
PRODUCT CODE 72903
41966-00

I

SYSTEM V/68
USER'S GUIDE

®MOTOROLA
Computer Systems

SYSTEM V /68 DOCUMENTATION SET

VOLUME I

Product Code 72912
41975001

SYSTEM V /68 USER'S MANUAL, 72905 (41968-00)
Introduction
Permuted Index
Section 1 - Commands

VOLUME II

SYSTEM V /68 USER'S MANUAL, 72905 (41968-00)
Section 2 - System Calls Section 5 - Miscellaneous Facilities
Section 3 - Subroutines Section 6 - Games
Section 4 - File Formats

VOLUME III

SYSTEM V /68 ADMINISTRATOR'S MANUAL, 72900 (41963-00)
Introduction Section 7 - Special Files
Permuted Index Section 8 - Procedures
Section IM - Commands

SYSTEM V /68 ADMINISTRATOR'S GUIDE, 72901 (41964-00)
Introduction File System Checking
Administrative Guidelines LP Spooling System
Using the System System Activity Package
Accounting

SYSTEM V /68 OPERATOR'S GUIDE, 72904 (41967-00)
Chapter 1 - Getting Started Appendix A - System Specifications
Chapter 2 - System Overview Appendix B - Debugging Commands
Chapter 3 - Using the System Appendix C - Error Messages

SYSTEM V /68 USER'S GUIDE, 72903 (41966-00)
Introduction
Primer
Basics for Beginners
Text Editors

An Introduction to Shell
Source Code Control System (SCCS)
UNIX-to-UNIX CoPy: A Tutorial

VOLUME IV

SYSTEM V /68 PROGRAMMING GUIDE, 72908 (41971-00)
Introduction FOR TRAN
An Introduction to Shell Curses and Terminfo Package
C ,Programming Language Programming Language EFL

SYSTEM V /68 SUPPORT TOOLS GUIDE, 72909 (41972-000)
Introduction Desk Calculator Language (BC)
Maintaining Computer Programs Desk Calculator Program (DC)

(MAKE)
Augmented Version of MAKE Lexical Analyzer Generator (LEX)

The M4 Macro Processor Yet Another Compiler-Compiler (YACC)

The AWK Programming Language Common Object File Format

SYSTEM V /68 ASSEMBLER USER'S GUIDE, 72910 (41973-00)
Introduction Expressions
Warnings Pseudo-Operations
General Syntax Rules Span-Dependent Optimization
Segments, Location Counters, Address Mode Syntax

and Labels Machine Instructions
Types

SYSTEM V /68 CO:MMON LINK EDITOR REFERENCE MANUAL, 72911 (41974-00)
Introduction Notes and Special Procedures
Using the Link Editor Error Messages
Link Editor Command Language Syntax Diagram for Input Directives

VOLUME V

SYSTEM V /68 DOCUMENT PROCESSING GUIDE, 72906 (41969-00)
Introduction Table Formatting Program
Advanced Editing Mathematics Typesetting Program
Stream Editor Memorandum Macros
Nroff and Troff User's Manual Viewgraphs and Slides Macros

SYSTEM V /68 ERROR MESSAGE MANUAL, 72902 (41965-00)
Introduction Index
Error Messages

SYSTEM V/68

USER'S GUIDE

Product Code 72903

Part Number 41966~00

Version 1

EXORmacs, EXORterm, MACSbug, SYSTEM V /68, TENbug, VERSA bug, VERSAdos,
VME/10, and 020bug are trademarks of Motorola Inc. UNIX is a trademark of AT&T Bell
Laboratories, Incorporated. 3B, 3B5, and 3B20 are trademarks of AT&T Technologies.
PDP, VAX, and DEC are trademarks of Digital Equipment Corporation. NOVA and
ECLIPSE are registered trademarks of Data General Corporation. IBM is a registered
trademark of International Business Machines Corp. Tektronix is a registered trademark of
Tektronix, Inc. PRINTRONIX is a trademark of Printronix, Inc. CENTRONICS is a
trademark of Data Computer Corporation. DIABLO is a registered trademark of Xerox
Corporation. C/ A/T System 1 is a trademark of Wang Graphic Systems, Inc. LARK is a
trademark of Control Data Corporation.

The software described herein is furnished under a licensed agreement and may be used only
in accordance with the terms of the agreement.

Copyright @1984, 1985, 1986 by Motorola Computer Systems Inc. All Rights Reserved. No
part of this manual.may be reproduced, transmitted, transcribed, stored in a retrieval system,
or translated into any language or computer language, in any form or by any means, without
the prior written permission of Motorola Computer Systems, Inc., 3013 S. 52nd St., Tempe,
AZ 85282.

Portions of this document are reprinted
from copyrighted documents by permission of

AT&T Technologies, Incorporated, 1983.

PREFACE

The SYS'I'EMV/68 User's Guide, (Part Number 41966-00, Product Code 72903) describes the
capabilities of the SYSTEM V /68 operating system for a new user.

While reasonable efforts have been made to assure the accuracy of this document, Motorola
assumes no liability resulting from any omissions in this document or from the use of the
information obtained therein. Motorola reserves the right to revise this document and to
make changes from time to time in its content without being obligated to notify any person of
such revision or changes.

TABLE OF CONTENTS

1. INTRODUCTION--·····-··---... ------.. ---------·----------.. --............ .. 1.1 General----·-------·-----------------------------------·--
1.2 Contents --..... -----~--------------------------.......... 13 Gl<lllllry_ _ --...................... ________

2. PRIMER ___ __ --........................... -
2.1 Introciuction --2.2 Human Interface_ __ .. __________________ _

2.2.1
2.2.2
2.2.3
2.2.4
2.2.S
2.2.6
2.2.7
2.2.8

Concept of a ~in.. _.. --......................... ...
~g In.

... ~gOff.
Entering Commands. ----------------------------------
Stopping a Program. ~--Mail. ______ ____________________________________ _

Writing to Other Users. ------------------... ------------

Online Manual.------------------------..... -----------
3. BASICS FOR BEGINNERS--............. _ _ ... _____

4.

3.1 Day-to-Day Use

3.2

3.1.1
3.1.2

Creating Files-The Editor.
Filenames. - _

3.1.3 Directories. _
3.1.4 File System Structure
3.1.S
3.1.6
3.1.7

Printing Files.
Moving and Copying Files.-.. ...
Using Files for 1/0 Instead of the Terminal.

3.1.8 Pipt!S.
3.1.9 The Shell
I>cx:ument Preparation
3.2.1 Formatting Packages.
3.2.2
3.2.3

Supp>rting Tools.
Hints for Preparing I>ocuments.

3.2.4 Programming.
3.2.S Shell Programming. • -
3.2.6 Programming in C.
3.2.7 Other l..anguages ••••••••••••·····--------.. -··-·---------

MT EDITORS-----------------·············------------------..---
4.1
4.2

SYSTEM v 168 Editors-------- Tl ·-------------------·····--The ed Text Editor-..------------------------------·--··"···-----·
4.2.1
4.2.2
4.2.3
4.2.4
4.2.S

GeneraL
-------- I I ·-----,-----,----..-..-------··-·----

Eclitin.g Commands. ... _
The Global .Commands. ... -
Si>ecial Characters.
Summary of Commands and Line Numbers. ------------------

- i -

Page

1-1
1-1
1-1
1-2

2-1
2-1
2-1
2-1
2-2
2-2
2-3
2-S
2-5
2-5
2-7

3-1
3-1
3-1
3-1
3-3
3-4
3-7
3-7
3-8
3-9

3-10
3-11
3-11
3-12
3-13
3-14
3-14
3-15
3-16

4-1
4-1
4-1
4-1
4-1

4-14
4-15
4-17

4.3

4.4

The ex Text .Editor ... _ ______ ... _____ --............... ..
4.3.1
4.3.2
4.3.3
4.3.4
4.3.S
4.3.6
4.3.7
4.3.8
4.3.9

Starting the ex Eclitor. ...--~-... ...
.. File Manipulation.

Exceptional Conditions. ..

---------------------..... -----------------Editing Modes.
Command Structure. ------------................. _____________ _
Command Addressing. ___-.. --..............
Command I>es:riptions. __
Regular Expressions and Substitute Replacement Patterns. -------
Option I>eacriptioDL -----------~·_ --................. ..

4.3.10 Umita.tions. -----------------... ------------------------
The vi Text F.d.itor ... -_
4.4.1
4.4.2
4.4.3
4.4.4
4.4.S
4.4.6
4.4.7
4.4.8
4.4.9

--GeneraL
Getting Started. ... ________ _

--------------------........................ --Moving Around in the File.
Making Simple Changes. -....................... _ ______ .._ ___ _
Moving About, Rearranging, and Duplicating Text.
High-Level Commands. --------------------------------Si>eeial Topics. ------... ______________ _
Word Abbreviations.
Additional Information.

__________________________ __ _
4.4.10 Character Functions Summary. -----------------------------

S. .AN IN1"RODUCI10N TO SHEI.L - -..... --................. ..

s.1 General---------------..... ---------------------------..---
5.2 Simple Commands-.. _.. .. --.............................. ...

5.2.1
5.2.2
5.2.3
5.2.4
5.2.S
5.2.6
5.2.7
5.2.8

Background Commands. -------------------------------Input/Output Redirection. ___ _...
Pipelines and Filters.

_ _... ______________________________ _
Filename Generation. --......................... -
Quotin.g And Fsaping. __ _....... ---....... --.............................. ..

The Shell and l.ogiD. ---------------------------------­
Promptin.g by the Shell. ------------------------------­
Summary. --------------------..... -------------------

S.3 Shell Procedures..--
S.3.1
5.3.2
5.3.3
S.3.4
S.3.S
5.3.6
5.3.7
5.3.8
S.3.9

---------~-----------------------

........ -------------------------------
Control Flow: for.
Control Flow: case.
Here Documents.
Shell Variables. ----------------------------------.... -------------------------------------The test Command. ____ _...._ __________ ... ____________ _.... __

---------------------------------Control Flow: while.
Control Flow: if.
Debuging Shell Procedures.

_____ ___________ _.., ________ _....... ...
---------·-·····----------------The man Command. ________._ _.._.._....

S.4 Keyword Parameters..-. ________ ~------11!!'9--.. ·-----.......-
5.4.1
S.4.2
5.4.3
5.4.4
5.4.S
5.4.6
5.4.7
5.4.8

Parameter T,ransmiMion. .. .,. _____________ ··-····· .. - .•-·•-·•··~--
Parameter Substitution.
Comm.uul Substitution. --------------------·······-···-----------·······-··---·••&1••••.••11•••·--· • -------
Evaluation and Quoting. ~
Error Handling._ _..
Fault 1-landling. _, .. ~----
Command Execution. _ _ ...
Invoking the Shell .. __

- ii-

4-18
4-18
4-19
4-20
4-20
4-21
4-21
4-22
4-31
4-32
4-37
4-37
4-37
4-38
4-40
4-43
4-46
4-49
4-50
4-55
4-56
4-60

S-1
S-1
S-1
S-1
S-2
5-2
S-3
S-3
S-5
S-5
S-5
S-5
5-6
S-7
5-8
S-9

S-11
S-12
S-12
S-15
S-15
S-16
S-16
S-17
S-18
S-18
S-20
S-21
S-23
5-25

6. SOURCE CODE CONTROL SYSTEM (SCCS>-----------------------
6.1
6.2

General----------... _ _..._.. _______________________________ _

SCCS For Beginners__ ______ ________ _

6.2.1 Terminology.
---------~----------------------------

6.2.2 Creating an SCCS file via admin. -------------------
6.2.3 Retrieving a file via get. --------------------
6.2.4 Recording Changes via delta. ---------------6.2.S Additional Information About get. ______ ... _ .. _________ _

6.2.6 The help Command. ---------·····-----------------------6.3 I>elta Numt>ering --..... -......._ _________________ __ ...

6.4 SCCS Command Conventiom------------------------6.S SCCS Commands_.. _______________________________ _

6.s.1
6.S.2
6.S.3
6.S.4
6.S.S
6.S.6
6.S.1
6.S.8
6.S.9

----···---------·····-------------------The get Command.
The delta Command.
The admin. Command.
The prs Command.
The help Command.

______ _________________________ _
-----------······--.... ----------------------------------The rm.de!, Command. _..._ --... ..-.._ .. __________ _

-----------------------... ------..-..-
The what Command. ------... ·-------------------··· .. ····­
The scc:ad.iff Comm.and. -------·-----------------------------

6.S.10 The comb Command. ------------------------
6.S.t 1 The val Command. ---··------------------------------

6.6 SCCS Files --..... --..... ---....... ----..--.........._--...................... ___
6.6.1
6.6.2
6.6.3

SCCS file Protections. ---------------------------------SCCS File Form.at. ------------------................................. .
S<:CS file Auditing. ----·-·········· ·-------·····--------------

6.7 An S<:CS Interface Program---------------------
6. 7.1 General. --------------------------·--·------... ------6. 7.2 function. --------------------------····· ··------------6.7.3 A Buie Program.
6.7.4 I inking and Use. ---·····---------------·······--------..... ------------------------·······--------------7. UNIX-to-UNIX CoPy (uucp) TUTORIAL-----............ ______ ~--------

7.1 Introduction ···----·--·---------··-·-·-----------··-------·------
7.2

7.3

7.4

7.1.1 General.
7.1.2 Organiza.tion. ---------·-----------------------------
The Uucp Network
7.2.1 Introducing uucp.
7.2.2 Network Communications.
7.2.3 Business Applications of Uucp.
7.2.4 Network Characteristics.
Uucp Programs and Files
7.3.1 Overview. -----------------------------------·--··--
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6

The Spool Directory. -------------------------·--------
Uucp Directories.
Uucp Programs.

-------------···-------------------·-
Files Involved in Program Execution.
File and Program Interaction. --------.. - .. -·······---.. ----.. -

Using Uucp
7.4.1 Network Architecture: Understanding the Links. _ _ .. _ -
7.4.2
7.4.3

Nami0:g Conventions. __..
Uucp Commands. ______

- iii-

6-1
6-1
6-1
6-1
6-l
6-2
6-3
6-3
6-4
6-S
6-7
6-8
6-9

6-15
6-17
6-18
6-lO
6-20
6-20
6-21
6-ll
6-22
6-22
6-23
6-23
6-23
6-24
6-25
6-lS
6-25
6-25
6-25
7-1
7-1
7-1
7-1
7-3
7-3
7-4
1-S
7-6
7-8
7-8
7-8
7-8

7-10
7-11
7-13
7-15
7-15
7-18
7-19

1.5

7.6
7.7

7.8

7.9

7.10

7.11

JOB CONTROL -----... --~---------------~--· .. -----.......... ____ _
7.5.1
7.5.2
7.5.3
7.5.4
1.5.5

Notification.. ----·--....................... -
Monitoring a Job Through LOGFil..E.
Diagnostic Me~ges From LOGFILE.
Job ID Numbers and uustat.
Job Termination. Requeuing. --

The Uucp User's Network: Usenet ----------------------------
Administrator's Overview of Uucp Programs ...
7.7.1 Background.
7.7.2 uucp Subdirectory. -----~M
7.7.3
7.7.4

UNIX-to-UNIX CoPy Operation.
uucico Processing.

Administrative Concerns
7.8.1 System Security.
7.8.2
7.8.3

Interconnection Methods.
Administrative Work.load.

Maintenance and Administration
7.9.1
7.9.2

Maintenance Using cron.
uucp File Maintenance. ------------------------------Installation __

7.10.1
7.10.2
7.10.3
7.10A
7.10.5
7.10.6
7.10.7
7.10.8
7.10.9

Mod.ifying the Kernel. .. __ ------..... - -

Initiating Terminal Lines: Getty. -----------------------

Password& ___ -------------------------------~
L.sy& ------~-------~------------------~--------L-devices.
L-dialcodes. ··--·····-······-·····--···--·-·-··-···-····-· .. ·-··········---·····-· .. ·· -··-·····-·-··-·········-······················ .. -···---·-·--·-··-······ .. ··
L.cmds. ······-···-··--······--·····----················--······--···········-·····-···-
USERFILE. ··········-······-·······················-··········--············-···················· FWDFILE, ORIGFILE. ········-········-·····-···-·----------·----··-··-

7 .10.10 Reconfiguring uucp. ·-···--···--·············-······-···-··---··--·--·----···­
l)ebu gging Uucp ---··---·-·-··---·--·----·---·-·····---···-·····-·-----·····

LIST OF FIGURES

Figure 6-1.

Figure 6-l.
Evolution of an SC:CS File---··-·-··-··············-·-·-·--- ··· ·····-
Tree StructUre with Branch Deltu _. ______ , " ____ ,. .. , ---···· -•• ----

7-23
7-23
7-23
7-24
7-27
7-27
7-28
7-28
7-28
7-29
7-32
7-36
7-39
7-39
7-40
7-40
7-41
7-41
7-42
7-43
7-43
7-45
7-45
7-46
7-48
7-49
7-49
1-50
7-51

, 7-51
7-53

6-S

6-6

Figure 6-3. Extend.in.a the Branchin.1 Concept ---·····-· ·-· 1...... 6-7

figure 6-4. SC:X::S Interface Program "inter.c" -·· •11•• • - 6-28

Figure 7-1. Basic Uucp Network. - .. -_.

Figure 7-2. Branch Diagram of uucp Directories and Files-----------------­

Figure 7-3. View of uucp Network. from the System home-------------------

Figure 7-4. Expanded Diagram of uucp Files -------------------------....

- iv -

7-4

7-9

7-17

7-30

LIST OF TABLES

Table 5-1. Grammar--.. - 5-25

Table S-2. Metacharacters and Reserved Words-------------------------- 5-26

Table 6-1. Determination of New SID-------------------------------- 6-27

Table 7-1. Permission Modes for Uucp Program Files ---------------------- 7-31

- v -

MOTOROLA COMPUTER SYSTEMS INTRODUCTION

1. INTRODUCTION

1.1 General

Two document types provide information about SYSTEM V/68: manuals and guides. The
manuals describe commands, facilities, features, and error messages of the system. The guides
provide supplemental details and instructions for system implementation, administration, and
use. The manuals are organized as alphabetized entries within tabbed sections. The SYSTEM
V/68 User's Manual contains sections 1 - 6. The SYSTEM V/68 Administrator's Manual
contains sections lM, 7, and 8. Throughout the documentation, references to these manuals
are given as name(section). For example, chroot(1M) is a reference to the chroot entry in
section lM of the SYSTEM V/68 Administrator's Manual. The following conventions
identify arguments, literals, and program names:

• Boldface strings are literals and are to be typed as they appear.

• Italic strings represent substitutable argument prototypes and program names .

• Square brackets crn indicate that an argument is optional.

• Ellipses(. ..) show that the previous argument prototype may be repeated.

1.2 Contents

The purpose of this guide is to describe and illustrate capabilities of SYSTEM V/68 for a new
user. The guide supplements the information provided in the SYSTEM V/68 User's Manual
by grouping together the commands and facilities needed to accomplish various tasks. The
following paragraphs provide brief descriptions of the contents of each major section in the
guide. Following these paragraphs, a glossary of terms is provided.

• Primer. This section provides basic instructions for accessing the operating system.

• Basics For Beginners. This section provides information about creating and using files
and directories, preparing documents, and programming. It also includes information about
the UNIX-to-UNIX Communications Package (uucp(lc)).

• Text Editors. This section provides information about the ed(l), exCl), and vi(l) text
editors.

• An Introduction to Shell. This section provides information about both basic and
advanced features of the shell command programming language. Commands, pipelines and
filters, shell procedures, and keyword parameters are described.

• Remote Job Entry (RJE). This section is a general introduction to RJE facilities. NOTE:
RJE is not supported in the current release of SYSTEM V /68.

• Source Code Control System (SCCS). This section provides information about the SCCS
facility for documenting and controlling changes in source code files. Terminology,
commands, conventions, and files are described.

• UNIX-to-UNIX CoPy Tutorial. The UNBC:-to-UNIX CoPy (uucp) programs are covered in
depth in this tutorial. The first half of the tutorial addresses the novice user and describes,
step-by-step, how to send or receive files, mail and commands over the international uucp
network. The latter half contains detailed installation, maintenance and debugging
information needed by the system administrator. Administrators should not attempt to
install uucp without having read the tutorial thoroughly.

1-1

INTRODUCTION MOTOROLA COMPUTER SYSTEMS

1.3 Glossary

The following list defines terms and acronyms used in this volume that may not be familiar
to the user.

argument-Words following the command on a command line that provide information
necessary to execute a program. Command arguments are often filenames.

ASCII-American Standard Code for Information Interchange.

background-A program execution mode in which the shell does not wait for the command
to terminate before prompting for another command.

C language-A general purpose, low level programming language used to write programs
(such as numerical, text-processing, and data base) and operating systems.

command-The first word of a command line. It is the name of an executable file that is a
compiled program.

command line-A sequence of nonblank arguments separated by blanks or tabs typed in by a
user. The first argument usually specifies the name of a command.

command list-A sequence of one or more simple commands separated or ended by a new
line or a semicolon.

command procedure-A command procedure is an executable file that is not a compiled
program. It is a call to the shell to read and execute commands contained in a file. A sequence
of commands may be preserved for repeated use by saving it in a file called a shell procedure,
a command file, or a runcom according to preference.

command substitution-When the shell reads a command line, any command or commands
enclosed between grave accents ('-.') are executed first and the output from these commands
replaces the whole expression('.-').

current working directory-The current point of reference for accessing data within the
file system.

delta-A set of changes made to a file that is stored by the SCCS.

directory-A type of file that is used to group and organize files and other directories.

EOF-The End-Of-File character is the same as an ASCII EOT character. See EOT.

EOT-The End-Of-Text character is generated by holding down the "CONTROL" key and
pr~ing the lowercase "d" key once. The EOT is used to terminate the shell which usually
logs a user off the system.

erase character-The. character that is used to delete the previous character on the current
line. To turn off the special meaning of the erase character, it must be preceded with a "\".
By default, the erase character is#. See stty(t) to change the default character.

Ale-An organized collection of information containing data, programs, or both, which allows

1-2

MOTOROLA COMPUTER SYSTEMS INTRODUCTION

users to store, retrieve, and modify information. A simple filename is a sequence of characters
other than a slash (/).

:filter-A command that reads its standard input, transforms it in some way, and prints the
result as output.

foreground-A program execution mode in which the shell waits for the command to
terminate before prompting for another command.

full pathname-The pathname of a specific file starting from the root directory.

group identification number (gid)-A unique number assigned to one or more logins that is
used to identify groups of related users.

here documents-A command procedure that has the form command << eofstring and
causes the shell to read subsequent lines as standard input to the command until a line is
composed of only the eofstring is read. Any arbitrary string can be used for the eofstring.

HOME-Another name for the login directory.

in-line input documents-See here documents.

keyword parameters-An argument to a command procedure that has the form
name=value command argl arg2 . • . here name is called the keyword parameter. This
allows shell variables to be assigned values when a shell procedure is called. The value of
name in the invoking shell is not affected, but the value is assigned to name before execution
of the procedure. The arguments (argl arg2 ...) are available as positional parameters
($1 $2 .. .).

kill character-The character that is used to delete all the characters typed before it on the
current line. To turn off the special meaning of the kill character, it must be preceded with a
"\". By default, the kill character is@. The default character can be changed via stty(l).

login-A procedure that provides a user access to SYSTEM V /68.

login name-A unique string of letters and numbers used to identify a login.

log off-A procedure that disconnects the user from SYSTEM V /68.

memorandum macros-The general purpose package of text formatting macros used with
nroff and troff to produce many common types of documents.

metacharacters-Characters that have a special meaning to the shell, for example: <, >, *,
?, I, &, $, ;, (,), \, ", ', , ' [,].

mode-An absolute mode is an octal number used with chmod(l) to change permissions of
files.

MRs-Modification Request numbers are recorded within each delta to an SCCS file to
identify the reason that prompted the file revision, e.g., a trouble report, change request,
trouble ticket etc.

1-3

INTRODUCTION MOTOROLA COMPUTER SYSTEMS

nroff-A text formatting program for driving typewriter-like terminals and printers to
produce a screen copy or a hardcopy.

parent directory-The directory immediately above another directory. A " .. " is the
shorthand name for the parent directory. To make the parent directory of your current
working directory your new current directory enter the command: cd .•

partial pathname-The pathname between the current working directory and a specific file.

password-A string of up to 13 characters chosen from a 64 character alphabet(.. \, 0-9, A-Z,
a-z).

pathname-A sequence of directory names separated by the I character and ending with the
name of a file. The pathname defines the connection path between some directory and a file.

pipe-A simple way to connect the output of one program to the input of another program, so
that each program will run as a sequence of processes.

pipeline-A series of filters separated by the character I. The output of each filter becomes
the input of the next filter in the line. The last filter in the line will write to its standard
output.

positional parameters-Arguments supplied with a command procedure that are placed into
variable names $1, $2, ... when the command procedure is invoked by the shell. The name of
the file being executed is positional parameter $0.

primary prompt-A notification (by default "$ ") to the user that SYSTBv1 V /68 shell is
ready to accept another request.

process-A program that is in some state of execution. The execution of a computer
environment including contents of memory, register values, name of the current directory,
status of open files, information recorded at login time, and various other items.

program-Software that can be executed by a user.

SCCS-The Source Code Control System is a collection of SYSTBv1 V/68 commands that
monitors changes to text files and creates an audit trail for each change.

secondary prompt-A notification (by default "> ") to the user that the command typed in
response to the primary prompt is incomplete.

shell-A SYSTBv1 V/68 user program written in C language that handles the communication
between the system and users. The shell accepts commands and causes the appropriate
program to be executed.

shell procedure-See command procedure.

SID-The SCCS IDentification string identifies a particular version of a file and is composed of
at most four components separated by periods (release.level.branch.sequence).

standard input-The standard input of a command is sent to an open file that is normally
connected to the keyboard. An argument to the shell of the form "< file" opens the specified

1-4

MOTOROLA COMPUTER SYSTEMS INTRODUCTION

file as the standard input thus redirecting input to come from the file named instead of the
keyboard.

standard output-Output produced by most commands is sent to an open file that is
normally connected to the printer or screen. This output may be redirected by an argument to
the shell of the form"> file" which opens the specified file as the standard output.

text editor-An interactive program (ed) for creating and modifying text, using commands
provided by a user at a terminal.

troff-A text formatting program for driving a phototypesetter to produce high quality
printed text.

user-defined variables-A user variable can be defined using an assignment statement of the
form name=value where name must begin with a letter or underscore and may then consist
of any sequence of ietters, digits, or underscores up to 512 characters. The name is the
variable. Positional parameters cannot be included in the name.

user identification number (uid)-A unique number assigned to each login that is used to
identify users and the owner of information stored on the system.

variables-A variable is a name representing a string value. Variables that are normally set
only on a command line are called parameters (positional parameters and keyword
parameters). Other variables are names to which the user (user-defined variables) or the shell
may assign string values.

1-5

INTRODUCTION MOTOROLA COMPUTER SYSTEMS

NOTES

1-6

MOTOROLA COMPUTER SYSTEMS PRIMER

2. PRIMER

2.1 Introduction

This section of the SYSTEM V/68 User's Guide provides the information users need to access
the SYSTEM V /68 operating system. It is not intended to be a detailed description. Many of
the subjects described are discussed in detail in other sections of this volume or the SY ST EM
V/68 User's Manual.

In this primer, software programs that can be executed by users are referred to as "programs".
A program that is in some state of execution is referred to as a "process". The request typed
by the user is referred to as a "command" or "command line".

In this section, the following graphic conventions are used in examples:

(RETURN) Indicates that the user should press the RETURN key on the terminal
keyboard.

(DEL) Indicates that the user should press the key marked DEL, DELETE, or
RUBOUT (whichever is appropriate for the terminal being used).

2.2 Human Interface

2.2.1 Concept of a Login. The SYSTEM V /68 operating system is accessed l?Y the use of a
"login". A login is used by the system to uniquely identify users. Before the user can access
the system, a login must be assigned by the system administrator. Every login consists of the
following components:

login name

user identification number (uid)

group identification number (gid)

password

A login name is a unique string of lowercase letters and/or numbers that identifies an
individual to the system. The login name must begin with a letter. In many cases, a user's
login name is his/her real :first name, last name, initials, or nickname. Any string of letters
and/or digits can be used as the login name, as long as it is unique (i.e., different from all other
login names). Only the :first eight characters of a login name are used by the system. Login
names are assigned by the system administrator.

The uid of a login is a unique number assigned to each login by the system administrator.
This number is used by the system to identify the owners of information stored on the system
and the commands that users are executing.

The gid is a unique number assigned by the system administrator to each group. This number
identifies groups of users that have something in common. For example, all logins used by
people in the same department (or working on the same project) may have the same gid. The
gid is important for security and accounting reasons. The impact of gid numbers on the user
and the group that the user belongs to is described later.

The password is a string of 13 characters chosen from a 64-character alphabet (., \, 0-9, A-Z,
a-z) that serves to control access to a login. The password for a login is the main security
feature of the SYSTEM V/68 operating system. Usually, every login is assigned a password.
When a user logs in to the system, the password (if any) assigned to the login being used is
requested. Access to the system is not permitted until the correct password is entered. The
user can change a password as needed to ensure that others are not accessing the user's login

2-l

PRIMER MOTOROLA COMPUTER SYSTEMS

and the user's data. Any string can be used as a password as long as it is more than five
characters in length and is composed of uppercase letters, lowercase letters, numbers, or
punctuation. It is recommended that obvious strings such as the user's social security number,
birth date, or other data that could be well known about the user not be used as passwords.
If the password is something that is well known about the user, someone could gain access to
the user's login with little effort. The more unusual the password, the more effective the
security.

2.2.2 Logging In. In order to log in, the power to the terminal must be turned on and the
appropriate switches set. Depending on the type of terminal and communication link, the
user may need to press the RETURN or BREAK key a couple of times to synchronize the
terminal with the system. When communication is established, the system will prompt with:

login:

The user should type in his/her login name followed by a RETURN. After the system digests
the login name, it will prompt for a password with:

Password:

The user should then type his/her password followed by a return. The system does not echo
the password on the terminal screen. This is an extra security measure. If you enter your
login name and password correctly, the system may print one or more "messages of the day".
Following the messages, the system will prompt with the primary prompt string, which is
usually the $ symbol. If a mistake is made while logging in or the system adminstrator has
not set up the user's login on the system, the following error message is printed:

login incorrect

This error message is followed by the login: message. The user should attempt to login again.

The SYSTEM V/68 operating system has a hierarchy of directories. When the system
administrator gives the user a login name, the administrator also creates a directory for the
user .. This directory ordinarily has the same name as the user login name and is known as the
"login" or "home" directory of the user. When the user logs in, the home directory becomes
the "current directory" or "working directory" of the user. Any file created under the login
name is by default in the home directory. In addition, the user may create one or more
directories under the home directory. The user may then change to subdirectories by using a
"change directory" command. See cd(l) for details. Under a directory or a subdirectory, the
user may create files as necessary. The user is the owner of the home directory and all
subdirectories created under the home directory. As the owner, the user has full permission
to create, alter, and remove (destroy) all files and subdirectories of the home directory. To
change from one directory to another, the command cd is used.

2.2.3 Logging Off. After completing your work, it is best to log off the system. Before
logging off, you should have received the prompt string $from the system. This means that
all your commands have been completed and the system is ready for another command.

The preferred method for logging off is accomplished by typing an American Standard Code
for Information Interchange (ASCII) End Of Text (EOT) character which is sometimes called
the End-Of-File (EOF). On most terminals, the EOT character is generated by holding down
the CONTROL key and pressing the lowercase d key once. This is also referred to as a
"CONTROL-ct". Regardless of the type of terminal, the power to it should be turned off when
the terminal is no longer needed. For terminals connected via a phone line, you should
depress the talk button and hang up the phone.

2-2

MOTOROLA COMPUTER SYSTEMS PRIMER

2.2.4 Entering Commands. The SYSTEM V/68 operating system "shell" (command
interpreter) serves as the interface between the user and the system. The shell accepts
requests from the user in the form of a command line and invokes the appropriate program to
fulfill the request. The shell prompts the user when it is ready to accept another request. As
noted earlier, the prompt of the SYSTEM V/68 operating system shell is the primary prompt
string which is by default $ (a dollar sign followed by a space).

2.2.4.1 Command Line Syntax. Commands or requests to the shell are usually in the
form of a single line, that is, a string of one or more words followed by a RETURN. This
single line request entered following the prompt is referred to as a "command line". The
command line is divided into two maj>r parts-the program name and arguments.

The first word of the command line is the name of the program to be executed. This is
referred to as the command. All subsequent words are arguments to the command.
Arguments are used to provide information required by the program.

Spaces and tabs serve as the delimiters for words on the command line. That is, all characters
on the command line up to the first space or tab are interpreted as the command. All
characters between the first space (or tab) and the second space (or tab) make up the first
argument. Thus, the syntax for the command line is:

command argument argument argument (RETURN)

When spaces or tabs are needed within a single argument, that argument is enclosed by double
quote marks("). For example, to execute a program that requires two arguments such as john
1 and doe, the first argument should be john 1. The second argument should be doe. The
required command line in this case would be:

command "john 111 doe(RETURN)

2.2.4.2 Correction and Deletion. All users are likely to make mistakes, especially when
typing. The SYSTEM v /68 operating system provides two features to correct command lines.
These features are only effective for the current line (i.e., they must be used before the line is
ended with a return).

The first correction feature is the erase character (by default, #), and the second correction
feature is the kill character (by default, @). The erase character erases the character
preceding it. For example, a command line entered as

caf#t the fik#le(RETURN)

actually is cat the file. The first # erases the first f and the second # erases the k. The erase
character can be used to erase a series of characters such as in

this####the cat had kittens(RETURN)

which results in the cat had kittens. The entire word this is erased by the series of #
characters following it. The first # erases the s, the second # erases the i, the third # erases
the h, and the fourth # erases the t. If you had miscounted the number of erase characters
you needed, as in

this ###the cat had kittensCRETURN)

the result would have been ththe cat had kittens. The three erase characters would have
erased the space, the s, and the i preceding them.

2-3

PRIMER MOTOROLA COMPUTER SYSTEMS

If you need to enter a # in the oommand line for some reason, preceding the # with the
backslash character (\) will turn off the "erase last character" meaning of the #. For
example, a command line entered as

thsi##is is the \#7#7 cat(RETURN)

is actually this is the #7 cat.

The second correction feature is the kill character. The kill character deletes the entire
current line. For example, the user enters the command line

command#### #omma#####mmad argm##gmu##ment

when the user was trying to enter command argument. This command line is so full of
mistakes and corrections it is hard to determine if it is right. It would be best to delete the
entire line and start over. The user can delete the line by ending it with an @ instead of a
return. For example in this sequence

kat###catteh##he fl.le######## the :fiie##e@
cat the fi.Ie(RETURN)

the first line is deleted by the @ character. It is much easier to delete it and reenter it (as in
the second line of the example).

If the @ character is needed in a line, the backslash character (\) should precede it. For
example, entering the line

The kill character is a \@.(RETURN)

results in The kill character is a @.

2.2.4.3 Erratic Terminal Behavior. Sometimes your terminal may appear to be acting
strangely. For example, each letter may be typed twice (terminal may be in the half-duplex
mode) or the RETURN may not cause a line feed or a return to the left margin. You can
often change this by logging out and logging back in. If logging back in fails to correct the
problem, check the following areas:

keyboard Keys such as caps lock, local, block, etc. should not be in depressed
position.

Q.ataphone

switches

For terminals connected via phone lines, the baud rate could be
incorrect.

The rear panel of your terminal normally has several switches used to
control terminal operations. These switches should be set to be
compatible with the SYSTEMV/68 operating system.

If all else fails, the description of the stty(t) command can be read to determine the
appropriate action to take. To get intelligent treatment of tab characters (which are much
used in the SYSTEM v /68 operating system) if your terminal does not have tabs, type the
command

stty -tabs

and the system will convert each tab into sufficient blanks to space to the next 8-character
field. If your terminal does have hardware tabs, the command tabs will set the stops
correctly for you (see tabs(t)).

24

MOTOROLA COMPUTER SYSTEMS PRIMER

2.2.4.4 Read-ahead. The SYSTEM V/68 operating system has full read-ahead capability,
which means that the user can type whenever necessary and as fast as desired, even when
another command is already outputting on the terminal. If typing is done during output, the
input characters appear intermixed with the output characters, but they are stored away and
interpreted in the correct order. The user can type several commands one after another
without waiting for the first to finish or even begin.

2.2.S Stopping a Program. Most programs can be stopped by pressing the· DEL key
(perhaps called DELETE or RUBOUT on your terminal). The INTERRUPT or BREAK key
found on most terminals can also be used. In a few programs, like the text editor, DEL stops
whatever the program is doing but leaves you in that program. Hanging up the phone with
the talk button depressed will also stop most programs.

2.2.6 Mail. After logging in, the user may sometimes get the following message:

You have mail.

The SYSTEM V/68 operating system provides a postal system so you can communicate with
other users of the system. To read your mail, type the following command:

mail

Your mail will be printed, one message at a time, most recent message first. After each
message, mail(t) waits for you to say what to do with it. The two basic responses are d,
which deletes the message, and RETURN, which does not (it will still be there the next time
you read your mailbox). If you want to save a mail message in a file, type:

s filename

Other responses are described in mail(l) in the SYSTEM V/68 User's Manual.

How is mail sent to someone else? Assume that jones is someone's login name which is
recognized by login(t). The easiest way to send mail to jones is as follows:

mail jones
the text of the letter
on as many Unes as you Uke.M
CONTROL-d

As shown previously, the character CONTROL-d is produced by holding down CONTROL and
typing a letter cl.

The CONTROL-d sequence, often called End-Of-File (EOF), is used throughout the system to
mark the end of input from a terminal.

For practice, send mail to yourself. (This is not as strange as it might sound-mail to oneself
is a handy reminder mechanism.) There are other ways to send mail-you can send a
previously prepared letter and you can mail a message to a number of people all at once. For
more details, see mail(J).

2.2.7 Writing to Other Users. Occasionally, your terminal may display a message similar
to

Message from jones tty07 •••

that is accompanied by a startling beep on terminals that have the capability to beep. It means
that Jones (jones) wants to talk to you; unless you take explicit action, however, you will not

2-5

PRIMER MOTOROLA COMPUTER SYSTEMS

be able to talk back. To respond, type the following command:

write jones

This establishes a 2-way communication path. Now whatever Jones types on his terminal
will appear on yours and vice versa. However, if you are in the middle of some program,
whatever program you are running has to terminate or be terminated. If you are editing, you
can escape temporarily from the editor-read the ''Text Editor" section of. this document. If
you want to prevent other users from writing to your terminal, enter the following:

mesgn

The "n" or "no" tells the system that other users do not have permission to write to your
terminal.

A protocol is needed to keep what you type from becoming garbled with what !ones types.
Typically, a sequence like the following is used:

Jones types write smith and waits.

Smith types write jones and waits.

Jones now types a message (as many lines as necessary).
When ready for a reply, Jones signals it by typing
(o)
which stands for "over".

Now Smith types a reply, also terminated by
(o).

This cycle repeats until Smith or Jones wants to end
the conversation. The intent to quit is signalled with
(oo)
for "over and out".

To terminate the conversation, each side must
type a CONTROL-ct character alone at the beginning
of a line. (DELETE also works.)
When Jones types CONTROL-ct,
the message
EOF
will appear on Smith's terminal.

If you write to someone who is not logged in or who does not want to be disturbed, a message
stating this will appear on your terminal. If the target is logged in but does not answer after
a reasonable interval, type CONTROL-ct.

2-6

MOTOROLA COMPUTER SYSTEMS PRIMER

2.2.8 Online Manual. The SYSTEM V/68 User's Manual, is kept online. If you are
confused and cannot find an expert to assist you, you can print on your terminal a manual
section that might help. This is also useful for getting the most up-to-date information on a
command. To read a manual section, type man comm.and-name. Thus, to read up on the
who(l) command, type:

man who

To read about the man(l) command, type

man man

2-7

PRIMER MOTOROLA COMPUTER SYSTEMS

NOTES

2-8

MOTOROLA COMPUTER SYSTEMS

3. BASICS FOR BEGINNERS

3.1 Day-to-Day Use

BASICS FOR BEGINNERS

3.1.1 Creating Files-The Editor. The SYSTEM V/68 text editors organize and save typed
information. This information could be intended for a 1-page letter or a 1500-line program.
(Refer to the "Text Editors" section of this guide for a detailed description.)

All SYSTEM V /68 text editors operate on a "file," a collection of information stored by the
operating system. Within SYSTEM V /68 are three different text editors (ed, ex and vi), each of
which provides a user with a different range of operations and capabilities. The following
paragraphs are intended as an overview to describe how files are created and edited. The
concepts of creating and saving information are true for all three editors; the specific examples
that follow correspond to the SYSTEM V/68 text editor ed, the lowest level editor of the three.

To create a file called junk using ed(l), type

ed junk (invokes the text editor)
a (command to add text)
text .. .
text .. .
• (command to leave append mode)

The dot (.) that signals the end of adding text must be at the beginning of a line by itself. No
other ed commands will be recognized until the dot is entered; everything typed will be
treated as text to be added. No system prompt appears while appending, inserting, or changing
text in the text editor.

After a file has been created, various editing operations may be performed on the text that was
typed in, such as correcting spelling mistakes, rearranging paragraphs, etc. When editing is
completed, the information is written into a file and permanently saved with the editor
command:

w

Ed will respond with the number of characters written into the file junk.

Until the w command is used, there is no permanent record of the information. If, while
editing a file, a user is logged off before writing the information into a file, all the editing
changes made since the last w command are lost. (For each text editor, special back-up
recovery procedures are available. In ed, the data may be saved in a file called ed.hup that
can be retrieved at the next editing session.) Once text is written to a file, it can be retrieved
any time by typing

ed junk

Type a q command to quit the editor. (If you try to quit before performing a w command to
write the file, the text editor will print a "?" as a reminder. A second q will quit the text
editor regardless.) Now create a second file called temp in the same manner. There should
now be two files, junk and temp.

Refer to the "Text Editors" section in this guide for instructions on creating and writing
(saving) files using the ex(l) and vi(l) editors.

3.1.2 Filenames. Filenames junk and temp have been used without defining a legal
filename. The following rules are valid for all SYSTEM V /68 text editors.

3-1

BASICS FOR BEGINNERS MOTOROLA COMPUTER SYSTEMS

Filenames are limited to 14 characters, which is enough to be descriptive. Although any
character can be used in a filename, avoid characters that could have other meanings. In
SYSTEM V/68, several characters are assigned a special meaning when they are read by the
program that interprets commands. These characters include \ $ - ! and * (backslash, dollar
sign, minus sign, exclamation mark and star). To avoid problems, use only letters, numbers
and dot until you are familiar with the workings of the system.

Naming conventions should follow an internal logic. Suppose you are typing a large
document, a book, for example. Logically, the book divides into many small pieces, chapters
and perhaps sections. Physically, it must be divided because ed will not handle files over
90,000 characters. Thus, the document should be typed as a number of files. One possible
method is to create a separate file for each chapter as follows:

chap1
chap2

Another method is breaking each chapter into several files as follows:

chap1.1
chap1.2
chapl.3

chap2.1
chap2.2

Users can see quickly where a particular file fits into the whole.

There are other advantages to a systematic naming convention. To print the whole book, a
user could enter the following:

pr chapt.1 chapt.2 chapt.3 •••

Using the pr(l) command (print) in this way is tiring and will often lead to a typing mistake.
If files are named logically, there is a shortcut. The user can enter:

pr chap*

The * here has the special meaning of "anything at all", so this translates into "print all files
whose names begin with chap listed in alphabetical order". This shorthand notation is not a
property of the pr command. It is system-wide, part of the capability of the program that
interprets commands. The program, called the "shell" sh(l), is described in detail in the
section "Introduction to the Shell" later in this guide.

The *is not the only pattern-matching feature available. To print only chapters 1 through 4
and 9, use the following command:

pr chap(t2349]*

The [•••] means to match any of the characters inside the brackets. A range of consecutive
letters or digits can be abbreviated as follows:

pr chap[t-49]*

Letters can also be used within brackets. The [a-z] pattern-matching feature matches any
character in the range a through z.

The? pattern matches any single character, so

3-2

MOTOROLA COMPUTER SYSTEMS BASICS FOR BEGINNERS

pr?

prints all files which have single-character names, and

pr chap?.1

prints the first file of each chapter chapl.l, chap2.l, etc.

So far, the rules of naming a file have not addressed the problem of uniqueness. Different
users may create files with the same 14-character (or less) filename because SYSTEM: V /68
identifies files by their location within the file system as well as by name. This is explained
in detail in the next section, "Directories."

3.1.3 Directories. SYSTEM: V/68 contains ordinary files, described above, and directories.
An ordinary file has a filename by which it can be retrieved or referred. The information
stored in a file can be displayed, or edited; the file itself can be copied or moved to a new
location within the file system. (Copying and moving files are explained in the sections that
follow.)

A directory is a file that includes information about other files and possibly, other directories.
In an organizational sense, files are located within directories; a directory "contains" files.
Directories can also "contain" other directories. A directory within another directory is a
subdirectory. There is no limit to the number of subdirectories or files that can be built into
the SYSTEM: V /68 file system.

When a user is assigned a login name to log in to SYSTEM V /68, that user is also assigned a
personal directory, usually with the same name. When you log in, you are "located in" your
personal directory, also called your "home" directory. Enter the command

pwd

which is a request to print the working directory. Although the details will vary according
to the system you are on, the pwd command will print something similar to

lusrlyourname

This message indicates that you are currently in the directory yourname, which is itself
located in the directory usr. The usr directory is located in the root directory at the base of
the file system. By convention, the root directory is written and called I (slash).

Your home directory is your storage area. Within your home directory, you can create files,
make subdirectories, copy files, and remove or rename files or directories.

To illustrate the advantages of this organizational system, suppose that you are rewriting a
cookbook using one of the text editors. You could divide each file into a chapter section
(chapl.1, chapl.2, and so on) because of the advantages this provides when you are ready to
print the files. However, when you first start rewriting, you may not know what
information will appear in chapter 1, and what will be put in later chapters. In SYSTEM:
V /68, the file structure can be used as an organizational aid in itself.

Start in your home directory and create a subdirectory called cookbook. When creating a
new file (or directory), the new file will be located within the user's current working
directory unless special action is taken. That is, if you are located in your home directory,
then any new file or directory you create will also be located in your home directory. If you
are located in another user's home directory, then the file you create will also be located in the
other user's directory; it doesn't matter that you are the person who created the file.
Therefore, to create a subdirectory called cookbook in your home directory, log in to your
directory and enter

3-3

BASICS FOR BEGINNERS MOTOROLA COMPUTER SYSTEMS

mkdir cookbook

using the mkdir(1) command (make directory). To start, you may want to create a file that
will contain an introduction for your book, for example intro. To keep all the files of the
book together, the file intro should be located within the subdirectory cookbook. Currently,
you are in your home directory. To check this, perform the command pwd. To reposition
yourself in your subdirectory, use the command

cd cookbook

The cd(1) program (change directory) will move you from one directory into another. (The
cd program is described in more detail in the paragraphs that follow.) Now you are located in
the subdirectory cookbook. You can now create a file named intro for your cookbook
introduction.

Next, consider a second level of subdirectories. For example, you can create five subdirectories
within cookbook:

poultry
meats
vegetables
desserts
salads

Each of these subdirectories can be entered to add files or to add more subdirectories. At any
time, you can perform the command pwd to remind yourself where you are located. At some
point, you could perform a pwd and receive a message as follows:

/usr/yourname/cookbook/poultry/chicken/baked

This message says you are located in the subdirectory baked within the subdirectory chicken
within the subdirectory poultry within the subdirectory cookbook. You can create files in
all these directories by making sure you are located in the desired directory when you create
the file. When you are finished writing your book, you can rename your files to take
advantage of SYSTIThtf V /68 printing shortcuts.

3.1.4 File System Structure. In general, all files in the system are organized into a tree­
like structure with each user's files located several branches into the tree. Imagine three
users: Decker, Waitz and Benoit. Each user has a home directory and each home directory is a
subdirectory of the directory usr, which in turn, is a subdirectory of root /. Imagine now
that all three users are logged in SYSTIThtf V/68 and each creates a file named temp in their
home directories. How does the system tell these files apart?

The filename that a user gives to a file is only part of that file's identity. Every file has a
complete pathname that locates the file's position within the complete file system tree. A file's
pathname represents the full name of the path taken from the root directory to arrive at the
location of that file. In the example above, the full pathnames for each of the three files
named temp would be

/usr/decker/temp
/usr/waitz/temp
/usr/benoit/temp

respectively. It is a universal rule in SYSTEM v /68 that anywhere an ordinary filename can be
used the pathname can also be used.

It is possible for a user to move around the file system tree and find any file in the system by
starting at the root of the tree and following the path of directories named. Conversely, a

3-4

MOTOROLA COMPUTER SYSTEMS BASICS FOR BEGINNERS

user can start at any location and by performing the commmand pwd, retrace the steps back
toward the root.

The list program, Zs(l), will produce a list of all files and subdirectories located within a
particular directory. For example, if you now type

ls /usr I yourname

the results should be a list of the filenames located within your home directory. With no
arguments,

ls

lists the contents of the current directory. Given the name of a directory, it lists the contents
of that directory.

Next, try using the following command:

ls /usr

This should print a long series of names, among which is your own login name yourname. On
many systems, usr is a directory that contains the directories of all the normal users of the
system.

The next step is to try the following:

ls I

The response should be something like this (although again the details may be different):

bin
dev
etc
lib
tmp
usr

It may be that you are working in your home directory but you want to relocate to someone
else's directory. For example, you may want to make a change in a file owned by someone
else. To move around the file system from one directory to another, use the cd(l) COll)mand
(change directory).

The cd command is used with either a full pathname or a relative pathname. The full
pathname of a directory (or file) is the complete path you would follow to arrive at that
directory starting from the root directory. The relative pathname of a directory (or file) is the
path you would follow to arrive at that directory, starting from your current working
directory. To illustrate, recall the three users Decker, Waitz and Benoit. Decker is working
in her home directory but needs to read one of Waitz's files named june84 located in a
subdirectory named intervals. Decker has a choice; she can change directories by using the
full pathname or the relative pathname. To move to the subdirectory using the full
pathname from the root directory, Decker would enter

cd /usr/waitz/intervals

Once inside the directory, Decker can retrieve the file june84. Alternatively, to move to
Waitz's subdirectory from her own home directory, Decker can move up the tree from decker
to the directory usr, and then down the tree into the directory waitz and into intervals.
SYSTEM V/68 abbreviates the move "up one level" to the symbol •• (dot dot) which is an
abbreviated way of writing "the parent of the current directory." Similarly, an abbreviated
way of writing "the current directory" is the symbol • (dot). Therefore, to move to Waitz's

3-5

BASICS FOR BEGINNERS MOTOROLA COMPUTER SYSTEMS

subdirectory using a relative pathname, Decker would enter

cd • ./waitz/intervals

The relative pathname is a much faster method of moving around the file system when many
subdirectories are involved. Compare the two methods when changing from subdirectory
baked to subdirectory fried in the cookbook example described in the previous section. To
move from baked to fried using the full pathname, a user would type

cd /usr/yourname/cookbook/poultry/chicken/fried

To move to the same directory using a relative pathway is simply

cd .. /fried

If a user enters

cd

by itself, the user is always relocated to the home directory.

If a file owner does not want someone else to have access to the owner's files, privacy can be
arranged. Each file and directory has read, write and execute permissions for the owner, a
group, and everyone else, which can be set to control access. The ls(1) command (list)
provides information about each file, including the status of these permissions. For example,
the ls command and its long list option

ls -1 intervals

entered from within the directory waitz might produce

-rw-rw-rw- 1 gw bsk 41 Jul 22 02:56 june84
-rw-rw-rw- 1 gw bsk 78 Jul 22 12:57 may84

In the example above, the date and time are the date and time of the last change to the file.
The 41 and 78 are the number of characters in each file (which should agree with the
numbers received from ed). The gw identifies the owner of the file, i.e., the person who
created it. The bsk identifies the group associated with gw. The -rw-rw-rw- states who
has permission to read, write, or execute the file. The first character in -rw-rw-rw- is a -
which indicates this is a file of data. Ad as the first character would indicate a directory. The
remaining nine characters are divided into three sets of permissions. Each set consists of three
characters. The three sets correspond to the permissions of the owner, group, and all other
users. In this case the owner, group, and others all have permission to read (r) and write (w)
the files. Note that there is no permission for anyone to execute (x) the files. (Refer to lsCt)
and chmod(1) for details.)

