’/‘ﬂ"""‘\‘\- §
(PA) MOTOROLA M68KPASC/D7

P

M68000 Family
Resident Pascal
User’s Manual

QUALITY e PEOPLE e PERFORMANCE

M68KPASC/D7

AUGUST 1983

M68000 FAMILY
RESIDENT PASCAL

USER'S MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or

the rights of others.

EXORdisk, EXORmacs, EXORterm, RMS68K, VERSAbug, VERSAdos, VERSAmodule,
VMEmodule, VME/10, and VMC 68/2 are trademarks of Motorola Inc.

LARK is a trademark of Control Data Corporation.

Seventh Edition
Copyright 1983 by Motorola Inc.
Sixth Edition December 1982

CHAPTER

PHEHEHBEHBP -

L] L 2 L] L] L)
NS RSB WN R

L] [] L]

W N

CHAPTER 2

CHAPTE

TABLE OF CONTENTS

INTRODUCTION

SCOPE . eevsoccoccccsascesscssonsscssssssssescsscsscssnssssscncoe
GENERAL cccesccsscsccscccscsessossscssesssssssssscscsacccsce
OPERATING ENVIRONMENT o ceccoccscossccccscccscssccsacccccce
MINIMUM HARDWARE REQUIREMENTS cecescocccocsocsccococnnse

EXORmacs Development SyStem seceececsssscccccccasccccne

VMC 68/2 Microcomputer SySteM seeecececcccecscsccscacecs

VME/10 Microcomputer SyStem eeeeecceccccsccccccccsccscs
RELATED PUBLICATIONS ceceesccccscccsssscscsscscscccsnccse
CGENERAL STRUCTURE OF PASCAL COMPILER cccececceccsccocccns
NOTATION AND RULES ccecsvscocscccsccccsscsccccscscnsnccccs

PREPARING A PROGRAM

THE OPTION COWNT 692 8 00065000000 06008000000000000s00s0s00s000
FILIE NAME FORMAT ..oo-.o-ono.o..ta.-o.-o..oao.ao..ooo-o.

FUNCTIONAL DESCRIPTION

GENERAL o-.o.o.co-o..oo....n-.o..oo-oco-.ococoooooco.o.o

COMPILER, PHASE 1 scccecoosescsesssssssscccccscccccocccsce
OPTIMIZER, PHASE 1.5 cecescoccccccssescscssccsccsssocnes
COMPILER, PHASE 2 ccsccesecsscscscscossccccssconcccccscrnse
Object File Description seeeececesccccscccccccccccncsee
Pseudo Assenbly Listing Description .eeececccccscecccs

EXECUTING THE PASCAL COMPILER

INTRODUCTION ceccoceceosscecssscscocscscscscscsccccsaccoconse
RUNNING PHASE 1 cecoccoccsscosscscscscccascsssccsccccsaccos
Phase 1 Acknowledgment .ceeeecescccccscccrscccccssccnce
Command Line EXampleS cecececsccsscsscscoscscsscccscnce
RUNNING PHASE 1.5 cesceccocsasccscscsssscccscsccncacvocs
Phase 1.5 Acknowleddment ..cceeceesscosssesccscscsccas
Command Line EXamMPleS seececccscsscsscscsssscscvasasce
RUNNING PHASE 2 cececcccscccocsansesssccscsccssccsscaccccns
Phase 2 Acknowledgment eceeeeccecccccccesscrccscecccnse
Command Line EXampleS ceceecesecsccscsccsccsscsccescvccence

RUNNING THE LINKAGE EDITOR

GENERAL-0......0000.-.loooouooouo-o-.oococo..ooo..o

RUNTIME ROUTINES eveecessscococcosssscscsscccscscccrccccce
SEPARATE COMPILATION ,eecccevccscccccscacsccsccccsscsccce
ASSFMBLY L[LANGUAGE PROCEDURES scecccccccccsccccccsscsccce
PASCAL PROGRAM MEMORY ORGANIZATION seccecccccsscscoccccas
STACK AND HEAP USAGE ececvocccccccsscssvccsscccoscsscaceccscs
INVOKING THE LINKER TO CREATE A VERSAJOS PROGRAM .ccce..
INVOKING THE LINKER TO CREATE A VM01/VERSAbug PROGRAM ..
INVOKING THE LINKER TO CREATE A VERSAdos01/02 PROGRAM...
INVOKING THE LINKER TO CREATE AN RMS68K01,/02 PROGRAM....

Invoking SYSGEN To Create A Boot Fil€.cceecececceseccces

i

5-1
5-1
5-1
5-2
5-2
5-3
5-3
5-5
5-6
5-6
5-7

TABLE OF CONTENTS (cont'd)

CHAPTER 6 ASSEMBLY ROUTINE LINKAGE

1 GENERAL +¢veececococcossccascscceccsascccnnsssccsnansssse 6-1
2 PROGRAM PREPARATION ¢eecececcscecccccsscsosscssosccnssss 6-1
3 CALLING A ROUTINE cecceccccccccccaccsosossoscesanssancss 6=l
4 ASSEMBLY ROUTINE LINKAGE ececcesccosccsscccsscssscsscess 6O-4

CHAPTER 7 RUNNING A PASCAL PROGRAM

RUNNING A PROGRAM UNDER VERSAQOS cesessccsscccsscscsscnss
Runtime File ASSIgIMENt seeeececcccscccccsccscccccacse
1 Command Line ASSIigNMENt seeeececesccccscccscscccccses
2 Reset/Rewrite File ASSigmment cececececscscceccccene
3 Passed ASSIigNEd FileS ceeeecccscscsccccccsccscscscse
4 Default Values For File DeSCriptOr ceeeececcccecscccces
Stack/Heap MemOry SEgMENt seeeeecsscescescssssccsscccns
RUNNING A PROGRAM ON VMOl WITH VERSADUG eeevesssccsovccns
.1 Use of the Resource Name String eeeeceeccscssccscssccse
RUNNING A PROGRAM ON VERSAmodule 01, 02, OR MVME1l1l0
UNDER RMS68K eceeceesescccsssssccccsscsscnsocssnnssnnes
7.3.1 Use Of The Resource Name String.eecsccceccccsccsescess 7—10
7.3.2 Debugging Pascal Tasks Under RMS68Keeeeecesecssccceoess 7~10

WNN P e
L]
|

\l\lT!\l\l\l
AN

\]Tl\l
@ ~J ~J

NN NNN NN NN

T
Xe)

CHAPTER 8 SAMPLE PROGRAMS

PROGRAM FOR VERSAJOS EXECUTION ceseooscccccccoscscasccns
Phase 1 LiSting eeeecessccccccsccescccccscsccccsoccccss
Phase 2 LiStinNg ceeecesccccescscesccscsccssscccccnscce
Assembly LiStiNg eeececccescccssscncecesccccscssococee
Linkage EJitor LiSting sececcsceccccescscccosccecccons

PROGRAM FOR VERSAmcdule 01 EXHECUTION UNDER VERSAbBUG e
Phase 1 LiStinNg eseeeescccccsccecesccssesscccccaccancse
Phase 2 LiStinNg ceeeeeseccessosccscncossccsccssscccaces
Linkage EQitor LiSting secececcccsccecocccccsosesocnscs

00 0O 00 0O 00 0O GO O 0O
[] L] * °
N RN N
. L] [] *
B W N -
[

W N NN

% @ @ @ 0
HER O W

L
w N+

CHAPTER 9 RUNTIME INTERFACE FOR NON-VERSAdos SYSTEMS

GENERAL S 5 0860000000000 000000000000000000000000000C0000OGES

USER ADAPTATION ceceeccccccscacococososcsnnoncssscscsnnsne
VERSAJOS AJaptation eeeesececsceccsccesssssssscccccses
VERSAmodule 01 (with VERSAbug) Adaptation eeceeceecesees

VERSAJOS EMULATION ¢eeeccoscsccccccccccscoscocsconscnsas
File Handling Services (FHS) ceececeeossccscscssssscssss
Input Output Services (I0S) seececessccccsscscssccccsss
Executive FUNCLIONS teeeeecvecccssocccocscsecencnanoas

I1/0 ROUTINE REPLACEMENT 4evececcccccccosoccscsscncsasess
ASSign File (AFI) seeeeccccccoccescoccccorasesccsonsas
Initialize File DesSCriptor (IFD) eeecececsccosccssccses
ClOSE (CLO) seeeescccccocssccccscecsnoccsassscsacnscss
RESEL (RST) seveccssccccceecsassacsccccnscccccscccnccs
REWEIte (RWT) sesececosccoccccccscsccnssccssssacsscsss
Read Buffer (RDBUF) seeescccccscccsccoccscccssccncesss
Write Buffer (WRTBUF) cececocccccccsccsosccasoncsscnss

* o
N
|

R BRI WWWWN NN -
.

L] L) * [L] L) L]
N wWwNH W
W YWY YW W
{ [I T T T | [}
O JO0\WWH

J
NDNNNNNDHEHP

LO L0 W W W LWLWIWIWWLWLWIWWYLWYLY
® o & ¢ & o o o

NHMHFROOWOHO

ii

O O
o ®
[e) W)
.
=

.
.
N

W W W W WOWWLWLWO
e ¢ ¢ o o o
OWWOWWOWWOWWOWYORJIN
e & o o O
Vb W N

CHAPTER 10

* e
W N

® e & o o e o
]

.
WWWWWWwWWwWwWwWWwWwWwWwWWNDNPNDNODNDNDNODMDNNMMDNNHEEHRE
o o o

L]
HWOOo-JOHULd W

o

ol el el el el o el ol el ol el = el =l el =l =l =l = = el = =l =

EobobbbbbEocbobocbocEbbcob0066000006
[]

HH OO0 WN -

TABLE OF CONTENTS (cont'd)

INITIALIZATION UNDER VERSAdos (EXORmacs, VME/10,
VM01, VMO2, Or MVMELL0) scccoscccocsccsscccccncssance
Initialization Sequence under VERSAdos on EXORmacs
OF VME/10 seveeccesescsessosacscssccssoscasnsassonacs
Initialization Sequence under VERSAdos on VMOL,
VM02, and MVMEL10 cecceccccccsscssscesosccssccccncns
INITIALIZATION UNDER RMS68K, vMO0l, VM02, OR MVME1ll0
Initialization Sequence under RMS68K on VMO1,
VM02, and MVMEL10 .eceeceocccscccocsscsoscscscoassce
RUNTIME INTERFACE FOR BIOS UNDER RMS68K.scecsssccscccces
INtrodUCtiON.seeesesssssscsccccscsssccscscscsscsssassssaese
CALCLU Routine for RMS68K ..ecceccccoscsscssssscssasse
TRAP VHCTORS ceeeocscccscsccccccscssccscsccsccnsesccsssscscs
RUNTIME INTERFACE FOR VERSAmodule 01 Under VERSAbUJ «.e.
ContrOl TAbDle .eeeecsscesccscccsscsssccscccssscnnccsse
Device Descriptor Table...eceeccecscscsscssssscsvscaccnes
Standard I/0 ROULINES.csacsscssescccssssscscsssscsenses
InitializatioNeseseesvesescsccscscsscccscssccsssscnaons
Table LiSting eceecccccsscccccsssoscsssssssesssssssscse

FLOATING POINT ROUTINES

IMPLEMENTATION ¢ cccoccscssccsccssssccsssssscscscassnscssssssse
Interface to Floating Point Processor (Standard FP) ..
Externals (Standard FP) seesccessccccsccscssccscssssasns
Floating Point Initialization (Standard FP) eececececes

REAL RUNTIME ROUTINES (STANDARD FP) cecccoccccccscccccss

SINE eeeeevsscascesescssscsssosccssssscscscssssssssassonse
COSINE seeeceresocrosasssscssssscccccssssasssscsossssnncs
TangeNt ceeeecccsccccccscsscsssssccscssssccnccccscascosss
Arctangent cececsccccccesccsvcsccssoscccccasscccrrcccns
Natural LOgarithm cceecececsccseccccccoscsssccccesssne
EXponential seeessecesecssccccsscscssssscascssscccsasssnsne
POWEY cceescescsscscsssccscsccasscsscsnscosnssccsssssccooce
ROUNA +ccececocssccssoscsscscsoscessssscssasascsncssssasse

Truncate S 0P 0 PO PO 0000000000000 0000000000000000c0RsS
NOt—a—Number (NaN) $ 0000000000000 s00000CCSISTOROIEEOSIOISIOINOISITODL
REAL RUNTID{E ROUTINES (FFP) 06000000 OsRLGOOGEOSIOIOEOESIOIOINLNOILIOTS

SINE ceeeevvessscscccscscsscsscssscscssssssscssscsscssssosne
COSINE tecesccccnconsvsvsososssassscccccsscssscccsnancnnons
TANJENE eececscoccscessscesessosscsccsrsscassscsscossssosse
Arctangent cececececcsccccccscsccccsssscssasssssssscnccs
Natural Logarithm ..eeeececcescsscccsccscscsssscncsncne
EXponential ceececceccesccsccscccsssscscsssccccsccnsos
POWEL secesccccocossssosscssccsosscccnsscnssncscsccsccsse
ROUNA cevvoccecsconsccssssssscscsscsccssscscscssssscsssssssse
TESE eeveeeosccccscssssssccscccossscssssscsscsscsnnssonss
CONPALE cecevovscscsscsssssssssssscscccscscsscscscscsncosncs
Absolute VAlue .eeeececessccccssssscssocsssacsssonsosas
Arithmetic Negate .seeeececessssccsosccccsossosnscsssscce
AdAitiON eeeeceecocccsssscssssscccccocsscscscssscnsssssnsse
SUbLraction ceeececcscssssssccsssscccscsscsssssonsccsss
Multiplication eceeevessscscscssenscccccssscssoscscnscs

iii

Page

9-22

9-26

9-31
9-33
9-33
9-33
9-33
9-35
9-37
9-39
9-42
9-43
9-43

10-1
10-1
10-2
10-2
10-3
10-4
10-4
10-4
10-5
10-5
10-5
10-6
10-6
10-6
10-7
10-7
10-8
10-8
10-8
10-9
10-9
10-9
10-10
10-10
10-10
10-11
10-11
10-11
10-12
10-12
10-12

10.3.16
10.3.17
10.3.18
10.3.19
10.3.20
10.3.21
10.3.22
10.3.23

CHAPTER 11

11.1
11.2

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

FIGURE 1-1,
3-1.
5-1.
9-1.
9-2.
9-3.

9-4.
9-5.
9-6.
9-7.
10-1.

TABLE OF CONTENTS (cont'd)

DiViSION ceeeceecsccsoscsssscesccsscnsassosccsssssscses
SQUALE ROOL ceecececsccsescsseccoscsooccccnsssscscccnse
Division with REMAinNdEr eceeecsesccccccccsccccncccncocs
Conversion of Floating Point to Integer (Truncate) ...
Conversion of Integer to Floating Point e.eeecececcccecs
Read REAL ceeseesssscsessescscsescscncscsascssscssacasse

Write Real (AR N ERRNENNENNRENNRERENEIE XN IIN NI NN NN

Exceptional ConditiONS .eeeeeesescscscsocccccocacscnss

INTERNAL REPRESENTATION OF DATA

INTERNAL REPRESENTATION 08 0080000000000 00000000OSEISIIOSTTES
DEFINITIONS ® 0 000 P 0OV PROEOOCNLLLPPOORNERNEEEIOSIOIEOEOEOIOEOITOTTDN

STANDARD FLOATING POINT PROCESSOR ceeessccccccasccccscasn
ASCIT CHARACTER SET ceceeccscscooscccssscascsssnsasscnae
68K-PASCAL LIMITATIONS ccceececsocccasesccscsscsccnsnnns
ERROR MESSAGES ¢oeeeccsoccccccocssscsccscccscosscnssanss

LIST OF ILLUSTRATIONS

Pascal Program ProceSSiNg seeeseccccscscesssssscsssscccos
Pascal Listing with ErTOIS ceeeeeccccccccssosscccccaccnee
Pascal Memory AlloCatiOn seeeeccecccccscesssccscsscsccses
Layered Structure of Pascal PrOJYaMS eeeecceccccssssccsss
Pascal Program Structure with VERSAdos Simulation
Pascal Program Structure with User Modified

Runtime ROULINES ceeeeecescsssevscsccccrscscscscssnace
VERSAmodule 01 Pascal Program Structure #1l eeeeeeececscoss
VERSAmodule 01 Pascal Program Structure #2 ceeceececcecssecs
LISR ROULINE secesesssoccscccscscsascascscsasscncscsncee
Heap Initialization ceeescecveccccccccsescscosssccccsccoe
Floating Point Exception Vector Table .ceeececscsccscces

iv

Page

10-13
10-13
10-13
10-14
10-14
10-14
10-15
10-15

A-1
B-1
C-1
D-1

9-10.
9-11.
9-12.
9-13.
9-14.
9-15.

9-16.

9-17.
9-18.
9-19.
9-20.

TABLE OF CONTENTS (cont'd)

LIST OF TABLES

Source Program OPLiONS sessseccesscscscssssssscscssscannce
Compatible Access PermisSSions c.eceeececesceccscescsscscses
Default File SpecificationsS .ceessccecccscssccosscsonsns
Resource Name String OptiOnS .ececececcecssscesccsscsensaas
Traps Used by PasCa@l seeecscccccccsccsccccccecsccncvnvnce
FHS Functions Called By Each Runtime Routine .cecececeess
Runtime Routine IOS Data Transfer OptionS sececececccccesces
I10S Functions Called by Each Runtime Routine e.eeeceecesss
Executive Functions Used by Runtime Routines ..ceeeecees
External References that Cause VERSAdoOs CallS seeecececcee
Pascal Runtime Maintenance Area (VERSAJOS) eecoccscosces
Register Formats for I/O Subroutines (VERSAJOS) «ecceese
File POINtEY seceececscsccscsacccrssccssosscssscsesscssssce
Stardard File Parameter BlOCK .ececcccccssecccssccasccne
Pascal File Status Word Definition ..ceceescsscccccccsss
Register Contents on Entry to Motorola-Supplied
Initialization ROULING teeecececcccssssscccccsccvoccae
Motorola-Supplied Initialization Routine External
REfEYeNCES ceceescsssescsssccccssocsscsscscsscccssscnsoe
Register Contents at end of Initialization .eceeccesccees
VERSAmodule 01 Runtime Maintenance Area .eceescesscsccccs
VERSAmodule 01 File Parameter BlOCK eceeecscsccccsssssess
Register Formats for I/0 Subroutines (VERSAmodule 01) ..

v/vi

Page

\D\O\O\O\O\D\DLF\O\OKO&O\D\ON
HHEPRPMHEFEFHEOOONTONOYT N

1
O~ W

O
U

N

w

9-24
9-27
9-35
9-36
9-40

CHAPTER 1
INTRODUCTION

1.1 SCOPE

This manual explains how a program written in the Motorola Pascal language is
readied, compiled, link edited, and run on an EXORmacs Development System, a
VMEmodule Monoboard Microcomputer System (VME/10), a VERSAmodule 01 (VMOl) or
VERSAmodule 02 (VM02) Monoboard Microcomputer, a VMC 68/2 Microcomputer System,
or a VMEmodule Monoboard Microcomputer-based System (MVME11l0). In this manual,
a program run under VERSAdos on a VMOl, VM02, VMC 68/2, or MVMEll0 system is
referred to as a "VERSAdos01/02" program; a program run under RMS68K on a VMO1,
VM02, VMC 68/2, or MVMEL1l0 system is referred to as an "RMS68K01/02" program.

1.2 GENERAL

Pascal, first developed as a teaching tool, has gained wide acceptance as an
applications and systems programming language. Its structured nature and ease
of maintenance have made it a favorable language in saving time and effort for
users in program development/support. In recognition of this, Pascal has been
developed by Motorola as one of the high-level programming languages to be used
on the M68000/M68010 systems.

1.3 OPERATING ENVIRONMENT

. VERSAdos Operating System linked with the appropriate Pascal runtime
library. (See Chapter 5.)

1.4 MINIMUM HARDWARE REQUIREMENTS
1.4.1 EXORmacs Development System

. EXORmacs Chassis

. EXORterm 155 Display Console

. EXORdisk III Disk Drive Unit

. Model 703 Printer, or equivalent

. VMOl Monoboard Microcomputer (optional)

. VM02 Monoboard Microcomputer (optional)

. MVME110 Monoboard Microcomputer (optional)
. 384K Bytes of RAM (includes ample user RAM)

1.4.2 VMC 68/2 Microcomputer System

. VMC 68/2 System (which includes an MLD-16 8" LARK disk drive unit, and
384K bytes of RAM)

. EXORterm 155 Display Console, or user-supplied dumb ASCII RS-232C
terminal

. Model 703 Printer, or equivalent (optional)

1.4.3 VME/10 Microcomputer System

. VME/10 System (which includes Control Unit Chassis, Display Unit,
Keyboard, and 384K bytes of RAM)

. Model 703 Printer, or equivalent (optional)

1.5 RELATED PUBLICATIONS
. EXORmacs Development System Operations Manual (M68KMACS)
. M68000 Family Real-Time Multitasking Software User's Manual (M68KRMS68K)
. M68000 Family System Generation Facility User's Manual (M68KSYSGEN)

. VERSAdos Data Management Services and Program Loader User's Manual
(RMS68KI10)

. VERSAdos Overview (M68KVOVER)

. VERSAdos System Facilities Reference Manual (M68KVSF)

. M68000 Family Linkage Editor User's Manual (M68KLINK)

. M68000 Family CRT Text Editor User's Manual (M68KEDIT)

. MC68000 16-Bit Microprocessor User's Manual (MC68000UM)

. M68000 Family Resident Structured Assembler Reference Manual (M68KMASM)
. M68KVMO1l-1, -2 Monoboard Microcomputer User's Guide (M68KVMOL)

. VERSAbug Debugging Package User's Manual (M68KVBUG)

. Pascal Programming Structures for Motorola Microprocessors

. MC68010 16-Bit Virtual Memory Microprocessor product specification
handbook (ADI-942)

. VMC 68/2 - Series Microcomputer System Manual (MVMCSM)

. VME/10 Microcomputer System Overview Manual (M68KVSOM)

1.6 GENERAL STRUCTURE OF PASCAL COMPILER

As shown in Figure 1-1, the Pascal compiler may consist of two or three phases.
Phase 1 processes a source program and produces a compilation listing and error
messages, as well as an intermediate code file. Optionally, Phase 1.5 may be
invoked in order to "optimize" the intermediate code -- i.e., to reduce the size
of the code file. Either the Phase 1 intermediate code or the Phase 1.5
optimized intermediate code is then input to Phase 2 in order to create a
relocatable object file, as well as a listing. The object file may be combined
with needed routines from the runtime library by the M68000 Family Linkage
Editor (also referred to as the linker) to create a load module which is ready
to run. Alternatively, the linker's output may be a relocatable object module
which can be linked with others, or a transportable S-record format module.
(Linking is discussed in Chapter 5.)

If the module is to be run on VERSAmodule 01 under VERSAbug, it must be an
S-record file linked with the VERSAmodule 01 runtime library. Paragraph 5.8
shows one method of accomplishing this, and paragraph 7.2 shows a method of
downloading and executing a program on the VERSAmodule 01 under VERSAbug.

1.7 NOTATION AND RULES

Commands and other input/output (I/0) are presented in this manual in a modified
Backus-Naur Form (BNF). Certain symbols in the syntax may be used, where noted,
in the real 1/0; however, others are meta-symbols and their meanings are as
follows:

<> Angular brackets enclose a symbol, known as a syntactic variable,
that is replaced in a command line by one of a class of symbols it
represents.

| This symbol indicates that a choice is to be made. One of several
symbols, separated by this symbol, should be selected.

[] Square brackets enclose a symbol that is optlonal The enclosed
symbol may occur zero or one time.

[1... Square brackets followed by periods enclose a symbol that is
optional/repetitive. The symbol may appear zero or more times.

e
X3
1]

Two colons followed by an equal sign means "may be composed of".

Commands entered at the keyboard are to be terminated by pressing the RETURN
key.

Pascal
Source
Program

!

Phase 1
(Compiler)

1

y Y
Compilation Intermediate
Listing Code
File

Y

Error
Messages

e e e e e e e
r—“ Phase 1.5 Optional _—]

(Optimizer)

Optimized
Code

|
|
| I
|
I

I, S _— _

Phase 2
(Compiler)
¥ Y
Relocatable Pseudo
Object Assembly
File Listing
Y
Runtime /' Linkage Optional
Library > Editor B Subroutines
Routines
Y
Output Link
File* Map

*Relocatable Object Module,
Load Module, or S-Record
Module

FIGURE 1-1. Pascal Program Processing

1-4

CHAPTER 2

PREPARING A PROGRAM

2.1 THE OPTION COMMENT

The Pascal source program may include options (Table 2-1) that affect the
compiler's source and object output, options that control runtime checks, and
miscellaneous options. The options are named in an option comment, which is
enclosed within braces (i.e., { }) or within the symbol pairs (* and *). A
dollar sign immediately follows the left brace or left symbol pair to identify
the comment as an option comment. The format of the option comment is:

{$Xs,...,Xs}
or
(*$XS, o0 (1 XS*)

where X is a capital letter corresponding to one of the options shown in
Table 2-1. The s is either a plus (+) or a minus (-) sign. A plus assigns a
TRUE value enabling the option, and a minus assigns a FALSE value disabling the
option. For the page eject option, E, the sign is omitted. The sign is also
omitted for options in which a number is needed (X=n). Table 2-1 shows the
default value assigned to each option at the beginning of the program.

One or more options, separated by commas with no intervening spaces, may be
specified in the comment. The option comment may appear at any point in a
program at which a comment is normally allowed (except the Q option, which must
appear prior to any keyword except 'program' or 'subprogram'). Other text may
be added to an option comment, provided it is separated from the options by at
least one blank space. These options are similar to those allowed in the
command line when invoking the compiler (Section 4). Except for option Q,
command line options do not override options specified in source comments.

2.2 FILE NAME FORMAT

In this description, some syntactic variables are defined by the term "file
name". A VERSAdos disk file name consists of six fields:

<volume name>:<user number>.<catalog>.<file name>.<extension> (<protect key>)

If any of these fields are omitted, the system will fill them in with default
values, as follows:

a. If <volume name> is omitted, the volume specified at system logon, or in
the last session control USE command, or specified in the first command
parameter (overrides defaults) will be used.

b. If <user number> is not supplied, the user number supplied at logon, or
in the last USE command, or specified in the first command parameter
(overrides defaults) is the default.

If a default catalog has been supplied at logon, or with the USE command,
or specified in the first command parameter (overrides defaults), and
<catalog> is not specified, then the default catalog will be used. Any
<catalog> specified will override the default catalog. If a default
catalog has been specified and a null catalog is required, entering a &
(ampersand) as the <catalog> will produce a null catalog. If a default
catalog has not been specified and <catalog> is omitted, then a null
catalog will be used.

If <user number> and/or <catalog> is being specified, <file name> may be
omitted and will default to the file name specified by the first command
parameter.

If the <extension> field is not supplied, a default will be supplied.
See command line descriptions in Chapter 4 for default extensions.

If <protect key> -- 2- to 4-character (AA-PP) access protection code --
is not specified, it defaults to PPPP (any user may read or write to the
files). If only two characters are specified, they are assumed to be the
read code and the write code defaults to public write (PP).

The following file names are equivalent if the last USE command specified VOL1
and the user logged on as user 3:

VOL1:3..TESTPROG.SA
3..TESTPROG.SA

TESTPROG.SA
TESTPROG (if default extension is .SA)
TABLE 2-1. Source Program Options
DEFAULT
OPTION VALUE MEANING
A=n A=4 Specify the number of bytes —- where n is l, 2, or 4 —~—
used for integer arithmetic. If n is 1, one-byte
arithmetic is performed; if n is 2, two-byte arithmetic
is performed; and if n is 4, four-byte arithmetic is
performed.
C- C+ Generate an intermediate code file during Phase 1.
If C- is specified, an intermediate code file is not
generated. (Eliminating this file reduces the time
necessary to generate the listing and any errors.)
D+ D- This combines the K and R options to (1) generate code to

perform runtime checks which verify that array indices
and subrange type variables are in range, and (2) include
executable unit numbers in the executable object code.
The numbers relate to statements and are found on the
source listing. If an error condition occurs at runtime,
the current executable unit number is contained in
register Dl.

TABLE 2-1. Source Program Options (cont'd)

DEFAULT
OPTION VALUE

MEANING

E

F=<fn>

G+ G-
H=n H=4096
I- I+

Page eject. Whenever this option is encountered in the
source program, the Phase 1 listing will advance to the
top of the next page. (This option has no default value,
and no plus or minus sign.)

Include the file specified by <fn> in the source.
Immediately after the comment which contains this option,
Phase 1 will start obtaining its source input from the
file indicated by <fn> (which must conform to the rules
for specifying a file name for the operating system).
When the end of the "include file" is encountered, Phase
1 will return to getting its source from the original
source file at the point it left off.

There are three restrictions on the use of this option:

a) When the end of the comment containing the F
option is encountered, the remainder of that
source line must not contain any more text. If
more source text is found, it will be ignored.

b) Only one F option may be specified per comment.

c) Include files may not be nested - that is, a
source file that is being read as the result of
an F option may not itself contain an F option.
Thus, the only file that may contain F options
is the original source file.

Keep files output by the compiler or optimizer which
contain errors. In the default condition, G-, such
erroneous files are deleted.

n is the size of the program heap in bytes. n has the
format: [<base>#]<integer>. If "<base>#" 1is omitted,
<integer> defaults to a decimal base; otherwise, the
symbol # separates the base and integer; <base> is
written in decimal, and <integer> is written in the base.
<base> may range between 2 and 16, inclusive.

Pass any external files specified on the command line to
the program at start-up.

If I- is specified, the command line will not be scanned
for external files. In this case, only the Z option
(paragraph 7.1.2) is recognized.

TABLE 2-1. Source Program Options (cont'd)

OPTION

DEFAULT
VALUE

MEANING

K+

R+

S=n

K-

L+

%

Include executable unit numbers in the executable object
code. The executable unit numbers relate to statements
and are found on the source listing. If an error
condition occurs at runtime, the current executable unit
number is contained in register D1. Note that there is a
code overhead of 2 bytes or 6 bytes each time the
executable unit counter is updated.

Generate a source listing on Phase 1 listing file/
device (printer or CRT).

Enter source statements as comments in the Phase 2
input.

Include executable unit numbers in the executable object
code, but only at function/procedure entry and exit
points.

Use fast floating point. In the default condition, Q-,
fast floating point is disabled. When using separate
compilation, the same state of this option (Q+ or Q-)
must be used with each compilation. If specified, this
option must appear prior to any keyword except program or

subprogram.

Generate code to perform runtime checks which verify that
array indices and subrange type variables are in range.

The value specified by n (whose format is described under
the H option above) will be the default stack/heap size
in bytes used by the program. If specified, n must be at
least 768.

** If the S option is zero or is not specified, the
default stack/heap size in bytes is the following
summation:

(Heap size, specified by the H option) +

(Size of the global variable area) +

(Runtime maintenance area and vector table size:
768 bytes) +

1.5 x (P1 + P2 +...+ P7)

where Pi is the maximum size of all the local variable
areas in procedures declared at level i.

Generate a warning during Phase 1 processing if non-
standard Pascal features are used. Standard Pascal
comprises only the language features proposed by Jensen
and Wirth.

CHAPTER 3

FUNCTIONAL DESCRIPTION

3.1 GENERAL

A Pascal source program prepared by the user must be processed by the M68000
Family Pascal Compiler to produce a relocatable object file, from which an
executable load module can be created.

The M68000 Family Pascal Compiler, referred to as the "compiler", consists of
three programs. The first of these, Phase 1 of the compiler, is invoked using
the PASCAL command. When the first phase completes, the user activates Phase 2
via the PASCAL2 command or, optionally, may invoke Phase 1.5 with the POPTIM
command to optimize the intermediate code produced by Phase 1, and then run
Phase 2. Optimized code allows faster execution of compiled, linked programs.
During each of the three phases, progress counters displayed on the terminal are
updated every 100 source lines and at the end of the code in the input file.
The counter update overwrites the old values with new values. Counter updating
can be disabled for any or all of the three phases at the user's option (option
BE-). The output produced by Phase 2 must then be processed by the linkage
editor, described in Chapter 5 of this manual.

3.2 COMPILER, PHASE 1

Phase 1 processes a Pascal source program, checking the syntax of each statement
it encounters. If any errors are detected, they are brought to the attention of
the user. These errors should be eliminated and Phase 1 should again be invoked
to compile the modified program. When no errors are reported, Phase 1
processing is complete.

Phase 1 of the compiler produces two types of output. First, it generates an
intermediate file which is used to produce the relocatable object file from
Phase 2. 1If errors were detected during Phase 1 processing, the intermediate
file is of no value and is automatically deleted unless the G option is on.

Second, it produces an optional listing of the source program containing error
codes along with other useful information. When an error is detected, a line is
added to the program listing containing the phrase "***Error---" followed by the
line number of a previous error or by 0 if this is the first error. Also on
this line appears an error code positioned beneath the symbol that was being
processed when the error was discovered.

Each line of the source listing file contains the following fields:

LINE Source program line number. Up to five digits may appear in this
field.
LoC LOC stands for location. If enclosed in parentheses, this field

contains the offset in the data section of the first variable
declared in this statement; otherwise, this field contains an
executable unit number, roughly corresponding to a statement
number. If an error condition occurs while the program is running
and a debug option (D or K) was selected, the executable unit
number of the statement being processed will be contained in
register D1 to indicate the point of failure.

LEV LEV stands for level. Level numbers indicate the static structure
of a program. The main program is at 1level O. A level 1
procedure 1is contained in the main program and in no other
procedure. A level n procedure is contained by procedures at
level 0 through n-1. Level numbers are useful when determining
the scope of variables or procedures.

B B is an abbreviation for block beginner. A block beginner is one
of the following symbols: BEGIN, REPEAT, or CASE. When one of
these keywords is encountered, the B level is incremented. If
multiple keywords that increase the B level occur on one line, the
level corresponding to the first beginner is printed.

E E stands for block terminator. A block terminator is either of
the symbols: END or UNTIL. An END will match either an earlier
BEGIN or a previous CASE symbol. An UNTIL is always associated
with an earlier REPEAT. The E level is decremented when a block

terminator is processed. If multiple block terminators are
encountered in a line, the level of the last block terminator is
printed.

Block levels are described by increasing letters of the alphabet.
If a block beginner does not appear in a line, its B field
contains a dash (-); if no block terminator is found on a line,
its E field is also a dash. The B and E fields enable the user to
quickly determine the block structure of a program. A common
error is to fail to provide a matching block terminator for each
block beginner. Often an examination of these fields will
pinpoint the location of the error.

- The remaining field contains a copy of the source statement,
truncated to the current line length.

At the end of the listing, a summary of the compilation is provided. A count of
syntax errors, warnings, lines of source, procedures, and P-codes (intermediate
code instructions) is given. If any errors or warnings occurred, the line
number of the last error is listed.

An example of a source program listing containing two errors is shown in
Figure 3-1. This figure shows how lines containing errors are chained together
and also illustrates the other fields described above.

Line Loc Lev BE Motorola Pascal FIB8 +SA

1(-8) 0)— program Fibonacci (output);

2(-~8) 0)—

3(-20) 0)— var a,b,i : integer;

4(0) 1)— procedure fib(var x,y: integer) ;

5¢ -4) 1)— var temp : integer;

6 1 1)A- begin (* FIB *)

7 2 1)— tmp := y; (* compute the next Fibonacci *)
***Error—— [Viddd ~104

8 3 1)— y:=y+xﬁnmmrﬁmhfmd)—>ﬁmdﬁmnﬂ;

9 4 1)— x := temp

10 1)-A end; (* FIB *)

11 5 0)A- begin

12 6 0)— a := 0; (* initialize a and b¥)

13 7 0)— b := 0;

14 8 0)— for i := 2 to 10 do DO
*XXError— T “6

15 0)B- begin

16 9 0)— fib(a,b);

17 10 0)— writeln(output,iz3,b:5)

18 0)-B end

19 0)~A end. (* Fibonacci *)

*%x%+ 2 Error(s) and No Warning(s) detected
**** Last error line was 14
%% 19 Lines 1 Procedures

#**%* 14 Pcode instructions

FIGURE 3-1. Pascal Listing with Errors

3.3 OPTIMIZER, PHASE 1.5

Phase 1.5 is an optional phase which may be chosen by the user. This phase
provides machine-independent optimization of the pseudo-code produced by the
compiler by reducing the number of pseudo-codes and providing more information
to the machine-dependent code generator about the program in general and
variable usage in particular.

Upon successful completion of Phase 1.5, the optimized intermediate code has
been written to an output file which, in turn, becomes the input file for Phase
2 of the compiler. If errors are detected during the optimizer pass, however,
the output file is automatically deleted, unless the G option is on.

3.4 COMPILER, PHASE 2

Phase 2 of the compiler processes the intermediate code produced by Phase 1 or
the optimized intermediate code produced by Phase 1.5, and generates an object
module that can be link edited to create a load module. It then generates, in
the form of a relocatable object module, the machine code equivalent of the
corresponding group of internediate instructions. One object module is
generated for the entire input file.

Phase 2 of the compiler optionally produces a pseudo assembly listing (option
I+). The listing is normally not needed and may be suppressed by the user.

During Phase 2 compilation, a count of bytes of code generated is output to the
console. These "progress counters" are updated periodically, unless option E is
on. When Phase 2 processing completes, the total count is shown along with a
message indicating whether or not errors in generated code were detected. If
errors were detected, the object output file is automatically deleted (unless
the G option is on).

3-3

3.4.1 Object File Description

The compiler produces a relocatable object file that is compatible with the
M68000 Family Linkage Editor. The object module contains information which,
when extracted by the linker, makes possible the combination of separate
programs and the automatic inclusion of necessary system routines. The location
of every 1level 1 procedure is recorded in the object file in an external
definition record. A list of all modules referenced by the program, either
explicitly requested by the user or determined by Phase 2 to be needed, is
included in an external reference record. An indication of the memory occupied
by the program is provided, along with a request for space to be used by the
Pascal program for data storage in a stack/heap.

The code itself is .also stored in the object module. Phase 2 creates code that
is position independent, as well as relocatable. The linking process will
preserve the position-independence so that Pascal programs may theoretically be
loaded into any memory address space. A special feature of this code is that it
includes a pseudo long relative branch facility that enables any instruction to
be reached with six bytes of code. Routines obtained from the runtime library
may always be reached with a four-byte instruction.

3.4.2 Pseudo Assembly Listing Description

1f a Pascal program does not perform as expected, debugging may be necessary.
The most convenient way to perform this activity is by including facilities in
the program to inform the user of its progress, reporting the values of critical
variables at appropriate times. Occasionally it might be desirable to conduct
debugging of individual machine instructions rather than source statements. The
pseudo assembly listing greatly facilitates this activity.

