(\Aj) MOTOROLA M68KRMS68K/D9

M68000 Family
Real-Time Multitasking Software
User’s Manual

e R 4‘:'

QUALITY e PEOPLE e

@ MOTOROLA

M68BKRMS68K /D9
MARCH 1985

M68000-FAMILY
REAL-TIME MULTITASKING SOFTWARE

USER'S MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products
herein to improve reliability, function, or design. Motorola does not assume
any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights
or the rights of others.

Any addendums to previous revisions of this manual have been incorporated in
this revision.

EXORmacs, MACSbug, RMS68K, TENbug, VERSAbug, VERSAdos, VERSAmodule, VMCbug,
VMC 68/2, VMEbug, VMEmodule, VME/10, and VME/12 are trademarks of Motorola

Inc.

Ninth Edition
Copyright 1985 by Motorola Inc.
Eighth Edition March 1984
MICROSYSTEMS

M moToroLA

REVISION RECORD

M6SKRMS68K /D9 - March 1985. Reflects the following software levels: VERSAdos
4.4 and Link 1.8. Adds support of the MC68020, VMO4, VME/12, MVME11lb,
MYME120, MVME121, MVME122, MVME123, and MVME128. New features: Supports the
concept of real-time tasks to process events asynchronously and supports a

priority-driven pre-emptive dispatcher. Several new directives have been
added to support real-time tasks. Bit 7 of the attributes mask has been
assigned as the real-time task attribute bit. A1l functions have been

rewritten to increase processing speed.

MICROSYSTEMS

M moToroLA

CHAPTER

CHAPTER

e i T R S e S S Y T
e e e e . o v e .

PPN N NN

QOB WWWWWWWWWWWWwWwWwwwwRr e —
. PN

[aV}

AWM NN N -

e e e B B I i BN BN B e AN L I FUN SR

G BWWWwn -

WOoO-NOOT B WMN -

—

TABLE OF CONTENTS

Page

GENERAL INFORMATION
INTRODUCTION .ottt e i et e ittt et ienes 1
SYSTEM CONCEPTS .ottt e e ettt i e 1
OVERVIEW OF RMSB8K ...ttt ittt e 3
Resource Managersviinieetnnennneeeenenneeennenns 3
DIreCtives o e e e 3
SBSSTONS et e e 4
System and User Tasks ..., 5
Real-Time Domainc.iinnuiiiiiiiiniiniiiineenn. 5
Target Task Interface i, 6
RMS68K Functional Partitioning, 8
Vo =T 9
Event Manageriniiiiiiiii i 9
Memory Managerointiiiuiiiiiiiiiii i 10
Task Managero.iiniiiiiiii i 10
Time Managerciineitim et i e 11
Semaphore Managerceiiiiiiineeeninnneeneennn 12
Trap Server Managerc.coiiiinneeennnnnnnnens 12
Exception Monitor Manager 13
Exception Manager, 13
DATA STRUCTURES ..t it it i ettt e e 14
HARDWARE REQUIREMENTS ittt 15
RELATED DOCUMENTATIONttt ii i iae e 16

EVENT MANAGER
OVERVIEW .o ittt e et et e ittt 17
THEORY OF OPERATION ..ottt ie e et 17
Events ... i e e 17
Asynchronous Service Queue (ASQ)c.o ... 19
Synchronous and Asynchronous Modes 19
Synchronous Modeottt 20
Asynchronous Mode i, 20
Default Receive Buffer i, 23
Directive Summaryc.oinuimiiuiinniniinnnennns 24
DATA STRUCTURES ..ot i ettt i e 24
EVENT MANAGER DIRECTIVESo i, 27
[43
Recommended US€ ...ttt 46
EVENT MESSAGE FORMATS it e 46
MICROSYSTEMS

M) mororoLA

CHAPTER

CHAPTER

CHAPTER

WWWWWwWwwWwWwWwWwwwww

Lo I I
PEWWRNRMNMNONDPRMNONDN NN =

gt oo

-~ w

(3,

PwWWROPONN =

W N =

B WA NN NN =
VOt H W

L WM ==

—

[SVRAN N

2w

TABLE OF CONTENTS (cont'd)

Page
MEMORY MANAGER
THEORY OF OPERATION ...ttt ittt ieiiin i 55
SegmMENtS i e e e it e e 55
Segment Operationsol 56
Partitions ... e e e 57
Free Memory Lists i 60
DATA STRUCTURES ...ttt ittt cia e 60
Memory Map Table (MEMMAP)oty 61
Free Memory List oo, 61
Segment Descriptors ...l i 62
Task Segment Table (TST) ... vviiniiiiiiinininan.. 63
Global Segment Table (GST) i iiiiinann.., 65
Segment Parameter Block, 66
MEMORY INITIALIZATION ...ttt ittt iiienenns 67
MEMORY DIRECTIVES ittt it e it is e eannnans 67
TASK MANAGER
OVERVIEW .ottt it et e e et a et ea i ennans 97
THEORY OF OPERATION iiriiii ittt i innennanns 97
3 P 97
Task Structure ... i 97
Task Identification oo, 99
Task Priority ...ttt 100
Task Initialization and Termination 100
Task Initialization and Termination 100
Task Synchronizationciiiuiiiiininiienenn. 101
Task QUEMY .ot iii ittt ittt et asenteanneanens 102
Task State Transitions 102
DATA STRUCTURE ...ttt ittt it it ieaiannns 104
Task Control Block (TCB) ..., 104
TASK MANAGER DIRECTIVESoiiviiniiiiiiiiiiiiiinienenn, 110
TIME MANAGER
OVERVIEW ittt i it e et n et iaeneaneannns 137
THEORY OF OPERATION ...ttt it it i i e 137
Basic PrinCiples ...uueiinenereneeiiiieiiiiininnnnennns 137
Elapsed Time ...ttt iiiteenannnennns 138
Calendar TimMeciuiiinininnenninnennneenonnnnnsnns 141
DATA STRUCTURES .. i ittt ittt it iaieeienenans 142
Periodic Activation Table (PAT)coiii.e. 142
TIME MANAGER DIRECTIVES ittt 143
MICROSYSTEMS

N

M) moToroLA

TABLE OF CONTENTS (cont'd)

Page
CHAPTER 6 SEMAPHORE MANAGER
6.1 OVERVIEW i e e e et et et ettt e e 155
6.2 THEORY OF OPERATION ...ttt it e et eaannenn 155
6.2.1 Synchronization Requirements cvuenn. 155
6.2.2 Synchronization Services o0 iiieneiiinann. 156
6.2.3 Synchronization Rules iiiiiiiiiiin.n, 156
6.2.4 Semaphore Types ...ttt i e 156
6.3 DATA STRUCTURES .ottt ittt ittt et et it e eieneneanen 159
6.3.1 Semaphore Parameter Block i, 159
6.3.2 User Semaphore Table (UST)t 160
6.4 SEMAPHORE MANAGER DIRECTIVES iiiiiiiiiiiinnennns 161
6.5 SEMAPHORE USAGE AND CHARACTERISTICSc.oiieiannn 169
CHAPTER 7 TRAP SERVER MANAGER
7.1 OVERVIEW it ittt ittt it eararnnanenanns 177
7.2 THEORY OF OPERATION ..ottt ittt iaeainenennnns 177
7.2.1 Trap Server Manager Directives 178
7.2.2 Server Tasks and Session Boundaries 178
7.2.3 Server/Client Communicationc.cociviinn. 179
7.2.4 Server Request Control it 180
7.2.5 Termination Control i inenn. 181
7.3 DATA STRUCTURES ...ttt ittt ee i e enenianns 182
7.4 TRAP SERVER MANAGER DIRECTIVESciciinininnnnn. 182
CHAPTER 8 EXCEPTION MONITOR MANAGER
8.1 OVERVIEW .o e i i i et e i 191
8.1.1 YT o T o - 191
8.2 THEORY OF OPERATION ...ttt it it ieeieereannennns 192
8.3 DATA STRUCTURESo i e e it 193
8.4 EXCEPTION MONITOR MANAGER DIRECTIVESc.n.... 193
CHAPTER 9 EXCEPTION MANAGER
9.1 OVERVIEW ottt i i e ettt iiaeeeaennennns 207
9.2 THEORY OF OPERATION ...ttt ii it ieiarinnneennnn 208
9.2.1 Interrupt Handling i, 208
9.2.1.1 Task-Level ISRS i it iiniieenenn 208
9.2.1.2 Simulating Interrupts i, 209
9.2.2 Exception Handlingo o i, 209
9.2.3 DefauTts . vttt i e e e e et e 210
9.2.4 Extending RMS68K oot 211
9.2.5 System Trace Facilityt iiiiiiiiiiiiinnvann. 211
MICROSYSTEMS

M) moToRroOLA

WOWOWWOwWw
HwWwwww

CHAPTER

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

ot
o

BB DEBDWWWWRNIN NN -

L MY =

L N =t W N

WA

oTMOoOm>

TABLE OF CONTENTS (cont'd)

Page
DATA STRUCTURES ottt ettt et e e 212
I/0 Vector Table (IOV)o 212
User Directive Table (UDR) vuiiiiiiiiann. 213
System Trace Table (TRC)oviiniiiviiininnennn. 213
EXCEPTION MANAGER DIRECTIVESceiieiiniiii i, 214
BUILDING A SYSTEM
INTRODUCTION Lttt ittt et e i e inans 229
ANALYZING YOUR SYSTEM ... ittt i enns 229
Hardware Environmento, 230
Functional Requirements i 231
Basic Software Components i nnn 231
DESIGN CONSIDERATIONS ..ottt ittt e innes 232
Defining Tasks ...viniuiiiii it 232
Device Driversttt 232
Exception Monitorot 234
IMPLEMENTING YOUR SYSTEM i 234
Building RMS68K Load Module ciiieiinen.. 234
Building the Application Load Modules 236
Create Bootload or ROM Fileo a.. 236
TESTING AND DEBUGGING YOUR SYSTEM - 236
LIST OF PARTS SUPPLIED IN RMS68K PACKAGE 237
SYSTEM PARAMETER AREA (SYSPAR)ociinieiiiiiinnnn. 247
RMS68K CONFIGURATION ...ttt ianns 253
RMS68K ERROR CODE SUMMARYc.cciuiinuiininnnnnn. 261
CRASH ANALYSIS GUIDE FOR VERSAdOScciviniiinnnnnnn 263
GLOSSARY OF RMS68K TERMS i iiiiiiieinennn 271
SUMMARY OF DIRECTIVES ... e it aans 277
MICROSYSTEMS

M moToroLa

TABLE OF CONTENTS (cont'd)

Page
LIST OF ILLUSTRATIONS
FIGURE 1-1. RMSE8K Partitioning oo 8

2-1. User Stack on Entering an ASR (Register Stacking

Feature Enabled)iiniiiiiiiniiiiininennn.. 22
2-2. User Stack on Entering an ASR (Register Stacking

Feature Disabled)ininiiiiiiiiii i, 22
4-1 RMS68K Task State Transition Diagram 103
6-1. Type 1 Semaphore Usageoviririiiinnnnennenens 171
6-2. Type 2 Semaphore Usagec. i iiiiiinnnns 173
6-3 Type 3 Semaphore Usageo, 175
9-1 User Stack on Entering Exception Handler for all

Exceptions except Bus or Address Errors 210
9-2. User Stack on Entering a Bus Error or Address Error

Exception Handlert nnnn.. 210

LIST OF TABLES
TABLE 2-1. Effect on Enabling and Disabling ASQ and ASR

on Event Managerl 31
3-1 Segment Directives o il i 57
3-2. Memory Map Table Entry (MEMMAP), 61
3-3. Free Memory List e 62
3-4 Task Segment Tableo, 63
3-5 Global Segment Table cciieiiiiiiiiiiin .. 65

MICROSYSTEMS

v/vi

@ MOTOROLA
GENERAL INFORMATION

CHAPTER 1
GENERAL INFORMATICN

1.1 INTRODUCTION

The Motorola M68000 Family Real-Time Multitasking Software is a full-
functioned kernel designed for wuse in a real-time multitasking environment
based on a Motorola MC68000, MC68010, or MC68020 microprocessor. This
software consists of a priority-driven scheduler/dispatcher to support the
real-time multitasking environment and eight resource managers. Each resource
manager supports a particular function such as, memory management, event
management, and timer management. For the remainder of this manual, the
M68000 Family Real-Time Multitasking Software will be referred to as RMS68K or
the Executive and unless otherwise noted, MC68000 also applies to the MC68010
and MC68020.

This manual describes the functions of RMS68K and provides examples of how
they may be used within an application. Chapter 1 explains some basic system
concepts, such as multitasking, real-time, and priority-driven, as well as an
overview of the functional partitioning of the Executive into resource
managers. The remaining chapters describe each resource manager in detail
including the theory of operation, data structures, directives, and examples
of typical uses.

It is recommended that Chapter 1 be read to become familiar with the basic
functionality provided by RMS68K. Thereafter, the user can go directly to the
chapters describing the resource managers required by the application.

1.2 SYSTEM CONCEPTS

As stated 1in the introduction, RMS68K is a real-time multitasking, priority-
driven kernel (or Executive). The following paragraphs will clarify the basic
system concepts behind such words as ‘"real-time", "multitasking", and
"priority-driven", and show how the design of RMS68K supports these concepts.

A real-time system must respond to external events as they occur. An external
event may be a wuser pressing a key on a keyboard, a thermometer indicating
that the temperature within an observed environment has reached or surpassed a
predefined threshold, or a camera indicating that an object has entered its
field of vision. Because it is not known in advance at what time an external
event will occur, a real-time system is said to execute asynchronously.

Unlike a batch system, where one operation is completed before a new operation
is started, a real-time system may delay the completion of one operation so
that another operation may be started, continued, or completed. When one
operation 1is suspended so that another may execute, the first operation is
said to have been pre-empted by the reguirement to execute the second
operation. This mechanism, where more than one operation may be in progress
at any given time, is called concurrent processing. Even though only one
operation can be executing at a given time, using a single central

MICROSYSTEMS

@ MOTOROLA
GENERAL INFORMATION

microprocessing unit, the concurrent processing mechanism of a real-time
system makes it appear as though several operations are executing
simultaneously.

A real-time application system can be broken down into several tasks. A task
is a function (or operation) that can execute concurrentiy with other
functions. A task can be written to process a single type of event, or it may
process more than one type of event. A kernel that supports more than one
task executing concurrently is called a multitasking kernel.

A task consists of some code representing the task's knowledge of how to do
something (e.g., process keystrokes from a terminal), and some data
representing the task's world view (e.g., a collection of characters since the
last carriage return). This code (procedural knowledge) and data (declarative
knowledge) is usually all the knowledge that a task needs to do its function.
However, the multitasking kernel needs to maintain a collection of data on
each task under its control, consisting of such elements as: the name of the
task, how much memory currently belongs to this task, and the state of this
tasks registers and program counter the 1last time it was running on the

processor. This data is collected into a piece of memory called the Task
Control Block (TCB), and is used by the kernel to control the execution of the
task. The knowledge contained within the TCB is always available to the

kernel, but it is usually not available to the task.

One piece of knowledge contained within the TCB that is of particular
importance to a real-time system, is the priority of the task. The task's
priority is a measure of the tasks importance relative to all the other tasks
within the system and represents its "need to run" in a multitasking system
where many tasks may be “ready to run" at any moment. Thus, in a
multitasking system where multiple tasks are "ready to run", the kernel runs
the highest priority task. This type of system is known as a priority-driven
muititasking system.

One aspect of priority that is crucial to the behavior of a real-time system
is the ability of the kernel to pre-empt a lower priority task when a higher
priority task becomes ready. This is known as a priority-driven pre-emptive
dispatch. For example, consider a system where a task of priority nine is
currently running on the processor and two tasks of priority six and nineteen
are both waiting on their respective events. If an event occurs that the
priority six task was waiting on, it will be made ready but the Executive will
return control to the priority nine task that was previously executing; the
priority six task will not run until the priority nine task relinquishes
control of the processor. However, if an event occurs that the priority
nineteen task was waiting on, the Executive will pre-empt the priority nine
task by saving its registers and program counter within its TCB, marking that
task as being in the "ready to run" state and turning control of the processor
over to the priority nineteen task.

RMS68K supports all the real-time system concepts previously introduced and
therefore, may be described as a real-time multitasking kernel that supports
the asynchronous processing of events and a priority-driven pre-emptive
dispatcher. The way in which RMS68K supports these concepts is explained in
paragraph 1.3.

MICROSYSTEMS

N

@ MOTOROLA
GENERAL INFORMATION

1.3 OVERVIEW OF RMS68K

RMS68K consists of an inner kernel (or nucleus) that supports the priority-
driven, multitasking environment, and eight resource managers to provide
services such as memory management, event management, and semaphore
management . Refer to paragraph 1.3.7 for a detailed description of the
functional partitioning of RMS68K.

1.3.1 Resource Managers

Each resource manager consists of data structures and about five to seven
RMS68K directives, each providing a specific service from the resource
manager . One example of a resource manager is the RMS68K memory manager.
Some of the data structures controlled by the memory manager are the free
memory 1ist that describes all memory not currently allocated to any task, and
the task segment table that describes all memory currently assigned to a
particular task. Some of the directives contained within the memory manager
are:

Get me a segment of memory

Release a segment of memory back to the system
Declare a segment to be shareable

Attach me to a previously-declared shareable segment

1.3.2 Directives

An RMS68K directive consists of a name for identification by the user, a
number for machine recognition, and a body of code to provide the service
associated with that directive. In addition, most RMS68K directives require
that the task provide additional information about the requested service and
select between one or more options. This information is collected into a
block of data known as a parameter block. For example, the "Get me a segment
of memory" directive requires some additional information: the name of the
segment, the logical address of the segment, and the type of memory requested
(RAM or ROM). Some of the options tell the directive what action to take if
the memory is not immediately available: return an error code, put the task
into a WAIT state until the memory becomes available, or return the next
largest piece of memory currently available.

The interface between tasks and RMS68K directives is the TRAP #1 instruction.
Before executing the TRAP #1 instruction, the task loads the directive number
into data register DO, and the address of the parameter block, if required,
into address register A0. If the directive executed successfully, control
returns to the task at the instruction following the TRAP #1 instruction with
the Z bit of the condition codes set and data register DO equal to 0. If the
directive failed, execution returns to the instruction following the TRAP #1
with the Z bit clear and data register DO containing an error code of
08DDEEEE; where 08 indicates that this error code is from the Executive, DD
contains the original directive number, and EEEE contains a code describing
the error condition. An example of this interface is:

MICROSYSTEMS

@ MOTOROLA
GENERAL INFORMATION

MOVE . W #DIRECTIVE_NUMBER,DO

LEA PARAMETER_BLOCK ,AC
TRAP #1
BNE DECODE_ERROR_IN_DO

Note that the condition codes returned by RMS68K support the BNE instruction
to an error routine. It is strongly recommended that users follow all TRAP #1
instructions with a BNE instruction to an error routine, even if the error
routine merely aborts the task (this makes debugging easier).

Some directives ‘return information in register A0 or in registers A0 and Al.
Except for SR, DO, A0, and Al, all registers are returned as they were before
the directive call. When A0 and Al are not used as return parameters, they
are also preserved.

WARNING

ANY UNUSED OPTIONAL FIELD IN AN EXECUTIVE DIRECTIVE
PARAMETER BLOCK SHOULD BE CLEARED T0 ZERD BY THE
ISSUING TASK BEFORE ISSUING THAT EXECUTIVE DIRECTIVE.

1.3.3 Sessions

RMS68K supports a concept called Sessions that is a boundary around a group of
tasks. This boundary works in two ways:

a. It limits the scope of the tasks in its bounds.

b. It protects them from the activities of tasks in alien sessions.

Within the boundaries of a session, tasks may communicate freely and share
resources (such as memory). Tasks may also create other tasks within the
session, start them, stop them, or terminate them. They may affect the state
of other tasks within the session by waking them up, changing their priority,
or reading or writing to their memory. A task may monitor exceptions (within
other tasks), or customize the session environment by adding directives to the
Executive that only affect that session. However, these activities are not
allowed between tasks belonging in different sessions.

The session protection mechanism can be applied to any system where tasks work
in groups to achieve common sub-goals. Sessions are used to protect different
users from each other in multiple user systems.

MICROSYSTEMS

@ MOTOROLA v
GENERAL INFORMATION

1.3.4 System and User Tasks

To coordinate the activities of different sessions and provide system wide
resources, a class of super-tasks is required that can break through or cross
over the session boundaries. Under RMS68K this class of super-tasks is called
system tasks. Tasks bound within the perimeters of a session are called user
tasks.

A system task can communicate with another task in any session, affect its
state, read or write to its memory, or monitor its exceptions. A user task is
restricted from influencing a task within another session.

A system task can only be created by another system task. To create a system
task under VERSAdos, Tink the task with the "S" option and load it under User
0.

This two level system defines a hierarchy around which various software
architectures can be designed. Both system and user tasks execute within the
user hardware state of the M68000 Family microprocessor.

Session number $0000 provides a totally independent session from the remainder
of the system. System tasks within session $0000 can affect tasks within
other sessions. Session $0000 tasks are protected from system or user tasks
within any other session; this allows a development system in which the
online, real-time control to be totally protected from software development
functions. Tasks are placed in session $0000 by including them within the
boot file at SYSGEN time.

1.3.5 Real-Time Domain

To fulfill the performance requirements of real-time programming, RMS68K
supports two domains of execution: real-time and non real-time. Tasks
executing within the real-time domain are called real-time tasks and are
subject to the following constraints:

a. The entire address space must be mapped so that all logical addresses
are equivalent to their corresponding physical address {no Memory
Management Unit (MMU) address translation).

b. They must use the internally generated 8-byte code as a target task
interface (refer to paragraph 1.3.6), when executing RMS68K directives
that refer to target tasks.

Other than these two constraints, the two domains are identical. A11 RMS68K
directives function the same in either domain, except that RMS68K services
directives faster in the real-time domain. Also, the domain of execution is
totally independent from the system/user session constraint. Four
combinations of the session/domain constraints exist:

MICROSYSTEMS

@ MOTOROLA
GENERAL INFORMATION

DOMAIN SESSION TASK

CONSTRAINT CONSTRAINT IYPE

Real-time System Real-time system task.
Real-time User Real-time user task.

Non real-time System Non real-time system task.
Non real-time User Non real-time user task.

There are two ways to create real-time tasks:

a. Describing the task to SYSGEN as a real-time task and including it in
the boot file.

ATTRIB = 'RTIM'
b. Writing a position-independent task and describing it to the linker

(using both the “P" and "R" attributes) as being both position-
independent and real-time.

LINK

IN TASK
ATTR PR
END

1.3.6 Target Task Interface

About one third of RMS68K directives allow a task to refer to another task,
talled the target, by encoding an 8-byte task identifier (or task_id) into the
target task field of the parameter block. The format of the task_id differs
depending on whether the requesting task is a real-time task or not. However,
it is not dependent on whether the target is a real-time task or a non real-

time task.

The task_id format for a non real-time requesting task is a 4-byte taskname
followed by a 4-byte session number. This target task interface protocol
supports the session boundary constraint, so it is important to understand the
rules of that protocol.

Target task interface protocol rules:

a. A taskname of 0 indicates the requesting task.
b. A session number of 0 indicates the home session for system tasks.

c. The session number is ignored for user tasks.

MICROSYSTEMS

M) moToroLA
GENERAL INFORMATION

These rules are summed up in the following algorithm:

IF

(taskname = 0)

THEN ACCESS
(name = requesting_task)
(session = home_session);

ELSE IF
(session = 0) or
(requesting_task = user_task)
THEN ACCESS
(name = taskname)
(session = home_session);

ELSE ACCESS
(name = taskname)
(session = session_number);

The format of the task_id for a real-time requesting task is an 8-byte code
generated by the Get_Task_ID directive. The input to Get_Task_ID is the
taskname and session number of the target and the output is the target task's
task_id in the proper format for the requestor. Thus, if a non real-time task
calls Get_Task_ID, the output is identical to the input but for a real-time
task, Get_Task_ID translates the taskname and session number into the 8-byte
code.

The behavior of Get_Task_ID supports the migration of tasks between the real-
time and non real-time domains. A task that calls Get_Task_ID to translate a
target task's taskname and session number into the appropriate task_id format
before wusing it within the target task field of an RMS68K directive, executes
properly in either the real-time or non real-time domain. Also, because
Get_Task_ID supports the session boundary constraint, real-time user tasks are
restricted to accessing target tasks within their own sessions the same as non
real-time user tasks.

In either domain, a task_id of 0 indicates that the target task is the
requesting task.

MICROSYSTEMS

@ MOTOROLA

1.3.7 RMS68K Functional Partitioning
The functional partitioning of RMS68K is:
Nucleus
Resource Managers

Event Manager

Memory Manager

Task Manager

Time Manager

Semaphore Manager

Trap Server Manager
Exception Monitor Manager
Exception Manager

Figure 1-1 describes the RMS68K partitioning.

GENERAL INFORMATION

An overview of each functional

partition within RMS68K is given in the following paragraphs.

User
tevel 0 eee-e= meeeee mmeee-
| Task | I Task | I Task |
I A I B I I C !
\ i /
\ | /
\ | /
\ | /
Supervisor \ | /
Level \ |
_________ | | _————————
| Event | I NUCLEUS | IExceptioni
| Manager |----- I l-———- IManager |
| | | | | |
_________ UGS | S
/1 | | \
/1 | I \
/ | | I \
_________ | mmmmmee | [, e
| Memory | 11 Time 1 ITrap ! IExceptionl
| Manager | | | Manager | | [IServer | IMonitor |
| | [I 1 [IManager | IManager |
_________ | mmmmme—e | e e
| |
| Task | | Semaphoret
| Manager | IManager |
I | | |
FIGURE 1-1. RMS68K Partitioning
MICROSYSTEMS

N

.~

@ MOTOROLA
GENERAL INFORMATION

1.3.7.1 Nucleus. The nucleus is the collection of modules required to
support the real-time multitasking environment and contains the priority-
driven pre-emptive dispatcher, the ready module to schedule tasks to run, the
TRAP #1 handler to enable tasks to request services from resource managers,
and the TRAP #0 handler to provide a similar interface to device drivers.

The nucleus also contains a module to schedule and run background jobs for
drivers. A background job is a driver activity that executes with interrupts
enabled to do post-interrupt processing of data latched during an Interrupt
Service Routine (ISR). Background activity supports the principle that
masking interrupts degrades the ability of a real-time system to respond to
external stimuli and should be minimized. (For more information on background
processing refer to the Guide to Writing Device Drivers for VERSAdos manual.)

1.3.7.2 Event Manager. The event manager provides sophisticated inter-task
communication. An event is a message passed from one task to another and the
mailbox mechanism is called the Asynchronous Service Queue (ASQ). The event
manager supports the passing of variable length messages up to a maximum of
254 bytes and either the passing of a pointer to a message or the moving of
the message from the sender's address space to the receiver's space.

The ASQ supports the receipt of events in two domains:

a. Synchronous

b. Asynchronous
In the synchronous domain, the task informs the event manager when it is ready
to receive an event using the GET EVENT directive. If there is an event
pending in the ASQ, the event manager moves the event to the task's receiving

buffer and returns to the task. Otherwise, the task is put into a WAIT state
until an event arrives.

In the asynchronous domain, the task may execute with an Asynchronous Service
Routine (ASR) enabled. (This is analogous to a task connected to an ISR
running with interrupts enabled.) When an event is sent to a task whose ASR
is enabled, the task is interrupted out of its normal user level code and
dispatched to its ASR. Once done executing the ASR, it returns to the user
level code at the point at which it was interrupted.
Some of the services provided by the event manager are:

a. Get an Asynchronous Service Queue (ASQ).

b. Queue an event to a target task's ASQ.

c. Get an event in the synchronous mode.

d. Enable or disable asynchronous event processing.

e. Return to user level code from the asynchronous event processing.

MICROSYSTEMS

@ MOTOROLA
GENERAL INFORMATION

1.3.7.3 Memory Manager. RMS68K supports the concept of segmented (non-paged)
memory. A segment of memory must be contiguous, but the logical address
visible to the task is not necessarily equal to the physical address visible
to the hardware (MMU systems). A segment may be restricted to one task,
visible to any task within a session, or it may be visible to any task within
the system. A particular task may be attached to zero to four segments at any
moment .

Segments may be RAM, ROM, or memory mapped I/0 (hardware devices). The memory
manager organizes all RAM and ROM memory into partitions, each with a
partition number and a partition type. Partitions support different types of
memory boards within a system. The partition number names the partitions for
reference purposes and the partition type groups similar partitions of memory
into classes. This partition number and partition type convention allows a
task to request a segment from a particular partition number, from any
partition of a specific type, or from the default number or type specified at
initialization.

Some of the services provided by the memory manager are:
a. Get a segment from a partition.
b. Transfer a segment to a target task.
c¢. Detach from a segment and return it to its partition.
d. Declare a segment shareable.

e. Attach to a shareable segment.

1.3.7.4 Task Manager. The task manager provides the following services:
a. Create a task.
b. Start a task.
c. Stop a task.
d. Terminate or abort a task.
e. Task synchronization

f. Task queries

The task manager provides primitive inter-task synchronization through the
SUSPEND/RESUME and WAIT/WAKEUP pairs of directives. These two pairs of
directives do the same basic function, i.e., allow one task to wait for a
signal from another task or device driver. The difference is that the
WAIT/WAKEUP pair supports a one deep buffer for that signal, so that the
signalling task can send the signal (wakeup the target) before the waiting
task indicates its desire to wait. Whereas the SUSPEND/RESUME pair requires

MICROSYSTEMS
10

@ MOTOROLA
GENERAL INFORMATION

that the SUSPEND directive (wait on the signal) precede the RESUME directive
(signal the target).

The RELINQUISH directive allows a task to yield voluntarily its control of the
processor to another task of equal or slightly lower priority.

The task query directives allow a task to access information about another
task within the system. This function is supported by four directives:

a. Get Task Attributes Returns the user number of the target task
and its attributes (system task, position
independent task, task has claimed its own
exception vectors).

b. Get Task Information Returns a copy of the target task's TCB.

c. Get Task_ID Translates a taskname and session number
: into a task_id.

d. Get Taskname Translates a task_id into a taskname and
session number.

1.3.7.5 Time Manager. Another resource that RMS68K manages for the system is
time. The time manager notifies tasks of the expiration of pre-selected time
intervals and supports two types of time:

a. Elapsed time (wake me up in fifteen minutes)

b. Calendar time (current time is 4:34 PM, January 4th, 1985)
The two directives supporting elapsed time are:

a. Delay

b. Request Periodic Activation
Both directives support the concept of "Wake me up in 100 milliseconds”. The
main difference is that the DELAY directive is a one time request, whereas the
REQUEST PERIODIC ACTIVATION directive wusually involves a request such as,
"Wake me up every 100 milliseconds from now on".
The two directives supporting calendar time are:

a. Set Date and Time

b. Get Date and Time

1 MICROSYSTEMS

@ MOTOROLA
GENERAL INFORMATION

1.3.7.6 Semaphore Manager. RMS68K provides sophisticated task
synchronization via the Semaphore Manager. This manager supports three types
of semaphores: a binary semaphore, a counting semaphore, and a broadcast
semaphore. Most of the differences are concerned with such details as, "who
can initialize the semaphore count" and "what happens when someone tries to
attach to this semaphore before it is created”. These details support the use
of semaphores in specific environments; one task controlling a resource pool
or two or more tasks sharing a critical section of code.

Some of the services provided by the semaphore manager are:

Create a semaphore

Attach to an existing semaphore
Wait on a semaphore

Signal a semaphore

Detach from a semaphore

o a0 oo

1.3.7.7 Trap Server Manager. The Trap Server Manager supports the special
requirements of protected and privileged operating system tasks such as, an
I1/0 or file management system, and may be used by application programs to add
common functions or operating system extensions (networking, GKS graphics
server).

The trap server manager is a layer of additional functionality immediately
above the event manager. This manager converts a TRAP #N instruction executed
by a task, into an event sent to the trap server associated with that
particular trap number. In addition, the server manager allows the trap
server to exercise a certain amount of control over those tasks requesting its
service.

One aspect of this control is the ability to regulate when the events
generated by tasks requesting service are allowed to enter its ASQ.
Typically, when a trap server is servicing one reguest, its ASQ will be
disabled to additional trap requests while remaining enabled for communication
with other operating system tasks or device drivers. Any task requesting
service during this period, will be placed on a queue awaiting an indication
from the trap server that it is ready to handie another request.

In addition to being able to indicate when it is ready to service requests,
the trap server manager also allows the server to regulate when a requesting
task is released from the server's control and in what state it should be on
release. After a task executes a TRAP #N instruction, the trap manager places
it into a state of waiting for acknowledgement from the server. It will not
run until the server releases it via the ACKNOWLEDGE SERVICE REQUEST

directive.

12 MICROSYSTEMS

SN

@ MOTOROLA .
GENERAL INFORMATION

Some of the services provided by the trap server manager are:

a. Establish a trap server.
b. Acknowledge a request and release the task from server control.

c¢. Enable the server to handle additional trap requests even though a
previous one has not been acknowledged.

d. Deallocate a trap server.

1.3.7.8 Exception Monitor Manager. The Exception Monitor Manager allows one
task to observe and control the behavior of one or more target tasks by
declaring itself to be an exception monitor for those tasks and to indicate
which exceptions (bus errors, divide by zero faults, trap instructions), it is
interested in observing. If a target task causes one of these exceptions to
occur, the exception monitor manager will freeze the state of the target task
and queue an event to the exception monitor describing the exception.

On notification that the target task has caused an exception, the exception
monitor can read the state of the target task (registers, status register,
program counter), change the state of the target task, read or write to the
target task's code or data space, and enable the task to run, either freely or
in a trace mode (execute one instruction, run until a memory ltocation is
changed, or run until a memory location equals a specific value).

Exception monitor tasks may be used to debug other tasks or to increase system
security by observing and reporting on unusual task behavior.

Some of the services provided by the exception monitor manager are:

a. Establish a connection between an exception monitor and a target task.

b. Allow the exception monitor to indicate which exceptions it wants to
monitor.

¢c. Run the target task under the control of the exception monitor.
d. Read the state of the target task.
e. Change the state of the target task.
f. Detach a target task from its exception monitor.
1.3.7.9 Exception Manager. The exception manager provides a set of

directives for managing exceptions. It allows a user task to dynamically
configure an ISR and to simulate a hardware interrupt.

13 MICROSYSTEMS

@ MOTOROLA
GENERAL INFORMATION

It also allows the user task to claim any of the trap vectors not already used
by RMS68K (TRAPS 0 and 1), or to claim any of the exception vectors (bus
error, divide by zero, privilege error). If a task causes a claimed exception
to occur, or executes a claimed trap instruction, the exception manager
dispatches the task to its exception handler with information about the
exception on the user stack. The default for unclaimed exceptions is to abort
the task and queue an event to the task's monitor indicating the exception
that caused the exception manager to take this action.

1.4 DATA STRUCTURES

The data structures controlled by RMS68K are:

ASQ Asynchronous Service Queue

Mailbox mechanism supporting the queuing of events between
tasks.

FML Free Memory List

Doubly 1linked 1list of nodes describing current status of free
memory within a RAM partition.

GST Global Segment Table

Array of segment descriptors for all currently defined shareable
segments within the system.

Iov I1/0 Vector Table

Array of descriptors for all tasks currently claiming interrupts
via the CISR directive.

MEMMAP Memory Map Table

Array of partition descriptors for all RAM or ROM partitions
within the system.

PAT Periodic Activation Table

Linked 1list of nodes describing all current demands for elapsed
time notification.

SYSPAR System Parameter Table
Unstructured 1list of miscellaneous system parameters.
TCB Task Control Block

Unstructured list of miscellaneous task state information.

MICROSYSTEMS
14

M) mororoLa GENERAL INFORMATION

TIO0T Trap Instruction Owner Table

Array of descriptors for currently defined trap servers indexed
by trap number.

TRC System Trace Table
Circular queue of traced events describing system history.
TST Task Segment Table

Array of segment descriptors for all segments currently
accessible to a task.

UDR User Defined Directive Table

Array of descriptors indexed by directive number for all
directives currently defined by tasks via the CDIR directive.

UST User Semaphore Table

Array of semaphore descriptors indexed by semaphore key for all
currently defined semaphores created by the CRSEM or ATSEM
directives.

1.5 HARDWARE REQUIREMENTS

The hardware requirements for an RMS68K-based application system are:

M68000 Family microprocessor
Adequate memory
Optional real-time clock

The amount of memory required varies from one system to another, depending on
the system environment, user-supplied code and data, and the RMS68K functions
configured in the user system. The maximum memory requirement for the entire
RMS68K is:

Kernel 18.0Kb code
3.0Kb data

Channel management routines 2.0Kb code
.25Kb data per channel

If the system 1is to use the time manager functions, a timer "tick"” function
must be provided. This can be done with a software tick mechanism that the
user configures as part of RMS68K, or with a hardware timer device such as the
Motorola MC6840 Programmable Timer Module.

15 MICROSYSTEMS

M) moToroLA GENERAL INFORMATION

The requirements listed above can be satisfied through use of the Motorola
VERSAmodule Monoboard Microcomputer, VMEmodule Monoboard Microcomputer,
VMC68/C, VME/10, VME/12, EXORmacs, or a user-designed M68000 Family
microprocessor based board. —

1.6 RELATED DOCUMENTATION

The following publications may provide additional helpful information. If not
shipped with this product, they may be obtained from Motorola's Literature
Distribution Center, 616 West 24th Street, Tempe, Az 85282; telephone (602)

994-6561.
___ MOTOROLA
DOCUMENT TITLE PUBLICATION NUMBER
System Generation Facility User's Manual M68KSYSGEN
VERSAdos Messages Reference Manual M68KVMSG
M68000 Family VERSAdos System Facilities Reference Manual M68KVSF
VERSAdos to VME Hardware and Software Configuration /\\
User's Manual MVMEVDOS
VERSAdos Data Management Services and Program Loader
User's Manual RMS68KIO
M68000 Family Linkage Editor User's Manual M6SKLINK
Guide to Writing Device Drivers for VERSAdos M68KDRVGD
M68000 16/32-Bit Microprocessor Programmer's M68000UM
Reference Manual

MICROSYSTEMS

16

@ MOTOROLA
EVENT MANAGER

CHAPTER 2

EVENT MANAGER

2.1 OVERVIEW

The Event Manager s the facility within RMS68K that enables tasks to
communicate declarative knowledge to other tasks. The event manager may also
be known as: inter-task communication, inter-process communication, or
message passing. Declarative knowledge has two facets: factual knowledge
(the sky 1is blue), and temporal or event knowledge (the sun just went down).
The RMS68K event manager supports the communication of both types of
declarative knowledge.

Other features of the event manager are:

a. Operates in either a synchronous or an asynchronous mode.
b. Supports two modes to communicate declarative knowledge:
1. Move the data.
2. Pass a pointer to the data.
c. Supports variable length messages.

d. Automatically queues messages if the receiving task is not ready to
receive.

e. Supports task to task communication or driver to task communication.

f. High performance.
2.2 THEORY OF OPERATION
2.2.1 Events

An Event is a string of bytes used to communicate knowledge of a fact or
occurrence between tasks. An event has three fields:

a. 1 byte event length field (N) Supports variable length events.
b. 1 byte event code field Differentiates types of events.
c. Optional event content field Communicates additional factual
(N-2 bytes) knowledge.
MICROSYSTEMS

17

@ MOTOROLA
EVENT MANAGER

The following examples show the power and flexibility of events for
communicating declarative knowledge.

EXAMPLE 1: A task controlling a camera communicating knowledge to a task
that is controlling a robot arm.

The camera scans a conveyor belt for crates. It knows how to recognize
three types of crates: large crates, medium crates, and small crates.
When the camera observes a crate moving down the conveyor belt, it must
determine the type of crate and communicate that knowledge to the robot
arm. The -tasks could establish an agreement that a small crate is
signalied by a code $20 event, a medium crate by a code $30 event, and a
large one by a code $40 event. Thus, a simple event consisting of only
the length and code field would fulfill the requirements of the system.

EXAMPLE 2: The same system at a later stage of development where the
camera not only recognizes crates, but can also determine the
exact dimensions.

For this system, a single byte is not enough to differentiate between
crates. The two tasks would need to define an event such as:

Code $20 means a crate is coming down the conveyor belt.

The event is 8 bytes long and the 6 bytes of the content field
include three 2-byte sub-fields indicating the length, width, and
depth of the crate in centimeters.

If the system needed to recognize other objects with different attributes,
more event codes would be defined. The code field would differentiate
between objects, and the content field would describe the objects
attributes.

EXAMPLE 3: A vision system designed to recognize printed text.

The task controlling the camera would convert a bit map representing the
page of text into a variable length string of ASCII characters (maximum
length 5000). This string would be passed to another task that analyzes
or processes the ASCII string. To support the requirement to pass large
amounts of data via events, the camera task would assemble the ASCII
string in a shared data segment and send an event containing a pointer to
the ASCII string within the data segment.

Several of the event codes are used by RMS68K for specific purposes such as:
notifying a server that a task has executed a trap instruction (code - $07),
or notifying an exception monitor that a task under its control has taken an
exception (code = $08). The only event codes a task cannot use are the server
event code ($07) and event codes in the range $80 to $FF. However, to remain
compatible with future enhancements of RMS68K, it is recommended to use event
codes between $20 and $7F inclusive.

MICROSYSTEMS
18

——

@ MOTOROLA
EVENT MANAGER

A code $03 event is treated in a special way by RMS68K; the task_id of the
sending task 1is inserted immediately after the length field to inform the
receiver of the sender's identity. This 8-byte task identification is in the
proper format for the receiver to use, i.e., if the receiver is a real-time
task, RMS68K inserts the internal 8-byte code, otherwise it inserts the
taskname and session number.

