SYSTEM V/68
USER’S GUIDE

PRODUCT CODE 72903 @ MOTOROLA
41966-00 Computer Systems

Product Code 72912

41975G01
SYSTEM V/68 DOCUMENTATION SET
VOLUME 1
SYSTEM V /68 USER’S MANUAL, 72905 (41968-00)
Introduction
Permuted Index
Section 1 - Commands
AN
YOLUME 11
SYSTEM V /68 USER’S MANUAL, 72905 (41968-00)
Section 2 - System Calls Section 5 - Miscellaneous Facilities
Section 3 - Subroutines Section 6 - Games
Section 4 - File Formats
VOLUME III
SYSTEM V /68 ADMINISTRATOR’S MANUAL, 72900 (41963-00)
Introduction Section 7 - Special Files
Permuted Index Section 8 - Procedures
Section 1M - Commands
SYSTEM V /68 ADMINISTRATOR’S GUIDE, 72901 (41964-00)
Introduction File System Checking
Administrative Guidelines LP Spooling System
Using the System System Activity Package
Accounting
SYSTEM V /68 OPERATOR'’S GUIDE, 72904 (41967-00)
Chapter 1 - Getting Started Appendix A - System Specifications
Chapter 2 - System Overview Appendix B - Debugging Commands
Chapter 3 - Using the System Appendix C - Error Messages
SYSTEM V /68 USER’S GUIDE, 72903 (41966-00)
Introduction 4 An Introduction to Shell
Primer Source Code Control System (SCCS)
Basics for Beginners UNIX-to-UNIX CoPy: A Tutorial

Text Editors

VOLUME 1V

SYSTEM V /68 PROGRAMMING GUIDE, 72908 (41971-00)

Introduction FORTRAN
An Introduction to Shell Curses and Terminfo Package
C Programming Language Programming Language EFL

SYSTEM V/68 SUPPORT TOOLS GUIDE, 72909 (41972-000)

Introduction Desk Calculator Language (BC)
Maintaining Computer Programs Desk Calculator Program (DC)
(MAKE)
Augmented Version of MAKE Lexical Analyzer Generator (LEX)
The M4 Macro Processor Yet Another Compiler-Compiler (YACC)

The AWK Programming Language = Common Object File Format

SYSTEM V /68 ASSEMBLER USER’S GUIDE, 72910 (41973-00)

Introduction Expressions
Warnings Pseudo-Operations
General Syntax Rules Span-Dependent Optimization
Segments, Location Counters, Address Mode Syntax
and Labels Machine Instructions
Types

SYSTEM V/68 COMMON LINK EDITOR REFERENCE MANUAL, 72911 (41974-00)

Introduction Notes and Special Procedures
Using the Link Editor Error Messages
Link Editor Command Language Syntax Diagram for Input Directives

VOLUME V

SYSTEM V/68 DOCUMENT PROCESSING GUIDE, 72906 (41969-00)
Introduction Table Formatting Program
Advanced Editing Mathematics Typesetting Program
Stream Editor Memorandum Macros
Nroff and Troff User’s Manual Viewgraphs and Slides Macros

SYSTEM V /68 ERROR MESSAGE MANUAL, 72902 (41965-00)
Introduction Index
Error Messages

SYSTEM V/68
USER’'S GUIDE

Product Code 72903

Part Number 41966-00

Version 1

EXORmacs, EXORterm, MACSbug, SYSTEM V/68, TENbug, VERSAbug, VERSAdos,
VME/10, and 020bug are trademarks of Motorola Inc. UNIX is a trademark of AT&T Bell
Laboratories, Incorporated. 3B, 3B5, and 3B20 are trademarks of AT&T Technologies.
PDP, VAX, and DEC are trademarks of Digital Equipment Corporation. NOVA and
ECLIPSE are registered trademarks of Data General Corporation. IBM is a registered
trademark of International Business Machines Corp. Tektronix is a registered trademark of
Tektronix, Inc. PRINTRONIX is a trademark of Printronix, Inc. CENTRONICS is a
trademark of Data Computer Corporation. DIABLO is a registered trademark of Xerox

Corporation. C/A/T System 1 is a trademark of Wang Graphic Systems, Inc. LARK is a
trademark of Control Data Corporation.

The software described herein is furnished under a licensed agreement and may be used only
in accordance with the terms of the agreement.

Copyright ©1984, 1985, 1986 by Motorola Computer Systems Inc. All Rights Reserved. No
part of this manual may be reproduced, transmitted, transcribed, stored in a retrieval system,
or translated into any language or computer language, in any form or by any means, without

the prior written permission of Motorola Computer Systems, Inc., 3013 S. 52nd St., Tempe,
AZ 85282.

Portions of this document are reprinted
from copyrighted documents by permission of
AT&T Technologies, Incorporated, 1983.

PREFACE

The SYSTEM V /68 User’s Guide, (Part Number 41966-00, Product Code 72903) describes the
capabilities of the SYSTEM V /68 operating system for a new user.

While reasonable efforts have been made to assure the accuracy of this document, Motorola
assumes no liability resulting from any omissions in this document or from the use of the
information obtained therein. Motorola reserves the right to revise this document and to
make changes from time to time in its content without being obligated to notify any person of
such revision or changes.

TABLE OF CONTENTS

Page
1. INTRODUCTION 1-1
1.1 General 1-1
1.2 Contents 1-1
1.3 Glossary 1-2
2. PRIMER 2-1
2.1 Introduction 2-1
2.2 Human Interface 2-1
2.2.1 Concept of a Login. 2-1
222 Logging In. 2-2
2.2.3 Logging Off. 2-2
224 Entering Commands. 2-3
225 Stopping a Program. 2-5
226 Mail 2-5
2.2.7 Writing to Other Users. 2-5
2.2.8 Online Manual. 2-7
3. BASICS FOR BEGINNERS 3-1
3.1 Day-to-Day Use 3-1
3.1.1 Creating Files—The Editor. 3-1
3.1.2 Filenames. 3-1
3.1.3 Directories. 3-3
3.14 File System Structure 3-4
3.1.5 Printing Files. 3-7
3.1.6 Moving and Copying Files. 3-7
3.1.7 Using Files for 1/0 Instead of the Terminal. 3-8
3.1.8 Pipes. 3-9
3.1.9 The Shell. 3-10
3.2 Document Preparation 3-11
3.2.1 Formatting Packages. 3-11
3.2.2 Supporting Tools. 3-12
3.2.3 Hints for Preparing Documents. 3-13
3.24 Programming. 3-14
3.2.5 Shell Programming. 3-14
3.2.6 Programming in C. 3-15
3.2.7 Other Languages. 3-16
4. TEXT EDITORS 4-1
4.1 SYSTEM V/68 Editors 4-1
4.2 The ed Text Editor 4-1
4.2.1 General. 4-1
422 Editing Commands. 4-1
42.3 The Global Commands. 4-14
42.4 Special Characters. 4-15

42.5 Summary of Commands and Line Numbers. 4-17

4.3 The ex Text Editor 4-18

4.3.1 Starting the ex Editor. 4-18
4.3.2 File Manipulation. 4-19
4.3.3 Exceptional Conditions. 4-20
4.3.4 Editing Modes. 4-20
4.35 Command Structure. 4-21
43.6 Command Addressing. 4-21
43.7 Command Descriptions. 4-22
4.3.8 Regular Expressions and Substitute Replacement Patterns. ..ccewemccecem 4-31
439 Option Descriptions. » 4-32
4.3.10 Limitations. 4-37

4.4 The vi Text Editor 4-37
44.1 General. 4-37
442 Getting Started. 4-38
44.3 Moving Around in the File. 4-40
444 Making Simple Changes. 4-43
445 Moving About, Rearranging, and Duplicating Text. 4-46

- 44.6 High-Level Commands. 4-49
44.7 Special Topics. 4-50
448 Word Abbreviations. 4-55
449 Additional Information. 4-56
4.4.10 Character Functions Summary. 4-60

S. AN INTRODUCTION TO SHELLI 5-1
5.1 General 5-1
5.2 Simple Commands 51
52.1 Background Commands. 5-1
522 Input/Output Redirection. 5-2
5.2.3 Pipelines and Filters. 5-2
5.24 Filename Generation. 53
5.2.5 Quoting And Escaping. 53
52.6 The Shell and Login. 55
52.7 Prompting by the Shell. 55
52.8 Summary. 55

5.3 Shell Procedures 5-5
53.1 Control Flow: for. : 56
5.32 Control Flow: case. 57
5.3.3 Here Documents. 5-8
534 Shell Variables. 59
535 The test Command. . 511
5.3.6 Control Flow: while. 512
5.3.7 Control Flow: if. 512
5.3.8 Debugging Shell Procedures. 5-15
539 The man Command. 5-15

5.4 Keyword Parameters. 5-16
5.4.1 Parameter Transmission. 5-16
542 Parameter Substitution. 517
54.3 Command Substitution. 5-18
544 Evaluation and Quoting. 5-18
5.45 Error Handling. 5-20
5.4.6 Fault Handling. 5-21
5.4.7 Command Execution. cvece 5-23
548 Invoking the Shell. 5-2§

6. SOURCE CODE CONTROL SYSTEM (SCCS)
6.1 General
6.2 SCCS For Beginners

6.2.1
622
623
6.24
6.2.5
6.2.6

6.3 Delta Numbering
6.4 SCCS Command Conventions
6.5 SCCS Commands

6.5.1
6.5.2
6.5.3
654
6.55
6.5.6
6.5.7
6.5.8
6.59
6.5.10
6.5.11

6.6 SCCS Files

6.6.1
6.6.2
6.6.3

6.7 An SCCS Interface Program

6.7.1
6.7.2
6.7.3
6.74

7. Unx-to-UNIX CoPy (uucp) TUTORIAL
7.1 Introduction

7.1.1
7.1.2

7.2 The Uucp Network

721
722
72.3
724

7.3 Uucp Programs and Files

7.31
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6

7.4 Using Uucp
Network Architecture: Understanding the Links.

7.4.1
74.2
74.3

Terminology.

Creating an SCCS File via admin.

Retrieving a File via get.
Recording Changes via delta.

Additional Information About get.

The help Command.

The get Command.

The delta Command.

The admin Command.

The prs Command.

The help Command.

The rmdel Command.

The cdc Command.

The what Command.

The sccsdiff Command.

The comb Command.

The val Command.

SCCS File Protections.

SCCS File Format.

SCCS File Auditing.

General.

Function.

A Basic Program.

Linking and Use.

General.

Organization.

Introducing uucp.
Network Communications.

Business Applications of Uucp.

Network Characteristics.

Overview.
The Spool Directory.

Uucp Directories.

Uucp Programs.

Files Involved in Program Execution.
File and Program Interaction.

Naming Conventions.

Uucp Commands.

6-1
6-1
6-1
6-1
6-2
6-2
6-3
63

6-S
6-7
6-8
69
6-15
6-17
6-18
6-20
6-20
6-20
6-21
6-21
6-22
6-22
6-23
6-23
6-23
6-24
6-25
6-25
6-25
6-25
6-25
7-1
7-1
71
7-1
7-3
7-3
7-4
7-5
7-6
7-8
7-8
7-8
7-8
7-10
7-11
7-13
7-15
7-15
7-18
7-19

7.5 JOB CONTROL

7.5.1 Notification.

7.5.2 Monitoring a Job Through LOGFILE.

7.5.3 Diagnostic Messages From LOGFILE.
7.54 Job ID Numbers and uustat.

7.5.5 Job Termination, Requeuing.

7.6 The Uucp User’s Network: Usenet

7.7 Administrator’s Overview of Uucp Programs
7.71 Background.

7.72 uucp Subdirectory.

7.7.3 UNIX-to-UNIX CoPy Operatxon

7.74 uucico Processing.
7.8 Administrative Concerns

7.8.1 System Security.

7.8.2 Interconnection Methods.

7.8.3 Administrative Workload.

7.9 Maintenance and Administration

79.1 Maintenance Using cron.

79.2 uucp File Maintenance.

7.10 Installation

7.10.1 Modifying the Kernel.

7.10.2 Initiating Terminal Lines: Getty.

7.10.3 Passwords.

7.104 Lsys.
7.10.5 L-devices.

7.10.6 L-dialcodes.

7.10.7 L.cmds.

7.10.8 USERFILE

7.109 FWDFILE, ORIGFILE.

7.10.10 Reconfiguring uucp.

7.11 Debugging Uucp

LIST OF FIGURES

Figure 6-1. Evolution of an SCCS File

Figure 6-2. Tree Structure with Branch Deltas

Figure 6-3. Extending the Branching Concept

Figure 6-4. SCCS Interface Program “interc”

Figure 7-1. Basic Uucp Network

Figure 7-2. Branch Diagram of uucp Directories and Files
Figure 7-3. View of uucp Network from the System home
Figure 7-4. Expanded Diagram of uucp Files

-iv -

7-23
7-23
7-23
7-24
7-27
7-27
7-28
7-28
7-28
7-29
7-32
7-36
7-39
7-39
7-40
7-40
7-41
7-41
7-42
7-43
7-43
7-45
7-45
7-46
7-48
7-49
7-49
7-50
7-51

‘7-51

7-53

6-5

6-7
6-28
7-4
7-9
7-17
7-30

LIST OF TABLES

Table 5-1. Grammar

Table 5-2. Metacharacters and Reserved Words

Table 6-1. Determination of New SID

Table 7-1. Permissian Modes for Uucp Program Files

5-25
5-26
6-27
7-31

MOTOROLA COMPUTER SYSTEMS INTRODUCTION

1. INTRODUCTION
1.1 General

Two document types provide information about SYSTEM V/68: manuals and guides. The
manuals describe commands, facilities, features, and error messages of the system. The guides
provide supplemental details and instructions for system implementation, administration, and
use. The manuals are organized as alphabetized entries within tabbed sections. The SYST EM
v/68 User's Manual contains sections 1 - 6. The SYSTEM V/68 Administrator's Manual
contains sections 1M, 7, and 8. Throughout the documentation, references to these manuals
are given as name(section). For example, chroot(1M) is a reference to the chroot entry in
section 1M of the SYSTEM V/68 Administrator's Manual. The following conventions
identify arguments, literals, and program names:

e Boldface strings are literals and are to be typed as they appear.
e Italic strings represent substitutable argument prototypes and program names.
e Square brackets ([]) indicate that an argument is optional.
o Ellipses (...) show that the previous argument prototype may be repeated.
1.2 Contents

The purpose of this guide is to describe and illustrate capabilities of SYSTEM V/68 for a new
user. The guide supplements the information provided in the SYSTEM V/68 User's Manual
by grouping together the commands and facilities needed to accomplish various tasks. The
following paragraphs provide brief descriptions of the contents of each major section in the
guide. Following these paragraphs, a glossary of terms is provided.

e Primer. This section provides basic instructions for accessing the operating system.

e Basics For Beginners. This section provides information about creating and using files
and directories, preparing documents, and programming. It also includes information about
the UNIX-to-UNIX Communications Package (uucp(1c)).

e Text Editors. This section provides information about the ed(1), ex(1), and vi(1) text
editors. '

e An Introduction to Shell. This section provides information about both basic and
advanced features of the shell command programming language. Commands, pipelines and
filters, shell procedures, and keyword parameters are described.

e Remote Job Entry (RJE). This section is a general introduction to RJE facilities. NOTE:
RIJE is not supported in the current release of SYSTEM V/68.

e Source Code Control System (SCCS). This section provides information about the SCCS
facility for documenting and controlling changes in source code files. Terminology,
commands, conventions, and files are described.

e UNIX-to-UNIX CoPy Tutorial. The UNex-to-UNIX CoPy (uucp) programs are covered in
depth in this tutorial. The first half of the tutorial addresses the novice user and describes,
step-by-step, how to send or receive files, mail and commands over the international uucp
network. The latter half contains detailed installation, maintenance and debugging
information needed by the system administrator. Administrators should not attempt to
install uucp without having read the tutorial thoroughly.

INTRODUCTION | MOTOROLA COMPUTER SYSTEMS

1.3 Glossary

The following list defines terms and acronyms used in this volume that may not be familiar
to the user.

argument—Words following the command on a command line that provide information
necessary to execute a program. Command arguments are of ten filenames.

ASCII—American Standard Code for Information Interchange.

background—A program execution mode in which the shell does not wait for the command
to terminate before prompting for another command.

C language—A general purpose, low level programming language used to write programs
(such as numerical, text-processing, and data base) and operating systems.

command—The first word of a command line. It is the name of an executable file that is a
compiled program.

command line—A sequence of nonblank arguments separated by blanks or tabs typed in by a
user. The first argument usually specifies the name of a command.

command list—A sequence of one or more simple commands separated or ended by a new
line or a semicolon.

command procedure—A command procedure is an executable file that is not a compiled
program. It is a call to the shell to read and execute commands contained in a file. A sequence
of commands may be preserved for repeated use by saving it in a file called a shell procedure,
a command file, or a runcom according to preference.

command substitution—When the shell reads a command line, any command or commands
enclosed between grave accents (‘..) are executed first and the output from these commands
replaces the whole expression (“...").

current working directory—The current point of reference for accessing data within the
file system.

delta—A set of changes made to a file that is stored by the SCCS.

directory—A type of file that is used to group and organize files and other directories.
EOF—The End-Of-File character is the same as an ASCII EOT character. See EOT.

EOT—The End-Of-Text character is generated by holding down the “CONTROL” key and
pressing the lowercase “d” key once. The EOT is used to terminate the shell which usually
logs a user off the system.

erase character—The character that is used to delete the previous character on the current
line. To turn off the special meaning of the erase character, it must be preceded with a “\”.

By default, the erase character is #. See stty(1) to change the default character.

file—An organized collection of information containing data, programs, or both, which allows

1-2

MOTOROLA COMPUTER SYSTEMS INTRODUCTION

users to store, retrieve, and modify information. A simple filename is a sequence of characters
other than a slash (/).

filter—A command that reads its standard input, transforms it in some way, and prints the
result as output.

foreground—A program execution mode in which the shell waits for the command to
terminate before prompting for another command.

full pathname—The pathname of a specific file starting from the root directory.

group identification number (gid)—A unique number assigned to one or more logins that is
used to identify groups of related users.

here documents—A command procedure that has the form command << eofstring and
causes the shell to read subsequent lines as standard input to the command until a line is
composed of only the eofstring is read. Any arbitrary string can be used for the eofstring.

HOME—Another name for the login directory.
in-line input documents—See here documents.

keyword parameters—An argument to a command procedure that has the form
name=value command argl arg2 ... here name is called the keyword parameter. This
allows shell variables to be assigned values when a shell procedure is called. The value of
name in the invoking shell is not affected, but the value is assigned to name before execution

of the procedure. The arguments (argl arg2...) are available as positional parameters
($182...).

kill character—The character that is used to delete all the characters typed before it on the

current line. To turn off the special meaning of the kill character, it must be preceded with a
“\”. By default, the kill character is @. The default character can be changed via stty(1).

login—A procedure that provides a user access to SYSTEM V/68.)
login name—A unique string of letters and numbers used to identify a login.

log off —A procedure that disconnects the user from SYSTEM V/68.

memorandum macros—The general purpose package of text formatting macros used with
nroff and troff to produce many common types of documents.

metacharacters—Characters that have a special meaning to the shell, for example: <, >, *
?) I’ &’ $’ ;’ (’)’ \’ “’ " I’ [’]'

mode—An absolute mode is an octal number used with chmod(1) to change permissions of
files.

MRs—Modification Request numbers are recorded within each delta to an SCCS file to
identify the reason that prompted the file revision, e.g., a trouble report, change request,
trouble ticket etc.

1-3

INTRODUCTION MOTOROLA COMPUTER SYSTEMS

nroff —A text formatting program for driving typewriter-like terminals and printers to
produce a screen copy or a hardcopy.

parent directory—The directory immediately above another directory. A “.” is the
shorthand name for the parent directory. To make the parent directory of your current
working directory your new current directory enter the command: cd ..

partial pathname—The pathname between the current working directory and a specific file.

password—A string of up to 13 characters chosen from a 64 character alphabet (., \, 0-9, A-Z,
a-z).

pathname—A sequence of directory names separated by the / character and ending with the
name of a file. The pathname defines the connection path between some directory and a file.

pipe—A simple way to connect the output of one program to the input of another program, so
that each program will run as a sequence of processes.

pipeline—A series of filters separated by the character |. The output of each filter becomes
the input of the next filter in the line. The last filter in the line will write to its standard
output.

positional parameters—Arguments supplied with a command procedure that are placed into
variable names $1, $2, ... when the command procedure is invoked by the shell. The name of
the file being executed is positional parameter $0.

primary prompt—A notification (by default “§ ”) to the user that SYSTEM V/68 shell is
ready to accept another request.

process—A program that is in some state of execution. The execution of a computer
environment including contents of memory, register values, name of the current directory,
status of open files, information recorded at login time, and various other items.

program—Software that can be executed by a user.

SCCS—The Source Code Control System is a collection of SYSTEM V/68 commands that
monitors changes to text files and creates an audit trail for each change.

secondary prompt—A notification (by default “>) to the user that the command typed in
response to the primary prompt is incomplete.

shell—A SYSTEM V/68 user program written in C language that handles the communication
between the system and users. The shell accepts commands and causes the appropriate
program to be executed.

shell procedure—See command procedure.

SID—The SCCS IDentification string identifies a particular version of a file and is composed of
at most four components separated by periods (release.level.branch.sequence).

standard input—The standard input of a command is sent to an open file that is normally
connected to the keyboard. An argument to the shell of the form “< file” opens the specified

1-4

MOTOROLA COMPUTER SYSTEMS INTRODUCTION

file as the standard input thus redirecting input to come from the file named instead of the
keyboard.

standard output—OQOutput produced by most commands is sent to an open file that is
normally connected to the printer or screen. This output may be redirected by an argument to
the shell of the form “> file” which opens the specified file as the standard output.

text editor—An interactive program (ed) for creating and modifying text, using commands
provided by a user at a terminal.

troff —A text formatting program for driving a phototypesetter to produce high quality
printed text.

user-defined variables—A user variable can be defined using an assignment statement of the
form name=value where name must begin with a letter or underscore and may then consist
of any sequence of letters, digits, or underscores up to 512 characters. The name is the
variable. Positional parameters cannot be included in the name.

user identification number (uid)—A unique number assigned to each login that is used to
identify users and the owner of information stored on the system.

variables—A variable is a name representing a string value. Variables that are normally set
only on a command line are called parameters (positional parameters and keyword
parameters). Other variables are names to which the user (user-defined variables) or the shell
may assign string values.

1-5

INTRODUCTION MOTOROLA COMPUTER SYSTEMS

NOTES

1-6

MOTOROLA COMPUTER SYSTEMS PRIMER

2. PRIMER
2.1 Introduction

This section of the SYSTEM V/68 User’s Guide provides the information users need to access
the SYSTEM V/68 operating system. It is not intended to be a detailed description. Many of
the subjects described are discussed in detail in other sections of this volume or the SYSTEM
Vv/68 User's Manual.

In this primer, software programs that can be executed by users are referred to as “programs”.
A program that is in some state of execution is referred to as a “process”. The request typed
by the user is referred to as a “command” or “command line”.

In this section, the following graphic conventions are used in examples:

(RETURN) Indicates that the user should press the RETURN key on the terminal
keyboard.
(DEL) Indicates that the user should press the key marked DEL, DELETE, or

RUBOUT (whichever is appropriate for the terminal being used).

2.2 Human Interface

2.2.1 Concept of a Login. The SYSTEM V/68 operating system is accessed by the use of a
“login”. A login is used by the system to uniquely identify users. Before the user can access
the system, a login must be assigned by the system administrator. Every login consists of the
following components:

login name

user identification number (uid)
group identi fication number (gid)
password

A login name is a unique string of lowercase letters and/or numbers that identifies an
individual to the system. The login name must begin with a letter. In many cases, a user’s
login name is his/her real first name, last name, initials, or nickname. Any string of letters
and/or digits can be used as the login name, as long as it is unique (i.e., different from all other
login names). Only the first eight characters of a login name are used by the system. Login
names are assigned by the system administrator.

The uid of a login is a unique number assigned to each login by the system administrator.
This number is used by the system to identify the owners of information stored on the system
and the commands that users are executing.

The gid is a unique number assigned by the system administrator to each group. This number
identifies groups of users that have something in common. For example, all logins used by
people in the same department (or working on the same project) may have the same gid. The
gid is important for security and accounting reasons. The impact of gid numbers on the user
and the group that the user belongs to is described later.

The password is a string of 13 characters chosen from a 64-character alphabet (., \, 0-9, A-Z,
a-z) that serves to control access to a login. The password for a login is the main security
feature of the SYSTEM V/68 operating system. Usually, every login is assigned a password.
When a user logs in to the system, the password (if any) assigned to the login being used is
requested. Access to the system is not permitted until the correct password is entered. The
user can change a password as needed to ensure that others are not accessing the user’s login

2-1

PRIMER MOTOROLA COMPUTER SYSTEMS

and the user’s data. Any string can be used as a password as long as it is more than five
characters in length and is composed of uppercase letters, lowercase letters, numbers, or
punctuation. It is recommended that obvious strings such as the user’s social security number,
birth date, or other data that could be well known about the user not be used as passwords.
If the password is something that is well known about the user, someone could gain access to
the user’s login with little effort. The more unusual the password, the more effective the
security.

2.2.2 Logging In. In order to log in, the power to the terminal must be turned on and the
appropriate switches set. Depending on the type of terminal and communication link, the
user may need to press the RETURN or BREAK key a couple of times to synchronize the
terminal with the system. When communication is established, the system will prompt with:

login:

The user should type in his/her login name followed by a RETURN. After the system digests
the login name, it will prompt for a password with:

Password:

The user should then type his/her password followed by a return. The system does not echo
the password on the terminal screen. This is an extra security measure. If you enter your
login name and password correctly, the system may print one or more “messages of the day”.
Following the messages, the system will prompt with the primary prompt string, which is
usually the $ symbol. If a mistake is made while logging in or the system adminstrator has
not set up the user’s login on the system, the following error message is printed:

login incorrect
This error message is followed by the login: message. The user should attempt to login again.

The SYSTEM V/68 operating system has a hierarchy of directories. When the system
administrator gives the user a login name, the administrator also creates a directory for the
user., This directory ordinarily has the same name as the user login name and is known as the
"login" or "home" directory of the user. When the user logs in, the home directory becomes
the "current directory" or "working directory” of the user. Any file created under the login
name is by default in the home directory. In addition, the user may create one or more
directories under the home directory. The user may then change to subdirectories by using a
“change directory” command. See cd(1) for details. Under a directory or a subdirectory, the
user may create files as necessary. The user is the owner of the home directory and all
subdirectories created under the home directory. As the owner, the user has full permission
to create, alter, and remove (destroy) all files and subdirectories of the home directory. To
- change from one directory to another, the command cd is used.

2.2.3 Logging Off. After completing your work, it is best to log off the system. Before
logging off, you should have received the prompt string $ from the system. This means that
all your commands have been completed and the system is ready for another command.

The preferred method for logging off is accomplished by typing an American Standard Code
for Information Interchange (ASCID) End Of Text (EOT) character which is sometimes called
the End-Of-File (EOF). On most terminals, the EOT character is generated by holding down
the CONTROL key and pressing the lowercase d key once. This is also referred to as a
“CONTROL-d”. Regardless of the type of terminal, the power to it should be turned off when
the terminal is no longer needed. For terminals connected via a phone line, you should
depress the talk button and hang up the phone.

2-2

MOTOROLA COMPUTER SYSTEMS PRIMER

2.2.4 Entering Commands. The SYSTEM V/68 operating system “shell” (command
interpreter) serves as the interface between the user and the system. The shell accepts
requests from the user in the form of a command line and invokes the appropriate program to
fulfill the request. The shell prompts the user when it is ready to accept another request. As
noted earlier, the prompt of the SYSTEM V/68 operating system shell is the primary prompt
string which is by default $ (a dollar sign followed by a space).

2.2.4.1 Command Line Syntax. Commands or requests to the shell are usually in the
form of a single line, that is, a string of one or more words followed by a RETURN. This
single line request entered following the prompt is referred to as a “command line”. The
command line is divided into two majr parts—the program name and arguments.

The first word of the command line is the name of the program to be executed. This is
referred to as the command. All subsequent words are arguments to the command.
Arguments are used to provide information required by the program.

Spaces and tabs serve as the delimiters for words on the command line. That is, all characters
on the command line up to the first space or tab are interpreted as the command. All
characters between the first space (or tab) and the second space (or tab) make up the first
argument. Thus, the syntax for the command line is:

command argument argument argument(RETURN)

When spaces or tabs are needed within a single argument, that argument is enclosed by double
quote marks ("). For example, to execute a program that requires two arguments such as john
1 and doe, the first argument should be john 1. The second argument should be doe. The
required command line in this case would be:

command "john 1" doe(RETURN)

2.2.4.2 Correction and Deletion. All users are likely to make mistakes, especially when
typing. The SYSTEM V/68 operating system provides two features to correct command lines.
These features are only effective for the current line (i.e., they must be used before the line is
ended with a return).

The first correction feature is the erase character (by default, #), and the second correction
feature is the kill character (by default, @). The erase character erases the character
preceding it. For example, a command line entered as

caf#t the fik#1e(RETURN)

actually is cat the file. The first # erases the first £ and the second # erases the k. The erase
character can be used to erase a series of characters such as in

this####the cat had kittens(RETURN)

which results in the cat had kittens. The entire word this is erased by the series of #
characters following it. The first # erases the s, the second # erases the i, the third # erases
the h, and the fourth # erases the t. If you had miscounted the number of erase characters
you needed, as in

this ###the cat had kittens(RETURN)

the result would have been ththe cat had kittens. The three erase characters would have
erased the space, the s, and the i preceding them.

PRIMER MOTOROLA COMPUTER SYSTEMS

If you need to enter a # in the command line for some reason, preceding the # with the
backslash character (\) will turn off the “erase last character” meaning of the #. For
example, a command line entered as

thsi##is is the \#7#7 cat(RETURN)
is actually this is the #7 cat.

The second correction feature is the kill character. The kill character deletes the entire
current line. For example, the user enters the command line

command### # #omma#### #mmad argm##gmu##ment

when the user was trying to enter command argument. This command line is so full of
mistakes and corrections it is hard to determine if it is right. It would be best to delete the
entire line and start over. The user can delete the line by ending it with an @ instead of a
return. For example in this sequence

kat###catteh##he file###### ## the flie##e@
cat the file(RETURN)

the first line is deleted by the @ character. It is much easier to delete it and reenter it (as in
the second line of the example).

If the @ character is needed in a line, the backslash character (\) should precede it. For
example, entering the line

The kill character is a \@.(RETURN)

results in The kill character is a @.

2.2.4.3 Erratic Terminal Behavior. Sometimes your terminal may appear to be acting
strangely. For example, each letter may be typed twice (terminal may be in the half-duplex
mode) or the RETURN may not cause a line feed or a return to the left margin. You can
often change this by logging out and logging back in. If logging back in fails to correct the
problem, check the following areas:

keyboard Keys such as caps lock, local, block, etc. should not be in depressed
position.

dataphone For terminals connected via phone lines, the baud rate could be
~ incorrect.

switches The rear panel of your terminal normally has several switches used to

control terminal operations. These switches should be set to be
compatible with the SYSTEM V/68 operating system.

If all else fails, the description of the stty(1) command can be read to determine the
appropriate action to take. To get intelligent treatment of tab characters (which are much
used in the SYSTEM V/68 operating system) if your terminal does not have tabs, type the
command

stty —tabs

and the system will convert each tab into sufficient blanks to space to the next 8-character
field. If your terminal does have hardware tabs, the command tabs will set the stops
correctly for you (see tabs(1)).

MOTOROLA COMPUTER SYSTEMS PRIMER

2.2.44 Read-ahead. The SYSTEM V/68 operating system has full read-ahead capability,
which means that the user can type whenever necessary and as fast as desired, even when
another command is already outputting on the terminal. If typing is done during output, the
input characters appear intermixed with the output characters, but they are stored away and
interpreted in the correct order. The user can type several commands one after another
without waiting for the first to finish or even begin.