This listing contains the following information:

a. Pascal source statements are present if the O option was selected when
Phase 1 processing was requested. To the right of the source statement
appears a statement number that matches the statement number appearing at
the beginning of each line of the Phase 1 listing. This makes it easy to
find a specific source statement in the pseudo assembly listing.

b. Between source statements appears a representation of the code that was
stored in the object file. This appears in a similar format to that
which would be produced by an assembler. Machine code for instructions
which cannot be shown in final form (instructions containing forward
references and instructions requiring linkage for completion) is
indicated by asterisks (*¥).

c. An assembly language instruction equivalent to the machine code
representation appears on the right side of the pseudo assembly listing.
This code may serve as a basis for users desiring to modify code
generated by Phase 2, but will not, in general, assemble correctly.

d. In certain situations, addresses have not been determined at the time the
listing is generated. In the Phase 2 listing, unknown addresses Jjumped
to or branched to are indicated by asterisks. Instruction addresses
which are uncertain at this time are shown as ranges in which they will
fall -- e.g., 00000054-005C. This uncertainty results from forward
references to labels and Phase 2's attempt to reach the label using a
short branch. Phase 2 does not know whether a short branch will be
adequate until sometime after the pseudo assembly listing has been
output.

3-4

CHAPTER 4

EXECUTING THE PASCAL COMPILER

4.1 INTRODUCTION

The following paragraphs describe the commands used to run the three parts of
the Pascal compiler -- Phases 1, 1.5, and 2, in turn. These are three separate
disk-resident programs named PASCAL, POPTIM, and PASCAL2, respectively.
Phase 1.5, the optimizer (POPTIM), is optional and is invoked where the fastest,
most efficient object code is desired in the completed compiled, linked program.
Phase 1 is run first to compile the source code into "pseudo" code (P-code); the
output of Phase 1 may be input directly to Phase 2, which accepts the output of
either Phase 1 or of Phase 1.5. The relocatable object file produced by Phase 2
is then linked to produce an executable load module (Chapter 5).

4.2 RUNNING PHASE 1

Phase 1 of the Pascal Compiler is loaded and run in response to the following
VERSAdos command line:

PASCAL <fnl>[/<fnl>]...[,[<En2>][,<fn3>]][;<options>]
where the syntactic variables are defined as follows:

fnl Input file(s). These are names of disk files (one or more), which
contain the Pascal source program. As many input files as desired
may be specified on the command line. Extensions, if not given,
default to .SA.

fn2 Output file. This is the name of the disk file which will contain
the intermediate code created by Phase 1. If not specified, it
assumes the name of the first input file processed, but with an
extension of .PC.

fn3 Listing file. This is the name of the disk file which will be
used to contain the Phase 1 listing. If not specified, it assumes
the name of the first input file processed, but with a default
extension of .PL. If # or #PR is specified instead of <fn3>, the
listing will be directed to the user's console or line printer,
respectively. If 4NULL 1is specified, no listing at all is
generated.

options The options which may be specified on the command line are similar
to those which may be specified in an option comment in the source
program (see Table 2-1). Except for option Q, command line
options do not override those in a program's option comment. Note
that the minus sign (-) precedes the option letter when used on
the command line.

OPTION DEFAULT

C C Generate an intermediate code file.
-C suppresses its generation.

4-1

OPTION DEFAULT
D =D
E -E
G -G
I I
K -K
L L
0] -0
P ~-P
Q -Q
R -R
W -W

Z=n Z=40

Generate runtime range checking code; include
executable unit numbers in object ccde. Both
functions are suppressed if -D.

Do not update progress counters. The default
value, -E, indicates the counters are to be

updated.

Retain the intermediate code file in the event
an error is detected. The default value, -G,
deletes this file if an error is detected.

Pass external files from the command line.
-1 suppresses this function.

Include executable unit numbers in object
code. -K suppresses the inclusion of the
numbers in the object code.

Generate a Phase 1 listing.

~-I, suppresses generation of the listing; only
those lines containing compile time errors
will be displayed.

Include source statements in Phase 2 input.
-0 suppresses this function.

Include executable unit numbers in object code
at function/procedure entry and exit points.
-P suppresses this function.

Use fast floating point. If -Q, fast floating
point is not wused. When using separate
compilation, the same state of this option (Q
or -Q) must be used with each compilation. If
the program being compiled contains an option
comment (Q+ or Q-), a 514 error message will
be issued (floating point type already
specified).

Generate runtime range checking code.
-R suppresses generation of the runtime range
checking code.

Warn if non-standard Pascal features are used.
Default (-W) is no warnings.

Set stack/heap (symbol table) size used by
compiler to nK. Value of n must be at least
40 (the default value, 40K bytes). The
default value will be adequate for compiling
most programs. However, some larger programs
may cause Phase 1 to abort with error 1008,
1010, or 1011l. In such cases, Phase 1 should
be executed with a larger Z option.

4-2

4.2.1 Phase 1 Acknowledgment

When the command line to Phase 1 has been correctly entered, the following
acknowledgment is displayed on the screen:

Motorola Pascal Compiler Phase 1 Version x.xx
Copyrighted 1982 by Motorola, Inc.

Source Lines Intermediate Code Errors Warnings
nnnnn nnnnnn nnn nnn

The counters are updated every 100 source lines processed during the compilation
(unless disabled by the E option). Upon completion, final counter values are
always displayed.

4,2.2 Command Line Examples
The following command lines are equivalent:

PASCAL TESTPROG

PASCAL TESTPROG, TESTPROG, TESTPROG

PASCAL TESTPROG.SA, TESTPROG. PC, TESTPROG. PL
PASCAL TESTPROG, .PC, .PL

All of the above commands direct Phase 1 to process a source program contained
in TESTPROG.SA and produce intermediate code in TESTPROG.PC and a listing in
TESTPROG.PL. If errors are detected, however, the file TESTPROG.PC will be
deleted (assuming the default option -G).

A common form of the command is:
PASCAL TESTPROG, ,#;-L

This command compiles TESTPROG.SA, creates intermediate code in TESTPROG.PC, and
displays only lines containing compile time errors and associated error messages
on the console screen.

when Phase 1 is executed from a CHAIN or BATCH file, upon termination it will
load the diagnostic register (RD) with a value reflecting the success of the
compilation. A value of $0000 indicates no warning or error conditions were
detected; a value of $lnnn indicates that $nnn warning conditions were detected;
a value of $Cnnn indicates that $nnn errors were detected. Note that a value of
this last form will normally cause the CHAIN or BATCH file to abort.

4.3 RUNNING PHASE 1.5

Phase 1.5, the optimizer, is loaded and run in response to the following
VERSAdos command line:

POPTIM <fnl>[,<fn2>] [;<options>]
where the syntactical variables are defined as follows:

fnl Input file. This is the name of the disk file containing the
intermediate code generated by Phase 1. The extension, if not
given, defaults to .PC.

fn2 Output file. This is the name of the disk file which will contain

the optimized intermediate code. If not specified, it assumes the
name of the input file, but with an extension of .PO.

options May be one or more of the following:

OPTION DEFAULT

E -E Disable progress counter updating during
optimization. The default value, -E, enables

the counter updating.

G -G Retain the optimized intermediate code file in
the event an error is detected. The default
value, -G, deletes the optimized intermediate
code file if an error is detected.

O=n =1 Perform levels of optimization up to n. If
specified, n must be in the range of 1 to 3.
The default level is 1. (Levels 2 and 3 are
not yet implemented.)

Z=n Z=32 Allocate a stack and heap segment of size at
least nK (1K = 1024 bytes) for the optimizer
during the processing of the input file. The
output file is not affected by this option.
The default size will be adequate for most
programs. However, some larger programs may
cause Phase 1.5 to abort with error 1008,
1010, or 1011. In such cases, Phase 1.5
should be executed with a larger stack/heap
size.

4.3.1 Phase 1.5 Acknowledgment

When the command line to Phase 1.5 has been entered correctly, the following
acknowledgment is displayed:

Motorola Pascal Optimizer Version x.XX
Copyrighted 1982 by Motorola, Inc.

Source Lines Intermediate Code Optimized Code
nnnnn nnnnnn nnnnnn

The counters are updated approximately every 100 source lines processed during
optimization (unless disabled by the E option). Upon completion, final counter
values are always displayed.

4-4

4.3.2 Command Line Examples

POPTIM TESTPROG

POPTIM TESTPROG, TESTPROG
POPTIM TESTPROG.PC, TESTPROG.PO
POPTIM TESTPROG; O=1,-G

All of the above commands cause the intermediate code in a file named
TESTPROG.PC to be optimized up to level 1 of the optimizer, then for the
optimized intermediate code to be placed in a file named TESTPROG.PO. If errors
are detected, however, the file TESTPROG.PO will be deleted (default option -G).

When Phase 1.5 is executed from a CHAIN or BATCH file, upon termination it will
load the diagnostic register (RD) with a value reflecting the success of the
optimization. A value of $0000 indicates no warning or error conditions were
detected; a value of $1000 indicates that warning conditions were detected; and
a value of $C000 indicates that error conditions were detected. Note that a
value of $C000 will normally cause the CHAIN or BATCH file to abort.

4.4 RUNNING PHASE 2

Phase 2 of the Pascal Compiler is invoked with the following VERSAdos command:

PASCAIL?2 <Enl> [, [<fn2>] [,<£n3>]] [;<options>]
where the syntactic variables are defined as follows:

fnl Input file. This is the name of the disk file containing the
intermediate code generated by Phase 1 or the optimizer. The
extension, if not given, defaults to .PC. If the file has been
optimized, the optimized extension (default .PO) must be

specified.

fn2 Ooutput file. This is the name of the disk file which will contain
the relocatable object module. If not specified, it assumes the
name of the input file, but with an extension of .RO.

fn3 Listing file. When the L option is specified, this is the name of
the disk file which will contain the listing produced by Phase 2.
If name is not given, it assumes the name of the input file, but
with an extension of .LS.

If # or #PR is specified instead of <fn3>, the listing will be
directed to the user's console or line printer, respectively.

options May be one or more of the following:

OPTION DEFAULT

E -E Do not update progress counters. The default
value, -E, indicates the counters are to be
updated.

G -G Retain the relocatable object output file in

the event an error is detected. The default
value, -G, deletes this file if an error is
detected.

4-5

OPTION DEFAULT

L -L This option enables generation of the listing
file specified by <£fn3>. -L, the default
value, suppresses generation of the listing
file, thus making it possible to generate the
output file more quickly.

J J This option causes a JSR to an F-line trap
simulator to be generated before each floating
point instruction generated when the standard
version of floating point is being used (-Q).
This is the default condition. Entering -J as
a command line option suppresses generation of
the JSR's to the F-line trap simulator. If -J
is used, the user must supply his own floating
point initialization routine, F-line trap
handler, and memory access routine at linkage
edit time. These are described in Chapter 10.

When using separate compilation, the same
state of this option, J or -J, must be used
with each compilation.

Z=n Z=48 Set stack/heap size used by compiler to nK.
Value of n must be at least 48. The default
value will be adequate for most programs.
However, some larger programs may cause Phase
2 to abort with an error 1008, 1010, or 1011.
In such cases, Phase 2 should be executed with
a larger Z option.

4.4.1 Phase 2 Acknowledgment

When the command line to Phase 2 has been entered correctly, the following
acknowledgment is displayed:

M68000 Pascal Compiler Phase 2 Version x.xx
Copyrighted 1982 by Motorola, Inc.

Source Lines Intermediate Code Bytes Generated
nnnnn nnnnnn nnnnnn

The counters are updated every 100 source lines processed during code generation

(unless disabled by the E option). Upon completion, the final counter values
will always be displayed.

4.4.2 Command Line Examples

Since the listing file output by Phase 2 is normally not needed, it is
suppressed by default. For example:

PASCAL2 TESTPROG

This command processes the intermediate code in TESTPROG.PC, creates an object
module in the file TESTPROG.RO, and produces no listing.

4-6

Another example shows how the input and output may be on different volumes:

PASCAL2 TESTPROG,VOL1:

The above example processes TESTPROG.PC and creates a relocatable object module
on VOL1 called TESTPROG.RO. No listing is produced.

To run Phase 2 on the optimized code output by Phase 1.5, the file name's
extension must be specified. For example:

PASCAL2 TESTPROG.PO

processes the optimized code in file TESTPROG.PO and creates a relocatable
object module in TESTPROG.RO. No listing is produced.

A final example shows how a listing is produced:
PASCALZ2 TESTPROG; L

The above example processes TESTPROG.PC, creates a relocatable object module in
TESTPROG.RO, and generates a listing in TESTPROG.LS.

In all the above examples, if errors are detected the .RO file is deleted
(assuming option default -G).

When Phase 2 is executed from a CHAIN or BATCH file, upon termination it will
load the diagnostic register (RD) with a value reflecting the success of the
code generation. A value of $0000 indicates that no warning or error conditions
were detected; a value of $1000 indicates that warning conditions were detected;
and a value of $C000 indicates that error conditions were detected. Note that a
value of $C000 will normally cause the CHAIN or BATCH file to abort.

Phase 2 uses a scratch file during processing. This file is written on the user
default volume and is normally deleted at the completion of Phase 2 execution.

4-7/4-8

CHAPTER 5

RUNNING THE LINKAGE EDITOR

5.1 GENERAL

Relocatable object modules, generated by Phase 2 of the compiler, are processed
by the M68000 Family Linkage Editor to produce an absolute load module, an
S-record module, or another relocatable object module. A Pascal program
requires the linker because:

a. Every Pascal program refers to routines which reside in the runtime
library.

b. If a program is to be combined with one or more subprograms that were
compiled separately, the linkage between modules must be constructed.

c. If a Pascal program calls a procedure or function written in assembly
language, the load module must include object modules produced by the
M68000 Family Assembler.

In all these cases, the linker is required to assign memory space (MMU segments
for EXORmacs or VME/10, physical memory for VMOl, VM0O2, and MVME1l0) to each
required object module, enable intermodule communication, and create a load
module that is ready to run.

5.2 RUNTIME ROUTINES

The Pascal runtime library (PASCALIB) provides certain standard functions that
may be optionally used to perform general services. A group of functions and
procedures is also provided, which interfaces the Pascal program with the
operating system to provide for input or output. A routine is provided to
establish the environment required by a Pascal program. Some frequently
requested code sequences that perform such activities as manipulating strings or
vectors are implemented as runtime routines to reduce program code size.

Whenever a reference is made to one of the runtime routines, an external
reference record is produced by the compiler as part of the object module. The
linker will include only referenced runtime routines in the load module.

Note that the Pascal compiler assumes that all runtime routines will be stored
contiguously in the load module. The user who requests other than default
linkage editor processing (paragraph 5.7) must ensure that this assumption is
not invalidated.

5.3 SEPARATE COMPILATION

Pascal supports separate compilations so that the user may group one or more
procedures or functions into a subprogram. The linker can combine as many
subprograms as desired. The locations of all level 1 procedures are made known
to the linker by external symbol definition records within the object module.
The linker can thus resolve references between the program and subprogram or
between two subprograms.

As previously stated, modules using standard floating point may not be linked
with modules using fast floating point. If an attempt is made to do so, the
link will report that the symbol .PFLOATP is multiply defined. The link will
not abort; however, the resulting output module will be invalid.

5.4 ASSEMBLY LANGUAGE PROCEDURES

Pascal permits the user to refer to procedures or functions written in assembly
language. If such routines are required, they should be written as shown in
Chapter 6. The linker will enable any Pascal program or subprogram to utilize
assembly language routines.

5.5 PASCAL PROGRAM MEMORY ORGANIZATION

Pascal organizes programs so that code modules occupy section 9 and the stack
and heap use space in section 15. The Pascal runtime routines are allocated
space in section 8. The runtime system for the VERSAmodule 01 under VERSAbug
uses section 0 to hold data for the various device drivers.

According to the linker's default processing, memory will be allocated in two
segments. Segment SEGl, the program segment, will contain the runtime routines,
the Pascal code section, and assembly language routines. Segment SEG2, the data
segment, will contain the Runtime Maintenance Area (RMA), Pascal stack/heap, and
the Pascal exception vectors. For the VERSAmodule 01 under VERSAbug, runtime
device data will also be in SEG2 (specified with the 1linker's SEG command;
default link processing for VMOl will result in a non-executable load module;
refer to paragraph 5.8). Figure 5-1 shows the memory allocation for a typical
Pascal program. Note also that if a Pascal program references an origined
variable, it will not be automatically included by the linker.

r— -
)] o J
High
addresses Stack
Segment SEG2 ¢ .; ¢ Section 15
(Read/Write)
__________ S
Heap
Pascal Exception Vectors
Section 0
Device data (Read/Write,
- VERSAmodule 01 only)
Segment SEG1 r Pascal program(s) Section 9
Assembly language subroutine(s) (Read only)
Low Runtime routines Section 8
addresses _ (Read only)

FIGURE 5-1. Pascal Memory Allocation

5-2

5.6 STACK AND HEAP USAGE

While a Pascal program is running, two types of memory allocation are used: a
stack and a heap.

Variables that are global or local and first appear in a VAR statement are
allocated space on the stack. Global variables -- i.e., those declared in the
main program -- occupy space for the duration of the program run. Local
variables are allocated stack space when the procedure or function in which they
are declared is entered, and relinquish their space on the stack when their
containing routine is exited.

Variables first appearing in a NEW statement are not stored on the stack, but
occupy space on the heap. An appropriate amount of space is allocated on the
heap whenever a NEW statement is processed during program execution. This space
is not relinquished until a DISPOSE statement is executed.

The stack is built in the highest address of the data segment and grows toward
lower addresses; the heap grows from lowest addresses toward higher addresses.
The stack and heap may share the data segment space in any ratio, but their
total space requirmaents at any given time must not exceed the total segment
size or the program will generate a stack/heap overflow error code and abort or
other error codes -- such as 1008, 1010, or 1011 -- and the program will abort
(see Appendix D).

The stack/heap size is determined by the options H and S in the option comment
of a source program (paragraph 2.1), or by the option Z when used in a runtime
command line (paragraph 7.1) or by default calculation if neither H, S, or Z
options are specified.

5.7 INVOKING THE LINKER TO CREATE A VERSAdos PROGRAM FOR EXORmacs OR VME/10

A VERSAdos (for EXORmacs or VME/10) load module resulting from the processing of
a Pascal program will have a default set of attributes compatible with most
users' needs. Default linker processing is requested by a simple LINK command,
whose format is as follows:

LINK [[<fnl>[/<fnl>}...]1[, [<En2>][,<fn3>|#|#PR]]][;<options>]

fnl The file name of either a Pascal object module generated during
Phase 2 or an assembly language object module. One or more file
names may be specified.

If no input files are specified, the linker will prompt for entry
of user commands, at which time file names can be specified with

the INPUT command.

fn2 The file name for the load module or S-record module to be
generated. This parameter may be omitted, in which case it
defaults to the first file name in the input list. The default
extension is ".LO" unless the Q option is specified, in which case
the default extension is ".MX" (S-record module).

fn3 Error messages, maps, and tables are output to the file/device
specified by this parameter. If <fn3> is specified, the output is
#PR sent to a disk file with the default extension of ".LL".

If # or #PR is specified, the output is sent to the user's console
or the line printer, respectively. If this parameter is omitted,
but options requesting output are specified, the listing will be
directed to the default output file/device, usually the user's
console.

options The following options are of particular interest to Pascal:
M This option causes a map of the load module to be generated.

X This option causes a table of externally defined symbols to
be generated.

For a further discussion of the linker and a complete list of options, refer to
the M68000 Family Linkage Editor User's Manual.

Examples:
LINK PROG,,#PR;MX

The file PROG.RO will be read, the default library PASCALIB will be searched,
and a load module PROG.LO will be generated. A load map and table of externally
defined symbols will be output to the line printer.

LINK PROG5

The file PROG5.RO will be read and the default library PASCALIB will be
searched. A load module PROG5.LO will be created and any linker messages will
be output to the system default device (usually the user's console).

LINK SUBPROG/PROG, ,#PR;MX

The file PROG.RO, a Pascal program object module, and the file SUBPROG.RO, a
subprogram compiled separately from PROG, will be processed by the linker, and
the default library PASCALIB will be searched. A load module, SUBPROG.LO, will
be created. A load map and table of externally defined symbols will be output
to the line printer.

LINK PROG/SUBPROG, ,#PR1;MX

The file PROG.RO, a Pascal program object module, and the file SUBPROG.RO, a
subprogram compiled separately from PROG, will be processed by the linker, and
the default library PASCALIB will be searched. A load module, PROG.LO, will be
created. A load map and table of externally defined symbols will be output to
the line printer.

5.8 INVOKING THE LINKER TO CREATE A VMO1l/VERSAbug PROGRAM

Using VERSAdos, a Pascal program can be link-edited and built into an S-record
file. Using VERSAbug, the program can then be downloaded into VERSAmodule 01
(see paragraph 7.2 of this manual, and the "System Development"” section of the
M68KVMO1-1, -2 Monoboard Microcomputer User's Guide).

Example:

=LINK ,EXAMPLE,EXAMPLE;MSQ

>SEG SEGL(R) :8-14 $1000 (Segment 1 is read only, and just after VERSAbug
memory.)

>SEG SEG2:0,15 (Segment 2 is read/write and just after SEGl.)

>IN EXAMPLE (Load the program.)

>LIB 0.&.VMO1lPLIB (Get VERSAmodule 01 runtime library; PASCALIB is

also searched by default.)
>END

Omnitting the parameter <fnl> allows entry of user commands SEG, IN, LIB, and
END. The user command IDENT could have been given to provide identifying
information for the SO record. Since it was not used, the defaults are used:
the SO record will use the output file name (EXAMPLE) as the module name, with
version and revision numbers of 1.

The file EXAMPLE.RO will be read, and the library file 0.&.VMO1lPLIB will be
searched to resolve external references. SEGl (read-only sections 8-14), ard
SEG2 (sections 0 and 15) will be allocated sequentially, starting at address
$1000 so that the program EXAMPLE will be loaded past the VERSAbug memory space.
SEGl contains the runtime library and program in sections 8 and 9; SEG2 is a
read/write segment containing the device variables and the stack/heap in
sections 0 and 15. The S-record file EXAMPLE.MX is created, and the listings
produced by the linker are written to the file EXAMPLE.LL.

The options M and S must be specified. The M option generates a load map from
which to obtain the address of the symbol START for runtime (paragraph 7.2); the
S option provides the proper sequential linking of segments. Option Q specifies
that the output file is to be in transportable S-record format.

Before downloading the program EXAMPLE into VERSAmodule 01, the monoboard must
be strapped so that there is RAM starting at $1000. The program and its data
will then be loaded into RAM starting at location $1000 or above (0-SFFF is
reserved for traps and VERSAbug memory) .

This method of linking may also be used if the Q option is not specified and the
output is a load module which is to be converted to S-record format using the
BUILDS utility.

5-5

5.9 INVOKING THE LINKER TO CREATE A VERSAdos(01/02 PROGRAM

Under VERSAdos on VERSAmodule 01 or 02, a load module with default attributes
can be created using the LINK command described in paragraph 5.7, with the
following additions/exceptions:

a. If the input file (<fnl>) is entered on the command line, the A option
must also be entered.

b. The LIB user command must be entered, as follows, for proper library
inclusion:

LIB 0.&.PASVMDOS

c. There are four non-MMU segments: (1) the data segment is always SEG2
and contains section 15, (2) the code segment contains sections 8 and 9,
and is named by the user, (3) a third segment, SEGT, is used temporarily
and then deleted during Pascal initialization, and (4) the fourth
segment is left for custom applications by the user.

<{start> and/or <end> addresses should not be specified on the SEG
command line unless the application requires an absolute address.
Rather, VERSAdos should be allowed to decide the appropriate loading
address.

d. Users should exercise caution when linking assembly language routines
with Pascal routines for VM0l, VM02, VMC 68/2, or MVMELl0. If the
routines reference absolute addresses, VERSAdos or other tasks may be
inadvertently overwritten, as there is no memory management unit (MMU)
to protect the address spaces of various programs from one another.

Example:

=LINK ,EXAMPLE,EXAMPLE;MI
>SEG EXMP(RG) :8-14)
>SEG SEG2:15)
>IN EXAMPLE

>LIB 0.&.PASVMDOS
>END

These two commands could be omitted.

5.10 INVOKING THE LINKER TO CREATE AN RMS68K01/02 PROGRAM

A Pascal program, in order to be executed under RMS68K on VERSAmodule 01 or 02,
must first be linked into a boot file by the SYSGEN utility. This linking
process is defined within a "chain file" called by SYSGEN through its LINK
command. See the example in paragraph 5.10.1.

The "chain file" is not a normal VERSAdos chain file, but is merely input to the
linker. The commands in the file are normal linker input, as described in
paragraph 5.7, with the following exceptions:

a. If the input file (<fnl>) is entered on the command line, the A option
must also be entered.

5-6

b. The LIB user command must be entered, as follows, for proper library
inclusion:

LIB 0.&.PASVMRMS

As written, PASVMRMS.RO only supports four devices: #, #CNOO, #CNO1,
and #PR (see paragraph 9.7).

c. There are four non-MMU segments: (1) the data segment is always SEG2
and contains section 15, (2) the code segment contains sections 8 and 9,
and is named by the user, (3) a third segment, SEGT, is used
temporarily and then deleted during Pascal initialization, and (4) the
fourth segment is left for custom applications by the user.

<start> and/or <end> addresses should not be specified on the SEG
command line unless the application requires an absolute address.
Rather, VERSAdos should be allowed to decide the appropriate loading
address.

5.10.1 Invoking SYSGEN To Create A Boot File

The SYSGEN facility is described in the M68000 Family System Generation Facility
User's Manual. However, to show the generation of a boot file for a Pascal
program, the following example is provided. The example is based on the SORT.SA
and FORCE.SA programs listed in Chapter 8.

First, the chain file PASCGEN.CF is called to perform the assembly of FORCE.SA,
the compilation of SORT.SA ard the call to SYSGEN, as follows:

=ASM FORCE

=PASCAL SORT;O

=POPTIM SORT

=PASCAL2 SORT.PO,SORT.RO;L

=DEL PASC.RO;Y

=COPY SORT.RO,PASC.RO

=SYSGEN PASCGEN.SA,/SORTBOOT.SY,SORTBOOT.LS;P

The call to SYSGEN contains the argument PASCGEN.SA, which is the input command
file. This file contains the following parameters for specifying memory
requirements, hardware configuration, and the process/task streams for including
load modules in the boot file:

This file builds up the operating system for a VM2 board system.
The operating system includes the EXEC, BIOS, an INITialization
task, and a PASCAL task, PASC.

SYSTEM PARAMETERS

* % ¥ ¥ F *

UDR=0 User-defined directive table (none)
MEMEND3=$80000 End of off-board ram

5-7

GST=4

UST=2

TRACE=5

10v=1

MMU=S0
TIMER=$SF70000
CLOCKFRQ=800
TIMINTV=10
TIMSLIC=2

*

PANEL=$0
MEMEND1=$20000
MEMEND2=$ 20000
TRCFLAG=$C000
WHERLOAD=S$0
PAT=2
BUGTRAC=$F000BC
PC=$SEQ0
STACK=$C00
KILVECT=142
SERPTS=140
PTMVECT=28
FAIL=141
SWABRT=31
NRAD1=0
DPRVAO=0
NUSRRAD=0
IOBINT4=S$74
IOBINT3=$73
IOBINT2=872
IOBINT1=$71
BCLRV=147

*

* Build EXEC

*

STARTRMS=$F00
PROCESS VM2.RMSV2.LO
END EXEC

MSG EXEC BUILT

*

* Build BIOS
*

MEMBEG=*

TASK VM2.BIOS.LO
BIOSSTRT=*

SUBS VM2.LBIOS.CF
LINK VM2.LBIOS.CF
SESSION=1
PRIORITY=200

END BIOS

MSG BIOS BUILT

*

* Build PASCAL program
*

TASK VM2.PASC.LO
PASCSTRT=*

Global Segment Table
User Semaphore Table
Trace Table

I1/0 Vector Table
Address of MMU
Address of Timer
Number of clock tics per millisecond

Number of milliseconds between timer interrupts
Numnber of timer interrupts before task forced
to relinguish processor

Front panel address

Maximum memory address

number of pages
number of pages
number of pages
number of pages

Trace flag

Memory address where boot file will be loaded
Number of pages in the periodic activation table
Address of VERSAbug's trace routine

Initialize Program Counter

Stack location

Killer vector number

Serial port vector number

Timer vector number

AC fail vector number

Software abort vector number

Number of RAD1 boards on system

Dual ported RAM VERSAbus addr offset

Number of RAD1 users/boards
I1/0 channel interrupt vector
1/0 channel interrupt vector
I1/0 channel interrupt vector
I1/0 channel interrupt vector
Bus clear interrupt vector #

4= He e

SUBS VM2.PASC.CF
LINK VM2.PASC.CF
SESSION=2
PRIORITY=100
ATTRIB='USER'

END PASC

MSG PASC BUILT

*

* Build INIT

*

PROCESS VM2.INIT.LO

SUBS VM2.INTIOV2.SA

ASM VM2.EQUTIMER.SA/VM2.INTIOV2.SA,VM2.INTIOV2.RO,VM2. INTIOV2.LS; 2=100
SUBS VM2.INDV.SA

ASM VM2.INDV,VM2.INDV,VM2.INDV;Z=100
INTSTR=*

SUBS VM2.LNKINT2.CF

LINK VM2.LNKINT2.CF

END INIT

MSG INIT BUILT

END

The first TASK stream reads the chain file, VM2.LBIOS.CF. This file contains
the following linkage editor commands to link BIOS into the boot file:

=LINK ,VM2.BIOS.LO,VM2.BIOS.LL;MIX
SEG SEGO0:8 \BIOSSTRT

IN VM2.BIOS

END

The second TASK stream reads the chain file, VM2.PASC.CF. This file contains
the following linkage editor commands to link the programs PASC.RO (SORT.RO) and
FORCE.RO into the boot file:

=LINK ,VM2.PASC,VM2.PASC;IMS
SEG CODE(RG) :8-14 \PASCSTRT
SEG SEG2:15

IN VM2.PASC,VM2.FORCE

LIB 0.&.PASVMRMS.RO

END

CAUTION

BECAUSE THE PASCAL PROGRAM CONTAINS TWO SEGMENTS, THE USER
MUST EITHER SPECIFY THE S OPTION ON THE LINKER COMMAND LINE
TO ALLOCATE THE SEGMENTS SEQUENTIALLY OR EXPLICITLY SPECIFY
THE STARTING ADDRESS OF SEG2.

The final PROCESS stream reads the chain file, LNKINT2.CF. This file contains
the following linkage editor commands to link the initialization routine into
the boot file:

=LINK ,VM2,INIT.LO,VM2.INIT.LL; IXHM

SEGMENT .INT:8 \INTSTR

INPUT VM2,INIT.RO,VM2.INTIOV2.RO,VM2,INDV.RO,VM2.SYSPARV.RO
END

=END

The following output listing, found in the file SORTBOOT.LS, contains the
results of the sysgen process:

COMMAND LINE PARAMETERS: SYSGEN.SA,/SORTBOOT.SY,SORTBOOT.LS;P

*
. * THIS FILE BUILDS UP THE OPERATING SYSTEM FOR A VM2 BOARD SYSTEM.
. * THE OPERATING SYSTEM INCLUDES THE EXEC, BIOS, AN INITIALIZATION
. * TASK, AND A PASCAL TASK, PASC.

*
. * SYSTEM PARAMETERS

*
. UDR=0 USER-DEFINED DIRECTIVE TABLE (NONE)

. MEMEND3=$80000
. GST=4
. UST=2
. TRACE=5
. Iov=1l
. MMU=S0
. TIMER=SF70000
. CLOCKFRQ=800
. TIMINTV=10
. TIMSLIC=2

*
. PANEL=$0
. MEMEND1=$20000
. MEMEND2=$20000
. TRCFLAG=S$C000
. WHERLOAD=$0
. PAT=2

. BUGTRAC=SFO00BC

. PC=SE00

- PC = $000E00
. STACK=$C00

. KILVECT=142
. SERPTS=140
. PTMVECT=28
. FAIL=141

. SWABRT=31

. NRAD1=0

. DPRVAC=0

. NUSRRAD=0

. IOBINT4=574
. IOBINT3=$73
. IOBINT2=8572
. IOBINT1=§71

. BCLRV=147
*

. * BUILD EXEC

*
. STARTRMS=SF00

. PROCESS VM2.RMSV2.LO

. END EXEC
- PC = 5005200

END OF OFF-BOARD RAM

GLOBAL SEGMENT TABLE - NUMBER OF PAGES

USER SEMAPHORE TABLE - NUMBER OF PAGES

TRACE TABLE - NUMBER OF PAGES

1/0 VECTOR TABLE NUMBER OF PAGES
ADDRESS OF MMU

ADDRESS OF TIMER

NUMBER OF CLOCK TICS PER MILLISECOND

NUMBER OF MILLISECONDS BETWEEN TIMER INTERRUPTS
NUMBER OF TIMER INTERRUPTS BEFORE TASK FORCED
TO RELINQUISH PROCESSOR

FRONT PANEL ADDRESS

MAXIMUM MEMORY ADDRESS

TRACE FLAG

MEMORY ADDRESS WHERE BOOT FILE WILL BE LOADED
NUMBER OF PAGES IN THE PERIODIC ACTIVATION TABLE
ADDRESS OF VERSABUG'S TRACE ROUTINE

INITIALIZE PROGRAM COUNTER

STACK LOCATION
KILLER VECTOR NUMBER

SERIAL PORT VECTOR NUMBER

TIMER VECTOR NUMBER

AC FAIL VECTOR NUMBER

SOFTWARE ABORT VECTOR NUMBER
NUMBER OF RAD1 BOARDS ON SYSTEM
DUAL, PORTED RAM VERSABUS ADDR OFFSET
NUMBER OF RAD1 USERS/BOARDS

1/0 CHANNEL INTERRUPT VECTOR #
1/0 CHANNEL INTERRUPT VECTOR #
I/0 CHANNEL INTERRUPT VECTOR #
1/0 CHANNEL INTERRUPT VECTOR #
BUS CLEAR INTERRUPT VECTOR #

5-10

. MSG EXEC BUILT
*

. F BUILD BIOS
*
. MEMBEG=*
. TASK VM2.BIOS.LO
. BIOSSTRT=*
. SUBS VM2.LBIOS.CF
. LINK VM2.LBIOS.CF
- =LINK ,VM2.BIOS.LO,VM2.BIOS.LL;MIX
. SESSION=1
. PRIORITY=200
. END BIOS
- PC = $005F00
. MSG BIOS BUILT
*

. * BUILD PASCAL PROGRAM
*

. TASK VM2.PASC.LO

. PASCSTRT=*

. SUBS VM2.PASC.CF

. LINK VM2.PASC.CF

- =LINK ,VM2.PASC,VM2.PASC; IMS

. SESSION=2

. PRIORITY=100

. ATTRIB='USER'

. END PASC

- PC = $00DB00

. MSG PASC BUILT
*

. * BUILD INIT
*
. PROCESS VM2.INIT.LO
. SUBS VM2.INTIOV2.SA
. ASM VM2.EQUTIMER.SA/VM2.INTIOV2.SA,VM2.INTIOV2.RO,VM2.INTIOV2,LS;Z=100
- =ASM VM2.EQUTIMER.SA/VM2.XINTIOV2.SA,VM2.INTIOV2.RO,VM2.INTIOV2.LS;Z=100
. SUBS VM2.INDV.SA
. ASM VM2.INDV,VM2.INDV,VM2.INDV;Z=100
- =ASM VM2.XINDV,VM2.INDV,VM2.INDV;Z=100
. INTSTR=*
. SUBS VM2.LNKINTZ.CF
. LINK VM2.LNKINT2.CF
- =LINK ,VM2.INIT.LO,VM2.INIT.LL;IXHM

. END INIT
- PC = $00E300
. MSG INIT BUILT
. END
FILE NAME TASK PROC SEG ADDR TCB
RMSV2.LO RMSV RMSO $000EOO
RMS2 $000F00
BIOS.LO BIOS SEGO $005200 $005D00
PASC.LO PASC CODE $005F00 $00D900
SEG2 $007600
INIT.LO INIT .INT $O00DBOO

5-11

- FINAL PC VALUE = $00E300
- SYSGEN DONE--START-UP ADDRESS IS S$S00DB0O

0 ERRORS ENCOUNTERED

5-12

CHAPTER 6

ASSEMBLY ROUTINE LINKAGE

6.1 GENERAL

An assembly language routine may be called externally by a Pascal program using
normal Pascal argument passing. Such a routine may:

a. Perform a function not available in Pascal -- e.g., data manipulation or
I/0 not provided in the runtime library, or some mathematics not

supported by Pascal.

b. Optimize some code to be used repetitively in a real-time environment.
The Pascal compiler does optimize, but a user-written assembly language
routine may be shorter and faster.

6.2 PROGRAM PREPARATION

There are two requirements which must be satisfied in order to include an
assembly language subroutine in a Pascal program. The first is to declare the
external assembly language routine in the Pascal program. This is done by
declaring a level 1 procedure or function, contained in the main program or a
subprogram, using the forward directive. A good place for these declarations is
prior to the first non-external procedure heading.

For example:
FUNCTION SUMTHREE(I,J,K:INTEGER) : INTEGER; FORWARD;

The external assembly language subroutine may then be called just as any Pascal
procedure or function.

The second requirement concerns the file which contains the assembly language
routine. This file must have an entry point, which has been declared external
with an XDEF, with the same name (truncated to 8 characters) as the procedure or
function in the Pascal program. The assembler must be informed that the
subroutine is to be included in section 9. A 'SECTION 9' directive at the
beginning of the assembly language subroutine file accomplishes this.

6.3 CALLING A ROUTINE

Calling an assembly language routine is identical in format -- and its runtime
requirements are identical in system usage -- to a regular function or procedure
call in Pascal. Parameters, for example, are placed on the top of the stack,
beneath the return address, in the order they are declared -- the first
parameter is stacked first and the last parameter is nearest the top of the
stack. If the assembly language routine is declared a function, the space for
the return value is below the first parameter on the stack (i.e., the address
contained in A7 plus a positive displacement).

For example, given the declaration and call in the following Pascal program
fragment:

FUNCTION SUMTHREE(I,J,K:INTEGER) :INTEGER; FORWARD;
BEGIN
A:= SUMTHREE(3,5,7);

the stack would look as follows upon entry to the assembly language subroutine
named SUMTHREE:

TOP OF STACK (A7) ———

RETURN ADDRESS low address
4 bytes
POSITIVE
OFFSETS FORMAL PARAMETER
FROM A7 K; 4 bytes;
value = 7

FORMAL: PARAMETER
J; 4 bytes;
value = 5

FORMAL PARAMETER
I; 4 bytes;
value = 3

FUNCTION VALUE
SUMTHREE; 4 bytes;
value is undefined

high address

The size of parameters depends on the type.

A VAR parameter passes a four-byte address of the actual parameter, which can be
used to reference the actual parameter via indirection. A value parameter
passes the value of the expression which corresponds to the formal parameter,

Boolean parameters occupy two bytes on the stack, but only the byte closer to
the top of the stack contains valid data. This byte has the value of one for
true and the value of zero for false.

Character parameters use two bytes on the stack, but only the byte closest to
the top of the stack contains valid data. This byte has the value of the ASCII
code for the character passed in it.

Integer parameters occupy four bytes on the stack. They are stored as 32-bit
two's complement numbers. Integer subrange types that fall into the range
-128..127, inclusive, use two bytes on the stack, but only the byte closer to
the top of the stack contains valid data. They are stored as 8-bit two's
complement numbers. Integer subrange types that extend outside of the range
-128..127, inclusive, but are within the range -32768..32767, inclusive, use two
bytes on the stack. They are stored as 16-bit two's complement numbers.

Real parameters occupy four bytes on the stack, with the sign bit being closest
to the top of the stack. Dreal parameters occupy eight bytes on the stack, with
the sign bit being closest to the top of the stack. Xreal parameters occupy ten
bytes on the stack, with the sign bit being closest to the top of the stack.
The internal representation of real, dreal, and xreal values is described in

Chapter 11.

