
PRODUCT CODE 72901 
41964-00 

SYSTEM V/68 
ADMINISTRATOR'S GUIDE 

@MOTOROLA 
Computer Systems 



SYSTEM V /68 DOCUMENT A nON SET 

VOLUME I 

Product Code 72912 
41975G01 

SYSTEM V /68 USER'S REFERENCE MANUAL, 72905 (41968-00) 
Introduction 
Permuted Index 
Section 1 - Commands 

VOLUME II 

SYSTEM V /68 USER'S REFERENCE MANUAL, 72905 (41968-00) 
Section 2 - System Calls Section 5 - Miscellaneous Facilities 
Section 3 - Subroutines Section 6 - Games 
Section 4 - File Formats 

VOLUME III 

SYSTEM V /68 ADMINISTRATOR'S MANUAL, 72900 (41963-00) 
Introduction Section 7 - Special Files 
Permuted Index Section 8 - Procedures 
Section 1M - Commands 

SYSTEM V /68 ADMINISTRATOR'S GUIDE, 72901 (41964-00) 
Introduction File System Checking 
Administrative Guidelines LP Spooling System 
Using the System System Activity Package 
Accounting 

SYSTEM V /68 OPERATOR'S GUIDE, 72904 (41967-00) 
Chapter I - System Overview Appendix A - System Specifications 
Chapter 2 - Getting Started Appendix B - Error Messages 
Chapter 3 - Using the System 

SYSTEM V /68 USER'S GUIDE, 72903 (41966-00) 
Introduction 
Primer 
Basics for Beginners 
Text Editors 

An Introduction to Shell 
Source Code Control System (SeCS) 
UNIX-to-UNIX CoPy: A Tutorial 



VOLUME IV 

SYSTEM V /68 PROGRAMMING GUIDE, 72908 (41971-00) 
Introduction FOR TRAN 
An Introduction to Shell Curses and Terminfo Package 
C Programming Language Programming Language EFL 

SYSTEM V /68 SUPPORT TOOLS GUIDE, 72909 (41972-000) 
Introduction Desk Calculator Language (BC) 
Maintaining Computer Programs Desk Calculator Program (DC) 

(MAKE) 
Augmented Version of MAKE Lexical Analyzer Generator (LEX) 

The M4 Macro Processor Yet Another Compiler-Compiler (Y ACC) 

The A WK Programming Language Common Object File Format 

SYSTEM V /68 ASSEMBLER USER'S GUIDE, 72910 (41973-00) 
Introduction Expressions 
Warnings Pseudo-Operations 
General Syntax Rules Span-Dependent Optimization 
Segments, Location Counters, Address Mode Syntax 

and Labels Machine Instructions 
Types 

SYSTEM V /68 COMMON LINK EDITOR REFERENCE MANUAL, 72911 (41974-00) 
Introduction Notes and Special Procedures 
Using the Link Editor Error Messages 
Link Editor Command Language Syntax Diagram for Input Directives 

VOLUME V 

SYSTEM V /68 DOCUMENT PROCESSING GUIDE, 72906 (41969-00) 
Introduction Table Formatting Program 
Advanced Editing Mathematics Typesetting Program 
Stream Editor Memorandum Macros 
Nroff and Troff User's Manual Viewgraphs and Slides Macros 

SYSTEM V /68 ERROR MESSAGE MANUAL, 72902 (41965-00) 
Introduction Index 
Error Messages 



SYSTEM V/68 

ADMINISTRATOR'S GUIDE 

Product Code 72901 

Part Number 41964-00 

Version 1 



VME Series 20, VMEsystem 1131, EXORmacs, EXORterm, MACSbug, SYSTEM V /68, 
TENbug, VERSAbug, VERSAdos, VME/I0, VM03, and 020bug are trademarks of Motorola 
Inc. UNIX is a trademark of AT&T Bell Laboratories, Incorporated. PDP, VAX, and DEC 
are trademarks of Digital Equipment Corporation. PRINTRONIX is a trademark of 
Printronix, Inc. CENTRONICS is a trademark of Data Computer Corporation. DIABLO is 
a registered trademark of Xerox Corporation. C/ A/T System 1 is a trademark of Wang 
Graphic Systems, Inc. LARK is a trademark of Control Data Corporation. 

The software described herein is furnished under a licensed agreement and may be used only 
in accordance with the terms of the agreement. 

Copyright © 1984, 1985, 1986 by Motorola Inc. All rights reserved. No part of this manual 
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into 
any language or computer language, in any form or by any means, without the prior written 
permission of Motorola Computer Systems, 3013 S. 52nd St., Tempe, AZ 85282. 

Portions of this document are reprinted 
from copyrighted documents by permission of 

AT&T Technologies, Incorporated, 1983. 



PREFACE 

The SYSTEMV/68 Administrator's Guide (Part Number 41964-00, Product Code 72901) is a 
reference volume for those who administer SYSTEM V /68, release version FE81. This guide 
should be used to supplement the information contained in the SYSTEM V /68 User's 
Reference Manual, SYSTEM V /68 Administrator's Manual, and the VME Series 20 Software 
Release Guide. 

While reasonable efforts have been made to assure the accuracy of this document, Motorola 
assumes no liability resulting from any omissions in this document or from the use of the 
information obtained therein. Motorola reserves the right to revise this document and to 
make changes from time to time in its content without being obligated to notify any person of 
such revision or changes. 





CONTENTS 

1. INTRODUCTION . . • • . . . . . . . 
1.1 General • • . . . . • • • • • • . 
1.2 SYSTEM V /68 Administrator's Guide Organization 
1.3 Manual Organization 
1.4 Entry Format . • • • • • 

2. ADMINISTRATIVE GUIDELINES 
2.1 Areas of Concern. . . . • 
2.2 Single-user and Multi-user Modes 
2.3 Error Messages from fsck . . . 

2.3.1 Phase 1: Check Blocks and Sizes. 
2.3.2 Phase IB: Rescan For More DUPS. 
2.3.3 Phase 2: Check Pathnames. 
2.3.4 Phase 3: Check Connectivity. 
2.3.5 Phase 4: Check Reference Counts. 
2.3.6 Phase 5: Check Free List. 
2.3.7 Phase 6: Salvage Free List. 

2.4 Variations in Block Sizes . . 
2.5 Lost + Found Directory • • • • 
2.6 Passwords and New Users 
2.7 Setting SYSTEM V /68 Variables 
2.8 Setting Terminal Variables 
2.9 Job Control. • . . • • • • • 
2.10 System Kernels and make Command 
2.11 Line Printer Configuration 
2.12 Sticky Bits • • • . • . • • • 
2.13 UNIX-to-UNIX CoPy (uucp) Programs ••••. 
2.14 M68KVM30 Module Installation 
2.15 Configuration Planning . . • 
2.16 Managing Disk Space 

2.16.1 Filesystem Partitioning. 
2.16.2 Disk Free Space. . . 
2.16.3 Filesystem Backups. . 
2.16.4 Monitoring Disk Usage. 
2.16.5 Controlling Disk Usage. 
2.16.6 Filesystem Reorganization. 
2.16.7 Controlling Directory Size. 

2.17 Cron Facility . . . . 
2.17.1 Defining Queues. 
2.17.2 Log Information. 
2.17.3 Limiting Access. 
2.17.4 Setting Up Cron. 
2.17.5 Cron Errors. 

2.18 System Accounting . . 
2.19 System Security . . . • 
2.20 Communicating with Users 
2.21 Special Files 
2.22 Administrative Files 

2.22.1 /etc/motd. 
2.22.2 /etc/brc. . 

- v -

1-1 
1-1 
1-1 
1-1 
1-1 

2-1 
2-1 
2-1 
2-1 
2-2 
2-3 
2-3 
2-3 
2-4 
2-4 
2-5 
2-6 
2-6 
2-6 
2-7 
2-8 
2-8 
2-9 

2-10 
2-10 
2-11 
2-11 
2-13 
2-16 
2-17 
2-17 
2-18 
2-19 
2-19 
2-20 
2-20 
2-21 
2-21 
2-22 
2-23 
2-23 
2-24 
2-24 
2-24 
2-24 
2-25 
2-26 
2-26 
2-26 



2.22.3 /etc/powerfail. 
2.22.4 /etc/rc. 
2.22.5 /etc/inittab. 
2.22.6 /etc/passwd. 
2.22.7 /etc/group. . 
2.22.8 /etc/profile. 
2.22.9 / etc / checklist. 
2.22.10 /etc/shutdown. 
2.22.11 /etc/filesave and /etc/tapesave. 
2.22.12 /usr/adm/pacct. 
2.22.13 /usr/lib/acct/holidays. . . . 
2.22.14 /etc/wtmp. . . . . . . . 

2.23 Regenerating System Software. 
2.24 Session Initialization: init, getty, login, who 

2.24.1 init. 
2.24.2 Getty. 
2.24.3 Login. 
2.24.4 Who. 

3. USING VME SERIES 20 

4. ACCOUNTING . . . 
4.1 General • . . . 
4.2 Files and Directories 
4.3 Daily Operation 
4.4 Setting Up the Accounting System 
4.5 Runacct . . . . . . 
4.6 Recovering from Failure 
4.7 Restarting Runacct . . 
4.8 Fixing Corrupted Files . 

4.8.1 Fixing wtmp Errors. 
4.8.2 Fixing tacct Errors. 

4.9 Updating For Holidays 
4.1 0 Reports . . . . . . . 

4.1 0.1 Daily Report. 
4.10.2 Daily Usage Report. 
4.10.3 Daily Command and Monthly Total Command Summaries. 

4.1 0.4 Last Login. . . . . . . . 
4.11 Appendix A. Accounting System Files 

5. FILE SYSTEM CHECKING 
5.1 General . . . . . 
5.2 File System . . . . 

5.2.1 Introduction. 
5.2.2 Description.. 
5.2.3 System Administrator Advice. 

5.3 Update of the File System 
5.3.1 Superblock... 
5.3.2 Inodes. 
5.3.3 Indirect Blocks. 
5.3.4 Data Blocks. 
5.3.5 First Free-List Block. 

- VI -

2-26 
2-26 
2-27 
2-27 
2-29 
2-29 
2-29 
2-29 
2-29 
2-29 
2-30 
2-30 
2-30 
2-30 
2-30 
2-35 
2-37 
2-38 

3-1 

4-1 
4-1 
4-J 
4-1 
4-2 
4-3 
4-4 
4-5 
4-5 
4-6 
4-6 
4-6 
4-7 
4-7 
4-8 
4-8 

4-9 
4-10 

5-1 
5-1 
5-1 
5-1 
5-1 
5-1 
5-L 
5-2 
5-2 
5-2 
5-2 
5-2 



5.4 Corruption of the File System .. . . . . 
5.4.1 Improper System Shutdown and Startup. 
5.4.2 Hardware Failure. ..... 

5.5 Detection and Correction of Corruption 
5.5.1 Superblock.... 
5.5.2 Inodes. .. • . 
5.5.3 Indirect Blocks. 
5.5.4 Data Blocks. 
5.5.5 Free-List Blocks. 

5.6 Appendix A. Error Conditions 
5.6.1 Conventions. 
5.6.2 Initialization. 
5.6.3 Phase 1: Check Blocks and Sizes. .... . 
5.6.4 Phase IB: Rescan for More DUPS. 
5.6.5 Phase 2: Check Pathnames. 
5.6.6 Phase 3: Check Connectivity. . . 
5.6.7 Phase 4: Check Reference Counts. 
5.6.8 Phase 5: Check Free List. 
5.6.9 Phase 6: Salvage Free List. 
5.6.10 Cleanup. . . 

6. LP SPOOLING SYSTEM. . . 
6.1 General . • • . . . 
6.2 Overview of LP Features 

6.3 
6.4 
6.5 

6.2.1 Definitions.. 
6.2.2 Commands. 
Building LP 
Precautions . . . .' 
Configuring LP - The Ipadmin Command 
6.5.1 SYSTEM V /68 Configuration. . . . . . 
6.5.2 Introducing New Destinations. 
6.5.3 Modifying Existing Destinations.. . 
6.5.4 Specifying the System Default Destination. 
6.5.5 Removing Destinations.. • • • • . 

6.6 Making an Output Request - The lp Command 
6.7 Finding LP Status - Lpstat . . . • . . . 
6.8 Canceling Requests - Cancel. . • • . . . 
6.9 Allowing and Refusing Requests - Accept and Reject • . . • . 
6.10 Allowing and Inhibiting Printing - Enable and Disable . 
6.11 Moving Requests Between Destinations - Lpmove 
6.12 Stopping and Starting the Scheduler - Lpshut and Lpsched 
6.13 Printer Interface Programs ........••. 
6.14 Setting Up Hardwired Devices and Login Terminals as LP Printers 

6.14.1 
6.14.2 

Hardwired Devices. . 
Login Terminals. • . 

7. SYSTEM ACTIVITY PACKAGE 
7.1 General • • • . • • • • 
7.2 System Activity Counters . . 
7.3 System Activity Commands 

7.3.1 The sar command. 
7.3.2 The sag l:ommand. 

- vii-

5-2 
5-2 
5-3 
5-3 
5-3 
5-4 
5-5 
5-6 
5-6 
5-6 
5-6 
5-7 
5-9 

5-11 
5-11 
5-12 
5-13 
5-15 
5-17 
5-17 

6-1 
6-1 
6-1 
6-1 
6-1 
6-2 
6-3 
6-3 
6-3 
6-3 
6-4 
6-5 
6-6 
6-6 
6-7 
6-7 
6-7 
6-8 
6-8 
6-9 
6-9 

6-11 

6-11 
6-11 

7-1 
7-1 
7-1 
7-3 
7-3 
7-3 



7.3.3 The timex command. • 
7.3.4 The sadp command. • 

7.4 Daily Report Generation . . 
7.4.1 Facilities. •... 
7.4.2 Suggested Operational Setup. 

7.5 Appendix A. Source Files . . . . 
7.6 Appendix B. System Information Data Structure 
7.7 Appendix C. Formula for Reported Items 

FIGURES 

Figure 4-1. Directory Structure of the adm Login . 

TABLE 2-1. System Variables . • 

TABLE 2-2. System Parameters 

TABLES 

TABLE 2-3. Summary of Backup Programs 

- viii -

7-4 
7-4 
7-4 
7-4 
7-5 
7-5 
7-7 
7-8 

4-1 

2-8 

2-14 

2-19 



CAUTION 

Some information in this document is specific to the operation 
of Motorola EXORmacs, VM03, VMEj 10, or VMEsystem 
1131 computers. If you are working with a VME Series 20 
system, the VME Series 20 Software Release Guide will provide 
details specific to your system and should supersede similar 
information found in this document. 

In addition, the VME Series 20 Software Release Guide 
describes setting system variables, generating a kernel, 
configuration planning, initializing disks, and reinstalling 
software. 

1-0 





MOTOROLA COMPUTER SYSTEMS INTRODUCTION 

1. INTRODUCTION 

1.1 General 

Two document types provide information about SYSTEM V /68: manuals and guides. The 
manuals describe commands, facilities, features, and error messages of the system. The 
guides provide supplemental details and instructions for system implementation, 
administration, and use. 

The SYSTEM V /68 Administrator's Guide is a reference volume for those who administer 
SYSTEM V /68. This guide should be used to supplement the information contained in the 
SYSTEM V /68 User's Reference Manual, SYSTEM V /68 Administrator's Manual, and the VME 
Series 20 Software Release Guide. 

1.2 SYSTEM V /68 Administrator's Guide Organization 

The following paragraphs contain a brief description of each chapter of the guide. 

ADMINISTRA TIVE GUIDELINES - Chapter 2 contains background advice and 
suggestions for administrators of SYSTEM V /68. 

USING VME Series 20 - Refer to the VME Series 20 Software Release Guide for details on 
how to set system variables, generate a kernel, and perform other operator tasks. 

ACCOUNTING - Chapter 4 describes the structure, implementation, and management of 
the accounting system. Appendix A lists the files contained in the accounting directories. 

FILE SYSTEM CHECKING - Chapter 5 describes the file system check program 
(fsck(lM)). Fsck audits the filesystem and repairs inconsistency interactively. 

LP SPOOLING SYSTEM - Chapter 6 the line printing program, LP, and describes the role 
of the LP administrator in performing restricted functions and overseeing the smooth 
operation of LP. 

SYSTEM ACTIVITY PACKAGE - Chapter 7 describes the design and implementation of 
the SYSTEM V /68 activity package. The package reports system-wide statistics. 

1.3 Manual Organization 

The manuals are organized as alphabetized entries within tabbed sections. The SYSTEM 
V /68 User's Reference Manual contains sections I through 6. The SYSTEM V /68 
Administrator's Manual contains sections 1M, 7, and 8. Throughout the documentation, 
references to these manuals are given as name (section). For example, chroot(lM) is a 
reference to the chroot entry in section 1M of the Administrator's Manual. 

1.4 Entry Format 

The following conventions identify arguments, literals, and program names: 

• Boldface strings are literals and are to be typed as they appear. 

• Italic strings represent substitutable argument prototypes and program names. 

• Square brackets [] indicate that an argument is optiona1. 

• Ellipses (. .. ) show that the previous argument prototype may be repeated. 

1-1 



INTRODUCTION MOTOROLA COMPUTER SYSTEMS 

In addition, SYSTEM V /68 incorporates a new convention for naming disk and tape devices. 
(For VME Series 20 systems, refer to the VME Series 20 Software Release Guide for 
information on new naming conventions.) In earlier releases, the standard format for naming 
disk devices was 

/dev/dkxy 

where x referred to the disk device number and y referred to the disk section or partition. 
Raw access to a disk device was indicated with an r, e.g., jdev /rdkOl. Standard format for 
naming tape devices was 

/dev/mtx 

where x referred to the magnetic tape device number. Raw access to a tape device was 
indicated with an r, e.g., /dev /rmtO. 

The new naming convention creates separate subdirectories under /dev for each type of disk 
or tape device. The new format for disk devices is: 

/ dev / {r} dsk/ [ r ] entrlr _ [ controller _ numberd ] drive _ numbersseetion_ number 

Fields in square brackets are entirely optional: they do not affect the operation of any 
software or hardware; they are for informational purposes only, for the convenience of 
administrators, operators, and users. Fields in curly brackets represent options that affect 
software; they must be present if that option is being selected. 

r (Not Required) (The first r) indicates a raw interface to the disk. 
The default is normal system buffering. 

dsk/ (Required) Indicates that the device is a disk. 

r (Not Required) (The second r) indicates that this disk is on a 
remote system. 

entrlr 

controller _ numberd 

drive number 

(Not Required) Indicates the appropriate disk device in systems 
with multiple disk drivers. In SYSTEM V /68, the controller names 
are present and must be used on command lines that specify a disk 
device. Once the system has been installed, the system administrator 
may elect to eliminate the disk specification on single-drive systems. 
The disk devices available are: 

vm21 Intelligent Universal Disk Controller, 
M68KVM21 

vm22 Intelligent SMD Disk Controller with Floppy Disk, 
M68KVM22 

wd Winchester Disk Controller, M68RWINI 

ud General Universal Disk Controller 

c Generic controller 

(N ot Required) System administrators decide whether or not to 
specify the controller number in the disk device name. If the 
controller number is specified, the d introduces the drive number. 

(Required) The drive number. The field is free format; there is no 
default drive number. 

1-2 



MOTOROLA COMPUTER SYSTEMS INTRODUCTION 

ssection 2J.umber (Required) The section number. The field is free format; there is no 
default section number. 

As an example, the name for disk drive 0, section 0 might be /dev/dsk/vm22_0s0. The new 
format for tape device names is: 

/ dey / {r} mtj [ econtroller _ numberd] drive_number [density] { n } 

where: 

r 

mt/ 

econtroller _ numberd 

device number 

density 

(N ot Required) Indicates a raw device. The default is a blocked 
device. 

(Required) Indicates a magnetic tape device. 

(Not Required) The e introduces the controller number. System 
administrators decide whether or not to specify the controller 
number in the tape device name. If the controller number is 
specified, the d introduces the device number. 

(Required) The drive number. The drive number is followed 
immediately by the density value of the tape. 

(Required) Tape density must be specified for each drive. The 
density is indicated with an h, m, or I, where: 

h (high) is a tape density of 6250 bpi 

m (medium) is a tape density of 1600 bpi 

(low) is a tape density of 800 bpi 

n (Not Required) Indicates no rewind on close. The default condition 
is to rewind. 

As an example, the name for a 6250 bpi magnetic tape drive might be /dev/mt/Oh. 

To make the transition to the new names less painful, the old names can exist in SYSTEM 
V /68 software. However, all documentation and sample shell scripts distributed with this 
release use the new naming convention. System administrators are encouraged to rename 
existing devices and incorporate the new names into shell scripts as soon as possible. 

The following table compares existing device fIlenames with the new fIlenames that will be 
found in the documentation. 

Disk Devices Tape Devices 
Old Disk Name New Disk Name Old Tape Name New Tape Name 
/dev/dkOO /dev/dsk/cntrlr OsO /dev/mtOl /dev/mt/Ol 
/dev/dklO /dev/dsk/cntrlr lsO /dev/mt5 /dev/mt/5mn 
/dev/rdkOO /dev/rdsk/cntrlr OsO 

1-3 





MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

2. ADMINISTRATIVE GUIDELINES 

2.1 Areas of Concern 

This chapter provides system administrators with the background necessary to anticipate and 
avoid problem areas that can develop in the course of installing and administering SYSTEM 
V /68. Most of the issues addressed in this section are resolved easily with early planning and 
preparation. Other issues have been targeted for the administrator as areas that bear 
watching. In general, the discussions in this chapter provide administrators with advice and 
suggestions for implementing SYSTEM V /68 in the most efficient and least time-consuming 
manner. 

The discussions in this chapter assume that the administrator possesses a basic understanding 
of the material contained in all sections of the SYSTEM V /68 Administrator's Manual and the 
SYSTEM V /68 User's Reference Manual. 

Specific references are made in this guide to many of the programs described in the SYSTEM 
V /68 User's Reference Manual and the SYSTEM V /68 Administrator's Manual. In reviewing 
the material contained in the manual, special attention should be paid to: acct(1M), 
checkall(1M), chmod(1), chown(1), config.68(1M), cpio(1), date(1), dcopy(IM), df(1M), du(l), 
ed(l), env(I), errpt(1M), find(l), fsck(lM), fuser(lM), kill(l), mai/(l), mkdir(l), mkfs(1M), 
ncheck(1 M), ps(1), rm(1), rmdir( I), shutdown(1 M), stty(l), su(l), sync(l M), time ( I), 
vo!copy(lM), wall(IM), who(l), and write(I); acct(4); Section 7; and crash(8). 

The topics in this chapter are arranged in the order that an administrator will encounter them 
while setting up the system. Administrators should not attempt to set up SYSTEM V /68 
without having read this chapter thoroughly. 

2.2 Single-user and Multi-user Modes 

The system as shipped moves automatically through single-user mode and comes up in multi­
user mode. Note that single-user mode does NOT refer to a mode used to support only one 
user. Instead, single-user mode refers to the mode of operation used to perform functions 
such as installing software on the "root" device, perform file system checks or repairs, or do 
system backups; in short, to perform any function that requires one user to keep exclusive 
control over the system. In this sense, single-user mode might be more appropriately named 
"System Maintenance Mode". 

2.3 Error Messages from fsck 

The File System Check Program, fsck( I M), is an interactive file system check and repair 
program that may be invoked optionally during the system boot. Fsck is a multi-pass 
filesystem check program; each pass invokes a different phase of the fsck program. The error 
messages explained here follow the normal Phase I through Phase 6 checks of the program. 
(The "File System Checking" chapter of this guide contains detailed information concerning 
normal updating of the file system, possible causes of file system corruption, and recommended 
corrective procedures.) 

Experience shows that administrators need only be concerned with a small number of the 
possible error messages. Generally, the fsck program displays each error message 
accompanied by a prompt for action. The prompt is usually "Fix?", "Salvage?" or 

2-1 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

"Remove?". In nearly every case, the administrator should respond "y" meaning "yes", 
which gives Isck the go-ahead to repair the filesystem. 

Occasionally, the fix requires the administrator to reboot the system immediately. When an 
immediate reboot is required, the following message appears: 

**** BOOT UNIX (NO SYNC!) **** 
This message appears when the root filesystem has been damaged and corrections have been 
made on the disk itself. At this point, the in-core buffer and inode cache do not agree with 
the disk. If the administrator enters a sync command, the corrupted information contained in 
the in-core buffer is written out to the disk, wiping out the corrections on the disk. 
Therefore, when this message appears, turn the RESET key switch to RESET and reboot -
DO NOT perform a "sync" before resetting the machine. 

Fsck makes six passes through the filesystems, Phase I through Phase 6. The remainder of 
this section describes the most commonly received error messages and the recommended 
responses. The error messages are arranged by Phase number and follow the normal Phase I 
through Phase 6 program checks. 

2.3.1 Phase 1: Check Blocks and Sizes. 

Phase 1 lists error conditions discovered while checking inode types, examining inode block 
numbers for bad or duplicate blocks, checking inode size and checking inode format. In 
general, Isck checks that the size given for each file agrees with the number of disk blocks 
reserved for the file. 

In the listings that follow, the screen messages are shown in boldface type. 

UNKNOWN FILE TYPE I=<inode #> 

Fsck does not know file inode #I's type, e.g., directory, regular, FIFO, character 
special, or block special. 

(NOT EMPTY) 

CLEAR? 

The problem file is not empty. 

Fsck is asking if you want to clear the possibly damaged file. If you answer "y", 
the file will disappear. Typically, you should enter "y". One case where an 
administrator might want to type "n" is when Isck has provided only the inode 
number of a file and the filename is not known. To recover the file from backup 
disk (or tape), the administrator must know the filename. To learn the name of a 
file when the inode number is known, refer to ncheck(IM) or II(IM). 

LINK COUNT TABLE OVERFLOW 

This message results from an internal/sck problem. Try again. 

CONTINUE? 

Fsck asks "Do you want to continue?" from many different places within the 
filesystem checking program. The implication is that there are so many problems 
with the file system that Isck is running out of space. A good rule of thumb is to 
allow /sck to continue three or four times before giving up. Enter "y" to continue. 

2-2 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

Sometimes, a problem that fsck encountered earlier in the program can be related 
to a lengthy CONTINUE? sequence. For example, during Phase 1, fsck may tell 
you that you have damaged four files. Phase 2 may start cleaning up the files and 
repeatedly prompt CONTINUE? Here, you know that there are only four files 
that have been damaged so you should continue until the four files are fixed. 

P ARTIALL Y ALLOCATED INODE I=<inode #> 

Fsck is telling you that the file system crashed in the process of creating a new file. 
Unless the partially filled file is extremely important, clear when prompted. 

2.3.2 Phase IB: Rescan For More DUPS. 

DUPS refers to a "duplicate block". Each inode contains a list or pointers to lists of all the 
blocks claimed by the inode. Fsck compares each block number claimed by an inode to a list 
of already allocated blocks. If a block number appears in more than one inode, the block 
number is added to a list of duplicate blocks. Fsck does not find all possible duplicate blocks 
on its first pass. When DUPS are found on the first pass, fsck res cans looking for others. 

2.3.3 Phase 2: Check Pathnames. 

In this phase, fsck checks that the directory structure is consistent with the file inodes. A 
directory is a file formatted with records containing the inode numbers of files in the 
directory, along with the files' names. Fsck verifies that the file system directory is intact. 

