R R T M6SKFORTRN/D3

M68000 Family

Resident FORTRAN Compiler
User’s Manual

QUALITY e PEOPLE ¢ PERFORMANCE

M68KFORTRN/D3

NOVEMBER 1983

M68000 FAMILY
RESIDENT FORTRAN COMPILER

USER'S MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

EXORmacs, RMS68K, VERSAdos, VERSAmodule, WMC 68/2, VMHmodule, and VME/10 are
trademarks of Motorola Inc.

LARK is a trademark of Control Data Corporation.

Third Edition
Copyright 1983 by Motorola Inc.
Second Edition September 1982

CHAPTER 1

* o & o s o »
CY U b s WD W N
« o
N

o s

CHAPTER 2

. ¢ o
.
Yo

OO O G
e 9 o
AU WN NN

CHAPTER 5

oo umonorog o,
e o o * o ¢« & 9 e e
~NSoaaoaa oLtk Wi =
* @ * o
[SN o N~

TABLE OF CONTENTS

GENERAL INFORMATION

INTRODUCTION

FUNCI‘ION OF EORTRAN mPILER LR I N A A I R A A A A A I I I A N]

FEATURES ceeesscecvossoscasoscessssccsasnssscssossocsssssscns
OPERATING ENVIRONMENT FOR THE FORTRAN COMPILER ..ccesacses
Form of FORTRAN COMPLiler ceeeevecssocvsccssscsocsscconnse
Program Developmenteecececccsccsssssssasessssosanace
NOTATION ceeeecceossacascsccasssssscsasosnsscsessscsasssanesas
RELATED DOCUMENTS .¢ceeceoccsccccosoossssssssasscscscssscsas

PREPARATION OF FORTRAN SOURCE PROGRAMS

INTRODUCTION

Description of a Sample PrOJram .scseececcccsscccccsaccasns
Preparing a SOUrce Program .seecesscssscssssssssassssasss

USING THE FORTRAN COMPILER

INVOKING THE FORTRAN COMPILER sccceccncscccosscoscsnssecas
File Name FOImat cceececsecsccscccescesccacsccscncnccnonse
Examples of Invoking the FORTRAN Compiler ..cceeseeccces

FILES FOR THE FORTRAN COMPILER cecceccccssocccsccasccnccses

OUTPUT LISTINGS

FORTRAN COMPILER OUTPUT LISTINGS

SOURCE LISTING AND OBJECT-PSEUDO ASSEMBLY LISTING .eeccees
Source LiStiNg eeeeseccsssssescscsscccsssscccssassscncsss
Object-Pseudo Assembly LiSting .ceeeecececscsscocscacene

SYMBOL TABLE LISTING .scceccecccscssccsosanscccsssssesscssosscsne

LABEL TABLE LISTING

MODULE INFORMATION LISTING .cccceccecccncncronosscasnvesssos

DIAGNOSTIC MESSAGES

CREATION OF AN EXECUTABLE LOAD MODULE

INTRODUCTION

INVOKI[‘K; THE LINI(AGE EDITOR © e s 0000 GRS P esPNCOOBGCSIOCESIEBNOIOIOSIDOTOETS
E:XMPLES © 08 000000 CCPOCLPCLELPL RSO0 00000000CGERDROGCSIOESIOSEOIOITOSETOODN

RUNTIME LIBRARIES FOR VERSAmodule SYSTEMS

FREEING A SEGMENT FOR A FORTRAN PROGRAM .¢ccoescscscscncce
Default Situation .eeeeceecccccsccccccecccocccccccascccs
Freeing A/ SegENt cceeececsccecscscscccssssscnsesccsosnns

SHARING A SEGMENT BETWEEN TWO FORTRAN TASKS ceeeceocsscccss
Intertask Communication Through A Global Commons.
Sharing Program SegmentsS .eeeeecccecescssccscesscsccsssss

USEFUL EXTERNAL DEFINITIONS - XDEF .vcevcscsceccccsscccccces

1-1
1-1
1-1
1-2
1-4

1-4
1-6

2-1
2-1
2-1

.b»u:.-b.?uxu:.p
OO ~UVIN =

U'|U'IU1UIU1LIDU1U'|U1U1U1
AT OUTULT RN

CHAPTER 6

.
.
N

AN OO
L]

O B WWNNNNNND
.

L]
> w N

[] . .] e []
L] [[) L]
WN =

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F

" TABLE OF CONTENTS (cont'd)

EXECUTION

EXECUTION OF THE PROGRAMcce.

Program Not Requiring Other FileS c.eeeeccscssssssasss ..

Program Requiring Other Files .
FILES ..ccceese sececcssscscnsssse

ee e s eeeerssss 0P e 00000

File FOIMAtS ceceeeccccccconcccannnnsns cestesvestsesscosne
Record Formats seeeess cesessceassessssessessscsessesases
File Access MethodS .ceeeeeeeececcecsscscsscaas cevessvocs
Formatted and Unformatted I/0 .sceviveeecccccccccncnns e
LOAD MODULE 4cecovecococencssscsncocsosesassasseasassansans ese
Memory Organization c..ceeeceecscecessccssccnsacnes cecens

FORTRAN STATEMENTS THAT CONTROL EXECUTION seeecscecscccscse
PAUSE Statement ..ceceecencsace cesccscsscsssssssassesases
STOP Statement .ecececeess esescscsssssesssssssssacsnsnense
ENDFILE Statament ..ccecececcsscscscssscscsssccccsccncns

DEFAULT LOGICAL UNITS ..eccse. cecssesessssessasssssscansans

INCLUSION OF ASSEMBLY ROUTINES

INTRODUCTION eeceeeececoccencanns

INTERFACE WITH EXTERNAL PROCEDURE (WITHOUT ARGUMENTS)
INTERFACE WITH EXTERNAL PROCEDURE (WITH ARGUMENTS) ..ecee.
EXAMPLE OF COMBINING ASSEMBLY ROUTINES ..cceececccsceces .o
REGISTER USAGE IN FORTRAN PROGRAMS .ecceeesccccccccncncces

FORTRAN'S RMA (RUNTIME MAINTENANCE AREA)

RUNTIME MAINTENANCE AREA ..cececececcccccoccccsses tesesvroas

RMA LAYOUT «cccceevcscossscccoanne
UCB LAYOUT .cceccecencanscccccanes

RUNTIME INTERFACE FOR NON-VERSAdos SYSTEMS

INTRODUCTION cceeceacococsncssens

ADDING FILE HANDLING SERVICES TO BIOS ...ccccecees cessscee
EXAMPLE ceescss Gecescessstecsscsctsesascasccas ceen

COMPILER MESSAGES «vevecesocossosocsnnsacnnns feeeeesecnene

RUNTIME ERROR MESSAGES ...ccccve.

AN EXAMPLE FROM COMPILATION TO EXECUTION ...cceccecccccses

COMPILER LIMITS cesesccas .

M68000/ANSI 77 FORTRAN SUBSET DIFFERENCES ..oceesceccscsse

RUNTIME LIBRARY c¢.ccccccececccnes

ii

A-1
B-1
c-1
D-1
E-1
F-1

FIGURE 1-1.

TABLE 3-1.
4-1.
4-2,
6-1.

TABLE OF CONTENTS (cont'd)

LIST OF ILLUSTRATIONS

Function of the FORTRAN COMPiler .eceecececccccsccsnscnnane
EXORmacs Development System Standard Configuration
VME/10 Microcomputer System eesencescsasaccassssncnne
Process of Program Development ...ccecee cecccnes cesececns .o
Preparation of a Source Program ...c.cceccee
Source Code Listing (L Option) ..eceeceeccccscocorsccenanss
Example of Output with Options L and A Specified (2 Sheets)
Symbol Table Listing (Option S) ..ceececcevccccass cesccnces
Example of the Label Table LiSting eececeececescccoscscsens
Module Information Listing ..e.ceeeceeee cecesscscscscsnssone
Diagnostic Message Example ...cceceeee P
Result of Compilation for Example 1 ..c.cvececenns cessessane
Linkage Result for Example 1 ...cceeaceses cesessasssssasacs
Result of Compilation for Example 2 crsescsssanaes
Linkage Result for Example 2c... cessanee ceesssssssnes
Result of Compilation for Example 3 ...cccccss cesecensa cees
Linkage Result for Example 3 ..ccceeesoccscesscanccnsocscsne
Sequential Access; Input/Output «..ececc.. cesesressens ceesse
Direct ACCESS I/0 ceieeeccccceccsosssossnssccanansnnsancsssnasse
Input/Output with FORMAT
Input/Output without a FORMAT Statementceceeecccececns
ENDFILE Statement e.ccecee. ceccccne cesecscessecssecsstonoas
Stack Contents when Control is Passed to the Procedure
Stack Contents when Control is Passed to a Procedure
Requiring Arguments .cceecececsecscccssccccse ceaesenssenes
FORTRAN Program Calling an Assembly Language Routine
Assembly Language Routine Callable from FORTRAN ...cccoccee

LIST OF TABLES

Compiler Options ceetesrscsrrassssasessssseccnosnessoe
Symbol Table Contents c.ecceecececnssccescccscccssscacsoscccns
Diagnostic Message Error LevelS .ceeeecccecs seassens sseeses
Memory Organization .eceecevececccccccccccascssoscesssncsane

iii/iv

E
1]

|
HFO-IOWOWOo-TUWwNDNDUTWN -

]
o

AT o N s

CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

This manual describes how to use the M68000 Family Resident FORTRAN Compiler.
It also describes the language differences between the M68000 FORTRAN and the
ANSI 77 subset standard (see Appendix E).

1.2 FUNCTION OF FORTRAN COMPILER
NOTE

Unless otherwise specified, the designations
"M68000" and '"MC68000" refer to the entire
M68000 family of microprocessors.

The FORTRAN Compiler translates source programs written in FORTRAN into MC68000
machine language, using one of the VERSAdos systems listed in paragraph 1.4.
The MC68000 machine language relocatable programs produced by the Compiler will
be referred to as object programs throughout the rest of this document.

MC68000
FORTRAN FORTRAN MACHINE
SOURCE -—> COMPILER - LANGUAGE
PROGRAM _ PROGRAM

FIGURE 1-1. Function of the FORTRAN Compiler

1.3 FEATURES
The features of the Compiler are as follows:
. Lanquage conformity to the ANSI FORTRAN 77 subset.

. Capability of performing bit operations.
. Capability of creating reentrant object programs.

1.4 OPERATING ENVIRONMENT FOR THE FORTRAN COMPILER

The following hardware and software facilities are required as a minimum to
invoke the FORTRAN Compiler:

a. Hardware

. One of the following MC68000-based systems:

EXORmacs Development System

VMC 68/2 Microcomputer System

WE/10 Microcomputer System

VERSAmodule 01 or 02 Monoboard Microcomputer

WEmnodule Monoboard Microcomputer

. 384K bytes of memory
. A keyboard/CRT terminal
. One of the following disk configurations:

two floppy disk drives
a LARK drive
a Winchester drive

Figure 1-2 illustrates the standard configuration for an EXORmacs, which
includes the above hardware elements along with a serial printer.

Figure 1-3 illustrates a VME/10 system. The standard VME/10 configuration
allows the addition of a printer when an MVME410 dual parallel port module is

used.
b. Software

. VERSAdos (Disk Operating System)

VERSAdos 1is a disk operating system available for the hardware
systems listed in paragraph l.4.a. It coordinates control of the
Compiler, the data, and the disk.

01158/7361

FIGURE 1-2. EXORmacs Development System Standard Configuration

1-2

MOTOROLA

6-83-1537

FIGURE 1-3. VME/10 Microcomputer System

1.4.1 Form of FORTRAN Compiler

The FORTRAN Compiler and its runtime libraries are provided on LARK cartridge,
VERSAdos cartridge, or VERSAdos floppy diskette. Other software necessary for
program development (such as VERSAdos, CRT Text Editor, and Linkage Editor) is
available on other disks called system disks. The disks that contain the user's
programs are called user's disks.

1.4.2 Program Development

To develop a program for the MC68000 using the FORTRAN Compiler, the following
four steps are required:

a. Preparation of the FORTRAN source program (see Chapter 2).
Prepare FORTRAN source programs on a user's disk using the CRT Text
Editor.

b. Compilation of the program using the FORTRAN Compiler (see Chapter 3).
The FORTRAN program is compiled using the FORTRAN Compiler to produce the
object program.

Cc. Preparation of the load module (see Chapter 5). .
The input object program that was created in item b. utilizes the Linkage
Editor to prepare a load module combining any object programs required.

d. Execution of the load module (see Chapter 6).
Execute the load module created in item c.

Figure 1-4 illustrates the process of program development.

1.5 NOTATION

Commands and other input/output (I/0) are presented in this manual in a modified
Backus-Naur Form (BNF). Certain symbols in the syntax may be used, where noted,
in the real I/0. Others are meta-symbols, which are used for definition only
and are not entered by the user. These meta-symbols and their meanings are as
follows:

< > Anqular brackets enclose a symbol, known as a syntactic variable,
that is replaced in a command line by one of a class of symbols it
represents.

] This symbol indicates that a choice is to be made. One of several
symbols, separated by this symbol, should be selected.

[] Square brackets enclose a symbol that is optional. The enclosed
symbol may occur zero or one time.

[J... Square brackets followed by periods enclose a symbol that is
optional/repetitive. The symbol may appear zero or more times.

In the examples given in the following chapters, operator entries are to be
followed by a carriage return unless otherwise specified. The carriage return
is not shown in examples except where it is the only entry, in which case it is
shown as (CR).

(9] 3
DISK P
”~
rd
e
l//l s
CONSOLE SYSTEM
: N
o ~
OTHER OBJECT ~_
PROGRAMS, N
LIBRARIES I
'\
”~
r
”~
re

LINKAGE LIST|*

:> Flow of the control

e Flow of the data

CRT EDITRR |— —————* .
7/ FORTRAN SOURCE
/ PROGRAM
/
/
/
/
1K
FORTRAN
COMPILER ~
~
\\ RN -
AN COMPILE LIST
N
N
AN
')
/’
s -
LINKAGE e ;
EDITOR < OBJECT PROGRAM
~ ~
~
~
~
~
-
/ Q
_ 7
_ LOAD MODULE
7
EXECUTION |&

FIGURE 1-4.

Process of Program Development

1-5

1.6 RELATED DOCUMENTS

Refer to the following documents for more information on the environments in
which the M68000 Family FORTRAN Compiler is used.

M68000 Family VERSAdos System Facilities Reference Manual, M68KVSF

System Generation Facility User's Manual, M68KSYSGEN

VERSAdos Data Management Services and Program Loader User's Manual, RMS68KIO
M68000 Family Real-Time Multitasking Software User's Manual, M68KRMS68K
VERSAdos Overview, M68KVOVER

VERSAdos Reference Card, MVDOSCARD

M68000 Family Resident Structured Assembler Reference Manual, M68KMASM
M68000 Family Linkage Editor User's Manual, M68KLINK

M68000 CRT Text Editor User's Manual, M68KEDIT

VME/10 Text Editor User's Manual, M6BKVSEDT

MVME110/-1 VMEmodule Monoboard Microcomputer User's Manual, MVME11O0
VERSAdos to VME Hardware and Software Configuration User's Manual, MVMEVDOS
Monoboard Microcomputer User's Guide, M68KVMOl

VERSAmodule Monoboard Microcomputer User's Guide, M68KVMO2

VME/10 Microcomputer System Overview Manual, M68KVSOM

VMC 68/2-Series Microcomputer System Manual, MVMCSM

EXORmacs Development System Operations Manual, M68KMACS

CHAPTER 2

PREPARATION OF FORTRAN SOURCE PROGRAMS

2.1 INTRODUCTION

FORTRAN source programs are prepared using the CRT Text Editor. This chapter
describes the preparation of a simple program. Refer to the M68000 CRT Text
Editor User's Manual or the VME/10 Text Editor User's Manual for further details

concerning the CRT Text Editor.

2.1.1 Description of a Sample Program

The sample program used to describe the creation of a FORTRAN program takes five
numerical values that are the input, searches for the greatest and smallest
values, and then prints those.

2.1.2 Preparing a Source Program

a. The CRT Text Editor program resides on the system disk; the FORTRAN
source program resides on the user's disk.

b. Enter the CRT Text Editor command (E) from the console - (in this
example, VOL1 is the user disk volume name, and TEST is the source
program file name). Use the Editor's option F for predefined tab sets.

c. Enter the source program starting at the beginning of each line, and
perform a CR (carriage return) at the end of each line.

d. After keying in the source program, press the Fl key. The cursor will
move to the prompt (>) in the lower portion of the screen. Enter QUIT to
end the source program entry.

This process is illustrated in Figure 2-1.

PROGRAM TEST
INTEGER ARRAY (10)
INTEGER MAX,MIN
C INPUT VALUE SET
DO 100 I=1,5
READ(5,200) ARRAY(I)
200 FORMAT (I4)
100 CONTINUE
C GET MAX, MIN
MAX = ARRAY (1)
MIN = ARRAY(1)
DO 300I =2,5
IF (MAX .LT. ARRAY(I)) MAX
IF (MIN .GT. ARRAY(I)) MIN
300 CONTINUE
C PRINT MAX, MIN
WRITE (6,400) MAX, MIN
400 FORMAT(2I4)
STOP
END

ARRAY(I)
ARRAY (I)

Following program entry:

Type (F1) key

>QUIT(CR)

NOTES:
l. = means awaiting command.

2. > means awaiting program entry.
3. Each line is terminated with a carriage return (CR).

FIGURE 2-1. Préparation of a Source Program

CHAPTER 3

USING THE FORTRAN COMPILER

3.1 INVOKING THE FORTRAN COMPILER
The command line format for the FORTRAN Compiler is:
FORTRAN <source file>[,[<object file>][,<listing file>]] [;<option>]

Only the <source file> is required. The default extension on the <source file>
is SA. If the <object file> and/or <listing file> are not specified, they will
default to the same file name as the <source file>, but with extensions of RO
and LS, respectively.

Command line options are specified by placing the appropriate option letter(s),
separated by commas, in the option field of the command line. To disable an

option, a hyphen (-) must precede the option letter. Table 3-1 lists available
Compiler options.

The following example will compile the source program created in Chapter 2,
Figure 2-1.

3.1.1 File Name Format

The general format of the file names that can be used by the FORTRAN command is
as follows:

[[<volume name>]:[<user #>].[<catalog name>].]<file named>[.<extension name>]

where:

volume name is a string which identifies the disk volume. It can be up
to four characters in length, and the first character must
be alphabetic (a-2z). The volume name specified during
logon is used as the default.

user # is up to four digits in length. If this parameter is
omitted, the user number specified during logon is used as
the default.

catalog name is a string of up to eight characters, and the first
character must be alphabetic (a-z). The catalog name
specified during logon is used as a default catalog name.

file name is a string of up to eight characters, and the first

character must be alphabetic (a-z).

extension name 1is one or two characters or numbers which may be used to
distinguish file names. When using an extension name,
refer to paragraph 3.1.2.

Following are examples of the file name format. Refer to the VERSAdos System
Facilities Reference Manual for further details concerning file names.

EXAMPLE 1: SYS1:1.CATLOG.FILEEX.KE
Volume Name SYS1
User # 1
Catalog Name CATLOG
File Name FILEEX
Extension Name KE
EXAMPLE 2: SYS5:..FILEEX2.NS
Volume Name SYS5
User # (default)
Catalog Name (default)
File Name FILEEX2
Extension Name NS
EXAMPLE 3: FILEEX2.LO
Volume Name (default)
User # (default)
Catalog Name (default)
File Name FILEEX2
Extension Name LO
EXAMPLE 4: FILEEX2 (source file)
Volume Name (default)
User % (default
Catalog Name (default)
File Name FILEEX2
Extension Name SA (default)
EXAMPLE 5: FILEEX2 (object file)
Volume Name (default)
User # (default)
Catalog Name (default)
File Name FILEEX2

Extension Name

RO (default)

TABLE 3-1. Compiler Options
OPTION ABBREV. DEFAULT DESCRIPTION

LIST L L Prints the source listing.

-LIST -L Inhibits printing of source listing.

ASMCODE A -A Prints the object-pseudo assembly listing.

—ASMCODE -A Inhibits printing of object-pseudo assembly
listing.

SYMBOL S =S Prints the symbol table.