2.2.5 Stopping a Program. Most programs can be stopped by pressing the DEL key
(perhaps called DELETE or RUBOUT on your terminal). The INTERRUPT or BREAK key
found on most terminals can also be used. In a few programs, like the text editor, DEL stops
whatever the program is doing but leaves you in that program. Hanging up the phone with
the talk button depressed will also stop most programs.

2.2.6 Mail. After logging in, the user may sometimes get the following message:

You have mail.
The SYSTEM V/68 operating system provides a postal system so you can communicate with
other users of the system. To read your mail, type the following command:

mail
Your mail will be printed, cne message at a time, most recent message first. After each
message, mail(1) waits for you to say what to do with it. The two basic responses are d,

which deletes the message, and RETURN, which does not (it will still be there the next time
you read your mailbox). If you want to save a mail message in a file, type:

s filename
Other responses are described in mail(1) in the SYSTEM V/68 User's Manual.
How is mail sent to someone else? Assume that jones is someone’s login name which is
recognized by login(1). The easiest way to send mail to jones is as follows:

mail jones

the text of the letter

on as many lines as you like...
CONTROLAd

As shown previously, the character CONTROL-d is produced by holding down CONTROL and
typing a letter d.

The CONTROL-d sequence, often called End-Of-File (EOF), is used throughout the system to
mark the end of input from a terminal.

For practice, send mail to yourself. (This is not as strange as it might sound—mail to oneself
is a handy reminder mechanism.) There are other ways to send mail—you can send a
previously prepared letter and you can mail a message to a number of people all at once. For
more details, see mail(1).

2.2.7 Writing to Other Users. Occasionally, your terminal may display a message similar
to

Message from jones tty07...

that is accompanied by a startling beep on terminals that have the capability to beep. It means
that Jones (jones) wants to talk to you; unless you take explicit action, however, you will not

2-5

PRIMER : MOTOROLA COMPUTER SYSTEMS

be able to talk back. To respond, type the following command:
write jones

This establishes a 2-way communication path. Now whatever Jones types on his terminal
will appear on yours and vice versa. However, if you are in the middle of some program,
whatever program you are running has to terminate or be terminated. If you are editing, you
can escape temporarily from the editor—read the “Text Editor” section of this document. If
you want to prevent other users from writing to your terminal, enter the following:

mesg n

The “n” or “no” tells the system that other users do not have permission to write to your
terminal.

A protocol is needed to keep what you type from becoming garbled with what Jones types.
Typically, a sequence like the following is used:

Jones types write smith and waits.
Smith types write jones and waits.

Jones now types a message (as many lines as necessary).
When ready for a reply, Jones signals it by typing
(o)

which stands for “over”.

Now Smith types a reply, also terminated by
(o).

This cycle repeats until Smith or Jones wants to end
the conversation. The intent to quit is signalled with
(00)

for “over and out”.

To terminate the conversation, each side must

type a CONTROL-d character alone at the beginning
of a line. (DELETE also works.)

‘When Jones types CONTROL-d,

the message

EOF

will appear on Smith’s terminal.

If you write to someone who is not logged in or who does not want to be disturbed, a message
stating this will appear on your terminal. If the target is logged in but does not answer after
a reasonable interval, type CONTROL-d.

MOTOROLA COMPUTER SYSTEMS PRIMER

2.2.8 Online Manual. The SYSTEM V/68 User's Manual is kept online. If you are
confused and cannot find an expert to assist you, you can print on your terminal a manual
section that might help. This is also useful for getting the most up-to-date information on a
command. To read a manual section, type man command-name. Thus, to read up on the
who(1) command, type:

man who
To read about the man(1) command, type

man man

2-7

PRIMER MOTOROLA COMPUTER SYSTEMS

NOTES

MOTOROLA COMPUTER SYSTEMS ‘ BASICS FOR BEGINNERS

3. BASICS FOR BEGINNERS
3.1 Day-to-Day Use

3.1.1 Creating Files—The Editor. The SYSTEM V/68 text editors organize and save typed
information. This information could be intended for a 1-page letter or a 1500-line program.
(Refer to the “Text Editors” section of this guide for a detailed description.)

All SYSTEM V/68 text editors operate on a “file,” a collection of information stored by the
operating system. Within SYSTEM V/68 are three different text editors (ed, ex and vi), each of
which provides a user with a different range of operations and capabilities. The following
paragraphs are intended as an overview to describe how files are created and edited. The
concepts of creating and saving information are true for all three editors; the specific examples
that follow correspond to the SYSTEM V/68 text editor ed, the lowest level editor of the three.

To create a file called junk using ed(1), type

ed junk (invokes the text editor)
a (command to add text)

text ...

text ..

. (command to leave append mode)

The dot (.) that signals the end of adding text must be at the beginning of a line by itself. No
other ed commands will be recognized until the dot is entered; everything typed will be
treated as text to be added. No system prompt appears while appending, inserting, or changing
text in the text editor.

After a file has been created, various editing operations may be performed on the text that was
typed in, such as correcting spelling mistakes, rearranging paragraphs, etc. When editing is
completed, the information is written into a file and permanently saved with the editor
command:

w
Ed will respond with the number of characters written into the file junk.

Until the w command is used, there is no permanent record of the information. If, while
editing a file, a user is logged off before writing the information into a file, all the editing
changes made since the last w command are lost. (For each text editor, special back-up
recovery procedures are available. In ed, the data may be saved in a file called ed.hup that
can be retrieved at the next editing session.) Once text is written to a file, it can be retrieved
any time by typing
ed junk

Type a q command to quit the editor. (If you try to quit before performing a w command to
write the file, the text editor will print a “?” as a reminder. A second q will quit the text

editor regardless.) Now create a second file called temp in the same manner. There should
now be two files, junk and temp.

Refer to the “Text Editors” section in this guide for instructions on creating and writing
(saving) files using the ex(1) and vi(1) editors.

3.1.2 Filenames. Filenames junk and temp have been used without defining a legal
filename. The following rules are valid for all SYSTEM V/68 text editors.

BASICS FOR BEGINNERS MOTOROLA COMPUTER SYSTEMS

Filenames are limited to 14 characters, which is enough to be descriptive. Although any
character can be used in a filename, avoid characters that could have other meanings. In
SYSTEM V/68, several characters are assigned a special meaning when they are read by the
program that interprets commands. These characters include \ $ - ! and * (backslash, dollar
sign, minus sign, exclamation mark and star). To avoid problems, use only letters, numbers
and dot until you are familiar with the workings of the system.

Naming conventions should follow an internal logic. Suppose you are typing a large
document, a book, for example. Logically, the book divides into many small pieces, chapters
and perhaps sections. Physically, it must be divided because ed will not handle files over
90,000 characters. Thus, the document should be typed as a number of files. One possible
method is to create a separate file for each chapter as follows:

chapl
chap2

Another method is breaking each chapter into several files as follows:

chapl.1
chapl.2
chapl.3

ooe

chap2.1
chap2.2

ooe

Users can see quickly where a particular file fits into the whole.

There are other advantages to a systematic naming convention. To print the whole book, a
user could enter the following: '

pr chapl.1 chapl.2 chapl.3 ...

Using the pr(1) command (print) in this way is tiring and will often lead to a typing mistake.
If files are named logically, there is a shortcut. The user can enter:

pr chap*

The * here has the special meaning of “anything at all”, so this translates into “print all files
whose names begin with chap listed in alphabetical order”. This shorthand notation is not a
property of the pr command. It is system-wide, part of the capability of the program that
interprets commands. The program, called the “shell” sh(1), is described in detail in the
section “Introduction to the Shell” later in this guide.

The * is not the only pattern-matching feature available. To print only chapters 1 through 4
and 9, use the following command:

pr chap{12349}*

The [...] means to match any of the characters inside the brackets. A range of consecutive
letters or digits can be abbreviated as follows:

- pr chap{1-49}*

Letters can also be used within brackets. The [a-z] pattern-matching feature matches any
character in the range a through z.

The ? pattern matches any single character, so

3-2

MOTOROLA COMPUTER SYSTEMS BASICS FOR BEGINNERS

pr?

prints all files which have single-character names, and
pr chap?.1

prints the first file of each chapter chapl.l, chap2.1, etc.

So far, the rules of naming a file have not addressed the problem of uniqueness. Different
users may create files with the same 14-character (or less) filename because SYSTEM V/68
identifies files by their location within the file system as well as by name. This is explained
in detail in the next section, “Directories.”

3.1.3 Directories. SYSTEM V/68 contains ordinary files, described above, and directories.
An ordinary file has a filename by which it can be retrieved or referred. The information
stored in a file can be displayed, or edited; the file itself can be copied or moved to a new
location within the file system. (Copying and moving files are explained in the sections that
follow.)

A directory is a file that includes information about other files and possibly, other directories.
In an organizational sense, files are located within directories; a directory “contains” files.
Directories can also “contain” other directories. A directory within another directory is a
subdirectory. There is no limit to the number of subdirectories or files that can be built into
the SYSTEM V/68 file system.

When a user is assigned a login name to log in to SYSTEM V/68, that user is also assigned a
personal directory, usually with the same name. When you log in, you are “located in” your
personal directory, also called your “home” directory. Enter the command

pwd

which is a request to print the working directory. Although the details will vary according
to the system you are on, the pwd command will print something similar to

/usr/yourname

This message indicates that you are currently in the directory yourname, which is itself
located in the directory usr. The usr directory is located in the root directory at the base of
the file system. By convention, the root directory is written and called / (slash).

Your home directory is your storage area. Within your home directory, you can create files,
make subdirectories, copy files, and remove or rename files or directories.

To illustrate the advantages of this organizational system, suppose that you are rewriting a
cookbook using one of the text editors. You could divide each file into a chapter section
(chapl.1, chapl.2, and so on) because of the advantages this provides when you are ready to
print the files. However, when you first start rewriting, you may not know what
information will appear in chapter 1, and what will be put in later chapters. In SYSTEM
V/68, the file structure can be used as an organizational aid in itself.

Start in your home directory and create a subdirectory called cookbook. When creating a
new file (or directory), the new file will be located within the user’s current working
directory unless special action is taken. That is, if you are located in your home directory,
then any new file or directory you create will also be located in your home directory. If you
are located in another user’s home directory, then the file you create will also be located in the
other user’s directory; it doesn’t matter that you are the person who created the file.
Therefore, to create a subdirectory called cookbook in your home directory, log in to your
directory and enter

3-3

BASICS FOR BEGINNERS | MOTOROLA COMPUTER SYSTEMS

mkdir cookbook

using the mkdir(1) command (make directory). To start, you may want to create a file that
will contain an introduction for your book, for example intro. To keep all the files of the
book together, the file intro should be located within the subdirectory cookbook. Currently,
you are in your home directory. To check this, perform the command pwd. To reposition
yourself in your subdirectory, use the command ,

cd cookbook

The ¢d(1) program (change directory) will move you from one directory into another. (The
cd program is described in more detail in the paragraphs that follow.) Now you are located in
the subdirectory cookbook. You can now create a file named intro for your cookbook
introduction.

Next, consider a second level of subdirectories. For example, you can create five subdirectories
within cookbook:

poultry
meats
vegetables
desserts
salads

Each of these subdirectories can be entered to add files or to add more subdirectories. At any
time, you can perform the command pwd to remind yourself where you are located. At some
point, you could perform a pwd and receive a message as follows:

/usr/yourname/cookbook/poultry/chicken/baked

This message says you are located in the subdirectory baked within the subdirectory chicken
within the subdirectory poultry within the subdirectory cookbook. You can create files in
all these directories by making sure you are located in the desired directory when you create
the filee. When you are finished writing your book, you can rename your files to take
advantage of SYSTEM V/68 printing shortcuts.

3.1.4 File System Structure. In general, all files in the system are organized into a tree-
like structure with each user’s files located several branches into the tree. Imagine three
users: Decker, Waitz and Benoit. Each user has a home directory and each home directory is a
subdirectory of the directory usr, which in turn, is a subdirectory of root /. Imagine now
that all three users are logged in SYSTEM V/68 and each creates a file named temp in their
home directories. How does the system tell these files apart?

The filename that a user gives to a file is only part of that file’s identity. Every file has a
complete pathname that locates the file’s position within the complete file system tree. A file’s
pathname represents the full name of the path taken from the root directory to arrive at the
location of that file. In the example above, the full pathnames for each of the three files
named temp would be

/usr/decker/temp
/usr/waitz/temp
/usr/benoit/temp

respectively. It is a universal rule in SYSTEM V/68 that anywhere an ordinary filename can be
used the pathname can also be used.

It is possible for a user to move around the file system tree and find any file in the system by
starting at the root of the tree and following the path of directories named. Conversely, a

3-4

MOTOROLA COMPUTER SYSTEMS BASICS FOR BEGINNERS

user can start at any location and by performing the commmand pwd, retrace the steps back
toward the root.

The list program, Is(1), will produce a list of all files and subdirectories located within a
particular directory. For example, if you now type

1s /usr/yourname

the results should be a list of the filenames located within your home directory. With no
arguments,

1s

lists the contents of the current directory. Given the name of a directory, it lists the contents
of that directory.

Next, try using the following command:
Is /usr

This should print a long series of names, among which is your own login name yourname. On
many systems, usr is a directory that contains the directories of all the normal users of the
system.

The next step is to try the following:
1s /
The response should be something like this (although again the details may be different):
bin
dev
etc
lib
tmp
usr

It may be that you are working in your home directory but you want to relocate to someone
else’s directory. For example, you may want to make a change in a file owned by someone
else. To move around the file system from one directory to another, use the cd(1) command
(change directory).

The cd command is used with either a full pathname or a relative pathname. The full
pathname of a directory (or file) is the complete path you would follow to arrive at that
directory starting from the root directory. The relative pathname of a directory (or file) is the
path you would follow to arrive at that directory, starting from your current working
directory. To illustrate, recall the three users Decker, Waitz and Benoit. Decker is working
in her home directory but needs to read one of Waitz’s files named june84 located in a
subdirectory named intervals. Decker has a choice; she can change directories by using the
full pathname or the relative pathname. To move to the subdirectory using the full
pathname from the root directory, Decker would enter

cd /usr/waitz/intervals

Once inside the directory, Decker can retrieve the file june84. Alternatively, to move to
Waitz’s subdirectory from her own home directory, Decker can move up the tree from decker
to the directory usr, and then down the tree into the directory waitz and into intervals.
SYSTEM V/68 abbreviates the move “up one level” to the symbol .. (dot dot) which is an
abbreviated way of writing “the parent of the current directory.” Similarly, an abbreviated
way of writing “the current directory” is the symbol . (dot). Therefore, to move to Waitz’s

3-5

BASICS FOR BEGINNERS MOTOROLA COMPUTER SYSTEMS

subdirectory using a relative pathname, Decker would enter
cd ../waitz/intervals

The relative pathname is a much faster method of moving around the file system when many
subdirectories are involved. Compare the two methods when changing from subdirectory
baked to subdirectory fried in the cookbook example described in the previous section. To
move from baked to fried using the full pathname, a user would type

cd /usr/yourname/cookbook/poultry/chicken/fried

To move to the same directory using a relative pathway is simply
cd ../fried

If a user enters
cd

by itself, the user is always relocated to the home directory.

If a file owner does not want someone else to have access to the owner’s files, privacy can be
arranged. Each file and directory has read, write and execute permissions for the owner, a
group, and everyone else, which can be set to control access. The Is(1) command (list)
provides information about each file, including the status of these permissions. For example,
the 1s command and its long list option \

1s -1 intervals
entered from within the directory waitz might produce

-rw-rw-rw- 1 gw bsk 41 Jul 22 02:56 june84
-rw-rw-rw- 1 gw bsk 78 Jul 22 12:57 may84

In the example above, the date and time are the date and time of the last change to the file.
The 41 and 78 are the number of characters in each file (which should agree with the
numbers received from ed). The gw identifies the owner of the file, ie. the person who
created it. The bsk identifies the group associated with gw. The -rw—rw-—rw— states who
has permission to read, write, or execute the file. The first character in -rw—rw—rw—isa -
which indicates this is a file of data. A d as the first character would indicate a directory. The
remaining nine characters are divided into three sets of permissions. Each set consists of three
characters. The three sets correspond to the permissions of the owner, group, and all other
users. In this case the owner, group, and others all have permission to read (r) and write (w)
the files. Note that there is no permission for anyone to execute (x) the files. (Refer to Is(1)
and chmod(1) for details.)

At some point, a user may want to remove directories that are no longer needed. As a
precaution, a directory cannot be removed until it is completely empty. For example, if Waitz
was ready to remove her subdirectory

/usr/waitz/intervals
the command would be either

rm intervals/*
rmdir intervals or
rm -r intervals

The rm intervals/* command removes all files in the intervals directory (because ¥ is
interpreted as “match any string”). The rmdir intervals command is then used to remove
the empty directory. The intervals directory must be empty before the command will work.

3-6

MOTOROLA COMPUTER SYSTEMS BASICS FOR BEGINNERS

The rm -r intervals command recursively deletes the entire contents of the directory and
then removes the directory itself.

3.1.5 Printing Files. There are several ways to print a file. The ed editor can be used to
print a file as follows:

ed junk
1$p

Ed will reply with the count of the characters in the junk file and then print all the lines in
the file. The 1,$ is an address followed by a command, p, to print. The entire line translates
to “print all lines from 1 through $,” where $ has the special meaning “the last line.”

The user can also be selective about the parts of a file to be printed as follows:

ed junk
20,35p

which prints only lines 20 through 35. There are times when it is not feasible to use the
editor for printing. For example, there is a limit on how big a file ed can handle (several
thousand lines). Secondly, ed will only print one file at a time; often, several files must be
printed, one after the other.

The simplest printing program is cat(1). The cat command simply prints on the terminal the
contents of all the files named in the order listed. For example:

cat junk
prints one file, and
cat junk temp
prints two files. The files are concatenated and printed on the terminal.

A second printing program is pr(1). The pr command produces formatted printouts of files.
As with cat, pr prints all the files named in a list. In addition, pr produces headings with
date, time, page number, and filename at the top of each page, and extra lines to skip over the
fold in the paper. Thus,

pr junk temp

will print the junk file neatly, then skip to the top of a new page and print the temp file
neatly.

The pr command can also produce multicolumn output. Entering
pr —3 junk
prints junk in 3-column format. Any reasonable number can be used in place of “3”.

The pr program is not a formatting program that can change type fonts or and justifying
margins. The true formatters are nroff(1) and troff(1), and are discussed in the paragraphs on
document preparation later in this guide. (Refer to pr(1) for more information about other pr
capabilities.)
Finally, there are also programs that print files on a hard copy printer. See /p(1) for more
information.

3.1.6 Moving and Copying Files. Commands for moving and manipulating files are
helpful for organizing information or sharing information when more than one user is
working on a project. For example, a user can use the move(1) program to copy a file from one
user’s directory to another. Perhaps you want to copy the file junk now located in your home

3-7

BASICS FOR BEGINNERS MOTOROLA COMPUTER SYSTEMS

directory. Use the cp(1) command (copy) as follows:
cp junk morejunk

The contents of junk are now duplicated in another file in your directory, morejunk. To
check this, type :

Is
for a list of the filenames in your directory.

It may be that you want to copy a file from another user’s directory into your own. To do
this, move to the directory where you want the file to be located. Then type the copy
command, following the pattern “copy from there to here.” For example, to get a copy of the
file june84 from Waitz’s directory, you would type

cd
to get to your home directory. Then type
cp /usr/waitz/intervals/june84 waitz_june84

The new file in your directory will be named waitz_june84. The copy function usually
requires the full pathname when you are copying from another directory.

To move a file from one location to another is the same as giving the file a new filename. This
is because SYSTEM V/68 identifies a file by its location within the file system. The major
difference between the cp program and the mw(1) program (move) is that mv will destroy the
contents of the original file. To see how the mv command works, type

mv junk precious

This will rename the junk file in your home directory so that it is now named precious.
Typing 1Is would now produce

morejunk
precious
temp
cookbook

and any other files you might have created. The file junk is gone. Move commands should be
used with caution. If a file is moved into another file that already exists, the original contents
of the existing file are written over and destroyed. In the example above, had precious
contained any information, the contents of precious would have been lost. If you want to
move a file from one directory to another, the procedure is the same as for cp.

"~ When you are finished creating and moving files, the files can be removed from the file system
by the rm(1) program. The rm command is used as follows:

rm precious temp
‘This will remove both files precious and temp.

The user will get a warning message if one of the named files is not located in the directory,
but otherwise rm will not send an acknowledgement.

3.1.7 Using Files for 1/0 Instead of the Terminal. Most of the commands used so far
produce output on the terminal. Other commands, may take input from the terminal. It is
universal in UNIX systems that the terminal can be replaced by a file for either or both of
input and output. As one example,

3-8

MOTOROLA COMPUTER SYSTEMS BASICS FOR BEGINNERS

1s
makes a list of files on your terminal. But if you enter
1s > filelist

a list of your files will be placed in the file filelist (which will be created if it does not
already exist or overwritten if it does). The symbol > means “put the output on the
following file rather than on the terminal”. Nothing is produced on the terminal. As another
example, you could combine several files into one by capturing the output of cat in a file:

cat f1 f2 f3 >temp

Another symbol, which operates very much like >, is >>. The >> means “add to the end
of”. That is,

cat f1 f2 £f3 >>temp

means to concatenate f1, £2, and f3 to the end of whatever is already in temp instead of
overwriting the existing contents. As with >, if temp does not exist, it will be created.

In a similar way, the symbol < means to take the input for a program from the following file
instead of from the terminal. Thus, a script of commonly used editing commands can be put
into a file called script. Script could then be run on a file by entering:

ed file <script

Another example is using ed to prepare a letter in file let. The letter (file let) could be sent
to several people as follows:

mail waitz decker benoit <let

3.1.8 Pipes. A major innovation in the UNIX operating system is the idea of a “pipe”. A
pipe is a way to connect the output of one program to the input of another program, so the
two run as a sequence of processes—a pipeline.

For example,
prfgh

will print the files f, g, and h, beginning each on a new page. Instead of printing the files
separately, the files can be printed together as follows:

cat f g h >temp
pr <temp
rm temp

This method is more work than necessary. To take the output of cat and connect it to the
input of pr, use the following pipe:

catf ghipr

The vertical bar | means to take the output from cat which would normally have gone to the
terminal and put it into pr to be neatly formatted.

There are many other examples of pipes. For example,
Is | pr —3

prints a list of your files in three columns. The program wc(1) counts the number of lines,
words, and characters in its input; the who(1) command prints a list of users currently logged

3-9

BASICS FOR BEGINNERS MOTOROLA COMPUTER SYSTEMS

on the system, one per access port. Thus
who | wc —1

tells how many people are logged on. The command
1s | we —1

counts the files in the current working directory.

Most programs that read from the terminal can read from a pipe as well. Most programs that
write on the terminal can write on a pipe as well. There can be an unlimited number of
commands in a pipeline.

Many operating system programs are written to take input from one or more files if file
arguments are given. If no arguments are given, the programs will read from the terminal,
and thus can be used in pipelines. One example using the pr(1) command to print files a, b,
and c in three columns and in the order specified is as follows:

pr—3abc
But in
catabclpr -3

the pr prints the information coming down the pipeline, still in three columns.

3.1.9 The Shell. The “shell” mentioned previously is actually the sh(1) program. The
shell is the program that interprets what is typed as commands and arguments. The shell also
translates the special meanings of characters such as ¥ into lists of filenames, and translates <,
>, and | into changes of input and output streams.

The user can run two programs with one command line by separating the commands with a
semicolon. The shell recognizes the semicolon and breaks the line into two commands. Thus

date; who
does both commands before returning with a prompt character.

More than one program can run simultaneously; this is called running programs in the
background. The background mode enables the shell to prompt for another command without
waiting for the previous command to finish. An example of processing in the background is:

ed file <script&

The ampersand (&) at the end of a command line means “start this command running, then
take further commands from the terminal immediately”, that is, don’t wait for it to complete.
Thus the script will begin, but the user can do something else at the same time. To keep the
output from interfering with the terminal, enter

ed file <script >script.out&
which saves the output lines in a file called script.out.

When a command is initiated with &, the system replies with a number called the process
number. Programs running simultaneously can be terminated as follows:"

kill process_number

The process number is used to identify the command to be stopped. If you forget the process
number, the ps(1) command will list the process number for all programs you are running.
(Entering kill-0 will kill all your processes.) Entering ps —a will provide information about

3-10

MOTOROLA COMPUTER SYSTEMS BASICS FOR BEGINNERS

all active programs that other users are currently running.

To start three commands that will execute in the order specified and in the background, enter
the following:

command_]; command_2; command_3&
A background pipeline can be started as follows:
command_] | command_2 &

The shell can read a file to get commands. For example, suppose a user wants to perform a
sequence of actions after every login such as:

e Set the tabs on the terminal
e Find out the date
e Find out who’s on the system.

The three necessary commands to perform these actions, tabs(1), date(1), and who(1), could be
put in a file called startup. The startup file would then be run as follows:

sh startup

This instruction commands the machine to run the shell with the file startup as input. The
effect is the same as typing the contents of startup on the terminal.

If this is to be a regular activity, the need to type sh every time can be eliminated by typing
the following command only once:

chmod +x startup
To run the sequence of commands thereafter, you only need to enter:
startup

The chmod(1) command marks the file as being executable. The shell recognizes this and runs
it as a sequence of commands.

If you want startup to run automatically every time you log in, create a file in your login
directory called .profile and place in it the line “startup”. Upon logging in, the shell gains
control and executes the commands found in the .profile file. (For further information about
the .profile file, refer to the “Introduction to Shell” section of this guide.)

3.2 Document Preparation

UNIX operating systems are used extensively for document preparation. There are two major
formatting programs that produce a text with justified right margins, automatic page
numbering and titling, automatic hyphenation, etc. The nroff(1) (pronounced “en-roff”)
program is designed to produce output on terminals and line-printers. The troff(1)
(proncunced “tee-roff”) program is designed to drive a phototypesetter, which produces very
high quality output on photographic paper. This document was formatted with troff.

3.2.1 Formatting Packages. The basic idea of nroff(1) and troff(1) is that the text to be
formatted contains within it “formatting commands” that indicate in detail how the
formatted text is to look. For example, there may be commands that specify how long lines
are, whether to use single or double spacing, and the running titles to use on each page.

3-11

BASICS FOR BEGINNERS MOTOROLA COMPUTER SYSTEMS

Because the detailed commands of nroff and troff are cumbersome to use effectively, several
“packages” of canned formatting requests are available to let you specify elements such as
paragraphs, running titles, footnotes, and multicolumn output, with little effort and without
having to learn all of nroff and troff. These packages take a modest effort to learn, but the
rewards for using them are so great that it is time well spent.

This section provides a brief description of the “memorandum macros” package known as
mm(1). Formatting requests typically consist of a period and two uppercase letters, such as

.TL
which is used to introduce a title or
.P
to begin a new paragraph.
The text of a typical document is entered so it looks something like this:

.TL

title

AU author information
MT memorandum type
P

text ...

text...

P

More text ..

text ...

.SG signature

The lines that begin with a period are the formatting macro requests. For example, .P calls
for starting a new paragraph. The precise meaning of .P depends on the output device being
used (typesetter or terminal, for instance) and the publication in which the document will
appear. For example, the mm(1) macros normally assume that a paragraph is preceded by a
space (one line in nroff and one-half line in ¢troff) and the first word is indented. These rules
can be changed if desired, but they are changed by changing the interpretation of .P not by
retyping the document.

To produce a document in standard format using mm(1), a user would tYpe the command
troff —mm files ..

for the typesetter and
nroff —mm fles ..

for a terminal. The —mm argument tells troff and nroff to use the memorandum macro
package of formatting requests. There are several similar packages; check with a local expert
to determine which ones are in common use on your machine. Nroff, troff, and the macro
packages are documented in detail in the SYSTEM V/68 User's Manual and the SYSTEM V/68
Document Processing Guide.

3.2.2 Supporting Tools. In addition to the basic formatters, there are many supporting
programs that help with document preparation. The list in the next few paragraphs is far
from complete. Refer to the SYSTEM V/68 User's Manual and SYSTEM V/68 Document
Processing Guide for a full listing of available support programs.

3-12

MOTOROLA COMPUTER SYSTEMS BASICS FOR BEGINNERS

The egn(1) and neqn programs let you integrate mathematics into the text of a document in
an easy-to-learn language that closely resembles your speaking style. For example, the egn
input

lim from {n-> inf} x sub n =0
produces the output

lim x, =0
The program tbl(1) provides an analogous service for preparing tables. The tbl program does
all the computations necessary to align complicated columns with elements of varying widths.

The spell(1) program detects possible spelling mistakes in a document. The spell program
compares the words in your document to a dictionary (stored in memory) and prints those
words that are not in the dictionary. It knows enough about English spelling to detect plurals
and the like.

The grep(1) program looks through a set of files for lines that contain a particular text pattern
(similar to the editor’s context search on a single file). For example,

grep 'ing$’ chap*

will find all lines that end with the letters ing in the files chap*. The “§” signifies that the
pattern searched for must appear at the end of the line to produce a match. A “™” could have
been used to indicate that the pattern to search for must occur at the beginning of a line. The
grep program is often used to locate the misspelled words detected by the spell program.

The diff(1) program prints a list of the differences between two files, so that two versions can
be compared automatically. This is a vast improvement over proofreading by hand.

The wc(1) program counts the words, lines, and characters in a set of files. The tr(1) program
translates characters into other characters. For example, ¢r will convert uppercase characters
to lowercase characters and vice versa. The following command translates uppercase letters
into lowercase letters:

tr [A-Z] [a-z] <input >output

The sort(1) program sorts files in a variety of ways while cxref(1) makes cross-references.
The ptx(1) program makes a permuted index (keyword-in-context listing). The sed(1)
program provides many of the editing facilities of the text editors but can apply them to
arbitrarily long inputs. The awk(1) program provides the ability to do both pattern matching
and numeric computations and to conveniently process fields within lines. These programs are
for advanced users and are not limited to document preparation.

Most of these programs are independently documented in both the SYSTEM V/68 Document
Processing Guide, and the UNIX System User's Manual.

3.2.3 Hints for Preparing Documents. Most documents go through several versions
before they are finished. Following a few guidelines will make the job of revising documents
much easier.

Start each sentence on a new line. Make lines short and break lines at natural places, such as
after commas and semicolons. Because most people change documents by rewriting phrases
and adding, deleting, and rearranging sentences, these precautions simplify any editing needed
later.

3-13

BASICS FOR BEGINNERS MOTOROLA COMPUTER SYSTEMS

Keep document files relatively small, perhaps 10,000 to 15,000 characters. Larger files edit
more slowly. If a mistake is made, it is better to clobber a small file than a big one. Split the
files at natural boundaries in the document for the same reasons that you start each sentence
on a new line.

Another suggestion is not to commit to the formatting details too early. One of the advantages
of using formatting packages is that the package permits many format decisions to be delayed
until the last possible moment.

As a rule of thumb, almost all documents should be produced using a set of requests or
commands (macros). The macros used should be defined either by using one of the existing
macro packages (the easiest way) or by defining your own nroff and/or troff macros. As long
as the text is entered systematically, it can easily be cleaned up and formatted through a
combination of editing commands and macro definitions.

3.2.4 Programming. No attempt will be made here to teach any of the programming
languages available, but a few words of advice are in order. One of the reasons why the
UNIX operating system is a productive programming environment is that there is already a
rich set of tools available. Facilities like pipes, input/output redirection, and the capabilities of
the shell often make it possible to do a job by pasting together programs that already exist
instead of writing a program completely from scratch.

3.2.5 Shell Programming. The pipe mechanism lets you build complicated operations
with spare parts that already exist. For example, the first draft of the spell program was
(roughly)

cat ... collect the files

Itr .. put each word on a new line

I tr .. delete punctuation, etc.

I sort into dictionary order

| uniq discard duplicates

| comm print words in text but not in dictionary

More pieces have been added subsequently, but this goes a long way for such a small effort.

