interface may
skip the HOST/IPC INTERFACE chapter and proceed directly to the
sections that deal with MVME332XT specifics.

2-1

MVME332XTFW/D2

CHAPTER 3
ERROR HANDLING

3.1 ERROR HANDLING

The "error" field of the packet is cleared when the firmware
receives the packet and is set only when an error condition occurs.

Since the MVME332XT firmware handles very high level commands as in
the SYSTEM V/68 Input/Output system calls, all returned errors will
conform to the UNIX error specification. Some error codes specified
in the SYSTEM V/68 Programmer’s Guide are used by the firmware, but
some may be 'used in the downloadable line disciplines. The
discussion in this section only refers to the error returned by the
on-board firmware.

Table 3-1 details all general error codes for the MVME332XT.
TABLE 3-1. MVME332XT ERROR CODES

Name Code Descriptions

EIO 5 I/0 error. Some physical I/0 error. This error
indicates that an abnormal hardware condition has
occurred that prevents future access to the device.

ENXIO 6 No such device or address. I/0 on a device which does
not exist or I/0 is beyond the 1imit of the device.

ENOMEM 12 Not enough space. Some commands such as "create a
table" for ISP require allocation of local memory. If
this request is not satisfied, this error will be
returned to the host.

EEXIST 17 Device or address exists. Attempts to create a
existing table for the ISP will receive this error
code.

EINVAL 22 Invalid argument. One or more command parameters are
invalid.

3-1

MVME332XTFW/D2

CHAPTER 4
HARDWARE ARCHITECTURE

4.1 GENERAL

The MVME332XT board is an MC68818 based Intelligent Peripheral

Controller (IPC) designed as a high performance asynchronous serial
I/0 and parallel printer I/0 interface for VMEbus-based

chrocqrpfters. A block diagram of the MVME332XT board appears in
igure 4-1.

The MVME332XT consists of the following major components:

CPU - MC68019

The CPU for the MVME332XT is a 12.5 MHz MC68#1@, running no wait
states out of EPROM and RAM.

EPROM

The MVME332XT supports two 28-pin JEDEC sockets for EPROM
devices. Sizes of EPROM support range from 32K x 8 to 64K x 8. The
firmware resides in the first half of two 64K x 8 devices.

Parallel Interface and Timer - MC68230

The PIT is used on the MVME332XT to provide a timer tick function
for the firmware kernel, as well as printer interface and bus
interface functions.

Serial Controller - MK68564

The eight serial channel interfaces are implemented with four
MOSTEK MK68564 Serial Controllers. Each device supports up to two
independent ports. The additional features of the chip include
modem status, interrupt vectoring, and direct addressable
registers.

Local RANM

The MVME332XT provides 196K bytes of static RAM for intermediate
character buffers, firmware stack, and firmware data structures.
Over 100K bytes are available for downloadable area.

VMEbus Interrupter

Interrupt to the host is generated by a discrete register. Only
one interrupt source can be presented to the host at a time. The
local CPU has to wait for this register to become zero prior to
issuing a different interrupt level.

4-1

MVME332XTFW/D2

fommmmmmeae I S + Ho------e--- + H----mmm---- +
CpPU 128K PIT Serial -+
MC680148 EPROM MC68230 Controller -+
MK68564 -+
e + Am-mm-e-m--- D + H--m-me---- +
----- +
----- +
----- +
R et + dmmmmmmmemeo- + 4o---mememe-- +
R + o 4 Hmmmmmmmeemo +
| |
ommmmmmmaen +
196K
Local
RAM
o +
e +
IPC-CSR
64K
Dual-port docmemeeeea +
RAM VMEbus
--------- Interrupter
VEC-REG
B NN
e e e P e T P TR TP +

VMEbus INTERFACE

FIGURE 4-1. MVME332XT HARDWARE ARCHITECTURE

Dual-Port RAM

The MVME332XT provides 64K bytes of dual-port RAM that can be
shared between the host and the local CPU for packets, channels,
envelopes, and ring buffers.

IPC Control Status Register (IPC_CSR)

The first eight words of the Dual-Port RAM are assigned to the
IPC Control Status Register (IPC_CSR) which is used by the host
in initialization and catastrophic error conditions, as well as
sending an attention interrupt to the MVME332XT.

4-2

MVME332XTFW/D2

Interrupt Vector Register (VEC_CSR)

The last eight words of the Dual-Port RAM are assigned to the
VMEbus Interrupt Vector Register (VEC REG) which is used by the
local CPU to place a vector during the interrupt acknowledge
cycle. One word for each level of interrupt, but only lower
byte (d7 to d@) is significant.

VMEbus Interface

The VMEbus interface consists of a bus requester, address and
data transceivers and latches, and VMEbus control drivers and
receivers.

4.2 CPU BUS OPERATIONS

The MVME332XT hardware is designed around two primary buses. The
first bus is the VMEbus interface and is the connection into the
system. The second bus is the local processor bus which contains the
Tocal CPU, as well as all devices. Normal access to the EPROMs and
buffer RAM requires no wait states to the processor. Access times to
the other devices are dependent on the cycle time of each device and
vary from two to eight wait states.

Only dual-port RAM is accessible from the host. The local CPU can
run concurrently while the host accesses the dual-port RAM.

4.3 VMEbus OPERATIONS

VMEbus operations on the MVME332XT are performed by the local CPU
via a 16-MEG byte window. Any access to the top 1-MEG byte (address
$XXFOO0000 to SXXFfFffff) of a window will not go to the bus. Instead,
it will be decoded for the local resources. To change the window,
the Tocal CPU writes a new value to the VME Address Register (VADR).

The current implementation of the on-board firmware does not access
the bus at all. Data transfers between the host and the firmware are
done in the dual-port RAM to reduce the bus traffic and to avoid the
wait condition while the bus is too busy with other controllers such
as disk and tape. Actual bus interface control such as bus request
and bus timing are defined in the following paragraphs.

4.3.1 Bus Release

The VMEbus interface provides only one method of bus request
operation. This is Release On Request (ROR). In this mode, the bus
requester is activated when the local CPU accesses the bus. The bus
request is generated and, upon receipt of the bus grant, the
transfer occurs. It can be configured for fairness mode operation
to reduce bus starvation problems in heavily Toaded VME systems.

4-3

MVME332XTFW/D2

4.3.2 Bus Error Handling

The MVME332XT generally recovers from VMEbus error conditions by
terminating the current operation and returning bus error
information to the host. The exception to this is during any channel
operations. During these operations, a bus error is considered
catastrophic and causes the firmware to assert the VMEbus signal
SYSFAIL*, place appropriate status in the CSR, dump all register
contents to the dump area, and then halt. During normal data
transfer commands, the bus error condition is handled as a fatal
error to the command and the failing address along with bus error
status are returned to the host in the status packet.

4.4 SERIAL DEVICE CONSIDERATIONS

The MVME332XT requires a MVME710 transition module to distribute the
RS-232C signals from the P2 connector of the VMEbus backplane to the
eight DB-25 connectors. The MVME718 also allows the user to
configure each port as a DTE or DCE interface.

To ensure proper connection between the RS-232C cable’s shield and
the VME enclosure, the user should utilize cables terminated with
connectors, such that the connector’s metal shell is connected to
the cable shield 1ead. The MVME718’s serial port connectors connect
pin 1 to the VME system’s chassis ground via the MVME710 front panel.
The user is warned not to rely upon a connection between the cable’s
shield 1ead and the cable’s DB-25 connector pin 1 for proper chassis
ground connection. The chassis ground traces on the MVME71f circuit
board will not handle excessive currents (greater than .5A) flowing
between each MVME714 DB-25 connector and the chassis ground into
which it is installed.

Note that the MVME718’s front panel must make electrical contact
with the VME system’s chassis ground (which ultimately should make
electrical contact with the three wire AC line cord’s ground return)
to ensure proper EMI shielding.

Also note that the MK68564 does not have a DSR input, so the EIA DSR
signal is not supported in the MVME718's "Connect to Modem"
configuration. In the MVME718’s "Connect to Terminal"
configuration, the EIA DSR signal is sourced by the MK68564's DTR
output signal. Refer to the MVME718 User’s Manual for more details.

4.5 PRINTER DEVICE CONSIDERATIONS

The MVME332XT parallel printer port, accessible via the front panel
mounted Centronics connector, is implemented with the MC68238 PIT
(Parallel Interface and Timer). The printer connector provides the
36-pin conductor Centronics interface and is of the EMI shielded
variety for reduced electrical interference outside the VME system

4-4

MVME332XTFW/D2

enclosure. Note that the MVME332XT’s front panel must make
electrical contact with the VME system’s chassis ground to ensure
proper EMI shielding.

The user should consult the Centronics compatible printer user’s
manual for the proper connect type for the printer end of the cable.

4.6 MVME332XT MEMORY MAP

Table 4-1 gives the local address map as seen by the MVME332XT
processor.

TABLE 4-1. MVME332XT LOCAL MEMORY MAP

Hex Location

Device

$000000-$efffff
$FO0000-$f2fFff
$£30000-$F3FFFf
$£30000-$130010
$FIFFFO-$SFIFFFF
$f80000-$ f8pplf
$£82000-$f8201f
$F84000-$8401F
$f86000-$f8601F
$f88000-$188010
$f9gp21
$£90023
$F90@25
$£90029
$fog@2f
$fafoog-$regpag
$fagol14
$fco00g-$fdffff

VMEbus window

Local RAM

Dual-port RAM

Dual-port IPC Control Status Register (IPC_CSR)
Vector register (VEC_REG)

MK68564 #1 registers

MK68564 #2 registers

MK68564 #3 registers

MK68564 #4 registers

Debug Service Port

Auxiliary Control Register (AUX)
VMEbus Interrupt Register (VIR)
VMEbus Addr Extension Register (VAER)
Status Register (STAT)

Diagnostic LED Register

MC68230 PIT registers

VMEbus Address Modifier Register (VAM)
ROM space

The following chart gives the base address for the dual-port IPC CSR
registers and dual-port RAM to be used by the device drivers that
communicate with the IPC. These addresses are in the VMEbus D16
space.

4-5

MVME332XTFW/D2

Hex Location Device

$FEXXD000-$FFXXFFFF Dual-port IPC CSR registers and dual-port RAM

XX = Address bits set by switch settings on the MVME332XT.

4.7 IPC CONTROL/STATUS REGISTERS (IPC_CSR)

The registers in the IPC CSR space are accessible by both the host
CPU and the local CPU are illustrated in Figure 4-2. For CSR
commands the registers used by the host CPU are:

1. IPC TAS Register

2. IPC Address Register
3. IPC Status Register
4. IPC Control Register

For Buffered Pipe Protocol commands, the only register used by the
host CPU is the IPC Control Register. Figure 4-2 illustrates the
offsets and sizes for each register in the dual-port IPC CSR
Registers.

Even Byte 0dd Byte

T L L P +
$0000 |-------------"--- IPC Address Register MSW ---------ccuuomnno
$0002 |----------m------ IPC Address Register LSW ------------------
$0004 |- IPC Address Modifier Reg -- | ---------- (Unused) ---------
$0006 |---- IPC Control Register --- [--------- (Reserved) --------
$0008 |---- IPC Status Register ---- [--------- (Reserved) --------
$O0PA |---- IPC Model Data Byte * -- | --------- (Reserved) --------
$000C |- IPC Abort Vector Register * | ---------- (Unused) ---------
$OPPE |-----------=--m------ IPC TAS Register -----------ccmcmunnno-

e e e L L L PP PR L P PR +

* Unused on VMEbus designs

FIGURE 4-2. DUAL-PORT IPC REGISTER (IPC_CSR)

4-6

MVME332XTFW/D2

4.7.1 IPC CSR Register Descriptions

1PC Address Register

A 32-bit register in which the host CPU loads the address of the
channel header structure prior to issuing a "create channel"
command.

IPC Address Modifier Register

An 8-bit register in which the host CPU 1oads the address modifier
used by the IPC to access the channel header structure for a
"create channel"™ command. This register must be loaded with the
proper address modifier prior to any data transter to or from host
memory.

IPC Control Register

This register contains several bits used to control operation of
the IPC. The busy bit indicates to the host CPU that the IPC is not
ready to accept CSR commands yet. The IPC turns this bit off after
completing its power-up initialization sequence. The reset bit
forces the IPC into a reset state. The only way out of the reset
state is for the host to clear the bit. The attention bit is set by
the host CPU to interrupt the IPC when there is a command packet
pending on the BPP command channel.

Figure 4-3 illustrates the bit definitions of the Control Register
in the IPC CSR space. Busy is used during the reset sequence to
indicate to the host system that the MVME332XT has completed its
jnitialization and is ready for operation. This bit is only valid
when the MVME332XT is not asserting SYSFAIL*.

The reset IPC bit can be used by the host to reset the MVME332XT. To
do so, the host sets this bit, waits for 5@@ms, and then clears the
bit.

The attention bit is used by the host to generate interrupts to the
MVME332XT firmware to indicate a command needs processing. The bit
will be reset by the MVME332XT and should be viewed as write only by
the host.

The last bit defined in the Control Register is the inhibit SYSFAIL*
bit. This bit is used by the host to disable the MVME332XT from
driving the VMEbus SYSFAIL* signal. The host can use this feature to
aid in locating a failed module which is asserting SYSFAIL*.

4-7

MVME332XTFW/D2

IPC CONTROL REGISTER

+ ——+

o —+

111111 |1]|@6|@6|@8 |0 |06|0)|8@ I) l g | g

5 | 4|3|2|1|@8|9|8|7|6|5]|]4]|3]|]2|1]|8
I I
R L EE LR T --------------------- +

+-- Not Used
+-- inhibit SYSFAIL*
$--m-- ATTENTION BIT
Fommmmmmm—- reset IPC
4ommmmmmmmmmee busy

FIGURE 4-3. CONTROL REGISTER BIT DEFINITIONS

IPC Status Register

The IPC returns status to the host CPU for CSR commands in this
register.

The IPC Status Register bit definitions are illustrated in Figure
4-4. The next section describes possible errors that the IPC can
report to the host CPU through the IPC status register. These errors
occur either as the IPC comes up from reset or during the execution
of a CSR command.

+ ====4
| IPC STATUS REGISTER |
$===== +
1111|111 |06|0|@0|0|06|0|06|0]|8]|8
5|4|3|2(1|06]|]9|8|7|6|5|4|3[2]|1]8
+ == ===
| |
omcemmmmmmmmmmmmcamceeeo T ------------------------- +
+--- Not defined
fommmmmmaa - Bus error on access of Channel Header Structure
D Error

FIGURE 4-4. STATUS REGISTER BIT DEFINITIONS

4-8

MVME332XTFW/D2

IPC Model Data Byte
Not used on the MVME332XT. (Always read as a zero.)

IPC Abort Vector Register

The host CPU loads the vector number to be used by the IPC when it
interrupts the host CPU on an error condition.

IPC TAS Register
The TAS or Test And Set register is used by the host CPU to send CSR
commands to the IPC. It is used mainly to create one or more BPP
pipes so the host can queue up commands to and receive status back
from the IPC.

The CSR Command Register bit definitions are illustrated in Figure
4-5. The first four bits are used as handshake flags for CSR

commands.

IPC TAS REGISTER

I 10|09 I @ | @ l @ l 8 l
19|87 (|6|5]4

[Svaya—

+——

+ —
1
1
1
)
)
)
)
)
)
)
)
)
]
1
)
)
)
)
1
)
)
—
i
]
]
1
1
1
]
]
]
I
[
)
]
)
)
1
|
)
1
1
1
+—

+-- CSR Commands

+-- COMMAND COMPLETE Flag
oo VALID STATUS Flag
Fommmmmmmes VALID COMMAND Flag
Hommmmmmemeenas TEST AND SET Bit (TAS Bit)

FIGURE 4-5. CSR COMMAND INTERFACE FLAGS IN TAS REGISTER

4.7.1.1 CSR Commands Possible Errors
Table 4-2 details the possible errors for the CSR commands.

4-9

MVME332XTFW/D2

TABLE 4-2. CSR COMMAND POSSIBLE ERRORS

CSR BIT DESCRIPTION

STATUS

$8000 15 Error - an error occurred during a CSR command
sequence.

$4000 14 Bad Channel Header Address - either the channel header
address or address modifier was bad. The IPC could not
read the channel header structure.

$FFFF all This status is the result of one of the following

conditions:

A. The IPC could not create a channel because there
are no more free channels in its local queue.

B. The IPC received an invalid CSR command.

C. The IPC received a command to delete a channel that
does not exist.

D. The IPC received a command to delete a channel that
has already been deleted.

MVME332XTFW/D2

CHAPTER 5
FIRMWARE ARCHITECTURE

5.1 MVME332XT START-UP SEQUENCE

Upon system start-up or system reset, a confidence test is performed
to verify the basic functionality of the main hardware components of
the MVME332XT. This includes the CPU, ROM, local CSRs, local RAM,
dual-port RAM, MC6823@ PIT, and four SIO MK68564s. If no errors are
detected during this testing, control is passed to the firmware. If
an error is detected, an infinite loop is entered and the firmware is
never executed. Information indicating that a confidence test
failure occurred and the progress of the test when the error was
detected can be obtained by the Host by examining the Composite
Status Word (CSW) of the Confidence Test Descriptor residing at the
offset @x10 of the dual-port RAM. The most significant byte will
contain the test number of the test that failed and the least
significant byte will contain a progress code indicating the last
segment of the test to complete successfully. Refer to Appendix C
for a table of these values.

NOTE: The confidence test does support Warm Start after power-on
reset and will skip the entire confidence test (if the warm-
start pattern written to memory on the successful completion
of the power-on test is intact and readable) when subsequent
resets are performed.

5.2 FIRMWARE OPERATION

The firmware architecture for the MVME332XT IPC consists of a
realtime multi-tasking kernel and several individual programs
called processes that control various operations of the MVME332XT.
This kernel is a proprietary design of the Austin Design Center that
provides process creation, scheduling, resource protection, and
inter-process communications in the firmware environment. A1l of
the firmware has been developed in "C" running under SYSTEM V/68 and
is resident in EPROMs on the MVME332XT.

Figure 5-1 illustrates all processes that always exist in the
firmware in either of two states, sleeping or running. Note that
there are four processes per physical device; the GATE, CTL, OCP,
and ICP processes. These processes share a data structure that is
private to a device. Al1 processes of the same type (such as GATE @
to GATE 8) share the same code, but work on different data
structures. A process goes to sleep when it has to wait for a
resource to be available, or its time slice expires, or it
voluntarily gives up the CPU since it has nothing else to do. A
process is scheduled to run by the kernel when a resource becomes
available or it has a new time slice to run.

5-1

MVME332XTFW/D2

R +
NULL
$eoeoo- Process |------- +
[
Attentionllnterrupt Timer ITterrupt
v v
ommmmeeas + S T +
BPP TIMER
Receiver Handler
R L +
I I
v v
o R R T T g +
I I I I
v v v v
ommmmeens + fommmmeeae + o + et +
GATE -+ CTL -+ ocp -+ ICP -+
Process : Process : Process : Process :
)] [/} [} : [} :
dommmemeee + ommmmaean + o + Fommmm e +
I8 1 1 8 | | 8 | | 8 |
Fommmmaas + Fommmmmea + Fommmmeees + R +

FIGURE 5-1. FIRMWARE PROCESSES

A general understanding of the firmware operation and its
interaction with the kernel can be gained by following the flow of a
typical "open" command.

1.

2.

In the idle state, the special kernel process "NULL" is active
waiting for an event.

The host queues an appropriate command packet into the command
pipe of the channel established from "create channel"” command
(CSR command), then signals the IPC by setting the attention bit
in the MVME332XT’s IPC_CSR.

The firmware BPP Receiver is activated to run in the context of
the Tocal attention bit interrupt. The BPP Receiver dequeues
the command packet from the channel, parses it, then queues it to
the appropriate process’ command queue, and finally wakes the
process up for execution. For the "open" commands, the command
is queued in the command queue of the GATE process.

The GATE process is activated upon receipt of the command. It
further parses the command and allocates resources.

5-2

MVME332XTFW/D2

5. The GATE process returns status and signals the host with an
interrupt when it completes the open function, then goes back to
sleep waiting for the next command.

6. The firmware returns to the idle state.

With the firmware kernel, it is possible to overlap many of the
functions cited in this example which improves board efficiency and
performance.

The processes included in the firmware are:

NULL Process

This process performs initialization tasks at startup and then is
active in the idle state as a "place holder" waiting for an event.

BPP Receiver

The Buffer Pipe Protocol (BBP) Receiver runs in the context of the
attention interrupt. Its function is to receive a packet in a BPP
channel and then dispatch it to the appropriate process.

TIMER Handler

The Timer Handler runs in the context of the timer interrupt. Its
basic function is management of all processes in the system, such
as scheduling a process to run.

GATE Process

The GATE process handles open and close commands. The main
function of this process is to synchronize the open and close
requests, to prevent opening a device, and closing a device at the
same time.

CTL Process

The CTL process handles all control functions, such as changing a
baud rate, enable handshaking, get or set the current
configuration, or downloading.

OCP Process
The Output Character Processing (OCP) process performs character
translation and mapping for all output characters from the host
buffer to the device.

ICP Process

The Input Character Processing (ICP) process performs character
echoing, erasing, mapping, translating, signaling and escape

5-3

MVME332XTFW/D2

sequencing for all input characters from the devices to the host
buffer.

5.3 WRITE/READ OPERATION

Figure 5-2 illustrates the overall architecture of the read and
write operations. Associated with each device are two processes
which are awakened to run by the Timer to perform character
processing for each direction. The Timer runs at the clock interrupt
level, checking each ring buffer, then awaking the associated
process if the ring is not empty.

I :
V I Dual : Local
M I Port : RAM
E I RAM
b I +---+
u I +---+ 0
S I W U
I R T
I I P
I T ul----- +
---=I-->] E R ittt + T
I Output
I R Character R
I I [--:-->| Processing |--->| I
I N : Process N
I G : D DT + G v
I +---+ R I e it + +---+
I : Device D
I Interrupt |[-->| E
% Handler (<--{ V
I +---+ F--mmmmm - + 4---4
I R : oo + +---4 ;
I E : Input I
I A |<-:---| Character |[<---| N
I D Processing P
<---I--- : Process U
I : R + T
I R <-=----- +
I I R
I N I
I G N
I +---4 G
I +---+

FIGURE 5-2. WRITE/READ OPERATION

5-4

MVME332XTFW/D2

5.3.1 Write Operation

In the Write Operation, the host writes all characters into the
WRITE ring-buffer residing in the board’s dual-port RAM. The Timer
detects this situation and wakes up the OCP process which in turn
moves those characters to the OUTPUT ring ready for the Device
Interrupt Handler to output to the device.

If the WRITE ring-buffer is full because the firmware does not
consume fast enough or the output is suspended, the host should wait
for spaces on the WRITE ring by sending a packet to the firmware and
then waiting for the packet to be returned. This packet will be
returned to the host by the OCP process when the number of characters
in the WRITE ring drops below a threshold level, referred to as the
Low Water Mark.

The Low Water Mark detection will reduce a significant amount of
packets traveling between the host and the firmware when the
firmware is heavily loaded or the the OUTPUT ring reaches the High
Water Mark.

5.3.2 Read Operation

In this operation, the Device Interrupt Handler gets a character
from the device and puts it into the INPUT ring (or RAW queue). The
Timer detects that there is a character in the INPUT ring and then
wakes the ICP process up.

Upon awakening, the ICP process gets a character from the INPUT
ring, performs the necessary translation or action, then puts it
into the READ ring in the form of a frame. Each frame can be viewed as
a part of a complete Tine terminated by a delimiter. If a Tine is too
long (longer than a frame can hold, 255 characters), it will be
broken down into many frames.

By using the frame format, the firmware can process the remaining
characters in the ring before the host needs it. This also reduces
the number of packets and increases the overlap operation. The
detail of the frame will be discussed in the next sections.

If the READ ring is empty because the host consumes faster than the
firmware can produce, the host should wait for an available frame by
sending a packet to the firmware, and then waiting for it to be
returned. This packet will be returned by the ICP process, if there
is at least a complete 1ine in the READ ring. A complete line is
terminated by a delimiter or timeout depending on what mode is set.

5-5

MVME332XTFW/D2

5.4 CONTROL OPERATION

As soon as the host sets the attention bit in the IPC_CSR, the
BPP receiver is activated upon the local attention interrupt. The
BPP receiver dequeues the packet from the channel command pipe and
hands it to the CTL process. It then notifies the CTL process by
calling a kernel’s signal function to make it runable in the
firmware.

When the CTL process has a chance to run, it further passes its sub-
command to perform a specific function such as setting or getting
current configuration, changing baud rate, downloading code, or
sending a break sequence. Some sub-commands require parameters or
more data to work with. This data can be placed in the packet or
somewhere in the dual-port RAM.

Finally, the CTL process returns the packet to the host and then
looks at its command queue for any pending command. If the queue is
empty, it goes to sleep waiting for the next request.

I :
I Dual : MVME332XT Local RAM
I Port :
I RAM
I :
attention : R et +
----- I-----------:------>| BPP |-----signa1---+
v I : Receiver
M I +---+ e +
E I P v
b ----- I-->| A R +
u I C |---t----mccmmmmm e e e >| CTL
s 1 K Process
Cemeolece| E [€emtmmmmmmme e e e
I T Ho-mmmmoe- +
I +---+
I

FIGURE 5-3. CONTROL OPERATION

5.5 GATE OPERATION

This operation is much the same as the control operation mentioned
earlier, excepts that the GATE process is awakened to run if the
packet is either a OPEN or a CLOSE packet.

Upon receiving the OPEN packet, the GATE process configures the
device, asserts all the device’s modem signals such as DTR and RTS,

5-6

MVME332XTFW/D2

and then returns the packet back to the host with the current status
of the modem input signal DCD (Data Carrier Detect). The host must
decide whether to wait for DCD or not, depending on the process mode.

When the GATE process receives a CLOSE packet, it will negate all
modem control signals, disable the device to prevent further access,
and then return the packet back to the host.

5.6 DUAL-PORT MEMORY

The MVME332XT’s dual-port memory provides a communication mechanism
between the firmware and the host. This is intented to reduce the
number of bus accesses which may sacrifice the firmware performance,
since the Tocal CPU has to wait for the bus arbitration to complete
before acknowledging any device interrupts.

The current implementation of the firmware requires that all
communication data structures (including channels, envelopes,
packets, and buffers) reside in this space, otherwise a fatal
condition may occur because of misinterpretation. Since the local
address of the dual-port RAM and the address viewed from the bus are
different, the firmware must translate a pointer specified in a
channel 1ink 1ist to the local accessible address. This is done by
adding its Tower word (bits @ to 15) to the base address of the memory
and ignoring the upper word (bits 16 to 31). Therefore, a pointer
pointing to a location outside of the dual-port memory will be
treated as the one that points to the inside. The firmware makes no
attempt to check whether a pointer is inbound or not, since that will
degrade its performance significantly.

Even though the size of the dual-port RAM is 64K bytes, a portion of
it is reserved for the hardware registers (IPC and Vector
registers). Another portion is used by the firmware to display the
information about the confidence test and crash condition
(confidence test descriptor and dump area).

Figure 5-4 illustrates the spaces reserved for the firmware and the
hardware. The space starting at offset $4100 to the offset $FFF@ is
available to the host for its data structures.

The memory map spaces for the firmware and hardware are described as
follows.

IPC_CSR

This space is reserved for the IPC control/status registers as
described in the previous section.

5-7

MVME332XTFW/D2

Board Base Address

R +
$FFxx0000
IPC CSR
(16 bytes)
$FFxx@@1d
Confidence Test Descriptor
(32 bytes)
$FFxx0@30
Dump Area
(208 bytes)
$FFxx@100
User Space
(65,264 bytes)
$FFxxFFF@
Interrupt Vector Registers
(16 bytes)
Fmmmm e e +
$FFXXFFFF

Where: xx is configurable in 8-position switch.

FIGURE 5-4. DUAL-PORT MEMORY MAP

Confidence Test Descriptor

On the power-up reset, the firmware executes a series of tests, so
called confidence test, to make sure the hardware is in a good
condition to operate. The information about each individual test
will be placed in this block so that the host can obtain the detail
of the failure when the test failed. The next section will discuss
the detail of this field.

5-8

MVME332XTFW/D2

Dump Area

This area is implemented as a circular buffer. It is used to dump
a message, in English text, so that a user can use an off-board
debugger’s memory display command to examine the reason why a
confidence test failed or a crash in the firmware. The at sign
(@) in the buffer indicates a starting point to read and then
wraps around to the top if necessary.

User Area

This space is free for the host to use for any purpose. It is
initialized to zero by the firmware upon a system reset. Typical
use of this area is for character buffers, IPC structures, and
download buffers.

Interrupt Vector Registers

This space is used as a set of eight hardware registers. Each
register is a word in length and contains a vector for an interrupt
level with the level B at the offset $FFF@ and the level 7 at the
offset $FFFE. Only the lower byte (bits # to 7) is significant,
the upper byte is ignored. The contents of these registers are
initialized to $@F, which is a standard uninitialized vector
until it is reconfigured by the INIT packet.

5-9

MVME332XTFW/D2

CHAPTER 6
HOST/IPC INTERFACE

6.1 GENERAL

The interface protocol used by a host CPU to communicate with an IPC
includes a set of basic commands sent through registers in the
IPC_CSR (IPC command/status register) map and a set of commands sent
in packets via virtual channels consisting of a command pipe and a
status pipe. The host CPU uses a CSR command to establish the
virtual channels for host/IPC communications. After the host
creates one or more virtual channels, all other commands are
transmitted between the host CPU and the IPC on these channels.

A virtual channel consists of a channel header structure which
defines the attributes of the channel and two pipes. On one pipe,
the host CPU enqueues command packets for the IPC. On the other
pipe, the IPC enqueues status packets for the host. A pipe is simply
a queue or singly linked list with one CPU manipulating the head
pointer and another CPU manipulating the tail pointer.

This interface is called a non-busy interface because, once the
channels are established, the host CPU never finds the interface to
be in a busy state. This means that the host never has to wait to
send a command. It also means that the IPC never has to wait to
return status. The only limiting factor is the amount of memory
available to the host for queueing command packets. This generic
interface was created with the intent that it should be identical
for all VME IPCs developed by the Austin Design Center of Motorola’s
Microcomputer Division.

In the chapters that follow, all commands supported by all devices
attached to the MVME332XT are described. In some cases the packets
that are shown have been condensed to avoid unnecessary duplication.
In these cases some fields of the packet are not shown. The numbers
at the left of each 1ine of a packet are byte offsets to the fields on
that 1ine. These numbers increment by 2, since each 1ine in a packet
is two bytes long. Where fields are missing, the offsets jump by
more than two bytes. To see a complete packet with all fields, refer
to the appendix. Fields are in the same relative location in the
packet for all packets for all devices. Where noted, certain fields
are used for different purposes by different devices (primarily in
the]opgode dependent command fields and the device dependent status
fields).

Status bits or fields that are unique to one device or one command
are described in the appropriate section on that device or command.
Where the status fields are the same for several commands for the
same device, one section describes those status fields in detail.

6-1

MVME332XTFW/D2

6.2 MVME332XT HOST INTERFACE

The host/IPC interface is actually separated into two distinct
interface protocols. The first protocol utilizes the IPC TAS
Register in the IPC Control/Status Register (IPC_CSR) to send
commands from the host to the IPC. Commands sent through the IPC TAS
Register are referred to in this document as CSR Commands. This is a
Busy interface in the sense that only one I/0 driver may send a
command at any given time. The driver must be granted access to the
CSR space by successfully setting the IPC TAS bit in the IPC TAS
Register. If one driver already has ownership of the CSR space, a
second driver trying to access the IPC must wait until the first
driver relinquishes its ownership.

The second protocol wutilizes dual-port memory space and the
Attention Bit in the CSR IPC Control Register to send command and
status packets between the host CPU and the IPC. This is referred to
as the Buffered Pipe Protocol. This interface uses virtual channels
consisting of singly linked lists to enqueue command packets and
dequeue status packets. This protocol represents a Non-Busy
interface. Three things are provided to ensure that this interface
is never busy.

1. First, each driver has its own channel on which to send commands
so that it never has to wait for another driver to release the
channel.

2. Second, the driver can queue up additional commands without
having to wait for the IPC to complete a previous command.

3. Third, the driver and the IPC may both access the channel
simultaneously with no interlock required.

Each channel has one command pipe and one status pipe. Commands may
be sent at any time by enqueueing a packet on the command pipe and
setting the Attention Bit in the IPC Control Register. Several
drivers may set the Attention Bit at the same time without first
having to gain ownership of the CSR space. The IPC scans all
channels whenever the Attention Bit is set so it is not important
which driver sets the Attention Bit or how many drivers set it.

6.3 BASIC CSR COMMANDS

Initial communications between a host CPU driver and the IPC Control
Software are performed using the IPC_CSR space registers. The
"create_channel"” CSR command is used to establish channels between
the host CPU device driver and the IPC. After these channels are
create, they are used by a driver to pass channel command packets to
the IPC. Similarly, the IPC uses channels to return executed
command packets (status packets) to the host CPU.

