
SYSTEMV/68

ASSE!\.1BLER USER'S GUIDE

Motorola Corporation makes no representation or. warranties with respect to the contents
of this manual and disclaims any impled warranties or fitness for any particular applica­
tion. Motorola Corporation reserves the right to revise this manual without obligation of
Motorola Corporation to notify any person or organization of such revision.

Third Edition

© Copyright 1985 by Motorola Inc. All rights reserved
worldwide. No part of this publication may be reproduced

without the express written permission of Motorola Corporation.

First Edition June 1984
Second Edition November 1984

Portions of this document are reprinted
from copyrighted documents by permission of

AT&T Technologies, Incorporated, 1983.

This manual is reprinted in its entirety by ICON INTERNATIONAL
with permission of Motorola Inc., 1987

The information in this document has been carefully checked and is believed to be
entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore,
ICON II\TTERNATIONAL reserves the right to make changes to any products herein to
improve reliability, function, or design. ICON INTERNATIONAL does not assume any
liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights or the rights of others.

Trademarks
UNIX is a registered trademark or AT&T.

EXORmacs, EXORterm, and SYSTEM V /68 are trademarks of Motorola, Inc.

VAX is a trademark or Digital Equipment Corporation.

(

()

1. INTRODUCTION

This is a reference manual for the MPS/UX resident assembler, as. Programmers familiar
with the M68000 family of processors should be able to program in as by referring to
this manual, but this is not a manual for the processor itself. Details about the effects of
instructions, meanings of status register bits, handling of interrupts, and many other
issues are not dealt with here. This manual, therefore, should be used in conjunction
with the following reference manuals:

• M68000 16/32-Bit Microprocessor Programmer's Reference Manual, Fourth Edition;
Englewood Cliffs, NJ: PRENTICE-HALL, 1984. This manual is also available from
the Motorola Literature Distribution Center, P.O. Box 20912, Phoenix, AZ 85036,
part number M68000UM.

• MC68020 32-Bit Microprocessor User's Manual; Englewood Cliffs, NJ: PREl\TICE­
HALL, 1984. This manual is also available from the Motorola Literature Distribu­
tion Center, part number MC68020UM.

• M68000 Family Resident Structured Assembler Reference Manual, part number
M68KMASM.

• SYSTEM V /68 User's Manual, part number M68KUNUM.

• SYSTEM V /68 VM04 System Manual, part number M68KVM4SYS. This document
includes user manual pages to support the MC68881 floating point co-processor pro­
vided in SYSTEM V /68 Release 2, Version 2 from Motorola Corp.

This guide also contains information for users of the SGS M68020 Cross Compilation
System. For these users, references to as(1) and cc(1) should be read as as20(1) and
cc20(1). Information about these commands is provided in the SGS M68020 Cross Com­
pilation System Reference Manual, part number M68KUNASX.

2. WARNINGS

A few important warnings to the as user should be emphasized at the outset. Though
for the most part there is a direct correspondence between as notation and the notation
used in the documents listed in the preceding section, several exceptions exist that could
lead the unsuspecting user to write incorrect code. In addition to the exceptions
described in the following paragraphs, refer also to sections 10 and 11 for information
about address mode syntax and machine instructions.

2.1. Comparison Instructions
First, the order of the operands in compare instructions follows one convention in the
M68000 Programmer's Reference Manual and the opposite convention in as. Using the
convention of the M68000 Programmer's Reference Manual, one might write

CMP.W D5,D3 Is D3 less than D5?
BLE IS-LESS Branch if less.

Using the as convention, one would write

cmp.w %d3,%d5
ble is_less

#= Is d3 less than d5?
#= Branch if less.

-2-

As follows the convention used by other assemblers supported in the UNIX~ operating
system (both the 3B20S and the VAX follow this convention). This convention makes
for straightforward reading of compare-and-branch instruction sequences, but does
nonetheless lead to the peculiarity that if a compare instruction is replaced by a subtract
instruction, the effect on the condition codes will be entirely different. This may be
confusing to programmers who are used to thinking of a comparison as a subtraction
whose result is not stored. Users of as who become accustomed to the convention will
find that both the compare and subtract notations make sense in their respective con­
texts.

2.2. Overloading of Opeodes

Another issue that users must be aware of arises from the M68000 processors' use of
several different instructions to do more or less the same thing. For example, the
M68000 Programmer's Reference Manual lists the instructions SUB, SUBA, SUBI, and
SUBQ, which all have the effect of subtracting their source operand from their destina­
tion operand. As provides the convenience of allowing all these operations to be specified
by a single assembly instruction Bub. On the basis of the operands given to the Bub
instruction, the as assembler selects the appropriate M68000 operation code. The danger
created by this convenience is that it could leave the misleading impression that all forms
of the SUB operation are semantically identical. In fact, they are not. The careful reader
of the M68000 Programmer's Reference Manual will notice that whereas SUB, SUBI,
and SUBQ all affect the condition codes in a consistent way, SUBA does not affect the
condition codes at all. Consequently, the as user must be aware that when the destina­
tion of a sub instruction is an address register (which causes the Bub to be mapped into
the operation code for SUBA) , the condition codes will not be affected.

3. USE OF THE ASSEMBLER

The SYSTEM V /68 command as invokes the assembler and has the following syntax:

as [-0 output 1 file

\\llen as is invoked with the -0 output flag, the output of the assembly is put in the file
output. If the -0 flag is not specified, the output is left in a file whose name is formed by
removing the .s suffix, if there is one, from the input filename and appending a .0 suffix.

The M68020 cross assembler, as20(I), is invoked with the same syntax as as(l). For
information about additional options for these commands, refer to the SYSTEM Vl68
User's Alanual for as(l) and the SGS M68020 Cross Compilation System Reference
A{anual for as20(1).

UNIX is a. registered tra.demark of AT&T.

- 3-

4. GENERAL SYNTAX RULES

4.1. Format of Assembly Language Line

Typical lines of as assembly code look like these:

. # Clear a block of memory at location %a3

loop:

init2:

text
move.w
elr.l
dbf

2
&const,%dl
(%a3)+
%dl,loop # go back for const

repetitions

elr.l count; elr.l credit; elr.l debit;

These general points about the example should be noted:

An identifier occurring at the beginning of a line and followed by a colon (:) is a
label. One or more labels may precede any assembly language instruction or
pseudo-operation. Refer to Section 5.2, ''Location Counters and Labels."

A line of assembly code need not include an instruction. It may consist of a com­
ment alone (introduced by #), a label alone (terminated by:), or it may be entirely
blank.

It is good practice to use tabs to align assembly language operations and their
operands into columns, but this is not a requirement of the assembler. An opcode
may appear at the beginning of the line, if desired, and spaces may precede a label.
A single blank or tab suffices to separate an opcode from its operands. Additional
blanks and tabs are ignored by the assembler.