2.2.2 Asynchronous Service Queue (ASQ)

The data structure supporting the queueing of events between tasks is called
the ASQ. The ASQ consists of a control portion, a variable length data
portion for temporary storage of events, and an overflow portion to support
the high performance storage and retrieval of events. In other systems, the
function of the ASQ is done by a data structure called a mailbox.

A task must request the event manager to allocate it an ASQ before it can
receive events. The task can specify options such as: the size of the
longest event it will receive, how much storage is necessary for the temporary
storage of events, and whether the task intends to process events in a
synchronous or asynchronous mode. The established ASQ is identified with the
task and supports a many to one communication path; many tasks may queue
events to an ASQ, but only one task may receive those events.

Even though the ASQ is identified with a particular task, it is not directly
accessible by the task. In other words, the task does not process an event
within the ASQ; the event must be moved from the ASQ into a receiving buffer
within the task's address space. The task may choose to define a default
receiving buffer when the ASQ 1is allocated. The knowledge of a default
receiving buffer enables the system under most circumstances, to move the
event directly from the sender's domain into the receiver's, bypassing the ASQ
entirely.

The event manager contains a directive, SETASQ, that allows a task to
dynamically enable or disable various facets of its ASQ. Thus, a task may
inform the event manager that it does not want to receive events at the
current time so the event manager rejects any such messages, informing the
sender that the receiver's ASQ is disabled. Later the task may inform the
event manager that it 1is now ready to receive events. The task may also
enable or disable its default receive buffer or inform the event manager that
it is ready or not ready to receive messages asynchronously.

2.2.3 Synchronous and Asynchronous Modes

The Synchronous Mode of inter-task communication 1is characterized by the
ability of the receiving task to control the timing of event processing. In
the Asynchronous Mode, the timing of event processing is determined by the
behavior of the sender. In other words, in the synchronous mode the receiving
task informs the event manager when it is ready to process an event, but in
the asynchronous mode the receiver must be ready at any time to get
"interrupted” to process an event. RMS68K supports inter-task communication
in both the synchronous and asynchronous modes.

19 MICROSYSTEMS

@ MOTOROLA
EVENT MANAGER

2.2.3.1 Synchronous Mode. The Synchronous Mode of inter-task communication
is supported by two RMS68K directives, GTEVNT (Get an Event) and RDEVNT (Read
an Event). Both directives eventually return control to the calling program
at the instruction following the directive call. However, RDEVNT returns
immediately, regardless of whether an event was present within the ASQ,
whereas GTEVNT waits on an empty ASQ until an event arrives before returning
control to the task. A task executing a GTEVNT directive is telling the event
manager "I am ready to receive an event and I am willing to wait until one
arrives" while a task executing a RDEVNT is saying "If there is an event in my
ASQ, give it to me; if not, let me know". The first case is analogous to
calling a get-character subroutine, while the latter case is analogous to
polling an I/0 port for an incoming character.

After executing a GTEVNT call, the event is present within the task's
receiving buffer. The RDEVNT directive has two return conditions:

a. If there was at least one event present within the ASQ before the
RDEVNT call, the oldest event within the ASQ will have been moved to
the receive buffer.

b. If the ASQ was empty, the receive buffer contains a "null” event of
length = $00 and code = $00, indicating an empty ASQ.

2.2.3.2 Asynchronous Mode. Any system that supports the Asynchronous Mode of
inter-task communication must be able to maintain at least two "levels” of
task execution. Ltevel 1 is the Tlevel at which the task is executing its
normal inline code, and level 2 is the task's event handling code. The level
2 code is dispatched asynchronously on event arrival, and since the Jevel 2
code must eventually “return" to the level 1 code, the entire level 1 state
must be saved before dispatching the level 2 code. (This is analogous to a
processor that automatically saves the entire processor state before
responding to an interrupt by dispatching an ISR.)

The typical requirements for supporting asynchronous inter-task communication
are:
a. A task should be executing its normal or level 1 code.
b. A second task queues an event to this task.
c. The 1level 1 state of this task is saved somewhere (registers, status
register, program counter), and the task is dispatched to its level 2

event handler routine.

d. The event handler routine processes the event, possibly passing some
information about the event back to the level 1 state.

e. The event handler signals that it is finished processing the event.

f. The 1level 1 state is restored and level 1 execution is resumed at the
point it was interrupted by the event arrival.

MICROSYSTEMS
20

M) moToroLA EVENT MANAGER

A more sophisticated variation on this scenario involves the level 2 event
handler getting interrupted by the arrival of another event; its state is
saved and a level 3 event handler is dispatched. This nesting of event
handlers could continue to an arbitrary level "n". RMS68K's event manager
supports both asynchronous scenarios.

Within RSM68K the event handler is called an Asynchronous Service Routine
(ASR) and is declared when the asynchronous service queue (ASQ) is allocated.
The ASR may be disabled or enabled at any time via the SETASQ directive.
Asynchronous event processing requirements are fulfilled by the RMS68K event
manager in the following way:

a. The task is executing its normal level 1 code and its ASR is enabled.
b. A second task queues an event to this task.

c. This task's 1level 1 state 1is saved on its stack and the task is
dispatched to its level 2 ASR.

d. The ASR processes the event possibly passing some information about
the event back to the level 1 state on the stack.

e. The event handler signals that it is finished processing the event via
a RTEVNT (return from event) directive call to the event manager.

f. The 1level 1 state 1is restored by the event manager and the level 1
execution is restored at the point it was interrupted by the event.

On dispatch to the ASR, the ASR is automatically disabled by the event manager
to quard against unwanted nesting of event interrupts. However, an ASR that
is prepared for nesting can enable its ASR via the GETASQ directive. Thus,
RMS68K also supports the more sophisticated case where ASRs may be nested to

an arbitrary level "n".

It the default receive buffer was enabled, the event is present within the
default receive buffer on dispatch to the ASR. Otherwise, the ASR needs to
read the event into a buffer via the RDEVNT directive. On dispatch to the
ASR, the state of the previous level of the task is present on the task's
stack. Figure 2-1 shows the user stack format on entering an ASR.

21 MICROSYSTEMS

@ Mo LA EVENT MANAGER

USP ———-—--—- > DO at moment of interrupt USP
D1 at moment of interrupt USP +4
D6 at moment of interrupt UsP +24
D7 at moment of interrupt USP +28
A0 at moment of interrupt UspP +32
Al at moment of interrupt USP +36
A5 at moment of interrupt USP +52
A6 at moment of interrupt USP +56
SR at moment of interrupt USP +60
PC at moment of interrupt USP +62

FIGURE 2-1. User Stack on Entering
an ASR (Register Stacking
Feature Enabled)

The state of the previous level is also present within the ASR's registers DO
to D7 and AD to A6. If the ASR needs to communicate with the previous level,
it can change the state of one or more of that level's registers on the stack.
When the ASR executes the RTEVNT trap call, the state of the ASR is lost and
the state of the previous level is restored. Note that the ASR must ensure
that its stack pointer is equal to the value it possessed immediately after
ASR dispatch for proper functioning of the RTEVNT directive.

An optional mode of dispatch to the ASR can be selected via the GTASQ
directive called ‘"register stacking disabled". In this mode the previous
level's state (DO to D7 and A0 to A6) is present within the ASR's registers on
ASR dispatch, but are not present on the task's stack.

USP —--ee——- > SR at moment of interrupt usp
PC at moment of interrupt USP +2

FIGURE 2-2. User Stack on Entering
an ASR (Register Stacking
Feature Disabled)

In this mode the ASR must be careful not to destroy the state of the previous
level contained within its registers. An RTR instruction restores the state
of the previous level from the status register and program counter on the
stack.

MICROSYSTEMS

22

Ry

@ MOTOROLA
EVENT MANAGER

A problem occurs when a task is processing events in the asynchronous mode and
the normal 1level 1 code runs out of things to do. It could go into a loop
waiting for a signal from its ASR that another event has been processed. This
approach, while feasible, wastes processing resources in a multitasking
environment. The event manager solves this problem with the WTEVNT (Wait For
Event) directive.

The WTEVNT directive is similar to the synchronous mode GTEVNT directive; it
informs the event manager that the task cannot proceed until an event arrives.
However, where the synchronous mode GTEVNT directive causes the task to be
dispatched to the instruction immediately following the GTEVNT call, the
asynchronous mode WTEVNT directive causes dispatch to the ASR on event arrival
at which point the asynchronous processing of events starts up again.

One more aspect of asynchronous event processing is alternate ASRs. So far
the ASR was assumed to be the default ASR declared via the GTASQ directive.
However, a task may have an unlimited number of ASRs in addition to the
default one, called alternate ASRs. A possible use for alternate ASRs would
be to establish a different ASR for each type of event the task can process.
To dispatch a task to an alternate ASR, the sending task must know the logical
address of the alternate ASR. This address is then included in the QEVNT
(Queue Event) parameter block and a bit is set indicating that this event
should be dispatched to the alternate ASR at that address.

The asynchronous mode of event handling is powerful and flexible and many
sophisticated asynchronous systems can be built around these primitives.
However, many systems are synchronous by nature and those systems can be built
faster and easier with the GTEVNT directive. The system designer should
carefully consider the trade-offs between a synchronous and an asynchronous
design.

2.2.4 Default Receive Buffer

The Default Receive Buffer is a buffer for the receipt of events that a task
can declare via the GTASQ directive and may disable or enable via the SETASQ
directive. The default receive buffer increases the performance of the event
manager in the following way:

a. The event manager can translate the logical address of the default
buffer into its corresponding physical address once, at initialization
time, instead of every time a GTEVNT or RDEVNT directive is executed.

b. The presence of an enabled default buffer eliminates the requirement
for an ASR to execute a RDEVNT because the event manager automatically
moves the event into the default receive buffer before dispatching the
asynchronous task to its ASR.

¢. Usually, the presence of an enabled default receive buffer allows the
event manager to move the event directly from the senders domain to
the receivers, bypassing the ASQ's temporary storage buffer entirely.
Thus, the Executive only needs to move the event once, instead of
twice.

MICROSYSTEMS
23

@ MOTOROLA
EVENT MANAGER

The event manager never writes a new event to the default receive buffer
before the task has finished processing the current event. The user must
notify the event manager that the buffer is no longer being used by:
a. Executing a GTEVNT directive.
b. Executing a RDEVNT directive.
c. Enabling the ASR by:
1. Executing a SETASQ directive with the enable ASR bit set.
2. Executing a WTEVNT directive.

3. Executing a RTEVNT directive with the enable ASR bit set

2.2.5 Directive Summary

The directives contained within the event manager are:

GTASQ Allocate an ASQ for the target task.

SETASQ A task enables or disables its ASQ, ASR, and/or default
receive buffer.

QEVNT An event is sent to the target task.

GTEVNT A task moves itself into the GETTING EVENT state until an

event arrives at which time the task is dispatched to the
instruction following the GTEVNT directive call.

RDEVNT The next event in the requesting task's ASQ is moved into
the task's receive buffer.

WTEVNT A task moves itself into the WAIT FOR EVENT state until an
event arrives at which time the task is dispatched to its
ASR.

RTEVNT Return to the point of task interruption on completion of

that task's ASR processing.

DEASQ Deallocate the requesting task's ASQ.

2.3 DATA STRUCTURES

The only data structure managed by the event manager is the ASQ. The ASQ is a
task's mailbox and contains a control portion, a circular queue for the
temporary storage of events, and an overflow area.

” MICROSYSTEMS

(EE)AHC’T!)WIC)LAI
EVENT MANAGER

The fields within the control portion are:

ASQ (4 bytes) Block ID

Each ASQ begins with 'IASQ" to allow consistency checking
and ease of dump reading.

ASQASR (4 bytes) Default service address

Contains the 1logical address of the default asynchronous
service routine.

ASQXFR (4 bytes) Current service address

When a dispatch to an ASR is pending, this field contains
the ASR's logical address. (This could be the default ASR
defined in the GTASQ directive, or an alternate ASR
specified in the QEVNT directive.)

ASQDBUF (4 bytes) Physical address of default receive area defined via GTASQ
directive.

ASQAOBUF (4 bytes) Physical address of buffer pointed to by A0 if task does a
GTEVNT when the ASQ is empty and default buffer is not
enabled.

ASQBOT (4 bytes) Queue beginning address

Contains the physical address of the beginning of the ASQ
event storage area.

ASQTOP (4 bytes) Queue ending address

Contains the physical address of the end of the ASQ event
storage area (beginning of overflow area).

ASQGET (4 bytes) Get pointer

Contains the physical address of the oldest event within
the ASQ.

ASQPUT (4 bytes) Put pointer

Contains the physical address of the next available byte
for an incoming event.

ASQSTATE (2 bytes) Contains the state variable for the ASQ and the switching
mode variabies.

Bits 15-6 Reserved.

25 MICROSYSTEMS

M mororoLa

ASQSTMOD (2 bytes)

EVENT MANAGER

Bits 5-3 contain the state variable. Six ASQ states are
defined:

BITS ASQ

5-3 STATE MEANING

000 RQ_DIS ASR and ASQ are both disabled.

001 Q_EN ASR is disabled and ASQ is enabled.

010 R_EN ASR is enabled and ASQ is disabled.

011 RQ_EN Both the ASR and ASQ are enabled.

100 WT_EN Task executed a WTEVNT directive when
the ASQ was empty. Task is waiting for
an event.

101 GT_EN Task executed a GTEVNT directive when
the ASQ was empty. Task is getting an
event.

Bits 2 and 1 contain the ASQ switching mode bits (bits
defining ASQ parameters that are critical to real-time
performance of the event manager).

Bit 2 DBUF_EN Defines whether the default buffer is
enabled (1) or disabled (0).

Bit 1 ASQ_MT Defines whether the ASQ is empty (1) or
not (0).

Bit 0 Reserved

Contains the static mode variables for the ASQ (bits
defining ASQ parameters not critical to real-time
performance of the event manager).

Bits 15-6 Reserved

Bit 5 ASQS_RNV ASR is not wvalid. If set, this
bit indicates that an ASR was not
defined when the ASQ was
allocated. Otherwise, the ASR was
defined.

MICROSYSTEMS
26

—

TN

M moToroLa

ASQML (2 bytes)
ASQCNT (2 bytes)

2.4 EVENT MANAGER

The event manager
servicing are descr

EVENT MANAGER

Bit 4 ASQS_DBYV Default receive buffer is valid.
If set, this bit indicates that a
default receive buffer was defined
when the ASQ was allocated.
Otherwise, the default buffer was
not defined.

Bit 3 ASQSK_DIS Register stacking is disabled if
this bit is set. Otherwise,
registers are pushed on the user's
stack before ASR dispatch.

Bits 2-0 Reserved

The circular queue follows the control portion. Its
starting and ending addresses are contained in ASQBOT and
ASQTOP, respectively.

The last portion of the ASQ is the overflow area that
starts at the location pointed to by ASQTOP. The length of
the overfiow area is equal to the contents of ASQML plus 4
bytes.

Maximum message length accepted.

Count of events currentiy stored within the ASQ.

DIRECTIVES

directives used by a task for event queueing and event
ibed on the following pages:

27 MICROSYSTEMS

@ MOTOROLA

ALLOCATE ASYNCHRONOUS SERVICE QUEUE (ASQ)

Directive Number: 31
Parameter:

Target Task (8 bytes)

ASQ Status (1 byte)

Maximum Message Length (1 byte)

Queue length (4 bytes)

ASR Service Vector (4 bytes)

EVENT MANAGER

GTASQ

Logical address of parameter block defining the ASQ

Task_id of task to receive ASQ. (Refer to
target task interface paragraph 1.3.6.)
Initial status of new ASQ and associated
functions.

Bit b5=1 ASR service vector is NOT valid.
User does not want an ASR. (NOTE)
=0 ASR service vector 1is wvalid.

User requires an ASR.

Bit 4=1 Receiving buffer is valid. User
is defining a default receiving
buffer. (NOTE)

=0 Receiving buffer is not valid.
User is not defining a default
receiving buffer.

Bit 3=1 Disable register stacking at
event interrupt.

=0 Enable register stacking at event
interrupt.

Bit 2=1 ASR enabled.

=0 ASR disabled.

Enable the default input buffer.
=0 Disable the default input buffer.
ASQ enabled.

=0 ASQ disabled

Maximum number of bytes from an event to be
transferred to the receive buffer.

Number of bytes reserved for events.

Logical address of target task's ASR. This
is the default service vector. This address
is valid only if bit 5 of the ASQ status
byte is set to O.

MICROSYSTEMS

28

.

—

MOTOROLA
@ EVENT MANAGER

GTASQ

Receiving Buffer (4 bytes) Logical address of target task's default
input buffer. This address is valid only if
bit 4 of the ASQ status byte is set to 1.
This buffer should be as long as the maximum
message length.

NOTE: These two bits are opposite, i.e., the ASR service vector address
is valid when its valid bit is 0, but the receive buffer address is
valid when its valid bit is 1.

Detailed Description:

RMS68K allocates memory for the target task's ASQ. The ASQ consists of a
fixed length ASQ control block, the area for receiving messages, whose length
is specified in the ASQ parameter block, and an overflow area. RMS68K records

the default service vector (ASR), the default receive buffer and the status of
the ASQ, ASR, the default receive buffer, and the register stacking parameter.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 ASQ was successfully allocated.
2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exist.
6/%06 ASQ already exists for target task.
8/%08 Memory space is not available.
12/%0C Message buffer not in caller's address space.

15/$0F Invalid options for this directive. Task has attempted to enable
its ASR or default buffer without declaring them valid.

29 MICROSYSTEMS

@ MOTOROLA
EVENT MANAGER

GTASQ

EXAMPLE :

A user task, TSKA, wants to allocate an ASQ for itself. The ASQ is to serve
messages up to 20 bytes in length and is to accommodate up to four messages.
The ASR of the task is located at address AASR, and its default input buffer
is at address INBUFF.

TSKA: MOVE.L #31,D0 Load GTASQ directive number 31.
LEA PRMBLK ,A0 Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.

PRMBLK : DC.L 0 Task to receive ASQ.
DC.L 0 Session number.
DC.B %00011111 ASR address is valid.

Receive buffer address is valid.
Register stacking is disabled.
ASR is enabled.

Receive buffer is enabled.

ASQ is enabled.

DC.B 20 Maximum message length.

DC.L 4*20 Reserve room for four messages.

DC.L AASR Address of ASR.

DC.L INBUFF Address of input buffer.
INBUFF: DS.B 20 Default receive buffer.

30 MICROSYSTEMS

o~

@ MOTOROLA EVENT MANAGER

SET ASQ/ASR STATUS SETASQ

Directive Number: 33
Parameter: New ASQ Status
Bits 31-3 Reserved

Bit 2=1 Enable ASR
=0 Disable ASR

Bit 1=1 Enable default receive buffer
=0 Disable default receive buffer

Bit 0=1 Enable ASQ
=0 Disable ASQ

Detailed Description:

RMS68K replaces the requesting task's current ASQ, ASR, and default receive
buffer status with the requested status. If the new status enables the ASR
and there 1is an event 1in the ASQ, an ASR interrupt occurs and the ASR is
disabled. However, if RMS68K detects any error within this directive, no
update occurs.

When an ASQ is disabled, requests to queue an event to that ASQ are rejected,
but the events already in the ASQ remain. When an ASR is disabled, the event
manager will not dispatch the task to the ASR even if these are events in the
associated ASQ. Table 2-1 summarizes the effect of enabling and disabling the
ASQ and ASR on the behavior of the event manager.

TABLE 2-1. Effect of Enabling and Disabling ASQ and ASR on Event Manager

ASQ ASR ACTION
" Enabled Emabled Events accepted into ASQ and ASR-processed.
Enabled Disabled Events accepted into ASQ, but not ASR-
processed.
Disabled Enabled New events not accepted into ASQ, but

existing events ASR-processed.

Disabled Disabled New events not accepted into ASQ, and
existing events not ASR-processed.

Return Parameters: None

31 MICROSYSTEMS

@ MOTOROLA
EVENT MANAGER

SETASQ

Error Codes (returned in bits 15-0 of DO):
0/%00 Status was changed Successfully.
4/%04 Requestor has no ASQ.

7/%07 An ASR was not previously defined.

10/30A Event interrupt s appropriate but not possible because of ASR
address, service vector, or USP pointing outside requestor's

address space.

11/%08 A default receiving buffer was not previously defined.

EXAMPLE :

TSKA wants to service all events in its ASQ before accepting new events, so it
disables its ASQ, rejecting new events. It wants to process the events
asynchronously, so it enables its ASR. To speed up the processing, the task
enables its default buffer so that the event will have already been moved to
the buffer when the ASR is entered.

TSKA: MOVE.L #33,D0 Load SETASQ directive number 33.
MOVE.W #%00000110,A0 ASQ disabled.
AUTOBUF enabled.
ASR enabled.
TRAP #1
BNE FAULT Branch, if error.

32 MICROSYSTEMS

TN

M mororoLA
EVENT MANAGER

QUEUE EVENT T0 TASK QEVNT
Directive Number: 35

Parameter: Event Block Address

Event Block:

Target Task (8 bytes) Task_id of task to receive event.
(Refer to target task interface,
paragraph 1.3.6.)

Directive Options (2 bytes) Bit 156=1 Alternate service vector is
supplied for this event.

=0 Defauit ASR service vector
to be used for processing
this event.

Bits 14-0 Reserved

Event Address (4 bytes) Logical address of event being queued.
Must be on a word boundary.

Alternate Service Vector (4 bytes) Supplied only if option bit 156=1. When
this event causes an ASR interrupt,
control s transferred to this logical
address. However, if the receiving
task is processing events in the
synchronous mode, this field will be
effectively ignored.

Detailed Description:

If the ASQ is enabled, RMS68K places the specified event in the ASQ of the
target task or moves the event directly into the target's default buffer.
The requesting task can queue an event to itself or another task. The event
at the 1location specified in the event address field of the event block must
conform to the message event format defined in paragraph 2.7.

The QEVNT directive causes the target task to undergo an ASR interrupt if the
receiving task's ASQ and ASR are both enabled or if it is in the WAITING ON
EVENT state.

WARNING

THE ASQ REQUIRES THAT THE ODD LENGTH EVENTS BE "ROUNDED UP" BY
1 BYTE. THE "ROUNDING UP" CAUSES AN EVENT OF LENGTH 2N + 1 T0
BE REJECTED AS "EXCEEDING MAXIMUM MESSAGE LENGTH" WHEN SENT TO
A TASK WHOSE ASQ WAS DECLARED AS ACCEPTING EVENTS OF LENGTH 2N
+ 1. ALWAYS DECLARE THE MAXIMUM MESSAGE LENGTH TO BE AN EVEN
NUMBER OF BYTES TO AVOID THIS PROBLEM.

MICROSYSTEMS
33

@ MOTOROLA
EVENT MANAGER

QEVNT

Sending a code $03 event causes the length of the event to increase by 8
bytes; sending an event to a task's alternate service vector causes the length
to increase by 4 bytes if the event must be stored temporarily in the
receiving task's ASQ. If a task is designed to receive either of these types
of events, its maximum message length should be set to account for the extra
bytes.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/$00 Successful.
2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exist.
4/%04 Target task has no ASQ.
5/%05 Target task's ASQ is full.

10/30A ASR address, service address, or USP of target task-points
outside target task's address space.

12/%0C Event address not in requestor's address space.
14/%0E Target task's ASQ not enabled.
16/%10 Message length greater than target task's maximum message length

allowed, message 1length 1is less than 4, or message not on word
boundary.

MICROSYSTEMS
34

M) moToROLA

EXAMPLE :

TSKA wants to queue

an event to TSKB that is serviced by TSKB's ASR at the

default service address.

TSKA:

MOVE.L
LEA
MOVE.L
TRAP
BNE

EVTBLK: DC.

EVIADR: DC.

o
o
—rexrre

EVNT: DC.

o
(]
o w

#35,D0
EVTBLK,AQ
#EVNT ,EVTADR
#1

FAULT

'TSKB'

[en i o I oo I o)

$03

EVENT MANAGER

QEVNT

Load QEVNT directive number 35.
Load parameter block address.
Modify parameter block.

Branch, if error.

Target taskname.

Same session.

Use default ASR service vector.
Address of event.

Alternative ASR.

Length of event.
Event code.
Message text.

MICROSYSTEMS

TOROLA
@ moTor EVENT MANAGER

GET AN EVENT GTEVNT

Directive Number: 38

Parameter: Receive Buffer Address

Detailed description:

RMS68K moves the oldest event sent to the task to the receive buffer. If the
task's default receive buffer is enabled, the requested receive buffer is
ignored, and the event is moved to the default receive buffer.

The requesting task should ensure that the receiving buffer is large enough to
accommodate the longest event its ASQ can accept.

If no event exists in the task's ASQ, it is put into a getting an event state
until an event is sent to its ASQ. When this occurs, the task is made ready

and dispatched to the instruction immediately following the directive call
with the event available in the appropriate buffer.

Return Parameters: None

Error Codes (returned in bits 15-0 of D0):

0/%00 The operation was successful and an event is present either in
the receiving buffer or in the default buffer.

4/%04 ASQ does not exist for requestor.
10/$0A Requestor's ASR is enabled, or its ASQ is disabled.

12/%0C Receiving buffer not in requestor's address space.

EXAMPLE 1:

A task, TSKA, wants to process the next event in the synchronous mode. TSKA's
default receive buffer is currently disabled.

TSKA: MOVE.L #38,D0 Load GTEVNT directive number 38.
LEA RCVBUF ,AD Load receive buffer address.
TRAP #1

BNE FAULT Branch, if error.
. Process the event.

RCVBUF : DS;B MAXMSG Receive buffer.

36 MICROSYSTEMS

o~

@ MOTOROLA
EVENT MANAGER

GTEVNT

EXAMPLE 2:

A task wants to process the next event in the synchronous mode and has its
default buffer INBUFF enabled.

TSKA: MOVE. L #38,D0 Load GTEVNT directive number 38.
TRAP #1

BNE FAULT Branch, if error.
. Process the event.

INBUFF: Ds:B MAXMSG Default receive buffer.

37 MICROSYSTEMS

(::)na<>11:wz¢>LA|
EVENT MANAGER

READ EVENT RDEVNT

Directive Number: 34

Parameter: Receive Buffer Address.

Detailed Description:

RMS68K moves the oldest event sent to the task to the receive buffer. If the
task's default input buffer 1is enabled, the requested receiving buffer is
ignored and the event is moved to the default receive buffer.

The requesting task should ensure that the receiving buffer is large enough to
accommodate the longest event its ASQ can accept.

If no event exists in the caller's ASQ, the first 2 bytes of the receive
buffer or default buffer are set to 0.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):

0/%00 The operation was successful and an event is present either in
the receiving buffer, or in the default buffer.

4/3%04 Requestor has no ASQ.

12/%0C Receiving buffer not contained in requestor's address space.

EXAMPLE 1:

An ASR, beginning at location ASRTN, wants to process the next event in its
ASQ after an ASR interrupt has occurred. The default receive buffer is
disabtled.

ASRTN: MOVE.L #34,D0 Load RDEVNT directive number 34.
LEA RCVBUF ,AQ Load receive buffer address.
TRAP #1
BNE FAULT Branch, if error.
RCVBUF: DS.B MAXMSG Receive buffer.
MICROSYSTEMS

38

@ M ROLA EVENT MANAGER

RDEVNT

— EXAMPLE 2:

A task wants to process the next event in its ASQ and has its default buffer
INBUFF enabled.

TSKA: MOVE.L #34,D0 Load RDEVNT directive number 34.
TRAP #1
BNE FAULT Branch, if error.
INBUFF: DS:B MAXMSG Default receive buffer.
—~
PPRaaaN
MICROSYSTEMS

39

OTOROLA
@ M EVENT MANAGER

WAIT FOR EVENT WTEVNT

Directive Number: 36

Parameter: None

Detailed Description:

RMS68K ensures that the ASQ and ASR of the requesting task are enabled and
places the task in the WAIT FOR EVENT state.

If the ASQ is not empty, the ASR is entered immediately; otherwise the next
event sent to the task causes an ASR interrupt. In either case, if the

default receive buffer was enabled, the event will be present in the default
receive buffer.

When the ASR is entered, the previous status register and program counter are
pushed on the task's stack. If the register stacking feature is enabled, the
task's registers are also pushed.

The Executive returns control to the instruction immediately following the
WTEVNT directive call when the ASR returns from event service by issuing an
RTEVNT directive or an RTR instruction.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
4/%04 Requestor has no ASQ.
7/%07 An ASR was not previously defined.
10/$0A Event interrupt is due but not possible because of ASR address,
service vector, or USP pointing outside requestor's address
space.

EXAMPLE :

TSKA wants to stop current execution and wait until it has received an event.

TSKA:
MOVE.L #36,D0 Load WTEVNT directive number 36.
TRAP #1
BNE FAULT Branch, if error.
MICROSYSTEMS

40

@ MOTOROLA
EVENT MANAGER

RETURN FROM EVENT SERVICE RTEVNT

Directive Number: 37

Parameter: A0 = ASR Status
Bits 31-1 Reserved
Bit 0=1 Enable ASR.
=0 Current status of ASR left unchanged.

Detailed Description:

If register stacking was enabled in the original GTASQ directive call, RMS68K
restores the contents of data registers D0-D7 and the address registers AD-A6.
In either case (register stacking enabled or not), RMS68K restores the status
register and the program counter and then returns control to the point where
the event interrupt occurred.

The ASR can re-enable itself by setting AD appropriately and issuing the
RTEVNT directive. If the ASR is enabled and an event is present in the ASQ,
RMS68K generates an event interrupt and control is transferred to the ASR.

RMS68K returns an error code, if a request to enable the ASR is encountered
and no ASR was declared.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):

7/%07 An ASR was not previousty defined.

EXAMPLE :

An ASR, named ASRTN, after processing an event, re-enables itself, and returns
to the point of task interruption.

ASRTN: Process event
MOVE.L #37,D0 Load RTEVNT directive number 37. (Issue
a RTEVNT call)
MOVE.L #0001,A0 Re-enable ASR.
TRAP #1
BNE FAULT Branch, if error.

MICROSYSTEMS
41

@ MOTOROLA
EVENT MANAGER

DEALLOCATE ASYNCHRONOUS SERVICE QUEUE (ASQ) DEASQ

Directive Number: 32

Parameter: None

Detailed description:
The memory dedicated to the requestor's ASQ is freed. Any unserviced events

in the ASQ are lost. If the requestor has no ASQ, the directive is ignored.
DO is cleared to O.

Error Codes (returned in bits 15-0 of D0): None

EXAMPLE:

A user task, TSKA, wants to delete its ASQ.

TSKA:
MOVE.L #32,D0 Load DEASQ directive number 32.
TRAP #1
BNE FAULT Branch, if error.
MICROSYSTEMS

42

o

M) moToroLa

2.5 EXAMPLES

EXAMPLE 1:

GTASQPB:

INBUFF:

TSKA:

GTEVNT:

PROCESS:

GOFORMOR :

FAULT:

EVENT MANAGER

TSKA wants to process events in a synchronous mode.

DC.L
DC.L
DC.B

o
(e}
rrr™

DS.B

MOVE.

LEA

TRAP
BNE

MOVE.

TRAP
BNE

BRA

0
0
%00110011

20
80

0

INBUFF

20

#31,D0
GTASQPB,A0

#1
FAULT

#38,D0

#1
FAULT

GTEVNT

43

Task_id

ASR Address «== Invalid
Receive Buffer Address

== Valid
Register Stacking

<== Enabled
ASR «== Disabled
Default Receive Buffer

<== Enabled
ASQ «== Enabled

Maximum Message Length
Allow 4 Messages

ASR Address

Input Buffer Address

Load GTASQ directive number 31

(allocate an ASQ).

Point A0 to the GTASQ parameter
block.

Branch, if error.

Load GTEVNT directive number 38

(Get the Event).

Branch, if error.

Go back to Get Next Event.

MICROSYSTEMS

EXAMPLE 2:

M mororoLA

GTASQPB: DC.L 0
DC.L 0
DC.B %00011111
DC.B 20
DC.L 80
DC.L TSKBASR
DC.L INBUFF
INBUFF: DS.B 20
TSKB: MOVE.L #31,D0
LEA GETASQPB,AQ
TRAP #1
BNE FAULT
DOWORK:
TSKBASR :
MOVE.L #37,D0
MOVE . W #$0001,A0
TRAP #1
FAULT:

44

EVENT MANAGER

TSKB wants to process events in an asynchronous mode.

Task_id

ASR address == Valid
Receive Buffer Address

== Valid
Stack Registers

«== Disabled
ASR «== Enabled
Receive Buffer <== Enabled
ASQ «== Enabled

Maximum message iength
Allow 4 messages

ASR Address

Input Buffer Address

Load GETASQ directive number 31
(allocate an ASQ).
Point A0 to the GETASQ parameter

block.

Branch, if error.

Other work is done until an event
is received, at which time TSKBASR
is entered to process the event.

Process the event
(In the INBUFF).

Load RTEVNT directive number 37.
Enable the ASR.
Return to Main Code.

MICROSYSTEMS

M) moToroLA

EXAMPLE 3:

GTTIDPB:

QEVNTPB:

OUTBUF :

TSKC:

LOOP:

FAULT:

EVENT MANAGER

TSKC wants to send events to TSKD.

DC.
DC.

- —

o
(g}
resrre

DS.B

MOVE.

LEA

TRAP
BNE

MOVE.
MOVE.

MOVE.

LEA

TRAP
BEQ

"TSKD'
0

UTBUF

COOO0OOo

20
#10,D0
GTTIDPB,AD

#1
FAULT

A0,QEVNTPB
Al,QEVNTPB+4

#35,D0
QEVNTPB,AD

#1
LooP

45

Target Task
Session number

Task_id

Options
Event address
Alternate service address (none)

Load GTTASKID directive number 10
(Get target task's task_id.)

Point A0 to the GTTASKID parameter
block.

Branch, if error.

Save target task task_id.

Do work and create event.

Load QEVNT directive number 35
(QEVNT to target task).
Point to the QEVNT parameter

block.

MICROSYSTEMS

@ MOTOROLA
EVENT MANAGER

2.5.1 Recommended Use

The use of a default receive buffer is recommended as stated in paragraph

The synchronous mode is recommended using the GTEVNT directive because:
a. Dispatching to the ASR is slower than dispatching inline.

b. Dispatching inline eliminates the requirement to return to inline
code via the RTEVNT directive (or RTR instruction).

c. Eliminates the requirement to possess an ASR if asynchronous event
processing is not necessary.

d. This method is a subroutine-like interface, that is a well-known and
understood concept that is easier to use, especially for first time
users.

2.6 EVENT MESSAGE FORMATS

The detailed format of each type of RMS68K defined event message that a task
can receive in its ASQ is described on the following pages. Most of the event
messages shown originate in RMS68K, however, event code = $03 originates in a
user task and is sent to a user task via RMS68K. In the latter case, RMS68K
adds some fields to the event message so this format is different for the
sender and receiver.

26 MICROSYSTEMS

Pamas

@ MOTOROLA
EVENT MANAGER

Code $01 Events -- I/0 Completion Interrupt or Message from 1/0 Handler

This event 1is returned to the task attached to an I/0 Channel by an I/0
handler when an I/0 function has been completed. The event appears in the
task's ASQ as:

1 byte Length
$01

1 byte Event code

1 byte Event type
$70 Normal
$71 Halt/abort
$FF Unsolicited channel

1 byte User generated channel identification key.

4 bytes User supplied identification:

Event types $70 or $71 Usually the DCB address.

Event type $FF The channel mnemonic.

2 bytes Status of the request

$70 © --> Successful

Non-zero ~-> Unsuccessful - value is error code
$71 © --> No I/0 to halt

Non-zero --> I/0 halt successful
$FF 0 --> Channel has been reset

Non-zero --> Channel down

Event type:

$80 Unsolicited device status whose status value is $00.

1 byte Length

1 byte Event code = $01
1 byte Event type = $80
1 byte User-generated channel identification key.

4 bytes User-supplied identification, usually the DCB address.
2 bytes Status value = $00

2 bytes Device status

MICROSYSTEMS
47

@ MOTOROLA

Event type:

$80 Unsolicited device status whose status value is $01.

1 byte Length

1 byte Event code = $01
1 byte Event type = $80
1 byte User-generated channel identification key

4 bytes Channel mnemonic

2 bytes Status value = $01
2 bytes Device status

1 byte Device number

1 byte Reserved

Device status - Byte 1:

Terminal Bit Meaning if set
7 Ready
6-1 Available for use
0 Break condition
Printer 7 Ready

6-0 Available for use
Disk Ready
Available for use
Write protected
4-0 Available for use

(Sl AR]

Device status - Byte 2:
Bit Meaning

7-4 Available for use
3-0 Type of device

Value Devige

1 Floppy diskette
2 Rigid disk

3 Terminal

4 Printer

5

Magnetic tape

48

EVENT MANAGER

N

MICROSYSTEMS

—

OTOROLA
@ M L EVENT MANAGER

Code $02 Events -- Task ISR Events

This event 1is queued to a task when one of its ISRs has executed the RTE
directive with DO = 2 (queue an event on return from ISR).

1 byte Length = $06
1 byte Code = $02
4 bytes MSG = contents of D2 when RTE directive was issued

This event 1is returned to a task when one of its ISRs has encountered an
exception (bus error, etc.).

1 byte Length = $0A
1 byte Event Code
4 bytes Error Flag

$02
$FFFFFxxx

where: xxx is type of exception):

010 = bus error 016 =.privilege violation

011 = address error 017 = unimpiemented instruction
012 = illegal instruction (1010 opcode pattern)

013 = zero divide 018 = unimplemented instruction
014 = CHK instruction (1111 opcode pattern)

015 = TRAPV instruction

4 bytes Program Counter at time of exception

Code $03 Event -- User Task Events

This event originates in a user task and is sent to a user task. The text of
the message can be any format that has been agreed on by the sending and
receiving tasks.

Event sent:
1 byte Length = N
1 byte Event code = $03

N - 2 bytes Message text

Event received:

1 byte Length = N + 8
1 byte Event code = $03
8 bytes Task_id of sending task in format appropriate for use by

receiving task
N - 2 bytes Message text

49 MICROSYSTEMS

@ MOTOROLA
EVENT MANAGER

Code $04 Event -- Timeout

This event originates in RMS68K when a task is to receive an event as the

result of the previously issued RQSTPA directive. S
If no Request ID was_supplied: If request ID was supplied:

byte Length = $10

byte Event code = $04

bytes Current system date

bytes Current system time

bytes Activation request ID
(Usually the DCB address)

2 bytes Activation count;

incremented by one each

time an event is queued.

1 byte Length = $0A

1 byte Event Code = $04

4 bytes Current System Date
4 bytes Current System Time

J O N QU

Code $05 Event -- Subtask Termination

This event originates in RMS68K when a subtask (or monitored task) terminates
and is sent to the subtask's monitor.

1 byte Length = $18
1 byte Event code = $05
8 bytes Task_id of subtask

8 bytes Task_id of the task that initiated the termination of the
subtask

1 byte Termination code - 1 = normal termination
2 = abnormal termination

1 byte Not used

0 implies the subtask aborted itself.

2 bytes Abort code Bit 15
1 implies RMS68K aborted the subtask.

Bit 15

This is the contents of the 1lower 2 bytes in
register AO.

MICROSYSTEMS
50

@ MoOTORoOLA EVENT MANAGER

If the subtask aborts itself, the abort code is as supplied in
the ABORT directive. If RMS68K aborts the subtask, the abort
code corresponds to the exception causing the abort as:

Abort Code Exception
$8010 bus error
$8011 address error
$8012 illegal instruction
$8013 divide by zero
$8014 CHK instruction
$8015 TRAPY instruction
$8016 privilege violation
$8017 line 1010 emulator
$8018 Tine 1111 emulator

2 bytes Upper 2 bytes of register DO. If the subtask terminates itself,
this code is as supplied in the ABORT or TERM directive. If
RMS68K aborts the subtask, this code is 0.

Code $07 Event -- Task Server

This event originates in RMS68K when a task (the requesting task) requests the
services of a server task with a trap instruction. RMS68K notifies the server
task of the request with this event.

1 byte Length - $18

1 byte Event code = $07

1 byte Trap instruction number.
Bit 7 =1 requesting task is a system task.
=0 requesting task is a user task.
Bits 6-5 = 00 requesting task is requesting service.
= 10 requesting task is terminating.
=11 requesting task 1is terminating and is the

only task in that session.

Bits 3-0 trap instruction number used to invoke
server task.

1 byte Current priority of requesting task.

8 bytes Task_id of requesting task.

2 bytes User generated I.D. (refer to CRTCB directive).
4 bytes Value of requesting task's register DO.

51 MICROSYSTEMS

@ MOTOROLA EVENT MANAGER

4 bytes Value of requesting task's register AO.

1 byte Parameter block status.

Value Meaning
0 Total parameter block moved.
1 Parameter block partially moved.
2 Bad parameter block was specified; parameter block
not moved.
3 Parameter block move was not requested.
1 byte Parameter block size indicating number of bytes of the parameter

block that follows.

NOTE: If the server task specified the option for parameter block move when
the task established itself as a server task, the parameter block
immediately follows the event message in the server task's buffer.

Code $08 Event -- Exception Monitor

This event originates in RMS68K when a target task is attached or detached
from an exception monitor task, or when a target task under the control of an
exception monitor is halted. The event is sent to the exception monitor task.

1 byte Length = $0C

1 byte Event code = $08

8 bytes Task_id of target task

1 byte Exception code

If the exception type field has value $01 or $02, this field is
0.

52 MICROSYSTEMS

@ MOTOROLA

1 byte

If the exception

and its meaning are:

CODE MEANING
$00 Reserved
$01 TRAP #1
$02 TRAP #2
$03 TRAP #3
$04 TRAP #4
$05 TRAP #5
$06 TRAP #6
$07 TRAP #7
$08 TRAP #8
$09 TRAP #9
$0A TRAP #10
$08B TRAP #11
$0C TRAP #12
$0D TRAP #13
$0E TRAP #14
$0F TRAP #15

Exception event

CODE

$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$18
$1C
$1D
$1E

type with a value of:

EVENT MANAGER

type field has value $03, the exception code

MEANING

Bus error

Address error

I1legal instruction
Zero divide

CHK instruction

TRAPYV

Privilege violation
Line 1010 emulator
Line 1111 emulator
Not used

Not used

Maximum count reached
Traced 1 instruction
Value change occurred
Value equal occurred

$01 - Target task was attached to exception monitor.
$02 - Target task was detached from exception monitor.
$03 - Exception code indicates reason for exception event.