ROOT INODE UNALLOCATED. TERMINATING. 

If the root directory inode is not marked as allocated, fsck assumes that the 
file system is nonexistent or has been so severely damaged that further analysis is 
useless. 

ROOT INODE NOT DIRECTORY 

FIX? 

This problem is similar to the previous one, but this one can be repaired. Fsck 
asks the administrator if it should proceed with the repair. 

Whenever damage can be fixed, fsck asks if the repair should be made. Unless the 
"fixing" will destroy extremely vital information, answer "y" (yes). 

DUPSjBAD IN ROOT INODE 

This problem is severe. When the root directory is damaged, it is nearly 
impossible to recover the file system intact. If fsck thinks it can fix it, it will ask 
"FIX?". 

2.3.4 Phase 3: Check Connectivity. 

This checking phase verifies that directories correctly point to their parent directories, and 
parent directories correctly point to their subdirectories. 

2-3 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

2.3.5 Phase 4: Check Reference Counts. 

This checking phase verifies that when an inode has N links, the inode appears in N places in 
the filesystem. The check includes directories. 

UNREF 

An inode is allocated but it does not appear in any directory. A "y" response will 
reconnect the inode to the file system in the lost+found directory. (Refer to 
paragraph 2.5 for additional information about the lost+found directory.) 

FREE INODE COUNT WRONG IN SUPERBLK 

The "superblock" is the file system description area (described in 
/usr/inc1ude/sys/filsys.h and in /s(4». The superblock contains a value that 
should be equal to the total number of free inodes that are left to be allocated. If 
the number does not agree with the unallocated inodes counted during the 
reference check, this message appears. This condition is repairable; when 
prompted for action, enter "y". 

2.3.6 Phase 5: Check Free List. 

The file system structures contain a list of "free blocks" that are available for new files. This 
phase checks the free block list for errors. 

BAD BLKS IN FREE LIST 

A block number in the free list is invalid. Usually the bad number points to a 
block beyond the end of the filesystem. This problem can occur if the contents of 
a regular file are interpreted as a free list block. This condition is repairable; when 
prompted for action, enter "y". 

DUP BLKS IN FREE LIST 

A block in the free list either appears more than once in the free list or it appears 
in a file. In either case, the problem is repairable although some file may be 
damaged. 

FREE BLK COUNT WRONG IN SUPERBLK, id,devname; 

This condition is similar to the FREE IN ODE COUNT WRONG message above. 
The number of blocks counted in the free list disagrees with the value in the 
superblock. This condition is repairable; when prompted for action, enter "y". 

BAD FREE LIST 

Any free list problem generates this message. 

SALVAGE? 

Fsck is asking if you want to repair the free list. Users should answer "y" to this 
prompt nearly every time. It would be exceedingly rare that the administrator 
would not salvage the free list. The exception might be when repairing the free 
list would add blocks that had been in a damaged file back to the free list. It 
might be that a system administrator would prefer to first try to recover the blocks 
from the damaged file before letting /sck recover the free list. 

2-4 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

BLK(S) MISSING 

Fsck has checked the filesystem files and the free list and still cannot account for 
some blocks. This problem is easily remedied and should be fixed. When 
prompted for action, enter "y". 

2.3.7 Phase 6: Salvage Free List. 

During this phase, fsck is reconstructing the free block list. 

***** BOOT UNIX (NO SYNC!) ***** 
This message appears when the root file system has been damaged and corrections 
have been made on the disk itself. At this point, the in-core buffer and inode 
cache do not agree with the disk. If the administrator enters a sync command, the 
corrupted information contained in the in-core buffer is written out to the disk, 
wiping out the corrections on the disk. Therefore, turn the RESET key switch to 
RESET and reboot - DO NOT perform a "sync" before resetting the machine. 

***** FILE SYSTEM WAS MODIFIED ***** 
This is a notice that a repair has changed some information related to the 
filesystem. 

EXCESSIVE BAD BLKS I=<inode #> 

Fsck estimates there are too many bad blocks in the current file. Usually, it will 
ask whether you want to continue. 

EXCESSIVE DUP BLKS I=<inode #> 

Fsck estimates there are too many duplicate blocks in the current file. Usually, it 
will ask whether you want to continue. 

DUP TABLE OVERFLOW 

If this message appears, your file system may be hopelessly damaged. Fsck was 
unable to complete its fix. However, fsck may have corrected enough problems so 
that the fix can be completed if the filesystem check program is run a second or 
third time. Turn the RESET key switch to RESET and run fsck again. 

EXCESSIVE BAD BLKS IN FREE LIST 

Fsck estimates there are too many bad blocks in the free list. Usually, it will ask 
whether you want to continue. 

EXCESSIVE DUP BLKS IN FREE LIST 

Fsck estimates there are too many duplicate blocks in the free list. Usually, it will 
ask whether you want to continue. 

POSSIBLE FILE SIZE ERROR 

Experience shows this message usually occurs with FIFO files, where it is not a 
problem. When creating SYSTEM V /68 files, the writing program can 
occasionally leave "holes" in a file. When fsck detects this condition, it prints the 
"file size error" message. If the damaged file is /etc/mnttab, it may represent a 
damaged inode and possible data loss. The system administrator should notify the 
owners of the files so they may determine if damage has been done, and if so, 
recover the file from backups. 

2-5 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

2.4 Variations in Block Sizes 

SYSTEM V /68 introduced IKb logical blocks. For example, all system buffers and 
fIle system blocks are 1024 bytes each. However, remnants of 512-byte blocks can be found. 
Most fIle system-related commands still report in 512-byte block units. The commands Is(I), 
du(1), d/(I), labelit(volcopy(1M)), and grep(1) are examples of this. The mk/s(lM) command 
expects its blocks argument to be expressed in 512-byte physical blocks, however it reports 
the number of blocks created as IKb logical blocks. 

The root fIle system is distributed as a lKb block fIlesystem. Filesystem-related commands 
have been changed internally to handle both types of filesystems. While users are encouraged 
to convert their old filesystems to the larger size block, 512-byte block filesystems are 
acceptable. 

2.S Lost + Found Directory 

The lost+found directory serves as a temporary holding location for lost fIles in the system. 
Typically, an inode will be discovered as "lost" during the fIlesystem check, /sck(IM). A lost 
file or directory is one that is allocated but unreferenced. If the fIle or directory is not 
empty, it is usually connected to the directory lost+found. Therefore, the directory 
lost+found must exist in every mountable filesystem before the /sck program is initiated. 

In addition, the lost+found directory must contain empty slots into which entries can be 
made. This is accomplished by creating lost+found, creating several fIles in the directory, 
and then removing them before /sck is executed. An easy way to do this is to create and 
execute a command script fIle /etc/mklost+found that contains: 

mkdir lost+found 
cd lost+found 
i=l 
while [$i -It 30 ] 
do 

done 
rm * 

echo> $i 
i='expr $i + l' 

Notice that in the third line, the i is assigned a value of 1, and the option in the expression 
[$i -It 30] is a lowercase L, not the numeral 1. Include a space in the expression between the 
i and the option dash. 

2.6 Passwords and New Users 

The SYSTEM· V /68 operating system is shipped without passwords. The system 
administrator is encouraged to install passwords, especially for root, as soon as possible. 

The fIles /etc/passwd and /etc/group, as shipped, contain the minimum required set of 
system login IDs and group IDs, respectively. As shipped, the /etc/passwd fIle arrives "write 
protected". Administrators should refer to chmod(l) for information about changing the 
write permission for the fIle. Detailed instructions for creating and changing passwords are 
provided in paragraphs 2.22.6, "/etc/password", and 2.22.7, "/etc/group", of this guide. 
Instructions for creating dialup passwords are also included in 2.22.6. 

Adding new users to the system is a three,-step process. First, the system administrator 
makes a new entry in the password fIle, /etc/passwd (refer to passwd(1) and passwd(4)). As 

2-6 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

part of the new entry, the administrator assigns each user a group ID, usually for reasons of 
security or to restrict file access. Typically, each user's group ID is based on the user's 
relationship to other users. (Refer to group(4) and paragraph 2.22.7 of this guide.) 

The second step in the procedure is to create a home directory for each new user. Third, 
after the home directory is created, the administrator must change the ownership and the 
group identification of the directory from root to the new user. Care should betaken that the 
home directory has the appropriate permissions (refer to mkdir(1), chown(1), and chgrp(I». 

As user login IDs are added to /ete/passwd, the system administrator can verify additions 
with pwck(lM). Similarly, additions of user group IDs to /ete/group can be verified with 
grpck(IM). 

After users gain access to the system, the command passwd enables them to enter their own 
unique passwords. 

2.7 Setting SYSTEM V /68 Variables 

The shell variable TZ defines the time zone. TZ is defined in three files: /ete/bcheekre, 
/ete/re (refer to brc(IM», and /ete/profile. System administrators should modify these files if 
TZ needs a different definition (ctime(3C». For example, for Mountain Standard or Eastern 
Standard time zones: 

TZ=MST7; export TZ 
TZ=EST5EDT; export TZ 

The system environment contains the following exported variables: 

.MMU 

• PROCESSOR 

.STACKCHECK 

• SYSTEM 

.DBLALIGN 

.OPTIM 

.STALIGN 

.FPU 

.FP 

The object cii~tribution file fete/profile contains the appropriate values for each variable 
They are as follows: 

2-7 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

TABLE 2-1. System Variables 

VARIABLE 

MMU 
PROCESSOR 
STACK CHECK 
SYSTEM 
DBLALIGN 
OPTIM 
STALIGN 
FPU 
FP 

2.8 Setting Terminal Variables 

VALUE 

M68851 
M68020 
OFF 
VME131 
YES 
BOTH 
NO 
M68881 
NULL 

Before users can use the full-screen editor vi(1), their terminal type must be defined to the 
system. The recommended approach is to define the terminal in a user's .profile (pro/ile(4» 
per some entry in /usr/lib/terminfo (termin/o(4) or term(4». For example: 

TERM=vmelO; export TERM 
or 

TERM=155; export TERM 

In addition, SYSTEM V /68 is distributed with each terminal's stty(1) erase character defined 
as the hash character (#) (the UNIX standard default value). To change this to the more 
commonly preferred backspace character, enter: 

stty erase A H 

This change may be included in the file jete/profile for a system-wide change. Optimally, 
this change should also be included in a user's .profile. To insert the character AH (CTRL 
H) into a file using the vi(1) text editor, enter insert mode and type the two-character 
sequence AVAH. 

A second recommended change is to redefine the "kill" character from the "@" symbol to 
some other, less frequently used, character. A common choice is a AX (CTRL X) 
combination. 

In general, there are a number of variables a user may change to customize a terminal. For a 
complete explanation of the termin/o(4) (terminal capability data base) variables, refer to 
termin/o( 4). 

2.9 Job Control 

Job control offers users more control over their processes and greater flexibility when 
working on more than one type of job. Job control can be used from a single terminal to 
maintain and interact with different environments, e.g. different working directories or 
different effective user-ids. This is managed by providing users with different invocations of 
the shell. The different invocations may be conceptualized as shell "layers". By using two 
different shell layers, a user can leave a foreground process, work on a second process on a 
second layer, and then return to the first process. 

2-8 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

Job control is implemented as a user-level program, shl(1). The operating system terminal 
drivers are changed to recognize an additional control character. The sxt(7) driver 
communicates with shl, multiplexing output from multiple layers onto the termina1. The 
include files tty.h and termio.h and related commands are affected. This section describes 
the procedure for including job control in the operating system as an option at system 
configuration. 

The sxt(7) driver supports the shl(l) program, which is the user interface to the job control 
feature. The following steps describe the installation procedures for the sxt(7) driver. 

1. Locate the sxt definition in /etc/master (master(4» and note the major number used for 
the software device. 

2. The configuration file contains a line that provides a default value of eight sxt devices. 
This line in the configuration file includes the sxt driver in the operating system. 

3. In /dev, create sxt devices with the following script: 

major=(1ook in /etc/master for sxt) 
cd /dev 
mkdir sxt 
chmod 755 sxt 
for link in 00 01 02 03 04 # ... number of devices desired 
do 

done 

for chan in 0 1 2 3 4 5 6 7 
do 

done 

echo ${link} ${chan} 
mknod sxt${link}${chan} c ${major} ${link}${chan} 
In sxt${link }${ chan} sxt/${link }${ chan} 

4. Verify that the shl(l) program has been installed in the system. 

The system administrator indicates the number of sxt devices with an entry in /etc/master or 
in the configuration file (refer to master(4) and con/ig(lM). For each device, about 800 
bytes of operating system kernel space are required. If too many devices are requested, the 
error message 

sxt cannot allocate link buffers 

appears on the console. If this occurs, either increase the size of the kernel or decrease the 
requested number of sxt devices. 

2.10 System Kernels and make Command 

The following reference table lists the system kernel names and the new kernels that result 
from the make( 1) command. These kernels are needed as part of the software installation 
procedure described in Chapter 3. Note that the administrator should be logged in as root 
and located in directory /usr/src/uts/m68k before executing the make command. 

2-9 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

2.11 Line Printer Configuration 

Briefly, SYSTEM V /68 contains the [p{l) family of utilities for use in configuring the [p{l) 
system. The system administrator (root) configures the [p(I) system (one time per printer) 
from the console as follows: 

PATH=:$PATH 
cd /usr/lib 
Ipshut 
Ipadmin -ppr J -mpprx -v /dev /[pO #parallel printer 
Ipadmin -dpr J # only for the default printer 
accept pr1 
enable pr1 
lpsched 

where pr 1 is the printer name, pprx is the model, and [pO is the device name. 

The program [pshut(lM) (refer to [psched(IM» shuts down the current lpsched{lM). The first 
lpadmin{lM) command defines a printer "pr1" (you select the name) and a model interface 
program ("pprx" for the parallel Printronix; refer to ipadmin(1M) for the others) connected to 
the device /dev/lpO. The second lpadmin{lM) calls "prj" the default printer. Accept(lM) 
says "pr 1" is ready to accept spooled files. Enable(lM) indicates "pr 1" is ready to print. The 
final line restarts the scheduler. 

If you have a serial printer, change the first ipadmin(IM) command to: 

Ipadmin -ppr 1 -mprx -v /dev /tty400 #serial printer 

Detailed information regarding the LP spooling system is contained in the "Lp Spooling 
System" chapter of this guide. 

2.12 Sticky Bits 

Typically, files are not stored contiguously on the disk. When the system is loading a file for 
execution, noncontiguous disk storage creates high overhead on the system. In SYSTEM 
V /68, a special mode can be assigned to a frequently used program so that an executable 
image is stored in temporary storage, contiguously, in the system swap space when the 
program is not being used. Files that are designated to be stored in the temporary swap area 
are assigned a "sticky mode" and the bit that controls the process is the "sticky bit". Files 
that are stored in the temporary swap area remain there until the system is rebooted. 

The system is shipped with no sticky bits set (refer to chmod{l) and chmod(2». The utilities 
selected for "sticky mode" should be utilities that are frequently used, but not used all the 
time. Utilities that are suggested for sticky mode include vi(l), nro//{l) if users invoke nro// 
frequently, and the C-compiler, with its associated files: 

2-10 



MOTOROLA COMPUTER SYSTEMS 

/bin/cc 
/bin/as 
/bin/ld 
/lib/cO 
/lib/c1 
/lib/optim 
/lib/cpp 

ADMINISTRATIVE GUIDELINES 

Two methods are available to check how much space is left in the swap area. Users with 
"superuser" status can invoke crash(IM) and execute the command map swapmap. Other 
users can invoke sysdef(1M) which displays the device, the starting block number of the swap 
area, and the number of 512Kb blocks available. 

2.13 UNIx-to-UNIX CoPy (uucp) Programs 

Customers who plan to connect their system to the uucp network need to change the 
nodename present in the kernel. Before making any changes, administrators are urged to 
read the UNIX-to-UNIX CoPy (uucp) Tutorial in the SYSTEM V /68 User's Guide. The 
complete uucp installation procedure is contained in the tutorial. 

2.14 M68KVM30 Module Installation 

A example installation for the M68K VM30 Multi-Channel Communications Module is 
included in this section. The example is generic; administrators must furnish the kernel name 
appropriate to their system. 

1. Login as root. Generate a kernel with the M68K VM30 module included: 

cd /usr/src/uts/m68k 
vi makefile 

Change the line in makefile for the kernel you want to generate. (For information on 
kernel names, refer to the "System Kernels and make Command" paragraph earlier in 
this chapter.) Locate the line that applies to your kernel. For this example, assume 
your system requires the macs80 kernel. Locate the lines: 

macs80: 
$(MAKE)\ 

$(MACSARGS)\ 
DFOTPS="-DVM21=1 -DV AM=2 -DV21KDOO=CMD80 

Change the assignments in the last line as follows: 

DFOPTS="-DVM21=1 -DVAM=x -DMCCM=x -DV21DKOO=CMD80 

where x is equal to the number of modules in your system. 

2. Generate a new kernel: 

make kernelname 

3. The newly generated kernel is named: 

/usr/src/uts/m68k/M680xO/kernelnameunix. 

where the x is either a 0 or 1, depending on whether the kernel is for an EXORmacs, a 
VM03, or a VME/IO. 

2-11 



ADMINISTRATIVE GUIDELINES 

Move the kernel to the root directory for testing: 

mv M680xOi/kernelnameunix /unix.mccm 
sync 
sync 
sync 

MOTOROLA COMPUTER SYSTEMS 

Turn the RESET key to RESET and reboot with the new kernel name. 

4. Test the kernel by executing routine commands such as Is -I. If the system performs 
well, make the new kernel the default kernel: 

mv /unix /oId.unix 
mv unix.mccm /unix 
rm /stand/unix 
In /unix /stand/unix 

S. To obtain the major device names, change directories to: 

cd /usr/src/uts/m68k/M68020/systemcf 

where system refers to MACS for EXORmacs, VME10 for VME/lO, or VM03 for the 
VM03. 

Look at the file kernelnameconf.c and locate the line that reads: 

/* N * / mccmopen, mccmclose, mccmread, mccmwrite, mccm ... 

The number N is the major device number. 

6. Add MCCM ports to the device list using the major device number obtained above: 

mknod 
mknod 
mknod 
mknod 

/dev/ttyxw 
/dev/ttyxx 
/dev/ttyxy 
/dev/ttyxz 

c NO 
c N 1 
c N 2 
c N 3 

where xw, xx, xy, and xz are tty numbers and N is the major device number. 

Also make a node for the printer port: 

mknod /dev /ttyxp c N 4 

where xp is a tty number and N is the major device number. 

If your system contains a second MCCM module, make a second set of nodes with the 
following commands: 

mknod /dev/ttyyw c 
mknod /dev/ttyyx c 
mknod /dev /ttyyy c 
mknod / dey /ttyyz c 
mknod /dev /ttyyp c 

N 5 
N 6 
N 7 
N 8 
N 9 

where yw, yx, yy, yz, and yp are tty numbers, and N is the major device number. 

7. To make the MCCM ports into login ports, append the following lines to the file 
/ etc/inittab: 

2-12 



MOTOROLA COMPUTER SYSTEMS 

xw:2:respawn: fete/getty ttyxw 9600155 
xx:2:respawn: fete/getty ttyxx 9600155 
xy:2:respawn: fete/getty ttyxy 9600155 
xz:2:respawn: fete/getty ttyxz 9600155 

ADMINISTRATIVE GUIDELINES 

where xw, xx, xy, and xz are tty numbers. If there is more than one MCCM, each 
device must be added to /ete/inittab. 

8. The new kernel is now the default kernel. Shut down the system (refer to 
shutdown(1M», execute sync three times, and reboot. 

To login to the MCCM ports, the system must be in multi-user mode. Therefore, after 
booting, enter the command: 

init 2 

to enter multi-user mode. 

2.15 Configuration Planning 

The SYSTEM V /68 operating system supplied in the object distribution supports only the 
debug ports and a disk controller (disk drive 0). Each system administrator must describe 
the actual configuration of the system. 

All operating system source code and object libraries are in /usr/sre/uts. All configuration 
information is kept in the directories /usr/sre/uts/m68k/M68020/ef. Two files must be 
changed to reflect system configuration: low.s and conf.c. The program conjig.68(1M) should 
be used to make these changes. 

Conjig.68 requires a "system description file" (refer to conjig.68(1M» and produces the two 
needed files. One file, low.s, provides information regarding the interface between the 
hardware and device handlers. The second file, conf.e, is a C program that defines the 
configuration tables for the various devices on the system. 

Table 2.3 lists the values and sizes of the basic parameters for VME Series 20. For more 
details of syntax and structure, refer to conjig.68(1M) and the associated master(4). 

2-13 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

TABLE 2-2. System Parameters 

ITEM 

nswap (70Mb) 7680 
buffers 256 
hashbuf 64 
physbuf 4 
inodes 90 
files 90 
mounts 8 
coremap 100 
swapmap 75 
calls 50 
procs 128 
texts 100 
clists 150 
maxproc 25 

The first part of the system description file lists all of the hardware devices on the system. 
Next, various system information is listed. A brief explanation of this information follows: 

• root: Specifies the device where the root file system is to be found. The device must be 
a block device with read/write capability because this device is mounted read/write as 
"/". Thus, a tape cannot be mounted as the root but can be mounted as some read­
only file system. Normally, root is disk drive 0, section O. 

• pipe: Specifies where pipes are to be allocated (must be a mounted filesystem - the root 
file system is normally used). 

• dump: Specifies the device to be used to dump memory after a system crash. 

• swap: Specifies the device and blocks that are used for swapping. Swplo is the first 
block number used and nswap indicates how many blocks, starting at swplo, to use. 
Care must be taken that the swap area specified does not overlap any file system. For 
example, if section 0 is 8000 blocks long, the root file system could occupy the first 
6000 blocks, and swap the remaining 2000 by specifying: 

root disk 0 
swap disk 0 6001 1999 

• buffers: Specifies how many "system buffers" to allocate. Real-time response improves 
as more buffers are allocated. System buffers form a "data cache". Improvement in 
the hit rate of this cache tends to fall as the number of buffers is increased. 

• hashbuf: Specifies how many hash buckets to allocate. These are used to search for a 
buffer given a device number and block number. This number must be a power of 
two. The default value is 64. 

• physbuf: Specifies how many physical I/O buffer headers to allocate. One is needed 
for each physical read or write active. The default value is 4. 

• inodes: Specifies how many "inode table" entries to allocate. Each entry represents a 
unique open inode. When the table overflows, the warning message "Inode table 
overflow" is printed on the console. The table size should be increased if this happens 

2-14 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

regularly. The number of entries used depends on the number of active processes, 
texts, and mounts. 

• files: Specifies how many "open-file table" entries to allocate. Each entry represents 
an open file. When the table overflows, the warning message "no file" is printed on 
the console. The table size should be increased if this happens regularly. 

• mounts: Specifies how many "mount table" entries to allocate. Each entry represents a 
mounted file system. The root U) is always the first entry. When full, the mount(2) 
system call returns the error EBUSY. 

• swapmap: Specifies how many entries to allocate to the "list of free swap blocks". It is 
similar to coremap, except it represents free blocks in the swap area in 512-byte units. 

• calls: Specifies how many "call-out table" entries to allocate. Each entry represents a 
function to be invoked at a later time by the clock handler. The time unit is 1/60 of a 
second. The call-out table is used by the terminal handlers to provide terminal delays 
and by various other I/O handlers. When the table overflows, the system crashes and 
prints the panic message "Timeout table overflow" on the console. This value must be 
greater than two. 

• procs: Specifies how many "process table" entries to allocate. Each entry represents an 
active process. The scheduler is always the first entry and init(1M) is always the 
second entry. The number of entries depends on the number of terminal lines 
available and the number of processes spawned by each user. The average number of 
processes per user is in the range of 2 through 5. When full, the fork(2) system call 
returns the error EAGAIN. 

• texts: Specifies how many "text table" entries to allocate. Each entry represents an 
active read-only text segment. Such programs are created by using the -i or -n option 
of the loader [d(1). When the table overflows, the warning message "out of text" is 
printed on the console. 

• clists: Specifies how many "character list buffers" to allocate. The buffers are 
dynamically linked together to form input and output queues for the terminal lines and 
various other slow-speed devices. The average number of buffers needed per terminal 
line is in the range of 5 through 10. When full, input characters from terminals are lost 
and not echoed. 

• maxproc: Specifies how many concurrent processes a non-superuser is allowed to run. 

• power: Specifies whether to attempt restart after a power failure. A value of 0 
(default) indicates no restart; a value of 1 attempts power-fail restart. On restart, 
device drivers are called and process 1 (i.e., init) is sent a hangup signal; refer to 
init(IM). 

• sema: Specifies whether to include semaphore code. A value of 0 (default) indicates 
no semaphores; a value of 1 includes semaphores. 

• shmem: Specifies whether to include shared memory code. A value of 0 (default) 
indicates no shared memory; a valueof 1 includes shared memory. 

• mesg: Specifies whether to include message code. A value of 0 (default) indicates no 
messages; a value of 1 includes messages. 

• shmmax: Specifies the maximum size of a shared memory segment. 

• shmmin: Specifies the minimum size of a shared memory segment. 

2-15 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

• shmmni: Specifies the maximum number of shared memory segments in the system. 

• shmseg: Specifies the maximum number of shared memory segments a user may have 
attached. 

• shmall: Specifies the maximum amount of shared memory that may be allocated system 
wide. The default value is 512 clicks, 256Kb. 

• shmbrk: Specifies the number of clicks between the end of the data segment, and the 
beginning of the first shared memory segment if the default starting address is used 
allowing the user to continue to use sbrk(2) or brk(2). The default value is 16 clicks, 
8Kb. 

• msgmax: Specifies the maximum message size. 

• msgmnb: Specifies the maximum number of bytes on anyone queue. 

• msgtql: Specifies the number of system message headers, i.e., maximum number of 
outstanding messages. 

• msgssz: Specifies the message segment size. Messages consist of a set of contiguous 
message segments large enough to fit the text. The segments are used to help eliminate 
fragmentation and speed message buffer allocation. A message may span several 
segments. 

• msgseg: Specifies the number of message segments in the system. 

• msgmap: Specifies the message segment map size. 

• msgmni: Specifies the maximum number of message queues system wide. The default 
is 10. 

• semmap: Specifies the number of entries in the semaphore map. The map is used by 
the system to allocate and free semaphore sets. This parameter should be changed to 
reflect changes in semmns. 

• semmni: Specifies the number of semaphore identifiers, i.e., number of semaphore sets. 

• semmns: Specifies the number of semaphores in the system. 

• semmnu: Specifies the number of undo structures in the system. 

• semume: Specifies the maximum number of undo entries per structure. 

• semmsl: Specifies the maximum number of semaphores per semaphore identifier. 

.semopm: Specifies the maximum number of semaphore operations per semop(2) call. 

2.16 Managing Disk Space 

Managing disk space is a broad term that describes several different areas that are the 
responsibility of the system administrator. These areas include: 

• Initial system installation (Program selection) 

• Filesystem partitioning 

• Disk free space 

• Filesystem backups 

• Monitoring disk usage 

2-16 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

• Controlling disk usage 

• Filesystem reorganization 

• Controlling directory size 

2.16.1 Filesystem Partitioning. 

Each physical pack is partitioned into eight logical sections. This partitioning is defined in 
the operating system by a table with eight entries. Each table entry is two words long. The 
first specifies how many blocks are in the section; the second specifies the starting cylinder; 
refer to cmd16(7), cmd80(7), sa800jl(7), lark8(7), and lark25(7) for default cylinder and 
block assignments. These values are described to the system in the header file 
/usr /include/sys/io/ cntrlrio.h. 