The editor can be used to do things that would normally require special programs on other
systems. For example, to list the first and last lines of each file in a set of files, such as a book,
you could laboriously type:

The same job can be performed much more easily. One procedure is to type:
1s chap* >temp

3-14

MOTOROLA COMPUTER SYSTEMS BASICS FOR BEGINNERS

to get the list of filenames into a file called temp. The temp file can then be edited using
global commands combined with special characters as follows:

1,8 s/"*8/e &\
1p\
$p/

The results are written into the script file (using the command 1,$ w script) and then the
following command is entered:

ed < script

Beginners need not understand how the shell reads the special character meanings, but instead
appreciate that this shortcut eliminates the need for repetitive typing.

Users can also build shell loops to repeat a set of commands over and over again for a set of
arguments, as illustrated below:

for i in chap*
do

ed $i <script
done

This sets the shell variable i to each filename in turn, then does the command. The shell loop
and command can be entered at the terminal or put into a file for later execution.

An option often overlooked by new users is that the shell is itself a programming language,
with variables, control flow if-else, while, for, case subroutines, and interrupt handling.
Since there are many building-block programs, writing new programs can sometimes be
avoided by piecing together some of the building blocks with shell command files. Examples
and rules can be found in the “Introduction To Shell” section of this guide.

3.2.6 Programming in C. The C language is a reasonable choice for programming a
substantial task. Everything in the SYSTEM V/68 operating system is based on the C language.
The system itself is written in C, as are most of the programs that run on the system. The C
language is introduced and fully described in The C Programming Language by B. W.
Kernighan and D. M. Ritchie (Prentice-Hall, 1978). Several sections of the manual describe
the system interfaces, that is, how to do input/output and similar functions.

Most input and output in C is best handled with the standard input/output library, which
provides a set of I/0 functions that exist in compatible form on most machines that have C
compilers. In general, limit the system interactions in a program to the facilities provided by
this library. (Refer to Section 3 of the SYSTEM V/68 User's Manual.)

The C programs that do not depend too much on the special features of the UNIX operating
system (such as pipes) can be moved to other computers that have C compilers. The list of
such machines grows daily; in addition to the PDP-11, it currently includes Data General
NOVA and ECLIPSE, Harris /7, Honeywell 6000, HP 2100, IBM 370, Intel 8086, Interdata 8/32,
Motorola 68000, VAX-11/780, Western Electric 3B20 and 3BS, and Zilog Z80. Calls to the
standard I/0 library will work on all of these machines.

There are a number of programs that support C. The lin#(1) program checks C programs for
potential portability problems and detects errors such as mismatched argument types and
uninitialized variables.

For larger programs whose source is on more than one file, the make(1) program allows users
to specify the dependencies among the source files and the processing steps needed to make a

3-15

BASICS FOR BEGINNERS MOTOROLA COMPUTER SYSTEMS

new version. The program then checks the times that the files were last changed and does the
minimal amount of recompiling to create a consistent updated version.

The sdb(1) program is useful for debugging C programs. Yet, the most effective debugging
tool is still careful thought, coupled with judiciously placed print statements.

The C compiler provides a limited statistical service, so a user can find where programs spend
their time executing. Compile the programs with the —p option; after the test run, use the
prof(1) command to print a program execution profile. The command time(1) will give the
gross run-time statistics of a program, but the times are not very accurate or reproducible.

3.2.7 Other Languages. If FORTRAN must be used, there are two possibilities—
FORTRAN 77 (f77(1)) and RATFOR (rat for(1)). Ratfor provides the control structures and
free-form input that characterize C, yet permits the writing of code that is also portable to
other environments. SYSTEM V/68 FORTRAN tends to produce large and relatively slow-
running programs. Furthermore, support software like prof(1), is virtually useless with
FORTRAN programs. If there is a FORTRAN 77 compiler on your system, it may be a viable
alternative to ratfor and it has the advantage that it is compatible with the C language and
related programs. (The rat for processor and C tools can be used with FORTRAN 77 too.)

If your application requires translating a language into a set of actions or another language,
you are in effect building a compiler, though probably a small one. In that case, the yacc(1)
compiler-compiler is recommended for developing a compiler quickly. The lex(1) lexical
analyzer generator does the same job for the simpler languages that can be expressed as regular
expressions. It can be used by itself or as a front end processor to recognize inputs for a yacc-
based program. Both yacc and lex require some sophistication to use, but the initial effort of
learning them can be repaid many times over in programs that are easy to change later.

Rat for, yacc, and lex are documented in the SYSTEM V/68 User's Manual and SYSTEM V/68
Support Tools Guide.

3-16

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

4. TEXT EDITORS
4.1 SYSTEM V/68 Editors

SYSTEM V/68 provides three interactive programs for creating and modifying text files: ed(1),
ex(1), and vi(1). When any of the editors are invoked to edit a file, the file is copied into a
buffer. All changes directed by the user at a terminal are made to the buffer copy and later
are written to the original file. Ed(1) is a line editor; i.., the user must specify the text on
which an operation is to be performed. Ex(1) has many additional features which make it
easier to use and more efficient than ed(1). These improvements include additional operations,
more error messages, recovery from a system crash, and the ability to make use of advanced
terminal types. Vi(1) is a visual editor; text is displayed on the terminal screen and the user
moves the cursor to the place where a change is to be made. In addition to display editing,
vi(1) has access to all the ex(1) commands. Similarly, ex(1) has a visual mode which is the
same as using the vi(1) editor. Both vi(1) and ex(1) have an open mode. This is the same as
visual mode, except that only one line of text is displayed. Dumb terminals or hard copy
terminals use open mode. Deciding which editor or mode to use depends on several factors.
Vi(1) and the visual mode of ex(1) require definitions of the terminal being used. As stated
previously, ex(1) has many features that are not present in ed(1). Because of the use of the
edit buffer, there is a limit on the size of the file that can be edited with ed(1), ex(1), or vi(1).
SYSTEM V/68 has a stream editor, sed(1) that can be used for large files. This is a non-
interactive text editor that applies a command or set of commands to an entire file. A
description of sed is provided in the SYSTEM V/68 Support Tools Guide.

4.2 The ed Text Editor

4.2.1 General. Ed is a basic text editor which is available on all UNIX systems. This
section is a tutorial introduction and guide for new users of ed. Only the most useful and
frequently used facilities are discussed. These include: printing, appending, changing,
deleting, moving, and inserting entire lines of text; reading and writing files; context searching
and line addressing; substituting; global changing; and using some special characters for easier
editing.

This tutorial is meant to simplify learning ed. The recommended way to learn ed is to read
this document, simultaneously using the editor to follow the examples. Read the description
in Section 1 of the SYSTEM V/68 User's Manual while experimenting with ed. The exercises

illustrate techniques not completely discussed in the actual text. A summary at the end of
section 4.2 lists the ed commands and their functions.

It is assumed that the user knows how to log on to the operating system and has a basic
understanding of what an operating system file is. For more information about the SYSTEM
V/68 operating system facilities, refer to the section, “Basics For Beginners”. The user must
know what character to type as the end-of-line character on the user’s particular terminal.
This character is the RETURN or newline character (key) on most terminals. Hereafter, the
end-of-line character, whatever it is, will be referred to as RETURN.

4.2.2 Editing Commands.

4.2.2.1 Getting Started. Assume that the user has logged in to a SYSTEM V/68 operating
system and it has just printed the prompt character, usually a

$
The easiest way to invoke ed is to type:

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

ed (followed by a RETURN)

Now the ed program has been invoked and is waiting to be told what to do.

4.2.2.2 Creating Text. Suppose some text is to be created starting from scratch. Perhaps
the very first draft of a document or paper is to be entered. Normally, it will be entered in
rough form and undergo modifications (editing) later. This part will describe how to enter
some text to get a file of text started. How to make changes and corrections to the text is
described later.

When ed is first invoked, it is like working with a blank piece of paper (the file)—there is no
text or information present on the paper (in the file). The text must be supplied by the person
using ed. This is usually done by typing in the text or by reading it into ed from a file. We
will start by typing in some text and return shortly to how to read files.

First we will discuss a bit of terminology. In ed jargon, the text being worked on is said to be
“kept in a buffer.” Think of the buffer as a work space, if desired, or simply as the
information that is to be edited. In effect, the buffer is like a piece of paper on which we will
write things, change some of them, and finally file the whole thing away for another day.

The user tells ed what to do to the text by typing instructions called “commands.” Most
commands consist of a single lowercase letter. Each command is typed on a separate line.
(Sometimes the command is preceded by information about the line or lines of text to be
affected—these will be described below.) The ed text editor makes no response to most
commands—there is no prompting or response message like “ready”.

The first command is “append,” written as the letter

a

on a command line all by itself. It means “append (or add) text lines to the buffer as I type
them in.” To enter lines of text into the buffer, type an

a

followed by a RETURN and the lines of text desired:

a

Now is the time

for all good men

to come to the aid of their party.

To stop appending, type a line that contains only a period. The . is used to tell ed that the
appending is finished. (If ed seems to be ignoring your entries, type an extra line with just
the . on it. You may find you have added some garbage lines to your text which will have
to be deleted later.)

After the append command has been used, the buffer will contain the following three lines:

Now is the time
for all good men
to come to the aid of their party.

The a and the . are not there because they are not text.

To add more text to what already exits, just issue another a command and continue typing.

42

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

To practice this, enter ed and create some text using the append command a

a
text...

Note that no system prompt appears while in the text editor. Do not forget to write the text
into memory with the write command w. Then leave ed with the q command and print the
file to see that everything worked. To print a file, enter

pr filename
or
cat filename

in response to the prompt character (§). Try both.

4.2.2.3 Error Messages (?). If at any time the user makes an error in the commands typed
into ed, the text editor will tell the user by typing the following:

?

This is about as cryptic as it can be, but with practice the user can usually figure out the goof.
The user can get a brief explanation of the error by typing

h

The help command gives a short error message that explains the reason for the most recent ?
diagnostic.

4.2.2.4 Writing Text Files-The Write Command. Usually, you will want to save your
text for later use. To write out the contents of the buffer onto a file, use the write command

w

followed by the filename to write on. This will copy the buffer’s contents onto the specified
file, destroying any previous information on the file. To save (write) the text in a file named
junk, for example, type:

w junk

Leave a space between w and the filename. The ed program will respond by printing the
number of characters it wrote out. In this case, ed would respond with:

68

Remember that blanks and the return character at the end of each line are included in the
character count. Writing a file just makes a copy of the text—the buffer’s contents are not
disturbed, so the user can go on adding lines to it. This is an important point. At all times the
ed program works on a copy of a file, not the file itself. No change in the contents of a file
takes place until you give a w command. (Writing out the text onto a file from time to time
as it is being created is a good idea. If the system crashes or if the user makes some horrible
mistake, all the text in the buffer will be lost but any text that was written onto a file is
relatively safe.)

4.2.25 Leaving ed-The Quit Command. To terminate a session with ed, first save your
text by writing it onto a file using the w (write) command, and then type the quit command:

q

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

The system will respond with the prompt character:
$

At this point your buffer vanishes, with all its text, which is why the user would want to
write before quitting. Actually ed will print the character

?

if the user tries to quit without writing. At this point, the user writes if desired; if not,
another q will get you out regardless and will not save the text in the buffer.

4.2.2.6 Reading And Editing Text Files. A common way to get text into the buffer is to
read it from another file in the file system. This is what you do to edit text that you saved
with the w command in a previous session. The edit command

€

retrieves the entire contents of a file into the buffer. So if the user had saved the three lines
“Now is the time”, etc., with a w command in an earlier session, the edit command '

e junk
would place the entire contents of the file junk into the buffer and respond with a number
68

which is the number of characters in the junk file. If anything was already in the
buffer, it is deleted first.

If the e command is used to read a file into the buffer, then the user does not need to use a file
name after a subsequent w command; ed remembers the last filename used in an e command,
and w will write on this file. Thus a good practice to follow is:

ed
e filename
[editing session]

w
q

This way, the user can simply enter w from time to time and be secure in the knowledge
that if the user got the filename right at the beginning, the user is writing into the proper file
each time. Note that after each edit command (e) or each write command (w) the number of
characters is returned by ed.

The user can find out at any time what filename ed is remembering by typing the file
command f. In this example, if you typed

f
ed would reply _

junk
Sometimes you want to read a file into the buffer without destroying information that is
already in the buffer. This is done using the read command r. The command

r junk ,
will read the file junk into the buffer. The command appends the file specified to the end of
whatever file is already in the buffer. So if you do a read after an edit command such as

4-4

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

e junk
r junk

the buffer will contain two copies of the orginal text as follows:

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the w and e commands, r prints the number of characters read in after the reading
operation is complete. Generally speaking, r is much less used than e.

The read command r may also be used to read a file external to the buffer into the file in the
buffer. While in ed and at the current line, enter the command

.r filename

and filename will be read into the file (already in the buffer) immediately after the current
line. None of the file in the buffer is destroyed, rather the external file filename has been read
into and been combined with the file already in the buffer. The file that was read remains in
filename also. You only copied it. The significant difference between r and .r is the final
destination of the file. The r command appends the file to whatever is already in the buffer;
the .r command reads the file into the buffer immediately after the current line.

Experiment with the ¢ command—try reading and printing various files. You may get an
error 2name where name is the name of a file. This means that the file does not exist. Some
typical causes of getting an empty file are spelling the filename wrong or perhaps trying to
read or write a particular file which your permissions will not allow. Try alternately
reading and appending to see that they work similarly. Verify that

ed filename
is exactly equivalent to

ed
e filename

What does
f filename
do?

4.2.2.7 Printing Buffer Contents. To print or list the contents of the buffer (or parts of
it) on the terminal, use the print command p. This is done as follows. Specify the line
numbers where printing is to begin and end. These numbers have a comma between the
beginning number and the ending number:

beginning line number, ending line number p
Thus to print the first ten lines of the contents of any buffer (i.e., lines 1 through 10), type:
1,10p (prints lines 1 through 10)

The ed will respond by printing the specified starting line (1) through the specified ending
line (10).

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

Suppose it is desirable to print all the lines in the buffer. You could use “1,30p” as above if it
is known there are exactly 30 lines in the buffer. But in general, the ed program provides a
shorthand symbol for “line number of the last line in the buffer,” the dollar sign $. To print
all the lines in the buffer, use it this way:

1,$p (Prints all lines in buffer)
or
P (Prints all lines in buffer also)

This will print all the lines in the buffer (line 1 through the last line). The 1,$p can be
abbreviated $,p. To stop the printing before the last line is printed, push the DEL key or the
DELETE (or equivalent) key on the terminal. The ed program will respond

?

and wait for the next input command.

To print the last line of the buffer, you could use
$.3p

but ed lets you abbreviate this to
$p

Any single line can be printed by typing the line number followed by a p. Thus
ip

produces the response
Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further. You can print any single line by typing just the
line number—no need to type the letter p. If you enter

$

ed will print the last line of the buffer. Entering a single line number will print that line
only.

It is also possible to use $ in combinations like
$—-55p

which prints the last five lines of the buffer. This helps to determine the end of the contents
of the buffer when more is to be entered.

Create some text using the a command and experiment with the p command. You will find,
for example, that line O or a line beyond the end (last line) of the buffer can not be printed.
Attempts to print a buffer in reverse order by entering

3,1p
will not work.

Suppose the buffer contains the six lines of text

4-6

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

Now is the time
for all good men
to come to the aid of their party
Now is the time
for all good men
to come to the aid of their party

and the following was entered
1,3p

and ed has printed the three lines. Try typing just
P (no line numbers)

This will print
to come to the aid of their party.

which is the third line of the buffer. In fact, it is the last (most recent) line that was
processed. (It was the line just printed.) The p command can be repeated without line
numbers, and it will continue to print line 3.

The reason is that ed maintains a record of the last line processed so that it can be used instead
of an explicit line number. The most recent line is referred to by the shorthand symbol

(Pronounced “dot”)

Dot is a line number in the same way that $ is. Dot means exactly “the current line”, or
loosely, “the line that was processed most recently.” The dot can be used in several ways—one
possibility is to enter:

-$p

This will print all the lines, including the current line, to the last line of the buffer. In our
example, these are lines 3 through 6.

Some commands change the value of dot, while others do not. The print command p sets dot
to the number of the last line printed; the last command entered (.,$p) will set both . and $
to the last line in the buffer (line 6).

Dot is most useful when used in combinations, for example
41 (or equivalently, +1p)

This means “print the next line” and is a handy way to step slowly through a buffer. You
can also enter

—1 (or .—1p)

which means “print the line before the current line”. This enables stepping through the
buffer backwards if desired. Another useful combination is

—3,.—1p
which prints the previous three lines.

All of these combinations change the value of dot. The user can learn the current value of
dot by typing

= (dot line number is ?)

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

The ed program will respond by printing the value (line number) of dot.

Let us summarize some things about the p command and dot. Essentially, p can be preceded
by 0, 1, or 2 line numbers (for our example). If no line number is given, it prints the
“current line”, the line to which the dot refers. If one line number is given with or without
the letter p, it prints that line and sets dot there. If two line numbers are separated by a
comma, it prints all the lines in that range from the first number to the last number, and sets
dot to the last line printed. If two line numbers are specified, the first can not be bigger than
the second.

Typing a single RETURN will cause printing of the next line; RETURN is equivalent to
~+1p

Try it. Typing a ~ is equivalent to typing the minus —. It can be used in multiples, as ~™,
which will move the current line or dot line backwards three lines from the current line.
The — or the ~ can be considered equivalent to —1p since either moves the dot back one
line.

4.2.2.8 Deleting Lines. Suppose three extra lines in the buffer are not needed. They may
be removed by use of the delete command:

d

Except that d deletes lines instead of printing them, its action is similar to that of the print
command p. The lines to be deleted are specified for d exactly as they are for p as follows:

starting line, ending line d

Thus the command
4.8d

deletes lines 4 through the end. There are now three lines left, that can be checked by using:
13p

And notice that $ now is line 3! Dot is set to the next line after the last line deleted, unless
the last line deleted is the last line in the buffer. In that case, dot is set to $. The delete
command d and the print command p may be used together thus

dp
which deletes the current line, prints the following line, and sets dot to the line printed.

Experiment with a, e, r, w, p, and d until you become familiar with their use. While
experimenting, also use ., $, and line numbers to understand their use.

When you start to feel adventurous, try using line numbers with a, r, and w as well. You
will find that a will append lines after the line number that you specify (rather than after
dot); r reads a file in after the line number you specify (not necessarily at the end of the
buffer); and w will write out exactly the lines specified, not necessarily the whole buffer.
These variations are sometimes handy. For instance, a file can be inserted at the beginning of
a buffer by entering:

Or filename
Lines can be entered at the beginning of the buffer by using:

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

0a
.text...

Notice that “.w” is very different from

w

4.2.2.9 The Substitute Command. One of the most used of all commands is the substitute
command:

This is the command that is used to change individual words or letters within a line or group
of lines. The substitute command is used for correcting spelling mistakes and typing errors.

Suppose that, because of a typing error, line 1 says
Now is th time

notice the e has been left off. The s command can be used to fix this as follows:
1s/th/the/

This says: in line 1, substitute the characters the for the characters th. Since ed will not
print the result automatically, enter

P
to verify that the substitution worked, and you should get
Now is the time

which is what is desired. Notice that dot must have been set to the line where the
substitution took place since the p command printed that line. Dot is always set this way
with the s command.

The general way to use the substitute command is
starting-line, ending-line s/change this/to this/

Whatever string of characters is between the first pair of slashes is replaced by whatever is
between the second pair, in all the lines between starting—line and ending—line. Only the
first occurrence on each line is changed however. If every occurrence is to be changed, see
“Exercise 5”. The rules for line numbers are the same as those for the print command p
except that dot is set to the last line changed. (But there is a trap for the unwary: if no
substitution took place, dot is not changed. This causes an error response ? as a warning.)

Thus the following can be entered
1,8s/speling/spelling/

to correct the first spelling mistake (speling in this case) on each line in the text. (This is
useful for people who are consistent misspellers!)

If no line numbers are given, the s command assumes we mean “make the substitution on line
dot”, so it changes things only on the current line. This leads to the very common sequence

s/something /something else/p

which makes some correction on the current line and then prints it (current line) to make
sure it worked out right. If it did not, you can try again. Notice that there is a p on the same

49

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

line as the s command. With few exceptions, p can follow any substitute command.
It is also legal to say
s/ /!

which means change the first string of characters (...) to nothing, ie., remove them. This is
useful for deleting extra words in a line or removing extra letters from words. For instance,
if the buffer contained

Nowxx is the time

this can be corrected by entering
s/xx//p

to get
Now is the time

Notice that // (two adjacent slashes) means “no characters” not a blank.

Experiment with the substitute command. See what happens if you substitute for some word
on a line with several occurrences of that word. For example, enter

a
the other side of the coin
s/the/on the/p

which results in the following:
on the other side of the coin

A substitute command changes only the first occurrence of the first string. All occurrences
can be changed by adding a g (for “global”) command to the s command, like this:

8/ /gP

Try other characters instead of slashes to delimit the two sets of characters in the s
command—anything should work except blanks or tabs.

The characters
o8 Lr N &
have special meanings in a substitute command that are discussed in detail later in this section.

4.2.2.10 The Search Command. When the substitute command is mastered, you may
move on to another highly important feature of ed—context searching.

Suppose the original three lines of text in the buffer are as follows:

Now is the time
for all good men
to come to the aid of their party.

Suppose the word their is to be changed to the. How is the line that contains their located?
With only three lines in the buffer, it is easy to keep track of what line the word their is on.
But when the buffer contains several hundred lines, users need a method of specifying the
desired line, regardless of what its number is, by specifying some context (unique text) on it.

4-10

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

The way to say “search for a line that contains this particular string of characters” or “unique
text” is to type:

/string of characters to find/
For example, the ed expression
/their/

is a context search which is sufficient to find the desired line—it will locate the next
occurrence of the characters between slashes (“their”). It also sets dot to that line and prints
that line for verification:

“Next occurrence” means that ed starts looking for the string at line “+1” and searches to the
end of the buffer, then continues at line 1 and searches to line dot. That is, the search “wraps
around” from $ to 1. It scans all the lines in the buffer until it either finds the desired line or
gets back to dot again. If the given string of characters can not be found in any line, ed types
the error message

?

Otherwise, it prints the line it found.

The search for the desired line and the substitution can be done together, like this:
/their/s/their/the/p

which will yield
to come to the aid of the party.

There were three parts to that last command: context search for the desired line, make the
substitution, and print the line.

The expression “/their/” is a context search expression. In the simplest form, all context
search expressions are like this—a string of characters surrounded by slashes. Context
searches are interchangeable with line numbers, so they can be used by themselves to find and
print a desired line or as line numbers for some other command, like s. They were used both
ways in the examples above.

Suppose the buffer contains the three familiar lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers
/Now/+1
/good/
/party/—1

are all context search expressions, and they all refer to the same line (line 2). To make a
change in line 2, enter

/Now/+1s/good/bad/
or
/good/s/good/bad/
or
/party/—1s/good/bad/

4-11

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

The choice is dictated only by convenience. All three lines could be printed by entering

/Now/,/ party/ P
or
/Now/,/Now/+2p

or by any number of similar combinations. The first one of these might be better if you do
not know how many lines are involved. (Of course, if there were only three lines in the
buffer, a convenient method of printing would be

1,8p
but not if there were several hundred.)

The basic rule is: a context search expression is the same as a line number, so it can be used
wherever a line number is needed.

Experiment with context searching. Try a body of ‘text with several occurrences of the same
string of characters and scan through it using the same context search.

Try using context searches as line numbers for the substitute, print, and delete commands.
They can also be used with r, w, and a.

Try context searching using “?text?” instead of “/text/”. This scans lines in the buffer in
reverse order rather than normal (forward) order. This is sometimes useful if you go too far
while looking for some string of characters—it is an easy way to back up.

The characters
o8 [\ &
have special meanings in a context search that are discussed im detail later in this section.

The ed program provides a short method for repeating a comtext search for the same string.
For example, the ed line number

/string /

will find the next occurrence of “string”. It often happens that this is not the desired line, so
the search must be repeated. This can be done by typing merely:

//

This short method stands for “the most recently (last) used context search expression”. It can
also be used as the first string of the substitute command, as in

/stringl/s//string2/

which will find the next occurrence of stringl and replace it by string2. This can save a lot
of typing. Similarly

7

means “scan backwards for the same expression.”

4.2.2.11 Changing and Inserting Text. This section discasses the change command
c

which is used to change the current line or to replace the current line with a group of one or
more lines, and the insert command

i

4-12

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

which is used for inserting a group of one or more lines immediately before the current line.
“Change”, written as
c

is used to replace a number of lines with different lines, which are typed in at the terminal.
For example, to change the first line (+1) through the last line ($) of a file to something else,

type
+1,8c
.type the lines of text you want here...

The lines typed between the ¢ command and the .’ (dot) command will take the place of the
original lines between start line and end line. This is most useful in replacing a line or
several lines which have errors.

If only one line is specified in the ¢ command, then just that line is replaced. (You can type in
as many replacement lines as you like.) Notice the use of “.’ (dot) to end the input—this works
just like the .’ (dot) in the a command and must appear by itself at the beginning of a new
line. If no line number is given, line dot is replaced. The value of dot is set to the last line
you typed in.

“Insert” is similar to append. For example,

/string /i
.type the lines to be inserted here...

will insert the given text before the next line that contains “string”. The text between i and
the *’ (dot) is inserted before the specified line. If no line number is specified, the dot line is
used. Dot is set to the last line inserted.

“Change” is rather like a combination of delete followed by insert. Experiment to verify that

starting-line.ending-lined
i
~text...

is almost the same as

starting-line.ending-line c
~text...

These are not precisely the same if the last line ($) gets deleted. Check this out. What is dot?

Experiment with the append command a and the insert command i to see that they are
similar but not the same. You will observe that

line-number a
.lext...

appends after the given line, while

4-13

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

line-number i
.lext..

inserts before it. Observe that if no line number is given, i inserts before line dot, a appends
after line dot, and ¢ changes line dot.

4.2.2.12 Moving Text-The Move Command. The move command m is used for cutting
and pasting—it allows a group of lines to be moved from one place to another in the buffer.
Suppose the first three lines of the buffer are to be placed at the end of the buffer instead of at
the beginning. This could be performed by entering:

1,3w temp
$r temp
1,3d

This method will work, but it is a lot easier using the m command as follows:
1,3m$

The general case is:
starting-line,ending-line m after this line

Notice that there is a third line to be specified—the line after which the other lines are to be
moved. Of course, the lines to be moved can be specified by context searches; if you had

First paragraph
end of first paragraph.
Second paragraph

end of second paragraph.
the two paragraphs could be reversed like this:
/Second/,/end of second/m/First/—1

Notice the “—1” which means that the moved text goes after the line mentioned. Dot gets set
to the last line moved.

4.2.3 The Global Commands. The two global commands are g and v. The global
command g is used to execute one or more ed commands on all those lines in the buffer that
match some specified string. For example

g/peling/p
prints all lines that contain “peling”. More usefully,
g/peling/s//pelling/gp

makes the substitution everywhere on the line, then prints each corrected line. Compare this
to

1,$s/peling/pelling/gp

which only prints the last line substituted. Another subtle difference is that the g command
does not give a ? if “peling” is not found, whereas the s command will.

There may be several commands used in conjunction with the g command, but every line
except the last must end with a backslash “\”. For example:

4-14

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

g/xxx/—1s/abc/def/\
«+2s/ghi/jK1/\
—2,.p

makes changes in the lines before and after each line that contains “xxx”, then prints all
three lines.

The v command is the same as g except that the commands are executed on every line that
does not match the string following v. The following input

v/ /d
deletes every line that does not contain a blank.

4.2.4 Special Characters. You may have noticed that command work differently when
some characters like ., *, $, are used in context searches and in the s command. The reason is
that ed treats these characters as special, with special meanings. For instance, in a context
search or the first string of the substitute command only,

/x.y/

means “a line with an x, any character, and a y”, not just “a line with an X, a period, and a
y.,’

The following is a complete list of the special characters that have special meanings.
o8 L\ &

Warning: The backslash character “\” is special to “ed”. For safety’s sake, avoid it
where possible.

If you have to use one of the special characters in a substitute command, you can turn off its
magic meaning temporarily by preceding it with the backslash.

Here is a brief synopsis of the other special characters. First, the circumflex “*” signifies the
beginning of a line. Thus

/[string /

finds “string” only if it is at the beginning of a line. It will find
string '

but not
the string...

The dollar sign “$” is just the opposite of the circumflex; it means the end of a line. The input
/string $/

will only find an occurrence of “string” at the end of some line. This implies, of course, that
/[string$/

will find a line that contains just “string” and
/°8/

finds a line containing exactly one character.

The character “.”, as mentioned above, matches anything. For example, the input

/x.y/

4-15

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

matches any of the following:

X+y
x—y
xy
x.y

This is useful in conjunction with “*” which is a repetition character. The “a*” is a shorthand
input for “any number of a’s” therefore “.*” matches any number of anythings. For example,
input

s/ */stuff/
which changes an entire line, or
s/*,//

which deletes all characters in the line up to and including the last comma. (Since “.*” finds
the longest possible match, this goes up to the last comma.)

The “[” is used with the “}” to form character classes; for example,

/[0123456789)/

matches any single digit, i.e.,, any one of the characters inside the braces will cause a match.
This can be abbreviated to

[0-9]

Finally, the “&” is another shorthand character — it is used only on the right-hand part of a
substitute command where it means “whatever was matched on the left-hand side”. It is used
to save typing. Suppose the current line contained

Now is the time

and you wanted to put parentheses around it. One tedious method is just to retype the line.
Another method is to enter

s/~ /(/
s/8/)/

using your knowledge of “™” and “$”. But the easiest way uses the “&” as follows:
s/ */(&)/

This says “match the whole line and replace it by itself surrounded by parentheses.” The “&”
can be used several times in a line; consider using

s/ */&?&\/
to produce
Now is the time? Now is the time"
You do not have to match the whole line, of course. If the buffer contains
the end of the world
you could type
/world/s//& is at hand/
to produce

4-16

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

the end of the world is at hand

Observe this expression carefully, for it illustrates how to take advantage of ed to save typing.
The string “/world/” found the desired line; the shorthand “//” found the same word in the
line; and the “&” saved you from typing it again.

The “&” is a special character only within the replacement text of a substitute command and
has no special meaning elsewhere. You can turn off the special meaning of “&” by preceding
it with a backslash “\”. Inputting

s/ampersand/\ &/
will convert the word “ampersand” into the literal symbol “&” in the current (dot) line.

4.2.5 Summary of Commands and Line Numbers. The general form of the ed text
editor commands is the command name, perhaps preceded by one or two line numbers. In the
case of the edit command e, the read command r, and the write command w, the command
name is also followed by a filename. Normally, only one command is allowed to be entered
per line, but a print command p may follow any other command (except for the edit
command e, the read command r, the write command w, and the quit command q).

a Append, adds lines to the buffer (at line dot, unless a different line is
specified). Appending continues until a dot “” is typed at the beginning
(first character) of a new line. Dot is set to the last line appended.

c Change the specified lines to the new text which follows. Entering
new lines is terminated by a dot “.” as with a. If no lines are specified,
the current line (dot) is replaced. Dot is set to the last line changed.

d Delete the lines specified. If none are specified, delete line dot.. Dot is set
to the first undeleted line, unless $ is specified in which case dot is set to
the last line, $.

e Edit new file. Any previous contents of the buffer are thrown away, so
issue a write command w beforehand.

f Print the remembered filename. If a name follows f, the remembered
name will be set to it.

g The global command g/-—/commands will execute the commands on
those lines that contain “—”.

i Insert lines before the specified line or the current line (dot line) until
a “” is typed at the beginning of a new line. Dot is set to last line
inserted.

m Move lines specified to the line named after m. Dot is set to the last
line moved.

n Print the number of the addressed line(s) followed by a tab and the line
itself.

