@ MOTOROLA M68KLINK/D7

M68000 Family
Linkage Editor
User’s Manual

E

fegs
oP

L

M) moToroLa

M6SKLINK/D7
JANUARY 1986

M68000 FAMILY
LINKAGE EDITOR
USER’S MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsiblity is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products
herein to improve reliability, function, or design. Motorola does not assume
any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights
nor the rights of others.

EXORmacs, MACSbug, TENbug, VERSAbug, VERSAdos, VERSAmodule, VMC 68/2, VME/10,
VMEmodule, and VMEsystem are trademarks of Motorola Inc.

Seventh Edition
Copyright 1986 by Motorola Inc.
Sixth Edition March 1985

MICROSYSTEMS

(M) moTOoROLA

REVISION RECORD

M68KLINK/D6 -- March 1985. Reflects the following software levels: VERSAdos
4.4 and Link 1.8. Adds support of the MC68020, VMO4, MVME120, MVMEI2l,
MVME122, and MVME123. New options: The ATTRIBUTE interactive user command
now accepts the new attribute R, which designates a real-time task, and a new
interactive user command of PAGESIZE that enables modification of the page
size of the load module.

M6SKLINK/D7 -- January 1986. Adds support of the MVME11l7 and MVME130/131.
Makes minor corrections to the manual and adds a keyword index.

MICROSYSTEMS

@ MOTOROLA

CHAPTER

CHAPTER

CHAPTER

CHAPTER

el e e I S S S P

¢ s e e e e e e s s

SNO GO OITOIOT P WN
« . e e

NN PN

o e e e e .

WO N
o .

wWwwww
G WP =

Rl LI N N S S SO SO
OOONAUC WP

[y

n

w

E-N

— et
N = O

W N =

N —

TABLE OF CONTENTS

Page
INTRODUCTION
SCOPE i 1
INTRODUCTION .ttt et 1
OPERATING ENVIRONMENT\eiinrtiienneennnnnnnn 1
HARDWARE REQUIRMENTS ...ttt tene e, 1
THEORY OF OPERATION . .eu'vvviinieeneeeanemmnnnnn, 1
SeCtiONS Lo e 3
SBgMENES i e e 3
Relocation and Linkingcovuevenennnnnnninn, 4
Library Files ..ouuiiiiiiiri e, 5
RELATED PUBLICATIONS ...vvviintini e ivemaann, 6
NOTATION e e e et e e 6
MEMORY ALLOCATION
GENERAL vttt i e 7
WHEN CREATING A LOAD MODULE ...vvveoneeenenennennnnnnn., 7
Example 1 ..ot e, 10
EXAMPTe 2 ittt i e e e 13
WHEN CREATING AN S-RECORD MODULEco'veuurnnn... 16
WHEN CREATING A RELOCATABLE OBJECT MODULE 16
INVOKING THE LINKER
GENERAL . e 17
FILENAME FORMAT ..ottt e, 17
COMMAND LINE FORMAT ...uvrivintt e reeneenennannn, 17
T IONS et e e 18
EXAMPLES . e, 22
USER COMMANDS
GENERAL .ttt e e e e, 23
NUMERICAL ENTRIES ..ovttirviii e, 24
SYMBOL, MODULE, AND SEGMENT NAME FORMATS 24
L 25
ATTRIBUTES ottt i e e e e, 25
COMLINE Lot e e e e 27
DEFINE ittt iiiieieeeenanns et 29
END e 29
ENTRY e e 30
L 31
INPUT e e e 32
LI BRARY ottt e 34

MICROSYSTEMS

M) moToroLA

.13
.14
.15
.16
.17
.18
.19
.20
.21

ApEpEAELAPEEPLE

CHAPTER

o

oottt oTan
W W W W WM N -
W N =

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

OMMOUO >

INDEX

TABLE 4-1
5-1

TABLE OF CONTENTS (cont’d)

1 53 R S
MONITOR ..iiiiiii i iiiennenns
OPTIONS «iiiiit it iiiisiiencanannanns
PAGESIZE ..vviiiiiiiiiiiinnnnaonsnnns
PRICRITIES ...vvriiiiiiiinirennnnenneens
QUIT ieiiie ittt e iinavanaenes
SEGMENT vttt)
START i itee ittt iiieeieaeroanenen

LISTING FORMATS

GENERAL +vvvtiveiireencnenrnnnennasenns
SYNTACTICAL FORMATSeiiviviiinnennn,
Meaning of Symbols in Output Format ..
EXAMPLE PRINTOUTS ...ivvveniinnnnnennnnns
Example OQutput #1cvvuntn
Example Output #2cceiiiinnns
Example Qutput #3ovivviieinnets
Example OQutput #4ccviiiivnns

RELOCATABLE OBJECT MODULE FILE FORMAT ..
LOAD MODULE FILE FORMAT
S-RECORD FILE FORMATc.ccvennenn.
DEBUG FILE FORMATiiiinivennnenens
EXAMPLES . .iiii ittt ianeanananens
ERROR/WARNING MESSAGESc.....
MVME12x-SPECIFIC INFORMATION

User Commandscovvevenenennnncnes
Listing Occurrencescocieuvvennnn

ii

................. 45
................. 45
................. 49
................. 50
................. 50
................. 53
................. 53
................. 55

MICROSYSTEMS

M) moToroLA INTRODUCTION

CHAPTER 1
INTRODUCTION

1.1 SCOPE

This manual explains the system features of the M68000 Family Linkage Editor
(referred to also as the "linkage editor" or simply the "Tinker"), and
describes the operating procedures necessary to 1ink high-Tevel languages
(such as Pascal) and/or assembly Tanguage routines to create relocatable
object modules, transportable S-record modules, or absolute load modules for
use on M68000 Family systems. Appendices to this manual provide additional
details of the three types of output, as well as examples.

1.2 INTRODUCTION

The Tlinker examines and gathers information from the relocatable object
module(s) associated with independently compiled or assembled source code
module(s) and, based on this information, allocates memory to code and data,
relocates according to this allocation, and resolves all references to symbols
assumed to be global to one or more modules.

1.3 OPERATING ENVIRONMENT
. VERSAdos Operating System

1.4 HARDWARE REQUIREMENTS
Any of the following:

. EXORmacs Development System

. VMC 68/2 Microcomputer System

. VME/10 Microcomputer Development System

. VMEsystem

. VERSAmodule 01, 02, 03, or 04 Monoboard Microcomputer-based system

- MVME1O1, MVMEL10, MVME1l7, MVME120/121, MVME122/123, or MVME130/131
VMEmodule Monoboard Microcomputer-based system

1.5 THEORY OF OPERATION

Relocatable object modules are created by processing programs written for the
M68000 Family microcomputers by a compiler or assembler. An absolute binary
Toad module (or simply a "load module") is created when the object modules are
relocated and 1Tinked by the linker. Later, the load module is Toaded into
memory through VERSAdes and executed on any of the above systems. A load
module requires no further alteration.

1 MICROSYSTEMS

@ MOTOROLA INTRODUCTION

Instead of creating a load module, the Tlinker may optionally create a
relocatable object module, combining all its input. A group of completely
debugged, interrelated object modules are combined for this module. Under
certain circumstances, this may be desirable, because they can be referenced
by a single filename. The Tlinker also operates faster because references
between the modules are resolved when the modules are combined.

A third type of linker output is also available: an S-record format module.
Data in S-record format is ASCII character data (refer to Appendix C), that
facilitates the transfer of these files between computer systems. When a
firmware debug monitor, such as MACSbug, TENbug, or VME11l0bug, is running, the
LO command is available to "download" the S-record format files directly into
memory. The LO command converts the S-record output modules into absolute
1oad modules and places the Toad modules directly into memory. VERSAdos has a
utility, MBLM, that converts S-record modules to load modules that can run on
VERSAdos.

The Tinker requires two passes (the input is read twice) before it can create
an output module. During the first pass, the linker gathers information about
externally referenced and externally defined symbols, building a symbol table
in the process. It also keeps track of the sections assigned, their names,
lengths, and starting addresses. Finally, the linker determines the modules
required from the 1library file(s). During pass one, the Tinker pays no
attention to the actual code/data in the inputted relocatable object modules.

After pass one, if an S-record module or absolute Toad module is being
generated, the Tlinker assigns each section to an absolute address in memory.
When executing the absolute 1load module, the section 1is Toaded at this
address. The allocation of memory is a complex task that can be left totally
up to the linker, or influenced by various user commands (refer to Chapter 4).

After allocation of memory, the required space is known for the resulting load
module or S-record module and the output file is allocated. If a relocatable
object module is being generated instead, the 1inker computes the total size
of each section in use; opens the output file and outputs the necessary
information about each section and symbol to it. (NOTE: Each section always
starts on a word boundary.)

The Tinker then proceeds to pass two, where the relocatable object modules
read in pass one are re-read in the same order. Now the data/code in each
module 1is relocated, reference resolution is done, and the data/code is
written to the output file. However, if a relocatable object module is being
produced, the input is not relocated, but references between the input modules
are resolved.

At the completion of pass two, the Tinker outputs its final listings. The

1istings produced are based on the options specified in the invoking command
Tine.

MICROSYSTEMS

@ MOTOROLA INTRODUCTION

1.5.1 Sections

The basic unit of input to the linker is a relocatable object module. An
object module consists of code/data, along with information describing
externally defined symbols, externally referenced symbols, a command line
address, an entry point address, and sections (the 1logical units where
code/data are placed).

Each object module may contain code/data to be placed in up to 16 relocatable
sections, numbered 0-15. Each of these sections may also have a variable
number of named common sections associated with it, each containing a
combination of code and data but not data only, and with each common section
having a unique name (refer to Chapter 2).

In addition, an object module may contain a variable number of absolute
sections. An absolute section is absolute only because an address in memory
has already been assigned where it will reside at execution time. Absolute
sections may contain code/data that the linker is required to modify and are
not numbered.

tach relocatable section 1is designated as either a "regular section" or a
"short section". A vregular section is a relocatable section that may be
placed anywhere in memory for execution. Thus, wherever an absolute reference
is made to something in a regular section, a full long word (4 bytes) is
reserved for the absolute address, because there is no guarantee where the
linker will place the regular section in the load module.

A short section is a relocatable section that should be located in memory
addressable by a short absolute address (a 2-byte address). Whenever an
absolute reference is made to something in a short section, only one word is
reserved for the address. This word can address the first 32Kb and the last
32Kb of memory. (NOTE: Some target processors provide for an upper limit on
memory of $FFFFFF, $FFFFFFF, or $FFFFFFFF). By putting frequently-used
code/data in short sections and locating these sections properly, a program
can be shorter, because each reference to that code/data will require a 2-
byte, rather than a 4-byte, address. A single short section may be located
completely within the lower or upper absolute short address range, but may not
occupy both.

1.5.2 Segments

A segment s the basic unit of memory where sections may be placed. It is
defined by its name, starting address, and length. Its length must be a
multiple of 256 bytes to be loaded by VERSAdos. When the system contains a
Memory Management Unit (MMU), the starting address is a logical address that
is translated by the MMU into a physical address in memory. On a non-MMU
system, the starting address vrepresents a physical address in memory and
VERSAdos attempts to 7load the program at the specified physical address.
However, if the first segment of a program starts at address 0, the program is
assumed to be position independent and VERSAdos 1loads it into the next
available memory space.

MICROSYSTEMS

INTRODUCTION
@ MOTOROLA

A load module may contain up to four segments, each containing code/data.
When Tloading the module into memory, a non-MMU system verifies that the
specified segments of physical memory are available and loads them if possible
(unless program is position independent). For systems that contain a MMU, a
segment may be placed anywhere in available memory that is large enough to
hold it. The MMU maps all logical addresses generated by the user code/data
into the physical addresses in memory where the segment resides. For example,
a segment may logically start at hexadecimal address $1E00, with a length of
1024 bytes. However, the segment may actually reside in physical memory
between addresses $2F600 and $2F9FF, inclusive. Then, if code in the user
program requests data at address $1F76, the MMU maps the address into physical
address $2F776 and retrieves the data from there.

When creating a binary load module, the Tinker sets up the desired segments
and assigns each section being used to a segment. The definition of segments
and what sections they contain may either be left totally up to the linker or
influenced by the user. Refer to paragraph 4.18 for details.

When the linker’s output is an S-record module, the linker allocates segments
as above, but the segment information is not carried over when downloading.
However, segments can be assigned when using the VERSAdos utility, MBLM, to
convert the S-record files to an executable load module.

1.5.3 Relocation and Linking

The dinput to the linker is relocatable object modules produced by the Tinker
itself, the assembler, or a compiler such as Pascal. The term "relocatable"
means that the data in the module has not been assigned to absolute addresses
in memory; instead, each different section is assembled/compilted as though it
started at relative address 0. (The exception to this is absolute sections,
which do get as$igned to absolute addresses at assembly time.) When creating
an absolute 1load module or S-record module, it is the job of the Tinker to
read in all the relocatable object modules that comprise a program and assign
each section to an absolute memory address. Then, in the process of actually
putting the code and data read from each object module into the proper
location in the load module, the Tinker must fill in the correct addresses for
such items as 1loading absolute addresses and referencing across sections.
This is the process of relocation.

O0TE

There is a difference between relocatable and position-independent code.
A program is "position-independent" if it runs correctly when the exact
same machine code is positioned arbitrarily in memory. The output of the
Pascal compiler is both relocatable and position-independent. The out-
put of the assembler is relocatable, however, it is up to the user to
produce position-independent code, if desired. If the input to the
linker is position-independent, the load module produced by the Tinker
is also position-independent, even though it has been assigned to
absolute memory addresses.

MICROSYSTEMS

@ MOTOROLA INTRODUCTION

Along with relocation, the Tlinker performs reference resolution between
modules, i.e., one module can reference symbols defined in a different module.
This is done in the following manner:

At the time of compilation/assembly, the module doing the referencing has
no idea where the symbol it is referencing will be located in the final
Toad module. Therefore, the compiler/assembler sets up information in the
relocatable object module that indicates an external symbol is referenced
in this module and where it is referenced. This is an "XREF". Also, in
the relocatable object module, where the symbol is defined, there is
information that indicates the reference, along with the relative address
of the symbol in the module. This is an "XDEF". The correct address of
the symbol is inserted wherever it is referenced, when the two modules are
input to the Tlinker.

Using relocation and Tinking allows the user to break up a large program into
separate, more manageable modules that may be assembled or compiled
separately. These modules may then be 1inkage edited to produce a load module
or S-record module of the complete program. If a problem is encountered,
only the module with the problem needs editing and re-compiling/re-assembling.
Then the user can do reference resolution between the new relocatable object
module and the other previously created object modules to create a new load
module.

1.5.4 Library Files

A Tlibrary file contains several relocatable object modules, each of which
contains one or more external symbol definitions (XDEFs). A library file is
not "input" to the 1linker the same as regular relocatable object modules,
instead, a Tibrary file is "searched". A search of a library file consists of
looking one-by-one at each relocatable object module in the file.

For each module, a check is done to determine if any externally defined
symbols in the module match any unmatched externally referenced symbols
(XREFs) from other modules input. If so, the relocatable object module is
included in the 7load module. If not, the module is not included and the
search continues with the next relocatable object module in the library file.
A search of a Tibrary file continues until the end of the file is encountered
or all unresolved external references are resolved, whichever occurs first.

A library file is created by separately assembling or compiling each module
that is to go in the library. Each module contains definitions (XDEFs) for
the proper external symbol(s). The resulting separate relocatable object
modules are merged into one file using the ADD subcommand of the LIB utility
under VERSAdos.

NOTE

The Tinker cannot create a library file, since its output
is a file that contains only one relocatable object module
containing the data from all the input modules.

MICROSYSTEMS

@ MOTOROLA INTRODUCTION

1.6 RELATED PUBLICATIONS

The following publications may provide additional helpful information. If not
shipped with this product, they may be obtained from Motorola’s Literature
Distribution Center, 616 West 24th Street, Tempe, AZ 85282; telephone (602)
994-6561.

MOTOROLA

DOCUMENT TITLE PUBLICATION NUMBER
M68000 Family Resident Structured Assembler User’s Manual M68KMASM
M68000 Family Resident Pascal User’s Manual M68KPASC
M68000 Family Resident FORTRAN Compiler User’s Manual M68KFORTRN
VERSAdos Messages Reference Manual M68KVMSG
VERSAdos System Facilities Reference Manual M68KVSF
VERSAdos Data Management Services and Program Loader RMS68KIO
User’s Manual

M68000 Family Real-Time Multitasking Software M68KRMS68K

User’s Manual

1.7 NOTATION

The following conventions are used in the command syntax, examples, and text
in this manual:

boldface A boldface string is a Titeral such as a command or a program
string name, and is to typed just as it appears.

< > Angular brackets enclose a "syntactic variable", to be replaced
by one of a class of items it represents.

| A vertical bar separating two or more items indicates that a
choice is to be made; only one of the items separated by this
symbol should be selected.

[1 Square brackets enclose an item that is optional. The enclosed
item may occur zero or one time.

[1... Square brackets followed by periods enclose an item that is
optional/repetitive. The item may appear zero or more times.

A carriage return follows all operator entries. If the only input required is
a carriage return, it is shown as (CR).

MICROSYSTEMS

@ MOTOROLA MEMORY ALLOCATION

CHAPTER 2
MEMORY ALLOCATION

2.1 GENERAL

This chapter discusses memory allocation. For absolute load modules and
S-record modules, memory allocation performed by the Tinker is essentially the
same. Paragraph 2.2 is generally applicable to both; however, refer to
paragraph 2.3 for additional information about S-records. Paragraph 2.4
covers the Tinker’s handling of relocatable object moduTes.

2.2 WHEN CREATING A LOAD MODULE

Allocation of memory is a complex process and may, in many instances, be left
totally up to the linker. However, the user may slightly or greatly affect
the allocation of memory if the application so warrants, with SEGMENT and
START user commands (refer to paragraphs 4.18 and 4.19). Before using these
commands, the user should be familiar with the process the linker goes through
in the allocation of memory.

At the end of pass one, after all the relocatable object modules that will
create the load module have been read once, allocation of memory takes place.
Now it 1is known what sections, and their sizes, will be used to create the
output module. The segments where these sections will be placed js also
known. This 1is determined by the SEGMENT commands the user supplied; or, if
SEGMENT commands were not given, the following defaults take effect:

a. SEGO will contain sections 0 through 7, as a Read/Write segment.
b. SEGl will contain sections 8 through 14, as a Read only segment.
c. SEG2 will contain section 15, as a Read/Write segment.

The process of memory allocation begins with the allocation of absolute
sections. This consists of going through all the absolute sections
encountered in the relocatable object modules input, and reserving the memory
defined by each section.

The Tlinker then proceeds to allocate each segment. There are two basic types
of segments, and segments are allocated in order of type. Within each type,
segments are allocated in the order they were introduced to the linker. The
two types are:

Type 1 Segments with starting or starting and ending addresses specified
{via a SEGMENT command).

Type 2 Segments with no starting or ending addresses specified (via a
SEGMENT command or if defaults taken).

MICROSYSTEMS

MEMORY ALLOCATION
@ MOTOROLA

A segment allocation 1is determined by the starting address of the segment,
allocating the sections in the segment, determining the ending address of the
segment, and ensuring that all the memory between the starting and ending
addresses is reserved. If the segment is type 1, the starting address of the
segment 1is the starting address the user specified. Otherwise, the starting
address chosen for the segment depends on the value of the S option (refer to
paragraph 3.4). If the S option is off, the linker scans from lTow memory to
high memory, Tlooking for the first available block in which the segment will
fit, and uses the starting address of that block. This is the "first fit"
approach. However, if the S option is on, the linker starts the segment
immediately after the segment with the highest starting address amongst those
segments that are already allocated. If segments have not been allocated, the
segment starts at address 0.

Once the starting address of the segment 1is determined, the segment is
allocated section by section. There are two basic types of sections: those
that have been assigned where to start (via a START command) and those that
have not. The sections assigned starting addresses with START commands are
allocated first, 1in order of increasing starting address. If a list of
sections was specified 1in a START command, those sections are allocated one
right after another in the order specified, starting at the address given.
After allocating the sections that were given starting addresses, the sections
without starting addresses are allocated. These sections are allocated in the
order given in the SEGMENT command (or in the order of increasing section
number, if no SEGMENT commands were given). Space for these sections will be
Tooked for starting at the beginning of the segment the sections are in. Once
enough space is found for the first section, it is allocated. Then space for
the next section will be Tlooked for and from that point on, until all the
sections are allocated. (NOTE: This does not require that all sections
without starting addresses be allocated in one contiguous block.)

When a section is allocated, all the sections of that number encountered in
the dinputted relocatable object modules are placed contiguously (each module
on the next word boundary), in the output module. They are placed in the
order 1in which they were initially read. Furthermore, if the section has any
common sections associated with it, they are placed contiguously in the load
module immediately following, again in the order they were initially
encountered. Thus, unless the B option is on, all sections of the same
number, including common sections, are always allocated in one contiguous
block of memory.

An exception to this method of allocating sections is when the B option is
used (refer to paragraph 3.4). When the B option is on, each relocatable
section from each object module is forced to start on a page (256 byte)
boundary. Thus, all sections of the same number are not necessarily allocated
contiguously, one right after another. "Holes" are left between the end of
one section and the start of the next page. Also, those sections that have a
designated starting address via START commands, start on the first page
boundary after the address specified in the START command (unless that address
is already a page boundary).