It is permissible to write several instructions on one line separating them by semi­
colons. The semicolon is syntactically equivalent to a newline character; however, a
semicolon inside a commen t is ignored.

4.2. Comments

Comments are introduced by the character # and continue to the end of the line. Com­
ments may appear anywhere and are completely disregarded by the assembler.

4.3. Identifiers
An identifier is a string of characters taken from the set a-z, A-Z, _, -, %, and 0-9.
The first character of an identifier must be a letter (uppercase or lowercase) or an under­
score. Uppercase and lowercase letters are distinguished; for example, con3S and
CON3S are two distinct identifiers.

There is no limit on the length of an identifier.

The value of an identifier is established by the set pseudo-operation (refer to Section 8.2,
"Symbol Definition Operations") or by using it as a label. Refer to Section 5.2, ''Location
Counters and Labels".

The tilde character C) has special significance to the assembler. A - used alone, as an
identifier, means "the current location". A - used as the first character in an identifier

becomes a period (.) in the symbol table, allowing symbols such as .eos and .Ofake to
be entered into the symbol table, as required by the Common Object File format
(COFF). Information about file formats is provided in the SYSTEM V/68 User's
Manual, Section 4.

4.4. Register Identifiers
A register identifier is an identifier preceded by the character %, and represents one of
the MC68000 processor's registers. The predefined register identifiers are;

%dO
o/odl
%d2
%d3

%d4
%d5
o/od6
%d7

%aO
%al
%a2
%&3

%a4
%&5
%&6
%a7

%acc
%pc
%sp
%sr

%usp
%fp

Note: The identifiers %a7 and %sp represent the same machine register. Likewise,
%a6 and %fp are equivalent. Use of both %a7 and %sp, or %a6 and %fp, in the
same program may result in confusion.

The current version of the assembler will correctly assemble instructions int~nded for the
M68010. There will be a warning message issued. The following additions will be
flagged with warnings:

REGISTERS ADDED FOR THE MC68010
NAME DESCRIPTION
%sfc Source Function Code Register
%dfc Destin ation Function Code Register
%vbr Vector Base Register

The entire register set of the MC68000 and MC68010 is included in the MC68020 register
set. The following are new control registers for the MC68020:

MC68020 REGISTERS
NAME DESCRIPTION
%caar Cache Address Register
%cacr Cache Control Register
%isp Interrupt Stack Pointer
%msp Master Stack Pointer

o

(

- 5 -

The following are suppressed registers (zero registers) used in various MC68020 address­
ing modes:

MC68020 ZERO REGISTERS
SUPPRESSED SUPPRESSED SUPPRESSED
ADDRESS REGISTERS DATA REGISTERS PROGRAM COUNTER

%zaO %zdO %zpc
%zal %zdl
%za2 %zd2
%za3 %zd3
%za4 %zd4
%za5 %zd5
%za6 %zd6
%za7 %zd7

4.5. Constants

As deals only with integer constants. They may be entered in decimal, octal, or hexade­
cimal, or they may be entered as character constants. Internally, as treats all constants
as 32-bit binary two's complement quantities.

4.5.1. Numerical Constants. A decimal constant is a string of digits beginning with
a non-zero digit. An octal constant is a string of digits beginning with zero. A hexade­
cimal constant consists of the characters Ox or OX followed by a string of characters
from the set 0-9, a-f, and A-F. In hexadeximal constants, uppercase and lowercase
letters are not distinguished.

Examples:

set const,35
mov.w &035,%dl
set const, Ox35
mov.w &Oxff, %dl

Decimal 35
Octal 35 (decimal 29)
Hex 35 (decimal 53)
Hex ff (decimal 255)

4.5.2. Character Constants. An ordinary character constant consists of a single-quote
character (') followed by an arbitrary ASCII character other than the backslash (\). The
value of the constant is equal to the ASCII code for the character. Special meanings of
characters are overridden when used in character constants; for example, if '# is used,
the # is not treated as introducing a comment.

A special character constant consists of '\ followed by another character. All the special
character constants and examples of ordinary character constants are listed in the follow­
ing table.

- --------------~--

-6-

CONSTANT VALUE MEANING

'\ b Ox08 Backspace
'\ t Oz09 Horizontal Tab
'\ n OxOa Newline (Line Feed)
'\ v OxOb Vertical Tab
'\f OxOc Form Feed
'\ r OxOd Carriage Return
'\\ Ox5c Backslash , ,

Ox27 Single Quote
'0 Ox30 Zero
'A Ox41 Uppercase A
'a Ox61 Lowercase a

4.6. Other Syntactic Details
A discussion of expression syntax appears in Section 7 of this guide. Information about
the syntax of specific components of as instructions and pseudo-operations is given in
Sections 8, 9, and 10.

5. SEGMENTS, LOCATION COUNTERS, AND LABELS

5.1. Segments

A program in as assembly language may be broken into segments known as text, data
and bss segments. The convention regarding the use of these segments is to place
instructions in text segments, initialized data in data segments, and uninitialized data in
bss segments. However, the assembler does not enforce this convention; for example, it
permits intermixing of instructions and data in a text segment.

Primarily to simplify compiler code generation, the assembler permits up to four separate
text segments and four separate data segments named 0, 1, 2, and 3. The assembly
language program may switch freely between them by using assembler pseudo-operations
(refer to Section 8.3, "Location Counter Control Operations"). When generating the
object file, the assembler concatenates the text segments to generate a single text seg­
ment, and the data segments to generate a single data segment. Thus, the object file
contains only one text segment and only one data segment. There is always only one bss
segment and it maps directly into the object file.

Because the assembler keeps together everything from a given segment when generating
the object file, the order in which information appears in the object file may not be the
same as in the assembly language file. For example, if the data for a program consisted
of

data 1 # segment 1
short Oxllll
data 0 # segment 0
long Oxff ff ff ff
data 1 # segment 1
byte Oxff

o

-7-

then equivalent object code would be generated by

data
long
short
byte

o
Oxffffffff
Oxllll
Oxff

5.2. Location Counters and Labels
The assembler maintains separate location counters for the bss segment and for .each of
the text and data segments. The location counter for a given segment is incremented by
one for each byte generated in that segment.

The location counters allow values to be assigned to labels. When an identifier is used as
a label in the assembly language input, the current value of the current location counter
is assigned to the identifier. The assembler also keeps track of which segment the label
appeared in. Thus, the identifier represents a memory location relative to the beginning
of a particular segment. Any label relative to the location counter should be within the
text segment.

6. TYPES
. Identifiers and expressions may have values of different types.

In the simplest case, an expression (or identifier) may have an absolute value, such
as 29, -5000, or 262143.