6-2

MVME332XTFW/D2

It is important to note the reset sequence for the MVME332XT. Before
any communication to the MVME332XT can be initiated two conditions
must be met. First, the system failure signal must be cleared by the
MVME332XT. This signal is the VMEbus signal SYSFAIL*. This signal
is asserted by the hardware at reset. This signal is cleared by the
MVME332XT firmware once the on-board confidence test has been
successfully completed. A failure in the confidence test causes the
SYSFAIL* signal to remain asserted. To locate failed modules, the
MVME332XT contains an inhibit SYSFAIL* bit in the CSR Control
Register. The host CPU sets this bit to disable the MVME332XT from
driving SYSFAIL*. This bit should be in the cleared state and no
SYSFAIL* detected by the host CPU for normal operation. After the
SYSFAIL* signal is no longer asserted, the busy bit (BSY) in the CSR
Control Register must be cleared. The MVME332XT firmware clears
this bit after it completes the necessary initialization sequence.
Once these two conditions are met, the host CPU may initiate CSR
commands and start normal operations with the MVME332XT.

Manual resets of the MVME332XT may be accomplished by using the IPC
reset bit in the CSR Control Register. The host CPU should set this
bit, wait for 500 milliseconds, and then clear the bit.

The following sub-sections deal with the protocol followed when
issuing a CSR command and the specifics of the "create_channel" CSR
command.

6.3.1 CSR Command Protocol

This section contains a discussion of the protocol followed by a
driver when issuing a CSR command to the IPC. Before discussing the
CSR command protocol, a basic familiarity with the hardware
interface used to implement CSR commands is needed.

e L L L LR T T +
$0000 |------------omm-- IPC Address Register MSW -------------o----
$0002 |---------------- IPC Address Register LSW ---------m-cmomnno
$0004 |- IPC Address Modifier Reg -- | ---------- (Unused) ---------
$0006 |---- IPC Control Register --- | --------- (Reserved) --------
$0008 |---- IPC Status Register ---- | --------- (Reserved) --------
$000A |---- IPC Model Data Byte* --- | --------- (Reserved) --------
$000C |- IPC Abort Vector Register * | ---------- (Unused) ---------
$OOPE |------------memmme-- IPC TAS Register ------------cmmooouen-
e e e L L L e P L e e L e e e e R R +

* Unused on VMEbus Designs.

FIGURE 6-1. IPC_CSR REGISTERS

6-3

MVME332XTFW/D2

This CSR space is accessible from the VMEbus as well as from local
RAM space. This permits both the host CPU and the IPC CPU to read and
write to any location in this CSR space. Figure 6-1 illustrates the

IPC CSR space as viewed by the IPC Control Software and the

host CPU.

The IPC TAS Register is a register in this space which is used when
CSR commands are issued to the IPC. To notify the IPC of CSR commands

the Attention Bit is set in the CSR Control Register as il
in Figure 6-2.

CSR Address Offset: $06

lTustrated

+ ===ss==========4
1|11 1]1]1]|@0 |0 |0 |0 |0|06|08|0|08]89
5(4|3|]2|1]|@8]|9|8|7|6|5[4|3]|]2]|1]80

+= === ==ms= =====4

I I
R T --------------------- +
+-- Not Used
+-- inhibit SYSFAIL*
4------ ATTENTION BIT
L EEEEEE RS reset IPC
e R busy
FIGURE 6-2. CSR CONTROL REGISTER BIT ASSIGNMENTS
The bit definitions for the IPC TAS Register are illustrated in
Figure 6-3.

CSR Address Offset: $@E

+====== = === ===4
1]1]1|1|1]|1|@6|@8 |0 |0 |06|0|0 |0 |0|0
5(4|3|2}1|@8)|9]|8|7|6|5|4|[3|2]|]1]|89

+ ==== ==+

I I
R D e L LR T TR +

+-- CSR Commands
+-- COMMAND COMPLETE Flag
- VALID STATUS Flag
ommmmmeen VALID COMMAND Flag
. TEST AND SET Bit

FIGURE 6-3. IPC_CSR TAS REGISTER

6-4

MVME332XTFW/D2

Table 6-1 Tists the commands that are issued through the CSR space.

TABLE 6-1. CSR COMMANDS

Command Field CSR Command
g reserved
1 Create Channel
2 Delete Channel
3 unassigned
kaF unassiéned

The protocol to be followed when issuing a CSR command to the IPC is
as follows:

1. The host driver gains access to the IPC CSR space by using the
Test and Set instruction on the IPC TAS Register’s TAS bit (bit
15). When TASing of this bit indicates that the bit was clear
prior to the TAS operation, the driver has "possession" of the
CSR space.

2. The driver writes the CSR command opcode in the IPC TAS Register
(bits @ through 11).

3. The driver writes associated parameters in other locations in
the IPC CSR space (e.g., IPC Address Register, IPC Address
Modifier Register).

4. The driver sets the VALID COMMAND Flag in the IPC TAS Register
(bit 14).

5. The driver generates an Attention Bit interrupt to the IPC by
setting bit 13 of the IPC Control Register.

e ittt R EEE LT +
$0000 |------------- Address of Channel Header MSW ----------- [FF78]

$0002 |-------cmen-- Address of Channel Header LSW ----------- [02040]

$0004 |IPC Address Modifier Reg [#D] | --------------c--momomccmna--
$0006 |IPC Control Register ----[208] | --------------c--cmmmmocmnnm-
$00@8 |--------e-mmesmmemememmeos | eeeeeeeeeceeeeeeeeeooo e
Ly et Lt B ity
$PPPC |------=---=----mcmeommmmee | e eeeee e oo
$OPPE | ---------mmmmem o IPC TAS Register ---------------- [Coa1]

FIGURE 6-4. IPC_CSR REGISTERS WITH THE VALID COMMAND BIT SET

6-5

MVME332XTFW/D2

Figure 6-4 illustrates the contents of the CSR registers after the
host CPU has set the Attention Bit. At this point the IPC Control
Software does the following:

1. If the TAS bit is set, the VALID COMMAND flag is set, and the
COMMAND COMPLETE flag (bit 12) is NOT set:

a. IPC executes the CSR command.

b. IPC places status concerning execution of the command into
the IPC Status Register and then sets the VALID STATUS flag
(bit 13 of the IPC Flag Word).

2. The IPC then also unconditionally polls any outstanding command
pipes to see if there are any channel command packets to execute.

$0000 |------------- Address of Channel Header MSW ----------- [FF78]
$0002 |------------- Address of Channel Header LSW ----------- [8200]
$P004 |IPC Address Modifier Reg [#D] | --------------=""ccmo--cmmmm-
$0006 |IPC Control Register --- [@@] | -----------------------------

$09P8 |IPC Status Register ---- [@8] | ---------------------c--"----
$OPBA |-------------mmmmeecmeeeems | mmmmmemoecccecoceooooooo o
$PPPC |-----------cc----mmmmmcmmmeon | mmmoeceomeioooooooooooooooooe
$OPPE |--------------------- IPC TAS Register ---------------- [EOP1]
N T e e L L LR L L DR Dbt b +

FIGURE 6-5. IPC_CSR REGISTERS WITH THE VALID STATUS BIT SET

Figure 6-5 illustrates the contents of the CSR registers after the
IPC has set the Valid Status Bit in the CSR TAS Register. Now the
driver does the following:

. The driver polls the VALID STATUS Flag until set.
2. The driver then reads the IPC Status Register.

The driver then sets the COMMAND COMPLETE Flag (bit 12 of the IPC
TAS Register). The driver must set the COMMAND COMPLETE bit even
if status indicates an error.

4. The driver then generates another Attention Bit interrupt to the
IPC.

6-6

MVME332XTFW/D2

$0000 |------------- Address of Channel Header MSW ----------- [FF78]
$0002 |------------- Address of Channel Header LSW ----------- [82046]
$0004 |IPC Address Modifier Reg [@BD] | ----------ccomommmmmnnnaaaoo
$0006 |IPC Control Register --- [28] | -----------ccommmmcmcccaon

$0008 |IPC Status Register ---- [@@] | ----------=c---cmmmocmcnnnn--
$SOBPBA |-------e-eeccccecoceccncecces | cececemcccccce e
$000C |-------------mmmmmmeoe- wewes | eeecrececce e aeaes
$OBPE |---------mmmeemee e IPC TAS Register ---------------- [Fo@1]
e L L L PP P P L P +

FIGURE 6-6. IPC CSR REGISTERS WITH THE COMMAND COMPLETE BIT SET

Figure 6-6 illustrates the contents of the CSR registers after the
host CPU has set the Attention Bit. The IPC responds to the
interrupt as follows:

1. If the TAS bit set, the VALID COMMAND flag set, and the COMMAND
COMPLETE flag set:

IPC clears VALID COMMAND bit.
IPC clears VALID STATUS bit.
IPC clears COMMAND COMPLETE bit.

IPC clears TAS bit (thus readying itself for another CSR
command).

2. The IPC unconditionally polls any existing command pipes for any
outstanding channel command packets. This is done every time
the Attention Bit is set, since the IPC has no way to determine
which CPU or which process set the Attention Bit.

a o o o

6.3.2 Create Channel CSR Command Description

A channel consists of a command pipe and a status pipe. Channel
command packets are shipped by a driver to the IPC via the command
pipe. Channel status packets are returned to the driver via the
status pipe. To send commands to an IPC, the host driver must create
at least one channel. To create such a channel, a driver performs
the following activities.

First, it builds the channel header structure in the MVME332XT
dual-port memory. This process is described in more detail in the
following section on creating a channel.

Next, the driver informs the IPC Control Software of the structure’s

existence. It does this by issuing a "create channel" CSR command
to the IPC.

6-7

MVME332XTFW/D2

The parameters passed with this CSR command are the address of the
channel header structure and the address modifier associated with
the channel header structure. These are placed in the IPC Address
Register and the IPC Address Modifier Register, respectively.

Upon successful execution of the CSR command, the IPC Control
Software assigns a unique channel number to the newly created
channel, writes the channel number to the channel header structure
in dual-port memory, sets the valid channel flag in the channel
header structure in dual-port memory, and adds the channel to its
internally kept 1list of existing channels. If a channel is
successfully created, a status of $0@808 is returned in the CSR IPC
Status Register.

If a channel cannot be created because there are no more free
channels in the IPC, a status of $FFFF is returned in the CSR IPC
Status Register. A status of $FFFF is also returned if the IPC
receives an invalid CSR command.

If the IPC could not read the channel header structure in the dual-
port memory, a status of $CPPP is returned in the CSR Status
Register. This can be caused by a bad channel header address, a bad
address modifier, or some other problem with data transfers on the
system bus. The IPC does not create a channel if it cannot
successfully read the channel header structure in the host memory.

If the IPC could not write the channel number or the valid flag in the
channel header structure in dual-port memory, a status of $8080 is
returned in the CSR IPC Status Register. This indicates a problem
with data transfers on the system bus. The IPC does not create a
channel if it cannot successfully write to the channel header
structure in the dual-port memory.

The command pipes of these channels are polled whenever an attention
bit interrupt is detected by the IPC. A copy of the channel header
structure including the channel’s address modifier is kept in the
IPC’s Tocal RAM space.

6.3.3 Delete Channel CSR Command Description

The "delete channel” command is provided to allow dynamic creation
and deletion of channels if desired. The Buffered Pipe Protocol
requires that the IPC scan all existing channels each time the
Attention Bit is set. The IPC operates more efficiently in handling
packets if the number of channels to be scanned is kept to a minimum.

To delete a channel, the driver informs the IPC Control Software of

its intent to delete the channel. It does this by issuing a "delete
channel" CSR command to the IPC.

6-8

MVME332XTFW/D2

The parameters passed with this CSR command are the address of the
channel header structure and the address modifier associated with
the channel header structure. These are placed in the IPC Address
Register and the IPC Address Modifier Register, respectively.

Upon successful execution of the CSR command, the IPC Control
Software removes the channel from its internally kept list of
existing channels and returns a status of $800@8 in the CSR IPC Status
Register, indicating that the command completed successfully.

If the channel being deleted is not a valid channel, a status of
$FFFF is returned in the CSR IPC Status Register, indicating that
the channel has already been deleted. A status of $FFFF is also
returned if the IPC receives an invalid CSR command.

If the IPC could not read the channel header structure in the dual-
port memory, a status of $CO@B is returned in the CSR Status
Register. In this case, the IPC cannot verify the existence of a
valid channel. The channel is not deleted.

If the "delete channel" command completes successfully, the host
driver is free to dispose of the channel header structure and the
associated envelopes and packets and deallocate the memory used by
these structures.

6.4 CREATING CHANNELS FOR HOST/IPC COMMUNICATIONS

The following section describes the process used by the host driver
to create a BPP channel for communications with an IPC. It is
possible for multiple host CPUs to create channels to the same IPC.
The IPC_CSR registers are used for this operation so an interlock
mechanism is required. Only one CPU at a time may perform the CSR
command to create a channel.

6.4.1 Setting Up Queue Structures For ‘create channel’ Command

To begin communicating with the IPC, the device driver must set up a
free packet queue and a free envelope queue. These are illustrated
in Figure 6-7 below.

6-9

MVME332XTFW/D2

envelope envelope
-------------- + $o---oot Ho-----t
| head pointer |------- M e e >|---een]---- >NULL
et + |eeee-- SRRl EEPER
| tail pointer |---+ [------ I ------
Hmmmmmmmee + Hom-m-- + +------ +
R ELE PP +
packet packet
Hmmmmemmm e + Homm-e- + Ho--m-- +
| head pointer |------- M B R >|--e---]---- >NULL
Hmmmmmmmm e + |eeeee- S
| tail pointer |---+ [------ I ------
it + et + +------ +
L PR +

FIGURE 6-7. STRUCTURE FOR FREE ENVELOPE QUEUE AND FREE PACKET QUEUE

Both free packets and free envelopes use the structure illustrated
above. A channel header structure must also be set up in memory. The
channel header structure consists of a command pipe, a status pipe,
and some additional parameters as represented in Figure 6-8.

channel header env

|CMD pipe head ptr |--------- >| link | ----- >NULL
------------------ + & SEEEEE

ICMD pipe tail ptr |----- + env
------------------ + ----_-

|STAT pipe head ptr|--------- >| 1ink | ----- >NULL
------------------ + e & SEEEEEs

ISTAT pipe tail ptr|----- +
.................. +

|1eve1 |

Hommmmm e +

| vector |

et +

Ipr10r1ty |
.................. +

Iaddr modifier |
------------------ +

|channe1 |
------------------ +

|va11d flag |

s T T +

FIGURE 6-8. CHANNEL HEADER STRUCTURE WITH EMPTY CHANNELS

6-10

MVME332XTFW/D2

Figure 6-8 is a channel header structure with one envelope on the
command pipe and one envelope on the status pipe. Both envelopes
have their link fields pointing to null. The valid flag in the
envelope has a value of zero, meaning that this is the last envelope
in the pipe.

A11 of the fields in the channel header are filled in with the
appropriate values except for the valid flag and the channel number.
The channel number and valid flag are initialized by the IPC at the
successful completion of a "create channel” command.

After assembling the channel header structure, the host CPU executes
the "create channel"” command. This is a CSR command. It requires
that the host CPU set the TAS bit in the IPC TAS Register. Once the
TAS bit is set, the host CPU proceeds with the CSR Command Protocol.
This protocol is described in detail in the section entitled "CSR
Command Protocol".

After checking the valid flag to ensure that no problem arose in
creating the channel, the host CPU can begin sending commands to the
IPC.

6.4.2 Enqueueing Packets On The Command Pipe

To send a packet the CPU enqueues another envelope and packet on the
command pipe. New envelopes and packets are always enqueued at the
tail of the command pipe. First, the CPU attaches a packet to the
null envelope on the command pipe. The field labeled p.p. means
packet pointer.

channel header

$ommmmmmmmmmmeeo- +
|CMD pipe head ptr |-----
O +
|CMD pipe tail ptr |[-----
fommmmmmmmmmmeeee +
|STAT pipe head ptr|-----
$ommmmmemmmm—eeoes +
|STAT pipe tail ptr|-----
Hommmmmmmmm oo +
[1evel |
dommmmmmmmmmeeeaee +
|vector |
Hmmmmmmmmmmmee e +
|priority |
$ommmmmmmm e +
|addr modifier |
dommmmmmmmmmmeaeen +
| channel |
$ommmmmmmmmmmmaaeen +
|valid flag |
$ommmmmmmmmmmmeaeee +

FIGURE 6-9. CHANNEL HEADER STRU
COMMAND CHANNEL

MVME332XTFW/D2

env
i +
-===>| link |----- >NULL
- ST + $ommmmmeaa +
+ | p.p. |--->| packet |
4o----- + 4o +
+ env
. b ST T +
---->| link |----- >NULL
$ommon- +

CTURE WITH PACKET BEING ADDED TO THE

Next, a new null envelope is enqueued on the command pipe. This is
done by setting the address of the link field of the old null
envelope to the address of a new envelope and then setting the link
field of the new envelope to point to null. The valid flag of the new
envelope must be set to zero to show that this is a null envelope.

Then, the CMD pipe tail pointer
envelope.

is changed to point to the new null

MVME332XTFW/D2

channel header env env

T T T T s e s +

|CMD pipe head ptr | ------ >| Tink |------------- >| link |-->NULL
.................................... +

ICMD pipe tail ptr I----+ | p. p. |--->|packet| f
------------------ L TR SETPTS

ISTAT pipe head ptrl--+ L L e PR PP PP +
------------------ e & DREEEet

ISTAT pipe tail ptr|------ >| link | ------ >NULL

$mmmmmmeeemeaeao- I

[1evel | env

Fmmmmmmmmm e +

|vector |

E EREETEEEP PP +

|pr1or1ty |

.................. +

Iaddr modifier |

fmmmmmmmmmmmeeean +

| channel |

Hmmmmmmmmmm o +

|va]1d flag |

------------------ +

FIGURE 6-18. CHANNEL HEADER STRUCTURE WITH ONE PACKET ON THE
COMMAND PIPE

A1l the applicable fields must be filled in either now or before the
envelope and packet are enqueued on the command pipe with the
exception of the valid flag field in the envelope. Setting the valid
flag must be the last operation. After setting the valid flag, the
host CPU sets the attention bit to notify the MVME332XT that a
command is waiting for processing. Any number of commands may be
enqueued on the command pipe, with either an Attention Bit interrupt
to the MVME332XT after each command or one Attention Bit interrupt
after a 1ist of commands are enqueued. For each command queued on
the command pipe, the MVME332XT notifies the host via a VMEbus
interrupt when it completes a command.

6.4.3 Dequeueing Packets From The Status Pipe

When the IPC completes a command, it fills in all necessary fields to
inform the host that the command has completed. It then enqueues the

packet on the tail of the status pipe. Once the status packet is

ﬁnqueued on the status pipe, the IPC generates an interrupt to the
ost CPU.

I1lustrated below in Figure 6-11 is what the channel header and

command/status pipes look like after a command completes and an
interrupt to the host CPU is pending. When the host CPU receives the

6-13

MVME332XTFW/D2

interrupt it examines the status queue to see what happened. To do
this the host CPU dequeues envelopes and packets from the head of the
status pipe.

channel header

Hommmmmmmmmmmeeeee +
|CMD pipe head ptr |--X o +
Hommmmmmmmmoeo + +-->| link |----- >NULL
|CMD pipe tail ptr |---+ +------ +
Hmmmmmemme oo + $e-mn- + Hmmmnn +
|STAT pipe head ptr|------ >| Tink |------c-uuv--- >| Tink |-->NULL
Hmmmmmmmmmmmmeooon + $ommme- I R +
|STAT pipe tail ptr|--X | p.p. |--->|packet
e T P + s + Am----- +
| Tevel |
dommmmmmmmm o +
|vector |
Hommmmmmmmm oo +
|priority |
Hmmmmmmmmmmmeeoooen +
|addr modifier |
Fommmmm e mmeee +
|channel |
fmmmmmm oo +
|valid flag [
Fmmmmmmmmmmmmeeeee +
FIGURE 6-11. CHANNEL HEADER STRUCTURE WITH ONE PACKET ON THE STATUS
PIPE

The command pipe head pointer and the status pipe tail pointer point
to an X to indicate that they are stale and are not updated by the
IPC. The command pipe head pointer and the status pipe tail pointer
in system memory are not updated by the IPC and are never used once
the "create channel” command is finished.

6.4.4 Buffered Pipe Protocol Summary

The IPC keeps its own copy of the command header and pipe structures
in its local memory. After any commands are executed, the IPC copies
of the command pipe head pointer and the status pipe tail pointer are
different from what the host CPU has in host memory. The host CPU
only updates the command pipe tail pointer and the status pipe head
pointer as it enqueues and dequeues envelopes to and from the pipes.
Also, the host CPU always enqueues envelopes/packets at the tail of
the command pipe and dequeues envelopes/packets from the head of the
status pipe.

6-14

MVME332XTFW/D2

6.5 IPC CHANNEL COMMUNICATIONS

This sub-section deals with driver/IPC communications via
established channels. Communications between drivers and each IPC
in a system are handled almost exclusively via command/status
packets which are exchanged along these channels.

6.5.1 Establishing Driver/IPC Channel Communications

A driver begins channel communications by setting up at least three
data structures in the MVME332XT’s dual-port memory. These include
a command pipe, status pipe, and a collection of free command/status
packets. Command pipe and status pipe pairs are referred to as
command channels.

Drivers pass command packets to the IPC via command pipes. The IPC
returns processed command packets as status packets via status
pipes.

The driver obtains command packets for transmission to the IPC from
a collection of free command/status packets maintained by the
driver. This pool of free packets is allocated by the driver in the
dual-port memory.

6.5.2 Command Packet Queueing And Notification Procedure

When a driver has prepared a command/status packet for the IPC,
i.e., has filled it with necessary command information, the driver
enqueues that packet on a previously established command pipe. The
driver then informs the IPC of the packet by setting the Attention
Bit in the IPC Control Register. This causes a local interrupt to
the IPC processor. The IPC then examines and processes the command
packet.

6.5.3 Status Packet Queueing And Notification Procedure

When the IPC Control Software has finished processing a
command/status packet and has put status into the packet, it
enqueues the packet on a previously established status pipe. Once
the packet is queued on the status pipe, the valid flag is set and the
IPC then notifies the driver via a VMEbus interrupt. Upon
notification (via the VMEbus interrupt), a driver reads all valid
status packets queued on the status pipe. The host enqueues used
%ommand/status packets on its free command/status packet queue for
ater use.

If the interrupt level associated with the channel is zero (the
vector and interrupt level fields are shown in the command channel
structure), no interrupt is generated and the driver must poll the
status channel while waiting for a packet to complete.

6-15

MVME332XTFW/D2

CHAPTER 7
DATA STRUCTURES

7.1 INTRODUCTION

This section describes and illustrates the necessary data
structures, that drivers must establish in order to communicate (via
the channel command packets) with the IPC. Most of these structures
;e]ate to IOCTL commands since such commands provide many various
unctions.

The MVME332XT firmware requires that all data (shared) structures
must reside on its dual-port memory, otherwise, a catastrophic
condition may occur as a result of misinterpretation in the
firmware. For the sake of speed, the firmware ignores all checking
on every access, but assumes that all communications are done on the
dual-port memory.

Some structures are derived from the SYSTEM V/68 manual such as
termio, termcb, and sgttyb, but some are specific for the MVME332XT
only.

7.2 CHANNEL HEADER STRUCTURE

A single channel is composed of a command pipe and a status pipe.
Each of these pipes is composed of a head pointer and a tail pointer
that point to envelopes. Pipes must always contain at least one
envelope (called the NULL envelope) in which case both the head and
tail pointer point to the same envelope. Figure 7-1 illustrates the
channel structure expected by the IPC.

The fie]ds in the IPC channel header structure are described below.

Command Pipe

The Command Pipe structure consists of two 32-bit pointers. The
first pointer points to the envelope at the head of the command
pipe. This pointer is read once by the IPC when the channel is
created. The IPC then updates a local copy of the head pointer as
it removes packets from the command pipe. The second pointer
points to the envelope at the tail of the command pipe which is
ALWAYS a null envelope. This pointer is updated by the host CPU as
it adds new packets to the tail of the command pipe. It is never
read by the IPC. The IPC depends on ALWAYS finding a null envelope
at the tail of the command pipe. Because neither processor
accesses the pointer maintained by the other processor, a non-
busy interface 1is achieved that requires no interlocking
handshakes.

7-1

MVME332XTFW/D2

bt et +
$06 | ------------- command pipe head pointer msw ---------------
$02 | ------------- command pipe head pointer I1sw ---------------
$04 | --------ee--- command pipe tail pointer msw ---------------
$06 | ------------- command pipe tail pointer 1sw ---------------
$#8 | ------------- status pipe head pointer msw ----------------
$OA | ------e------ status pipe head pointer 1sw ----------------
$0C | ------mee---- status pipe tail pointer msw ----------------
$0E | ----mmem----- status pipe tail pointer Isw ----------------
$16 | ----- interrupt level* ----- | ----- interrupt vector* ----
$12 | ----- channel priority* ---- | ----- address modifier -----
$14 | ----- channel number ------- | ---------- valid* ----------
$16 | --------- datasize* -------- | --------- reserved ---------

B T e L L L LR L e e R D e Rt +

* Not used by the MVME332xt.

struct channel { /* C declaration */

struct envelope *command_pipe_head_ptr;
struct envelope *command pipe tail_ptr;
struct envelope *status_pipe_head_ptr;
struct envelope *status_pipe_tail_ptr;
char interrupt_level;

char interrupt_vector;

char channel _priority;

char address_modifier;

char channel_number;

char valid;

char datasize;

char reserved;

} channel;

FIGURE 7-1. CHANNEL FORMAT
Status Pipe
The Status Pipe structure consists of two 32-bit pointers. The

first pointer points to the envelope at the head of the status

pipe.
packets from the status pipe.

This pointer is updated by the host

CPU as it removes

The second pointer points to the

envelope at the tail of the status pipe which is ALWAYS a null
envelope. This pointer is read once by the IPC when the channel is
created. A local copy of this pointer is updated by the IPC as it

adds new packets to the tail of the status pipe.
by the host CPU. The host CPU depends on ALWAYS finding a null

envelope at the tail

of the status pipe.

It is never read

Because neither

processor accesses the pointer maintained by the other processor,
a non-busy interface is achieved that requires no interlocking
handshakes.

7-2

MVME332XTFW/D2

Interrupt Level

This interrupt level is the level at which the IPC interrupts the
host CPU when execution of a command packet is complete. If the
interrupt level is zero, no interrupts are issued by the IPC for
this channel and the host CPU must poll the status pipe to
determine when a status packet is returned.

Interrupt Vector

This is the interrupt vector used by the IPC for all interrupts
issued by the IPC to the host CPU for this channel.

Channel Priority

This priority is used by the IPC when it polls all active channels
looking for valid command packets. The IPC polls all active
channels each time it receives an Attention Bit Interrupt from any
host CPU.

Address Modifier

This address modifier is used by the IPC to transfer all packets
between host memory and IPC memory.

Channel Number

This is a unique channel number assigned by the IPC at the time a
channel is created. The IPC writes this number to the channel
header structure in host memory. The host CPU places this number
in each packet it sends to the IPC to indicate the channel the
command packet was sent on and the channel the status packet
should be returned on.

Valid Flag

This flag is set by the IPC when the channel is created to indicate
to the host that the IPC now recognizes this channel and is ready
to accept command packets on it.

Datasize

Not currently implemented in the firmware, this field specifies
the data bus width for transfers of BPP envelopes and packets.

Value Data Bus Width
) 32-bit (default)
1 16-bit
2 32-bit

7-3

MVME332XTFW/D2

7.3 ENVELOPE STRUCTURE

System envelopes are kept in the MVME332XT’s dual-port memory and
have the structure illustrated in Figure 7-2.

P e e L L L EL L L L L L LR +
$00 | --------eeemememeeceeen 1ink mSW -----------c-------oooo-n
$02 | -----e-eemmemmoemeeeoee- 1ink 1sW ----------cmommmmooooooon
$04 | -------meeeoeea--- packet pointer msw --------------------
$96 | ---------e--e------ packet pointer I1sw --------------------
$@98 | ------- valid flag --------- | =--------- reserved --------
$OA | ----eeeeeeememmomeee reserved -------------------------
e e e L L L L L L L L LR R R ety +
struct envelope { /* C declaration */

struct envelope *link; /* pointer to next envelope */
struct packet *packet ptr;
char valid_flag;
char reserved[2];
} envelope;

FIGURE 7-2. ENVELOPE FORMAT

Each envelope contains the following fields:

Link
The 1ink field points to the next envelope in the pipe.

Packet Pointer

This 32-bit field points to the body of the packet which contains
the information specific to the command being issued. The packet
may immediately follow the valid flag but is not required to.
Envelopes and packets do not have to be allocated by the host as
one contiguous block of memory since an envelope does not always
point to the same packet. For efficiency in passing status
packets back to the host, the packet pointer in the envelope is
modified to point to the status packet being returned. This
eliminates the need to move the entire contents of a packet to
another place in global RAM.

Valid Flag

This 8-bit field is the last field in a packet to be modified.
This field is eight bits long so the flag can be set in one
indivisible operation. The function of the flag is to guarantee
that the rest of the packet is valid before the IPC dequeues it.
The IPC treats a packet as null while this field contains zero.

7-4

MVME332XTFW/D2

The reserved byte following the valid flag field should not be
used for normal packet data.

The valid flag should only be set when a packet contains a valid
command to be processed by an IPC. At all other times the valid
flag is cleared. The host CPU should never enqueue a packet on a
command pipe with the valid flag set unless ALL other data in the
envelope and packet is valid.

Reserved

These reserved fields force the length of an envelope to a
longword boundary. They are not used by the IPC, but simply
guarantee that an envelope can be transferred as three longwords.

7-5

MVME332XTFW/D2

7.4 PACKET STRUCTURE

The IPC expects packet format to appear as illustrated in Figure 7-
3. Blank fields are not used by the firmware, driver can use them for
any purpose.

The following are descriptions of the packet fields.

Eyecatcher

This field consists of four "eyecatching™ ASCII characters. Its
purpose is to aid in the tracking of command/status packets in the
system memory. It is used primarily during debugging.

Command Pipe Number and Status Pipe Number

The Command Pipe Number field contains the number of the
particular command pipe which a command/status packet is sent on
by the host. Similarly, the Status Pipe Number field contains the
number of the particular status pipe which a command/status
packet is sent on by the IPC.

The host CPU places $FF in the status pipe number field if the
status packet is to be returned on the same channel used to send
the command packet. The host CPU fills in the status pipe number
if it wants status returned on a channel other than the one the
command was sent over.

Command

The Command field specifies the command the MVME332XT is to
execute. Commands are operating system dependent but tend to
follow predictable patterns.

Command Dependent
This field is used in some commands but not all, refer to the
specific command section for more detail.

Device Number

This is the unit number for the peripheral device to be accessed by
the host. Note that the firmware treats the printer device as an
output only serial device, so there is no special interface for
the printer device.

Ioct1 Command, Argument, Mode

These fields are sub-commands and parameters for the Ioctl
command. More detail will be discussed in the device specific
section.-

7-6

MVME332XTFW/D2

REQUIRED PARAMETERS:

R e T TP +
$08 | -----e-eeeeen eyecatcher msw ---------ceccecmooooo
$02 | ----meeeeeeeeeeeaas eyecatcher 1sw ------ccocommoa_.
§g4 --- command pipe number ---- | ---- status pipe number ----

- N
Y B B e et T T T T
$OA | e command ---------------onaoooooo
$OC | --omeem i | ------- command dependent ---
$OE | mmm e
$16 | ----- device number -------- | mmemmmmm e
$12 | ---eeeeeeeiieee ioctl command --- mSW -------------on-o
$14 | ----emecen ioct] command --- 1sW --------oocooaono
$16 | -------eieemeeeaoo- joct] argument -- msw ----------oooooo.
$18 | --e-eeceeimmaaas joct] argument -- Tsw -------cceaono..
$IA | —-meeeeeeeeeen joct] mode ------ L
$1C | ----mmmmmeen ioctl mode ------ TSW =-=-cmmmmmeeeeeon
$IE | memmmm e
$20 | mme e
$22 | e
$24 | -eeecoeeeeeiaol error ----- MSW -=-==-=-cocmoommoo
$26 | -ee-mmmemeceeieeeaas error ----- TSW ----cmmceeeee
$28 | ---eeeeeeeceeeeen event code -------------ooeooo
$2A | s
$2C | s
$2E | mmmmmmmmemee e
$30
$32 PARAMETER
$34
$36 BLOCK
$38
$3A (command dependent)
$3C
$3E

R T L T T ——— +

struct packet { /* C style declaration */
char eye_catcher[4];
unsigned char command_pipe_number;
unsigned char status_pipe_number;

char filler B[4];

short command;

char filler_18[1];

char command_dependent ;
char filler_I1[2];

unsigned char device_number;

FIGURE 7-3. PACKET FORMAT

7-7

MVME332XTFW/D2

char filler_2[1];
long joct1_command;
long joct]_argument;
long joct1_mode;
char filler_3[6];
Tong error;

short event_code;
char filler_4[6];
union {

struct termio tio; /* termio structure */
struct termcb tcb; /* termcb structure */
struct sgttyb sgt; /* sgttyb structure */
struct d1_info dl; /* download info structure */

Tong param;/* general purpose parameter */
} parameter_block; /* ioctl_command dependent */
} packet;
FIGURE 7-3. PACKET FORMAT (cont.)

