M68KMASM/D9

Q MOTOROLA

M68000 Family
Resident Structured Assembler

Reference Manual

~

PERFORMANCE

QUALITY

M) moToroLA

M6SKMASM/D9
JULY 1985

M68000 FAMILY
RESIDENT STRUCTURED ASSEMBLER
REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products
herein to improve reliability, function, or design. Motorola does not assume
any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights
or the rights of others.

EXORmacs, SYMbug, SYSTEM V/68, VERSAdos, VERSAmodule, VMC 68/2, VMEmodule, and
VME/10 are trademarks of Motorola inc.

This edition incorporates the information in any addendums to previous
releases of this manual.

Ninth Edition
Copyright 1984 by Motorola Inc.
Eighth Edition July 1984

MICROSYSTEMS

M) moToroLA

REVISION RECORD

M68KMASM/D9 - July 1985. This manual reflects minor technical changes
regarding the MC68881 co-processor and adds an index.

MICROSYSTEMS

M) moToroLA

TABLE OF CONTENTS

Page
CHAPTER 1 GENERAL INFORMATION
1.1 SOOPE i e e e e e e 1
1.2 INTRODUCTION ©uite ittt ettt et e 1
1.3 M68000 FAMILY ASSEMBLY LANGUAGEcccviviinnennn. 2
1.3.1 Machine-Instruction Operation Codes 2
1.3.2 Directives Lo e e 2
1.4 M68000 FAMILY RESIDENT STRUCTURED ASSEMBLER 2
1.4.1 Assembler PUrpOSesS .ottt it i e e 3
1.4.2 Assembler Processingvoueiiin e i iiennann.. 3
1.4.3 Microprocessor Types «..vetirinn it iiiieeiannnn 3
1.5 RELOCATION AND LINKAGEttt iiiie i, 3
1.6 LINKER RESTRICTIONS ...ttt ittt iiie e enann, 4
1.7 NOTATION L e e ettt ettt et 5
1.8 RELATED PUBLICATIONS .ottt it iieeeeiiians 6
CHAPTER 2 SOURCE PROGRAM CODING

2.1 INTRODUCTION oottt it et it et eiiiie e e 7
2.2 COMMENT S e e i e e e e e e 7
2.3 EXECUTABLE INSTRUCTION FORMATciiiiriiiiinannnns. 8
2.4 SOURCE LINE FORMAT ittt iiiiiiieae e 8
2.4.1 Label Field .. oot e 8
2.4.2 Operation Fieldcoiiiiiiiiiiiiiiiiii e, 9
2.4.3 Operand Fieldooiiuiniini it 10
2.4.4 Comment Fieldoiiiiieiiiieiiiiiiii i, 10
2.5 ADDRESSING MODES ... iivttrtiiiiiiiiiie e 11
2.5.1 Register Direct Modescovvirininiiinninenn.., 16
2.5.2 Memory Addressiinnrein it e e 16
2.5.2.1 Address Register Indirectccoiiiiiiiiinnnnn, 17
2.5.2.2 Address Register Indirect with Postincrement 17
2.5.2.3 Address Register Indirect with Predecrement 17
2.5.2.4 Address Register Indirect with Displacement 17
2.5.2.5 Address Register Indirect with Index 18
2.5.2.6 Address Register Indirect with Preindexing Plus

Base and Outer Displacementcovven..... 18
2.5.2.7 Address Register Indirect with Postindexing Plus

Base and Outer Displacementsccuu.... 19
2.5.2.8 Address Register Direct with Indexing Plus Base

Displacement i eiiiiiiiii i e 20
2.5.3 Special Address Modesiiieiiiiiiiiiiii i 20
2.5.3.1 Absolute Short Addresscooeiiiiiiiniiiiinnn, 21
2.5.3.2 Absolute Long Addressc.eoviiiiiinnniinennnnnnn, 21
2.5.3.3 Program Counter with Displacement 22
2.5.3.4 Program Counter with Indexccii. ... 22
2.5.3.5 Program Counter with Preindexing Plus Base and

Outer Displacementscoviiiniiiiinininnnnn. 23

L MICROSYSTEMS

M) moTroroLa

PPN N
oY Oy

L= WK =

O 00 0000000000~

PR MNMNORRRNNRONRRPRPRNNRRRRPRNRNDMPONRORDPPRRNPPRNNDRNRRN NN RN NN NN
e & e a s s s e s a4 8 6 e e e 4 + e e e s+ e+ e+ e s 2 s e s e e

3
3.
.3

UL WA —

LR~~~ WN =

b b b ek et bt bt bt bt et b et e s b
OO N~N~NOOOoOTUTOITE WO

.6
7
.8

N

—

—

TABLE OF CONTENTS (cont’d)

Page
Program Counter with Postindexing Plus Base and
Outer Displacementsc.oiniiiiiiiiiiiiniinenn.. 24
Program Counter Direct with Indexing Plus Base
Displacementuurirnenereronoreeneenennenennenns 25
Immediate Datavveririniiiiniii i 25
OTES ON MC68020 ADDRESSING MODEScovnviniiniiinnnnn, 26
Address Register Addressing Modes, 26
Program Counter-Relative Addressing Modes 27
Using Suppressed Registers to Force Redundant
Addressing Modesciviviuniniii ittt 27
Addressing SUMMArYcceererrnnenernennennonenaenans 28
NOTES ON ADDRESSING OPTIONSc.iivniinieniniiieinnnnnnn. 29
SYMBOLS AND EXPRESSIONS ...vrvtiiniiiiiiiiiiiniennenann 35
771110101 I3 P 35
Symbol Definition Classesccoviiiiiiiininnnnn, 36
User-Defined Labelscciiiiiiiiiiiiiiiiiiin., 37
Integer EXpressionsoeiiiiniiinininenenenennnnnns 37
Operator Precedenceccoviiiiiiiinininennneannnnns 39
REGISTERS v ttititt it iie i iee it en e s usenannennns 40
INSTRUCTION MNEMONICS ..ottt it iine i 42
Arithmetic Operationscoiiiiiiiiiiiiniennnn, 43
MOVE Instructionot 44
Compare and Check Instructionscccovvvvnaa.. 44
Logical Operationseverieniiiieiennenennennnnen 45
Shift Operationscceiiiiiiiiiiiiiniineiennnennn, 45
Bit Operationscoiniuiiiiniiiiiiiiiiiiiiieiennans 46
Conditional Operationsc.coviiiiiiniiinennnennns, 47
Branch Operationscciiiiiiiniiiiiiiiiiiinenn.n, 47
Jump Operations ...ttt it i 48
DBcc Instruction ..ottt i e 49
Load/Store Multiple Registerscccviiviiiininn, 50
Load Effective Addressoiiiiiiiiiiiiinnennnn, 51
Move to/from Control Registercoiviieiinn.. 51
Move to/from Address Spacecieviiiieineniiiinnns 52
Bit Fields and Instructions (MC68020 only) 52
Single Operand Bit Field Instruction 53
Double Operand Bit Field Instruction 55
Check Instructions (MC68020 only)c.cvvenenninnnnn. 57
Check Register Against Bounds 57
Compare Register Against Bounds 57
Truncated Divide Instructions (MC68020 only) 58
Truncated Signed Dividecoivviinviiiinn., 58
Truncated Unsigned Dividecooiiiiiiiiat, 58
Sign Extend Instructions (MC68020 only) 59
Sign Extend Byte ..o 59
Sign Extend Word vriiiiiiiiiii i 59
ii

MICROSYSTEMS

@ MOTOROLA

N

CHAPTER

NN NN N R
e e e e s e s s e s w e & e s »

NN N

WWWWwWwWwwWwwwww
WWWRMNINPMNDRNIMN N —

WWwww
PpPpww

1

YO WM =

N

—

NOT R WN =

TABLE OF CONTENTS (cont’d)

Page
BCD Instructions (MC68020 only)cvveuninennnn.. 60
Pack BCD .ottt i i e e e 60
Unpack BCD .. ienir it i i i e e e 60
Module Instructions (MC68020 only)c.cvvnn.. 61
Call Module iiri ittt ittt it et e et e 61
Return from Moduleciiiiiiiiiiiiiiinnnnn. 61
Trap on Condition Code (MC68020 only)covvun.... 61
Compare and Swap with Operand (MC68020 only) 62
Breakpoint (MC68020 only)ovvriirriiineiiinnnnnnnn. 62
The MC68881 Co-Processor Instructions (MC68881 only) .. 62
Co-Processor Branch Conditionally 64
Decrement and Branch on Condition 64
Set on Conditioneiiniuniiniiiiii i, 64
Trap on Condition, with or without a Parameter 65
Co-Processor Save Functioncovvivinnninnn. 65
Restore Internal State of Co-Processor 65
Move to Floating-Point Register from Memory or from
Another Floating-Point Register Instruction 66
Move from Floating-Point Register to
Memory Instructionscviiiiiiinnninn... 67
Floating-Point Functions, 68
.10 Floating-Point Arithmetic Operations 70
.11 Floating-Point NO-OPciiiiiiviiiniinnnnn., 71
.12 Floating-Point Test of an Operand 71
VARIANTS ON INSTRUCTION TYPESveiiiirnrinennnnnnnn. 71
ASSEMBLER DIRECTIVES
INTRODUCTION vttt ittt ettt i et eiineeens 73
ASSEMBLY CONTROL v vvier e it c e e e nns 74
END - Program Endcoiiiiniiininiieiinnnnnnnnn. 74
INCLUDE - Include Secondary Fileccovvuuvvnnn. 75
MASK2 - Assemble for MASKZ2 (MC68000 only) 75
OFFSET - Define Offsetscoiiiiiiniiiininnnnnnnn, 75
ORG - Absolute Originc.coiiieiiiiiiiiinennnn.. 76
SECTION - Relocatable Program Section 76
SYMBOL DEFINITION ..ottt ittt eiiaeeenn 76
EQU - Equate Symbol Valuecoiiiiinininnvnnnnn.. 77
FEQU - Equate Floating-Point Symbol Value
(MCB8BBL ONTY) weietiiii it it it enns 77
REG - Define Register Listccoviiiiiiniinn... 77
SET - Set Symbol Valueccoviiniiniiiiininnn... 78
DATA DEFINITION/STORAGE ALLOCATIONcvvvvrnninnn.. 78
COMLINE - Command Lineceuiiiinennenenennnennnnnns 78
iii

MICROSYSTEMS

@ MOTOROLA

CHAPTER

WWWwWwWwwwww

WWWWWWwWwWwwWwwWwwwWwwww
(o) e e ey W NE NS W W NI RS NI NI N NS,]

PR ArPAPARPPAPAEPD
T £ W WMN PR NN

2,083, IE, T S NI S S

~

LW

N —

W N =

TABLE OF CONTENTS (cont*d)

Page
DC - Define Constant i iinennnn. 79
Examples of ASCII Stringscoviririiinenennnn. 80
Examples of Numeric Constants 80
DCB - Define Constant Blockcivuviiiiii, 81
DS - Define Storagecovviieiiiniieiniieiennnnnn. 81
LISTING CONTROL AND OUTPUT OPTIONScovvvvrennennnn 82
FAIL - Programmer Generated Errorccvuenn 82
FOPT - Floating-Point Assembler Options
MC68020/MCBB88L 0nly) .oeiiinnriieiieiinnnnnennann 83
FORMAT - Format The Source Listing 83
NOFORMAT - Do Not Format the Source Listing 84
LIST - List The Assembly ..., 84
NOLIST - Do Not List The Assembly 84
LLEN - Line Length ...ttt 84
NOOBJ - No Objectvvririieiii ittt 84
OPT - Assembler Optionsccviiviveninennnnnnn, 85
PAGE - Top Of Pageuviriinrrinennennennnnnnnnn, 87
NOPAGE - Do Not Page Source Output 87
SPC - Space Between Source Liness 87
TTL - TitTe i i i i et ittt e i eneanns 87
LINKAGE EDITOR CONTROL ..vuvivnernnernnennneennnennnnnns 87
IDNT - Relocatable Identification Record 87
XDEF - External Symbol Definition 88
XREF - External Symbol Referencecc.o.... 88
INVOKING THE ASSEMBLER
INTRODUCTION ettt i et st ettt st e it einenns 89
VERSAdos ENVIRONMENT ..ottt it iiineieennnnns 89
Command Line Format.......couiuiiiniiiniiinnnnnennnnnns 89
Symbol Table Size Optionov i ennnnnnnn. 90
Microprocessor Type Optioncoiiiviiiinnnnnnnnn.. 91
SYSTEM V/68 ENVIRONMENT .. .iveitiin it i iiniiieennnnnn 91
Command Line Formatcoeuririinirninninennnnnnnn. 91
ASSEMBLER OUTPUT ittt tir ittt ittt cteeiennnernannannns 93
ASSEMBLER RUNTIME ERRORSivirrii it iiiiiieiinenannnn 94

v MICROSYSTEMS

@ MOTOROLA

CHAPTER

CHAPTER

CHAPTER

(3,3 WO WS WS WS W WO N NS S, Ny
« e e 6 e e e & e o e e =
WWWRIMNNNDRNMNDNN N =

(o2 e o) NWe e Ne)Ne) We)
W WWWWWMN —
D5 W N -

[s2 e) We Rer e Ne W ey o) We e,
(o) WS RSN N IS, I - R R -

7
7.
7

(3]

N

—

.G)\IO\U“-&WNH

W N =

N b=t

[Y
. .

—

TABLE OF CONTENTS (cont®d)

Page
MACRO OPERATIONS AND CONDITIONAL ASSEMBLY
INTRODUCTION ittt ittt it ittt ireneeenrenenennennnns 95
MACRO OPERATIONS .ottt ittt ittt teeiieeainnnnnes 95
Macro Definitionoivirniiiin ittt ieniieannnn 96
Macro Invocationcuiiiiriinir it it 96
Macro Parameter Definition and Use 97
Labels within Macrosoiiiiiiiniiinernienennennns 98
The MEXIT Directiveceuiiiiiiiniiiiiiii it 98
NARG Symbolcniiniiiiiii ittt it teeineeeennenns 98
Implementation of Macro Definition 99
Implementation of Macro Expansion 99
CONDITIONAL ASSEMBLY \.irriir ittt it eieiireernennnennns 101
Conditional Assembly Structurecovviinn... 101
Example of Macro and Conditional Assembly Usage 102
STRUCTURED CONTROL STATEMENTS
INTRODUCTION et i i it ittt etieciieennannnn 105
KEYWORD SYMBOLS . .iiriir ittt ittt ettt rnineennnns 105
I 170 106
IF Statement ... it i i i i it 107
FOR Statementttt 107
REPEAT Statement ... ittt ien e 108
WHILE Statementooiiiiiiii ittt 108
(MC68020/MC68881 only) Floating- Po1nt Structured
Assembler Syntaxvveiiiiin it i 109
SIMPLE AND COMPOUND EXPRESSIONSvivriiriniinnennnnnn. 110
Simple EXPressSions .. enrnein it ittt 110
Condition Code EXpressionscceivviuinvunnnnn. 110
Operand Comparison EXpressionscceeeeenvnn. 111
Compound EXpressionseereeieniinninenennenennnns 112
SOURCE LINE FORMATTING . ..tvtiiieiiniieeiiennnnnnennnns 113
Class 1 Symbol Usagecoviiiiiiinnniinnennnnnnannn. 113
Limited Free-Formattingivviinriniiiennnnnn. 114
Nesting of Structured Statements 114
Assembly Listing Formato, 115
EFFECTS ON THE USER’S ENVIRONMENTciviivunnnnnn.. 115
GENERATING POSITION INDEPENDENT CODE
FORCING POSITION INDEPENDENCEc.ceviiuinernnnnnnnn. 117
BASE-DISPLACEMENT ADDRESSING ...v.vitiriiiiiieiinennnnnnns 118
BASE-DISPLACEMENT IN CONJUNCTION WITH FORCED POSITION
INDEPENDENCE ..ottt ittt i i ettt it tnennennnnnnns 118
'

MICROSYSTEMS

@ MOTOROLA

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

APPENDIX E
INDEX

TABLE 2-1.
2-2.

PPN NN
1

|
[y Sy S S Ve] O~NOYOT W

O &> WM NN
'

R e

TABLE OF CONTENTS (cont’d)

Page

INSTRUCTION SET SUMMARY ...ttt iiiianeennn, 121
CHARACTER SET .ttt e ieeians 133
SAMPLE ASSEMBLER OUTPUT ..iiiriiiiiiieiiiii i 137
EXAMPLE OF LINKED ASSEMBLY-LANGUAGE PROGRAMS

UNDER VERSAdOSiiivtiiniiiiiiiiiiie et 141
ASSEMBLY ERROR CODES ...ttt iieie i iriie e, 143
.. 151

LIST OF TABLES

Address Modesueeiniiii i e 13
Cross-Reference: Effective Addressing Mode, Given Operand

Format and <expr> TYpPe .ottt it ieenennnns 16
Special Address Rangesccoiiiiiiiniiiniinnnnnnnn. 21
Addressing Summaryo i 28
Operand Resolutioncoviiiiiniiiiiiinniinnnnnnnn. 30
Known Location of Operand & Instruction Follows SECTION .. 31
Known Location of Operand & Instruction Follows ORG 32
Unknown Location of Operand & Instruction Follows

SECTION OF ORG .+ ettt ettt i it e i iie e eianeenns 32
External Reference & Instruction Follows SECTION 33
External Reference & Instruction Follows ORG 34
MC68881 Specific Floating-Point Condition Codes (fpcc) ... 63
M68000 Family Assembler Directivesovvveninenennn... 73
Standard Listing Formatoiiiiiiveiiinnn.. 94
Effective Addressing Modes for Compare Instructions 112

AN
vi

MICROSYSTEMS

@ MOTOROLA GENERAL INFORMATION

CHAPTER 1
GENERAL INFORMATION

1.1 SCOPE

The intent of this publication is to provide sufficient information to develop
M68000 family assembly Tanguage programs, which may be run on MC68000-,
MC68010-, or MC68020-based systems. The information herein pertains to the
elements of the assembler. Detailed information pertaining to the MC68000
family of microprocessors is provided in the M68000 16/32-bit Microprocessor
Programmer’s Reference Manual. It is assumed that the designer has a complete
understanding of the microprocessor architecture before attempting software
development.

Chapters 1 through 4 contain the basic features of the assembler needed by the
beginning assembly language programmer. Chapter 4 also provides instructions
to invoke the assembler. Advanced topics, such as macro operations,
conditional assembly, and structured syntax, are described in Chapters 5
through 8.
1.2 INTRODUCTION
The M68000 Family Resident Structured Assembler (referred to as the
"assembler" throughout this manual) 1is used to translate M68000 family
assembler source programs into MC68000 and MC68010 machine language. The
MC68020 assembler 1is available as an option. The assembler executes under
VERSAdos on the EXORmacs Development System, the VERSAmodule 01, 02, or 03
Monoboard Microcomputer, the VMC 68/2 Microcomputer System, the VME/10
Microcomputer System, VMEmodule Monoboard Microcomputer (MVMEIO1 or MVME110),
or under SYSTEM V/68 on the EXORmacs Development System or the VME/10
Microcomputer System.
The assembler includes the following features:

. Absolute/relocatable code generation

. Complex expressions

. Symbol table listing

. Macros

. Conditional assembly

. Structured syntax

. Cross-reference

. IEEE Standard floating-point data types (MC68881 only)

MICROSYSTEMS

@ MOTOROLA GENERAL INFORMATION

1.3 M68000 FAMILY ASSEMBLY LANGUAGE

The symbolic language used to code source programs for processing by the
assembler is called assembly 1language. This Tanguage is composed of the
following symbolic elements:

a. Symbolic names or labels, which represent instruction, directive, and
register mnemonics, as well as user-defined memory labels and macros.

b. Numbers, which may be represented in binary, octal, decimal, IEEE
standard floating-point (MC68881 only), or Binary Coded Decimal (BCD)
notation.

c. Arithmetic and Tlogical operators, which are employed in complex
expressions.

d. Special-purpose characters, which are used to denote certain operand
syntax rules, macro functions, source line fields, and numeric bases.

1.3.1 Machine-Instruction Operation Codes

Appendix A summarizes that part of the assembly 1language that provides
mnemonic machine-instruction operation codes for the MC68000, MC68010,
MC68020, and MC68881 machine instructions.

1.3.2 Directives

The assembly 1language contains mnemonics for directives which specify
auxiliary actions to be performed by the assembler. Directives are not always
translated to machine tanguage.

Assembler directives assist the programmer in controlling the assembler
output, in defining data and symbols, and in allocating storage.

1.4 M68000 FAMILY RESIDENT STRUCTURED ASSEMBLER

The assembler translates source statements written in the assembly language
into relocatable or absolute object code, assigns storage Tlocations to
instructions and data, and performs auxiliary assembler actions designated by
the programmer. Object modules produced by the assembler are compatible with
the M68000 family Linkage Editor or the SYSTEM V/68 PAL Linkage Editor, both
also referred to as the "linkage editor" or "linker".

The assembler includes macro and conditional assembly capabilities, and

implements certain "structured" programming control constructs. The assembler
generates object code which may then be linked into a memory image format.

MICROSYSTEMS

@ MOTOROLA GENERAL INFORMATION

1.4.1 Assembler Purposes
The two basic purposes of the assembler are to:

. Provide the programmer with the means to translate source statements
into object code -- that is, to the format required by the 1inkage
editor.

. Provide a printed Tisting containing the source language input,
assembler object code, and additional information (such as error codes,
if any) useful to the programmer.

1.4.2 Assembler Processing

Assembly is a two-pass process. During the first pass, the assembler develops
a symbol table, associating user-defined labels with values and addresses.
During the second pass, the translation from source language to machine
language takes place, using the symbol table developed during pass 1. In pass
2, as each source 1line 1is processed in turn, the assembler generates
appropriate object code and the assembly Tisting.

1.4.3 Microprocessor Types

The assembler in its default mode provides assembly of instructions for the
MC68000 processor. However, the assembly of MC68010, MC68020, and MC68881
instructions can be enabled either as a directive in the source text which
precedes instruction mnemonics or from the command Tine (refer to paragraphs
3.5.2.10 and 4.2.1, respectively).

1.5 RELOCATION AND LINKAGE

"Relocation” refers to the process of binding a program to a set of memory
Tocations at a time other than during the assembly process. For example, if
subroutine "ABC" is to be used by many different programs, it is desirable to
allow the subroutine to reside in any area of memory. One way of
repositioning the subroutine in memory is to change the ORG directive operand
field at the beginning of the subroutine, and then to reassemble the routine.
A cisadvantage of this method is the expense of reassembling ABC. An
alternative to multiple assemblies is to assemble ABC once. Produced is an
object module, which contains enough information, so that another program (the
linkage editor) can easily assign a new set of memory locations to the module.
This scheme offers these advantages: reassembly is not required; the object
module is substantially smaller than the source program; relocation is faster
than reassembly, and relocation can be handled by the linkage editor (rather
than by editing the source program and changing the ORG directive).

MICROSYSTEMS

@ MOTOROLA GENERAL INFORMATION

In addition to program relocation, the linkage editor must alsoc resolve inter-
program references. For example, the other programs that are to use
subroutine ABC must contain a Jump-to-Subroutine instruction to ABC. However,
since ABC 1is not assembled at the same time as the calling program, the
assembler cannot put the address of the subroutine into the operand field of
the subroutine call. The Tlinkage editor, however, knows where the calling
program resides and, therefore, can resolve the reference to the call to ABC.
This process of resolving inter-program references is called "linking". An
example of linking two object modules is shown in Appendix D.

Program sections provide the basis of the relocation and linking scheme. Each
of these sections may also have a variable number of named common sections
associated with it, with each common section having a unique name. These
relocatable sections are passed on to the linkage editor. From the different
modules that are to be linked, the linkage editor collects all sections with
the same number. Each of the 16 relocatable sections may contain data and/or

code; in addition, named common sections may be defined within any relocatable
section.

Absolute sections are unnumbered (and, therefore, unlimited in number); they
are specified by the ORG directive.

1.6 LINKER RESTRICTIONS

Before developing relocatable assembly Tlanguage modules, the user should
become familiar with the capabilities and restrictions of the linkage process,
as outlined in the M68000 Family Linkage Editor User’s Manual or the SYSTEM
V/68 PAL Linkage Editor User’s Manual. It is important to keep in mind that
the relocation features of the assembler are directly attributable to
capabilities of the 1linkage editor, and that the linkage environment can be
controlled through assembler directives. If the assembly language object
program is to be linked with a Pascal object program, the user should be aware
of Pascal’s requirements before allocation.

The assembler produces an object module compatible with the Tinkage editor.

XDEF and XREF must be used to define entry points into the various modules and
external symbols appearing in the module.

MICROSYSTEMS

@ MOTOROLA GENERAL INFORMATION

1.7 NOTATION

Commands and other I/0 are presented in this manual in a modified Backus-Naur
Form (BNF) syntax. Certain symbols in the syntax, where noted, are used in
the real 1/0; however, others are meta-symbols whose usage is restricted to

the syntactic structure. These meta-symbols and their meanings are as
follows:

<> The angular brackets enclose a symbol, known as a syntactic
variable, that is replaced in a command line by one of a class
of symbols it represents. In some cases, where noted, angular
brackets are required characters.

| This symbol dindicates that a choice is to be made. One of
several symbols, separated by this symbol, should be selected.

[] Square brackets enclose a symbol that is optional. The enclosed
symbol may occur zero or one time. In some cases, where noted,
square brackets are required characters. In the MC68020
addressing mode, they indicate indirection.

[1... Square brackets followed by periods enclose a symbol that is
optional/repetitive. The symbol may appear zero or more times.

{} In MC68020 addressing, braces indicate optional symbols. 1In
MC68020 bit field instructions, however, braces are required
elements.

Operator entries are to be followed by a carriage return.

MICROSYSTEMS

M) moToRroLA

1

.8 RELATED PUBLICATIONS

GENERAL INFORMATION

The following publications may provide additional helpful information. If not
shipped with this product, they may be obtained from Motorola’s Literature
Distribution Center, 616 West 24th Street, Tempe, AZ
994-6561.

85282; telephone (602)

MOTOROLA

PUBLICATION NUMBER

EXORmacs Development System Operations Manual
VME/10 Microcomputer System Overview Manual
VMC 68/2 Series Microcomputer System Manual

VERSAdos to VME Hardware and Software Configuration
User’s Manual

VME101 System VERSAdos Hardware and Software
Configuration Manual

M68000 16/32-Bit Microprocessor Programmer’s
Reference Manual

M68000 Family Linkage Editor User’s Manual
M68000 Family Resident Pascal User’s Manual
VERSAdos Messages Reference Manual

M68000 Family VERSAdos System Facilities
Reference Manual

M68020 32-Bit Microprocessor User’s Manual
SYSTEM V/68 Error Message Manual

SYSTEM V/68 PAL Linkage Editor User’s Manual
SYSTEM V/68 Pascal Compiler User’s Manual
SYSTEM V/68 User’s Manual

M68KMACS
M6BKVSOM
MVMCSM

MVMEVDOS

MVMECNFG1

M68000UM

M68KLINK
M68KPASC
M68KVMSG
M68KVSF

MC68020UM
M6BKUNMSG
ME8KUNLNK
M6BKUNPAS
M6SKUNUM

MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

CHAPTER 2
SOURCE PROGRAM CODING

2.1 INTRODUCTION

A source program is a sequence of source statements arranged in a logical way
to perform a predetermined task. Each source statement occupies a line of
printable text, where each line may be one of the following:

Comment

Executable instruction
. Assembler directive

. Macro invocation

o0 T o

NOTE

The MC68020 assemblers running under VERSAdos or SYSTEM V/68
and the MC68000/MC68010 assembler running under SYSTEM V/68
are case-insensitive to source input except as noted under
the INCLUDE directive or for ASCII strings. A1l instruction
examples in this manual are in uppercase letters, excluding
explanations.

2.2 COMMENTS

Comments are strings, composed of any ASCII characters (refer to Appendix B),
which are inserted into a program to identify or clarify the individual
statements or program flow. Comments are included in the assembly listing but
are ignored by the assembler.

A comment may be inserted in one of two ways:

a. At the beginning of a line, starting in column one, where an asterisk
(*) is the first character in the line. The entire line is a comment,
and an instruction or directive in this line is not recognized.

b. Following the operation and operand fields of an assembler instruction
or directive, where it is preceded by at least one space (refer to
paragraph 2.4.4).

Examples:
* THIS ENTIRE LINE IS A COMMENT.

BRA LAB2 THIS COMMENT FOLLOWS AN INSTRUCTION.

MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.3 EXECUTABLE INSTRUCTION FORMAT

Assembly Tlanguage programs are translated by the assembler into ocbject code
that may contain executable instructions, data structures, and relocation
information. This translation process begins with symbolic assembly language
source code, which employs reserved mnemonics, special symbols, and user-
defined Tabels. M68000 family assembly language is line-oriented.

2.4 SOURCE LINE FORMAT

Each source statement has an overall format that is some combination of the
following four fields:

a. label

b. operation
¢. operand
d. comment

The statement Tines in the source file must not be numbered. The assembler,
however, prefixes each line in the listing file with a sequential number, up
to four decimal digits.

The format of each Tline of source code is described in the following
paragraphs.