Set parameters require eight bytes on the stack, with the byte nearest the top
of the stack containing bits 63-56 and the byte farthest from the top of the
stack containing bits 7-0.

Arrays and records occupy a number of bytes equal to their length, plus one if
they are of an odd length. The filler byte is the byte farthest from the top of
the stack.

Strings should always be passed to assembly language routines as VAR parameters,
due to the complexity of determining their actual size on the stack.

Pointers require four bytes on the stack and they contain the address of the
variable they reference.

The assembly language subroutine is responsible for preserving the value of
registers A3, A5, and A6 during its execution. It is also responsible for
removing from the stack all parameters passed to it by the Pascal program, and
for storing a value in the return value location on the stack if the subroutine
was declared as a function.

The values of the A5 and A6 registers may be of use to the assembly language
routine, since A5 points to the base of the global variable area and A6 points
to the base of the local variable area of the procedure or function which was
being executed when the assembly language routine was called. To reference a
variable in either of these areas, a negative displacement from the register
must be used.

The assembly language subroutine is free to use the space between the top of the
stack (pointed to by A7) and the top of the heap for local data storage. The
address of the top of the heap is kept in the long word which is located in
memory at a positive offset of four from the address in register A5 (see
Table 9-10).

If A7 ever contains an address that is less than the address of the top of the
heap, a stack/heap overflow condition has occurred. If a stack/heap overflow
has occurred, then both the stack and the heap may contain invalid data.

Control may be returned to the Pascal program by means of either a return from
subroutine instruction or a jump indirect through an address register which
contains the return address. No matter which method is used, it is up to the
assembly language subroutine to adjust the stack so as to remove the passed
parameters. If the assembly language routine returned a function value, then A7
should point to that location on the stack where the space was reserved for the
return value prior to assembly language routine entry. If the assembly language
routine did not return a function value, A7 should point just below where the

first parameter was pushed on the stack.

Following is a picture of the stack for the SUMTHREE routine, seen earlier, just
before the return to the Pascal program:

TOP OF STACK ON ENTRY = low address

TOP OF STACK A7 ——
AT EXIT FROM FUNCTION FUNCTION VALUE
SUMTHREE; 4 bytes;
value = 15

6.4 ASSEMBLY ROUTINE LINKAGE

An assembly language routine is linked with a Pascal program by means of the

linkage editor (Chapter 5). An example is shown in Chapter 8.

6-4

high address

CHAPTER 7

RUNNING A PASCAL PROGRAM

7.1 RUNNING A PROGRAM UNDER VERSAdos

Under VERSAdos (on EXORmacs, VME/10, VM0l, VM02, or MVMELll0), the linkage editor
creates a runnable program whose execution may be started by merely typing its
name.

7.1.1 Runtime File Assignment

File assignments may be made in three ways, as described in the following
paragraphs: in command lines, in reset/rewrite statements, and as assignments
passed to the program.

7.1.1.1 Command Line Assignment. If the Pascal program needs any external
files, their names may be passed on the command line. The files are associated
one-for-one with the file identifiers in the program statement of the executing
program, with the exception that the two file identifiers, input and output, are
ignored.

Therefore, given the following program statement in a Pascal program, where the
name of the program is "compute":

program compute (source,object,listing);

and given the command line to VERSAdos:
COMPUTE MATH.SA,TRIG.SA,ARITH.LS

the file identifiers are associated as follows with the command line files:
source MATH.SA

object = TRIG.SA
listing = ARITH.LS

Pascal standard input and output files are special in that they must be preceded
in the command line with I= for input, and O= for output. This means that for
standard input and output, the command line order is not important. In most
cases, input and output will not need to be specified, since input defaults to
the command initiating file or device, and output defaults to the log/error file
or device. Both of these are the user terminal in the interactive mode.

Therefore, modifying the above example program statement to
program compute(input,output,source,object,listing);

does not change the meaning of the example command line above. Some equivalent
examples are:

COMPUTE I=4,0=# ,MATH.SA,TRIG.SA,ARITH.LS

COMPUTE I=#,MATH.SA,TRIG.SA,ARITH.LS

COMPUTE I=#,MATH.SA,O=#,TRIG.SA,ARITH.LS

7-1

The device name '#' means the user's terminal. To change the device so that I/0
to standard file output goes to the printer, the command line would look like

COMPUTE I=#,MATH.SA,TRIG.SA,ARITH.LS,O=#PR
or
COMPUTE O=#PR,MATH.SA,TRIG.SA,ARITH.LS

If an extension is not specified on the command line, it will default to .SA for
a user program, so the following is again equivalent to the last example above:

COMPUTE MATH,TRIG,ARITH.LS,O=#PR

If a file is left off the command line, it will default to a temporary/local
file that will be deleted at the end of the program. This default may be
overridden during execution by runtime file assignment.

Logical concatenation of input is supported in the command line -- that is to
say, if you have two or more input files, the Pascal program may view them as
one logical input stream, as in the following:

COMPUTE MATH/MATH1,TRIG,ARITH.LS

where, when all the data from MATH is exhausted, data will be read from MATHL;
and if "source" (see foregoing program statement) is reset, such as in a
two-pass compilation, data will be read starting from MATH again. The
end-of-file status will be true only at the end of the last file in the file
list —- MATH1 in the example above.

7.1.1.2 Reset/Rewrite File Assignment. File assignment using the reset and
rewrite statements is described in Pascal Programming Structures for Motorola
Microprocessors. The reset and rewrite statements take the following forms:

reset (<logical file name>,<string>)
rewrite(<logical file name>,<string>)

The <logical file name> is an identifier that must be predeclared in a program
var statement (with the exception of standard identifiers input and output).
The <string> may be any string-valued expression, including but not limited to
constants and variables. The value of <string> is the resource name string
(RNS) and is defined as follows, using Backus-Naur Form (paragraph 1.7).

Resource Name String (RNS):

In this definition of the RNS, any variables not defined are found in Appendix A
of Pascal Programming Structures for Motorola Microprocessors.

<resource name string> ::= <file descriptor>[;<option>[, <opt10n>]...]|
;<option>[,<option>]...

<file descriptor> ::= <device name>
<volume name>:[<user number).<catalog>.<file name>. <exten51on>[(<key>)]][
<user number >.<catalog>.<file name>. <exten51on>[(<key>)]|
<catalog>.<file name>. <exten51on>[(<key>)]|
<file name>|. <exten51on>[(<key>)]]|
.<extension>{ (<key>)]

<device name> ::= #<device mnemonic>

<device mnemonic> ::= <console>|PR[<dlglt>]lNULL|<empty>|<1dent1f1er>

{console> ::= CNKdigit><digit>

<digit> ::= 0|l|2|3|4|5|6L7 8|9

<volume name> ::= <identifier> <empty>

<user number> ::= <digit sequence>|<empty>

<{catalog> ::= <1dent1f1er>|<empty>

<file name> ::= <identifier>|<empty>

<extension)> ::= <1dent1f1er>l<empty>

<key> ::= [Kkey letter><key letter>]<key letter><key letter>

<key letter> ::= éBlC‘D|E|F|G|H|I|J|K|L]M|N|O|P

<option> ::= B C=<digit sequence>|D=<d1 1t sequen >|
F=<digit sequence>|[]R[[1w

<device mnemonic> is a maximum of four characters. An <empty> device mnemonic
specifies the user's terminal; or other device <identifier>'s defined in the
system may be specified.

<volume name> accepts a maximum of four alphanumeric characters; <user number>
is in the decimal range 0-9999; <catalog> and <file name> each accept a maximum
of eight alphanumeric characters; <extension> is a field of two alphanumeric
characters. These fields are described in the VERSAdos System Facilities
Reference Manual.

<key> specifies the fixed protection for the file. Two or four characters, in
the range A through P, may be entered as the key. The rightmost two characters
are the read code. The leftmost two characters are the write code.

A code of PP permits public access for the read or write function to which the
code applies. A code of 00 permits only owner and supervisor access. Other
codes would be any combination of two <key letter>s. If two characters are
entered, the system defaults to PP to the left of the entered characters. For
example, a key of AC is the same as PPAC. Likewise, a key of PF is equivalent
to PPPF. If no key is specified, default is PPPP. When a file is allocated
(created), its protection codes are saved with the file. After that, the
appropriate code must be matched to access (assign) the file. The VERSAdos Data
Management Services and Program Loader manual describes the complete use of
fixed protection codes.

The <resource name string> can be used to specify key and options for a file
specified on the command line. However, if any portion of the file descriptor
other than the key is specified in the resource name string, the system defaults
for the fields not spe01f1ed in the resource name string will override the
corresponding fields in the command line. If a resource name string containing
a file descriptor is used in a reset or rewrite of a local file, the file is
then considered to be external -- that is, the file will not be deleted
automatically when it is closed.

The <option> field is preceded by a semicolon. If more than one option is
specified, equals options (C, D, and F) must have a comma separating the digit
sequence from any following option; other options may have no separation or be
separated by a comma. The following options are permitted:

B Binary data type. (ASCII data type is the default for text
files. Binary data type is the default for all other
files.)

C=<digit sequence> Contiguous file type, file size in sectors. (Sequential
file type is the default.) A sector contains 256 bytes.

D=<digit sequence> Sequential file type, data block size in sectors. Number
must be 0 or in the range 4-255. (Default is 0, which
VERSAdos interprets as four sectors.) The data block size
is the number of sectors per data storage block on the
disk. A sector contains 256 bytes. In order to perform
1/0 with file caomponents greater than 1K (four sectors), a
data block large enough to accommodate a component must be
specified.

F=<digit sequence> Sequential file type, File Access Block (FAB) size in
sectors. Number must be in the range of 0-20. (Default is
0, which VERSAdos interprets as one sector.) The FAB
contains pointers to the disk data storage blocks of the
file. A sector contains 256 bytes.

R Public read access permission.
-R Exclusive read access permission.
W Public write access permission.
-w Exclusive write access permission.

The permissible option combinations of the access permissions are: R, -R, W,
-W, RW, -RW, R-W, and -R-W. The default access permissions are R for reset and
W for rewrite. If the file is a temporary file, the default access permissions
are R-W.

Entering any access permission overrides the default permission for the current
and any subsequent resets and rewrites. Therefore, some type of permission
should always accommodate the operations on the file. For example, entermg -R
for a file to be written to will generate an error because there is no write
access permission. In this example, -RW or -R-W should have been entered to
gain write or exclusive write permission while also retaining exclusive read
permission. The VERSAdos Data Management Services and Program Loader manual
contains a complete description of access permission.

7-4

Resource Name String Examples:

rewrite(sortedfile,'. (CCDD) ;RW');
For "sortedfile" in program statement:

If the command line specifies a file assignment for "sortedfile", then the
rewrite statement will open the file for output, using the file descriptor
specified in the command line, but with a key of CCDD and with both read
and write file access permission. (If write-read codes are specified on
the command line, they will be overridden by the key in the resource name
string.)

If the command line does not specify a file assignment, then a temporary
file will be opened for output with a key of CCDD and with both read and
write file access permission. The temporary file will be automatically

deleted when the program terminates.
For "sortedfile" not in the program statement:

A temporary file will be opened for output with a key of CCDD and with
both read and write file access permission. The temporary file will be

automatically deleted when the program terminates.
rewrite(errorlogfile,‘LOGl:.ERRORS.LEDGER.LG(AB);—W‘);

Whether or not "errorlogfile" is in the program statement, the file
assignment for ‘“errorlogfile" will be as specified in the rewrite
statement. The volume name will be LOGl; the default user number will be
used; the catalog, file name, and extension will be ERRORS.LEDGER.LG; the
file will have a key of PPAB and exclusive write access permission.

reset (initfile, ' TANGENT.DT') ;

The Pascal file "initfile" will be assigned to the VERSAdos file
TANGENT.DT. The default values for volume name, user number, catalog, and
keys will be used. This will happen even if "initfile" is included in the
program statement and is then specified on the command line as some other
file or device.

rewrite(listfile, '#LP'");

The Pascal file "listfile" will be assigned to the device identified as
LP. This will happen even if "listfile" is included in the program
statement and is then specified on the command line as some other file or
device.

Alternatively, a string constant could be replaced by an identifier of string
type that has been assigned the value of the <resource name string>. For
example:

var device: string [80];

begin device:= '#LP';

rewrite(listfile,device);

7.1.1.3 Passed Assigned Files. A file may be passed assigned to a Pascal
program when it begins execution. This is accomplished by assigning the file to
the appropriate logical unit number using the VERSAdos ASSIGN command before
executing the Pascal program. The appropriate logical unit number is the file
identifier's position (starting with 1) in the PROGRAM statement, ignoring the
identifier's input and output. (Input is logical unit number 5, and output is
logical unit number 6.) File name specifications on the command line or in
resource name strings in reset or rewrite statements override passed file
assignments. Refer also to paragraphs 9.3 and 9.5.

7.1.1.4 Default Values for File Descriptor.

<volume name> The default user volume is supplied by VERSAdos when the
user number is non-zero. If a user number of 0 is entered
without a volume name, the system default volume is used,
unless the logon user number was 0 and the VERSAdos 'USE'
command had been used to specify a default user number. In
this case, the default volume name will be the default user
volume. If the file name starts with & (temporary file)
and no volume name is specified, the user default volume is
used. If the file starts with @ (spooler file) and no
volume name is specified, then the system default spooler
volume will be used. These other default volume names are
also supplied by VERSAdos.

<user number> The user number specified in the log on or in the last USE
command is the default.
<{catalog> The catalog specified in the log on or in the 1last USE
command.,
<file name> There is no default file name. The file name must always

be specified, except for temporary/local files for which
VERSAdos generates unique file names.

<extension> The default extension is SA.
<key> The default key is PPPP.
<data type> The default data type is ASCII for text files and binary

for nontext files.

<file type> The default file type is sequential. For a segquential
file, the default data block size is four sectors and the
default file access block size is one sector. The default
record length is variable for a sequential text file. For
a sequential file that is not a text file, the default
record length is equal to the component size.

<access permission> The default access permission is public read for reset and
public write for rewrite. However, temporary files have a
default access permission of public read and exclusive
write for both reset and rewrite.

7.1.2 Stack/Heap Memory Segment

If the Pascal program does not run with the default stack/heap memory segment
size, it may be extended at runtime with the Z option. Suppose, for example,
the program COMPUTE was allocated 16K (16,384) bytes for the stack/heap segment
by Phase 1 (via default calculations or user-specified H and/or S source program
options (see Table 2-1)), but required more stack/heap space in order to
execute. The command line

COMPUTE MATH.SA,TRIG.SA,ARITH.LS;Z=32

would make the stack/heap memory segment 32K (32,768) bytes in length. The
number following the 'Z=' is always the number of K (where one K is 1024 bytes).
The Z option will not reduce the stack/heap size below the size calculated by
Phase 1.

7.2 RUNNING A PROGRAM ON VMOl with VERSAbug

After system setup (refer to the VERSAbug Debugging Package User's Manual, and
"System Setups" in the M68KVMOl-1l, -2 Monoboard Microcomputer User's Guide), a
Pascal program may be run on VERSAmodule 0l. The following example procedure
assumes a VERSAmodule 01 whose serial port 1 is connected to an EXORterm 155
control terminal, and whose serial port 2 is connected to an EXORmacs
Development System:

a. Apply power to VERSAmodule O0l. If the board is set up and operating
correctly, the HALT and BRDFAIL LED's will light up momentarily, then go
out, and the console will display:

VERSAbug 1.0 >

b. If step 1 (powering up) was performed previously, or if "VERSAbug 1.0 >"
is not displayed, press the RESET button on the front edge of the
monoboard.

c. Initialize VERSAbug memory with a BI or BT command and then enter
transparent mode by typing:

™
d. Log on to VERSAMos as follows:

a. Press the BREAK key,

b. Enter the user number,

c. Optionally enter the security word and password, as required.
e. Exit transparent mode by typing:

CTRL-A

(that is, while holding down the CTRL key, press the A key.) The console
should display:

VERSAbug 1.0 >

7-7

f. Download the file of S-records (paragraph 5.8) into VERSAmodule memory by
typing:

LO ;X =COPY <file>,#

where <file> is the VERSAdos name of the user input file. As the file is
being downloaded, the S-records -- as well as any messages that occur —-
are displayed on the console.

g. Set the User Stack Pointer and the Supervisor Stack Pointer to
appropriate values in high memory.

h. Type the command:
&0 <start>
where <start>, a memory address, is the value of the symbol START defined

in the module TABLE. TABLE and START are found in the load map listing,
generated by specifying option M on the LINK command line.

7.2.1 Use of the Resource Name String

On VERSAmodule 01, there is no command line in which to specify a file name.
Rather, a <resource name string> may be used -- as a parameter in a reset or
rewrite statement (paragraph 7.1.l1) -- to specify a device name, in accord with
the following BNF syntax:

<resource name string> ::= <device name>

<device name> ::= # | #PR | #PRT1 | #PRT2
or #PRT1 specifies the terminal port for standard input/output; #PR specifies
the line printer as the output device. For the standard files "input" and

"output", the default device name is #PRT1 (the terminal port); for all other
files, the default is #PRT2 (the host port).

7-8

7.3 RUNNING A PROGRAM ON VERSAmodule 01, 02, or MVME1l0 UNDER RMS68K

After running SYSGEN (see paragraph 5.10), the boot file -- containing RMS68K,
BIOS, the initialization task, and the user's Pascal program -- may be loaded
and executed on a VERSAmodule 0l or 02 by executing a bootstrap (BO) command.

Under VERSAbug, enter the BO command in the format (the format is described in
the VERSAbug Debugging Package User's Manual) :

BO [<device>,<controller>,<string>]
<string> is the file descriptor of the boot file, for example:
BO 0,1,45.CIRF.PRNT.SY

The BO command normally calls the IPL.SY task, pointed to by sector 0 of the
disk (ette). IPL, in turn, loads the file specified by <string>.

The <string> parameter, however, may be eliminated from the command line if
sector 0 has been previously changed to point directly to the boot file. This
change can be done as follows:

a. Log on to VERSAdos under user number O,
b. Enter a DIR utility command of the form:
DIR <boot file>;A
where <boot file> is the descriptor of the file created by SYSGEN.

Save the values of START (xxxx) and SIZE (yyyy) from this display for
use in the DUMP command below (step 3).

c. Enter a DUMP utility command to modify sector 0 of the device on which
the boot file is found. At offset $14 of sector 0, enter a 4-byte
starting sector address (S$xxxxxxxx + 1); at offset $18, enter a 2-byte
sector count (Syyyy -1); and at offset S1E, enter a 4-byte load address
($zzzzzzzz), which is the value associated with the first "PC" command
given to SYSGEN when generating the boot file.

Example:

=DIR PRINTER.SY;A

DIR VERSION 111781 3 7/ 6/82 15:21:38

FIX:0000. .PRINTER.SY

LOG # OF REC KEY FAB DB DATE DATE
START END EOF RECORDS WC RC FT LEN LEN LEN LEN CHANGED ACCESSED
$15CEB $15D76 - - PP PP C - - - - 6/28/82 6/28/82
SIZE 140/$8C
TOTAL SIZE 140/$8C
NUMBER FILES RETRIEVED = 1

=DUMP FIX;1I
DUMP VERSION 011882 3

>R0O

>M 14

14 00 e 00

15 00 '.' 01 This is the START sector address +1.

16 00 '.' 5C

17 29 "' EC

18 00 '.' 00 This is the SIZE sector count -1.

19 1D v 8B

1A 00 v .

>M 1E -

1E 03 'L 00 This is the load address —-- the value associated
1F 34 '4' 00 with the first "PC command input to SYSGEN when
20 00 '.' OE generating the boot file.

21 00 ' 00

22 00 '.' .

> W B

>0

7.3.1 Use of the Resource Name String

Under RMS68K, there is no command line on which to specify a file name.
Rather, a <resource name string> may be used -- as a parameter in a reset or
rewrite statement (paragraph 7.l.l1) —-- to specify a device name, in accord with
the following BNF syntax:

<resource name string> ::= <device name>
<device name> ::= # | #CNOO | #CNOLl | #PR

or #CNOO specifies the terminal port for standard input/output; #CNOL
specifies a second terminal; and #PR specifies a line printer as the output
device. For the standard files "input" and "output"”, the default device name is
#CNOO; for other files, there is no default.

Note that Pascal tasks which do I/0 to the above devices must use BIOS in their
application system.

7.3.2 Debugging Pascal Tasks Under RMS68K

The general problem of testing and debugging tasks in an application system
based upon RMS68K is taken up in Chapter 5 of the M68000 Family Real-Time
Multitasking Software User's Manual. The user should be familiar with this
material before attempting to build application systems containing Pascal tasks.

Chapter 5, referred to above, promotes the use of an exception monitor as a
debug aid and for monitoring alarm situations. This mechanism is ideal for
debugging problem Pascal tasks. All failing Pascal tasks first issue a TRAP #4
instruction with DO containing the runtime error number. The exception monitor
can capture this TRAP #4 and print out debug information at this point.
Alternatively, the Pascal task will continue execution by aborting to its
calling monitor with the RMS68K ABORT directive (this is a TRAP #1 with D0=14).
Debug information can also be displayed at this point by the monitor which
called the Pascal task. In either of these two cases, the relevant debug
information is as follows:

7-10

offset $170 from A5 - contains the program counter address immediately
following the instruction which failed (four bytes).

offset $174 from A5 - contains the runtime error number which occurred
(four bytes).

offset $178 from A5 - contains a dump of the registers when the runtime
error occurred (16 times 4 = 64 bytes).

This information should point the user to the exact line in the Pascal task
where the runtime error occurred.

7-11/7-12

CHAPTER 8

SAMPLE PROGRAMS

8.1 PROGRAM FOR VERSAdos EXECUTION

8.1.1 Phase 1 Listing

Line Loc Lev BE Motorola Pascal SORT .SA
1(0) 0)— { }
2 0) 0)=— { }
3¢ 0) 0)=— { SORT }
4(0) 0)=— { }
5(0) 0)=— { This program demonstrates the linking of a Pascal program }
6(0) 0)=— { with an assembly language subroutine, }
7(0) 0)— { }
8(0) 0)— { The driver program simply asks for an array of numbers, }
9(0) 0)— { one by one, sorts the numbers in increasing numerical }
10(0) 0)— { order, ard prints the results. }
11(0) 0)— { }
12¢(0) 0)=— { An assembly language routine is used to force output }
13¢ 0) 0)— { to a text file without having to do a writeln. This }
14¢ 0) 0)= { allows for prompting for input and having the input }
15¢(0) 0)— { entered on the same line, }
16 (0) 0)=— { }
17(0) 0)— { }
18(0) 0)=—
19¢(~16) 0)=— PROGRAM sort (input,output);
20(~-16) 0)=—
21 (-16) 0)=— CONST
22(=-16) 0)=— max_array size = 5000; {maximum array size}
23(-16) 0)=-
24 (-16) 0)— TYPE
25(-16) 0)— index_range = 1..max_array size; {range of indices into array}
26 (-16) 0)—
27¢ -16) 0)— VAR
28(=20016) 0)— number_array: ARRAY [index range] of integer; {the array}
29(=20018) 0)=— array size: 0..max_array size; {actual size of array}
30(=~20022) 0)— i,j: index range; {indices into array}
31(=20026) 0)=— temp: integer; {used for swaping elements}
32(~20027) 0)— exchange: boolean; {any exchanges in last pass?}
33(=20027) 0)—
34(~-20027) 0)=— {declare the needed assembly language routine as external}
35(=20027) O)=—
36(0) 1)= PROCEDURE force (VAR fil: text); FORWARD;
37¢ 0) 1)=—
38(0) 1)— {$a=2}
39¢(0) 1)—
40 (0) 1)— {the main program starts here}
41 (0) 1)—

**** FORCE Assumed external
42 1 0)A- BEGIN {sort}
43 0)—
44 0)B- REPEAT {loop for each array}
45 0)—
46 0)~— {ask for size of the array}
47 0)—
48 2 0)= writeln (output); writeln(output});
49 4 0)w write (output,'Input size of array (0 to quit): ');
50 5 0)w— force (output);
51 0)—
52 6 0)=— readln (input,array size); {get size of array}
53 0)—
54 7 0)— IF array size > 0 THEN
55 0)C- BEGIN
56 0)=—

12

13

14

16
17

19

22
24

25
26

27

28

0)—
0)—
0)—
0)D-
0)—
0)—
0)—
0)-D
0)—
0)—

0)—
0=
0)—
0)D-
0)—
0)—
0)—
0)—
0)E-
0)—
0)—
0)—
0)—
0)—
0)-E
0)—
0)—
0)-D
0)—
0)—
0)—
0)—
0)—
0)—
0)—
0)—
0)—
0)-C
0)-B
0)—
0)—
0)—
0)—
0)—
0)-A

{read in the numbers, one by one}

FOR i := 1 TO array size DO
BBEGIN
write (output,'Input number ',i:3,': ');
force (output);
readln (input,number_array[i])
END; {FCR}

{now sort the numbers - use a bubble sort}

j = array_size - 1; {init ending index}
REPEAT
exchange := false; {show no xchng yet this pass}

FRi:=1T0j DO
IF number_array[i] > number array[i+l] THEN
BEGIN {switch elements i and j}

temp := number_array[i];
number_array[i] := number_arrayli+l};
number_array[i+l] := temp;
exchange = true; {show made an xchng}
END; {THEN and FOR}
j o:=j=-1 {change last index}

UNTIL (NOT exchange) (R (j < 1);
{now output the results}

writeln (output); writeln (output);
writeln (output,‘’Numbers in sorted order are:');

FOR i := 1 TO array size DO
writeln (output,number array[i]:5)

END {THEN}
INTIL array size <= 0;

{finish up}
writeln (output); writeln (output);

writeln (output,'Done - Thank You')
END, {sort}

**** No Error(s) and No Warning(s) detected

x 101 Lines 1 Procedures .

**%* 365 Pcode instructions

8.1.2 Phase 2 Listing

00000000
00000000
00000002
00000006
00000008
0000000A
0000000C

00000010
00000014

00000018
0000001C
0000001E
00000020
00000022
00000026
0000002A

0000002E

00000032
00000032

00000036
0000003A
0000003E

00000042

00000046
0000004A
0000004C
0000006E

0001
9EFC
7401
7205
7000
41ED

4EAB
41ED

4EAB
7401
7206
7000
41ED
41ED

4EAB

41ED
4EAB
41ED
4EAB
486D

4EAB
0021

4267

4E46

FFFO

hhkk
FFFO

Rk dk

hhkk
FFF8

kdek

FFFO
FTTY]

FFFO
hkkk

FFFO

kAN

*Motorola Pascal
*

2.00 SCRT .SA 03/26/82 15:32:23

{ }
*{ }
*{ SORT }
*{ }
*{ This program demonstrates the linking of a Pascal program }
*{ with an assembly language subroutine. }
*{ }
*{ The driver program simply asks for an array of numbers, }
*{ one by one, sorts the numbers in increasing numerical }
'% order, and prints the results. i
*

*{ An assembly language routine is used to force output }
*{ to a text file without having to do a writeln. This }
*{ allows for prompting for input and having the input }
*{ entered on the same line. i
*
“f }
*
*PROGRAM sort (input,output);
*
* CONST
XREF 8:.PLJSR
max_array size = 5000; {maximum array size}
TYPE
index range = 1..max array size; {range of indices into array}
VAR
number_array: ARRAY [index range] of integer; {the array}
array size: 0..max_array size; {actual size of array}
i,3: index range; {indices into array}
temp: integer; {used for swaping elements}
exchange: boolean; {any exchanges in last pass?}

{sA=2}

EEEIE SR S I S SR IR IR A B B I I I IR A NS

{declare the needed assembly language routine as external}

PROCEDURE force (VAR fil: text); FORWARD;

{the main program starts here}

BEGIN {sort}
REPEAT {loop for each array}
+PMAIN EQU *
DC.W 1
suB $20038,A7
MOVEQ #1,D2
MOVEQ #5,D1
MOVEQ #0,D0
LEA ~16 (AS5) ,A0
XREF 8:,PIFD
JSR .PIFD-,PLJSR (A3)
LEA =16 (A5) ,AD
XREF 8: .PRWT
JSR «PRWT=, PLISR (A3)
MOVEQ #1,D2
MOVEQ #6,D1
MOVEQ #0,D0
LEA -8 (A5) ,A0
JSR .PIFD-.PLJSR (A3)
LEA -8 (AS) ,AD
XREF 8: .PRST
JSR +PRST-. PLJSR (A3)
*
* {ask for size of the array}
*
* writeln (output); writeln(output);
L3 EQU *
LEA =16 (A5) ,AQ
XREF 8: . PWLN
JSR « PWLN=, PLISR (A3)
LEA =16 {A5) ,A0
JSR « FWLN-, PLJSR (A3)
* write (output,'Input size of array (0 to quit): ');
PEA =16 (A5)
XREF 8: .PLDCS
JSR . PLDCS=, PLISR(A3)
DC.W 33
DC.B 'Input size of array (0 to quit): '
CLR - (A7)

8-3

LNV WNHO

45
46
47
48

49

00000070

00000074
00000076
00000078

0000007C
00000080

00000084
00000088

0000008C
00000090

00000092-0094
00000098~009A
0000009E-00A0
000000A0-00A4

000000A0-00A4
000000A4-00A8
000000A8-00AC
000000AA-00AE
000000B8~00BC
000000BA-00BE
000000BE~00C2
000000C0~-00C4

000000C4-00C8
000000C8-00CC
000000CA~00CE
000000D0-00D4
000000D2-00D6

000000D6~-00DA
000000D8-00DC
000000DA-00DE

000000DE-D0E2
000000E2-00E6
000000E4-00E8
000000E8-00EC
000000EC-00F0

000C00F0~00F4
000000F4~00F8
000000F8-00FC
000000FC-0100
000000FE~0104
000000FE-0104
00000102-0108
00000106-010C
00000108-0110

00000108-0110
0000010C-0114
0000010E~0116

00000112-011A
00000112-011A

00000116-011E
0000011C-0124
00000122-012A
0000012401 2E

00000124-012E
000001280132
000001 2A-0134
000001 2E-0138
00000132-013C
00000134-013E

4EAB

2F08
4E93

ki

1222222 84

43ED
41ED

4EAB
4EAB

4A6D
GF**

3B7C
3B6D
60**

486D
4EAB
000D

4267
4EAB
7203
302D

4EAB
2F08
2r3C
4267
4EAB

2F08
4E93

BI1CE
FFF8

khkk

ki

BICE

0001
BICE

FFFO0

Ahkk

kA AR

B1CA

Rkkkk

B1CA
BlC2

00023A20

*kkh

Sk kkkikk

302D B1CA

E540

41ED BI1CC

43F0

0000

41ED FFF8

4EAB
4EAB

526D BICA

[Lid

302D

BO6D B1CA

6Ck*

302D
5340
3B40

422D

3B7C
3B6D
60**

302D
E540
41ED
3220
E541
43ED

deddedk
*hkk

B1C2

BICE

B1CC

B1C5

0001
B1CC

B1CA

B1CC
BICA

B1DO

B1CA
BlC2

»

* % % % *

L6

~J

> % % *0

»

L8

*B

XREF 8:.PWRS

JSR «PWRS-,PLJSR (A3)
force (output);

MOVE.L AO,-(A7)

JSR (A3)

DC.L USER1~*

readln (input,array size); {get size of array}
LEA -20018 (A5) ,Al

LEA -8 (AS) ,AD

XREF 8:.PRDI

JSR +PRDI-,PLJSR (A3)

XREF 8:.PRLN

JSR « PRIN=-, PLJISR (A3)

IF array size > 0 THEN
TST =20018 (A5)
BLE L4

BEGIN

{read in the numbers, one by one}
FR i :=1 TO array_size DO

MOVE $1,-20022(AS)
MOVE =20018 (AS5) ,-~20030 (AS)

BRA L6
EQU *

BEGIN

write (output,'Input number ',i:3,': ');

PEA =16 (AS5)
JSR +PLDCS=, PLJISR (A3)
DC.W 13
DC.B 'Input number '
CLR -(A7)
JSR « PWRS=, PLJSR (A3)
MOVEQ #3,D1

MOVE ~20022 (A5) ,DO
XREF 8: ,PWRI
JSR « PWRI~,PLJSR(A3)
MOVE.L AQ,-(A7)
MOVE.L $145952,-(A7)
CLR - (A7)
JSR « FWRS=. PLISR (A3)
force (output);
MOVE.L AO,-(A7)
JSR (A3)
DC.L USER1=*
readln (input,number_array[i])

END; {FOR}
MOVE -20022 (A5) ,DO
ASL #2,D0
LEA =20020 (A5) ,A0

LEA 0(A0,D0) ,Al
LEA -8 (A5) ,AD

XREF 8:.PRDJ

JSR .PROJ-. PLISR (A3)
JSR PRLN~. PLJSR (A3)
ADDQ $1,-20022 (A5)

BVS L7

EQU *

MOVE =20030(A5) ,D0
MP =20022 (AS) ,DO
BGE L5

EQU *

{now sort the numbers - use a bubble sort}
j := array size - 1; {init ending index}
MOVE -20018 (A5) ,DO

SUBQ $1,D0

MOVE DO0,=20020 (A5)

REPEAT
exchange := false;
EQU *
CLR.B =20027 (A5)

FR i:=1T073 D0
MOVE #1,-20022(A5)
MOVE =20020 (A5) ,~20030 (A5)

BRA L10
EQU *
IF number_array{i] > number array[i+l] THEN
MOVE =20022 (AS) ,DO
ASL $2,D0
LEA =20020 (AS) ,A0

MOVE ~20022(A5) ,D1
ASL #2,D1
LEA —=20016 (AS5) ,Al

8-4

{show no xchng yet this pass}

51
52

55
56
57
58
59

60
61

62

63
64

65
66
67
68

69
70
71

72
73

74

00000138-0142
000001 3C-0146
00000140-014A

00000142-014E
00000148-0154

0000014E-015A

00000154-0160

0000015A~0166
0000015a-0166
0000015E-016A
00000160-016E
00000160-016E
00000164-0172
00000168-0176
0000016A-017A

0000016A=017A
0000016E-017E
00000172-0182
00000174-0186
000001 7A=018C

0000017C-0190

000001 7C-0190
00000180-~0194
00000184-0198
00000188-019C

0000018C-01A0
00000190--01A4
00000194-01A8
00000196-01AA
000001B2-01C6
000001B4-01C8
000001B8-01CC

000001BC-01D0
000001C2-01D6
000001C8-01DC
000001CA-01E0Q

000001CA~01EOQ
000001CE-01E4
000001D0-01E6
000001D4-01EA
000001D6-01EC
000001DA=01F0

000001DE-01F4
000001E2-01F8
000001E6-01FC
000001EA-0200
000001EC~0204
000001EC-0204
000001F0-0208
000001F4~020C
000001F6-0210

000001F6-0210
000001F6~0210
000001FA-0214

000001FE-0218
00000202-021C
000002060220
0000020A~0224

0000020E-0228
00000212-022C

2431
B4BO
6CH*

270
21B1

23AD

1B7C

526D
9%+

302D
BO6D
6Ck%

536D
4A20
67%%
0C6D
6Ci'h

41ED
4EAB
41ED
4EAB

486D
4EAB
001C

4267
4EAB
4EAB

3B7C
3B6D
6O**

302D
ES540
41ED
7205
2030
41ED

4EAB
4EAB
526D
694+

302p
BO6D
6CH*

4A6D
6E00

41ED
4EAB
41ED
4EAB

486D
4EAB

1000
0000

0000
1000

B1C6

0001

B1CA

BlC2
B1CA

BlCC
B1CS

0001

FFFO
e

FFFO
ARk

FFFO
hkk

*dek ok
hhkd

0001
B1CE

B1CA
B1CC

0000

Kikk
hhkk

B1CA

B1C2
B1CA

BI1CE
akhk

FFFO
Y

FFFO
*RAR

FFFO
AAK

B1C6
0000
1000

B1C5

BIlCC

BlCA
B1C2

L12

L10

L1l
*

L13

» * %

* % *w

»

MOVE.L 0(Al,Dl),D2
aMP.L 0(AO,DO},D2
BGE L12
BEGIN {switch elements i and j}
temp := number_array[i];
MOVE.L O(AO0,DO),=20026 (AS)
number_array(i] = nunber_array[i+l];
MOVE.L 0{Al,D1),0(A0,DO)
number_array{i+l] := temp;
MOVE.L ~20026(AS) ,0(al1,Dl1)
exchange := true; {show made an xchng}
MOVE.B $1,-20027 (A5)
END; {THEN and FOR}
EQU *
ADDQ $#1,-20022 (A5)
BVS L1l
EQU *
MOVE =20030(A5) ,DO
o214 -20022 (AS) ,DO
BGE L9
EQU *
j =3-1 {change last index}
UNTIL (NOT excharge) QR (j < 1);
SUBQ $1,-20020 (AS5)
TST.B ~20027(AS)
BEQ L13
oP #1,-20020 (AS)
BGE L8
EQU *
{now output the results}
writeln (output); writeln (output);
LEA ~-16 (AS) ,A0
JSR « PWLN=, PLJSR (A3)
LEA -~16 (AS) ,AD
JSR «PWLN—-, PLJSR (A3)
writeln (output,'Numbers in sorted order are:');
PEA 16 (AS)
JSR +PLDCS—-.PLISR(A3)
DC.W 28
DC.B *Numbers in sorted order are:'
CLR -(A7)
JSR « PWRS—, PLJSR (A3)
JSR «PWLN=-, PLJISR (A3)
FR i := 1 TO array size DO
MOVE #1,-20022(A5)
MOVE =20018 (AS) ,~20030 (AS)
BRA L1S
EQU *
writeln (output,number array[i]:5)
END {THEN}
MOVE =20022 (A5) ,DO
ASL #2,D0
LEA =20020 (AS) ,AD
MOVEQ #5,D1
MOVE.L 0(A0,DO),DO
LEA =16 {A5) ,A0
XREF 8: .PWRJ
JSR «PWRJ=-,PLISR (A3)
JSR « PWLN=-,PLJSR (A3)
ADDQ #1,~20022(AS)
BVS L16
EQU *
MOVE ~20030 (AS) ,DO
014 ~20022 (A5) ,DO
BGE L14
EQU *
UNTIL array size <= 0;
EQU *
TST ~20018 (AS5)
LBGT L3
{finish up}
writeln (output); writeln (output);
LEA -16 (A5) ,AD
JSR « PWLN-,PLISR (A3)
LEA ~16 (AS) ,AD
JSR « PWLN=-. PLISR (A3)
writeln (output,’Done - Thank You')
END. {sort}
PEA ~16(AS)
JSR « PLDCS=, PLJSR (A3)

8-5

75
76

77
78

79
80

81

82
83
84

85
86
87
88

89

90
91

92
93
94

95

96
97
98
29

100
101

00000216-0230 0010 DC.W 16

00000218-0232 DC.B 'Done ~ Thank You'
00000228-0242 4267 CLR - (A7)
0000022A~0244 4EAB #*#*% JSR « PWRS=, PLJSR (A3)
0000022E~0248 4EAB *#*** JSR «PWLN=-,PLJSR (A3)
00000232-024C 41ED FFFO LEA =16 (A5) ,AD

XREF 8: ,PCLO

00000236=0250 4EAB *#*** JSR «PCLO-.PLISR(A3)
0000023A~0254 41ED FFF8 LEA -8 (A5) ,A0
0000023E~0258 4EAB **** JSR «PCLO~. PLJSR(A3)
00000242-025C 4267 CLR -(A7)
00000244-025E 4E4E TRAP #14
00000246-0260 0004 DC.W 4

END

*** Total of 586 bytes generated

8.1.3 Assembly Listing

MOTOROLA M68000 ASM VOLl: 21. .FORCE .SA

2 FORCE IDNT 1,1 FORCE OUTPUT PROCEDURE FOR PASCAL
3 *

4 * FORCE

5 *

6 * PROCEDURE FORCE (FIL: TEXT)

7 *

8 * THIS ASSEMBLY LANGUAGE ROUTINE INTERFACES TO A PASCAL PROGRAM
9 * AND FORCES WHATEVER IS IN THE BUFFER FOR THE FILE POINTED TO BY
10 * FIL OUT TO THE FILE WITHOUT A CARRIAGE RETURN.