An expression (or identifier) may have a value relative to the start of a particular
segment. Such a value is known as a relocatable value. The memory location
represented by such an expression cannot be known at assembly time, but the rela­
tive values of two such expressions (Le., the difference between them) can be known
if they refer to the same segment.

Identifiers which appear as labels have relocatable values.

If an identifier is never assigned a value, it is assumed to be an undefined external.
Such identifiers may be used with the expectation that their varues will be defined
in another program, and therefore known at load time; but the relative values of
undefined externals cannot be known.

7. EXPRESSIONS
For conciseness, the following abbreviations are useful:

abs absolu te expression
reI relocatable expression
ext undefined external

All constants are absolute expressions. An identifier may be thought of as an expression
having the identifier's type. Expressions may be built up from lesser expressions using
the operators +, -, ., and /, according to the following type rules:

abs + aba == aba
abs + reI == reI + aba == reI
abs + ext == ext + aba == ext

aba - aba == aba
reI- aba == reI
ext - aba == ext
reI- reI = abs (provided that

-8-

the two relocatable expressions are relative to the same segment)

aba * aba == aba

aba I aba == abs

-abs == abs
Note: reI - reI expressions are permitted only within the context of a switch state­
ment (refer to Section 8.5, "Switch Table Operation".) Use of a reI - reI expression is
dangerous, particularly when dealing with identifiers from text segments. The problem is
that the assembler will determine the value of the expression before it has resolved all
questions concerning span-dependent optimizations.

The unary minus operator takes the highest precedence; the next highest precedence is
given to • and I, and lowest precedence is given to + and -. Parentheses may be used
to coerce the order of evaluation.

If the result of a division is a positive non-integer, it will be truncated toward zero. If
the result is a negative non-integer, the direction of truncation cannot be guaranteed.

8. PSEUDO-OPERATIONS

8.1. Data Initialization Operations

byte abs, abs, ...
One or more arguments, separated by commas, may be given. The values of the
arguments are computed to produce successive bytes in the assembly output.

short abs, ab8, ...

One or more arguments, separated by commas, may be given. The values of the
arguments are computed to produce successive IS-bit words in the assembly output.

long expr, expr, ...

One or more arguments, separated by commas, may be given. Each expression may
be absolute, relocatable, or undefined external. A 32-bit quantity is generated for
each such argument (in the case of relocatable or undefined external expressions, the
actual value may not be filled in until load time).

Alternatively, the arguments may be bit-field expressions. A bit-field expression has
the form

n: value
where both n and value denote absolute expressions. The quantity n represents a
field width; the low-order n bits of value become the contents of the bit-field. o

(

- 9 -

Successive bit-fields fill up 32-bit long quantities starting with the high-order part.
If the sum of the lengths of the bit-fields is less than 32 bits, the assembler creates a
32-bit long with zeroes filling out the low-order bits. For example,

long 4: -1, 16: Ox7f, 12:0, 5000

and

long

are equivalent to

long

4: -1, 16: Ox7f, 5000

Oxro07roOO, 5000

Bit-fields may not span pairs of 32-bit longs. Thus,

~ng 24:0xa,24:0xb,24~xc

yields the same thing as

long OxOOOOOaOO,OxOOOOObOO,OxOOOOOcOO

space abs

The value of abs is computed, and the resultant number of bytes of zero data is gen­
erated. For example,

space

is equiyalent to

byte

6

0,0,0,0,0,0

8.2. Symbol Definition Operations

set identifier, expr

The value of identifier is set equal to expr, which may be absolute or relocatable.

comm identifier,abs

The named identifier is to be assigned to a common area of size abs bytes. If
identifier is not defined by another program, the loader will allocate space for it.

lcomm identifier, abs
The named identifier is assigned to a local common of size abs bytes. This results in
allocation of space in the bss segment.

The type of identifier becomes relocatable.

glo bal identifier

This causes identifier to be externally visible. If identifier is defined in the current
program, then declaring it global allows the loader to resolve references to identifier
in other programs.

If identifier is not defined in the current program, the assembler expects an external
resolution; in this case, therefore, identifier is global by default.

8.3. Location Counter Control Operations

data abs

text abs

org expr

even

The argument, if present, must evaluate to 0, 1, 2, or 3; this indicates the
number of the data segment into which assembly is to be directed. If no
argument is present, assembly is directed into data segment O.

The argument, if present, must evaluate to 0, 1, 2, or 3; this indicates the
number of the text segment into which assembly is to be directed. If no
argument is present, assembly is directed into text segment O.

Before the first text or data operation is encountered, assembly is by
default directed into text segment O.

The current location counter is set to expr. Expr must represent a value
in the current segment, and must not be less than the current location
counter.

The current location counter is rounded up to the next even value.

8.4. Symbolic Debugging Operations

The assembler allows for symbolic debugging information to be placed into the object
code file with special pseudcroperations. The information typically includes line numbers
and information about C language symbols, such as their type and storage class. The C
compiler (cc(l)) generates symbolic debugging information when the -g option is used.
Assembler programmers may also include such information in source files.

8.4.1. file and In. The file pseudcroperation passes the name of the source file into the
object file symbol table. It has the form

file filename

where filename consists of one to 14 characters enclosed in quotation marks.

The In pseudcroperation makes a line number table entry in the object file. That is, it
associates a line number with a memory location. Usually the memory location is the
current location in text. The format is

In liner, value]

where line is the line number. The optional value is the address in text, data, or bss to
associate with the line number. The default when value is omitted (which is usually the
case) is the current location in text.

(

(

- 11 -

8.4.2. Symbol Attribute Operations. The basic symbolic testing pseudo-operations
are def and endef. These operations enclose other pseudo-operations that assign attri­
butes to a symbol and must be paired.

def name

endef

Attribute
Assigning
Operations

NOTES

• def does not define the symbol, although it does create a symbol table entry.
Because an undefined symbol is treated as external, a symbol which appears in a
def, but which never acquires a value, will ultimately result in an error at link edit
time.

• to allow the assembler to calculate the sizes of functions for other tools, each
def/endef pair that defines a function name must be matched by a def/endef
pair after the function in which a storage class of -1 is assigned.

The paragraphs below describe the attribute-assigning operations. Keep in mind that all
of these operations apply to symbol name which appeared in the opening def pseudo­
operation.

val expr

Assigns the value expr to name. the type of the expression expr determines with
which section name is associated. If value is -, the current location in the text sec­
tion is used.

sel expr

Declares the C language type of name. The expression expr must yield an ABSO­
LUTE value that corresponds to the C compiler's internal representation of a storage
class. The special value -1 designates the physical end of a function.

type expr

Declares the C language type of name. The expression expr must yield an ABSO­
LUTE value that corresponds to the C compiler's internal representation of a basic
or derived type.

tag str

Associates name with the structure, enumeration, or union named str which must
have already been declared with a def/endef pair.

line expr

Provides the line number of name, where name is a block symbol. The expression
expr should yield an ABSOLUTE value that represents a line number.