At some point, a user may want to remove directories that are no longer needed. As a
precaution, a directory cannot be removed until it is completely empty. For example, if Waitz
was ready to remove her subdirectory

/usr/waitz/intervals

the command would be either

rm intervals/*
rmdir intervals or
rm -r intervals

The rm intervals/* command removes all files in the intervals directory (because * is
interpreted as "match any string"). The rmdir intervals command is then used to remove
the empty directory. The intervals directory must be empty before the command will work.

3-6

MOTOROLA COMPUTER SYSTEMS BASICS FOR BEGINNERS

The rm -r intervals command recursively deletes the entire contents of the directory and
then removes the directory itself.

3.1.5 Printing Files. There are several ways to print a file. The ed editor can be used to
print a file as follows:

ed junk
1,$p

Ed will reply with the count of the characters in the junk file and then print all the lines in
the file. The 1,$ is an address followed by a command, p, to print. The entire line translates
to "print all lines from 1 through $,"where $has the special meaning "the last line."

The user can also be selective about the parts of a file to be printed as follows:

ed junk
20,35p

which prints only lines 20 through 35. There are times when it is not feasible to use the
editor for printing. For example, there is a limit on how big a file ed can handle (several
thousand lines). Secondly, ed will only print one file at a time; often, several files must be
printed, one after the other.

The simplest printing program is cat(l). The cat command simply prints on the terminal the
contents of all the files named in the order listed. For example:

cat junk

prints one file, and

cat junk temp

prints two files. The files are concatenated and printed on the terminal.

A second printing program is pr(t). The pr command produces formatted printouts of files.
As with cat, pr prints all the files named in a list. In addition, pr produces headings with
date, time, page number, and filename at the top of each page, and extra lines to skip over the
fold in the paper. Thus,

pr junk temp

will print the junk file neatly, then skip to the top of a new page and print the temp file
neatly.

The pr comm.and can also produce multicolumn output. Entering

pr -3 junk

prints junk in 3-column format. Any reasonable number can be used in place of "3".

The pr program is not a formatting program that can change type fonts or and justifying
margins. The true formatters are nrojf(l) and trojf(l), and are discussed in the paragraphs on
document preparation later in this guide. (Refer to pr(t) for more information about other pr
capabilities.)

Finally, there are also programs that print files on a hard copy printer. See lp(l) for more
information.

3.1.6 Moving and Copying Files. Commands for moving and manipulating files are
helpful for organizing information or sharing information when more than one user is
working on a project. For example, a user can use the move(!) program to copy a file from one
user's directory to another. Perhaps you want to copy the file junk now located in your home

3-7

BASICS FOR BEGINNERS

directory. Use the cp(l) command (copy) as follows:

cp junk morejunk

MOTOROLA COMPUTER SYSTEMS

The contents of junk are now duplicated in another file in your directory, morejunk. To
check this, type

ls

for a list of the filenames in your directory.

It may be that you want to copy a file from another user's directory into your own. To do
this, move to the directory where you want the file to be located. Then type the copy
command, following the pattern "copy from there to here." For example, to get a copy of the
file june84 from Waitz's directory, you would type

cd

to get to your home directory. Then type

cp /usr/waitz/intervals/june84 waitz_june84

The new file in your directory will be named waitz_june84. The copy function usually
requires the full pathname when you are copying from another directory.

To move a file from one location to another is the same as giving the file a new filename. This
is because SYSTEM V /68 identifies a file by its location within the file system. The major
difference between the cp program and the mv(t) program (move) is that mv will destroy the
contents of the original file. To see how the mv command works, type

mv junk precious

This will rename the junk file in your home directory so that it is now named precious.
Typing ls would now produce

more junk
precious
temp
cookbook

and any other files you might have created. The file junk is gone. Move commands should be
used with caution. If a file is moved into another file that already exists, the original contents
of the existing file are written over and destroyed. In the example above, had precious
contained any information, the contents of precious would have been lost. If you want to
move a file from one directory to another, the procedure is the same as for cp.

When you are finished creating and moving files, the files can be removed from the file sygtem
by the rm(l) program. The rm command is used as follows:

rm precious temp

·This will remove both files precious and temp.

The user will get a warning message if one of the named files is not located in the directory,
but otherwise rm will not send an acknowledgement.

3.1. 7 Using Files for 110 Instead of the Terminal. Most of the commands used so far
produce output on the terminal. Other commands, may take input from the terminal. It is
universal in UNIX systems that the terminal can be replaced by a file for either or both of
input and output. As one example,

J-,.8

MOTOROLA COMPUTER SYSTEMS BASICS FOR BEGINNERS

ls

makes a list of files on your terminal. But if you enter

ls > filelist

a list of your files will be placed in the file filelist (which will be created if it does not
already exist or overwritten if it does). The symbol > means "put the output on the
following file rather than on the terminal". Nothing is produced on the terminal. As another
example, you could combine several files into one by capturing the output of cat in a file:

cat ft f2 f3 >temp

Another symbol, which operates very much like > , is >> . The >> means "add to the end
of". That is,

cat ft f2 f3 >>temp

means to concatenate ft, f2, and f3 to the end of whatever is already in temp instead of
overwriting the existing contents. As with >,if temp does not exist, it will be created.

In a similar way, the symbol < means to take the input for a program from the following file
instead of from the terminal. Thus, a script of commonly used editing commands can be put
into a file called script. Script could then be run on a file by entering:

ed. fi1,e <script

Another example is using ed to prepare a letter in file let. The letter (file let) could be sent
to several people as follows:

mail waitz decker benoit <let

3.1.8 Pipes. A major innovation in the UNIX operating system is the idea of a "pipe". A
pipe is a way to connect the output of one program to the input of another program, so the
two run as a sequence of processes-a pipeline.

For example,

pr f gh

will print the files f, g, and h, beginning each on a new page. Instead of printing the files
separately, the files can be printed together as follows:

cat f g h >temp
pr <temp
rm temp

This method is more work than necessary. To take the output of cat and connect it to the
input of pr, use the following pipe:

cat f g h I pr

The vertical bar I means to take the output from cat which would normally have gone to the
terminal and put it into pr to be neatly formatted.

There are many other examples of pipes. For example,

ls I pr -3

prints a list of your files in three columns. The program wc(l) counts the number of lines,
words, and characters in its input; the who(l) command prints a list of users currently logged

3-9

BASICS FOR BEGINNERS

on the system, one per access port. Thus

who lwc -1

tells how many people are logged on. The command

ls I WC -1

counts the files in the current working directory.

MOTOROLA COMPUTER SYSTEMS

Most programs that read from the terminal can read from a pipe as well. Most programs that
write on the terminal can write on a pipe as well. There can be an unlimited number of
commands in a pipeline.

Many operating system programs are written to take input from one or more files if file
arguments are given. If no arguments are given, the programs will read from the terminal,
and thus can be used in pipelines. One example using the pr(l) command to print files a, b,
and c in three columns and in the order specified is as follows:

pr -3 ab c

But in

cat a b c I pr -3

the pr prints the information coming down the pipeline, still in three columns.

3.1.9 The Shell. The "shell" mentioned previously is actually the sh(l) program. The
shell is the program that interprets what is typed as commands and arguments. The shell also
translates the special meanings of characters such as* into lists of filenames, and translates <,
>, and I into changes of input and output streams.

The user can run two programs with one command line by separating the commands with a
semicolon. The shell reeognizes the semicolon and breaks the line into two commands. Thus

date; who

does both commands before returning with a prompt character.

More than one program can run simultaneously; this is called running programs in the
background. The background mode enables the shell to prompt for another command without
waiting for the previous command to finish. An example of processing in the background is:

ed :file <script&

The ampersand (&)at the end of a command line means "start this command running, then
take further commands from the terminal immediately", that is, don't wait for it to complete.
Thus the script will begin, but the user can do something else at the same time. To keep the
output from interfering with the terminal, enter

ed :file <script >script.out&

which saves the output lines in a file called script.out.

When a command is initiated with &, the system replies with a number called the process
number. Programs running simultaneously can be terminated as follows:

kill process...JJ,Umber

The process number is used to identify the command to be stopped. If you forget the process
number, the ps(l) command will list the process number for all programs you are running.
(Entering killO will kill all your processes.) Entering ps -a will provide information about

3-10

MOTOROLA COMPUTER SYSTEMS BASICS FOR BEGINNERS

all active programs that other users are currently running.

To start three commands that will execute in the order specified and in the background, enter
the following:

command_]; convnand _.2; convnand_J&

A background pipeline can be started as follows:

command_] I convnand_.2 &

The shell can read a file to get commands. For example, suppose a user wants to perform a
sequence of actions after every login such as:

• Set the tabs on the terminal

• Find out the date

• Find out who's on the system.

The three necessary commands to perform these actions, tabs(l), date(!), and who(l), could be
put in a file called startup. The startup file would then be run as follows:

sh startup

This instruction commands the machine to run the shell with the file startup as input. The
effect is the same as typing the contents of startup on the terminal.

If this is to be a regular activity, the need to type sh every time can be eliminated by typing
the following command only once:

chmod +x startup

To run the sequence of commands thereafter, you only need to enter:

startup

The chmod(l) command marks the file as being executable. The shell recognizes this and runs
it as a sequence of commands.

If you want startup to run automatically every time you log in, create a file in your login
I

directory called .profile and place in it the line "startup". Upon logging in, the shell gains
control and executes the commands found in the .profile file. (For further information about
the .profile file, refer to the "Introduction to Shell" section of this guide.)

3.2 Document Preparation

UNIX operating systems are used extensively for document preparation. There are two major
formatting programs that produce a text with justified right margins, automatic page
numbering and titling, automatic hyphenation, etc. The nroff(!) (pronounced "en-roff")
program is designed to produce output on terminals and line-printers. The trojf(l)
(pronounced "tee-roff") program is designed to drive a phototypesetter, which produces very
high quality output on photographic paper. This document was formatted with troff.

3.2.1 Formatting Packages. The basic idea of nroff(!) and troff(!) is that the text to be
formatted contains within it "formatting commands" that indicate in detail how the
formatted text is to look. For example, there may be commands that specify.how long lines
are, whether to use single or double spacing, and the running titles to use on each page.

3-11

BASICS FOR BEGINNERS MOTOROLA COMPUTER SYSTEMS

Because the detailed commands of nroff and troff are cumbersome to use effectively, several
"packages" of canned formatting requests are available to let you specify elements such as
paragraphs, running titles, footnotes, and multicolumn output, with little effort and without
having to learn all of nroff and troff. These packages take a modest effort to learn, but the
rewards for using them are so great that it is time well spent.

This section provides a brief description of the "memorandum macros" package known as
mm(l). Formatting requests typically consist of a period and two uppercase letters, such as

.TL

which is used to introduce a title or

.P

to begin a new paragraph.

The text of a typical document is entered so it looks something like this:

.TL
title
.AU author information
.MT memorandum type
.P
text •..
text ...
. P
More text ...
text ...
• SG signature

The lines that begin with a period are the formatting macro requests. For example, .P calls
for starting a new paragraph. The precise meaning of .P depends on the output device being
used (typesetter or terminal, for instance) and the publication in which the document will
appear. For example, the mm(l) macros normally assume that a paragraph is preceded by a
space (one line in nroff and one-half line in troff) and the first word is indented. These rules
can be changed if desired, but they are changed by changing the interpretation of .P not by
retyping the document.

To produce a document in standard format using mm(l), a user would type the command

troff -mm files ...

for the typesetter and

nroff -mm files ...

for a terminal. The -mm argument tells troff and nroff to use the memorandum macro
package of formatting requests. There are several similar packages; check with a local expert
to determine which ones are in common use on your machine. Nroff, troff, and the macro
packages.are documented in detail in the SYSTEM V/68 User's Manual and the SYSTEM V/68
Document Processing Guide.

3.2.2 Supporting Tools. In addition to the basic formatters, there are many supporting
programs that help with document preparation. The list in the next few paragraphs is far
from complete. Refer to the SYSTEM V/68 User's Manual and SYSTEM V/68 Document
Processing Guide for a full listing of available support programs.

3-12

MOTOROLA COMPUTER SYSTEMS BASICS FOR BEGINNERS

The eqn(l) and neqn programs let you integrate mathematics into the text of a document in
an easy-to-learn language that closely resembles your speaking style. For example, the eqn
input

lim from {n-> inf} x sub n =0

produces the output

limxn =O
n -+oo

The program tbl(l) provides an analogous service for preparing tables. The tbl program does
all the computations nece~ry to align complicated columns with elements of varying widths.

The speU(l) program detects possible spelling mistakes in a document. The spell program
compares the words in your document to a dictionary (stored in memory) and prints those
words that are not in the dictionary. It knows enough about English spelling to detect plurals
and the like.

The grep(J) program looks through a set of files for lines that contain a particular text pattern
(similar to the editor's context search on a single file). For example,

grep 'ing$' chap*

will find all lines that end with the letters ing in the files chap*. The "$" signifies that the
pattern searched for must appear at the end of the line to produce a match. A "A" could have
been used to indicate that the pattern to search for must occur at the beginning of a line. The
grep program is often used to locate the misspelled words detected by the spell program.

The diff(l) program prints a list of the differences between two files, so that two versions can
be compared automatically. This is a vast improvement over proofreading by hand.

The wc(l) program counts the words, lines, and characters in a set of files. The trCl) program
translates characters into other characters. For example, tr will convert uppercase characters
to lowercase characters and vice versa. The following command translates uppercase letters
into lowercase letters:

tr [A-Z] [a-z] <input >output

The sort(l) program sorts files in a variety of ways while cxre/(1) makes cross-references.
The ptx(l) program makes a permuted index (keyword-in-context listing). The sed(l)
program provides many of the editing facilities of the text editors but can apply them to
arbitrarily long inputs. The awk(l) program provides the ability to do both pattern matching
and numeric computations and to conveniently process fields within lines. These programs are
for advanced users and are not limited to document preparation.

Most of these programs are independently documented in both the SYSTEM V/68 Document
Processing Guide, and the UNIX System User's Manual.

3.2.3 Hints for Preparing Documents. Most documents go through several versions
before they are finished. Following a few guidelines will make the job of revising documents
much easier.

Start each sentence on a new line. Make lines short and break lines at natural places, such as
after commas and semicolons. Because most people change documents by rewriting phrases
and adding, deleting, and rearranging sentences, these precautions simplify any editing needed
later.

3-13

BASICS FOR BEGINNERS MOTOROLA COMPUTER SYSTEMS

Keep document files relatively small, perhaps 10,000 to 15,000 characters. Larger files edit
more slowly. If a mistake is made, it is better to clobber a small file than a big one. Split the
files at natural boundaries in the document for the same reasons that you start each sentence
on a new line.

Another suggestion is not to commit to the formatting details too early. One of the advantages
of using formatting packages is that the package permits many format decisions to be delayed
until the last possible moment.

As a rule of thumb, almost all documents should be produced using a set of requests or
commands (macros). The macros used should be defined either by using one of the existing
macro packages (the easiest way) or by defining your own nroff and/or troff macros. As long
as the text is entered systematically, it can easily be cleaned up and formatted through a
combination of editing commands and macro definitions.

3.2.4 Programming. No attempt will be made here to teach any of the programming
languages available, but a few words of advice are in order. One of the reasons why the
UNIX operating system is a productive programming environment is that there is already a
rich set of tools available. Facilities like pipes, input/output redirection, and the capabilities of
the shell of ten make it possible to do a job by pasting together programs that already exist
instead of writing a program completely from scratch.

3.2.S Shell Programming. The pipe mechanism lets you build complicated operations
with spare parts that already exist. For example, the first draft of the spell program was
(roughly)

cat-.

I tr .. .

I tr .. .

I sort

luniq

I comm

collect the files

put each word on a new line

delete punctuation, etc.

into dictionary order

discard duplicates

print words in text but not in dictionary

More pieces have been added subsequently, but this goes a long way for such a small effort.

The editor can be used to do things that would normally require special programs on other
systems. For example, to list the first and last lines of each file in a set of files, such as a book,
you could laboriously type:

ed
e chapl.1
lp
Sp
e chapl.2
lp
Sp
etc.

The same job can be performed much more easily. One procedure is to type:

ls chap* >temp

3-14

MOTOROLA COMPUTER SYSTEMS BASICS FOR BEGINNERS

to get the list of filenames into a file called temp. The temp file can then be edited using
global commands combined with special characters as follows:

1,$ sr.•$/e &\
lp\
$pl

The results are written into the script file (using the command 1,$ w script) and then the
following command is entered:

ed <script

Beginners need not understand how the shell reads the special character meanings, but instead
appreciate that this shortcut eliminates the need for repetitive typing.

Users can also build shell loops to repeat a set of commands over and over again for a set of
arguments, as illustrated below:

for i in chap*
do

ed $i <script
done

This sets the shell variable i to each filename in turn, then does the command. The shell loop
and command can be entered at the terminal or put into a file for later execution.

An option often overlooked by new users is that the shell is itself a programming language,
with variables, control fl.ow if-else, while, for, case subroutines, and interrupt handling.
Since there are many building-block programs, writing new programs can sometimes be
avoided by piecing together some of the building blocks with shell command files. Examples
and rules can be found in the "Introduction To Shell" section of this guide.

3.2.6 Programming in C. The C language is a reasonable choice for programming a
substantial task. Everything in the SYSTEM V /68 operating system is based on the C language.
The system itself is written in C, as are most of the programs that run on the system. The C
language is introduced and fully described in The C Programming Language by B. W.
Kernighan and D. M. Ritchie (Prentice-Hall, 1978). Several sections of the manual describe
the system interfaces, that is, how to do input/output and similar functions.

Most input and output in C is best handled with the standard input/output library, which
provides a set of I/O functions that exist in compatible form on most machines that have C
compilers. In general, limit the system interactions in a program to the facilities provided by
this library. (Refer to Section 3 of the SYSTEM V/68 User's Manual.)

The C programs that do not depend too much on the special features of the UNIX operating
system (such as pipes) can be moved to other computers that have C compilers. The list of
such machines grows daily; in addition to the PDP-11, it currently includes Data General
NOVA and ECLIPSE, Harris /7, Honeywell 6000, HP 2100, IBM 370, Intel 8086, Interdata 8/32,
Motorola 68000, VAX-111780, Western Electric 3B20 and 3B5, and Zilog Z80. Calls to the
standard 110 library will work on all of these machines.

There are a number of programs that support C. The Unt(l) program checks C programs for
potential portability problems and detects errors such as mismatched argument types and
uninitialized variables.

For larger programs whose source is on more than one file, the make(1) program allows users
to specify the dependencies among the source files and the processing steps needed to make a

3-15

BASICS FOR BEGINNERS MOTOROLA COMPUTER SYSTEMS

new version. The program then checks the times that the files were last changed and does the
minimal amount of recompiling to create a consistent updated version.

The sdb(J) program is useful for debugging C programs. Yet, the most effective debugging
tool is still careful thought, coupled with judiciously placed print statements.

The C compiler provides a limited statistical service, so a user can find where programs spend
their time executing. Compile the programs with the -p option; after the test run, use the
prof(l) command to print a program execution profile. The command time(l) will give the
gross run-time statistics of a program, but the times are not very accurate or reproducible.

3.2. 7 Other Languages. If FORlRAN must be used, there are two possibilities­
FOR1RAN 77 (/77(1)) and RATFOR (ratfor(l)). Ratfor provides the control structures and
free-form input that characterize C, yet permits the writing of code that is also portable to
other environments. SYSTEM V/68 FORTRAN tends to produce large and relatively slow­
running programs. Furthermore, support software like prof(.1), is virtually useless with
FORTRAN programs. If there is a FORTRAN 77 compiler on your system, it may be a viable
alternative to rat/ or and it has the advantage that it is compatible with the C language and
related programs. (The rat for processor and C tools can be used with FORTRAN 77 too.)

If your application requires translating a language into a set of actions or another language,
you are in effect building a compiler, though probably a small one. In that case, the yacc(l)
compiler-compiler is recommended for developing a compiler quickly. The lex(l) lexical
analyzer generator does the same job for the simpler languages that can be expressed as regular
expressions. It can be used by itself or as a front end processor to recognize inputs for a yacc­
based program. Both yacc and lex require some sophistication to use, but the initial effort of
learning them can be repaid many times over in programs that are easy to change later.

Ratfor, yacc, and lex are documented in the SYSTEM V/68 User's Ma.nual and SYSTEM V/68
Support Tools Guide.

3-16

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

4. TEXT EDITORS

4.1 SYSTEM V /68 Editors

SYSTEM V/68 provides three interactive programs for creating and modifying text files: ed(t),
ex(t), and vi(l). When any of the editors are invoked to edit a file, the file is copied into a
buffer. All changes directed by the user at a terminal are made to the buffer copy and later
are written to the original file. Ed(t) is a line editor; i.e., the user must specify the text on
which an operation is to be performed. Ex(t) has many additional features which make it
easier to use and more efficient than ed(l). These improvements include additional operations,
more error messages, recovery from a system crash, and the ability to make use of advanced
terminal types. Vi(l) is a visual editor; text is displayed on the terminal screen and the user
moves the cursor to the place where a change is to be made. In addition to display editing,
vi(t) has access to all the ex(l) commands. Similarly, ex(t) has a visual mode which is the
same as using the vi(t) editor. Both vi(t) and ex(t) have an open mode. This is the same as
visual mode, except that only one line of text is di!iplayed. Dumb terminals or hard copy
terminals use open mode. Deciding which editor or mode to use depends on several factors.
Vi(l) and the visual mode of ex(l) require definitions of the terminal being used. As stated
previously, ex(t) has many features that are not present in ed(l). Because of the use of the
edit buffer, there is a limit on the size of the file that can be edited with ed(l), ex(t), or vi(t).
SYSTEM V /68 has a stream editor, sed(l) that can be used for large files. This is a non­
interactive text editor that applies a command or set of commands to an entire file. A
description of sed is provided in the SYSTEM V/68 Support Tools Guide.

4.2 The ed Text Editor

4.2.1 General. Ed is a basic text editor which is available on all UNIX systems. This
section is a tutorial introduction and guide for new users of ed. Only the most useful and
frequently used facilities are discussed. These include: printing, appending, changing,
deleting, moving, and inserting entire lines of text; reading and writing files; context searching
and line addressing; substituting; global changing; and using some special characters for easier
editing.

This tutorial is meant to simplify learning ed. The recommended way to learn ed is to read
this document, simultaneously using the editor to follow the examples. Read the description
in Section 1 of the SYSTEM v 168 User's Manual while experimenting with ed. The exercises
illustrate techniques not completely discussed in the actual text. A summary at the end of
section 4.2 lists theed commands and their functions.

It is assumed that the user knows how to log on to the operating system and has a basic
understanding of what an operating system file is. For more information about the SYSTEM
V /68 operating system facilities, refer to the section, "Basics For Beginners". The user must
know what character to type as the end-of-line character on the user's particular terminal.
This character is the RETURN or newline character (key) on mast terminals. Hereafter, the
end-of-line character, whatever it is, will be referred to as RETURN.

4.2.2 Editing Commands.

4.2.2.t Getting Started. Aswme that the user has logged in to a SYSTEM V /68 operating
system and it has just printed the prompt cha.racter, usually a

$

The easiest way to invoke ed is to type:

4-1

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

ed (followed by a RETURN)

Now theed program has been invoked and is waiting to be told what to do.

4.2.2.2 Creating Text. Suppose some text is to be created starting from scratch. Perhaps
the very first draft of a document or paper is to be entered. Normally, it will be entered in
rough form and undergo modifications (editing) later. This part will describe how to enter
some text to get a file of text started. How to make changes and corrections to the text is
described later.

When ed is first invoked, it is like working with a blank piece of paper (the file)-there is no
text or information present on the paper (in the file). The text must be supplied by the person
using ed. This is usually done by typing in the text or by reading it into ed from a file. We
will start by typing in some text and return shortly to how to read files.

First we will discuss a bit of terminology. In ed jargon, the text being worked on is said to be
"kept in a buffer." Think of the buffer as a work space, if desired, or simply as the
information that is to be edited. In effect, the buffer is like a piece of paper on which we will
write things, change some of them, and finally file the whole thing away for another day.

The user tells ed what to do to the text by typing instructions called "commands." Most
commands consist of a single lowercase letter. Each command is typed on a separate line.
(Sometimes the command is preceded by information about the line or lines of text to be
affected-these will be described below.) The ed text editor makes no response to most
commands-there is no prompting or response message like "ready".

The first command is "append," written as the letter

a

on a command line all by itself. It means "append (or add) text lines to the buffer as I type
them in." To enter lines of text into the buffer, type an

a

followed by a RETURN and the lines of text desired:

a
Now is the time
for all good men
to come to the aid of their party.

To stop appending, type a line that contains only a period. The • is used to tell ed that the
appending is finished. (If ed seems to be ignoring your entries, type an extra line with just
the • on it. You may find you have added some garbage lines to your text which will have
to be deleted later.)

After the append command has been used, the buffer will contain the following three lines:

Now is the time
for all good men
to come to the aid of their party.

The a and the • are not there because they are not text.

To add more text to what already exits, just issue another a command and continue typing.

4-2

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

To practice this, enter ed and create some text using the append command a

a
.. .text ...

Note that no system prompt appears while in the text editor. Do not forget to write the text
into memory with the write command w. Then leave ed with the q command and print the
file to see that everything worked. To print a file, enter

pr fiumame
or

cat filename

in response to the prompt character ($). Try both.

4.2.2.3 Error Messages(?). If at any time the user makes an error in the commands typed
into ed, the text editor will tell the user by typing the following:

?

This is about as cryptic as it can be, but with practice the user can usually figure out the goof.
The user can get a brief explanation of the error by typing

h

The help command gives a short error message that explains the reason for the most recent ?
diagnostic.

4.2.2.4 Writing .Text Files-The Write Command. Usually, you will want to save your
text for later use. To write out the contents of the buffer onto a file, use the write command

w

followed by the filename to write on. This will copy the buffer's contents onto the specified
file, destroying any previous information on the file. To save (write) the text in a file named
junk, for example, type:

w junk

Leave a space between w and the filename. The ed program will respond by printing the
number of characters it wrote out. In this case, ed would respond with:

68

Remember that blanks and the return character at the end of each line are included in the
character count. Writing a file just makes a copy of the text-the buffer's contents are not
disturbed, so the user can go on adding lines to it. This is an important point. At all times the
ed program works on a copy of a file, not the file itself. No change in the contents of a file
takes place until you give aw command. (Writing out the text onto a file from time to time
as it is being created is a good idea. If the system crashes or if the user makes some horrible
mistake, all the text in the buffer will be lost but any text that was written onto a file is
relatively safe.)

4.2.2.S Leaving ed-The Quit Command. To terminate a session withed, first save your
text by writing it onto a file using the w (write) command, and then type the quit command:

q

4-3

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

The system will respond with the prompt character:

$

At this point your buffer vanishes, with all its text, which is why the user would want to
write before quitting. Actually ed will print the character

?

if the user tries to quit without writing. At this point, the user writes if desired; if not,
another q will get you out regardl~ and will not save the text in the buffer.

4.2.2.6 Reading And Editing Text Files. A common way to get text into the buffer is to
read it from another file in the file system. This is what you do to edit text that you saved
with the w command in a previous session. The edit command

e

retrieves the entire contents of a file into the buffer. So if the user had saved the three lines
"Now is the time", etc., with aw command in an earlier session, the edit command

ejunk

would place the entire contents of the file junk into the buffer and respond with a number

68

which is the number of characters in the junk file. If anything was already in the
buffer, it is deleted ftrst.

If the e command is used to read a file into the buff er, then the user does not need to use a file
name after a subsequent w command; ed remembers the last filename used inane command,
and w will write on this file. Thus a good practice to follow is:

ed
e ftlename
[editing session]

w
q

This way, the user can simply enter w from time to time and be secure in the knowledge
that if the user got the filename right at the beginning, the user is writing into the proper file
each time. Note that after each edit command (e) or each write comm.and (w) the number of
characters is returned by ed.

The user can find out at any time what :filename ed is remembering by typing the file
command f. In this example, if you typed

f

ed would reply

junk

Sometimes you want to read a file into the buffer without destroying information that is
already in the buffer. This is done using the read command r. The command

r junk

will read the file junk into the buffer. The command appends the file specified to the end of
whatever file is already in the buffer. So if you do a read after an edit command such as

4-4

MOTOROLA COMPUTER SYSTEMS

ejunk
r junk

the buffer will contain two copies of the orginal text as follows:

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

TEXT EDITORS

Like the w and e commands, r prints the number of characters read in after the reading
operation is complete. Generally speaking, r is much less used than e.

The read command r may also be used to read a file external to the buffer into the file in the
buffer. While in ed and at the current line, enter the command

.r filename

and filename will be read into the file (already in the buffer) immediately after the current
line. None of the file in the buffer is destroyed, rather the external file filename has been read
into and been combined with the file already in the buffer. The file that was read remains in
filename also. You only copied it. The significant difference between r and .r is the final
destination of the file. The r command appends the file to whatever is already in the buffer;
the .r command reads the file into the buffer immediately after the current line.

Experiment with the e command-try reading and printing various files. You may get an
error ?name where name is the name of a file. This means that the file does not exist. Some
typical causes of getting an empty file are spelling the filename wrong or perhaps trying to
read or write a particular file which your permissions will not allow. Try alternately
reading and appending to see that they work similarly. Verify that

ed. :filename

is exactly equivalent to

ed
e :filename

What does

f filename

do?

4.2.2.7 Printing Buffer Contents. To print or list the contents of the buffer (or parts of
it) on the terminal, use the print command p. This is done as follows. Specify the line
numbers where printing is to begin and end. These numbers have a comma between the
beginning number and the ending number:

begi,nning line number, ending line numberp

Thus to print the first ten lines of the contents of any buffer (i.e., lines 1 through 10), type:

1,lOp (prints lines 1 through 10)

The ed will respond by printing the specified starting line (1) through the specified ending
line (10).

4-5

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

Suppose it is desirable to print all the lines in the buffer. You could use "1,30p" as above if it
is known there are exactly 30 lines in the buffer. But in general, the ed program provides a
shorthand symbol for "line number of the last line in the buffer," the dollar sign$. To print
all the lines in the buffer, use it this way:

1,$p (Prints all lines in buffer)
or

,p (Prints all lines in buffer also)

This will print all the lines in the buffer (line 1 through the last line). The t,Sp can be
abbreviated $,p . To stop the printing before the last line is printed, push the DEL key or the
DELETE (or equivalent) key on the terminal. The ed program will respond

?

and wait for the next input command.

To print the last line of the buffer, you could use

$,Sp

but ed lets you abbreviate this to

Sp

Any single line can be printed by typing the line number followed by a p. Thus

tp

produces the response

Now is the time

which is the :first line of the buffer.

In fact, ed lets you abbreviate even further. You ean print any single line by typing just the
line number-no need to type the letter p. If you enter

$

ed will print the last line of the buffer. Entering a single line number will print that line
only.

It is also possible to use$ in combinations like

$-S,$p

which prints the last :five lines of the buffer. This helps to determine the end of the contents
of the buffer when more is to be entered.

Create some text using the a command and experiment with the p command. You will :find,
for example, that line 0 or a line beyond the end (last line) of the buffer can not be printed.
Attempts to print a buffer in reverse order by entering·

3,tp

will not work.

Suppose the buffer contains the six lines of text

4-6

MOTOROLA COMPUTER SYSTEMS

Now is the time
for all good men
to come to the aid of their party
Now is the time
for all good men
to come to the aid of their party

and the following was entered

1,3p

and ed has printed the three lines. Try typing just

p (no line numbers)

This will print

to come to the aid of their party.

TEXT EDITORS

which is the third line of the buffer. In fact, it is the last (most recent) line that was
processed. Ot was the line just printed.) The p command can be repeated without line
numbers. and it will continue to print line 3.

The reason is that ed maintains a record of the last line processed so that it can be used instead
of an explicit line number. The most recent line is referred to by the shorthand symbol

(Pronounced "dot")

Dot is a line number in the same way that $ is. Dot means exactly "the current line", or
loosely, "the line that was processed most recently." The dot can be used in several ways-one
possibility is to enter:

.,$p

This will print all the lines, including the current line, to the last line of the buffer. In our
example, these are lines 3 through 6.

Some commands change the value of dot, while others do not. The print command p sets dot
to the number of the last line printed; the last command entered (.,$p) will set both • and $
to the last line in the buffer (line 6).

Dot is most useful when used in combinations, for example

.+t (or equivalently, .+tp)

This means "print the next line" and is a handy way to step slowly through a buffer. You
can also enter

.-1 (or .-tp)

which means "print the line before the current line". This enables stepping through the
buffer backwards if desired. Another useful combination is

.-3,.-tp

which prints the previous three lines.

All of these combinations change the value of dot. The user can learn the current value of
dot by typing

.= (dot line number is ?)

4-7

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

Theed program will respond by printing the value Cline number) of dot.

Let us summarize some things about the p command and dot. Essentially, p can be preceded
by 0, 1, or 2 line numbers (for our example). If no line number is given, it prints the
"current line", the line to which the dot refers. If one line number is given with or without
the letter p, it prints that line and sets dot there. If two line numbers are separated by a
comma, it prints all the lines in that range from the first number to the last number, and sets
dot to the last line printed. If two line numbers are specified, the first can not be bigger than
the second.

Typing a single RETURN will cause printing of the next line; RETURN is equivalent to

.+lp

Try it. Typing a A is equivalent to typing the minus -. It can be used in multiples, as AAA'

which will move ~he current line or dot line backwards three lines from the current line.
The - or the A can be considered equivalent to -lp since either moves the dot back one
line.

4.2.2.8 Deleting Lines. Suppose three extra lines in the buffer are not needed. They may
be removed by use of the delete command:

d

Except that d deletes lines instead of printing them, its action is similar to that of the print
command p. The lines to be deleted are specified for d exactly as they are for p as follows:

starting Une, ending Une d

Thus the command

4,$d

deletes lines 4 through the end. There are now three lines left, that can be checked by using:

1,$p

And notice that $ now is line 3! Dot is set to the next line after the last line deleted, unless
the last line deleted is the last line in the buffer. In that case, dot is set to $. The delete
command d and the print command p may be used together thus

dp

which deletes the current line, prints the following line, and sets dot to the line printed.

Experiment with a, e, r, w, p, and d until you become familiar with their use. While
experimenting, also use • , $, and line numbers to understand their use.

When you start to feel adventurous, try using line numbers with a, r, and was well. You
will find that a will append lines after the line number that you specify (rather than after
dot}, r reads a file in after the line number you specify (not necessarily at the end of the
buffer); and w will write out exactly the lines specified, not necessarily the whole buffer.
These variations are sometimes handy. For instance, a file can be inserted at the beginning of
a buffer by entering:

Or jilename

Lines can be entered at the beginning of the buffer by using:

4-8

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

Oa
.. .text ...

Notice that ".w" is very different from

w

4.2.2.9 The Substitute Command. One of the most used of all commands is the substitute
command:

s

This is the command that is used to change individual words or letters within a line or group
of lines. The substitute command is used for correcting spelling mistakes and typing errors.

Suppose that, because of a typing error, line 1 says

Now is th time

notice the e has been left off. The s command can be used to fix this as follows:

ls/th/the/

This says: in line 1, substitute the characters the for the characters th. Since ed will not
print the result automatically, enter

p

to verify that the substitution worked, and you should get

Now is the time

which is what is desired. Notice that dot must have been set to the line where the
substitution took place since the p command printed that line. Dot is always set this way
with the s command.

The general way to use the substitute command is

starting-Une, ending-Une sf change this/to tmsl

Whatever string of characters is between the first pair of slashes is replaced by whatever is
between the second pair, in all the lines between starting-Une and ending-line. Only the
first occurrence on each line is changed however. If every occurrence is to be changed, see
"Exercise 5". The rules for line numbers are the same as those for the print command p
except that dot is set to the last line changed. (But there is a trap for the unwary: if no
substitution took place, dot is not changed. This causes an error response ? as a warning.)

Thus the following can be entered

1.$s/s peling/spelling/

to correct the first spelling mistake (speling in this case) on each line in the text. (This is
useful for people who are consistent misspellers!)

If no line numbers are given, the s command assumes we mean "make the substitution on line
dot", so it changes things only on the current line. This leads to the very common sequence

s/ something I sometmng else Ip

which makes some correction on the current line and then prints it (current line) to· make
sure it worked out right. If it did not, you can try again. Notice that there is a p on the same

4-9

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

line as the s command. With few exceptions, p can follow any substitute command.

It is also legal to say

s/ .•• ./ I

which means change the first string of characters (....) to nothing, i.e., remove them. This is
useful for deleting extra words in a line or removing extra letters from words. For instance,
if the buffer contained

Nowxx is the time

this can be corrected by entering

s/xx//p

to get

Now is the time

Notice that// (two adjacent slashes) means "no characters" not a blank.

Experiment with the substitute command. See what happens if you substitute for some word
on a line with several occurrences of that word. For example, enter

a
the other side of the coin

s/the/on the/p

which results in the following:

on the other side of the coin

A substitute command changes only the first occurrence of the first string. All occurrences
can be changed by adding a g (for "global") command to the s command, like this:

s/-.1 •. ./gp

Try other characters instead of slashes to delimit the two sets of characters in the s
command-anything should work except blanks or tabs.

The characters

$ [• \ &.

have special meanings in a substitute command that are dU;cussed in detail later in this section.

4.2.2.10 The Search Command. When the substitute command is mastered, you may
move on to another highly important feature of ed-context searching.

Suppose the original three lines of text in the buffer are as follows:

Now is the time
for all good men
to come to the aid of their party.

Suppose the word their is to be changed to the. How is the line that contains their located?
With only three lines in the buff er, it is easy to keep track of what line the word their is on.
But when the buffer contains several hundred lines, users need a method of specifying the
desired line, regardless of what its number is, by specifying some context (unique text) on it.

4-10

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

The way to say "search for a line that contains this particular string of characters" or "unique
text" is to type:

/string of cliaracters to find/

For example, theed expression

/their/

is a context search which is sufficient to find the desired line-it will locate the next
occurrence of the characters between slashes ("their"). It also sets dot to that line and prints
that line for verification:

''Next occurrence" means that ed starts looking for the string at line ".+1" and searches to the
end of the buffer, then continues at line 1 and searches to line dot. That is, the search "wraps
around" from$ to 1. It scans all the lines in the buffer until it either finds the desired line or
gets back to dot again. If the given string of characters can not be found in any line, ed types
the error message

?

Otherwise, it prints the line it found.

The search for the desired line and the substitution can be done together, like this:

/their/s/their/the/p

which will yield

to come to the aid of the party.

There were three parts to that last command: context search for the desired line, make the
substitution, and print the line.

The expression "/their/" is a context search expression. In the simplest form, all context
search expressions are like this-a string of characters surrounded by slashes. Context
searches are interchangeable with line numbers, so they can be used by themselves to find and
print a desired line or as line numbers for some other command, like s. They were used both
ways in the examples above.

Suppose the buffer contains the three familiar lines

Now is the time
for all good men
to come to the aid of their party.

Then theed line numbers

/Now/+1
/good/
/party/-1

are all context search expressions, and they all refer to the same line (line 2). To make a
change in line 2, enter

/Now/+ ts/good/bad/
or

/good/s/goocl/bad/
or

/party/-ts/goocl/bad/

4-11

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

The choice is dictated only by convenience. All three lines could be printed by entering

/Now/ ,/party/p
or

/Now/,/Now/+2p

or by any number of similar combinations. The first one of these might be better if you do
not know how many lines are involved. (Of course, if there were only three lines in the
buffer, a convenient method of printing would be

1,$p

but not if there were several hundred.)

The basic rule is: a context search expression is the same as a line number, so it can be used
wherever a line number is needed.

Experiment with context searching. Try a body of text with several occurrences of the same
string of characters and scan through it using the same context search.

Try using context searches as line numbers for the substitute, print, and delete commands.
They can also be used with r, w, and a.

Try context searching using "?text?" instead of "/text/". This scans lines in the buffer in
reverse order rather than normal (forward) order. This is sometimes useful if you go too far
while looking for some string of characters-it is an easy way tO back up.

The characters

$ [* \ 8r,

have special meanings in a context search that are discussed in detail later in this section.

The ed program provides a short method for repeating a ccmtext search for the same string.
For example, the ed line number

/string I

will find the next occurrence of "string". It often happens that this is not the desired line, so
the search must be repeated. This can be done by typing men:ly:

II

This short method stands for "the most recently (last) used context search expression". It can
also be used as the first string of the substitute command, as m

/stringl /s//string2/

which will find the next occurrence of string 1 and replace it by string2. This can save a lot
of typing. Similarly

??

means "scan backwards for the same expression."

4.2.2.11 Changing and Inserting Text. This section disc!:m!lles the change command

c

which is used to change the current line or to replace the c11.11ent line with a group of one or
more lines, and the insert command

i

4-12

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

which is used for inserting a group of one or more lines immediately before the current line.

"Change", written as

c

is used to replace a number of lines with different Jines, which are typed in at the terminal.
For example, to change the first line (.+ 1) through the last line ($) of a file to something else,
type

.+1,$c

.. .type the Unes of text you want here ...

The lines typed between the c command and the '.' (dot) command will take the place of the
original lines between start line and end line. This is most useful in replacing a line or
several lines which have errors.

If only one line is specified in the c command, then just that line is replaced. (You can type in
as many replacement lines as you like.) Notice the use of'.' (dot) to end the input-this works
just like the '.' (dot) in the a command and must appear by itself at the beginning of a new
line. If no line number is given, line dot is replaced. The value of dot is set to the last line
you typed in.

"Insert" is similar to append. For example,

/string Ii
.. .type the Unes to be inserted here ...

will insert the given text before the next line that contains "string". The text between i and
the '.' (dot) is inserted before the specified line. If no line number is specified, the dot line is
used. Dot is set to the last line inserted.

"Change" is rather like a combination of delete followed by insert. Experiment to verify that

starting-Une,ending-Une d
i
-text ...

is almost the same as

starting-Une,ending-line c
.. .text ...

These are not precisely the same if the last line($) gets deleted. Check this out. What is dot?

Experiment with the append command a and the insert command i to see that they are
similar but not the same. You will observe that

Une-number a
-text ...

appends after the given line, while

4-13

TEXT EDITORS

Une-number i
.. .text ...

MOTOROLA COMPUTER SYSTEMS

inserts before it. Observe that if no line number is given, i inserts before line dot, a appends
after line dot, and c changes line dot.

4.2.2.12 Moving Text-The Move Command. The move command mis used for cutting
and pasting-it allows a group of lines to be moved from one place to another in the buffer.
Suppose the first three lines of the buffer are to be placed at the end of the buffer instead of at
the beginning. This could be performed by entering:

1,Jw temp
Sr temp
1,3d

This method will work, but it is a lot easier using the m comm.and as follows:

1,3m$

The general case is:

starting-line,ending-Une m after this line

Notice that there is a third line to be specified-the line after which the other lines are to be
moved. Of course, the lines to be moved can be specified by context searches; if you had

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

the two paragraphs could be reversed like this:

/Second/ ,/end of second/m/First/-1

Notice the "-1" which means that the moved text goes after the line mentioned. Dot gets set
to the last line moved.

4.2.3 The Global Commands. The two global commands are g and v. The global
command g is used to execute one or more ed commands on all those lines in the buffer that
match some specified string. For example

g/peling/p

prints all lines that contain "peling". More usefully,

g/peling/s/ /pelling/gp

makes the substitution everywhere on the line, then prints each corrected line. Compare this
to

1,Ss/peling/pelling/ gp

which only prints the last line substituted. Another subtle difference is that the g command
does not give a ? if "peling" is not found, whereas the s command will.

There may be several commands used in conjunction with the g command, but every line
except the last must end with a backslash"\". For example:

4-14

MOTOROLA COMPUTER SYSTEMS

g/ xxx/-ts/ a be/ def/\
.+2s/ghi/jkl/\
.-2,.p

TEXT EDITORS

makes changes in the lines before and after each line that contains "xxx'', then prints all
three lines.

The v command is the same as g except that the commands are executed on every line that
does not match the string following v. The following input

v/ /d

deletes every line that does not contain a blank.

4.2.4 Special Characters. You may have noticed that command work differently when
some characters like • , *, $, are used in context searches and in the s command. The reason is
that ed treats these characters as special, with special meanings. For instance, in a context
search or the first string of the substitute command only,

/x.y/

means "a line with an x, any character, and a y'', not just "a line with an x, a period, and a
y."

The following is a complete list of the special characters that have special meanings.

$ [* \ /Jr.

Warning: The backslash character "\" is special to "ed". For safety's sake, avoid it
where possible.

If you have to use one of the special characters in a substitute command, you can turn off its
magic meaning temporarily by preceding it with the backslash.

Here is a brief synopsis of the other special characters. First, the circumflex "A" signifies the
beginning of a line. Thus

rstringl

finds "string" only if it is at the beginning of a line. It will find

string

but not

the string ...

The dollar sign "$" is just the oppcsite of the circumflex; it means the end of a line. The input

/string$/

will only find an occurrence of "string" at the end of some line. This implies, of course, that

rstring$1

will find a line that contains just "string" and

r.s1

finds a line containing exactly one character.

The character".", as mentioned above, matches anything. For example, the input

/x.y/

4-15

TEXT EDITORS

matches any of the following:

x+y
x-y
xy
x.y

MOTOROLA COMPUTER SYSTEMS

This is useful in conjunction with "*" which is a repetition character. The "a*" is a shorthand
input for "any number of a's" therefore "•*" matches any number of anythings. For example,
input

sl.*/stuff/

which changes an entire line, or

sl.*/I

which deletes all characters in the line up to and including the last comma. (Since ".*"finds
the longest possible match, this goes up to the last comma.)

The"[" is used with the"]" to form character classes; for example,

/[01234S6789]/

matches any single digit, i.e., any one of the characters inside the braces will cause a match.
This can be abbreviated to

[0-9]

Finally, the "&"is another shorthand character - it is used only on the right-hand part of a
substitute command where it means ''whatever was matched on the left-hand side". It is used
to save typing. Suppose the current line contained

Now is the time

and you wanted to put parentheses around it. One tedious method is just to retype the line.
Another method is to enter

sf'/(/
s/$/)/

using your knowledge of ,, and "$". But the easiest way uses the "&" as follows:

sl.*/(&)/

This says "match the whole line and replace it by itself surrounded by parentheses." The "&"
can be used several times in a line; consider using

sl.*l&?&l!I

to produce

Now is the time? Now is the time!!

You do not have to match the whole line, of course. If the buffer contains

the end of the world

you could type

/world/sf/& is at hand/

to produce

4-16

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

the end of the world is at hand

Observe this expression carefully, for it illustrates how to take advantage of ed to save typing.
The string "/world/" found the desired line; the shorthand "/I" found the same word in the
line; and the "&"saved you from typing it again.

The "&"is a special character only within the replacement text of a substitute command and
has no special meaning elsewhere. You can turn off the special meaning of"&" by preceding
it with a backslash "\". Inputting

a/ampersand/\&/

will convert the word "ampersand" into the literal symbol"&" in the current (dot) line.

4.2.S Summary of Commands and Une Numbers. The general form of the ed text
editor commands is the command name, perhaps preceded by one or two line numbers. In the
case of the edit command e, the read command r, and the write command w, the command
name is also followed by a filename. Normally, only one command is allowed to be entered
per line, but a print command p may follow any other command (except for the edit
command e, the read command r, the write command w, and the quit command q).

a

c

d

e

f

g

i

m

n

p

q

Append, adds lines to the buffer (at line dot, unless a different line is
specified). Appending continues until a dot"." is typed at the beginning
(first character) of a new line. Dot is set to the last line appended.

Change the specified lines to the new text which follows. Entering
new lines is terminated by a dot"." as with a. If no lines are specified,
the current line (dot) is replaced. Dot is set to the last line changed.

Delete the lines specified. If none are specified, delete line dot .. Dot is set
to the first undeleted line, unless$ is specified in which case dot is set to
the last line, $.

Edit new file. Any previous contents of the buffer are thrown away, so
issue a write command w beforehand.

Print the remembered filename. If a name follows f, the remembered
name will be set to it.

The gl.oba/, command gl-/commands will execute the commands on
those lines that contain "_.:...".

Insert lines before the specified line or the current line (dot line) until
a "." is typed at the beginning of a new line. Dot is set to last line
inserted~

Move lines specified to the line named after m. Dot is set to the last
line moved.

Print the number of the addressed line(s) followed by a tab and the line
itself.

Print specified lines. If none are specified, print line dot. A single line
number is equivalent to "line number". A single RETURN prints the
next line, i~., the dot-plus-one line, ".+ 1 ".

The quit command exits from ed. It wipes out all text in the buffer if
you give it twice in a row without first giving a write command w.

4-17

TEXT EDITORS

r

s

v

w

.-

/-/

?-?

MOTOROLA COMPUTER SYSTEMS

Read a file into the buffer (at the end unless specified elsewhere). Dot is
set to the last line read. If .r filename is used, the filename is read into
the buffer immediately after the dot line.

The s/ string 11 string2/ command is used to substitute the characters
"string l" into "string2" in the specified lines. If no lines are specified,
the substitution is made in line dot. Dot is set to the last line in which
a substitution took 'place; if no substitution took place, dot is not
changed. The command s changes only the first occurrence of "stringl"
on a line; to change all occurrences on a line, type a g after the final
slash.

The exclude command vl-/commands executes commands only on
those lines that do not contain"-".

The write command writes out the buffer contents onto a file. Dot is not
changed.

The ".=" causes the printout of the current line number. The dot value
prints the line number of the current line (dot line). The "=" by itself
prints the value of the last line in the file.

The "!" is a temporary escape command. The line "!command-Une"
causes "command-line" to be executed as an operating system command.

The context search command searches for the next line which contains
the string of characters "-" and prints it. Dot is set to the line where
string was found. Search starts at line ".=l", wraps around from the
last line "$" to line "l", and continues to dot (the current line) if
necessary.

Performs context search in reverse direction. Starts search at the
previous line ".-1", scans to line 1~ wraps around to the last line "$", -
and scans back to the current line (dot line) if necessary.

4.3 The ex Text Editor

4.3.1 Starting the ex Editor. When invoked, ex determines the terminal type from the
TERM variable in the environment. If there is a TERM::AP variable in the environment and the
type of the terminal described matches the TERM variable, then that description is used. If the
TERM::AP variable cqntains a pathname (beginning with a /), the editor will seek the
description of the terminal in that file (rather than the default /etc/termcap). If there is a
variable EXINT in the environment, the editor will execute the commands in that variable;
otherwise, if there is a file .exrc in your HOME directory, ex reads commands from that file,
simulating a source command. Option setting commands placed in EXINIT or .exrc will be
executed before each editor session.

A command to enter ex has the following prototype. (Brackets ([]) surround optional
parameters.)

ex [-1-vl-t tag][-r][-I][-wnl-Rl+command] name._

a. The most common case edits a single file with no options, i.e.:

ex filename

b. The - command line option suppresses all interactive-user feedback and is useful in
processing editor scripts in command files.

4-18

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

c. The -v option is equivalent to using vi rather than ex.

d. The -t option is equivalent to an initial tag command, editing the file containing the tag
and positioning the editor at its definition.

e. The -r option is used in recovering after an editor or system crash, retrieving the last
saved version of the named file or, if no file is specified, typing a list of saved files.

f. The -1 option sets up for editing LISP, setting the showmatch anci llsp options.

g. The -w option sets the default window size to n, and is useful on dial-ups to start in
small windows.

h. The -R option sets the readonly option at the start. (Not available in all Version 2
editors due to memory constraints.)

i. The name arguments indicate files to be edited.

j. An argument of the form +command indicates that the editor should begin by executing
the specified command. If command is omitted, then it defaults to "$", positioning the
editor at the last line of the first file initially. Other useful commands here are scanning
patterns of the form /pat/ or line numbers, e.g., + 100 starting at line 100.

4.3.2 File Manipulation.

4.3.2.1 Current File. The ex editor is normally used to edit the contents of a single file.
The file being edited is considered the current file; its name is recorded as the current filename.
The ex editor performs all editing actions in a buffer (a temporary file) into which the text of
the file is initially read. Changes made to the buffer have no effect on the file being edited
until the buffer contents are written out to the file with a write command. After the buffer
contents are written, the previous contents of the written file are no longer accessible.

The current file is almost always considered to be edited. This means that the contents of the
buffer are logically connected with the current filename, so that writing the current buffer
contents onto that file, even if it exists, is a reasonable action. If the current file is not edited
then ex will not normally write on it if it already exists. The file command will say "[Not
edited]'' if the current file is not considered edited.

4.3.2.2 Alternate File. Each time a new value is given to the current filename, the
previous current filename is saved as the alternate filename. Similarly, if a file is mentioned
but does not become the current file, it is saved as the alternate filename.

4.3.2.3 Filename Expansion. Filenames within the editor may be specified using the
normal shell expansion conventions. In addition, the character % in filenames is replaced by
the current filename and the character #by the alternate filename. This makes it easy to deal
alternately with two files and eliminates the need for retyping the name supplied on an edit
command after a "No write since last change" diagnostic message is received.