11 *

12 * THOSE REGISTERS USED ARE A0, Al, A2, A4, D1, D2, AND Dd.

13 *

14 *

15 * XDEF THE NAME OF THIS ROUTINE

16 *

17 XDEF FORCE

18 *

19 *

20 * THE FOLLOWING ARE OFFSETS INTO A PASCAL PARAMETER BLOCK

21 *

22 00000008 FUNCTION EQU 8 I0S FUNCTION CODE

23 00000014 BUFSTART EQU 20 ADDRESS OF START OF BUFFER

24 00000018 BUFEND EQU 24 ADDRESS OF END OF BUFFER

25 *
26 * THE FOLLOWING ARE THE NECESSARY EQUATES FOR IOS

27 *

28 00000002 10S EQU 2 THE TRAP NUMBER FOR IOS

29 *

30 00020008 FORCEFUNC EQU $00020008 WRITE, NO FORMAT, WAIT, NEXT RECORD
31 *

32 *

33 * THE CODE STARTS HERE

34 *

35 00000009 SECTION 9 SET UP THE SECTION

36 *

379 00000000 FORCE EQU *

38 *

39 9 00000000 285F MOVE.L (A7)+,Ad SAVE THE RETURN ADDRESS

40 9 00000002 245F MOVE.L (A7)+,A2 GET ADDRESS OF FILE POINTER
41 9 00000004 2212 MOVE.L (A2),D1 GET COMPONENT POINTER

42 9 00000006 226A0004 MOVE.L 4(A2),Al GET ADDRESS OF PARAMETER BLOCK
43 *

44 9 0000000A 24290008 MOVE.L FUNCTION(Al),D2 SAVE OLD FUNCTION/OPTIONS

45 9 0000000E 237C00020008 MOVE.L $FORCEFUNC, FUNCTION(Al) SET UP NEW FUNCTION/OPTIONS

0008

46 *

47 9 00000016 26290018 MOVE.L BUFEND(Al),D3 SAVE OLD END ADDRESS

48 *

49 9 0000001A 5381 SUB.L $1,D1 SET UP...

8-6

50 9 0000001C 23410018 MOVE.L D1,BUFEND(Al) END ADDRESS.
51 *
52 9 00000020 41E90008 LEA FUNCTION(AL) ,AO CALL THE...
53 9 00000024 4E42 TRAP #10S I0s.
54 *
55 9 00000026 23430018 MOVE.L D3,BUFEND(Al) RESTORE THE END ADDRESS.
56 9 0000002A 23420008 MOVE.L D2,FUNCTION(AL) RESTORE OLD FUNCTION/OPTION
57 9 0000002E 24A90014 MOVE.L BUFSTART(Al), (A2) RESET COMPONENT POINTER
58 *
59 9 00000032 4ED4 JMP (A4) RETURN
60 *
61 END
**4%*% TOTAL ERRORS 0=
**xkk% TOTAL WARNINGS 0--
SYMBOL TABLE LISTING
SYMBOL NAME SECT VALUE SYMBOL NAME SECT VALUE
BUFEND 00000018 FORCEFUN 00020008
BUFSTART 00000014 FUNCTION 00000008
FORCE XDEF 9 00000000 108 00000002

8.1.4 Linkage Editor Listing

Motorola M68000 Linkage Editor

Command Line:

LINK SORT/FORCE,PASPROG.LO,PASPROG. LL; HIMUXL=PASCALIB

Options in

Bffect: -A,-B,-D,H,I,L,M,0,P,-Q,-R,~S,U,-W,X

User Commands: None

Object Module Header Information:

Module

SORT

FORCE

INIT

SYMFLAG

TRAPS

OPTION

Ver Rev Language Date Time Creation File Name

1 0 Pascal 03/26/82 15:36:30 FIX:2l..SORT.PO
M68000 Pascal object from 2.00 resident compiler

1 1 Assembly 02/16/82 13:50:57 VOL1:21..FORCE.SA
FORCE OUTPUT PROCEDURE FOR PASCAL

2 11 Assembly 02/08/82 14:34:09 FIX:103.UTILRR.INIT.SA

68K PASCAL INITIALIZE RUNTIME ENVIRONMENT

0 0 Assembly 01/19/82 17:10:19 FIX:103.UTILRR.SYMBUG.SA

SYMBUG FLAG

2 11 Assembly 01/19/82 17:39:43 FIX:103.UTILRR.TRAPS.SA

68K PASCAL TRAP HANDLING RUNTIME SUBROUTINES

2 0 Assembly 01/19/82 17:26:41 FIX:103.UTILRR.OPTION.SA

68K PASCAL OPTION PROCESSOR SUBROUTINE

CLSCOD

ALSTS

CLO

IFD

RST

ACCPER

CALCLU

EDTFIL

PRGBUF

STDFLT

DFLT

WRTBUF

LBLKS

RDINT

SBLKS

GETCH

IRPTR

2
68K

68K

68K

68K

68K

68K

68K

68K

68K

68K

68K

68K

68K

68K

68K

0 Assembly 01/18/82 17:54:13 FIX:103.I0SRR.CLSCOD.SA
PASCAL CHARACTER CLASS CODE TABLE

0 Assembly 01/21/82 10:25:59 FIX:103.UTILRR.ALSTS.SA
PASCAL ALLOCATE STACK SUBROUTINE

0 Assembly 01/19/82 17:48:31 FIX:103.I0RR.CLO.SA
PASCAL CLOSE FILE SUBROUTINE

0 Assembly 01/19/82 17:52:41 FIX:103.IORR.IFD.SA
PASCAL INITIALIZE FILE DESCRIPTOR SUBROUTINE

0 Assembly 01/19/82 17:56:59 FIX:103.IORR.RST.S5A
PASCAL RESET FILE SUBROUTINE

0 Assembly 01/19/82 17:58:12 FIX:103.IO0RR.RWT.S5A
PASCAL REWRTE FILE SUBROUTINE

0 Assembly 01/19/82 17:41:51 FIX:103.IO0RR.ACCPER.SA
PASCAL ACCESS PERMISSION SET UP SUBROUTINE

0 Assembly 01/19/82 17:46:37 FIX:103.I0RR.CALCLU.SA
PASCAL CALCULATE LOGICAL UNIT SUBROUTINE

0 Assembly 01/18/82 17:54:56 FIX:103.I0SRR.EDTFIL.SA
PASCAL EDIT FILE NAME SUBROUTINE

0 Assembly 01/19/82 17:54:34 FIX:103.IO0RR.PRGBUF.SA
PASCAL PURGE BUFFER SUBROUTINE

0 Assembly 01/19/82 17:59:15 FIX:103.IORR.STDFLT.SA
PASCAL SET START FILE DEFAULTS SUBROUTINE

0 Assembly 01/19/82 17:50:37 FIX:103.IORR.DFLT.SA
PASCAL SET FILE DEFAULTS SUBROUTINE

0 Assembly 01/18/82 18:14:12 FIX:103.IOSRR.WLN.SA
PASCAL WRITELN SUBROUTINE

0 Assembly 01/18/82 18:16:21 FIX:103.I0SRR.WRI.SA
PASCAL WRITE INTEGER SUBROUTINES

0 Assembly 01/18/82 18:17:17 FIX:103.I0SRR.WRSWRV.SA
PASCAL WRITE STRING AND VECTOR SUBROUTINES

0 Assembly 01/19/82 18:00:15 FIX:103.IORR.WRTBUF,SA
PASCAL WRITE BUFFER SUBROUTINE

0 Assembly 01/18/82 18:02:09 FIX:103.I0SRR.LBLKS.SA
PASCAL WRITE LEADING BLANKS SUBROUTINE

0 Assembly 01/18/82 18:01:25 FIX:103.I0SRR.IWPTR.SA
PASCAL INCREMENT TEXT FILE COMPONENT PTR SUBROUTINE

0 Assembly 01/18/82 18:12:46 FIX:103.I0SRR.RLN.SA
PASCAL READLN SUBROUTINE

0 Assembly 01/18/82 18:08:12 FIX:103.I0SRR.RDI.SA
PASCAL READ TWO BYTE INTEGER SUBROUTINE

0 Assembly 01/18/82 18:12:02 FIX:103.IOSRR.RDJ.SA
PASCAL READ FOUR BYTE INTEGER SUBROUTINE

0 Assembly 01/18/82 18:08:55 FIX:103.I0SRR.RDINT.SA
PASCAL READ UNSIZED INTEGER SUBROUTINE

0 Assembly 01/18/82 18:13:30 FIX:103.I0SRR.SBLKS.SA
PASCAL SKIP LEADING BLANKS SUBROUTINE

0 Assembly 01/18/82 17:58:41 FIX:103.IO0SRR.GETCH.SA
PASCAL GET CHARACTER FROM INPUT BUFFER SUBROUTINE

0 Assembly 01/18/82 18:00:43 FIX:103.I0SRR.IRPTR.SA
PASCAL INCREMENT INPUT COMPONENT PTR SUBROUTINE

8-8

GETINT 2 0 Assembly 01/18/82 17:59:23 FIX:103.I0SRR.GETINT.SA
68K PASCAL COLLECT INTEGER DIGITS SUBROUTINE

MAKINT 2 0 Assembly 01/18/82 18:02:50 FIX:103.I0SRR.MAKINT.SA
68K PASCAL MAKE AN INTEGER FROM DIGITS SUBROUTINE

RDBUF 2 0 Assembly 01/25/82 10:29:34 FIX:103.IORR.RDBUF.SA
68K PASCAL READ BUFFER FROM FILE SUBROUTINE

ASGNF 2 0 Assembly 01/19/82 17:44:45 FIX:103.IO0RR.ASGNF.SA
68K PASCAL ASSIGN FILE SUBROUTINE

BUFSZ 2 0 Assembly 01/19/82 17:45:43 FIX:103.IO0RR,BUFSZ.SA
68K PASCAL FIGURE OUT BUFFER SIZE SUBROUTINE

CLOSE 2 0 Assembly 01/19/82 17:49:31 FIX:103.IO0RR.CLOSE.SA
68K PASCAL FILE CLOSE SUBROUTINES

CFLDAD 2 0 Assembly 01/19/82 17:47:36 FIX:103.I0RR.CFLDAD.SA
68K PASCAL CALCLUATE FIELD ADDRESS SUBROUTINE

FLSCN 2 0 Assembly 01/19/82 17:51:39 FIX:103.IORR.FLSCN.SA
68K PASCAL FILE LIST SCAN SUBROUTINE

LDC 2 0 Assembly 01/20/82 12:35:13 FIX:103.UTILRR.LDC.SA
68K PASCAL LOAD CONSTANT STRING AND VECTOR SUBROUTINE

Load Map:

Segment SEG1(R): 00000000 000017FF 8,9,10,11,12,13,14

Module S T Start End Externally Defined Symbols
INIT 8 00000000 00000368 .PLJSR 00000364 .PINIT 00000000
. SYMFLAG 8 0000036C 0000036D .PSYMBUG 0000036C
TRAPS 8 0000036E OOO004FF .PADDRER 000004D6 .PVBUSER 000004B8
«PVCHKI 0000049A .PVIRAPD 0000049A
.PVTRAPE 0000036E .PVIRAPV 00000480
.PVZDIV 00000466
OPTION 8 00000500 00000659 .POPTION 00000500
CLSCOD 8 0000065A 000006D9 .PCLSCOD 0000065A
ALSTS 8 000006DA 00000705 .PALSTS 000006DA .PALSTSL 000006DC
cLo 8 00000706 00000721 .PCLO 00000706
IFD 8 00000722 00000937 .PIFD 00000722
RST 8 00000938 000009E9 .PRST 00000938
RWT 8 000009EA 00000A69 .PRWT 000009EA
ACCPER 8 00000A6A 00000A8B .PACCPER 00000A6A
CALCLU 8 00000ASC 00000ADD .PCALCLU 00000A8C
EDTFIL 8 00000ADE OOO00EBF .PEDTFIL 000O0OADE
PRGBUF 8 00000ECO 00000ED9 .PPRGBUF 00000ECO
STDFLT 8 0000COEDA 00000F37 .PSTDFLT 0000OEDA
DFLT 8 00000F38 00000F93 .PDFLT 00000F38
WLN 8 00000F94 00000FA3 .PWLN 00000F94
WRI 8 00000FA4 00001031 .PWRI 00000FA6 .PWRH 00000FA4
.PWRJ 00000FAS
WRSWRV 8 00001032 0000107B .PWRS 0000103C .PWRV 00001032
WRTBUF 8 0000107C 000010DF .PWRTBUF 0000107C
LBLKS 8 000010EC 000010F1 .PLBLKS 000010E0
IWPTR 8 000010F2 00001105 .PIWPTR 000010F2
RLN 8 00001106 00001141 .PRLN 00001106
RDI 8 00001142 0000114B .PRDI 00001142
RDJ 8 0000114C 00001155 .PRDJ 0000114C
RDINT 8 00001156 000011B7 .PRDINT 00001156
SBLKS 8 000011B8 000011C9 .PSBLKS 000011B8
GETCH 8 000011CA 000011E7 .PGETCH 000011CA
IRPTR 8 000011E8 00001205 .PIRPTR 000011E8
GETINT 8 00001206 00001319 .PGETINT 00001206
— MAKINT 8 0000131A 00001377 .PMAKINT 0000131A
RDBUF 8 00001378 0000146F .PRDBUF 00001378
ASGNF 8 00001470 00001493 .PASGNF 00001470
BUFSZ 8 00001494 000014A3 .PBUFSZ 00001494
CLOSE 8 000014A4 000014DS .PCLOSE 000014A4 .PCLOSPL 000014C4

8-9

CFLDAD 8 000014D6 000014FD .PCFLDAD 000014D6

FLSCN 8 000014FE 00001527 .PFLSCN 000C14FE

LDC 8 00001528 00001551 .PLDCS 00001528 .PLDCV 0000152C
FINIT 8 C 00001552 00001553

SORT 9 00001554 0000179D .PMAIN 00001554

FORCE 9 0000179E 000017D1 FORCE 0000179E

Segment SEG2: 00001800 000079FF 15
Module S T Start End Externally Defined Symbols

SORT 15 00001800 O0O00079FF .PZMAIN 000079FE

Table of Externally Defined Symbols:

Name Address Module Displ Sect Seq Library Input
+PACCPER 00000A6A ACCPER 00000000 8 SEGI PASCALIB.RO
« PADDRER 000004D6 TRAPS 00000168 8 SEGl1 PASCALIB.RO
.PALSTS 000006DA ALSTS 00000000 8 SEGl PASCALIB.RO
«PALSTSL 000006DC ALSTS 00000002 8 SEG1 PASCALIB.RO
- PASGNF 00001470 ASGNF 00000000 8 SEG1 PASCALIB.RO
.PBUFSZ 00001494 BUFSZ 00000000 8 SEGlL PASCALIB.RO
.PCALCLU 00000A8C CALCLU 00000000 8 SEG1 PASCALIB.RO
.PCFLDAD 000014D6 CFLDAD 00000000 8 SEGl PASCALIB.RO
.PCLO 00000706 CLO 00000000 8 SEG1 PASCALIB.RO
.PCLOSE 000014A4 CLOSE 00000000 8 SEGl PASCALIB.RO
.PCLOSPL 000014C4 CLOSE 00000020 8 SEGl PASCALIB.RO
.PCLSCOD 00000658 CLSCOD 00000000 8 SEGl PASCALIB.RO
.PDFLT 00000F38 DFLT 00000000 8 SEG1 PASCALIB.RO
«PEDTFIL O00000ADE EDTFIL 00000000 8 SEG1 PASCALIB.RO
.PFLSCN 000014FE FLSCN 00000000 8 SEG1 PASCALIB.RO
«PGETCH 000011CA GETCH 00000000 8 SEG1 PASCALIB.RO
-PGETINT 00001206 GETINT 00000000 8 SEG1 PASCALIB.RO
.PIFD 00000722 1IFD 00000000 8 SEGl PASCALIB.RO
+PINIT 00000000 INIT 00000000 8 SEG1 PASCALIB.RO
.PIRPTR 000011E8 IRPTR 00000000 8 SEG1 PASCALIB.RO
.PIWPTR 000010F2 IWPTR 00000000 8 SEGl PASCALIB.RO
«PLBLKS 000010EQ LBLKS 00000000 8 SEGl PASCALIB.RO
.PLDCS 00001528 LDC 00000000 8 SEG1 PASCALIB.RO
.PLDCV 0000152C LDC 00000004 8 SEGl1 PASCALIB.RO
-PLJSR 00000364 INIT 00000364 8 SEG1 PASCALIB.RO
.PMAIN 00001554 SORT 00000000 9 SEG1 SORT .RO
«PMAKINT 0000131A MAKINT 00000000 8 SEG1 PASCALIB.RO
«POPTION 00000500 OPTION 00000000 8 SEG1 PASCALIB.RO
.PPRGBUF 00000ECO PRGBUF 00000000 8 SEGl PASCALIB.RO
. PRDBUF 00001378 RDBUF 00000000 8 SEG1 PASCALIB.RO
.PRDI 00001142 RDI 00000000 8 SEG1 PASCALIB.RO
«PRDINT 00001156 RDINT 00000000 8 SEG1 PASCALIB.RO
+PRDJ 0000114C RDJ 00000000 8 SEG1 PASCALIB.RO
«PRLN 00001106 RLN 00000000 8 SEGl1 PASCALIB.RO
.PRST 00000938 RST 00000000 8 SEG1 PASCALIB.RO
«PRAT 000009EA RWT 00000000 8 SEGl1 PASCALIB.RO
.PSBLKS 000011B8 SBLKS 00000000 8 SEGl1 PASCALIB.RO
+PSTDFLT 0000CEDA STDFLT 00000000 8 SEG1 PASCALIB.RO
« PSYMBUG 0000036C SYMFLAG 00000000 8 SEGl1 PASCALIB.RO
«PVBUSER 000004B8 TRAPS 0000014A 8 SEGl PASCALIB.RO
«PVCHKI 0000049A TRAPS 0000012C 8 SEG1 PASCALIB.RO
«PVTRAPD 0000049A TRAPS 0000012C 8 SEG1 PASCALIB.RO
OPVTRAPE 0000036E TRAPS 00000000 8 SBEG1 PASCALIB.RO
+PVTRAPV 00000480 TRAPS 00000112 8 SEG1 PASCALIB.RO
.PVZDIV 00000466 TRAPS 000000F8 8 SEGl PASCALIB.RO
- PWLN 00000F94 WLN 00000000 8 SEGl PASCALIB.RO
« PWRH 00000FA4 WRI 00000000 8 SEGl PASCALIB.RO
«PWRI 00000FA6 WRI 00000002 8 SEG1 PASCALIB.RO
«PWRJ 000COFA8 WRI 00000004 8 SEG1 PASCALIB.RO
«PWRS 0000103C WRSWRV 0000000A 8 SEG1 PASCALIB.RO
«PWRTBUF 0000107C WRTBUF 00000000 8 BSEG1 PASCALIB.RO
«PWRV 00001032 WRSWRV 00000000 8 SEG1 PASCALIB.RO
.PZMAIN 000079FE SORT 000061FE 15 SEG2 SORT .RO
FORCE 0000179E FORCE 00000000 9 SEG1 FORCE .RO

8-10

Unresolved References: None

Multiply Defined Symbols: None

Lengths (in bytes):

Segment Hex Decimal
SEG1 00001800 6144
SEG2 00006200 25088
Total Length 00007A00 31232
No Errors
No Warnings

Load module has been created.

8-11

8.2 PROGRAM FOR VERSAmodule 01 EXECUTION UNDER VERSAbug

8.2.1 Phase 1 Listing

8.2.2 Phase 2 Listing

M68000 Pascal Compiler Phase 2

00000000
00000000
00000002
00000006
00000008
0000000A
0000000C

00000010
00000014

00000018
0000001C

00000020
00000024
00000026
00000036
00000038

0000003C

Loc Lev BE Motorola Pascal EXAMP2 .SA
-8) 0)=~ Program Example (Output) ;
-8) 0)=-
-8) 0)== {* *
.8) 0) - % *
=8) Q)= * This is a sample program designed to show *
=8) Q)= * people how to load and run a Pascal program *
-8) 0) - % *
~8) 0)=~ * *}
~8) 0) ==
1 0)A- Begin
2 0)=- writeln(Output,'I am a program.');
0)=-A End.

**** No Error(s) and No Warning(s) detected

**%* 12 Lines 0 Procedures

**%* 48 Pcode instructions

0001
9EFC 0008
7401
7205
7000
41ED FFF8

4EAB *k %k
41ED FFF8

AEAB *h%
486D FFF8

4AEAB %%&%
000F

4267

4EAB **k%

4EAB *%k¥

EXAMP2 .PC
*Motorola Pascal EXAMP2 .SA
*Program Example (Output) ;
*
{ *
* * *
* * This is a sample program designed to show *
* * people how to load and run a Pascal program *
* * *
* % *}
*
*

Begin
XREF 8:.PLJSR
writeln(Output,'I am a program.');

»

-PMAIN EQU *

DC.W 1

SuB #8,A7
MOVEQ $#1,D2
MOVEQ #5,D1
MOVEQ £0,DO

LEA =8(A5) ,A0

XREF 8:.PIFD
JSR .PIFD-.PLJSR(A3)
LEA ~8(A5) ,A0

XREF 8:.PRWT

JSR .PRWT-. PLISR(A3)
PEA ~8(A5)

XREF 8:.PLDCS

JSR .PLDCS~-.PLISR(A3)

DC.W 15
DC.B 'I am a program.'
CLR -(A7)

XREF 8:.PWRS
JSR «PWRS=.PLISR(A3)
XREF 8: .PWLN
JSR «PWLN=.PLJISR(A3)

8-12

* End.

00000040 41ED FFF8 LEA -8 (AS5) ,A0

XREF 8:.PCLO
00000044 AEAB ***% JSR +PCLO-.PLISR(A3)
00000048 4267 CLR =-(A7)
0000004A 4E4E TRAP $#14
0000004C 0004 DC.W 4

END

**% Total of 78 bytes generated

8.2.3 Linkage Editor Listing

Motorola M68000 Linkage Editor

Command Line:

LINK ,,EXAMP2,LL; HIMSQUX
Options in Effect: A,-B,-D,H,I,-L,M,-0,P,Q,-R,S,U,-W,X

User Commands:

SEG SEG1(R) :8-14 $1000
SEG SEG2:0,15

IN EXAMP2

LIB VMOlPLIB

LIB PASCALIB

END

Object Module Header Information:

Module Ver Rev Language Date Time Creation File Name

EXAMPLE 1 0 Pascal 03/26/82 16:07:07 FIX:21..EXAMP2.PC
M68000 Pascal object from 2.00 resident compiler

INIT 0 O Assembly 02/22/82 16:21:17 FIX:103.MOD,INIT.SA
INIT VERSAMODULE PASCAL

TABLE 0 O Assembly 02/22/82 16:17:53 FIX:103.MOD.TABLE.SA
I0 DEFINITIONS TABLES

START 0 0 Assembly 02/22/82 16:23:16 FIX:103.MOD.START.SA
STARTUP ROUTINE FOR THE PASCAL PROGRAM

TRAP1 0 0 Assembly 02/22/82 16:22:07 FIX:103.MOD.TRAP].SA
TRAP 1 HANDLER

I0 0 0 Assembly 02/22/82 16:19:01 FIX:103.MOD.IO.SA
IO SERVICE ROUTINES FOR VERSAMODULE

PASIO 0 O Assembly 02/22/82 16:15:37 FIX:103.MOD.PASIO.SA
PASCAL I/0 SERVICE FOR VERSAMODULE

ILL 0 O Assembly 02/22/82 16:22:43 FIX:103.MOD.ILL.SA
ILLEGAL I/O HANDLER

PRINT 0 0 Assembly 02/22/82 16:24:39 FIX:103.MOD.PRINT.SA
PRINT A CHARCTER ON THE LINE PRINTER

TRAPS 2 11 Assembly 01/19/82 17:39:43 FIX:103.UTILRR.TRAPS.SA
68K PASCAL TRAP HANDLING RUNTIME SUBROUTINES

8-13

ALSTS 2 0 Assembly 01/21/82 10:25:59 FIX:103.UTILRR.ALSTS.SA
68K PASCAL ALLOCATE STACK SUBROUTINE

WLN 2 0 Assembly 01/18/82 18:14:12 FIX:103.IO0SRR.WLN.SA
68K PASCAL WRITELN SUBROUTINE

WRSWRV 2 0 Assembly 01/18/82 18:17:17 FIX:103.I0SRR.WRSWRV.SA
68K PASCAL WRITE STRING AND VECTOR SUBROUTINES

LBLKS 2 0 Assembly 01/18/82 18:02:09 FIX:103.I0SRR.LBLKS.SA
68K PASCAL WRITE LEADING BLANKS SUBROUTINE

IWPTR 2 0 Assembly 01/18/82 18:01:25 FIX:103.I0SRR.IWPTR.SA
68K PASCAL, INCREMENT TEXT FILE COMPONENT PTR SUBROUTINE

ipC 2 0 Assembly 01/20/82 12:35:13 FIX:103.UTILRR.LDC.SA
68K PASCAL LOAD CONSTANT STRING AND VECTOR SUBROUTINE

Load Map:

Segment SEG1(R): 00001000 000019FF 8,9,10,11,12,13,14

Module S T start End Externally Defined Symbols
INIT 8 00001000 00001093 JPLJSR 0000108C .PINI 00001000
TABLE 8 00001094 0000115D DDTLINK 00001094 CWAITCH 000010B0

CWAITB 000010A8 CWAITAD 000010AC
CBREAKHB 000010A4 CBREAKB 0000109C
CBREAKAD 000010A0 DEBUG 000010C2
OTHSDV 000010BE .PTABLE 00001094
.PVTRAP1 00001098 MEMBEG 000010C6

MEMEND 000010CA EOF 000010B2
START 000010B6 STD$DV 000010BA

START 8 0000115E 0000116D .PSTART 0000115E

TRAP1 8 0000116E 00001191 TRP1HNDL 0000116E

I0 8 00001192 000013F1 AWRT 000013A8 CBREAK 000011B6
CBREAKH 000011D4 OWAIT 00001192
AINIT 000011F0 ARST 00001200
ARWT 00001204 PI1RD 0000120C
PWRT 0000139C P2RD 00001334
ACLO 00001208

PASIO 8 000013F2 00001685 .PCLO 00001502 .PAFI 0000152E
PIFD 000013F2 .PRDBUF 000015B2
<PRST 00001456 .PRWT 000014Co0
.PWRTBUF 0000163C

PRINT 8 00001686 000016BD PRNCHR 00001686

TRAPS 8 000016BE 0000184F .PADDRER 00001826 .PVBUSER 00001808
.PVCHKI 000017EA .PVIRAPD O00OOl7EA
.PVTRAPE 000016BE .PVTRAPV 000017D0
-PVZDIV 000017B6

ALSTS 8 00001850 00001878 .PALSTS 00001850 .PALSTSL 00001852

WLN 8 0000187C 00001888 .PWLN 0000187C

WRSWRV 8 0000188C 000018D5 .PWRS 00001896 .PWRV 0000188C

LBLKS 8 000018D6 O000018E7 .PLBLKS 000018D6

IWPTR 8 000018E8 000018FB .PIWPTR 000018E8

LDC 8 000018FC 00001925 .PLDCS 000018FC .PLDCV 00001900

EXAMPLE 9 00001926 00001973 .PMAIN 00001926

Segment SEG2: 00001A00 00002EFF 0,15
Module S T Start End Externally Defined Symbols

TABLE 0 00001A00 00001Al1B
EXAMPLE 15 00001A1C 00002E1B .PZMAIN 00002E1A

8-14

Table of Externally Defined Symbols:

Name Address Module
+ PADDRER 00001826 TRAPS
.PAFI 0000152E PASIO
.PALSTS 00001850 ALSTS
.PALSTSL 00001852 ALSTS
.PCLO 00001502 PASIO
.PIFD 000013F2 PASIO
+PINI 00001000 INIT

PIWPTR 000018E8 IWPTR
«PLBLKS 000018D6 LBLKS

.PLDCS 000018FC LDC
.PLDCV 00001900 LDC
+PLJSR 0000108C INIT
.PMAIN 00001926 EXAMPLE
«PRDBUF 00001582 PASIO
«PRST 00001456 PASIO

« PRWT 000014C0 PASIO

«PSTART 0000115E START
+PTABLE 00001094 TABLE
«PVBUSER 00001808 TRAPS
«PVCHKI 000017EA TRAPS
«PVTRAP1 00001098 TABLE
«PVTRAPD 000017EA TRAPS
«PVTRAPE 000016BE TRAPS
«PVTRAPV 000017D0 TRAPS
«PVZDIV 000017B6 TRAPS

PWLN 0000187C WLN
PWRS 00001896 WRSWRV
PWRTBUF 0000163C PASIO
«PWRV 0000188C WRSWRV
PZMAIN 00002E1A EXAMPLE
ACLO 00001208 IO
AINIT 000011F0 IO
— ARST 00001200 IO
ARWT 00001204 IO
AWRT 000013A8 IO
CBREAK 000011B6 IO

CBREAKRAD 000010A0 TABLE
CBREAKB 0000109C TABLE
CBREAKH 000011D4 IO

CBREAKHB 000010A4 TABLE

CWAIT 00001192 IO
CWAITAD 000010AC TABLE
CWAITB 000010A8 TABLE

CWAITCH 000010B0O TABLE
DDTLINK 00001094 TABLE

DEBUG 000010C2 TABLE
EOF 000010B2 TABLE
ILL 0000002C ILL
MEMBEG 000010C6 TABLE
MEMEND 000010CA TABLE
OTHSDV 000010BE TABLE
P1RD 0000120C IO
P2RD 00001334 10
PRNCHR 00001686 PRINT
PWRT 0000139C IO
START 000010B6 TABLE
STDSDV 000010BA TABLE

TRP1HNDL 0000116E TRAP1

Unresolved References: None

Multiply Defined Symbols: None

Displ

00000168
0000013C
00000000
00000002
00000110
00000000
00000000
00000000
00000000
00000000
00000004
0000008C
00000000
000001C0
00000064
000000CE
00000000
00000000
0000014A
0000012C
00000004
0000012C
00000000
00000112
000000F8
00000000
0000000A
0000024A
00000000
000013FE
00000076
0000005E
0000006E
00000072
00000216
00000024
0000000C
00000008
00000042
00000010
00000000
00000018
00000014
0000001C
00000000
0000002E
0000001E

00000032
00000036
0000002A
0000007A
000001A2
00000000
0000020A
00000022
00000026
00000000

Sect Seg

—
0o 00 00 00 C0 OO OO O o o €0 00 00 00 00 OO 0O C0 GO 00 00 00 00 OO €O OO CO U1 OO 00 00 00 00 OO 00 G0 QO 00 O CO0 OO CO QO O O 0 CO 0O C0 OO 00 CO O @ o ™ ©

SEGL
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEGL
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG2
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SBEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEGO
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1
SEG1

Library

PASCALIB.RO
VMO1PLIB.RO
PASCALIB.RO
PASCALIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
PASCALIB.RO
PASCALIB.RO
PASCALIB.RO
PASCALIB.RO
VMC1PLIB.RO

VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
PASCALIB.RO
PASCALIB.RO
VMO1PLIB.RO
PASCALIB.RO
PASCALIB.RO
PASCALIB.RO
PASCALIB.RO
PASCALIB.RO
PASCALIB.RO
VMO1PLIB.RO
PASCALIB.RO

VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO
VMO1PLIB.RO

8-15

Input

EXAMP2

EXAMP2

.RO

.RO

Lengths (in bytes):
Segment Hex
SEG1 00000A00

SEG2 00001500
Total Length 00002F00

No Errors
No Warnings

Decimal

2560
5376
7936

S-record module has been created.

8-16

CHAPTER 9

RUNTIME INTERFACE FOR NON-VERSAdos SYSTEMS

9.1 GENERAL

M68000 Family Pascal is a powerful programming tool for the MC68000/MC68010
microprocessors. It includes runtime input/output (I/0) routines which interact
with an operating system or monitor program. There are four versions of the
runtime library for M68000 Family Pascal: one is for VERSAdos in a Memory
Management Unit environment (EXORmacs or VME/10); one is for VERSAdos in a
non-MMU environment (VM01l, VM02, or MVME1l0); one is for RMS68K on VMO1l, VMOZ2,
or MVMEL1l0; and one is for VMOl with VERSAbug. This chapter describes these
routines and their interaction with VERSAdos, RMS68K, and VERSAbug.

9.2 USER ADAPTATION

As supplied, the Pascal runtime routines for VERSAdos or RMS68K programs depend
upon the availability of VERSAdos or RMS68K; the routines that are operating
irdeperdent from the system — for the VMOl system -- depend upon VERSAbug.
However, Pascal programs can be modified for use on M68000 family systems not
using VERSAdos or RMS68K, or for VERSAmodules not using VERSAbug.

9.2.1 VERSAdos Adaptation

VERSAdos performs two classes of functions for Pascal: input and output
functions, and system resource allocation functions. Typically, input and
output functions occur continuously during execution of the Pascal program.
These functions include creation and deletion of files, assignment of files and
devices, and actual input and output of information. The resource allocation
functions occur at program startup. Resource allocation functions include
specification of trap vector addresses and allocation of additional memory.

Due to the layered structure of Pascal programs, as deplcted in Figure 9-1,
there are two ways to adapt Pascal programs to non-VERSAdos systems. The
layered structure results from the Pascal programs calling runtime routines
which, in turn, call VERSAdos functions. Thus, in order to run a Pascal program
on a non-VERSAdos system, either the VERSAdos functions can be simulated or the
runtime routines which require VERSAdos can be replaced. Paragraphs 9.3 and
9.4, respectively, describe these adaptatlons. Refer also to the VERSAdos Data
Management Services and Program Loader User's Manual for additional information
on VERSAdos functions.

When a Pascal program will be doing disk I/0 to an operating system other than
VERSAdos, simulating the VERSAdos functions would probably be the better
approach. In this case, a user-supplied program intercepts the calls to
VERSAdos, converts them to appropriate calls to the new host operating system,
and then converts the status and other information returned from the host system
to the appropriate VERSAdos format. The user-supplied VERSAdos simulation
program then becomes an additional layer in the Pascal program structure, as
shown in Figure 9-2,

9-1

Pascal
Program

Pascal Runtime Routines

VERSAdos

FIGURE 9-1. Layered Structure of Pascal Programs

Pascal
Program

Pascal Runtime Routines

VERSAdos Simulator (User-Supplied)

Host Operating System (User-Supplied)

FIGURE 9-2. Pascal Program Structure with VERSAdos Simulation

When the Pascal program requires only relatively simple I/0, such as to a
terminal, modifying the appropriate Pascal runtime routines is probably the
better method. Here, the user writes routines that meet the interface
specifications for runtime routines, then uses them in place of the
corresponding Motorola-supplied routines. This approach is also useful if the
host operating system does not lend itself to easy simulation of the VERSAdos
functions. The Pascal program structure shown in Figure 9-3 results from this
approach.

Pascal Program

User-Modified Pascal Runtime Routines

Host Operating System (Optional - User Supplied)

FIGURE 9-3. Pascal Program Structure with User Modified Runtime Routines

9,2.2 VERSAmodule 01 (with VERSAbug) Adaptation

Pascal is adapted for VERSAmodule 0l by means of VERSAmodule 0l runtime routines
and I1/0 routines (Figure 9-4). However, user-supplied I/O routines could
alternatively be supplied (Figure 9-5). Refer to paragraph 9.7 for information
relevant to modifying VERSAmodule 01 routines.

Pascal Program

VERSAmodule 01 Runtime Routines

VERSAmodule 01 I/O Routines

FIGURE 9-4. VERSAmodule 01 Pascal Program Structure #l

Pascal Program

VERSAmodule 01 Runtime Routines

User-Supplied I/0 Routines

FIGURE 9-5. VERSAmodule 01 Pascal Program Structure #2

9.3 VERSAdos EMULATION

A basic knowledge of the purpose of a disk operating system (DOS) will aid in
understanding functions provided by VERSAdos. A DOS manages disk resources by
keeping a directory of names of files on the disk. This permits the DOS to
access a file by name. Additionally, a DOS must maintain information about
which areas of the disk are in use, so that new files may be added to the disk,
and files already on disk may be expanded. It updates this information as files
are deleted from the disk so that the space no longer used is made available.

Some disk operating systems, including VERSAdos, manage all I/O functions -- not
just disk I/0. This results in I/0 independent programs. For example, the
program does not care if its output goes to a line printer or a disk file. The
DOS takes care of all the details of data transfer. The program tells the DOS
at execution time where the output is to go. Input operations have the same
flexibility.

Refer to the VERSAdos Data Management Services and Program Loader User's Manual

for additional information on input/output functions of VERSAdos, and to the
VERSAdos System Facilities Reference Manual for file name formats.

9-3

VERSAdos utilizes logical unit numbers (LUN's) to provide device independent
1/0. With this technique, a program directs its I/0 through various logical
units, each identified by a unique number. For example, a program might obtain
its input data from LUN 1, write its output to LUN 2, and send error messages to
LUN 3. Assignment of each of the logical units to a file or device would occur
during program execution.

Optionally, the assignment can be made just before the program is executed. The
LUN assigned is determined by the position of the file identifier in the Pascal
PROGRAM statement, ignoring the identifiers INPUT and OUTPUT and their
corresponding LUN's. The default LUN for the standard file identifier input is
5. The default LUN for the standard file identifier output is 6.

LUN's start with 1. The runtime routines limit the maximum LUN to 31. When a
LUN is assigned to a file identifier at execution time, the next available LUN,
beginning at 1, is used.

VERSAdos subdivides the 1I/0 functions into file handling services (FHS,
paragraph 9.3.1) and input output services (IOS, paragraph 9.3.2). The
functions supplied by file handling services include: allocate, assign,
retrieve attributes, delete, ard close. These functions are associated with
creating files and assigning files to logical units. The input/output services
functions used by the runtime routines are: input, output, and rewind.

The runtime routines support two types of VERSAdos files: contiguous and
sequential. Sequential files may have fixed length or variable length records.
Sequential files with variable length records may be ASCII formatted, in which
case VERSAdos compresses strings of multiple spaces to one byte when writing the
file. VERSAdos also expands the space compression when reading the file.
Variable length records may be written and read without ASCII formatting. Fixed
length records do not permit ASCII formatting. Pascal text files are
sequential.

Contiguous files have a fixed record length of 256 bytes, and are primarily used
for VERSAdos load modules. This is the same size as a VERSAdos disk logical
sector., Contiguous files do not support ASCII formatting. To enhance the load
time, these files are actually allocated contiguous space on the disk. Because
of this, the size of the contiguous file must be specified when the file is
created. After a contiguous file has been created, its size cannot be changed.
A VERSAdos contiguous file that has just been created (allocated) cannot be read
until the entire file has been written.

