

M68KVBS(D4)

JULY 1981

VER3Abus

SPECIFICATICN MANUAL

The infonnation in this document has been carefully checked am is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthennore, Motorola reserves the right to make charges to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arisim out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

VERSAbus arrl VER3Aboa rd a re trademarks of Motorola Inc.

Fourth Edition

Copyright 1981 by Motorola Inc.

Third Edition May 1981

PREFACE

WHY A NEW BUS?

The advent of microprocessors in the 1970's has had a revolutionary effect on
the thinking of computer system architects. Early system architecture was
designed to get the maximum use of a central processing unit. Every effort was
made to assure that no expensive processing time was lost. A careful blend of
multitasking and batch processing was adopted to accomplish this objective.

The new microprocessor chips, with their lower cost per processing unit, have
now caused a significant shift in this thinking. The most expensive portions of
a system today are the peripherals and software. Thus, multiprocessor system
architectures are now a viable alternative in constructing powerful computer
systems.

As a result, in the late 1970 's, system architects began to develop computer
system architectures which made use of multiple processors. Difficulties in
designing these complex systems made mandatory a clearly defined system bus -
defined independently of the processors involved. A processor-independent bus
also reduces peripheral costs by allowing manufacturers to provide a single type
of bus interface.

As new products became available, it was seen that the earlier bus architecture
did not have sufficient flexibility to meet the needs of the bigger and more
complex systems that systems architects were envisioning. Several major problem
areas started to appear.

0.1 Bus Arbitration

Most existing system buses are designed around a single controlling
microprocessor. Buses of this type do not easily expand to multiprocessor
configurations because they lack a method of bus arbitration to allow multiple
processors to access the bus on an interleaved basis.

0.2 Synchronization

Most existing system buses are synchronous. When multiple processors are
running on a bus (as is typical with the new multiprocessor architectures}, they
must be resynchronized with the bus clock each time a bus access is required.
This can become very complex, particularly if the processors involved are of
different types and/or run at different clock rates. Designs based on
synchronous bus structures become more and more costly as the system complexity
grows.

Conversely, an asynchronous bus allows the various processors to access the bus
without a need to synchronize to a common clock. As newer, faster devices
become available, they may be added to the system without necessitating
modifications on the existing units.

0.3 Addressability

'As hardware costs plummet, while the cost of rotating media storage devices
remains relatively fixed, a combination of speed and cost constraints encourages
the development of larger and larger memory configurations on systems. Current
microprocessor buses tend to restrict addressing to 16 bi ts. Since all newly
announced microprocessors have addressing capability in excess of this
limitation, these buses are clearly insufficient for the task at hand.

0.4 User/System Protection

'As multi-user systems become increasingly more available in microprocessor
systems, the hazards of inadvertent access to and/or destruction of the data
intended for other users and the system executive become greater. Because of
the growing size of these systems, three concerns come into effect:

a. The sheer size of the system may require that limited subsets be put
into operation before the total system is complete.

b. The ability to min1m1ze problems caused by the interaction of
non-related pieces in a "live" system becomes a necessity because of
the geometrically expanding number of such interactions. The time and
equipment required to exhaustively test all possible combinations of
conditions will rapidly exceed the available resources of any
organization.

c. Modifications required by changing needs, and enhancements made
possible by new technologies, need to be added after the system has
already been "live" for a significant period.

Because of the "evolutionary" nature of systems development, the
software and hardware in the system will always have many different
degrees of reliability. Provision must be made to ensure that the newly
grafted pieces of the system are not allowed to access system resources
in ways which might prove detrimental to existing applications and
users.

Thus, a method of "privileged access" to system resources must be developed to
preclude access to system resources except through previously verified drivers.
The bus design must make provisions to detect, inhibit, and report unauthorized
access.

0.5 Data Capabilities

As microprocessors grow in capability, one of the major areas of growth is in
the number of bits handled concurrently. An enlargement of the data path width
multiplies the effective throughput on the bus. 'As processors are able to
perform operations on wider and wider pieces of data, many multi-precision
algorithms may be eliminated from the software package. Since these multi­
precision operations account for a significant portion of the processing time,
this also increases throughput.

'As special processors which actually run in a "high level" language mode become
available, larger and larger instructions are required. The new processors will
require the abi Ii ty to fetch these wider instructions. The most comm:m bus
width of eight bits is totally inadequate for these needs, and even a data width
of 16 bits is not adequate for all upward growth needs.

0.6 Malfunction Control

As system complexities grow, the mean time to failure for the system as a whole
decreases. Therefore, it becomes essential to provide for system self
diagnosis, and to provide the basics for allowing fault isolation and continued
operation. Several areas need ·to be covered in this regard.

A power up self-test of each unit is a necessary ingredient of any fault
management package. In a multiple processor system, such a test would be run
concurrently by each of the processors. A procedure must be defined to allow
each processor to "veto" system start-up until malfunctions are corrected or
bypassed. Current buses, designed for single processor operation, have no
"ballot box" to allow multiple processors to control start-up.

Once the system is operational, additional procedures are required to detect
run-time failures at the earliest possible moment. Early detection is one of
the keys to successful isolation. Few buses today incorporate malfunction
signal lines or parity check lines.

0.7 Board Size Limitations

To maximize bus availability, it is necessary to design processor boards that
are basically self-contained. Self-diagnostics are practical only when the
processor board itself contains sufficient ROM and RAM to allow the processor to
complete its self-test without requiring the bus. Each processor board must
have its own timing logic to allow interfacing to the system bus. Likewise,
each processor board must contain the logic necessary to interface properly with
the interrupt and bus arbitration bus controls. Even with the increasingly
high-density packages coming out of development, PC board area is at a premium.
Many present bus standards place over-restrictive limitations on the area
possible on any one board. Various design solutions are possible, but each has
its costs. A better solution is a bus which allows larger cards.

0.8 Sequential Access Capability

While accessing program storage over a bus, processors exhibit two character­
istics:

a. Fetches do not take place on every cycle (i.e. , a few fetches may be
followed by a period where no fetches take place).

b. Fetches typically take place from sequential memory locations, except
when branches are taken.

In the past, the solution has been to add high speed cache memories between the
bus merory and the processor. In order to take full advantage of this
configuration, the bus memory should have an on-board "address counter" which
increments or decrements on each access. The bus must then provide a means for
the processor to inform the memory when this counter is to be used and when it
should increment. To date, no microprocessor bus provides for this.

0.9 Conclusions

Because of these limitations, and after careful analysis, Motorola felt that a
new bus was needed. Such a bus should eliminate or at least minimize the
difficulties listed above. It should allow for maximum potential growth in
those areas where trends are already established. Not all systems will require
every enhancement being provided - but a bus which does not provide them
guarantees its early obsolescence.

The VERSAbus, as developed by Motorola, addresses the limitations of existing
bus structures and meets the needs of state-of-the-art microprocessor systems.
It has been designed with special attention to the following objectives:

• To provide a comprehensive basis for microprocessor systems capable of
supporting a wide range of architectures from 8- to 32-bi t data paths
with up to 5-MHz data transfer rates.

• To provide adequate addressing range and control for large-scale
systems •

• To provide for system architectures involving multiple processors •

• To provide sufficient flexibility to exploit the latest technologies
without sacrificing ease of use to the designers of future
microprocessor-based systems.

VERSAbus has already been implemented in development systems and board-level
products. A major advantage to users is the continuity possible from initial
development through board products to end-user systems. The bus versatility
allows it to serve present products and the future needs of next generation
products.

CHAPI'ER 1

1.1
1.2
1. 2.1
1.2.2
1.3
1.4
1.4.1
1.4. 2
1.4.3
1.4.4
1.4.5
1.4.6
1.4. 7
1.4.8
1.5
1.5.1
1.5.2
1.6
1. 7

CHAPI'ER 2

2.1
2.1.1
2.1. 2
2.2
2.2.1
2.2.2
2.2.3
2.3
2.4
2.4.1
2.5
2.5.1
2.5.2
2.5.2.1
2.5.2.2
2.5.3
2.5.4
2.6
2.6.1
2.6.1.l
2.6.1.2
2.6.1.3
2.6.2
2.6.2.1
2.6.2.2

TABLE OF CONTENTS

INTRODUCTION TO THE VERSAbus SPECIFICATION

VERSAbus SPECIFICATION OBJECTIVES ••••••••••••••••••••••••
VERSAbus INTERFACE SYSTEM ELEMENTS •••••••••••••••••••••••

Basic Definitions ••••••••••••••••••••••••••••••••••••••
Basic VERSAbus Structure •••••••••••••••••••••••••••••••

VERSAbus SPECIFICATION FORMAT••••••••••••••••••••••••••••
SPECIFICATION TERMINOLcx;Y ••••••••••••••••••••••••••••••••

Signal Line States •••••••••••••••••••••••••••••••••••••
Use of Asterisk (*) ••••••••••••••••••••••••••••••••••••
Summary for Signal Line Terminology ••••••••••••••••••••
Bus Lines (Three-State Level Significant) ••••••••••••••
Strobe Lines (Three-State Edge Significant) ••••••••••••
Strobe Response Lines (Open Collector) •••••••••••••••••
Shared Lines (Open Collector) ••••••••••••••••••••••••••
Other VERSAbus Lines •••••••••••••••••••••••••••••••••••

PROTCX:OL SPECIFICATION •••••••••••••••••••••••••••••••••••
Interlocked Bus Signals ••••••••••••••••••••••••••••••••
Broadcast Bus Signal •••••••••••••••••••••••••••••••••••

SYSTEM EXAMPLES AND EXPLANATIONS •••••••••••••••••••••••••
ELECTRICAL/MECHANICAL SPECIFICATIONS •••••••••••••••••••••

VERSAbus ~TA TRANSFER

INTRODUCTION •••~•••
1JI1B Options - Basic Description ••••••••••••••••••••••••
DTB Operation ••

DATA TRANSFER BUS LINE STRUCTURES ••••••••••••••••••••••••
Address Lines ••
Data Transfer Lines ••••••••••••••••••••••••••••••••••••
Data Transfer Control Lines ••••••••••••••••••••••••••••

FWCTIOOA.L MOOOLES •••••••••••••••••••••••••••••••••••••••
TYPICAL OPERATION ••

Data Transfer Bus Acquisition ••••••••••••••••••••••••••
FORMAL SPECIFICATIONS ••••••••••••••••••••••••••••••••••••
Data Transfer Bus Acquisition ••••••••••••••••••••••••••••
Byte Read Sequence •••••••••••••••••••••••••••••••••••••••

Address Sequence •••••••••••••••••••••••••••••••••••••
Data Bus Sequencing ••••••••••••••••••••••••••••••••••

Read-Modify-Write Sequence •••••••••••••••••••••••••••••
Sequential Access Sequence •••••••••••••••••••••••••••••

DETAILED TIMING/STATE DIAGRAMS •••••••••••••••••••••••••••
D'IB MASTER Timing ••••••••••••••••••••••••••••••••••••••

DTB MASTER Timing: Write Cycle Followed by Read Cycle
D'IB MASTER Timing: Read Cycle Followd by Write Cycle
MASTER Timing: Control Transfer of DTB ••••••••••••••

D'I'B SI.AVE Timing •••••••••••••••••••••••••••••••• • • • • • • •
DTB SLAVE Timing: Two Consecutive Read Cycles •••••••
DTB SI.AVE Write Cycle Timing •••••••••••••••••••••••••

i

1-1
1-1
1-1
1-4
1-7
1-7
1-7
1-8
1-8
1-10
1-10
1-12
1-12
1-13
1-13
1-14
1-14
1-15
1-15

2-1
2-1
2-3
2-3
2-3
2-10
2-13
2-15
2-15
2-15
2-20
2-20
2-22
2-22
2-22
2-24
2-26
2-26
2-27
2-27
2-31
2-35
2-37
2-38
2-41

CHAPI'ER 3

3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.3
3.3.1
3.3.2
3.3.3
3.4
3.4.1
3.4.2

3.4.3
3.4.4
3.5
3.5.1
3.5.2
3.5.2.l
3.5.2.2

CHAPI'ER 4

4.1
4.1.l
4.1.2
4.2
4.2.l
4.2.2
4.3
4.3.1
4.3.2
4.3.3

4.3.3.1
4.3.3.2
4.4
4.4.1
4.4.2
4.4.2.1

4.4.2.2

4.4.3

4.4.4

TABLE OF CONTENTS (cont'd)

VERSAbus DATA TRANSFER BUS ARBITRATICN

BUS ARBITRATION PHILOSOPHY •••••••••••••••••••••••••••••••
ARBITER Options ••
ARBITER Operation ••••••••••••••••••••••••••••••••••••••

ARBITRATION BUS LINE STRUCTURES ••••••••••••••••••••••••••
Bus Request and Bus Grant Lines ••••••••••••••••••••••••
Bus Busy Line (BBSY*) ••••••••••••••••••••••••••••••••••
Bus Clear Line (BCLR*) •••••••••••••••••••••••••••••••••
Bus Release Line (BREL*) •••••••••••••••••••••••••••••••

FlJN'CTIOOAL MODULES •••••••••••••••••••••••••••••••••••••••
Data Transfer Bus ARBITER ••••••••••••••••••••••••••••••
Data Transfer Bus REQUESTER ••••••••••••••••••••••••••••
Data Transfer Bus MASTER •••••••••••••••••••••••••••••••

'I'YPICAL OPERATION ••
Arbitration of Two Different Levels of Bus Request •••••
Arbitration of Two Bus Requests on the Same Bus

Request Line •••
Arbitration During Power-Down Sequence •••••••••••••••••
Arbitration During Power-Up Sequence •••••••••••••••••••

STA TE D IAGRMJl.S •
Data Transfer Bus REQUESTER••••••••••••••••••••••••••••
Data Transfer Bus ARBITER ••••••••••••••••••••••••••••••

Prioritizing of Incoming Bus Requests ••••••••••••••••
Clearing the DTB Upon a Higher Priority Bus Request ••

PRIORI'I'Y INTERRUPI'

INTERRUPI' PHILCEOPHY
Single Handler Systems •••••••••••••••••••••••••••••••••
Distributed Systems ••••••••••••••••••••••••••••••••••••

SIGNAL LINES USED IN HANDLING INTERRUPI'S •••••••••••••••••
Interrupt Bus Signal Lines •••••••••••••••••••••••••••••
Acknowledge Daisy Chain - ACKIN*/ACKOUT* •••••••••••••••

FUNCTIONAL MODULES ••••••••••.•••••••••••••••••••••••••••••
INI'ERRUPI' HANDLER ••••••••••••••••••••••••••••••••••••••
INI'ERRUPI'ER ••
Comparison of Interrupt Bus Functional Modules to

DTB Functional Modules •••••••••••••••••••••••••••••••
INTERRUPI' HANDLER vs MASTER: Differences ••••••••••
INTERRUPI'ER vs SLAVE: Differences •••••••••••••••••

'I'YPICAL OPERATION ••
Single Handler Interrupt Operation •••••••••••••••••••••
Distributed Interrupt Operation ••••••••••••••••••••••••

Distributed Interrupt Systems with Seven

3-1
3-1
3-1
3-3
3-4
3-5
3-5
3-5
3-5
3-6
3-8
3-9
3-10
3-10

3-14
3-18
3-21
3-24
3-24
3-33
3-33
3-37

4-1
4-1
4-3
4-3
4-3
4-3
4-6
4-6
4-8

4-8
4-8
4-10
4-11
4-12
4-12

INTERRUPI' HANDLERS • 4-12
Distributed Interrupt Systems with Two to Six

INTERRUPI' HANDLERS ••••••••••••••••••••••••••••••••• 4-12
Example: Typical Single Handler Interrupt

System Operation •••••••••••••••••••••••••••••••••••••• 4-16
Example: Prioritization of Two Interrupts in a

Distributed Interrupt System ••••••••••••••••••••••••• 4-19

ii

TABLE OF CONTENTS (cont Id)

4.5 STATE DIAG~S •••
4.5.1
4.5.2
4.5.2.l
4.5.2.1.1
4.5.2.1.2
4.5.2.1.3
4.5.2.2
4.5.2.3

INTERRUPTER ••
INTERR.UPI' liANDLER ••••••••••••••••••••••••••••••••••••••

Interrupt Prioritizers •••••••••••••••••••••••••••••••
Seven-Level Interrupt Prioritizer ••••••••••••••••••
Single-Level Interrupt Prioritizer •••••••••••••••••
Interrupt Masking ••••••••••••••••••••••••••••••••••

Address Bus Driver •••••••••••••••••••••••••••••••••••
Data Bus Controller ••••••••••••••••••••••••••••••••••

CHAPI'ER 5

5.1
5.2
5.2.l
5.2.1.1
5.2.1.2
5.2.2
5.2.2.1
5.2.2.2
5.3
5.4
5.4.1
5.4.2
5.4.3

CHAPTER 6

6.1
6.1.1
6.2
6.2.l
6.2.1.1
6.2.1.2
6.2.1.3
6.2.1.4
6.2.2
6.2.2.1
6.2.2.2
6.2.3
6.2.3.1
6.2.3.2
6.2.4
6.2.5
6.2.6
6.2.6.1
6.2.6.2
6.2.6.3
6.2.6.4
6.2.6.5

VERSAbus UTILITIES

IN'I'R.ODUCTION •••
UTILITY SIGNAL LINES •••••••••••••••••••••••••••••••••••••

Bus Clocks •••
System Clock (SYSCLK) Specification ••••••••••••••••••
AC Clock (ACCLK) Specification •••••••••••••••••••••••

System Initialization and Diagnostics ••••••••••••••••••
System Reset (SYSRESET*) •••••••••••••••••••••••••••••
System Test (TESTO*, TESTl*, SYSFAIL*} •••••••••••••••

PCJJIJER MONITOR MODULE •••••••••••••••••••••••••••••••••••••
INPUT/OUTPUT LINES •••••••••••••••••••••••••••••••••••••••

I/O Cabling · · · · · · · • • · · • · •
Power Pins .. .
Reserved Lines •••

VERSAbus OPTIONS

IN'I'R.ODUCTION •••
Hardware vs Dynamic Option Selectivity •••••••••••••••••

OPTICN DEFINITIONS •••••••••••••••••••••••••••••••••••••••
Data Transfer Options

Address Bus Options ••••••••••••••••••••••••••••••••••
Data Bus Options •••••••••••••••••••••••••••••••••••••
Parity Options •••••••••••••••••••••••••••••••••••••••
Time-Out Opt ions ••••••.••••••••••••••••••••••••••••••.•

Arbitration Options ••••••••••••••••••••••••••••••••••••
There are two ARBITER OPI'IONS: •••••••••••••••••••••••
REQUESTER Options ••••••••••••••••••••••••••••••••••••

Interrupt Options ••••••••••••••••••••••••••••••••••••••
INTERR.UPI' liANDLER Options ••••••••••••••••••••••••••••
INTERRUPI'ER Opt ions ••••••••••••••••••••••••••••••••••

Environmental Options ••••••••••••••••••••••••••••••••••
Power Options ••
Physical Configuration Options •••••••••••••••••••••••••

Expanded Configuration •••••••••••••••••••••••••••••••
Non-Expanded Configuration •••••••••••••••••••••••••••
Half-Size Configuration ••••••••••••••••••••••••••••••
Mixing Expanded, Non-Expanded, and Half-Size Options
Examples. of Vendor Specification Sheets ••••••••••••••

iii

4-21
4-21
4-29
4-31
4-31
4-31
4-34
4-34
4-36

5-1
5-1
5-1
5-1
5-3
5-4
5-4
5-5
5-6
5-8
5-8
5-8
5-8

6-1
6-1
6-2
6-2
6-2
6-3
6-3
6-5
6-6
6-6
6-6
6-7
6-7
6-7
6-8
6-8
6-8
6-8
6-8
6-9
6-9
6-10

CHAPTER 7

7.1
7.2
7.2.1
7.2.2
7.2.3
7.3
7.4
7.5
7.6
7.6.1
7.6.2
7.6.3
7.6.4

CHAPTER 8

8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6

APPENDIX A

B

TABLE OF CONTENTS (cont 1 d)

VERSAbus ELECTRICAL CONSIDERATICNS

INTRODUCl'I CN •••
ro\\1E:R DI srRI BlJ'I'I rn •••••••••••••••••••••••••••••••••••••••

Bus Voltage/Current Specifications •••••••••••••••••••••
Ground Distribution ••••••••••••••••••••••••••••••••••••
card Edge Connector Electrical Ratirgs •••••••••••••••••

ELECI'RICAL SIGNAL CHARAcrERISTICS ••••••••••••••••••••••••
DRIVER SPECIFICATICNS ••••••••••••••••••••••••••••••••••••
RECEIVER SPECIFICATIONS ••••••••••••••••••••••••••••••••••
BAO<PLANE SIGNAL LINE INTEROONNlrl'ICNS •••••••••••••••••••

Termination Networks •••••••••••••••••••••••••••••••••••
Characteristic Impedance •••••••••••••••••••••••••••••••
Board Level Loading ••••••••••••••••••••••••••••••••••••
I/O Pin Voltage/Current/Frequency Constraints ••••••••••

MECHANICAL SPECIFICATIONS

INTROOOCTI CN •••
VERSAbus BAO<PLANE ••••••••••••••••••••••••••••••••••••••

Backplane Construction Techniques •••••••••••••••••••••
Reference Designations arrl Pin Numberirg Starrlards ••••
Backplane/VERSAboard Dimensional Requirements ••••••••••
F.dge Connectors ••
Auxiliary Pins •••
I/O Connections ••

VERSAboa rds ••
VER>Aboard Construction Techniques •••••••••••••••••••••
Reference Designations and Pin Numbering Standards •••••
VER3Aboard Dimensions ••••••••••••••••••••••••••••••••••
VERSAboard Bus F.dge Connectors •••••••••••••••••••••••••
VER>Aboard Non-bus Edge Connectors •••••••••••••••••••••
VERSAboard Ejectors ••••••••••••••••••••••••••••••••••••

GLOSSAAY OF VER3Abus TERJIS
STATE DIAGRAM NOTATI CN

7-1
7-1
7-1
7-3
7-3
7-4
7-5
7-7
7-7
7-7
7-8
7-11
7-11

8-1
8-1
8-2
8.-2
8-6
8-8
8-10
8-10
8-15
8-15
8-15
8-16
8-19
8-19
8-19

A-1

B-1

C VER3Abus CONNEX:;'I'OR/PIN DESCRIPTICN ••••••••••••••••••••••• C-1

D

E

VER3Abus BA<l<PLANE ErGE CONNlrl'OR Jl AND
VERSAboard EIX3E CONNECTOR Pl IDENTIFICATICN

VERSAbus BAO<PLANE EIX3E CCJ:-.JNECTOR J2 AND
VER3Aboard EIX3E CONNlrl'OR P2 IDENTIFICATICN

D-1

E-1

F DC SIGNAL SPECIFICATICl'1 • F-1

iv

FIGURE 1-1.
1-2.
1-3.

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
2-11.
2-12.
2-13.
2-14.
2-15.
2-16.
2-17.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.

3-8.

3-9.

3-10.

3-11.
3-12.
3-13.
3-14.
3-15.
3-16.

3-17.
3-18.
3-19.
3-20.
3-21.

LIST OF ILLUSTRATIONS

Typical Multi-Slot System Card Cage with Backplane ••••••
System Elements Defined by the VERSAbus Specification •••
Functional Modules and Buses contained within the

VERSAbus Definition •••••••••••••••••••••••••••••••••••
VERSAbus Data Transfer Functional Block Diagram •••••••••
Typical Write •••
Typical Read ••
Odd Word Location Accesses ••••••••••••• : ••••••••••••••••
Word Addressing of LONGWORD Locations •••••••••••••••••••
Byte Location Numbering •••••••••••••••••••••••••••••••••
Data Transfer Bus, Byte Read cycle (2 sheets) ••••••••••••
Data Transfer Bus, Word Write cycle •••••••••••••••••••••
Data Transfer Bus, LONGWORD Write cycle •••••••••••••••••
Data Transfer Bus MASTER Exchange Sequence ••••••••••••••
Data Transfer Bus Byte Read •••••••••••••••••••••••••••••
Read-Modify-Write Cycle Sequence ••••••••••••••••••••••••
DI'B MASTER Timing: Write cycle Followed by Read Cycle ••
D'IB MASTER Timing: Read Cycle Followed by Write Cycle ••
MASTER Timing: Control Transfers of DTB ••••••••••••••••
Data Transfer Bus SIAVE Read Cycle ••••••••••••••••••••••
Data Transfer Bus SLAVE Write Cycle •••••••••••••••••••••
VERSAbus Arbitration Functional Block Diagram •••••••••••
Illustration of the Daisy-Chained Bus Grant Lines •••••••
Block Diagram: Option NPF DTB ARBITER ••••••••••••••••••
Block Diagram: Option PF lJI'B ARBITER •••••••••••••••••••
Block Diagram: Option~ REQUESTER ••••••••••••••••••••
Block Diagram: Option ROR REQUESTER ••••••••••••••••••••
Arbitration Flow Diagram:

Two REQUESTERS, Two Request Levels (2 sheets) •••••••••
Arbitration Sequence Diagram:

Two REQUESTERS, Two Request Levels ••••••••••••••••••••
Arbitration Flow Diagram:

Two REQUESTERS/Same Request Level (2 sheets) ••••••••••
Arbitration Sequence Diagram:

Two REQUESTERS, Same Request Level ••••••••••••••••••••
Power-Down Flow Diagram •••••••••••••••••••••••••••••••••
Power-Down Sequence Diagram •••••••••••••••••••••••••••••
Power-Up Flow Diagram •••••••••••••••••••••••••••••••••••
Power-Up Sequence Diagram •••••••••••••••••••••••••••••••
DTB REQUESTER State Diagram•••••••••••••••••••••••••••••
Sequence Diagram:

Typical Sequence for Requesting the D'IB •••••••••••••••
Sequence Diagram: REQUESTER Drives BGXOUT* •••••••••••••
DTB REQUESTER State Diagram•••••••••••••••••••••••••••••
ARBITER State Diagram •••••••••••••••• ~ ••••••••••••••••••
Sequence Diagram: Arbitration ••••••••••••••••••••••••••
Sequence Diagram:

Clearing the DTB Upon a Higher Priority Request •••••••

v

1-2
1-5

1-6
2-2
2-4
2-5
2-11
2-11
2-12
2-16
2-18
2-19
2-21
2-23
2-25
2-29
2-33
2-36
2-39
2-43
3-2
3-3
3-6
3-7
3-8
3-9

3-11

3-13

3-15

3-17
3-19
3-20
3-22
3-23
3-25

3-27
3-29
3-31
3-35
3-37

3-38

FIGURE 4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.

4-9.

4-10.

4-11.
4-12.
4-13.
4-14.
4-15.

4-16.

4-17.
4-18.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
7-1.
7-2.
7-3.
7-4.

8-1.
8-2.

8-3.

8-4.
8-5.
8-6.
8-7.
8-8.
8-9.
8-10.

8-11.
8-12.
8-13.
8-14.

LIST OF ILLUSTRATIONS (cont'd)

Interrupt Subsystem Structure: Single Handler System •••
Interrupt Subsystem Structure: Distributed System ••••••
VERSAbus Priority Interrupt Functional Block Diagram ••••
Signal Lines used by an IH(l-7) INTERRUPT HANDLER •••••••
Signal Lines used by an I(4) INTERRUPTER ••••••••••••••••
The Three Phases of an Interrupt Sequence •••••••••••••••
INTERRUPI' HANDLER Monitoring Only IRQ4* •••••••••••••••••
Two INTERRUPT HANDLERS,

Each Monitoring One Interrupt Request Line ••••••••••••
Two INTERRUPT HANDLERS,

Each Monitoring Several Interrupt Request Lines •••••••
Typical Single Handler Interrupt System Operation

Flow Diagram (2 sheets) •••••••••••••••••••••••••••••••
Distributed Interrupt System with Two INTERRUPT HANDLERS
INTERRUPI'ER State Diagram•••••••••••••••••••••••••••••••
INTERRUPI'ER Block Diagram•••••••••••••••••••••••••••••••
Block Diagram: INTERRUPI' HANDLER ••••••••••••••••••••••••
State Diagram for the Interrupt Prioritizer of a

Seven Level INTERRUPI' HANDLER•••••••••••••••••••••••••
State Diagram for the Interrupt Prioritizer of a

Single Level INTERRUPI' HANDLER (Level 4) ••••••••••••••
State Diagram: INTERRUPI' HANDLER'S Address Bus Driver ••
State Diagram: INTERRUPI' HANDLER'S Data Bus Controller

· VERSAbus Utility Block Diagram ••••••••••••••••••••••••••
System Clock Timing Diagram •••••••••••••••••••••••••••••
AC Clock Timing Diagram •••••••••••••••••••••••••••••••••
System Reset and Test Timing Diagram ••••••••••••••••••••
Block Diagram of ~R MONITOR Module •••••••••••••••••••
System Power Fail Timing ••••••••••••••••••••••••••••••••
System Power Restart Timing •••••• · •••••••••••••••••••••••
VERSAbus Signal Levels ••••••••••••••••••••••••••••••••••
Termination Network •••••••••••••••••••••••••••••••••••••
Backplane Microstrip Signal Line Cross Section ••••••••••
Impedance versus Line Width and Dielectric Thickness

for Microstrip Lines ••••••••••••••••••••••••••••••••••
Typical Multilayer Backplane/PCB Construction Technique
Typical Multilayer Backplane/PCB

Cross-Sectional Area View •••••••••••••••••••••••••••••
Backplane Reference Designations and

Pin Numbering Standard ••••••••••••••••••••••••••••••••
Backplane/VERSAboard Dimensional Requirements •••••••••••
Typical Backplane Edge Connector ••••••••••••••••••••••••
I/O Cable Connection ••••••••••••••••••••••••••••••••••••
AMP Two-piece Keying Header •••••••••••••••••••••••••••••
Single Cable Method Keying Header Configuration •••••••••
Dual Cable Method Keying Header Configuration •••••••••••
VERSAboard Reference Designations and

Pin Numbering Standards •••••••••••••••••••••••••••••••
Standard Size PCB •••••••••••••••••••••••••••••••••••••••
Half Size ~ •••
Typical VERSAboard Non-Bus Edge Connectors ••••••••••••••
VERSAboard Ejectors •••••••••••••••••••••••••••••••••••••

vi

4-2
4-4
4-5
4-7
4-9
4-11
4-13

4-14

4-15

4-17
4-20
4-23
4-25
4-29

4-32

4-33
4-35
4-37
5-2
5-3
5-3
5-4
5-6
5-7
5-7
7-4
7-8
7-9

7-9
8-3

8-4

8-5
8-7
8-9
8-11
8-12
8-13
8-14

8-16
8-17
8-18
8-20
8-21

TABLE 1-1.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
4-1.
4-2.
5-1.
7-1.
7-2.
7-3.

LIST OF TABLES

VERSAbus Signal Line Tenninology ••••••••••••••••••••••••
Address Modifier Codes ••••••••••••••••••••••••••••••••••
Data Transfer Control Table •••••••••••••••••••••••••••••
DI'B MASTER Timing: Write Cycle Followed by Read Cycle ••
D'IB MASTER Timing: Read Cycle Followed by Write Cycle ••
DI'B SLAVE Timing: Two Consecutive Read Cycles ••••••••••
D'IB SIAVE Timing: Two Consecutive Write Cycles •••••••••
3-Bit Interrupt Acknowledge Code ••••••••••••••••••••••••
8-Bit Interrupt Acknowledge Code ••••••••••••••••••••••••
Test Modes ••
Bus Voltage Specifications ••••••••••••••••••••••••••••••
Bus Driver Specifications •••••••••••••••••••••••••••••••
Bus Receiver Specifications •••••••••••••••••••••••••••••

vii

1-9
2-8
2-14
2-29
2-33
2-39
2-43
4-19
4-19
5-5
7-2
7-6
7-7

1.1

1.2

1.2.1

1.2.2

1.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

1.5

1.5.1

1. 5. 2

1.6

1. 7

CHAPTER 1

INTRODUCTION TO THE VERSAbus SPECIFICATION

Page

VERSAbus SPECIFICATION OBJECTIVES •••••••••••••••••••••••• 1-1

VERSAbus INTERFACE SYSTEM ELEMENTS ••••••••••••••••••••••• 1-1

Basic Definitions •••••••••••••••••••••••••••••••••••••• 1-1

Basic VERSAbus Structure ••••••••••••••••••••••••••••••• 1-4

VERSAbus SPECIFICATION FORMAT•••••••••••••••••••••••••••• 1-7

SPECIFICATION TERMINOLcx;Y •••••••••••••••••••••••••••••••• 1-7

Signal Line States ••••••••••••••••••••••••••••••••••••• 1-7

Use of Asterisk (*) •••••••••••••••••••••••••••••••••••• 1-8

Summary for Signal Line Terminology •••••••••••••••••••• 1-8

Bus Lines (Three-State Level Significant) •••••••••••••• 1-10

Strobe Lines (Three-State Edge Significant) •••••••••••• 1-10

Strobe Response Lines (Open Collector) ••••••••••••••••• 1-12

Shared Lines (Open Collector) •••••••••••••••••••••••••• 1-12

other VERSAbus Lines 1-13

PROTOCOL SPECIFICATION••••••••••••••••••••••••••••••••••• 1-13
Interlocked Bus Signals •••••••••••••••••••••••••••••••• 1-14

Broadcast Bus Signal ••••••••••••••••••••••••••••••••••• 1-14

SYSTEM EXAMPLES AND EXPLANATIONS ••••••••••••••••••••••••• 1-15

ELECTRICAL/MECHANICAL SPECIFICATIONS ••••••••••••••••••••• 1-15

1-0

CHAPTER 1

INTRODUCTION TO THE VERSAbus SPECIFICATION

1.1 VERSAbus SPECIFICATION OBJECTIVES

The VERSAbus specification defines an interfacing system for use in inter­
connecting data processing, data storage, and peripheral data control devices in
a closely coupled configuration. The system has been conceived with the
following objectives:

a. To provide
disturbing
VERSAbus.

communication between two
the internal activities of

devices on VERSAbus without
other devices interfaced to

b. To specify the electrical and mechanical system characteristics required
to design devices that will reliably and clearly communicate with other
devices interfaced to VERSAbus.

c. To specify protocols that precisely define the interaction between
VERSAbus and devices interfaced to it.

d. To provide terminology and definitions that precisely describe system
operation.

e. To allow a broad range of design latitude so that the designer can
optimize cost and/or performance without affecting system compatibility.

f. To provide a system where communication speed is primarily device limited
- not system interface limited.

1.2 VERSAbus INTERFACE SYSTEM ELEMENI'S

1.2.1 Basic Definitions

As an aid to understanding the material presented in this document, the
following basic definitions are provided. More detailed definitions wi 11 be
given in subsequent chapters as appropriate.

BACKPLANE

SLar

BOARD/CARD

MODULE

A printed circuit board which provides the interconnection path
between other printed circuit cards.

A single position at which a card may be inserted into the
backplane. One slot may consist of more than one edge connector.

Interchangeable terms representing one printed circuit board
capable of being inserted into the backplane and containing a
collection of electronic components.

A collection of electronic components with a single functional
purpose. More than one module may exist on the same card, but one
module should never be spread over multiple cards.

1-1

FIGURE 1-1. Typical Multi-Slot System Card Cage with Backplane

1-2

MASTER

REQUESTER

INTERRUPI'
HANDLER

MASTER
SUB-SYSTEM

A functional module capable of initiating data bus transfers.
(Sometimes referred to as a "D'IB MASTER" to emphasize its close
association with the Data Transfer Bus.)

A functional module capable of requesting control of the data
transfer bus.

A functional module capable of detecting interrupt requests and
initiating appropriate responses.

The combination of a MASTER, REQUESTER, INTERRUPT HANDLER, and
(optionally) an INTERRUPl'ER, which function together and which
nust be on the same card.

NaI'E

All MASTERS, REQUESTERS, and INTERRUPI' HANDLERS
must be pieces of a MASTER SUB-SYSTEM.

SI.AVE A functional module capable of responding to data transfer
operations generated by a MASTER. (Sometimes referred to as a
"D'IB SI.AVE" to emphasize its close association with the Data
Transfer Bus.)

INI'ERRUPI'ER A functional module capable of requesting service from a MASTER
SUB-SYSTEM by generating an interrupt request.

SI.AVE
SUB-SYSTEM

CON'IROLLER
SUB-SYSTEM

The combination of a SIAVE and INTERRUPl'ER which function
together and which must be on the same card.

NaI'E

All INTERRUPl'ERS must be part of either SLAVE SUB-SYSTEMS
or MASTER SUB-SYSTEMS. However, SLAVES may exist as
stand-alone elements. Such SLAVES will never be called
SLAVE SUB-SYSTEMS.

The combination of modules used to provide utility and emergency
signals for the VERSAbus. There will always be one and only one
CON'IROLLER SUB-SYSTEM. It can contain the following functional
modules:

a. Data Transfer Bus ARBITER
b. Emergency Data Transfer Bus REQUESTER
c. Power up/power down MASTER
d. System clock driver
e. System reset driver
f. System test controller
g. Power monitor (for AC clock and AC fail driver)

In any VERSAbus system, only one each of the above functional modules will
exist. The slot numbered Al is designated as the controller sub-system slot
because the user will typically provide modules a through d on the board
residing in this slot. System reset and the system test -controller are
typically connected to an operator control panel and may be located elsewhere.
The power monitor is interfaced to the incoming AC power source and may also be
located remotely.

1-3

1.2.2 Basic VERSAbus Structure

The VERSAbus interface system consists of four groups of signal lines called
"buses", and a collection of "functional modules" which can be configured as
required to interface devices to the buses. Figure 1-2 shows the elements of a
typical VERSAbus system. The functional modules communicate with one another by
means of bus signal lines provided by a backplane. By defining the module's
operational characteristics, the VERSAbus specification defines the design of
the bus interface portion of each card to assure reliable system operation.

NOTE

The "functional modules" defined in the specification
are used as vehicles for discussion of the bus protocol,
and need not be considered a constraint to logic design.
For example, the designer may choose to design logic
which interacts with VERSAbus in the manner described,
but uses different on-board signals.

The interface functions of the VERSAbus have been divided into four areas. Each
functional area consists of a bus and associated functional modules which work
together to perform speci fie duties within the system interface. Figure 1-3
illustrates the individual functional modules and buses contained within the
VERSAbus definition, and each area is briefly summarized below.

a. Data Transfer

Devices transfer data over the Data Transfer Bus (OTB) which contains the
data and address pathways and associated control signals. Functional
modules called "OTB MASTERS" and "OTB SLAVES" use the OTB to transfer
data between each other.

b. OTB Arbitration

When a VERSAbus system is configured with more than one OTB MASTER, a
means must be provided to transfer control of the OTB between these
MASTERS in an orderly manner and to guarantee that only one MASTER
controls the OTB at a given time. Bus arbitration is that area of
VERSAbus whose signals (Arbitration Bus) and modules (OTB REQUESTERS and
DI'B ARBITER) provide that means.

c. Priority Interrupt

The priority interrupt capability of VERSAbus provides a means by which
devices can request interruption of normal bus activity and can be
serviced by an interrupt handler. These interrupt requests can be
priori ti zed into a maximum of seven levels. The associated functional
modules are called interrupters and interrupt handlers, which use signal
lines called the Interrupt Bus.

d. Utilities

The general categories of system clocks, initialization, and diagnostics
have been grouped into the area of utilities. These functions include
clock lines, system reset, system test, etc.

1-4

P.C. BOARD NO. 1 P.C. BOARD NO. 2 P.C. BOARD NO. 3

DATA DATA DATA

PROCESSING STORAGE COMMUNICATION

DEVICE DEVICE DEVICE

·~ ·~ I~ ·~ ·~

I t--- - -- -- -; t-- -- t-- - I- -- -- ___, I- -- ---I-" -- -- -- -- __, t-- -- r-i

I ' ' ' ,, I

I
FUNC. FUNC. FUNC. FUNC. FUNC.

MODULE MODULE MODULE MODULE MODULE I
~ ~ ~ I I

I
I

BACKPLANE

I ,, ,, • ,, •

I
I
I
I
I
I
I
I
I

(VERSAbus SIGNAL LINES) I

L __ _ ---z--------------
SYSTEM INTERFACE DEFINED BY VERSABUS SPECIFICATION

__J

FIGURE 1-2. System Elements Defined by the VERSAbus Specification

1-5

......
I

°'

r-------------------------, ,-------------, ,---------, ,--------, ,--------,
I SYSTEM I I I I I I I I I I CONTROLLER I I

USER'S I I USER'S I I I I I I DEVICE - DEVICE - USER'S USER'S

I USER'S DEVICE I I INTELLIGENT I I NON-INTELLIGENT I I DEVICE - I I DEVICE - I
I I I PERIPHERAL I I PERIPHERAL I I RAM, ROM, ETC. I I FRONT PANEL I
I I I INTERFACE, ETC. I I INTERFACE, ETC. I I I I I

I 0 I I /} I I ?). I I 7). I I 7). I
I I I I I I I : I I
I I I I I I t--__LL __ r-+-- ----------- +--I --t--t------I- -I----,-_, 1-- - t- ~-4L--1---1--1 ----,

+ v v ~ ::J
_.. -- OTB SLAVE

OTB MASTER .-----.. OTB MASTER
110

OTB SLAVE

~

• ~ • ~ ~ A ~

• • • "' • • "'
SYSTEM OTB EMERGENCY INTERRUPT OTB INTERRUPT INTERRUPT
CLOCK
DRIVER

ARBITER REQUESTER HANDLER REQUESTER REQUESTER I REQUESTER

I
?';. 0 ~ ~ n A I A

I
I
I
I

L __ t----- t----- t- -- H I- H _J L_-1 t----- t--- _J L __
r--- _J L __, r---_J

k

I"
k

I" ~ IA_

~

"'

~ ~ H ~ t----
-.......L :v v v v

32: ~ ~

:s:z ~ ~

FIGURE 1-3. Functional Modules and Buses contained within
the VERSAbus Definition

v
SYSTEM+ POWER

MONITOR DEFINED BY
TEST VERSAbus

CONTROLLER SPECIFICATIO
RESTART

CONTROLLER

A
I
I
I
I I
I I
I I
I I
I I
L---1 r---......l

[,..