[%¢]

MICROSYSTEMS

() moToRoLA

THIS PAGE INTENTIONALLY LEFT BLANK.

54

EVENT MANAGER

TN

MICROSYSTEMS

@ MOTOROLA
MEMORY MANAGER

CHAPTER 3
MEMORY MANAGER

3.1 THEORY OF OPERATION

The Memory Manager within RMS68K consists of those data structures and
directives that support the concept of memory as a resource that can be
allocated to a task, shared between two or more tasks, transferred from one
task to another, and deallocated or returned to the system. The unit of
memory manipulated by the memory manager is the segment.

3.1.1 Segments

The Segment is a block of memory consisting of an integral number of

contiguous pages of physical memory. The page size can be set at
initialization to any value 2**n, where 84n<l6. A typical page size is 2**8
or 256 bytes. Segments are described by data structures called segment

descriptors consisting of attributes:

Name

Logical address (address visible to the task)
Physical address (address visible to hardware)
Length

Protection attributes (read-only or read-write).

Another attribute of a memory segment is the type. RMS68K supports three
types of memory:

Random Access Memory (RAM)
Read Only Memory (ROM)
Memor y-Mapped I/0

A memory mapped I/0 segment is usually a hardware device containing a set of
registers visible to software. However, it may consist of any portion of the
address space not described at initialization time as being part of a RAM or
ROM partition (refer to paragraph 3.1.4).

Another important attribute of a segment is its scope. The scope of a segment
determines whether the segment is:

Private (visible to only one task in the system)
Locally shareable (visible to any task in a particular session)
Globally shareable (visible to any task in the system).

- MICROSYSTEMS

@ M LA MEMCRY MANAGER

The wuse of shareable segments can reduce the memory requirements and/or the
message traffic within a system. An examplie of reducing memory requirements
would be to allow multiple copies of a task, (e.g., text editor), to share a
common code segment. Two or more tasks that frequently communicate long
messages can reduce this traffic by composing messages in a shared data
segment and passing pointers to them instead of their text.

Another segment attribute is permanence. Permanence affects whether a segment
is automatically released back to the system on task termination and applies
only to segments that were previously declared shareable. Since a private
(non-shareable) segment may not be made permanent, all private segments are
automatically released to the system on task termination. This relieves the
task of the responsibility to deallocate private segments before termination.
However, a locally shareable permanent segment will survive the termination of
the task that created it and can only be released either by an explicit call
to the deallocate segment directive (with the remove permanent status bit
set), or by the termination of the last task within the sessijon (typically the
session manager in a multi-user system). Finally, a globally shareable
permanent segment will survive the termination of the session that created it
as long as at least one task within another session is attached to it.

Every task within the system has a Task Segment Table (TST) that contains
descriptors for all segments currently attached to the task. In addition,
there is a Global Segment Table (GST) within the system that contains
descriptors for all globally shareable or locally shareable segments. Thus,
declaring a segment shareable causes the system to create a descriptor for
that segment within the GST in addition to the descriptor within the task's
TST. At any moment a shareable segment is described by one descriptor within
the global segment table and zero to "n” descriptors within task segment
tables representing the zero to "n" tasks that are currently attached to that
segment .

3.1.2 Segment Operations

The memory manager has seven directives for manipulating segments that may be
grouped into two classes, and a third class that does not operate on segments.
The first class contains those directives that operate on all segments within
the system, the second class contains those directives applicable only to
shareable segments, and the third class that provides "utility" services such
as copying a portion of & memory segment from one task's address space to
another and flushing all user mode entries from the cache memory. The
directives are summarized in Table 3-1. (Refer to paragraph 3.5 for detailed
descriptions.)

56 MICROSYSTEMS

MEMORY MANAGER

TABLE 3-1. Segment Directives

Class 1 Segment Directives

GTSEG Allocate a new code or data segment to the target task by
placing it within the task's address space.

TRSEG Remove a segment from the requesting task's address space and
place it within the address space of another task.

RCVSA Return a description of the specified segment to the requesting
task.

DESEG Delete a code or data segment from the target task's address
space.

Class 2 Shareable Segment Directives

DCLSHR Make a segment available for shared access.

ATTSEG Place an existing shareable segment within the requesting task's
address space.

SHRSEG Place an existing shareable segment within another task's
address space.

Class 3 Utility Memory Directives

MOVELL A task requests that data be copied from the logical address
space of one task to the logical address space of another task.

MOVEPL A system task requests that data be copied from any physical
address to a logical address within a target task's address
space.

FLUSHC Flushes all user mode entries from all caches known to the
Executive.

3.1.3 Partitions

In addition to segments, RSM68K supports another level of memory organization
known as Partitions. A partition is a large piece of RAM or ROM (usually one
or more boards), managed by the memory manager. A1l RAM or ROM segments are
allocated from and returned to specific .partitions so segment boundaries
cannot overlap partition boundaries.

Partitions are wuseful in differentiating between types of memory within a
system such as, onboard and offboard RAM, or in reserving large pieces of
memory for specific purposes (operating system, task, graphics).

57 MICROSYSTEMS

@ MOTOROLA
MEMORY MANAGER

The address space described by a partition must be contiguous, although the
real physical memory contained within the partition may contain gaps or holes.
Each partition is described by a data structure known as a partition
descriptor, consisting of:

Partition number

Partition type

Starting address

Ending address (ROM partitions) or

Pointer to free memory list header (RAM partitions)

o0 oo

A1l the partition descriptors are grouped into a collected data structure
known as the Memory Map Table (MEMMAP).

The only partition attributes a task references are the partition number and
the partition type. The partition number is equivalent to a name and is used
for identification. The partition type is used to group different physical
partitions of memory into types or classes of memory possessing similar
characteristics.

A system that contains some 1local memory on the processor board, a memory
board connected via the VMX local memory bus, and a memory board connected via
the VME system bus can be designed as a three partition system. The memory
boards are described as:

MEMORY PARTITION PARTITION

BOARD NUMBER TYPE

Onboard 0 local
VMXbus 1 local
VMEbus 2 global

If a task needs to get a segment for use as a stack segment, it can ask for
memory as:

(partition_number = dont_care) and
(partition_type = local)

RMS68K 1looks at both the onboard RAM and the VMXbus RAM to satisfy the
request. If however, the task needs to acquire a segment of memory on the
VMXbus memory board, the type = Jlocal description 1is not enough to
differentiate the onboard memory from the VMXbus memory. Here the partition
number needs to be explicitly encoded as:

(partition_number = 1) and
(partition_type = dont_care)

68 MICROSYSTEMS

: @ MOTOROLA MEMORY MANAGER

Memory request precedence rules are:

a. A partition number or partition type of 0 is treated as a dont care.

b. An explicitly coded partition number (nonzero) takes precedence over
an explicitly coded partition type.

c. The default partition numbers and types are set using the following
SYSGEN parameters and are typically set to O:

MTYPESURO for user task read-only memory
MTYPESURW for user task read-write memory
MTYPE$SRO for system task read-only memory
MTYPE$SRW for system task read-write memory

These precedence rules are summed up in the algorithm:

IF (partition_number <> 0)
THEN set_memory
(number = partition number)
(type = dont_care);

ELSE IF (partition_type <> 0)
THEN set_memory

(number = dont_care)

(type = partition_type);

ELSE get_memory
(number = dont_care)
(type = default_type as
specified in SYSGEN);

There are two other SYSGEN parameters about default partition numbers and
types for TCBs and ASQs that are typically set to 0.

MEMTYPA for the ASQ
MEMTYPT for the TCB

A1l other requests for system memory default to partition type 0. Thus, if
the user wants to protect a memory partition from unanticipated system
requests, the memory should be described as a type other than 0.

59 MICROSYSTEMS

MOTOROLA
@ L MEMORY MANAGER

3.1.4 Free Memory Lists

RAM memory is organized into doubly Tinked lists of nodes called Free Memory
Lists. Each node within the 1list contains a 16-byte control portion for
bookkeeping purposes and one or more pages of free memory, followed by zero or
more pages of used memory. When the last portion of free memory within a node
(including the control portion) is allocated, the entire node is considered
used and is concatenated with the used portion of the previous node within the
partition. When a task frees a piece of memory, one of four results may occur
depending on the position of the piece within the used portion of the node and
whether the piece represents the entire used portion of the node or not:

a. The piece may increase the free portion of its current node.

b. The piece may increase the free portion of the next node.

c¢. The piece may cause a new node to be created between the current node
and the next node (node creation).

d. The piece may cause the entire current node to become free and

concatenated with the free portion of the next node within the list
(node deletion).

In other words, the memory manager implements a policy of automatic "garbage
collection" with the free memory 1list.

3.2 DATA STRUCTURES

The data structures in the memory manager are:

Memory Map Table Array of partition descriptors.

Free Memory List Doubly 1linked 1list of nodes within a single
partition.

Task Segment Table Array of segment descriptors describing all

segments belonging to a particular task.

Global Segment Table Array of segment descriptors describing all
shareable segments within the system.

Segment Parameter Block Parameter block used for requests to the memory
manager .

60 MICROSYSTEMS

7

@ MOTOROLA
MEMORY MANAGER

3.2.1 Memory Map Table (MEMMAP)

The MEMMAP is an array of partition descriptors. Each descriptor is 10 bytes
long and is composed of four fields. The MEMMAP contains one descriptor for
each RAM or ROM partition designated by the user at initialization time. The
end of the table is indicated by a sentinel descriptor consisting of 2 bytes
of $FF. The MEMMAP table is pointed to by the MAPBEG variable within SYSPAR.
Table 3-2 describes the MEMMAP entries.

TABLE 3-2. Memory Map Table Entry (MEMMAP)

MAPMTYP (1 byte) Memory type in bits 7-4.

If MAPMTYP=$FF and MAPPART=0, this entry describes a ROM
partition. The end of the MEMMAP is recognized when both
MAPMTYP and MAPPART equal $FF.

MAPPART (1 byte) Partition number in bits 3-0.
MAPSTRA (4 bytes) Start of available memory for this partition.

MAPFMLP (4 bytes) For RAM partitions this points to the free memory list
header.

For ROM partitions, this represents the top boundary
(1 byte past the last byte within the partition).

3.2.2 Free Memory List

The Free Memory List consists of one header node, describing the entire
partition, and a doubly linked list of nodes describing the dynamic state of
the partition. The free memory list header either resides in the first or
last page of the partition as indicated by the user at initialization. The
entry describing a given node of free memory is found in the first 16 bytes of
that node. Table 3-3 describes the free memory list.

6 MICROSYSTEMS
1

@ MOTOROLA
MEMORY MANAGER

TABLE 3-3. Free Memory List

ENTRY DESCRIPTION

LOWFREE (4 bytes) Points to the first (lowest address) entry in the free
memory list.

STRAVAIL (4 bytes) Start of available memory for the partition.

ENDAVAIL (4 bytes) End of available memory for this partition.

MEMTYPE (1 byte) Memory type and partition number.

(1 byte) Unused.

SEMFRMEM (6 bytes) Semaphore used to control access to the free memory list.

SEMWTMEM (6 bytes) Semaphore used to gqueue tasks waiting for memory to
become free.

Doubly Linked Lijst
The entry describing a given node of free memory is found in the first 16 -

bytes of that node.

FMLFP (4 bytes) Forward pointer to next node in 1ist. If FMLFP=0, this
is the last node in list.

FMLBP (4 bytes) Backward pointer to previous node in list. If FMLBP=0,
this is the first node in Tist.

FMLFREE (4 bytes) The number of 256-byte pages that are free in this block.

FMLUSED (4 bytes) The number of 256-byte pages that have been allocated.

3.2.3 Segment Descriptors

Segment descriptors exist within the Global Segment Table (GST) and the Task
Segment Table (TST) although the format is slightly different. The basic
difference is that the segment descriptors within the GST contain only those
segment attributes that are global, such as name, session number, attributes,
physical address, and 1length, while the descriptors within the TST contain
local information about the logical address of the segment as seen by the task
as well as global information.

MICROSYSTEMS
62

@ MOTOROLA
MEMORY MANAGER

3.2.4 Task Segment Table (TST)

The TST consists of a control portion followed by two parallel arrays
containing the segment descriptors. The first array contains mapping and
protection information for the MMU and the second contains naming and
attribute information for the memory manager. The information was placed in
two arrays to accelerate the loading of segment descriptors into the EXORmacs
MMU. The TST is described in Table 3-4.

TABLE 3-4. Task Segment Table

TST (4 bytes) Block ID

Each TST begins with 'ITST' to allow consistency checking
and ease of dump reading.

TSTNSEGS (1 byte) Allowed segments

Contains the maximum number of segments this task is
allowed to address at any instant.

TSTCSEGS (1 byte) Current segments

Contains the number of segments currently included in this
task's address space.

TSTLMMU (2 bytes) Last MMU segment index

Contains the offset to the 1last entry in the MMU load
table.

TSTLATTR (2 bytes) Last attribute index

Contains the offset to the 1last entry in the segment
attribute table.

TSTSTAT (2 bytes) Reserved for future use.

63 MICROSYSTEMS

@ MOTOROLA
MEMORY MANAGER

TABLE 3-4. Task Segment Table (cont'd)

TSTMMU (32 bytes) MMU load table

Contains the information required to allow the MMU to
control address space access for this task. The number of
entries in this table is equal to the number contained in
TSTNSEGS. A TSTMMU entry is defined as:

TSTLB (2 bytes) Bits A23-Alé of the beginning logical
address.

TSTLE (2 bytes) Bits A23-Al6 of the ending logical
address.

TSTPO (2 bytes) Bits A23-Al6 of the physical offset.

(logical address + physical offset =
physical address)

BTCTL (2 bytes) Control byte:
1 = read/write segment
3 = read only segment
TSTATTR (32 bytes) Segment attribute table
Contains segment information not relevant to the MMU.
A TSTATTR entry is defined as:
TSTANAME (4 bytes) Segment name.

TSTAATTR (2 bytes) Segment attribute field.
Bits definitions:

15 = Segment entry in use.

14 = Segment is read only.

13 = Segment is locally shareable.
12 = Segment is globally shareable.
11 = Segment is memory mapped I/0

space.
10 = Segment is physical ROM.

TSTAR1 (1 byte) Segment type.

TSTAUCNT (1 byte) Segment use count.

MICROSYSTEMS
64

EgianN

@ MOTOROLA
MEMORY MANAGER

3.2.5 Global Segment Table (GST)

The GST is wused to describe all shareable segments within the system. It
consists of a control portion followed by an array of segment descriptors.
Table 3-5 describes the GST.

TABLE 3-5. Global Segment Table

GST (4 bytes) Block ID

Each GST segment begins with "IGST' to allow consistency
checking and ease of dump reading.

GSTNEXT (4 bytes) Reserved for future use.
GSTNSEG (2 bytes) Reserved for future use.
GSTNPAGE (2 bytes) GST segment size

Contains the number of 256-byte pages comprising this GST
segment.

GSTMENT (2 bytes) Maximum entry count

Contains the maximum number of GST entries allowable in
this GST segment.

GSTLENT (2 bytes) Last entry
Contains the last entry number currently in use.
GSTFENT (4 bytes) First entry address
Points to the first GST entry.
A GST entry is defined as:
GSTSESSN (4 bytes) Originating task's session number.
GSTNAME (4 bytes) Segment name.

GSTATTR (2 bytes) Segment attributes. Bit definitions are the same as the
TSTATTR field (refer to paragraph 3.2.4).

GSTCNT (2 bytes) Use count. Number of tasks currently attached to this
segment.

GSTPA (4 bytes) Physical starting address.

GSTNP (2 bytes) Segment size in 256-byte pages.

MICROSYSTEMS

M) moToroLA

MEMORY MANAGER

3.2.6 Segment Parameter Block

Several of the directives require a memory segment block that describes the
request to RMS68K in detail. The memory segment block must begin at an even
address and the general format is:

8 bytes
bytes
bytes
bytes
bytes
bytes

SN

Target Task

Directive options

Segment attributes

Segment name

Logical address

Segment length

Target task
Directive options
Segment attributes
Segment name
Logical address
Segment length

Task_id for accessing a target task.

Options will vary, depending on the particular
directive. A description of the relevant options are
included in the detailed directive description in
paragraph 3.5.

The segment attributes are relevant only to
particular directives. If required, the format is:

Bit 15 Reserved

Bit 14 Segment is read-write

nn
o

1 Segment is read-only
Bit 13 =0 Segment is not locally shareable
oo=1 Segment is locally shareable

Bit 12 = 0 Segment is not globally shareable

=1 Segment is globally shareable
Bit 11 = 0 Segment is not memory mapped I/0 space

=1 Segment is memory mapped I/0 space
Bit 10 = 0 Segment is not physical ROM

=1 Segment is physical ROM
Bits 9-0 Reserved

Specifies a particular segment to be referenced. Any
32-bit combination is a valid segment name.

The address of the segment as viewed by the target
task.

Specifies the length, in bytes, of the segment.

66 MICROSYSTEMS

TN

N

@ MOTOROLA
MEMORY MANAGER

3.3 MEMORY INITIALIZATION

During initialization, a table of partition descriptors defined by the user
with the SYSGEN wutility is input to RMS68K. RMS68K verifies that these
descriptors conform to its set of rules for partitions, zeros out all memory
within RAM partitions to insure good parity, creates the free memory lists for
RAM partitions (marking any holes within RAM partitions as used memory), and
creates the memory map table of partition descriptors.

The rules the memory initializer uses are:

a. Partitions may not overlap.

b. Partition numbers must be assigned in order of increasing address,
e.g., a partition consisting of addresses $100000 to $200000 must have
a lower partition number than one consisting of addresses $400000 to
$500000.

Because RMS68K requires a portion of low memory for interrupt vectors, system
stack, and system parameters, partition 0 has two special rules:

a. If RMSe8K is within partition 0, free memory starts immediately after
RMS68K or after the last task included with RMS68K in the load module,
whichever is higher.

b. If RMS68K is NOT within partition 0, free memory starts immediately
after the system parameter area, usually less than $1000.
3.4 MEMORY DIRECTIVES

The following pages contain detailed descriptions of the memory manager
directives.

67 MICROSYSTEMS

M moToroLA

ALLOCATE A SEGMENT

Directive Number: 1

Parameter: Segment Block Address

Segment Block (refer to paragraph 3.2.6):

MEMORY MANAGER

GTSEG

Target Task (8 bytes) Task_id of task to receive segment. (Refer
to target task interface, paragraph 1.3.6.)

Directive Options (2 bytes) Bits 15,14
Bit 13=1

=0

Bits 12,11

Bit 10=1

Bit 9=1

Bit 8=1

68

Reserved

RMS68K sets the logical address
equal to the physical address.

If a physical memory allocation
is requested (bit 8 = 1),
Togical address 1is equal to
physical address, regardless of
how this bit is set.

An address is specified in
address field below.

Reserved

If memory is not available, do
not return, wait until memory is
available.

If memory is not available, take
action as directed by option bit
9.

If entire memory space requested
is not available, allocate
largest block that is available.

If entire memory space requested
is not available, reject the
directive.

RMS68K attempts to allocate the
segment at the physical address
specified in address field

below. If this space is non-
existent, an error code is
returned. If this space is

already allocated, the action
taken 1is determined by option
bits 10 and 9.

MICROSYSTEMS

@ MOTOROLA
MEMORY MANAGER

GTSEG

.

Bit 7=1 RMS68K looks at option bits 6-0
to determine which memory
partitions can be wused to
satisfy this allocation request.

7=0 RMS68K uses the defaults set by
SYSGEN to determine which memory
partitions can be used to
satisfy this memory request.
Separate defaults can be set

for:

a. System Task, Read-only
b. System Task, Read-write
c. User Task, Read-only

d. User Task, Read-write

Bits 6-4 Type number can be 0 to 7.
—~ Bits 3-0 Partition number can be 0 to 15.

If partition number is 0, then
allocation can be in any
partition that has been assigned
the specified type number.

If partition number is not O,
then allocation can be only
within the partition specified;
type number is ignored.

Segment Attributes (2 bytes) Bit 15 Reserved
Bit 14=1 Segment is to be Read-only.
=0 Segment is to be Read-write.

Bits 13,12 Reserved

11=1 Segment is to be memory mapped
g I/0 space. The address given in
the address field must be a
physical address that is not
within the limits of allocatable
RAM. If this bit is set, none
of the options 1is applicable,
and the segment is allocated as
a shared segment.

69 MICROSYSTEMS

@ mo LA MEMORY MANAGER

GTSEG

NOTE
Memory mapped I/0 space is not
intended to be used for code. A
program loaded into memory
mapped I/0 space cannot make
RMS68K directive calls.

=0 Segment is not to be memory
mapped I/0 space.

10=1 Segment is to be physical ROM.
The address given in the address
field must be a physical address
that is within the 1limits of a
memory partition defined as
physical ROM. If this bit is
set, none of the options is
applicable.

=0 Segment 1is not to be physical
ROM.

Bits 9-0 Reserved

Segment Name (4 bytes) Name of new segment.

Address {4 bytes) If options bit 8=1 or if attributes bit 1l1=1
or bit 10=1, then this field specifies the
physical address of the new segment. For
all other cases, this field specifies the
logical address of the new segment. Not
applicable if option bit 13 = 1.

Segment Length (4 bytes) Length of new segment, in bytes. (Maximum
length is $FFFFO0. If maximum length is
exceeded, results are unpredictable.)

Detailed Description:

RMS68K allocates the smallest number of memory pages that satisfies the
specified Tlength. Page size 1is determined via SYSGEN for a particular
hardware environment. The task to receive the new segment can be the
requesting task or another task. In the latter case, the receiving task must
be in the DORMANT state.

70 MICROSYSTEMS

@ MOTOROLA
MEMORY MANAGER

GTSEG

The GTSEG directive allows a task to get a named segment of memory for itself
or for another task from either ROM, RAM or memory mapped I/0 space. There
are also options pertaining only to the acquisition of RAM segments that allow
the wuser to specify whether to acquire the segment from a specific partition
number, from a specific type of partition, or to default to the type set up at
initialization. The options also allow the wuser to specify the segments
logical beginning address, to instruct the memory manager to make the logical
beginning address equal to the physical beginning address and return that
address to the task, or to allocate RAM memory at a specific physical address
and make the logical address equal to the physical address. (This option
overrides the specification of a partition number or type.)

Finally, the options allow the user to inform the memory manager what action
to take if the RAM is not immediately available. These options include,
return an error code, return the next largest piece of RAM, or wait until the
memory becomes available. The following paragraphs explain this directive in
more detail.

The name field allows the task to name a segment. The segment inherits the
session number of the task that created it. Therefore, a segment has a
segment name and session number in the same way that a task has a taskname and
session number. The target task field of the GTSEG parameter block enables a
task to obtain a segment for either itself or another task according to the
target task interface rules. The length field telils the memory manager the
segment size. If the segment 1length is a fraction of a page, the.memory
manager rounds the length up to the next page boundary.

Within the attributes field there are two bits defining the segment as either
ROM or memory mapped I1/0. If either of these bits is set, the memory manager
allocates the memory from either ROM or memory mapped I/0 at the physical
address specified within the address field. It also makes the logical address
of that segment identical to the specified physical address. If the ROM or
memory mapped I/0 attribute bit is set, none of the bits within the options
field have any affect on the memory allocation.

If the ROM or memory mapped I/0 attribute bit is not set, the segment is
defined by default to be a RAM segment, and the entire range of options are in
effect.

The GTSEG directive allocates RAM segments from memory partitions as described
in - paragraph 3.1. Bits 7 through 0 of the options field allow the user to
specify -a partition number or type (0 in either field indicates a don't care;
an explicitly designated partition number takes precedence over a specifically
designated partition type). Bit 7 of the option field must be set to specify
a partition number or type. Usually it is enough to allow the system to
allocate the memory from the default type designated at initialization.

11 MICROSYSTEMS

MOTOROLA
@ MEMORY MANAGER

GTSEG

The task may also designate the beginning logical address for the RAM segment
using bit 13 of the options field. If bit 13 is 0, the segments beginning
logical address is set to the value within the address field. Otherwise, the
memory manager makes the beginning logical address equal to the beginning
physical address and returns that value in register AO.

A task may also request a segment of RAM memory at a specific physical address
by setting bit 8 of the options field. If this option is set, the GTSEG call
behaves as if it was allocating a ROM or memory mapped I/0 segment; it treats
the address within the address field as a physical address, attempts to
allocate a segment at that physical address, and if successful, sets the
logical address equal to that physical address. The only difference between
allocating a RAM segment at a physical address and allocating a ROM or memory
mapped I/0 segment is the response of the memory manager if the memory is not
_available. For ROM or memory mapped I/0, the memory manager returns an error,
whereas for RAM, it responds in one of three ways as described below.

The 1last option of the GTSEG directive selects the action the memory manager
should take when a request to allocate a RAM segment cannot be immediately
satisfied because all or part of the requested memory is currently allocated
to another segment. The task may select one of three options using bits 10
and 9 of the options field:

OPTIONS
BITS 10/9 ACTION
00 Return an error code to the task and return size of largest
available block in register Al.
01 Allocate largest available block and return size in
register Al.
10 Put the task into a WAIT state until the memory becomes
available.
11 Not defined.

Return Parameters:
Register AD Physical address of the new segment.

Register Al If options bit 9 = 1, then Al contains the actual number of
bytes allocated. Otherwise, Al is returned unchanged.

72 MICROSYSTEMS

(M) moToroLA

MEMORY MANAGER

GTSEG

Error Codes (returned in bits 15-0 of DO):

0/$00
2/302
3/$03
5/$05
6/$06
7/%07
8/308
10/$0A

11/308B

EXAMPLE :

Successful.

Parameter block is not in requestor's address space.

Target task does not exist.

Target task already has full segment alleocation.

Target task already has segment with specified name.

Memory requested does not exist.

Physical memory not available.

When

requestor

dormant state.

is not receiving task, receiving task is not in

Logical address conflicts with existing segments.

A user task, TSKA, wants to get a RAM segment, SEGl, of length $1000 bytes at

logical address

$20000.

indicates it is willing to wait.

TSKA:

PRMBLK:

MOVE.L
LEA
TRAP
BNE

<
(e}
rrrrrEEEre

#1,D0
PRMBLK ,AQ
#1

FAULT

0

0
$0400
0
'SEGL'
$20000
$1000

If the

memory is not immediately available, TSKA

Load GTSEG directive number 1.
Load parameter block address.

Branch, if error.

Task_id of 0 means that segment is for
the calling task.

Wait until memory is available.

Get RAM memory.

Call Segment "SEG1".

Logical address is $20000.

Segment length is $1000.

MICROSYSTEMS
73

OTOROLA
@ M MEMORY MANAGER

DETACH A SEGMENT DESEG

Directive Number: 2
Parameter: Segment Block Address

Segment Block (refer to paragraph 3.2.6)

Target Task (8 bytes) Task_id of task to lose segment. (Refer to
target task interface, paragraph 1.3.6.)
Directive Option (2 bytes) Bits 15-12 Reserved
Bit 11=1 Remove permanent status of a

shareable segment.
Bits 10-0 Reserved

Segment Attributes (2 bytes) N/A

Segment Name (4 bytes) Segment to be detached.
Logical Address (4 bytes) N/A
Segment Length (4 bytes) N/A

Detailed Description:

RMS68K deletes the specified segment from the target task's address space. If
options bit 11=1, the permanent status is removed if the segment is shareable.
If the segment is currently not shared by any other tasks and its status is
not permanent, the memory is added back into the free memory list.

A task cannot delete a segment from its own address space if the User Stack
Pointer (USP), which is stored in the task's ASQ, points within the segment to
be detached. A task can detach another task's segment only if the other task
is in the DORMANT state.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):

0/%00 Successful.

2/%02 Parameter block not in requestor's address space.

3/%03 Target task does not exist.

7/%07 Segment does not exist.

9/%09 When requestor is target, USP points within segment.

10/30A When requestor is not target, target is not in DORMANT state.

1 MICROSYSTEMS

@ MOTOROLA
MEMORY MANAGER

DESEG

EXAMPLE :

A non real-time user task, TSKA, wants to deallocate a segment from another
task, called TSKB. The name of the segment is SEGA. The segment is not
shareable so options bit 11 is not applicable.

TSKA:
MOVE.L #2,D0 Load DESEG directive number 2.
LEA PRMBLK,A0 Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PRMBLK : DCZL 'TSKB' Task to lose segment.
DC.L 0 N/A; TSKA is a user task.
DC.W 0 N/A; segment not shareable.
DC.W 0 N/A
DC.L 'SEGA' Segment name in task to detach.
DC.L 0 N/A
DC.L 0 N/A
MICROSYSTEMS

75

@ MOTOROLA
MEMORY MANAGER

DECLARE A SEGMENT SHAREABLE DCLSHR
Directive Number: 7 ™
Parameter: Segment Block Address
Segment Block (refer to paragraph 3.2.6)
Target Task (8 bytes) N/A
Directive Options (2 bytes) Bit 15=1 A1l segment attributes are
specified (bits 14-12).
=0 Only shareable attributes are
specified (bits 13-12).
Bits 14,13 Reserved
Bit 12=1 Make shareable segment
permanent.
Bits 11-0 Reserved
-

Segment Attributes (2 bytes) Bit 15 Reserved
Bit 14=1 Segment is Read-only.
=0 Segment is Read-write.
Segment attribute bit 14 s
applicable only if options bit
15=1.
Bit 13=1 Segment is locally shareable.

=0 Segment is not locally
shareable.

Bit 12=1 Segment is globally shareable.

=0 Segment is not globally
shareable.

Bits 11-0 Reserved

Either bit 12 or bit 13, but not
both, must be set equal to one.

Segment Name (4 bytes) Name of segment to be shareable.

MICROSYSTEMS
76

@ MOTOROLA
MEMORY MANAGER

DCLSHR

Logical Address (4 bytes) N/A

Segment Length (4 bytes) N/A

Detailed Description:

The DCLSHR directive is used to make a non-shareable segment, contained within
the address space of the requesting task, into a shareable segment so that
more than one task may attach to it. There are four types of shareable
segments:

a. Locally shareable Not permanent
b. Locally shareable Permanent
c. Globally shareable Not permanent
d. Globally shareable Permanent

The DCLSHR directive can transform a non-shareable segment into any of the
four types, but only a system task may declare a segment globally shareable.

In addition, DCLSHR can set the read-ofily, read-write status of the shareable
segment, or propagate the current status. Once established by DCLSHR, all
tasks that attach to the shareable segment are restricted to those
permissions. Thus, the originating task can get the segment with read-write
permissions and then declare it shareable with read-only permissions. The
originating task may then read or write to that segment but any attached tasks
may only read from it.

The segment that is to be made shareable must be in the address space of the
requesting task and its name is specified in the name field of the parameter
block. Any one of four types of shareable segments may be declared by the
following combinations of options bit 12 and attributes bits 13 and 12.

OPTIONS ATTRIBUTES

BIT 12 BITS 13/12 ACTION
0 01 Globally shareable/non permanent
0 10 Locally shareable/non permanent
1 01 Globally shareable/permanent
1 10 Locally shareable/permanent

(A11 other combinations are undefined.)

MICROSYSTEMS
77

M) mororoLa

MEMORY MANAGER

DCLSHR

The read-only/read-write status within the global segment table may be set by —~
the following combination of options bit 15 and attributes bit 14:

OPTIONS ATTRIBUTE

BIT 15 BIT 14 ACTION
0 loro Same as current status within TST.
1 0 Segment is Read-write.
1 1 Segment is Read-only.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):

0/%00
2/3%02
5/$05
6/306

7/%07
9/%09
15/%0F

Successful.
Parameter block not in requestor's address space.
Global segment table is full.

Segment name conflicts with segment that already exists in target
task's address space.

Segment does not exist.
User task attempted to make segment globally shareable.

Attributes specify both global and local sharing, or neither.

MICROSYSTEMS
78

@ M LA MEMORY MANAGER

DCLSHR

EXAMPLE:

A user task, TSKA, wants to make a data segment, called SEGD, locally
shareable to other tasks with the same session number. The segment is to be
made permanent.

TSKA:
MOVE.L #7,DO0 Load DCLSHR directive number 7.
LEA PRMBLK ,AD Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PRMBLK : DC.L 0 N/A
DC.L 0 N/A
DC.W $1000 Make shareable segment permanent; segment
is read/write.
DC.W $2000 Locally shareable.
DC.L 'SEGD' Name of shareable segment.
DC.L 0 N/A
DC.L 0 N/A
MICROSYSTEMS

79

M mororoLAa

ATTACH A SHAREABLE SEGMENT

Directive Number: 4

Parameter:

MEMORY MANAGER

ATTSEG

Segment Block Address

Segment Block (refer to paragraph 3.2.6)

Target Task (8 bytes)

Directive Options (2 bytes)

Segment Attributes (2 bytes)

Segment Name (4 bytes)

Logical Address (4 bytes)

Segment Length (4 bytes)

N/A
Bits 15,14 Reserved
RMS68K supplies logical address

of segment equal to physical
address of segment.

Bit 13=1

Bits 12,11 Reserved

Bit 10=1 Length of segment to be attached
is specified in the segment
length field.

Bits 9-0 Reserved

Bits 15,14 Reserved

Bit 13=1 Segment to attach is a locally
shareable segment.
Bit 12=1 Segment to attach is a globally

shareable segment.

Bits 11-0 Reserved

Either bit 12 or bit 13 (but not both) must
be set equal to one.

Name of the desired segment.

Logical address of segment within task's
address space. Not applicable if options bit
13=1.

Length of segment to be attached. Applicable
only if options bit 10=1. The value
specified must be less than or equal to the
actual Jength of the segment. If less, the
first x bytes are attached.

80 MICROSYSTEMS

@ MOTOROLA
MEMORY MANAGER

ATTSEG

Detailed Description:

ATTSEG allows the requesting task control over the logical beginning address
of the segment via options bit 13 and the address field. If option bit 13 is
set, then the logical beginning address is equal to the physical- address;
otherwise, it is equal to the value of the address field within the parameter
block.

ATTSEG allows the task to specify whether it needs access to all the shareable
segment or some fraction starting from the beginning, via options bit 10 and
the length field. If option bit 10 is 0, then ATTSEG gives the task access to
the entire segment. Otherwise, ATTSEG creates a sub-segment of that segment
starting at the beginning address and ending at the beginning address plus the
value of the length field and gives the task access to that sub-segment.
Return Parameters:

Register A0 - physical address of segment.

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block not in requestor's address space.
5/%$05 Requestor already has full segment allocation.
6/%06 Requestor already has segment with specified name.
7/%07 Segment not shareabie or does not exist.
11/%0B Logical address conflicts with requestor’'s address space.

16/%10 Invalid length field in parameter block.

MICROSYSTEMS
81

(Zg)nat>11:wa¢zn4|
MEMORY MANAGER

ATTSEG

EXAMPLE :

A user task, called TSKA, wants to add a globally shareable segment called
SEGS, into 1its address space. The logical address of the segment is to be
the same as the physical address.

TSKA:
MOVE.L #4,D0 Load ATTSEG directive number 4.
LEA PRMBLK, AO Load parameter block address.
TRAP #1 Branch, if error.
BNE FAULT
PRMBLK: DC.L 0 N/A
DC.L 0 N/A
DC.W $2000 Logical address = physical address.
DC.W $1000 Segment to be globally shareable.
DC.L 'SEGS! Segment name.
DC.L 0 N/A; bit 13 set.
DC.L 0 N/A; bit 10 not set.
MICROSYSTEMS

82

M) moToRroLA

GRANT SHARED ACCESS TO ANOTHER TASK

Directive Number: 5

Parameter:

MEMORY MANAGER

SHRSEG

Segment Block Address

Segment Block (refer to paragraph 3.2.6)

Target Task (8 bytes)

Directive Options (2 bytes)

Segment Attributes (2 bytes)

Segment Name (4 bytes)

Logical Address (4 bytes)

Segment Length (4 bytes)

Task_id of task to receive segment. (Refer
to target task interface, paragraph 1.3.6.)

Bits 15,14 Reserved

Bit 13=1 RMS68K supplies logical address
= physical address.

Bits 12,11 Reserved

Bit 10=1 Length of segment is specified
in segment block.

Bits 9-0 Reserved

Bits 15,14 Reserved

Bit 13=1 Segment to be attached "is a
locally shareable segment.

Bit 12=1 Segment to be attached is a
globally shareable segment.

Either bit 12 or bit 13, but not both, must

be set equal to one.
Bits 11-0 Reserved
Segment to be attached.

segment within target
applicable if

Logical address of
task's address space. Not
options bit 13=1.

Length of segment to be attached.
Applicable only if options bit 10=1. The
value specified must be less than or equal
to the actual length of the segment.

MICROSYSTEMS
83

TO A
@ MOTOROL MEMORY MANAGER

SHRSEG

Detailed Description:

SHRSEG allows the requesting task control over the logical beginning address
of the segment via options bit 13 and the address field. If option bit 13 is
set, then the 1logical beginning address is equal to the physical address;
otherwise, it is equal to the value of the address field within the parameter
block.

SHRSEG allows the task to specify whether it needs access to all the shareable
segment or some fraction starting from the beginning, via options bit 10 and
the length field. 1If option bit 10 is 0, then SHRSEG gives the task access to
the entire segment. Otherwise, SHRSEG creates a sub-segment of that segment
starting at the beginning address and ending at the beginning address plus the
value of the length field and gives the task access to that sub-segment.
Return Parameters:

Register A0 - physical address of segment

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exit.
5/%05 Target task already has full segment allocation.
6/%06 Target task already has segment with specified name.
7/%07 Segment not shareable or does not exist.
9/%09 Requestor is specified as target task.

11/%08 Logical address conflicts with target task's address space.

84 MICROSYSTEMS

@ MOTOROLA
MEMORY MANAGER

SHRSEG

EXAMPLE :

A user task, TSKA, wants to place a shareable data segment in the address
space of another task, TSKB. The segment, calied SEGD, is a locally shareable
segment, and is to have a logical address equal to its physical address.

TSKA: MOVE.L #5,D0 Load SHRSEG directive number b.
LEA BLKADR,AD Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
BLKADR: DC.L 'TSKB' Target task to receive segment.
DC.L 0 N/A; user task.
DC.W $2000 Logical address=physical address; length
not specified.
DC.W $2000 Locally shareable segment.
DC.L 'SEGD' Segment name to attach.
DC.L 0 N/A; option bit 13 = 1.
DC.L 0 N/A; option bit 10 = 0.
MICROSYSTEMS

85

MOTOROLA
o)

TRANSFER A SEGMENT

Directive Number: 3

MEMORY MANAGER

TRSEG

Parameter: Segment Block Address

Segment Block (refer to paragraph 3.2.6)

Target Task (8 bytes)

Directive Options (2 bytes)

Segment Attributes (2 bytes)

Segment Name (4 bytes)

Logical Address (4 bytes)

Segment Length (4 bytes)

Task_id of task to receive segment. (Refer
to target task interface, paragraph 1.3.6.)

Bit 15=1 The attributes of the segment are
changed according to the segment
attribute field.

Bit 14=1 Logical address supplied by
requestor in segment block.

Bit 13=1 RMS68K supplies logical address
equal to physical address.

If option bits 13 and 14 both are equal to —
zero, the logical address of the segment is
the same as currently assigned in the
requestor's address space.
Bits 12-0 Reserved
Bit 15 Reserved
Bit 14=1 Segment is to be Read-only.
=0 Segment is to be Read-write.
Bits 13-0 Reserved
Shareable attributes cannot be changed.

Name of segment to be transferred.

New logical address needed if options bit
14=1. —

N/A

MICROSYSTEMS

86

@ MOTOROLA A
MEMORY MANAGER

TRSEG

Detailed Description:

The TRSEG directive transfers a segment from the address space of the
requesting task to the address space of the target task. There are two
options, one allows the task to change the read-only/read-write attribute of
the segment and the other allows the task to change the segments logical
address. When the TRSEG directive 1is completed, the segment is no longer
accessible to the requesting task.

The segment to be moved is named within the segment name field and the target
task is designated by the target task identification field. If option bit 15
is set, then the read-only or read-write attribute of the segment is updated
according to bit 14 of the segment attribute field. Bits 14 and 13 of the
options field determine the new logical address:

OPTIONS NEW LOGICAL
BITS 14/13 ADDRESS
00 No change to logical address.
01 New logical address equals physical address.
10 New logical address equals value of address field.
11 Not defined.

Return Parameters:

Register A0 - physical address of segment

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exist.
5/$05 Target task already has full segment allocation.
6/%06 Target task already has segment with specified name.
7/%07 Segment does not exist.
9/%09 Requestor's USP points within segment.

11/%08B Logical address conflicts with target task's address space.

MICROSYSTEMS
87

@ MOTOROLA
MEMORY MANAGER

TRSEG

EXAMPLE :

A non real-time wuser task, TSKA, wants to transfer a data segment, called
SEG1, into the address space of TSKB. The logical address is to be provided
by RMS68K, and the segment is to be changed to a read-only segment. '

TSKA:
MOVE.L #3,DC Load TRSEG directive number 3.
LEA BLKADR,A0 Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
BLKADR: DC.L *TSKB' Target task to receive segment.
DC.L 0 N/A; user task.
DC.W $A000 Segment attributes defined below,
logical address = physical address.
DC.W $4000 Segment to be Read-only.
DC.L 'SEG1' Segment name.
DC.L 0 N/A; options bit 14 = 0.
DC.L 0 N/A
MICROSYSTEMS

88

TORO
@ mo LA MEMORY MANAGER

RECEIVE SEGMENT ATTRIBUTES RCVSA

Directive Number: 9

Parameter: Segment Block Address

Segment block (refer to paragraph 3.2.6)

Target Task (8 bytes) Task_id of task in whose address space the
segment resides. (Refer to target task
interface, paragraph 1.3.6.)