-SYMBOL -S Inhibits printing of symbol table.

ERROR = 0 E=n n=0 Prints all error messages.

ERROR = 1 Prints all error messages except warnings.

ERROR = 2 Prints only fatal error messages. A fatal
error occurs when a table (e.g., symbol
table) overflows.

PAGE P 2 Prints page header.

-PAGE -P Inhibits printing of page header.

VERTICAL=n V=n n=60 When using PAGE, this option defines the

5<=n<=999 number of lines (n) per page.

HORIZONTAL=n =n n=132 Specifies number of characters per line.

40<=n<=132

TITLE = line T=line - Specifies title for page header.

OBJECT 0 0 Outputs the object program.

-OBJECT -0 Inhibits output of the object program.

BIG B -B When the BIG option is specified, the code
portion of the program unit is assumed to
be larger than 32K bytes long, and forward
branch instructions are generated
accordingly.

-B In the default -B mode, the code portion of

the program unit is assumed to be less than
32K bytes long, and more efficient branch
instructions are generated accordingly.

3-3

TABLE 3-1.

Compiler Options (cont'd)

OPTION

ABBREV.

DEFAULT

DESCRIPTION

MINI

M

-M

When the MINI option is specified, the code
portion of the entire program (including the
current program unit and all other programs
units comprising the program) is assumed to
occupy less than 32K bytes of memory. In this
case, all subroutine and function references
are handled more efficiently.

In the default -M mode, the code portion of
the entire program is assumed to be larger
than 32K bytes, and less efficient subroutine
and function reference are generated
accordingly.

SMALL COMMON

When the SMALL COMMON option is specified, the
common and SAVEd items for the entire program
are assumed to occupy a total of less than 32K
bytes. In this case, more efficient data will
be generated in the object code.

In the default -C mode, the common and SAVEd
items are assumed to occupy a total of more
than 32K bytes, and less efficient data
references are generated accordingly.

STORAGE

z=n[:s]

n
S

Specifies the amount of storage to be made
available to the Compiler for its tables,
storage areas, and stack. "n" specifies in K
bytes the amount of space allocated for the
Compiler's internal tables (default size is
27K). "s" specifies in K bytes the amount of
space allocated for the Compiler stack
(default size is 8K). Total Compiler size is
170K, for code, plus the sum of "n" and "s".
Therefore, the default size is 205K. If
"2=40:20" were specified, the size of the
Compiler would be 230K (170K + 40K + 20K).

If the stack size specified is not large
enough, the Compiler aborts with a bus error.
The user must increase the space allocated for
the stack by assigning a larger value for "s".

TABLE 3-1. Compiler Options (cont'd)

OPTION ABBREV. DEFAULT DESCRIPTION
If the space allocated for the internal tables
is too small, the Compiler aborts with an
internal error message describing the problem.
The user must increase the table size
specified by assigning a larger value for "n".
If too much space was specified, a smaller "n"
value is recommended.

NOTES: 1. Options are separated on the command line by commas -- e.d.,

=FORTRAN FIX:77..ARRAY;A,S,H=80,T=SAMPLE HEADING

2, Use of the -LIST option also inhibits printing of the object-
pseudo assembly listing -- i.e., -L, A is treated as -L,-A.

3-5

3.1.2 Examples of Invoking the FORTRAN Compiler

EXAMPLE 1: Source file name, object file name, and listing file name are all
the same, using only the extension names SA, RO, and LS.

SOURCE =—=—=——- > FORTRAN —————- > OBJECT
FILE FILE
SYS1:0.. TEXT.SA SYsl:0..TEST.RO
+-—-=> LISTING
FILE
SYs1:0..TEST.LS

Enter the command:
FORTRAN SYS1:0..TEST

After execution of this command, the following files are created:
Relocatable object file name SYS1:0..TEST.RO

Listing file name S¥YS1:0..TEST.LS

The above command would have the same result as the following command:

FORTRAN SYS1:0..TEST.SA,SYS1:0..TEST.RO,SYS1:0..TEST.LS

EXAMPLE 2: The listing is routed to the line printer.

SOURCE —=—m———- > FORTRAN —-——- > OBJECT
FILE FILE
VOL1:0..SF1.SA VOL1:0..SF1.RO

+=—=> LISTING
FILE
Line Printer

Enter the command:

FORTRAN VOL1:0..SF1,,#PR

RN

EXAMPLE 3: The listing is routed to the user's console.

SOURCE ---——=-=> FORTRAN ————-— > OBJECT
FILE FILE
VOL2:0..SF1.SA VOL2:0..SF1.RO

+---> LISTING
FILE
Console System

Enter the command:

FORTRAN VOL2:0..SF1.SA,VOL2:1..0BJ,#

The # is used to specify that the listing should be directed to the user's
console.

EXAMPLE 4: No listing is generated.

SOURCE —=—————— > FORTRAN -===-— > OBJECT
FILE FILE
VOL3:100. .NOLST.SA VOL4:0..0BJ.RO

Enter the commard:

FORTRAN VOL3:100..NOLST,VOL4:0..0BJ.RO,#NULL
When the #NULL is specified as the listing destination, no listing is provided.

- NOTE

Each compilation can compile only one FORTRAN program unit
(i.e., main routine, subroutine, or function). The linkage
editor is responsible for combining the relocatable object
modules for an entire program.

3-7

3.2 FILES FOR THE FORTRAN COMPILER

The FORTRAN Compiler uses the following files:
. Source file
. Object file
. List file

The FORTRAN command line specifies the source file, the object file, and the
list file.

File Volume User
Name Use Name Number
1. User FORTRAN Source User User
Defined File Defined Defined
2, User FORTRAN Object User User
Defined File Defined Defined
3. User FORTRAN Listing User User
Defined File Defined Defined

3-8

CHAPTER 4

‘OUTPUT LISTINGS

4.1 FORTRAN COMPILER OUTPUT LISTINGS

The following listings are output to the listing file, depending upon which
Compiler options are specified.

. Source listing

. Object-pseudo assembly language listing

. Symbol table listing

. Label table listing

. Statistical information listing

. Diagnostics listing

The header information shown at the top of each page appears below:

68000 FORTRAN <version #> <title> PAGE <nn>

version # Version number
title String specified by the TITLE option
nn Page number

(if <title> is not specified, it is left blank)

4.2 SOURCE LISTING AND OBJECT-PSEUDO ASSEMBLY LISTING

This section describes the source and object-pseudo assembly 1lst1ngs produced
under the control of compile time options.

4.2.1 Source Listing

The source listing lists the original source program, the source line numbers,

and the internal statement numbers (ISN). Figure 4-1 illustrates the source
listing with the L Compiler option.

4-1

®@ O ®

LLINE ISN SOURCE STATEMENT

1 FROGRAM MUL.2XZ2
C
¢ This srogram multirlies two 212 matrices (MA, MED
C The result matrix is MC. To rurm the Prosiram ersse
¢ the C’s before READ/WRITE/FORMAT statemerts.

C

POOCENOGHION-

2 INTEGERXZ MA(2, 2), MEC(2,2),MC2, 23, T, Jo Ko Lo N
c READ (&, 2) MA
c READ (6, 2) MB
3 DO 100 XI=1,2
4 DO 200 J=1,2
12 S MC(I, J>=0
13 6 DO 300 K=1,2
14 7 300 MCCL, J)=MC(T, J)+MACT, K)XME (K, J)
15 8 200 CONTINUE
16 ? 100 CONTINUE ,
17 C WRITE (S, 3) (MO, NY, N=1,2), L=1, 2)
18 10 STOP ‘
19 c 2 FORMAT (413)
20 c 3 FORMAT (//, 1X, ‘THE RESULT MATRIX’,//,2(3X,216,/))
21 11 END
22

NOTES

(1) Line number.
(2) Internal statement number.
(3) Source program.

FIGURE 4-1. Source Code Listing (L Option)

4,2.2 Object-Pseudo Assembly Listing
When the L and A Compiler options are selected, the Compiler prints the

object-pseudo assembly listing corresponding to each group of source statements.
Figure 4-2 illustrates an example of this.

4-2

LINE. TSN

¢
(W

This srogram
The resuwlt matrix ig MC

the C’s READ/WRITE/FORMAT statements.

SOURCE STATEMENY
FROGRAM MUL2X2
mualtirlies tw

tefore

-~ »
2

0

To run the

matrices

(MA, MES) .
FTOgran erase

INTEGERXZ MA(Z, 2), ME(2,2), MC2,2), Lo JL K, L N

READ(6, 2) MA

READ (&4, 2) ME

DO 100 T=1,2
a00o000 ZFOE
000002 204F
000004 PFFC00000000
000000

DL/D2/0B/7DA/DE/DEADT , ~ (A7)

4

4 5
13 é

oy

300

dD7CO00LFFES
SDZ7CO00LFFE4
00001A AAGEFFE4
00001E 6D00B000

DO 200 J=1,2
000022 3D7CO000LFFEZ
000028 3D7CO000LFFEQ
00002 4AGEFFED
000032 4D000000

MG (T, J3=0

DO 300 K=1,2
000036 B22EFFEZ
00003A C3FCooo2
00003E D26EFFES
Noo042 341
000044 427 610E2
000048 3D7C0001LFFDE
00004E 3D7C000IFFDC
000054 4R6EFFDC
000058 6DB00000

MC L,
000056
000060
000062
000066

00000E
000014

BE2EFFDE
3207

C3rFcoooz
JCLEFFES

MOVE. 1.

MOVE. L.

SUE. L.
ABE77F 00

W
W

MOVE.,
MOVE,
TET. W
LT

MOVE. W
MOVE. W
TET. W
BLT

MOVE,
MUL.S
ADD. W
ASL. W
CLR. W
MOVE. W
MOVE. W
TET. W
BLT

W

MOVE. W
MOVE. W
MUL.S

MOVE. W

Abs (A7)
A7, A6
WKNK , €37
MOVEM. L.

L, =26 (A&)

L, ~28(A6)
~28(AL)
KKK

1, -30(Aé&)

L, ~32(A6)
=3 (ALH)
KKK

-30(A6), DI
2, D1

~Z26(MEI, DI
1, D1

=30(Ab6, DL, W)
L. ~34(A&6)
1, -36(A6)

~36(A6)

KKK

JIY=MCCL J)HMACT K XME (K, J)

~34(Ab)Y, D7
D7, DL

2, D1
~26(A6) ., D6

Example of Output with Options L and A Specified (Sheet 1 of 2)

17
18
12
20
a1

10

11

200

100

C
C

2

3

00006A
000060
00006
000072
000076
000078
00007
00007E
000080
pon0a4
000086
00008A
000080C
00008E D37620E2
QononY2 SAGEFFDC
000096 S26EFFDE
000094 4018
CONTINUE
00009C H36EFFED
0000A0 SHE6EFFEZ
0000A4 4088
CONTINUE

0000A6 S36EFFE4
0000AA S26EFFES
0000AE HO00FF&A

D246
341
323610F2
3BAZEFFEZ
3405
CSFC0002
Da4a7
E342
CIF620EA
3405
CSFCoo02
D446
E342

ADD. W
ASL. W
MOVE.
MOVE.
MOVE.
MUL.S
ADD. W
Ask. W
MUL.S
MOVE.
MULS
ADD. W
ASL. W
ADD. W
SURQ. W
ADDQ. W

ERA

SUBQR. W
ADDGR. W

ERA

SUBQ. W
ADDQR. W

R

FAGE

D6, DI

1.D1
~14(A6, DL W, DI
~-30 (A&, DY
DS, D2

2,08
D7, D&

1. D2
~22(hé, DL
DS, D2

2,02
P&, D2

1. D2
D1, -30(A6, D2, WD

1, ~36(A6)

1, ~34(A6)

W), D1

1, ~3E(AsL)
1, -30C(A6)
*--118

1, ~28(A&)
1, =26 (A6)
*-1.48

WRITEC(SH, 3) C(MOCCL, NY, N=1, 2), L=, 2)

STOR
FORMAT (413)

FORMAT(//, 11X, “THE RESULT MATRIX’, //, Z2(3X, 2X6, /)

END
00002
00004
0000ES
0000EA

4267
AEAEQ000
S88F

A7)+, D1/D2/7D3/7D4/DS5/D6/D7

4ESE

AE7S

0000EBE
0oo00cCo

CLR. L

JER

ADDQ. L.

4CDF 0 0FE

UNLK

RTS

~ (A7)
ESDL7 . FRTFREF (A3)
4, H87
MOVEM. L.

Ab

FIGURE 4-2. Example of Output with Options L and A Specified (Sheet 2 of 2)

4-4

4.3 SYMBOL TABLE LISTING

The symbol table is a list of the symbolic names that exist in the source
program. Figure 4-3 shows an example of the symbol table listing.

SYMBOL TABLE

NAME ATTR ADDR SIZE TYPE COMMON
Cl UNDEF INED dedkkkkkkk Cl
L1 SAVE.V 16 L1l

NOTES

(1) Symbol names as they exist in the source program.
(2) Type of attribute (further details in Table 4-1, ATTR column).

(3) Address assigned to the symbol; if the space is blank, it is not
applicable.

(4) Number of elements.
(5) Refer to Table 4-1 for this column.

(6) Name of common block to which symbol belongs.

FIGURE 4-3. Symbol Table Listing (Option S)

4-5

TABLE 4-1. Symbol Table Contents
COLUMN INDICATION MEANING
ATTR UNDEFINED. x Attributes not determined
(attribute) LOCAL. x Local variable
COMMON., x Cormmon
PROG Program
SUB Subroutine
AFDS Function name
INTFUNC Intrinsic functions
EXT Externally declared subroutine
FUNC Function declared externally
BLOCD Block data name
SAVE. X SAVE4d variable

PARAMETER. X

x indicates the following:

Parameter variable

B Common Block name
\' Variable
A Array
SIZE _ NUMBER OF ELEMENTS
TYPE 12 2-byte Integer
14 4-byte Integer
R4 4-byte Real
R8 8-byte Real
L4 4-pyte Logical
Cn n-byte Character String

n=1to 255

4-6

4.4 LABEL TABLE LISTING

Figure 4-4 provides an example of the label table listing.

@ & 0

LABEL ATTR ADDR

10 EXEC BO3E
20 FRMT
NOTES

(1) The label.
(2) The type of statement specifying the label:

FRMT: Format label

EXEC: Execution statement label

(3) The relative address, from the beginning of the object module,
for the executable statement labels.

FIGURE 4-4. Example of the Label Table Listing

4,5 MODULE INFORMATION LISTING

This listing displays the detected error numbers, the memory capacity that the
object program requires, and the number of errors detected by the Compiler.
Figure 4-5 is an example of one such listing.

® ® ® ®

CODE SIZE 293e, SAVE SIZE 4, STACK SIZE 28, CONSTANT SIZE 220

7=28 IS SUFFICIENT

A LARGER VALUE IS RECOMMENDED

@ CURRENT Z=70

**%%%* TOTAL ERRORS 0 TOTAL WARNINGS 2

@

NOTES

(1) The size of the object program (ROM).

(2) The number of bytes required for local static storage (SAVEd and
initialized variables).

(3) The number of bytes required for local dynamic storage.
(4) The number of bytes required for format and other string constants.
(5) The value of Z used for this compilation -- i.e., Z=70:n.
(6) Either:
(a) The recommended size for Z.
(b) A larger value for Z is recommended; choose a large value for
the next recompilation and then reduce it to the recommended

value for future recompilations.

(7) The number of Level 1 or 2 diagnostic messages the Compiler detected.
(Refer to Table 4-2 for the diagnostic message error level.)

(8) The number of Level 0 diagnostic messages the Compiler detected.
(Refer to Table 4-2 for the diagnostic message error level.)

FIGURE 4-5. Module Information Listing

4.6 DIAGNOSTIC MESSAGES

The Compiler outputs a diagnostic message when an error is detected in the
source program. It outputs the diagnostic message as a possible form of warning
to which it assigns an error level to distinguish severity. Table 4-2 displays
the various levels of error messages and their implications.

TABLE 4-2. Diagnostic Message Error Levels

LEVEL CATEGORY MEANING
0Oorw Warning It is possible that there is an error, but the program
is acceptable.
lor E Normal Syntax or other error. The program is unacceptable
Warning and no object code will be generated, but the remainder
of the program will be checked.
20rF Fatal The error detected cannot be resolved by the Compiler,
Error and the Compiler will abort without checking the

remainder of the program.

The diagnostic message is printed right after the error is detected in the
source listing.

Refer to Appendix A for further details concerning the diagnostic messages.
Figure 4-6 provides an example of diagnostic messages.

LINE TSN SOURCE STATEMENT
1 1 FUNCTION FUNCOX, Y)
s 2 INTEGER AC3),1.
3 3 EQUIVALENCE (ACZ), L)
4 4 10 DATA AL /4, 2,3,7/7
E--99 A VARIABLE WAS FREVIOQUSLY INITIALIZED IN A DATA STATEMENT
!] o F = X2 YK
& & IF (XOLT. 0) GOTO 10
E-d26 REFERENCE TO TLLEGAL STATEMENT LABEL
7 7 Fro= 601y + L
8 8 100 RETURN
k4 9 END

W-197 FUNCTION VALUE NOT DEFINED IN THE FUNCTION SUEFROGRAM
10

KXXXKX TOTAL ERRORS 2 TOTAL. WARNINGS 1

FIGURE 4-6. Diagnoetic Message Example

4-9/4-10

CHAPTER 5

CREATION OF AN EXECUTABLE LOAD MODULE

5.1 INTRODUCTION

Relocatable object modules, generated by the FORTRAN Compiler, are processed by
the M68000 Family Linkage Editor (referred to as the "linker") to produce an
absolute load module. A FORTRAN program requires the linker because:

a. every FORTRAN program refers to runtime routines which reside in the
System Library,

b. if a program consists of one or more subprograms which were compiled
separately, the linkage between modules must be constructed, and

c. if a FORTRAN program calls a procedure or function written in assembly
language, the load module must include object modules produced by the
M68000 Assembler.

In all these cases, the linker is required to assign memory space to each
required object module, enable intermodule communication, and create a load
module that is ready to run.

FORTRAN programs are linked by the program LINK. LINK expects to find the
FORTRAN runtime library FORTLIB.RO on the system volume under user number 0. By
default, FORTRAN programs are linked to execute on a system hosting a Memory
Management Unit (MMU). If the target system does not have an MU (e.g., the VMC
68/2 or MVMEll0), then file FINITVM2.RO must be linked before the library is
linked. An example of this activity may be seen in paragraph 5.4.

5.2 INVOKING THE LINKAGE EDITOR

Enter the following command from the system console to invoke the Linkage
Editor: .

LINK <f1>[/<f1>]...,[<£2>], [K£3>]; [<options>]

fl These are the object files produced by the FORTRAN Compiler. Up
to 16 different object files can be specified by separating file
names with a slash (/).

f2 This specifies the load module file name. If this is omitted, the
same name as the first fl is used with extension LO.

f3 This file is used for outputting linkage information that is
produced by the Linkage Editor. #PR or # is usually specified.
#PR indicates that the linkage information is routed to the line
printer, and # indicates that the system console is the
destination. If omitted, # will be used.

options This specifies the options for the Linkage Editor. Refer to the
Linkage Editor User's Manual for further details on the options.

5.3 EXAMPLES

Following are some examples of load module generation.

EXAMPLE 1: Preparation of the load module when compiling with one
program.
SOURCE ===-=m——— > FORTRAN ----~> LISTING
FILE . FILE
SYS1:0..TEST.SA . Line Printer
[+——-> OBJECI‘ ------ +
. FILE
. S¥Ssl1:0..TEST.RO
LINKAGE < +
EDITOR
--------- > LOAD MODULE
Sysl:0..TEST.LO
Fom > LINKAGE LIST

Enter the FORTRAN commard :
FORTRAN SYS1:..TEST,,#PR

which invokes the FORTRAN Compiler, inputs the source program from
SYS1:0..TEST.SA, and prepares the object program SYS1:0..TEST.RO

then enter the LINK command:
LINK SySl:,.TEST, ,#PR;L=S¥S0:0..FORTLIB.RO
which invokes the Linkage Editor, inputs the object program from
SYS1:0..TEST.RO, and creates the load module in S¥S1l:0..TEST.LO.