DATA TRANSFER BUS

K
PRIORITY INTERRUPT

....
1"

OTB ARBITRATION

~
UTILITY

v

N

1.3 VERSAbus SPECIFICATION FORMAT

As aids to defining or describing VERSAbus operation, several types of diagrams
are used, including:

a. Timing diagram - shows the timing relationships of signal transitions.
'I'he times involved will have minimum and/or maximum limits associated
with them.

b. Sequence diagram - is similar to a timing diagram and shows interlocked
relationships of signal line transitions with respect to each other.
This diagram is intended to show a sequence of events, rather than to
specify the times involved.

c. Flow diagram - shows stream of events as they would occur during a
VERSAbus operation. The events are stated in words and result from
interaction of two or m:>re functional modules. The flow diagram
describes VERSAbus operations in a sequential manner and, at the same
time, shows interaction of the functional m:>dules.

d. State diagram - shows all possible allowed states for a functional
module. Also presented are conditions for changing states and- all
allowed paths between states. The state diagram is the most rigorous
definition of a functional module. Appendix B defines state diagram
notation and usage.

Additional chapters include electrical specifications, mechanical
specifications, and VERSAbus subset compatibility. Various "options" are
defined in the chapters on the OTB, priority interrupt, and bus arbitration, and
the compatibility between these options is analyzed in Chapter 6.

1.4 SPECIFICATION TERMINOr..cx:;Y

In some bus specifications, the protocol is treated on an abstract level. For
example, it might be said that Device A "sends a message" to Device B. · While
this does allow a protocol to be defined in an application independent manner,
the VERSAbus specification is rore closely related to the physical
implementation. It describes the protocol in terms of levels and transitions on
bus lines.

1.4.1 Signal Line States

A signal line is ~aways assumecf to be ih orie of two l~vels or_ in tr,ih$1tioo
between these levels. Whenever the term "hi.9h" ;is used, it ref:ets to a hi-9h TTL.
Voltage level (> + 2. 0 V). The te:rm "loW* refers .to a l()W _TTL voltage. le~l
<.S +: 0.8 V). A signal line is 0 in transition*' when its· voltaqe. is ~ving
between + 0.8V and + 2.0V.

ThetE!l are .two possible transitiorlS which can appear 6n a sighal Urie, an<f t~~
Wi 11 be referred to as "edqes". , A d$irg _!dge is dE!fined as . the time petiOd •.
during which a signal line makes its· transition from a low level to a high
level. The talling edge is defined . as the time petiod during which a signal
line makes its transition from a high level to a low level.

1-7

1.4.2 Use of Asterisk {*)

To help define usage, single line mnemonics have an asterisk suffix where
required:

a. An asterisk {*) following the signal name for signals which are level
significant denotes that the signal is true or valid when the signal is
low.

b. An asterisk {*) following the signal name for signals which are edge
significant denotes that the actions initiated by that signal occur on a
high to low transition.

Because there are several types of signal line functions, the asterisk is
defined more exactly in following subparagraphs. The key idea is to associate
the low level or falling edge with use of the signal line.

NOTE

The asterisk is inappropriate for asynchronously running clock lines
{i.e., ACCLK or SYSCLOCK). There are no fixed phase relationships
between these clock lines and other VERSAbus timing.

1.4.3 Summary for Signal Line Terminology

Table 1-1 summarizes the terminology associated with driving and sensing signal
line conditions. The terminology reflects the actual conditions on the signal
lines and shows how the protocol is dependent on levels or transitions.
Basically,

a. If a signal line event is signified by a transition, a module is said to
drive the line to high or to low, and a detecting module is said to
receive this condition.

b. If a signal line event or condition is signified by a level, a module is
said to drive the line high or low, and a detecting module is said to
receive this condition.

c. Open collector shared lines are treated as a special case because a
module can drive a line low, but cannot drive it high {another module can
be driving the line low). On a shared line, a module is said to hold a
line low and then release the line. A detecting module is said to detect
a high or low level.

The signal line categories shown in Table 1-1 are treated in detail in the
following subparagraphs. The terminology is discussed and the asterisk usage is
also explained. Whenever a signal line is taken to a level {during a protocol
discussion), it is assumed to remain at that level until stated otherwise.

1-8

I-'
I

l..O

SIGNAL LINE
CATEGORY

BUS LINES
(Three-state)

TABLE 1-1. VERSAbus Signal Line Terminology

SIGNAL LINE
MNEMONICS (1)

A01*-A31*
DOO*-D31*
APARITYO*-APARITYl*
DPARITYO*-DPARITY3*
AMO*-AM7*
TESTO*-TESTl*
WRITE*, LWORD*

OUTPUT

Drive X
Drive X high
Drive X low
Place valid X
Remove X
Release X

TERMINOLOOY

INPUT

Receive X driven high
Receive X driven low
Receive X

Drive X defines the point at which the three-state drivers are enabled.
Place valid X defines the point at which the levels on the bus are valid.
Remove X defines the point at which the levels on the bus are invalid.
Release X defines the point at which the three-state drivers are no longer enabled.

S'IROBE LINES AS* Drive X to low Receive X driven to low
(Three-state) I:SO* Drive X to high Receive X driven to high

DSl* ~. -

S'IROBE RESPONSE DTACK* Drive X to low Receive X driven to low
LINES BERR* Release X to high Receive X high

(Open Collector)

SHARED LINES IRQ1*-IRQ7* Hold X low Detect X low
(Open Collector) BRO*-BR4* Release X Detect X high (only if no

SYSFAIL* drivers holding line low)

(1) For other signal lines, see subparagraphs 1.4.3 and 1.4.8.

ASTERISK

Indicates a low level
Equals a logic 1

Indicates the informa-
tion on the strobed bus
is valid on the falling
edge of the strobe line.

Indicates the strobe
response is valid on
the falling edge of the
signal line.

Indicates this line is
activated in the low
state.

1.4.4 Bus Lines (Three-State Level Significant)

The following VERSAbus lines are members of this category:

A01*-A31*
DOO*-D31*
AMO*-AM7*
TESTO*-TESTl*
APARITYO*-APARITYl*
DPARITYO*-DPARITY3*
WRITE*
LWORD*

Address Sub-bus
Data Sub-bus
Address Modifier Sub-bus
System Test Lines
Address Parity Lines
Data Parity Lines
Data Transfer Control Line
Longword Transfer Control Line

These lines are all driven by three-state drivers; transitions on them carry no
useful timing information. Their levels are important because they carry binary
information (Low= 1, High= 0). Different functional modules may drive these
lines at different times, although only one module can drive them at any one
time. Before a module may use the bus lines, it must "turn on" its drivers and,
when finished, the module must "turn off" its drivers.

BUS TERMINOL(X;Y

In the following statements, "X" can represent any of the above sets of VERSAbus
lines (Address, Data, Address modifier, Test code, Address parity, Data parity).

a. When a module on VERSAbus presents binary information to the X bus, the
module turns on its X bus drivers and it is said to drive the X bus or
present the X. For individual lines, a module will drive X low or drive
X high. Levels of all bus lines are assumed to remain constant until the
module removes the X from the bus. When the module turns off its X
drivers, it releases the X bus.

b. When another module inputs binary information from the X bus, it is said
to receive the X. For individual lines, it may receive X driven low or
receive X driven high.

c. For most of these lines, the asterisk suffix indicates that a low level
on the signal line equals a logic one. A high level, in turn, is a logic
zero. WRITE* and LWORD*, however, have dual meanings. A high level on
WRITE* indicates a read operation; a low indicates a write operation. A
high level on LWORD* indicates an 8- or 16-bit transfer; a low indicates
a 32-bit transfer. For these two lines, the asterisk indicates that the
named function (write operation and longword operation) occurs when the
signal line is at a low level.

1.4.5 Strobe Lines (Three-State Edge Significant)

In order to read binary information on bus lines, timing information must be
provided indicating when the level significant lines may be read. Also, timing
information must be provided indicating when a driving module has released the
bus. Three strobe lines provide the required timing information. They are named:

AS* Address Strobe
DSO* Data Byte Zero Strobe
DSl* Data Byte One Strobe

1-10

The strobe lines provide timing information on their ns1ng and falling edges
(transitions), but they provide no information on their levels. Each strobe is
associated with a specific set of bus lines. The strobe falling edge indicates
when the bus lines should be read; the strobe rising edge indicates when the bus
lines are released.

In all cases, the strobe falling edge of AS* indicates when the address line
should be read. The rising edge of AS* indicates that the data transfer is
complete and that the MASTER has released the address lines.

In the case where WRITE* is low, the falling edge of DSO* and/or DSl* indicates
that the corresponding data lines should be read by the addressed SLAVE. The
rising edge indicates that the transfer is complete.

In the case where WRITE* is high, the falling edge of DSO* and/or DSl*
authorizes the SIAVE to drive the corresponding data lines. The rising edge
indicates that the MASTER has received the SLAVE'S response and that the SLAVE
should release the data lines.

Similar to the bus lines, strobe lines are driven by three-state drivers.
Different functional modules may drive them at different times. Because only
one module can drive bus lines and strobes at any one time, some method must be
provided to indicate when they are released. On VERSAbus, each strobe line is
terminated with a resistor network that maintains a high level when the strobe
line is released. The strobe lines provide a high level indication whenever
they are not being driven.

When control of a strobe line is passed from one module to another, the next
driving module is required to wait a specified period after receiving the strobe
line high before driving it to the low level. Therefore, the previous driver is
permitted to drive the strobe line to the high level before releasing it, but
this is not required.

STROBE LINE TERMINOL(X;Y

In the following statements, "X" can represent AS*, DSO*, or DSl*.

a. When a VERSAbus module turns on its X driver, it is said to drive x.
When it causes a falling edge to occur on X, the module is said to drive
X to low. When the module causes a rising edge to occur on X, it is said
to drive X to high. When the driver turns off, it releases X.

b. When another module senses a falling edge on X, it is said to receive X
driven to low. When the module senses a rising edge on X, it is said to
receive X driven to high.

c. The asterisk suffix indicates that the binary information on the address
lines and the binary information on the data lines (if a write operation)
is valid on the falling edge of the strobe line. It also indicates that
on a read operation, the falling edges of DSO* and DSl* request the
SLAVE to present its data on the data lines.

1-11

1.4.6 Strobe Response Lines (Open Collector)

The VERSAbus lines forming this category are:

DTACK*
BERR*

Data Acknowledge
Bus Error

Similar to strobe lines, strobe response lines provide timing information on
their transitions but provide no timing information on their levels. Unlike the
strobe lines, they are driven by open collector devices instead of three-state
devices. The terminology reflects this difference in describing transitions on
these lines. Also, open collector lines depend on the resistor terminations to
establish a high level.

STROBE RESPONSE LINE TERMINOL(X;Y

In the following statements, "X" can represent DTACK* or SERR*.

a. When a VERSAbus module causes a falling edge to occur on X, it is said to
drive X to low. When the module causes a rising edge to occur on X, it
is said to release X to high.

b. When another module senses a falling edge on X, it is said to receive X
driven to low. When this module senses a rising edge on X, it is said to
receive X high.

c. The asterisk suffix indicates that the strobe response is signified by
the falling edge of the strobe response signal line.

For example, the falling edge of DTACK* on a write operation indicates the
SIAVE'S acceptance of the data. The falling edge of DTACK* on a read operation
is the SLAVE'S signal to the MASTER that the SLAVE is presenting valid data.
The rising edge of DTACK* on a read operation indicates that the SIAVE has
released the data lines.

1.4.7 Shared Lines (Open Collector)

Although strobe response lines are open collector driven, they are normally
driven by only one driver. Shared lines allow multiple drivers to be activated
coincidently. These lines are:

IRQ1*-IRQ7*
BRO*-BR4*
SYSFAIL*

Interrupt Request
Bus Request
System Fail

Because driving modules cannot control transitions on these open collector
shared lines, edges are not used to carry information. (If one driver releases
the line, another driver may still be driving the line low.) Therefore, modules
sensing a shared line look for a low level to convey information.

1-12

SHARED LINE TERMINOLcx;Y

In the following statements, "X" can represent one level of interrupt request,
one level of bus request, or system failure.

a. When a VERSAbus module turns on its X driver, it is said to hold X low.
When the module turns off its X driver, it is said to release X.

NOTE

It should never be assumed that a shared line will go
high when a module releases the line. The line will
go high only if no other modules are driving the line.

b. When a module senses a low level on X, it is said to detect X low. When
a module senses a high level on X, it is said to detect X high.

c. The asterisk suffix indicates that the low state is a request for service
on the IRQX* or BRX* lines, and indicates by the low level that a system
failure has occurred for the System Fail line.

1.4.8 other VERSAbus lines

Other signal lines have a wide range of characteristics which place them outside
of the categories described in subparagraphs 1.4.4 through 1.4.7. When
discussing these signal line functions, they will be described in terms
consistent with statements in subparagraph 1. 4. 3, "Summary for Signal Line
Terminology".

1.5 FROTOCOL SPECIFICATION

Each VERSAbus functional area - such as data transfer, bus arbitration, and
priority interrupt - is defined via protocol specifications. Functional modules
are defined for each area (Figures 1-1 and 1-2), and a protocol is defined for
each module. The protocol is a set of rules governing the interaction of the
module with the VERSAbus and its on-board data device. A functional module
conurunicates with another module by driving/receiving bus signals, and
communicates with its on-board device by driving/receiving on-board signals.
The protocol governs these communications by determining:

a. when a module may drive and change the level of bus signals,
b. when a module may change the level of its on-board signals,
c. when and how a module must respond to a bus signal, and
d. when and how a module must respond to an on-board signal.

Bus signals can be generally discussed in two classifications:

• Interlocked Bus Signals
• Broadcast Bus Signals

1-13

1.5.1 Interlocked Bus Signals

An interlocked bus signal is sent from a speci fie module to another speci fie
module. The signal must be acknowledged by the receiving module. An interlocked
relationship exists between the two modules until the signal is acknowledged.
For example, an interrupt REQUESTER can send a signal asking for an interrupt.
That signal must be answered at some time with an interrupt acknowledge signal
(no time limit is prescribed by the VERSAbus Specification).

Interlocked bus signals are dedicated to coordinating internal functions
VERSAbus system, as opposed to interacting with external stimuli.
interlocked signal has an internal source module and destination module.
these signals have timing specifications associated with them to assure
bus operation.

of the
Each

Also,
proper

Of significant importance are the interlocked bus signals used to coordinate
transfer of addresses and data. Addresses and data cannot be considered
"signals" in the strictest sense because they are not "sent" from one device to
another. Instead, they are "placed" on a bus, while a separate bus signal
(called a strobe) is sent to indicate their presence on the bus. The actual
addresses or data have no effect on the protocol - that is, the specific address
or data on the bus does not affect the strobe; however, the timing sequence
(i.e., set-up time) between their being placed on the bus and the sending of the
accompanying strobe signal is important. Whenever this relationship is
important, it is emphasized in~he protocol definition.

An example of a pair of interlocked signals are DSO* (or DSl*) and DTACK*, which
provide interlocking between an addressed SIAVE and the active MASTER.

1.5.2 Broadcast Bus Signal

A broadcast bus signal can be placed on the bus by a module in the system, in
response to an external event. There is no prescribed protocol for
acknowledging a broadcast signal. Instead, the broadcast is maintained for a
specified time period long enough to assure that all appropriate modules will
detect the signal. Broadcast signals may also be monitored from outside the
system to gain information about system status. The broadcast signal can be
given at any time, irrespective of any other activity taking place on the bus.
Broadcast signals from outside the system cause a set of modules to enter a
known state and to remain there until the broadcast is terminated.

Since the broadcast signal has no interlocked relationship with other bus
signals, a dedicated line must be provided for each broadcast signal type.
These lines are used for functions such as system reset and power failure
sequencing. These activities also differ from interlocked signals because the
modules that generate broadcast signals do not address another specific module,
but announce special conditions to all modules.

1-14

1.6 SYSTEM EXAMPLES AND EXPLANATIONS

The protocol specification is, of necessity, centered around specific modules;
it describes how the module responds to signals, without discussing where these
signals are generated. However, the protocol does not give the reader a good
understanding of how various modules interact to accomplish overall system
functions. Additional information must be present to gain a broader perspective
of VERSAbus functions. Therefore, system examples and explanatory descriptions
are provided to give the VERSAbus user an understanding of VERSAbus capabilities
from a system perspective. Care has been taken to differentiate between
specification requirements and examples of typical system operation.

Each chapter begins with a discussion of the philosophy behind the particular
bus function being discussed (subparagraph X.l). 'Ibis is to give the reader an
idea as to why the function is needed and how it is normally used.

The next subparagraph describes the bus lines which are used by the modules to
send or broadcast required bus messages (subparagraph X.2).

The third subparagraph introduces and defines the specific modules required
within the protocol specification (subparagraph X.3).

The next section (subparagraph X.4) provides examples of typical system
operation sequences. These sequences do not necessarily outline every possible
situation; however, the user can then understand the basic interaction between
the functional modules on the bus.

Finally, the formal protocol specification for each module is given
(subparagraph X. 5). The protocol is defined in state diagram and/or timing
diagram form with explanatory text. To assure that the user can fully
understand the state diagrams used in the specification, Appendix B, State
Diagram Notation and Usage, should be read and assimilated.

1.7 ELECTRICAL/MECHANICAL SPECIFICATI<l'JS

The electrical and mechanical specifications define the physical implementation
of VERSAbus. Chapter 7 contains the electrical specifications, including power
distribution, signal characteristics, driver specifications, receiver
specification, and bus loading. Chapter 8 contains the mechanical
specification, including backplane, PC board, connectors, and pin references.

1-15/1-16

2.1

2.1.1

2.1.2

2.2

2.2.l

2.2.2

2.2.3

2.3

2.4

2.4.1

2.5

2.5.1

2.5.2

2.5.2.1

2.5.2.2

2.5.3

2.5.4

2.6

2.6.1

2.6.1.1

2.6.1.2

2.6.1.3

2.6.2

2.6.2.1

2.6.2.2

CHAPTER 2

VERSAbus DATA TRANSFER

INTRODlJC'l'ION •••

lJI'B Options - Basic Description ••••••••••••••••••••••••

D'I'B Of)eration

DATA TRANSFER BUS LINE STRUCTURES ••••••••••••••••••••••••

Address Lines

Data Transfer

Data Transfer

..
Lines •••••••.•••••.•••.•••••.•••••.. • • • • •

Control Lines ••••••••••••••••••••••••••••

FUNCTIOOAL MODULES •••••••••••••••••••••••••••••••••••••••

'IYPICAL OPERA.TION ••

Data Transfer Bus Acquisition ••••••••••••••••••••••••••

FORMAL SPECIFICATIONS ••••••••••••••••••••••••••••••••••••

Data Transfer Bus Acquisition

Byte Read Sequence •••••••••••••••••••••••••••••••••••••••

Address Sequence •••••••••••••••••••••••••••••••••••••

Data Bus Sequencing ••••••••••••••••••••••••••••••••••

Read-Modify-Write Sequence •••••••••••••••••••••••••••••

Sequential Access Sequence •••••••••••••••••••••••••••••

DETAILED TIMIN3/STATE DIAGRAMS •••••••••••••••••••••••••••

D'IB MASTER Timing ••••••••••••••••••••••••••••••••••••••

DTB MASTER Timing: Write Cycle Followed by Read Cycle

D'IB MASTER Timing: Read Cycle Followd by Write Cycle

MASTER Timing: Control Transfer of DTB ••••••••••••••

D'I'B SI.A VE Timing •••••••••••••••••••••••••••••••••••••••

DTB SLAVE Timing: Two Consecutive Read Cycles •••••••

IYrB SI.AVE Write Cycle Timing •••••••••••••••••••••••••

2-0

Page

2-1

2-1

2-3

2-3

2-3

2-10

2-13

2-15

2-15

2-15

2-20

2-20

2-22

2-22

2-22

2-24

2-26

2-26

2-27

2-27

2-31

2-35

2-37

2-38

2-41

CHAPTER 2

VERSAbus DATA TRANSFER

2.1 INTRODUCTION

VERSAbus contains a high speed asynchronous parallel Data Transfer Bus (DTB), as
shown in Figure 2-1. The DTB is used by a processor or Direct Memory Access
(DMA) device to select the desired peripheral or memory location and to transfer
data to or from that location. The DTB can be logically subdivided into
address, data, and control line groups. The number of lines in each of these
groups varies with the particular VERSAbus options selected by the user. There
are four sets of DTB related options:

Dl6 or D32
NDP or DP
A24 or A32
NAP or AP

Data path width
Data parity
Address path width
Address parity

2.1.1 DTB Options - Basic Description

Option Dl6 specifies that all data transfer activities supported by the module
will be restricted to eight or sixteen bits. Option 032 specifies that the
module (MASTER or SLAVE) will be capable of doing LONGWORD (32-bi t) data
transfers. Option D32 also requires an expanded bus system backplane.

Option NDP specifies that data parity will not be checked or generated by the
module. Option DP specifies that the module will provide even data parity when
transmitting, and verify even data parity when receiving.

Option A24 specifies that all addresses generated by the MASTER or decoded by
the SLAVE will be restricted to 23 bi ts. Option A32 selection extends the
address range to 31 bits. The address modifier lines indicate to A24 SLAVES
whether the address is 23 or 31 bits. Option A32 also requires an expanded bus
system backplane.

Option NAP specifies that address parity will not be generated by the MASTER or
verified by the SLAVE. Option AP specifies that the MASTER module will generate
even address parity and that the addressed SI.AVE module will verify proper
address parity.

In the following discussions of the Data Transfer Bus (DTB), the reader should
ignore those comments which do not apply due to the particular option being
considered. As an example, ignore all references to data parity error
processing if NDP is chosen as the option.

For a detailed discussion of the constraints placed on user design by the
selection of various options, see Chapter 6, VERSAbus Options.

2-1

r------------------------1 ,--------------, ,---------, ,-------, ,-------,
: SYSTEM I I USER'S I I USER'S I I I I I
I CONTROLLER I I DEVICE - I I DEVICE - I I USER'S I I USER'S I
I USER'S DEVICE : I INTELLIGENT I I NON-INTELLIGENT I I DEVICE - I I DEVICE - I
I I PERIPHERAL I I PERIPHERAL I I RAM, ROM, ETC. I I FRONT PANEL I
I I I INTERFACE, ETC. I 1 INTERFACE, ETC. I I I I I

1 I I I I I I I I I
I I I I I I I I I I
1 I I I I I I I I

1-+- ----------- --H----- -- 1 - --,- _4L_ -;----,

f I I I t
I : POWER I SYSTEM

OTB
REQUESTER

INTERRUPT
REQUESTER

I

I
I
I
I
I
I INTERRUPT
I REQUESTER

I
I
I
I
I
I

j L

I MONITOR : DEFINED BY
1 TEST 1 VERSAbus
I CONTROLLER I SPECIFICATION

RESTART I
CONTROLLER I

....._ _ _,.,... __ _.,

I I
I I
I I
I I
I I
I I
I I
I I

_ _ _J L __

I
I
I
I
I
I
I
I
I
I

_ _ _J

•••••llllt> DATA TRANSFER BUS

PRIORITY INTERRUPT

OTB ARBITRATION

UTILITY

FIGURE 2-1. VERSAbus Data Transfer Functional Block Diagram

2.1.2 DTB Operation

Each data transfer on the DTB occurs between a functional DTB MASTER (see
paragraph 2.3, Functional Modules) and a functional OTB SIAVE. Each data
transfer is initiated by the DTB MASTER (see Figures 2-2 and 2-3). The
addressed SIAVE must then acknowledge the transfer. The asynchronous nature of
the DTB allows the SLAVE to control the amount of time taken for the transfer.
After receiving the transfer acknowledge, the OTB MASTER terminates the data
transfer cycle.

If parity is provided, the parity may be verified by the receiving module. (In
a write cycle, both address and data parity are verified by the SIAVE. In a
read cycle, the SLAVE verifies the address parity and the MASTER verifies the
data parity.) Whenever the SIAVE detects a parity error, it responds to the
MASTER with an error signal instead of the usual acknowledge signal.

2.2 Di'\TA TRANSFER BUS LINE STRUCTURES

2.2.1 Address Lines

Depending on the options chosen, the MASTER must drive the following lines:

23 or 31

O, 1, or 2

1

8

address lines (AOl* through A23* if option A24)
(AOl* through A31* if option A32)

parity lines (none if option NAP)
(APARITYO* if options AP and A24)
(APARITYO* and APARITYl* if options AP and A32)

address parity valid line (APVAL*)

address modifier lines (no change with any option selected)

The smallest addressable unit of storage is capable of storing eight bi ts of
binary data. Each 8-bit group is called a "byte", and the location in which the
byte is stored is called a "byte location". Two consecutive byte locations
(even byte address and the next higher sequential odd byte address) comprise a
"word location". A MASTER accesses a word location by placing its binary "word
address" on the address bus. The address lines on the bus are numbered starting
with AOl* instead of AOO* to emphasize the fact that byte location addressing is
done with data strobe lines instead of an "AOO*" line.

Address parity lines are generated as an even parity adjunct to the address
modifier, address, and LWORD* logic lines. Each represents the logical function
"exclusive OR" of its associated lines as follows:

Logical Result

APARITYO*
APARITYl*

Exclusive OR Input

AMO*-AM7*, A01*-A23*, and LWORD*
A24*-A31*

Whenever an address parity line is driven by an option AP MASTER, the APVAL*
(address parity valid) line must be driven low. This is an indication to an

AP SIAVE that address parity should be verified. (NAP SLAVES will not verify
the parity regardless of the level of APVAL*).

2-3

DTB MASTER

INITIATE CYCLE

Present address and data
Drive address and data strobes low

I

t
TERMINATE CYCLE

Wait for response (Acknowledge or error)
Release address and data strobes

I

t
If response was error
Then initiate error handler
Else initiate next cycle
Endif

OTB SIAVE

' RESPOND TO MASTER

Wait for address and data strobes
driven low

If addressed location is on-board
Then if parity is valid

Then store data
Drive acknowledge low

Else drive error low
Endif

Endif

t
TERMINATE RESPONSE

Release acknowledge or error
I

FIGURE 2-2. Typical Write

2-4

DTB MASTER

INITIATE CYCLE

Present address
Drive address and data strobes low

I

+ TERMINATE CYCLE

Wait for response (Acknowledge or error)
If response was DTACK* and parity was valid
Then store data
Endif
Release address and data strobes

+

DTB SLAVE

+ RESPOND TO MASTER

Wait for address and data strobes
driven low

If addressed location is on-board
Then if parity is valid

Then present data
Drive acknowledge low

Else drive error low
Endif

Endif

+ TERMINATE RESPONSE

If data lines driven
Then release data lines
Endif
Release acknowledge or error

I

If response was error or data parity was bad
Then initiate error process
Else initiate next cycle
Endif

FIGURE 2-3. Typical Read

2-5

The address modifier lines allow the MASTER to pass additional information to
the SIAVE during data transfer. This information may be used in several ways.

SYSTEM PARTITIONING

Each SIAVE in the system may be configured (either dynamically or statically) to
respond to a single address modifier code. If there are several MASTERS on
VERSAbus, each may be assigned a code to be used when accessing the SIAVES.
This allows the system to be partitioned and prevents a single malfunctioning
MASTER from taking the whole system down.

MEMORY MAP SELECTION

SIAVES may be designed to respond at different addresses, depending upon the
address modifier received. This allows the MASTER using the bus to place the
system resources in selected map locations (or eliminate them from the map) by
providing different address modifier codes.

PRIVILEGED ACCESS

Because SLAVES could be designed to respond to some address modifiers and not to
others, it is possible to establish a large number of privilege levels. Each
MASTER would provide an address modifier indicating its privilege level when
accessing a SIAVE. If the SIAVE did not receive an appropriate AM code, it
would not respond.

CYCLE TYPE

The AM codes can be used to specify a special type of transfer cycle. VERSAbus
specifies two special cycle types. The user could use additional codes to
specify others.

The first special cycle type is an interrupt acknowledge cycle. When an
interrupt acknowledge AM code is placed on the bus, it causes all SLAVES to
ignore the cycle and allows only INTERRUPI'ERS to respond.

The second special cycle type is a sequential access cycle. There are 16
sequential access AM codes and when one of these is placed on the bus, the
memory boards in the system latch the address into a counter and increment the
counter after each odd-byte transfer.

DISTRIBUTED MEMORY MANAGEMENT

Meroory management logic is often used in systems to allocate and translate
memory segments dynamically. A collection of these segments is arranged as a
contiguous block, and assigned to each active task. Each time the real-time
executive switches from one task to the next, it must either change the contents
of the segment register or select another set of segment registers (the latter
approach being much faster).

Address modifier codes may be used as segment register selectors. In this case,
the MASTER places AM codes on the bus which indicate to memory management logic
on the slave boards which set of segment registers should be used.

2-6

ADDRESSING RANGE

VERSAbus provides 31 address lines to allow direct addressing to over four
billion bytes. For most SLAVES, however, the extra logic required to decode all
31 address lines is a needless expense. For this reason, VERSAbus defines three
address ranges:

Short addressing
Standard addressing
Extended addressing

64K bytes
16M bytes
4g bytes

A group of address modifier codes is set aside for each type of addressing.
SLAVES receiving a short address AM code ignore the upper 16 address lines
(Al6*-A31*). SLAVES receiving a standard address AM code ignore the upper eight
(A24*-A31*). When receiving an extended address AM code, the SLAVE decodes all
31 address lines.

Slave boards which do not decode address lines A24*-A31* should not respond to
extended address AM codes. Slave boards which do not decode address lines
Al6*-A31* should not resp:>nd to either extended or standard AM codes.

Table 2-1 lists all of the 256 possible address modifier codes and classifies
each into one of three categories:

DEFINED BY:
VERSAbus Spec.
USER
RESERVED

Those defined by the VERSAbus Spec are intended for a specific purpose and may
not be used for any other. These include codes for sequentially accessing
memory, a code for acknowledging interrupts, and two I/O access codes (one used
only by the highest privilege level software and one which may be used by any
level).

Those codes which may be defined by the USER may be used for any of the purposes
outlined above (e.g., system partitioning, distributed memory management, etc.).

Those codes labeled as RESERVED should not be used. They are intended for use
in future system enhancements.

Because system requirements vary, it is important that VERSAboard vendors
recognize the need for flexibility in decoding the address modifiers on the
slave boards. Decoding should allow the customer to configure the board to
resp:md to the codes required for his system. A simple way to do this is to
route the AM lines into the address lines of an 82Sl29 bipolar PROM. The PRCJvt
inputs require no buffering and will not overload the bus lines. If this part
is socketted, the customer can program a PROM which gives the decoding required
by his system.

It is ~~C_QI_!!Tlended that non-I/O SI.AVES be shipped in a configuration which
responds to AM codes 01, 02, 05, and 06 if they decode 23 address lines, and AM
codes Fl, F2, ·F5, and F6 if they decode 31 address lines. Short addressed I/O
SLAVES should be configured to respond to AM codes 11 and 15.

2-7

N
I

co

HEXA-
DECIMAL

CODE

F8-FF
F7
F6
FS
F4
F3
F2
Fl
FO
EX
DX
ex
BX
AX
9X
BX
7X
6X
SX
4X
3X

28-2F
27

20-26
lF
lE
lD
lC
lB
lA

7*

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H

ADDESS MODIFER

6* 5* 4* 3* 2* l*

L L L L x x
L L L H L L
L L L H L L
L L L H L H
L L L H L H
L L L H H L
L L L H H L
L L L H H H
L L L H H H
L L H x x x
L H L x x x
L H H x x x
H L L x x x
H L H x x x
H H L x x x
H H H x x x
L L L x x x
L L H x x x
L H L x x x
L H H x x x
H L L x x x
H L H L x x
H L H H L L
H L H H x x
H H L L L L
H H L L L L
H H L L L H
H H L L L H
H H L L H L
H H L L H L

TABLE 2-1. Address Modifier Codes

FUNCTION DEFINED
O* BY

x Undefined Reserved
L Undefined Reserved
H Extended Supervisory Program Access VERSAbus Spec.
L Extended Supervisory Data Access VERSAbus Spec.
H Undefined Reserved
L Undefined Reserved
H Extended Non-Privileged Program Access VERSAbus Spec.
L Extended Non-Privileged Data Access VERSAbus Spec.
H Undefined Reserved
x Undefined Reserved
x Undefined Reserved
x Undefined Reserved
x Undefined Reserved
x Undefined Reserved
x Undefined Reserved
x Standard Ascending Sequential Access VERSAbus Spec.
x Undefined User
x Undefined User
x Undefined User
x Undefined User
x Undefined User
x Undefined User
L Interrupt acknowledge VERSAbus Spec.
x Undefined Reserved
L Undefined User
H Undefined User
L Short I/O address User
H Undefined User
L Undefined User
H Undefined User

N
I

'°

TABLE 2-1. Address Modifier Codes (cont'd)

HEXA- ADDESS MODIFER DECIMAL FUNCTION DEFINED
CODE 7* 6* 5* 4* 3* 2* l* O* BY

19 H H H L L H H L Short I/O address User
18 H H H L L H H H Undefined Reserved
17 H H H L H L L L Undefined Reserved
16 H H H L H L L H Undefined Reserved
15 H H H L H L H L Short Supervisory I/O Access VERSAbus Spec.
14 H H H L H L H H Undefined Reserved
13 H H H L H H L L Undefined Reserved
12 H H H L H H L H Undefined Reserved
11 H H H L H H H L Short Non-Prvileged I/O Access VERSAbus Spec.
10 H H H L H H H H Undefined Reserved

08-0F H H H H L x x x Undefined Reserved
07 H H H H H L L L Undefined Reserved
06 H H H H H L L H Standard Supervisory Program access VERSAbus Spec.
05 H H H H H L H L Standard Supervisory Data Access VERSAbus Spec.
04 H H H H H L H H Undefined Reserved
03 H H H H H H L L Undefined Reserved
02 H H H H H H L H Standard Non-Privileged Program Access VERSAbus Spec.
01 H H H H H H H L Standard Non-Privileged Data Access VERSAbus Spec.
00 H H H H H H H H Undefined Reserved

Short address uses 15 address lines (A01*-Al5*).
Standard address uses 23 address lines (A01*-A23*).
Extended address uses 31 address lines (A01*-A31*).

Codes defined by the "VERSAbus Spec." should not be used for purposes other than
those specified.

Codes defined by "User" may be used for any purpose which the VERSAbus user (board
vendor or customer) deems appropriate (page switching, memory protection, MASTER or
task identification, privileged access to resources, etc.).

Codes defined by "Reserved" should not be used by the user; they are reserved for
system use and future enhancements.

It would also be possible to design slave boards with segment registers on them
to allow dynamic allocation and translation of their on-board resources. If
this is done, the segment registers should be addressable only in the
supervisory I/O map (i.e., AM code 15).

Master boards must, of course, drive the AM lines. If the master board has a
real-time executive, that executive should be able to control the AM code placed
on the VERSAbus during bus accesses. A good way to do this is to provide
latches on the master board which may be written into by the executive each time
a content switch is made from task to task. The AM code may then be used to
partition the system or to indicate the task's privilege level.

2.2.2 Data Transfer Lines

Depending on the options chosen and the type of data transfer, the source of the
data (MASTER or SLAVE) must drive the following data related lines:

16 or 32

0, 2, or 4

1

data lines (DOO* through Dl5* if option Dl6)
(DOO* through D31* if option D32)

parity lines (none if option NDP)
(DPARITYO* and DPARITYl* if options DP and Dl6)
(DPARITYO* through DPARITY3* if options DPY and D32)

data parity valid line (DPVAL*)

Not all of the parity lines need to be driven if the currently selected transfer
size is less than the maximum allowed under the data size option selected for
the system. There is one DPARITY* line for each eight bits. Therefore, a byte
transfer requires only the driving of data lines DOO* through D07* and their
corresponding parity line DPARITYO*, or data lines DOB* through Dl5* and their
corresponding parity line DPARITYl*.

A word transfer requires the driving of data lines DOO* through Dl5* and their
corresponding parity lines DPARITYO* and DPARITYl*. Only on a LONGWORD transfer
do all of the data lines DOO* through D31* and all parity lines DPARITYO*
through DPARITY3* require driving. Note that word transfers always use the same
16 lines, while byte transfers use different lines for odd and even bytes.

Whenever an option DP MASTER or SLAVE drives the data bus, it should also drive
DPVAL* (data parity valid) low. This is an indication that the appropriate data
parity lines carry a valid parity bit and may be verified.

Only LONGWORD transfers use lines Dl6* through D31*. When LONGWORD transfers
take place, the address presented is the even word address in the LONGWORD
location (AOl* is high). There are two word addresses for each LONGWORD. When
accessing the data stored in a LONGWORD location on a word basis, the even word
address (AOl* high) corresponds to the LONGWORD data bi ts Dl6 through D31.
Likewise, the structure of the bytes within a word have BYTEl (selected by DSl*)
as the most significant eight bits of the word (see Figures 2-4, 2-5, and 2-6).

2-10

LONGWCIID LOCATION (BITS 0-31)

ODD WORD LOCATION (BITS 0-15) EVEN WORD LOCATION (BITS 0-15)

DATA LINES DOO*-Dl5*

FOR A WORD ACCESS, THE DATA IS AUVAYS TRANSFERRED ON DOO*-Dl5*.

FIGURE 2-4. Odd Word Location Accesses

When LONGWORD data is written into merrory, the 32 data bi ts are stored at a
LON;WORD location. There are two word locations for each LONGWORD location.
When reading the IDNGWORD location on a word basis, the even word address
(AOl=O) corresponds to the LONGWCIID data bits Dl6-D31. See Figure 2-5.

LONGWORD LOCATION

A01 *=H A01* =L

LONGWORD BITS 16-31 LONGWORD BITS 0-15

031 015 000

EVEN WORD ADDRESS LOCATION ODD WORD ADDRESS LOCATION

THE ODD WORD LOCATION (AO 1 = 1) CORRESPONDS

TO THE LONGWORD DATA BITS DOO*-D1s*.

FIGURE 2-5. Word Addressing of LONGWORD Locations

2-11

Two 8-bi t bytes of data may be stored in each word location. The even byte
location is defined as the eight most significant data bits of the word
location. The odd byte location is defined as the eight least significant data
bits of the word location. See Figure 2-6.

LONGWORD LOCATION

EVE N WORD ADDRESS LOCATION ODD WORD ADDRESS LOCATI ON

LONGWORD
LOCATION

EVEN BYTE
LOCATION

ODD BYTE
LOCATION

EVEN BYTE ODD BYTE
LOCATION LOCATION

D31 D23 D15 D07 DOO

Byte Address xx •• xoo XX •• XOl XX •• XXlO

Byte Access
LWORD* high high high
AOl* high high low
DSl* low high low
DSO* high low high

Word Access
LWORD* high Note high
AOl* high 1 low
DSl* low low
DSO* low low

LCNGWORD Access
LWORD* low Note Note
AOl* high 2 3
DSl* low
DSO* low

NarES:

1. Not legal to access 16 bits of data on an odd byte address.

2. Not legal to access 32 bits of data on an odd byte address.

3. Not legal to access 32 bits of data on an odd word address.

FIGURE 2-6. Byte Location Numbering

2-12

XX •• Xll

high
low
high
low

Note
1

Notes
2 & 3

2.2.3 Data Transfer Control Lines

The MASTER will drive the following lines:

AS*
DSO*
DSl*
LWORD*
WRITE*

Address strobe
Odd data byte strobe
Even data byte strobe
LONGWORD select
Read/Write select

(On all transfers)
(Each is operation dependent, but at
least one must always be driven)

(Operation dependent)
(Operation dependent)

The SLAVE will always drive the following lines:

BERR*
DTACK*

Bus error
Data Acknowledge to MASTER
Data Strobe to MASTER

(If error detected)
(If write)
(If read)

AS* is the address strobe. It informs all SLAVE modules that the address is now
stable and may be clocked into holding registers. This type of operation is
essential to certain devices which require setup time after an address has
stabilized before the data can be accessed. It is recommended that all module
operations be keyed to and timed by an address strobe.

DSO* arrl DSl* select the data bits to be transferred and, on a write transfer,
strobe the transferred data. DSO* low means that the byte which would be
addressed with AOO* set low is to be found on data lines DOO* through DO?*.
Likewise, DSl* low means that the byte which would be addressed with AOO* set
high is to be found on data lines D08* through Dl5*. This explains why AOO*
does not exist as a signal line. These two lines replace the function that AOO*
would normally perform. The sender is not prohibited from driving the data
lines which are not being strobed. The receiver is required to ignore any and
all levels and/or transitions which occur on non-strobed data lines.

LWORD* has meaning only to those modules which allow 32-bi t transfers. It
specifies that 32 bits will be transferred on data lines DOO* through D31*.
Certain special constraints are placed on various combinations of these signals.
Table 2-2 specifies these constraints.

2-13

TABLE 2-2. Data Transfer Control Table

LWORD* AOl* DSO* DSl* CONSTRAINT/ACTION

L L L L Illegal (not on proper boundary)
L L L H Illegal (not on proper boundary)
L L H L Illegal (not on proper boundary)
L L H H Illegal (not on proper boundary)
L· H L L Long word transfer
L H L H Illegal (only one data strobe)
L H H L Illegal (only one data strobe)
L H H H Illegal (no data strobe)
H L L L Transfer both bytes of even word
H L L H Transfer odd byte of even word
H L H L Transfer even byte of even word
H L H H Illegal (no data strobe)
H H L L Transfer both bytes of odd word
H H L H Transfer odd byte of odd word
H H H L Transfer even byte of odd word
H H H H Illegal (no data strobe)

The reasons for the illegal cases are:

• a LONGWORD must fit on a 4-byte, double-word boundary (it is not possible
to address it otherwise)

• a LONGWORD transfer must provide both data strobes, and all transfers must
have one or both data strobes.

WRITE* controls the direction of data transfer between MASTER and SLAVE. If
WRITE* is high (WRITE false), the operation is a transfer from SLAVE to MASTER.
This can be expressed as the MASTER reads from the SLAVE. If WRITE* is low
(WRITE true) , the operation is a transfer from MASTER to SLAVE. This can be
expressed as the MASTER writes to the SLAVE.

BERR* is the signal from the SLAVE to the MASTER which indicates that some
illegality has been detected in the request as processed at the SLAVE. This
illegality could be the result of an address parity error, data parity error, or
an illegal LONGWORD request. It is reconunended that the SLAVE respond with
BERR*:

• on all requests for LONGWORD data when bit AOl* is high,

• on all LOOGWORD requests made to a SLAVE incapable of accepting such
requests,

• on all LONGWORD requests made without both data strobes,

• if the data from the MASTER on a write is invalid, or

• if the address provided to the SLAVE is invalid.