4.3.2.4 Multiple Files and Named Buffers. If more than one file is given on the
command line, then the first file is edited as described above. The remaining arguments are
placed with the first file in the argument list. The current argument list may be displayed
with the args command. The next file in the argument list may be edited with the next
command. The argument list may also be respecified by specifying a list of names to the next
command. These names are expanded with the resulting list of names becoming the new
argument list, and ex edits the first file on the list.

For saving blocks of text while editing, and especially when editing more than one file, ex has
a group of named buffers. These are similar to the normal buffer, except that only a limited
number of operations are available on them. The buffers have names a through z. It is also

4-19

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

possible to refer to A through Z; the uppercase buffers are the same as the lowercase buffers
but commands append text to named buffers rather than replacing the buffer contents if
uppercase names are used.

4.3.2.5 Read-Only Mode. It is possible to use ex in the read-only mode to look at files that
you have no intention of modifying. This mode protects you from accidentally overwriting
the file. Read-only mode is on when the readonly option is set. It can be turned on with the
-R command line option, with the view command line invocation, or by setting the readonly
option. It can be cleared by setting the noreadonly option. It is possible to write, even while
in read-only mode, by writing to a different file, or by using the ! form of write.

4.3.3 Exceptional Conditions.

4.3.3.1 Errors and Interrupts. When errors occur ex (optionally) rings the terminal bell
and prints an error diagnostic. If the primary input is from a file, editor processing will
terminate. If an interrupt signal is received, ex prints "Interrupt" and returns to its
command level. If the primary input is a file, then ex will exit when this occurs.

4.3.3.2 Recovering From Hang-ups and Crashes. If a hang-up signal is received and the
buffer has been changed since it was last written, or if the system crashes, either the editor
(in the first case) or the system (after it reboots in the second case) will attempt to preserve
the buffer. The next time you log in you should be able to recover the work you were doing,
losing at most a few lines of changes from the last point before the hang-up or editor crash.
To recover a file you can use the -r option. If you were editing the file resume, then you
should change to the directory where you were when the crash occurred, giving the
command

ex -r resume

After checking that the retrieved file is good, you can write it over the previous contents of
that file.

You will normally get mail from the system telling you when a file has been saved after a
crash. The command

ex-r

will print a list of the files that have been saved for you. In the case of a hang-up, the file
will not appear in the list, although it can be recovered.

4.3.4 Editing Modes. The ex editor has five distinct modes.

a. The primary mode is the command mode. Commands are entered in command mode
when a : prompt is present and are executed each time a complete line is sent.

b. In text input mode ex gathers input lines and places them in the file. The append, insert,
and change commands use text input mode. No prompt is printed. This mode is left by
typing a"." alone at the beginning of a line and command mode resumes.

c. The last three modes are open mode, visual mode (entered by the commands of the same
name), and text insertion mode (within open and visual modes).

- The open mode allows local editing operations to be performed on the text in the file.
The open command displays one line at a time and can be used on any terminal.

- The visual mode allows local editing operations to be performed on the text in the
file. The visual command works on CRT terminals with random positioning cursors,
using the screen as a single window for file editing changes.

4-20

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

4.3.S Command Structure. Most command names are English words (initial prefixes of
the words are acceptable abbreviations). The ambiguity of abbreviations is resolved in favor
of the more commonly used commands. As an example, the substitute command can be
abbreviated "s". The shortest available abbreviation for the set command is "se".

4.3.S.1 Command Parameters. Most commands accept prefix addresses specifying the lines
in the file that they are to affect. The forms of these addresses will be discussed below. A
number of commands also may take a trailing count specifying the number of lines to be
involved in the command. (Counts are rounded down if necessary.) Thus, the lOp command
will print the tenth line in the buffer. The delete S command will delete five lines from the
buffer, starting with the current line.

Some commands take other information or parameters, the information always being given
after the command name. Examples are: option names in a set command (set number), a
filename in an edit command, a regular expression in a substitute command, or a target
address for a copy command (1,S copy 25).

4.3.S.2 Command Variants. A number of commands have two distinct variants. The
variant form of the command is invoked by placing an ! immediately after the command
name. Some of the default variants may be controlled by options; in this case the ! serves to
toggle the default.

4.3.S.3 Flags After Commands. The characters #, p and l may be placed after many
commands. (A p or l must be preceded by a blank or tab except in the single special case dp.)
In this case, the command abbreviated by these characters is executed after the command
completes. Since ex normally prints the new current line after each change, p is rarely
necessary. Any number of + or - characters may also be given with these flags. If they
appear, the specified offset is applied to the current line value before the printing command is
executed.

4.3.S.4 Comments. It is possible to give editor commands that are ignored. This is useful
when making complex editor scripts for which comments are desired. The comment character
is the double quote ". Any command line beginning with " is ignored. Comments beginning
with " may also be placed at the ends of commands, except in cases where they could be
confused as part of the text (shell escapes and the substitute and map commands).

4.3.S.S Multiple Commands Per Line. More than one command may be placed on a line
by separating each pair of commands by a I character. However, the global commands,
comments, and the shell escape ! must be the last command on a line, as they are not
terminated by a I.

4.3.S.6 Reporting Large Changes. Most commands that change the contents of the editor
buffer give feedback if the scope of the change exceeds a threshold given by the report option.
This feedback helps to detect undesirably large changes so that they may be quickly and
easily reversed with an undo command. After commands with more global effect (such as
global or visual), you will be informed if the net change in the number of lines in the
buffer during this command exceeds this threshold.

4.3.6 Command Addressing.

4.3.6.1 Addressing Primitives.

The current line. Most commands leave the current line as the last line that they affect.
The default address for most commands is the current line; thus, • is
rarely used alone as an address.

4-21

TEXT EDITORS

n

$

%

+n-n

I pa.ti ?pat?

" 'x

MOTOROLA COMPUTER SYSTEMS

The nth line in the editor buffer, lines being numbered sequentially
from 1.

The last line in the buffer.

An abbreviation for "1,$", the entire buffer.

An offset relative to the current buffer line. The forms .+3, +3, and
+++ are all equivalent; if the current line is line 100 they all address
line 103.

Scan forward and backward, respectively, for a line containing pat, a
regular expression (as defined below). The scans normally wrap around
the end of the buffer. If all that is desired is to print the next line
containing pat, then the trailing I or ? may be omitted. If pa.t is
omitted or explicitly empty, then the last regular expression specified is
located. (The forms \ I and \ ? scan using the last regular expression
used in a scan; after a substitute, // and ?? would scan using the
substitute's regular expression.)

Before each non-relative motion of the current line ., the previous
current line is marked with a tag, subsequently referred to as ". This
makes it easy to refer or return to this previous context. Marks may
also be established by the mark command, using single lowercase letters
x and the marked lines referred to as •x.

4.3.6.2 Combining Addressing Primitives. Addresses to commands consist of a series of
addressing primitives, separated by • or ;. Such address lists are evaluated left-to-right. When
addresses are separated by , the current line • is set to the value of the previous addressing
expression before the next address is interpreted. If more addresses are given than the
command requires, then all but the last one or two are ignored. If the command takes two
addresses, the first addressed line must precede the second in the buffer. Null address
specifications are permitted in a list of addresses, the default in this case is the current line (.);
thus, ,100 is equivalent to .,100. It is an error to give a prefix address to a command that
expects none.

4.3. 7 Command Descriptions. The following form is a prototype for all ex commands:

address command ! parameters count flags

All command parts are optional. Within visual mode, the ex editor ignores a • preceding any
command. In the following command descriptions, the default addresses are shown in
parentheses. These parentheses are not part of the command syntax. Confusion may arise
from some of the command descriptions that include the i character. We use the i character
to represent the key labeled A on your terminal. This convention has been adopted to avoid
confusing the A terminal key and the notation commonly used to mean "control".

abbreviate word rhs abbr: ab
Add the named abbreviation to the current list. When in visual mode, if word is input
as a complete word, it will be changed to rhs.

(.)append
text

abbr: a

Reads the input text and places it after the specified line. After the command,. addresses
the last line input or the specified line if no lines were input. If address 0 is given, text
is placed at the beginning of the buffer.

4-22

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

a!
text

args

The variant flag to append toggles the setting for the autoindent option during the input
of text.

The members of the argument list are printed, with the current argument delimited by
[and].

(.,.) change count
text

abbr: c

c!
text

Replaces the specified lines with the input text. The current line becomes the last line
input; if no lines were input it is left as for a delete.

The variant toggles autoindent during the change.

(.,.) copy addr fla.gs abbr: co
A copy of the specified lines is placed after addr, which may be 0. The current line •
addresses the last line of the copy. The command tis a synonym for copy.

(.,.)delete buffer count fla.gs abbr: d
Removes the specified lines from the buffer. The line after the last line deleted becomes
the current line; if the lines deleted were originally at the end, the new last line
becomes the current line. If a named buffer is specified by giving a letter, the specified
lines are saved in that buffer or appended to it if an uppercase letter is used.

ex fil,e abbr: e
Used to begin an editing session on a new file. The editor first checks to see if the
current buffer has been modified since the last write command was is.9ued. If it has
been, a warning is issued and the command is aborted. The command otherwise deletes
the entire contents of the editor buffer, makes the named file the current file, and prints
the new filename. After insuring that this file is not a binary file (such as a directory), a
block or character special file (other than /dev/tty), a terminal, or a binary or
executable file (as indicated by the first word), the editor reads the file into its buffer. If
the read of the file completes without error, the number of lines and characters read is
typed. If there were any non-ASCII characters in the file they are stripped of their non­
ASCII high bits, and any null characters in the file are discarded. If none of these errors
occurred, the file is considered edited. If the trailing newline character is missing from
the last line of the input file, it will be supplied and a complaint will be is.9ued. This
command leaves the current line (.)at the last line read. If executed from within open
or visual mode, the current line is initially the first line of the file.

e! fil,e
The variant form suppresses the complaint about modifications having been made and
not written from the editor buffer, thus discarding all changes which have been made
before editing the new file.

4-23

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

e +n file

file

Causes the editor to begin at line n rather than at the last line; n may also be an editor
command containing no spaces, e.g., +/pat.

abbr: f
Prints:

the current filename

whether it has been "modified" since the last write
command

whether it is read-only mode

the current line

the number of lines in the buffer

the percentage of the way through the buffer of the
current line.

In the rare case that the current file is "not edited" this is noted also. In this case you
have to use the form w! to write to the file, since the editor is not sure that a write
command will not destroy a file unrelated to the current contents of the buffer.

file file
The current filename is changed to file which is considered "not edited".

(1,$) global /pat/cmds abbr: g
First marks each line among those specified that matches the given regular expression.
Then the given command list is executed with • initially set to each marked line.

The command list consists of the remaining commands on the current input line and
may continue to multiple lines by ending all but the last such line with a \. If cmds
(and possibly the trailing I delimiter) is omitted, each line matching pat is printed. The
append, insert, and change commands and associated input are permitted; the •
terminating input may be omitted if it would be on the last line of the command list.
The open and visual commands are permitted in the command list and take input from
the terminal.

The global command itself may not appear in cmds. The undo command is also not
permitted there, since undo instead can be used to reverse the entire global command.
The options autoprint and autoindent are inhibited during a global command, (and
possibly the trailing I delimiter) and the value of the report option is temporarily
infinite, in deference to a report for the entire global command. Finally, the context
mark (") is set to the value of • before the global commands begin and is not changed
during a global command, except perhaps by an open or visual mode within the global
command.

g! /patlcmds abbr: v
The variant form of a global command runs cmds at each line not matching pat.

(.)insert abbr: i

4-24

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

text

. ,
l.

text

Places the given text before the specified line. The current line is left at the last line
input. If there were no lines input it is left at the line before the addressed line. This
command differs from append only in the placement of text .

The variant toggles autoindent during the insert.

(.,.+ 1) join count flags abbr: j

j !

Places the text from a specified range of lines together on one line. White space is
adjusted at each junction to provide at least one blank character, two if there is a. at the
end of the line, or none if the first following character is a). If there is already white
space at the end of the line, the white space at the start of the next line will be
discarded.

The variant causes a simpler join with no white space processing. Characters in the
lines are simply concatenated.

(.) k x
The k command is a synonym for mark. It does not require a blank or tab before the
following letter.

(.,.)list count flags
Prints the specified lines in a more unambiguous way. Tabs are printed as 1: and the end
of each line is marked with a trailing$. The current line is left at the last line printed.

map lhs rhs
The map command is used to define macros for use in visual mode. The lhs should be a
single character, or the sequence #n (for a digit), referring to function key n. When
this character or function key is typed in visual mode, it will be as though the
corresponding rhs has been typed. On terminals without function keys, you can type
#n.

(.)mark x
Gives the specified line mark x, a single lowercase letter. The x must be preceded by a
blank or a tab. The addressing form 'x then addresses this line. The current line is not
affected by this command.

(.,.)move a.ddr abbr: m
The move command repositions the specified lines to be after a.ddr. The first of the
moved lines becomes the current line.

next abbr: n

n!

The next file from the command line argument list is edited.

The variant suppresses warnings about the modifications to the buffer not having been
written out, discarding (irretrievably) any changes that may have been made.

4-25

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

n filelist
n +command filelist

The specified filelist is expanded and the resulting list replaces the current argument list.
The first file in the new list is then edited. If command is given (it must contain no
spaces), then. it is executed after editing the first such file.

(.,.) number count fia.gs abbr: # or nu
Prints each specified line preceded by its buffer line number. The current line is left at
the last line printed.

(.) open fia.gs abbr: o
(.) open I pat/ flags

Enters intra-line editing open mode at each addressed line. If pat is given, then the
cursor will be placed initially at the beginning of the string matched by the pattern. To
exit this mode use Q. (Not available in all Version 2 editors due to memory constraints.)

preserve
The current editor buffer is saved as though the system has just crashed. This command
is for use only in emergencies when a write command has resulted in an error and you
do not know how to save your work. After a preserve you should seek help.

(.,.)print count abbr: p or P
Prints the specified lines wi,th non-printing characters printed as control characters Ax;
delete (octal 177) is represented as A?. The current line is left at the last line printed.

(.)put buffer abbr: pu
Puts back previously deleted or yanked lines. Normally used with delete to effect
movement of lines, or with yank to effect duplication of lines. If no buffer is specified,
then the last deleted or yanked text is restored. (No modifying commands may intervene
between the delete or yank and the put, nor may lines be moved between files without
.using a named buffer.) By using a named buffer, text may be restored that was saved
there at any previous time.

quit abbr:q

q!

Causes the ex editor to terminate. No automatic write of the editor buffer to a file is
performed. However, ex issues a warning message if the file has changed since the last
write. command was issued, and does not quit (the ex editor will also issue a diagnostic
if there are more files in the argument list). Normally, you will wish to save your
changes and you should give a write command. If you wish to discard them, use the q!
command variant.

Quits from the editor, discarding changes to the buffer without complaint.

(.)read file abbr: r
Places a copy of the text of the given file in the editing buffer after the specified line. If
no filename is given, the current filename is used. The current filename is not changed
unless there is none, in which case jUe becomes the current name. The sensibility
restrictions of the edit command apply here also. If the file buffer is empty and there is
no current name, then ex treats this as an edit command.

Address 0 is legal for this command and causes the file to be read at the beginning of the

4-26

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

buffer. Statistics are given as for the edit command when the read successfully
terminates. After a read the current line is the last line read. (Within open and visual
the current line is set to the first line read rather than the last.)

(.)read !command
Reads the output of the command into the buffer after the specified line. Typically, the
read specifies a filename; here, the read specifies a command instead. A blank or tab
before the! is mandatory.

recover file
Recovers file from the system save area. Used after an accidental hang-up of the phone
or a system crash (The system saves a copy of the file you are editing only if you have
made changes to the file.) or preserve command, except that when you use preserve
you will be notified by mail when a file is saved.

rewind abbr: rew
The argument list is rewound, and the first file in the list is edited.

rew!
Rewinds the argument list discarding any changes made to the current buffer.

set parameter
With no arguments, prints those options whose values have been changed from their
defaults; with parameter all it prints all option values.

Giving an option name followed by a ? causes the current value of that option to be
printed. The ? is unnecessary unless the option is Boolean valued. Boolean options are
given values either by the form "set option" to turn them on or "set nooption" to turn
them off. String and numeric options are assigned via the form "set option=value".

More than one parameter may be given to set; they are int;erpreted left-to-right.

shell abbr: sh
A new shell is created. When it terminates, editing resumes.

source ftk abbr: so
Reads and executes commands from the specified file. The source commands may be
nested.

(.,.)substitute /pat/replloptions count flags abbr: s
On each specified line, the first instance of pattern pat is replaced by replacement pattern
repl. If the global indicator option character g appears, then all instances are substituted.
If the confirm indication character c appears, then before each substitution, the line to be
substituted is typed with the string to be substituted marked with t characters. By
typing a y, one can cause the substitution to be performed; any other input causes no
change to take place. After a substitute command the current line is the last line
substituted.

~es may be split by substituting newline characters into them. The newline in re-pl,
must be escaped by preceding it with a \ . Other metacharacters available in pat and
repl are described below.

4-27

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

(.,.)substitute options count flags abbr: s
If pat and repl are omitted, then the last substitution is repeated. This is a synonym for
the & command.

C.,.) t addr flags
The t command is a synonym for copy.

ta tag
The focus of editing switches to the location of tag, switching to a different line in the
current file where it is defined, or if necessary to another file. If you have modified the
current file before giving a tag command, you must write it out, giving another tag
command; specifying no tag will reuse the previous tag.

The tag file is normally created by a program such as ctags and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the
tag, the second the name of the file where the tag resides, and the third gives an
addressing form that can be used by the editor to find the tag. This field is usually a
contextual scan using I pat/ to be immune to minor changes in the file. Such scans are
always performed as if nomagic was set.

Names in the tag file must be sorted alphabetically. (Not available in all Version 2
editors due to memory constraints.)

unabbreviate word abbr: una
Delete word from the list of abbreviations.

undo abbr: u
Reverses the changes made in the buff er by the last buff er editing command.

Note: global commands are considered a single command for the purpose of undo (as are
open and visual commands). Also, the commands write and edit which interact with
the file system cannot be undone.

Undo is its own inverse. The undo command always marks the previous value of the
current line (.) as ". After an undo command, the current line is the first line restored
or the line before the first line deleted if no lines were restored. For commands with
more global effect, such as global and visual, the current line regains its pre-command
value after an undo.

unmap lhs
The macro expansion associated by map for lhs is removed.

(1,$) vlpat/cmds
A synonym for the global command variant g!, running the specified cmds on each line
that does not match pat.

version abbr: ve
Prints the current version number of the editor as well as the date the editor was last
changed.

(.) visual type count flags abbr: vi
Enters visual mode at the specified line. The type argument is optional and may be -, t,

4-28

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

or • as in the z command to specify the placement of the specified line on the screen. By
default, if type is omitted, the specified line is placed as the first on the screen. A count
specifies an initial window size; the default is the value of the option window. See
sections 4.4.1 through 4.4.10 for more details. To exit vi and return to ex, type Q.

visual file
visual +n file

From visual mode, this command is the same as edit

(1,$) write file abbr: w
Write changes made back to file, printing the number of lines and characters written.
Normally file is omitted and the text goes back where it came from. If a file is specified,
then text will be written to that file. The current line remains the same. (The editor
writes to a file if it is the current file and is edited, or if the file is actually a teletype
(/dev/tty, /dev/null). If the file does not exist, it is created, then written to.
Otherwise, you must give the variant form w! to force the write.)

If an error occurs while writing the current and edited file, the editor considers that
there has been no write since last change even if the buffer had not previously been
modified.

(1,$) write>> file abbr: w >>
Writes the buffer contents at the end of an existing file.

w! name
Overrides the checking of the normal write command and will write to any file that
the system permits.

(1,$) w !command
Writes the specified lines into command.

Note-. There is a difference between w! which overrides checks and w ! which writes to
a command. An example of the w ! command is w !cat, which enables you to quickly
scan a section of text.

wq name
A write command followed with a quit command.

wq! name
The variant overrides checking on the sensibility of the write command, as w! does.

xitname
If any changes have been made and not written, writes the buffer out, then quits.

(.,.)yank bu.ff er count abbr: ya
Places the specified lines in the named buffer for later retrieval via put. If no buff er
name is specified, the lines will be saved only until you execute a put or pre~ ~CAPE.
If you perform any other edit function before the put, the lines will be lost (see the put
command description.).

C.+1) z count
Print the next count lines (default window).

4-29

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

(.) z type count
Prints a window of text with the specified line at the top. If type is - the line is placed
at the bottom; a. causes the line to be placed in the center.

Note: Forms z= and zl also exist; z= places the current line in the center, surrounds it
with lines of - characters, and leaves the current line at this line. The form zl prints
the window before z- would. The characters +, l and - may be repeated for cumulative
effect. On some Version 2 editors, no type may be given.

A count gives the number of lines to be displayed rather than double the number
specified by the scroll option. On a CRT the screen is cleared before display begins unless
a count that is less than the screen size is given. The current line is left at the last line
printed.

!command
The remainder of the line after the ! character is sent to a shell to be executed. Within
the text of command the characters % and # are expanded as in filenames, and the !
character is replaced with the text of the previous command. Thus, in particular, !!
repeats the last such shell escape. If any such expansion is performed, the expanded line
will be echoed. The current line is unchanged by this command.

If there has been "no write" of the buffer contents since the last change to the editing
buffer, then as a warning, a diagnostic message will be printed before the command is
executed. A single ! is printed when the command completes.

(addr,addr)!command

($) =

Takes the specified address range and supplies it as standard input to command. The
resulting output then replaces the input lines.

Prints the line number of the addressed line. The current line is unchanged.

(.,.) > count flags
(.,.) < count flags

Performs intelligent shifting on the specified lines: < shifts left and > shifts right. The
quantity of shift is determined by the smftwidth option and the repetition of the
specification character. Only white space characters, blanks and tabs, are shifted. No
non-white space characters are discarded in a left-shift. The current line becomes the
last line that was changed in the shift.

An end-of-file from a terminal input scrolls through the file. The scroll option specifies
the size of the scroll, normally a half screen of text.

(.+1,.+1)
(.+l,.+l)

An address alone causes the addressed lines to be printed. A blank line prints the next
line in the file.

(.,.) &. options count flags
Repeats the previous substitute command.

4-30

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

(.,.) options count flags
Replaces the previous regular expression with the previous replacement pattern from a
su bsti tu tion.

4.3.8 Regular Expressions and Substitute Replacement Patterns.

4.3.8.1 Regular Expressions. A regular expression specifies a set of strings of characters.
A member of this set of strings is said to be matched by the regular expression. The ex editor
remembers two previous regular expressions: the previous regular expression used in a
substitute command and the previous regular expression used elsewhere (referred to as the
previous scanning regular expression). The previous regular expression can always be
referred to by a null RE(/ I or??).

4.3.8.2 Magic and Nomagic. The regular expressions allowed by the ex editor are
constructed in one of two ways depending on the setting of the magic option. The ex and vi
editor default setting of magic gives quick access to a powerful set of regular expression
metacharacters. The disadvantage of magic is that the user must remember that these
metacharacters are magic and precede them with the character \ to use them as "ordinary"
characters. With nomagic option set, there are only three metacharacters: \ , in all cases; $, at
the end of a regular expression; and l at the beginning of a regular expression. The characters

and & also lose their special meanings to the replacement pattern of a substitute when
nomagic option is set. However, the power of metacharacters is still available by preceding
the (now) ordinary character with a \ .

The remainder of the discussion of regular expressions assumes that the setting of this option
is magic.

4.3.8.3 Basic Regular Expression Summary. The following basic constructs are used to
build regular expressions in magic mode.

char An ordinary character matches itself. The following characters are not ordinary
characters and must be escaped (preceded) by a \ to be recognized: l at the
beginning of a line; $ at the end of line; * as any character other than the first; and
• (dot);\ (backslash); [(bracket); and - (tilde).

l At the beginning of a pattern, forces the match to succeed only at the beginning of
a line.

$ At the end of a regular expression, forces the match to succeed only at the end of
the line.

*

Matches any single character except the newline character.

Matches any number (including O) of adjacent occurrences of the regular
expression it follows.

\ < Forces a match to occur only at the beginning of a variable or word, including a
variable or word at the beginning of a line.

\ > Forces a match to occur only at the end of a variable or word.

[string] Matches any single character in the string and no others. A pair of characters
separated by - in string defines the set of characters between the specified lower
and upper bounds, thus [a-z] as a regular expression matches any single lowercase
letter. If the first character of the string is an l, then the construct matches those
characters that it otherwise would not; thus [la-z] matches anything except a
lowercase letter (and a newline character). To place any of the characters l, [,or -

4-31

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

in string you must escape them with a preceding \ .

4.3.8.4 .Combining Regular Expression Primitives. A concatenation of regular
expressions results in a single regular expression. This combined regular expression matches a
concatenation of strings when each string matches the corresponding component of the
expression, read from the left. For example, the combined regular expression

/an.*an/

matches the following standard input text

Bevan, Litterman, Packer, Smith

The expression is defined as the occurrence of "an" followed by any character repeated any
number of times followed by a second occurrence of "an". This expression could also be
written as

/\(an\).*\1/

where the expression \n means the same string of characters matched by an expression
enclosed in\(and \)earlier in the same expression. The n is a single digit; the sequence \n is
replaced by the text matched by the nth regular subexpression enclosed between \(and \).
When nested parenthesized subexpressions are present, n is determined by counting
occurrences of\(starting from the left.

The character - may be used in a regular expression to match the text that defined the
replacement part of the last substitute command.

4.3.8.S Substitute Replacement Patterns. The basic metacharacters for the replacement
pattern are & and -; these are given as \ & and \- when nomagic is set. Each instance of & is
replaced by the characters that the regular expression matched. The . metacharacter - stands
(in the replacement pattern) for the defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the escape
character \ . The sequences \ u and \ 1 cause the immediately following character in the
replacement to be converted to uppercase or lowercase, respectively, if this character is a
letter. The sequences \ U and \ L turn such conversion on, either until \ E or \ e is
encountered or until the end of the replacement pattern.

4.3.9 Option Descriptions.

autoindent, ai (default: noai)
Can be used to ease the preparation of structured program text. Autoindent operates
within open or visual mode with the append, change, insert, substitute and 0 (open
new line) commands. With append, ex looks at the beginning of the line that is being
appended and duplicates its indentation for any new lines created during the edit. With
change, insert, substitute and 0 commands, ex calculates the amount of white space at
the start of a new line in the edit and then aligns the cursor with that indentation for
each succeeding line of the edit.

If additional white space is typed at the beginning of a line, all lines that follow will be
aligned with the first non-white character of the previous line. To back the cursor to
the preceding tabstop, hit "D. The tabstops (going backwards) are defined as multiples of
the shiftwidth option. You cannot backspace over the indent, except by sending an
end-of-file with a "l>.

A line with no character in it turns into a completely blank line (the white space
provided for the autoindent is discarded). Lines beginning with an f and immediately

4-32

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

followed by a 'l> will reposition the input text at the beginning of the line while
retaining the previous indent for the next line. Similarly, a 0 followed by a AD will
reposition the input text at the beginning of the line without retaining the previous
indent.

The a.utoindent option does not operate in global commands or when the input is not a
terminal.

autoprint, ap (default: ap)
Causes the current line to be printed after each delete, copy, join, move, substitute, t,
undo or shift command. This has the same effect as supplying a trailing p to each such
command. The autoprint is suppressed in globals and only applies to the last of many
commands on a line.

autowrite, aw (default: noaw)
Causes the contents of the buffer to be written to the current file if you have modified it
and give a next, rewind, tab, or ! command, or a Al (switch files) or A] (tag goto)
command in visual mode.

Note: The command does not autowrite. In each case, there is an equivalent way of
switching when the autowrite option is set to avoid the autowrite (ex for next, rewind!
for rewind, tag! for tag, shell for !, and :e # and a :ta! command from within visual
mode).

beautify, bf (default: nobeautify)
Causes all control characters except tab, newline, and form-feed to be discarded from the
input. A complaint is registered the first time a back.space character is discarded. The
beautify option does not apply to command input.

directory, dir (default: dir=/tmp)
Specifies the directory in which ex places its buffer file. If this directory in not
writeable, then the editor will exit abruptly when it fails to be able to create its buffer
there.

ed.compatible (default: noed.compatible)
Causes the presence or absence of g and c suffixes on substitute commands to be
remembered and to be toggled by repeating the suffices. The suffix r makes the
substitution similar to the - command, instead of the&. (Version 3 only.)

errorbells, eb (default: noeb)
Error messages are preceded by a bell. (Bell ringing in open and visual mode on errors is
not suppressed by setting noeb.) If possible the editor always places the error message in
a standout mode of the terminal (such as inverse video) instead of ringing the bell.

hardtabs, ht (default: ht=8)
Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

ignorecase, ic (default: noic)
All uppercase characters in the text are mapped to lowercase in regular expression
matching. In addition, all uppercase characters in regular expressions are mapped to
lowercase except in character class specifications.

4-33

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

lisp (default: nolisp)
The autoindent option indents appropriately for lisp code, and the 0, {}, [[, and]]
commands in open and visual modes are modified to have meaning for lisp.

list (default: nolist)
All printed lines will be display tabs and end-of-lines markers as in the list command.

magic (default: magic for ex and vi)
If nomagic is set, the number of regular expression metacharacters is greatly reduced,
with only \, t and S having special effects. In addition, the metacharacters - and & of
the replacement pattern are treated as normal characters. All the normal metacharacters
may be made magic when nomagic is set by preceding them with a \ .

mesg (default: mesg)
Causes write permission to the terminal to be turned off while you are in visual mode, if
nomesg is set. (Version 3 only.)

number, nu (default: nonumber)
Causes all output lines to be printed with line numbers. In addition, each input line
will be prompted by supplying the next line number.

open (default: open)
If noo pen, the commands open and visual are not permitted.

optimize, opt (default: optimize)
Directs the terminal to skip automatic carriage returns when printing more than one
(logical) line of output. This will speed output on terminals without addressable cursors
whenever text with leading white space is printed.

paragraphs, para (default: para=IPLPPPQPP Libp)
Specifies paragraphs for the { and } operations in open and visual modes. The character
pairs in the option's value are the names of the macros that start paragraphs.

prompt (default: prompt)
Command mode input is prompted for with a colon(:).

read.only (default: noreadonly)
Can be used to set the permission mode to read-only from within the editor. It is
possible to write to a file using the ! form of write, even while in read-only mode.

redraw (default: noreclraw)
On a dumb terminal, the editor uses great amounts of output to simulate an intelligent
terminal. For example, during insertions in visual mode the characters to the right of
the cursor position are refreshed as each input character is typed. This option is useful
only at very high speed.

remap (default: remap)
If on, macros are repeatedly tried until they are unchanged. (Version 3 only.) Assume,
for example, o is mapped to 0, and 0 is mapped to I. If remo.p is set, o will map to I; if
noremap is set, it will map to 0.

report (default: report=S)

.4-34

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

Specifies a threshold for feedback from commands. Any command that changes more
than the specified number of lines will provide feedback about the scope of its changes.
For commands such as global, open, undo, and visual, which have potentially more
far-reaching scope, the net change in the number of lines in the buffer is presented at
the end of the command, subject to this same threshold. Thus, notification is suppressed
during a global command on the individual commands performed.

scroll (default: scroll=1/2 window)
Determines the number of logical lines scrolled when an end-of-file is received from a
terminal input in conunand mode and the number of lines printed by a command mode z
command (double the value of scroll).

sections (default: sections=SHNHH HU)
Specifies the section macros for the [and TI operations in open and visual modes. The
pairs of characters in the option's value are the names of the macros that start
paragraphs.

shell, sh (default: sh=/bin/sh)
Gives the pathname of the shell forked for the shell escape command!, and by the shell
command. The default is taken from SHELL in the environment, if present.

shiftwidth, sw (default: sw=8)
Gives the width for a software tabstop. The tabstop is used with autoindent to reverse
tab (with AD) and by the shift commands.

showmatch, sm (default: nosm)
In open and visual modes, when a) or } is typed, showmatch moves the cursor to the
matching (or { for one second, if this matching character is on the screen. Extremely
usefui with Usp.

slowopen, slow (terminal dependent)
Affects the display algorithm used in visual mode, holding off display updating during
input of new text to improve throughput when the terminal in use is both slow and
unintelligent.

tabstop, ts (default: ts=8)
The editor expands tabs in the input file to be on tabstop boundaries for the purposes of
display.

taglength, tl (default: tl=-0)
Tags are not significant beyond this many characters. A value of zero (the default)
means that all characters are significant.

tags (default: tags=tags/usr/lib/tags)
A path of files to be used as tag files for the tag command. (Version 3 only.) A requested
tag is searched for in the specified files sequentially. By default, files called tags are
searched for in the current directory and in /usr/lib (a master file for the entire
system).

term (from environment TERM)
The terminal type of the output device.

4-35

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

terse (default: noterse)
Shorter error diagnostics are produced for the experienced user.

warn (default: warn)
Warn if there has been '1No write since last change]" before a! command escape.

window (default: window=speed dependent)
The number of lines in a text window in the visual command. The default is 8 lines at
slow speeds (600 baud or less), 16 lines at medium speed (1200 baud); and the full screen
(minus 1 line) at higher speeds.

w300, w1200, w9600
These are not true options but set window only if the speed is slow (300), medium
(1200), or high (9600), respectively. They are suitable for an EXINlT and make it easy to
change the 8/16/full screen rule.

wrapscan, ws (default: ws)
Searches that use regular expressions in addressing will wrap around past the end of the
file.

wrapmargin, wm (default: wm=O)
Defines a margin for automatic wrapover of text during input in open and visual modes.

writeany, wa (default: nowa)
Inhibits checks normally made before write commands, allowing a write to any file
that the system protection mechanism will allow.

The options described are of three kinds: numeric, string and toggle. You can set numeric and
string options by a statement of the form

set opt=val

and toggle options can be set or canceled by statements of one of the forms

set opt
set noopt

These statements can be placed in your ExINIT in your environment or given while you are
running ex by preceding them with a : and following them with a CR.

You can get a list of all options that you have changed with the command

:setCR

or the value of a single option by the command

:set opt?cR

A list of all possible options and their values is generated by

:set allCR

Set can be abbreviated se. Multiple options can be placed on one line, for instance:

:se ai aw nUCR

Options set by the set command last only while you stay in the editor. It is common to want
certain options set whenever you use the editor. This can be accomplished by creating a list of
ex commands that are run every time you start up ex, edf.t, or vi. (All commands that start

4-36

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

with : are ex commands.) A typical list includes a set command and ~ibly a few map
commands (on Version 3 editors). Try to get these commands on one line separated with the I
character; for example,

set ai aw terselmap @ ddlmap # x

which establishes the set command options autoindent, autowrite, terse, makes @ delete a line
(the first map), and makes # delete a character (the second map) (see subpart 4.4.7.9 for a
description of the Version 3 map command). This string could be placed in the variable
EXINIT in your environment. Using the shell, you could also put these lines in the file
.profile in your home or working directory:

EXINIT=set ai aw terselmap @ ddlm.ap # x
export EXINIT

Or the following line could be put in the file exrc in your home directory:

set ai aw terselmap @ ddlmap # x

The options you select, if any, will depend on your working environment.

4.3.10 Limitations. The user is likely to encounter the following editor limits:

1024 characters per line
256 characters per global command list
128 characters per filename
128 characters in the previous inserted and deleted text in open or visual modes,
100 characters in a shell escape command
63 characters in a string valued option
30 characters in a tag name
250,000 lines if the file is silently enforced.

The visual implementation limits to 32 the number of macros defined with map, and the total
number of characters in macros must be less than 512.

4.4 The vi Text Editor

4.4.1 General. This section provides an introduction to the vi (visual) editor, versions 2 and
3. Version 2 is the ver5ion of vi that runs on the PDP11; Version 3 runs on 32-bit machines.

You should be running vi on a file you are familiar with while reading this. Sections 4.4.2
through 4.4.6 describe the basics for using vi and include the display editing features of the ex
editor. Some topics of special interest are presented in sections 4.4.7 and 4.4.8; additional
information about the editor is given in section 4.4.9 to avoid cluttering the initial
presentation.

A summary of commands, control characters, and key functions is provided at the end of
sections 4.4.3 and 4.4.4. The summary gives the name of command, paragraph of reference,
and a short description. Section 4.4.10 provides a complete list of characters and their special
meanings to the vi editor.

The following discussions refer to commands that are generated by pressing the control key at
the same time you hit another key. We use the notation " to indicate the control key; for
example, 'l> is a command generated by pressing the control key while hitting the D key. You
may have a key labeled " on your terminal. The " key will be represented as t in this
document; the" is used exclusively as part of the notation for control characters.

In the command examples shown in this part:

4-37

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

• Input that must be typed "as is" will be presented in boldface type.

• Text that should be replaced wich appropriate input will be given in italics.

4.4.2 Getting Started.

4.4.2.1 Specifying Terminal Type. Before you can start vi, you must tell the system
what kind of terminal you are using. An incomplete list of terminal type codes follows. If
your terminal does not appear here, consult with the staff members on your system to learn
the code for your terminal. If your terminal does not have a code, one can be assigned and a
description for the terminal created.

CODE FULL NAME TYPE

2621 Hewlett-Packard 2621A/P Intelligent
2645 Hewlett-Packard 264x Intelligent
act4 Microterm ACT-IV Dumb
act5 Microterm ACT-V Dumb
adm3a Lear Siegler ADM-3A Dumb
adm31 Lear Siegler ADM-31 Intelligent
c100 Human Design Concept 100 Intelligent
dm1520 Datamedia 1520 Dumb
dm2500 Datamedia 2500 Intelligent
dm3025 Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
h1500 Hazeltine 1500 Intelligent
h19 Heathkit h19 Intelligent
ilOO Infoton 100 Intelligent
mime Imitating a smart ACT-IV Intelligent
t1061 Teleray 1061 Intelligent
vt52 Dec VT-52 Dumb

Suppose for example that you have a Hewlett-Packard HP2621A terminal. The code used by
the system for this terminal is 2621. The command sequence

TERM=2621
export TERM

would tell the system you have a Hewlett-Packard 2621A/P.

If you want to have your terminal type established automatically when you log in, place the
above commands in your .profile.

4.4.2.2 Editing a File. After telling the system which kind of terminal you have, make a
copy of a file you are familiar with and run vi on this file with the command

S vi filename

Replace filename with the name of the copy file just created. The screen should clear and the
text of your file appear on the screen. If something else happens, you may have given the
system an incorrect terminal type code. Another possibility is that you may have typed the
wrong filename and the editor printed an error diagnostic. If something unexpected appears
on your screen, hit the keys :q (colon and the q key) and then the RErURN key. This should
take you out of the editor and get you back to the command level interpreter. Try to figure
out what happened, then attempt the procedure again.

4-38

\

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

If the editor doesn't respond to the commands, try sending it an interrupt by hitting the DEL
or RUB key, and then giving the :q command, again followed by a carriage return.

4.4.2.3 Editor Copy in Buffer. The vi editor does not directly change the file that you are
editing. Instead, it makes a copy of this file in the buffer and remembers the filename. You do
not affect the contents of the file until you write the changes into the original file.

4.4.2.4 Arrow Keys. The editor command set is independent of the terminal you are
using. On most terminals with cursor positioning keys, these keys will also work within the
editor. If you don't have cursor positioning keys, or even if you do, you can use the h j k and
l keys as cursor positioning keys (these are labeled with arrows on an adm3a).

• h moves cursor to the left (control-h does the same)

• j moves cursor down (in the same column)

• k moves cursor up (in the same· column)

• l moves cursor to the right.

Note: On the HP2621 terminal, the function keys must be used with the shift key, otherwise
they only act locally. Unshifted use will leave the cursor positioned incorrectly.

4.4.2.S Special Characters. Several special characters are very important, so be sure to
find them right away. Look on your keyboard for a key labeled INC or ALT. It should be
near the upper left corner of your terminal. Try hitting this key a few times. The editor
will ring the bell to indicate that it is in an inactive state. On smart terminals, the editor
may quietly :ft.ash ihe screen rather than ring the bell. Partially formed commands are
canceled with the ESC key. When you insert text in the file, text insertion is ended with the
INC key. If you become confused during an edit, you may hit the INC key to cancel any
operation and start again.

The CR or REfURN key is important because it is used to terminate certain commands. It is
usually at the right side of the keyboard and is the same command used at the end of each
shell command.

Another useful key is the DEL (or RUB key). It generates an interrupt, which tells the editor
to stop what it is doing. This is a forceful way of making the editor return to an inactive
state. Try hitting the I key on your terminal. It is used when you want to specify a search
string. The cursor should now be positioned at the bottom line of the terminal after a I
printed as a prompt. You can get the cursor back to the current position by hitting the DEL or
RUB key. Backspacing over the I will also cancel the search. From now on we will refer to
hitting the DEL or RUB key as "sending an interrupt".

The editor often echoes your commands on the last line of the terminal. If the cursor is on
the first position of this last line, then the editor is performing a computation, such as
computing a new pa;ition in the file after a search or running a command to reformat part of
the buffer. When this is happening you can stop the editor by sending an interrupt. (On
some systems, you cannot type ahead while the editor is computing with the cursor on the
bottom line.)

4.4.2.6 Leaving the Editor. After you have practiced working with vi and you wish to
do something else, you can give the 'ZZ command to leave the editor. This writes the contents
of the editor buffer (including any changes made) back into the file you are editing and then
quits the editor. You can also end an editor se8sion by giving the command :q!CR. All
commands that read from the last display line can also be terminated with an ESC as well as
a CR character. The :q!CR command ends the editor session and discards all your changes.
This command is useful if you change the editor copy of a file you wish only to look at. Be

4-39

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

very careful not to give this command when you really want to save the changes you have
made.

4.4.3 Moving Around in the File.

4.4.3.1 Scrolling and Paging. The editor has many commands for moving around in the
file. The most used command is generated by hitting the control and D keys at the same time,
a· control-D or 'D. This command scrolls down in the file; the D stands for down. Many
editor commands are mnemonic which makes them much easier to remember. For instance,
the command to scroll up is AU. Many dumb terminals can't scroll up at all, in which case
hitting AU clears the screen and refreshes it with a line that is farther back in the file at the
top.

If you want to see more of the file below where you are, you can hit "E to expose one more
line at the bottom of the screen, leaving the cursor where it is. (Version 3 only.) The
command Ay (which is non-mnemonic, but next to AU on the keyboard) exposes one more line
at the top of the screen.

There are other ways to move around in the file; the keys AF and "B move forward and
backward a page, keeping a couple of lines of continuity between screens so that it is ~ible
to read through a file using these commands as well.

Notice the difference between scrolling and paging. If you are trying to read the text in a file,
hitting AF to move forward a page repeats only a couple of lines of text. Scrolling on the
other hand gives more context and functions more smoothly. You can continue to read the
text while scrolling is taking place.

4.4.3.2 Searching, goto, and Previous Context. Another way to position yourself in the
file is by giving the editor a string to search for. Type the character I followed by a string of
characters terminated by a RErURN. The editor will position the cursor at the next
occurrence of this string. Now try hitting n to go on to the next occurrence of this string.
The character? will search backward from where you are but is otherwise like/.

Searches will normally wrap around the end of the file and find the string even if it is not on
a line in the direction you searched, provided it is anywhere else in the file. You can disable
this wrap-around in scans by giving the command:

:se nowrapscanCR
or
:se nowsCR

If the search string you give the editor is not present in the file, the editor will print a
diagnostic on the last line of the screen and the cursor will return to its initial position.

If you wish the search to match only at the beginning of a line, begin the search string with
ant. To match only at the end of a line, end the search string.with a$. Thus

/tfirstCR

will search for the word 'first' at the beginning of a line, and

/last$CR

searches for the word 'last' at the end of a line.

Actually, the string you give to search for can be a regular expressi.on in the sense of the
editors ex(t) and ed(1). (Refer to section,4.3.8.3 for more information on regular expressi.on.)
You can disable the special meanings of these characters by putting the

4-40

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

:se nomagicCR

command in EXINIT in your environment.

The command G, when preceded by a number will position the cursor at that line in the file.
Thus tG will move the cursor to the first line of the file. If you give G no count, then the
cursor moves to the end of the file.

If you are near the end of the file and the last line is not at the bottom of the screen, the
editor will place only the character ,-, on each remaining line. This indicates that the last line
in the file is on the screen; that is, the ,-, lines are beyond the end of the file.

You can determine the state of the file you are editing by typing a AG command. The editor
will show you the name of the file you are editing, the number of the current line, the
number of lines in the buffer, and the percentage of the way through the buffer the cursor is
located. Try doing this now and remember the number of the line you are on. Give a G
command to get to the end and then another G command to get back. where you were.

You can also get back. to a previous position by using the command "(two back quotes). This
is often more convenient than G because it requires no advance preparation. Try giving a G
or a search with I or ? and then a " to get back. where you started. If you accidentally hit n
or any command that moves you far away from a context of interest, you can quickly get
back by hitting ".

4.4.3.3 Moving Around on the Screen. Now try just moving the cursor around on the
screen. If your terminal has arrow keys (4 or 5 k.eys with arrows going in each direction),
try them. If you don't have working arrow k.eys, use h, j, k, and l. Experienced users of vi
prefer these keys to arrow keys, because they are right underneath their fingers.

Hit the + key. Each time you do, notice that the cursor advances to the next line in the file, at
the first non-white position on the line. The - key is like+ but goes the other way. These are
very common keys for moving the cursor up and down lines in the file. Notice that if the
cursor goes off the bottom or top of the screen when using these keys, then the text will
scroll down (and up if possible) to bring a line at a time into view. The REI'URN k.ey has the
same effect as the + k.ey. ·

The vi editor also has commands to take you to the top, middle and bottom of the screen. The
H command will take you to the top line (home) on the screen. Try preceding it with a
number as in 3H. This will take you to the third line on the screen. Many vi commands take
preceding numbers. Try M, which takes you to the middle line on the screen, and L, which
takes you to the last line on the screen. The L command also takes counts; the SL command
will take you to the fifth line from the bottom.

There are two control characters that move the cursor up or down a line, but keep it in the
same column. The "N causes the cursor to move to the same column of the next line. To
move to the same column of the previous line use the AP command.

4.4.3.4 Moving Within a Line. Now try picking a word on some line on the screen, not
the first word on the line. Move the cursor (using REI'URN and-) to be on the line where the
word is. Try hitting the w key. This will advance the cursor to the next word on the line.
Try hitting the b key to back up words in the line. Also try thee key which advances you
to the end of the current word rather than to the beginning of the next word. Also try
SPACE (the space bar) which moves the cursor right one character and the BS key (backspace
or~) which moves left one character. The h key works as~ does and is useful if you don't
have a BS key. Also, as noted above, the I key will move the cursor to the right.

4-41

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

If the line has punctuation in it you may have noticed that the w and b keys stop at each
group of punctuation. You can also go backward and forward without stopping at
punctuation by using W and B rather than the lowercase equivalents. Think of these as
bigger words. Try these on a few lines with punctuation to see how they differ from the
lowercase w and b.

The word keys wrap around the end of line, rather than stopping at the end. Try moving to
a word on a line below where you are by repeatedly hitting w.

4.4.3.S Summary of Cursor Commands. A paragraph reference is provided for each vi
command in the following list.

BS 4.4.3.4

SPACE 4.4.3.4

'lJ 4.4.3.1

"I> 4.4.3.1
AE 4.4.3.1
AF 4.4.3.1
AG 4.4.3.2

II 4.4.3.4

~ 4.4.3.3
AP 4.4.3.3
Au 4.4.3.1
Ay 4.4.3.1

+ 4.4.3.3

4.4.3.3

I 4.4.3.2

? 4.4.3.2

B 4.4.3.4

G 4.4.3.2

H 4.4.3.3

M 4.4.3.3

L 4.4.3.3

w 4.4.3.4

b 4.4.3.4

e 4.4.3.4

h 4.4.2.4

j 4.4.2.4

Move cursor one position to the left

Move cursor one position to the right

Move backward to previous page

Scroll down in the file

Expose another line at bottom of screen (Version 3)

Move forward to next page

Determine state of file (filename, current line number, number of lines in
the buffer, and per-cent way through the buffer)

Move cursor one space to the left

Move cursor to next line, same column

Move cursor to previous line, same column

Scroll up in the file

Expose another line at the top of screen (Version 3)

Advance cursor to beginning of next line

Move cursor to beginning of previous line

Search forward for a character string

Search backward for a character string

Move cursor backward a word, ignoring punctuation

Move cursor to specified line or to last line if default

Move cursor to top line (home) on screen

Move cursor to middle line on screen

Move cursor to last line on screen

Move cursor forward a word, ignoring punctuation

Move cursor backward a word.

Move cursor to end of current word

Moves cursor to the left

Moves cursor down (in same column)

4-42

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

k 4.4.2.4 Moves cursor up (in same column)

1 4.4.2.4 Moves cursor to the right

n 4.4.3.2 Repeat scan for next instance of I or? pattern

w 4.4.3.4 Move cursor forward a word

4.4.3.6 The view Editor. If you want to use the editor to look at a file, rather than to
make changes, invoke it as view instead of vi This will set the readonly option which will
prevent you from accidentally overwriting the file.

4.4.4 Making Simple Changes.

4.4.4.1 Inserting. One of the most useful commands is the i (insert) command. After you
type i, everything you type until you hit FSC is inserted into the file. Try this now; position
yourself on some word in the file and try inserting text before this word. If you are on a
dumb terminal it will seem that some of the characters in your line have been overwritten,
but they will reappear when you hit FSC.

Now try finding a word that can, but does not, end in an 's'. Position yourself at that word
and type e (move to end of word), a (append), and 'sFSC' (terminate the textual insert). This
sequence of commands can be used to make a word pluraL

Try inserting and appending a few times to make sure you understand how this works:

• i places text to the left of the cursor

• a places text to the right of the cursor.

Many related editor commands are invoked by the same letter key and differ only in that one
is given by a lowercase key and the other is given by an uppercase key. In these cases, the
uppercase key often differs from the lowercase key in its sense of direction, with the
uppercase key working backward and/or up, while the lowercase key moves forward and/or
down.

Often you want to add new lines to the file you are editing, before or after some specific line
in the file. Find a line where this makes sense and then give the o command to create a new
line after the line you are on, or the 0 command to create a new line before the line you are
on. After you create a new line in this way, the text you type up to an FSC is inserted on the
new line.

Whenever you are typing in text, you can give many lines of input or just a few characters.
To type in more than one line of text, hit a REI'URN at the middle of your input. A new line
will be created for text, and you can continue to type. If you are on a slow and dumb
terminal the editor may choose to wait to redraw the tail of the screen, and will let you type
over the existing screen lines. This avoids the lengthy delay that would occur if the editor
attempted to keep the tail of the screen always up to date. The tail of the screen will be fixed
and the missing lines will reappear when you hit ESC.

While inserting new text, you can use the characters normally used at the system command
level (usually 'll or #) to backspace over the last character typed, and the character used to
kill input lines (usually @, "X, or "U) can be used to erase the input you have typed on the
current line. In fact, the 'll (backspace) always works to erase the last input character,
regardless of what your erase character is. The "W will erase a whole word and leave you
after the space following the previous word. It is useful for quickly backing up in an insert.
The following conditions should be noted:

4-43

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

• When you backspace during an insertion, the characters you backspace over are not erased;
the cursor moves backward, and, the characters remain on the display. This is often useful
if you are planning to type in something similar. In any case the characters disappear
when you hit ESC. If you want to get rid of them immediately, hit an ESC and then a
again.

• You cannot erase characters that you did not insert, and you cannot backspace around the
end of a line. If you need to back up to the previous line to make a correction, just hit ESC
and move the cursor back to the previous line. After making the correction you can
return to where you were and use the insert or append command again.

4.4.4.2 Making Small Corrections. You can make small corrections in existing text quite
easily. Find a single character that is wrong or just pick any character. Use the arrow keys
to find the character, or get near the character with the word motion keys and then either
backspace (hit the BS key, "II, or just h) or SPACE (using the space bar) until the cursor is on
the character that is wrong. If the character is not needed then hit the x key; this deletes the
character from the file. It is analogous to the way you x out characters when you make
mistakes on a typewriter.

If the character is incorrect, you can replace it with the correct character by giving the re
command, where c is the correct character. If the character that is incorrect should be
replaced by more than one character, give the command

sstringESC

which substitutes a string of characters, and ends with ESC. If there are a small number of
characters that are wrong you can precede s with a count of the number of characters to be
replaced. Counts are also useful with x to specify the number of characters to be deleted.

4.4.4.3 Making Corrections With Operators. You already know almost enough to make
changes at a higher level. All you need to know now is that the d key acts as a delete
operator and the c key acts as a change operator.