The FORTRAN runtime library, FORTLIB.RO, is on volume SYS0:0. It
need not be specified if SYSO is the logon volume.

5-2

source

EXAMPLE 2: Preparation of the load module after compiling a source program and
then linking together several relocatable object modules.

SOURCE =——————— > FORTRAN —-----> LISTING
FILE . FILE
VOL2:0..MAIN.SA . Line Printer
. +===> OBJECT = = e +
. FILE
PREPARED . VOL2:0. .MAIN.RO
OBJECT FILE .
VOL2:0..SUB1.RO .
i ———————— > LINKAGE < +
EDITOR
Fom—————>

————————— > LOAD MODULE
VOL2:0. .MAIN.LO

PREPARED

OBJECT FILE

VOL2:0..SUB2.RO e ————— > LINKAGE LIST

Line Printer

Enter the FORTRAN command:
FORTRAN VOL2:0..MAIN,,#PR

which invokes the FORTRAN Compiler, inputs the source program
VOL2:0..MAIN.SA, and prepares the object program VOL2:0..MAIN.RO

then enter the LINK command:
LINK VOLZ2:0..MAIN/VOL2:0..SUB1/VOL2:0..SUB2, ,#PR;L=FORTLIB
which invokes the Linkage Editor, combines the object program compiled by

the FORTRAN command and the two relocatable object programs, and creates the
load module in VOL2:0..MAIN.LO

5=3

5.4 RUNTIME LIBRARIES FOR VERSAmodule SYSTEMS

The code produced by the FORTRAN Compiler is position-independent. The
following commands create a load module from TEST.RO.

LINK ,TEST.LO,TEST,LL
SEG SEG0:7,15
SEG SEG1:8-10

IN 0..FINITVM2
IN TEST.RO

5.5 FREEING A SEGMENT FOR A FORTRAN PROGRAM
5.5.1 Default Situation

By default, the FORTRAN Compiler uses the following segment allocation scheme
(refer to paragraph 6.3.1 for definition of segments and sections):

SEGO0 - Section 7

Common blocks and SAVE parameters

Runtime routines
FORTRAN program and subroutines, FORMAT statements
Constant strings

SEGl - Section 8
Section 9
Section 10

SEG2 - Section 15 - Command line, stack area, and RMA block

At runtime, another segment is requested which is contiguous to the stack. This
area is used for the stack and the parameter block areas associated with each
file (logical unit). Therefore, all four segments are allocated.

5.5.2 Freeing A Segment

To free a segment, the Linkage Editor user commands must be used. The following
example illustrates how program TEST would do this.

=LINK ,TEST.LO,TEST.LL
SEG SEGO (R) :8-10

SEG SEGl:7,15

IN TEST.RO

END

To free more than one segment, all of the sections could be linked into one
segment.

SEG SEG0:7-10,15

This, however, does not prevent the code from being overwritten by an illegal
array reference. '

5-4

5.6 SHARING A SEGMENT BETWEEN TWO FORTRAN TASKS
5.6.1 Intertask Communication Through a Global Common

For several tasks to have access to a global FORTRAN common, the following steps
must be taken.

a. All RO (relocatable object) modules referencing this global common must
be patched. For instance, if there is a global common named GLOBAL in a
FORTRAN program TEST, then TEST.RO must be patched. Using utility DUMP,
dump TEST.RO and look at the first several sectors of this file. Within
these sectors will be found the external symbol definition (ESD) for
GLOBAL. Preceding GLOBAL will be $17 which specifies GLOBAL as a common
in section 7. $17 must be changed to $1x, where x could be any section
other than 7, 8, 9, 10, or 15. For this example, assume GLOBAL is to be
in section 5. Therefore, $17 must be patched to $15. ‘

b. Now a segment must be freed in the load module. See paragraph 5.5.2 for
more information. The following example frees one segment, associates it
with section 5 (GLOBAL), and declares this segment to be globally
shareable.

=LINK ,TEST.LO,TEST.LL;B
SEG SHAR(G) :5

SEG SEG1:8-10

SEG SEG2:7-15

IN TEST.RO

END

Now any other program which has been linked in a similar fashion will share
cammon GLOBAL found in segment SHAR.

5.6.2 Sharing Program Segments

FORTRAN tasks can use a shared program segment. The shared routines must be
assembly language routines, which also includes the FORTRAN runtime library.

The following examples explain how this shared segment can be created. The
first example illustrates how two FORTRAN tasks can share runtime 1library
routines. Note that if one runtime routine is shared, they must all be shared.
This is because all runtime routines are located in section 8. In general, the
routines located in those sections contained by the shared segment are also
shared.

5-5

EXAMPLE 1: Sharing the FORTRAN runtime library.

The following Linkage Editor commands must be used to share the runtime
library:

=LINK ,<load module file>,<listing file>;<options>
SEG SEG0:7-10

SEG SHAR(G) :8

SEG SEG2:15

IN <RO modules>

<other linker commands>

END

No special options are required. Notice that a segment was freed by placing
the FORTRAN code (section 9) in segment SEGO.

EXAMPLE 2: Sharing assembly language subroutines while not sharing the
runtime library.

A call to a subroutine produces an XREF (external reference) for section 9.
If the subroutine is an assembly language routine, it may be incorporated in
a shared program segment. To do this, the XREF must be changed from section
9 to any other section except 7, 8, 10, or 15, as section 9 contains the
code produced for the FORTRAN routine. To change this XREF, the RO module
containing the XREF must be patched. For example:

PROGRAM MAIN

CALL SHARE(I)
XREF in section 9 for SHARE is produced.

In MAIN.RO, the XREF for SHARE will look like $69 (XREF in section 9),
followed by SHARE. This can be found in the first few sectors of MAIN.RO.
If SHARE is to be in section 11, $69 must be changed to $6B. In the
assembly language source for SHARE, a SECTION 1l command is requlred. After
this patching, the following linkage commands can occur:

=LINK ,<load module name>,<listing file name>;<options>
SEG SEG0:7-10

SEG SHAR(G) :11

SEG SEG2:15

IN MAIN.RO

IN SHARE.RO

<other linker commands>

END

5.7 USEFUL EXTERNAL DEFINITIONS - XDEF

The reglsters passed by the SCT can be found at a 4-byte offset from .FZWRK.
.FZWRK is an XDEF which is at the beginning of section 15.

CHAPTER 6

EXECUTION

6.1 EXECUTION OF THE PROGRAM
The FORTRAN load module can be executed by entering the following command:

<command> [KEI>])[[,<E2>][,...[,<En>]]1]1[,0=<device name>][;Z=n][:s]]

where:
command is the load module file name.
fl...fn is the file or device name(s) associated with logical unit
number by position within list. Files are referenced by unit
number within the program.
NOTE
This is the only time at which an external file
can be assigned to a logical unit. Within the
FORTRAN code, the ANSI subset standard does not
provide this feature. Thus, the first file is
associated with logical unit 1, the second file
with logical unit 2, and the nth file with
logical unit n.
device name is the file or device name specified as the recipient of
program output.
Z=n[:s] is the stack size and I/0 buffer size.

6.1.1 Program Not Requiring Other Files

If a program does not require any other files, simply enter the program load
module name and execute the program. Following is an example:

=WORK: . .TEST
Volume Name WORK
User # default (number specified during logon)
Catalog Name default
File Name TEST

Extension Name LO (default)

By default, logical units 5 and 6 are assigned to the user's terminal.

6.1.2 Program Requiring Other Files

If a program does require another file, the program can be entered as in the
following example:

=<command> WORK:..WORKFILE

Command Load module file name

Volume Name WORK ‘

User # default (number specified during logon)
Catalog Name default

File Name WORKFILE

Extension Name FT (default)

When this command is entered, it executes using WORKFILE assigned to logical
unit 1. The following options may be associated with each file.

(1) <file name> [(W)|(F(1[:m]))|(D(1[:m]))]
W Overwrites the file that already exists.

Be cautious with this option because it will destroy existing
records.

F(1l[:m]) Creates a new sequential file with the specified record length.
Be sure not to specify an already existing file.

1 Specifies the record length.
m Specifies the number of records (optional).
D(1[:m]) Creates a new indexed sequential file with the specified record

length. Be sure not to specify an already existing file.

1 Specifies the record length. The key length is always four
bytes, leaving a data length of 1-4.

m Specifies the number of records (optional).
When an option is not specified, it defaults to the files as they already
exist (if a file already exists). If a file is not allocated, it allocates
a sequential file with variable-length records.

(2) O0=<file name>|<device name>

Specifies the output file (logical unit 6) that the FORTRAN
program uses -- in this case, the line printer.

6-2

(3)

Z=n[:s]

Specifies the stack size and the I/0 buffer size.

Specifies the size of the I/0 buffer in n (the stack). If s
is omitted, the I/0 buffer size is n/2. If the 2 option is
omitted, it is assumed that the sizes are n = 32 (K) and s =
16 (K). When only n is specified, the stack size is n/2. If
both n and s are specified, the stack size is n - s (K), with
the area that is not included on the stack used as I/0 buffer
or the parameter area. The expression for the evaluation of s
is: s >= L + 0.09J + 0.5 (K), where L is the largest record
length in the file program and J is the number of units used.

Following are some examples of program execution.

EXAMPLE 1:

(a)

(b)

Description of the example

This program adds two numerical values that are read from the console and
writes the result to the console.

Command line for the compilation of the program, its linkage, and its

execution.

(i) Compilation

=FORTRAN WORK:..ADD,,#PR

Volume Name WORK
User # default
Catalog Name default
File Name ADD
Extension Name SA (default)
LINE ISN SOURCE STATEMENT
1 00001 PROGRAM ADD
2 00002 WRITE(6,50)
3 00003 50 FORMAT (1X, 'INPUT DATA') <:>
4 00004 READ(5,100) I,J @
5 00005 100 FORMAT (I4,1X,I4)
6 00006 K=I+J
7 00007 WRITE(6,200) K G
8 00008 200 FORMAT(1X ,'ADD RESULT = ',16)
9 00009 STOP
10 00010 END

FIGURE 6-1. Result of Compilation for Example 1

6-3

(ii) Linkage

=LINK WORK:..ADD,,#PR;L~FORTLIB

Volume Name WORK

User # default
Catalog Name default
File Name ADD
Extension Name RO (default)

Dptions in Effect: -A, -B, =D, -H, =I. L, ~-M, O, ~-P, -Q, -R, -5, U, =X

Unresolved References: None

Multiply Defined Symbols: None

Lengths (in bytes):

Segment He x Decimal
SEG@ 200001026 256
SEG1 20004600 17920
SEGR2 20000400 1024
Total Length 02204800 19200

No Errors
Noe Warnings

Load module has been created.

FIGURE 6-2. Linkage Result for Example 1

6-4

(iii)

Execution
=WORK: . .ADD (:)
Volume Name WORK
User # ’ default
Catalog Name default
File Name ADD
Extension Name LO (default)

Execute this module. After the input command is entered, wait for
the system to respond.

Input Data:

1000 2000 ©)

Execution Result:

ADD RESULT = 3000
**FORTRAN STOP

O

Explanation of numbered items:

This program uses two logical units (5 and 6), but since these are the units
automatically assigned, the execution command requires only the load module (4)
to execute.

(1)

(2)

(3)
(4)
(3)
(6)
(7

Write INPUT DATA to logical unit 6. This defaults to the console
because the command line (4) does not specify an alternative.

Read two integers from logical unit 5. This defaults to the console
because the command line (4) does not specify an alternative.

NOTE

The FORTRAN subset does not support list-directed
format statements. Therefore, the FORMAT statement
must be adhered to.

Write the result of the addition to console.
Invoke program WORK:, .ADD.

Example of an input to READ statement (2).
Result of adding 1000 to 2000 (3).

This message is sent to the system console whenever the
STOP instruction is executed.

6-5

EXAMPLE 2:

(a)

(b)

Description of the example

This program outputs to a direct access file five numerical values that are
read from the console.
their sum is sent to the printer.

The odd-numbered record entries are added,

and

Command line for the compilation of the program, its linkage, and its

execution.

(i) Compilation

=FORTRAN WORK: . .ODDADD, ,#

Volume Name

User #

Catalog Name

File Name

Extension Name

WORK
default
default
ODDADD

SA (default)

The listing file in this example is sent to the user's terminal.
relocatable object module defaults to WORK:..ODDADD.RO.

r
-
4
m

ISN

20001
20002
2003
22004
02eas
22206
aeea7
2eves
o2a9
12 20010
11 2211
12 ane12
i3 02012
14 20014

VUNCOLRWUON -

SOURCE STATEMENT

100
200

380

420

FIGURE 6-3.

PROGRAM ODDADD
DPEN(I.ACCESS='DIRECT',RECL=8)-<:>
DO 200 N=1, 5
READ(S, 100) I
FORMAT (14)
WRITE(1, REC=N)I
1SUM=0
DO 300 N=105:2
READ (1, REC=N) I
ISUM=ISUM+I
wRITE(6,4mm)ISUM-——(:>
FORMAT(/ ODD RECORD ADDITION = /, 1&)

sSTOP
END

Result of Compilation for Example 2

6-6

The

(ii) Linkage

=LINK WORK:..ODDADD, ,#;L~FORTLIB

Volume Name

User #

Catalog N
File Name
Extension

It links the object file given above with the Library during
It also outputs the results to the user's console and
creates the load module file with the extension name LO.

execution.

Options in Eff

Unresolved Re¢é

Multiply Defined Symbols:

LLengths (in by
Segment

SEGO

SEG1

SEG2
Total Length

No Errors
No Warnings

ame

Name

ect: -A; =B, -D, -H, -1, L, -M, O, -P, =@, -R, -8, -U, =X

erences:

tes):
He x

20000108
20004800
200024020
eaea4D0a

WORK
default
default
ODDADD

RO (default)

None

LLoad module has been created.

FIGURE 6-4.

6-7

None
Decimal
256
18432
1024
19712

Linkage Result for Example 2

(iii)

Execution
~WORK: . .ODDADD WORK: . .F1(D(8)) ,O=#PR ©)
Volume Name WORK
User # default
Catalog Name default
File Name ODDADD
Extension Name LO (default)

Execute this module. After the input command is entered, wait for
the system to respond with a prompt for input data to be entered.

Input Data:

1000 (:)

2000
3000
4000
5000

Execution Result:

ODD RECORD ADDITION = 9000 @
**PORTRAN STOP

Explanation of the numbered items:

When invoking the program (5), logical units 1 and 6 are assigned to direct
access file WORK:..Fl and the printer, respectively. Logical unit 5 defaults to

the user'

(1)
(2)

(3)
(4)
(3)

(6)
(7)

S console.

Open logical unit 1 for direct access.

Read five data elements from the user's console and write the data to
logical unit 1.

Read odd data records.
Output the addition result to logical unit 6.

The execution command. Option D(8) means that the indexed sequential
file has a key length of four bytes and a data length of four bytes for

a total record length of eight bytes.
The input data.
The resulting output.

NOTE

Because the file already exists, it must be deleted
before the above command line is entered again. An
alternative, when the file exists, is to invoke the
program as:

=WORK: . .ODDADD WORK:..Fl

This results in use of the existing file rather than
an attempt to allocate another.

6-8

EXAMPLE 3:
(a) Description of the example

‘This program copies the first five records in a direct access file to a
sequential access file with unformatted records.

(b) Command line for the compilation of the program, its linkage, and its
execution, :

(i) Compilation

=FORTRAN WORK:..FCOPY,,#PR

Volume Name WORK
User # default
Catalog Name unused
File Name FCOPY
Extension Name SA (default)
The 1listing file in this example is sent to the printer. The

relocatable object module defaults to FCOPY.RO.

LINE ISN SOURCE STATEMENT ‘:>
1 20001 PROGRAM FCOPY /

2 20002 OPEN(1, ACCESS=‘DIRECT *, RECL=8)"

3 20003 DO 108 N=1, 5

4 20004 READ(l.RE;;;;;___~(:)

s Q0005 WRITE(2) I

6 20006 188 CONTINUE

7 02007 STOP ‘COPY’

8 o0008 END

FIGURE 6-5. Result of Compilation for Example 3

(ii) Linkage

=LINK WORK:..FCOPY, ,#PR; =FORTLIB

Volume Name WORK

User # default
Catalog Name default
File Name FCOPY
Extension Name RO (default)

It edits and combines the object file given above with the Library
during execution. It also outputs the results to the printer and
creates the load module file with the extension name LO.

Dptions in Effect: -A, -B, =D, =H, -1, L, -M, 0, ~P, -Q, =R, -6, =U, =X

Unresolved References: None

Multiply Defined Symbols: None

Lengths {in bytes):

Segment Hex Decimal
SEGR 20222100 256
SEG1 20024700 181764
SEG2 20002400 1824
Total Length 03004CQ2A 19456

No Errors
No Warnings

Load module has been created.

FIGURE 6-6. Linkage Result for Example 3

6-10

(iii) Execution

=WORK:..FCOPY WORK:..F1l,WORK:. .F2

Volume Name WORK

User # default
Catalog Name unused

File Name FCOPY
Extension Name LO (default)

Execute this module.
Execution result:

**FORTRAN STOP COPY @

Explanation of the numbered items:

The command line for this program (3) assigns file Fl to logical unit 1, and
file F2 to logical unit 2.

File Fl does not require a D(8) specification because it was created by another
program. In fact, it would be illegal to specify D(8) in this case. File F2 is
a sequential file with variable-length records.

(1) Open logical unit 1 for direct access.

(2) Read a record from logical unit 1 and write data to unit 2. This loop
is repeated five times.

(3) Execute FORTRAN STOP statement and display the word COPY on the user's
console upon completion.

6-11

6.2 FILES
6.2.1 File Formats

There are four kinds of VERSAdos file formats: a sequential file; a contiguous
file; and indexed sequential files, with and without duplicate keys.

A sequential file has an optional record length and does not require contiguous
sectors. A contiguous file has a record length of 256 and does require
contiguous sectors. The indexed sequential file is a sequential file with keys
for each record.

The sequential file contains ASCII data and can be read and written with FORTRAN
input/output statements. FORTRAN direct access files contain ASCII or binary
data and use indexed sequential files.

6.2.2 Record Formats

There are two kinds of record formats in FORTRAN: variable and fixed length
records.

A variable length record has a length of 1 to 65,535 bytes. To read a record,
the specified length of the record in the FORMAT statement must be equal to or
smaller than the actual record length of the file. To write a record, these
lengths must be equivalent. To rewrite a record with a WRITE statement, the
fixed length record file is useful. A fixed length record has the same record
length throughout a file. To create a new fixed length file, either F(1[:m]))
or D(1[:m]) (refer to paragraph 6.1.2) must be specified as a file option on the
command line.

6.2.3 File Access Methods

There are two methods for accessing files in FORTRAN: sequential and direct
access.

Sequential access is the orderly access of one record at a time. The sequential
access 1is able to use the READ, WRITE, BACKSPACE, REWIND, and ENDFILE
statements. Logical units 5 and 6 are sequentially accessed.

LINE ISN SOURCE STATEMENT

1 22001 PROGRAM EX1

2 pevo:z READ(S, 10@) 1
3 29003 100 FORMAT(IZ2)

4 20004 oS = I42

5 20005 WRITE(&, 50@).J
b6 20006 500 FORMAT(I4)

7 22007 |sTOP

8 20008 END

FIGURE 6-7. Sequential Access; Input/Output

6-12

A direct access file is accessed with a specified record number. The READ and
WRITE statements can be used with direct access files. The direct access file
uses a fixed length record file that contains the record. The record number is
specified by REC= in the READ and WRITE statements. The record length is
specified for the data size that the WRITE statement outputs plus the key size
of four bytes. The four bytes are used as an information area for direct access
files. An example is listed below.

LINE ISN SOURCE STATEMENT

1 00001 PROGRAM DIRECT

2 2o002 DIMENSION A(10),B(1@)

3 oeea3 OPEN(1, ACCESS="DIRECT *, RECL=44)
4 onoa4s WRITE(1, REC=1)A

S5 20a5 WRITE(1, REC=2)B

é 2aaas STOP

7 evea7 END

FIGURE 6~8. Direct Access 1/0

In this example, the file associated with logical unit 1 has been specified as a
direct access file with a record length of 44 bytes. Arrays A and B occupy 40
bytes each (four bytes per each real element). Therefore, it is possible to
write the entire array A in record number 1 (line 4) and to write array B in
record number 2 (line 5). If the OPEN statement were changed to OPEN (1, ACCESS
= 'DIRECT', RECL = 40), then array B would be written to record number 3,
because array A would occupy records 1 and 2.