Table 7-1 provides a generic 1ist of the commands supported by IPCs.

TABLE 7-1. IPC COMMAND SUMMARY

Command Code Operation

$0 Init

$1 Read_Wakeup
$2 Write_Wakeup
$3 Open

$4 Ioctl

$5 Close

$6 Event

Error

This field contains an error code returned from the IPC upon
completion of a command. A non-zero in this field indicates an
error condition occurs during execution of the command. This
field is cleared when the firmware receives a packet.

7-8

MVME332XTFW/D2

Table 7-2 provides a list of all the devices supported by the
MVME332XT.

TABLE 7-2. DEVICE NUMBER ASSIGNMENT

Device Number Physical Device
$9 Serial Port @
$1 Serial Port 1
$2 Serial Port 2
$3 Serial Port 3
$4 Serial Port 4
$5 Serial Port 5
$6 Serial Port 6
$7 Serial Port 7
$8 Printer Port

Event Code

This field 1is returned by the firmware and contains bits
corresponding to events that occur on the firmware side. Refer to
the EVENT packet format for more information about event code.

Parameter Block

The following fields contain parameters specific to the command
being sent by the host to the IPC. These parameters may include a
configuration data structure required by a command. These fields
are not required for all commands. See the documentation on each
specif;c command for information on the fields required by that
command.

7-9

MVME332XTFW/D2

7.5 TERMIO STRUCTURE

This structure is used extensively in the firmware as well as the
I0CTL commands (TCSETA, TCGETA, TCSETDF, TCGETDF) and the INIT
command. It contains all the information necessary to configure a
device such as baud rate, character size, parity, and translation
characters. Figure 7-4 illustrates a format of a termio structure
and a typical declaration of the termio structure in the "C"
language style.

et e +
$00 | ---e---meemeeeeeeaaa input option flags ---------------u---
$02 | ---mememeeeeeoeeo output option flags -------------u------
$04 | ------e-eeeeeooe-- control option flags -------------------
$06 | -------eemee-eoeoo-- local option flags -------------------
$08 -- line discipline number -- | ---- interrupt character ---
$OA | ------ quit character ------ | ------- erase character ----
$oCc | ------ kill character ------ | -------- eof character -----
$0E | ------ eol character ------ [---------- reserved --------
$16 | ----- switch character ----- | ---------- reserved --------
$12 4o-ememe e e o +

struct termio {
unsigned short c_iflag; /* input option flags */
unsigned short c_oflag; /* output option flags */
unsigned short c_cflag; /* control option flags */
unsigned short c_1flag; /* local option flags */
char c_line; /* line discipline number */
unsigned char c¢_cc[NCC]; /* control characters */

|5
FIGURE 7-4. TERMIO STRUCTURE FORMAT

The following is a brief description of each field. Refer to the
SYSTEM V/68 Programmer’s Reference Manual or Appendix J for more
details.

Input Option Flags (c_iflag)

This field consists of all options that affect the input
characters. The firmware ICP process uses these flags to perform
a specific action for every input character, such as map a CR
(carriage-return) to a LF (line feed), strip a character to a 7-
bit character, enable software handshaking (XON/XOFF), or send an
event packet back to the host if a Break character is received.
This field is ignored for the printer device since it is an output
only device.

7-18

MVME332XTFW/D2

Output Option Flags (c_oflag)

This field is used by the firmware OCP process to perform a
specific action for every output character, such as map a CR to LF
or vice versa, and expand a tab character to a number of spaces.
Note that the current implementation of the OCP does not support
character delay, therefore, all output delay options specified in
the Termio are ignored by the firmware. Only the TAB3 option is
used to expand a tab character to eight blank spaces.

Control Option Flags (c_cflag)

This field contains all hardware options such as baud-rate,
character size, number of stop bits, parity control, and modem
control. The firmware CTL process uses this field to configure a
device upon the host request.

Local Option Flags (c_1flag)

This field contains various options that affect input characters.
It is used by the firmware ICP process to enable an echo mode, a
signal mode, a translation mode, and a timeout mode for the ICP.

Line Discipline Number (c_line)

The Line Discipline Number field is used by the CTL process to
switch all firmware processes (GATE, OCP, ICP, and CTL itself) to
a different set of routines specified in the line discipline
table. This is done so that they can perform a new functionality
such as international character translation in the ISP
(International Software Package).

Control Character (c_cc[NCC])

These fields allows the host to change some control characters to
be any character for different taste. Upon receiving an interrupt
character or a quit character, the ICP process sends an event
packet to the host to indicate that an special event has occurred.
This 1is done so that the driver can notify the processes
associated to a device.

The erase, kill, eof, and eol characters are used by the ICP

process to erase or delete the current input line, or to build a
complete 1ine on the READ ring.

7-11

MVME332XTFW/D2

7.6 SGTTYB STRUCTURE

The Sgttyb structure is an earlier version of the termio structure
existing in version 6 and 7 of UNIX or BSD. It is included in the
firmware for data structure conversion and for backward
compatibility only. Two ioctl commands (TIOGETP and TIOSETP) use
this structure as a parameter block to instruct the firmware to
converts it to termio internally. :

T R R TR TR T +
s | ----- input baud rate ------ ---- output baud rate ------
$@2 | ----- erase character ------ | ------ ki1l character ------
$04 | --------mmmmeeee-o--- - option flags -----------------------
L R R et +

struct sgttyb {
char sg_ispeed; /* input baud rate */
char sg_ospeed; /* output baud rate */
char sg_erase; /* erase character */
char sg kill; /* kill character */
) short sg_flags; /* control option flags */
’

FIGURE 7-5. SGTTYB STRUCTURE FORMAT

Figure 7-5 illustrates the format of the sgttyb structure. For more
information, refer to the appendix or Section 4 of the BSD UNIX
Manual. The following is a brief description of each field.

Input And Output Baud-Rate (sg_ispeed, sg_ospeed)

These fields specify the baud rate separately for input and
output, but the firmware ignores the output field since all
devices support only one baud rate generator.

Erase/Kill Character (sg _erase, sg kill)

The erase and kill characters are used by the ICP process to erase
or delete the current input line.

Control Option Flags (sg flags)

This field contains some control options, such as delay on some
special characters, expand tab to spaces, select parity mode, map
CR to LF or vice versa, map upper case to lower case on input, and
automatic flow control.

MVME332XTFW/D2

7.7 TERMCB STRUCTURE

This structure is used only in a few ioctl commands to get or set the
current cursor address for virtual terminal support under the old
version of UNIX. It is supported only for backward compatibility.
Figure 7-6 illustrates the format of termcb structure and a typical
declaration in the "C" language style. It contains row and column
addresses of the terminal cursor.

R e e L L e T PP T +
$o6 | ----- terminal flags ------- | ----- terminal type --------
$62 | ----- current row ---------- | ----- current column -------
$64 | ----- variable row --------- | ----- variable column ------
$B6 d---- - oo mee e +

struct termcb {

char st_flgs; /* terminal flags */
char st_termt; /* terminal type */
char st_crow; /* current row */
char st_ccol; * current column */
char st_vrow; /* variable row */
char st_lrow; /* last row */

¥
FIGURE 7-6. TERMCB STRUCTURE FORMAT

The following is a brief description of each field. At present,
there is no reference available on its use, except in the "getty"
utility in the SYSTEM V/68 Administrator’s Reference Manual.

Terminal Flags (st_flgs)

This field specifies options for a specific terminal type, such as
perform special new line, auto new line at column 88, perform
special action on the last column of last row, echo terminal
cursor control, and suppress sending escape sequence to the host.
A zero in this field instructs the firmware to use the default
configuration, which is set up in the terminal specific driver in
the firmware.

Terminal Type (st_termt)

This field specifies what type of terminal the data structure is
for. These are TEC Scope, DEC vt6l, DEC vt1@@, TEK 4823, TTY Mod
4¢/1, HP 45, and TTY Mod 40/2B.

Rows And Columns

These fields specify the terminal cursor address for the row and
column number.

MVME332XTFW/D2

7.8 RING STRUCTURE

There are four ring structures for each logical device, READ, WRITE,
OUTPUT, and INPUT ring. The first two are shared between the host
and the firmware and the second two are locally used by the firmware.
The READ/WRITE rings are established in the dual-port memory by the
driver at initialization time. The OUTPUT/INPUT ring structures are
statically allocated on the 1ocal memory in the firmware.

Fommmmmmaaa +
$00 | reserved |
$ommmmmmmma- +
$g2 | put |----- +
dmmmmmmmeeo- +
$04 | get |--+
------ $ommmmmmeaot
A $06 | |
4om--- +
I I
e +
| "h' |<------- +
S e +
I | e’ |
z N
E | 17|
e +
| 7o’ |
v N b +
SIZE + $05 | [¢------=--- +
------ +-----%
struct ring /* declaration in "C" */
unsigned short reserved; /* reserved for future */
unsigned short put; /* put index */
unsigned short get; /* get index */
) char data[SIZE];/* data buffer */

FIGURE 7-7. RING STRUCTURE FORMAT

Figure 7-7 represents the ring structure format. Each ring can be
configured with a different size up to 64K bytes, but it must be a
power of two and must start on an EVEN word boundary. The firmware
will return an error if it does not meet their requirements.

A ring consists of a "put"” index and a "get" index into the ring data
array. Both are a short type (two bytes), therefore, the maximum

7-14

MVME332XTFW/D2

size of a ring is 64K bytes. A ring is considered as an EMPTY ring
when the "get" index is equal to the "put" index, and a FULL ring
when the "put" is less than the "get" by one modulo the ring size.

In the case of write, the host uses the "put” index to put its data
into the ring and the firmware uses the "get" index to get that data
out. In the case of read, the firmware should use the "put" index
and the host should use the "get" index. Such a protocol does not
require any interlock mechanism since variables are not shared. The
"put" and "get" indexes should be ANDed with (SIZE-1) prior to
accessing the ring and incrementing the index.

Figure 7-7 illustrates a "C" style declaration of a ring structure.
Note that the SIZE is configurable in the init command.

CAUTION: Before updating any index, one side should make a local
copy, change it, then write it back to the ring.

Once again, the firmware requires all rings to reside on
its dual-port memory.

Examples: 1. To put a character into the ring buffer:

struct ring * ring; char c;
ring->data[ring->put++&(SIZE-1)] = c;

2. To get a character from the ring buffer:

¢ = ring->data[ring->get++&(SIZE-1)];

MVME332XTFW/D2

7.9 INIT_INFO STRUCTURE

This structure is used only one time in the driver initialization
routine to establish a device’s global parameters for the firmware.
It contains information about where the rings are, how big for each
ring, what device default configuration, etc. The INIT packet
requires nine of these structures, one per lTogical device.

T L e L L L L +
$90 | ------mmmmmeee--- WRITE ring pointer ----------ec---ou-m--
$94 | -----em-mmeeeo-o-- READ ring pointer ---------------------
$@8 | ----- WRITE ring size ------ | ------ READ ring size ------
$0C | ---c-mmeme e

. default termio
$ié ---------------- reserved, must be zero -------------------
$22 | --ee---meeeeen-- reserved, must be zero -------------------
$26 | -----emmmememmemeeemeeeeeeeeemeememeooooooooooooomoooe
. init data
Séé R L L L L L bt +

struct init_info {
struct ring *write_ring_ptr; /* WRITE ring pointer */
struct ring *read_ring_ptr; /* READ ring pointer */
unsigned short write_ring_size; /* WRITE ring size */
unsigned short read_ring_size; /* READ ring size */
struct termio default termio; /* default termio */
unsigned long reserved[2]; /* reserved, MBZ */
char init_data[56]; /* init data */

JH

FIGURE 7-8. INIT_INFO STRUCTURE FORMAT

Figure 7-8 illustrates the format of init_info structure and a
typical declaration of the init_info structure in the "C" language
style. The following is a brief description of each field. Refer to
the section that describes the init packet for more information.

WRITE Ring Pointer

This field contains a pointer to a device’s WRITE ring structure
residing in the dual-port memory. The firmware’s OCP process will
use it to know where to get the data from.

7-16

MVME332XTFW/D2

READ Ring Pointer

Same as the previous item, this field contains a pointer to a READ
ring structure so that the firmware’s ICP process knows where to
put its data.

WRITE Ring Size

The size of the WRITE ring can be specified here. It must be non-
zero and a power of 2 value.

READ Ring Size
Same as the previous field but for the READ ring.

Default Termio

This field sets up a default configuration for a device such as
baud rate, character size, or parity. The firmware’s GATE process
will use it to initialize the device when it receives an OPEN
packet.

Reserved

These fields must be reserved for Motorola and cleared to zero,
since future downloadable 1line disciplines may use them to
perform some special actions such as ISP dual-language
translation.

Init Data

These fields are currently not used by the firmware, but they are
available for future expansion. The firmware will copy them to
the associated device’s internal structure so that a downloadable
line discipline is able to use them as default values. This allows
a driver initialization routine to pass any information to any
downloadable 1ine discipline.

MVME332XTFW/D2

7.10 DL_INFO STRUCTURE

This structure is used to download a program, a data structure, a
line discipline, or a new firmware to the MVME332XT local memory. It
is also used to instruct the firmware’s CTL process to execute a
specific function address residing in the firmware side.

T e P L PP L P L P L L L LR LR R T s +
$08 | -------memeeeemeeeeees host address -----------cecooouon--
$64 | ------memmeeemmmeoeoee ipc address --------------cc-ooan--
$P8 | -----meeemememmemeeeoceees count ----------ceeemmoooeo
$AC | ------eemmmemmmmmeeees extra_long -------------cocoooonono-
$16 | ------- extra_short -------- $ommcmmmme e meeemeeceooee +
$12 4-----cmceeeeemmemmemeeeeeoe +

struct d1_info (
unsigned long host_addr; /* address on the host side */
unsigned lTong ipc_addr; /* address on the IPC side */
unsigned long count; /* number of byte to transfer */
unsigned long extra_long; /* general purpose use */
unsigned short extra_short; /* general purpose use */

¥
FIGURE 7-9. DL_INFO STRUCTURE FORMAT

Figure 7-9 illustrates the format of the dl1_info structure and its
typical declaration in the "C" language style. The following is a
description of each field. Refer to the section that describes the
I0CTL packet for more information.

Host Address (host_addr)

This field specifies the source or destination address on the host
side. The firmware uses this information to get the host’s data or
to supply its data to the host. The current implementation of the
firmware requires that the address in this field has to be on its
dual-port memory.

IPC Address (ipc_addr)

This field specifies the source or destination address on the IPC
side. The firmware uses this information to get its data for the
host or to store the data supplied by host. The firmware will make
sure this address is in the downloadable range, otherwise, it will
ignore the request and return an error code in the packet.

Count (count)
This field specifies the number of bytes to transfer. The

7-18

MVME332XTFW/D2

firmware will make sure that it is fitted into the downloadable
area, otherwise, the request will be ignored.

Extra_Long And Extra_Short

These two fields are available for general purpose use. They may
be needed in few ioct] commands, but not all.

7-19

MVME332XTFW/D2

7.11 CONFIDENCE TEST DESCRIPTOR

The confidence test descriptor is a data structure that is used by
the firmware to present the information about the on-board
confidence test sequence. If any error occurs during the test
sequence, this structure will present pertinent test information
such as point of failure and failing data.

This structure is located in the dual-port memory just after the IPC
CSR space and before the dump area. A non-zero value in the fatal
error counter field indicates that the test has failed, the
composite status word indicates what sub-test is executing, and
oﬁher fields tell more about the fault address and pattern used in
the test.

e E e ke +
$00 --- composite status word --- | -------- reserved ---------
$04 | --------emmemmmmeeeeae- magic number --------------coono---
$08 | ----meemmemmeemooeoeoe- loop counter ------------c-ooo-oo--
$AC | ----emmmemmememeeeee fatal counter ---------------------
$10 | ----e--emmmmmmmmeee e error counter ---------c----o-oooo-
$14 | -----ceeemmmemmoeemeee fault address ------------cc--o-m--
$18 | ---eeememmmeieeooeee- expected data ---------------------
$IC | ----memeemmmemmme e read data --------------------oo-
$20 4---mmmmmmmemmem e mcm e emmmmeemm—e—eeoooooooooo- +

struct ctdesc {

unsigned short csw, /* composite status word */
resv;

unsigned long magic, /* magic number */
lent, /* loop counter */
fatal, /* fatal error counter */
error, /* non-critical error counter */
faddr, /* fault address */
expdata, /* expect data */
readata; /* read data */

IH
FIGURE 7-18. CONFIDENCE TEST DESCRIPTOR FORMAT

Figure 7-10 il1lustrates the format of the Confidence Test Descriptor
structure and its "C" style declaration. It consists of a composite
status word (CSW), a loop counter (LC), a fault address (FA), an
expected data, and a read data field. The details of each field is
described below.

7-20

MVME332XTFW/D2

Composite Status Word (csw)

The composite status word is updated by each subtest of the
confidence test to indicate a subtest has started, successfully
completed or failed. It provides information such as subtest
number, submodule number, and status number. Refer to Appendix C
for more details.

Magic Number (magic)

The firmware startup routine compares this field against a
predefined pattern to decide whether to run the confidence test or
not. If there is a match indicating a warm start condition, it
bypasses the whole test sequence. Otherwise, the cold start
condition is detected and the tests are invoked. At the
completion of the test, this field is initialized to the warm
start condition preventing the tests from running in the next
subsequent reset until power down.

The current implementation of the MVME332XT confidence test uses
the string of "W332" for such a pattern.

Loop Counter (lcnt)
The loop counter field is used to count number of loops that the
confidence test has passed during the burn-in test sequence.

Fatal Counter (fatal)
This field records the number of fatal errors occurring in the
test sequence. A zero indicates the test has passed.

Error Counter (error)
This field records the number of non-fatal or soft errors
occurring in the test sequence. A non-zero value in this field
does not prevent the test from continuing, but indicates that such
an error can be tolerated since it is correctable.

Fault Address (faddr)
The address of the failure is saved in this field when the test
fails.

Expect Data (expdata)

This field indicates to the data that the test is expecting, as a
result of the test.

Read Data (readata)

This field indicates the data is obtained from the test. If it is
different from the "Expect Data" field, the test fails.

7-21

MVME332XTFW/D2

7.12 FRAME FORMAT

In WRITE operation, data can be directly placed into the WRITE ring
without any extra effort or frame work. But in READ operation, to
support a read-ahead scheme, data must be returned in a form of
frame. Multiple frames can be processed and returned to the host at
one burst. This will reduce the number of packets traveling back and
forth between the host and the firmware when the READ ring is empty.

As shown in Figure 7-11, a frame starts out with a "count" field,
then data, and ends with end-of-frame "eof" byte.

byted bytel byte2 byteN DbyteN+1
$ommmmm- ommmm-- ommmm-- +-- - -- ommom-- $ommmmmm- +
| cnt | I I I | eof |
- $ommmm-- $-mmmm - +-- - -- oo $mmmmm - +
[<------ equal to count ------- > |
where

cnt = [@..255]
eof = 1010 0061

A

I
+-- DELIMITER flag
FIGURE 7-11. FRAME FORMAT

The "cnt" field (1 byte) indicates actual number of characters in a
frame, the maximum is 255 bytes.

The "of" field (1 byte) has its first nibble pattern is #xA, and bit
@ is the DELIMITER flag which indicates a complete input Tine. An
input 1ine is terminated by any following characters or conditions:
a carriage-return (CR), a line-feed (LF), an end-of-line (EOL), an
end-of-line 2 (EOL2), an end-of-file (EOF), and in RAW mode when
VMIN is satisfied, or VTIME has expired.

In most case, an input line will fit into a frame, but in the case
where the line is too long (longer than 255 characters) or the READ
ring is full, it will be broken down into many frames with only the
last frame containing a DELIMITER bit set in "eof" field.

Note that a frame is not a data structure, since its body may be

wrapped around in the READ ring when the "put" index is less than the
"get" index as demonstrated in Figure 7-12.

7-22

MVME332XTFW/D2

I
put |-----+
|--+

R e 4
get

$00 |
Hommmmmmeeot

$82 |
$ommmmmeeant

$94 |

+
1
'
' +
']
] '
<+ [] []
]]]
1 ' '
' ' '
] ' '
' \4 4
| — o — — —_———t—
]]] '] '
[| ' [T I BN
Ve 1 O ' [~ I
s @] (S B RN
] ']]]]
+—+—+—+— e te— e —
(Yl ~ n
= = =2
L 24 L 4 4 L 44
+
[¥F)
~N
—
(Z¢]

s 1

FRAME IN A READ RING

FIGURE 7-12.

7-23

MVME332XTFW/D2

CHAPTER 8
COMMAND PACKETS

8.1 INTRODUCTION

This section describes the basic operation of the firmware and the
details of the function of each command, the required packet format,
and expected status results.

After system reset, the firmware clears the BUSY bit in the IPC CSR
when the conf1dence test completes. It then enters an idle loop,
waiting for a "create channel"” command to be issued by the host to
establish a communication protocol. The host checks for the BUSY
bit going away, allocates channel data structures including packets
and envelopes on the dual-port memory, and then sends the "create
channel"” command to the firmware. The firmware is now able to accept
some basic command packets such as OPEN, IOCTL, WRITE WAKEUP,
READ WAKEUP, and CLOSE packet to assert a device’s modem control
lines, to change a device configuration, to notify the host if a
WRITE ring is empty or a READ ring is full, and to negate a device’s
modem control lines, respectively. Figure 8-1 demonstrates a
general flow of the board initialization and the use of commands.

o mmmm e +
| Create Channel command |
Hmmmmmmm e +
I
#mmmmmmmmmeeaae +
| INIT command |
$mmmmmmmm oo +
I
+ --------------
| OPEN command |
+------i ------- +
R i +

FIGURE 8-1. GENERAL COMMAND FLOW

8-1

MVME332XTFW/D2

a) Power-on-reset sets BUSY.
1) Wait for BUSY to be zero. b) Perform confidence test.
c) Clear BUSY.

2) Allocate channel structures.
3) Perform "create channel"

command.
T e L T
d) Duplicate the channel structures
into the local memory.
e) Set up Address Modifier Register
and Address|Extension Register.
T T it +

I
4) Allocate ring buffers.
5) Set up an INIT packet, then
send it to the firmware.

f) Validate all parameters.
g) Save all parameters into

all devices’ "tty" structure.
h) Return the packet.

I
6) Send an EVENT packet, but do
not wait for it to return. --->i) Save this packet for later use
7) Initialization is completed. | when an event occurs.

FIGURE 8-2. BOARD INITIALIZATION SEQUENCE

8.2 INITIALIZATION

Figure 8-2 presents the flow of the board initialization. After a
channel is established as a result of the create _channel command
(CSR command), the host sets up an INIT packet with all required
parameters such as ring buffer pointers, ring buffer size, default

8-2

MVME332XTFW/D2

termio, interrupt vector, and interrupt level, and then sends it to
the firmware. Upon receiving this packet, the firmware saves all
the information into an internal "tty" structure associated to each
device, and returns the packet back to the host with an error status
if it detects any invalid parameters. In order to receive an event
taking place on an abnormal situation such as break, quit character,
interrupt character, or lTost of DCD, the host sends an EVENT packet
to the firmware so that the firmware may use it to return an event
code in the packet. Note that the host does not have to wait for the
packet to return since the firmware may not have any events pending
in its data structure yet.

8.2.1 INIT Packet

The required parameters for this packet are illustrated in Figure
8-3. The command pipe number is obtained from the create channel
command. The status pipe number is equal to either the command pipe
number or $FF if the host desires the packet to be returned in the
same channel. Interrupt level and vector, in this example, are set
to Tevel 4 and vector $7F, respectively. The firmware uses these to
interrupt the host when it returns a packet. The following is a
brief description of each field.

Pointer to init_info array

This field points to the array of nine init_info structures, one
for each device. The init_info is described in the "Data
Structure" section. It contains the information about ring
buffers and default termio.

Error

Error code ERR_PARM is returned to indicate that there is an
invalid parameter specified in the packet or init_info. The
following error codes are defined.

1. ERR_BUSY (251): The previous initialization is in progress.

2. ERR_PARM (252): Possible invalid parameters are listed below:
a. Any ring size is smaller than 2 or not a power of two.
b. Any ring address is located on an odd address.
¢. Any default line discipline number specified in a default
termio is greater than the maximum number of 1lines
(greater than 2) available in the ROM.
3. ERR_UNIT (253): Invalid device specified in the packet.

4. ERR_CHAN_NO (255): Invalid BBP communication channel number.

8-3

$00
$@2
$04
$06
$08
$OA
$ac
$OE
$10
$12
$14
$16
$18
$1A
$1C
$1E
$20
$22
$24
$26
$3E

MVME332XTFW/D2

L e e L L L LR
command pipe number --[@1] | -- status pipe number ---[FF]
------------------------ command --------------------[0000]
--------------------------- ---- interrupt level ----[04]
-------------- pointer to init_info array --msw------[FF78]
-------------- pointer to init_info array --1sw------[F@@@]
--------------------------- | ---- interrupt vector ---[7F]
------------------------ error ----- MSW ------------=-----
------------------------- error ----- ISW ------------------

e e EE L L P D LD

struct init_packet { /* C style declaration */
char eye_catcher[4];
unsigned char command_pipe_number;
unsigned char status_pipe_number;

char filler @[4];
short command;;

char filler_1[3];

char interrupt_level;
char filler_2[2];
struct init_info *init_info ptr;
char filler_3[7];

char interrupt_vector;
char filler_4[6];

Tong error;

} init_packet;
FIGURE 8-3. INIT PACKET FORMAT

8.2.2 Init_info Array

Init_info array contains nine init_info structures, one per device
with“the element @ for the serial device @, and the element 8 for the
printer device as illustrated in Figure 8-4. It allows the host to
configure each ring buffer size or default baud rate for each device
independently. For example, the default baud rate and READ ring
size for port @ can be set to 38.4K baud and 8K bytes, respectively.

8-4

MVME332XTFW/D2

init-info structure @
(serial port 0)

init-info structure 1
(serial port 1)

init-info structure 2
(serial port 2)

init-info structure 3
(serial port 3)

init-info structure 4
(serial port 4)

init-info structure 5
(serial port 5)

init-info structure 6
(serial port 6)

init-info structure 7
(serial port 7)

init-info structure 8
(printer port)

/* C style declaration */
struct init_info init_info_array[9];

FIGURE 8-4. INIT_INFO ARRAY

8.2.3 EVENT Packet

The EVENT packet is used by the firmware to return an event code to
the host to indicate that an abnormal condition such as lost of DCD,
Break, or Interrupt character has occurred. The host may use this
for any purpose such as wake up a process, kill a process, or just
ignore it. An event taking place before the packet arrived is
latched into the internal "tty" structure associated to each
device, and is returned as soon as the packet is received.

To receive events of all devices, the host must send one EVENT packet
to each device. A port that does not have a EVENT packet never
returns any event. An event can only occur when a device is enabled
by a OPEN packet. A CLOSE packet prevents any event from happening.

8-5

MVME332XTFW/D2

Figure 8-5 illustrates a format of EVENT packet, the
devlce_unit_number field specifies what device will receive the
packet.

$0B | ------emmmoeeemeemmmmmeeeemeeeeeeooo oo
LY R
ggg command pipe number --[#1] | -- status pipe number ---[FF]
$B8 | -m-emmmeemmmeeecoooememmmecm—eooeoooooeooonooooo-oo o
$PA | ----e-memmmmmmemeeeeee command -------------------- [9006]
$OC | --mmmmmmmmcmmemmeoeeas | mmeemmmmmemmmmmammaaoC
$PE | ---m--mmemmeeaoe-- R e LR L L L LR e R R R R
$10 - device unit number --[@@] | --------------o--oooooon-
L3 A R et
L3 L T R e e
$16 | -=--mmeemmmmemccecmeememmmemeoeeooooeoo oo
$18 | =mmmmmmemmemmeeee oo meeememmmemeemooeooooooe oo
L3 7 T R e e E b
L3 e e i
$1E | ==-==m-emmmmmeceemeemmmmemmemoeoceeoooooooooaooo e
$200 | -eemmememmmemmececcecoememmmmmmceoomecmoooooomoee e
$22 | mmmmmmmemmmemeieeceemememmmmoeooooooeooooooooem e
$24 | -----mmemmemee-eeoooooe- error ----- MSW -=---=-=-=----------
$26 | c--emeemeeeemmomeooooee- error ----- TSW ==-eemmmmmmmmeaoon
$28 | se-eseememmmmeemoeeooo- event code -------------------------
L3] S e et +

struct event_packet { /* C style declaration */
char eye_catcher[4];
unsigned char command_pipe_number;
unsigned char status_pipe_number;

char filler B[4];
short command;

char filler_1[4];
char device_number;
char filler_2[19];
long error;

unsigned short event_code; /* returned from IPC */
} event_packet;

FIGURE 8-5. EVENT PACKET FORMAT
The following is a brief description of each field.
Error
Only one error code (EINVAL) is returned to indicate that the

device unit number is out of range.

8-6

MVME332XTFW/D2

Event Code

The event code is returned by the firmware to indicate what event
has occurred on the firmware side. Each bit in this field
represents an event. Multiple events can be returned to the host
at one time. The host can configure the firmware to accept or mask
some events per port basis; for instance, break can be ignored if
the IGNBRK bit is set in the device’s termio structure.

Table 8-1 shows all possible events returned by the firmware. The
interrupt character, quit character, and switch character are
configurable in a device’s termio structure. The hang-up
condition is usually a lost of DCD, if E_LOST_DCD bit sets, baud
rate is changed to zero baud rate, or a CLOSE packet is
successfully completed. Any transition of a hardware control
Tine such as DCD, DSR, CTS, PRINTER_FAULT, PRINTER_POUT, or
PRINTER SELECT will cause an EVENT.

TABLE 8-1. EVENT CODE TABLE

Event Code Event Value Description
E_INTR $0001 An interrupt character has been received.
E_QUIT $0092 A quit character has been received.
E_Hup $0004 Hang-up condition has occurred.
E DCD $0008 DCD has become asserted.
E_DSR $0010 DSR has become asserted.
E CTS $0028 CTS has become asserted.
E_LOST DCD $0040 DCD has become negated.
E_LOST DSR $0080 DSR has become negated.
E_LOST CTS $0100 CTS has become negated.
E_PR FAULT $0200 Printer FAULT has become asserted.
E_PR_POUT $0400 Printer PAPER_OUT has become asserted.
E_PR SELECT $0800 Printer SELECT has become asserted.
E_SWTCH $4000 A switch character has been received.
E_BREAK $8000 A break sequence has occurred.

8.2.4 Initialization Example

Figure 8-6 illustrates an example of an initialization routine. It
assumes all data structures are declared on the dual-port RAM. The
details of the structures can be found in the DATA STRUCTURE
section.

8-7

MVME332XTFW/D2

Initialization()

/* device default configuration, baud rate, parity */
static struct termio def_termio = (0 .)

/* set up init_info Larray */
for (i =@; i< 9, T++)

init_info_array[i].write r1ng size = 4@96;
init_info_array[i].read_ring_size = 2ﬁ48,
init_info_array[i].default_termio = def_termio;

)

/* set up an init_packet */

init_packet.command = INIT;
init_packet.command_pipe_number = channel.chan_number;
init_packet.status_pipe_number = @xFF;
init_packet.interrupt_level = 4;
init_packet.interrupt_vector = @x7f;
init_packet.init_info_ptr = init_info_array;

/* send the packet to the firmware, then wait for
completion */
bpp_send(&channel, &init_packet, WAIT);

/* check for error */
if (init_packet.error != §) {
bad_parameter()

/* send one event packet to each device */

ior (i =0; 1< 9, i++)
/* set up event packet */
event_packet[i].command = EVENT;
event_packet[i].device_number = i;
event packet[i].command_pipe_number =

channel.chan_number;

event_packet[i].status_pipe_number = @xFF;

/* send the packet to the firmware, but do not
wait for completion */
bpp_send(&channel, &event_packet[i], DO_NOT_WAIT);

FIGURE 8-6. INITIALIZATION EXAMPLE

8-8

MVME332XTFW/D2

8.3 OPEN DEVICE

In order to enable a device for data transfer, the host sends an OPEN
packet to the firmware. Upon receiving this packet, the firmware
configures the device based on the information supplied by the INIT
packet in the default termio, asserts all the device’s modem control
Tines, and then enables the device interrupt. The device is now able
to accept characters for receiving and transmitting. The OPEN
packet is returned to the host with the current status of the device
DCD. The host decides whether to wait for DCD to be asserted or not,
if the DCD is negated. The firmware will notify the host when the DCD
becomes asserted by returning an EVENT packet.

Once a device is opened, subsequent OPEN packets only return the
information about the device DCD without actual device
configuration.

Figure 8-7 illustrates the flow of the open sequence.

1) Set up an OPEN packet with
a specific device number.

v

a) Wake up the GATE process to
synchronize OPEN/CLOSE packets.

b) Configure the device with default
termio specified in INIT packet.

c) Assert the device’s modem control
lines (DTR and RTS).

d) Return the status of current DCD.

2) Check for error status in
packet.

3) Decide whether to wait for
DCD or not.
Open is completed.