MICROSYSTEMS

@ MOTOROLA MEMORY ALLOCATION

The ending address of the segment is determined following the allocation of
sections within a segment. If the user specified an ending address, then it
is used. Otherwise, the highest ending address of all the sections in the
segment is used.

Finally, the 1linker ensures that all memory between the starting and ending
addresses of the segment just allocated is flagged as being used.

There is a special case of allocating a segment, i.e., if sections that go in
the segment are not found in the inputted releocatable object modules. In
other words, the segment is essentially empty and one of three actions will
take place:

a. If the user specified a starting and ending address for the segment,
the segment will be allocated using those addresses.

b. If the user only specified a starting address for the segment, the
segment will be allocated and will be 256 bytes long.

c. If no starting or ending address was specified for the segment, it
will not be allocated and will not appear in the load module.

After all segments have been allocated observing the above rules, one final
action is taken to ensure that all absolute sections are entirely contained
within segments. This is done by Tlooking at each absolute section and
determining 1if it is already entirely contained within a segment. If so, the
linker proceeds to the next absolute section. If not, the linker attempts to
get the absolute section entirely within a segment by modifying either the
ending address of the segment immediately before the section in the load
module or the starting address of the segment immediately after the section.
Only those addresses not supplied by the user will be modified. In other
words, if the user supplied the starting, or starting and ending, addresses of
a segment, those addresses are never changed.

If no segments are allocated (refer to c. above), when it is time to check the
absolute sections, segment O will be designated as read/write and set up to
contain all the absolute sections. It will start at the beginning address of
the first absolute section and will be just as long as necessary to contain
all the absolute sections.

MICROSYSTEMS

(M) moToroLA

2.2.1
This

command

example
supplied by the linker.
an illustration

line

Example 1

illustrates

of the
used to

simple memory

allocation

MEMORY ALLOCATION

what the structure of the resulting load module will be.

File CONVERT.RO

Relative
Addresses

0

Module CONVERT

SECTION 0

1163 +-----------

13FF

ARRAY
(common in
section 3)

| SECTION 8

20FF 4----mmmmmnn

0

File MISC

Relative
Addresses

10

M

odule_ SUPPORT

MICROSYSTEMS

using the defaults
The example is in three parts, the first of which is

files and modules input to the Tinker.
invoke the linker, and the Tast is an illustration of

Next is the

M) moTroroLA

Module INVERT

Relative
Addresses 0 |

15 +----=------ +
0| ARRAY |

| (common in |

13FF | section 3)]|

3CD $----cc--- +

Module PRINT

Relative Fommmmm————e +
Addresses 0 |

27 4----meeme- +
0 | ARRAY |

| (common inj

13FF | section 3)|

| SECTION 11}
BDF 4+----cc-ce-- +

Invoking Command Line

=LINK

CONVERT /CONVSUBS/MISC

Eile CONVSUBS

Relative
Addresses

Relative
Addresses

11

MEMORY ALLOCATION

Module MULTIPLY

0|
27 +--------mmn +
0| ARRAY |

| (common in |
13FF | section 3)|

2A5 4---nmmmee- H

Module MOVE

0

13 4----------- +
0] ARRAY |

| (common in|

13FF | section 3)]

| SECTION 11]
10B +-------=--- +

MICROSYSTEMS

M) mororoLa

ABSOLUTE
ADDRESSES

0000

1163
1164

1229
122a

123F
1240

1267
1268

128F
1290

12a3
12a4

26A3
2624

271F
2720

27FF
2800

48FF
4900

4EC1
4BC2

528F
5290

5535
5536

5B15
SB16

5C21
5C22

8121
8122

8218

821C

82FF
8300

C2FF
C300

C33D
C33E

C3FF E

MEMORY ALLOCATION

RESULTING LOAD MODULE

INVERT

MULTIPLY

PRINT

MOVE

ARRAY

SUPPORT

CONVERT

SUPPORT

INVERT

MULTIPLY

L

P

>

)

|

SECTION 0

SECTION 3

} SECTION 6

SECTION 8

SECTION 11

SECTION 13

SECTION 14

SECTION 15

12

Y

\

These portions of
memory are in the
load module but are
initialized to all
zeros.

SBEGO (READ/WRITE)

SEG1 (READ ONLY)

SBG2 (READ/WRITE)

MICROSYSTEMS

@ MOTOROLA

2.2.2 Example 2

This example applies user commands
allocation. The first part

relocatable object modules

MEMORY ALLOCATION

files. Last is an illustration of the resulting load module.

File MAIN.RO
Module MAIN

Relative oo +
Addresses 0|

|
| .BLANK |
| (Common in |

7F | section 1)|
0 +

| SECTION 2 |

COMMI
(Common in
1FF | section 3)|

0

COMM2
(Common in
2FF | section 3

0 4----------- +

C93 4+-----mome-- +
10000 | |
{ ABSOLUTE |
1356B | SECTION |

File SUBRTS.RO
Module SPROGS

Relative S +
Addresses 0 |

.BLANK
(Common in |
FF | section 1)]|

| SECTION 3 |
3B 4o +
0
COMM1
(Common in
1EF | section 3)

COMM2
(Common in
2FF | section 3)

| SECTION 4 |

1233 4----mmemme- +
0| I

| SECTION 2 |
1FFF 4mmmmmmeee- +

13

to generate a more complex memory
illustrates the files input to the linker, the
the files, and the sections comprising the
modules. Next is a 1ist of user commands given to the Tinker to process those
Note that this
example corresponds to the first example listing given in paragraph 5.3.

MICROSYSTEMS

M) moToroLA

Eile MATH.RO

Module ADD
Relative e + Relative
Addresses 0 | | Addresses
| SECTION 5 |
211 +----------- +
Module MULT
Relative R e + Relative
Addresses 0 | | Addresses
| SECTION 5 |
40B 4----------- +
File INOUT.LB
Module TERMIO
Relative B e + Relative
Addresses 0 | | Addresses
| SECTION 4 |
3CFD +----------- +
Module PRINTIO
Relative R L + Relative
Addresses 0 | | Addresses
| SECTION 4 |
212F 4------~--=- +
User Commands
SEGMENT SEGI1(RL):0-2 0,$FBFF
SEGMENT SEGO:5,3
SEGMENT SEG2:4 64K
START 2 $A000
START 3 $20000
INPUT MAIN, SUBRTS
INPUT MATH<ADD,SUB,MULT,DIV>
LIB INOUT.LB
END
14

MEMORY ALLOCATION

Module SUB
fommmmmmm e +
0 | |
| SECTION 5 |
11 J S +
Module DIV
S EEREEEERE +
0 | I
| SECTION 5 |
AFB 4-----mmeeee +

Module DISKIO

0

€301

0

4103

MICROSYSTEMS

M) mororoLa

ABSOLUTE
ADDRESSES

MEMORY ALLOCATION

RESULTING LOAD MODULE

00000

000FB
000FC

0011B

0011C
025CB

025CC

03623
03624

03723

SPROGS

RN —

+BLANK

SPROGS

’

SECTION.S 0

SECTION 1

SECTION 2

SECTION 4

SECTIN S

SECTION 3

15

These portions of memory
are in the load module
but are initialized to
all zeros.

These portions of memory
are not in the load
module ard, therefore,
do not get loaded.

! SEGL

SEG2

r SEGO

MICROSYSTEMS

@ MOTOROLA MEMORY ALLOCATION

2.3 WHEN CREATING AN S-RECORD MODULE

When the output of the linker is an S-record format module, the linker handles
the memory allocation similar to a 1load module (refer to paragraph 2.2).
However, when the module 1is downloaded to a target system, the segment
allocation descriptors are not carried over. In the VERSAdos case, when the
downloaded S-record module is converted to an executable load module using the
utility MBLM, the segment names, locations, and Tengths can be re-specified by
the user, after referring to the printout of the load map produced by the
Tinker.

2.4 WHEN CREATING A RELOCATABLE OBJECT MODULE

When the 1linker creates a relocatable object module, memory is not actually
allocated, although the following modification/re-arrangement of the
relocatable object module takes place:

a. A1l relocatable sections of the same number are combined into one
section with that number.

A1l common sections of the same number/name are combined into one
common section, and its size is determined by the largest size input
for that section.

The absolute sections encountered in the input, however, are passed
directly to the output module. Even if two absolute sections are
contiguous with each other, they will not be combined into one larger
section, but passed on as two separate absolute sections.

b. If a reference is made to an external symbol that is defined in one of
the object modules input, that reference will be resolved and its
value put into the resulting object module. Otherwise, the code and
data in the relocatable object modules input is unchanged in the
module being created.

A1l the external symbol definitions and unresolved external symbol
references encountered in the input are grouped together in the output
module. However, if any XDEF commands are used (refer to paragraph
4.21), only those externally defined symbols in the XDEF command(s)
will be externally defined symbols in the output module.

16 MICROSYSTEMS

@ MOTOROLA INVOKING THE LINKER

CHAPTER 3
INVOKING THE LINKER

3.1 GENERAL

The Tlinker is a disk-resident program loaded into memory by VERSAdos in
response to a LINK command. This LINK command line may include certain
parameters and options. Alternatively, certain parameters and options may be
specified in user commands (refer to Chapter 4).

3.2 FILENAME FORMAT
"Filename" refers to a directory entry for a physical module on a disk or
diskette. It includes six descriptor fields (refer to the VERSAdos System
Facilities Reference Manual). One field is also called "filename", and may be
(and frequently is) used alone to specify a directory entry. Other descriptor
field combinations are also allowed.
The filename combinations acceptable to the linker are:

<filename>

<filename>.<ext>[(<prot>)]

<catalog>.<filename>.<ext>[(<prot>)]

<user#>.[<catalog>].<filename>[.<ext>[(<prot>)]]

<voln>:[<user#>].[<catalog>].<filename>[.<ext>[(<prot>)]]

3.3 COMMAND LINE FORMAT

VERSAdos will bring the linker into memory and begin its execution in response
to a LINK command. Parameter or option information given with the LINK
command Tine is saved for use by the linker. The format of the command line
is:

=LINK [<fnI>[/<fnl>]...]1[,[<fn2>]1[,<fn3>|#|#PR|#PRn]][;<options>]
where the syntactic variables are defined as:

<fnl> Input file(s). These are names of disk files (one or more), each
containing one or more relocatable object modules. As many input
files as desired may be specified on the command 1ine. Extensions,
if not given, default to .RO. These files are processed before any
files specified by INPUT commands.

17 MICROSYSTEMS

@ MOTOROLA INVOKING THE LINKER

If input files are not specified, the A option (refer to paragraph
3.4) 1is forced on to allow user commands. Files are then specified
using the INPUT command (refer to paragraph 4.11).

<fn2> Output file. The name of the disk file that will contain the output
of the linker. This file will contain a load module, a relocatable
object module, or an S-record module {depending on the options
used). If a load module or an S-record module is being created, the
filename need not be specified, because the linker assumes the name
of the first input file processed with an extension of .LO or .MX.
If a relocatable object module is being created, an output filename
that is different from the input filename(s), must be specified.
The default extension for this filename is .LO, .RO, or .MX,
depending on whether a load module, relocatable object module, or
S-record module is being produced.

<fn3> Listing file. This is the name of the disk file, with default
extension of .LL, that will contain the Tistings produced by the
linker.

If #, #PR, or #PRn is specified instead of <fn3>, the listings will
#PR be directed to the user’s console or line printer, respectively.
#PRn
If no 1listing file/device is specified, but options requesting
listings are, the Tlisting will be directed to the default output
file/device (usually the user’s console).

<options> This is one or more of the options described in paragraph 3.4.

3.4 OPTIONS

The linkage editor has two types of options: a single letter (preceded by a
minus sign if the option is to be disabled), or a letter followed by an equal
sign and a related field. When multiple options are specified, options of the
first type may be separated by a comma, or have no separation; options of the
second type must be separated from following options by commas. The options
may be ?pecified in any order; the first option specified must be preceded by
a semicolon.

A (Default: -A) Accept user commands from the command input device.
If input files are not specified in the command line, this option is
forced on.

B (Default: -B) In the Tisting produced by the assembler, each
relocatable section in a module starts at relative address zero.
However, each actual starting address (offset) is wherever the linker
locates a section within a memory segment. Therefore, to form actual
addresses for a section, this offset must be added to each relative
address in the listing.

18 MICROSYSTEMS

@ MOTOROLA INVOKING THE LINKER

To assist in the process, the LINK command line accepts a B option,
which forces each relocatable section from each module to start on a
page ($100-byte) boundary. The offset then appears as $xxxx00,
which, being a multiple of $100, makes it easier to work with and
remember.

This option, however, does not affect an absolute section, which is
always placed at the address indicated by its ORG directive.

If a START user command, following a B option, defines a starting
address that 1is not on a page boundary, the particular section or
sections will start at the first page boundary after that address.

This option may be used only if a load module or an S-record file is
being created.

NOTE

In Tinking a program that consists of many individual
sections from many modules, the B option could greatly
increase the size of the resulting load module.

The B option should be a tool that is used for
debugging purposes only. Once a stable, debugged
program is achieved, it should be re-linked without the
B option to produce a final load module.

D (Default: -D) Create a debug file. If this option is specified, a
file will be produced containing information pertinent to symbolic
debugging. It will have the same name as the first file processed
for input, with an extension of .DB. Note that this option and the R
option are mutually exclusive.

H (Default: -H) List information found in the header record of each
object module input on the 1isting file. Refer to printout format #5
in Chapter 5.

I (Default: -I) List the command line and all user commands, if any,
on the Tisting file. Refer to printout formats #2 and #4 in Chapter
5.

L=<fn>[/<fn>]...

(Default: -L) Search the specified 1library files in the order
listed, if any references are unresolved at the end of pass 1.
Process any modules that contain definitions satisfying any
unresolved references. A library is searched only once; any modules
that reference other modules within a 1ibrary file should occur
within the library file before the referenced modules.

This option must be followed by a comma unless it is the last option
in the command Tline.

19 MICROSYSTEMS

@ MOTOROLA INVOKING THE LINKER

M (Default: -M) List a map of the resulting module on the listing
file. Refer to printout format #6 in Chapter 5.

0 (Default: 0) Create an absolute binary load module. Specifying this
option combines the inputted relocatable object modules and creates
an absolute load module. If no output filename was specified in the
command line, the 1load module will have the same name as the first
file processed for input, but with an .LO extension. Note that this
option and the R and Q options are mutually exclusive.

P (Default: P or -P) Search default libraries at the end of pass 1 if
unresolved external references. There is one default Tibrary file
supplied for each Tanguage supported by VERSAdos, for example,
0.&.FORTLIB.RO or 0.&.PASCALIB.RO. The Tlibraries to be searched and
the order in which they are searched will be determined by what
language processors were used to create the object modules input and
the order in which the object modules were processed.

This option defaults to on (P) if a load module or an S-record module
is being created (0 or Q option is on). Otherwise, it defaults to
off (-P).

The L option, if specified, 1is executed first, to load any user-
written modules before default library modules.

Q (Default: -Q) Create an S-record output module. If the output
filename is not specified, it defaults to the name of the first input
file, plus the .MX extension. When Q is specified, the user commands
TASK, MONITOR, PRIORITIES, OPTIONS, ATTRIBUTES, and COMLINE may not
be used, but the IDENT command may be used to specify identification
to the SO record. Note that this option and the 0 and R options are
mutually exclusive.

R (Default: -R) Create a relocatable object module. This option
requests that the relocatable object modules input be combined to
create another relocatable object module, rather than an S-record
module or an absolute load module. All references between the
modules input will be resolved. Only those external references that
cannot be resolved among the input modules will be included in the
output module. A1l the external symbol definitions encountered in
the input modules will be included in the output module unless an
XDEF user command is specified (refer to paragraph 4.21). When the R
option is used, an output filename, different from the input
filename(s), must be specified on the command line; otherwise, an
error results. Note that this option and the D, 0, and Q options are
mutually exclusive.

S (Default: -S) When the S option is used on the LINK command 1ine,
segments without user-specified starting addresses are allocated
sequentially, on page boundaries, after the segment having a user-
specified starting address. Allocation occurs in the order segments
are defined in SEGMENT commands.

20 MICROSYSTEMS

@ MOTOROLA INVOKING THE LINKER

For example, when only one segment is given a user-specified starting
address, that segment will be allocated at that address, and all
remaining segments will be allocated immediately after it.

When more than one user-specified starting address is given, segments
without user-specified starting addresses are allocated after the
segment having the highest user-specified starting address.

If user-specified starting addresses are not specified, the S option
has no effect. The segments are allocated sequentially, starting at
memory address 0.

When -S is in effect, segments without user-specified starting
addresses are allocated sequentially in the order they are
encountered by the linker, on a "first-fit" basis.

Use this option only if a load module or an S-record module is being
created.

U (Default: -U) If any unresolved references exist at the end of pass
1, Tist the references. Allow the user to specify additional
commands to resolve the references. This option is forced off if the
command input device is not the user console.

IMPORTANT: If this option is specified, all unresolved references
must be resolved before the Tinker proceeds to pass 2.

W=<number>

(Default: W=24) Valid <number> may be 24, 28, or 32. Specify the
bit width of the addressable memory space. Some target processors
may provide for a 28-bit or 32-bit memory space (e.g., the MC68010 or
the MC68020). Use of the W=28 or W=32 option allows the user to
create an S-record output module that contains 28-bit or 32-bit
addresses. W=28 or W=32 may only be used when the Q option is on.

X (Default: -X) List the external definition directory on the listing
file. Refer to printout format #7 in Chapter 5.

Z=<number>

(Default: Z=35, which allocates 35,840 bytes) Allocate a stack and
heap segment of at least <number>Kb (1Kb = 1024). This segment is
used by the linker for storage of the symbol table. If the linker
aborts with a Pascal vruntime abort code of $1008, $1010, or $1011
(refer to VERSAdos Messages Reference Manual or M68000 Family
Resident Pascal User’s Manual), it may be possible to do the link
successfully by invoking it with a larger Z option.

21 MICROSYSTEMS

@ MOTOROLA INVOKING THE LINKER

3.5 EXAMPLES
Sample command lines:
=LINK MAIN/SUB1/SUB2/SUB3,,#PR;HMA

This command line causes the Tlinker to read for input the files MAIN.RO,
SUB1.RO, SUB2.RO, and SUB3.RO. The user will then be prompted for user
commands. The resulting load module will be named MAIN.LO. The final
listings, including those requested by the M and H options, will go to the
line printer.

=LINK VOL1:..PROGA/VOL2:..PROGA,VOL3:..PROGA.CM;L=LIB1.LB/LIB2.LB

This command Tine requests that the files VOL1:..PROGA.RO and VOL2:..PROGA.RO
be used for input. After processing these two files, if there are any
unresolved external references, the Tibraries LIB1.LB and LIB2.LB will be
searched, 1in that order, in an attempt to resolve those references. The
resulting load module will be stored on volume VOL3 under the name of
PROGA.CM. The final listings will be output on the default output device.

=LINK ,OUTPUT,#;RZ=60

This command 1line indicates that the resulting relocatable object module be
put into a file named OUTPUT.RO, and the final listings are to go to the user
console. Also, a stack/heap segment of at least 60Kb (61440 bytes) should be
used during the link to allow for a large symbol table. Since no input files
were specified 1in this command, the A option will be forced on, which causes
the user to be prompted for user commands.

=LINK
This command Tine simply starts up the linker. The user will then be prompted
for user commands. The resulting Toad module will have the same name as the

first file specified in an INPUT command, but with an extension of .LO. The
final Tistings will be printed on the default output device.

22 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

CHAPTER 4
USER COMMANDS

4.1 GENERAL

For some program applications, all the linker parameters may be entered in the
LINK command Tline. However, user commands (refer to Table 4-1) provide
alternate and additional forms of input for certain parameters and options.

TABLE 4-1. User Commands

TASK RELOCATABLE
DEFINITION INPUT OUTPUT LISTING MEMORY CONTROL
ATTRIBUTES DEFINE IDENT LIST COMLINE ABORT
MONITOR INPUT XDEF LISTM ENTRY END
OPTIONS LIBRARY LISTU PAGESIZE QuIT
PRIORITIES LISTX SEGMENT

TASK START

The Tlinker requests user commands when any the following conditions exist:
a. Input files are not specified in the command Tine.
b. The A option is on.

c. Unresolved external references exist at the end of pass 1, and the U
option is on (the user’s console must be the command input device).

The 1linker prompt, a right angle bracket (>), is output at the beginning of
the 1line and the Tlinker then waits for a response, i.e., a user command. The
user ends each command with a carriage return. The operation requested by
that command is started and, when completed, another prompt is printed. The
sequence 1is repeated until an END, QUIT, or ABORT command is entered. Then
the linker continues processing (refer to paragraph 4.8) or returns control to
VERSAdos, respectively.

The user commands format and description are given in paragraphs 4.4 through
4.21. Although the "task definition" user commands cannot be used for S-
record modules, this information can be supplied via the MBLM utility when the
downloaded S-record files are converted to load modules.

2 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

The Tlinkage editor allows arguments or parameter substitution with the
VERSAdos session control command ARG. This capability (refer to the VERSAdos
System Facilities Reference Manual) gives the user a shorthand notation and a
way to generalize chainfiles. Argument expansion will increase the length of
a user command Tline; the user should note that the maximum length of a user
command line is 132 characters.