• The dw command deletes a following word.

• The db command deletes a preceding word.

• The dsPACE command deletes a single character, and is equivalent to the x command.

• The cw command changes the text of a single word. It is followed with replacement text
ending with an ESC. Find a word that you can change to another and try this now.
Notice that the end of the text to be changed is marked with the character '$'so that you
can see this mark as you are typing in the new text material.

The • command repeats the last command that made a change.

4.4.4.4 Operating on Lines. It is often the case that you want to operate on lines. Find a
line you want to delete and type dd, the d operator twice. This will delete the line. If you
are on a dumb terminal, the editor may erase the line on the screen, replacing it with a line
with only an @ on it. This line does not correspond to any line in your file, but only acts as a
place holder. It helps to avoid a lengthy redraw of the rest of the screen which would be
necessary to close up the hole created by the deletion on a terminal without a delete line
capability. D deletes the rest of the text on the current line.

Try repeating the c operator twice (cc); this will change a whole line, erasing its previous
contents and replacing them with text you type up to an ESC. The command S is a
convenient synonym for cc, by analogy with s. Think of S as a substitute on lines, while s is
a substitute on characters. C changes the rest of the text on the current line.

4-44

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

You can delete or change more than one line by preceding the dd or cc with a count (Sdd
deletes 5 lines). You can also give a command like dL to delete all the lines up to and
including the last line on the screen or d3L to delete through the third from the bottom line.
One subtle point here involves using the I (search) after a d. This will normally delete
characters from the current position to the point of the match. If you desire to delete whole
lines including the two points, give the pattern as /pat/+O, a line address.

Note: The ex editor lets you know when you change a large number of lines so that you can
see the extent of the change. It will also always tell you when a change you make affects
text that you cannot see.

4.4.4.S Undoing. Suppose the last change you made was incorrect; you could use the
insert, delete, and append commands to put the correct material back. However, since it is
often the case that we regret a change or make a change incorrectly, the editor provides a u
(undo) command to reverse the last. change you made. Try this a few times, and give it twice
in a row to notice that a u also undoes a u.

The undo command lets you reverse only a single change. After you make a number of
changes to a line, you may decide that you would rather have the original state of the line
back. The U command restores the current line to the state before you started changing it.

You can recover text that you deleted, even if undo will not bring it back; see subpart 4.4.7.3
on recovering lost text.

4.4.4.6 Summary of Basic vi Commands. A paragraph reference is provided for each
command in the following list.

SPACE 4.4.4.2 Advance cursor one position to the right

AH 4.4.4.1 Move cursor one space to the left
Aw 4.4.4.1 Erase a word during an insert

erase 4.4.4.1 Erase a character during an insert (usually 'll or #)

kill 4.4.4.1 Kill the insert on this line (usually @, AX, or AU)

4.4.4.3 Repeat the last change command

0 4.4.4.1 Open and input new lines above the current line

s 4.4.4.4 Substitute on lines

u 4.4.4.5 Undo the changes made to the current line

a 4.4.4.1 Append text after the cursor

c 4.4.4.3 Change the specified object (word) to the following text

d 4.4.4.3 Delete the specified object (word, space, etc.)

i 4.4.4.1 Insert text before the cursor

0 4.4.4.1 Open and input new lines below the current line

r 4.4.4.2 Replace a character

s 4.4.4.2 Replace a character with a string

u 4.4.4.5 Undo the last change

4-45

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

x 4.4.4.2 Delete a character

cc 4.4.4.4 Change a whole line

dd 4.4.4.4 Delete a line

4.4.S Moving About, Rearranging, and Duplicating Text.

4.4.S.1 Low Level Character Motions. Move the cursor to a line where there is a
punctuation or a bracketing character such as a parenthesis or a comma or period. Try the
command f x where x is the character sought. This command finds the next x character to the
right of the cursor in the current line. Try then hitting a ;, which finds the next instance of
the same character. By using the f command and then a sequence of ;'s, you can often get to a
particular place in a line much faster than with a sequence of word motions or SPACEs.
There is also an F command, which is like f, but searches backward. The; command repeats
Falso.

When operating on the text in a line, it is often desirable to delete characters including the
first instance of a character. Try dfx for some x and notice that the x character is deleted.
Undo this with u and then try dtx (the t stands for "to") to delete up to the next x, but not
the x. The command T is the reverse of t.

When working with the text of a sin~le line, an t moves the cursor to the first non-white
position on the line, and a $ moves it to the end of the line. Thus, $a will append new text at
the end of the current line.

Your file may have tab characters ("I) in it. These characters are represented as a number of
spaces expanding to a tab stop, where tab stops are every eight positions by default. Tab stops
are set by a command of the form

:sets= XCR

where x is 4 to set tab stops every four columns. The tab stop setting has an effect on screen
representation within the editor. When the cursor is at a tab, it sits on the last of the several
spaces that represent that tab. Try moving the cursor back and forth over tabs so you
understand how this works.

On rare occasions, your file· may have non-printing characters in it. These characters are
displayed in the same way they are represented in this manual; i.e., with a 2-character code,
the first character of which is the , .. , character. On the screen non-printing characters
resemble a ,.., character adjtcent to another character. Spacing or backspacing over the
character reveals that the two characters are, like the spaces representing a tab character, a
single character.

The editor sometimes discards control characters, depending on the character and the setting of
the beOJJtify option, if you attempt to insert them in your file. You can get a control
character in the file by beginning an insert and then typing a "'V before the control character.
The "'V quotes the following character causing it to be inserted directly into the file.

4.4.S.2 Higher Level Text Objects. In working with a document it is often advantageous
to work in terms of sentences, paragraphs, and sections.

• The (and) operations move to the beginning of the previous and next sentence,
respectively. Thus the d) command will delete the rest of the current sentence. The d(
command will:

4-46

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

delete the previous sentence if you are at the beginning of the current sentence
or
delete the current sentence up to where you are if you are not at the beginning of the
current sentence.

• A sentence is defined to end at a ., !, or? that is followed by either the end of a line or
two spaces. Any number of),], ", and ' closing characters may appear after the ., !, or ?,
and before the spaces or end of line.

• The { and } operations move over paragraphs.

• The [[and]] operations move over sections. They require the operation character to be
doubled because they can move the cursor from where it currently is. While it is easy to
get back with the " command, these commands would still be frustrating if they were
easy to hit accidentally.

• A paragraph begins after each empty line and also at each of a set of paragraph macros
specified by the pairs of characters in the definition of the string valued option pa.ragraphs.
The default setting for this option defines the paragraph macros of the -ms and -mm macro
packages, i.e., the .IP, .LP, .PP and .QP, .P and .LI macros. You can easily change or extend
this set of macros by assigning a different string to the pa.ragraphs option in your EXINIT.
See subpart 4.4.7.2 for details. The .bp request is also considered to start a paragraph. Each
paragraph boundary is also a sentence boundary. The sentence and paragraph commands
can be given counts to operate over groups of sentences and paragraphs.

• Sections in the editor begin after each macro in the sections option, normally, .NH, .SH, .H
and .HU, and each line with a form feed L in the first column. Section boundaries are
always line and paragraph boundaries.

Try experimenting with the sentence and paragraph commands until you are sure how they
work. If you have a large document, try looking at it using the section commands. Section
commands interpret a preceding count as a different window size in which to redraw the
screen at the new location, and this window size is the base size for newly drawn windows
until another size is specified. This is very useful if you are on a slow terminal and are
looking for a particular section. You can give the first section command and a small count to
see each successive section heading in a small window.

4.4.S.3 Rearranging and Duplicating Text. The editor has a single unnamed buffer
where the last deleted or changed text is saved, and a set of named buffers a-z that you can
use to save copies of text and to move text around in your file and between files.

The y operator yanks a copy of the object that follows into the unnamed buffer. If preceded
by a buffer name, "xy, where x is replaced by a letter a-z, it places the text in the named
buffer. The text can then be put back in the file with the commands p and P; the p command
puts the text after or below the cursor, while P puts the text before or above the cursor.

If the text that you yank forms a part of a line or is an object such as a sentence, which
partially spans more than one line, then when you put the text back, it will be placed after
the cursor (or before if you use P). If the yanked text forms whole lines, they will be put
back as whole lines without changing the current line. In this case, the put acts much like an
o or 0 command (subpart 4.4.4.1).

Try the YP command. This makes a copy of the current line and leaves you on this copy,
which is placed before the current line. The command Y is a convenient abbreviation for yy.
The command Yp will also make a copy of the current line and place it after the current
line. You can give Ya count of lines to yank, and thus duplicate several lines; try 3YP.

4-47

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

To move text within the buffer, you need to delete it in one place and put it back in another.
You can precede a delete operation by the name of a buffer in which the text is to be stored as
in "aSdd deleting 5 lines into the named buffer a. You can then move the cursor to the
eventual resting place of these lines and do an "ap or "aP to put them back. In fact, you can
switch and edit another file before you put the lines back by giving a command of the form

:e nameCR

where name is the name of the other file you want to edit. You will have to write back the
contents of the current editor buffer (or discard them) if you have made changes before the
editor will let you switch to the other file. An ordinary delete command saves the text in the
unnamed buffer so that an ordinary put can move it elsewhere. However, the unnamed
buffer is lost when you change files; so to move text from one file to another, you should use a
named buffer.

4.4.S.4 Summary of Advanced vi Commands. A paragraph reference is provided for
each command in the following list.

AI 4.4.5.1 Tab, add spaces up to next tab stop

1. 4.4.5.2 Form feed
Av 4.4.5.1 Quote the following character

i 4.4.5.1 Move cursor to first non-white position on line

$ 4.4.5.1 Move cursor to end of line

) 4.4.5.2 Balance of sentence forward

} 4.4.5.2 Move cursor forward over paragraph operator

]] 4.4.5.2 Move cursor forward over section operator

(4.4.5.2 Balance of sentence backward

{ 4.4.5.2 Move cursor backward over paragraph operator

[[4.4.5.2 Move cursor backward over section operator

4.4.5.1 Find next instance of same character found with the fx or Fx

d 4.4.5.1 Delete the specified object (character, word, space)

fx 4.4.5.1 Find the first x character to right of the cursor

p 4.4.5.3 Put text back, after cursor or below current line

u 4.4.5.1 Undo the last change

y 4.4.5.3 Yank operator, for copies and moves

tx 4.4.5.1 To x forward, for operators

Fx 4.4.5.1 Find the first x character to left; of the cursor

p 4.4.5.3 Put text back, before cursor or above current line

Tx 4.4.5.1 Up to x backward in line

4-48

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

4.4.6 High-Level Commands.

4.4.6.1 Writing, Quitting, and Editing New Files. So far we have seen how to enter
the vi editor and to write out our file using either ZZ or :wCR commands. The first command
exits from the editor (writing if changes were made), the second command writes and stays in
the editor.

If you have changed the editor copy of the file but do not wish to save your changes, then you
can give the command

:q!CR

to quit from the editor without writing the changes. You can also re-edit the same file (start
over) by giving the command

:e!CR

These commands should be used only rarely and with caution, since it is not possible to
recover the changes you have made after you discard them in this manner.

You can edit a different file without leaving the editor by giving the command

:e nam.eCR.

If you have not written out your file before you try to do this, then the editor will tell you
this and delay editing the other file. You can then give the command

:wCR

(to save your changes) and then the

:e nam.eCR

command again or carefully give the command

:e! nam.eCR

which edits the other file discarding the changes you have made to the current file. To have
the editor automatically save changes, include set autowrite in your EXINIT and use :n instead
of :e.

4.4.6.2 Escaping to a Shell. You can get to a shell to execute a single command by giving
a vi command of the form

:!cmdCR

The system will run the single command (cmd), and when finished, the editor will ask you to
hit a REfURN to continue. When you have finished looking at the output on the screen, you
should hit REfURN; the editor will clear the screen and redraw it. You can then continue
editing. You can also give another : command when it asks you for a REfURN; in this case,
the screen will not be redrawn.

If you wish to execute more than one command in the shell, then you can give the command

:shCR

This will give you a new shell. When finished with the shell, end it by typing a 'l>. The
editor will clear the screen and continue.

4.4.6.3 Marking and Returning. The command" returns you to the previous place after
a motion of the cursor by a command such as/, ?, or G. You can also mark lines in the file
with single letter tags and return to these marks later by naming the tags. Try marking the
current line with the command mx, where you should pick some letter for x, such as an a.

4-49

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

Then move the cursor to a different line (any way you like) and hit 'a. The cursor will
return to the place that you marked. Marks last only until you edit another file.

When using operators such as d and referring to marked lines, it is often desirable to delete
whole lines rather than deleting to the exact position in the line marked by m. In this case
you can use the form 'x rather than 'x. Used without an operator, 'x will move to the first
non-white character of the marked line; similarly," moves to the first non-white character of
the line containing the previous context mark ".

4.4.6.4 Adjusting the Screen. If the screen image contains random or unwanted
characters because of a transmission error to your terminal or because some program other
than the editor wrote output to your terminal, you can hit a L, the ASCII form-feed
character, which will cause the screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line
deletion, you may get rid of these lines by typing AR to cause the editor to retype the screen,
closing up these holes.

If you wish to place a certain line on the screen at the top, middle, or bottom of the screen,
you can position the cursor to that line and then giye a z command. You should follow the z
command with a REl'URN if you want the line to appear at the top of the window, a. if you
want it at the center, or a - if you want it at the bottom.

4.4. 7 Special Topics.

4.4.7.1 Editing on Slow Terminals. When you are on a slow terminal, it is important to
limit the amount of output that is generated to your screen so that you will not suffer long
delays waiting for the screen to be refreshed.

The use of the slow terminal insertion mode is controlled by the slowopen option. You can
force the editor to use this mode even on faster terminals by giving the command :se slowCR.
If your system is sluggish, this helps lessen the amount of output coming to your terminal.
You can disable this option by :se noslowCR.

The editor can simulate an intelligent terminal on a dumb one. Try giving the command
:se redrawCR. This simulation generates a great deal of output and is generally tolerable
only on lightly loaded systems and fast terminals. You can disable this with the
:se noredraWCR command.

The editor also makes editing at low speed more pleasant by starting the edit in a small
window and letting the window expand as you work. This works particularly well on
intelligent terminals. The editor can expand the window easily when you insert in the
middle of the screen on these terminals. If possible, try the editor on an intelligent terminal
to see how this works.

You can control the size of the window which is redrawn each time the screen is cleared by
giving window size as an argument to the commands that cause large screen motions:

:/?([Il"

Thus if you are, searching for a particular instance of common string in a file you can precede
the first search command by a small number, such as 3, and the editor will ·draw 3-line
windows around each instance of the string that it locates.

You can easily expand or contract the window and place the current line as you choose by
giving a number with the z command (after the z and before the following RETIJRN, • or-).
Thus the command zS. redraws the screen With the current line in the center of a 5-line

4-50

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

window.

Note: The command 5z. has an entirely different effect, placing line 5 in the center of a new
window.

If the editor is redrawing or otherwise updating large portions of the display, you can
interrupt this updating by hitting a DEL or RUB as usual. If you do this you may partially
confuse the editor about what is displayed on the screen. You can still edit the text on the
screen if you wish; clear up the confusion by hitting a AL; or move or search again, ignoring
the current state of the display.

See subpart 4.4.9.8 on open mode for another way to use the vi command set on slow
terminals.

4A.7.2 Options, Set, and Editor Startup Files. The editor has a set of options, some of
which have been mentioned above. The most commonly used options are defined in the
following table.

OPTION DEFAULT DESCRIPTION

autoindent

autowrite

ignorecase

lisp

list

magic

number

paragraphs

redraw

sections

shiftwidth

showmatch

slow open

term

noai

noaw

noic

nolisp

no list

nomagic

no nu

para=IPLPPPQPbpP LI

nore

sect=NHSHH HU

sw=8

nosm

slow

dumb

Supply indentation automatically

Automatic write before
:n, :ta, At, and !

Ignore case in searching

({) ·} commands deal with S-expressions

Tabs print as '1; end of lines marked with $

The characters [and * are special in scans

Lines are displayed prefixed with line numbers

Macro names that start paragraphs

Simulate a smart terminal on a dumb one

Macro names that start new sections

Shift distance for <, > and input I> and AT

Show matching (or {as) or } is typed

Postpone display updates during inserts

The kind of terminal you are using

The options are of three kinds: numeric, string, and toggle. You can set numeric and string
options by a statement of the form

set opt=val

and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your environment or given while you are
running vi by preceding them with a : and following them with a CR.

You can get a list of all options that you have changed with the oommand

4-51

TEXT EDITORS

:setCR

or the value of a single option by the command

:set opt?CR

MOTOROLA COMPUTER SYSTEMS

A list of all possible options and their values is generated by

:set allCR

Set can be abbreviated se. Multiple options can be placed on one line, for instance:

:se ai aw nuCR

Options set by the set command last only while you stay in the editor. It is common to want
certain options set whenever you use the editor. Refer to section 4.3.9. for a full explanation
of how to create a list of ex commands that are to be run every time you start up ex, edit, or
vi.

4.4.7.3 Recovering Lost Lines. Occasionally, you may delete a number of lines and then
regret that they were deleted. As backup, the editor saves the last nine deleted blocks of text
in a set of numbered registers, 1 through 9. You can retrieve the nth previously deleted text
block by the command "np. The" here says that a buffer name is to follow, n is the number
of the buffer you wish to try (use the number 1 for now), and p is the put command that
puts text in the buffer after the cursor. If this doesn't bring back the text you wanted, hit u
to undo this, then • (period) to repeat the put command. In general, the • command will
repeat the last change. As a special case, when the last command refers to a numbered text
buffer, the • command increments the number of the buffer before repeating the command.
Thus a sequence of the form

"Ipu.u.u

if repeated long enough, will display all the deleted text that has been saved. You can omit
the u commands here to gather up all this text in the buffer or stop after any • command to
keep just the then-recovered text. The command P can also be used rather than p to put the
recovered text before rather than after the cursor.

4.4. 7 .4 Recovering Lost Files. If the system crashes, you can recover the work you were
doing to within a few changes. You will normally receive mail when you next log in, giving
you the name of the file that has been saved for you. You should then change to the directory
where you were when the system crashed and give a command of the form:

:vi -r name

replacing name with the name of the file that you were editing. This will recover your work
to a point near where you left off. Cln rare cases, some of the lines of the file may be lost.
The editor will give you the numbers of these lines and the text of the lines will be replaced
by the string LOST. These lines will almost always be among the last few that you changed.)

You can get a listing of the :files that are saved for you by giving the command:

:vi -r

If there is more than one instance of a particular :file saved, the editor gives you the newest
instance each time you recover it. You can get an older saved copy back by :first recovering
the newer copies.

For this feature to work, vi must be correctly installed by a superuser on your system, and
the moil program must exist to receive mail. The invocation :vi "'.r will not always list all
saved :files, but they can be recovered even if they are not listed.

4-52

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

4.4.7.S Continuous Text Input. When you are typing in large amounts of text, it is
convenient to have lines broken near the right margin automatically. You can cause this to
happen by setting the wrapmargin option

:se wm=10CRCR

This causes all lines to be broken at a space at least ten columns from the righthand edge of
the screen. (This feature is not available on some Version 2 editors. In the editors that have
wrapmargin, the break can only occur to the right of the specified boundary instead of to the
left.)

If the editor breaks an input line and you wish to put it back together, you can tell it to join
the lines with J. You can give J a count of the number of lines to be joined (as in 3J to join 3
lines). The editor supplies white space, if appropriate, at the juncture of the joined lines, and
leaves the cursor at this white space. You can· kill the white space with x if you don't want
it.

4.4. 7 .6 Features for Editing Programs. Several commands in the editor are designed to
help you edit programs.

First, the editor has an autoindent facility to help generate correctly indented programs. To
enable this facility, you can give the command :se aiCR. Open a new line with o and type
some characters on the line after a few tabs. If you now start another line, notice that the
editor supplies white space at the beginning of the line to line it up with the previous line.
You cannot backspace over this indentation, but you can use 'l> key to backtab over the
supplied indentation.

Each time you type 'l> you back up one position, normally to an 8-column boundary. This
amount is variable; the editor has an option called shiftwidth which you can set to change
this value. Try giving the command

:see sw=4CR

and then experimenting with autoindent again.

For shifting lines in the program left and right, there are operators < and >. These shift the
lines you specify right or left by one shiftwidth. Try << and >> which shift one line left
or right, and <L and > L shifting the rest of the display left and right.

A second aid to editing programs is the % command. If you have a complicated expre~ion and
wish to see how the parentheses match, put the cursor at a left or right parenthesis and hit%.
This will show you the matching parenthesis. This works also for braces((}), and brackets
cm.
If you are editing C programs, you can use the [and]] keys to advance or retreat to a line
starting with a {, i.e., a function declaration. When]] is used with an operator, it stops after a
line that starts with }; this is sometimes useful with y]].

4.4.7.7 Filtering Portions of the Buffer. You can run system commands over portions of
the buffer using the operator !. You can use this to sort lines in the buffer or to reformat
portions of the buffer when you are using a printer with a beautify option. Try entering a
list of random words, one per line and ending it with a blank line. Backspace to the
beginning of the list and give the command !}sortCR. This will sort the next paragraph of

4-53

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

material (your list). The blank line ends the paragraph.

4.4.7.8 Commands for Editing LISP. (The LISP features are not available on some
Version 2 editors due to memory constraints.)

If you are editing a LISP program, you should set the option lisp by doing

:se lispCR

This changes the (and) commands to move backward and forward over s-expressions. The {
and } commands are similar to (and) but don't stop at atoms. These can be used to skip to the
next list or through a comment quickly.

The autoindent option works differently for LISP supplying indent to align at the :first
argument to the last open list. If there is no such argument, then the indent is two spaces
more than the last level.

There is another option that is useful for typing in LISP, the showmatch option. Try setting it
with :se smCR and then try typing a (, some words, and a). Notice that the cursor shows the
position of the (that matches the) briefty. This happens only if the matching (is on the
screen, and the cursor stays there for at most one second.

The editor also has an operator to realign existing lines as though they had been typed in with
lisp and autoindent set. This is the = operat9J. Try the command =% at the beginning of a
function. This will realign all the lines of the function declaration.

When you are editing LISP, the [[and]] advance and retreat to lines beginning with a (and
are useful for dealing with entire function definitions.

4.4. 7 .9 Macros.

NOTE: The macro feature is available only in Version 3 editors.

The vi editor has a macro facility so that when you enter a single keystroke, the editor will
act as though you had entered some longer sequence of keystrokes. You can set up a macro if
you find yourself typing the same sequence of commands (keystrokes) repeatedly.

Briefiy, there are two methods for assigning and calling up macros:

a) One method is to put the macro body in a buffer register, such as x. You can then
type @x to invoke the macro. The @ may be followed by another @ to repeat the
last macro.

b) The second method is to use the map command from vi (typically in your EXINIT)
with a command of the form:

:map lhs rhsCR

mapping lhs into rhs. There are restrictions: lhs should be one keystroke, either one
character or one function key, because lhs must be entered within one second.
However, if notimeout is set, you can type lhs as slowly as you wish and vi will wait
for you to finish it before it echoes anything. The lhs can be no longer than ten
characters; the rhs no longer than 100. To put a space, tab, or newline into lhs, you
should escape the characters with a AV (it may be necessary to double the AV if the
map command is given inside vi rather than in ex). Only newline characters inside
the rhs need to be escaped.

To make the q key write and exit the editor, you can give the command

4-54

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

:map q :wqAVAVCR CR

which means that whenever you type q, it will be as though you had typed the four
characters :wqCR. A AV is needed because without it the CR would end the :
command rather than becoming part of the map definition. There are two AV's
because you are working within vi. The first CR is part of the rhs, the second
terminates the: command.

Macros can be deleted with

unmap lhs

If the lhs of a macro is #0 through #9, it maps the particular function key instead of the 2-
character # sequence (and need not be typed within one second). The form #x will mean
function key x on all terminals so that terminals without function keys can access these
definitions. The character # can be changed by using a macro in the usual way; to use tab, for
example:

:map AVAVAI #

This will not affect the map command, which still uses #,but just the invocation from visual
mode.

The undo command reverses an entire macro call as a unit.

Placing a ! after the word map causes the mapping to apply to input mode rather than
command mode. Thus, to arrange for AT to be the same as four spaces in input mode, you can
type:

:map! AT AVISlSlllS

where lS is a blank. The AV is necessary to prevent the blanks from being taken as white
space between the lhs and rhs.

4.4.8 Word Abbreviations. (Version 3 only.) A feature similar to macros in input mode is
word abbreviation. This allows you to type a short word and have it expanded into a longer
word or words. The commands are

:abbreviate
and
:unabbreviate

or

:ab
and
:una

and have the same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word eecs to be changed into the phrase Electrical Engineering and Computer
Sciences. Word abbreviation is different from macros in that only whole words are affected.
If eecs were typed as part of a larger word, it would be left alone. Also, the partial word is
echoed as it is typed. There is no need for an abbreviation to be a single keystroke as it should
be with a macro.

4-55

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

4.4.9 Additional Information.

4.4.9.1 Line Representation in the Display. The editor folds long logical lines onto
many physical lines in the display. Commands that advance lines will advance by logical
lines and will skip over all the segments of a line in one motion. The I command moves the
cursor to a specific column and is useful for getting near the middle of a long line to split it in
half. Try 80 I on a line that is more than 80 columns long. (You can make long lines very
easily by using J to join together short lines.)

The editor puts only full lines on the display; if there is not enough room on the display to fit
a logical line, the editor leaves the physical line empty, placing only an @ on the line as a
place holder. When you delete lines on a dumb terminal, the editor will often clear just the
lines to@ to save time (rather than rewriting the rest of the screen). You can always re-type
the information on the screen by giving the "'R command.

The editor can place line numbers before each line on the display. Give the command

:se nuCR

to enable this, and the command

:se nonuCR

to turn it off. Tabs will be represented as 1 and the ends of lines indicated with '$' by giving
the command

:se listCR

The following command removes the display of tabs and ends of lines:

:se nolistCR

Lines consisting of only the - character are displayed when the last line in the file is in the
middle of the screen. These represent physical lines that are past the logical end of file.

4.4.9.2 Counts. Most vi commands can use a preceding count to affect their behavior in
some way.

Commands that take a new window size as count often cause the screen to be redrawn; for
example : I ? [[]] •and '. If you anticipate this, you may wish to change the screen size
by specifying the new size before these commands. In any case, the number of lines used on
the screen will expand if you move off the top with a - or similar command, or off the bottom
with a command such as REI'URN or "'D. The window will revert to the last specified size the
next time it is cleared and refilled. (However, L only redraws the screen as it is.)

The scroll commands "'D and "'U likewise remember the amount of scroll last specified, using
half the basic window size ini1;ially.

The simple insert commands use a count to specify a repetition of the inserted text. Thus,

10a +--ESC

will append the string 10 times, creating a grid-like string of text. Try it.

A few commands also use a preceding count as a line or column number, such as z, G, and I.

Except for the commands that ignore any counts (such as "'R), most of the editor commands
use a count to indicate a simple repetition of their effect. Thus, Sw advances five words on
the current line, while SRErURN advances five lines. A very useful instance of a count as a
repetition is a count given to the • command, which repeats the last changing command. If
you do dw and then 3., you will delete first one and then three words. You can then delete

4-56

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

two more words with the 2. command.

4.4.9.3 More File Manipulation Commands. The following table lists the file
manipulation commands that you can use when you are in vi.

:w write back changes
:wq write and quit
:x write (if necessary) and quit (same as ZZ).
:e name edit filename
:e! re-edit, discarding changes
:e +name edit, starting at end
:e +n edit, starting at line n
:e # edit alternate file
:w name write fi!,ename
:w! name overwrite fi!,ename
:x,yw name write lines x. through y to name
:r name read fi!,ename into buffer
:r !cmd read output of cmd into buffer
:n edit next file in argument list
:n! edit next file, discarding changes to current
:n args specify new argument list
:ta tag edit file containing tag tag, at tag

All of these commands are followed by a CR or RSC. The most basic commands are :w and :e.
A normal editing session on a single file will end with a ZZ command. If you are editing for
a long period of time you can give :w commands occasionally after maj>r amounts of editing,
and then finish with a zz. When you edit more than one file, you can finish with one with a
:wand start editing a new file by giving a :e command, or set autowrite and use :n <file>.

If you make changes to the editor copy of a file, but do not wish to write them back, then you
must give an ! after the command you would otherwise use; this forces the editor to discard
any changes you have made. Use this carefully.

The :e command can be given a+ argument to start at the end of the file, or a +n argument to
start at line n. In actuality, n may be any editor command not oontaining a space, usually a
scan like +/pa.tor +?pa.t. In forming new names to thee command, you can use the character
%, which is replaced by the current filename, or the character #, which is replaced by the
alternate filename. The alternate filename is generally the last name you typed other than
the current file. Thus, if you try to do a :e and get a diagnostic that you have not written
into the file, you can give a :w command and then a :e #command to redo the previous :e.

You can write part of the buffer to a file by finding the lines that bound the range to be
written using AG, to obtain the line numbers, and giving these numbers after the : and before
the w, separated by ,'s. You can also mark these lines with m and then use an address of the
form 'x,'y on the w command.

You can read another file into the buffer after the current line by using the :r command. You
can similarly read in the output from a command, just use the :r !CJnd instead of a filename.

If you wish to edit a set of files in succession, you can give all the names on the command
line, and then edit each one in turn using the command :n. It is also possible to respecify the
list of files to be edited by giving the :n command a list of filenames, or a pattern to be
expanded as you would have given it on the initial vi command.

If you are editing large programs, you will find the :ta command very useful. It utilizes a
data base of function names and their locations, which can be created by programs such as

4-57

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

ctags, to find quickly a function by name. If the :ta command will require the editor to
switch files, then you must :w or abandon any changes before switching. You can repeat the
:ta command without any arguments to look for the same tag again. (The tag feature is not
available in some Version 2 editors.)

4.4.9.4 More About Searching for Strings. When you are searching for strings in the
file with I or ?, the editor normally places you at the next or previous occurrence of the
string. If you are using an operator such as d, c, or y, you may want to affect lines up to the
line before the line containing the pattern. You can give a search of the form

/pot/ -n

to refer to the nth line before the next line containing pot, or you can use + instead of - to
refer to the lines after the one containing pot. If you do not give a line offset, the editor will
affect characters up to the exact matched place rather than whole lines; use +O to affect
characters up to the line that matches.

You can have the editor ignore the case of words in the searches it does by giving the
command

:se icCR

The command

:se noicCR

turns this off.

Strings defined in searches may actually be regular expressions. If you do not want or need
this facility, you should

set nomagic

in your EXINIT. In this case, only the characters l and $ are special in patterns. The character
\ remains special (as it is most everywhere in the system), and may be used to get at the
extended pattern-matching facility. It is also necessary to use a\ before a I in a forward scan
or a? in a backward scan. The following table gives the extended forms when magic is set.

l
$

\ <
\>
[str]
[tstr]
[x-y]

*

at beginning of pattern, matches beginning of line
at end of pattern, matches end of line
matches any character
matches the beginning of a word
matches the end of a word
match~ any single character instr
matches any single character not in str
matches any character between x and y
matches any number of the preceding pattern

If you use nomagic mode, then the. [and* primitives are given with a preceding\.

4.4.9.S More About Corrections In Input Mode. There are a number of characters that
you can use to make corrections during input mode. These are summarized in the folfowing
table.

"II Aw
erase
kill
\

deletes the lilst input character
deletes the last input word
erase character, same as "II
kill character, deletes the input on this line
escapes a following AH, erase, and kill

4-58

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

ESC ends an insertion
DEL interrupts an insertion, terminating it abnormally
CR starts a new line
AD backtabs over autoindent
OAD kills all the autoindent
i~ same as OAD, but restores indent next line
AV quotes the next non-printing character into the file

The most usual way of making corrections to input is by typing "II to correct a single
character, or by typing one or more "W's to back over incorrect words. If you use # as your
erase character in the normal system, it will work like "II.

Your system kill character, normally@, "X, or AU will erase all the input you have given on
the current line. In general, you can neither erase input back around a line boundary nor can
you erase characters that you did not insert with this insertion command. To make
corrections on the previous line after a new line has been started, you can hit ESC to end the
insertion, move over and make the correction, and then return to where you were to continue.
The command A which appends at the end of the current line is often useful for continuing.

If you wish to type in your erase or kill character (such as # or @) then you must precede it
with a \ , just as you would do at the normal system command level. A more general way of
typing non-printing characters into the file is to precede them with a "V. The AV echoes as a
i character on that the cursor rests. This indicates that the editor expects you to type a
control character. In fact, you may type any character and it will be inserted into the file at
that point.

Note: The editor does not allow the NULL C@) character to appear in files. Also the LF (line
feed or AJ) character is used by the editor to separate lines in the file, so it cannot appear in
the middle of a line. You can insert any other character, however, if you wait for the editor
to echo the i before you type the character. In fact, the editor will treat a following letter as
a request for the corresponding control character. This is the only way to type AS or AQ, since
the system normally uses them to suspend and resume output and never gives them to the
editor to process.

If you are using autoindent, you can backtab over the indent that it supplies by typing a~.
This backs up to a shiftwidth boundary. This works only immediately after the supplied
autoindent.

When you are using autoindent you may wish to place a label at the left margin of a line.
The way to do this easily is to type i and then ~. The editor will move the cursor to the
left margin for one line and restore the previous indent on the next. You can also type a 0
followed immediately by a~ if you wish to kill all the indent and not have it come back on
the next line.

4.4.9.6 Uppercase Only Terminals. If your terminal has only uppercase characters, you
can still use vi by using the normal system convention for typing on such a terminal.
Characters that you normally type are converted to lowercase, and you can type uppercase
letters by preceding them with a \ . The characters

few (- } I'

are not available on such terminals, but you can escape them as

\ (i\)\ !\ '.

These characters are represented on the display in the same way they are typed (the \
character you give will not echo until you type another key).

4-59

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

4.4.9.7 Relation Between vi And ex Editors. The vi editor is actually one mode of
editing within the editor ex. All of the : commands that were introduced above are available
in ex. Likewise, most ex commands can be invoked from vi using :, and ending the command
with a CR.

In rare instances, an internal error may occur in vi. You will get a diagnostic and be left in
the command mode of ex. You can save your work and quit if you wish by giving a
command x after the : that ex prompts you with, or you can reenter vi by giving ex a vi
command.

Many operations are done more easily in ex than in vi. Systematic changes in line-oriented
material are particularly easy. On occasion, you may want to escape from vi to ex to execute
several line-oriented commands. You can quit vi completely by giving the command Q. To
return to vi, give the command :vi. Experienced users often mix their use of ex command
mode and vi command mode to speed the work they are doing. (Refer to the SYSTEM V 168
Document Processing Guide for the editor ed more information about this style of editing.)

4.4.9.8 Open Mode: vi on Hard Copy Terminals and Glass tty's. (Not available in all
Version 2 editors due to memory constraints.)

If you are on a hard copy terminal or a terminal that does not have a cursor that can move off
the bottom line, you can still use the command set of vi, but in a different mode. When you
give a vi command, the editor will tell you that it is using open mode. This name comes from
the open command in ex, which is used to get into the same mode.

The only difference between visual mode and open mode is the way in which the text is
displayed.

In open mode, the editor uses a single line window into the file. Moving backward and
forward in the file causes new lines to be displayed, always below the current line. Two
commands of vi work differently in open mode: z and AR. The z command does not take
parameters, but rather draws a window of context around the current line and then returns
to the current line.

If you are on a hard copy terminal, the AR command will retype the current line. On such
terminals, the editor normally uses two lines to represent the current line. The first line is a
copy of the line as you started to edit it, and you work on the line below this line. When you
delete characters, the editor types a number of \'s to show you the characters that are deleted.
The editor also reprints the current line soon after such changes so that you can see what the
line looks like again.

It is sometimes useful to use this mode on very slow terminals that can support vi in the full
screen mode. You can do this by entering ex and using an open command.

4.4.10 Character Functions Summary. This section shows how the vi editor interprets
each character. Characters are presented in their order in the ASCII character set: control
characters first, most special characters, digits, uppercase characters, and then lowercase
characters.

Each character is defined with a meaning it has as a command and any meaning it has during
an insert. If it has meaning only as a command, then only this is discussed. Numbers in
parentheses indicate where the character is discussed.

A@ Not a command character.
If typed as the first character of an insertion, it is replaced with the last text
inserted, and the insert terminates. Only 128 characters are saved from the last
insert; if more characters have been inserted the mechanism is not available. A A@

4-60

MOTOROLA COMPUTER SYSTEMS

cannot be part of the file.
(4.4.7.9, 4.4.9.5)

"A Unused.

TEXT EDITORS

"B Backward window. A count specifies repetition. Two lines of continuity are kept
if possible.
(4.4.3.1, 4.4.9.2)

"c Unused.

'l> AB a command, it scrolls down a half-window of text. A count gives the number
of (logical) lines to scroll, and is remembered for future 'l> and "U commands.
(4.4.3.1, 4.4.9.2)
During an insert, it backtabs over autoindent white space at the beginning of a line.
This white space cannot be back.spaced over.
(4.4.7.6, 4.4.9.5)

Exposes one more line below the current screen in the file, leaving the cursor
where it is if possible. (Version 3 only)
(4.4.3.1)

Forward window. A count specifies repetition. Two lines of continuity are kept if
possible
(4A.3.1, 4.4.9.2)

"G Equivalent to :fCR. "G prints the current filename; if it has been modified; the
current line number; the number of lines in the file; and the location of the
current line as a percent of the file length.
(4.4.3.2)

'll (BS) Same as left arrow (see h). During an insert, it eliminates the last input
character, backing over it but not erasing it.
(4.4.3.4, 4.4.4.1, 4.4.4.2, 4.4.9.5)

I (TAB) Not a command character.
When inserted it prints as some number of spaces. When the cursor is at a tab
character, it rests at the last of the spaces that represent the tab. The spacing of tab
stops is controlled by the tabstop option.
(4.4.5.1, 4.4.7.2)

"J (LF) Down arrow. It moves the cursor one line down in the same column. If the
position does not exist, vi comes as close as possible to the same column. Synonyms
include j and "N.
(4.4.2.4, 4.4.3.3, 4.4.9.S)

le. Unused.

L The ASCII form feed character, which causes the screen to be cleared and redrawn.
It is useful after a transmission error, after output is stopped by an interrupt, or if
characters from a program other than the editor have scrambled the screen.
(4.4.6.4, 4.4.9.2)

"M (CR) A carriage return advances to the first non-white positim. of the next line. Given a
count, it advances that many lines.
During an insert, a CR causes the insert to continue onto another line.

Down arrow. It moves the cursor one line down in the same column. If the
position does not exist, vi comes as close as possible to the same column. Synonyms

4-61

TEXT EDITORS

include j and AJ.
(4.4.2.4, 4.4.3.3)

AO Unused.

MOTOROLA COMPUTER SYSTEMS

AP Up arrow. It moves the cursor one line up. A synonym is k.
(4.4.2.4, 4.4.3.3)

AQ Not a command character.
In input mode, AQ quotes the next character, the same as AV, except that some
teletype drivers do not echo AQ to the editor.
(4.4.9.5)

AR Redraws the current screen, eliminating logical lines not corresponding to physical
lines Clines with only a single @ character on them). On hard-copy terminals in
open mode, retypes the current line.
(4.4.6.4, 4.4.9.1, 4.4.9.2, 4.4.9.8)

AS Unused.
Some teletype drivers use AS to suspend output until AQ is invoked.
(4.4.9.5)

AT Not a command character.
During an insert, with autoindent set and at the beginning of the line, it inserts
shiftwidth white space.
(4.4. 7 .2, 4.4. 7 .9)

AU Scrolls the screen up, inverting~ which scrolls down. A count gives the number
of (logical) lines to scroll, and is remembered for future AD and AU commands. The
previous scroll amount is common to both. On a dumb terminal, AU will often
necessitate clearing and redrawing the screen further back in the file.
(4.4.3.l, 4.4.9.2, 4.4.9.5)

AV Not a command character.
In input mode, it quotes the next character so that it is possible to insert non­
printing and special characters into the file.
(4.4.7.9, 4.4.9.5)

AW Not a command character.
During an insert, it backs up as b would in command mode; the deleted characters
remain on the display (see AH).
(4.4.9.5)

Unused.

Exposes one more line above the current screen, leaving the cursor where it is if
possible. There is no mnemonic value for this key; however, it is next to AU
(which scrolls up many lines) (Version 3 only).
(4.4.3.1)

Unused.

Cancels a partially formed command (such as a z when no following character has
yet been given), terminates inputs on the last line (read by commands such as:,/,
and ?), and ends insertions of new text into the buffer. If an RSC is given when
the editor is inactive, the editor rings the bell or flashes the screen. If you are
confused about the operation the editor is working on, hit RSC to stop the operation.
(4.4.2.4, 4.4.4.1, 4.4.8.5)

4-62

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

A\ Unused.

A] Searches for the word that is after the cursor as a tag. It is equivalent to typing
:ta, this word, and then a CR.
(4.4.9.3)

At Equivalent to :e #CR, returning to the previous position in the last edited file, or
editing a file that you specified if you got a "No write since last change"
diagnostic and do not want to have to type the filename again. You have to do a :w
before At will work in this case. If you do not wish to write the file you should
do :e! #CR instead.

SPACE

"

$

(4.4.7.2, 4.4.9.3)

Unused.
Reserved as the command character for the Tektronix 4025 and 4027 terminals.

Same as right arrow (see I).
(4.4.2.4, 4.4.3.5)

An operator, which processes lines from the buffer with reformatting commands.
Follow ! with the object to be processed, and then the command name terminated
by CR. Doubling ! and preceding it by a count causes count lines to be filtered;
otherwise, the count is passed on to the object after the!. Thus 2!}/mtCR reformats
the next two paragraphs by running them through the program fmt.
(4.4.7.7, 4.4.9.3)
To read a file or the output of a command into the buffer use :r.
(4.4.9.3)
To simply execute a command use :!.
(4.4.6.2, 4.4.9.3)

Precedes a named buffer specification. Named buffers 1-9 are used for saving
deleted text; named buffers a-z are available for general use.
(4.4.5.3, 4.4.7.3)

The macro character that, when followed by a number, will substitute for a
function key on terminals without functiQn keys. In input mode, if this is your
erase character, it will delete the last character you typed in input mode, and must
be preceded with a \ to insert it, since it normally backs over the last input
character you gave.
(4.4.7.2, 4.4.7.9)

Moves to the end of the current line. If the :se listCR command is used, then the
end of each line will be shown by printing a$ after the end of the displayed text
in the line. When a count is used, the cursor advances to the end of the line
following the count. For example, 2$ advances the cursor to the end of the
following line.
(4.4.3.2, 4.4.5.1, 4.4.7.2, 4.4.9.1)

Moves to the parenthesis (()) or brace ((}) that balances the parenthesis or brace at
the current cursor position.
(4.4.7.6, 4.4.7.8)

& A synonym for :&CR, analogous to the ex & command.

When followed by a', the cursor returns to the previous context at the beginning
of a line. The previous context is set whenever the current line is moved in a
non-relative way. When followed by a letter (a-z), it returns to the line that was

4-63

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

marked with this letter with an m command, at the first non-white character in
the line. When used with an operator such as d, the operation takes place over
complete lines; if you use ', the operation takes place from the exact marked place
to the current cursor position within the line.
(4.4.6.3)

(Retreats to the beginning of a sentence, or to the beginning of a LISP s-expression if
the lisp option is set. A sentence ends at a ., !, or ? that is followed by either the
end of a line or by two spaces. Any number of closing characters 0,], ", and ')
may appear after the ., !, or ?, and before the spaces or end of line. Sentences also
begin at paragraph and section boundaries (see { and [[). A count advances that
many sentences.
(4.4.5.2, 4.4.7.8)

) Advances to the beginning of a sentence. A count repeats the effect. See (for the
definition of a sentence.
(4.4.5.2, 4.4.7.8)

* Unused.

+ Same as CR when used as a command.
(4.4.3.3)

Reverse of the last f, F, t, or T command, looking the other way in the current
line. Especially useful after hitting too many ; characters. A count repeats the
search.

Retreats to the previous line at the first non-white character. This is the inverse of
+ and REI'URN. If the line moved to is not on the screen, the screen is scrolled, or
cleared and redrawn. If a large amount of scrolling would be required the screen
is also cleared and redrawn, with the current line at the center.
(4.4.3.3)

Repeats the last command that changed the buffer. Given a count, it passes it on to
the command being repeated. Thus after a 2dw, a 3. deletes three words.
(4.4.4.3, 4.4.7.3, 4.4.9.2, 4.4.9.4)

I Reads a string from the last line on the screen, and scans forward for the next
occurrence of this string. The search begins when you hit CR to terminate the
pattern; the cursor moves to the beginning of the last line to indicate that the
search is in progress. The search may be terminated with a DEL or RUB, or by
backspacing when at the beginning of the bottom line, returning the cursor to its
initial position. Searches normally wrap end-around to find a string anywhere in
the buffer.

When used with an operator, the enclosed region is normally affected. By
mentioning an offset from the line matched by the pattern, you can force whole
lines to be affected. To do this, give a pattern with a closing I and then an offset
+nor -n.

To include the I character in the search string, you must escape it with a preceding
\ . An l at the beginning of the pattern forces the match to occur at the beginning
of a line only; this speeds the search. A $ at the end of the pattern forces the
match to occur at the end of a line only. More extended pattern matching is
available (see paragraph 4.4.9.4). Unless you set nomagic in your .exrc file you
will have to precede the characters., [, *,and - in the search pattern with a\ to

4-64

MOTOROLA COMPUTER SYSTEMS

disable their special meanings.
(4.4.3.2, 4.4.7.1, 4.4.9.4)

0 Moves to the first character on the current line.

1-9 Used to form numeric arguments to commands.
(4.4.3.3, 4.4.9.2)

TEXT EDITORS

A prefix to a set of commands for file and option manipulation and escapes to the
system. Input is given on the bottom line and terminated with a CR, and the
command is then executed. You can return to where you were by hitting DEL or
RUB if you hit: accidentally.
(4.4.7.1, 4.4.9.3)

Repeats the last single character find that used f, F, t, or T. A count iterates the
basic scan.
(4.4.5.1)

< An operator that shifts lines left one smftwidth, normally 8 spaces. Like all
operators, it affects lines when repeated, as in <<. Counts are passed through to
the basic object, thus 3 << shifts three lines.
(4.4.7.6, 4.4.9.4)

= Re-indents lines for LISP, as though they were typed in with lisp and autoindent
set.
(4.4.7.8)

> An operator that shifts lines right one shiftwidth, normally 8 spaces. Affects lines
when repeated as in >>. Counts repeat the basic object.
(4.4.7.6, 4.4.9.4)

? Scans backwards, the oppOSite of/. See the I description for details on scanning.
(4.4.3.2, 4.4.7.1)

@ A macro character.
(4.4.7.9)
If this· is your kill character, you must escape it with a \ to type it in during input
mode, as it normally backs over the input you have given on the current line.
(4.4.4.1, 4.4.9.5)

A Appends at the end of line, a synonym for $a.
(4.4.9.5)

B Backs up a word, where words are composed of non-blank sequences, placing the
cursor at the beginning of the word. A count repeats the effect.
(4.4.3.4)

C Changes the rest of the text on the current line; a synonym for c$.
(4.4.4.4)

D Deletes the rest of the text on the current line; a synonym for d.$.
(4.4.4.4)

E Moves forward to the end of a word, defined as blanks and nonblanks, like Band
W. A count repeats the effect.

F Finds a single following character, backwards in the anrent line. A count repeats
the search that many times.
(4.4.5.1)

4-65

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

G Goes to the line number given as preceding argument, or the end of the file if no
preceding count is given. The screen is redrawn with the new current line in the
center if necessary.
(4.4.3.2)

H Home arrow. Homes the cursor to the top line on the screen. If a count is given,
then the cursor is moved to the count's line on the screen. In either case, the cursor
is moved to the first non-white character on the line. If used as the target of an
operator, full lines are affected.
(4.4.3.3)

I Inserts at the beginning of a line; a synonym for li.

J Joins lines together, supplying appropriate white space: one space between words;
two spaces after a .; and no spaces at all if the first character of the joined on line is
). A count causes that many lines to be joined rather than the default value of
two.
(4.4.7.5, 4.4.9.1)

K Unused.

L Moves the cursor to the first non-white character of the last line on the screen.
With a line count number, moves the cursor to the first non-white character of the
indicated line from the bottom. Operators affect whole lines when used with L.
(4.4.3.3, 4.4.4.4)

M Moves the cursor to the middle line on the screen, at the first non-white position on
the line.
(4.4.3.3)

N Scans for the next match of the last pattern given to I or ?, but in the reverse
direction; this is the reverse of n.

0 Opens a new line above the current line and inputs text up to an ESC. A count can
be used on dumb terminals to specify a number of lines to be opened; this is
generally obsolete, as the swwopen option works better.
(4.4.4.1)

P Puts the last deleted text back before/above the cursor. The text goes back as
whole lines above the cursor if it was deleted as whole lines; otherwise, the text is
inserted between the characters before and at the cursor. The P character may be
preceded by a named buffer specification "x to retrieve the contents of the buffer;
buffers 1-9 contain deleted material, buffers a-z are available for general use.
(4.4.5.3, 4.4.7.3)

Q Quits from vi to ex command mode. To return to vi,- you must enter a :vi
command. Once in ex, the editor supplies the : as a prompt.
(4.4.9.7)

R Replaces characters on the screen with characters you type (overlay fashion).
Terminates with an ESC.

S Changes whole lines; a synonym for cc. A count substitutes for that many lines.
The lines are saved in the numeric buffers and erased on the screen before the
substitution begins.
(4.4.4.4)

4-66

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

T Takes a single following character, locates the character before the cursor in the
current line, and places the cursor just after that character. A count repeats the
effect. Most useful with operators such as d.
(4.4.5.1)

U Restores the current line to its state before you started changing it.
(4.4.4.5)

V Unused.

W Moves forward to the beginning of a word in the current line, where words are
defined as sequences of blank/nonblank characters. A count repeats the effect.
(4.4.3.4)

X Deletes the character before the cursor. A count repeats the effect, but only
characters on the current line are deleted.

Y Yanks a copy of the current line into the unnamed buffer, to be put back by a later
p or P; a synonym for yy. A count yanks that many lines. May be preceded by a
buffer name to put lines in that buffer.
(4.4.5.3)

ZZ Exits the editor (same as :xCR). If any changes have been made, the buffer is
written out to the current file. Then the editor quits.
(4.4.2.6)

[[Backs up to the previous section boundary. A section begins at each macro in the
sections options, normally a .NH or .SH and also at lines that start with a form feed
L. Lines beginning with { also stop[[; this makes it useful for looking backward,
a function at a time, in C programs. If the option lisp is set, stops at each (at the
beginning of a line, and is thus useful for moving backwards at the top level LISP
objects.
(4.4.5.2, 4.4.7.1, 4.4.7.6, 4.4.9.2)

\ Unused.

]] Moves forward to a section boundary, see [[for a definition.
(4.4.5.2, 4.4.7.1, 4.4.7.6, 4.4.9.2)

l Moves to the first nonwhite position on the current line. Also used in search
strings to match a pattern at the beginning of a line.
(4.4.3.2, 4.4.5.1)

Unused

When followed by a ' returns to the previous context. The previous context is set
whenever the current line is moved in a nonrelative way. When followed by a
letter a-z, returns to the position that was marked with this letter with an m
command. When used with an operator such as d, the operation takes place from
the exact marked place to the current position within the line; if you use ', the
operation takes place over complete lines.
(4.4.3.2, 4.4.6.3)

a Appends arbitrary text after the current cursor position; the insert can continue
onto multiple lines by using REI'URN within the insert. A count causes the
inserted text to be replicated, but only if the inserted text is all on one line. The
insertion terminates with an BC.
(4.4.4.1, 4.4.9.2)

4-67

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

b Backs up to the beginning of a word in the current line. A word is a sequence of
alphanumerics, or a sequence of special characters. A count repeats the effect.
(4.4.3.4)

c An operator that changes the following object, replacing it with the following
input text up to an ESC. If more than part of a single line is affected, the text that
is changed is saved in the numeric named buffers. If only part of the current line
is affected, the last character to be changed is marked with a $. A count causes
that many objects to be affected, thus both Jc) and cJ) change the following three
sentences.
(4.4.4.3, 4.4.9.4)

d An operator that deletes the following object. If more than part of a line is
affected, the text is saved in the numeric buffers. A count causes that many objects
to be affected; thus Jdw is the same as d3w.
(4.4.4.3, 4.4.4.4, 4.4.5.1, 4.4.9.4)

e Advances to the end of the next word, defined as for band w. A count repeats the
effect.
(4.4.3.4)

f Finds the first instance of the next character following the cursor on the current
line. A count repeats the find.
(4.4.5.1)

g Unused.

h Left arrow. Moves the cursor one character to the left. Like the other arrow
keys, either h, the left arrow key, or on.e of the synonyms CH) has the same
effect. On Version 2 editors, arrow keys on certain kinds of terminals (those that
send escape sequence, such as vt52, clOO, or hp) cannot be used. A count repeats
the effect.
(4.4.2.4, 4.4.3.3, 4.4.3.4)

i Inserts text before the cursor, otherwise like a.
(4.4.4.1)

j Down arrow. Moves the cursor one line down in the same column. If the
position does not exist, vi comes as close as possible to the same column. Synonyms
include AJ (line feed) and AN.
(4.4.2.4, 4.4.3.3)

k Up arrow. Moves the cursor one line up. AP is a synonym.
(4.4.2.4, 4.4.3.3)

l Right arrow. Moves the cursor one character to the right. SPACE is a synonym.
(4.4.2.4, 4.4.3.3, 4.4.3.4)

m Marks the current position of the cursor in the mark register that is specified by
the next character a-z. Return to this position or use with an operator using• or'.
(4.4.6.3)

n Repeats the last I or? scanning commands.
(4.4.3.2)

o Opens new lines below the current line; otherwise like 0.
(4.4.4.1)

4-68

MOTOROLA COMPUTER SYSTEMS

p Puts text after/below the cursor; otherwise like P.
(4.4.5.3, 4.4.7.3)

q Unused.