A file system starts at block 0 of a section of the disk and may be as large as the section; if it 
is smaller than the size of a section, the remainder of the section is unused. Note that the 
sections themselves may overlap physical areas of the pack, but the filesystems must never 
overlap. 

The program mkfs(IM) (for IK byte/block filesystems) or omkfs (for 512 byte/block 
filesystems) initializes a section of the disk to be a file system. The length of each section of 
the disk is specified in 512-byte blocks. When mkfs is used, it produces half the number of 
lKb file system blocks. The lKb blocks provide better throughput for the particular 
file system. A 512 byte/block file system can be made using omkfs in place of mkfs. The 
number of physical disk blocks (512 bytes each) used to make the entire filesystem would be 
the same for either command. 

Next, the program labelit (volcopy(lM» labels the filesystem with a name and the name of the 
pack. Finally, the file system may be checked for consistency with fsck(IM). The filesystem 
can be mounted with mount(IM). The lost+found directory should be created at this point. 
An example of the complete procedure (including the command script file for the lost+found 
directory described in paragraph 2.5) is: 

mkfs /dev/dsk/cntrlr_XsX size 
labelit /dev /rdsk/cntrlr _ XsX filesystem _name volume 
mount /dev /dsk/cntrlr _ XsX Ifilesystem_ name 
cd filesystem_ name 
/etc/mklost+found 

For information on file system partitioning for specific controllers, refer to cmd16(7), 
cmd80(7), lark8(7), lark25(7), sa400jl22(7), sa400jlwd(7), sa800jl21(7), sa800jl22(7), vm21(7), 
vm22(7), wd15(7), wd40(7), wd70(7), and wd140(7). 

2.16.2 Disk Free Space. 

Maintaining enough free disk blocks and free inodes (file headers) can be a problem. If the 
free inode count falls below 100, the system spends most of its time rebuilding the free inode 
array. If a file system runs out of space, the system prints "no-space" messages, and does 
little else. The df(IM) program prints a summary of the free blocks and free inodes on the 
online file system. To avoid problems, the following start-of-day free counts should be 
maintained: 

• The file system containing /tmp and /usr/tmp (temporary files): 

2-17 



ADMINISTRATIVE GUIDELINES MOtOROLA COMPUTER SYSTEMS 

- 4-user system: 1500 free kilobytes. 
- 8-user system: 3000 free kilobytes. 

• The filesystem containing /usr: 

- 3000 to 6000 free kilobytes, depending on load. 

• Other user filesystems: 

- 6 to 10 percent free, depending on user habits 
(3000Kb minimum). 

When deciding how big the file system should be, set aside space on each drive for a copy of 
root/swap and use the rest of the pack for a single filesystem. However, if user groups 
contend for disk space, it may be better to divide a pack into more than one filesystem. 

2.16.3 Filesystem Backups. 

The easiest·· and most reliable way to minimize data losses when a system crashes is to 
perform frequent filesystem backups. Weekly backups typically result in data that is old and 
out of date while daily backups can be disruptive to system operations. System 
administrators should evaluate their own situations to fInd the optimal schedule, based on the 
frequency of data loss, the value of the data and the amount of effort involved in a backup. 

For most systems, a twice-weekly backup of filesystems is recommended. Identify one 
backup set as, say, the "Monday morning" set, and the other as the "Thursday morning" set. 
Re-use each backup set each week. The most recent disks (or tape) should be kept off 
premises or in a fIreproof safe. Backup disks (or tapes) should be read periodically to make 
sure they are readable. 

When the system goes down, active files can become scrambled. In addition to good backup 
procedures, filesystem patching expertise must be available (on-site or on-call). If the system 
is rebooted for general use without fIrst checking the filesystems, problems occur. Study 
checkall(IM), jsck(lM), and crash(8) and the "File System Checking" chapter for more 
information. 

The following backup programs are distributed with SYSTEM V /68: 

• find/cpio: SYSTEM V /68 is distributed in cpio format. The -cpio option of the find 
command can be used for saving only those files that have changed or have been created 
over a defIned period. 

• volcopy: Physical file system copying to disk or tape. For those with a spare drive, volcopy 
to disk provides convenient file restore and quick recovery from disk disasters. Tape 
volcopy provides good long-term backup because the file system can be read quickly, 
mounted, and browsed over. Disk and tape volcopy are generally used together for short­
and long-term backup. Note that a volcopy from a mounted file system may result in an 
inconsistent copy (fIles being written at the time can contain invalid data). 

The following table summarizes attributes of these programs. The filesystem size is 65,500Kb 
in all cases; times are in minutes; judgments are subjective. 

2-18 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

TABLE 2-3. Summary of Backup Programs 

VARIABLE FIND/CPIO VOLCOPY (DISK) VOLCOPY (TAPE) 
Full dump time 40 2 15 
Incremental dump time 7 - -
Full restore time 80 2 15 
Incremental restore time 10 - -
Ease of restoring: 

one file fair good fair 
a directory fair good good 
scattered files poor good good 
full restore fair very good good 

Needs tape drive yes no yes 
Needs spare filesystem: 

(two CPUs can share) - yes -
Maintains pack/tape labels no yes -
Handles multi-reel tape yes - yes 
512Kb per record 1.10 88 10 
Interactive 

(ties up console) yes yes yes 
May require separate 

I/D space no no* no 

* Kb per record are cut to 22 without separate I/D space. 

A recommended procedure is for the system administrator to modify the /etc/filesave and 
/etc/checklist files to meet operational needs, and update the operator's manual accordingly. 

2.16.4 Monitoring Disk Usage. 

The system administrator should run df(1M) periodically to monitor the free space on all 
file systems and check that the recommended start-of-day counts are maintained. 

Some administrators may want to limit the amount of disk space that is used by individuals or 
groups. The du(l) program can be executed (after hours) regularly (e.g., daily), and the 
output kept in an accessible file for later comparison. In this way, users who are rapidly 
increasing their disk usage can be spotted. The accounting system's acctdusg program locates 
these users also (refer to acct(IM» and the "Accounting" chapter of this guide). 

2.16.5 Controlling Disk Usage. 

The find( 1) command can be used to locate inactive or large files. For example: 

find / -mtime +90 -atime +90 -print >filename 

records in filename the names of files neither written nor accessed in the last 90 days. 

The administrator should balance usage between filesystems. To do this, user directories 
may be moved. The user's login directory name (available in the shell variable HOME) 
should be chosen to minimize pathname dependencies. User groups with more extensive 
filesystem structures should set up a shell variable to refer to the filesystem name (e.g., FS). 

The find(1) and cpio(l) utilities can be used to move user directories and to manipulate the 
filesystem tree. For example, the following sequence moves the directory trees userx and 

2-19 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

usery from filesystem filesysl to file system filesys2 where, presumably, more space is 
available): 

cd /filesysl 
find userx usery -print I cpio -pdm /filesys2 
# Make sure new copy is OK. 
# Change userx and usery login directories 
# in the /etc/passwd file. 
# Notify userx and usery via mai/(1) that 
# they have been moved and that pathname 
# dependencies in their .profile and shell 
# procedures may need to be changed. Refer to the 
# discussion on $HOME above. 
rm -rf /filesysl/userx /filesysl/usery 

When moving more than one user in this way, keep users with common interests in the same 
filesystem (these users may have linked files). Move groups of users who may have linked 
files with a single cpio command; otherwise, linked files are unlinked and duplicated. 

2.16.6 Filesystem Reorganization. 

The file system reorganization utility is called dcopy(IM). On an otherwise idle system, a 
reorganized filesystem has almost twice the I/O throughput of a randomly organized 
filesystem. This applies to file copying, finds, fscks, etc. Dcopy can take up to 2.5 hours to 
initially reorganize (copy) a large file system. During reorganization, the system can be up, 
but the file system being copied must be unmounted. 

If time allows, root reorganization once a week (requires system reboot) and user filesystem 
reorganization once a month improve system performance. Because file system reorganization 
helps throughput at the expense of downtime, reorganizations should be done when the 
terminals are asleep. 

2.16.7 Controlling Directory Size. 

Directories larger than 5Kb (320 entries) are inefficient because of file system indirection. 
The 'following identifies those directories: 

find / -type d -size +10 -print 

When large directories are emptied by a user, the amount of space allocated to that directory 
does not change. To compact a formerly large directory and make the emptied space 
available to another user, use the following commands: 

mv /abc/directory /abc/old directory 
mkdir /abc/directory 
chmod 777 /abc/directory 
cd /abc/old directory 
find. -print I cpio -plm .. /directory 
cd .. 
rm -rf old_directory 

where abc is a user-defined directory. 

Following is a list of files and directories that grow. Most of the files and directories listed 
are restarted automatically by entries in /etc/rc at system reboot. 

2-20 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

• Accounting files: 

/etc/wtmp--login information; grows extremely fast with terminal line difficulties; use 
acctcon(1M) to determine the offending line(s). 

/usr/adm/pacct--per process accounting records; gets big quickly; monitored 
automatically by ckpacct from cron(IM). 

/usr/adm/cronlog--status log of commands executed by cron(1M); also watch this file for 
error messages from the programs being executed in /usr/lib/crontab. 

/usr/adm/errfile--hardware error logging iJ?fo; also read login adm's mail periodically. 

/usr/adm/ctlog--a log of the people who use ct(1C) command. 

/usr/adm/sulog--a log of those who execute the superuser command. 

/usr/adm/Spacct--process accounting files left over from an accounting failure; remove 
these files unless the accounting files that failed are to be rerun . 

• Other files: 

/usr/spool--spooling directory for line printers, uucp(1C), etc., and whose subdirectories 
should be compacted as described above. 

2.17 Cron Facility 

The cron(1M) facility is an administrative daemon process that runs jobs at scheduled times. 
Cron enables users to take advantage of the scheduling capability through the accompanying 
crontab(I) utility, and also provides for delayed execution with the at(l) utility. 

This section describes how to establish and maintain the cron facility. 

2.17.1 Defining Queues. 

Cron can limit dynamically the number of concurrently running jobs. It can also maintain up 
to 26 separate queues, and control the number of jobs executed in each one. The file 
/usr/lib/cron/queuedefs is used to maintain definitions for all queues. Each line of the file 
follows the format: 

q.NNjNNnNNw 

where 

q is a letter from a through z indicating the job queue. 

NNj is the upper limit for the number of jobs that can be running at anyone time for the 
job queue. NN is an integer; the default value is 100. 

NNn is the nice(l) value assigned to each command executed for the job queue. NN is an 
integer; the default value is 2. 

NNw is the time (in seconds) that the system waits before retrying a command that has 
failed (because all the criteria for running the command were not met). NN is an 
integer; the default value is 60. 

Empty fields are initialized to the default values. An example queuedefs file is: 

2-21 



ADMINISTRATIVE GUIDELINES 

a.4jln 
b.2j2n90w 
c.OnlOj 
n.l20w4nlj 

MOTOROLA COMPUTER SYSTEMS 

Changes to queue definitions take effect before the next job is executed by the cran daemon. 
If this file does not exist, the default values are used. 

The ability to define queues enables administrators to restrict executions for commands. The 
at(l) utility can queue jobs in anyone of 26 different queues with the cran daemon 
controlling the number of executions for each queue. Running the at command with -qc as 
the first argument queues the command in queue c. The default queue is queue a. A special 
queue b is defined to be a batch queue; jobs in this queue run whenever the defined 
maximum level is not exceeded (as specified in the queuedefs file). Cran executions are 
limited by the definition of the queue c. Jobs in all other queues run at the time specified on 
the command line. 

The at(l) utility reads commands from standard input to be executed at a later time. At 
allows a user to specify when the commands should be executed. 

The prototype file provides a method to customize at command files by controlling the 
information that is written into the at job file. If a file named .proto.q exists (where q 
indicates a queue name), the .proto.q file is copied into the job file. Otherwise, the file .proto 
is used. 

The following substitutions are made during creation of an at job file. 

$m User's current file creation mask (Refer to umask(2» 

$1 User's current file size limit (Refer to ulimit(2» 

$d Name of the current working directory 

$t Time (in seconds) that the job is scheduled to execute 

$< Read standard input until EOF is reached 

An example prototype file is: 

cd $d 
ulimit $1 
umask $m 
$< 

The at command exits with an error if no prototype file exists. 

2.17.2 Log Information. 

Cran logs all command invocations, terminations, and status information in the file 
/usr/lib/cron/log. Records that begin with the character> pertain to command invocations. 
Two invocation records are written for each command execution. The first displays the 
command that is being executed; the second contains the login name, process id, job queue, 
and a timestamp of when the command was invoked. Command termination records begin 
with the character < and are similar to the second invocation record, except that a non-zero 
termination status or exit status is also printed. Records that begin with an ! indicate status 
information. 

2-22 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

2.17.3 Limiting Access. 

System resources can be misused if cron and at are invoked irresponsibly. Cron provides the 
system administrator with the means to restrict user access. The files 
/usr/lib/cron/cron.allow and /usr/lib/cron/at.allow contain login names of users allowed 
access to the crontab and at utilities. The files /usr/lib/cron/cron.deny and 
/usr/lib/cron/at.deny contain login names of users denied access to the commands. 

When a user submits a crontab file, the program checks cron.allow for a list of users (one 
name per line) permitted a crontab file. If cron.allow does not exist, cron.deny is checked for 
users specifically denied crontab files. If neither file exists, only root is allowed to have a 
crontab file. The same arrangement is used for determining access to the at utility. The null 
file cron.allow indicates no user is allowed a crontab file; a null file cron.deny indicates no 
user is denied a crontab file. 

2.17.4 Setting Up Cron. 

The cron utility uses named pipes (FIFOs) to communicate between the user-level commands 
and the daemon process. Cron is located in /usr/src/cmd and provides a makefile that can 
compile and install all components. The command 

make 

causes all components of the facility to be compiled. The command 

make install 

will make and install all components of the facility, and create the necessary directory 
structures. However, the make install command will not create the files cron.allow or 
cron.deny. 

The default modes and owners of all cron files and directories are: 

-rwx------ root sys /etc/cron 
drwxr-xr-x root sys /usr/lib/cron 
-rw-r--r-- root sys /usr/lib/cron/at.deny 
-rw-r--r-- root sys /usr /lib / cron/ cron.deny 
-rw-r--r-- root sys /usr /lib / cron/log 
-rw-r--r-- root sys /usr /lib / cron/ queuedefs 
-rw-r--r-- root sys /usr /lib / cron/ .proto 
-rw-r--r-- root sys /usr /lib / cron/ .proto.n 
drwxr-xr-x root sys /usr/spool/cron 
drwxr-xr-x root sys /usr /spool/ cron/ crontabs 
-r--r--r-- root sys /usr/spool/cron/crontabs/bin 
-r--r--r-- root sys /usr /spool/ cron/ crontabs/root 
drwxr-xr-x root sys /usr /spool/ cron/atjobs 

At compile time, the variable MAXRUN can be set to limit the maximum number of cron jobs 
executing concurrently. (The default value is 25.) The variables ATLIMIT and CRONLIMIT 
can be defmed to limit the maximum number of at jobs and cron commands per user-id. 

With the cron facility, each user maintains an individual crontab file. This requires that 
/usr/lib/crontab be split into separate files for each user. The name of the crontab file is used 
as a user-id to obtain user and group permissions. A sample entry in a crontab file named sys 
might look like: 

o 19-7 * * * /usr/lib/sa/sal> /dev/null & 

2-23 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

2.17.5 Cron Errors. 

The cron daelJlon attempts to report fatal errors that cause termination by printing an error 
message on the system console. A user of at or crontab receives a warning message if the cron 
daemon is not active. 

2.18 System Accounting 

SYSTEM V /68 provides methods to collect per-process resource utilization data, record 
connect sessions, monitor disk utilization, and charge fees to specific logins. A set of C 
language programs and shell procedures is provided to refine the data into summary files and 
reports. 

Accounting programs should be run, even if there is no call for service. Accounting 
information can help find performance bottlenecks, unused logins, or bad phone lines. 

The who(1) command lists the people logged in. The ps( 1) command shows what they are 
doing. Unfortunately, ps operates from heuristics that can consistently fail to report certain 
processes in a busy system. Therefore, an administrator or operator must be careful about 
hanging up an apparently inactive line. The acctcom(IM) command can read the process 
accounting file /usr/adm/pacct backwards from the most recent entry. It prints entries for 
selected lines or login names. 

Detailed information concerning files, reports and daily operation of the accounting programs 
is included in the "Accounting" chapter of this guide. 

2.19 System Security 

The current operating system is not completely secure. System administrators cannot prevent 
a person from "breaking into" the system, but they can usually detect if someone has done 
so. The following command mails (to root) a list of all "set user ID" programs owned by root 
(superuser): 

find / -user root -perm -4100 -exec Is -I {} \ j I mail root 

Anything unusual in root's mail should be investigated. Related advice: 

• Change the superuser password regularly. Do not pick obvious passwords (choose 6- to 
8-character nonsense strings that combine letter with digits or special characters). 

• Dial ports that do not require dialup passwords usually cause trouble. 

• The ehroot(IM) and su(I) commands are inherently dangerous, as are group passwords. 

• Login directories, .profile files, and files in /bin, /usr/bin, /Ibin, and jete are security 
weak spots because they are not owner-protected. 

• No time-sharing system with dial ports is secure. Do not keep privileged information on 
this system. 

2.20 Communicating with Users 

The directory /usr/news and the news(1) command are provided as a way to get brief 
announcements to users. More pressing items (one-liners) can be entered in the /etc/motd 
(message of the day) file; motd and (new to the user) news are announced at login time. 

To reach users who are already logged in, use the wall(lM) (write all) command. Do not use 
wall while logged-in as superuser, except in emergencies. 

2-24 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

The /usr /news directory should be cleaned out once a week by removing everything older 
than 2 months. It has been found that on most systems a file in /usr/news reaches 50 percent 
of the users within a day and over 80 percent within a week; motd should be cleaned out 
daily. 

2.21 Special Files 

A special file must be made for every device on the operating system. Normally, all special 
files are located in the directory /dev. Initially, this directory contains: 

console console terminal 
error Refer to err(7) 
mem, kmem, null Refer to mem(7) 
tty Refer to tty(7) 

These special files are of two types - block and character. This is indicated by the character 
b or c in the listing produced by Is (I) with the -I option. 

In addition, each special file has a major device number and a minor device number. The 
major device number refers to the device type and serves as an index into either the bdevsw 
or cdevsw table in the configuration file conIc The minor device number refers to a particular 
unit of the device type and is used only by the driver for that type. The conjig.68(M) 
program with the -t option lists major device numbers. 

The program mknod(1M) creates special files. For example, the following would create part 
of the initially-supplied directory (on the EXORmacs): 

cd /dev 
mknod console cOO 
mknod error c 20 0 
mknod mem c 2 0; mknod kmem c 2 1; mknod null c 2 2 
mknod tty c 13 0 

After the special files have been made, their access modes should be changed to appropriate 
values by chmod( I). For example: 

cd /dev 
chmod 622 console 
chmod 444 error 
chmod 440 mem kmem 
chmod 666 null 
chmod 666 tty 

Note that filenames have no meaning to the operating system itself; only the major and minor 
device numbers are important. However, many programs expect that a particular file is a 
certain device. Thus, by convention, special files are named as follows: 

block device conf.c /dev 
Disk Controller disk dsk/cntrlr 

character device conf.c /dev 
Debug ports acia tty*,console 
M68KV7 acia tty* 
Printronix Ip lp* 
Centronics lp lp* 
error err error 

2-25 



ADMINISTRATIVE GUIDELINES 

memory 
terminal 

mm 
sy 

MOTOROLA COMPUTER SYSTEMS 

mem.kmem.null 
tty 

For those devices with a /dev name ending in *. the star is replaced by a string of digits 
representing the minor device number. Note that for disks. an octal number scheme is 
maintained because each drive is logically partitioned into eight sections. Thus. 
/dev /dsk/ cntrlr _ 2s4 refers to slice 4 of physical drive 2. where cntrlr _ refers to either a 
VM21. VM22. RWINI. MVME319 or MVME320 disk controller. There is also a special file. 
/dev/swap. that is used by the program ps(l). This file reflects what block device is used for 
swapping and must be readable. For example: 

rm /dev/swap 
mknod /dev/swap bOO 
ehmod 440 /dev/swap 
ehown sys /dev/swap 
ehgrp sys /dev /swap 

2.22 Administrative Files 

2.22.1 /ete/motd. 

This file contains the message of the day. It is printed by fete/profile after every successful 
login; therefore. it should be kept short and to the point. 

2.22.2 /ete/bre. 

This file is executed prior to entering any of the numbered init states for the first time after a 
reboot. The file clears /ete/mnttab. The file /ete/bre is executed once per reboot and is 
controlled by /ete/inittab. 

2.22.3 /ete/powerfail. 

This shell script is executed according to its line in /ete/inittab. 

2.22.4 fete/reo 

During the transition between init states. /ete/init executes the shell script /ete/re (which 
must have executable modes). The execution of this file is controlled by a line in /ete/inittab. 
For /ete/re to properly handle the mounting and unmounting of file systems and the opening 
of tty lines. etc .• it may need certain information that is present in /ete/utmp, e.g .• the new 
(current) state. the number of times this state has previously been entered. and the previous 
state. The following shell script fragment assigns this data to shell variables and checks for 
entering init state '2 for the first time. As an example: 

set 'who -r' 
eur_mode=$7 
no _ times=$8 
pre _ mode=$9 
if [ $(eur_mode) = 2 ) -a $(no_times) = 0 ) ] 
then 
# commands to be executed when entering multi-user mode 
fi 

These values are carried over from one booting sequence to the next. When the system is 
rebooted into a single-user initial state. these values. stored in /ete/utmp. reflect the state the 
system was in when it last went down. 

2-26 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

The files /ete/re, /ete/bre, /ete/inittab, /etc/powerfail, and /ete/shutdown must be edited to 
suit local conditions; refer to brc(IM). 

2.22.5 /ete/inittab. 

File /ete/init uses /ete/inittab to determine which processes to create or terminate in each init 
state. By convention, state's' is single-user and state '2' is multi-user. 

The following line indicates the default init state, that is, the state the system is to come up in: 

is:s:initdefault: 

The following lines arrange for appropriate execution of /ete/bre, /ete/re, and /ete/powerfail: 

be::bootwait:/ete/bre 1> /dev/eonsole 2>&1 
re::wait:/ete/re 1> /dev/eonsole 2>&1 
pf::powerfail:/ete/powerfail1> /dev/eonsole 2>&1 

For line /dev/ttyOO for use by 1200 baud asynchronous terminals, add the following: 

00:2:respawn:/ete/getty -t60 ttyOO 1200 

The arguments to getty are the number of seconds to allow before hanging up the line, the 
device name, optional speed settings that refer to an entry in /ete/gettydefs, optional type of 
terminal referenced in getty(IM), and optional line discipline. 

To add or delete getty-login processes while the system is in multi-user mode, make the 
appropriate changes to /ete/inittab; then issue the command /ete/init q. This forces /ete/init 
to reread /ete/inittab without having to change init states. 

Again, this file must be edited for local conditions; refer to gettyde/s(4), and inittab(4). 

2.22.6 /ete/passwd. 

This file is used to describe each user to the system. A new line must be added for each new 
user. Each line has 7 fields separated by colons: 

Login name: 
Normally 1 to 6 characters, first character alphabetic, the remainder 
alphanumeric. No uppercase characters. 

Encrypted password: 

User ID: 

Group ID: 

Initially null, filled by passwd (1). The encrypted password contains 13 
bytes, although the actual password is limited to a maximum of 8 bytes. The 
encrypted password may be followed by a comma and up to 4 more bytes of 
password "age" information. 

A number between 0 and 65,535; 0 indicates the superuser. User IDs 0 
through 99 are reserved. 

The default is group 1 (one). Group IDs 0 through 99 are reserved. 

Accounting information: 

Login directory: 

This field is used by various accounting programs. It usually contains the 
user name, department number, and account number. 

Full pathname (should be kept reasonably short). 

2-27 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

Program name: 
If null, /bin/sh is invoked after a successful login. If present, the named 
program is invoked in place of /bin/sh. 

F or example: 

dht::138:1:6824-D.Hayden Truscott( 4357):/usr / dht: 
hsl::244:1:651 O-H.Sobel( 4466):/usr jhsl:/bin/rsh 

System administrators may have reason to establish dialup passwords for particular logins in 
their systems. To create a dialup password that affects only a specific login, it is imperative 
that the administrator follow the sequence of procedures as it is written in the next 
paragraphs. 

Two files must be built. The first is /etc/dialups, which contains a list of the dialups against 
which you want to run the dialup password. The entries might be: 

/dev/ttyOO 
/dev/ttyOl 

/dev/ttyxx 

The second file is /etc/djlasswd. To understand the structure of /etc/djlasswd, consider 
how the dialup password functions. Administrators can create different dialup passwords for 
different logins, or for groups of logins. This is done by running unique shells against the 
logins that will have different dialup passwords. 

For example, consider two users, Rixi and Benito. Rixi's shell is specified as "shellA" and 
Benito's shell is specified as "shellB". Execute a cd to /bin and link /bin/sh to /bin/shellA. 
Next, link /bin/sh to /bin/sheIlB. 

The next step is to build the /etc/djlasswd file. The entries might be: 

/bin/sh:: 
/usr/lib/uucp/uucico:: 
/bin/shellA:( Rixi's encrypted password): 
/bin/shellB:( Benito's encrypted password): 

An empty set of colons means no password is required. A person running /bin/sh or 
/usr/lib/uucp/uucico in the example will not be prompted for a dialup password. (Tip: The 
easiest way to transfer an encrypted password into this file is to change the password and 
then manually copy the encryption into /etc/djlasswd.) 

Next, cd to /etc/passwd and change Rixi's login to run the /bin/sheilA and Benito's login to 
run /bin/sheIlB. For example: 

rix::138:1:6824-Rixi Markoff(4457):/usr/rix:/bin/shellA: 
ben::244:1:6510-Benito Garazzo( 4466):/usr /ben:/bin/shellB: 

Be aware that any login that will be su-ed to cannot have anything in the shell field in 
/etc/passwd. Therefore, the administrative logins must run the default shell. A dialup 
password can be created for these logins, but they must all share the same dialup password. 
Refer to passwd(4), login(l), and pass~d(l). 

2-28 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

2.22.7 fete/group. 

This file is used to describe each group to the system. The system administrator must add a 
new line for each new group. Each line has four fields separated by colons: 

Group name: 
Normally 1 to 6 characters, with the first character alphabetic and the rest 
alphanumeric. No uppercase characters. 

Encrypted password: 

Group ID: 

Login names: 

Contains 13 bytes although the actual password is limited to a maximum of 8 
bytes. 

A number between 0 and 65,535. Group IDs 0 through 99 are reserved. 

List of all login names in the group, separated by commas; list of all login 
names that may use newgrp( 1) to become a member of the group. 

Group passwords are strongly discouraged. Refer to group(4). 

2.22.8 fete/profile. 

When the shell is executed and is the leader of a process group, as is the case when it is 
invoked by login, the shell reads and executes the commands in fete/profile before executing 
commands in the user's .profile file. The system administrator sets up a standard 
environment for all users (e.g., executing umask, and setting shell variables) and takes care of 
other housekeeping details (such as news -n). In fete/profile, the shell variable $0 indicates 
the invocation of either normal shell (-sh), restricted shell (-rsh), or su command (-su). 