2.4.1 Label Field

The Tabel field is the first field in the source line. A label which begins
in the first column of the Tine may be terminated by either a space or a
colon. A 1label may be preceded by one or more spaces, provided it is then
terminated by a colon. In either case, the colon is not a part of the label.

Labels are allowed on all instructions and assembler directives which define
data structures. For such operations, the Tabel is defined with a value equal
to the Tlocation counter for the instructions or directive, including a
designation for the program section in which the definition appears.

Labels are required on the assembler directives which define symbols values
(SET, EQU, REG). For these directives, the l1abel is defined with a value (and
for SET and EQU, a program section designation) corresponding to the
expression in the operand field.

Labels on MACRO definitions are saved as the mnemonic by which that macro is
subsequently invoked. No memory address is associated with such labels. A
label 1is also required on the IDNT directive. This label is passed on to the
relocatable object module; it has no associated internal value.

No other directives allow labels.

Labels which are the only field in the source line, are defined equal to the
current location counter value and program section.

MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.4.2 Operation Field

The operation field follows the label field and is separated from it by at

least one space. Entries in the field fall under one of the following
categories:

a.

c.

Instruction mnemonics - which correspond to the M68000 family processor
instruction set.

- Directive mnemonics - pseudo-operation codes for controlling the

assembly process.

Macro calls - invocations of previously-described macros.

The size of the data field affected by an instruction is determined by the
data size code. Some instructions and directives can operate on more than one
data size. For these operations, the data size code must be specified or a
default size is assumed. The size code need not be specified if only one data
size is permitted by the operation. The data size code is specified by
appending a period (.) to the operation field, followed by B, W, L, S, D, X,
or P where:
B = Byte (8-bit data)
W = Word (16-bit data)
L = Longword (32-bit data)
S = Byte (8-bit offset for certain branch instructions)
S = Single precision binary real (IFEE Standard, 32-bit: 8-bit exponent,
23-bit mantissa, 1-bit sign) (MC68881 only)
D = Double precision binary real (IEEE Standard, 64-bit: 11-bit exponent,
52-bit mantissa, 1-bit sign) (MC68881 only)
X = Extended precision binary real (96-bit: 15-bit exponent, 64-bit
mantissa, 1-bit sign) (MC68881 only), (16-bits are reserved)
P = Packed BCD real string (96-bit: 3-decimal digit exponent and 17-

decimal digit mantissa) (MC68881 only)

The data size code is not permitted, however, when the instruction or
directive does-not have a data size attribute.

MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

Examples (legal):

LEA 2(A0),Al Longword size is assumed (.B, .W not allowed); this
instruction loads effective address pointed to by AO,
+2 into Al.

ADD.B ADDR, DO This instruction adds byte whose address is ADDR to
Tow order byte in DO.

ADD D1,D2 This instruction adds low order word of D1 to low
order word of D2. (W is the default size code.)

ADD.L A3,D3 This instruction adds entire 32-bit (longword)
contents of A3 to D3.

Example (illegal):

SUBA.B #5,Al ITlegal size specification (.B not allowed on SUBA).
This instruction attempts to subtract the value 5
from the Tow order byte of Al; byte operations on
address registers are not allowed.

2.4.3 Operand Field

If present, the operand field follows the operation field and is separated
from the operation field by at least one space. When two or more operand
subfields appear within a statement, they must be separated by a comma but may
not contain embedded spaces; e.g., D1, D2 is illegal. 1In an instruction like
*ADD D1,D2’, the first subfield (D1) 1is generally applied to the second
subfield (D2) and the vresults placed in the second subfield. Thus, the
contents of D1 are added to the contents of D2; the result is saved in
register D2. In the instruction ’MOVE D1,D2’, the first subfield (D1) is the
sending field; the second subfield (D2) is the receiving field. In other
words, for most two-operand instructions, the general format ’opcode
source,destination’ applies.

2.4.4 Comment Field

The Tast field of a source statement is an optional comment field. This field
js ignored by the assembler except for being included in the Tisting. The
comment field is separated from the operand field (or the operation field, if
there is no operand) by one or more spaces and may consist of any ASCII
characters. This field is important in documenting the operation of a
program.

10 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.5 ADDRESSING MODES

Effective address modes, combined with operation codes, define the particular
function to be performed by a given instruction. Effective addresses and data
organization are described in detail in Section 2, "Data Organization and
Addressing Capabilities", of the M68000 16/32-Bit Microprocessor Programmer’s
Reference Manual.

References to data addresses may be odd only if a byte is referenced. Data
references involving words or longwords must be even. Likewise, instructions
must begin on an even byte boundary.

Individual bits within a byte (operand for memory destinations) or longwords
(operands for data register destinations) may be addressed with the bit
manipulation instructions (refer to paragraph 2.10.6). Bits for a byte are
numbered 7 to 0, with 7 being the most significant bit position and 0 the
least significant. Bits for a word are numbered 15 to 0, with 15 being the
most significant bit and 0 the least significant. Bits for a longword are
numbered from 31 to 0, with 31 being the most significant bit position and 0
the least significant bit position.

The code generated in the listing file for some addresses may be the same as
the code generated for different expressions whenever externally referenced

symbols are involved. The object file contains the correctly resolved
addresses.

Following are definitions of the symbols used in Tables 2-1 and 2-2 and
throughout the remainder of this section:

An Address register number "n" (0-7).

ZAn (MC68020 only) Suppressed address register number "n" (0-7)
whose value is taken to be zero. Can be used in place of An
if suppression is desired.

Dn Data register number "n" (0-7).

Ri (MC68020 only) Index register number "i"; may be any address
(An) or data (Dn) vregister with optional ".W" or ".L" size
designation (16 wvs. 32 bits). Scaling factor "scl" may also
exist.

ZRi (MC68020 only) Suppressed index register number "i" (0-7)
whose value 1is taken to be zero. Can be used in place of Ri
if suppression is desired.

scl (MC68020 only) Scaling factor of 1, 2, 4, 8 optionally used
in indexing modes. The default is 1.

PC Program counter.

ZPC (MC68020 only) Suppressed PC whose value is taken to be zero.

Can be used in place of PC if suppression is desired.

1 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

B,W,L
d(An)
d(An,Ri)

d(PC)
d(PC,Ri)
<absolute>
<simple>
<complex>

bd

od

<ea>

<iea>
null
Omitted

values

Grouping
characters

Order

Notation

Byte, word, longword data sizes.
Address register indirect with displacement (d).

Address register indirect with index (Ri) plus displacement

(d).

Program counter with displacement (d).

Program counter with index (Ri) plus displacement (d).
Absolute expression.

Simple relocatable expression.

Complex relocatable expression.

(MC68020 only) Base displacement that 1is added before
indirection occurs.

(MC68020 only) Outer displacement that 1is added after
indirection occurs. Displacement size may be either word or
Tongword.

Effective address expression.

Indirect effective address expression.

(MC68020 only) Null displacements 1imply that no extension
word is present in the instruction for displacement.

(MC68020 only) Omitted registers take on suppressed register
values (taken to be zero).

Omitted displacements take on null values (taken to be zero).

(MC68020 only)

[] enclose an indirect expression and are required
characters.
() enclose the entire <ea> expression and are required
characters.

(MC68020 only) Addressing arguments may occur in any order
within the grouping characters. When two registers appear in
an <ea> expression, if the leftmost could be either An or Ri,
then a base register An is assumed for the leftmost, and the
second is taken as an index register Rj.

{MC68020 only) In MC68020 addressing, braces indicate
optional symbols.

12 MICROSYSTEMS

@ MOTOROLA

SOURCE PROGRAM CODING

Table 2-1 summarizes the addressing modes defined for the M68000 family, their
invocations, and significant constraints.

Due to Tinker con-
straints, any odd-
addressed labels, used
with externally
defined Tlabels, will
generate a "break to
odd address” error.

TABLE 2-1. Address Modes
________ MBBE_ INVOCATION
1) Register direct An
Dn
2) Memory address
a) Simple indirect (An)
b) Predecrement -(An)
¢) Postincrement (An)+
d) Indirect with <absolute>(An)
displacement (16-bit) <complex>{An)
e) Indirect with index <absolute>(An,Ri)
(16- or 32-bit) plus
displacement (8-bit)
f) Indirect with ([bd,An,Ri{*scl}],0d)

g)

h)

preindexing plus base
and outer displacements
(MC68020 only)

Indirect with
postindexing plus base
and outer displacements
(MC68020 only)

Direct with indexing
plus base displacement
(MC68020 only)

([bd,An],Ri{*scl},od)

(bd,An,Ri{*scl})

13

MICROSYSTEMS

M) moToroLA

TABLE 2-1.

3) Special address

a) PC with

displacement (16-bit)

b) PC with index
(16- or 32-bit) plus
displacement (8-bit)

c) PC with preindexing
plus base and
outer displacements
(MC68020 only)

d) PC with postindexing
plus base and outer
displacements
(MC68020 only)

SOURCE PROGRAM CODING

Address Modes (cont’d)

<simple>

<absolute>(PC)
<simple>(PC)
<complex>(PC)

<absolute>(PC)
<simple<(PC)
<complex>(PC)

<simple>(Ri)

<absolute>(PC,Ri)
<simple>{PC,Ri)

([bd,PC,Ri{*scl}],0d)

([bd,PC],Ri{*scl}],o0d)

14

Expression is an
address {not a dis-
placement) which must
be backward, within
current relocatable
section.

Forced PC-relative.
Must fit within 16-bit
signed field; resolved
at assembly or Tlink
time.

Forced PC-relative.
Must fit within
16-bit signed

field; resolved at
assembly or 1ink time.

Expression is an
address which must be
backward, within
current relocatable
section. Also, due
to linker constraints,
any odd-addressed
labels, used with
externally defined
labels, will generate
a "break to odd
address" error.

Forced PC-relative;
expression must be
within current
program section.

MICROSYSTEMS

M) moToroLA

Table
Given an
show which

TABLE 2-1.

Address Modes (cont’d)

SOURCE PROGRAM CODING

e) PC direct with
indexing plus base
(MC68020 only)

f) Absolute
(16- or 32-bit)

g) Immediate (8-, 16-,
or 32-bit)

4) Implicit PC

reference

(bd,PC,Ri{*scl})

<absolute>
<complex>
<simple>

ficabsolute>
#i<simple>
#<complex>

Expression must be
forward reference or
not in current program
section.

Due to linker con-
straints, any odd-
addressed labels, used
with externally
defined labels, used
to "break to odd
address" error.

Invoked by conditional
branch (Bcc) or DBcc
instruction; the
effective address is a
displacement from the
PC; the displacement
is either 8, 16, or
32 bits (32 on MC68020
only), depending on
OPT BRS, OPT BRB,

OPT BRW, and OPT BRL,
and whether these
options are overridden
on the current
instruction (refer to
paragraph 2.6). Also,
due to linker con-
straints, any odd-
addressed labels, used
with externally
defined Tabels, will
generate a "break to
odd address" error.

operand

15

2-2 provides a cross-reference of operand formats and addressing modes.
of the format shown in the first column, the other columns
addressing mode is indicated, depending on whether the expression
is absolute, simple relocatable, or complex relocatable.

MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

TABLE 2-2. Cross-Reference: Effective Addressing Mode, Given
Operand Format and <expr> Type

EFFECTIVE ADDRESSING MODE

ABSOLUTE SIMPLE RELOCATABLE COMPLEX RELOCATABLE
OPERAND FORMAT <expr> <expr> <expr>
<expr>{An) d(An) d(An) d(An)
<expr>(Dn) invalid d(PC,Dn) (NOTE) invalid
<expr>(An,Ri) d(An,Ri) invalid invalid
<expr> absolute (W,L) d(PC) or absolute (W,L)

absolute (W,Ll)

<expr>(PC) d(PC) d(PC) d(PC)
<expr>(PC,Ri) d(PC,Ri) (NOTE) d(PC,Ri) (NOTE) invalid
#<expr> immediate(B,W,L) immediate (W,L) immediate (W,L)

2.5.1 Register Direct Modes

These effective addressing modes specify that the operand is in one of the 16
multifunction registers (eight data and eight address vregisters). The
operation is performed directly on the actual contents of the register.

Notations: An where n is between 0 and 7

Dn
Examples: CLR.L D1 Clear all 32 bits of DI.
ADD Al,A2 Add low order word of Al to low order

word of A2.

2.5.2 Memory Address

The following effective addressing modes specify that the operand is in memory
and provide the specific address of the operand.

16 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.5.2.1 Address Register Indirect. The address of the operand is in the
address register specified by the register field.

Notation: (An)

Examples: MOVE #5, (A5) Move value 5 to word whose address is
contained in A5.
SUB.L (A1),D0 Subtract from DO the value in the
longword whose address is contained in
Al.

2.5.2.2 Address Register Indirect with Postincrement. The address of the
operand is in the address register specified by the register field. After the
operand address 1is wused, it is incremented by one, two, or four, depending
upon whether the size of the operand is byte (.B), word (.W), or Tong (.L).

Notation: (An)+

Examples: MOVE.B (A2)+,D2 Move byte whose address is in A2 to low
order byte of D2; increment A2 by 1.

MOVE.L (A4)+,D3 Move longword whose address is in A4 to
D3; dincrement A4 by 4.

2.5.2.3 Address Register Indirect with Predecrement. The address of the
operand is in the address register specified by the register field. Before
the operand address is used, it is decremented by one, two, or four, depending
upon whether the operand size is byte (.B), word (.W), or long (.L).

Notation: -(An)
Examples: CLR -(A2) Subtract 2 from A2; clear word whose
address is now in A2.
CMP.L -(A0),DO Subtract 4 from AQ; compare longword

whose address is now in A0 with
contents of DO.

2.5.2.4 Address Register Indirect with Displacement. The address of the
operand is the sum of the address in the address register and the sign-
extended displacement.

Notation: d(An)

17 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

Examples: AVAL EQU 5 AVAL is equated to 5 (for use in
next instruction).

CLR.B AVAL(A0) Clear byte whose address is given by
adding value of AVAL (=5) to
contents of AO.

MOVE #2,10(A2) Move value 2 to word whose address
is given by adding 10 to contents of
A2.

2.5.2.5 Address Register Indirect with Index. The address of the operand is
the sum of the address in the address register, the sign-extended
displacement, and the contents of the index (A or D) register.

Notations: d{An,Ri) Specifies low order word of index register.
d(An,Ri.HW)
d(An,Ri.L) Specifies entire contents of index register.

Examples: ADD AVAL(A1,D2),D5 Add to 1low order word of D5 the word
whose address 1is given by addition of
contents of Al, the low order word of
index register (D2), and the
displacement (AVAL).

MOVE.L D5,$20(A2,A3.L) Move entire contents of D5 to longword
whose address s given by addition of
contents of A2, contents of entire
index register (A3), and the
displacement ($20).

2.5.2.6 Address Register Indirect with Preindexing Plus Base and Outer
Displacements. (MC68020 only) The address of the operand is the sum of the
<iea> and a sign-extended outer displacement value od. <iea> is the sum of
the contents of the address register An (or ZAn), the base displacement bd,
and the contents of the index register Ri (or ZRi). Therefore,

bd + (An) + Ri ---> <iea>
(<iea>) + od ---> <operand>

Notation: ([bd,An,Ri{*sc1}],0d) or
([bd,An,Ri.W{*sc1}],0d) Specifies low-order word of index
register Ri.

([bd,An,Ri.L{*sc1}],0d) Specifies entire contents of index
register Ri.

18 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

Examples: ADD ([BASE,Al1,D2],AVAL),D5 The sum of the value of BASE, the
contents of base register Al, and the
contents of the 1low-order word of
index register D2 points to <iea>.
The contents of the resultant address
<iea> added to the value of AVAL give
the <ea> of the operand to be added
to the contents of D5.

ADD ([2,A1,A2],4),D5 In this example, the assembler
selects the leftmost A register (Al)
to be the base register.

2.5.2.7 Address Register Indirect with Postindexing Plus Base and Quter
Displacements. (MC68020 only) The address of the operand is the sum of the
<jea>, the contents of the index register Ri (or ZRi), and the outer
displacement value od. <iea> is the sum of the base displacement bd and the
contents of the base register An (or ZAn). Therefore,

bd + (An) ---> <iea>
(<iea>) + od + Ri ---> <operand>

Notation: ([bd,An]},od,Ri{*scl}) or
([bd,An],od,Ri.W{*sc1}) Specifies low-order word of index
register Ri.

([bd,An],od,Ri.L{*sc1}) Specifies entire contents of index
register Ri.

Example: ADD ([BASE,Al],AVAL,D2),D5 The sum of the value of BASE and the
contents of base register Al points
to <iea>. The contents of the
resultant address <iea> added to the
value of AVAL and the low-order word
of 1index register D2 points to the
address of the operand to be added
to the contents of D5.

19 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.5.2.8 Address Register Direct with Indexing Plus Base Displacement.
(MC68020 only) The address of the operand is the sum of the 8-bit base
displacement bd, the contents of the base register An, and the contents of the
index register Ri. Therefore,

bd + (An) + (Ri) ---> <operand>

Notation: (bd,An,Ri{*sc1}) or

(bd,An,Ri.W{*scl}) Specifies Tlow-order word of index register
Ri.
(bd,An,Ri.L{*sc1}) Specifies entire contents of index register
Ri.
Example: ADD (BASE,A1,D2),D5 The sum of the value of BASE, the
contents of base register Al, and the
Tow-order word of index register D2
points to the address of the operand
to be added to the contents of D5.
ADD (BASE,A1,A2),D5 In this example, Al is the base

register because it is the leftmost
candidate for base register. A2 is
interpreted as being an index
register.

2.5.3 Special Address Modes

Special address modes use the effective address register field to specify the
special addressing mode instead of a register number. Table 2-3 provides the
ranges for absolute short and Tong addresses.

20 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

TABLE 2-3. Special Address Ranges

32-BIT ADDRESS 16-BIT REPRESENTATION OF 32-BIT ADDRESS
00000000 0000

. Absolute short
00007FFF TFFF

00008000

(No representation in 16 bits;
must be absolute long)

FFFF7FFF
FFFF8000 8000

: : Absolute short
FFFFFFFF FFFF

2.5.3.1 Absolute Short Address. The 16-bit address of the operand is sign
extended before it is used. Therefore, the useful address range is 0 through
$7FFF and $FFFF8000 through $FFFFFFFF.

Notation: XXX

Example: JMP $400 Jump to hex address 400

(MC68020 only) An absolute short address can be forced by using the notation:
(XXX).W

2.5.3.2 Absolute long Address. The address of the operand is the 32-bit
value specified.

Notation: XXX

Example: JMP $12000 Jump to hex address 12000
(MC68020 only) An absolute long address can be forced by using the notation:
(XXX).L

2l MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.5.3.3 Program Counter with Displacement. The address of the operand is the
sum of the address in the program counter and the sign-extended displacement
integer. The assembler calculates this sign-extended displacement by
subtracting the address of displacement word from the value of the operand
field.

Notation: <expression>(PC) Forced PC-relative. Note that
<expression> is interpreted as a
program address rather than a
displacement.

Example: JMP TAG(PC) Force the jump to address TAG to be PC-
relative.

2.5.3.4 Program Counter with Index. The address is the sum of the address in
the PC, the sign-extended displacement value, and the contents of the index (A
or D) register.

Notations: <expression>(Ri.W) Specifies low order word of index
register. .W is optional (default).
<expression>(Ri.L) Specifies entire contents of index
register.
<expression>(PC,Ri) Forced program counter-relative. Ri.W

or Ri.L legal. NOTE: <expression> is
interpreted as a program address rather
than a displacement.

Examples: MOVE T(D2),TABLE Moves word at location (T plus contents
of D2) to word Tlocation defined by
TABLE. T must be a relocatable symbol.

JMP TABLE(A2.W) Transfers control to Tocation defined
by TABLE plus the lower 16-bit content
of A2 with sign extension. TABLE must
be a relocatable symbol.

JMP TAG(PC,A2.W) Forces evaluation of TAG to be PC-
relative with index.

22 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.5.3.5 Program Counter with Preindexing Plus Base and Quter Displacements.
(MC68020 only) The address of the operand is the sum of the <iea> and a sign-
extended outer displacement value od. <iea> is the sum of the contents of the
PC (or ZPC), the base displacement bd, and the contents of the index register
Ri (or ZRi). Therefore,

bd + (PC) + Ri ---> <iea>
(<iea>) + od ---> <operand>
NOTE

Whenever ZPC s used, bd is not offset by the cur-
rent PC value. od is never offset by the PC value.

Notation: ([bd,PC,Ri{*sc1}],0d) or
([bd,PC,Ri.W{*sc1}],0d) Specifies low-order word of index
register Ri.

([bd,PC,Ri.L{*sc1}],0d) Specifies entire contents of index
register Ri.

Examples: ADD ([BASE,PC,A2],AVAL),D5 The sum of the value of BASE, the
contents of the PC, and the
contents of the low-order word of
index register 2 points to <jea>.
The contents of the resultant
address <ijea> added to the value
of AVAL give the <ea> of the
operand to be added to the
contents of D5.

ADD ([A2.PC,BASE],AVAL),D5 This example is equivalent to the
example above because ordering of
operands is not required.

23 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.5.3.6 Program Counter with Postindexing Plus Base and Other Displacement.
(MC68020 only) The address of the operand 1is the sum of the <iea>, the
contents of the index register Ri (or ZRi), and the outer displacement value
od. <iea> 1is the sum of the base displacement bd and the contents of the PC
{or ZPC). Therefore,

bd + (PC) ---> <ijea>
(<iea>) + od + Ri ---> (operand>

OTE

Whenever ZPC is used, bd is not offset
by the current PC value. od is never
offset by the PC value.

Notation: ([bd,PC],od,Ri{*sc1}) or
([bd,PC],0d,Ri.W{*sc1}) Specifies Tow-order word of index
register Ri.

([bd,PC],0d,Ri.L{*sc1}) Specifies entire contents of the index
register Ri.

Example: ADD ([BASE,PC],AVAL,D2),D5 The sum of the value of BASE and
the contents of PC points to
<jea>. The contents of the

resultant address <iea> added to
the value of AVAL and the low-
order word of index register D2
points to the address of the
operand to be added to the
contents of D5.

24 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.5.3.7 Program Counter Direct with Indexing Plus Base Displacement.
(MC68020 only) The address of the operand is the sum of the sign-extended 8-
bit base displacement bd, the contents of the PC, and the contents of the
index register Ri. Therefore,

bd + (PC) + (Ri) ---> <operand>

Notation: (bd,PC,Ri{*scl}) or
(bd,PC,Ri.W{*sc1}) Specifies Tow-order word of index
register Ri.

(bd,PC,Ri.L{*sc1}) Specifies entire contents of the index
register Ri.

Example: ADD (BASE,PC,D2),D5 The sum of the value of BASE, the
contents of PC, and the contents of
the 1low-order word of D2 points to
the address of the operand to be
added to the contents of D5.

2.5.3.8 Immediate Data. An absolute number may be specified as an operand by
immediately preceding a number or expression with an immediate character. The
immediate character (#) is used to designate an absolute number other than a
displacement or an absolute address.

Notation: #XXX

Examples: MOVE #1,D0 Move value 1 to low order word of DO.

SUB.L #1,00 Subtract value 1 from the entire
contents of DO.

25 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.6 NOTES ON MC68020 ADDRESSING MODES

There are new features in the MC68020 addressing modes. These features are
discussed in the following paragraphs and are summarized in Table 2-4.

2.6.1 Address Register Addressing Modes

One of the main changes to the addressing modes in the MC68020 is in the mode
6 <ea> expressions. Some source code variations of the new mode 6 <ea>
expressions are redundant with the MC68000 modes 2 and 5 (i.e., the final
effective address is the same). When a redundant mode occurs, the mode 2 and
5 forms are selected by the assembler because they are more efficient. For
example, when the assembler sees the following form:

(An)

it generates a mode 2 addressing mode. Furthermore, the assembler generates a
mode 5 address when seeing the following two forms:

bd(An) or the new syntax form
(bd,An) when bd fits in 16 bits or less

The programmer can generate the redundant mode 6 instructions by using the
suppressed registers. In the bd (An) form, bd must fit in 16 bits or less or
an error (250) is generated. The (bd, An) form supports a bd up to 32 bits.

It is important to note that the assembler still recognizes the current 68000
syntax for mode 6 addresses. These two forms are:

(An,R1i)
bd(An,Ri) or the new notation (bd,An,Ri)

They generate mode 6 addresses. However, the object code for the form written
in new notation is different if a scaling factor other than one is present or
bd cannot be represented in 8 bits or less.

Where new addressing modes are redundant with old addressing modes or with
other new addressing modes, the assembler defaults to the more efficient
addressing mode. However, less efficient forms can still be generated.

In general, old addressing modes are more efficient than the new modes. Within
the new modes, pre-indexed indirect 1is more efficient than post-indexed
indirect, and use of the index register is more efficient than use of the base
address register for indirect modes.

Efficiency as used in this document refers to execution time. In most
cases, the fastest variation is also the shortest one.

In the variation (bd,Ai*scl), the form (bd,Ai) is accepted. However, if the
base displacement is less than or equal to 16 bits, the assembler
automatically selects mode 5.

26 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.6.2 Program Counter-Relative Addressing Modes

Another major change to the addressing modes in the MC68020 is in the mode 73
forms. Some of the new mode 73 addressing modes are redundant with the
MC68000 mode 72. When a redundant mode occurs, the mode 72 form is used since
it is more efficient. For example, when the assembler sees

bd(PC) or the new syntax form
{bd,PC) when bd fits in 16 bits or less

it generates a mode 72 address. The programmer can generate the redundant
mode 73 instructions by using suppressed registers.

It is also important to note that the assembler recognizes the current 68000
syntax for mode 73 addresses. These forms are

(PC,Ri) or (PC) or bd(PC,Ri)

A1l mode 73 <ea> expressions require ’PC’ or ’ZPC’ as part of the expression
to distinguish them from their address register counterparts. (A1l mode 72 and
73 references are to program space and all mode 2, 5, and 6 references are to
data space.)

Where new addressing modes are redundant with old addressing modes or with
other new addressing modes, the assembler defaults to the more efficient
addressing mode. However, less efficient forms can still be generated.

When the PC s suppressed (ZPC), the displacement is assumed to be absolute
and hence is not offset from the current PC value.

2.6.3 Using Suppressed Registers to Force Redundant Addressing Modes

Register mnemonics ZPC, ZA0-ZA7 and ZD0-ZD7 imply registers whose values are
always taken to be zero. These symbols may be used to specify any allowable
register while at the same time suppressing that register during <ea>
calculations. These symbols are included for diagnostic purposes so that
every field of the object code instruction can be specified. It also
indicates whether PC or An is being suppressed, and this determines whether
the <ea> 1is in instruction space or data space. By default, An is taken to
be the suppressed register if no register is specified. ’ZPC’ must appear in
the <ea> expression to force PC-relative addressing with PC suppressed.

Where an <ea> expression would normally default to a current 68000 addressing
mode, the equivalent <ea> may be forced in mode 6 or 73 by including ’ZRi’
within the <ea> expression. This is because the assembler always selects the
most efficient addressing mode unless another equivalent mode is forced.

IRi’ following the closing square bracket (i.e., ’([<ea>],ZRi)’) forces
post-indexed indirect modes where the index register has been suppressed.

Registers can be suppressed only in the address register indirect and the PC
indirect modes.

27 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.6.4 Addressing Summary

Table 2-4 summarizes much of the information presented in the preceding
paragraphs:

TABLE 2-4. Addressing Summary

FUNCTIONALLY EQUIVALENT

DEFAULT ADDRESSING MODE FORCED ADDRESSING MODES
SYNTAX MODE SYNTAX MODE
0 Mode 70 (ZR1) Mode 6n w/null bd
0 Mode 70 ((0).W,ZR1) Mode 6n w/16-bit bd=0
0 Mode 70 ((0).L,ZR1) Mode 6n w/32-bit bd=0
bd Mode 70 (bd,ZRi) Mode 6n

(An Mode 2n (An,ZRi) Mode 6én
bd(An}) Mode 5n (bd,An,ZRi) Mode 6én
none (ZPC) Mode 73 w/null bd
none ((0).W,ZPC) Mode 73 w/16-bit bd=0
none ((0).L,ZPC) Mode 73 w/32-bit bd=0
none (bd,ZPC) Mode 73

[n Mode é&n w/null bd ([(0).W]) Mode 6n w/16-bit bd=0
([n Mode én w/null bd ([(0).L]) Mode 6n w/32-bit bd=0
(] Mode 6n w/pre-ind. ([1,ZRi) Mode 6n w/post-ind.
([1 Mode 6n w/supp. An ([zpcl1) Mode 73 w/supp. PC

NOTE: "n" mode numbers refer to the base address register.

28 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.7 NOTES ON ADDRESSING OPTIONS

By default, the assembler resolves all forward references by using the longer
form of the effective address in the operand reference. The programmer may
override this default by specifying OPT FRS, which designates that forward
absolute references should be short, or OPT BRB (or BRS), designating that
forward relative branches should use the shorter (8-bit) displacement format.
For the M(C68020, OPT BRW can be used to force 16-bit (rather than 32-bit)
displacements on forward branches,

On an instruction which does not allow a size code, the current forward
reference default format may be overridden (for that instruction only) by
appending .S (short) or .L (long) to the instruction mnemonic. A similar
override may be performed in the structured syntax control directives via the
extent codes (refer to paragraph 6.3 for further explanation). No override is
possible on instructions with size code specification. Notably, this override
procedure is possible on the JMP and JSR instructions.