TEXT EDITORS

r Replaces the single character at the cursor with a single character you type. The
new character may be a RErURN; this is the easiest way to split lines. A count
replaces each of the following count characters with the single character given; see
R above, which is usually the more useful iteration of r.
(4.4.4.2)

s Changes the single character under the cursor to the text that follows up to an
ffiC; given a count, that many characters from the current line are changed. The
last character to be changed is marked with Sas inc.
(4.4.4.2)

t Advances the cursor .up to the character before the next character typed. Most
useful with operator such as d and c to delete the characters up to a following
character. You can use • to delete more if this does not delete enough the first time.
(4.4.5.1)

u Undoes the last change made to the current buffer. If repeated, will alternate
between these two states; thus it is its own inverse. When used after an insert
that inserted text on more than one line, the lines are saved in the numeric named
buffers.
(4.4.4.5)

v Unused:

w Advances to the beginning of the next word, as defined by b.
(4.4.3.4)

x Deletes the single character under the cursor. With a count, deletes that many
characters forward from the cursor position, but only on the current line.
(4.4.4.2, 4.4.7.5)

y An operator that yanks the following object into the unnamed temporary buffer.
If preceded by a named buffer specification, "x, the text is placed in that buffer also.
Text can be recovered by a later p or P.
(4.4.5.3, 4.4.9.4)

z Redraws the screen with the current line placed as specified by the following
character:

REfURN specifies the top of the screen
specifies the center of the screen
specifies the bottom of the screen.

A count may be given after the z and before the following character to specify the
new screen size for the redraw. A count before the z gives the number of the line
to place in the center of the screen instead of the default current line.
(4.4.6.3, 4.4.7.1)

Retreats to the beginning of the preceding paragraph. A paragraph begins at each
macro in the pa.ragraphs option, normally JP, .LP, .PP, .QP and .bp. A paragraph
also begins after a completely empty line, and at each section boundary (see[[).
(4.4.5.2, 4.4.7.6, 4.4.9.6)

4-69

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

Places the cursor on the character in the column specified by the count.
(4.4.9.1, 4.4.9.2)

Advances to the beginning of the next paragraph. See { for the definition of
paragraph.
(4.4.5.2, 4.4.7.6, 4.4.9.6)

Unused.

~? (DEL) Interrupts the editor, returning it to command-accepting state.
(4.4.9.5)

4-70

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

5. AN INTRODUCTION TO SHELL

5.1 General

The shell is a command programming language that provides an interface to the operating
system. Its features include control-flow primitives, parameter passing, variables, and string
substitution. Constructs such as while, if then else, case, and for are available. Two-way
communication is possible between the shell and commands. String-valued parameters,
typically filenames or flags, may be passed to a command. A return code is set by commands
that may be used to determine control-flow, and the standard output from a command may be
used as shell input.

The shell can modify the environment in which commands run. Input and output can be
redirected to files, and processes that communicate through pipes can be invoked. Commands
are found by searching directories in the file system in a sequence that can be defined by the
user. Commands can be read either from the terminal or from a file which allows command
procedures to be stored for later use.

The shell is both a command language and a programming language that provides an interface
to the SYSTEM VI 68 operating system. This section describes, with examples, the SYSTEM V /68
shell. The "Simple Commands" section of this chapter covers most of the everyday
requirements of terminal users. Some familiarity with SYSTEM V/68 is an advantage when
reading this section. The section entitled "Shell Procedures" describes those features of the
shell primarily intended for use within shell commands or procedures. These include the
control-fl.ow primitives and string-valued variables provided by the shell. A knowledge of a
programming language would be helpful when reading this section. The "Keyword
Parameters" section describes the more advanced features of the shell. Refer to Table 5-1 for a
defined listing of grammar words used in this section.

5.2 Simple Commands

Simple commands consist of one or more words separated by blanks. The first word is the
name of the command to be executed; any remaining words are passed as arguments to the
command. For example,

who

is a command that prints the names of users logged in. The command

ls-1

prints a list of files in the current directory. The argument -1 tells ls(l) to print status
information, size, and the creation date for each file.

5.2.1 Background Commands. To execute a command, the shell normally creates a new
process and waits for it to finish. In addition, the shell can prompt for another command
without waiting for the first to finish. For example,

cc pgm.c &

calls the C compiler to compile the file pgm.c • The trailing & instructs the shell not to wait
for the command to finish. To help keep track of such a process, the shell reports its process
number following its creation. A list of currently active processes may be obtained using the
ps(1) command.

5-1

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

S.2.2 Input/Output Redirection. Most commands produce output to the "standard output"
that is initially connected to the terminal. This output may be directed to a file by the
notation > ; for example,

ls -1 > fil,e

The notation > jile is interpreted by the shell and is not passed as an argument to ls(1). If file
does not exist, the shell creates it; otherwise, the original contents of jile are replaced with the
output from ls(t). Output may be appended to a file using the notation >> as follows:

ls -1 >> jile

In this case, jile is also created if it does not already exist.

The "standard input" of a comm.and may be taken from a file instead of the terminal by the
notation < ; for example,

WC < jile

The command wc(t) reads its standard input (in this case redirected from jile) and prints the
number of characters, words, and lines found. If only the number of lines is required, then

WC -1 < jile

can be used.

S.2.3 Pipelines and Filters. The standard output of one command may be conilected to
the standard input of another by writing the "pipe" operator, indicated by I, between
commands as in

ls -11 WC

Two or more commands connected in this way constitute a "pipeline", and the overall effect is
the same as

ls -1 > file ; WC < file
except that no jile is used. Instead the two processes are connected by a pipe (ref er to pi,pe(2))
and are run in parallel. Pipes are unidirectional, and synchronization is achieved by halting
wc(t) when there is nothing to read and halting ls(t) when the pipe is full.

A "filter" is a command that reads its standard input, transforms it in some way, and prints
the result as output. One such filter, gre)i.1), selects from its input those lines that contain
some specified string. For example,

ls I grep old

prints those lines, if any, of the output from ls that contain the string old. Another useful
filter is sortC1). For example,

who I sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands; for example,

ls I grep old I we -1

prints only the number of filenames in the current directory containing the string old.

5-2

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

S.2.4 Filename Generation. Many commands accept arguments which are filenames. For
example,

ls -1 main.c

prints only information relating to the file main.c. The ls -1 command alone prints the
same information about all files in the current directory.

The shell provides a mechanism for generating a list of filenames that match a pattern. For
example,

ls -1 *.c

generates as arguments to ls all filenames in the current directory that end in .c. The
character * is a pattern that matches any string including the null string. In general, patterns
are specified as follows:

*
?

[...]

For example,

[a-z]*

Matches any string of characters including the null string.

Matches any single character.

Matches any one of the characters enclosed. A pair of characters
separated by a minus matches any character lexically between the pair.

matches all names in the current directory beginning with one of the letters a through z.
The input

/usr/fred/test/?

matches all names in the directory /usr/fred/test that consist of a single character. If no
filename is found that matches the pattern then the pattern is passed, unchanged, as an
argument.

This mechanism is useful both to save typing and to select names according to some pattern.
It may also be used to find files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in subdirectories of /usr/fred. (The echoCl)
command is a standard SYSTEM V /68 command that prints its arguments, separated by blanks.)
This last feature can be expensive, requiring a scan of all subdirectories of /usr/fred.

There is one exception to the general rules given for patterns. The character • at the start of
a filename must be explicitly matched. Therefore, the input

echo*

echoes all filenames in the current directory not beginning with the • character. The input

echo.*

echoes all filenames that begin with the • character. This avoids inadvertent matching of the
names • and .. which mean "the current directory" and "the parent directory", respectively.
(Notice that ls(t) suppresses information for the files • and ••.)

S.2.S Quoting And Escaping. Characters that have a special meaning to the shell, such as

5-3

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

<>*?I&

are called "metacharacters". A complete list of metacharacters is given in Table 5-2. Often it
is necessary to conceal the special· meaning that the shell associates with these characters.
When any character is preceded by a \ (backslash), it is "escaped" and loses its special meaning.
For example, the *carries a special meaning when read by the shell: "in a pattern, match any
character, including the null character". The \ escapes the special meaning of the * in the
command

ls -1 *

so that the command attempts to list a file named * . Try this yourself. Now repeat the
command without escaping the special meaning of*:

ls -1 *
Standard output will display a fong list of all files in the current working directory. As
another example, the sequence \newline escapes the special meaning of the newline
(RETURN) character: "send command". Escaping the newline enables long strings of
commands to be continued over more than one line. The \ is convenient for escaping single
characters but when more than one character must be escaped, the \ mechanism is clumsy and
prone to errors. Metacharacters that are included in a string of characters may be escaped by
placing the string inside single acute accent characters('). For example

ls -1 mm'$***'

searches for a file named mm$***. Within single acute accent characters. all characters
(except' itself) are taken literally with all special meanings ignored. Therefore,

stuff=' echo $? $*; ls * I we'

results in the string

echo $? $*; ls * I we

being assigned to the variable stuff.

A different result occurs when a character string is enclosed in single grave accent characters.
The grave accents ('), sometimes called back quotes, signify a command substitution.
Command substitutions are discussed later in this chapter and in more detail in SYSTEM v 168
Programming Guide, Chapter 2. To understand the practical difference, enter the command

echo 'pwd'

The output will echo pwd. Now enter the command

echo 'pwd'

The output will now print the working directory.

Enclosing a character string within double quotes performs an escape function on most
metacharacters but preserves the special meaning of a few. The characters that retain their
special meaning to the shell are $ (dollar sign: signifies parameter substitution), ' (grave
accent: signifies command substitution), " (double quotes: signifies the end of the quoted string)
and \ (backslash: escapes the special meanings just mentioned for $' and "). Therefore,
within double quotes, it is possible for command substitution to take place. To hide the special
meaning of these characters within double quotes, precede each one with a\ (backslash).

In general, single metacharacters are most easily escaped by preceding each with a \
(backslash). If several metactlaracters in a string must be escaped, enclose the string in single
acute accent characters. Double quotes will hide the special meaning of some but not all

5-4

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

metacharacters. The special meanings for the $ ' " and \ that are preserved within double
quotes are valid only in shell commands. In other SYSTEM V /68 functions, such as text
editing, these meanings do not apply. Specific details concerning the use of double quotes are
described under paragraph "Evaluation and Quoting" later in this chapter.

S.2.6 The Shell and Login. Following the user's login(1), the shell is called to read and
execute commands typed at the terminal. If the user's login directory contains the file .profile
(which is assumed to contain commands), the shell reads it immediately before reading any
commands from the terminal.

S.2. 7 Prompting by the Shell. When the shell is used from a terminal, it issues a prompt
to the terminal user indicating it is ready to read a command from the terminal. By default,
this prompt is$ • A user may provide specific instructions to change the prompt by entering
a special command in the file .profile. To do this, start in your home directory. Use vi to edit
the file .profile.

vi .profile

Change the prompt by entering

PSt=newprompt

setting the prompt to be the string newprompt. If a newline is typed and further input is
needed, the shell issues the prompt > . Sometimes this can be caused by mistyping a quote
mark. If it is unexpected, then an interrupt (DEL) will return the shell to read another
command. The other prompt(>) may be changed by entering

PS2=more

To see that the prompt is now changed, save .profile and log off SYSTEM V/68. Log on again.
The shell will now read the new .profile and display the new prompt string.

S.2.8 Summary.

ls

ls > file
ls I WC -1

ls I grep old

ls I grep old I we -1

cc pgm.c &

S.3 Shell Procedures

Prints the names of files in the current directory.

Puts the output from ls(1) into file.
Prints the number of files in the current directory.

Prints those filenames containing the string old.

Prints the number of filenames containing the string old.

Runs cc in the background.

The shell may be used to read and execute commands contained in a file. For example, the
following call

sh file [args ""]

calls the shell to read commands from file. Such a file call is called a "command procedure" or
"shell procedure". Arguments may be supplied with the call and are referred to in file using ·
the "positional parameters" $1, $2, - . For example, if the file wg contains

5-5

AN INTRODUCTION TO SHELL

who I grep $1

then the call

sh wg fred

is equivalent to

who I grep fred

MOTOROLA COMPUTER SYSTEMS

All operating system files have three independent attributes (often called "permissions"): read
Cr), write (w), and execute (x). File permissions are changed according to mode. The
operating system command chmod(l) may be used to make a file executable. For example,

chmod +x wg

will ensure that the file wg has execute status (permission). Following this, the command

wg fred

is equivalent to the call

sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case, a new
process is created to execute the command.

As well as providing names for the positional parameters, the number of positional parameters
in the call is available as$#. The name of the file being executed is available as $0.

A special shell parameter $* is used to substitute for all positional parameters except $0 . A
typical use of this is to provide some default arguments, as in

nroff -T450 -cm $*

which simply prepends some arguments to those already given.

S.3.1 Control Flow: for. A frequent use of shell procedures is to loop through the
arguments ($1, $2, •••), executing commands once for each argument. An example of such a
procedure is tel, which searches the file /usr/lib/telnos, which contains lines of the form

fred mh0123
bert mh0789

The text of tel is

for i
do

grep Si /usr/lib/telnos
done

The command

tel fred

prints those lines in /usr/lib/telnos that contain the string fred.

The command

tel fred bert

5-6

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

prints those lines containing fred followed by those containing bert.

The for loop notation is recognized by the shell and has the general form

for name in w 1 w2
do

command-Ust
done

A command-list is a sequence of one or more simple commands separated or terminated by a
newline or a semicolon. Furthermore, reserved words like do and done are only recognized
following a newline or semicolon. A name is a shell variable that is set to the words w 1 w2 ...
in turn each time the command-Ust following do is executed. If in w 1 w2 is omitted, then
the loop is executed once for each positional parameter; that is, in$* is assumed.

Another example of the use of the for loop is the create command (creat(2)), whose text is

for i do >Si; done

The command

create alpha beta

ensures that two empty files, alpha and beta, exist and are empty. The notation >file may
be used on its own to create or clear the con ten ts of a file. Notice also that a semicolon (or
newline) is required before done.

S.3.2 Control Flow: case. A multiple way (choice) branch is provided by the case
notation. For example,

case$# in
1>cat >> $1 ; ;
2>cat >>$2 <$1 ;;
*)echo'usage: append [from] to';;

esac

performs an append operation. (Note the use of semicolons to delimit the cases.) When called
with one argument as in

append file

$# is the string 1, and the standard input is appended (copied) onto the end of file using the
cat(l) command.

append filel file2

appends the contents of filel onto file2. If the number of arguments supplied to append is
other than 1 or 2, then a message is printed indicating proper usage.

The general form of the case command is

case word in
pa,tt ern) command-list ; ;

esac

The shell attempts to match word with each pattern in the order in which the patterns
appear. If a match is found, the associated command-Ust is executed and execution of the case
is complete. Since* is the pattern that matches any string, it can be used for the default case.

5-7

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

Caution: No check is made to ensure that only one pattern matches the case
argument.

The first match found defines the set of commands to be executed. In the example below, the
commands following the second *will never be executed since the first *executes everything
it receives.

case S# in
*) ••• ; ;
*) ••• ;;

esac

Another example of the use of the case construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc(t) command.

for i
do

case Si in
-[ocs]
-*)

... ',
echo 'unknown :ftag Si' ; ;
/lib/co Si ... ;; *.c)

*) echo 'unexpected argument Si';;
esac

done

To allow the same commands to be associated with more than one pattern, the case command
provides for alternative patterns separated by a I • For example,

case Si in
-xl-y) •••

esac

is equivalent to

case Si in
-(xyD •••

esac

The usual quoting conventions apply so that

case Si in
?) •••

matches the character ? .

S.3.3 Here Documents. The shell procedure tel described under "Control Flow: for" in
this section uses the file /usr/lib/telnos to supply the data for grep(1). An alternative is to
include this data within the shell procedure as a here document, as in

5-8

MOTOROLA COMPUTER SYSTEMS

for i
do

grep Si<<!

fred mh0123
bert mh0789

done

AN INTRODUCDON TO SHELL

In this example, the shell takes the lines between << ! and ! as the standard input for
grep(1). The string ! is arbitrary. The document is terminated by a line that consists of the
string following << .

Parameters are substituted in the document before it is made available to grep(l), as
illustrated by the following procedure called edg.

edS3 <<%
g/S1/s//S2/g
w
%

The call

edg string 1 string2 file
is then equivalent to the command

ed file<<%
g/ string lls// string2/g
w
%

and changes all occurrences of string 1 in file to string2. Substitution can be prevented by
using\ to quote the special character$ as in

ed SJ<<+
t,\Ss/S1/S2/g
w
+

(This version of edg is equivalent to the first except that ed(l) will print a? if there are no
occurrences of the string St.) Substitution within a here document may be prevented
entirely by quoting the terminating string; for example,

grep Si <<\#

The document is presented without modification to grep. If parameter substitution is not
required in a here document, this latter form is more efficient.

S.3.4 Shell Variables. The shell provides string-valued variables. Variable names begin
with a letter and consist of letters, digits, and underscores. Variables may be given values by
writing

user=fred box=mOOO acct=mhOOOO

5-9

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

which assigns values to the variables user, box, and acct. A variable may be set to the null
string by entering

null=

The value of a variable is substituted by preceding its name with$; for example,

echo $user

echoes fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example,

b=/usr/fred/bin
mv file Sb

moves the file from the current directory to the directory /usr/fred/bin. A more general
notation is available for parameter (or variable) substitution, as in

echo ${user}

which is equivalent to

echo $user

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >S{tmp}a

directs the output of ps(l) to the file /tmp/psa, whereas

ps a >Stmpa

causes the value of the variable tmpa to be substituted.

Except for $?, the following are set initially by the shell.

$?

$#

$$

$!

The exit status (return code) of the last command executed as a decimal
string. Most commands return a zero exit status if they complete
successfully; otherwise, a nonzero exit status is returned. Testing the
value of return codes is dealt with later under if and while commands.

The number of positional parameters (in decimal). Used, for example,
in an append operation to check the number of parameters.

The process number of this shell (in decimal). Because process numbers
are unique among all existing processes, this string is frequently used to
generate unique temporary filenames. For example,

ps a > /tmp/ps$$

rm /tmp/ps$$

The process number of the last process run in the background (in
decimal).

$- The current shell flags, such as -x and -v .

Some variables have a special meaning to the shell and should be avoided for general use.

5-10

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

$MAIL

$HOME

$PATH

$PSt

$PS2

$IFS

When used interactively, the shell looks at the file specified by this
variable before it issues a prompt. If the specified file has been modified
since it was last looked at, the shell prints the message you have mail
before prompting for the next command. This variable is typically set
in the file .profile in the user's login directory. For example,

MAIL=/usr/mail/fred

The default argument for the cd(l) command. The current directory is
used to resolve filename references that do not begin with a I and is
changed using the cd command. For example,

cd /usr/fred/bin

makes the current directory /usr/fred/bin. Then

catwn

prints on the terminal the file wn in this directory. The command cd
with no argument is equivalent to

cd$HOME

This variable is also typically set in the user's login .profile.

A list of directories containing commands (the "search path"). Each time
a command is executed by the shell, a list of directories is searched for
an executable file. If SPATH is not set, the current directory, /bin, and
/usr/bin are searched by default. Otherwise, SPATH consists of
directory names separated by:. For example,

P ATH=:/usr I fred/bin:/bin:/usr /bin

specifies that the current directory (the null string before the first :),
/usr/fred/bin, /bin, and /usr/bin are to be searched in that order. In
this way, individual users can have their own private commands that
are accessible independently of the current directory. If the command
name contains a /, this directory search is not used; a single attempt is
made to execute the command.

The primary shell prompt string; by default, $.

The shell prompt when further input is needed; by default, > .

The set of characters used by "blank interpretation". (Refer to
paragraph "Evaluation and Quoting" in the section entitled "Keyword
Parameters".)

S.3.S The test Command. The test command is intended for use by shell programs. For
example,

test -f file

returns zero exit status if file exists and nonzero exit status otherwise. In general, test
evaluates a predicate and returns the result as its exit status. Some of the more frequently
used test arguments are as follows (refer to test(l) for a complete specification).

5-11

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

tests true if the arguments is not the null string

test -f file true if file exists

test -r file true if file is readable

test -w file true if file is writable

test -d file true if file is a directory

S.3.6 Control Flow: while. The actions of the for loop and the case branch are
determined by data available to the shell. A while or until loop and an if then else branch
are also provided with actions that are determined by the exit status returned by commands.
A while loop has the general form

while command-list 1
do

command-list2
done

The value tested by the while command is the exit status of the last simple command
following while. Each time round the loop, command-list 1 is executed. If a zero exit status is
returned, then command-list2 is executed; otherwise, the loop terminates. For example,

while test $1
do

done

is equivalent to

for i
do

done

shift

The shift command is a shell command that renames the positional parameters $2, $3, ••• as
$1, $2, ••• and loses $1 .

Another way of using the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop, the termination condition is reversed. For
example,

until test -f file
do

done
commands

sleep 300

will loop until file exists. Each time round the loop, it waits for 5 minutes (300 seconds)
before trying again. (Presumably, another process will eventually create the file.).

S.3.7 Control Flow: if. Also available is a general conditional branch of the form

5-12

MOTOROLA COMPUTER SYSTEMS

if command-list
then

command-list
else

command-list
ft

AN INTRODUCTION TO SHELL

which tests the value returned by the last simple command following if.

The if command may be used in conjunction with the test command to test for the existence
of a file as in

if test -f fi1,e
then

else

fi.

process fi1,e

do something else

An example of the use of if, case, and for constructions is given in the paragraph entitled
''The man Command" in this section.

A multiple-test if command of the form

if -·
then

else

ft

if -
then

else

fi.

if -·

fi.

may be written using an extension of the if notation as,

if_
then

elif -·
then

elif -·

fi.

The touch command changes the "last modified" time for a list of files. The command may be
used in conjunction with make(1) to force recompilation of a list of files. The following
example illustrates the touch command:

5-13

AN INTRODUCTION TO SHELL

flag=
for i
do

case Si in
-c) flag=N ;;
*)

esac
done

if test -f Si
then

ln Si junk$$
rm junk$$

elif test $flag
then

echo file \ 'Si\ ' does not exist
else

ft •• ,,
>Si

MOTOROLA COMPUTER SYSTEMS

The -c fl.ag is used in this command to force creation of subsequent files if they do not
already exist. Otherwise, if the files do not exist, an error message is printed. The shell
variable flag is set to some non-null string if the -c argument is encountered. The commands

ln ... ;rm ...

make a link to the file and then remove it.

The sequence

if command]
then

ft

may be written

command2

command 1 && command2

Conversely,

command 1 11 command2

executes command2 only if command] fails. In each case, the value returned is that of the
last simple command executed.

' S.3.7.1 Command Grouping. Commands may be grouped in two ways,

{ command-Ust ; }

and

(command-Ust)

The first form, command-Ust, is simply executed. The second form executes command-Ust as a
separate process. For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking
shell.

5-14

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

S.3.8 Debugging Shell Procedures. The shell provides two tracing mechanisms to help
when debugging shell procedures. The first is invoked within the procedure as

set-v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful
for isolating syntax errors. It may be invoked without modifying the procedure by entering

sh -v proc ...

where proc is the name of the shell procedure. This flag may be used in conjunction with the
-n flag, which prevents execution of subsequent commands. (Note that typing set -n at a
terminal renders the terminal useless until an end-of-file is typed.)

The command

set -x

produces an execution trace with flag -x. Following parameter substitution, each command
is printed as it is executed. (Try the preceding commands at the terminal to see the effect they
have.) Both flags may be turned off by typing

set -

and the current setting of the shell flags is available as $- .

S.3.9 The man Command. The man(l) command is used to print sections of the SYSTEM
V 168 User's Manual. It is called by entering

man sh
man-ted
man 2 fork

In the first call, the manual section for sh is printed. Since no section is specified, section 1 is
used. The second call typesets (-t option) the manual section for ed. The last call prints the
fork manual page from section 2 of the manual.

A version of the man command follows:

5-15

AN INTRODUCTION TO SHELL

cd /usr/man
: 'colon is the comment command'
: 'default is nroff ($N), section 1 ($s)'
N=n s=l
for i
do

case $i in
[1-9]*) s=$i ; ;
-t) N=t ;;
-n) N=n ;;
-*) echo unknown :flag \'$i\' ;;
*) if test -f man$s/$i.$s

then

MOTOROLA COMPUTER SYSTEMS

${N}roff manO/S{N}aa man$s/$i.$s
else

fi ..
" esac

done

: 'look through all manual sections'
found=no
for j in 1 2 3 4 S 6 7 8 9
do

if test -f man$YSi.$j
then man $ j Si

found=yes
fi

done
case $found in

no) echo 'Si: manual page not found'
esac

S.4 Keyword Parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An
argument to a shell procedure of the form name=value that precedes the command name
causes value to be assigned to name before execution of the procedure begins. The value of
name in the invoking shell is not affected. For example,

user=fred comm.and

executes command with user set to fred. The -k flag causes arguments of the form
name=value to be interpreted in this way anywhere in the argument list. Such names are
sometimes called "keyword parameters". If any arguments remain, they are available as
positional parameters $1, $2, •••.

The set command may also be used to set positional parameters from within a procedure. For
example,

set-*

sets $1 to the first filename in the current directory, $2 to the next, and so forth. Note that
the first argument,-, ensures correct treatment when the first filename begins with a - .

S.4.1 Parameter Transmission. When a shell procedure is invoked, both positional and
keyword parameters may be supplied with the call. Keyword parameters are also made
available implicitly to a shell procedure by specifying in advance that such parameters are to

5-16

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is invoked, copies are
made of all exportable variables for use within the invoked procedure. Modification of such
variables within the procedure does not affect the values in the invoking shell. It is generally
true of a shell procedure that it may not modify the state of its caller without an explicit
request on the part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose values are intended to remain constant may be declared with read.only. The
form of this command is the same as that of the export command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

S.4.2 Parameter Substitution. If a shell parameter is not set, the null string is
substituted for it. For example, if the variable d is not set,

echo $d

or

echo ${d}

echoes nothing. A default string may be given as in

echo ${d-.}

which echoes the value of the variable d if it is set and • otherwise. The default string is
evaluated using the usual quoting conventions so that

echo ${d- '*'}

echoes * if the variable d is not set. Similarly,

echo ${d-$1}

echoes the value of d if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-.}

and if d has not been set previously, it is set now to the string • (dot). (The notation ${-.=-.}
is not available for positional parameters.)

If there is no sensible default, the notation

echo ${d?message}

echoes the value of the variable d if it has one; otherwise, message is printed by the shell, and
execution of the shell procedure is abandoned. If message is absent, a standard message is
printed. A shell procedure that requires some parameters to be set might start as follows:

: ${user?} ${acct?} ${bin?}

Colon (:) is a command built into the shell that does nothing after its arguments have been
evaluated. If any of the variables user, acct, or bin are not set, the shell abandons execution of

5-17

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

the procedure.

S.4.3 Command Substitution. The standard output from a command can be substituted
in a similar way to parameters using the grave accent marks('). The command pwd(l) prints
on its standard output the name of the current directory. For example, if the current
directory is /usr/fred/bin, the command

d='pwd'

is equivalent to

d=/usr/fred/bin

The entire string between grave accents C ... ') is interpreted as the command to be executed and
is replaced with the output from the command. Command substitutions are written
following normal quoting conventions. For example,

ls 'echo " Sl " '

is equivalent to

ls Sl

where $1 retains its special meaning.

Command substitution occurs in all contexts where parameter substitution occurs (including
here documents), and the treatment of the resulting text is the same in both cases. This
mechanism allows string-processing commands to be used within shell procedures. An
example of such a command is basename(l), which removes a specified suffix from a string.
For example,

basename main.c .c

will print the string main. Its use is illustrated by the following fragment from a cc(l)
command

case SA in

*.c) B= 'basename SA .c'

esac

which sets B io the part of $A with the suffix .c stripped.

Here are some composite examples.

for i in 'Is -t'; do ...

The variable i is set to the names of files ordered according to the time of last modiftcation,
with the most recent first.

set 'date'; echo $6 $2 S3, $4

prints, for example,

1984 Jun 1, 23:S9:S9

S.4.4 Evaluation and Quoting. The shell is a macro processor that provides parameter
substitution, command substitution, and filename generation for the arguments to commands.
This section discusses the order in which these evaluations occur and the effects of the various

5-18

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

quoting mechanisms.

Commands are parsed initially according to the grammar listed in Table 5-1. Before a
command is executed, the following substitutions occur:

a. Parameter substitution; e.g., $user

b. Command substitution; e.g., 'pwd'

Only one evaluation occurs so that if, for example, the value of the variable X is the
string Sy then

echo$X

echoes $y.

c. Blank interpretation

Following the above substitutions, the resulting characters are broken into nonblank
words (blank interpretation). For this purpose, "blanks" are the characters of the string
$IFS. By default, this string consists of blank, tab, and newline. The null string is not
regarded as a word unless it is quoted. For example,

echo''

passes on the null string as the first argument to echo, whereas

echo $null

calls echo with no arguments if the variable null is not set or is set to the null string.

d. Filename generation

Each word is then scanned for the file pattern characters *, ?, and [•••]; and an
alphabetical list of filenames is generated to replace the word. Each such filename is a
separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only
substitution occurs in the word used for a case branch.

Evaluations conform to the escape and quoting mechanisms described earlier i.e., \(backslash),
' •• .'(acute accent), and " (double quotes). Within double quotes, parameter and command
substitution occur, but filename generation and the interpretation of blanks does not. The
following characters have a special meaning within double quotes and may be quoted using \ .

$
'
II

\

For example,

echo" $x"

parameter substitution
command substitution
ends the quoted string
quotes the special characters$ ' " \

passes the value of the variable x as a single argument to echo. Similarly,

echo"$*"

passes the positional parameters as a single argument and is equivalent to

echo " $1 $2 ·- "

5-19

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

The notation $@ is the same as $* except when it is quoted. Inputting

echo"$@"

passes the positional parameters, unevaluated, to echo and is equivalent to

echo " $1 " " $2 " •••

The following illustration details how the shell evaluates metacharacters located in a string
enclosed by acute accents, grave accents and double quotes.

metacharacter

\ $ * "

I n n n n n t
I y n n t n n

n I t y y n y n

t terminator
y interpreted
n = not interpreted

When more than one evaluation of a string is required, the built-in command eval may be
used. For example, if the variable X has the value Sy and if y has the value pqr, then

eval echo SX

echoes the string pqr.

In general, the eval command evaluates its arguments (as do all commands) and treats the
result as input to the shell. The input is read and the resulting command(s) executed. For
example,

wg='eval wholgrep'
Swg fred

is equivalent to

wholgrep fred

In this example, eval is required because there is no interpretation of metacharacters, such as
I, following substitution.

5.4.5 Error Handling. The treatment of errors detected by the shell depends on the type
of error and on whether the shell is being used interactively. An interactive shell is one
whose input and output are connected to a terminal (as determined by gtty(2)). A shell
invoked with the -i flag is also interactive.

Execution of a command (refer to the "Command Execution" paragraph of this section) may
fail for any of the following reasons:

5-20

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

a. Input/output redirection may fail; for example, if a file does not exist or cannot be
created.

b. The command itself does not exist or cannot be executed.

c. The command terminates abnormally, for example, with a bus error or memory fault
signal.

d. The command terminates normally but returns a nonzero exit status.

In all of these cases, the shell goes on to execute the next command. Except for the last case,
an error message is printed by the shell. All remaining errors cause the shell to exit from a
command procedure. An interactive shell returns to read another command from the
terminal. Such errors include the following:

a. Syntax errors; e.g., if ••• then ••• done.

b. A signal such as SIGINI'. The shell waits for the current command, if any, to finish
execution and then either exits or returns to the terminal.

c. Failure of any of the built-in commands such as cd(l).

The shell flag -e causes the shell to terminate if any error is detected. The following is a list
of the SYSTEMV/68 signals (refer to signal(2)):

SIGHUP 01 hangup
SIGINT 02 interrupt
SIGQUIT 03* quit
SIGILL 04* illegal instruction

(not reset when caught)
SIGTRAP 05* trace trap

(not reset when caught)
SIGIOT 06* IOT instruction
SIGEMT 07* EMT instruction
SIGFPE 08* floating point exception
SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 10* bus error
SIGSEGV
SIGSYS
SIG PIPE
SIGALRM
SIG TERM

SIGUSRl
SIGUSR2
SIGCLD
SIGPWR

11 * segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination signal

(from kUl(l))
16 user defined signal 1
17 user defined signal 2
18 death of a child
19 power fail

The operating system signals marked with an asterisk (*) in the list produce a core dump if
not caught. However, the shell itself ignores SIGQUIT, which is the only external signal that
can cause a dump. The signals in this list of potential interest to shell programs are 1, 2, 3, 14,
and 15.

S.4.6 Fault Handling. Shell procedures normally terminate when an interrupt is received
from the terminal. The trap command is used if some cleaning up is required, such as
removing temporary files. For example,

5-21

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

trap 'rm /tmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt); if this signal is received, it will execute the
following commands:

rm /tmp/ps$$; exit

The exit is another built-in comm.and that terminates execution of a shell procedure. The
exit is required; otherwise, after the trap has been taken, the shell resumes executing the
procedure' at the place where it was interrupted.

SYSTEM V /68 signals can be handled in one of three ways.

a. They can be ignored, in which case the signal is never sent to the process.

b. They can be caught, in which case the process must decide what action to take when the
signal is received.

c. They can be left to cause termination of the process without it having to take any
further action.

If a signal is being ignored on entry to the shell procedure; for example, by invoking it in the
backgro1J.nd (refer to the paragraph "Command Execution"); trap commands (and the signal)
are ignored.

The use of trap is illustrated by the following modified version of the touch(l) command:

flag=
trap 'rm -f junk$$; exit' 12315
for i
do

case Si in
-c) flag=N ;;
*) if test -f Si

then
In Si junk$$; rm junk$$

elif test $flag
then

echo file\ 'Si\' does not exist
else

:Ii •• ..
esac

done

>Si

The cleanup action is to remove the file junk$$. The trap command appears before the
creation of the temporary file; otherwise, it would be possible for the process to die without
removing the file.

Since there is no signal 0 in the SYSTEM V /68 operating system. it is used by the shell to
indicate the commands to be executed on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument
to trap. The following:

trap ' ' 1 2 3 15

S-22

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

is a fragment taken from the nohup(1) command which causes the operating system hangup,
interrupt, quit, and software termination signals to be ignored both by the procedure and by
invoked commands.

Traps may be reset by entering

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values
of traps may be obtained by writing

trap

The scan procedure is an example of the use of trap where there is no exit in the trap
command. The scan takes each directory in the current directory, prompts with its name, and
then executes commands typed at the terminal until an end-of-file or an interrupt is received.
Although interrupts are ignored when the requested commands are executing, they cause
termination when scan is waiting for input. The scan procedure follows:

d='pwd'
for i in*
do

if test -d $d/$i
then

ft
done

cd $d/$i
while echo "Si:"
do

trap: 2
eval $x

done

The read xis a built-in command that reads one line from the standard input and places the
result in the variable x . It returns a nonzero exit status if either an end-of-file is read or an
interrupt is received.

S.4. 7 Command Execution. To run a command (other than a built-in command), the shell
first creates a new process using the system call fork(2). The execution environment for the
command includes input, output, and the states of signals and is established in the child
process before the command is executed. The built-in command exec is used in rare cases
when no fork is required and simply replaces the shell with a new command. For example, a
simple version of the nohup command looks like

trap ' ' 1 2 3 lS
exec$*

The trap turns off the signals specified so that they are ignored by subsequently created
commands, and exec replaces the shell by the command specified.

Most forms of input/output redirection have already been described. In the following, word is
only subject to parameter and command substitution. No filename generation or blank
interpretation takes place so that, for example,

echo-. >*.c

5-23

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

writes its output into a file whose name is *.c. Input/output specifications are evaluated left
to right as they appear in the command. Some input/output specifications are as follows:

>word

>>word

<word

<<word

>&digit

<&digit

<&­
>&-

The standard output (file descriptor 1) is sent to the file word, which is
created if it does not already exist.

The standard output is sent to file word. If the file exists, then output is
appended (by seeking to the end); otherwise, the file is created.

The standard input (file descriptor O) is taken from the file word.

The standard input is taken from the lines of shell input that follow up
to, but do not include, a line consisting only of word. If word is quoted,
no interpretation of the document occurs. If word is not quoted,
parameter and command substitution occur and \ is used to escape the
characters \, $, ', and the first character of word. In the latter case,
\newline is ignored (e.g., quoted strings).

The file descriptor digit is duplicated using the system call dup(2), and
the result is used as the standard output.

The standard input is duplicated from file descriptor digit.

The standard input is closed.

The standard output is closed.

Any of the above may be preceded by a digit, in which case the file descriptor created is that
specified by the digit instead of the default 0 or 1. For example,

-· 2> file
runs a command with message output (file descriptor 2) directed to file. Another example,

-2>&1

runs a command with its standard output and message output merged. (Strictly speaking, file
descriptor 2 is created by duplicating file descriptor 1; but the effect is usually to merge the
two streams.)

The environment for a command run in the background such as

list *.c 1 lpr &

is modified in two ways. First, the default standard input for such a command is the empty
file /d.ev/null. This prevents two processes (the shell and the command), which are running
in parallel, from trying to read the same input. Unpredictable results would occur otherwise.
For example,

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is that the quit and
interrupt signals are turned off so the command ignores them. This allows these signals to be
used at the terminal without causing background commands to terminate. For this reason, the
SYSTEM V/68 convention is that if a signal is set to 1 (ignored) then it is never changed, even
for a short time. Note that the shell command trap has no effect for an ignored signal.

5-24

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

S.4.8 Invoking the Shell. The following flags are interpreted by the shell when it is
invoked. If the first character of argument zero is a minus, commands are read from the file
.profile.

-c string

-s

-i

item

simple-command:

command:

pipeline:

and or:

command-list:

in put-out put:

If the -c flag is present, then commands are read from string .

If the -s flag is present or if no arguments remain, commands are read
from the standard input. Shell output is written to file descriptor 2.

If the -i flag is present or if the shell input and output are attached to a
terminal (as told by getty(S)), this shell is "interactive". In this case,
SIGTERM is ignored (so that kill 0 does not kill an interactive shell) and
SIGINT is caught and ignored (so that wait is interruptible). In all cases,
SIGQUIT is ignored by the shell.

Table S-1. Grammar

word
input-out put
name= value

item
simple-command item

simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-list else-part ft

command
pipeline I command

pi,peline
and or && pipeline
andor I I pi,peline

and or
command-list ;
command-list &
command-list; andor
command-list & andor

>file
<file

5-25

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

file

case-part:

pattern:

else-part:

empty:

word:

name

digit:

(a) syntactic:

>>word
<<word

word
& digit
&-

pattern) command-list;;

word
pattern I word

elif command-list then command-list else-part
else command-list

empty

a sequence of nonblank characters

a sequence of letters, digits, or underscores
starting with a letter

0123456789

Table S-2. Metacharacters and Reserved Words

pipe symbol

&& 'andf' symbol

I I 'orf' symbol

command separator

..
"
&

()

<

<<

>

>>
(b) patterns:

*

case delimiter

background commands

command grouping

input redirection

input from a here document

output creation

output append

match any characterCs) including none

5-26

MOTOROLA COMPUTER SYSTEMS

? match any single character

[•••] match any of the enclosed characters

(c) substitution:

${ ••• } substitute shell variable

substitute command output

(d) quoting:

\ quote the next character

AN INTRODUCTION TO SHELL

quote the enclosed characters except for the '

" " quote the enclosed characters except for the$,' ,\,and"

(e) reserved words:

if then else elif ft
case in esac
for while until do done
{ } [] test

5-27

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

NOTES

5-28

AN INTRODUCTION TO SHELL

6. SOURCE CODE CONTROL SYSTEM (SCCS)

6.1 General

MOTOROLA COMPUTER SYSTEMS

The Source Code Control System (SCCS) is a collection of SYSTEM V /68 commands that
monitors changes to text files and creates an audit trail for each change. The source code and
software system documentation are examples of text files for which users would want to
monitor changes. The SCCS performs like a file custodian under SYSTEM V/68. The SCCS
provides facilities for the following:

a. Stores files of text

b. Retrieves particular versions of the files

c. Controls updating privileges to files

d. Identifies the version of a retrieved file

e. For each change to each file, records the location, reason, time and identifies the user who
made the change.

When programs and documentation undergo frequent changes because of maintenance and/or
enhancement, backup procedures include keeping a version of each program or document as it
existed before changes were applied. Keeping copies (on paper or other media) becomes
unmanageable and wasteful as the number of programs and documents increases. The SCCS
provides an attractive solution by storing the original file on disk. Whenever changes are made
to the file, the SCCS stores only the changes. Each set of changes is called a "delta".

This section, together with relevant portions of the SYSTEM V 168 User's Manua.l forms a
complete user's guide to secs. The following topics are covered:

a. Creating an SCCS file, retrieving a version of the file and mak.ing·changes to the file.

b. Tracing changes throughout a file using SCCS identification numbers.

c. SCCS commands conventions and rules.

d. Applications of SCCS commands.

e. Protecting, formatting, auditing and administering SCCS files.

SCCS installation and implementation are not described in this section.

6.2 SCCS For Beginners

The easiest way to understand SCCS is to use it'. . The paragnphs that follow assume the
reader knows how to log on to the operating system, create :files and use a text editor. Try the
examples given below. To supplement the material in this section, consult the detailed SCCS
command descriptions in the SY ST EM v 168 User's Manua.l.

6.2.t Terminology. Each SCCS file is composed of one or more sets of changes applied to
the null (empty) version of the file. Each set of changes, called a "delta," usually builds on all
previous sets. When a file edit is completed, a delta command will write the changes or d~lta
back to the file. Each delta is assigned an identification number so that users can refer to
particular versions of a file. Deltas are referred to by an SCCS JDentification string or SID.
The SID is generally composed of two components, the "release" number and the "level"
number, which are separated by a period. The first delta to an original file is called "1.1", the
second "1.2", the third "1.3", etc. The release number can be changed as well, for example,
deltas "2.1", "3.19", etc. A change in the release number usually indicates a major change to
the file.

6-1

MOTOROLA COMPUTER SYSTEMS SOURCE CODE CONTROL SYSTEM (SCCS)

Each delta of an SCCS file defines a particular version of the file. For example, delta 1.5
defines version 1.5 of the secs file, obtained by building each set of changes (deltas 1.1, 1.2,
etc., up to and including delta 1.5 itself) into the original secs file.

6.2.2 Creating an SCCS File via admin. Consider a file called lang that contains a list of
programming languages:

c
pl/i
fortran
cobol
algol

Custody of the lang file can be given to SCCS. The following admin(l) command (used to
"administer" SCCS files) creates an SCCS file and initializes delta 1.1 from the file lang:

admin -ilang s.lang

All SCCS files must have names that begin with "s.", hence, s.lang. The -i together with its
argument lang, indicates that admin is to create a new SCCS file and "initialize" the new
secs file with the contents of the file lang. This initial version is a set of changes (delta 1.1)
applied to the null secs file.

The admin command replies

No id keywords (cm7)

This is a warning message that can be ignored for the purposes of this section. Its significance
is described under the get(l) command in the section "ID Keywords." In the following
examples, this warning message is not shown, although it may actually be issued by the
various commands.

The file lang should now be removed so that all work involving the file will be monitored
through SCCS:

rm lang

6.2.3 Retrieving a File via get. The removed file lang can be easily reconstructed with
the following get command:

get s.lang

The command retrieves a copy of the latest version of file s.lang and prints the following
messages:

1.1
S lines

This means that get created a file that is a copy of s.lang, version 1.1 and contains five lines of
text. The name of the new file is formed by deleting the "s." prefix from the name of the
SCCS file; hence, file lang is recreated.

The "get s.lang" command creates the file lang in read-only mode but keeps no information
regarding its creation. If you want to get a file for editing, your get command must announce
your intention to do so. This is done as follows:

get -e s.lang

The -e causes get to create a file lang with both read and write permissions (so it may be
edited) and creates an edit information file called a p-fi/,e. The p-fi/,e contains one or two lines
of information including the SID of the created version, the SID for the up-coming delta, the

6-2

SOURCE CODE CONTROL SYSTEM (SCCS) MOTOROLA COMPUTER SYSTEMS

editor's ID and the time the get -e command was executed. The get command to edit prints
the same messages as before with the addition that the SID of the up-coming delta is also
issued. For example:

get -e s.lang
1.1
new delta 1.2
S lines

The file lang may now be changed, for example, by:

ed lang
27
Sa
snobol
ratfor

w
41
q

6.2.4 Recording Changes via delta. To record changes within the SCCS file, lang,
execute the following command:

delta s.lang

Delta prompts with:

comments?

Enter a brief explanation of the changes. For example:

comments? added more languages

The delta command now determines what changes were made to the file lang by applying
the dijf(t) command to the original version and the edited version. Next, the delta command
reads the p-jUe and incorporates the information into the file as part of its audit trail.

When the changes to lang have been stored in s.lang, delta outputs:

1.2
2 inserted
0 deleted
S unchanged

The number "1.2" is the name of the delta just created, and the next three lines of output
refer to the number of lines in the file s.lang.

6.2.S Additional Information About get. As shown in the previous example, the
command

get s.lang

retrieves the latest version (now 1.2) of the file s.lang. This is done by starting with the
original version of the file and successively applying deltas (the changes) in order until all
have been applied.

In the example chosen, the following commands are all equivalent

6-3

MOTOROLA COMPUTER SYSTEMS

get s.lang
get -rt s.lang
get -rl.2 s.lang

SOURCE CODE. CONTROL SYSTEM (SCCS)

The numbers following the -r are SIDs. Omitting the level number of the SID (as in "get
-rt s.lang") defaults to the highest level number within the specified release. The second
command requests the latest version in release 1, namely 1.2. The third command specifically
requests a particular version, in this case, also 1.2.

A major change to a file is usually indicated by changing the release number (first component
of the SID) of the delta. Automatic numbering of deltas proceeds by incrementing the level
number (second component of the SID); therefore, the user must announce to SCCS the need
to change the release number. This is done through the get command:

get -e -r2 s.lang

Because release 2 does not exist, get retrieves the latest version before release 2. In addition,
the get program interprets the command as a request to change the delta release number to 2,
causing the delta to be named 2.1, rather than 1.3. (There is no 0 level; all releases begin with
level 1.) The get command will store the request to change the delta release number in the
Jr file where it will be read and carried out by the delta command when all edits are
completed. The get command outputs

1.2
new delta 2.1
7 lines

confirming that version 1.2 has been retrieved and 2.1 is the version delta will create. If the
file is now edited, for example:

ed lang
41
/cobol/d
w
35
q

and delta executed:

delta s.lang
comments? deleted cobol from list of languages

the user will see delta's version 2.1 is created:

2.1
0 inserted
1 deleted
6 unchanged

Deltas will now be created in release 2 (deltas 2.2, 2.3, etc.),, or another new release may be
created.

6.2.6 The help Command. If the command:

get abc

is executed, the following message will be output:

ERROR [abc]: not an SCCS file (col)

6-4

SOURCE CODE CONTROL SYSTEM (SCCS) MOTOROLA COMPUTER SYSTEMS

The string "cot" is a code for the diagnostic message and may be used to obtain a fuller
explanation of that message by use of the help(l) command:

help cot

This produces the following output:

cot:
not an SCCS file
A file that you think is an SCCS file
does not begin with the characters "s.".

Thus, help is a useful command to use whenever there is any doubt about the meaning of an
SCCS message. Detailed explanations of almost all SCCS messages may be found in this
manner.

6.3 Delta Numbering

Deltas applied to an SCCS file can be thought of as the nodes of a tree; the tree root is the
initial version of the file. The initial version of the file is normally named "1.1" and
succeeding deltas or nodes are named "1.2", "1.3", etc. The first two components of the deltas'
names are called the "release" and the "level" numbers, respectively. Normally, deltas are
named by automatically incrementing the level number whenever a delta is made.
Occasionally, a user will change the delta release number to indicate a major change. The
new release number applies to all successor deltas until it is specifically changed. The
evolution of any particular file may be mapped into a diagram referred to as an SCCS "tree".
One example of an SCCS "tree" is represented in Figure 6.1.

1.1 1.2

RELEASE
1.3 1.4 2.1 2.2

RELEASE 2

Figure 6-t. Evolution of an SCCS File

A progression of file versions in which each delta incorporates all the changes that preceded it
is referred to as a "trunk" on an SCCS tree. An example of a "trunk" is illustrated in Figure
6.1. .

Sometimes, it is necessary to cause a branching in the tree; that is, to create a new file version
that incorporates only a portion of the changes to date. A branch on a SCCS tree is a delta
that does not include all the changes that have been made to the original file. To explain
why a branch might be desirable, consider a program in production use at version t.3 for
which release 2 development work is already in progress. Release 2 may already have deltas
as shown in Figure 6.1., that is, deltas that are all dependent upon all the changes made to
date. Assume that a production user reports a problem in version 1.3. and the user cannot

6-5

MOTOROLA COMPUTER SYSTEMS SOURCE CODE CONTROL SYSTEM (SCCS)

wait for release 2 for the problem to be fixed. Necessary changes to solve the problem must be
written as a delta to version 1.3, the production version. This delta, which is released to the
user, branches off version 1.3 and does not affect the deltas being written for release 2 (e.g.,
deltas 1.4, 2.1, 2.2, etc.).

To distinguish between deltas that lie along the trunk of the SCCS tree and deltas that branch
away from the trunk, branch deltas are given names consisting of four components: a release
and a level number, the same as a trunk delta; as well as an additional "branch" and a
"sequence" number. Any branch delta name will appear as:

release.level. branch.sequence

The first branch from a particular trunk is branch l, the next one 2, and so on. The sequence
number is assigned, in order, to each delta on a particular branch. Thus, 1.3.1.2 identifies the
second delta of the first branch that derives from delta 1.3. This is shown in Figure 6.2.

1. 1 1.2 1.3 1.4 2. 1 2.2

Figure 6-2. Tree Structure with Branch Deltas

Two observations about naming deltas are important. First, a branch delta may always be
identified as such from its name. The names of trunk deltas always contain two components
and the names of branch deltas always contain four components. Second, the first two
components of a branch delta always specify the ancestral trunk delta. The next two
component numbers are location independent; the branch and sequence numbers are assigned
according to the order in which the deltas were created. Therefore, although the branch
delta's name always identifies its ancestral trunk, ii is impossible to determine the entire path
leading from the trunk delta to the branch delta. For example, if delta 1.3 has one branch
emanating from it, all deltas on that branch will be named 1.3.1.n. If a delta on this branch
(1.3.1.n) has another branch emanating from it, all deltas on the new branch will be named
1.3.2.n (see Figure 6.3). The delta name 1.3.2.2 only defines it as the chronologically second
delta on the chronologically second branch whose trunk ancestor is delta 1.3. It is not
possible to know from the name of delta 1.3.2.2 all the deltas between it and trunk ancestor
1.3.

6-6

SOURCE CODE CONTROL SYSTEM (SCCS) MOTOROLA COMPUTER SYSTEMS

1.3.2.2

1. 1 1.2 1.3 1.4 2.1 2.2

Figure 6-3. Extending the Branching Concept

Clearly, branch deltas can create extremely complex tree structures. Try to keep an SCCS
tree as simple as possible. A tree's structure becomes difficult to follow as the number of
branches increases.