FIGURE 8-7. OPEN DEVICE SEQUENCE

8-9

MVME332XTFW/D2

8.3.1 OPEN Packet

The required parameters for this packet are illustrated in Figure
8-8. The device_unit_number field specifies what device will
receive the packet. The command pipe number and status pipe number
are obtained from the create channel command. This packet is almost
jdentical to the EVENT packet except command is set to OPEN.

$00 | --------mmmmeeeemmeeeeeeeeeeeeeeccccecceeeoeoaee
LY R e
ggg command pipe number --[@1] | -- status pipe number ---[FF]
$P8 | e mm e -
$OA | ----memeememeem e command -------------------- [0003]
$0C | --------emmemmmmmemeeeee | mmmmmmm e
$PE | m-memmm e e
$10 - device unit number --[@@] | ---------c--e-emeiemmmaaaaan-
$12 | mmmmmm e
$14 | mmmmmmm e
$16 | ~-mommm e
$18 | —-mmmmere e
3 R R e
3 (R R e
3 L et
LY
$22 | mememmm oo
$24 | ~--e-meccecmcemmeoeoeoo- error ----- MSW --=---=---mememme
$26 | -e---e-meeeememmcmeeeoa- error ----- TSW ---comcmmem e
$28 | ------mmeeememeeeeooo- event code -----------c--cecomoonno-
L] R et ettt +

struct open packet (/* C style declaration */
char eye catcher[4];
unsigned char command_pipe_number;
unsigned char status_pipe_number;

char filler 8[4];
short command;

char filler_1[4];
char device_number;
char filler_2[19];
long error;

unsigned short event_code; /* returned from IPC */
} open_packet;

FIGURE 8-8. OPEN PACKET FORMAT

8-10

MVME332XTFW/D2

The following is a brief description of each field.

Error

Only one error code (EINVAL) is returned to indicate that the
device unit number is out of range.

Event Code

Only one event code returned in this field is E_DCD to indicate the
current status of a device’s DCD or PRINTER_SELECT 1ine. A zero in
this bit implies the signal is negated or inactive. Refer to EVENT
packet format for more information about event code.

8.3.2 Open Example

The following code provides an example of an open routine. It
assumes all data structures are declared on the dual-port RAM. The
details of the structures can be found in the DATA STRUCTURE
section.

%pen(dev)

/* set up an open_packet */

open_packet.command = OPEN;

open_packet.device _number = dev;
open_packet.command_pipe_number = channel.chan_number;
open_packet.status_pipe_number = @xFF;

/* send the packet to the firmware, then wait for completion */
bpp_send(&channel, &open_packet, WAIT);

/* check for error */
if (open_packet.error != @)
invalid_device_number()
if (open_packet.event_code & E_DCD) /* DCD is asserted */
return;
else /* DCD is negated, wait for DCD */
wait_event(DCD);

FIGURE 8-9. OPEN EXAMPLE

8-11

MVME332XTFW/D2

8.4 CLOSE DEVICE

To prevent any data transfer or any event from happening to a device,
the host sends a CLOSE packet to the firmware. When the firmware
receives this packet, it waits for all outstanding characters in the
WRITE ring and the OUTPUT ring to be transmitted, then negates all
the device’s modem control lines and disables the device. Any data
written to the ring while the device is closed will not be processed
until an OPEN packet is received.

If a HUPCL (hang up on last close) bit is set in the device’s termio
structure, an EVENT packet will be returned to the host with an E_HUP
eveq; code so that the host driver can notify all tasks associated to
the device.

Figure 8-18 illustrates the flow of a close sequence.

1) Set up a CLOSE packet with
a specific device number.

a) Wake up the GATE process to
synchronize with OPEN packet.

b) Wait until the WRITE ring and
the OUTPUT ring are empty.

c) Negate the device’s modem control
lines and disable the device.

2) Close is completed.

FIGURE 8-19. CLOSE DEVICE SEQUENCE

MVME332XTFW/D2

8.4.1 CLOSE Packet

The required parameters for this packet are illustrated in Figure
8-11. The device_unit_number field specifies what device will
receive the packet. The command pipe number and status pipe number
are obtained from the create channel command. This packet is
identical to the OPEN packet except command is set to CLOSE instead.

$BB | s
$02 | e
ggg command pipe number --[@1] | -- status pipe number ---[FF]
$08 | eeemee e
$OA | --memememeeeeeemeeeee command -------------------- [6005]
$@c R et | emmemmee e
$PE | --mmmmmm e e
$10 - device unit number --[@@] | -----------mmeecccooo
$12 | e e
$14 | e
$16 | mmmmmm e
$18 | mmmm e
$IA | cmmmm e S
SIC | mmmmm e e
$IE | =ommmmmmmmmm e
$2 | s
$22 | memmmmmmemememmmmme e
$24 | ceeeeecemcemeeeeeees error ----- MSW ---=-=--=--cmeonn-
$26 | --------eeemmmeieen error ----- TSW ------mmmmeeeoo -
$28 | +-ecmmemccencccccoena- event code ------------emeomoaaaoooo
L] R e e PR T +

struct close_packet { /* C style declaration */
char eye_catcher[4];
unsigned char command_pipe_number;
unsigned char status_pipe_number;

char filler B[4];
short command;

char filler_1[4];
char device_number;
char filler_2[19];
Tong error;

unsigned short event_code; /* returned from IPC */
} close_packet;

FIGURE 8-11. CLOSE PACKET FORMAT

8-13

MVME332XTFW/D2

The following is a brief description of each field.

Error

Only one error code (EINVAL) is returned to indicate that the
device unit number is out of range.

Event Code

Only one event code returned in this field is E DCD to indicate the
current status of a device’s DCD or PRINTER_SELECT 1ine. A zero in
this bit implies the signal is negated or inactive. Refer to EVENT
packet format for more information about event codes.

8.4.2 Close Example

The following code provides an example of a close routine. It
assumes that all data structures are declared on the dual-port RAM.
The details of the structures can be found in the DATA STRUCTURE
section.

close(dev)

/* set up an open_packet */

close_packet.command = CLOSE;
close_packet.device_number = dev;
close_packet.command_pipe_number = channel.chan_number;
close_packet.status_pipe_number = @xFF;

/* send the packet to the firmware, then wait for
completion */
bpp_send(&channel, &close_packet, WAIT);

/* check for error */

if (close_packet.error !=)
invalid_device_number()

FIGURE 8-12. CLOSE EXAMPLE

MVME332XTFW/D2

8.5 READ CHARACTERS

To get characters from a device, the host simply checks the READ ring
associated to the device to determine whether the ring is empty or
not. If the ring is not empty, a simple copy is performed from the
ring to a task’s buffer. If the ring is empty and the host is willing
to wait for characters to arrive, the READ_WAKEUP packet can be used
to inform the firmware that the host is waiting for an input line to
be available. The packet will be returned as soon as the firmware’s
ICP process completes at least one cooked 1ine in the READ ring.

When the driver interrupt routine receives this type of packet, it
simply wakes up whatever tasks are waiting on the packet address so
that the task can continue to get characters out from the ring. The
firmware is able to accept many READ WAKEUP packets for each device
as long as the host can supply, but it will return all of them at once
when it has a cooked 1ine (the line that ends with a delimiter).
Figure 8-13 shows a flow of a read sequence.

1) Get characters from a READ
ring by using its ring "get"
index.

2) If the ring is empty, send
READ WAKEUP packet, then
wait for packet to return.

a) Signal the ICP process to put
more characters into the READ
ring if possible.

b) If there is at least one cooked
line, return the packet.

3) If more characters needed,
repeat step 1, otherwise,
read is completed.

FIGURE 8-13. READ DEVICE SEQUENCE

8-15

MVME332XTFW/D2

8.5.1 READ WAKEUP Packet

The required parameters for this packet are illustrated in Figure
8-14. The device unit_number field specifies what device will
receive the packet. The command pipe number and status pipe number
are obtained from the create_channel command.

e e e L E LR R L L Lt +
$08 | -----mmmmeeeeeeecmmmmmmeeomooooeeooeeccooooomommm e
$02 | m-mmemmmmmmeeeceecceeemeemeeeeoeeeeoeoomoooomeo e
zgg command pipe number --[@#1] | -- status pipe number ---[FF]
LY T e it
$OA | ----eemeemmemeemeeoeoee command -------------------- [9601]
$BC | -----emmmmemmememmeeeeee | =-emmemmm e
$PE | c-mmmmmmmmmeeeeeiieeeececmeeeememmmeoooecoeemoo oo oo oo
$10 - device unit number --[@@] | -------------c-m------oooonoo
$12 | =mememmmmmmmee e oeoooeoecoooomo oo
$14 | sommm e e
$16 | ce-emmmmmm e
$18 | --memmmmmmmemceemmmmmmmmmem oo
$1A | =---mmmmmmmmem oo oooooe e
$1C | ==---mmmmmmmemmeemememmmmmee oo oo
$1E | -----mmmmmmmemm e eeecemmeemmmmooeooeooooooooeoo
$20 S e leeemememmmmm—oe—oooooeooooeooe-
§22 | mmmmmmmmmmm e e eeeeeeeee
$24 | -----emmemmeemmemeoooo- error ----- MSW -=-----=-==---------
$26 | -------m-smmmemmmoeooeoo- error ----- TSW =-------omcoemmm e
$3F 4--emmmemmmmmem e eceemeemeememmmem—ooeocceccooosmmmm oo e +
struct read wakeup_packet { /* C style declaration */

char eye_catcher[4];

unsigned char command_pipe_number;

unsigned char status_pipe_number;

char filler B[4];

short command ;

char filler_1[4];

char device_number;

char filler_2[19];

Tong
} read_wakeup_packet;

FIGURE 8-14. READ_WAKEUP PACKET FORMAT

error;

The following is a brief description of each field.
Error

The EINVAL error code is returned to indicate that the device unit
number is out of range.

8-16

MVME332XTFW/D2

The EIO error code is returned if a CLOCAL bit is not set in the
device termio structure and the DCD becomes negated.

8.5.2 Read Characters Example

The following code provides an example of a read routine. The host
should use the get index and never change the put index. It assumes
that a frame does not cross the ring boundary. The READ ring is a
circular buffer, therefore, the host must properly maintain
pointers on frames that "wrap" around. The firmware guarantees that
there must be a cooked Tine (with the delimiter flag in the end-of-
frame field) if the ring is not empty.

read(dev, buffer)
{

get = read_ring[dev].get;
put = read_ring[dev].put;

if (get != put) { /* character available */
frame_count = read_ring[dev].data[get];
block_copy(&read_ring[dev].data[get + 1], buffer,

frame_count);
/* end-of-frame flag */
eof = read ring[dev].data[get + frame count + 1];
if (eof & DELIMITER) /* a compTete line */
return;

else (
/* set up an READ_WAKEUP packet */
read_wakeup_packet.command = READ_WAKEUP;
read_wakeup_packet.device_number = dev;
read_wakeup_packet.command_pipe_number =
channel.chan_number;
read_wakeup_packet.status_pipe_number = @xFF;

/* send the packet to the firmware, then wait for
the packet to be returned */

bpp_send(&channel, &read_wakeup_packet, WAIT);

/* check for error */

if (read_wakeup_packet.error != @)
Tost_of_DCD()

FIGURE 8-15. READ CHARACTERS EXAMPLE

8-17

MVME332XTFW/D2

8.6 WRITE CHARACTERS

Before writing characters to the device’s WRITE ring buffer, the
host checks the ring to determine whether the ring is full or not. If
the ring is not full, the host simply copies characters from a task’s
buffer to the ring. Otherwise, if the ring is full and the task
desires towait, the host sends a WRITE_WAKEUP packet to the firmware
so that the firmware will use it to inform the host when there are
available spaces in the ring.

When the driver interrupt routine receives this type of packet, it
simply wakes up whatever tasks are waiting on the packet address so
that the tasks can continue to put more characters into the ring. The
firmware is able to accept as many WRITE WAKEUP packets for each
device as the host can supply. But, it will return all of them at
once, when the number of characters in the device’s WRITE ring drops
below a Tow water mark (quarter of ring size).

This can introduce a problem when multiple output strings are
interleaved on a terminal display. It is the host’s responsibility
to implement a record locking mechanism in the driver write routine
to prevent such conditions from occurring.

MVME332XTFW/D2

Figure 8-16 illustrates the flow of a write sequence.

1) Write characters to a WRITE
ring by using its ring "put"
index.

2) If the ring is full, send a
WRITE WAKEUP packet, then
wait for packet to return.

v

a) Wake up the OCP process to get
characters from the WRITE ring,
perform translation, then put
into the OUTPUT ring.

b) If the WRITE ring drops below
the low water mark, return the
packet.

3) If more characters needed,
repeat step 1, otherwise,
write is completed.

FIGURE 8-16. WRITE CHARACTERS SEQUENCE

8.6.1 WRITE_WAKEUP Packet

The required parameters for this packet are illustrated in Figure
8-17. The device_unit number field specifies what device will
receive the packet. The command pipe number and status pipe number
are obtained from the create_channel command.

$00
$02
$04
$06
$@8
$OA
$ac
$OE
$10
$12
$14
$16
$18
$1A
$1C
$1E
$20
$22
$24
$26
$3E

MVME332XTFW/D2

___ +
i T i
EEE:::Z:I:I:I::Z:::::I::;;,}.,}.;,’,;'::::E;E:Z::ZE:EE;E@@@%E
G it |
emmmeccemcecccccoe QITOF —o-on WSW —mmmmmmollll
IIIIIIerrer o I]

struct write_wakeup_packet { /* C style declaration */

char eye_catcher[4];
unsigned char command_pipe_number;
unsigned char status_pipe_number;
char filler _0[4];

short command ;

char filler_1[4];

char device_number;

char filler_2[19];

Tong error;

} write_wakeup_packet;

FIGURE 8-17. WRITE_WAKEUP PACKET FORMAT

The following is a brief description of each field.

Error

The EINVAL error code is returned to indicate that the device unit
number is out of range.

The EIO error code is returned if a CLOCAL bit is not set in the
device termio structure and the DCD becomes negated.

8-20

MVME332XTFW/D2

8.6.2 Write Character Example

The following code provides an example of a write routine. It is
simpler than the read routine since there is no frame format on the
ring at all. However, the host may have to perform a block copy
twice if the available space crosses the bottom of the ring. The
host should use the put index and never change the get index.

write(dev, buffer)

get = write_ring[dev].get;
put = write_ring[dev].put;

if ((put + 1) == get) { /* the ring is FULL */
/* set up an write_wakeup_packet */
write_wakeup_packet.command = WRITE_WAKEUP;
write_wakeup_packet.device_number = dev;
write_wakeup packet.command_pipe_number =
channel.chan_number;
write_wakeup_packet.status_pipe_number = @xFF;

/* send the packet to the firmware, then wait for the
packet to be returned */
bpp_send(&channel, &write_wakeup_packet, WAIT);

/* check for error */
if (write_wakeup_packet.error != @)
) lost_of _DCD()
else
block_copy(buffer, &write_ring[dev].data[put], get - put);

FIGURE 8-18. WRITE CHARACTERS EXAMPLE

8.7 CONTROL A DEVICE

Beside open, close, read, and write, the firmware allows the host to
perform some special commands that do not fit into the above
categories via a IOCTL packet. In this packet a sub command field,
called ioctl command, is required to distinguish such special
commands such as configure a device, flush a buffer, suspend an
output, or download a chunk of code. Some ioctl commands need more
parameters attached to the packet. If the parameters are needed,
the packet parameter block can be used for this purpose. In these
circumstances, the parameter block can be a termio structure, a
termcb structure, or a download info structure dependent on what
joct1 command is being specified.

8-21

MVME332XTFW/D2

Upon receiving at this type of packet, the firmware hands it to the
CTL process associated with the device which further decodes the
joctl command field to carry out the requested function. In some
cases, the CTL process waits for all output characters to be
transmitted before changing the device configuration as in the
TCSETAW command.

Multiple IOCTL packets can be sent to a device’s CTL process at once.
They will be queued in an order of First-In-First-Out (FIFO). The
CTL process has to complete one packet before processing the next
one. However, if they are sent to all different CTL processes i.e.,
for different devices, they will be executed concurrently.

Figure 8-19 illustrates the flow of a control sequence.

Hmmmmmmmmmmeeoeen +
| Control a device |

1) Set up a IOCTL packet with a
specific device unit number
and a sub-command such as
TCSETAW.

2) Set up packet parameter
block with new value of
termio structure.

v

a) Wake up the CTL process to
execute TCSETAW command.

b) Wait for output rings to drain.

c) Configure device with termio
specified in the packet.

d) Return the pacTet.

3) Control is completed.

FIGURE 8-19. CONTROL A DEVICE SEQUENCE

8-22

MVME332XTFW/D2

8.7.1 IOCTL Packet

The required parameters for this packet are illustrated in Figure
8-2@8. The command pipe number is obtained from the create_channel
command. The status pipe number is equal to either the command pipe
number or $FF, if the host desires the packet to be returned in the
same channel. The device number field specifies what device this
packet will be for.

] B et R s
$B2 | -
§g4 command pipe number --[@#1] | -- status pipe number ---[FF]

<SS S U G S U RIS
$08 | ----eeoeom e e e
$OA | ------emmmemmmeeeeeeees command -------------------- [0004]
$OC | ----eemmmmeemeemmemeeeemeee oo
$PE | ------eeemeeeee e emeeeeoooecoee oo
$10 - device unit number --[@@] | ---------------mmmmoomoaoaaao
$12 | -----memmmeeeeeee- joctl command --- msw ------------ [0000]
$14 | ----mmmmemeooeeeao joctl command --- 1sw ------------ [X4XX]
$16 | -------mmm-mee---- joctl argument -- msw ------------------
$18 | --------m-emeoo--- joctl argument -- Tsw ------------------
$1A | -----emeemeiaeeees joct] mode ------ MSW ------------ [9000]
$1C | ------mmmmemmoee-- joctl mode ------ TsW ------------ [0000]
SIE | o mmmm el
LY I B ettt e LR R R R R e
$22 | e
$24 | -------mmeemcmeecceeooe- error ----- MSW --==-=---=-----omn-
$26 | --------meemmeemmoeoooo-- error ----- TSW --=----mmcmmcmeee
$28 | ----memmmeemeeme oo
$2A | e e
$2C | m--mmmmee oo eemeccceeeee oo
$2E | mmmmmmm e eemee oo
$30
$32 PARAMETER
$34
$36 BLOCK
$38
$3A (ioctl command dependent)
$3C
L3] S e e L L EEEE L e L +

FIGURE 8-28. IOCTL PACKET FORMAT

8-23

struct ioctl_packet {

char
unsigned char
unsigned char
char
short
char
unsigned char
char
long
Tong
Tong
char
Tong
char

union

eye_catcher[4];
command_pipe_number;
status_pipe_number;
filler_B[4];
command;
filler_1[4];
device_number;
filler_2[1];
joctl_command;
joctl_argument;
joctl_mode;
filler_3[6];

error;

filler_4[8];

MVME332XTFW/D2

/* C style declaration */

struct termio tio;
struct termcb tcb;
struct sgttyb sgt;
struct d1_info d1;

/*

%*
%*

/*

long param;/*
} parameter_block;

} ioctl_packet;

FIGURE 8-20.

N
*

termio structure */

termcb structure */

sgttyb structure */

download info structure */
general purpose parameter */
ioctl_command dependent */

T10CTL PACKET FORMAT (cont.)

The following is a brief description of each field.

Ioct1 Command

As mentioned above,
specific function.

this field contains a sub command for a
Some of them are derived from the UNIX ioctl

commands while others are private for the MVME332XT. Table 8-2

provides a list of all ioctl commands.

Details will be discussed

in the next sections or in the appendix.

8-24

MVME332XTFW/D2

TABLE 8-2. IOCTL COMMANDS

Ioctl

Commands Value Description

LDOPEN $4408 Set device internal state to open.

LDCLOSE $4401 Clear device internal state, flush all rings.

LDCHG $4402 No operation, return no error.

LDGETT $4408 Get current virtual terminal information into the
termcb structure in the packet.

LDSETT $4409 Set virtual terminal parameters to the new one.

TCGETA $5401 Get a device’s current termio structure.

TCSETA $5402 Change a device’s termio structure to the new one.

TCSETAW $5403 Same as TCSETA but wait for device’s WRITE ring and
OUTPUT ring to drain.

TCSETAF $5404 Same as TCSETAF but flush the input rings after waiting
for the output rings to drain.

TCSBRK $5405 Transmit a Break Sequence on output (as long as 25@ms).

TCXONC $5406 Suspend or resume the output, send XON or XOFF, assert
or negate RTS or DTR depend on ioctl argument field.

TCFLSH $5407 Flush WRITE ring and OUTPUT ring, READ ring and INPUT
ring or both pairs depend on ioctl argument field.

TCSETHW $5440 Enable or Disable hardware handshake feature.

TCGETHW $5441 Get current information of hardware handshake.

TCGETDL $5442 Get the downloadable address and size of MVME332XT
Tocal memory.

TCDLOAD $5443 Download a block of data or code into MVME332XT local
memory.

TCLINE $5444 Copy a 1line discipline switch table previously
downloaded into the internal data structure of
MVME332XT.

TCEXEC $5445 Instruct the firmware to execute a functional address
previously downloaded into MVME332XT Tocal RAM.

TCGETVR $5446 Get the MVME332XT firmware version and revision
number.

TCGETDF $5447 Same as TCGETA command, but get the default open termio
structure which is used to configure a device when
open.

TCSETDF $5448 Same as TCSETAW command, but change both the default
open termio structure and the working termio
structure.

TCGETSYM $5449 Get the firmware symbol table to link downloadable

code.

8-25

MVME332XTFW/D2

TABLE 8-2. I0CTL COMMANDS (cont.)

Ioctl

Commands Value Description

TCWHAT $544A Get all SCCS IDs of the firmware files.

TCGETDS $544C Current status of DCD, CTS, DTR, PR_FAULT, PR_POUT, and
PR_SELECT.

TIOCGETP $7408 Get device’s current termio structure by using sgttyb
structure.

TIOCSETP $7409 Change device’s termio structure by using sgttyb
structure.

Ioctl Argument And Mode
These fields may be required by certain ioctl commands for further
decoding as in the TCFLSH command.

Error

A zero in this field indicates no error. The following is a list
of possible errors that may occur for this type of command:

EINVAL

Invalid specified parameter, for example; the line discipline
number specified in termio is out of range.

ENOMEM

Not enough memory space supplied by the host to carry out a
function, for example; the space for the TCGETSYM command.

ENXTIO

No such a device or address, for example; request a non existent
table as in ISP software.

EBUSY

The device or address is in use, for example; delete a
translation table that is in use by other device in ISP
software.

EEXIST

Such a device or address exists, for example; attempt to create
a translation table that has been created by other device in ISP
software.

8-26

MVME332XTFW/D2

Parameter Block

This block is used to transfer data between the host and the
firmware. Depending on the ioctl command, it is used as a termio,
termcb, sgttyb, or down load structure. If it is required by a
command, the host driver will copy the structure from a task’s
address space into this field before sending to the firmware or
copy this block to a task’s buffer after receiving the packet.

8.7.2 10CTL Command Example

To highlight the differences between IOCTL sub-commands, the next
examples leave out a few lines of code which are identical to all
IOCTL examples at the beginning of a sub-routine.

joct1 _packet.command = IOCTL;

ioct1 _packet.command pipe_number = channel_number;
ioct1 _packet.status_pipe_number = @xFF;
ioct1_packet.device_number = dev;

8.7.3 TCGETA And TCGETDF Commands

The TCGETDF command returns a device’s default termio into the
packet parameter block. The default termio is supplied by an INIT
packet and is used by the GATE process to configure the device when
an OPEN packet is received. The TCGETA command, on the other hand,
returns a working termio structure which is a copy of the default
termio structure after a device is opened. The working termio
structure is identical to the default termio structure if the host
has not changed it by using the TCSETA command after the device is
opened.

Figure 8-21 illustrates an example of how to use these commands.
joctl_get_termio(dev, termio_pointer)
struct termio *termio_pointer;

joct1_packet.ioctl_command = TCGETA;
bpp_send(&channel, &ioctl_packet, WAIT);

if (ioctl_packet.error)
error_handler();
else
copy(&ioct1_packet.parameter_block.tio,
termio_pointer, sizeof(struct termio));

FIGURE 8-21. TCGETA/TCGETDF COMMAND EXAMPLES

8-27

MVME332XTFW/D2

8.7.4 TCSETA, TCSETAW, TCSETAF, And TCSETDF Commands

The TCSETA command immediately changes the working termio structure
and reconfigures the device based on the termio supplied on the
packet parameter block.

The TCSETAW command performs the same function as the TCSETA
command, but waits for the device’s WRITE ring and OUTPUT ring to
drain out completely before changing. This guarantees that pending
output characters will be transmitted before critical
configurations occur, such as changing the baud rate or character
size.

The TCSETAF command performs exactly the same function as TCSETAW.
In addition, it flushes the device’s READ ring and INPUT ring after
waiting for the output rings to drain, and before reconfiguring the
device.

The TCSETDF command also performs the same function as the TCSETAW
command, but both default termio and working termio are modified.
In addition, open calls will be affected by this command.

Figure 8-22 illustrates an example of how to use these commands.

joctl_set_termio(dev, termio_pointer)
struct termio *termio_pointer;

ioct1_packet.ijoct1_command = TCSETAF;

copy(termio_pointer, &ioct1_packet.parameter_block.tio,
sizeof(struct termio));

bpp_send(&channel, &ioctl_packet, WAIT);

if (ioctl_packet.error)
error_handler();

}
FIGURE 8-22. TCSETA, TCSETAW, TCSETAF, AND TCSETDF COMMAND EXAMPLES

8.7.5 TCSBRK Command

The TCSBRK command waits for the device’s WRITE ring and OUTPUT ring
to drain out completely before sending out a BREAK sequence. The
BREAK sequence is transmitted by asserting the device’s transmit
data line longer than a character time. However, to ensure that the
remote device’s receiver, of which the baud rate is unknown to,
recognizes a BREAK sequence at the lowest baud (50 baud), the
firmware asserts this 1ine for a Tong period of time (about 258 ms).

8-28

MVME332XTFW/D2

Figure 8-23 illustrates an example of how to use this command. The
ioct1 argument should be set to zero. Otherwise, the BREAK sequence
is never sent and the command becomes a command that is used to wait
for the output ring to drain.

ioct1_send_break(dev)

ioctl_packet.ioctl_command = TCSBRK;
joct1_packet.ioct1_argument = @;
bpp_send(&channel, &ioctl_packet, WAIT);

if (ioctl_packet.error != @)
invalid_device();

FIGURE 8-23. TCSBRK COMMAND EXAMPLE

8.7.6 TCXONC Command

The TCXONC command allows the host to control the output of a device
such as suspend or resume an output, send an XON or XOFF, depending
on the value of ioctl argument field. Table 8-3 provides the
function associated to the ioctl argument.

TABLE 8-3. TCXONC ARGUMENT FUNCTIONS

Toct1 Argument Function
) Suspend the output, stop the current transmitting
character stream until the next resume command.
1 Resume a suspended output, allow characters in the
output rings to be transmitted.
2 Send XOFF and negate RTS (if hardware handshake is

enabled), tell a remote side to stop sending characters
to this port until XON is sent.

3 Send XON character and assert RTS (if hardware handshake
is enabled), tell a remote side to start transmitting
characters.

4 Assert RTS line on a device.

5 Negate RTS 1line on a device.

6 Assert DTR Tine on a device.

7 Negate DTR 1ine on a device.

other EINVAL error code will be returned in packet error field.

8-29

MVME332XTFW/D2

Figure 8-24 illustrates an example of how to use this command.

}oct]_send_xoff(dev)

ioct]_packet.ioct]_command = TCXONC;
ioct1_packet.ioct1_argument = 2;
bpp_send(&channel, &ioctl_packet, WAIT);

if (ioctl_packet.error != §)
invalid_argument_or_device();

FIGURE 8-24. TCXONC COMMAND EXAMPLE

8.7.7 TCFLSH Command

The TCFLSH command allows the host to flush device input rings or
output rings or both depending on the value of the ioctl argument
field. Once a ring is flushed, all characters will be discarded, and
the put index is set equal to the get index to indicate an empty ring.
Table 8-4 1ists what rings are to be flushed according to the value
of the ioctl argument field.

TABLE 8-4. TCFLSH ARGUMENT FUNCTIONS

Ioctl Argument Function
g Flush the input rings including the READ ring and the
INPUT ring.
1 Flush the output rings including the WRITE ring and the
OUTPUT ring.
2 Flush both input and output rings.
other EINVAL error code will be returned in packet error field.

Figure 8-25 i1lustrates an example of how to use this command.
}oct]_f]ush_putput(dev)
ioct1 packet.ioctl_command = TCFLSH;
ioctl_packet.ioctl_argument = 1;
bpp_send(&channel, &ioctl_packet, WAIT);
if (ioctl_packet.error != @)
invalid_argument_or_device();
FIGURE 8-25. TCFLSH COMMAND EXAMPLE

8-30

MVME332XTFW/D2

8.7.8 TCGETHW And TCSETHW Commands

These two commands are used to obtain current information about the
hardware handshake option and how to change the option.

If the hardware handshake is enabled every time the firmware sends
an XON character, it asserts the device RTS. Likewise, when the
firmware sends the XOFF character to stop a remote side, it negates
the RTS. However, the software handshake (XON/XOFF) can be disabled
separately by clearing the IXOFF bit in the device working termio
structure.

In the TCGETHW command, the information is returned in the packet
parameter block. A non zero value in this field indicates that the
option is enabled.

In the TCSETHW command, a zero in the ioctl argument field turns the
option off while a non-zero value in the argument field turns the
option on.

Figure 8-26 illustrates an example on how to use these commands.

joctl_hardware_handshake(dev)

{
joct]_packet.ioctl_command = TCGETHW;
bpp_send(&channel, &ioctl_packet, WAIT);
if (ioctl_packet.parameter_block.param != @)
printf("hardware handshake is enabled");
else
(
printf("hardware handshake is disabled");
/* enable the handshake option */
ioct]_packet.ioct]l_command = TCSETHW;
joct1_packet.ioctl_argument = 1;
bpp_send(&channel, &ioctl_packet, WAIT);
}
}

FIGURE 8-26. TCGETHW/TCSETHW COMMAND EXAMPLES

8.7.9 TCGETDL Command

The TCGETDL command returns information about the unused area of the
local memory so that the host knows where to download a chunk of code
for execution.

8-31

MVME332XTFW/D2

For security reasons, the device number is restricted to the printer
device which is number 8, otherwise, EINVAL error code is returned.
The information about the downloadable area can be found in the
dl_info structure of the packet parameter block with the
ipc_address, and the count field indicating a starting address and
thesize (in bytes) of the area, respectively.

Figure 8-27 illustrates an example of how to use this command.

joctl_get_downloadable_area(dev)

(
joct1_packet.ioct]1_command = TCGETDL;
bpp_send(&channel, &ioct1_packet, WAIT);
if (ioctl_packet.error != @)
invalid_device();
printf("free area at address %x, and size %d (in bytes)",
ioctl_packet.parameter_block.d]l_info.ipc_address,
y ioct1_packet.parameter_block.d1_info.count);

FIGURE 8-27. TCGETDL COMMAND EXAMPLE

8.7.19 TCDLOAD Command

The TCDLOAD command allows the host to download a block of data or
code into the MVME332XT local memory (the downloadable area obtained
by the TCGETDL command).

The host has to set up information such as source, destination, and
size of the download block in the d1 _info structure of the packet
parameter block. The host_address field specifies the source of the
data block residing on the dual-port memory. The ipc_address field
specifies the destination where the data block will be sent to and
the count field specifies the number of bytes to be transferred.

The firmware will make sure that the data block fits completely into
the downloadable area before copying the data. Otherwise, the
EINVAL error code will be returned and no transfer will take place.

As mentioned earlier, the source buffer has to reside on the dual-
port memory. If the buffer is smaller than a request, multiple
comma?ds can be performed to satisfy the request as shown in the
example.

For security reasons, the device number is restricted to the printer

device which is number 8, otherwise, the EINVAL error code is
returned.

8-32

MVME332XTFW/D2

Figure 8-28 illustrates an example of how to use this command.

joctl download(dev, task_buffer, firmware_address, count)
char *task_buffer; /* task buffer address */
char *firmware_address; /* MVME332XT downloadable area address */

extern char download buffer[BUF_SIZE]; /* on dual-port RAM */

ioctl_packet.ioct1_command = TCDLOAD;
ioct1_packet.parameter_block.d1_info.host_address =
download_buffer;
ioctl_packet.parameter_block.d1_info.ipc_address =
firmware_address;
ioct1_packet.parameter_block.d1_info.count = BUF_SIZE;

while (count > @)

copy(task_buffer, download_buffer,
minimum(count, BUF_SIZE));

bpp_send(&channel, &ioctl_packet, WAIT);

if (ioctl_packet.error != @) (
invalid_device_or_address();
return(ioct1_packet.error);

)

count -= BUF_SIZE;

task buffer += BUF_SIZE;

ioctT packet.parameter_block.dl_info.ipc_address +=
BUF_SIZE;

FIGURE 8-28. TCDLOAD COMMAND EXAMPLE

8.7.11 TCLINE Command

The TCLINE command instructs the firmware to copy a line discipline
table, previously downloaded by TCDLOAD command, to its internal
table, so that the new line discipline routines can take affect. The
table consists of several set of pointers pointing to routines that
are called by the OCP, ICP, GATE, or IOCTL process to perform some
specific translation for the device. A set @ is called line
discipline @, and so forth.