The shorter form of the effective address for relative branch instructions is
an 8-bit displacement; the Tlonger format is a 16-bit displacement. For
absolute jumps, the shorter effective address is the 16-bit absolute short;
the Tlonger format is the 32-bit absolute long mode. In the case of forward
references 1in either relative branches or absolute Jumps, if the shorter
format is directed and the longer format is later found necessary when the
reference is resolved, an error occurs.

References to symbols already defined, whether absolute or relative, are
resolved by the assembler into the appropriate effective address, unless .S or
.L is forced on the instruction.

A short form may be forced by following the instruction mnemonic with .S.

Example:

BEQ.S LOOPI If condition code ’EQ’ (equal) is true, then branch
to LOOP1 (using the short form of the instruction).

In this case, the instruction size js forced to one word. An error is printed
if the operand field is not in the range of an 8-bit displacement.

Since 8-bit wvalue fields are not relocated, a Bcc.S instruction, which
branches to an XREF or other expression-required location, is not allowed.
Such an instruction format results in an assembler error. A relative branch
to a symbol known to be an XREF, or in a different section than the
instruction, employs the Tonger (16-bit) displacement, with resolution done by
the linkage editor.

29 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

Default actions of the assembler have been chosen to minimize two common
address mode errors:

a. Displacement range violations

Relative branch instructions (Bcc, BRA, BSR) allow either 8-bit or 16-
bit displacements from the PC. On forward references in such
instructions, the default action is to assume the 16-bit displacement
(OPT BRW), which also allows resolution by the linkage editor, should
that prove necessary.

b. Inappropriate absolute short address

Absolute addresses may be short (16-bit) or long (32-bit). On forward
references with absolute effective address, the default action is to
assume the 7long format (OPT FRL). The long form is also assumed on
references to another section (unless it dis a SECTION.S), so that
resolution by the Tinkage editor is assured.

Default conditions have been chosen to prevent errors by using addressing
formats which ensure address resolution in the broadest range of conditions,
at the expense of code efficiency. Each default may be overridden to improve
efficiency or to create position independent code. Also, the current address
size defaults (options FRL and FRS) may be overridden in certain cases on
specific instructions which do not allow size codes by appending .S or .L, as
in JMP.S and JMP.L (JMP and JSR only).

The previous discussion assumed relative branches could not be 32 bits. This
is not the case when using the MC68020.

The resolution of operands into effective address modes (ignoring base
register addressing) is summarized in the Tables 2-5 through 2-10.

TABLE 2-5. Operand Resolution

INSTRUCTION FOLLOWS

OPERAND TYPE SECTION ORG
Known location Refer to Table 2-6 Refer to Table 2-7
(backward in pass 1)
Unknown location Refer to Table 2-8 Refer to Table 2-8
(forward)
External reference Refer to Table 2-9 Refer to Table 2-10
30

MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

TABLE 2-6. Known* Location of Operand & Instruction Follows SECTION

OPTION IN
EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE

PC relative
(resolved by Tlinkage editor
PCS if operand & instructions are
in different SECTIONs)

IF displacement > 16-bit

THEN error
Simple
relocation
IF operand and instruction
in same SECTION and
NOPCS displacement <= 16-bit
(default) THEN PC relative
ELSE IF operand defined
in SECTION.S
THEN absolute short
ELSE absolute long
(resolved by linkage editor)
Complex
relocation (Any) Absolute long
Absolute Absolute short or absolute
(ORG) (Any) long depending on the value

of the operand

31 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

TABLE 2-7. Known* Location of Operand & Instruction Follows ORG

OPTION IN
EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE
IF operand defined
Simple (Any) in SECTION.S
relocation THEN absolute short
ELSE absolute long
(resolved by linkage editor)
Complex
relocation (Any) Absolute long
IF displacement <= 16-bit
Absolute THEN PC relative
(ORG) PCO ELSE absolute short
or absolute long
depending on value of
operand
Absolute short or
NOPCO absolute Tong depending
(default) on the value of the operand

* Label defined before instruction which references it (in pass 1).

OPTION IN
EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE
(A11) FRS Absolute short
(resolved by linkage editor)
FRL Absolute long
(default) (resolved by linkage editor)

32 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

TABLE 2-9. External Reference & Instruction Follows SECTION

OPTION IN
EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE
XREF with
SECTION PCS PC relative
designa- (resolved by linkage editor)
tion
Example: IF operand defined in
XREF 2:L1 NOPCS SECTION.S or XREF.S
(default) THEN absolute short
ELSE absolute long
(resolved by linkage editor)
XREF without IF operand defined with
SECTION XREF.S
designa- (Any) THEN absolute short
tion ELSE (refer to FRS or FRL below)
(resolved by linkage editor)
Example:
XREF L1 FRS Absolute short
(resolved by Tinkage editor)
FRL Absolute long
(default) (resolved by linkage editor)
33

MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

TABLE 2-10. External Reference & Instruction Follows ORG

OPTION IN
EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE
IF operand defined in
XREF with SECTION.S or XREF.S
SECTION (Any) THEN absolute short
designa- ELSE absolute Tong
tion (resolved by linkage editor)
Example:
XREF 2:L1
XREF without IF operand defined with
SECTION XREF.S
designa- (Any) THEN absolute short
tion ELSE (refer to FRS or FRL below)
(resolved by linkage editor)
Example:
XREF L1 FRS Absolute short
(resolved by linkage editor)
FRL Absolute long
(default) (resolved by linkage editor)

34 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.8 SYMBOLS AND EXPRESSIONS

2.8.1 Symbols

Symbols recognized by the assembler consist of one or more valid characters
(refer to Appendix B), of which the first eight are significant. The first
character must be an uppercase letter (A-Z) or a period (.). Each remaining
character may be an uppercase letter, a digit (0-9), a dollar sign (§), a
period (.}, or an underscore (). Lowercase letters can also be used at times
(refer to note in paragraph 2.1).

Numbers recognized by the assembler include decimal, hexadecimal, octal, and
binary values. Decimal numbers (the default) are specified by a string of
decimal digits (0-9); hexadecimal numbers are specified by a dollar sign (§)
followed by a string of hexadecimal digits (0-9, A-F); octal numbers are
specified by the commercial "at" sign (@) followed by a string of octal digits
(0-7)5 binary numbers are specified by a percent sign (%) followed by a string
of binary digits (0-1).

Examples:

Decimal - A string of decimal digits
Example: 12345

Hexadecimal - A dollar sign ($) followed by a string of hexadecimal digits
Example: $12345

Octal - An "at" sign (@) followed by a string of octal digits
Example: ©12345

Binary

A percent sign (%) followed by a string of binary digits
Example: %l10111

(MC68881 only) IEEE standard floating-point numbers can be specified by an
optionally signed, fraction string of up to 17 decimal digits (0-9) containing
a required decimal point, the constant "E", an optional sign (+ or -), and an
exponent up to 3 decimal digits. The exponent section "E<sign>yyy" is
optional; underscores can occur for readability.

Floating-point numbers can also be specified explicitly as a series of
hexadecimal digits preceded by a colon (:). This floating-point hex format
can be used to exactly represent the mantissa, exponent, and sign bit for a
given floating-point number.

3 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

Examples:
Floating- - sX.XXXXXXXXXXXXXXXXEsyyy (maximum size)
point
where: s is an optional sign;
x and y are decimal digits
Example: 1234.56E-33
Floating- - xXxxX...
point hex

where: xxxxx... 1is a sequence of hex digits
(up to 8 digits for .S precision, up to 16 for .D,
and up to 24 for .X or .P)

One or more ASCII characters enclosed by apostrophes (’) constitute an ASCII
string. ASCII strings are left-justified and zero-filled (if necessary),
whether stored or used as immediate operands. This left justification is to a
word boundary if one or two characters are specified, or to a longword
boundary if the string contains more than two characters. (In order to
specify an apostrophe within a literal or string, two successive apostrophes
must appear where the single apostrophe is intended to appear.)

Examples: DC.L *ABCD’
DC.L 12279?

DC.W el
.L 7I,’M7

2.8.2 Symbol Definition Classes

Symbols may be differentiated by usage into two general classes. Class 1
symbols are used in the operation field of the instruction (refer to paragraph
2.4 for field definitions); Class 2 symbols occur in the Tabel and operand
fields of the instruction. Assembler directives, instruction mnemonics, and
macro names comprise Class 1 symbols; wuser-defined Tlabels and register
mnemonics are included in Class 2 symbols.

A Class 1 symbol may be redefined and used independently as a Class 2 symbol,
and vice versa. As long as each symbol is used correctly, no conflict results
from the existence of two symbols of different classes with the same name.
For example, the following is a legal instruction sequence:

ADD DI1,ADD

ADD DS 2

36 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

By its usage as a Class 1 symbol, the first "ADD" is recognized as an
instruction mnemonic; Tlikewise, the second ADD is recognized as a Class 2
symbol identifying a reserved storage area. The assembler differentiates a
Class 1 symbol from a Class 2 symbol with the same name, thereby allowing two
symbol table entries with the same name but different class.

Macro Tabels are a special case because the same symbol appears as the label
(Class 2) in the MACRO definition and, subsequently, as an operation code
mnemonic (Class 1) in invocation of that same macro. Macro labels are defined
to be Class 1 symbols; their presence in the label field of a MACRO directive
is ignored as a Class 2 symbol. Therefore, macro names may be redefined as
Class 2 symbols without conflict.

A symbol may not be redefined within the same class. For example, ADD
(reserved Class 1 symbol) may not be redefined as a macro label (also Class
1), nor may "A5" (reserved Class 2 symbol) be redefined as a statement or
storage Tlocation Tlabel (also Class 2). A reserved symbol may be used only
within its own class.

2.8.3 User-Defined Labels

Labels are defined by the user to identify memory locations in program or data
areas of the assembly module. Each label has two attributes: the program
section in which the memory Tocation resides, and the offset from the
beginning of that program section.

Labels may be defined to have an absolute or relocatable value, depending upon
the program section in which the labeled memory location is found. If the
memory location is within a relocatable section (defined through the SECTION
directive), then the 1label has a relocatable value relative to that program
section. If the memory location is not contained within a relocatable section
(for example, the Tlocation follows an ORG directive), then the Tabel has an
absolute value.

Labels may be defined in the label field of an executable instruction or a
data definition directive source line. It is also possible to SET or EQU a
Tabel to either an absolute or a relocatable value.

2.8.4 Integer Expressions

Expressions are composed of one or more symbols, which may be combined with
unary or binary operations. Legal symbols in expressions include:

a. User-defined 1labels and their associated absolute or relocatable
values.

b. Numbers and their absolute values.

c. The special symbol "*" always identifies the value of the program
counter at the beginning of the DC directive, even when multiple
arguments are specified (e.g., DC.B 1,2,3,%-3). The PC may be either
absolute or relocatable.

37 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

Subexpressions which involve relocatable symbols may employ only the "+" and
"-" operators. It is possible for a subexpression involving the difference
between two relocatable symbols to evaluate to an absolute value. For
example, let Rl represent a memory location at OFFSET] bytes beyond the start
of section S1, and Tet R2 represent a memory location at OFFSET2 bytes beyond
the start of section S2 -- that is,

R1
R2

OFFSET1 + <start of SI>
OFFSET2 + <start of S2>

The difference between R1 and R2 may then be

R1-R2 = OFFSET1-OFFSET2 + <start of S1> - <start of $2>
If sections S1 and S2 are the same, then

R1-R2 = OFFSET1-OFFSET2

which is a constant, absolute (non-relocatable) value. Of course, if sections
S1 and S2 are distinct, the expression remains a complex, relocatable
expression.

When an expression has been fully evaluated by the assembler, it may be
categorized as one of three types of expressions:

a. Absolute expression - The expression has reduced to an absolute value
which is independent of the start address of any relocatable section.

b. Simple relocatable expression - The expression has reduced to an
absolute offset from the start of a single relocatable section.

c. Complex relocatable expression - The expression has reduced to a
constant, absolute offset in conjunction with either of the following
relocatable terms:

1. A single, negated start address of a relocatable section.

2. References to the start addresses of two or more relocatable
sections; these references may be additions to or subtractions
from the constant offset value.

NOTE

Complex relocatable expressions, such as an absolute
symbol minus a relocatable symbol, are illegal in ORG,
OFFSET, EQU, DCB, DS, COMLINE, and SET directives.

MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

By themselves, all user-defined labels on memory locations are either absolute
or simple relocatable expressions. This includes XREF Tabels, which are
assumed to be absolute symbols unless their program section is specified.
Complex relocatable expressions may arise only from the addition or
subtraction of two relocatable expressions.

The following are examples of each type of expression.

ORG $1000
ARRAY DS $20 "ARRAY" is absolute
ENDARRAY EQU *-2 "ENDARRAY" is absolute
SECTION 1
R1 CLR.L D2 "R1" is simple relocatable
ADD D1,D3
R2 MOVE D3, (AD) "R2" is simple relocatable
SECTION 2
R3 EQU * "R3" is simple relocatable
MOVE ARRAY+10,D7 absolute source operand
MOVE R1+10,D7 simple relocatable source operand
MOVE R2-R1,D7 absolute source operand
MOVE R1+R2,D7 complex relocatable source operand
MOVE R3-R2 complex relocatable source operand

2.8.5 Operator Precedence
Operators recognized by the assembler include the following:

a. Arithmetic operators:

addition (+)
subtraction (-)
multiplication (*)
division (/) -- produces a truncated integer result
unary minus (-)

b. Shift operators (binary):

shift right (>>) -- the Teft operand is shifted to the
right (and zero-filled) by the number
of bits specified by the right operand

shift Teft (<<) -- analogous to >>

c. Logical operators (binary):

and (&)
or ("

39 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

Expressions are evaluated with the following operator precedence:

. parenthetical expression (innermost first)
unary minus

shift

and, or

multiplication, division

addition, subtraction

Y O P W N =

Operators of the same precedence are evaluated left to right. A1l results
(including intermediate) of expression evaluation are 32-bit, truncated
integers. Valid operands include numeric constants, ASCII Titerals, absolute
symbols, and relocatable symbols (with "+" and "-" only).

2.9 REGISTERS

The MC68000 has sixteen 32-bit registers (D0-D7, AO-A7) in addition to a 24-
bit PC and 16-bit status register.

Registers DO0-D7 are used as data registers for byte, word, and longword
operations. Registers A0-A7 are used as software stack pointers and base
address registers; they may also be used for word and longword data
operations. A1l 16 registers may be used as index registers.

Register A7 s used as the system stack pointer. (The MPU actually provides
two hardware stack pointers, depending upon whether the instruction is
executing in the supervisor or user state. Stack pointers and the
supervisor/user states are explained under "Stacks and Queues" and "Privilege
States" in the M68000 16/32-Bit Microprocessor Programmer’s Reference Manual.)

(MC68010 only) The MC68010 has an additional 32-bit Vector Base Register (VBR)
and two 3-bit registers (SFCR and DFCR). The contents of the VBR are added to
the previously-calculated vector offset, during exception processing, to
produce the actual vector location. The 3-bit registers allow supervisor
access to other address spaces via MOVES, supplying function codes in the SFCR
for the read cycle(s) from the effective address location, or supplying
function codes in the DFCR for the write cycle(s) to the effective address
location, respectively.

(MC68020 only) The MC68020 has four additional 32-bit registers. Two of these
registers are used as stack pointers {Master Stack Pointer (MSP) and Interrupt
Stack Pointer (ISP)). The other two are used as cache registers (CACR and
CAAR). MSP is active whenever both the "S" and "M" bits of the status
register are set (supervisor state). ISP is active whenever the "S" bit is
set but not the "M" bit (interrupt state). User Stack Pointer (USR) is active
whenever the "S" bit is 0 (user state). The cache registers support the
onboard dinstruction cache of the MC68020 and can be accessed only in the
supervisor state.

40 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

(MC68020 only) The assembler also provides 17 pseudo register names for the
MC68020. These are the suppressed address registers used in various MC68020
addressing modes. Each register represents a content value of zero:

ZA0-ZA7 Suppressed address registers
ZD0-ZD7 Suppressed data registers
ZPC Suppressed program counter

(MC68881 only) The MC68881 floating-point co-processor provides eight 80-bit
registers and three 32-bit registers. The 80-bit registers are the floating-
point data registers, FPO-FP7, that serve as destinations for most floating-
point operations. The 32-bit registers are the system registers STATUS,
CONTROL, and IADDR.

The following register mnemonics are recognized by the assemblier:

DC-D7 Data registers.

1D0-7D7 Suppressed data registers (refer to paragraph 2.6.3 (MC68020
only))

AO-A7 Address registers.

ZAC-ZA7 Suppressed address registers (refer to paragraph 2.6.3 (MC68020
only))

A7, SP Either mnemonic represents the system stack pointer of the
active system state.

usp User stack pointer (for user state on the MC68020).

MSP Master stack pointer (for supervisor state on MC68020 only).

Isp Interrupt stack pointer (for interrupt state on MC68020 only).

CCR Condition code register (low 8 bits of SR).

SR Status register. All1 16 bits may be modified in the supervisor

state. Only 1low 8 bits (Conditional Code Register (CCR)) may
be modified in user state.

PC Program counter. Used only in forcing PC-relative addressing
(refer to paragraphs 2.5.3.3 and 2.5.3.4).

ZPC Suppressed PC (refer to paragraph 2.6.3 (MC68020 only)).

VBR Vector base register (MC68010 or newer only). Supports

muitiple vector table areas during exception processing.
Accessed by the MOVEC instruction.

41 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

SFC or Alternate function code source register (MC68010 or newer

SFCR only). Accessed by the MOVEC instruction.

DFC or Alternate function code destination register (MC68010 or newer

DFCR only). Accessed by the MOVEC instruction.

CACR Cache control register. This provides supervisor state control
and status access to the onboard instruction cache (MC&8020
only).

CAAR Cache address vregister. This holds the address of the cache

control functions requiring an address (MC68020 only).
FPO-FP7 Floating-point data registers (MC68881 only).

CONTROL Floating-point control register. Contains four bytes. The
third is the exception enable byte to enable/disable traps for
each class of floating-point exception. The fourth byte is a
mode byte to set the user-selectable modes. The remaining
bytes are reserved (MC68881 only).

STATUS Floating-point status register contains four bytes. The first
byte is a floating-point condition code byte, containing five
condition codes that are set by all move and arithmetic
floating-point instructions except FMOVEM. The third byte is
a floating-point exception byte. The fourth byte is a
floating-point accrued exception byte containing the logical
inclusive OR of all floating-point exceptions that have
occurred since this byte was last cleared by the user. The
remaining bytes are reserved (MC68881 only).

TADDR Floating-point instruction address register. Contains the
logical address in the main processor memory of the offending
instruction that generated a floating-point exception trap
(MC68881 only).

2.10 INSTRUCTION MNEMONICS

The instruction operations described in paragraphs 2.10.1 through 2.10.12 are
used by the assembler for MC68000, MC68010, and MC68020. Paragraphs 2.10.13
and 2.10.14 however, describe instructions which are valid only for the
MC68010 and MC68020 microprocessors. Paragraphs 2.10.15 through 2.10.24
describe instructions which are valid only for the MC68020 microprocessor.

NOTE
The M68000 Family Resident Structured Assembler has been implemented
using the instructions described in this section. Differences found
between this manual and the MC68020 32-Bit Microprocessor Reference
Manual will be resolved in the next version of the product.

MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.1 Arithmetic Operations

The MC68000/MC68010/MC68020 instruction set includes the operations of add,
subtract, multiply, and divide. Add and subtract are available for all data
operand sizes. Multiply and divide may be signed or unsigned. Operations on
decimal data (BCD) include add, subtract, and negate. The general form is:

[Tabel:] <operation>.<size> <source>,<destination>

Examples:
ADD.W D1,D2 Adds Tow order word of D1 to low order word of D2.
SUB.B #5,(Al) Subtracts value 5 from byte whose address is

contained in Al.

On the MC68020, the signed and unsigned multiply instructions can support a
32-bit multiplier and a 64-bit product using an alternate operand syntax.
This is achieved by using two data registers. One data register, Dj, holds
the muTtiplier before multiplication and the Tow-order longword of the product
after multiplication. Another data register, Di, holds the high-order
longword of the product after multiplication (Di must be different from Dj).
The general formats are:

MULS.L <ea>,[Di:]Dj (signed multiply)
MULU. L <ea>, [Di:]D] (unsigned multiply)

where: is-a required delimiter.

The signed and unsigned divide instructions on the MC68020 have been similarly
expanded to support a 64-bit dividend, a 32-bit quotient, and a 32-bit
remainder. This is achieved by using two data registers to hold the dividend
before division and to separately hold the quotient and remainder after
division. Data register Di thus holds the high-order longword of the dividend
before division and the remainder after division. Data register Dj holds the
Tow-order Tlongword of the dividend before division and the quotient after
division. If a single data register Dj is specified or Di equals Dj, it is to
be wused as both the high-order and low-order 32 bits of the dividend for the
divide, and the 32-bit quotient of the division is returned in it. No
remainder is returned in this case. The general formats are:

DIVS.L <ea>,[Di:]DJ (signed division)
DIVU.L <ea>,[Di:]Dj (unsigned division)

8 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.2 MOVE Instruction

The MOVE instruction is wused to move data between registers and/or memory.
The general form is:

MOVE.<size> <source>,<destination>
where:

<size> =B, W, or L

Examples:
MOVE D1,D2 Moves Tow order word of Dl into low order word of D2.

MOVE.L XYZ,DEF Moves longword addressed by XYZ into Tlongword
addressed by DEF.

MOVE.W #’A’,ABC Moves word with value of $4100 into word addressed by
ABC.

MOVE ADDR, A3 Moves word addressed by ADDR into Tow order word of
A3.
2.10.3 Compare and Check Instructions
The general formats of the compare and check instructions are:
CMP.<size> <operandl>,<operand2>
CHK <bounds>,<register>

where operandl 1is compared to operand2 by the subtraction of operandl from
operand2 without altering operandl or operand2.

The MC68020 allows the check instruction to have a longword size:
CHK.<size> <ea>,Dn

where:
<size> = W (default) or L

On the MC68020, the CMPI instruction allows any data addressing mode other
than immediate for the specified effective address location.

Condition codes resulting from the execution of the compare instruction are
set so that a "less than" condition means that operand2 is less than operandl,
and "greater than" means that operand2 is greater than operandl.

44 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

The CHK instruction causes a system trap if the register contents are less
than zero or greater than the value specified by "bounds".

Examples:
CMP.L ADDR,D1 Compares Tongword at Tocation ADDR with contents of
D1, setting condition codes accordingly.
CHK (A0),D3 Compares word whose address is in A0 with low order

word of D3; if check fails (refer to text), a system
trap is initiated.

2.10.4 Logical Operations

Logical operations include AND, OR, EXCLUSIVE OR, NOT, and two logical test

operations. These functions may be done between registers, between registers

and memory, or with immediate source operands. The general form is:
<operation>.<size> <source>,<destination>

where:
<size> = B, W, or L

Example:

AND D1,D2 Low order word of D2 receives logical ’and’ of low
order words in D1 and D2.

The destination may also be the Status Register (SR) or the Condition Code
Register (CCR) in the case of the ANDI instruction.
2.10.5 Shift Operations
Shift operations include arithmetic and logical shifts, as well as rotate and
rotate with extend. A1l shift operations may be either fixed with the shift
count in an immediate field or variable with the count in a register. Shifts
in memory of a single-bit position left or right may also be done. The
general form is:

<operation>.<size> <count>,<operand>

where:

<size> = B, W, or L

45 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

Examples:

LSL.W #5,D3 Performs a 1left, logical shift of low order word of
D3 by 5 bits; .W is optional (default).

ASR (A2) Performs a right, arithmetic shift of word whose
address is contained in A2; because this is a memory
operand, the shift is only 1 bit.

ROXL.B D3,D2 Performs a left rotation with extend bit of low order

byte of D2; shift count is contained in D3.

2.10.6 Bit Operations

Bit operations allow test and modify combinations for single bits in either an
8-bit operand for memory destinations or a 32-bit operand for data register
destinations. The bit number may be fixed or variable. The general form is:

<operation> <bitno>,<operand>
where:

<size> = Bor L
Examples:

BCLR #3,XYZ(A3) Clears bit number 3 in byte whose address is given by
address in A3 plus displacement of XYZ.

BCHG DI1,D2 Tests a bit in D2, reflects its value in condition
code Z, and then changes value of that bit; bit
number is specified in DI1.

Under Mask3 of the MC68000 chip, the instructions BCLR, BSET, and BTST have 8-
bit memory operands; under Mask2 they had 16-bit memory operands. To enable
users who wrote programs under Mask2 -- using BCHG, BCLR, BSET, and BTST
instructions -- and to reassemble these programs under Mask3, the replacement
instructions BCHGW, BCLRW, BSETW, and BTSTW are provided. These instructions
align the destination operand at the next higher byte when bits 0-7 are
accessed (thus functioning under Mask3 exactly as BCHG, BCLR, BSET, and BTST
functioned under Mask2). In making the change, replace only the instruction
mnemonic; no change is required to the operand field.

46 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.7 Conditional Operations

Condition codes can be used to set and clear data bytes. The general form is:

Scc <location>
where "cc" may be one of the following condition codes:
CC or HS GE LS PL
CS or LO GT LT T
EQ HI MI Ve
F LE NE VS
Example:
SNE (A5)+ If condition code NE (not equal) is true, then set

byte whose address is in A5 to 1’s; otherwise, set

that byte to 0’s; increment A5 by 1.

2.10.8 Branch Operations

Branch operations include an unconditional branch, a branch to subroutine, and

14 conditional branch instructions. The general form is:

<operation>.<extent> <location>
Examples:
BRA TAG Unconditional branch to the address TAG.
BSR SUBDO Branch to subroutine SUBDO.
Bcc.S NEXT Short branch to NEXT on condition "cc", which may be

one of the following condition codes (note that T and
F are not valid condition codes for conditional

branch):
CC or HS GT LT v
CS or LO HI MI VS
EQ LE NE
GE LS PL

ATl conditional branch instructions use PC-relative addressing only and may be
either one-word or two-word instructions. The corresponding displacement

ranges are:
one-word -128...+127 bytes (8-bit displacement)
two-word -32768...+32767 bytes (16-bit displacement)

47

MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

Forward references in branch instructions use the longer format by default
(OPT BRW). The default may be changed to the shorter format by specifying OPT
BRS or OPT BRB. The default extent may be overridden for a single branch
operation by appending appropriate extent codes to the instruction -- for
example:

BRA.S LAB

A branch instruction with a byte displacement must not reference the statement
which immediately follows it. This would result in an 8-bit displacement
value of 0, which is recognized by the assembler as an error condition.

Example (illegal):

BEQ.S LABI1 LAB1 is the next memory word and, thus, generates
LAB1 MOVE #1,D0 an error.

The MC68020 allows three sizes of offsets: byte (.B or .S), word (.W), and
longword (.L). These provide byte, 2-byte, and 4-byte offsets, respectively.
Compatibility with the old word (.L) sizes is available by using the new OPT
OLD directive (refer to paragraph 3.5.9). The default offset size is still
word (two bytes). Branch sizes can also be forced with several new force
branch size directives: BRB or BRS (generates 8-bit defaults), BRW (generates
16-bit defaults), BRW (generates 16-bit defaults), and BRL (generates 32-bit
defaults) (refer to paragraph 3.5.9). These new branching sizes allow the
following:

Bcc. <size> <label>

BRA. <size> <label>

BSR. <size> <label>
where:

<size> = B (or S), W, or L

2,10.9 Jump Operations

Jump operations include a jump to subroutine and an unconditional jump. The
general form is:

<operation>.<extent> <ea>

48 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

Examples:
JMP 4(A7) Unconditional jump to the location 4 bytes beyond
the address in A7.
JMP. L NEXT Long (absolute) jump to the address NEXT.
JSR SUBDO Jump to subroutine SUBDO.

Forward references to a label uses the long absolute address format by default
(OPT FRL). The default may be changed to the shorter format by specifying OPT
FRS. The default extent may be overridden on a single jump operation to a
label by appending S or L as an extent code for the instruction.

2.10.10 DBcc Instruction

This instruction is a Tooping primitive of three parameters: condition, data
register, and 1label. The instruction first tests the condition to determine
if the termination condition for the 1loop has been met and, if so, no
operation is performed. If the termination condition is not true, the data
register is decremented by one. If the result is -1, execution continues with
the next instruction. If the result is not equal to -1, execution continues
at the 1location indicated by Tlabel. Label must be within a 16-bit
displacement. The general format of the instruction is:

DBcc <data register>,<label>

where:

"cc" may be one of the following condition codes:

CC or HS GE LS PL

CS or LO GT LT T

EQ HI MI Ve

F LE NE VS
Examples:

LAB1 NOP

DBGT DO, LAB1

DBLE DI1,LAB2

DBT D2,LABl

DBF D3,LAB2
LAB2 NOP

49 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.11 Load/Store Multiple Registers

This instruction allows the loading and storing of multiple registers. Its
general format is:

MOVEM.<size> <registers>,<location> (register to memory)
MOVEM.<size> <location>,<registers> {memory to register)

where:

<size> may be either W (default) or L.