6.4 SCCS Command Conventions

This section discusses conventions and rules that apply to SCCS commands, with exceptions
indicated. The SCCS commands accept two types of arguments:

• keyletter arguments

• file arguments.

Key letter arguments (hereafter called simply "key letters") begin with a minus sign (-),
followed by a lowercase alphabetic character. In some cases, a value follows the letter.
Keyletters control the execution of the given command.

File arguments (which may be names of files and/or directories) specify the file(s) to be
processed. Naming a directory is equivalent to naming all of the SCCS files within that
directory. Non-SCCS files and files that cannot be read because of permission modes are
silently ignored.

In general, file arguments may not begin with a minus sign. However, if a - is specified as an
argument to a command, the command reads the standard input for lines and interprets each
line as the name of an SCCS file to be processed. The standard input is read until end-of-file.
For example, this feature is often used in pipelines with the find(1) or ls(1) commands.
Names of non-SCCS files and unreadable files are silently ignored.

All keyletters specified for a given command apply to all file arguments of that command.
All keyletters are processed before any file arguments with the result that the placement of
keyletters is arbitrary (i.e., keyletters may be interspersed with file arguments). File
arguments, however, are processed left to right. Somewhat different argument conventions
apply to the help.J), whatC1), sccsdiff(1), and val(1) commands.

Some SCCS commands are affected by flags appearing in SCCS files. Some of these flags are
discussed in this section. For a complete description of all such flags, see the admin(1) section
in the SYSTEM V/68 User's Manual.

6-7

MOTOROLA COMPUTER SYSTEMS SOURCE CODE CONTROL SYSTEM (SCCS)

When considering the actions of SCCS commands, draw a distinction between the reaJ user
[see passwd(t)] and the effective user of SYSTEM V/68. For now, assume that both the real
user and the effective user are one and the same (i.e., the person who is logged onto SYSTEM
V /68). This subject is discussed further in section "SCCS Files."

All SCCS commands that modify an SCCS file create two temporary files, an x-.file and a z­
.file. The x-file is a temporary copy that ensures the SCCS file will not be damaged should
processing terminate abnormally. The name of the x-file is formed by replacing the "s." of
the SCCS filename with ''x.". When processing is complete, the old SCCS file is removed and
the x.;..file is renamed as the SCCS file. The x-file is created in the directory containing the
SCCS file, is given the same mode permission mode as the SCCS file [see chmod(t)l and is
owned by the effective user.

The z-.file, or l,ock-file, prevents simultaneous updates to an SCCS file. The name of the z-file
is formed by replacing the "s." of the SCCS :filename with "z.". The z-file contains the process
number of the command that creates it; its existence is an indication to other commands that
the SCCS file is being updated. Thus, other commands that.modify SCCS files will not process
an SCCS file if a corresponding z-file exists. The z-file is created with mode 444 (read-only)
in the directory containing. the SCCS file and is owned by the effective user. This file exists
only for the duration of the execution of the command that creates it. In general, users can
ignore x-files and z-files. The files may be helpful in the event of system crashes or similar
situations.

SCCS commands produce diagnostics Con the diagnostic output) of the form:

ERROR name-of-file-being-processed: message text (code)

The code in parentheses may be used as an argument to the hel/iJ) command to obtain a
further explanation of the diagnostic message. Detection of a fatal error during the processing
of a file causes the SCCS command to terminate processing of that file and to proceed with the
next file, in order, if more than one file has been named.

6.S SCCS Commands

This ~tion describes the maj>r features of SCCS commands. Detailed descriptions of the
commands and their arguments are given in the SYSTEM V/68 User's Manual. The
discussion below covers only the more common arguments.

The following is a summary of SCCS commands and their major functions, in approximate
order of importance.

get(t) Retrieves versions of SCCS files.

delta(1)

admin(l)

prs(t)

hel/i.1)

rmdel(t)

cdc(t)

what(t)

Incorporates changes to the text of SCCS files, i.e., creates new versions.

Creates SCCS files and makes changes to parameters of SCCS files.

Prints portions of an SCCS file in user specified format.

Explains diagnostic messages.

Removes a delta from an SCCS file; allows the removal of deltas that
were created by mistake.

Changes the commentary associated with a delta.

Searches any SYSTEM V 168 ftle(s) for all occurrences of a special pattern
and prints out what follows; it finds identifying information inserted
by the get command.

6-8

SOURCE CODE CONTROL SYSTEM (SCCS) MOTOROLA COMPUTER SYSTEMS

sccsdiff(1)

comb(1)

Shows the differences between any two versions of an SCCS file.

Combines two or more consecutive deltas of an SCCS file into a single
delta.

val(1) Validates an SCCS file.

6.S.1 The get Command. The get(l) command creates a text file that contains a copy of a
particular version of an secs file. The created text file, called a g- file, is created in the
current directory and is owned by the real user. The mode assigned to the g- file and the
particular secs version that was copied depends on the keyletters used to invoke the get
command. The g- file name is formed by removing the "s" from the SCCS filename.

A common invocation of get is:

get s.abc

which normally retrieves the latest version of the SCCS file. Standard output might read:

1.3
67 lines
No id keywords (cm7)

which indicates:

a. Version 1.3 of file "s.abc" was retrieved (1.3 is the most recent trunk delta).

b. This version has 67 lines of text.

c. No ID keywords were substituted in the file. (For information about ID keywords, refer
to section "ID Keywords.")

The generated g- file (file "abc") is given mode 444 (read-only) and may be used for inspection
or compilation, not for editing.

If several file- or directory-name arguments are given in a get command, the SCCS filename
precedes the information given for each file. For example:

get s.a be s.def

produces:

s.abc:
1.3
67 lines
No id keywords (cm7)

s.def:
1.7
BS lines
No id keywords (cm.7)

6.S.1.1 ID Keywords. Often, a user will want to keep records within a g-file so that
historic information will appear in the load module when it is eventually created. For
example, a user may want to record the date and time of creation, the version retrieved and
the module's name. To do this, the SCCS provides 20 possible identification (ID) keywords
which may be imbedded within a file. Each time an SCCS file is copied, the ID keywords
within that file are replaced with the appropriate value. The format of an ID keyword is an
uppercase letter enclosed by percent signs, (%). Twenty letters have been assigned specific
meanings as ID keywords. For example, %M% is defined as the ID keyword that will be

6-9

MOTOROLA COMPUTER SYSTEMS SOURCE CODE CONTROL SYSTEM (SCCS)

replaced by the SID of the retrieved version of a file. (There is no space between the percent
and the letter.) Similarly, %H% is defined as the ID keyword for the current date (in the
form "mm/dd/yy"), and %F% is defined as the SCCS filename. Thus, executing a get
command on an SCCS file that contains an information line:

%M% %H% %F%

might give the following:

1.12 7/14/84 /systemv68/user_guide/s.sccs01

When no ID keywords are substituted by get, the following message is issued:

No id keywords (cm7)

This message is normally treated as a warning by get, although the presence of the i flag in
the SCCS file will cause it to be treated as an error. For a complete list of the letters that
have assigned ID keyword meanings, see get(l) in the SYSTEM V/68 User's Manual.

6.S.1.2 Retrieval of Different Versions. Keyletters allow different versions of SCCS
files to be retrieved. In processing, the default version of the SCCS file is the most recent delta
of the highest-numbered release on the trunk of the SCCS file tree. However, if the SCCS file
being processed has ad (default SID) flag, the SID specified as the value of this flag is used as a
default. The default SID is interpreted in exactly the same way as the value supplied with
the -r keyletter of get.

The -r keyletter is used to specify a SID, in which case the d (default SID) flag (if any) is
ignored. For example: '

get -rl.3 s.abc

retrieves version 1.3 of file s.abc and produces on the standard output:

1.3
64 lines

A branch delta may be retrieved similarly:

get -rl.S.2.3 s.abc

which produces on the standard output:

1.S.2.3
234 lines

When a 2- or 4-<:omponent SID is specified as a value for the -r keyletter and the particular
version does not exist in the SCCS file, an error message results. Omission of the level
number, as in:

get -r3 s.abc

will retrieve the trunk delta with the highest level number within the given release. Thus,
the above command might output:

3.7
213 lines

If the given release does not exist, get retrieves the trunk delta with the highest level number
within the highest-numbered existing release that is lower than the given release. For
example, assuming release 9 does not exist in file s.abc and that release 7 is actually the
highest-numbered release below 9, execution of:

6-10

SOURCE CODE CONTROL SYSTEM (SCCS)

get -r9 s.abc

might produce:

7.6
420 lines

MOTOROLA COMPUTER SYSTEMS

which indicates that trunk delta 7.6 is the latest version of file s.abc below release 9.
Similarly, omission of the sequence number, as in:

get -r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on the given
branch. (If the given branch does not exist, an error message results.) The command above
might result in the following output:

4.3.2.8
89 lines

The -t keyletter is used to retrieve the most recently created (top) version in a particular
release. The top version of the SCCSW file tree is location independent. Thus, if the most
recent delta in release 3 is 3.5,

get -r3 -t s.abc

might produce:

3.S
S9 lines

However, if branch delta 3.2.1.5 was created after delta 3.5, the command would produce:

3.2.t.S
46 lines

6.S.1.3 Retrieval And Editing. Specification of the -e keyletter to the get command
indicates you intend to edit the file. As part of the SCCS, use of this keyletter is restricted.
Using the -e keyletter causes get to perform the following checks:

a. The user list (a list of login names and/or group IDs of users allowed to make deltas) is
checked to ensure the user has editing permission. A null (empty) user list is read as
containing all possible login names.

b. The release of the version being retrieved is checked to determine if it is a protected
release. (This information is specified via :flags in the SCCS file. Refer to section "SCCS
File Protections.")

c. The releao;e is not locked against editing. (The "lock" is specified as a flag in the SCCS
file.)

d. Whether or not multiple concurrent edits are allowed for the SCCS file. (This
information is specified by the j :flag in the SCCS file.)

A failure of any of the first three conditions causes processing to terminate.

If the above checks succeed, the -e keyletter causes the creation of a g-file in the current
directory with mode 644 (readable by everyone, writable only by the owner) owned by the
real user. If a writable g-file already exists, get terminates with an error. This prevents
inadvertent destruction of an existing g-file that is being edited.

ID keywords appearing in the g-file are not substituted by get when the -e keyletter is ·
specified. Replacement of ID keywords would cause them to be permanently changed within

6-11

MOTOROLA COMPUTER SYSTEMS SOURCE CODE CONTROL SYSTEM (SCCS)

the SCCS file following the execution of a delta command. Because get does not check for the
presence of ID keywords within the g-file, the message

No id keywords (cm7)

is never output when get is invoked with the -e keyletter.

In any case, the -e keyletter creates a p-file which is used to pass information to the delta(l)
command.

The command:

get -e s.abc

produces on the standard output:

1.3
new delta 1.4
67 lines

The -r and/or -t keyletters can be used with the -e keyletter, to specify a particular
version to be retrieved for editing.

The keyletters -i and -x can be used to specify a list of deltas to be included and/or
excluded, respectively, by get. (Refer to get(l) in the SYSTEM V/68 User's Manual for the
syntax of such a list.) "Including a delta" means forcing the changes that constitute the
particular delta to be included in the retrieved version. Use this if you want to apply the
same changes to more than one version of the SCCS file. "Excluding a delta" means forcing
the delta to be ignored. Use this to undo the effects of a previous delta in the version of the
secs file to be created. Whenever deltas are included OT excluded, get checks for possible
interference between such deltas and those deltas that are normally used in retrieving the
particular version of the SCCS file. For example, two deltas can interfere when each one
changes the same line of the retrieved g-file. Interference is indicated by a warning that
shows the range of lines within the retrieved g-file. The user is expected to examine the
g-file to determine if a problem actually exists and to take whatever corrective measures are
necessary.

Warning: The -i and -x keyletters should be used with extreme care.

The -k keyletter facilitates regeneration of a g-file that may have been accidentally removed
or ruined. The -k keyletter will also generate a special g-file that suppresses the replacement
of ID keywords. Thus, a g-file generated by the -k keyletter is identical to one produced by
get executed with the -e keyletter except that no processing related to the p-file takes place.

6.5.1.4 Concurrent Edits of Different SIDs. The ability to retrieve different versions of
an SCCS file allows a number of deltas to be "in progress" at any given time. That is, a
number of get commands with the -e keyletter may be executed on the same file provided
that no two executions retrieve the same version (unless multiple concurrent edits are
allowed).

The p-file created by the get -e command is named by replacing the "s." in the SCCS filename
with "p.". The file, created in the directory containing the SCCS file, has permission mode 644
(readable by everyone, writable only by the owner), and is owned by the effective user. For
each delta that is still in progress, the p-file contains:

• The SID of the retrieved version.

• The SID that will be given to the new delta when it is created.

6-12

SOURCE CODE CONTROL SYSTEM (SCCS) MOTOROLA COMPUTER SYSTEMS

• The login name of the real user executing get.

Subsequent executions of get -e update the p-file with a line containing the above
information. Before updating get reads the p-file to ensure that the specified SID is not
currently being edited (unless multiple concurrent edits are allowed.)

If the check fails, an error message results. Therefore, different executions of get should be
carried out from different directories. Otherwise, only the first execution will succeed because
subsequent executions would attempt to overwrite a writable g-file, an secs error condition.
(Section "SCCS File Protections" explains how different users may use SCCS commands on the
same files.)

Table 6.1, which is located at the end of this chapter, shows the SID version to be retrieved by
a get command, and the SID of the version to be eventually created by delta, as functions of
the SID specified to get.

6.S.1.5 Concurrent Edits of Same SID. Under normal conditions, get editing commands
based on the same SID are not permitted to occur concurrently. That is, a delta must be
executed for each g-file before a second edit command is allowed. However, multiple
concurrent edits (two or more successive executions of get for editing based on the same
retrieved SID) are allowed if the j flag is set in the SCCS file. For example, if we assume the j
flag is set in the secs file:

get -e s.abc
1.1
new delta 1.2
S lines

may be immediately followed by:

get -e s.abc
1.1
new delta 1.1.1.1
S lines

without an intervening execution of delta. In this case, a delta command corresponding to the
first get produces delta 1.2 (assuming 1.1 is the most recent trunk delta), and the delta
command corresponding to the second get produces delta 1.1.1.1.

6.5.1.6 Keyletters That Affect Output. Specification of the -p keyletter causes get to
write the retrieved text to the standard output rather than to a g-file. In addition, all output
normally directed to the standard output (e.g., the SID of the version retrieved and the
number of lines retrieved) is directed instead to the diagnostic output. This may be used, for
example, to create g-files with arbitrary names:

get -p s.abc > arbitrary-filename

The -p keyletter is particularly useful when used with the "!" or ''$" arguments of the
send(1C) command. For example:

send MOD=s.abc REL=3 compile

given that file compile contains:

6-13

MOTOROLA COMPUTER SYSTEMS

//plicomp job job-card-information
//stepl exec plickc
~/pli.sysin dd *

-s
- !get -p -rREL MOD
I•
II

SOURCE CODE CONTROL SYSTEM (SCCS)

will send the highest level of release 3 of file s.abc. Note that the line • .- -s", which causes
send to make ID keyword substitutions before detecting and interpreting control lines, is
necessary if send is to substitute "s.abc" for MOD and "3" for REL in the line • .- !get -p
-rRELMOD".

The -s keyletter suppresses all output that is normally directed to the standard output.
Messages to the diagnostic output are not affected.. This keyletter is used most often to
prevent nondiagnostic messages from appearing on the user's terminal in conjunction with the
-p keyletter to "pipe" the output of get, as in:

get -p -s s.abc I nroff

The -g keyletter suppresses the actual retrieval of the text of a version of the SCCS file. This
may be useful in a number of ways. For example, to verify the existence of a particular SID
in an secs file, one may execute:

ge~ -g -r4.3 s.abc

This outputs the given SID if it exists in the SCCS file or it generates an error message if it
does not. Another use of the -g key letter is in regenerating a Jr file that may have been
accidentally destroyed:

get -e -g s.abc

The -1 keyletter creates an l-file, which describes the deltas used to construct a particular
version of the SCCS file. The l-file is named by replacing the "s." of the SCCS filename with
"I.". This file is created in the current directory with mode 444, read-only, and is owned by
the real user. (The table format is described in get(l) in the SYSTEM V/68 User's Manual.)
For example:

get -rl.3 -1 s.abc

generates an l-file showing the deltas applied to retrieve version 2.3 of the SCCS file.
Specifying a value of "p" with the -1 keyletter, as in:

get -Ip -rl.3 s.abc

causes the generated output to be written to the standard output rather than to the l-ftle. The
-g keyletter may be used with the ~1 keyletter to suppress the actual retrieval of the text.

The -m keyletter is used to identify changes applied to an SOCS file, line by line.. As a
result, a g-ftle is created in which every line is preceded by the SID of the delta that caused
that line to be inserted. The SID is separated from the text of the line by a tab character.

The -n keyletter causes each line of the generated g-ftle to be pm:eded by the value of the F
ID keyword and a tab character. The -n keyletter is most often used in a pipeline with
grep(l). For example, to find all lines that match a given pattern in the latest version of each
SCCS file in a directory, the following may be executed:

get -p -n -s directory I grep pattern

6-14

SOURCE CODE CONTROL SYSTEM (SCCS) MOTOROLA COMPUTER SYSTEMS

When both the -m and -n keyletters are specified, each line of the generated g-file is
preceded by the value of the %Fo/o ID keyword and a tab as a result of the -n keyletter.
Second, each line in the generated file is followed by the line produced by the -m keyletter.
Because the -m keyletter and/or the -n k.eyletter cause the g-file to be modified, the g-file
must not be used for creating a delta. Therefore, neither the -m keyletter nor the -n
k.eyletter may be used with the -e k.eyletter.

Refer to get(1) in the SYSTEM V/68 User's Manual for a full description of additional get
key letters.

6.S.2 The delta Command. The delta(1) command incorporates changes made to a g-file
into the corresponding SCCS file; it creates a delta, creating a new version of the file.

The delta command will not execute without an existing I>-file. The delta command
examines the I>- file to verify that an entry containing the user's login name exists. If none is
found, an error message results. The I>-file entry is required because the user who retrieved
the g-file must be the one who will create the delta. If the login name of the user appears in
more than one entry (i.e., the same user executed get with the -e keyletter more than once on
the same SCCS file), the -r keyletter must be used with delta to specify an SID that uniquely
identifies the 1>-file entry. This entry is the one used to obtain the SID of the delta to be
created.

The delta command performs the same permission checks that get(t) performs when invoked
with the -e keyletter. If all checks are successful, delta determines what has been changed
in the g-file by comparing it with its own temporary copy of the unedited g-file. This
temporary copy of the unedited g-file is called the d- file and is obtained by performing an
internal get at the SID specified in the 1>-file entry.

In practice, the common invocation of delta is

delta s.abc

If work is being done on a terminal, a prompt

comments?

displays. The user replies with a description of why the delta is being made and terminates
the reply with a newline character. The user's response can be 512 characters long. Newlines
that are not intended to terminate the response must be escaped by\.

If the SCCS file has a v flag, delta first prompts the terminal with

MRs?

Input that follows is read for Modification Request (MR) numbers, separated by blanks and/or
tabs, and terminated with a newline character. In a tightly controlled environment, deltas
may be created only as a result of some trouble report, change request, trouble ticket, etc.
SCCS makes it possible to record such MR number(s) within each delta.

The -y and/or -m keyletters supply commentary (comments and MR numbers, respectively)
on the command line rather than through the standard input:

delta -ydescrlptive comment -mmmuml mrnum2 s.abc

In this case, prompts are not printed, and the standard input is not read. The -m keyletter is
allowed only if the SCCS file has a v flag. These keyletters are useful when delta is executed
from within a shell procedure. (Refer to sh(1) in the SYSTEM V/68 User's Manual.)

Commentary, whether solicited by delta or supplied via keylett.ers, is recorded as part of the
entry for the delta being created and applies to all secs files processed by the same invocation

6-15

MOTOROLA COMPUTER SYSTEMS SOURCE CODE CONTROL SYSTEM (SCCS)

of delta. This implies that when delta is invoked with more than one file argument and the
first file named has a v flag, all files named must have a v flag. Similarly, if the first file
named does not have a v flag, then none of the files named may have it. Any file that does
not conform to these rules is not processed.

When processing is complete, delta outputs the SID of the created delta (obtained from the
frfile entry) and the counts of lines inserted, deleted, and left unchanged by the delta. Thus,
a typical output might be:

1.4
14 inserted
7 deleted
34S unchanged

Sometimes, the counts of lines reported as inserted, deleted, or unchanged by delta disagree
with the user's perception. Usually, there are a number of ways to describe a set of changes,
especially if lines are moved around in the g-file, and delta is likely to find a description that
differs from the user's perception. However, the total number of lines of the new delta (the
number inserted plus the number left unchanged) should agree with the number of lines in
the edited g-file.

If delta finds no ID keywords in the edited g-file, the message

No id keywords (cm7)

is issued after the prompts for commentary but before any other output. This indicates that
. any ID keywords that may have existed in the SCCS file have been replaced by their values
or deleted during the editing process. One reason for this could be that the delta was created
from a g-file that was itself creat~d by a get without the -e keyletter. Remember that ID
keywords are replaced by get in that case. A second reason for this message could be that the
ID keywords were accidentally deleted or changed during editing. Another possibility is that
the file never had any ID keywords. Whatever the reason for the message, the delta is created
unless the i flag in the SCCS file is set. However, it is left up to the user to determine what
remedial action, if any, is necessary. When the i flag is set, the system will treate the message
as a fatal error and processing terminates without creating the delta.

After file processing is complete, the corresponding fr file entry is removed from the fr file.
All updates to the frfi/,e are made to a temporary copy, the q-jde, which is used in the same
way as the x-file described in section 6.4. If there is only one entry in the fr file, then the
fr fi/,e itself is removed.

Delta removes the edited g-file unless the -n keyletter is specified. Thus:

delta -n s.abc

will keep the g-file upon completion of processing.

The -s (silent) keyletter suppresses all output, other than the prompts "comments?" and
"MRs?", that is normally directed to the standard output. Use of the -s keyletter together
with the -y keyletter (and possibly, the -m key letter) will stop delta from reading the
standard input and writing to the standard output.

The differences between the g-file and the d-file constitute the delta and may be printed on
the standard output by using the -p keyletter. The format of this output is similar to that
produced by di.tf(1).

6-16

SOURCE CODE CONTROL SYSTEM (SCCS) MOTOROLA COMPUTER SYSTEMS

6.S.3 The admin Command. The admin(l) command is used to administer SCCS files; that
is, to create new SCCS files and to change parameters of existing ones. When an SCCS file is
created, its parameters are initialized by use of keyletters or are-assigned default values if no
keyletters are supplied. The same keyletters are used to change the parameters of existing
files.

Two keyletters will detect and correct "corrupted" SCCS files. (These keyletters are discussed
in section "SCCS File Auditing.") Newly created SCCS files are given read-only permission,
mode 444, and are owned by the effective user. Only a user with write permission in the
directory containing a particular SCCS :file may use the admin command with that file.

6.S.3.1 Creation of SCCS Files. An SCCS file is created by executing the command

admin -i:first s.abc

in which the value "first" of the -i keyletter is the file name of the initial delta for the
secs file, s.abc. If no value is given for the -i keyletter, admin will read the standard input
for the text of the initial delta. The command

admin -is.abc < :first

is equivalent to the previous example. If the text of the initial delta does not contain ID
keywords, the message

No id keywords (cm7)

is issued by admin as a warning. If the same invocation of the command sets the i flag
(causing the message to be treated as an error), the SCCS file is not created. Only one SCCS
file may be created at a time using the -i keyletter.

When an SCCS file is created, the release number assigned to its first delta is normally "l",
and its level number is always "1". Thus, the first delta of an SCCS file is normally "1.1".

6.S.3.2 Inserting Commentary for the Initial Delta. When an SCCS file is created, the
user may state the reason why. Supplying comments (-y keyletter) and/or MR numbers
(-m keyletter) is accomplished here in exactly the same manner as for delta. Creating an
SCCS file may sometimes result from an MR. If comments (-y keyletter) are omitted, a
comment line of the form

date and time created YY /MM/DD HH:MM:SS by logname

is automatically generated.

If MR numbers (-m keyletter) are supplied, the v flag must also be set (using the -f
keyletter described below). The v flag determines if MR numbers must be supplied when
using any SCCS command that modifies a "delta commentary" in the SCCS file. (Refer to
sccs.fiUl-1) in the SYSTEM V/68 System User's Manual.) In the example:

admin -i:first -mmrnumt -fv s.abc

the -y and -m keyletters are only effective if a new SCCS file is being created.

6.S.3.3 Initialization and Modification of SCCS File Parameters. The portion of the
secs file reserved for descriptive text may be initialized or changed through the use of the -t
keyletter. Descriptive text is intended as a summary of the contents and purpose of the secs
file.

When an SCCS file is being created, the -t keyletter must be followed by the name of a file
from which the descriptive text is to be taken. For example, the command

6-17

MOTOROLA COMPUTER SYSTEMS SOUR.CE CODE CONTROL SYSTEM (SCCS)

admin -ifirst -tdesc s.abc

specifies that the descriptive text is to be taken from file desc.
/

When processing an existing SCCS file, the -t keyletter specifies that the descriptive text
currently in the file is to be replaced with the text in the named file. Thus:

admin -tdesc s.abc

specifies that the descriptive text in the SCCS file is to be replaced by the contents of desc;
omission of the filename after the -t keyletter as in

admin -ts.abc

removes the descriptive text from the secs file.

The :flags of an SCCS file may be initialized, changed, or deleted with the -f and -d
keyletters, respectively. The flags direct certain actions taken by SCCS commands. (Refer to
admin(l) in the SYSTEM V/68 User's Manual for a description of all the flags.) For example,
the i :flag specifies that the warning message "no ID keywords" contained in the SCCS file
should be treated as an error, and the d (default SID) flag specifies the default version of the
SCCS file to be retrieved by the get command. The -f keyletter is used to set a :flag and,
possibly, to set its value. For example:

admin -ifirst -ft -fmmodname s.abc

sets the i :flag and the m (module name) :flag. The value modname specified for the m flag is
the value that the get command will use to replace the %F% ID keyword. Cin the absence of
the m flag, the name of the g-file is used as the replacement for the %F% ID keyword.)
Several -f keyletters may be supplied on a single invocation of admin. In addition, -f
keyletters may be supplied whether the command is creating a new SCCS file or proce~ing an
existing one.

The -d keyletter is used to delete a flag from an SCCS file and may only be specified when
processing an existing file. As an example, the command

admin -dm s.abc

removes the m flag from the SCCS file. Several -d keyletters may be supplied on a single
invocation of admin and may be mixed with -f keyletters.

The SCCS files contain a "user list" of login names and/or group IDs of users who are allowed
to create deltas. If this list is empty (default value), it implies that anyone may create deltas.
To add login names and/or group IDs to the list, the -a keyletter is used. For example:

admin -axyz -awql -a1234 s.abc

adds the login names xyz and wql and the group ID 1234 to the list. The -a keyletter may
be used whether admin is creating a new SCCS file or processing an existing one, and the
keyletter may appear several times. The -e keyletter is used in an analogous manner if one
wishes to remove (erase) login names or group IDs from the list.

6.S.4 The prs Command. The prs(l) command is used to print on the standard output all
or part of an SCCS file in a format supplied by the user via the -d keyletter. The user
specified format, called the output "data specification", is a string consisting of SCCS file data
keywords interspersed with optional user text.

Data keywords are replaced by appropriate values according to their definitions. For example:

: I:

6-18

SOURCE CODE CONTROL SYSTEM (SCCS) MOTOROLA COMPUTER SYSTEMS

is defined as the data keyword that is replaced by the SID of a specified delta. Similarly, :F: is
defined as the data keyword for the SCCS filename currently being processed, and :C: is
defined as the comment line associated with a specified delta. Each part of an SCCS file has an
associated data keyword. For a complete list of the approximately 50 available data keywords,
refer to prs(l) in the SYSTEM V/68 User's Maruud.

There is no limit to the number of times a data keyword may appear in a data specification.
For example:

prs -d":I: this is the top delta for :F: :I:"s.abc

may produce on the standard output

2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying the SID of that delta using the
-r keyle~ter. For example:

prs -d":F: :I: comment line is: :C:" -rl.4 s.abc

may produce the fo~lowing output:

s.abc: 1.4 comment line is: THIS IS A COMMENT

If the -r keyletter is not specified, the value of the SID defaults to the most recently created
delta.

In addition, information from a range of deltas may be obtained by specifying the -1 or -e
keyletters. The -e keyletter substitutes data keywords for the SID designated via the -r
keyletter and all deltas created earlier. The -1 keyletter substitutes data keywords for the
SID designated via the -r keyletter and all deltas created later. Thus, the command

prs -d:I: -rl.4 -e s.abc

may output

1.4
1.3
1.2.1.1
1.2
1.1

and the command

prs -d:I: -rl.4 -1 s.abc

may produce

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

Substitution of data keywords for all deltas of the SCCS file may be obtained by specifying
both the -e and -1 keyletters.

6-19

MOTOROLA COMPUTER SYSTEMS SOURCE CODE CONTROL SYSTEM (SCCS)

6.5.S The help Command. The hel}i,.1) command prints explanations of SCCS commands
and command messages. Arguments to help can be the names of SCCS commands or the code
numbers that appear in parentheses after secs messages. If no argument is given, help
prompts for one. Explanatory information related to an argument, if it exists, is printed on
the standard output. If no information is found, an error message is printed. Multiple
arguments to help can be processed and each argument is processed independently. An error
resulting from one argument will not terminate the processing of the other arguments.

Explanatory information related to a command is a synopsis of the command. For example:

help ge5 rmdel

produces

geS:
"nonexistent sid"
The specified sid does not exist in the
given file.
Check for typographical errors.

rmdel:
rmdel -rSID name •••

6.5.6 The rmdel Command. The rmdel(l) command removes a delta from an SCCS file.
Its use should be reserved for those cases in which incorrect global changes were made a part
of the delta to be removed.

The delta to be removed must be the most recently created delta on its branch or on the trunk
of the SCCS file tree. In Figure 6.3, only deltas 1.3.1.2, 1.3.2.2, and 2.2 can be removed; once
they are removed, deltas 1.3.2.1 and 2.1 can be removed, etc.

To remove a delta, the effective user must have write permission in the directory containing
the SCCS file. In addition, the real user must either be the person who created the delta being
removed or the owner of the secs file and its directory.

The -r keyletter is mandatory and is used to specify the complete SID of the delta to be
removed. That is, the SID must have two components for a trunk delta and four components
for a branch delta. For example:

rmdel -r2.3 s.abc

specifies the removal of trunk delta 2.3 from the secs file. Before removing the delta, rmdel
checks that the release being accessed is not a protected release (refer to section "SCCS File
Protections"). The rmdel command also checks that the SID version specified is not already
being edited by another user. In addition, the login name or group ID of the user must appear
in the file's user list, or the user list must be empty. Finally, the release specified cannot be
locked against editing. (Refer to admin(l) in the SY ST EM V 168 User's Manual.) If these
conditions are not satisfied, processing is terminated, and the delta is not removed. If the
specified delta has been removed, its type indicator in the "delta table" of the SCCS file is
changed from D (delta) to R (removed).

6.5. 7 The cdc Command. The cdc(l) command is used to change the commentary that
was supplied when the delta was created. Invoking the cdc command is similar to invoking
the rmdel command, except that the delta to be processed is not required to be the most
recently created. For example:

cdc -r3.4 s.abc

6-20

SOURCE CODE CONTROL SYSTEM (SCCS) MOTOROLA COMPUTER SYSTEMS

changes the commentary of delta 3.4 of the SCCS file.

New commentary is solicited by cdc in the same way as by delta. The old commentary
associated with the specified delta is kept, but it is preceded by a comment line indicating that
the commentary has been superseded. The new commentary is entered ahead of the comment
line. The "inserted" comment line records the login name of the user executing cdc and the
time of its execution.

The cdc command also can delete selected MR numbers associated with the specified delta. Do
this by preceding the selected MR numbers by the character "!". For example:

cd.c -rl.4 s.abc
MRs? mrnum.3 !mrnumt
comments? deleted wrong MR number and inserted correct MR number

inserts mrnum.3 and deletes mrnumt for delta 1.4.

6.S.8 The what Command. The what(1) command finds identifying information within
any SYSTEM V/68 file when the file name is given as an argument to what. What searches
the given file for all occurrences of a specific 4-character pattern, @(#),and prints out what
follows the string up to the first " (double quote), > (greater than), new-line, \ (backslash), or
non-printing character. The specific pattern, @(#), is the replacement for the %Z% ID
keyword. (Refer to get(l) in the SYSTEM V/68 User's Manual.) For example, if the SCCS file
s.prog.c (a C language program) contains the following line:

char id[] @(#)%M%;

and the command

get -r3.4 s.prog.c

is executed, the resulting g-fil.e is compiled to produce prog.o and a.out. Then the command

what prog.c prog.o a.out

produces

prog.c:
prog.c:3.4
prog.o:
prog.c:3.4
a.out:
prog.c:J.4

What is intended to be used with the get command which automatically inserts the string
@(#),but what can also be used when the string is inserted manually.

6.S.9 The sccsdift' Command. The sccsdijf(1) command finds and prints (on the standard
output) the differences between two specified versions of one or more SCCS files. The versions
to be compared are specified by the -r keyletter, following the format used with the get
command. The two versions are the first two arguments to the command and listed in the
order that they were created, i.e., the older version is specified first. Any keyletters that
follow are interpreted as arguments to the pr command (which prints the differences) and
must precede the SCCS files. Directory names or a name of "-" will not be accepted by
sccsdijf.

Differences between the two files are printed in the form generated by dijf(l). The following
is an example invocation of sccsdijf:

6-21

MOTOROLA COMPUTER SYSTEMS SOURCE CODE CONTROL SYSTEM (SCCS)

sccsdiff -r3.4 -rS.6 s.abc

6.S.10 The comb Command. The combCl) command generates a "shell procedure" (see
sh(l) in the SYSTEM V/68 User's Manual) which attempts to reconstruct the named SCCS
files to make them smaller than the originals. The generated shell procedure is written on the
standard output. SCCS files are reconstructed by discarding unwanted deltas and combining
specified deltas. Comb should be used judiciously.

In the absence of any keyletters, comb preserves only the most recently created deltas and the
minimum number of ancestor deltas necessary to preserve the "shape" of the SCCS file tree.
Middle deltas on the trunk and on all branches of the tree are eliminated. Thus, in Figure 6.3,
deltas 1.2, 1.3.2.l, 1.4, and 2.1 would be removed. Some of the keyletters are summarized as
follows:

• The -p keyletter specifies the oldest delta that is to he preserved in the reconstruction.
All older deltas are discarded.

• The -c keyletter specifies a list of deltas to be preserved. (Refer to get(l) in the
SYSTEM V 168 User's Manual for the syntax of such a list.) All other deltas are
discarded.

• The -s keyletter causes the generation of a shell procedure, which when run, produces
a report summarizing the percentage space (if any) to be saved by reconstructing each
named SCCS file. Comb should be run with this keyletter (in addition to any others
desired) before any actual reconstructions.

The shell procedure generated by comb is not guaranteed to save space. In fact, it is possible
for the reconstructed file to be larger than the original. In addition, the shape of the SCCS file
tree may be altered by the reconstruction process.

6.5.11 The val Command. The val(l) command checks if a file is an SCCS file that meets
the characteristics specified by an optional list of keyletter arguments. Any characteristics not
met are considered errors.

The val command checks for a particular delta when the SID for that delta is explicitly
specified via the -r keyletter. The string following the -y or -m keyletter is used to check
the value set by the tor m fl.ag, respectively. (Refer to admin(l) in the SYSTEM v 168 User's
Manual for a description of the flags.)

The val command treats the special argument "-" differently from other SCCS commands.
This argument allows val to read the argument list from the standard input as opposed to
obtaining it from the command line. The standard input is read until end of file. This
capability allows for one invocation of val with different values for the keyletter and file
arguments. For example:

val-
-ye -mabc sAbc
-mxyz -ypll s.xyz

first checks if file s.abc has a value "c" for its "type" flag and value "abc" for the "module
name" flag. Once processing of the first file is completed, val then processes the remaining
file(s), in this case, s.x.yz, to determine if it meets the characteristics specified by the keyletter
arguments.

The val command returns an 8-bit code; each bit set indicates the occurrence of a specific error
(see val(l) for a description of the possible errors and their codes). In addition, an appropri.ate
diagnostic is printed unless suppressed by the -s keyletter. A return code of 0 indicates all
named files meet the characteristics specified.

6-22

SOURCE CODE CONTROL SYSTEM (SCCS) MOTOROLA COMPUTER SYSTEMS

6.6 SCCS Files

This section discusses topics that must be considered before extensive use is made of SCCS.
These topics deal with the protection mechanisms relied upon by the SCCS, the format of
SCCS files, and the recommended procedures for auditing SCCS files.

6.6.1 SCCS File Protections. The SCCS relies on the capabilities of SYSTEM V/68 for most
of the mechanisms that prevent unauthorized changes to secs files (i.e., changes made by
non-SCCS commands). In addition to system protections, the SCCS adds another level of
protection through the "release lock" flag, the "release floor" flag, the "ceiling" flag and the
"user list". (Refer to admin(1) in the SYSTEM V/68 User's Manual; read the discussion of -f
for specifics regarding the protection flags.)

New SCCS files created by the admin command are given mode 444 (read-only), preventing
any changes by non-SCCS commands. Similarly, if directories containing SCCS files are given
mode 755, only the owner of the directory can modify its contents.

The SCCS files should be kept in directories that contain only SCCS files and temporary files
created by SCCS commands to simplify protection and auditing. The contents of directories
should correspond to convenient logical groupings, e.g., subsystems of a large project.

SCCS files must have only one name; they cannot be linked. (Refer to cp in the SYSTEM
V/68 User's Manual for discussion of linked files.) In addition, all SCCS files must have names
that begin with "s.".

When only one user uses the SCCS, the real and effective user IDs are the same. The user ID
owns the directories containing SCCS files. Therefore, the SCCS may be used without any
preliminary preparation.

However, in situations where several users share responsibility for a single SCCS file, one user
(equivalently, one user ID) must be chosen as the "owner" of the SCCS file and be the one
with permission to use the admin(l) command. This user becomes the "SCCS administrator"
for that project. Because other SCCS users do not have the same permissions as the
administrator, they cannot execute commands that require write permission in the secs file
directory. A project-dependent program must provide an interface to the get(l), delta(1), and
if desired, rmdel(l), and cdc(l) commands.

The interface program is owned by the SCCS administrator. To make the effective user ID
equivalent to the administrator's user ID, the program must have the "set user ID on
execution" bit "on". (Refer to chmod(l) in the SYSTEM V/68 User's Manual.) The owner of
an SCCS file can modify the file at will. The interface program invokes the desired SCCS
command and provides necessary permissions for the duration of the command's execution. In
so doing, other users on the "user list" for that file (but who are not the owner) are given
necessary permissions for the duration of the interface program execution. These users are
able to modify the SCCS files through delta and, possibly, rmdel and cdc. The project­
dependent interface program, as its name implies, must be custom-built for each project.

6.6.2 SCCS File Format. The SCCS files are composed of lines of ASCII text arranged in
six parts as follows:

Checksum

Delta Table

User Names

A line containing the "logical" sum of all the characters of the file (not
including the checksum itself).

Information about each delta, such as type, SID, date and time of
creation, and commentary.

List of login names and/or group IDs of users who are allowed to
modify the file by adding or removing deltas.

6-23

. MOTOROLA COMPUTER SYSTEMS SOURCE CODE CONTROL SYSTEM (SCCS)

Flags

Descriptive Text

Body

Indicators that control certain actions of various SCCS commands.

Arbitrary text provided by the user; usually a summary of the contents
and purpose of the file.

Actual text that is being administered by the SCCS, intermixed with
internal SCCS control lines.

Detailed information about the contents of the various sections of the file may be found in
sccsfile(l).

Because SCCS files are ASCII files, they may be processed by various SYSTEM V /68 commands,
such as ed(l), gre/i..1), and cat(t). This is convenient when an SCCS file must be modified
manually (e.g., the date of a delta is incorrect because the system clock malfunctioned) or you
want to look at the file.

CAUTION: Extreme care should be exercised when modifying SCCS files with non­
SCCS commands.

6.6.3 SCCS File Auditing. On· rare occasions, perhaps due to an operating system or
hardware malfunction, an SCCS file or portions of it (i.e., one or more "blocks") can be
destroyed. The SCCS commands (like most SYSTEM V /68 commands) issue an error message
when a file does not exist. In addition, SCCS commands use the checksum stored in the SCCS
file to determine if a file has been corrupted since it was last accessed. The only SCCS
command that will process a corrupted SCCS file is the admin command used with the -h or
-z keyletters, described below.

Audit SCCS files for possible corruptions on a regular basis. The simplest and fastest way to
perform an audit is to execute the admin command with the -h keyletter on all SCCS files:

admin -h s.filet s.file2 ...
or

admin -h directory! directory2 ...

If the new checksum of any file is not equal to the checksum in the first line of that file, the
message

corrupted :file (co6)

is produced for that file. This process continues until all the files have been examined.
Auditing by directories, the second example above, will not detect missing files. To detect files
missing from a directory, periodically execute the ts(l) command on the directory and
compare the outputs of the most current and the previous executions. Any file whose name
appears in the previous output but not in the current one has been removed.

If a file has been corrupted, the best way to restore the file depends on the extent of the
corruption. If damage is extensive, contact the local SYSTEM v /68 operations group and
request that the file be restored from a backup copy. In the case of minor damage, the file
might be repaired using the ed(l) editor. In the latter case, the following command must be
executed after the repair:

admin -z s.file

The command recomputes the checksum to bring it into agreement with the actual contents of
the file. After the command is executed, any corruption that-existed in the file will no longer
be detectable.

6-24

SOURCE CODE CONTROL SYSTEM (SCCS) MOTOROLA COMPUTER SYSTEMS

6.7 An SCCS Interface Program

6.7.1 General. An SCCS interface program provides several users with the "administrator"
permissions necessary to work on SCCS files which they do no(own. This section discusses
the creation and use of an interface program. The SCCS interface program may also be used
as a preprocessor to secs commands because it can perform operations on its arguments.

6.7.2 Function. When only one person uses the SCCS, the real and effective user IDs are
the same, and the user's ID owns the directories containing SCCS files. Often, more than one
user will need to make changes to the same set of SCCS files. In this situation, one user must
be chosen "owner" of the SCCS files and "SCCS administrator", the person with the
permissions necessary to use the admin(l) command. Because all other users will lack write
permission in the directory containing the secs files, a project-dependent program is required
to interface to the get(l), delta(l), and if desired, rmdel(l), cdc(t), and unget(l) commands.
(Other secs commands either do not require write permission in the directory containing
secs files or are generally reserved for use only by the administrator.)

The interface program is owned by the SCCS administrator but executed by nonowners. To
ensure that the program will change the effective user ID to the administrator's user ID, the
program must have the "set user ID on execution" bit "on". (Refer to chmod(l) in the
SYSTEM V/68 User's Manual.) This program invokes the desired SCCS command and
provides it with necessary permissions for the duration of the command's execution. Users
whose login names are in the user list for a SCCS file (but who are not the owner) possess the
necessary permissions for the duration of the execution of the interface program. These users
can modify SCCS files using delta, and possibly, rmdel, and cdc commands.

6.7.3 A Basic Program. When a SYSTEM V/68 program is executed, the program is passed
as argument 0, which is the name that invoked the program, and followed by any additional
user-supplied arguments. Thus, if a program is given a number of links (names), the program
may alter its processing depending upon which link invokes the program. An SCCS interface
program uses this mechanism to determine which SCCS command it should subsequently
invoke (refer to exec(2) in the SYSTEM V/68 User's Manual).

A generic interface program (inter.c, written in C language) is shown in Figure 6.4. The
reference to the (unsu pplied) function "filearg" is intended to demonstrate that the interface
program may also be used as a preprocessor to SCCS commands. For example, function
"filearg" could modify file arguments to be passed to the SCCS command by supplying the full
pathname of a file, avoiding extraneous typing by the user. Also, the program could supply
any additional (default) keyletter arguments desired.

6.7.4 Linking and Use. The steps the SCCS administrator must take to create the SCCS
interface program are described. Assume, for the purpose of discussion, that the interface
program inter.c resides in directory "/xl/xyz/sccs". The command sequence

cd /xl/xyz/sccs
cc ... inter.c -o inter •••

compiles inter.c to produce the executable module inter (the "-·"represents other arguments
which may be required). The proper mode and the "set user ID on execution" bit are set by
executing:

chmod. 4755 inter

For example, new links are created by:

6-25

MOTOROLA COMPUTER SYSTEMS

In inter get
In inter delta
In inter rmdeI

SOURCE CODE CONTROL SYSTEM (SCCS)

The names of the links may be arbitrary as long as the interface program can distinguish
them from the names of SCCS commands to be invoked. Subsequently, any user may execute:

get-e/xt/xyz/sccs/s.abc

from any directory to invoke the interface program (via its link "get") when the user's shell
parameter PATH specifies directory "/xt/xyz/sccs" as the one to be searched first for
executable commands. (Refer to sh(l) in the SYSTEM V/68 User's Manual.) The interface
program then executes "/usr/bin/get" (the actual SCCS get command) on the named file. AB
previously mentioned, the interface program could be used to supply the pathname
"/xt/xyz/sccs" so that the user would only have to specify

get -e s.abc

to achieve the same results.

6-26

SOURCE CODE CONTROL SYSTEM (SCCS) MOTOROLA COMPUTER SYSTEMS

Table 6-1. Determination of New SID

SID -b KEYLEITER OTHER SID SID OF DELTA
CASE SPECIFIED* USED CONDITIONS RETRIEVED TO BE CREA TED

1 none## no R defaults to mR mR.mL mR.(mL+ 1)
2 none## xes R defaults to mR mR.mL mR.mL(mB + 1).1

3 R no R > mR mR.mL R.1!
4 R no R=mR mR.mL mR.(mL+ 1)
5 R ies R > mR mR.mL mR.mL.(mB + 1).1
6 R yes R=mR mR.mL mR.mL.(mB + 1).1
7 R - R < mRand hR.mL** hR.mL.(mB + 1).1

R does not
exist

8 R - Trunk successor R.mL R.mL.(mB + 1).1
in release > R
and R exists

9 R.L no No trunk successor R.L R.(L + 1)

10 R.L yes No trunk successor RL R.L.(mB + 1).1

11 RL - Trunk successor R.L RL(mB+ 1).1
in release > R

12 R.L.B no No branch successor R.L.B.mS R.L.B.(mS + 1)

13 R.L.B xes No branch successor RL.B.mS R.L.(mB + 1).1

14 RL.B.S no No branch successor RL.B.S RL.B.(S + 1).1

15 RL.B.S yes No branch successor RL.B.S RL.(mB + 1).1

16 RL.B.S - Branch successor R.L.B.S RLA_mB + 1).1

* "R'', "L", "B'', and "S" are the "release", "level", "branch", and "sequence" components of
the SID; "m" means "maximum". Thus, for example, "R.mL" means ''the maximum level
number within release R"; "RL(mB + 1).1" means "the first sequence number on the new
branch (i.e., maximum branch number plus 1} of level L within release R". Note that if
the SID specified is of the form "R.L", "RL.B'', or "R.L.B.S", each of the specified
components must exist.

The -b keyletter is effective only if the b flag (see admin(l)) is present in the file. In this
table, an entry of "-" means "irrelevant".

This case applies if the d (default SID) flag is not present in the file. If the d flag is
present in the file, the SID obtained from the d flag is interrupted as if it had been
specified on the command line. Thus, one of the other cases in this table applies.

This case is used to force the creation of the first delta in a new release.

** "hR" is the highest existing release that is lower than the specified, nonexistent, release R.

6-27

MOTOROLA COMPUTER SYSTEMS SOURCE CODE OONTROL SYSTEM (SCCS)

main(argc,argv)
int argc;
char *argv[];
{

register int i;
char cmdstr[LENGTH]

I•
Process file arguments (those that don't begin with "-~}.
*I
for (i = 1; i < argc; i++)

if (argv[ilO] != '-')
arv[i] = filearg(argv[i]);

Get "simple name" of name used to invoke this program
(i.e., strip off directory-name prefix, if any).
I•
argv[O] = sname(argv[O]);

I•
Invoke actual SCCS command, passing arguments.
•I
sprintf(cmdstr, "/usr/bin/%s", argv[O]);
execvCcmdstr, argv);

Figure 6-4. SCCS Interface Program "inter.c"

6-28

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

7. UNIX-to-UNIX CoPy (uucp) TUTORIAL

7 .1 Introduction

7.1.1 General. The UNIX-'to-UNIX CoPy (uucp) Tutorial is a supplement to the discussions
of uucp contained in the SYSTEM V/68 User's Manual and SYSTEM V/68 Administrator's
Manual. The manuals are organized as alphabetized entries within tabbed sections. The tabbed
sections 1 through 6 (including lC) are contained in the SYSTEM V/68 User's Manual and
sections lM, 7 and 8 are contained in the SYSTEM V/68 Administrator's Manual. Throughout
the documentation, references to entries within these manuals are given as name(section). For
example, uuc]i.lC) is a reference to the uucp entry in section (lC) of the SYSTEM V/68 User's
Manual.

The following conventions identify arguments, literals, and program names:

• Boldface strings are literals and are to be typed as they appear.

• Italic strings represent substitutable argument prototypes and program names.

• Square brackets ([]) indicate that an argument is optional.

• Ellipses (...)show that the previous argument prototype may be repeated.

7.1.2 Organization. Paragraphs 7.1 through 7.6 of this tutorial contain the information a
user needs to send or receive files, mail, and commands over the international uucp network.
Paragraphs 7.7 through 7.11 address issues that concern system administrators or users who
are interested in the details of data transfers and command executions. Although the
discussions in the later half of the tutorial offer greater depth, they do not assume more
technical knowledge.

A brief description of each section in the tutorial is presented in the following paragraphs.

• "THE UUCP NETWORK"
This introductory section provides a description of the network, its size and
scope, and business applications. The links between different systems are
explained in general terms.

• "UUCP PROGRAMS AND FILES"
This section provides an operational overview of the uucp programs and files
required for execution. A diagram of the system directories identifies the
programs and their associated files by name and location. The function of each
program and file is explained individually, followed by a discussion of the
interaction among the files during data transfers and command execution.

• "USING UUCP"
This section explains how to enter uucp commands. File naming conventions
and command line syntax are provided. Examples for each program are
included. A hypothetical uucp network is introduced as a point of reference
for the tutorial examples.

• "JOB CONTROL"

• "USENET"

This section explains troubleshooting techniques that are available to the user.
Users have access to a log of uucp activities. This section describes how to read
the log, and provides a list of possible error messages and their meanings. Basic
corrective actions are described.

This section describes Usenet, an international bulletin board maintained by
uucp users world-wide.

7-1

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

• "ADMINISTRATOR'S OVERVIEW"
The tutorial sections aimed at a system administrator audience begin here. This
section describes the operation of the major uucp programs, uucp(lC), and
uux(lC). The section focusses on the uucico and uuxqt programs, which execute
the commands rmail, mail, uucp, and uux.

• "ADMINSTRA TIVE CONCERNS"
This section describes the design issues confronting an administrator who is
ready to install uucp. Both hardware and software issues are covered.

• "MAINTENANCE AND ADMINISTRATION"
This section describes the routine procedures required for uucp maintenance and
general administration. The uucp programs uuclean(lM), uulog(uucp(1C)), and
uusubClM) are described here.

• "INSTALLATION"
This section provides a step-by-step procedure for installing uucp. Information
about uucp program variables is provided for administrators with source code.

• "DEBUGGING"
This section describes some of the problems most commonly incurred during
uucp operation and suggestions for corrective action.

7-2

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

7.2 The Uucp Network

7.2.1 Introducing uucp. The U:NIX-to-U.NlX CoPy (uucp) network is rapidly gammg
acceptance in the private sector as an alternative form of electronic communication. A
company that targets UNIX and SYSTEM V /68 users advertises its network address regularly
in trade publications to stimulate inquiries from programmers. Authors of UNIX-related trade
articles frequently provide their uucp add~s to readers to encourage comments and
discussion.

The uucp communications network continues to flourish as an informal association of colleges,
universities, research laboratories, and private corporations that have voluntarily linked their
systems into a point-to-point network of users. For UNIX-based operating systems, the
network represents the final step in system-to-system compatibility.

To join the network, a system administrator contacts the administrator of a system that is
already part of the network. The adminstrators exchange telephone numbers and login
information. After the information is entered into the appropriate files, the systems can
contact each other over standard data communication lines, agree on a common protocol, and
organize a data exchange. Systems that can contact each other directly over the uucp network
are said to be "known" systems.