2-14

2.3 FUNCTICNAL MODULES

The modules involved in a data transfer are always classified as a MASTER and a
SLAVE. The MASTER is the module controlling the transfer, and the SLAVE is the
responding or addressed module. Some boards may be designed with both MASTER
and SLAVE modules. Fo:r example, a board containing a processor which requires
VERSAbus access would require a MASTER module. If the same board also contained
memory accessible from the VERSAbus, it would also require a SLAVE module.

'As another example, a dedicated function processor such as a floating point
processor or intelligent controller might be designed to receive commands
through a SLAVE interface from a general purpose CPU for set-up, but it might
then act as a MASTER to access memory as required to complete the· command it has
been given.

2.4 TYPICAL OPERATION

2.4.1 Data Transfer Bus Acquisition

To perform a data transfer, the DTB MASTER must first acquire control of the DTB
via its on-board DTB REQUESTER. The DTB REQUESTER requests the DTB ARBITER to
grant use of the DTB. (See Chapter 3 for a description of DTB arbitration.)
This arbitration is required because several MASTERS might want the DTB at the
same time in a multi-processor configuration. The DTB ARBITER grants the DTB to
the highest level REQUESTER. When the DTB REQUESTER has received permission to
use the DI'B, it will inform its on-board MASTER.

Figure 2-7 shows a typical flow of a DTB byte read cycle, and should be referred
to while reading the following cycle flow description. (For simplicity, the
generation and checking of parity has not been shown.)

To start the transfer, the DTB MASTER must first drive the address lines with
the desired memory address and address modifier code. The MASTER must also
specify a word or LONGWCRD transfer. For the byte read cycle shown in
Figure 2-7, LWORD* is driven high. All of these signal lines must be valid
before AS* is driven to low.

The SLAVE determines whether the address is its own and whether the address
modifier is appropriate. While this occurs, the MASTER drives WRITE* high to
indicate a read. The MASTER must then ensure that the last cycle is complete
and that the data bus is available by verifying that DTACK* and BERRt are
released high. The MASTER may then request the odd byte data in the specified
word location by driving DSO* low and DSl* high.

The SLAVE may then start the transfer because it knows the data word address and
that the odd byte of the addressed location is to be read and placed on
DOO*-D07*. When the data has been placed on the data bus, the SLAVE
acknowledges this by driving DTACK* low. The SLAVE must hold DTACK* low and the
data valid as long as the data strobe is driven low.

2-15

OTB MASTER

ADDRESS THE SLAVE

Present address
Present address modifier
Drive LWORD* high
Drive AS* to low

+ SPECIFY Ill\TA DIRECTION

Drive WRITE* high

+ SPECIFY DATA WIDrH

Wait until DTACK* high and
BERR* high (indicates
previous SLAVE no longer
driving data bus)

Drive DSO* to low and DSl* to high

+ ACQUIRE DATA

Receive data on lines DOO*-D07*
Receive DTACK* driven to low

+

Ul'B SLAVE

t
PROCESS ADDRESS

Receive address
Receive address modifier
Receive LWORD* high
Receive AS* driven to low
If address is valid for this SLAVE
Then generate device select

FE~H DATA

Receive WRITE* high
Read data from selected device
Receive DSl* driven to high
Receive DSO* driven to low
Present data on lines DOO*-D07*

+ RESPOND TO MASTER

Drive DTACK* to low
I

FIGURE 2-7. Data Transfer Bus, Byte Read Cycle (Sheet 1 of 2)

2-16

+ TERMINATE CYCLE

If last cycle then
Release address lines
Release address modifier lines

Drive DSO* to high

Drive 1* to high

END TERMINATION

If last cycle then
Release DSO* and DSl*
Release AS*

NOTE

+
END RESPONSE TO MASTER

Receive AS* and DSO* driven to high
Release DOO*-D07*

i
ACKNCMLEDGE TERMINATION

Release DTACK*

For simplicity, the generation and checking of address
and data parity have been ignored, and the assumption
has been made that no transfer causes a bus error.

FIGURE 2-7. Data Transfer Bus, Byte Read Cycle (Sheet 2 of 2)

When the MASTER receives DTACK* driven to low, it captures the data on
DOO*-D07*. When completed, the MASTER terminates the cycle by releasing the
address lines, driving DSO* and AS* to high, and then releasing DSO* and AS*.

The SIAVE resix>nds to the cycle termination by releasing DOO*-D07* and releasing
D'mCK* to high.

The cycle flow for word and LONGWORD data transfers is very similar to the byte
cycle. Flow charts for these cycles are shown in Figures 2-8 and 2-9.

2-17

DTB MASTER

ADDRESS THE SLAVE

Present address
Present address modifier
Drive LWCliD* high
Drive AS* to low

' SPECIFY DATA DIRECTION

Drive WRITE* low

• SPECIFY DATA WIDI'H

Wait until DTACK* high and
BERR* high (indicates
previous SLAVE no longer
driving data bus)

Drive DSO* and DSl* to low

f
TERMINATE CYCLE

Receive DTACK* driven to low
If last cycle then

Release address lines
Release address modifier lines
Release data lines

Drive DSO* and DSl to high
Drive AS* to high

' END TERMINATION

If last cycle then
Release DSO* and DSl*
Release AS*

OTB SLAVE

t
PROCESS ADDRESS

Receive address
Receive address modifier
Receive LWORD* high
Receive AS* driven to low
If address is valid for this SLAVE
'!hen generate device select
Else take no further action

l
STORE DATA

Receive WRITE* low
Receive DSl* driven to low
Receive DSO* driven to low
Latch data from lines DOO*-DlS*
Write data into selected device

+ RESPOND TO MASTER

Drive DTACK* to low
I

' ACKNCMLEDGE TERMINATION

Receive AS*, DSO*, and DSl driven to high
Release DTACK*

NOTE

For simplicity, the generation and checking of address
and data parity have been ignored, and the assumption
has been made that no transfer causes a bus error.

FIGURE 2-8. Data Transfer Bus, Word Write Cycle

2-18

OTB MASTER

ADDRESS THE SI.AVE

Present address
Present address modifier
Drive LWCRD* to low
Drive AS* to low

t
SPECIFY DATA DIRECTION

Drive WRITE* to low

• SPECIFY DATA WIIJI'H

Wait until DTACK* high and
BERR* high (indicates
previous SLAVE no longer
driving data bus)

Drive DSO* and DSl* to low

t
TERMINATE CYCLE

Receive DTACK* driven to low
If last cycle then

Release address lines
Release address modifier lines
Release data lines

Drive DSO* and DSl to high
Drive AS* to high

t
END TERMINATION

If last cycle then
Release DSO* and DSl*
Release AS*

IJI'B SLAVE

t
PROCESS ADDRESS

Receive address
Receive address modifier
Receive LWORD* high
Receive AS* driven to low
If address is valid for this SIAVE
Then generate device select
Else take no further action

!
STORE DATA

Receive WRITE* low
Receive DSl* driven to low
Receive DSO* driven to low
Latch data from lines DOO*-D31*
Write data into selected device

• RESPOND TO MASTER

Drive DTACK* to low
I

t
ACKNClVLEDGE TERMINATION

Receive AS*, DSO*, and DSl driven to high
Release DTACK*

NOTE

For simplicity, the generation and checking of address
and data parity have been ignored, and the assumption
has been made that no transfer causes a bus error.

FIGURE 2-9. Data Transfer Bus, I.DNGWORD Write Cycle

2-19

2.5 FORMAL SPECIFICATIONS

The following text defines specifications for data movements on the VERSAbus.

2.5.1 Data Transfer Bus Acquisition

To perform a data transfer, the D'IB MASTER must first acquire control of the DTB
via its on-board DTB REQUESTER. The DTB REQUESTER will petition the OTB ARBITER
to use the OTB. (See Chapter 3 for a description of OTB arbitration.) This is
required because in a multi-processor system, several OTB MASTERS may
concurrently request use of the OTB. The OTB ARBITER grants the OTB to the
highest priority REQUESTER. When the OTB REQUESTER has received permission to
use the DTB, it informs its on-board MASTER.

NOTE

A MASTER may signal to its on-board REQUESTER that it is finished
using the OTB prior to the end of its last data transfer cycle.
'!his causes BBSY* to be released and allows DTB arbitration to be
done while the last data transfer cycle completes.

When this type of design is used, the MASTER must not signal its
REQUESTER until it has driven AS* to low for this last cycle (i.e.,
until the last cycle has begun). Failure to follow this rule may
cause the new MASTER to see AS* high and assume that the DTB is
available prematurely.

Since arbitration of the bus may take place during the previous MASTER'S last
data transfer, a new DTB MASTER must ensure that the cycle of the previous DTB
MASTER is complete - i.e., as the address bus is no longer being driven, and AS*
is high. See Figure 2-10. The new MASTER is then authorized to turn on its
three-state output drivers and operate as the current DTB MASTER.

When the OTB MASTER is finished using the bus or when it has been requested to
clear the bus by the OTB ARBITER, it must first release all lines except AS* and
then drive AS* to high. This procedure guarantees that a OTB driver conflict
will not occur. After AS* is driven high, it must be released within a
prescribed time limit so that the new MASTER may drive the line without
conflict. See Figure 2-10 for a picture of the timing relationships.

2-20

PREVIOUS MASTER EITHER ------~
RELEASES AS• OR DRIVES AS*
TO HI AND THEN RELEASES IT.

PREVIOUS MASTER THREE
STATES ALL LINES EXCEPT AS•

A01* -A31*
AMO*-AM7*

APARITYO*
A PARITY 1*

LWORD*

WRITE*

DOO* -DS31 *
DPARITYO* -
DPARITY3*

~-- AS• REMAINS HIGH DUE
TO LINE TERMINATIONS

SUBSEQUENT MASTER MAY BEGIN DRIVING
SIGNAL LINES AS SOON AS IT RECEIVES AS* HIGH.

AS* MUST REMAIN HIGH FOR > 40nS

MASTER RELEASES BUS

FIGURE 2-10. Data Transfer Bus MASTER Excharge Sequence

2-21

2.5.2 Byte Read Sequence

Once the DTB MASTER has use of the DI'B, it may perform any number of transfer
cycles. Figure 2-11 shows the sequence of events for a typical byte read cycle.

2.5.2.1 Address Sequence

To start the cycle, the address is presented on A01*-A23*, and the address
modifier code is presented on AMO*-AM7*. The transfer is identified as a
non-32-bi t transfer by driving LWCRD* high. A parity generator on the MASTER
board may also present the address parity on APARITYO*.

After all the address information is valid, the MASTER drives AS* to low. A
setup time is provided between valid address and AS* driven to low to allow for
bus skew and setup time in the input latches on the SI.AVES.

'When the SI.AVE receives AS* driven to low, its address decoder will compare the
incoming address with the pre-assigned SLAVE address. In addition, the SLAVE
may verify the received address and address modifier by recalculating the
address parity and comparing it with the address parity line (APARITYO*). If
the address is valid for this device but the parity is wrong, the SI.AVE will
respond by driving BERR* to low if he is an option DP SLAVE. If the address is
valid for this device and no address parity error is detected by the SLAVE, a
data transfer select is generated internal to the SLAVE.

2.5.2.2 Data Bus Sequencing

The address and data timing are largely independent. There are two exceptions.
First, the data strobe falling edges may not precede the address strobe falling
edge at the MASTER. At the SLAVE, the data strobe falling edges may not precede
the address strobe falling edge by more than the bus skew specification. The
second exception is that the SLAVE acknowledges both the data strobes and the
address strobe with a single signal (DTACK* or BERR*).

As shown in the low order byte read cycle of Figure 2-11, the WRITE* line must
be driven high to identify a read cycle before DSO* is driven to low. This
delay allows for skew and provides input latch setup time at the SLAVE. The
MASTER must also ensure that the data bus is available for the next cycle by
detecting that DI'ACK* and BERR* are high before it drives either data strobe to
low. By driving the DSO* line low, the MASTER specifies that the odd byte of
the word is to be transferred. The MASTER must then wait until the SLAVE
acknowledges the transfer.

If the SI.AVE detects an address parity error, it will abort the cycle by driving
BERR* to low after receiving a data strobe driven to low. The SLAVE must wait
for a data strobe before driving BERR* or DTACK* to low to ensure that the
previous SLAVE has released these lines. This guarantees a transition of one of
the two lines for every transfer cycle. If the addressing is correct, the SLAVE
will respond by reading the location. This data is then placed on data lines
DOO*-D07*. The parity is placed on DPARITYO*. After valid data and parity have
been presented to the bus, the SLAVE drives DI'ACK* to low. A delay time is
provided between valid data and driving DTACK* to low. This provides for bus
skew and latch setup time for the MASTER'S input latches. The SLAVE must then
maintain the data on the bus until the MASTER drives DSO* to high.

2-22

0
::>
m
a:
w
LL

A01* -A23*
AMO*-AM7* --
APARITYO*
LWORO*

AS*

WRITE*

OSO*

0 OS1*
z
II(
a:
II(
I-

~ I 000*- 007.

l
l<ll DPARITYO*

w 1- OTACK*
> ::> BERR * c(Q.
..J 1-
0 ::>

0
L

NOTE

Arrows labeled ® show timing relationships guaranteed
by the internal timing of the MASTER.

Arrows labeled @ show timing relationships guaranteed
by the internal timing of the SLAVE.

Unlabeled arrows show timing guaranteed by interlocked
relationships between the MASTER and SLAVE.

FIGURE 2-11. Data Transfer Bus Byte Read

2-23

When the MASTER receives a response of either DTACK* or BERR* driven to low, it
begins to terminate the cycle. The SLAVE will continue to drive the data bus
until DSO* is driven to high. For optimum performance, the data strobes should
be driven to high as soon as possible.

The SIAVE must ensure that as the cycle terminates, valid data is maintained on
the data bus until the MASTER drives the data strobe high. This may be
accomplished by latching the incoming address and WRITE* line, or by latching
the output data when DTACK* is driven to low.

In general, a MASTER tells a SLAVE that it has read the data from the data bus
by driving a data strobe to high. After receiving either strobe driven to high,
the SLAVE may release its corresponding output data drivers. Only after the
data bus is released may the SLAVE release DTACK* to high. As stated earlier,
the MASTER may not use the data bus on the next cycle until DTACK* is released
high; therefore, it is important that the SLAVE release the data bus as quickly
as possible to allow the maximum data transfer rate on the bus.

2.5.3 Read-Modify-Write Sequence

In multiprocessor systems which share resources such as memory and I/O, a method
of allocating the resources must be established. The difficulty of any method
of allocation is synchronizing the asynchronous requests for that resource.
This is best described by the following example.

Two processors in a distributed processing system share a common resource (e.g.,
a printer). Only one processor may use the resource at a time. The resource is
allocated by a bit in memory - i.e., if the bit is set, the resource is busy; if
clear, the resource is available. To gain use of the resource, processor A must
read the bit and test to determine whether it is cleared. If the bit is
cleared, processor A sets the bit to lock out the other processor, B. This
operation takes two bus cycles: one to read and test the bit; the other to write
the set bit. However, a difficulty may arise if the bus is given to processor B
between these two bus cycles. Processor B may also find the bit clear and
assume the resource is available. Both processors will then set the bit in the
next available cycle and attempt to use the resource.

This conflict is avoided by defining a read-modify-write cycle which prevents
arbitration from taking place between the read and write. The sequence diagram
for this type of cycle is defined in Figure 2-12.

The read-modify-write cycle is very similar to a read cycle immediately followed
by a write cycle. The difference is that no address is given for the write
cycle (it is assumed to be the same as the read cycle), and AS* is continuously
driven low during both transfer cycles. All other sequencing and timing is
identical to normal read and write cycles.

Unlike a read cycle followed by a write cycle, the read-modify-write cycle
cannot be interrupted by the bus arbitration because AS* is driven low
continuously through both cycles, and control of the DTB may only be transferred
while AS* is high.

2-24

"' :::>
ID

a:
w
LI.

"' z
cc
a:
I-

cc
I-
cc
c

a: "' w I-
I- :::>
0 CL
cc 1-
:::E :::>

0

"' w I-
> =>
CC CL
...I
"':::>

0

L

A01* -A31*
AMO*-AM7*
APARITYO*
APARITY1*

LWORO*

AS*

WRITE*

000* -031 *
OPARITYO* -
OPARITY3*

OSO*

OS1*

000* -031*
OPARITYO* -
OPARITY3*

OT ACK*
BERR*

VALID

NOI'E

Arrows labeled @ show timing relationships guaranteed
by the internal timing of the MASTER.

Arrows labeled ® show timing relationships guaranteed
by the internal timing of the SI.AVE.

Unlabeled arrows show timing guaranteed by interlocked
relationships between the MASTER and SLAVE.

FIGURE 2-12. Read-Modify-Write Cycle Sequence

2-25

2.5.4 Sequential Access Sequence

Many accesses to bus memory take place in sequence (i.e., memory locations are
accessed in ascending order). When this is the case, it is desirable to have a
means for accessing several locations without having to provide an address each
time. The sequential access sequence allows the MASTER to specify that memory
is to be accessed in ascending order with special address modifier codes.

The MASTER initiates the cycle in the standard way except that it places one of
the sequential access AM codes on the address modifier lines. All sequential
access SLAVES latch the address into an on-board address counter. The MASTER,
upon completing the first data transfer (i.e. drives data strobes high) does not
allow AS* to go high. Instead, it repeatedly drives the data strobes low to
transfer data to/from sequential memory locations.

The SIAVE increments its on-board address counter as required to access the next
location. When accessing memory in ascending order, the counter is incremented
on each rising edge of DSO*.

Special attention is drawn to the fact that all sequential access SLAVES should
latch the initial address when a sequential access AM code is placed on the bus.
In addition, all of these SLAVES should increment the address counter each
access cycle. The resulting counter output should then be decoded to see if it
falls within the SLAVE'S address boundaries. (This is important because the
block of sequential memory location may straddle the boundary between two memory
boards, or memory board location may be interleaved to allow faster access.)

While the sequential access sequence is intended primarily to do a string of
reads or a string of writes, there is no practical reason why read and write
cycles could not be mixed. When this is the case, WRITE* must be stable and
valid prior to the falling edge of the data strobe (see timing diagrams,
Figures 2-13, 2-14, 2-16, and 2-17).

The sequential access cycle is very similar to a string of normal read/write
cycles. The difference is that no address is provided after the first transfer
cycle, and AS* is continuously driven low during the remaining transfer cycles.
All other sequencing and timing is identical to normal read/write cycles.

The sequential access sequence cannot be interrupted by bus arbitration because
AS* is driven low continuously through all cycles, and control of the DTB may
only be transferred while AS* is high.

2.6 DETAILED TIMING/STATE DIAGRAMS

This section describes the timing relationships of signals on the DTB. Two
separate sets of timing are provided: one for the MASTER and one for the SLAVE.
These two sets of timing take into account bus skew time, and provide the
designer an exact definition of his DTB timing constraints and guarantees.
Because the backplane is a passive device, capacitive loading of signal lines
causes a degradation of rise and fall times. This may alter the skew between
signals as they propagate down the bus. The worst case skew between two lines
on the bus will occur when one line has minimum loading and the other line has
maximum loading. (Bus load specifications are discussed in Chapter 7.) For
example, consider a OTB MASTER which presents an address on the bus and, after a

2-26

setup time, drives AS* to low. Capacitive loading may vary significantly among
various lines on the bus. As the signal propagates down the bus, the address
line transition times are stretched due to the capacitance of the heavy loading,
while AS* is not. As a result, when the signals reach the SIAVE farthest from
the MASTER, the relationship of address lines to AS* is the address setup time
generated at the MASTER minus the bus skew. The Data Transfer Bus is designed
to limit bus skew to a maximum of 10 nanoseconds. This can be seen by observing
that each MASTER is required to provide 30 nanoseconds of skew, while each SIAVE
is guaranteed only 20 nanoseconds. If the specified loading limits are obeyed
(see Chapter 7), this IO-nanosecond maximum is guaranteed.

The following timing parameters are for the bus pins which plug into the
backplane. The designer must guarantee the specified times for output signals
so that after any worst case buffer skew, the timing is still met at the
VERSAbus pins. Timing given for input signals to a board include the worst case
skew on the bus, and are guaranteed valid at the input pins of the board.
On-board input buffers may add additional skew to the times. This additional
input buffer skew must be accounted for by the board designer.

2.6.1 DTB MASTER Timing

Three timing diagrams are presented to outline the timing requirements for DTB
MASTERS.

Figure 2-13 shows the timing requirements a MASTER must meet when doing a write
cycle followed by a read cycle.

Figure 2-14 shows the timing requirements a MASTER must meet when doing a read
cycle followed by a write cycle.

Figure 2-15 shows the timing requirements that the MASTER relinquishing control
of the DTB and the new MASTER taking control must meet.

A special notation has been used to describe the data strobe timing. The two
data strobes (DSO* and DSl*) will not always make their transitions
simultaneously. For purposes of these timing diagrams, DSA* represents the
first data strobe to make its transition (whether that is DSO* or DSl*). The
broken line shown while the data strobes are low is to indicate that the first
data strobe to make a falling transition might not be the first to make its
rising transition - i.e., DSA* may represent DSO* on its falling edge and DSl*
on its rising edge.

2.6.1.1 DTB MASTER Timing: Write Cycle Followed by Read Cycle

See Figure 2-13 and Table 2-3. Following is a description of each parameter.

2-27

DESCRIPTION OF PARAMETERS

1 This time provides the SLAVE with address setup time. The address lines
must be stable and valid for the minimum setup time before AS* may be
driven across the high level threshold voltage.

2 The address must be held stable until DTACK* is received driven to low,
and then may change. The address bus need not be re leased between
consecutive cycles of the same MASTER, but may be released, if desired.

3 AS* must be driven high for the minimum time to ensure that the SLAVE
detects the end of the bus cycle.

4 AS* must remain low until DTACK* is received driven to low. It is then
driven to high.

5 This time applies to whichever data strobe is driven low by the MASTER
first. DS "A" corresponds to the first strobe and DS "B" corresponds to
the second strobe. The first strobe driven to low may or may not be the
first strobe driven to high. The first data strobe may be driven to low
concurrently with driving AS* to low, but must not precede it.

6 The WRITE* line must be valid and stable for the minimum setup time
before either data strobe is driven across the high level threshold
voltage.

7 The WRITE* line must remain valid until the MASTER drives DS"A"* to high.

8 The MASTER must release its output data bus drivers the minimum time
before the first data strobe may be driven across the high level
threshold voltage.

9 This maximum skew between DSO* and DSl* must not be exceeded for cycles
in which both data strobes are driven to low. This time does not apply
to byte reads where only one strobe is driven to low.

10 14 Once driven low, a data strobe must be held low until the MASTER receives
DTACK* driven to low.

11 12 These times require that both data strobes be concurrently driven high
16 for the minimum time.

13 This time requires that the MASTER must receive DTACK* high before either
data strobe is driven across the high level threshold voltage.

15 This time guarantees that the data on the data bus lines will remain
valid until the MASTER drives the first data strobe across the low level
threshold voltage.

17 This read data setup time guarantees the MASTER that the data bus is
valid and stable the minimum setup time before the received DTACK*
crosses the high level threshold voltage on the high to low transition.

18 This time guarantees that the data bus is released by the SLAVE before
the received DTACK* crosses the low level threshold voltage on the low
to high transition.

2-28

TABLE 2-3. DTB MASTER Timing: Write Cycle Followed by Read Cycle

NUMBER PARAMETER MIN. MAX. NarES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

NOfES:

Address valid to AS* low 30 B

DTACK* low to invalid address 0 c

AS* High 40 B

DTACK* low to AS* high 0 c

AS* to DS"A"* skew 0 B

WRITE* valid to DS"A"* low 30 B

DS"A"* high to invalid WRITE* 10 B

DATA release to DS"A" low 0 B

DS"A"* to DS"B" skew 20 B

DTACK* low to DS"A"* high 0 c

DS"A"* high 40 B

DS"B"* high to DS"A" low 40 B

DTACK* high to DS"A" low ·o c

DTACK* low to DS"B" high 0 c

DS"A"* high to invalid data 0 D

DS"B"* high 40 B

Data valid to DTACK* low 20 E

Data released to DTACK* high 0 E

A. All times given are in nanoseconds.

B. The MASTER must guarantee this timing between two of its outgoing
signal transitions.

c. The MASTER must wait for the incoming signal edge from the SLAVE
before changing the level of its outgoing signal.

D. This is a guarantee that the SLAVE will not change the incoming
signal until the MASTER changes its outgoing signal.

E. The MASTER is guaranteed this timing between two of its incoming
signal transitions.

A01*-A31" 1------ READ

AMO*-AM7* -----""""",,,,,,.,f,---------~--~i't'v1'1T'/-----~
APARITYO* VALID
APARITY1* ~~~~~..J..J.l..u.Ll~~~~~-~~~~~~~-t'-'..Ll...I..~~~~~~

LWORD*

AS* 2.0V

WRITE*

D00*-D31 * -----""Tn...._I
DPARITYO*­
DPARITY3* ------L.l..'"'I

DOO*-D31*
DPARITYO*­
DPARITY3*

DTACK*
BERR* -------

2.0V

2.0V 2.0V

®

2.0V

2.0V 2.0V

I'-------- .av

FIGURE 2-13. IYl'B MASTER Timi~: Write Cycle Followed by Read Cycle

2-29/2-30

2.6.1.2 OTB MASTER Timing: Read Cycle Followed by Write Cycle

See Figure 2-14 and Table 2-4. Following is a description of each parameter.

DESCRIPI'ION OF PARAMETERS

1 This time provides the SLAVE with address setup time. The address lines
must be stable and valid for the minimum setup time before AS* may be
driven across the high level threshold voltage.

2 The address must be held stable until DTACK* is received driven to low
and then may change. The address bus need not be released between
consecutive cycles of the same MASTER, but may be released, if desired.

3 AS* must be driven high for the minimum time to ensure that the SLAVE
detects the end of the bus cycle.

4 AS* must remain low until DTACK* is received driven to low.
then be driven to high.

It may

5 This time applies to whichever data strobe is driven low by the MASTER
first. DS "A" corresponds to the first strobe and DS "B" corresponds to
the second strobe. The first strobe driven to low may or may not be the
first strobe driven to high. The first data strobe may be driven to low
concurrently with driving AS* to low, but must not precede it.

6 The WRITE* line must be valid and stable for the minimum setup time
before either data strobe is driven across the high level threshold
voltage.

7 The WRITE* line must remain valid until the MASTER drives DS"A"* to high.

8 The MASTER must not drive the data bus until it detects both DTACK* and
BERR* high.--rrhis indicates that the SLAVE addressed during the previous
read cycle is no longer driving the data bus.)

9 The data bus outputs must be valid and stable a minimum time before the
first data strobe may be driven across the high level threshold voltage.

10 'Ihe data bus outputs must remain valid and stable until the MASTER
receives DTACK* driven to low.

11 This maximum skew between DSO* and DSl* must not be exceeded for cycles
in which both data strobes are driven to low. This time does not apply
to byte writes.

12 17 Once driven low, a data strobe must be held low until the MASTER receives
DTACK* driven to low.

13 14
15

These times require that both data strobes be concurrently driven high
for the minimum time.

16 This time guarantees that the SLAVE will not release the DTACK* /BERR*
line to high until after the MASTER drives both data strobes high.

2-31/2-32

TABLE 2-4. DrB MASTER Timing: Read Cycle Followed by Write Cycle

NUMBER PARAMETER MIN. MAX. NGrES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

NGrES:

Address valid to AS* low 30 B

DTACK* low to invalid address 0 c

AS* High 40 B

DTACK* low to AS* high 0 c

AS* to DS"A"* skew 0 B

WRITE* valid to DS"A"* low 30 B

DS"A"* high to invalid WRITE* 10 B

DTACK* high to active data bus 0 c

Data valid to DS"A"* low 30 B

DTACK* low to invalid data 0 c

DS"A"* to DS"B"* skew 0 20 B

DTACK* low to DS"A"* high 0 c

DS"A"* high 40 B

DS"B"* high to DS"A"* low 40 B

DS"B"* high 40 B

DS 11 B"* high to DTACK* high 0 D

DTACK* low to DS"B"* high 0 c

A. All times given are in nanoseconds.

B. The MASTER must guarantee this timing between two of its outgoing
signal transitions.

c. The MASTER must wait for the incoming signal edge from the SLAVE
before changing the level of its outgoing signal.

D. This is a guarantee that the SLAVE will not change the incoming
signal until the MASTER changes its outgoing signal.

E. The MASTER is guaranteed this timing between two of its incoming
signal transitions.

~
Cl.> w
I- ...

::I "' 0. c(
z ~

L

,....._ _____ WRITE ----------1. ~WRITE
A01*-A31* ----""""'"rmrwm---------------,.Tv-9'ff'(f'Tr-----~
AMO"'-AM7*
APARITYO*
APARITY1* ----.....L.1..A.U.~---------------~t..A..t.lo------

LWORO*

AS*

WRITE*

000*-031*
OPARITYO*­
OPARITY3*

000*-031*~
OPARITYO*-
OPARITY3*

OTACK*
BERR*

2.0V

2.0V
.av

.av

FIGURE 2-14. DrB MASfER Timing: Read Cycle Followed by Write Cycle

2-33/2-34

2.6.1.3 MASTER Timing: Control Transfer of DTB

When a DTB MASTER has started its last data transfer and has driven AS* to low,
it may notify its on-board DTB REQUESTER that it no longer wants the bus. The
REC}.JESTER then releases BBSY*, allowing the ARBITER to arbitrate existing bus
requests from other boards in the system and grant use of the DTB to the highest
priority REQ.JESTER. It is vital that control of the DTB be passed smoothly from
one MASTER to another. To ensure this control, the following timing
requirements must be met.

NarE

In the following discussion, the term "MASTER A" will be used
to designate the MASTER which has just finished its data
transfers and is preparing to give up control of the DTB.
"MASTER B" will be used to designate the MASTER which is taking
control of the DTB.

The transfer of control takes place in five phases, as shown in Figure 2-15:

PHASE 1

PHASE 2

PHASE 3

PHASE 4

PHASE 5

MASTER A is driving the DTB lines.

MASTER A releases all DTB lines except AS* which is still driven
low.

MASTER A either (a) releases AS* or (b) drives AS* to high and
then releases it within 20 ns.

All DTB lines remain high due to line terminators.

MASTER B receives AS* driven to high and turns on all of its DTB
line drivers except its data bus drivers, ensuring that AS* is
driven high (i.e., no falling edge is generated on AS*).

MASTER B then drives the DTB in accordance with the timing given in paragraph
2. 7. 2. (If the first cycle is to be a write cycle, MASTER B must wait for
~CK* and BERR* to go high before driving the data bus).

2-35

,.. C'i (II) "11:1' I.I)

w w w w w
U) U) U) U) U)
cc cc cc cc cc
iE ::c ::c f ::c

AO 1*-A31 * a. a. a.

AMO*-AM7*

~) APARITYO*
APARITY1*

LWORO*

I "---
AS* ~

;) WRITE*
U)

I-
:::>
a.
I-
:::>
0

OS"A" r
r 05"8"

?

~) 000* -031*
OPARITYO* -
OPARITY3*

FIGURE 2-15. MASTER Timing: Control Transfers of DTB

2-36

2.6.2 OTB SLAVE Timing

Two timing diagrams are presented to outline the timing requirements for Dl'B
SLAVES. These two diagrams describe the timing required when a SLAVE is
addressed.

Figure 2-16 shows the timing requirements a SLAVE must meet during two
consecutive read cycles.

Figure 2-17 shows the timing requirements a SLAVE must meet during two
consecutive write cycles.

A special notation has been used to describe the data strobe timing. The two
data strobes (DSO* and DSl*) will not always make their transitions
simultaneously. For purposes of these timing diagrams, DSA* represents the
first data strobe on which the SLAVE receives a transition (whether it is DSO*
or DSl*). The broken line shown while the data strobes are low is to indicate
that the first data strobe to make a falling transition might not be the first
to make its rising transition (i.e., DSA* may represent DSO* on its falling edge
and DSl* on its rising edge).

2-37

2.6.2.1 DTB SLAVE Timing: Two Consecutive Read Cycles

See Figure 2-16 and Table 2-5. Following is a description of each parameter.

1

2

3

4

5

6

7

8

9 17

10 11
12

13

14

15

16

18

19

20

DESCRIPrION OF PARAMETERS

This time guarantees the SLAVE a minimum address setup time. The address
lines are stable and valid for the minimum setup time before AS* is
received driven across the high level threshold voltage.

The address is guaranteed to remain stable until the SLAVE drives IJI'ACK*
to low. The address lines may then change.

AS* is driven high for this guaranteed minimum time to ensure that the
SLAVE detects the end of the bus cycle.

AS* is guaranteed to remain low until the SLAVE drives IJI'ACK* to low.

This time applies to whichever data strobe is received low by the SLAVE
first. DS"A"* corresponds to the first strobe and DS"B"* corresponds to
the second strobe. The first strobe received low may or may not be the
first strobe received high. Because of bus skew, the first data strobe
falling edge may slightly precede the AS* falling edge, but is guaranteed
not to precede it by more than the specified time.

The WRITE* line is guaranteed valid and stable for the minimum setup time
before either data strobe is received driven across the high level
threshold voltage.

The WRITE* line is guaranteed to remain valid until DS"A"* is received
driven to high.

The SLAVE is guaranteed that this maximum skew between DSO* and DSl* will
not be exceeded for cycles in which both data strobes are driven to low.
This time does not apply to byte reads where only one data strobe is
drive to low.

Once driven low, a data strobe is guaranteed to remain low until the
SLAVE drives DTACK* to low.

~ese times guarantee that both data strobes will be concurrently driven
high for the minimum time.

The SLAVE must not drive BERR* low until DS"A"* is received driven to
low. If BERR* is driven low, then the SLAVE need not provide read data
setup time, since no valid data is placed on the data bus.

This time guarantees that a new data strobe will not be received driven
through the high level threshold voltage until the SLAVE releases DTACK*
to high.

The SLAVE must not drive the data bus until the first data strobe is
driven low.

The SLAVE must provide the minimum read data setup time before it drives
DTACK* across the high level threshold voltage.

The SLAVE must hold the data valid and stable until it receives either
data strobe driven to high.

The SLAVE must release the output data bus drivers before it releases
DTACK* across the low level threshold voltage to high.

The SLAVE must not release BERR* prior to receiving either data strobe
driven to high. ~-

2-38

NUMBER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

l~

16

17

18

19

20

NarES:

A.

B.

c.

D.

TABLE 2-5. DI'B SLAVE Timing: Two Consecutive Read Cycles

PARAMETER MIN. MAX. NarES

Address valid to AS* low 20 E.

DTACK* low to invalid address 0 D

AS* High 30 E

DTACK* low to AS* high 0 D

AS* to DS"A"* skew -10 E

WRITE* valid to DS"A"* low 20 E

DS"A"* high to invalid WRITE* 0 E

DS"A"* to DS"B"* skew 30 E

DTACK* low to DS"A"* high 0 D

DS"A"* high 30 E

DS"B"* high to DS"A"* low 30 E

DS"B"* high 30 E

DS"A"* low to DTACK* low 0 c

DTACK* high to DS"A"* low 0 D

DS"A"* low to Active data bus 0 c

Data valid to DTACK* low 30 B

DTACK* low to DS"B"* high 0 D

DS"A"* high to invalid data 0 c

Data bus released to DTACK* high 0 B

DS"A"* high to BERR* high 0 c

All times given are in nanoseconds.

The SLAVE must guarantee this timing between two of its outgoing
signal transitions.

The SLAVE must wait for the incoming signal edge from the MASTER
before changing the level of its outgoing signal.

This is a guarantee that the MASTER will not change the incoming
signal until the SLAVE changes its outgoing signal.

E. The SLAVE is guaranteed this timing between two of its incoming
signal transitions.

II.I
tn>
I- c(
::::> ..J

Q, "'

!o
I-

t------- READ _____ ____, 1------- RE AD
A01*-A31* AMO*-AM7* -------l'"l'lrl"'l""l"T...,_ __________________________ .,..._,,.,,..,.., ___________ ~
APARITYO* 2.0V
APARITV 1* ---------~ "ll--·a_v _____________________;..;..---1~....__ _________ _

LWORD*

AS*

WRITE*

DS"A" *

DS"B"*

ooo*-031*
DPARITYO*­
DPAfUTY3*

DTACK*

BERR*

FIGURE 2-16.

2.0V

2.0V

2.0V

2.0V
.av

2.0V
.av

__ __,, 0,1----

2.0V

2.0V

--------1131-----~-

Data Transfer Bus SLAVE Read Cycle

2-39/2-40

2.6.2.2 DTB SLAVE Write Cycle Timing

See Figure 2-17 and Table 2-6. Following is a description of each parameter.

DESCRIPTION OF PARAMETERS

1 This time guarantees the SI.AVE a minimum address setup time. The address
lines are stable and valid for the minimum setup time before AS* is
received driven across the high level threshold voltage.

2 The address is guaranteed to remain stable until the SI.AVE drives DTACK*
to low. The address lines may then change.

3 "PS* is driven high for this guaranteed minimum time to ensure that the
SI.AVE detects the end of the bus cycle.

4 AS* is guaranteed to remain low until the SI.AVE drives DTACK* to low.

5 This time applies to whichever data strobe is received low by the SI.AVE
first. DS"A"* corresponds to the first strobe and DS"B"* corresponds to
the second strobe. The first strobe received low may or may not be the
first strobe received high. Because of bus skew, the first data strobe
falling edge may slightly precede the AS* falling edge, but is guaranteed
not to precede it by more than the specified time.

6 The WRITE* line is guaranteed valid and stable the minimum time before
either data strobe is received driven across the high level threshold
voltage.

7 'Ihe WRITE* line is ·guaranteed to remain valid until DS"A"* is received
driven to high.

8 The data bus is guaranteed to be valid and stable for the minimum setup
time before the SLAVE will receive the first data strobe driven across
the high level threshold voltage.

9 The data bus is guaranteed to remain valid and stable until the SI.AVE
drives IJrACK* to low.

10 '!be SLAVE is guaranteed that this maximum skew between DSO* and DSl* will
not be exceeded for cycles in which both data strobes are driven to low.
This time does not apply to byte writes when only one data strobe is
driven to low.

11 16 Once driven low, a data strobe is guaranteed to remain low until the
SLAVE drives IJrACK* to low.

12 13 These times guarantee that both data strobes will be concurrently driven
14 high for the minimum time.

15 The SI.AVE must wait the minimum time after it receives the first data
strobe driven to low before it may drive the acknowledge signal to low.
(This assures that an acknowledge will not be given prior to the second
data strobe going low.)

17 The SLAVE must drive low the acknowledge signals until it receives either
data strobe driven to high.

2-41/2-42

TABLE 2-6. DrB SLAVE Timing: Two Consecutive Write Cycles

NUMBER PARAMETER MIN. MAX. NOTES

1 Address valid to AS* low 20 D

2 DTACK* low to invalid address 0 c

3 AS* High 30 D

4 DTACK* low to AS* high 0 c

5 AS* to DS"A" skew -10 D

6 WRITE* valid to DS"A"* low 20 D

7 DS"A"* high to invalid WRITE* 0 D

8 Data valid to DS"A"* low 20 D

9 DTACK* low to invalid data 0 c

10 DS"A"* to DS"B"* skew 30 D

11 DTACK* low to DS"A"* high 0 c

12 DS"A"* high 30 D

13 DS"B"* high to DS"A"* low 30 D

14 DS"B"* high 30 D

15 DS"A"* low to DTACK*/BERR* low 30 B

16 DTACK* low to DS"B"* high 0 c

17 DS"B"* high to DTACK* high 0 B

NOTES:

A. All times given are in nanoseconds.

B. The SLAVE must wait for the incoming signal edge from the MASTER
before changing the level of its outgoing signal.

c. This is a guarantee that the MASTER will not change the incoming
signal until the SLAVE changes its outgoing signal.

D. The SLAVE is guaranteed this timing between two of its incoming
signal transitions.

(/) ~
I- c(
:::> ..J
a.(/)

I- :ii
:::> 0
o IE

L

AO 1*-A31 *
,__ _____ WRITE------

AMO*-AM7* ----"""TT"rTT"l-nlr-----------------rrn~rr--------------
APARITYO* 2.0V
APARITYY 1 * ----------L.1..u..i..u.p.......;..' S;;.,.V;.,,,..__ __________________;_ __ ~...__--------

L WORD*

AS*

WRITE*

D00*-031*
DPARITYO*­
DPARITY3*

DS"A"*

DS"B"*

DTACK*
BEAR*

2.0V

2.0V
.av

®

FIGURE 2-17. Data Transfer Bus SLAVE Write Cycle

2-43/2-44

3.1

3.1.1

3.1.2

3.2

3.2.1

3.2.2

3.2.3

3.2.4

3.3

3.3.l

3.3.2

3.3.3

3.4

3.4.1

3.4.2

3.4.3

3.4.4

3.5

3.5.1

3.5.2

3.5.2.1

3.5.2.2

CHAPTER 3

VERSAbus Jl\TA TRANSFER BUS ARBITRATION

Page

BUS ARBITRATION PHILOSOPHY ••••••••••••••••••••••••••••••• 3-1

ARBITER Options•• 3-1
ARBITER Operation •••••••••••••••••••••••••••••••••••••• 3-1

ARBITRATION BUS LINE STRUCTURES •••••••••••••••••••••••••• 3-3

Bus Request and Bus Grant Lines •••••••••••••••••••••••• 3-4

Bus Busy Line (BBSY*) •••••••••••••••••••••••••••••••••• 3-5
Bus Clear Line (BCLR*) ••••••••••••••••••••••••••••••••• 3-5

Bus Release Line

FUNCTIONAL MODULES

(BREL*) •••••••••••••••••••••••••••••••

.......................................
3-5

3-5

Data Transfer Bus ARBITER •••••••••••••••••••••••••••••• 3-6

Data Transfer Bus RE<JJESTER •••••••••••••••••••••••••••• 3-8

Data Transfer Bus MASTER ••••••••••••••••••••••••••••••• 3-9

'I'YPICAL OPERATION • 3-10

Arbitration of Two Different Levels of Bus Request 3-10

Arbitration of Two Bus Requests on the Same Bus

Request Line ...
Arbitration During Power-Down Sequence •••••••••••••••••

Arbitration During Power-Up Sequence •••••••••••••••••••

STh TE D IAGR!l1'1S •

Data Transfer Bus REQUESTER••••••••••••••••••••••••••••
Data Transfer Bus ARBITER ••••••••••••••••••••••••••••••

Prioritizing of Incoming Bus Requests ••••••••••••••••

Clearing the DrB Upon a Higher Priority Bus Request ••

3-0

3-14

3-18

3-21

3-24

3-24

3-33

3-33

3-37

CHAPTER 3

VERSAbus DATA TRANSFER BUS ARBITRATION

3.1 BUS ARBITRATION PHILOSOPHY

Past microprocessor system designs have generally consisted of a single central
processor accessing its system resources by reading or writing into registers.
In multitasking versions of such systems, the system resources were allocated by
a real-time executive which:

• Prevented simultaneous use of a resource by two tasks

• Allocated system resources on a priority basis

As microprocessor costs decrease, many systems become cost-effective with
multiple processors sharing global resources over a system bus. F.ach of these
processors will have its own task or tasks, and its own need for resources.