P Print specified lines. If none are specified, print line dot. A single line

number is equivalent to “line number”. A single RETURN prints the
next line, ie., the dot-plus-one line, “+1”.

q The quit command exits from ed. It wipes out all text in the buffer if
you give it twice in a row without first giving a write command w.

4-17

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

r Read a file into the buffer (at the end unless specified elsewhere). Dot is
set to the last line read. If .r filename is used, the filename is read into
the buffer immediately after the dot line.

s The s/stringl/string2/ command is used to substitute the characters
“string” into “string2” in the specified lines. If no lines are specified,
the substitution is made in line dot. Dot is set to the last line in which
a substitution took place; if no substitution took place, dot is not
changed. The command s changes only the first occurrence of “stringl”
on a line; to change all occurrences on a line, type a g after the final

slash.

v The exclude command v/—/commands executes commands only on
those lines that do not contain “—".

w The write command writes out the buffer contents onto a file. Dot is not
changed.

= The “=" causes the printout of the current line number. The dot value

prints the line number of the current line (dot line). The “=” by itself
prints the value of the last line in the file.

' The “0” is a temporary escape command. The line “‘command-line”
causes “command-line” to be executed as an operating system command.

/—/ The context search command searches for the next line which contains

the string of characters “—” and prints it. Dot is set to the line where

string was found. Search starts at line “~=1”, wraps around from the
last line “$” to line “1”, and continues to dot (the current line) if
necessary.

?—2 Performs context search in reverse direction. Starts search at the
previous line “.—1”, scans to line 1, wraps around to the last line “$”,
and scans back to the current line (dot line) if necessary.

4.3 The ex Text Editor

4.3.1 Starting the ex Editor. When invoked, ex determines the terminal type from the
TERM variable in the environment. If there is a TERMCAP variable in the environment and the
type of the terminal described matches the TERM variable, then that description is used. If the
TERMCAP Vvariable contains a pathname (beginning with a /), the editor will seek the
description of the terminal in that file (rather than the default /etc/termcap). If there is a
variable EXINIT in the environment, the editor will execute the commands in that variable;
otherwise, if there is a file .exrc in your HOME directory, ex reads commands from that file,
simulating' 2 source command. Option setting commands placed in EXINIT or .exrc will be
executed before each editor session.

A command to enter ex has the following prototype. (Brackets ([]) surround optional
parameters.)

ex [-I-vi-t tagll-r1[-wn)-RM+command] name...
a. The most common case edits a single file with no options, i.e.:
ex filename

b. The - command line option suppresses all interactive-user feedback and is useful in
processing editor scripts in command files.

4-18

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

The -v option is equivalent to using vi rather than ex.

d. The -t option is equivalent to an initial tag command, editing the file containing the tag
and positioning the editor at its definition.

e. The -r option is used in recovering after an editor or system crash, retrieving the last
saved version of the named file or, if no file is specified, typing a list of saved files.

f. The -1 option sets up for editing LISP, setting the showmatch and lisp options.

g. The -w option sets the default window size to n, and is useful on dial-ups to start in
small windows.

h. The -R option sets the readonly option at the start. (Not available in all Version 2
editors due to memory constraints.)

i. The name arguments indicate files to be edited.

J An argument of the form +command indicates that the editor should begin by executing
the specified command. If command is omitted, then it defaults to "$", positioning the
editor at the last line of the first file initially. Other useful commands here are scanning
patterns of the form /pat/ or line numbers, e.g., +100 starting at line 100.

4.3.2 File Manipulation.

4.3.2.1 Current File. The ex editor is normally used to edit the contents of a single file.
The file being edited is considered the current file; its name is recorded as the current filename.
The ex editor performs all editing actions in a buffer (a temporary file) into which the text of
the file is initially read. Changes made to the buffer have no effect on the file being edited
until the buffer contents are written out to the file with a write command. After the buffer
contents are written, the previous contents of the written file are no longer accessible.

The current file is almost always considered to be edited. This means that the contents of the
buffer are logically connected with the current filename, so that writing the current buffer
contents onto that file, even if it exists, is a reasonable action. If the current file is not edited
then ex will not normally write on it if it already exists. The file command will say ‘{Not
edited]” if the current file is not considered edited.

4.3.2.2 Alternate File. Each time a new value is given to the current filename, the
previous current filename is saved as the alternate filename. Similarly, if a file is mentioned
but does not become the current file, it is saved as the alternate filename.

4.3.2.3 Filename Expansion. Filenames within the editor may be specified using the
normal shell expansion conventions. In addition, the character % in filenames is replaced by
the current filename and the character # by the alternate filename. This makes it easy to deal
alternately with two files and eliminates the need for retyping the name supplied on an edit
command after a “No write since last change” diagnostic message is received.

4.3.2.4 Multiple Files and Named Buffers. If more than one file is given on the
command line, then the first file is edited as described above. The remaining arguments are
placed with the first file in the argument list. The current argument list may be displayed
with the args command. The next file in the argument list may be edited with the next
command. The argument list may also be respecified by specifying a list of names to the next
command. These names are expanded with the resulting list of names becoming the new
argument list, and ex edits the first file on the list.

For saving blocks of text while editing, and especially when editing more than one file, ex has
a group of named buffers. These are similar to the normal buffer, except that only a limited
number of operations are available on them. The buffers have names a through z. It is also

4-19

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

possible to refer to A through Z; the uppercase buffers are the same as the lowercase buffers
but commands append text to named buffers rather than replacing the buffer contents if
uppercase names are used.

4.3.2.5 Read-Only Mode. It is possible to use ex in the read-only mode to look at files that
you have no intention of modifying. This mode protects you from accidentally overwriting
the file. Read-only mode is on when the readonly option is set. It can be turned on with the
-R command line option, with the view command line invocation, or by setting the readonly
option. It can be cleared by setting the noreadonly option. It is possible to write, even while
in read-only mode, by writing to a different file, or by using the ! form of write.

4.3.3 Exceptional Conditions.

4.3.3.1 Errors and Interrupts. When errors occur ex (optionally) rings the terminal bell
and prints an error diagnostic. If the primary input is from a file, editor processing will
terminate. If an interrupt signal is received, ex prints “Interrupt” and returns to its
command level. If the primary input is a file, then ex will exit when this occurs.

4.3.3.2 Recovering From Hang-ups and Crashes. If a hang-up signal is received and the
buffer has been changed since it was last written, or if the system crashes, either the editor
(in the first case) or the system (after it reboots in the second case) will attempt to preserve
the buffer. The next time you log in you should be able to recover the work you were doing,
losing at most a few lines of changes from the last point before the hang-up or editor crash.
To recover a file you can use the -r opticn. If you were editing the file resume, then you
should change to the directory where you were when the crash occurred, giving the
command

€X -r resume

After checking that the retrieved file is good, you can write it over the previous contents of
that file.

You will normally get mail from the system telling you when a file has been saved after a
crash. The command

€X -r

will print a list of the files that have been saved for you. In the case of a hang-up, the file
will not appear in the list, although it can be recovered.

4.3.4 Editing Modes. The ex editor has five distinct modes.

a. The primary mode is the command mode. Commands are entered in command mode
when a : prompt is present and are executed each time a complete line is sent.

b. In text input mode ex gathers input lines and places them in the file. The append, insert,
and change commands use text input mode. No prompt is printed. This mode is left by

€% 9

typing a “.” alone at the beginning of a line and command mode resumes.

c. The last three modes are open mode, visual mode (entered by the commands of the same
name), and text insertion mode (within open and visual modes).

— The open mode allows local editing operations to be performed on the text in the file.
The open command displays one line at a time and can be used on any terminal.

— The visual mode allows local editing operations to be performed on the text in the
file. The visual command works on CRT terminals with random positioning cursors,
using the screen as a single window for file editing changes.

4-20

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

4.3.5 Command Structure. Most command names are English words (initial prefixes of
the words are acceptable abbreviations). The ambiguity of abbreviations is resolved in favor
of the more commonly used commands. As an example, the substitute command can be
abbreviated “s”. The shortest available abbreviation for the set command is “se”.

4.3.5.1 Command Parameters. Most commands accept prefix addresses specif ying the lines
in the file that they are to affect. The forms of these addresses will be discussed below. A
number of commands also may take a trailing count specifying the number of lines to be
involved in the command. (Counts are rounded down if necessary.) Thus, the 10p command
will print the tenth line in the buffer. The delete 5§ command will delete five lines from the
buffer, starting with the current line.

Some commands take other information or parameters, the information always being given
after the command name. Examples are: option names in a set command (set number), a
filename in an edit command, a regular expression in a substitute command, or a target
address for a copy command (1,5 copy 25).

4.3.5.2 Command Variants. A number of commands have two distinct variants. The
variant form of the command is invoked by placing an ! immediately after the command
name. Some of the default variants may be controlled by options; in this case the ! serves to
toggle the default.

4.3.5.3 Flags After Commands. The characters #, p and 1 may be placed after many
commands. (A p or 1 must be preceded by a blank or tab except in the single special case dp.)
In this case, the command abbreviated by these characters is executed after thé command
completes. Since ex normally prints the new current line after each change, p is rarely
necessary. Any number of + or - characters may also be given with these flags. If they
appear, the specified offset is applied to the current line value before the printing command is
executed.

4.3.5.4 Comments. It is possible to give editor commands that are ignored. This is useful
when making complex editor scripts for which comments are desired. The comment character
is the double quote ". Any command line beginning with " is ignored. Comments beginning
with " may also be placed at the ends of commands, except in cases where they could be
confused as part of the text (shell escapes and the substitute and map commands).

4.3.5.5 Multiple Commands Per Line. More than one command may be placed on a line
by separating each pair of commands by a | character. However, the global commands,
comments, and the shell escape ! must be the last command on a line, as they are not
terminated by a |.

4.3.5.6 Reporting Large Changes. Most commands that change the contents of the editor
buffer give feedback if the scope of the change exceeds a threshold given by the report option.
This feedback helps to detect undesirably large changes so that they may be quickly and
easily reversed with an undo command. After commands with more global effect (such as
global or visual), you will be informed if the net change in the number of lines in the
buffer during this command exceeds this threshold.

4.3.6 Command Addressing.
4.3.6.1 Addressing Primitives.

The current line. Most commands leave the current line as the last line that they affect.
The default address for most commands is the current line; thus, . is
rarely used alone as an address.

4-21

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

n The nth line in the editor buffer, lines being numbered sequentially
from 1.

$ The last line in the buffer.

% An abbreviation for “1,$”, the entire buffer.

+n -n An offset relative to the current buffer line. The forms .+3, +3, and
+++ are all equivalent; if the current line is line 100 they all address
line 103.

/ pat/ ?pat? Scan forward and backward, respectively, for a line containing pat, a

regular expression (as defined below). The scans normally wrap around
the end of the buffer. If all that is desired is to print the next line
containing pat, then the trailing / or ? may be omitted. If pat is
omitted or explicitly empty, then the last regular expression specified is
located. (The forms \/ and \ ? scan using the last regular expression
used in a scan; after a substitute, // and ?? would scan using the
substitute’s regular expression.)

” 9

X Before each non-relative motion of the current line ., the previous
current line is marked with a tag, subsequently referred to as ”. This
makes it easy to refer or return to this previous context. Marks may
also be established by the mark command, using single lowercase letters
x and the marked lines referred to as ’x.

4.3.6.2 Combining Addressing Primitives. Addresses to commands consist of a series of
addressing primitives, separated by , or ;. Such address lists are evaluated left-to-right. When
addresses are separated by , the current line . is set to the value of the previous addressing
expression before the next address is interpreted. If more addresses are given than the
command requires, then all but the last one or two are ignored. If the command takes two
addresses, the first addressed line must precede the second in the buffer. Null address
specifications are permitted in a list of addresses, the default in this case is the current line (.);
thus, ,100 is equivalent to .,100. It is an error to give a prefix address to a command that
expects none.

4.3.7 Command Descriptions. The following form is a prototype for all ex commands:
address command ! parameters count flags

All command parts are optional. Within visual mode, the ex editor ignores a . preceding any
command. In the following command descriptions, the default addresses are shown in
parentheses. These parentheses are not part of the command syntax. Confusion may arise
from some of the command descriptions that include the T character. We use the T character
to represent the key labeled ~ on your terminal. This convention has been adopted to avoid
confusing the ~ terminal key and the notation commonly used to mean “control”.

abbreviate word rhs abbr: ab
Add the named abbreviation to the current list. When in visual mode, if word is input
as a complete word, it will be changed to rhs.

() append abbr: a

text
Reads the input text and places it after the specified line. After the command, . addresses
the last line input or the specified line if no lines were input. If address 0 is given, text
is placed at the beginning of the buffer.

4-22

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

a!

text
The variant flag to append toggles the setting for the autoindent option during the input
of text.

args
The members of the argument list are printed, with the current argument delimited by
[and]

(...) change count abbr: ¢

text
Replaces the specified lines with the input text. The current line becomes the last line
input; if no lines were input it is left as for a delete.

c!

text
The variant toggles autoindent during the change.

(..) copy addr flags abbr: co
A copy of the specified lines is placed after addr, which may be 0. The current line .
addresses the last line of the copy. The command t is a synonym for copy.

(...) delete buffer count flags abbr: d
Removes the specified lines from the buffer. The line after the last line deleted becomes
the current line; if the lines deleted were originally at the end, the new last line
becomes the current line. If a named buffer is specified by giving a letter, the specified
lines are saved in that buffer or appended to it if an uppercase letter is used.

ex file abbr: e

Used to begin an editing session on a new file. The editor first checks to see if the
current buffer has been modified since the last write command was issued. If it has
been, a warning is issued and the command is aborted. The command otherwise deletes
the entire contents of the editor buffer, makes the named file the current file, and prints
the new filename. After insuring that this file is not a binary file (such as a directory), a
block or character special file (other than /dev/tty), a terminal, or a binary or
executable file (as indicated by the first word), the editor reads the file into its buffer. If
the read of the file completes without error, the number of lines and characters read is
typed. If there were any non-ASCII characters in the file they are stripped of their non-
ASCII high bits, and any null characters in the file are discarded. If none of these errors
occurred, the file is considered edited. If the trailing newline character is missing from
the last line of the input file, it will be supplied and a complaint will be issued. This
command leaves the current line () at the last line read. If executed from within open
or visual mode, the current line is initially the first line of the file.

e! file
The variant form suppresses the complaint about modifications having been made and
not written from the editor buffer, thus discarding all changes which have been made
before editing the new file.

4-23

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

e +n file
Causes the editor to begin at line n rather than at the last line; n may also be an editor
command containing no spaces, e.g., +/pat.

file abbr: f
Prints:

the current filename

whether it has been “modified” since the last write
command

whether it is read-only mode
the current line
the number of lines in the buffer

the percentage of the way through the buffer of the
current line.

In the rare case that the current file is “not edited” this is noted also. In this case you
have to use the form w! to write to the file, since the editor is not sure that a write
command will not destroy a file unrelated to the current contents of the buffer.

file file

The current filename is changed to file which is considered “not edited”.

(1,9) global /pat/cmds abbr: g
First marks each line among those specified that matches the given regular expression.
Then the given command list is executed with . initially set to each marked line.

The command list consists of the remaining commands on the current input line and
may continue to multiple lines by ending all but the last such line with a \. If cmds
(and possibly the trailing / delimiter) is omitted, each line matching pat is printed. The
append, insert, and change commands and associated input are permitted; the .
terminating input may be omitted if it would be on the last line of the command list.
The open and visual commands are permitted in the command list and take input from
the terminal.

The global command itself may not appear in cmds. The undo command is also not
permitted there, since undo instead can be used to reverse the entire global command.
The options autoprint and autoindent are inhibited during a global command, (and
possibly the trailing / delimiter) and the value of the report option is temporarily
infinite, in deference to a report for the entire global command. Finally, the context
mark (”) is set to the value of . before the global commands begin and is not changed

during a global command, except perhaps by an open or visual mode within the global
command.

g! /pat/cmds abbr: v
The variant form of a global command runs cmds at each line not matching pat.

() insert abbr: i

4-24

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

text

Places the given text before the specified line. The current line is left at the last line
input. If there were no lines input it is left at the line before the addressed line. This
command differs from append only in the placement of text.

it
text

The variant toggles autoindent during the insert.

(.,+1) join count flags abbr: j
Places the text from a specified range of lines together on one line. White space is
adjusted at each junction to provide at least one blank character, two if there is a . at the
end of the line, or none if the first following character is a). If there is already white
space at the end of the line, the white space at the start of the next line will be
discarded.

!
The variant causes a simpler join with no white space processing. Characters in the
lines are simply concatenated.

Okx
The k command is a synonym for mark. It does not require a blank or tab before the
following letter.

(.,.) list count flags
Prints the specified lines in a2 more unambiguous way. Tabs are printed as "I and the end
of each line is marked with a trailing $. The current line is left at the last line printed.

map lhs rhs ‘
The map command is used to define macros for use in visual mode. The lhs should be a
single character, or the sequence #n (for a digit), referring to function key n. When
this character or function key is typed in visual mode, it will be as though the
corresponding rhs has been typed. On terminals without function keys, you can type
#n.

() mark x
Gives the specified line mark x, a single lowercase letter. The x must be preceded by a
blank or a tab. The addressing form ’x then addresses this line. The current line is not
affected by this command.

() move addr abbr: m
The move command repositions the specified lines to be after addr. The first of the
moved lines becomes the current line.

next abbr: n
The next file from the command line argument list is edited.

n!

The variant suppresses warnings about the modifications to the buffer not having been
written out, discarding (irretrievably) any changes that may have been made.

4-25

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

n filelist

n +command filelist
The specified filelist is expanded and the resulting list replaces the current argument list.
The first file in the new list is then edited. If command is given (it must contain no
spaces), then: it is executed after editing the first such file.

(,) number count flags abbr: # or nu

Prints each specified line preceded by its buffer line number. The current line is left at
the last line printed.

() open flags abbr: o

() open /pat/ flags
Enters intra-line editing open mode at each addressed line. If pat is given, then the
cursor will be placed initially at the beginning of the string matched by the pattern. To
exit this mode use Q. (Not available in all Version 2 editors due to memory constraints.)

preserve
The current editor buffer is saved as though the system has just crashed. This command
is for use only in emergencies when a write command has resulted in an error and you
do not know how to save your work. After a preserve you should seek help.

(,.)print count abbr: p or P
Prints the specified lines with non-printing characters printed as control characters "x;
delete (octal 177) is represented as ~?. The current line is left at the last line printed.

(Oput buffer abbr: pu
Puts back previously deleted or yanked lines. Normally used with delete to effect
movement of lines, or with yank to effect duplication of lines. If no buffer is specified,
then the last deleted or yanked text is restored. (No modifying commands may intervene
between the delete or yank and the put, nor may lines be moved between files without
using a named buffer.) By using a named buffer, text may be restored that was saved
there at any previous time.

quit abbr: q
Causes the ex editor to terminate. No automatic write of the editor buffer to a file is
performed. However, ex issues a warning message if the file has changed since the last
write command was issued, and does not quit (the ex editor will also issue a diagnostic
if there are more files in the argument list). Normally, you will wish to save your
changes and you should glve a write command. If you wish to discard them, use the q!
command variant.

q!
Quits from the editor, discarding changes to the buffer without complaint.

(Oread file abbr: r
Places a copy of the text of the given file in the editing buffer after the specified line. If
no filename is given, the current filename is used. The current filename is not changed
unless there is none, in which case file becomes the current name. The sensibility
restrictions of the edit command apply here also. If the file buffer is empty and there is
no current name, then ex treats this as an edit command.

Address 0 is legal for this command and causes the file to be read at the beginning of the

4-26

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

buffer. Statistics are given as for the edit command when the read successfully
terminates. After a read the current line is the last line read. (Within open and visual
the current line is set to the first line read rather than the last.)

(Oread ‘command
Reads the output of the command into the buffer after the specified line. Typically, the
read specifies a filename; here, the read specifies a command instead. A blank or tab
before the ! is mandatory.

recover file
Recovers file from the system save area. Used after an accidental hang-up of the phone
or a system crash (The system saves a copy of the file you are editing only if you have
made changes to the file.) or preserve command, except that when you use preserve
you will be notified by mail when a file is saved.

rewind abbr: rew
The argument list is rewound, and the first file in the list is edited.

rew!
Rewinds the argument list discarding any changes made to the current buffer.

set parameter
With no arguments, prints those options whose values have been changed from their
defaults; with parameter all it prints all option values.

Giving an option name followed by a ? causes the current value of that option to be
printed. The ? is unnecessary unless the option is Boolean valued. Boolean options are
given values either by the form “set option” to turn them on or “set nooption” to turn
them off. String and numeric options are assigned via the form “set option=value”.

More than one parameter may be given to set; they are interpreted left-to-right.

shell abbr: sh
A new shell is created. When it terminates, editing resumes.

source file abbr: so
Reads and executes commands from the specified file. The source commands may be
nested.

(..)substitute /pat/repl/options count flags abbr: s

On each specified line, the first instance of pattern pat is replaced by replacement pattern
repl. If the global indicator option character g appears, then all instances are substituted.
If the con firm indication character ¢ appears, then before each substitution, the line to be
substituted is typed with the string to be substituted marked with T characters. By
typing a y, one can cause the substitution to be performed; any other input causes no
change to take place. After a substitute command the current line is the last line
substituted. :

Lines may be split by substituting newline characters into them. The newline in repl
must be escaped by preceding it with a \. Other metacharacters available in pat and
repl are described below.

4-27

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

(.,.) substitute options count flags abbr: s
If pat and repl are omitted, then the last substitution is repeated. This is a synonym for
the & command.

(..) t addr flags
The t command is a synonym for copy.

ta tag
The focus of editing switches to the location of tag, switching to a different line in the
current file where it is defined, or if necessary to another file. If you have modified the
current file before giving a tag command, you must write it out, giving another tag
command; specifying no tag will reuse the previous tag.

The tag file is normally created by a program such as ctags and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the
tag, the second the name of the file where the tag resides, and the third gives an
addressing form that can be used by the editor to find the tag. This field is usually a
contextual scan using /pat/ to be immune to minor changes in the file. Such scans are
always performed as if nomagic was set.

Names in the tag file must be sorted alphabetically. (Not available in all Version 2
editors due to memory constraints.)

unabbreviate word abbr: una
Delete word from the list of abbreviations.

undo abbr: u
Reverses the changes made in the buffer by the last buffer editing command.

Note: global commands are considered a single command for the purpose of undo (as are
open and visual commands). Also, the commands write and edit which interact with
the file system cannot be undone.

Undo is its own inverse. The undo command always marks the previous value of the
current line (.) as . After an undo command, the current line is the first line restored
or the line before the first line deleted if no lines were restored. For commands with
more global effect, such as global and visual, the current line regains its pre-command
value after an undo.

unmap lhs
The macro expansion associated by map for lhs is removed.

(1,8) v/pat/cmds
A synonym for the global command variant g, running the specified cmds on each line
that does not match pat.

version abbr: ve
Prints the current version number of the editor as well as the date the editor was last
changed.

(.) visual type count flags abbr: vi

Enters visual mode at the specified line. The type argument is optional and may be -, 1,

4-28

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

or . as in the z command to specify the placement of the specified line on the screen. By
default, if type is omitted, the specified line is placed as the first on the screen. A count
specifies an initial window size; the default is the value of the option window. See
sections 4.4.1 through 4.4.10 for more details. To exit vi and return to ex, type Q.

visual file
visual +n file
From visual mode, this command is the same as edit

(1,$) write file abbr: w

Write changes made back to file, printing the number of lines and characters written.
Normally file is omitted and the text goes back where it came from. If a file is specified,
then text will be written to that file. The current line remains the same. (The editor
writes to a file if it is the current file and is edited, or if the file is actually a teletype
(/dev/tty, /dev/null). If the file does not exist, it is created, then written to.
Otherwise, you must give the variant form w! to force the write.)

If an error occurs while writing the current and edited file, the editor considers that
there has been no write since last change even if the buffer had not previously been
modified.

(1,9) write>> file abbr: w>>

Writes the buffer contents at the end of an existing file.

w! name

Overrides the checking of the normal write command and will write to any file that
the system permits.

(1,$) w ‘command

Writes the specified lines into command.

Note: There is a difference between w! which overrides checks and w ! which writes to
a command. An example of the w ! command is w !cat, which enables you to quickly
scan a section of text.

wq name

A write command followed with a quit command.

wq! name

The variant overrides checking on the sensibility of the write command, as w! does.

xit name

If any changes have been made and not written, writes the buffer out, then quits.

(..)yank buffer count abbr: ya

Places the specified lines in the named buffer for later retrieval via put. If no buffer
name is specified, the lines will be saved only until you execute a put or press ESCAPE.
If you perform any other edit function before the put, the lines will be lost (see the put
command description).

(+1) z count

Print the next count lines (default window).

4-29

TEXT EDITORS ' MOTOROLA COMPUTER SYSTEMS

() z type count
Prints a window of text with the specified line at the top. If type is - the line is placed
at the bottom; a . causes the line to be placed in the center.

Note: Forms z= and z! also exist; z= places the current line in the center, surrounds it
with lines of - characters, and leaves the current line at this line. The form z! prints
the window before z- would. The characters +, T and - may be repeated for cumulative
effect. On some Version 2 editors, no type may be given.

A count gives the number of lines to be displayed rather than double the number
specified by the scroll option. On a CRT the screen is cleared before display begins unless
a count that is less than the screen size is given. The current line is left at the last line
printed.

! command
The remainder of the line after the ! character is sent to a shell to be executed. Within
the text of comwmand the characters % and # are expanded as in filenames, and the !
character is replaced with the text of the previous command. Thus, in particular, #
repeats the last such shell escape. If any such expansion is performed, the expanded line
will be echoed. The current line is unchanged by this command.

If there has been “no write” of the buffer contents since the last change to the editing
buffer, then as a warning, a diagnostic message will be printed before the command is
executed. A single ! is printed when the command completes.

(addr, addr) ' command
Takes the specified address range and supplies it as standard input to command. The
resulting output then replaces the input lines.

® =

Prints the line number of the addressed line. The current line is unchanged.

() > count flags

() < count flags
Performs intelligent shifting on the specified lines: < shifts left and > shifts right. The
quantity of shift is determined by the shiftwidth option and the repetition of the
specification character. Only white space characters, blanks and tabs, are shifted. No
non-white space characters are discarded in a left-shift. The current line becomes the
last line that was changed in the shift.

D
An end-of-file from a terminal input scrolls through the file. The scroll option specifies
the size of the scroll, normally a half screen of text.

(+1,41)

(41,41
An address alone causes the addressed 11nes to be printed. A blank line prints the next
line in the file.

(.) & options count flags
Repeats the previous substitute command.

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

(...) options count flags
Replaces the previous regular expression with the previous replacement pattern from a
substitution.

4.3.8 Regular Expressions and Substitute Replacement Patterns.

4.3.8.1 Regular Expressions. A regular expression specifies a set of strings of characters.
A member of this set of strings is said to be matched by the regular expression. The ex editor
remembers two previous regular expressions: the previous regular expression used in a
substitute command and the previous regular expression used elsewhere (referred to as the
previous scanning rtegular expression). The previous regular expression can always be
referred to by a null RE (// or ??).

4.3.8.2 Magic and Nomagic. The regular expressions allowed by the ex editor are
constructed in one of two ways depending on the setting of the magic option. The ex and vi
editor default setting of magic gives quick access to a powerful set of regular expression
metacharacters. The disadvantage of magic is that the user must remember that these
metacharacters are magic and precede them with the character \ to use them as “ordinary”
characters. With nomagic option set, there are only three metacharacters: \, in all cases; §, at
the end of a regular expression; and T at the beginning of a regular expression. The characters

and & also lose their special meanings to the replacement pattern of a substitute when
nomagic option is set. However, the power of metacharacters is still available by preceding
the (now) ordinary character with a \ .

The remainder of the discussion of regular expressions assumes that the setting of this option
is magic.

4.3.8.3 Basic Regular Expression Summary. The following basic constructs are used to
build regular expressions in magic mode.

char An ordinary character matches itself. The following characters are not ordinary
characters and must be escaped (preceded) by a \ to be recognized: T at the
beginning of a line; § at the end of line; * as any character other than the first; and
. (dot); \ (backslash); [(bracket); and ~ (tilde).

T At the beginning of a pattern, forces the match to succeed only at the beginning of
a line.

$ At the end of a regular expression, forces the match to succeed only at the end of
the line.

. Matches any single character except the newline character.

* Matches any number (including O) of adjacent occurrences of the regular

expression it follows.

\< Forces a match to occur only at the beginning of a variable or word, including a
variable or word at the beginning of a line.

\ > Forces a match to occur only at the end of a variable or word.

[stringl Matches any single character in the string and no others. A pair of characters
separated by - in string defines the set of characters between the specified lower
and upper bounds, thus [a-z] as a regular expression matches any single lowercase
letter. If the first character of the string is an T, then the construct matches those
characters that it otherwise would not; thus [Ta-z] matches anything except a
lowercase letter (and a newline character). To place any of the characters T, [, or -

4-31

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

in string you must escape them with a preceding \ .

4.3.8.4 Combining Regular Expression Primitives. A concatenation of regular
expressions results in a single regular expression. This combined regular expression matches a
concatenation of strings when each string matches the corresponding component of the
expression, read from the left. For example, the combined regular expression

/an.*an/
matches the following standard input text
Bevan, Litterman, Packer, Smith

The expression is defined as the occurrence of "an" followed by any character repeated any
number of times followed by a second occurrence of “an". This expression could also be
written as

/\(an\).*\1/

where the expression \n means the same string of characters matched by an expression
enclosed in \(and \) earlier in the same expression. The n is a single digit; the sequence \n is
replaced by the text matched by the nth regular subexpression enclosed between \(and \).
When nested parenthesized subexpressions are present, n is determined by counting
occurrences of \(starting from the left.

The character ~ may be used in a regular expression to match the text that defined the
replacement part of the last substitute command.

4.3.8.5 Substitute Replacement Patterns. The basic metacharacters for the replacement
pattern are & and ~; these are given as \ & and \” when nomagic is set. Each instance of & is
replaced by the characters that the regular expression matched. The metacharacter ~ stands
(in the replacement pattern) for the defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the escape
character \. The sequences \ u and \1 cause the immediately following character in the
replacement to be converted to uppercase or lowercase, respectively, if this character is a
letter. The sequences \ U and \L turn such conversion on, either until \E or \e is
encountered or until the end of the replacement pattern.

4.3.9 Option Descriptions.

autoindent, ai (default: noai)

Can be used to ease the preparation of structured program text. Autoindent operates
within open or visual mode with the append, change, insert, substitute and O (open
new line) commands. With append, ex looks at the beginning of the line that is being
appended and duplicates its indentation for any new lines created during the edit. With
change, insert, substitute and O commands, ex calculates the amount of white space at
the start of a new line in the edit and then aligns the cursor with that indentation for
each succeeding line of the edit.

If additional white space is typed at the beginning of a line, all lines that follow will be
aligned with the first non-white character of the previous line. To back the cursor to
the preceding tabstop, hit "D. The tabstops (going backwards) are defined as multiples of
the shiftwidth option. You cannot backspace over the indent, except by sending an
end-of-file with a "D.

A line with no character in it turns into a completely blank line (the white space
provided for the autoindent is discarded). Lines beginning with an T and immediately

4-32

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

followed by a "D will reposition the input text at the beginning of the line while
retaining the previous indent for the next line. Similarly, a 0 followed by a "D will
reposition the input text at the beginning of the line without retaining the previous
indent.

The autoindent option does not operate in global commands or when the input is not a
terminal.

autoprint, ap (default: ap)
Causes the current line to be printed after each delete, copy, join, move, substitute, t,
undo or shift command. This has the same effect as supplying a trailing p to each such
command. The autoprint is suppressed in globals and only applies to the last of many
commands on a line.

autowrite, aw (default: noaw)
Causes the contents of the buffer to be written to the current file if you have modified it
and give a next, rewind, tab, or ! command, or a "T (switch files) or "] (tag goto)
command in visual mode.