The ipc_address field in the dl_info structure of the packet
parameter block specifies the address of the line discipline table.
The count field specifies the number of sets in the table (or the
number of 1ines, not the number of bytes).

8-33

MVME332XTFW/D2

The firmware also makes sure that the address specified in the
ipc_address field is in range of the downloadable area before
copying the table. Otherwise, the EINVAL error code will be
returned and no transfer will take place.

For security reasons, the device number is also restricted to the
printer device which is number 8, otherwise, the EINVAL error code
is returned.

Figure 8-29 illustrates an example of how to use this command.

ioctl_line_switch_table(dev, table_address, nlines)

char ¥table_address; /* MVME332XT downloaded table address */

int nlines; /* number of line disciplines */

{
ioct1_packet.ioctl_command = TCLINE;
ioct1_packet.parameter_block.d1_info.ipc_address =

table_address;

joctl_packet.parameter_block.d1_info.count = nlines;

bpp_send(&channel, &ioctl_packet, WAIT);
if (ioctl_packet.error != §)
invalid_device_or_address();

FIGURE 8-29. TCLINE COMMAND EXAMPLE

8.7.12 TCEXEC Command

The TCEXEC command instructs the firmware to execute a function
address previously downloaded into the local memory by the TCDLOAD
command. The function must end with an RTS instruction (ReTurn from
Subroutine) unless a new set of firmware is executed in place of the
current one.

This command is useful for some purpose like fixing a problem in the
firmware, debugging aid, or performing some special hardware
control functions.

The ipc_address field in the dl_info structure of the packet
parameter block specifies the address of the function. The firmware
also makes sure that such an address is in the range of the
downloadable area before executing. Otherwise, the EINVAL error
code will be returned.

For security reasons, the device number is also restricted to the

printer device which is number 8, otherwise, the EINVAL error code
is returned.

8-34

MVME332XTFW/D2

Figure 8-3@ illustrates an example of how to use this command.

ioct]_gxecute_funttion(dev, function_address)
int (*function_address)(); /* MVME332XT downloaded function address */
{
ioct]_packet.ioct1_command = TCEXEC;
joct1_packet.parameter_block.d1_info.ipc_address =
function_address;

bpp_send(&channel, &ioctl_packet, WAIT);
if (ioct1_packet.error !="0)
invalid_device_or_address();

FIGURE 8-38. TCEXEC COMMAND EXAMPLE

8.7.13 TCGETVR Command

The TCGETVR command allows the host to obtain the version number and
revision number of the firmware. The param field of the packet
parameter block contains this information when the packet is
returned. The least significant byte of the field is the revision
number and the version number is in the next byte.

For security reasons, the device number is also restricted to the
printer device which is number 8, otherwise, the EINVAL error code
is returned.

Figure 8-31 illustrates an example of how to use this command.

joctl_get_version(dev)
ioct1_packet.ioct1_command = TCGETVR;
bpp_send(&channel, &ioctl_packet, WAIT);
if (ioct1_packet.error != @)
invalid_device_or_address();
printf("Firmware Version = %d, Revision = %d",

joct1_packet.parameter_block.param >> 8,
ioct1_packet.parameter_block.param & @xff);

FIGURE 8-31. TCGETVR COMMAND EXAMPLE

8-35

MVME332XTFW/D2

8.7.14 TCGETSYM Command

The TCGETSYM command allows the host to obtain the symbol table of
the firmware in the format suitable for the UNIX Tinkage editor (1d)
so that the host can link this with its downloadable code before
downloading to the firmware.

Figure 8-32 illustrates a typical format of the symbol table
returned by the firmware in the form of displayable character
strings. It consists of two parts, the first part indicates where
the downloadable area is and how big it is, the second part is a list
of symbol definitions. The UNIX linkage editor (or loader) will use
this information to resolve the undefined symbols in the user code
to produce an executable code for downloading.

MEMORY
) dl_area (RW) : o = @x@@f20008, 1 = @x@0010000
SECTIONS
GROUP :
.text ()
.data ()
.bss ()
} > d1_area

reset_vector = @x@@fcidod;
ctmain = Px@@fcPhdec;

.................

fwmain = Px@@fc3dfa;
FIGURE 8-32. TYPICAL SYMBOL TABLE

The host specifies the address and size of the buffer to receive the
symbol table in the host_address field of the packet parameter
block. The buffer must reside on the dual-port memory and, if it is
smaller than the table, multiple commands can be sent to satisfy a
request.

It is required that the host should set the ipc_address field to zero
to start with, then check this field until it becomes -1 which is the
end-of-file (EOF) mark to complete a user request. When the packet
is returned, this field is updated by the firmware to the index of
the next entry in the symbol table so that the subsequent commands
will reach the end of the table. A zero in this field instructs the
firmware starts to read the beginning of the symbol table. The count

8-36

MVME332XTFW/D2

field is also modified by the firmware to indicate the number of
characters returned in the buffer.

For security reasons, the device number is also restricted to the
printer device which is number 8, otherwise, the EINVAL error code
is returned.

Figure 8-33 illustrates an examplé of how to use this command.

ioctl _get symbol_table(dev, task_buffer, buffer_size)
char *task_buffer;

extern char dual_port_buffer[BUF_SIZE]; /* on dual-port RAM */

ioctl_packet.ioctl_command = TCGETSYM;
ioct1 packet.parameter_block.d1_info.ipc_address = #;
ioct1_packet.parameter_block.d1_info.host_address =
dual_port_buffer;
while (buffer_size > @) { .
ioct1_packet.parameter_block.d1_info.count = BUF_SIZE;
bpp_send(&channel, &ioctl_packet, WAIT);
if (ioctl_packet.error != §)
invalid_device_or_address();
if (ioct;_packet.parameter_block.d]_info.ipc_address == -1)
reak;

count = ijoctl_packet.parameter_block.d1_info.count;
copy(dual_port buffer, task_buffer, count);
buffer_size -= count;

task_buffer += count;;

FIGURE 8-33. TCGETSYM COMMAND EXAMPLE

8.7.15 TCWHAT Command

The TCWHAT command performs exactly the same function as the
TCGETSYM command, excepts that it returns a list of the firmware
files with the file version number. This command is useful to keep
track of the versions of files included in the firmware.

Figure 8-34 illustrates a typical format of a file 1isting returned
by the firmware in the form of displayable character strings.

8-37

MVME332XTFW/D2

@(#)close2.c 7.2
@(#)ctl2.c 7.1
@(#)event2.c 7.3
@(#)open2.c 7.4
@ (#)ocp2.c 7.2
@(#)icp2.c 7.1

FIGURE 8-34. TYPICAL FILE LISTING

Figure 8-35 illustrates an example of how to use this command. The
required parameters are identical to the TCGETSYM command’s
parameters.

joct]l_get file listing(dev, task_buffer, buffer_size)
char *task_buffer;

extern char dual_port_buffer[BUF_SIZE]; /* on dual-port RAM */

joct]_packet.ioctl_command = TCWHAT;
joctl _packet.parameter_block.d1_info.ipc_address = §;
joct1_packet.parameter_block.d1_info.host_address =
dual_port_buffer;
while (buffer_size > @) (
joct1_packet.parameter_block.d1_info.count = BUF_SIZE;
bpp_send(&channel, &ioctl_packet, WAIT);
if (ioctl_packet.error !="0)
invalid_device_or_address();
if (ioctl_packet.parameter_block.dl_info.ipc_address == -1)
break;

count = ioctl_packet.parameter_block.d1_info.count;
copy(dual_port_buffer, task_buffer, count);
buffer_size -= count;

task_buffer += count;;

FIGURE 8-35. TCWHAT COMMAND EXAMPLE

8.7.16 TIOCGETP Command

The TIOCGETP command returns the device’s current configuration in
the format of "sgttyb" structure into the packet parameter block.
This command is almost identical to the TCGETA command, except that
the sgttyp structure is returned instead of the termio structure.
The sgttyp structure contains all informations found in a termio

8-38

MVME332XTFW/D2

structure. The firmware will convert its internal version of termio
to the sgttyp structure when it receives this command.

Figure 8-36 illustrates an example of how to use this command.

ioctl_get_sgttyp(dev, sgttyp_pointer)
%truct sgttyp *sgttyp_pointer;

ioct1_packet.ioctl_command = TIOCGETP;
bpp_send(&channel, &ioct1_packet, WAIT);

if (ioctl_packet.error)
error_handler();
else
copy(&ioct1_packet.parameter_block.sgt,
sgttyp_pointer, sizeof(struct sgttyp));

FIGURE 8-36. TIOCGETP COMMAND EXAMPLE

8.7.17 TIOCSETP Command

The TIOCSETP command allows the host to reconfigure the device with
a sgttyp structure. It will wait for the device’s output rings
(WRITE ring and OUTPUT ring) to drain out completely, then flush the
input rings, and finally change the device configuration. As a
result, the internal termio structure is also modified based on the
information supplied in the sgttyp structure.

Figure 8-37 illustrates an example of how to use this command.
ioctl_set_sgttyp(dev, sgttyp_pointer)
%truct sgttyp *sgttyp_pointer;
ioct1_packet.ioct]_command = TIOCSETP;
copy(sgttyp_pointer, &ioctl_packet.parameter_block.sgt,
sizeof(struct sgttyp));
bpp_send(&channel, &ioctl_packet, WAIT);
if (ioctl_packet.error)
invalid_device();

FIGURE 8-37. TIOCSETP COMMAND EXAMPLE

8-39

MVME332XTFW/D2

8.7.18 LDOPEN, LDCLOSE, LDCHG, LDGETT, And LDSETT Commands

These commands exist for compatibility with old versions of UNIX.
It basically allows the host to open or close a device and to get or
change the virtual terminal parameters, such as the position of a
cursor.

The LDGETT command returns the current cursor information in the
termcb structure of the packet parameter block. Likewise, the
LGSETT command requires such a structure in the same place to change
the cursor position.

Figure 8-38 illustrates a use of these commands.

ioctl_ldsett(dev, termcb_pointer)
struct termcb *termcb_pointer;

ioct1_packet.ioctl_command = LDOPEN;
bpp_send(&channel, &ioctl_packet, WAIT);

ioct1l_packet.ioctl_command = LDSETT;

copy(termcb_pointer, &ioctl_packet.parameter_block.tcb,
sizeof(struct termcb));

bpp_send(&channel, &ioctl_packet, WAIT);

if (ioctl_packet.error)
invalid_device();

FIGURE 8-38. LDOPEN/LDSETT COMMAND EXAMPLES

8.7.19 TCGETDS Command

This command returns the current status of a device’s hardware
signals such as DCD, CTS, DTR, PR_FAULT, PR_POUT, and PR_SELECT. The
param field of the packet parameter block contains this information
when the packet is returned. The corresponding bits are listed in
Table 8-1 of the EVENT packet.

Figure 8-39 illustrates a use of this command.

8-40

MVME332XTFW/D2

ioct]1_get_dev_status (dev)

joct1_packet.ioct1_command = TCGETDS;
bpp_send(&channel, &ioct1_packet, WAIT);

if (ioctl_packet.parameter_block.param &E_DCD)
) print&("DCD is negated");

NOTES: This command is only implemented with firmware version 8.4 or
later and driver version 8.3 or later.

The status of RTS and DTR are returned in the E_LOST_CTS bit
and the E_LOST DSR bit of Table 8-1, respectively.

FIGURE 8-39. TCGETDS COMMAND EXAMPLE

8-41

MVME332XTFW/D2

CHAPTER 9
CONFIDENCE TEST

9.1 INTRODUCTION

The confidence test is called upon the system reset to perform a set
of basic tests to ensure that the hardware is in good condition for
the firmware to run. The test does not require any external cables
or any special configuration except power. The information about
the tests can be easily obtained by the host in the dual-port memory.

9.2 TEST FEATURES
The following features will be included in the confidence test:

1. Loop continuously on error.

2. Confidence Test Descriptor consists of Composite Status Word
(CSW), Failed address, Expect pattern, and Read pattern.

3. Subtests for better fault isolation.
4. Burn-In test sequence.
5. Warm-start detection.

9.3 TEST FLOW

The confidence test is divided into several subtests which are
sequentially executed. If an error occurs in any subtest, the
subtest composes its error information into a word, writes it to the
Composite Status Word of the Confidence Test Descriptor, displays it
on the LEDs, sends it to the debug port (if a diagnostic board is

gonnected), and then repeats the test forever until reset or power
own.

Error information may be obtained by examining the contents of the
composite status word with an off-board debugger or by observing it
on the terminal connected to the diagnostic port.

As illustrated in Figure 9-1, the confidence test consists of the
following subtests:

Basic CPU Extended CPU
Local RAM SI0 (MK68564)
Local ROM PIT (MC68238)
Dual-Port RAM On-Board CSR

9-1

MVME332XTFW/D2

+o-meme- +
| RESET |
N +
R L L L L PP P PP PP +
Hommmemeeao- +
| Basic CPU |<------- +
$ommmmmmanas + | Toop forever
|------- failed-+
e +
| Local RAM |<------- +
T + | Toop forever
|------- failed-+
Hmmmmmmmman +
| Local ROM |<------- +
T + | Toop forever
|------- failed-+
 EREEEEET TR +
| Dual-Port I
Local ROM [<------- +
R + | Toop forever 4------------ +
|--=---- failed-+ Toggle LED
ommmmmmmm——aae + Counters++
| Extended CPU |<------ + Ho-mommmmemos +
$ommeemeeeanes + | Toop forever A
|------- failed-+
femccnaaa
| SI0 [|<--------- +
e + | Toop forever
[------- failed-+
Hommemee- +
| PIT [<---e-e--- +
D + | Toop forever
|------- failed-+
Hommmme- +
| CSR |<--------- +
$mmmmmmne + | Toop forever
------- failed-+
------------------ Burn-In Switch ON---+
Hommmemeee- +
| Firmware |
S REEEEEE +
FIGURE 9-1. CONFIDENCE TEST FLOW

The details of these subtests are described
Tests may be in turn divided into many sub-modules in the

sections.

in the following

order of simple to complex functions for better fault isolation.
The complex tests may rely on the simple test to minimize redundant

code and time.

9-2

MVME332XTFW/D2

Note that the only way to turn off the FAIL LED is to successfully
complete the confidence test without an error.

At the end of the test sequence, if switch S2 on the board is set to
the burn-in mode, the test will toggle the LED to indicate it is
alive, increment the loop counter in the Confidence Test Descriptor,
then repeat the test again. During the burn-in test, if any error
occurs, the LED will be 1it steadily and the test will loop forever
on the failed sub-test. But if the LED is completely blank, this
meags the Tocal CPU is out of sequence due to a catastrophic hardware
condition.

9.4 TEST OUTPUT DISPLAY

Prior to executing any test, the test number is sent to the terminal
attached to the debug port of a diagnostic board. It is also written
into the Composite Status Word of the Confidence Test Descriptor on
the dual-port RAM.

If any test fails during the sequence, its description will also be
displayed on both terminal and the dump area as shown below:

2108 Ram Walking bit failed at 0@f21008 expected=00080000,
read=00@000008 loop until reset

FIGURE 9-2. TYPICAL CONFIDENCE TEST ERROR MESSAGE

9.5 CONFIDENCE TEST DESCRIPTOR

The Confidence Test Descriptor is a reserved area on the dual-port
memory after the IPC CSR space (at offset $18 of the board base
address). It is a structure that the confidence test uses to update
the information regarding failures occurring during the test, or the
number of repeated loops, so that when a failure occurs, a user can
obtain this information by using an off-board debugger command.

Figure 9-3 illustrates the confidence test descriptor. It consists
of the Composite Status Word (CSW), Loop Counter (LC), Fault Address
(FA), Expect Data, and Read Data. The details of each field are
described in the following sections.

9-3

MVME332XTFW/D2

o eeeas +
Base_Addr +$1@ Composite Status
Word
4emmmmemmemeeaaeaas +
(Reserved)
$ommmmmemmemececeeoa +
+$14 Magic Number
T +
+$18 Loop Counter
e e +
+$lc Fatal Counter
Fmmmmmmmmmeme—eoe o +
+$140 Error Counter
4ommmmm e +
+$14 Fault Address
$mmmmm e +
+$18 Expect Data
Formmmmmmmee s +
+$1c Read Data
Fommmmm e +

FIGURE 9-3. CONFIDENCE TEST DESCRIPTOR

9.5.1 Composite Status Word

The composite status word is a 16-bit value that is updated by each
subtest to indicate a subtest has started, successfully completed,
or failed. It will provide information such as subtest number,
submodule number, and status number. Its format is illustrated in
Figure 9-4,

15 12 11 87)
T T $mmmmmemmmeoemeaaas e +
| Subtest | Submodule | Status

Hommmmmmm e Hmmmmmmm e Hommmmmem e +

FIGURE 9-4. COMPOSITE STATUS

9-4

MVME332XTFW/D2

TABLE 9-1. SUBTEST/SUBMODULE NUMBER

Sub-Test Sub-Module Subtest Name Sub-Module Name
) g RESET
1 1 Basic CPU Simple Instruction
2 Complex Instruction
2 1 RAM Walking Bit
2 Byte/Word/Long
4 March
1 ROM CRC checking
1 Dual-Port RAM Walking Bit
2 Byte/Word/Long
4 March
5 2 Extended CPU Complex Addressing
3 Exception
6 1 MK68564 Register Test
2 Tx/Rx Polling
3 Tx/Rx Interrupt
4 Baud Rate
7 1 MC68234 Register Test
2 Timer Counters
3 Timer Interrupt
4 Printer Interrupt
8 1 CSR Register Test
2 Attention Interrupt

SUBTEST

This field should be cleared upon the RESET. A non-zero number
indicates a subtest has started, the subtest names are provided in
Table 9-1.

SUBMODULE

This field should be cleared upon the RESET. A non-zero number
indicates a submodule has started, the submodule names are
provide in Table 9-1.

STATUS

This field indicates a status of a sub-module. Each sub-module
will use this field to supply additional information, such as the
subroutine the code is currently executed, or the port number. A
ZERO always indicates a successful sub-module (no error).

9-5

MVME332XTFW/D2

9.5.2 Magic Number

This field is used to detect the warm/cold start condition. If the
test finds a predefined magic pattern in this field, it will bypass
the whole sequence of the confidence test unless the BURN-IN
condition is set. At the current time, the string of "W332" is
written into this field when the test completes at the first time.

9.5.3 Loop Counter

The loop counter field is a longword (32 bits) and is used to count
the number of loops that the confidence test has passed. It is
useful for burn-in test since the burn-in sequence repeats the
confidence test indefinitely.

9.5.4 Fatal Counter

This field records the number of fatal errors the test encounters
during testing.

9.5.5 Error Counter

This field records the number of non-fatal or soft errors the test
encounters during testing.

9.5.6 Failed Address

The Failed-Address field is used to indicate the target test
location that cause the failure during the test.

9.5.7 Expect Data

This field is used to indicate the data that the test is expecting as
a result of the test.

9.5.8 Read Data

This field indicates that the data has obtained from the test. If it
is different from the "Expect Data" field, the test fails.

9.6 BASIC CPU TEST

This is the first test of the confidence test sequence, it is called
upon RESET. The purpose of this test is to ensure that CPU is able to
execute a minimum set of instructions which may be used in the next
level of sub-test or sub-module. The test should never attempt to
access any RAM space. All instructions should use the CPU’s
internal registers to manipulate its data, if necessary.

9-6

MVME332XTFW/D2

This test is in turn divided into two sub-modules: simple
instruction set and complex instruction set.

9.6.1 Simple Instruction

The simple instruction set consists of ADD, SUB, OR, AND, EXOR, NEG,

CLR, NOT, SWAP, TST, NOP, MOVE, MOVE, CMP, EXG, LEA, and BRANCH.

Those instructions are organized in such a manner as to produce a

final result by using all internal registers as data. This final

;e§¥1§ is checked to determine whether the test has passed or
ailed.

9.6.2 Complex Instruction

The complex instruction set consists of SHIFT, MUL, DIV, DBcc, Scc,
and MOVEC. Once again, those instructions are organized in such a
manner as to produce a final result by using all internal registers
as data. This final result is checked to determine whether the test
has passed or failed.

9.7 LOCAL RAM TEST

This is the second test of the confidence test. It will be executed
before any other tests that use RAM for variables. Since a user may
want to examine the information left over from the last operation,
the test is restricted to write to a specific area allocated at the
Tink time, called TEST-RAM.

9.7.1 Walking Bit

This test mainly checks the circuitry related to all data bit lines
from the CPU to the on-board RAM, such as data paths, input/output
buffers etc. It is intended to check 'the data paths from the CPU to
the RAM array only, not every bit of the RAM array; therefore, a
small portion of the TEST-RAM is tested.

9.7.2 Byte/Word/Long

The purpose of this test is to check out all the signals such as DTACK
and the board’s decoder when the CPU accesses to the RAM. Any
byte/word swapping will be detected in this test.

9.7.3 March

The main purpose of this test is to check the circuitry associated
with all address 1lines, such as address paths, address
muxes/buffers, etc. Its algorithm exercises every bit of the TEST-
RAM in both states, Tow and high.

9-7

MVME332XTFW/D2

9.8 LOCAL ROM TEST

Due to a Targe amount of software stored in the ROMs, a CRC checking
is employed in this test. This algorithmwill detect more error bits
and byte swapping at very high percentage. The last four bytes of
the ROM space are reserved to program the CRC code. This code will be
used to compare with the result of CRC calculation of the rest of ROM
to determine if the test passes or fails.

9.9 DUAL-PORT RAM TEST

This test consists of a set of subtests as described in the Tocal RAM
test, but the target testing is the entire area of the dual-port RAM
except the IPC_CSR and CTDES.

9.10 EXTENDED CPU TEST

This test is the second part of the CPU test, it attempts to execute
several instructions or addressing modes that may be required to
access the RAM.

9.14.1 Complex Addressing

The complex addressing mode is illustrated in Table 9-2. The test
may organize its data in such an order as to produce a final result
which is used to check against a known value to determine if the test
has passed or failed. For more information on the addressing modes,
refer to the "Effective Address" section of the MC68018 User’s
Manual.

TABLE 9-2. ADDRESSING MODES

Parameter Description
(An)+ Address Register Indirect with Post_increment.
-(An) Address Register Indirect with Pre_decrement.
(bd,An, Xn) Address Register Indirect with Index and Base Displacement.
(bd,PC,Xn) PC Indirect with Index and Base Displacement.

9.106.2 Exception

This test executes several instructions that cause the exception
operations to occur and ensure that the CPU is able to handle such
situations in a proper way. The exceptions tested are TRAP,
ADDRESS-ERROR, BUS-ERROR, A-LINE and F-LINE Instructions, Il1legal
Instructions, and RTE.

9-8

MVME332XTFW/D2

9.11 MK68564 TEST

The purpose of this test is to check out the functionality of the
MK68564 Serial Input/Output (SIO) chip in a Tloop-back mode,
including register test, transmit character, receive character, TX
interrupt, and RX interrupt.

9.11.1 MK68564 Register Test

The SIO chip consists of 32 internal registers, most of which are
writable/readable. This test will perform a walking-bit test on
each register to check out the interface between the CPU and SIO and
ensure that data can be stored or retrieved from those registers.

9.11.2 MK68564 Tx/Rx Polling

This test verifies that a character stream sent to the transmitter
of the SIO chip can be received on the receiver via an internal loop
back. The CPU will poll the status bit in the SIO status register to
determine the character coming, the interrupt is masked until
another test.

9.11.3 MK68564 Tx/Rx Interrupt

The main purpose of this test is to verify that the interrupts
generated by the SIO are seen by the CPU. This test may fail because
the SIO’s IRQ 1ine is shorted or open, the interrupt vector is wrong,
the interrupt acknowledge cycle is bad, or the device is faulty. The
interrupts occur when the transmitter becomes empty, or when the
receiver gets a character in its FIFO. The test should distinguish
and verify the condition for each one.

9.12 MC68230 TEST

This test verifies the functionality of the MC68238 Parallel
Interface/Timer (PIT) device. It consists of a register test,
counter test, printer interrupt test, and timer interrupt test.

9.12.1 MC68230 Register Test

The walking bit test 1is performed by this test on every
writable/readable bit of the PIT’s register set to check out the
interface logic between the CPU and the PIT.

9.12.2 MC68238 Counter Test

This test ensures that all counters are able to count down from a
preloaded value. The counters are 1inked together so that when they
reach all zeros, an interrupt condition will be generated, and an
interrupt is issued if it is unmasked.

9-9

MVME332XTFW/D2

9.12.3 M68230 Timer Interrupt

In this test, the timer interrupt is enabled and the counter is
loaded to count down as in the above test to assert its IRQ signal.
This test ensures that the IRQ signal can be seen by the 1ocal CPU.

9.12.4 MC6823@ Printer Interrupt

In this test, the printer output lines are isolated from the printer
connector so that the test pattern will not be send to the printer
device. When data written into the printer double registers is
transmitted, a printer interrupt is generated. The Tocal CPU will
verify that it can see such an interrupt.

9.13 CSR TEST

There are a few readable/writable control registers on the MVME332XT
processor. This test will perform a walking-bit test on every one of
them. It will skip several bits that are not changeable.

9.14 ATTENTION INTERRUPT TEST

This test ensures that a ONE in the ATTENTION bit of the IPC_ CSR will
generate a level 1 interrupt to the local CPU. It also verifies that
the ATTENTION MASK bit in a control register is able to mask such an
interrupt.

9-1¢

MVME332XTFW/D2

CHAPTER 10
LINE DISCIPLINES

10.1 INTRODUCTION

There are several major line disciplines that are currently
supported by the on-board firmware to allow the user to select the
features needed for his/her application. Each line can be selected
at the system initialization or by using "ioct1" system calls (see
termio(7)). A1l lines can be downloaded by the host to perform user
application specifics. The firmware uses an internal line switch
table on its local memory to allow the host to add or to replace any
entry.

10.2 LINE @ - STANDARD UNIX LINE DISCIPLINE

Line # is a standard UNIX line discipline #. It conforms to all
features specified in the termio(7) and stty(l) commands as
described in the SYSTEM V/68 documentation. It consists of:

1. Output processing: character mapping and character filling.

Input processing: character mapping, software handshaking, and
character signaling.

3. Control and Local mode: baud rate, character size, echoing,
hardware handshaking, and parity control.

4. Virtual Terminal handling for 7 terminal types: Tec Scope, Dec
vt6l, Dec vtl@P@, Tektronix 4823, TTY Mod 46/1, Hewlett-Packard
45, and TTY Mod 48/28B.

10.3 LINE 1 - PURE RAW LINE DISCIPLINE

Line 1 is a scaled down version of line @, but it is faster since no
input and output translations are performed. It is useful for
applications that use raw data. It only checks for software
handshake (XON/XOFF) and signaling characters. It supports:

1. Input processing: software handshaking and character signaling.

2. Control and Local mode: baud rate, character size, hardware
handshaking, and parity control.

16.4 LINE 2 - INTERNATIONAL SUPPORT PACKAGE (ISP) LINE DISCIPLINE

This line is a superset of line @, but it includes a capability to
translate from one language to another for the ISP. It allows the
user to download a language translation table conforming to the
XEROX character set standard to the Tocal RAM for subsequent output

18-1

MVME332XTFW/D2

or input translation. This line is slower than the above lines since
it has to perform table look-up for every input or output character.

19.5 LINES 3 THROUGH 6 - USER DOWNLOADABLE LINE DISCIPLINE

These lines are available for the user who needs to perform a
specific application that does not fit into the UNIX standard I/0.
These lines are only accessible after the new line switch table
consisting of their entries is downloaded into the Tocal RAM with
the TCDLOAD and TCLINE commands.

19.6 LINE SWITCH TABLE

As mentioned earlier, the firmware uses a table to switch from one
line to another. This table can be downloaded by the host to replace
or add entries in the table. It consists of seven sets of pointers
pointing to functions that perform character processing for input,
output, and control flow.

Each function is passed a pointer to the device tty structure
containing all information about the device including the termio
structure, INPUT ring buffer, OUTPUT ring buffer, READ ring pointer,
WRITE ring pointer, and user buffers. In addition, a pointer to the
received envelope is also passed to three routines specified in
fields 1 open, 1 ioctl, and 1 _close. The details of the tty
structure will be discussed in the next section.

Figure 18-1 illustrates the format of a typical Tine switch table. A
zero in each field instructs the firmware to use its default pointer
which resides in the on-board ROMs. A non-zero pointer points to the
downloaded user’s functions.

18-2

MVME332XTFW/D2

Open Icp Ocp Toctl Close ctl Gate
e +
Line @ | openf | icp# | ocpd | ioctld l closef | ctl@ | gated |
$----mm-- ----mm-- o---om-- Rt et e R et +
Line 1 l open | icpl | ocpl | ioctld l closed | ctld | gated |
-------- s S Sttt el St Sttt SEEEEE P
Line 2 | open2 | icp2 | ocp2 | ioctl2 | close2 | ct12 | gate2 |
4ommmeee- 4ommmmae $ommmmn-- i ittt eommmmmm- $mmmmmme- +
Line 3 | open3 | icp3 | ocp3 | ioct13 | close3 | ct13 | gate3 |
R -------- EEEEP R 4eo-mooeen $m-mmmeo- o--mmm - e +
Lined | @ | @ | @ | @ | @ | @ | @ |
4o----ee- EREEEET et -----oe- et ---mmm-- o---mm-- +
Line5| @ | 8 | @ | 8 | @ | @ | 8 |
$o-memme- o-meem - $ommmmne- it ommmmmon $o--mmmm- DR +
Line6| @ | @ | @ | @ | @ | o | @ |
R e n e L e L L PP P PP PP PP R +
struct line_switch { /* C declaration *
int “(*1_open)(); /* open function pointer *
int (*1 1cp)(); /* ICP process pointer *
int (*1_ocp)(); /* OCP process pointer */
int (*1_ioct1)(); /* ioctl function pointer *
int (*1 _close)(); /* close function pointer *
int (*1_ct1)(); /* CTL process pointer *
int (*1_gate)(); /* GATE process pointer */

} 1inesw[7];
FIGURE 10-1. LINE SWITCH TABLE FORMAT

19-3

MVME332XTFW/D2

The]following is a description of each field of the line switch
table.

1_open

This field contains a pointer pointing to an OPEN sub-routine that
is called by the Bpp_Receiver when an OPEN packet arrives. It
performs functions necessary for the open sequence such as
asserting the device RTS and DTR, enabling the device interrupt,
or initializing a data structure.

Note that the open command is not a process, it is executed in the
context of the attention interrupt so that only few kernel calls
can be executed in this routine, such as _signal and _wakeup. The
_wait and _sleep calls are prohibited since an innocent running
process can be put to sleep forever. To wait or to sleep on a
certain event, it queues the OPEN packet to the GATE process’
packet queue, then wakes the process up so that the process can
call the kernel primitives.

Figure 1#-2 illustrates a typical call to this sub-routine from
the Bpp Receiver and the open routine itself (assume that line-3
is selected).

%pp_Receiver()

}

envelope = get_envelope(&channel);

packet = envelope->packet pointer;

tty = &ttytab[packet->device_number];

if (packet->command == OPEN)
(*1inesw[tty->t_tio.c_line].1_open)(tty, envelope);

open3(tty, envelope) /* line-3 open() example */
struct tty *tty;
struct envelope *envelope;

if (need_to_wait) (/* hand it to the GATE process */
queue_envelope(&tty->t_gate _env, envelope);
_signal (&tty->t_gate_sem, PREEMPTED);
} else
device_open(tty); /* enable the device */

FIGURE 10-2. L_OPEN EXAMPLE

19-4

MVME332XTFW/D2

1 icp

The function pointed to by this field is executed in the context of
the ICP process to perform input processing for the characters
received in the device INPUT ring. The results of this operation

zi]1 be put in the READ ring on the dual-port RAM ready for the
ost to use.

The ICP process is awakened by the Timer_Handler when there is a
character in the associated INPUT ring. Upon running, the ICP
process calls this function, then goes back to sleep waiting for
the next signal.

Figure 18-3 illustrates a typical call to this sub-routine from
the ICP Process and the icp routine itself (assume that line-3 is
selected).

£CP() /* ICP process */
tty = gettty();
for (33) (/* forever loop */
wait(&tty->t_icp_sem); /* wait for a signal */
(*linesw[tty->t_tio.c_line].1_icp)(tty);
}
}
icp3(tty) /* line-3 icp() example *x/

struct tty *tty;
{

¢ = get_character(&tty->t_iring); /* from INPUT ring */
¢ = translation(c);
put_character(&tty->t_rring, c); /* put into READ ring */

/* check for any one waiting for character */

if (tty->t_read_wakeup) {
envelope = dequeue_envelope(&tty->t_read_wakeup);
bpprtn(envelope); /* return the packet */

FIGURE 19-3. L_ICP EXAMPLE

18-5

MVME332XTFW/D2

1_ocp

The function specified in this field is called by the OCP process
to perform output processing for the characters written by the
host in the WRITE ring. The result of this operation will be put
in the associated OUTPUT ring ready for transmitting to the port.