The <registers> operand may assume any combination of the following:
R1/R2/R3, etc., means Rl and R2 and R3
R1-R3, etc., means Rl through R3

When specifying a register range, A and D registers cannot be mixed; e.g., AO-
A5 is legal, but A0-DO is not.

The order in which the registers are processed is independent of the order in
which they are specified in the source line; rather, the order of register
processing is fixed by the instruction format. For further details, refer to
the MOVEM instruction in the MC68000 16/32-Bit Microprocessor Programmer’s
Reference Manual.

Examples:

MOVEM (A6)+,D1/D5/D7 Load registers D1, D5, and D7 from three
consecutive (sign-extended) words in
memory, the first of which is given by the
address in A6; A6 is incremented by 2 after
each transfer.

MOVEM.L A2-A6,-(A7) Store registers A2 through A6 in five
consecutive longwords 1in memory; A7 is
decremented by 4 (because of .L); A6 is
stored at the address in A7; A7 s
decremented by 4; A5 is stored at the
address in A7, etc.

MOVEM (A7)+,A1-A3/D1-D3 Loads registers D1, D2, D3, Al, A2, A3 in
order from the six consecutive (sign-
extended) words in memory, starting with
the address in A7 and incrementing A7 by 2
at each step.

MOVEM.L Al/A2/A3,REGSAVE Store registers Al, A2, A3 in three
consecutive Tlongwords starting with the
location labeled REGSAVE.

50 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.12 Load Effective Address

This instruction allows computation and loading of the effective address into
an address register. The general format is:

LEA <operand>,<register>
Example:

LEA XYZ(A2,D5),Al Load Al with effective address specified by
the first operand. Refer to paragraph
2.5.2.5 for an explanation of addressing
mode "Address Register Indirect With
Index".

2.10.13 Move to/from Control Register

(MC68010 or newer only) With this instruction, the specified control register
is copied to the specified general register, or the specified general register
is copied to the specified control vregister. This is always a 32-bit
transfer, even though the control register may be implemented with fewer bits.
Unimplemented bits read as zeros. The general format is:

MOVEC <control register>,<register>
MOVEC <register>,<control register>

Examples:

MOVEC VBR, A0 Copies contents of vector base register to
register AO.

MOVEC D7,SFC Copies contents of register D7 to the source
function code register (3 bits).

MOVEC DFC,DO Copies contents of destination function code
register to register DO (3 bits; zero
filled).

MOVEC.L USP,D7 Copies user stack pointer to register D7.

(MC68020 only) Four additional <control register> values are recognized for
the MC68020:

CACR: Cache control register
CAAR: Cache address register
MSP: Master stack pointer

ISP: Interrupt stack pointer

NOTE

If the instruction is used without setting the processor
type in this command line or in the OPT P=68XXX, then an
error is generated.

MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.14 Move to/from Address Space

(MC68010 or newer only.) Moves a byte, word, or lTongword from the specified
general register to a Tocation within the address space determined by the DFC
register, or moves a byte, word, or longword from a Tocation within the
address space determined by the SFC register to the specified general
register. Note that with a byte operation size specified, the address
register direct mode is not allowed.

General format:

MOVES <ea>,<register>
MOVES <register>,<ea>

Examples:
MOVES.W (A2)+,D2 Moves a word at the address contained in
register A2 to register D2 and then
increments A2 by 2.
MOVES A4,LABEL Moves the Tower word of register A4 to the
address of LABEL.
MOVES 2222 ,A2 Moves one word of data beginning at address

2222 to register A2.

=

OTE

If the instruction is used without setting the processor
type in the command Tine or in the OPT P=68XXX, then an
error is generated.

2.10.15 Bit Fields and Instructions (MC68020 only)

=

0T

m

The instructions 1in paragraphs 2.10.15 through 2.10.24 require
that the processor type be set to 68020 in the command line or
in the OPT P=68XXX directive. Otherwise, an error is generated.

A bit field is a string of consecutive bits in a bit array. The address of the
bit array is determined by the address of the byte containing bit 0 (the base
address). Bit fields extend in both directions from bit 0 and are assigned
bit field numbers from 0 (the leftmost and most significant bit) to 7 (the
rightmost and Teast significant bit). By this notation a preceding byte’s
least significant bit has a bit field number of 8. Instructions reference bit
fields wusing two parameters: a bit field offset and a bit field width. A bit
field offset is the bit field number of the leftmost bit in the field; its
range is -2**31 to (2**31) - 1. The bit field width is the number of bits in
the bit field; its range is 1 to 32.

52 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.15.1 Single Operand Bit Field Instructions. This section explains the
following single operand bit fields: complement, clear, set and test.

Complement Bit Field

Complements a bit field at the specified effective address location. Condition
code fields are modified, depending on the value in the bit field before the
complement. A bit field is selected by the bit field offset (the starting
bit) and the bit field width (the number of bits included).
General format:

BFCHG <ea>{<offset>:<width>)
where:

{, :, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register D0O-D7.

Example:

BFCHG LABEL{0:D1} Complements the bit field at address LABEL from bit 0
to bit n - 1 where n is the value in D1.

Clear Bit Field

Clears a bit field at a specified effective address location. Condition code
fields are modified, depending on the value in the bit field before the clear.
A bit field is selected by the bit field offset (the starting bit) and the bit
field width (the number of bits included).
General format:

BFCLR <ea>{<offset>:<width>)}

where:

{, :, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register D0-D7.

Example:

BFCLR LABEL{D1:8} Clears the bit field at address LABEL starting at the
bit specified in D1 for 8 bits.

53 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

Set Bit Field

Sets all bits of a bit field at a specified effective address location.
Condition code fields are modified, depending on the value in the bit field
before the set. A bit field is selected by the bit field offset (the starting
bit) and the bit field width (the number of bits included).
General format:

BFSET <ea>{<offset>:<width>)
where:

{, :, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register DO-D7.

Example:

BFSET 2222{0:8) Sets one byte at address 2222 to all 1’s.

Test Bit Field

Sets condition codes according to the value in the bit field at the specified
effective address Tocation. A bit field is selected by the bit field offset
(the starting bit) and the bit field width (the number of bits included).
General format:

BFTST <ea>{<offset>:<width>}

where:

{, :, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register D0-D7.

Example:

BFTST (A2){D1:D2} Clears condition codes V and C; sets N and Z according
to the bits of the bit field.

54 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.15.2 Double Operand Bit Field Instructions. This section explains the
following double operand bit fields: extract signed, extract unsigned, find
first one, and insert.

Extract Bit Field Signed

The bit field at the specified effective address location is sign-extended to
32 bits and loaded into a data register. Condition code fields are modified,
depending on the value in the bit field before the sign extension. A bit
field is selected by the bit field offset (the starting bit) and the bit field
width (the number of bits included).
General format:

BFEXTS <ea>{<offset>:<width>},Dn
where:

{, :, and)} are required delimiters; <offset> and <width> may be an
immediate value or a data register DO-D7.

Example:

BFEXTS LABEL{0:8),D1 The value of the byte at LABEL is sign extended
and then loaded into DI.

Extract Bit Field Unsigned

The bit field at the specified effective address location is zero extended to
32 bits and Toaded into a data register. Condition code fields are modified,
depending on the value in the bit field before the zero extension. A bit
field is selected by the bit field offset (the starting bit) and the bit field
width (the number of bits included).
General format:

BFEXTU <ea>{<offset>:<width>},Dn

where:

{, :, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register DO-D7.

Example:

BFEXTU LABEL{0:8},D1 The value of the byte at LABEL is zero-extended
and then loaded into D1.

5 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

Find First One in Bit Field

The bit field at the specified effective address location is examined for the
most significant bit position that is set. If a set bit exists, the bit
offset for that bit is loaded into a data register. If no bit is set, a value
js Tloaded 1in a data register equal to the offset plus the width of the bit
field. Condition code fields are modified, depending on the value in the bit
field before the examination. A bit field is selected by the bit field offset
(the starting bit) and the bit field width (the number of bits included).

General format:
BFFFO <ea>{<offset>:<width>},Dn
where:

{, :, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register DO-D7.

Example:
BFFFO LABEL{0:1},D1 If bit 0 is set, then 0 is loaded into DI, else 1
is loaded into DI1.

Insert Bit Field

Move a bit field from the low-order bits of the data register to the bit field
at the specified effective address location. Condition code fields are
modified, depending on the value in the bit field before the insertion. A bit
field is selected by the bit field offset (the starting bit) and the bit field
width (the number of bits included).
General format:

BFINS Dn,<ea>{<offset>:<width>}
where:

{, :, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register DO-D7.

Example:

BFINS D1,LABEL{0:8)} Move the low-order byte of D1 to the 8-bit field
at address LABEL.

56 MICROSYSTEMS

@) moToroLA SOURCE PROGRAM CODING

2.10.16 Check Instructions (MC68020 only)

Check and compare register instructions are discussed in the following
paragraphs.

2.10.16.1 Check Register Against Bounds. Check the value in register Rn
against the Tlower- and upper-bound pair at the address of the specified
effective address location. When signed comparisons are made, the
arithmetically smaller value should be taken as the lower bound. For unsigned
comparisons, the Tlogically smaller value should be taken as the lower bound.
If the instruction size is byte (.B) or word (.W), only the Tow-order byte or
word of a data register, respectively, is used for the comparison. When Rn is
an address register, an instruction size of byte or word results in a sign
extension of the bound operands before the comparison. If the register is out
of bounds, exception processing is initiated and a vector number that
references the CHK instruction exception vector is generated. Only control
addressing modes are allowed.

General format:
CHK2.<size> <ea>,Rn
where:

<size> = B, W, or L

Example:

CHK2.B LABEL,D1 The instruction following this instruction is executed
provided the value of the low-order byte of DI is
greater than the contents of LABEL and less than the
contents of LABEL + 1.

2.10.16.2 Compare Register Against Bounds. This has exactly the same
functionality as CHK2, except that no exception processing occurs if the value
in Rn is not within bounds.

General format:

CMP2 <ea>,Rn

57 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.17 Truncated Divide Instructions (MC68020 only)

Truncated divide instructions use signed or unsigned arithmetic.

2.10.17.1 Truncated Signed Divide. Using signed arithmetic, divide the 32-
bit value in data register Dj by the value at the specified effective address
location. After division, Dj contains the signed 32-bit quotient, and Di
optionally contains the 32-bit remainder, provided Di is not equal to Dj.
When Di and Dj are the same, no remainder is generated.

General format:

TDIVS.<size> <ea>,[Di:]Dj
where:

<size> = L
2.10.17.2 Truncated Unsigned Divide. Using unsigned arithmetic, divide the
32-bit value in data register Dj by the value at the specified effective
address location. After division, Dj contains the unsigned 32-bit quotient and

data register, and Di optionally contains the 32-bit remainder, provided Di is
not equal to Dj. When Di and Dj are the same, no remainder is generated.

General format:
TDIVU.<size> <ea>,{Di:]Dj
where:

<size> = L

58 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.18 Sign Extend Instructions (MC68020 only)

Instructions are given for both byte and word.

2.10.18.1 Sign_Extend Byte. Extend bit 7 to bits 31 through 8 of data
register Dn if <size> is long, or else extend bit 7 to bits 15 through 8.

General format:
EXTB.<size> Dn
where:

<size> = W {default) or L

Example:

EXTB.L D1 Copies the value of bit 7 to bits 31 through 8 of DI.

NOTE

EXTB.W is the same as the instruction
EXT.W for the MC68000 and MC68010.

2.10.18.2 Sign Extend Word. Extend bit 15 to bits 31 through 16 of data
register Dn.

General format:
EXTW.<size> Dn
where:

<size> = W (default) or L

NOTE

EXTB.W is the same as the instruction
EXT.W for the MC68000 and MC68010.

59 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.19 BCD Instructions (MC68020 only)

Instructions include both pack and unpack for BCD.

2.5.19.1 Pack BCD. Pack the 1low four bits of each of two bytes into one
byte. When a predecrement addressing mode is specified, bits 3 through 0 of
the two fetched consecutive source bytes are concatenated to form a packed
byte, which s written to the destination. When both operands are data
registers, bits 11 through 8 and bits 3 through 0 of the source register are
concatenated to form the low-order packed byte of the destination data
register.

General format:

PACK - (Ay),-(Ax)
PACK Dy,Dx

where:

Ay and Ax are address registers; Dy and Dx are data registers

2.10.19.2 Unpack BCD. Two BCD digits in the source byte are stored in two
consecutive bytes at the destination. When predecrement addressing is used,
two BCD digits 1in the source byte are separately written to two consecutive
bytes, and destination bits 7 through 4 are set to zero. When data registers
are used, bits 7 through 4 and bits 3 through 0 of the source register are
placed in bits 11 through 8 and bits 3 through 0, respectively, of the
destination register. All other bits of the destination register are set to
zero.

General format:

UNPK - (Ay),- (Ax)
UNPK Dy,Dx

where:

Ay and Ax are address registers; Dy and Dx are data registers.

60 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.20 Module Instructions (MC68020 only)

Both call and return are module instructions.

2.10.20.1 Call Module. An external module descriptor resides at the
specified effective address Tocation. This module descriptor contains
control information for entry into the associated module. A module frame,
containing the current module state, is created on the top of the stack. The
new module state is then Tloaded from the external module descriptor. No
condition codes are affected by this instruction. Only control-alterable
addressing is allowed.

General format:

CALLM #ddd,<ea>
where:

ddd is the 8-bit number of bytes of arguments passed to the called module.
2.10.20.2 Return from Module. A previously saved module state, from a CALLM
instruction, is reloaded from the top of the stack. A register Rn is used as
the module data area pointer. If the module state includes a saved module data

area pointer, register Rn 1is restored; else Rn is unchanged. No condition
codes are affected.

General format:

RTM Rn

2.10.21 Trap on Condition Code (MC68020 only)

If the specified condition code is true, exception processing occurs. The
vector number generated references the TRAPcc exception vector. The stacked
program counter points to the next instruction. If the specified condition
code is false, control passes to the next instruction in sequence. Any of the
16 condition codes may be referenced. Condition codes are not affected by
this instruction. The #xxx parameter in the TPcc form allows a 16- or 32-bit
value to be embedded within the instruction for reference in exception
processing.

General format:

Tcc
TPcc.<size> #xxx

where:

<size> = W (default) or L

61 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.22 Compare and Swap with Operand (MC68020 only)

In the CAS instruction the specified effective address location is compared to
data register Dw. If operands match, the update operand in data register Dy
is written to the specified effective address location. If operands do not
match, Dw 1is Joaded with the contents at the specified effective address
Tocation.

In the CAS2 instruction, both Dwl and Dw2 must match the values in memory
pointed to by registers Rzl and Rz2, respectively, in order that these memory
values be updated by the contents of registers Dyl and Dy2. If both operands
do not match, then Dwl and Dw2 are loaded with the contents of memory pointed
to by registers Rzl and Rz2, respectively.
General formats:

CAS.<size> Dw,Dy,<ea>

CAS2.<size> Dwl:Dw2,Dyl:Dy2,(Rzl):(Rz2)
where:

<size> = B, W, or L

2.10.23 Breakpoint (MC68020 only)

The operation of this instruction is implementation-dependent. The processor
asks for the operation word which the breakpoint has replaced. If the
operation word is furnished, the processor executes that instruction and
continues. If the operation word is not furnished, the processor takes an
illegal instruction exception.

General format:

BKPT #<vector>
where:

#<vector> specifies the breakpoint for which the processor is to request

the corresponding operation word. Value = 0 through 7.

2.10.24 The MC68881 Co-Processor Instructions (MC68881 only)
At present, the assembler supports only the M(C68881 co-processor. The
assembler syntax that follows refers to opcodes for the MC68881, even though
the MC68020 can support other co-processors which follow MC68881 protocols.

Floating-point condition codes used in opcodes for the MC68881 are listed in
Table 2-11.

62 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

TABLE 2-11. MC68881-Specific Floating-Point Condition Codes (fpcc)

TRAP_ON UNOCRDERED

fpecc INVERSE

GT Greater than NGT Not greater than

GE Greater than or equal NGE Not greater than or equal
LT Less than NLT Not less than

GL Greater or less than NGL Not greater or less than
LE Less than or equal NLE Not less than or equal

GLE Greater or less than or equal NGLE Not greater or less than or equal
SEQ Equal SNEQ Not equal
ST Always SF Never

NO TRAP_ON UNQRDERED

fpce INVERSE
OGT Greater than ULE Not greater than
(Unordered or less or equal)
OGE Greater than or equal ULT Not greater than or equal
(Unordered or less than)
OLT Less than UGE Not less than
(Unordered or greater or equal)
OGL Greater or less than UEQ Not greater or less than
(Unordered or equal)
OLE Less than or equal UGT Not less than or equal
(Unordered or greater than)
OR Ordered UN Unordered
EQ Equal NEQ Not equal
(Unordered or greater or less)
T Always F Never
63

MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.24.1 Co-Processor Branch Conditionally. If the specified floating-point
condition code is met, program execution continues at address <label>.
Condition codes are not affected by this instruction.

General format:
FBfpcc <label>
where:

fpcc is defined in paragraph 2.10.24.

2.10.24.2 Decrement and Branch on Condition. If the specified floating-point
condition code is met, execution continues with the next instruction.
Otherwise, the low-order word in the specified data register Dn is decremented
by one. If the result is equal to -1, execution continues with the next
instruction, else execution continues at address <label>. Condition codes are
not affected by this instruction.

General format:
FDBfpcc Dn,<label>

where:

fpcec is defined in paragraph 2.10.24.

2.10.24.3 Set on Condition. The specified floating-point condition code is
tested. If the condition is true, the byte at the specified address location
is set to TRUE (all 1’s); otherwise that byte is set to FALSE (all 0’s). No
condition codes are affected by this instruction. Only data-alterable
addressing modes are allowed.

General format:
FSfpcc <ea>
where:

fpcc is defined in paragraph 2.10.24.

64 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.24.4 Trap on Condition, with or without a Parameter. If the selected
floating-point condition code is true, then the processor initiates exception
processing. The vector number generated references the TRAPcc exception
vector. The stacked Program Counter then points to the next instruction. If
the selected floating-point condition code is not true, then no operation is
performed and execution continues with the next instruction in sequence.
Condition codes are not affected by this instruction.

General formats:

FTfpcc
FTPfpcc.<size> #xxx

where:
fpcc is defined in paragraph 2.10.24.
<size> = Wor L
#xxx is a 16- or 32-bit parameter used to uniquely identify a particular

FTPfpcc instruction.

2.10.24.5 Co-Processor Save Function. This instruction saves the internal
state for the context switch at the specified effective address location.
Condition codes are not affected by this instruction. Only postdecrement or
alterable control addressing modes are allowed. This 1is a privileged
instruction.

General format:

FSAVE <ea>

2.10.24.6 Restore Internal State of Co-Processor. This instruction restores
the internal state for the context switch from the specified effective address
location. Condition codes are not affected by this instruction. Only
postincrement or control addressing modes are allowed. This is a privileged
instruction.

General format:

FRESTORE <ea>

65 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.24.7 Move to Floating-Point Reqister from Memory or from Another
Floating-Point Register Instruction.

FMOVE.<size> <ea>,FPn

where:
<size> = B, W (default), L, S, D, X, or P; FPn is a floating-point
register

FMOVE .<size> FPm,FPn

FMOVEM.<size> <ea>,<fp reg list>
FMOVEM.<size> <ea>,Dn (NOTE)
FMOVECR.<size> f#ccc,FPn

where:

<size> = X (default); FPm, FPn are different floating-point registers;
<fp reg list> is of the form FP1/FP2/FP3... and/or FP1-FP3...; Dn is a
data register; ccc is a group of frequently used floating-point constants:
(These are tentative.)

cce value
00 Pi = 3.14159...

0B Loglo(2)
0C e =2.71828...

oD Log2(e)
OE Logl0(e)
OF 0.0

10 Logn(2)

11 Logn(10)
12 10**0 (1.0)

13 10**]
14 10%*2
15 10**4
16 10**8
17 10**16
18 10**32
19 10**64
1A 10**]128
1B 10**256
1C 10**5]12

1D 10**1024
1E 10**2048
1F 10**4096

NOTE

Dn indicates that the FMOVEM bit mask
is in a MC68020 data register.

66 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

FMOVEM.<size> <ea>,CONTROL/STATUS/IADDR (NOTE)
FMOVE.<size> <ea>,CONTROL | STATUS | IADDR
where:

<size> = L (default); CONTROL, STATUS, and IADDR are floating-point system
registers.

NOTE
From 1 to 3 of these registers can be specified, each

separated from one another by a slash in FMOVEM. The
vertical Tines of FMOVE represent selection choices.

2.10.24.8 Move from Floating-Point Reqister to Memory Instructions.

FMOVE.<size> FPn,<ea>
where:
<size> = B, W (default), L, S, D, X, or P; FPn is a floating-point
register.
FMOVE.P FPn,<ea>{#k}
where:
FPn is a floating-point register; { and } are required delimiters; #k has
a default value of immediate data -16.
FMOVE.P FPn,<ea>{Dn}
where:

FPn is a floating-point register; { and)} are required delimiters; Dn is a
data register holding a dynamic k value.

FMOVEM.<size> <fp_reg list>,<ea>
FMOVEM.<size> Dn,<ea> (NOTE)
where:

<size> = X (default); <fp reg list> is of the form FP1/FP2/FP3... and/or
FP1-FP3...; Dn is a data register.

NOTE

Dn indicates that the FMOVEM bit mask
is in a MC68020 data register.

67 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

FMOVEM.<size> CONTROL/STATUS/IADDR,<ea> (NOTE)
FMOVE.<size> CONTROL | STATUS | IADDR, <ea>
where:

<size> = L (default); CONTROL, STATUS, and IADDR are floating-point system
registers.

NOTE

From 1 to 3 of these registers can be specified, each
separated from one another by a slash. The vertical
Tines of FMOVE represent selection choices.

2.10.24.9 Floating-Point Functions.

a. Source Operand in Memory
F<op>.<size> <ea>,FPn
where:
<size> =B, W (default), L, S, D, X, or P; <op> is defined below
in paragraph c.; FPn is a floating-point register
b. Source Operand in Floating-Point Register
F<op>.<size> FPm,FPn

where:
<size> = B, W (default), L, S, D, X, or P; <op> is defined below
in paragraph c.; FPm and FPn are floating-point registers
c. Source Operand and Destination in Same Floating-Point Register
F<op>.<size> FPn
where:

<size> = X (default); FPn is a floating-point register; <op> is:

68 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

ABS absolute value

ACOS arccosine

ASIN arcsine

ATAN arctangent

ATANH hyperbolic arctangent

Cos cosine
COSH hyperbolic cosine
ETOX e**x ; powers of e (Euler’s constant)

ETOXM1 e**(x-1) ; Euler’s constant to the x-1 power
GETMAN get the mantissa

GETEXP get the exponent

INT integer part

LOGN natural log; base e log
LOGNP1 natural log {x+1)

LOG10 common log; base 10 log
L0G2 binary log; base 2 log
NEG negate

SIN sine

SINH hyperbolic sine

SQRT square root

TAN tangent

TANH hyperbolic tangent
TENTOX 10**x ; powers of 10
TWOTOX 2**x; powers of 2

d. Sine/Cosine Function
FSINCOS.<size> <ea>,FPm:FPn (FPm=sin,FPn=cos)
where:
<size> =B, W, L, S, D, X, or P

FPm is the floating-point register holding the sine result.
FPn is the floating-point register holding the cosine result.

69 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.24.10 Floating-Point Arithmetic Operations.

a. One Source Operand is in Memory
F<op>.<size> <ea>,FPn
where:
<size> = B, W (default), L, S, D, X, or P (except D or X not
allowed for <size> of SGLDIV or SGLMUL); FPn is a floating-point
register; <op> is defined below in paragraph b.
b. Both Source Operands in Floating-Point Registers
F<op>.<size> FPm,FPn
where:

<size> = X (default) (except only S allowed for <size> of SGLDIV or
SGLMUL); FPm and FPn are floating-point registers; <op> is:

ADD add

CMP compare

DIV divide

MOD modulo

MUL muitiply

REM remainder

SCALE scale exponent

SGLDIV single-precision divide
SGLMUL single-precision multiply
SUB subtract

YTOX y**x (powers of y)

70 MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

2.10.24.11 Floating-Point NO-0OP. This instruction is supplied for
synchronization with the floating-point co-processor.

General format:

FNOP

2.10.24.12 Floating-Point Test of an Operand. The operand at the specified
effective address location 1is compared with zero. Floating-point condition
codes as specified in Table 2-11 are set according to the result of the test.

General format:
FTEST.<size> <ea>
where:

<size> =B, W, L, S, D, X, or P

2.11 VARIANTS ON INSTRUCTION TYPES

Certain instructions allow a "quick" and/or an "immediate" form when immediate
data within a restricted size range appear as an operand. These abbreviated
forms are normally chosen by the assembler, when appropriate. However, it is
possible for the programmer to "force" such a form by appending a Q or I to
the mnemonic opcode (to indicate "quick" or "immediate", respectively) on
instructions for which such forms exist. If the specified quick or immediate
form does not exist, or if the immediate data does not conform to the size
requirements of the abbreviated form, an error is generated.

Some instructions also have "address" variant forms (which refer to address
registers as destinations); these variants append an A to the instruction
mnemonic (for example, ADDA, CMPA). This variant is chosen by the assembler
without programmer specification, when appropriate to do so; the programmer
need specify only the general instruction mnemonic. However, the programmer
may “force" or specify such a variant form by appending the A. If the
specified variant does not exist or is not appropriate with the given
operands, an error is generated.

The CMP instruction also has a memory variant form (CMPM) in which both
operands are a special class of memory references. The CMPM instruction
requires postincrement addressing of both operands. The CMPM instruction is
selected by the assembler, or it may be specified by the programmer.

& MICROSYSTEMS

@ MOTOROLA SOURCE PROGRAM CODING

The wvariations -- A, Q, I, and M -- must conform to the following
restrictions:
A Must specify an address vregister as a destination, and cannot
specify a byte size code (.B).
Q Requires 1immediate operand be in a certain size range. MOVEQ also
requires longword data size.
I The size of immediate data is adjusted to match size code of
operation.
M Both operands must be postincrement addresses.

For example, the instruction
ADDQ #9,DO Attempts to add value 9 to DO

causes an assembly error, because the immediate operand is not in the valid
size range (1 through 8).

Although the assembler selects the appropriate opcode variation -- A, Q, I, or
M -- when the suffix is not specified, the explicit encoding of the suffix
with the basic opcode is recommended for the following purposes:

a. For documentation, to make clear in the source Tanguage the instruction
form that was assembled.

b. To force a format other than that which the assembler selects. For
example, the assembler selects the Q form for the instruction

ADD #1,D4 Adds the value 1 to D4 via an ADDQ (2-byte)
instruction.

If the I form is desired, the programmer must declare it explicitly, as
follows:

ADDI #1,D4 Adds the value 1 to D4 via an ADDI (4-byte)
instruction.

c. To generate invariant code when using variant immediate data (separate
assemblies).

72 MICROSYSTEMS

@ MOTOROLA ASSEMBLER DIRECTIVES

CHAPTER 3
ASSEMBLER DIRECTIVES

3.1 INTRODUCTION

A1l assembler directives (pseudo-ops), with the exception of "DC" and "DCB",
are instructions to the assembler rather than instructions to be translated
into object code. This chapter contains descriptions and examples of the
basic forms of the most frequently used assembler directives. Directives
controlling the macro and conditional assembly capabilities are described in
Chapter 5. Directives used in structured syntax are described in Chapter 6.
The most commonly used directives supported by the assembler are grouped, by
function, in Table 3-1.

TABLE 3-1. M68000 Family Assembler Directives

ASSEMBLY CONTROL

END Program end

INCLUDE Include second file

MASK?2 Assemble for Mask2 (R9M)
OFFSET Define offsets

ORG Absolute origin

SECTION Relocatable program section

SYMBOL DEFINITION

EQU (NOTE 1) Assign permanent value

FEQU (NOTE 1) Assign permanent floating-point value
(MC68881 only)

REG (NOTE 1) Define register 1ist

SET (NOTE 1) Assign temporary value

DATA DEFINITION/
STORAGE ALLOCATION

COMLINE (NOTE 2) Command Tine
DC (NOTE 2) Define constants
DCB (NOTE 2) Define constant block
DS (NOTE 2) Define storage
73

MICROSYSTEMS

@ MOTOROLA ASSEMBLER DIRECTIVES

TABLE 3-1. M68000 Family Assembler Directives (cont’d)

LISTING CONTROL
AND OUTPUT OPTIONS

FAIL Programmer-generated error
FOPT Assign floating-point options
(MC68881 only)
FORMAT Enable the automatic formatting
NOFORMAT Disable the automatic formatting
LIST Enable the listing
NOLIST or NOL Disable the 1listing
LLEN n Set line lengths 72 < n < 132
NOOBJ Disable object output
OPT Assembler options
PAGE Top of page
NOPAGE Disable paging
SPC n Skip n lines
TTL Up to 60 characters of title

LINKAGE EDITOR_CONTROL

IDNT (NOTE 1) Relocatable identification record
XDEF External symbol definition
XREF External symbol reference

NOTES: 1. Labels required.
2. Label optional.