6.2.4 Formatted and Unformatted I/0

The format of an input/output statement can be specified in FORTRAN in the
following manner. Two examples are given to illustrate the two cases.

In the case of input/output with the FORMAT statement specified in a READ or
WRITE statement, the record unit length is from a left parenthesis "(" to a
right parenthesis ")" or from a slash "/" to another slash "/". In Figure 6-9,
READ and WRITE statements (line 2 and line 5) have their format specified by
FORMAT statements (line 3 and line 6, respectively) and execute their I/0
accordingly.

LINE ISN SOURCE STATEMENT

1 20201 PROGRAM EX3

2 2002 READ(S, 100)J

3 o3 120 FORMAT (12)

4 oaoe4 I=I+100a

S 20005 WRITE(6, 500) 1

6 22006 See FORMAT (1@H RESULT = , I4, 5X, 3H###)
7 oaoa7 sSTOP

8 2208 END

FIGURE 6-9. Input/Output with FORMAT

6-13

If the READ or WRITE statement does not specify a FORMAT statement, it executes
in the default manner. The record size for the I/0 is the data size plus four
bytes (for a control area). If the record length of a file is not large
enough, it inputs/outputs a multiple number of records.

LINE ISN SOURCE STATEMENT

1 2eea1 PROGRAM EX4

2 radrlrilr e OPEN(1, ACCESS="DIRECT’, RECL=16)
3 220a3 READ(1, REC=N)1I

4 200a4 WRITE(2) 1

5 2005 STOP

& 20006 END

FIGURE 6-10. Input/Output without a FORMAT Statement

In this case, since the format is not specified, the WRITE statement (line 4)
outputs the data read by the READ statement (line 3) without any modifications.

6.3 LOAD MODULE

6.3.1 Memory Organization

The FORTRAN Compiler produces relocatable object modules. These relocatable
object modules consist of sections (the logical units into which code/data are

placed), which are linked with other relocatable object modules to produce the
load module. The basic unit of a load module is the segment.

TABLE 6-1. Memory Organization

SEGMENT SECTION

NUMBER NUMBER CONTENTS
0 7 Common Block Variables (SAVE *) and SAVEd Variables
1 8 Runtime Routines
1 9 FORTRAN Program and Subroutines, FORMAT Statements
1 10 String Constants .
2 15 Command Line, Stack Area, and RMA Block

(SAVE *): All common blocks are SAVEd. (Refer to ANSI Standard.)

6-14

6.4 FORTRAN STATEMENTS THAT CONTROL EXECUTION

This section explains the relationship between FORTRAN statements and execution.

6.4.1 PAUSE Statement

The PAUSE statement is used to stop execution momentarily. When this statement
executes, it outputs a message to the user's console and stops the execution.
It then waits for the return key before continuing with the execution of the
next statement. If there is no user's console, this statement does nothing, and
execution continues with the next statement.

**FORTRAN PAUSE [<text>]
<text>, which can be any string enclosed in single quotes, is printed
when the PAUSE statement is executed.
6.4.2 STOP Statement
The STOP statement is used to stop execution of the program. When this
statement executes, it outputs a message to the user's console and stops the
execution.

**FORTRAN STOP [<text>]

<text>, which can be any string enclosed in single quotes, is printed
when the STOP statement is executed.

Refer to the three execution examples in paragraph 6.1.

6.4.3 ENDFILE Statement

The ENDFILE statement writes an END OF RECORD to the file, but it does nothing
in the operating system. Thus, it cannot delete a created record.

WRITE (1) A
WRITE (1) B
BACKSPACE 1
ENDFILE 1

FIGURE 6-12. ENDFILE Statement

The record remains on the file with the ENDFILE statement execution.

6-15

6.5 DEFAULT LOGICAL UNITS

Logical units 5 and 6 are always the read and write default logical units on
VERSAdos systems. The remaining logical units are assigned by their position
within the command line as was described in paragraph 6.1. If there is no
command line, as in a SYSGENed environment, then the logical units are assigned
as described in Chapter 8.

6-16

CHAPTER 7

INCLUSION OF ASSEMBLY ROUTINES

7.1 INTRODUCTION

A call to an assembly language routine from a FORTRAN program is handled like a
call to a FORTRAN subroutine or function in a FORTRAN program, and execution
continues with the next statement.

7.2 INTERFACE WITH EXTERNAL PROCEDURE (WITHOUT ARGUMENTS)

When calling an external procedure, the return address is placed on the stack.

Stack

(A7) -> Return Address

Pre-Call Top of
Stack

FIGURE 7-1. Stack Contents when Control is Passed to the Procedure

7.3 INTERFACE WITH EXTERNAL PROCEDURE (WITH ARGUMENTS)

When calling an external function or procedure into which it is necessary to
transfer arguments, the address of the arguments is put onto the stack followed
by the return address. If the called routine is a function, the result is
returned to the calling routine in DO. If the format of the function is to
return a double-length result (eight bytes), it is left on top of the stack when
returning from the function call.

A = FUN(B,C,D)
Stack

(A7) -> Return Address

Function Result
(2, 4, or 8 bytes)

D Address (4 bytes)

C Address (4 bytes)

B Address (4 bytes)

Pre-Call Top of
Stack , <--- highest address

FIGURE 7-2. Stack Contents when Control is Passed to a Procedure
Requiring Arguments

7-1

Figure 7-2 shows the contents of the stack when control is transferred to
function FUN. The stack pointer (A7) points to the return address. Immediately
under the return address are two, four, or eight bytes for the function result.
Next are the addresses of the actual parameters. Note that the address of the
last parameter (D in the example) is immediately under the function result.

When control is passed back from the function, the stack pointer (A7) points
below the return address. If it is a REAL*8 function, the result is on top of
the stack; otherwise, the result is also put into DO. Adjusting the SP to point
to the place it pointed to before executing the calling sequence is the
responsibility of the caller.

For functions returning a LOGICAL result, written in assembly language, it is
essential that the zero bit (Z) of the status register be properly set (or
cleared) on return. This is achieved by loading DO with the function result (0
or 1) immediately before return. Thus, the control returns to the instruction
following the one which called the function, and data register DO contains the
result of the function.

7.4 EXAMPLE OF COMBINING ASSEMBLY ROUTINES

To combine FORTRAN and assembly language routines, the interface should be as
illustrated in Figure 7-1 and Figure 7-2. Figures 7-3 and 7-4 give further
examples.

For the code:

=FORTRAN WORK:..ASMLNK, ,#PR;S,T= ASM LINK TEST

LINE ISN SOURCE STATEMENT

1 20001 PROGRAM ASMEX

2

3 c Computes the time necessary to do 10,000 double precision multiplies
4

S o022 REAL#8 D1, D2, D3

[20023 REAL AVE, TOTAL

7 Q0024 INTEGER START, STOP

8

9 20eas D2 = 1. 765D@

10 aoeas D3 = 3. 45765D2

11 ooo07 CALL TIME(START) ——-—@
12 Q008 DO 1@ I=1, 10000

13 22029 10 D1=D2#D3

14 ooa1a CALL TIME(STOP)

15 20011 TOTAL = (STOP-START)/1000. @
16 22012 AVE = TOTAL / 10000.0

17 22213 WRITE(&, 20) TOTAL, AVE

18 20014 20 FORMAT(1X, ‘TIME IN SECONDS’, /.
1¢ 1 ‘ TOTAL = ‘,F1@. 6 ,’ AVERACE TIME = ‘,F10.8)
20 20015 STOP

21 22016 END

NOTE
(1) The call to an assembly language routine from a FORTRAN program is the
same as a FORTRAN subroutine call.

FIGURE 7-3. FORTRAN Program Calling an Assembly Language Routine

7-2

For

MONO U LWIN) —-

[
n
80000

LA L 2 2]
ELLL 2

(1)
(2)

(3)

the code:
=ASM WORK:..TIME,,#PR;L
* Assembly language routine callable from FORTRAN
* Routine calls VERSAdos’ EXEC which returns the date
* since Jan {1 and the number of millisecs since midnight.
* Calling routine passes address of desired destination
. 00000000 SECTION O
00000000 00000008 PARMBLK DS. L 2 DATE, TIME IN MILLISECONDS
00000009 SECTION @9
XDEF TIME
00000000 41F900000000 TIME LEA PARMBLK, AO POINT AT PARAMETER BLOCK
00000006 704A MOVE. L #74, D0 STDTIM DIRECTIVE
00000008 4E41 TRAP L3} GET SYSTEM DATE & TIME IN PARMBLK
0000000A 4CDF0300 MOVEM. L (A7)+, AO/AL RETURN ADDR & PARM ADDR OFF STACK
0000000E 22B700000004 MOVE. L PARMBLK+4, {Al) RETURN THE TIME (ELAPSED MS)
00000014 4EDO JMP (AD)
END
TOTAL ERRORS 0--

TOTAL WARNINGS 0—

NOTES
XDEF TIME defines to the outside world the name of this routine.

FORTRAN routines are placed in section 9; this declaration allocates the
assembly language routine to the same section. (See paragraph 6.3 for
outline.)

The subroutine/function entry point must not be included as a parameter
on the END statement. Doing so will cause the resultant load module,
after linking, to begin execution in the subroutine rather than in the
main program.

FIGURE 7-4. Assembly Language Routine Callable from FORTRAN

The following LINK command is used to combine the two code segments into a load

module:

In this

=LINK WORK:..ASMLNK/WORK:..TIME, ,#PR; L~FORTLIB

example, the LINK is the same as in other FORTRAN programs.

7.5 REGISTER USAGE IN FORTRAN PROGRAMS

The following registers are used in FORTRAN programs in the indicated manner. —
FORTRAN assumes that all registers are saved upon entry to a subroutine.
Therefore, user—created assembly language subroutines must preserve the value of

the following registers:

A3 - Base address of RTL routines.

A4 - Base address for dummy arguments of statement functions.
A5 - Base address of the (.FCBREF) SAVE and common variables.
A6 - Base address for local variables and parameters.

CHAPTER 8

FORTRAN'S RMA (RUNTIME MAINTENANCE AREA)

8.1 RUNTIME MAINTENANCE AREA

The Runtime Maintenance Area (RMA) is a data block which contains global
information for the runtime routines. Each logical unit which is in use has a
Unit Control Block (UCB) which contains a File Handling Services (FHS) block and
an Input/Output Services (IOS) parameter block. The UCB's are in the RMA.
Other information contained in the RMA would include format flags, and the
beginning and the end of the free memory space.

In the default situation the RMA is located in the middle of the runtime
allocated segment. Its address is contained in A5 throughout execution.
8.2 RMA LAYOUT

The following equates represent the layout of the RMA.

CMRGE: EGU 0 (LENGTH) start of com—-red

x

OEJSF EQU CMRGE+0 (4) STACK PTR. OF OBJECT REGS STORED
IOFLAGI EQU CMRGE+4 2) FARAM OF READ/WRITE

IOFLAG EQU CMRGE+S

QUWRITE EQU 0 <BIT>

QCOREF' EQU 1 <BIT>

QRDFLTU EQU 2 <BIT> UNIT=x

QDIREC EQU 3 <BIT> REC=

QFORMT EQU 4 <BIT>

QENDAD EQU S <BIT> END=

QERRAD ERU 6 <BIT> ERR=

QIO0ST EQU 7 <BIT> IOSTAT=

IOFLAG1 EQU CMRGE+4

QHXOST EQU 0 <BIT> IOSTAT=INTEGER%Z

UNITN EQU CMRGEBE+6 (2) UNIT NUMEER

CFLINF EQU CHMRGE+8 (6) INTERNAL FILE

CFLINFS EQU CFLINF+0 (2) SIZE

CFLINFA EQU CFLINF+2 (4) ADDRESS

RECN EQuU CMRGE+24 (4) REC= xD. A. X

ADREOF EQU CMRGE+16 (4) END=

ADRERRK EQU CMRGE+20 (4) ERR=

ADIOST EQU CMRGE+24 (4 IOSTAT=

x

x

ADCUCE EQU CMRGE+28 (4 ADDR. OF CURRENT UCE

ADTUCE EQU CMRGE+32 (4) ADDR. OF CRT UCE (6)

ADSUCE: EQu CMRGE+36 (4) ADDR. OF LISTING UCE (&)

ADEEUF EQU CMRGE+40 (4 BEGINNING OF BUFFER whoes buffer???
ADEBUF EQU CMRGE+44 (4) END OF EBUFFER

ADCEUF EQU CMRGE+48 (4) CURRENT OF BUFFER of current uch???
ADESFC EQU CMRGE+52 (4) END OF SPACE tor of i/Zo-buffer.
ADEFSF EQU CMRGR+S6 (4) BEGINNING OF FREE SFACE in i/o-buff
x

x

ADEFMT EQU CMRGE+60 (4) BEGINNING OF FORMAT

ADCFMT EQU CMRGB+&64 (4) CURRENT OF FORMAT

ADL.FN1 EQU CMRGE+68 (4) ADDR. OF FIRST LEVEL LEFT FPAREN.
ADLPN2 EQU CMRGB+72 (4D ADDK OF SECOND LEVEL LEFT FAREN
REFN1 EQU CMRGE+76 (2) REFEAT SPECIFICATION OF QUTER LOOF
REFN2 EQU CMRGB+78 (2) REPEAT SFECIFICATION OF INNER LOOF
REFN3 EQU CMRGE+80 (2) DUFLICATION COUNTER

SCALF EQU CMRGEB+82 (2D SCALE FACTOR

ENNIND EQU CMRGE+B4 (1) FORMAT BN INDICATER

EFORMT EQU CMRGB+8S (1) END OF FORMAT IND.

8-1

SGNSCN
GMINUS
QFLUS
FMTDLM
PRDSCN
EXPSCN
x

=
FMTINF

FMTCOD
OFI
QFD

QFE

QFF

oF G

GFL

GFA

aFz
QFAA
FMTWID
FMTDIG
FMTEXP
x
DATINF
DATADR
DATLEN
DATTYP
QTI
QTR

aTL.

arTc

x

x
ADRTRN
ADRACC
ADRCNV
x
RCONT
DATRLEN
x

x

x

x

x
ERRNUM
ERRINF
ERRINF1
ERRINF3
ERRINF2
ERRINF4
x

x
UCELEN
RECFLG
x
TOKIND
QCKI
QCKL
QCKF

x FIXED
CONREP
x

x

x

x
REFEAT

XFREE 144-159

CMRGE
x

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

EQU
EQU

EQU
EQU
EQU
EQU
EQu
EQU

EQU
EQU

EQU
EQU
EQU
EQU
BUG:
EQU

EQU

EQU

CMRGE+86
$FF
$F0
CMRGB+87
CMRGE+88
CMRGB+89

CMRGE+91
FMTINF+0
4

8

12

16

20

24

28

32

36
FMTINF+1
FMTINF+3
FMTINF+S

CMRGE+98
DATINF+0
DATINF+4
DATINF+3
0 <BIT>
1 <BIT»
2 <pIT>
3 <BIT:

CMRGE+104
CMRGE+108
CMRGE+112

CMRCGE+116
CHRGE+118

CMRGE+120
CMRGE+122
ERRINF+1
ERRINF+2
ERRINF+4
ERRINF+8

CMRGE+136
CMRGB+134

CMRGE+140
1
2
3

(1)

(1)
L
(1)

(7)
(1)

(2)
(2)

2)

(&)
4)
L)
1

(4)
(4)

2)
2>

(2)

12)
(1L
(1)
4)
4)

4)
(2)

SIGN SCANED
MINUS

PLUS

DELIMITER SCANED
PRIOD SCANED
FORMAT SCANED

FORMAT INFORMATION
FORMAT CODE

N>XCrOMMOH

A (NO WID)
FORMAT WIDTH

EXF. PART DIGITS

INFORMATION OF I/0 LIST
ADDR. OF I/0 LIST
LENGTH OF ELEMENT
TYFE

INTEGER
REAL
LOGICAL
CHaR

ADDR. OF . FIFMT/. FINFT
ADDR. OF . FISEQ/. FIDIR/. FICFL
ADDR. OF . FICVI/. FICVD

RECORD COUNTER OF UNFORMATTED I/0
REMAINING BYTES OF UNFORMATTED I/0 ‘
SET TO 0 BY FIXINT
SET TO DATLEN BY FILST
RESET TO REMAINING EBY FINFT

ERROR NUMEER

ERROR INFORMATION
LENGTH OF CHAR.
LENGTH OF DATA (HEX)
ADDR. OF CHAR

ADDR. OF DATA (HEX)

LENGTH OF UCE contant

(1)

SEE LAST PARAGRAFH OF STANDARD 13. 3
CMRGE+141

CMRGB+142

CMRGB+160

(1 FLAG: RESET AT INITIALYIZATION AND WHEN
AN OUTER ‘¢’ IS ENCOUNTERED: SET WHEN
A REFEATAEBLE EDIT DESCRIFTOR IS

ENCOUNTERED. MEANS THAT CURRENT FORTION

OF FORMAT SFEC MAY EE REUSED

(2) REFEAT SPECIFICATION OF CURRENT
POTENTIAL REUSAELE FORTION OF FORMAT
SPEC. INITIALLY SET TO 1(ALL FORMAT IS
REUSED); AFTER OUTER “(’, IS ASSIGNED
THE SAME VALUE AS REFN1(BUT IS NOT
DECREMENTED LIKE IT).

x
ZERO
ONE
THO
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT
NINE
TEN
co9
€132
C255
x

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQu
EQU
EQU
EQU
EQU

VAN UUDIDUONKO

x FARAMETER TO . FISEQ/. FIDIR/. FICFL

x
QINIT
ANEXT
QFXNL.
x

EQU
EQU
EQU

0
q
8

INITIAL.I/0 CALL

NEXT RECORD I/
FINAL I/0 CALL

0 CALL

x RETURN CODE FROM . FISEQ/. FIDIR/. FICFL

x
QNRM
QEOQF
QERR
x

EQU
EQU
EQU

0
1
2

x RETURN CODE FROM

x
QREADY
QFOUND
QCREAT
x

EQU
EQU
EQU

0
1
2

x RETURN CODE FROM

x
QCMFLT
QUNCFY
x
x

EQU
EQU

0
1

x FARAMETER OF GET

x

NORMAL
END OF FILE
ERROR OCCURED

. FIUBA

ALREADY OFENED
NOT OFENED., BRU
UCE NOT FOUND,

. FIFMT/. FINFT

PROCESSING REC
PROCESSING REC

T UCE: FOUND
CREATE.

ORD COMFPLETED
ORD NOT COMFLETED

SEGMENT AND RECEIVE SEGMENT ATTRIEUTE

SEGMPE EQU 0

TASKN EQU 0 4 TASK NAME

SESSN EQU 4 (/) SESSION NAME
DIROFT EQU 8 (2 DIRECTIVE OPTION
SEGATT EQU 10 (2) SEGMENT ATTRIEBUTE
SEGNAM EQU 12 (4 SEGMENT NAME
LOGADR EQU 16 (4) LOGICAL ADDRESS
SEGLEN EQU 20 (4 SGMENT LENGTH
RETADR EQU 24 4)

x RECEIVE AREA OF RET.

SEG. ATT

RSASN EQU 0 % SEGMENT NAME
RSASA EQU 4 (2) SEGMENT ATTR
RSABA EQU & (4 BEGINNING AD
RSAEA EQU 10 (4) ENDING ADDR
RBAFA EQU 12 (4) PHISICAL ADD
x

x

RAOKAKNNK RMA EQUS AN IR NN
x

RMA EQU 0 BASED (AS)
RMASC7 EQU 40 ADDR(. FESC?7?
RMAFMA EQU 44 ADDR(. FMAIN)
RMASC6 EQU 48 ADDR (. FESC6)
RMACML. EQuU 52 ADDR (. FCOML.)
RMAEFS EQU 56

RMAORG EQU &0 ADDR(SAVE RE
RMAEND EQU 64 END=ADDR (CMKG)

x ERROR NUMBER
x

RECEIVE AREA ADDR. OF RECEIVE SEG. ATT.

IBUTE
DR.