4.2 NUMERICAL ENTRIES

A1l numerical entries in user commands, except the user number in a filename,
may be made in any of the following forms:

%<binary digits>
O<octal digits>
<decimal digits>
$<hexadecimal digits>

In addition, the letter K may follow any of the above forms. This indicates
that the preceding number should be multiplied by decimal 1024 ($400). For
example, the following numbers are all equivalent:

%101101K
@132000
45K
$B400

4.3 SYMBOL, MODULE, AND SEGMENT NAME FORMATS

The foliowing describes the 1legal forms for specifying a symbol, module,
segment, or taskname in a user command (i.e., the SEGMENT, MONITOR, TASK,
COMLINE, ENTRY, INPUT, IDENT, and XDEF commands):

a. A symbol or module name may be from one to ten characters long; a
segment name may be from one to four characters Tong.

b. The first character of a symbol or module name must be an alpha (A-Z)
or a period (.). Following characters may be an alphanumeric (A-Z,
0-9), a period (.), a dollar sign ($), or an underscore (). For a
segment or taskname, the first character may additionally be an
underscore or an ampersand (&), and a following character may
additionally be an ampersand.

2 MICROSYSTEMS

M) moToroLA USER COMMANDS

ABORT
ATTRIBUTES

4.4 ABORT
This command, written as:
ABORT

causes an immediate, orderly halt to all processing. A1l open files will be
closed, and control is returned to the operating system.

4.5 ATTRIBUTES

The ATTRIBUTES command sets up task attributes in the load module being
created. Its form is:

ATTR[IBUTES] <attributes>
where:
<attributes> is a 1list of zero or more one-character options, which may
or may not be separated by spaces.
The Tegal attributes and their meanings are:

S This dis a system task. (NOTE: The resultant load module must be
Toaded from user 0 to execute as a system task.)

D Ask for a task dump if this task is aborted.

F At load time, the system loader will assign the file from which this
task is loaded to this task’s logical unit 8.

P This task is position independent.
R This task is real-time.
No task attributes will be present in the load module if an ATTRIBUTES command

is given with no <attributes>, or no ATTRIBUTES command is specified. (Refer
to Appendix G for MVMEI2x-specific information.)

2 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

ATTRIBUTES
EXAMPLES:
ATTRIBUTES S D
ATTR
ATTR DS
ATTR §

This command cannot be used when a relocatable object module or an S-record
module is being created.

26 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

COMLINE
4.6 COMLINE
The format of the command is:
COML[INE] <name>[,<length>]|[(<seg>)]<address>[,<length>]
where:
<name> is the name of a symbol externally defined in one of the
previously processed input modules.
<length> the maximum number of command Tine characters to be stored.
When given, must be between 1 and 256, inclusive. If not
specified, the default maximum command line is 160
characters. May be specified with <name> or <address>.
<seg> is a segment name and must be enclosed in parentheses.
<address> is the logical address of start of the command line. It is

recognized -as absolute if specified alone. If specified
with segment name, it is relative to the start of that
segment. Whether relative or absolute, the corresponding
address must be even.

This command is used to specify where the command 1ine that invokes the user
program is to be stored by the operating system before control is passed to
the user program. If the <name> parameter is used, the point at which that
symbol is defined will then be the point at which the command 1ine is stored.
If a relocatable object module is being produced, this is the only way the
command line address may be specified. However, if a load module is being
created, the command Tline address may alternately be given by specifying an
address. COMLINE is not valid when an S-record module is being created.

The wuser may optionally specify the maximum number of characters from the
command Tine to be stored at the given address by specifying the <length>
parameter.

If no COMLINE command 1is specified, the first command 1ine specification
encountered 1in the relocatable input will be used to indicate where the
command Tine 1is to be stored and the maximum number of characters to be
stored. If no command line specification is encountered, the output module
will be set up to indicate that the command Tine is not to be stored anywhere.

27 MICROSYSTEMS

R ANDS
@ MOTOROLA USER COMM

COMLINE
EXAMPLES:
COMLINE (SEG3)200,80

This command indicates the command line will be stored at relative address 200
($C8) in a segment named SEG3. At the most, 80 characters will be stored.

COML COML
The command 1line is to be stored at the address where the externally defined
symbol COML is defined. The default value of 160 is the maximum length of the
command line.

COML $1000,256

This command indicates that the command line 1is to be stored at logical
address $1000. At the most, 256 characters will be stored there.

28 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

DEFINE
END

4.7 DEFINE

At link time, the DEFINE user command can be used to assign an absolute value
to a symbol specified in an XREF directive of the program. The form is:

DEF[INE] <symbol>,<value>

where:
<symbol> is any legal symbol name that is not already specified in
the program in an XDEF directive.
<value> is any numerical value between $0 and $FFFFFFFF, inclusive.

A symbol defined this way will satisfy any reference to a symbol of the same
name.

When a relocatable object module is being created, any symbols specified in a
DEFINE command are carried along in the external symbol definition table of
the new module. However, if an XDEF user command is given, only those symbols
specified in the command will be carried along in the new module.

EXAMPLES:

DEFINE PHRED,$3456FF
DEF SYM1,0177723

4.8 END
This command, written as:
END

signals the end of user commands, and must be the last command given. A
number of events occur when the END command is encountered:

A check is made to determine if there are any unresolved external references.
If there are, the Tibraries specified in the L option, if any, are searched in
an attempt to resolve the references. If unresolved references still exist
and the P option was specified, the default libraries are also searched. If
there are still unresolved references and the U option is on, the unresolved
references are printed on the console along with the name of the module in
which the Tinker first encountered the reference, and the user is prompted for
more commands to resolve the references. These commands must be terminated by
another END command.

If there are unresolved references and the U option is not on, the 1ink edit
will abort, giving the appropriate error message. If there are no unresolved
external references, or unresolved references were resolved via additional
user commands, pass 2 begins processing.

29 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

ENTRY

4.9 ENTRY
The format of the command is:

ENTRY <name>|[(<seg>)]<address>
where:

<name> is the name of a symbol externally defined in one of the

input modules previously processed.
<seg> is a segment name and must be enclosed in parentheses.
<address> is the Tlogical address of the entry point. If specified

alone, it 1is recognized as absolute. If specified with
segment name, it is relative to the start of that segment.
Whether relative or absolute, the corresponding address must
be even.

This command indicates the beginning execution address of the S-record module,
load module, or relocatable object module being produced. If the <name>
parameter is used, the point at which that symbol is defined will then be the
entry point of the 7locad module. If a relocatable object module is being
produced, this is the only way the entry point may be specified. However, if
an S-record or load module 1is being created, the entry point may also be
specified by giving an address.

If an ENTRY command is not given, the first entry point specification
encountered in the object module input will be used as the beginning execution
address of the output module. However, if no starting address is encountered
when a load module or S-record module is being created, the beginning address
of the first (lowest order) segment will be used as the entry point to the
module. Otherwise, no entry point specification will be put in a resulting
relocatable object module.

EXAMPLES:
ENTRY START

The symbol START, an XDEF defined in one of the relocatable object module
inputs, is to be the beginning execution address of the resultant load module.

ENTRY (SEGO)$1214

Relative address $1214 in a segment named SEGO is to be used as the beginning
execution address of the Toad module being created.

ENTRY 16K

The starting execution address of the resultant Toad module is to be logical
address $4000 (16Kb).

30 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

IDENT
4.10 IDENT

This command may be used only if a relocatable object module or S-record
format module 1is being created (the R or Q option is on). It is used to
specify the header identification information to go in that module. For
relocatable object modules, this information will be displayed in later
Tinkage edits that use this module and have the H option turned on. In the
S-record, the identification information is placed in the SO record.

The format of the command is:

IDENT <mname>,<ver>,<rev>[,<description>]

where:
<mname> is the module name. If a relocatable object module is being
created, this 1is the name by which the module will be
referred in later linkage edits.
<ver> and are the version and revision numbers, respectively, of the
<rev> module. Both numbers must be integers between 0 and 255,

inclusive.

<description> is a description of the module. It may consist of any
printable characters (including spaces) and may be up to 80
characters long (relocatable object modules) or 36
characters long (S-record modules).

The module name and version and revision numbers are required, whereas the
description is optional.

If an IDENT command is not specified, the following defaults will be used:

a. The module name will be the name of the output file being created.

b. The version and revision numbers will both be 1.

c. There will be no description.
EXAMPLES:

IDENT REALSUBS,1,1,REAL NUMBER PACKAGE - RWM
The module name of the relocatable object module being created is REALSUBS.
The version and revision numbers will both be one. The description is REAL
NUMBER PACKAGE - RWM,

IDENT MODULEA,2,0

The module name will be MODULEA. The version number will be 2 and the
revision will be 0. There will be no description.

3 MICROSYSTEMS

M) moToRroLA USER COMMANDS

INPUT
4.11 INPUT
The format of the command is:
IN[PUT] <fn>[<<mname>[,<mname>]...>][,<fn>[<<mname>[,<mname>]...>»]]...
where:
<fn> is a filename.
<mname> is a module name qualifying the <fn> which precedes it. The

module name or series of names following each <fn> must be
enclosed in angle brackets (£ »).

The INPUT command extends (or replaces) the input filename capability of the
command line. Only filenames can be specified on the command line; here
individual module names, as well as filenames, may be specified. (Files are
entry names in the operating system directory; modules are file subsets, whose
names were specified in assembler IDNT, Pascal PROGRAM or SUBPROGRAM, or
linker IDENT directives.)

Using INPUT commands, in addition, permits 1library searching (refer to
paragraph 4.12) to be interspersed with reading and processing of files.

The following rules apply to INPUT commands:
a. The default extension for input filenames is .RO.

b. When a file is not qualified using module names, the entire file is
processed.

c. When module names qualify a file, only those modules are processed.
The modules will be processed in the order they appear in the object
file; this may or may not be the order specified in the INPUT command.

d. Data in the output module appears in the same order it appears in the
object files requested by the command line and/or INPUT commands.

e. If all filenames, or module names, do not fit on a single INPUT
command Tine, multiple commands may be used. However, the parameter
1ist after each INPUT command must start with a filename.

f. Files 4in INPUT commands are read after any input files on the LINK
command line.

32 MICROSYSTEMS

M) moToroLA USER COMMANDS

INPUT

EXAMPLES:
INPUT VOLI1:..MATH.RL,TERMIO,VOL2:..CALC

This command causes processing to be performed on the files VOL1:..MATH.RL,
TERMIO, and VOL2:..CALC.RO, in that order.

IN FIB,VOL1:..MATH.RL<MULT,DIV>,VOL2:..CALC<MODULE1>
A1l the relocatable object modules from the file FIB.RO, along with the

modules MULT and DIV from the file VOL1:..MATH.RL, and the module MODULEl from
the file VOL2:..CALC.RO will be processed.

33 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

LIBRARY
4,12 LIBRARY
The format of the command is:
LIB[RARY] <1lib>[,<1ib>]...
where:
<lib> is the name of a Tlibrary file. If not specified, an

extension of .RO is assumed.

The Tlibrary files specified are searched in the order Tisted. Only the
modules in each file that contain definitions of up-to-now unresolved external
references will be processed. Once a definition is found for an unresolved
reference, that reference does not play any further part in the searching of
libraries. The libraries are searched as soon as the LIB input line is ended,
before processing more INPUT files.
The LIB command is normally used when:

a. The L option was not used in the command line.

b. Some variation is required in the file/library input specification.

c. Unresolved external references exist at the end of pass 1 and the U
option is on.

EXAMPLE:
LIB VOLl:..PASCLIB,VOL2:..SYSLIB.SY,MYLIB
This command will cause the Tibrary files VOL1:..PASCLIB.RO, VOL2:..SYSLIB.SY,

and MYLIB.RO to be searched, 1in that order, in an attempt to resolve the
current unresolved external references.

34 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

LIST
4.13 LIST

The LIST commands allow the user to output various information about the link
edit during the interactive session. The command has several forms:

LIST <fn>|#|#PR|#PRn
LISTM
LISTU
LISTX

where:

<fn> is a disk filename, # specifies the console, and #PR or #PRn
specifies the printer.

The LIST command directs all listings produced by the LISTM, LISTU, and LISTX
commands to the disk file or device specified by <fn>. If a listing file or
device has been specified by a previous LIST command, that file is closed and
the new file is used until a new file is specified, or the 1link edit session
is ended. If list commands are used without first specifying a listing file,
the default output file/device (usually the user’s console) will be used.

The LISTM command will produce an immediate listing of the current load map
(refer to paragraph 5.2, format #6). Listing the load map during pass 1 does
not cause any memory allocation to take place and, therefore, no absolute
addresses (except for the starting and ending addresses of absolute sections)
are printed. Instead, the load map shows what sections have been encountered,
what their sizes are, and what symbols are defined in them.

The LISTU command produces an immediate 1isting of all current unresolved
external references (refer to paragraph 5.2, format #8).

The LISTX command will produce an immediate listing of the current external
definition dictionary (refer to paragraph 5.2, format #7).

The use of the list commands does not affect those listings produced by the
specification of options in the LINK command line. 1In other words, if any
options in the command line indicate that listings are to be produced, they
will be produced (at the end of the 1ink edit process), and put in the Tisting
file specified on the command Tine. The use of 1ist commands is only Tocal to
the interactive session.

EXAMPLES:
LIST VOL1:..LISTINGS.SA

This command indicates that all output produced by subsequent 1ist commands is
to go in the file VOL1:..LISTINGS.SA.

LIST #PR
This command will cause all output produced by subsequent Tist commands to go

to the Tline printer.

3 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

MONITOR
4.14 MONITOR

The MONITOR command specifies the name and session number of a monitor task
for the task being created. Its form is:

MON[ITOR] <name> [,<session number>]
where:

<name> js a one- to four-character taskname that conforms to
the same rules as those for segment names.

<session number> is optional; if specified, it may take one of two forms:
a. A number in the range $0 to $FFFFFFFF, inclusive.

b. A single quote (*), followed by a number in the
range $0 to $FFFF, inclusive.

If the first form is used, the session number will be put in the load module
in pure binary form. This usually indicates a special system session number.
However, if the second form is specified, the session number in the load
module will be the hex value of the input session number encoded in ASCII.
For example, °’$45AF is put into the load module as $34354146. This form
usually indicates a regular user session number. :

If a session number is not specified, the session number defaults to binary
zero.

If the MONITOR command 1is not specified, both the monitor name and session
number in the Toad module default to binary zeros.

EXAMPLES:
MONITOR MON1,’$ABCD

MON HANK
MON _&$.,%10111000111011011010

This command cannot be used when a relocatable object module or an S-record
module is being created.

38 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

OPTIONS
4.15 OPTIONS

The OPTIONS command specifies the task directive options. Its form is:
OPT[IONS] <options>

where:

<options> is a Tist of zero or more one-character options, which may
or may not be separated by spaces.

The legal options and their meanings are:

M A monitor is specified.

P Propagate the monitor, use the monitor of the loading task.

If an OPTIONS command is specified with no options, or no OPTIONS command is
specified, then no directive options will be put in the load module.

EXAMPLES:

OPTIONS MP
OPT

OPT P M
OPT P

This command may not be used when a relocatable object module or an S-record
module is being created.

37 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

PAGESIZE
PRIORITIES
QUIT
4.16 PAGESIZE
The PAGESIZE <number> interactive user command enables modification of the
page size of the load module from the default value of 256 to any even value
in the range 256 <= <number> <= 32766. All segment starting addresses in the
used segment allocation descriptors are rounded up to the next multiple of
<number>. (Refer to Appendix G for MVME12x-specific information.)
4,17 PRIORITIES

The PRIORITIES command specifies the initial and limit priorities of the task
being created. Its syntax is:

PRIO[RITIES] <initial priority>,<limit priority>

where:
<initial priority> specifies the initial priority of the task.
<limit priority> specifies its limit priority.

Both priorities must be specified and both must be numbers between 0 and 255,
inclusive.

If the PRIORITIES command is not given, both priorities default to zero.

EXAMPLES:
PRIORITIES 0,255
PRIO $10,$20

This command cannot be used when a relocatable object module or an S-record
module is being created.

4.18 QUIT

QUIT signals the end of user commands. It is used exactly 1ike the END
command and produces the same results. (Refer to paragraph 4.8.)

38 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

SEGMENT
4.19 SEGMENT

The format of the command is:
SEG[MENT] <seg>[(<attr>)]:<sec#>[,<sec#>]...[<start>[,<end>]]
where:

<seg> is a segment name of up to four characters, the first of which
must be alphabetic; the remainder may be alphanumeric.

<attr> if present, specifies the attributes of the segment, and may
be any combination of the letters R, L, and G. If a letter is
not specified, the attribute is turned off. The letters mean:

R Segment is read only.
L Segment is locally shareable.
G Segment is globally shareable.

<sec#> is either a single section number or a range of section
numbers. A range of sections is specified by giving a section
number, followed by a dash and a second section number greater
than the first section number. A1l section numbers are
between 0 and 15, inclusive. Section numbers are loaded into
the segment 1in the order specified in the SEGMENT command;
however, this may be overridden by subsequent START commands.

<start> if specified, starts the segment at that logical address; if
starting addresses are not defined, segments are located in
the order they are defined by SEGMENT commands.

<end> is the ending address. If <end> is not given, the segment
will be as long as is necessary to hold all sections that are
to go in the segment.

If a load module or S-record module is being produced, the SEGMENT command is
used to define an MMU. The MMU dictates that segment sizes be a multiple of
256 bytes. To ensure this, the low order byte must be $00 when specifying a
starting address of a segment. In conjunction with this, the Tow order byte
of ending addresses must be $FF.

If SEGMENT commands are specified, they must appear before any START, INPUT,
or LIB commands. Therefore, when using SEGMENT commands, input files may not
be specified in the LINK command line.

When SEGMENT commands are specified, only those section numbers indicated in
the SEGMENT commands are loaded. If, during the processing of a relocatable
object module, a section is encountered with a number not specified in a
SEGMENT command, that section will not be processed, and a warning message
will be generated. Any symbols that are defined in unassigned sections will
not be loaded into the symbol table, and warning messages will be generated as
they are encountered.

39 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

SEGMENT

If no SEGMENT commands are specified before the first INPUT, START, or LIB
command, three segments (named SEGO, SEGl, and SEG2) will automatically be set
up to contain all sections. The sections are assigned as follows: SEGO
contains sections O through 7, SEGl contains sections 8 through 14, and SEG2
contains section 15. In addition, SEGl is assigned the read-only attribute.
The other segments will have no attributes assigned to them. Sections are
loaded into their respective segments in order of increasing section number.
The segments are assigned memory in the order in which they are encountered,
with each segment as long as necessary to hold the sections assigned to it.
(Refer to Appendix G for MVMEl2x-specific information.)

NOTE

If the LINK command 1ine is used alone, short sections
should be assigned to the lowest order section numbers
being used; this will ensure that the short sections
are allocated at the beginning of Tow memory.

EXAMPLES:
SEGMENT SEGO:1,15,6-9 $30100, $312FF

This command assigns sections 1, 15, 6, 7, 8, and 9, in that order, to a
segment named SEGO, which starts at logical address $30100 and ends at logical
address $312FF.

SEGMENT SEG2(R):12,10,2 45K

This command assigns sections 12, 10, and 2 to a segment named SEG2, which is
designated as read only. Finally, it starts at logical address $B400 (45K),
and will be as long as necessary to contain all the data assigned to it.

SEGMENT SEG3(LG):14

This command assigns one section, section 14, to a segment named SEG3, which
will be locally and globally shareable. This segment will start wherever
there is room, and will be just as long as necessary.

When a Pascal program which is to be run on a KDM, a VERSAmodule 01 with
VERSAbug, or a simulator is being linked, the SEGMENT command must be used to
prevent the program from being loaded into low memory space that is reserved
for the system. The following commands should be included:

SEG SEGO:1-7 $0000,$OFFF
SEG SEGI(R):8-14
SEG SEG2:0,15

Further explanation of these requirements are found in the M68000 Family
Resident Pascal User’s Manual.

40 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

START
4,20 START
If a load module or S-record module is being created, this command is used to

define the starting address at which a particular section or sections will be
stored. The format of the command is:

START <sec#>[,<sec#>]... <address>
where:
<sec#> is either a single section number or a range of section

numbers. A range of sections is specified by giving a
section number, followed by a dash and a second section
number greater than the first section number. A1l section
numbers are between 0 and 15, inclusive. If more than one
section number is specified, the first section will start at
the given address and the remaining sections will
immediately follow 1in the order specified. The order of
sections within a segment may be changed in this way.

<address> specifies the address at which to start putting the given
sections. It 1is either an absolute logical address or a
relative address, depending on the following conditions:

a. If no SEGMENT commands were issued or a starting
address was specified in the SEGMENT command for the
segment containing the section(s) in the START
command, <address> will be interpreted as an
absolute logical address.

b. Otherwise, if the starting address was not given in
the SEGMENT command for the segment containing the
sections 1in the START command, <address> will be
interpreted as being relative to the start of the
segment.

It is an error if all the sections specified in a particular START command do
not belong to the same segment.

EXAMPLE:

START 10-15,1 $1422E
This command indicates that sections 10, 11, 12, 13, 14, 15, and 1 are to be
stored in that order, starting at address $1422E. This address will be

interpreted as absolute or relative to the beginning of the segment that
contains sections 10-15 and 1, depending on the criteria mentioned above.

4 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

TASK
4.21 TASK

The TASK command sets up the name and session number of an applications
program which will be executed as a "task". (Refer to the M68000 Family Real-
Time Multitasking Software User’s Manual.) The command syntax is:

TASK <name>[,<session number>]
where:

<name> is a one- to four-character taskname that conforms to
the same rules as those for segment names.