2.22.9 /ete/eheeklist. 

This file contains a list of default devices to be checked for consistency by the fsck(1M) 
program. The devices normally correspond to those mounted when the system is in multi­
user mode. 

The root device is specified as a block device while all others are specified as character 
devices. Character devices can be checked faster than block devices. The root device is 
specified as a block device so that the fsck program can detect when the root is being 
checked. Any modifications to the root file system result in an immediate reboot request, 
signified by the message ****BOOT UNIX (NO SYNC!) ****. Refer to paragraph 2.3. 

2.22.10 fete/shutdown. 

This file contains procedures to shut down the system in preparation for file save or 
scheduled downtime. No procedures should appear after the transition to single-user mode. 

2.22.11 /ete/filesave and /ete/tapesave. 

These files contain prototypes for local file saves. 

2.22.12 /usr/adm/paeet. 

This file contains the process accounting information; refer to acct(1M). 

2-29 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

2.22.13 /usr/lib/aeetfholidays. 

This file defines the local company holiday schedule and designates the start of prime and 
non-prime processing hours for the accounting system. 

2.22.14 /ete/wtmp. 

This file is the log of login processes. 

2.23 Regenerating System Software. 

System source is issued under the directory /usr/sre. The subdirectories are named emd 
(commands), lib (libraries), uts (the operating system), head (header files), and stand (stand­
alone programs). Refer to mk(8) for details on how to remake system software. 

2.24 Session Initlalization: init, getty, login, who 

In the SYSTEM V /68 environment, the initial process spawning is controlled and overseen 
by init(IM). Init creates a getty process for every active communication line. It does this by 
creating processes that become the getty-login-sh sequence. This sequence of processes 
allows users to login and sets up the initial conditions for the outgoing terminal lines so that 
speed and other terminal-related states are correct. [nit and these other processes also keep 
an accounting file /ete/wtmp that is available to processes on the system. These files make it 
possible to determine the state of each process that init has spawned, and, if it is a terminal 
line, who the current user is. The who( I) program provides a means of examining the files. 

This section describes the capabilities of each program used, the databases involved, and how 
to create and maintain these databases. In addition, debugging features of both init and getty 
are described. 

2.24.1 init. 

Four forces drive init: a database, init's previous internal level, init's current internal level, 
and events that cause init to wake up. 

2.24.1.1 The Database: /ete/inittab. [nit's database, kept in the file /ete/inittab, consists of 
separate entries, each with the form: 

id:level:type:proeess 

id The id is a one- to four-letter identifier that init uses internally to label entries in 
its process table. The id, which should be unique, is also placed in the dynamic 
record file, /ete/utmp, and the history file, /ete/wtmp. 

level The level specifies at which levels init should be concerned with this entry. Level 
is a string of characters consisting of [0-6a-c]. Any time that init's internal level 
matches a level specified by level, this entry is active. If init's internal level does 
not match any of the levels specified, then init makes certain that the process is 
not running. If the level field is empty, it is equivalent to the string "0123456". 

type The type specifies some further condition required for or by the execution of an 
entry. 

off The entry is not to run even if the levels match. 

once The entry is to be run only if init is entering a level. This means if 
init has been awakened by powerfail or because a child died, the 
entry is not activated. This entry is activated only when a user signal 
requests a change of init's internal state to a state that is different 

2-30 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

from its current state, and this new state is one in which the entry 
should be active. 

wait Wait has all the characteristics of once, plus it requires init to wait 
until the spawned process dies before reading more entries from its 
database. Wait allows for initialization actions to be performed and 
completed before allowing other processes that might be affected to 
start running. 

respawn Respawn requests that this entry continue to run as long as init is 
running in a level that is in this entry's level field. Most processes 
spawned by init fall into this category. All getty processes are marked 
as respawn. Whenever init detects the death of a process "that was 
marked respawn, it spawns a new process to take its place. 

boot Boot entries have the execution behavior of once entries. They are 
started only when init is switching to a numeric run state for the first 
time. Most commonly, boot entries have an empty level string, 
meaning that no matter which level init switches to the first time, the 
boot entry is run. Should there be a more specific level string, for 
example "01", then the boot entry would only be run if init switched 
to either the 0 or 1 run state as its first numeric level. 

bootwait Bootwait entries have the execution behavior of wait entries, and 
they, like boot entries, are only run as init switches to a numeric level 
for the first time. 

power Power entries act like once entries and are activated if init receives a 
SIGPWR signal (19) and is in a state that matches the active states for 
the entry. 

powerwait Powerwait entries act like wait entries and are activated if init 
receives a SIGPWR signal and is in a state that matches the active 
states for the entry. 

initdefault Initde/ault is a non-standard entry in that it does not specify some 
process to be spawned. Instead, it only specifies the level init is to go 
to initially when it is coming up at boot time. This allows the system 
to be rebooted without an operator having to make entries at the 
system console if so desired. If there is no initde/ault entry, then init 
asks for the initial run state. In addition to specifying the numbered 
states, the single-user state "s" may also be specified. . 

process The process field is the action that init asks an sh to perform whenever the entry is 
activated. The string in the process field is given a prefix of "exec ", so that each 
entry only generates one process initially. Init then forks and execs 

sh -c "execprocess" 

This means that the process string can take full advantage of all sh syntax. The 
only peculiarities arise from the string exec, which was prefixed to the string 
(because initially there is no standard input, output, or error output). The 
addition of exec to the string means that if the user wants to have a single entry 
generate more than one process, for example, making a list of the people on the 
system at the tim¥ of a powerfail and mailing it to root by the command "who I 
mail root", it would have tobe put in as 

2-31 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

pf::powerwait:sh -e "who I mail root" 

to work. If it were put in simply as "who I mail root", it would be executed as 
"exec who I mail root", and only the who process would be created before the sh 
disappeared. The lack of standard input and output channels must be addressed 
by explicitly specifying them. 

2.24.1.2 Levels. Eleven levels are possible: seven numeric levels, denoted 0, 1, 2, 3, 4, 5, or 
6; three temporary levels, denoted a, b, or c; and the single-user level, "s". Normally, init runs 
in a numeric level. Characteristics of a particular level depend on the database and the 
system administrator. The temporary levels allow certain entries to be started on demand 
without affecting any processes that were started at a particular level. The temporary levels 
immediately revert to the previous numeric level, once all entries in the database have been 
scanned to check if they should be started at the temporary level. When an entry is started 
by a switch to a temporary level, it becomes independent of future level changes by in it , 
unless the change is to the single-user level. The only way to kill a process that was started 
as a respawnable demand process, without going to the single-user level, is to modify the 
database. To do this, declare the entry to be all. 
The single-user level is the one level independent of the database. For this reason, it is not a 
level in the normal sense. In the single-user level, init spawns off an su process on the 
console. The su is the only process that it maintains while at the single-user level. The 
single-user level can be entered at two different places in init. If it is entered at boot time, it 
allows the operator to look over the file systems without having init attempt to do any file I/O, 
which might cause further problems. Init does not attempt to recreate /ete/utmp or access 
/ete/wtmp until after it has left the initial single-user level. If the single-user level is entered 
at any other time, init does the bookkeeping in the record files. 

The system administrator requests init to change levels by running a secondary copy of init 
itself. The file /ete/init is linked to /bin/telinit. Init can only be run by root or a privileged 
group. If init starts running and finds that its process id is not 1, init assumes that it is a user 
initiated copy. Further, init sends a signal to the real init. The usage is: 

telinit [0123456sSqQabc] 

and the single character argument specifies the signal to be sent to init. If the request is to 
switch to the single-user level, oS' or's', then init also relinks /dev /syseon to the terminal 
originating the request so that the terminal becomes the virtual system console, insuring that 
future messages from init are directed to the terminal where the operator is located. When 
init does this relinking, it sends a message to /dev /systty, saying that the console is being 
relinked to some other terminal. This leaves a record of the fact at the physical system 
console. 

2.24.1.3 Waking Events. Four events wake init: a boot, a powerfail, the death of a child 
process, or a user signal. 

boot 

powerfail 

child death 

Init operates in the boot state until it has entered a numeric state for the first 
time. It is not possible for init to reenter the boot state a second time. 
Commands labeled boot and bootwait are executed when changing to a 
numeric state for the first time, if the levels match. 

Any time power fails, the operating system sends a SIGPWR signal to all 
processes. Init executes commands with types of power and power/ail. 

Any time a child process of init dies, init receives a SIGCLD signal (18). The 
dead child process may be one of two types: a direct descendant of init, or a 
process whose own parent process died before it did. The parent of a process 

2-32 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

user signal 

automatically becomes init, if its real parent should die before it does. Init 
determines immediately if the defunct process was one of its own children or 
an orphan. If it were one of its own, it performs the necessary bookkeeping 
on its internal process table to note that the process died. If init was busy at 
the time it received the SIGCLD signal, it then returns to complete whatever 
action it was performing. If init was asleep, it then scans its database to 
determine if any other actions should be taken, such as respawning the 
process. 

Initcatches all signals that it is possible for a process to catch. Most signals 
have specific meaning to init, usually requesting it to change its current state 
in some way. There is one signal, the 'Q' signal, that is used to waken init and 
cause it to scan its database. This is often issued after a change has been 
made to the database, so that init puts the new change into effect immediately. 
If this were not done, the change would not become effective until init awoke 
for some other reason. The system administrator controls the internal level 
where init is running solely with signals, except during the initialization phase. 

2.24.1.4 Normal Operational Behavior. Init scans /etc/inittab once or twice for each event 
that wakes it up. If it is in the boot or powerfail state, it scans the table once, looking for 
entries of these types, and then switches itself back to a normal state and scans again. 

Its first action in the normal state is to scan /etc/inittab and remove all processes that are 
currently active and should not be at the current level. Init employs one of two methods 
when killing its child processes, depending on whether it is changing levels or not. If init is 
not changing levels, it forks a child process for each child that needs to be killed, and has 
that child process send the signals to the process targeted for removal. Killing a process 
involves sending it two signals. First, a SIGTERM signal (I5) is sent so that it can clean up 
after itself and die gracefully. After waiting the amount of time defined as TWARN (the 
default value is 20 seconds), a SIGKILL signal (9) is sent, which guarantees that the child 
dies. The advantage of creating a child with the /ork( I) system call is the main init process 
need not wait for all the processes it is killing to die before beginning the spawning of new 
processes. The disadvantage is that if many processes were being killed this way, there 
would be a very real chance of the operating system process table filling up, causing the 
system call to fail. This, in turn, could cause init to wait. For this reason, when init is 
changing levels, it assumes that it may have many processes to terminate. Init sends the 
signals itself, waits for the required 20 seconds, and sends the final termination signals before 
continuing. Once the old processes have been removed, init makes an entry in its accounting 
files, if it is changing levels. At this point, it either enters the single-user level or rescans its 
database looking for processes that need to be spawned at the current level and in the 
current state. In the normal state of operation, init is looking for entries whose types are all, 
once, wait, or respawn. 

After the completion of the scan of the database in the normal state, init waits for another 
event. Init performs a sync(2) system call to ensure that a user who just logged off has had 
his or her files updated to the disk, and to insure that the bookkeeping is also updated to the 
disk. Then init pauses until it is awakened again. 

If init finds that it is being requested to switch to the single-user level when it wakens from 
the pause, it saves all the ioctl information about the system console in the file 
/etc/ioctl.syscon before proceeding to remove its other children. Therefore, if the system is 
being taken down, the new init process knows how to set up the system console to talk to it. 
It is convenient not to have to change the baud rate and terminal specifications when 
rebooting a system remotely. Because init preserves the ioctl state of the system console 

2-33 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

across system reboots, messages sent during reboots are legible to the operator, no matter 
where the system console happens to be linked. 

All written messages from init are sent to /dev/syscon. In reality, init itself does not send the 
message, but forks a child to send the message. The reason is that if init opens a terminal 
line, it is assigned a controlling terminal. Since init has no controlling terminal, it can spawn 
getty processes which initially have no controlling terminal. When such a getty opens its 
assigned terminal, the terminal becomes the controlling terminal for it and its children. In the 
one instance, init needs input from the system administrator during the initialization phase. 
In this case, the child process, which is asking for the run level, opens /dev/systty, which is 
always the physical system console, before opening /dev/syscon, the virtual system console. 
This causes /dev/systty to be the child's controlling terminal. 

2.24.1.5 Setting Tunable Variables. Init has several tunable timlng constants that can be 
adjusted when it is compiled. 

SLEEPTIME 

TWARN 

Init awakens occasionally, even if the system is inactive, by setting an 
alarm timer before going to sleep. The length of time is defined by 
SLEEP TIME, and is initially five minutes. Since init does a sync 
system call each time it wakes, there is a sync at least once every 
SLEEP TIME seconds. 

TW ARN is the number of seconds between the SIGTERM signal and 
the SIGKILL signal, when init is removing processes. It should be set 
long enough so that all processes can die gracefully on receipt of the 
SIGTERM signal. It is initially 20 seconds. 

NPROC This is the size of the internal process table init uses to keep track of its 
child processes. It currently defaults to 100, although it can be passed 
in during compilation with the -D option. It is best to set it to the size 
of the system's process table. 

WARNFREQUENCY To prevent init from flooding the system console with error messages 
when its own internal process table is full, init only generates an error 
message once each WARNFREQUENCY time that it is unable to find 
a slot. Proper sizing of the internal process table should prevent this 
condition from ever occurring. 

Init cannot directly tell if there is something wrong when it tries to fork and exec a command. 
It assumes that there is something wrong if it has to respawn a particular entry too often. 
There are three related parameters controlling this feature, SP A WN _LIMIT, 
SPAWN_INTERVAL, and INHIBIT. 

SPAWN_LIMIT SPAWN _LIMIT is the number of times a process may respawn in a 
certain interval of time before further respawns are inhibited. 

SPAWN_INTER V AL SPAWN_INTER V AL is the interval of time in seconds that 
SPA WN _LIMIT number of resp&wns must occur to inhibit an entry. If 
an entry should respawn too often, a message is generated indicating 
the line in /etc/inittab that is at fault. 

INHIBIT INHIBIT is the number of seconds that a process that has res pawned 
too often is inhibited. 

SP A WN _LIMIT and SPAWN_INTER V AL should be set such that init can respawn a 
process fast enough to cause an inhibit, but not so low that a legal death of a process is 
interpreted as "inhibited". The current limits are 10 respawns in two minutes. The real 

2-34 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

problem is that when something such as getty disappears, init becomes active, trying to 
respawn many processes and never gets to respawn a single process often enough to set off 
the alarm. The INHIBIT limit is five minutes. Once an entry is inhibited, it is possible to 
restart it sooner than INHIBIT seconds later by sending init the 'Q' signal. The normal 
problem is a typographic error in /ete/inittab, and the normal procedure is to correct the 
mistake and then do a "telinit Q" to cause init to attempt the spawning entry again. 

2.24.1.6 Debugging Features. Init has some debugging features built in. There are three 
conditional debug flags that allow various kinds of debugging to be enabled. 

UDEBUG This flag causes init to be compiled in a form that can be run as a normal user 
process instead of as process 1. This allows a person to use sdb in a normal 
fashion and not to disturb the rest of the system while debugging or while 
modifications are made and tested. There are differences in this user version of 
init. It assumes that utmp, wtmp, inittab, ioetl.syseon, and debug are all in the 
local directory instead of jete. It also writes to /dev/syseonx and /dev/systtyx, 
instead of /dev/syseon and /dev/systty. It does not process all signals in the same 
fashion that the real init does. Signals SIGINT, SIGQUIT, SIGIOT, and 
SIGTERM, which correspond to the signals to change to levels 2, 3, 4, and 
"ignore", are left in their default modes, so that it is possible to terminate the user 
"init" from a terminal. Signals SIGUSRI and SIGUSR2, which are normally 
ignored by the real init, are set to cause an abort for capturing cores of the debug 
init. The UDEBUG flag automatically sets the DEBUG flag, meaning that the 
first level of debug is generated by the init and written into the file debug in the 
current directory. 

DEBUG This flag causes a version of init to be produced that can be run as the real init, 
but that generates diagnostic messages about process removal, level changes, and 
accounting, and writes them into the file jete/debug. 

DEBUG 1 DEBUG I causes the diagnostic output generated by DEBUG I to be increased 
substantially. Specifically, it produces messages about each process being spawned 
from inittab. 

2.24.2 Getty. 

Getty(lM) is responsible for making appropriate setting of terminal characteristics and ,baud 
rate so that a user can communicate with SYSTEM V /68. The most important of those 
features is the choice of a baud rate so that input and output make !:ense. In getty, the search 
is controlled by an ASCII file, /ete/gettydefs, and changing or augmenting the search 
behavior only requires that the file be edited. 

2.24.2.1 Usage. Getty is normally started from /ete/inittab by init. Getty takes from one to 
six arguments: 

getty [-h) [-t time] line [speed_label] [term_type] [line _disc] 

-h This switch tells getty that it should not drop the Data Terminal Ready 
(DTR) signal before resetting the line. This switch currently only works in 
the CB-UNIX system environment. Normally, getty ensures that DTR goes 
down so that connections to the Develcon data switch are disconnected 
every time. The EIA protocol requires that a dataset see DTR drop and be 
reasserted before answering another call. It is possible for getty to come 
back on a line before all the processes spun off by the previous user have 
died and closed their connections to the line. In this case, DTR would not 
drop if getty did not insure it. This switch is required for programs such as 

2-35 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

-t 

line 

speed _label 

line disc 

ct, which initiate a call from the computer to a user (instead of the user 
calling the computer), putting a getty on the resulting connected line. 
Without the -h switch, the getty would immediately disconnect the user again. 

This switch specifies that the getty should die after the specified number of 
seconds if nothing is typed. This, prevents datasets from being tied up 
unnecessarily. 

Line is the name of the terminal line which getty is to open and set up. It is 
minus /dev / since, getty does a ehdir to the /dev directory and expects to find 
it in that directory. 

The speed label appears to directly specify a baud rate such as "1200" or 
"9600", butit can be anything, since it is a label of an entry in /etc/gettydefs 
that getty looks for. It specifies the entry getty starts with, when trying to 
find an appropriate speed for the terminal. It defaults to "300". 

The term_type specifies which terminal discipline is to be used. If this is 
specified, the virtual terminal protocol becomes immediately effective on the 
line. Typical types might be "vt100", "hp4S", or "tek". Whatever type is 
specified, it must be a terminal handler that has been compiled into the 
operating system This argument is given for lines that are hardwired to the 
computer. 

The line discipline is the last thing that can be specified. The most common 
is "half" or "half_duplex", when there is a half duplex terminal coming into 
the computer. This causes the appropriate line discipline to be associated 
with the line. 

2.24.2.2 The Database: /etc/gettydefs. Whenever getty is invoked, it references its database 
to determine certain information about how to set up the line. Each entry in the database has 
a fixed format. 

label# initial flags # final flags # login msg #nextlabel 

Getty matches its speed_label argument against the label field. It stops searching when it 
finds an entry with a label that matches. The entry specifies how to setup the terminal 
during the initial phase, during the phase when getty prints out the login msg and reads in the 
user's login name, and the fmal phase, when getty exec's the login( 1) program to continue to 
the login process. The baud rate is specified as an ioetl flag in both the initial and final flags' 
fields. 

The flags themselves are strings matching the define variables found in /usr/include/termio.h. 
, These flags may be partially or completely overridden if a terminal type is specified. When a 

terminal type is enabled, it resets various flags to suitable conditions automatically. 

During the initial phase, getty puts the terminal into a non-echoing raw mode. This allows it 
to take each character as it comes in and to infer certain things about the terminal. For 
instance, if it sees uppercase alphabetic characters, but no lowercase, it assumes that the 
terminal is uppercase only, and sets the final configuration so that the uppercase to lowercase 
conversions are made. 

The typical' initial flags would include the speed, for example, B1200 CS7 PARENB 
HUPCL. CS7 PARENB sets the line for 7 bits, even parity characters. HUPCL sets the line 
to hangup on close. Typical final flags would be Bl200 SANE IXANY T AB3. SANE is not 
a flag found in the header file, but a collection of ioetl flags used for normal terminal 
behavior. IXANY permits the use of any character to restart output. T AB3 says to expand 

2-36 



MOTOROLA COMPUTER SYSTEMS ADMINISTRA TIVE GUIDELINES 

tabs on output. 

The login msg field is the message that getty prints before waiting for the user to enter his or 
her login name. It may contain anything, and getty understands normal special character 
conventions, so that "\ n" means <If> as does "\ 0 12". On systems that are not using the 
terminal handlers and where lines are· hardwired, special entries are sometimes made for 
different terminal types, for example: 

vt100-2400# B2400 # B2400 SANE T AB3 
# 33[H 33[2JAMACCS System B \r\nLOGIN: #vtlOO-1200 

where the login msg contains the special vtl 00 characters required to clear the screen. The 
entry can take more than one line. Entries are delimited by a blank line. Lines that begin 
with a pound sign (#) are ignored so that comments may be added to the file. 

The next_label field tells getty which entry to try next if it gets an indication that the speed is 
wrong. In the above example, it looks for an entry with the name vt100-1200 if this one was 
not at the proper speed. Normally, entries do not contain terminal specific information, and 
the various speed choices are linked together in a closed circle. For example, it is common to 
have 9600 -> 4800 -> 2400 -> 1200 -> 300 -> 9600. No matter where the circle is entered, the 
speed that is correct for the terminal is eventually reached. 

The system administrator can check the database for readability by getty, with a checking 
mode: 

getty -e gettydefs _like _ 2file 

When getty is run in this mode, it scans the entire input file specified and deciphers each 
entry, printing out the resulting modes that it sets. If it finds a line that it cannot read, it 
prints an appropriate message; the administrator can then correct the entry. By this 
mechanism, an administrator can avoid installing a misformatted gettydefs file and tying up 
the system. ' 

If getty is unable to find /ete/gettydefs, getty has a built-in fallback entry. Should gettydefs 
disappear for some reason, a user can log in at 300 baud, since this is the default setting in 
the built-in entry. 

2.24.2.3 Operational Behavior. Getty sets up a line as specified by an entry froin 
/ete/gettydefs and from any additional arguments, outputs the login msg field, and then tries 
to read the user's login name from the line. During the input of the login name, getty checks 
for speed mismatches that the operating system reports as a NUL character. If such a 
mismatch occurs, getty tries the next speed specified by the current entry, and repeats the 
whole sequence. While reading in the login name, getty makes a guess whether the terminal is 
uppercase only. If it sees some uppercase characters, but no lowercase characters, it assumes 
that the terminal is uppercase only and sets the ioct! state of the line to translate uppercase 
letters to lowercase on input, and lowercase to uppercase on output. 

Getty and login allow environmental variables to be expanded or modified when a user enters 
his or her login name. Refer to login(1) for more information about supplying arguments to 
login. 

2.24.3 Login. 

Login(l) writes to /ete/utmp and /ete/wtmp, and allows the user to modify the behavior of 
his or her .profile by setting environmental variables that the .profile script reads. 

Any additional words provided in response to the basic login: query are placed in the 
environment of the sh executed by login as its last act. 

2-37 



ADMINISTRATIVE GUIDELINES MOTOROLA COMPUTER SYSTEMS 

The arguments may take either the form· xxx or xxx=yyy. Arguments without an equal sign 
are placed in the environment as 

Ln=xxxx 

where n is a number starting at 0 is incremented each time a new variable name is required. 
Variables containing an = are placed into the environment without modification. If they 
already appear in the environment, then they replace the older value. For example, 
TERM=2621 would be placed in the environment unchanged, and the shell variable $TERM 
would be defined as "2621". There are two exceptions. The variables PATH and SHELL 
cannot be changed. This prevents people from logging into restricted shell environments and 
spawning unrestricted secondary shells. 

2.24.4 Who. 

Who(l) reads the history files maintained by init, getty, and login. The standard usage for 
who is: 

who [-uTlpdbrtasJ [[am i] or [utmp JikeJileJJ 

u Returns a listing of useful information for all users. This information includes login 
time, activity, pid and comment from inittab file. 

T Reports the writ ability state of the terminal for that entry. 

Reports all entries that are living getty processes. 

p Reports all entries for living children of init, excluding getty and descendants of getty. 

d Reports all the entries for processes that have died. 

b Reports the boot time entries that init has made. In /ete/utmp there is only one such 
entry. 

r Reports the run level entries that init has made. In /ete/utmp there is only one such 
entry, the current run level entry. The current state, the number of times in that state, 
and the previous state are also reported. 

t Reports the change of date entries that have been made by the date(l) command when 
the clock was reset. These are required in the history file, /ete/wtmp, if accounting is 
to be done. 

a Reports all the entries. 

s Reports information for all users in short form; this is the default. 

If no file is specified, then /ete/utmp is assumed. The who am i sequence returns the entry 
for the user typing the command. If you have su-ed to another user-id, the who am i 
sequence returns the login id you su-ed to. 

There are various output formats for the different kinds of entry. In particular, entries for 
users and getty processes list the amount of time since output to the terminal occurred. This 
is often of interest, since it shows other users whether or not someone is working at a 
terminal. The comment field at the end of the entry from /ete/inittab is also included, which 
can conveniently be set up to be the location of the terminal. Dead entries report the exit 
status for the process that died. This can be of use because it shows whether the process 
terminated abnormally or not. 

2-38 



MOTOROLA COMPUTER SYSTEMS ADMINISTRATIVE GUIDELINES 

2.24.4.1 Utmp Format. The format is: 
It. <sys/types.h> must be included.*1 

#j<.>fine 
#define 
#define 

struct utmp 
{ 

) ; 

/* 

#define 
#define 
#define 
#define 
# define 
#define 
#define 
#define 
#define 
#define 

#define 

/* 
/* 
/* 
/* 

UTMPYll..E 
WTMPYILE 
uC.llame utJlser 

char utJlser[8] ; 
char utjd[4] ; 
char ut...line[12] ; 
short ut-pid ; 
short ut.JYpe ; 
struct exit~tus 

{ 

) 

short e.Jermination ; 
short e-.exit ; 

ut-.exit; 

time.J u t.Jime ; 

Definitions for ut.JYpe 

EMPTY 
RUNJ.,VL 
BOOTJIME 
OLDJlME 
NEWJIME 
INIT -PROCESS 
LOGIN-PROCESS 
U SER-PROCESS 
DEAD -PROCESS 
ACCOUNTING 

UTMAXTYPE 

"/etc/utmp" 
"/etc/wtmp" 

1* User login name *1 
1* fetc/lines id(usually line #) */ 
/* device name (console, lnxx) */ 
/* process id * / 
/* type of en try * / 

/* Process termination status */ 
/* Process exit status */ 

/* The exit status of a process 
* marked as DEAD"pROCESS. 
*/ 

/* time entry was made */ 

*/ 

o 
1 
2 
3 
4 
5/* Process spawned by "init" */ 
6/* A "getty" process waiting for login */ 
7/* A user process */ 
8 
9 

ACCOUNTING/* Largest legal value of utJYpe */ 

Special strings or formats used in the "utJine" field when*/ 
accounting for something other than a process.*/ 
No string for the ut...line field can be more than 11 chars +*/ 
a NULL in length. */ 

#define RUNL VL...,MSG "run-levelo/oe" 
#define BOOT...,MSG "system boot" 
#define OTlME...,MSG "old time" 
#define NTlME....MSG "new time" 
The ut_type held completely IdentIties the type 01 entry, the Ul_lfi lleia omy contams the "Id" 
as found in the "id" field of /etc/inittab. The ut_exit contains the exit status of processes that 
init has spawned and that have subsequently died. 