The most fundamental of these global resources is the data transfer bus through
which all other resources are accessed. Therefore, any system supporting
multiprocessing must provide an allocation method for the data transfer bus.
Because each processor may have its own real-time executive, and because speed
of allocation of the data transfer bus is vital, a hardware allocation scheme
must be provided. The VERSAbus meets this need with its Bus Arbi tr at ion
subsystem. (See Figure 3-1).

The VERSAbus arbitration subsystem is designed to:

• Prevent simultaneous access of the bus bv two MASTERS

• Prioritize requests from multiple MASTERS for optimum resource use

The logic used to implement the bus allocation algorithm is called the ARBITER.
It is the ARBITER'S responsibility to respond to requests for the bus and to
optimize usage by proper control of the allocation process.

3.1.1 ARBITER Options

The ARBITER used to control the arbitration system may be one of two versions.
The Option NPF (No Power Fail) ARBITER accepts normal bus requests and
arbitrates· them, but it has no provision for emergencies. The Option PF (Power
Fail) ARBITER has additional circuitry to allow emergency demands for the data
bus in case of power failure or hardware malfunctions.

3.1.2 ARBITER Operation

The bus arbi tr at ion subsystem accepts requests for the bus on five request
lines, which are assigned a sequential priority from highest (BR4*) to lowest
(BRO*). These lines are driven by open collector drivers so that several

MASTERS can share a common request line. Each request line has a corresponding

3-1

w
I

rv

r------------------------,
I SYSTEM I
I CONTROLLER I

: USER'S DEVICE :

: I
I I
I I
I

1-+-

' i I
I
I
I
I
I
I
I
I
I
I
I
I____, _ __,
I
I
I
I
I
I
L-

,-------------, ,-------, ,--------, ,--------,
USER'S I USER'S

1
,

1
, II I I

DEVICE - I DEVICE - USER'S I USER'S I
INTELLIGENT I NON-INTELLIGENT I I DEVICE - I I DEVICE - I
PERIPHERAL I PERIPHERAL I I RAM, ROM, ETC. I I FRONT PANEL I

INTERFACE, ETC. I INTERFACE, ETC. I I I I I
I I I I I I I
II I I : I I
11 __ 1_1 _ 'L I

-,,- I -l I - _i ____ I
I I I I I f

OTB MASTER

I I : I : : POWER : SYSTEM
OTB SLAVE I I OTB SLAVE I I MONITOR I DEFINED BY

I

I
I
I
I

1/0

I _ __. _ __,

I INTERRUPT
I REQUESTER

I I_____,,.....--___,

I
I
I
I
L_

1 1 1 I TEST VERSAbus
: : : : CONTROLLER SPECIFICATION
I I I RESTART
I I I CONTROLLER

I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I I
I I I I
I I I 1

J L - __ _J L--

DATA TRANSFER BUS

PRIORITY INTERRUPT

OTB ARBITRATION

UTILITY

FIGURE 3-1. VERSAbus Arbitration Functional Block Diagram

grant daisy-chain line (BG4IN* through BGOIN* and BG40UT* through BGOOUT*). If
the bus is idle when a request is received, the ARBITER will immediately respond
on the grant line corresponding to the highest level of request pending. If the
bus is busy, and the request level of the MASTER using the bus is lower than the
current highest request level, the ARBITER will request that the current MASTER
relinquish control to the new request. If the requests currently pending are
lower than or equal to the current MASTER'S request level, they will not result
in any action until the current MASTER relinquishes the bus. At that point, the
ARBITER will respond to the highest pending level of request with a grant line.
If no requests are pending at the time the currently active MASTER relinquishes
control, the ARBITER will wait in the idle state until a bus request is
received.

In addition to the ARBITER allocating the bus on a priority basis, a secondary
level of prioritization is built into the bus itself. The bus grant signals are
daisy-chained in such a way that REQUESTERS sharing a common request line are
prioritized by slot position. The REQUESTER closest to slot one has the highest
priority.

3.2 ARBITRATION BUS LINE STRUcrURES

The arbitration bus consists of eight bussed VERSAbus lines and five broken or
daisy-chained lines. These daisy-chained lines require special signal names.
The signals entering each REQUESTER are identified as "Bus Grant IN" lines
(BGxIN*), while the signals leaving the REQUESTER are identified as the "Bus

Grant OUT" lines (BGxOUT*). Therefore, the lines which leave slot N as BGxOUT*
enter slot N+l as BGxIN*. This is illustrated in Figure 3-2.

;$1.:9.:r:: .· :t:.

JI~;,:~
·••~ro~.9:.• .. ·.·
. cf <:\ ·· _______ ~..........,

B

B
BGXIN* PINS OF SLOT 1·~·>····'"'''·•;. .. 4.~~~------­
(DRIVEN BY ARBITER
ON SYSTEM
CONTROLLER BOARD)

B

B

FIGURE 3-2. Illustration of the Daisy Chained Bus Grant Lines

3-3

NOTE

In all descriptions in this chapter, the terms BRx*, BGxIN*,
and BGxOUT* are used to describe the bus request and bus
grant lines, where x may have any value from zero to four.

In the VERSAbus arbitration system, a REQUESTER will drive the following lines:

1 bus request line ••• (one of BRO* through BR4*)
5 bus grant lines out. (BGOOUT* through BG40UT*)
1 bus busy line •••••• (BBSY*)

The ARBITER will drive the following:

1 bus clear line ••••• (BCIR*)
5 bus grant lines in • (BGOIN* through BG4IN*)
1 emergency bus grant line • (PF ARBITER only; on-board signal; not found

on VERSAbus)

The EMERGENCY REQUESTER (used exclusively with an Option PF ARBITER) will drive:

1 bus release line ••• (BREL*)

Two additional lines are intimately connected with the power-up and power-down
sequencing of the arbitration system. These are:

1 system reset line •• (SYSRESET*)
1 AC power fail •••••• (ACFAIL*)

While their impact on the arbitration system is included in this chapter, these
lines will be discussed further in the chapter on UTILITY bus lines.

3.2.1 Bus Request and Bus Grant Lines

The bus request lines are used by each REQUESTER to ask for use of the data
transfer bus. The bus grant lines are the ARBITER'S means of awarding that use.
However, at any given point on the bus, the signal on the BGxIN* lines may no
longer be driven to the same level as the BGxIN* lines driven by the ARBITER.
Each of these lines enters a given slot on its BGxIN* pins, but leaves for the
next board on this slot's BGxOUT* pins. This type of structure is called daisy­
chaining. (See Figure 3-2).

If the slot being examined is not using a particular request/grant level
(identified by the 'x' in the signal name), the signal is passed through by a
jumper. In the case where the slot uses the request/grant level being examined,
the signal BGxIN* will be gated on board. If this REQUESTER is currently asking
for the bus, it will not pass on the low level grant via BGxOUT*. If it is not
requesting the bus, a low level will appear on BGxOUT* (with a maximum delay of
70 nanoseconds) after receipt of the low BGxIN*. If the slot does not contain a
board, it is necessary that these bus grant signals be jumpered around the slot.
The backplane mechanical specification will define a provision for the
installation of jumpers at each slot.

3-4

This daisy-chain structure allows two levels of prioritization for VERSAbus
access. The five bus request lines are priori ti zed so that the ARBITER will
issue a grant to the highest level of BR signal (BR4*).

Within a given level, the prioritization is accomplished by the daisy chain.
The slot closest to the ARBITER will have the highest priority, and the priority
will decrease with distance along the chain. Because of this physical
structure, THE ARBITER MUST.BE LCX:ATED IN SLOT 1. The ARBITER actually drives
the pins BGxIN* in slot 1, and any REQUESTERS on the board in slot 1 follow the
same process as they would on any other board. Such a design creates uniformity
in the structure of the VERSAbus interface on each board, and modularizes the
ARBITER and REQUESTER functions.

3.2.2 Bus Busy Line (BBSY*)

Once a REQUESTER has been granted control of the data transfer bus via the bus
grant daisy-chain, it will drive BBSY* low. Control of the bus may not be taken
from this REQUESTER until it releases BBSY*.

3.2.3 Bus Clear Line (BCLR*)

Bus clear is the line used by the ARBITER to inform the MASTER currently in
control of the OTB that a higher priority request is now pending. The current
MASTER is not required to relinquish control immediately. Typically, it will
continue transferring data until it reaches an appropriate break-off point, and
then allow its on-board REQUESTER to release BBSY*.

3.2.4 Bus Release Line (BREL*)

BREL* is used to ·clear the OTB in the event of a system emergency, such as loss
of power. It is driven by the EMERGENCY REQUESTER on the system controller
board. The ARBITER treats it as a "BRS*" level of request. At the same time,
this signal instructs the REQUESTER/MASTER set currently in control of the DTB
to release the bus within 200 microseconds. When the OTB is released, the
system MASTER will be given control of the DTB to execute an orderly shutdown.

3.3 FUNCTIONAL MODULES

The arbitration subsystem is composed of several modules:

• One data transfer bus ARBITER (Option PF or NPF)
• One or more data transfer bus REQUESTERS
• One or more data transfer MASTERS

NarE

Although SYSRESET* and ACFAIL* are not specified as part
of the arbitration bus, it is necessary to look at the
arbitration subsystem response to these signal lines
driven by the power monitor module.

3-5

3.3.1 Data Transfer Bus ARBITER

The tasks of the data transfer bus ARBITER are to prioritize the incoming bus
requests and grant the bus to the highest level REQUESTER by generating the
matching BGxIN* signal for that level, and to inform any MASTER currently in
control of the bus that a higher level request is pending. If the ARBITER is an
Option PF, it also performs the task of responding to the BREL* conunand as
issued by the EMERGENCY REQUESTER and presenting it a special bus grant.

A block diagram of an NPF ARBITER is given in Figure 3-3. It uses as its
prioritization inputs the five bus request lines BRO* through BR4*, and responds
with BGOIN* through BG4IN*, as appropriate.

BR4*

BR3*

BR2*

BR1*

BRO*

LOCATED IN SLOT 1

* >
(/)

m
m

OTB ARBITER

OPTION NPF

* «?:
..J
0
m

* 1-
w
(/)
w
«?:
(/)

>
(/)

ARBITRATION BUS

BG41N*

BG31N*

BG21N*

BG 1 IN'*

BGOIN*

FIGURE 3-3. Block Diagram: Option NPF OTB ARBITER

3-6

When we examine a PF version ARBITER as shown in Figure 3-4, an additional
complexity obviously has been added. The ARBITER now has one additional input
(BREL*) and two additional outputs. One of these is a special grant to the

on-board EMERGENCY REQUESTER. Since no pins are designated in the bus for this
signal, a PF option ARBITER must be on the same board with the EMERGENCY
REQUESTER and the system MASTER. The ARBITER will treat BREL* as equivalent to
a "BRS*" signal, and a special on-board grant is presented to the EMERGENCY
REQUESTER. Upon receiving this grant, the EMERGENCY REQUESTER will drive BBSY*
low to indicate that a MASTER has the bus.

PC BOARD LOCATED IN SLOT1

(MASTER WANTS BUS)

SYSTEM

(MASTER CONTROLLER'S

GRANTED BUSl DATA

TRANSFER BUS

MASTER

' j

BREL*. (EMERGENCY GRANT)

/ BR4* : BG41N*
v BR3* : BG31N* ~
v BR2*

OTB ARBITER
BG21N* 1\ EMERGENCY

v BR1* BG11N* °' REQUESTER
v BRO* •

OPTION PF
BGOIN* ·~

v -- 1\

• * ·~ *I
I- I- * * *
w

'!. * w :::! > a: "' > "' cc U) w w "' w
II. m () a: a: m a:
() m m "' m m "' > > cc

~ ., "' , •• "' ~
ARBITRATION BUS

v

FIGURE 3-4. Block Diagram: Option PF OTB ARBITER

3-7

3.3.2 Data Transfer Bus REQUESTER

Each REQUESTER in the system is required to:

• translate the MASTER WANTS BUS on-board signal to an appropriate bus
request,

accept the incoming bus grant signal for that same level and, if the
on-board MASTER does not want the bus, provide the same level outgoing bus
grant signal, or

• if the on-board MASTER does want the bus, translate the bus grant to an
internal latch which provides the signals MASTER GRANTED BUS and Bus Busy
(BBSY*) as long as the MASTER is providing MASTER WANTS BUS.

In the simplest REQUESTER, (Option RWD (Release When Done)), MASTER GRANTED BUS
and BBSY* will both be released upon loss of MASTER WANTS BUS. In systems where
maximum data transfer rate is critical, a slightly more complex REQUESTER
(Option ROR (Release on Request)) would be implemented that does not drop MASTER

GRANTED BUS and BBSY* upon loss of MASTER WANTS BUS. This REQUESTER would
monitor the five bus request lines and bus release, and drop these signals only
if another bus request is pending. Use of this latter option would reduce the
number of arbitrations initiated bv a MASTER which is generating a large
percentage of the bus traffic. See Figures 3-5 and 3-6.

BGXIN* ---

(MASTER WANTS BUS)

(MASTER

GRANTED BUS)

OTB
BGXOUT*

REQUESTER

OPTION RWD

* 4~

* w
* > fl) ><
a: fl) I.LI

m m a:
m fl)

>

' ,. fl)

i
VERSABUS

.. OTB MASTER

(SEE NOTE BELOW)

4 ~

* * a: ..J
..J w
CJ a:

m m

X REPRESENTS THE BUS

REQUEST PRIORITY FOR

THIS REQUESTER. IT MAY

HAVE ANY ONE OF THE

FOLLOWING VALUES:

0, 1,2,3 OR 4.

NOTE: MAY BE AN INTERRUPT

HANDLER INSTEAD OF

A MASTER.

FIGURE 3-5. Block Diagram: Option RWD REQUESTER

3-8

(MASTER WANTS BUS)

(MASTER

GRANTED BUS)

BGXIN* BGXOUT* -
BREL*:.

BR4* :" DTB

V BR3* : REQUESTER
V BR2* ..
v BR1* : OPTION ROR

v BRO* -:"""
v

* ·~
*

...
w

* > UJ >< UJ w
IX m IX m m UJ

>

""
J

UJ ,
VERSA BUS

"1

_.. DTB MASTER

(SEE NOTE BELOW)

• ~

* * _. IX
w _.
IX CJ
m m

v

X REPRESENTS THE BUS
REQUEST PRIORITY FOR

THIS REQUESTER. IT MAY

HAVE ANY ONE OF THE

FOLLOWING VALUES:

O, 1,2,3,0R 4.

NOTE: MAY BE AN INTERRUPT
HANDLER INSTEAD OF

A MASTER.

FIGURE 3-6. Block Diagram: Option ROR REQUESTER

3.3.3 Data Transfer Bus MASTER

While the actual data transfer characteristics of a MASTER have been covered in
a previous chapter, we now need to look at additional controls and responses
which the MASTER must deal with to use the arbi tr at ion subsystem. For an
ordinary MASTER, there are two on-board signals and two VERSAbus signals. The
two VERSAbus signals are BREL* and BCLR*. Both of these signals inform the
MASTER that another need for the bus exists which is greater than its own. In
the case of BCLR*, the design determines how long the MASTER will maintain
control of the bus. For example, if a MASTER provides a OMA interface for a
very high-speed device, such as a hard disk, the MASTER may not be able to
relinquish the bus during a sector transfer without loss of data. Therefore,
the MASTER might keep the bus for as long as the sector transfer takes. BREL*
differs from BCLR* in that it informs the MASTER that an emergency exists, and
whatever problems the MASTER will face in surrendering the bus are insignificant
compared to the needs of the total system. Even in this case, the MASTER is
allowed 200 microseconds to relinquish the DTB. This should normally be
sufficient to allow an orderly termination of activity.

A special case exists for the DTB MASTER which shares a board with the PF option
ARBITER. This MASTER must also have an associated EMERGENCY REQUESTER, and the
MASTER is designated as the "system MASTER". It has the added responsibility of
monitoring the ACFAIL* line and generating a MASTER WANTS BUS to its on-board
EMERGENCY REQUESTER upon detecting ACFAIL* low. The EMERGENCY REQUESTER uses
BREL* as its "BR5*" to ask the ARBITER to grant it the DTB, and to request the

3-9

current DTB MASTER to relinquish the DTB. When the ARBITER has detected the
release of the bus by the MASTER currently in possession, it will inform the
system MASTER that it has the bus. It is now the responsibility of the system
MASTER to take those actions most essential to safe power-down of the system.
As examples, it may save the contents of a limited amount of highly volatile
memory on some storage device which does not lose data on loss of power. It may
instruct hard disks to retract their heads to eliminate potential erasures of
sectors. If this sytem is part of a distributed network, the system MASTER may
inform remote sites of its pending departure from the network. These activities
are all designed to minimize the damage done by unscheduled power disruptions.
The system MASTER is allowed to be a system problem monitor, and it may use
similar techniques to minimize the damage if other types of problems are
detected.

In examining the relationship between REQUESTER and MASTER, we see that each
REQUESTER is associated with a particular MASTER and acts as its interface to
the arbitration bus. While the normal relationship is one to one, it would be
possible for a MASTER which requires multiple levels of bus request to have
multiple REQUESTERS. In this case, each REQUESTER would request the OTB on a
different level. Higher priority data transfers might then be done at one
request level and lower priority transfers at a lower level.

3.4 TYPICAL OPERATION

3.4.1 Arbitration of Two Different Levels of Bus Request

Figures 3-7 and 3-8 illustrate the sequence of events which take place when two
REQUESTERS send simultaneous bus requests to an ARBITER on different bus request
lines. When the sequence begins, each of the REQUESTERS is driving its
respective bus request line low (REQUESTER A drives BRl* and REQUESTER B drives
BR2*). Assuming that the ARBITER detects BRl* and BR2* low simultaneously, it
will drive BG2IN* of slot 1 low because BR2* has the highest priority. When the
signal has propagated through to REQUESTER B, REQUESTER B will respond to the
low BG2IN* level by driving BBSY* low. It then releases the BR2* line and
informs its own MASTER (MASTER B) that the DTB is available.

After detecting BBSY* low, the ARBITER drives BG2IN* high. Note that BBSY* and
the bus grants are interlocked as shown in Figure 3-8 (i.e., the ARBITER is not
permitted to drive the grant high until it detects BBSY* low). When MASTER B
completes its data transfer(s), REQUESTER B releases BBSY*, provided BG2IN* has
been received high and 30 nanoseconds have elapsed since the release of BR2*.
This 30-ns delay ensures that the ARBITER will not interpret the old low BR2*
level as another request. REQUESTER B will wait until the 30 nanoseconds have
elapsed, and will then release BBSY*

The ARBITER interprets the release of BBSY* as a signal to arbitrate the bus
requests. Since BRl* is low (the only bus request being driven low), the
ARBITER grants the OTB to REQUESTER A by driving BGlIN* low. REQUESTER A
responds by driving BBSY* low. When MASTER A completes its data transfer(s),
REQUESTER A releases BBSY*, provided BGlIN* has been received high and 30
nanoseconds have elapsed since the release of BRl*. In this example, since no
bus request lines are driven low when REQUESTER A releases BBSY*, the ARBITER
will be idle until a new request is made.

3-10

NOTE:
DEVICE WANTS BUS
AND DEVICE GRANTED BUS
ARE ON BOARD SIGNALS
BETWEEN THE MASTER
AND THE DTB REQUESTER

LOCATED IN SLOT 3 LOCATED IN SLOT 2 LOCATED IN SLOT 1

I ARBITER I MASTER A
REQUESTER A I

OPTION RWD
LEVEL 1

DRIVE (DEVICE WANTS
BUS) HIGH.

I

ARBITRATION
IN PROGRESS

ARBITRATION
IN PROGRESS

i
DETECT (DEVICE WANTS

BUS) DRIVEN HIGH.
DRIVE BR 1* LOW.

I

l
TO SHEET 2

MASTER B
REQUESTER B I

OPTION RWD
LEVEL 2

DRIVE (DEVICE WANTS
BUS) HIGH

I

l
DETECT (DEVICE

GRANTED BUS)
DRIVEN LOW.

l
DETECT (DEVICE WANTS

BUS) DRIVEN HIGH.
DRIVE BR2* LOW.

l
DETECT BR 1* AND BR2*
LOW SIMULTANEOUSLY.

DRIVE BG21N* TO LOW.

I

RELEASE BBSY"'.. l _I ____

1 DRIVE (DEVICE
GRANTED BUS)

TO LOW.

I DETECT BBSY* HIGH.
DETECT BR1" LOW

DRIVE BG 1 IN* LOW

FIGURE 3-7. Arbitration Flow Diagram: Two REQUESTERS,
Two Request Levels (Sheet 1 of 2)

3-11

LOCATED IN SLOT 3 LOCATED IN SLOT 2 LOCATED IN SLOT 1

I ARBITER I MASTER A

ARBITRATION
IN PROGRESS

l
DETECT (DEVICE·

GRANTED BUS)
DRIVEN LOW.

REQUESTER A I
OPTION RWD
LEVEL 1

MASTER B
REQUESTER B I

OPTION RWD
LEVEL 2

FROM SHEET 1
I r-- ---------- - - ______ __.

DETECT BG 1 IN*
DRIVEN LOW.

J,. ;,,•, ··· · ··
DE'ffH)·T ·(· .·· iHSV•Olii'8'~N;TS

'SUS');·.· DR·iVIHit::tOW
RELEASE BBSY*

! ~I ~~~~~~~~~---.,1
DRIVE (DEVICE GRANTED t

BUS) TO LOW DETECT BBSY* HIGH.

I WAIT FOR A BUS
. REQUEST.

NOI'E

The on-board signals between the MASTER and REQUESTER are interlocked.
The MASTER may not drive MASTER WANTS BUS low until MASTER GRANTED BUS
has gone high from the previous cycle.

FIGURE 3-7. Arbitration Flow Diagram: Two REQUESTERS,
Two Request Levels {Sheet 2 of 2)

3-12

DRIVEN BY
REQUESTERS

DRIVEN BY
ARBITER

BR1*

BR2*

BBSY*

BG1 IN*

BG21N*

ARBITRATION
IN PROGRESS

FIGURE 3-8. Arbitration Sequence Diagram: Two REQUESTERS,
Two Request Levels

3-13

ARBITER
IDLE

3.4.2 Arbitration of Two Bus Requests on the Same Bus Request Line

Figures 3-9 and 3-10 illustrate the sequence of events which take place when an
option ROR REQUESTER and an option RWD REQUESTER send simultaneous requests to
an ARBITER on a common bus request line. In this example, the ARBITER and
option RWD REQUESTER are located on the system controller board in the first
board slot, with the option ROR REQUESTER located in the second board slot.
When the sequence begins, each of the REQUESTERS is requesting the DTB by
driving BRl* low. The ARBITER in board slot 1 detects the BRl* low and since
BBSY* is high, it drives BGlIN* low to its own slot. BGlIN* is monitored by
REQUESTER A (also in slot 1). When REQUESTER A in slot 1 detects BGlIN* low, it
responds by driving BBSY* low. At the same time it informs its own OTB MASTER
(MASTER A) that the DTB is available. It also rel eases BRl *. (Note: BRl *
remains low because REQUESTER B is still driving it low.)

After detecting BBSY* low, the ARBITER drives BGlIN* high. When OTB MASTER A
has completed its data transfer (s), it drives MASTER WANTS BUS low. When
REQUESTER A detects MASTER WANTS BUS low, and the minimum delay since the
release of BRl* has been satisfied, REQUESTER A releases BBSY*.

The ARBITER interprets the release of BBSY* as a signal to arbitrate the bus
requests. Since the BRl* line is still low, the ARBITER drives BGlIN* low
again. When REQUESTER A detects BGlIN* low, it drives its BGlOUT* low because
it does not need the DTB. REQUESTER B then detects the low on its BGlIN* and
responds by driving BBSY* low.

When the ARBITER detects the low BBSY*, it drives BGlIN* high, which causes
REQUESTER A to drive its BGlOUT* high. After detecting its BGlIN* high,
REQUESTER B receives a low DEVICE WANTS BUS on-board signal, indicating that its
MASTER has finished using the DTB.

Since REQUESTER B is an option ROR REQUESTER, it does not release BBSY*, but
keeps it driven low. In the event its MASTER wishes to use the TYI'B again, no
arbitration will be required. In this example, however, REQUESTER A drives BRl*
low, indicating a need to use the DTB, and REQUESTER B (which is monitoring the
bus request lines) releases the BBSY* line to allow the ARBITER to grant the
bus to REQUESTER A. Figure 3-10 is a sequence diagram illustrating this.

3-14

LOCATED IN SLOT 2

MASTER B

DRIVE (DEVICE
WANTS BUS)

HIGH.

I

ARBITRATION
IN PROGRESS

ARBITRATION
IN PROGRESS

REQUESTER B
OPTION ROR LEVEL 1

l
DETECT (DEVICE WANTS

BUS) DRIVEN HIGH.
DRIVE BR 1"' LOW.

I

MASTER A

DRIVE (DEVICE
WANTS BUS)

HIGH.

I

LOCATED IN SLOT 1

REQUESTER A
OPTION RWD LEVEL 1

l
DETECT (DEVICE WANTS

BUS) DRIVEN HIGH.
DRIVE BR1* LOW.

I

ARBITER

l
DETECT Btl 1"' LOW.

DRIVE
BG11N*LOW.

I
DETECT BG 1 IN* DRIVEN LOW

DRIVE aas.y•· LOW.

l·-'--
' RELEASE BR1* l

DRIVE (DEVICE GRANTED DETECT aasv•··:Low.
BUS} TO HIGH. DRIVE

----------' BG11N*TO HIGH.

' DETECT (DEVICE
G;RAHTED BUS)
DRIVEN HIGH.

:l
PERFORM DA TA

TRANSFER(S).

' DRIVE (DEVICE
WANTS BUS)

TO LOW.

I

i
DETECT (DEVICE

GRANTED BUS)
DRIVEN LOW.

DETECT BG11N 41

DfflVEN NIGH ..

l '
D.ET.ECt lDEVl(: .. E

WAMTS":av:$): :''""'" LOW.
RELEASE BBSY~

ll - --1
DRIVE (DEVICE t
GRANTED BUS) DETECT eesv· HIGH

TO LOW.

I

l
DETECT BG 1 IN*

DRIVEN LOW.
DRIVE BG 1 OUT*

LOW

DRIVE BG 1 IN*
LOW

I

l
((BG11N* BG10UT ((I

DAISY CHAIN

TO SHEET 2

FIGURE 3-9. Arbitration Flow Diagram - Two REQUESTERS/Same Request Level
(Sheet 1 of 2)

3-15

LOCATED IN SLOT 2

MASTER B

ARBITRATION
IN PROGRESS

REQUESTER B
OPTION ROR LEVEL 1

MASTER A

LOCATED IN SLOT 1

REQUESTER A
OPTION RWD LEVEL 1

FROM SHEET 1
I

ARBITER

DETECT BBSY * HIGH.
DRIVE

BG 1 IN* TO LOW.

I

FIGURE 3-9. Arbitration Flow Diagram - Two REQUESTERS/Same Request Level
(Sheet 2 of 2)

3-16

DRIVEN BY
REQUESTERS

DRIVEN BY
ARBITER

NOTE: THIS BBsv· RELEASE CAUSED BY

BR1*

BBSY•

BG 1 IN*

BG10UT*

BG 1 IN*

I
\
I

,_L_
I
I
I

I
I
I
I
I
I
I
I
I

NarE

z I/)
0 I/)

- w a:
cC CJ
a: 0
!:: a:
m '1.
a: z
cC -

-- -

•Artla I
KA$~~0t.:

OFl>".fB

The time indicated by the dotted arrows
may be many data transfer cycles.

z I/)
0 I/)
-w a:
cC CJ
a: 0
!:: a:
m Q.

a: z
cC -

FIGURE 3-10. Arbitration Sequence Diagram: Two REQUESTERS,
Same Request Level

3-17

:•A$::tll:A!
...... rffL ., . .,.

__......,~

3.4.3 Arbitration During Power-Down Sequence

Upon system power-down, the EMERGENCY REQUESTER is used to accomplish two tasks:

a. It demands and acquires control of the data transfer bus so that its
on-board MASTER can save the contents of volatile memory in the system.

b. It maintains control of the data transfer bus until system shutdown.

NOTE

In all cases, the EMERGENCY REQUESTER requests the bus
by driving BREL* low. This is treated by the DTB ARBITER
as the highest priority bus request. A low BREL* also
causes all MASTERS within the system to relinquish
control of the DTB within 200 microseconds.

Figures 3-11 and 3-12 show a typical power-down sequence. To provide power-down
capability, the system controller board located in slot 1 must be equipped with
an option PF ARBITER (with EMERGENCY REQUESTER) and a system DTB MASTER.

When the sequence begins, REQUESTER A has been granted control of the DTB.
While this REQUESTER is maintaining control of the DTB by driving BBSY* low, the
PCl-/ER MONITOR detects an AC failure and drives the ACFAIL* line low. When the
system controller D'IB MASTER in card slot 1 detects the ACFAIL* line low, it
irrlicates to the EMERGENCY REQUESTER that it needs the DTB. The EMERGENCY
REQUESTER drives BREL* low, which accomplishes two things:

a. It tells the active DTB MASTER to relinquish the DTB within 200
microseconds.

b. It tells the option PF ARBITER to grant it the bus. (BREL* is recognized
by the option PF ARBITER as the highest request level -i.e., higher than
BR4*).

When MASTER A detects BREL* low, within 200 microseconds it indicates to its
on-board REQUESTER A that it is finished using the DTB. REQUESTER A then
releases BBSY*. Upon detecting BBSY* high, the option PF ARBITER drives
EMERGENCY GRANT high to its on-board EMERGENCY REQUESTER. The EMERGENCY
REQUESTER then drives BBSY* low and informs the system controller DTB MASTER
that the DTB is available. The system MASTER may then use the DTB to move
crucial data to non-volatile memory before the system's ~ power fails.
Meanwhile, the ARBITER, upon detecting BBSY* low, drives EMERGENCY GRANT low.
The system MASTER, after storing the crucial data, does not indicate that it is
through using the DTB. Therefore, the EMERGENCY REQUESTER continues to drive
BBSY* low until system shutdown. This prevents other MASTERS in the system from
modifying the contents of the non-volatile memory prior to system shutdown.

NOTE

Bus interrupts cannot be handled as long as the
EMERGENCY REQUESTER maintains control of the bus
(e.g., during system shutdown).

3-18

POWER FAIL MONITOR

Of.UVI!. ACF AIL* LOW-.

LOCATED IN SLOT 2 LOCATED IN SLOT 1

MASTER A REQUESTER A
SYSTEM

CONTROLER'S
OTB MASTER

EMERGENCY
REQUESTER

ARBBITER
OPTION PF

USING · DTB TO
tllOVe DATA

~r:TECT BIEL* tow.

DRIVING
B9~Y• LOW

O:ETECT ACFAIL* LOW ..
D~IVE (Of;Vf.CE WANT$

BUS) TO HtG.M.

I
DETECT (DEVICE WANTS

BUS) DRIVEN HIGH,
DRIVE DREL* LOW.

IHUVE (DEVICE WAtfrs
DETECT 11.f.U?L*

. LOW.
. BUS) TO LOW.

I

i

*
PETECT (DEVICE WANTS

80$} DRIVEN LOW.
R'Elt:ASE eesv•.

11~------­i DRIVE (DEVICE GRANTED
BUS) TO LOW.

I
DETECT BBSY* HIGH.
DRIVE (EMERGENCY

GRANT) TO HIGH.

DETECT (DEVICE GRANTED
(ON -BOARD SIGNAL)

BUS) DRIVEN LOW.

DETECT (EMERGENCY
GRANT) DRIVEN HIGH.

Q81V£ BiSY! ~Q'#,,.

+ H
RSLEASE eaa""'t'')~ •. .,,.,... •.• ~..;;.•····-.•. ,.,... -.· J . <· {•
DtUVE <peyiq.. ii.f'~C~:•t•Y·~pw.•

GR ANtll)).{ . q.,i,J!; . ·. . ·. · ···
aus> TO ""'~~ ... 11ua&e1•ev

I : .~~,~~~,t~·~~G'·····.·
.+

l)ETIUi;T ..
ll!VeRGE1'f'Y{ ..

QA.ANY) .• : ...•
&RlVEN. LOW!~

._,: .. :_.,,,;·-,·-:--: cR0,:c141. o•t•
SAYfiO·lN

NON ... VOLATJU RAM.
.<:;.-'.

I • • •

MAINTAIN (OEVtCE W.ANTS
It.JS) HIGH UN'UL

$Y.$Rl$1T* .tS.DRl:VEN LOW.

FIGURE 3-11. Power-Down Flow Diagram

3-19

Figure 3-12 is a sequence diagram showing the signal line levels on
arbi tr at ion bus and the way in which the transitions of these levels
interlocked with the on-board signals.

DRIVEN BY
POWER FAIL
MONITOR

DRIVEN BY
MASTER

DRIVEN BY
EME"RGENC.Y
REOUESIER

DRIVEN BY
ARBITER

DC POWER

SYSRE5'ET*

ACFAIL*

-(
rMASIER
WANTS BUS)

{
BREL ;f

BBSY~

/cEMFRGENCY
~GRANT)

OUT OF SPEC

FIGURE 3-12. Power-Down Sequence Diagram

3-20

the
are

3.4.4 Arbitration During Power-Up Sequence

Upon system power-up, the EMERGENCY REQUESTER is used to accomplish two tasks:

a. It acquires control of the data transfer bus before any other MASTER in
the system via the BREL* line. (This allows its on-board MASTER to run
tests and to restore volatile data before system operation begins.)

b. It relinquishes the data transfer bus when its on-board MASTER is
finished with its power-up sequence.

To accomplish this, BREL* is held low by the EMERGENCY REQUESTER when the system
is powered back up. This causes control of the bus to be granted to the
EMERGENCY REQUESTER. The DTB is then used to restore the system RAM, based upon
the data stored in the non-volatile memory during the previous system shutdown.
When this restoration process is complete, the EMERGENCY REQUESTER relinquishes
the DTB, allowing other REQUESTERS to be granted the bus when they make a bus
request.

Figures 3-13 and 3-14 show a typical power-up sequence. To provide power-up
capability, the system controller board located in slot 1 must be equipped with
an option PF ARBITER (with EMERGENCY REQUESTER) and a OTB MASTER.

~en AC power is turned on to the system, the PGVER MONITOR holds SYSRESET* low.
The System Controller's EMERGENCY REQUESTER drives BREL* low as soon as the DC
power within the system stabilizes (the time required for stabilization will
vary from system to system). The power failure monitor continues to maintain
SYSRESET* low at least 200 milliseconds beyond the time when the system DC power
stabilizes. When it then releases SYSRESET*, the ARBITER samples the levels of
the bus request lines (including BREL*) and arbitrates the requests. Since
BREL* is the highest priority bus request, the ARBITER will drive EMERGENCY
GRANT high to the on-board EMERGENCY REQUESTER.

The EMERGENCY REQUESTER, upon detecting EMERGENCY GRANT high, drives BBSY* low
and drives the on-board MASTER GRANTED BUS high to indicate to the system MASTER
that the DTB is available to transfer data. The system MASTER may then use the
DTB to do two things:

a. It may run a power-up test on boards in the system which are not capable
of testing themselves.

b. It restores crucial data from non-volatile RAM.

This latter action assures that the important data will be available in RAM when
normal system operation is resumed (i.e., when the system MASTER relinquishes
the DTB).

While the two activities above are taking place, the ARBITER detects the BBSY*
low and drives the on-board EMERGENCY GRANT low. Only when the EMERGENCY
REQUESTER detects EMERGENCY GRANT low may it release BBSY*. Therefore, the low
EMERGENCY GRANT is an acknowledgement by the ARBITER that BBSY* has been
detected driven low.

3-21

POWER FAIL
MONITOR

MAINTAIN
SYSRESET*

DRIVEN LOW

RELEASE
SYSRESET*

SYSTEM CONTROLLER'S
OTB MASTER

DRIVE (MASTER
WANTS BUS) TO HIGH

DETECT (MASTER GRANTED
BUS) DRIVEN HIGH

i

LOCATED IN SLOT 1

EMERGENCY
REQUESTER

DETECT (MASTER WANTS
BUS) DRIVEN HIGH
DRIVE BREL* LOW

(

ARBITER
OPTION PF

i
DETECT BREL* LOW

DETECT SYSRESET HIGH
DRIVE (EMERGENCY

GRANT) TO HIGH

ON-BOARD SIGNAL I

DETECT(EMERGE~CY
GRANT) DRIVEN HIGH

DRIVE BBSY* LOW

i
RELEASE BREL*
DRIVE (MASTER
GRANTED BUS)

TO HIGH

i
DETECT (EMERGENCY
GRANT) DRIVEN LOW

DETECT BBSY* LOW
DRIVE (EMERGENCY

GRANT) TO LOW

I

CD PERFORM POWER-UP TEST
ON NON-INTELLIGENT BOARDS

@ RESTORE CRUCIAL DATA
FROM NON-VOLATILE RAM

+
DRIVE (MASTER

WANTS BUS) TO LOW

+
DETECT (MASTER

GRANTED BUS)
DRIVEN LOW

DETECT (MASTER WANTS BUS)
DRIVEN LOW.

RELEASE BBSY *
+ .__I ------.1

DRIVE (MASTER GRANTED f
BUS) LOW DETECT BBSY* HIGH.

I w AIT FOR A REQUEST

FIGURE 3-13. Power-Up Flow Diagram

3-22

DRIVEN BY
POWER FAIL
MONITOR

DRIVEN BY
MASTER

DRIVEN BY
EMERGENCY
REQUESTER

DRIVEN BY
ARBITER

DC POWER

SYSRESET*

(DEVICE
WANTS BUS)

BREL*

BBSY*

(EMERGENCY
GRANT)

OUT OF
SPEC

200 ms
MIN

25ms MAX.

WITHIN SPEC

FIGURE 3-14. Power-Up Sequence Diagram

3-23

i.. 11:,01'1! Ml.N.

1 ----

When the EMER3ENCY REQUEsrER detects EMER3ENCY GRANT low, it may release BBSY*,
provided the system MASTER drives MASTER WANTS BUS low and that 30 nanoseconds
have elapsed since the release of BREL*. This 30-ns delay is required to assure
that BREL* is high when the ARBITER detects BBSY* high and samples the bus
request lines for a new DTB arbitration. (If BREL* were not high, it would be
interpreted by the ARBITER as another bus request.) In this case, there are no
other requests on the bus, so the ARBITER will continue to periodically sample
the bus request lines until a request is detected.

Figure 3-14 is a sequence diagram showing the signal line levels on the
arbi tr at ion bus arrl the way in which the transitions of these levels are
interlocked with the on-board signals.

3 .5 STATE DIAGRAMS

The followin:J sections provide state diagrams for the DTB REQUEsrER, DTB
ARBITER, and EMERGENCY REQUESTER modules. The information provided in these
diagrams is rather concentrated an::l will require study before it will be
completely understood. If the reader is unfamiliar with the use of state
diagrams, he may firrl it instructive to study the material in Apperrlix B before
continuing.

3.5.1 Data Transfer Bus REQUEsrER.

Figure 3-15 sl'x>ws the state diagram for a data transfer bus REQUEsrER.

The state diagram smws all allowed transitions which a REQUEsrER may make.
REQUESTERS may make only those transitions shown on the diagram and may enter
only those states sl'x>wn on the diagram.

Two on-board signals are used to communicate between the DTB REQUEsrER an::l the
on-board MASTER or INTERRUPT HANDLER that wishes to obtain control of the DTB:

a. DEVICE WANTS BUS - signal from the on-board DTB MASTER or INTERRUPT
HANDIER which causes the REQUEsrER to request the DTB when it is high arrl
causes the REQUESTER to relinquish the DTB when it is low.

b. DEVICE GRANTED BUS - signal to the on-board DTB MASTER or INTERRUPT
HANDIER in::licatin:J, when it is high, that the DTB may be used to transfer
data and indicating, when it is low, that the D'I'B has been relinquished.

Figure 3-16 is a sequence diagram showing a typical sequence for obtaining the
bus. Refer to Figures 3-15 an::l 3-16 for the followin:J discussion.

Assume the REQUEsrER is in state hhHL (i.e., a system reset has just occurred).
When the on-board device indicates a need for the data transfer bus, the
REQUEsrER moves into state LhHL arrl drives BRx* low. The delay state diagram
then makes a transition to state RD2. The REQUESTER must then wait until it
detects its, BGxIN* bein:J driven low by the ARBITER. In this example, when
BJxIN* is detected low, the REQUESTER makes a transition to state LLHL, driving
the BBSY* low. Since the delay diagram is in state RD2, the REQUEsrER then
makes a transition to state hLHL, releasing the bus request line. Assuming that

3-24

NOTES:

+30 NSEC

THE STATES SHOWN IN THE DIAGRAM ABOVE
DON'T RESULT IN ANY OUTPUT CHANGES.
(THEY REPRESENT THE STATE OF AN INTERNAL
MONOSTABLE FLIP-FLOP.) THEY ARE LABELLED
SIMPLY "REQUESTER DELAY STATES 1 AND 2."