Sequential files are not necessarily allocated contiguous disk space. The
smallest amount of space for a sequential disk file that must be physically
contiguous is called a data block. The smallest size and the default size of a
data block is four sectors. VERSAdos does not permit records to straddle data
block boundaries. An additional block of a sequential file, called a File
Access Block (FAB), contains pointers to all of the data blocks of the file.
For more information about FAB's, see the VERSAdos System Facilities Reference
Manual,

Both contiguous and sequential files permit several types of access, including:
random access based on record number, previous record, current record, and next
record. The runtime routines utilize only the next record type, which is
sequential access.

Due to the multitasking nature of VERSAdos, it has an active file protection.
The active protection is specified when a program attaches to (assigns) a device
or file. It not only specifies what type of I/O will be done to the file, but
whether or not other programs may do I/0 to the file. The types of active
protection are: public read, exclusive read, public write, exclusive write,
public read-public write, public read-exclusive write, exclusive read-public
write, exclusive read-exclusive write. A public permission assignment permits
other public permission assignments of the same type. An exclusive assignment
prohibits other assignments of the same type. Compatible access permission
assignments are shown in Table 9-1.

TABLE 9-1. Compatible Access Permissions

PR
ER Existing
PW Access
EW Permission
PRPW
PREW
ERPW
EREW
i , L

Public Read X X X X X
Exclusive Read X X
Public Write X X X X X
Exclusive Write X X
Public Read-Write X X X
Public Read, Exclusive Write X

Exclusive Read, Public Write X
Exclusive Read-Write

X = Other assignment allowed.

The default access permission for a temporary file is public read-exclusive
write. For everything else, the default access permission is public read for a
reset and public write for a rewrite.

Pascal runtime treats text and non-text files somewhat differently in terms of
default file specifications. Table 9-2 shows the default I/0 specifications for
text and non-text files. Some parameters are effective only when the file is
allocated. For example, specifying the data block size when the file is
assigned has no affect, since the data block size was fixed when the file was
created. The Pascal program can override the file defaults by specifying
appropriate options in the resource name string of the reset and rewrite
procedures. The resource name string options are listed in Table 9-3.

9-5

TABLE 9-2. Default File Specifications

TEXT NON-TEXT
File Type Sequential Sequential
Record Length Variable Fixed to component size
ASCII Format Yes No
Data Block Size O=default (4) O=default (4)
FAB size O=default (1) O=default (1)

TABLE 9-3. Resource Name String Options

OPTION MEANING

Binary 1/0, record length = component size
Contiguous file and its size

Data block size

Size of file access block

Public read access permission

Exclusive read access permission

Public write access permission

Exclusive write access permission

ZSW'JU"IIF?(IPUJ

9.3.1 File Handling Services (FHS)

The File Handling Services (FHS) functions are called by a TRAP #3 instruction.
(Refer to Table 9-4.) The sequence of instructions used to call FHS functions
is:

MOVE.L #PARAM , AQ
MOVE.W #FHSFUN, (A0Q)
TRAP #3

PARAM is the starting address of a 40-byte FHS parameter block. The address
will always be on a word boundary. FHSFUN is a word value which identifies the
FHS function being requested.

On return from the trap, the only processor registers modified are DO and the
condition code register. DO contains a byte value which is the status returned
from the function. A status value of zero indicates that no error occurred. If
non-zero, the status value indicates the type of error that has occurred. The Z
bit of the condition code register is set according to the value of the status
byte in DO. The status byte is also returned in a byte of the parameter block.
Refer to the VERSAdos Data Management Services and Program Loader User's Manual
for details about FHS functions.

Table 9-5 lists the FHS functions called by each runtime routine.
The FHS option "allocate shared buffer" is not requested by runtime routines.
User-specified attributes are not used by runtime routines.

9-6

TABLE 9-4. Traps Used by Pascal

TRAP FUNCTION
TRAP #1 Executive functions
TRAP #2 I0S calls
TRAP #3 FHS calls
TRAP #4 Error messages
TRAP #13 Runtime range checking/errors
TRAP #14 Error/program termination

TABLE 9-5. FHS Functions Called by Each Runtime Routine

CALLED BY:
FHS FUNCTION IFD RST RWT AFI READBUF WRTBUF CLOSE
Delete X
Close X X X X X X
Assign X X X
Allocate X

Retrieve Attributes X

9.3.2 Input Output Services (I0S)

The Input Output Services (IOS) functions are called by a TRAP #2 instruction.
The sequence of instructions used to call I0S functions is:

MOVE.L #PARAM, AQ
MOVE.W #IOSFUN, (A0)
TRAP #2

PARAM is the starting address of a 28-byte IOS parameter block. The address
will always be on a word boundary. IOSFUN is a word value which identifies the
I0s function being requested. On return from the trap, the only processor
registers modified are DO and the condition codes register. DO contains a byte
value which is the status returned from the function. A status value of zero
indicates that no error occurred. A non-zero value indicates that an error
occurred. The value indicates the type of the error. The Z bit of the
condition codes register is set according to the value of the status byte in DO.
The status is also returned in a byte of the parameter block. Refer to the
VERSAdos Data Management Services and Program Loader User's Manual for details
about I0S functions.

The IOS functions used by the runtime routines are as follows:

Read
Write
Rewind

Table 9-6 lists the I0S data transfer options used by the runtime routines.
Unless the RESET or REWRITE resource name string specifies the binary option,
ASCII formatting is used for text files. All non-text files utilize binary
formatting. The runtime routines do not write indexed sequential files. When
indexed sequential files are read, the runtime routines do not expect to receive
the record key. Also, the runtime routines do not use the format disk option.

9-7

TABLE 9-6. Runtime Routine IOS Data Transfer Options
OPTIONS DEFAULT VALUE
ASCII/BINARY - ASCII formatting for text files
- Binary formatting for non-text files
WAIT/PROCEED - Wait
FORMATTED/IMAGE - Formatted

BREAK NOTIFICATION

SUPPRESS HCHO

RBECORD/BLOCK ACCESS

LOGICAL RECORD/RANDOM KEY ACCESS
RETURN KEY WITH RECORD
COMPLETION/SERVICE ADDRESS

INPUT FORMATTED/IMAGE
PRIMARY/SECONDARY MEMORY MAP

LOGICAL ACCESS/POSITION

Shared notification
Do not suppress echo
Record access

Logical record number
Do not return key
Normal return
Formatted

Primary memory map

Access next record

The runtime

Table 9-7 lists the IOS functions called by each runtime routine.
routines are described in paragraph 9.4. The exact action of the IOS functions
depends on the file type being operated on —- contiguous or sequential.

TABLE 9-7. IOS Functions Called by Each Runtime Routine

CALLED BY:
IOS FUNCTION IFD RST RWT AFI READBUF WRTBUF CLOSE
Read X
Write X X X

Rewind X

9-8

9.3.3 Executive Functions

VERSAdos permits multitasking. To do this, VERSAdos contains executive
functions which allocate system resources and provide task protection. A
four-segment memory management unit (MMU) on the EXORmacs or VME/10 processor
board provides memory protection between and within tasks. Additional
protection is provided by all non-executive tasks running in the user mode of
the MC68000 or MC68010 processor.

A TRAP #1 instruction is used to request executive functions. Before executing
the trap instruction, a value indicating the desired function is placed in DO,
and the address of a parameter block (if required) is placed in AO. On return,
DO contains a status code, and the condition code register is set to reflect the
contents of DO. A value of =zero indicates that no errors occurred.
Additionally, some functions return information in AO. Those that do not return
information in A0 leave A0 unchanged. All other registers are returned
unchanged. Table 9-8 lists the executive functions used by the runtime
routines, and the runtime routine that calls each. The instruction sequence
used to call executive functions is:

MOVE.L #DIRNUM,DO
MOVE.L #PARAM, AQ
TRAP #1

DIRNUM is the directive number which indicates what executive function is being
requested. PARAM is the address of the first byte of the parameter block. The
parameter block must start on a word boundary. Refer to the M68000 Family
Real-Time Multitasking Software User's Manual for details about executive
functions.

TABLE 9-8. Executive Functions Used by Runtime Routines

USED BY:
EXECUTIVE FUNCTION INITIALIZATION TRAP HANDLER

Receive segment attributes
Get segment

Receive exceptions

Receive traps

Abort

Terminate X

<oXoX X X

The two runtime routines that call executive functions are Initialization and
TRAP #14 Handler. Initialization sets up the runtime environment for the Pascal
program. To do this, it requests information about the area of memory used for
the stack and heap. It might also request additional memory for the stack-heap,
depending on the user-specified command line options. Initialization also
requests that the executive let Pascal runtime routines handle certain
exceptions and traps. One of the traps handled by the runtime routines is TRAP
#14. It is called any time an error is detected, and provides for an orderly
termination of the program. It is also called at the end of the program.
Initialization aborts itself if it detects an error before it has requested
runtime routine service of the TRAP #14 vector. Another trap, TRAP #13, is used
by the runtime routines to indicate failure during range checking. Initializa-
tion and trap handling are described more completely in paragraphs 9.5 and 9.6.

9-9

Initialization uses the "receive segment attributes" function to obtain the
logical beginning and ending addresses of the stack/heap memory segment.

When the Z option is used, initialization uses the "get segment" executive
function to obtain an additional memory segment to extend the size of the
stack-heap area.

The exceptions that the runtime routines receive are: bus error, address error,
zero divide, CHK instruction, and TRAPV instruction.

The runtime routines service TRAP #13 and TRAP #14.

The trap handler runtime routine calls the VERSAdos error message routine using
TRAP #4.

9.4 1I/0 ROUTINE REPLACEMENT

One way to run Pascal programs on non-VERSAdos systems is to replace the
specific VERSAdos functions required by the Pascal runtime routines. This is
described in paragraph 9.3. Another way is to replace the Pascal runtime
routines and trap handlers. Paragraph 9.4 describes the replacement of the
Pascal runtime I/O routines so that they may be tailored to the specific I1/0
requirements of the host operating system. Paragraph 9.5 describes the
replacement of the Pascal initialization runtime routine. Paragraph 9.6
describes the replacement of the exception and trap handlers. Paragraph 9.7
describes differences for the VERSAmodule Ol.

Runtime I/0 is provided by five routines which the Pascal program calls
directly, plus two routines which are called indirectly. The direct routines
are AFI, CLO, IFD, RST, and RWTI; the indirect routines are RDBUF and WRTBUF.

- AFI (Assign File Identifier to resource name string) is called immediately
before a reset or rewrite if the reset or rewrite contains a resource name
string.

- CLO (Close) is called at the end of a procedure containing local files in
order to close them, and at the end of the program to close any global
files. It is called once for each file to be closed.

- IFD (Initialize File Descriptor) is called at the start of the main
program to initialize a data area for each global file, and at the start
of each procedure containing local files to initialize a data area for
each one. It is called once for each declared file identifier and for the
file identifiers input and output if they are included in the program
statement.

- RST (Reset) is called for each reset statement in the program. If the
file identifier input is included in the program statement, a call to RST
is automatically generated for it by the compiler.

- RWT (Rewrite) is called for each rewrite statement in the program. If the
file identifier output is included in the program statement, a call to RWT
is automatically generated for'it by the compiler.

- RDBUF (Read Buffer) is called by a number of different runtime routines.

- WRTBUF (Write Buffer) is called by a number of different runtime routines.

9-10

The logical sequence of calls to the runtime I/0 routines is as follows:

a. IFD is called to allocate and initialize the control tables required for
the file.

b. If the reset or rewrite contains a resource name string, AFI is called
immediately before the reset or rewrite. AFI modifies the file control
tables as required by the resource name string.

c. RST or RWT is called, depending on the Pascal statement, for reset or
rewrite, respectively.

d. The 1/0 is done. RDBUF is called to read data from a file that has been
reset; WRTBUF is called to write data to a file that has been rewritten.

e. Finally, CLO closes the file.

To allow runtime routine changes without requiring recompilation of programs,
the runtime routines are accessed by external references which are resolved at
linkage edit time. Therefore, to link to runtime routines other than those in
the standard Pascal library, a user library must be built. The user must issue
the proper linkage editor commands to read the user library before the standard
library (and after the Pascal program). This will be sufficient to get the
user-supplied runtime routines linked, because the Pascal program will make
external references to them.

However, the Pascal program does not make direct external references to RDBUF
and WRTBUF. These routines are referenced by various routines in the standard
library. To use the user's version of these routines, one of the user's
replacement runtime routines must include external references to them, and the
routines must follow the reference to them in the user's library. It is not
necessary for the routine that contains the external references to RDBUF and
WRTBUF to make any use of them.

The external label used for a runtime or other routine is the runtime or routine
name preceded by '.P'. Table 9-9 contains a list of the external references
that must be replaced to be independent of VERSAdos.

TABLE 9-9. External References that Cause VERSAdos Calls

EXTERNAL REFERENCE ROUTINE
.PAFI Assign file identifier to resource name string
.PCLO Close
.PIFD Initialize file descriptor
+PRST Reset
. PRWT Rewrite
.PRDBUF Read buffer
. PWRTBUF Write buffer
.PLJSR Initialization (long JSR)

9-11

After the replacement library has been built, by merging the relocatable object
modules in the proper order into one file, the replacement library can be
invoked by the following VERSAdos command:

=LINK <myprog>;L=<mylib>

where <myprog> is the user's relocatable object module of a Pascal program, and
<mylib> is the user's replacement library.

The linker first reads the file <myprog>, then loads the required modules from
the user's library file <mylib>. Finally, it loads the required modules from
the default Pascal library file PASCALIB. The same effect can be achieved by
entering the command LIB <mylib> before the END command and after the INPUT
<myprog> command when using the linker in the interactive mode.

The runtime I/O routines and a number of other runtime routines make use of a
global data area called the Runtime Maintenance Area (RMA). Table 9-10 shows
the layout of the RMA. A pointer to the start of the RMA is kept in A5 during
the execution of the Pascal program.

Except for the array of 2-byte integers, the area from the loading/initiating
task name up to the stack/heap segment break address holds information required
for various runtime I/O and VERSAdos I/0 and executive functions. The
stack/heap segment break address is used to keep file descriptors from
straddling a segment break caused by adding a memory segment to the stack/heap.
VERSAdos requires the file descriptor to reside completely within one memory

segment.

When replacing the standard runtime I/O routines, the user can also redefine
much of the RMA. The area of the RMA from loading/initiating task name up to
smallest heap pointer value may be redefined if the runtime I/O routines are
replaced.

The remaining areas of the RMA are integral to the operation of Pascal and may
not be altered.

9-12

TABLE 9-10. Pascal Runtime Maintenance Area (VERSAdos)

Offsets from A5

hex decimal
0 [Statement Counter
4 4 Heap Pointer
8 8 Display Level O
[12 Display level 1
10 16 Display Level 2
14 20 Display Level 3
18 24 Display Level 4
1C 28 Display Level S
20 32 Display Level 6
24 36 Display lLevel 7
28 40 Loading/Initiating Task Name
2C 44 Session Number
30 48 LU's Passed/In Use
34 52 Chain/batch diagnostic register First 2 chars of term id.
38 56 Second 2 chars of term id. First 2 chars of default vol.
3C 60 Second 2 chars of default vol. Default User Number
40 64 Default
Catalog
48 72 Command Line Length Command Line
} (162 characters - bytes) j
EC 236 I Array ['A'..'Z'] of 2-byte Integer i
r (52 bytes)
120 288 Unused § of fields in command line
124 292 § of files in I= cur file in I= offset to field offset to cur file
128 296 § of files in O= cur file in O= offset to field offset to cur file
1c 300 # of files in field 1 cur file in field 1 offset to field offset to cur file
12C+(n-1)x4 300+(n-1)x4 S :
168 360 # of files in field 16| cur file in field 16 | offset to field Joffset to cur file
16C 364 Stack/Heap Segment Break Address
170 368 Smallest Heap Pointer Value
174 372 Runtime Error Routine Storage
16 " $ (72 bytes) l

9-13

Paragraphs 9.4.1 through 9.4.7 describe the function of the standard runtime I/0
Register formats upon entry to and exit from the routines are listed
in Table 9-11.

routines.

The contents of registers not listed are indeterminate.

TABLE 9-11. Register Formats for I/0 Subroutines (VERSAdos)
SUB-
ROUTINE TIME REGISTER CONTENTS
AFI on A3.L Address of long JSR routine
entry A5.L Global variable pointer
26.L Local variable pointer
A7. Stack pointer
(A7)+0 Return address (long word)
(A7) +4 String length (word)
(A7) +6 String (even string length (s.l.) bytes)
(A7) +o+even s.l. Address of file pointer
(A7) +10+even s.l, Previous stack contents
on A0.L Address of file pointer
exit A3,L-A6.L Preserved
A7.L Points to previous stack contents
DO.W Status, if error
D7.L Return address from AFI if error
IFD on A0.L Address of file pointer
entry A3.L Address of long JSR routine
A5.L Global variable pointer
A6.L Local variable pointer
A7.L Stack pointer
DO.B File's position in program statement
(low order 8 bits)
Dl.W Initial file status
(low order 16 bits)
D2.W Component size
on A3.L-26.L Preserved
exit A7.L Points to first byte of allocated space
DO.W Status, if error
D7.L Return address from IFD if error
RST on A0.L Address of file pointer
and entry A3.L Address of long JSR routine
RWT A5.L Global variable pointer
A6.L Local variable pointer
A7.L Stack pointer
on A3.L-A6.L Preserved
exit DO .W Status, if error
D7.L Return address from RST or RWT if error

9-14

TABLE 9-11. Register Formats for I/O Subroutines (VERSAJoS) (cont'd)

SUB~
ROUTINE TIME REGISTER CONTENTS
RDBUF on AO0.L Address of file pointer
entry A2.L Component pointer
A5.L Global variable pointer
A6.L Local variable pointer
A7.L Stack pointer
on A0.L,Al.L Preserved
exit A2.L 0 if EOF; else beginning address of
record buffer
A3.L-A6.L Preserved
A7.L Points to previous stack contents
DO.W Status, if error
D7.L Return address from RDBUF if error
WRTBUF on AO0.L Address of file pointer
entry Al.L Component pointer
A2.L Address of file parameter block
A5.L Global variable pointer
A6.L Local variable pointer
A7.L Stack pointer
on A0.L Preserved
exit Al.L Beginning address of record buffer
A2.L-A6.L Preserved
A7.L Points to previous stack contents
DO.W Status, if error
p7.L Return address from WRTBUF if error
CLO on A0.L Address of file pointer
entry A3.L Address of long JSR routine
A5.L Global variable pointer
A6.L Local variable pointer
A7.L Stack pointer
on A3.L-26.L Preserved
exit DO.W Status, if error
D7.L Return address from CLO if error
NOTE: If one of these routines encounters an error, it puts an error status in

DO and the address it would have returned to, had the error not occurred,

in D7. It then executes a TRAP #14, which is followed in memory by a
word indicating the type of error. Paragraph 9.8 describes the TRAP #14
error handler requirements. :

9-15

9.4.1 Assign File (AFI)

Assign file (AFI) updates the file parameters as specified in a resource name
string contained on the stack. AFI is called immediately before any RWT or RST
which includes a resource name string. The RMA is accessed using positive
offsets from AS. The contents of registers A3 and A6 are generally not required
by AFI. However, the contents of A3, A5, and A6 must be preserved through the
AFI routine -- that is, their contents on exit from AFI must be the same as
their contents were on entry to AFI.

The stack contains several items of importance to AFI. At the top of the stack,
pointed to by A7, is the address to return control to on completion of AFI. The
return address is stored as a long word. Next on the stack, at a positive
offset of 4 from the contents of A7, is the length of the string passed to AFI.
The string length is stored as a word. The string is stored on the stack next
in an even number of bytes. If the string length is odd, an additional byte is
padded at the end of the string on the stack to keep the stack aligned on even
addresses. The first character of the string follows immediately after the
string length word. The string is packed one character per byte.

After the string comes the address of the file pointer (Table 9-12).

TABLE 9-12. File Pointer

File Pointer Address 0
Current Component Pointer

File Pointer Address+4 4
File Parameter Block Pointer

The file pointer provides the Pascal program with a means of keeping track of
the file I/0. The file pointer contains two addresses, each stored as a long
word. The first address is the current component pointer. It is either 0 or
points into the file's data buffer. On input from the file, it is 0 if the
buffer contents are not valid, such as just after the reset statement.
Otherwise, during input, it points to the next character to be read from the
buffer. For output, the component pointer points to the next location in the
buffer where a byte of data is to be put. The file parameter block pointer
points to the parameter block created for the file by IFD.

The file parameter block created by the Motorola-supplied IFD routine is shown
in Table 9-13. The first eight bytes of the parameter block contain information
used by the Pascal program. Next comes the 1I0S parameter block. After that is
the FHS parameter block. (Refer to the Data Management Services and Program
Loader User's Manual for details about the FHS and I10S parameter blocks.) A
long word containing information about the file name comes next. Finally, the
file parameter block ends with the record buffer, which is 134 bytes long if the
file is a text file. For a non-text file, the buffer length is the component
size, rounded out by one byte if it is odd. Pascal programs require the address
of the buffer end from the IOS portion and the first three parameters. The
user's I/0 procedures may redefine the rest of the file parameter block. The
file position parameter is a long word containing the count of the current

9-16

component. The Pascal file status is a word that describes the file attribute.
Table 9-14 defines the file status word. To gain access to these parameter
blocks, pass the file pointer as a variable parameter to an assembly language
subroutine. The stack will have the address of the file pointer which, in turn,
will point to the file parameter block described in Table 9-13.

TABLE 9-13. Standard File Parameter Block

Offsets
hex decimal
0 0 File Position PASCAL
Parameter
4 4 PASCAL File Status Component Size Block
8 8 Function Options 108
Parameter
C 12 Status Logical Unit # Reserved Block
10 16 Random Record Number
14 20 Address of Buffer Start
18 24 Address of Buffer End
1C 28 Length of Data Transfer
20 32 Completion Address v
24 36 Command Options
FHS
28 40 Status Logical Unit # | First 2 chars of vol. name Parameter
Block
2C 44 Second 2 chars of vol. name User Number
30 48 Catalog
Name
38 56 File
Name
40 64 Extension Reserved
44 68 Write Code Read Code Record Length
48 72 Size/Pointer V
4C 76 Reserved for status expansion IFD Scan Status [File List Position
50 80 Record Buffer
g (134 bytes if text file; even component if not) g

9-17

Pascal programs make use of bits 0 through 4 and 7 and 8 of the file status
word. The other bit definitions are used by the Motorola-supplied runtime I/0
routines, and may be redefined as required by the user's I/O routines. The
component size word contains the number of bytes per component. The IFD scan
status byte (Table 9-13) indicates which file name fields were found in the
command line by IFD. The file list position gives the number of the position of
the file name in the command line.

On exit from AFI, registers A3, A5, and A6 must contain the same values they had
on entry to AFI. The stack pointer, A7, must point to the previous stack
contents. Also, the address of the file pointer must be in A0. This was under
the string on the stack. This is required because either RST or RWT is called
immediately upon return from AFI.

If AFI detects an error, it executes a TRAP #14, which is followed in memory by
a word indicating the type of error. The possible values of this word are
described in paragraph 9.8 on handling traps. Some errors also return a status
in DO. D7 should contain the address to return to from AFI when the TRAP #14 is
executed.

TABLE 9-14. Pascal File Status Word Definition

BIT
NUMBER DESCRIPTION
0 Set to 1 if the file is standard output; otherwise, 0.
1 Set to 1 if the file is standard input; otherwise, 0.
2 Set to 1 for a text file; otherwise, 0.
3 Set to 1 for a local file; otherwise, 0.
4 Set to 1 for an indexed file; otherwise, O.
5 Set to 0. Reserved for future use.
6 Set to 1 if the file is open; otherwise, 0.
7 Set to 1 if end of file; otherwise, O.
8 Set to 1 if end of line; otherwise, 0.
9 Set to 1 if the file assignment was passed to the Pascal program;
otherwise, 0.
10 Set to 1 if the access permission was changed by AFI; otherwise, O.
11 Set to 1 if the file was specified in the command 1line;
otherwise, 0.
12 Set to 1 if the file has been 'rewritten'; otherwise, 0.

13,14,15 Set to 0. Reserved for future use.

9-18

9.4.2 Initialize File Descriptor (IFD)

Initialize file descriptor (IFD) creates and initializes the file parameter
block used by the Pascal program and the runtime I/O routines. It is called at
the start of the main program, once for each globally declared file, including
standard input and standard output if they are listed in the program statement.
It is also called at the start of each procedure containing local files, once
for each local file declared. The RMA is accessed using positive offsets from
A5. The contents of registers A3 and A6 are generally not required by IFD.
However, the contents of A3, A5, and A6 must be preserved through the IFD
routine -- that is, their contents on exit from IFD must be the same as their
contents were on entry to IFD.

DO contains the byte value of the file's position in the PROGRAM statement. The
position numbering begins at 1 and does not include the file identifiers input
and output. The Motorola-supplied runtime I/O routines use this number to match
up a command line field with a file identifier. Dl contains the initial file
status. This is a subset of the file status word described in Table 9-14. The
bits of the file status, as received in D1, that may be set are 0 through 5. A0
contains the address of the file pointer for this file. The file pointer is
shown in Table 9-12 and described in the AFI section. However, on entry to IFD,
the file parameter block does not exist.

One of the functions of IFD is to obtain space on the stack for the file
parameter block, and to initialize it. Space on the stack is allocated by the
.PALSTS runtime routine. It is XREF'ed in the IFD routine. On entry to it, D4
contains the number of bytes required. .PALSTS checks for stack/heap overflow
before allocating the space on the stack. If stack/heap overflow would occur
because of the allocation, then .PALSTS aborts the program with a stack/heap
overflow error. Otherwise, it allocates the space on the stack and returns with
A7, the stack pointer, pointing to the first byte of the allocated space. An
even number of bytes is always allocated. If D4 is odd, then 1 is added to it
to make it even. On return from .PALSTS, all registers except D4 and A7 are
preserved. Note that before allocating space on the stack, a return address
from IFD exists at the top of the stack. This can be removed from the stack and
saved in a register before the allocate; then to return from IFD, a jump
indirect through the register is executed.

Once IFD has the file parameter block allocated on the stack, it initializes the
parameters. This involves saving Dl as the file status and D2 as the component
size. Also, IFD sets up the buffer start and end addresses in the IOS portion
of the parameter block, along with the other IOS and FHS parameters required.
If the file is not local and the initialize routine finds a file name field in
the command line for this file, then IFD fills in the file name from the command
line. 1If the file is local, IFD sets up the file name field so that the oper-
ating system will generate a temporary file. VERSAdos will supply a unique file
name when a temporary file is requested. IFD also puts the address of the file
parameter block into the proper field of the file pointer.

On exit from IFD, A3, A5, and A6 are returned with their original contents. If
IFD detects an error, it executes a TRAP #14. TRAP #14 is followed in memory by
a word indicating the type of error. The possible values of this word are
described in paragraph 9.8 on handling traps. Some errors also return a status
in DO. D7 should contain the address to return to from IFD when the TRAP #14 is
executed.

9-19

9.4.3 Close (CLO)

Close (CLO) closes a file assignment. Before closing the file assignment, CLO
writes out anything left in the record buffer if the file was an output file. A
file is an output file if the last RESET or REWRITE operation on it was REWRITE.
This can be determined by having RWT set the output bit in the file status word
and having RST reset the bit. Then, if the bit is set at CLO time, it is an
output file. An output record buffer is empty if the current component pointer,
contained in the file pointer, is equal to the beginning address of the record
buffer. CLO should not attempt to de-allocate the file parameter block from the
stack. The Pascal program will take care of that.

The RMA is accessed using positive offsets from A5. The contents of registers
A3 and A6 are generally not required by CLO. However, on exit from CLO, the
contents of A3, A5, and A6 must be the same as their respective contents were on
entry to CLO. CLO is exited by executing the RTS instruction.

If CLO detects an error, it executes a TRAP #14, which is followed in memory by
a word indicating the type of error. The possible values of this word are
described in paragraph 9.8 on handling traps. Some errors also return a status
in DO. D7 should contain the address to return to from CLO when the TRAP #14 is
executed.

9.4.4 Reset (RST)

Reset (RST) opens a file assignment for read so that reading will start at the
beginning of the file. RST permits the file to have been previously RESET or
REWRITTEN when it is called. If the file was RESET last, it is just rewound.
If the file was REWRITTEN last, then, if the record buffer is not empty, it is
written to the file before the file is rewound for input. The CLO description
tells how to determine if a file has been REWRITTEN and the record buffer is not
empty. RST puts 0 in the current component pointer of the file pointer. This
marks the buffer contents as not valid for the Pascal program. RST also puts 0
in the file position entry of the file parameter block.

The RMA is accessed using positive offsets from A5. The contents of registers
A3 and A6 are generally not required by RST. However, on exit from RST, the
contents of registers A3, A5, and A6 must be the same as their respective
contents were on entry to RST. RST is exited by executing the RTS instruction.

I1f RST detects an error, it executes a TRAP #14, which is followed in memory by
a word indicating the type of error. The possible values of this word are
described in paragraph 9.8 on handling traps. Some errors also return a status
in DO. D7 should contain the address to return to from RST when the TRAP #14 is
executed.

9.4.5 Rewrite (RWT)

Rewrite (RWI) opens a file assignment for write so that writing will start at
the beginning of the file. If the file already exists when RWT is called, then
RWT deletes the existing file and creates a new one. RWI sets up the current
component pointer to point to the beginning of the record buffer. RWI sets up
the address of the buffer end of the I0S portion of the file parameter block.
For a text file, the buffer end is the buffer start plus 131 bytes. A nontext
file has a buffer end equal to the buffer start plus the component size. The
buffer ending address, then, is equal to the starting address plus the buffer
size minus one. RWI also puts 0 in the file position entry of the file
parameter block.

The RMA is accessed using positive offsets from A5. The contents of registers
A3 and A6 are generally not required by RWT. However, on exit from RWT, the
contents of registers A3, A5, and A6 must be the same as their respective
contents were on entry to RWI'. RWT is exited by executing the RTS instruction.

If RWT detects an error, it executes a TRAP #14, which is followed in memory by
a word indicating the type of error. The possible values of this word are
described in paragraph 9.8 on handling traps. Some errors also return a status
in DO. D7 should contain the address to return to from RWI when the TRAP #14 is

executed.

9.4.6 Read Buffer (RDBUF)

Read Buffer (RDBUF) reads the next buffer of data from a file. It sets the end
of file bit to 1 in the file status word of the file parameter block if there is
no more data available from the file; otherwise, it is set to 0. If the file is
a text file and if the length of the record read is 0, RDBUF sets the end of
line bit; otherwise, it clears it. Also, for a text file, RDBUF puts an ASCII
space character (decimal 32) at the end of the line in the buffer. RDBUG sets
up the address of the buffer end in the IOS portion of the file parameter block
if it is not end of file. For a text file, and because of the space character
appended to the record, the buffer end address is equal to the buffer start
address plus the length of the record transferred. For a nontext file, the
buffer end address is equal to the buffer start address plus the length of the
record transferred minus one.

The only register that should be modified by RDBUF on return is A2. The stack
pointer, A7, will be modified due to the RTS instruction used to return from
RDBUF, pulling the return address from the top of the stack. However, all of
the other registers (DO through D7, A0, Al, A3 through A6) should be preserved
throughout RDBUF. To accomplish this, the registers needed may be saved by
pushing them on the stack. They would then be restored by pulling them from the
stack before returning from RDBUF. A value of 0 should be returned in A2 if
RDBUF encounters the end of file. Otherwise, the beginning address of the
record buffer should be returned in A2.

If RDBUF detects an error, it executes a TRAP #14, which is followed in memory
by a word indicating the type of error. The possible values of this word are
described in paragraph 9.8 on handling traps. Some errors also return a status
in DO. D7 should contain the address to return to from RDBUF when the TRAP #14
is executed.

9-21

9.4.7 Write Buffer (WRTBUF)

Write Buffer (WRTBUF) writes the current buffer of data to a file. On entry to
WRTBUF, Al points one byte past the end of the record to be written. After
writing the record, WRTBUF updates the end of buffer pointer in the IOS portion
of the file parameter block in the same way that REWRITE initializes it. The
buffer end address is equal to the buffer start address plus the buffer length
minus one. The buffer length used for a text file is 132 bytes. The buffer
length for a nontext file is the component size. The Motorola-supplied WRTBUF
routine must restore the buffer end address, because it gets modified when the
buffer is written to the file.

The only register that should be modified by WRTBUF on return is Al. The stack
pointer, A7, will be modified due to the RTS instruction used to return from
WRTBUF, pulling the return address from the top of the stack. However, all of
the other registers (D0 through D7, A0, and A2 through A6) should be preserved
through WRTBUF. To accomplish this, the registers needed may be saved by
pushing them on the stack. They would then be restored by pulling them from the
stack before returning from WRTBUF. The beginning address of the record buffer
should be returned in Al.

If WRTBUF detects an error, it executes a TRAP #14, which is followed in memory
by a word indicating the type of error. The possible values of this word are
described in paragraph 2.8 on handling traps. Some errors also return a status
in DO. D7 should contain the address to return to from WRTBUF when the TRAP #14

is executed.

9.5 INITIALIZATION UNDER VERSAdos (EXORmacs, VME/10, VMOl, VM02, or MVMEL10)

The Motorola-supplied initialization routine accomplishes several functions,
including:

a. Setting up the RMA,

b. Scanning the command line, if requested.

c. Allocating additional memory, if required.

d. Requesting trap and exception vectors.

e. Setting up processor registers for the Pascal program.

f. Calling the floating point initialization routine, if required.

Depending on what the user has done with the other I/0 routines and the
configuration of the system, some of the initialization functions can be
simplified or even eliminated. For example, if the user's I/0 routines do not
require all of the RMA field, the initialization of the RMA can be simplified.
If the user's system does not pass a command line to the Pascal program, there
is no need for the initialization routine to contain code for scanning the
command line. Most of the other initialization functions, except processor
register initialization for the Pascal program, can be similarly reduced or
eliminated, as permitted by the program's environment and I/0 routines.

The parameters required by the Motorola-supplied initialization routine are
passed in registers and in memory at execution time, and in external references
at linkage edit time. The register contents expected on entry to the supplied
initialization routine are listed in Table 9-15. The contents of registers not
specified in Table 9-15 are indeterminate.

9-22

—

TABLE 9-15. Register Contents on Entry to Motorola-Supplied
Initialization Routine

REGISTER CONTENTS
D0.L Loading task name
Dl.L Session number
D2.L Default user volume
D3.W Default user number
D4.L First 4 characters of default catalog
D5.L Second 4 characters of default catalog
D6 .W Command line length in bytes
D7.L Bit mask of logical units passed
Al.L Default terminal ID

The contents of registers DO, D2, D4, D5, and Al are ASCII characters. D1, D3,
and D6 contain binary numbers of the length specified in Table 9-15. Register
D7 contains a bit mask indicating which logical units were passed by the
operating system to the Pascal program. A bit set to 1 indicates that the
corresponding logical unit was passed. The logical unit number is given by the
position number of the bit, with bit 0 being the least significant bit and
bit 31 the most significant. VERSAdos logical unit numbers are in the range 1
through 7. Bit 0 of the register may or may not be set, but logical unit 0 of
VERSAdos is never passed and is never available for use.

Normally, VERSAdos will always pass logical units 5 and 6 to the Pascal program.
Logical unit 5 is the VERSAdos command device/file logical unit number. When it
is passed, the Motorola-supplied I/0O routines make it the default assignment for
the file identifier input. Logical unit 6 is the VERSAdos log device/file
logical unit number. When it is passed, the Motorola-supplied I/O routines make
it the default assignment for the file identifier output.

The parameters passed in memory are the command line and a word containing bits
which select various runtime options. The command line is placed in memory at a
fixed offset from an external label, .PZMAIN, defined in the Pascal program by
Phase 2 of the compiler. At linkage edit time, it is assigned a fixed address
of the first byte past the end of the RMA. Thus, .PZMAIN indicates to the
initialization routine the address of the RMA.

The command line passed begins with the first non-space character of the
parameter field of the command which invoked the Pascal program. Thus, the name
of the program is not passed. The number of bytes passed in the command line is
contained in register D6 on start-up.

The memory word specifying runtime options is at the external label, .PMAIN.
Only one runtime option is defined. If bit 0 -- the least significant bit —- is
set to 0, the initialization routine does not scan the command line for file
assignments and options; if bit 0 is 1, then the initialization routine does
scan the command line for file assignments and options. In both cases, the
initialization routine scans the command line for the Z option, which permits
the stack/heap area to be expanded during initialization.

9-23

The external label .PMAIN also specifies to the initialization routine the entry
point of the Pascal program. Execution of the Pascal program begins at
.PMAIN+2.

Several other external labels are used by the Motorola initialization routine.
All of the external labels referenced by the initialization routine are listed
in Table 9-16.

TABLE 9-16. Motorola—-Supplied Initialization Routine External References

EXTERNAL LABEL DESCRIPTION
.PMAIN Runtime option bit mask and Pascal program entry point -2
.PZMAIN Next location past RMA in section 15
.PZSTART First location in section 15 allocated by the compiler
.PALSTS Entry point to allocate stack storage subroutine
.PVTRAPD Entry point to TRAP #13 handler
.PVTRAPE Entry point to TRAP #14 handler
.PVBUSER Entry point to bus error exception handler
.PADDRER Entry point to address error exception handler
.PVZIDIV Entry point to divide by zero exception handler
.PVCHKI Entry point to CHK instruction exception handler
.PVTRAPV Entry point to TRAPV instruction exception handler
.POPTION Entry point to option scanning

Initialization references .PALSTS to guarantee that the allocate stack space
routine will always be loaded, even though initialization does not use it. The
user-written initialization routine should also reference .PALSTS. .POPTION is
the entry point of a subroutine which extracts options from the command line.
Except for .PMAIN, .PZMAIN, .POPTION, .PZSTART, and .PALSTS, the remaining
externals are entry points to the various trap and exception handlers Pascal
programs require. The Motorola-supplied initialization must know these entry
points so that it can request its own handling of these traps and exceptions
from the operating system.

The entry point of the initialization routine .PINIT is specified as an operand
in the end statement of the initialization routine. After VERSAdos loads the
Pascal program, it starts execution of it at this location. Once the
initialization routine has configured the runtime environment, it starts the
Pascal program at .PMAIN+2.

The initialization routine must contain the long JSR routine and an external
definition to it, .PLJSR.

9-24

An external reference to .PLJSR normally brings in the standard initialization
module. LJSR is a routine which implements a long (greater than 32K-byte
offset) branch to subroutine. Figure 9-6 contains the source of the LJSR
routine, which should be included in the user initialization procedure. The
compiler generates an external reference to .PLJSR, even though it might never
use it, so that the initialization procedure will be included in the linkage
edit.

* _PLJSR - LONG JSR ROUTINE

*

.PLJSR EQU *
MOVE.L (A7) ,Ad ! GET RETURN ADDRESS
ADD.L #4, (A7) ! CORRECT IT ON STACK
ADD.L (A4) ,Ad ! CALCULATE DESTINATION
JMP (Aa4) ! GO TO IT

FIGURE 9-6. LJSR Routine

The standard initialization causes the loading of routines that handle certain
traps and exceptions. These trap and exception handlers also rely on some
VERSAdos functions. Thus, to be independent of VERSAdos, the user will have to
instruct the linker to load replacement routines. Paragraph 9.8 describes the
trap and exception handlers that must be replaced.