2-39 





MOTOROLA COMPUTER SYSTEMS USING VME SERIES 20 

For SYSTEM V /68, release version FE8l, the information on 
using VME Series 20 is provided in the VME Series 20 
Software Release Guide shipped with your software. The 
chapter, Using VME Series 20, will be included in this 
manual in a future update. 

3-1 





MOTOROLA COMPUTER SYSTEMS ACCOUNTING 

4. ACCOUNTING 

SYSTEM V 168 Accounting provides methods to collect per-process resource utilization data, 
record connect sessions, monitor disk utilization, and charge fees to specific logins. A set of C 
language programs and shell procedures is provided to reduce this accounting data into 
summary files and reports. This section describes the structure, implementation, and 
management of this accounting system, as well as a discussion of the reports generated and the 
meaning of the columnar data. 

4.1 General 

The following list is a synopsis of the actions of the accounting system: 

• At process termination, the system kernel writes one record per process in 
lusr/adm/pacct in the form of acct.h. 

• The login and init programs record connect sessions by writing records into letc/wtmp. 
Date changes, reboots, and shutdowns are also recorded in this file. 

• The disk utilization programs acctdusg and diskusg break down disk usage by login. 

• Fees for file restores, etc., can be charged to specific logins with the chargefee shell 
procedure. 

• Each day the runacct shell procedure is executed via cran to reduce accounting data and 
produce summary files and reports. 

• The monacct procedure can be executed on a monthly or fiscal period basis. It saves and 
restarts summary files, generates a report, and cleans up the sum directory. 

4.2 Files and Directories 

The lusr/lib/acct directory contains all of the C language programs and shell procedures 
necessary to run the accounting system. The adm login (currently user ID of four) is used by 
the accounting system and has the directory structure shown in Fig. 4.1. 

lusr/adll 
I acct 

1-+-1 
nite SWi fiscal 

Figure 4-1. Directory Structure of the adm Login 

The lusr/adm directory contains the active data collection files. (For a complete explanation 
of the files used by the accounting system, refer to Appendix A.) The nite directory contains 
files that are reused daily by the runacct procedure. The sum directory contains the 
cumulative summary files updated by runacct. The fiscal directory contains periodic 
summary files created by monacct. 

4.3 Daily Operation 

When the system is switched into multi-user mode, lusr/lib/acct/startup is executed, and 
the following occurs: 

4-1 



ACCOUNTING MOTOROLA COMPUTER SYSTEMS 

A. The acctwtmp program adds a "boot" record to letc/wtpm This record is signified by 
using the system name as the login name in the wtmp record. 

B. Process accounting is started via turnacct. Turnacct on executes the accton program 
• with the argument lusr/adm/pacct. 

C. The remove shell procedure is executed to clean up the saved pacct and wtmp files left 
in the sum directory by runacct. 

The ckpacct procedure is run via cron(lM) every hour to check the size of lusr/adm/pacct. 
If the file grows past 1000 blocks (default), turnacct switch is executed. While ckpacct is not 
absolutely necessary, the advantage of having several smaller pacct files becomes apparent 
when trying to restart runacct after a failure processing these records. 

The chargefee program can be used to bill users for file restores, etc. It adds records to 
lusr/adm/fee which are picked up and processed by the next execution of runacct and 
merged into the total accounting records. 

Ru.nacct is executed via cron each night. It processes the active accounting files, 
lusr/adm/;pacct, letc/wtmp lusr/adm/acct/nite/disktacct, and lusr/adm/fee. It 
produces command summaries and usage summaries by login. 

When the system is shut down using shutdown, the shutacct shell procedure is executed. It 
writes a shutdown reason record into letc/wtmp and turns process accounting off. 

After the first reboot each morning, the computer operator should execute 
lusr/lib/acct/prdaily to print the previous day's accounting report. 

4.4 Setting Up the Accounting System 

In order to automate the operation of this accounting system, several things need to be done: 

A. If not already present, add this line to the letc/rc file in the state 2 section: 

Ibin/su - adm -c lusr/lib/acct/startup 

B. If not already present, add this line to letc/shutdown to turn off the accounting 
before the system is brought down: 

lusr lli bl acctl shutacct 

C. For most installations, the following three entries should be made in 
lusrlspool/cron/crontab/adm so that cron automatically runs the daily accounting. 

04 * * 1-6 lusr/lib/acct/runacct 2> lusr/adm/acct/nite/fd210g 
o 2 * * 4 lusr/lib/acct/dodisk 
5 * * * * lusr/lib/acct/ckpacct 

Note that dodisk is invoked with superuser privileges of root so that directory searching is 
not road blocked. 

D. To facilitate monthly merging of accounting data, the following entry in 
lusr!spool/cron/crontab/admfIcrontab allows monacct to clean up all daily reports 
and daily total accounting files and deposit one monthly total report and one monthly 
total accoun ting file in the fiscal directory. 

155 1 * * lusr/lib/acct/monacct 

4-2 



MOTOROLA COMPUTER SYSTEMS ACCOUNTING 

The above entry takes advantage of the default action of monacct that uses the current 
month's date as the suffix for the file names. Notice that the entry is executed at such a 
time as to allow runacct sufficient time to complete. This creates, on the first day of each 
month, monthly accounting files with the entire month's data. 

E. The PATH shell variable should be set in /usr/adm/.profile to: 

PATH=/usr/lib/acct:/bin:/usr/bin 

4.5 Runacct 

Runacct is the main daily accounting shell procedure. It is normally initiated via cron during 
nonprime time hours. Runacct processes connect, fee, disk, and process accounting files. It also 
prepares daily and cumulative summary files for use by prdaily or for billing purposes. The 
following files produced by runacct are of particular interest: 

nite/lineuse Produced by acctcon, which reads the wtmp file, and produces usage 
statistics for each terminal line on the system. This report is especially 
useful for detecting bad lines. If the ratio between the number of 
logoffs to logins exceeds about 3:1, there is a good possibility that the line 
is failing. 

nite/dayacct This file is the total accounting file for the previous day in tacct.h 
format. 

sum/tacct This file is the accumulation of each day's nite/daytacct which can be 
used for billing purposes. It is restarted each month or fiscal period by 
the monacct procedure. 

sum/daycms Produced by the acctcms program, it contains the daily command 
summary. The ASCII version of this file is nite/daycms. 

sum/cms The accumulation of each day's command summaries. It is restarted by 
the execution of monacct. The ASCII version is nite/cms. 

sum/loginlog Produced by the lastlogin shell procedure, it maintains a record of the 
last time each login was used. 

sum/rprt.MMDD Each execution of runacct saves a copy of the output of prdaily. 

Runacct takes care not to damage files in the event of errors. A series of protection 
mechanisms are used that attempt to recognize an error, provide intelligent diagnostics, and 
terminate processing in such a way that runacct can be restarted with minimal intervention. 
It records its progress by writing descriptive messages into the file active. (Files used by 
runacct are assumed to be in the nile directory unless otherwise noted.) All diagnostics output 
during the execution of runacct is written into fd2log. To prevent multiple invocations, in 
the event of two crans or other problems, runacct complains if the files lock and lock1 exist 
when invoked. The lastdate file contains the month and day runacct was last invoked and is 
used to prevent more than one execution per day. If runacct detects an error, a message is 
written to /dev/console, mail is sent to root and adm, the locks are removed, diagnostic files 
are saved, and execution is terminated. 

In order to allow runacct to be restartable, processing is broken down into separate reentrant 
states. This is accomplished by using a case statement inside an endless while loop. Each state 
is one case of the case statement. A file is used to remember the last state completed. When 
each state completes, statejile is updated to reflect the next state. In the next loop through the 
while, statejile is read and the case falls through to the next state. When runacct reaches the 
CLEANUP state, it removes the locks and terminates. States are executed as follows: 

4-3 



ACCOUNTING 

SETUP 

WTMPFIX 

CONNECTl 

CONNECf2 

PROCESS 

MERGE 

FEES 

DISK 

MERGETACCT 

CMS 

USEREXIT 

CLEANUP 

MOTOROLA COMPUTER SYSTEMS 

The command turnacct switch is executed. The process accounting 
files, /usr/adm/pacct?, are moved to /usr/adm/Spacct?MMDD. The 
/etc/wtmp file is moved to /usr/adm/acct/nite/wtmp.MMDD with 
the current time added on the end. 

The wtmp file in the nite directory is checked for correctness by the 
wtmpfix program. Some date changes cause acctconl to fail, so wtmpfix 
attempts to adjust the time stamps in the wtmp file if a date change 
record appears. 

Connect session records are written to ctmp in the form of ctmp.h. The 
lineuse file is created, and the reboots file is created showing all of the 
boot records found in the wtmp file. 

Ctmp is converted to ctacct.MMDD which are connect accounting 
records. (Accounting records are in tacct.h format.) 

The acctprcl and acctprc2 programs are used to convert the process 
accounting files, /usr/adm/Spacct?MMDD, into total accounting 
records in ptacct? .MMDD. The S pacct and ptacct files are correlated 
by number so that if runacct fails, the unnecessary reprocessing of 
Spacct files does not occur. One precaution should be noted: when 
restarting runacct in this state, remove the last ptacct file because it is 
not complete. 

Merge the process accounting records with the connect accounting 
records to form daytacct. 

Merge in any ASCII tacct records from the file fee into daytacct. 

On the day after the dodisk procedure runs, merge disktacct with 
daytacct. 

Merge daytacct with sum/tacct, the cumulative total accounting file. 
Each day, daytacct is saved in sum/tacctMMDD, so that sum/tacct 
can be recreated in the event it becomes corrupted or lost. 

Merge in today's command summary with the cumulative command 
summary file sum/cms. Produce ASCII and internal format command 
summary files. 

Any installation dependent (local) accounting programs can be included 
here. 

Clean up temporary files, run prdaily and save its output in 
sum/rprtMMDD, remove the locks, then exit. 

4.6 Recovering from Failure 

The runacct procedure can fail for a variety of reasons: a system crash, /usr running out of 
space, or a corrupted wtmp file. If the activeMMDD file exists, check it first for error 
messages. If the active file and lock files exist, check fd2log for any mysterious messages. 
The following are error messages produced by runacct, and the recommended recovery actions: 

ERROR:locksfound,runaborted 

The files lock and lockl were found. These files must be 
removed before runacct can restart. 

4-4 



MOTOROLA COMPUTER SYSTEMS 

ERROR: acctg already run for date: check lusr/adm/acct/nite/lastdate 

The date in last date and today's date are the same. Remove 
lastdate. 

ERROR: turnacct switch returned rc=? 

Check the integrity of turnacct and accton. The accton 
program must be owned by root and have the setuid bit set. 

ERROR: Spacct?MMDD already exists 

File setups probably already run. 
Check status of files, then run setups manually. 

ACCOUNTING 

ERROR: lusr/adm/acct/nite/wtmp.MMDD already exists, run setup manually 

Self-explanatory. 

ERROR: wtmpfix errors refer to lusr/adm/acct/nite/wtmperror 

Wtmpfix detected a corrupted wtmp file. Use fwtmp to 
correct the corrupted file. 

ERROR: connect acctg failed: check lusr/adm/acct/nite/log 

The acctconl program encountered a bad wtmp file. Use 
Jwtmp to correct the bad file. 

ERROR: Invalid state, check lusr/admlacct/nite/active 

The file statefile is probably corrupted. Check 
statefile and read active before restarting. 

4.7 Restarting Runacct 

Runacct called without arguments assumes that this is the first invocation of the day. The 
argument MMDD is necessary if runacct is being restarted and specifies the month and day 
for which runacct reruns the accounting. The entry point for processing is based on the 
contents of statefile. To override statefile, include the desired state on the command line. For 
example: 

To start runacct: 

nohup runacct 2> lusr/adm/acct/nite/fd2log& 

To restart runacct: 

nohup runacct 0601 2> lusr/admlacct/nite/fd2log& 

To restart runacct at a specific state: 

nohup runacct 0601 WTMPFIX 2> lusr/adm/acct/nite/fd2log& 

4.8 Fixing Corrupted Files 

Occasionally, a file becomes corrupted or lost. Some of the files can simply be ignored or 
restored from the file save backUp. However, certain files must be fixed in order to maintain 
the integrity of the accounting system. 

4-5 



ACCOUNTING MOTOROLA COMPUTER SYSTEMS 

4.8.1 Fixing wtmp Errors. The wtmp files seem to cause the most problems in the day to 
day operation of the accounting system. When the date is changed and the system is in 
multi-user mode, a set of date change records is written into letc/wtmp The wtmpfix 
program is designed to adjust the time stamps in the wtmp records when a date change is 
encountered. Some combinations of date changes and reboots, however, slip through wtmpfix 
and cause acctconl to fail. The following steps show how to patch up a wtmp file. 

cd lusr/adm/acct/nite 
fwtmp < wtmp.MMDD > xwtmp 
ed xwtmp 

delete corrupted records or 
delete all records from beginning up to the date change 

fwtmp -ic < xwtmp > wtmp.MMDD 

If the wtmp file -is beyond repair, create a null wtmp file. This prevents any charging of 
connect time. Acctprcl can not determine which login owned a particular process, but it is 
charged to the login that is first in the password file for that user id. 

4.8.2 Fixing tacct Errors. If the installation is using the accounting system to charge users 
for system resources, the integrity of sum/tacct is quite important. Occasionally, mysterious 
tacct records appear with negative numbers, duplicate user IDs, or a user ID of 65,535. First 
check sum/tacctprev with prtacct. If it looks all right, the latest sum/tacct.MMDD should 
be patched up, then sum/tacct recreated. A simple patchup procedure would be: 

cd lusr/adm/acct/sum 
acctmerg -v < tacct.MMDD > xtacct 
ed xtacct 

remove the bad records 
write duplicate uid records to another file 

acctmerg -i < xtacct > tacct.MMDD 
acctmerg tacctprev < tacct.M M DD > tacct 

Remember that the monacct procedure removes all the tacct.MMDD files; therefore, 
sumltacet can be recreated by merging these files together. 

4.9 Updating For Holidays 

The file lusr/lib/acct/holidays contains the prime/non-prime table for the accounting 
system. The table should be edited to reflect your location's holiday schedule for the year. 
The format is composed of three types of entries: 

• Comment Lines: 

Comment lines may appear anywhere in the file as long as the first character in the line is 
an asterisk . 

• Year Designation Line: 

This line should be the first data line Cnon-comment line) in the file and must appear only 
once. The line consists of three fields of four digits each Cleading white space is ignored). 
For example, to specify the year as 1984, prime time at 9:00 a.m., and non-prime time at 
4:30 p.m., the year designation line is: 

1982 0900 1630 

A special condition in the time field automatically converts 2400 to 0000. 

4-6 



MOTOROLA COMPUTER SYSTEMS ACCOUNTING 

• Company Holiday Lines: 

These entries follow the year designation line and have the following general format: 

daY.JJj ..sear Month Day Holiday Description 

The day-of-year field is a number from t through 366 that indicates the day of the holiday 
(leading white space is ignored). The three fields that follow are commentary and are not 
curren tly used by other programs. 

4.10 Reports 

Runacct generates five basic reports upon each invocation. They cover the areas of connect 
accounting, usage by person on a daily basis, command usage reported by daily and monthly 
totals, and a report of the last time that users were logged in. 

The following paragraphs describe the reports and the meanings of their tabulated data. 

4.10.1 Daily Report. In the first part of the report, the "from/to" banner should alert the 
administrator to the period reported on. The times are the time the last accounting report was 
generated until the time the current accounting report was generated. It is followed by a log 
of system reboots, shutdowns, power fail recoveries, and any other record dumped into 
letc/wtmp by the acctwtmp program (Refer to acct(tM) in the SYSTEM V /68 
Administrator's Manual). 

The second part of the report is a breakdown of line utilization. The TOTAL DURATION 
tells how long the system was in multi-user state (able to be accessed through the terminal 
lines). The columns are: 

LINE 

MINUTES 

PERCENT 

# SESS 

#ON 

# OFF 

The terminal line or access port. 

The total number of minutes that line was in use during the accounting 
period. 

The total number of MINUTES the line was in use divided into the 
TOTAL DURATION. 

The number of times this port was accessed for a login(t) session. 

This column does not have much meaning anymore. It used to give the 
number of times that the port was used to log a user on; but since 
login(t) can no longer be executed explicitly to log a new user in, this 
column should be identical with SESS. 

This column reflects not just the number of times a user logged off but 
also any interrupts that occurred on that line. Generally, interrupts 
occur on a port when the getty(tM) is first invoked when the system is 
brought to multi-user state. These interrupts occur at a rate of about 
two per event; therefore, it is not uncommon to see in excess of twice 
the amount of OFF than ON or SESS. This column is important when 
the # OFF exceeds the # ON by a large factor. It usually indicates that 
the mUltiplexer, modem or cable is going bad, or there is a bad 
connection somewhere: The most common cause of this is an 
unconnected cable dangling from the multiplexer. 

During real time, letc/wtmp should be monitored because this is the file that generates 
connect accounting. If it grows rapidly, execute acctconl to see which tty line is the noisiest. 
If the interrupting is occurring at a furious rate, general system performance is affected. 

4-7 



ACCOUNTING MOTOROLA COMPUTER SYSTEMS 

4.10.2 Daily Usage Report. This report gives a by-user breakdown of system resource 
utilization. Its data consists of: 

UID User ID. 

LOGIN NAME Login name of the user. There can be more than one login name for a 
single user ID, this identifies which one. 

CPU (MINS) Amount of time the user's process used the central processing unit. This 
category is divided into PRIME and NPRIME (nonprime) utilization. The 
accounting system's definition of this breakdown is located in the 
usr/lib/acct/holidays file. As delivered, prime time is defined to be 
0900-1700 hours. 

KCORE-MINS Represents a cummu1ative measure of the amount of memory a process 
uses while running. The amount shown reflects kilobyte segments of 
memory used per minute. This measurement is also divided into PRIME 
and NPRIME amounts. 

CONNECI' (MINS) Identifies "Real Time" used. What the column identifies is the amount 
of time that a user was logged into the system. If this time is rather 
high and the later column called # OF PROCS is low, the user is what 
is called a "line hog". That is, a person logs in first thing in the morning 
and rarely uses the terminal the rest of the day. This column is also 
subdivided into PRIME and NPRIME utilization. 

DISK BLOCKS When the disk accounting programs have been run, their output is 
merged into the total accounting record (taeet.h) and appears in this 
column. This disk accounting is accomplished by the program aeetdusg. 

# OF PROCS Reflects the number of processes that was invoked by the user. This is a 
good column to watch for large numbers indicating that a user may 
have a shell procedure that is faulty. 

# OF SESS How many times the user logged onto the system. 

# DISK SAMPLES Indicates how many times the disk accounting was run to obtain the 
average number of DISK BLOCKS listed earlier. 

FEE An often unused field in the total accounting record, the FEE represents 
the total accumulation of items charged against the user by the 
ehargefee shell procedure (Refer to aeetsh(1M)). The ehargefee 
procedure is used to levy charges against a user for special services 
performed such as file restores, tape manipulation by operators, etc. 

4.10.3 Daily Command and Monthly Total Command Summaries. These two reports 
are virtually the same except that the Daily Command Summary only reports on the current 
accounting period, while the Monthly Total Command Summary tells the story for the start 
of the fiscal period to the current date. In other words, the monthly report reflects the data 
accumulated since the last invocation of monacet. 

The data included in these reports gives an administrator information on which commands are 
most heavily used, and, based 0n that, a hint as to what to weigh more heavily when system 
tuning. 

These reports are sorted by TOTAL KCOREMIN which is an arbitrary yardstick, but often a 
good one, for calculating "drain" on a system. 

4-8 



MOTOROLA COMPUTER SYSTEMS ACCOUNTING 

COMMAND NAME Name of the command. All shell procedures are lumped together under 
the name sh since only object modules are reported by the process 
accounting system. The administrator should monitor the frequency of 
programs called a.out or core or any other name that does not seem quite 
right. Acctcom is also a good tool to use for determining who executed a 
suspiciously named command and also if superuser privileges were used. 

NUMBER CMDS Total number of invocations of this particular command. 

TOTAL KCOREMIN Total cummulative measurement of the amount of kilobyte segments of 
memory used by a process per minute of run time. 

TOTAL CPU-MIN Total processing time this program has accumulated. 

TOTAL REAL-MIN Total real-time (wall-clock) minutes the program has accumulated. 
This total is the actual "waited for" time as opposed to starting a process 
in the background. 

MEAN SIZE-K Mean of the TOTAL KCOREMIN over the number of invocations 
reflected by NUMBER CMDS. 

MEAN CPU-MIN Mean derived between the NUMBER CMDS and TOTAL CPU-MIN. 

HOG FACTOR Relative measurement of the ratio of system availability to system 
utilization. It is computed by the formula: 

(total CPU time) / (elapsed time) 
This gives a relative measure of the total available CPU time consumed 
by the process during its execution. 

CHARS TRNSFD Total count of the number of characters moved around by the read(2) 
and write(2) system calls; it may be a negative. 

BLOCKS READ Total count of the physical block reads and writes that a process 
performed. 

4.10.4 Last Login. Gives the date when a particular login was last used. This could. be a 
good source for getting rid of unused logins and login directories. 

4-9 



ACCOUNTING MOTOROLA COMPUTER SYSTEMS 

4.11 Appendix A. Accounting System Files 

Files in the / usr / adm directory: 

diskdiag 

dtmp 

fee 

pacct 

pacct: 

Spacct:.MMDD 

diagnostic output during the execution of disk accounting programs 

output from the aeetdusg program 

output from the ehargefee program, ASCII tacct records 

active process accounting file 

process accounting files switched via turnaect 

process accounting files for MMDD during execution of runaeet 

Files in the / usr / adm / aed / nite directory: 

active 

cms 

ctacct.MMDD 

ctmp 

daycms 

dayacct 

disktacct 

fd2log 

lastdate 

lock lockl 

lineuse 

log 

logMMDD 

reboots 

statefiJe 

tmpwtmp 

wtmperror 

wtmperrorMMDD 

wtmp.MMDD 

used by runaed to record progress and print warning and error mes­
sages; active MMDD same as active after runaeet detects an error 

ASCII total command summary used by prdaily 

connect accounting records in taeet.h format 

output of aedeonl program, connect session records in ctmp.h format 

ASCII daily command summary used by prdaily 

total accounting records for one day in taeet.h format 

disk accounting records in taed.h format, created by dodisk procedure 

diagnostic output during execution of runacct 
(see eron entry) 

last day runaect executed in date +%m%d format 

used to control serial use of runacct 

tty line usage report used by prdaily 

diagnostic output from aedeonl 

same as log after runaeet detects an error 

contains beginning and ending dates from wtmp, and a listing of 
reboots 

used to record current state during execution of runaect 

wtmp file corrected by wtmpfix 

place for wtmpfix error messages 

same as wtmperror after runaed detects an error 

previous day's wtmp file 

4-10 



MOTOROLA COMPUTER SYSTEMS ACCOUNTING 

,.. in the /vw/adm/fICCt/avm cliNctofy: 

cms 

cmaprev 

daycms 

loginlog 

pacct.MMDD 

rprt.MMDD 

tacct 

tacctprev 

tacct.MMDD 

wtmp.MMDD 

total command summary file for current fiscal in internal summary 
format 

command summary file without latest update 

command summary file for yesterday in internal summary format 

created by Icntlogin 

concatenated version of all pacct files for MMDD. removed after 
reboot by remove procedure 

saved output of prdaily program 

cumulative total accounting file for current fiscal 

same as tacct without latest update 

total accounting file (or MMDD 

saved copy of wtmp file for MMDD. removed after reboot by remove 
procedure 

Files in the /",,/aclm/acct/fiscal directory: 

cms? 

fiscrpt? 

tacct? 

total command summary file for fiscal ? in internal summary format 

report similar to prcIaily for fiscal ? 

total accounting file for fiscal ? 

4-11 



ACCOUNTING MOTOROLA COMPUTER SYSTEMS 

NOTES 

4-12 



MOTOROLA COMPUTER SYSTEMS FILE SYSTEM CHECKING 

S. FILE SYSTEM CHECKING 

The File System Check Program (jsek) is an interactive file system check and repair program. 
Fsek uses the redundant structural information in the file system to perform several 
consistency checks. If an inconsistency is detected, it is reported to the operator, who may 
elect to fix or ignore each inconsistency. These inconsistencies result from the permanent 
interruption of the file system updates, which are performed every time a file is modified. 
Fsek is frequently able to repair corrupted file systems using procedures based upon the order 
in which the system honors these file system update requests. 

The purpose of this section is to describe the normal updating of the file system, to discuss the 
possible causes of file system corruption, and to present the corrective actions implemented by 
fsek. Both the program and the interaction between the program and the operator are 
described. 

The final segment of this section contains the fsek error conditions. The meanings of the 
various error conditions, possible responses, and related error conditions are explained. 

S.l General 

When the operating system is brought up, a consistency check of the file systems should 
always be performed. This precautionary measure helps to ensure a reliable environment for 
file storage on disk. If an inconsistency is discovered, corrective action must be taken. 

The section describes the file system, updating of the file system, and file system corruption. 
In addition, the set of heuristically sound corrective actions used by jsek is presented. 

S.2 File System 

S.2.1 Introduction. The file system features an internal block size of 1024 bytes (compared 
to the 512 block size in System 3}, the size of the internal system buffers is also 1024 bytes. 
Data transfers tolfrom disk are, therefore, in 1024-byte operations. 

S.2.2 Description. A 512-byte block file system is still supported by the operating system 
and file system related commands. Both file system sizes are allowed to coexist by detecting 
the file system type as set in the superblock. At file system mounting time, the operating 
system checks the magic number and type fields in the superblock. This magic number is 
unique in the sense that it is unlikely to be matched by an old 512-byte file system. A magic 
number mismatch assumes an original 512-byte block. New 1024-byte block file systems 
should have the special magic number set in the superblock and type field specifying a 1024-
byte block. These fields are set at file system creation time (/etc/mkfs). Also, new file 
systems with 512-byte blocks may be created. These have the special magic number set and 
type field indicating a 512-byte block. These fields in the superblock are set at creation time 
(/etc/omkfs). Labelit reports the file system type. 

No functional changes should be perceived by the user. File system related commands have 
changed internally to handle both types of file systems. These changes are transparent to the 
user; the user interface remains unchanged. Most commands still report in 512-byte block 
units. 

The root file system is distributed as a 1024-byte block file system. Users are encouraged to 
convert their old file systems to the larger size block. However, 512-byte block file systems 
are still acceptable. 

S.2.3 System Administrator Advice. Remember that system buffers are 1024 bytes. 
When configuring the operating system, take into consideration that the same number· of 
buffers as before (i.e., System 3) uses more main memory. Weigh this against reducing the 
number of buffers, which reduces the cache hit ratio and degrades performance. 

5-1 



Fll..E SYSTEM CHECKING MOTOROLA COMPUTER SYSTEMS 

S.3 Update of the File System 

Every time a file is modified, the operating system performs a series of file· system updates. 
These updates yield a consistent file system. To understand what happens in the event of a 
permanent interruption in this sequence, it is important to understand the order in which the 
update requests are honored. Procedures can be developed to repair a corrupted file system 
when it is known which pieces of information are written to the file system first. 