Direct data exchanges between dissimilar machines over the Direct Distance Dialing network
is a huge step forward in system-to-system compatibility, and the foundation of the
international network. Point-to-point communication between known systems is coupled
with each system's ability to forward data to any other known system. If System-A is
known to System-B, and System-B is known to System-C, mail can be forwarded from
System-A through System-B to System-C. System-A does not need to be known to System-C.

Data that is forwarded through one or more systems before reaching its final destination passes
through each system's "public" directory. Each data transfer is a point-to-point hop from one
public directory to the next. The public directory is defined in every SYSTEM V /68 or UNIX­
based operating system as /usr/spool/uucppublic. The public nature of the directory means
that it is readable, writable and searchable by every user on the network. Yet, while the
/usr/spool/uucppublic directory is accessible to more than 100,000 users, uucp's pathway
restrictions effectively close off every other directory in the system, ensuring system integrity.
There is no limit on the number of hops that data can make on its trip along the network.

For example, consider uucp network model shown in Figure 7-1. The solid lines connect
"known" systems. The Sys-A administrator contacts the administrator of Sys-1, which is part
of the uucp network. The administrators exchange information and Sys-A becomes known to
Sys-1. Sys-A can now contact Sys-1. In addition, Sys-A can forward data to every other
system in the model, and every other system can forward data to Sys-A.

7-3

UNIX-to-UNIX CoPy (uucp) TUTORIAL

sys-A

sys-1

MOTOROLA COMPUTER SYSTEMS

sys-AA
~sys-BB

sys-rd ·r
sys-11

sys-bl sys-22

sys-33

sys-3A
sys-gn-C::::::: sys-4B

sys-SC

Figure 7-1. Basic Uucp Network

The uucp programs of primary interest to the user are:

mall(1), which sends messages and files;

uuname, which lists all known systems;

uutoClC) and uucp(lC), which send and copy files;

uupick (refer to uuto{lC)), which helps locate arriving files;

uustat(lC), which checks the status of your uucp jobs; and

uux(lC), which directs remote command execution.

Other uucp programs of interest to system administrators are: uuclean(lM), uulog(.refer to
uucp(tC)), uustat(lC), uusubClM), uucico, and uuxqt.

7.2.2 Network Communications. Three types of system-to-system communication are
possible over the uucp network:

•Mail

•File Copy

• Remote Command Execution

7.2.2.1 Mail and Uucp. Uucp extends the range of the local operating system's mail
program to include every user on the uucp network.

Recall that within the local system. users can mail messages and files back and forth, or
redirect output to a file and mail it to one or more users. For two users on the same operating
system. sending mail is a simple matter:

mail peter
Hello Peter. Is the game still on?

Refer again to the network model in Figure 7-1. After Sys-A becomes known to Sys-1, a user
on Sys-A can send mail to a user on Sys-1 by incorporating the recipient's system-name into
the mail command:

7-4

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

mail sys-t!mike
Hello Mike. Hamman and Wolff are enthusiastic. It's on.

The exclamation mark (!), which is referred to as "bang", delimits the system-name.

If mail must be forwarded through one or more known systems, the uucp programs follow
the path specified in the mail command.

mail sys-t!sys-rd!sys-AA!bob
We're ready, Bob. Peter and I can play Saturday. How about
meeting at the Cavendish?

The in.ail mes.sage passes through the "public" directory in each UNIX-based system until it
reaches bob working on Sys-AA.

7.2.2.2 .File Copy With Uucp. The uucp file copy program, uucp, appears to be an
extension of the local system's copy program, cp(l). For example, if Mike enters the
command:

uucp numbers sys-bl!sys-C0sys-11!hamman

the file numbers is copied from Sys-1 to Hamman's home directory in Sys-11 (refer to Figure
7-1). However, system-to-system copies must take into account read and write permission
protections enforced on both the sending and receiving system. These concerns are described
in the next few sections.

7 .2.2.3 Remote Executions. Remote command execution through uucp opens up the
processing capabilities of an individual system to the entire network of remote users. Clearly,
the use of remotely executable commands must be compatible with maintaining system
security. Applications that exploit these possibilities without sacrificing system integrity are
described in the sections that follow.

7.2.3 Business Applications of Uucp. Each UNIX-based system that joins the uucp
network becomes a link. By traveling from one system to the next, users on the network can
contact systems in North America, Europe, Japan and Australia. Uucp has created an
international community of users who communicate regularly to exchange information and
share expertise. Each system is protected from vandalism through a sy8tem of access
limitations that allows unknown users to send mail but restricts these users from all non­
public directories and from executing any other commands.

Uucp eliminates many of the risks and delays associated with sending hardcopy information
or diskettes through the postal system. Data communication lines permit immediate
transmission when time is crucial, or transmissions can take place overnight to take advantage
of non-peak pricing considerations.

hi practice, reaching someone through uucp mail is often more successful than calling on the
telephone. Mail avoids the frustraticm of long-distance "telephone-tag" between two people
continually trying to return each other's calls. Lengthy mes.sages can be sent through the
mail; no more deciphering cryptic six-word condensations left by whoever happened to
answer the phone.

Using uucp, a system administrator can provide users from a remote system with limited
access to a particular system. By identifying particular login names and granting these names
permission to specified path-names, administrators can monitor the degree of access given to
each user. One user may have permissicm to read one group of files; another user may have
permission to execute commands throughout the system. For added security, administrators

7-5

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS
I .

can require a call-back to confirm the identity of logins from remQte locations.

Geographic limitations virtually disappear within the uucp network. Since uucp mails
information to a system address, not a physical address, mail sent to a home directory reaches
recipients as soon as they log on, whether they are at home, at the office, or in the field.

Product teams can draw on resources available at remote locations, as well as locally. File
transfers enable information to be shared among users quickly and efficiently. Remote
command execution enables users to gather information from several remote locations, process
the data, and mail the results to any system on the network.

Despite the sophistication of the system, the majority of uucp commands follow the syntax of
simple mail and copy commands. Documentation specialists can send on-line documentation to
remote locations for typesetting or graphics development. Secretarial support personnel can
forward mail and daily reports to field personnel and regional sales offices. Within a small
system of only a few users, uucp can archive information to or from a mainframe, or do
remote testing of development software.

7.2.4 Network Characteristics. The network has been evolving and expanding for more
than a decade, and the programs that make up uucp reflect this fact. The benefits of file
transfer and inter-system communications must be accompanied by some additional security
precautions.

A crucial part of making your system secure is to forbid access to your files by unknown
users. A standard practice is for each administrator to create a wall of permissions that keeps
uucp's directories isolated from the rest of the system. Administrators may also limit uucp
activities to mailing and receiving files. Within a single company, two systems can be fully
integrated under uucp, but restrictive permissions may be needed to control copying of
confidential material.

One consequence of the informal nature of the network is that no organized address book for
network systems exists. Few resources have been spent developing a network directory
because it is difficult to keep such a directory completely up-to-date.

Each system's address is obtained by tracing a path, system-by-system, from it to a major hub
or backbone site on the network. Deducing the address from my system to your system
involves combining the pathway from my system to a backbone site and the pathway from
your system to another backbone site, and then linking the two backbone sites. In practice,
this information can be difficult to obtain since the partial, informal maps that exist change
dynamically without warning. One system may connect to another for a short time to
exchange information, then dissolve the link. Leaming the links between systems is
generally done by word-of-mouth. Start by using the uuname command for a list of systems
that are known to your system. (Ref er to paragraph 4.3.5.)

A second source of information is the Usenet (Users' Network) bulletin board. Usenet is a
logical network that spans several physical networks, including uucp and ARPANET. A
group of programs, referred to as netnews, provides access to the bulletin board and transfers
the information between machines. If Usenet is installed on your machine, you can read
posted information and decipher many of the return addresses. In addition, partial maps are
published periodically. (Refer to paragraph 7.6 for further information about Usenet.)

Even with a valid pathway between systems, minor obstacles may arise. Uucp
communication is somewhat time-dependent, typically for economic reasons. When a user
sends mail, the sending system pays for the call to the first system in the pathway. When the
data arrives at the first system, the calling system is relieved of the responsibility to forward

7-6

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

the call, or to pay for any more calls. The first system either initiates a a call to the next
system in the pathway, or waits to be polled. Each active system along the path assumes the
cost of the call from its site to the next site given in the pathway. Many sites make and
receive calls anytime during the day. However, each system administrator has the option of
restricting the hours that incoming calls are accepted or outgoing calls are made, either because
of cost considerations or to keep shared voice/data lines open. Occasionally, a message may be
delayed at a particular site until a time restriction is lifted. Users report that a message from
Phoenix takes from three to five days to reach Europe or Australia through a typical chain.

7-7

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

7.3 Uucp Programs and Files

7.3.t Overview. Uucp is a collection of programs that permit communication between
UNIX-based systems through dial-up or hardwired communication lines. Occasionally, users
may want to follow the progress of a particular command, or may need to troubleshoot a
command that did not succeed as intended. For these reasons, uucp is most useful to users
who understand the steps involved in command processing. This section describes the
function of each oommand in general terms, and explains how uucp files interact during
processing. Actual command syntax and naming oonventions are described in paragraph 7.4,
''Using Uucp". The depth of information presented here is geared to the uucp user; detailed
descriptions appropriate to a system administrator audience are included in paragraph 7.7.

7.3.2 The Spool Directory. Uucp operates in a batch environment. Jobs submitted to the
network are assigned a sequence number for transmission. Each job is represented as a file in
the common spool directory, /usr/spool/uucp. (The common spool directory should not be
confused with the "public" directory, /usr/spool/uucppublic.) When the file transfer
mechanism begins operation, it selects a system to contact and transmits all jobs waiting in the
spool directory. Before breaking communication with the remote system, the local system
accepts any jobs waiting for it at the remote site. If work is waiting in the spool directory for
more than one remote system, the local system makes a random selection of the system to call
first. Uucp can communicate with several systems simultaneously; the limiting factor is the
number of available communication lines and hardwired connections.

Users trying to exchange information with a known system may experience difficulties or
delays. For example, if a remote system is connected through a dial-up connection, all lines to
the remote system may be busy or the remote system may be down. If the local system
cannot contact a remote system immediately, the job remains in the spool directory and the
local system continues trying to execute the job until the file is removed by a clean-up
program (typically after 48 hours). (For further information about the uucp clean-up
programs, refer to paragraph 7.9.)

7.3.3 Uucp Directories. A branch diagram of uucp-associated files is illustrated in Figure
7-2. The diagram represents a system frozen at one point in time; the number and names
change constantly during processing. For clarity, some SYSTEM v /68 files that may be found
in these directories have been omitted from the diagram because they are of no concern to the
uucp user. (For a more complete diagram, see Figure 7-4.)

7-8

~

etc

passwd

uucppublic
(public directory!

STST.xxxx

LOGFILE

uucp
(spool directory!

spool

LCK.xxxx

ERR LOG

I

usr

bin

Ip cron uucp uulog

uuname uupick

uustat uuto

uux

Figure 7-2. Branch Diagram of uucp Directories and Files

dev

lib

uucp

L-devices LJ I L-dialcodes

L.cmds I n L.sys

USERFILE LJ I uucico

I

I

I

~
~
0
~
>
8

~
~
~

d

~
9
d
~
><
(')
0
"'ti
~ -c:: c:: n
~
~
d s
~

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

7.3.4 Uucp Programs. The /usr/bin directory contains the executable code for the uucp
programs. The name and function of each program are described in the paragraphs that
follow.

7.3.4.1 uucp. Uucp(.JC) is one of a cluster of programs that are collectively referred to as
the UNIX-to-UNIX CoPy programs (uucp). Uucp developed as the precursor to the complete
communications package; it copies a named source file to a named destination file. The files
specified can be expressed as pathnames to any system on the uucp network.

For a copy command to succeed, the named source file must be readable by uucp. To ensure
that the source file, the directory containing the file, and every directory leading up to it are
readable by uucp, all these files must have "world" permissions. That.is, all these files must be
readable and searchable by everyone. Similarly, every directory leading up to the destination
file must be readable and searchable by everyone. If the destination file exists, it must be
writable by everyone. If the command requires creating a new file, the destination directory
must be writable by everyone, in addition to being readable and searchable.

Because of these permission requirements, most system administrators configure uucp to send
and receive data through a specially designated public directory: /usr/spool/uucppublic. A
second approach is to transfer files with uuto, which copies any file for which the user has
read permission. Uuto is described in paragraph 3.4.5.

7.3.4.2 uuname. Uuname(uucp(lC)) lists the remote systems that are known to the local
system. For example, the command uuname on a system might generate the list:

sun dog
varecn
mornin
hist30

The list indicates that data can be forwarded to any system whose address begins with one of
these four system-names.

A -v option (verbose) reads the file /usr/lib/uucp/ ADMIN (if the administrator maintains
it). The command uuname -v may provide additional descriptions of the known systems.
Often the system-name does not contain enough clues to define what or where it is.

The -1 option displays the uucp network system-name used by the local system. In most of
the examples that follow, the local system is referred to by the system-name home.

7.3.4.3 uulog. Uulog(uucp(lC)) reads and prints entries from the file
/usr/spool/uucp/LOGFILE, which contains a summary of uucp-associated transactions. The
-u option displays user-specific entries; the -s option displays system-specific entries.

7.3.4.4 uustat. Uustat(lC) displays the status of uucp requests issued by the user.
Optional invocations of uustat can cancel on-going jobs, report the status of specified
commands, or provide information about uucp connections to other systems. Currently, when
uustat cancels a job, the status list is not updated to reflect that the job was killed.

7.3.4.S uuto and uupick. Uuto and uupick are complementary programs: uuto is invoked
to send a file to someone, and uupick is invoked by the receiver to pick up the file.

The distinction between uuto and uucp is that uuto enables uucp to copy any file for which
the user has read permission; uucp permissions are not required.

The uuto command specifies a source file or directory and a destination user-id. If a directory
is specified, the command copies the complete directory tree. Most commonly, the command is
invoked with options that first copy the source file (or directory) to the public directory in the

7-10

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

local system. From there, the source file (or directory) is copied to the public directory in the
recipient's remote system. Specifically, the source file is copied into the subdirectory

/usr/spool/uucppublic/receive/user-id/ sending-system/ filename

where user-id is the recipient's user-id and sending-system is the system where the source file
originated.

The recipient learns through mail(l) that a file has arrived and executes uupick to retrieve
the file. Uupick searches the local system's directory

/usr/spooVuucppublic/receive/user-id

for files. For every file found in the directory, uupick displays a message giving the filename,
the system where it originated, and a request for instructions about what to do with the file.
Options available to the user under uupick include moving the data, printing it, deleting it, or
taking no action. If no action is taken, the file remains in the directory and with the next
invocation, uupick will repeat the message. If desired, a user may cd to the public directory
and execute commands. Uupick is a convenience feature.

(NOTE: Currently uupick fails in its attempt to change permissions and owners if the
public directory and the destination directory are in the same filesystem. Files are transferred
without errors, but the owner remains uucp. An incorrect error message indicating "O blocks
copied" may also appear.)

7.3.4.6 uux. Uux(lC) provides for remote program execution, and is the most powerful of
the uucp programs. Several programs can be executed remotely by piping the output of one
program to the input of the next. Standard input and standard output can be redirected to any
system on the network. In general, uux can gather any number of files from any number of
systems, execute a command on a specified system, and then send the standard output to one or
more files on any specified sy~tem(s). For example, uux can gather accounting data from five
different systems, ship it to a sixth system, where it is processed, and send the output file to a
seventh or eighth system. If you need a list of filenames from a remote system, uux can
execute an ls -1 on the remote system and redirect the output to your directory.

Each system administrator maintains a /usr/lib/uucp/L.cmds file that lists the com~ands
the local system may execute on behalf of an incoming uux request. For security reasons,
most system administrators limit this list of commands to two: rmail, a restricted version of
mail(l); and rnews, for sending and receiving Usenet.

7.3.S Files Involved in Program Execution. Users rarely need to read any of the uucp­
~iated files. However, if a program fails to execute as expected, a well-informed user is
much better prepared to troubleshoot the problem, or cancel and re-initiate the task. The
following paragraphs describe the files involved in uucp program execution, and their
functions.

7.3.5.1 Required Files. Four files are required for the uucp commands to function, all of
which reside in /usr/lib/uucp:

L.sys
L-devices
L-dialcodes
USERFILE

Background information describing the contents of each file may help diagnose problems.

7-11

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

L.sys
Each entry in this file represents a known remote system. The uuname command
reads this file to generate its list of known systems. Because the file contains
passwords for some remote systems, the file should be owned by the uucp
administrative login and should not be readable by all users.

Each entry provides the local system with sufficient information to 1mt1ate a
conversation. The information includes the times when the system may be called,
the type of device used for the call (e.g., an automatic calling unit, an auto-dial
modem, or a direct line), the line speed, the telephone number, and the login
sequence.

L-devices
The entries in this file describe the devices and hardwired connections used by uucp.
Each entry line describes the device type, the special device filename, the associated
calling-unit (if there is one, else O), and the line speed. Examples of entry lines are:

DIR tty21 0 9600
ACU culO cuaO 1200

The first entry indicates the local machine is directly connected to device /dev/tty21
at 9600 baud. The second entry describes a setup where an automatic calling unit
device, /dev/cu10, is wired to a call-unit, cuaO, for use at 1200 baud. (The programs
included in Release 2, Version 1 support auto-dial modems, or "smart" modems, but do
not support automatic calling unit devices. Refer to paragraph 10.3 for further
information about auto-dial modems.)

L-dialcodes
This file may be used when automatic calling units are part of the uucp system. The
file contains reference telephone numbers, typically area codes or exchange prefixes,
for some of the known remote systems. An example entry line is:

sys-1 503

where the area code 503 is prefixed to the sys-1 telephone number contained in
L.sys.

USERFILE
USERFILE limits user accessibility by placing selective constraints on the uucp
operations. USERFILE correlates the login of the requesting user or remote system
with a list of accessible pathnames. Since the system administrator assigns login-ids
and passwords to each remote system and user, the administrator has an effective
means of controlling who has access to the directories and files within the local
system. In addition, the administrator places an entry in USERFILE if a call-back is
required for a remote system.

7.3.5.2 Files Created by Uucp Program Execution. Several files are created during
command processing which are later deleted. One way to troubleshoot a command is to watch
the process and monitor each file as it is created. Three files bear watching:

/usr/spool/uucp/LOGFILE
/user/spool/uucp/LCK. . .xxxx

and
/user/spool/uucp/STST.xxxx

7-12

MOTOROLA COMPUTER SYSTEMS 1UNIX-to-UN1x CoPy (uucp) TUTORIAL

LOOFILE
LOOFILE is a record of actions taken by the uucp group of programs. Contained
in the file are one-line entries for each transaction. These transactions include calls
made by the local system, calls received from remote systems, requests for files to
be transferred, and requests for programs to be executed remotely. Remote mail
transfer requests can be traced indirectly by watching the LOG FILE for records of
file transfer or remote program execution.

Instructions for accessing and reading LOGFILE are contained in paragraph 7.5,
"Job Control".

LCK • .xxxx
LCK. • .xxxx files are "lock" files and are created for each device and system when
they are in use. The lock file prevents duplicate conversations and foils attempts to
use a single device for more than one connection. The xxxx identifies the
particular device or system. If an execution aborts, a lock file may be left
containing misinformation that the device or system is busy. If this happens, the
lock file must be removed manually by the user or administrator.

Instructions for locating and removing lock files are included in paragraph 7.5, "Job
Control".

STST.xxxx
The STST.xxxx files serve two purposes. First, an S'rST.xxxx file is created when
a connection fails because of a bad login, password or dial-up line. Second, an
STST file containing a "talking" status is created while two machines are
communicating. The xxxx identifies the remote system to which the local system
is talking (e.g., STST.sys-1). For login or dial-up failures, the existence of an
STST.xxxx file prevents the local system from attempting another connection
with machine xxxx for some period of time, usually an hour. The length of time
is defined by the administrator in the L.sys file, and can vary among systems.

Users can remove the STST .xxxx file and re-enter a command before the default
time period elapses. If a program aborted while the STST .xxxx file contained a
talking status, the system will prevent any calls to the system indefinitely. The
user must remove the file manually.

Instructions for locating and removing STST.xxxx files are contai'ned in paragraph
7.5, "Job Control".

7.3.6 File and PrQgram Interaction. The information contained in the uucp-associated
files affects command processing at several key junctures. This paragraph describes the
interaction among the programs and files in general terms.

For this discussion, assume that you have entered a command to send a mail m~ge to a user
on another system. You are working on system sys-A and you are sending a file to user bob
on system sys-AA. The pathway from sys-A to Bob is through sys-1 to sys-rd to sys-AA;

mail sys-l!sys-rd!sys-AA!bob
. What did you get for a lead on Board 7?

The first step taken by the executing programs is to try to contact the first system in the
pathname: sys-1. System sys-A reads the L.sys file for the sys-1 entry containing:

7-13

UNIX-to-UNIX CoPy (uucp) TUTORIAL

The time of day the system can be .called
The login and password sys-A should give sys-1
The type of calling device to use to call sys-1
The telephone number

MOTOROLA COMPUTER SYSTEMS

If the phone number contains an abbreviation, the L-dialcodes file is read to get the complete
number.

(The local system may read the en try in the L.sys file and discover that there is no time
when the local system is allowed to call the remote system. This will be the case whenever
the local system is a polled system. Instead of initiating a call, the local system will queue
the job in its spool directory and wait for the remote system to call. For further information
about polled connections, refer to paragraph 4.1)

Before making the call, sys-A scans its spool directory to see if an STST.sys-1 file is present.
If the file exists, sys-A waits the required time before calling. Each time a call fails, the
attempt 'is recorded in the STST file. After the number of tries reaches a maximum (defined
by the administrator), an error message reports NO CALL (MAX RECALLS). Although the
job remains in queue, no further processing takes place until the STST file is removed. Old
jobs that have not been executed are purged from the spool directory periodically by
uuclean(1M). (For further information on error messages, refer to paragraph 7.5. For further
information on the uucp maintenance programs, refer to paragraph 7.9.)

Once the system has the calling information, and has checked that all is clear for a call, it
scans the L-devices file to learn sys-l's device requirements. The local system searches for an
available device, ignoring all devices with a LCK . • xxxx file. If no devices are free, the
system waits to call later.

When the call is made to sys-1, the standard login sequence takes place. Once sys-A has
logged in (probably under a shared login, such as uucp), the systems identify themselves to
each other by their unique system-names. Each system reads its own USERFILE to
determine the degree of access entitled to the other. System sys-A sends sys-1 the message
that it wants forwarded to sys-rd!sys-AA!bob. System sys-1 checks its L.cmds file and
confirms it may forward mail on behalf of sys-A. Sys-1 starts up an mail command to sys­
rd on behalf of sys-A. Sys-A searches its spool directory for any other jobs for sys-1. If
there are none, sys-A asks sys-1 it has any jobs waiting for sys-A. If not, the conversation
ends.

Sooner or later, sys-1 repeats the same process when it contacts sys-rd to forward the mail
message, and sys-rd will repeat the process once again when it contacts sys-AA to deliver the
message to bob.

7-14

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

7.4 Using Uucp

This section describes the correct syntax for entering each uucp command and its available
options.

The mail(l) utility is also described with respect to its applications on the uucp network
through the uucp program uux. Although mail and rmail are not uucp commands, the uucp
network allows mail to move information through systems that place restrictions on all other
uucp commands.

The discussions that follow assume your system administrator has configured your system for
all the uucp commands. However, many administrators may place restrictions on the uucp
utility. Meet with your administrator to learn the limitations, if any, of your specific
environment. For all command descriptions, Figure 7-3 serves as a hypothetical uucp map
provided by a system administrator. Refer to the map often as you read through these
examples.

7.4.1 Network Architecture: Understanding the Links. From Europe to South Korea,
Australia to Canada, information flows across the uucp network along a machine-to-machine
pathway. Four types of links are possible: any combination of a hardwire/dial-up connection
(hardware), and an active/polled connection (software). Once data is received by the next
system along the path, the responsibility for forwarding the job shifts from the sending
system to the receiving system. The crucial link, from the user's perspective, is the first one
in the path, the link from the local system to the known remote system.

SYSTEM V /68 supports all four types of connections. Two systems can be directly connected
by cross-coupling two of the computer ports through a null modem. Hardwired connections
are successful only for short distances up to several hundred feet. To create a dial-up
connection, a user can employ an auto-dial (smart) modem that enables the local system to
contact remote systems by direct dial. SYSTEM V /68 Release 2, Version 1 supports an auto-dial
modem; it does not support an automatic calling unit (acu).

Whether a site uses an active or polled connection is independent of the type of line used.
Choosing between an active or polled connection is an administrative decision, based on the
planned applications and system load considerations. Since the polled system cannot initiate
calls, a job in the spool directory must wait until the polling system calls. Typically,
administrators arrange for an active system to use cron(lM) to schedule a periodic uusub poll.
(Further information about uusub(JC) is contained in paragraph 7.9.)

The type of connection, active or polled, is specified in the L.sys file. (Detailed information
about the L.sys file is contained in paragraph 10.4.) The L.sys file, which lists all remote
systems to which you can direct jobs, includes an entry that defines the correct time for the
local system to call the remote. For a polled system, the L.sys file entry makes it the "wrong
time to call" all the time. The effect is that your uucp jobs are accepted and queued in the
spool directory because they are directed to "known" systems, but calls are never made.
Instead, jobs remain queued until the active system calls your local system. One by-prcxiuct
of this arrangement is that when a uucp job is executed on a passive system, the error message
WRONG TIME TO CALL routinely appears in the LOGFILE.

Consider the network map in Figure 7-3 that describes the network from the perspective of
system home. For the discussions that follow, user pat on system home is working in login
directory /usr/pat. All systems shown on the map have datasets so remote systems can be
connected. The following observations can be made about the network:

• The connection from home to polled is passive; home calls polled, but polled has no
means to initiate communication with home. Transfers from polled cannot leave the

7-15

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

system until it is called by home. The polled connection is represented on the map as a
short-dashed line.

• The link from home to drectl is a hardwired connection, as are the links from home to
drect2 and from drectl to drect2. The direct connection is represented on the map as a
solid line.

• The types of connections between all other systems on the map are unknown. Typically,
uucp users only know where the links between known system are; details are nice, but
not necessary. Connections between remote systems are represented as long-dashed lines
on the map.

• Each line (solid, short-dashed, and long-dashed) indicates that the two connected systems
are known to each other. Systems that are not connected are not known to each other.

• Every system on this map can be reached by every other system.

7-16

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy {uucp) TUTORIAL

rephip spy mys drect2

winkil kulrun drectl

I
I
I
I
L

salmon grtbks ---- home

I
I
I
I
L

flytie rivwhy polled

I I
L ____ _J

Figure 7-3. View of uucp Network from the System home

7-17

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

7.4.2 Naming Conventions. The command syntax for uucp varies from program to
program but general conventions are employed for referring to files and directories on the
local and remote system. The convention for specifying a file in a uucp command is

system-name!path-name

where the system-name is a path through a known remote system. Thus, reference can be
made to a file in a remote system that is not known directly to the local system, but that can
be reached by passing through intermediate systems.

The syntax for naming a file or a directory is independent of the type of connection between
the two machines. For user pat on home to send mail to user jrh on rephip, the command
line is:

mail grtbks!kulrun!spymys!rephip!jrh

Similarly, mail to alex on the system salmon is sent with either of the commands:

mail grtbks!winkil!salmon!alex
or

mail grtbks!rivwhy!salmon!alex

The system-name is always the path from the local system to the remote.

Path-names included in uucp commands may take five different forms:

1. Complete paths, beginning with root and ending with a filename;

2. Paths that end with a directory name;

3. A login directory specified with the abbreviation - (tilde);

4. The public directory specified with the abbreviation - (tilde); or

5. A single filename that assumes the current working directory.

For example, the expression

winkil!/usr/sam/ filename

locates a particular file filename in the directory /usr/sam on system winkil. The expression

winkil!/usr/sam/memos

identifies a directory memos m winkil where a file can be copied, keeping its current
filename.

The - character (tilde) has a special meaning in uucp commands. When used immediately
before a user-id, the tilde expands to the pathname to the user's login directory. For example,
the expression

winkilfsam

expands to the login directory /usr/sam on the system winkil. In the same way, the
expression

winkilf sam/memos

expands to the complete pathname /usr/sam/memos. When the - (tilde) is followed by a
/user-id, the tilde expands to the system's public directory. For example, the expression

winkilf/sam

expands to the directory /usr/spool/uucppublic/sam in the system winkil. An unlimited

7-18

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

number of subdirectories are available in a system's public area. The expression

winkil(/sam/memos/december

expands to the directory /usr/spool/uucppublic/sam/memos/december.

Filenames that do not use any of the combinations described above are prefixed with the
current directory on the local system or the user's login directory on the remote. The user's
login directory on a remote system is usually defined as /usr/spool/uucppublic/user-id.

The naming conventions include two restrictions. First, pathnames that use the • • (dot dot)
abbreviation are not permitted. The system cannot easily check a directory's permission modes
when it is referenced as • ./. The second restriction is actually a shell convention, but it
affects uucp. Files that begin with a dot, for example .profile, are not picked up by special
shell characters unless they are qualified with a dot. For example, the abbreviations

.prof*

.profil?

find the file .profile. The abbreviations

*prof"
?profile

do not.

7.4.3 Uucp Commands.

7.4.3.1 uuname Uuname lists the system-names of remote systems known to the local
system. The -1 (lowercase L) option returns the local system's system-name. The -v option
prints additional information about each system, if it is available. The additionaI description
information is drawn from the file /usr/lib/uucp/ ADMIN. Not all administrators maintain
this file.

The command format is

uuname [options]

7.4.3.2 mail For security reasons, most administrators limit the list of commands
executable for another system to two: rnews, for sending and receiving the network news;
and rmail, a restricted version of mail. By not including uucp, a remote system is prevented
from initiating a copy of a file on the local system.

Standard UNIX and UNIX-based software includes /bin/mail, the mail(l) program. If user
pat on home decides to send mail to con on system ftytie, the command is

mail grtbks!rivwhyfflytie!con
Hello Con. Did you get my file?

The mail program takes the message from the standard input and uses the uucp programs to
send the message to grtbks. Once the message arrives at grtbks, the rmail program is invoked
(as a link to /bin/mail). The system removes its own name from the address and starts up
the uucp programs to forward the mail to the next system in the pathname. The sequenee
repeats itself at each site until the mail reaches con.

The command that sends a mail message can be easily revised to to take input from a file
instead of the standard input. The command:

7-19

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

mail grtbks!rivwhy!flytie!con < materials

mails the contents of materials from the current directory to con through all intermediary
systems.

One characteristic of mail is that the burden of correctly addressing mail lies with the sender.
Because of the informal nature of the network, there are no maps that list all connections
between sites. Administrators are not required to notify anyone when connections between
systems are established or dissolved, and with more than 3,000 systems on the network, the
overall structure is in a constant state of flux. The mail command requires an explicit path
from the sending system to the receiving system. The difficulty of obtaining such an address
varies greatly, depending on the size and location of the two sites.

A second observation is that mail is not well-suited for sending "object" or non-ASCII files
since the recipient cannot read the mail when it is delivered. Use uucp instead.

7.4.3.3 uucp The syntax of the uucp command is modeled after the cp (copy(l)) command.
The command takes the form

uucp f ram-here to-there

where the source file arguments and the destination file arguments follow the uucp naming
conventions. Options to the uucp command direct the system to create needed directories, send
mail to the user when the transfer is complete, notify the recipient when the transfer is
complete, or queue the job without initiating it immediately. (Refer to uucp(lC).)

Each system on the network has a public directory /usr/spool/uucppublic. An entry in
/usr/lib/uucp/L.sys ... enables any remote system that calls in to have access to the public
directory. Since the local system is providing the remote with a destination directory that is
writable by everyone, files can be copied between systems. The command

uucp -m declr grtbksf /hayden

copies the file declr into the directory /usr/spool/uucppublic/hayden on the system grtbks.
The -m option requests that mail be sent to pat when the copy is complete.

Shell characters retain their special meanings in the uucp command syntax. If pat enters the
command

uucp -m compile/*.c drectlf /bob

all files in /usr/pat/compile that end with .c are copied into the directory
/usr/spool/uucppublic/bob in system drectl. Recall that uucp prefixes a file or directory
with the current directory, here, Pat's login directory /usr/pat.

Uucp's application value for transferring files directly from one system to a remote can be
extended to allow transfers that flow through intermediary systems. To allow for transfers
that pass through intermediary systems, administrators must place an entry in the USERFILE
that grants remote systems access to the local system's spool directory /usr/spool/uucp. If
the remote has access, it can place the file(s) to be transferred and a generated Send command
directly into the local's spool directory. The local system executes the Send command for the
file, forwarding the file on to the next remote system in the path. The security of the
intermediary system is not threatened because the remote systems do not have access to any
files outside of the pathway /usr/spool/uucp. (For further information, refer to the
discussion of uucp operation in paragraph 7.7, and the discussion of USERFILE in paragraph
7.10.)

7-20

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

7.4.3.4 uuto and uupick UutoClC) and uupick are a complementary pair of programs that
execute uucp while preserving the permissions on files and directories in both the sending and
receiving system. Uuto maintains the integrity of both systems by copying files from the
sending system to the public directory of the receiving system. The uuto command includes a
user-id as the specified recipient of the file; when the file arrives, it is identified as

/usr/spool/uucppublic/receive/user-id/ sending-system I filename_ordirectory

The intended recipient, user-id, is notified by mail that the file has arrived. The user executes
uupick to access the file in the public directory. Uupick's options include moving the file to a
new directory, printing the file, leaving the file where it is, or deleting it. If a directory is
named in the command line, the entire tree is moved.

The command format for uuto follows the same design as uucp. For example, if user pat on
home enters the command

uuto -m -p econ/forecst drectl!bob

the file forecst in /usr/pat/econ is copied to the drectl system as
/usr/spool/uucppublic/receive/bob/home/forecst. The -m option tells home to send
mail to pat when the copy is completed. The -p option copies the source file, forecst into the
home spool directory before initiating the transmission to drectl. The file copy remains in the
sending system spool directory until the uuto copy is executed or deleted.

Invoking the -p option involves a tradeoff for the user. Although requiring a copy is
somewhat wasteful of cpu time and storage, it frees the user to continue modifying a file or to
delete the file completely. Without the -p option, the system makes a copy of the file when
it is ready to initiate the transfer, which could be several hours after the uuto command was
entered. By using the -p option, the user knows when the file was copied and what the copy
contains. In addition, if the -p option is not used, the user initiating the uuto command must
have read permission for the directory and source file.

When the file arrives at drectl, user bob receives mail that a file has arrived via uucp. (Uuto
always notifies the recipient of a file transfer.) Bob enters the command

uupick

The options for moving, printing, deleting or ignoring the file are described in the uuto(l)
manual pages, or may be displayed on the screen by entering a star* for a usage summary.

Since uuto uses uucp to execute the copy, uuto can transfer files from a sending system
through an intermediary when the sending system has access to the remote system's spool
directory. (For further information, refer to the discussion of uucp operation in paragraph 7.7,
and the discussion of USERFILE in pragraph 7.10.)

7.4.3.5 uux The remote aspect of uux is twofold. First, uux can gather files from one or
more remote systems, and copy the files back to the local system for some command execution.
The same command can then copy the output of the execution to any number of remote
systems. Second, uux can direct a remote system to initiate a command execution. Whether or
not the command is executed depends on the configuration of the remote system. Whenever a
remote system receives an incoming uux request, it checks the /usr/lib/uucp/L.cmds file to
see if the request is "executable". If the command that uux wishes to initiate is listed in
L.cmds, the remote system executes it; if not, the remote system disallows the command and
notifies the sending system with mail.

By combining these two uux capabilities, first, to gather files to or broadcast files from a
particular site, and second, to direct another system to initiate a command, an extremely
powerful set of tools is available for developing environment-specific applications. The

7-21

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

L.cmds file format allows an administrator to list commands but specify that only particular
systems are allowed to execute them.

Consider the situation in a single company where a VAX (home) and two VMEllOs (polled
and drectt) are operating under SYSTEM V. If a user on home enters the command .

uux .. diff polled!/usr/jake/drivt drect1!/usr/jake/driv2 > !driv.di1f''

the system home is directed to copy the files /usr/jake/drivt on system polled and
/usr/jake/driv2 on system drectt to home; perform a diff on ·the files, and redirect the
output to the file driv.diff in the current directory in home.

The uux command follows the format

uux [-][options] '"command-string"

where the - indicates the standard input for the command-string is inherited from the
standard input of the uux command. The command-string is composed of one or more
arguments that look like a shell command line, except that the command and filenames may
be prefixed by system-name!. A null system-name is interpreted as the local system. (An
argument that does not contain an! is not recognized as a file and is not copied to the execution
machine. All special shell characters, such as .. < I "' or > must be quoted, either by quoting
the entire command-string or by quoting the character as a separate argument.)

For example, the commmand

pr econ/forecst I uux - drectt! lpr

takes the output of pr econ/forecst as standard input to an lpr command executed on
drectt.

As anot~er example, the command

uux .. drectt!ps (-ef I) I rmail (home!pat polled!jake)"

directs drectt to execute a ps with options e, f, and l invoked, and to pipe the output through
mail to pat on home and jake on polled. Remember, for this command to succeed, drectt
must have a line in /usr/lib/uucp/L.cmds that specifies it is allowed to execute a ps for
home.

To execute a command on a particular directory or file, follow the example:

uux .. grtbks!rivwhy!ls (/usr/isaac/techn) I rmail (home!pat)"

The command directs rivwhy to execute an ls command on /usr/isaac/techn and to mail
the output to pat on home. Refer to uux(1) for further information about available options.

MOTOROLA COMPUTER SYSTEMS UNIX-t<>-UNIX CoPy (uucp) TUTORIAL

7.S JOB CONTROL

Job control, as addressed in this section, refers to information and commands that can be used
to monitor and track a job. The specific areas of job control described here include:

• Notification of Job Completion

• Monitoring a Job Through LOG FILE

• Job ID Numbers and uustat(tC)

• Job Termination, Requeuing

7.S.1 Notification. Each uucp command can report the success or failure of a transmission
to the user asynchronously through the mail!.1) command. A request that notification be sent
to the user's system is made by invoking the -m option with the uucp and uuto commands.
The notification is especially useful when initiating a uuto command. Often it is inconvenient
to logon to the remote system to check if the intended receiver has mail. (Notification is
automatically sent to the user whenever a uux command is invoked, unless it is specifically
suppressed by the -n option.)

If desired, the notification report may be directed to a particular file by invoking the option as
-mfil,ename, where filename follows the general uucp naming conventions. The
-mfil,ename option is available with uucp, uuto, and uux commands. It is especially
convenient when a user wishes to notify a third person of the job completion.

For example, the command

uucp -mpop /max/chklst grtbks!/dev/null

sends the file /max/chklst to the bit bucket, /dev/null in the system grtbks. The status of
the transfer is reported to the file pop in the sending system's current directory.

An example status report produced by the uucp command might be:

uucp job 0306 (8/20-23:08:09) (0:31:23) /max/chklst copy succeeded

where the information supplied follows the format

job-number command-time status-time status

The status report is described in detail in paragraph 5.5 and under uustat(lC) in the SYSTEM
V 168 User's Manual.

7.S.2 Monitoring a Job Through LOGFILE. A log of ongoing actions taken by the uucp
system is continually updated in the file /usr/spool/uucp/LOGFILE. A user can access this
file and observe the actions as they occur with the command:

tail -f /usr/spool/uucp/LOGFILE

Tail(t), invoked with the -f option, copies the last 10 lines of LOGFILE, and then enters an
endless loop. Inside the loop, tail sleeps for a second, then attempts to read and copy new
records from the input file. Tail -f monitors the growth of LOGFILE record by record. To
break the loop and return to the shell prompt, press the Interrupt key.

LOGFILE contains records of requests for file transfers, local system attempts to contact
remote systems, remote system attempts to contact the local system, and an abbreviated log of
the communication that occurred, if any. An entry is also made when remote program
execution occurs.

An edited version of LOGFILE from system zek is shown below. The system zek has links to
zekisv, usavax, bluhil, zek30, and unix. The entries follow the format:

7-23

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

system!user-id (entry-time) (sequence-no.) (status) (more-info)

where the fields are defined as:

system!user-id
The system name and intended recipient of a uucp job.

entry-time
The date and time of the record entry. The date is expressed as (mm/dd-hh:mm:ss).
(The time may be incorrectly reported if the time zone variable is improperly set.
The TZ variable is set by the administrator in the login shell of the uucp account.)

sequence-no

status

The sequence number is assigned by the system in the spool directory.

If the entry is an action entry, the status field indicates if the action was successful.
If the field contains a name followed by XQT, the entry describes a remote program
execution that occurred. The added information that follows in the fifth field is the
executed command. If the field contains QUE'D, the name of the queued command is
contained in the additional information field.

more-info
Additional information. This field contains useful diagnostics that may explain why
a command has failed, and may lead a user to the appropriate corrective actions.

A detailed discussion of the diagnostic messages included in the LOGFILE follows the
LOGFILE example.

Edited Version Of /usr/spool/uucp/LOGFILE

zekisv!uucp (12/5-11:41:.57) (C,1010,234) COPY (SUCCEEDED)
zekisv!uucp (12/5-11:41:.59) (C,1010,234) REQU.ESI'ED (S D.zek.OC0324 D.zekOC0324 uucp)
zekisv!uucp (12/5-11:42:44) (C,1010,245) OK (conversation complete tty09 948)
usavax!uucp (12/$-11:42:47) (Q,2683,0) uucp XQT (PATH=/bin:/usr/bin:/usr/lbin LOGNAME=uucp mews)
zekisv!uucp (12/5-11:42:.56) (Q,2683,0) uucp XQT (P ATH=lbin:/usr/bin:/usr /lbin LOGNAME=uucp rmail al)
zekisv!uucp (12/5-11:43:.57) (Q,2683,0) uucp XQT (PATH=/bin:/usr/bin:/usr /lbin LOGNAME=uucp rmail al)
zek.isv!uucp (12/5-11:43:.59) (Q,2683,0) ret (1000) from zek.isv!uu cp (MAil. FAIL)
zek.30uucp (12/5-11:56:48) (C,3329,0) FAILED (DIAL UP LINE open culO P3232 < 8)
zek.30uucp (12/5-11:57:08)(C,3329,0) FAILED (DIALUP LINE open culO P3232< 11)
zek.30uucp (12/5-11:57:16) (C,3329,0) FAILED (call to zek30)
bluhil!uucp (12/5-11:.57:31) (C,3329,0) WROID TIME TO CALL (bluhil)
blu hil!uucp (12/5-11:.57:31) (C,3329,0) FAILED (call to bluhil)
usavax!uucp (12/$-11:57:43) (C.3329,0) WRONJ TIME TO CAIL (usavax)
usavax!uucp (12/S-11:57:43) (C.3329,0) FAILED (call to usavax)
unix!uucp (12/5-11:57:48) (C,3329,0) N> CALL (MAX RECALLS)
zek.isvlal (12/5-10:17:.50) (X,4193,0) XQT QUE'D (rmail brian)
zek.isv!uucp (12/5-10:18:08)(C,4200,0) WRONJ TIME TO CALL Czek.isv)
zekisv!uucp (12/5-10:18:08)(C,4200,0)FAILED (call to zek.isv)

7.5.3 Diagnostic Messages From LOGFILE. The messages most commonly contained in
the status and further information fields of the LOGFILE entries are listed below, along with
brief explanations. Suggested corrective actions are provided where applicable.

SUCCEEDED (call to system)
A call from the local system to system succeeded.

FAILED (call to system) or (DIAL cunnnn_)
A call from the local system to system did not succeed. Possible reasons for the

7-24

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

failure are:

1. Phone was busy, not answered, or answered by a person instead of a modem.

2. The communication pathway between the two systems was dissolved.

3. The remote system was shut down.

FAILED (LOGIN)
The remote system answered the call from the local system, but the local system
could not login. Possible reasons are:

1. The local system has incorrect login or password information.

2. The systems are unable to negotiate a common baud rate (line speed).

3. Excessive noise on the line.

4. A remote modem answered but the remote system was down.

TIMEOUT (LOG IN)
The remote system was probably heavily loaded and took too long to respond.

NO CALL (MAX RECALLS) or (RETRY TIME NOT REACHED)
The first time the local system fails to connect with a remote system, the uucp job
remains queued in the spool directory and an STST file is created. The file inhibits
calls to the remote system for a some period of time defined by the system
administrator. (The time variable is located in the time field of the L.sys file. Refer
to paragraph 7.10 for further information.) If a job for the remote is sent to the spool
directory while the STST file is "active", the message NO CALL (RETRY TIME
NOT REACHED) appears in the log. When the time period is up, the local system
attempts to execute the queued job. If the second call fails, the STST file increments
its record of failed attempts. If the number of failed attempts is less than the
number defined as "maximum" by the administrator, the STST delays the call for
the specified time. If the number of failures reaches the "maximum", the STST file
causes the NO CALL (MAX RECALLS) message to appear. No calls will be
attempted until the STST file is removed, either manually or by the uucp
housekeeping programs.

The STST files reduce system load and high phone bills that could be incurred if
numerous calls were made, and aborted, before correcting a problem.

To initiate a conversation before the required waiting time has elapsed, first check
that no lock file for the remote system exists (ensuring that no conversation is in
progress). Then, remove the STST file and re-enter your request.

WRONG TIME TO CALL (system)
According to the information in your system's L.sys file, the remote system has
limited the hours during which incoming calls can be received. Your job will be
queued in the spool directory until the time restriction is lifted.

(NOTE: This message is always true when you send a uucp job to the spool
directory and your system is a polled system. The L.sys file, which lists all remote
systems to which you can direct jobs, includes an entry that defines the correct time
for your system to call the remote. For a polled system. the Lsys file entry makes it
the "wrong time to call" all the time. The effect is that your uucp jobs are accepted
and queued in the spool directory because they are directed to "known" systems, but
calls are never made. Instead. jobs remain queued until the active system calls your
local system.)

7-25

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

/usr/spool/uucp/LCK . • xxxx (CAN'T LOCK)
Whenever a conversation is in progress between the local system and a remote
system, a lock file is created to prevent another line from initiating a second
conversation with the same remote system. This message tells you a conversationjs in
progress with the remote system (or device) xxxx and the request will be re-tried
later.
Occasionally, a conversation aborts and leaves a lock file lying around. Execute the
command ps -aef to check if a uucico process is using a line to the remote system.
(The uucico process indicates a conversation is taking place. For further information
on uucico, refer to paragraph 7.3.) After you verify no conversation is taking place,
remove the lock file and re-enter your request.

NO (DEVICE)
An attempt to call the remote system was made but there was no modem (or dial-up
line) available. For a direct connection, this message is received when the hardwired
line is in use.

REQUESTED (CY) or (CY5)
The request succeeded if CY is in the additional information field, or was successful
in a limited sense if the field contains CY5. The CYS diagnostic generally means
that the file transfer did not succeed as requested, but the file was copied into the
remote system's public directory by default. The file is probably located in a
subdirectory of the public directory; the subdirectory is the name of the account or
directory to which the transfer was initially intended.

REQUEST (S local-sequence-no remote-sequence-no)
A file transfer requested by system!user-id to copy the local file to the remote system
succeeeded.

REQUEST (R remote-sequence-no local-sequence-no)
A file transfer requested by system!user-id to fetch the remote file and copy it to the
local system succeeded.

COPY (SUCCEEDED)
A file transfer to this system succeeded.

BAD READ (further inf onMtion)
The system gave up on the transfer because of too many errors. Data lost in
transmission was not recm:ered. Typically, the conversation would have terminated
prematurely.

user-id XQT (PATH=/bin:/usr/bin; export PATH command)
A user requested that a command be executed and the execution was attempted.
Usually, the command attempted is rmail. The user-id is shown as uucp if the mail
was forwarded through a remote system to arrive at the local system.

user-id XQT DENIED (command)
A user request for a remote execution failed because permission for the execution was
denied. This message results when a requested command is not on the authorized list
contained in the remote system's L.cmds file.

QUE'D (more information)
A uucp command request has been queued for file transfer with the system. The
request is stored in the spool file /usr/spool/uucp or the specific file indicated in the
inf9rmation field.

7-26

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

7.5.4 Job ID Numbers and uustat. Uustat(lC) displays the status of previously specified
uucp commands, cancels a command, or provides general status on connections to other
systems. One option for specifying a particular uucp command is to identify the command by
its job number.

Although job numbers are not printed by default, they can be obtained in one of three ways.
Setting the environmental variable JOBNO=ON, and exporting the variable causes job
numbers to be printed for all uucp and uux commands. To force job numbers to be printed
for specific uucp and uux commands, execute the command with the -j option invoked. For
example, the command

uucp -j /etc/passwd winkil!/dev/null

returns the message

uucp job 282

on the standard output. Finally, a list of all uucp commands and their job numbers can be
obtained by using the uustat command without any options invoked:

uustat

Uustat returns a one-line entry for each job in progress. The format of each line is:

job-number user remote-system command-time status-time status

All status messages that users may be concerned with are self-explanatury. !t ... r1.. l. v-..' .. ~'t;
SYSTEM V/68 User's Manual for a complete listing of all status mes.sages and their mv·mii!t

7.5.5 Job Termination, Requeuing. A job that transfers many files from several different
systems can be killed with the uustat -k option. If any part of the job has left the system,
only the remaining parts of the job on the local system are terminated. (Note that while the
-k option of uustat kills a job, it does not update the uustat listing. The job continues to
appear for a short period of time.)

Tiie uucp housekeeping program, uuclean(lM), removes undeliverable jobs from
/usr/spool/uucp on a regular basis (usually every 72 hours). Jobs can be "rejuvenated" with
the -r option of uustat, which changes the job date to the current date.

(For further information on the uucp housekeeping programs, uuclean, uudemon.hr,
uudemon.day, and uudemon.wk, refer to paragraph 7.9)

7-27

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

7.6 The Uucp User's Network: Usenet

Usenet, informally referred to as "the net", is a bulletin board shared among thousands of
UNIX-based systems and tens of thousands of users in the United States, Canada, Europe,
Australia and Japan. The bulletin board contains more than 140 categories of information;
Usenet readers post articles and notices to the categories that interest them.

There is no typical Usenet reader. Many users are casual readers who occasionally scan one or
two of the categories, called newsgroups. Other readers actively participate in on-going
debates concerning UNIX intricacies, international politics and the benefits of different
microcomputers. On the less serious end of the spectrum are the newsgroups for chess, ham
radios, science fiction, and the world-famous jokes newsgroup. Because bulletin: board
communication is a unique hybrid, less formal than trade publications but far more widely
distributed than in-house memos, a network etiquette has evolved with which new readers
would do well to familiarize themselves. The "Emily Post for Usenet" is one of the first
articles new net subscribers receive.

The size of the Usenet network is the key to its usefulness. A user wishing to announce a
new program, solve a problem or locate a piece of equipment can reach a mass audience in a
matter of days. Discussions involving experts with a wide range of experience occur without
a formal meeting. However, the heavy flow of communication over the network means a
person could easily spend several hours a day "reading the news." A site that subscribes to
every newsgroup can expect to receive an average of 360 articles containing 530,000 bytes of
data each day. Because of the number of programs, control files and directories required to
move, sort and store this information, Usenet is not easy to install.

Usenet uses the uucp remote execution facilities to send information to receiving sites. The
decision whether or not to subscribe to the network is made by the system administrator at
each site. To join Usenet, the system administrator should contact the nearest UNIX-based
installation to discover who among the local systems is connected to the network and is
willing to allow another system to connect to it as a known system. In theory, any system
can connect to any other, regardless of the distance between the systems, but economic
con~iderations (e.g., the cost of forwarding mail) suggest local connections are best. Usenet
software is distributed freely over the network and can be obtained from a Usenet site near
you. Included in the software are articles that provide extensive documentation for posting
and reading articles, and selecting the categories to which users may have access. The
software is not distributed through Motorola Microsystems.

7.7 Administrator's Overview of Uucp Programs

7.7.1 Background. Beginning with this section, the tutorial addresses an audience of
system administrators. Casual system users may end the tutorial here. All the knowledge
needed to use the uucp programs effectively is contained in the first six sections.

System administrators are strongly urged to read the tutorial straight through. Do not start
with this section. Background information describing uucp applications, system links, security
concerns, naming conventions, and network architecture is covered in sections 7.1 through 7.6
of the tutorial; it is not repeated here. Further, users expect detailed information from their
administrator describing their system links and approved applications. Administrators may
have an easier time designing uucp maps and anticipating user questions if they have. an
understanding of their users' perception of the network.