Note: The command does not autowrite. In each case, there is an equivalent way of
switching when the autowrite option is set to avoid the autowrite (ex for next, rewind!
for rewind, tag! for tag, shell for !, and :e # and a :ta! command from within visual
mode).

beautify, bf (default: nobeautify)
Causes all control characters except tab, newline, and form-feed to be discarded from the
input. A complaint is registered the first time a backspace character is discarded. The
beautify option does not apply to command input.

directory, dir (default: dir=/tmp)
Specifies the directory in which ex places its buffer file. If this directory in not
writeable, then the editor will exit abruptly when it fails to be able to create its buffer
there.

edcompatible (default: noedcompatible)
Causes the presence or absence of g and c suffixes on substitute commands to be
remembered and to be toggled by repeating the suffices. The suffix r makes the
substitution similar to the ~ command, instead of the &. (Version 3 only.)

errorbells, eb (default: noeb)
Error messages are preceded by a bell. (Bell ringing in open and visual mode on errors is
not suppressed by setting noeb.) If possible the editor always places the error message in
a standout mode of the terminal (such as inverse video) instead of ringing the bell.

hardtabs, ht (default: ht=8)
Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

ignorecase, ic (default: noic) ,
All uppercase characters in the text are mapped to lowercase in regular expression
matching. In addition, all uppercase characters in regular expressions are mapped to
lowercase except in character class specifications.

4-33

TEXT EDITORS ' MOTOROLA COMPUTER SYSTEMS

lisp (default: nolisp)
The autoindent option indents appropriately for lisp code, and the O, {}, [[, and]]
commands in open and visual modes are modified to have meaning for lisp.

list (default: nolist)
All printed lines will be display tabs and end-of-lines markers as in the list command.

magic (default: magic for ex and vi)
If nomagic is set, the number of regular expression metacharacters is greatly reduced,
with only \, T and § having special effects. In addition, the metacharacters " and & of
the replacement pattern are treated as normal characters. All the normal metacharacters
may be made magic when nomagic is set by preceding them with a \ .

mesg (default: mesg)
Causes write permission to the terminal to be turned off while you are in visual mode, if
nomesg is set. (Version 3 only.)

number, nu (default: nonumber)
Causes all output lines to be printed with line numbers. In addition, each input line
will be prompted by supplying the next line number.

open (default: open)
If noopen, the commands open and visual are not permitted.

optimize, opt (default: optimize)
Directs the terminal to skip automatic carriage returns when printing more than one
(logical) line of output. This will speed output on terminals without addressable cursors
whenever text with leading white space is printed.

paragraphs, para (default: para=IPLPPPQPP LIbp)
Specifies paragraphs for the { and } operations in open and visual modes. The character
pairs in the option’s value are the names of the macros that start paragraphs.

prompt (default: prompt)
Command mode input is prompted for with a colon (2).

readonly (default: noreadonly)
Can be used to set the permission mode to read-only from within the editor. It is
possible to write to a file using the ! form of write, even while in read-only mode.

redraw (default: noredraw)
On a dumb terminal, the editor uses great amounts of output to simulate an intelligent
terminal. For example, during insertions in visual mode the characters to the right of
the cursor position are refreshed as each input character is typed. This option is useful
only at very high speed.

remap (default: remap)
If on, macros are repeatedly tried until they are unchanged. (Version 3 only.) Assume,
for example, o is mapped to O, and O is mapped to I. If remap is set, 0 will map to I if
noremap is set, it will map to O.

report (default: report=5)

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

Specifies a threshold for feedback from commands. Any command that changes more
than the specified number of lines will provide feedback about the scope of its changes.
For commands such as global, open, undo, and visual, which have potentially more
far-reaching scope, the net change in the number of lines in the buffer is presented at
the end of the command, subject to this same threshold. Thus, notification is suppressed
during a global command on the individual commands performed.

scroll (default: scroll=Y2 window)
Determines the number of logical lines scrolled when an end-of-file is received from a
terminal input in command mode and the number of lines printed by a command mode z
command (double the value of scroll).

sections (default: sections=SHNHH HU)
Specifies the section macros for the [[and]| operations in open and visual modes. The
pairs of characters in the option’s value are the names of the macros that start
paragraphs.

shell, sh (default: sh=/bin/sh)
Gives the pathname of the shell forked for the shell escape command Y, and by the shell
command. The default is taken from SHELL in the environment, if present.

shiftwidth, sw (default: sw=8)
Gives the width for a software tabstop. The tabstop is used with autoindent to reverse
tab (with "D) and by the shift commands.

showmatch, sm (default: nosm)
In open and visual modes, when a) or } is typed, showmatch moves the cursor to the
matching (or { for one second, if this matching character is on the screen. Extremely
useful with lsp.

slowopen, slow (terminal dependent)
Affects the display algorithm used in visual mode, holding off display updating during
input of new text to improve throughput when the terminal in use is both slow and
unintelligent.

tabstop, ts (default: ts=8)
The editor expands tabs in the input file to be on tabstop boundaries for the purposes of
display.

taglength, tl (default: t1=0)
Tags are not significant beyond this many characters. A value of zero (the default)
means that all characters are significant.

tags (default: tags=tags/usr/lib/tags)
A path of files to be used as tag files for the tag command. (Version 3 only.) A requested
tag is searched for in the specified files sequentially. By default, files called tags are
searche)d for in the current directory and in /usr/lib (a master file for the entire
system).

term (from environment TERM)
The terminal type of the output device.

4-35

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

terse (default: noterse)
Shorter error diagnostics are produced for the experienced user.

warn (default: warn)
Warn if there has been ‘{No write since last change]” before a ! command escape.

window (default: window=speed dependent)
The number of lines in a text window in the visual command. The default is 8 lines at
slow speeds (600 baud or less), 16 lines at medium speed (1200 baud), and the full screen
(minus 1 line) at higher speeds.

w300, w1200, w9600
These are not true options but set window only if the speed is slow (300), medium
(1200), or high (9600), respectively. They are suitable for an EXINIT and make it easy to
change the 8/16/full screen rule.

wrapscan, ws (default: ws)
Searches that use regular expressions in addressing will wrap around past the end of the
file.

wrapmargin, wm (default: wm=0)
Defines a margin for automatic wrapover of text during input in open and visual modes.

writeany, wa (default: nowa)
Inhibits checks normally made before write commands, allowing a write to any file
that the system protection mechanism will allow.

The options described are of three kinds: numeric, string and toggle. You can set numeric and
string options by a statement of the form

set opt=val
and toggle options can be set or canceled by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in.your environment or given while you are
running ex by preceding them with a : and following them with a CR.

You can get a list of all options that you have changed with the command
ssetCR
or the value of a single optibn by the command
:set opt?2CR
A list of all possible options and their values is generated by
:set allCR
Set can be abbreviated se. Multiple options can be placed on one line, for instance:
:se ai aw nuCR

Options set by the set command last only while you stay in the editor. It is common to want
certain options set whenever you use the editor. This can be accomplished by creating a list of
ex commands that are run every time you start up ex, edit, or vi. (All commands that start

4-36

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

with : are ex commands.) A typical list includes a set command and possibly a few map
commands (on Version 3 editors). Try to get these commands on one line separated with the |
character; for example,

set ai aw tersemap @ ddmap # x

which establishes the set command options autoindent, autowrite, terse, makes @ delete a line
(the first map), and makes # delete a character (the second map) (see subpart 4.4.7.9 for a
description of the Version 3 map command). This string could be placed in the variable
EXINIT in your environment. Using the shell, you could also put these lines in the file
.profile in your home or working directory:

EXINIT=set ai aw tersemap @ ddimap # x
export EXINIT

Or the following line could be put in the file exrc in your home directory:
set ai aw tersemap @ ddmap # x
The options you select, if any, will depend on your working environment.
4.3.10 Limitations. The user is likely to encounter the following editor limits:

1024 characters per line

256 characters per global command list

128 characters per filename

128 characters in the previous inserted and deleted text in open or visual modes,
100 characters in a shell escape command

63 characters in a string valued option

30 characters in a tag name

250,000 lines if the file is silently enforced.

The visual implementation limits to 32 the number of macros defined with map, and the total
number of characters in macros must be less than 512.

4.4 The vi Text Editor

4.4.1 General. This section provides an introduction to the vi (visual) editor, versions 2 and
3. Version 2 is the version of vi that runs on the PDP11; Version 3 runs on 32-bit machines.

You should be running vi on a file you are familiar with while reading this. Sections 4.4.2
through 4.4.6 describe the basics for using vi and include the display editing features of the ex
editor. Some topics of special interest are presented in sections 4.4.7 and 4.4.8; additional
information about the editor is given in section 4.49 to avoid cluttering the initial
presentation. '

A summary of commands, control characters, and key functions is provided at the end of
sections 4.4.3 and 4.4.4. The summary gives the name of command, paragraph of reference,
and a short description. Section 4.4.10 provides a complete list of characters and their special
meanings to the vi editor. '

The following discussions refer to commands that are generated by pressing the control key at
the same time you hit another key. We use the notation ~ to indicate the control key; for
example, "D is a command generated by pressing the control key while hitting the D key. You
may have a key labeled ~ on your terminal. The "~ key will be represented as T in this
document; the ~ is used exclusively as part of the notation for control characters.

In the command examples shown in this part:

4-37

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

e Input that must be typed “as is” will be presented in boldface type.
e Text that should be replaced wich appropriate input will be given in italics.
4.4.2 Getting Started.

4.4.2.1 Specifying Terminal Type. Before you can start vi, you must tell the system
what kind of terminal you are using. An incomplete list of terminal type codes follows. If
your terminal does not appear here, consult with the staff members on your system to learn
the code for your terminal. If your terminal does not have a code, one can be assigned and a
description for the terminal created.

CODE FULL NAME TYPE
2621 Hewlett-Packard 2621A/P Intelligent
2645 . Hewlett-Packard 264x Intelligent
act4 Microterm ACT-IV Dumb
acts Microterm ACT-V Dumb
adm3a Lear Siegler ADM-3A Dumb
adm31 Lear Siegler ADM-31 Intelligent
c100 Human Design Concept 100 Intelligent
dm1520 Datamedia 1520 Dumb
dm2500 Datamedia 2500 Intelligent
dm3025 Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
h1500 Hazeltine 1500 Intelligent
h19 Heathkit h19 Intelligent
i100 Infoton 100 Intelligent
mime Imitating a smart ACT-IV Intelligent
t1061 Teleray 1061 Intelligent
vtS52 Dec VT-52 Dumb

Suppose for example that you have a Hewlett-Packard HP2621A terminal. The code used by
the system for this terminal is 2621. The command sequence

TERM=2621
export TERM

would tell the system you have a Hewlett-Packard 2621A/P.

If you want to have your terminal type established automatically when you log in, place the
above commands in your .profile.

4.4.2.2 Editing a File. After telling the system which kind of terminal you have, make a
copy of a file you are familiar with and run vi on this file with the command

$ vi filename

Replace filename with the name of the copy file just created. The screen should clear and the
text of your file appear on the screen. If something else happens, you may have given the
system an incorrect terminal type code. Another possibility is that you may have typed the
wrong filename and the editor printed an error diagnostic. If something unexpected appears
on your screen, hit the keys :q (colon and the q key) and then the RETURN key. This should
take you out of the editor and get you back to the command level interpreter. Try to figure
out what happened, then attempt the procedure again.

4-38

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

If the editor doesn’t respond to the commands, try sending it an interrupt by hitting the DEL
or RUB key, and then giving the :q command, again followed by a carriage return.

4.4.2.3 Editor Copy in Buffer. The vi editor does not directly change the file that you are
editing. Instead, it makes a copy of this file in the buffer and remembers the filename. You do
not affect the contents of the file until you write the changes into the original file.

4.4.2.4 Arrow Keys. The editor command set is independent of the terminal you are
using. On most terminals with cursor positioning keys, these keys will also work within the
editor. If you don’t have cursor positioning keys, or even if you do, you can use the h j k and
1 keys as cursor positioning keys (these are labeled with arrows on an adm3a).

e h moves cursor to the left (control-h does the same)
e j moves cursor down (in the same column)

o k moves cursor up (in the same column)

e | moves cursor to the right.

Note: On the HP2621 terminal, the function keys must be used with the shift key, otherwise
they only act locally. Unshifted use will leave the cursor positioned incorrectly.

4.4.2.5 Special Characters. Several special characters are very important, so be sure to
find them right away. Look on your keyboard for a key labeled ESC or ALT. It should be
near the upper left corner of your terminal. Try hitting this key a few times. The editor
will ring the bell to indicate that it is in an inactive state. On smart terminals, the editor
may quietly flash the screen rather than ring the bell. Partially formed commands are
canceled with the ESC key. When you insert text in the file, text insertion is ended with the
ESC key. If you become confused during an edit, you may hit the ESC key to cancel any
operation and start again.

The CR or RETURN key is important because it is used to terminate certain commands. It is
usually at the right side of the keyboard and is the same command used at the end of each
shell command.

Another useful key is the DEL (or RUB key). It generates an interrupt, which tells the editor
to stop what it is doing. This is a forceful way of making the editor return to an inactive
state. Try hitting the / key on your terminal. It is used when you want to specify a search
string. The cursor should now be positioned at the bottom line of the terminal after a /
printed as a prompt. You can get the cursor back to the current position by hitting the DEL or
RUB key. Backspacing over the / will also cancel the search. From now on we will refer to
hitting the DEL or RUB key as “sending an interrupt”.

The editor often echoes your commands on the last line of the terminal. If the cursor is on
the first position of this last line, then the editor is performing a computation, such as
computing a new position in the file after a search or running a command to reformat part of
the buffer. When this is happening you can stop the editor by sending an interrupt. (On
some systems, you cannot type ahead while the editor is computing with the cursor on the
bottom line.)

4.4.2.6 Leaving the Editor. After you have practiced working with vi and you wish to
do something else, you can give the ZZ command to leave the editor. This writes the contents
of the editor buffer (including any changes made) back into the file you are editing and then
quits the editor. You can also end an editor session by giving the command :q!CR. All
commands that read from the last display line can also be terminated with an ESC as well as
a CR character. The :q'CR command ends the editor session and discards all your changes.
This command is useful if you change the editor copy of a file you wish only to look at. Be

4-39

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

very careful not to give this command when you really want to save the changes you have
made.

4.4.3 Moving Around in the File.

4.4.3.1 Scrolling and Paging. The editor has many commands for moving around in the
file. The most used command is generated by hitting the control and D keys at the same time,
a control-D or "D. This command scrolls down in the file; the D stands for down. Many
. editor commands are mnemonic which makes them much easier to remember. For instance,
the command to scroll up is “U. Many dumb terminals can’t scroll up at all, in which case
hitting “U clears the screen and refreshes it with a line that is farther back in the file at the
top.

If you want to see more of the file below where you are, you can hit "E to expose one more
line at the bottom of the screen, leaving the cursor where it is. (Version 3 only.) The
command Y (which is non-mnemonic, but next to "U on the keyboard) exposes one more line
at the top of the screen.

There are other ways to move around in the file; the keys 'F and "B move forward and
backward a page, keeping a couple of lines of continuity between screens so that it is possible
to read through a file using these commands as well.

Notice the difference between scrolling and paging. If you are trying to read the text in a file,
hitting “F to move forward a page repeats only a couple of lines of text. Scrolling on the
other hand gives more context and functions more smoothly. You can continue to read the
text while scrolling is taking place.

4.4.3.2 Searching, goto, and Previous Context. Another way to position yourself in the
file is by giving the editor a string to search for. Type the character / followed by a string of
characters terminated by a RETURN. The editor will position the cursor at the next
occurrence of this string. Now try hitting n to go on to the next occurrence of this string.
The character ? will search backward from where you are but is otherwise like /.

Searches will normally wrap around the end of the file and find the string even if it is not on
a line in the direction you searched, provided it is anywhere else in the file. You can disable
this wrap-around in scans by giving the command:

:se nowrapscanCR
or
:se nowsCR

If the search string you give the editor is not present in the file, the editor will print a
diagnostic on the last line of the screen and the cursor will return to its initial position.

If you wish the search to match only at the beginning of a line, begin the search string with
an T. To match only at the end of a line, end the search string with a $. Thus

/1firstCR

will search for the word ’first’ at the beginning of a line, and
/1ast$CR

searches for the word ’last’ at the end of a line.

Actually, the string you give to search for can be a regular expression in the sense of the
editors ex(1) and ed(1). (Refer to section, 4.3.8.3 for more information on regular expression.)
You can disable the special meanings of these characters by putting the

4-40

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

:se nomagicCR
command in EXINIT in your environment.

The command G, when preceded by a number will position the cursor at that line in the file.
Thus 1G will move the cursor to the first line of the file. If you give G no count, then the
cursor moves to the end of the file.

If you are near the end of the file and the last line is not at the bottom of the screen, the
editor will place only the character ™ on each remaining line. This indicates that the last line
in the file is on the screen; that is, the * lines are beyond the end of the file.

You can determine the state of the file you are editing by typing a "G command. The editor
will show you the name of the file you are editing, the number of the current line, the
number of lines in the buffer, and the percentage of the way through the buffer the cursor is
located. Try doing this now and remember the number of the line you are on. Give a G
command to get to the end and then another G command to get back where you were.

You can also get back to a previous position by using the command * (two back quotes). This
is often more convenient than G because it requires no advance preparation. Try giving a G
or a search with / or ? and then a * to get back where you started. If you accidentally hit n
or any command that moves you far away from a context of interest, you can quickly get
back by hitting .

4.4.3.3 Moving Around on the Screen. Now try just moving the cursor around on the
screen. If your terminal has arrow keys (4 or 5 keys with arrows going in each direction),
try them. If you don’t have working arrow keys, use h, j, k, and 1. Experienced users of vi
prefer these keys to arrow keys, because they are right underneath their fingers.

Hit the + key. Each time you do, notice that the cursor advances to the next line in the file, at
the first non-white position on the line. The - key is like + but goes the other way. These are
very common keys for moving the cursor up and down lines in the file. Notice that if the
cursor goes off the bottom or top of the screen when using these keys, then the text will
scroll down (and up if possible) to bring a line at a time into view. The RETURN key has the
same effect as the + key. ‘

The vi editor also has commands to take you to the top, middle and bottom of the screen. The
H command will take you to the top line (home) on the screen. Try preceding it with a
number as in 3H. This will take you to the third line on the screen. Many vi commands take
preceding numbers. Try M, which takes you to the middle line on the screen, and L, which
takes you to the last line on the screen. The L command also takes counts; the S command
will take you to the fifth line from the bottom.

There are two control characters that move the cursor up or down a line, but keep it in the
same column. The "N causes the cursor to move to the same column of the next line. To
move to the same column of the previous line use the "P command.

4.4.3.4 Moving Within a Line. Now try picking a word on some line on the screen, not
the first word on the line. Move the cursor (using RETURN and -) to be on the line where the
word is. Try hitting the w key. This will advance the cursor to the next word on the line.
Try hitting the b key to back up words in the line. Also try the e key which advances you
to the end of the current word rather than to the beginning of the next word. Also try
SPACE (the space bar) which moves the cursor right one character and the BS key (backspace
or"’H) which moves left one character. The h key works as "H does and is useful if you don’t
have a BS key. Also, as noted above, the 1 key will move the cursor to the right.

4-41

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

If the line has punctuation in it you may have noticed that the w and b keys stop at each
group of punctuation. You can also go backward and forward without stopping at
punctuation by using W and B rather than the lowercase equivalents. Think of these as
bigger words. Try these on a few lines with punctuation to see how they differ from the
lowercase w and b.

The word keys wrap around the end of line, rather than stopping at the end. Try moving to
a word on a line below where you are by repeatedly hitting w.

4.4.3.5 Summary of Cursor Commands. A paragraph referencé is provided for each vi
command in the following list.

BS 4.4.34 Move cursor one position to the left
SPACE 4.4.3.4 Move cursor one position to the right

"B 44.3.1 Move backward to previous page

D 4.4.3.1 Scroll down in the file

“E 4.4.3.1 Expose another line at bottom of screen (Version 3)

F 44.3.1 Move forward to next page

G 44.32 Determine state of file (filename, current line number, number of lines in
the buffer, and per-cent way through the buffer)

"H 44.34 Move cursor one space to the left

N 4.4.3.3 Move cursor to next line, same column

P 44.3.3 Move cursor to previous line, same column

U 4.4.3.1 Scroll up in the file

Y 44.3.1 Expose another line at the top of screen (Version 3)

+ 44.3.3 Advance cursor to beginning of next line

- 4.4.3.3 Move cursor to beginning of previous line

/ 4.4.3.2 Search forward for a character string

? 44.3.2 Search backward for a character string

B 44.34 Move cursor backward a word, ignoring punctuation

G 4.4.32 Move cursor to specified line or to last line if default

H 4.4.3.3 Move cursor to top line (home) on screen

M 44.3.3 Move cursor to middle line on screen

L 4.4.3.3 Move cursor to last line on screen

w 44.34 Move cursor forward a word, ignoring punctuation

b 4.4.34 Move cursor backward a word.

e 4.4.34 Move cursor to end of current word

h 4424 Moves cursor to the left

j 4424 Moves cursor down (in same column)

4-42

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

k 4.42.4 Moves cursor up (in same column)

1 4.4.2.4 Moves cursor to the right

n 4.4.32 Repeat scan for next instance of / or ? pattern
w 4.4.34 Move cursor forward a word

4.4.3.6 The view Editor. If you want to use the editor to look at a file, rather than to
make changes, invoke it as view instead of vi. This will set the readonly option which will
prevent you from accidentally overwriting the file.

4.4.4 Making Simple Changes.

4.4.4.1 Inserting. One of the most useful commands is the i (insert) command. After you
type i, everything you type until you hit ESC is inserted into the file. Try this now; position
yourself on some word in the file and try inserting text before this word. If you are on a
dumb terminal it will seem that some of the characters in your line have been overwritten,
but they will reappear when you hit ESC.

td

Now try finding a word that can, but does not, end in an ’s’. Position yourself at that word
and type e (move to end of word), a (append), and ’SESC’ (terminate the textual insert). This
sequence of commands can be used to make a word plural.

Try inserting and appending a few times to make sure you understand how this works:
e i places text to the left of the cursor
e a places text to the right of the cursor.

Many related editor commands are invoked by the same letter key and differ only in that one
is given by a lowercase key and the other is given by an uppercase key. In these cases, the
uppercase key often differs from the lowercase key in its sense of direction, with the
uppercase key working backward and/or up, while the lowercase key moves forward and/or
down.

Often you want to add new lines to the file you are editing, before or after some specific line
in the file. Find a line where this makes sense and then give the o command to create a new
line after the line you are on, or the O command to create a new line before the line you are
on. After you create a new line in this way, the text you type up to an ESC is inserted on the
new line.

Whenever you are typing in text, you can give many lines of input or just a few characters.
To type in more than one line of text, hit a RETURN at the middle of your input. A new line
will be created for text, and you can continue to type. If you are on a slow and dumb
terminal the editor may choose to wait to redraw the tail of the screen, and will let you type
over the existing screen lines. This avoids the lengthy delay that would occur if the editor
attempted to keep the tail of the screen always up to date. The tail of the screen will be fixed
and the missing lines will reappear when you hit ESC.

While inserting new text, you can use the characters normally used at the system command
level (usually "H or #) to backspace over the last character typed, and the character used to
kill input lines (usually @, "X, or "U) can be used to erase the input you have typed on the
current line. In fact, the "H (backspace) always works to erase the last input character,
regardless of what your erase character is. The "W will erase a whole word and leave you
after the space following the previous word. It is useful for quickly backing up in an insert.
The following conditions should be noted:

4-43

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

e When you backspace during an insertion, the characters you backspace over are not erased;
the cursor moves backward, and the characters remain on the display. This is often useful
if you are planning to type in something similar. In any case the characters disappear
when you hit ESC. If you want to get rid of them immediately, hit an ESC and then a
again.

e You cannot erase characters that you did not insert, and you cannot backspace around the
end of a line. If you need to back up to the previous line to make a correction, just hit ESC
and move the cursor back to the previous line. After making the correction you can
return to where you were and use the insert or append command again.

4.4.4.2 Making Small Corrections. You can make small corrections in existing text quite
easily. Find a single character that is wrong or just pick any character. Use the arrow keys
to find the character, or get near the character with the word motion keys and then either
backspace (hit the BS key, "H, or just h) or SPACE (using the space bar) until the cursor is on
the character that is wrong. If the character is not needed then hit the x key; this deletes the
character from the file. It is analogous to the way you x out characters when you make
mistakes on a typewriter.

If the character is incorrect, you can replace it with the correct character by giving the rc
command, where c is the correct character. If the character that is incorrect should be
replaced by more than one character, give the command

sstringESC

which substitutes a string of characters, and ends with ESC. If there are a small number of
characters that are wrong you can precede s with a count of the number of characters to be
replaced. Counts are also useful with x to specify the number of characters to be deleted.

4.4.4.3 Making Corrections With Operators. You already know almost enough to make
changes at a higher level. All you need to know now is that the d key acts as a delete
operator and the c key acts as a change operator.

e The dw command deletes a following word.
e The db command deletes a preceding word.
e The dSPACE command deletes a single character, and is equivalent to the x command.

e The cw command changes the text of a single word. It is followed with replacement text
ending with an ESC. Find a word that you can change to another and try this now.
Notice that the end of the text to be changed is marked with the character ’$’ so that you
can see this mark as you are typing in the new text material.

The . command repeats the last command that made a change.

4.4.4.4 Operating on Lines. It is often the case that you want to operate on lines. Find a
line you want to delete and type dd, the d operator twice. This will delete the line. If you
are on a dumb terminal, the editor may erase the line on the screen, replacing it with a line
with only an @ on it. This line does not correspond to any line in your file, but only acts as a
place holder. It helps to avoid a lengthy redraw of the rest of the screen which would be
necessary to close up the hole created by the deletion on a terminal without a delete line
capability. D deletes the rest of the text on the current line.

Try repeating the c operator twice (cc); this will change a whole line, erasing its previous
contents and replacing them with text you type up to an ESC. The command S is a
convenient synonym for cc, by analogy with s. Think of S as a substitute on lines, while s is
a substitute on characters. C changes the rest of the text on the current line.

4-44

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

You can delete or change more than one line by preceding the dd or cc with a count (5dd
deletes S lines). You can also give a command like dL to delete all the lines up to and
including the last line on the screen or d3L to delete through the third from the bottom line.
One subtle point here involves using the / (search) after a d. This will normally delete
characters from the current position to the point of the match. If you desire to delete whole
lines including the two points, give the pattern as /pat/+0, a line address.

Note: The ex editor lets you know when you change a large number of lines so that you can
see the extent of the change. It will also always tell you when a change you make affects
text that you cannot see.

4.4.45 Undoing. Suppose the last change you made was incorrect; you could use the
insert, delete, and append commands to put the correct material back. However, since it is
often the case that we regret a change or make a change incorrectly, the editor provides a u
(undo) command to reverse the last change you made. Try this a few times, and give it twice
in a row to notice that a u also undoes a u.

The undo command lets you reverse only a single change. After you make a number of
changes to a line, you may decide that you would rather have the original state of the line
back. The U command restores the current line to the state before you started changing it.

You can recover text that you deleted, even if undo will not bring it back; see subpart 4.4.7.3
on recovering lost text.

4.4.4.6 Summary of Basic vi Commands. A paragraph reference is provided for each
command in the following list.

SPACE 4.4.4.2 Advance cursor one position to the right

"H 4.44.1 Move cursor one space to the left

W 4441 Erase a word during an insert

erase 4.4.4.1 Erase a character during an insert (usually "H or #)
kill 4.4.4.1 Kill the insert on this line (usually @, "X, or "U)
4.44.3 Repeat the last change command

o 44.4.1 Open and input new lines above the current line

S 4444 Substitute on lines

U 4.44.5 Undo the changes made to the current line

a 4.4.4.1 Append text after the cursor

c 4.4.4.3 Change the specified object (word) to the following text
4.4.4.3 Delete the specified object (word, space, etc.)

i 4.44.1 Insert text before the cursor

o 4.4.4.1 Open and input new lines below the current line

r 4.4.4.2 Replace a character

s 4.4.4.2 Replace a character with a string

u 4.4.4.5 Undo the last change

4-45

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

X 4.4.4.2 Delete a character
cc 4.4.4.4 Change a whole line
dd 4444 Delete a line
4.4.5 Moving About, Rearranging, and Duplicating Text.

4.4.5.1 Low Level Character Motions. Move the cursor to a line where there is a
‘punctuation or a bracketing character such as a parenthesis or a comma or period. Try the
command fx where x is the character sought. This command finds the next x character to the
right of the cursor in the current line. Try then hitting a ;, which finds the next instance of
the same character. By using the f command and then a sequence of ;’s, you can often get to a
particular place in a line much faster than with a sequence of word motions or SPACEs.

There is also an F command, which is like f, but searches backward. The ; command repeats
F also.

When operating on the text in a line, it is often desirable to delete characters including the
first instance of a character. Try dfx for some x and notice that the x character is deleted.
Undo this with u and then try dtx (the t stands for “to”) to delete up to the next x, but not
the x. The command T is the reverse of t.

When working with the text of a single line, an T moves the cursor to the first non-white
position on the line, and a $ moves it to the end of the line. Thus, $a will append new text at
the end of the current line.

Your file may have tab characters ("I) in it. These characters are represented as a number of
spaces expanding to a tab stop, where tab stops are every eight positions by default. Tab stops
are set by a command of the form

:se ts= XxCR

where x is 4 to set tab stops every four columns. The tab stop setting has an effect on screen
representation within the editor. When the cursor is at a tab, it sits on the last of the several
spaces that represent that tab. Try moving the cursor back and forth over tabs so you
understand how this works.

On rare occasions, your file may have non-printing characters in it. These characters are
displayed in the same way they are represented in this manual; i.e., with a 2-character code,
the first character of which is the *> character. On the screen non-printing characters
resemble a " character adjacent to another character. Spacing or backspacing over the
character reveals that the two characters are, like the spaces representing a tab character, a
single character.

The editor sometimes discards control characters, depending on the character and the setting of
the beautify option, if you attempt to insert them in your file. You can get a control
character in the file by beginning an insert and then typing a "V before the control character.
The "V quotes the following character causing it to be inserted directly into the file.

4.4.5.2 Higher Level Text Objects. In working with a document it is of ten advantageous
to work in terms of sentences, paragraphs, and sections. ‘

e The (and) operations move to the beginning of the previous and next sentence,
respectively. Thus the d) command will delete the rest of the current sentence. The d(
command will:

4-46

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

delete the previous sentence if you are at the beginning of the current sentence

or

delete the current sentence up to where you are if you are not at the beginning of the
current sentence.

e A sentence is defined to end at a ., %, or ? that is followed by either the end of a line or
two spaces. Any number of),], ", and * closing characters may appear after the ., % or ?,
and before the spaces or end of line.

e The { and } operations move over paragraphs.

e The [[and 1] operations move over sections. They require the operation character to be
doubled because they can move the cursor from where it currently is. While it is easy to
get back with the “ command, these commands would still be frustrating if they were
easy to hit accidentally.

e A paragraph begins after each empty line and also at each of a set of paragraph macros
specified by the pairs of characters in the definition of the string valued option paragraphs.
The default setting for this option defines the paragraph macros of the -ms and -mm macro
packages, i.e., the .IP, .LP, .PP and .QP, .P and .LI macros. You can easily change or extend
this set of macros by assigning a different string to the paragraphs option in your EXINIT.
See subpart 4.4.7.2 for details. The .bp request is also considered to start a paragraph. Each
paragraph boundary is also a sentence boundary. The sentence and paragraph commands
can be given counts to operate over groups of sentences and paragraphs.

e Sections in the editor begin after each macro in the sections option, normally, .NH, .SH, .H
and .HU, and each line with a form feed "L in the first column. Section boundaries are
always line and paragraph boundaries.

Try experimenting with the sentence and paragraph commands until you are sure how they
work. If you have a large document, try looking at it using the section commands. Section
commands interpret a preceding count as a different window size in which to redraw the
screen at the new location, and this window size is the base size for newly drawn windows
until another size is specified. This is very useful if you are on a slow terminal and are
looking for a particular section. You can give the first section command and a small count to
see each successive section heading in a small window.