R

20K 000 20K 00 20K K 20K K K K KK K KK

start of i/o-buff
main—srosram LOCALS.
mair-Frogram’s addr

#140
%140
#140
#140
#140
%140
#140
#140
*#140
%140
#140

#140
#140
%140
%140
%140

main—-rrogram SAVE+COMMON#140
command-line (from mairrros)
ADDR(END OF FREE SFACE) tor of i/o—-buff

GS OF 08) in . FZWORK

followed bw COM—-REGION.

8-3

#140
#140

%140
%140

101
102
103
104
105
106
107
108
109
110
111
112

114
115
116
117
118
119
120
121
122

124
125

126

128
129
130

132
133
134
135
136
137
138

RECURSIVE CALL

UNIT NO. OUT OF RANGE

END OF RECORD

FORMAT CODE MISSING

INVALID CHARACTER IN FORMAT

NEST QUT OF RANGE IN FORMAT
NUMEER OUT OF RANGE IN FORMAT
ILLEGAL DISCRIFPTORS IN FORMAT
ILLEGAL SIGN WITHOUT SCAL FACTOR
INVALID DECIMAL CHARACTER
INVALID CHARACTER

INVALID HEXADECIMAL CHARACTER
FIXED OVERFLOW

FLOATING OVERFLOW

FLOATING UNDERFLOW

NOT ENOUGH RECORDS UNFORMATED READ
TOO MANY RECORDS UNFORMATED WRITE
ASSIGN MISSING

INSUFFICIENT MEMORY FOR BUFFER
ERROR RETURN ON FHS

READ NOT SUFORTED DEVICE

WRITE NOT SUFPORTED DEVICE
EACKSFACE NOT SUFORTED DEVICE
REWIND NOT SUPORTED DEVICE
ENDFILE NOT SUFORTED DEVICE
DIRECT ACCESS NOT SUFORTED
SEQUENTIAL ACCESS NOT SUFORTED
UNFORMATED NOT SUFORTED

ILLEGAL DIRECT WITHOUT OFEN STMT
ALREADY ACCESSED DIRECT

ALREADY ACCESSED SEQUENTIAL

I/0 ERROR AT SEQUENTIAL ACCESS
I/0 ERROR AT DIRECT ACCESS

END OF FILE

ALREADY OFENED

ILLEGAL RECORD FORMAT

RECORD LENGTH OF OFEN STMT GT OF FILE
RECORD NUMEER LE 0

NO FORMATTING FILE

I/0 ERROR AT PAUSE OR STOF

ERROR OCCURED AT CLOSE

OUT OF RANGE OF ARRAY ELEMENT
INSUFFICIENT MEMORY

ZERO DIVIDE

8.3 UCB LAYOUT

The following equates represent the memory layout for each UCB. The basic
format is an overhead data block followed by the IOS parameter block and then
the FHS parameter block. Detailed information of the IOS and the FHS parameter
blocks are contained in the VERSAdos Data Management Services and Program Loader
User's Manual.

*...U®

UCE: EQU 0

UCENEXT EQU UcCe+0 (4 ADDR. OF NEXT UCE

UCELUN EQU uce+4 (1) LOGICAL UNIT NO

OFNFLG EQU uce+S (1) 0 —closed, QOPEN - orened.

QOFEN EQU 1 OFPENED

ACSFLG EQU Uce+é6 (1)

QSEQ EQU 1 SEQUENTIAL ACCESS

QRDIR EQU 2 DIRECT ACCESS

UCEFDCD EQU uce+7 (1) FILE/DEVICE CODE (FROM FHS)

QCONTIGC EQU 0 CONTIGUOS FILE

QSEQUEN EQU 1 SEQUENTIAL FILE

QISEQND EQU 2 INDEXED SEQUENTIAL FILE (NO DUFLICATE KEY
RISEQDK EQU 3 INDEXED SEQUENTIAL FILE (DUF. KEYS ALLOWD
QTRMNLI EQU 30 INTERACTIVE TERMINAL ON IPC INTERFACE
QTRMNLL EGU 35 INTERACTIVE TERMINAL ON LOCAL DRIVER
QRDISCFF EQU 40 5710 MB DISC, FIXED FLATTER

QDISCRF EQU 41 5710 ME DISC, REMOVAELE FLATTER
QFLFYSS EQRU S0 FLOPPY, SINGLE DENSITY SINGLE SIDED
QFLFYSD EGQU S1 FLOFFY, SINGLE DENSITY DOUBLE SIDED
GFLFYDD EQU 52 FLOFFY, DOUELE DENSITY DOUBLE SIDED
QMGTAFE EQU 60 MAGNETIC TAFE

QLLPI EQU 90 LOW SPEED LF ON IPC

QHLFI EQU ?1 HIGH SFEED LP ON IFC

QLLFL EQU ?5 LOW SFEED LF ON LOCAL DRIVER
QASYCOM EGU 100 ASYNCHRONCUS COMM. LINE

GNULLD EQU 255 NULL DEVICE

UCEDATTW EQU UCE+B8 (2) DEVICE ATTRIBUTES WORD (FROM FHS)
UCEDATT EQU Uce+9

QREADAT EQU 0 <BIT: SUPFORTS READ

QWRITAT EQU 1 <BIT> SUFFORTS WRITE

QEINRAT EQU 2 <BITx SUFPORTS EBINARY

QRANDAT EQU 3 <BIT> SUFFORTS RANDOM

QIMAGAT EQU 4 <BITx SUFPORTS IMAGE

QHALTAT EQU S <BIT> SUPFORTS HALT I/0

QFOSTAT EQU 6 <BIT> SUFPFORTS FOSITION RECORD

GFILMAT EQU 7 <BIT:> SUFFORTS FILEMARK

UCEDATT1 EQU uce+8

QINTRAC EQU 0 .BIT> INTERACTIVE DEVICE

UCERECL. EQU UCE+10 (2) RECORD LENGTH (FROM FHS)

FREIO EQU uce+12 (1)

QFREAD EQU 0 <BIT> READ

QFWRITE EQU 1 <BIT> WRITE

QPECSF EQU 2 <BITx BEACKSFACE

QFREWID EQU 3 <BIT> REWIND

QFENDFL EQU 4 <BIT> ENDFILE

QFOFEN EQU S <BIT> OFEN

QPFIRST EQU 6 <BIT> FIRST I/0

FREIOL EQU Uce+13 (1)

QFPUNFT EQU 0 <«<BIT> UNFORMATTED I1/0

QFCUNE: EQU 1 <BIT:> PROCESS IN EACKSF OF UNFORMAT REC
RECLEN EQU uce+14 (2) RECORD LENGTH OF OFEN STMT.

x

IOSHD EGQU UCE+16 I0S PARAMETER BLOCK (in UCE)
IOSCODE EQU IOSHD+0 (1)

GRDTRAN EQU $00 DATA TRANSFER REQUESTS

QRCFUNC EQU $01 COMMAND FUNCTIONS

JOSFUNC EQU IOSHD+1 (1)

QDREAD EQU 1 READ REQUEST

QDWRIT EQU 2 WRITE REQUEST

QDOUIN EQU 4 OQUTFUT WITH INFUT

QDUFDT EQU 8 UFDATE REQUEST

QDDELT EQU $10 DELETRRECORD

8-5

QDFMTD EQU $20 FORMAT DISK
QCFSTN EQU 1 FOSITION

QCRWND EQU 2 REWIND

QCTEST EQU 4 TEST I/0

QCWAIT EQU 8 WAIT ONLY

QCHALT EQU %10 HALT I/0

QCERAK EQU $20 BREAK SERVICE
IOSOFTW EQU I0OSHD+2 (2)

IOSOPT EQU IOSHD+3

QOBNRY EQU 0 <BIT> ASCIT/BINARY EIT
QOFRCD EQU 1 <BIT> WALT/PROCEED EIT

QOIMAG EQU 3 <BIT> FORMAT/IMAGE EIT

QOERAK EQU 4 <BIT> EREAK NOTIFICATION EIT

QOSECH EQU S <BIT> SUFRESS ECHO EBIT

QOELCK EQU 6 <BEIT> RECORD/ELOCK ACCESS EIXT
QORKEY EQU 7 <BIT> LOGICAL RECORD/RANDOM KEY ACCESS EIT
IOSOFT1 EQU IOSHD+2 (1)

WA KKK

QORTKY EQU 0 <BIT> RETURN KEY WITH RECORD EXT
QOCMFA EQU 1 <BIT> COMFLETION ADDRESS &IT

QOIIMG EQU 2 <BIT> INPUT FORMAT/IMAGE EIT

QOSCMM EQU 3 <BIT> FPRIMARY/SECONDARY MEMORY MAF EIT
QOFRMT EQU 4 <BIT> FORMAT OFPTION EIT

QAOLNEXT EQU $00 NEXT RECORD

QOL.CRNT EQU $20 CURRENT RECORD

QOLPRIR EQU $40 FPRIOR RECORD

QOL.RECN EQU $60 RECORD ASSOCIATED WITH IOSRECN
x I0OSOFT OF SEQ

QIOFAFRN EQU $0000 FORMATTED WITHOUT CONTIGUOUS FILE
QIOFEIRN EQU %0409 UNFORMATTED WITHOUT CONTIGUOS FILE
QIOFPEIEN EQU £0449 UNFORMATTED CONTIGUOUS FILE

x I0SOFT OF DIR.

QIOPAFRR EQU $6000 FORMATTED WITHOUT CONTIGUOUS FILE
QIOFBIRR EQU $6409 UNFORMATTED WITHOUT CONTIGUOUS FILE
QIOFEIER EQU $6449 CONTIGUOUS FILE OR DISC

x JOSOFT OF FSN

QIOFPECS EQU $4000 BACKSFACE

QIOFPRWD EQU $0000 REWIND

x JOSOFT OF FST

QIOFSTF EQU $0000 STOFP , PAUSE

I0SSTUS EQU I0SHD+4 (1)

QERILF EQU 82 ILLEGAL FUNC. (SEE ONLY BEACKSFACE)
QEREOF EQU $C2 END OF RECORD

QERCFND EQU sCA RECORD FOUND

IOSL.UN EQU JOSHD+S (1)

JOSRECN EQU IOSHD+8 (4)

IOSSTRT EQU IOSHD+12 (4)

JOSEND EQU IOSHD+16 (4)

IOSTRNL EQU IOSHD+20 (4)

x

FHSHD EQU UCE+44 FHS PARAMETER BLOCK (in UCE)
FHSCODE EQU FHSHD+0 (1)

QCDEVF EQU $00 DEVICE/FILE COMMANDS

QCUTLY EQU $01 UTILITY COMMANDS

FHSCMND EQU FHSHD+1 (1)

QFCHKPT EQU 1 CHECK POINT

QFDELET EQU 2 DELETE

QFCLOSE EQU 4 CLOSE

QFFRTCT EQU 8 FROTECT

GFRENAM EQU %10 RENAME

QFCHGAF EQU $20 CHANGE ACCESS PERMISSION
QFASSGN EQU %40 ASSIGN

QFALLOC EQU +80 ALLOCATE

QUCHGLU EQU $10 CHANGE LU ASSTGNMENT

QUFTDOMN EQU $20 FETCH DEVICE MNEMONICS

QUFTDIR EQU $40 FETCH DIRECTORY ENTRY

QURETAT EQU $80 RETRIEVE ATTRIBUTES

*FHSOPT

QFHOAF EQU $0004 ACCESS FERMISSION = FUBLIC READ/WRITE
QFHOAPW EQU $0002 A F. = PUBLIC WRITE
QFHOAFR EQU $0000 A P. = PUBLIC READ

QFHOOW EQU $0008 OVERWRITE OFTION

8-6

QFHOFE
QFHOSF
QFHOIF
QFHOIFD
FHSOPT
FHSSTUS
GERFUN
QERAAS
QEREFL
FHSLUN
FHSFDMF
FHSUSN
FHSFDML.
FHSVOLN
FHSCATN
FHSEXT
FHSFILN
FHSDATT
FHSRECL
FHSSIZE
x
UCBEND
x

108
FHS

EQu $0040

EQU %0100

EQU $0200

EQU %0300

EQU FHSHD+2 (2)
EQU FHSHD+4 (1)
EQU $02

EQU $0D

EQU %17

EQU FHSHD+S (1)
EQu FHSHD+6 (4)
EQU FHSHD+10 (2)
EQU FHSHD+10 <4)
EQU FHSHD+6 (4)
EQU FHSHD+12
EQU FHSHD+28 (2)
EQU FHSHD+20 (8)
EQU FHSHD+32 (2)
EQU FHSHD+34 (2)
EQU FHSHD+36 (4)
EQU FHSHD+40
EQU 2 TRAF
EQU 3 TRAF
LIST

OFEN FOSITION IS END OF FILE
SEQUENTIAL FILE
INDEXED SEQ. FILE (NO DUF. KEY)
INDEXED SEQ. FILE (DUF. KEY ALLOWED)
UFPFER ONE EBYTE DEVICE CODE (TO UCEFDCD)
RETURN STATUS
INVALTID FUNCTION
ALREADY ASSIGNED
FILE NOT EXIST
LOGICAL UNIT NO
FOINTER OF FETCH DEVICE MNEMONIC
USER NUMBER
LENGTH OF FETCH DEVICE MNEMONIC
VOLUME NAME
(8) CATALOGC NAME
EXTENSION
FILE NAME
DEVICE ATTRIEBUTE WORD
RECORD LENGTH

NO.
NO.

8-7/8-8

CHAPTER 9

RUNTIME INTERFACE FOR NON-VERSAdos SYSTEMS

1.1 INTRODUCTION

The runtime routines supplied with M68000 FORTRAN depend upon the presence of
VERSAdos for proper operation. This chapter explains how to create a FORTRAN
load module which is dependent upon RMS68K and BIOS, a basic I/0 system. The
information in this chapter applies to those users who have purchased the RMS68K
package. Source is provided in the RMS68K package to allow customizing.

9.2 ADDING FILE HANDLING SERVICES TO BIOS

BIOS may be SYSGENed with RMS68K to provide basic I/0 functions for user tasks.
In the RMS68K and BIOS environment provided by Motorola, the File Handling
Services (FHS) are not provided. In support of this environment, the FORTRAN
runtime library FORTBIOS is provided. This runtime library does not contain any
FHS calls, which implies that no file I/0 can occur.

If a user wants to provide file support, then the file handling services may be
added to BIOS. 1In this case the library, FORTVMC, would be needed.

The following table identifies the serial and parallel port configuration for
VERSAmodules 1 and 2.

SYSTEM SERIAL PARALLEL LU

VMO1 1 5 READ LOGICAL UNIT
6 WRITE LOGICAL UNIT
2 4 READ, WRITE LOGICAL UNIT
1 3 WRITE LOGICAL UNIT
vM02 1 5 READ LOGICAL UNIT
6 WRITE LOGICAL UNIT
2 4 READ, WRITE LOGICAL UNIT
No Parallel
Port
9.3 EXAMPLE

The following example illustrates a SYSGEN command file which allows the user to
generate an operating system with a FORTRAN task. For more information about
the SYSGEN facility, refer to the System Generation Facility User's Manual.

For more information about BIOS, refer to M68000 Family Real-Time Multitasking
Software User's Manual, Appendix H.

task FORT.

SYSTEM PARAMETERS

* % F F F * % %

MMU=$0
TIMER=$F70000
CLOCKFRQ=800
TIMINTV=10

*

TIMSLIC=2

*

PANEL=$0
MEMEND1=$20000
MEMEND2=$20000
MEMEND3=$40000
UDR=0
TRCFLAG=SC000
WHERLOAD=$0
PAT=2
BUGTRAC=SF000BC
PC=$SE00
STACK=$C00
KILVECT=142
SERPTS=140
PTMVECT=28
FAIL=141
SWABRT=31
NRAD1=0
DPRVAO=0
NUSRRAD=0
IOBINT4=$74
IOBINT3=$73
I0BINT2=$72
IOBINT1=S$71
BCLRV=147

*

* Build EXEC

*

STARTRMS=SF00
PROCESS VM2.RMSV2.LO
END EXEC

MSG EXEC BUILT

*

* Build BIOS
*

MEMBEG=*

TASK VM2.BIOS.LO
BIOSSTRT=*

SUBS VM2.LBIOS.CF

This file builds up the operating system for a VM02
board system. The operating system includes the
EXEC, BIOS, and INITialization tasks, and FORTRAN

Global Segment Table
User Semaphore Table - number of pages
Trace Table number of pages
1/0 Vector Table - number of pages
Address of MMU

Address of timer

Number of clock ticks per millisecond
Number of milliseconds between timer
interrupts

Number of timer interrupts before task
forced to relinquish processor

Front panel address

Maximum memory address

number of pages

User-defined directive tables not existent

Trace flag

Memory address where boot file loaded
Pages in the Periodic Activation Table
Address of VERSAbug trace routine
Initialize Program Counter

Stack location

Killer vector number

Serial port vector number

Timer vector number

AC fail vector number

Software abort vector number

Number of RAD1 boards on system
Dual-ported RAM VERSAbus address offset
Number of RAD1l users/boards

1/0 channel interrupt vector number
I1/0 channel interrupt vector number
I/0 channel interrupt vector number
1/0 channel interrupt vector number
Bus clear interrupt vector number

LINK VM2.LBIOS.CF
SESSION=1
PRIORITY=200

END BIOS

MSG BIOS BUILT

*

* Build FORTRAN program
*

TASK VM2.FORT.LO
FORTSTRT=*

SUBS VMZ2.FORT.CF
LINK VM2.FORT.CF
SESSION=2
PRIORITY=100
ATTRIB='USER'
END FORT

MSG FORT BUILT

*

* Build INITializer

*

PROCESS VM2.INIT.LO

SUBS VM2.INTIOV2

ASM VM2.EQUTIMER.SA/VM2.INTIOV2.SA,VM2.INTIOV2.RO,VM2.INTIOV2.LS
SUBS VM2.INDV.SA

AM FIX:77.VM2.INDV,FIX:77.VM2.INDV,FIX:77.VM2.INDV
INTSTR=*

SUBS VM2.LNKINTZ2.CF

LINK VM2.LNKINT2.CF

END INIT

MSG INIT BUILT

END

The following are listings of the chain files mentioned above.
a. VM2.LBIOS.CF - link BIOS

=LINK ,VM2.BIOS.LO,#PR;MIX
SEG SEGO0:8 \BIOSSTRT

IN FIX:77.VM2.BIOS

END

b, VM2,FORT.CF - link FORTRAN program
The LINK command must have the S and the -P options.

=LINK ,FIX:77.VM2.FORT,#PR;SMIX-P
SEG SEG0:6,7 \FORTSTRT

SEG SEG1:8,9

SEG SEG2:15

IN FIX:77.VM2.TEST1

LIB FIX:0.&.FORTBIOS

LIB FIX:0.&.FORTMATH

END

=END

c. VM2.LNKINT2.CF - link initializer

=LINK ,VM2.INIT.LO,#PR; IXHM

SEGMENT .INT:8 \INTSTR

INPUT VM2.INIT.RO,VM2,INTIOV2.RO,VM2,INDV.RO,VM2.SYSPARV.RO
END

=END

The following command line was used to execute the above SYSGEN file:

=SYSGEN SYSFORT,/VMCSYS.TESTL.SY,#PR;R

There are two ways to test VMCSYS.TEST1.SY:

a. Use the utility BUILDS to transform the binary load module into a file of
ASCII-encoded information. Then use VERSAbug commands to load and execute
the S-record file. Refer to the VERSAdos System Facilities Reference Manual
for more information on BUILDS and S-records.

b. To test a WMC 68/2 system, use the following steps.

1) Patch the following addresses on sector 0 of the floppy diskette
containing the SYSGENed program.

$16 - starting sector number from DIR + 1 (1 word)
$18 - length of program - 1 from DIR (1 word)
S1E - beginning address of EXEC from SYSGEN (2 words)

2) Reset the VMC 68/2 and do the following:
- BH 0,1 (Boot and Halt from channel 0 device 1)

- .A7 C00 (set PC)
-G (execute)

APPENDIX A

COMPILER MESSAGES

This appendix describes the messages output by the Compiler. There are three

types:

a. a diagnostic message output to the 1listing file when the Compiler
encounters a source program error (Table 1),

b. a message output to the user's console to describe the condition of the
compile (Table 2), and

c. an abnormal ending message which is output to the user's console when an
extraordinary termination occurs (Table 3).