THE STATES ON THE DIAGRAM
BELOW ARE LABELLED ACCORDING
TO THE LEVELS OF THE REQUESTER'S
OUTPUT LINES:

BGXOUT*
DEVICE

GRANTED BUS

TRANSITION REQUIREMENT IN BRACKETS (J
APPLIES TO OPTION ROR REQUESTER ONLY. -

2 A = LOGICAL "AND"

3 v : LOGICAL "OR"

4 IN "BGXIN *" X: 0, 1,2,3, OR 4:
(BUS ARBITRATION PRIORITY LEVEL)

5 A REQUEST IS PENDING IF ANY OF THE
BUS REQUEST LINES OR IF THE BUS RELEASE
LINE IS LOW

6 "h" IS USED TO INDICATE THAT THIS SIGNAL
LINE MAY BE DRIVEN LOW BY OTHER OPEN
COLLECTOR DRIVERS ON VERSAbus

BGXIN* :l

BGXIN* : H

<

II

U)

::::>
m
U)
1-
z
< ;:
w
0
> w
Q

II

en
::::>
m
en
1-
z
< ;:
w
2
> w
c

DEVICE WANTS BUS L

[A REQUEST PENDING) A BGXIN *:HA {![D
(NOTES 1, 5)

DEVICE WANTS BUS H

_,
II

* z
><
CJ
m

II

en
::::>
m
en
1-
z
< ;:
w
2
> w
c

BGXIN *: L

DEVICE WANTS BUS:L

A REQUEST PENDING A BGXIN* : HA {[[!)
(NOTES 1,5)

I
BUS=H A BGXIN * : L

:c
II

en
:::>
m
en
1-
z
< ;:
w
2
> w
c

_,
II

en
::::>
m
en
1-
z
-<' ;:
w
2
> w
c

BGXIN* : L

DEVICE WANTS BUS : H A BGXIN : H DEVICE WANTS BUS H A BGXIN *: L

FIGURE 3-15. DTB REQUESTER State Diagram

3-25/3-26

:c
II

en
::::>
m
en
1-
z
< ;:
w
0
;:
UJ
c'

DRIVEN BY
PREVIOUS
BOARD IN
DAISY CHAIN

DRIVEN BY
REQUESTER

DRIVEN BY
MASTER

-(BGXIN*

~ -(hLHH)--+\ (hhHH) KhhHL)

BRX*

BBSY*

(DEVICE
GRANTED BUS)

_{ (DEVICE
~WANTS BUS)

' \

\

---------------~-

NarE

' I
I
\

MASTER DOES
DATA TRANSFERS

The time indicated by the dotted arrows
may be many data transfer cycles.

I
I

FIGURE 3-16. Sequence Diagram: Typical Sequence for Requesting the DTB

3-27

DEVICE WANTS BUS is still high (which it must be because the MASTER is required
to maintain it high until a high DEVICE GRANTED BUS is received), a transition
is then made to state hLHH, driving the DEVICE GRANTED BUS signal high. This
indicates to the MASTER or INTERRUPI' HANDLER that the DTB may be used. When the
data transfers are complete, the MASTER or INTERRUPr HANDLER drives DEVICE WANTS
BUS low. Assuming that the ARBITER has driven the BGxIN* to high and assuming
that this high has propagated down the daisy-chain, a transistion is then made
to state hhHH, releasing BBSY*. Assuming that DEVICE WANTS BUS remains low
(which it must because the MASTER is required to maintain it low unti 1 a low

DEVICE GRANTED BUS is received), a transition is then made to state hhHL,
driving DEVICE GRANTED BUS low.

The reader should note that this is only one example of how the REQUESTER might
traverse its state diagram. Other paths might have been followed. For example,
instead of going from LLHL to hLHL and hLHH, the REQUESTER might have gone from
LIHL to LLHH and hLHH. In the latter case, the DEVICE GRANTED BUS signal would
have been driven high before the bus request line was released, instead of the
sequence shown in Figure 3-16. While this may appear to complicate the state
diagram, it actually represents an addition of design freedom and will make the
logic design simpler.

Lines shown within a state circle represent legal logic flows. These
constraints are not part of the logic of the module being described, but show
the only paths which may be taken due to the interlocked relationship with
another module. As an example, consider this expanded portion of state hLHL.

To enter at point A, we have the condition previously met that DEVICE WANTS BUS
is high. To exit via point B, we need the condition that DEVICE WANTS BUS is
low. An external constraint exists which defines an interlock condition. Once
a MASTER has asserted DEVICE WANTS BUS, it may not release the signal until it
sees DEVICE GRANTED BUS. Since no logical path which enters at point A has
provided DEVICE GRANTED BUS, the logic is constrained from flowing from A to B. ·
State circles containing only one entry or exit do not require these lines.
State circles containing multiple entry and exit points, but no flow lines,
indicate that any point of exit is possible for any point of entry.

3-28

States hhLL and LhLL are associated with driving BGxOUT* low. All REQUESTERS
which share a comrron bus request line are daisy-chained. Each must be capable
of passing on a bus grant if it is not requesting the OTB. If the REQUESTER
detects a low on BGxIN* while it is in state hhHL, it may move to the state hhLL
and drive BGxOUT* low. On the other hand, if the on-board MASTER or INTERRUPI'
HANDLER indicates it wants the OTB prior to the transition to hhLL, the
RE~ESTER can make the transition to LhHL and then take control of the OTB. In
either case, upon detecting BGxIN* low, a REQUESTER will pass the grant by
driving BGxOUT* low or obtain the bus by driving BBSY* low. Figure 3-17 shows a
timing sequence for the case where the REQUESTER drives its BGxOUT* low.

DRIVEN BY -(
PREVIOUS BOARD BGXIN*
IN DAISY CHAIN

DRIVEN BY
REQUESTER --(BGXOUT*

FIGURE 3-17. Sequence Diagram: REQUESTER Drives BGxOUT*

NOTE

The transition shown from hhHL to hLHL allows the REQUESTER to
take control of the OTB if its on-board MASTER has indicated a
need for the OTB even though the REQUESTER has not yet driven
the bus request line low. While this may seem a little startling,
it is entirely logical. The bus request line which it would be
driving low is already low, since this is the only way it could
detect a low on its BGxIN*. In fact, the user observing the
arbitration bus lines would not be able to say with any certainty
whether this particular REQUESTER drove BRx* low. Since the low
BGxIN* is not passed along the daisy-chain to the next board, the
REQUESTER driving the BRx* low will continue to hold it low until
another arbitration takes place.

3-29

One internal timing restriction is placed upon the REQUESTER. This is defined
by the small state diagram in the upper left corner of Figure 3-15. The
REQUESTER must wait 30 nanoseconds after releasing its bus request line before
releasing BBSY*. This assures that when the DTB ARBITER detects BBSY* high and
samples the level of the bus request lines, it will not misinterpret the old bus
request and grant the data transfer bus to the same REQUESTER again.

The MASTER or INTERRUPT HANDLER may indicate to its on-board REQUESTER that it
is finished using the DI'B after it has driven AS* to low on its last data
transfer cycle. If the REQUESTER then immediately releases BBSY*, the
arbitration to determine the next active bus MASTER may occur during the last
data transfer cycle. This saves bus time, since the next active DTB MASTER may
begin using the data transfer bus as soon as the cycle completes (i.e., as soon
as AS* goes high).

The EMERGENCY REQUESTER functions similarly to a normal REQUESTER. However, it
does not have a daisy-chained grant line. This results in the simplified state
diagram, Figure 3-18.

3-30

NOTES:

<EID
WITHIN 30 NSEC

THE STATES SHOWN IN THE DIAGRAM ABOVE

DON'T RESULT IN ANY OUTPUT CHANGES.

(THEY REPRESENT THE STATE OF AN INTERNA,L

MONOSTABLE FLIP-FLOP.) THEY ARE LABELLED

SIMPLY "EMERGENCY REQUESTER DELAY STATE

1 AND 2'

THE STATES IN THE DIAGRAM TO THE

RIGHT ARE LABELLED ACCORDING TO
THE LEVELS OF THE EMERGENCY

REQUESTER'S OUTPUT LINES :

BREL* BBSY* DEVICE
GRANTED BUS

A: LOGICAL "AND,"

2 v: LOGICAL "OR"

3 DOTTED LINES INDICATE TRANSITIONS
WHICH WILL NEVER OCCUR UNDER NORMAL
OPERATION, BUT MAY BE IMPLEMENTED TO
SIMPLIFY LOGIC DESIGN

:c
II

I-
z
c:i:
a:
CJ

>
u
z

..I w
CJ II

a: (/)

w :::>
::::E m
w (/)

<I I-
z

~I
c:i:
;;:

~, w
m u
Cl)I > w

51 c
:: I
~I
~I
cl
I
~

DEVICE WANTS BUS L
EMERGENCY GRANT: L

A (ERD1)

DEVICE WANTS BUS=H A EMERGENCY GRANT: H

:c
II
I-
z
c:i:
a:
CJ

>
u
z
w
CJ
a:
w
::::E
w
<

:c
II

"' :::>
m

"' I-
z
c:i:
;;:
liJ
~
>
w
c

J;f
~,

~I z
;1
wl
;1
~,

I
I
I
I

:c
II
ti)
:::>
m
(/)

1-
z
c:i:
;;:
w
~
> w
c

D!Ylg !!_A!!,!!.,!l.!:!§ :..!:, A_!.M~~~y~~N,!; L

A (ERO 1)

DEVICE WANTS BUS: HAEMERGENCY GRANT: H

:c
II
(/)
:::>
m
(/)
1-
z
c:i:
311\:

uJ
u
;::
w
c

FIGURE 3-18. EMERGENCY REQUESTER State Diagram

3-31/3-32

3.5.2 Data Transfer Bus ARBITER

As mentioned in paragraph 3.3.1, the ARBITER is used to accomplish two tasks:

a. to prioritize incoming requests for the data transfer bus and issue a
grant to the highest priority REQUESTER, and

b. to inform the active data transfer MASTER whenever a higher level bus
request is pending.

Refer to the ARBITER state diagram (Figure 3-19) and sequence diagram
(Figure 3-20) for the following discussion.

3.5.2.1 Prioritizing of Incoming Bus Requests

Assume that the ARBITER has come up from a reset condition and is in state
HHHHH/LHR with all of its inputs (BRO*-BR4* and BBSY*) high. From this state,
and upon receiving a bus request, the option NPF ARBITER may enter any one of
five states: LHHHH/LHR, HLHHH/LHR, HHLHH/LHR, HHHLH/LHR, HHHHL/LHR. Entering
any of these states from HHHHH/LHR causes a bus grant line to be driven low.
Note that the conditions which allow these transitions effectively prioritize
the incoming requests. For example, if BR3* is being driven low and the higher
priority bus requests are not being driven low, the transition from state
HHHHH/LHR to HHHLH/LHR will be made. In state HHHLH/LHR, BG3IN* is driven low.
The REQUESTER on level 3 will acknowledge receipt of the BG3IN* signal by
driving BBSY* low, thus causing the ARBITER to leave state HHHLH/LHR, enter
HHHHH/LHS, and release BG3IN*. When the REQUESTER driving BBSY* no longer needs
the DTB, it will release BBSY*. The ARBITER will then leave state HHHHH/LHS and
go back to state HHHHH/LHR. When the ARBITER enters state HHHHH/LHR, it will
once again grant the DTB to the highest level REQUESTER; however, if no requests
are pending, the ARBITER will remain in state HHHHH/LHR until a bus request line
is driven low.

3-33/3-34

BR 1* = L v BR2* = L v BR3* = L v BR4*= L v 8aai.•~ .• m

BR2*= L v BR3* = L v BR4* = L V BREL*:L

.J
II

*' >

"' m
m

THE STATES ON THIS DIAGRAM ARE

LABELLED ACCORDING TO THE LEVELS OF

THE ARBITER'S OUTPUT LINES AND THE STATE

OF A FLIP-FLOP INTERNAL TO THE ARBITER

r BGOIN* BG11N* BG21N•

EMERGENCY
BCLR•

GRANT

BR3*-- L v BR4*= L ;:;:;w>·,,;;:::4c·~·L :y . ,a:Rr;;,l.: - . .

BG31N*

FLIP-FLOP
STATE

BBSY* = H

BG41N* ~

II

* (\I

a:
m
< ..

:c
II

* ...
a:
m
<

:c

...I
II

* "'=" a:
m
<

...I
II

* ('I)

a:
m

:c
II

* "'=" a:
m
<

:c

BR 1 *= L v BR2 *: L v BR3*: L v BR4* = L ~b-lq,~:]af

BR2 *: L v BR3* = L v BR4*: L v BREL* :1

BBSY*= H

BR3*: L v BR4*: L veR'ijJ.,.*·#·.f

iJ:'::I__:':':'

BR4*= L :.vHEf..;~§'ti

FIGURE 3-19. ARBITER State Diagram

3-35/3-36

NOTES:

1. /\ = LOGICAL AND

2. V"' LOGICAL OR

, 3. SHADED AREAS
APPLY ONLY TO

OPTION PF ARBITERS.

DRIVEN BY
REQUESTER

DRIVEN BY
ARBITER

BR2*

BBSY*

-(BG21N*

MASTER
DOES DATA.
TRANSFERS

FIGURE 3-20. Sequence Diagram: Arbitration

3.5.2.2 Clearing the DTB Upon a Higher Priority Bus Request

The reader should refer to Figure 3-21 for an example showing how the ARBITER
drives BCLR* low when it detects that a higher priority bus request is pending.

If the higher priority bus request line is driven low while the ARBITER is still
holding a BGxIN* line low, a transition will be made to state LHHHH/LLR,
HLHHH/LLR, HHLHH/LLR, HHHLH/LLR, or HHHHL/LLR, according to the respective bus
grant line being driven. This causes the ARBITER to drive BCLR* low. (State
HHHHL/LLR will be entered only for an option PF ARBITER.) When BBSY* is driven
low by the REQUESTER in response to the bus grant being low, state HHHHH/LLR
will be entered. When the RE~ESTER releases BBSY*, the ARBITER will return to
state HHHHH/LHR and release BCLR*.

If a higher priority bus request line is driven low after the bus grant line has
been released, state HHHHH/LLS will be entered. This again causes the ARBITER
to drive BCLR* low. Again, the ARBITER will return to state HHHHH/LHR
(releasing BCLR*) when the RE~ESTER releases BBSY*.

The option PF ARBITER monitors BREL* and recognizes this signal as the highest
priority request. The option PF ARBITER will drive the on-board EMERGENCY GRANT
line high in response to a low BREL* level. HHHHH/HHR, HHHHH/LHS, and HHHHL/LLR
are the three additional states for this option.

3-37

DRIVEN BY
REQUESTER

DRIVEN BY
ARBITER

BRO*

BR1*

BBSY*

MASTER
DOES· DATA
TRANSFERS

·MASTER
DOES DATA
TRANSFERS

___ , ____ _

BGOIN*

BG11N*

BCLR*

FIGURE 3-21. Sequence Diagram: Clearing the JJI'B Upon a
Higher Priority Request

3-38

I
I
I
HHHHH/LHR

CHAPTER 4

PRICRITY INTERRUPI'

4.1

4.1.1

4.1.2

4.2

4.2.1

4.2.2

4.3

4.3.1

4.3.2

4.3.3

INTERRUPI' PHILOSOPHY •••••••••••••••••••••••••••••••••••••

Single Handler Systems •••••••••••••••••••••••••••••••••

Distributed Systems ••••••••••••••••••••••••••••••••••••

SIGNAL LINES USED IN HANDLING INTERRUPTS •••••••••••••••••

Interrupt Bus Signal Lines •••••••••••••••••••••••••••••

Acknowledge Daisy Chain - ACKIN*/ACKOUT* •••••••••••••••

FUNCTIONAL MODULES •••••••••••••••••••••••••••••••••••••••

INTERRUPT HANDLER ••••••••••••••••••••••••••••••••••••••
I'.N'I'ERRUPI'ER ••

Comparison of Interrupt Bus Functional Modules to
DI'B Functional Modules •••••••••••••••••••••••••••••••

INTERRUPI' HANDLER vs MASTER: Differences ••••••••••

INTERRUPI'ER vs SLAVE: Differences •••••••••••••••••

4.3.3.l

4.3.3.2

4.4

4.4.1

4.4.2

4.4.2.1

'IYPICAL OPERATION ••

4.4.2.2

Single Handler Interrupt Operation •••••••••••••••••••••

Distributed Interrupt Operation

Distributed Interrupt Systems with Seven
INTERRUPT HANDLERS •••••••••••••••••••••••••••••••••

Distributed Interrupt Systems with Two to Six
INTERRUPI' HANDLERS •••••••••••••••••••••••••••••••••

4.4.3 Example: Typical Single Handler Interrupt
System Operation ••••••••••••••••••••••••••••••••••••••

4.4.4 Example: Prioritization of Two Interrupts in a
Distributed Interrupt System •••••••••••••••••••••••••

4 • 5 STA TE D IAGRNJIS •••

4.5.1 INTERRUPTER ••

4.5.2 INTERRUPI' HANDLER••••••••••••••••••••••••••••••••••••••
4.5.2.1 Interrupt Prioritizers •••••••••••••••••••••••••••••••

4.5.2.1.1

4.5.2.1.2

4.5.2.1.3

4.5.2.2

4.5.2.3

Seven-Level Interrupt Prioritizer ••••••••••••••••••

Single-Level Interrupt Prioritizer •••••••••••••••••

Interrupt Masking ••••••••••••••••••••••••••••••••••

Address Bus Driver •••••••••••••••••••••••••••••••••••

Data Bus Controller ••••••••••••••••••••••••••••••••••

4-0

4-1

4-1

4-3

4-3

4-3

4-3

4-6

4-6

4-8

4-8

4-8

4-10

4-11

4-12

4-12

4-12

4-12

4-16

4-19

4-21

4-21

4-29

4-31

4-31

4-31

4-34

4-34

4-36

CHAPTER 4

PRIORITY INTERRUPT

4.1 INTERRUPr PHILOSOPHY

Multiple processor systems require a much more sophisticated interrupt handling
structure than single processor systems. A bus designed to support such systems
must have a very flexible interrupt subsystem protocol.

Multiple processor interrupt subsystems may be divided into two groups:

a. single handler systems - have a supervisory processor which receives and
services all bus interrupts,

b. distributed systems - have two or irore processors which receive and
service bus interrupts.

The single handler system architecture is, perhaps, easier to understand because
of its similarity to single processor systems. Any system which has interrupt
capability must have a set of interrupt servicing routines in its executive
software. Each of the routines may be thought of as a task which is activated
by an interrupt. If the system has a real-time executive, these interrupt
routines would then operate as tasks under this executive.

In a single processor or single handler system, the executive software and all
of the interrupt routines are executed by one processor.

4.1.1 Single Handler Systems

Figure 4-1 sho"WS the interrupt structure of a single handler system. This type
of architecture is well suited to machine or process control applications. The
dedicated processors are the ones typically interfaced to the machine or process
being controlled, so it is important that their processing is interrupted as
little as possible by bus activity.

As shown in Figure 4-1, the dedicated processors in the system are typically
controlling some external machine or process. The task of controlling this
machine or process may consist of several subtasks, some of which are non­
interruptable (i.e., loss of control may result if the task once started is not
finished within a specific time). Therefore, the dedicated processor may mask
some or all of its interrupts while executing these non-interruptable subtasks.

To summarize, in a dedicated system, the supervisory processor is the
destination for all bus interrupts. This allows it to service all interrupts in
a prioritized manner. The dedicated processors are not required to service
interrupts from the bus, but give primary attention to the interrupts received
from the machine or process which they control.

4-1

MACHINE OR

PROCESS BEING

CONTROLLED

INTERRUPTS

INTERRUPTS

MACHINE OR

PROCESS BEING

CONTROLLED

SUPERVISORY

PROCESSOR

MACHINE OR

PROCESS BEING

CONTROLLED

MACHINE OR

PROCESS BEING

CONTROLLED

FIGURE 4-1. Interrupt Subsystem Structure: Single Handler System

4-2

4.1.2 Distributed Systems

Figure 4-2 shows the interrupt structure of a distributed system. This type of
architecture is well suited to batch processing applications, where incoming
tasks may be assigned to the next available processor. Each of the co-equal
processors executes part of the system executive software, and services only
those interrupts directed to it by other processors within the system. Since
the servicing of some of these interrupts may require access to system
resources, the parts of the executive software must communicate through globally
accessed memory in order to allocate resources and resolve lock-ups.

4.2 SIGNAL LINES USED IN HANDLING INTERRUPTS

The data transfer bus, the arbitration bus, and the interrupt bus are all used
in the process of generating and handling bus interrupts.

The following discussion of the priority interrupt subsystem assumes that the
reader understands the operation of both the data transfer bus described in
Chapter 2, and the arbitration bus described in Chapter 3.

4.2.1 Interrupt Bus Signal Lines

The interrupt bus consists of seven interrupt request signal lines and one
daisy-chain signal line:

IRQl*
IRQ2*
IRQ3*
IRQ4*
IRQS*
IRQ6*
IRQ7*
ACKIN*/ACKOUT*

Each interrupt request line may be driven low by an interrupter to request an
interrupt. In a single handler system, these interrupt request lines are
prioritized, with IRQ7* having the highest priority (see Figure 4-3).

4.2.2 Acknowledge Daisy Chain - ACKIN*/ACKOUT* (Data Transfer Bus)

Each of the seven interrupt request lines may be shared by two or more
interrupter modules. Because of this, some method must be provided to assure
that only one of the modules is acknowledged. This is done by means of the
ACKN~DGE DAISY CHAIN. This daisy-chain line passes through each board on the
VERSAbus. When an interrupt is acknowledged, ACKIN* is driven low at slot 1.
Each module which is driving an interrupt request line low must wait for the low
level to arrive at its board slot before accepting the acknowledge. The module
accepting the acknowledge does not pass the low level down the daisy chain,
thereby guaranteeing that only one module will be acknowledged.

ACKIN* will be low for 128 of the 256 possible address modifier codes.
Therefore, ACKIN* low alone is insufficient to indicate interrupt acknowledge.
The interrupt acknowledge code must also be present on the address modifier
lines (hex 27). Failure to decode the address modifier lines will lead to
improper bus operation.

4-3

GLOBAL MEMORY

FOR ALLOCATING

RESOURCES AND

RESOLVING LOCK-UPS

FIGURE 4-2. Interrupt Subsystem Structure: Distributed System

4-4

~
I

U1

r-------------------------, ,--------------, ,---------, r-------1 ,-------1
1 SYSTEM I I I I I I I I I
I CONTROLLER I I USER'S I I USER'S I I I I I
I DEVICE - DEVICE - USER'S USER'S
I USER'S DEVICE I I INTELLIGENT I I NON-INTELLIGENT I I DEVICE - I I DEVICE - I
I I I PERIPHERAL I I PERIPHERAL I I RAM, ROM, ETC. I 1 FRONT PANEL I
I I I INTERFACE, ETC. I I INTERFACE, ETC. I I I I I

I I I 11 I I I I I
I I I I I I I I I I
I II I I I I I I 1·-+- ----------- --H----- --1- ---- --tL- -1----1

+ : I : +
OTB MASTER OTB MASTER

OTB SLAVE
1/0

OTB SLAVE

: POWER I SYSTEM
I MONITOR : DEFINED BY

TEST 1 VERSAbus
CONTROLLER I SPECIFICATION

RESTART I
CONTROLLER I ...__ ____ _.I

I
I

__ _J L __ _ _ _J

DATA TRANSFER BUS

OTB ARBITRATION

UTILITY

FIGURE 4-3. VERSAbus Priority Interrupt Functional Block Diagram

4.3 FUNCTIONAL MODULES

Section 4.2 discussed the additional lines on VERSAbus that are used to
accomplish interrupt handling. This section discusses in detail the two types
of modules which make up a priority interrupt subsystem and how these modules
use the VERSAbus lines.

4.3.1 INTERRUPT HANDLER

The INTERRUPT HANDLER is used to accomplish several tasks:

a. It prioritizes the incoming interrupt requests within its assigned range
(max IRQ1*-IRQ7*) from the requests on the interrupt bus.

b. It uses its associated REQUESTER to request the DTB and, when granted use
of the DTB, acknowledges the interrupt.

c. It reads the status/ID bvte from the INTERRUPI'ER being acknowledged.

d. Based upon the information received in the status/ID byte, it initiates
the appropriate interrupt servicing sequence.

NOTE

No attempt is made in this bus specification to specify what
will happen during the interrupt servicing sequence. Servicing
of the interrupt may or may not involve use of the VERSAbus.

INI'ERRUPT HANDLERS can be identified in a system by the number and range of
interrupt request lines that they service. The option notation is IH (a-b),
where 'a' is the lowest line serviced and 'b' is the highest. It is a VERSAbus
requirement that AN INTERRUPI' HANDLER MAY ONLY SERVICE A CONTIGUOUS SEQUENCE OF
INI'ERRUPT LEVELS.

Figure 4-4 shows an option IH(l-7) INTERRUPT HANDLER and the signal lines which
it uses to interact with INTERRUPTERS on the VERSAbus.

When the INTERRUPI' HANDLER receives one or more interrupt requests from the
INI'ERRUPTERS on the bus, it causes its on-board DTB REQUESTER to gain control of
the data transfer bus. It then uses the data transfer bus to acknowledge the
highest priority INTERRUPI'ER and read that INTERRUPI'ER'S status/ID byte.

4-6

·-
PC BOARD

INTERRUPT HANDLER --
WANTS BUS

INTERRUPT HANDLER OPTION DTB

IH(1-7) REQUESTER

INTERRUPT HANDLER --
GRANTED BUS

~~ ~~ ~~ 4~ 4 ~ ~~ /'

- - - -Cl) Cl) Cl) Cl)
w w w w z z z z - - - -... • .-.. (') • * • t-- - - • * w :ii-= w * * * - 0 t- u Cl) ... a: .,,.

*
.,,. fl)

* w w ... U) -.-.. (') .-.. c .-.. a: c a: a: u
0 0 ~ a t-

0 • Cl) ID ID a: c c a a > - I I U) I I

* * .,,.
* ... 0 .. 0

0 ~ 0 0 c c Q a: -
•• •• •• •• • •

DATA TRANSFER BUS

1,.TERRUPT BUS

0
ARBITRATION BUS

UTILITY BUS

FIGURE 4-4. Signal Lines Used by an IH(l-7) INTERRUPT HANDLER

4-7

4.3.2 INTERRUPTER

The INTERRUPTER is used to accomplish three tasks:

a. It requests an interrupt from the INTERRUPT HANDLER which monitors its
interrupt request line.

b. It supplies a status/ID byte to the INTERRUPT HANDLER when its interrupt
request is acknowledged.

c. It passes through an interrupt acknowledge daisy-chain signal if it has
no interrupt request signal on the bus.

INTERRUPTERS can be identified in a system by the interrupt request line they
utilize. The option notation is I(n), where 'n' is the interrupt request line
number. Since the 'interrupter module' is a concept and not a design
constraint, it is possible to visualize a complex logic unit which deals with
several interrupt lines as a set of 'interrupter modules'.

Figure 4-5 shows an option I(4) INTERRUPTER and the signal lines which it uses
to interact with its INTERRUPT HANDLER on the VERSAbus.

The INTERRUPTER uses an IRQx* line (in this case, IRQ4*) to request an
interrupt. It then monitors the OTB address, address modifier, and
ACKIN*/ACKOUT* daisy-chain to determine when its interrupt is being
acknowledged. When acknowledged, it places its status/ID byte on the lower
eight lines of the data bus and signals the bvte's validity to the INTERRUPT
HANDLER via the DTACK* line.

4.3.3 Comparison of Interrupt Bus Functional Modules to OTB Functional Modules

The INTERRUPT HANDLER uses the OTB to read a status/ID byte from the
INTERRUPTER. In this respect, the INTERRUPT HANDLER acts like a MASTER and the
INTERRUPTER acts like a SLAVE. However, the following differences are important
to note.

4.3.3.1 INl'ERRUPT HANDLER vs MASTER: Differences

There are three primary differences in the use of the UI'B by the INTERRUPT
HANDLER and the MASTER:

a. placement of codes on the address modifier bus,
b. number of lines driven on the address bus,
c. use of lines on the data bus.

The INTERRUPT HANDLER is required to place the interrupt acknowledge code on the
address modifier bus whenever it makes use of the OTB. MASTERS are never
allowed to place this code on the address modifier bus.

The INTERRUPT HANDLER is required to drive only the lowest three address lines
(A01*-A03*). 'Ihe levels of these three address lines indicate which of the
seven interrupt request lines is being acknowledged. A MASTER is required to
drive 15, 23, or 31 address lines (depending upon which address modifier code it
has placed on the bus) with the address of the SLAVE being accessed.

4-8

INTERRUPTER

J~ ~~ J~ ~~ J~ J~ J~

-- -0 0 U)

w w I.I.I - z ! z
w -:i :i * * z ..a
:::; ~ CD # ~ * ... * ... w - * w :i.:: 0 ! :>
p

* * * 0 !: * (.) w :i.:: 0 - co cc :i.::

"" ~ 0 ll:IC ~ ll:IC (.)

* 0 :e c Q ~ 0 ... 0 cc (.)

• cc Q Q > cc
c(

0 .. I. I 0
rE

* * *,
p 0 0
0 :e 0 cc· c(0

,, ,,
DATA. TRANSFER BUS

t ,,
INTERRUPT BUS

FIGURE 4-5. Signal Lines Used by an !(4) INTERRUPrER

4-9

The INTERRUPT HANDLER uses the lower eight data lines (D00*-007*) to read the
status/ID byte. It is never permitted to drive these lines (i.e it is not
allowed to "write" to the INTERRUPTER) and it must, therefore, always drive
WRITE* high when using the DTB. A MASTER uses the data lines to a SI.AVE
bidirectionally and, during normal use, will drive WRITE* low or high as
required. Likewise, the INTERRUPT HANDLER must always drive DSO* to low and
DSl* to high. The MASTER is only constrained to drive at least one of the data
strobes to low.

4.3.3.2 INI'ERRUPTER vs SLAVE: Differences

There are three primary differences in the use of the DTB by the INTERRUPTER and
the SI.AVE:

a. decoding the address modifier bus,
b. interpreting the address bus,
c. using the data bus.

The INTERRUPTER, upon decoding the address modifier code, will respond only if
it is an interrupt acknowledge code. A SLAVE never responds to an interrupt
acknowledge code, but may respond to many others.

The SI.AVE decodes the appropriate number of address lines (15, 23, or 31) and
determines solely from the levels of these lines and the current address
modifier code whether it will respond. The INTERRUPTER, however, decodes only
the lowest three address lines (A01*-A03*), and must also check the following
conditions before responding.

a. It must have an interrupt request pending.

b. The level of that request must match the level indicated on these lower
three address lines.

c. It must receive an incoming low level on its ACKIN* daisy-chain line.

If any of these three conditions is not met, it does not respond to the
acknowledge. If only conditions a and c are met, or if only condition c is met,
then the INTERRUPI'ER passes the low level of ACKIN* to the next module in the
daisy-chain via ACKOUT*.

The INTERRUPTER is required to drive only the lowest eight data lines and,
therefore, it is not required to monitor DSl*. It is also not required to
lll)nitor WRITE*, since it is never written to.

Every SI.AVE, however, must lll)nitor the level of WRITE* to prevent it from
driving the data bus when it is written to. It must also monitor both DSO* and
DSl*.

4-10

4.4 TYPICAL OPERATION

A typical interrupt sequence may be divided into three phases:

a. the interrupt request phase,
b. the interrupt acknowledge phase,
c. the interrupt servicing phase.

Figure 4-6 illustrates the timing relationships between the three phases in a
centralized system.

The interrupt request phase (phase 1) is the time between when an INTERRUPTER
drives an interrupt request line low and when the INTERRUPT HANDLER gains
control of the DTB. The interrupt acknowledge phase (phase 2) is the time
during which the INI'ERRUPT HANDLER uses the DTB to read the REQUESTER'S
status/ID byte. The interrupt servicing phase (phase 3) is the time period
required to execute a prescribed interrupt servicing routine. This may or may
not involve data transfers on the VERSAbus.

The protocol for the priority interrupt subsystem describes the module
interaction required during phase 1 and phase 2. Phase 3 may not require anv
module interaction. Any data transfers which take place during phase 3 will
follow the data transfer bus and arbitration bus protocols described in
Chapters 2 and 3. Therefore, phase 3 is not discussed in this chapter.

IRQX*

DRIVEN

LOW

l

INTERRUPT

HANDLER

GAINS CONTROL

OF THE OTB

l

INTERRUPT

HANDLER

FINISHES READING

REQUESTER .. $

STATUS/ID BYTE

l
INTERRUPT
REQUEST

(PHASE 1)

INTERRUPT

ACKNOWLEDGE

(PHASE 2)

INTERRUPT

SERVICING

(PHASE 3)

FIGURE 4-6. The Three Phases of an Interrupt Sequence

4-11

.. ,

~4.4.1 Single Handler Interrupt Operation

In single handler interrupt systems, the seven interrupt request lines are all
rronitored by a single INTERRUPI' HANDLER. In this case, the interrupt request
lines are prioritized (IRQ7* =highest priority), and when simultaneous requests
are made on two interrupt request lines, the status/ID byte of the higher
priority request is read first.

4.4.2 Distributed Interrupt Operation

Distributed interrupt systems may contain from two to seven INTERRUPI' HANDLERS.
For purposes of the following discussion, distributed interrupt systems will be
considered in two groups:

1. distributed interrupt systems with seven INTERRUPI' HANDLERS,

2. distributed interrupt systems with two to six INTERRUPI' HANDLERS.

4.4.2.1 Distributed Interrupt Systems with Seven INTERRUPI' HANDLERS

See Figure 4-7. In a bussed system, each of the interrupt request lines may be
rnoni to red by a separate INTERRUPI' HANDLER. Each TNTERRUPT HANDLER must gain
control of the data transfer bus before it can read status/ID bytes from an
INl'ERRUPrER driving its own interrupt request line. When two interrupt request
lines on the bus are driven low simultaneously, the INTERRUPI' HANDLER with the
highest priority on-board DTB REQUESTER will be granted control of the DTB
first.

Figure 4-8 illustrates a distributed interrupt system where INTERRUPI' HANDLER A
rnoni tors IRQ2* and has an on-board REQUESTER which requests the DTB on BR2*.
INTERRUPr HANDLER B rronitors IRQS* and has an on-board REQUESTER which requests
the DTB on BR3*. If two INTERRUPI'ERS on the interrupt bus simultaneously drive
IRQ2* and IRQS* low, the two INTERRUPr HANDLERS might cause their on-board
RE~ESTERS to drive BR2* and BR3* low simultaneously. (This is by no means
certain, since either INTERRUPI' HANDLER may wait a considerable period of time
before attempting to handle the interrupt.) If they are driven low
simultaneously, the ARBITER will first grant control of the DTB to the INTERRUPI'
HANDLER B REQUESTER, and INTERRUPI' HANDLER A must wait until B has finished
using the DTB.

4.4.2.2 Distributed Interrupt Systems with Two to Six INTERRUPI' HANDLERS

It is also possible to configure a distributed interrupt system in which two or
m:>re of the interrupt request lines are m:>nitored by a single INTERRUPI' HANDLER.
Figure 4-9 illustrates a system configured with two INTERRUPT HANDLERS in which
INTERRUPI' HANDLER A m:>ni to rs IRQl *-IRQ4 * 1 and INTERRUPT HANDLER B m:>ni to rs
IRQ5*-IRQ7*. In this case, the IRQ1*-IRQ4* lines would be prioritized (IRQ4* =
highest priority for INTERRUPI' HANDLER A), and the IRQ5*-IRQ7* lines would be
priori ti zed (IRQ7* = highest priority for INTERRUPI' HANDLER B) • The DTB
arbitration would still determine which INTERRUPI' HANDLER would be allowed to
use the DTB first.

4-12

PC BOARD

INTERRUPT HANDLER --
WANTS BUS

INTERRUPT HANDLER OPTION DTB

IH(4) REQUESTER

INTERRUPT HANDLER --
GRANTED BUS

~~ ~~ 4~ ~~ 4 ' h ~

- - -0 0 0 w w w z z z - - -.... *
(") CIO * *

...
CIO w * * * - - * * w ~ a: ~ - 0 ... (,) 0

a * * 0 * 0 - w w
(") c(.... Q a: c(a: a: (,) a: ... - 0 :2 0 ~ 0 m m
c(c(Q

Q > I I I 0

* * * .. 0 0
0 :2 0
c(c(Q

'~ . r ,, ,, .,
DATA TRANSFER BUS

INTERRUPT BUS

l
ARBITRATION BUS

UTILITY BUS

FIGURE 4-7. INTERRUPI' HANDLER Monitoring Only IRQ4*

4-13

PC BOARD # 1 PC BOARD # 2

INTERRUPT
INTERRUPT DTB INTERRUPT

INTERRUPT DTB

HANDLER REQUESTER HANDLER REQUESTER
HANDLER -- HANDLER ---- -

WANTS BUS A WANTS BUS II
A B

• IJa

'* • • • N N
.,,

(')

0 llC 0 llC

! ID !!: ID

A. t I~ _l

VERSAbua

' '

FIGURE 4-8. Two INTERRUPr HANDLERS, Each Monitoring One Interrupt Request Line

4-14

INTERRUPT

HANDLER

A

~

* .. -0 0
a: w

z I

'!. ~

0 .. -!

A.

1

PC BOARD + 1 PC BOARD +2

INTERRUPT DTB INTERRUPT
INTERRUPT

HANDLER REQUESTER HANDLER
. ~ HANDLER .. - --

WANTS BUS A WANTS BUS
B

•

* "" 0
....
0

*
a: w

)(I z
a:

* ... Ill .,,
0 (")

! -

'
VERSAbus

FIGURE 4-9. Two INTERRUPI' HANDLERS, Each Monitoring Several
Interrupt Request Lines

4-15

DTB

REQUESTER

B

* >
a:
Ill

~ .1

r

4.4.3 Example: Typical Single Handler Interrupt System Operation

Figure 4-10 illustrates the operation of a single handler interrupt system whose
INTERRUPI' HANDLER rroni tors and prioritizes all seven interrupt lines (IRQ7 =
highest priority). At the top of the diagram, a DTB MASTER is using the DTB to
rrove data within the system. An INTERRUPI'ER requests an interrupt by driving
IRQ4* low. When the INTERRUPI' HANDLER detects the low IRQ4, it sends a signal
to its on-board DTB REQUESTER, indicating that it needs the bus. This REQUESTER
then drives BR4* low. Upon detecting the bus request, the ARBITER drives BCLR*
low, indicating that a higher priority REQUESTER is waiting for the DTB. When
the DTB master .detects the low BCLR*, it stops moving data and allows its own
on-board REQUESTER to relinquish control of the DTB. (The REQUESTER does this
by releasing BBSY*.)

NOTE

The active DTB MASTER is not required to relinquish the DTB
within a specified time period, but a prompt response to the
BCLR* line allows a system to run more efficiently.

When the DTB ARBITER detects BBSY* high, it grants the DTB to the INTERRUPI'
HANDLER'S on-board REQUESTER, which informs the INTERRUPI' HANDLER that the DTB
is available. The INTERRUPI' HANDLER then puts out a 3-bi t code on the lower
three address lines, indicating that it is acknowledging the interrupt request
on the IRQ4 line (see Table 4-1). At the same time, it places an 8-bi t
interrupt acknowledge code on the address modifier bus (see Table 4~2),
indicating that it is acknowledging an interrupt, and drives AS* low. The
resulting low level on the Address Modifier 5 line (AMS*) causes a low level to
be propagated down the acknowledge daisy-chain on the bus (ACKIN*/ACKOUT*).

When the INTERRUPI'ER detects a low level on its incoming daisy-chain line, it
waits for address strobe, and then (1) checks the lower three address bits to
see if they match the interrupt request line which it is driving low, and (2)
verifies that the interrupt acknowledge code is on the AM bus. Since the 3-bit
code matches the line on which it is making its interrupt request, the
INTERRUPI'ER places its 8-bi t status/ID byte on the data bus and drives the
DTACK* line low. When the INTERRUPI' HANDLER detects the low DTACK*, it reads
the status byte and initiates the appropriate interrupt service sequence.

NOTE

No attempt is made in this VERSAbus specification to define
what must take place during an interrupt service sequence.
This may or may not involve use of the data transfer bus.

4-16

LOCATED LOCATED
rIN SLOT 41 IN SLOT 3

IINTERRUPTERI 'MASTER A REQUESTER Al
I (4)

DRIVE IRQ4*
LCW

I

USING DTB TO
MOVE DATA

DRIVIOO
BBSY* LCW

LOCATED LOCATED
.-IN SLOT 2 rIN SLOT 11
I INTERRUPT REQUESTER BI ARBITER

HANDLER
IH (l-7)

t
DETECT IRQ4* Lew.
DRIVE (DEVICE
WANTS BUS) HIGH.

t
DETECT BCLR* LCM.
STOR MOVIOO DATA.
DRIVE (DEVICE WANTS
BUS) TO Lew.

I
t

DETECT (DEVICE
WANTS BUS) LCM.
RELFASE BBSY*.

I

TO SHEET 2

I
+ DETECT (DEVICE

WANTS BUS) HIGH.
DRIVE BR4* TO LCW.

I
t

DETECT BR4* Lew.
DRIVE BCLR* LCM.

I

DETECT BBSY* HIGH.
DRIVE BG4IN* TO LCM.

I
t

DETECT BG4IN* LCM.
DRIVE BBSY* LCM.
DRIVE (MASTER GRANTED
BUS) TO HIGH.

FIGURE 4-10. Typical Single Handler Interrupt System Operation Flow Diagram
(Sheet 1 of 2)

4-17

LOCATED LOCATED LOCATED LOCATED
r IN SLar 4 I IN SLar 3

I INrERRUPI'ER I I MASTER A REQUESTER A I
I (4)

,_-----IN SLar 2 rIN SLar 11
I INTERRUPI' REQUESTER BI ARBITER

HANDLER
IH (1-7)

DETECT (MASTER
GRANTED BUS) HIGH.
PLACE 3 BIT LEVEL
CODE ON ADDRESS BUS.
PLACE INTERRUPI'
ACKNCWLEDGE CODE ON
AM BUS (CAUSING ACK

FROM
SHEET 1

DAISY CHAIN TO GO LCM) ------­
DRIVE AS* TO LCW.

r~<------------~<~<----------~<4-----~

DETEcr ACK DAISY
CHAIN LCM.
DETEcr AS* LCM
CHECK 3 BIT ACK LEVEL.
VERIFY INTERRUPT
ACKNCMLEDGE AM CODE.
PLACE STATUS/ID BYTE ON
DATA BUS.
DRIVE DTACK* TO LCJN.

I
+ DETEcr DTACK* LCW.

READ STATUS/ID BYTE.
INITIATE INTERRUPI'
SERVICE SEQUENCE.