3.2 ASSEMBLY CONTROL

3.2.1 END - Program End
FORMAT: END [<start address>]

DESCRIPTION: END directive indicates to the assembler that the source is
finished. Subsequent source statements are ignored. The END
directive encountered at the end of the first pass through the
source program causes the assembler to start the second pass.
The start address should be specified unless it is external to
the module. If no start address is specified, it is still
possible to include a comment field, provided the comment field
is set off by an exclamation point (!). This syntax indicates
to the assembler that the operand field is null and that a
comment field follows.

Ik MICROSYSTEMS

@ MOTOROLA ASSEMBLER DIRECTIVES

3.2.2 INCLUDE
FORMAT :
DESCRIPTION:

3.2.3 MASK2 -
FORMAT:
DESCRIPTION:

3.2.4 OFFSET
FORMAT :
DESCRIPTION:

- Include Secondary File
INCLUDE <file spec>
This directive 1is inserted in the source program at any point
where a secondary file is to be included in the source input
stream.
NOTE

<file spec> 1is case-sensitive
in the SYSTEM V/68 environment.

Assemble for MASK2 (MC68000 only)
MASK2

The MASK2 directive indicates that the source program is to be
assembled to run on the Mask2 (R9M) chip. Specifying MASK2
implements the following changes in assembler processing:

a. DCNT instruction replaces DBcc
b. STOP does not take an operand
c. Bit operations are adjusted to the R9M format

- Define Offsets
OFFSET <expression>

The OFFSET directive is used to define a table of offsets via
the Define Storage (DS) directive without passing these storage
definitions on to the Tinkage editor, in effect creating a dummy
section. Symbols defined in an OFFSET table are kept
internally, but no code-producing instructions or directives may
appear. SET, EQU, REG, XDEF, and XREF directives are allowed.

<expression> is the value at which the offset table is to begin.
The expression must be absolute and may not contain forward,
undefined, or external references.

OFFSET must be terminated by an ORG or SECTION directive before
further code-producing instructions are generated. If not, the
assembler produces an error message.

75 MICROSYSTEMS

@ MOTOROLA ASSEMBLER DIRECTIVES

3.2.5 ORG - Absolute Origin

FORMAT :
DESCRIPTION:

ORG[.<qualifier>] <expression> [<comments>]

The ORG directive changes the PC to the value specified by the
expression in its operand field. Subsequent statements are
assigned absolute memory locations starting with the new PC
value. <expression> must be absolute and may not contain any
forward, undefined, or external references.

Qualifier may be either "S" or "L". "ORG.S" is interpreted as
both “"ORG" and "OPT FRS" (Forward Reference Short Option).
"ORG.L" is interpreted as both "ORG" and "OPT FRL" (Forward
Reference Long Option). Regardless of the forward reference
option, references to previously-defined absolute symbols always
generate the appropriate short or Tong addressing form, based
upon the size of a symbol’s absolute address.

3.2.6 SECTION - Relocatable Program Section

FORMAT:
DESCRIPTION:

[<name>] SECTION[.S] <number>

This directive causes the PC to be restored to the address
following the Tlast Tocation allocated in the indicated section
(or to zero if used for the first time).

<name> indicates a named common area within the indicated
section. No wunnamed common section is allowed. <name> is
associated with the section and may be reused in other sections.

".S" indicates the section should be placed in low address
memory, so that direct addressing may be implemented through the
absolute short mode. This information 1is passed on to the
linkage editor. It affects the choice of address modes in
certain situations where the assembler must choose between
absolute short and absolute long.

<number> must be 1in the range 0..15. No section numbers are
reserved in any way. (refer to the M68000 Family Linkage Editor
User’s Manual or the SYSTEM V/68 PAL Linkage Editor User’s
Manual for a discussion of default assignment of sections to
segments.) By default, the assembler begins with section 0.

3.3 SYMBOL DEFINITION

Symbol definition directives EQU, REG, SET , and FEQU provide the only method
by which a symbol appearing in the label field may be assigned a ’value’ other
than that corresponding to the current location counter.

76 MICROSYSTEMS

@ MOTOROLA ASSEMBLER DIRECTIVES

3.3.1 EQU - Equate Symbol Value
FORMAT: <label> EQU <expression> [<comments>]

DESCRIPTION: EQU directive assigns the value of the expression in the operand
field to the symbol in the Tabel field. The Tlabel and
expression follow the rules given in Chapter 2. The label and
operand fields are both required, and the 1label cannot be
defined anywhere else in the program.

The expression in the operand field of an EQU cannot include a
symbol that is undefined or not yet defined (no forward
references are allowed). Also, it cannot be a complex
relocatable expression.

3.3.2 FEQU - Equate Floating-Point Symbol Value (MC68881 only)
FORMAT: <label> FEQU.<size> <value> [<comments>]
where <size> =S, D, X, or P

DESCRIPTION: FEQU directive assigns the floating-point value in the operand
field to the symbol in the label field. The label and value
follow the rules given in Chapter 2. The operand fields are
both required, and the label cannot be defined anywhere else in
the program. Note that <value> is stored as a string and
converted only to its binary format when it is used in
instructions. <value> may be a floating-point decimal string or
a floating-point hexadecimal value as defined in paragraph
2.8.1. A warning 1is generated whenever the number of bits
required to represent the specified precision is exceeded. The
subsequent <label> must not be used as an address.

3.3.3 REG - Define Register List

FORMAT : <label> REG <reg 1ist> [<comment>]

DESCRIPTION: REG directive assigns a value to <label> that can be translated
into the vregister 1ist mask format used in the MOVEM
instruction. The Tabel cannot be redefined as a Class ? symbol
anywhere else in the program. <reg list> is of the form:

RI[-R2]J[/R3[-R41]...

Example: Al-A5/D0/D2-D4/D7

7 MICROSYSTEMS

@ MOTOROLA ASSEMBLER DIRECTIVES

3.3.4 SET - Set Symbol Value
FORMAT: <label> SET <expression> [<comments>]

DESCRIPTION: SET directive assigns the value of the expression in the operand
field to the symbol in the label field. Thus, the SET directive
js similar to the EQU directive. However, the SET directive
allows the symbol 4in the label field to be redefined by other
SET directives in the program. The label and operand fields are
both required.

The expression in the operand field of a SET cannot include a
symbol that is undefined or not yet defined (no forward
references are allowed), nor can it be a complex relocatable
expression.

3.4 DATA DEFINITION/STORAGE ALLOCATION

The directives in this section provide the only means by which object code may
begin or end on odd byte boundaries. A1l instructions and all word or long
word-sized data must begin and end on even byte boundaries. 0dd byte
alignment is allowed only for the DC.B, DS.B, DCB.B, and COMLINE directives.
A1l other operations which generate object code are preceded by a zero fill
byte if word boundary alignment is required.

3.4.1 COMLINE - Command Line
FORMAT: [<1abel>] COMLINE <expression>

DESCRIPTION: Identical to DS.B (define storage in bytes), except that it is
passed on to the linkage editor as the Tocation of the command
line. <expression> is the number of bytes to reserve (>0). It
must be absolute and may not contain forward, undefined, or
external references. An example of use would be to pass a
filename for the program to access.

78 MICROSYSTEMS

@ MOTOROLA ASSEMBLER DIRECTIVES

3.4.2 DC - Define Constant

FORMAT:

DESCRIPTION:

[<Tabel>] DC.B <operand(s)> Define constant in bytes

[<label>] DC.W <operand(s)> Define constant in words
(default)

[<label>] DC.L <operand(s)> Define constant in longwords

[<label>] DC.S <operand(s)> Define constant in single
precision floating-point
(MC68881 only)

[<label>] DC.D <operand(s)> Define constant in double
precision floating-point
(MC68881 only)

[<label>] DC.X <operand(s)> Define constant in extended
precision floating-point
(MC68881 only)

[<label>] DC.P <operand(s)> Define constant in packed binary
coded decimal (MC68881 only)

The function of the DC directive is to define a constant in
memory. The DC directive may have one or more operands, which
are separated by commas. The operand field may contain the
actual value (decimal, hexadecimal, or ASCII). Alternatively,
the operand may be a symbol or expression which can be evaluated
either by the assembler or the linker. The constant is aligned
on a word boundary if word (.W), longword (.L), single precision
(.S), double precision (.D), extended precision floating-point
(.X), or packed BCD (.P) is specified. Alignment is on a byte
boundary if byte (.B) is specified. Only byte (.B) constants
may not be relocated by the Tinker.

The following rules apply to size specifications on DC
directives with ASCII strings as operands:

DC.B One byte is allocated per ASCII character.

DC.W The string begins on a word boundary. If the string
address contains an odd number of characters, a zero fill
byte follows the last character.

DC.L The string begins on a word boundary. If the string
Tength is not a multiple of four bytes, the Tast longword
is zero filled.

Unless option CEX is in effect, a maximum of six bytes of
constants is displayed on the assembly listing.

7 MICROSYSTEMS

M) moToroLa

3.5.2.1

3.4.

ASSEMBLER DIRECTIVES

Examples of ASCII Strings.

DC.B ’ABCDEFGHI’

DC.B ’E’
DC.B °J°

DC.B ’E’
DC.W °E’

DC

7x’

DC.L 712345’

Memory has nine contiguous bytes with the ASCII
characters A through I.

Memory as characters "EJ" ($454A) in contiguous
bytes.

Memory has $45004500 in contiguous bytes, the first
zero byte being an odd byte fill as outlined above.

Memory has $5800 in contiguous bytes.
Memory has $3132333435000000 in contiguous bytes.

2.2 Examples of Numeric Constants.

DC.

DC.

DC.

DC

DC

DC.
DC.
DC.

DC.

DC.

B

S

P

10,5,7

10,5,7

10,5,7

LABEL+1

$FF,$10, $AE
3.1415
2.54
6.0224E23

:BABE10

3.00E9

Memory has three contiguous bytes with the decimal
values 10, 5, and 7 in their respective bytes.

Each operand is contained in a word. The value 10 is
contained in the first word, right justified. The
value 5 is in the second word, and the value 7 is in
the third word.

Each operand is contained in a longword. The value
10 is contained in the first longword (4 bytes) right
justified. The wvalue 5 is in the second longword,
and the value 7 is in the third longword.

The generated value is the address of LABEL plus 1 in
a word size operand.

Rules for hexadecimal are same as decimal.
A single precision floating-point value is created.
A double precision floating-point value is created.

An extended precision floating-point value is created
(MC68881 only).

An extended precision floating-point hex value is
created (MC68881 only).

NOTE: "E" here can be only a hex digit, not an
exponent designator.

A packed BCD value is created.

80 MICROSYSTEMS

@ MOTOROLA ASSEMBLER DIRECTIVES

If the resulting value in an operand expression exceeds the size of the
operand, an error is generated. For example,

DC.B $FFF This causes an error because $FFF cannot be
represented in 8 bits.

DC $FFFé6F This causes an error because S$FFF6F cannot be
represented in 16 bits.

3.4.3 DCB - Define Constant Block
FORMAT : [<1abel>] DCB[.<size>] <length>,<value> [<comment>]
where:
<size> =B, W, L, S, D, X, or P (S, D, X, P for MC68020/MC68881 only)

<value> = <binary,decimal> (Floating-point only when S, D, X,
<hexadecimal>, or P used)
<floating-point hex>

DESCRIPTION: DCB directive causes the assembler to allocate a block of bytes,
words, or TJlongwords, quad words (.D), or hex words (.X or .P)
depending upon the <size> specified. If <size> is omitted, word
(.W) is the default size. The block length is specified by the
absoTute expression <length>, which may not contain undefined,
forward, or external references. The initial value of each
storage unit allocated is the sign-extended expression <value>,
which may contain forward references. <length> must be greater
than zero. <value> may be relocatable unless byte size {(.B) is
specified.

3.4.4 DS - Define Storage

FORMAT: [<1abel>] DS.
[<Tabel>] DS.
[<Tabel>] DS.
[<T1abel>] DS.

<operand> Define storage in bytes

<operand> Define storage in words (default)

<operand> Define storage in Tongwords

<operand> Define storage in longwords
(MC68881 only)

<operand> Define storage in quad words
(MC68881 only)

<operand> Define storage in hex words
(MC68881 only)

[<label>] DS.P <operand> Define storage in hex words

(MC68881 only)

wnrr=ow

[<1abel>] DS.

> o

[<1abel>] DS.

81 MICROSYSTEMS

@ MOTOROLA ASSEMBLER DIRECTIVES

DESCRIPTION: DS directive is used to reserve memory locations. The contents
of the memory reserved are not initialized in any way.

Examples:
DS.B 10 Define 10 contiguous bytes in memory
DS 10 Define 10 contiguous words in memory
PT1 DS $10 Define 16 contiguous words in memory
PT2 DS.L 100 Define 100 contiguous Tongwords in memory
DX.X 10 Define 10 contiguous hex words in memory

The label references the lowest address of the defined storage area. If word,
longword, single, double, extended precision, or packed BCD mode is specified,
the storage area is aligned on a word boundary.

Example: DS.B 1 RESERVE ONE BYTE
DS 0
DS.W 0 SET LOCATION COUNTER TO EVEN BOUNDARY
DS.L 0

The operand must be absolute and may not contain forward, undefined, or
external references.

3.5 LISTING CONTROL AND OUTPUT OPTIONS

3.5.1 FAIL - Programmer Generated Error
FORMAT: FAIL <expression>

DESCRIPTION: The FAIL directive causes an error or warning message to be
printed by the assembler. The total error count or warning
count is incremented as with any other error or warning. The
FAIL directive is normally used in conjunction with conditional
assembly directives for exceptional condition checking. The
assembly proceeds normally after the error has been printed.
The <expression> 1is evaluated and printed as the error or
warning number on the assembly listing. Errors are numbered 0-
499; warnings are numbered 500 and above.

82 MICROSYSTEMS

@ MOTOROLA ASSEMBLER DIRECTIVES

3.5.2 FOPT -
FORMAT:
DESCRIPTION:
OPTIONS:

3.5.3 FORMAT
FORMAT:
DESCRIPTION:

Floating-Point Assembler Options (MC68020/MC68881 only)

FOPT <option>[,<option>] ... [<comment>]

Follows the command format.

ID = Co-processor identification. Allows more than one MC68881
in a system. New instructions can be defined using existing
macro capabilities. An example would be creating two different
macros:

F2ADD.S ...
F3ADD.S ...

where the macro definition of F2ADD.S begins with "FOPT ID=2"
while F3ADD.S begins with "FOPT ID=3".

The default value for ID is 1.
ROUND=<type> Select IEEE rounding type. Values for <type> are:

N Round to nearest representation (the even value when two
numbers exist).

P Round toward plus infinity.
M Round toward minus infinity.

Z Round toward zero; positive numbers are rounded down and
negative numbers are rounded up.

PREC=<type> Select IEEE precision type. Values for <type> are:
X Extended precision (default)
D Double precision

S Single precision

- Format The Source Listing
FORMAT

Format the source listing, including column alignment (refer to
Table 4-1) and structured syntax indentation (refer to paragraph
6.5.4). This option is selected by default.

83 MICROSYSTEMS

@ MOTOROLA ASSEMBLER DIRECTIVES

3.5.4 NOFORMAT - Do Not Format The Source Listing
FORMAT: NOFORMAT

DESCRIPTION: The source listing has the same format as the source input file.

3.5.5 LIST - List The Assembly

FORMAT: LIST

DESCRIPTION: Print the assembly listing on the output device. This option is
selected by default. The source text following the LIST
directive is printed until an END or NOLIST directive is
encountered.

3.5.6 NOLIST - Do Not List The Assembly

FORMAT: NOLIST or NOL

DESCRIPTION: Suppress the printing of the assembly 1listing until a LIST
directive is encountered.

3.5.7 LLEN - Line Length

FORMAT: LLEN n

DESCRIPTION: Set the number of columns to be output to n. The minimum value
of n is 72 and the maximum 132. The default value for n is 132
columns.

3.5.8 NOOBJ - No Object

FORMAT: NOOBJ

DESCRIPTION: Suppress the generation of object code.

84 MICROSYSTEMS

@ MOTOROLA

ASSEMBLER DIRECTIVES

3.5.9 OPT - Assembler Options

FORMAT:
DESCRIPTION:
OPTIONS:

OPT <option>[,<option>]... [<comment>}

Follows the command format.

A

NOA
BRL

BRS
or
BRB
BRW
CEX
NOCEX
CL
NOCL

CRE

EQU

NOEQU
FRL

FRS

Absolute address. A1l non-indexed operands which
reference either labels or the current assembler Tocation
counter (*) is resolved as absolute addresses.

Disable A (default).

Forward branch 1long (default). Forward references in
relative branch instructions (Bcc, BRA, BSR) assumes the
longer form (16-bit displacement, yielding a 4-byie
instruction).

A 32-bit displacement is assumed unless the directive
"OPT OLD" is in effect (MC68020 only).

Forward branch short. As with BRL, but using the shorter
form (8-bit displacement, yielding a 2-byte instruction).
Generate default branch size of 16 bits.

Print DC expansions.

Opposite of CEX (default).

Print conditional assembly directives (default).

Opposite of CL.

Print cross-reference table at end of source listing.
This option must precede first symbol in source program.
If this option is not in effect, only the symbol table is
printed.

Debug option (output symbol table to file with the same
name as the object code file, but with an extension of

" .RS") .

Retain equates not used by the program in the symbol
table and debug file.

Remove unused equates (default).

Forward reference long (default). Forward references in
the absolute format assumes absolute long mode (32-bit).

Forward reference short. Forward references in the
absolute format assumes absolute short mode (16-bit).

85 MICROSYSTEMS

@ MOTOROLA

MC
NOMC
MD
NOMD
MEX
NOMEX

NOO
OLD

NOOLD

PCO

NOPCO
PCS

NOPCS

P=<type>

ASSEMBLER DIRECTIVES

Print macro calls (default).
Opposite of MC.

Print macro definitions (default).
Opposite of MD.

Print macro expansions.

Opposite of MEX (default).

Create output module (default).
Opposite of O.

Interpret the branch size code .L as being a 16-bit
branch. Also interpret future uses of "OPT BRL" as
referring to forward 16-bit branches.

Change back to new branch size meanings for size .L
(MC68020 only).

PC relative addressing within ORG. Employ relative
addressing, when possible, on backward references
occurring in an ORG section.

Disable PCO (default).

Force PC relative addressing within SECTION. Forces PC
relative addressing (whenever such an addressing mode is
legal) in an instruction which occurs within a
relocatable SECTION and references an operand in

relocatable SECTION (need not be the same SECTION as the
instruction). Failure to resolve such a reference into a
16-bit displacement from the PC results in an error.
This option may be used to force position independent
code (refer to Chapter 7); however, this option does not
force PC vrelative addressing of absolute operands
(defined in ORG section) or unknown forward references.

Disable PCS (default).

Select microprocessor typne; <type> may be 68000, 68010,
68020, or 68881. Default is 68000. Note that P=68881
can be in effect concurrently with P=68000, P=68010, or
P=68020. This can be written on a single line, for
example by saying OPT P=68010/68881. If P=68010, 68020,
or 68881, it must appear before any of the special
MC68010, MC68020, or MC68881 instructions, respectively
(or it may be specified on the command Tine; refer to
Chapter 4).

86 MICROSYSTEMS

@ MOTOROLA ASSEMBLER DIRECTIVES

3.5.10 PAGE - Top Of Page

FORMAT:
DESCRIPTION:

PAGE

Advance the paper to the top of the next page. The PAGE
directive does not appear on the program Tisting. No label or
operand is used, and no machine code results.

3.5.11 NOPAGE - Do Not Page Source Output

FORMAT :
DESCRIPTION:
3.5.12 spC -
FORMAT:
DESCRIPTION:
3.5.13 TTL -
FORMAT:
DESCRIPTION:

NOPAGE

Suppress paging to the output device. Output lines are printed
continuously with no page headings or top and bottom margins.

Space Between Source Lines
SPC n

Output n blank lines on the assembly Tisting. This has the same
effect as inputting n blank Tines in the assembly source. A
blank 1line is defined by the assembler to be a Tine with only a
carriage return.

Title
TTL <title string>

Print the <title string> at the top of each page. A title
consists of up to 60 characters. The same title appears at the
top of all successive pages until another TTL directive is
encountered. In order to print a title on the first listing
page, the TTL directive must precede the first source line which
appears on the listing.

3.6 LINKAGE EDITOR CONTROL

3.6.1 IDNT -
FORMAT:
DESCRIPTION:

Relocatable Identification Record
<module name> IDNT <version>,<revision> [<descr>]

Every relocatable object module must contain an identification
record as a means of identifying the module at link time. The
module name s specified in the label field of the IDNT
directive, while the version and revision numbers are specified
as the first and second operands, respectively. The comment
field of the IDNT directive is also passed on to the linkage
editor as a description of the module.

87 MICROSYSTEMS

@ MOTOROLA ASSEMBLER DIRECTIVES

3.6.2 XDEF -
FORMAT:
DESCRIPTION:

3.6.3 XREF -
FORMAT:

DESCRIPTION:

Example: XRE

The symbol
are in sectio

External Symbol Definition
XDEF <symbol>[,<symbol1>]... [<comment>]

This directive specifies symbols defined in the current module
that are to be passed on to the Tinkage editor as symbols which
may be referenced by other modules linked to the current module.

External Symbol Reference

XREF[.S] [<section>:]<symbol> [,<symbol>]...
[,[<section>:]<symbol> [,<symbol1>]...}...

This directive specifies symbols referenced in the current
module but defined in other modules. This Tist is passed on to
the 1linkage editor. Each symbol 1is associated with the
specified <section> number which it follows. (Symbols may occur
in any section, including an absolute ORG section, if no
<section> designation is specified; see following example.)

".S" indicates the XREF symbols are linked into low address
memory so that direct addressing of these symbols may be
accomplished through absolute short mode.
F AA,2:E2,3:E3,B3,C3

AA can be in any section; E2 is in section 2; and E3, B3, and C3
n 3.

88 MICROSYSTEMS

M) moToroLA INVOKING THE ASSEMBLER

CHAPTER 4
INVOKING THE ASSEMBLER

4.1 TINTRODUCTION

The flexible, multitask environment of the VERSAdos and the SYSTEM V/68
Operating Systems are similar in Command Line Format, notably in the options
supported, and the assembly output file areas. Both systems are discussed
below.

4.2 VERSAdos ENVIRONMENT

4.2.1 Command Line Format
The command Tine format for the assembler running under VERSAdos is:
ASM <source file>[,[<object file>][,<1isting file>]][;<options>]

Only the <source file> is required. The default extension on the <source
file> is SA. If the <object file> and/or <listing file> are not specified,
they default to the same filename as the <source file>, but with extensions of
RO and LS, respectively. The following command lines are equivalent:

ASM TEXT
ASM TEXT,TEXT,TEXT
ASM TEXT.SA,TEXT.RO,TEXT.LS

NOTES

(1) The source file exists on a device which supports
VERSAdos Block I/0. For example, the source file cannot
be the user’s console (#).

(2) #NULL is not allowed as an object file. Users who wish
to inhibit the generation of an object file should
specify the command line option -C.

Default extensions are assumed for <object file> and <listing file>, if not
specified. Multiple source files may be assembled by separating these input
files with a slash (/). In the case of multiple source files, the first
filename is wused for the default object and listing filenames. The listing
may be output to the CRT or the printer during assembly by specifying the
appropriate mnemonic in place of the 1listing file; e.g., the command ASM
TEXT,,#PR prints the Tisting.

89 MICROSYSTEMS

@ MOTOROLA INVOKING THE ASSEMBLER

The assembler recognizes the following options on the command line:

C Produce object code (default).

-C Inhibit production of object code.

D Produce symbolic debug symbol table file.

-D Inhibit production of debug file (default).

F Enable floating-point warning messages during assembly
(default) (MC68881 only).

-F Disable floating-point warning messages during assembly
(MC68881 only).

L Produce listing (default).

-L Inhibit Tisting.

M List macro expansions.

-M Inhibit Tisting of macro expansions.

0 Branch size code extensions are the same as in previous
M68000 assemblers (default).

-0 Offers same functionality as directive "OPT NOOLD"
(MC68020 only).

P=68000 Accept MC68000 instruction set (default).

P=68010 Accept MC68010 instruction set.

P=68020 Accept MC68020/MC68881 instruction set.

P=68xxx/68881 Accept MC68881 instruction set, where xxx is 000, 010 or
020.

R Produce cross-reference.

-R Inhibit production of cross-reference (default).

S List structured control expansions.

-S Inhibit listing of structured control expansions
(default).

W Enable warning messages during assembly (default).

-W Disable warning messages during assembly.

I=<size> Increase data area size (default is 37K).

Multiple options are typed without separation -- e.g., ;LM-CP=68000. Refer
also to paragraph 3.5.9 for assembler options which may be included in the
source code with the OPT directive. When there is a conflict between an
option specified on the command 1ine and one specified with the OPT directive,
the command 1ine option overrides.
4,2.2 Symbol Table Size Option
The symbol table size may be increased by specifying the Z option:

I=<size>

where:

<size> is the number of Kb to be used in the data (stack + heap) area
of the assembler. <size> is in K (1024) bytes.

90 MICROSYSTEMS

@ MOTOROLA INVOKING THE ASSEMBLER

For example:

ASM TEST,,#PR;RZ=40
assembles the source program in TEST.SA, put the relocatable code in TEST.RO,
and sends the listing, including cross-references, to the printer rather than
to a listing file. The data area is 40Kb.
4,2.3 Microprocessor Type Option
The microprocessor type can be specified with the P=<type> option on the
command Tine, where <type> may be 68000, 68010, 68020, or 68881. If omitted,
default is P=68000.

NOTE

The MC68881 floating-point co-processor can be specified
with any of the previous values by separating the two
values with a slash (/) -- e.g., P=68020/68881.

4.3 SYSTEM V/68 ENVIRONMENT

4.3.1 Command Line Format

The command Tine format for the assembler running under SYSTEM V/68 is:

asm [<sep><option>] ... <sep><source file>

where:
asm is the SYSTEM V/68 command that invokes the assembler.
<sep> is a field separator consisting of one or more spaces.

<source file> is the single input file for the assembler (file Tists are
not supported for SYSTEM V/68).

<option> is any option that may be accepted by the assembler. More
than one option may be specified. Options may be specified
after <source file> as well as before it.

9l MICROSYSTEMS

@ MOTOROLA INVOKING THE ASSEMBLER

The syntax of <option> is:
+|- option char>[<option param>]

where:
+ is option enable (required, unlike VERSAdos)
- is option disable

<option char> is a one character option identifier in equivalent upper or
lowercase characters defined exactly the same as in the
VERSAdos environment.

<option param> is any required/allowed parameter which immediately follows
the option character, e.g., = 68010 or = <size>.

The SYSTEM V/68 options supported are the same as the options for a VERSAdos
environment with the exception of the ¢ (or C), 1 (or L) and d (or D) options.
The +c option allows an option parameter. This option parameter specifies the
filename of the object code file. When +c appears without an option
parameter, a default filename based on the <source file> name is generated.
Similarly, the +1 and +d option allows an option parameter that specifies the
filename of the listing file and symbol table file, respectively. The +1 and
+d options provide for a similar default file naming convention.

As in the VERSAdos environment, the user may allow the assembler output
filename to be defaulted. If a listing file or an output file is generated
and the wuser has not specified the name of the listing or output file, the
filename 1is based on the <source file> name. If the <source file> name is a
pathname, the pathname is stripped from the filename, so that the listing file
or output filename resides in the current working directory.

A suffix is expected for all files (source, listing, and output). The suffix
is defined as a "." followed by zero or more characters. When no suffix
exists, a default suffix is appended by the assembler.

The default suffixes (even for uppercase filenames) are:

.sa source file
s listing file
.ro object code file
.rs symbol table file

If the +1 option appears without an option parameter, the Tisting filename is
the source filename with its suffix replaced by ".1s". If the +1 option
appears without a suffixed option parameter, the ".1s" suffix is added.
Similar defaulting occurs for the +c and +d options.

Due to difficulties with syntax, the file 1ist supported in the VERSAdos
environment is not supported in the SYSTEM V/68 environment. Only one input
file can be named on the command line of the assembler. To add some relief to
this restriction, INCLUDE directive files may be nested one level.

%2 MICROSYSTEMS

@ MOTOROLA INVOKING THE ASSEMBLER

4.4 ASSEMBLER OUTPUT

Assembler output includes an assembly listing, a symbol table, a symbolic
debug symbol table file, and an object program file.

The assembly Jlisting includes the source program, as well as additional
information generated by the assembler. Most lines in the listing correspond
directly to a source statement. Lines which do not correspond directly to a
source line include:

. Page header and title
. Error and warning Tines
. Expansion lines for instructions over three words in length

The assembly listing format is shown in Table 4-1. The label, operation, and
operand fields may be extended if the source field does not fit into the
designated output field.

The last page of the assembly listing is the symbol table. Symbols are listed
in alphabetical order, along with their values and an indication of the
relocatable section in which they occur (if any). Symbols that are XDEF,
XREF, REG, in named common, or multiply defined are flagged. If option CRE
has been specified in the program, the cross-reference listing identifies the
source lines on which the symbol was defined or referenced (definitions appear
first, flagged with a "-").

An example of assembler output is provided in Appendix C.

If the option "D" was specified either in the source program or on the command
line, the symbolic debug symbol table is output to a file given the same name
as the relocatable object file, with an extension of ".RS". Linking (with the
linker’s "D" option) makes this information available for easy debugging with
the SYMbug program. Refer to the M68000 Family Linkage Editor User’s Manual,
Appendix D, for .RS file formats or the SYSTEM V/68 PAL Linkage Editor User’s
Manual, Appendix E.