Bit 15 Reserved

Directive Option (2 bytes) Bit 14=1 Segment identified by logical
address in logical address field.

=0 Segment identified by segment
name.

Bit 13=1 No information is returned in the
user's buffer. The logical
address of the segment referenced
will be returned in Address
Register O.

=0 A1l information about segment is
returned in caller's buffer.

Bits 12-0 Reserved

Directive Attributes (2 bytes) N/A

Segment Name (4 bytes) Segment name. Applicable only if options
bit 14=0.

Logical Address (4 bytes) Logical address within segment. Applicable
only if options bit 14=1.

Segment Length (4 bytes) N/A

Buffer Address (4 bytes) Pointer to buffer where segment description

is to be returned. The buffer must be 18
bytes in length.

89 MICROSYSTEMS

@ MOTOROLA
MEMORY MANAGER

RCVSA

Detailed Description:

A task can obtain information about a segment using the RCVSA directive. The
requesting task can request partial information (logical beginning address
returned in a register), or total information (segment descriptor in a receive
buffer), option bit 13. There are two ways of indicating the segment: by name
or address.

The system "address" for the segment in question consists of two parts. First
the target task identification fields point to a target task within the
system. Then, depending on the status of option bit 14, RCVSA looks for a
segment by name or logical address. If bit 14 equals 0, RCVSA looks for a
segment whose name matches the value within the segment name field.
Otherwise, it 1looks for one whose Jlogical address range encompasses the
logical address within the address field.

If the requesting task requires only the beginning logical address of the
segment, it can set option bit 13 and the address is returned in register AD.
Otherwise, a segment descriptor consisting of a name, attributes, beginning

and ending logical address, and beginning physical address is returned in a
buffer pointed to by the buffer address field in the format:

Segment Name (4 bytes)
Segment Attributes (2 bytes)

Bit 15 Reserved

Bit 14=1 Segment is Read only.
=0 Segment is Read-write.

Bit 13=1 Segment is locally shareable.
=0 Segment is not locally shareable.

Bit 12=1 Segment is globally shareable.
= Segment is not globally shareable.

Bit 11=1 Segment is memory mapped I/0 space.
=0 Segment is not memory mapped I/0 space.

Bit 10=1 Segment is physical ROM.
=0 Segment is not physical ROM.

Bits 9-0 Reserved
Beginning Logical Address (4 bytes)
Ending Logical Address (4 bytes)

Physical Address (4 bytes)

MICROSYSTEMS
90

@ MOTOROLA
MEMORY MANAGER

RCVSA
Return Parameters:
Segment information is described above at location specified in segment block.

Error Codes (returned in bits 15-C of D0):

0/%00 Successful.

2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exist.

7/%07 Segment does not exist.

12/%0C Receiving buffer not in requestor's address space.

EXAMPLE :
A non real-time user task, TSKA, wants to determine the attributes of segment

SEG1, as it resides in the address space of TSKB. The information is to be
given to TSKA starting at location RCVBUF.

TSKA:
MOVE.L #9,D0 Load RCVSA directive number 9.
LEA PRMBLK ,A0 Load parameter block address.
MOVE.L #RCVBUF,BUFADR Modify parameter block buffer address.
TRAP #1
BNE FAULT Branch, if error.
PRMBLK: DC.L 'TSKB' Target task segment information from.
DC.L] N/A; user task.
DC.W $0000 Segment identified by name;
information returned in buffer.
DC.W 0 N/A
DC.L 'SEG1’ Segment name.
DC.L 0 N/A; bit 14-0.
DC.L 0 N/A
BUFADR: DC.L 0 Pointer to buffer.
RCVBUF: DS.B 18 Segment description return buffer.

MICROSYSTEMS

91

M moToRoOLA

MOVE FROM LOGICAL ADDRESS

Directive Number: 6

MEMORY MANAGER

MOVELL

Parameter: Parameter Block Address

Parameter Block:

Source Task (8 bytes)

Source Logical Address (4 bytes)

Target Task (8 bytes)

Destination Logical Address (4 bytes)

Length of Data Block (4 bytes)

Detailed Description:

Task_id of task that contains address
from which data is being moved.
Requesting task is assumed if this
field is 0. (Refer to paragraph
1.3.6.)

Logical address within source task's
address space where data to be moved
resides.

Task_id of task that contains address
to which data is being moved.
Requesting task 1is assumed if this
field is 0.

Logical address within destination
task's address space where data is to
be moved.

The number of bytes in the data block
to be moved.

A block of data is moved from one logical address to another. A user task may
only move data to other tasks within its own session, and cannot move data to

a system task's address space.

Return Parameters: None

92

MICROSYSTEMS

@ MOTOROLA
MEMORY MANAGER

MOVELL
Error Codes (returned in bits 15-0 of D0):
0/3%00 Successful.
2/%02 Parameter block is not in requestor's address space.
3/%03 Source task does not exist.
7/%07 Destination task does not exist.
9/%09 User task cannot move data to a system task.
11/%08B Trying to move from an odd address to an even address or from an
even address to an odd address.
12/%0cC Source logical address not in address space of source task.
13/%0D Destination logical address not in address space of destination
task.
EXAMPLE :

A non real-time user task, TSKA, wants to move an 8-byte block of data
residing at location SRCDAT into the address space of TSKB at location DSTDAT.
Both TSKA and TSKB are in the same session.

TSKA:

MOVE.L #6,D0 Load MOVELL directive number 6.

LEA PRMBLK ,AQ Load parameter block address.

TRAP #1

BNE FAULT Branch, if error.

DC.L 0 Source taskname (requesting task).

DC.L 0 N/A; user task.

DC.L SRCDAT Address from which to start data

transfer.

DC.L "TSKB' Destination task.

DC.L 0 N/A; user task.

DC.L DSTDAT Where to place data.

DC.L 8 Length of data block in bytes.
MICROSYSTEMS

93

@ MOTOROLA
MEMORY MANAGER

MOVE FROM PHYSICAL ADDRESS MOVEPL

Directive Number: 72
Parameter: Parameter Block Address
Parameter Block:

Not Used (8 bytes) Reserved

Source Physical Address (4 bytes) The actual physical address at which
the data to be moved resides.

Target Task_id (8 bytes) Task_id of task that contains address
to which data is being moved. (Refer
to paragraph 1.3.6.)

Destination Logical Address (4 bytes) Logical address within destination
task's address space where data is to
be moved.

Length of Data Block (4 bytes) The number of bytes in the data block
to be moved.

Detailed Description:
A block of data is copied from a physical address to a logical address within
the destination task's address space.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block is not in reguestor's address space.
7/%07 Destination task not found.

11/%0B Trying to move from an odd address to an even address or from an
even address to an odd address.

12/%0C A bus error occurred in trying to access the physical address
specified.

13/3%0D Destination 1logical address not in the address space of the
destination task.

MICROSYSTEMS
94

@ MOTOROLA
MEMORY MANAGER

MOVEPL

EXAMPLE :

A task wants to copy a 256-byte block of data from physical address $900 into
a buffer labeled SYSBUF within its own address space.

TSKA:
MOVE.L #72,D0 Load MOVEPL directive number 72.
LEA PRMBLK ,AQ Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PRMBLK : DC.L 0,0 Reserved
DC.L $900 Address data location.
DC.L 0,0 Requesting task, requesting session.
DC.L SYSBUF Local address in which to store data.
DC.L 256 Number of bytes to move.

SYSBUF: DC.B 256

MICROSYSTEMS
95

M) moToRroLA

FLUSH USER CACHE
Directive Number: 75
Parameter: None

Detailed Description:

RMS68K flushes wuser mode entries from all caches known to it.

instruction caching and data caching.

Return Parameters: None
Error Codes: None
EXAMPLE :

MEMORY MANAGER

FLUSHC

This includes

TSKA wants to modify its own code space and execute it. Because the code has
already been executed, the cache must be cleared in case it contains entries

corresponding to the overwritten addresses.

TSKA: BSR SOME_ROUTINE Call the routine, possibly caching

entries.

(Change the code in SOME_ROUTINE.)

MOVE.L #75 Clear the cahe of all user mode
entries.

TRAP #1

BSR SOME_ROUTINE Call the routine again without fear of

getting invalidated entries from cache.

96

MICROSYSTEMS

@ MOTOROLA
TASK MANAGER

CHAPTER 4

TASK MANAGER

4.1 OVERVIEW

The Task Manager consists of those directives and data structures that support
the concept of tasks as resources that can be created, terminated, started,
stopped, temporarily halted, reawakened, and inquired about. The task manager
maintains a list of all tasks currently known to the system and the TCBs that
contain information describing the current state and resources allocated to
each task. The task manager imposes no limit on the number of tasks within a
system; the limiting factors are typically the amount of available memory and
the application's performance requirements.

The task manager functions are divided into three categories and are described
in detail in this chapter:

a. Task Initialization and Termination
b. Task Synchronization

c. Task Query

4.2 THEORY OF OPERATION

4.2.1 Tasks

A task is a function that can execute concurrently with other functions within
a multitasking environment. A task typically accepts one or more inputs,
performs some processing function based on the input, and responds with one or
more outputs.

Two typical classes of tasks are data processing and control tasks. The input
and output to a data processing task is data, usually as events. A control
task accepts input from the external word as signals, external interrupts, or
events, decides on an appropriate response in light of its world view and the
recent behavior of the system, and responds, usually by manipulating a
hardware device that causes some change to occur within the external world.
These are only two examples of tasks. There are many more types that combine
elements of control and data processing.

4.2.1.1 Task Structure. The minimum configuration of a task is a TCB
containing the system's knowledge of the task, and one program code memory
segment containing the task's procedural knowledge of how to do the function.
Optionally, a task can possess up to three additional memory segments (program
code or data) and one ASQ.

MICROSYSTEMS
97

@ MOTOROLA
TASK MANAGER

Task Control Block (TCB)

Associated with each task currently in the system is a TCB. The TCB contains
information about the task that allows RMS68K to maintain control of the
task's execution, account for resources allocated to the task, and ensure task
protection. The TCB remains associated with one task throughout the task's
existence.

A1l RMS68K's resource managers maintain their own specific fields within the
TCB. The task manager is responsible for creating and initializing the TCB
and purging it from the system on task termination.

Program Code Segment

A Program Code Segment contains instructions used during execution and is
normally marked read-only, although it can be marked read-write if it also
contains data. A task's program code segment can be divided into independent
sections to provide an atmosphere conducive to event processing. Although
RMS68K is not aware of section boundaries, it can be advised of the entry
points of the wvarious sections; this allows RMS68K to exercise control over
the dispatching function in an asynchronous environment.

Jask Level Program Code
The task level code is subdivided into categories:
a. Main Code

The basic element of a program code segment. The main line code is
executed from a task's initial entry point when the task is started.

b. Trap Handling Code
Allows a task to respond to its own trap instruction. A task can
specify that trap instructions 2 through 15 be handled by normal

default processing or by trap handling code starting at a specific
location within the task.

c. Exception Handling Code
Similar to trap handling code, except that a task can elect to process
many of its own exceptions.

d. Interrupt Service Routine (ISR)

An external interrupt activates the ISR. Although the ISR code is
part of a task and totally shares its address space, the ISR executes

independently of the task. Therefore, an ISR can run concurrently
with the task and functions 1like a user-mode extension of the
Executive.

MICROSYSTEMS

98

TOROLA
@ mo TASK MANAGER

When RMS68K enters an ISR, the ISR should do a minimum amount of
processing and then exit. On exit, the ISR can activate (or
reactivate) the task in which it is included, usually for the purpose
of processing results in a background mode.

Directives cannot be issued during interrupt handling except when
returning from ISR processing. Any exception that occurs during ISR
processing ends ISR execution.

e. Asynchronous Service Routine (ASR)

The ASR is the service routine for a software interrupt, analogous to
the ISR that is the service routine for a hardware interrupt. The ISR
is executed in response to an external hardware event (interrupt),
whereas the ASR is executed in response to an external software event
(some other task queued an event to the task).

f. Directive Handling Code
The Directive Handling Code allows a task to respond to its own or
other task's TRAP #1 instructions. A task's Directive Handling Code

executes in supervisor mode without MMU protection and allows a task
to dynamically extend RMS68K's directive set.

Data Segment

A Data Segment is used by a task for working storage, for passing bulk data to
other tasks, and for two or more tasks to share a common data area.

One data segment is wusually allocated to a task during task initiation,

however, additional segments can be allocated by various memory management
directives.

Asynchronous Service Queue (ASQ)

The ASQ holds events that are waiting to be processed by the task. Refer to
paragraph 2.2.2 for details.

4.2.1.2 JTask JIdentification. Associated with each task is a taskname and a
session number. The taskname can be any 4-byte value except 0, and the
session number can be in the range $0000 to $FFFF, inclusive. (Refer to
paragraph 1.3.6 for details on how the taskname and session number are used
within the target task interface protocol.)

99 MICROSYSTEMS

@ MOTOROLA
TASK MANAGER

4.2.1.3 Task Priority. A task's priority is a measure of the task's
importance relative to all other tasks within the system and indicates its
"need to run" in a multitasking system where many tasks may be “ready to run"
at any moment.

When a task is created, it is given an initial current priority and a limit
priority. The current priority can be changed at any time to a value less
than or equal to that task's limit priority via the SETPRI directive. The
priority is any value 0 to 255 (inclusive) with 0 being the Towest priority.
Tasks in the READY state are dispatched for execution during a dispatch cycle
of RMS68K. The task with the highest priority residing in the READY state is
selected for dispatch. If more than one task has the highest priority, the
task that has been in the READY state the longest is selected.

4.2.1.4 Monitor and Subtasks. A monitor task can be set up to automatically
receive notification of the termination of another task, referred to as a
subtask of the monitor. A monitor task can monitor any number of subtasks and
does not require the same session number as its subtask.

When a task is created or started, options specify which task, if any, is its
monitor. The monitor can be assigned as the task requesting the creation or
start, the requestor's monitor, or a third task. When a subtask terminates,
the task manager places an event in the monitor task's ASQ, specifying the
subtask identification, the task that initiated the termination, and a normal
or abnormal termination indicator.

A monitor task should not be confused with an exception monitor that receives
notification when its target task causes an exception, such as divide by zero
or a bus error.

4.2.2 Task Initialization and Termination

The Task Initialization and Termination functions within the task manager
provide services to support the most significant events within a task's life.
A task does not exist in the system until a TCB is created. Once the TCB is
created, other tasks can refer to it and act on its behalf in allocating and
deallocating resources, but the task cannot function on its own. Once a task
has been started, it can execute its function, vie with other tasks for
processor time according to its relative priority, allocate and deallocate
resources - for itself or other tasks, and exercise all rights and privileges
according to its rank and station within the system (system/user task, real-
time/non real-time task, session zero/not session zero).

If a task is stopped, it remains in the system but is incapable of acting on
its own behalf. When a task is terminated or aborted, all resources currently
allocated to it (including its TCB) are released back to the system, all
knowledge of its existence is purged from the system, and any further
directives referring to it are rejected with an error code of $03 (target task
does not exist).

MICROSYSTEMS
100

N

@ MOTOROLA
TASK MANAGER

The directives supporting task initialization and termination are:

CRTCB Create a TCB for a new task, initialize the name, session
number, monitor, priority, attributes and entry point fields,
and place the task in the DORMANT state.

START Move the target task from the DORMANT to the READY state. This
directive can also initialize the task's registers and specify
its monitor.

SETPRI A task changes its own priority or the priority of another task
to the specified value according to the restrictions described
in task priority (refer to paragraph 4.2.1.3).

STOP Move the target task to the DORMANT state.

TERMT Terminate a target task by releasing resources and deleting the
TCB of the target task so that the task no longer exists in the
system.

TERM Terminate the requesting task by releasing all resources and
deleting its TCB so that the task no Tonger exists in the
system.

ABORT Initiate an abnormal termination of the requesting task; its TCB

is deleted and the task no longer exists in the system.

4.2.3 Task Synchronization

A "primitive level" of task synchronization based on the "Wait for a signal
from another task" concept is provided by the WAIT/WAKEUP and SUSPEND/RESUME

directives.
WAIT A task moves itself into the WAIT state.
WAKEUP Move the target task from the WAIT state to the READY state.
SUSPND A task moves itself into the SUSPEND state.
RESUME Move the target task from the SUSPEND state to the READY state.
RELINQ A task moves itself to the READY state forcing RMS68K to execute
a dispatch cycle.

The WAIT/WAKEUP pair of directives support a one-deep buffer for the signal,
allowing the signalling task to send the signal (WAKEUP the target) before the
waiting task indicates its intention to wait on that signal. This state is
known as WAKE-UP PENDING; a task that executes a WAIT directive while in the
WAKE-UP PENDING state continues executing immediately after the WAIT.

MICROSYSTEMS
101

@ MOTOROLA
TASK MANAGER

The SUSPEND/RESUME pair does not buffer the signal, instead the signalling
task must issue the RESUME directive after the waiting task executes the
SUSPEND for the waiting task to be moved from the SUSPEND state back to the
READY state.

The RELINQ directive allows a task to relinquish control of the processor to
tasks of equal or slightly lower priority. A task of priority $NM where N and
M are both between 0 and $F (inclusive) that executes a RELINQ directive, is
placed back on the READY 1ist at priority $NO and runs again after all other
READY tasks of priority $NO or greater execute. (The RELINQ directive does
not affect a task's current priority.)

4.2.4 Task Query

The task manager supports four task query directives:

TSKATTR A task receives the wuser number and attributes of a target
task.

TSKINFO A system task requests a copy of a target task's TCB.

GTTASKID A task translates a target task's taskname and session number
into its task_id.

GTTASKNM A task translates a target task's task_id into its taskname and
session number.

The TSKATTR and TSKINFO directives are self-explanatory. GTTASKID supports
the target task interface in either the real-time or non real-time domain of
execution. The input to GTTASKID is the target task's taskname and session
number and the output is the task_id appropriate for the requesting task's
domain of execution (i.e., if the requesting task is a non real-time task, the
task_id is the original taskname and session number; otherwise, it is an
internal 8-byte code required for real-time tasks to access target tasks).

The GTTASKNM directive converts a target task's task_id into a taskname and
session number.
4.2.5 Task State Transitions

Figure 4-1 1is a diagram of all the task state transitions caused by any
resource manager.

MICROSYSTEMS
102

TN

TASK MANAGER

M) moToroLA

FoTO 1T Ta AV JONIU vV oaanvia

INVINHOQ

(3UOHdvwas *
HOVIHOd e
ananoano)
i Y Y X h
IHOHIVINIS ANVWWOD IN3A3 N33
NO Aviaa ¥od HO4 135 LVM e
LIVM LIVM Lvm
y
4 wu%.dﬂ (dvHl v 31ANVH
ANIM NOWX3Y | HOLINOW anv
MAVI3Q HO4 HIAHIS HLOAQ 41
IVAHY -
IN3AI HO - 1N3A3
1NO3NIL IN3A3
AQV3H | '
(SLINN HONON3) ONIANId dNINVM dNINVM
Wasos n
1HVLS - - annsay
e
Ole
<2 aN3dSNs |
a lw
@Dl
ala _IIV
\ aN3dsns
(SLINN HONONZ LON) Wasim| NN v
W31 ‘LHOgV /J
> ONION3d
| 1sanoau
(SVL HIAHIS OL GAN3ND HIAWIS [sounv
IN3A3) X dvul

ANA3LD

ANAILM

TOHLNOD NOWX3 HIANN NOILdIOXI MSVL

MAVT3A ‘AVI3a

MICROSYSTEMS

103

(ZEQ MOTOROLA
TASK MANAGER

The dispatch cycle of RMS68K is entered any time a task is removed from the
RUN state. There are many reasons for a task being removed from the RUN
state, several of which are:

a. A task relinquishes execution.

b. A task directly changes the task state of itself or any other task.

¢. An event 1is placed in any task's ASQ (because of direct request for
queuing, exception monitor event, physical I/0 return event, etc.).

d. A task performs a semaphore wait operation.

e. Task execution time of a task exceeds the maximum timeslice allowed
(if timeslicing is installed).

f. A higher priority task becomes READY (pre-emptive dispatch).
when a task is removed from the RUN state for any reason other than a STOP,
ABORT, TERMT, or TERM directive, the task resumes execution at the next
instruction following the last instruction that was executed in that task.
The first time a task is executed via a START directive, execution begins at —
the task entry point. ‘
4.3 DATA STRUCTURE
The TCB is allocated, initialized, manipulated, and de-allocated by the task
manager. Other resource managers also manipulate fields within the TCB.

4.3.1 Task Control Block (TCB)

The TCB controls the execution of the relevant task.

TCB (4 bytes) Block ID

Each TCB begins with 'ITCB' to allow consistency checking
and ease of dump reading.

S

TCBALL (4 bytes) TCB list Tink

Points to the next TCB in the singly-Tinked 1ist of all
TCBs. Zero represents end of Tist.
TCBGROUP (4 bytes) Reserved for future use.

MICROSYSTEMS
104

@ mo LA TASK MANAGER

TCBREADY (4 bytes) Ready list link
Points to the next ready-to-execute TCB in the singly-
linked ready list. Zero represents end of list.

TCBNAME (4 bytes) Taskname

The name of the task represented by this TCB.

TCBSESSN (4 bytes) Session code

The session code of the task represented by this TCB.

TCBMON (8 bytes) Monitor ID

The taskname and session code of this task's monitor. Zero
indicates no monitor.

TCBSEM (4 bytes) Semaphore wait 1link
If this task 1is blocked on a semaphore wait, this field

points to the next TCB blocked on the same semaphore. Zero
represents end-of-wait list.

TCBCPRI (1 byte) Current priority

The software priority of this task.

TCBLPRI (1 byte) Limit priority

The highest software priority assignable to this task.

TCBRPRI (1 byte) Ready 1ist priority

Sometimes, the Executive temporarily alters the priority of
a task; this field places a task on the READY list.

TCBIOCNT (1 byte) Pending 1/0 count

This field is incremented with each initiation of an input
or output operation that transfers data to or from this
task's address space; it is decremented with each
completion.

MICROSYSTEMS
105

@ MOTOROLA
TASK MANAGER

TCBATTR (2 bytes) Task attributes
See the TSKATTR directive in paragraph 4.4 for attributes
definition.

TCBABORT (2 bytes) Abort code

TCBABORT indicates the reason this task is .aborting.

TCBSTATE (4 bytes) Current task state
The state of a task is saved in the high order 2 bytes of
the TCBSTATE field. If the task is stopped by a STOP
directive, it is moved to the low order 2 bytes.
State bit definitions:

15=1 Task is DORMANT. It has not been started or it has
been stopped.

14=1 Task is waiting. It can be reactivated by a WAKEUP.
13=1 Task is in a semaphore wait 1list.
12=1 Task is waiting for an event.

11=1 Task is waiting for an acknowledgement from a server

task.

10=1 Task 1is waiting to be reactivated by an exception
monitor.

9=1 Task is suspended. It can be reactivated by a
RESUME. :

8=1 Not defined.

7=1 Task is being terminated.

6=1 .Task returns to Executive when next dispatched.

5=1 Dispatch task to ASR routine.

4=1 Task is on READY 1list.

3=1 Task has a pending WAKEUP.

2=1 Termination message sent to server task.

1 Reserved.

0 Reserved.

MICROSYSTEMS
106

M) mororoLa TASK MANAGER

TCBTSTSM (6 bytes) TST semaphore

Regulates access to this task’s TST.

TCBTST (4 bytes) TST pointer

Points to this task's TST.

TCBASQSM (6 bytes) ASQ semaphore

Regulates access to this task's ASQ.

TCBASQ (4 bytes) ASQ pointer

Points to this task's ASQ. Zero indicates no ASQ in
existence for this task.

TCBCHAN (4 bytes) Channel Control Block (CCB) list head

Points to the first CCB attached to this task. Zero
indicates no CCBs attached.

TCBEVECT (4 bytes) Exception vector pointer

Contains the 1logical address of this task's exception
vector table. Zero indicates no own exception handling.

TCBTVECT (4 bytes) Trap Vector Pointer
Contains the Tlogical address of this task's trap vector
table. Zero indicates no own trap handling.
(8 bytes) Reserved for future use.
TCBDLAY (4 bytes) Address of delay entry in PAT.

(2 bytes) Reserved for future use.

TCBISRS (2 bytes) ISR error code

Used as return code for WAKEUP following a user interrupt.

(12 bytes) Reserved for future use.

MICROSYSTEMS
107

@ MOTOROLA
TASK MANAGER

TCBENTRY (4 bytes) Entry point

Contains the logical address of this task's entry point.

TCBUSER (2 bytes) User number
Contains the user number under which this task is
executing.

TCBSSP (1 byte) Super stack depth

If this task is in the "Return to Executive" state, this
field contains the depth of the supervisor stack save area.

TCBUTRP (1 byte) User trap
The wuser trap instruction number (not including 0 or 1)

currently being processed for this task. Field remains
until another trap is processed.

TCBXREGS (60 bytes)Executive registers
If this task is 1in the "Return to Executive" state,
TCBXREGS contains the registers content to be restored (DO
to D7 and AD to A6).

TCBATSK (4 bytes) Terminator task
If this task is terminating, TCBATSK contains the name of
the task that initiated termination.

TCBASES (4 bytes) Terminator session

The session code of the task that initiated termination.

TCBBERR (8 bytes) Error status
If this task executed a bus error or address error
exception, TCBBERR contains the error status information
from the super stack.

(64 bytes) Supervisor stack save area

MICROSYSTEMS
1na

P

M) moToRoLA

TCBDO (64
TCBSR (2
TCBPC (4
TCBVOR (2
TCBRRO (2

(80

(48
TCBEXM (4
TCBEXMS (4

TCBEMMSK (4

TCBEVMSK (4

TCBEVLOC (4

TCBEVALU (4

TCBECNT (4

(4

bytes)

bytes)

bytes)

bytes)

bytes)

bytes)

bytes)

bytes)

bytes)

bytes)

bytes)

bytes)

bytes)

bytes)

bytes)

TASK MANAGER

User Registers

TCBDO through TCBUSP contain the task registers (DO to D7
and AC to A7).

User SR

Contains the task's status register.

User PC

Contains the task's program counter.

User Vector Offset Register (VOR)

Contains the task's VOR.

Error code

Error code returned to task from user ISR.
Task Segment Table (TST)

Reserved for future use.

Exception monitor taskname

Exception monitor session number
Exception monitor mask

Exception monitor value mask
Exception monitor value address
Exception monitor value content

Exception monitor maximum number of instructions
Reserved for future use.

MICROSYSTEMS
109

@ MOTOROLA TASK MANAGER

4.4 TASK MANAGER DIRECTIVES

The following pages contain

detailed descriptions and examples of the task
manager directives.

—

N

110 MICROSYSTEMS

@ mo LA TASK MANAGER

CREATE TASK CONTROL BLOCK (TCB) CRTCB

Directive Number: 11

Parameter: TCB Block Address
TCB Block:
Taskname (4 bytes) Name of new task.
Session (4 bytes) N/A if requestor is a user task.
Directive Options (2 bytes) Bit 15=1 New task's monitor is specified

in monitor fields of TCB block.

Bit 14=1 New task's monitor is requesting
task's monitor.

Bits 13-0 Reserved

If both bits 14 and 15 are set to 1, RMS68K
chooses the monitor-specified option (bit
15=1). If both bits 14 and 15 are reset to
0, the target task does not have a monitor
task.

Monitor Taskname (4 bytes) This field is wused only when options bit
16=1. If this Tield is 0, the new task's
monitor is the requesting task. Otherwise,
the monitor 4s the task specified in this

field.
WARNING

SUBTASK TERMINATION EVENTS (CODE = 3$05) ARE
24 BYTES LONG. IF THE MONITOR HKAS AN ASQ,
THEN THE ASQ'S MAXIMUM MESSAGE LENGTH MUST
BE AT LEAST 24 BYTES.

Monitor Session (4 bytes) This field 1is wused only when options bit
15=1 and the requesting task is a system
task. If the field has the value 0, the
session of the new task's monitor is the
requestor's session. Otherwise, it is
assigned to the value of this field.

Initial Priority (1 byte) Initial priority to be assigned to the new
task; 0 to 255 (0 = lowest).

Limit Priority (1 byte) Highest priority that can be assigned to the
new task; 0 to 255 (0 = 1lowest). The
maximum limit is the priority of the calling
task.

11 MICROSYSTEMS

M) mororoLa TASK MANAGER

CRTCB

Task Attributes (2 bytes) Bit 156=1 New task is a system task.
Bit 14 Reserved

Bit 13=1 Crash system if new task
terminates abnormally.

Bit 12=1 Task dump if new task terminates
abnormally.

Bit 11=1 Relocatable task running with no
MMU. Entry address is adjusted
when task is started.

Bits 10-0 Reserved

Task Entry Point (4 bytes) Task level code logical address to which
control is transferred when new task is
executed.

User Generated I.D. (2 bytes) This field is not used by RMS68K; it is for
the wuser's information only. It appears in
the event message to a server task when this
task makes a request to the server task.

Detailed Description:

RMS68K allocates 512 bytes of memory for the TCB of the new task. The TCB is
initialized according to the information in the parameter block. A monitor
task for the new task can be assigned, and initial and 1imit priorities for
the new task are also assigned at this time. A user task cannot specify the
new task to be a system task. The new task is in the DORMANT state.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):

0/%00 Successful.

2/%02 Parameter block not in requestor's address space.
6/%06 Taskname already exists.

8/%08 Memory not available.

112 MICROSYSTEMS

@ MOTOROLA
TASK MANAGER

CRTCB

EXAMPLE :

A system task, TSKA, wants to create a new system task, TSKB, within the same
session. The first thing TSKA must do is to create the TCB of TSKB. TSKA is
to be TSKB's monitor, and TSKB is to have an initial priority of 100 with a
limit priority of 150. The entry point of TSKB is to be at logical location
BSTRT.

TSKA:
MOVE.L #11,D0 Load CRTCB directive number 11.
LEA PRMBLK ,AQ Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PRMBLK : DC.L "TSKB' Name of new task.
DC.L 0 New task to have same session as this
system task.
DC.W $8000 Bit 15 set; monitor specified below.
DC.L 0 New task monitor is this requesting
task.
DC.L 0 Session at new task is this session.
DC.B 100 Initial priority.
DC.B 150 Limit priority.
DC.W $8000 New task 1is a system task; do not
crash, no dump, MMU.
DC.L BSTRT Entry address of new task.
DC.W 0 User-generated ID.

MICROSYSTEMS
113

@ MOTOROLA

START TASK

Directive Number: 13

TASK MANAGER

START

Parameter: Parameter Block Address

Parameter Block:

Target Task (8 bytes)

Directive Options (2 bytes)

Monitor Taskname (4 bytes)

Task_id of target task to be executed. If
the field is 0, the START directive looks
for a task to re-start. It can also re-
start a task that has been STOPped.

Bit 15=1 The monitor of the target task is
specified in the monitor fields
of the parameter block.

Bit 14=1 The monitor of the target task is
the requesting task's monitor.

If both bits 14 and 15 are set to 1, RMS68K
honors the monitor-specified option (bit
15=1). If both bits 14 and 15 are reset to
0, the monitor task of the task being
started remains unchanged.

Bit 13=1 The registers of the task being
started are to be initialized to
the values in the registers field
of the parameter block.

Bits 12-0 Reserved

This field 1is wused only when options bit
15=1. If this field is 0, the monitor of
the task being started is the requesting
task; otherwise, the monitor is the task
specified in this field.

WARNING

SUBTASK TERMINATION EVENTS (CODE = $05) ARE
24 BYTES LONG. 1IF THE MONITOR HAS AN ASQ,
THEN THE ASQ'S MAXIMUM MESSAGE LENGTH MUST
BE AT LEAST 24 BYTES.

MICROSYSTEMS
114

@ MOTOROLA
TASK MANAGER

START

Monitor Session (4 bytes) This field 1is wused only when options bit
15=1 and the requesting task is a system
task. If this field has the value 0, the
session of the monitor of the task being
started is the requestor's session;
otherwise, the monitor's session is
specified by the value in this field.

Registers (60 bytes) Used only if options bit 13=1. This field
contains the initial values of registers DO
to D7 and A0 to A6 to be assigned to the
registers of the task being started.

Detailed Description:

RMS68K puts the target task into the READY state, based on its current
priority, to wait for execution. A task can be started only from the DORMANT
state. The monitor task can be assigned or changed and the initial values of
the target task's registers can be assigned.

When the START directive is used to re-start a task that has been stopped, the
task's monitor is not changed.

The START directive, with taskname set equal to 0, can be called repeatealy to
re-start all tasks in the caller's session stopped by the STOP directive.

Return Parameters:

If START was called with taskname = 0, the taskname of the started task is
returned in AO.

Error Codes (returned in bits 15-0 of D0):

0/%00 Successful.

2/%02 Parameter block not in requesting task's address space.
3/%03 Task does not exist.

6/%06 Duplicate request; task started.

9/%09 User task cannot start system task.

MICROSYSTEMS
115

@ MOTOROLA
TASK MANAGER

START

EXAMPLE :

A non real-time wuser task, TSKA, wants to start the execution of a second
task, TSKB. TSKB is to have a monitor task, called TSKC, and all TSKB's
registers are to be initialized to 0.

TSKA:
MOVE.L #13,D0 Load START directive number 13.
LEA PRMBLK ,A0 Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PRMBLK : DCzL 'TSKB* Target task to START.
DC.L 0 N/A; user task.
DC.W $A000 Monitor of task specified; registers to
be set.
DC.L 'TSKC' Monitor taskname.
DC.L 0 N/A; requesting task is a user task.
RDO: DC.L 0 Initial value of DO.
RD1: DC.L 0 Initial value of DI1.
RD7: DC.L 0 Initial value of D7.
RAO: DC.L 0 Initial value of AO.
RA1: DC.L 0 Initial value of Al.
RA6: DC.L 0 Initial value of A6.

NOTE

The user stack pointer (A7) must be initialized by
the executing task. If the target task has a
current priority greater than the 1imit priority
of the requesting task, the target task is started
at the requesting task's limit priority.

MICROSYSTEMS
116

@ MOTOROLA
TASK MANAGER

SET PRIORITY SETPRI
Directive Number: 24

Parameter: Parameter Block Address

Parameter Block:
Target Task (8 bytes) Task_id of target task with changing
priority. Requesting task 1is assumed if
this field is 0.

New Priority (1 byte) New current priority.

Detailed Description:
RMS68K changes the current priority of the target task to the value specified.
The new priority must be 1less than or equal to the limit priority of the
target task priority set at the time of TCB creation. A task can change its
own priority or the priority of another task. A user task cannot alter the
priority of a system task.
Return Parameters:
If error code 10/$A is returned in DO, then the target task's limit priority
is returned in AQ.
Error Codes (returned in bits 15-0 of D0):

0/%00 Successful.

2/%02 Parameter block not in requestor's address space.

3/%03 Target task does not exist.

9/%$09 User task cannot alter priority of system task.

10/%0A Specified new priority greater than limit priority.

MICROSYSTEMS

(ZEQ MOTOROLA
TASK MANAGER

SETPRI
EXAMPLE :
Supervisor task, TSKA, wants to change its own priority to the value 5.
TSKA:
MOVE.L #24,D0 Load SETPRI directive number 24.
LEA PRMBLK ,A0 Load parameter block address.
TRAP #1

BNE FAULT Branch, if error.

PRMBLK: DC.L

0 Requesting task is target task.
DC.L 0 Same session as requesting task.
DC.B 5 New current priority.

8 MICROSYSTEMS
11

P

M) moToroLA TASK MANAGER

STOP TASK STOP
Directive Number: 25

Parameter: Parameter Block Address

Parameter Block

Target Task (8 bytes) Task_id of target task to be halted.

Detailed Description:

RMS68K stops execution of the target task and moves it to the DORMANT state
with all resources still attached. The task remains in memory. A user task
cannot stop a system task.

This directive operates in two modes:

a. Stop Single Task

b. Stop Session

Stop Single Task Mode

The requestor must specify the task_id of the task to be stopped. System
tasks are only stopped in the stop single task mode.

Stop Session Mode

The stop session mode is used by the requesting task to stop all user tasks
within a given session. A user task can only stop tasks within its own
session. For this mode, the requestor does not specify the task_id (task_id =
0). RMS68K selects one task from the relevant session and places it in the
DORMANT state. Thus, a task could stop all user tasks in a session by issuing
the STOP directive repeatedly until it is the only task remaining in the READY
state (the requestor is immune to the STOP directive).

Return Parameters:

A0 Name of stopped task

119 MICROSYSTEMS

M) moTroroLa

0/%00
2/%02
3/%03
6/506
9/%09

EXAMPLE :

A user task,

TSKA:

STP:

PRMBLK :

TASK MANAGER

STOP
Error Codes (returned in bits 15-0 of DO): o
Successful.
Parameter block not in requestor's address space.
Target task does not exist.
Specified task already in DORMANT state.
User task cannot stop system task.
TSKA, wants to stop all user tasks within its session.
MOQE.L #25,0D0 Load STOP directive number 25.
LEA PRMBLK ,AQ Load parameter block address.
TRAP #1
BEQ STP Branch, if successful, to STP; do it
again.
CMP.L #3,D0 Test if all gone.
BNE FAULT Branch, if error.
DC.L 0 Any task.
DC.L 0 N/A; user task.
MICROSYSTEMS

120

@ MOTOROLA
TASK MANAGER

TERMINATE SELF TERM

Directive Number: 15

Parameter: None

Detailed Description:

RMS68K halts execution of the requesting task and removes the task from
memory. This results in the normal termination of task execution. If the
requesting task has a monitor, a normal termination message is given to the
monitor by an event with event code $05.

Return Parameters: None
Error codes: None
EXAMPLE:

A user task, TSKA, has completed its processing and wants to terminate.

TSKA:

MOVE.L #15,D0 Load TERM directive number 15.
TRAP #1

MICROSYSTEMS

M) moToroLA TASK MANAGER

TERMINATE TARGET TASK TERMT

Directive Number: 16

Parameter: Parameter Block Address

Parameter Block:
Target Task (8 bytes) Task_id of target task to be terminated.

Abort code (2 bytes) Abort code sent to task's monitor.

Detailed Description:

RMS68K halts execution of the target task and removes the task from memory.
A user task cannot terminate a system task.

This directive operates in two modes:

a. Terminate single task

b. Terminate session

Terminate Single Task Mode

The requestor must specify the task_id of the task to be terminated. A system
task can be terminated only in the single task mode.

Terminate Session Mode

This mode is used by the requesting task to terminate all user tasks within a
given session. A user task can only terminate tasks within its own session.
For this mode, the user does not specify the task_id (task_id = 0). RMS68K
selects one user task from the relevant session and terminates it. Thus, a
task could terminate all user tasks in a sessjon by issuing the TERMT
directive repeatedly until it is the only task remaining in the READY state
(the requestor is immune to the TERMT directive).

The TERMT directive may require several milliseconds before the target TCB is
eliminated from the system. Therefore, a task trying to recreate the same TCB
may temporarily get an error from the CRTCB directive ($06 Taskname already
exists). The TERMT call starts termination processing for the target task,
but this processing may not be complete when the caller returns from the TERMT
directive. If the calling task needs to be sure that the target task has been
flushed out of the system, the caller may want to DELAY or make a call that
references the target task until the Executive says "There, is no such task".

MICROSYSTEMS
122

(::) MOTOROLA
TASK MANAGER

TERMT

Return Parameters:

A0 Name of terminated task

Error Codes (returned in bits 15-0 of DO):
0/300 Successful.
2/%02 Parameter block not in requestor's address space.

3/%03 Target task does not exist.

6/%06 Target task already in termination.

9/%09 Invalid target task (user task attempting to terminate system
task or target = requestor).

EXAMPLE :

A user task, TSKA, wants to terminate all tasks within its session. An abort
code of $8888 is sent to the terminating task's monitor.

TSKA:
TRMT: MOVE.L #16,D0 Load TERMT directive number 16.
LEA PRMBLK ,A0 Load parameter block address.
TRAP #1
BEQ TRMT Branch, if successful, to TERMT; do it
again.
CMP.L #3,D0 Test all terminations.
BNE FAULT Branch, if error.
PRMBLK: DC.L 0 Any task.
DC.L 0 N/A; user task.
DC.W $8888 Abort code to send to monitor.
MICROSYSTEMS

123

@ MOTOROLA
TASK MANAGER

ABORT SELF ABORT
Directive Number: 14 -
Parameter: Abort Code

Abort Code: If the task initiating its own abnormal termination has a

monitor task, the abort code is passed to the monitor via an
event queued to the ASQ of the monitor.
Detailed Description:
RMS68K halts the execution of the requesting task and removes the task from
memory. The abort code (lower 2 bytes of register A0) is given to the task's

monitor as an event (code $05). The upper 2 bytes of register DO are also
passed to the task's monitor in the event.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO): None -
EXAMPLE :

A user task, TSKA, wants to terminate itself abnormally, and give its monitor

an abort code indicating what caused the abort. For this example an abort
code of 2 is used.

TSKA:
MOVE.L #14,D0 Load ABORT directive number 14.
MOVE.W #2,A0 Return abort code to monitor.
TRAP #1
MICROSYSTEMS

124

@ MOTOROLA
TASK MANAGER

WALT WAIT

Directive Number: 19

Parameter: None

Detailed Description:

RMS68K places the requesting task into the WAIT state until a WAKEUP directive
is issued by another task. When the WAKEUP does take place, execution of the
target task starts at the location following the wait, with DO cleared to 0.

If another task has already issued a WAKEUP directive to the requestor, the
requestor returns immediately to the instruction following the WAIT.

Return Parameters: None
Error Codes: None
EXAMPLE :

A user task, TSKA, wants to put itself into the WAIT state until a WAKEUP
directive is issued by another task.