Same as the ICP process, the OCP process is awakened by the
Timer_Handler when there is a character in the WRITE ring. At the
completion of the function call, it goes back to sleep waiting for
the next signal.

Figure 18-4 illustrates a typical call to this sub-routine from
the OCPJ;rocess and the ocp routine itself (assume that line-3 is
selected).

%CP() /* OCP process *x/

}

tty = gettty();

for (53) /* forever loop */
wait(&tty->t_ocp_sem); /* wait for a signal */
(*1inesw[tty->T_tio.c_line].1 ocp)(tty);

ocp3(tty) /* line-3 ocp() example */

struct tty *tty;
{

¢ = get_character(&tty->t_wring); /* from the WRITE ring */
¢ = translation(c);
put_character(&tty->t_oring, c); /* put into OUTPUT ring */
/* check for any one waiting for character */
if (low_water mark && tty->t_write_wakeup) (
envelope = dequeue_envelope(&tty->t_write_wakeup);
bpprtn(envelope); /* return the packet *x/

FIGURE 19-4. L_OCP EXAMPLE

18-6

MVME332XTFW/D2

1_ioctl

The sub-routine in this entry is called by the Bpp Receiver when
an I0CTL packet is received to carry out various functions for the
IOCTL system calls. Some system calls such as TCGETA, TCGETDL, or
even TCSETA can be performed quickly in this routine since they do
not have to wait for any conditions. But some such as TCSETAW or
TCSETAF will be handed off to the CTL process since they have to
wait for the output rings to drain out completely before changing
the device configuration.

Figure 18-5 illustrates a typical call to this sub-routine from
the Bpp_Receiver and the ioctl routine itself (assume that line-3
is selected).

Bpp_Receiver()
{

if (packet->command == IOCTL)
(*linesw[tty->t_tio.c_line].1_ioctl)(tty, envelope);
}

joct13(tty, envelope) /* line-3 ioct1() example */
struct tty *tty;
struct envelope *envelope;

if (need_to_wait) (/* hand it to the CTL process */
queue_envelope(&tty->t _ctl env, envelope);
_signal(&tty->t_ct1_sem, PREEMPTED);

} else
decode_ioct1_command(envelope, tty);

FIGURE 18-5. L_IOCTL EXAMPLE

18-7

MVME332XTFW/D2

1 _close

This field is the counter part of the 1_open field. It is called by
the Bpp_Receiver when the CLOSE packet arrives to disable a device
interrupt or negate the device modem signals.

If the close needs to wait for the OUTPUT rings to drain out, the
routine transfers this packet to the GATE process, then notifies
the process by calling the _signal kernel primitive.

Figure 18-6 illustrates a typical call to this sub-routine from
the Bpp Receiver and the close routine itself (assume that lTine-3
is selected).

Bpp_Receiver()

if (packet->command == CLOSE)
(*1inesw[tty->t_tio.c_line].1_close)(tty, envelope);
}

close3(tty, envelope) /* line-3 close3() example */
struct tty *tty;
struct envelope *envelope;

if (need_to_wait) { /* hand it to the GATE process */
queue_envelope(&tty->t_gate_env, envelope);
_signal(&tty->t_gate_sem, PREEMPTED);

} else
device_close(tty); /* disable the device */

FIGURE 18-6. L_CLOSE EXAMPLE

18-8

MVME332XTFW/D2

1_ctl

This field points to a function called by the CTL process to
perform any IOCTL commands that wait for certain conditions. The
CTL process is awakened by the sub-routine specified in the ioctl
field as a result of calling the _signal kernel primitive. Upon
running, the CTL process calls the function, then returns to sleep
by invoking the wait kernel primitive.

This function, when running, gets a packet from the IOCTL packet
queue in the tty structure, decodes the command, then executes it.

Figure 18-7 illustrates a typical call to this sub-routine from
th$ CTL f;ocess and the gate routine itself (assume that 1ine-3 is
selected).

%TL() /* CTL process */

tty = gettty();

for (5;) (/* forever loop */
wait(&tty->t_ctl_sem); /* wait for a signal */
(*linesw[tty->t_tio.c_line].1_ctl)(tty);

}
ct13(tty) /* line-3 ct1() example */
struct tty *tty;
{
envelope = dequeue_envelope(&tty->t _ctl_env);
ttywait(tty); /* wait for output rings to drain */
if (envelope->packet_pointer->command == TCSETAW)
ttyflush(F READ); ,
(*tty->t_param)(tty); /* reconfigure the device*/
) bpprtn(envelope); /* return the packet */

FIGURE 19-7. L_CTL EXAMPLE

18-9

MVME332XTFW/D2

1_gate

This field is called by the GATE process upon a signal from the
routines specified in the Open or Close field. When the GATE
process has a chance to run, it calls the function and goes back to
sleep.

The function gets a packet from the GATE packet queue in the device
tty structure, decodes the command, executes the command, and
finally returns the packet back to the host by calling the
firmware function bpprtn().

Figure 16-8 illustrates a typical call to this sub-routine from
the GATE Process and the gate routine itself (assume that line-3
is selected).

%ATE() /* GATE process */

}

tty = gettty();

for (53) /* forever loop */
wait(atty->t _gate_sem); /* wait for a signal */
(*1inesw[tty->t_tio.c_line].1_gate)(tty);

gate3(tty) /* line-3 gate() example */

struct tty *tty;
{

envelope = dequeue_envelope(&tty->t_gate_env);

ttywait(tty); /* wait for output rings to drain */
if (envelope->packet pointer->command == OPEN) (
device_ppen(gty); /* enable device */
else
device close(tty); /* disable device */
bpprtn(envelope); /* return the packet */

FIGURE 10-8. L_GATE EXAMPLE

16-19

MVME332XTFW/D2

10.7 TTY STRUCTURE

Associated with each device, the firmware statically allocates in
its local RAM a data structure called tty structure, that contains
all information about the device. A pointer to such a structure is
passed to every function specified in the line switch table so that
the function is able to obtain the location of the device ring
buffers and other information.

Some fields in the tty structure are reserved for the on-board
lines. Some are used by the device interrupt handler and some are
available to the user for any purpose.

Figure 18-9 illustrates a tty structure in C language style. It
consists of a pointer to a function that handles the device
dependent functions (t proc) and a pointer to the device
configuration sub-routine (t_param). Details of those routines are
also discussed in this section.

18-11

MVME332XTFW/D2

struct tty (

unsigned char t_state; /* internal state */
unsigned char t_cstate; /* control state */
struct termio t_tio; /* terminal control block */
unsigned short t_devnum; /* logical device number */
unsigned short t_event; /* event states */
unsigned short t_pending event; /* event pending flag */
unsigned char reserved_@#[22];
int (*t_proc)(); /* routine for device functions*/
union
MK564 *sio_addr; /* pointer to Serial Chip */
PIT *pit_addr; /* or pointer to Printer Chip */
} t_devaddr; /* device address */
unsigned char reserved 1[512];
unsigned char t_ract[256]; /* receive character action table */
unsigned short t_wsize; /* WRITE ring size = real-1

%
unsigned short t_lwm_w; /* WRITE ring Low_Water Mark *
unsigned short t_rsize; * READ ring size = real-1 *
unsigned short t_lwm_r; * READ ring Low_Water_Mark */
struct ring *t _wring; /: WRITE ring pointer *

¥*
e

struct ring *t_rring; READ ring pointer

struct ring t_oring; OQUTPUT ring structure */
struct ring t_iring; /* INPUT ring structure */
int (*t_param)(); /* routine for device functions*/
unsigned char reserved_2[28];

struct termio t_def_tio; /* open’s default termio */

unsigned char t_user[1024]; /* user buffer, not used by FW */

unsigned short t write_wakeup; /* WRITE WAKEUP envelope queue header*/
unsigned short t_read wakeup; /* READ WAKEUP envelope queue header */
unsigned short t_event_env; * EVENT envelope queue header */
unsigned short t_ctl_env; * [OCTL envelope queue header */

unsigned short t_gate_env; /* GATE envelope queue header */
SEMAPHORE t_icp_sem; /* semaphore for ICP process */
SEMAPHORE t_ocp_sem; * semaphore for OCP process */
SEMAPHORE t_ctl_sem; /* semaphore for CTL process */
SEMAPHORE t_gate_sem; /* semaphore for GATE process */
unsigned char t_init _data[64]; /* inited space */

unsigned char t avaiT[@x188] /* room for future expansion */
} ttytab[9];
FIGURE 10-9. TTY STRUCTURE FORMAT

18-12

MVME332XTFW/D2

The following is a discussion of each field.

t_state

This field contains the current state of the device. Some bits are
set by the open routine and some are set to instruct the device
interrupt handler to send an XON or XOFF character. Table 18-1
provides the bit definitions of this field.

TABLE 18-1. T_STATE BIT DEFINITION

Name Value Description
CARR ON fx@1 Software copy of carrier-present.
TTENABLE #x@2 Output is enabled, else disabled.
TTXON Pxg4 Send an XON character.
TTXOFF Pxg8 Send an XOFF character.
NOT_EMPTY Px20 OUTPUT ring is not empty.
TBLOCK @x40 Remote transmitter is being blocked.
TTBUSY Px80 Device transmitter is busy.
t cstate

This field contains the information about the open and close
commands. Table 18-2 provides the bit positions of this field.

TABLE 18-2. T_CSTATE BIT DEFINITION

Name Value Description
ISOPEN gxd1 Device is being opened.
NOCLOSE Px@2 Do not close a device.
WCLOSE x04 Close is pending or in progress.
HWFC Px@8 Hardware handshake is enabled.

t tio

This field is a working termio structure for a device. The device
is configured based on the information in this structure.
Initially, it is a copy of the default termio structure t_def tio
when the first open is called, but can be modified by some IOCTL
commands such as TCSETA, TCSETAF, TCSETDF, and TCSETP.

18-13

MVME332XTFW/D2

t_devnum

The device number associated with this tty structure is recorded
in this field. Device number @ to 7, and 8 correspond to serial
port @ to 7, and the printer port. The device dependent handler
uses this field to detect the printer device for special handling.

t_event and t_pending_event

The t_event field is set by the device interrupt handler to
indicate an event. The Timer_Handler will wake up the ICP process
associated with this tty structure to return the event back to the
host in the device’s event packet. But if there is no event packet
since it is pending on the host side, the ICP routine should save
all events into the t_pending event field and clear it to zero so
that when the Bpp Receiver receives the EVENT packet, it can
return such pending events back to the host immediately.

For more information about the event codes, refer to the EVENT
packet section.

t_proc

This field is a pointer to a device dependent function to control
the physical device such as the serial chip (MK68564) or the
printer chip (MC6823@). The calling of this function has a format
as below:

(*tty->t_proc)(tty, command);

19-14

MVME332XTFW/D2

Table 1#-3 is a 1ist of all commands supported in the serial driver.

TABLE 18-3. T_PROC COMMANDS

Name Value Description

T_OUTPUT g Enable the device transmitter to output
characters.

T_TIME 1 Stop sending BREAK sequence.

T_SUSPEND 2 Suspend the output, disable the transmitter.

T_RESUME 3 Resume the output, re-enable the transmitter.

T_BLOCK 4 Send an XOFF, negate RTS if hardware handshake
enabled.

T_UNBLOCK 5 Send an XON, assert RTS if hardware handshake
enabled.

T_RFLUSH 6 Flush both INPUT ring and READ ring, and send
an XON if previous character was an XOFF.

T_WFLUSH 7 Flush both OUTPUT ring and WRITE ring, and
resume the transmitter.

T_BREAK 8 Start sending a BREAK sequence until the T_TIME
command is called.

T_PARM 11 Indirectly call device configuration routine
(i.e., mS64param()).

t_devaddr

Depending on the value of the t_devnum field, this can be a pointer
to the printer device which is the base address of the MC68230
device, or to the serial MK68564 device. The device dependent
routines use this field to interface to the device. It is set up
by the board initialization routine.

t ract[]

This is a Receive Action Table and is used by the device interrupt
handler to act on a received character. For example, if a

character

is an XOFF, it disables the device transmitter to

prevent further output. The device interrupt handler uses the
value of the character to index into the table to find the action
code. The action codes are listed in Table 16-4.

16-15

MVME332XTFW/D2

TABLE 10-4. T_RACT[] ACTION CODES

Name Value Description
A_NOP g No special action on the character.
A_XOFF 1 Suspend the output, the received character is
an XOFF.
A_XANY 2 Resume the output on any received character if

the output is suspended and the XANY bit set in
the termio structure.
A_XON 3 Qgrs‘ume the output, the received character is an
A_INTR 4 Set the INTR event bit (E_INTR) in the tp->t_event,
the received character is an INTERRUPT
character.
A_QUIT 5 Set the QUIT event bit (E_QUIT) in the tp->t_event,
the received character is a QUIT character.
A_SWTCH 6 Set the SWTCH event bit (E_SWTCH) in the

tp-> t_event, the received character is a SWITCH
character.

Note that the ioctl routine or process should set up this table based
on the information in the termio structure. For example, if a QUIT
character is changed, the ioctl routines may include the following
lines of C code:

tty->t_ract[old_quit_character] = A_NOP;
tty->t ract[tp->tio.c_cc[VQUIT]] = A_QUIT;

t_wsize
This field contains the mask bits for the WRITE ring. It is used
as a modular number for the ring index to guarantee that the index
into the ring is always in range. For example, the following C
code shows how to get a character from a WRITE ring by using the
get index:

c = tty->t _wring->data[tty->t_wring->get++ & tty->t wsize];
This field is equal to the size of the ring minus 1. Since the ring

size is a power of 2, minus 1 yields a mask field. It is set up
when the INIT packet is received.

18-16

MVME332XTFW/D2

t_Twm_w

The WRITE ring 1ow water mark is calculated when the INIT packet is
received, then saved in this field for later use in the OCP
process. It is equal to a quarter of the WRITE ring size.

t rsize

This field is identical to the t_ wsize field, but is used for READ
ring operations.

t_lwm_r
This is the Tow water mark for the READ ring. It is set to half of
the ring size.

t wring and t_rring

The WRITE ring and READ ring pointers specified in the INIT packet
are converted to the local accessible addresses and saved in these
fields, respectively. They always point to the dual-port memory.

t oring and t_iring

These are the device’s OUTPUT ring structure and INPUT ring
structure. They are currently equal in size (2048 bytes) and
reside in the local RAM since the tty structure is in the local
RAM.

t_param

This is a pointer to a function that configures a device based on
the information in the t_tio field such as baud-rate, character
size, number of parity bits, even or odd parity, hardware
handshake, or hangup a device if the baud-rate is #. The calling
convention is shown below:

(*tty->t_param)(tty);

t_def_tio

This is a default open termio that will be copied to the t_tio
field when the first OPEN packet is received. It can be obtained
or changed with the TCGETDF or TCSETDF command, respectively.

t_user([]

This block is free for user buffers or data structures. It is
initialized to zero at the board initialization and never touched
again by the firmware.

19-17

MVME332XTFW/D2

t_write_wakeup

This field contains an index into the first envelope of the
WRITE_WAKEUP packet received by the Bpp_Receiver on the dual-port
memory. A zero indicates that there is no packet pending in the
queue.

Notice that when accessing the envelope, the OCP process
translates the index to a lTocal accessible address by adding it to
the base address of the local dual-port memory address ($f300048).
Likewise, to access the next envelope, the OCP uses only the lower
word (bit 15-@) of the link pointer in the current envelope to
translate to the address of the next envelope in the queue.

t_read_wakeup, t_even_env,
t ctl_env, and t_gate_env

These fields are the same as the t write wakeup field, but for the
READ WAKEUP, EVENT, IOCTL, and OPEN or CLOSE packet queue.

t_icp_sem, t_ocp_sem,
t ctl_sem, and t_gate_sem

These are the semaphores that the ICP, OCP, CTL, and GATE
processes sleep on. The open, close, and ioct] function specified
in the line switch table uses these semaphores to wake the
appropriate process up by calling the _signal kernel primitive.
The calling convention is shown as below:

#define NO_PREEMPTED g
#define PREEMPTED 1
_signal(&tty->t_ct1_sem, NO_PREEMPTED);

Figure 18-14 illustrates the format of a semaphore structure. It
should be initialized to zero. If the count field becomes
negative, it means that some processes are waiting for a condition
on this semaphore as a result of calling the _wait kernel
primitive. For more information about semaphore, refer to the ADC
Kernel Firmware Manual.

typedef struct semaphore {

short count; /* resource counter for semaphore */
long reservedd; /* kernel use only, do not change */
long reservedl; /* kernel use only, do not change */

} SEMAPHORE;
FIGURE 19-19. SEMAPHORE STRUCTURE

18-18

MVME332XTFW/D2

t_init_data[]

This block is a copy of the initialized data specified in the
Init Info structure of the INIT packet. It is usable for the
downToadable line disciplines to obtain a default parameter from
the device driver’s initialization routine.

t avail[]

This space is free for the downloadable line disciplines. The
firmware initializes it to zero and does not access it again.

19.8 FIRMWARE FUNCTION SUB-ROUTINES

Table 1#-5 provides a list of the firmware functions callable by
downloadable line disciplines. The addresses of these functions can
be obtained by using a TCGETSYM command packet or by the m332xctl

utility command available under SYSTEM V/68 (refer to Appendix L).

TABLE 19-5. FIRMWARE FUNCTION SUB-ROUTINES

Name Description
openg Line @ OPEN function, called by the Bpp_Receiver.
closef Line @ CLOSE function, called by the Bpp_Receiver.
joct1d Line @ IOCTL function, called by the Bpp_Receiver.
gated Line @ GATE function, called by the GATE process.
ct1g Line 8 CTL function, called by the CTL process.
icpd Line @ ICP function, called by the ICP process.
ocpd Line @ OCP function, called by the OCP process.
icpl Line 1 ICP function, called by the ICP process.
ocpl Line 1 OCP function, called by the OCP process.
bpprtn Return a packet to the host.
ttywait Wait for both WRITE ring and OUTPUT ring to drain.

Should be called by a process.

ttyflush Flush input rings or output rings or both.

change_ract

Change Receive-Action-Table based on termio structure.

bcopy Copy a block of data to another place in byte mode.
wcopy Copy a block of data to another place in word mode.
1copy Copy a block of data to another place in Tong word mode.

19-19

MVME332XTFW/D2

TABLE 19-5. FIRMWARE FUNCTION SUB-ROUTINES (cont.)

Name Description

bzero Clear a block of memory in byte mode.

1zero Clear a block of memory in 1ong word mode.

bfill Fi1l a block of memory with a byte pattern.

1fill Fi11 a block of memory with a 1ong word pattern.

sp1[8-7] Set process interrupt level to 4,...,7, return old
Tevel.

splx Set process interrupt level to X, return old Tevel.

splattn Mask the attention interrupt.

splpr Mask the printer device interrupt.

spltimer Mask the tick timer interrupt.

spltty Mask the serial device interrupt.

splhi Mask all interrupts.

getvbr Return the content of CPU’s VBR (Vector Base Register).

getsr Return the content of CPU’s SR (Status Register).

setvec Set up an interrupt handler for a vector.

strncmp String compare.

strcopy String copy.

strien String length.

m564putc Send a character to a port using polling mode, useful
only for debugging.

m23@putc Send a character to the printer port (for debugging
only).

printf Formatted print a message into DUMP-AREA on dual-port
memory.

sprintf Same as printf but into specified buffer.

print Printf and sprintf core function.

19-20

MVME332XTFW/D2

The following sections will describe the detail and the calling
convention of each function.

18.8.1 OPEN@,CLOSE®,10CTLO,GATE®,CTLA, ICPG,0CPd,ICP1, And OCP1 Functions
SYNOPSIS:

ct1g(tty);
icpB(tty);
ocpd(tty);
icpl(tty);
ocpl(tty);
gated(tty);

open@(tty, envelope);
closef(tty, envelope);
joc1t@(tty, envelope);

struct tty *tty;
struct envelope *envelope;

DESCRIPTION:

These are a set of functions that perform character processing for
the standard UNIX line discipline #. Line 1 shares the same
functions with Tine @ excepts icpl() and ocpl().

Downloadable Tines may call these after or before executing some
specific code if they want to conform to the UNIX interface. If no
special actions need to be taken, these functions can be placed
directly into the Tine switch table as in the case of 1ine 1 (refer
to the "Line Switch Table" section).

EXAMPLES:

open3(tty, envelope)
struct tty *tty; struct envelope *envelope;

(
/* perform special action for line 3 */
bzero(tty->t_user, sizeof (tty->t_user));
openf(tty, envelope);

}

19-21

MVME332XTFW/D2

19.8.2 BPPRTN Function
SYNOPSIS:

bpprtn(envelop);
struct envelope *envelope;

DESCRIPTION:

This function will return the packet back to the host’s status
pipe of the channel specified in the status_pipe_number field of
the packet pointed to by the envelope pointer. It will then issue
an interrupt to notify the host by using the vector and level
established in the INIT packet.

EXAMPLES:

ct13(tty)
struct tty *tty;
{

envelope = dequeue_envelope(&tty->t_ct1_env);
bpprtn(envelope);

18-22

MVME332XTFW/D2

18.8.3 TTYWAIT Function
SYNOPSIS:

ttywait(tty);
struct tty *tty;

DESCRIPTION:

This function will put the calling process to sleep until the
WRITE ring, the OUPUT ring, and the device’s transmitter FIFO
become empty.

Note that this function can be called ONLY by a process, not by the
routines specified in the 1_open, 1 close, and 1 ioctl field of the

Tine switch table, since it calls the kernel _delay primitive
which will swap the running process out to the sleep queue.

EXAMPLES:

ct13(tty)
struct tty *tty;

ttywait(tty); /* wait for output rings to drain */
(*tty->t_param)(tty); /* then reconfigure the device */

19-23

MVME332XTFW/D2

10.8.4 TTYFLUSH Function
SYNOPSIS:

ttyflush(tty, flags);
struct tty *tty;

/* option flags */
#define FREAD Px@1 /* flush both INPUT ring and READ ring */
#define FWRITE Px@2 /* flush both OUTPUT ring and WRITE ring */

DESCRIPTION:

This function flushes the output rings and/or the input rings
depending on the option flags set in its argument. A1l characters
in those rings are discarded since it resets the input rings’ put
index equal to get index and the output rings’ get index equal to
the put index to empty the rings.

In the case of flushing the output rings, it also resumes a
suspended transmitter allowing the next write to be transmitted.
In the case of flushing the input rings, it sends an XON character
and asserts the RTS signal if the remote side was previously
blocked. This will allow the remote side to continue sending the
data over to the device.

This function is called by the ioctl routine when the TCFLSH
command packet is received. It may be called in the close routine
to clean up the rings.

EXAMPLES:

joct13(tty, envelope)
struct tty *tty; structure envelope *envelope;

if (envelope->packet_pointer->ioct1_command == TCFLSH)
ttyflush(tty, envelope->packet pointer->ioct1_argument);

19-24

MVME332XTFW/D2

19.8.5 CHANGE RACT Function
SYNOPSIS:

change_ract(tty);
struct tty *tty;

DESCRIPTION:

This function sets up the Receive-Action-Table (RAT) based on the
information in the t_tio field of the tty structure. It is called
when a termio structure (t_tio) is modified so that the device
interrupt handler is able to respond to the new configuration such
as new interrupt character or break suppressing.

EXAMPLES:

ioct13(tty, envelope)
struct tty *tty; structure envelope *envelope;

packet = envelope->packet_pointer;

if (packet->ioctl_command == TCSETA) (
copy(&packet->parameter_block.tio, &tty->t_tio,

sizeof (struct termio));
change ract(tty);

19-25

MVME332XTFW/D2

19.8.6 BCOPY, WCOPY, And LCOPY Functions
SYNOPSIS:

bcopy(src, des, nbytes);
char *src, *des;
unsigned short nbytes;

wcopy(src, des, nwords);
short *src, *des;
unsigned short nwords;

lcopy(src, des, nlwords);
Tong *src, *des;
unsigned short nlwords;

DESCRIPTION:

These are very fast copy functions and are used to duplicate a
block of memory pointed to by the src pointer to another pointed to
by the des pointer. For the sake of speed, they are written in
assembly code for maximum optimization.

Note that wcopy is very useful to copy a structure to another since
most compilers always round a structure to a word boundary.
Therefore, the result of the structure size divided by word size
always yields an integer number.

Also note that any pointer to an ODD address passed to the wcopy()
or lcopy() results in an address error exception which turns on
the FAIL LED, dumps the CPU register set on the dump area, and
finally halts the CPU.

EXAMPLES:

ioct13(tty, envelope)
struct tty *tty; structure envelope *envelope;

weopy(&packet->parameter block.tio, &tty->t tio,
sizeof (struct termio)/sizeof (short));

18-26

MVME332XTFW/D2

10.8.7 BZERO, LZERO, BFILL, And LFILL Functions
SYNOPSIS:

bzero(ptr, nbytes);
char *ptr; unsigned short nbytes;

1zero(ptr, nlwords);
long *ptr; unsigned short nlwords;

bfill(ptr, nbytes, pattern);
char *ptr; unsigned short nbytes;
unsigned char pattern;

1fi11(ptr, nlwords, pattern);
char *ptr; unsigned short 1words;
unsigned long pattern;

DESCRIPTION:

Same as the copy functions, these functions are also written in
assembly code and are used to initialized a block of memory to zero
or to a byte pattern or to a lTongword pattern. They are useful for
table initialization as shown in the following example.

EXAMPLES:

joct13(tty, envelope)
struct tty *tty; structure envelope *envelope;

/* initialize RAT table to no special action characters */
1fill(tty->t_ract, 256/sizeof(long),
(A_NOP<<24)+(A_NOP<<16)+(A_NOP<<8)+A_NOP);

/* then make the CTL-S character as a XOFF character */
tty->t_ract[@x11] = A_XOFF;

19-27

MVME332XTFW/D2

19.8.8 SPL[@-7],SPLX,SPLATTN,SPLPR,SPLTIMER,SPLTTY, And SPLHI Functions
SYNOPSIS:

sp18(); sp11(); spl12(); sp13(); spl4(); sp15(); sp16(); sp17();
splattn(); splpr(); spitimer(); spitty(); splhi();

sp1x(SR);
unsigned short SR;

DESCRIPTION:

These are a set of functions that change the processor interrupt
level to the level implied in the function name and then return the
previous content of the processor’s status register (SR). For
example, sp13 will return the current value of SR and change the
interrupt level to 3 to mask all interrupts equal to or less than

level 3.

splattn(), splpr(), spltimer(), spltty(), and splhi() are
acronyms to spll(), spl4(), spi5(), spl6(), and spl7,
respectively. They are used to mask the attention interrupt,
printer device interrupt, tick timer interrupt, or serial device

interrupt.

Spix() is different in the way of calling. It requires a new value
as an argument which will be loaded into the processor’s status
register (SR). It also returns the previous value of SR before

changing to the new value.

Note that spl1() or splattn() can be used to protect a critical
region between processes since the kernel will not swap the
running process out if the current CPU interrupt level is not

equal to zero.

EXAMPLES:

icp3(tty)

?truct tty *tty;
/* mask attention interrupt and prevent process swapping
old_level = splattn(); /* and save the current SR *

spix(old level); /* restore the previous level */

19-28

*/

MVME332XTFW/D2

16.8.9 GETVBR And GETSR Functions
SYNOPSIS:

unsigned long *
getvbr();

unsigned short
getsr();

DESCRIPTION:

Getvbr() and getsr() return the content of the CPU vector base
register (VBR) and status register (SR), respectively.

EXAMPLES:

open3(tty, envelope)
struct tty *tty; struct envelope *envelope;

extern unsigned long *getvbr, buserr_handler();
/* check for the first time open after close */

if ((tty->t_cstate & ISOPEN) == @) (
/* replace the bus-error handler with the new one */

*(getvbr() + 2) = buserr_handler;

18-29

MVME332XTFW/D2

19.8.10 SETVEC Function
SYNOPSIS:

setvec(vector_number, handler, handler_argument)
int vector number;

int (*handTer)();

int handler_agument;

DESCRIPTION:

This is a generic function allowing an interrupt handler written
completely in C to be executed when an interrupt on the vector
specified in the argument occurs. It also passes an argument
supplied by the caller to the interrupt handler routine so that a

gommon interrupt handler can be developed for all similar
evices.

Note that this works for the interrupt vector only, not for the
bus-error or address error vector (vector 2 and 3), since such
exceptions have a different format on the stack frame.

EXAMPLES:

Assume that the function below will be downloaded into the
MVME332XT’s local memory, then executed to replace a handler for
all serial device interrupts.

download_initialize()
extern new_sio_intr();

vector = @x55;

for (device_number = @; device_number < 8; device_number++) (
setvec(vector, new_sio_intr, device_number)
vector += 4;

}

%*

* New handler, get a character from the device, then put it into
* the INPUT ring ready for the ICP to use.

*

new_sio_intr(device_number)

int device_number;

tty = &ttytab[device_number]; /* get tty pointer */

c = get_char(tty);
put_character(&tty->iring, c);

19-30

MVME332XTFW/D2

18.8.11 STRNCMP, STRCOPY, And STRLEN Functions
SYNOPSIS:

int

strncmp(strl, str2, nchars)
char *strl, *str2;

int nchars;

int
strlen(str)
char *str

strcopy(str_des, str_src)
char *str_des, *str_src;

DESCRIPTION:

These functions are identical to the string functions specified
in the SYSTEM V/68 Programmer’s Reference Manual.

Strncmp() performs a lexicographical comparison of the strings
pointed to by str_src and str_des up to nchars characters and
returns an integer less than, equal to, or greater than zero, when
strl is less than, equal to, or greater than str2, respectively.

Strlen() returns the number of characters in str, not including
the terminating null character.

Strcopy() copies string str_src to string str_des until the null
character has been copied.

EXAMPLES:

joct13(tty, envelope)
struct tty *tty;
struct envelope *envelope;

/* put a message into the host buffer */

strcopy(packet->parameter_block.d1_info.host_addr,
"hello world!!\n");

18-31

MVME332XTFW/D2

18.8.12 M546PUTC And M238PUTC Functions
SYNOPSIS:

m564putc(device_number, c)
int device_number;
char c;

m23@putc(8, ¢)
char c;

DESCRIPTION:

These functions send a character ¢ to the device specified in the
device_number in polling mode to guarantee that the character has
been transmitted before the function returns. They are useful for
printing debug messages when tracing the code.

EXAMPLES:

ioct13(tty, envelope)
struct tty *tty;
struct envelope *envelope;

/* print a message on the printer port */

for(i = @; i < 145 i++)
m23Pputc(8, "hello world!!\n"[i]);

18-32

MVME332XTFW/D2

18.8.13 PRINTF And SPRINTF Functions
SYNOPSIS:

printf(format, arg#, ..., argn);

char *
sprintf(buffer, format, argd, ..., argn);

char *format, buffer;
int argd, argn;

DESCRIPTION:

These functions are identical to those in the SYSTEM V/68
Programmer’s Reference Manual, except that the output of printf()
will be placed in the dump area of the dual-port memory. There is
no floating point format supported in these functions.

Sprintf() places the dutput into the supplied buffer, then
returns the address of the Tast character in the buffer.

EXAMPLES:

printf("today is %d/%d/%d\n", month, date, year);

19-33

MVME332XTFW/D2

190.8.14 PRINT Function
SYNOPSIS:

print(format, arg, putc, putc_arg);
char *format, **arg;
int (*putc)(), putc_arg;

DESCRIPTION:

Print() is a core function of printf() and sprintf(). It parses
the format string and uses the putc() function passed to it as an
argument to output a character. It is useful for a user to
customize the output routine as shown in the example.

EXAMPLES:

The pprintf() performs the exact function as printf(), but all
outputs will be on the printer port.

pprintf(format, args);
char *format;
int args;

extern m23@putc();

print(format, &args, m23@putc, 8);
The dprintf() also performs the same function as printf(), but the
outputs will be sent to the device specified in the argument.
dprintf(device, format, args);
int device;
char *format;
int args;

extern m23@putc(), m564putc();

if (device < 8) /* serial device */
: print(format, &args, m564putc, device);

else

if (device == 8) /* printer device */
: print(format, &args, m23@putc, device);

else

error("invalid device number");

19-34

MVME332XTFW/D2

180.9 FIRMWARE STATIC VARIABLES

Most of the firmware variables are located in the tty structure
except some that are global to all devices. Table 1#-6 provides a
list of global variables of which the address can be obtained by
using the TCGETSYM command packet or by the m332xctl command
available on SYSTEM V/68 (refer to Appendix L).

TABLE 19-6. FIRMWARE GLOBAL VARIABLES

Name Description
ttytab Table of tty structures for all devices.
Tinesw Line discipline switch table.
Tinecnt Number of 1ines available in the Tine switch table.
maxline Maximum number of 1ines the 1ine switch table can have.
roml ines Number of lines in the on-board ROMs.
attn_status The content of the CPU status register (SR) before the
attention interrupt.
timer_status The content of the CPU status register (SR) before the

tick timer interrupt.

The next sub-sections describe the details of the above variables.

18-35

MVME332XTFW/D2

18.9.1 TTYTAB Table
SYNOPSIS:

struct tty ttytab[9];

DESCRIPTION:

Ttytab[] is an array of the devices’ tty structures, one for each
device number, and resides in the 1ocal memory which is accessible
only for the MVME332XT CPU.