<session number> is optional; if specified, it may take one of two forms:

a. A number in the range $0 to SFFFFFFFF,
inclusive.

b. A single quote ('), followed by a number in the
range $0 to $FFFF, inclusive.

If the first form is used, the session number will be put in the load module
in pure binary form. This usually indicates a special system session number.
However, if the second form is specified, the session number in the Toad
module will be the hex value of the input session number encoded in ASCII.
For example, ’$45AF is put into the load module as $34354146. This form
usually indicates a regular user session number.

If a session number is not specified, the session number defaults to binary
zero.

If the TASK command itself is not specified, the taskname in the load module
defaults to the first four characters of the name of the Toad module file
being created, and the session number is binary zeros.

EXAMPLES:
TASK &TK1,$12C4BF
TASK DIR
TASK LINK,*152

This command may not be used when a relocatable object module or S-record
module is being created.

42 MICROSYSTEMS

M) moToroLA USER COMMANDS

XDEF
4.21 XDEF
The format of the command is:
XDEF <symbol>[,<symbol>]...
where:
<symbol> is an externally defined symbol 1in a relocatable object

module that has already been processed.

If a relocatable object module is being produced (via the R option), this
command may be used to indicate which symbols are to be externally defined in
the new object module. In other words, those symbols that may be referenced
by other modules.

When the 1linker is used to create a relocatable object module, all the
externally defined symbols encountered in the input modules will be carried
along and defined as XDEFs in the new module. However, if an XDEF command is
given, only those symbols in the XDEF command will be externally defined in
the new object module. More than one XDEF command may be given, in which case
all the symbols in all the XDEF commands, and only those symbols, will be
XDEFs in the new object module.

EXAMPLE:
XDEF ENTRY1,.XDIV,MAIN

The command indicates that the symbols ENTRYI, .XDIV, and MAIN are to be
externally defined in the relocatable object module being created.

3 MICROSYSTEMS

@ MOTOROLA USER COMMANDS

THIS PAGE INTENTIONALLY LEFT BLANK.

4 MICROSYSTEMS

@ MOTOROLA LISTING FORMATS

CHAPTER 5
LISTING FORMATS

5.1 GENERAL

At the end of pass 1 when unresolved references still exist, at a fatal error,
at the end of pass 2, or immediately in response to user Tisting commands, the
Tinker will print Tistings (refer to Table 5-1). Some of the listings at the
end of pass 2, and at fatal errors, occur only as a result of options
specified in the LINK command 1ine. The listings are directed to the listing
output file/device (refer to paragraphs 3.3 and 4.13). Paragraph 5.2 contains
syntactical formats for the twelve 1istings. Paragraph 5.3 contains example
printouts.

TIME OF PRINTOUT FORMATS

OCCURRENCE #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12
IMMEDIATELY LISTM LISTX LISTU

END OF PASS 1 (+)

END OF PASS 2 + I + I H M X + + 0,0 + +

FATAL ERROR + 1+ 1 + 4 P

NOTE: + means always print out.

(+) means print out at end of pass 1 when unresolved references still
exist.

Single Tletters are command 1line options; 5-letter words are user
commands.

5.2 SYNTACTICAL FORMATS
FORMAT #1

M68000 Linkage Editor Version x.xx
Copyrighted 1985 by Motorola, Inc.

45 MICROSYSTEMS

M) moToroLA

FORMAT #2

Command Line:

LISTING FORMATS

<command line used to invoke the Tinkage editor>

FORMAT #3

Options in Effect: <list of options>

FORMAT #4
User Commands: [None]

<user command>
<user command>

<user command>

FORMAT #5

Object Module Header Information:

Module Ver Rev Language Date

<mname> <v> <r> <lang> <date>
<description>

<mname> <v> <r> <lang> <date>
<description>

<mname> <v> <r> <lang> <date>
<description>

Time
<time>

<time>

<time>

46

Creation Filename

<filename>

<filename>

<filename>

MICROSYSTEMS

@ MOTOROLA LISTING FORMATS

FORMAT #6

Load Map:

Segment <sg name>[(<attr>)]: <start adr> <end adr> <1ist of sections in sg>
Module S T Start End Externally Defined Symbols

<mname> <s> <t> <start> <end> <sname> <address> <sname> <address>
<sname> <address> <sname> <address>

<sname> <address> <sname> <address>
<mname> <s> <t> <start> <end> <sname> <address> <sname> <address>

<mname> <s> <t> <start> <end> ' <sname> <address> <sname> <address>
Segment <sg name>[(<attr>)]: <start adr> <end adr> <1list of sections in sg>
Module S T Start End Externally Defined Symbols

<mname> <s> <t> <start> <end> <sname> <address> <sname> <address>

Segment <sg name>[{<attr>)]: <start.adr> <end adr> <list of sections in sg>

Module S T Start End Externally Defined Symbols
<mname> <s> <t> <start> <end> <sname> <address> <sname> <address>
FORMAT #7

Table of Externally Defined Symbols:
Name Address Module Displ Sect Seg Library Input

<sname> <abs adr> <mname> <rel adr> <s> <sg> <1ib name> <inp name>
<sname> <abs adr> <mname> <rel adr> <s> <sg> <1ib name> <inp name>

<sname> <abs adr> <mname> <rel adr> <s> <sg> <1ib name> <inp name>

i MICROSYSTEMS

(M) moToroLA

FORMAT #8
Unresolved External References: [None]
<sname> <sname> <sname> <sname>
<sname> <sname> <sname> <sname>
<sname> <sname> <sname> <snéme>
FORMAT #9
Multiply Defined Symbols: [Nonel
<sname> <sname> <sname> <sname>
<sname> <sname> <sname> <sname>
<sname> <sname> <sname> <snéme>
FORMAT #10
Length (in bytes):
Segment Hex Decimal
<sg name> <hex length> <decimal Tength>
<sg name> <hex length> <decimal length>
<sg name> <hex 1ength; <decimal Tength>

Total Length:
FORMAT #11

<error count>

<warning count>

<hex length>

Error(s)
<error msg>
<error msg>

<error msg>
Warning(s)

<warning msg>
<warning msg>

<warning msg>

<decimal length>

48

<sSname>
<sname>

<sname>

<sname>
<sname>

<snhame>

LISTING FORMATS

<sname>
<sname>

<sname>

<snhame>
<sname>

<sname>

MICROSYSTEMS

@ MOTOROLA LISTING FORMATS

FORMAT #12

Load module: <output filename> has been created. |

Load module: <output filename> has been replaced. |

Load module has not been created due to fatal error. |

Relocatable object module: <output filename> has been created. |
Relocatable object module: <output filename> has been replaced. |
Relocatable object module has not been created due to fatal error.|
S-record module: <output filename> has been created. |

S-record module: <output filename> has been replaced. |

S-record module has not been created due to fatal error.]

5.2.1 Meaning of Symbols in Output Format

Symbol Meaning

<mname> Module name or name of common section

<> Version number

<> Revision number

<lang> Source language (for example, Assembly, FORTRAN, or Pascal)
<filename> Name of source file used to create object module
<date> Date of creation of module

<time> Time of creation of module

<description> Description of module

<attr> Attributes of segment

<start adr> Starting address of segment

<end adr> Ending address of segment

<s8> Section number

<t> Type of section:

<blank> - Standard Toad section
S - Short load section

A - Absolute section

C - Common section

<start> Starting address of section

<end> Ending address of section

<sname> Symbol name

<address> Absolute address of symbol

<abs adr> Absolute address of symbol

<rel adr> Relative address of symbol within section

<sg> Segment number

<1ib name> Name of library file in which symbol is defined
<input name> Name of regular input file in which symbol is defined

The rest of the symbols meanings are self-explanatory.

b MICROSYSTEMS

M) moToroLA LISTING FORMATS

5.3 EXAMPLE PRINTOUTS
5.3.1 Example Output #1

M68000 Linkage Editor Version x.xx
Copyrighted 1985 by Motorola, Inc.

Command Line:

LINK ;MXIHO

Options in effect: A,-B,-D,-H,I,-L,M,0,P,-Q,-R,-S,-U,-W,X
User Commands:

SEGMENT SEGI(RL):0-2 0,$FBFF
SEGMENT SEGO:5,3

SEGMENT SEG2:4 64K

START 2 $A000

START 3 $20000

INPUT MAIN,SUBRTS

INPUT MATH<ADD, SUB,MULT,DIV>
LIB INOUT.LB

ENTRY START

END

Object Module Header Information:

Module Ver Rev Language Date Time Creation Filename

MAIN 1 0 Pascal 10/24/80 01:12:56 VOL1:14.CATALOGL.FIB.SA
FIBONACCI NUMBER GENERATOR - MAIN PROGRAM - JRK

SPROGS 1 1 Fortran 10/25/80 11:01:32 VOL1:14.CATALOGZ2.SUBPROGS.SA
FIBONACCI NUMBER GENERATOR - SUBPROGRAMS - JRK

ADD 1 1 Assembly 09/27/80 09:12:34 VOL2:25.CATA.FPADD.SA
FLOATING POINT ADD - DRM

SuB 2 0 Assembly 09/27/80 09:21:18 VOL2:25.CATA.FPSUB.SA
FLOATING POINT SUBTRACT - DRM

MULT 2 2 Assembly 09/27/80 09:15:16 VOL3:56.MYCAT.FPMULT.SA
FLOATING POINT MULTIPLY - GDK

DIV 1 0 Assembly 09/27/80 09:31:02 VOL3:56.MYCAT.FPDIV.SA
FLOATING POINT DIVIDE - GDK

TERMIO 1 2 Assembly 07/01/80 14:01:52 VOL4:119.I0CAT.TERMINAL.SA
TERMINAL I/0 - DWH

DISKIO 1 2 Assembly 07/04/80 16:59:59 VOL1:7.I0CAT.DISK.SA
DISK I/0 - CRF

>0 MICROSYSTEMS

(M) moToroLA LISTING FORMATS

Load Map:
Segment SEGO: 00025500 O0045AFF 5,3

COMM1
COMM2

Module S T Start End Externally Defined Symbols
ADD 5 00025500 00025711 .XADD 00025500
SuB 5 00025712 00025B67 .XSUB 00025712
MULT 5 00025B68 00025F73 .XMULT 00025868
DIV 5 00025F74 0002646F .XDIV 00025F74
MAIN 3 00045500 0004551F
SPROGS 3 00045520 00045558
3
3

€ 0004555C 0004575B
C 0004575C 00045A5B

Segment SEGI(R,L): 00000000 OOOFBFF 0,1,2

Module S T Start End Externally Defined Symbols

MAIN 0 S 00000000 000000FB

SPROGS 0 S 000000FC 0000011B AREG 000000FC BREG 00000100
CREG 00000104 XREG 00000108
YREG 0000010C ZREG 00000110

MAIN 1 0000011C 000025CB

SPROGS 1 000025CC 00003623

.BLANK 1 C 00003624 00003723

MAIN 2 0000A000 00O0O0BOFF

SPROGS 2 0000B100 O0000DOFF SUB1 0000B100 SUB2 0000BC92
SUB3 0000C34E SUB4 0000D000

Segment SEG2: 00010000 000254FF 4

Module S T Start End Externally Defined Symbols

MAIN A 00010000 0001356B

MAIN 4 0001356C O000141FF START 0001356C

SPROGS 4 00014200 00015433

TERMIO 4 00015434 00019131 TIN 00015434 TOUT 0001732¢C

DISKIO 4 00019132 00025433 OPEN 00019214 CLOSE 00019466
READ 0001CDFE WRITE 0002433E

51

MICROSYSTEMS

@ MOTOROLA

Table of Externally Defined Symbols:

Name Address Module Displ Sect Seg
.XADD 00025500 ADD 00000000 5 SEGO
.XDIV 00025F74 DIV 00000000 5 SEGO
XMULT 00025B68 MULT 00000000 5 SEGO
.XSUB 00025712 SUB 00000000 5 SEGO
AREG 000000FC SPROGS 00000000 0 SEGI
BREG 00000100 SPROGS 00000004 O SEG!
CLOSE 00019466 DISKIO 00000334 4 SEG2
CREG 00000104 SPROGS 00000008 O SEG]
OPEN 00019214 DISKIO 000000E2 4 SEG2
READ 0001CDFE DISKIO 00003CCC 4 SEG2
START 0001356C MAIN 00000000 4 SEG2
SUB1 0000B100 SPROGS 00000000 2 SEGI
SUB2 0000BC92 SPROGS 00000B92 2 SEGI
SUB3 0000C34E SPROGS 0000124E 2 SEGI
SUB4 0000D000 SPROGS 00001F00 2 SEGI
TIN 00015434 TERMIO 00000000 4 SEG2
TOUT 0001732C TERMIO 00001EF8 4 SEG2
WRITE 0002433E DISKIO 0000B20C 4 SEG2
XREG 00000108 SPROGS 0000000C 0 SEGI
YREG 0000010C SPROGS 00000010 0 SEGI
ZREG 00000110 SPROGS 00000014 0 SEGI

Unresolved External References: None

Multiply Defined Symbols:

CLOSE ZREG START
Lengths:
Segment Hex Decimal
SEGO 00020600 132608
SEGI 0000FCO0 64512
SEG2 00015500 87296
Total Length 00045700 284416
No Errors
3 Warnings

** Warning 701 - Multiply Defined Symbol:
** Warning 701 - Multiply Defined Symbol:
** Warning 701 - Multiply Defined Symbol:

Load module :MAIN.LO has been created.

52

CLOSE
ZREG
START

LISTING FORMATS

Library

INOUT.LB

INOUT.LB
INOUT.LB

INOUT.LB
INOUT.LB
INOUT.LB

Input

MATH.RO
MATH.RO
MATH.RO
MATH.RO
SUBRTS.RO
SUBRTS.RO

SUBRTS.RO

MAIN.RO

SUBRTS.RO
SUBRTS.RO
SUBRTS.RO
SUBRTS.RO

SUBRTS.RO
SUBRTS.RO
SUBRTS.RO

MICROSYSTEMS

M) mororoLa LISTING FORMATS

5.3.2 Example Output #2

M68000 Linkage Editor Version x.xx
Copyrighted 1985 by Motorola, Inc.

Command Line:

LINK MAIN/SUBRTS,,#PR;-PO

Options in Effect: -A,-B,-D,-H,-I,-L,-M,0,-P,-Q,-R,-S,-U,-W,-X
Unresolved External References:

.XRESET .XREWRITE .XREAD .XWRITE .XSQRT . XEOF

.XEOLN XEXIT

Multiply Defined Symbols: None

1 Error
** FRROR 600 - Unresolved References

No Warnings

Load module has not been created due to fatal error.

5.3.3 Example Output #3
M68000 Linkage Editor Version x.xx
Copyrighted 1985 by Motorola, Inc.

Command Line:

LINK ,OUTPUT, #PR; IXHMR

Options in Effect: A,-B,-D,H,I,-L,M,-0,-P,-Q,R,-S,-U,-UW,X

53 MICROSYSTEMS

@ MOTOROLA LISTING FORMATS

User Commands:

IN PASS1TF2

LISTX

IN PASSITF1

LISTU

LISTX

LISTM

LISTX

XDEF SYMBOL111,SYMBOL202,SYMBOL1Al,SYMBOL343

IDENT MODULE12,1,1,THIS IS A COMBINATION OF MODULE 1 AND MODULE 2
END

Object Module Header Information:

Module Ver Rev Language Date Time Creation Filename

MODULE?2 1 10 BASIC
THIS IS MODULE NUMBER 2

MODULE1 1 1 ASSEMBLY
THIS IS MODULE NUMBER 1
Load Map:

Relocatable Sections:

Module S T Start End Externally Defined Symbols
MODULE2 0 00000000 00000029 SYMBOL201 00000000 SYMBOL202
0000001A
MODULE1 0 0000002A 00000129 SYMBOLI1O1 0000002A SYMBOL102
0000005A
COMMON1 0 C 00000000 0O00OQQOOFF
MODULE2 1 00000000 00000081 SYMBOL211 00000000
MODULE1 1 00000082 0000014D SYMBOL111l 00000082
MODULE?2 2 S 00000000 0000001B
MODULE1 2 S 0000001C 0000004F SYMBOL121 0000001C SYMBOL122
0000002E
SYMBOL123 00000040
COMMON2 2 C 00000000 0000002F
MODULE2 3 00000000 0000004F
MODULE1 5 00000000 00000111
MODULE1 6 S 00000000 00000123

MODULE2 9 S 00000000 000OQOFD
MODULE?2 13 00000000 00000203
MODULE1 13 00000204 0000023B
COMMON4 13 C 00000000 0000000F

54 MICROSYSTEMS

@ MOTOROLA LISTING FORMATS

Absolute Sections:

Module S T Start End Externally Defined Symbols
MODULE1 A 00000300 000003FF SYMBOL1Al 00000342
MODULE1 A 00001000 00001019

MODULE1 A 00002012 00003123 SYMBOL1A2 00003000
MODULE?2 A 00009FBC 000QABDF SYMBOL2A1 0000AAAA

Table of Externally Defined Symbols:

Name Address Module Displ Sect Seg Library Input

SYMBOL111 00000082 MODULE1 00000000 1 PASS1TF1.RO
SYMBOLIA1 00000342 MODULE! 00000042 PASSITF1.RO
SYMBOL202 0000001A MODULE2 0000001A 0 PASS1TF2.RO

Unresolved References

SYMBOL301 SYMBOL3151 SYMBOL3152 SYMBOL38! SYMBOL382 SYMBOL4151

Multiply Defined Symbols: None
No Errors
1 Warning

** WARNING 700 - UNDEFINED SYMBOL: SYMBOL343

Relocatable object module :OUTPUT.RO has been created.

5.3.4 Example Output #4

M68000 Linkage Editor Version x.xx
Copyrighted 1985 by Motorola, Inc.
Command Line:

LINK ,OUTFIL,OUTPUT;IAMQ

Options in Effect: A,-B,-D,-H,I,-L,M,-0,P,Q,-R,-S,-U,-W,-X
User Commands:

IN OBJECTF,OBJECT

END

5 MICROSYSTEMS

M) moToroLA

LISTING FORMATS

Externally Defined Symbols

.PLJSR
.PADDRER
.PVCHKI
.PVTRAPE
.PVIDIV
.POPTION
.PCLSCOD
.PALSTS
.PCLO
.PIFD
.PRST

. PRUT
.PACCPER
.PCALCLU
.PEDTFIL
.PPRGBUF
.PSTDFLT
.PDFLT
.PULN
.PWRI
.PWRJ
.PWRS

. PWRTBUF
.PLBLKS

.PIWPTR
.PRLN
.PRDI
.PRDJ
.PRDINT
.PSBLKS
.PGETCH
.PIRPTR
-PGETINT
. PMAKINT
. PRDBUF
. PASGNF
.PBUFSZ
.PCLOSE
.PCFLDAD
.PFLSCN
.PLDCS

FORCE

Externally

PMAIN

00000372
00000442
00000412
0000037A
000003E2
0000045A
00000540
000005C0
000005E6
00000602
000007F4
000008A6
00000926
00000948
0000097A
00000CFC
00000D16
00000D74
00000DDO
00000DE2
00000DE4
00000E78
00000EB8S
00000F1C
00000F2E
00000F42
00000F7E
00000F88
00000F92
00000FF4
00001006
00001024
00001042
0000115A
00001188
000012A6
000012CA
000012DA
0000130C
00001334
0000135E

0000138A
000013BE

.PVBUSER 0000042A
.PVTRAPD 00000412
.PVTRAPV 000003FA

. PWRH 00000DEO
.PWRV 00000E6E

.PCLOSPL 000012FA

.PLDCV 00001362

Defined Symbols

Load Map:

Segment SEG1<R>: 00000000 000016FF 8,9,10,11,12,13,14
MODULE S T Start End

INIT 8 00000000 00000379
TRAPS 8 0000037A 00000459
OPTION 8 0000045A 0000053F
cLScoD 8 00000540 000005BF
ALSTS 8 000005C0 000005ES
CLO 8 000005E6 00000601
IFD 8 00000602 000007F3
RST 8 000007F4 000008A5
RWT 8 000008A6 00000925
ACCPER 8 00000926 00000947
CALCLU 8 00000948 00000979
EDTFIL 8 0000097A 00000CFB
PRGBUF 8 00000CFC 00000D15
STOFLT 8 00000D16 00000073
DFLT 8 00000D74 00000DCF
WLN 8 00000DDO 00000DDF
WRI 8 00000DEO 00000E6D
WRSWRY 8 00000E6E 00000EB7
WRTBUF 8 00000EB8 00000F1B
LBLKS 8 00000F1C 00000F2D
IWPTR 8 0COOOF2E 00000F41
RLN 8 00000F42 00000F7D
RDI 8 00000F7E 00000F87
RDJ 8 00000F88 (00000F91
RDINT 8 00000F92 00000FF3
SBLKS 8 00000FF4 00001005
GETCH 8 00001006 00001023
IRPTR 8 00001024 00001041
GETINT 8 00001042 00001159
MAKINT 8 0000115A 00001187
RDBUF 8 000011B8 000012A5
ASGNF 8 000012A6 000012C9
BUFSZ 8 000012CA 000012D9
CLOSE 8 000012DA 0000130B
CFLDAD 8 0000130C 00001333
FLSCN 8 00001334 0000135D
LDC 8 0000135E 00001387
FINIT 8 00001388 00001389
FORCE 9 0000138A 000013BD
SORT 9 000013BE 000016BS
Segment SEG2: 00001700 000078FF 15
Module S T Start End

SORT 15 00001700 000078FF

56

PZMAIN

000078FE

MICROSYSTEMS

@ MOTOROLA

Unresolved References: None

Multiply Defined Symbols:

Lengths (in bytes):
Segment Hex
SEG1 00001700

SEG2 00006200
Total Length 00007900

No Errors
No Warnings

S-record module :OUTFIL.MX has been created.