3 MICROSYSTEMS

@ MOTOROLA INVOKING THE ASSEMBLER

TABLE 4-1. Standard Listing Format

COLUMNS CONTENTS EXPLANATION
1-4 Source line number 4-digit decimal counter
6 Section number 1-digit hex section number (blank
indicates location counter is
absolute)
8-15 Location counter value In hex
17-20 Operation word In hex
21-24 First extension word In hex
25-28 Second extension word In hex; any additional extension
words appear on the next line
30-37 Label field
39-46 Operation field
48-67 Operand field
70-N Comment field

4.5 ASSEMBLER RUNTIME ERRORS

During runtime, the assembler may generate its own error messages. These are
listed in Appendix E. However, since the assembler is a Pascal program and
operates 1in the VERSAdos operating system environment or the SYSTEM V/68
environment, runtime errors may occur from these sources as well. Refer to
the VERSAdos Messages Reference Manual or the SYSTEM V/68 Pascal Compiler
User’s Manual for applicable runtime error messages.

Any assembly instruction generating six or more bytes of code, which is found
to have an operand error, can generate six bytes of object code. The code for
the instruction is $4AFB, which is an illegal opcode; the extension word(s) is
$4E71, which is a NOP. These six bytes allow more instructions to be patched
in place or a Jjump to be inserted to a patch area anywhere in the address
space.

Instructions which generate only two or four bytes continue to generate a 2-
or 4-byte length instruction, respectively, whenever an operand is in error.
The instruction word, however, is illegal, and the extension is a NOP.

Undefined operations generate six bytes of code with an illegal opcode and NOP
extensions.

94 MICROSYSTEMS

@ MOTOROLA MACRO OPERATIONS

CHAPTER 5
MACRO OPERATIONS AND CONDITIONAL ASSEMBLY

5.1 INTRODUCTION

This chapter describes the macro (refer to paragraph 5.2) and the conditional
assembly (refer to paragraph 5.3) capabilities of the assembler. These
features can be used in any program.

5.2 MACRO OPERATIONS

Programming applications frequently involve the coding of a repeated pattern
of instructions that, within themselves, contain variable entries at each
jteration of the pattern, or basic coding patterns subject to conditional
assembly at each occurrence. In either case, macros provide a shorthand
notation for handling these patterns. Having determined the iterated pattern,
the programmer can, within the macro, designate fields of any statement as
variable. Thereafter, by invoking a macro, the programmer can use the entire
pattern as many times as needed, substituting different parameters for the
designated variable portions of the statements.

Macro usage can be divided into two basic parts -- definition and expansion.

When the pattern is defined, it 1is given a name. This name becomes the
mnemonic by which the macro is subsequently invoked (called). The name of a
macro definition should not be the same as an existing instruction mnemonic or
an assembler directive.

Expansion occurs when the previously defined macro is called (invoked). The
macro call causes source statements to be generated. The generated statements
may contain substitutable arguments. The statements that may be generated by
a macro call are relatively unrestricted as to type. They can be any
processor instruction, almost any assembler directive, or any previously-
defined macro. Source statements generated by a macro call are subject to the
same conditions and restrictions to which programmer-generated statements are
subject.

The invocation of a macro requires that the macro name appear in the operation
field of a source statement. Most arguments are placed in the operand field.
Appropriate arguments selected according to the macro definition cause the
assembler to produce in-line coding variations of the macro definition.

The effect of a macro call 1is the same as an open subroutine in that it
produces in-line code to perform a predefined function. The in-line code is
inserted in the normal flow of the program so that the generated instructions
are executed in-line with the rest of the program each time the macro is
called.

9 MICROSYSTEMS

@ MOTOROLA MACRO OPERATIONS

5.2.1 Macro Definition
The definition of a macro consists of three parts:
a. The header: <label> MACRO

The <label> of the MACRO statement is the "name" by which the macro is
later invoked. This name must be a unique class 1 symbol. A macro
name may not have a period (.) as any character other than the first.

b. The body

The body of a macro is a sequence of standard source statements. Macro
parameters are defined by the appearance of argument designators within
these source statements. Legal macro-generated statements include the
set of MC68000, MC68010, MC68020, and MC68881 assembly Tlanguage
instructions, assembler directives, structured syntax statements, and
calls to other, previously defined macros. However, macro definitions
may not be nested. When macro text 1lines are saved for later
expansion, all spaces in the source line are compressed. This space
compression is noticed only if the listing is unformatted or if the
macro text includes literal strings with multiple spaces (which would
not expand correctly). Macro expansion 1ines which contain more than
80 characters are truncated at 80 characters, which is the maximum
length of an assembler input line.

c. The terminator: ENDM

5.2.2 Macro Invocation
The form of a macro call is: [<label>] <name>[.<qualifier>] [<parameter 1list>]

Although a macro may be referenced by another macro prior to its definition in
the source module, the macro must be defined before its first in-line
expansion. The name of the called macro must appear in the operation field of
the source statement; parameters may appear as qualifiers to the macro name
and/or in the operand field of the source statement, separated by commas.

The macro call produces in-line code at the location of the invocation,
according to the macro definition and the parameters specified in the macro
call. The source statements so generated are then assembled, subject to the
same conditions and restrictions affecting any source statement. Nested macro
calls are also expanded at this time.

96 MICROSYSTEMS

@ MOTOROLA MACRO OPERATIONS

5.2.3 Macro Parameter Definition and Use

Up to 36 different, substitutable arguments may appear in the source
statements which constitute the body of a macro. These arguments are replaced
by the corresponding parameters in a subsequent call to that macro.

Arguments are designated by a backslash character (\), followed by a digit (0
through 9) or an uppercase letter (A through Z). Argument designator \0
refers to the qualifier appended to the macro name; parameters in the operand
field of the macro call refer to argument designations \1 through \9 and \A
through \Z, in that order.

The parameter 1ist (operand field) of a macro call may be extended onto
additional Tines if necessary. The line to be extended must end with a comma
separating two parameters, and the subsequent extension line must begin with
an ampersand (&) in column 1. The extension of the parameter Tist begins with
the first non-blank characters following the ampersand. No other source lines
may occur within an extended parameter call, and no comment field may occur
except after the last parameter on the last extension line.

Argument substitution at the time of a macro call is handled as a literal
(string) substitution. The string corresponding to a given parameter is
substituted Tliterally wherever that argument designator occurs in a source
statement as the macro is expanded. Each statement generated in this
expansion 1is assembled in-line. (Note that, if a qualifier is present,
argument \0 begins with the first character following the period which
separates the qualifier from the macro name.)

It is possible to specify a null argument in a macro call by an empty string
(not a blank); except for \0, it must still be separated from other parameters
by a comma. In the case of a null argument referenced as a size code, the
default size code (W) is implied; when a null argument itself is passed as an
argument in a nested macro call, a null argument is passed. All parameters
have a default value of null at the time of a macro call.

If an argument has multiple parts or contains commas or blanks, the entire
argument must be enclosed within angle brackets (< and >) as required
characters. Such arguments must still be separated from other arguments by
commas. A bracketed argument with no intervening character is treated as a
null argument. Embedded brackets must occur in pairs. Parameter \0 may not
be bracketed and, hence, may not contain blanks (although commas are legal).
Note that a macro argument may not contain the characters "<" or ">" unless
they occur as part of the argument bracketing.

7 MICROSYSTEMS

@ MOTOROLA MACRO OPERATIONS

5.2.4 Labels Within Macros

To avoid the problem of multiply-defined labels resulting from multiple calls
to a macro which employs Tabels in its source statements, the programmer may
direct the assembler to generate unique labels on each call to a macro.

Assembler-generated Tlabels include a string of the form .nnn, where nnn is a
3-digit value. The programmer may request an assembler-generated label by
specifying \@ 1in a label field within a macro body. Each successive label
definition which specifies a \@ directive generates successive values of .nnn,
thereby creating unique labels on repeated macro calls. Note that \@ may be
preceded or succeeded by additional characters for clarity and to prevent
ambiguity (more than four preceding characters may introduce a problem with
non-uniqueness of symbols).

References to an assembler-generated label always refer to the label of the
given form defined in the current level of macro expansion. Such a label is

referenced as an operand by specifying the same character string as that which
defines the label.

5.2.5 The MEXIT Directive

The MEXIT directive terminates the macro source statement generation during
expansion. It may be used within a conditional assembly structure (refer to
paragraph 5.3) to skip any remaining source lines up to the ENDM directive.
A11 conditional assembly structures pending within the macro currently being
expanded are also terminated by the MEXIT directive.

Example:
SAV2 MACRO

MOVE.L \1, SAVET SAVE 1ST ARGUMENT
MOVE.L \2,SAVET+4 SAVE 2ND ARGUMENT
IFC N3, IS THERE A 3RD ARGUMENT?
FAIL 1000 DID ASSEMBLER GO THRU HERE?
MEXIT NO, EXIT FROM MACRO
ENDC
MOVE. L \3,SAVET+8 SAVE 3RD ARGUMENT
ENDM

5.2.6 NARG Symbol

The symbol NARG is a special symbol when referenced within a macro expansion.
The value assigned to NARG is the index of the last argument passed to the
macros in the parameter list (even if nulls). NARG is undefined outside of
macro expansion and may be referenced as a Class 1 or 2 user-defined symbol
outside of a macro expansion.

%8 MICROSYSTEMS

@ MOTOROLA MACRO OPERATIONS

5.2.7 Implementation of Macro Definition

When the sequence of source statements

MACI MACRO
<stmtl>
<stmt2>

;stmtn>
ENDM

is encountered in a source program, the following actions are performed:

a. The symbol table is checked for a Class 1 symbol entry of *MACI’. If
such an entry 1is already present, a redefined symbol error (231) is
generated; if no such entry exists, an entry is placed in the symbol
table, identifying MAC1 as a macro.

b. Starting with the line following the MACRO directive, each line of the
macro body is saved in a character sequence identified with MACLl. In
the example, stmtl through stmtn are saved in this manner. No object
code is produced at this time. A check is made for missing parameter
references in the macro text (e.g., parameters \1, \2, and \4 are
referenced, but \3 is not).

c. Normal processing resumes with the line following the ENDM directive.

5.2.8 Implementation of Macro Expansion
When the statement:
MACl.<qualifier> <paraml>,<param2>,...,<paramn>

is encountered 1in a source program calling the previously defined macro MACI
(above), the following actions are performed:

a. Because the label field is blank, the string MACI is recognized as the
operation code of the instruction. The symbol table is consulted for a
Class 1 symbol entry with this name. If no such entry exists, an
undefined symbol error (238) 1is generated. In this case, the entry
indicates that the symbol identifies a macro.

99 MICROSYSTEMS

@ MOTOROLA MACRO OPERATIONS

b. The rest of the Tline 1is scanned for parameters which are saved as
literals or null values, one such value in each of the 36 parameter
record fields. If the source line ends with a comma, the next Tine is
checked for an extension of the parameter list. A cross-check is made
with the macro definition for the number of parameters in the call.
object code is produced.

c. Macro expansion consists of the retrieval of the source lines which
comprise the macro body. Each line is retrieved in turn, with special
character pairs replaced by parameter strings or assembler-generated
label strings.

If a backslash character (\) is followed by either a digit (0 through
9) or an uppercase letter (A through Z), the two characters are
replaced by the literal string which corresponds to that parameter on
the macro invocation line(s).

A character sequence which includes \@ is replaced by an assembler-
generated label, as defined in paragraph 5.2.4. An assembler-generated
label is wuniquely identified by the characters preceding and/or
appended to the \@ sequence and the macro invocation in which the
reference occurs. Such labels may appear anywhere in the source Tine
and always refer to the current macro expansion.

NOTE

Space compression is automatically done within macros. For
example, the instruction DC.B ° > becomes DC.B * ’.

d. When a line has been completely expanded, it is assembled as any other
source input line. At this time, any errors in the syntax of the
expanded assembly code are found. Expanded lines longer than 80
characters are truncated, and an error code is generated.

If a nested macro call is encountered, the nested macro expansion takes
place recursively. There is no set limit to the depth of macro call
nesting.

100 MICROSYSTEMS

@ MOTOROLA MACRO OPERATIONS

5.3 CONDITIONAL ASSEMBLY

Conditional assembly allows the programmer to write a comprehensive source
program that can cover many conditions. Assembly conditions may be specified
through the use of arguments in the case of macros and through definition of
symbols via the SET and EQU directives. Variations of parameters can then
cause assembly of only those parts necessary for the specified conditions.

The 1/0 section of a program, for example, varies, depending on whether the
program is used in a disk environment or in a paper tape environment.
Conditional assembly directives can include or exclude an I/0 section, based
on a flag set at the beginning of the assembly.

5.3.1 Conditional Assembly Structure
The conditional assembly structure consists of three parts:
a. The header

There are two conditional clauses recognized by the assembler. The
first form compares the equality of two strings:

IFxx <stringl>,<string2>

"xx" specifies either the string compare (C) condition or the string
not compare (NC) condition, vrepresenting string equality and
inequality, vrespectively. The result of the string comparison, along
with the "xx" condition, determines whether the body of the conditional
structure 1is assembled. Either string may contain embedded commas or
spaces. An apostrophe that occurs within a string must be specified by
double apostrophes.

The second form of the conditional clause compares an expression
against zero:

IFxx <expression>

"xx" specifies a conditional relation between the expression and the
value zero. The result of this comparison at assembly time determines
whether the body of the conditional structure is assembled. Valid
conditional relation codes include:

EQ: expression = 0
NE: expression <> 0
LT: expression < 0
LE: expression <= 0
GT: expression > 0
GE: expression >= 0

Because of the nature of this comparison, the expression must be
absolute. No forward references are allowed.

101 MICROSYSTEMS

@ MOTOROLA MACRO OPERATIONS

b. The body

The body of the conditional assembly structure consists of a sequence
of standard source statements. There is no set Timit to the depth of
conditional assembly nesting; if such nesting occurs, a terminator must
be specified for each structure.

¢. The terminator: ENDC

When an IFxx directive is encountered, the specified condition is evaluated.
If the condition is true, the statements constituting the body of the
conditional assembly structure are each assembled in turn. If the relation is
false, the entire conditional assembly structure is ignored; the ignored lines
are not included in the assembly Tisting. By specifying the OPT NOCL option
(refer to paragraph 3.5.9), the header and terminator Tines are ignored for
listing purposes.

IFxx and ENDC directives may not be labeled.

Testing for null parameters may be done via the string compare form of the
conditional assembly. To assemble conditionally if parameter 1 is null,
either of the following directives is correct:

IFxx 77,’\1’
or
IFxx ’\1’,”’
where:
xx = C or NC

To assemble conditionally if a parameter is present, use either of the IFNC
formats analogous to the above two.

A conditional assembly structure is also terminated by a MEXIT directive, as
explained in paragraph 5.2.5. A1l conditional assembly structures which
originate in a macro are terminated at the exit from that macro (if not
before). Only conditional assembly structures which originated within a given
macro may be terminated within that macro. These two rules are necessary for
the consistent implementation of conditional assembly.

5.3.2 Example of Macro and Conditional Assembly Usage

The following example illustrates most of the features of macros and
conditional assembly structures. The assembly code is shown as it appears,
without Tine numbers or object code. Note that angle brackets (< >) shown in
examples are required characters.

102 MICROSYSTEMS

M) moToroLA

MACO MACRO

MAC1 MACRO

LAB\@ CLR.L

\@END \5.\0

LAB.001 CLR.L

.002END ADD.L

MACRO OPERATIONS

\1
\2

#1,D\2
\1 CONDITIONAL
#1,D\2
\1-5 NESTED CONDITIONAL
#2,D\2 \4
END NESTED CONDITIONAL

END CONDITIONAL
D1

D\2, (A0)+

\GEND

LAB\@

#1,D\2

\l

<D\2, (R0)>,A\2 NESTED MACRO CALL

MEX,NOCL

7,3,6T,<TEST PASSES>,ADD

#7,D3

#1,D3

#2,D3 TEST PASSES
D1

D3, (A0)+

.002END

LAB. 001

#1,D3

0,6,NE,<ERROR HERE>,SUB
#0,D6

103 MICROSYSTEMS

(::) MOTOROLA

LAB.003

.004END

CLR.L
MOVE.
BNE
BRA
SUB.
MACO.
MOVE.
CLR.L

MACRO OPERATIONS

D1
D6, (A0)+

.004END

LAB.003

#1,D6

<D6, (A0)>,A6 NESTED MACRO CALL
D6, (A0)

A6

104

MICROSYSTEMS

@ MOTOROLA STRUCTURED CONTROL STATEMENTS

CHAPTER 6
STRUCTURED CONTROL STATEMENTS

6.1 INTRODUCTION

An assembly Tanguage provides an instruction set for performing certain
rudimentary operations. These operations, in turn, may be combined into
control structures -- such as loops (for, repeat, while) or conditional
branches (if-then, if-then-else). The assembler, however, accepts formal,
high-Tevel directives that specify these control structures, generating, in
turn, the appropriate assembly language instructions for their efficient
implementation. This use of structured control statement directives improves
the readability of assembly language programs, without compromising t’
desirable aspects of programming in an assembly language.

6.2 KEYWORD SYMBOLS

The following Class 1 symbols, used in the structured syntax, are reserved
keywords (directives):

ELSE ENDW REPEAT
ENDF FOR UNTIL
ENDI IF WHILE

The following symbols are required in the structured syntax, but are
nonreserved keywords:

AND DOWNTO T0
BY OR
DO THEN

Note that AND and OR are reserved instruction mnemonics, however.

105 MICROSYSTEMS

@) mororoLa STRUCTURED CONTROL STATEMENTS

6.3 SYNTAX

The formats for the IF, FOR, REPEAT, and WHILE statements are found in
paragraphs 6.3.1 through 6.3.4. They are spaced to show the line separations
required for Class 1 symbol usage (refer to paragraph 6.5.1). Syntactic
variables used in the formats are as follows:

<expression> A simple or compound expression (refer to paragraph 6.4).

<stmtlist> Zero or more assembler directives, structured control
statements, or executable instructions.

Note that an assembler directive (refer to Chapter 3)
occurring within a structured control statement is examined
exactly once - at assembly time. Thus, the presence of a
directive within a FOR, REPEAT, or WHILE statement does not
imply repeated occurrence of an assembler directive; nor
does the presence of a directive within an IF-THEN-ELSE
statement imply a conditional assembly structure (refer to
Chapter 5).

For correct recognition, the statements in <stmtlist> must
not appear on the same 1line as the structured syntax
symbols.

<size> The value B, W, or L, indicating a data size of byte, word,
or longword, respectively. With the keyword FOR, <size> is
a single code applying to <opl>, <op2>, <op3>, and <op4>.
With the keywords IF, UNTIL, and WHILE, <size> indicates
the size of the operand comparison in the subsequent simple
expression (refer to paragraph 6.4.2 for a compound
expression). Note that structured syntax statements rely
on the underlying opcodes and the restrictions these
opcodes place on arguments to the statements. For example,
the structured syntax statement

FOR.B D7 = #0 to #255 DO

generates code without warning but does not execute as
expected. This is because the comparison opcode CMP does a
signed comparison and hence deals with numbers in the range
-128...127 instead of 0...255. (MC68881 only: only IF is
now implemented with floating-point ranges.)

<extent> The value S or L, indicating that the branch extent is
short or 1long, vrespectively. This 1is appended to the
keywords THEN, ELSE, and DO, to force the appropriate
extent of the forward branch over the subsequent
<stmtlist>. The default extent for the MC68020 is
determined by the option directive (OPT, BRS, OPT BRB, OPT
BRW, or OPT BRL) currently in effect.

106 MICROSYSTEMS

M) moToroLA

<opl>

<op2>

<op3>

<op4>

STRUCTURED CONTROL STATEMENTS

A user-defined operand whose memory/register location holds
the FOR-counter. The effective address must be an
alterable mode.

The initial value of the FOR-counter. The effective
address may be any mode.

The terminating value for the FOR-counter. The effective
address may be any mode.

The step (increment/decrement) for the FOR-counter each
time through the loop. If not specified, it defaults to a
value of #1. The effective address may be any mode.

6.3.1 IF Statement

SYNTAX:

FUNCTION:

NOTES:

6.3.2 FOR
SYNTAX:

IF[.<size>] <expression> THEN[.<extent>]
<stmtlist>
ENDI

or

IF[.<size>] <expression> THEN[.<extent>]
<stmtlist>

ELSE[.<extent>]
<stmtlist>

ENDI

If <expression> is true, execute <stmtlist> following THEN; if
<expression> is false, execute <stmtlist> following ELSE, if
present, or advance to next instruction.

a. If an operand comparison <expression> is specified, the
condition codes are set and tested before execution of
<stmtlist>.

b. In the case of nested IF-THEN-ELSE statements, each ELSE refers
to the closest IF-THEN.

Statement

FOR[.<size>] <opl> = <op2> TO <op3> [BY <op4>] DO[.<extent>]
<stmtlist>
ENDF

or
FOR[.<size>] <opl> = <op2> DOWNTO <op3> [BY <op4>] DO[.extent>]

<stmtlist>
ENDF

107 MICROSYSTEMS

@ MOTOROLA STRUCTURED CONTROL STATEMENTS

FUNCTION: These counting loops utilize a user-defined operand, <opl>, for
the Toop counter. FOR-TO allows counting upward, while FOR-
DOWNTO allows counting downward. In both loops, the user may
specify the step size, <op4>, or elect the default step size of
#1. The FOR-TO loop is not executed if <op2> is greater than
<op3> upon entry. Similarly, the FOR-DOWNTO loop is not executed
if <op2> is less than <op3>.

NOTES: a. The condition codes are set and tested before each execution
of <stmtlist>. This happens even if <stmtlist> is not
executed.

b. A step size of #1 may not be meaningful if the counter, <opl>,
is used to index through word or longword-sized data.

c. Each immediate operand must be preceded by a # sign. For
example, the following would Toop ten times by steps of four.

FOR COUNT = #4 TO #40 BY #4 DO ...
d. The FOR structure generates a move, a compare, and either an
add or subtract. Therefore, if any of the four operands is an
A register, <size> may not be B (byte).
6.3.3 REPEAT Statement
SYNTAX: REPEAT
<stmtlist>
UNTIL[.<size>] <expression>

FUNCTION: <stmtlist> is executed repeatedly until <expression> is true.

NOTES: a. The <stmtlist> is executed at Tleast once, even if
<expression> is true upon entry.

b. If an operand comparison <expression> is specified, the

condition codes are set and tested following each execution
of <stmtlist>.

6.3.4 WHILE Statement

SYNTAX: WHILE[.<size>] <expression> DO[.<extent>]
<stmtlist>
ENDW
FUNCTION: The <expression> is tested before execution of <stmtlist>.

While <expression> is true, <stmtlist> is executed repeatedly.

108 MICROSYSTEMS

@ MOTOROLA STRUCTURED CONTROL STATEMENTS

NOTES: a. If <expression> s false upon entry, <stmtlist> is not
executed.

b. If an operand comparison <expression> is specified, the
condition codes are set and tested before each execution of
<stmtlist>. The condition codes are set and tested even if
<stmtlist> is not executed.

6.3.5 (MC68020/MC68881 only.) Floating-Point Structured Assembler Syntax
IF FPn <Ffpcc> <ea> THEN

IF <ea> <Ffpcc> FPn THEN
IF FPn <Ffpcc> FPm THEN

IF <Ffpce> THEN
where:

FPm, FPn are floating-point registers; Ffpcc is a floating-point condition
code, defined in Table 2-11; F is a required constant.

When the assembler expands the structured IF statement with a floating-point
condition code, fpcc, it must choose the true IFEE inverse of cc. For
example, the code for

IF.X FP3 <FGT> #3.3 THEN (where GT is one value of fpcc and F is a
required constant value)

would be

FCMP.X #3.3,FP3

FBNGT ELSECLAUSE

e main clause code
BRA PAST

ELSECLAUSE

cen else clause code

PAST

NOTE: The branch following the FCMP is a FBNGT rather than a FBLE. FBNGT is

the IEEE inverse of FBGT.

109 MICROSYSTEMS

@ MOTOROLA STRUCTURED CONTROL STATEMENTS

6.4 SIMPLE AND COMPOUND EXPRESSIONS

Expressions are an integral part of IF, REPEAT, and WHILE statements. An
expression may be simple or compound. A compound expression consists of no
more than two simple expressions joined by AND or OR.

6.4.1 Simple Expressions

Simple expressions are concerned with the bits of the Condition Code Register
(CCR). These expressions are of two types. The first type merely tests
conditions currently specified by the contents of the CCR (refer to paragraph
6.4.1.1). The second type sets up a comparison of two operands to set the
condition codes, and afterwards tests the codes (refer to paragraph 6.4.1.2).

6.4.1.1 Condition Code Expressions. Fourteen tests (identical to those in
the Bcc instruction) may be performed, based on the CCR condition codes. The
condition codes, 1in this case, are preset by either a user-generated
instruction or a structured operand-comparison expression (refer to paragraph
6.4.1.2). Each test is expressed in the structured control statement by a
mnemonic enclosed in angle brackets (< >) as required characters, as follows:

<CC>

<CS>

<EQ>

<GE>

<GT>

<HI> For an explanation of each test, refer to Table A-2,
<LE> "Conditional Tests", in the MC68000 16-Bit
<LS> Microprocessor User’s Manual.

<LT>

<MI>

<NE>

<PL>

<VC>

<VS>

For example:

IF <EQ> THEN
CLR.L D2
ENDI

REPEAT
SUB D4,D3
UNTIL <LT>

110 MICROSYSTEMS

@ MOTOROLA STRUCTURED CONTROL STATEMENTS

6.4.1.2 Operand Comparison Expressions. Two operands may be compared in a
simple expression, with subsequent transfer of control based on that
comparison. Such a comparison takes the form:

<opl> <cc> <op2>
where:

<cc> is a condition mnemonic enclosed in angle brackets (as described in
paragraph 6.4.1.1), specifying the relation to be tested between
<opl> and <op2>. When processed by the assembler, this expression
translates to a compare instruction.

For example:
CMP <opl>,<op2>

followed by a branch instruction (Bcc) which tests the relation specified.
<opl> 1is normally, but not necessarily assigned to the first (Teftmost)
operand and <op2> to the second (rightmost) operand of the compare
instruction.

NOTE
A blank (#’ ’) should not be used
for the value of <opl> or <op2>.

A size may be specified for the comparison by appending a data size code (B,
W, or L) to the directive, with W being the default. The only restriction is
that a byte-size code (B) may not be used in conjunction with an address
register direct operand.

Compare instructions require certain effective addressing modes for their
operands. These modes are Tisted in Table 6-1. However, if the operands,
<opl> and <op2>, are not listed in an order that generates a legal compare
instruction (Table 6-1), but generates a legal compare if the operand order is
reversed, the assembler reverses the operands when expanding the expression.
To maintain the nature of the relation specified, the condition operator is
adjusted, if necessary. For example, "D2 <GT> #5" 1is adjusted by the
assembler to the equivalent of "#5 <LT> D2"; Tlikewise, "A2 <EQ> (A5)" 1is
adjusted to the equivalent of "(A5) <EQ> A2". This processing allows the user
the flexibility of specifying the more meaningful operand order in the
expression.

111 MICROSYSTEMS

@ MOTOROLA STRUCTURED CONTROL STATEMENTS

TABLE 6-1. Effective Addressing Modes for Compare Instructions

COMPARE --mommmmmmm e
INSTRUCTIONS FIRST OPERAND SECOND OPERAND
CMP (AT1) Data register direct
CMPA (A1) Address register direct
CMPI Immediate (Data alterable)
CMPM Postincrement register Postincrement register

indirect indirect

If the operands, either as stated or reversed, do not yield a legal compare
instruction, an error results. For example, the statement

IF (A1) <NE> (A2) THEN

results in an ERROR 213 message (illegal address mode) during expansion. To
avoid this error, a MOVE is required to accomplish a legal operand, such as:

MOVE (A2),D2

IF (A1) <NE> D2 THEN
Examples:

WHILE.B (A3) <NE> D2 DO THIS EXPRESSION IS LEGAL AS STATED.
MOVE.B (A5)+,D2

ENDW

IF D7 <LT> #10 THEN THIS EXPRESSION IS REVERSED.
BSR SUBR1

ELSE
MULS #2,D7

ENDI

6.4.2 Compound Expressions

A compound expression consists of two simple expressions (refer to paragraph
6.4.1) Jjoined by a logical operator. The Boolean value of the compound
expression is determined by the Boolean values of the simple expressions and
the nature of the logical operator (AND or OR).

112 MICROSYSTEMS

@ MOTOROLA STRUCTURED CONTROL STATEMENTS

The two simple expressions are evaluated in the order in which they are given.
However, if an AND separates the expressions and the first expression is
false, the second expression is not evaluated. Likewise, if an OR separates
the expressions and the first expression is true, the second expression is not
evaluated. In these cases, the compound expression is either false or true,
respectively, and the condition codes reflect the result of only the first
simple expression.

A size may be specified for each operand comparison expression. The size of
the comparison for the first expression may be appended to the directive,
while the size of the comparison for the second expression may be appended to
the keyword AND or OR. For example, in the statement

IF.L D3 <GT> (A0) OR.B #°Q° <EQ> BUFFER1

the first comparison is a Tlongword comparison, and the second is a byte
comparison.