TABLE 1. Error Messages

ERROR ERROR
NUMBER LEVEL DESCRIPTION
002 E INVALID CHARACTER APPEARS IN COLUMNS 1-5 OF LINE
003 E THE STATEMENT NUMBER HAS ALREADY BEEN DEFINED
004 E THE FIRST CHARACTER OF THE STATEMENT IS NOT ALPHABETIC
005 E CONTINUATION LINE ENCOUNTERED WHEN COMMENT OR INITIAL LINE
EXPECTED
006 E LIMIT OF 9 CONTINUATION LINES EXCEEDED
007 W COLUMNS 1-5 OF A CONTINUATION LINE ARE NOT BLANK
- 009 W MISSING 'END' STATEMENT
010 W THE NAME \P IS TOO LONG. IT HAS BEEN TRUNCATED TO SIX
CHARACTERS :
011 E SYMBOL, TABLE OVERFLOW
014 E REAL CONSTANT OVERFLOW
015 F ILLEGAL COMMAND LINE
016 E INVALID CONSTANT FORMAT
017 E INTEGER CONSTANT OVERFLOW
018 F INTERNAL ERROR: ILLEGAL NODE TYPE FOUND IN "CODE GEN".
022 E EXPECTING RIGHT PARENTHESIS

aA-1

TABLE 1. Error Messages (cont'd)

ERROR ERROR
NUMBER LEVEL DESCRIPTION
023 E EXPECTING SINGLE QUOTE
025 E UNDECODABLE STATEMENT
026 E INVALID CHARACTER \P
033 W INVALID STATEMENT AFTER END STATEMENT. IT WAS IGNORED
035 F ILLEGAL OPTION(S) IN COMMAND LINE
036 F ILLEGAL INPUT FILE NAME
037 F ILLEGAL OUTPUT FILE NAME
038 F ILLEGAL LISTING FILE NAME
040 E MISSING PROGRAM NAME
041 E MISSING SUBROUTINE NAME
042 E MISSING FUNCTION NAME
044 E NON-SYMBOLIC NAME IS SPECIFIED IN TYPE SPECIFICATION STATEMENT
045 E INVALID ARRAY DECLARATOR \P
047 E EXPECTED COMMON BLOCK NAME
048 E MISSING COMMA
049 E NON-SYMBOLIC NAME IN AN EQUIVALENCE LIST
051 E INCORRECT LENGTH SPECIFICATION IN TYPE SPECIFICATION STATEMENT
052 E MISSING LIST OF NAMES IN INTRINSIC STATEMENT
053 E INVALID TYPE OR LENGTH SPECIFICATION IN IMPLICIT STATEMENT
054 E INVALID LETTER IN IMPLICIT STATEMENT \P
055 E INVALID DIMENSION DECLARATOR IN \P
056 E THE LENGTH OF A LITERAL IS LONGER THAN THE VARIABLE OR
ARRAY ELEMENT
064 E ILLEGAL STATEMENT IN BLOCKDATA SUBPROGRAM
065 E ATTEMPT TO DEFINE A PREVIOUSLY DEFINED NAME IN EXTERNAL

STATEMENT \P

A-2

TABLE 1. Error Messages (cont'd)

ERROR ERROR

NUMBER LEVEL DESCRIPTION

067 E NAME IN AN INTRINSIC STATEMENT MUST BE AN INTRINSIC FUNCTION
NAME \P

069 E ATTEMPT TO DEFINE A PREVIOUSLY DEFINED NAME IN INTRINSIC
STATEMENT \P

070 E ATTEMPT TO DEFINE A PREVIOUSLY DEFINED NAME IN SAVE STATEMENT

072 E ATTEMPT TO ESTABLISH THE TYPE OF A CHARACTER MORE THAN ONCE

073 E THE RANGE OF LETTERS IN AN IMPLICIT STATEMENT LIST IS NOT
ALPHABETIC

079 E ATTEMPT TO DEFINE A PREVIOUSLY DEFINED NAME AS A COMMON
VARIABLE \P

083 E WRONG NUMBER OF SUBSCRIPTS IN AN EQUIVALENCE LIST

085 E A VARIABLE'S DIMENSION IS NOT A SIMPLE INTEGER VARIABLE \P

086 E ATTEMPTING TO USE A PREVIOUSLY DEFINED NAME AS AN ARRAY \P

087 E AN ADJUSTABLE ARRAY OR ASSUMED SIZE ARRAY MUST BE A DUMMY
ARGUMENT \P

088 E ATTEMPTING TO REDIMENSION A VARIABLE \P

090 E INVALID FORMAT OF AN ASSUMED SIZE ARRAY DECLARATION

092 E A VARIABLE DIMENSION \P IS NOT A DUMMY ARGUMENT OR COMMON
VARIABLE

093 E MORE THAN 3 DIMENSIONS FOR THE ARRAY \P

098 E INVALID SYMBOLIC NAME APPEARS IN DATA STATEMENT \P

099 E A VARIABLE WAS PREVIOUSLY INITIALIZED IN A DATA STATEMENT

100 E ATTEMPT TO INITIALIZE NAMED COMMON ENTITY \P NOT IN BLOCK
DATA SUB

101 E ATTEMPTING TO INITIALIZE A BLANK COMMON VARIABLE \P

102 E TYPE OF DATA AND VARIABLE DO NOT MATCH

108 E A FUNCTION MUST NOT BE OF TYPE CHARACTER

112 E ADJUSTABLE ARRAYS ARE VALID ONLY IN PROCEDURE SUBPROGRAMS

123 E INVALID REFERENCE TO SUBROUTINE NAME

A-3

TABLE 1. Error Messages (cont'd)

ERROR ERROR
NUMBER LEVEL DESCRIPTION
126 E A DO LOOP PARAMETER IS NOT AN INTEGER EXPRESSION OR IS MISSING
131 E THE DO INDEX IS NOT A SIMPLE INTEGER VARIABLE
133 E MISSING INPUT/OUTPUT LIST IN IMPLIED DO LIST
135 E TYPE DISAGREEMENT BETWEEN LEFT AND RIGHT SIDE OF EQUAL SIGN
139 E ILLEGAL SEQUENCE OF OPERATORS/OPERANDS IN EXPRESSION
143 E TYPE DISAGREEMENT BETWEEN ACTUAL AND DUMMY ARGUMENT
150 E DIVIDE BY ZERO
152 E UNDEFINED STATEMENT FUNCTION, OR STATEMENT FUNCTION REFERENCE
ERROR
154 E STATEMENT FUNCTION STATEMENT NAME CONFLICTS WITH PRIOR
DEFINITIONS \P
155 E DISAGREEMENT BETWEEN TYPE OR NUMBER OF ACTUAL AND DUMMY
ARGUMENTS
156 E MISMATCH IN NUMBER OF ACTUAL AND DUMMY ARGUMENTS IN AN
INTRINSIC FUNCTION
157 E \P IS DOUBLY DEFINED
158 E PROCEDURE \P APPEARS AS ARGUMENT WITHOUT EXTERNAL DECLARATION
159 E THERE IS AN ASSUMED SIZE ARRAY IN INPUT/OUTPUT LIST \P
160 E STATEMENT FUNCTION STATEMENT NAME \P PASSED AS PARAMETER OR IN
COMMON
163 E THERE IS AN ERROR ON THE LEFT SIDE OF AN ASSIGWENT STATEMENT
166 E UNDECODABLE TYPE OF GOTO STATEMENT
172 | E LOGICAL IF CONTAINS ILLEGAL STATEMENT (S)
174 E DO CONTROL VARIABLE USED PREVIOUSLY IN THE NEST
175 E ILLEGAL TERMINAL STATEMENT OF DO
179 E RECORD AND EOF SPECIFIER CONFLICT
180 E FORMAT AND RECORD SPECIFIER CONFLICT
181 E MISSING FORMAT IDENTIFIER WHERE AN INTERNAL FILE IS SPECIFIED

A-4

TABLE 1. Error Messages (cont'd)

ERROR ERROR
NUMBER LEVEL DESCRIPTION
182 E INTERNAL FILE AND RECORD SPECIFIER CONFLICT
183 E WRITE STATEMENT MUST NOT CONTAIN AN EOF SPECIFIER
189 W RETURN STATEMENT APPEARS IN THE MAIN PROGRAM
195 W MAIN PROGRAM HAS NO STOP STATEMENT
197 W FUNCTION VALUE NOT DEFINED IN THE FUNCTION SUBPROGRAM
199 E ANYTHING AFTER A STATEMENT IS ILLEGAL
200 E EXPECTING STATEMENT LABEL
201 E EXPECTING COMMA OR RIGHT PARENTHESIS
203 E EXPECTING SYMBOLIC NAME
204 E EXPECTING COMMA OR RIGHT PARENTHESIS
205 E EXPECTING LEFT PARENTHESIS
206 E EXPECTING COMMA
207 E EXPECTING EQUAL SIGN
208 E EXPECTING LABEL, SYMBOLIC NAME, CHARACTER CONSTANT, 'REC'
OR 'END'
211 E EXPECTING 'DIRECT'
215 E EXPECTING ‘THEN'
218 E EXPECTING 'TO'
220 E MULTIPLE 'END' OR 'REC' SPECIFIED
224 W NO STATEMENT LABEL AFTER ARITHMETIC IF, 'GOTO', 'STOP',
OR 'RETURN'
226 E REFERENCE TO ILLEGAL STATEMENT LABEL
227 E ILLEGAL TRANSFER INTO DO LOOP, IF BLOCK, ELSE IF BLOCK OR
ELSE BLOCK '
230 E INCREMENTATION PARAMETER IS ZERO
235 E THE DO CONTROL VARIABLE IS REDEFINED WITHIN THE DO LOOP
237 E THE VARIABLE MUST BE OF TYPE INTEGER

A-5

TABLE 1. Error Messages (cont'd)

ERROR ERROR
NUMBER LEVEL DESCRIPTION

251 E MORE THAN THREE LEVELS OF PARENTHESES IN FORMAT SPECIFICATION

254 E NUMERIC SPECIFICATION GREATER THAN 255 IN FORMAT SPECIFICATION

255 E NUMERIC SPECIFICATION IS ZERO IN FORMAT SPECIFICATION

257 E DIGITS OF FRACTIONAL PART EXCEED TOTAL DIGITS OF NUMBER

260 E CHARACTER CONSTANT LENGTH GREATER THAN 255 IN FORMAT
SPECIFICATION

261 E MISSING 'N' OR 'Z' AFTER 'B'

265 E THE FIRST CHARACTER OF A CHARACTER FORMAT SPECIFICATION
IS NOT ' ('

267 E NO STATEMENT LABEL ON FORMAT STATEMENT

270 E FORMAT INDEX VARIABLE MUST BE INTEGER*4

271 W USELESS DATA TYPE - EXPECTED VARIABLE, ARRAY OR FUNCTION \P

272 E OVERFLOW IN HEXADECIMAL NUMBER (MORE THAN 8 DIGITS)

273 E ILLEGAL CHARACTER IN HEXADECIMAL NUMBER

274 E MISSING ENDING 'H' IN HEXADECIMAL NUMBER

275 E UNRECOGNIZED NAME OF LOGICAL/RELATIONAL OPERATOR

276 E DOUBLE-REAL CONSTANT OVERFLOW

277 E MORE THAN ONE PERIOD DETECTED IN REAL CONSTANT

278 E MORE THAN ONE EXPONENT DETECTED IN REAL CONSTANT

279 E UNDERFLOW IN REAL CONSTANT

281 E TWO DIFFERENT VARIABLE TYPES ARE BOUND BY EQUIVALENCE
STATEMENT \P

282 E TWO EQUIVALENCED CHARACTER ENTITIES DO NOT HAVE THE SAME
LENGTH \P

283 E TWO DIFFERENT ARRAY ELEMENTS ARE ASSIGNED TO THE SAME
ADDRESS \P

285 E CHARACTER DATA AND NONCHARACTER DATA CANNOT BE IN THE SAME

COMMON \P

A-6

TABLE 1. Error Messages (cont'd)

ERROR ERROR
NUMBER LEVEL DESCRIPTION
—_287 E COMMON BLOCK STORAGE CANNOT BE EXTENDED UPWARD BY

EQUIVALENCE \P

289 E A COMMON VARIABLE AND A SAVE VARIABLE ARE EQUIVALENCED \P

290 E ELEMENTS OF DIFFERENT COMMON BLOCKS ARE EQUIVALENCED \P

293 E THE SUBSCRIPT OF \P IN AN EQUIVALENCE STATEMENT IS INVALID

297 F CAN'T OPEN INPUT FILE

298 F CAN'T OPEN LISTING FILE

300 E INTERNAL ERROR

301 E INTEGER EXPRESSION IS EXPECTED

302 E NUMBER SHOULD BE GREATER THAN ZERO

303 E EOF MUST NOT BE SPECIFIED FOR AN INTERNAL FILE

304 E FORMAT IDENTIFIER, IF ANY, MUST BE SECOND ITEM IN CIOLIST

305 E UNEXPECTED EQUAL SIGN

306 E ILLEGAL FORMAT SPECIFICATION

307 E IMPLIED-DO CONTROL VARIABLE IS NOT A SIMPLE INTEGER VARIABLE

308 E IMPLIED-DO LOOP HAS TOO MANY SIMPLE IOLIST ITEMS

309 E DO CONTROL VARIABLE \P IS REDEFINED IN AN IOLIST

310 E IMPLIED-DO CONTROL VARIABLE IS REDEFINED IN AN IOLIST \P

311 E UNEXPECTED LEFT PARENTHESIS

312 E UNEXPECTED RIGHT PARENTHESIS

313 E UNEXPECTED COMMA

314 E UNEXPECTED SLASH

315 E UNEXPECTED NUMBER

316 E UNEXPECTED MINUS SIGN

317 E UNEXPECTED APOSTROPHE

318 E UNEXPECTED B FORMAT SPECIFICATION

TABLE 1. Error Messages (cont'd)

ERROR ERROR
NUMBER LEVEL DESCRIPTION
319 E ILLEGAL X FORMAT SPECIFICATION
320 E UNEXPECTED I FORMAT SPECIFICATION
321 E UNEXPECTED L FORMAT SPECIFICATION
322 E UNEXPECTED A FORMAT SPECIFICATION
323 E UNEXPECTED D FORMAT SPECIFICATION
324 E UNEXPECTED E FORMAT SPECIFICATION
325 E UNEXPECTED F FORMAT SPECIFICATION
326 E NUMBER IS MISSING BEFORE P FORMAT SPECIFICATION
327 E NUMBER IS MISSING BEFORE H FORMAT SPECIFICATION
328 E A NON-LOGICAL OPERAND \P APPEARS IN A LOGICAL EXPRESSION
329 E UNEXPECTED END-OF-STATEMENT
330 E UNEXPECTED CHARACTER IN FORMAT STATEMENT
331 E MISSING FIELD WIDTH
332 F INTERNAL ERROR -~ NAME NOT FOUND
333 E ILLEGAL USE OF MODULE NAME \P
334 E ATTEMPTED TO PASS STATEMENT-FUNCTION-STATEMENT NAME AS ADDRESS
335 E CONFLICT WITH PRIOR DEFINITIONS: \P
336 E ILLEGAL ATTEMPT TO PASS \P AS ADDRESS
337 E NO INTRINSIC STATEMENT FOR \P BUT IT IS PASSED AS ARGUMENT
338 E AN ATTEMPT WAS MADE TO ASSIGN THE PRCCEDURE \P
339 E PROCEDURE NAME \P APPEARS IN DATA STATEMENT
340 E UNBALANCED PARENTHESES IN IF STATEMENT
341 F INTERNAL - NAME IN ATTRIBUTE TABLE DOES NOT START WITH ALPHA
CHARACTER
342 F INTERNAL - HASH TABLE FULL
343 E EXPECTED VARIABLE NAME OR ARRAY NAME INSTEAD OF \P

. TABLE 1. Error Messages (cont'd)

ERROR ERROR
NUMBER LEVEL DESCRIPTION
344 E DUMMY ARGUMENT \P APPEARS MORE THAN ONCE IN DUMMY ARGUMENT LIST
345 E DUMMY ARGUMENT LIST MISSING - PARENTHESES MUST APPEAR EVEN IF
EMPTY
346 E 'RECL' EXPECTED
347 E 'ACCESS' EXPECTED
348 E MISSING ELEMENTS IN EQUIVALENCE LIST
349 E SLASH EXPECTED
350 E DUMMY ARGUMENT OR SAVED ENTITY \P NOT ALLOWED IN COMMON
351 E ARRAY ELEMENTS NOT ALLOWED IN SAVE \P
352 E DUMMY ARGUMENT OR COMMON ENTITY \P NOT ALLOWED IN SAVE
353 E SAVE ENTITIES MUST BE SIMPLE VARIABLES, ARRAY NAMES OR COMMON
BLOCKS :
354 E NUMERIC INTEGER CONSTANT EXPECTED
355 E DUMMY ARGUMENT \P NOT ALLOWED IN EQUIVALENCE LIST
356 W RETURN MISSING IN FUNCTION OR SUBROUTINE
357 E MORE THAN ONE HEADER (PROGRAM, FUNCTION, SUBROUTINE OR
BLOCKDATA)
358 E ILLEGAL ORDER OF STATEMENTS
359 E MISSING DATA STATEMENTS IN BLOCKDATA SUBPROGRAM
360 E MISSING EXECUTABLE STATEMENTS
361 E UNCLOSED BLOCKS
362 E ILLEGAL STATEMENTS IN BLOCKDATA SUBPROGRAM
363 E ILLEGAL CHARACTERS IN STOP OR PAUSE STATEMENT
364 F MISSING DIMENSION NUMBER IN ATTRIBUTE OF \P
365 F "BIN CODE" - ILLEGAL OPERATION CODE PASSED: \N
366 F INTERNAL: "NEXTWORK" - TOO MANY WORK-REGISTERS NEEDED BY

"BIN_CODE"

TABLE 1. Error Messages (cont'd)

ERROR ERROR
NUMBER LEVEL DESCRIPTION

367 F INTERNAL: "BIN_SPECIAL" - ILLEGAL COMMAND-CODE PASSED \N

368 F INTERNAL: "BNFLSMPL" - ILLEGAL VAR-KIND IN SIMPLE-VAR NODE: \N

369 F INTERNAL: "BNFLARRAY" - ILLEGAL VAR-KIND IN ARRAX-VAR NODE: \N

370 F INTERNAL: "BNFLOPND/BNFLRUTN" -~ ILLEGAL OPERAND NODE-TYPE
PASSED: \N

371 E CODE SIZE IS GREATER THAN 32KB WHICH CONFLICTS WITH '-B' OPTION

372 F INTERNAL: "BINCRE" - ILLEGAL OPERAND ADDRESS-MODE (MDxxX)
FOUND: \N

373 F INTERNAL: "BINPSEUD" - ILLEGAL OPERAND ADDRESS-MODE (MDxxX)
FOUND: \N

374 F INTERNAL: "BINOPEN" - CAN'T OPEN RO-FILE: \P

375 F INTERNAL: "BNTMOPEN" - CAN'T RE-OPEN TEMPORARY RO-FILE: \P

376 F INTERNAL: "BNTMREAD" - READ OF TEMPORARY RO-FILE FAILED: \P

377 F INTERNAL: "BINWRT" - ILLEGAL READ-CODE (WR_xxx) PASSED: \N

378 E SAVE+COMMON CODE IS GREATER THAN 32KB WHICH CONFLICTS WITH 'C'
OPTION

379 F INTERNAL: "BNWRBYTE" - WRITE ON RO-FILE FAILED: \P

380 F INTERNAL: "BINCLOSE" - WRITE ON RO-FILE FAILED: \P

381 F NESTING ERROR

382 E STRING-CONSTANTS AND FORMATS SECTION SIZE IS GREATER THAN 32KB

383 E ILLEGAL INTEGER NUMBER

384 E CHARACTER LENGTH OF BOTH OPERANDS SHOULD BE THE SAME

385 E ILLEGAL SYNTAX IN DATA STATEMENT

386 E INCONSISTENT SUBSCRIPT REFERENCE

387 E UNEQUAL NUMBER OF NAMES AND VALUES

388 E ATTEMPT TO INITIALIZE NONCOMMON VARIABLE \P in BLOCK DATA
SUBPROGRAM

389 E SUBSCRIPT OF \P IS NOT AN INTEGER CONSTANT

A-10

TABLE 1. Error Messages (cont'd)

ERROR ERROR

NUMBER LEVEL DESCRIPTION

390 F FATAL ERROR IN DATA - DATA TABLE IS FULL

391 F FATAL ERROR IN DATA/KEEP GEN - KEEP GEN GOT ODD OFFSET
393 E MISMATCH BETWEEN OPERAND AND OPERATOR DATA TYPES

394 E UNDEFINED LABEL \N

395 E FIXED-POINT OVERFLOW

396 E FIXED-POINT ZERO RAISED TO POWER OF NEGATIVE OR ZERO NUMBER
397 E UNEXPECTED Z FORMAT SPECIFICATION

398 E UNEXPECTED G FORMAT SPECIFICATION

399 F PROGRAM IS EMPTY

400 E INTERNAL FATAL ERROR IN: "MATCH_CONVERT"

401 F INTERNAL FATAL ERROR IN: "SUBST OP"

402 F INTERNAL FATAL ERROR IN: "EXECUTE OP"

403 E INTERNAL FATAL ERROR IN: "CONVERT"

404 F INTERNAL FATAL ERROR IN: "EXPARS"

405 F INTERNAL FATAL ERROR IN: "ELESIZE" (VARIABLE NAME \P)
406 E EXPRESSION NESTED TOO DEEP

407 F INTERNAL FATAL ERROR IN: "SINTOF"

408 F INTERNAL: NO MORE BUFFER ROOM AVAILABLE

409 F INTERNAL: ATTRIBUTES TABLE FULL

410 F INTERNAL: AN I/O ERROR OCCURRED

A-11

TABLE 2. Console Messages

MESSAGE

MEANING NEXT STEP

FORTRAN (VXX-xXX) .