None

Decimal
5888

25088
30976

57

LISTING FORMATS

MICROSYSTEMS

(M) moToroLA LISTING FORMATS

THIS PAGE INTENTIONALLY LEFT BLANK.

8 MICROSYSTEMS

@ MOTOROLA APPENDIX A

APPENDIX A
RELOCATABLE OBJECT MODULE FILE FORMAT

Relocatable Object Module Storage Format

The VERSAdos operating system stores relocatable object modules in sequential
files with fixed 1length records of 256 bytes. (Refer to the VERSAdos Data
Management Services and Program Loader User’s Manual for information on the
file formats supported by the operating system.)

Within each 256-byte record a variable number of variable Tength relocatable
object records are stored. Each one of these records consists of a 1-byte
byte count followed by the actual data of the relocatable record. The byte
count indicates the number of data bytes that follow in the record. The byte
count may contain any value between 0 and 255, inclusive. A byte count of
zero indicates a relocatable object record with no data bytes (a record of
this type is ignored by the 1linkage editor). Thus, the length of one
relocatable object record is limited to a total of 256 bytes; one byte for the
byte count and a maximum of 255 data bytes.

However, this does not mean that only one variable length relocatable object
record can be stored in one fixed length record. Each 256-byte fixed length
record is totally filled before continuing to the next 256-byte record. Thus,
it is possible for a variable length record to be divided between two fixed
Tength records. For example, suppose the first three relocatable object
records of a relocatable object module contained 50, 150, and 200 bytes of
data, respectively. The first two records, along with their byte counts,
would be stored within the first 202 bytes of the first 256-byte fixed-length
record. This would leave 54 bytes remaining in that record. These 54 bytes
would be filled with the byte count of the third relocatable object record,
followed by the first 53 data bytes of that record. The remaining 147 data
bytes of the third relocatable object record would then be stored at the
beginning of the second 256-byte fixed length record.

Any space not used in the last 256-byte fixed length record of a relocatable
object module file must be filled with binary zeros. This fills out the rest
of the file with relocatable object records that have zero bytes of data
(which are ignored by the Tinkage editor).

Relocatable Object Record Format

There are four basic types of relocatable object records. The record type is
indicated by the first byte of data (the byte immediately after the byte
count), in the record. This byte is the ASCII code of one of the digits
between "1" and "4", inclusive. The byte values and the types of records are:

Value of First

Data Byte Record Type

1 ($31) Identification Record

2 ($32) External Symbol Definition Record
3 ($33) Object Text Record

4 ($34) End Record

%9 MICROSYSTEMS

(M) moToROLA APPENDIX A

The formats of these four record types is discussed in detail in the following
paragraphs.

Identification Record (Type 1)

Each relocatable object module must contain an identification record as the
first record in the module. It is this record that indicates the beginning of
a relocatable object module. The identification record contains general
information about the relocatable object module, such as its name, version and
revision, what Tlanguage processor was used to create the module, what source
file was used to create the module, the time and date the module was created,
and a description of the module. The format of an identification record is:

E r T e A e et e N T Rt 3
Bytes | 1 | 1}10 (11111412 | 8] 8 (23 |3]Jo-211]
e e O I it it s R T FEE R T L e P EE T 3
Field |Size| 1 |Mname|V|R|L|Vol|User|Cat|Fname|Ext|Time|Date|Descr|
L T T T e B e A ittt St SEEE SRR T LR

Size

Field (Bytes) Contents

1 1 Record Type (ASCII $31).

Mname 10 Module name (ASCII).

v 1 Module version number (0-255).
R 1 Module revision number (0-255).
L 1 Language processor type (ASCII):

A ($41) - Assembler
B ($42) - BASIC

C ($43) - COBOL

F ($46) - FORTRAN

P ($50) - Pascal

Vol 4 Source file volume name (ASCII).

User 2 Source file user number (0-9999).

Cat 8 Source file catalog name (ASCII).
Fname 8 Source file filename (ASCII).

Ext 2 Source file extension (ASCII).

Time 3 Module creation time (hhmmss). (NOTE)
Date 3 Module creation date (mmddyy). (NOTE)

50 MICROSYSTEMS

@ MOTOROLA APPENDIX A

Descr varies Module description (ASCII). Occupies remainder of
identification record as indicated by record length.
May be 0-211 bytes (characters) Tong.

(NOTE) Time and date are stored in a BCD format with two decimal digits per
byte. For example, if the time of creation was 9:27:56, it would be
stored in the identification record as $092756.

External Symbol Definition Record (Type 2)

Each external symbol definition record contains a variable number of External
Symbol Definitions (ESDs) and defines a relocatable section, a common section,
an absolute section, an externally defined symbol, an externally referenced
symbol, or a command line address. A 1-byte value at the beginning of the ESD
indicates the type of ESD within an external symbol definition record. The
high order nibble of the byte indicates the ESD type while the Tow order
nibble of the byte indicates what section the ESD refers to. The format of an
external symbol definition record is:

R ht SET TP +----+
Bytes | 1 | 1] 1 | Var]
R L Rt T T EEE T YA & R -t
Field |Size| 2 |Typ/Sct |Data|Typ/Sct|Data] | Typ/Sct|Data]
R et ST Rt SRR T A e e +----t
Size
Field (Bytes) Constants
2 1 Record type (ASCII $32)
Typ/Sct 1 Typ (high nibble) = Type of ESD

0 - Absolute section
1 - Common section (in section Sct)

2 - Standard relocatable section
(section number Sct)

3 - Short address relocatable section
(section number Sct)

4 - External symbol definition
(in relocatable section Sct)

5 - External symbol definjtion
(in an absolute section)

6 - External symbol reference (to section Sct)

7 - External symbol reference (to any section)

6l MICROSYSTEMS

(M) moToRroOLA APPENDIX A

8 - Command line address (in section Sct)
9 - Command line address (in an absolute section)

A - Command line address (in a common section in
section Sct)

Sct (low nibble) = Relocatable section referring to
(0-15)

Data Varies Depends on Typ (see below)
Several ESD entries may be included in one ESD record. The following

descriptions outline the contents of the Data field from the general ESD
record format:

St LR T TR +
Bytes | 11 4 | 4 |
 EREE SEEE EEEE +
Absolute section |0/0|S1ze|Startl
s St St +
+----- 4------ +----4
Bytes | 1 | 10 | 4 |
Rt SR L +----t
Common section [1/Sct|Common|S1ze|
$----- R 4----+
$----- +---=4
Bytes | 1 | 4 |
$o---- +----+
Standard relocatable |2/Sct|Size]|
section -m--- +o---t
el +----+
Bytes | 1 | 4 |
$eom-m- +----t
Short address |3/Sct|Size|
relocatable section $----- +----+
o---- Rt bt +
Bytes | 1 | 10| 4 |
4----- it SRR L +
XDEF (in |4/Sct|XDEF|Address|
section Sct) R D LTt EEE T +
Rt SEETE SRR PR +
Bytes | 1 | 10 | 4 |
______________ +
XDEF (in an |5/0|XDEF|Address|
absolute section) s SEEEE PR +

62 MICROSYSTEMS

@ MOTOROLA

APPENDIX A

oo +----4
Bytes | 1 | 10 |
ERCEET T +
XREF (to |6/Sct|XREF|
section Sct) +----- +----+
o-ot----4
Bytes | 1 | 10 |
Rt R
XREF (to any [7/0] XREF|
section) R ket
+----- ommmmm s +
Bytes | 1 4 | 1 |
----- 4------ dommmoo - +
Command Tine address |8/Sct|CL AdrlCL Lngth|
(in section Sct) +o---- R LR R +
Rt SEEE oo +
Bytes | 1 | 4 | 1 |
s Lt Rt +
Command Tine address [9/0]CL AdrlCL Lngth]|
(in an absolute section) +---4------4---ooc—- +
4oo--- e e Hommmmme- +
Bytes | 1 | 10 4 | 1 |
4----- +------ 4------ Hommmmm +
Command Tine address |A/Sct|CL Com|CL AdrICL Lngth|
{in a common section) +----- oo e e +
Size
Field (Bytes) Contents

Size 4
Start 4
Common 10
XDEF 10
Address 4
XREF 10
C1 Adr 4
CL Lngth 1
CL Com 10

Length of section (in bytes).
Starting address of absolute section.
Name of common section (ASCII).

Name of XDEF symbol (ASCII).

Address of symbol within its section (in 5/0 this is
an absclute address).

Name of XREF common symbol (ASCII).

Address of command 1line within its section (in 9/0
this is an absolute address).

Maximum length of command line -1. (0-255 represents
1-256.)

Name of common section that contains the command line
(ASCII).

63 MICROSYSTEMS

M) moToroLA APPENDIX A

ESDs have a restriction that all ESDs defining externally defined and
externally referenced symbols (ESD types 4-7) must appear before any other
types of ESDs in the module.

Each section (relocatable; common, and absolute) and each external reference
in a relocatable object module is assigned an index so that they may be easily
referenced Tater in the relocatable object module. This index is an External
Symbol Definition Index (ESDID). Since a module may contain only one of each
type of relocatable section (sections 0-15), the ESDID for a relocatable
section is simply the section number plus 1. Thus, the index for section 12
js 13. However, a relocatable object module may contain multiple common
sections, absolute sections, and external references. Therefore, indices for
these types of ESDs are assigned in increasing numerical order, starting at
17, in the order the ESDs are encountered in the module. Thus, the index of
the first ESD of the type 0, 1, 6, or 7 is 17; the index of the second ESD of
those types is 18; and so on. A Pascal-like algorithm for assigning ESDIDs
when reading a relocatable object module is:

i =17,
WHILE reading ESDs DO
BEGIN
read an ESD of Typ/Sct;
CASE Typ OF
0,1,6,7: BEGIN
ESDID := i;
i =1+1
END;
2,3: ESDID := Sct + 1;

4,5,8,9,10: {no ESDID assigned);
END; (CASE}
process the ESD
END {WHILE}

where:
ESDID is the ESD index for the ESD that is currently being processed.

NOTE: ESDs that describe externally defined symbols and command Tine
addresses are not assigned indices. This is because these types of
ESDs do not need to be referred to later in the relocatable object
module.

New ESDIDs are assigned for each relocatable object module processed. Thus,
the ESDIDs in one module have no relation to the ESDIDs in another module.
Each module 4s Tlimited to a total of 255 ESDIDs (numbered 1 through 255).
Since ESDIDs 1 through 16 always refer to the relocatable sections O through
15, a relocatable object module may contain at most a total of 239 absolute
sections, common sections, and external references.

64 MICROSYSTEMS

@ MOTOROLA APPENDIX A

Object Text Record (Type 3)

Object text records define the actual code and data to be put in the resulting
Toad module (or relocatable object module). Each object text record contains
absolute code along with relocation data for computing relocated code. A bit
map is employed to indicate the data that is absolute code and the data that
is relocation data. The format of an object text record is:

e e +
Bytes |1 |14 1 |
oo ommem-- +
[Size| 3 |[Map|ESDID|Data |
R it et 4o-meomm- +
Size

Field (Bytes) Contents

3 1 Record type (ASCII $33).

Map 4 Bit map - each bit corresponds to one 16-bit word of
absolute code or one set of relocatable data:

0 - Absolute code (16 bits each - word)
1 - Relocation data (1 to 12 bits)

ESDID 1 ESD index indicating the ESD for the section in which
data from this record is to be placed.

Data varies Absolute code alternating with relocation data as per
the bit map.

ESDID is a 1-byte ESD index that indicates in what section the code generated
from this object text record is to be located. The way it works is:

A "program counter" is maintained for each section (relocatable, common,
and absolute) in the relocatable object module being processed. FEach
program counter is initialized to the starting address of the section it
represents. When an object text record is processed, the code generated
from the record is placed at the address indicated by the program counter
for the section whose ESD has the index indicated by ESDID. As code is
generated, the program counter for the section into which the code is
being placed is updated to indicate where the next code for that section
should go.

Data is a variable length field that can contain up to 32 16-bit words of
absolute code (code that does not need to be relocated), or up to 32 sets of

relocation data, or any combination thereof. The data field is interpreted
as:

The highest order (leftmost) bit in the bit map corresponds to the first
(Teftmost) element in the data field. If the highest order bit in the bit
map is a zero then the first 16-bit word in the data field is absolute
code. However, if the highest order bit in the bit map is a 1, then the

65 MICROSYSTEMS

M) moToroLA APPENDIX A

first data item in the data field is relocation data. The second highest
order bit in the bit map corresponds to the next data item in the data
record in the same way, and so on. This processing of data proceeds until
data corresponding to all 32 bits in the bit map has been processed or the
end of the object text record (as indicated by the record length) is
encountered, whichever comes first.

As previously mentioned, a zero bit in the bit map indicates one 16-bit word
of absolute code that does not need to be relocated. This word is stored in
the data field in two bytes in the exact form it is to appear in the resulting
load module (or relocatable object module).

On the other hand, a 1 bit in the bit map indicates a set of relocation data
in the data field. A set of relocation data is the data required to relocate
a single 16-bit or a single 32-bit quantity. A set of relocation data is of
variable Tlength and can occupy from 1 to 12 bytes of data in the data field.
The format of relocation data is:

R et SEEE LR fommmm--- +
Bytes |1 | 0to7 | 0to4d |
R TR m-mmmo- +
|Flag| ESDIDs | Offset |
O Rr SRR Fommmmm-- +
Size
Field (Bytes) Contents
Flag 1 Indicates type of relocation data:
bits 7-5 - Number of ESDIDs (0-7)
bit 4 - Reserved - must be 0
bit 3 - Size of relocated data

0 - 1 word (16 bits)
1 - 2 words (32 bits)

bits 2-0 - Offset field length in bytes (0-4)
ESDIDs 0 to7 ESD indices involved in relocation (1 byte each).

Offset 0 to 4 Constant offset involved in relocation.

The purpose of relocation data is to instruct the Tinkage editor how to
calculate a relocated value. For each set of relocation data, this relocated
value is initialized to zero. The relocation data is interpreted as:

Relocation data contains up to seven ESDIDs. Each ESDID in relocation
data represents a numerical value. Typically, an ESDID will be the index
of an ESD representing an external symbol reference. In that case, the
numerical value associated with the ESDID is the address in the result
module of the referenced symbol. However, an ESDID in relocation data may
also be the index of an ESD that represents a section (relocatable,
common, or absolute). Here, the numerical value associated with the ESDID

%6 MICROSYSTEMS

M) moToroLA APPENDIX A

is the starting address of the particular section in the result module.
The numerical values associated with the first, third, fifth, and seventh
ESDIDs in vrelocation data are added to the relocated value while the
values associated with the second, fourth, and sixth ESDIDs are subtracted
from the relocated value. A zero ESDID in relocation data indicates that
there is no ESDID for that position and therefore, no corresponding
numerical value to be added or subtracted.

Relocation data may also contain a constant offset that is added to the
relocated value. This offset may be from 0 to 4 bytes long and is always
interpreted as a 2’s complement value (thus the value -1 may be
represented in one byte as $FF). An offset that is 0 bytes Tong indicates
that there is no constant offset.

Once a relocated value has been calculated by adding and subtracting the
proper ESDID values and adding the constant offset, it is placed in the
resu1t1ng module in the size indicated by bit 3 of the flag byte. If this
bit is off (0) then the relocated value will be put into the result module
as a one-word 16-bit) value. If the bit is on (1), the relocated value
will be placed into the result module as a two-word (32-bit) value.

Finally, if bits 7-5 of the flag byte indicate that there are no ESDIDs in
the relocation data, then there must be an offset. Here, the offset (from
1 to 4 bytes long) is taken as a 2’s complement value to be added to the
current program counter for the section in which code from this object
text record 1is being placed. Llater code for the same section will be
placed starting at the new Tocation. This allows the relocating of
program counters backward and forward for overwriting code that has
already been generated ("fix-ups").

End Record (Type 4)

This record indicates the end of a relocatable object module and must be the
last record in every module. It also contains information about the starting
execution address of the module. The format of the end record is:

Rt SETE TR PP +
Bytes |1 {11 4 |
T LT +
[Size| 4 |Sct|Address]|
it bt SEEE TP +

Size

Field (Bytes) Contents

4 1 Record type (ASCII $34).
Sct 1 Section in which execution starts:
0-15 - Relocatable section
16 - Absolute section
17 - No starting address

Address 4 Starting execution address.

o7 MICROSYSTEMS

M) moToroLA APPENDIX A

If the value of Sct is between 0 and 15, inclusive, then Address is
interpreted as being relative to the start of the section. If the value of
Sct is 16, then Address is an absolute address. Finally, if the value of Sct
js 17, then no starting execution address has been specified for this module
and address does not appear in the end record.

68 MICROSYSTEMS

N
M mororoLa APPENDIX B

APPENDIX B
LOAD MODULE FILE FORMAT

Load Module Storage Format

The VERSAdos operating system stores load modules in contiguous files. Each
load module consists of a header block followed by a variable number of memory
image blocks. Each block is 256 bytes long.

Loader Information Block

The first 256-byte block in a load module is called the Loader Information
Block (LIB). Sometimes it is called the header block. The LIB contains all
the necessary information about the load module except the actual data. The
LIB consists of three major sections: the header, the segment allocation
descriptors, and the memory image descriptors.

Header Section

The header part of the LIB occupies the first 48 bytes of the LIB and contains
information about the task. The information is created when the load module
is loaded into memory by the VERSAdos loader. The format is:

R e R et e e et ST T L o nupppaa—s
|Task | |
Taskname Task Session [Opts |Monitor Name |
L e R Attt e e Tateteh T L TEE SR U pupa

|| I I
Monitor Session|IPR|LPR[Attrs |Entry Point |
SRRt s SEEL CEES SRRt SR ED T e e P e T Y A 213
Command Line | |
Address CLL|Reserved
L e e e S ekt AEL R RS LR e e e A 2

o8 MICROSYSTEMS

M) moToroLA

APPENDIX B

Size

Field (Bytes) Offset Contents

Taskname 4 $0 Name of task created when this module is
loaded (ASCII).

Task Session 4 $4 Session number of task created when this
module is loaded.

Task Opts 2 $8 Task options. Indicate desired options on
bits.

Bit values:

15 - Specifies monitor task
14 - Propagate monitor

13-0 - Not used (reserved)

Monitor Name 4 $A Monitor taskname of this task (ASCII).

Monitor Session 4 $E Session number of monitor task of this task.

IPR 1 $12 Initial priority of this task (0-255).

LPR 1 $13 Limit priority of this task (0-255).

Task Attrs 2 $14 Task attributes. Indicate desired attributes
on bits.

Bit values:
15 - This is a system task
14-13 - Not used (reserved)
12 - Dump task if aborted
11 - This task is position independent
10 - Assign the file from which this task
is Joaded to logical unit 8
9-8 - Not used (reserved)
7 - This task is real-time
6-0 - Not used (reserved)

Entry Point 4 $16 Beginning execution address of task.

Command Line 4 $1A Address where command line is to be stored

Address when loaded ($FFFFFFFF indicates don’t store
command line).

CLL 1 $1E Command line length. Maximum number of
characters; 1 to move to command line
address.

Reserved 17 $1F Not used (reserved).

70 MICROSYSTEMS

M) moToroLA APPENDIX B

Segment Allocation Descriptors

Immediately following the header section of the LIB are the Segment Allocation
Descriptors (SADs). There are eight SADs and each one occupies 16 bytes.
This makes for a total of 128 bytes. The SADs occupy the 49th ($30) through
176th ($AF) bytes 1in the LIB. Each SAD describes a Memory Management Unit
(MMU) segment that is set up when the module is loaded. Currently, a task may
have a maximum of four MMU segments allocated to it. However, the LIB allows
for eight SADs for future expansion. The format of the SADs is:

R e ik bt SEE TS T NS S T e SRt g S IS
|Rsvd |Attrs|Seg Name |Start Adr |Seg Length | 1
e e Bt e e s T T

+-—+——+--+——+—-+--+——+——+:—+-—+——+——+--+—-+——+——+
|Rsvd |Attrs|Seg Name |[Start Adr |Seg Length | 8
e e it R R e R s it bt Dbk b SEr S

Size
Field (Bytes) Contents
Rsvd 2 Not used (reserved).
Attrs 2 Segment attributes. Indicate desired attributes
on bits. Bit values:
15 - Segment is to be a116cated
14 - Segment is read only
13 - Segment is Tocally shareable
12 - Segment is globally shareable
11-0 - Not used (reserved)
Seg Name 4 Segment name (ASCII).
Start Adr 4 Logical starting address of segment.
Seg Length 4 Segment length (in bytes).

When the module is Toaded, only those SADs that have bit 15 of the segment
attributes field on are used to allocate segments. SADs with bit 15 of the
segment attributes field off are ignored. Also, all the SADs with bit 15 on
must be first in the 1ist of SADs. In other words, the first SAD encountered
with bit 15 of the segment attributes field off flags the end of the segments
that must be allocated for this module. Space is always allocated for a full
eight SADs in the LIB no matter how many segments are actually allocated for a
given module.