TSKA:

MOVE.L #19,D0 Load WAIT directive number 19.
TRAP #1
WKUP :

MICROSYSTEMS
125

@ MOTOROLA
TASK MANAGER

WAKEUP A TARGET TASK WAKEUP

Directive Number: 20

Parameter: Parameter Block Address

Parameter block:

Target Task (8 bytes) Task_id of target task to be awakened.

Detailed Description:

RMS68K moves the specified target task from the WAIT state to the READY state
to await execution. If the target task is not currently in the WAIT state, a
WAKEUP PENDING condition is set and takes effect the next time the task goes
into the WAIT state. When the target task is awakened, DO contains O.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exist.

EXAMPLE:

A non real-time user task, TSKB, wants to resume execution of TSKA that is in
the WAIT state because it issued a WAIT directive.

TSKB:

MOVE.L #20,D0 Load WAKEUP directive number 20.

LEA PRMBLK , A0 Load parameter block address.

TRAP #1

BNE FAULT Branch, if error. —
PRMBLK: Dch "TSKA' Target task to issue WAKEUP.

DC.L 0 N/A; user task.

MICROSYSTEMS

126

@ MOTOROLA
TASK MANAGER

SUSPEND SELF SUSPND

Directive Number: 17

Parameter: None

Detailed Description:

RMS68K stops execution of the requesting task and moves it to the SUSPEND
state. The execution of the task is started again only by a RESUME directive
issued by another task. When the requesting task is resumed, DO will have
been cleared to 0.

Return Parameters: None
Error Codes: None
EXAMPLE :

A user task, TSKA, wants to SUSPEND itself until another task issues a RESUME
directive.

TSKA:

MOVE.L #17,D0 Load SUSPND directive number 17.
TRAP #1
RSM: .

MICROSYSTEMS
127

@ MOTOROLA A
TASK MANAGER

RESUME A TARGET TASK RESUME

Directive Number: 18

Parameter: Parameter Block Address

Parameter Block:

Target Task (8 bytes) Task_id of target task to be resumed.

Detailed Description:
RMS68K resumes execution of a previously suspended task. The target task is
moved from the SUSPEND state to the READY state to await execution.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):

0/%00 Successful.

2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exist.

10/$0A Target task is not in SUSPEND state.

EXAMPLE :

A non real-time user task, TSKB, wants to RESUME TSKA that had previously
suspended itself.

TSKB:
MOVE.L #18,D0 Load RESUME directive number 18.
LEA PRMBLK ,AO Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PRMBLK : DCZL 'TSKA' Target task to RESUME.
DC.L 0 N/A; user task.
MICROSYSTEMS

128

@ M ROLA TASK MANAGER

RELINQUISH EXECUTION RELINQ

Directive Number: 22

Parameter: None

Detailed Description:

The RELINQ directive allows a task to relinquish control of the processor to
tasks of equal or slightly lower priority. A task of priority $NM where N and
M are both between 0 and $F (inclusive) that executes a RELINQ directive, is
placed back on the READY list at priority $NO and runs again after all other
READY tasks of priority $NO or greater execute. (The RELINQ directive does
not affect a task's current priority.) Register DO is cleared to 0 when the
requestor continues executing.

Return Parameters: None
Error Codes: None
EXAMPLE :

TSKA wants to RELINQUISH execution so that RMS68K can enter a dispatch cycle.

TSKA:

MOVE.L #22,D0 Load RELINQ directive number 22.
TRAP #1
CONT:

MICROSYSTEMS

129

@ MOTOROLA
TASK MANAGER

TASK ATTRIBUTES TSKATTR
Directive Number: 23

Parameter: Parameter Block Address

Parameter Block:

Target Task (8 Bytes) Task_id of target task whose attributes are
returned. Requesting task 1is assumed if
this field is 0.

Detailed Description:

The target task's user number and attributes are returned to the requestor in
register AQ.

Task attribute bits are defined as:
Bits 31-16 User number.
Bit 15=1 Task is system task.
Bit 14=1 Not defined.

Bit 13=1 Task 1is critical to 0S; crash
system if this task aborts.

Bit 12=1 VERSAdos recognizes this bit as
a request for a dump of task
aborts.

Bit 11=1 Task can “run anywhere" in
system with no MMU. Segment
descriptions and the task's
entry address are adjusted so
that they describe physical
addresses.

Bits 10-9 Reserved

Bit 8=1 Task has created user semaphore.
Bit 7=1 Task is a real-time task.
Bit 6=1 Task is controlled by exception
monitor.
Bit 5=1 Task is an exception monitor.
Bit 4=1 Task has own exception vectors.
MICROSYSTEMS

130

@ MOTOROLA
TASK MANAGER

TSKATTR
Bit 3=1 Task has own trap vectors.
Bit 2=1 Task 1is last task in session
(set only when task is
terminating).
Bit 1=1 Task was aborted.
Bit 0=1 Task has claimed a user vector.
Return Parameters:
Register AQ Bits 31-16 User number
Bits 15-0 Task attributes
Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block not in requestor's address space.
3/$03 Target task does not exist.
10/$0A Task is terminating - register A0 contains the return parameter.
EXAMPLE :

A system task, TSKA, wants to receive the user number and attributes of TSKB.
TSKA and TSKB are in the same session.

TSKA:
MOVE.L #23,D0 Load TSKATTR directive number 23.
LEA PRMBLK,AD Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PARBLK: DCZL 'TSKB' Taskname of which to get attributes.
DC.L 0 Same session of system task.
MICROSYSTEMS

131

@ MOTOROLA
TASK MANAGER
RETURN COPY OF TASK CONTROL BLOCK TSKINFO

Directive Number: 28

Parameter: Parameter Block Address

Parameter Block:

Target Task (8 bytes) Task_id of target task. Requesting task is
assumed if this field is 0.
Options (2 bytes) Bit 15=1 Return copy of target task's TCB.
Bit 156=0 Do not return copy of target
task's TCB.
Bits 14-0 Not wused; available for future
enhancements.
Buffer Address (4 bytes) Starting address of a 512-byte buffer where

a copy of the target task's TCB is moved.

Detailed Description:
A copy of the target task's TCB is moved to the requestor’'s address space.
The requesting task must be a system task.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exist.
9/%09 Requesting task is not a system task.
12/%0C Buffer not in requestor's address space.

15/%0F Options not recognized.

MICROSYSTEMS
132

@ MOTOROLA
TASK MANAGER

TSKINFO

EXAMPLE :

A non real-time system task, TSKA, wants a copy of the TCB of task TSKB in
session 0422.

TSKA:
MOVE.L #28,D0 Load TSKINFO directive number 28.
LEA PRMBLK,A0 Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PARBLK: DCIL 'TSKB' Target taskname.
DC.L ‘0422 Target task session.
DC.W $8000 Return target task TCB.
DC.L TCBBUF '
TCBBUF: DS.B 512 Buffer area for TCB information.

MICROSYSTEMS
133

@ MOTOROLA
TASK MANAGER

GET A TARGET TASK'S TASK_ID GTTASKID
Directive Number: 10 -
Parameter: Logical address of the parameter block describing the

target task.

Parameter Block:

Taskname (4 bytes) TCB address is requested for target task.
Requesting task is assumed if this field is

Session (4 bytes) Not available if requestor is user task.

Detailed Description:

The Executive returns the task_id of the target task in response to the input
of a taskname and session number. If the requestor is a non real-time task,
the task_id 1is the original taskname and session number. However, if the
requestor is a real-time task, the Executive returns an internally generated
8-byte code.

For future reference to the target task, the value returned by this directive
in register A0 should be placed in the old taskname field in the parameter
block and the value returned in register Al should be placed in the session

number field. This is not required for non real-time tasks, but should be
done for a later migration to the real-time domain transparent to the task.

Return Parameters:
If the requestor was a real-time task:

Registers A0/Al 8-byte code for fast access to a target task.
If the requestor was not a real-time task:

Register AD Taskname.

Register Al Session Number.

Error Codes (returned in bits 15-0 of DO):

0/%00 Successful.
2/%02 Parameter block is not in requestor's address space.
3/%03 Target task does not exist.

MICROSYSTEMS
124

@ MOTOROLA
TASK MANAGER

GTTASKID

EXAMPLE :

A real-time task, TSKA, needs to get TSKB's task_id in preparation for issuing
a WAKEUP signal to TSKB.

TSKA: MOVE.L #10,D0 Load GTTASKID directive number 10.
LEA PARBLK1,A0Q Load GTTASKID parameter block address.
TRAP #1
BNE FAULT Branch, if error.
MOVEM.L A0-A1,PARBLK2 Save TASKB's task_id in QEVNT parameter
block.
MOVE.L #20,D0 Load WAKEUP directive number 35.
LEA PARBLK2,A0 Load WAKEUP parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PARBLK1: Dé.L "TSKB' Target taskname.
DC.L 0 Same session.
PARBLK2: DC.L 0 Target task task_id field.
DC.L 0

MICROSYSTEMS
175

(Zs)nwcyrtaracznnl
TASK MANAGER

GET A TARGET TASK'S TASKNAME AND SESSION NUMBER GTTASKNM
Directive Number: 12
Parameter: Logical address of the parameter block describing the

target task.
Parameter Block:

Target Task (8 bytes) Task_id of target task.

Detailed Description:

In response to the input of a task_id, the Executive returns the taskname and
session number of the target task.

Return Parameters:
Register A0 Taskname of the target task.

Register Al Session number of the target task.

Error Codes (returned in bits 15-0 of DO):

0/%00 Successful.
2/%02 Parameter block is not in requestor's address space.
3/%03 Target task does not exist.

EXAMPLE:

A real-time monitor task needs to get the taskname of the subtask that has
just terminated. The subtask's task_id 1is contained within the subtask
termination event.

TSKA: MOVE.L #12,D0 Load the GTTASKNM directive number 12.
LEA SUBTASK_ID,A0 Point A0 to the subtask task_id field
within the subtask termination event.
TRAP #1

BNE FAULT Branch, if error.

A0 now contains the subtasks taskname
Al contains its session number.

EVENT: DC.B 0 Length field.
DC.B 0 Event code field.
SUBTASK_ID: DC.L 0 Subtask task_id field.
DC.L 0
EVENT: DC.B 0 Length field.

MICROSYSTEMS
136

@ MOTOROLA
TIME MANAGER

CHAPTER b
TIME MANAGER

5.1 OVERVIEW

RMS68K's Time Manager supports two concepts of time: elapsed and calendar.
The directives supporting elapsed time involve notifying a task when a quantum
of time has expired. The directives supporting calendar time allow a task to
inform the time manager of the current date and time (e.g., March 21, 1985;
12:04), or to ask the time manager for the current date and time.

The time manager can also determine when a tasks' timeslice has expired (if
timeslicing was enabled at initialization). When a timeslice expires, the
time manager places the running task back on the READY 1list after all tasks of
the same priority and forces a dispatch cycle.

5.2 THEORY OF OPERATION

5.2.1 Basic Principles

RMS68K's time manager knows how to respond to "ticks" from a timer Interrupt
Service Routine (ISR). A tick is defined at initialization to be some number
of milliseconds and optionally, some additional number of microseconds. A
timeslice is defined to be some integral number of timer ticks. Some typical
values are:

a. Tick = 10 milliseconds

b. Timeslice = 2 ticks

The time manager maintains a data structure called the Periodic Activation
Table (PAT) consisting of nodes representing requests for notification at
specified times. They may be requests to notify a task that a time quantum
has expired, to notify a driver, or to notify the time manager that some
internal event has occurred (e.g., the date has changed at midnight). The PAT
nodes are linked in order of increasing time from "now" and the time
difference between two adjacent nodes is recorded in a delta field within the
second node.

Each node has a 32-bit activation ID that allows a task to request
notification of multiple intervals via the RQSTPA directive and to
differentiate between them via the activation ID. For most applications, one
interval is enough so the activation ID is usually O.

The user does not need to understand the internal workings of the PAT to
request service from the time manager.

MICROSYSTEMS
137

@ MOTOROLA
TIME MANAGER

5.2.2 Elapsed Time

The concept of elapsed time is supported by three RMS68K directives:

a. DELAY A task moves itself into the DELAY state for a specified
period of time.

b. DELAYW A task moves itself into the DELAY state for a specified
period of time and returns if the time expires, a WAKEUP
occurs, or an event is queued.

c. RQSTPA A task requests the timed periodic activation of itself or
another task.

The DELAY directive is a request to WAKE ME UP in "n" milliseconds, at which
time the task is dispatched to the instruction following the DELAY directive
call. The only exception to this rule involves a task that issues a DELAY
directive when both its ASR and ASQ are enabled. If an event is sent to its
ASQ, the DELAY 1is cancelled and the task 1is dispatched to its ASR. On
completion of ASR processing, the RTEVNT directive dispatches the task to the
instruction following the DELAY directive call.

The DELAYW directive is a combination of three directives:

a. DELAY
b. WTEVNT
c. WAIT

DELAYW tells RMS68K to wait until one of three events occur:

a. The DELAY interval expires.
b. An event is queued to this task.

c. A WAKEUP is issued to this task.

To support the WTEVNT function, DELAYW automatically enables the requesting
task's ASQ and ASR. If an event is queued to this task, the DELAY is
cancelled and the task is dispatched to its ASR. If either the DELAY expires
or a WAKEUP is issued, the DELAY is cancelled and the task is dispatched to
the instruction following the DELAYW directive call with the task's ASQ and
ASR enabled.

This directive is often used to specify a background timeout on a WTEVNT or
WAIT directive.

MICROSYSTEMS

@ MOTOROLA
TIME MANAGER

The RQSTPA directive differs from DELAY and DELAYW in two ways:

a. It can be used to activate the task on a periodic basis ("Wake me up
every 100 milliseconds from now on").

b. It does not put the task into a WAIT state but returns immediately to
the instruction following the RQSTPA directive call. The notification
that the periodic interval has expired occurs asynchronously in
relation to the task's normal execution.

The RQSTPA is wused in an environment where a task wants to be activated on
some periodic basis to poll the status of a non-interrupting hardware device.
For example, consider the following task written in pseudo PL/1:

poll_keyboard: procedures;

call initialize (keyboard);
call RQSTPA (100-milliseconds, issue_resume);

do forever;

call suspend;

call poll (keyboard)

if (key_was_pressed)

then call process (keystroke);
end;

end poll_keyboard;

The call to RQSTPA tells the time manager to issue a RESUME signal to the
poll_keyboard task every 100 milliseconds from now on. Poll_keyboard then
Toops forever, suspending itself until the time manager issues the 100
millisecond RESUME signal. On resumption, the task polls the keyboard to see
if any key has been pressed and processes as required.

If the processing of the keystroke takes longer than 100 milliseconds, it is
not a problem because the intervening RESUME signals are ignored until
poll_keyboard issues the next SUSPEND directive. Then it is resumed at the
next 100 milliseconds interval after it SUSPENDS itself.

RQSTPA can notify the task of the periodic interval's expiration in one of
four ways:

a. Issue a RESUME signal to the task.

b. Issue a WAKEUP signal to the task.

¢. Queue an event to the task's default ASR.

d. Queue an event to an alternate ASR.
MICROSYSTEMS

139) e

@ M RoOLA TIME MANAGER

It may also be used to schedule multiple activations at different intervals
and the task can discriminate between these by either their activation IDs
embedded within the timer event (refer to paragraph 2.7), or by using distinct
alternate ASR addresses for each activation.

For example, an autonomous robot has the following requirements:

a. Must scan field of vision every 100 milliseconds.

b. Must re-evaluate current strategy every 10 seconds based on knowledge
acquired since the last evaluation.

c. Must diagnose internal functions every minute:

Temperature
Fuel level
0il pressure

These requirements could be met by one task scheduling three activation
intervals:

robot: procedure;

call initialize (hardware);
call GTASQ (enable_asq, enable_asr);

call RQSTPA (100_milliseconds, scan_vision_asr);
call RQSTPA (10_seconds, evaluate_strategy_asr);
call RQSTPA (1_minute, diagnose_internal_functions_asr);

do forever;
call WTEVNT;
end;

scan_vision_asr:
call scan_field_of_vision;
if (object_in_view)
then call react_to_object;
call RTEVNT;

end scan_vision_asr;

MICROSYSTEMS
140

@ mo LA TIME MANAGER

evaluate_strategy_asr:

call evaluate_strategy (current_strategy, new_knowledge);
if (current_strategy_needs_revision)
then current_strategy =
generate_new_strategy (current_strategy, new_knowledge);
RTEVNT;

end evaluate_strategy_asr;

diagnose_internal_functions_asr:

call SETASQ (enable_asr);

call diagnose_internal_functions;

if (adjustment_is_necessary)

then call adjust_internal_functions;

end diagnose_internal_functions_asr;

end robot;
Note that the diagnose_internal_function_asr enables the ASR before proceeding
with its diagnostics. This implements the policy that diagnostics are less
important than scanning the field of vision or evaluating the current strategy
based on the newly acquired knowledge and therefore should be "interruptible”
by those requirements.
The purpose of this example is to show the power and flexibiiity of the RQSTPA

directive. Another way to implement the robot would be to design three tasks
running at different priorities, each implementing one discrete ASR function.

5.2.3 Calendar Time

Calendar time is supported by two directives:

a. STDTIM A system task sets the system date and time.

b. GTDTIM A task obtains the current system date and time.
The format for the system date and time is two longwords where:

a. The first Tlongword represents the number of days since December 31,
1979.

b. The second longword represents the number of milliseconds since
midnight of the current day.

MICROSYSTEMS
141

@ MOTOROLA
TIME MANAGER

The VERSAdos real-time operating system includes utility subroutines
(TIMECONV, ODATCONV, GDATCONV, DATEGO, and DATEOG) for converting binary
format for system date and time required by the time manager and an equivalent
ASCII format, consisting of fields for the day, month, year, hours, minute,
and second.

5.3 DATA STRUCTURES

The time manager maintains the PAT and several SYSPAR parameters. An entry is

placed in the PAT each time a task wuses the DELAY, DELAYW, or RQSTPA
directives.

5.3.1 Periodic Activation Table (PAT)

PAT (4 bytes) Block ID
The PAT table begins with 'I!PAT' to allow consistency
checking and ease of dump reading.

PATFHDR (4 bytes) Pointer to the first unused entry in the PAT.

PATHDR (4 bytes) Pointer to the first entry used in the PAT.

PATBABT (4 bytes) Background activation block used to schedule Executive
routine that activates PAT nodes.

A PAT entry is defined as:
PATNEXT (4 bytes) Pointer to next entry in list.

PATTCB (4 bytes) TCB address of task that requested delay or periodic
activation (0 if Executive activation node).

PATDELTA (4 bytes) Amount of time (ms) between activation of this node and
previous node.

PATINTV (4 bytes) Activation interval.

PATASR (4 bytes) ASR address of message option chosen by caller. If this is
Executive routine entry, starting address of Executive
routine.

MICROSYSTEMS
142

@ MOTOROLA
TIME MANAGER

PATOPT (2 bytes) Activation options. A DELAY request results in PATOPT = 0.
PATARID (4 bytes) Activation request ID.

PATCNT (2 bytes) Activation count.

PATILVL (2 bytes) Interrupt level to be used by Executive routine.

5.4 TIME MANAGER DIRECTIVES

The following pages contain detailed descriptions and examples of the time
manager directives.

MICROSYSTEMS
143

@ MOTOROLA
TIME MANAGER

DELAY SELF DELAY

Directive Number: 21

Parameter: Number of Milliseconds to Delay

Detailed Description:

RMS68K delays the execution of the requesting task until the specified amount
of time has elapsed; execution resumes at the location following the DELAY
directive.

This directive does not affect asynchronous event processing. If the ASR is
enabled and an event arrives, the DELAY is considered to be satisfied and the
event is processed.

This directive places an entry into the PAT and results in cancelling a
periodic activation request with a request ID = 0, if such an entry exists for

the calling task. It has no effect on periodic activation requests with
nonzero request IDs.

Return Parameters: None
Error Codes: None

EXAMPLE :

TSKA wants to delay itself for 5 seconds (5000 milliseconds).

TSKA:
MOVE.L #21,D0 Load DELAY directive number 21.
MOVE.L #5000,A0 Load number of milliseconds to delay.
TRAP #1
CONT:
MICROSYSTEMS

144

SN

M) moToroLA :
TIME MANAGER

DELAY and WAIT DELAYW

Directive Number: 30

Parameter: Number of Milliseconds to Delay

Detailed Description:

This directive functions as a combination of the DELAY, WTEVNT, and WAIT
directives. If the calling task has an ASQ, RMS68K enables the calling task's
ASR and ASQ and puts the calling task into a WAIT state. The task returns to
the READY state as a result of any of the following occurrences:

a. The specified amount of time has elapsed. Execution resumes at the
location following the DELAYW directive with the DELAY and WAIT

cancelled.

b. An asynchronous event arrives or is already present in the calling
task's ASQ. Both DELAY and WAIT are cancelled. Control is given to
the calling task at its ASR address. When the ASR returns, execution
resumes at the location following the DELAYW directive.

c. A WAKEUP 1is sent to the waiting task or the WAKEUP PENDING condition

exists at the time the directive is calied. The DELAY is cancelled
and execution resumes at the location following the DELAYW directive.

This directive places an entry into the PAT and results in cancelling a
periodic activation request with a request ID = 0. It has no effect on a
periodic activation request with a nonzero request ID.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.

5/$05 No room in PAT.

MICROSYSTEMS
145

@ MOTOROLA
TIME MANAGER

DELAYW

EXAMPLE : e~

TSKA wants to WAIT for an asynchronous event or a WAKEUP, but wants to return
to normal processing in five seconds (5000 milliseconds) if neither occurs
within that time.

TSKA:
MO(IE.L #30,D0 Load DELAYW directive number 30.
MOVE.L #5000,A0 Load number of milliseconds to delay.
TRAP #1
BNE FAULT Branch, if error.
MICROSYSTEMS

146

@ MOTOROLA
TIME MANAGER

REQUEST PERIODIC ACTIVATION RQSTPA
Directive Number: 29

Parameter: Parameter Block Address

Parameter Block:

Target Task (8 bytes) Task_id of task to be activated. (Refer to
target task interface, paragraph 1.3.6.)

Directive Options (2 bytes) Bit 15=1 Time of first activation is
specified in initial time field.

=0 Time of first activation is
computed as the sum of the time
that the directive is issued and
the interval time.

Bit 14=1 The interval is specified in the
interval field. Task is
activated at initial time,
initial time plus interval,
initial time plus 2%*interval,
etc.

=0 Task 1is activated at initial
time only.

Bits 15-14 This request cancels a currently
=00 active periodic activation.

Bits 13-12 Activation method.
00 Issue RESUME.
01 Issue WAKEUP.

10 Queue timer event to
default ASR service
address.

11 Queue timer event to ASR
service address specified
in service address field.

Bit 11-=1 Task 1is activated only one time
(if this bit is set, bit 14 is
ignored).

=0 Task is either activated once or

continuously, as determined by
option bit 14.

MICROSYSTEMS

147

@ MOTOROLA

Initial time (4 bytes)
Interval (4 bytes)
Service Address (4 bytes)

Activation Request ID (4 bytes)

Detailed Description:

TIME MANAGER

RQSTPA

Bit 10=1 An argument is supplied in the
activation request ID field.
This argument provides a unique
ID for this request if multiple
requests are outstanding.

=0 Activation request ID of all
zeros is assumed.

Bit 9=1 Send an event to target task
when the activation is
cancelled. This option can be
set with the request to activate
the task.

Bits 8-0 Reserved

Time of day, in milliseconds, for first

activation. Applicablie only if options bit

15=1.

Period of time, 1in milliseconds, between

activations. Applicable only if options bit

14=1.

ASR service address where timeout event is

to be serviced. Applicable only if options

bits 13-12 = 11.

A unique identification used to identify

this request if task has multiple requests

outstanding. Applicable only if options bit
10=1.

RMS68K activates the target task at an initial time and at optional intervals.

The task can be
directive is issued:

RESUME

RMS68K issues a RESUME signal
If the task
effect.

activated in four ways, one of which is specified when the

to activate the task from the SUSPEND state.

is not in the SUSPEND state at that time, the RESUME has no

MICROSYSTEMS
148

@ MOTOROLA
TIME MANAGER

RQSTPA

WAKEUP

RMS68K issues a WAKEUP signal to activate the task from the WAIT state.
If the task is not in the WAIT state at that time, the WAKEUP PENDING
status is set for that task, and the WAKEUP occurs when the task goes to
the WAIT state.

Queue Timer Event to Default ASR Service Address

When activation is to occur, RMS68K queues an event (code =304) to the
task's ASQ. The event 1is serviced at the default ASR service address.
(Refer to paragraph 2.7 for the timer event format.)

WARNING

TIMER EVENTS (CODE = $04) ARE 16 BYTES LONG.
IF A TASK REQUESTS THE RQSTPA DIRECTIVE
ACTIVATION BY A TIMER EVENT, THE ASQ'S
MAXIMUM MESSAGE LENGTH MUST BE AT LEAST 16
BYTES.

Queue Timer Event to Alternate ASR Service Address

When activation s to occur, RMSEBK queues an event (code =$04) to the
task's ASQ. The event is serviced at the ASR service address specified in
the parameter block.

If a request to activate a task has the same activation request ID as a
currently active request, the previous request is cancelled and the new
request is scheduled.

Option bits 15, 14, and 11 interact to select between:

a. (cancelling a previous request) or
(requesting an activation);

b. (activating a task one time) or
(activating a task periodically);
c. Activating at initial time. Where:
initial_time =
(value of initial_time_field) or
(now + value of interval_field);
MICROSYSTEMS
149

@ MOTOROLA
TIME MANAGER

RQSTPA
These option bits are defined as (X implies a "don't care"” where the value may o~
be either 0 or 1):
OPTION BITS
15, 14, 11 ACTION OF RQSTPA
00X Cancel (previous request);
010 Activate (periodically);
initial_time = now + interval_field;
011 Activate (one_time);
initial_time = now + interval_field;
(100) or Activate (one_time);
(1X1) initial_time = initial_time_field;
110 Activate (periodically);
initial_time = initial_time_field; —

To cancel all currently-active periodic activations, options bit 10 must be
set and the activation request ID supplied must be all zeros.

The event sent to the target task when a request is cancelled (if option bit
9=1) s sent immediately instead of at the next scheduled interval time. The

activation count field in the event gueued has bit 15=1 to identify it as a
cancel event.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exist. o
5/%05 PAT is full.

7/%07 No entry found on cancel request.

16/%$10 Interval supplied was zero or negative.

MICROSYSTEMS
150

@ MOTOROLA
TIME MANAGER

RQSTPA

EXAMPLE :

A non real-time wuser task, TSKA, wants to activate TSKB every 500
milliseconds. TSKB is to be activated by an ASR interrupt at its default
service address. An activation request ID is supplied.

TSKA:
MOVE.L #29,D0 Load RQSTPA directive number 29.
LEA PRMBLK ,AD Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PRMBLK : DCZL 'TSKB' Task to be activated.
DC.L 0 N/A; user task.
DC.W $6400 Interval in interval field, interval

time from now, default ASR address,
continual activation, activation ID
is specified.

DC.L 0 N/A; bit 15=0.

DC.L 500 Interval in milliseconds.
DC.L 0 N/A; bits 13-12 # 11.
DC.L 'ID#1' Identification table.

MICROSYSTEMS

151

@ MOTOROLA
TIME MANAGER

SET SYSTEM DATE AND TIME STDTIM

Directive Number: 73

Parameter: Parameter Block Address

Parameter Block:

New System Date (4 bytes) The date is expressed in ordinal day number
with a base of January 1, 1980.

January 1, 1980
January 2, 1980
January 1, 1981
Etc.

day number 1
day number 2
day number 367

New System time (4 bytes) The time is expressed in the number of
milliseconds into the new day.
Detailed Description:
RMS68K updates the system date and time. Only a system task may use this
directive.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block not in regquestor's address space.

9/%09 Requestor is not a system task.

MICROSYSTEMS
152

@ MOTOROLA

EXAMPLE :

TIME MANAGER

STDTIM

TSKA, a system task, wants to reset the system date to March 3, 1980 and the
time to 01:05:33.

TSKA:

PRMBLK:

#13,D0
PRMBLK ,AQ
#1

FAULT

63
$003C0348

153

Load STDTIM directive number 73.
Load parameter block address.

Branch, if error.

Set day to March 3, 1980.
Set time to 1:05:33.

MICROSYSTEMS

@ mo LA TIME MANAGER

GET SYSTEM DATE AND TIME GTDTIM

Directive Number: 74

Parameter: Return Parameter Block Address

Detailed Description:

RMS68K places the current system date and time into the specified return
parameter block.

Return Parameter Block:

Current System Date (4 bytes) The date is expressed in ordinal day number,
with a base of January 1, 1980.

January 1, 1880
January 2, 1980
January 1, 1981
Etc.

day number 1
day number 2
day number 367

Current System Time (4 bytes) The time 1is expressed in the number of
milliseconds into the current day.
Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block not in requestor's address space.
EXAMPLE :

A user task, TSKA, wants to examine the current date and time.

TSKA:
MOVE.L #74,D0 Load GTDTIM directive number 74.
LEA PRMBLK , A0 Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.

PRMBLK: EQU *

CURRDT: DS.L 1 Current system date.

CURRTM: DS.L 1 Current system time.

MICROSYSTEMS
154

@ MOTOROLA

SEMAPHORE MANAGER

CHAPTER 6
SEMAPHORE MANAGER

6.1 OVERVIEW

The Semaphore Manager provides sophisticated synchronization primitives that
are used to coordinate the activities of multiple tasks or to arbitrate access
to shared resources.

Three types of semaphores are used to fulfill different sets of requirements:

a. A binary semaphore (type 1) arbitrates access to a single resource
that is either available or not.

b. A counting semaphore (type 3) controls access to a pool of “n"
resources where at any moment "m" of those resources are available
(0€=m<=n) and "n-m" are not.

c. A broadcast semaphore (type 2) allows one task to broadcast a signal
that an event has occurred to one or more tasks waiting on the signal.
The broadcast semaphore is often used to synchronize the execution of
two or more asynchronous tasks.

6.2 THEORY OF OPERATION

6.2.1 Synchronization Requirements

To synchronize the execution of multiple tasks or to arbitrate access to
shared resources, requires a simple form of an event called a signal. A
signal indicates that a predefined event has occurred and contains no data
describing the event. Sophisticated synchronization also requires a counter
to record the number of signals sent but not yet received, and a Tist of tasks
awaiting receipt of the signal.

The semaphore data structure fulfills all the previous requirements. A
semaphore possesses a name to distinguish it from other semaphores within the
system, a key to enable quick access to the semaphore, and the requisite
signal count variable and linked 1ist of waiting tasks. In addition to the
signal count variable, a semaphore may also contain an initial count, used as
an initial assignment value for the signal count or to determine when the
semaphore is no longer required.

MICROSYSTEMS
155

@ MOTOROLA
SEMAPHORE MANAGER

6.2.2 Synchronization Services

The semaphore manager provides synchronization services via the directives:

CRSEM A task creates a new semaphore or resets the initial count of an
existing semaphore.

ATSEM A task attaches to a semaphore and acquires use of the
semaphore. If the semaphore does not exist, it is created and

given an initial signal count.

WTSEM A task requests and, if necesséry, waits for semaphore-
controlled access.

SGSEM A task signals release of a semaphore-controlled resource.
DESEM A task detaches from a semaphore.

DESEMA A task detaches from all semaphores to which it is attached.

6.2.3 Synchronization Rules

The semaphore manager supports three types of semaphores, each designed to
solve a specific synchronization problem. The synchronization rules for all
types of semaphores are:

a. When a task does a WAIT ON A SEMAPHORE operation, the signal count is
decremented by one. The task continues execution if the count is then
greater than or equal to zero. If the count is less than zero, the
task is put on a waiting list for the semaphore.

b. The signal count 1is incremented by one when a task does a signal
operation. If the count is less than or equal to zero, the first task

in the semaphore waiting 1list is placed in the READY state. The
signaling task always completes its execution.

6.2.4 Semaphore Types

The three types of semaphores supported by the semaphore manager are:

Type Binar Semaphore

When multiple tasks require exclusive access to a single resource, a type 1 or
binary semaphore is used. The signal indicates the available or not available
status of the resource.

- MICROSYSTEMS

@ MOTOROLA
SEMAPHORE MANAGER

SIGNAL
COUNT STATUS
1 (resource is available);
0 (resource is not available) and
(no tasks are waiting on the resource);
-n (resource is not available) and

("n" tasks are waiting on the resource);

A task bids for the resource by performing a WAIT ON SEMAPHORE operation which
decrements the signal count. If the signal count was previously one (resource
available), the task is allowed to access the resource. Otherwise, the task
is placed on a queue waiting for the resource.

When a task is finished with the resource, it indicates the resource is
available by performing a SIGNAL SEMAPHORE operation that increments the
signal count. If the signal count was previously zero (no tasks waiting), no
other action is taken. Otherwise, ("n" tasks waiting) the first task on the
wait queue is made ready and given access to the resource.

A binary semaphore is deleted when all tasks using it have detached. (A
binary semaphore has a built in protection mechanism that does not allow the
signal count to exceed one. This feature enforces the "binary" nature of the
semaphore (available or not available), and is the main distinction between
binary and counting semaphores.)

APPLICATION EXAMPLE:

A system has several tasks capable of outputting multiple line messages to
a single console device. To avoid messages becoming interleaved with one
another, access to the console should be arbitrated by a binary semaphore.
Any task that wants to output a message must first wait on the binary
semaphore. When it becomes available, the task may output its message,
knowing that no other task is currently using the console. When the
message is complete, the task must signal the binary semaphore to indicate
that the console is now available for use by other tasks.

The VERSAdos 1/0 system handles all synchronization of 1I/0 devices.
Therefore, tasks using VERSAdos I/0 do not need to arbitrate access to the
system console via a binary semaphore.

MICROSYSTEMS
157

@ MOTOROLA
SEMAPHORE MANAGER

Tvpe 2 (Broadcast) Semaphore

A broadcast or type 2 semaphore simultaneously notifies "n" tasks that an
event has occurred. These "n" tasks are called dependent tasks and the task
that broadcasts the event is known as the primary task. Only the primary task
may create the broadcast semaphore. All dependent tasks must attach to it
before wusing it; it is valid to attach to a broadcast semaphore before it is
created.

If a task attaches to a broadcast semaphore before it is created, the
semaphore manager automatically creates it and gives it a signal count of
zero. Any dependent tasks that do a WAIT operation on the semaphore before it
is created are placed in its First-In First-Out (FIFO) WAIT queue and the
signal count is decremented.

When the primary task does create the semaphore with an initial count of "m",
the semaphore manager signals the semaphore "m" times and broadcasts the event
to all waiting dependent tasks up to a total of "m". If any of the "m"
dependent tasks wait on the broadcast semaphore after it is created, they are

allowed to run.

Deletion of the broadcast semaphore occurs when the last task has detached
from it and the current signal count value is equal to the initial count
value.

APPLICATION EXAMPLE:

One use of the broadcast semaphore is to control the execution sequence of
several tasks. Consider a problem in factory automation where one task
monitors the flow of materials and must inform nine material handling
tasks when the raw materials arrive. This requires a broadcast semaphore
called "Goods" with an initial count of nine. As soon as the material
handling tasks finish processing the previous batch, they can attach to
and WAIT on Goods. When the primary task detects the arrival of a new
batch of materials, it can create Goods with an initial count of nine and
any dependent tasks that are waiting are released to run. Any dependent
tasks that have not finished their previous job are allowed to run when
they attach and WAIT on Goods. Finally, when the dependent tasks finish
processing the materials, they signal and detach from Goods. When the
last dependent task detaches from Goods and the signal count equals the
initial signal count of nine, Goods is deleted from the system.

Type 3 (COUNTING) Semaphore

A type 3 or counting semaphore is used when one task controls a pool of
resources that other tasks need to access. The counting semaphore is an
extension of the binary semaphore where the signal count variable can assume
any positive or negative value. When the signal count is positive, it
indicates the number of items from the resource pool currently available;
when it is negative, it indicates the number of tasks waiting on one of those
items.

MICROSYSTEMS
158

&) mororoLa SEMAPHORE MANAGER

APPLICATION EXAMPLE:

A buffer management system can be implemented using a counting semaphore.
If the count is positive, it indicates the number of buffers currently
available; if negative, it indicates the number of tasks waiting for a
buffer.

The traditional producer-consumer problem can be solved with two counting
semaphores, full and empty. The producer waits on empty. When empty is
available, it dequeues a buffer from the empty list, fills it, queues it
on the full list and signals full. The consumer waits on full; dequeues
the full buffer, consumes it, queues it back on the empty list, and
signals empty.

This example is for demonstration purposes only; it does not address the
probiem of maintaining the integrity of the full and empty lists within the
concurrent multitasking environment.

6.3 DATA STRUCTURES
Two data structures are used:

a. Semaphore Parameter Block Describes a request to a semaphore
manager directive.

b. User Semaphore Table (UST) An array of semaphore descriptors
indexed by semaphore key containing
information on all semaphores known to
the system.

6.3.1 Semaphore Parameter Block

Many of the task synchronization directives use a semaphore parameter block.
The general format is:

4 bytes Semaphore name

4 bytes Semaphore key

1 byte Initial count

1 byte Semaphore type

Semaphore name The name that any task can reference to use the
semaphore. Any 32-bit combination is a valid

semaphore name.

Semaphore key Allows RMS68K to quickly access the semaphore. RMS68K
creates the semaphore key and returns it to the user
in register A0 when an ATSEM or CRSEM directive is
issued.

159 MICROSYSTEMS

(ZE)AH¢)11DFI¢>LAl

Initial count

Semaphore type

SEMAPHORE MANAGER

Supplied by a task that creates a type 2 or type 3
semaphore. Sometimes the initial count is used to
initialize the semaphore's signal count or to control
the deletion of a semaphore.

Specifies the semaphore as a type l, 2, or 3. The
type defines the characteristics of the semaphore and
how it is used:

00 - Error

01 - Type 1 Used when a task requires exclusive access to a single
resource.

10 - Type 2 Used to order execution of dependent tasks.

11 - Type 3 Used if a task controls a resource.

NOTE: Semaphores are always local to a session and cannot be shared with

tasks in different sessions.

6.3.2 User Semaphore Table (UST)

The UST manages user semaphore activities.

usTt (4 bytes)

USTNEXT (4 bytes)

USTNSEG (2 bytes)

USTNPAGE (2 bytes)

USTMENT (2 bytes)

Block ID

Each UST segment begins with '!UST' to allow consistency
checking and ease of dump reading.

Reserved for future use.

Reserved for future use.

UST segment size

Contains the number of 256-byte pages comprising this UST
segment.

Maximum entry count

Contains the maximum number of UST entries allowable in
this UST segment.

MICROSYSTEMS
1694

@ MOTOROLA
SEMAPHORE MANAGER

USTCENT (2 bytes) Current entry count
Contains the number of UST entries currently residing in
this UST segment.

USTFENT (4 bytes) First entry address

Points to the first UST entry.
A UST entry is defined as:
USTTNAME (4 bytes) Originating task's name.
USTSESSN (4 bytes) Originating task's session number.
USTSNAME (4 bytes) Semaphore name.

USTUCNT (2 bytes) Number of tasks attached to this semaphore or, if equal to
-1, this entry is a pointer to a semaphore entry.

USTXCNT (1 byte) Initial count or count of waits and signals.
USTTYPE (1 byte) Semaphore type (1, 2, or 3).

USTSEM (6 bytes) Semaphore or pointer to semaphore if USTCNT = -1.

Every time a task creates or attaches to a semaphore, an entry is placed in
the UST. If the task creates a semaphore, a semaphore entry is created with
USTUCNT set to the number of tasks attached to the semaphore and USTSEM
containing the semaphore count variable and the linked list of waiting tasks.
If the task attaches to a semaphore, a pointer entry is created with USTUCNT
set to -1 to indicate a pointer entry, and USTSEM containing a pointer to the
"real" semaphore entry.

This scheme increases system security and power by encoding all knowledge
about the state of the semaphore and all tasks currently attached to it,
allowing the system to handle unexpected cases properly (such as tasks
terminating target tasks waiting on semaphores; creators of type 3 semaphores
detaching from the semaphore while other tasks are accessing the resource).

6.4 SEMAPHORE MANAGER DIRECTIVES

The directives a task can use to request services from the semaphore manager
are described on the following pages.

MICROSYSTEMS
161

@ MOTOROLA
SEMAPHORE MANAGER

CREATE A SEMAPHORE CRSEM

Directive Number: 45
Parameter: Semaphore Block Address

Semaphore Block:

Semaphore Name (4 bytes) Name of semaphore to create.

Semaphore Key (4 bytes) N/A

Initial Count (1 byte) Used for type 2 and type 3 semaphores. Must
be non-negative value. See detailed

description below.

Semaphore Type (1 byte) Type 1, 2, or 3.

Detailed Description:

RMS68K creates or re-initializes the specified semaphore, and allows the

requesting task to use it. The semaphore type determines the directive
function.
Type 1 (Binary): If the specified semaphore does not exist, it is

created with an initial signal count of one. If it
exists, no action is taken.

Type 2 (Broadcast): If the specified semaphore does not exist, it is
created with an initial signal count of the initial
count in the parameter block. Any tasks in the WAIT
state as a result of issuing an ATSEM directive
followed by a WTSEM directive before the CRSEM
directive creates the semaphore, are reactivated. If
the semaphore exists, the initial count in the
parameter block is saved.

Type 3 (Counting): If the specified semaphore does not exist, it is
created with an initial signal count of the initial
count in the parameter block. Any tasks in the WAIT
state as a result of idssuing an ATSEM directive
before the CRSEM directive creates the semaphore, are
reactivated. If the semaphore exists, the CRSEM
directive is rejected.

Return Parameters:

A0 Semaphore key

MICROSYSTEMS
162

@ MOTOROLA

m—

0/%00
2/%02
5/$05
6/306
11/%08
15/3$0F
16/%10

EXAMPLE :

Refer to paragraph 6.5.

SEMAPHORE MANAGER

CRSEM

Error Codes (returned in bits 15-0 of D0):

Successful.