FIGURE 4-10. Typical Single Handler Interrupt System Operation Flow Diagram
(Sheet 2 of 2)

4-18

TABLE 4-1. 3-Bit Interrupt Acknowledge Code

ADDRESS BUS
LCM INTERRUPT LINE INTERRUPT LEVEL CODE

BEING ACKNCl41LEIXiED A23* - A04* A03* A02* AOl*

IRQl* x - x H H L
IRQ2* x - x H L H
IRQ3* x - x H L L
IRQ4* x - x L H H
IRQS* x - x L H L
IRQ6* x - x L L H
IRQ7* x - x L L L

'17\BLE 4-2. 8-Bit Interrupt Acknowledge Code

ADDRESS MODIFIER BUS
INTERRUPT ACKNCl41LEJXiE CODE

PM?* AM6* AMS* AM4* PM3* AM2* AMl* AMO*

H I H I L I H I H I L I L I L

(27 HEX)

4.4.4 Example: Prioritization of Two Interrupts in a Distributed Interrupt
System

Figure 4-11 illustrates the operation of a distributed interrupt system with two
INTERRUPT HANDLERS. INTERRUPT HANDLER A m:mitors IRQ1*-IRQ4*, while INTERRUPT
HANDLER B monitors IRQ5*-IRQ7*. INTERRUPT HANDLER A treats IRQ4* as its highest
priority interrupt, while INTERRUPT HANDLER B treats IRQ7* as its highest
priority interrupt. At the top of the diagram, INTERRUPTER C drives IRQ3* low,
and INTERRUPTER D drives IRQ6* low. Both INTERRUPT HANDLERS detect their
respective interrupt request lines low, and both simultaneously indicate to
their on-board DTB REQUESTER that they need the DTB. Both the INTERRUPT
HANDLERS drive BR4* low. Upon detecting BR4* low, the DTB ARBITER drives BG4IN*
to low on slot 1. This low signal is passed down the BG4IN*/BG40UT* daisy chain
until it is detected by the REQUESTER in slot 4. This REQUESTER then signals
its on-board INTERRUPT HANDLER B that the DTB is available for acknowledging the
interrupt. INTERRUPT HANDLER B then places an 8-bit interrupt acknowledge code
(see Table 4-2) on the address modifier lines to indicate that it is
acknowledging an interrupt, and a 3-bit code (see Table 4-1) is placed on the
address bus.

4-19

LOCATED LOCATED LOCATED LOCATED LOCATED
IN SLOI' 5 IN SLar 4 ·rIN SLOT 3,rIN SLar 2,rIN SLOT 11

I INI'ERRUPI' REQUESTER 11 INTERRUPI' REQUESTER I 1 INTERRUPTER I I INTERRUPTER I ARBITER
HANDLER A A HANDLER B B C D
I H { 1-4) IH { 5-7)

+ DETOCT IRQ3*
LCM

DRIVE {DEVICE
WANTS BUS)
HIGH.

ON-BOARD SIGNAL

+ DETECT IRQ6*
LOW.

DRIVE {DEVICE
WANTS BUS)
HIGH.

ON-BOARD SIGNAL

DRIVE IRQ3*
LCM.

I

DETECT {DEVICE
WANTS BUS) LOW.
DRIVE BR4* TO LCW.

DETECT {DEVICE
WANTS BUS) LCM.
DRIVE BR4* TO LCM.

I I

DAISY CHAIN

+ DETOCT BG4IN* LOW.
DRIVE BBSY* LCM.
DRIVE {DEVICE GRANTED
BUS) HIGH.

ON-BOARD SIGNAL

DETECT {DEVICE
GRANTED BUS) HIGH.

DRIVE IRQ6*
LCM.

I

' DETECT BR4*
DRIVEN TO

LCW.

DRIVE BG4IN*
TO LCM.

I

FIGURE 4-11. Distributed Interrupt System with Two INTERRUPT HANDLERS

4-20

4.5 STATE DIAGRAMS

The following sections contain state diagrams for the INTERRUPI'ER and INTERRUPT
HANDLER modules. The information provided is rather "concentrated", and may
require study before it will be completely understood. The reader who is
unfamiliar with the use of state diagrams may refer to the material in Appendix
B before continuing.

NOTE

In the following discussion, several on-board signals are defined to allow
discussion of the interaction between the INTERRUPI'ER/INTERRUPI' HANDLER
module and other on-on-board logic. These signals are not intended to place
restrictions on the board designer, but do illustrate the information which
must be passed to and from the modules.

4.5.1 INTERRUPI'ER

Figure 4-12 shows the state diagram for an INTERRUPI'ER. Although this diagram
does not reflect any particular implementation of an INTERRUPI'ER, it shows all
allowed transitions that an implementation may make. Therefore, a given
implementation may not enter all the states shown, but will make no transition
not shown in the diagram. The block diagram for an INTERRUPI'ER is shown in
Figure 4-13.

4-21/4-22

THE THREE STATES ON THE DIAGRAM
TO THE RIGHT REPRESENT THE STATE
OF THE DATA BUS DRIVERS IN THE
INTERRUPTER:

IDBOFF = DATA BUS DRIVERS OFF
IDBVAL : DATA BUS DRIVEN AND VALID

IDBRDY = DATA BUS READY TO BE READ

-t 30 NSEC

THE STATES SHOWN IN THE DIAGRAM
ABOVE DON'T RESULT IN ANY OUTPUT
CHANGES. (THEY REPRESENT THE
STATE OF AN INTERNAL MONOSTABLE
FLIP-FLOP.) THEY ARE LABELLED SIMPLY

•INTERRUPTER DELAY STATES 1 AND 2"

THE STATES IN THE DIAGRAM TO THE

RIGHT ARE LABELLED ACCORDING TO

THE LEVELS OF THE INTERRUPTERS

OUTPUT LINES:

DEVICE WANTS TO INTERRUPT = H A AS*: LA ACKIN* = L

A DSO * L A AM : ACK CODE A AO 1 * -A03*: LEVEL

L AM,ACK CODE V
(AM =ACK CODE A AO 1 * -A03* t: LEVEL)l

...J
w
>
w

:z: ...J ..J
II II

II * ... * (")
~ ! 0
a: ~ <
0: (.J I

w cc
... <
z ...J

II

0 *
I- m
m cc
I- < z
<
;r;
w
~
> w
c

*
0
<
<
w
c
0
(.J

~
(.J

<
II

:IE
<
<

..J

II

I-
11.
::::>
a:
a:
w ...
!
0
I-

m
I-
z
<
;r;

w
(.J

>
w
c

DEVICE WANTS TO INTERRUPT: L

A@DAODBOFF)

DEVICE WANTS TO INTERRUPT: L

IDBRDY

II

1-
11.
::::>
a:
a:
w ...
z
0
I-

m ...
z
<
;r;
w
~
>
w
c

~----- --------....... I "~A(IDBOFF)

IRQX * DTACK * ACKOUT* VERSAbus INTERRUPT
ACKNOWLEDGED

NOTES:

1 A: LOGICAL "AND"

2 v: LOGICAL "OR"

3 IN "IROX*" X: 0, 1,2,3,4,5,6,7

4 ACK CODE:(AMO• :L) A (AM1*: L)-A

(AM2•:L) A(AM3*=H)A
(AM4• = H) A (AMS*= L) A

(AM&*= H) A (AM7*: H)

A AS•= LA ACKIN•= L

AS*: H (WITHIN 50 NSEC) ID BR DY

l AM #ACK CODE V

(AM=ACK CODE A A01*- A03*tLEVEL)J

DEVICE WANTS TO INTERRUPT =H
(IDBRDY)

A AS * : H WITHIN (50 NSEC)

FIGURE 4-12. INI'ERRUPTER State Diagram

4-23/4-24

:z:
II ...

11.
::::>
a:
a:
w ...
!
0
I-

m
1-
z
<
;r;
w
~
>
w
c

"" r "

l':tj
H
G)
c
~ ---
ii::::.
I

I-'
w . c

> -
H

ii::::. ~ I
N tx:J
U1 ~ ~ c
I ~ N

O'\ t:i::J
::0

z >
m

:a :a
:a >
c z

"" (I)

.... "II
m

m ::::a
OJ c
I-'
0
0
~

(I) m
c
(I)

CJ
I-'•
OJ

lO
--

""" ~

~ "- ~

,------ ----;-""-----
o n

I 5
I

IRQX* (1 LINE)

A01* -A03* (3-LINES) INTERRUPT LEVEL -- --- (OPTIONAL)
AMO* -AM7* (8 LINES) _ -AS* c - - (I) -- z

DSO* m
- :a - m ..

WRITE* :a (I) - :a - DEVICE WANTS TO - c c
_ DO O* -D.O 7* (8 LIN ES)

""
INTERRUPT m - <

- DTACK* m -- :a n
SYSRESET*

m
--

ACKIN* VERSABUS INTERRUPT _

ACKOUT* - --ACKNOWLEDGE

I

I
I
L _____ . - -------------

1

I
I
I
I
I
I
I
I
I
I
I

_J

The on-board device {see Figure 4-13) must have a means of signaling to the
on-board INTERRUPrER its desire to interrupt the VERSAbus. This procedure may
be as simple as a single line signaling DEVICE WANTS TO INTERRUPT, with the
INTERRUPTER being configured to generate an interrupt on a single interrupt
level. It might be as complicated as providing three encoded lines to the
INTERRUPTER to select the level of interrupt and a DEVICE WANTS TO INTERRUPT
control to tell the INTERRUPTER the lines are valid. For the following
discussion, we will assume that a DEVICE WANTS TO INTERRUPT line exists, and
that a high level on this line indicates that the on-board device wants to
generate an interrupt to the VERSAbus.

Regardless of the levels and protocol for informing the INTERRUPTER, a means
must be provided to allow the INTERRUPI'ER to signal the on-board device when the
VERSAbus interrupt has been acknowledged. This signal, VERSABUS INTERRUPT
ACKNCMLEDGED, is a signal from the INTERRUPrER to the on-board device. This
line is driven high by the INTERRUPI'ER to indicate to its on-board device that
the INTERRUPr HANDLER on the VERSAbus has acknowledged the interrupt. It is
driven low to indicate that the INTERRUPT HANDLER has finished reading the
status/ID byte and that the device may drive the OEVICE WANTS TO INTERRUPI'
on-board line high again.

Refer to Figure 4-12 for the following discussion.

Assume that the INTERRUPrER is in state hHHL. When the on-board device drives
the DEVICE WANTS TO INTERRUPT line high, the INTERRUPTER moves into state LHHL
and drives IRQx* low. The delay diagram then makes a transition to state ID2.
The INTERRUPrER must then wait until:

a. it receives AS* driven to low,

b. it reads the address modifier lines and verifies that they match
interrupt acknowledge code,

c. it reads the address lines and verifies that they represent the
interrupt request line which the INTERRUPTER is driving low,

d. it receives the ACKIN* daisy chain line driven to low.

When all of the conditions have been met and when DSO* is received driven low,
the INTERRUPTER places its status/ID byte on the data bus {state IDBVAL). After
the byte has been valid for 30 ns, a transition is made to state IDBRDY. This,
in turn, allows a transition to state LLHL, driving DTACK* low. Since the delay
diagram state is still ID2, a transition is made to hLHL, releasing the
interrupt request line. Assuming that DEVICE WANTS TO INTERRUPT is still high
{which it must be because the device is required to maintain it high until a
high VERSABUS INTERRUPr ACKN~EDGED is received), a transition is then made to
state hLHH, driving VERSABUS INTERRUPI' ACKNCWL.EDGED high. This indicates to the
device that the status/ID byte is being read. The device may then drive DEVICE
WANTS TO INTERRUPr low. When the INTERRUPT HANDLER finishes reading the
status/ID byte, it drives AS* high. If 30 ns have passed since the interrupt
request line was released and if the data bus has been three-stated, a
transition is then made to state hHHH, causing DTACK* to be released. Since
DEVICE WANTS TO INTERRUPr remains low {the device is required to maintain it low
until a low VERSABUS INTERRUPr ACKN~EDGED is received), a transition is then
made to state hHHL, driving VERSABUS INTERRUPT ACKN~EDGED low.

4-27

The reader should note that this is only one example of how the INTERRUPI'ER
might traverse the diagram. Other paths might have been followed. For example,
instead of going from LLHL to hLHL and hLHH, the INTERRUPTER might have gone
from LLHL to LLHH and hLHH. In the latter case, the VERSABUS INTERRUPI'
ACKNCWLEDGED signal would have been driven high before the bus request line was
released. While this may appear to complicate the state diagram, it actuallv
represents an addition of design freedom and will make the logic design simpler.

States hHLL and LHLL are associated with driving ACKOUT*. All INTERRUPTERS in
the system are daisy-chained by the ACKNCWLEOOE DAISY CHAIN. Each must be
capable of passing on a low level on this daisy chain if it does not have an
interrupt request on the interrupt request line being acknowledged. If the
INTERRUPI'ER detects a low on ACKIN* while it is in state hHHL, it may move to
state hHLL and drive ACKOUT* low. On the other hand, if the on-board device
drives DEVICE WANTS TO INTERRUPT high prior to the transition to HHLL, the
INTERRUPI'ER can make the transition to LHHL if the interrupt line being
acknowledged is the one that it would have used to generate the interrupt,
anyway. In doing this, the INTERRUPI'ER would be "stealing" the interrupt
acknowledge of an INTERRUPI'ER lower on the daisy chain. In either case, upon
detecting ACKIN* low, a REQUESTER will either pass the low level by driving
ACKOUT* low, or respond to the interrupt acknowledge.

The transition from hHHL to hLHL just mentioned allows the INTERRUPI'ER to
respond to the interrupt acknowledge if its on-board device drives DEVICE WANTS
TO INTERRUPT high, even though the INTERRUPTER has not yet driven its interrupt
request line low. While this may seem a little startling, it is entirely
logical. The interrupt request line which it would be driving low is already
low by an INTERRUPI'ER further down the daisy chain, since this is the only way
it could receive an interrupt acknowledge for that· une. In fact, the user,
observing the interrupt bus lines, would not be able to say with any certainty
whether or not this INTERRUPTER drove its interrupt request line low. Since the
low level on ACKIN* is not passed along the daisy-chain to the next board, the
INTERRUPI'ER driving the IRQX* line being acknowledged will continue to hold it
low until another interrupt acknowledge cycle takes place.

Two internal timing restrictions are placed upon the INTERRUPI'ER:

• The INTERRUPI'ER must wait 30 ns after releasing its interrupt request line
before releasing Dl'ACK*. This ensures that the INTERRUPT HANDLER will not
detect the old interrupt request and acknowledge it again after reading
the status/ID byte.

• When the INTERRUPI'ER has passed a low ACKIN* signal on to the next board
in the daisy chain, it is required to drive this line high within 50 ns
after receiving AS* high. Since all INTERRUPTERS see AS* go high at
essentially the same time, this eliminates the need for the high level
generated by the INTERRUPI' HANDLER at the end of the interrupt acknowledge
cycle to propagate through the daisy chain.

4-28

4.5.2 INI'ERRUPI' HANDLER

Figure 4-14 shows the block diagram of an INTERRUPT HANDLER.
HANDLER consists of three sub-elements:

The INTERRUPT

a. Interrupt prioritizer

b. Address bus driver

c. Data bus controller

~ l USER'S DEVICE

J
0 • m
er_ ~-- ---------------- ---- -- -- ----- t-1
~I

Q

:.: HIGHEST LEVEL-ACKLEVEL (1-3)
WRITE* & DSO*

.......

I A. (/) (/)

I c :I
ACKNOWLEDGED RELEASED ... :I c I

I l ...
' ,--- ---,

ii U)

I READ I
I I DEVICE STATUS/ID

DEVICE GRANTED BUS ADDRESS DATA

I INTERRUPT WANTS BUS l- DTB BYTE
l -I I BUS - BUS

I
PRIORITIZER REQUESTER

I I DRIVER CONTROLLER I
L-~-~- _ __J L_ -- --I --I ------ --I t- - ~· ~

* * * * * >
0 ... (') ...

*
...

w :I * 0
!: 0 w * :.:

U) c c * !: 0 (,) Q
I w I I U) U) c I

* a:
* * c a: Q ... * >< (/) ... 0 ii: Q 0

0 > 0 :I 0

!: U) c c Q

A. ; • _j ,, • .A

VERSAbus

l -,

FIGURE 4-14. Block Diagram: INTERRUPT HANDLER

4-29

Since an INTERRUPI' HANDLER must make use of the DI'B to acknowledge each
interrupt, it always has an on-board D'IB REQUESTER. Although the REQUESTER is
not part of the INTERRUPT HANDLER, it is shown on the block diagram to
illustrate how it is used by the INTERRUPI' HANDLER to gain control of the DTB.
The state diagrams for single-level and the seven-level INTERRUPI' HANDLERS
differ only in interrupt prioritizer sub-elements. The seven-level handler must
detennine the highest priority interrupt on the VERSAbus, while the single-level
handler treats its only interrupt level as the highest level. In some cases,
the harrller may compare the highest level interrupt to a mask level. Only if
the interrupt level exceeds the mask level will it indicate a need for the bus
to the 1Jl'B REQUESTER. The prioritizer, when it requests the bus, must also
provide signal levels to the on-board address bus driver to indicate what 3-bit
code should be placed on the address lines during the interrupt acknowledge.
When the address bus driver receives a signal from the DTB REQUESTER indicating
that the bus is available, it places the interrupt acknowledge code on the
address modifier bus, places the interrupt acknowledge level on the lower three
address lines, and drives address strobe (AS*) to low. It then sends a signal
to the data bus controller, indicating that the status/ID byte may be read.

The data bus controller drives WRITE* high to indicate that a READ will be done,
arrl drives DSO* low, allowing the status/ID byte to be placed on the data bus by
the INTERRUPTER being acknowledged.

When the INTERRUPI'ER has placed its status/ID byte on the bus, it drives DTACK*
low. Both the data bus controller and the address bus driver respond
simultaneously to the low DTACK*. The data bus controller reads the byte,
releases WRITE* and DSO*, and then signals the address bus driver that it is no
longer driving any bus lines. The address bus driver releases the address lines
arrl the address modifier lines, but does not release AS* until it receives the
signal from the data bus controller indicating that all other bus lines have
been released. The rising edge of AS* is interpreted by the next MASTER granted
the bus as an indication that the INTERRUPI' HANDLER has stopped driving the
D'IB.)

Figures 4-15 and 4-17 show the state diagrams for a seven-level INTERRUPT
HANDLER. Figure 4-16 shows the state diagrams for a single-level INTERRUPT
HANDIER which handles interrupt requests received on IRQ4*. A detailed
discussion of each is included in the following sections.

While it would also be possible to show state diagrams for INTERRUPI' HANDLERS
which handle between two and six interrupt request levels, because of the large
number of possible combinations, this will not be done. For a discussion of
legal combinations and for the option notations representing each combination,
see Chapter 6.

Although the state diagrams shown do not reflect any particular implementation
of an INI'ERRUPI' HANDLER, they show all allowed transitions that any
implementation may make. Therefore, a given implementation may not enter all
the states shown, but will make no transitions not shown on the diagram.

4-30

4.5.2.1 Interrupt Prioritizers

4.5.2.1.1 Seven-Level Interrupt Prioritizer

Figure 4-15 illustrates the function of a seven-level interrupt prioritizer.
When the VERSAbus system is powered up, this interrupt prioritizer enters the
L/XXX state, where it will remain until an urunasked interrupt line on the
interrupt bus is driven low by an INTERRUPI'ER. When this condition is met, the
prioritizer moves to one of the seven H/XXX states. Because of the conditions
placed upon each transition, the highest priority interrupt will govern the
state transition in the event that two interrupt lines are driven low
simultaneously.

When any one of these H/XXX states is entered, the level to be acknowledged is
provided to the address bus driver via three lines named ACKLEVELl, ACKLEVEL2,
and ACKLEVEL3. At the same time, a DEVICE WANTS BUS signal is driven high to
the on-board DTB REQUESTER, causing it to request the DTB.

4.5.2.1.2 Single-Level Interrupt Prioritizer

Figure 4-16 illustrates the function of a single-level interrupt prioritizer.
It does not prioritize interrupts in the strictest sense, but it does provide
the capability to mask incoming interrupts. VERSAbus allows up to seven of
these single-level INTERRUPT HANDLERS to be present within an interrupt system.
While a casual study of the two prioritizer state diagrams might lead the reader
to conclude that all single-level INTERRUPTERS are proper subsets of seven-level
interrupt prioritizer, one important distinction must be recognized. In a
system consisting of seven single-level IN'l'ERRUPT HANDLERS, there would be no
prioritizing of the interrupt levels because each INTERRUPT HANDLER would
operate completely independent from all others (e.g., an IRQ7* interrupt will
not necessarily be handled prior to an IRQl* interrupt).

4-31

ACKNOWLEDGED =H

MASK < 6 A IRQ7* :H A IRQ6* :L

<
::c
II

*
::c 0
II !
Q

:::> w
0 cc
Q ::c
w
..J

* 31; It)

0 0
z ! !ill::
CJ <
ct 'llt'

v
'llt'
~

"' ct
~

THE ST ATES ON THIS DIAGRAM ARE LABELLED
ACCORDING TO THE LEVELS OF THE INTERRUPT
PRIORITIZERS OUTPUT LINES.

DEVICE WANTS BUS

ACK ACK ACK
LEVEL 3 LEVEL 2 LEVEL 1

THRU IRQ7* :H A IRQ2* :L

ACKNOWLEDGED :H

FIGURE 4-15. State Diagram for the Interrupt Prioritizer
of a Seven Level INTERRUPI' HANDLER

4-32

:c
II
w
0
c
w
...J

== 0
z
~
0
<

* 1-
w

"' w
a:

"' >

"'

...J
II

* oq-
0
a:
<
oq-
v
~

"' <
:IE

THE STATES ON THIS DIAGRAM ARE

LABELLED ACCORDING TO THE LEVELS
OF THE INTERRUPT PRIORITIZERS OUTPUT LINES

DEVICE
WANTS

BUS

ACK ACK ACK
LEVEL LEVEL LEVEL

3 2 1

FIGURE 4-16. State Diagram for the Interrupt Prioritizer of
a Single Level INTERRUPT HANDLER (Level 4)

4-33

4.5.2.1.3 Interrupt Masking

The purpose of the interrupt prioritizer state diagrams is to define the order
in which the various interrupt request lines on VERSAbus will be acknowledged.
No limit has been placed on the time allowed for state transitions from L/XXX.
Therefore, an interrupt prioritizer may take a considerable amount of time after
the conditions are met before leaving state L/XXX without violating the VERSAbus
specification. It is not possible to determine just by observing the VERSAbus
lines whether a delay in making this transition is the result of a slow
prioritizer or the result of of its mask being set to a high level. However,
the delay causes no incompatibility problems between modules in the interrupt
subsystem. For this reason, the question of whether a particular interrupt
prioritizer implementation is able to mask interrupts is not a matter which
needs to be resolved in the VERSAbus specification. The MASK <X condition on
the state diagrams is shown only to make clear how an interrupt prioritizer
might be implemented with masking capability.

NOTE

The MASK <X condition shown on state diagrams
Figures 4-15 and 4-16 should not be regarded as a
requirement for VERSAbus compatibility.

4.5.2.2 Address Bus Driver

Figure 4-17 illustrates the function of the address bus driver sub-element.
When SYSRESET* is driven low, the address bus driver enters the ZZL/Z state,
where it remains until the on-board DTB requester obtains control of the DI'B.
(It does this in response to the indication bv the interrupt prioritizer that an
interrupt has been detected.) When the requester indicates that the bus has
been granted the address driver waits until the previous MASTER (or interrupt
handler) qui ts driving the address bus (AS* = H) • It then moves into state
XXL/Horz and turns on its address and address modifier bus drivers. (AS* may or
may not be driven at this time. If it is driven, it must be driven high.)

Sometime later, all of the address and address modifier lines become stable and
valid (state VVL/H or Z). A 30 ns set-up time is then required before moving
into state VVL/L and driving AS* low. Once state VVL/L has been entered, the
address driver must wait until both DTACK* and BERR* are high. In most cases,
they will already be high; but if the SI.AVE from the previous cycle has not yet
released its handshake line, the address driver will not enter VVH/L. This is
important because as soon as the VVH/L state is entered, the data bus controller
(see next paragraph) will command the INTERRUPl'ER to drive the data bus •. If the
SIAVE from the previous cycle has not yet released the data bus, contention may
result. The release of DTACK* and BERR* indicates that the data bus is no
longer driven.

When the address bus driver enters its WH/L state, the data bus controller
commands the INTERRUPTER to place its status/ID byte on the data bus 1 ines
DOO*-D07* (see section 4.5.2.3). The INTERRUPTER does this and then drives
DTACK* low when the byte is valid.

4-34

ADDRESS BUS AND

ADDRESS MODIFIER BUS

NOT DRIVEN

ADDRESS BUS AND

ADDRESS MODIFIER BUS

DRIVEN BUT NOT VALID

ADDRESS BUS AND
ADDRESS MODIFIER BUS

VALID

SYSRESET*:L

(WITHIN 1 OOms}

AS*:H A INTERRUPT HANDLER

GRANTED BUS

NOTES:

Z = THREE STATE
V =VALID

X= HOR L

:::c
.11

* a:
a:
w
m
<
:::c
II

* ~
0
4'
l­
o

THE ST ATES ON THIS DIAGRAM ARE LABELLED ACCORDING
TO THE LEVELS OF THE INTERRUPT HANDLERS ADDRESS
BUS DRIVER OUTPUT LINES.

READ ST ATUS/10 BYTE

FIGURE 4-17. State Diagram: Interrupt Handler's Address Bus Driver

4-35

When the address bus driver detects the low DTACK*, it removes the 3-bi t
interrupt level code from the address bus and the interrupt acknowledge from the
address modifier bus (state XXL/L). It then stops driving the address and
address modifier buses (i.e., enters state ZZL/L). However, it is not allowed
to enter state ZZL/HorZ until the data bus controller stops driving DSO* and
WRITE* (i.e., until the data bus controller enters its idle state). When this
condition is met, and the address driver moves into the ZZL/HorZ state (i.e., it
either releases address strobe or drives it high), it must move into the ZZL/Z
state within 30 ns. (This means that once AS* has been driven high, it must be
released within 30 ns to avoid bus contention.)

4.5.2.3 Data Bus Controller

Figure 4-18 illustrates the function of the data bus controller.

When SYSRESET* is driven low, the data bus controller enters the Z/Z/H state,
where it remains until:

a. the address bus driver starts driving its bus (i.e., it enters state
XXL/Hor Z), and

b. IJl'ACK* and BERR* have both been released by the SLAVE from the previous
cycle. (This indicates that the previous SLAVE is no longer driving the
data bus.)

It then enters state HorZ/H/L. In the HorZ/H/L state, the WRITE* line is driven
high. The DSO* line may or may not be driven, but if it is, it will be driven
high. After the address bus driver has driven AS* low and detected DTACK* and
BERR* high, it will drive the on-board READ BYTE signal high. The data bus
controller, upon detecting a high level on this line, drives DSO* low (enters
state L/H/L) and awaits a low level on DTACK* or BERR*. When it receives a low
DTACK*, it reads the status/ID byte from DOO*-D07* and enters state H or Z/H or
Z/L. When it then makes a transition to Z/Z/H (releasing both WRITE* and DSO*),
it signals that fact to the address bus driver in the form of an on-board signal
(WRITE* AND DSO* RELEASED) •

4-36

SYSRESET* (WITHIN 1 OOmSEC)

THE STATES IN.THIS DIAGRAM ARE.LABELLED
ACCORDING TO THE LEVELS OF THE INTERRUPT
HANDLERS DATA BUS CONTROLLER OUTPUT LINES.

DSO*
WRITE•

WRITE• AND
DSO* RELEASED

OHAA) A DTACK* •HA BERR* :H

(DTACK* :LA BYTE READ) Y (BERR*=L)

w ,_
>
m

e
c;;
::) ,_
cC ,_
"' 0
cC
w cc

FIGURE 4-18. State Diagram: Interrupt Handler's Data Bus Controller

4-37/4-38

CHAPTER 5

VERSAbus UTILITIES

Page

5.1 INTRODUCTION••• 5-1

5.2

5.2.1

5.2.1.1

5.2.1.2

5.2.2

5.2.2.1

5.2.2.2

5.3

5.4

5.4.1

5.4.2

5.4.3

UTILITY SIGNAL LINES
Bus Clocks •••

System Clock (SYSCLK) Specification

AC Clock (ACCLK) Specification •••••••••••••••••••••••

System Initialization and Diagnostics
System Reset (SYSRESET*) •••••••••••••••••••••••••••••

System Test (TESTO*, TESTl*, SYSFAIL*)

..................................... PCMER MONITCR MODULE

INPUT/OUTPUT LINES
I/O Cabling ..
Power Pins •....•......•.............................•..

Reserved Lines •••

5-0

5-1

5-1

5-1

5-3

5-4

5-4

5-5

5-6

5-8

5-8

5-8

5-8

CHAPTER 5

VER>.Abus UTILITIES

5.1 INTRODUCTICN

This chapter identifies arrl defines the signal lines arrl modules which serve
utility-type functions for the VERSAbus. Input/output line characteristics and
J2/P2 option compatibility are also discussed.

Utility lines provide periodic timir.g signals, support time-of-day function,
allow AC zero crossing indication, and provide start-up and testing capability
for the VERS.Abus. Utility lines include:

System Clock
AC Clock
AC Fail
System Reset
System Test

(SYSCLK)
(ACCLK)
(ACFAIL*)
(SYS RE SE'!*)
(TEsrO*' TEsrl *' SYSFAIL*)

Many of these lines are driven by a POWER MJNI'IDR module. Its purpose is to
detect power failures, generate the AC clock signal, reset the system upon power
up, arrl initiate a power-up self-test.

5.2 UTILI'IY SIGNAL LINES

5.2.1 Bus Clocks

Two clock sources are available on the VERSAbus backplane: the 16 megahertz
system clock arrl the line frequency AC clock. Neither clock has any fixed phase
relationships with other VERSAbus timing. The system clock is a free-running
clock signal, arrl the AC clock is tiErl to the system power source.

5.2.1.1 System Clock (SYSCLK) Specification

The system clock is an independent, non-gated, fixed frequency, 16 megahertz, 50
percent (naninal) duty cycle signal. It can be used to generate on-board delays
or timing ft.mctions ¥here a fixed duration delay will be generated by counting
off a known time base. SYSCLK has no fixed phase relationships with other
VERSAbus timing. Figure 5-2 shows the system timing diagram.

The SYSCLK driver is normally located on the system controller located in board
slot one (see Chapter 1). The driver is a high current totem-pole device arrl
only one receiver per card is allowed.

5-1

U1
I

N

r------------------------1 ,------------, ,-------, ,-------1 ,--------,
1

SYSTEM I I I I USER'S I I I I I
: CONTROLLER I I o~~1~~s- I I DEVICE - I I USER'S I I USER'S I
I USER'S DEVICE I I INTELLIGENT I I NON-INTELLIGENT I I DEVICE - I I DEVICE - I
I I I PERIPHERAL I I PERIPHERAL I I RAM, ROM, ETC. I I FRONT PANEL I
I I I INTERFACE, ETC. I I INTERFACE, ETC. I I I I I

1 I I I I I I I I I
I I I I I I I I I I
1 II I I I I I I ,-7- ----------- --H----- -- 1 - ---- -4L- -i----I

+ i : SYSTEM+
I OTB MASTER OTB MASTER OTB SLAVE OTB SLAVE DEFINED BY
I

110
VERSAbus

: : SPECIFICATION
I I
I I
I I
I I

II OTB INTERRUPT I INTERRUPT
I REQUESTER REQUESTER I REQUESTER

I I
I I I
I I I
I I I
I I I
I I I
~- _J L_

FIGURE 5-1. VERSAbus Utility Block Diagram

I
I
I
L
I
I
I
I

_ _ __J

PRIORITY INTERRUPT

OTB ARBITRATION

62.5 ± 1 ns

S.YSCLK 2.0V 2.0 v
0.8V o.av

25.0 ns min

37.5 ns max 62 .. 5 ± 1 ns

FIGURE 5-2. System Clock Timing Diagram

5.2.1.2 AC Clock (ACCLK) Specification

The AC clock is a 50 or 60 hertz (nominal) signal derived from the power supply
line frequency. It can be· used as a clock source to generate time-of-day, or to
detect line frequency zero-point crossings. Figure 5-3 illustrates the timing
relationship between the edges of ACCLK and the zero crossings of the AC line.
ACCLK edges may lead or lag the AC zero crossing by a maximum of 115 usecs on a
50 cycle system, or 95 usecs on a 60 cycle system.

AC INPUT

2 DEGREES MAX
PHASE LEAD/LAG

AC CLK

FIGURE 5-3. AC Clock Timing Diagram

5-3

5.2.2 System Initialization and Diagnostics

VERSAbus allows several options for system initialization and diagnostics
through the System Reset {SYSRESET*) and test lines {TESTO* and TESTl*). These
open collector lines are driven by a P{lAJ'ER MONITOR module and/or by a manual
switch {such as from an operator's panel). Failure of a system test is shown
via the system fail line {SYSFAIL*). All boards within the VERSAbus system must
drive this system fail line low upon power up, and must maintain it low until
they have passed their respective self tests. Non-intelligent boards which are
incapable of self test must maintain this line low until a MASTER in the system
writes to their on-board test register.

5.2.2.1 System Reset {SYSRESET*)

The SYSRESET* is roonitored by all functional modules, and is driven from an
operator's panel or P~R MONITOR module. Its rising edge acts as a strobe for
the test lines. Whenever SYSRESET* is driven to low, it must be held there for
a minimum period of 200 milliseconds. Figure 5-4 shows the required timing
relationship which must be maintained between the system reset and the test
lines.

TESTO*
TEST1*

SYSRESET*

SYSFAIL*

30 ns MIN.

NORMAL OPERATION

200 ms MIN.

TEST IN PROGRESS PASS

FIGURE 5-4. System Reset and Test Timing Diagram

5-4

5.2.2.2 System Test (TESTO*, TESTl*, SYSFAIL*)

The test lines allow four different test modes. 'Ihe test modes are shown in
Table 5-1.

TESTl*

H
H
L
L

TABLE 5-1. Test Modes

TESTO*

H
L
H
L

MODE

Enter EXEC immediate (no test required)
Enter Debug Mode
Long test (no time limit) then enter EXEC
Short test (~ 2 seconds) then enter EXEC

As shown in Figure 5-4, the test line states are established while SYSRESET* is
low. After SYSRESET* is released, the system enters the selected test mode.
Upon completion of testing, the system can go into normal operating mode if
functional tests show no failures. 'Ihe SYSFAIL* line is not allowed to go high
if any failures occur.

SYSFAIL* can also be driven low at any time during normal operation as the
result of a detected system failure. As an example, a local processor may
periodically perform a self-test and activate SYSFAIL* if a failure occurs.

5-5

5.3 PaVER MONITOR MODULE

This module is usually an external PC board (Figure 5-5) upon which the ACFAIL*,
ACCLK, and (optionally) TESTO*, TESTl*, and SYSRESET* drivers are located.
Logic to interface an operator's panel and to detect power fail may also be
placed on this circuit card.

- AC FAIL * - POWER
VERSAbus -- ACCLK * POWER

MONITOR
BACKPLANE - - SUPPLY

--1""""1._ MODULE

7 ~ ~

I""
RESET,. TEST (?)

TESTO *,
OPTION -< TEST1 *,

SYSRESET CONTROL
'-

PANEL

FIGURE 5-5. Block Diagram of PClVER MONITOR Module

The ACFAIL* and SYSRESET* signals and the point at which the system DC voltages
violate specification have certain timing constraints. These constraints are
spelled out in Figures 5-6 and 5-7.

5-6

DC POWER WITHIN SPEC. DC POWER OUT OF SPEC.

~41---------- 4 MILLISECONDS _________ _
MINIMUM

ACFAIL*

14-----2 MILLISECONDS ______ .,_I_ .. ,_ 50 MICROSECONDS
MINIMUM MINIMUM

DC POWER
OUT OF SPEC.

SYS RESET* \ __
FIGURE 5-6. System Power Fail Timing

DC POWER WITHIN SPEC.

I
.. 200 MILLISECONDS
---------- MINIMUM ----------t~

---~ SYSRESET•

I
... 200 MILLISECONDS ., I
------- MINIMUM -----------

_/
FIGURE 5-7. System Power Restart Timing

5-7

AC FAIL*

5.4 INPUT/OUTPUT LINES

The secondary 120-pin J2/P2 connector on VERSAbus has two options: expanded
backplane and non-expanded backplane. The expanded bus backplane supports
VERSAbus address and data bus expansion to 32 bits. It contains eight address
lines plus parity, 16 data lines plus parity, 50 I/O lines, and miscellaneous
reserved lines and power. The non-expanded backplane eliminates the expanded
address and data line support, and uses these pins to provide 50 additional I/O
pins for a total of 100 pins (see Appendix E).

5.4.1 I/O Cabling

The I/O pins on the backplane are grouped in quantities of 25 lines.
Connections to these I/O lines can be made via 50 conductor flat ribbon cables,
as described in paragraph 8.2.5, with two cables on the expanded backplane and
four cables on the non-expanded 100 I/O pin backplane. The cable arrangement
provides alternating ground/signal pairs to minimize cable signal-to-signal
crosstalk.

The I/O connections are defined by the user. However, high voltage AC or OC
should not be brought onto a VERSAbus card through these pins. (A 24-volt
maximum for any I/O signal is recommended.)

5.4.2 Power Pins

Although individual pins on the VERSAbus cards are specified as having
2.5 ampere capacity, the slightly varying pin contact resistance produces uneven
current flow in pins which are bussed common on both the backplane and card.
For this reason, recommended limits on power consumption are less than 2. 5
amperes times the number of pins. Following is a table of current limits for
each VERSAboard.

+5 Volts 8 A
+5 Standby 3 A

+12 Volts 6 A
-12 Volts 3 A
+15 Volts 3 A
-15 Volts 3 A

5.4.3 Reserved Lines

The VERSAbus specification labels several signal lines as RESERVED. These lines
are set aside for future expansion of VERSAbus functional capabilities, and
should not be used in any VERSAboard designs.

5-8

6.1

6.1.1

6.2

6.2.l

6. 2.1.1

6.2.1.2

6.2.1.3

6.2.1.4

6.2.2

6.2.2.1

6.2.2.2

6.2.3

6.2.3.1

6.2.3.2

6.2.4

6.2.5

6.2.6

6.2.6.1

6.2.6.2

6.2.6.3

6.2.6.4

6.2.6.5

CHAPTER 6

VERSAbus OPl'IONS

INTRODl.JC:'I'ION •••

Hardware vs Dynamic Option Selectivity •••••••••••••••••

OPTION DEFINITIONS •••••••••••••••••••••••••••••••••••••••
Data Transfer Options

Address Bus Options
Data Bus Options •••••••••••••••••••••••••••••••••••••

Parity Options •••••••••••••••••••••••••••••••••••••••

Time-Out Options •••••••••••••••••••••••••••••••••••••

Arbitration Options ••••••••••••••••••••••••••••••••••••

There are two ARBITER OPl'IONS: •••••••••••••••••••••••

REQUESTER Options ••••••••••••••••••••••••••••••••••••••
Interrupt Options ••••••••••••••••••••••••••••••••••••••

INTERRUPI' HANDLER Options ••••••••••••••••••••••••••••

INTERRUPl'ER Options ••••••••••••••••••••••••••••••••••

Environmental Options ••••••••••••••••••••••••••••••••••

Power Options ••

Physical Configuration Options •••••••••••••••••••••••••

Expanded Configuration •••••••••••••••••••••••••••••••

Non-Expanded Configuration •••••••••••••••••••••••••••

Half-Size Configuration ••••••••••••••••••••••••••••••

Mixing Expanded, Non-Expanded, and Half-Size Options

Examples of Vendor Specification Sheets ••••••••••••••

6-0

Page

6-1

6-1

6-2

6-2

6-2

6-3

6-3

6-5

6-6

6-6

6-6

6-7

6-7

6-7

6-8

6-8

6-8

6-8

6-8

6-9

6-9

6-10

CHAPTER 6

VERSAbus OPTIONS

6.1 INTRODucrION

The VERSAbus specification allows a broad range of design latitude, permitting
the designer to optimize cost and/or performance. This is done by defining
options. Options allow the user to trade one feature for another or save cost by
eliminating some feature. In most cases, these options are intended for use in
a particular combination (e.g., a MASTER designed for 32-bit data transfers is
intended for use with a SIAVE capable of 32-bit data transfers). There will be
cases, however, where the user will mix options. It is important in these cases
that the user understand the performance limitations imposed by the mix. This
chapter highlights the limitations which will be encountered.

In order for the user to evaluate the limitations of a system prior to buying
VERSAboards from multiple vendors, he must have access to information which
completely describes the options of each board. This chapter provides a
standard notation which may be used by board vendors on the product
specification sheets.

6.1.1 Hardware vs Dynamic Option Selectivity

Many VERSAboards will be capable of operating in several configurations (e.g.,
an INTERRUPI'ER on a slave board might be capable of generating interrupts on any
one of seven levels.) In some cases, the user will select the option required
through the use of switches, jumpers, or PRCJ.1 's, thus configuring the system
prior to power-up. In this case, the option selected remains fixed as long as
the system continues operating. In order to change it, the user must power-down
the system and reconfigure it.

Other VERSAboards will incorporate dynamic option selectivity. These boards
allow their options to be changed by on-board control registers while the system
is running through data transfers (e.g., if a MASTER assigns a task to an
intelligent peripheral, it may wish to configure the peripheral to interrupt on
a particular IRQ line upon task completion).

In cases where an optional configuration is possible, the vendor should list the
possible options as follows:

'Af'JY ONE OF xxx, yyy, or zzz (DYN)
lMf. ONE OF xxx, yyy, or zzz (STAT)

(DYN) indicates that the selection is done dynamically. (STAT} indicates that
the selection is fixed while the system is in operation.

6-1

6.2 OPTION DEFINITIONS

The options for VERSAbus may be divided into six basic categories:

• Data transfer
• Arbitration
• Interrupt
• Environmental
• Power
• Physical configuration

6.2.1 Data Transfer Options

The data transfer options define:

• Number of address lines used
• Number of data lines used
• Use of parity lines
• Number of microseconds before MASTER bus timeout

6.2.1.1 Address Bus Options

There are three address bus options:

• A32
• A24
• Al6.

An A32 MASTER is capable of driving 31 address lines (A01*-A31*). It drives 31
lines with a valid address whenever it places an extended address AM code on the
bus, 23 lines whenever it places a standard AM code on the bus, and 15 lines
when it places a short address AM code on the bus.

An A32 SIAVE must be capable of decoding up to 31 address lines (A01*-A31*). It
decodes 31 lines when an extended address AM code is on the bus, 23 when a
standard address code is present, and 15 when a short address code is present.

An A24 MASTER is capable of driving 23 address lines (A01*-A23*). It drives 23
lines with a valid address whenever it places a standard address AM code on the
bus, and 15 lines when it places a short address code on the bus. It is never
allowed to place an extended address code on the bus.