71 MICROSYSTEMS

M) mororoLA APPENDIX B

Memory Image Descriptors

Immediately after the segment allocation descriptors in the Toader information
block are the Memory Image Descriptors (MIDs). There are 20 MIDs in a LIB and
each MID occupies 4 bytes, which makes for a total of 80 bytes. The MIDs
occupy the 177th ($B1) through 256th ($100) bytes of the LIB. Each MID
defines a logical address space in memory into which data in the load module
is to be located. The format of the MIDs is:

s TEEEE PR TR
|Start Adr|End Adr |
D e e St &

gy
[Start Adr|End Adr |
Rl SETEE P TP

Length

Field (Bytes) Contents

Start Adr 2 16 most significant bits of Tlogical starting
address of memory image (low order 8 bits assumed
= $00).

End Adr 2 16 most significant bits of logical ending
address of memory image (low order 8 bits assumed
= $FF).

For each MID, there is a contiguous block of data in the memory image blocks
of the Toad module that corresponds to the address space defined by the MID.
The data corresponding to the MIDs appears in the Toad module in the order in
which the MIDs appear. In other words, the data corresponding to the first
MID is first in the load module, with the data corresponding to the second MID
immediately following, and so on. Processing is done on all twenty of the
MIDs or until one is encountered with a starting address of $000000 and an
ending address of $FFFFFF, whichever occurs first.

Memory Image Blocks

Immediately following the LIB in a 1load module are a variable number of
contiguous memory image blocks. Each memory image block contains 256 bytes of
code/data that is to be loaded into memory, without alteration, when the task
is loaded. The number of memory image blocks in a load module depends on the
number of MIDs in the LIB and the address spaces defined by them. MIDs define
memory images in multiples of pages (256 bytes). Therefore, all the data in
any given memory image block belongs to one and only one MID.

72 MICROSYSTEMS

@ MOTOROLA APPENDIX B

NOTE: When generating a file that is to be booted directly from the firmware
monitor and not invoked by VERSAdos, the following rules are applied:

a. The program must fit into one segment, e.g., SEG SEGO:0-15 $0.

b. The program should start from address zero with the first
longword being the beginning stack pointer and the second
Tongword being the address where execution is to begin.

c. The entry point of the program should be address 0, the address
of the beginning stack pointer mentioned above.

& MICROSYSTEMS

M) moToroLA APPENDIX B

THIS PAGE INTENTIONALLY LEFT BLANK.

7 MICROSYSTEMS

M) mororoLA APPENDIX C

APPENDIX C
S-RECORD FILE FORMAT

An S-record file consists of a sequence of specially formatted ASCII character
strings. Several fields within these records have groups of characters that
must be interpreted as hexadecimal values of one to four bytes in length. An
S-record will be less than or equal to 70 bytes in length. Since each S-
record requires 10 to 14 bytes in fixed overhead for the type, byte count,
address and checksum fields, the variable length data field may be allocated
up to 60 bytes. This translates to 60 characters or 30 character pairs or
bytes of data per data record from the user viewpoint.

The S-record file output by the linker is not in any particular order so the
order of S-records within a file is of no significance.

The general format of an S-record is:
L e e it b Al R R ey A A R hrre

| Type | Count | Address | Data | Cksum |
R i et L e A e it B A bt ST e S Supry

Size
Field (Bytes) Contents

Type 2 ASCII bytes, whose associated characters describe
the type of record (SO, S1, S2, S3, S7, S8, or S9).

Count 2 ASCIT bytes whose associated characters, when
paired and interpreted as a byte value, display the
count of the vremaining character pairs in the
record.

Address 4-8 ASCIT bytes whose associated characters, when
paired and interpreted as a two to four byte value,
display the address where the data field is to be
loaded into memory.

Data 0-60 ASCIT bytes whose associated characters, when
paired and interpreted as byte values, represent
memory loadable data or descriptive information.

Cksum 2 (Checksum) ASCII bytes whose associated characters,
when paired and interpreted as a byte value,
display the Teast significant byte of the one’s
complement of the sum - of the byte values
represented by the pairs of ASCII characters making
up the count, the address, and the data fields.

7 MICROSYSTEMS

C

(M) moToroLA APPENDIX ¢

The "S0" Record

The type of record field is "SO" ($5330). The address field is unused and
filled with zeros ($30303030). The user supplies the header information in
the data field with the interactive user command IDENT. The subfields are:

Size
Subfield (Bytes) Contents
mname 20 module name
ver 2 version number
rev 2 revision number
description 0-36 text comment

Each of the subfields is composed of ASCII bytes whose associated characters,
when paired, represent one byte hexadecimal values for the version and
revision numbers, or the hexadecimal values of the ASCII characters comprising
the module name and description specified with the IDENT command.

If the IDENT command is not used, the filename portion of the output file the
linker is creating is used as the module name; the version and revision
numbers are 1; and there is no description.

The "S1" Record

The type of record field is "S1" ($5331). The address field is interpreted as
a 2-byte address. The data field is composed of memory loadable data.

The "S2" Record

The type of record field is "S2" ($5332). The address field is interpreted as

a 3-byte address. The data field is composed of memory loadable data.

The "S3" Record

The type of record field is "S3" ($5333). The address field is interpreted as
a 4-byte address. The data field is composed of memory loadable data.

The "S7", "S8", and "S3" Records

The type of vrecord field is "S7", "S8", and "S9" ($5337, $5338, and $5339),
respectively. The address field contains the starting execution address
specified by the user with the interactive user command ENTRY. The first
entry point encountered in the object module’s input is used, if an ENTRY
command is not specified. If no starting address is encountered, the

76 MICROSYSTEMS

@ MOTOROLA APPENDIX C

beginning address of the first segment is used. If none of these methods is
used to specify the starting address, this field is set to zeros. The address
field of the "S7", "S8", and "S9" records is four, three, and two bytes,
respectively. There is no data field.

n MICROSYSTEMS

M) moToRoLA APPENDIX C

THIS PAGE INTENTIONALLY LEFT BLANK.

78 MICROSYSTEMS

M) moToroLA APPENDIX D

APPENDIX D
DEBUG FILE FORMAT

The format of debug files is similar to that of relocatable object module
files in that they are stored in sequential files with fixed length records of
256 bytes. Records not completely filled with information are padded with $FF
to fill 256 bytes.

Debug File Contents

A debug file contains information taken from three sources: the relocatable
object modules used as input to the linker, their associated .RS files (if
they exist), and the 1load module information block. This information is
organized into a .DB header record and one or more additional records per
relocatable object module included in the 1ink. The module information is
organized into a Module Header Record, zero or more Module Symbol Records, and
zero or more Module Index Records per module.

DB Header Record

SIZE

FIELD (BYTES) CONTENTS

version number 4 $00000001

filename 8 First eight characters of the first relocatable
object module included in the Tink.

modules 2 The count of the relocatable object modules
included in the link.

filler 2 Two bytes of $FF.

seg0 name 4 Up to eight segment names, taken from the load

. module information block.

éeg7 name 4

& MICROSYSTEMS

@ MOTOROLA APPENDIX D

Module Header Record

SIZE
FIELD (BYTES) CONTENTS
filler 1 One byte of $00.
A 1 The ASCII character "A".
name 8 The first eight characters of the relocatable

object module name.
symbols 2 The count of the symbols associated with the
module, from the .RS file.

filler 2 Two bytes of $00.

next rec 2 The record number associated with the module
header record of the next module; this field
will contain zeros 1in the last module header
record.

secO seg# 1 The number of the segment where the section
resides.

secO addr 3 The logical address where the section resides.

secl6 seg# 1

seclé addr 3

Module Symbol Records

Each of these records contains information associated with up to 16 symbols.
This information is composed of the following fields:

SIZE

FIELD (BYTES) CONTENTS
name 8 The first eight characters of the symbol name.
length 2 A byte of $00 followed by a byte of $04.
attr 1 An attribute of the symbol:

C - Named common

E - EQU symbol

L - Label symbol

S - SET symbol
section 1 The section where the symbol was defined.
value 4 An address or value associated with the symbol.

Module Index Records

The module symbol records contain the first four characters of up to 64 symbol
names. These records are used as indices into the module symbol records.

80 MICROSYSTEMS

M) moToroLA APPENDIX E

APPENDIX E
EXAMPLES

The following are examples of the various types of files created by the
Tinkage editor. First are the assembly language sources of three separate
relocatable object modules. Along with each source is a dump of the
relocatable object module that was created when the source was assembled.
Next 1is the listing created by the linkage editor when the three modules were
linked. Following this 1is a dump of the load module created by the Tink.
Next is a dump of the debug file that was also created by the link. A second
linkage editor 1listing shows the creation of an S-record module; it is
followed by a Tisting of an S-record module.

81 MICROSYSTEMS

(M) moToROLA APPENDIX E

Source of First Relocatable Object Module

MODULE1 IDNT 1,0 File format example module one
*

XREF LABEL3 XREF to anywhere
XDEF LABEL1 XDEF in relocatable section
XDEF LABEL2 XDEF in absolute section
*
SECTION.S 1 Short address section
DC.B *Start of section one in module one’
LABEL1 DS.B 100 Will cause relocation of PC
DC.B ’End of section one in module one’
*
COMMON1 SECTION 2 Common section
DC.B ’Common section one in module one’
*
ORG $2000 Absolute section
LABEL2 DC.B ’Absolute section in module one’
MOVE.W LABEL3,DO Will need relocation data
MOVE.B LABEL1,DO Will need relocation data
*
SECTION 3 Regular section
DC.B ’Section three in module one’
MOVE.W LABEL1,DO Will need relocation data
COMLINE 80 Command 1ine in relocatable section
*
END LABEL2 Start address in absolute section
82

MICROSYSTEMS

M) moToroLa APPENDIX E

Dump_of First Relocatable Object Module

SN=$0 0
00 4A 31 4D 4F 44 55 4C 45 31 20 20 20 01 00 41 46 JIMODULE1 ..AF
10 49 58 20 00 01 45 58 41 4D 50 4C 45 20 4D 4F 44 IX ..EXAMPLE MOD
20 55 4C 45 31 20 53 41 16 08 03 05 11 81 46 69 6C ULET SA...... Fil
30 65 20 66 6F 72 6D 61 74 20 65 78 61 6D 70 6C 65 e format example
40 20 6D 6F 64 75 6C 65 20 6F 6E 65 52 32 41 4C 41 module oneRZ2ALA

50 42 45 4C 31 20 20 20 20 00 00 00 22 50 4C 41 42 BEL1 ..."PLAB
60 45 4C 32 20 20 20 20 00 00 20 00 70 4C 41 42 45 EL2 .. .pLABE
70 4C 33 20 20 20 20 31 00 00 00 A6 23 00 00 00 70 L3 L....#...p
80 00 00 00 00 28 00 00 20 00 12 43 4F 4D 4D 4F 4E vooo(.. ..COMMON
90 31 20 20 20 00 00 00 20 83 00 00 00 20 4F 46 33 | OF3
A0 00 00 40 00 02 53 74 61 72 74 20 6F 66 20 73 65 ..@..Start of se

BO 63 74 69 6F 6E 20 6F 6E 65 20 69 6E 20 6D 6F 64 ction one in mod
co 75 6C 65 20 6F 6E 65 01 64 45 6E 64 20 6F 66 20 ule one.dEnd of
DO 73 65 63 74 69 6F 6E 20 6F 6E 65 20 69 6E 20 6D section one inm
EO 6F 64 75 6C 65 OA 33 00 00 00 00 02 20 6F 6E 65 odule.3..... one
FO 26 33 00 00 00 00 13 43 6F 6D 6D 6F 6E 20 73 65 &3..... Common se

SN=§1 1
00 63 74 69 6F 6E 20 6F 6E 65 20 69 6E 20 6D 6F 64 ction one in mod
10 75 6C 65 20 6F 6E 65 2D 33 00 00 A0 00 12 41 62 ule one-3..... Ab
20 73 6F 6C 75 74 65 20 73 65 63 74 69 6F 6E 20 69 solute section i
30 6F 20 6D 6F 64 75 6C 65 20 6F 6E 65 30 39 28 11 n module one09(.
40 10 38 21 02 22 29 33 00 01 80 00 04 53 65 63 74 .81.M)3..... Sect
50 69 6F 6E 20 74 68 72 65 65 20 69 6E 20 6D 6F 64 ion three in mod
60 75 6C 65 20 6F 6E 65 00 30 38 21 02 22 01 50 06 ule one.08!.".P.
70 34 10 00 00 20 00 00 00 00 00 00 00 00 00 00 00 dooo il
80 00 00 00 00 00 00 00 0O GO0 00 00 00 00 00 00 00
g0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
A0 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00
BO 00 00 00 00 00 00 00 00 00 00 OC 00 00 00 00 00
Co 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
EO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Fo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

83 MICROSYSTEMS

@ MOTOROLA APPENDIX E

Source of Second Relocatable Object Module

MODULE2 IDNT 1,0 File format example module two
*

XREF.S 1:LABEL1 XREF to particular section
*
SECTION.S 1 Short address section
MOVE.W LABEL1,DO Will need relocation data
START DC.B ’Section one in module two’
*
ORG $2110 Absolute section
DC.B ’Absolute section in module two’
COMLINE 160 Command 1ine in absolute section
MOVE.W LABEL1,D0O Will need relocation data
*
COMMON1 SECTION 2 Common section
DS.B 200
*
COMMON2 SECTION 5 Common Section

DC.B ’Common section two in module two’
*

END START Start address in relocatable section

84 MICROSYSTEMS

M) mororoLA APPENDIX E

Dump of Second Relocatable Object Module

SN=$0 0
00 4A 31 4D 4F 44 55 4C 45 32 20 20 20 01 00 41 46 JIMODULE2 ..AF
10 49 58 20 00 01 45 58 41 4D 50 4C 45 20 4D 4F 44 IX ..EXAMPLE MOD
20 55 4C 45 32 20 53 41 08 36 39 05 12 81 46 69 6C ULE2 SA.69...Fil
30 65 20 66 6F 72 6D 61 74 20 65 78 61 6D 70 6C 65 e format example
40 20 6D 6F 64 75 6C 65 20 74 77 6F 3E 32 61 4C 41 module two>2alA
50 42 45 4C 31 20 20 20 20 31 00 00 00 1E 00 00 0O BEL1 1.......

60 00 C2 00 00 21 10 12 43 4F 4D 4D 4F 4E 31 20 20 «...1..COMMON1
70 20 00 00 00 C8 15 43 4F 4D 4D 4F 4E 32 20 20 20 COMMON2
80 00 00 00 20 90 00 00 21 2E 9F 24 33 40 00 00 00 1..$30...

90 02 30 38 20 11 53 65 63 74 69 6F 6E 20 6F 6F 65 .08 .Section one
A0 20 69 6E 20 6D 6F 64 75 6C 65 20 74 77 6F 00 2B in module two.+
BO 33 00 01 40 00 12 41 62 73 6F 6C 75 74 65 20 73 3..0..Absolute s
co 65 63 74 69 6F 6E 20 69 6E 20 6D 6F 64 75 6C 65 ection in module
DO 20 74 77 6F 02 00 A0 30 38 20 11 09 33 80 00 00 two...08 ..3...
Eo 00 13 02 00 C8 26 33 00 00 00 00 14 43 6F 6D 6D &3..... Comm
Fo 6F 6E 20 73 65 63 74 69 6F 6E 20 74 77 6F 20 69 on section two i

SN=$1 1
00 6E 20 6D 6F 64 75 6C 65 20 74 77 6F 06 34 01 00 n module two.4..
10 00 00 04 00 00 00 00 00 00 00 00 00 00 00 00 00
20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
40 00 00 G0 00 00 00 00 00 00 00 00 00 00 00 00 00
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
BO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Co 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00
Do 00 00 00 00 00 00 00 00O 00 00 00 00 00 00 00 00
E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Fo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

8 MICROSYSTEMS

(M) moToroLA

Source of Third Relocatable Object Module

MODULE3
%*

*

COMMON2

*

COMMON1

*

LABEL3
*

IDNT 1,0 File format example module three

XREF LABEL2 XREF to any section
XDEF LABEL3 XDEF in relocatable section
SECTION 5 Common section
COMLINE 10 Command 1ine in common section
SECTION 2 Common section
DC.B *Common section two in module three’
SECTION.S 1 Short address section
DC.B ’Section one in module three’
SECTION 5 Reqular section
DC.B ’Section five in module three’
MOVE.L LABEL2,DO Will need relocation data
END
86

APPENDIX E

MICROSYSTEMS

@ MOTOROLA APPENDIX E

Dump_of Third Relocatable Object Module

SN=$0 0
4D 31 4D 4F 44 55 4C 45 33 20 20 20 01 00 41 46 MIMODULE3 ..AF
10 49 58 20 00 01 45 58 41 4D 50 4C 45 20 4D 4F 44 IX ..EXAMPLE MOD
20 55 4C 45 33 20 53 41 08 32 22 05 12 81 46 69 6C ULE3 SA.2"...Fil
30 65 20 66 6F 72 6D 61 74 20 65 78 61 6D 70 6C 65 e format example
40 20 6D 6F 64 75 6C 65 20 74 68 72 65 65 27 53 32 module three’S2
50 70 4C 41 42 45 4C 32 20 20 20 20 45 4C 41 42 45 pLABEL2 ELABE

60 4C 33 20 20 20 20 00 00O 00 1C 31 00 00 00 1C 25 L3 oG lel%
70 00 00 00 22 15 43 4F 4D 4D 4F 4E 32 20 20 20 00 ...".COMMON2
80 00 00 OA 12 43 4F 4D 4D 4F 4E 31 20 20 20 00 00COMMON1
90 00 22 A5 43 4F 4D 4D 4F 4E 32 20 20 20 00 00 00 J".COMMONZ ...
A0 00 09 08 33 80 00 00 00 12 01 OA 28 33 00 00 00 B (3...
BO 00 13 43 6F 6D 6D 6F 6E 20 73 65 63 74 69 6F 6E ..Common section

co 20 74 77 6F 20 69 6E 20 6D 6F 64 75 6C 65 20 74 two in module t
Do 68 72 65 65 22 33 00 00 00 00 02 53 65 63 74 69 hree"3..... Secti
EC 6F 6E 20 6F 6E 65 20 69 6E 20 6D 6F 64 75 6C 65 on one in module
FO 20 74 68 72 65 65 00 26 33 00 01 00 00 06 53 65 three.83..... Se

SN=$1 1
00 63 74 69 6F 6E 20 66 69 76 65 20 69 6E 20 6D 6F ction five in mo
10 64 75 6C 65 20 74 68 72 65 65 20 39 28 11 02 34 dule three 9(..4
20 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90 00 00 00 00 00 00 00 00 00 00 00 00 00 G0 00 00
AQ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
BO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Co 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
EO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

8 MICROSYSTEMS

@ MOTOROLA APPENDIX E

Linkage Editor Listing

Command Line:

LINK ,EXAMPLE.LOADMOD.LO, EXAMPLE.LINKMAP.LL ; IXHMD

Options in Effect: A,-B,D,H,I,-L,M,0,P,-Q,-R,-S,-U,-W,X

User Commands:

SEG SEGI(RLG):1-4

SEG SEG2:5

SEG SEG3(R):14 $2000

IN EXAMPLE.MODULE1.RO, EXAMPLE.MODULE2. RO, EXAMPLE . MODULE3 . RO
TASK TEST ’$1234

MONITOR MON $1234

PRIORITIES 10,100

OPTIONS M

ATTRIBUTES SD

END

Object Module Header Information:

Module Ver Rev Language Date Time Creation Filename

MODULE1 1 0 Assembly 05/11/81 16:08:03 FIX:1.EXAMPLE.MODULEL.SA
File format example module one

MODULE?2 1 0 Assembly 05/12/81 08:36:39 FIX:1.EXAMPLE.MODULE2.SA
File format example module two

MODULE3 1 0 Assembly 05/12/81 08:32:22 FIX:1.EXAMPLE.MODULE3.SA
File format example module three’

Load Map:

Segment SEG1(R,L,G): 00000000 000002FF 1,2,3,4
S

Module T Start End Externally Defined Symbols
MODULE1 1 S 00000000 O000000A5 LABEL1 00000022
MODULE2 1 S 000000A6 000000C3

MODULE3 1 S 000000C4 000000DF

COMMON1 2 C O0O000O0OEC 000001A7

MODULE1 3 000001A8 00000217

88 MICROSYSTEMS

M mororoLa APPENDIX E

Segment SEG2: 00000300 000003FF 5

Module S T Start End Externally Defined Symbols
MODULE3 5 00000300 00000321 LABEL3 0000031C
COMMON2 5 C 00000322 00000341

Segment SEG3(R): 00002000 000021FF 14

Module S T Start End Externally Defined Symbols
MODULE1 A 00002000 00002027 LABEL?2 00002000
MODULE?2 A 00002110 000021D1

Table of Externally Defined Symbols:

Name Address Module Displ Sect Seg Library Input

LABEL1 00000022 MODULE1 00000022 1 SEGI MODULE1 .RO
LABEL2 00002000 MODULE1 SEG3 MODULE1 .RO
LABEL3 0000031C MODULE3 0000001C 5 SEG2 MODULE3 .RO

Unresolved References: None

Multiply Defined Symbols: None

Lengths (in bytes):

Segment Hex Decimal
SEG1 00000300 768
SEG2 00000100 256
SEG3 00000200 512
Total Length 00000600 1536
No Errors

No Warnings

Load module :EXAMPLE.LOADMOD.LO has been created.