- 12·

Bize expr

Gives a size for name. The expression expr must yield an ABSOLUTE value.
When name is a structure or an array with a predetermined extent, expr gives the
size in bytes. For bit fields, the size is in bits.

dim exprl,expr2, ...

Indicates that name is an array. Each of the expressions must yield an ABSOLUTE
value that provides the corresponding array dimension.

8.5. Switch Table Operation

The C compiler generates a compact set of instructions for the C language switch con­
struct. An example is shown below.

Bub.l &l,%dO
cmp.l %dO,&4
bhi L%21
add.w %dO,%dO
mov.w 10(%pc,%dO.w),%dO
jmp 6(%pc,%dO.w)
Bwbeg &5

L%22:
short L%15-L%22
short L%21-L%22
short L%16-L%22
short L%21-L%22
short L%17-L%22

The special swbeg pseudo-operation communicates to the assembler that the lines fol­
lowing it contain reI-reI subtractions. Remember that ordinarily such subtractions are
risky because of span-dependent optimization. In this case, however, the assembler
makes special allowances for the subtraction because the compiler guarantees that both
symbols will be defined in the current assembler file, and that one of the symbols is a
fixed distance away from the current location.

The swbeg pseudo-operation takes an argument that looks like an immediate operand.
The argument is the number of lines that follow swbeg and that contain switch table
entries. Swbeg inserts two words into text. The first is the ILLEGAL instruction code.
The second is the number of table entries that follow. The disassembler dis (1) needs the
ILLEGAL instruction as a hint that what follows is a switch table. Otherwise, it would
get confused when it tried to decode the table .entries, differences between two symbols,
as instructions.

9. SPAN-DEPENDENT OPTIMIZATION
The assembler makes certain choices about the object code it generates based on the dis­
tance between an instruction and its operand(s). Span-dependent optimization occurs
most obviously in the choice of object code for branches and jumps. It also occurs when
an operand may be represented by the program counter relative address mode instead of
as an absolute 2-word (long) address. The span-dependent optimization capability is
normally enabled; the -n command line flag disables it. When this capability is disabled,

~_/

c

(

(

(~/'

- 13-

the assembler makes worst-case assumptions about the types of object code that must be
generated. Span-dependent optimizations are performed only within text segment O.
Any reference outside text segment 0 is assumed to be worst-case.

The C compiler (cc(I)) generates branch instructions without a specific offset size. When
the optimizer is used, it identifies branches which could be represented by the short form,
and it changes the operation accordingly. The assembler chooses only between long and
very-long representations for branches.

For the MC68000 and MC68010 processors, branch instructions, e.g., bra, bsr, or bgt,
can have either a byte or a word pc-relative address operand. A byte or word size
specification should be used only when the user is sure that the address intended can be
represented in the byte or word allowed. The assembler will take one of these instruc­
tions with a size specification and generate the byte or word form of the instruction
without asking questions.

Although the largest offset specification allowed for the M68000 and M68010 is a word, *
large programs could conceivably have need for a branch to location not reachable by a
word displacement. Therefore, equivalent long forms of these instructions might be
needed. \Vhen the Assembler encounters a branch instructions without a size
specification, it tries to choose between the long and very-long forms of the instruction.
If the operand can be represented in a word, then the word form of the instruction will
be generated. Otherwise, the very-long form will be generated. For unconditional
branches, e.g., br, bra, and bsr, the very-long form is just the equivalent jump (jrnp
and jsr) with an absolute address operand (instead of pc-relative). For conditional
branches, the equivalent very-long form is a conditional branch around a jump, where
the conditional test has been reversed.

The following table summarizes span-dependent optimizations. The assembler chooses
only between the long form and the very-long form, while the optimizer chooses between
the short and long forms for branches (but not bsr).

ASSEMBLER SPAN-DEPENDENT OPTIMIZATIONS
Instruction Short Form Long Form Very-LonJZ; Form

br, bra, bsr byte offset word offset (See jrnp or jsr with
footnote for infor- absolute long ad-
mation about dress
}'168020.)

conditional branch byte offset word offset (See short conditional
footnote for infor- branch with re-
mation about versed condition
M68020.) around jrnp with

absolute long ad-
dres

jrnp, jsr pc-relative address absolute long ad-
dress

lea.l, pea.l pc-relative address absolute long ad-
dress

* The M68020 allows long word offset, as shown br !lIe syntax for the branch instructions.

- 14-

For the M068020 processor, branch instructions can have either a byte, word, or long
pc-relative address operand. The assembler still chooses between word and long
representations for branches if no byte size specification is given; however, the long form
is replaced by a branch long with pc-relative address instead of a jump with absolute
long address.

10. ADDRESS MODE SYNTAX
The following table summarizes the as syntax for M068000, M06801O, and M068020
addressing modes. New addressing modes for the MB68020 are shown with '1.1068020
Only" in parentheses beneath the M06800 notation; modes not specified in this way are
for all three processors.

In the table, the following abbreviations are used:

an Address register, where n is any digit from 0 through 7.

dn Data register, where n is any digit from 0 through 7.

ri Index register i may be any address or data register with an optional size designa­
tion (i.e., ri.w for 16 bits or ri.l for 32 bits); default size is .w.

sel Optional scale factor that may be multipled time index register in some modes.
Values for sel are 1, 2, 4, or 8; default is 1.

bd Two's complement base displacement that is added before indirection takes place;
size can be 16 or 32 bits.

od Outer displacement that is added as a part of effective address calculation after
memory indirection; size can be 16 or 32 bits.

d Two's complement or sign-extended displacement that is added as part of effective
address calculation; size may be 8 or 16 bits; when omitted, assembler uses value of
zero.

pc Program counter

[] Grouping characters used to enclose an indirect expression; required characters.
Addressing arguments can occur in any order within the brackets.

() Grouping characters used to enclose an entire effective address; required characters.
Addressing arguments can occur in any order within the parentheses.

{ } Indicate that a scale factor is optional; not required characters.