Most of the RMA is initialized by the initialization routine. The areas not
initialized by it are: the statement counter field, the seven display levels,
the unused areas, the command line, and the runtime error routine storage.

The command line is stored in the RMA in the VERSAdos environment by the task
which loads and starts the Pascal program. The command (name of the Pascal
program) and any spaces following it are not stored; only the parameters in the
command line are passed in the command line field. The runtime error routine
storage area is provided so that the error handler can save some of the
processor's registers without the possibility of destroying the stack/heap
contents.

The Pascal program initializes the statement counter field and the seven display
level fields.

9-25

9.5.1 Initialization Sequence under VERSAdos on EXORmacs or VME/10

The first thing the Motorola-supplied initialization routine does is initialize
A7. The value put in A7 is .PZMAIN minus the size of the RMA. This causes A7
to point to the first byte of the RMA. Next, the register contents passed on
startup, as shown in Table 9-15, are saved in the appropriate areas of the RMA.
A carriage return is put at the end of the command line. After this, the
supplied initialization routine requests information about the memory segment
containing the stack/heap area. It uses the RMA as a buffer area to receive the
information. The main pieces of information are the size of the memory segment
and the smallest address of the segment. Room is left at the beginning of the
segment for the vector tables required by the executive so that the Pascal
program can service some of the traps and exceptions. The address of the first
location past the vector table is saved in the RMA as the smallest heap address,
and is used as the beginning of the heap. The code in Figure 9-7 then
initializes the beginning of the heap. This code places heap maintenance
information in the heap. The address of the first location after the heap
maintenance information is saved as the heap pointer. All user-supplied
initialization routines should set up the heap in this manner. The largest
address of the stack/heap segment is saved as the stack/heap segment break
address in the RMA. This address is used by the initialize file descriptor
routine to keep the file descriptor blocks from straddling a segment boundary.
This could only occur if the stack/heap area would be increased by the Z option
on the command line.

Next, the Motorola-supplied initialization routine clears (stores 0's in) the
commard line information area. This is the area of the RMA from just past the
command line area up to the stack/heap segment break address. The vector tables
at the beginning of the segment are initialized next and the vectors announced
to the operating system. This lets the runtime routines service certain traps
and exceptions.

The runtime option word at .PMAIN is checked next to determine if the command
line is to be scanned for file assignments and options. If bit 0 of this
location is 0, the command line is not scanned for file assignments. The
command line is still scanned for the Z option but the command line information
area of the RMA, just past the command line and up to the stack/heap segment
break address, is not updated.

If bit 0 of the word at .PMAIN is 1, the command line is scanned for file
assignments and options. The location in the RMA that contains the "# of fields
in command line" is updated to contain the number of file name fields in the
command line, not counting the I= and 0= fields if they are present.-. The
information for each file name field is also updated in the RMA. The number of
files in each field is stored in the appropriate position of the RMA. This
value is used to support file lists. The offset from the start of the command
line, as saved in the RMA, to the start of the field is saved in the appropriate
"offset to field" location in the RMA. The areas of the RMA labeled "current
file in field" and "offset to current file" are used during Pascal program
execution, and are not initialized beyond being cleared. If the initialization
routine detects more than 16 file name fields, not counting the I= and O=
fields, it reports an error and aborts the program. The options are also
scamned and the offset to the option character from the start of the command
line is saved in the array ['A'..'Z'] in the RMA. The offset is saved as a word
value. 1Its position in the array is determined by the option letter.

9-26

For example, the first entry in the array is for the option character A, the
second is for B, etc. If the option is preceded by a minus sign, the offset
value saved in the array is the two's complement of the actual offset. This
results in a negative entry in the array for minus options. The Z option is a
special Pascal runtime option. Its presence is never indicated in the array
even if it exists in the command line.

After the command line has been processed, the initialization routine determines
if it needs to expand the stack-heap memory segment. If it found a Z option and
the amount of stack/heap memory specified in the option is more than the current
size, it attempts to add an additional memory segment at the top end (largest
address) of the current segment. The size of the requested segment is equal to
the size specified in the Z option minus the size of the current segment. Once
the additional segment has been obtained, the RMA is moved up (to larger
addresses) by an amount equal to the size of the added segment. Also, A7 is
adjusted accordingly.

Next, the initialization routine sets up the register values needed for Pascal
program execution. These register values are listed in Table 9-17. A3 points
to the long JSR routine. A5, A6, and A7 all point to the first location of the
RMA.

TABLE 9-17. Register Contents at End of Initialization

REGISTER CONTENTS
A3.L Points to long JSR routine
A5.L Points to start of RMA
A6.L Points to start of RMA
A7.L Points to start of RMA

Then the initialization routine makes a call that will cause the "standard"
floating point environment to be initialized, if required. The destination of
the call is the first location of a section 8 common section named FINIT. This
common section, as defined in the initialization routine, contains only an RTS
instruction. However, if Phase 2 generated the appropriate external references
to cause loading of the floating point routines, then they overwrite the common
section with a call to standard floating point initialization, followed by an
RTS instruction. The register contents of the MC68000/MC68010 are maintained
across the call to the standard floating point initialization. No special
initialization is required for fast floating point.

Finally, the initialization routine begins execution of the Pascal program. The
entry point of the Pascal program is .PMAIN+2.

9-27

*

* A3 CONTAINS SMALLEST HEAP ADDRESS
*
MOVE.L #-1, (A3)+
CLR.L (A3)+
*
* A3 NOW CONTAINS CURRENT HEAP POINTER

* SAVE A3 IN RMA HEAP POINTER LOCATION
*

FIGURE 9-7. Heap Initialization

9.5.2 Initialization Sequence under VERSAdos on the VMOl, VM02, and MVMEL10

Initialization begins with the allocation of the temporary data segment SEGT.
This segment is used for all calculations until the address of the Pascal data
segment SEG2 has been determined and until SEG2 has been expanded to its final
size with the Z option. Note that the relative position of the Pascal code and
data segments cannot be set at link time as in the EXORmacs or VME/10 case
without requiring a large block of contiguous memory. This is because no MMU is
present on the VMOl, VM02, or MVMEl1l0 to translate arbitrary physical addresses
into logical addresses which would reflect the correct relative positioning
established at link time. Also, SEG2 cannot be expanded by adding another
contiguous data segment as with the EXORmacs or VME/10, since no MMU is present
to guarantee contiguous logical addresses in all cases. Instead, the original
SEG2 must be deleted and a new, larger SEG2 can then be allocated.

Once SEGT has been allocated, A7 is set to point to the end of SHEGT minus the
size of the RMA. Thus, A7 points to the first byte of the RMA. Next, the
register contents passed on startup, as shown in Table 9-15, are saved in the
appropriate areas of the RMA. A carriage return is then put at the end of the
command line. Next, space is allotted at the beginning of the segment for the
vector tables required by the executive so that the Pascal program can service
some of the traps and exceptions. The address of the first location past the
vector table is saved in the RMA as the smallest heap address and is used as the
beginning of the heap. Heap maintenance information is then placed in the heap
(as shown in Figure 9-7), and the heap pointer is set to the address of the
first location after the heap maintenance information. Note that all user-
supplied initialization routines should set up the heap in this manner.

Next, the Motorola-supplied initialization routine clears (stores 0's in) the
command line information area. This is the area of the RMA from just past the
command line area up to the stack/heap segment break address. The vector tables
at the beginning of the segment are then initialized and the vectors announced
to the operating system. This allows the runtime routines to service certain
traps and exceptions.

At this point, segment information about the Pascal data segment SEG2 is
retrieved using an RMS68K directive. If SEG2 does not exist, an error is issued
and the program is aborted. Otherwise, the information about SEG2 is used to
calculate the address of the command line in SEG2. The command line is then
copied into SEGT where it can be examined later.

9-28

The runtime option word at .PMAIN is checked next to determine if the command
line is to be scanned for file assignments and options. If bit 0 of this
location is 0, the command line is not scanned for file assignments. The
command line is still scanned for the Z option, but the command line information
area of the RMA, just past the command line and up to the stack/heap segment
break address, is not updated.

If bit 0 of the word at .PMAIN is 1, the command line is scanned for file
assignments and options. The location in the RMA that contains the "# of fields
in the command line" is updated to contain the number of file name fields in the
command line, not counting the I= and O= fields if they are present. The
information for each file name field is also updated in the RMA. The number of
files in each field is stored away in the RMA in order to support file lists
later. The offset from the start of the command line to the start of the field,
as saved in the RMA, is saved in the appropriate "offset to field" location in
the RMA. The areas of the RMA labeled "current file in field" and "offset to
current file" are used during Pascal program execution, and are not initialized
beyond being cleared. If the initialization routine detects more than 16 file
name fields, excluding the I= and O= fields, it reports an error and aborts the
program. The options are also scamned, and the offset to the option character
from the start of the command line is saved in the array ['A'..'Z'] in the RMA.
The offset is saved as a word value, and its position in the array is determined
by the option letter.

For example, the first entry in the array is for the option character A, the
second is for B, etc. If the option is preceded by a minus sign, the offset
value saved in the array is the two's complement of the actual offset. This
results in a negative entry in the array for minus options. The Z option is a
special Pascal runtime option. Its presence is never indicated in the array
even if it exists in the command line.

After the command line has been processed, the initialization routine determines
if it needs to expand the stack-heap memory segment. If it finds a Z option and
the amount of stack/heap memory specified in the option is more than the current
size, the original copy of SEG2 is deleted and SEG2 is reallocated with the
larger segment size.

Once we have processed the Z option, there is no longer any need for the
temporary segment SEGT. Thus, we now copy the RMA from SEGT into SEG2,
initialize A7 to point into SEG2 instead of SEGT, reinitialize the heap
information as before, and reinitialize the trap vectors as before. Finally,
SEGT is deleted.

The initialization routine now proceeds to set up the register values needed
for Pascal program execution. These register values are listed in Table 9-17.
A3 points to the long JSR routine, while A5, A6, and A7 all point to the first
location of the RMA.

Next the initialization routine makes a call that will cause the "standard”
floating point environment to be initialized, if required. The destination of"
the call is the first location of a section 8 common section named FINIT. This
common section, as defined in the initialization routine, contains only an RTS
instruction. However, if Phase 2 generated the appropriate external references

9-29

to cause loading of the floating point routines, then they overwrite the common
section with a call to standard floating point initialization, followed by an
RTS instruction. The register contents of the MC68000/MC68010 are maintained
across the call to the standard floating point initialization. No special
initialization is required for fast floating point.

Finally, the initialization routine begins execution of the Pascal program. The
entry point of the Pascal program is .PMAIN+2.

9.6 INITIALIZATION UNDER RMS68K ON VMOl, vM02, OR MVMEl11l0

The Motorola-supplied initialization routine accomplishes several functions,
including:

a. Setting up the RMA,

b. Requesting trap and exception vectors.

c. Setting up processor registers for the Pascal program.

d. Calling the floating point initialization routine, if required.

Depending on what the user has done with the other I/0 routines and the
configuration of the system, some of the initialization functions can be
simplified or even eliminated. For example, if the user's I/0 routines do not
require all of the RMA field, the initialization of the RMA can be simplified.
Most of the other initialization functions, except processor register
initialization for the Pascal program, can be similarly reduced or eliminated,
as permitted by the program's environment and I/O routines.

No parameters are required by the Motorola-supplied initialization routine under
RMS68K. Instead, register values, which are normally supplied on startup under
VERSAdos, are set to benign values for the more restricted RMS68K.

The contents of registers DO, D2, D4, D5, and Al are ASCII characters. D1, D3,
and D6 contain binary numbers of the length specified in Table 9-15. Register
D7 contains the value zero, indicating that no logical units were passed to the
Pascal program on startup.

Initialization references .PALSTS to guarantee that the allocate stack space
routine will always be loaded, even though initialization does not use it. The
user-written initialization routine should also reference .PALSTS. .POPTION is
the entry point of a subroutine which extracts options from the command line.
Except for .PMAIN, .PZMAIN, .POPTION, .PZSTART, and .PALSTS, the remaining
externals are entry points to the various trap and exception handlers Pascal
programs require. The Motorola-supplied initialization must know these entry
points so that it can request its own handling of these traps and exceptions
from the operating system.

Several other external labels are used by the Motorola initialization routine.
All of the external labels referenced by the initialization routine are listed
in Table 9-16.

The entry point of the initialization routine .PINIT is specified as an operand
in the end statement of the initialization routine. After the sysgened system
is booted up, the Pascal program contained in it starts execution at this
location. After the initialization routine has configured the runtime
environment, the user's Pascal program code begins execution at .PMAIN+2.

9-30

The initialization routine must contain the long JSR routine and an external
definition to it, .PLJSR.

An external reference to .PLJSR normally brings in the standard initialization
module. IJSR is a routine which implements a long (greater than 32K-byte
offset) branch to subroutine. Figure 9-6 contains the source of the LIJSR
routine, which should be included in the user initialization procedure. The
compiler generates an external reference to .PLJSR, even though it might never
use it, so that the initialization procedure will be included in the linkage
edit.

The standard initialization causes the loading of routines that handle certain
traps and exceptions. These trap and exception handlers also rely on some
RMS68K functions. Thus, to be independent of RMS68K, the user will have to
instruct the linker to load replacement routines. Paragraph 9.8 describes the
trap and exception handlers that must be replaced.

Most of the RMA is initialized by the initialization routine. The areas not
initialized by it are: the seven display levels, the unused areas, the unused
command line, and the runtime error routine storage.

The runtime error routine storage area is provided so that the error handler can
save some of the processor's registers without the possibility of destroying the
stack/heap contents.

The Pascal program initializes the statement counter field and the seven display
level fields.

9.6.1 Initialization Sequence under RMS68K on the VM01l, VM02, and MVME11l0

Initialization begins with the allocation of the temporary data segment SEGT.
This segment is used for all calculations until the address of the Pascal data
segment SEG2 has been determined. Note that the relative position of the Pascal
code ard data segments cannot be set at link time as in the EXORmacs or VME/10
case without requiring a large block of contiguous memory. This is because no
MMU is present on the VMOl, VM02, or MVME1l0 to translate arbitrary physical
addresses into logical addresses which would reflect the correct relative
positioning established at link time.

Once SEGT has been allocated, A7 is set to point to the end of SEGT minus the
size of the RMA. Thus, A7 points to the first byte of the RMA. Next, the
reglster contents which would normally be passed on startup by VERSAdos (as
listed in Table 9-15), must be set to safe values for the RMS68K environment.
Of particular interest are these:

a. D6.W is assumed to be 0 to indicate no command line is present.

b. D7.L is assumed to be 0 to indicate that no logical units are being passed
on startup.

c. Al.L is assumed to be 'CNOO' to indicate that the default terminal is the
first serial port on the processor card.

9-31

Space 1s then allotted at the beginning of the segment for the vector tables
required by the executive so that the Pascal program can service some of the
traps and exceptions. The address of the first location past the vector table
is saved in the RMA as the smallest heap address and is used as the beginning of
the heap. Heap maintenance information is then placed in the heap, and the heap
pointer is set to the address of the first location after the heap maintenance
information. Note that all user-supplied initialization routines should set up
the heap in this manner.

Next, the Motorola-supplied initialization routine clears (stores 0's in) the
command line information area. This is the area of the RMA from just past the
command line area up to the stack/heap segment break address. The vector tables
at the beginning of the segment are then initialized and the vectors announced
to the operating system. This allows the runtime routines to service certain
traps and exceptions.

At this point, segment information about the Pascal data segment SEG2 is
retrieved using an RMS68K directive. If SEG2 does not exist, an error is issued
and the program is aborted. Otherwise, we can now use SEG2 in place of the
temporary segment SEGT. Thus, we now copy the RMA from SEGT into SEGZ,
initialize A7 to point into SEG2 instead of SEGT, reinitialize the heap
information as before, and reinitialize the trap vectors as before. Finally,
SEGT is deleted.

The initialization routine now sets up the register values needed for Pascal
program execution. These register values are listed in Table 9-17. A3 points
to the long JSR routine, while A5, A6, and A7 all point to the first location of
the RMA.

Next, the initialization routine makes a call that will cause the "standard"
floating point environment to be initialized, if required. The destination of
the call is the first location of a section 8 common section named FINIT. This
common section, as defined in the initialization routine, contains only an RTS
instruction. However, if Phase 2 generated the appropriate external references
to cause loading of the floating point routines, then they overwrite the common
section with a call to standard floating point initialization, followed by an
RTS instruction. The register contents of the MC68000/MC68010 are maintained
across the call to the standard floating point initialization. No special
initialization is required for fast floating point.

Finally, the initialization routine begins execution of the Pascal program. The
entry point of the Pascal program is .PMAIN+2.

9-32

SN

9.7 THE RUNTIME INTERFACE TO BIOS UNDER RMS68K

9.7.1 Introduction

Pascal tasks have the capability of doing I/O under RMS68K, using the ports
provided on the processor card of the VMO1l, VM02, or MVME1ll0. To do this, users
must SYSGEN BIOS with their Pascal task. To provide this support, the Pascal
RTL. provides two major functions. First, the routine CALCLU, given a device
name, calculates the logical unit number that BIOS expects for the device.
Users who wish to modify BIOS to support other devices need only modify CALCLU
to translate the new device into the appropriate logical unit number. See
paragraph 9.7.2 for a detailed description of CALCLU. The second function of
the Pascal RTL is to establish a default terminal ID which will be assigned to
the default Pascal text files INPUT and OUTPUT. This is done in the INIT
procedure as described in paragraph 9.6.1. For specialized applications, users
may want to change the default value of 'CNOO'.

9.7.2 CAILCLU Routine for RMS68K
CAICLU is a Pascal runtime routine that calculates the logical unit number (LUN)

associated with a given device. As written, CALCLU recognizes four device
names:

#PR (for a printer)

#CNO1 (for a second terminal)
#CNOO (for a standard terminal)
(for a standard'terminal)

For #PR, CAICLU calculates an LUN of 3; for #CNOl, it calculates an LUN of 4;
for #CNOO or #, an LUN of 5 is calculated for input, or an LUN of 6 for output.

Whenever a device driver is added to BIOS, a SETLU macro call must be included
in the CAICLU routine of BIOS. The parameters of this macro call are device
name and LU, in the format:

SETLU '<device name>',<logical unit number>

The call should be included after the conditional statement IFEQ RMSVM with the
other SETLU calls.

9.8 TRAP VECTORS

Motorola Pascal running under VERSAdos requires that certain trap vectors be
under control of the Pascal program. These vectors are used to aid in debugging
programs and are not necessary in a debugged program. There are seven vectors
used by Pascal programs. The seven used are:

a. TRAP #13 instruction

b. TRAP #14 instruction

c. Trap on Overflow (TRAPV) instruction
d. Check (CHK) instruction

e. Divide by zero

f. Address Error

g. Bus FError

9-33

TRAP #13 is used to indicate failure during range checking of some item which
cannot be checked using the MC68000/MC68010 CHK instruction.

TRAP #14 is a general purpose error exit and may be invoked by either the Pascal
program code or the runtime library routines. TRAP $#14's are followed by one
word in memory describing what kind of an error occurred. There are currently
only five types of TRAP #14:

a. A 0 in the word after the trap means an error has occurred in a Pascal
runtime routine, and the error number is in DO. Only the low order byte
of DO is significant.

b. A 1 in the word after the trap means it was a floating point runtime
error. The floating point error number is in the low order word of DO.

c. A 2 in the word after the trap means it was an error returned by either
the FHS or IOS tasks. The relevant FHS/IOS error is in the lowest order
byte of the DO register.

d. A 3 in the word after the trap instruction means that a runtime error has
occurred while executing in-line code -- such as a case index out of
range error. The error number in this case is one word on the stack

under the information pushed by the trap call.

e. A 4 in the word after the trap instruction means the standard procedure
HALT(n) was used in the Pascal source program. A 2-byte integer, n, is
on the stack under the information pushed by the trap call. NOTE:
HALT(0) means perform a normal termination; otherwise, an abort with the
user's error number is done. HALT will not cause buffers associated with
open files to be flushed.

Trap on overflow is currently unused, but is reserved for future enhancements.

The check instruction vector is required for range check of some items of 16
bits or less.

The divide-by-zero vector is required to catch divide-by-zero errors and report
them properly.

The bus error vector is used to help in determining where and how a program is
trying to access memory outside its range.

The address error vector is used to help in detecting stack/heap overflow and
compiler mistakes.

If control is given to a routine via a trap vector, other than TRAP #14 with a
word containing 4 following and a word of 0 on the stack below the trap
information, it means that the program is terminating abnormally.

9-34

9.9 RUNTIME INTERFACE FOR VERSAmodule 01 Under VERSAbug

The Pascal runtime routines for the VERSAmodule Ol assume that VERSAbug is
residing in ROM, and is configured as described in the "VERSAbug Operating
Procedure" section of the VERSAbug Debugging Package User's Guide. To use
Pascal without VERSAbug, the DEBUG entry in the Control Table (paragraph 9.9.1)
must be changed and the runtime routines described in the following paragraphs
may be altered to suit the user's purpose.

The layout of the Runtime Maintenance Area (RMA) for VERSAmodule 0l is shown in
Table 9-18. This table corresponds to the areas of the RMA for VERSAdos (Table
9-14) which can't be redefined.

TABLE 9-18. VERSAmodule 01 Runtime Maintenance Area

Offsets from A5

hex decimal
0 Statement Counter
4 Heap Pointer
8 Display Level 0
C 12 Display Level 1
10 16 Display Level 2
14 20 Display Level 3
18 24 Display Level 4
1C 28 Display Level 5
20 32 Display Level 6
24 36 Display Level 7
28 40 Not Used
$148 bytes (328 decimal)
170 368 Snallest Heap Pointer Value
174 372 Runtime Error Routine Storage
$48 bytes (72 decimal)
1BC 444

9-35

The VERSAmodule 01 file parameter block is shown in Table 9-19. The Device ID
is a 4-character device name, and the DDT Address is a 4-byte address of the
Device Descriptor Table. The other field descriptions are as for the previous
description of the file parameter block for Pascal under VERSAdos.

TABLE 9-19. VERSAmodule 01 File Parameter Block

Offsets
hex decimal
0 File Position
4 Pascal File Status | Component Size
8 Device ID
C 12 DDT Address
10 16 Number of bytes input
14 20 Address of buffer start
18 24 Address of buffer end
1C 28 Record buffer
(134 bytes if text file; component size if not)

All the runtime routines are position independent, except for the Device Service
Address (DSA) entries in the Device Descriptor Table (DDT) (paragraph 9.9.2) and
the stack/heap start and end addresses -- MEMBEG and MEMEND -- in the Control
Table (paragraph 9.9.1). These addresses are all the addresses that define
where the RAM for the Pascal program resides. Thus, the program can be moved,
but its RAM will remain at a fixed address.

The routine .PINI, in the module INIT, sets the trap vectors. It assumes that
the trap vectors are stored in RAM. If the trap vectors are to be put in ROM,
the routine INIT must be edited so that the line MEMSTYP EQU RAM changes to
MEMSTYP EQU ROM. Then assemble the runtime routines and reconstruct the
library.

9-36

9.9.1 Control Table

The Control Table describes general control information. 1Its format is as

follows:

DDTLINK DC.L
.PVTRAP1 BRA
CBREAKB BRA
CBREAKAD DC.L
CBREAKHB BRA
CWAITB
CWAITAD
CWAITCH

HR8A
Apgod

EOF
START
STOSDV
OTHSDV
DEBUG
*
MEMBEG
MEMEND

w
28

oW w

588 RBRE

where:

DDTLINK

.PVTRAPL

CBREAKB

CBREAKAD

CBREAKHB

CWAITB

PRT1DDT-* DDT link

TRP1HNDL Trap 1 handler

CBREAK Check for break

SER IOl Break serial I/0 address

CBREAKH Break handler

COWAIT Check for wait

SER IOl Wait serial I/O address

$17 Wait character (CTRL-W)

0 Not used

1 End of file error

+PSTART Routine to start execution

'PRT1' INPUT/OUTPUT files default to PRTI1;

PR ' all other files default to PRT2.

$F00030 Address of VERSAbug pause routine,
or 0 if no VERSAbug present.

FIRST Lowest address of stack/heap

.PZMAIN Highest address of stack/heap

START

is the offset from the start of the Control Table to the start of
the Device Descriptor Table (DDT).

is a branch to the TRAP #1 handler. A TRAP #1 is taken to
terminate the program. Both normal and error terminations are
handled by this routine. The DO register contains $OF if there
was a normal termination; otherwise, it contains $0E for any other
termination. A0 contains the error code if DO contains $O0E. This
routine will stop the program and go to VERSAbug if the DEBUG flag
is set (non-zero). If the flag is not set (zero), then VERSAbug
is not resident and the program will execute a STOP. instruction.

is a branch to the routine to check for a break. The I/0 system
calls this before reading or writing a character. This routine
checks to see if the user has pressed the BREAK key. If pressed,
the system calls the CBREAKH routine to service the break.

is the address of the serial port to check the status of the BREAK
key. The default value of this entry is serial port 1, which is
usually connected to a user's temminal.

is a branch to the routine that will service the break if CBREAK
detects one. If the DEBUG flag is set, it will return control to
VERSAbug. A VERSAbug GO command will continue execution. If the
flag is zero, then there is no VERSAbug and break is ignored.

is a branch to the routine to see if a CTRL-W has been typed on
the device specified by CWAITAD., If it has, this routine will not
return until something else is typed. This routine is called
before each character is output. This allows the user to type a
CTRL-W to suspend output in order to view it.

9-37

CWAITAD
CWAITCH

EOF

START

STDSDV

OTHSDV

DEBUG

MEMBEG

MEMEND

is the address of the serial port to check for CTRL-W.
is the character CTRL-W to wait on.

is the status returned by the read routines when they sense an end
of file condition. On the terminals, this means that the user
typed a CTRL-Z.

is the first location to be executed. It is a branch to a routine
that figures out how much memory is available to the program, and
does a BRA .PINIT with the A7 register containing the address of
top of stack/heap, and the Al register containing the address of
bottom of stack/heap.

is the name of the default device for the files INPUT and OUTPUT.
is the name of the default device for all other files.

is the address where Pascal will go when the BREAK key is pressed
or the program is terminated. If this address is 0, a break is
ignored and program termination is done with a STOP #0
instruction. The default value of this location assumes that
VERSAbug is in its usual location at $F00000.

contains the first location of the stack/heap. This defaults to
the first word of memory after the DSA.

contains the last location of the stack/heap. This defaults to
the value of the symbol .PZMAIN, which is defined by the Pascal
compiler.

9-38

9.9.2 Device Descriptor Table

The Device Descriptor Table (DDT) has one entry for each device in the system.
Initially, VERSAmodule 0l is set up for three devices, defined as follows:

#PRT1 Serial port 1 (normally connected to a user's terminal)
#PRT2 Serial port 2 (normally connected to a host computer)
#PR Parallel port 1, interfaced to a printer.

This selection can be changed by modifying the DDT.

An example format of an entry in the DDT is the following entry for serial
port 1:

PRT1DDT DC.L PRT2DDT-* #1. Link
DC.L 'PRT1! #2. Device name
BRA AINIT #3, Initialization subroutine
BRA ARST #4. Reset subroutine
BRA ARWT #5. Rewrite subroutine
BRA P1RD #6. Read subroutine
BRA AWRT #7. Write subroutine
BRA ACLO #8. Close subroutine
DC.L SER I01 #9. Device address
DC.L P1DSA #10. DSA address

*

* Initialization data (ASCII device data shown)
*

DC.B 0 #11. Character null pad count
DC.B 0 #12. RETURN null pad count
DC.B $1A #13. End-of-file character (CTRL-Z)
DC.B $15 #14. Serial I/0 control character
DC.B STF #15. Delete character (DEL)
DC.B $18 #16. Cancel line (CTRL-X)
DC.B $04 #17. Echo line (CTRL-D)
DC.B 0 #18. Not used
where:
#1 is the 1link; the offset to the next entry in the DDT, or 0 if this is
the last entry.
#2 is the device name.
#3 is the call to the initialization subroutine.
#4-48 are subroutine entries; called whenever a reset, rewrite, read, write,
or close call is made to the device. The register formats upon entry
and exit are described in Table 9-20.
#9 is the device address.
#10 is the DSA address; the address (in RAM) of any variables used by this

device. This is provided so that a single subroutine can service
several devices. The device initialization should copy the initial
data from the DDT entry into this area.

9-39

TABLE 9-20. Register Formats for I1/0 Subroutines (VERSAmodule 01)
SUBROUTINE TIME REGISTER CONTENTS
on D7.L Return address from initialization
Device entry function.
initialization A0.L Pointer to current DDT.
subroutine A3.L Address of long JSR routine.
A5.L Global variable pointer.
A6.L Local variable pointer.
A7.L Stack pointer.
on D7,A0,A3,A5,A6 Are preserved
exit
on Dl.L Pascal file status.
entry D7.L Return address to Pascal program.
Reset A0.L Pointer to current DDT.
subroutine A2.L Pointer to file descriptor.
A3.L Address of long JSR routine.
A5.L Global variable pointer.
A6.L Local variable pointer.
A7.L Stack pointer.
on DO.L Error status.
exit D1,D7,A2-A7 Are preserved.
CCR.Z Set if no error; zero otherwise.
on Dl.L Pascal file status.
entry D7.L Return address to Pascal program.
Rewrite A0.L Pointer to current DDT.
subroutine A2.L Pointer to file descriptor.
A3.L Address of long JSR routine.
AS5.L Global variable pointer.
A6.L Local variable pointer.
A7.L Stack pointer.
on DO.L Erxor status.
exit Dl1,Db7,A0,A2-A7 Are preserved.

CCR.Z

Set if no error; zero otherwise.

9-40

TABLE 9-20. Register Formats for I/0 Subroutines (VERSAmodule 01) (cont'd)
SUBROUTINE TIME REGISTER CONTENTS
on Dl.L Pascal file status.
entry A0.L Pointer to current DDT.
Read A2.L Pointer to file descriptor.
Subroutine A3.L Address of long JSR routine.
A5.L Global variable pointer.
A6.L Local variable pointer.
A7.L Stack pointer.
on DO.L Error status.
exit D1-D7,A0-A7 Are preserved.
CCR.Z Set if no error; zero otherwise.
on Dl.L Pascal file status.
entry AQ.L Pointer to current DDT.
Write A2.L Pointer to file descriptor.
Subroutine A3.L Address of long JSR routine.
AS.L Global variable pointer.
A6.L Local variable pointer.
A7.L Stack pointer.
on DO.L Error status.
exit D1-D7,A0-A7 Are preserved.
CCR.Z Set if no error; zero otherwise.
on Dl.L Pascal file status.
entry D7.L Return address to Pascal program.
Close a0.L Pointer to current DDT.
Subroutine A2.L Pointer to file descriptor.
A3.L Address of long JSR routine.
A5.L Global variable pointer.
A6.L Local variable pointer.
A7.L Stack pointer.
on DO.L Error status.
exit D1,D7,A0,A2-A7 Are preserved.

CCR.Z

Set if no error; zero otherwise.

9-41

The initialization data is the data that will be copied into the DSA by the

device

follows

#11

#12

#13

#14

#15-#17

#18

9.9.3

initialization routine. For ASCII devices, the data is formatted as

is the character null pad count; the number of nulls to put after a
character.

is the carriage return null pad count; the number of nulls to put after
a RETURN.

is the end-of-file character (CTRL-Z); the character that tells the
read routine to set the EOF status in the file variable.

is the serial I/0 control character; not used by any of the I/0
subroutines since they assume that the serial I/0 ports are already set
up. This byte would normally contain the initial control word for the

serial ports.

are the delete character (DEL), cancel line (CTRL-X), and echo line
(CTRL-D) characters; used for input editing when reading from the
terminal.

is not used; defined so that the DDT entry will take up an even number
of bytes.

Standard I/0 Routines

Four standard I/0 routines are provided:

P1RD

P2RD

AWRT

PWRT

If the file is of type TEXT, this routine will read a line from the
terminal accepting the cancel, echo, and delete editing characters. If
the file is of any other type, it will read unformatted until it reads
enough bytes to fill the buffer.

This routine is the same as PlRD, except it will not allow editing
characters. '

This routine writes out a line to a serial port. The line is followed by
a CR/LF if the file is of type TEXT. If the file is binary, it will send
out the component one byte at a time without formatting.

This routine is the same as AWRT, except it writes out a line to a
parallel port.

9-42

9.9.4 Initialization

The VERSAmodule initialization routine performs the same functions as the
EXORmacs and VME/10 initialization routine (paragraph 9.5), but is much simpler
due to the elimination of much of the RMA initialization, command line scanning,
and VERSAdos interfacing. The VERSAmodule initialization routine accomplishes
several functions, including:

a) Setting up the RMA.

b) Initializing the trap vectors.

¢) Setting up processor registers for the Pascal program.
d) Initializing the devices.

Note that a user-written initialization routine for VERSAmodule must also
contain the code shown in Figures 9-6 and 9-7. In addition, the initialization
routine expects register Al to contain the address of the bottom of the
stack/heap (see MEMBEG in the control table) and register A7 to contain the
address of the top of the stack/heap (see MEMEND in the control table).

9.9.5 Table Listing

MOTOROLA M68000 ASM FIX :2560. .TABLE .S5A

PASCAL I/0 CONTROL TABLES

2 TABLE IDNT 0,0 10 DEFINITIONS TABLES
3 P2 R s a2 22X 22222223222 23 22 aldstsss]

4 *

5 *

6 *

7 * PASCAL I/0 ROUTINES

8 *

9 * COPYRIGHTED 1980 BY MOTOROLA, INC.

10 *

11 *

12 *

13 hhkhkhkhkhkhkhhkkhkAAhkAhhkhkhhkkhkhhhhkhhhhkhkhkhhhhkhkkhkhkdid

14 *

15 * CONTROL TABLE

16 * CONTAINS CONTROL BRANCHES AND VARIABLES

17 *

18 00000008 SECTION 8

19 XREF TRP1HNDL,CBREAK, CBREAKH, CWAIT

20 XDEF . PTABLE, DDTLINK, CBREAKB, CBREAKAD, CBREAKHB
21 XDEF ONAITB, CWAITAD,CWAITCH

22 XDEF STDSDV, OTHDV, START

23 XDEF DEBUG

24 XDEF MEMBEG, MEMEND

25 XREF .PZMAIN

26 XREF .PSTART

27 XDEF EOF

28 XDEF .PVTRAPL

29 8 00000000 .PTABLE EQU *

30 8 00000000 0000003A DDTLINK DC.L PRT1DDT-* DDT LINK

31 8 00000004 6000FFFA .PVTRAP1 BRA TRP1HNDL TRAP 1 HANDLER

32 8 00000008 6000FFF6 CBREAKB BRA CBREAK CHECK FOR BREAK

33 8 0000000C OOF70011 CBREAKAD DC.L SER 101 BREAK SER IO ADDR
34 8 00000010 6000FFEE CBREAKHB BRA CBREAKH BREAK HANDLER

35 8 00000014 6000FFEA OWAITBR BRA CWAIT CHECK FOR WAIT

36 8 00000018 OOF70011 CWAITAD DC.L SER 101 WAIT SER IO ADDR

37 8 0000001C 17 OWAITCH DC.B $17 WAIT CHAR (CTL-W)
38 8 0000001D 00 DC.B 0 NOT USED

39 8 0000001E 00000001 EOF DC.L 1 END OF FILE ERROR (DREAD)
40 8 00000022 6000FFDC START BRA .PSTART START ROUTINE

41 8 00000026 50525431 STO$DV DC.B 'PRT1' INPUT/OUTPUT DEFAULT DEVICE
42 8 0000002A 50522020 OTHSDV DC.B 'PR ! DEFAULT FOR OTHER FILES

9-43

43 8 0000002E
44 8 00000032
45 8 00000036

46
47
48
49
50
51
52
53
54
55

114

€0 CO 0D 00 0 00 00 00 00 OO 00 0O 0o OO Co 0 0

00 00 00 CO 0 G0 00 OO 00 GO 00 0O 0O O o 0 0O

o 0O 0 0

00000000
00000001
00000002
00000003
00000004
00000005
00000006

0000003A
0000003E
00000042
00000046
0000004A
0000004E
00000052
00000056
0000005A
0000005E
00000062
00000063
00000064
00000065
00000066
00000067
00000068
00000069

0000006A
0000006E
00000072
00000076
0000007A
0000007E
00000082
00000086
0000008A
0000008E
00000092
00000093
00000094
00000095
00000096
00000097
00000098
00000099

0000009A
0000009E
000000A2
000000A6

00F00030
00000018
00000000

00F70011
00F70019
00F70020

00000001
00000001
00000001
00000001
00000001
00000001
00000001

00000008

00000030
50525431
6000FFBC
6000FFB8
6000FFB4
6000FFB0
6000FFAC
6000FFA8
00F70011
00000000

00000030
50525432
6000FF8C
6000FF88
6000FF84
6000FF80
6000FF7C
6000FF78
00F70019
00000008
00
00
1A
15
7F
18
04
00

00000000
50522020
6000FF5C
6000FF58

000000AA 6000FF54

DEBUG DC.L $F00030
MEMBEG DC.L FIRST
MEMEND DC.L +«PZMAIN

*
*

* VERSAMOULE EQUATES
*

SER I01 EQU $F70011
SER 102 EQU $F70019
PDI1 EQU $F70020

*

* LABELS TO DSA ENTRIES
*

OFFSET O
CHRNL Ds.B 1
CRNL DS.B 1
EOFCHR DS.B 1

DS.B 1
DELCHR DS.B 1
CANCHR DS.B 1
ECHOCHR DS.B 1

*

ADDRESS OF DEBUG

TERMINAL SER_IO
HOST SER IO

CHAR NULL PAD COUNT
CR NULL PAD COUNT
EOF CHAR

SER 10 CONTROL BYTE
DELETE CHAR CHAR
CANCEL LINE CHAR
ECHO LINE CHAR

* VERSAMODULE DEVICE DESCRIPTOR TABLES (DDT)
*

SECTION 8

XREF AINIT,ARST,ARNT,P1RD, AWRT,ACLO

PRTIDDT DC.L PRT2DDT-*
DC.L 'PRT1'
BRA AINIT
BRA ARST
BRA ARNT
BRA PIRD
BRA AWRT
BRA ACLO
DC.L SER IOl
C.L P1DSA
DC.B 0
DC.B 0
DC.B $1A
DC.B $15
DC.B $7F
DC.B $18
DC.B $04
IC.B 0
XREF P2RD

PRT2DDT DC.L PRDD-*
DC.L 'PRT2!
BRA AINIT
BRA ARST
BRA ARAT
BRA P2RD
BRA AWRT
BRA ACLO
DC.L SER 102
DC.L P2DSA
DC.B]
IC.B]
DC.B $1A
IC.B $15
DC.B $7F
DC.B $18
DC.B $04
DC.B 0
XREF ILL, PWRT

PRDD IC.L 0
DC.L ‘PR !
BRA AINIT
BRA ILL
BRA ARNT

9-44

LINK

DEVICE ID

INIT SUB

RST SUB

RWT SUB

READ SUB

WRITE SUB

CLO SUB

DEV ADDR

DSA ADDR

CHAR NULL PAD COUNT INIT
CR NULL PAD COUNT INIT
EOF CHAR (CTL-Z) INIT
SER 10 CTL CHAR INIT
DELETE CHAR (DEL)
CANCEL LINE (CTL-X)
ECHO LINE (CTL-D)

NOT USED

LINK
DEVICE ID

INIT SUB

RST SUB

RAT SUB

READ SUB

WRITE SUB

CLO SUB

DEV ADDR

DSA ADDR

CHAR NULL PAD COUNT INIT
CR NULL PAD COUNT INIT
EOF CHAR (CTL-Z) INIT
SER 10 CTL CHAR INIT
DELETE CHAR (DEL)

CANCEL LINE (CTL-X)

ECHO LINE (CTL~D)

NOT USED

LINK
DEVICE ID
INIT SUB
RST SUB
RWNT SUB

115 8 00000CAE 6000FF50 BRA ILL READ SUB

116 8 000000B2 6000FF4C BRA PWRT WRITE SUB

117 8 000000B6 6000FF48 BRA ACLO CLO suB

118 8 000000BA 0CF70020 DC.L PDI1 DEV ADDR

119 8 000000BE 00000010 DC.L PRDSA DSA ADDR

120 8 000000C2 00 bC.B 0 CHAR NULL PAD COUNT INIT
121 8 000000C3 00 DC.B 0 CR NULL PAD COUNT INIT
122 8 000000C4 1A DC.B $1A EOF CHAR (CTL-Z) INIT
123 8 000000C5 15 DC.B $15 SER IO CTL CHAR INIT
124 8 000000C6 7F DC.B $7F DELETE CHAR (DEL)
125 8 000000C7 18 DC.B $18 CANCEL LINE (CTL-X)
126 8 000000C8 04 DC.B $04 ECHO LINE (CTL-D)
127 8 000000C9 00 DC.B 0 NOT USED

128 00000000 SECTION O

129 0 00000000 00000008 P1DSA Ds.B 8

130 0 00000008 00000008 P2DSA DS.B 8

131 0 00000010 00000008 PRDSA Ds.B 8

132 0 00000018 00000000 FIRST DC.L 0 FIRST ADDRESS OF STACK-HEAP
133 * SECTION 15 MUST FOLLOW THIS ADDRESS!!!!itil!