6.5 SOURCE LINE FORMATTING

The format of structured source statements is more restricted than the format
of basic statements. The following paragraphs discuss the formatting
requirements of structured statements as well as their appearance in the
assembly Tisting.

6.5.1 Class 1 Symbol Usage

Class 1 symbols, as described in paragraphs 2.8.2 and 6.2, are the assembler
directives (including macro names), instruction mnemonics, and the structured
control directives. Only one of these is recognized on each source line.
Thus, each directive (reserved keyword) of a structured control statement and
each executable instruction generated by the programmer must be written on a
separate source line. The following source line, for example, is in error:

REPEAT MOVE -(A5),D2 UNTIL <EQ>

because the MOVE and UNTIL symbols and their operands are not recognized, but
are treated as part of the comment field of the REPEAT directive. Likewise,
the following Tines are in error:

IF <VS> THEN JSR OVERFLOW
ELSE JMP (A3) ENDI

because the JSR, JMP, and ENDI symbols and their operands are not recognized.
The correct format for these Tines is as follows:

113 MICROSYSTEMS

@ MOTOROLA STRUCTURED CONTROL STATEMENTS

REPEAT
MOVE -(A5),D2
UNTIL <EQ>
and
IF <VS> THEN
JSR OVERFLOW
ELSE
JMP (A3)
ENDI

6.5.2 Limited Free-Formatting

To improve vreadability, 1limited free-formatting allows the operand field of

the IF, UNTIL, WHILE, and FOR directives to be extended onto additional
consecutive Tlines.

For example:
IF #15 <LT> D7

AND
(A3) <NE> D3 THEN

UNTIL (A7)+ <EQ> D2 OR
<VS>

FOR D1 = #1 TO #5
BY #1 DO

6.5.3 Nesting of Structured Statements

Structured statements may be nested as desired to create multilevel control
structures. An example of such nesting is the following:

IF <EQ> THEN
REPEAT
MOVE DO, (A5)+
ADDQ #4,00

MOVE.L A4, (Ad)+
UNTIL.L A5 <LE> A4
ELSE.L
FOR D2 = #10 TO #20 BY #2 DO
WHILE D4 <LT> D2 AND D4 <LT> #100 DO
MOVE.L 10(A3,D4.W), (A5)+
ADDQ #2,D4
ENDW
ENDF
ENDI

114 MICROSYSTEMS

@ MOTOROLA STRUCTURED CONTROL STATEMENTS

6.5.4 Assembly Listing Format

By default (FORMAT directive), the assembly listings are formatted according
to Table 4-1. In addition, the operation and operand fields of source lines
in structured syntax are indented two columns for each nested level of
operation. This automatic formatting may be turned off by using the NOFORMAT
directive.

The assembly language code generated for the structured syntax is included in
the 1listing when the S (or s) option is specified in the ASM (or asm) command
line.

6.6 EFFECTS ON THE USER®S ENVIRONMENT

If the S (or s) option is specified in the ASM command line (refer to
paragraph 4.2.1), the generated code of the structured control expansions is
listed. There may be three items found in this code that affect the user’s
environment:

a. During assembly, Tocal 1labels beginning with "Z L" are generated.
These Tlabels use the same increment counter (.nnn) as local labels in
macros (refer to paragraph 5.2.4). They are stored in the symbol table
and should not be dupiicated in user-defined labels.

b. In the FOR 1loop, <opl> is a user-defined symbol. When exiting the
loop, the memory/register assigned to this symbol contains the value
which caused the exit from the loop.

c. Compare instructions (refer to Table 6-1) are generated by the
assembler whenever two operands are tested relationally in a structured
statement. During runtime, however, these assembler-generated
instructions set the condition codes of the CCR (in the case of a loop,
the condition codes are set repeatedly). Any user-written code, either
within or following a structured statement, that references the CCR
should be attentive to the effect of these instructions.

115 MICROSYSTEMS

@ MOTOROLA STRUCTURED CONTROL STATEMENTS

THIS PAGE INTENTIONALLY LEFT BLANK.

116 MICROSYSTEMS

@ MOTOROLA POSITION INDEPENDENT CODE

CHAPTER 7
GENERATING POSITION INDEPENDENT CODE

7.1 FORCING POSITION INDEPENDENCE

When creating a relocatable program module, it is often desirable to ensure
that all references to operands in relocatable sections are position-
independent effective addresses -- 1i.e., no absolute addresses occur as
effective addresses for such references. To avoid absolute effective address
formats, it 1is necessary to ensure that all memory operand references are
resolved by the assembler (or by the Tinkage editor at the assembler’s
direction) into one of the PC-relative or address register indirect addressing
modes. Avoiding ORG directives is not sufficient to ensure position
independence, because it is possible for the assembler to produce absolute
effective address formats even when no absolute symbols have been defined.

For example, if an instruction references a symbol that is not yet defined, or
is defined either in another section or as an XREF in an unspecified section,
the default action of the assembler is to direct the linkage editor to resolve
the reference by supplying the absolute address of the symbol. By specifying
OPT PCS, all references known to be in a relocatable section are resolved as a
PC-relative address. However, this does not solve the problem of forward
references, which would still default to absolute format. To over ride an
absolute address mode when resolving the effective address format of an
operand, the following formats may be used to force PC-relative addressing:

a. Forcing PC with displacement
An operand of the form: LABEL(PC)

is resolved as a PC with displacement effective address, either by the
assembler or by the linkage editor (at the assembler’s direction). If
LABEL cannot be resolved into a 16-bit displacement from the PC, an
error is generated.

b. Forcing PC with index plus displacement
An operand of the form: LABEL(PC,Rn)

is resolved as a PC with index plus displacement effective address by
the assembler. Because the displacement in this mode is eight bits,
the reference must be resolvable by the assembler. If LABEL cannot be
resolved by the assembler into an 8-bit displacement from the PC, an
error is generated.

117 MICROSYSTEMS

@ MOTOROLA POSITION INDEPENDENT CODE

7.2 BASE-DISPLACEMENT ADDRESSING

Although PC relative addresses have the advantage of position-independence,
such address formats often are not the most meaningful to the programmer when
debugging an assembled module. There are many times when a programmer would
prefer to see an address relative to a specified base -- i.e., in a base-
displacement format. This is especially true when addressing tables, arrays,
and other data structures. Base-displacement references to a given location
are "base vrelative" and, therefore, fixed with respect to a given base
address; PC relative references to that same location are different in each
instruction.

Base-displacement addressing must be handled explicitliy by the programmer.
For example, if the following data area is declared

TEMP DS $40
CONST DC $10
ARRAY1 DS.L $10
ARRAY2 DS.L $10
RESULT DS.L $10

the programmer may choose to Tload A6 with the address of TEMP and make
references to the other data locations as displacements from this base
address. For example, to move the first element of ARRAY1l to D1, the
programmer may specify:

MOVE.L ARRAY1-TEMP(A6),D1
Indexing with the Tow order contents of DO may be added (as the array index):

MOVE.L ARRAY1-TEMP(A6,D0),D1

7.3 BASE-DISPLACEMENT IN CONJUNCTION WITH FORCED POSITION INDEPENDENCE

Complete code-position independence can be achieved by using base-displacement
addressing in conjunction with the PCS option and the forced PC relative
addressing scheme outlined in paragraph 7-1. Although these techniques can be
used to avoid all undesired absolute address formats, there are significant
limitations of PC relative addressing in a position independent program, as
noted below:

a. PC with displacement
PC with displacement effective addresses are restricted only by the 16-

bit displacement field. A displacement greater than 32Kb from the
current PC cannot be resolved in this format.

118 MICROSYSTEMS

@ MOTOROLA POSITION INDEPENDENT CODE

b. PC with index plus displacement

The displacement field here is restricted to eight bits, Timiting the
range of this format to a 128-byte displacement from the current PC.
This 8-bit displacement 1is not relocatable. Therefore, only symbols
with a known displacement from the PC may be resolved in a PC with
index plus displacement format.

c. Operands in the alterable addressing category
Neither PC relative mode is allowed as an alterable operand. This is a
significant Timitation 1in instructions which require an alterable
operand, such as the destination operand in a MOVE instruction.

By appropriate use of base registers, these limitations can be overcome.

119 MICROSYSTEMS

@ MOTOROLA POSITION INDEPENDENT CODE

THIS PAGE INTENTIONALLY LEFT BLANK.

120 MICROSYSTEMS

@ MOTOROLA APPENDIX A

APPENDIX A
INSTRUCTION SET SUMMARY

This appendix provides a summary of the MC68000/MC68010/MC68020/MC68881
instruction set. For detailed information, refer to the M68000 16/32-bit
Microprocessor Programmer’s Reference Manual.

For ~ the MC68881 only, the affected condition codes N Z I NAN are,
respectively, bits 31, 30, 29, and 28 of the floating-point status register,
rather than bits 4, 3, 2, 1, and 0 of the status MC68000/MC68010/MC68020

register. Thus, the four condition codes listed for MC68881 instructions
refer to N Z I NAN, respectively.

Following are two dinstruction set summary tables -- one for the
MC68000/MC68010/MC68020 and one for the MC6888IL.

121 MICROSYSTEMS

M) moTroroLa

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020

APPENDIX A

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX X N Z v C

ABCD Add decimal with extend ABCD Dy,bBx * Uy *x U *
ABCD - (Ay), - (AX)

ADD Add binary (NOTE 1) ADD <ea>,Dn * ok ok ok ¥
ADD Dn<ea>

ADDA Add address ADDA <ea>,An L .

ADDI Add immediate ADD! #<data>,<ea> * ok ok k%

ADDQ Add quick ADDQ #<data>,<ea> *okox k%

ADDX Add extended ADDX Dy,Dx *okox k%
ADDX - (Ay),-(AX)

AND AND Llogical AND <ea>,Dn - * * 0 0
AND Dn,<ea>

ANDI AND immediate ANDI #<data>,<ea> - ¥ *x 00

ASL, ASR Arithmetic shift ASd Dx,Dy * ok ok ok %
ASd #<data>,Dy
ASd <ea>

Bce Branch conditionally Beec <label> L

BCHG Test a bit and change BCHG Dn,<ea> - e - -
BCHG #<data>,<ea>

BCLR Test a bit and clear BCLR Dn,<ea> - - *x - -
BCLR #<data>,<ea>

BFCHG Complement bit field (MC68020) BFCHG <ea>{<offset>:<width>} - * * 00

BFCLR Clear bit field (MC68020) BFCLR <ea>{<offset>:<width>} - * * 0 0

BFEXTS Extract bit field signed (MC68020) BFEXTS <ea>{<offset>:<width>},Dn - % *x 0 0

BFEXTU Extract bit field unsigned BFEXTU <ea>{<offset>:<width>},Dn - % *x g 0

(MC68020)
BFFFO Find first one in bit field BFFFO <ea>{<offset>:<width>2,Dn - % * 0 0
(MC68020)
BFINS Insert bit field (MC68020) BFINS Dn, <ea>{<offset>:<width>} - * * 00
BFSET Set bit field (MC68020) BFSET <ea>{<offset>:<width>},Dn - % * 00

122

MICROSYSTEMS

M) moToroLA APPENDIX A

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX X N Z v C
BFTST Test bit field (MC68020) BFTST <ea>{<offset>:<width>} - * * 00
BKPT Breakpoint (MC68020) BKPT #<vector> I
BRA Branch always BRA <label> LR B
BSET Test a bit and set BSET Dn,<ea> L

BSET #<data>,<ea>
BSR Branch to subroutine BSR <label> - e - e
BTST Test a bit BTST Dn,<ea> N

BTST #<data>,<ea>

CALLM Call module (MC68020) CALLM #ddd, <ea> R

CAS Compare and swap with operand CAS Dw,Do,<ea> L
(MC68020)

CAS2 Compare and swap with operand CAS2 Dw1:Dw2,Do1:Do2,(Rz1):(Rz2) A A
(MC68020)

CHK Check register against bounds CHK <ea>,Dn - * U Uy

CHK2 Check register against bounds CHK2 <ea>,Rn - U * U *
(MC68020)

CLR Clear an operand CLR <ea> - 01 00

CMP Arithmetic compare CMP <ea>,Dn -k R k%

CMPA Arithmetic compare address CMPA <ea>,An -k *x ok *

CMPI Compare immediate CMPI #<data>,<ea> -k ok x x

CMPM Compasre memory CMPM (Ay)+, (Ax)+ .k k%

CMP2 Compare register against bounds CMP2 <ea>,Rn - U *y *
(MC68020)

DBcc Test condition and decrement DBcc Dn,<label> L

and branch (NOTE 2)

DIvs Signed divide DIVS <ea>,Dn - * x x 0
DIVU Unsigned divide DIVU <ea>,Dn -k x x
123

MICROSYSTEMS

M) mororoLA

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

APPENDIX A

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX X N Z v C
EOR Exclusive OR logical EOR Dn,<ea> - % * 0 0
ECR! Exclusive OR immediate EORI #<data>,<ea> - * * 00
EXG Exchange registers EXG Rx,Ry L A
EXT Sign extend EXT On - * *x g 0
EXTB Sign extend byte (MC68020) EXTB Dn - ¥ * 00
EXTW Sign extend word (MC68020) EXTW Dn - * * 00

(Part of EXT instruction)
JMP Jump JMP <ea> R
JSR Jump to subroutine JSR <ea> L
LEA Load effective address LEA <ea>,An L
LINK Link and allocate LINK An #<disp> L R
(NOTE 5)
LSL, LSR Logical shift LSd Dx,Dy * ok x g *
LSd #<data>,Dy
LSd <ea>
MOVE Move data from source to MOVE <ea>, <ea> - * * 00
destination
MOVE to SR Move to the status register MOVE <ea>,SR *ok ok ok ok
MOVE from SR Move from the status register MOVE SR, <ea> N
MOVE to CC Move to condition codes MOVE <ea>,CCR L
MOVE from CC Move from condition codes MOVE CCR,<ea> LR .
(MC68010 or newer)
MOVE USP Move user stack pointer MOVE USP,ANn L
MOVE An,USP
MOVEA Move address MOVEA <ea>,An - - s
MOVEC Move to/from control register MOVEC Rc,Rn L
(MC68010 or newer) (NOTE 3) MOVEC Rn,Rc
MOVEM Move multiple registers (NOTE &) MOVEM <register list>, <ea> LI

MOVEM <ea>,<register list>

124

MICROSYSTEMS

M) moToroLa APPENDIX A

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

CONDITION CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX X N Z Vv C

MOVEP Move peripheral data MOVEP Dx,d(Ay) RO
MOVEP d(Ay),Dx

MOVEQ Move quick MOVEQ #<data>,Dn - * * 00
MOVES Move to/from address MOVES <ea>,Rn LI
(MC68010 or newer) MOVES Rn, <ea>
MULS Signed multiply MULS <ea>,Dn - * * 0 0
MULU Unsigned multiply MULU <ea>,Dn - * * 00
NBCD Negate decimal with extend NBCD <ea> * Uy * Yy *
NEG 2's complement negation NEG <ea> ok ok kX
NEGX Negate with extend NEGX <ea> ¥ ok ok ok ox
NOP No operation NOP - -
NOT Logical complement NOT <ea> - * * g 0
OR Inclusive OR logical OR <ea>,Dn - * ¥ 00
OR Dn, <ea>
ORI Inclusive OR immediate ORI #<data>,<ea> - ¥ * 00
PACK Pack BCD (MC68020) PACK -(Ay),-(AX) L
PACK Dy,Dx
PEA Push effective address PEA <ea> LI
RESET Reset external devices RESET - s s
ROL, ROR Rotate without extend ROd Dx,Dy - % * Q ¥
ROd #<data>,0y
ROd <ea>
ROXL, ROXR Rotate with extend ROXd Dx,Dy * * % g *
ROXd #<data>,Dy
ROXd <ea>
RTD Return from subroutine with RTD #<disp> LRI
displacement (MC68010 or newer)
(NOTE 5)
RTE Return from exception RTE ok ok oxox
125

MICROSYSTEMS

@ MOTOROLA

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

APPENDIX A

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX X N 2 v C
RTM Return from module (MC68020) RTM Rn L
RTR Return and restore RTR e
condition codes
RTS Return from subroutine RTS - s
o Subtract decinal with extend soovox Cueu
SBCD - (Ay), - (AX)
Scc Set according to condition Scc <ea> L I
STOP Stop program execution STOP #<data> R
sSuB Subtract binary SUB <ea>,Dn * ok ok ok *
SUB Dn,<ea>
SUBA Subtract address SUBA <ea>,An I R
susl Subtract immediate SUBI #<data>,<ea> A L
SUBQ Subtract quick SUBQ #<data>,<ea> *okok ok ok
SUBX Subtract with extend SUBX Dy,Dx L
SUBX -(Ay),-(Ax)
SWAP Swap register halves SWAP Dn - * * 0O
ws Test and set an operand ms ww S x o0
Tce Trap on condition code (MC68020) Tec R
TDIVS Truncated signed (MC68020) TDIVS <ea>,{Di: JDj - % * % 0
TDIVU Truncated unsigned divide (MC68020) TDIVU <ea>,{Di: JDj - % *x % 0
TPcc Trap on condition code (MC68020) TPCC #xxx L R
TRAP Trap TRAP #<vector> L B
TRAPY Trap on overflow TRAPV LT
IsT Test an operand TST <ea> - * *x g0
126

MICROSYSTEMS

M) moToroLA APPENDIX A

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX X N Z Ve
UNLK Unlink UNLK An - - -
UNPK Unpack BCD (MC68020) UNPK - (Ay), - (AX) - -

UNPK Dy,Dx Ce e

NOTES: 1. <ea> specifies effective address.
2. The assembler accepts DBRA for the F (never true) condition.
3. Rc specifies control register.

4. <register List> specifies the registers selected for transfer to or from memory.
<register list> may be:

Rn - a single register.
Rn-Rm - a range of consecutive registers with m being greater than n.
Any combination of the above, separated by a slash.

5. <disp> is a 2's complement integer, 16 bits in size, which is sign extended to
32 bits before adding to the stack pointer.

127 MICROSYSTEMS

M) moToroLA

INSTRUCTION SET SUMMARY - MC68881

APPENDIX A

MNEMONIC

OPERATION

ASSEMBLER SYNTAX

CONDITION CODES

N Z I NAN

FABS

FACOS

FADD

FASIN

FATAN

FATANH

FBfpcc

FCMP

FCos

FCOSH

FOBfpce

FDIV

FETOX

FETOXM1

Absolute value function

Arccosine function

Floating point add

Arcsine function

Arctangent function

Hyperbolic arctangent function

Co-processor branch conditionally
(MC68881)

Floating point compare

Cosine function

Hyperbolic cosine function

Decrement and branch on condition
(MC68881)

Floating point divide

e**x function

e**x(x-1) function

FABS <ea>,FPn
FABS FPm,FPn
FABS FPn

FACOS <ea>,fPn
FACOS FPM,FPn
FACOS FPn

FADD <ea>,FPn
FADD FPm,FPn

FASIN <ea>,FPn
FASIN FPm,FPn
FASIN FPn

FATAN <ea>,FPn
FATAN FPm,FPn

FATANH <ea>,FPn
FATANH FPm,FPn
FATANH FPn

FBfpcc <label>

FCMP <ea>,FPn
FCMP FPm, FPn

FCOS <ea>,FPn
FCOS FPm,FPn
FCOS FPn

FCOSH <ea>,FPN
FCOSH FPm,FPR
FCOSH FPn

FDBfpcc DN, <label>

FDIV <ea>,FPn
FDIV FPm,FPn

FETOX <ea>,FPn
FETOX FPm,FPn
FETOX FPn

FETOXM1 <ea>,FPn
FETOXM1 FPm, FPn
FETOXM1 FPn

128

MICROSYSTEMS

@ MOTOROLA APPENDIX A

INSTRUCTION SET SUMMARY - MC68881 (cont'd)

CONDITION CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX N Z 1 NAN

FGETEXP Get the exponent function FGETEXP <ea>,FPn R
FGETEXP FPm,FPn
FGETEXP FPn

FGETMAN Get the Mantissa function FGETMAN <ea>,FPn * ok k%
FGETMAN FPm, FPn
FGETMAN FPn

FINT Integer part function FINT <ea>,FPn ok ok ok
FINT FPm,FPn
FINT FPn

FLOG2 Binary log function FLOG2 <ea>,FPn * ok X %
FLOGZ FPm,FPn
FLOG2 FPn

FLOG10 Common log function FLOG10 <ea>,FPn * ok ox
FLOG10 FPm, FPn
FLOG10 FPn

FLOGN Natural log function FLOGN <ea>,FPn * ok ok %
FLOGN FPm,FPn
FLOGN FPn

FLOGNP1 Natural log (x+1) function FLOGNP1 <ea>,FPn * ok ok %
FLOGNP1 FPm, FPn
FLOGNP1 FPn

FMOD Floating point module FMOD <ea>,FPn *ox ok %
FMOD FPm, FPn

FMOVE Move to floating point register FMOVE <ea>,FPn A
from memory or another floating FMOVE FPm,FPn
floating point register

Move from floating point register FMOVE FPN,<ea>
to memory FMOVE.P FPn,<ea>k}
FMOVE.P FPn,<ea>{Dn}

Move to/from memory from/to FMOVE <ea>,CONTROL | STATUS | IADDR
special register

FMOVE CONTROL JSTATUS| IADDR, <ea>

FMOVECR Move a ROM-stored to a floating FMOVECRccc, FPn LA A
point register

129 MICROSYSTEMS

@ MOTOROLA

APPENDIX A

INSTRUCTION SET SUMMARY - MC68881 (cont'd)

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX N Z I NAN
FMOVEM Move to multiple floating point FMOVEM <ea>,<fp reg list> * ko ox x
registers
Move to a data register or FMOVEM <ea>,Dn
special register FMOVEM <ea>,CONTROL/STATUS/IADDR
Move from multiple floating FMOVEM <fp reg list>,<ea>
point registers to memory
Move from data register or FMOVEM Dn, <ea>
special register to memory FMOVEM CONTROL/STATUS/IADDR,<ea>
FMUL Floating point multiply FMUL <ea>,FPn *okok %
FMUL FPm,FPn
FNEG Negate function FNEG <ea>,FPn * ok ok ok
FNEG FPm,FPn
FNEG FPn
FNOP Floating point NO-OP FNOP *oxox %
FREM Floating point remainder FREM <ea>,FPn *oxox X
FREM FPM,FPn
FRESTORE Restore internal state of FRESTORE <ea> - -
co-processor (MC68881)
FSAVE Co-processor save (MC68881) FSAVE <ea> - - - -
FSCALE Floating point scale exponent FSCALE <ea>,FPn L
FSCALE FPm,FPn
FSfpcc Set on condition (MC68881) FSfpcc <ea> L
FTfpcc Trap on condition without a FTfpcc - - -
parameter (MC68881)
FTPfpcc Trap on condition with a FTPfpce #xxx - -
parameter (MC68881)
FSGLDIV Floating point single precision FSGLDIV <ea>,FPn L
divide FSGLDIV FPm,FPn
FSGLMUL Floating point single precision FSGLMUL <ea>, FPn * ok K
multiply FSGLMUL FPm,FPn
FSIN Sine function FSIN <ea>,FPn * Kk k%
FSIN FPm,FPn
FSIN FPn
130

MICROSYSTEMS

@ MOTOROLA APPENDIX A

INSTRUCTION SET SUMMARY - MC68881 (cont'd)

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX N Z I NAN
FSINCOS Sine/cosine function FSINCOS <ea>,FPm:FPn * ok ok x
FSINK Hyperbolic sine function FSINH <ea>,FPn ok ox %
FSINH FPm, FPn
FSINH FPn
FSQRT Square root function FSQRT <ea>,FPn L
FSQRT FPm, FPn
FSQRT FPn
FSUB Floating point subtract FSUB <ea>,FPn L

FSUB FPm,FPn

FTAN Tangent function FTAN <ea>,FPn * ok % o*
FTAN FPm,FPn
FTAN FPn

FTANH Hyperbolic tangent function FTANH <ea>,FPn * ok ok x
FTANH FPm,FPn
FTANH FPn

FTENTOX 10*%*x function FTENTOX <ea>,FPn * ok k%
FTENTOX FPm,FPn
FTENTOX FPn

FTEST Floating point test an operand FTEST <ea> ok ok ok
FTWOTOX 2**x function FTWOTOX <ea>,FPn * ok ok %
FTWOTOX FPm,FPn

FTWOTOX FPn

FYTOX Floating point y**x FYTOX <ea>,FPn * ok k%
FYTOX FPm,FPn

131 MICROSYSTEMS

@ MOTOROLA APPENDIX A

THIS PAGE INTENTIONALLY LEFT BLANK.

132 MICROSYSTEMS

@ MOTOROLA APPENDIX B

The character set recognized by the Motorola M68000 Family Resident Structured
Assembler is a subset of ASCII (American Standard Code for Information

APPENDIX B
CHARACTER SET

Interchange, 1968). The characters Tlisted below are recognized by the
assembler, and the ASCII code is shown on the following pages.

1.
2.

10.

11.

The uppercase letters A through Z

The Tlowercase Tletters a through z (MC68020 assemblers or SYSTEM V/68
only)

. The integers 0 through 9

. Four arithmetic operators: + - * /
. The logical operators: >> << & !

. Parentheses used in expressions ()

. Characters used as special prefixes:

(pound sign) specifies the immediate mode of addressing
$ (dollar sign) specifies a hexadecimal number

@ (commercial "at") specifies an octal number

% (percent) specifies a binary number

' (apostrophe) specifies an ASCII literal character

. The special characters used in macros: < > \ @

. Four separating characters:

(space)

(tab) (M68020 assemblers or SYSTEM V/68 only)
, {(comma)
. (period)

A comment in a source statement may include any characters with ASCII
hexadecimal values from 20 (SP) through 7E (~).

Character used as a special suffix:

: (colon) specifies the end of a label

133 MICROSYSTEMS

@ MOTOROLA

ASCII Character Set

APPENDIX B

SuB
£SC

+ e

Null or tape feed

Start of Heading

Start of Text

End of Text

End of Transmission

Enquire (who are you, WRU)

Acknowledge

Bell

Backspace

Horizontal Tab

Line Feed

Vertical Tab

Form Feed

Carriage Return

Shift Out (to red ribbon)

Shift In (to black ribbon)

Data Link Escape

Device Control 1

Device Control 2

Device Control 3

Device Control 4

Negative Acknowledge

Synchronous idle

End of Transmission Block

Cancel

End of Medium

Substitute

Escape, prefix

File Separator

Group Separator

Record Separator

Unit Separator

Space or blank

Exclamation point

Quotation marks (dieresis)

Number sign

Dollar sign

Percent sign

Ampersand

Apostrophe (acute accent,
closing single quote)

Opening parenthesis

Closing parenthesis

Asterisk

Plus sign

134

MICROSYSTEMS

@ MOTOROLA APPENDIX B

ASCIT Character Set (cont’d)

CHARACTER COMMENTS HEX VALUE
R Comma (cedilla) 2C
- Hyphen (minus) 20
. Period (decimal point) 2E
/ Slant 2F
0 Digit 0 30
1 Digit 1 31
2 Digit 2 32
3 Digit 3 33
4 Digit 4 34
5 Digit 5 35
6 Digit 6 36
7 Digit 7 37
8 Digit 8 38
9 Digit 9 39
: Colon 3A
H Semicolon 3B
< Less than 3C
= Equals 3D
> Greater than 3E
? Question mark 3F
@ Commercial at 40
A Uppercase letter A 41
B Uppercase letter B 42
C Uppercase letter C 43
D Uppercase letter D 44
E Uppercase letter E 45
F Uppercase letter F 46
G Uppercase letter G 47
H Uppercase letter H 48
I Uppercase letter [49
J Uppercase letter J 4A
K Uppercase letter K 4B
L Uppercase letter L 4c
M Uppercase letter M 4D
N Uppercase letter N 4F
0 Uppercase Tletter 0 4F
P Uppercase letter P 50
Q Uppercase letter (51
R Uppercase letter R 52
) Uppercase Tetter S 53
T Uppercase letter T 54
U Uppercase letter U 55
v Uppercase letter V 56
W Uppercase Tetter W 57
X Uppercase letter X 58
Y Uppercase letter Y 59
z Uppercase letter Z 5A

135 MICROSYSTEMS

M) moToroLa APPENDIX B

ASCII Character Set (cont’d)

CHARACTER COMMENTS HEX VALUE
[Opening bracket 5B
\ Reverse slant 5C
] Closing bracket 5D
A Circumflex 5E
_ Underline 5F
’ Quotation mark 60
a Lowercase letter a 61
b Lowercase letter b 62
c Lowercase letter ¢ 63
d Lowercase letter d 64
e Lowercase letter e 65
f Lowercase letter f 66
g Lowercase letter g 67
h Lowercase Tetter h 68
i Lowercase letter i 69
J Lowercase letter j 6A
k Lowercase letter k 6B
1 Lowercase letter 1 6C
m Lowercase letter m 6D
n Lowercase letter n 6F
0 Lowercase letter o 6F
p Lowercase letter p 70
q Lowercase letter q 71
r Lowercase letter r 72
S Lowercase letter s 73
t Lowercase letter t 74
u Lowercase letter u 75
' Lowercase letter v 76
W Lowercase letter w 77
X Lowercase letter x 78
y Lowercase letter y 79
z Lowercase letter z 7A
{ Opening brace 7B
| Vertical line 7C
} Closing brace 7D
~ Equivalent 7E

DEL Delete 7F

136 MICROSYSTEMS

M) moToroLA

MOTOROLA M68000 ASM FIX

® NV WN

24 00000000
25 00000002
26 00000004
27 00000006
28 00000008

41

42 8

43

44 8 00000000
45 8 00000002
46

47 8 00000008

00000002
00000002
00000002
00000002
00000002

00000008
00000000

5346
33600000000

4FF80000

APPENDIX C

APPENDIX C
SAMPLER ASSEMBLER OQUTPUT

: 108.DEMO .MAIN .SA PAGE 1

*

MAIN IDNT 2,3 Demonstration Program

*

* This program counts occurrences of vowels (A,E,[,0,U)

* in the command line and outputs an error if fewer than 10

* vowels are found in the command line, aside from the vowels

* in the program name 'TSTPROG'.