The firmware uses the device number found in the packet to index

into this array to obtain the pointer to the device tty structure
as shown in the below example.

EXAMPLES:
bpp_receiver();
struct tty *tty;
tty = &ttytab[packet->device_number];

18-36

MVME332XTFW/D2

19.9.2 LINESW, LINECNT, MAXLINE, And ROMLINES Variables
SYNOPSIS:

struct Tine_switch linesw[7];

short linecnt, maxline, romlines;

DESCRIPTION:

Linesw[] is an array of seven line disciplines in which line @
corresponds to index # and resides in the local memory. The
firmware uses this to switch from one line to another when the
c_line field in the working termio (tty->t_tio) is changed.

Linecnt specifies the number of line disciplines currently set in
the Tine switch table. The CTL process uses this to validate the
c_line field in the packet parameter block when a TCSETA or TCSETP
command is received.

Maxline specifies maximum number of lines the line switch table

can have. The CTL process uses this to validate the parameter of
the TCLINE command.

EXAMPLES:
CTL() /* CTL process */
(*Tinesw[tty->t_tio.c_line].1 _ct1)(tty);

ct13(tty)
struct tty *tty;

if (packet->parameter block.tio.c_line > Tincnt)
packet->error = ENXIO;

19-37

MVME332XTFW/D2

19.9.3 ATTN_STATUS And TIMER STATUS Variables
SYNOPSIS:

unsigned short attn_status;

DESCRIPTION:

Attn_status or timer status records the content of the CPU’s
Status Register (SR) before getting into the attention interrupt
or timer interrupt handlers, respectively.

It is useful for the Bpp_Receiver or the Timer Handler to inform
the signal kernel primitive whether it wants to preempt the
running process or not. If the CPU is running in the context of an
interrupt handler indicated by these variables, do not swap the
process.

EXAMPLES:

open3(tty, envelope)
struct tty *tty;
struct envelope *envelope;

if (attnstatus & Ox@708) /* attention interrupt */
/* occurs inside another */
/* dinterrupt handler */
_signal (&tty->t_gate_sem, NO_PREEMPT);

else
_signal(&tty->t_gate_sem, PREEMPT);

18-38

MVME332XTFW/D2

10.10 KERNEL FUNCTION PRIMITIVES

Table 16-7 provides a list of kernel function primitives. The
details of these can be found in the ADC Kernel Firmware Manual.

TABLE 10-7. KERNEL FUNCTION PRIMITIVES

Name Description
_aging Age the ready 1ist (called by the tick timer interrupt).
_can_timeout Cancel an event timeout (used as a watchdog timer).
_create Create a process ready to run.
_cycle Voluntarily relinquish a time slide.
_delay Put the running process to sleep for a number of ticks.
_deq Dequeue an item from a linked Tist.
_dispatch Activate a process from the ready list to run.
_enq Enqueue an item into a Tinked list.
_exit Remove the running process from existence.
_freemem Deallocate a block of memory, return it to free list.
_get_user Returns the user value from the running process’ PCB.
_getbuf Allocate a buffer from a fixed buffer poll.
_getmem Allocate a block of memory from the free Tist.
_halt Mask a1l interrupts then halt the CPU.
_kerinit Initialize the kernel data structure.
_link Create a 1ink 1ist from a memory poll.
_mask Mask the processor interrupt level to kernel Tevel.
_nullmgr Is a place holder for an idle system.
_preng Enqueue a process onto the ready 1ist based on priority.
_put_user Load a used value into a specified PCB.
_putbuf Deallocate a buffer to a fixed buffer pool.
_receive Receive a standard message.
_recvptr Receive a short form message.
_send Send a standard message.
_sendptr Send a short form message.
_set_timeout Start a watchdog timeout.
_signal Signal a resource/event semaphore.
_sleep Sleep on an event address.
_stop Unmask all interrupts, stop the CPU until interrupted.

18-39

MVME332XTFW/D2

TABLE 18-7. KERNEL FUNCTION PRIMITIVES (cont.)

Name Description
_swap Swap a process image to another.
_timer_int Kernel timer interrupt housekeeping.
_unmask Unmask the processor interrupt level.
_wait Wait on a resource/event semaphore.
_wakeup Wake up all processes waiting on an event address.

The next sub-sections describe some frequently used primitives.

10.18.1 DELAY Primitive
SYNOPSIS:

_delay(nticks);
unsigned long nticks; /* number of timer ticks to delay process */

DESCRIPTION:

This will put the calling process to sleep for the number of timer
ticks specified in nticks, then dispatch another process pending
in the ready to run Tist.

In the current implementation of the firmware, the tick time is
configured to 18 milliseconds.

EXAMPLES:

ct13(tty)
%truct tty *tty;

/* assert RTS for 2@0@ms then negate it */
tty->t_devaddr.sio->xmtctl |= RTS;
_delay(200/10) ;

tty->t_devaddr.sio->xmtctl &= RTS;

10-49

MVME332XTFW/D2

10.10.2 WAIT Primitive
SYNOPSIS:

_wait(semaphore);

struct semaphore {
short count;
long reservedd;
Tong reservedl;

} *semaphore;

DESCRIPTION:

This will put the calling process into a wait list, if the count
field becomes zero or negative, waiting for & signal call from
another process or interrupt handler. Otherwise, the count field
is decremented by one and returns immediately to the calling
process.

Note that the semaphore structure should be initialized to zero
before the first call to this kernel function.

EXAMPLES:
ICP()
for (55) {
wait(&tty->t_icp_sem);
) (*linesw[tty->t_tio.c_line].1 icp)(tty); m
}

18-41

MVME332XTFW/D2

10.18.3 _SIGNAL Primitive
SYNOPSIS:

_signal(semaphore, preempt);
struct semaphore {
short count;
long reservedd;
long reservedl;
} “*semaphore;
int preempt;

DESCRIPTION:

This will wake up a process, if any available, waiting on a
semaphore, then dispatch the process immediately to run if the
process priority is higher than the running process and the
preempt flag is set. The count is also incremented by one. A
positive value in the count field indicates that there is no
process waiting on this semaphore.

EXAMPLES:

bpp_receiver()

if (attn_status & @x@70@) /* attention interrupt occurs */
/* inside another interrupt */
/* handler *
_signal (&tty->t_ct1_sem, NO_PREEMPT);
else
_signal(&tty->t_ct1_sem, PREEMPT);

18-42

MVME332XTFW/D2

19.10.4 SLEEP Primitive
SYNOPSIS:

_sleep(address);
int address;

DESCRIPTION:

This will put the calling process to sleep on an address waiting
for another process or interrupt handler to call the wakeup with
the corresponding address that it sleeps on.

EXAMPLES:

OCP()

while (OUTPUT ring is not empty)
_sleep{&tty->t_oring);

19-43

MVME332XTFW/D2

10.190.5 WAKEUP Primitive
SYNOPSIS:

_wakeup (address);
int address;

DESCRIPTION:

This will will wake up all processes waiting on the address
specified in the address field.

EXAMPLES:

sio_transmitter()

if (OUTPUT_ring is empty)
_wakeup(&tty->t_oring);

10-44

MVME332XTFW/D2

18.11 DOWNLOAD LINE DISCIPLINE EXAMPLE

Assume that the "1ine3.c" file is the file containing all the
routines for 1line discipline 3, which will be downloaded and
executed by the MVME332XT. The format for this example is
illustrated in Figure 18-11.

/***
faeded line3.c : line discipline 3 example.
***/
#include " header.h" /* include data structure declarations */

/* line-3 open() example */

open3(tty, envelope)
struct tty *tty;
struct envelope *envelope;

if (need_to_wait) (/* hand it to the GATE process */
queue_envelope(&tty->t_gate_env, envelope);
} el _signal(&tty->t_gate_sem, PREEMPTED),
else
device_open(tty); /* enable the device */

/* line-3 icp() example */

icp3(tty)
?truct tty *tty;

c = get_character(&tty->t_iring); /* from INPUT ring */
¢ = translation(c);
put_character(&tty->t_rring, c); /* put into READ ring */
/* check for any one waiting for character */
if (tty->t_read_wakeup) (
envelope = dequeue_envelope(&tty->t_read wakeup);
bpprtn(envelope); /* return the packet */

FIGURE 10-11. DOWNLOAD LINE DISCIPLINE EXAMPLE
(PAGE 1 OF 4)

18-45

MVME332XTFW/D2

/* line-3 ocp() exampie */

ocp3(tty)
%truct tty *tty;

c = get_character(&tty->t_wring); /* from the WRITE ring */
¢ = translation(c);
put_character(&tty->t_oring, c); /* put into OUTPUT ring */
/* check for any one waiting for character */
if (low_water mark && tty->t_write_wakeup) {
envelope = dequeue_envelope(&tty->t_write_wakeup);
bpprtn(envelope); /* return the packet */ .

/* line-3 ioct1() example */

joct13(tty, envelope)
struct tty *tty;
struct envelope *envelope;

if (need_to_wait) (/* hand it to the CTL process */
queue_envelope(&tty->t _ctl_env, envelope);
_signal(&tty->t_ct1_sem, PREEMPTED);
} else
decode_ioct1_command(envelope, tty);

/* line-3 close3() example */

close3(tty, envelope)
struct tty *tty;
struct envelope *envelope;

if (need_to_wait) /* hand it to the GATE process */
queue_envelope(&tty->t_gate_env, envelope);
_signal(&tty->t_gate_sem, PREEMPTED);

device _close(tty); /* disable the device */

} else

FIGURE 10-11. DOWNLOAD LINE DISCIPLINE EXAMPLE (cont.)
(PAGE 2 OF &)

18-46

MVME332XTFW/D2

/* Tine-3 ctl1() example */

ct13(tty)
struct tty *tty;
(

envelope = dequeue_envelope(&tty->t _ctl_env);
ttywait(tty); /* wait for output rings to drain
if (envelope->packet pointer->command == TCSETAW) {
ttyflush(F_READ);
(*tty->t_param)(tty);
bpprtn(envelope);

/* reconfigure the device
/* return the packet

/* line-3 gate() example */

gate3(tty)
struct tty *tty;
{

/*

* * ¥

*/

utility.

envelope = dequeue_envelope(&tty->t gate env);
ttywait(tty); /* wait for output rings to drain
if (envelope->packet pointer->command == OPEN) (
: device_ppen(%ty); /* enable device
else

device_close(tty); /* disable device
bpprtn(envelope); /* return the packet

Tinetable[] and linecount are only required by the " m332xctl"
A zero in the linetable field indicates the use of the

default value (only applies to new versions of the firmware, i.e.,
versions later than 7.3).

FIGURE 16-11. DOWNLOAD LINE DISCIPLINE EXAMPLE (cont.)

(PAGE 3 OF 4)

19-47

*/

*

*/
*/
*/

#ifdef OLD_FW_VERSION

MVME332XTFW/D2

/* less than or equal to 7.3

*/

extern opend(), icp8(), ocpB(), ioct1@(), closed(), ct18(), gated(),

icpl(), ocpl();

struct linesw linetable[] = (

/* line @ */ opend,
/* line 1 */ openg,
/* line 2 */ opend,
/* line 3 */ open3,

|5

#else

struct linesw linetable[] =
/* line @ */)
/* line 1 */

/* line 2 *

/* line 3 */ open3, icp3

Y
#endif

icpd, ocpd, ioctld,
icpl, ocpl, ioctld,
icpd, ocpd, ioctld,
icp3, ocp3, iocti3,

ct1d, gated,
ct1d, gated,
ct1d, gatef,
ct13, gate3,

/* greater than 7.3

g’ ﬂ’ 0)
ﬂ, a’ g’
ﬂ’ ﬂ) b}
, ocp3, ioctl3, close

. v .

weaas

’

-

-

waaw
waas

ct13, gate3,

Tong linecount = sizeof linetable/sizeof struct linesw;

FIGURE 19-11. DOWNLOAD LINE DISCIPLINE EXAMPLE (cont.)

(PAGE 4 OF 4)

19-48

*/

MVME332XTFW/D2

18.12 DOWNLOAD PROCEDURE UNDER SYSTEM V/68

Under SYSTEM V/68, the "m332xct1" utility can be used to obtain the
firmware’s symbol table and to download the code to the MVME332XT.

Figure 18-12 illustrates an example of how to compile, link, and
download the file "1ine3.c™

compile 1ine3.c with 680818 C compiler to produce
relocatable file " line3.o".
ccflP -c¢ -0 -0 1ine3.o lined.c

get the symbol table from the first MVME332XT,
then put into file " symtab.1d".
/etc/m332xct1 -s /dev/m332x@8 > symtab.ld

linking to produce executable file " T1ine3".
1d -0 line3 symtab.1d line3.o

download " 1ine3" to the first MVME332XT
/etc/m332xct1 -d 1ine3 -1 /dev/m332x08

FIGURE 19-12. DOWNLOAD PROCEDURE

18-49

MVME332XTFW/D2 n

APPENDIX A - DUAL PORT MEMORY MAP

Figure A-1 illustrates the map of the MVME332XT dual-port memory.
It consists of the IPC Control/Status Register, confidence test
descriptor, dump area, user space, and interrupt vector registers.
The user space is allocated by the host. It is initialized to zero
when reset.

Board Base Address

R e T TR PP +
$FFxx@000
IPC Control/Status Register
(16 bytes)
$FFxx0@10
Confidence Test Descriptor
(32 bytes)
$FFxx0030
Dump Area
(208 bytes)
$FFxx0100
User Space
(65,264 bytes)
$FFxxFFF@

Interrupt Vector Registers
(16 bytes)

+
$FFxx0000
Where: xx is configurable in 8-position switch

FIGURE A-1. DUAL-PORT MEMORY MAP

A-1

MVME332XTFW/D2

APPENDIX B - IPC CONTROL/STATUS REGISTER SPACE

B ittt +
$0000 |-------------o--- IPC Address Register MSW -------------uu---
$00B2 [----------c--un-- IPC Address Register LSW -------------cuu-
$00P4 |- IPC Address Modifier Reg -- [---------- (Unused) ---------
$00@6 [---- IPC Control Register --- | --------- (Reserved) --------
$0008 |---- IPC Status Register ---- [----v-ue- (Reserved) --------
$O0PA |---- IPC Model Data Byte * -- | --------- (Reserved) --------
$000C |- IPC Abort Vector Register * | ---------- (Unused) ---------
$OOPE | ----------mcemmeeean IPC TAS Register --------cccccocoonnomn-

T T +
* Unused

FIGURE B-1. CSR REGISTER MAP

This CSR space is accessible from the VMEbus as well as from local
RAM space. This permits both the host CPU and the IPC CPU to read and
write any location in this CSR space.

CSR address offset: $06

4===== =====s==s=====z==s=====s=s==sss=s=s============ +
1]1|1]1]1]|1|@8|06|0|0|0|0|0|0]|88]|080
5143|218 |9|8|7|6|5]|4[3|2]1]89

$=========== ==== =====+4

I l
oommmmmmm e T --------------------- +
+-- Not Used
+-- inhibit sysfail
4------ ATTENTION BIT
ommmemeom- reset ipc
R TR busy

FIGURE B-2. CSR CONTROL REGISTER BIT ASSIGNMENTS

B-1

MVME332XTFW/D2

CSR address offset: $OE

+-- Test And Set Commands
+-- COMMAND COMPLETE Flag

H— VALID STATUS Flag
R VALID COMMAND Flag

R TEST AND SET Bit

FIGURE B-3. CSR COMMAND INTERFACE FLAGS

TABLE B-1. CSR TEST AND SET COMMANDS

Command Field CSR Command
) reserved
1 Create Channel
2 Delete Channel
3 unassigned
$ffF unass{gned

B-2

MVME332XTFW/D2

APPENDIX C - CONFIDENCE TEST ERROR CODES

These codes reflect the status of the MVME332XT if a failure occurs
during the power-up or reset confidence check. The descriptions
indicate the last operation successfully performed if that code
appears in the display on the diagnostic serial port card and in the
Composite Status Word (CSW) in the Confidence Test Descriptor.

TABLE C-1. CONFIDENCE TEST ERROR CODES

CSW Test Description

$0000 RESET

$1100 Basic CPU Simple Instruction Test
$1200 Basic CPU Complex Instruction Test
$2100 Local RAM Walking Bit Test

$2200 Local RAM Byte/Word/Long Test
$2400 Local RAM March Test

$3100 Local ROM CRC checking Test

$4100 Dual-Port RAM Walking Bit Test
$4200 Dual-Port RAM Byte/Word/Long Test
$4400 Dual-Port RAM March Test

$5200 Extended CPU Complex Addressing Test
$5300 Extended CPU Exception Test

$6100 MK68564 Register Test

$6200 MK68564 Tx/Rx Polling Test

$6300 MK68564 Tx/Rx Interrupt test
$6400 MK68564 Baud Rate Test

$7100 M682308 Register Test

$7200 M68230 Timer Counters Test

$7300 M6823@ Timer Interrupt Test

$7400 M68230 Printer Interrupt Test
$8100 Local CSR Register Test

$8200 Attention Interrupt Test -

Cc-1

$00
$@2
sp4
$06
$08
$OA
$ac
$OE
$10
$12
$14
$16

MVME332XTFW/D2

APPENDIX D - CHANNEL HEADER STRUCTURE

------------- command pipe head pointer msw ---------------
------------- command pipe head pointer 1sw ---------------
------------- command pipe tail pointer msw ---------------
------------- command pipe tail pointer Isw ---------------
------------- status pipe head pointer msw ----------------
------------- status pipe head pointer 1sw -------cuucoono--
------------- status pipe tail pointer msw -------cucuoo-.
------------- status pipe tail pointer 1sw ------cccooonn--
----- interrupt level ------ | ----- interrupt vector -----
----- channel priority ----- | ----- address modifier -----
----- channel number ------- | ---------- valid -----------
--------- datasize --------- | -------- reserved ----------

FIGURE D-1. COMMAND CHANNEL HEADER STRUCTURE

D-1

$00
$@2
$04
$06
$08
$PA

MVME332XTFW/D2

APPENDIX E - BPP ENVELOPE AND PACKET STRUCTURES

... +
------------------------- 1ink MSW --------==--cmcmcomonoooo
------------------------- link TsW -----eccmmmomcmocma e
-------------------- packet pointer msw ---------------------
-------------------- packet pointer Isw ---------------"----
-------- valid flag --------- | ---------- reserved ---------
------------------------- reserved ---------------------oo---
... +

FIGURE E-1.

BPP ENVELOPE FORMAT

E-1

MVME332XTFW/D2

REQUIRED PARAMETERS:

et e EE L L LT +
$00 |----------eemmeeeeee eyecatcher msw -----------cocooanaoo-
$02 |----emeeemeeeeeeeaeee eyecatcher Tsw ------ccocoomcooanaaoo
§g4 ---- command pipe number ---- | ---- status pipe number -----

6 | eccm oo memcmeemeccmmeammeam——aa
Ly B R R e e
$PA fe-emmmmemmmeeee e command --------------e-emmmoooooo
$BC |----mmem et | ------- command dependent ----
1| B R e L LR
$16 |------ device number -------- | cemmm e
$12 |--eemcmmececieeeees joct] command --- mSW ------------------
$14 f------emeeieeeeeeees joctl command --- Tsw -------------mo-o-
$16 [------me-emeeeemaae- joctl argument -- msw ------------------
$18 |--e--emmmmmeeemee joctl argument -- Tsw --------omeoeonnnn
$1IA [-----mmeeemeeme e joct]l mode ------ MSW --------c----omooo-
$1C |--emmmmmmmeemee joct1 mode ------ TSW -ccmccmmmmmmeaaam
Y R e e
$20 | --m oo
LY R e
$24 |-eceeececeecmeceeeeeae error ----- MSW ===----mccmoemnnan
$26 [------m-meemmemmemeeeeeee error ----- TSW -----mmcmeeee e
$28 |----ececceeeeeeeee command dependent ----------c---e--- ----
$2A |- e e et
$2C |---emm e oo
$2E | ---emmemmme e
$30
$32 PARAMETER
$34
$36 BLOCK
$38
$3A (command dependent)
$3C
$3E

R e e +

FIGURE E-2. IPC PACKET FORMAT

E-2

MVME332XTFW/D2

APPENDIX F - DEVICE NUMBER

TABLE F-1. DEVICE NUMBER ASSIGNMENT

Device Number Physical Device
$0 Serial Port @
$1 Serial Port 1
$2 Serial Port 2
$3 Serial Port 3
$4 Serial Port 4
$5 Serial Port 5
$6 Serial Port 6
$7 Serial Port 7
$8 Printer Port

F-1

MVME332XTFW/D2

APPENDIX G - MVME332XT COMMAND SUMMARY

TABLE G-1. MVME332XT COMMAND SUMMARY

Command Code Operation
$09 Init
$01 Read_Wakeup
$@2 Write Wakeup
$43 Open
$04 Toctl
$85 Close
$06 Event

TABLE G-2. IOCTL COMMANDS

Toctl

Commands Value Description

LDOPEN $4408 Set device internal state to open.

LDCLOSE $4401 Clear device internal state, flush all rings.

LDCHG $4402 No operation, return no error.

LDGETT $4408 Get current virtual terminal information into the
termcb structure in the packet.

LDSETT $4409 Set virtual terminal parameters to the new one.

TCGETA $5401 Get a device’s current termio structure.

TCSETA $5402 Change a device’s termio structure to the new one.

TCSETAW $5403 Same as TCSETA but wait for device’s WRITE ring and
: OUTPUT ring to drain.

TCSETAF $5404 Same as TCSETAF but flush the input rings after waiting
for the output rings to drain.

TCSBRK $5405 Transmit a Break Sequence on output (as long as 25@ms).

TCXONC $5406 Suspend or resume the output, send XON or XOFF, assert
or negate RTS or DTR depend on ioct1 argument field.

TCFLSH $5407 Flush WRITE ring and OUTPUT ring, READ ring and INPUT
ring or both pairs depend on ioctl argument field.

TCSETHW $5440 Enable or Disable hardware handshake feature.
TCGETHW $5441 Get current information of hardware handshake.

G-1

MVME332XTFW/D2

TABLE G-2. IOCTL COMMANDS (cont.)

Ioctl
Commands Value Description

TCGETDL $5442 Get the downloadable address and size of MVME332XT
Tocal memory.

TCDLOAD $5443 Download a block of data or code into MVME332XT local
memory.

TCLINE $5444 Copy a 1line discipline switch table previously
downloaded into the internal data structure of
MVME332XT.

TCEXEC $5445 Instruct the firmware to execute a functional address
previously downloaded into MVME332XT Tocal RAM.

TCGETVR . $5446 Get the MVME332XT firmware version and revision
number.

TCGETDF $5447 Same as TCGETA command, but get the default open termio
structure which is used to configure a device when
open.

TCSETDF $5448 Same as TCSETAW command, but change both the default
open termio structure and the working termio
structure.

TCGETSYM $5449 Geg the firmware symbol table to 1ink downloadable
code.

TCWHAT $544A Get all SCCS IDs of the firmware files.

TCGETDS $544C Get the current status of DCD, CTS, DTR, PR FAULT,
PR_POUT, and PR_SELECT.

TIOCGETP $7408 Get device’s current termio structure by using sgttyb
structure.

TIOCSETP $7409 Change device’s termio structure by using sgttyb
structure.

G-2

MVME332XTFW/D2

APPENDIX H - MVME332XT ERROR CODE

TABLE H-1. MVME332XT ERROR CODES

Name Code Descriptions

EIO 5 I/0 Error. Some physical I/0 error. This error
indicates that an abnormal hardware condition has
occurred that prevents future access to the device.

ENXIO 6 No such device or address. I/0 on a device which does
not exist; or I/0 is beyond the 1imit of the device.

ENOMEM 12 Not enough space. Some commands such as create a table
for ISP require allocation of the local memory. If
this request is not satisfied, this error will be
returned to the host.

EEXIST 17 Device or address exists. Attempt to create a existing
table for ISP will receive this error code.

EINVAL 22 Invalid argument. One or more command parameters are
invalid.

H-1

MVME332XTFW/D2

APPENDIX I - MVME332XT COMPONENT PLACEMENT

Cable To
MVME718 Transition Module

ROM
+---+

+---+

+---+
+---4
2 |
2
+---+ +---+
DIAGNOSTIC CONN. PR

FIGURE I-1. MVME332XT CABLE/SWITCH DIAGRAM

Figure I-1 illustrates the locations of the plugs, switches, and
sockets on the MVME332XT that the users must be aware of. The view is
from the component side of the MVME332XT board. The use of each of
these is given in the following table.

The MVME718 transition module is cabled to the P2 connector. The
printer cable is plugged into the Centronics standard connector J4.

I-1

MVME332XTFW/D2

The "even" ROM contains data bytes that maps to even addresses in
the memory. The "odd" ROM contains data bytes that maps to odd
addresses in the memory.

TABLE I-1. BOARD SWITCH AND COMPONENT LOCATIONS

Location Description
J2 Connector for the diagnostic board.
Jé ROM size select jumper (1-2 for 27512, 2-3 for 27256).
J5 Centronics 36-pin connector for printer.
ued Firmware ROM (Even).
us7 Firmware ROM (0dd).
S1 Board Base Address Switches.
S2 Firmware Select Mode (burn-in mode, FAT test mode).

The address mapping switches determine where the MVME332XT board
base address appears in the host memory space (on the VMEbus). The
most significant bit is closest to P2. The switches correspond to
bits 23 through 16 of the address lines. The default setting of the
switches is $011110808 ($78) which represents a base address of
$FF780000 (note that the ON position is @).

The firmware mode selection switch S2 allows a user to select
several modes supported in the firmware to perform burn-in sequence,
final assembly test (FAT), or the firmware. Table I-1 provides the
position of S2 for firmware modes.

TABLE I-2. S2 SELECTION

S2
1 2 3 4 Description
OFF OFF OFF OFF Burn-In test mode
OFF OFF OFF ON FAT test mode
OFF OFF ON ON Firmware mode (Factory Setting)
others Reserved

I-2

MVME332XTFW/D2

APPENDIX J - GENERAL TERMINAL INTERFACE (TERMIO)

A11 of the asynchronous communications ports use the same general
interface, no matter what hardware is involved. Common features of
this interface are presented in this section.

When a terminal file is opened, it normally causes the process to
wait until a connection is established. In practice, users’
programs seldom open these files; they are opened by getty and
become a user’s standard input, output, and error files. The first
terminal file opened by the process group leader of a terminal file
not already associated with a process group becomes the control
terminal for that process group. The control terminal plays a
special role in handling quit and interrupt signals, as discussed
below. The control terminal is inherited by a child process during a
fork(2). A process can break this association by changing its
process group using setpgrp(2).

A terminal associated with one of these files ordinarily operates in
the full-duplex mode. Characters may be typed at any time and are
only lost when the system’s character input buffers become
completely full or when the user has accumulated the maximum allowed
number of input characters that have not yet been read by some
program. Currently, this limit is 256 characters. When the input
Timit is reached, all the saved characters are discarded without
notice.

Normally, terminal input is processed in units of lines. A line is
delimited by a newline (ASCII LF) character, an end-of-file (ASCII
EOT) character, or an end-of-line character. This means that a
program attempting to read is suspended until an entire Tine has
been typed. Also, no matter how many characters are requested in the
read call, one line at most is returned. It is not necessary,
however, to read a whole line at once; any number of characters may
be requested in a read, even one, without losing information.

During input, erase and kill processing is normally done. By
default, the character # erases the last character typed, except
that it does not erase beyond the beginning of the 1ine. By default,
the character @ kills (deletes) the entire input 1ine and optionally
outputs a newline character. Both these characters operate on a
key-stroke basis, independent of any backspacing or tabbing that may
have been done. Both the erase and kill characters may be entered
literally by preceding them with the escape character (\). In this
case, the escape character is not read. The erase and kill
characters may be changed.

J-1

MVME332XTFW/D2

Certain characters have special functions on input. These functions
and their default character values are summarized as follows:

INTR (Rubout or ASCII DEL) generates an interrupt signal which is
sent to all processes with the associated control terminal.
Normally, each such process is forced to terminate, but
arrangements may be made either to ignore the signal or to
receive a trap to an agreed-upon location; see signal(2).

QUIT (Control-| or ASCII FS) generates a quit signal. Its
treatment is identical to the interrupt signal except that,
unless a receiving process has made other arrangements, it is
not only terminated but a core image file (called core) is
created in the current working directory.

SWTCH ASCII NUL is used by the job control facility, shi(1l), to
change the current layer to the control layer.

ERASE (#) erases the preceding character. It does not erase beyond
the start of a line, as delimited by a NL, EOF, or EOL
character. -

KILL (@) deletes the entire line, as delimited by a NL, EOF, or EOL
character.

EOF (Control-d or ASCII EOT) may be used to generate an end-of-
file from a terminal. When received, all the characters
waiting to be read are immediately passed to the program,
without waiting for a newline, and the EOF is discarded.
Thus, if there are no characters waiting, i.e., the EOF
occurred at the beginning of a line, zero characters are
passed back, which is the standard end-of-file indication.

NL (ASCII LF) is the normal line delimiter. It can not be changed
or escaped.

EOL (ASCII NUL) is an additional line delimiter, similar to NL.
Normally, it is not used.

STOP (Control-s or ASCII DC3) can be used to temporarily suspend
output. It is useful with CRT terminals to prevent output
from disappearing before it can be read. While output is
suspended, STOP characters are ignored and not read.

START (Control-q or ASCII DC1) is used to resume output that has
been suspended by a STOP character. While output is not
suspended, START characters are ignored and not read. The
start/stop characters can not be changed or escaped.

J-2

MVME332XTFW/D2

The character values for INTR, QUIT, SWTCH, ERASE, KILL, EOF, and
EOL may be changed to suit individual tastes. The ERASE, KILL, and
EOF characters may be escaped by a preceding \ character, in which
case no special function is done.

When the carrier signal from the data-set drops, a hangup signal is
sent to all processes that have this terminal as the control
terminal. Unless other arrangements have been made, this signal
causes the processes to terminate. If the hangup signal is ignored,
any subsequent read returns with an end-of-file indication. Thus,
programs that read a terminal and test for end-of-file can terminate
appropriately when hung up on.

When one or more characters are written, they are transmitted to the
terminal as soon as previously-written characters have finished
printing. Input characters are echoed by putting them in the output
queue as they arrive. If a process produces characters more rapidly
than they are printed, it is suspended when its output queue exceeds
some limit. When the queue has drained to some threshold, the
program is resumed.

Several ioct1(2) system calls apply to terminal files. The primary
calls use the following structure, defined in < termio.h> :

#define NCC 8

struct termio
unsigned short c_iflag; /* input modes */
unsigned short c¢_oflag; /* output modes */
unsigned short c¢_cflag; /* control modes */
unsigned short c_l1flag; /* local modes */
char c_line; /* line discipline */

unsigned char c_cc[NCC]; /* control chars */

)
CONTROL CHARACTERS

The special control characters are defined by the array c_cc. The
relative positions and initial values for each function are as
follows:

@ VINTR DEL
1 vQuIT FS

2 VERASE #

3 VKILL e

4 VEOF EOT
5 VEOL NUL
6 reserved

7 VSWTCH NUL

J-3

MVME332XTFW/D2

Refer to the section "LOCAL MODES" for information about enabling
and disabling the functions of these characters. As stated in that
section and shown in termio.h, if canonical processing is not set,
positions 4 and 5 contain values for VMIN and VTIME, respectively.

INPUT MODES
The c_iflag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.

BRKINT 000082 Signal interrupt on break.

IGNPAR p000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.

INPCK 9000020 Enable input parity check.

ISTRIP 000040 Strip character.

INLCR 0000100 Map NL to CR on input.

IGNCR 0000200 Ignore CR.

ICRNL pp00400 Map CR to NL on input.

IUCLC 2001000 Map uppercase to lowercase on input.
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing error
with data all zeros) is ignored, that is, not put on the input queue
and, therefore, not read by any process. Otherwise, if BRKINT is
set, the break condition generates an interrupt signal and flushes
both the input and output queues. If IGNPAR is set, characters with
other framing and parity errors are ignored.

If PARMRK is set, a character with a framing or parity error which is
not ignored is read as the three-character sequence: @377, @, X,
where X is the data of the character received in error. To avoid
ambiguity in this case, if ISTRIP is not set, a valid character of
@#377 is read as @377, @377. If PARMRK is not set, a framing or parity
error which is not ignored is read as the character NUL (4).

If INPCK is set, input parity checking is enabled. If INPCK is not
set, input parity checking is disabled. This allows output parity
generation without input parity errors.

If ISTRIP is set, valid input characters are first stripped to seven
bits; otherwise, all eight bits are processed.

If INLCR is set, a received NL character is translated into a CR
character. If IGNCR is set, a received CR character is ignored (not
read). Otherwise, if ICRNL is set, a received CR character is
translated into a NL character.

J-4

MVME332XTFW/D2

If IUCLC is set, a received uppercase alphabetic character is
translated into the corresponding lowercase character.

If IXON is set, start/stop output control is enabled. A received
STOP character suspends output and a received START character
restarts output. A1l start/stop characters are ignored and not
read. If IXANY is set, any input character restarts output that has
been suspended.

If IXOFF is set, the system transmits START/STOP characters when the
input queue is nearly empty/full.

The initial input control value is all bits clear.