There are five types of file system updates. These involve the superblock, inodes, indirect 
blocks, data blocks (directories and files), and free-list blocks. 

S.3.1 Superblock. The superblock contains information about the size of the file system, the 
size of the inode list, part of the free-block list, the count of free blocks, the count of free 
inodes, and part of the free-inode list. 

The superblock of a mounted file system (the root file system is always mounted) is writteQ. 
to the file system whenever the file system is unmounted or a sync command is issued~, 

S.3.2 Inodes. An inode contains information about the type of inode (directory, data, or 
special), the number of directory entries linked to the inode, the list of blocks claimesi by the 
inode, and the size of the inode. 

An inode is written to the file system upon closure of the file associated with the inode. (All 
"in" core blocks are also written to the file system upon issue of a sync system call.) 

S.3.3 Indirect Blocks. There are three types of indirect blocks: single-indirect, double­
indirect, and triple-indirect. A single-indirect block contains a list of some of the block 
numbers claimed by an inode. Each of the 128 entries in an indirect block is a data-block 
number. A double-indirect block contains a list of single-indirect block numbers. A triple­
indirect block contains a list of double-indirect block numbers. 

Indirect blocks are written to the file system whenever they have been modified and released 
by the operating system. More precisely, they are queued for eventual writing. Physical 110 
is deferred until the buffer is needed by the system or a sync command is issued. 

S.3.4 Data Blocks. A data block may contain file information or directory entries. Each 
directory entry consists of a file name and an inode number. 

Data blocks are written to the file system whenever they have been modified and released by 
the operating system. 

S.3.S First Free-List Block. The superblock contains the first free-list block. Free-list 
blocks are lists of all blocks that are not allocated to the superblock, inodes, indirect blocks, or 
data blocks. Each free-list block contains a count of the number of entries in that block, a 
pointer to the next free-list block, and a partial list of free blocks in the file system. 

Free-list blocks are written to the file system whenever they have been modified and released 
by the operating system. 

SA Corruption of the File System 

The most common causes of file system corruption are: improper shutdown and startup 
procedures, and hardware failures. 

SA.1 Improper System Shutdown and Startup. File systems may become corrupted 
when proper shutdown procedures are not observed, e.g., forgetting to sync the system prior 
to halting the CPU, physically write-protecting a mounted file system, or taking a mounted 
file system off-line. 

5-2 



MOTOROLA COMPUTER SYSTEMS FILE SYSTEM CHECKING 

File systems may become further corrupted if proper startup procedures are not observed, e.g., 
not checking a file system for inconsistencies and not repairing inconsistencies. Allowing a 
corrupted file system to be used (and, thus, to be modified further) can be disastrous. 

5.4.2 Hardware Failure. Failures can be as subtle as a bad block on a disk pack or as 
b1atant as a nonfunctional disk-controller. 

5.5 Detection and Correction of Corruption 

A quiescent file system, i.e., unmounted and and not being written on, may be checked for 
structural integrity by performing consistency checks on the redundant data intrinsic to a file 
system. The redundant data is either read from the file system or computed from other 
known values. Because of the multipass nature of the fsck program, a quiescent state is 
important during a file system check. 

When an inconsistency is discovered, fsck reports the inconsistency; this allows the operator 
to choose corrective action. 

A discussion follows on how to discover inconsistencies (and take possible corrective actions) 
in the superblock, the inodes, the indirect blocks, the data blocks containing directory entries, 
and the free-list blocks. These corrective actions can be performed interactively by the fsck 
command under control of the operator. 

5.5.1 Superblock. The superblock is prone to corruption because every change to the file 
system's blocks or inodes modifies the superblock. 

The superblock and its associated parts are most often corrupted when the computer is halted 
and the last command involving output to the file system was not a sync command. 

The superblock can be checked for inconsistencies involving file-system size, inode-list size, 
free-block list, free-block count, and the free-inode count. 

A. File-System Size and Inode-List Size 

The file-system size must be larger than the number of blocks used by the superblock 
and the number of blocks used by the list of inodes. The number of inodes must be less 
than 65,535. The file-system size and inode-list size are critical pieces of informatim to 
the f sck program. While there is no way to actually check these sizes, f sck can check 
for them being within reasonable bounds. All other checks of the file system depend on 
the correctness of these sizes. 

B. Free-Block List 

The free-block list starts in the superblock and continues through the free-list blocks of 
the :file system. Each free-list block can be checked for a list count out of range, for 
block numbers out of range, and for blocks already allocated within the file system. A 
check is made to see that all the blocks in the file system are found. 

The first free-block list is in the superblock. Fsck checks the list count for a value of 
less than 0 or greater than SO. It also checks each block number for a value of less than 
the first data block in the file system or greater than the last block in the file system. 
Then it compares each block number to a list of already allocated blocks. If the free-list 
block pointer is nonzero, the next free-list block is read in and the process is repeated. 

When all the blocks have been accounted for, a check is made to see if the number of 
blocks used by the free-block list plus the number of blocks claimed by the inodes 
equals the total number of blocks in the file system. 

5-3 



FILE SYSTEM CHECKING MOTOROLA COMPUTER SYSTEMS 

If anything is wrong with the free-block list, then fsck may rebuild the list, excluding 
all blocks in the list of allocated blocks. 

C. Free-Block Count 

The superblock contains a count of the total number of free blocks within the file 
system. Fsck compares this count to the number of blocks found free within the file 
system. If the counts do not agree, then fsck may replace the count in the superblock 
by the actual free-block count. 

D. Free-Inode Count 

The superblock contains a count of the total number of free inodes within the file 
system. Fsck compares this count to the number of inodes found free within the file 
system. If the counts do not agree, then fsck may replace the count in the superblock 
by the actual free-inode count. 

5.5.2 Inodes. An individual inode is not as likely to be corrupted as the superblock. 
However, because of the great number of active inodes, there is almost as likely a chance for 
corruption in the inode list as in the superblock. 

The list of inodes is checked sequentially starting with inode 1 (there is no inode 0) and going 
to the last inode in the file system. Each inode can be checked for inconsistencies involving 
format and type, link count, duplicate blocks, bad blocks, and inode size. 

A. Format and Type 

Each inode contains a mode word. This mode word describes the type and state of the 
inode. Inodes may be one of four types: 

• regular 

• directory 

• special block 

• special character. 

If an inode is not one of these types, then the inode has an illegal type. Inodes may be 
found in one of three states: unallocated, allocated. and neither unallocated nor 
allocated. This last state indicates an incorrectly formatted inode. An inode can get in 
this state if bad data is written into the inode list through, for example, a hardware 
failure. The only possible corrective action is for fsck to clear the inode. 

B. Link Count 

Contained in each inode is a count of the total number of directory entries linked to the 
inode. Fsck verifies the link count of each inode by traversing down the total directory 
~~m~~~~~~~~~m~~~~~ 
inode. 

If the stored link count is nonzero and the actual link count is zero, it means that no 
directory entry appears for the inode. If the stored and actual link counts are nonzero 
and unequal, a directory entry may have been added or removed without the inode 
being updated. 

If the stored link count is nonzero and the actual ~ count is zero, fsck may ~ the 
disconnected file to the lost+found directory. If the stored and actual link counts are 
nonzero and unequal, fsck may replace the stored ~ count by the actual ~ count. 

5-4 



MOTOROLA COMPUTER SYSTEMS FILE SYSTEM CHECKING 

C. Duplicate Blocks 

Contained in each inode is a list or pointers to lists (indirect blocks) of all the blocks 
claimed by the inode. Fsck compares each block number claimed by an inode to a list of 
already allocated blocks. If a block number is already claimed by another inode, the 
block number is added to a list of duplicate blocks. Otherwise, the list of allocated 
blocks is updated to include the block number. If there are any duplicate blocks, fsck 
makes a partial second pass of the inode list to find the inode of the duplicated block. 
This is necessary because without examining the files associated with these inodes for 
correct content there is not enough information available to decide which inode is 
corrupted and should be cleared. Most times, the inode with the earliest modify time is 
incorrect and should be cleared. This condition can occur by using a file system with 
blocks claimed by both the free-block list and by other parts of the file system. 

A large number of duplicate blocks in an inode may be due to an indirect block not 
being written to the file system. Fsck prompts the operator to clear both inodes. 

D. Bad Blocks 

Contained in each inode is a list or pointer to lists of all the blocks claimed by the inode. 
Fsck checks each block number claimed by an inode for a value lower than that of the 
first data block or greater than the last block in the file system. If the block number is 
outside this range, the block number is a bad block number. 

A large number of bad blocks in an inode may be due to an indirect block not being 
written to the file system. Fsck prompts the operator to clear both inodes. 

E. Size Checks 

Each inode contains a 32 bit (4-byte) size field. This size indicates the number of 
characters in the file associated with the inode. This size can be checked for 
inconsistencies, e.g., directory sizes that are not a mUltiple of 16 characters or the number 
of blocks actually used not matching that indicated by the inode size. 

A directory inode within the file system has the directory bit on in the inode mode 
word. The directory size must be a multiple of 16 because a directory entry contains 16 
bytes (2 bytes for the inode number and 14 bytes for the file or directory name). 

Fsck warns of such directory misalignment. This is only a warning because not enough 
information can be gathered to correct the misalignment. 

A rough check of the consistency of the size field of an inode can be performed by 
computing from the size field the number of blockS that should be associated with the 
inode and comparing it to the actual number of blocks claimed by the inode. 

Fsck calculates the number of blocks that there should be in an inode by dividing the 
number of characters in an inode by the number of characters per block and rounding 
up. Fsck adds one block for each indirect block associated with the inode. If the actual 
number of blocks does not match the computed number of blocks, fsck warns of a 
possible file-size error. This is only a warning because the system does not fill in blocks 
in files created in random order. 

5.5.3 Indirect Blocks. Indirect blocks are owned by an inode. Therefore. inconsistencies in 
indirect blocks directly affect the inode that owns it. 

Inconsistencies that can be checked are blocks already claimed by another inode and block 
numbers outside the range of the file system. 

5-5 



Fll..E SYSTEM CHECKING MOTOROLA COMPUTER SYSTEMS 

For a discussion of detection and correction of the inconsistencies associated with indirect 
blocks, see the parts "Duplicate Blocks" and "Bad Blocks". 

5.5.4 Data Blocks. The two types of data blocks are plain data blocks and directory data 
blocks. Plain data blocks contain the information stored in a file. Directory data blocks 
contain directory entries. Fsck does not attempt to check the validity of the contents of a 
plain data block. 

Each directory data block can be checked for inconsistencies involving directory inode 
numbers pointing to unallocated inodes, directory inode numbers greater than the number of 
inodes in the file system, incorrect directory inode numbers for "." and " •• ", and directories 
which are disconnected from the file system. In addition, the validity of the contents of a 
directory's data block is checked. 

If a directory entry inode number points to an unallocated inode, then Jsck may remove that 
directory entry. This condition probably occurred because the data blocks containing the 
directory entries were modified and written out while the inode was not yet written out. 

If a directory entry inode number is pointing beyond the end of the inode list, Jsck may 
remove that directory entry. This condition occurs if bad data is written into a directory data 
block. 

The directory inode number entry for "." should be the first entry in the directory data block. 
Its value should be equal to the inode number for the directory data block. 

The directory inode number entry for " •. " should be the second entry in the directory data 
block. Its value should be equal to the inode number for the parent of the directory entry (or 
the inode number of the directory data block if the directory is the root directory). 

If the directory inode numbers are incorrect, Jsck may replace them by the correct values. 

Fsck checks the general connectivity of the file system. If directories are found not to be 
linked into the file system, Jsck links the directory back into the file system in the 
lost+found directory. This condition can be caused by inodes being written to the file system 
with the corresponding directory data blocks not being written to the file system. 

5.5.5 Free-List Blocks. Free-list blocks are owned by the superblock. Therefore, 
inconsistencies in free-list blocks directly affect the superblock. 

Inconsistencies that can be checked are a list count outside of range, block numbers outside of 
range, and blocks already associated with the file system. 

For a discussion of detection and correction of the inconsistencies associated with free-list 
blocks, see the part "Free-Block List". 

5.6 Appendix A. Error Conditions 

5.6.1 Conventions. Fsck is a multipass file system check program. Each file system pass 
invokes a different phase of the Jsck program. After the initial setup, Jsck performs 
successive phases over each file system performing cleanup, checking blocks and sizes, 
pathnames, connectivity, reference counts, and the free-block list (possibly rebuilding it). 

When an inconsistency is detected, Jsck reports the error condition to the operator. If a 
response is required, Jsck prints a prompt message and waits for a response. This appendix 
explains the meaning of each error condition, the possible responses, and the related error 
conditions. 

The error conditions are organized by the "Phase" of the Jsck program in which they can 
occur. The error conditions that may occur in more than one phase is discussed under the part 

5-6 



MOTOROLA COMPUTER SYSTEMS FILE SYSTEM CHECKING 

"Initialization". 

5.6.2 Initialization. Before a file system check can be performed, certain tables have to be 
set up and certain files opened. This part concerns itself with the opening of files and the 
initialization of tables. Error conditions resulting from command line options, memory 
requests, opening of files, status of files, file system size checks, and creation of the scratch file 
are listed below. 

• C option? 

C is not a legal option to jsck; legal options are -y, -n, -s, -S, -t, -f, -q, and -D. Fsck 
terminates on this error condition. See the jsck(lM) entry in the SYSTEM V 168 
Administrator's Manual for further details. 

• Bad -t option 

The -t option is not followed by a file name. Fsck terminates on this error condition. See 
the jsck(lM) entry in the SY ST EM VI68 Administrator's Manual for further details. 

• Invalid -s argument, defaults assumed 

The -s option is not suffixed by 3, 4, or blocks-per-cylinder:blocks-to-skip. Fsck assumes a 
default value of 400 blocks-per-cylinder and 7 blocks-to-skip. See the jsck(lM) entry in 
the SYSTEM V 168 Administrator's Manual for further details. 

• Incompatible options: -n and -s 

It is not possible to salvage the free-block list without modifying the file system. Fsck 
terminates on this error condition. See the jsck(lM) entry in the SYSTEM V 168 
Administrator's Manual for further details. 

• Incompatible options: -n and -q 

It is not possible to do automatic removal without modifying the file system. Fsck 
terminates on this error condition. See the jsck(lM) entry in the SYSTEM V 168 
Administrator's Manual for further details. 

• Can not fstat standard input 

Fsck's attempt to fstat standard input failed. Fsck terminates on this error condition. 

• Can not get memory 

Fsck's request for memory for its virtual memory tables failed. Fsck terminates on this 
error condition. 

• Can not open checklist file: F 

The default file system checklist file F (usually fetefchecklist) can not be opened for 
reading. Fsck terminates on this error condition. Check access modes of F. 

• Can not stat root 

Fsck's request for statistics about the root directory "/" failed. Fsck terminates on this 
error condition. 

5-7 



FILE SYSTEM CHECKING MOTOROLA COMPUTER SYSTEMS 

• Can not stat F 

Fsck's request for statistics about the file system F failed. It ignores this file system and 
continues checking the next file system given. Check access modes of F. 

• FS is a mounted file system, ignored 

This is to avoid modifying a mounted file system. It ignores this file system and continues 
with the next file system given. 

• F is not a block or character device 

Fsck has been given a regular file name by mistake. It ignores this file system and 
continues checking the next file system given. Check file type of F. 

• Can not open F 

The file system F can not be opened for reading. It ignores this file system and continues 
checking the next file system given. Check access modes of F. 

• Size check: fsize X isize Y 

More blocks are used for the inode list Y than there are blocks in the file system X, or 
there are more than 65,535 inodes in the file system. It ignores this file system and 
continues checking the next file system given. 

• Can not create F 

Fsck's request to create a scratch file F failed. It ignores this file system and continues 
checking the next file system given. Check access modes of F. 

• CAN NOT SEEK: BLK B (CONTINUE) 

Fsck's request for moving to a specified block number B in the file system failed. 

Possible responses to CONTINUE prompt are: 

YES 

NO 

Attempt to continue to run file system check. Often, however, the 
problem persists. This error condition does not allow a complete 
check of the file system. A second run of f sck should be made to 
recheck this file system. If block was part of the virtual memory 
buffer cache, fsck terminates with the message ''Fatal 110 error". 

Terminate program. 

• CAN NOT READ: BLK B (CONTINUE) 

Fsck's request for reading a specified block number B in the file system failed. 

Possible responses to CONTINUE prompt are: 

YES Attempt to continue to run file system check. Often, however, the 
problem persists. This error condition does not allow a complete 
check of the file system. A second run of f sck should be made to 
recheck this file system. If block was part of the virtual memory 
buffer cache, fsck terminates with the message "Fatal 110 error". 

NO Terminate program. 

• CAN NOT WRITE: BLK B (CONTINUE) 

Fsck's request for writing a specified block number B in the file system failed. The disk is 
write-protected. 

5-8 



MOTOROLA COMPUTER SYSTEMS FILE SYSTEM CHECKING 

Possible responses to CONTINUE prompt are: 

YES Attempt to continue to run file system check. Often, however, the 
problem persists. This error condition does not allow a complete 
check of the file system. A second run of fsck should be made to 
recheck this file system. If block was part of the virtual memory 
buffer cache, fsck terminates with the message "Fatal VO error". 

NO Terminate program. 

5.6.3 Phase 1: Check Blocks and Sizes. This phase concerns itself with the inode list. This 
part lists error conditions reSUlting from checking inode types, setting up the zero-link-count 
table, examining inode block numbers for bad or duplicate blocks, checking inode size, and 
checking inode format. 

• UNKNOWN FILE TYPE 1=1 (CLEAR) 

The mode word of the inode I indicates that the inode is not a special character inode, 
special character inode, regular inode, or directory inode. See the part "Format and Types" 
for more information. 

Possible responses to CLEAR prompt are: 

YES 

NO 

Deallocate inode I by zeroing its contents. This always invokes the 
UNALLOCATED error condition in Phase 2 for each directory entry 
pointing to this inode. 

Ignore this error condition. 

• LINK COUNT TABLE OVERFLOW (CONTINUE) 

An internal table for fsck containing allocated inodes with a link count of zero has no 
more room. Recompile fsck with a larger value of MAXLNCNT. 

Possible responses to CONTINUE prompt are: 

YES 

NO 

• B BAD 1=1 

Continue with program. This error condition does not allow a 
complete check of the file system. A second run of fsck should be 
made to recheck this file system. If another allocated inode with a 
zero link count is found, this error condition is repeated. 

Terminate program. 

Inode I contains block number B with a number lower than the number of the fu:st data 
block in the file system or greater than the number of the last block in the file system. 
This error condition may invoke the EXCESSIVE BAD BLKS error condition in Phase 1 if 
inode I has too many block numbers outside the file system range. This error condition 
always invokes the BAD/DUP error condition in Phase 2 and Phase 4. See the part "Bad 
Blocks" for more information. 

• EXCESSIVE BAD BLKS 1=1 (CONTINUE) 

There is more than a tolerable number (usually to) of blocks with a number lower than 
the number of the first data block in the file system or greater than the number of last 
block in the file system associated with inode I. See the part "&d Blocks" for more 
information. 

Possible responses to CONTINUE prompt are: 

5-9 



FILE SYSTEM CHECKING MOTOROLA COMPUTER SYSTEMS 

YES 

NO 

• B DUP 1=1 

Ignore the rest of the blocks in this inode and continue checking 
with next inode in the file system. This error condition does not 
allow a complete check of the file system. A second run of fsck 
should be made to recheck this file system. 

Terminate program. 

Inode 1 contains block number B which is already claimed by another inode. This error 
condition may invoke the EXCESSIVE DUP BLKS error condition in Phase 1 if inode 1 has 
too many block numbers claimed by other inodes. This error condition always invokes 
Phase 1b and the BAD/DUP error condition in Phase 2 and Phase 4. See the part 
"Duplicate Blocks" for more information. 

• EXCESSIVE DUP BLKS 1=1 (CONTINUE) 

There is more than a tolerable number (usually 10) of blocks claimed by other inodes. See 
the part "Duplicate Blocks" for more information. 

Possible responses to CONTINUE prompt are: 

YES 

NO 

Ignore the rest of the blocks in this inode and continue checking 
with next inode in the file system. This error condition does not 
allow a complete check of the file system. A second run of fsck 
should be made to recheck this file system. 

Terminate program. 

• DUP TABLE OVERFLOW (CONTINUE) 

An internal table in fsck containing duplicate block numbers has no more room. 
Recompile fsck with a larger value of DUPTBLSIZE. 

Possible responses to CONTINUE prompt are: 

YES 

NO 

Continue with program. This error condition does not allow a 
complete check of the file system. A second run of fsck should be 
made to recheck this file system. If another duplicate block is found, 
this error condition is repeated. 

Terminate program. 

• POSSIBLE FILE SIZE ERROR 1=1 

The inode I size does not match the actual number of blocks used by the inode. This is 
only a warning. (See the part "Size Checks"') If the -q option is used, this message is not 
printed. 

• DIRECTORY MISALIGNED 1=1 

The size of a directory inode is not a multiple of the size of a directory entry (usually 16). 
This is only a warning. (See the part "Size Checks".) If the -q option is used, this message 
is not printed. 

• PARTIALLY ALLOCATED INODE 1=1 (CLEAR) 

Inode I is neither allocated nor unallocated. See the part "Format and Types" for more 
information. 

Possible responses to CLEAR prompt are: 

5-10 



MOTOROLA COMPUTER SYSTEMS FILE SYSTEM CHECKING 

YES 

NO 

Deallocate inode I by zeroing its contents. 

Ignore this error condition. 

5.6.4 Phase lB: Rescan for More DUPS. When a duplicate block is found in the file 
system, the file system is rescanned to find the inode which previously claimed that block. 
This part lists the error condition when the duplicate block is found. 

• B DUP 1=1 

Inode I contains block number B which is already claimed by another inode. This error 
condition always invokes the BAD/DUP error condition in Phase 2. Inodes with 
overlapping blocks may be determined by examining this error condition and the DUP 
error condition in Phase 1. See the part "Duplicate Blocks" for more information. 

5.6.5 Phase 2: Check Pathnames. This phase concerns itself with removing directory 
entries pointing to error conditioned inodes from Phase 1 and Phase lb. This part lists error 
conditions resulting from root inode mode and status, directory inode pointers in range, and 
directory entries pointing to bad inodes. 

• ROOT INODE UNALLOCATED. TERMINATING 

The root inode (always inode number 2) has no allocate mode bits. The program 
terminates. See the part "Format and Types" for more information. 

• ROOT INODE NOT DIRECTORY (FIX) 

The root inode (usually inode number 2) is not directory in ode type. 

Possible responses to FIX prompt are: 

YES 

NO 

Replace the root inode's type to be a directory. If the root inode's 
data blocks are not directory blocks, a very large number of error 
conditions is produced. 

Terminate program. 

• DUPS/BAD IN ROOT INODE (CONTINUE) 

Phase 1 or Phase Ib have found duplicate blocks or bad blocks in the root inode (usually 
inode number 2) for the file system. 

Possible responses to CONTINUE prompt are: 

YES 

NO 

Ignore DUPS/BAD error condition in root inode and attempt to 
continue to run the file system check. If root inode is not correct, 
then this may result in a large number of other error conditions. 

Terminate program. 

• lOUT OF RANGE 1=1 NAME=F (REMOVE) 

A directory entry F has an inode number I which is greater than the end of the inode 
list. See the part "Data Blocks" for more information. 

Possible responses to REMOVE prompt are: 

YES 

NO 

The directory entry F is removed. 

Ignore this error condition. 

• UNALLOCATED 1=1 OWNER=O MODE=M SIZE=S MTIME=T NAME=F (REMOVE) 

5-11 



Fll..E SYSTEM CHECKING MOTOROLA COMPUTER SYSTEMS 

A directory entry F has an inode I without allocate mode bits. The owner 0, mode M, 
size S, modify time T, and file name F are printed. If the file system is not mounted and 
the -n option was not specified, the entry is removed automatically if the inode it points to 
is character size O. 

Possible responses to REMOVE prompt are: 

YES 

NO 

The directory entry F is removed. 

Ignore this error condition. 

• DUPIBAD 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F (REMOVE) 

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory 
entry F, directory inode I. The owner 0, mode M, size S, modify time T, and directory 
name F are printed. 

Possible responses to REMOVE prompt are: 

YES 

NO 

The directory entry F is removed. 

Ignore this error condition. 

• DUPIBAD 1=1 OWNER=O MODE=M SIZE=S MTIME=T FILE=F (REMOVE) 

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory 
entry F, inode I. The owner 0, mode M, size S, modify time T, and file name Fare 
printed. 

Possible responses to REMOVE prompt are: 

YES 
NO 

The directory entry F is removed. 

Ignore this error condition. 

• BAD BLK B IN DIR 1=1 OWNER=<> MODE=M SIZE=S MTIME=T 

This message only occurs when the -q option is used. A bad block was found in DIR inode 
I. Error conditions looked for in directory blocks are non-zero padded entries, inconsistent 
"." and " .. " entries, and imbedded slashes in the name field. This error message indicates 
that the user should at a later time either remove the directory inode if the entire block 
looks bad or change (or remove) those directory entries that look bad. 

5.6.6 Phase 3: Check Connectivity. This phase concerns itself with the directory 
connectivity seen in Phase 2. This part lists error conditions resulting from unreferenced 
directories and missing or fulllost+ found directories. 

• UNREF DIR 1=1 OWNER=<> MODE=M SIZE=S MTIME=T (RECONNECT) 

The directory inode I was not connected to a directory entry when the file system was 
traversed. The owner 0, mode M, size S, and modify time T of directory inode I are 
printed. Fsck forces the reconnection of a nonempty directory. 

Possible responses to REa>NNECf prompt are: 

YES Reconnect directory inode I to the file system in directory for lost 
files (usually lost+ found). This may invoke lost+ found error 
condition in Phase 3 if there are problems connecting directory inode 
I to lost+fatnd. This may also invoke CONNECfED error condition 
in Phase 3 if link was successful. 

5-12 



MOTOROLA COMPUTER SYSTEMS FILE SYSTEM CHECKING 

NO Ignore this error condition. This always invokes UNREF error 
condition in Phase 4. 

• SORRY. NO lost+found DIRECTORY 

There is no losH found directory in the root directory of the file system; fsck ignores the 
request to link a directory in losH found. This always invokes the UNREF error condition 
in Phase 4. Check access modes of losHfound. See fsck(IM) in the SYSTEM V/68 
Administrator's Manual for further details. 

• SORRY. NO SPACE IN lost+found DIRECTORY 

There is no space to add another entry to the losH found directory in the root directory of 
the file system; fsck ignores the request to link a directory in losHfound. This always 
invokes the UNREF error condition in Phase 4. Clean out unnecessary entries in 
losH found or make losH f ound larger. See f sck( 1M) in the SY ST EM V /68 
Administrator's Manual for further details. 

• DIR 1=11 CONNECTED. PARENT WAS 1=12 

This is an advisory message indicating a directory inode 11 was successfully connected to 
the losH found directory. The parent inode 12 of the directory inode 11 is replaced by the 
inode number of the loSH found directory. See the parts "Link Count" and "Data Blocks" 
for more information. 