Parameter block not in requestor's address space.

No more semaphore space available in system.

Duplicate request to create type 3 semaphore.

Semaphore type given conflicts with existing semaphore type.
I1legal semaphore type.

Negative count field supplied.

163 MICROSYSTEMS

M) mMoToRroLA

ATTACH TO SEMAPHORE

Directive Number: 41

SEMAPHORE MANAGER

ATSEM

Parameter: Semaphore Block Address

Semaphore Block:

Semaphore Name (4 bytes)
Semaphore Key (4 bytes)
Initial Count (1 byte)

Semaphore Type (1 bytes)

Detailed Description:

Name of semaphore to which attaching.
N/A

N/A

Type 1, 2, or 3.

RMS68K allows the requesting task to use the specified semaphore. The
semaphore type determines the directive functions.

Type 1 (Binary): If the

specified semaphore does not exist, it is

created with an initial signal count of one. If it
exists, no action is taken.

Type 2 (Broadcast): If it

does not exist, the specified semaphore is

created with an initial signal count of zero. If it
exists, no action is taken.

Type 3 (Counting): If the

specified semaphore does not exist, the

requesting task 1is placed in a WAIT ON SEMAPHORE

state

until the CRSEM directive issued by another

task creates the semaphore. If the semaphore exists,
no action is taken.

Return Parameters:

A0 Semaphore Key

Error Codes (returned in bits 15-0 of DO):

0/%00 Successful.

2/%02 Parameter block not in requestor's address space.
5/%05 No more semaphore space available in system.

6/%06 Duplicate request.

11/%08 Semaphore type conflicts with existing semaphore type.
15/%0F Itlegal semaphore type specified (type 0).

EXAMPLE :

Refer to paragraph 6.5.

MICROSYSTEMS
164

(::)nqcrrtawa¢>LA|
SEMAPHORE MANAGER

WAIT ON SEMAPHORE WTSEM

Directive Number: 42

Parameter: Semaphore Block Address

Semaphore Block:

Semaphore Name (4 bytes) Semaphore on which requesting task is
waiting.
Semaphore Key (4 bytes) Assigned when a semaphore is created. A

task should save the semaphore key when it
first attaches to the semaphore.

Initial Count (1 byte) N/A

Semaphore Type (1 byte) N/A

Detailed Description:

The current signal count of the specified semaphore is decremented by one. If
the count is zero or positive, the requesting task continues executing. If
the count is negative, the requesting task is added to the semaphore waiting
list (FIFO).

If the semaphore is type 1, a check is made that the WTSEM directive is issued
before a SGSEM directive.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%302 Parameter block not in requestor's address space.
7/%07 Semaphore not found.

9/%09 WTSEM and SGSEM out of sequence for type 1 semaphore.

EXAMPLE:

Refer to paragraph 6.5.

MICROSYSTEMS
165

M) mororoLa SEMAPHORE MANAGER

SIGNAL SEMAPHORE SGSEM

Directive Number: 43

Parameter: Semaphore Block Address

Semaphore Block:
Semaphore Name (4 bytes) Semaphore requesting task is signaling.
Semaphore Key (4 bytes) Assigned when a semaphore is created. A

task should save the semaphore key when it
first attaches to the semaphore.

Initial Count (1 byte) N/A

Semaphore Type (1 byte) N/A

Detailed description:

The current signal count of the specified semaphore is incremented by one. If
the count is zero or negative, the first task in the semaphore waiting list is
removed from the 1ist and placed in the ready list to await execution. The

requesting task continues executing (RMS68K does not enter its dispatch
cycle).

If the semaphore is type 1, a check is made that a WTSEM directive is issued
before the SGSEM directive and that the SGSEM follows & WTSEM.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block not in requestor's address space.
7/%07 Semaphore not found.
9/%09 WTSEM and SGSEM out of sequence for type 1 semaphore.
EXAMPLE :

Refer to paragraph 6.5.

MICROSYSTEMS

166

M) mororoLA
SEMAPHORE MANAGER

DETACH FROM SEMAPHORE DESEM

Directive Number: 44
Parameter: Semaphore Block Address
Semaphore Block:
Semaphore Name (4 bytes) Semaphore from which detaching.
Semaphore Key (4 bytes) Assigned when semaphore is created. A
task should save the value when it
first attaches to a semaphore.

Initial Count (1 byte) N/A

Semaphore Type (1 byte) N/A

Detailed Description:

RMS68K detaches the requesting task from the specified semaphore that can no
longer use the semaphore until an ATSEM is issued. The physical removal of a
semaphore from the system is based on the semaphore type.

Type 1 (Binary): Physical removal of the semaphore from the system is
done when the last user detaches. '

Type 2 (Broadcast): When the 1last user detaches, and the current signal
count is equal to the initial count set by the CRSEM
directive, the semaphore is physically removed from
the system.

Type 3 (Counting): Physical removal of the semaphore from the system is

done when the task that created it with a CRSEM
directive detaches.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block not in requestor's address space.
7/%07 Semaphore not found.
EXAMPLE :
Refer to paragraph 6.5.

MICROSYSTEMS
167

M) moToroLA SEMAPHORE MANAGER

DETACH ALL SEMAPHORES DESEMA

Directive Number: 46

Parameter: None

Detailed Description:

RMS68K detaches the requesting task from all semaphores. Rules for removing a
semaphore from the system are explained under the DESEM directive.

Register DO is always cleared to 0.

Return Parameters: None
Error Codes: None
EXAMPLE :

TSKA wants to detach from all semaphores that it is currently attached to.

TSKA:
MbVE.L #46,D0 Load DESEMA directive number 46.
TRAP #1
BNE FAULT Branch, if error.
MICROSYSTEMS

168

@ m ROLA SEMAPHORE MANAGER

6.5 SEMAPHORE USAGE AND CHARACTERISTICS

This paragraph contains a typical example for each of the three types of
semaphores and the characteristics of each semaphore type. The macro used for
the examplies is:

ERQ MACRO Macro name ERQ.
MOVE.L #\1,D0 Move directive number into DO.
LEA \2,A0 Move address of parameter block into AQ.
TRAP #1 Do TRAP.
ENDM End macro definition.

EXAMPLE: Type 1 Semaphore

A type 1 semaphore is used when more than one task requires exclusive access
to a single resource. For this example, three tasks, TSKA, TSKB, and TSKC,
all need exclusive access to some data area.

TSKA TSK SKC
ERQ ATSEM,R1SEM ERQ ATSEM,R1SEM ERQ ATSEM,R1SEM
MOVE.L AO,RIKEY MOVE.L AQ,RIKEY MOVE.L AQ,RIKEY
ERQ WTSEM,R1SEM ERQ WTSEM,R1SEM ERQ WTSEM,R1SEM
(Use . (Use . (Use
resource) . resource) . resource)
ERQ SGSEM,R1SEM ERQ SGSEM,R1SEM ERQ SGSEM,RLSEM

Each of the tasks would define the semaphore parameter block as:

ATSEM EQU 41 Attach semaphore directive.
WTSEM EQU 42 Wait on semaphore directive.
SGSEM EQU 43 Signal semaphore directive number.
R1SEM DC.L 'SEMX' Semaphore name.
RIKEY DC.L 0 Semaphore key.

DC.B 0 Initial count.

DC.B 1 Semaphore type.

Type 1 semaphore characteristics:

a. The first time an ATSEM is issued, the semaphore is created with a
signal count of one, and the semaphore key is returned in AO.

b. Later ATSEM directives cause the semaphore key to be returned in AO.

c. The CRSEM directive is identical to the ATSEM directive for type 1
semaphores.

MICROSYSTEMS

169

M) moToroLA

d. Within any task,
followed by an SGSEM directive.
in the proper sequence in a task, it is rejected.

SEMAPHORE MANAGER

each WTSEM directive in a type 1 semaphore must be

If a WTSEM or SGSEM directive is not

If a task detaches

from a semaphore before issuing a SGSEM following the last WTSEM, the

DESEM directive issues the necessary signal.

e. The semaphore is deleted when the last user detaches.

Figure 6-1 1is a diagram of how the tasks are coordinated in time and assumes

TSKB was executed first, followed by TSKA and TSKC.

EXAMPLE: Type 2 Semaphore

A type 2 semaphore controls the execution sequence of two or more tasks. For
this example, TSKA must complete a process before TSKB can continue and TSKB

must complete a process before TSKC can continue.

Two type 2 semaphores are

used. Macro ERQ is defined at the beginning of this paragraph.

T1SKA

ERQ CRSEM,R2ASEM
MOVE.L A0, R2AKEY
(do processing)

ERQ SGSEM,R2ASEM
ERQ DESEM,R2ASEM

R2ASEM DC.L 'SEMA’

R2AKEY DC.L 0
oc.e 0
DC.B 2

TSKB

ERQ ATSEM,R2ASEM
MOVE.L AO, R2AKEY
ERQ CRSEM,R2BSEM
MOVE.L AO, R2BKEY
ERQ WTSEM,R2ASEM
ERQ DESEM,R2ASEM
(do processing)

ERQ SGSEM,R2BSEM
ERQ DESEM,RZBSEM

w

MNMOOMMOOOMmM
=
=

R2ASEM DC.
R2AKEY DC.
DC.
DC.
R2BSEM DC.
R2BKEY DC.
DC.
DC.

W rowr —
w
=
w

170

TSKC
ERQ ATSEM,R2BSEM
MOVE.L AO, R2BKEY
ERQ WTSEM,R2BSEM
ERQ DESEM,R2BSEM
(do processing)

R2BSEM DC.L 'SEMB'

R2BKEY DC.L O
DC.B O
DC.B 2

Semaphore name
Semaphore key
Initial count
Semaphore type

MICROSYSTEMS

M) moToroLA SEMAPHORE MANAGER

ACTION ———--emmmemee =2 >
| I | I RISEM I
! I { | INITIAL | SIGNAL ! I
TIME | TSKA I MTSKB 1 TSKC | COUNT | COUNT | FIFO I
I l=='—'======================================’—'=========:=========’—'=========I
I I | ATSEM | I N/A | 1 | EMPTYI
I | | WTSEM i I I 0 I |
I | I (USE RESOURCE)I I I I |
] | | . I | | | |
| | | . | I I I |
|] | . | | I ! I
v { | DELAY ! | I] I
R et R [it | | | | |
| ATSEM I | i i | I
| WTSEM I |] Po-1 | TSKA |
R ettt | R R e | | | |
! I I ATSEM | | I !
| I | WTSEM I | -2 | TSKA,I
| [mmmmmm - R T | I | TSKC 1
| I (USE RESOURCE)! I I I]
| 1. | | I I]
|] ! | I I |
| i | | I | I
| | SGSEM | | | -1] TSKC |
R e e fomm e | ! | | |
I (USE RESOURCE)! I | | i |
l. | | | I | |
I. | I I | I |
I. I | I] I |
1 SGSEM I | I] 0 I |
R et I R e | I I]
| I I{USE RESOURCE)| I | EMPTYI
| I l. | I | |
I] l. | | i I
| I l. | | | |
| I ISGSEM i | 1 I |
I ==='
NOTE: A SGSEM must follow each WISEM directive.
FIGURE 6-1. Type 1 Semaphore Usage

171 MICROSYSTEMS

@ MOTOROLA
SEMAPHORE MANAGER

Type 2 semaphore characteristics:

a. The semaphore is created when the first ATSEM or CRSEM is issued. If
an ATSEM is issued first, the signal count is set to 0. If a CRSEM is
issued first, the signal count 1is set to the initial count in the
semaphore parameter block. The semaphore key is returned in register
AOD.

b. Later ATSEM directives return the semaphore key in register AO.

c¢. Llater CRSEM directives reset the initial count value (but not the
current signal count), and return the semaphore key in register AO.

d. If the signal count 1is equal to the initial count set by the last
CRSEM directive, the semaphore is deleted when the last user detaches.

e. The number or order of WTISEM and SGSEM directives issued by a given
task is not checked.

Figure 6-2 shows how the tasks of the previous example are coordinated in
time. Although the tasks can be started in any order, this example shows TSKB
starting first, followed by TSKA and TSKC.

EXAMPLE: Type 3 Semaphore

A type 3 semaphore 1is used when one task has control over a resource that
other tasks want to use. In this example, TSKA controls a message buffer
(that can contain up to five entries), and processes any messages that have
been placed in the buffer. TSKB and TSKC place messages in the buffer. TSKA
creates two semaphores. The first, called BUFRDY, controls input to the
buffer by its signal count field being equal to the number of buffer entries
available. The second, called MSGSNT, 1is signaled each time a message is
placed in the buffer. Using the semaphores in this way prevents TSKB and TSKC
from putting messages in a full buffer, and prevents TSKA from taking a
message out of an empty buffer. Macro ERQ is defined at the beginning of this
paragraph.

172 MICROSYSTEMS

M) mororoLa SEMAPHORE MANAGER

| (PROCESSING) |
I .

ACTION —---mmcmmmmee- >
[i f | R2ASEM | R2BSEM |
| | | IINITIAL) SIGNALI JINITIALI SIGNALI |

1 TSKA I TSKB I TSKC | COUNT | COUNT | FIFO) COUNT | COUNT | FIFO
|2zz=zcz2==zc=c====x=ss========s==2==zc==c===z=z====S==z========S=z====z====sS=z=====zzz=z===z=zz==|

TIME | | ATSEM (A) | I [0 | EMPTY I | | EMPTY
oo | CRSEM (B) | [| ! o 10 | :
o | WTSEM (A) | | I -1 1| TSKB | | | |
[[mmmmmmmmeme [[| | | | | |

| ICRSEM (A) | ! 0 | | | |

I | (PROCESSING)I | | | ! | | | |
| l. [! | | | [| | |
Voo | | [! | [! | f
[| | | 1 | | | | |
ISGSEM (A) | | ! (0 | [| [|
IDESEM (A) | | | | ! [| | |
[ommmmmmmmmmem P i ! | | | | | |
DA | DSEM (A) | [! [EMPTY | | | |
I (PROCESSING) | | ! | | | [I
I . | | l | I | | |
. | ! | | t | ! |
. | [| | | [| |
ISGSEM (B) | | | f [1 |
IDESEM (B) | I i | | | [|
P P — I | | | ! i [
| ATSEM (B) | | | | [[|
| WISEM (B) | | [| o n
08 | DESEM (B) | [| | [! |
| | ! i | |
c [| ! | !
| | I | | |
[| | | | |
! | | | | [
! [| ! | |
o [: 1 | |
| [l i [|
| | ! | | |
| i [| | |

TDA = Time of R2ASEM deletion
TDB = Time of R2BSEM deletion
Task B must wait until task A finishes

FIGURE 6-2. Type 2 Semaphore Usage

MICROSYSTEMS

173

TOROLA
M) moToro, SEMAPHORE MANAGER

I5KA ISKB ISKC
ERQ CRSEM,BUFRDY ERQ ATSEM,BUFRDY ERQ ATSEM,BUFRDY
MOVE. L A0, BUFKEY MOVE.L AO, BUFKEY MOVE.L AO,BUFKEY —
ERQ CRSEM,MSGSNT ERQ ATSEM,MSGSNT ERQ ATSEM,MSGSNT
MOVE.L A0, MSGKEY MOVE.L AD, MSGKEY MOVE.L AO,MSGKEY
WT:ERQ WTSEM,MSGSNT SD:ERQ WTSEM,BUFRDY SD:ERQ WTSEM,BUFRDY
(process message) (put message (put message

into buffer) into buffer)

ERQ SGSEM,BUFRDY

BRA WT ERQ SGSEM,MSGSNT ERQ SGSEM,MSGSNT
BUFRDY: DC.L 'BFRY’ BRA SD BRA SD
BUFKEY: DC.L O . .
DC.B &
bC.B 3 . .
MSGSNT: DC.L 'MSSG' BUFRDY: DC.L 'BFRY' BUFRDY: DC.L 'BFRY’
MSGKEY: DC.L O BUFKEY: DC.L O BUFKEY: DC.L O
oc.s8 0 DC.B b DC.B 5
DC.B 3 pDc.B 3 DC.B 3 -
MSGSNT: DC.L 'MSSG' MSGSNT: DC.L 'MSSG’ '
MSGKEY: DC.L 0 MSGKEY: DC.L O
DC.B O pc.B 0
DC.B 3 pc.B 3

Type 3 semaphore characteristics:

a. Only a CRSEM directive can create a semaphore. The signal count is
initialized to the value in the initial count field of the semaphore
parameter block, and the semaphore key is returned in register AO.

b. Later CRSEM directives are rejected.

c. ATSEM directives issued before the semaphore is created causes the
issuing task to be placed in a WAIT state. When another task creates
the semaphore, the semaphore key is returned to each task that had
attached to the semaphore.

d. The semaphore is deleted when the task that created the semaphore
terminates or issues a DESEM directive. An error code is returned for
any task in the wait 1list at the time the semaphore is deleted.

e. The number or order of WTSEM and SGSEM directives issued by a given
task are not checked.

Figure 6-3 shows how the tasks of the above example can be coordinated in
time. Although the tasks could be started in any order, the diagram shows
TSKB starting first, followed by TSKA and TSKC.

172 MICROSYSTEMS

&) mororoLa SEMAPHORE MANAGER

ACTION --ecwmmmmmeme=d >
1 | 1 | BUFRDY I MSGSNT |
1 1 i IINITIALI SIGNALI IINITIALY SIGNALI
| TSKA I TSKB | TsSKC | COUNT | COUNT 1| FIFO t COUNT { COUNT | FIFO I
|z=czzz2zsszzzz=z=zzszz===zczz=ssszzz==szzI=TSSSTSSSSISSSsssssssssSSzss==ss=ssssssssz=szsss=szs==
TIME | IATSEM (BUFRDY)I] | | EMPTY | J | EMPTY |
R e L R ittt | [| | [| | [
ICRSEM (BUFRDY) | | | 5 | 5 | | 0 ! 0 | [
|CRSEM (MSGSNT) I | | | | | -1 | TSKA |
IWTSEM (MSGSNT)I | ! | I | | | |
R et [i I | | | ! | | |
| IATSEM (MSGSNT)! | | | ! | | I
| IWTSEM (BUFRDY)! I | 4 | i | I I
1 I (PLACE | |] | | | | |
[I MESSAGE IN 1 | ! | | | | |
I | BUFFER) I | | | | | | |
| ISGSEM (MSGSNT) | | | ! | | 0 | EMPTY
ettt [et | | | | | | | |
I {PROCESS I | | ! | | | | |
| MESSAGE) [1 | ! | i | |
ISGSEM (BUFRDY) 1 | | 5 | | | |
IWTSEM (MSGSNT) | | | | | | I -1 I TSKA |
e bt e I [Rttt Ll | | | | | | |
I IATSEM (BUFRDY)!			!	
	IATSEM (MSGSNT)!	I	!	
	IWTSEM (BUFRDY)!	4	! !	
I 1 I (PLACE MESSAGE! !	I		!	
! 1 I IN BUFFER) 1			!	
l ISGSEM (MSGSNT) I				0
	IWTSEM (BUFRDY)I	3		
[1 (PLACE MESSAGE!	!		
! I IN BUFFER)		! i	[
[ISGSEM (MSGSNT)!	I		1
[ittt	R e	t		
PROCESS !	!			
1 MESSAGE		t 1]	
.				
z===s====z============z====zz===ss==z=z==c=s=s====ss=s=s=ss==s=zsccscczss=sZxzSszosszss===s==szszas				
Task A controls a resource which task B and task C will use.
FIGURE 6-3. Type 3 Semaphore Usage
MICROSYSTEMS

175

@ MOTOROLA
SEMAPHORE MANAGER

THIS PAGE INTENTIONALLY LEFT BLANK.

176 MICROSYSTEMS

*) moToroLA SEMAPHORE MANAGER

CHAPTER 7
TRAP SERVER MANAGER

7.1 OVERVIEW

Most operating systems require a class of tasks that provide services and
control resources on a system wide basis. These server tasks should be able
to respond to a request from any task in the system, execute the requested
service, and provide feedback to the client task about the success or failure
of the request. A typical use for a server task would be to implement an
input-output system, a file management system, or a database manager.

The RMS68K Trap Server Manager supports this class of server tasks by
providing them with the following privileges and capabilities:

a. A server task can respond to a request from any task in any session.

b. The event that results from the request contains the client task's
task_id, the directive number of the requested service, and a copy of
the parameter block describing the request, if required.

¢. The server can prohibit the client from running until the service is
completed.

d. The server can provide feedback to the client by altering its
condition codes and two of its registers.

e. The server can specify what state the client task should be in when
released from the server's control.

f. The server can request notification of task termination to implement
any necessary termination processing.

The VERSAdos real-time operating system is implemented as a collection of
server tasks running under the control of RMS68K. Therefore, server tasks can
be used to implement a special purpose operating system or to add domain
specific extensions to VERSAdos.

7.2 THEORY OF OPERATION

A task becomes a server task by informing the trap server manager that it
wants to service a particular trap instruction. Thereafter, any task can
request its services by loading a directive number into DO, optionally
pointing A0 to a parameter block, and executing the trap instruction. The
trap server manager responds by placing the client task into a WAITING ON
ACKNOWLEDGEMENT from the server state, and queuing an event to the server

177 MICROSYSTEMS

® MOTOROLA TRAP SERVER MANAGER

containing the trap number, clients task_id, DO and A0 registers, and
optionally, the entire parameter block.

Then the server task can process the event, either synchronously or
asynchronously. When the request is satisfied, the server can report on the
status of the request within the client's condition codes and DO register,
return a value in its AO register, and enable it to run by acknowledging the
request. This acknowledgement also informs the trap server manager that the
server is ready to process another request for service.

This server task interface was designed to be identical to the interface to
RMS68K . Therefore, server tasks appear to their clients as extensions of the
Executive.

The preceding paragraphs describe one typical use of the trap server manager.
There are several variations of this scheme that are explained later such as:
a. A server task that responds to more than one trap number.
b. A server task responding to task termination events.

c. A server informing the trap server manager that it is ready to process
another request before acknowledging a previous one.

d. A server placing a task into a WAIT or SUSPEND state on
acknowledgement .

7.2.1 Trap Server Manager Directives

The directives used for server task control are:

SERVER A task establishes itself as a server task.

AKRQST A server task acknowledges receipt of completion of a request by
placing the requesting task into an appropriate state.

DERQST A server task controls the receipt of requests for service.

DSERVE A server task initiates orderly shutdown of service.

7.2.2 Server Tasks and Session Boundaries

A server task can either be a system task or a user task. Most servers are
implemented as system tasks because they can respond to and acknowledge
requests from tasks within all sessions, whereas user server tasks can only
respond to and acknowledge requests from tasks within their own session. One
use of user server tasks would be to customize different sessions or restrict
access to a classified server task to tasks executing within a privileged
session.

MICROSYSTEMS
178

@ MOTOROLA
TRAP SERVER MANAGER

Because of the data structure format that associates a trap number with a
server task, only one server can be associated with a specific trap
instruction at any moment, regardless of whether the server is a system or
user task. Therefore, two user server tasks in different sessions could not
respond to the same trap number.

7.2.3 Server/Client Communication

A client task communicates to a server by executing a trap instruction that
causes the trap server manager to build and queue an event describing the trap

request to the server. If the server is implemented as a system task, it
receives the event even if the client is a user task executing in an alien
session. This represents an extension to the rules for queueing events

because a user task can not queue an event across session boundaries,
regardless of whether the recipient is a system or user task.

The event built by the trap server manager to describe the request consists of
information describing the client:

a. Task_id
b. System/User task status
c. Real-time/Non Real-time status

and information describing the request:

Trap number

Directive number (DO)

Parameter (A0)

Optional Parameter Biock pointed to by AO

ao0ooco

and information about the status of the request:

a. The total parameter block was moved.
b. Part of the parameter block was moved.
¢. A bad parameter block was specified so nothing was moved.

The server task can process this event in either the synchronous or
asynchronous mode, depending on whether its Asynchronous Service Routine (ASR)
is disabled or enabled. To process server events in the asynchronous mode,
the server must inform the trap server manager where it wants to be dispatched
when a server event arrives. This routine may or may not be equivalent to the
servers default ASR, and a server that wants to handle multiple trap
instructions can declare a different service routine for each trap number.
Likewise, a server that wants to service multiple trap instructions in the
synchronous mode can distinguish between them by decoding the trap number
within the server event.

MICROSYSTEMS
179

MOTOROLA
@ TRAP SERVER MANAGER

The server communicates status and returned values back to the client via the
AKRQST directive. AKRQST allows the server to set the client's condition
codes and thereby support the familiar interface to RMS68K:

MOVE.W #Directive_Number, DO

LEA Parameter_Block, A0
TRAP #Trap_Number
BNE Decode_Error

In addition, the server can return an error code in DO and an optional
returned value in AO0.

AKRQST also allows the server to place the task into one of the following
states:

READY
WALT
SUSPEND

Normally, a server makes the client READY on acknowledgement. However, in
systems where the server just initiates the service and another task or device
driver completes it, the server can choose to acknowledge the request and
leave the client in the WAIT or SUSPEND state to be re-activated by the task
or driver on completion of the service.

7.2.4 Server Request Control

Another requirement of server tasks is that they be allowed to specify when
they are ready to process trap requests. One trap server may dictate that it
only process one request at any moment; another may be capable of

simultaneously handling "n" requests. The trap server manager supports both
implementations via the AKRQST and DERQST directives.

Basically the server request control mechanism is implemented as a gate,
external to the server's Asynchronous Service Queue (ASQ). When the gate is
open and a task executes a trap instruction, the trap server manager creates
an event describing the request, queues it to the server's ASQ, and closes the

gate. Any requests issued while the gate is closed are placed on a secondary
queue waiting for the server task to tell the trap server manager to open the
gate. Note that this gate 1is selective and only holds out server events

generated in response to trap instructions or task termination. A1l other
communications from drivers, dependent subtasks, or other servers proceed
according to the normal rules for ASQ event processing. This gate protects
the server's ASQ from being inundated with requests for service and therefore
unable to communicate with other operating system entities.

If the trap server has completed servicing a request, it can release the
client task and tell the trap server manager to open the gate by issuing the
AKRQST directive. This is a typical implementation of a server that is
Timited to processing one request at a time.

MICROSYSTEMS
180

N

@ MOTOROLA
TRAP SERVER MANAGER

Some servers can process "n" requests concurrently. They typically accept a
request, do some validation and pre-processing, and pass the request on to
another task or device driver. At this point they are capable of processing
another request even though the subtask or driver is still working on the
first request, so they execute the DERQST directive with the enable bit set.
This tells the trap server manager to open the gate and allow the next request
to enter the server's ASQ while keeping the previous client task in the
WAITING ON ACKNOWLEDGEMENT state. When the subtask or driver queues an event
indicating that the request 1is complete, the server can execute the AKRQST
directive to release the client. The AKRQST that follows a DERQST does not
cause the gate to open.

A third class of servers executes the request in parallel with the continued
execution of the client. These servers might notify the client asynchronously
when the request is complete or only notify the client if there was some
problem with satisfying the request. One example of this type of
client/server relationship would be a data acquisition system where the client
was responsible for the real-time acquisition of the data and the server was
responsible for logging the data to a low performance output device.

To implement this system, the client would collect and pre-process the data
and then execute a trap instruction to request that the server task log the
data. The server would verify the request and immediately acknowledge the
client, perhaps returning a pointer in AD to a free buffer for collecting the
next piece of data. After releasing the client to collect more data, the
server would begin the slower output operation. When the output is completed,
the server would queue an event to the client describing the status of the
request that the client could process synchronously or asynchronously. A
variation on this scheme would be for the server and client to assume that the
request would succeed, and the server would only have to notify the client if
there was some problem with the request.

7.2.5 Termination Control

A server task can request that the trap server manager notify it when any task
is terminating. Here, the trap server manager places the terminating task
into the WAIT ON ACKNOWLEDGEMENT state and queues an event to the server. The
server may then execute any required termination processing such as aborting
any outstanding 1/0, releasing any resources currently allocated to the task,
or deleting all reference to the task from the server's internal data
structures. When the server has completed its termination processing, it can
release the task to finish its termination by executing the AKRQST directive.
The task will not terminate or be purged from the system until the server
executes the AKRQST in response to the termination event.

A monitor task also receives a termination event when any of its subtasks
terminates; this event is for information only and does not stop the subtask
from terminating or place it in any kind of WAIT state. Thus, if the monitor
is running at a lower priority than the subtask, it may not be dispatched to
process the termination event until after the subtask has been purged from the
system.

8 MICROSYSTEMS
181

@ MOTOROLA
TRAP SERVER MANAGER

A termination server task could be implemented that provides no services other
than monitoring the system for task termination. Since in many real-time
systems, tasks are never supposed to terminate, this termination server could
play an important role in system reliability and security.

7.3 DATA STRUCTURES

The Trap Instruction Owner Table (TIOT) is an array of descriptors indexed by
trap number describing each trap server and the state of the gate controlling
access to its ASQ for server events. The TIOT is contained within the SYSPAR
system parameter area and consists of one 22-byte entry for each of the 16
trap instructions. An entry is defined as:

TIOTTCB (4 bytes) Server task TCB address
TIOTSESS (4 bytes) Server task sessions number
TIOTSEM (6 bytes) Semaphore used to 1limit access to the server
task's ASQ
TIOTADDR (4 bytes) Server task's ASR address
TIOTMCNT (2 bytes) Count of unacknowledged messages
TIOTSTAT (1 byte) Status
Bit 16=1 Server function enabled
Bit 14=1 Server wants termination notification
Bit 13=1 Server wants parameter block moved with message
Bit 12=1 Message sent to server, ACK pending
Bit 11=1 DERQST called while ACK pending
Bits 10-0 Reserved
TIOTPBSZ (1 byte) Parameter block size

7.4 TRAP SERVER MANAGER DIRECTIVES

The detailed descriptions contained within the trap server manager are
described on the following pages.

MICROSYSTEMS

182 o - - -

@ MOTOROLA
TRAP SERVER MANAGER

ESTABLISH SERVER SERVER

Directive Number: 51

Parameter: Server Block Address

Server Block:

Request Service Address (4 bytes) Address at which specified trap
instruction is to be serviced. If this
field is 0, then the default ASR
address is used.

Trap Instruction Identifier (1 byte) Bit 7 Reserved.

Bit 6=0 Receive event only when task
executes a trap instruction.

=1 Task elects to also receive
an event each time a task

terminates. (This option is
only available to system
tasks.)

Bit 5=1 Server wants a parameter
block with the event.

Bit 4 Reserved.
Bits 3-0 Specify the number of the

trap instruction that the
requesting task serves at the

above request service
address. Valid values are 2
through 15.
Parameter Block Size (1 byte) Required if trap instruction identifier
bit b5=1. Specifies size of parameter

block that 1is attached to the end of
the event.

Detailed Description:

RMS68K establishes the requesting task as a server task of the trap
instruction specified in the parameter block and/or terminations. Any task
can request the services of the server task by executing the appropriate trap
instruction. If a task has elected local processing of a specific trap
instruction via the TRPVCT directive, the 1local processing overrides the
server task processing of the trap instruction.

183

MICROSYSTEMS

@ M ROLA TRAP SERVER MANAGER

SERVER

A request for service manifests itself to the server task as an event message
with event code = $07. Auxiliary information can be passed to the server task
through a parameter block. The address of the parameter block would be
contained in the register AQ0 field of the server event (event code = $07).
The server task can elect to automatically receive the parameter block in its
event receiving area by setting trap instruction identifier bit 5 = 1. If
this method is elected, the parameter block immediately follows the event
text. A server task could also elect to obtain the parameter block on its own
by issuing a MOVELL directive.

A server task can process requests synchronously or asynchronously. If
asynchronous processing is desired, the request service address in the
parameter block specifies the beginning address of the routine to be activated
when a request event causes an ASR interrupt. This request service routine
can be dedicated to servicing a request or the same routine that processes all
other events.

There can only be one server task for a given trap number in the entire
system. If the server is a system task, then tasks in any session can issue
that trap and the server will receive it. If the server is a user task, then
only tasks in his session can issue that trap. Tasks in other sessions
receive an error if they attempt the trap call.
WARNING
SERVER TASK EVENTS (CODE = $07) ARE 24
BYTES LONG. A SERVER TASK'S ASQ MUST

HAVE A MAXIMUM MESSAGE LENGTH OF AT
LEAST 24 BYTES.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block not in requestor's address space.
4/%04 Requestor has no ASQ.

6/%06 Specified trap instruction not available (TRAP #0, TRAP #1, or
some other server has trap).

12/%0C Request service address not in requestor's address space.

MICROSYSTEMS

184

(ZE):~1¢>11:;a<>LJl

EXAMPLE :

TSKA wants to establish

itself

TRAP SERVER MANAGER

SERVER

instructions and for all terminations within its session.

TSKA:

MOVE.L
LEA
TRAP
BNE

MOVE.L
LEA
TRAP
BNE

SVB1: DC.
DC.

o

DC.B

SVBZ: DC.
DC.B

—

DC.B

#51,D0
SVB1,A0
#1
FAULT

#51,00
SVB2,A0
#1
FAULT

REQ3
$43

REQ7

Load SERVER directive number 51.
Load parameter block address.

Branch, if error.

Load SERVER directive number b51.
Load parameter block address.

Branch, if error.

Address at which TRAP #3 is served.

as the server for TRAP #3 and TRAP #7

Receive an event on terminate, no
parameter block, TRAP #3.
N/A; no parameter block.
Address at which TRAP #7 is served. 7
Event only when task reguests, no
parameter block, TRAP #7.
N/A; no parameter block.

MICROSYSTEMS

185

@ MOTOROLA TRAP SERVER MANAGER

ACKNOWLEDGE SERVICE REQUEST AKRQST

Directive Number: 54
Parameter: Parameter Block Address
Parameter Block:

Target Task (8 bytes) Task_id of task whose request is being
acknowledged.

Directive Option (2 bytes)
Bit 15 Reserved.

Bit 14=1 Set target task's condition codes
in status register as specified.

Bit 13=1 Set target task's register DO to
value specified.

Bit 12=1 Set target task's register AO to
value specified.

Bits 11-9 = Ixx Reactivate target task.

= 0lx Place target task in WAIT
state.

= 001 Place target task in SUSPEND
state.

Bits 8-0 Reserved.

Trap Number (1 byte) Trap number being acknowledged.
Condition Codes (1 byte) Supplied if option bit 14=1.
Register DO (4 bytes) Supplied if option bit 13=1.
Register A0 (4 bytes) Supplied if option bit 12=1.

Detailed Description:

A task that has issued a trap handled by a trap server is in the WAITING ON
ACKNOWLEDGEMENT state and cannot execute until another task does an AKRQST to
release it. The task that does the AKRQST must be a system task or in the
same session as the trap server; it does not have to be the server itself.

Return Parameters: None

186 MICROSYSTEMS

@ MOTOROLA
TRAP SERVER MANAGER

AKRQST

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exist.
7/%07 Specified trap not dedicated to acknowledging task's session.

10/$0A Target task is not waiting to be served for specified trap.

EXAMPLE:

A non real-time server task, TSKA, has finished processing a TRAP #b request
from TSKB, and wants to reactivate TSKB. The condition codes of the SR,
register DO, and register AD are all left unaltered.

TSKA:
MOVE.L #54,D0 Load AKRQST directive number 54.
LEA PRMBLK,AQ Load parameter block address.
TRAP #1 Reactivate target task; SR. DO, AO0 unaltered.
BNE FAULT Branch, if error.

PRMBLK : DC.L 'TSKB' Target taskname.
DC.L 1 Session number of target task.
DC.W $0800
DC.B 5 Trap number acknowledged.
DC.B 0 N/A; bit 14 is clear.
DC.L 0,0 N/A; bit 13 and 12 are clear.

187 MICROSYSTEMS

@ MOTOROLA
TRAP SERVER MANAGER

SET USER/SERVER REQUEST STATUS DERQST

Directive Number: 53
Parameter: Trap Number and Status
Bits 31-8 Reserved
Bit 7=1 Enable request receipt.
=0 Disable request receipt.
Bits 6-4 Reserved

Bits 3-0 Trap number of interest (values 2 through 15).

Detailed Description:

RMS68K enables or disables the server request control mechanism according to
the parameter.

When a request caused by a given trap instruction is queued to a server task,
the server's ASQ is disabled for further requests from that trap instruction,
(that are queued), until the server indicates that it is again ready to
process those trap requests. The DERQST directive with the enable bit set,
enables the server's ASQ to receive those trap requests.

Unless the request receipt was disabled by the DERQST directive, request

receipt for a given request type is automatically re-enabled when an
acknowledgement is made for a request of that type.

Return Parameter: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.

7/%07 Specified trap not assigned to task issuing directive.

MICROSYSTEMS
188

@ MOTOROLA TRAP SERVER MANAGER

DERQST

EXAMPLE :

After reading an event for a TRAP #5 instruction, the server task, TSKA wants
to re-enable receipt of TRAP #5 requests into its ASQ.

TSKA:
MO(/E.L #53,D0 Load DERQST directive number 53.
MOVE.W #$0085,A0 Enable request receipt, TRAP #5
TRAP #1
BNE FAULT Branch, if error.
MICROSYSTEMS

189

@ MOTOROLA
TRAP SERVER MANAGER

DEALLOCATE SERVER FUNCTION DSERVE

Directive Number: 52
Parameter: Bits 31-4 Reserved

Bits 3-0 Relevant Trap Instruction Number

Detailed Description:

A server task initiates orderly shutdown of service. Any request events for
the specified trap instruction already in the ASQ but not serviced, continue
to assert themselves 1in order. Any pending requests not yet in the ASQ are

treated as if the server never existed. The trap instruction is detached from
the requesting task.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
7/%07 Specified trap instruction not dedicated to the task issuing the
directive.
EXAMPLE :

TSKA no longer wants to be the server task for TRAP #6 instructions.

TSKA:
MOVE.L #52,D0 Load DSERVE directive number 52.
MOVE.W #6,A0 TRAP number 6.
TRAP #1
BNE FAULT Branch, if error.
MICROSYSTEMS

190

M) mororoLa EXCEPTION MONITOR MANAGER

CHAPTER 8

EXCEPTION MONITOR MANAGER

8.1 OVERVIEW

The Exception Monitor Manager provides services to a class of tasks called
exception monitors. An exception monitor 1is a task that can indirectly
observe and contrel the execution of a target task. The events that an
exception monitor is capable of observing are those events (called exceptions)
that cause the processor to switch from executing user mode code to supervisor
mode code. These exceptions include all the TRAP instructions and error
conditions such as bus error, illegal instruction, and divide by zero.

The exception monitor can control the target task by reading or writing to its
memory or registers, setting breakpoints, or tracing through the program in
one of three trace modes.

A typical use for exception monitors is to impiement symbolic debuggers or
timing analysis programs. Another use would be to increase system security by
observing and reporting on erratic task behavior.

8.1.1 Services

Listed below is a summary of the directives contained within the exception
monitor manager.

EXMON A target task becomes associated with an exception monitor
task.

EXMMSK Events of interest to an exception monitor task are specified.

REXMON A target task executes as directed by an exception monitor
task.

RSTATE An exception monitor task receives the current state of one of
its target tasks.

PSTATE An exception monitor task sets the current state of one of its
target tasks.

DEXMON A target task detaches from an exception monitor task.

MICROSYSTEMS

191

@ MOTOROLA
EXCEPTION MONITOR MANAGER

8.2 THEORY OF OPERATION

A target task is attached to an exception monitor when some task, either the
target, the exception monitor, or a third task executes an EXMON directive.
In response to the EXMON directive, the exception monitor manager places the
target into the WAIT FOR COMMAND state, establishes the connection between the
target task and the exception monitor and queues an event describing this
relationship to the exception monitor.

Once attached, the exception monitor can inform the exception monitor manager
which exceptions it wants to observe by setting bits in the exception monitor
mask corresponding to those exceptions and then executing the EXMMSK
directive.

The exception monitor can now start the target task executing under the
control of the exception monjtor via the REXMON directive. REXMON supports
four modes of target task execution:

1. Run until an enabled exception occurs.
2. Trace one instruction.

3. Run until a location within the target task's memory changes value or
an enabled exception occurs.

4. Run until a location within the target task's memory equals a
specified value or an enabled exception occurs.

For modes 3 and 4 the exception monitor may also specify a maximum number of
instructions. If the target executes this number of instructions before the
location changes or equals the specified value, or an enabled exception
occurs, the exception monitor is notified by an appropriate event.

If an enabled exception occurs, or one of the trace conditions is satisfied,
the exception monitor manager places the target task into the WAIT FOR COMMAND
state, builds an event describing the exception or trace condition, and queues
the event to the exception monitor. The exception monitor can service this
event synchronously or asynchronously depending on whether its ASR is disabled
or enabled.

The exception monitor can query the state of the target task at any time, even
while it is running, via the RSTATE and MOVELL directives. RSTATE returns a
copy of the task's registers, status register, program counter, task state,
and variables associated with REXMON's trace modes. The exception monitor can
read the state of the target task's program or data memory via the MOVELL
directive.

MICROSYSTEMS
192

TN

o

@ MOTOROLA EXCEPTION MONITOR MANAGER

Likewise, the exception monitor can update the state of the target task via
the PSTATE and MOVELL directives. PSTATE allows the exception monitor to
write into the target task's registers, status register, or program counter,
and update the mask of enabled exceptions. MOVELL can be used to write into
the target task's program or data space.

One use of MOVELL is to create breakpoints within the target task's program
space. For example, to create a breakpoint at location $1000, the exception
monitor reads location $1000 via MOVELL, saves the current instruction, and
uses MOVELL to place an instruction in $1000 that would cause an exception
{such as an illegal instruction). If the target task executes the illegal
instruction, the exception monitor is notified and replaces the originatl
instruction via MOVELL.

After any querying or updating of the target task's state, the exception
monitor can restart the target via the REXMON directive, either from the point
at which the exception occurred, or from the Jlocation written into the
target's program counter via the PSTATE directive. This process continues
until the exception monitor detaches from the target via the DEXMON directive.