It is important to note that expressions used for the absolute addressing modes need
not be absolute expressions in the sense described in Section 6. Although the addresses
used in those addressing modes must ultimately be filled in with constants, that can be
done later by the loader. There is no need for the assembler to be able to compute them.
Indeed, the Absolute Long addressing mode is commonly used for accessing undefined
external addresses.

c

- 15-

EFFECTIVE ADDRESS MODES
M68000 as Effective Address Mode
Familv Notation Notation
Dn %dn Data Register Direct
An %an Address Register Direct
(An) (%an) Address Regist.er Indirect
(An)+ (%an)+ Address Register Indirect

With Postincrement
-(An) -(%an) Address Register Indirect

With Predecrement
deAn) d(%an) Address Register Indirect

With Displacement (d
signifies a signed 16-bit
a.bsolute displacement)

d(An,Ri) d(%an,%ri.w) Address Register Indirect
d(%an,%ri.I) With Index Plus Dis-

placement (d signifies a
signed 8-bit absolute dis-
placement)

(hd,An,Ri{*scI}) (bd,%an, %ri{*ri}) Address Register Direct
(MC68020 Only) With Index Plus Base

Displacement
([hd,An ,Ri{*scl }],od) (bd,%an,%ri{*scI}],od) Memory Indirect \Vith
(MC68020 Only) Preindexing Plus Base

and Outer Displacement
([hd,An],Ri{*scI},od) ([bd, %an J, %ri{*scI }],od) Memory Indirect With
(MC68020 Only) Postindexing Plus Base

and Outer Displacement
d(PC) d(%pc) Program Counter

Indirect With Displace-
ment (d signifies I6-bit
displacement)

d(PC,Ri) d(%pc,%rn.I) Program Counter Direct
d(%pc,%rn.w) With Index and Dis-

placemen t (d signifies 8-
hit displa.cement)

(hd,PC,Ri{*scI)} {bd,%pc,%ri{*sc1}} Program Counter Direct
(MC68020 Only) With Index and Base

Displacement
([bd,PC],Ri{*scl},od) ([bd,%pc],%ri{*sc1},od) Program counter
(MC68020 Only) Memory Indirect With

Postindexing Plus Base
a.nd Outer Displacement

([bd,PC,Ri{*scl }J,od) ([bd,%pc,%ri{*scl}],od) Program Counter
(MC68020 Only) Memory Indirect With

Preindexing Plus Base
and Outer Displacement Co.

'\

J

• 16-

EFFECTIVE ADDRESS MODES
M68000 as Effective Address Mode
Family Notation Notation
d,PC,Ri*scl],od) d,pc,ri*sclj,od) Program Counter
(MCC68020 Only) Memory Indirect With

Preindexing Plus Base
and Outer Displace--
ment

xxx.W xxx Absolute Short
Address (%XX signifies
an expression yielding
a 16-bit memory
address)

xxx.L xxx Absolute Long Address
(xxx signifies an expres-
sion yielding a 32-bit
memory address)

#XXx &xxx Immediate Data (xxx
signifies an absolute
constant expression)

In the table above, the index register notation should be understood as ri.size*scale,
where both size and scale are optional. Refer to Chapter 2 of the M68000 Family
Resident Structured Assembler Reference Manual for additional information about
effective address modes. Section 2 of the MC680fO Of-Bit Microprocessor User's Manual
also provides information about generating effective addresses and assembler syntax.

Note that suppressed address register %zan can be used in place of %an, suppressed
PC register %zpc can be used in place of %pc, and suppressed data register %zdn can
be used in place of %dn, if suppression is desired.

The new address modes for the MB68020 use two different formats of extension. The
brief format provides fast indexed addressing, while the full format provides a number of
options in size of displacement and indirection. The assembler will generate the brief for­
mat if the effective address expression is not memory indirect, value of displacement is
within a byte, and no base or index suppression is specified; otherwise, the assembler will
generate the full format.

Some source code variations of the new modes may be redundant with the MC68000
address register indirect, address register indirect with displacement, and program
counter with displacement modes. The assembler will select the more efficient mode
when redundancy occurs. For example, when the assembler sees the form (An), it will
generate address register indirect mode (mode 2). The assembler will generate address
register indirect with displacement (mode 5) when seeing any of the following forms (as
long as bd fits in 16 bits or less):

bd(An)
(bd,An)
(An,bd)

o

- 17 -

11. MACmNE INSTRUCTIONS

(11.1. Instructions For The MC68000/MC68010/MC68020

(

The following table shows how MC68000jMC68010/MC68020 instructions should be
written in order to be understood correctly by the as assembler. The entire instruction
set can be used for the MC68020. Instructions that are MC6801O/MC68020-0nly or
MC68020-0nly are noted as such in the "OPERATION" column.

Several ab breviations are used in the table:

S The letter S, as in add.S, stands for one of the operation size attribute letters b,
w, or 1, representing a byte, word, or long operation.

A The letter A, as in add.A, stands for one of the address operation size attribute
letters w or 1, representing a word or long operation.

CC In the contexts bCC, dbCC, and sCC, the letters CC represent any of the follow­
ing condition code designations (except that f and t may not be used in the bCC
instru ction):

cc carry clear Is low or same
cs carry set It less than
eq equal ml mmus
f false ne not equal
ge greater or equal pI plus
gt greater than t true
hi high vc overflow clear
hs high or same (=cc) vs overflow set
Ie less or equal
10 low (=cs)

EA This represents an arbitrary effective address.

I An absolute expression, used as an immediate operand.

Q An absolute expression evaluating to a number from 1 to 8.

L A label reference, or any expression representing a memory address in the current
segment.

d Two's complement or sign-extended displacem~nt that is added as part of effective
address calculation; size may be 8 by 16 bits; when omitted, assembler uses value of
zero.

%dx, %dy, %dn Represent data registers.

%ax, %ay, %an Represent address registers.

%rx, %ry, %rn Represent either data or address registers.

%rc Represents control register (%sfc, %dfc, %cacr, %usr, %vbr, %caar, %msp,
%isp).
offset Either an immediate operand or a data register.

width Either an immediate operand or a data register.

- 18 -

MC68000 INSTRUCTION FORMATS
MNEMOl\TIC ASSEMBLER SYNTAX OPERATION
ABCD abcd.d %dy, %dx Add Decimal with Extend

c
-(%ay),-{%ax)

ADD add.S EA,o/odn Add Binary
o/odn,EA

ADDA add.A EA,%an Add Address

ADDI add.8 &I,EA Add Immediate

ADDQ add.8 &Q,EA Add Quick

ADDX addx.S %dy,%dx Add Extended
d%ay),-(%ax)

AND and.8 EA,%dn AND Logical
%dn,EA

Al\TDI and.8 &I,EA AND Immediate

Al\'OI and.b &I,%cc AND Immediate
to CCR to Condition Codes

Al\'OI and.w &I,%sr Al\TD Immediate
to SR to the Status Register (

I

ASL asl.S %dx,%dy Arithmetic Shift (Left) ~

&Q,%dy

als.w &1,EA
als.w EA

ASR asr.S %dx,%dy Arithmetic Shift (Right)
&Q,%dy

asr.w &l,EA
asr.w EA

Bcc bCC L Branch Conditionally
(l6-bit Displacement)

bCC.b L Branch Conditionally (Short)
(8-bit Displacement)

bCC.l L Branch Conditionally (Long)
(32-bit Displacement)
(MC68020 Only)

o

- 19-

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
BCHG bchg %dn,EA Te'~1 a Bit and Change

&I,EA
NOTL behg should be written
with no suffix. If the second operand
is a data register, .1 is assumed; oth-
erwise .b is.