5.6.7 Phase 4: Check Reference Counts. This phase concerns itself with the link count 
information seen in Phase 2 and Phase 3. This part lists error conditions resulting from 
unreferenced files, missing or full losH found directory, incorrect link counts for files, 
directories, or special files, unreferenced files and directories, bad and duplicate blocks in files 
and directories, and incorrect total free-inode counts. 

• UNREF FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T (RECONNECT) 

Inode 1 was not connected to a directory entry when the file system was traversed. The 
owner 0, mode M, size S, and modify time T of inode I are printed. (See the part "Link 
Count".) If the -n option is not set and the file system is not mounted, empty files are not 
reconnected and are cleared automatically. 

Possible responses to RECONNECT prompt are: 

YES 

NO 

Reconnect inode 1 to file system in the directory for lost files 
(usually losH found). This may invoke losH found error condition 
in Phase 4 if there are problems connecting inode 1 to lost+ found. 

Ignore this error condition. This always invokes CLEAR error 
condition in Phase 4. 

• SORRY. NO lost+found DIRECTORY 

There is no losHfound directory in the root directory of the file system; fsck ignores the 
request to link a file in lost+ found. This always invokes CLEAR error condition in Phase 
4. Check access modes of losH found. 

• SORRY. NO SPACE IN lost+found DIRECTORY 

There is no space to add another entry to the lost+ found directory in the root directory of 
the file system;Jsck ignores the request to link a file in lost+found. This always invokes 
the CLEAR error condition in Phase 4. Check size and contents of losH found. 

5-13 



FILE SYSTEM CHECKING MOTOROLA COMPUTER SYSTEMS 

• (CLEAR) 

The inode mentioned in the immediately previous error condition can not be reconnecte<i. 
See the part "Link Count" for more information. 

Possible responses to CLEAR prompt are: 

YES 

NO 

Deallocate inode mentioned in the immediately previous error 
condition by zeroing its contents. 

Ignore this error condition. 

• LINK COUNT FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T COUNT=X 
SHOULD BE Y (ADJUST) 

The link count for inode I, which is a file, is X but should be Y. The owner 0, mode M, 
size S, and modify time T are printed. See the part "Link Count" for more information. 

Possible responses to ADJUST prompt are: 

YES 

NO 

Replace link count of file inode I with Y. 

Ignore this error condition. 

• LINK COUNT DIR 1=1 OWNER=O MODE=M SIZE=S MTIME=T COUNT=X 
SHOULD BE Y (ADJUST) 

The link count for inode I, which is a directory, is X but should be Y. The owner 0, 
mode M, size S, and modify time T of directory inode I are printed. 

Possible responses to ADJUST prompt are: 

YES 

NO 

Replace link count of directory inode I with Y. 

Ignore this error condition. 

• LINK COUNT F 1=1 OWNER=O MODE=M SIZE=S MTIME=T COUNT=X SHOULD 
BE Y (ADJUST) 

The link count for F inode I is X but should be Y. The file name F, owner 0, mode M, 
size S, and modify time T are printed. 

Possible responses to ADJUST prompt are: 

YES Replace link count of inode I with Y. 

NO Ignore this error condition. 

• UNREF FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T (CLEAR) 

Inode I, which is a file, was not connected to a directory entry when the file system was 
traversed. The owner 0, mode M, size S, and modify time T of inode I are printed. (See 
the parts ''Link Counts" and "Data Blocks".) If the -n option is not set and the file system is 
not mounted, empty files are cleared automatically. 

Possible responses to CLEAR prompt are: 

YES 

NO 

Deallocate inode I by zeroing its contents. 

Ignore this error condition. 

• UNREF DIR 1=1 OWNER=O MODE=M SIZE=S MTIME=T (CLEAR) 

Inode I, which is a directory, was not connected to a directory entry when the file system 
was traversed. The owner 0, mode M, size S, and modify time T of inode I are printed. 

5-14 



MOTOROLA COMPUTER SYSTEMS FILE SYSTEM CHECKING 

If the -n option is not set and the file system is not mounted, empty directories are cleared 
automatically. Nonempty directories are not cleared. 

Possible responses to CLEAR prompt are: 

YES 

NO 

Deallocate inode I by zeroing its contents. 

Ignore this error condition. 

• BAD/DUP FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T (CLEAR) 

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with file inode I. 
The owner 0, mode M, size S, and modify time T of inode I are printed. See the parts 
"Duplicate Blocks" and "Bad Blocks" for more information. 

Possible responses to CLEAR prompt are: 

YES 

NO 

Deallocate inode I by zeroing its contents. 

Ignore this error condition. 

• BAD/DUP DIR 1=1 OWNER=O MODE=M SIZE=S MTIME=T (CLEAR) 

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory 
inode I. The owner 0, mode M, size S, and modify time T of inode I are printed. 

Possible responses to CLEAR prompt are: 

YES 

NO 

Deallocate inode I by zeroing its contents. 

Ignore this error condition. 

• FREE INODE COUNT WRONG IN SUPERBLK (FIX) 

The actual count of the free inodes does not match the count in the superblock of the file 
system. (See the part "Free-In ode Count".) If the -q option is specified, the count is fixed 
automatically in the superblock. 

Possible responses to FIX prompt are: 

YES Replace count in superblock by actual count. 

NO Ignore this error condition. 

5.6.8 Phase 5: Check Free List. This phase concerns itself with the free-block list. This 
part lists error conditions resulting from bad blocks in the free-block list, bad free-blocks 
count, duplicate blocks in the free-block list, unused blocks from the file system not in the 
free-block list, and the total free-block count incorrect. 

• EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE) 

The free-block list contains more than a tolerable number of blocks (usually 10) with a 
value less than the first data block in the file system or greater than the last block in the 
file system. See the parts "Free-Block List" and "Bad Blocks" for more information. 

Possible responses to CONTINUE prompt are: 

YES 

NO 

Ignore rest of the free-block list and continue execution of fsck. 
This error condition always invokes "BAD BLKS IN FREE LIST" 
error condition in Phase 5. 

Terminate program. 

5-15 



FILE SYSTEM CHECKING MOTOROLA COMPUTER SYSTEMS 

• EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE) 

The free-block list contains more than a tolerable number of blocks (usually ten) claimed 
by inodes or earlier parts of the free-block list. 

Possible responses to CONTINUE prompt are: 

YES 

NO 

Ignore the rest of the free-block list and continue execution of fsck. 
This error condition always invokes "DUP BLKS IN FREE LIST" 
error condition in Phase 5. 

Terminate program. 

• BAD FREEBLK COUNT 

The count of free blocks in a free-list block is greater than 50 or less than O. This error 
condition always invokes the "BAD FREE LIST" condition in Phase 5. 

• X BAD BLKS IN FREE LIST 

X blocks in the free-block list have a block number lower than the first data block in the 
file system or greater than the last block in the file system. This error condition always 
invokes the "BAD FREE LIST" condition in Phase 5. See the parts "Free-Block List" and 
"Bad Blocks" for more information. 

• X DUP BLKS IN FREE LIST 

X blocks claimed by inodes or earlier parts of the free-list block were found in the free­
block list. This error condition always invokes the "BAD FREE LIST" condition in Phase 5. 

• X BLK(S) MISSING 

X blocks unused by the file system were not found in the free-block list. This error 
condition always invokes the "BAD FREE LIST" condition in Phase 5. See the part ''Free­
Block List" for more information. 

• FREE BLK COUNT WRONG IN SUPERBLOCK (FIX) 

The actual count of free blocks does not match the count in the superblock of the file 
system. See the part "Free-Block Count" for more information. 

Possible responses to FIX prompt are: 

YES 

NO 

Replace count in superblock by actual count. 

Ignore this error condition. 

• BAD FREE LIST (SALVAGE) 

Phase 5 has found bad blocks in the free-block list, duplicate blocks in the free-block list, 
or blocks missing from the file system. If the -q option is specified, the free-block list is 
salvaged automatically. 

Possible responses to SAL V AGE prompt are: 

YES 

NO 

Replace actual free-block list with a new free-block list. The new 
free-block list is ordered to reduce time spent by the disk waiting for 
the disk to rotate into position. 

Ignore this error condition. 

5-16 



MOTOROLA COMPUTER SYSTEMS FILE SYSTEM CHECKING 

S.6.9 Phase 6: Salvage Free List. This phase concerns itself with the free-block list 
reconstruction. This part lists error conditions resulting from the blocks-to-skip and blocks­
per-cylinder values . 

• Default free-block list spacing assumed 

This is an advisory message indicating the blocks-to-skip is greater than the blocks-per­
cylinder, the blocks-to-skip is less than one, the blocks-per-cylinder is less than one, or the 
blocks-per-cylinder is greater than 1000. The default values of 7 blocks-to-skip and 400 
blocks-per-cylinder are used. See fsck(1M) in the SYSTEM V /68 Administrator's Manual 
for further details. 

S.6.10 Cleanup. Once a file system has been checked, a few cleanup functions are 
performed. This part lists advisory messages about the file system and modify status of the 
file system. 

X files Y blocks Z free 

This is an advisory message indicating that the file system checked contained X files using Y 
blocks leaving Z blocks free in the file system. 

***** BOOT (NO SYNO) ***** 
This is an advisory message indicating that a mounted file system or the root file system has 
been modified by fsck. If the system is not rebooted immediately, the work done by fsck 
may be undone by the in-core copies of tables the system keeps. 

***** FILE SYSTEM WAS MODIFIED ***** 
This is an advisory message indicating that the current file system Was modified by fsck. If 
this file system is mounted or is the current root file system, fsck should be halted and the 
system rebooted. If the system is not rebooted immediately, the work done by fsck may be 
undone by the in-core copies of tables. 

5-17 



FILE SYSTEM CHECKING MOTOROLA COMPUTER SYSTEMS 

NOTES 

5-18 



MOTOROLA COMPUTER SYSTEMS 

6. LP SPOOLING SYSTEM 

6.1 General 

LP SPOOLING SYSTEM 

The LP program is a system of commands which performs diverse spooling functions under 
the operating system. Since the primary LP application is off-line printing, this document 
focuses mainly on spooling to line printers. LP allows administrators to customize the system 
to spool to a collection of line printers of any type and to group printers into logical classes in 
order to maximize the throughput of the devices. Users are provided the capabilities of 
queuing and canceling print requests, preventing and allowing queuing to and printing on 
devices, starting and stopping LP from processing requests, changing configuration of printers 
and finding status of the LP system. This section describes the role of an LP Administrator in 
performing restricted functions and overseeing the smooth operation of LP. 

6.2 Overview of LP Features 

6.2.1 Definitions. Several terms must be defined before presenting a brief summary of LP 
commands. The LP was designed with the flexibility to meet the needs of users on different 
UNIX systems. Changes to the LP configuration are performed by the Ipadmin(IM) 
command. 

LP makes a distinction between printers and printing devices. A device is a physical 
peripheral device or a file and is represented by a full SYSTEM V/68 pathname. A printer is a 
logical name that represents a device. At different points in time, a printer may be associated 
with different devices. A class is a name given to an ordered list of printers. Every class 
must contain at least one printer. Each printer may be a member of zero or more classes. A 
destinaJ;ion is a printer or a class. One destination may be designated as the system default 
destination. The IP(I) cOmmand directs all output to this destination unless the user specifi.es 
otherwise. Output that is routed to a printer is printed only by that printer, whereas output 
directed to a class is printed by the first available class member. 

Each invocation of lp creates an output request that consists of the files to be printed and 
options from the lp command line. An interface program which formats requests must be 
supplied for each printer. The LP scheduler, lpsched(IM), services requests for all 
destinations by routing requests to interface programs to do the printing on devices. An LP 
configuration for a system consists of devices, destinations, and interface programs. 

6.2.2 Commands. 

A. Commands for General Use. 

The IP(I) command is used to request the printing of files. It creates an output request 
and returns a request id of the form dest-seqno to the user, where seqno is a unique 
sequence number across the entire LP system, and dest is the destination where the 
request was routed. 

Cancel is used to cancel output requests. The user supplies request ids as Teturned by lp 
or printer names, in which case the currently printing requests on those printers are 
canceled. 

Disable prevents lpsched from routing output requests to printers. 

Enable(O allows lpsched to route output requests to printers. 

B. Commands for LP Administrators. 

Each LP system must designate a person or persons as LP administrator to perform the 
restricted functions listed below. Either the super user or any user who is logged into 
the system as lp qualifies as an LP Administrator. All LP files and commands are owned 

6-1 



LPSPOOLINGSYSTEM MOTOROLA COMPUTER SYSTEMS 

by lp, except for Ipadmin and lpsched which are owned by root. The following 
commands are described in more detail later in this section. 

Lpadmin(lM) 

Lpsched(lM) 

Lpshut 

AcceptC1M) 

Reject 

Lpmove 

6.3 Building LP 

Modifies LP configuration. Many features of this command cannot 
be used when lpsched is running. 

Routes output requests to interface programs which do the 
printing on devices. 

Stops lpsched from running. All printing activity is halted, but 
other LP commands may still be used. 

Allows lp to accept output, requests for destinations. 

Prevents lp from accepting requests for destinations. 

Moves output requests from one destination to another. Whole 
destinations may be moved at once. This command cannot be used 
when lpsched is running. 

All LP commands are built from source code that resides in the lusrlsrc/cmd/lp directory 
including the make file, lp.mk. Unless some of the definitions in Ip.mk are changed, LP may 
be installed only by the super user. Before installing a new LP system, make sure there is a 
login called lp on your system and that the spool directory, lusrlspoolllp, does not exist. To 
install LP, perform the following: 

cd lusrlsrc/cmd/lp 
make -f lp.mk install 

This builds all LP commands and creates an initial LP configuration consisting of no printers, 
classes, or default destination. LP must be configured by an LP administrator using the 
Ipadmin command in order to create a useful spooler. 

In addition, add the following code to letc/rc: 

rm -f lusrlspool/lp/SCHEDLOCK 
lusr/lib/lpsched 
echo HLP scheduler started" 

This starts the LP scheduler each time that the system is restarted. 

Several variables in lp.mk may be changed before installing LP to customize the system: 

Variable Default Value Meaning 

SPOOL 
ADMIN 
GROUP 
ADMDIR 
USRDIR 

lusrlspoollip 
Ip 
bin 
lusr/lib 

lusr/bin 

spool directory 
logname of LP Administrator 
group owning LP commands/data 
commands of administrator 
user commands reside here 

If an existing LP spool directory is corrupted (but not the LP programs) or if it needs to be 
rebuilt from scratch, make sure that lpsched is not running, and perform the following as 
superuser: 

A. Make copies of any interface programs that are not standard LP software. 00 N<Yf 
make these copies underneath the spool directory. The pathname for printer Hp. is 
lusrlspoollip/interface/p. 

6-2 



MOTOROLA COMPUTER SYSTEMS LP SPOOLING SYSTEM 

B. rm -fr lusrispoollip 

C. Make -f Ip.mk new (This recreates the bare LP configuration described above.) 

6.4 Precautions 

A. Some LP commands invoke other LP commands. Moving them after they are built 
causes some commands to fail. 

B. The files under the SPOOL directory should be modified only by LP commands. 

C. All LP commands require set-user-id permission. If this is removed, the commands fail. 

6.S Configuring LP - The Ipadmin Command 

Changes to the LP configuration should be made by using the Ipadmin command and not by 
hand. Lpadmin does not attempt to alter the LP configuration when Ipsched is running, 
except where explicitly noted below. 

6.5.1 SYSTEM V/68 Configuration. SYSTEM V/68 contains two line printer facilities: 
the older (now obsolete) lp,{l)/lp,{l) duo and the newer lP(l) family of utilities. By default, 
it is assumed that the lP(l) family will be used (see letc/rc). The system administrator 
("root") should configure the lP(l) system (one time only per printer) with the following 
commands from the console: 

PATH=:$PATH 
cd lusr/lib 
Ipshut 
Ipadmin -ppr1 -mpprx -v/dev/IpO 
Ipadmin -dpr1 # only for the default printer 
accept pr1 
enable pr1 
lpsched 

The lpsJua(.1M) command (cf. Ipsched(lM)) shuts down the current lpsched(lM). The first 
lpadmin(lM) command defines a printer "pr1" (the user specifies a name) and a model 
interface program "pprx" (for Parallel Printronix; see lpadmin(lM) for others), connected to 
the device Idev/lpO. The second lpadmin(lM) command calls "pr1" the default printer. The 
accept(lM) command establishes that "pr1" is ready to accept spooled files. The enable(lM) 
command indactes that "pr1" is ready to print. The final line restarts the scheduler. 
Descriptions of all the commands in the configuration procedure are provided in the following 
paragraphs. 

6.5.2 Introducing New Destinations. 

A. The following information must be supplied to Ipadmin when introducing a new 
printer: 

• The printer name. This (-p printer) is an arbitrary name which must conform to 
the following rules: 

It must be no longer than 14 characters. 

It must consist solely of alphanumeric characters and underscores. 

It must not be the name of an existing LP destination (printer or class). 

• The device associated with the printer (-v device). This is the pathname of a 
hardwired printer, a login terminal, or other file that is writable by lp. 

6-3 



LPSPOOLINGSYSTEM MOTOROLA COMPUTEB SYSTEMS 

• The printer interface program. This may be specified in one of three ways: 

It may be selected from a list of model interfaces supplied with LP (-m 
model). 

It may be the same interface that an existing printer uses (-e printer). 

It may be a program supplied by the LP administrator (-i interface). 

B. Information which need not always be supplied when creating a new printer includes: 

• The user may specify -h to indicate that the device for the printer is hardwired or 
the device is the name of a file (this is assumed by default). If, on the other hand, 
the device is the pathname of a login terminal, then -I must be included on the 
command line. This indicates to lpsched that it must automatically disable this 
printer each time lpsched starts running. This fact is reported by lpstat when it 
indicates printer status: 

$Ipstat -pa 

printer a (login terminal) disabled Oct 31 11:15 -
disabled by scheduler: login terminal 

This is done because device names for login terminals can be (and usually are) 
associated with different physical devices from day to day. If the scheduler did not 
take this action, somebody might log in and be surprised that LP is spooling to hislher 
terminal! 

• The new printer may be added to an existing class or added to a new class (-CCU2SS). 
New class names must conform to the same rules for new printer names. 

C. EXAMPLES: 

The following examples are referenced by further examples in later sections. 

1. Create a printer called prl whose device is /dev/printer and whose interface 
program is the model hp interface: 

$ /usr/lib/lpadmin -ppr1 -v/dev/printer -mhp 

2. Add a printer called pr2 whose device is /dev/tty22 and whose interface is a 
variation of the model prx interface. It is also a login terminal: 

$ ep /usr/spool/lp/modellprx xxx 
< edit xxx > 

$ /usr/lib/lpadmin -ppr2 -v/dev/tty22 -ixxx -I 

3. Create a printer called pr3 whose device is /dev/tty23. The pr3 is added to a 
new class called ell and uses the same interface as printer pr2: 

$ /usr/lib/lpadmin -ppr3 -v/dev/ttY23 -epr2 -cell 

6.5.3 Modifying Existing Destinations. 

A. Modifications to existing destinations must always be made with respect to a printer 
name (-pprinter). The modifications may be one or more of the following: 

1. The device for the printer may be changed (-vdevice). If this is the only 
modification, then this may be done even while lpsched is running. This facilitates 
changing devices for login terminals. 

6-4 



MOTOROLA COMPUTER SYSTEMS LP SPOOLING SYSTEM 

2. The printer interface program may be changed (-mmodel, -eprinter, 
-iinter face). 

3. The printer may be specified as hardwired (-h) or as a login terminal (-0. 

4. The printer may be added to a new or existing class (-cclass). 

5. The printer may be removed from an existing class (-rclass). Removing the last 
remaining member of a class causes the class to be deleted. No destination may be 
removed if it has pending requests. In that case, lpmove or cancel should be used 
to move or delete the pending requests. 

B. EXAMPLES: 

These examples are based on the LP configuration created by those in the previous 
section. 

1. Add printer pr2 to class ell: 

$ lusr/lib/lpadmin -ppr2 -cell 

2. Change pr2's interface program to the model prx interface. change its device to 
Idev/tty24, and add it to a new class called e12: 

$ lusr/lib/lpadmin -ppr2 -mprx -v/dev/tty24 -eel2 

Note that printers pr2 and pr3 now use different interface programs even though 
pr3 was originally created with the same interface as pr2. Printer pr2 is now a 
member of two classes. 

3. Specify printer pr2 as a hardwired printer: 

$ lusr/lib/lpadmin -ppr2 -h 

4. Add printer prl to class e12: 

$ lusr/lib/lpadmin -pprl -cel2 

The members of class cl2 are now pr2 and prl, in that order. Requests routed to 
class el2 are serviced by pr2 if both pr2 and prl are ready to print; otherwise, 
they are printed by the one which is next ready to print. 

S. Remove printers pr2 and pr3 from class ell: 

$ lusr/lib/lpadmin -ppr2 -rell 
$ lusr/lib/lpadmin -ppr3 -rell 

Since pr3 was the last remaining membe~ of class ell. the class is removed. 

6. Add pr3 to a new class called e13. 

$ lusr/lib/lpadmin -ppr3 -eel3 

6.5.4 Specifying the System Default Destination. The system default destination may 
be changed even when lpsched is running. 

EXAMPLES: 

A. Establish class ell as the system default destination: 

$ lusr/lib/lpadmin -dell 

B. Establish no default destination: 

6-5 



LPSPOOLINGSYSTEM MOTOROLA COMPUTER SYSTEMS 

S /usr/Ub/lpadmin -d 

6-S.S Removing Destinations. Classes and printers may be removed only if there are no 
pending requests that were routed to them. Pending requests must either be canceled using 
cancel or moved to other destinations using lpmove before destinations may be removed. If 
the removed destination is the system default destination, then the system has no default 
destination until the default destination is re-specified. When the last remaining member of a 
class is removed, then the class is also removed. The removal of a class never implies the 
removal of printers. 

EXAMPLE): 

A. Make printer prl the system default destination: 

S /usr/Ub/lpadmin -dprl 

Remove printer prl: 

S /usr/Ub/lpadmin -xprl 

Now there is no system default destination. 

B. Remove printer pr2: 

S /usr/Ub/lpadmin -xpr2 

Class cl2 is also removed, since pr2f1 was its only member", 

C. Remove class c13: 

S /usr/lib/lpadmin -xc13 

Class cll is removed, but printer prl remains. 

6.6 Making an Output Request - The lp Command 

Once LP destinations have been created, users may request output by using the lp command. 
The request id that is returned may be used to see if the request has been printed or to cancel 
the request. 

The LP program determines the destination of a request: 

• If the user specifies id dest on the command line, then the request is routed to dest 

• If the environment variable LPDEST is set, the request is routed to the value of LPDEST. 

• If there is a system default destination, then the request is routed there. 

Otherwise, the request is rejected. 

EXAMPLES: 

A. There are at least four ways to print the password file on the system default 
destination: 

Ip /etc/passwd 
Ip < /etc/passwd 
cat /etc/passwd IIp 
Ip -c /etc/passwd 

The last three ways cause copies of the file to be printed, whereas the first way 
prints the file directly. Thus, if the file is modified between the time the request is 
made and the time it is actually printed, then the changes are reflected in the output. 

6-6 



MOTOROLA COMPUTER SYSTEMS LP SPOOLING SYSTEM 

B. Print two copies of file abc on printer xyz and title the output "my file": 

pr abc IIp -dxyz -n2 -t my file 

C. Print file xxx on a Diablo 1640 printer called zoo in 12-pitch and write to the user's 
terminal when printing has completed: 

lp -dzoo -012 -w xxx 

In this example, 12 is an option that is meaningful to the model Diablo 1640 interface 
program that prints output in 12-pitch mode [see lpadmin(1M)]. 

6.7 Finding LP Status - Lpstat 

The lpstat command is used to find status information about LP requests, destinations, and the 
scheduler. 

EXAMPLES: 

A. List the status of all pending output requests made by this user: 

lpstat 

The status information for a request includes the request id, the logname of the user, the 
total number of characters to be printed, and the date and time the request was made. 

B. List the status of printers pI and p2: 

lpstat -ppl,p2 

6.8 Canceling Requests - Cancel 

The LP requests may be canceled using the cancel command. Two kinds of arguments may 
be given to the command: request ids and printer names. The requests named by the. request 
ids are canceled and requests that are currently printing on the named printers are canceled. 
Both types of arguments may be intermixed. 

EXAMPLE: 

Cancel the request that is now printing on printer xyz: 

cancel xyz 

If the user who is canceling a request is not the same one who made the request, then mail is 
sent to the owner of the request. LP allows any user to cancel requests in order to eliminate 
the need for users to find LP administrators when unusual output should be purged from 
printers. 

6.9 Allowing and Refusing Requests - Accept and Reject 

When a new destination is created, lp rejects requests that are routed to it. When the LP 
administrator is sure that it is set up correctly, he or she should allow lp to accept requests for 
that destination. The accept command performs this function. 

Sometimes it is necessary to prevent lp from routing requests to destinations. If printers have 
been removed or are waiting to be repaired or if too many requests are building for printers, 
then it may be desirable to cause lp to reject requests for those destinations. The reject 
command performs this function. Mter the condition that led to the rejection of requests has 
been remedied, the accept command should be used to allow requests to be taken again. 

The acceptance status of destinations is reported by the -a option of lpstat. 

6-7 



LP SPOOLING SYSTEM MOTOROLA COMPUTER SYSTEMS 

EXAMPLES: 

A. Cause lp to reject requests for destination xyz: 

lusr/lib/reject -r"printer xyz needs repair" xyz 

Any users who try to route requests to xyz encounter the following: 

$ lp -dxyz file 
lp: can not accept requests for destination xyz 
-- printer xyz needs repair 

B. Allow lp to accept requests routed to destination xyz: 

lusr/lib/accept xyz 

6.10 Allowing and Inhibiting Printing - Enable and Disable 

The enable command allows the LP scheduler to print requests on printers. That is, the 
scheduler routes requests only to the interface programs of enabled printers. Note that it is 
possible to enable a printer but to prevent further requests from being routed to it. 

The disable command undoes the effects of the enable command. It prevents the scheduler 
from routing requests to printers, independently of whether or not lp is allowing them to 
accept requests. Printers may be disabled for several reasons including malfunctioning 
hardware, paper jams, and end of day shutdowns. If a printer is busy at the time it is 
disabled, then the request that it was printing is reprinted in its entirety either on another 
printer (if the request was originally routed to a class of printers) or on the same one when 
the printer is re-enabled. The -c option .. causes the currently printing requests on busy 
printers to be canceled in addition to disabling the printers. This is useful if strange output is 
causing a printer to behave abnormally. 

EXAMPLE: 

Disable printer xyz because of a paper jam: 

$ disable -r"paper jam" xyz 
printer "xyz" now disabled 

Find the status of printer xyz: 

$lpstat -pxyz 
printer "xyz" disabled since Jan 5 10:15 -
paper jam 

Now, re-enable xyz: 

$ enable xyz 
printer "xyz" now enabled 

6.11 Moving Requests Between Destinations - Lpmove 

Occasionally, it is useful for LP administrators to move output requests between destinations. 
For instance, when a printer is down for repairs, it may be desirable to move all of its 
pending requests to a working printer. This is one way to use the lpmove command. The 
other use of this command is to move specific requests to a different destination. Lpmove 
refuses to move requests while the LP scheduler is running. 