8.3 DATA STRUCTURES

The exception monitor manager maintains the following fields within the target
task's TCB.

TCBEXM (4 bytes) Exception monitor taskname.

TCBEXMS (4 bytes) Exception monitor session number.

TCBEMMSK (4 bytes) Exception monitor mask.

TCBEVMSK (4 bytes) Exception monitor value mask.

TCBEVLOC (4 bytes) Exception monitor value address.

TCBEVALU (4 bytes) Exception monitor value content.

TCBECNT (4 bytes) Exception monitor maximum number of instructions.

8.4 EXCEPTION MONITOR MANAGER DIRECTIVES

The exception monitor manager directives are described in detail on the
following pages.

MICROSYSTEMS
193

@ MOTOROLA
EXCEPTION MONITOR MANAGER

ATTACH EXCEPTION MONITOR EXMON

Directive Number: 64

Parameter: Parameter Block Address

Parameter Block:

Target Task (8 bytes) Task_id of target task being
attached to exception monitor.

Exception Monitor (8 bytes) Task_id of exception monitor to
attach to.

Detailed Description:

RMS68K attaches the target task to the exception monitor task and places the
target task in the WAIT FOR COMMAND state. An event with event code = $08,
indicating the attach, is queued to the ASQ of the exception monitor. Refer
to Chapter 2 for event format.

This directive can be issued by the target task, the exception monitor task,
or a third task. If the target task does not issue the directive, it must be
in the DORMANT state.

WARNING

EXCEPTION MONITOR EVENTS (CODE = $08) ARE
12 BYTES LONG. A MONITOR'S ASQ MUST
HAVE A MAXIMUM MESSAGE LENGTH OF AT LEAST
12 BYTES.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):

0/%00 Successful.

2/%02 Parameter block not in requestor's address space.

3/%03 Target task does not exist.

5/%05 ASQ of exception monitor is full or not enabled.

6/306 Target task is already attached to an exception monitor.
7/%07 Exception monitor does not exist.

9/%09 Target task is a system task or is not in DORMANT state.

MICROSYSTEMS
194

M) moToroLA

EXCEPTION MONITOR MANAGER

EXMON

TSKA, a non real-time user task, wants to attach TSKC to the exception monitor

EXAMPLE :
task, TSKB.
TSKA:
MOVE.L #64,D0
LEA PRMBLK , AO
TRAP #1
BNE FAULT
PRMBLK: DC.L 'TSKC"
DC.L 0
DC. L 'TSKB"
DC.L 0

Load EXMON directive number 64.
Load parameter block address.

Branch, if error.

Task to be attached to exception
monitor.

N/A; user task.

Exception monitor taskname.

N/A; user task.

195 MICROSYSTEMS

MOTOROLA
@ EXCEPTION MONITOR MANAGER

SET EXCEPTION MONITOR MASK ' EXMMSK

Directive Number: 66
Parameter: Parameter Block Address
Parameter Block:

Target Task (8 bytes) Task_id of target task receiving mask.

Exception Monitor Mask (4 bytes)

An exception monitor mask is associated with a target task that is to be
controlled by an exception monitor task. This mask specifies which
exceptions are to cause the execution of the target task to cease and
notification to be sent to the exception monitor.

Each bit of the mask corresponds to a particular exception. If a bit is
set, the associated exception is enabled.

The bits and associated exceptions are:

BIT EXCEPTION BIT EXCEPTION
0 Reserved 16 Bus Error
1 TRAP 1* 17 Address Error
2 TRAP 2 18 I11egal Instruction
3 TRAP 3 19 Zero Divide
4 TRAP 4 20 CHK Instruction
5 TRAP 5 21 TRAPY
6 TRAP 6 22 Privilege Violation
7 TRAP 7 23 Line 1010 Emulator
8 TRAP 8 24 Line 1111 Emulator
9 TRAP 9 25 Reserved
10 TRAP 10 26 Reserved
11 TRAP 11
12 TRAP 12
13 TRAP 13
14 TRAP 14
15 TRAP 15

Bits 27-31 are used by RMS68K for execution control events.

*The exception monitor is not notified of a target task executing a TRAP #1
instruction if the target is executing within the real-time domain.

MICROSYSTEMS
196

(ES)A4¢>11:wa<>LAl
EXCEPTION MONITOR MANAGER

EXMMSK

Detailed Description:

The specified mask is attached to the target task. When an enabled exception
occurs within the target task, the target task is placed in the WAIT FOR
COMMAND state and an appropriate message is queued to the target task's
exception monitor.

It is not required that the target task be attached to an exception monitor
when this directive 1is issued; the mask has no effect (no exception monitor
action takes place).

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):

0/%00 Successful.
2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exist.

EXAMPLE :

A user task, TSKA, wants TRAP #2 and bus error exceptions of TSKB to be
relevant to the exception monitor task of TSKB.

TSKA:
MOVE.L #66,D0 Load EXMMSK directive number 66.
LEA PRMBLK ,AD Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.

PRMBLK: DC.L ‘TSKB' Task to receive mask.

DC.L 0 N/A; user task.
DC.L $00010004 Mask, TRAP #2, bus error.

MICROSYSTEMS
197

TOROLA
M) mororo. EXCEPTION MONITOR MANAGER

RUN TASK UNDER EXCEPTION MONITOR CONTROL REXMON
Directive Number: 69 .
Parameter: Parameter Block Address

Parameter Block:

Target Task (8 bytes) Task_id of target task to be run.

Buffer Address (4 bytes) Buffer containing execution control
information.

Buffer Contents:

Execution Options (2 bytes) Bits 15-12 = 0000 Normal execution.
= 0001 Execute 1 instruction.
= 0010 Value change trace.
= 0011 Value equal trace.
Bit 11 =1 Max imum instruction -
count is specified.
Bits 10-0 Reserved
Value Location (4 bytes) Required when options bits 15-12 equal
0010 or 0011.
Value (4 bytes) Required when options bits 15-12 equal
0011.
Value Mask (4 bytes) Required when options bits 15-12 equal
0010 or 0011.
Max imum Instruction (4 bytes) Required when options bit 11 = 1.
Count

Detailed Description:

An exception monitor task specifies how a target task is to be executed.
There are four modes of operation that can be selected in the options field;
the remainder of information in the buffer depends on the mode selected.
Following 1is a description of each of the four modes and the information
required:

MICROSYSTEMS
198

TOROLA
™) mo EXCEPTION MONITOR MANAGER

REXMON

Normal Execution:

If this mode is selected, no other information is required in the buffer.
The target task executes until the occurrence of an exception that has
been enabled by the target task's exception monitor mask. The target task
then goes to the WAIT FOR COMMAND state and an appropriate event is queued
to the exception monitor task's ASQ.

Execute One Instruction:

If this mode is selected, no other information is required in the buffer.
The target task executes one instruction. The target task then goes into
the WAIT FOR COMMAND state, and an appropriate event is queued to the
exception monitor task's ASQ.

Value Change Trace:

If this mode 1is selected, value ‘location, value mask, and optionally
maximum instruction count must be provided in the buffer. The target task
runs until whichever of the following occurs first:

a. The location specified in the value location changes value. "’

b. An exception monitor mask exception occurs.

c. If options bit 11=1, the number of instructions specified by
maximum instruction count have executed.

The value checked in a. above is a 4-byte field beginning at the specified
even value Jlocation. The value mask indicates which bits are to be
included in the check. For example, a value mask of $FFOO00FF causes
execution to stop when either the first or last byte changes. When any of
the above three incidents occurs, the target task goes to the WAIT FOR
COMMAND state and an appropriate event is queued to the exception monitor
task's ASQ.

Value Equal Trace:

If this mode is selected, value 1location, value, value mask, and
optionally maximum instruction count must be provided in the buffer. The
target task runs until whichever of the following comes first:

a. The contents of the location specified in value location equals
the specified value.

MICROSYSTEMS
199

@ MOTOROLA
EXCEPTION MONITOR MANAGER

REXMON

b. An exception monitor mask exception occurs.

c. If options bit 11=1, the number of instructions specified by
maximum instruction count have executed.

The value checked in a. is a 4-byte field beginning at the specified even
value location. The value mask indicates which bits are to be included in
the check. For example, if value = $12345678 and value mask = $FFOOOOFF,
execution stops when the contents of the specified location are equal to
$12xxxx78. When any of the previous three incidents occurs, the target
task goes to the WAIT FOR COMMAND state and an appropriate event is queued
to the exception monitor task's ASQ.

Return Parameters: None
Error Codes (returned in bits 15-0 of DO):

0/%00 Successful.

2/%02 Parameter block not in requestor's address space.

3/%$03 Target task does not exist or privilege denied.

10/%0A Target task not attached to requesting exception monitor.

12/%0C Buffer not in requestor's address space.
15/$0F Value Tlocation not in requestor's address space.
EXAMPLE:

A user task, TSKA, wants to run task TSKB under monitor control until the
value located at address STAT changes.

TSKA:
MOVE.L #69,D0 Load REXMON directive number 69.
LEA PRMBLK,AOQ Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PRMBLK: DC.L "TSKB* Target task to run.
DC.L 0 N/A; user task.
DC.L EXBUF Pointer to buffer with execution
information.
EXBUF : DC.W $2000 Value change trace; no maximum
count.
DC.L STAT Value Tocation.
DC.L 0 N/A; value change trace.
DC.L $FFFFFFFF Mask value.
DC.L 0 N/A; no mask count.
MICROSYSTEMS

200

(ZE)AH¢)11§F?¢>LAI
EXCEPTION MONITOR MANAGER

RECEIVE TASK STATE RSTATE

Directive Number: 67
Parameter: Parameter Block Address
Parameter Block:
Target Task (8 bytes) Task_id of target task.
Buffer Address (4 bytes) Logical address of buffer to receive
task state of target task.

Buffer Contents:

DO (4 bytes)
D1 (4 bytes)
57 (4 bytes)
A0 (4 bytes)

Al (4 bytes)

AT(USP) (4 bytes)
PC (4 bytes)
SR (2 bytes)

Exception Monitor Mask (4 bytes)
Task Status (4 bytes) Current task state is indicated by bits

31-18, each set bit corresponding to
the following task state:

BIT JASK STATE

31 Task is in DORMANT state
30 Task is in WAIT state
29 Task is in WAIT ON SEMAPHORE state
28 Task is in WAIT FOR EVENT state
27 Task is in WAIT FOR SERVICE
REQUEST ACKNOWLEDGMENT state
26 Task is in WAIT FOR COMMAND state
25 Task is in SUSPEND state
24 Reserved

23 Task has pending termination

22 Task will return to RMS68K

21 Task is headed for ASR

201 MICROSYSTEMS

M) moroRroLA EXCEPTION MONITOR MANAGER

RSTATE

20 Task is in READY state
19 Task has PENDING WAKEUP
18 Termination message sent to server
while acknowledgement is out-
standing
17-0 Reserved

Execution Options (2 bytes) Refer to REXMON directive.
Value Location (4 bytes) Refer to REXMON directive.
Value (4 bytes) Refer to REXMON directive.
Value Mask (4 bytes) Refer to REXMON directive.
?axiTum Instruction (4 bytes) Refer to REXMON directive.
oun

Detailed Description:

An exception monitor receives the current state of a target task. This
current state information includes the data registers, address registers, user
stack pointer, program counter, status register, exception monitor mask, task

state, and execution control fields. The entire information uses 96 bytes of
space.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exist or privilege denied.
10/30A Target task not attached to the requesting exception monitor.

12/%0C Buffer not in requestor's address space.

202 MICROSYSTEMS

.

@ MOTOROLA
EXCEPTION MONITOR MANAGER

RSTATE

EXAMPLE :

A non real-time system task, TSKA, is the exception monitor for TSKB. TSKA
wants to examine the current state of TSKB.

TSKA:
MOVE.L #67,D0 Load RSTATE directive number 67.
LEA PRMBLK ,AQ Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PRMBLK: Dch '"TSKB' Target taskname.
DC.L 0 Same session; supervisor task.
DC.L STBUF Address in which to store data.
STBUF: DS.B 96 Receiving buffer is 96 bytes.
MICROSYSTEMS

203

(::)A'(’T‘)ﬁ"’lul
EXCEPTION MONITOR MANAGER

PUT TASK STATE PSTATE

Directive Number: 68

Parameter: Parameter Block Address

Parameter Block:
Target Task (8 bytes) Task_id of target task.

Buffer Address (4 bytes) Pointer to new state information buffer.

Buffer Contents:

DO (4 bytes)
D1 (4 bytes)
D7 (4 bytes)
A0 (4 bytes)

Al (4 bytes)

AT(USP) (4 bytes)
PC (4 bytes)
SR (2 bytes)

Exception Monitor Mask (4 bytes)

Detailed Description:
An exception monitor can change the state of a target task by changing the

values of the target task's data registers, address registers, user stack
pointer, program counter, status register, and exception monitor task.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):

0/%00 Successful.

2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exist or privilege denied.
10/3$0A Target task is not attached to this exception monitor.
12/%0C Buffer is not in requestor's address space.
MICROSYSTEMS

204

(:) MOTOROLA
EXCEPTION MONITOR MANAGER

PSTATE

EXAMPLE:

TSKA is the exception monitor of TSKB. TSKA wants to change the exception
monitor mask of TSKB so that only bus errors are relevant. TSKA must first
get the current state information of TSKB and then make the necessary changes.

TSKA:
MéVE.L #68,00 Load PSTATE directive number 68.
LEA PRMBLK ,AD Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PRMBLK: DC.L ' TSKB' Target taskname.
DC.L 0 Same session number.
DC.L STBUF Pointer to new state information.
STBUF : DS.B 70 Buffer contains DO-D7, AO-A7.
MASK : DS.L 1 Exception monitor mask.
MICROSYSTEMS

205

M) mororoLa EXCEPTION MONITOR MANAGER

DETACH EXCEPTION MONITOR DEXMON
Directive Number: 65 —
Parameter: Parameter Block Address

Parameter Block:

Target Task (8 bytes) Task_id of target task being detached
from exception monitor.

Exception Monitor Taskname (4 bytes) N/A

Exception Monitor Session (4 bytes) N/A

Detailed Description:

RMS68K detaches the target task from its exception monitor and the target task
then resumes normal activity according to its current state. A detach message
is queued to the ASQ of the exception monitor task.

e

Return Parameters: None

Error codes (returned in bits 15-0 of DO):

0/%00 Successful.

2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exist.

10/$0A Target task is not attached to an exception monitor.

EXAMPLE :

TSKA wants to detach itself from its exception monitor.

TSKA:
MOVE.L #65,D0 Load DEXMON directive nuhber 65.
LEA PRMBLK, A0 Load parameter block address.
TRAP #1 s
BNE FAULT Branch, if error.
PRMBLK : Dch 0,0,0,0 Detach requesting task from monitor.
MICROSYSTEMS

206

@ MOTOROLA
EXCEPTION MANAGER

CHAPTER 9
EXCEPTION MANAGER

9.1 OVERVIEW

Exceptions are those conditions that cause the M68000 Family processor to
switch from executing in the wuser mode to the supervisor mode. When an
exception occurs the current status register, program counter, and the
optional vector offset register are pushed on the supervisor stack and an
exception vector number is generated, either internally by the processor or
externally by the interrupting device. This vector number is within the range
$0 to $FF and is multiplied by four to index into the longword vector table to
access the address of the routine that handles that exception.

These exceptions may be broken down into two classes:
a. Interrupts that are caused by a request for service from some external
device.
b. Program exceptions resulting from the program causing the processor to
enter a state that requires supervisor mode processing.
Program exceptions are further broken down into two sub-classes:
a. Error exceptions such as bus errors or divide by zero faults that
indicate error conditions within the program.
b. Trap instructions indicating that the wuser program is requesting

service from some supervisor mode routine.

The Exception Manager provides services to support all these exception
conditions via the directives:

CISR A task configures a portion of its code to act as an Interrupt
Service Routine (ISR) in response to a particular exception.

SINT A task simulates an exception (interrupt).

RTE A task returns from an exception. (Do not confuse the RMS68K
RTE direcitve with the M68000 RTE instruction.)

EXPVCT A task announces the handling of its own exceptions.

TRPVCT A task announces the handling of its own trap instructions.

MICROSYSTEMS

207

@ MOTOROLA
EXCEPTION MANAGER

CDIR A task configures a portion of its code to act as an extension
of RMS68K's set of directives.

SNPTRC The contents of the System Trace Table are copied into a buffer
in the calling task's address space.

9.2 THEORY OF OPERATION

9.2.1 Interrupt Handling

RMS68K provides two modes for handling interrupts:

a. Task-level ISRs

These ISRs run in the user mode of the processor, are relatively easy
to use, but are slower to respond because of the requirement to save
the previous state of the processor and load the MMU before
dispatching the ISR.

b. Driver-level ISRs

This level of ISR runs in the supervisor mode, respond faster because
only a portion of the previous state 1is saved, but require more
discipline to write because they run in supervisor mode with access to
all memory.

The following pages provide a detailed description of the task-level ISRs.
Driver-level 1ISRs are described in the manual Guide to Writing Device Drivers
for VERSAdos.

9.2.1.1 Task-Level ISRs. A task can configure one or more routines activated
as the result of an external interrupt (or exception), and executed in the
M68000 Family microprocessor user hardware state at the interrupt priority
level via the CISR directive. This routine is called an ISR and is useful
when creating task-level I/0 device drivers.

A task that wants to do an I/0 function can do so by acquiring a segment that
includes the memory mapped I/0 space for a particular device. An ISR within
the task can clear interrupts, read-to or write-from device I/0 registers, and
do other such activities. On exit from the ISR, the task can be activated to
process data. This mechanism allows quick response to an interrupt in the
user mode and allows the time-consuming function of data manipulation to be
executed when time is available.

When an ISR is active, all task-level activities in the entire system are
disabled, but an. ISR can be interrupted in favor of an ISR with a higher
priority level. Therefore, it is important that an ISR uses a minimum amount
of execution time to avoid system performance degradation and lost interrupts.

MICROSYSTEMS
208

@ MOTOROLA
EXCEPTION MANAGER

When an external interrupt occurs, RMS68K saves the pre-interrupt state of the
processor and invokes the ISR at the appropriate processor priority level.
When control is passed to the ISR, register A0 contains the vector number in
the Jow order 16 bits, and register Al is set equal to the value of the
argument provided in the CISR directive parameter block. The contents of all
other registers are completely unreliable. When a normal exit is made from
the ISR, no state information is saved; RMS68K returns the processor to the
pre-interrupt state.

RMS68K distinguishes between the task-level execution and ISR execution of a

task. During ISR execution, only one executive directive is allowed; the RTE
directive. This directive is not available for use during task-level
execution.

The RTE directive can activate the task containing the ISR by issuing it a
WAKEUP signal or queueing it an event.

9.2.1.2 Simulating Interrupts. In system development it is often necessary
to design the hardware and software components simultaneously. Most of the
software can be checked on a development system by inserting stubs for
routines that directly access the hardware. Once the high-level functionality
is checked out in this way, a primitive hardware simulator may be built to
verify some of the lower level functions.

The Simulate Interrupt. (SINT) directive.allows a task to emulate the behavior
of an external device interrupting the processor at a specific interrupt level
and vector. Thus, a task that delays for a time and then executes a SINT
directive can be an effective component within a hardware simulator.

9.2.2 Exception Handling

The TRPVCT and EXPVCT directives allow a task to announce to the exception
manager that it wants to claim trap exceptions or error exceptions. If an
exception occurs that has been previously claimed by TRPVCT or EXPVCT, the
exception manager will push the status register and program counter on the
task's stack and dispatch the task to the address specified in the TRPVCT or
EXPVCT parameter block. Then the task's exception handling routine can
determine what action to take and return to the point at which the exception
occurred by executing the RTR instruction.

For bus and address error exceptions, EXPVCT pushes 8 additional bytes of
descriptive information on the user's stack after pushing the status register
and program counter. This information includes the attempted access address
that caused the fault, the instruction register at the time of the fault, and
one word describing the faulted bus cycle. This information is in the format
of the MC68000 long bus error stack frame, regardless of whether the processor
is an M68000, M68010, or M68020, and is described in detail in the M680O00
16/32-Bit Microprocessor Programmer's Reference Manual.

The stack frames pushed by the exception manager when dispatching a task to
its internal exception handler are described in Figures 9-1 and 9-2.

MICROSYSTEMS
209

@ MOTOROLA
EXCEPTION MANAGER

USP —eommmm - > SR at moment of exception Loc.
PC at moment of exception Loc. +2

FIGURE 9-1. User Stack on Entering
Exception Handler for all
Exceptions except Bus or
Address Errors

USP ———-momm - > Internal information Loc.
Fault address Loc. +2
Instruction register Loc. +6
SR Loc. +8
PC Loc. +10

FIGURE 9-2. User Stack on Entering
a Bus Error or Address
Error Exception Handler

Claiming exception conditions 1is sometimes necessary when implementing high
level language constructs such as PL/1 “"on" conditions, where the program
describes what action to task when certain programming conditions occur such
as divide by zero faults.

The TRPVCT and EXPVCT can work with exception monitors. Where both the
exception monitor and the task want to be notified of an exception, and the
exception occurs, the task 1is placed in the WAIT FOR COMMAND state and the
exception monitor 1is notified first. If the exception monitor decides to
allow the task to keep running and executes the REXMON directive, the task is
dispatched to its exception handling routine.

9.2.3 Defaults

The default condition for interrupts that were not claimed by any task or
driver is to return from the interrupt as if nothing happened. For TRAP
instructions that were not claimed by the task itself or by any server, the
default condition returns an error code. The default condition for error
exceptions not claimed by the task itself or by an exception monitor is to
abort the task with an abort code describing the error exception. This error
format is:

$8010 Bus Error
$8011 Address Error
$8012 I1legal instruction

$8013 Zero divide

$8014 CHK instruction

$8015 TRAPV instruction

$8016 Privilege violation

$8017 Unimplemented instruction ($AXXX)
$8018 Unimplemented instruction ($FXXX)

210 MICROSYSTEMS

@ MOTOROLA EXCEPTION MANAGER

The exception manager contains a stub for the ACFAIL exception so the user can
insert the code to implement their policy for handling this catastrophic
condition. When a SYSFAIL exception occurs, the exception manager notifies
all device drivers so they can poll their devices to see if any device is
asserting SYSFAIL.

9.2.4 Extending RMS68K

There are two techniques for adding extensions to RMS68K.

a. Writing a directive and linking it into the Executive as described in
Chapter 10.

b. Using the CONFIGURE (CDIR) directive.

CDIR allows a task to configure a portion of its code as an RMS68K directive
to run in supervisor mode as the result of some task loading its directive
number into register DO and executing a TRAP #1 instruction. When the user
directive is called, it possesses a pointer to the client task's TCB in A6 and
a copy of the task's A0 register in AO. Because user directives run in
supervisor mode with all Jlogical addresses equal to their corresponding
physical addresses, they should be written in a position-independent way.

Also, if the client task's A0 is a pointer to a parameter block, the directive
must first convert it into a physical address by calling the TRAP #0 routine,
LOGPHY, as described in the manual Guide to Writing Device Drivers for
VERSAdos.

When the directive processing is complete, it can return to RMS68K by
executing an RTE instruction.

9.2.5 System Trace Facility

RMS68K provides a facility for tracing some system-level events such as:

a. Dispatching a task.
b. Interrupt occurred.
c. Exception occurred.

These events are enabled by a Trace Flag (TRCFLG) set-up at intialization

time. They are traced on a system-wide basis; any task that is dispatched or
causes an exception is traced if the appropriate bit is enabled within the
TRCFLG. A1l enabled events are recorded in a circular queue called the TRC.

This table can be read either via the monitor debugger or by a task executing
the SNPTRC directive. SNPTRC causes a copy of the TRC to be moved into the
task's memory with all pointers adjusted as required.

211 MICROSYSTEMS

TOROLA
™ mo L EXCEPTION MANAGER

Note that enabling the system trace facility degrades system performance and
should only be used within a debug environment. Also, to improve the
performance of real-time tasks, TRAP #1 instructions are not traced for tasks
executing within the real-time domain.

9.3 DATA STRUCTURES

Three data structures are supported by the exception manager:

a. I/0 Vector Table (IOV)
b. User Directive Table (UDR)

¢. System Trace Table (TRC)

9.3.1 1I/0 Vector Table (I0V)

The I0V contains an entry for each vector claimed by a task using the CISR
directive.

The table header is defined as:

IOVHDR (4 bytes) Block ID
Each IOVAT begins with '!I0V' to allow consistency checking
and ease of dump reading.

IOVEND (4 bytes) Address of end of table.

Each entry is defined as:

I0VJSR (6 bytes) A JSR instruction to the common interrupt routine. When a
vector is allocated, it is changed to point to IOVJSR.

IOVVECT (2 bytes) Vector number.

IOVICB (4 bytes) TCB address of task that owns this vector.

IOVADR (4 bytes) ISR address.

IOVARG (4 bytes) Argument to be placed in register Al when ISR is entered.

MICROSYSTEMS
212 ‘

@ MOTOROLA
EXCEPTION MANAGER

9.3.2 User Directive Table (UDR)

An entry is placed in the UDR each time a directive is configured by the CDIR
directive.

UDR (4 bytes) Block ID.

UDRCNT (2 bytes) Number of entries in table.

A UDR entry is defined as:

UDRSESS (4 bytes) Originating task's session number.
UDROPT (1 byte) Options.

UDREXIT (1 byte) Exit number.

UDRADDR (4 bytes) Directive entry address.

9.3.3 System Trace Table (TRC)

Entries are built 1in the TRC when various events occur. The setting of the
SYSGEN parameter TRCFLG determines which events cause an entry to be built.

BIT NUMBER
IN TRCFLG EVENT TRACE CODE
15 TRAP #1 $FF15
14 1/0 Interrupt not claimed $EE14
by user task
13 Timer interrupt $FF13
12 User TRAP (#2-#15) $AAL2
11 Exception $AALL
10 Dispatch $FD10
9 I1/0 interrupt claimed $EE09
by user task
8 Return from LOADMMU $DDO08
7 Simulated interrupt $DD07
6 SYSFAIL interrupt $EE07

213 MICROSYSTEMS

M) mororoLA EXCEPTION MANAGER

The TRC header information is:

TRCPTR (4 bytes) Pointer to address where next entry will be stored.
TRCLNG (4 bytes) Pointer to the highest address in table.

A TRC entry is defined as:

TRCCODE (2 bytes) Trace code described above.
TRCSR (2 bytes) Status register.
TRCPC (4 bytes) Program counter.

TRCAO (4 bytes) Contents of A0 or second program counter if tracing 1/0
interrupt.

TRCA®G (4 bytes) Contents of A6. —
TRCDO (4 bytes) Contents of DO.

TRCTIME (4 bytes) Time-of-day (in miiliseconds).

TRCTIM2 (2 bytes) Extension to time-of-day (in microseconds).

9.4 EXCEPTION MANAGER DIRECTIVES

The directive for the exception manager are described in detail on the
following pages.

214 MICROSYSTEMS

@ MOTOROLA
EXCEPTION MANAGER

CONFIGURE INTERRUPT SERVICE ROUTINE CISR
Directive Number: 61
Parameter: Parameter Block Address
Parameter Block:
Target Task (8 bytes) Task_id of target task.

Directive Options (2 bytes) Bits 15-13=000 Allocate exception vector
to target task's ISR.

=001 Dissolve an existing ISR
vector connection. If this
option 1is specified, only
the vector number field
must be supplied.

=010 Switch an exception vector

to new ISR.
Bits 12-0 Reserved
Reserved (1 byte) Must be zeros.
Vector Number (1 byte) The vector number of the exception wector

‘being allocated, deallocated, or switched.
Values can be any vector number $00 through
$FF not already used by the system.
Typically values in the user interrupt range
$40 through $FF are used.

ISR Address (4 bytes) Logical address of target ISR.

Argument (4 bytes) A user-defined value that 1is loaded into
address register one (Al) when an interrupt
occurs.

Detailed Description:

A task can allocate only those excéption vectors not currently assigned to
other functions (such as ISRs, server tasks, etc.).

A system task can dissolve any ISR vector connection. A user task can only
dissolve the connection for itself and other tasks within its own session.

MICROSYSTEMS

215

@ MOTOROLA
EXCEPTION -MANAGER

CISR

If the switch option is specified (option bits 15-13 = 010), the specified
exception vector is connected to the specified ISR address within the
specified target task. A system task can switch an exception vector from any
task to any other task. A user task can switch an exception vector from
itself or any task within its session to itself or any task within its
session.

NOTE

Any program exception occurring during ISR processing terminates
ISR execution with an event describing the exception queued to
the task. Breakpoints set by an exception processing task cause
an exception interrupt that terminates ISR execution. On entry
to the ISR, all registers, except Al, are in an undefined state
(any stack, etc. assumed by the user must be set up within the
ISR).

WARNING

ISR EXCEPTION EVENTS (CODE = $02) ARE 10 BYTES
LONG. IF A TASK HAS AN ASQ AND CONFIGURES AN
ISR, THEN THE ASQ'S MAXIMUM MESSAGE LENGTH
MUST BE AT LEAST 10 BYTES.

RTE is the only Executive directive that can be issued during ISR execution,
and is unavailable for use in task-level execution.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):

0/%00 Successful.

2/%02 Parameter block not in requestor's address space.
3/%03 Target task does not exist.

5/%05 No space in the IOV.

6/%06 Requested vector not available.

7/%07 Vector does not belong to caller.

12/%0C ISR address not in user's address space.

15/%0F Invalid options.

MICROSYSTEMS
216

@ MOTOROLA EXCEPTION MANAGER

CISR

EXAMPLE :

A non real-time user task, TSKA, wants to redirect number 232 exception vector
connection from itself to an ISR at location ISRADR within TSKB. The address
of BEGDATA will be moved to address register one when an interrupt occurs.

TSKA:
MOVE.L #61,D0 Load CISR directive number 61.
LEA PRMBLK ,AD Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PRMBLK: DC.L ' TSKB' Target taskname.
DC.L 0 N/A; user task.
DC.W $4000 Switch one exception vector to new ISR.
DC.B 0 Reserved
DC.B $E8 Vector 232/$E8.
DC.L ISRADR New ISR address.
DC.L BEGDATA Data to load into Al on interrupt.
MICROSYSTEMS

217

@ MOTOROLA
EXCEPTION MANAGER

SIMULATE INTERRUPT SINT
Directive Number: 62 —
Parameter: Parameter Block Address

Parameter Block:
Not Used (2 bytes)

Interrupt Priority (1 byte) Hardware priority level of the exception to
be generated.

Vector Number (1 byte) The exception vector number of the exception
to be generated. Value may be in the range
$00 to $FF, inclusive.

Detailed Description:
The vector number specified must be currently connected to a task-level ISR.

RMS68K activates the ISR as if the actual exception (interrupt) had occurred o
at the specified level.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):

0/%00 Successful.

2/%02 Parameter block not in requestor's address space.
9/%09 Requesting task does not have permission to request this
function.

14/$0E Function is not enabled.

MICROSYSTEMS
218

(ZE)nq¢>11:w:¢>LA|
EXCEPTION MANAGER

SINT

EXAMPLE:

TSKA wants to generate an interrupt internally with exception number 226 at
hardware priority level 5.

TSKA:
MOVE.L #62,D0 Load SINT directive number 62.
LEA PRMBLK ,AQ Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
PRMBLK: DC.W 0 Not used.
DC.B 5 Hardware interrupt priority.
DC.B $E2 Exception vector number 226 ($£2).
MICROSYSTEMS

219

M mororoLa

RETURN FROM INTERRUPT SERVICE

Directive Number: None

Parameters: Register DO=0
=1
=2

Register D1

Register D2

Detailed Description:

This

EXCEPTION MANAGER

RTE

Simple return from ISR.

Return from ISR and issue WAKEUP to task.
Return from ISR and queue event to task's ASQ.
Needed only if D0=2. If nonzero, it specifies
an alternate ASR service address. If zero,

the default ASR service address assumed.

Needed only if DO=2. The 4 bytes of this
register include the text of the event message
queued to the task's ASQ.

is the only Executive directive that can be issued during ISR execution,

and is unavailable for use in task-level execution.

If D0=0, the processor is simply returned to the pre-interrupt state.

If DO=1,

RMS68K moves the task that contains the ISR from the WAIT state to

the READY state and returns the processor to the pre-interrupt state.

If DO0=2, RMS68K creates an event with event code = $02, using the contents of

register D2 as the message text.
If an alternate ASR service vector is in register

task containing the ISR.
D1, this s

the pre-interrupt state.
Return Parameters: None

Error Codes:

queued along with the event.

It then queues the event into the ASQ of the

The processor is then returned to

If an exception occurs in the ISR, an error event is sent to the

ASQ of the task containing the ISR; a WAKEUP is also issued with

error code in DO.

EXAMPLE :
An ISR has completed execution and wants to issue a WAKEUP to the task in
which it is contained:
ISRADR:
MOVE.L #1,D0 Issue WAKEUP to task on return.
TRAP #1 Return from interrupt service.

MICROSYSTEMS
220

TOROLA
M) mo EXCEPTION MANAGER

ANNOUNCE EXCEPTION VECTORS EXPVCT

Directive Number: 26

Parameter: Exception Vector Table Address

Exception Vector Table:

The exception vector table consists of nine 4-byte entries, each of which is
the transfer address for the appropriate exception. The applicable
exceptions, in order, are:

Bus Error

Address Error
I1legal Instruction
Zero Divide

CHK Instruction
TRAPV Instruction
Privilege Violation
Line 1010 Emulator
Line 1111 Emulator

Detailed Description:

The wuser must have previously allocated a stack area for EXPVCT to work.
RMS68K uses the exception vectors in the above table to handle exceptions that
occur during execution of the dssuing task. A value of zero in any table
entry results in default processing of the exception. Any other value causes
the following to take place when an exception is encountered:

a. The proper information 1is pushed on the stack, according to the
MC68000 Family microprocessor exception processing sequence.

b. The task begins executing at the address specified by the vector table
entry.

Bus and address errors cause 14 bytes to be pushed on the stack. Other
exceptions cause 6 bytes to be pushed on the stack.

After the EXPVCT directive has been executed, the requestor can dynamically
alter exception processing by swapping values in specific table entries,
without re-issuing an EXPVCT directive.

Return Parameters: None

MICROSYSTEMS
221

@ MOTOROLA
EXCEPTION MANAGER

EXPVCT

Error Codes (returned in bits 15-0 of DO): —
0/%00 Successful.
2/%02 Exception vector table not in requestor's address space.
EXAMPLE :

TSKA wants to handle its own zero divide exception at location ZERDVD. All
other exceptions are handled by default processing.

TSKA:
MOVE.L #26,D0 Load EXPVCT directive number 26.
LEA VECTBL,A0 Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
ZERDVD:
Handle zero divide exception.
RTé Return from exception.
VECTBL: Dc:L 0,0,0 Exception address for ZERDVD.
DC.L ZERDVD
DC.L 0,0,0,0,0
MICROSYSTEMS

222

@ MOTOROLA
EXCEPTION MANAGER

ANNOUNCE TRAP VECTORS TRPVCT

Directive Number: 27

Parameter: Trap Vector Table Address

Trap Vector Table:

The trap vector table consists of fourteen 4-byte entries, each of which is
the transfer address for the appropriate trap instruction. The table covers
TRAP #2 through TRAP #15.

Detailed Description:

The wuser must have previously allocated a stack area for TRPVCT to work. A
task can indicate to RMS68K that it will handle its own TRAP instructions,
which takes precedence over a server task responding to the TRAP instructions,
(i.e., if a server task is established to service TRAP #9 instructions, and a
task claims TRAP #9 instructions via TRPVCT, the task will be notified and the
server task will not.)

RMS68K uses the trap vectors in the above table to handle trap instructions
that occur during the execution of the issuing task. A value of zero in any
table entry results in default processing of the corresponding trap
instruction. Any other value causes the following to take place when a trap
instruction is encountered:

a. SR and PC pushed onto user stack (6 bytes).
b. Task begins executing at location specified by vector table entry.
After the TRPVCT directive has been executed, the requestor can dynamically

alter trap instruction processing by swapping values in the trap vector table,
without re-issuing a TRPVCT directive.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):

0/%00 Successful.
2/%02 Trap vector table not in requestor's address space.

MICROSYSTEMS
223

(::)nﬂ¢>11:m:¢>LAl
EXCEPTION MANAGER

TRPVCT

EXAMPLE : -

TSKA wants to handle its own TRAP #4 instruction. A1l other TRAP #
instructions are to be handled by default processing.

TSKA:
MOVE.L #27,D0 Load TRPVCT directive number 27.
LEA VCTTBL,A0 Load parameter block address.
TRAP #1
BNE FAULT Branch, if error.
TRP4 : . Service TRAP #4 instruction.
RTIi Return from TRAP exception.
VCTTBL: DCzL 0,0 Default serve of TRAPS #2, #3.
DC.L TRP4 Address to serve own TRAP #4s.

DC.L 0,0,0,0,0,0,0,0,0,0,0 Default serve of TRAPS #5 to #15.

~TN

MICROSYSTEMS
224

@ MOTOROLA
EXCEPTION MANAGER

CONFIGURE DIRECTIVE CDIR
Directive Number: 58
Parameter: Directive Block Address

Directive Block:

Directive Number (2 bytes) This 1is a negative number. Its range is
-1 to -n, with n determined by a SYSGEN
parameter.
Options (2 bytes) Bits 7,6 Reserved
Bit 5=0 Enable the directive number
specified.

=1 Disable the directive number
specified.

Bit 4=0 Directive can only be called

by tasks within this session.

=1 Directive can be called by any
task in system (caller must be
a system task).

Bits 3,2 Reserved

Bit 1-0=00 When directive exits, return
control to requesting task.

=01 When directive exits, go to
dispatcher. Do not put
requesting task on READY
list.

=10 When directive exits, put
requesting task on READY 1ist
and then go to dispatcher.
=11 Reserved

— Directive Routine Entry Address Start address (within calling task's
(4 bytes) address space) of directive routine.

Detailed Description:

The CDIR directive provides a way to create new Executive directives for use
by specific applications.

MICROSYSTEMS
225

@ MOTOROLA
EXCEPTION MANAGER

CDIR

Executive directive routines are executed in supervisor mode with no memory
mapping or protection provided. It is the responsibility of the user of this
directive to ensure that the integrity of the system stack pointer is
preserved, that the contents of memory are not inadvertently destroyed, that
interrupts are not masked for excessive periods of time, and that control is
returned to the Executive through the normal TRAP #1 exit processing.

Executive directive routines are not tasks and therefore may not request
services from server tasks or from the Executive via the TRAP #1 interface.
This could cause the system to crash. These directive routines may request
services from the Executive via the TRAP #0 driver interface as described in
the Guide to Writing Device Drivers for VERSAdos manual.

Error Codes (returned in bits 15-0 of DO):

0/$00 Successful.

2/%02 Parameter block not in requestor's address space.

4/%04 User Directive Table (UDR) does not exist.

5/%$05 Directive number is out of range allowed in the user

directive table.

6/$06 Duplicate user directive number.

9/%$09 User task cannot disable a directive created by another
session.

12/%0C Address of directive routine is not within caller's address
space.

When a TRAP #1 directive routine is entered:
A7 = System Stack Pointer
The status register contents and program counter needed to return to
the TRAP #1 exit routine are already loaded on the stack and should
not be changed. Data can be saved on the stack during the processing
of the directive, but must be removed before the exit.
A6 = Pointer to requesting task's TCB

This register must not be changed by the directive routine. The
state of the requesting task has been saved in the TCB.

A0 = Requesting task's AO
The contents of all other registers is unpredictable.

MICROSYSTEMS
226

@ MOTOROLA
EXCEPTION MANAGER

CDIR

Returning error codes:

By convention, error information is returned to the requesting task as a code
number in DO. A directive routine provides a code to be returned in DO by
moving the code to the 2-byte word at TCBRTCD (A6). The requesting task's
condition code on return is set according to the content of TCBRTCD (A6) when
the directive exits. (The equate for TCBRTCD is in the file 9995.&.7TCB.EQ.)

Return to the TRAP #1 exit processing is achieved by executing a M68000 RTE
instruction (not an RMS68K RTE directive).

EXAMPLE :

A system task, TSKA, configures and executes a directive GTBUF. GTBUF is

accessible to any task within the system and returns directly to the
requesting task (subroutine return).

TSKA:

MéVE.L #58,D0 Load- CDIR directive number 58.

LEA PRMBLK, AD Load parameter block address.

TRAP #1

BNE FAULT Branch, if error.

MbVE.L #-1,D0 Load GTBUF directive number -1.

TRAP #1

BNE FAULT Branch, 1if error.

. A0 now contains pointer to buffer.
PRMBLK : DC.W -1 GTBUF directive number is -1.

DC.W $10 Enable directive. Directive available
to any task within system. Return
control to task.

DC.L GTBUF New directive address.

GTBUF:

MdVE.L BUFPTR, TCBAO(A6) Return a pointer to requesting
task.
RTE Return from directive processing.

MICROSYSTEMS
227

@ MOTOROLA
EXCEPTION MANAGER

SNAPSHOT OF SYSTEM TRACE SNPTRC

Directive Number: 8

Parameter: Address of buffer where the TRC is copied.

Detailed Description:

The contents of the TRC are copied into the buffer provided within the address
space of the requesting task.

The pointers within the trace table, to the next free entry and to the end of

the table, are adjusted to point to equivalent addresses within the
requestor's own buffer.

Return Parameters: None

Error Codes (returned in bits 15-0 of DO):
0/%00 Successful.
12/%0C Buffer not in requestor's address space or buffer not large
enough to contain trace table.
EXAMPLE :

TSKA wants to move the contents of the TRC into a buffer labeled TRACBUF.