An A24 SLAVE must be capable of decoding up to 23 address lines (A0l*A23*). It
decodes 23 lines when a standard address code is present, and 15 lines when a
short address code is present. It must not respond when an extended address
code is present.

An Al6 MASTER is capable of driving 15 address lines (A01*-Al5*). It must
always place a short address AM code on the bus when addressing a SLAVE. It is
never allowed to place an extended address code or standard address code on the
bus.

An Al6 SLAVE must be capable of decoding 15 address lines (A01*-Al5*) • It
decodes 15 lines when a short address code is present on the bus. It must not
respond when an extended or standard address code is present.

6-2

6.2.1.2 Data Bus Options

There are three data bus options:

• D8
• Dl6
• D32.

A D8 MASTER is capable of driving and monitoring 16 data lines, although it will
drive or rronitor only eight at any given time. This allows it to do 8-bit
transfers on either (DOO*-D07*) or (D08*-Dl5*). It is never allowed to drive
LWORD* low.

A 08 SIAVE is capable of driving and rronitoring eight data lines (000*-007*).
This allows it to do 8-bit transfers only.

A 016 MASTER is capable of driving and rronitoring 16 data lines (000*-Dl5*).
This allows it to do either 16-bi t data transfers on (000*-015*) or 8-bi t
transfers on (D00*-007*) or (D08*-Dl5*). It is never allowed to drive LWORD*
low.

A 016 SIAVE is capable of driving or rronitoring 16 data lines (D00*-015*). It
is capable of 16-bit transfers on (D00*-015*) or 8-bit transfers on (000*-007*)
or (008*-015*).

A 032 MASTER is capable of driving and rronitoring 32 data lines (D00*-031*).
This allows it to do 32-bit data transfers on (DOO*-D31*) while driving LWORD*
low, and 16-bi t data transfers on (DOO*-Dl5*), or 8-bi t data transfers on
(DOO*-D07*) or (D08*-Dl5*) while driving LWORD* high.

A D32 SLAVE is capable of driving and monitoring 32 data lines (DOO*-D31*).
When LWORD* is low, it transfers data on all 32 data lines. When LWORD* is
high, it must be capable of transferring all internally stored data on the lower
16 data lines (OOO*-Dl5*).

6.2.1.3 Parity Options

VERSAbus provides a means for transmitting address and data parity between
MASTERS and SIAVES. Since some users will find parity necessary and others will
find it a needless expense, several parity options are allowed.

The user may select from four parity options:

Address Parity (AP)
No Address Parity (NAP)
Data Parity Generator and Verifier (DP)
No Data Parity (NDP)

6-3

The parity used is even parity. Even parity is defined as the Boolean result of
the exclusive-OR of all values/bits equals zero. For the case of data byte O,
this may be expressed as:

(((DOO.XOR.DOl).XOR. (D02.XOR.D03)).XOR.((D04.XOR.D05).XOR.(D06.XOR.D07)))
.XOR.DPARITYO=O

In effect, if the number created was expressed as a 9-bi t binary number, and
then all of the "l" bits were counted, the resulting number should be even. For
example, if the number of 1 bits in a particular byte is 5, then a "l" parity
bit would be generated to make it 6, an even number. If the number of 1 bits is

· 4, a "0" parity bit would be generated.

NarE

Data, address, address modifier, and longword
lines are assumed to be "l" when low.

Address Parity Options

There are two address parity lines defined by VERSAbus. APARITYO* provides
parity for address modifier lines AMO* through AM7*, address lines AOl* through
A23*, as well as LWORD* and AMO* through AM7*. APARITYl* provides parity for
address lines A24* through A32*.

In addition, an Address Parity Valid (APVAL*) line is provided to indicate
whether the address parity lines are· being driven with valid parity.

The AP MASTER generates a parity bit on one or both address parity lines,
depending upon whether it is placing a short, standard, or extended address on
the bus. An AP MASTER generates a parity bit on line APARITYO* when placing
short or standard addresses on the bus. It generates a parity bit on lines
APARITYO* and APARITYl* when placing an extended address on the bus. Since the
APARITYO* line provides parity for address lines AOl* through A23*, the upper
eight lines (Al6*-A23*) must be in a known stable state during short address
transfers. If the AP MASTER drives these lines, it must take the levels of
these lines into account when generating the APARITYO* bit. If the AP MASTER
does not drive these lines, they may be assumed high (logic "0"). An AP MASTER
also drives APVAL* low whenever it places an address on the bus to indicate that
the address parity lines are valid.

An option AP SLAVE must verify even address parity on lines for which parity
bits have been generated by the AP MASTER. It determines whether address parity
has been generated by monitoring the level of APVAL*. When APVAL* is low, an AP
SIAVE must verify APARITYO* when decoding short or standard addresses. An
extended address AP SLAVE must verify APARITYO* and APARITYl* when decoding
32-bit addresses, and must verify only APARITYO* when decoding 16-or 24-bi t
addresses.

A NAP (No Address Parity) MASTER will not generate parity bi ts on lines
APARITYO* or APARITYl* or drive 'APVAL* low. NAP SIAVES will not monitor APVAL*
and will not verify address parity.

6-4

Data Parity Options

There are four data parity lines defined by VERSAbus. DPARITYO* provides a
parity bit for data lines DOO* through DO?*. DPARITYl* provides parity for DOS*
through 015*. These two parity lines are on the Jl bus connectors, and are
available to all MASTER and SIAVE VERSAboards. The remaining two data parity
1 i nes, DPARITY2* and DPARITY3*, provide parity for 016 * through 023* and 024*
through 031*, respectively. These latter two lines are found on the J2 signal
lines of expanded backplanes only.

DP (Data Parity) MASTERS and SLAVES generate even parity bits when transmitting
data, and will verify even parity when receiving data from SI.AVES. The parity
lines driven are dependent upon which data lines carry data. A parity bit is
generated for DPARITYO* or DPARITYl* for byte transfers, both DPARITYO* and
DPARITYl* for word transfers, and DPARITYO* through DPARITY3* for longword
transfers. DP MASTERS and SI.AVES also drive DPVAL* low whenever they place data
on the bus to indicate that the data parity lines are valid. They determine
whether parity has been generated by m:mi to ring the level of DPVAL*. When
DPVAL* is low, they must verify the data parity.

NOP (No Data Parity) MASTERS and SLAVES do not generate data parity and do not
drive DPVAL* low. In addition, they do not m:>nitor DPVAL* and do not verify the
parity on received data.

Mixing Parity Options

Because of the "parity valid" signal lines, it is possible to configure systems
with a mix of parity options. While no system incompatibilities will result,
the user should recognize that parity is only verified on some data transfers.

6.2.1.4 Time-out Options

Each MASTER must have a timer which will terminate a data transfer cycle if a
response (DTACK* or BERR*) is not received from a SLAVE within a specified time.
The DTB timing which results looks the same as it would as if it had received a
BERR* response at the time-out point (i.e., the MASTER will remove address and
data from the DTB, drive strobes high, etc.). The time-out option should be
specified by the board vendor as follows:

TOUT = x us

where 'x' is the number of microseconds that the MASTER will wait from the
falling edge of the last data strobe.

6-5

6.2.2 Arbitration Options

The arbitration options define:

• whether the ARBITER supports power-up/down sequencing,
• what basis the REQUESTER uses to release the DTB.

6.2.2.1 There are two ARBITER options:

• PF
• NPF

A PF ARBITER provides the bus arbitration required to support orderly
power-up/power-down sequencing. A PF ARBITER must always be paired with an
EMERGENCY REQUESTER. Both are located on a comm:>n PC board in slot 1.

An NPF ARBITER does not support the clearing of the DTB and storage of data
prior to power-down. It is not paired with an EMERGENCY REQUESTER.

6.2.2.2 REQUESTER Options

There are two REQUESTER options:

• Release When Ibne (RWD)
• Release On Request (ROR)

Each option reflects the basic criteria that the REQUESTER uses when determining
whether to release the DTB for arbitration.

An RWD REQUESTER releases the BBSY* line each time its on-board MASTER indicates
it no longer wants the bus. This option is beneficial where multiple MASTERS
share the use of the bus equally and where data transfers are done mostly on a
cycle by cycle basis.

An ROR REQUESTER does not release the BBSY* line each time its on-board MASTER
indicates it no longer wants the bus. Instead, it waits unti 1 some other
REQUESTER (or EMERGENCY REQUESTER) requests the DTB. The ROR option is
beneficial in systems where maximizing data transfer rate for a particular
MASTER is desired and where other MASTERS have a comparatively low bus usage.

In addition to RWD and ROR options, the request level which the REQUESTER uses
is also specified as an option:

R(x)

where 'x' is the number of the request line used.

6-6

6.2.3 Interrupt Options

The interrupt options are used to describe:

• INTERRUPI' HANDLERS
• INTERRUPI'ERS

6.2.3.1 INTERRUPI' HANDLER Options

The INTERRUPI' HANDLER options are used to describe which interrupt request lines
a given INTERRUPI' HANDLER will respond to. The notation used is shown below:

IH(x-y)

where 'x' is the lowest numbered interrupt request line number and 'y' is the
highest. (x may be equal to y when the INTERRUPI' HANDLER responds to only one
level.) As is evidenced by this notation, if an INTERRUPI' HANDLER responds to
any two interrupt request lines x and y, it must also respond to all lines
numbered between x and y. The INTERRUPI' HANDLER should respond to these lines
in prioritized manner with the highest priority assigned to the highest numbered
line.

When the user configures a system, he must ensure that no two INTERRUPT HANDLERS
will respond to the same line (e.g., an IH(2-4) could not be mixed with an
IH(2-6).

If each INTERRUPI' HANDLER responds to only one request line, it is possible to
configure a system with seven INTERRUPI' HANDLERS. This configuration is most
useful in multiprocessing systems where processor-to-processor interrupts are
required.

6.2.3.2 INTERRUPl'ER Options

The INTERRUPl'ER options are used to describe which interrupt request line a
given INTERRUPI'ER uses to generate its interrupt. The notation used is shown
below:

I (x)

where 'x' is the number of the interrupt request line used.

Since each interrupt request line is driven by open-collector drivers, there is
no specific limit on the number of requesters which may use a single line (e.g.,
a system could be configured with five I(5) INTERRUPTERS).

Special note should be made that INTERRUPI'ERS are often designed for dynamic
option selection. This is especially useful in a multiprocessor system where a
processor may assign a task to an intelligent device and configure the device's
INTERRUPI'ER to use the appropriate interrupt line upon task completion.

6-7

6.2.4 Environmental Options

Two environmental options should be specified:

• TENPERATURE
• HUMIDITY

The minimum and maximum operating temperature should be specified in centigrade.
The minimum and maximum storage temperature may be specified if the vendor deems
it to be important. When deriving the operating temperature, it should be
asst.uned that the board lies in a vertical plane with convection cooling only.

The maximum recommended operating humidity should be given. It should be
relative humidity and should be expressed as a percent. It may be assumed that
the mixing of the air in the proximity of the board is sufficient to prevent
condensation. A typical value for most boards is 90%.

6.2.5 Power Options

The power requirements for each VERSAboard should be specified as follows for
each voltage:

x mA max (y mA typ} at z VOC

6.2.6 Physical Configuration Options

Three optional configurations are allowed:

EXP (EXPANDED}
NEXP (NON-EXPANDED}
HALF (HALF SIZE}

6.2.6.1 Expanded Configuration

An expanded MASTER or SI.AVE is an option A32 and/or D32 standard width (see
Chapter 8} VERSAboard which is capable of driving/monitoring signal pins 89-120
of the J2 connector on the backplane.

An expanded backplane provides bused interconnects for signal pins 71-120 of the
J2 edge connectors. This allows expanded MASTERS and SLAVES to make use of the
extended address and data bus.

See Appendix E, Table 1.

6.2.6.2 Non-Expanded Configuration

A non-expanded MASTER or SLAVE is an option (A24 or Al6}/(Dl6 or D8} standard
width (see Chapter 8} VERSAboard which uses signal pins 71-120 of the J2
connectors as I/O lines.

A non-expanded backplane does not bus signal pins 71-120 of the J2 edge
connectors. This allows these pins to be used for I/O.

See Appendix E, Table 2.

6-8

6.2.6.3 Half-Size Configuration

A half-size MASTER or SLAVE is an option (A24 or Al6)/(Dl6 or D8) half width
(see Chapter 8) VERSAboard. Since it has no P2 edge connector, any I/O must be
from the top edge of the board.

A half-size backplane has no J2 connector. '!he busing provided for the signal
lines on the Jl connector is identical to that of the non-extended backplane.

6.2.6.4 Mixing Expanded, Non-Expanded, and Half-Size Options

Non-expanded VERSAboards should not be installed in an expanded backplane
because the backplane bused signallines on the J2 connectors wi 11 short I/0
ports together from board to board. If high voltage levels (e.g., RS-232 +12 V)
are driven by some board, it may cause damage to others on the backplane. -

Expanded VERSAboards may be installed in a non-expanded backplane, but they will
not be capable of doing extended addressing or longword transfers. Since
A32/D32 MASTERS and SIAVES are capable of placing standard and short addresses
on VERSAbus and since they are able to do word transfers, they wi 11 work
satisfactorily with the non-expanded boards which share the backplane.

Half-size VERSAboards may be installed in either expanded or non-expanded
backplanes. However, the card cage above the backplane will provide no support
for one edge of the board (this may be satisfactory for development purposes).

Expanded and non-expanded VERSAboards cannot be installed in a half-size
backplane because of the obvious mechanical incompatibility.

It would be possible to construct a backplane/cardcage which would support all
three VERSAboard configurations by having a certain number of each type of slot.
Where this is the case, the vendor should specify the number of slots provided
for each configuration supported.

6-9

6.2.6.5 Examples of Vendor Specification Sheets

The following two examples show how a vendor of VERSAbus compatible products may
use the option notation described in this chapter to concisely describe product
features.

VERSAbus Card Rack

SPECIFICATION

ENVIRONMENrAL OPTIONS:

OPERATING TEMPERATURE: oo C to 700 C

STCEAGE TEMPERA'IURE: -650 C to +1500 C

MAXIMUM OPERATING HUMIDITY: 90%

PHYSICAL CONFIGURATION OPI'IONS

EXP (4 SLarS)

NEXP (4 SLOI'S)

6-10

MASTER DATA TRANSFER OPTIONS

A24:Dl6

VERSAboard
SPECIFICATION

~ ONE OF AP, or NAP (STAT)
M;JY. ONE OF DP, or NDP (STAT)
TOUT = ~ ONE OF 4, 8, 16, or 32 us (STAT)

ARBITER OPTIONS

M;JY. ONE OF PF, or NONE (STAT)

REQUESTER OPTIONS

~ONE OF R(O), R(l), R(2), R(3), or R(4) (STAT)
ROR or RWD

INTERRUPT HANDLER OPTIONS

~ ONE OF IH(x-y) (STAT) •
where 1 ~ x ~ 7 and x ~ y ~ 7

INTERRUPTER OPTIONS

~ONE OF I(l), I(2), I(3), I(4), I(5), I(6), or I(7) (DYN)

ENVIRONMENTAL OPTIONS

OPERATING TEMPERA'IURE: oo C to 700 C
MAXIMUM OPERATING HUMIDITY: 90%

POWER OPTIONS

1.2 A MAX (900 mA typ) at +5 VDC
300 mA MAX (250 mA typ) at +12 VDC
150 mA MAX (120 mA typ) at -12 VDC

PHYSICAL CONFIGURATION OPTIONS

NEXP

6-11/6-12

7.1

7.2

7.2.1

7.2.2

7.2.3

7.3

7.4

7.5

7.6

7.6.1

7.6.2

7.6.3

7.6.4

CHAPTER 7

VERSAbus ELECTRICAL SPECIFICATIONS

Page

INTR.ODlJCTION • 7-1

Pa-JER DISTRIBUTION••••••••••••••••••••••••••••••••••••••• 7-1

Bus Voltage/Current Specifications ••••••••••••••••••••• 7-1

Ground Distribution 7-3

Card F.dge Connector Electrical Ratings ••••••••••••••••• 7-3

ELECTRICAL SIGNAL CHARACTERISTICS •••••••••••••••••••••••• 7-4

DRIVER .SPECIFICATIONS •••••••••••••••••••••••••••••••••••• 7-5

RECEIVER SPECIFICATION••••••••••••••••••••••••••••••••••• 7-7

BACKPLANE SIGNAL LINE INTERCONNECTIONS 7-7

Termination Networds ••••••••••••••••••••••••••••••••••• 7-7

Characteristic Impedance ••••••••••••••••••••••••••••••• 7-8

Board Level Loading •••••••••••••••••••••••••••••••••••• 7-11

I/O Pin Voltage/Current/Frequency Constraints •••••••••• 7-11

7-0

CHAPTER 7

VERSAbus ELECTRICAL CONSIDERATIONS

7.1 INI'RODUCTION

This chapter defines the non-timing electrical specifications for proper
VERSAbus interfacing. VERSAbus signal levels are normally TTL generated,
although any technology which complies with the specification may be used. In
addition, recommendations and examples are included in many sections to aid the
designer in obtaining optimum system performance.

7.2 PCM'ER DISTRIBUTION

Power in a VERSAbus system is distributed on the backplane as regulated direct
current (DC) voltages. The available voltages are described as follows.

+5 Vdc is the main logic level and normally has the largest associated current
requirement. The bulk of the system circuitry - including TTL logic, MOS
microprocessors, and memories - requires this voltage.

+12 Vdc represent the auxiliary digital logic supplies. They supply the needs
for MOS men:nries and I/O circuitry requiring multiple voltages. They may also
be used for analog purposes. A -5 Vdc bias voltage and a -5.2 Vdc ECL voltage
may also be derived from -12 Vdc, as needed. These supplies normally have lower
current requirements than the +5 Vdc.

+5 Vdc Standby is used for distributing battery backup power. The standby
voltage is maintained during system power loss to sustain memory and time-of-day
clocks. If the user is not concerned with power fail protection, this supply
line should be supported by the normal +5 Vdc supply.

+15 Vdc voltages are intended for analog specifications. These voltages may be
used directly by VERSAboards, or further regulated on-board where required.
These voltage sources should be very carefully regulated with respect to AC
ripple and noise filtering. Care should be taken in their use to avoid
superimposing voltage variations on these lines due to varying loads or noise.

7.2.1 Bus Voltage/Current Specifications

Table 7-1 summarizes the bus voltage/current specifications. The listed
specifications are the maximum allowed variance as measured at the edge
connector of any card plugged into the backplane.

The percentage listed under VARIATION is the total DC tolerance allowed at the
VERSAboard edge connector. This percentage is the sum expressed as:

VARIATION = DISTRIBUTION + LINE-REGUIATION + LOAD-REGUIATION

7-1

-......J
I

N

TABLE 7-1. Bus Voltage Specifications

RIPPLE & NOISE
MNEMONIC DESCRIPI'ION VARIATION BELClV 10 MHz CONNECTOR Pl CONNECTOR P2

(see NOTE) (PK-PK) PIN NUMBER PIN NUMBER

+5V +5 Vdc power +5.0%/-2.5% 50 mV 1, 2, 129-132 7 - 10

+12V +12 Vdc power +5.0%/-3.0% 50 mV 125 - 128 11 - 12

-12V -12 Vdc power +3.0%/-5.0% 50 mV 121 - 122 15 - 16

+5V S'IDBY +5 Vdc standby +5.0%/-2.5% 50 mV 133 - 134 -

+15V analog power +5.0%/-3.0% 25 mV - 69 - 70

-15V analog power +3.0%/-5.0% 25 mV - 67 - 68

GND ground Ref. Ref. 3,4,23-24, 1-2,3-4,5-6,
27-28, 31-32, 97-98,101-102
61-62,67-68,
71-72,119-120,
123-124,139-140

15V GND ±15V ground Ref. Ref. - 13 - 14
return

NOTE: The non-symetric variation spec is given to ensure that the DC power will remain
within the +5% tolerance required by most IC's despite any drops resulting from
power distribution on individual VERSAboards.

MAXIMUM
CURRENT DRAW

PER SLOT

8 amps

6 amps

3 amps

3 amps

3 amps

3 amps

where:

DIS'IRIBUTION

LINE-RffiUI.ATION

LOAD-RffiUI.ATION

is defined as the percent variation caused by backplane
effects (resistive losses and differences from power supply
sense point).

is defined as provided in the vendor's power supply
specification.

is defined as provided in the vendor's power supply
specification.

The voltage tolerances listed apply to steady state conditions in the system.
If very high current fluctuations occur due to system operation (such as might
be caused by merrory refresh), the response time of the voltage distribution
system becomes important. Sufficient bypass capacitance and adequate power
supply response time must be provided for such cases.

7.2.2 Ground Distribution

The main ground distribution (mnerronic "GND") is the system return for all
+5 Vdc and +12 Vdc current. A large number of connector pins have been provided
along both-connectors, and these allow an extensive, low inductance ground
network. These pins should be tied to a comm:>n ground plane in the backplane pc
board.

The _±15 Vdc ground return should be kept separate from the main system ground in
the backplane. The analog power must have very low noise and must have little
DC variation from the system ground at the analog conversion devices in the
system. Therefore, the +15 Vdc ground return should be tied to the system
ground only on the pc board with analog conversion logic devices and, further, a
very low resistive loss interconnect (large metal areas) should be used to avoid
DC voltage variation in the ground potential.

7.2.3 Card Fdge Connector Electrical Ratings

The card edge connector mechanical specifications are listed in Chapter 8. The
electrical specifications are listed below:

a. Voltage rating: 200 volts DC, minimum pin to pin
b. Current rating: 2.5 A per contact
c. Contact resistance: 50 milliohms maximum at rated current
d. Insulation resistance: 1000 megohms, minimum pin to pin

7-3

7.3 ELECTRICAL SIGNAL CHARAcrERISTICS

Other than power supply lines, all VERSAbus signals are limited to positive
levels between 0 and 5.0 volts. As described in paragraph 1.4.1, the. signal
levels are:

a. 0.0 V < Low level < 0.8 V
b. 2.0 V ~ High level-~ 5.0 V

Figure 7-1 gives a simple graphic representation of these levels.

5.0 v

2.0 v

0.8 v

' ' LOW LEVEL

'\ ' \, ssss
FIGURE 7-1. VERSAbus Signal Levels

Depending on the function required, VERSAbus uses three-state, wired-OR, and
totem pole drivers. The drivers are specified in paragraph 7.4, and the
receivers are specified in paragraph 7 .5. Appendix C lists signal lines by
function, and gives their associated characteristics.

7-4

7.4 DRIVER SPECIFICATIONS

Totem-pole, three-state, and open collector drivers are defined as follows:

a. Totem-pole - an active driver in both states which sinks current in the
low state and sources current in the high state. Totem-pole drivers are
used on signals having only a single driver per line (e.g., daisy-chain
lines).

b. Three-state - similar to a totem-pole driver except that it can go to a
high impedance state (drivers turned off) in addition to the low and high
logic states. Three-state drivers are used for lines that can be driven
by several devices at different points on the bus. Only one driver can
be active at any one time (e.g., data transfer bus).

c. Open collector - sinks current in the low state but sources no current in
the high state. Terminating resistors on the backplane ensure that the
signal line voltage rises to a high level whenever it is not driven low.
Open collector drivers are used for signal lines which can be driven by
several devices simultaneously (e.g., interrupt and bus request lines).

Table 7-2 lists driver specifications. The 74S240 can be used for totem-pole or
three-state drivers requiring 64 mA current sink capability. All standard 74LS
outputs can drive unterminated line totem-pole applications using 8 mA current
sink. Open collector applications can use the 74S38.

7-5

TABLE 7-2. Bus Driver Specifications

DRIVER TEST
TYPE PARAMETERS MIN. MAX. UNIT CONDITION

Totem-pole Lo'•7 state (VoL) 0.55 v Sink 64 mA

(High current) High state (VoH) 2.4 v Source 3 mA

Totem-pole Low state (VoL) 0.5 v Sink 8 mA

(Low current) High state (VoH) 2.7 v Source 400 uA

Three-state Low state (VoL) 0.55 v Sink 64 mA

........
I High state (VoH) 2.4 v Source 3 mA

O'I

Off-state output
current (Ioz) + 50 uA 2.4V or 0.5V applied -

Open Collector Low state (VoL) 0.7 v Sink 40 mA

High state output
current (IoH) 50 uA 5. av applied

NOTE: For output current, a positive value indicates current flow into the driver.
A negative value indicates current flow out of the driver.

7.5 RECEIVER SPECIFICATICNS

Table 7-3 lists the starrlard receiver specifications. Bus receivers should have
input diode clamp circuits to prevent excessive negative voltage excursions.

The same specifications apply to all signal lines with the exception of the low
current drive daisy-chain lines. A starrlard 74IS receiver meets this
specification. The standard specification of 50 uA can be met by using devices
with starrlard PNP inputs.

TABLE 7-3. Bus Receiver Specifications

PARAMETER MIN. MAX. UNIT INPUT VOLTAGE

Low state input
voltage (VIL) 0.8 v
High state input
voltage (VIa> 2.0 v
Low state input
current (IIL> -400 uA 0 < v < 0.5 - -
High state input
current (Ira> * 50 uA s.o > v > 2.7 - -

* High state input current IrH should be limited to 20 uA for low current
totem-pole drive lines. (20 uA represents a starrlard LS TI'L input.)

7.6 BA<l<PLANE SIGNAL LINE INTERCCDJECTIONS

VERSAbus is an asynchronous, high speed bus intended for high performance
sys tans. Generally, the signal line distance on the backplane will be short
(18" maximum) and signal line noise will be low. The following paragraphs
s~cify arrl describe signal line characteristics arrl elements that influence
backplane signals.

7.6.1 Tennination Networks

A starrlard tennination is used on each errl of all VER3Abus signal lines except
daisy-chain lines. The termination serves two purposes:

a. reflection and ringing reduction,
b. high state pullup for open collector drivers.

The Thevenin equivalent of the starrlard tennination is shown in Figure 7-2. One
possible resistor network configuration which achieves this is also shown.
Resistor values arrl source voltage of the Thevenin equivalent must be 5%
tolerance maximum.

7-7

sv +sv

R:194 V=2 .94 VD C

L __ _

RESISTOR NETWORK THEVENIN EQUIVALENT

FOR EACH TERMINATOR

FIGURE 7-2. Termination Network

The signal line usage of termination networks is summarized below:

a. High current totem-pole drive lines, three-state lines, and open
collector drive lines all use terminations at both ends of the line.

b. Low current (8 mA) totem-pole drive lines (daisy-chain lines) use no
terminations.

7.6.2 Characteristic Impedance

Each signal in the backplane (normally multilayer) has an associated
characteristic impedance Z0 • This characteristic impedance is important
because discontinuities in Z0 (due to capacitive effects and loads on the bus)
and mismatches between Z0 and the terminations can cause reflections and
ringing on signal waveforms.

Figure 7-3 shows a micros trip signal line cross section which is the normal
configuration for a multilayer backplane signal line. The Z0 is a function of
the width and thickness of the line, the thickness of the dielectric, and the
relative dielectric constant (er). Figure 7-4 shows characteristic impedance
versus microstrip line width for common thickness of fiberglass-epoxy board.
More information on microstrip lines can be found in the MECL System Design
Handbook, Motorola, 1980.

7-8

FIGURE 7-3.

Z, IMPEDANCE
(OHMS)

MICROSTRIP LINE

VOLTAGE PLANE

Backplane Microstrip Signal Line Cross Section

140~~~-r-----.-----.--.--.--.--,--,--,----.----r-,--,-----r----r---r---r---r--..

~ ~ 1 oz. Cu; t = 0.0015"
1 2 0 ~ ~

1

Surface Co ~du cto rs. -+---+----+-----+---+--+---1

~ ~ ~ G-1 0 Mate rial; er = 4. 7 --+----t----t----t----t----t

100 ~ ~ Dielectric _

~ ~ ~ Thickness, h_
1'. . ""N --;--.. I I

80 ~ """"' ~ 0100" "'N N ~·-+-~ ~ ~ r--+-4...J

20t--+-T--+--+--+---+--t--+--+--+--+--+--+-+--t----tr--<~t--+---f

o.__...._......__.__.___.__.__._~~__._-----_...____.__.__...__.__..__...__,

10 20 30 40 50 60 70 80 90 100 110

LINE WIDTH (Ml LS)

FIGURE 7-4. Impedance versus Line Width and Dielectric Thickness
for Microstrip Lines

7-9

As stated in section 7.6.1, the terminations on VERSAbus serve to help minimize
ringing. Although an impedance match (the best case) is not maintained between
the termination networks and the signal line impedance, it is important not to
allow the signal line Z0 value to become too low. The calculated Z0 of the
microstrip line itself - e.g., its unloaded Z0 (considering no loading effects
of pc boards, connectors, and plated-through holes) - should be no lower than
100 ohms.

The actual characteristic impedance of a backplane signal line is called the
effective characteristic impedance zcf and will be lower than the Z0 due to
capacitive effects of plated-through holes and connectors. The resulting
capacitance of holes and connectors makes the Z0 go below the calculated
100 ohm value that is discussed in the preceding paragraph. Although
plated-through holes are necessarv to accommodate connectors, additional holes
should be kept to a minimum.

The designer can calculate the effects of these capacitances.
empty plated-through hole has one picofarad of capacitance. A
hole with a connector pin has two picofarads of capacitance.
effective impedance zci can be calculated by adding up the total
pin capacitances and using the following equation:

where:

z I =
0

I Z0 = effective impedance (line with holes)

Z0 = impedance of just the microstrip line

Ch = sum of the hole capacitance

Typically, an
plated-through
The resulting
hole/connector

C0 = intrinsic line capacitance of microstrip line without
holes (capacitance/ft x ft). See Figure 7-5.

7-10

The resulting Z~ should not go below 60 ohms.

When PC boards are in the svstem, they add more capacitive load to the bus
lines. The following paragraph gives limits on card loading.

7.6.3 Board Level Loading

For any VERSAboard, the following rules apply:

a. Total capacitive load on any VERSAbus line shall not exceed 25
picofarads. Typically a driver has a 10- to 15-picofarad capacitance
and a receiver has a 3- to 5-picofarad capacitance. The capacitance of
the signal line connecting these to the VERSAbus can be calculated using
the capacitance per foot shown in Figure 7-5.

b. Any signal line input to a VERSAboard cannot source more than 850 uA at
0.55 V nor sink :rcore than 150 uA at 2.4 volts.

The system clock (SYSCLK) line loading is subject to more stringent
requirements. Only one driver is used per system, and the driver should be
located at one end of the backplane. Only one receiver can be used per card,
and total card input capacitive load on the SYSCLK line shall not exceed 8 pf.

7.6.4 I/O Pin Voltage/Current/Frequency Constraints

To limit noise effects, the following limits are recommended for each I/O pin:

• Maximum voltage = + 24 volts
• Maximum Rate of Change = 2.5 volts/nanosecond
• Maximum Current = 1 amp

7-11/7-12

CHAPTER 8

MECHANICAL SPECIFICATIONS

Page

8.1 INTRODUCTION... 8-1

8. 2 VERSAbus BACKPLANE • 8-1

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

8.2.6

8.3

8.3.1

8.3.2

8.3.3

8.3.4

8.3.5

8.3.6

Backplane Construction Techniques •••••••••••••••••••••

Reference Designations and Pin Numbering Standards

Backplane/VERSAboard Dimensional Requirements ••••••••••

Edge Connectors ..
Auxiliary Pins •••

I/O Connections ..
VERSAboa rds •••••••••••••••••••••••••••• • • • • • • • • • • • • • • • • • •

VERSAboard Construction Techniques •••••••••••••••••••••

Reference Designations and Pin Numbering Standards •••••

VERSAboard Dimensions ••••••••••••••••••••••••••••••••••

VERSAboard Bus Edge Connectors •••••••••••••••••••••••••

VERSAboard Non-bus Edge Connectors •••••••••••••••••••••

VERSAboard Ejectors ••••••••••••••••••••••••••••••••••••

8-0

8-2

8-2

8-6

8-8

8-10

8-10

8-15

8-15

8-15

8-16

8-19

8-19

8-19

CHAPTER 8

MECHANICAL SPECIFICATIONS

8.1 INI'RODUCTION

Information in this chapter is provided to assure that VERSAbus backplanes, card
racks, and PCB's are mechanically compatible. Throughout this chapter, specific
vendor part numbers are given which may be used to meet the requirements of this
specification. As long as the specifications given in this chapter are complied
with, any compatible vendor part may be substituted.

Throughout this chapter, the following terminology is used:

Backplane - A multilayer PC board into which 140-pin and, in most cases,
120-pin edge connectors are installed. This PC board interconnects some of
the pins of these connectors to provide a bus.

VERSAboard - A PC board which is plugged into the backplane and communicates
with other VERSAboards installed in the same backplane.

The "front" of a backplane is the side from which the VERSAboards are
inserted into the edge connectors.

The "front" of a VERSAboard is the side on which the components are mounted.

The "bottom edge" of a VERSAboard is the edge which provides the PC fingers
for insertion into the edge connectors of the backplane.

8.2 VERSAbus BACKPLANE

This portion of text provides the following VERSAbus backplane information:

a. construction techniques,

b. reference designations and pin numbering standards,

c. PCB relationships,

d. sockets,

e. I/O connectors,

f. socket/connector-pin assignments.

8-1

8.2.1 Backplane Construction Techniques

Many backplane construction techniques are available to the designer. Backplane
construction can be of a multilayer laminated or unlaminated design. Following
is a description of a multiple layer.design composed of two discrete, two-sided,
glass epoxy boards separated by a mylar insulator with a mylar clear top layer.
Figure 8-1 illustrates this backplane construction. The two boards and mylar
insulators are held together, utilizing high force press fit socket contacts.
This process provides a gas-tight connection between the contact and the plated­
through hole in each board. Each side or layer of a board provides signal
conductors or a voltage/ground plane. Refer to Figure 8-2. The first and
fourth layers of the backplane contain the signal conductors. The second layer
provides the voltage plane, and the third layer is the ground plane. Contact
pins are press fitted into the two boards and the mylar insulators, forming the
four-layer backplane. This process relies upon the backplane to provide the
structural rigidity of the edge connector. Plastic insulators are then inserted
over the contacts to form edge connectors.

A second possible backplane construction technique would be to laminate the two
boards. This lamination process would bond the two boards and insulators
together. Then edge connectors are inserted into the backplane and soldered.

NOTE

Due to the large number of contacts on the VERSAboards
that plug into the backplane, the board insertion forces
are quite high. Therefore, stiffness of the backplane is
a major design consideration.

8.2.2 Reference Designations and Pin Numbering Standards

The following standards are recommended for backplane identification purposes
(see Figure 8-3):

a. Card slot locations are designated Al, A2, A3, etc. The numbering
technique is illustrated in Figure 8-3. Sequence must be consistent with
the direction of flow of the daisy-chains, with Al being first in the
chain.

b. Edge connectors on the backplane will be designated Jl and J2. Jl is the
140-pin socket, and J2 is the 120-pin socket.

c. Numbering of both the 140- and 120-pin sockets is depicted in Figure 8-3.
Odd numbered pins are associated with the left side of the edge
connector, and the even pins with the right side.

d. Additional connectors (e.g., for power) located on the front side of the
backplane will be designated Pl, P2, P3, etc. The numbering technique is
illustrated in Figure 8-3.

. 8-2

LA YER 1 (COMPONENT SIDe)
STRIPLINE

LA YER 2 (PWll)

LAYER 3 (GND)

LAYER 4 (BACKPLANE) STRIPLINE

CLEAR MYLAR INSULATOR

TWO SIDED BOARD

MYLAR INSULATOR -

TWO SIDED BOARD --

INSULATOR

PRESS FmED
CONTACT

.082 THK

.004 THK

FIGURE 8-1. Typical Multilayer Backplane/PCB Construction Technique

8-3

SIGNAL LANDS

VOLTAGE PLANE

GROUND PLANE

SIGNAL LANDS

PRESS-FITTED
CONTACT POINT

CLEAR MYLAR INSULATOR

CONTACT

LAYER 1

MYLAR INSULATOR

LAYER 3

LAYER 4

WIREWRAP PIN

FIGURE 8-2. Typical Multilayer Backplane/PCB Cross-Sectional Area View

87'4

co
I

ui

VERSA.BOARD
FRONT SIDI:

J2
120-PIN

EDGE CONNECTOR

J1
140•PIN

EDGE CONNECTOR

~

CARO SLOT-~-+-~

INSTALLED

VERSABOARDS

1 2

119 120

1 2

139 140

DESIGNATIONS "--------------' db
I ~-------------13.5" MAX. -----------I~~.

DIRECTION OF DAISY CHAIN PR.OPAGATION
~

AS VIEWED FROM FRONT SIDE

FIGURE 8-3. Backplane Reference Designations and Pin Numbering Standard

8.2.3 Backplane/VERSAboard Dimensional Requirements

Certain specifications must be adhered to when designing a VERSAbus backplane
and compatible VERSAboards. Figure 8-4 illustrates the following relationships:

a. Board Spacing (Bs) - center-to-center spacing of the edge connectors Jl
and J2 are as follows:

1. Printed Circuit Board spacing - .900 minimum
2. Wire Wrap Board spacing - 1.4 minimum

b. Board Thickness (BT)- board thickness is 0.062 + .005 inch.

c. Component Lead Length (LL) - length of the component leads protruding
through the back of the VERSAboards must not exceed .100 inch.

d. Component Height (CH) - height of the components on the front of each
VERSAboard must not exceed a.so inch.

e. Board Warpage (BW) - maximum allowable VERSAboard warpage is .125 inch.

f. Wire Wrap Pin Height (WW) - length of the wire wrap pins protruding
through the back of the VERSAboards must not exceed .650 inch.

8-6

VIEW FROM FRONT OF BACKPLANE

BACKPLANE
I CARD RACK

: rr COMPONENT ~ : s (.125 MAX)]

c-======~::~--V-=-E-=-R-=-S-=-A-=-B-=-0-=-A-=-R-=-D-=--~::-::-::.::~~J:::--===========::f
I I
I I

COMPONENT I
VERSABOARD

t I

_t______:.---______u,. ____ c_o_M_Po_N_E_N_T~--~----~
VERSABOARD

1e:
(.062 ±.005)

I COMPONENT

VERSABOARD

I_(------'~"---v-e c_R o_s M-:-:-:-:N-:-D-~-------,1
I I
L ________ I (.650 ±.005)

PCB
(.90 MIN.)

WWB
(1.40 MIN)

FIGURE 8-4. Backplane/VERSAboard Dimensional Requirements

8-7

8.2.4 Edge Connectors

The Pl and P2 edge fingers on the VERSAboard are inserted into two edge
connectors mounted to the backplane. There are basically two types of edge
connectors:

a. modular
b. prefabricated

Modular edge connectors are installed on the backplane in two steps. First,
contacts are press fitted into the backplane. Plastic insulator strips are then
inserted over the socket contacts to form the edge connector. Refer to
Figure 8-5. Recommended vendors are SYMTRON and ELFAB.

Prefabricated edge connectors are inserted into the backplane in a one-step
operation. The socket contacts and socket insulator construction is of a
one-piece design. Recommended vendors are SAE and AMP.

CAUTION

These edge connnnectors are not necessarily
interchangeable dimensionally, and may affect
the design of the card cage (see Figure 8-18).

8-8

INSULATOR

.550

.125 r--­
MUL TILA VER _J
BACKPLANE

A25J L .200

SQUARE WIREWRAP PIN

VERSABOARD REMOVED VERSABOARD INSERTED

CAUTION

THE ABOVE DIMENSIONS CAN VARY,
DEPENDING ON MANUFACTURER.

FIGURE 8-5. Typical Backplane Edge Connector

8-9

f
.350 BOARD
INSERTION

.577±.020

f

8.2.S Auxiliary Pins

It is a VERSAbus requirement that auxiliary pins be provided on the backplane.
These pins must all be connected to ground and mounted per Figure 8-6. There
must be one such pin for each unbussed pin in connector P2.

8.2.6 I/O Connections

Ribbon cable I/O connections are made via ribbon connectors which are pushed
onto the wirewrap pins protruding from the back of the backplane. These
wirewrap pins are part of the contacts of connector J2. The ribbon connectors
push onto pins 17 through 66 and 71 through 120. For proper placement on the
row of wirewrap pins, keying headers are installed over the pins, and then the
ribbon cable connector is inserted into the keying header. See Figures 8-6
through 8-9.

The I/O connector is a SO-conductor ribbon cable female connector that is
inserted into the keying header. See Figure 8-6. As illustrated, the ribbon
connector is molded plastic. A convenient strain relief handle or plastic loop
handle is recommended to minimize stress on the connector and cable assembly
during removal operations. See Figure 8-6. Recommended vendors are 3M and AMP.

The keying headers may be installed two different ways on the backplane.

Figures 8-8 and 8-9 illustrate single and dual I/O connector header
configurations.

See Figure 8-8. The first method (called the single cable method) allows 50 I/O
signals to be taken from the backplane on one SO-conductor ribbon cable. While
this minimizes the amount of cabling required, it may introduce unacceptable
levels of cross-talk between signal lines.

See Figure 8-9. The second method (called the dual cable method) takes 25 I/O
signals from the backplane in each of two SO-conductor cables. The additional
25 lines in each ribbon cable are grounded by the auxiliary ground pins which
parallel the two rows of signal pins.

8-10

FIGURE 8-6. I/o Cable Connection

8-11

HEADER KEY

KEYING POST

FIGURE 8-7. AMP Two-Piece Keying Header

8-12

10-r 1-of--_ BACKPLANE EDGE CONNECTOR
PCB--------~ I (MOUNTED ON FRONT

o O SIDE OF BACKPLANE)

I : I :i--- BACKPLANE WIRE WRAP PINS

0 I 0 0 I 0

0 0 I I 0 0 KEYING HEADER

o I o o
o o I o o

o I o I o o
0 0 I 0 I 0

0 I 0 I I 0 0

GROUND PINS (NOT USED)~ I 1 t : ! ___ _
SIGNAL PINS-------'- ,__ ------SIGNAL PINS

GROUND PINS (NOT USED)

BACK VIEW OF BACKPLANE

BACKPLANE WIRE WRAP PINS

---- 2 PIECE KEYING HEADER ____ ___,,

FIGURE 8-8. Single Cable Method Keying Header Configuration

8-13

1/0 CONNECTOR HEADER A

GROUND PINS

OF BACKPLANE BACK VIEW

o I o
0 I I 0 I 0

o I o I o 0

I 0 I 0

o 1 o~ I I

SIGNAL PINS

IRE WRAP PINS

HEADER A - 1/0 KEYING

HEADER B 1/0 KEYING

FIGURE 8-9. Dual Cable figuration . Header Con Method Keying

8-14

8.3 VERSAboards

This portion of text provides the following VERSAboard information:

a. construction techniques,
b. reference designations and pin numbering standards,
c. overall dimensions,
d. edge connector information,
e. ejector information.