BCLR bclr %dn,EA Test a Bit and Clear
&I,EA

NOTE: beIr should be written with
no suffix. If the second operand is a
data register, .1 is assumed; other-
wise .h is.

BFCHG bfchg EA{offset:width} Complement Bit Field
(MC68020 Only)

BFCLR bfclr EA {ofl'set:wid th} Clear Bit Field
(MC68020 Only)

BFEXTS bfexts EA {ofl'set:wid th}, %dn Extract Bit Field (Signed)
(MC68020 Only)

BFEXTU bfextu EA {offset :wid th}, %d n Extract Bit Field (Unsigned)

(
(MC68020 Only)

BFFFO bfl'fo EA{offset:width},%dn Find First One in Bit Field
(MC68020 Only)

BFINS bfins %dn ,EA {ofl'set:wid th} Insert Bit Field
(MC68020 Only)

BFSET bfset EA {offset :wid th } Set Bit Field
(MC68020 Only)

BFTST bftst EA{offset:width} Test Bit Field
(MC68020 Only)

BKPT bkpt &1 Breakpoint
(MC68020 Only)

- 20-

MC68000 INSTRUCTION FORMATS
M1\'EMONIC ASSEMBLER SYNTAX OPERATION
BRA bra L Branch Always

(I6-bit Displacement)

bra.b L Branch Always (Short)
(8-bit Displacement)

br.l L Branch Always (Long)
(32-bit Displacement)
(MC68020 Only)

br L Same as bra
br.b L Same as bra.b

BSET bset %dn,EA Test a Bit and Set
&I,EA

NOTE: beet should be written ,vith
no suffix. If the second operand is a
data register, .1 is assumed; other-
wise .b is.

BSR bsr L Branch to Subroutine
(I6-bit Displacement)

bsr.b L Branch to Subroutine (Short)
(8-bit Displacement)

bsr.l L Branch to Subroutine (Long)
(32-bit Displacement)
(MC68020 OnlY)

BTST btst %dn,EA Test a Bit and Set
&I,EA

NOTE: btet should be written with
no suffix. If the second operand is a
data register, .1 is assumed; other-
wise .b is.

CALLM callm &I,EA Call Module
(MC68020 Only)

CAS cas %ds,%dy,EA Compare and Swap Operands
(MC68020 Only)

CAS2 cas2 %dx:%dy ,%dx:%dy ,%rx:%ry Compare and Swap Dual
OJ)erands (MC68020 Only)

(

(

- 21 -

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
CHK chk.w EA,%dn Check Register Against Bounds

chk.l EA,%dn Check Register Against Bounds
(Long) (MC68020 Only)

CHK2 chk2.S EA,%rn Check Register Against Bounds
(MC68020 Only)

CLR elr.S EA Clear an Operand
CMP cmp.S %dn,EA Compare

GMPA cmp.A %an,EA. -~ ~Compare-Adciress-~~-··----~ .. -~--.

CMPI cmp.s EA,&I Compare Immediate

CMPM cmp.S (%ax)+ ,(%ay)+ Compare Memory

CMP2 cmp.S %rn,EA Compare Register Against Bounds
(MC68020 Only)*

DBcc dbCC %dn,L Test Condition, Decrement,
and Branch

dbra %dn,L Decrement and Branch Always

dbr %dn.L Same as dbra
DIVS divs.w EA,%dx Signed Divide

32/16 -+ 32

tdivs.l EA,%dx Signed Divide (Long)
divs.l EA,%dx 32/32 -+ 32

(MC68020 Only)

tdivs.l EA,%dx:%dy Signed Divide (Long)
32/32 -+ 32r:32q
(MC68020 Only)

divs.l EA,%dx:%dy Signed Divide (Long)
64/32 -+ 32r:32q
(MC68020 Onlv)

* Note: The order of operands in as is the reverse of that in the M68000 Programmer's Refer­
ence Manual.

-I

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
DIVU divu.w EA,o/odn Unsign(·d Divide

32/16 - 32

tdivu.l EA, o/od x Unsigned Divide (Long)
divu.l EA,o/odx 32/32 -+ 32

(MC68020 Only)

tdivu.l EA,o/odx:o/ody Unsigned Divide (Long)
32/32 -+ 32r:32q
(MC68020 Only)

divu.l EA,%dx:%dy Unsigned Divide (Long)
64/32 -+ 32r:32q
(MC68020 Onlv)

EOR eor.S %dn,EA Exclusive OR Logical

EORI eor.S &I,EA Exclusive OR Immediate

EORI eor.h &I,%cc Exclusive OR Immediate to
toCCR Condition Code Register

EORI eor.w &I,%sr Exclusive OR Immediate to
to SR the Status Register
EXG exg %rx%ry Exch ange Registers
EXT ext.w %dn Sign-Extend Low-Order Byte

of Data to Word

ext.l %dn Sign-Extend Low-Order Word
of Data to Long

extb.l %dn Sign-Extend Low-Order Byte
of Data to Long
(MC68020 Only)

extw.l %dn Same as ext.l
(MC68020 Only)

JMP jmp EA Jump

JSR jsr EA Jump to Subroutine
LEA lea.l EA.%an Load Effective Address
LINK link %an &1 Link and Allocate

o

- 23-

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERAT1ON
LSL lsl.S %dx,%dy Logical Shift (Left)

&Q,%dy

lsl.w &l,EA
Isl.w EA

LSR Isr.S %dx,%dy Logical Shift (Righ t)
&Q,&dy

lsr.w &l,EA
-~~

EA ~ ,-

MOVE mov.S EA,EA Move Data from Source
to Destination

NOTE: If the destination is an ad-
dress register, the instruction gen-
erated is MOVEA.

MOVE mov.w EA,%cc Move to Condition Codes
to CCR

MOVE mov.w %cc,EA Move from Condition Codes

(
from CCR (MC68010/MC68020 Only)

MOVE mov.w EA,%sr Move to the Status Register
to SR

MOVE mov.w %sr,EA Move from the Status Register
from SR

MOVE mov.l %usp,%an Move User Stack Pointer
USP %an,%usp

MOVE A mov.A EA,%an Move Address

MOYEC mov.l %rn,%rc Move to Con trol Register
to CCR (MC6801O/MC68020 Only)

MOYEC mov.l %rc,%rn Move from Control Register
from CCR (MC6801O/MC68020 Only)

(",','
"

~-,~.