134 8 00000022 END START

*kkkk*x TOTAL FRRORS 0=

*kxxk*x TOTAL WARNINGS 0--
SYMBOL TABLE LISTING

SYMBOL NAME SECT VALUE SYMBOL NAME SECT VALUE

« PSTART XREF * 00000000 ECHOCHR 00000006

.PTABLE XDEF 8 00000000 EOF XDEF 8 0000001lE

.PVTRAP1 XDEF 8 00000004 EOFCHR 00000002

-PZMAIN XREF * 00000000 FIRST 0 00000018
ACLO XREF * 00000000 ILL XREF * 00000000
AINIT XREF * 00000000 MEMBEG XDEF 8 00000032
ARST XREF * 00000000 MEMEND XDEF 8 00000036
ARWT XREF * 00000000 OTHSDV XDEF 8 0000002A
AWRT XREF * 00000000 P1DSA 0 00000000

CANCHR 00000005 P1RD XREF * 00000000

CBREAK XREF * 00000000 P2DSA 0 00000008

CBREAKAD XDEF 8 0000000C P2RD XREF * 00000000

CBREAKB XDEF 8 00000008 PDI1 00F70020

CBREAKH XREF * 00000000 PRDD 8 0000009A

CBREAKHB XDEF 8 00000010 PRDSA 0 00000010

CHRNL 00000000 PRT1DDT 8 0000003A

CRNL 00000001 PRT2DDT 8 0000006A

CWAIT XREF * 00000000 PWRT XREF * 00000000

CWAITAD XDEF 8 00000018 SER IOl 00F70011

CWAITB XDEF 8 00000014 SER 102 00F70019

CWAITCH XDEF 8 0000001C START XDEF 8 00000022

DDTLINK XDEF 8 00000000 STDSDV XDEF 8 00000026

DEBUG XDEF 8 0000002E TRP1HNDL XREF * 00000000

DELCHR 00000004

9-45/9-46

-

CHAPTER 10

FLOATING POINT ROUTINES

10.1 IMPLEMENTATION

M68000 Family Pascal offers two versions of floating point software: the IEEE
standard floating point processor simulator (M68341), which supports 32-, 64-,
and 80-bit numbers; and the single-precision fast floating point software
package (M68343), which supports 32-bit numbers only. The fast floating point
(FFP) software, selectable with Pascal's Q option (Phase 1 command line or
option comment in source program), offers a significant speed advantage over the
default standard version.

The floating point routines are made available when the Pascal program is linked
to Pascal's default runtime library, PASCALIB.RO. For fast floating point
(FFP), all routines are separately-callable subroutines in PASCALIB. In
standard floating point (standard FP), most real functions are performed by
software simulation of a floating point processor; several functions are
performed by separately-callable subroutines in PASCALIB.

Modules which use fast floating point may not be linked with modules which use
the standard floating point. If this is attempted, the linker will display the
error message:

** WARNING 701 - Multiply defined symbol: .PFLOATP

This chapter describes the interface between M68000 Family Pascal and the
floating point routines, and lists the real functions provided in the default
runtime library; the user may wish to replace certain routines with his own
32-bit, IEEE-format-compatible routines.

Chapter 11 provides an internal representation of data which is applicable to
either version of floating point, and a brief glossary of floating point terms.
Appendix A provides a description of the standard FP processor.

10.1.1 Interface to Floating Point Processor (Standard FP)

Instructions to the standard floating point processor take the form of the
M68000/M68010 reserved F-line instruction. Thus, when the M68000/M68010
encounters a floating point processor instruction, it generates a trap to the
F-line exception handler. This handler then sets up the appropriate environment
for the floating point processor, and executes it.

However, in the EXORmacs environment, the F-line trap would return control to
the executive, which would determine the cause of the trap and finally give

control back to the Pascal F-line trap handler. In order to bypass this
overhead, a call to an F-line trap simulator is inserted before each F-line

instruction.

The F-line trap simulator sets up the environment as if an F-line trap had
occurred and the F-line trap handler had serviced it, and then calls the
floating point processor.

10-1

The Phase 2 command line option -J inhibits the generation of the call to the
F-line trap simulator. 1In this case, the F-line instructions generated would be
executed. Thus, when using the -J option, the user must supply his own F-line
trap handler, memory fetch/store routine, and floating point initialization
routine. Appendix A describes the requirements of the F-line trap handler and
the memory fetch/store routine.

10.1.2 Externals (Standard FP)

A number of external label references and definitions are used by the floating
point software. If Phase 2 generates any floating point instructions, it will
also generate an external reference to .PFINIT in order to bring in the floating
point initialization routine. Additionally, if the Phase 2 command line option
J is enabled and floating point instructions are generated, then .PFPOINT will
be referenced as an external. .PFPOINT is the entry point of the F-line trap
simulator. If the J option is disabled for the Phase 2 compilation of the main
program (i.e., -J had been entered as a command option), then an RTS instruction
will be generated in section 8 and defined as the external definition for
.PFPOINT. This results in floating point instructions which exist in the
runtime library to be executed as F-line instructions, even though they are
preceded by a call to .PFPOINT.

The F-line trap simulator routine references .P68341P, which is the entry point
to the floating point processor. This causes the linkage editor to include the
floating point processor. The F-line trap simulator also includes an area in
section 15 for the floating point register block required by the floating point
processor. However, the block is not defined externally, since the F-line trap
simulator passes the address of the block to the floating point processor as an
entry parameter. Any user supplied F-line trap handler should supply its own
floating point register block definition in section 15.

10.1.3 Floating Point Initialization (Standard FP)

The floating point initialization routine is called from the main initialization
routine, as described in paragraph 9.5.1. First, the floating point
initialization routine saves on the stack all the registers it will be using.
Floating point registers occupy a space in memory directly above the RMA.

Next, it initializes a floating point exception vector table starting at the
smallest heap pointer value as defined in the RMA (floating point exception
vectors are located between the heap and the Pascal exception vectors). The
structure of the table is shown in Figure 10-1. The starting address of the
table gets passed to the floating point processor as an entry parameter. The
default exception handler is included in the .PFINIT module. The exception
handler loads the appropriate error number in A0 and then aborts the program.

The floating point initialization routine then updates the smallest heap pointer
value in the RMA to point just after the vector table. The next step is to
re-initialize the heap and heap pointer, as shown in Figure 9-8.

The floating point initialization routine then clears the STATUS and CNTRL

registers of the floating point processor. Finally, it restores the registers
it saved on entry and executes an RTS.

10-2

The supplied floating point initialization routine includes the instructions in
the FINIT named common section that cause the floating point initialization to
be called (see paragraph 9.5.1). Due to the order in which the linkage edit
must be done, a user-supplied floating point initialization routine should not
include the FINIT named common section. The user-supplied FINIT named common
should be in a separate module and reference the beginning of the user's
floating point initialization routine as an external. The linkage edit sequence
that must be followed with user-supplied real runtime routines is:

a. Load the Pascal program modules.

b. Load the user-supplied runtime routines, including floating point
processor initialization, F-line trap handler, etc.

c. Read the standard Pascal runtime library.

d. If using a user-supplied floating point processor initialization routine,
load the user-supplied FINIT common section.

FPVEC DC.L INVALID.OPERATION
DC.L OVERFLOW
DC.L UNDERFLOW
DC.L DIVIDE.BY.ZERO
DC.L INEXACT.RESULT
DC.L. INTEGER.OVERFLOW
DC.L RESERVED.EXPONENT

FIGURE 10-1. Floating Point Exception Vector Table

10.2 REAL RUNTIME ROUTINES (STANDARD FP)

This section describes real runtime routines that the user might want to
replace. The descriptions include the external labels used to call the routine,
the arguments and result of the routine, and the entry conditions that would
cause a runtime error.

Each routine is written as a subroutine. All functions not listed here are
handled by the floating point processor. The processor contains four floating
point registers named FPO, FP1l, FP2, and FP3 (all of type xreal), plus status
and control registers. Registers A3, A5, and A6 must be preserved through the
routine. Although they may be used by the routine, their original contents must
be restored upon exit from the routine. Other registers may be modified by the
routine.

The floating point processor is fully described in Appendix A.

10-3

The trap STATUS register of the floating point processor is set appropriately

for any errors detected by the routines.

If the trap is enabled, then the

corresponding trap handler (as indicated in the floating point exception vector —

table) is called by the runtime routine.

The trap stack environment is set up

as if the trap handler had been called by the floating point processor.

10.2.1 Sine

External label:

Entry: FPO
A7.L

Exit: FPO
A7.L

Description:

10.2.2 Cosine
External label:

Entry: FPO

A7.L
Exit: FPO

A7.L
Description:

10.2.3 Tangent

External label:

Entry: FPO
A7.L

Exit: FPO
A7.L

Description:

.PSIN

Argument in radians.
Pointer to return address on the stack.

Sine of entry FPO.
Pointer to the stack with the return address removed.

Returns sine of value passed in FPO. Generates invalid
operation error if entry value is a NaN or an infinity.

.PCOS

Argument in radians.
Pointer to return address on the stack.

Cosine of entry FPO.
Pointer to the stack with the return address removed.

Returns cosine of value passed in FPO. Generates an

invalid operation error if entry value is a NaN or an
infinity.

+PTAN

Argument in radians.
Pointer to return address on the stack.

Tangent of entry FPO.
Pointer to the stack with the return address removed.

Returns tangent of value passed in FPO. Generates invalid
operation error if entry value is a NaN or an infinity.

10-4

10.2.4 Arctangent

External label:

Entry: FPO
A7.L

Exit: FPO
A7.L

Description:

NOTE: ARCSIN(X)
ARCCOS (X)

.PATN

Argument.
Pointer to return address on the stack.

Arctangent, in radians, of argument.
Pointer to the stack with the return address removed.

Returns the arctangent of the value passed in FPO.
Generates invalid operation error if entry value is a NaN.
The result is in the range -n/2 to +7/2.

ARCTAN (X/SQRT (1-SQR(X)))
m/2-ARCTAN (X/SQRT (1-SQR) X)))

10.2.5 Natural Logarithm

External label:

Entry: FPO

A7.L
Exit: FPO

A7.L
Description:

10.2.6 Exponential
External label:

Entry: FPO

A7.L
Exit: FPO

aA7.L
Description:

.PLOG

Argument.
Pointer to return address on the stack.

Natural logarithm of entry FPO.
Pointer to the stack with the return address removed.

Returns natural logarithm of value passed in FPO. Generates
invalid operation error if entry value is a NaN, an
infinity, or negative.

.PEXP

Argument.
Pointer to return address on the stack.

e raised to the power of the entry FPO.
Pointer to the stack with the return address removed.

Returns result of e raised to the power of the value passed
in FP0. Generates invalid operation error if argument is a
NaN or an infinity. Generates overflow if argument is
greater than approximately 11355.83. Generates underflow if
argument is less than approximately -11400.19.

10-5

10.2.7 Power
External label:
Entry: FPO
FP1
A7.L
Exit: FPO
FPl
A7.L

Description:

10.2.8 Round
External label:

Entry: FPO

A7.L
Exit: FPO

DO.L

A7.L
Description:

10.2.9 Truncate
External label:

Entry: FPO

A7.L
Exit: FPO

DO.L

A7.L
Description:

-PPWR

The base.
The exponent.
Pointer to return address on the stack.

The result of raising the base to the exponent.
Preserved.
Pointer to the stack with the return address removed.

Returns result of raising entry value in FPO by entry value
in FP1l. The result is determined by taking the exponential
of the product of the power times the natural log of the
base. Therefore, power can generate any of the errors that
exponential, multiplication, and log can generate.

+«PRND

Argument.
Pointer to return address on the stack.

Argument +.5 or ~.5.
Result of rounding FPO.
Pointer to the stack with the return address removed.

Round is performed by adding 0.5 to a positive argument or
subtracting 0.5 from a negative argument, setting the
rounding mode to round-to-zero, and then moving the argument
to DO, all using floating point processor instructions. The
original rounding mode is restored: An integer overflow
error may be generated when the argument is moved to DO.

.PTRC

Argument.
Pointer to return address on the stack.

Preserved.
Result of truncating FPO.
Pointer to the stack with the return address removed.

Truncate is performed by setting the rounding mode to
round-to-zero and then moving the argument to DO, all using
floating point processor instructions. The original
rounding mode is restored. An integer overflow error may be
generated when the argument is moved to DO.

10-6

10.2.10 Not-a-Number (NaN)

External label: .PNAN
Entry: DO.L The long integer to be placed in the significand of the NAN.
A7.L Pointer to return address on the stack.
Exit: FP0 NaN result.
DO.L Preserved unless error; if error, contents destroyed.
A7.L Pointer to the stack with the return address removed.
Description: Returns a non-trapping NaN in FPO. Right justified in the

significand of the NaN is the entry argument. A runtime
error of 1070 is generated if the argument is zero.

10.3 REAL RUNTIME ROUTINES (EFP)

The fast floating point routines in the library PASCALIB.RO are written as
subroutines which may be replaced by the user if desired. User-supplied
routines must meet the same interface requirements as the furnished routines.
All FFP routines must reside in the same contiguous block of memory because of
word-sized branches between some routines.

This section lists the subroutines, their external labels, arguments, and entry
and exit conditions. A separate paragraph describes exceptional conditions.

There are two general types of routines: functions and conversions. Most of
the routines expect the primary argument to be in data register D7, and the
secondary argument, if present, to be in register D6. For example, a floating
point add operation must provide the source value in D6 and the destination
value in D7. The square root function, however, is a l-argument function; D7
will contain the argument, which will be replaced by the result. Most routines
set the condition code as determined by the results of the operation involved.
Most of the functions preserve the caller's register set. The amount of stack
required for each routine is minimal.

The conversions -- along with the five primary functions add, subtract,
multiply, divide, and square root -- return the highest accuracy possible. This
is done by producing results as though to infinite precision during computation,
and then rounding to single precision. When a result is exactly between two
representable values in the format, rounding will occur up for positive values
and down for negative values. This gives an effective 23.5 binary bits of
precision, or approximately 7.2 decimal digits. However, there are cases where
less precision is available, such as whén cancellation occurs during the
addition of oppositely-signed numbers which are very close in value. Also,
anomalies such as ‘"wobbling precision" inherent in conversions from
floating-point to decimal may actually cause the return of eight full decimal
digits of accuracy if the leading decimal digit is small. The transcendentals
have varying precision, depending on arguments and the function invoked.

The FFP routines do not handle infinity or NaN's. Calculations or functions,
which in the standard FP would have resulted in the creation of an infinity or a
NaN, will cause a runtime error if FFP is enabled. In addition, the FFP
routines do not maintain signed zeros (positive and negative); only positive
zexro is generated.

10-7

10.3.1 Sine
External label:

Entry: D7.L

A7.L
Exit: D7.F

A7.L

CCR
Description:

10.3.2 Cosine
External label:

Entry: D7.L

A7.L
Exit: D7.F

A7.L

CCR
Description:

10.3.3 Tangent
External label:

Entry: D7.L

A7.L
Exit: D7.F

A7.L

CCR
Description:

-PQOSIN

Argument in radians.
Pointer to return address on the stack.

Sine of argument.

Pointer to the stack with the return address removed.

Z bit set if result is 0; N bit set if result is negative;
V bit set if source value too large.

Returns sine of source value. If source value is extremely
large and little or no precision would result, =zero is
returned instead.

.PQCOS

Argument in radians.
Pointer to return address on the stack.

Cosine of argument.

Pointer to the stack with the return address removed.

Z bit set if result is 0; N bit set if result is negative;
V bit set if source value too large.

Return cosine of source value. If source value too large,
zero is returned.

.PQTAN

Argument in radians.
Pointer to return address on the stack.

Tangent of argument.

Pointer to stack with return address removed.

Z bit set if result is 0; N bit set if result is negative;
V bit set if source value too large.

Return tangent of source value. If source value too large,
zero is returned.

10-8

10.3.4 Arctangent
External label:
Entry: D7.L
Exit: D7.L
A7.L

CCR

Description:

NOTE: ARCSIN(X) =

ARCCOS(X) =

.PQATAN

Argument.
Pointer to return address on the stack.

Arctangent, in radians, of argument.
Pointer to stack with return address removed.
7Z bit set if result 0; N bit cleared.

Returns arctangent of source value in the range -T/2 to T/2.

ARCTAN (X/SQRT (1-SQR (X)))
T/2-ARCTAN (X/SQORT (1~-SQR) X)))

10.3.5 Natural Logarithm

External label:

Entry: D7.L
A7.L

Exit: D7.L

A7.L
CCR

Description:

«PQLOG

Argument.
Pointer to return address on the stack.

Natural logarithm of entry argument.

Pointer to stack with return address removed.

Z bit set if result 0; N bit set if result negative;
V bit set if argument is negative.

Returns natural logarithm of source value. A negative or 0
argument is illegal and causes a runtime error with the abort
code set to invalid operation.

10.3.6 Exponential

External label:

Entry: D7.L

A7.L
Exit: D7.L

A7.L

CCR
Description:

-PQEXP

Argument (base).
Pointer to return address on the stack.

e raised to the power of the base.
Pointer to stack with return address removed.
7 bit set if result 0; N bit cleared.

Returns result of raising e to the power of the base.
Underflow will return 0. Overflow causes a runtime error.

10-9

10.3.7 Power
External label:
Entry: D6.L
D7.L
A7 .L
BExit: D6.L
D7.L
A7.L
CCR

Description:

10.3.8 Round
External label:

Entry: D7.L

A7.L
Exit: D7.L

A7.L

CCR
Description:

10.3.9 Test
External label:

Entry: D7.L

A7.L
Exit: D7.L

A7.L

CCR
Description:

<PQPWR

The exponent.
The base.
Pointer to return address on the stack.

Preserved.

Result of raising base to the exponent.
Pointer to stack with return address removed.
Z bit set if result 0; N bit cleared.

Returns the result of the base value taken to the power of
the exponent. A negative or 0 base value is illegal and
causes a runtime error. Underflow will return 0. Overflow

causes a runtime error.

+PQRND

FP number.
Pointer to return address on the stack.

Rounded FP long word integer (2's complement).
Pointer to stack with return address removed.
N bit set if result negative; Z bit set if result 0.

Accepts FP value and replaces it by its rounded, signed 2's
complement binary long word equivalent. Similar to .PQFPI,
but rounds positive values by adding .5 and truncating;
rounds negative values by subtracting .5 and truncating.
Overflow causes a runtime error.

.PQTST

Destination number.
Pointer to return address on the stack.

Preserved.
Pointer to stack with return address removed.
N bit set if result negative; Z bit set if 0.

Sets the CCR as determined by the value in D7 for negative,
positive, and zero.

10-10

10.3.10 Compare

External label: .PQCMP

Entry: D6.L Source number.
D7.L Destination number.
A7.L Pointer to return address on the stack.
Exit: D6.L Preserved.
D7.L Preserved.
A7.L Pointer to stack with return address removed.
CCR N and V bits set for proper arithmetic tests; Z bit set if
result 0.
Description: Sets the CCR as determined by an arithmetic comparison of the

source and destination values. The comparison is the result
of the source taken from the destination. Neither argument
is altered.

10.3.11 Absolute Value

External label: .PQABS

Entry: D7.L Argument number.
A7.L Pointer to return address on the stack.
Exit: D7.L Absolute value.
A7.L Pointer to stack with return address removed.
CCR N bit cleared; Z bit set if result O.
Description: Return the absolute value of the argument.

10.3.12 Arithmetic Negate

External label: .PONEG

Entry: D7.L Argument.

A7.L Pointer to return address on the stack.
Exit: p7.L Negated result,

A7.L Pointer to stack with return address removed.

CCR N bit set if result negative; Z bit set if result 0.
Description: Returns the negated value of the argument.

10-11

10.3.13 Addition
External label:

Entry: D6.L
D7.L
A7.L

Exit: D6.L
D7.L
A7.L
CCR

Description:

+PQADD

Addend (source).
Adder (destination).
Pointer to return address on the stack.

Preserved.

Result of source added to destination.

Pointer to stack with return address removed.

N bit set if result negative; Z bit set if result 0.

Returns the sum of source and destination values. Underflow
will return 0. Overflow causes a runtime error.

10.3.14 Subtraction

External label:

Entry: D6.L
D7.L
A7.L

Exit: D6.L
D7.L
A7.L
CCR

Description:

.PQSUB

Subtrahend (source).
Minuend (destination).
Pointer to return address on the stack.

Preserved.

Result of source subtracted from destination.
Pointer to stack with return address removed.

N bit set if result negative; Z bit set if result 0.

Returns the result of subtracting the source from the
destination; the sign of the source is inverted and the
operation treated as an addition.

10.3.15 Multiplication

External label:

Entry: D6.L
D7.L
A7.L

Exit: D6.L
D7.L
A7.L
CCR

Description:

.POMUL

Multiplier (source).
Multiplicand (destination).
Pointer to return address on the stack.

Preserved.

Result of source multiplied by destination.

Pointer to stack with return address removed.

N bit set if result negative; Z bit set if result 0.

Returns result of multiplying the source by the destination.
Underflow will return 0. Overflow causes a runtime error.

10-12

10.3.16 Division
External label:

Entry: D6.L

Exit: D6.

Description:

.PODIV

Divisor (source).
Dividend (destination).
Pointer to return address on the stack.

Preserved.

Result of source divided into destination.

Pointer to stack with return address removed.

N bit set if result negative; Z bit set if result 0.

Returns result of dividing the source into the destination.
Underflow will return 0. Overflow causes a runtime error. A
zero divisor is illegal and causes a runtime error.

10.3.17 Square Root

External label:

Entry: D7.L

A7.L
Exit: D7.L

A7.L

CCR
Description:

«PQSQRT |

Argument.
Pointer to return address on the stack.

Square root of argument.

Pointer to stack with return address removed.

Bit N is cleared and bit Z is set if result 0. A negative
value is illegal and causes a runtime error.

Returns the square root of the argument.

10.3.18 Division with Remainder

External label:

Entry: D6.L
D7.L
A7.L

Exit: D6.L
D7.L
A7.L
CCR

Description:

. POREM

Divisor.
Dividend.
Pointer to return address on the stack.

Preserved.

Remainder.

Pointer to stack with return address removed.

N bit set if result negative; Z bit set if result 0.

Similar to .PQDIV but there is no overflow condition.

10-13

10.3.19 Conversion of Floating Point to Integer (Truncate)

External label:

Entry: D7.L

A7.L
Exit: D7.L

A7.L

CCR
Description:

.PQFPI

FP number.
Pointer to return address on the stack.

Fixed point long word integer (2's complement) .
Pointer to stack with return address removed.
N bit set if result negative; Z bit set if result 0.

Accepts FP value and replaces it by its signed 2's complement
binary long word equivalent. Range provided is
=2,147,483,649 < value < +2,147,483,648. If magnitude of
input is larger than that allowed by 32-bit signed binary
value, overflow will occur. Results of over 24-bit integer
magnitude are imprecise and have low end zeros.

10.3.20 Conversion of Integer to Floating Point

External label:

Entry: D7.L

A7.L
Exit: D7.L

A7.L
Description:

10.3.21 Read Real
External label:
Entry: AQ.L
Al.L
A7.L
Exit: AO.L
Al.L
A7.L

Description:

.PQIFP

Fixed point long word integer (2's complement).
Pointer to return address on the stack.

FP number.
Pointer to stack with return address removed.

Accepts a signed 2's complement binary long word value and
replaces it with a single-precision FP value. Integers of
more than 24 bits in size will be rounded and imprecise.

-PQRDR

Address of Pascal file pointer.
Address of real number.
Pointer to return address on the stack.

Preserved.
Preserved.
Pointer to stack with return address removed.

Reads a real number from a text file and stores it at the
specified location.

10-14

10.3.22 Write Real

External label: .POWRR

Entry: DO.W Width of field for real number.
D1.W Width of field for fractional part; if Dl negative, number
written in exponential format.
D7.L Real number.
A0.L Address of Pascal file pointer.
A7.L Pointer to return address on the stack.
Exit: DO.W Contents destroyed.
Dl.W Contents destroyed.
D7.L Contents destroyed.
AO0.L Preserved.
A7.L Pointer to stack with return address removed.

Description: Writes a real number to a text file in fixed point or
floating point format.

10.3.23 Exceptional Conditions

The following list details all unusual conditions possible during fast floating
point operations and identifies the results for each case.

Underflow

Underflow occurs when a result is smaller than the smallest representable value
supported. When this occurs a positive zero result is returned with no abnormal

condition signaled.
Overflow

When an operation exceeds the largest positive or negative normalized value
handled, an overflow condition occurs. Overflow causes a runtime error with

abort code 2002.

Divide by Zero

Division by zero is invalid and will cause a runtime error with abort code 2008.
(Division of zero by zero yields abort code 2400.)

Negative Square Root

A negative square root other than zero is invalid and will cause a runtime error
with abort code 2001.

Invalid ASCII Conversion to Float

When converting a character string to float and an invalid pattern is detected,
a runtime error will occur with abort code 1032.

10-15

Sine/Cosine/Tangent Argument Too Large

If the input argument to any sine, cosine, or tangent function will result in -
less than 5 bits of precision because of excessive magnitude, zero is returned
with the V bit set in the condition code register.

Negative X for X**Y Power Function

If a negative value is used to take to a floating power, a runtime error will
occur with abort code 2001.

Negative X for Log(X)

If a negative logarithm is attempted, a runtime error will occur with abort
code 2001.

10-16

CHAPTER 11

INTERNAL REPRESENTATION OF DATA

11.1 INTERNAL REPRESENTATION

The floating point data in this section is generally valid for both standard
floating point and fast floating point. Exceptions are noted.

Integer:

31 24 23 16 15 87 0

|s | | | | I

Size: 4 bytes
Format: Signed two's-complement
Range: -2,147,483,648 to 2,147,483,647

for an integer subrange type within the range -128 to 127, inclusive:

7 0

|s | |

Size: 1 byte
Format: Signed two's-complement
Range: -128 to 127

for an integer subrange type that extends outside the range -128 to 127,
inclusive, but is within the range -32,768 to 32,767, inclusive:

15 87 0

s | | I

Size: 2 bytes
Format: Signed two's-complement
Range: -32,768 to 32,767

11-1

Character: 7 6 0

|0 | I

Size: 1 byte
Format: 7-bit ASCII
Range: 0 to 127

Boolean: 7 0
I I
Size: 1 byte
Values: 0 = False
1 = True
Set:
63 56 55 48 47 40 39
| | I |
31 24 23 16 15 8 7
I I I |
Size: 8 bytes

Range: Up to 64 elements

Enumerated
Scalar: 15 8 7 0

0 | | I

Size: 2 bytes
Representation: 0 to 32,767

11-2

7 0

0] |

Size: 1 byte
Representation: 0 to 127

31 24 23 16 15 8 7

0] l | |

Size: 4 bytes
Representation: 0 to 2,147,483,647

String:
|Cur. Length | | | . . .
Size: 2 to 32766 bytes
Representation: Current-length word and
0 to 32764 ASCII characters
Pointer:
31 16 15

Size: 4 bytes
Range: 0 to 232 -1

11-3

Real:

31 30 23 22
|s | exponent (e) | significand (f)
Length in bits 32
Interpretation of sign:
positive 0
negative 1

Normalized Numbers:
interpretation of e
bias of e
range of e
interpretation of significand
relation to representation of real numbers

NOTE

unsigned integer

127

0 < e < 255

1.f

(-1)"s x 2% (e-127) x 1.£f

Significand lies in the range 1.0 < significand < 2.0,

with the integer part implicit.

Signed Zeroes:
e:
f =

Reserved Operands:
Denormalized numbers:
e:
bias of e
interpretation of significand
range of £
relation to representation of real numbers

Signed Infinities:

o o

0

126

0.f

nonzero

(-1)"s x 2°-126 x 0.f

e = 255
f = 0
Not-a-Numbers:
e = 255
f = nonzero
interpretation of significand don't care
Ranges: Standard FP FFP
maximum positive normalized 3.4 x 10738 9.2 x 10718
minimum positive normalized 1.2 x 10°-38 5.4 x 107-20
minimum positive denormalized 1.4 x 107-45 -
maximum negative normalized -1.2 x -10738 -2.7 x 107-20
minimum negative normalized ~-3.4 x -107-38 -9.2 x 10718

11-4

Dreal (standard FP only):

63 62

52 51

|s | exponent (e) | significand (f)

Length in bits

Interpretation of sign:
positive
negative

Normalized Numbers:
interpretation of e
bias of e
range of e
interpretation of significand
relation to representation of real numbers

NOTE

64

unsigned integer

1023

0 < e < 2047

1.f

(-1)"s x 27 (e-1023) x 1.f

Significand lies in the range 1.0 < significand < 2.0,

with the integer part implicit.

Signed Zeroes:

e
f

Reserved Operands:
Denormalized numbers:

e:

bias of e

interpretation of significand

range of £

relation to representation of real numbers

Signed Infinities:

e =
f =

Not—-a~-numbers:

interpretation of significand

Ranges:
maximum positive normalized
minimum positive normalized
minimum positive denormalized

11-5

0

1022

0.f

nonzero

(-1)"s x 27-1022 x 0.f

2047
0

2047
nonzero
don't care

1.8 x 107307
2.2 x 107-308
4.9 x 107-324

Xreal (standard FP only):

79 78 64 63 62 0
|s | exponent (e) |3 | £ ,
| === significand >
Length in bits 80
Interpretation of sign:
positive 0
negative 1

Normalized Numbers:
interpretation of e
bias of e
range of e
interpretation of significand
relation to representation of real numbers

NOTE

2's complement integer
0

-16384 <= e < 16383
j.£

(-1)"s x 2"e x j.£f

Significand lies in the range 1.0 < significand < 2.0,

with the integer part explicit.

Signed Zeroes:
e:
significand =

Reserved Operands:
Denormalized numbers:
e:
bias of e
interpretation of significand
range of £
relation to representation of real numbers

Signed Infinities:
e =
significand =

Not-a-numbers:
e =
significand =
interpretation of significand

Ranges:
maximum positive normalized
minimum positive normalized
minimum positive denormalized

11-6

-16384 ($4000)
0

-16384

0

0.f

nonzero

(-1)"s x 27-16384 x 0.f

16383 ($3FFF)
0

16383 (S3FFF)
nonzero
don't care

6 x 1074931
8 x 107-4933
9 x 107-4952

11.2 DEFINITIONS

Biased Exponent - The sum of the exponent and a constant (Bias) chosen to make
the biased exponent's range non-negative.

Binary Floating Point Number - A bit string characterized by three components:
a sign, a signed exponent, and a significand. Its numerical value, if any, is
the signed product of its significand and two raised to the power of its
exponent. A bit string is not always distinguished from a number it may
represent.

Denormalized - The exponent is the format's minimum, the explicit or implicit
leading bit is a zero, and the number is not normal zero. To denormalize a
binary floating point number means to shift its significand right while
incrementing its exponent, until it is a denormalized number.

Exponent - That component of a binary floating point number which signifies the
power to which two is raised in determining the value of the represented number.
Occasionally, the exponent is called signed or unbiased exponent.

FFP - An abbreviation for 'fast floating point'.
FP - An abbreviation for 'floating point'.

Fraction - The field of the significand that lies to the right of its implied
binary point.

Infinities - Infinities are represented by having all exponent bits on and
significand bits off. The sign bit determines the difference between a plus or
minus infinity.

NaN - Not a Number; a bit representation which indicates that the number is not
a valid floating point number. NaN's may be user—generated, for example, when
initializing areas of memory to indicate that no valid floating point number has
been stored there.

Normalized - If the number is nonzero, shift its significand left while
decrementing its exponent until the leading significand bit becomes one; the
exponent is regarded as if its range were unlimited. If the significand is
zero, the number becomes normal zero. Normalizing a number does not change its

sign.

Normal Zero - The exponent is the format's minimum and the significand is zero.
Normal zero may have either a positive or negative sign. Only the extended
format has any unnormalized zeroes.

Significand - That component of a binary floating point number which consists of
an explicit or implicit leading bit to the left of its binary point and a
fraction field to the right of the binary point.

Unnormalized - The exponent is greater than the extended format's minimum and
the explicit leading bit is zero. If the significand is zero, this is an
unnormalized zero.

11-7/11-8

APPENDIX A

STANDARD FLOATING POINT PROCESSOR

A.1 PROGRAMMER'S MODEL

The data in this appendix applies to the Motorola standard floating point,
M68341.

15 8 | 7 0
+ + +
| CONDITION code byte| TRAP byte | STATUS
+ F +
15 8|7 0
+ + +
| undef ined | TRAP byte | TMPSTAT
+ + +
15 8 |7 0
I MODE byte | ENABLE byte | CNTRL
+ + S
31 0
+ +
| Instruction address | INSTAD
+ +
79 0
| Floating point accumulator 0 | FPO
& +
79 . 0 .
+ +
| Floating point accumulator 3 | FP3
+ +

The standard floating point processor has eight registers available to the
programmer. The four floating point accumulators (FPO, FPl, FP2, and FP3)
contain floating point numbers in internal format. The instruction address
register contains the address of the floating point instruction currently being
executed. The control register is initialized by the programmer to specify the
modes of calculation and of trapping on errors. The status register is set by
the floating point processor and may be examined by the programmer. The
temporary status is used to hold the status of the last operation only. The
bytes making up the status and control registers are further defined in the
following paragraphs.

A.l.1 TRAP Status Byte

7 6 5 4 3 2 1 0
N o + +
I

+ + + + +
I XXX l RSVX l IOVF INEX I DZ | UNFL l OVFL | 10P I
+ -+ + + + + + + +

The bits in the trap status byte are set if any errors have occurred. Note that
each bit of the trap status byte must be reset by the caller. The FP processor
only writes 1 bits into the status byte, and never clears existing bits. This
is done so that a long calculation can be completed with the error status
checked once at the end. Note that the bits in the TRAP status byte are in the
same bit positions as the corresponding bits in the ENABLE mode byte.

Bit 0 Invalid operation

Bit 1 Overflow

Bit 2 Underflow

Bit 3 Divide-by-zero

Bit 4 Inexact result

Bit 5 Integer overflow

Bit 6 Reserved exponent value (minimum or maximum exponent) seen as an
input operand

Bit 7 Unused, reserved

A.1.2 CONDITION Code Status Byte

15 —— 14 13 - 10 9 -- 8
+ + + + + + + + +
| XXX | IOP_CODE | CMPCC |
+ + + + + + + + +

This result status byte contains the result of a floating point compare
instruction and also the type of an invalid operation error, if one occurred.

Bits 8-9

Bits 10-13

Bits 14-15

Condition codes from FCMP instruction (CMPCC)

00 = Equal

01 = Less than

10 = Greater than
11 = Unordered

Invalid operation code (IOP CODE)

W

S

—
= O W 0=

13

This field is set when an invalid operation occurs and the IOP
bit is set in the TRAP status byte.

No IOP error.

Square root of a negative number, infinity in projective mode,
or a not normalized number.

(+infinity) + (-infinity) in affine mode.

Tried to convert NaN to binary integer.

In division: 0/0, infinity/infinity or divisor is not
normalized and the dividend is not zero and is finite.

One of the input arguments was a trapping NaN.

Unordered condition tested by predicate other than equal or
not-equal.

Projective closure use of +/- infinity.

0 * infinity.

In REM <ea> is zero or not normalized or FPn is infinite.

value of 'k' for BINDEC or 'p' for DECBIN is out of range.

Tried to MOV a single denormalized number to a double
destination.

Tried to return an unnormalized number to single or double
(invalid result).

Illegal instruction

Unused, reserved

A.l1.3 Temporary Trap Status Byte (TMPSTAT)

7 6 5 4 3 2 1 0

4
T

UNFL | OVFL I 0P I
+ + +

XXX IOVF INEX DZ

+— +
+— 4
+— +

+— +
+— +

The bits in the temporary status byte are identical to those in the TRAP status
byte except they only represent the status of the last operation. They are
cleared at the start of each operation. They can be used by the trap handler to
determine the cause of a trap. At the end of the operation, they are ORed into
the TRAP status byte to create the sticky bits that can be used to determine the
status of a string of operations.

A.1.4 ENABLE Byte

7 6 5 4 3 2 1 0
+ + + + + + +
l XXX I RSVX I IOVF I INEX | DZ I UNFL |
+ + + + S T +

+ +
OVFL | Iop |
+ + +

The programmer may set a one in any bit to enable a trap on the corresponding
error condition.

Bit 0 Invalid operation

Bit 1 Overflow

Bit 2 Underflow

Bit 3 Divide-by-zero

Bit 4 Inexact result

Bit 5 Integer overflow

Bit 6 Reserved exponent value (maximum or minimum exponent)
seen as an input operand

Bit 7 Unused, reserved

A.1.5 MODE Byte

15 — 14 13 - 12 11 10 9 -- 8
+ + + + + + + + +
| XXX | PREC | NORM] CLOSURE | ROUND |
+ + + + + + + + +

The programmer sets bits in this byte to control the calculation modes as
defined below.

Bits 8-9 Rounding mode (ROUND)
00 = Round to nearest

01 = Round to zero
10 = Round to plus infinity
11 = Round to minus infinity
Bit 10 Affine/projective mode (CLOSURE)
0 = Projective closure
1 = Affine closure
Bit 11 Normalizing mode select (NORM)

1 = Normalize denormalized numbers while converting to internal
format. (Normalizing mode)

0 = Do not normalize denormalized operands before an operation.
(Warning mode)

Note: Unnormalized numbers are not affected by bit 11.