EXAMPLES: 

6-8 



MOTOROLA COMPUTER SYSTEMS 

A. Move all requests for printer abc to printer xyz: 

$ lusr/lib/lpmove abc xyz 

LP SPOOLING SYSTEM 

All of the moved requests are renamed from abc-nnn to xyz-nnn. As a side effect, 
destination abc is no longer accepting further requests. 

B. Move requests zoo-543 and abc-1200 to printer xyz: 

$ lusr/lib/lpmove zoo-543 abc-1200 xyz 

The two requests are now renamed xyz-543 and xyz-1200. 

6.12 Stopping and Starting the Scheduler - Lpshut and Lpsched 

Lpsched is the program that routes the output requests that were made with lp through the 
appropriate printer interface programs to be printed on line printers. Each time the scheduler 
routes a request to an interface program, it records an entry in the log file, lusrlspool/lp/log. 
This entry contains the logname of the user who made the request, the request id, the name 
of the printer that the request is being printed on, and the date and time that printing first 
started. In the case that a request has been restarted, more than one entry in the log file may 
refer to the request. The scheduler also records error messages in the log file. When lpsched 
is started, it renames lusrlspooi/lp/iog to lusrlspoolllp/oidlog and starts a new log file. 

No printing is performed by the LP system unless lpsched is running. Use the command 

Ips tat -r 

to find the status of the LP scheduler. 

Lpsched is normally started by the letc/rc program as described above and continues to run 
until the system is shut down. The scheduler operates in the lusrlspool/ip directory. When 
it starts running, it exits immediately if a file called SGH EDLOCK exists. Otherwise, it 
creates this file in order to prevent more than one scheduler from running at the same time. 

Occasionally, it is necessary to shut down the scheduler in order to reconfigure LP or to 
rebuild the LP software. The command 

lusr/lib/lpshut 

causes lpsched to stop running and terminates all printing activity. All requests that were in 
the middle of printing are reprinted in their entirety when the scheduler is restarted. 

To restart the LP scheduler, use the command 

lusr/lib/lpsched 

Shortly after this command is entered, lpstat should report that the scheduler is running; if 
not, it is possible that a previous invocation of lpsched exited without removing SCHEDLOCK. 
Try the following: 

rm -f lusrlspoolllp/SCHEDLOCK 
lusr/lib/lpsched 

6.13 Printer Interface Programs 

Every LP printer must have an interface program which does the actual pnntmg on the 
device that is currently associated with the printer. Interface programs may be shell 
procedures, C programs, or any other executable programs. Tl),e LP model interfaces are all 
written as shell procedures and can be found in the lusrlspoolllp/model directory. At the 
time lpsched routes an output request to a printer P, the interface prognm for P is invoked in 
the directory lusrlspoolllp as follows: 

6-9 



LP SPOOLING SYSTEM 

interface/P id user title copies options file .•• 

where 

id is the request id returned by lp 

user is logname of user who made the request 

title is optional title specified by the user 

copies is number of copies requested by user 

options is a blank-separated list of class or 
printer-dependent options specified by user 

file is the full pathname of a file to be printed 

EXAMPLES: 

MOTOROLA COMPUTER SYSTEMS 

The following examples are requests made by user "smith" with a system default destination 
of printer ''xyz''. Each example lists an lp command line followed by the corresponding 
command line generated for printer xyz's interface program: 

A. lp /etc/passwd /etc/group 
interface/xyz xyz-S2 smith "" 1 "" /etc/passwd /etc/group 

B. pr /etc/passwd IIp -t"users" -nS 
interface/xyz xyz-S3 smith users S 'III 
/usr/spoolllp/request/xyz/dQ-S3 

C. lp /etc/passwd -oa -ob 
interface/xyz xyz-S4 smith "" 1 "a b" /etc/passwd 

When the interface program is invoked, its standard input comes from Idev/null and both 
the standard output and standard error output are directed to the printer's device. Devices are 
opened for reading as well as writing when file modes permit. If a device is a regular file, all 
output is appended to the end of the file. 

Given the command line arguments and the output directed to a device, interface programs 
may format output in any way. Interface programs must ensure that the proper stty modes 
(terminal characteristics such as baud rate, output options, etc.) are in effect on the output 
device. This may be done as follows in a shell interface, only if the device is opened for 
reading: 

stty mode ••• <&1 

That is, take the standard input for the stty command from the device. 

When printing has completed, the interface program exits with a code indicative of the 
success of the print job. Exit codes are interpreted by lpsched as follows: 

CODE 

zero 

1 to 127 

MEANING TO LPSCHED 

The print job has completed successfully. 

A problem was encountered in printing this particular request (e.g., too 
many nonprintable characters). This problem does not affect future 
print jobs. Lpsched notifies users by mail that there was an error in 

6-10 



MOTOROLA COMPUTER SYSTEMS LP SPOOLING SYSTEM 

printing the request. 

greater than 127 These codes are reserved for internal use by lpsched. Interface 
programs must not exit with codes in this range. 

When problems that are likely to affect future print jobs occur (e.g., a device filter program is 
missing), the interface programs should disable printers so that print requests are not lost. 
When a busy printer is disabled, the interface program is terminated with signal 15. 

6.14 Setting Up Hardwired Devices and Login Terminals as LP Printers 

6.14.1 Hardwired Devices. As an example of how to set up a hardwired device for use as 
an LP printer, using tty line 15 as printer xyz, perform the following: 

A. Avoid unwanted output from non-LP processes and ensure that LP can write to the 
device: 

$ chown lp /dev/tty15 
$ chmod 600 /dev/tty15 

B. Change /etc/inittab so that tty15 is not a login terminal. In other words, ensure that 
/etc/getty is not trying to log users in at this terminal. Change the entries for line 15 
to: 

1:15:0: 
2:15:0: Enter the command: 

$ init 2 

If there is currently an invocation of /etc/getty running on ttyl5, kill it. Now, and 
when the system is rebooted, tty15 is initialized with default stty modes. Thus, it is up 
to LP interface programs to establish the proper baud rate and other stty modes for .. 
correct printing to occur. 

C. Introduce printer xyz to LP using the model prx interface program: 

$ /usr/lib/lpadmin -pxyz -v/dev/tty15 -mprx 

D. When xyz is created, it is initially disabled and lp rejects requests routed to it. If it is 
desired, allow lp to accept requests for xyz: 

/usr/lib/accept xyz 

This allows requests to build up for xyz, and to be printed when it is enabled at a later 
time. 

E. When printing is to occur, be sure that the printer is ready to receive output. For 
several printers, this means that the top of form has been adjusted and that the printer is 
online. Enable printing to occur on xyz: 

enable xyz 

When requests are routed to xyz, they begin printing. 

6.14.2 Login Terminals. Login terminals may also be used as LP printers. To do this for a 
Diablo 1640 terminal called abc, perform the following: 

A. Introduce printer abc to LP using the model 1640 interface program: 

$ /usr/lib/lpadmin -pabc-v/dev/null -ml640 -1 

6-11 



LPSPOOLINGSYSTEM MOTOROLA COMPUTER SYSTEMS 

Note that Idev/null is used as abc's device because the actual device is specified each 
time that abc is enabled. This device may be different from day to day. When abc is 
created, it is initially disabled, and lp rejects requests routed to it. Lp can accept requests 
for abc: 

lusr/lib/accept abc 

This allows requests to build up for abc and to be printed when it is enabled at a later 
time. It is not advisable to enable abc for printing, however, until the following steps 
have been taken. 

B. Log terminal in if this has not already been done. 

e. Assuming the tty(l) command reports that this terminal is Idev/tty02, associate this 
device with printer abc: 

$ lusr/lib/lpadmin -pabc -v/dev/tty02 

Note that Ipadmin may be used only by an LPA. If others are to routinely perform this 
step, then an LPA may establish a program owned by lp or by root with set-user-id 
permission that performs this function. 

D. When printing is to occur, be sure that the printer is ready to receive output. For 
several printers, this means that the top of form has been adjusted. Enable printing to 
occur on abc: 

enable abc 

When requests have been routed to abc, they begin printing. 

E. When all printing has stopped on abc or when you want it back as a regular login 
terminal, you may prevent it from printing more output: 

$ disable abc 
printer abc now disabled 

If abc is enabled when SYSTEM V /68 is rebooted or when lpsched is restarted, it is 
disabled automatically. 

6-12 



MOTOROLA COMPUTER SYSTEMS SYSTEM ACTIVITY PACKAGE 

7. SYSTEM ACTIVITY PACKAGE 

7.1 General 

This section describes the design and implementation of the SYSTEM V/68 Activity Package. 
The operating system contains a number of counters that are incremented as various system 
actions occur. The system activity package reports system-wide measurements including 
Central Processing Unit(CPU) utilization, disk and tape Input/OutputCI/O) activities, terminal 
device activity, buffer usage, system calls, system switching and swapping, file-access activity, 
queue activity, and message and semaphore activities. The package provides four commands 
that generate various types of reports. Procedures that automatically generate daily reports 
are also included. The five functions of the activity package are: 

• sar(1): allows a user to generate system activity reports in real time and to save system 
activities in a file for later usage. 

• sag(1G): displays system activity in a graphical form. 

• sadp(1): samples disk activity once every second during a specified time interval and 
reports disk usage and seek distance in either tabular or histogram form. 

• timex(1): a modified time(1) command that times a command and also reports concurrent 
system activity. 

• system activity daily reports: procedures are provided for sampling and saving system 
activities in a data file periodically and for generating the daily report from the data file. 

The system activity information reported by this package is derived from a set of system 
coun ters located in the operation system kernel. These system counters are described in the 
part "System Activity Counters". The part "System Activity Commands" describes the 
commands provided by this package. The procedure for generating daily reports is given in 
"Report Generation". A description for each of the files used by the system activity package 
can be found in Appendix A. 

7.2 System Activity Counters 

The operating system manages a number of counters that record various activities and provide 
the basis for the system activity reporting system. The data structure for most of these 
counters is defined in the sysinfo structure (see Appendix B) in 
/usr/include/sys/sysinfo.h. The system table overflow counters are kept in the ....syserr 
structure. The device activity counters are extracted from the device status tables. In this 
version, the 1/0 activity of the ud(7) recorded. 

The following paragraphs describe the system activity counters that are sampled by the 
system activity package. 

A. Cpu time counters. There are four time counters that may be incremented at each clock 
interrupt 60 times per second. Exactly one of the cpu[] counters is incremented on each 
interrupt, according to the mode the CPU is in at the interrupt: idle, user, kernel, and 
wait for 110 completion. 

B. Lread and lwrite. The lread and lwrite counters are used to count logical read and 
write requests issued by the system to block devices. 

C. Bread and bwrite. The bread and bwrite counters are used to count the number of times 
data is transferred between the system buffers and the block devices. These actuall/Os 
are triggered by logical 1I0s that cannot be satisfied by the current contents of the 
buffers. The ratio of block I/O to logical 110 is a common measure of the effectiveness of 
the system buffering. 

7-1 



SYSTEM ACTIVITY PACKAGE MOTOROLA COMPUTER SYSTEMS 

D. Phread and phwrite. The phread and phwrite counters count read and write requests 
issued by the system to raw devices. 

E. Swapin and swapout. The swapin and swapout counters are incremented for each 
system request i~itiating a transfer from or to the swap device. More than one request is 
usually involved in bringing a process into memory, or out, because text and data are 
handled separately. Frequently used programs are kept on the swap device and are 
swapped in rather than loaded from the file system. The swapin counter reflects these 
initial loading operations as well as resumptions of activity, while the- swapout counter 
reveals the level of actual "swapping." The amount of data transferred between the 
swap device and memory are measured in blocks and counted by bswapin and bswapout 

F. Pswitch and syscall. These counters are related to the management of 
multiprogramming. Syscall is incremented every time a system call is invoked. The 
numbers of invocations of read(2), write(2), fork(2), and exec(2) system calls are kept in 
counters sysread ,syswrite , sysfork, and sysexec, respectively. Pswitch counts the times 
the switcher was invoked, which occurs when: (a) a system call resulted in a road 
block; (b) an interrupt occurred resulting in awakening a higher priority process; or (c) a 
1-second clock interrupt occurred. 

G. Iget, namei, and dirblk. These counters apply to file-access operations. Iget and namei, in 
particular, are the names of operating system routines. The counters record the number 
of times that the respective routines are called. Namei is the routine that performs file 
system path searches. It searches the various directory files to get the associated i­
number of a file corresponding to a special path. Iget is a routine called to locate the 
inode entry of a file Ci-number). It first searches the in~ore inode table. If the inode 
entry is not in the table, routine iget gets the inode from the file system where the file 
resides and make an entry in the in-core inode table for the file. Iget returns a pointer to 
this entry. Namei calls iget, but other file access routines also call iget. Therefore, 
counter iget is always greater than counter namei. 

H. dirblk. This counter records the number of directory block reads issued by the system. 
It is noted that the directory blocks read divided by the number of namei calls estimates 
the average path length of files. 

I. Runque, runocc, swpque, and swpocc. These counters are used to record queue activities. 
They are implemented in the c1ock.c routine. At every 1 second interval, the clock 
routine examines the process table to see whether any processes are in core and in 
"ready" state. If so, the counter runocc is incremented and the number of such processes 
are added to counter runque . While examining the process table, the clock routine also 
checks whether any processes in the swap device are in "ready" state. The counter 
swpocc is incremented if the swap queue is occupied, and the number of processes in 
swap queue is added to counter swpque . 

J. Readch and writech. The readch and writech counters record the total number of bytes 
(characters) transferred by the read and write system calls, respectively. 

K. Monitoring terminal device activities. There are six counters monitoring terminal device 
activities. Rcvint, xmtint, and mdmint are counters measuring hardware interrupt 
occurrences for receiver, transmitter, and modem individually. Rawch, canch, and outch 
count number of characters in the raw queue, canonical queue, and output queue. 
Characters generated by devices operating in the "cooked" mode, such as terminals, are 
counted in both rawch and (as edited) in canch, but characters from raw devices, such as 
communication processors, are counted only in rawch. 

7-2 



MOTOROLA COMPUTER SYSTEMS SYSTEM ACTIVITY PACKAGE 

L. Msg and serna counters. These counters record message sending and receiving activities 
and semaphore operations, respectively. 

M. Monitoring 110 activities. As to the 1/0 activity for a disk or tape device, four counters 
are kept for each disk or tape drive in the device status table. Counter io-1ops is 
incremented when an 1/0 operation has occurred on the device. It includes block 110, 
swap 1/0, and physical 1/0. lo--.bcnt counts the amount of data transferred between the 
device and memory in 512 byte units. 10Jct and iOJesp measure the active time and 
response time of a device in time ticks summed over all 1/0 requests that have completed 
for each device. The device active time includes the device seeking, rotating and data 
transferring times, while the response time of an 1/0 operation is from the time the 1/0 
request is queued to the device to the time when the 1/0 completes. 

N. Inodeovf, fileovf, textovf, and procovf. These counters are extracted from ....syserr 
structure. When an overflow occurs in any of the inode, file, text and process tables, the 
corresponding overflow counter is incremented. 

7.3 System Activity Commands 

The system activity package provides three commands for generating various system activity 
reports and one command for profiling disk activities. These tools facilitate observation of 
system activity during a controlled stand-alone test of a large system, an uncontrolled run of 
a program to observe the operating environment, and normal production operation. 

Commands sar and sag permit the user to specify a sampling interval and number of 
intervals for examining system activity and then to display the observed level of activity in 
tabular or graphical form. The timex command reports the amount of system activity that 
occurred during the precise period of execution of a timed command. The sadp command 
allows the user to establish a sampling period during which access location and seek distance 
on specified disks are recorded and later displayed as a tabular summary or as a histogram. 

7.3.1 The sar command. The sar command can be used in the following ways: When the 
frequency arguments t and n are specified, it invokes the data collection program sadc to 
sample the system activity counters in the operating system every t seconds for n intervals 
and generates system activity reports in real time. Generally, it is desirable to include the 
option to save the sampled data in a file for later examination. In addition to the system 
counters, a time stamp is also included. It gives the time at which the sample was taken. 

If no frequency arguments are supplied, it generates system activity reports for a specified 
time interval from an existing data file that was created by sar at an earlier time. 

A convenient usage is to run sal' as a background process, saving its samples in a temporary 
file but sending its standard output to /dev/null. Then an experiment is conducted after 
which the system activity is extracted from the temporary file. The sar(t) manual entry 
describes the usage and. lists various types of reports. Appendix C gives the formula for 
deriving each reported item. 

7.3.2 The sag command. Sag displays system activity data graphically. It relies on the 
data file produced by a prior run of sar after which any column of data or the combination of 
columns of data of the sar report can be plotted. A fairly simple, but powerful, command 
syntax allows the specification of cross plots or time plots. Data items are selected using the 
sar column header names. The sar(lG) manual entry describes its options and usage. The 
system activity graphical program invokes graphics(lG) and tplot(1G) commands to have the 
graphical output displayed on any of the terminal types supported by tplot. 

7-3 



SYSTEM ACTIVITY PACKAGE MOTOROLA COMPUTER SYSTEMS 

7.3.3 The timex command. The timex command is an extension of the time(t) command. 
Without options, timex behaves exactly like time. In addition to giving the time 
information, it also prints a system activity report derived from the system counters. The 
manual entry timexCt) explains its usage. It should be emphasized that the user and sys times 
reported in the second and third lines are for the measured process itself, including all its 
children, while the remaining data (including the cpu user % and cpu sys % ) are for the 
entire system. 

While the normal use of timex is to measure a single command, multiple commands can also 
be timed: either by combining them in an executable file and timing it, or more concisely, by 
typing: 

timex sh -c "cmdl; cmd2; ... ;" 

This establishes the necessary parent-child relationships to correctly extract the user and 
system times consumed by cmd 1, cmd2, ... (and the shell). 

7.3.4 The sadp cottlmand. Sadp is a user level program that can be invoked independently 
by any user. It requires no storage or extra code in the operating system and allows the user 
to specify the disks to be monitored. The program is reawakened every second, reads system 
tables from /dev/kmem, and extracts the required information. Because of the t second 
sampling, only a small fraction of disk requests are observed; however, comparative studies 
have shown that the statistical determination of disk locality is adequate when sufficient 
samples are collected. 

In the operating system, there is an iobuj for each disk drive. It contains two pointers which 
are head and tail of the 1/0 active queue for the device. The actual requests in the queue may 
be found in three buffer header pools: system buffer headers for block 110 requests, physical 
buffer headers for physical 1/0 requests, and swap buffer headers for swap 110. Each buffer 
header has a forward pointer which Points to the next request in the 110 active queue and a 
backward pointer which points to the previous request. 

Sad p reads the iobuj of the monitored device and the three buffer header pools once every 
second during the monitoring period. It then traces the requests in the 110 queue, records the 
disk access location, and seeks distance in buckets of 8 cylinder increments. At the end of 
monitoring period, it prints out the sampled data. The output of sadp can be used to balance 
load among disk drives and to rearrange the layout of a particular disk pack. The usage of 
this command is described in manual entry sadp(t). 

7.4 Daily Report Generation 

The previous part described the commands available to users to initiate activity observations. 
It is probably desirable for each installation to routinely monitor and record system activity in 
a standard way for historical analysis. This part describes the steps that a system 
administrator may follow to automatically produce a standard daily report of system activity. 

7.4.1 Facilities. 

• sade - The executable module of sadc.c (see Appendix A) which reads system counters 
from /d.ev/kmem and records them to a file. In addition to the file argument, two 
frequency arguments are usually specified to indicate the sampling interval and number of 
samples to be taken. If no frequency arguments are given, it writes a dummy record in 
the file to indicate a system restart. 

• sal - The shell procedure that invokes sadc to write system counters in the daily data file 
/usr/adm/sadd where dd represents the day of the month. It may be invoked with 
sampling interval and iterations as arguments. 

7-4 



MOTOROLA COMPUTER SYSTEMS SYSTEM ACTIVITY PACKAGE 

• sa2 -- The shell procedure that invokes the sar command to generate daily report 
lusr/adm/salsardd from the daily data file lusr/adm/salsadd. It also removes daily 
data files and report files after 7 days. The starting and ending times and all report options 
of sar are applicable to sa2. 

7.4.2 Suggested Operational Setup. It is suggested that cron(1M) control the normal data 
collection and report generation operations. For example, the sample entries in 
lusr/lib/crontab: 

o * * * 0,6 su sys -c "/usr/lib/salsal-
o 18-7 * * 1-S su sys -c "/usr/lib/salsal" 
08-17 * * 1-S su sys -c "/usr/lib/salsa1 12003" 

would cause the data collection program sadc to be invoked every hour on the hour. 
Moreover, depending on the arguments presented, it writes data to the data file one to three 
times at every 20 minutes. Therefore, under the control of cron(lM), the data file is written 
every 20 minutes between 8:00 and 18:00 on weekdays and hourly at other times. 

Note that data samples are taken more frequently during prime time on weekdays to make 
them available for a finer and more detailed graphical display. It is suggested that sal be 
invoked hourly rather than invoking it once every day; this ensures that if the system 
crashes, data collection is resumed within an hour after the system is restarted. 

Because system activity counters restart from zero when the system is restarted, a special 
record is written on the data file to reflect this situation. This process is accomplished by 
invoking sade with no frequency arguments within letc/rc when going to multi-user state: 

su adm -c "/usr/lib/salsadc lusr/adm/salsa"d.ate +%d"" 

Cron(1M) also controls the invocation of sar to generate the daily report via shell procedure 
sa2. One may choose the time period the daily report is to cover and the groups of system 
activity to be reported. For instance, if: 

020 *. l-S su sys -c "/usr/lib/sa/sa2 -s 8:00 -e 18:00 -i 3600 -uybd" 

is an entry in lusr/lib/crontab, cron executes the sar command to generate daily reports 
from the daily data file at 20:00 on weekdays. The daily report furnishes information on 
CPU utilization, terminal device activity, buffer usage, and device activity every hour from 
8:00 to 18:00. 

In case of a shortage of the disk space or for any other reason, these data files and report files 
can be removed by the su peruser. 

70S Appendix A. Source Files 

The source files and shell programs of the system activity package are in directory 
lusrlsrc/cmdlsa 

sah 

sade.c 

The system activity header file defines the structure of data file and 
device information for measured devices. It is included in sade.c, sar.c 
and timex.c. 

The data collection program that accesses ldev/kmem to read the 
system activity counters and writes data either on standard output or on 
a binary data file. It is invoked by the sar command generating a real­
time report. It is also invoked indirectly by entries in 
lusr/lib/crontab to collect system activity data. 

7-S 



SYSTEM ACTIVITY PACKAGE MOTOROLA COMPUTER SYSTEMS 

sar.c 

saghdr.h 

saga.c & sagb.c 

sal.sh 

sa2.ch 

timex.c 

sadp.c 

The report generation program invokes sade to examine system activity 
data. generates reports in real time, and saves the data to a file for later 
usage. It may also generate system activity reports from an existing data 
file. It is invoked indirectly by cron to generate daily reports. 

The header file for saga.c and sagb.c which contains data structures 
and variables used by saga.c and sagb.c. 

The graph generation program that first invokes sar to format the data 
of a data file in a tabular form and then displays the sar data in 
graphical form. 

The shell procedure that invokes sade to write data file records. It is 
activated by entries in lusr/lib/crontab. 

The shell procedure that invokes sar to generate the report. It also 
removes the daily data files and daily report files after a week. It is 
activated by an entry in lusr/lib/crontab on weekdays. 

The program that times a command and generates a system activity 
report. 

The program that samples and reports disk activities. 

7-6 



MOTOROLA COMPUTER SYSTEMS SYSTEM ACTIVITY PACKAGE 

7.6 Appendix B. System Information Data Structure 

struct sysinfo { 
time....! cpu[4]; 

#define CPUjDLE 0 
#define CPU_USER 1 
#define CPU-.KERNAL 2 
#define CPU_WAIT 3 

time....! wait[3]; 
#define W-.lO 0 
#define W-.5WAP 1 
#define W....PIO 2 

long bread; 
long bwrite; 
long lread; 
long lwrite; 
long phread; 
long phwrite; 
long swapin; 
long swapout; 
long bswapin; 
long bswapout; 
long pswitch; 
long syscaU; 
long sysread; 
long syswrite; 
long sysfork; 
long sysexec; 
long runque; 
long runocc; 
long swpque; 
long swpocc; 
long iget; 
long namei; 
long dirblk; 
long readch; 
long writech; 
long rcvint; . 
long xmtint; 
long mdmint; 
long rawch; 
long canch; 
long outch; 
long msg; 
long sema; 

} ; 

7-7 



SYSTEM ACTIVITY PACKAGE MOTOROLA COMPUTER SYSTEMS 

7.7 Appendix C. Formula for Reported Items 

The derivation of the reported items is given in this attachment. Each item discussed below is 
the data difference sampled at two distinct times t2 and ti. 

• CPU Utilization 

%-of-<:pu-x = cpu-x I (cpu-idle + cpu-user + cpu-kernel + cpu-wait) * 100 

where cpu-x is cpu-idle, cpu-user, cpu-kernel (cpu-sys), or cpu-wait. 

• Cached Hit Ratio 

%-of-<:ached-I/O = (logical-I/O - block-I/O) Ilogical-I/O * 100 

where cached 110 is cached read or cached write. 

• Disk or Tape 1/0 Activity 

%-of-busy = 1I0-active I (t2 - t1) * 100; 
avg-queue-length = I/O-resp I I/O-active; 
avg-wait = CI/O-resp - I/O-active) I I10-ops; 
avg-service-time = I/O-active I I/O-ops. 

• Queue Activity 

avg-x-queue-length = x-queue I x-queue-occupied-time; 
%-of-x-queue-occupied-time = x-queue-occupied-time I (t2 - t1); 

where x-queue is run queue or swap queue. 

• The Rest of System Activity 

avg-rate-of-x = x I (t2 - t1) 

where x is swap in/out, blks swapped in/out, terminal device activities, readlwrite 
characters, block read/write, logical read/write, process switch, system calls, readlwrite, 
fork/exec, iget, namei, directory blocks read, diskltape 1/0 activities, message or semaphore 
activities. 

7-8 



USER'S COMMENTS 

SYSTEM V /68 ADMINISTRATOR'S GUIDE 

Product Code 72901 
Part Number 41964-00 

Motorola welcomes your comments and suggestions. Please use this form . 

• Does this manual provide the information you need? DYes DNo 

- What is missing? 

.Is the manual accurate? DYes DNo 

- What is incorrect? (Be specific.) 

.Is the manual written clearly? DYes DNo 

- What is unclear? (Be specific.) 

• What other comments can you make about this manual? 

• What do you like about this manual? 

.Was this manual difficult to obtain? DYes DNo 

Please include your name and address if you would like a reply. 

Name ____ ~ ________________________________________ _ 

Company ________________ ~---------------------------
Address ____________________________________ -'--'--____ __ 



- What is your occupation? 

D Programmer DManager 
D Customer Engineer D Systems Analyst 

DEngineer 

DOperator 
D Instructor 
DStudent DOther _______ _ 

-How do you use this manual? 

D Reference Manual 
DIn a Class 
DSelf Study 

fold 

D Introduction to the Subject 
D Introduction to the System 
D Other _______ _ 

MOTOROLA COMPUTER SYSTEMS 
3013 S. 52nd Street 
Tempe, AZ 85282 

Attention: Software Publications, X4 

fold 

Staple Here 

fold 

fold 



(f!j MOTOROLA 
Computer Systems 

3013 S. 52nd St. 
Tempe, AZ 85282 