- 24-

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSF.MRT~ER SYNTAX OPERATION
MOVEM movm.A &I,EA Move Multiple Registers*

EA,&I (See footnote)

MOVEP movp.A o/odx,d(%ay) Move Peripheral Data
d(%ay),%dx

MOVEQ mov.l &I,%dn Move Quick

MOVES movs.S %rn,EA Move to/form Address Space
movs.S EA%rn (MC68010/MC68020 Only)

MULS muls.w EA,%dx Signed Multiply
16*16 -+ 32

tmuls.l EA,%dx Signed Multiply (Long)
muls.l EA,%dx 32*32 -+ 32

(MC68020 Only)

muls.l EA,%dx:%dy Signed Multiply (Long)
32*32 -+ 64
(MC68020 Only)

MULU mulu.w EA,%dx Unsigned Multiply
16*16 -+ 32

tmulu.l EA,%dx Unsigned Multiply (Long)
mulu.l EA,%dx 32*32 -+ 32

(MC68020 Only)

mulu.l EA,%dx:%dy Unsigned Multiply (Long)
32*32-+ 64
(MC68020 Only)

NBCD nbcd.b EA Nel!:ate Decimal with Extend
NEG neg.s EA Negate
NEGX negx.S EA NeEate with Extend
NOP nop No Operation
NOT not.8 EA Logical Complement

• The immediate operand is a mask designating which registers are to be moved to memory or
which registers are to receive memory data. not all addressing modes are permitted, and the
correspondence between mask bits and register numbers depends on the addressing mode used.
Refer to the MC68000 Programmer's Reference Manual for details.

(,
"--)

o

- 25-

MC68000 INSTRUCTION FORMATS
Ml\'E~vfONIC ASSEMBLER SYNTAX OPERATION
OR or.S EA,%dn Inclusive OR Logical

%dn,EA

ORI or.S &I,EA Inclusive OR Immediate

ORI or.h &I,%cc Inclusive OR Immediate
toCCR to Condition Codes

ORI or.w &I,%sr Inclusive OR Immediate
to SR b +'1-.", C::t<>-l;-us-R~ , ------

PACK pack -(%ax),-(%ay),&I Pack BCD
pack %dx %dy &1 (MC68020 Only)

PEA pea.! EA Push Effective Address
RESET reset Reset External Devices
ROL rol.S %dx,%dy Rotate (without Extend)

&Q,%dy (Left)

rol.w &l,EA
rol.w EA

ROR ror.S %dx,%dy Rotate (without Extend)

(
&Q,%dy (Right)

ror.w &l,EA
ror.w EA

ROXL roxl.S %dx,%dy Rotate with Extend (Left)
&Q,%dy

roxl.w &l,EA
roxl.w EA

ROXR roxr.S %dx,%dy Rotate with Extend (Righ t)
&Q,%dy

roxr.w &l,EA
roxr.w EA

RTD rtd &1 Return and Deallocate
Parameters
(MC6801O/MC68020 Only)

RTE rte Return from Except.ion

RTM rtm %rn Return from Module
(MC68020 Onlv)

Ml\TEMONIC
RTR

RTS
SBCD

Scc
STOP
SUB

SUBA

SUBI

SUBQ

SUBX

SWAP
TAS
TRAP

TRAPV

TRAPcc

TST
UNLK
UNPK

- 26-

MC68000 INSTRUCTION FORMATS
ASSEMRT :RR SYNTAX OPERATION

rtr Return and Restore
Condition Codes

rts Return from Su broutine
sbcd.b %dy,%dx Subtract Decimal with Extend

-(%ay),-(%ax)
sCC.b EA Set According to Condition
stop &1 Load Status Register and Stop
sub.8 EA,%dn Subtract Binary

%dn,EA

sub.A EA,%an Subtract Address

sub.S &I,EA Subtract Immediate

sub.8 &Q,EA Subtract Quick

subx.S %dy,%dx Subtract with Extend
-(%ay),-(%ax)

swap.w %dn Swap Register Halves
tas.b EA Test and Set an Operand
trap &1 Trap

trapv Trap on Overflow

tCC Trap on Condition
tpCC.A &1 (MC68020 Only)
tst.S EA Test an Operand
unlk %an Unlink
unpk -(%ax),-(%ay) ,&1 Unpack BCD

%dx %dy,&1 (MC68020 Only)

(\
.)
~,

o

(

- 27-

11.2. InstructioDs For the MCG8881

. The following table shows how the floating point co-processor (MC68881) instructions
should be written to be understood by the as assembler.

In the table, jpcc represents any of the following floating point condition code designa­
tions:

TRAP ON UNORDERED
jpcc MEANING

ge greater than or equal
gl greater or less than
gle greater or less than or equal
gt greater than
Ie less than or equal
It . less than
ngt not greater than
nge not greater than or equal
nIt not less than
ngI not greater or less than
nle not greater or less than or equal
ngle not greater or less than or equal
sneq not equal
sf never
seq equal
st always

NO TRAP ON UNORDERED
jpcc :MEANING

eq equal
oge greater than or equal
ogl greater or less than
ogt greater than
ole less than or equal
olt less than
or ordered
t always
ule unordered or less or equal
ult unordered less than
uge unordered greater than or equal
ueq unordered equal
ugt unordered greater than
un unordered
neq unordered are greater or less
r never

- 28-

The designation eee represents a group of constants in MC68881 constant ROM which
have the following values:

eee VALUE
00 pi
OB logI0(2)
OC e
OD log2(e)
OD logI0(e)
OF 0.0
10 logn(2)
11 logn(10)
12 10**0
13 10**1
14 10**2
15 10**4
16 10**8
17 10**16
18 10**32
19 10**64
lA 10**128
IB 10**256
lC 10**512
ID 10**1024
IE 10**2048
IF 10**4096

Additional abbreviations used in the table are:

EA
L

I
%dn
%fpm,%fpn,%fpq
o/ocontrol
%status
%iaddr
SF

A
B

represents and effective address
a label reference or any expression representing a memory
address in the current segment
represents an absolute expression, used as an immediate operand
represents data register
represents floating point data registers
represents floating point control register
represents floating point status register
represents floating point instruction address register
represents source format letters:
b byte integer
w word integer
I long word integer
s single precision
d dou ble precision
x extended precision
p packed binary code decimal

represents source format letters w or I
represents source format letters h, w, 1, s, or p

o

(

(

C·~·.·· ~~/

- 29 -

NOTE: The source format must be specified if more than one source format is permitted
or a default source format x is assumed. Source format need not be specified if only one
format is permitted by the operation.