8.3.1 VERSAboard Construction Techniques

Many PCB construction techniques are available to the designer. Because of the
large physical size of the board, a multilayer PC design is recommended;
however, this is not a requirement for VERSAbus compatibility. If a multilayer
design is not used (i.e., no ground plane is provided), care should be taken to
assure that an adequate ground grid is provided on the- board.

8.3.2 Reference Designations and Pin Numbering Standards

Refer to Figure 8-10.
identification purposes:

The following standards are recommended for PCB

a. Edge connectors on the bottom edge of the VERSAboard are designated Pl
and P2. Pl is the 140-pi n edge connector, and P2 is the 120-pi n edge
connector.

b. Numbering of both the 140- and 120-pin edge connectors is depicted in
Figure 8-10. Odd numbered pins make contact with the PCB component side,
and the even pins with the solder side.

c. Edge connectors on the top edge of the PCB are designated Jl, J2, J3,
etc.

d. Numbering of Jl, J2, and J3 edge connectors is depicted in Figure 8-10.
Odd numbered pins are associated with the PCB component side, and the
even pins with the solder side.

8-15

2 x 2 2 ----
J1 J2 J3

(COMPONENT SIDE)

\1 P2 119 ------ _1 _______ P_1 ____ __.1~3-9

FRONT SIDE PIN
NUMBERING

H
FRONT SIDE PIN
NUMBERING

2 140 •• .._ _ ___.----BACK· SIDE PIN
NUMBERING

120 2
SOLDER SIDE SOLDER SIDE

VIEW FROM FRONT SIDE OF VERSAboard

FIGURE 8-10. VERSAboard Reference Designations and Pin Numbering Standards

8.3.3 VERSAboard Dimensions

Figure 8-11 illustrates the standard dimensions applicable to VERSAboards. In
addition to the standard dimensions, component mounting zones and "top edge"
cabling clearances for card rack enclosures are given. The remainder of the
PCB, including edge connectors Pl and P2, must be within the dimensions shown in
Figure 8-11.

Figure 8-12 illustrates the alternate (half size or reduced) VERSAboard
dimensions. These dimensions enable a designer to manufacture a half size board
that is compatible only with the 140-pin VERSAbus backplane socket Jl. Unless
the free edge is supported, it is not recommended that this size board be used
in a card cage with full size boards.

8-16

CX>
I

-.....]

9.25

.38 TYP I
II
I
I
I
!
I
I
I
I
ti
I
I
I
I
I
I
I

14.500

.75 MAX EXTENSION OF CONNECTORS OR
COMPONENTS ABOVE BOARD EDGE

~
I
Ll

I
I
I
I
i
I
I
I
I
I
I

8.60

I· COMPONENT SIDE

II
I
I

I
I
I
I
I
II
1·
I
I
I
I
I
I

1; I I'

~-----=~'~------------------~'1in-------ft••~-P~2~--

.30 TYP
(FINGER)

~~-050±.003
TYP FINGER WIDTH

60 FINGERS WITH 59 EQUAL SPACES
@ .100=5.900 TOL NON-CUM

FIGURE 8-11.

P1

'-.
"--PIN+ 1

ODDS COMPONENT SIDE
EVENS SOLDER SIDE

.095

---- 70 FINGERS WITH 69 EQUAL SPACES ---­
@ .100=6.900 TOL NON-ACUM

Standard Size PCB

.25 x 45°
(2 PLS)

DATUM POINT TOOLING HOLE
.100±.002 DIA (DO NOT PLATS

NO COMPONENTS BETWEEN DASHED
LINE AND BOARD EDGE (2 PLS)

TOLERANCE:_
2 PLACE :!: .020
3 PLACE :!: .010
ANGLEt1

.06R MAX
(4 PLS)

.04 x 45
(4 PLS)

+
.75
TYP

t

t

.38 TYP

NO COMPONENTS
BETWEEN DASHED LIN
AND BOARD EDGE
(2PLS)

TOLERANCE:

2 PLACE DEC ± .020

3 PLACE DEC ± .010
ANGLES ±: 1"

.08R MAX
(2PLS)

.04X45°
(2PLS)

I 111------------ 7.400 :!: .006 ----------.!

PIN +1

.75 MAX EXTENSION OF

CONNECTORS OR COMPONEt.ITS
ABOVE BOARD EDGE

COMPONENT SIDE

P1

Ji.. .060 ±.003
TYP FINGER WIDTH

ODDS COMPONENT SIDE
EVENS SOLDER SIDE

flllllr---- 70 FINGERS WITH 89 EQUAL SPACES---.-t
@ .100= 8.900 TOL, NON ACUM

i..--------- 7.090 + .ooo --------'"I
- .010

FIGURE 8-12. Half Size PCB

8-18

·.250

DATUM POINT
TOOLING HOLES
.100 :!: .002 DIA
(DO NOT PLATE)

8.80

9.25

.30 TYP
(FINGER)

8.3.4 VERSAboard Bus Edge Connectors

Figures 8-11 and 8-12 define the VERSAboard bus edge connector requirements.
All information contained in Figure 8-13 must be adhered to for VERSAbus
compatibility.

8.3.5 VERSAboard Non-bus E'dge Connectors

Figure 8-13 illustrates the PCB non-bus edge connector type and spacing
information. There is no prescribed limit to the number or type of I/O
connections which may be made off the top edge of the board as long as they
don't exceed the allowed dimensional restrictions given in Figure 8-13.

NOTE

It is recommended that use of cable connections to the top
edge of the board be minimized, since it makes the job of
of installing and removing VERSAboards m:>re difficult.

8.3.6 VERSAboard Ejectors

VERSAboard ejectors facilitate the insertion and rem:>val of VERSAboards within a
card rack environment. Figure 8-14 defines the ejector and associated card rack
requirements. A reconunended vendor is CAI.MARK.

8-19

..30 MIN -----.
GOLD PLATE

EDGE CONN. OPTION

.700 1.952
..._ _____ A +.000

-.010

SEE VIEW A
(SLOT LOCATION A DISCRETIONARY
DECISION OF DESIGN ENGR)

.160

EDGE CONN. OPTION FOR
TWO OR MORE CONNECTORS

.160

FOR 1 CONNECTOR ONLY SEE VIEW A .
(SLOT LOCATION A DISCRETIONARY DECISION OF DESIGN ENGH)

CONTACT QTY ·DIM A . .
20 1.095

26 1.395

34 1.795

HORIZONTAL RUN SPACING
.5 MIN. FROM TOP OF BOARD EDGE

40 2.095

50 2.595 VIEW A

FIGURE 8-13. Typical VERSAboard Non-bus Edge Connectors

8-20

ROLL PIN STAINLESS STEEL---._
(3/32 DIA) FURNISHED WITH -----...__
EACH INSERTER EXTRACTOR

PCB TOOLING HOLE

NOMINAL POSITION OF CARD EDGE ---­
WHEN SEATED IN CONNECTOR THE
INSERTEMEXTRACTOR WILL ALLOW
.OS OVER'tRAVEL FOR TOLERANCE
TAKE-UP. --~

·., .475 2.00

/'
I

.24MIJ1
~j

.06 MAX

INSERTER EXTRACTOR CALMARK P/N 107-1013

APPLICATION DATA : TWO INSERTERjEXTRACTORS ARE REQUIRED PER CARD. PROVIDES INSERTION AND
EXTRACTION TRAVEL OF .3S MINIMUM WITH A MECHANICAL ADVANTAGE OF APPROX 4:1.

FIGURE 8-14. VERSAboard Ejectors

APPENDIX A

GLOSSARY OF VERSAbus TERMS

Axx* - the symbolic notation for a i:articular address line on the
VERSAbus, where 'xx' may have the values 01 through 31. These
lines are driven by the module currently designated as the
VERSAbus MASTER to selectively address one and only one other
module. The module is designated as the addressed SLAVE for the
purpose of initiating a data transfer between two modules.

A24 - the VERSAbus option which identifies a particular module as
capable of driving or responding to only 23 address lines. (See
the section on SUBSET compatibility for further information.)

A32 - the VERSAbus option which identifies a particular module as
capable of driving or responding to all 31 address lines. (See
the section on SUBSET compatibility for further information.)

APARITYO* - the parity line associated with the signal lines AOl* through
A23*, LWCRD*, and AMO* through AM7*. This line represents the
'exclusive OR' of the 32 lines above. Therefore, the 'exclusive
OR' of this line with all of those lines should always be zero.
This condition is often referred to as even parity. If the MASTER
currently in control of the VERSAbus and the SLAVE being addressed
are both option AP (meaning: address parity), then the MASTER will
generate this parity signal and the SLAVE will verify it. (See
the section on SUBSET compatibility for further information on
other combinations of MASTER and SLAVE options.)

APARITYl* - the parity line associated with the signal lines A24* through
A31*. This line represents the exclusive OR of these eight
additional address lines used in extended addressing on the
VERSAbus, Option A32. (See APARITYO* for additional details and
the section on SUBSET compatibility for information on
combinations of MASTER and SI.AVE options.)

AP - the option designated when a module will properly generate (if
MASTER) or test (if SLAVE) address parity.

APVAL* - a signal line driven low by AP MASTERS whenever they place an
address on VERSAbus. This low level indicates to the addressed
SLAVE that the APARITY lines are valid. If the SLAVE is option
AP, it will verify this parity.

ARBITER - the term used to reference the logic circuitry connected to
VERSAbus at slot 1 to perform the task defined as ARBITRATION.
(See ARBITRATION for additional definition. See the chapter on
bus arbitration for detailed description.)

ARBITRATICN - the task of assigning control of the data transfer bus on a
priority basis to a requester. (For detailed material, see the
chapter on bus arbitration.)

A-1

AS* - the address strobe line of the VERSAbus. When a MASTER has
assumed control of the bus and has driven this line low, it is
a signal to all SLAVES that the address bus is now valid and
that a data transfer is initiated. The last act of a given
MASTER in a data transfer cycle must be to release this line to
the TRI-STATE condition, so that all units may know that this
data transfer is over and that, if the 'bus busy' line is also
released, the DTB is now available to be reassigned to the next
MASTER. For detailed information on timing considerations, see
the timing section of the Data Transfer Bus chapter.

BGxIN*/BGxOUT* - the symbolic notation used for a particular bus grant line on
the VERSAbus, where 'x' may have the values 0 through 4. These
lines are used to grant a particular level of data transfer bus
access from the bus ARBITER, and represent a set of lines on
the bus which are not bused, but daisy-chains. In particular,
this nomenclature refers to the signal being forwarded to the
next module in the chain. If this module does not use the
particular level in question, the path from BGxIN* to BGxOUT*
will probably be a jumper; but if this board uses the level,
the signal will be passed through an AND gate, so that if the
board receives the signal, and has a request pending, it may
inhibit the signal from continuing down the bus and triggering
activity on two MASTERS simultaneously. Not only does this
methodology provide a means for having more MASTERS than levels
of bus request, but it provides a secondary level of
prioritization within a given level of bus request, which is
physically determined by proximity to slot 1. (See also the
chapter on bus arbitration.)

BRx*

Dxx*

DTB

DPARITYO*

- the symbolic notation used for a particular bus request line on
the VERSAbus, where 'x' may have the values 0 through 4. These
lines are used to request control of data transfer bus access
from the bus ARBITER.

- the symbolic notation for a particular data line on the
VERSAbus, where 'xx' may have the values 00 through 31.
These lines are used by one module to selectively transfer data
to one and only one other module.

- an acronym for DATA TRANSFER BUS. This is the particular
subset of VERSAbus lines involved in a data transfer,
consisting of the address lines, the address parity lines, the
data lines, the data parity lines, and the lines LWORD*,
WRITE*, AS*, DSO*, DSl*, DrACK*, and BERR*.

- the parity line associated with the signal lines DOO* through
DO?*. This line represents the 'exclusive OR' of those eight
data lines. Therefore, the 'exclusive OR' of this line with
all of those lines should always be zero. This condition is
often referred to as even parity. If the module currently
providing data to the VERSAbus is defined as having option DP,
it will generate this signal. If the module currently
receiving the data is defined as ,having option DP, it will
verify this parity and flag errors. (See the section on SUBSET
compatibility for further information on various combinations
of options.)

A-2

DPARITYl* - the parity line associated with the signal lines DOS* through
Dl5*. This line represents the 'exclusive OR' of eight of the
data lines referenced by DSl*. (See DPARITYO* for more details.)

DPARITY2* - the parity line associated with the signal lines Dl6* through
D23*. This line represents the 'exclusive OR' of eight of the
data lines used during longword transfers, and is only driven by
modules having option D32. (See DPARITYO* for more details on
parity, and the section on SUBSET compatibility for further
information on various combinations of options.)

DPARITY3* - the parity line associated with the signal lines 024* through
031 *. This line represents the 'exclusive OR' of eight of the
data lines used during longword transfers, and can only exist on
modules having option D32. (See DPARITYO* for more details on
parity, and the section on SUBSET compatibility for further
information on various combinations of options.)

DPVAL* - a signal line driven low by DP MASTERS and DP SLAVES whenever they
place data on VERSAbus. This low level indicates to the
MASTER/SLAVE receiving the data that the DPARITY lines are valid
and may be used to verify data.

DP - the option designated when a module will generate data parity when
presenting data, and test data parity when receiving data.

LCNGWCRD - a data transfer operation involving 32 bits of transferred data,
which is invoked by a MASTER module driving the signal LWORD* to
the low state. Note that only modules classified as having option
D32 can be expected to transfer long words. (See the section on
SUBSET compatibility for further material.)

LWORD* - the signal on the VERSAbus used to invoke 32-bi t data transfers
(See also LONGWORD.)

MASTER - a module capable of requesting control of the VERSAbus data
transfer bus via its associated REQUESTER, and upon being signaled
by its REQUESTER that the data transfer bus has been granted, is
capable of addressing another module by driving the address lines
and sending data to or receiving data from the module so
addressed.

NAP - the option designated when a module will not generate (if MASTER)
or test (if SLAVE) address parity.

NDP - the option designated when a module will not generate or test data
parity.

NPF - the option designated for a VERSAbus ARBITER which does not have
the additional logic on board to allow response to a system MASTER
under emergency conditions such as power down. (See chapter on
bus arbitration and definition of PF for further details.)

PF - the option designated for a VERS.Abus ARBITER capable of responding
to the BREL* signal as an emergency bus request. (See chapter on
bus arbitration for further details.)

A-3

READ

SIAVE

- a data transfer initiated by a MASTER, with the data flow from
MASTER to SIAVE.

- a module capable of decoding the address lines of the VERSAbus,
and properly responding to a MASTER by accepting or rejecting
data transfers via the DTACK* and BERR* response lines when the
address presented matches one recognized by this SLAVE as within
its range.

System MASTER - a designation for that MASTER which has the responsibility for
saving and restoring data at system power up, system power down,
and other emergency handling. Through the use of a PF ARBITER,
the system MASTER can gain quick control of the data transfer
bus for emergency purposes.

WRITE - a data transfer initiated by a MASTER, with the data flow from
MASTER to SLAVE.

A-4

APPENDIX B

STATE DIAGRAM NOTATION

State diagrams are used to describe in a complete and unambiguous manner how a
given functional module will respond to incoming signals. They are most useful
when the possible combinations of input signal levels are very large or when the
timing of these signals is unpredictable (e.g., arbitration logic). In these
cases, many different timing diagrams would be required to describe how a device
would act in all situations.

Another useful feature of state diagrams is their ability to completely define
the state which a functional module will enter upon system initialization.
Failure to define this can lead to system lock-ups or desynchronization when the
system is initialized.

In some cases, the output of a functional module may change levels as the result
of an incoming signal level change. In other cases, the incoming signal may
only cause the state of an internal flip-flop to change. Each time an output
changes or a flip-flop changes state, the functional module is said to enter a
new "state".

States are represented on state diagrams as circles. Each circle is labeled
with a string of letters which shows the level of each output line and the state
of each internal flip-flop. When a device's outputs change levels or when its
internal flip-flops change state, it is said to make a "transition" from one
state to another. The only transitions allowed on a state diagram are those
where only one level or one flip-flop changes state. Each allowed transition is
represented on the state diagram by an arrow between two states. Each arrow is
labeled with a set of conditions which must be met before that transition may
take place. The functional module must remain in its current state until all of
the conditions required for making a transition to another state become true.

There are several types of conditions which may have to be met.

1. A VERSAbus signal line may have to be at a prescribed level.

2. A signal level may have to be present from an on-board device.

3. Another state diagram may have to be in a prescribed state (this is used
to guarantee minimum delays between two output signal level changes).

When more than one condition must be met for a transition to occur, the "AND"
symbol is inserted between the conditions listed. When any of several
conditions is sufficient to allow the transition to take place, the "OR" symbol
is inserted.

When another state diagram must be in a prescribed state for the transition to
take place, the name of that state is shown as a label with an oval around it.

B-1

A functional module is not required to make a transition immediately just
because all conditions for that transition have been met. In most cases, a slow
module will reduce the performance of a system but will not cause any system
failure. There are a few cases, however, where the device is required to
respond within a prescribed time limit. Where this is true, the transition is
labeled "within t", where 't' is the maximum time allowed.

In some cases, the reader may find that the same set of conditions allows
transitions to two possible states. In this case, the module may be designed to
make either state transition.

The VERSAbus specification allows the user to implement different subsets of
some modules. Where this is true, the state diagram may contain conditions and
transitions which are required by one option but not another. In these cases,
the optional transitions are clearly labeled.

A special case exists for the sytem reset line of the VERSAbus. When this line
is driven low, all modules on the VERSAbus are required to enter a prescribed
state. The initial state on the state diagram is pointed to by an arrow labeled
"SYSRESET*=L". Whenever this reset line is low, the module should enter this
state within the prescribed time limit and remain in it until the system reset
line goes high.

B-2

APPENDIX C

VERSAbus CONNECTOR/PIN DESCRIPTION

INI'RODUCTICN

This appendix describes the VERSAbus pin connections. The following table
identifies the VERSAbus signals by signal mnemonic, connector and pin number,
and signal characteristic. Unless otherwise specified, all signal lines are
driven by the master.

SIGNAL
MNEMONIC

ACCLK

ACFAIL*

ACK IN*

ACK OUT*

AMO*-AM7*

APARITYO*

APARITYl*

VERSAbus Signal Identification

CONNECTOR
AND

PIN NUMBER

Jl: 69

Jl: 78

Jl: 95

Jl: 96

Jl: 59,60,
63,83-86,

94

Jl: 33

J2: 88

SIGJAL NAME AND DESCRIPTION

AC CLOCK - Open collector driven clock signal
generated by the power monitor that indicates the
power line frequency and zero voltage transition
points.

AC FAILURE - Open-collector driven signal which
indicates that the AC input to the power supply is
no longer being provided or that the required
input voltage levels are not being met.

ACKN~DGE IN - Totem-pole driven signal. ACKIN*
and ACKOUT* signals form a daisy-chained
acknowledge. The ACKIN* signal indicates to
VERSAboard that an acknowledge cycle is in
progress.

ACKNCMLEDGE OUT - Totem-pole driven signal. ACKIN*
and ACKOUT* signals form a daisy-chained
acknowledge. The ACKOUT* signal indicates to the
next board that an acknowledge cycle is in
progress.

ADDRESS MODIFIER (bits 0-7) - Three-state driven
lines that provide additional information about
the address bus - such as size, cycle type,
and/or DTB master identification.

ADDRESS PARITY 0 - Three-state driven signal which
provides an even parity bit for address bits
A01*-A23*, LWORD*, and AMO*-AM7*.

ADDRESS PARITY 1 - Three-state driven signal which
provides an even parity bit for address bits
A24*-A31* for use in 32-bit expansion.

C-1

SIGNAL
MNEMONIC

APVAL*

'AS*

A01*-A23*

A24*-A31*

BBSY*

BCLR*

BERR*

BGOIN*­
BG4IN*

BGOOUT*­
BG40UT*

BRO*-BR4*

BREL*

VERSAbus Signal Identification (cont'd)

CONNECTOR
AND

PIN NUMBER

Jl: 117

Jl: 30

Jl: 36-58

J2: 89-96

Jl: 112

Jl: 113

Jl: 81

Jl: 97 ,99,
101,103,

105

Jl: 98,100,
102,104,

106

Jl: 107-111

Jl: 114

SIGNAL NAME AND DESCRIPTION

ADDRESS PARITY VALID - Three-state driven signal
that indicates that valid parity has been placed
on the appropriate APARITY lines.

ADDRESS STROBE - Three-state driven signal that
indicates a valid address is on the address bus.

ADDRESS bus (bits 1-23) - Three-state driven
address lines that specify a memory address.

ADDRESS bus (bits 24-31) - Three-state driven
optional address 1 ines that specify an extended
memory address.

BUS BUSY - Open-collector driven signal generated
by the current DTB master to indicate that it is
using the bus.

BUS CLEAR - Totem-pole driven signal generated by
the bus arbitrator to request release by the
current DTB master in the event that a higher
level is requesting the bus.

BUS ERROR - Open-collector driven signal generated
by a slave. This signal indicates that an
unrecoverable error has occurred and the bus cycle
must be aborted.

BUS GRANT (0-4) IN - Totem-pole driven signals
generated by the Arbiter or Requesters. Bus grant
in and out signals form a daisy-chained bus grant.
The bus grant signal indicates to this board that
it may become the next bus master.

BUS GRANT (0-4) OUT - Totem-pole driven signals
generated by Requesters. Bus grant in and out
signals form a daisy-chained bus grant. The bus
grant out signal indicates to the next board that
it may become the next bus master.

BUS REQUEST (0-4) - Open-collector driven signals
generated by Requesters. These signals indicate
that a DTB master in the daisy-chain requires
access to the bus.

BUS RELEASE - Open-collector driven signal
generated by an emergency requester to indicate to
the current DTB master that the master must clear
the bus within 16 data transfer cycles. It also
informs the arbiter that a highest priority bus
request exists.

C-2

SIGNAL
MNEMONIC

DPARITYO*

DPARITYl*

DPARITY2*

DPARITY3*

DPVAL*

DSO*

DSl*

DTACK*

DOO*-Dl5*

Dl6*-D31*

VERSAbus Signal Identification (cont'd)

CONNECTOR
AND

PIN NUMBER

Jl: 21

Jl: 22

J2: 103

J2: 104

Jl: 118

Jl: 25

Jl: 26

Jl: 29

Jl: 5-20

J2: 105-120

SIGNAL NAME AND DESCRIPTION

DATA PARITY 0 - Three-state driven bidirectional
signal, generated by either the master or the
slave, which provides an even parity bit for data
bits DOO*-D07*.

DATA PARITY 1 - Three-state driven bidirectional
signal, generated by either the master or the
slave, which provides an even parity bit for data
bits D08*-Dl5*.

DATA PARITY 2 - Three-state driven bidirectional
signal, generated by either the master or the
slave, which provides an even parity bit for data
bus Dl6*-D23*.

DATA PARITY 3 -Three-state driven bidirectional
signal, generated by either the master or the
slave, which which provides an even parity bit for
data bits D24*-D31*.

DATA PARITY VALID - Three-state driven bidi rec­
t ional signal that indicates during a data
transfer that valid parity has been placed on the
appropriate DPARITY lines.

DATA STROBE O - Three-state driven signal that
indicates during byte and word transfers that a
data transfer will occur on data bus lines
(DOO*-D07*) •

DATA STROBE 1 - Three-state driven signal that
indicates during byte and word transfers that a
data transfer will occur on data bus lines
(D08*-Dl5*) •

DATA TRANSFER ACKNCltJLED3E - Open-collector driven
signal generated by a DTB slave. The falling edge
of this signal indicates that valid data is
available on the data bus during a read cycle, or
that data has been accepted from the data bus
during a write cycle.

DATA BUS (bi ts 0-15) - Three-state driven
bidirectional data lines that provide a data path
between the DI'B master and slave.

DATA BUS (bits 16-31) - Three-state driven
bidirectional data lines that provide an expanded
data path between the DTB master and slave for the
optional expanded data bus configuration (option
EADB).

C-3

VERSAbus Signal Identification (cont'd)

SIGNAL
MNEMONIC

GND

GND

GND

GND (_±15V)

[I/O PIN]

CONNECTOR
AND

PIN NUMBER

Jl: 3,4,23,
24,27,28,
31,32,61,
62,67,68,

71, 72,
119,120,
123,124,
135-140

J2: 1-6

J2: 97,98,
101,102

J2: 13,14

J2: 17-66

J2: 17-66,
71-120

IRQ1*-IRQ7* Jl: 87-93

LWORD* J 1: 35

[RESERVED]

SYSCLK

Jl: 64,66,
73,75,76,

77,82,
115-116

J2: 71-87,
99,100

Jl: 70

SIGNAL NAME AND DESCRIPTION

GROUND

GROUND

GROUND (EXPANDED BUS OPI'ION ONLY)

ANAL03 GROUND

INPUT/OUTPUT PIN - I/O signal lines set aside for
user peripheral interfacing applications on
expanded bus backplanes.

INPUT/OUTPUT PIN - I/O signal lines set aside for
user peripheral interfacing applications on
non-expanded bus backplanes.

INTERRUPI' REQUEST (1-7) - Open-collector driven
signals, generated by an interrupter, which carry
priori ti zed interrupt requests. Level seven is
the highest priority.

LONGWORD - Three-state driven signal specifying
that the cycle is a byte/word transfer (when high)
or a longword transfer (when low) • LONGWORD
transfers are only possible between an option D32
MASTER and an option D32 SLAVE using an expanded
backplane.

RESERVED - Signal lines reserved for future
VERSAbus enhancements These lines must not be
used by users.

RESERVED - (EXPANDED BUS backplanes ONLY.)

SYSTEM CLOCK - A constant 16 MHz clock signal that
is independent of processor speed or timing. This
signal is used for general system timing use.

C-4

SIGNAL
MNEMONIC

SYSFAIL*

SYSRESET*

TESTO*­
TESTl *

WRITE*

+5V S'IDBY

+5V

+12V

+15V

-12V

-15V

VERSAbus Signal Identification (cont'd)

CONNECT CR
AND

PIN NUMBER

Jl: 80

Jl: 74

Jl: 65
79

Jl: 34

Jl: 133-134

Jl: 1, 2,
129-132

J2: 7-10

Jl: 125-128

J2: 11,12

J2: 69,70

Jl: 121,122

J2: 15,16

J2: 67,68

SIGNAL NAME AND DESCRIPTION

SYSTEM FAIL - Open-collector driven signal that
indicates that a failure has occurred in the
system. This signal may be generated by any
module on the VERSAbus.

SYSTEM RESET - Open-collector driven signal which,
when low, will cause the system to be reset.

SYSTEM TEST - Open collector driven signals that
specify the mode to be entered when the SYSRESET*
line is released.

WRITE - Three-state driven signal that specifies
the data transfer cycle in progress to be either
read or write. A high level indicates a read
operation; a low level indicates a write
operation.

+5 Vdc STANDBY - This line supplies +5 Vdc to
devices requiring battery backup.

+5 Vdc Power - Used by system logic circuits.

+12 Vdc Power - Used by system logic circuits.

+15 Vdc Power - Used by system analog circuits.

-12 Vdc Power - Used by system logic circuits.

-15 Vdc Power - Used by system analog circuits.

C-5

INTRODUCTION

APPENDIX D

VERSAbus BACKPLANE EDGE CONNECTOR Jl

AND

VERSAboard EOOE CONNECTOR Pl

IDENTIFICATION

This appendix identifies the VERSAbus backplane edge connector Jl/Pl pin
assignments. The following table lists the pin assignments bv pin number order.

Jl/Pl Pin Assignments

ODD PIN EVEN PIN
NUMBER SIGNAL NUMBER SIGNAL

(Pl CC!4PONENT SIDE) MNEMONIC (Pl SOIDER SIDE) MNEMONIC

1 +SV 2 +sv
3 GND 4 GND
5 DOO* 6 001*
7 002* 8 003*
9 D04* 10 DOS*

11 D06* 12 007*
13 D08* 14 D09*
15 DlO* 16 Dll*
17 Dl2* 18 013*
19 014* 20 DlS*
21 DPARITYO* 22 DPARITYl*
23 GND 24 GND
25 DSO* 26 DSl*
27 GND 28 GND
29 DTACK* 30 AS*
31 GND 32 GND
33 APARITYO* 34 WRITE*
35 LWORD* 36 AOl*
37 A02* 38 A03*
39 A04* 40 AOS*
41 A06* 42 A07*
43 A08* 44 A09*
45 AlO* 46 All*
47 Al2* 48 Al3*
49 A14* 50 AlS*
51 Al6* 52 Al7*
53 Al8* 54 Al9*
55 A20* 56 A21*
57 A22* 58 A23*
59 AM4* 60 N47*
61 GND 62 GND
63 N43* 64 [RESERVED]
65 TESTO* 66 [RESERVED]

D-1

Jl/Pl Pin Assignments (cont'd)

ODD PIN EVEN PIN
NUMBER SIGNAL NUMBER SIGNAL

(Pl COMPONENT SIDE) MNEMONIC (Pl SOLDER SIDE) MNEMONIC

67 GND 68 GND
69 ACCLK 70 SYSCLK
71 GND 72 GND
73 [RESERVED] 74 SYS RESET*
75 [RESERVED] 76 [RESERVED]
77 [RESERVED] 78 ACFAIL*
79 TESTl* 80 SYSFAIL*
81 BERR* 82 [RESERVED]
83 AMO* 84 AMl*
85 AM2* 86 AM6*
87 IRQl* 88 IRQ2*
89 IRQ3* 90 IRQ4*
91 IRQS* 92 IRQ6*
93 IRQ7* 94 AMS*
95 ACKIN* 96 ACK OUT*
97 BGOIN* 98 BGOOUT*
99 BGlIN* 100 BGlOUT*

101 BG2IN* 102 BG20UT*
103 BG3IN* 104 BG30UT*
105 BG4IN* 106 BG40UT*
107 BRO* 108 BRl*
109 BR2* 110 BR3*
111 BR4* 112 BBSY*
113 BCLR* 114 BREL*
115 [RESERVED] 116 [RESERVED]
117 APVAL* 118 DPVAL*
119 GND 120 GND
121 -12V 122 -12V
123 GND 124 GND
125 +12V 126 +12V
127 +12V 128 +12V
129 +sv 130 +SV
131 +SV 132 +SV
133 +sv STDBY 134 +SV STDBY
135 GND 136 GND
137 GND 138 GND
139 GND 140 GND

D-2

INTRODUCTION

APPENDIX E

VERSAbus BACKPLANE EDGE CONNECTOR J2

AND

VERSAboard EDGE CONNECTOR P2

IDENI'IFICATION

This appendix identifies the VERSAbus backplane edge connector J2 pin
assignments. Table 1 lists the J2/P2 pin assignments by pin number order for
the expanded bus option. Table 2 lists the J2/P2 pin assignments for the
non-expanded bus option.

TABLE 1. J2/P2 Pin Assignments for the Expanded Bus Option

ODD PIN EVEN PIN
NUMBER SIGNAL NUMBER SIGNAL

(P2 COMPONENT SIDE) MNEMONIC (P2 SOLDER SIDE) MNEMONIC

1 GND 2 GND
3 GND 4 GND
5 GND 6 GND
7 +5V 8 +5V
9 +5V 10 +5V

11 +12V 12 +12V
13 GND (± 15V) 14 GND (±. 15V)
15 -12V 16 -12V
17 [I/0 PIN] 18 [I/O PIN]
19 [I/O PIN] 20 [I/O PIN]
21 [I/O PIN] 22 [I/O PIN]
23 [I/O PIN] 24 [I/O PIN]
25 [I/O PIN] 26 [I/O PIN]
27 [I/O PIN] 28 [I/O PIN]
29 [I/O PIN] 30 [I/O PIN]
31 [I/O PIN] 32 [I/O PIN]
33 [I/O PIN] 34 [I/O PIN]
35 [I/O PIN] 36 [I/O PIN]
37 [I/O PIN] 38 [I/O PIN]
39 [I/O PIN] 40 [I/O PIN]
41 [I/O PIN] 42 [I/O PIN]
43 [I/O PIN] 44 [I/O PIN]
45 [I/O PIN] 46 [I/O PIN]
47 [I/O PIN] 48 [I/O PIN]
49 [I/O PIN] 50 [I/O PIN]
51 [I/O PIN] 52 [I/O PIN]
53 [I/O PIN] 54 [I/O PIN]
55 [I/O PIN] 56 [I/O PIN]
57 [I/O PIN] 58 [I/O PIN]
59 [I/O PIN] 60 [I/O PIN]

E-1

TABLE 1. J2/P2 Pin Assignments for the Expanded Bus Option (cont'd)

ODD PIN EVEN PIN
NUMBER SIGNAL NUMBER SIGNAL

(P2 COMPONENT SIDE) MNEMONIC (P2 SOLDER SIDE) MNEMONIC

61 [I/O PIN] 62 [I/O PIN]
63 [I/O PIN] 64 [I/O PIN]
65 [I/O PIN] 66 [I/O PIN]
67 -15V 68 -15V
69 +15V 70 +15V
71 [RESERVED] 72 [RESERVED]
73 [RESERVED] 74 [RESERVED]
75 [RESERVED] 76 [RESERVED]
77 [RESERVED] 78 [RESERVED]
79 [RESERVED] 80 [RESERVED]
81 [RESERVED] 82 [RESERVED]
83 [RESERVED] 84 [RESERVED]
85 [RESERVED] 86 [RESERVED]
87 [RESERVED] 88 APARITYl*
89 A24* 90 A25*
91 A26* 92 A27*
93 A28* 94 A29*
95 A30* 96 A31*
97 GND 98 GND
99 [RESERVED] 100 [RESERVED]

101 GND 102 GND
103 DPARITY2* 104 DPARITY3*
105 Dl6* 106 Dl7*
107 Dl8* 108 Dl9*
109 D20* 110 D21*
111 D22* 112 D23*
113 D24* 114 D25*
115 026* 116 D27*
117 D28* 118 D29*
119 D30* 120 D31*

NOTE: Pins 17 through 66 are not bussed together by the backplane.

E-2

TABLE 2. J2/P2 Pin Assignments for the Non-Expanded Bus Option

ODD PIN EVEN PIN
NUMBER SIGNAL NUMBER SIGNAL

(P2 COMPONENT SIDE) MNEMONIC (P2 SOLDER SIDE) MNEMONIC

1 GND 2 GND
3 GND 4 GND
5 GND 6 GND
7 +5V 8 +5V
9 +5V 10 +5V

11 +12V 12 +12V
13 GND (.±. 15V) 14 GND (.±. 15V)
15 -12V 16 -12V
17 [I/O PIN] 18 [I/O PIN]
19 [I/O PIN] 20 [I/O PIN]
21 [I/O PIN] 22 [I/O PIN]
23 [I/O PIN] 24 [I/O PIN]
25 [I/O PIN] 26 [I/O PIN]
27 [I/O PIN] 28 [I/O PIN]
29 [I/O PIN] 30 [I/O PIN]
31 [I/O PIN] 32 [I/O PIN]
33 [I/O PIN] 34 [I/O PIN]
35 [I/O PIN] 36 [I/O PIN]
37 [I/O PIN] 38 [I/O PIN]
39 [I/O PIN] 40 [I/O PIN]
41 [I/O PIN] 42 [I/O PIN]
43 [I/O PIN] 44 [I/O PIN]
45 [I/O PIN] 46 [I/O PIN]
47 [I/O PIN] 48 [I/O PIN]
49 [I/O PIN] 50 [I/O PIN]
51 [I/O PIN] 52 [I/O PIN]
53 [I/O PIN] 54 [I/O PIN]
55 [I/O PIN] 56 [I/O PIN]
57 [I/O PIN] 58 [I/O PIN]
59 [I/O PIN] 60 [I/O PIN]
61 [I/O PIN] 62 [I/O PIN]
63 [I/O PIN] 64 [I/O PIN]
65 [I/O PIN] 66 [I/O PIN]
67 -15V 68 -15V
69 +15V 70 +15V
71 [I/O PIN] 72 [I/O PIN]
73 [I/O PIN] 74 [I/O PIN]
75 [I/O PIN] 76 [I/O PIN]
77 [I/O PIN] 78 [I/O PIN]
79 [I/O PIN] 80 [I/O PIN]
81 [I/O PIN] 82 [I/O PIN]
83 [I/O PIN] 84 [I/O PIN]
85 [I/O PIN] 86 [I/O PIN]
87 [I/O PIN] 88 [I/O PIN]
89 [I/O PIN] 90 [I/O PIN]
91 [I/O PIN] 92 [I/O PIN]
93 [I/O PIN] 94 [I/O PIN]
95 [I/O PIN] 96 [I/O PIN]

E-3

TABLE 2. J2/P2 Pin Assignments for the Non-Expanded Bus Option (cont'd)

ODD PIN EVEN PIN
NUMBER SIGNAL NUMBER SIGNAL

(P2 CavIPONENT SIDE) MNEMONIC (P2 SOLDER SIDE) MNEMONIC

97 [I/O PIN] 98 [I/O PIN]
99 [I/O PIN] 100 [I/O PIN]

101 [I/O PIN] 102 [I/O PIN]
103 [I/O PIN] 104 [I/O PIN]
105 [I/O PIN] 106 [I/O PIN]
107 [I/O PIN] 108 [I/O PIN]
109 [I/O PIN] 110 [I/O PIN]
111 [I/O PIN] 112 [I/O PIN]
113 [I/O PIN] 114 [I/O PIN]
115 [I/O PIN] 116 [I/O PIN]
117 [I/O PIN] 118 [I/O PIN]
119 [I/O PIN] 120 [I/O PIN]

NOTE: Pins 17 through 66 and pins 71 through 120 are not bussed
together by the backplane.

E-4

APPENDIX F

IX: SIGNAL SPECIFICATION

This appendix provides a summary showing which signal lines on VERSAbus are
driven/received by each functional module, and the type of driver each uses.

In order to simplify the table, an abbreviated notation is used to describe the
various types of drivers. The notations used are shown below:

Totem pole (high current) - TP HC

Totem pole (low current) - TP LC

Three-state

Open collector

- THREE

- QC

For the driver specifications, see Table 7-2 in Chapter 7.

All functional modules use the same type of receiver.
specifications, see Table 7-3 in Chapter 7.)

F-1

(For the receiver

.,,
l

N

SIGNAL
MNEMONIC

A01*-A31*
(31 lines)

AMO*-AM7*
(8 lines)

AS*

LWORD*

WRITE*

DSO*-DSl*
(2 lines)

DOO*-D31*
(32 lines)

DTACK*

SERR*

DPARITYO*-DPARITY3*
(4 lines)

DPVAL*

APARITYO*-APARITYl*
(2 lines)

APVAL*

BUS DRIVER AND RECEIVER SUMMARY

SIGNAL DRIVER
NAME TYPE MODULE

ADDRESS BUS

ADDRESS MODIFIER

THREE MASTERS,
ADDRESS STROBE INTERRUPT HANDLERS

LONGWORD

WRITE

DATA STROBES

DATA BUS THREE MASTERS,
SLAVES,
INTERRUPTERS

DATA TRANSFER ACKNCWED3E oc SLAVES,
INTERRUPTERS

BUS ERROR oc SLAVES

DATA PARITY THREE DP MASTERS
DP SLAVES

DATA PARITY VALID THREE DP MASTERS
DP SLAVES

ADDRESS PARITY THREE AP MASTERS

ADDRESS PARITY VALID THREE AP MASTERS

RECEIVER TERMINATION
MODULE NE'IWORK

SLAVES, YES
INTERRUPTERS

SLAVES, YES
MASTERS,
INTERRUPT HANDLERS

MASTERS, YES
INTERRUPT HANDLERS

MASTERS YES

DP SLAVES YES
DP MASTERS

DP MASTERS YES
DP SLAVES

AP SLAVES YES

AP SLAVES YES

-

.,
I
w

SIGNAL
MNEMONIC

BRO*-BR4*
(5 lines)

BGOIN*-BG4IN*
(5 lines)

BGOOUT*-BG40UT*
(5 lines)

BBSY*

BCLR*

BREL*

IRQ1*-IRQ7*
(7 lines)

ACKIN*/ACKOUT*

SYS RESET*

ACFAIL*

ACCLK

SYSCLK

SYSFAIL*

TESTO*-TESTl*
(2 lines)

SIGNAL
NAME

BUS REQUEST

BUS GRANT

BUS BUSY

BUS CLEAR

BUS RELEASE

INTERRUPI' REQUEST

ACKNCMLEDGE
DAISY CHAIN

SYSTEM RESET

AC FAILURE

AC CLOCK

SYSTEM CLOCK

SYSTEM FAIL

SYSTEM TEST

BUS DRIVER AND RECEIVER SUMMARY (cont'd)

DRIVER RECEIVER TERMINATION
TYPE MODULE MODULE NE'IWORK

QC REQUESTERS ARBITER YES

TP LC ARBITER REQUESTERS NO

REQUESTERS (NOT APPLICABLE) NO

QC EMERGENCY REQUESTER ARBITER YES

TP HC ARBITER MASTERS YES

TP HC EMERGENCY REQUESTER MASTERS YES

oc INTERRUPI'ERS INTERRUPT HANDLERS YES

TP LC INTERRUPI' HANDLERS, INTERRUPTERS NO
INTERRUPI'ERS INTERRUPTERS

oc PCWER MONITOR, ANY YES
MANUAL SWITCH ANY

oc PCMER MONITOR EMERGENCY REQUESTER YES

oc PCWER MONITOR ANY YES

TP HC CLOCK DRIVER ANY YES

oc MASTERS, ANY YES
SLAVES ANY

• oc PCMER MONITOR ANY YES
MANUAL SWITCH ANY

@ MOTOROLA Semiconductor Products Inc~
BO);(20912 • PHOEN~X, ARIZONA 85036 •A SUBSIDIARY OF MOTOROLA INC.

Ul42-7 PRINTED IN USA 8-81 IMPERIAL LITHO 97951 5000

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-31
	2-32
	2-33
	2-35
	2-36
	2-37
	2-38
	2-39
	2-41
	2-42
	2-43
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-27
	3-28
	3-29
	3-30
	3-31
	3-33
	3-34
	3-35
	3-37
	3-38
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-25
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-00
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-00
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-00
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	xBack