Bits 12-13 Rounding precision select (PREC)
00 = Round to extended

01 = Round to single
10 = Round to double
11 = Unused, reserved

Bits 14-15 Unused, reserved

A.2 FLOATING POINT OPERATIONS
A.2.1 Memory Data Format Descriptors

Dyadic operations may be applied to operands of differing formats, since all
operands are converted to internal (extended) format for the actual calculation.
The floating point format of an operand stored in memory is identified as
follows:

Single
Double

S
D
X Extended

Three sizes of binary integers may also be specified by:

Byte (8 bit)
Word (16 bit)
Long (32 bit)

wono

B
W
L
Finally, the conversion from binary floating point to decimal (BCD)
representation will be provided and is indicated by an FMOVE instruction with
the data type:

P = Decimal format

A.2.2 Assembler Instruction Format

The assembler instruction format is designed to follow the current M68000 family
assembler conventions as closely as possible.

The format is:

<label> <mned> .<siz> <addr>
where:

<label> ::= Symbolic label

<mne> ::= Instruction mnemonic

<siz> i:i= S | D| X] B | W | L | P

<addr> 1= <reg> | <ea>] <src>,<dst>

<{src>,<dst> ::= <reg>,{reg> $ <ea>,<reg>] <reg>,<ea>

{ea> := MC68000/MC68010 addressing mode

<reg> 1:= <facc>
CNTRL Control register
STATUS Status register
INSTAD Instruction address
TMPSTAT Current status

<facc> ::= FPO [FP1 | FP2 | FP3 FP accumulators

A.2.3 Move Instructions

The mnemonic 'FMOVE' is used to transfer data into and out of the floating point
processor. It has the auxiliary effect of converting between the various
supported formats. Some examples of the FMOVE instruction are:

FMOVE.<siz> <ea>,FPn
FMOVE.<siz> FPn,<ea>
FMOVE FPn,FPn
FMOVE <ea> ,CNTRL
FMOVE CNTRL ,<ea>
FMOVE <ea>,STATUS
FMOVE STATUS ,<ea>
FMOVE INSTAD, <ea>
FMOVE <ea>,INSTAD

It should be noted that, although the data type identifier is syntactically
associated with the instruction, in the case of floating point instructions, the
data type is actually associated with the <ea> field. All numbers in the
floating point accumulators are represented in extended format; the result of
any arithmetic operation is also in extended format. The data type descriptor
really describes the memory format of the data. Any move between a floating
point accumulator and memory implies a conversion between extended format and
the specified memory format, with a possible rounding operation.

A.2.4 Arithmetic Operations

The dyadic arithmetic operations expect one operand to be in a floating point
accumulator. The other operand may be in a floating point accumulator, in
memory, or in an MC68000/MC68010 data register. The result is left in a
floating point accumulator. Monadic operations work upon an operand in a
floating point accumulator and leave the result in the same accumulator. The
supported operations are:

Dyadic
FADD.B|W|L|S|D|X <{src>,FbPn Addition
FSUB.B|W|L|S|D|X <src>,FPn Subtraction
FMUL.B|W|L|S|D|X <src>,FPn Multiplication
FDIV.B|{W|L{S|D|X <src>,FPn Division
FREM.B(W|L|S|D|X <src>,FPn Remainder.
FCMP.B|W|L[S|D|X <src>,FpPn Compare
Monadic
FINT FPn Integer-part
FABS FPn Absolute value
FSQRT FPn Square root
FNEG FPn Negate
FNOP Wait for completion of

previous operation

A.2.5 Floating Point Compare Instructions
Comparisons may be performed between two floating point numbers and the result
returned as condition code bits in the status register. The floating point
compare is a dyadic operation which compares the contents of a floating point
accumulator with another floating point accumulator or with the contents of a
MC68000/MC68010 effective address. The compare instruction has the form:
FCMP.B|W|L|S|D|X <ea>,FPn Compare FP accumulator
which sets the condition codes according to FPn - <ea>, and
FCMP FPn,FPm Compare FP accumulators

which sets the condition codes according to FPm - FPn.

A.2.6 Test for Special Value Instructions

The contents of a floating point accumulator or memory operand may be tested for
the five kinds of floating point values. The operation performed is a test for
equality between the contents of the effective address and a particular special
value. These instructions are:

ISNAN.S|D|X {src> Is it a NaN?
ISZERO.S]D|X <{src> Is it normal zero?
ISINF.S|D|X <src> Is it infinity?
ISNORM. |D|X <src> Is it a normalized,
non-zero number?
ISNNORM.S|D|X {srco> Is it not normalized?

The condition code is set so that 'equal' means the test is true,-and 'not
equal' means the test is false.

A.2.7 Conditional Branch Instructions

The result of a compare or special value test may be accessed in two ways.
Branching on the compare condition codes is possible, using:

FBEQ <ea> Equal

FBNE <ea> Not equal

FBGE <ea> Greater or equal
FBGT <ea> Greater

FBLE <ea> Less or equal
FBLT <ea> Less

FBUND <ea> Unordered

FBORD <ea> Ordered

where the <ea> is limited to relative addressing.

Alternatively, the instructions

FSEQ <dest> Set if equal

FSNE <dest> Set if not equal

FSLE <dest> Set if less or equal
FSLT <dest> Set if less than

FSGE <dest> Set if greater or equal
FSGT <dest> Set if greater than
FSUND <dest> Set if unordered

FSORD <dest> Set if ordered

will store a word of all one's (for true) or all zero's (for false) at the
effective address, depending on whether the specified condition is true or
false. Standard MC68000/MC68010 instructions may then be used to test the
result of the comparison. The <ea>'s allowed are the same as the ones for the
MC68000/MC68010 'Scc' instructions.

A.3 SOFTWARE IMPLEMENTATION

A.3.1 Floating Point Register Block

The FP software maintains a block of 29 words in RAM,
user-visible registers of the floating point processor.
trap routine will set up register A3 to point to the register block.

The

'front end'

which simulates the

F-line
The

organization of the FP register block in terms of 16-bit words is shown below.

—
w

(=]

Status register

Temporary Status register

Control register

Instruction address (2 words)

Sign for FPO | Tag for FPO

Exponent for FPO

Fraction for FPO (4 words)

Sign for FP1 | Tag for FPl

Exponent for FP1

Fraction for FPl1 (4 words)

Sign for FP2 | Tag for FP2

Exponent for FP2

Fraction for FP2 (4 words)

Sign for FP3 | Tag for FP3

Exponent for FP3

— — b t— F— e b F— F— b o F— b e +— +

Fraction for FP3 (4 words)

F— et — b b — — F— b — b b — b b o e e h— ¢

A-10

<~-- A3

A.3.2 Binary-Decimal Conversions

The BCD representation of the contents of a floating point accumulator may be
stored to memory using:

FMOVE.P FPn,<ea>
FMOVE.P <ea>,FPn

which converts the contents of floating point accumulator 'n' to seven words in
BCD format as follows:

15 -——-12 11 --8 7 - 0
* + + + +
| BSGNEXP | BSGNMAN | P I low
P + + + + memory
r | BEXP3 - BEXPO |
e + + +
1 | xxx | BMAN1S - BMANL6 |
i + + +
m | BMAN15 — BMAN12
i +
n | BMANIL - BMANS
a + +
r | BMAN7 - BMAN4 |
y + + high
| BMAN3 — BMANO | memory
* + +
15 --12 11 - 0
where:
BSGNEXP Sign of exponent
$0 = Positive
SA = Number is +infinity (other digits zero)
SB = Number is -infinity (other digits zero)
SC = Number is a NaN (other digits zero)
SF = Negative
BEXPn Nth BCD digit of exponent
BSGNMAN Sign of mantissa
S0 = Positive
SF = Negative
BMANND Nth BCD digit of mantissa
P Binary integer giving the number of BCD digits
of mantissa to the right of the decimal place.
The range of P is: 0 <= P <= 19 on input.
XXX Unused, reserved

Note that non-numeric values are represented by the special codes $A, $B, and $C
in the sign of the exponent; 'P' will be equal to zero for all non-numeric
values. Infinities will have all other BCD digits set to zero. A NaN will have
the binary error address stored right-justified in the mantissa field.

A-11

A.3.3 Software Floating Point Instruction Format

The first word of a floating point instruction will be an F-line opcode which
will trap to the F-line trap handler. This word will contain fields that define
the effective address for the MC68000/MC68010. The fields are:

15 - 12 11 - 7 6 5-0
| F-line | X |E/E| ea or FP register
+ + S S— + +
F-line F-line emulator opcode
F/E FPn/effective address bit
0 = Next field contains FP register number
1 = Next field contains MC68000/MC68010 effective address
ea 68000/68010 effective address field, or FP register
X Unused, reserved

It is followed by a word which contains the floating point instruction having
the format:

15 - 12 11 - 6 5-3 2-0
+ +
Data/pred type| FPn |

F—

| Opcode | Opcode extn

where the fields are defined as:

FP operation code

g
3

FMOVE into FP processor
FMOVE out of FP processor
FMOVE special registers in
FMOVE special registers out
Reserved

Reserved

Arithmetic dyadic operations
Arithmetic monadic operations
Special value tests (ISNAN, etc.)
Conditional branches

Set byte on condition

Unused, reserved

qukom\lO\UlbbWNi—‘O

o

Opcode extn Extension field - use depends on opcode.

Data/pred type Type of operand in memory or predicate for branch
instruction.

FPn Destination or source FP register.

A-12

A.3.3.1 Operation Code Field Details

Each operation code defines a class of floating point instructions. The

following paragraphs specify the detailed definition of the fields required in
each class of instructions. The two 16-bit words which make up each instruction

are diagrammed.

A.3.3.1.1 FMOVE Memory Operand into a Floating Point Register

15 - 12 11 - 7 6 5-0
+ + vt +
| F | X |F/E| ea or FP register
+ + et + +
+- + + + —
| 0 | X | Data type | FPn |
+ + + + +
15 - 12 11 -6 5-3 2-0

F/E

Effective address

Data type

FPn

FPn/effective address bit
0 = ea field contains FP register number
1 = ea field contains MC68000/MC68010 effective
address

Source address or FP register

Type of operand in memory
S (single FP)

D (double FP)

X (extended FP)

B (byte integer)
W (word integer)
L (long integer)
P (BCD)

AN WO
nmn W uwun i

Destination floating point register

Unused, reserved

A-13

A.3.3.1.2 FMOVE Floating Point Register into a Memory Operand

15 - 12 11 - 7 6 5-0
+ + et +
| F | X | 1 | Effective address |
+ + + + +
| 1 | BCD 'K' | Data type | FPn |
15 - 12 11 - 6 5-3 2-0

Effective address
FPn
Data type

BCD Signif (K)

FPn

Destination address
Source floating point register

Type of operand in memory

= (single FP)
(double FP)
(extended FP)
(byte integer)
(word integer)
L (long integer)
P (BCD) w/ K static
P (BCD) w/ K dynamic

SN OOk WO
SWXUONn

A two's complement integer value in the ranges:
(-16) <= K <= (-1) or (+1) <= K <= (+17)

When K is negative in the range (-16) <= K <= (-1), it
represents the desired number of decimal digits to the
right of the decimal point; use K negative when the BCD
string is destined to be converted to a fixed point
format (Pascal's F:x:y format).

When K is positive in the range (1) <= K <= (17), it
represents the desired number of significant decimal
digits; use K positive when the BCD string is destined
to be converted to a floating point format (Pascal's F:x
format) .

When K is outside of the allowed ranges specified above
fi.e., K =0, K< (-16), or K > (17)], the result BCD
string will be calculated using the nearest valid value
of K [when K = 0, the resulting BCD string will be
calculated with K = 1]. Note that an IOP = 10 will
accompany the BCD string result in these cases.

When data type specifies P (BCD) w/ K static (110):
nnnnnn = Two's complement immediate value of K in
the ranges specified above.
When data type specifies P (BCD) w/ K dynamic (111):

nnnRRR = Number of data register which contains
the two's complement immediate value of K
in the ranges specified above.

Floating point accumulator

Unused, reserved

A-14

A.3.3.1.3 FMOVE Memory Operand into a Special Floating Point Register

15 - 12 11 -7 6 5-0
+ + et +
| F | X | 1 | Effective address |
+ _ + S S + +
|2 x | x | Fen |
+ + + + +
15 - 12 11 - 6 5-3 2-0
Effective address Source address
FPn Destination special floating point register
0 = CNTRL
1 = STATUS
2 = TMPSTAT
3 = INSTAD (Instruction address)

4-7 = Unused, reserved

X Unused, reserved

A.3.3.1.4 FMOVE Special Floating Point Register out to a Memory Operand

15 - 12 11 - 7 6 5-0
+ + S R— +
| F | X | 1 | Effective address
+ + S S—— + -
+ + + + +
| 3 | X | X | FPn |
+ + + + +
15 - 12 11 - 6 5-3 2-0
Effective address Destination address
FPn Source special floating-point register
0 = CNTRL
1 = STATUS
2 = TMPSTAT
3 = INSTAD (Instruction address)

4-7 = Unused, reserved

X Unused, reserved

A-15

A.3.3.1.5 Arithmetic Dyadic Operations

15 -

12

11 -7 6 5-0

+— +

S N—
X |F/E| ea or FPn

Extension FPn

+—+ +— +

+— +

Data type

+— +

ea or FPn

F/E

Extension

Data type

FPn

15 -

12

+— + +— +

+— +

11 - 6 5-3 2-0

Source effective address or floating point register

Source is ea or FPn
0 = FP register
1 = MC68000/MC68010 effective address

Arithmetic operation

Add

Subtract

Multiply

Divide

Remainder

Compare
F = Unused, reserved

S WN O

i
W Iunwn unon

Type of operand in memory
S (single FP)

D (double FP)

X (extended FP)

B (byte integer)
W (word integer)
L. (long integer)
Illegal *

Illegal *

N WO
I | O T 1 T A (O 1

*
I

These two data types would signify an
instruction of the form:

F(arith).p <ea>,FPn

13 would be

which is not allowed; an IOP
produced.

Destination floating point register

Unused, reserved

A-16

A.3.3.1.6 Arithmetic Monadic Operations

15 - 12 11 -7 6 5-0
+ + +——t +
l F I X | 0| ea I
+ + + + +
| 7 | Extension | X | FPn |
+ + + + +
15 - 12 11 - 6 5-3 2-0
ea field Source FP register (same as destination)
Extension Arithmetic operation
0 = Integer-part-of
1 = Absolute value
2 = Square root
3 = Negate
4 = No-operation
5 - 3F = Unused, reserved
FPn Source and destination floating point register
X Unused, reserved

A-17

A.3.3.1.7 Special Value Tests

15 - 12

11 - 7 6 5-0

F

S
X |F/E| ea or FPn

+— +

+—+ +— +

Extension | Data type | X
+ +

+— +

ea or FPn

F/E

Extension

Data type

15 - 12

11 - 6 5-3 2-0

Source effective address or floating point register

Source is ea or FPn
FP register
MC68000/MC68010 effective address

0
1
value to test for:
Normal zero
Not-a-number
Infinity
Normalized

Not normalized
3F = Unused, reserved

Q
i)
|}
—

Ul W HO
(U | I { I |

operand in memory
S (single FP)

D (double FP)

X (extended FP)

B (byte integer)
W (word integer)
L (long integer)
Illegal *

Illegal *

(D
O
Fh

Nou e W O
LI L N | Y O | 1

*
I

These two data types would signify an
instruction of the form:

IS(type) .P {ea>

which is not allowed; an IOP = 13 would be
produced.

Unused, reserved

A-18

A.3.3.1.8 Conditional Branch

15 - 12 11 - 7 6 5-0

F X i 0
I —

>
+— +

+— +

Extension 8-bit offset

+— + +— +
o+ F—

O
+— +
+— +

15 - 12 11 -8 7-~-0

Extension Predicate type

Equal

Not equal

Greater or equal
Less than

Less or equal
Greater than

Ordered

Unordered

F = Unused, reserved

WO~JOh UMW O

Offset Branch offset: if field is zero, then a 16-bit offset
follows in next word.

X Unused, reserved

A-19

A.3.3.1.9 Set Byte on Condition

15 - 12 11 -7 6 5-0
+ + S — +
] F | X | 1 | ea
+ S S S +
+e= + + +
| A | Extension | X |
+ + + +
15 - 12 11 - 6 5-0
ea Destination effective address
Extension Predicate type
0 = Equal
1 = Not equal
2 = Greater or equal
3 = Less than
4 = Less or equal
5 = Greater than
6 = Ordered
7 = Unordered
8 - 3F = Unused, reserved
X Unused, reserved

A.3.3.1.10 MC68000/MC68010 Effective Address Modification Words

Any words needed to further specify the MC68000/MC68010 effective address follow
the FP instruction words.

A-20

A.4 CALLING SEQUENCE

The floating point software expects that it will be called through an F-line
trap instruction. This instruction will initiate MC68000/MC68010 exception
handling: the processor will switch to supervisor state, the current PC and
status registers will be pushed onto the supervisor stack, and control will be
transferred to the F-line trap handler routine. At this point, the trap handler
should push the rest of the user's registers on the stack, including the user's
stack pointer. The saved stack pointer value should point to the top of the
stack that existed before the F-line instruction (or call to the F-line trap
simulator) was executed. This requires adjusting the saved stack pointer if the
F-line instruction is executed in the MC68000/MC68010 supervisor mode or if an
F-line trap simulator is called in either MC68000/MC68010 user or supervisor
mode since, in these cases, the stack on which the registers are saved is the
same stack that the user's program had been using. This prohibits the use of
autoincrement and autodecrement addressing modes with A7 in floating point
instructions.

Register A5 should be set to point to the start of the entire user register
state at the time of the F-line instruction. This stack-frame will appear as
follows:

l
t
?

high + + +

memory | User PC | User Status |

+ + +

| User SP | A6 |

+ + +

I A5 I 24 |

+ + +

l A3 l A2 |

+ + +

| Al | a0 |

+ + +

| D7 | D6 |

+ + +

| D5 | D4 |

+ 4 +

| D3 | D2 |

low + + +
memory | D1 | DO | <-- (A5)

+ + +

Additionally, the trap handler must set up the three address registers:

Al - Pointer to the floating-point exception vector table
A3 - Pointer to the floating-point register block
A4 - Pointer to User memory fetch/store routine

At this point, a subroutine call to the floating point processor entry point may
be executed.

On return from the floating point processor, the MC68000's or MC68010's
registers must be restored from the stack. If the saved stack pointer had
required correction, as described above, then the stack pointer should not be
restored from the stack.

A-21

A.4.1 User Memory Fetch/Store Routine

All data references to the user's address space will be performed through a
subroutine that must reside in the same address space as the floating point
processor. The user memory routine will be called with the following registers
defined:

A3 - Starting address in user memory
A2 - Starting address of floating point processor memory buffer
D6 - Program/data address space select
0 = Program space
1 = Data space
D7 - Low-order word contains:

+n = Fetch n data bytes from user memory
-n = Store n data bytes to user memory

All registers except A3, A2, and D7 should remain unchanged.

After the floating point processor has been called, it will call the user memory
routine once to fetch each word of the F-line floating point instruction based
on the user's PC. Once the effective address, if any, has been decoded from the
floating point instruction, another call to the user memory routine will be made
to transfer an operand in or result out to user memory.

Memory transfers of more than one byte should be performed on a word or long
word basis, as appropriate, so that the user memory routine will detect address
errors.

A.4.2 Floating Point Exception Handlers

When a floating point error occurs which sets a bit in the trap status byte and
the corresponding bit in the trap enable byte is set, then the appropriate
floating point exception handler will be executed. The vector to the exception
handler is determined from a table of exception handler entry addresses or
vectors. A pointer to the start of the vector table is passed to the floating
point processor in Al. The vector table appears as:

low memory Invalid operation vector <-- (Al)
Overflow vector
Underflow vector
Divide-by-zero vector
Inexact result vector
Integer overflow vector
Reserved exponent vector

On entry to an exception handler, the stack pointer points to a return address
which is followed on the stack by the stack frame, as described in
paragraph A.4. The return address on the top of the stack is the return address
to the F-line trap handler (or simulator) that called the floating point
processor. Thus, to resume program execution, the exception handler only needs
to execute a return from subroutine instruction. The return from subroutine
returns control to the F-line trap handler (or simulator), which restores the
MC68000/MC68010 registers and then returns control to the program.

A-22

The floating point processor does not force entry of the MC68000/MC68010
supervisor mode when it executes an exception handler. If the floating point
processor had been called in the MC68000/MC68010 user mode from an F-line trap
simulator, and the floating point processor detected the occurrence of an
enabled exception, then the exception handler would be executed in the user

mode.

A-23

KIleunung jewiog IaqunN JuTod Burjeord T THNOII

£8£91>dXT548e91-
patitasnf 144€$>dx330001$
-3ybta siL uppe o=selLq
AYOWIW
40 | dxa s (0#) 4-0{o00¥${s Jppe|3|0 mummwﬁm; 0 444e$| X 0 [000b$|{S||]|4tubLs 1| dxa | S||a3aN3LX3
¥9 ST 1 9 ST 1 9 11 61 1 ¥9 ST 1 9 sT 1 9 ST 1

44€$=€201=5821q

44/$>dxa>0
AYOWIW
a|qLssod jou 0= 0 S Jppe |3 |d4/$ [X 0 EETA SES 0 0 S Jubrs | dxa | g 378n0a <
(o)}
25 Im 1 19 1T 11 1 25 m 1 25 m 1 25 m 1 o
NeN 6Buiddeaiy=3 4/$=121=501q
pauljapun=y 44¢>dxayrp
; AYOWIW
a|qtssod jou 0r 0 S Jppe (3 [44$ (X 0 EEE IS 0 0 S jwbis | dxa | g JT1ONIS
€2 8 1 2 1 8 1 €2 8 1 £2 8 1 £2 8 1
NOISID
-34d
a3Z 1 TYWSONNR 03Z1TYWHONIQ NeN ALINT NI 0y3z (321 TYWHON

3dAL

APPENDIX B

ASCII CHARACTER SET

CHARACTER COMMENTS HEX VALUE
NUL Null or tape feed 00
SOH Start of Heading 01
STX Start of Text 02
ETX End of Text 03
EOT End of Transmission 04
ENQ Enquire (who are you, WRU) 05
ACK Acknowledge 06
BEL Bell 07
BS Backspace 08
HT Horizontal Tab 09
LF Line Feed 0A
VT Vertical Tab 0B
FF Form Feed ocC
CR Carriage Return 0D
SO Shift Out (to red ribbon) OE
SI Shift In (to black ribbon) OF
DLE Data Link Escape 10
DC1 Device Control 1 11
DC2 Device Control 2 12
DC3 Device Control 3 13
DC4 Device Control 4 14
NAK Negative Acknowledge 15
SYN Synchronous Idle 16
ETB End of Transmission Block 17
CAN Cancel 18
EM End of Medium 19
SUB Substitute 1A
ESC Escape, prefix 1B
FS File Separator 1C
GS Group Separator 1D
RS Record Separator 1E
uUs Unit Separator 1F

B-1

ASCII CHARACTER SET (cont'd)

CHARACTER COMMENTS HEX VALUE
Sp Space or Blank 20
! Exclamation point 21
" Quotation mark (diaeresis) 22
Number sign 23
S Dollar sign 24
% Percent sign 25
& Anmpersand 26
! Apostrophe, acute accent, 27

closing single quote

(Opening parenthesis 28

Closing parenthesis 29
* Asterisk 2A
+ Plus sign 2B
p Comma (cedilla) 2C
-~ Hyphen (minus) 2D
. Period (decimal point) 2E
/ Slant 2F
0 Digit 0 30
1 Digit 1 31
2 Digit 2 32
3 Digit 3 33
4 Digit 4 34
5 Digit 5 35
6 Digit 6 36
7 Digit 7 37
8 Digit 8 38
9 Digit 9 39
: Colon 3A
; Semicolon 3B
< Less than 3C
= Equals 3D
> Greater than 3E
? Question mark 3F

B-2

ASCII CHARACTER SET (cont'd)

CHARACTER COMMENTS HEX VALUE
@ Commercial at 40
A Uppercase letter A 41
B Uppercase letter B 42
C Uppercase letter C 43
D Uppercase letter D 44
E Uppercase letter E 45
F Uppercase letter F 46
G Uppercase letter G 47
H Uppercase letter H 48
I Uppercase letter I 49
J Uppercase letter J 4A
K Uppercase letter K 4B
L Uppercase letter L 4C
M Uppercase letter M 4D
N Uppercase letter N 4E
0o Uppercase letter O 4F
P Uppercase letter P 50
Q Uppercase letter Q 51
R Uppercase letter R 52
S Uppercase letter S 53
T Uppercase letter T 54
U Uppercase letter U 55
\Y Uppercase letter V 56
W Uppercase letter W 57
X Uppercase letter X 58
Y Uppercase letter Y 59
Z Uppercase letter Z 5A
{ Opening bracket 5B
\ Reverse slant 5C
1 Closing bracket 5D
- Circumflex 5E

Underline 5F

B-3

ASCII CHARACTER SET (cont'd)

CHARACTER COMMENTS HEX VALUE
t Grave accent, 60
Opening single quote
a Lowercase letter a 61
b Lowercase letter b 62
c Lowercase letter c 63
d Lowercase letter d 64
e Lowercase letter e 65
£ Lowercase letter f 66
g Lowercase letter g 67
h Lowercase letter h 68
i Lowercase letter i 69
j Lowercase letter j 6A
k Lowercase letter k 6B
1 Lowercase letter 1 6C
m Lowercase letter m 6D
n Lowercase letter n 6E
o] Lowercase letter o 6F
P Lowercase letter p 70
q Lowercase letter g 71
r Lowercase letter r 72
s Lowercase letter s 73
t Lowercase letter t 74
u Lowercase letter u 75
\ Lowercase letter v 76
W Lowercase letter w 77
X Lowercase letter x 78
Yy Lowercase letter y 79
z Lowercase letter z 7A
{ Opening brace 7B
| Vertical line 7C
} Closing brace 7D
- Tilde 7E
DEL Delete 7F

B-4

APPENDIX C

68K~-PASCAL LIMITATIONS

C.1 EXPRESSION COMPLEXITY

During Phase 1 of a Pascal compilation, expressions are translated to a reverse
Polish form. The form uses a push-down stack for the operands, based on the
precedence of the operators. If the precedence of the current operator is less
than that of the next operator, pushing continues. The operators then operate
on the top one or two operands on the stack, leaving the result on the top of
the stack.

Phase 2 simulates the expression stack, using the processor's hardware stack and
registers. It loads operands onto the stack -- actually into the processor's
registers -- and then performs the appropriate operation. When the processor
wants to load an operand but the registers are full, it pushes the "oldest"
register onto the hardware stack in order to free a register.

To remember what is on the expression stack, Phase 2 maintains a 50-element
array. Each element of the array describes one data item in registers or on the
hardware stack. This limits the complexity of expressions that Phase 2 can
handle to 50 levels of parentheses. When the array overflows, Phase 2 emits an
error message of EXPR STACK OVERFLOW.

A scalar (integers, Booleans, characters, enumerated types, etc.) is put in a
data register. A set of integers is put in two data registers; however, it
takes up only one element of the 50-element stack array. Phase 2 allocates all
eight data registers. A "standard" real value of any size is put in a floating
point register. Phase 2 allocates a maximum of four floating point registers.
Fast floating point values are put in registers D6 and D7. Pointers are put in
address registers. Phase 2 allocates a maximum of four address registers.
Strings, records, and arrays are always pushed directly onto the hardware stack.
Each requires only one element of the expression stack array.

C.2 DATA STRUCTURES

A program's code size and data size are limited only by the amount of memory in
the user's system (up to 16M bytes). The size of a component of a file type is
limited to 32767 bytes due to the nature of the Pascal I/0 utilities.

String constants are limited to a maximum of 132 characters. Strings are
limited to 32766 bytes (32764 bytes of data and a 2-byte current length word).
Sets are fixed at eight bytes.

The subranges of case statement index expressions and array index expressions
may be any subrange which can be expressed using 4-byte integers.

C.3 LANGUAGE

ANSI Pascal states that a variant which becomes inactive will have all of its
components totally undefined; therefore, it cannot be assumed that assignment to
one variant field will define the fields of the other variants., Such an
assumption could produce an unexpected result, illustrated in the case below.
In this example, the intent is to perform arithmetic operations on the pointer
by overlaying it in the record with an integer. However, due to register
utilization, the compiler will generate code which uses the original value
(10000) for the second pointer reference and not the intended value (10001).

TYPE pointrec = RECORD
CASE boolean OF
true : (i : integer);
false: (p : "boolean)

END;
VAR point : pointrec;
bl,b2 : boolean;
BEGIN

point i := 10000;

bl := point p°;

point i := point i + 1;
b2 := point p~;

END;

Global variables which are used in subprograms must all be defined in the same
type, number, and order as in the main program, along with all global variables
which precede them. The subprogram parameters must be the same as the program
parameters in type, number, and order.

There is no runtime checking against MAXINT when an integer is read in.
Pascal does not check for overflow, even when runtime checking is enabled.

The Pascal statement: writeln; does not generate an empty line, as the Pascal
standard requires, but generates a line containing a space character, because of
a VERSAdos limitation.

If the log file from a batch operation was sent directly to a Centronics 703
printer, the intermediate line counter values in all three phases of the
compiler are overprinted on top of the line counter headings. The final number
of lines processed by each phase of the compiler is correctly printed. The
command line option E should be used on the command line of each compiler phase
when it is invoked from a batch file.

In response to an error which should produce a stack/heap error abort message
(1010), one of the following abort messages may occur: bus error abort message
(1008) , address error abort message (1011l), or illegal instruction abort message
(8012).

APPENDIX D

ERROR MESSAGES

D.1 GENERAL

The Pascal Phase 1 listing and runtime messages are explained in paragraphs D.2
and D.3, respectively. Error code numbers not listed are not used.

D.2 PHASE 1 LISTING ERROR MESSAGES

When an error is discovered in a Pascal listing, the line following the error
contains the message:

ERROR-—NNNNN “xxx

where nnnnn is the line number where the last error occurred, ~ points
immediately after the error, and xxx is one of the following numerical entries.

1: error in simple type

2: identifier expected

3: 'program' or 'subprogram' expected
4: ')' expected

5: ':' expected

6: illegal symbol

7: error in parameter list

8: 'of' expected

9: ' (' expected

10: error in type
11: '[' expected
12: ']1' expected

13: 'end' expected

14: ': ! expected

15: integer expected

16: '=' expected

17: 'begin' expected

18: error in declaration part
19: error in field-list

20: ',' expected
21: '.' expected

D-1

50: error in constant
51: ':=' expected

52: 'then' expected
53: 'until' expected

54: 'do' expected

55: 'to' or 'downto' expected
58: error in factor

59: error in variable

101: identifier declared twice

102: low bound exceeds high bound

103: identifier is not of appropriate class

104: identifier not declared

105: sign not allowed

106: number expected

107: incompatible subrange types

109: type must not be real

110: tagfield type must be scalar or subrange

111: incompatible with tagfield type

112: index type must not be real

113: index type must be scalar or subrange

114: base type must not be real

115: base type must be scalar or subrange

116: error in type of standard procedure parameter

117: unsatisfied forward reference

119: forward declared; repetition of parameter list not allowed
120: function result type must bhe scalar, subrange or pointer
121: file value parameter not allowed

122: forward declared function; repetition of result type not allowed
123: missing result type in function declaration

124: fixed-point output format allowed for real only

125: error in type of standard function parameter

126: number of parameters does not agree with declaration

127: illegal parameter substitution

128: result type of parameter function does not agree with declaration

129: type conflict of operards

D-2

130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142;
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158
159
160:
161:
162:
165:
166
167:
168:

expression is not of set type

tests on equality allowed only

strict inclusion not allowed

file comparison not allowed

illegal type of operand(s)

type of operand must be Boolean

set element type must be scalar or subrange
set element types not compatible

type of variable is not array

index type is not compatible with declaration
type of variable is not record

type of variable must be file or pointer
illegal parameter substitution

illegal type of loop control variable

illegal type of expression

type conflict

assignment of files not allowed

label type incompatible with selecting expression
subrange bounds must be scalar

index type must not be integer

assignment to standard function is not allowed
assignment to formal function is not allowed
no such field in this record

type error in read

actual parameter must be a variable

control variable must neither be formal nor non-local
multi-defined case label

range of case indices too large

missing corresponding variant declaration
real or string tagfields not allowed

previous declaration was not forward

again forward declared

parameter size must be constant

multi-defined label

multi-declared label

undeclared label

undefined label

172:
175:
176:
177:

201:
202:
203:
207:
208:

250:
251:
255:

304:
305:
306:

380:
381:

390:
391:
392:
393:
394:
395:
396:
397:

400:
401:
402:
404:
405:
406:
407:
408:

410:
411:
412:

undeclared external file
missing file "input" in program heading
missing file "output" in program heading

assignment to function identifier not allowed here

error in real constant: digit expected

string constant must not exceed source line

integer constant exceeds range

exponent part of real constant contains too many digits

real constant exceeds range

too many nested scopes of identifiers
too many nested procedures and/or functions

too many errors on this source line

element expression out of range
element expression must not be real

expression not allowed in subrange set element

illegal character
constant string too long

set base type out of range

procedures and functions as parameters not implemented
file type not allowed here - as element of a structure
function or procedure not implemented

goto branching out of a procedure not allowed

file component type must be single identifier

writing of enumerated types to text files not allowed
selection on file buffer variable not allowed

illegal radix

number expected following radix and #

digit outside range allowed by radix

non-valid label

stack area (local or global) too large (over 16 Megabytes)
structure (record or array) too large (over 16 Megabytes)
invalid STRING size (maximum = 32764)

file component too large (maximum = 32767)

non-label found in exit statement
label not in current scope (exit statement illegal)

exit not inside loop construct

D-4

415: ‘origin' expected

416: integer required after 'origin'

417: ']' expected - in 'origin' clause

420: no text allowed on same line after comment containing include file

Except for 503 and 511-515, the following "warnings" all appear as a result of
the processor's W option (Table 2-1).

500: # not in standard Pascal
501: alpha label not in standard Pascal
502: unordered declarations not in standard Pascal

503: '{' encountered in '{' or '(*' encountered in '(*';
may be nested comments

504: 'origin' not in standard Pascal

505: 'exit' not in standard Pascal

506 'otherwise' not in standard Pascal

507: 'subprogram' not in standard Pascal

508: structured function results not in standard Pascal
509: runtime file assignment not in standard Pascal
510: 'string' not in standard Pascal

511: syntax error in option comment

512: nesting of include files not allowed

513: only one include file allowed per comment

514: floating point type already specified

515: constant expression out of range

D-5

D.3 PASCAL RUNTIME ERROR MESSAGES

Pascal runtime error messages can occur whether a Pascal program is running on
EXORmacs or VME/10 or on VERSAmodule 01:

a. On EXORmacs or VME/10 under VERSAdos, the following message is

displayed:
aaaa: ABORTED BY bbbb=xyzz

where aaaa is the name of the task that is aborted, bbbb is the name
of the task that caused aaaa to abort (typically, aaaa and bbbb will
be the same task), and xyzz is the abort code (in hexadecimal). Abort
codes are explained below. In addition to the abort code message, an
explanation similar to the descriptions below is displayed.

On VERSAmodule 01, a program aborts by returning to VERSAbug. DO
contains SO0E, and the lower two bytes of A0 contain the hexadecimal
error code xyzz. (If VERSAbug is not resident, a STOP instruction is
executed which lights the HALT and BRDFAIL LED's on the front edge of
VERSAmodule 01.)

However, if the BREAK key was depressed, DO then contains SFFFFFFFF
and A0 is undefined. (If VERSAbug is not resident, the BREAK request
is simply ignored.)

Normal (non-error) program terminations also return control to
VERSAbug. DO then contains $OF and A0 contains zeroes.

If xyzz has the form lyzz or 2yzz, then it is a Pascal runtime error code as
described below. Otherwise, it is an error code as described in the VERSAdos
messages documentation (if a bus error or address error, it may be possible to
successfully execute a program by specifying a larger stack/heap).

If xyzz is of the form 10zz, then it is one of the following error codes:

1001
1002
1004
1008

1010
1011

1012
1013
1022
1028
1031
1032
1033

Case index out of range
Value out of range - found via range checking
Integer division by zero

Bus error - typically caused by invalid pointer value;
can also be caused by stack/heap overflow

Stack/heap overflow

Address error - typically caused by invalid pointer;
can also be caused by stack/heap overflow

Memory allocation error during processing Z option
Pascal data segment name must be 'SEG2'

Read past end of file

Illegal file name

Integer expected - when reading from a text file
Real expected - when reading from a text file
Boolean expected - when reading from a text file

D-6

1040 Too many files in use or unrecognized device ID

1041 Option error in 'reset' or 'rewrite'

1042 Too many command line fields - maximum of 16 files + I + O
may be specified

1043 File not open at input

1044 File not open at output

1051 Real number out of range - when reading from a text file

1052 Attempt to enable 6809 floating point trap

1053 Attempt to set 6809 floating point exception

1054 Attempt to set 6809 floating point precision mode

1062 Invalid base -~ when reading integer from a text file

1063 Invalid digit - when reading based integer from a text file

1070 Attempt to take NaN(0)

1099 Illegal TRAP 14 error code - internal Pascal error

NOTE: If the error is 1008, 1010, or 1011, it may be possible to execute the
program successfully by running it with a larger stack/heap (specifying
option Z).

If xyzz is of the form 2yzz, it indicates the occurrence of a standard floating
point exception where y is the invalid operation code and zz indicates which
exception(s) occurred.

The value of y (hexadecimal) is as follows:

No invalid operation error

Square root of a negative number, infinity in projective mode,
or an unnormalized number

2 (+infinity) + (-infinity) in affine mode
Tried to convert a not-a-number to a binary integer

In division: 0/0, infinity/infinity, or unnormalized divisor
and the dividend is not zero and is finite

5 One of the input arguments was a trapping not—a-number

6 Unordered condition tested by predicate other than equal or not-equal

7 Projective closure use of +/- infinity

8 0 X infinity

9 In 'rem': first argument is infinite or second argument is zero or
unnormalized

A Input operand for binary-to-decimal or decimal-to-binary conversion
out of range

B Tried to move a single precision unnormalized number to a double
precision destination

C Tried to return an unnormalized number to single or double precision

(invalid result)

D=7

The floating point exceptions that have occurred since the last time they were
cleared are indicated in zz as a sum of the following (hexadecimal):

1 Invalid operation - see code in y above
2 Qverflow

4 Under £low

8 Division by zero

10 Inexact result
20 Integer overflow — on conversion from floating point to integer
40 Reserved exponent value seen as input operand

If zz indicates that an invalid operation occurred (its lowest order bit is on)
but the value of y is 2zero, then there was probably an error in one of the
transcendental functions. This error could be any of the following:

a) Sine, cosine, or tangent of infinity or a not-a-number

b) Logarithm of a negative number, infinity, or a not-a-number
C) Arctangent of a not—-a-number

d) Exponential of infinity or a not-—a-number

D-8

SUGGESTION/PROBLEM REPORT

Motorola welcomes your comments on its products and publications. Please use
this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282
Attention: Publications Manager
Maildrop DW164

Product: Manual :

Please Print

Name Title

Company ivision

Street Mail Drop Phone Number
City State Zip

Field Service Support: (800) 528-1908
(602) 829-3100

MOTOROLA Semiconductor Products Inc.

PO. BOX 20912 e PHOENIX, ARIZONA 85036 ® A SUBSIDIARY OF MOTOROLA INC.

16351-A PRINTED IN USA {9/83) MPS 2500