4.4.5.3 Rearranging and Duplicating Text. The editor has a single unnamed buffer
where the last deleted or changed text is saved, and a set of named buffers a-z that you can
use to save copies of text and to move text around in your file and between files.

The y operator yanks a copy of the object that follows into the unnamed buffer. If preceded
by a buffer name, "xy, where x is replaced by a letter a-z, it places the text in the named
buffer. The text can then be put back in the file with the commands p and P; the p command
puts the text after or below the cursor, while P puts the text before or above the cursor.

If the text that you yank forms a part of a line or is an object such as a sentence, which
partially spans more than one line, then when you put the text back, it will be placed after
the cursor (or before if you use P). If the yanked text forms whole lines, they will be put
back as whole lines without changing the current line. In this case, the put acts much like an
o0 or O command (subpart 4.4.4.1).

Try the YP command. This makes a copy of the current line and leaves you on this copy,
which is placed before the current line. The command Y is a convenient abbreviation for yy.
The command Yp will also make a copy of the current line and place it after the current
line. You can give Y a count of lines to yank, and thus duplicate several lines; try 3YP.

4-47

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

To move text within the buffer, you need to delete it in one place and put it back in another.
You can precede a delete operation by the name of a buffer in which the text is to be stored as
in "a5dd deleting 5 lines into the named buffer a. You can then move the cursor to the
eventual resting place of these lines and do an "ap or "aP to put them back. In fact, you can
switch and edit another file before you put the lines back by giving a command of the form

:¢ nameCR

where name is the name of the other file you want to edit. You will have to write back the
contents of the current editor buffer (or discard them) if you have made changes before the
editor will let you switch to the other file. An ordinary delete command saves the text in the
unnamed buffer so that an ordinary put can move it elsewhere. However, the unnamed
buffer is lost when you change files; so to move text from one file to another, you should use a
named buffer.

4.4.54 Summary of Advanced vi Commands. A paragraph reference is provided for
each command in the following list.

1 4.45.1 Tab, add spaces up to next tab stop

L 4452 Form feed

Y 4.45.1 Quote the following character

1 4.4.5.1 Move cursor to first non-white position on line
$ 4.4.5.1 Move cursor to end of line

) 4452 Balance of sentence forward

}

4.4.5.2 Move cursor forward over paragraph operator

1 4.4.5.2 Move cursor forward over section operator

(4.4.5.2 Balance of sentence backward

{ 4.4.5.2 Move cursor backward over paragraph operator

[4.4.5.2 Move cursor backward over section operator

H 4.4.5.1 Find next instance of same character found with the fx or Fx
d 4.45.1 Delete the specified object (character, word, space)

fx 4.4.5.1 Find the first x character to right of the cursor
4.4.5.3 Put text back, after cursor or below current line
4.4.5.1 Undo the last change

y 4.4.5.3 Yank operator, for copies and moves

tx 4.4.5.1 To x forward, for operators

Fx 4.4.5.1 Find the first x character to left of the cursor

P 4.45.3 Put text back, before cursor or above current line

Tx 445.1 Up to x backward in line

4-48

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

4.4.6 High-Level Commands.

4.4.6.1 Writing, Quitting, and Editing New Files. So far we have seen how to enter
the vi editor and to write out our file using either ZZ or :wCR commands. The first command
exits from the editor (writing if changes were made), the second command writes and stays in
the editor.

If you have changed the editor copy of the file but do not wish to save your changes, then you
can give the command

:q'CR

to quit from the editor without writing the changes. You can also re-edit the same file (start
over) by giving the command

e!CR

These commands should be used only rarely and with caution, since it is not possible to
recover the changes you have made after you discard them in this manner.

You can edit a different file without leaving the editor by giving the command
:e nameCR.

If you have not written out your file before you try to do this, then the editor will tell you
this and delay editing the other file. You can then give the command

:wCR

(to save your changes) and then the
:e nameCR

command again or carefully give the command
¢! nameCR

which edits the other file discarding the changes you have made to the current file. To have
the editor automatically save changes, include set autowrite in your EXINIT and use :n instead
of e.

4.4.6.2 Escaping to a Shell. You can get to a shell to execute a single command by giving
a vi command of the form

AcmdCR

The system will run the single command (cmd), and when finished, the editor will ask you to
hit a RETURN to continue. When you have finished looking at the output on the screen, you
should hit RETURN; the editor will clear the screen and redraw it. You can then continue
editing. You can also give another : command when it asks you for a RETURN; in this case,
the screen will not be redrawn.

If you wish to execute more than one command in the shell, then you can give the command
:shCr

This will give you a new shell. When finished with the shell, end it by typing a “D. The
editor will clear the screen and continue.

4.4.6.3 Marking and Returning. The command * returns you to the previous place after
a motion of the cursor by a command such as /, 2, or G. You can also mark lines in the file
with single letter tags and return to these marks later by naming the tags. Try marking the
current line with the command mx, where you should pick some letter for x, such as an a.

4-49

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

Then move the cursor to a different line (any way you like) and hit ‘a. The cursor will
return to the place that you marked. Marks last only until you edit another file.

When using operators such as d and referring to marked lines, it is often desirable to delete
whole lines rather than deleting to the exact position in the line marked by m. In this case
you can use the form ’x rather than ‘x. Used without an operator, ’x will move to the first
non-white character of the marked line; similarly, ” moves to the first non-white character of
the line containing the previous context mark .

4.4.6.4 Adjusting the Screen. If the screen image contains random or unwanted
characters because of a transmission error to your terminal or because some program other
than the editor wrote output to your terminal, you can hit a "L, the ASCI form-feed
character, which will cause the screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line
deletion, you may get rid of these lines by typing "R to cause the editor to retype the screen,
closing up these holes.

If you wish to place a certain line on the screen at the top, middle, or bottom of the screen,
you can position the cursor to that line and then give a z command. You should follow the z
command with a RETURN if you want the line to appear at the top of the window, a . if you
want it at the center, or a - if you want it at the bottom.

4.4.7 Special Topics.

4.4.7.1 Editing on Slow Terminals. When you are on a slow terminal, it is important to
limit the amount of output that is generated to your screen so that you will not suffer long
delays waiting for the screen to be refreshed.

The use of the slow terminal insertion mode is controlled by the slowopen option. You can
force the editor to use this mode even on faster terminals by giving the command :se slowCR.
If your system is sluggish, this helps lessen the amount of output coming to your terminal.
You can disable this option by :se noslowCR.

The editor can simulate an intelligent terminal on a dumb one. Try giving the command
:se redrawCR. This simulation generates a great deal of output and is generally tolerable
only on lightly loaded systems and fast terminals. You can disable this with the
:se noredrawCR command.

The editor also makes editing at low speed more pleasant by starting the edit in a small
window and letting the window expand as you work. This works particularly well on
intelligent terminals. The editor can expand the window easily when you insert in the
middle of the screen on these terminals. If possible, try the editor on an intelligent terminal
to see how this works.

You can control the size of the window which is redrawn each time the screen is cleared by
giving window size as an argument to the commands that cause large screen motions:

/200

Thus if you are searching for a particular instance of common string in a file you can precede
the first search command by a small number, such as 3, and the editor will draw 3-line
windows around each instance of the string that it locates.

You can easily expand or contract the window and place the current line as you choose by
giving a number with the z command (after the z and before the following RETURN . oOr -).
Thus the command z5. redraws the screen with the current line in the center of a S5-line

4-50

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

window.

Note: The command Sz. has an entirely different effect, placing line 5 in the center of a new
window.

If the editor is redrawing or otherwise updating large portions of the display, you can
interrupt this updating by hitting a DEL or RUB as usual. If you do this you may partially
confuse the editor about what is displayed on the screen. You can still edit the text on the
screen if you wish; clear up the confusion by hitting a "L; or move or search again, ignoring
the current state of the display.

See subpart 4.49.8 on open mode for another way to use the vi command set on slow
terminals.

4.4.7.2 Options, Set, and Editor Startup Files. The editor has a set of options, some of
which have been mentioned above. The most commonly used options are defined in the
following table.

OPTION DEFAULT DESCRIPTION
autoindent noai Supply indentation automatically
autowrite noaw Automatic write before

:n, :ta, "1, and !
ignorecase noic Ignore case in searching
lisp nolisp ({) } commands deal with S-expressions
list nolist Tabs print as 'I; end of lines marked with $§
magic nomagic The characters [and * are special in scans
number nonu Lines are displayed prefixed with line numbers
paragraphs para=IPLPPPQPbpP LI Macro names that start paragraphs
redraw nore Simulate a smart terminal on a dumb one
sections sect=NHSHH HU Macro names that start new sections
shiftwidth sw=8 Shift distance for <, > and input "D and "T
showmatch nosm Show matching (or { as) or } is typed
slowopen slow Postpone display updates during inserts
term dumb The kind of terminal you are using

The options are of three kinds: numeric, string, and toggle. You can set numeric and string
options by a statement of the form

set opt=val
and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your environment or given while you are
running vi by preceding them with a : and following them with a CR.

You can get a list of all options that you have changed with the command

4-51

TEXT EDITORS » MOTOROLA COMPUTER SYSTEMS

:setCR

or the value of a single option by the command
:set opt?CR

A list of all possible options and their values is generated by
:set allCR

Set can be abbreviated se. Multiple options can be placed on one line, for instance:

:se ai aw nuCR

Options set by the set command last only while you stay in the editor. It is common to want
certain options set whenever you use the editor. Refer to section 4.3.9. for a full explanation
of how to create a list of ex commands that are to be run every time you start up ex, edit, or
Vi.

4.4.7.3 Recovering Lost Lines. Occasionally, you may delete a number of lines and then
regret that they were deleted. As backup, the editor saves the last nine deleted blocks of text
in a set of numbered registers, 1 through 9. You can retrieve the nth previously deleted text
block by the command "np. The " here says that a buffer name is to follow, n is the number
of the buffer you wish to try (use the number 1 for now), and p is the put command that
puts text in the buffer after the cursor. If this doesn’t bring back the text you wanted, hit u
to undo this, then . (period) to repeat the put command. In general, the . command will
repeat the last change. As a special case, when the last command refers to a numbered text

buffer, the . command increments the number of the buffer before repeating the command.
Thus a sequence of the form

“lpu.u.u

if repeated long enough, will display all the deleted text that has been saved. You can omit
the u commands here to gather up all this text in the buffer or stop after any . command to
keep just the then-recovered text. The command P can also be used rather than p to put the
recovered text before rather than after the cursor.

4.4.7.4 Recovering Lost Files. If the system crashes, you can recover the work you were
doing to within a few changes. You will normally receive mail when you next log in, giving
you the name of the file that has been saved for you. You should then change to the directory
where you were when the system crashed and give a command of the form:

:vi -r name
replacing name with the name of the file that you were editing. This will recover your work
to a point near where you left off. (In rare cases, some of the lines of the file may be lost.

The editor will give you the numbers of these lines and the text of the lines will be replaced
by the string LOST. These lines will almost always be among the last few that you changed.)

You can get a listing of the files that are saved for you by giving the command:
vi -r
If there is more than one instance of a particular file saved, the editor gives you the newest

instance each time you recover it. You can get an older saved copy back by first recovering
the newer copies.

For this feature to work, vi must be correctly installed by a superuser on your system, and
the mail program must exist to receive mail. The invocation :vi -r will not always list all
saved files, but they can be recovered even if they are not listed.

4-52

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

4.4.7.5 Continuous Text Input. When you are typing in large amounts of text, it is
convenient to have lines broken near the right margin automatically. You can cause this to
happen by setting the wrapmargin option

:se wm=10CRCR

This causes all lines to be broken at a space at least ten columns from the righthand edge of
the screen. (This feature is not available on some Version 2 editors. In the editors that have
wrapmargin, the break can only occur to the right of the specified boundary instead of to the
left.)

If the editor breaks an input line and you wish to put it back together, you can tell it to join
the lines with J. You can give J a count of the number of lines to be joined (as in 3] to join 3
lines). The editor supplies white space, if appropriate, at the juncture of the joined lines, and
leaves the cursor at this white space. You can Kkill the white space with x if you don’t want
it.

4.4.7.6 Features for Editing Programs. Several commands in the editor are designed to
help you edit programs.

First, the editor has an autoindent facility to help generate correctly indented programs. To
enable this facility, you can give the command :se aiCR. Open a new line with o and type
some characters on the line after a few tabs. If you now start another line, notice that the
editor supplies white space at the beginning of the line to line it up with the previous line.
You cannot backspace over this indentation, but you can use "D key to backtab over the
supplied indentation.

Each time you type "D you back up one position, normally to an 8-column boundary. This
amount is variable; the editor has an option called shiftwidth which you can set to change
this value. Try giving the command

:see sw=4CR
and then experimenting with autoindent again.

For shifting lines in the program left and right, there are operators < and >. These shift the
lines you specify right or left by one shiftwidth. Try << and >> which shift one line left
or right, and <L and >L shifting the rest of the display left and right.

A second aid to editing programs is the % command. If you have a complicated expression and
wish to see how the parentheses match, put the cursor at a left or right parenthesis and hit %.
This will show you the matching parenthesis. This works also for braces ({}), and brackets

(D.

If you are editing C programs, you can use the [and]| keys to advance or retreat to a line
starting with a {, i.e, a function declaration. When]| is used with an operator, it stops after a
line that starts with }; this is sometimes useful with yl}.

4.4.7.7 Filtering Portions of the Buffer. You can run system commands over portions of
the buffer using the operator . You can use this to sort lines in the buffer or to reformat
portions of the buffer when you are using a printer with a beautify option. Try entering a
list of random words, one per line and ending it with a blank line. Rackspace to the
beginning of the list and give the command !sortCR. This will sort the next paragraph of

4-53

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

material (your list). The blank line ends the paragraph.

4.4.7.8 Commands for Editing LISP. (The LISP features are not available on some
Version 2 editors due to memory constraints.)

If you are editing a LISP program, you should set the option lisp by doing
:se lispCR

This changes the (and) commands to move backward and forward over s-expressions. The {
and } commands are similar to (and) but don’t stop at atoms. These can be used to skip to the
next list or through a comment quickly.

The autoindent option works differently for LISP supplying indent to align at the first
argument to the last open list. If there is no such argument, then the indent is two spaces
more than the last level.

There is another option that is useful for typing in LISP, the showmatch option. Try setting it
with :se smCR and then try typing a (, some words, and a). Notice that the cursor shows the
position of the (that matches the) briefly. This happens only if the matching (is on the
screen, and the cursor stays there for at most one second.

The editor also has an operator to realign existing lines as though they had been typed in with
lisp and autoindent set. This is the = operator. Try the command =% at the beginning of a
function. This will realign all the lines of the function declaration.

When you are editing LISP, the [[and]] advance and retreat to lines beginning with a (and
are useful for dealing with entire function definitions.

4.4.7.9 Macros.
NOTE: The macro feature is available only in Version 3 editors.

The vi editor has a macro facility so that when you enter a single keystroke, the editor will
act as though you had entered some longer sequence of keystrokes. You can set up a macro if
you find yourself typing the same sequence of commands (keystrokes) repeatedly.

Briefly, there are two methods for assigning and calling up macros:

a) One method is to put the macro body in a buffer register, such as x. You can then
type @x to invoke the macro. The @ may be followed by another @ to repeat the
last macro.

b) The second method is to use the map command from vi (typically in your EXINIT)
with a command of the form:

:map lhs rhsCR

mapping lhs into rhs. There are restrictions: lhs should be one keystroke, either one
character or one function key, because lhs must be entered within one second. -
However, if notimeout is set, you can type lhs as siowly as you wish and vi will wait
for you to finish it before it echoes anything. The lhs can be no longer than ten
characters; the rhs no longer than 100. To put a space, tab, or newline into lhs, you
should escape the characters with a "V (it may be necessary to double the "V if the
map command is given inside vi rather than in ex). Only newline characters inside
the rhs need to be escaped.

To make the q key write and exit the editof; you can give the command

4-54

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

:map q :wq V VCR CR

which means that whenever you type q, it will be as though you had typed the four
characters :wqCR. A "V is needed because without it the CR would end the :
command rather than becoming part of the map definition. There are two ~V’s
because you are working within vi. The first CR is part of the rhs, the second
terminates the : command.

Macros can be deleted with
unmap lhs

If the lhs of a macro is #0 through #9, it maps the particular function key instead of the 2-
character # sequence (and need not be typed within one second). The form #x will mean
function key x on all terminals so that terminals without function keys can access these
definitions. The character # can be changed by using a macro in the usual way; to use tab, for
example:

:map V'V #

This will not affect the map command, which still uses #, but just the invocation from visual
mode.

The undo command reverses an entire macro call as a unit.

Placing a ! after the word map causes the mapping to apply to input mode rather than
command mode. Thus, to arrange for "T to be the same as four spaces in input mode, you can
type:

mmap! "T "VBEBH

where B is a blank. The "V is necessary to prevent the blanks from being taken as white
space between the Zhs and rhs.

4.4.8 Word Abbreviations. (Version 3 only.) A feature similar to macros in input mode is
word abbreviation. This allows you to type a short word and have it expanded into a longer
word or words. The commands are

:abbreviate
and
sunabbreviate

or

:ab
and
:una

and have the same syntax as :map. For example:
:ab eecs Electrical Engineering and Computer Sciences

causes the word eecs to be changed into the phrase Electrical Engineering and Computer
Sciences. Word abbreviation is different from macros in that only whole words are affected.
If eecs were typed as part of a larger word, it would be left alone. Also, the partial word is
echoed as it is typed. There is no need for an abbreviation to be a single keystroke as it should
be with a macro.

4-55

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

4.4.9 Additional Information.

4.4.9.1 Line Representation in the Display. The editor folds long logical lines onto
many physical lines in the display. Commands that advance lines will advance by logical
lines and will skip over all the segments of a line in one motion. The | command moves the
cursor to a specific column and is useful for getting near the middle of a long line to split it in
half. Try 801! on a line that is more than 80 columns long. (You can make long lines very
easily by using J to join together short lines.)

The editor puts only full lines on the display; if there is not enough room on the display to fit
a logical line, the editor leaves the physical line empty, placing only an @ on the line as a
place holder. When you delete lines on a dumb terminal, the editor will often clear just the
lines to @ to save time (rather than rewriting the rest of the screen). You can always re-type
the information on the screen by giving the "R command.

The editor can place line numbers before each line on the display. Give the command
:se nuCR

to enable this, and the command
:se nonuCR

to turn it off. Tabs will be represented as I and the ends of lines indicated with ’$’ by giving
the command

:se listCR
The following command removes the display of tabs and ends of lines:
:se nolistCR

Lines consisting of only the ” character are displayed when the last line in the file is in the
middle of the screen. These represent physical lines that are past the logical end of file.

4.4.9.2 Counts. Most vi commands can use a preceding count to affect their behavior in
some way.

Commands that take a new window size as count often cause the screen to be redrawn; for
example : / ? [[11 “and ’. If you anticipate this, you may wish to change the screen size
by specifying the new size before these commands. In any case, the number of lines used on
the screen will expand if you move off the top with a - or similar command, or off the bottom
with a command such as RETURN or “D. The window will revert to the last specified size the
next time it is cleared and refilled. (However, "L only redraws the screen as it is.)

The scroll commands "D and “U likewise remember the amount of scroll last specified, using
half the basic window size initially.

The simple insert commands use a count to specify a repetition of the inserted text. Thus,
10a +—ESC

will append the string 10 times, creating a grid-like string of text. Try it.

A few commands also use a preceding count as a line or column number, such as z, G, and |

Except for the commands that ignore any counts (such as "R), most of the editor commands
use a count to indicate a simple repetition of their effect. Thus, Sw advances five words on
the current line, while SRETURN advances five lines. A very useful instance of a count as a
repetition is a count given to the . command, which repeats the last changing command. If
you do dw and then 3., you will delete first one and then three words. You can then delete

4-56

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

two more words with the 2. command.

4.4.9.3 More File Manipulation Commands. The following table lists the file
manipulation commands that you can use when you are in vi.

w write back changes

wq write and quit

x write (if necessary) and quit (same as ZZ).
e name edit filename

¢! re-edit, discarding changes

€ + name edit, starting at end

€ +n edit, starting at line n

e # edit alternate file

W name write filename
:w! name overwrite filename
X, yw name write lines x, through y to name

r name read filename into buffer

xx lemd read output of cmd into buffer

n edit next file in argument list

n! edit next file, discarding changes to current
nargs specif y new argument list

:ta tag edit file containing tag tag, at tag

All of these commands are followed by a CR or ESC. The most basic commands are :w and :e.
A normal editing session on a single file will end with a ZZ command. If you are editing for
a long period of time you can give :w commands occasionally after major amounts of editing,
and then finish with a ZZ. When you edit more than one file, you can finish with one with a
:w and start editing a new file by giving a :¢ command, or set autowrite and use :n <file>.

If you make changes to the editor copy of a file, but do not wish to write them back, then you
must give an ! after the command you would otherwise use; this forces the editor to discard
any changes you have made. Use this carefully.

The e command can be given a + argument to start at the end of the file, or a +n argument to
start at line n. In actuality, n may be any editor command not containing a space, usually a
scan like +/pat or +?pat. In forming new names to the e command, you can use the character
%, which is replaced by the current filename, or the character #, which is replaced by the
alternate filename. The alternate filename is generally the last mame you typed other than
the current file. Thus, if you try to do a :e and get a diagnostic that you have not written
into the file, you can give a :w command and then a :¢ # command to redo the previous :e.

You can write part of the buffer to a file by finding the lines that bound the range to be
written using "G, to obtain the line numbers, and giving these numbers after the : and before
the w, separated by ,’s. You can also mark these lines with m and then use an address of the
form ’x,’y on the w command.

You can read another file into the buffer after the current line by using the :r command. You
can similarly read in the output from a command, just use the :r fomd instead of a filename.

If you wish to edit a set of files in succession, you can give all the names on the command
line, and then edit each one in turn using the command :n. It is also possible to respecify the
list of files to be edited by giving the :n command a list of filenames, or a pattern to be
expanded as you would have given it on the initial vi command.

If you are editing large programs, you will find the :ta command very useful. It utilizes a
data base of function names and their locations, which can be created by programs such as

4-57

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

ctags, to find quickly a function by name. If the :ta command will require the editor to
switch files, then you must :w or abandon any changes before switching. You can repeat the
:ta command without any arguments to look for the same tag again. (The tag feature is not
available in some Version 2 editors.)

4.4.9.4 More About Searching for Strings. When you are searching for strings in the
file with / or ?, the editor normally places you at the next or previous occurrence of the
string. If you are using an operator such as d, ¢, or y, you may want to affect lines up to the
line before the line containing the pattern. You can give a search of the form

/pat/ -n

to refer to the nth line before the next line containing pat, or you can use + instead of - to
refer to the lines after the one containing pat. If you do not give a line offset, the editor will
affect characters up to the exact matched place rather than whole lines; use +0 to affect
characters up to the line that matches.

You can have the editor ignore the case of words in the searches it does by giving the
command :

:se icCR
The command

:se noicCR
turns this off.

Strings defined in searches may actually be regular expressions. If you do not want or need
this facility, you should

set nomagic

in your EXINIT. In this case, only the characters T and $ are special in patterns. The character
\ remains special (as it is most everywhere in the system), and may be used to get at the
extended pattern-matching facility. It is also necessary to use a \ before a / in a forward scan
or a ? in a backward scan. The following table gives the extended forms when magic is set.

1 at beginning of pattern, matches beginning of line
$ at end of pattern, matches end of line

. matches any character

\ < matches the beginning of a word

\> matches the end of a word

[str] matches any single character in str

[Tstr] matches any single character not in str

[x-y] matches any character between x and y

* matches any number of the preceding pattern

If you use nomagic mode, then the . [and * primitives are given with a preceding \ .

4.4.9.5 More About Corrections In Input Mode. There are a number of characters that
you can use to make corrections during input mode. These are summarized in the following
table.

H deletes the last input character

W deletes the last input word

erase erase character, same as H

kill kill character, deletes the input on this line
\ escapes a following "H, erase, and kill

4-58

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

ESC ends an insertion

DEL interrupts an insertion, terminating it abnormally
CR starts a new line

D backtabs over autoindent

0D kills all the autoindent

1"D same as 0°D, but restores indent next line

' quotes the next non-printing character into the file

The most usual way of making corrections to input is by typing "H to correct a single
character, or by typing one or more “"W’s to back over incorrect words. If you use # as your
erase character in the normal system, it will work like "H.

Your system kill character, normally @, "X, or "U will erase all the input you have given on
the current line. In general, you can neither erase input back around a line boundary nor can
you erase characters that you did not insert with this insertion command. To make
corrections on the previous line after a new line has been started, you can hit ESC to end the
insertion, move over and make the correction, and then return to where you were to continue.
The command A which appends at the end of the current line is often useful for continuing.

If you wish to type in your erase or kill character (such as # or @) then you must precede it
with a \, just as you would do at the normal system command level. A more general way of
typing non-printing characters into the file is to precede them with a "V. The "V echoes as a
T character on that the cursor rests. This indicates that the editor expects you to type a
control character. In fact, you may type any character and it will be inserted into the file at
that point.

Note: The editor does not allow the NULL ("@) character to appear in files. Also the LF (line
feed or “J) character is used by the editor to separate lines in the file, so it cannot appear in
the middle of a line. You can insert any other character, however, if you wait for the editor
to echo the T before you type the character. In fact, the editor will treat a following letter as
a request for the corresponding control character. This is the only way to type ~S or "Q, since
the system normally uses them to suspend and resume output and never gives them to the
editor to process.

If you are using autoindent, you can backtab over the indent that it supplies by typing a "D.
This backs up to a shiftwidth boundary. This works only immediately after the supplied
autoindent.

When you are using autoindent you may wish to place a label at the left margin of a line.
The way to do this easily is to type T and then "D. The editor will move the cursor to the
left margin for one line and restore the previous indent on the next. You can also type a O
followed immediately by a "D if you wish to kill all the indent and not have it come back on
the next line.

4.4.9.6 Uppercase Only Terminals. If your terminal has only uppercase characters, you
can still use vi by using the normal system convention for typing on such a terminal.
Characters that you normally type are converted to lowercase, and you can type uppercase
letters by preceding them with a \. The characters

few { " }1°
are not available on such terminals, but you can escape them as
VNN

These characters are represented on the display in the same way they are typed (the \
character you give will not echo until you type another key).

4-59

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

4.4.9.7 Relation Between vi And ex Editors. The vi editor is actually one mode of
editing within the editor ex. All of the : commands that were introduced above are available
in ex. Likewise, most ex commands can be invoked from vi using :, and ending the command
with a CR.

In rare instances, an internal error may occur in vi. You will get a diagnostic and be left in
the command mode of ex. You can save your work and quit if you wish by giving a
command x after the : that ex prompts you with, or you can reenter vi by giving ex a vi
command.

Many operations are done more easily in ex than in vi. Systematic changes in line-oriented
material are particularly easy. On occasion, you may want to escape from vi to ex to execute
several line-oriented commands. You can quit vi completely by giving the command Q. To
return to vi, give the command :vi. Experienced users often mix their use of ex command
mode and vi command mode to speed the work they are doing. (Refer to the SYSTEM V/68
Document Processing Guide for the editor ed more information about this style of editing.)

4.4.9.8 Open Mode: vi on Hard Copy Terminals and Glass tty’s. (Not available in all
Version 2 editors due to memory constraints.)

If you are on a hard copy terminal or a terminal that does not have a cursor that can move off
the bottom line, you can still use the command set of vi, but in a different mode. When you
give a vi command, the editor will tell you that it is using open mode. This name comes from
the open command in ex, which is used to get into the same mode.

The only difference between visual mode and open mode is the way in which the text is
displayed. '

In open mode, the editor uses a single line window into the file. Moving backward and
forward in the file causes new lines to be displayed, always below the current line. Two
commands of vi work differently in open mode: z and "R. The z command does not take
parameters, but rather draws a window of context around the current line and then returns
to the current line.

If you are on a hard copy terminal, the "R command will retype the current line. On such
terminals, the editor normally uses two lines to represent the current line. The first line is a
copy of the line as you started to edit it, and you work on the line below this line. When you
delete characters, the editor types a number of \’s to show you the characters that are deleted.
The editor also reprints the current line soon after such changes so that you can see what the
line looks like again.

It is sometimes useful to use this mode on very slow terminals that can support vi in the full
screen mode. You can do this by entering ex and using an open command.

4.4.10 Character Functions Summary. This section shows how the vi editor interprets
each character. Characters are presented in their order in the ASCII character set: control
characters first, most special characters, digits, uppercase characters, and then lowercase
characters.

Each character is defined with a meaning it has as a command and any meaning it has during
an insert. If it has meaning only as a command, then only this is discussed. Numbers in
parentheses indicate where the character is discussed.

‘@ Not a command character.
If typed as the first character of an insertion, it is replaced with the last text
inserted, and the insert terminates. Only 128 characters are saved from the last
insert; if more characters have been inserted the mechanism is not available. A "@

4-60

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

>

J

"H (BS)

“I1(TAB)

RS

W

"M (cr)

cannot be part of the file.
(4.4.79, 4.49.5)

Unused.

Backward window. A count specifies repetition. Two lines of continuity are kept
if possible.
(4.4.3.1, 4492)

Unused.

As a command, it scrolls down a half-window of text. A count gives the number
of (logical) lines to scroll, and is remembered for future "D and “U commands.
(44.3.1, 449.2)

During an insert, it backtabs over autoindent white space at the beginning of a line.
This white space cannot be backspaced over.

(4.4.7.6,449.5)

Exposes one more line below the current screen in the file, leaving the cursor
where it is if possible. (Version 3 only)
(4.4.3.1)

Forward window. A count specifies repetition. Two lines of continuity are kept if

possible
(4.4.3.1, 4.49.2)

Equivalent to :fCR. "G prints the current filename; if it has been modified; the
current line number; the number of lines in the file; and the location of the
current line as a percent of the file length.

(4.4.3.2)

Same as left arrow (see h). During an insert, it eliminates the last input
character, backing over it but not erasing it.
(4.4.34,4.44.1,4.4.42,449.5)

Not a command character.

When inserted it prints as some number of spaces. When the cursor is at a tab
character, it rests at the last of the spaces that represent the tab. The spacing of tab
stops is controlled by the tabstop option.

(4.4.5.1, 4.4.7.2)

Down arrow. It moves the cursor one line down in the same column. If the
position does not exist, vi comes as close as possible to the same column. Synonyms
include jand “N.

(4.42.4, 4.4.3.3, 449.5)

Unused.

The ASCII form feed character, which causes the screen to be cleared and redrawn.
It is useful after a transmission error, after output is stopped by an interrupt, or if
characters from a program other than the editor have scrambled the screen.

(4.4.6.4, 449.2)

A carriage return advances to the first non-white position of the next line. Given a
count, it advances that many lines.
During an insert, a CR causes the insert to continue onto another line.

Down arrow. It moves the cursor one line down in the same column. If the
position does not exist, vi comes as close as possible to the same column. Synonyms

4-61

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

include jand “J.

(4.4.2.4,4.43.3)

"0 Unused.

“P Up arrow. It moves the cursor one line up. A synonym is k.
(4.4.2.4,4.4.33)

Q Not a command character.

In input mode, "Q quotes the next character, the same as "V, except that some
teletype drivers do not echo "Q to the editor.
(4.49.5

R Redraws the current screen, eliminating logical lines not corresponding to physical
lines (lines with only a single @ character on them). On hard-copy terminals in
open mode, retypes the current line.

(4.4.6.4, 449.1, 449.2, 4.49.8)

S Unused.
Some teletype drivers use S to suspend output until "Q is invoked.
(4.49.5) :

T Not a command character.
During an insert, with autoindent set and at the beginning of the line, it inserts
shiftwidth white space.
(4.4.72, 44.19)

U Scrolls the screen up, inverting "D which scrolls down. A count gives the number
of (logical) lines to scroll, and is remembered for future "D and "U commands. The
previous scroll amount is common to both. On a dumb terminal, “U will often
necessitate clearing and redrawing the screen further back in the file.
(44.3.1,4.492,4495)

Y Not a command character.
In input mode, it quotes the next character so that it is possible to insert non-
printing and special characters into the file.
(4.4.79, 4.49.5)

w Not a command character.
During an insert, it backs up as b would in command mode; the deleted characters
remain on the display (see "H).