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
FABS fabs.sF EA,%fpn absolute value function

fabs.x %fpm,%fpn
fabs.x %fpn

FACOS facos.SF EA,%fpn arccosine function
facos.x %fpm,%fpn
facos.x %fpn

~~~ 

FADD fadd.SF EA,%fpn floating point add 
fadd.x %fpm,%fpn 

FASIN fasin.SF EA,%fpn arcsine function 
fasin.x %fpm,%fpn 
fasin.x %fpn 

FATAN fatan.SF EA,%fpn arctangen t function 
fatan.x %fpm,%fpn 
fatan.x %fpn 

FATAl\'H fatanh.SF EA,%fpn hyperbolic arctangen t 
fatanh.x %fpm,%fpn function 
fatanh.x %fpn 

FBfpcc fbfpcc.A L co-processor branch 
conditionally 

FCMP fcmp.SF %fpn,EA floating point compare 
fcmp.x %fpn,%fpm 

FCOS fcos.SF EA,%fpn cosine function 
fcos.x %fpm,%fpn 
fcos.x %fpn 

FCOSH fcosh.SF EA,%fpn hyperbolic cosine 
fcosh.x %fpm,%fpn function 
fcosh.x %fpn 

FDBfpcc fdbfpcc.w %dn,L decrement and branch 
on condition 

FDIV fdiv.SF EA,%fpn floating point divided 
fdiv.x %fpm %fpn 



- 30-

MC88000 INSTRUCTION FORMATS 
Ml\TEMONIC ASSEMRT ,RR SYNTAX OPERATION 
FETOX fetox.8F EA,%fpn e**x function 

Cc 
fetox.x %Cpm,o/ofpn 
fatan.x %fpn 

FETOXMl fetoxm1.SF EA,%fpn e**x(x-l} function 
fetoxm1.x %Cpm,%fpn 
Cetoxm1.x %Cpn 

FGETEXP fgetexp.8F EA,%fpn get the exponent 
fgetexp.x %fpm,%fpn Cunction 
fgetexp.x %fpn 

FGETMAN fgetman.SF EA,%fpn get the mantissa 
fgetman.x %fpm,%fpn function 
fgetman.x %fpn 

FINT fint.SF EA,%fpn integer part function 
fint.x %fpm,%fpn 
fint.x %fpn 

FLOG2 fiog2.SF EA,%fpn binary log function 
fiog2.x %fpm,%fpn 
fiog2.x %fpn 

FLOGIO fioglO.SF EA,%fpn common log function 
fioglO.x %fpm,%fpn 
fioglO.x %fpn 

FLOGN fiogn.SF EA,%fpn natural log function 
fiogn.x %fpm,%fpn 
fiogn.x %fpn 

FLOGl\t> 1 fiognp1.SF EA,%Cpn natural log (x+l) 
fiognpl.x %fpm,%fpn function 
fiognpl.x %fpn 

FMOD fmod.SF EA,%fpn fioating point module 
fmod.x %fpm %fpn 

c 



- 31 -

MC68000 INSTRUCTION FORMATS 
MNEMONIC ASSEMBLER SYNTAX OPERATION 
FMOVE fmov.SF EA,%fpn move to floating point 

fmov.x %fpm,%fpn register 

fmov.SF %fpn,EA move from floating point 
fmov.p %fpn,EA{&I} register to memory 
fmov.p %fpn,EA{%dn} 

fmov.l EA, %con trol move from memory to 
fmov.l EA,o/ostatus special register 
fmov.l EA,%iaddr 

fmov.l %con trol,EA move to memory from 
fmov.l %statsu,EA special register 
fmov.l %iaddr,EA 

FMOVECR fmovcr.x &ccc,%fpn move a ROM-stored to a 
floating poin t register 

FMOVEM fmovm.x EA,&I move to multiple floating 
poin t register 

fmovm.x &I,EA move from multiple 
registers to memory 

fmovm.x EA,%dn move to a data register 

fmovm.x %dn,EA move a data register 
to memory 

fmovm.l EA, %control/o/osta- move to special 
tus/%iaddr registers 

fmovm.l %control/%status/ move from special 
%iaddr EA registers 

NOTE: The immediate operand is a mask designating which registers are to be moved 
to memory or which registers are to receive memory data. Not all addressing modes are 
permitted and the correspondence between mask bvits and register numbers depends on 
the addressing mode used. 



- 32-

MC68000 INSTRUCTION FORMATS 
MNEMONIC ASSE:MBLER SYNTAX OPERATION 
FMUL fmul.SF EA,%fpn floating point multiply 

fmul.x %fpm,%fpn 

FNEG fneg.SF EA,%fpn negate function 
fneg.x %fpm,%fpn 
fneg.x %fpn 

FNOP fnop floating point no-op 

FREM frem.SF EA,%fpn floating point remainder 
frem.x %fpm,%fpn 

FRESTORE frestore EA restore internal state 
of co-processor 

FSAVE fsave EA co-processor save 

FSCALE fscale.SF EA,%fpn floating point scale 
fscale.x %fpm,%fpn exponent 

FSfpcc fsfpcc.b EA set on condition 

FSGLDIV fsgldiv.B EA,%fpn floating point single 
fsgldiv.x %fpm,%fpn precision divide 

FSGLMUL fsglmul.B EA,%fpn floating point single 
fsglmul.s %fpm,%fpn precision multiply 

FSIN fsin.SF EA,%fpn sine function 
fsin.x %fpm,%fpn 
fsin.x %fpn 

FSINCOS fsincos.SF EA,%fpn sine/cosine function 
fsincos.x %fpm,%fpn:%fpq 

FSIl\TJI fsinh.8F EA,%fpn hyperbolic sine 
fsinh.x %fpm,%fpn function 
fsinh.x %fpn 

FSQRT fsqrt.SF EA,%fpn square root function 
fsqrt.x %fpm,%fpn 
fSQrt.x %fpn 



- 33-

MC68000 INSTRUCTION FORMATS 
MNRMONlC A SSEMRLER SYNTAX OPERATION 
FSUB fsub.SF EA,%fpn square root function 

fsub.x %fpm,%fpn 

FTAN ftan.SF EA,%fpn tangent function 
ftan.x %fpm,%fpn 
ftan.x %fpn 

FTANH ftanh.SF EA,%fpn hyperbolic tangent 
ftanh.x %fpm,%fpn function 
ftanh.x %fpn 

FTENTOX ftentox.SF EA,%fpn lO**x function 
ftentox.x %fpm,%fpn 
ftentox.x %fpn 

FTfpcc ftfpcc trap on condition 
without a parameter 

FTPfpcc ftpfpcc.A &1 trap on condition with 
a parameter 

FTST ftest.SF EA floating poin t test 

( 
ftest.x %fpm an operand 

FTWOTOX ftwotox.SF EA,%fpn 2**x function 
ftwotox.x %fpm,%fpn 
ftwotox.x %fpn 

FYTOX fytox.SF EA,%fpn floating point y**x 
fytox.x %fpm %fpn 



o 