8 MICROSYSTEMS

M) moToroLA APPENDIX E

Dump of Load Module

SN=$0 0
00 54 45 53 54 31 32 33 34 80 00 4D 4F 4E 20 00 00 TEST1234..MON .
10 12 34 OA 64 90 00 00 00 20 00 00 00 01 C8 4F 00 A.do... .0,
20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OC c......
30 00 00 FO 00 53 45 47 31 00 00 00 00 00 00 03 00SEGLL ...l
40 00 00 80 00 53 45 47 32 00 00 03 00 00 00 01 0O .. SEG2. ..l
50 00 00 CO 00 53 45 47 33 00 00 20 00 00 00 02 00SEG3..

60 00 00 00 00 00 00 00 00 00 00 00 00 FF FF FF FF covonnn
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90 00 00 00 00 00 GO 00 00 00 00 00 00 00 00 00 00
A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
BO 00 00 00 02 00 03 00 03 00 20 00 21 00 00 FF FF
co 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO
Fo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

SN=$1 1

00 53 74 61 72 74 20 6F 66 20 73 65 63 74 69 6F 6E Start of section
10 20 6F 6E 65 20 69 6E 20 6D 6F 64 75 6C 65 20 6F one in module o
20 6E 65 00 00 00 00 00 00 00 00 00 00 00 00 00 0O 1]
30 00 00 00 00 00 0C 00 00 00 00 00 00 00 00 GO 00 c.ocnnnn
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Q0
80 00 00 00 00 00 00 45 6E 64 20 6F 66 20 73 65 63 End of sec
90 74 69 6F 6E 20 6F 6E 65 20 69 6E 20 6D 6F 64 75 tion one in modu
AO 6C 65 20 6F 6E 65 30 38 00 22 53 65 63 74 69 6F le one08."Sectio
BO 6E 20 6F 6E 65 20 69 6E 20 6D 6F 64 75 6C 65 20 n one in module

co 74 77 6F 00 53 65 63 74 69 6F 6E 20 6F 6E 65 20 two.Section one

DO 69 6E 20 6D 6F 64 75 6C 65 20 74 68 72 65 65 00 in module three.
EO 43 6F 6D 6D 6F 6E 20 73 65 63 74 69 6F 6E 20 74 Common section t
FO 77 6F 20 69 6E 20 6D 6F 64 75 6C 65 20 74 68 72 wo in module thr

SN=$2 2
00 65 65 00 00 00 00 00 00 00 00 00 00 00 00 00 00 BB it
10 00 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00
20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
30 00 00 G0 00 0C 00 00 0G 00 00 00 00 00 00 00 00 c.cene
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ennn
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70 00 00 00 00 OC 00 00 00 00 00 00 00 00 00 00 00
80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Q0 00 vnn
A0 00 00 00 00 00 00 00 00 53 65 63 74 69 6F 6E 20 Section
BO 74 68 72 65 65 20 69 6E 20 6D 6F 64 75 6C 65 20 three in module
co 6F 6E 65 00 30 38 00 22 00 00 00 00 00 00 00 00 one.08."........
DO 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00
E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0CG 00
Fo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 c.even

%0 MICROSYSTEMS

M) moTroroLa APPENDIX E

SN=$3 3
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
30 00 00 00 00 00 00 00 OG 00 00 00 00 00 00 00 00
A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Co 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Do 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E0 00 00 00 00 00 00 00 0G 00 00 00 00 00 00 00 00
FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

SN=$4 4

00 53 65 63 74 69 6F 6E 20 66 69 76 65 20 69 6E 20 Section five in

10 6D 6F 64 75 6C 65 20 74 68 72 65 65 20 39 00 00 module three 9..
20 20 00 43 6F 6D 6D 6F 6E 20 73 65 63 74 69 6F 6E .Common section
30 20 74 77 6F 20 69 6E 20 6D 6F 64 75 6C 65 20 74 two in module t
40 77 6F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 WO oineunnnenn,
50 00 00 00 00 00 00 00 00 00 0G 00 60 00 00 00 00
60 00 00 00 00 00 00 0C 00 00 00 00 00 00 00 00 00
70 00 00 00 00 00 00 00 0G 00 00 OC 00 00 00 00 00
80 00 00 00 00 00 00 00 00 00 00 00 00 0G 00 00 00
90 00 00 00 00 00 00 G0 00 00 00 00 00 00 00 00 00
A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
BG 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
co 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 c....
E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Fo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

SN=$5 5
00 41 62 73 6F 6C 75 74 65 20 73 65 63 74 69 6F 6F Absolute section
10 20 69 6E 20 6D 6F 64 75 6C 65 20 6F 6E 65 30 39 in module one09
20 00 00 03 1C 10 38 00 22 00 00 00 00 00 00 00 00 8. M
30 00 00 00 00 00 00 00 06 00 00 00 00 00 00 00 00
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 c......
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ovnne..
90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 n...
A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 onv.n.
BO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
co 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 o.o...
DO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Fo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 o.....

1 MICROSYSTEMS

M) moToroLa

10
20
30
40
50
60
70
80
90
A0
BO
co
DO
EO
FO

SN=3$6
00
41
20
00
00
00
00
00
]
00
00
00
00
00
00
00

00
62
69
00
00
00
00
00
00
00
00
00
00
22
00
00

00
73
6E
00
00
00
00
00
00
00
00
00
00
00
00
00

00
6F
20
00
00
00
0o
00
00
00
00
00
00
00
00
00

6

00
6C
6D
00
00
00
00
00
00
00
00
00
00
00
00
00

00
75
6F
00
00
00
00
00
00
00
00
00
00
00
00
00

00
74
64
00
00
co
00
00
00
00
00
00
00
]
00
00

00
65
75
00
00
00
00
00
00
00
00
00
00
00
00

00
20
6C
]
00
00
00
00
00
00
00
00
00
00
00
00

00
73
65
00
00
00
00
00
00
00
00
00
00
00
00
00

00
65
20
00
00
00
00
00
00
60
00
00
00
00
00
00

92

00
63
74
00
00
00
00
00
0]
00
00
00
00
00
00
00

00
74
77
00
00
6o
00
00
00
00
00
00
00
00
00
00

00
69
6F
00
00
00
00
00
00
co
00
00
00
00
00
00

00
6F
00
00
00
00
]
00
00
00
00
00
30
00
00
00

00
6E
00
00
00
00
00
00
00
00
00
00
38
00
00
00

APPENDIX E

................

Absolute section
in module two..

................
................
................
................
................
................
................
................

................
...............

................

................

MICROSYSTEMS

M) moToroLA APPENDIX E

Dump of Debug File

SN=$0 0
00 00 00 00 01 4D 4F 44 55 4C 45 31 20 00 03 FF FFMODULEL
10 53 45 47 31 53 45 47 32 53 45 47 33 00 00 00 00 SEGISEG2SEG3. ...
20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
30 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFoovvven...
40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFiveeve....
50 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFccviuue....
60 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFievevv....
70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFc.couvenn.
80 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFcvv....
90 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ... ciiiivene...
A0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFciivvvne..,
BO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFcvvivvvnn..
co FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ieeinn..
DO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFcieen...
EO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFovuv....
Fo FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFciiiennn...

00 00 41 4D 4F 44 55 4C 45 31 20 00 03 00 00 00 04 .AMODULEI
10 FF FF FF FF 00 00 00 00 FF FF FF FF 00 00 01 AB
20 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFcceeene....
30 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
50 02 00 20 00 FF FF FF FF FF FF FF FF FF FF FF FF
60 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFooveeen...
70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFoveeen...
80 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...o.oivvi.nn..
90 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFovveeenn..
RO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFooviiinn....
BO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFocoo.onn..
CO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFocooone..
DO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFoooove.a...
EO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFoviviennnn.s
FO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

SN=$2 2
00 43 4F 4D 4D 4F 4E 31 20 00 04 43 02 00 00 00 EO COMMONI ..C.....
10 4C 41 42 45 4C 31 20 20 00 04 4C 01 00 00 00 22 LABELI ..L...."
20 4C 41 42 45 4C 32 20 20 00 04 4C 10 00 00 20 00 LABELZ ..L.....
30 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFoeeeves.nn..
40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...oviinienn....
50 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ..ooviiniian....
60 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .ovvviennnn...
70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ..oeevnni.an...
80 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .o.ooeveinn.nn..
90 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFeovvinn...
A0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ..oeevnvennn....
BO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .evvvienennn....
CO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ..ovevven.nn..
DO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF o.ioivivnnenn...
EO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .o0vvvvieinn...
FO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .vvvvniiennn...

%3 MICROSYSTEMS

M) moToroLA

]
10
20
30
40
50
60
70
80
90
A0
BO
co
DO
EO
FO

00
10
20
30
40
50
60
70
80
90
A0
BO
co
DO
EO
FO

00
10
20
30
40
50
60
70
80
90
A0
BO
co
Do
E0
Fo

SN=$3
4c
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

SN=$4

00
FF
FF
FF
FF
02
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

SN=$5
43
43
53
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

41
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

41
FF
FF
FF
FF
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

4F
4F
54
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

42
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

4D
FF
FF
FF
FF
21
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

4D
4D
41
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

45
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

4F
FF
FF
FF
FF
10
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

4D
4D
52
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

3
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

44
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

4F
4F
54
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

55
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

4E
4E
20
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

4c
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

3]
32
20
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

45
A6
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

20
20
20
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

32
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

00
00
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

20
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

04
04
04
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

43
43
4c
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

94

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

03
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

02
05
01
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

00
00
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

00
00
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

00
03
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

07
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

EO
22
04
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

APPENDIX E

LABE.....evenen.
(AMODULEZ
S TURTRRI
COMMONI ..C.....
COMMON2 . .C...."
START ..L.....

................
................
................
................
................
................
................
................
................
................
................
................

................

MICROSYSTEMS

@ MOTOROLA APPENDIX E

SN=$6 6
00 53 54 41 52 FF FF FF FF FF FF FF FF FF FF FF FF STAR............
10 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
20 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FE .ooooiieioin...
30 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFoiieviinn...
40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFoooini...
50 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFoooovini....
60 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFc.oeee..s
70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFcce....
80 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFooveienn...
S0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
A0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFoivvinn..s
BO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
CO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFc.oeus..s.
DO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFoeeenne....
EO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFoocveenn..
FO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFc.oenn..

SN=§7 7
00 00 41 4D 4F 44 55 4C 45 33 20 00 03 00 00 00 00 .AMODULE3
10 FF FF FF FF 00 00 00 C4 FF FF FF FF FF FF FF FFoov....
20 FF FF FF FF 01 00 03 00 FF FF FF FF FF FF FF FFceevns..
30 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFooveve.n..
40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFoieoinn.ns.
50 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF o0vivveennnnn..
60 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...ooveennn.n..
70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFoveene..n..
80 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFcove.n..
90 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFocoove.n..
RO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFooieivnn...
BO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFooeeoin....
CO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFooeiiins...
DO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ..o.eoienn.n..
EO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...ooeovvnienn..
FO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFoovvien...

SN=$8 8
00 43 4F 4D 4D 4F 4E 31 20 00 04 43 02 00 00 00 EO COMMONI ..C.....
10 43 4F 4D 4D 4F 4E 32 20 00 04 43 05 00 00 03 22 COMMONZ ..C...."
20 4C 41 42 45 4C 33 20 20 00 04 4C 05 00 00 00 1C LABEL3 ..L.....
30 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .oveivveenn.nn..
40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF o..ooveenn....
50 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFo0eeevee....
60 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFooveiuns....
70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ..oovveenn..n..
80 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFocveeinn....
90 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ..oovveeenn.....
A0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF° ..vieivninn...
BO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF o.oivvieennn....
CO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ..eovveeinnn....
DO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...eovveevnn....
EO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...c.oeveen.nn..
FO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ..oovveinnnns..

% MICROSYSTEMS

M) moToroLA

00
10
20
30
40
50
60
70
80
90
AQ
BO
co
DO
EO
Fo

SN=$9
4c
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

41
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

42
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

45
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

9
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

96

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

APPENDIX E

................
................
................
................
................
................
................
................
................
................
................
................
................
................

................

MICROSYSTEMS

M) moToroLA APPENDIX E

Second Llinkage Editor Listing

Command Line:

LINK , EXAMPLE.SRECMOD.MX, EXAMPLE . LINKMAP. LL ; IXHMDQ

Options in Effect: A,-B,D,H,I,-L,M,-0,P,Q,-R,-S,-U,-W,X

User Commands:

SEG SEGI(RLG):1-4
SEG SEG2:5

SEG SEG3(R):14 $2000

IN EXAMPLE.MODULEI.RO, EXAMPLE.MODULE2.RO, EXAMPLE . MODULE3.RO
QUIT

Object Module Header Information:

Module Ver Rev Language Date Time Creation Filename

MODULE1 1 0 Assembly 12/15/81 13:23:23 FIX:7.EXAMPLE.MODULE].SA
File format example module one

MODULE2 1 0 Assembly 12/15/81 13:31:15 FIX:7.EXAMPLE.MODULE2.SA
File format example module two

MODULE3 1 0 Assembly 12/15/81 13:32:01 FIX:7.EXAMPLE.MODULE3.SA
File format example module three’

Load Map:

Segment SEG1(R,L,G): 00000000 000002FF 1,2,3,4

Module S T Start End Externally Defined Symbols
MODULE1 1 S 00000000 000000A5 LABEL1 00000022
MODULE2 1 S 000000A6 000000C3

MODULE3 1 S 000000C4 000000DF

COMMON1 2 C 000000E0C 000001A7

MODULE1 3 000001A8 00000217

Segment SEG2: 00000300 000003FF 5

Module S T Start End Externally Defined Symbols
MODULE3 5 00000300 00000321 LABEL3 0000031C
COMMON?2 5 € 00000322 00000341

97

MICROSYSTEMS

@ MOTOROLA APPENDIX E

Segment SEG3(R): 00002000 000021FF 14

Module S T Start End Externally Defined Symbols
MODULE1 A 00002000 00002027 LABEL2 00002000
MODULE2 A 00002110 000021D1

Table of Externally Defined Symbois:

Name Address Module Displ Sect Seg Library Input

LABEL1 00000022 MODULE1 00000022 1 SEGI MODULE1
.EXBELZ 00002000 MODULE1 SEG3 MODULE1
'EEBEL3 0000031C MODULE3 0000001C 5 SEG2 MODULE3

Unresolved References: None

Multiply Defined Symbols: None

Lengths (in bytes):

Segment Hex Decimal
SEG1 00000300 768
SEG2 00000100 256
SEG3 00000200 512
Total Length 00000600 1536
No Errors

No Warnings

S-record module :EXAMPLE.SRECMOD.MX has been created.

%8 MICROSYSTEMS

@ MOTOROLA APPENDIX E

Listing of S-Record Module

S00F0000535245434D4F44202020010181
512100005374617274206F662073656374696F6E206F6E6520696E206D6F64756C65C7
S107001E206F6E6578
S1210086456E64206F662073656374696F6E206F6E6520696E206D6F64756C65206FA9
S$10500A46E6583
S12100E0436F6DED6F6E2073656374696F6E206F6E6520696E206D6F64756C65206FF2
S10500FE6E6529
S12120004162736F6C7574652073656374696F6E20696E206D6F64756C65206F6E656B
$10D201E30390000031C10380022C2
S12101A853656374696F6E20746872656520696E206D6F64756C65206F6E65003038C1
$10501C6002211
S12100A63038002253656374696F6E206F6E6520696E206D6F64756C652074776F0060
S12121104162736F6C7574652073656374696F6E20696E206D6F64756C652074776F42
$10721CE303800227F
$1210322436F6D6D6FEE2073656374696F6E2074776F20696E206D6F64756C65207490
$1050340776FD1
S12100E0436F6D6D6F6E2073656374696F6E2074776F20696E206D6F64756C652074D5
S10700FE6872656556
S11F00C453656374696F6E206F6E6520696E206D6F64756C652074687265650010
$121030053656374696F6E206669766520696E206D6F64756C6520746872656520390E
$107031E00002000B7

$9032000DC

%9 MICROSYSTEMS

M) moToroLA APPENDIX E

THIS PAGE INTENTIONALLY LEFT BLANK.

100 MICROSYSTEMS

@ MOTOROLA APPENDIX F

APPENDIX F
ERROR/WARNING MESSAGES

During runtime, the linker may generate its own messages. This appendix Tists
them under ERROR MESSAGES and WARNING MESSAGES. However, runtime errors may
occur from these sources as well, because the linker is written in Pascal and
operates in a VERSAdos environment. A complete reference of Pascal and
VERSAdos runtime errors is found in the VERSAdos Messages Reference Manual.
ERROR MESSAGES
The form of the error messages generated by the Tinkage editor are:

** ERROR nnn - description
where:

nnn is a three-digit error number.

description is a general description of the type of error.
Errors are divided into classes where each class has one type of error
message. The first digit of the 3-digit error number determines the class.
Thus, whenever an error occurs, its error number is printed along with the

general error message for its class. The various error classes and their
specific errors are:

Class_1 - T1leqal Command Line

The general message for errors of this class is:
** ERROR Inn - I1legal command Tine

This error shows there is something wrong with the command line used to invoke
the Tinkage editor. If an error of this class occurs, the linkage editor does
not continue and control is returned to the operating system. The errors for
this type. are:

133 No filename: No filename specification found while scanning the
command Tine.

134 I1Tegal filename: A general syntax error was encountered while
scanning a filename specification.

135 I11egal device name: A syntax error was encountered while scanning
the device name field of a filename specification.

10l MICROSYSTEMS

(M) moToroOLA APPENDIX F

136 ITlegal volume name: A syntax error was encountered while scanning
the volume name field of a filename specification.

137 No user number: While scanning a filename specification, a user
number was expected but not found.

138 ITlegal user number: A syntax error was encountered while scanning
the user number in a filename specification.

139 ITlegal catalog name: A syntax error was encountered while scanning
the catalog name in a filename specification.

140 I1legal extension: A syntax error was encountered while scanning the
extension in a filename specification.

141 I1legal key(s): A syntax error was encountered while scanning the
key(s) in a filename specification.

142 Filename already specified: The list of input files on the command
Tine specified the same filename twice.

143 I1legal option specification: The option field of the command line
contains a syntax error.

144 Option conflict: A conflict exists between two or more options
specified on the command Tine. For example, two mutually exclusive
options (0 and R), were specified.

145 No output filename specified: The output filename was not specified
on the command Tine. An output file must be specified on the command
line when relocatable output is requested (via the R option).

147 I11egal option syntax for the W option: The command line contains a
syntax error in the W option.

148 Option conflict: The bit width chosen for addressable memory
conflicts with the type of output module chosen.

Class 2 - I1leqgal User Command Line

The general message for errors of this class is:
** ERROR 2nn - I1legal user command line

This error shows that there is an error in a user command line specified to
the linkage editor. When an error of this class occurs, the offending user
command is ignored and the user is prompted for another command. The errors
of this class are:

200 Command 1line too Tong: The user command line specified is too long.
The maximum length of a user command is 132 characters.

102 MICROSYSTEMS

@ MOTOROLA

201

202
203
204
206

207

208

209

210

211

212

213

214

215

216

217

APPENDIX F

ITlegal character: An 1illegal character was encountered while
scanning the user command.

ITTegal command verb: The user has specified an unknown command name.
Too many arguments: Too many arguments specified for this command.
Not enough arguments: Too few arguments given for this command.

No digits in number expected: Expected a number but it was not found
when the user command was scanned.

I1legal number: An illegal digit was found while scanning a number.
For example, found the digit "9" in an octal number.

ITTegal section number: A section number specified was not between 0
to 15.

ITTegal section number range: The specification of a range of section
numbers was not of the proper form. For example, the first section
number must be Tess than or equal to the second section number.

Section number already specified: The same section number was
specified twice in a START or SEGMENT command.

Section number already assigned to a segment: A section number
specified in a SEGMENT command has already been assigned to a
different segment.

Section not assigned to a segment: A section specified in a START
command has not been assigned to a segment.

Not all sections assigned to same segment: A1l the section numbers
specified in a START command have not been assigned to the same
segment.

No name: While scanning a user command, a symbol, module, segment, or
taskname was expected but not found.

IT1egal name: A syntax error was encountered while scanning a symbol,
module, segment, or taskname. Symbol and module names must be from
one to ten alphanumeric characters, with the first character being
alpha; segment and tasknames must be from one to four alphanumeric
characters, with alpha in the first character.

Undefined symbol: A symbol specified in the user command has not been
encountered as an XDEF in the relocatable object modules input.

Command not legal for absolute output: This command cannot be used to
create a 1oad module.

103 MICROSYSTEMS

M) moToroLAa

218

219

220

221

222

223

224

225

226

227

228

231

232

233

234

235

236

APPENDIX F

Command not 1legal for relocatable output: This command cannot be
specified when creating a relocatable object module.

A11 segments used: Made an attempt to create more than four segments
with SEGMENT commands; four segments is the maximum.

Command not legal for S-record output: This command cannot be used to
create an S-record module.

Segment does not exist: The segment specified in the command does not
have any sections assigned to it and, therefore, does not exist.

No more SEGMENT commands allowed: No more SEGMENT commands can be
specified.

I11egal segment start address: The address given as the starting
address of a segment is not legal. The last byte of the starting
address of a segment must be $00.

IT1legal segment end address: The address given as the ending address
of a segment is not Tegal. The last byte of the ending address of a
segment must be $FF.

Conflicting address space: The address space specified for a segment
conflicts with the address space previously specified for another
segment.