(4.49.5
"X Unused.
Y Exposes one more line above the current screen, leaving the cursor where it is if

possible. There is no mnemonic value for this key; however, it is next to "U
(which scrolls up many lines) (Version 3 only).
(4.4.3.1)

Z Unused.

~,

“[(BSC) Cancels a partially formed command (such as a z when no following character has

- yet been given), terminates inputs on the last line (read by commands such as :, /,

and ?), and ends insertions of new text into the buffer. If an ESC is given when

the editor is inactive, the editor rings the bell or flashes the screen. If you are

confused about the operation the editor is working on, hit ESC to stop the operation.
(4.42.4,444.1, 44.8.5)

4-62

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

SPACE

Unused.

Searches for the word that is after the cursor as a tag. It is equivalent to typing
:ta, this word, and then a CR.
(4.49.3)

Equivalent to :e #CR, returning to the previous position in the last edited file, or
editing a file that you specified if you got a “No write since last change”
diagnostic and do not want to have to type the filename again. You have to doa :w
before "1 will work in this case. If you do not wish to write the file you should
do ze! #CR instead.

(4.4.7.2, 4.49.3)

Unused.
Reserved as the command character for the Tektronix 4025 and 4027 terminals.

Same as right arrow (see I).
(4424, 4.4.35)

An operator, which processes lines from the buffer with reformatting commands.
Follow ! with the object to be processed, and then the command name terminated
by CR. Doubling ! and preceding it by a count causes count lines to be filtered;
otherwise, the count is passed on to the object after the & Thus 2!} fmtCR reformats
the next two paragraphs by running them through the program fmdt.

(4.4.1.7, 4.49.3)

To read a file or the output of a command into the buffer use :r.

(4.49.3)

To simply execute a command use 3.

(4.4.62,4.49.3)

Precedes a named buffer specification. Named buffers 1-9 are used for saving
deleted text; named buffers a-z are available for general use.
(4.4.5.3, 4.4.7.3)

The macro character that, when followed by a number, will substitute for a
function key on terminals without function keys. In input mode, if this is your
erase character, it will delete the last character you typed in input mode, and must
be preceded with a \ to insert it, since it normally backs over the last input
character you gave.

(44.72, 4.4.79)

Moves to the end of the current line. If the :se listCR command is used, then the
end of each line will be shown by printing a $ after the end of the displayed text
in the line. When a count is used, the cursor advances to the end of the line
following the count. For example, 2§ advances the cursor to the end of the
following line.

(4.4.32,4.45.1, 44.72, 449.1)

Moves to the parenthesis (()) or brace ({}) that balances the parenthesis or brace at
the current cursor position.
(4.4.7.6, 4.4.7.8)

A synonym for :&CR, analogous to the ex & command.

When followed by a ’, the cursor returns to the previous context at the beginning
of a line. The previous context is set whenever the current line is moved in a
non-relative way. When followed by a letter (a-z), it returns to the line that was

4-63

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

marked with this letter with an m command, at the first non-white character in
the line. When used with an operator such as d, the operation takes place over
complete lines; if you use ¢, the operation takes place from the exact marked place
to the current cursor position within the line.

(4.4.6.3)

(Retreats to the beginning of a sentence, or to the beginning of a LISP s-expression if
the lisp option is set. A sentence ends at a ., !, or ? that is followed by either the
end of a line or by two spaces. Any number of closing characters (),], ", and *)
may appear after the ., !, or ?, and before the spaces or end of line. Sentences also
begin at paragraph and section boundaries (see { and [[). A count advances that
many sentences.

(4452, 4.4.1.8)

) Advances to the beginning of a sentence. A count repeats the effect. See (for the
definition of a sentence.
(4452,44.78)

* Unused.

+ Same as CR when used as a command.
(4.4.3.3)

’ Reverse of the last f, F, t, or T command, looking the other way in the current
line. Especially useful after hitting too many ; characters. A count repeats the
search.

- Retreats to the previous line at the first non-white character. This is the inverse of
+ and RETURN. If the line moved to is not on the screen, the screen is scrolled, or
cleared and redrawn. If a large amount of scrolling would be required the screen
is also cleared and redrawn, with the current line at the center.

(4.43.3)

. Repeats the last command that changed the buffer. Given a count, it passes it on to
the command being repeated. Thus after a 2dw, a 3. deletes three words.
(444.3,44.7.3,4492,449.4)

/ Reads a string from the last line on the screen, and scans forward for the next
occurrence of this string. The search begins when you hit CR to terminate the
pattern; the cursor moves to the beginning of the last line to indicate that the
search is in progress. The search may be terminated with a DEL or RUB, or by
backspacing when at the beginning of the bottom line, returning the cursor to its
initial position. Searches normally wrap end-around to find a string anywhere in
the buffer.

When used with an operator, the enclosed region is normally affected. By
mentioning an offset from the line matched by the pattern, you can force whole
lines to be affected. To do this, give a pattern with a closing / and then an offset
+n or -n.

To include the / character in the search string, you must escape it with a preceding
\. An T at the beginning of the pattern forces the match to occur at the beginning
of a line only; this speeds the search. A § at the end of the pattern forces the
match to occur at the end of a line only. More extended pattern matching is
available (see paragraph 4.4.9.4). Unless you set nomagic in your .exrc file you
will have to precede the characters ., [, ¥, and ~ in the search pattern with a \ to

4-64

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

.e

disable their special meanings.
(4.4.32,4.4.7.1, 44.9.4)

Moves to the first character on the current line.

Used to form numeric arguments to commands.
(4.4.3.3,4.49.2)

A prefix to a set of commands for file and option manipulation and escapes to the
system. Input is given on the bottom line and terminated with a CR, and the
command is then executed. You can return to where you were by hitting DEL or
RUB if you hit : accidentally.

(4.4.7.1, 4.49.3)

Repeats the last single character find that used f, F, t, or T. A count iterates the

basic scan.
(4.4.5.1)

An operator that shifts lines left one shiftwidth, normally 8 spaces. Like all
operators, it affects lines when repeated, as in <<. Counts are passed through to
the basic object, thus 3 << shifts three lines.

(4.4.7.6, 4.4.9.4)

Re-indents lines for LISP, as though they were typed in with lisp and autoindent
set.
(4.4.7.8)

An operator that shifts lines right one shiftwidth, normally 8 spaces. Affects lines
when repeated as in >>. Counts repeat the basic object.
(4.4.7.6, 4.49.4)

Scans backwards, the opposite of /. See the / description for details on scanning.
(4.4.32,44.7.1)

A macro character.

(4.4.7.9)

If this is your kill character, you must escape it with a\ to type it in during input
mode, as it normally backs over the input you have given on the current line.
(4.4.4.1, 449.5)

Appends at the end of line, a synonym for $a.
(4.49.5)

Backs up a word, where words are composed of non-blank sequences, placing the
cursor at the beginning of the word. A count repeats the effect.
(4.4.3.4)

Changes the rest of the text on the current line; a synonym for c$.
(4.4.4.4)

Deletes the rest of the text on the current line; a synonym for dS.
(4.4.4.9)

Moves forward to the end of a word, defined as blanks and nonblanks, like B and
W. A count repeats the effect.

Finds a single following character, back wards in the current line. A count repeats
the search that many times.
(4.4.5.1)

4-65

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

G Goes to the line number given as preceding argument, or the end of the file if no
preceding count is given. The screen is redrawn with the new current line in the
center if necessary.

(4.4.32)

H Home arrow. Homes the cursor to the top line on the screen. If a count is given,
then the cursor is moved to the count’s line on the screen. In either case, the cursor
is moved to the first non-white character on the line. If used as the target of an
operator, full lines are affected.

(4.4.3.3)

Inserts at the beginning of a line; a synonym for Ti.

J Joins lines together, supplying appropriate white space: one space between words;
two spaces after a .; and no spaces at all if the first character of the joined on line is
). A count causes that many lines to be joined rather than the default value of

two.
(4.4.7.5, 4.4.9.1)
K Unused.
L Moves the cursor to the first non-white character of the last line on the screen.

With a line count number, moves the cursor to the first non-white character of the
indicated line from the bottom. Operators affect whole lines when used with L.
(4.4.3.3, 4.4.4.4)

M Moves the cursor to the middle line on the screen, at the first non-white position on
the line.
(4.4.3.3)

N Scans for the next match of the last pattern given to / or ?, but in the reverse

direction; this is the reverse of n.

o) Opens a new line above the current line and inputs text up to an ESC. A count can
be used on dumb terminals to specify a number of lines to be opened; this is
generally obsolete, as the slowopen option works better.

(4.4.4.1)

P Puts the last deleted text back before/above the cursor. The text goes back as
whole lines above the cursor if it was deleted as whole lines; otherwise, the text is
inserted between the characters before and at the cursor. The P character may be
preceded by a named buffer specification "x to retrieve the contents of the buffer;
buffers 1-9 contain deleted material, buffers a-z are available for general use.

(4.4.5.3, 44.1.3)

Q Quits from vi to ex command mode. To return to vi, you must enter a :vi
command. Once in ex, the editor supplies the : as a prompt.
(4.49.7

R Replaces characters on the screen with characters you type (overlay fashion).

Terminates with an ESC.

S Changes whole lines; a synonym for cc. A count substitutes for that many lines.
The lines are saved in the numeric buffers and erased on the screen before the
substitution begins.

(4.4.4.9)

4-66

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

<

zz

[

I

Takes a single following character, locates the character before the cursor in the
current line, and places the cursor just after that character. A count repeats the
effect. Most useful with operators such as d.

(445.1)

Restores the current line to its state before you started changing it.
(4.4.4.5)

Unused.

Moves forward to the beginning of a word in the current line, where words are
defined as sequences of blank/nonblank characters. A count repeats the effect.
(4.4.3.4)

Deletes the character before the cursor. A count repeats the effect, but only
characters on the current line are deleted.

Yanks a copy of the current line into the unnamed buffer, to be put back by a later
p or P; a synonym for yy. A count yanks that many lines. May be preceded by a
buffer name to put lines in that buffer.

(4.45.3)

Exits the editor (same as :xCR). If any changes have been made, the buffer is
written out to the current file. Then the editor quits.
(4.42.6)

Backs up to the previous section boundary. A section begins at each macro in the
sections options, normally a .NH or .SH and also at lines that start with a form feed
"L. Lines beginning with { also stop [[; this makes it useful for looking backward,
a function at a time, in C programs. If the option lisp is set, stops at each (at the
beginning of a line, and is thus useful for moving backwards at the top level LISP
objects.

(4452, 44.7.1, 44.7.6, 449.2)

Unused.

Moves forward to a section boundary, see [[for a definition.
(44.52,4.4.7.1, 44.7.6, 4.49.2)

Moves to the first nonwhite position on the current line. Also used in search
strings to match a pattern at the beginning of a line.
(4.4.32, 4.4.5.1)

Unused

When followed by a ‘ returns to the previous context. The previous context is set
whenever the current line is moved in a nonrelative way. When followed by a
letter a-z, returns to the position that was marked with this letter with an m
command. When used with an operator such as d, the operation takes place from
the exact marked place to the current position within the line; if you use ’, the
operation takes place over complete lines.

(4.4.3.2, 4.4.6.3)

Appends arbitrary text after the current cursor position; the insert can continue
onto multiple lines by using RETURN within the insert. A count causes the
inserted text to be replicated, but only if the inserted text is all on one line. The
insertion terminates with an ESC.

(4.44.1, 4.492)

4-67

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

0Q

Backs up to the beginning of a word in the current line. A word is a sequence of
alphanumerics, or a sequence of special characters. A count repeats the effect.
(4.4.3.4)

An operator that changes the following object, replacing it with the following
input text up to an ESC. If more than part of a single line is affected, the text that
is changed is saved in the numeric named buffers. If only part of the current line
is affected, the last character to be changed is marked with a §. A count causes
that many objects to be affected, thus both 3c) and c¢3) change the following three
sentences.

(4.4.4.3,449.4)

An operator that deletes the following object. If more than part of a line is
affected, the text is saved in the numeric buffers. A count causes that many objects
to be affected; thus 3dw is the same as d3w.

(4.44.3,4.4.44,4.45.1, 44.9.4)

Advances to the end of the next word, defined as for b and w. A count repeats the
effect.
(4.4.3.4)

Finds the first instance of the next character following the cursor on the current
line. A count repeats the find.
(4.45.1)

Unused.

Left arrow. Moves the cursor one character to the left. Like the other arrow
keys, either h, the left arrow key, or one of the synonyms ("H) has the same
effect. On Version 2 editors, arrow keys on certain kinds of terminals (those that
send escape sequence, such as vt52, c100, or hp) cannot be used. A count repeats
the effect.

(4.4.2.4, 4.4.3.3, 4.4.3.4)

Inserts text before the cursor, otherwise like a.
(4.4.4.1)

Down arrow. Moves the cursor one line down in the same column. If the
position does not exist, vi comes as close as possible to the same column. Synonyms
include "J (line feed) and "N.

(4.4.2.4, 44.3.3)

Up arrow. Moves the cursor one line up. “P is a synonym.
(4424, 4.4.3.3)

Right arrow. Moves the cursor one character to the right. SPACE is a synonym.
(4424, 44.3.3,44.34)

Marks the current position of the cursor in the mark register that is specified by
the next character a-z. Return to this position or use with an operator using * or ’.
(4.4.6.3)

Repeats the last / or ? scanning commands.
(4.4.32)

Opens new lines below the current line; otherwise like O.
(4.4.4.D

4-68

MOTOROLA COMPUTER SYSTEMS TEXT EDITORS

P Puts text after/below the cursor; otherwise like P.
(4.45.3,4.4.7.3)
Unused.
r Replaces the single character at the cursor with a single character you type. The

new character may be a RETURN; this is the easiest way to split lines. A count
replaces each of the following count characters with the single character given; see
R above, which is usually the more useful iteration of r.

(4.4.42)

s Changes the single character under the cursor to the text that follows up to an
ESC; given a count, that many characters from the current line are changed. The
last character to be changed is marked with § as in c.
(4.4.42)

t Advances the cursor up to the character before the next character typed. Most
useful with operator such as d and c to delete the characters up to a following

character. You can use . to delete more if this does not delete enough the first time.
(4.4.5.1)

u Undoes the last change made to the current buffer. If repeated, will alternate
between these two states; thus it is its own inverse. When used after an insert
that inserted text on more than one line, the lines are saved in the numeric named
buffers. »

(4.44.5)

v Unused.

Advances to the beginning of the next word, as defined by b.
(4.4.3.4)

b4 Deletes the single character under the cursor. With a count, deletes that many
characters forward from the cursor position, but only on the current line.
(4442, 44.1.5)

y An operator that yanks the following object into the unnamed temporary buffer.
If preceded by a named buffer specification, "x, the text is placed in that buffer also.
Text can be recovered by a later p or P.
(4.45.3,4.49.4)

z Redraws the screen with the current line placed as specified by the following
character:

RETURN specifies the top of the screen
. specifies the center of the screen
- specifies the bottom of the screen.

A count may be given after the z and before the following character to specify the
new screen size for the redraw. A count before the z gives the number of the line
to place in the center of the screen instead of the default current line.

(4.4.6.3, 44.7.1)

{ Retreats to the beginning of the preceding paragraph. A paragraph begins at each
macro in the paragraphs option, normally .IP, .LP, .PP, .QP and .bp. A paragraph
also begins after a completely empty line, and at each section boundary (see [D.
(4.45.2, 4.4.7.6, 4.4.9.6)

469

TEXT EDITORS MOTOROLA COMPUTER SYSTEMS

“? (DEL)

Places the cursor on the character in the column specified by the count.
(4.49.1, 4.49.2)

Advances to the beginning of the next paragraph. See { for the definition of
paragraph.
(4.452,4.4.7.6, 4.49.6)

Unused.

Interrupts the editor, returning it to command-accepting state.
(4.49.5)

4-70

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

5. AN INTRODUCTION TO SHELL
5.1 General ’

The shell is a command programming language that provides an interface to the operating
system. Its features include control-flow primitives, parameter passing, variables, and string
substitution. Constructs such as while, if then else, case, and for are available. Two-way
communication is possible between the shell and commands. String-valued parameters,
typically filenames or flags, may be passed to a command. A return code is set by commands
that may be used to determine control-flow, and the standard output from a command may be
used as shell input.

The shell can modify the environment in which commands run. Input and output can be
redirected to files, and processes that communicate through pipes can be invoked. Commands
are found by searching directories in the file system in a sequence that can be defined by the
user. Commands can be read either from the terminal or from a file which allows command
procedures to be stored for later use.

The shell is both a command language and a programming language that provides an interface
to the SYSTEM V/68 operating system. This section describes, with examples, the SYSTEM V/68
shell. The “Simple Commands” section of this chapter covers most of the everyday
requirements of terminal users. Some familiarity with SYSTEM V/68 is an advantage when
reading this section. The section entitled “Shell Procedures” describes those features of the
shell primarily intended for use within shell commands or procedures. These include the
control-flow primitives and string-valued variables provided by the shell. A knowledge of a
programming language would be helpful when reading this section. The “Keyword
Parameters” section describes the more advanced features of the shell. Refer to Table 5-1 for a
defined listing of grammar words used in this section.

5.2 Simple Commands

Simple commands consist of one or more words separated by blanks. The first word is the
name of the command to be executed; any remaining words are passed as arguments to the
command. For example,

who
is a command that prints the names of users logged in. The command
Is -1

prints a list of files in the current directory. The argument —1 tells Is(1) to print status
information, size, and the creation date for each file.

5.2.1 Background Commands. To execute a command, the shell normally creates a new
process and waits for it to finish. In addition, the shell can prompt for another command
without waiting for the first to finish. For example,

cc pgm.c &

calls the C compiler to compile the file pgm.c . The trailing & instructs the shell not to wait
for the command to finish. To help keep track of such a process, the shell reports its process
number following its creation. A list of currently active processes may be obtained using the
ps(1) command.

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

5.2.2 Input/Output Redirection. Most commands produce output to the “standard output”
that is initially connected to the terminal. This output may be directed to a file by the
notation > ; for example,

Is —1 > file

The notation > file is interpreted by the shell and is not passed as an argument to Is(1). If file
does not exist, the shell creates it; otherwise, the original contents of file are replaced with the
output from Is(1). Output may be appended to a file using the notation >> as follows:

Is =1 > file
In this case, file is also created if it does not already exist.

The “standard input” of a command may be taken from a file instead of the terminal by the
notation < ; for example, :

wc < file

The command wc(1) reads its standard input (in this case redirected from file) and prints the
number of characters, words, and lines found. If only the number of lines is required, then

wc —1 < file
can be used.

5.2.3 Pipelines and Filters. The standard output of one command may be connected to
the standard input of another by writing the “pipe” operator, indicated by |, between
commands as in ‘ \

1s =11 wc

Two or more commands connected in this way constitute a “pipeline”, and the overall effect is
the same as

1s =1 > file; wec < file

except that no file is used. Instead the two processes are connected by a pipe (refer to pipe(2))
and are run in parallel. Pipes are unidirectional, and synchronization is achieved by halting
wc(1) when there is nothing to read and halting Is(1) when the pipe is full.

A “filter” is a command that reads its standard input, transforms it in some way, and prints
the result as output. One such filter, grep(1), selects from its input those lines that contain
some specified string. For example, ’

1s | grep old

prints those lines, if any, of the output from ls that contain the string old. Another useful
filter is sort(1). For example,

who | sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands; for example,
1s I grep old | wc —1 |

prints only the number of filenames in the current directory containing the string old.

5-2

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

5.2.4 Filename Generation. Many commands accept arguments which are filenames. For
example,

1s —1 main.c

prints only information relating to the file main.c. The 1s —1 command alone prints the
same information about all files in the current directory.

The shell provides a mechanism for generating a list of filenames that match a pattern. For
example,

Is —1 *c
generates as arguments to Is all filenames in the current directory that end in .c. The

character * is a pattern that matches any string including the null string. In general, patterns
are specified as follows:

* Matches any string of characters including the null string.
? Matches any single character.
[...] Matches any one of the characters enclosed. A pair of characters

separated by a minus matches any character lexically between the pair.
For example,
[a—z]*

matches all names in the current directory beginning with one of the letters a through z.
The input

/usr/fred/test/?

matches all names in the directory /usr/fred/test that consist of a single character. If no
filename is found that matches the pattern then the pattern is passed, unchanged, as an
argument.

This mechanism is useful both to save typing and to select names according to some pattern.
It may also be used to find files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in subdirectories of /usr/fred. (The echo(1)
command is a standard SYSTEM V/68 command that prints its arguments, separated by blanks.)
This last feature can be expensive, requiring a scan of all subdirectories of /usr/fred.

There is one exception to the general rules given for patterns. The character . at the start of
a filename must be explicitly matched. Therefore, the input

echo *
echoes all filenames in the current directory not beginning with the . character. The input
echo .*

echoes all filenames that begin with the . character. This avoids inadvertent matching of the
names . and .. which mean “the current directory” and “the parent directory”, respectively.
(Notice that Ls(1) suppresses information for the files . and .. .)

§.2.5 Quoting And Escaping. Characters that have a special meaning to the shell, such as

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

< > *?21 &

are called “metacharacters”. A complete list of metacharacters is given in Table 5-2. Often it
is necessary to conceal the special meaning that the shell associates with these characters.
When any character is preceded by a \ (backslash), it is “escaped” and loses its special meaning.
For example, the * carries a special meaning when read by the shell: “in a pattern, match any
character, including the null character”. The \ escapes the special meaning of the * in the
command

Is -1 *

so that the command attempts to list a file named *. Try this yourself. Now repeat the
command without escaping the special meaning of *:

Is-1%

Standard output will display a long list of all files in the current working directory. As
another example, the sequence \ newline escapes the special meaning of the newline
(RETURN) character: “send command”. Escaping the newline enables long strings of
commands to be continued over more than one line. The \ is convenient for escaping single
characters but when more than one character must be escaped, the \ mechanism is clumsy and
prone to errors. Metacharacters that are included in a string of characters may be escaped by
placing the string inside single acute accent characters (). For example

Is -1 mm'$***

searches for a file named mm$***. Within single acute accent characters, all characters
(except " itself) are taken literally with all special meanings ignored. Therefore,

stuff="echo $ 2 $%; Is * | wc’
results in the string

echo$? $*1s * | wc
being.assigned to the variable stuff.

A different result occurs when a character string is enclosed in single grave accent characters.
The grave accents ('), sometimes called back quotes, signify a command substitution.
Command substitutions are discussed later in this chapter and in more detail in SYSTEM V /68
Programming Guide, Chapter 2. To understand the practical difference, enter the command

echo pwd’

The output will echo pwd. Now enter the command
echo 'pwd’

The output will now print the working directory.

Enclosing a character string within double quotes performs an escape function on most
metacharacters but preserves the special meaning of a few. The characters that retain their
special meaning to the shell are $ (dollar sign: signifies parameter substitution), = (grave
accent: signifies command substitution), " (double quotes: signifies the end of the quoted string)
and \ (backslash: escapes the special meanings just mentioned for $ ' and "). Therefore,
within double quotes, it is possible for command substitution to take place. To hide the special
meaning of these characters within double quotes, precede each one with a \ (backslash).

In general, single metacharacters are most easily escaped by preceding each with a \
(backslash). If several metacharacters in a string must be escaped, enclose the string in single
acute accent characters. Double quotes will hide the special meaning of some but not all

54

MOTOROLA COMPUTER SYSTEMS ‘ AN INTRODUCTION TO SHELL

AR L]

metacharacters. The special meanings for the $ and \ that are preserved within double
quotes are valid only in shell commands. In other SYSTEM V/68 functions, such as text
editing, these meanings do not apply. Specific details concerning the use of double quotes are
described under paragraph “Evaluation and Quoting” later in this chapter.

5.2.6 The Shell and Login. Following the user’s login(1), the shell is called to read and
execute commands typed at the terminal. If the user’s login directory contains the file .profile
(which is assumed to contain commands), the shell reads it immediately before reading any
commands from the terminal.

5.2.7 Prompting by the Shell. When the shell is used from a terminal, it issues a prompt
to the terminal user indicating it is ready to read a command from the terminal. By default,
this prompt is § . A user may provide specific instructions to change the prompt by entering
a special command in the file .profile. To do this, start in your home directory. Use vi to edit
the file .profile.

vi .profile
Change the prompt by entering

PS1=newprompt

setting the prompt to be the string newprompt. If a newline is typed and further input is
needed, the shell issues the prompt > . Sometimes this can be caused by mistyping a quote
mark. If it is unexpected, then an interrupt (DEL) will return the shell to read another
command. The other prompt (>) may be changed by entering

PS2=more

To see that the prompt is now changed, save .profile and log off SYSTEM V/68. Log on again.
The shell will now read the new .profile and display the new prompt string.

5.2.8 Summary.

Is Prints the names of files in the current directory.

Is > file Puts the output from Is(1) into file.

Is | wec —1 Prints the number of files in the current directory.

Is | grep old Prints those filenames containing the string old.

Is | grep old | wec —1 Prints the number of filenames containing the string old.
cc pgm.c & Runs cc in the background.

5.3 Shell Procedures

The shell may be used to read and execute commands contained in a file. For example, the
following call

sh file[args ..]

calls the shell to read commands from file. Such a file call is called a “command procedure” or
“shell procedure”. Arguments may be supplied with the call and are referred to in file using
the “positional parameters” $1, $2, For example, if the file wg contains

5-5

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

who | grep $1
then the call
sh wg fred
is equivalent to
who | grep fred

All operating system files have three independent attributes (often called “permissions”): read
(r), write (w), and execute (x). File permissions are changed according to mode. The
operating system command chmod(1) may be used to make a file executable. For example,

chmod +x wg

will ensure that the file wg has execute status (permission). Following this, the command
wg fred

is equivalent to the call
sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case, a new
process is created to execute the command.

As well as providing names for the positional parameters, the number of positional parameters
in the call is available as $# . The name of the file being executed is available as $0 .

A special shell parameter $* is used to substitute for all positional parameters except $0. A
typical use of this is to provide some default arguments, as in

nroff —T450 —cm $*

which simply prepends some arguments to those already given.

5.3.1 Control Flow: for. A frequent use of shell procedures is to loop through the
arguments ($1, $2, ...), executing commands once for each argument. An example of such a
procedure is tel, which searches the file /usr/lib/telnos, which contains lines of the form

fred mh0123
bert mh0789

The text of tel is

fori
do

grep $i /usr/lib/telnos
done '

The command

tel fred
prints those lines in /usr/lib/telnos that contain the string fred.
The command

tel fred bert

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

prints those lines containing fred followed by those containing bert.
The for loop notation is recognized by the shell and has the general form

for name in wl w2
do

command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a
newline or a semicolon. Furthermore, reserved words like do and done are only recognized
following a newline or semicolon. A name is a shell variable that is set to the words wil w2 ...
in turn each time the command-list following do is executed. If in w1 w2 is omitted, then
the loop is executed once for each positional parameter; that is, in $* is assumed.

Another example of the use of the for loop is the create command (creat(2)), whose text is
for i do >$i; done

The command
create alpha beta

ensures that two empty files, alpha and beta, exist and are empty. The notation > file may
be used on its own to create or clear the contents of a file. Notice also that a semicolon (or
newline) is required before done.

5.3.2 Control Flow: case. A multiple way (choice) branch is provided by the case
notation. For example,

case $# in

1cat >$1;;

2)cat >>$2 <$1;;

*)echo ‘usage: append [from] to' ;;
esac

performs an append operation. (Note the use of semicolons to delimit the cases.) When called
with one argument as in

append file

$# is the string 1, and the standard input is appended (copied) onto the end of file using the
cat(1) command.

append filel file2

appends the contents of filel onto file2. If the number of arguments supplied to append is
other than 1 or 2, then a message is printed indicating proper usage.

The general form of the case command is
case word in
pattern) command-list ;;
esac
The shell attempts to match word with each pattern in the order in which the patterns

appear. If a match is found, the associated command-list is executed and execution of the case
is complete. Since ¥ is the pattern that matches any string, it can be used for the default case.

5-7

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

Caution: No check is made to ensure that only one pattern matches the case
argument.

The first match found defines the set of commands to be executed. In the example below, the
commands following the second * will never be executed since the first * executes everything
it receives.

case $# in
..
*) ..

esac

Another example of the use of the case construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc(1) command.

for i
do
case $i in
—[ocs] ...:;
—*) echo ‘'unknown flag $i’ ;;
*c) /1ib/c0 $i ... ;;
*) echo 'unexpected argument $i’ ;;
esac
done

To allow the same commands to be associated with more than one pattern, the case command
provides for alternative patterns separated by a |. For example,

case $i in
—x|'_y)oo.
esac

is equivalent to

case $i in

—IxyD...
esac

The usual quoting conventions apply so that

case $i in
...

matches the character ?.

5.3.3 Here Documents. The shell procedure tel described under “Control Flow: for” in
this section uses the file /usr/lib/telnos to supply the data for grep(1). An alternative is to
include this data within the shell procedure as a here document, as in

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

for i
do
grep $i <!

fred mh0123
bert mh0789

]
done

In this example, the shell takes the lines between << ! and ! as the standard input for
grep(1). The string ! is arbitrary. The document is terminated by a line that consists of the
string following << .

Parameters are substituted in the document before it is made available to grep(1), as
illustrated by the following procedure called edg.

ed $3 <%
g/$1/s//82/¢g
w

%

The call
edg stringl string2 file

is then equivalent to the command
ed file <%
g/string1/s//string2/g

w
Yo

and changes all occurrences of stringl in file to string2. Substitution can be prevented by
using \ to quote the special character § as in

ed $3 <+
1,\$s/81/82/g
w

+

(This version of edg is equivalent to the first except that ed(1) will print a ? if there are no
occurrences of the string $1.) Substitution within a here document may be prevented
entirely by quoting the terminating string; for example,

grep $i <<\#

#

The document is presented without modification to grep. If parameter substitution is not
required in a here document, this latter form is more efficient.

5.3.4 Shell Variables. The shell provides string-valued variables. Variable names begin
with a letter and consist of letters, digits, and underscores. Variables may be given values by
writing :

user=fred box=m000 acct=mh0000

5-9

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

which assigns values to the variables user, box, and acct. A variable may be set to the null
string by entering

null=

The value of a variable is substituted by preceding its name with § ; for example,
echo $user

echoes fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example,

b=/usr/fred/bin
mv file $b

moves the file from the current directory to the directory /usr/fred/bin. A more general
notation is available for parameter (or variable) substitution, as in

echo ${user}
which is equivalent to
echo $user
and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmpja

directs the output of ps(1) to the file /tmp/psa, whereas
ps a >$tmpa

causes the value of the variable tmpa to be substituted.

Except for $?, the following are set initially by the shell.

$ The exit status (return code) of the last command executed as a decimal
string. Most commands return a zero exit status if they complete
successfully; otherwise, a nonzero exit status is returned. Testing the
value of return codes is dealt with later under if and while commands.

$# The number of positional parameters (in decimal). Used, for example,
in an append operation to check the number of parameters.

$3 The process number of this shell (in decimal). Because process numbers
are unique among all existing processes, this string is frequently used to
generate unique temporary filenames. For example,

ps a >/tmp/ps$$

rm /tmp/ps$$
s The process number of the last process run in the background (in
decimal).
$— The current shell flags, such as —x and —v .

Some variables have a special meaning to the shell and should be avoided for general use.