Version number xx-xx of the
FORTRAN Compiler is executing.

COMPILATION CONCLUDED.

The FORTRAN Compiler has
completed successfully.

SOURCE FILE INVALID

Ensure that the source
file exists on the disk.

The Compiler was unable
to open the source file.

LOADING FAILED---

WLFlxxxx PHASE

Check Table 3 for the
meaning of abort code.

The FORTRAN Compiler
failed to load phase
WLF1lxxxx.

COMPILER FAILED

The FORTRAN Compiler Check Table 3 for the

XXXXXXXXXKKXXX o failed internally. meaning of abort code.
ABORT Codes
TABLE 3. Abnormal Termination
nnnn VALUE MEANING NEXT STEP
0000-00FF FHS/I0S error in VERSAJOS. Refer to VERSAdos Data Manage-

ment Services and Program Loader
User's Manual. '

0100-1999

Internal Compiler error. 1. Fix the errors and recompile.

2, If Appendix D applies, fix
and recompile again.

3. Please contact local Motorola
office if error is not solved
by the above.

2001

Invalid file name in the
FORTRAN command.

Check the file name and
recompile.

2002

Invalid compile options
in the FORTRAN command.

Check compile options and
recompile.

A-12

APPENDIX B

RUNTIME ERROR MESSAGES

When an error occurs during execution, the program either continues or aborts.
Error numbers 201 and 144 allow execution to continue; the rest cause an abort.
The format of the error message is as follows:

** ERROR nnn message (nnn is error number)

Table 1 shows these diagnostic messages.

TABLE 1. Diagnostic Messages

ERROR ERROR

NUMBER LEVEL MESSAGE
101 C RECURSIVE CALL
102 C LOGICAL UNIT NUMBER OUT OF RANGE
103 C END OF RECORD
104 C FORMAT CODE MISSING
105 C INVALID CHARACTER IN FORMAT
106 C NEST OUT OF RANGE IN FORMAT
107 C NUMBER OUT OF RANGE IN FORMAT
108 C ILLEGAL DESCRIPTOR IN FORMAT
109 C ILLEGAL SIGN WITHOUT SCALE FACTOR
110 C INVALID DECIMAL CHARACTER
111 C INVALID CHARACTER
112 C INVALID HEXADECIMAL CHARACTER
113 C FIXED POINT OVERFLOW
114 C FLOATING POINT OVERFLOW
115 C FLOATING POINT UNDERFLOW
116 Cc NOT ENOUGH RECORDS IN UNFORMATTED READ
117 C TOO MANY RECORDS IN UNFORMATTED READ

B-1

TABLE 1. Diagnostic Messages (cont'd)

ERROR ERROR
NUMBER LEVEL MESSAGE

118 C ASSIGN MISSING

119 Cc INSUFFICIENT MEMORY FOR BUFFER

120 C ERROR RETURN ON FHS CALL

121 C DEVICE IS NOT READABLE

122 C DEVICE IS WRITE PROTECTED

123 C DEVICE DOES NOT SUPPORT BACKSPACE

124 C DEVICE DOES NOT SUPPORT REWIND

125 C DEVICE DOES NOT SUPPORT ENDFILE

126 C DIRECT ACCESS NOT SUPPORTED

127 C SEQUENTIAL ACCESS NOT SUPPORTED

128 C UNFORMATTED I/0 NOT SUPPORTED

129 C DIRECT ACCESS IS ILLEGAL WITHOUT OPEN STATEMENT
130 C UNIT WAS PREVIOQOUSLY ACCESSED DIRECTLY

131 C UNIT WAS PREVIOUSLY ACCESSED SEQUENTIALLY
132 C I/0 ERROR DURING SEQUENTIAL ACCESS

133 C I/0 ERROR DURING DIRECT ACCESS

134 C END OF FILE

135 C UNIT ALREADY OPENED

136 C ILLEGAL RECORD FORMAT

137 C RECORD LENGTH OF OPEN STATEMENT GREATER THAN

RECORD LENGTH OF FILE

138 C RECORD NUMBER LESS THAN OR EQUAL TO 0O

139 C FILE IS NOT FORMATTED

140 C I/0 ERROR AT PAUSE OR STOP

141 C ERROR OCCURRED DURING CLOSE

142 C INDEX OUT OF RANGE

B-2

TABLE 1. Diagnostic Messages (cont'd)

ERROR ERROR

NUMBER LEVEL MESSAGE
143 C INSUFFICIENT MEMORY
144 C DIVIDE BY ZERO
145 C SOURCE ERROR
201 S DIVIDE BY REAL ZERO
202 S DIVIDE BY DOUBLE PRECISION ZERO
203 S DIVIDE BY INTBEGER ZERO
204 S REAL POWER BASE = 0, EXP <= 0
205 S DOUBLE PRECISION POWER BASE = 0, EXP <= 0
206 S INTEGER POWER BASE = 0, EXP <= 0
207 S SQRT ARG. <0
208 S DSQRT ARG <0
209 S EXP ARG > 127 LOG(2)
210 S DEXP ARG > 1023 LOG(2)
211 S ALOG ARG <= O
212 S DLOG ARG <= 0
213 ‘ S ALOG10 ARG <= 10
214 S DLOG10 ARG <= 10
215 S SIN ARG >= 10**6
216 S DSIN ARG >= 10**14
217 S COS ARG >= 10**6
218 S DCOS ARG >= 10**14
219 S TAN ARG TOO LARGE
220 S DTAN ARG TOO LARGE
221 S ASIN ABS ARG > 1
222 S DASIN ABS ARG > 1

B-3

TABLE 1. Diagnostic Messages (cont'qd)

ERROR ERROR
NUMBER LEVEL MESSAGE

223 S ATAN ABS ARG TOO LARGE

224 -8 DATAN ABS ARG TOO LARGE

225 S ATAN2(X/Y) AREG X=Y=0

226 S DATAN2 (X/Y) ARG X=Y=0

227 S ATAN2 (X/Y) ARG Y TOO LARGE
228 S DATAN2 (X/Y) ARG Y TOO LARGE

B-4

APPENDIX C

AN EXAMPLE FROM COMPILATION TO EXECUTION

This appendix uses a simple program to illustrate the complete path of a FORTRAN
program from compilation to execution. In this example, TESTPROG must print out
the sine and cosine for values of X and also plot them on an X,Y grid.

Example
Using the VERSAdos FORTRAN command,
FORTRAN WORK:. .TESTPROG, ,#PR;A,S

the source program is compiled into a relocatable object module. The object
file has the same name as the source file, with an extension name of RO for
distinction. The compilation listings are output to the line printer. Figure 1
displays these listings.

LINE TSN SOURCE STATEMENT
1 FROGRAM SINCOS
2 CHARACTERXL FRINT(80)
3 EASE=QD. 0
4 WRITEC(SH, 10)

i0 FORMAT(IH , 7—=17,38X, 707, 38X, "+17)
DO 30 I=1,64

&
[y
SCONTTDLRIN=

7 DO 40 J=1, 80
8 FRINT(J)=’ 7
9 40 CONTINUE
10 FRINT(41)=’, *
11 11 SINX=SIN (BASE)
12 12 COSX=COS (EASE)
13 13 SINY=(SINX + 1)%80/2
14 14 COSY=(COSX + 1)%X80/2
15 15 TSIN=INT (SINY)
16 16 ICOS=INT (COSY)
17 17 FRINT (TSIN) =’ %
18 18 FRINT (LGOS) =/ @
19 19 WRITE (6, 50) FRINT
20 20 50 FORMAT (1H , 80A1)
21 21 EASE=EASE+0. 1
22 22 30 CONTINUE
23 28 STOF
24 24 END
25

CODRE SYZE 18c, SAVE SIZE 4, STACK SIZE 78, CONSTANT SIZE Yo
CURRENT Z=27 Zed TS SUFFTOLIENT
®aokox TOTAL BERRORS 0 TOTAL WARNINGS 0

FIGURE 1. Compilation Listing of Program TESTPROG (Sheet 1 of 4)

C-1

Ab, —- (A7)

A7, A6

EXKKXK, A7
D1/D2/D3/D4/D5E/D6/D7 s ~ (A7)

-84 (A&)

-(A7)
STR..ESDID~X+%XX%xX, A0
0CFC, AD. L)

~(A7)

-(A7)

%6, D1

D1

D1, ~(A7)

17. W

ESD17-. FRTFREF (A3)
24(A7), A7

ESD18~. FRTFREF (A3)

%1, D0

DO, -88(A&)
$£63, ~20(A&)
~P0(A6)
KKK

*1, D0

DO, -24(A&)
£79, -96(Ab)
~96(Ab)
KKK

-94(Ab6), D1
STR.ESDID-x+28, A0
0<¢FC,AD. L), -81(A&,D1. W)

#1, ~26(A&)
#1, -94(A6)
%32

STR_ESDID-%+30, A0
0(PC, AD. L), ~40(A6)
-84(A&4), D6

D&. DO

LINE ISN SOURCE STATEMENT
1 1 FROGRAM SINCOS
2 2 CHARACTERx1 FRINT(80)
3 3 BASE=0. 0
000000 2FO0E MOVE. L
000002 2C4F MOVE. L
000004 PFFC00000000 SUE. L
00000A 48E77F00 MOVEM. L
4 4 WRITE(6,10)
00000E 42AEFFAC CLR. L
000012 a2A7 CLR. L
000014 41F900000000 LEA
000014 487E8800 FEA
00001E 4247 CLR. L
000020 4247 CLR. L
000022 7206 MOVEQ
. oo0024 48C1 EXT. L
000026 2F01 MOVE. L
000028 48780011 FEA
006002C 4EAE:0000 JSR
000030 4FEF0018 LEA
000034 4EAE:0000 JSR
S S 10 FORMAT(1H ,’~17,38X, “07,38X, "+17)
é é DO 30 I=1,64
000038 7001 MOVEQ
00003A 2ZD40FFAB MOVE. L
00003E 3D7CO003FFFAé MOVE. W
000044 AAGEFFASL TET. W
000048 6D000000 BELT
7 7 . DO 40 J=1.,80
060004C 7001 MOVEQ
00004E 2D40FFAZ MOVE. L
000052 3D7CO004FFFA0D MOVE. W
000058 AALEFFAD TST. W
00005C 60000000 BLT
8 8 PRINT(J) = ¢
9 ? 40 CONTINUE
000060 222EFFAZ MOVE. L.
000064 41F20000001C LEA
00006A 1DEESB80010AF MOVE. E
0600070 S36EFFAD SUBQ. W
000074 S2AEFFA2 ADDQ. L
000078 &0DE ERA
16 10 FRINT(41)=". *
11 11 SINX=SIN(BASE)
12 12 COSX=C0S (BASE)
13 13 SINY=(SINX + 1)x80/2
14 14 COSY=(COSX + 1>x80/2
15 15 ISIN=INT(SINY)
16 16 ICOS=INT(COSY)
17 17 FRINTC(ISIN) =%’
i8 18 FRINT(ICOS)="@’
19 19 WRITE(&, 50) PRINT
00007A 41F90000001E LEA
000080 iD7E8800FFD8 MOVE. B
000086, 2C2EFFAC MOVE. L
00008A 2006 MOVE. L
FIGURE 1.

C-2

Compilation Listing of Program TESTPROG (Sheet 2 of 4)

LINE ISN

6o008C
000090
000092
000096
000098
00009C
0000%E
0000AZ
0000A4
0000AA
0000AE
oaooe4
C00OEB
0000BE
0g00C2
0000C4
oooocs
0000CA
oooobDo
gooob4
00000A
0000DE
0000&E4
0000ES
0000EA
0000EE
0000F0
0000F4
0000F6&
0000FA
0000FC
000100
000102
000106
000108
00010E
000114
000116
00011C
000122
000124
00012A
00012E
000130
000132
000134
000136
000138
00013C
000140
000144
000148
00014C
000150
000152
000156

SOURCE STATEMENT

4EAE0000
2800
2D47FF9C
2006
4EAE0000
2A00
2D4SFF98
2007
247C3F800000
qEAROO0D
247C42A00000
4EAE0000
247C40000000
4EABO0000
2C00
2D46FF94
2005
247C3F800000
4EAE0000
Z47C42A00000
4EAE0000
2470C40000000
4EAE0000
2800
2D47FF90
2006
AEAE0000
2400
2D45FFBC
2007
4EAE0000
2C00
2D44FF88
2205
41F7?0000001F
1DEES80010AF
2206
41F900000020
1DEEB80010AF
267
41F900000000
4878800
4247

42a7

7206

48C1

2F01
48780011
4EAE0000
4FEF0018
486EFFED
48780050
48780801
42a7
4EAE:0000
4FEF0010

MOVE.
JSR

MOVE.
MOVE.
LEA

MOVE.
MOVE.

X
[=]
<
ro reec FOCFECCCF - fErCEC I'I-I"'

MOVE.
CLR. L
LEA
FEA
CLR. L
CLR. L
MOVEQ
EXT. L
MOVE. L
PEA
JSR
LEA
FEA
FEA
FEA
CLR. L
JSR
LEA

m

ESD19~. FRTFREF (A3)
D0, D7

D7,-100¢A&6)

D&, D0

ESD20-. FRTFREF (A3)
DO, DS

DS, ~104(A6)

D7,D0

$1065353216, AZ
ESD21~. FRTFREF (A3)
$1117782016, A2
ESD22~. FRTFREF (A3)
$#1073741824, AZ
ESD2Z3-. FRTFREF (A3)
DO, D&

D6, ~108¢A6)

D5, D0
$1065353216, A2
ESD21~-. FRTFREF (A3)
#1117782016, A2
ESD22~. FRTPREF (A3)
#1073741824, A2
ESD23-. FRTFREF (A3)
D0, D7

D7, ~112(A&)

D&, DO

ESD24-. FRTFREF (A3)
D0, D5

DS, ~116(A&)

D7,D0

ESD24~. FRTFREF (A3)
D0, D&

D&, ~120(A&)

D3, D1

STR_ESDID-%+31, AD
0(FC, AD. L), -B1(A&,D1. W)
Dé, D1
STR_ESDID-x+32, A0
0(FC,A0. L), ~B1(A6,D1. W)
~(A7)
STR.ESDID—-X+%xxxX, A0
0¢FC,AC. L)

~(A7)

~(A7)

#6,D1

D1

D1, - (A7)

17. W

ESD17~. FRTFREF(A3)
29(A7)., A7

-B0(Ab&)

80. W

2049. W

~(A7)

ESD2%-. FRTFREF (A3)
16(A7)5, A7

FIGURE 1. Compilation Listing of Program TESTPROG (Sheet 3 of 4)

C-3

LINE ISN SOURCE STATEMENT
: 00015A 4EAE0000 JSR
20 20 50 FORMAT (1H , 80A1)
21 21 BASE=BASE+0. 1
22 22 30 CONTINUE
00015E 202EFFAC MOVE. L
000162 247C3DCCCCCD MOVE. L
000168 4EAE0000 JSR
00016C 2ZD40FFAC MOVE. L
000170 S36EFFAL SUEQ. W
000174 S52AEFFAB ADDG. L
000178 &6000FECA ERA
23 23 STOF
24 24 END
00017C 4247 CLR. L
00017E 4EAE0000 JSR
000182 S88F ADDG. L
000184 4CDF0OFE MOVEM. L
0600188 4ESE UNLK
00018A E7S RTS
25
SYMBOL TAELE
NAME ATTR ADDR SIZE TYFPE
BASE LOCAL. V ffffffac R4
Cos INTFUNC WA R4
CosX LOCAL. V o8 R4
cosy LocaL. V oo R4
I LOCAL. V frffffas I4
ICOoS LOCAL. V fffffes I4
INT INTFUNC AN KKKNKK Iz
ISIN LOCAL. V e I4
J LOCAL. V ffffffa2 I4
FRINT LOCAL. A ffffffaf 80 Ci
SIN INTFUNC AKX R4
SINCOS FROG MMM KK
SINX LOCAL. V ffffffoc R4
SINY LOCAL. V FHErffo4 R4
LAREL TABLE
LABEL ATTR ADDR
10 FRMT 00000000
30 EXEC 00000170
40 EXEC 00000070

S0 FRMT 000

oo022

ESD18-. FRTFREF (A3)

-84(A6), DO
#1036831949, A2
ESDZ1-. FRTFREF (A3)
DO, -B4(As&)

%1, -20(A6)

#1, -88(A6)

x-308

~(A7)

ESD26~-. FRTFREF (A3)

4, A7
(A7)+,D1/02/D03/D4/D5/D6/D7
Ab

COMMON

CODE SIZE 18c, SAVE SIZE 4, STACK SIZE 78, CONSTANT SIZE 2c

CURRENT Z=27

AKX K

FIGURE 1.

TOTAL ERRORS 0

Z=6 1S SUFFICIENT
TOTAL WARNINGS 0

Compilation Listing of Program TESTPROG (Sheet 4 of 4)

Linkage Editor Example

Using the Linkage Editor command, the next step is to prepare the load module.