[11egal address: A syntax error in an address was encountered while
scanning the command line.

Address out of legal range: The address in a START, ENTRY, or COMLINE
command is not in the range of the segment referred to by the command.

I11egal attribute specification: A syntax error in the attributes was
encountered while scanning a SEGMENT command.

Module name already specified: The same module name was specified
twice for the same file in an INPUT command.

I11egal command 1line 1length: The Tlength specified in a COMLINE
command is not between 1 to 256, inclusive.

No filename: While scanning the command Tine, a filename
specification was expected but not found.

I11egal filename: A general syntax error was encountered while
attempting to scan a file name specification.

I11egal device name: A syntax error in the device name field was
encountered while scanning the filename specification.

I11egal volume name: A syntax error in the volume name field was
encountered while scanning the filename specification.

104 MICROSYSTEMS

@ MOTOROLA

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

APPENDIX F

No user number: While scanning a filename specification, a user
number was expected but not found.

I11egal user number: A syntax error in the user number was
encountered while scanning the filename specification.

[1Tegal catalog name: A syntax error in the catalog name was
encountered while scanning the filename specification.

I1legal extension: A syntax error in the extension was encountered
while scanning a filename specification.

I11egal key(s): A syntax error in the key(s) was encountered while
scanning a filename specification.

Filename already specified: The same filename was specified twice in
the same INPUT command.

Symbol name already specified: The same symbol name was specified
more than once in an XDEF command.

I1legal entry point, command Tine, or page size value: The values
specified in a COMLINE, ENTRY or PAGESIZE command is not even. It
must be even.

Il1legal version/revision number: The version or revision number in an
IDENT command is not between 0 and 255, inclusive.

Description too long: The description in an IDENT command is too
long. The maximum length for a description is 80 characters.

Symbol already exists: The symbol specified in a DEFINE command
already exists in the ESD table. Symbols may not be redefined with
this command.

ITlegal option or attribute: An illegal (undefined) directive option
or task attribute was specified in an OPTIONS or ATTRIBUTES command.

I1legal priority: A priority specified in a PRIORITIES command is not
a number between 0 and 255, inclusive.

I17egal session number: An ASCII-encoded session number (one preceded
by a single quote) in a TASK or MONITOR command is not a number
between $0 and $FFFF, inclusive.

Buffer 1length error: A user command line was entered that exceeded
132 characters in length.

Buffer overflow: A user command Tine employing argument substitution
greater than 132 characters after substitution of arguments was
entered.

Argument not found: Argument substitution for an undefined argument
was attempted.

105 MICROSYSTEMS

@ MOTOROLA APPENDIX F

Class 3 - Errors in Processing a Relocatable Object File

The general message for errors of this class is:
** FRROR 3nn - Processing relocatable object file - File: <filename>

An error in this class indicates that an error was encountered while
processing the relocatable object file named "<filename>". This indicates
that the file was not a relocatable object file or it was a damaged
relocatable object file. Either way, the linkage editor cannot continue; all
class 3 errors are considered fatal and cause an immediate halt to further
processing. The errors for this class are:

301 Module(s) not found: A module or modules requested in an INPUT
command cannot be found in the specified file.

302 Module already processed: An attempt was made to process a module
with the same name as one that already processed from this file.

303 Premature end of file: The end of file in an object module was
encountered before the file ended.

306 I11egal relocatable record type: The record type of a relocatable
record is not from 1 to 4, inclusive.

307 Error extracting name from ID record: An error was encountered while
trying to extract the module name from an ID record.

308 I11egal language type in ID record: The ID record of a module had an
illegal language type.

309 No ESD (external symbol definition) records: A relocatable object
module does not contain any ESD records.

310 I11legal ESD type: The type of an ESD is not between 0 to 10,
inclusive.

311 Error extracting name from ESD: An error was encountered while
attempting to extract the name of a symbol or common area from an ESD.

312 I1legal address in ESD: An illegal address was encountered while
processing an ESD.

313 I1legal length in ESD: An illegal length was encountered while
processing an ESD.

314 ESD record too short: An ESD record is not long enough to contain all
the information it should contain.

315 Error extracting address/length in general: A general error was
encountered while attempting to extract an address or length from any
type of record.

106 MICROSYSTEMS

@ MOTOROLA APPENDIX F

316 ITlegal end record: The end record of a module is not of a legal
form.
317 IT1egal section number in end record: The section number specified in

an end record is either not between 0 to 17, inclusive, or the section
does not exist.

318 No end of module record: No end record was found at the end of a
relocatable object module.

319 Section type conflict: The type of a section is not the same between
different relocatable object modules.

320 Section length overflow: A section has become too long. The maximum
length of a section is $1000000 bytes.

321 Symbol ESD after non-symbol ESD: A symbol ESD was found after a non-

symbol ESD in a module. In every module, all symbol ESDs must appear
before the first non-symbol ESD.

Class 4 - Memory Allocation Errors

The general message for this class of errors is:
** ERROR 4nn - Memory allocation conflict

This message indicates that allocation of memory is impossible with the
specified input files, sections, segments, etc. An error of this class is
fatal and causes an immediate halt to further processing. The types for this
class are:

400 Memory conflict: A conflict has occurred that prohibits the
allocation of a relocatable section.

401 Out of memory: All memory was allocated but there are still
relocatable sections that need allocating.

402 Cannot place absolute section: A conflict has occurred that prohibits
the placing of an absolute section where it is required to reside.

403 Section too long: After adding in the lengths of its associated
common sections, a section has become larger than the maximum $1000000
bytes.

404 Output file too large: The resulting load module file is too Targe to
fit in available disk space.

405 Maximum address exceeded: Allocating a relocatable section requires
logical addresses past the maximum of allowable address ($FFFFFF,
$FFFFFFF, or $FFFFFFFF depending on W=24, W=28, W=32).

107 MICROSYSTEMS

@ MOTOROLA APPENDIX F

Class 5 - Pass Two Fatal Errors

The general message for errors of this class is:
*% ERROR 5nn - Pass two fatal error - File: <filename>

This type of error indicates that an error occurred during pass two processing
of the file named "<filename>" and prohibits further processing. This shows
that the relocatable object modules in the file needed for input have changed
since pass one or there is an error in a relocatable object module that was
not detected during pass one, such as a bad data record. A1l processing stops
when this type of error occurs. The types for this error are:

500 ESD index overflow: A relocatable object module being input requires
more than 255 ESD indices. One ESD index is required for each
relocatable section, absolute section, common section, and external
symbol reference. If too many origin statements created this error,
the program should be reorganized to take advantage of the 16
available sections.

501 Error calculating entry point address: An error has occurred while
attempting to calculate the beginning execution address of the
resulting load module.

502 Error calculating command line address: An error has occurred while
attempting to calculate the address of where to store the invoking
command Tine.

503 ITlegal common mname: A non-existent common section name was
encountered in a relocatable object module.

504 I11egal section number: A non-existent section number was encountered
in a relocatable object module.

505 I11egal symbol name: A non-existent symbol name was encountered in a
relocatable object module.

506 I1legal command 1line ESD: An error was encountered in processing a
command 1ine ESD.

507 Data record too short: A data record does not contain enough data.

508 Data record too long: A data record contains too much data.

509 I11egal data record ESDID: The ESDID in a data record that indicates
where the data from that record is to go refers to a non-existent
ESDID for that module.

511 I11egal ESDID within relocation data: An ESDID within relocation data
refers to a non-existent ESDID for that module.

512 I1legal offset size: The flag of a set of relocation data indicates
that the size of the offset is not between 0 to 4 bytes, inclusive.

108 MICROSYSTEMS

@ MOTOROLA APPENDIX F

513 Module not found: A module processed in pass one was not found in
pass two.

514 Absolute section not found: During pass two, an ESD for an absolute
section was encountered for which no ESD was encountered in pass one.

515 ESD index overflow: This error occurs during pass two when creating a
relocatable object module if the module requires more than 255 ESD
indices. Each relocatable section, absolute section, common section,

and external symbol reference requires one index.

Class 6 - Individual Error Messages

There 1is no general error message for this class but instead, each type of
error has its own individual message. A1l class 6 errors are fatal errors and
stop further processing. The individual messages are:

** ERROR 600 - Unresolved references
This error occurs at the end of pass one and shows that unresolved external
references still exist, which makes further processing impossible. A Tist of
the unresolved references precedes the error message.

** ERROR 601 - No input files specified
This error, at the end of pass one, shows that the user did not name any input
files on the invoking command line or in any user commands. Because of this,
the linkage editor has nothing to process and aborts.

** FRROR 602 - Fatal input error
This error indicates that a fatal I/0 error has occurred during input.

** ERRCR 603 - Fatal output error

This error indicates that a fatal I/0 error has occurred during output.

109 MICROSYSTEMS

M) moToroLA APPENDIX F

Class 8 - Internal Errors

The general message for errors of this class is:
** ERROR 8nn - Internal error

A message of this type shows that an error has occurred internal to the
Tinkage editor. Types of error within this class are:

800 This message type indicates that while attempting to assign a value to
an external symbol defined within a relocatable section during the
listing phase, the Tlinker determined that the section did not exist.
This usually indicates that the user defined external symbol(s) within
a section of length zero (i.e., a section containing only equates).

801 A message of this type indicates that in an attempt to assign a value
to an external symbol defined within a relocatable section during
memory allocation, the linker determined that the section did not

exist. This usually indicates that the user defined external symbol(s)
within a section of length zero.

WARNING MESSAGES
Warning messages indicate non-fatal messages that are recoverable. Thus, when
one of these types of errors occurs, a warning message is generated and
processing continues normally. The general form is:

** WARNING 7nn - description
where:

7nn is a three-digit warning number starting with "7".

description is a description of the error that occurred.

The warning messages are:

** YWARNING 700 - Undefined symbol: <symbol>

This warning indicates that an XDEF command specified a symbol "<symbol>",
that is not 1in the current table of XDEFed symbols. In other words, it has
not appeared as an XDEF in any of the relocatable object modules processed so
far. The processing of the XDEF command proceeds as if the offending symbol
"<symbol1>" were not in the command.

110 MICROSYSTEMS

@ MOTOROLA APPENDIX F

** WARNING 701 - Multiply defined symbol: <symbol name>

This warning dindicates that the symbol "<symbol name>" is multiply defined.
This means that the symbol was XDEFed in more than one relocatable object
module, i.e., defined in more than one place. The action taken will be to use
only the first occurrence of "<symbol name>" as its defining occurrence and to
ignore all further definitions.

** WARNING 702 - No END command, assumed

This warning indicates that the end of file in the user commands from a file
was found before an END command was encountered. The action taken is to
manufacture a fake END command and proceed.

** WARNING 703 - Section not assigned, section not loaded: nn

This warning shows that during the processing of a relocatable object module
in pass one, a section definition was found for section number "nn" which was
not assigned to a segment. The section definition is ignored and processing
continues.

** WARNING 704 - Conflicting XREFs: <symbol name>

This message indicates that two XDEFs to the same symbol, "<symbol name>",
conflict because they require the symbol to be defined in different sections.
The action taken is to allow the symbol "<symbol name>" to be defined in any
section and processing continues.

** WARNING 705 - Relocated value too large, value truncated: at $<address>

This message indicates that while processing relocation data for data to be
put at hex address "<address>", the resulting value was too large to fit into
the number of words set aside. The action taken is to truncate enough from
the high order so that the result will fit. For example, a jump to subroutine
where the address to jump is too far away.

** WARNING 706 - Section not assigned, symbol not loaded: <symbol name>

This message shows that an XDEF was encountered for the symbol "<symbol
name>", while processing a relocatable object module in pass one. However,
the section defining the symbol has not been assigned to a segment. The XDEF
is ignored and processing continues.

11 MICROSYSTEMS

@ MOTOROLA APPENDIX F

** WARNING 707 - Module appears more than once: <module name> in <filename>

This message indicates more than one module was encountered with the same name
("<module name>"), while processing the file named "<filename>" in pass two.
The first module encountered is processed while later modules with the same
name are ignored.

This could occur if a library file contained two modules with the same name
and a search of the file during pass one indicated that the second module was
needed. However, in pass two the first module with the desired name will be
processed, and when the second module with the same name is encountered, this
warning message is generated. This could be serious since the data in the
first module is processed in pass two according to the information acquired
from the second module in pass one. Obviously, every module in a file should
have a unique name.

** WARNING 709 - Unable to include in debug file <filename>
This message indicates that the linker attempted to append an .RS file to its
.DB file, which it could not find.

** WARNING 710 - Attempt to locate short section <section> at <address>.
This message indicates that the user attempted to locate a short relocatable
section "<section>" in an address range not completely contained within the

first 32Kb or the last 32Kb of addressable memory. The starting address of
the section is given by <address>.

112 MICROSYSTEMS

M) mororoLA APPENDIX G

APPENDIX G
MVME12x-SPECIFIC INFORMATION

Special Tinking procedures must be followed when 1linking tasks to run on an
MVMEI2x system. When Toading programs on these systems an error message,
"SEGMENT ERROR-TASK LINKED INCORRECTLY", may appear for tasks that have run
unaltered on other systems.

Special care must be taken to run NON-position independent programs on an
MVME12x system. Due to the nature of the instruction cache, segments must
appear on even 1K boundaries to run properly. The following guidelines should
be followed.

a. A position-independent program must be linked with the ATTRIBUTES "P"
option specified in the T1link input commands. The loader makes the
proper adjustments to align the task segment boundaries. Using the
DUMP utility, display sector 0 of the load module to see if the task
was linked with this attribute. If bit 3 of byte $14 is set, the task
was Tinked with the ATTRIBUTES "P" option. This does not guarantee,
however, that the task is position independent. It simply tells the
loader to treat the task as if it were. This allows for movement of
the segments relative to one another as they are loaded into memory.

b. If the task is NOT position independent, it will be necessary to
relink the task with the PAGESIZE interactive command. The start
address for each segment must be on 1K boundaries. For example,
assume a task 1is being linked to run on the MVMEI21 and the input
commands are:

=LINK ,TASK,TASK;HAMIXS
M68000 Linkage Editor Version x.xx
Copyrighted 1985 by Motorola, Inc.

>SEG SEGO:5,3 $0000
>SEG SEG1(RL):0-2
>SEG SEG2:4

>INPUT MAIN

>INPUT SUBRTN

>INPUT A,B,C

>LIB MYLIB

>END

The start and end addresses of the segments are:

START END LENGTH

SEGO:5,3 $0000 $06FF $0700

SEGI(RL):0-2 $0700 $22FF $1800

SEG2:4 $23FF $25FF $0200
113

MICROSYSTEMS

@ MOTOROLA APPENDIX G

Note that only the first segment starts on a 1K boundary. To force
all the segments to start on a 1K boundary, use the PAGESIZE command:

=LINK ,TASK,TASK;HAMIXS
M68000 Linkage Editor Version x.xx
Copyrighted 1985 by Motorola, Inc.

>PAGESIZE 1024
>SEG SEGO:5,3 $0000
>SEG SEG1(RL):0-2
>SEG SEG2:4

>INPUT MAIN

>INPUT SUBRTN

>INPUT A,B,C

>LIB MYLIB

>END

The interactive command PAGESIZE 1024 forces the segments to appear at

addresses:
START END LENGTH
SEGO:5,3 $0000 $06FF $0700
SEG1(RL):0-2 $0800 $22FF $1B00O
SEG2:4 $3000 $25FF $0200

The segments are now forced to begin on even 1K boundaries whether the MMU
js enabled or not. If running without an MMU, Tink a NON-position
independent task to run at the desired physical address. The Toader
attempts to 1load the task at the specified location if possible. If no
memory is available at the linked location, a load error occurs.

114 MICROSYSTEMS

M) mororoLA

A option

ABORT

absolute address
address

allocate

angular brackets (< >)
ARG session control command

argument

array

ASCII

assembler
assembly language
ATTR, ATTRIBUTES

B option
binary
bit width
boundary
byte

cache

chainfiles
character(s)

COML, COMLINE
command line format
console

conventions

D option

debug monitor
debug file

debug file format
DEF, DEFINE
directory

disk, diskette
DUMP utility

END

ENTRY

entry point
error message
examples

execution time
external definition
external symbol

externally defined symbols

EXORmacs

INDEX

INDEX

18, 22, 34

23, 25

2-4, 35

2-5, 7-11, 13, 14, 18-21, 27, 28, 30,
35, 38-41

1, 4, 7, 13, 20, 21

6

24

24

10, 11, 12

2, 36, 42

1, 4-6, 18, 32

1

20, 23, 25, 26, 113

8, 18, 19

24, 36, 42

21

2, 8, 19, 20, 113, 114

3, 4, 8, 9, 19, 21, 22, 39

113

24

24, 27, 28, 31, 39, 42
20, 23, 24, 27, 28

17

18, 21-23, 29, 35

6

19, 20
2

19

7%, 80

23, 29

17, 21, 32
17, 18

113

14, 23, 29, 38

23, 24, 30

3, 30

29, 101-112

4, 10-15, 22, 26, 28-31, 33-38, 40-43,
50-58, 81-99, 113, 114

3
21, 35
5, 16, 20, 29

2, 3, 5, 16, 43
1

115 MICROSYSTEMS

xmQ2Z —

M) moToroLA

filename format

H option

halt processing
header

header record
heap

I option
IDENT

IN, INPUT
input files
input modules
invocation

KDM

L option
LIB, LIBRARY
libraries
line printer
LINK command

linking

LIST

listing file
listing formats
LISTM

LISTU

LISTX

LO command

load module(s)

load module file format
loader
long word

M option

MACSbug

map

MBLM utility

memory address

memory allocation

Memory Management Unit (MMU)
MMU

MON, MONITOR

MVME12x

notation
numerical entries

0 option
offset
OPT, OPTIONS

17

19, 31, 45
25

31

19

21, 22

19, 45
20, 23, 24, 31, 32

INDEX

14, 17, 18, 22-24, 32-34, 39, 40
17, 18, 22, 23, 32, 34, 39

2, 5, 20, 27,-30, 43

17, 18
40
19, 29, 34

5, 14, 23, 34, 39, 40

2, 5, 19, 20, 22, 29, 34

18, 22, 35

11, 17, 19, 20, 22, 23, 32, 35,39, 40,

113, 114
4, 5

23, 35
18-21, 35
45-57

23, 35
23, 35
23, 35

2

1-5, 7-10, 12, 13, 15, 16, 18-22, 25,

27, 30
69-73
25
3

20, 45

2

16, 20, 35

2, 4, 23

4, 21

7-16, 20, 21, 35
3, 4, 39

See Memory Management Unit

20, 23, 24, 36
1, 25, 38, 113, 114

6
24

20, 45
18, 18
20, 23, 37

116

MICROSYSTEMS

@ MOTOROLA

options
output file
output module

P option

page
PAGESIZE
parameter

Pascal

PRIO, PRIORITIES

Q option
QUIT

R option

regular section

related documentation
relative address
relocatable object module

relocatable object module file format
relocatable section
relocation

S option
S-record

S-record file format
sections
segment

SEG, SEGMENT

short section
simulator

source code

square brackets ([])
stack

START

symbol table
symbolic debugging

target system
TASK
TENbug

U option
unresolved references
user commands

VERSAbug
VERSAdos
VERSAmodule
vertical bar (|)

117

INDEX

2, 17-21, 23, 35-37
2, 18, 31
2,7, 8, 16, 20, 21, 27, 30, 32

20, 29

8, 19, 20, 38

23, 38, 113, 114
17, 23, 24, 32

1, 4, 6, 21, 32, 40
20, 23, 38

20, 45
23, 38

20, 31

3

6

4, 5, 18, 28, 30, 41

1-5, 7, 9, 13, 16-18, 20, 22, 26, 27,
29-31, 33, 36-38

59-68

3, 8, 16, 18, 19

3

3, 20, 21

1, 2, 4, 5, 16, 18-21, 23, 26, 27, 30,
31, 36-39, 41, 42

75-77

2-4, 7-16, 19, 35, 39-41, 47

3, 4, 7-9, 12, 15, 16, 18, 20-22, 24,
27, 28, 30, 38-42, 113, 114

7, 8, 14, 20, 23, 24, 39-41

3, 40

40

1

6

21, 22

7, 8, 14, 19, 23, 39-41

2, 21, 22, 39

19

16
20, 23, 24, 36, 42
2

21, 23, 29, 34
19, 21, 29
7, 13, 14, 17-20, 22, 23-43

40

1-5, 16, 17, 20-24
1, 40

6

MICROSYSTEMS

xmOD Z —

(M) moTorOLA

VMC 68/2
VME/10
VMEmodule
VMEsystem

W option
X option
XDEF
XREF

Z option

bt b

21
21, 45

INDEX

5, 16, 20, 23, 24, 29, 30, 43

5, 29
21, 22

118

MICROSYSTEMS

SUGGESTION/PROBLEM microg¥szEMS
REPORT —

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282
Attention: Publications Manager
Maildrop DW164

Product: Manual:

COMMENTS:

Please Print

Name Title

Company i Division

Street Mail Drop Phone

City State Zip

For Additional Motorola Publications Four Phase/Motorola Customer Support, Tempe Operations
Literature Distribution Center (800) 528-1908

616 West 24th Street (602) 438-3100

Tempe, AZ 85282
(602) 994-6561

@ MOTOROLA

MOTOROLA Semiconductor Products Inc.

PO. BOX 20912 ¢ PHOENIX, ARIZONA 85036 A SUBSIDIARY OF MOTOROLA INC.

17630 PRINTED (N USA (1/86) MESSENGER 3500