5-10

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

$MAIL

$HOME

$PATH

$PS1
$PS2
SIFS

When used interactively, the shell looks at the file specified by this
variable before it issues a prompt. If the specified file has been modified
since it was last looked at, the shell prints the message you have mail
before prompting for the next command. This variable is typically set
in the file .profile in the user’s login directory. For example,

MAIL=/usr/mail/fred

The default argument for the cd(1) command. The current directory is
used to resolve filename references that do not begin with a / and is
changed using the cd command. For example,

cd /usr/fred/bin
makes the current directory /usr/fred/bin . Then
cat wn

prints on the terminal the file wn in this directory. The command cd
with no argument is equivalent to

cd $SHOME
This variable is also typically set in the user’s login .profile.

A list of directories containing commands (the “search path”). Each time
a command is executed by the shell, a list of directories is searched for
an executable file. If $PATH is not set, the current directory, /bin, and
/usr/bin are searched by default. Otherwise, $PATH consists of
directory names separated by :. For example,

PATH=:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first),
/usr/fred/bin, /bin, and /usr/bin are to be searched in that order. In
this way, individual users can have their own private commands that
are accessible independently of the current directory. If the command
name contains a /, this directory search is not used; a single attempt is
made to execute the command.

The primary shell prompt string; by default, § .
The shell prompt when further input is needed; by default, > .

The set of characters used by “blank interpretation”. (Refer to
paragraph “Evaluation and Quoting” in the section entitled “Keyword
Parameters”.)

5.3.5 The test Command. The test command is intended for use by shell programs. For

example,
test —f file

returns zero exit status if file exists and nonzero exit status otherwise. In general, test
evaluates a predicate and returns the result as its exit status. Some of the more frequently
used test arguments are as follows (refer to test(1) for a complete specification).

5-11

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

test s true if the argument s is not the null string
test —f file trueif file exists

test —r file trueif file is readable

test —w file trueif file is writable

test —d file trueif file is a directory

5.3.6 Control Flow: while. The actions of the for loop and the case branch are
determined by data available to the shell. A while or until loop and an if then else branch
are also provided with actions that are determined by the exit status returned by commands.
A while loop has the general form

while command-list 1
do

command-list2
done

The value tested by the while command is the exit status of the last simple command
following while. Each time round the loop, command-list1 is executed. If a zero exit status is
‘returned, then command-list2 is executed; otherwise, the loop terminates. For example,

while test $1
do

shift
done

is equivalent to
for i
do

done

The shift command is a shell command that renames the positional parameters $2, $3, ... as
$1, $2, ... and loses $1.

Another way of using the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop, the termination condition is reversed. For
example,

until test —f file
do
sleep 300
done
commands

will loop until file exists. Each time round the loop, it waits for 5 minutes (300 seconds)
before trying again. (Presumably, another process will eventually create the file.).

5.3.7 Control Flow: if. Also available is a general conditional branch of the form

5-12

MOTOROLA COMPUTER SYSTEMS

if command-list
then
command-list
else
command-list
fi

AN INTRODUCTION TO SHELL

which tests the value returned by the last simple command following if.

The if command may be used in conjunction with the test command to test for the existence

of a file as in

if test —f file
then
process file
else
do something else
fi

An example of the use of if, case, and for constructions is given in the paragraph entitled

“The man Command” in this section.

A multiple-test if command of the form

if ...
then

else

may be written using an extension of the if notation as,

if oo
then
elif ...
then

elif ...

fi

The touch command changes the “last modified” time for a list of files. The command may be
used in conjunction with make(1) to force recompilation of a list of files. The following

example illustrates the touch command:

5-13

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

flag=
for i
do ,
case $i in
—c) flag=N;;
*) if test —f $i
then
In $i junk$$
rm junk$$
elif test $flag
then
echo file \ ‘$i\ ' does not exist
else
>8$i
fi;;
esac
done

The —c flag is used in this command to force creation of subsequent files if they do not
already exist. Otherwise, if the files do not exist, an error message is printed. The shell
variable flag is set to some non-null string if the —c argument is encountered. The commands

In..;rm...

make a link to the file and then remove it.

The sequence

if commandl
then

command?2
fi

may be written

command 1 && command2
Conversely,

command 1 || command2

executes command?2 only if commandl fails. In each case, the value returned is that of the
last simple command executed.

5.3.7.1 Command Grouping. Commands may be grouped in two \x;ays,
{ command-list ; }

and
(command-list)

The first form, command-list, is simply executed. The second form executes command-list asa
separate process. For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking
shell.

5-14

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

The commands
cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

5.3.8 Debugging Shell Procedures. The shell provides two tracing mechanisms to help
when debugging shell procedures. The first is invoked within the procedure as

set —v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful
for isolating syntax errors. It may be invoked without modifying the procedure by entering

sh —v proc ...

where proc is the name of the shell procedure. This flag may be used in conjunction with the
—n flag, which prevents execution of subsequent commands. (Note that typing set —n at a
terminal renders the terminal useless until an end-of-file is typed.)

The command
set —x

produces an execution trace with flag —x. Following parameter substitution, each command
is printed as it is executed. (Try the preceding commands at the terminal to see the effect they
have.) Both flags may be turned off by typing

set —

and the current setting of the shell flags is available as $—.

5.3.9 The man Command. The man(1) command is used to print sections of the SY ST EM
V/68 User's Manual. It is called by entering

man sh
man —t ed
man 2 fork

In the first call, the manual section for sh is printed. Since no section is specified, section 1 is
used. The second call typesets (—t option) the manual section for ed. The last call prints the
Jfork manual page from section 2 of the manual.

A version of the man command follows:

5-15

AN INTRODUCTION TO SHELL ' MOTOROLA COMPUTER SYSTEMS

cd /usr/man
: ’colon is the comment command’
: ’default is nroff (§N), section 1 ($s)’
N=n s=1
for i
do
case $i in
[1-9]) s=$i;;
—t) N=tg;
—n) N=n3;;
—*) echo unknown flag \'$i\";;
*) if test —f man$s/$i.$s
then
${N}roff man0/${N}aa man$s/$i.$s
else
: 'look through all manual sections’
found=no
for jin123456789
do
if test —f man$j/$i.$j
then man $j $i
found=yes
fi
done
case $found in
no) echo ‘$i: manual page not found’
esac
fi;;
esac
done

5.4 Keyword Parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An
argument to a shell procedure of the form name=value that precedes the command name
causes value to be assigned to name before execution of the procedure begins. The value of
name in the invoking shell is not affected. For example,

user=fred command

executes command with user set to fred. The —k flag causes arguments of the form
name=value to be interpreted in this way anywhere in the argument list. Such names are
sometimes called “keyword parameters”. If any arguments remain, they are available as
positional parameters $1, $2,....

The set command may also be used to set positional parameters from within a procedure. For
example,

set — *

sets $1 to the first filename in the current directory, $2 to the next, and so forth. Note that
the first argument, —, ensures correct treatment when the first filename begins with a —.

5.4.1 Parameter Transmission. When a shell procedure is invoked, both positional and
keyword parameters may be supplied with the call. Keyword parameters are also made
available implicitly to a shell procedure by specifying in advance that such parameters are to

5-16

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

be exported. For example,
export user box

marks the variables user and box for export. When a shell procedure is invoked, copies are
made of all exportable variables for use within the invoked procedure. Modification of such
variables within the procedure does not affect the values in the invoking shell. It is generally
true of a shell procedure that it may not modify the state of its caller without an explicit
request on the part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose values are intended to remain constant may be declared with readonly. The
form of this command is the same as that of the export command,

readonly name ...
Subsequent attempts to set readonly variables are illegal.

5.4.2 Parameter Substitution. If a shell parameter is not set, the null string is
substituted for it. For example, if the variable d is not set,

echo $d

or
echo ${d}

echoes nothing. A default string may be given as in
echo ${d—.}

which echoes the value of the variable d if it is set and . otherwise. The default string is
evaluated using the usual quoting conventions so that

echo ${d— *}
echoes ¥ if the variable d is not set. Similarly,
echo ${d—$1}

echoes the value of d if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo ${d=.}
which substitutes the same string as
echo ${d—.}

and if d has not been set previously, it is set now to the string .(dot). (The notation ${...=...}
is not available for positional parameters.)

If there is no sensible default, the notation
echo ${d?message}

echoes the value of the variable d if it has one; otherwise, message is printed by the shell, and
execution of the shell procedure is abandoned. If message is absent, a standard message is
printed. A shell procedure that requires some parameters to be set might start as follows:

: ${user?} ${acct?} ${bin?}

Colon (:) is a command built into the shell that does nothing after its arguments have been
evaluated. If any of the variables user, acct, or bin are not set, the shell abandons execution of

5-17

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

the procedure.

5.4.3 Command Substitution. The standard output from a command can be substituted
in a similar way to parameters using the grave accent marks (). The command pwd(1) prints
on its standard output the name of the current directory. For example, if the current
directory is /usr/fred/bin, the command

d="pwd’
is equivalent to
d=/usr/fred/bin

The entire string between grave accents ('...") is interpreted as the command to be executed and
is replaced with the output from the command. Command substitutions are written
following normal quoting conventions. For example,

Is echo"$1""'
is equivalent to
Is $1
where $1 retains its special meaning.

Command substitution occurs in all contexts where parameter substitution occurs (including
here documents), and the treatment of the resulting text is the same in both cases. This
mechanism allows string-processing commands to be used within shell procedures. An
example of such a command is basename(1), which removes a specified suffix from a string.
For example,

basename main.c .c

will print the string main. Its use is illustrated by the following fragment from a cc(1)
command

case $A in

*c) B='basename $A .c'

esac
which sets B to the part of $A with the suffix .c stripped.
Here are some composite examples.

for iin'ls —t’; do ...

The variable i is set to the names of files ordered according to the time of last modification,
with the most recent first.

set ‘date’; echo $6 $2 $3, $4

prints, for example,
1984 Jun 1, 23:59:59

5.4.4 Evaluation and Quoting. The shell is a macro processor that provides parameter
substitution, command substitution, and filename generation for the arguments to commands.
This section discusses the order in which these evaluations occur and the effects of the various

5-18

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

quoting mechanisms.

Commands are parsed initially according to the grammar listed in Table 5-1. Before a
command is executed, the following substitutions occur:

Parameter substitution; e.g., $user

b. Command substitution; e.g., pwd’

Only one evaluation occurs so that if, for example, the value of the variable X is the
string $y then

echo $X
echoes $y.

c. Blank interpretation

Following the above substitutions, the resulting characters are broken into nonblank
words (blank interpretation). For this purpose, “blanks” are the characters of the string
$IFS. By default, this string consists of blank, tab, and newline. The null string is not
regarded as a word unless it is quoted. For example,

echo "’
passes on the null string as the first argument to echo, whereas

echo $null
calls echo with no arguments if the variable null is not set or is set to the null string.

d. Filename generation

Each word is then scanned for the file pattern characters ¥, ?, and [...]; and an
alphabetical list of filenames is generated to replace the word. Each such filename is a
separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only
substitution occurs in the word used for a case branch.

Evaluations conform to the escape and quoting mechanisms described earlier i.e., \(backslash),
“.../(acute accent), and " (double quotes). Within double quotes, parameter and command
substitution occur, but filename generation and the interpretation of blanks does not. The
following characters have a special meaning within double quotes and may be quoted using \ .

$ parameter substitution
' command substitution
ends the quoted string
\ quotes the special characters $ ' " \

For example,
echo " $x "

passes the value of the variable x as a single argument to echo. Similarly,
echo " §* "

passes the positional parameters as a single argument and is equivalent to
echo " $1$2.."

5-19

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

The notation $@ is the same as $* except when it is quoted. Inputting
echo " $@ "

passes the positional parameters, unevaluated, to echo and is equivalent to
echo" $1""$2" ...

The following illustration details how the shell evaluates metacharacters located in a string
enclosed by acute accents, grave accents and double quotes.

metacharacter
| \ $ * ' " ! i
| {
" n n n n n t
Yo
|
]

t = terminator
y = interpreted
n = not interpreted

When more than one evaluation of a string is required, the built-in command eval may be
used. For example, if the variable X has the value $y and if y has the value pqr, then

eval echo $X
echoes the string pqr.

In general, the eval command evaluates its arguments (as do all commands) and treats the

result as input to the shell. The input is read and the resulting command(s) executed. For
example,

wg="eval wholgrep’
$wg fred

is equivalent to
wholgrep fred

In this example, eval is required because there is no interpretation of metacharacters, such as
I, following substitution.

5.4.5 Error Handling. The treatment of errors detected by the shell depends on the type
of error and on whether the shell is being used interactively. An interactive shell is one
whose input and output are connected to a terminal (as determined by gtty(2)). A shell
invoked with the —i flag is also interactive.

Execution of a command (refer to the “Command Execution” paragraph of this section) may
fail for any of the following reasons:

5-20

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

a. Input/output redirection may fail; for example, if a file does not exist or cannot be
created.

b. The command itself does not exist or cannot be executed.

c. The command terminates abnormally, for example, with a bus error or memory fault
signal.

d. The command terminates normally but returns a nonzero exit status.

In all of these cases, the shell goes on to execute the next command. Except for the last case,
an error message is printed by the shell. All remaining errors cause the shell to exit from a
command procedure. An interactive shell returns to read another command from the
terminal. Such errors include the following:

a. Syntax errors; e.g., if ...then... done.

b. A signal such as SIGINT. The shell waits for the current command, if any, to finish
execution and then either exits or returns to the terminal.

c. Failure of any of the built-in commands such as cd(1).

The shell flag —e causes the shell to terminate if any error is detected. The following is a list
of the SYSTEM V/68 signals (refer to signal(2)):

SIGHUP 01 hangup

SIGINT 02 interrupt
SIGQUIT 03* quit
SIGILL 04* illegal instruction

(not reset when caught)
SIGTRAP 05* trace trap
(not reset when caught)

SIGIOT 06* 10T instruction

SIGEMT 07* EMT instruction

SIGFPE 08* floating point exception

SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 10* bus error

SIGSEGV 11* segmentation violation

SIGSYS 12* bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
(from kili(1))
SIGUSR1 16 user defined signal 1
SIGUSR2 17 user defined signal 2
SIGCLD 18 death of a child
SIGPWR 19 power fail

The operating system signals marked with an asterisk (*) in the list produce a core dump if
not caught. However, the shell itself ignores SIGQUIT, which is the only external signal that
can cause a dump. The signals in this list of potential interest to shell programs are 1, 2, 3, 14,
and 15.

5.4.6 Fault Handling. Shell procedures normally terminate when an interrupt is received
from the terminal. The trap command is used if some cleaning up is required, such as
removing temporary files. For example,

5-21

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

trap ‘rm /tmp/ps$$; exit’ 2

sets a trap for signal 2 (terminal interrupt); if this signal is received, it will execute the
following commands:

rm /tmp/ps$$; exit

The exit is another built-in command that terminates execution of a shell procedure. The
exit is required; otherwise, after the trap has been taken, the shell resumes executing the
procedure at the place where it was interrupted.

SYSTEM V/68 signals can be handled in one of three ways.
They can be ignored, in which case the signal is never sent to the process.

b. They can be caught, in which case the process must decide what action to take when the
signal is received.

c. They can be left to cause termination of the process without it having to take any
further action.

If a signal is being ignored on entry to the shell procedure; for example, by invoking it in the
background (refer to the paragraph “Command Execution”); trap commands (and the signal)
are ignored.

The use of trap is illustrated by the following modified version of the touch(1) command:

flag=
trap rm —f junk$$; exit' 12 3 15
for i
do
case $i in

—c) flag=N ;;
*) if test —f $i

then

In $i junk$$; rm junk$$
elif test $flag
then

echo file \ ‘$i\ ' does not exist
else

>8$i
fi;

esac

done

The cleanup action is to remove the file junk$$. The trap command appears before the
creation of the temporary file; otherwise, it would be possible for the process to die without
removing the file.

Since there is no signal O in the SYSTEM V/68 operating system, it is used by the shell to
indicate the commands to be executed on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument
to trap. The following:

trap’ '12315

5-22

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

is a fragment taken from the nohup(1) command which causes the operating system hangup,
interrupt, quit, and software termination signals to be ignored both by the procedure and by
invoked commands.

Traps may be reset by entering
trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values
of traps may be obtained by writing

trap

The scan procedure is an example of the use of trap where there is no exit in the trap
command. The scan takes each directory in the current directory, prompts with its name, and
then executes commands typed at the terminal until an end-of-file or an interrupt is received.
Although interrupts are ignored when the requested commands are executing, they cause
termination when scan is waiting for input. The scan procedure follows:

d="pwd’
foriin*
do
if test —d $d/$i
then
cd $d/8i
while echo "$i:"
do
trap: 2
eval $x
done
fi
done

The read x is a built-in command that reads one line from the standard input and places the
result in the variable x . It returns a nonzero exit status if either an end-of-file is read or an
interrupt is received.

5.4.7 Command Execution. To run a command (other than a built-in command), the shell
first creates a new process using the system call fork(2). The execution environment for the
command includes input, output, and the states of signals and is established in the child
process before the command is executed. The built-in command exec is used in rare cases
when no fork is required and simply replaces the shell with a new command. For example, a
simple version of the nohup command looks like

trap ‘12315
exec $*

The trap turns off the signals specified so that they are ignored by subsequently created
commands, and exec replaces the shell by the command specified.

Most forms of input/output redirection have already been described. In the following, word is
only subject to parameter and command substitution. No filename generation or blank
interpretation takes place so that, for example,

echo ... >*.c

5-23

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

writes its output into a file whose name is *.c . Input/output specifications are evaluated left
to right as they appear in the command. Some input/output specifications are as follows:

> word The standard output (file descriptor 1) is sent to the file word, which is
created if it does not already exist.

>> word The standard output is sent to file word. If the file exists, then output is
appended (by seeking to the end); otherwise, the file is created.

< word The standard input (file descriptor 0) is taken from the file word.

<< word The standard input is taken from the lines of shell input that follow up

to, but do not include, a line consisting only of word. If word is quoted,
no interpretation of the document occurs. If word is not quoted,
parameter and command substitution occur and \ is used to escape the
characters \, §, °, and the first character of word. In the latter case,
\newline is ignored (e.g., quoted strings).

> & digit The file descriptor digit is duplicated using the system call dup(2), and
the result is used as the standard output.

<& digit The standard input is duplicated from file descriptor digit.

<&— The standard input is closed.

>&— The standard output is closed.

Any of the above may be preceded by a digit, in which case the file descriptor created is that
specified by the digit instead of the default O or 1. For example,

. 2> file
runs a command with message output (file descriptor 2) directed to file. Another example,
. 2>&1

runs a command with its standard output and message output merged. (Strictly speaking, file
descriptor 2 is created by duplicating file descriptor 1; but the effect is usually to merge the
two streams.)

The environment for a command run in the background such as
list *.c | lpr &

is modified in two ways. First, the default standard input for such a command is the empty
file /dev/null . This prevents two processes (the shell and the command), which are running
in parallel, from trying to read the same input. Unpredictable results would occur otherwise.
For example,

ed file &
would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is that the quit and
interrupt signals are turned off so the command ignores them. This allows these signals to be
used at the terminal without causing background commands to terminate. For this reason, the
SYSTEM V/68 convention is that if a signal is set to 1 (ignored) then it is never changed, even
for a short time. Note that the shell command trap has no effect for an ignored signal.

524

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

5.4.8 Invoking the Shell. The following flags are interpreted by the shell when it is
invoked. If the first character of argument zero is a minus, commands are read from the file

.profile .
—c string

—i

item

simple-command:

command:

pipeline:

andor:

command-list:

input-out put:

If the —c flag is present, then commands are read from string .

If the —s flag is present or if no arguments remain, commands are read
from the standard input. Shell output is written to file descriptor 2.

If the —i flag is present or if the shell input and output are attached to a
terminal (as told by getty(8)), this shell is “interactive”. In this case,
SIGTERM is ignored (so that kill 0 does not kill an interactive shell) and
SIGINT is caught and ignored (so that waif is interruptible). In all cases,
SIGQUIT is ignored by the shell.

Table 5-1. Grammar

word
input-out put
name = value

item
simple-command item

simple-command

(command-list)

{ command-list }

for name do command-list done

for name in word .. do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part .. esac

if command-list then command-list else-part fi

command
pipeline | command

pipeline
andor && pipeline
andor | | pipeline

andor

command-list ;
command-list &
command-list ; andor
command-list & andor

> file
< file

5-25

AN INTRODUCTION TO SHELL

file

case-part:

pattern:

else-part:

empty:
word:

name

digit:

(a) syntactic:

!
&&
I
&
O
<
<
>
>

(b) patterns:

x

> word
<< word

word
& digit
& —

pattern) command-list 3;

word
pattern | word

elif command-list then command-list else-part
else command-list

empty
a sequence of nonblank characters

a sequence of letters, digits, or underscores
starting with a letter

0123456789

Table 5-2. Metacharacters and Reserved Words

pipe symbol

‘andf’ symbol

‘orf” symbol

command separator

case delimiter

background commands
command grouping

input redirection

input from a here document
output creation

output append

match any character(s) including none

5-26

MOTOROLA COMPUTER SYSTEMS

MOTOROLA COMPUTER SYSTEMS AN INTRODUCTION TO SHELL

? match any single character
[...] match any of the enclosed characters

(c) substitution:

$t...} substitute shell variable
- substitute command output
(d) quoting:
\ quote the next character
quote the enclosed characters except for the ’
" quote the enclosed characters except for the $, '\, and "

(e) reserved words:

if then else elif fi
case in esac
for while until do done

{ }[1test

5-27

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

NOTES

5-28

AN INTRODUCTION TO SHELL MOTOROLA COMPUTER SYSTEMS

6. SOURCE CODE CONTROL SYSTEM (SCCS)
6.1 General

The Source Code Control System (SCCS) is a collection of SYSTEM V/68 commands that
monitors changes to text files and creates an audit trail for each change. The source code and
software system documentation are examples of text files for which users would want to
monitor changes. The SCCS performs like a file custodian under SYSTEM V/68. The SCCS
provides facilities for the following:

a. Stores files of text

b. Retrieves particular versions of the files
Controls updating privileges to files
Identifies the version of a retrieved file

e. For each change to each file, records the location, reason, time and identifies the user who
made the change.

When programs and documentation undergo frequent changes because of maintenance and/or
enhancement, backup procedures include keeping a version of each program or document as it
existed before changes were applied. Keeping copies (on paper or other media) becomes
unmanageable and wasteful as the number of programs and documents increases. The SCCS
provides an attractive solution by storing the original file on disk. Whenever changes are made
to the file, the SCCS stores only the changes. Each set of changes is called a “delta”.

This section, together with relevant portions of the SYSTEM V/68 User's Manual forms a
complete user’s guide to SCCS. The following topics are covered:

a. Creating an SCCS file, retrieving a version of the file and making changes to the file.
b. Tracing changes throughout a file using SCCS identification numbers.
c. SCCS commands conventions and rules.
d. Applications of SCCS commands.
e. Protecting, formatting, auditing and administering SCCS files.
SCCS installation and implementation are not described in this section.
6.2 SCCS For Beginners

The easiest way to understand SCCS is to use it. The paragraphs that follow assume the
reader knows how to log on to the operating system, create files and use a text editor. Try the
examples given below. To supplement the material in this section, consult the detailed SCCS
command descriptions in the SYSTEM V/68 User's Manual.

6.2.1 Terminology. Each SCCS file is composed of one or more sets of changes applied to
the null (empty) version of the file. Each set of changes, called a “delta,” usually builds on all
previous sets. When a file edit is completed, a delta command will write the changes or delta
back to the file. Each delta is assigned an identification number so that users can refer to
particular versions of a file. Deltas are referred to by an SCCS IDentification string or SID.
The SID is generally composed of two components, the “release” number and the “level”
number, which are separated by a period. The first delta to an original file is called “1.1”, the
second “1.2”, the third “1.3”, etc. The release number can be changed as well, for example,
deltas “2.17, “3.19”, etc. A change in the release number usually indicates a major change to
the file.

6-1

MOTOROLA COMPUTER SYSTEMS SOURCE CODE CONTROL SYSTEM (SCCS)

Each delta of an SCCS file defines a particular version of the file. For example, delta 1.5
defines version 1.5 of the SCCS file, obtained by building each set of changes (deltas 1.1, 1.2,
etc., up to and including delta 1.5 itself) into the original SCCS file.

6.2.2 Creating an SCCS File via admin. Consider a file called lang that contains a list of
programming languages:

c

pVi

fortran

cobol

algol

Custody of the lang file can be given to SCCS. The following admin(1) command (used to
“administer” SCCS files) creates an SCCS file and initializes delta 1.1 from the file lang:

admin —ilang s.lang
All SCCS files must have names that begin with “s.”, hence, s.lang. The —i together with its
argument lang, indicates that admin is to create a new SCCS file and “initialize” the new

SCCS file with the contents of the file lang. This initial version is a set of changes (delta 1.1)
applied to the null SCCS file.

The admin command replies
No id keywords (cm?7)

This is a warning message that can be ignored for the purposes of this section. Its significance
is described under the get(1) command in the section “ID Keywords.” In the following
examples, this warning message is not shown, although it may actually be issued by the
various commands.

The file lang should now be removed so that all work involving the file will be monitored
through SCCS:

rm lang

6.2.3 Retrieving a File via get. The removed file lang can be easily reconstructed with
the following get command:

get s.lang

The command retrieves a copy of the latest version of file s.lang and prints the following
messages:

1.1

S lines

This means that get created a file that is a copy of s.lang, version 1.1 and contains five lines of
text. The name of the new file is formed by deleting the “s.” prefix from the name of the
SCCS file; hence, file lang is recreated.

The “get s.lang” command creates the file lang in read-only mode but keeps no information
regarding its creation. If you want to get a file for editing, your get command must announce
your intention to do so. This is done as follows:

get —e s.lang

The —e causes get to create a file lang with both read and write permissions (so it may be
edited) and creates an edit information file called a p-file. The p-file contains one or two lines
of information including the SID of the created version, the SID for the up-coming delta, the

6-2

SOURCE CODE CONTROL SYSTEM (SCCS) MOTOROLA COMPUTER SYSTEMS

editor’s ID and the time the get —e command was executed. The get command to edit prints
the same messages as before with the addition that the SID of the up-coming delta is also
issued. For example:

get —e s.lang
1.1

new delta 1.2
5 lines

The file lang may now be changed, for example, by:

ed lang
27

$a
snobol
ratfor

w
41
q

6.2.4 Recording Changes via delta. To record changes within the SCCS file, lang,
execute the following command:

delta s.lang

Delta prompts with:
comments?

Enter a brief explanation of the changes. For example:
comments? added more languages

The delta command now determines what changes were made to the file lang by applying
the diff(1) command to the original version and the edited version. Next, the delta command
reads the p-file and incorporates the information into the file as part of its audit trail.

When the changes to lang have been stored in s.lang, delta outputs:

1.2

2 inserted

0 deleted

S unchanged

The number “1.2” is the name of the delta just created, and the next three lines of output
refer to the number of lines in the file s.lang.

6.2.5 Additional Information About get. As shown in the previous example, the
command

get s.lang

retrieves the latest version (now 1.2) of the file s.lang. This is done by starting with the
original version of the file and successively applying deltas (the changes) in order until all
have been applied.

In the example chosen, the following commands are all equivalent:

MOTOROLA COMPUTER SYSTEMS SOURCE CODE CONTROL SYSTEM (SCCS)

get s.lang
get —rl s.lang
get —rl.2 s.lang

The numbers following the —r are SIDs. Omitting the level number of the SID (as in “get
—r1 s.lang”) defaults to the highest level number within the specified release. The second
command requests the latest version in release 1, namely 1.2. The third command specifically
requests a particular version, in this case, also 1.2.

A major change to a file is usually indicated by changing the release number (first component
of the SID) of the delta. Automatic numbering of deltas proceeds by incrementing the level
number (second component of the SID); therefore, the user must announce to SCCS the need
to change the release number. This is done through the get command:

get —e —r2 s.lang

Because release 2 does not exist, get retrieves the latest version before release 2. In addition,
the get program interprets the command as a request to change the delta release number to 2,
causing the delta to be named 2.1, rather than 1.3. (There is no O level; all releases begin with
level 1.) The get command will store the request to change the delta release number in the
p-file where it will be read and carried out by the delta command when all edits are
completed. The get command outputs

1.2
new delta 2.1
7 lines

confirming that version 1.2 has been retrieved and 2.1 is the version delta will create. If the
file is now edited, for example:

ed lang
41
/cobol/d
w

35

q
and delta executed:

delta s.lang
comments? deleted cobol from list of languages

the user will see delta’s version 2.1 is created:

2.1

0 inserted

1 deleted

6 unchanged

Deltas will now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release may be
created.

6.2.6 The help Command. If the command:
get abe

is executed, the following message will be output:
ERROR [abc]: not an SCCS file (col)

6-4

SOURCE CODE CONTROL SYSTEM (SCCS) MOTOROLA COMPUTER SYSTEMS

The string “col” is a code for the diagnostic message and may be used to obtain a fuller
explanation of that message by use of the help(1) command:

help col
This produces the following output:

col:

not an SCCS file

A file that you think is an SCCS file
does not begin with the characters “s.”.

Thus, help is a useful command to use whenever there is any doubt about the meaning of an
SCCS message. Detailed explanations of almost all SCCS messages may be found in this
manner.

6.3 Delta Numbering

Deltas applied to an SCCS file can be thought of as the nodes of a tree; the tree root is the
initial version of the file. The initial version of the file is normally named “1.1” and
succeeding deltas or nodes are named “1.2”, “1.3”, etc. The first two components of the deltas’
names are called the “release” and the “level” numbers, respectively. Normally, deltas are
named by automatically incrementing the level number whenever a delta is made.
Occasionally, a user will change the delta release number to indicate a major change. The
new release number applies to all successor deltas until it is specifically changed. The
evolution of any particular file may be mapped into a diagram referred to as an SCCS “tree”.
One example of an SCCS “tree” is represented in Figure 6.1.

1.1 1.2 1.3 1.4 2.1 2.2

O M) () Ve | TER
-/ / N I
RELEASE 1 : RELEASE 2

Figure 6-1. Evolution of an SCCS File

A progression of file versions in which each delta incorporates all the changes that preceded it
is referred to as a “trunk” on an SCCS tree. An example of a “trunk” is illustrated in Figure
6.1.

Sometimes, it is necessary to cause a branching in the tree; that is, to create a new file version
that incorporates only a portion of the changes to date. A branch on a SCCS tree is a delta
that does mnot include all the changes that have been made to the original file. To explain
why a branch might be desirable, consider a program in production use at version 1.3 for
which release 2 development work is already in progress. Release 2 may already have deltas
as shown in Figure 6.1, that is, deltas that are all dependent upon all the changes made to
date. Assume that a production user reports a problem in version 1.3 and the user cannot

6-5

MOTOROLA COMPUTER SYSTEMS SOURCE CODE CONTROL SYSTEM (SCCS)

wait for release 2 for the problem to be fixed. Necessary changes to solve the problem must be
written as a delta to version 1.3, the production version. This delta, which is released to the
user, branches off version 1.3 and does not affect the deltas being written for release 2 (e.g.,
deltas 1.4, 2.1, 2.2, etc.).

To distinguish between deltas that lie along the trunk of the SCCS tree and deltas that branch
away from the trunk, branch deltas are given names consisting of four components: a release
and a level number, the same as a trunk delta; as well as an additional “branch” and a
“sequence” number. Any branch delta name will appear as:

release.level.branch.sequence

The first branch from a particular trunk is branch 1, the next one 2, and so on. The sequence
number is assigned, in order, to each delta on a particular branch. Thus, 1.3.1.2 identifies the
second delta of the first branch that derives from delta 1.3. This is shown in Figure 6.2.

1.3.1.2
BRANCH 1

Figure 6-2. Tree Structure with Branch Deltas

Two observations about naming deltas are important. First, a branch delta may always be
identified as such from its name. The names of trunk deltas always contain two components
and the names of branch deltas always contain four components. Second, the first two
components of a branch delta always specify the ancestral trunk delta. The next two
component numbers are location independent; the branch and sequence numbers are assigned
according to the order in which the deltas were created. Therefore, although the branch
delta’s name always identifies its ancestral trunk, it is impossible to determine the entire path
leading from the trunk delta to the branch delta. For example, if delta 1.3 has one b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>