* It is written in a contrived fashion to illustrate several

* features of the M68000 assembler.

*
OPT CRE ! Create a cross-reference listing
oPT MEX ! Enable macro expansions

*
XREF.S 15:VOWEL ! Array containing vowel count info
XREF.S 15:STACK ! Scratch stack space
XREF FINDV 1 Routine that does the counting
XREF CMDLEN ! Length of the command line

*

* These are offsets into the vowel array contained in module FINDV.

* Each entry in this array contains 1 byte for the vowel's name

* and one byte for the count of occurrences of the vowel.

%
OFFSET 0

A DS.W 1

E DS.W 1

1 DS.W 1

0 DS.W 1

u DS.W 1

*

* This macro calls FINDV to count occurrences of the vowel

* contained in argument 1. It then adds that subtotal into

* the running total contained in D1.

CHKVOWEL MACRO
MOVE.B #\1,D0 I Store current vowel offset into VOWEL
JSR FINDV ! Find all occurrences of it
ADD.B \1+1(A0),D1 ! Add this to the total vowel count
ENDM

*
SECTION 8

START EQU *

SUB.W #1,D6
MOVE.W D6,CMDLEN

Index command line from offset 0 and not 1
Save the command line len

as passed by VERSAdos

Initialize the stack area

LEA STACK,A7

137 MICROSYSTEMS

@ MOTOROLA

48 8 0000000C 41F80000
49 8 00000010 4241
50 8 00000012 4280
51
52 8 00000014
8 00000014 103C0000
8 00000018 4EB900000000
8 0000001E D2280001
53
54 8 00000022
8 00000022 103C0002
8 00000026 4EBP00000000
8 0000002C D2280003
55
56 8 00000030
8 00000030 103C0004
8 00000034 4EBP00000000
8 0000003A D2280005
57
58 8 0000003E
8 0000003E 103C0006
8 00000042 4EB900000000
8 00000048 Dp2280007
59
60 8 0000004C
8 0000004C 103C0008
8 00000050 4EBP00000000
8 00000056 D2280009
61
62
63 8 00000060 3041
64 8 00000062 700E
65 8 00000064 4E41
66 8 00000066 0000
67
68
69 8 00000068 700F
70 8 0000006A 4E41
71
728 00000000
*kkkk® TQTAL ERRORS 0--
*hkkkk TOTAL WARNINGS 0--
SYMBOL TABLE LISTING
SYMBOL NAME SECT VALUE
A 00000000
CHKVOWEL MACR *

LEA
CLR.W
CLR.L

CHKVOWEL
MOVE.B
JSR
ADD.B

CHKVOWEL
MOVE.B
JSR
ADD.B

CHKVOWEL
MOVE.B
JSR
ADD.B

CHKVOWEL
MOVE.B
JSR
ADD.B

CHXVOWEL
MOVE.B
JSR
ADD.B

1F.B
MOVE.W
MOVE.L
TRAP
DC.W

ENDI

MOVE. L
TRAP

END

VOWEL, AD
01
00

A

#A,00
FINDV
A+1(A0),D1

E

#E,DO
FINDV
E+1(A0),D1

1
#1,00
FINDV
1+1(A0),D1

0

#0,00
FINDV
0+1¢A0),D1

U
#0,00
FINDV
U+1¢A0),D1

#10 <GT> D1 THEN.S
01,A0
#14,D0
#1
0

#15,D0
#

START

CROSS-REF (LINENUMBERS)

-24 52
-34 1"

52 54 56

138

APPENDIX C

Start of the vowel table
Current total vowel count
Will hold offset to current char later

Store current vowel offset into VOWEL
Find all occurrences of it
Add this to the total vowel count

Store current vowel offset into VOWEL
Find all occurrences of it
Add this to the total vowel count

Store current vowel offset into VOWEL
Find all occurrences of it
Add this to the total vowel count

Store current vowel offset into VOWEL
Find all occurrences of it
Add this to the total vowel count

Store current vowel offset into VOWEL
Find all occurrences of it
Add this to the total vowel count

Not enough vowels

generate error showing # of vowels found

Exit gracefully if all is OK

58 60

MICROSYSTEMS

@ MOTOROLA APPENDIX C

CMDLEN XREF * 00000000 -17 45

E 00000002 -25 54
FINDV XREF * 00000000 -16 52 54 56 58 60
1 00000004 -26 56
o] 00000006 -27 58
STACK XREF F 00000000 -15 47
START 8 00000000 -42 72
u 00000008 -28 60
VOWEL XREF F 00000000 -14 48
Z_11.000 8 00000068 -67 62
MOTOROLA M68000 ASM FIX : 108.DEMO .FINDV .SA
1 *
2 FINDV IDNT 1,1 Routine subordinate to MAIN
3 *
4 * This routine counts occurrences of a given vowel. The vowel
5 * is identified by an offset into the vowel table. This offset
] * is stored in DO.
7 * This routine is written in a contrived fashion to illustrate several
8 * features of the M68000 assembler.
9 *
10 OPT CRE | Create a cross-reference listing
1 OoPT CEX ! Print DC expansions
12 *
13 XDEF VOWEL , FINDV, STACK,CMDLEN,CMDSTR
14 *
15 0000000F SECTION.S 15
16 *
17 * Register save area
18 *
19 F 00000000 00000040 RSAVE DS.L 8*2
20 *
21 * Stack area for the program
22 £ 00000040 00000050 pS.L 20
23 F 00000090 00000004 STACK DS.L 1
24
25 * Following is the vowel array VOWEL.
26 * Each entry in this array contains 1 byte for the vowel's name
27 * and one byte for the count of occurrences of the vowel.
28 *
29 F 00000094 4100 VOWEL DC.B 'A',0
30 F 00000096 4500 DC.B 'E',0
31 F 00000098 4900 bC.B 7,0
32 F 00CO009A 4FO00 DC.B '0',0
33 F 0000009C 5500 DC.8 w,o0
34 *
35 * Next is the area which holds the command line length and string.
36 *
37 F 0000009 0000 CMDLEN DC.W 0
38 F 000000A0 000000AO CMDSTR COMLINE 160
39 *
40
41 00000008 SECTION 8
139

MICROSYSTEMS

@ MOTOROLA

42
43
(23
45
46
47
48
49
50 8
51
52
53
54
55
56
57
58

o

o 0 0B

©

00000000
00000000 48F8070F0000

* % * % ¥ *

SAVEREG
*

00000006 41F80094
0000000A 12300000
0000000E 41F00001
00000012 43F800A0

0000001A 600000CE
*kkakk WARNING 550- -

59 8 0000001E 14313000

60
61

62 8 00000026 5210

63
64
65
66
67
68
69
70

o 0

*kkkik TOTAL ERRORS

*kkkkk TOTAL WARNINGS

SYMBOL TABLE LISTING

SYMBOL NAME

CMDLEN
CMDSTR
FINDV
RSAVE
SAVEREG
STACK
VOMWEL
Z.11.001
Z.11.002
Z_12.000

XDEF
XDEF
XDEF

REG
XDEF
XDEF

SECT

e MmO

00000030 4CF8070F0000
00000036 4E75

0--
1--

VALUE

0000009E
000000AD
00000000
00000000

00000090
00000094
0000001E
00000028
0000002A

FINDV

58
58

APPENDIX C

On entry to this routine, DO contains the offset to the start
of the current entry in the vowel table.
This routine then tallies occurrences of the given vowel and

stores that value in the table.

REG DO-D3/A0-A2

EQU *
MOVEM.L SAVEREG,RSAVE

LEA VOWEL , AQ

MOVE.B 0(AO0,DO.W),D1 1

LEA 1(A0,D0.W), A0 !

LEA CMDSTR, A1 1

FOR D3 = #0 TO CMDLEN BY #1
BRA. Z_12.000

MOVE.B (A1,D3.W),D2

IF.B D1 <EQ> D2 THEN.S
ADDQ.B #1,(AO)
ENDI

ENDF

MOVEM.L RSAVE, SAVEREG
RTS

END

CROSS-REF (LINENUMBERS)

-37
-38
-50
=19
-48
-23
-29
-58
-63
-65

-13 65
-13 56
-13
51 67
51 67
-13
-13 53
65
61
58
140

Save all registers we are using

Value of this vowel

Addr of counter for this vowel
Addr of command line string
DO

Current char is now in D2

Tally matching chars

Restore registers we used

MICROSYSTEMS

M) moToroLA APPENDIX D

APPENDIX D

EXAMPLE OF LINKED ASSEMBLY-LANGUAGE PROGRAMS UNDER VERSAdos

Motorola M68000 Linkage Editor

Command Line:

LINK 108.DEMO.MAIN/108.DEMO.FINDV,TSTPROG, TSTPROG;HIMUX

Options in Effect: -A,-B,-D,H,I,-L,M,0,P,-Q,-R,-S,-U,-W,X

User Commands: None

Object Module Header Information:
Module Ver Rev Language Date Time Creation File Name

MAIN 2 3 Assembly 09/13/82 13:12:27 FIX:108.DEMO.MAIN.SA
Demonstration Program

FINDV 1 1 Assembly 09/13/82 13:12:54 FIX:108.DEMO.FINDV.SA
Routine subordinate to MAIN

Load Map:

Segment SEGI(R): 00000000 00000OFF 8,9,10,11,12,13,14

Module S T Start End Externally Defined Symbols
MAIN 8 00000000 0000006B
FINDV 8 0000006C 000000A3 FINDV 0000006C

Segment SEG2: 00000100 000002FF 15

Module S T Start End Externally Defined Symbols
FINDV 15 S 00000100 0000023F CMDLEN 0000019E
000001A0
VOWEL 00000194
00000190
141

CMDSTR
STACK

MICROSYSTEMS

M moToroLA

Table of Externally Defined Symbols:

Name Address Module Displ Sect Seg Library
CMDLEN 0000019E FINDV 0000009E 15 SEG2
CMDSTR C00001A0 FINDV 000000A0 15 SEG2
FINDV 0000006C FINDV 00000000 8 SEGI
STACK 00000190 FINDV 00000090 15 SEG2
VOWEL 00000194 FINDV 00000094 15 SEG2

Unresolved References: None
Multiply Defined Symbols: None
Lengths (in bytes):

Segment Hex Decimal
SEGI 00000100 256
SEG2 00000200 512
Total Length 00000300 768
No Errors

No Warnings

Load module has been created.

142

APPENDIX D
Input

FINDV .RO
FINDV .RO
FINDV .RO
FINDV .RO
FINDV .RO

MICROSYSTEMS

@ MOTOROLA APPENDIX E

Error
or fro
message

1.

APPENDIX E
ASSEMBLY ERROR CODES

messages generated during an assembly may originate from the assembler
m Pascal or the operating system environment. Assembler-generated
s may be of two forms:

**x%*%%% FRROR xXX -- nnnn

where xxx 1is the number of the error (defined in the 1ist in this
appendix), and nnnn is the number of the Tine where the previous error
occurred.

Errors indicate that the assembler is unable to interpret or implement
the intent of a source line.

. REEEEE YARNING xxx -- nnnn

where xxx is the number of the error (defined in the 1ist in this
appendix), and nnnn is the number of the Tine where the previous error
occurred.

Warnings may indicate possible recoverable errors in the source code,
or that a more optimal instruction format is possible.

ERROR

200
201
202
203
204
205
206

207
208

CODE MEANING OF ERROR

SYNTACTIC ERRORS

IT1egal character (in context)

Size code/extension is invalid

Syntax error

Size code/extension not allowed
Label required

End directive missing

Register ranges must be specified in increasing order
(e.qg., Al-A3, DO-D7, FP2-FP6)

A and D registers can’t be intermixed in a MOVEM register range

In the register pair Di;Dj, Di must be distinct from Dj.

143 MICROSYSTEMS

@ MOTOROLA APPENDIX E

ERROR CODE MEANING OF ERROR

OPERAND/ADDRESS MODE ERRORS

210 Missing operand(s)

211 Too many operands for this instruction

212 Improper termination of operand field

213 I11egal address mode for this operand

214 I11egal forward reference

215 Symbol/expression must be absolute

216 Immediate source operand required

217 I11egal register for this instruction

218 I11egal operation on a relative symbol

219 Memory shifts may be only single bit

220 Invalid shift count

221 Invalid section number

222 "{o:w}" or "{k}" expression not allowed here

223 Too many registers found in an M68020 addressing mode form

224 Too many expressions found in an M68020 addressing mode form

225 More than one pair of []s found in an M68020 addressing mode
form

226 "{o:w}" expression expected in this instruction

144 MICROSYSTEMS

M) moToroLA

ERROR CODE

230
231
232
233
234
235
236
237
238
239

250
251
252
253
254
255
256
257

MEANING OF ERROR

SYMBOL DEFINITION

Attempt to redefine a reserved symbol

Attempt to redefine a macro; new definition ignored
Attempt to redefine the command line location
Command line length must be > 0; ignored

Redefined symbol

Undefined symbol

Phasing error on PASS2

Start address must be in this module, if specified
Undefined operation (opcode)

Named common symbol may not be XDEF

DATA SI7E RESTRICTIONS

Displacement size error

Value too Targe

Address too Targe for forced absolute short
Byte mode not allowed for this opcode
Multiplication overflow

Division by zero

Value out of range

Branch to odd address detected

145

APPENDIX E

MICROSYSTEMS

@) mororoLA APPENDIX E

ERROR CODE

260
261
262
263
264
265
266
267

270
271

280
281
282
283
284
285

286
287

MEANING OF ERROR

MACRO ERRORS

Misplaced MACRO, MEXIT, or ENDM directive

Macro definitions may not be nested

I11egal parameter designation

A period may occur only as the first character in a macro name
Missing parameter reference

Too many parameters in this macro call

Reference precedes macro definition

Overflow of input buffer during macro text expansion

CONDITIONAL ASSEMBLY ERRORS

Unexpected ’ENDC’

Bad ending to conditional assembly structure (ENDC expected)

STRUCTURED SYNTAX ERRORS

Misplaced structured control directive (ignored)

Missing "ENDI"

Missing "ENDF"

Missing "ENDW"

Missing "UNTIL"

Unresolved syntax error in the preceding parameterized
structured control directive; recovery attempted with the
current line

"=" Expected; characters up to "=" ignored

"<" Expected; characters up to "<" ignored

146 MICROSYSTEMS

@ MOTOROLA APPENDIX E

ERROR CODE

288
289
290
291
292

300
301

302
303
304
305
310
311
312

313

314

MEANING OF ERROR

">" Expected; characters up to ">" ignored
"D0" expected; remainder of Tine ignored
"THEN" expected; remainder of line ignored
"TO" or "DOWNTO" expected; "T0" assumed

I11egal condition code specified

MISCELLANEQUS
Implementation restriction

Too many relocatable symbols referenced
<Tinkage editor restricted>

Relocation of byte field attempted

Absolute section of length zero defined (1ink error)

Nested "INCLUDE" files not allowed; ignored

Filename required in operand field

I17egal syntax for ’P=nnnnn’ option - option ignored

I1Tegal processor number for ’P=nnnnn’ option - option ignored

Processor option does not agree with command line option --
option ignored

This directive is not valid for the processor that is currently
specified.

An "OFFSET" block must be followed by an "ORG" or "SECTION"
before more code is generated.

147 MICROSYSTEMS

@ MOTOROLA APPENDIX E

ERROR_CODE

330
331

332

333

334

400
499
500
501

502
503

504

550
551
552

553

MEANING OF ERROR

FLOATING POINT ERRORS

Type (size) incompatibility exists between an operand and the
opcode size.

Exponent string is too Tong. Is truncated on the right which
almost certainly returns the wrong value.

A non-decimal character was found in the decimal string. The
character is ignored and the conversion continues although the
results should be highly suspect.

The input decimal string is too big to be represented in the
specified size. Infinity or the largest positive or negative
number is returned depending on the sign and current rounding
mode.

The input decimal string is too small to be represented in the
specified size. It was denormalized or reduced to zero.

INTERNAL ERRORS

SOURCE CODE NOT OPTIMAL OR RECOVERABLE ERRORS

This byte is sign-extended to 32 bits
Missing parameter reference in macro source
Too many parameters in this macro call

Warning - processor type should not be changed after any
executable code is generated

Warning - processor type should not be changed after the user
once sets it

This branch can also allow a word extension
This absolute address could be short

This expression/displacement could be represented in 16 bits
rather than 32 bits.

Warning - this instruction may cause a branch to an odd address

148 MICROSYSTEMS

@ MOTOROLA APPENDIX E

ERROR CODE MEANING OF ERROR

FLOATING POINT WARNINGS

700 Mantissa string is too long. It is truncated after 17 digits.
701 Decimal strings can be guaranteed to be accurate only to double
precision in the worst case. In the best case, they are

accurate to extended precision.

702 The decimal string to fp conversion was inexact (some rounding
error occurred). This may or may not be important to the user.

703 Use of the L, D, X, and P extensions in the FSGLDIV and FSGLMUL
instructions may result in a loss of accuracy.

NOTE

If more than 10 errors occur in one line, the message

**x¥% too0 many errors on this line

is generated.

149 MICROSYSTEMS

@ MOTOROLA APPENDIX E

THIS PAGE INTENTIONALLY LEFT BLANK.

120 MICROSYSTEMS

M) moTroroLA

absolute address(es)
ADD

alignment
allocate
architecture
argument
arguments

array

arrays

ASCII

assembler output

assembler runtime errors

assembly

assembly control
assembly Tanguage
backsTash
base-displacement

binary
binary coded decimal
binding

bit field
BKPT

block Tength
BNF

boolean
boundaries
boundary

BRA

branch

branch instruction(s)

branch operation
breakpoint

BSR

CAAR

cache

cache address register
cache control register

CACR
CALLM
CCR

INDEX

INDEX

25, 30, 49, 76, 85, 117, 118

10, 16, 18-20, 23-25, 36, 37, 39, 43, 70,
72, 105

78, 79, 83

81

1

96-98

12, 37, 61, 95, 97, 101, 106

39, 52, 118

118

7, 10, 36, 40, 79, 80

2, 92, 93

94

3, 7,9, 14, 37, 72-74, 79, 82, 84, 87, 89,
90, 93, 94, 100-102, 106, 113, 115
73, 74

1, 2, 4, 8, 96, 105, 115

97, 100

118

15, 29, 30, 47, 48, 87, 112, 113
2, 9, 43, 60, 79, 80, 82

53

53

55

55

56

56

54

54

2, 9, 35, 37, 39, 69, 77, 79, 81
2, 79

5, 52-56

62

81

5

112

78

11, 36, 78, 79, 82

7, 30, 47, 48, 87, 105, 106, 111
9, 15, 29, 30, 47, 48, 64, 85, 86, 90, 106,
109, 111

9, 29, 30, 48, 85, 111
48

62

30, 47, 48, 87, 114
40, 42, 51

40, 42, 51

42, 51

42, 51

40, 42, 51

61

41, 45, 112, 118

XxXmOZ -

131 MICROSYSTEMS

M) moTroroLa

check register

CHK

CLR

CcMP

COMLINE
compatibility
complement

compound expression
condition code(s)

condition code register
conditional assembly
conditional branch
control functions
control register
control statement
counter

CRT

data register(s)

DBcc

DC

DCB

debug

debug file

DFC

diagnostic
directory
divide

DS

END

ENDM

entry points

EQU

error message(s)
execution time
exit

exponent

EXTB

external symbol definition
external symbols
EXTW

FAIL

failure

FEQU

flag
floating-point

FOPT

FOR

FORMAT
formatting
fpcc

frame

INDEX

57

44, 45, 57

16-18, 39, 105, 106, 112

17, 44, 45, 70, 71, 108, 113, 114

38, 73, 78

48

53

106, 110, 112, 113

29, 41, 42, 44-47, 49, 53-56, 61-65, 71,
107-110, 113, 115

41, 45, 110

1, 2, 73, 82, 85, 95, 98, 101, 102, 106

94, 108, 115

89

11, 40-43, 46, 49, 53-60, 62, 64, 66, 67,
112

15, 49, 76

36, 37, 73, 79-83, 87, 102, 121

38, 73, 78, 81

85, 90, 93

85, 90

42, 51, 52

27

92

43, 58, 70

36, 38, 39, 73, 76, 79, 83, 84, 121
73, 74, 84, 103, 104

98, 100, 101, 105

4

8, 18, 37-39, 73, 76-79, 87, 103

6, 75, 94

26

98, 102, 115

9, 35, 69, 70, 80

59

74, 88

4

59

74, 84, 100

86

73, 77, 18

101

1, 2, 35, 41, 42, 62-71, 73, 74, 77, 79-81,
83, 90, 91, 106, 109

74, 85

107-110, 114, 116, 118

8, 16, 74, 76-80, 83-87, 89, 90, 118
74, 113, 115

63-65, 109

61

152 MICROSYSTEMS

(M) moToroLA

free-formatting
general register
header

heap

1/0 section

IADDR

identification record
IDNT

IF

illegal instruction
INCLUDE

index register(s)
input files

input stream
instruction address register
instruction format
instruction set
integer

interrupt stack pointer
invokes

ISP

JMP

JSR

Jump

Jump operation
language

LEA

Tinkage

linkage editor
linkage editor control
linker

LIST

listing control
Tisting file

LLEN

location counter
logical operations
logical shift

long address
longword(s)

loop(s)

machine instruction(s)
machine language
macro(s)

mantissa

mask

MASK2

master

master stack pointer
MC68010

MC68020

INDEX

114

51, 52

93, 96, 101, 102

90

101

41, 42, 67, 68

74, 87

8, 74, 89

31-34, 105, 107-109, 111, 112, 114-116
62

7, 73, 76, 94

11, 12, 18-20, 22-27, 40
89

75

42

8, 29, 50

9, 43, 90, 105

22, 37, 39, 69

40, 41, 51

91

40, 41, 51

21, 22, 29, 30, 49, 115, 116

29, 30, 49, 115, 116

21, 22, 48, 49, 94

49

1-4, 8, 96, 105, 115

10, 51

3, 4

2-4, 6, 29-34, 74-76, 78, 87, 88, 93, 117
74, 87

2, 4, 13-15, 79, 93

74, 84

74, 82

8, 11, 89, 91, 92

74, 86

8, 76, 82, 85, 94

45

46

21

9-12, 17, 18, 36, 40, 43-45, 48, 52, 72,
79, 80, 82, 106, 113

49, 105, 107, 108, 115

2

1-3

1, 2, 7-9, 36, 37, 73, 83, 86, 90, 95-104,
113, 115

9, 35, 69

66, 67, 77

73, 76

40, 41, 51

40, 41, 51

2, 3, 40-42, 51, 52, 59, 88, 92, 98

2, 3, 5, 7, 11-15, 18-21, 23-27, 29, 30,
40-44, 48, 51, 52, 57-62, 66, 67, 87, 88,

153 MICROSYSTEMS

@ MOTOROLA

MC68881

memory address
message
meta-symbols
MEXIT
mnemonics
module

MOVE

MPU

MSP

NARG
nesting
NOFORMAT
NOLIST
NOOBJ
NOP
NOPAGE
NOTATION
object code

offset
OFFSET

opcode(s)
open subroutine

operand comparison expression

OPT

options
OPTIONS
ORG

output file
output module
overflow
PACK

pack

PAGE

page

paging
parameter(s)
Pascal

patch

PC

pointer(s)

position independent code
postincrement
postindexing

precision

predecrement

INDEX

92, 98, 108

1-3, 9, 35, 41, 42, 62, 73, 74, 78, 80,
81, 83, 85, 88, 92, 93, 98, 108

8, 13, 16

82, 112

5

100, 104

2, 3, 8,9, 27, 36, 41, 42, 105, 113

3, 4, 8, 37, 61, 74, 86-88, 96, 117, 118
10, 17, 18, 22, 25, 39, 44, 48, 100, 105,
106, 114-116, 121, 122

100, 102, 114
74, 86, 118
74, 86

74, 86

49, 94

74, 89

2, 3, 8, 26, 27, 73, 78, 84, 85, 90, 92,
94, 99, 100, 102

9, 23, 24, 27, 37, 38, 40, 48, 52-56, 73,
75

38, 73, 76

10, 62, 71, 72, 94, 106

95

113

15, 29, 30, 48, 49, 51, 52, 74, 77, 87, 88,
92, 104, 105, 108, 120

15, 29, 30, 74, 82, 83, 85, 89-92

29, 74, 82, 83, 85

3, 4, 30-32, 34, 37-39, 73, 76, 77, 88, 90,
120

89, 92

86

74, 89, 119, 123

74, 87, 93, 116, 120

74, 87

49, 52, 61, 65, 92, 95-102
4, 6, 94

94

11, 12, 14-16, 22-25, 27, 28, 30-33, 37,
40, 41, 76, 86, 117-119
40, 61

30, 86, 117

13, 17, 65, 71, 72, 112
13, 14, 19, 24

9, 36, 77, 79, 80, 82, 83
13, 17, 60

154 MICROSYSTEMS

M) moToRroLA

preindexing
privileged instruction
program counter
qualifier

queues

read cycle

REG

relative address(es)
relocatable expression
relocatable object module
relocatable program
relocatable section
relocation

REPEAT

rotate

RTM

RZ

Scc

SECTION

SET

set symbol

shift

short address

sign

signed

simple expression
source code

source language
source line

source statement
SPC

SR

stack

stack pointer
status register
storage allocation
string

structured assembler
SUBA

subroutine
supervisor

swap

symbol definition
symbol table

SYSTEM V/68

task

Tcc

TDIVS

TIVU

TPcc

trap

TTL

unconditional jump
unpack

13, 14, 18, 23

65

11, 12, 22-25, 37, 41, 61, 65
76, 96, 97, 99

40

40

8, 73, 76-78, 95

116, 118

12, 38, 77, 78

8, 87

73, 76, 117

4, 14, 37-39, 86, 93, 117

3, 4, 8, 31, 32

107, 108, 110, 112, 115, 116
45

61

gl

47

30-34, 37, 39, 73, 76, 77, 88

8, 37, 38, 73, 76, 77, 79, 84, 103
78

39, 40, 45, 46

21, 30

9, 21, 22, 35, 36, 55, 57, 59, 108
14, 35, 43, 55, 57, 58, 106

106, 111, 113

8, 26, 90

3, 72

2, 3, 8, 37, 50, 87, 93, 94, 96, 100
7, 8, 10, 93, 95-98

74, 89

41, 45

40, 61, 90

40, 41, 51

40-42, 45

73

9, 35, 36, 52, 77, 79, 87, 97-102
1, 2, 42, 109

10

3, 4, 47-49

40-42

62

36, 73, 74, 76, 88

1, 3, 37, 85, 90, 92, 93, 99, 115
1, 2, 4,6, 7,76, 77, 91, 93-96
7

61

58

58

61

42, 45, 61, 63, 65
74, 87

48, 49

60

155

INDEX

, 113

MICROSYSTEMS

@ MOTOROLA

UNPK

unsigned

update

user stack pointer
uspP

VBR

vector

vector base register
VERSAdos

WHILE

word

write cycle
XDEF

XREF

zero fill
ZPC

INDEX

43, 55, 57, 58
40, 41, 51

40, 41, 51

40, 41, 51, 57, 61, 62, 65

40, 41, 51

1, 6, 7, 89, 92, 94

107, 108, 110, 112, 114, 116

9-12, 16-20, 22-25, 29, 36, 40, 43-46, 48,
52, 57, 59, 62, 64, 78-82, 94, 106, 108
40

4, 74, 75, 88, 93

4, 29, 33, 34, 39, 74, 75, 88, 93, 117
78, 79

11, 23, 24, 27, 28, 41

156 MICROSYSTEMS

SUGGESTION/PROBLEM ,‘
REPORT N

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282
Attention: Publications Manager
Maildrop DW164

Product: Manual:

COMMENTS:

Please Print

Name Title

Company Division

Street Mail Drop Phone

City State Zip

For Additional Motorola Publications Four Phase/Motorola Customer Support, Tempe Operations
Literature Distribution Center (800) 528-1908

616 West 24th Street (602) 438-3100

Tempe, AZ 85282
(602) 994-6561

@ MOTOROLA

MOTOROLA Semiconductor Products Inc.

PO. BOX 20912 » PHOENIX, ARIZONA 85036 e A SUBSIDIARY OF MOTOROLA INC.

18133-1 PRINTED IN USA {1/86) MESSENGER 3500