LINK WORK:..TESTPROG, ,#PR;MIXL=FORTLIB

Ortions in Effect: -A, =B, ~D, ~H, ~IL, =L, M, O, F, —=Q:; =R, =S, =U, ~W, ~X
Load Mar:

Sedgment SEC0: 00000000 0O0O000FF 0,1.2,3.4,5.6.,7

Module 8 T Start End Externally Defined Swumbols

SINCOS 7 00000000 00000003 . FCEREF 006000000

Sedment SEG1(R): 00000100 00004DFF 8,9,10,11,12,13,14

Mociule 8 T Start End Externally Defimed Swumbols

. FINIT 8 00000100 00000455 . FINIT 000001AA

. FICOM 8 00000456 00000587 . FICOM 00000456 . FRTYFREF 00000588
. FIAFL 8 00000588 000009A7 . FIAFL 00000588

. FIINT 8 000009A8 00000C0O1 . FIINT 00000948 . FIXEEFR 00000AF4
. FILST 8 00000C02 OO00O00CFD . FILST 00000C02 . FILST3 00000CHA
. FIFNL 8 00600CFE O00GGODFF . FIFNL 00000CFE

. FICFL 8 00000E00 O0OCO0COESD . FICFL 0000000

. FINFT 8 00000ESE O00000F8F .FINFT 00000ESE

. FIFMT 8 00000F90 O0000171F . FIFMT 00000F90

. FISEQ 8 00001720 O000C1E71 . FISEQ 00001720

. FIDIR 8 00001E72 00001DDD . FIDIR 00001E72

. FIPST 8 00001DDE 00O0CG1EEE . FIFST 00001DDE

. FIERR 8 CGO0001EEC 00002ADF . FIERF 00001EF2 . FIERK 00001EEC
. FICLS 8 00002AED O00002B2D . FICLS 00002AED

. FIUEBA 8 00002B2E 00002COD . FIUEA 0000262E

. FIUOF 8 00002COE 00002C9D . FIUOF 00002COE

. FICvVO 8 00002C9E 00002CE1 . FICVO 00002C9E

. FIFOX 8 00002CEZ 00002D17 . FIFOIX 00002CE2

. FIFOF 8 00002D18 O00002ECY® . FIFOF 0o0002D18

. FIFOD 8 00002ECA 000031DS . FIFOD 00002ECA

. FIFOG 8 000031Dé6 00003203 . FIFOG 00003106

. FIFOL 8 00003204 00003221 . FIFOL 00003204

. FIFOA 8 00003222 0000325F . FIFOA 00003222

. FIFOZ 8 00003260 00003281 .FIFOZ 00003260

. FICOI 8 00003282 000033F9 .FICOIX 00003282

. FXCOR 8 000033FA 00003705 . FICOR 000033FA

. FICVI 8 00003706 00003749 . FICVI 00003706

.FIFIX 8 00003749A 00003815 . FIFIX 0000374A

. FIFID 8 00003816 00003867 .FIFID . 00003816

. FIFIG 8 00003848 00003895 .FIFIG 00003848

. FIFIL 8 00003896. O00003BEE . FIFIL 00003896

. FIFIA 8 000038BEC 00003930 .FIFIA 000038EC

.FIFIZ 8 0000393E O00003A0E . FIFIZ 0000393E

. FICIX 8 00003A0C 00003E51 . FICIX 00003A0C

. FICIR 8 00003E52 O00003F4E . FICIR 0000352

. FXCTEL 8 00003F4C 00004213 .FICTA 00003F9C . FICTE 000040FC
. FRCRX 8 00004214 00004271 . FRCRT 00004214

. FRSIR 8 00004272 000043DD . FRSIR 00004278 . F. RSIR 00004272
. FRCOR 8 000043DE 00004557 . FRCOR 000043E4 . F. RCOR 000043DE

FIGURE 2. Linkage Editor Listing of Program TESTPROG (Sheet 1 of 2)

C-5

. FRGIN 8 00004558 000045AE . FRSIN 00004558
. FRCOS 8 000045AC 000045F7 . FRCOS 000045AC
. FRMUD 8 000045F8 000047ED . FRMUD 000045F8
. FRMUR 8 000047EE 000048ED .FRMUR 000047EE
. FRSUR 8 000048EE 00004907 . FRSUR 000048EE
. FRADR 8 00004908 000049FD . FRADR 00004908
. FRDIR 8 000049FE 00004B47 .FRDIR 000049FE
. FRIMR 8 00004848 00004E6EB . FRIMR 00004E:48
SINCOS @ 00004B6C 00004CF7 . FMAIN 00004E:6C
SINCOS 10 00004CF8 00004D23

Sedgment SEGZ: 00004E00 000051FF 15

Module S T Start End Exterrnally Defined Sumbols
. FINIT 15 00004E00 00005iE1 . FZWRK 00004ES0
Urresolved References: Norne

Multirly Defined Sumbols: Nore

Lerngths (in bwtes):

Segment Hex Decimal
SEGO 00000100 256
SEG1 00004D00 19712
SEG2 00000400 1024
Total Length 00005200 20992

No Errors
No Warninsdgs

{Load module has been created.

FIGURE 2. Linkage Editor Listing of Program TESTPROG (Sheet 2 of 2)

Example of Load Module Execution

To execute the load module created by the linker in the previous step, use the
following command:

WORK:..TESTPROG O=#PR

¢ b4 0CLL786°0 €689055°0-0566569°¢
. . B29SSLL°0 90L21E90°0-08h6865°S
. . £999802°0 6€96504°0-066666%°$
* . SCEOYEI° D §292222°0-0566665°¢
* . SCLE75S°0 00422£8°0-2566662"$
. * L216899°0 6§957E88°0-~0946661"°6S
* L$L622458°0 9918526°0-0946660°5
. . s L5S9iE2°0 95262856°0-0966666"Y
* 280S981°0 S£S9286°0-0946668°7
. 6%67¢80°0 0691966°0-0966662°Y

* & & &

4268210°0-25826666°0~
99SL211°0~-9069866° 0=

1966669
09465665° Y

¥566L012°0-96265246°0-094666%""
» 29¢5208°0~-0L091L56°0-0046668°"

. s 520800%°0-$79L91L6°0-0066662°%
. . 6£92067°0-0%25125°0-0956661°Y
. £§928925°0-26428 L8 0-0266660"Y
. 29%795668°0=-9008962°0-0266666°¢
. 9£6522°0-1792L289°0-0246668"¢
. $696064°0-25S8L1L9°0~0266664°€
.] SLOLE78°0-6155625°0-0266669°€
. e 96SL96E°0-28152%9°0-0L66666°€
. ® 92699€6°0-60820S€°0~-026666%"¢€
. B656L956°0-68€5552°0-026666€°¢
. 208Y9286°0-9592451°0-0846662"¢
. 6962866°0-02.£850°0-0066661"%

1SEL666°G-3285L%90°0 0B66660°C
. £266656°0-0221171L°0 0066666°2
. BE2S6026°0-2152652°0 0866668°2
. € 6122276°0-6626%55°0 0966662°2
* & S1409%06°0-518€22%9°0 0846669°2
.] 6L88955°0-9205516°0 0866665°2
. B29LLCE 0-95L96865°0 0864£667°2
* 626525L°0=-£999629°0 0966665°2
. 0622999°0-29025%2"0 0666462°2
. 100$885°0-246%808°0 0666661°2
. 1$78905°0-0012£98°0 0666660°2
. 8S7L9L9°0~-6262606°0 0666666° 1L
: 9882625°0-S00€996°0 0666668°1
. 21022422°0-0896546°0 0666564° 1
° LE7882L°0-06991646°0 0666669°1L
. 8E61620°0-4525666°0 0646665°1
. 6452020°0 LS69266°0 0666667°1L
. L296651°0 2697566°C 06A6665°1
° £667292°0 28$5£96°0 J00000€°1L
. 155€295°0 06502560 0000002°%
. ¥66S£S°0 £202L68°0 0000004°L
. 9205075°0 §0L7198°0 8666666°0
. 201L9L29°0 692€£82°0 6666668°0
. 6902969°0 09SSL12°0 66666640
. 9298954°0 42129990 6666669°0
. 96EE528°0 92999960 0000009°0
. G28S248°0 $52%629°0 0000205°0
. GL90L26°0 £3L968€°C 000000%°0
. 99€£556°0 20255620 000000£°0
. ¢9900€6°0 £69986L°0 0000002°0
. 290056¢°0 2§£8660°0 000000L°0
°» 060LOGG*L 0000000°C 2000000°0
0 [(X)$33 (XINIS X

Listing of TESTPROG Execution

FIGURE 3.

APPENDIX D

COMPILER LIMITS

NUMBER CONDITIONAL ITEM CONDITIONAL CONTENT
1 Set of characters ASCII character set
2 Continuation lines 9 lines
3 Maximum number of digits 5 digits
in a statement number
4 Maximum number of 6 alphanumeric characters - first
characters in a character must be alphabetic
symbolic name
5 Numeric value limits Integer
2 bytes = -2%*15 to 2**15-1
(largest decimal number = 32,767)
4 bytes = -2*%*31 to 2**31-1
(largest decimal number
= 2,147,483,647)
Real
4 bytes = 10**-39 to 10**39
(7 decimal digits)
8 bytes = 10**-309 to 10**309
(15 decimal digits)
6 Maximum number of 3 dimensions
dimensions
7 Logical unit limits SYSGEN-dependent, usually 1 - 8
8 Character data length 1 - 255
9 Number of characters 5 letters
allowed in STOP and
PAUSE statement message
10 Symbol table size Dependent upon Z option (see Table 3-1)
11 Label table size Dependent upon Z option (see Table 3-1)
12 Block nest number 25
(sum of DO block nest +
block IF statement nest)
13 Maximum sum of characters 32K characters

in all character constants

NUMBER CONDITIONAL ITEM CONDITIONAL CONTENT
14 Maximum number of common blocks 240
and number of external linker
restrictions
15 FORTRAN cannot interface with Pascal subprograms.
16 FORTRAN cannot interface with the fast floating point

package without going through a conversion process.

D-2

APPENDIX E

M68000/ANSI 77 FORTRAN SUBSET DIFFERENCES

E.1 INTRODUCTION

This appendix describes the language differences between the M68000 FORTRAN and
the ANSI 77 subset standard (ANSI X3.9 - 1978). The M68000 FORTRAN supports the
entire ANSI X3.9 FORTRAN subset with the following extensions.

In the following paragraphs, specific sections of the ANSI X3.9 FORTRAN language
manual are referenced by: '

(ANSI X3.9 - specific section or chapter number [F])

where [F] refers to Full Language definition. Otherwise, the chapter or section
is in the Subset Language definition --

i.e., (ANSI X3.9 - 4) references chapter 4 in the Subset Language _
(ANSI X3.9 - 4.2) references section 4.2 in the Subset Language
(ANSI X3.9 - 4.2F) references section 4.2 in the Full Language

A reference to section 4.5 would also include all the subsections, such as 4.5.1
and 4.5.2.

E.2 DATA TYPES AND CONSTANTS (ANSI X3.9 - 4)
This implementation supports the following data types:

INTEGER - two distinct sizes

REAL - two distinct sizes

DOUBLE PRECISION - (ANSI X3.9 - 4.5F)
also includes the intrinsic functions associated with
this data type (ANSI X3.9 - 15.10)

LOGICAL
CHARACTER

A constant data type has been added:

HEXADECIMAL

E.2.1 Integer Data Type (ANSI X3.9 - 4.3)

The size of an integer variable is either two bytes or four bytes. Four bytes
is the default size. The size of a variable can be specified with the TYPE
statement (see E.3).

NOTE

The user must ensure that the size of a dummy argument
and its corresponding actual argument agree (i.e., both
must be two bytes or both must be four bytes). Integer
constants are always passed as four bytes.

E-1

E.2.2 Real Data Type (ANSI X3.9 - 4.4)
Double Precision Data Type (ANSI X3.9 - 4.5F)

The size of a real variable is either four bytes or eight bytes. Four bytes is
the default size. The size of a variable can be specified with the TYPE

statement (see E.3). An 8-byte real variable is equivalent to a double
precision variable.

E.2.3 Logical Data Type (ANSI X3.9 - 4.7)

Logical variables are four bytes long, in conformance with the ANSI requirement
that logicals and integers be the same length.

E.2.4 Hexadecimal Constant
The form of a hexadecimal constant is:
#<string of hexadecimal digits>H

The hexadecimal digits include 0-9 and A-F, with the digits A-F corresponding to
the values 10-15, respectively.

Hexadecimal constants can be used in DATA statements and anywhere an integer
constant could be used --

i.e., INTEGER INTH
INTH = #FEH This assigns the value 254 to INTH.

E.3 SPECIFICATION STATEMENTS (ANSI X3.9 - 8)

To support the different sizes of integer and real variables, the specification
statements -- IMPLICIT and TYPE -- were enhanced.

E.3.1 TYPE Statement (ANSI X3.9 - 8.4.1)
The form of a TYPE statement is:

<type>[*<len>[,]] <name>[,<name>}...

where:
type is one of INTEGER, REAL, LOGICAL, or DOUBLE PRECISION.
len specifies the length of a real or integer variable. For real

variables, <len> must be 4 or 8, with the default case being 4.
For integer variables, <len> must be 2 or 4, with the default case
being 4. For data types LOGICAL and DOUBLE PRECISION, the <len>
attribute is syntactically incorrect.

E-2

name is one of the following:

v[*<len>] v is a variable name.
af(d)] [*<len>] a(d) is an array declarator.

i.eo,
INTEGER I,J*4 - I and J are 4-byte integers.
INTEGER*2 L,K - L and K are 2-byte integers.
INTEGER M,N(10),0*2,P(10)*2,0 - M, Q, and array N are 4-byte integers.
- O and array P are 2-byte integers.
REAL A,B*8 - A is a 4-byte real while B is a double precision real

with eight bytes. ,
REAL*8 C,D(10) - C is an 8-byte real and D is a double precision array

E.3.2 IMPLICIT Statement (ANSI X3.9 - 8.5)
The form of the IMPLICIT statement is:

IMPLICIT <type>[*<len>] (<a>[,<a>]...)

where:

type is one of INTEGER, REAL, LOGICAL, or DOUBLE PRECISION.

len specifies the length of a real or integer variable. For real
variables, <len> must be 4 or 8, with the default case being 8.
For integer variables, <len> must be 2 or 4, with the default case
being 4. For data types LOGICAL and DOUBLE PRECISION, the <len>
attribute is syntactically incorrect.

a is either a single letter or a range of single letters in

alphabetical order.

E.3.3 INTRINSIC Statement (ANSI X3.9 - 8.8)

The ISA bit manipulation functions -- IOR, IAND, NOT, IEOR, ISHFT, IBSET, IBCLR,
and BTEST -- cannot be used as actual arguments.

E.4 FUNCTIONS AND SUBROUTINES (ANSI X3.9 - 15)

To support the different sizes of integer and real variables, the FUNCTION
statement was enhanced. Also, the INTRINSIC functions to support the DOUBLE
PRECISION data type were added. The ISA 1976 bit string manipulation functions
were also added.

E-3

E.4.1 FUNCTION Statement (ANSI X3.9 - 15.5.1)
The form of a FUNCTION statement is:

<type> FUNCTION <fun>[*<len>] ([<d>[,<d>]...])

where:

type specifies the length of a real or integer variable. For real
variables, <len> must be 4 or 8, with the default case being 8.
For integer variables, <len> must be 2 or 4, with the default case
being 4. For data types LOGICAL and DOUBLE PRECISION, the <len>
attribute is syntactically incorrect.

fun is the symbolic name of the function subprogram in which the
FUNCTION statement appears.

len specifies the length of a real or integer variable. For real
variables, <len> must be 4 or 8, with the default case being 4.
For integer variables, <len> must be 2 or 4, with the default case
being 4. For data types LOGICAL and DOUBLE PRECISION, the <len>
attribute is syntactically incorrect.

d is a dummy argument.

E.4.2 INTRINSIC Functions (ANSI X3.9 - 15.10)

E.4.2.1 Additional Functions. The following intrinsic functions have been
added to support the DOUBLE PRECISION data type. The definition of each
function can be found in the table located in (ANSI X3.9 - 15.10):

IDINT, SNGL, DBLE, DINT, DNINT, IDNINT, DABS, DMOD, DSIGN, DOIM,
DMAX1, DMIN1, DSQRT, DEXP, DLOG, DLOGl1l0, DSIN, DCOS, DTAN, DASIN,
DACOS, DATAN, DATANZ2, DSINH, DCOSH, DTANH.

E.4.2.2 Integer Actual Arguments. Wherever an intrinsic function expects an
integer actual argument, either a 2-byte or a 4-byte integer may be used.

E.4.3 ISA BIT STRING MANIPULATION

The subprograms which follow allow the programmer to view integer data as
ordered sets of bits (an, ap-ls,e¢.....ap), where the set is a place
positional binary representation of an integer value, thus permitting
interrogation and manipulation of integers on a bit-by-bit basis. The value of
n is either 16 or 32, depending on the data type of the input variable.

E.4.3.1 Logical Operations. These operations are external functions. In the
following functions, j and m are integer expressions. Operations are performed
on all bits which represent the value of an integer internal to the processor.
Operations are done bit-by-bit on corresponding bits -- that is, the
corresponding bits of the actual arguments j and m are used to generate the
integer result.

E-4

—

E.4.3.1.1 Inclusive OR - The form of this function reference is:

IOR(]j ,m)
where the result of IOR(j,m) is:
n

LO%*(%+mk-ﬁk*Wn

E.4.3.1.2 Logical Product - The form of this function reference is:

IAND(j,m)
where the result of IAND(j,m) is:
n

s o2k =* (3, * m))
k=0 ko Tk

E.4.3.1.3 Logical Complement — The form of this function reference is:

NOT (3)
where the result of NOT(j) is:
n

3 2k * (l-jk)
k=0

E.4.3.1.4 Exclusive OR - The form of this function reference is:

IEOR(J,m)
where the result of IEOR(j,m) is:
n

LO%*<2—ﬁk+mn*<%*mg

E-5

E.4.3.2 Shift Operations
This operation is an external function. In the following function, j and m are
integer expressions. Operations are performed on all bits which represent the
value of an integer internal to the processor, and are used to generate an
integer result.
The form of this function reference is:
ISHET (j,m)
where, if the value of m is positive or zero, the result of ISHFT(j,m) is:
s okm
% 4
2_ 2 Iy
k=0
where, if the value of m is negative, the result of ISHFT(j,m) is:
s k+m
* 4
=m

E.4.3.3 Bit Testing and Setting. These operations are external functions. In
the following functions, j and m are integer expressions.

E.4.3.3.1 Bit Test - This logical function tests a specified bit of an integer.
The form of this function reference is:

BTEST (j ,m)
where the result of BTEST(j,m) is:

if IAND(j,2M) = 0, then FALSE, else TRUE

E.4.3.3.2 Bit Set - This function sets a specified bit of an integer.
The form of this function reference is:

IBSET(j ,m)
where the result of the function reference IBSET(j,m) is:

IOR(j,2M)

E.4.3.3.3 Bit Clear - This function clears a specified bit of an integer.
The form of this function reference is:

IBCLR(j,m)
where the result of the function reference IBCLR(j,m) is:

IAND(j,NOT(2M))
E-6

E.4.4 INPUT Function

This function reads one byte of data from the address specified by its
argument n. n is a 4-byte integer expression.

The form of the function is: INPUT(n)

E.4.5 OUTPUT Subroutine

This subroutine outputs the low order byte of data m to address n in memory. n
and m are 4-byte integer expressions.

The form of the subroutine is: OUTPUT(n,m)

E.4.6 Block Data Subprograms (ANSI X3.9 - 16F)
Block data subprograms are used to provide initial values for variables and

array elements in named common blocks. See the ANSI manual for a complete
definition.

E.5 MORE GENERALIZED EXPRESSIONS

E.5.1 Subscript Expressions

A subscript expression is not restricted to integer expressions, as in the
Subset Language, but may also contain array element references and function
references as in the Full Language. For example, a statement of the following
form is allowed:

A(I,J) = B(IT(J)) * C(IFUNC(K))

where A, B, IT, and C are arrays and IFUNC is a function.

E.5.2 Expressions as Qutput List Items (ANSI X3.9 - 12.8.2.2F)

An output list item may be not only a variable name, an array element name, or
an array name, but also may be any arithmetic expression. For example, the
following is allowed:

WRITE (* '(1H, 10F7.2)') A+B, C*D(I)+E,FUNC(G)

E.5.3 Integer Expressions as External Unit Identifiers (ANSI X3.9 - 12.3.3F)

An external unit identifier is not restricted to integer constants or variables,
but may be any integer expression with a zero or positive value. For example,
the following is allowed:

READ (IFILE(J),100) X,Y,Z

E-7

E.5.4 Integer Expressions as Record Length Specifiers (ANSI X3.9 - 12.10.1F)
The record length specifier is not restricted to integer constants or variables,
but may be any integer expression with a positive value. Furthermore, the value

may be up to 65,535, which is the largest record length allowed by VERSAdos.
For example, the following is allowed:

OPEN (IUNIT(IFILE), ACCESS = 'DIRECT',RECL = LEN(IFILE))

E.5.5 Integer Expressions as Record Specifiers (ANSI X3.9 - 12.5F)
The record specifier is not restricted to integer constants or variables, but
may be any integer expression with a positive value. Furthermore, the value is

not restricted to less than 32,768, but may be up to 2,147,483,647 (2**31 - 1).
For example, the following is allowed:

READ (IUNIT,100, REC - I+40000) A

E-8

MOTOROLA Semiconductor Products Inc.

PO. BOX 20912 @ PHOENIX, ARIZONA 85036 @ A SUBSIDIARY OF MOTOROLA INC.

16834 PRINTED IN USA (11/83} MPS 3M