OUTPUT MODES
The c_oflag field specifies the system treatment of output:

0POST 000001 Postprocess output.

oLcuc goepaa2 Map lowercase to uppercase on output.
ONLCR 9000004 Map NL to CR-NL on output.

OCRNL 0000010 Map CR to NL on output.

ONOCR 9000020 No CR output at column 4.

ONLRET 000040 NL performs CR function.

OFILL 0000100 Use fill characters for delay.

OFDEL 000200 Fi1l1 is DEL, else NUL.

NLDLY 2000400 Select newline delays:

NLO)

NL1 0000400

CRgLY gﬂﬂ3ﬂﬂﬂ Select carriage-return delays:
CR

CR1 P001000

CR2 0002000

CR3 003000

TABDLY 0014000 Select horizontal-tab delays:
TABO)

TAB1 0004000

TAB2 0010000

TAB3 0014000 Expand tabs to spaces.

BsgLY gﬂZﬂﬂﬂﬂ Select backspace delays:

BS

BS1 0020000

¥¥3LY gﬁ4¢ﬂﬂﬂ Select vertical-tab delays:
VT1 040000

FFgLY glﬂﬂﬂﬁﬂ Select form-feed delays:

FF

FF1 p100000

J-5

MVME332XTFW/D2

If OPOST is set, output characters are post-processed as indicated
by the remaining flags; otherwise, characters are transmitted
without change.

If OLCUC is set, a lowercase alphabetic character is transmitted as
the corresponding uppercase character. This function is often used
in conjunction with IUCLC. ~

If ONLCR is set, the NL character is transmitted as the CR-NL
character pair. If OCRNL is set, the CR character is transmitted as
the NL character. If ONOCR is set, no CR character is transmitted
when at column @ (first position). If ONLRET is set, the NL
character is assumed to do the carriage-return function; the column
pointer is set to @ and the delays specified for CR are used.
Otherwise, the NL character is assumed to do just the Tline-feed
function; the column pointer remains unchanged. The column pointer
is also set to @ if the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for
mechanical or other movement when certain characters are sent to the
terminal. In all cases, a value of @ indicates no delay. If OFILL is
set, fill characters are transmitted for delay instead of a timed
delay. This is useful for high baud rate terminals which need only a
minimal delay. If OFDEL is set, the fill character is DEL;
otherwise, it is NUL.

If a form-feed or vertical-tab delay is specified, it lasts for
about two seconds.

Newline delay lasts about @.10 seconds. If ONLRET is set, the
carriage-return delays are used instead of the newline delays. If
OFILL is set, two fill characters are transmitted.

Carriage-return delay type 1 is dependent on the current column
position, type 2 is about @.10 seconds, and type 3 is about #.15
seconds. If OFILL is set, delay type 1 transmits two fill characters
and type 2 transmits four fill characters.

Horizontal-tab delay type 1 is dependent on the current column
position. Type 2 is about #.18 seconds. Type 3 specifies that tabs
are to be expanded into spaces. If OFILL is set, two fill characters
are transmitted for any delay.

Backspace delay lasts about #.05 seconds. If OFILL is set, one fill
character is transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

J-6

MVME332XTFW/D2

CONTROL MODES
The c_cflag field describes the hardware control of the terminal:

CBAUD 0000017 Baud rate:

B@) Hang up
B5@ g0o0ea1 50 baud
B75 gooaea2 75 baud
B11@ poo0ea3 110 baud
B134 Jufufs o] oL 134.5 baud

B15@ 9000005 150 baud
B200 f0000d6 200 baud
B30 2000087 308 baud
B609 2000010 600 baud
B120@ #000011 1208 baud
B180@ 9000012 1808 baud
B24¢@ 0000013 2400 baud
B480@ 000014 4800 baud
B9600 90000815 9600 baud

EXTA goopdl16 External A
EXTB 0000017 External B
CSIZE [g [1Y) Character size:
CSS g 5 bits

CS6 2000020 6 bits

cs7 0000040 7 bits

Cs8 #000060 8 bits

CSTOPB 0000100 Send two stop bits, else one.
CREAD 0000200 Enable receiver.

PARENB 2000400 Parity enable.

PARODD 2001000 0dd parity, else even.

HUPCL 2002000 Hang up on last close.

CLOCAL p0g4000 Local line, else dial-up.

The CBAUD bits specify the baud rate. The zero baud rate, B@, is used
to hang up the connection. If B@ is specified, the data-terminal-
ready signal is not asserted. Normally, this disconnects the Tine.
For any particular hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both
transmission and reception. This size does not include the parity
bit, if any. If CSTOPB is set, two stop bits are used; otherwise, one
stop bit is used. For example, at 114 baud, two stops bits are
required.

If PARENB is set, parity generation and detection is enabled, and a
parity bit is added to each character. If parity is enabled, the
PARODD flag specifies odd parity if set; otherwise, even parity is
used.

J-7

MVME332XTFW/D2

If CREAD is set, the receiver is enabled; otherwise, no characters
are received.

If HUPCL is set, the 1ine is disconnected when the Tast process with
the line open closes it or terminates, i.e., the data-terminal-ready
signal is not asserted.

If CLOCAL is set, the line is assumed to be a local, direct
connection with no modem control. If it is not set, modem control is
assumed.

The initial hardware control value after open is B3@d, CS8, CREAD,
HUPCL.

LOCAL MODES

The c_1flag field of the argument structure is used by the line
discipline to control terminal functions. The basic line discipline
(@) provides the following:

ISIG P000001 Enable signals.

ICANON 0000002 Canonical input (erase and kill processing).
XCASE 2000004 Canonical upper/lower presentation.

ECHO P000010 Enable echo.

ECHOE 0000020 Echo erase character as BS-SP-BS.

ECHOK 000040 Echo NL after kill character.

ECHONL 0000100 Echo NL.

NOFLSH 0000200 Disable flush after interrupt or quit.

If ISIG is set, each input character is checked against the special
control characters INTR and QUIT. If an input character matches one
of these control characters, the function associated with that
character is performed. If ISIG is not set, no checking is done.
Thus, these special input functions are possible only if ISIG is
set. These functions may be disabled individually by changing the
:a]ue ﬁ; thf control character to an unlikely or impossible value
e.g., 8377).

If ICANON is set, canonical processing is enabled. This enables the
erase and kill edit functions, and the assembly of input characters
into lines delimited by NL, EOF, and EOL. If ICANON is not set, read
requests are satisfied directly from the input queue. A read is not
satisfied until at least VMIN characters have been received or the
timeout value VTIME has expired. This allows fast bursts of input to
be read efficiently while still allowing single character input.
The VMIN and VTIME values are stored in the positions for the EOF and
EOL characters, respectively. The VTIME value represents tenths of
seconds.

J-8

MVME332XTFW/D2

If XCASE is set, and if ICANON is set, an uppercase letter is
accepted on input by preceding it with a \ character, and is output
preceded by a \ character. In this mode, the following escape
sequences are generated on output and accepted on input:

for: use:
\ \I
I \!
A \A
{ \(
} \)
\ \\

For example, A is input as \a, \n as \\n, and W as \\n.
If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If
ECHO and ECHOE are set, the erase character is echoed as ASCII BS SP
BS, which clears the last character from a CRT screen. If ECHOE is
set and ECHO is not set, the erase character is echoed as ASCII SP BS.
If ECHOK is set, the NL character is echoed after the kill character
to emphasize that the 1ine is deleted. Note that an escape character
preceding the erase or kill character removes any special function.
If ECHONL is set, the NL character is echoed even if ECHO is not set.
This is useful for terminals set to local echo (so-called half
duplex). Unless escaped, the EOF character is not echoed. Because
EOT is the default EOF character, this prevents terminals that
respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues
‘associated with the quit and interrupt characters is not done.

The initial line-discipline control value is all bits clear.

1/0 SYSTEM CALLS
The primary ioct1(2) system calls have the form:

joct1(fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGETA Get the parameters associated with the terminal and store
in the termio structure referenced by arg.

TCSETA Set the parameters associated with the terminal from the
structure referenced by arg. The change is immediate.

J-9

TCSETAW

TCSETAF

MVME332XTFW/D2

Wait for the output to drain before setting new parameters.
This form should be used when changing parameters that
affect output.

Wait for the output to drain, then flush the input queue
and set the new parameters.

Additional ioct1(2) calls have the form:

joctl (fildes, command, arg)
int arg;

The commands using this form are:

TCSBRK

TCXONC

TCFLUSH

Wait for the output to drain. If arg is @, then send a break
(zero bits for #.25 seconds).

Start/stop control. If arg is @, suspend output; if 1,
restart suspended output; if 2, send XON character and
assert RTS if hardware handshake is enabled; if 3, send
XOFF character and negate RTS if hardware handshake is
enabled. In addition, if arg is 4, assert RTS; if 5, negate
RTS; if 6, assert DTR; if 7, negate DTR.

If arg is @, flush the input queue; if 1, flush the output
queue; if 2, flush both the input and output queues.

MVME332XTFW/D2

APPENDIX K - MVME332XT DEVICE DRIVER INTERFACE

DESCRIPTION

The MVME332XT driver provides a general interface to the MVME332XT
VMEbus Communication Controller module. The MVME332XT controller
supports up to eight asynchronous serial communication ports and one
Centronics compatible printer port. The MVME332XT driver supports
up to 16 MVME332XT controllers per system.

Each peripheral device connected to the MVME332XT has the same major
device number. The MVME332XT firmware presents a generic serial and
printer device interface to the driver, which can treat them as
identical devices except for error message generation and
interpretation. The driver distinguishes a serial device from the
printer device by its device unit number. Device unit numbers @
through 7 are allocated for the eight serial devices and the printer
is designated unit 8. The least significant 4 bits of the minor
device field are interpreted as the device unit number. Therefore,
16 minor device numbers are required per MVME332XT controller. The
four highest order bits of the minor device number are interpreted
as the controller number.

read(2) Processing

The MVME332XT driver is much simpler than traditional serial I/0
controller drivers since the 1line discipline functions are
performed by the MVME332XT firmware. As such, the MVME332XT driver
simply controls port modes via foct?(2) calls and performs character
buffer I/0 to and from the MVME332XT shared RAM space via copyout()
and copyin() subroutines. The MVME332XT firmware supplies the
processed character data to the driver through the MVME332XT shared
RAM on read(2) calls. The driver can then transfer the processed
characters directly to the user buffer without incurring line
discipline overhead.

When attempting to read from a MVME332XT device that has no data
currently available:

If O_NDELAY is set from a open(2) or fentl(2)
system call, the read returns a @.

If O_NDELAY is clear, the read blocks until data
becomes available.

K-1

MVME332XTFW/D2

write(2) Processing

Writes to a MVME332XT device proceed in a similar manner. The driver
transfers unprocessed character data directly to the MVME332XT
shared RAM with write(2) calls. The MVME332XT firmware performs any
character processing required to complete the character 1/0.

open(2) Processing

When the open(2) system call is made on an MVME332XT serial device or
printer, the following processing will occur:

1. If the minor device number is illegal, then the open(2) will
fail, returning the error status ENXIO.

2. If O NDELAY flag is set, the open returns without waiting for the
carrier (serial port case) or the printer select status (printer
port case). In the serial port case, carrier status is indicated
by the state of the channel’s DCD signal. The analogous signal
for the printer port is the SELECT 1ine, which is asserted by the
printer when it has been selected.

3. If O _NDELAY is clear, the open blocks until the carrier (serial
port case) or printer select is present. If a signal is caught
while waiting for the carrier or select, the open returns with
error status EINTR.

close(2) Processing

Upon a close(2) of the MVME332XT device, the minor device number
must be legal, or the close(2) will fail, returning the error status
ENXIO.

joct1(2) Processing

The MVME332XT driver supports the standard 7oct](2) commands that
apply to terminal files and some conversion aid ioctl commands not
described by termio(7). Several MVME332XT specific ioctl commands
are also supported, which support hardware flow control and
downloading of object code to the MVME332XT. Refer to the
m332xct1(1M) manual pages and the /usr/include/mvme332xt.h file for
more details on the MVME332XT specific 7oct] commands.

The following ioct7(2) system calls have the form:

joct1(fildes, conmand, arg)
struct termio *arg

TCSETA Set the parameters associated with the terminal from the
termio structure referenced by arg. The change is
immediate.

K-2

MVME332XTFW/D2

TCSETAW Wait for the output to drain before setting the termio
parameters. The arg contains a pointer to the termio
structure.

TCSETAF Wait for the output to drain, then flush the input queue
and set the termio parameters. The arg contains a pointer
to the termio structure.

TCSETDF Set the default termio parameters. The arg contains a
pointer to the termio structure.

TCGETDF Get the default termio parameters. The arg contains a
pointer to the termio structure.

TCGETA Get the parameters associated with the terminal and store
in the termio structure referenced by arg.

The following conversion foct7(2) system calls have the form:

joct1(fildes, command, arg)
struct termcb *arg

LDSETT Set the parameters associated with the terminal from the
termcb structure referenced by arg.

LDGETT Get the parameters associated with the terminal and store
in the termcb structure referenced by arg.

The following conversion 7foct](2) system calls have the form:

joct1(fildes, command, arg)
struct sgttyb *arg

TIOCSETP Set the parameters associated with the terminal from the
sgttyb structure referenced by arg.

TIOCGETP Get the parameters associated with the terminal and store
in the sgttyb structure referenced by arg.

The following 7oct7(2) system calls have the form:

joct1(fildes, conmand, arg)
int arg

K-3

MVME332XTFW/D2

TCSBRK Wait for the output queue to drain. If arg is @, then send a
break.

TCXONC Start/stop control. If arg is @, suspend output; if 1,
restart suspended output; if 2, send a XOFF character and
negate the RTS if hardware handshake is enabled; if 3, send
a XON character and assert the RTS if hardware handshake is
enabled; if 4, assert the RTS; if 5, negate the RTS; if 6,
assert the DTR; and if 7, negate the DTR.

TCFLSH If arg is @, flush the input queue; if 1, flush the output
queue; if 2, flush both the input and output queues.

The following are MVME332XT specific ioct! commands. The
m332xct](1M) utility also provides a way for the user to perform

downloads and set/get hardware handshake options. The following
MVME332XT specific 7oct]1(2) system calls have the form:

joctl1(fildes, command, arg)
struct dl_info *arg

The d7_info structure has the following format:

struct d1_info (

unsigned long host_addr; /* host address */
unsigned long ipc_addr; /* IPC address */
unsigned long count; /* number of bytes */

/* to be transferred */
unsigned long extra_long; /* reserved work area § */

unsigned short extra_short; /* reserved work area 1 */

)

The downloadable area starting address is set or returned in
d]_info.ipc_addr and the downloadable area size in bytes is returned
in d]_info.count.

The commands using this form are:

TCGETDL Get download information from the MVME332XT. The arg is a
pointer to a d]_info structure. The downloadable area
information is returned in the d7_info structure.

TCDLOAD Download object code to the MVME332XT. The arg is a pointer
to a di_info structure described above. The host _addr
points to the object code in the MVME332XT shared RAM. The
ipc_addr points to the MVME332XT local RAM base address.
The count is the number of bytes to be downloaded.

K-4

MVME332XTFW/D2

TCGETSYM Get symbol table from the MVME332XT. The arg is a pointer

TCWHAT

TCLINE

TCEXEC

to a dl_info structure described above. The host_addr
points to the buffer in the MVME332XT shared RAM for the
MVME332XT to return the symbol table. The ipc_addr should
be set to # for the first call of the TCGETSYM to indicate
the beginning of the symbol table. It is updated by the
MVME332XT for subsequent TCGETSYM command. At the end of
the symbol table, the MVME332XT returns EOF in the 7pc_addr
field. The count is the number of bytes returned by the
MVME332XT.

This command performs a what function (similar to the UNIX
what utility) and returns a SCCS id (Source Code Control
System ID). The arg is a pointer to a d]_info structure
described above. The host_addr points to the buffer in the
MVME332XT shared RAM. The ipc_addr should be set to @ for
the first call of the TCWHAT to indicate the start of the
TCWHAT function. It is updated by the MVME332XT for
subsequent TCWHAT command. At the end of dumping the SCCS
id, the MVME332XT returns EOF in the 7pc_addr field. The
count is the number of bytes returned by the MVME332XT.

Load line discipline 1linesw table to the MVME332XT
internal data structure. The arg is set to point to the
address of the d7_info structure. The d]_info.ipc_addr is
where the linesw table starts. The dI_info.count is the
number of 1ines the Tinesw tables contains.

The MVME332XT linesw structure is defined below:

struct linesw (
int (*1_open)(
int (*1_icp)()
int (*1_ocp)()
int (*1 _ioctl)
e)
()
)1

); /* open function *
H /* Input Character Process *
H /* Output Character Process */
); /* control function *
); /* close function *

/* control process */
3 /* open/close process */

int (*1_clos

int (*1 _ctl)

int (*1_gate
bE

Execute a user function that is downloaded by a previous
joct] TCDLOAD command. The arg needs to be set to point to
the dJl_info structure. The dI_info.ipc_addr is the
execution function address.

K-5

MVME332XTFW/D2

The following MVME332XT specific joct](2) system call has the form:

joct1(fildes, conmand, arg)
int arg

TCSETHW Set hardware flow control option. If arg is 1, enable
hardware flow control using the RTS/CTS signal pairs; if
arg is @, disable hardware flow control.

}he following MVME332XT specific 7oct](2) system calls have the
orm:

joct1(fildes, command, arg)
int *arg

TCGETHW Return hardware flow control status. If the specified
serial port has hardware flow control enabled, 1 is
returned to the arg integer location; otherwise, @ is
returned.

TCGETVR Return MVME332XT firmware and driver version and revision
number in the longword pointed to by arg. The driver
version number is returned in the most significant byte,
the driver revision number is in the second most
significant byte, the firmware version number is in the
third byte, and the firmware revision number is in the
least significant byte.

Error Return Codes

There are several MVME332XT specific error codes returned in
u.u_error by the MVME332XT when open(2), close(2), read(2),
write(2), or ioctl(2) are called. The following error codes are
defined in /usr/include/sys/mvme332XT.h:

ERR_CHAN NO: Invalid Channel Number. The command or status channel
number used in the packet is invalid.

ERR CMD: Invalid Command. The command packet is invalid.

ERR_UNIT: Invalid Logical Unit Number. The device unit number is
out of range; only @ to 8 are allowed.

ERR_PARM: Invalid Parameter. The packet parameter is invalid.

K-6

MVME332XTFW/D2

Error Messages

The MVME332XT driver generates many different error messages. These
error messages, printed in English, attempt to provide information
to help the operator to diagnose problems. The error messages
displayed by the MVME332XT have the following format:

MVME332XT: MESSAGE on controller X, unit Y

where MESSAGE is the error message describing the symptoms, X is the
controller number, and Y is the unit number.

The following are descriptions for the returned MESSAGE. Note that
some messages include a second line, which indicates that the
associated MVME332XT controller has been disabled as a result of the
error condition.

Create channel error
Controller X disabled

The channel, or communication link between the driver and the
MVME332XT, was not successfully created. The driver must establish
the channel interface before any commands can be dispatched to the
MVME332XT. This error condition typically indicates a MVME332XT
configuration problem or malfunction. The controller s
subsequently marked bad by the driver and any further access
attempts are disallowed.

Initialization error

Controller X disabled
An error was reported by the MVME332XT controller when the driver
sent an initialization command to it. This condition will result if
the driver attempts to size one of the MVME332XT read/write rings to
a non base 2 value.

Unknown interrupt

An interrupt occurred from a MVME332XT controller that was marked
bad or nonexistent.

Corrupted envelopes

This indicates channel corruption in the MVME332XT shared RAM.

K-7

MVME332XTFW/D2

PRINTER is deselected
This message indicates that the printer is deselected. Check the
printer select switch.

PRINTER is out of paper
This indicates that the printer is out of paper. Check the printer
paper supply.

PRINTER fault for unknown reason
This indicates a printer error other than the paper out or the
deselected printer error conditions. Check the printer connections
or refer to the printer manufacturer’s user manual.
Free packet pool is empty

This error message is printed out when the driver needs to send a

command to the MVME332XT device but has no free packet to use due to a
MVME332XT or system level malfunction.

K-8

MVME332XTFW/D2

APPENDIX L - m332xct1 CONTROL UTILITY

SYNOPSIS

m332xctl (-t] -r| -R|-D| -h< on|off|info> | -g |
-s | [-d<dlifile> {-x<sname>]...-1]|-e<fname> }}dev

DESCRIPTION

m332xct] provides a functional control interface to the MVME332XT
Communications Controller. Note that m332xct] provides no support
for the MVME332 hardware and firmware architecture. The following
options and fields are interpreted by m332xct]:

-t Test the existence of the MVME332XT. Return @ if it exists,
else return ENXIO.

-r Get firmware and driver version and revision numbers. The
designated dev should be the printer device.

-R Get firmware version number in short format. The designated
dev should be the printer device.

-D Debug mode.

-q Get downloadable area information from the MVME332XT

controller. The address and size of the download area is
displayed. The designated dev should be the printer device.

-s Get symbol table of the MVME332XT firmware and display. The
designated dev should be the printer device.

-h Hardware flow control handshaking can be enabled or
disabled, and hardware flow control port status can be
queried. Hardware flow control is implemented with the RS-
232C RTS and CTS handshakes.

-d Download a coff file to the MVME332XT. The designated dev
should be the printer device.

-X Exclude a section when downloading. Up to sixteen sections
may be excluded for a particular download operation. This
option must be preceded by the -d option in the command
invocation.

L-1

MVME332XTFW/D2

-1 Instruct the MVME332XT firmware to copy the downloaded line
switch table to its internal data structure. This option
must be preceded by the -d option in the command invocation.

-e Instruct the MVME332XT firmware to execute a user function
in a downloaded file. This option must be preceded by the -d
option in the command invocation.

dev MVME332XT serial I/0 or printer device. dev should be the
printer device for the -g, -d, -r, -R, -s, -1, and -Xx
options.

difile Coff compatible file that is to be linked to the MVME332XT
symbol table before downloading.

sname Section names to be excluded when d1file is downloaded.
fname Function within the d1file that is to be executed.

To obtain the MVME332XT firmware version and revision number,
execute the following m332xct] command:

m332xctl -R /dev/m332xXY
This command issues a mesage of the form:
VR

where V and R are the MVME332XT firmware version and revision
numbers, respectively.

The m332xct] command
m332xctl -h on /dev/m332xXY

enables hardware flow control option for the specified serial I/0
port. The I/0 device to be set is designated by the XY field
throughout this document, where X and Y refer to the MVME332XT
controller and port device numbers, respectively.

Hardware flow control for any MVME332XT serial port may be disabled
by issuing

m332xctl -h off /dev/m332xXY.

Hardware flow control is implemented with the RS-232 RTS/CTS signal
pairs. In this mode, a serial port transmitter is disabled when its
CTS input negates and a receiver negates its RTS output when the
associated receive channel character high water mark has been
reached. A MVME332XT serial port hardware flow control

L-2

MVME332XTFW/D2

configuration may be determined with the following m332xct]
command.

m332xctl -h info /dev/m332xXY
In this example, if hardware flow control is enabled for the
specified port, the following message will be sent to standard
output.

hardware handshake is enabled

If hardware flow control is disabled for the specified port, the
following message will be sent to standard output.

hardware handshake is disabled

To get the start address and size of the MVME332XT download area, use
the following m332xct] command.

m332xctl -g /dev/m332xXY

where /dev/m332xXY must be the MVME332XT printer device. This
restricts downloading and download area information access to root.

The following information is displayed in response to the previous
command:

Downloadable area start address = A4AA, size = S55§

The downloadable coff file should be linked to the displayed start
address before downloading to the MVME332XT firmware, using the
following syntax:

m332xctl -d d1file /dev/m332xXY

where difile is the coff file to be downloaded and /dev/m332xXY is
the MVME332XT printer device name, required for security purposes.

To exclude sections of d1file during the download operation, use
m332xct1 -d d1file -x snamel . . . -xX snamen /dev/m332xXY

where snamel, . . . , snamen are the section names that are to be

excluded during the download operation. The m332xct] command

supports up to 16 excluded section names using the syntax shown.

The MVME332XT firmware supports user supplied line disciplines via

the m332xct]l -d and -1 options, which allow the downloaded line

switch table to be copied to the MVME332XT firmware data structures,
as follows:

L-3

MVME332XTFW/D2

m332xctl -d d1file -1 /dev/m332xXY

where difile is the download file name and /dev/m332xXY is the
MVME332XT printer device special file name, as before. The
downloaded d1file must contain the following symbols:

Symbol Description

- linetable
- Tinecount

Linesw 1ineswitch table
Number of 1ines to be downloaded

Refer to mvme332xt.7 for discussion regarding linesw table
structure. Notice that the linesw table structure defined in
mvme332xt.7 differs from that described in /usr/include/sys/conf.h.
Intimate familiarity with the MVME332XT firmware architecture is
required to successfully port a user developed line discipline.

To download a coff file, dl1file, to the MVME332XT and execute a
downloaded function, fname, use the following syntax:

m332xctl -d d1file -e fname /dev/m332xXY
where d1file is the downloaded file, fname is the function to be
executed by the MVME332XT firmware, and /dev/m332xXY is the
MVME332XT printer device name. Refer to mvme332xt(7) for more
information regarding special file naming conventions.
The -D option enables the debug mode. Option -DD enables the debug
mode at level 2, which results in more comprehensive debug messages.
Either mode is useful for monitoring a downloading operation and for
debugging user developed 1ineswitch and function routines.
FILES

/dev/m332x*

SEE ALSO

termio(7), tty(7), ioct1(2), stty(l), mvme332xt(7).

L-4

MVME332XTFW/D2

APPENDIX M - TOCTL COMMAND OUTPUT (TCWHAT)

The following is a sample output of the TCWHAT command packet or
"m332xctl -r" SYSTEM V/68 utility command.

@(#)close2.c
@(#)cs_topri.c
@(#)cs tostd.c
@(#)ctT2.c
@(#)d1 _icph.c
@(#)d1 ocpfd.c
@(#)dlinit.c
@(#)event2.c
@(#)freecore.c
@(#)gate2.c
@(#)getcore.c
@(#)icp_dual.c
@(#)icp_single.c
@(#)ioctl2.c

@ (#)ispspace.c
@(#)linesw.c
@(#)lowcore.s
@ (#)m564intr.s
@ (#)mS64param.c
@(#)ocp2.c
@(#)open2.c
@(#)ttre2i.c
@(#)ttri2e.c
@(#)ttri2xs.c
@(#)ttrxput.c
@(#)ttxfcs.c
e(#)tty2.c

SN SN SNSNSNSNSNSNSNSNSNSNSNSNSNNSNNN N NNNNNNY
e o e e e e & e e o e e e 6 o 8 s e o s o e e o o e e
bt ot bt ok ok P et N CA) bt bt bt et bt et bt bt bk Q) DND bt bt N et bt N

M-1

MVME332XTFW/D2

APPENDIX N - TIOCTL COMMAND OUTPUT (TCGETSYM)

The following is a sample output of the TCGETSYM command packet or
"m332xctl -s" SYSTEM V/68 utility command. This formatted output
can be included in the linkage editor (1d) command to produce a
downloadable module for the MVME332XT.

MEMORY
) d1_area (RW) : o = @xp0f20688, 1 = @x@PPAf978
SECTIONS
GROUP : (
.text : {
}
.data : {
}
.bss :
}
} > d1_area

reset_vector
ctstart
ct_exception
ctmain
ctinit
burnin

afail

print

printf
sprintf
memput

putc

strncmp
ctcpul

ctram walk

ctram_byteword

ctram_march
ctram_nondes
ctshram_walk
_send
ut_user
:gispatch
_signal

OxP0fco000;
OxPdfchda2;
@x@@fc@abe;
@x@dfchdec;
OxP0fcP628;
PxP@fcP682;
@xP@fcaebd;
Pxp@fchdedc;
@x@BfcPa92;
Px@dfcPaae;
gxp@pfcPaed;
gx@ofcPafd;
PxP@fchb3c;
@x@@fchbic;
PxP@0fchce8;
gxP0fchd42;
Oxg@fchdad;
dx@@fchela;
Px@@fcPe8c;
Px@@fc2la2;
gxPPfc2396;
OxP@fc23e2;
@x@ofc250a;

N-1

_deq
1zero
1fi11
spl7
m23@param
m564putc
ocpd
ttytab
linesw
linecnt
max1ine
terment
ct_desc

PxgBfc25e2;
PxP@pfc59c8;
Gx@0fc59fd;
@x@pfchadc;
Px@dfc623a;
Px0afc6add;
#x@@fc6abb;
gxgafo@8dc ;
gxp0dfoe9dc;
Px@0fBe9dd;
PxP@fde9dl;
PxPBfPe9d2;
OxP0f30010;

N-2

MVME332XTFW/D2

MVME332XTFW/D2

APPENDIX O - FIRMWARE FUNCTION SUB-ROUTINES

Table 0-1 provides a list of the firmware functions callable by
downloadable line disciplines. The addresses of these functions can
be obtained by using a TCGETSYM command packet or by the m332xctl
utility command available under SYSTEM V/68 (refer to Appendix L of
this manual).

TABLE 0-1. FIRMWARE FUNCTION SUB-ROUTINES

Name Description
opend Line @ OPEN function, called by the Bpp_Receiver.
closed Line @ CLOSE function, called by the Bpp_Receiver.
ioct1d Line @ IOCTL function, called by the Bpp_Receiver.
gatefd Line @ GATE function, called by the GATE process.
ctig Line @ CTL function, called by the CTL process.
icpd Line @ ICP function, called by the ICP process.
ocpd Line @ OCP function, called by the OCP process.
icpl Line 1 ICP function, called by the ICP process.
ocpl Line 1 OCP function, called by the OCP process.
bpprtn Return a packet to the host.
ttywait Wait for both WRITE ring and OUTPUT ring to drain.

Should be called by a process.

ttyflush Flush input rings or output rings or both.
change_ract Change Receive-Action-Table based on termio structure.
bcopy Copy a block of data to another place in byte mode.
wcopy Copy a block of data to another place in word mode.
1copy Copy a block of data to another place in Tong word mode.
bzero Clear a block of memory in byte mode.
1zero Clear a block of memory in Tong word mode.
bfill Fi1l a block of memory with a byte pattern.
1fill Fi11 a block of memory with a Tong word pattern.

0-1

MVME332XTFW/D2

TABLE 0-1. FIRMWARE FUNCTION SUB-ROUTINES (cont.)

Name Description
sp1[@-7] ?et 1process interrupt level to #4,...,7, return old
evel.

splx Set process interrupt level to X, return old level.

splattn Mask the attention interrupt.

splpr Mask the printer device interrupt.

spltimer Mask the tick timer interrupt.

spltty Mask the serial device interrupt.

splhi Mask all interrupts.

getvbr Return the content of CPU’s VBR (Vector Base Register).

getsr Return the content of CPU’s SR (Status Register).

setvec Set up an interrupt handler for a vector.

strncmp String compare.

strcopy String copy.

strlen String length.

m564putc Send a character to a port using polling mode, useful
only for debugging.

m23@putc Seg‘nd) a character to the printer port (for debugging
only).

printf Formatted print a message into DUMP-AREA on dual-port
memory.

sprintf Same as printf but into specified buffer.

print Printf and sprintf core function.

0-2

MVME332XTFW/D2

APPENDIX P - KERNEL FUNCTION PRIMITIVES

Table P-1 provides a list of kernel function primitives. The
details of these can be found in the ADC Kernel Firmware Manual.

TABLE P-1. KERNEL FUNCTION PRIMITIVES

Name Description
_aging Age the ready 1ist (called by the tick timer interrupt).
_can_timeout Cancel an event timeout (used as a watchdog timer).
_create Create a process ready to run.
_cycle Voluntarily relinquish a time slide.
_delay Put the running process to sleep for a number of ticks.
_deq Dequeue an item from a 1inked 1ist.
_dispatch Activate a process from the ready 1ist to run.
_enq Enqueue an item into a Tinked 1ist.
_exit Remove the running process from existence.
_freemem Deallocate a block of memory, return it to free list.
_get_user Returns the user value from the running process’ PCB.
_getbuf Allocate a buffer from a fixed buffer poll.
_getmem Allocate a block of memory from the free 1ist.
_halt Mask all interrupts then halt the CPU.
_kerinit Initialize the kernel data structure.
_link Create a 1ink 1ist from a memory poll.
_mask Mask the processor interrupt level to kernel level.
_nulimgr Is a place holder for an idle system.
_preng Enqueue a process onto the ready 1ist based on priority.
_put_user Load a used value into a specified PCB.
_putbuf Deallocate a buffer to a fixed buffer pool.
_receive Receive a standard message.
_recvptr Receive a short form message.
_send Send a standard message.
_sendptr Send a short form message.
_set_timeout Start a watchdog timeout.
_signal Signal a resource/event semaphore.
_sleep Sleep on an event address.
_stop Unmask all interrupts, stop the CPU until interrupted.

P-1

MVME332XTFW/D2

TABLE P-1. KERNEL FUNCTION PRIMITIVES (cont.)

Name Description
_swap Swap a process image to another.
_timer_int Kernel timer interrupt housekeeping.
_unmask Unmask the processor interrupt level.
_wait Wait on a resource/event semaphore.
_wakeup Wake up all processes waiting on an event address.

P-2