Administrators should have a thorough understanding of the SYSTEM v 168 User's Manual
and SYSTEM V/68 Administrator's Manual pages referring to uucp commands. Particular
attention is directed to the following commands: uucp(lC), uustat(lC), uutoClC), uux(lC),

7-28

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

uuclean(lM), and uusubClM).

7.7.2 uucp Subdirectory. Most of the uucp programs reside in /usr/bin. However, other
files required for uucp operations are located in /dev, /etc, /usr/lib, and /usr/spool. An
expanded version of Figure 7-2, "Branch Directory of uucp Directories and Files", is illustrated
in Figure 7-4. Table 7-1 lists the name and suggested permission mode for each file read,
executed, or created during uucp execution. Detailed information about the permission modes
and system security is addressed in paragraph 7.8, "Administrative Concerns". Detailed
information about the maintenance and administrative programs uuclean, wdog, uustat and
uusub, and the cron files and daemons, is included in paragraph 7.9, "Maintenance and
Administration". Detailed information about the files in /usr/lib/uucp is included in
paragraph 7.10, "Installation".

7-29

I
I

etc usr dev

passwd spool bin lib ~ -8
i

uucppublic uucp

I Ip I I I (public directory) (spool directory)
cron uucp uulog I I uucp

I
uuname uupick I
uustat uuto

~
I w

0
~

uux

::
0

STST.xxxx LJ I LCK.xxxx I l crontabs I I L-devices Ln L-dialcodes I ~
0
~
0

LOG FILE I I I ERR LOG I I L.cmds I n L.sys I ~
>
n

I I I D.motXA2803 I I I n I
0

C.unixnA3251 USERFILE uucico ::
~
e

TM.4632 I n LTMP.2563 I I uuclean I n uusub I ~
~
00

X.bluhil4140 LSl SYS LOG I I . uuxqt Ln uudemon.wk I ri3
~
t!j

L-stat uudemon.day I ~

R-stat
T."! _____ ,. ~ r. _____ _i_....i T"\.!_ ------- _r ---- --- ~!"--

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucpl TUTORIAL

Table 7-1. Permission Modes for Uucp Program Files

/bin
-rwxr-sr-x 2 bin mail 25576 Aug 13 12:04 mail
-rwxr-sr-x 2 bin mail 25576 Aug 13 12:04 rm ail

/dev
crw-rw-rw- 2 root sys 3,2 Jan 14 11:05 null
crw-rw-rw- 2 root sys 7,0 Dec 21 09:06 cuaO
crw-rw-rw- 2 root sys 44, 14 Dec 20 19:04 culO

/etc/passwd
-rw-r-r- 1 root other 1770 Dec 19 11:30 group
-r--r-r-- 1 root sys 137170 Dec 19 08:42 passwd

/usr/bin
-s-x--x 1 uucp bin 38070 Oct 8 13:13 uucp
-s--x--x 1 uucp bin 20554 Oct 8 13:13 uulog
-s-x--x 1 uucp bin 15436 Oct 8 13:13 uuname
-rwxrwxr-x 1 bin bin 1595 Oct 8 13:13 uupick
-s-x--x 1 uucp bin 37728 Oct 8 13:13 uustat
-rwxrwxr-x 1 bin bin 983 Oct 8 13:13 uuto
-s-x--x 1 uucp bin 38896 Oct 8 13:13 uux

/usr/lib/uucp
-r-r-r- 1 uucp bin 126 Aug 8 09:46 L-devices
-rw-r-r- 1 uucp bin 24 Dec 1 19:82 L-dialcodes
-r-r-r- 1 uucp other 34 Oct 14 08:41 L.cmds
-r--- 1 uucp other 1936 Nov 20 15:47 L.sys
-rw-rw-rw- 1 uucp bin 4 Dec 21 09:08 SEQF
-r-r-r- 1 uucp other 675 Dec 5 14:08 USERFILE
-s-x--x 1 uucp bin 69364 Oct 8 13:17 uucico
-s-x--x 1 uucp bin 26300 . Oct 8 13:17 uuclean
-rwxr-xr-x 1 uucp bin 399' Aug13 11:22 uudemon.day
-rwxr-xr-x 1 uucp bin 139 Aug13 11:22 uudemon.hr
-rwxr-xr-x 1 uucp bin 279 Aug13 11:22 uudemon.wk
-x-- 1 uucp bin 23332 Oct 8 13:17 uusub
-s--x--x 1 uucp bin 36798 Oct 8 13:17 uuxqt

/usr/spool/uucp
-rw-- 1 uucp other 0 Dec 21 08:57 AUDIT
-rw-rw-rw- 1 uucp uucp 13849 Dec 21 09:11 LOO FILE
-rw-rw-rw- 1 uucp uucp 428316 Dec 21 09:11 SYSLOO

/usr/spool/uucppublic
drwxrwxrwx 50 root other 800 Dec 20 11:00 receive
drwxrwxrwx 2 root other 432 Dec 14 04:02 root

Note: The owner ''uucp" referred to in this listing is the uucp administrative
login, not the remote site.

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

7.7.3 UNIX-to-UNIX CoPy Operation. The work done by the commands uucp, uux,
uuto, mail, and rmail, can be divided into two parts:

classification, performed by uucp and uux;
and

execution, performed by uucico and uuxqt.

For uucp and uuto commands, the uucp program classifies the work and sets up the files for
transfer. Next, the uucico program takes over and executes the transfer. For uux, mail and
rmail commands (that are executed over the network), the uux program classifies the work
and sets up the files for command execution. Next, the uuxqt program takes over and executes
the command.

7.7.3.1 uucp Command Execution. When a uucp command is received, the uucp program
classifies the type of work requested. Five classifications are defined:

1. Copy a local file to a directory on the local system

2. Receive a file into a local directory from a remote system

3. Send a file from the local system to a remote system

4. Send a file from one remote system to another remote system

5. Receive a file from a remote system, where the filename specified contains a special shell
character.

Once the request is defined by type, uucp creates files in the spool directory that contain the
information needed by uucico to execute the request. To set up the file transfer, uucp creates
two kinds of special files: data files and work files. Data files contain a copy of the source file
for transfer to remote systems. Work files contain the detailed coordination information
needed to perform a file transfer between systems.

(Different types of work need different information available in their work files. The work
files created in the spool directory can be distinguished by naming conventions. A definition
of each work file type and its contents is provided in paragraph 7.7.3.4.)

As part of the file creation process, the uucp program starts the uucico program. Uucico scans
for work by looking in the spool directory for work files, then begins the execution.

For example, the local system receives the command

uucp autobio grtbksC /crews

to send the file autobio on the local system to the public directory on the remote system,
grtbks. Uucp classifies the work as Type 3, "send local file to remote." In response, uucp copies
the source file into a data file, and writes directions for the transfer into a (Type 3) work file.

The second part of the work process is the command execution. To continue with the example,
uucp starts the uucico program. Uucico finds the (Type 3) work file in the spool directory and
initiates a call to the remote system. The connection is made, the systems agree on a protocol,
and the file is sent. When the transfer is complete, uucico receives any jobs waiting at the
remote site. Individual log files are created for each transaction, and a record of each step in
the execution process is compiled in /usr/spool/uucp/LOGFILE. When the transfer is
complete, the uucico program moves on to the next work file waiting in the spool directory.

If the uucp command is the Type 2 request, a copy of a remote file must be received by the
local system. To initiate a copy at the remote system, the uucp program generates a workfile
and sends it to the remote machine's spool directory. The remote system's uucico program finds
the work file and executes the request. Type 4 and 5 requests are initiated by the local

7-32

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

system generating its own uucp command and sending it to the remote. The remote machine
receives the command, organizes the work into data and (Type 3) work files, and executes.

7.7.3.2 uux Command Execution. Uux command execution follows the same two-step
process as uucp execution: classify the work by creating special files, then execution. When
a uux command is received, uux creates an execute file in the spool directory that contains the
inf01:mation needed by uuxqt to process the request.

The execute file contains several lines, each of which begins with an identifying character and
one or more arguments. The execute file describes each of the files needed for execution (by
both the real filename, and the data or work filename as found in the spool directory), and the
command to be executed (e.g., ls -I, who, or diff). (Refer to paragraph 7.7.3.5 for a line-by-line
definition of the execute file contents.)

The execute file is moved into the spool directory for local execution, or is sent to the remote
system if the execution is to take place on another system. If uux sees that some of the files
required for execution are located on remote systems, the program generates a work file like
the ones created by uucp. The work files are sent to the remote system's spool directory for
execution by the remote's uucico program.

When all files are available, the uuxqt program on the executing machine processes the execute
file. All required files are moved into an execution subdirectory of the spool directory, and the
particular command is executed using the shell specified in the uucp.h header file.

Vuxqt processing involves executing a sh -c of the command line after appropriate standard
input and output have been opened. After processing, the command output is copied or
readied to be sent to the designated standard output.

These paragraphs describe the basic operation of the major uucp programs: uucp, uucico, uux,
and uuxqt. However, these operations only occur if the local system has permission to place
work files and execute files in the spool directory of another system. The accessibility of the
remote system's spool directory remains under the control of the remote system's USERFILE.
When access is denied, the transfer, or remote execution, fails.

7.7.3.3 Spool Directory Filenames. The spool directory files share a naming convention:

type system-name grade number

where

type Is an uppercase letter:
C indicates a work file
D indicates a data file
X indicates an execute file

system-name
Refers to the remote system

grade
Is a single character

number
Is a four-digit, padded sequence number

No spaces separate the fields in the filename. For example, the following are spool directory
filenames:

7-33

UNIX-to-UNIX CoPy (uucp) TUTORIAL

D.winkilA032S
C.kulrunC0328
X.rh;whyX004S

MOTOROLA COMPUTER SYSTEMS

7.7.3.4 uucp-Created Files: Data Files, Work Files. Uucp creates data files and work
files in the spool directory to organize the procesmng done by uucico. The number and type of
files created depends on the kind of work requested by the uucp command received by the
system. AB mentioned in the previous paragraph, uucp commands can be classified into five
types of requests:

1. Copy a file to a directory on the local system

The cp program does the work for a simple copy request. No data files or work files are
created.

The uucp options -d (make all necessary directories), -m (send mail on completion),
and -n (send mail to remote user on completion) are not honored for this type of
request.

2. Receive a file into a local directory from a remote system

A "receive" work file is created for each file requested from a remote system. The
"receive" work file contains a single line of five fields that follows the format:

R source-pathname destination-pathname user's-logi,n -options

where

R
Indicates the "receive" type work file

source-pathname
is either the full pathname of the source file on the remote, or the pathname
expressed as -user/pathname. The -user pathname notation is expanded on the
remote system.

destination-pathname
is either the full pathname of the destination file on the local system, or the
pathname expressed as -user. The -user notation is immediately expanded to the
user's login directory.

-options
lists the requested options.

3. Send a file from the local system to a remote system.

A "send" work file is created for each source file. The source file is copied into a data file,
unlem; the uucp option -c was invoked. (The -c option directs uucp to copy the source
file when the transfer takes place.) The "send" work file contains one line with seven
fields, following the format:

S source-path dest-path user-id -options datafile source-mode

where

s
indicates a "send" type work file

source-path
is the full pathname of the source file

7-34

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

dest-path
is the full pathname to the destination file, or the abbreviated notation,
- /user I filename.

-options
lists the requested options

data-file
is the name of the data file in the spool directory that contains a copy of the
source file

sour a-mode
is the file mode of the source file, expressed as an octal number (e.g., 0664).

4. Send a file from one remote system to another remote system.

5. Receive a file from a remote system, where the filename specified contains a special shell
character.

The last two work types both require a remote system to initiate a copy on behalf of the
requesting system. Processing involves sending a uucp command to the remote system
containing the source file. The remote system then processes the uucp command for the
sending system. If the remote system does not include uucp as an executable command
in its L.cmds file, the work requests will fail. (Transferring files through an
intermediary system with uucp does not require a uucp entry in the L.cmds file since
the remote systems do not initiate the copy; the copied file arrives in the remote system's
public directory.)

7.7.3.S uux-Created Execute Files. Execute files are created by uux and processed by
uuxqt on the execution machine. Although the number of lines in the file may vary, each
line begins with an identification character and contains one or more arguments. The order in
which the lines occur in the file is not significant. The line identification characters and the
argument definitions for each line are:

U user system

This line defines the requestor's system and login name.

F generated-filename real-filename

Every file needed for the command execution must appear in an F-line, one file per
F-line. The generated filename refers to the name of the file as it is stored in the .
spool directory, either as a data file, or a file received from another system. The real
filename is the file portion of the filename, without any path information. If no files
are required for execution, no F-lines are included in the execute file.

I filename

This line refers to the standard input. Standard input is designated in the uux
command with a < symbol, or from the - option, which specifies that standard
input for the commmand-string is inherited from the standard input of the uux
command. If no standard input is specified, /dev/null is used. Notice that if a
standard input is specified, it also appears as a required file in an F-line.

0 filename system-name
This line refers to the standard output. Standard output is designated in the uux
command with a >. If standard output is not specified, /dev/null is assumed. The
use of >> to append the output to another file is not implemented.

7-35

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

C command [arguments]
The arguments included in this line are the arguments specified in the command.

7.7.4 uucico Processing. The uucico program processes the spool directory files created by
the uucp program. Uucico may be started in any of four ways:

• By a local system daemon, such as the cron daemon

• By a uucp program

• By the system administrator (usually for debugging)

• By a remote system (if the local system permits)

When uucico is invoked by the remote system, it is said to be operating in "slave" mode.
When started by any other means, uucico operates in "master" mode. When uucico is started,
several options may be invoked:

-rl Start the program in master mode. When uucico is initiated by a program or a
daemon, the option is invoked. (The 1 is the numeral 1.)

-ssys Do work for system sys only. When specified, uucico initiates a call to system sys
regardless of whether or not work is found in the spool directory. The option may
be used to poll a remote system.

-ddir Use the specified directory as the spool directory. This option has applications for
debugging. Refer to paragraph 7.11 for further information.

-xnum Specifies a debugging level between 1 and 9. Refer to paragraph 7.11 for further
informaticm.

Uucico processing performs five specific functions:

• Searches spool directory for work

• Initiates a call to the remote system

• Negotiates an acceptable line protocol

• Executes all requests from calling system and from the remote system

• Logs all transactions

Each processing task is described in the paragraphs that follow.

7.7.4.1 Locate Work. Once started, uucico searches the spool directory for work files,
designated by a filename that begins with C . A list of systems to be called is drawn up
from the informaticm contained in the work files. A random selection determines which will
be the :first system called.

7.7.4.2 Contact Remote System. Before u.udco calls another system, several files are
consulted to obtain information. The selected system, as named by a work file, is checked
against the system names contained in L.sys. From the L.sys file, uucico obtains calling
informaticm, including:

7-36

MOTOROLA COMPUTER SYSTEMS

System name

Times when calls are accepted (by day and hour)

Device type needed

Line speed or class

UNIX-to-UNIX CoPy (uucp) TUTORIAL

Phone number (if an ACU is used) or device name (if no ACU is used)

Login id and remote system password

If the phone number in L.sys contains an abbreviation, uucico reads L-dialcodes and
interprets the abbreviations as dialing sequences.

Next, uucico scans the L-devices file to find a device that meets the requirements specified in
L.sys.

After the calling system has logged into the remote, both systems identify themselves with
their unique system-names. Each system consults its USERFILE to obtain access information.

7.7.4.3 Select Line Protocol. The slave system, the system called, initiates a handshake to
begin the conversation. The slave tells the master system that it is ready to receive the master
system identification and the conversation sequence number. The master sends its response.
The slave system may now reply that a "call-back" is required, and the current conversation
is terminated. Alternatively, the slave may verify the master system response and, if it is
accepted, begin protocol selection.

Protocol selection begins with a message from the slave system that takes the form:

P protocol-list

where the protocol-list is a string of characters, each of which represents a line protocol. The
master system checks the list for a character corresponding to an available line protocol and
returns a message of the form:

Ucode

where the code is a one-character protocol letter, indicating a common protocol, or an N,
indicating there is no available protocol common to both systems.

7.7.4.4 Execute Requests. Once a protocol is selected, the master system begins sending
messages to the slave system. Five types of messages are sent; each message is recognized by
the first character of the message:

s Send a file

R Receive a file

c Copy complete

x Execute a uucp command

H Hang up.

For each message sent by the master system, the slave system responds \Vi th a message of its
own. The slave system messages tell the master if it has permission (as outlined in the slave
system's USERFILE) to access the file or directory requested; and, having cr-Jssed the first
hurdle, if the file and directory read and write permissions are set so that the work can
proceed. The slave system response to a send message from the master system is either SY or
SN, corresponding to "Yes, work can proceed" or "\"o, work cannot proceed." The pattern is
the same for all messages from the master: RY or RN, XY or XN, HY or HN.

7-37

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

After a file is copied into the spool directory of the slave system, the slave sends a copy
complete message. The CY indicates the copy was completely successful, the file is at the
specified destination. A CY5 message usually means the transfer was only partially
successful; the file may be located in the spool directory of the slave system with a filename
beginning with TM.

Some diagnostic information is available from the slave system responses. For example, a CNS
response to a copy request usually indicates the slave system ran into trouble (typically
permission problems) while trying to transfer the file into the destination file. An SN4
response from the slave to the master system's send request usually means the request is
denied because the slave cannot create the required work files. An SN2 response indicates the
target file cannot be created, typically because of permission restrictions. In response to a
receive request from a master system, an RN2 response indicates the slave system can't find
the file, or cannot send it, typically, because of permission problems.

When the master system completes processing its list of work files for the slave system, it
sends an H request to slave: Ready to Hang Up? The slave system searches its own spool
directory to see if it has any work waiting for the master system. If it finds a work file that
requires processing, a HN message is sent and the programs switch roles. Master becomes
slave, slave becomes master. When the new master system completes its processing, it now
sends a H message to the new slave. A scan of the spool directory is made and if no work files
are found, a HY reply is made. When a HY reply is received by the master, it is echoed back
to the slave system and the protocols are turned off. Each machine sends a final 00 message to
the other. The original slave system cleans up any left files and terminates. The original
master system continues processing and starts to gather the information needed to contact the
next system on its list of work files.

7.7.4.5 Log Transactions. Throughout the conversation between the two systems, each
request and its result are logged on both systems in LOGFILE: Tb:watch the transactions as
they occur, enter the command

tail -f /usr/lib/uucp/LOGFILE

To exit the loop, press the Interrupt key.

7-38

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

7.8 Administrative Concerns

Administrative concerns about the impact of the network on system operations generally fall
into three areas:

• System security

• Interconnection methods

• Administrative workload

Each of these areas is addressed in this section.

7.8.1 System Security. The security threat represented by the uucp network to any
system can be significant. Any command that is executable by a particular remote system
user, or any file that can be copied by a particular remote system user, is, potentially, available
to every user on the uucp network. Bugs exist in the programs; malevolent users can disguise
their user-ids. Local users may become lax about protecting sensitive information.

However, security features can be installed that reinforce and supersede the normal file
protections available through USERFILE, /etc/passwd, and L.sys. (Refer to paragraph 7.10,
"Installation".) A list of recommended precautions is presented below. Administrators are
encouraged to read through the list carefully and adopt the ones best suited to their site.

Suggested security measures that can be implemented by system administrators when uucp is
installed are as follows:

1. The owner of the uucp programs should be a unique administrative login. Make this
login different from the login used for remote system access to the uucp programs.

2. The programs uucp, uucico, uux, uuxqt, uulog, and uucl.ean should be owned by the uucp
administrative login. The setui.d bit should be set, and the programs' file mode
permissions should be "execute" only.

3. The login for uucp programs should not gain access to a standard shell. Instead, start the
uucico program so that all work must be done through uucico.

4. A path check should be done on the name of every file that is to be sent or received as
part of a uucp program command. The USERFILE can be set up to require call-back for
certain login-ids. (The call-back requires that both systems have "dial-<>ut" and "dial-in"
modems, or are hardwire connected.)

5. A conversation sequence count can be established between systems so that the slave
system can be more confident that the calling system is who it says it is. (If a system
goes down during a conversation. it can lose the sequence count. If this happens, calls
will fail until the count is corrected manually by the administrator.)

6. The uuxqt program is installed with a list of executable commands. A "PATii" shell
statement is added to the beginning of the command line according to instructions
specified in the uu.xqt program. The installer has the option of modifying the list of
executable commands, or changing the restricted PATii, as desired.

7. The file Lsys should be owned by the uucp administrative login. In addition, the file
should have permission mode 0400, owner read-<>nly, to protect the remote sites' login
information.

8. Establish a dial-up password by creating files /etc/dialups and /etc/tL.passwd.
Creating these files must be done carefully. The procedure is outlined in the SYSTEM
V 168 Administrator's Gui.de.

7-39

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

From a corporate perspective, the uucp network news might represent a security problem for
product information. Any information posted on the Usenet bulletin board is considered
"public knowledge" and, as such, cannot be protected by trade secret agreements.

7.8.2 Interconnection Methods. Two means of interconnection are supported by the uucp
programs:

Direct connection using a null modem

Connection over the Direct Distance Dialing (DOD) network

SYSTEM: V /68, Release 2.1 supports auto-dial modems ("smart" modems) for access to the DDD
network; it does not support automatic calling units (acus).

In choosing hardware, the equipment used by other processors on the network must be
considered. For example, most data sets available on systems are 1200-baud data sets. If a
system on the network has only 103-type (300 baud) data sets, communication with them is
not possible unless the local system connects a 300-baud data set to a calling unit.

If hard-wired connects are used between systems, the distance between the systems is critical.
A null modem cannot be used when the systems are separated by more than several hundred
feet.

7.8.3 Administrative Workload. Overall, the impact of uucp on an administrator's time
is minimal. The amount of added work depends on the size of your system and the number
of users you have. In practice, bookkeeping chores may be the greatest annoyance. Passwords,
telephone numbers and logins change frequently on the network, and, if an administrator
does not keep the system files up to date, data lines can be tied up trying and re-trying to
make connections with bad information.

A second source of extra work is Usenet. If a site signs up to receive articles for all
newsgroups, an average of 530,000 bytes of data must be processed daily. The installation of
Usenet is a one-time chore, but it is time-consuming, none the less.

7-40

MOTOROLA COl\fPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

7.9 Maintenance and Administration

Most of the work involved in managing and maintammg uucp revolves around cleanup.
Some jobs use cron(l~f) to start shell scripts and shell files which call up the uuclean, uulog,
and uusub programs. Direct intervention by the administrator is required for other jobs. The
maintenance programs are:

uuclean:

uulog:

uusub:

A program to purge old and undelinrable jobs

A program to merge individual LOG files into the current LOGFILE

A program to monitor the connections and traffic among the members of a defined
uucp subnetwork

uudemon.day:

A program invoked daily by the cron daemon to perform uucp administration and
maintenance. Similar programs, uudemon.hr and uudemon.wk are also distributed
with this release.

The files that need attention are:

/usr/spool/uucp/ERRLOG: The uucp system error file

/usr/spool/uucp/LCK . . xxxx: Lock files

/usr/spool/uucp/LOG.xxxx: Indi\·idual log files

/usr/lib/uucp/SQF I LE: Sequence check file

/usr/spool/uucp/STST .xx xx: Failure log file

/usr/spool/uucp/TM.xxxx: Temporary files created during an unsuccessful transfer

7.9.1 Maintenance Using cron. Cron, the clock daemon, reads entries in the file
/usr/spool/cron/crontabs/uucp and executes shell scripts and shell files at the dates and
times specified. Cron is recommended for the performance of several routine uucp tasks.

First, the uucp program spools \1.:ork and attempts to start the uucico program each time a
uucp command is entered. Occasionaliy, uucico fails to start. The crontab file should contain
an entry to start the uucico program in master mode on an hourly basis.

Second, individual LOG files are created in the spool directory during uucp program execution.
The files contain information about queued requests, calls to remote systems, command
executions, and file copy results. These individual files should be merged periodically with
/usr/spool/uucp/LOGFILE by executing the uulog program. -

Third, cron is extremely useful for managing the routine cleanup of TM <temporary), STST
(failure report), and LCK. (lock) files that accumulate in the spool directory if failures occur
during a connrsation. Work files and data files that cannot be executed because of bad
telephone numbers or obsolete login information also must be cleaned out after a reasonable
period of time. Shell files that are executed on an hourly, daily, and/or weekly basis contain
uuclean commands with options that remove files after a specified length of time. For
example, a shell file executed hourly might contain the invocation

7-41

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

/usr/lib/uucp/uuclean -pST -pC. -n48

to remove work files and old status files older than 48 hours.

(Refer also to the files uudemon.day, uudemon.hr, and uudemon.wk in /usr/lib/uucp.)

Fourth, an entry in crontab should initiate a daily or weekly procedure to save or remove
old copies of LOGFILE.

Fifth, an administrator may want statistics monitoring the traffic between specific systems.
The uusub program provides the number of files and bytes sent to a particular system over a
specified period. The program can be initiated daily by placing the command

uusub -call -u 24

in the crontab file.

7.9.2 uucp File Maintenance. This paragraph contains background information about
uucp-associated files that require maintenance.

7.9.2.1 ERRLOG. ERRLOG records uucp system errors in the spool directory. Entries
rarely should be found in this file. ERRLOG reports incorrect modes on required files or
directories, missing files, and read/write system call failures on the transmission channel.

7 .9.2.2 LCK.xxxx. Lock files may be left in the spool directory if runs abort. Lock files
are ignored after 24 hours. To call before the 24 hours elapse, remove the lock file with an
rm command.

7.9.2.3 LOG. The LOG files are created with permission mode 0222. If the program that
created the file terminates normally, the LOG file permission mode changes to 0666. Aborted
nms may leave the files with permission mode 0222, and uulog will be unable to read, merge
and remove the files. The administrator must intervene with a rm command, or change the
permission mode to 0666 and wait for the uulog program to do the merge.

7.9.2.4 Sequence Check File. Each remote system that performs conversation sequence
checks has an entry in the SEQF file. Initially, the entry contains only the system-name.
The first conversation adds two items to the entry line: the conversation count, and the. date
and time of the most recent conversation. Each conversation updates these entries. If a
sequence check between the two systems fails, the administrator must intervene manually to
correct the en tries.

7.9.2.5 STST.xxxx When a call to a system fails, the STST file forces a delay before the
local system tries the call again. The STST files are created following an "ordinary" failure,
such as busy devices or dial-up or login misinformation. STST files contain a "talking" status
when two systems are communicating. If an abort occurs during a conversation, an STST file
containing a "talking" status may be left in the spool directory indefinitely. The administrator
must intervene to remove this file before another conversation can be attempted.

7.9.2.6 TM. TM files are temporary files created in the spool directory while files are being
copied from a remote system. The filenames follow the format:

TM.pid.nnn

where pid is a process-id, and nnn is a sequential, three-digit number that is reset at zero for
each invocation of uucico and incremented for each file received.

After the remote file is received, the TM file is moved or copied to the destination directory on
the local system. If processing terminates prematurely, or if the final move or copy command
fails, the TM file remains in the spool directory until it is removed by uuclean.

7-42

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

7.10 Installation

After planning for security and system applications, administrators define the extent of their
system's interaction with the network by making the appropriate entries in the following
object files:

/etc/passwd

/usr/li b/u ucp/L.sys

/usr/lib/uucp/L-devices

I usr /lib/ u ucp/L-dialcodes

/usr/lib/u ucp/L.cmds

/usr/lib/uucp/USERFILE

/usr/lib/uucp/FWDFILE. /usr/lib/uucp/ORIGFILE (optional)

A change must also be made to the kernel to define the system's system-name.

Administrators with source distribution may want to reconfigure the workings of the uucp
programs at some later date. For these administrators, a section is included at the end of this
section that provides necessary information on changing the makefde, the header file, and
compiling the system.

7.10.1 Modifying the Kernel. The operating system kernel must include the system­
name, or nodename, that will identify your system. The procedure for making this change is
described in the following steps.

1. Create a file called zrp.c in the directory appropriate to your machine:

For an EXORmacs: /usr/src/uts/m68k/M68000/MACScf

For a \':\f03: /usr/src/uts/m68k/M68010/VM03cf

For a V:\fElO: /usr/src/uts/m68k/M68010/VME10cf

For a VMElOOO: /usr/src/uts/m68k/M68020/VME131cf

The file should contain:

#include < sys/utsname.h >
#define NODENAME "xyzzy"
#define MACIIlNE "abcdej
struct utsname utsname = {

};

"unix",
NO DEN AME,
"sysV /68",
"r2v2.1",

/"8 characters max, excluding " marks "!
/"6 characters* I

where "'xyzzy" refers to a unique ncxiename for the system and "'abcdej refers to the
name of the machine for which the kernel is configured, e.g., .\168000 or .\f680HJ.

2. Type the following commands to install this file:

7-43

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS INC.

cc -c zrp.c
mv zrp.o name.o

If you are using the 68020-based system, skip the rest of this section and refer
to the SYSTEM V /68 Operator's Guide, Section 3.2 for further installation instructions.

3. Incorporate this new information into the kernel. To generate a new kernel, a make(1)
command is executed from inside the build directory.

cd /usr/src/uts/m68k
make kernel

where kernel is the name of the system kernel. The names of the system kernels and
the new kernels that result from the make(t) command are listed in the table that
follows.

KERNELNAME KERNEL PRODUCED BY MAKE COMMAND

macs16 /usr/src/uts/m68k/M68000/MACS16unix
macs1622 /usr/src/uts/m68k/M68000/MACS1622unix

macs25 /usr/src/uts/m68k/M68000/MACS2Sunix
macs2522 /usr/src/uts/m68k/M68000/MACS2522unix·

macs80 /usr/src/uts/m68k/M68000/MACS80unix
macs8022 /usr/src/uts/m68k/M68000/MACS8022unix

vme1015 /usr/src/uts/m68k/M68010/VME1015unix

vme1040 /usr/src/uts/m68k/M68010/VME1040unix

vm0316 /usr/src/uts/m68k/M68010/VM0316unix
vm031622 /usr/src/uts/m68k/M68010/VM031622unix

vm0325 /usr/src/uts/m68k/M68010/VM0325unix
vm032522 /usr/src/uts/m68k/M68010/VM032522unix

vm0380 /usr/src/uts/m68k/M68010/VM0380unix
vm038022 /usr/src/uts/m68k/M68010/VM038022unix

4. Move the kernel into the root directory for testing:

mv new.Jcernel /unix.test
chmod 0664 /unix.test

5. Move into the root directory to perform the test with the command

cd I

6. Update the "superblock" with sync(l). Enter the command sync three times.

7. Press the RESET button and boot off the new kernel for testing. Mal.<.e sure that the
system boots normally and simple operations such as changing directories and listing.file
permissions are working. The -n /unix.test option is needed for ps(l) and crash(lM),
and the -N /unix.test option is needed for ipcs(1) to work properly. (The opticms are
required whenever a non-default kernel is used.)

7-44

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

8. After the kernel has been tested .and proven, rename it with the command

mv /unix.test final..J1.ame

9. Make the newly created kernel the default kernel. Be aware that once the ln command
is executed, the previous contents of the files are lost. Therefore, as an extra precaution,
some administrators may want to save the old /unix kernel as some other filename
before installing the new kernel.

To install the new kernel, type the commands

ln [final..J1.ame] /unix
ln [final..J1.ame] /stand/unix

7.10.2 Initiating Terminal Lines: Getty. The /etc/inittab file supplies the script for
init(1M) to perform as a general process dispatcher. /nit reads /etc/inittab, which lists each
line by tty number and describes how init should treat the process specified for that line. For
each line, init is directed either to start a getty process for the line, or to turn the process off.
The line' process, /etc/getty, initiates individual terminal lines.

If init invokes getty for a particular line, getty reads /etc/gettydefs to obtain the login
prompt and, when a user logs in, attempts to read the user's name while adapting the system
to the speed and terminal settings. The /etc/gettydefs file contains information used by
getty(1M) to set up the speed and terminal settings for a line.

For uucp operation, the L-devices file lists the lines that are directly connected to other
systems, or are available for calling systems. The /etc/inittab file must have corresponding
entries for dial-out lines that turn off /etc/getty. For example, if L-devices lists tty401 as a
uucp line, then the /etc/inittab file must have a corresponding entry:

nn:2:off:/ etc/ getty tty401 1200UUCP

where init turns off the getty for the line. If getty and uucp are running together, both
processes try to read from and write to the same file, ttyxxx. The two processes compete for
input, and the result is havoc. Another reason for turning off the getty is permissions. Getty
sets the permissions for a line to be crw - r - - r - - , for system security. However, -uucico
requires the line permissions on a dial-out line to be crw - rw - rw - or uucp will not
function. The field 1200UUCP is read only when the /etc/inittab action field indicates the
getty process should be started.

To receive a call from a remote system, one tty line in the /etc/inittab file must be labelled
for a uucp line. A sample /etc/inittab line is:

nn:2:respawn:/etc/getty tty402 1200UUCP

The label 1200UUCP would be defined in the file /etc/gettydefs. A sample definition found
in /etc/gettydefs might be:

1200UUCP # B1200 UPCL -PARENB -INPCK CS8 # B1200
SCTOPB CREAD ISTRIP ICRNL IXON BRKINT OPOST ONLCR
!CANON ECHO ECHOK ISIG -PARENB -INPCK CSS IXANY
TABS # login # 1200UUCP

For further information, refer to init(tM), gettydejs(4), inittab<.4), and getty(lM).

7.10.3 Passwords. Remote systems that dial-in require a login-id and an entry in the local
/etc/passwd file. Administrators may also add a second layer of protection and require
specific dial-up passwords.

7-45

UNIX-te>-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

The remote system rivwhy login-id is nuucp, which commonly is shared by systems across
the network. An example nuucp entry in the /etc/passwd file is:

nuucp:zaaAA:6:1:UUCP.Admin:/usr/spool/uucppublic:/usr/lib/uucp/uucico

After the nuucp login and password is verified, the remote system gains access to the uucico
program, not the shell. The spool directory is used as the working directory.

For security, the login-id used by a remote system should not be used by any local user.
Several remote systems may share the same login-id. (At the start of each conversation, the
systems exchange unique system-names to identify themselves.)

(Because u.ucico runs setuid-to-uucp, it makes little difference from an operational perspective
if remote systems share a login-id. However, one reason for giving different sites different
login-ids and passwords is security. If any site's login-id/password is compromised, a new
password can be assigned without affecting every other site.)

The /etc/passwd file requires an entry for the administrative uucp login. The login-id
identifies the owner of all uucp object and spooled data files, and is commonly uucp. An
example entry for the uucp login-id is:

uucp:zAvLCKp:S:l:UUCP.Admin:/usr/lib/uucp:

The uucp administrator gains access to the standard shell, not the uucico program. If a login-id
other than uucp is chosen, the make file entry OWNER=uucp must be edited to reflect the
new login-id.

7.10.4 L.sys. The L.sys file contains information needed by the calling system to contact
another machine on the network. Incoming calls are not checked against this file. Each en try
represents a system and contains six fields:

system-name time device speed/class phone-no login

(Multiple entries for one system may be present when the system can be reached by more
than one communication path, e.g., by direct connection or an acu. Each entry defines a
different path. The paths are tried in sequential order until the system is reached.)

The fields in L.sys are separated by one or more spaces, not tabs, and are defined as follows:

system-name

time

The name of the remote system.

A string indicating when the system may be called. The string gives the day-of­
week, and the time-of-day expressed on a '24-hour clock, and contains an optional
subfield to indicate a minimum time (in minutes) before a retry. The days are
specified as: Su, Mo, Tu, We, Th, Fr, Sa, and Wk (any weekday). Uucp recognizes
"Any" to mean a remote system can be called at any time. If the local system is a
polled system and can never initiate calls, any non-recognizable sequence can be used;
by convention, "Never" is common.

Time is specified as a range. If no range is given, calls are made at any time. Time
ranges may cross 0000, spanning one day to the next, for example:

Wk0800-0600,45

describes a system that can be called on weekdays at any time from 8 a.m. to 6 a.m.
the next morning. Calls cannot be made from 6 a.m. to 8 a.m. any day. The system
must wait 45 minutes before retrying after a failed attempt to connect.

7-46

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

device
Either ACU for automatic calling u~it or ttyxx where the tty number is the special
filename used for the hardwired device name, e.g., ttyO.

speed/class

phone

login

Typically, the line speed for the call (e.g., 300). When the "C" library routine
"dialout" is available, the "dialout class" is indicated.

An abbreviated version of the telephone number for the remote system. Phone is
composed of an optional alphabetic abbreviation (which is defined in the L-dialcodes
file), and a numeric part. An example is pd3448. For a hardwired-connected system,
the field contains the same information as the device field.

Login information arranged in a series of fields and subfields, separated by spaces, that
mirrors the expected conversation sequence between the calling system and the called
system. For example, consider the login information fields:

ogin:- -ogin:- EOT -ogin:- BREAK.1 - ogin: nuucp sword: secret

The local system interprets this string as follows:

A. When the remote system answers, expect to receive a string ending in the
letters "ogin:". If expected string is received, send the string contained in the
next field, nuucp.

1. If the expected string "ogin:" is not received, send the string in the
subfield: - -. The hyphens are not read as characters themselves, but as
delimiters for the subfield. Thus, the hyphens delimit a null field, i.e., a
line feed. (A null field also can be specified with the string: "" .) After
the line feed is sent, the local system should expect to receive a string
ending in "ogin:". If the expected string is received, send the string
contained in the next field: nuucp.

2. If the expected string is not received, send the string in the
subfield: "EOT" (which translates as a CNTRL-D). Expect to receive a
string ending in "ogin:". If the expected string is received, send the string
contained in the next field: nuucp.

3. If the expected string is not received, send the string in the subfield:
BREAKl. (BREAKl is a break sequence created through a simulated
BREAK character, explained later in this paragraph.) Expect to receive a
string ending in "ogin:". If the expected string is received, send the string
contained in the next field: nuucp.

4. If the expected string is not received, an error message is reported to
LOGFILE: FAILED (LOGIN). An STST file is created, and the job
remains in the spool directory to be retried later.

B. After the nuucp login is sent, expect to receive a string ending in the letters
"sword:" If the expected string is received, send the string contained in the next
field: secret.

Thus, the generalized form of the login information follows the format:

expectA sendA expectB sendB expectC sendC

The expect fields may contain several subfields expressed as:

7-47

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

ex pectA[-send-ex pect-send-ex pect_] send A ex pectB ...

where the send string is sent if the prior expect is not read successfully, and the
expect following the send is the next expected string. Because the fields are
sequential, the strings themselves need not be unique.

Special strings can be sent during the login sequence. The string EOT sends a
CNTRL-D character that exits one login sequence and initiates another. The EOT
string is used to clear a jam or noise on the line. The string BREAK sends a simulated
BREAK character, using line speed changes and null characters. Because the BREAK
is simulated, it may not work on all devices or systems. A number from 1 to 9 may
follow the BREAK, indicating the number of null characters to be sent (default is 3).
BREAKl usually gives the best results for lines that are 300-1200 baud.

Use the null string in the first expect field if no characters are expected from the ·
remote machine initially, or to immediately send a string (e.g., line feed) to the called
machine.

Four character strings may be included in the login-id send string to force specific
actions. For example, the login-id nuucp\sTZ=MST7 contains a backslash-s that
sends a space character, followed by a new assignment for the timezone variable.
The four characters are: ·

backslash-s

backslash-cl

backslash--<:

backslash-N

Send a space character.

Delay one second before sending or reading more characters.

If placed at the end of a string, suppress the newline that is
normally sent; else, ignore.

Send a null character.

Typical en tries in the L.sys file are:

winkil Any,45 ACU 300 pd.3448 ogin:-ogin:-EOT-ogin: nuucp ssword: cg> lee
kulrun Any tty12 9600 tty12 in-in nuucp ssword: sysV68

A typical entry for an active local system that is connected to a remote system through an
auto-dial modem is:

rivwhy Any ttyOl 1200 ttyOl '"' ""'"'AT OK- AT OK ATDT3332 NECT ""in-in
nuucp ssword: sysV68 ssword: canduc

Notice in the auto-dial example the called system rivwhy expects the calling system to
respond with two passwords.

When the local system is passive1 or polled, the entry in the might be.

spymys Never

This entry makes the system spymys known to the local system and allows jobs to spymys
to be queued in the spool directory, but the local system must wait to be polled by spymys.

In general, when an entry is placed in the Lsys file, do not include any newline characters,
or if they must be used, use a backslash to escape them.

7.10.5 L-devices. The L-devices file contains the list of lines that are directly connected
to other systems, or are available for calling systems. There is one entry per line; each entry
describes the line attributes and capabilities. Fields should be separated by one or more spaces,
not tabs. The format of each en try is:

7-48

MOTOROLA COMPUTER SYSTEMS

type line call-device speed protocol

where the fields are defined as follows:

type

UNIX-to-UNIX CoPy (uucp) TUTORIAL

One of two keywords: DIR indicates the line is directly connected to another system;
ACU indicates the line uses an automatic calling unit. An X.25 permanent, virtual
circuit is classified as DIR.

line
The device name for the line. For example, ttyab names a direct line; culO names a
line connected to an acu.

call-device
For a line with keyword ACU, this field contains the acu device name. For a line
with keyword DIR, the field is ignored. However, a placeholder must be used so that
the protocol, field is interpreted correctly.

speed
The line speed at which the connection should run. If an X.25 link is used, this field
is ignored.

protocol,
An optional field used only when a non-default terminal protocol is required. The
X.25 protocol is the only non-default protocol supported, and is indicated with an x.

Typical en tries in the L-devices file are:

ACU culO cuaO 1200
DIR tty33 0 9600
DIR tty29 0 1200
DIR x25.s0 0 300 x

where the first entry describes a line for a 1200-baud acu, and the last entry is for an X.25
synchronous direct connection between two systems. In the last entry, the protocol field is
filled in and the call-device and speed fields are meaningless.

7.10.6 L-dialcodes. The L-dialcodes entries define the abbreviations for telephone
symbols used in the L.sys file. Fields should be separated by one or more spaces, not tabs.
The en try format is:

abbreviation dialing-sequence

where the dialing sequence is prefixed to the phone number listed in the L.sys file. For
example, an entry in L-dialcodes:

ore 503-241

would direct a system that read ore-2463 in the L.sys file to send 503-241-2463 to the
dialing unit.

7.10.7 L.cmds. The L.cmds file contains a list of commands that the local system is
empowered to execute for a calling system. Entries in the file are entered one line per
command. For example, an L.cmds file might contain the following entries:

rm ail
rnews

These entries indicate the local system can execute rmail and rnews commands on behalf of
all remote systems.

7-49

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

To provide particular machines with execute permission for a command, the entry in L.cmds
takes the form:

cmd, machinel, machine2, ... machineX

where only the listed machines can execute the command cmd.

7.10.8 USERFILE. The USERFILE controls file accessibility by defining the pathways
within the local system available to the local and remote uucp user.

USERFILE entries follow the format:

login,system [c] pathname [pathname]

where each field is separated by a single tab, and

login is the login name of the uucp user, remote computer, or a null field.

system is the remote computer's system-name. If null, the local system is assumed.

c is an optional "call-back required" flag.

pathname is the pathname prefix that defines the files to which login,system may have
access. For example, if pathname was defined as /usr/spool, only files with
pathnames that begin /usr/spool can be accessed by login,system.

The USERFILE is read and interpreted for each uucp command submitted to the system, but
different entries in the file are read, depending on the uucp user and the type of command. In
general, if a login-id or system~name identifies a user or system that does not have a specific
entry, the local system grants access according to the first entry that contains a null login-id
or null system-name. Refer to the specific explanations that follow.

The local system uses the USERFILE information to limit file access as follows:

If a remote system logs in:

The system checks the USERFILE for an entry that begins with a login,system that
matches the remote system. Many lines in the USERFILE :may have the same login
name. If the remote system's name is specifically included in an entry, the local
system provides access through the pathname described in the entry. If the remote
system-name is not found, the local system reads the first entry that contains a
matching login with a null system-name.

If the line matched by a remote system logging in contains c:

The c indicates a call-back by the local system before any transactions occur.

If a uucp command originates in the local system:

The system reads the USERFILE for the first entry that matches the login of the
requesting user. If no entry lists the user by login name, then the system accepts the
first entry that contains a null login name with a null system-name. (Null system­
name is read as "local system".) The pathnames listed in the entry line are the
directories accesmble to the user. If the file required for the uucp command is not
located within the accessible pathway, the uucp command fails. A message appears
in the LOGFILE: REQUEST DENIED.

If a uucp command originates in a remote system:

The system reads the USERFILE for the first entry that matches the login,system of
the remote system. If no en try specifies the remote system by name, the system reads
the first entry that contains a matching login and a null system name. The

7-50

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

pathnames listed in the entry line are the directories accessible to the remote system.

For example, the USERFILE entry in the system grtbks

nuucp,rivwhy /usr/spool/uucppublic

limits rivwhy access to files contained in the public directory.

Consider the lines

nuucp, winkil /usr/bask /usr/spool/uucppublic
nuucp, /usr/spool/uucppublic

When winkil logs in as nuucp, it is given access to /usr/bask and the public directory,
/user/spool/uucppublic. When any other system logs in as nuucp, it receives access only to
the public directory.

USERFILE restrictions are in addition to the permission modes; they do not replace the
normal uucp file permission requirements.

NOTE: USERFILE accepts up to 25 entry lines. If more than 25 entries are included in the
file, uucp ceases to function.

7.10.9 FWDFILE, ORIGFILE. Two files allow an administrator to restrict the forwarding
mechanism that operates for mail and rmail. FWDFILE and ORIGFILE can prevent remote
systems from forwarding mail through a local link to sites that are expensive to reach (e.g., an
overseas site).

The format of the files is the same:

system, [user] , [user]

ORIGFILE contains a list of systems (and users) for whom the local system forwards mail.
The system-name refers to the system where the mail originated, not the last system that
forwarded the mail to the local system. Using ORIGFILE to control the mail is advised only
if the administrator is designing a highly restrictive system.

FWDFILE contains a list of systems (and users) to whom the local system will forward mail.
The system-name refers only to the next system in the forwarding chain; it need not be the
final destination. For example, the entry

bur lne,jm,rch,

restricts mail to users jm and rch at an overseas site, burlne.

FWDFILE is a subset of the L.sys file of known systems.

7.10.10 Reconfiguring uucp. The information provided in this paragraph is useful only to
administrators with source code.

Several source modifications may be required before the system programs are compiled. The
changes are made to the local system-name and to directories used during compilation and
execution. The directories affected are:

Ub

program

(Default location: /usr/src/cmd/uucp) This directory contains the Source
files for generating the uucp system.

(Default location: /usr/lib/uucp) This is the directory used for the
executable system programs and the system files.

7-51

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

spool

xqtdir

(Default location: /usr/spool/uucp) This is the spool directory used during
uucp execution.

(Default location: /usr/spool/uucp) This directory is used during execution
of execute files.

Two files may require changes: the makefile file, uucp.mk, and the uucp.h file. The
directories spool and xqtdir should have 0777 for their permission modes.

7.10.10.1 uucp.mk. Several variable definitions may need changes:

INSDIR This is the program directory (e.g., INSDIR = /usr/lib/uucp). This parameter is
used if "make cp" is used after the programs are compiled.

IOCTL This must be set if an appropriate ioctl interface subroutine does not exist in the
standard "C" library. The statement IOCTL=ioctl.o is required.

PKON The statement PKON=pkon.o is required if the packet driver is not in the kernel.

PUBDIR This is a public directory for remote access, and the login directory for remote uucp
users. This should be the same as the public directory defined in uucp.h.

SPOOL This is the uucp spool directory. It should be the same directory as defined in
uucp.h.

XQTDIR This is the directory that uuxqt uses during command execution. It should be the
same directory as defined in uucp.h.

OWNER This is the administrative login for uucp.

7.10.10.2 uucp.h. The program and spool names should be changed if they are different
from the default values. Other uucp.h variables that may be defined are:

UN AME

MYNAME

ACULAST

DATAKIT

Define this if the uname function is available.

Change to the name of the local system if UNAME is not defined.

This is the character required by the acu as the last character. For most
systems, it is a - .

This should be defined if the system is on a datakit network.

DIALOUT This should be defined if the "C" library routine dialout is available.

7.10.10.3 System Compile. The command

make install

makes the directories, compiles the entire system, sets the permission modes, and copies the
programs to the appropriate directories.

7-52

MOTOROLA COMPUTER SYSTEMS UNIX-to-UNIX CoPy (uucp) TUTORIAL

7.11 Debugging Uucp

Typically, problems with uucp develop because of restrictive permission modes, incorrectly
defined variables, or bad hardware connections. This section provides a checklist for
troubleshooting problems.

If a previously successful connection fails, look first for LCK and STST files that may have
been left in the spool directory from a communication failure. LCK files should be removed
from the directory during the system boot by the /etc/re file. If a heavily used remote
system is down for an extended period, the local sytem may advance the STST "recall"
counter past the MAX RECAlL number. Removing the STST file allows calls to be made.
(Refer to paragraph 7.5 for information about reading the LOGFILE, locating LCK and STST
files, and removing them.)

Communication problems may be traced to mis-matched baud rates, incorrect cabling or the
lack of a null modem. If conversations are consistently failing, a lower baud rate for both
systems may be necessary. A 9600-baud rate may not work for all systems. Noise on the line
also may be responsible; a change to a limited distance modem may be required. Occasionally,
if two systems are hardwire connected, the sheer volume of data transferred may overwhelm
the receiving machine. Interactive terminal sessions are less demanding for the machine; it
may be that a previously acceptable baud rate must be lowered for data transfer applications.

When you establish the line for a dial-out connection (through a modem or a direct connect),
it is helpful to verify the physical connection with cu(l). For active connections that
perform the dial out, cu can track down:

• A competing getty(.1) on a dial-out line that should be "off" in /etc/inittab. (Refer to
paragraph 7.10 for more information about line initialimtion and the required entries in
/etc/inittab and /etc/gettydefs.)

• Incorrect permissions on the tty device in /dev. The permissions should be set to:
crw-rw-rw-.

• Erroneous baud rate declarations in L-devices file.

To verify that a remote system can be contacted, invoke the uucico program directly from
your terminal. For example, to verify that winkil can be contacted by home, a job would be
queued with the command:

uucp -r checkftle grtbks!winkil!-/sam

The -r option forces the job to be queued, but does not call uucico to process the job. Instead,
uucico is invoked directly with the command:

/usr/lib/uucp/uucico -rt -x4 -swinkill

The -rt (r, numeral 1) option directs home to call uucico in master mode. The -x4 option
specifies the level of debugging that should be printed. Debugging levels of 1 through 9 (with
9 being the highest level) may be specified. The -s option identifies the system.

Another area that can be debugged readily with the output is the login sequence. Redirect the
error output to a file if the login sequence you are trying to verify contains embedded control
characters. (Embedded control characters are used when logging on through most "smart"
modems and terminal concentrators, or switches.) You can watch the output and store it
simultaneously by pipe fitting with tee(1).

For tricky connections through smart modems, look carefully for erroneous expect-send
sequences (in the L.sys file) while initiating the connections through the modem. Verify the
uucp password on the remote system by inspecting the debug output from uucico or by trying

7-53

UNIX-to-UNIX CoPy (uucp) TUTORIAL MOTOROLA COMPUTER SYSTEMS

to log in directly through cu.

When several jobs are queued for the remote system, it is impossible to assign any particular
job a top priority as far as uucico is concerned. Monitor LOOFILE for error messages. The
ERRLOO may also contain error messages that may isolate a particular area of difficulty.

Another source of problems could be the USERFILE. The file is limited to 25 lines. If more
than 25 lines are entered, uucp ceases to function.

7-54

USER'S COMMENTS

SYSTEM V /68 USER'S GUIDE

Product Code 72903
Part Number 41966-00

Motorola welcomes your comments and suggestions. Please use this form.

•Does this manual provide the information you need? DYes DNo

- What is missing?

•ls the manual accurate? DYes oNo

- What is incorrect? (Be specific.)

•Is the manual written clearly? DY es D No

- What is unclear? (Be specific.)

•What other comments can you make about this manual?

•What do you like about this manual?

•Was this manual difficult to obtain? DYes DNo

Please include your name and address if you would like a reply.

Name ------------------------Company _____________________ ~
Address ______________________ _

•What is your occupation?

o Programmer
o Systems Analyst
oEngineer

oOperator
o Instructor
DStudent

•How do you use this manual?

o Reference Manual
Din a Class
oSelf Study

fold

o Introduction to the Subject
o Introduction to the System
DOther _______ _

MOTOROLA INC.
3013 S. 52nd Street
Tempe, AZ 85282

Attention: Software Publications, X4

fold

Staple Here

DManager
o Customer Engineer
DOther ---------

fold

fold

® MOTOROLA
Computer Systems

3013 S. 52nd St.
Tempe, AZ 85282