TSKA:
MéVE.L #8,D0 Load SNPTRC directive number 8.
LEA TRACBUF ,AQ Load buffer block address.
TRAP #1
BNE FAULT Branch, if error.
TRACBUF : Dé.L 34 Buffer to hold trace table information.
MICROSYSTEMS

228

@ MOTOROLA
BUILDING A SYSTEM

CHAPTER 10

BUILDING A SYSTEM

10.1 INTRODUCTION

The software development of & real-time application system is broken into four
phases:

a. Analysis Used to determine the potential value and need of
a system, the system's functional requirements,
and the impact to the hardware environment.

b. Design Defines the data, establishes interfaces, design
functional components, and write the code for
user-provided modules.

¢. Implementation Modifiable system parameters are specified,
source modules are assembled or compiled, load
modu les are created, and the system is

configured.

d. Test and debug Testing the performance and reliability of the
entire system, including individual modules, and
groups of modules.

These four phases are not necessarily four distinct phases carried out in a
particular sequence; instead they overlap each other. For example, the test
and debug phase wusually begins during the implementation phase. Also, it
cannot be assumed that system functional requirements, hardware design, and
interfaces, will remain constant during system development. There are many
factors that influence system development throughout all phases.

The following paragraphs describe each of these phases as a stand-alone
entity, only because it 1is difficult to talk about them as an integrated
package. These paragraphs bring out general system development concepts and
RMS68K system specific development procedures. The general system development
guidelines in the following paragraphs may not be appropriate for every
application system; the user must tailor the techniques for the needs of a
particular application system being developed.

10.2 ANALYZING YOUR SYSTEM

The analysis phase of system development is also the "what to build" phase.
Therefore, this phase begins with the realization of the need for a real-time

system. Many types of systems are built using real-time operating system
concepts, including industrial process control systems, operations control
systems, data acquisition systems, management information systems, and

development systems.

MICROSYSTEMS
22% o

@ MOTOROLA
BUILDING A SYSTEM

During the analysis phase, system designers should consider some general
questions:

a. What are the basic functional requirements of the system?
b. What type of real-time system can satisfy these requirements?

c. What hardware and software components are needed to satisfy these
requirements?

Before any other questions are answered, the basic functional requirements
must be defined. During the analysis phase questions arise that do not have
an obvious answer; they are answered through an integrated approach requiring
decisions and compromise.

10.2.1 Hardware Environment

The wuser system can be designed and built to operate in a variety of hardware
environments. Although this is not a complete 1ist, some of the more common
environments are described here. RMS68K assumes RAM exists for the system
vectors, addresses $8 through $3FF, inclusive, and that the SYSPAR variables
exist within the sort-addressable space ($FF8000 - $7FFF).

Complete Bootstrap Loadable System

The entire wuser system 1is initially Jlocated in non-resident memory or a
peripheral mass storage device in this environment. At system startup time,
RMS68K, a system initializer, and resident user tasks are loaded into system
RAM. The system initializer executes first and performs such duties as:

a. Memory sizing
b. System parameter and table initialization
c. Task state configuration

When the system initializer completes its execution, the RMS68K dispatcher is

invoked and the system is functional. Removing the system initializer from
RAM frees the space for future use.

ROM Resident RMS68K System

In this environment, only RMS68K and a simple system initializer are located
in resident memory at system startup time. The system initializer executes
first, constructing a list of free memory and performing a load operation to
load a task into system RAM that could complete the system initialization.
This is the first task dispatched by RMS68K; remaining resident user tasks are
loaded 1into system RAM. When the task has completed execution, removing the
task from system memory makes the area available for future use. The system
is then functional.

MICROSYSTEMS
230

@ MOTOROLA
BUILDING A SYSTEM

Complete ROM Resident System

RMS68K, a system initializer, and resident user tasks are all Tocated in
system ROM at system startup time in a complete ROM resident system.

10.2.2 Functional Requirements

The functional requirements of a system must be clearly defined before
beginning the design process. A few items the user may want to consider when
defining the functional requirements are:

Input rate

Types of input

Device responses
System response time
Task priorities

Output characteristics
Reliability

10.2.3 Basic Software Components

The complete user application system consists of four major components:
Application tailored RMS68K

System initializer

Memory-resident user tasks
Non-memory-resident user tasks

a0 oo

Tailored RMS68K

The complete RMS68K package provided to the user is extensive and offers a
wide variety of tools that the system designer can incorporate into the
application system. Because of the extensive nature of the complete RMS68K
package, it is unlikely that a given application would require the full set of
RMS68K capabilities. The user can reduce the complete RMS68K package into a
target RMS68K tailored to fit the needs of the application system. The system
is tailored by choosing the set of Executive directives required to provide
the desired functions, and building the reduced RMS68K to contain that
executive directive subset. Appendix C discusses the tailoring method.

System Initializer

The system initializer is normally executed first, following a system startup.
Its main functions are to create and initialize system control data, and then
give control to the task dispatcher of RMS68K so that system operation can
begin. Typical duties of the system initializer include:

MICROSYSTEMS
231

10

@ MOTOROLA BUILDING A SYSTEM

Initialize exception vectors.

Build a 1ist of free memory.

Initialize system parameters and tables used by RMS68K.
Configure resources into given states.

Make resident tasks known to RMS68K.

Place resident tasks to be executed on the READY 1list.

O Q0O O

User Tasks

Some user tasks are executed frequently throughout the operation of the
application system and must always reside in system memory. They are known to
RMS68K from system initialization time and are called memory resident user
tasks.

Other tasks are only needed occasionally during the operation of the
application system. These tasks do not reside in system memory, bul are
stored in nonresident memory or peripheral mass storage devices. The task is
created and loaded into system RAM memory when it is needed and removed from
the system RAM memory area when it has completed its execution. Therefore, a
nonmemory resident task is known to RMS68K only when it is in the system RAM
memory.

10.3 DESIGN CONSIDERATIGNS

The components needed to satisfy the functional requirements are defined
during the design or "how to build" phase of system development. The
following paragraphs give background information that can help determine the
best approach to a particular design problem. Sometimes, it is possibie to
research existing systems that are similar to the one being designed and can
often provide valuable insight into the best approach for a new system, as
well as point out problem areas to avoid during system development.

10.3.1 Defining Tasks

Defining the tasks that make up an application system is made easier by using
a top down structured method when defining the system functions. Modules are
grouped together to form tasks according to functional binding after
determining the detailed level of functional modularity. This binding is
reflected by the amount of data passed between tasks. An attempt should be
made to minimize the data or messages passed between tasks; more messages
means added overhead for the management of those messages, and often indicate
poor functional partitioning of the system.

The designer should realize, however, that there is a danger in carrying the
jdeas of modularity or functional binding too far. If many small tasks are
created to obtain modularity, the overhead used by RMS68K in managing all the
small tasks can damage system performance. If a few large tasks are created
so that little data needs to be passed between tasks, it reduces the overhead
used by RMS68K in task and data management but destroys the multitasking
concept used by RMS68K.

MICROSYSTEMS
232

N

@ MOTOROLA
BUILDING A SYSTEM

It is also helpful to consider tasks in relation to the design organization.
If one or a few tasks are assigned to individual designers, tasks could exist
as truly independent modules. Each designer only has to be aware of the
function and interfaces of other tasks; this helps prevent too much
interaction between tasks.

One other concern in defining task boundaries is the ease of maintenance of
the system. If changes and enhancements are kept in mind while defining
tasks, the job of implementing future changes and enhancements is minimized by
grouping affected areas together.

Relative task priorities should also be considered at the time the tasks are
defined. Tasks with higher priorities, that are considered prime-time tasks,
should operate quickly and efficiently. Lower priority tasks, or spare-time
tasks, can do longer operations without degrading system performance.

10.3.2 Device Drivers

There are two methods for a user to provide device drivers in an RMS68K
application system and are described below to help determine the best method
to use.

Interrupt Service Routines (ISRs

The ISR mechanism provided by RMS68K is also used to provide device drivers.
Chapter 9 explains the ISR mechanism. This method provides operation in the
user hardware mode of the M68000 Family microprocessor.

With this method the user must provide the synchronization needed in dealing
with the device. Some overhead still exists, however, because interrupts must
still be treated by RMS68K and dispatched to the proper task for processing.

I/0 Handlers

This method described in detail in the Guide to Writing Device Drivers for
VERSAdos manual, uses the optional Channel Management Routines (CMR) within
RMS68K. It is a method of extending the Executive with I/0 personality.

The user has complete control over the device and must provide synchronization
needed in dealing with the device. This method runs in supervisor mode and is
the most efficient method of doing I/0.

MICROSYSTEMS
233

TO A
@ MoTOROL BUILDING A SYSTEM

10.3.3 Exception Monitor

There are two reasons for the exception monitor mechanism:

a. To provide a debugging capability.

b. To provide the user with the capability of handling alarm situations
within the system.

For example, all tasks within a system could run under the control of one
exception monitor. The exception monitor is notified any time an error
condition occurs and relays the error condition information to a console to
request human operator intervention.

10.4 IMPLEMENTING YOUR SYSTEM

Once the user tasks are coded and relocatable object modules are obtained the
final system is ready to be created. There are three main steps:

a. Build the tailored RMS68K load module.
b. Build the application load modules.
c. Create file suitable for system bootload operation or ROM creation.

The following paragraphs provide background information for these steps. The
step-by-step procedure for creating the application system is in Appendix C.
10.4.1 Building RMS68K Load Module
As mentioned earlier, a subset of all RMS68K functions can be chosen for
inclusion in an application system. Keeping this in mind, four steps are
necessary to build the RMS68K Toad module:

a. Select appropriate RMS68K modules that provide the desired function.

b. Change any supplied RMS68K source modules to reflect the modules
chosen in step a.

c. Assemble source modules.

d. Link object modules to produce final load modules.

MICROSYSTEMS
234

@ MOTOROLA
BUILDING A SYSTEM

Directive Selection

The wuser determines the directives based on the implementation requirements
brought out in the system design phase or the functions required for a similar
system. A simpler way to determine the directives is to test the system using
the complete RMS68K discarding those not used.

Group or individual directives can be selected. A group of directives
contains all directives dealing with a particular concept, such as memory
allocation and management, or exception monitors. Within a group, only
particular directives may be required. As an example, the entire server
directive group could be discarded if a system is not going to use the concept
of server tasks. However, only the DSERVE directive would be discarded if the
system 1is going to use the server task concept but not going to dynamically
deallocate server functions. Appendix G contains a summary of directives by
function.

Frequently, certain entities (such as semaphores) are created during the
system build procedure; the directive that creates the entity dynamically need
not be included. Likewise, the directive that deletes the entity is excluded,
if an entity does not need to be dynamicaily deleted during system operation.

The modules that support these directives are chosen once the directives are
determined. Sometimes, there 1is only one module corresponding to one
directive. In other cases, if a directive has options, one module represents
each version of the directive. In yet other cases, several partial modules
are provided for one directive; a particular combination of these partial
modules must be selected to provide the directive with the desired options.
Details of modules corresponding to directives are given in Appendix A.

Source Module Modification

The directive table, TABLE1l, should be changed by the user to reflect the
directives chosen for inclusion in the system. The RMS68K package includes a
source module (TRAP #1) containing TABLEL. Each entry in the table
corresponds to one directive. The entries are numbered from 0 to the highest
numbered directive in the system. The entries for all excluded directives
should be modified (refer to Appendix C).

Assembling and Linking

Chain files are supplied in the RMS68K package that assembie the modified
source modules and 1link the selected object modules. The user modifies the
chain files to include only the required modules in the assembly or link
process.

MICROSYSTEMS
235 , e .

@ MOTOROLA
BUILDING A SYSTEM

10.4.2 Building the Application Load Modules

The application load modules contain code consisting of memory resident tasks,
system initializer, and data areas. There are two steps for building the
application load module:

a. Produce relocatable or absolute modules for all resident user supplied
tasks and data.

b. Produce a relocatable or absolute module for the system initializer.

User-Supplied Tasks and Data

Each system task, user task, and associated data that is to be ROM resident or
bootloaded is assembled and linked to form an independent load module. They
are identified later to RMS68K.

System Initializer

The RMS68K package includes a system initializer in source form. The system
initializer is wused as is, modified, or compietely rewritten, as the user
deems necessary. It is assembled wusing the chain file provided with the
RMS68K package.

10.4.3 Create Bootload or ROM File

The final step in creating an application system is to make a file suitable
for bootload or ROM creation out of the RMS68K load module and the application
Toad module that has been built. This is done by using the SYSGEN utility.
Appendix C contains the steps for building this bootload or ROM file.

10.5 TESTING AND DEBUGGING YOUR SYSTEM

The RMS68K-based application system can be tested and debugged on the MC68000-
Family microprocessor-based system, wusing the appropriate firmware debug
monitor or the SYMbug symbolic debugging utility. Refer to the corresponding
debug reference manual.

MICROSYSTEMS
236

@ MOTOROLA
APPENDIX A

APPENDIX A

LIST OF PARTS SUPPLIED IN RMS68K PACKAGE

A.1 INTRODUCTION

RMS68K is distributed in object-only form as well as source/object. The
object-only product contains all relocatable object modules necessary to
generate a real-time multitasking Executive for all of Motorola's supported
M68000 Family of processors. There are specific system generation chain files
that allow the user to generate an RMS68K Executive for each of the following
systems or single board microcomputers.

EXORmacs
VME/10
VME/12
VMO1
YM02
VMO3
VM04

VMC 68/2
VME101
VME110
VME115
VME120
VME121
VME122
VME123
VME128

A.2 CONTENTS OF VOLUME REAL-TIME MULTITASKING

The RMS68K package 1is made up of a number of modules that support various
processor and module configurations. To easily identify which configuration a
particular module supports, some naming conventions have been applied to the
varjous files that make up the RMS68K package. A catalog name has been added
to all RMS68K modules. These are broken into four classes; processor type,
system type, MMU type, and timer chip type. The following table describes the
catalog names.

Processor Type

M68XXX These modules may be used on all systems regardless of processor
type.

M68000 These modules may be used only on MC68000 based configurations.

M68010 These modules may be used on MC68010 based configurations. Some of
these modules are also used on MC68020 configurations.

M68020 These modules may be used only on MC68020 based configurations.

MICROSYSTEMS
237

M) moToROLA

a specific

APPENDIX A

system configuration of the

These modules apply to a specific system configuration of the VM04.

to

to

to

to

System Type

EXORmacs These modules apply to
EXORmacs.

VM04

VME101 These modules apply to
MVME101.

VME110 These modules apply
MVME110.

VME120 These modules apply
MVME120/MVME121.

VME122 These modules apply
MVME122/MVME123.

VME128 These modules apply
MVME128.

MMU and CACHE Type

M68451 These modules apply to

NOMMU These modules apply to

NOCACHE These modules apply to

NOMMUC These modules apply to

Timer Chip

M6840 These modules apply to

M146818 These modules apply to

M68301 These modules apply to

M68230 These modules apply to

78036 These modules apply to

a specific

a specific

a specific

a specific

a specific

system using
system using
system using

system using

system using
system using
system using
system using

system using

238

system configuration of the
system configuration of the
system configuration of the
system configuration of the

system configuration of the

the MC68451 MMU.
no MMU.
no CACHE.

no MMU but a CACHE (MVME122).

the MC6840 timer chip.

the MC146818 timer chip.
the MC68901 timer chip.
the MC68230 timer chip.

the 28036 timer chip.

MICROSYSTEMS

(M) moToroLA

Some examples of modules with their catalog names are:

EXORMACS.LOADMMU.RO Module that manipulates

M68XXX.DELAY.RO

board.

APPENDIX A

of the EXORMACS.MPU

Module that handles time delay calls for all processor

types.

M68010.DISPATCH.RO Module that handies task dispatching for MC68010 based

M146818.RDTIMER.RO

systems/modules.

A.2.1 RMS68K Directive Modules

Module specific to the MC146818 real-time clock chip.

A 1list of relocatable object modules followed by the name of the directive(s)

contained 1in the module follows.
directive GTASQ.

describing the

AKRQST.RO
ASQALOC.RO
ASQEVENT.RO
ASQFREE.RO
ASQGET.RO
ASQREAD.RO
ASQSTATS.RO
ATSEM.RO
CACHE.RO
CDIR.RO
CISR.RO
CMR.RO
DCLSHAR.RO
DELAY.RO

DEMON.RO

These module names

For example, module ASQALOC.RO supports the
contain an appropriate catalog

chip type support (refer to Appendix A.1 for description of
catalog naming conventions used).

AKRQST
GTASQ
QEVNT
DEASQ
GTEVNT
RDEVNT
SETASQ
ATSEM and CRSEM
FLUSHC
CDIR
CISR
CMR
DCLSHR
DELAY
DEXMON

239

MICROSYSTEMS

M moToroLA

DERQST.RO
DESEM.RO
DSERVE.RO
EXMMSK .RO
EXMON.RO
GTDTIM.RO
GTTASKID.RO
GTTNAME .RO
PSTATE.RO
RCVSA.RO
RELINQ.RO
RESUME.RO
REXMON.RO
RQSTPA.RC
RSTATE.RO
RTEVENT.RO
SEGALOC.RO
SEGDEAL .RO
SEGSHAR.RO
SERVE.RO
SETPRI.RO
SGSEM.RO
SINT.RO
SNAPTRAC.RO
STDTIM.RO
SUPER.RO

SUSPEND.RO

DERQST

DESEM, DESEMA
DSERVE

EXMMSK

EXMON

GTDTIM

GTTASKID

GTTASKNM

PSTATE. Uses EXMONVR.
RCVSA

RELINQ

RESUME

REXMON

RQSTPA

RSTATE. Uses EXMONVR.
RTEVNT

GTSEG

DESEG

ATTSEG and SHRSEG
SERVER

SETPRI

SGSEM and WTSEM
SINT

SNPTRC

STDTIM

SUPER

SUSPND

240

APPENDIX A

L~

MPCROSYSTEMS

M) moToroLa

TERM.RO

TFRSEG.RO

TSKATTR.RO
TSKBORN.RO
TSKINFO.RO
TSKMOVE.RO
TSKSTART.RO
TSKWAIT.RO
USERVECT.RO
WAKEUP .RO

WTEVENT.RO

APPENDIX A

ABORT, TERM and TERMT. Uses DSEGX, DSRVX, EXQEVENT, and

PAUSE .
TRSEG

TSKATTR

CRTCB

TSKINF

MOVELL

START and STOP
WAIT

EXCVCT and TRPVCT
WAKEUP

WTEVNT

A.2.2 . Real-Time Multitasking Subroutines

The following modules

function as subroutines and are called by other real-

time multitasking modules.

ASRINT
BKG

CKDELAY
CKEXPAT
DSEGX
DSEMX
DSRVX
EQDQ
EXABRT
EXMONVR
EXQEVENT

Provides an event pseudo-interrupt if appropriate.

Schedules and dispatches any background routines on the

background queue.

Processes satisfied DELAY or periodic activation.
Processes satisfied Executive periodic activation.
Deletes segments from terminating tasks.

Detaches terminating task from semaphores.

Frees trap instructions belonging to terminating tasks.
Holds server requests until the server is ready.
Provides real-time multitasking-initiated task aborts.
Used by some exception monitor directives.

Used to real-time multitasking-initiated event to a

task.

queue an

MICROSYSTEMS
241

@ MOTOROLA

EXRQPA
FNDGSEG
FNDTSEG
FNDUSEM
GETTCB
KILLER

LOGPHY

PAGEALOC
PAGEFREE
PAUSE
PVSEM
RDTIMER
READY
TRACER

APPENDIX A

Used to request Executive periodic activation.
Locates a segment descriptor in the GST.
Locates a segment descriptor in a TST.

Locates a user semaphore.

Locates a TCB.

Provides a controlled system halt.

Translates a logical address to a physical address and verifies
that a logical address range is within a task's address space.

Performs physical memory allocation.

Frees physical memory.

Waits for I/0 to complete during termination of a task.

Performs semaphore signals and WAITS.

Reads the system timer. o
Places a task in the READY 1list.

Inserts an entry into the trace table.

A.2.3 Real-Time Multiasking Special Modules

The following .RO modules provide special functions.

COMINT
DISPATCH
EXCEPT
EXIT
POWRFAIL
RMS
RMSPATCH
SELFTEST
SPURINT

SYSPAR

Common interrupt handler.

Sends a task into execution.

Determines appropriate response to traps and exceptions.
Implements specific exit policy from directive processing.
Provides stub for user-defined power failure ISR.

Contains entry point to RMS.

Patch area for RMS.

Provides stub for user-defined self-test routine.
Processes spurious interrupts.

Contains XDEFs for system parameters.

MICROSYSTEMS
242

@ MOTOROLA APPENDIX A

TIMEINT Responds to timer interrupts.

TRAPO Handles TRAP #0 real-time multitasking calls.
TRAP1 Handles directive calls and external interrupts.
VECTTBL Refer to Appendix C, paragraph C.3 for description.

A.2.4 Equate Source Files: 9995

The following assembler source files are included to allow the user to
assemble modified or original RMS68K source modules.

STR.EQ General purpose equates

TCB.EQ Task Control Block (TCB)

TST.EQ Task Segment Table (TST)

SEG.EQ Used by some segment-oriented modules
ASQ.EQ Asynchronous Service Queue (ASQ)

GST.EQ Global Segment Table (GST)

UST.EQ User Semaphore Table (UST)

SRVR.EQ Server equates

TIOT.EQ Trap instruction owner equates

TACK.EQ Server acknowledge options

I0V.EQ User interrupt vector equates

ENV.EQ Chip-oriented equates

TRACE.EQ Trace table

CCB.EQ Channel Control Block (CCB)

PANEL .EQ EXORmacs front panel

MAP.EQ Memory Map Tables (MEMMAP)

PAT.EQ Periodic Activation Table (PAT)

UDR.EQ User Directive Table (UDR)

BAB.EQ Equates relating to background activation blocks.
TRIRTCD.EQ Equates for error return codes from RMS and EXIT macro.

MICROSYSTEMS
243

M) mororoLa APPENDIX A

A.2.5 RMS68K Module Source Files

The following assembler source files are included within the object release to
allow the wuser to modify modules for tailoring purposes. Each source file
name contains a <catalog’ that specifies which system or processor module is
supported. These files appear in various catalogs under 9999. Many appear in
more than one catalog. The link chain file for the target system specifies
which version (catalog) of each module is used.

SYSPAR.AG Two versions of the system parameter modules are supplied.

RMS.SA RMS68K initial entry point following system startup.
RMS.SA also contains entry points for null routines that
can be used if functions are deleted from RMS68K.

VECTTBL.AG Table used to initialize the system exception vectors.

KILLER.SA Saves registers and halts execution when unrecoverable
error occurs.

TRAP1.SA Contains TRAP #1 handler and TABLEl that specifies which
RMS68K directives can be invoked by tasks through TRAP #1
instructions executed in user mode.

READY.SA The READY module is called by other supervisor functions to
place a task on the READY list. Multiple entry points are
provided so that task priority can be modified before
placing a task on the READY 1list.

VECTORS.SA This module is wused in an EXORmacs-based system to allow
room for the hardware vectors.

SELFTEST.SA This module provides an entry point for a self-test
routine. The self-test routine must be added if needed.

POWRFAIL.SA This module provides an entry point for a power fail or
sysfail routine. The power fail or sysfail routine must

be added if needed.

TIMEINT.SA Timer interrupt handler.

<catalog>RDTIMER. SA Two versions are provided to support MC6840 or
MC146818. The RDTIMER module is called by other RMS68K
routines when a time-of-day value is required. It may
have to be modified for a system with a timer other
than the MC6840 or MC146818.

MICROSYSTEMS
244

@ MOTOROLA
APPENDIX A

M68451.LOADMMU. SA These routines handle the 1loading of the appropriate

EXORMACS . LOADMMU . SA MMU when a task is to be dispatched. The M68451 and

EXORMACS . FAKEMMU. SA EXORMACS modules load the MC68451 or EXORMACS MMU from

NOMMU . LOADMMU . SA the TST. The NOMMU module is for systems without an

NOMMUC > LOADMMU . SA MMU and does not load any registers. NOMMUC is for
systems with CACHE but without an MMU. EXORMACS.
FAKEMMU.SA is provided so that a system that will
ultimately run with no MMU can be tested on an
EXORmacs . It loads the MMU with the entire address
range.

A.2.6 RMS68K Assembly/Instruction Files

Chain and instruction files are provided to assemble those files identified as
RMS68K source files. A default module name of <module name-.LS is assumed on
each assembly if no output file/device is specified. The format of all
assembly chain file names is <module name->.AF, while the instruction filename
format is ASMNEWS.XX.

A.2.7 RMS68K Initializer Files

INIT.SA Assembler source for initializer program code.

<catalog>.INITIOL.AG Assembler source for the subroutine INITIO called by
INIT. These source files allow specific I/0 devices to
be initialized during system boot.

INITDAT.AG Assembler source for initializer data. Includes
substitution parameters for the system generation
process.

MICROSYSTEMS

245

@ MOTOROLA
APPENDIX A

THIS PAGE INTENTIONALLY LEFT BLANK.

MICROSYSTEMS
246

@ MOTOROLA
APPENDIX B

APPENDIX B
SYSTEM PARAMETER AREA (SYSPAR)

The SYSPAR module defines the RMS68K system parameter area, which is an area
in RAM that functions as the RMS68K work space. It contains configuration
parameters and parameters required to manage Executive resources.

SYSPAR is assemblied at the physical memory address where the system parameters
will reside in a running system. It also contains an equate defining the
physical memory address of an area where RMS68K can save registers in the
event of a system crash (CRASHSAV). If it is necessary to change these
addresses, SYSPAR.AG must be modified and re-assembled using the chain file
SYSPAR.AF.

The RMS68K parameters are defined within SYSPAR and initialized during system
startup.

MAPBEG (4 bytes) Points to the beginning of memory map table.

BKG_FLAG (1 byte) Set when driver schedules a background job.

PREEMPT_FLAG
(1 byte) Set when Executive detects a preempt.

NULL (2 bytes)
EXCSTACK (4 bytes) Contains address of top of supervisor stack.

RUNNER (4 bytes) Points to the Task Control Block (TCB) of the currently
executing task.

TCBHD (4 bytes) Points to the first TCB in the list of all TCBs. Zero
indicates no TCBs exist.

READYHD (4 bytes) Points to the first TCB in the list of ready-to-execute
tasks. Zero indicates no tasks ready.

CCBHD (4 bytes) Points to the first Channel Control Block (CCB) in the list
of all CCBs. Zero indicates no CCBs exist.

MMUHERE (4 bytes) Contains the memory-mapped address of the Memory Management
Unit (MMU). Zero indicates no MMU being used.

GSTBEG (4 bytes) Points to the Global Segment Table (GST). Zero indicates
no GST exists.

USTBEG (4 bytes) Points to the User Semaphore Table (UST). Zero indicates
no UST exists.

MICROSYSTEMS

247

@ MOTOROLA
APPENDIX B

UDRBEG (4 bytes) Points to the User Directive Table (UDR). Zero indicates
no UDR exists.

PATBEG (4 bytes) Points to the Periodic Activation Table (PAT). Zero
indicates that no PAT exists.

TRACEBEG (4 bytes) Points to the system trace table.

TRACFLAG (2 bytes) System trace flags.

MACSTRC (4 bytes) Points to the resident debug monitor trace routine.

PANEL (4 bytes) Contains the memory-mapped address of the EXORmacs front

panel registers. Contains a dummy address if no front
panel exists.

TIMER PARAMETERS

DATE (4 bytes) Current date.
PTMADDR (4 bytes) Contains the memory-mapped address of the timer device.

TIMEOUT (2 bytes) Counter of the number of timer interrupts since the last
dispatch.

TIMESLIC (2 bytes) Number of timer interrupts allowed in a timeslice.

NSE (4 bytes) Absolute time in milliseconds of next significant event
(when next periodic activation node is due to be
scheduled).

TIME_LEFT (4 bytes)Amount of time in milliseconds until next periodic
activation node is due to be scheduled.

MIDNIGHT (4 bytes) Absolute time in milliseconds of previous midnight.

TIMINTV (2 bytes) Number of milliseconds between timer interrupts.

TIMINTV4 (2 bytes) Value psed to set the timer to the time interval specified.
TIMINTR (4 bytes) Holds microsecond remainder for odd clock rates.

TINTFLAG (1 byte) Set to indicate a timer interrupt has occurred.

TMSGFLAG (1 byte) Not used.

SPURIQUS INTERRUPT VARIABLES

SPURCNT (2 bytes) Count of the number of spurious interrupts that have
occurred. Any nonzero value is an indication of a possible
hardware problem.

MICROSYSTEMS
248

@ MOTOROLA APPENDIX B

SPURTIME (4 bytes) The time_of_day of the first spurious interrupt occurrence.

MMULOAD (4 bytes) Points to the task segment table from which the MMU was
last loaded.

VCTUBGN (4 bytes) Points to the start of the vector use table.

IOVCTBGN (4 bytes) Points to the start of the vector assignment table.

DEFAULT PARTITION NUMBERS AND TYPES

ADEFTYP (1 byte) Memory type and/or partition number used when allocating
space for an ASQ.

TDEFTYP (1 byte) Memory type and/or partition number used when allocating
space for a TCB.

SDEFTYP (2 bytes) Default memory type and/or partition number used when
allocating space for a system task.

UDEFTYP (2 bytes) Default memory type and/or partition number used when
allocating space for a user task.

SLFTSTA7 (4 bytes) A7 saved if self-test called.

EXECUTIVE SEMAPHORES

SEMTCB (6 bytes) Semaphore protecting the TCB 1list.

SEMGST (6 bytes) Semaphore protecting the GST.

SEMUST (6 bytes) Semaphore protecting the UST.

SEMCCB (6 bytes) Semaphore protecting the CCB 1list.

SEMTIOT (6 bytes) ?$?8$?ore protecting the Trap Instruction Owner Table

TRAP INSTRUCTION ASSIGNMENT TABLE

TIAT (16 bytes) This table consists of one byte for each of the 16 trap
instructions. The contents of each byte are:

$00 trap is unassigned
$01 trap is reserved for RMS68K
$02 trap is assigned to server task

MICROSYSTEMS

249

OTOROLA
@ M APPENDIX B

TRAP INSTRUCTION OWNER TABLE

TI0T This table consists of one 22-byte entry for each of the 16
trap instructions. An entry is defined as:

TIOTTCB (4 bytes) Server task TCB address
TIOTSESS (4 bytes) Server task sessions number

TIOTSEM (6 bytes) Semaphore used to limit access to the
server task's ASQ

TIOTADDR (4 bytes) Server task's ASR address
TIOTMCNT (2 bytes) Count of unacknowledged messages
TIOTSTAT (1 byte) Status

Bit 15=1 Server function enabled

Bit 14=1 Server wants termination notification

Bit 13=1 Server wants parameter block moved
with message

Bit 12=1 Message sent to server, ACK pending
Bit 11=1 DERQST called while ACK pending

TIOTPBSZ (1 byte) Parameter block size

BACKGROUND PARAMETERS

BKG_HEAD (4 bytes) Points to the first entry in the background queue. Zero
indicates that no background jobs are present.

BKG_TAIL (4 bytes) Points to the last entry in the background gueue. Points
to BKG_HEAD if the queue is empty.

BKG_ACTIVE (1 byte)This flag is true (nonzero) when the background is running.

CURR_ASN {1 byte) Current address space number within the MC68451 MMU.

POINTERS USED BY SDLC AND NETWORK SERVICES
FREEQHD (4 bytes) Free buffer queue head.

DBUFSZ (2 bytes) Size of data area in buffer.
FQLWM (2 bytes) Free queue low water mark.

MICROSYSTEMS
250

M) moToroLA

FQBCNT
USERQHD
USERQND
SDLCPCB
NNTBEG
NATBEG
LCTBEG
NWPSEG
NWTSEG
NWDQHD

(2 bytes)
(4 bytes)
(4 bytes)
(4 bytes)
(4 bytes)
(4 bytes)
(4 bytes)
(4 bytes)
(4 bytes)

(4 bytes)

NWSTATUS (4 bytes)

V2RQHD
MEMOFF

SYSPOFF

(4 bytes)
(4 bytes)

(4 bytes)

APPENDIX B

Free queue current buffer count.
User buffer queue head.

User buffer queue end.

Pointer to primary control block.
Pointer to network name table.

Pointer to network address table.
Pointer to logical connect table.

Limits of network procedure segment.
Limits of network table segment.
Disconnect (task terminated) gqueue head.
Network status (-1 = dead).

Requests for action by VM0Z2 system.

VM02 board memory offset.

VMO2 SYSPAR area offset.

POINTERS USED BY I0 DRIVERS, ETC.

CTRLREG
DPRVAO
RAD1TBL
RIOTBL
DCOTBL
ACOTBL
INPTBL

DACTBL

(4 bytes)
(4 bytes)
(4 bytes)
(4 bytes)
(4 bytes)
(4 bytes)

(4 bytes)

(4 bytes)

Pointer to VM02 control register.
Dual-ported RAM VERSAdos address offset.
Pointer to table used by RAD1 driver.
Pointer to RIOl driver table.

Pointer to DCO driver table.

Pointer to ACO driver table.

Address of interrupt queue control table for the MVME-
610/620 driver.

MVME605 driver table address.

SDLC/ TS FREE QUEUE END

FREEQND

(4 bytes)

Pointer to end of free queue.

MICROSYSTEMS

251 o

M moToroLA

APPENDIX B

PARAMETERS RELATING TO ADDRESS SPACE

ASNTBL (4

NOTLAM (4

LAM (4
FRST451 (4
LAST451 (4
CURR451 (4
CURRSD (4

bytes) Points to table of task address space numbers.
bytes)-(Page size - 1) for segment allocation.

bytes) (MC68451 logical address mask) *256.

bytes) Address of first MC68451.

bytes) Address of last MC68451.

bytes) Address of MC68451 to next check for swapping.

bytes) Segment descriptor in CURR451 to next check.

PARAMETERS FOR FLUSHING CACHE

(Applies only to VME120, VME121, VME122, VME123, and VME128 based systems.)

CFLUSH (4

bytes) Address for flushing cache.

If ((CFLUSH) = F_BANK1) —~
Then (flush bank 1 only); '

Else If ((CLFUSH) = F_BANK2)

Then (flush bank 2 only);

Else If ((CFLUSH) = F_ALL)

Then (flush banks 1 and 2);

LAST_MMU_INT_LEVEL

(2 bytes) On systems using the MC68451 MMU, this contains the

interrupt level of the last bus error that resulted in the
load of a segment descriptor.

252 MICROSYSTEMS

@ MOTOROLA
APPENDIX C

APPENDIX C

RMS68K CONFIGURATION

C.1 INTRODUCTION

This appendix details the steps to tailor RMS68K to the user environment.

C.2 ADDING OR DELETING DIRECTIVES
When a TRAP #1 is executed by a task, the Executive responds to the exception
by entering the TRAP #1 routine. This routine saves the state of the task

that executed the TRAP #1, and then references a table (TABLEl) that contains
an entry for each directive.

TABLE1 can be modified and then re-assembled by invoking the chain file
TRAP1.AF.

C.2.1 TABLEl Entry Format

An entry in TABLE1l is created by the SETUP1 Macro. The syntax for SETUP1 is:

SETUP1 -<directive_number-,<directive_name>,<pb->,<len(pb),<tt:
where:

<directive_number> is the number of the directive or label that has been
equated to the directive number.

NOTE: TABLEl must be created in order of increasing
directive number with no gaps.

<directive_name- label of first instruction in directive code.

<pb: "PB" indicates this directive requires a parameter
block; anything else indicates no parameter block is
required.

<len(pb)- number of bytes in parameter block. Only applicable
if <pb> = "PB".

<ttt "TT" in this field indicates this directive may access

a target task. Anything else indicates this directive
does not access a target task.

MICROSYSTEMS
253

@ MOTOROLA
APPENDIX C

C.2.2 Register Use in TRAP #1 Directive Routines

When a TRAP #1 directive processing routine is entered, the following
registers are set:

A7 Supervisor stack.

A6 TCB address of <calling task. This register must not be changed by
the processing routine.

A5 TCB address of target task if the "TT" option was specified in the
options field of the TABLEl entry.

A4 Absolute physical address of the calling task's parameter block if
the "PB" option was specified 1in the options field of the TABLEL

entry.

A0 If the "PB" option was not specified in the TABLEl entry, A0 contains
the value it had when the TRAP #1 was executed by the calling task.

C.2.3 Return from Directivé Processing Routine

A set of exit macros are contained in the file 9995.&.TRIRTCD.EQ. This file
should be included in any module containing an RMS68K directive.

If the directive did not cause the task to enter a WAIT state, the directive
should call the EXIT macro with the SUB argument which causes a subroutine
exit from the Executive.

EXAMPLE: EXIT SUB

If the directive caused the task to enter a WAIT state, the directive should
call the EXIT MACRO with the POST argument that tells the Executive to
postempt the task (i.e., leave it off the READY 1ist and go through a dispatch
cycle).

EXAMPLE: EXIT POST

If the directive encountered an error, the directive should call the EXIT
MACRO with the appropriate error code as an argument. (The equates for error
codes are also contained in 995.&.TRIRTCD.EQ.)

EXAMPLE: EXIT RTCDOPT Exit and signal an invalid option (error
code = $0F).

MICROSYSTEMS
254

TN

@ MOTOROLA
APPENDIX C

C.3 EXCEPTION VECTORS

The hardware vector addresses are initialized during system startup. The
module VECTTBL.AG consists of a table describing how the vectors are
initialized.

A specific VECTTBL.AG is supplied for each of the supported configurations
identified by <catalog-.

Vectors fall into two classes:

a. Assigned to a specific Executive function.
b. Unassigned, point to COMINT, the common interrupt module.

The assigned vectors are aimed at specific portions of the Executive. As
examples, the vector number $02 points to the Executive's bus error handler;
the vector number $21 points to the TRAP #1 module.

The exception vectors point to the exception pseudo-vectors within the EXCEPT
module. Most trap instruction vectors point to the trap pseudo-vectors within
EXCEPT. If the EXCEPT module is not included in the target Executive, the

vectors should be redirected.
Most external interrupt vectors point to the COMINT module.
VECTTBL header:

DC.L "IVCT!
System startup searches for this table header, so it must be included as the
first 4 bytes of the table.
A macro is provided to create table entries:

VECTOR <vector number:,<vector address
If the vector address specified in the table is 0, the address assigned to
that vector is a pointer to COMINT. These vectors are initially unassigned
and are handled by the common interrupt handler.
If the vector address specified in the table is 1, this vector is skipped
during initialization. Normally the address left at this vector location is
the address used by the firmware debugger. Typical cases of vectors that

might be skipped during initialization are the software abort vector, or the
illegal instruction vector.

MICROSYSTEMS
255

@ MOTOROLA
APPENDIX C

C.4 RMS68K INITIALIZER

Three modules comprise the RMS68K initializer:

INIT.SA Contains initialization code common to all systems.
INITIO1.AG Contains initialization code specific to a particular system.
INITDAT.AG Contains initialization data.
Ordinarily the user never changes INIT.SA or INITDAT.AG. The user may change
INITIO1.AG source; it is reassembled during SYSGEN operation.
C.4.1 SYSGEN Parameters
The supplied initializer contains a data area (INITDAT.AG), that receives
SYSGEN parameters. Some typical parameters are described in the following

Tist. The SYSGEN parameter names are slightly different from the names for
the corresponding variables in INITDAT.

MEMBEND1 Top of partition zero. (Address after last byte in partition

zero.)
MEMEND2 Bottom of partition one. (Address of first byte in partition
one.)
MEMEND3 Top éf partition one. (Address after last byte in partition one.)
STACK The address of the desired Executive stack area. For example, to

have a stack that consumes $8FF and downward, specify $900.

MMU If an MMU is to be used, this specifies its address in the memory
map. Zero specifies no MMU.

PANEL The address of the EXORmacs front panel, if appropriate. Zero
specifies no panel.

ASN The number of address spaces, currently 0 or 127 (M68451).

GST The number of 256-byte pages to be in the GST. Zero specifies no
GST. Each page can accommodate about 14 entries. This table is
required if any task uses 1locally or globally shared memory
segments.

UsT The number of 256-byte pages to be in the user semaphore table.
Zero specifies no UST. Each page can accommodate about 11
entries.

UDR The number of 256-byte pages to be in the UDR. Zero specifies no

UDR. Each page can accommodate about 25 entries.

MICROSYSTEMS
256

N

@ MOTOROLA APPENDIX C

PAT

IoV

TRACE

TRCFLG

TIMER

CLOCKFRQ

TIMINTY

TIMSLIC

STARTRMS

WHERLOAD

The number of 256-byte pages to be in the PAT. Zero specifies no
PAT. Each page can accommodate about eight entries. This table
is required if any task uses DELAY or RQSTPA directives.

The number of 256-byte pages to be in the I0V. Zero specifies no
I0V. Each page can accommodate about 12 entries.

The number of 256-byte pages to be in the trace table. Each page
can accommodate about 10 entries. This table is required if any
trace flags (TRCFLAG) are set.

This is a 2-byte field in which each bit describes a type of
occurrence that should be traced while the system is running:

Bit 16=1 Set to trace TRAP #1

Bit 14=1 Set to trace interrupts

Bit 13=1 Set to trace timer interrupts

Bit 12=1 Set to trace user TRAP #2-#15

Bit 11=1 Set to trace exceptions

Bit 10=1 Set to trace dispatches

Bit 9=1 Set to trace user claimed interrupts
Bit 8=1 Set to trace return from LOADMMU

Bit 7=1 Set to trace simulated interrupt

Bit 6=1 Set to trace SYSFAIL interrupt

The address of the timer device. Zero specifies no timer.

The clock frequency is the number of ticks that occur in one
millisecond.

The time interval (in milliseconds) between timer interrupts.
Normally, the time interval is 10 milliseconds. The maximum value
is 64. (This parameter is not used on the VME/10. The actual
value used for the VME/10 is 15.625 milliseconds.)

The number of timer interrupts aliowed before a task is forced to
relinquish the processor. In the released system, this variable
is set to 2.

The address of the RMS68K entry point. When finished, the
initializer jumps to this location.

The address at which RMS68K is actually loaded, if it must be
moved at system startup time. If booting from disk on a
VERSAmodule 01 system, the boot file must be loaded into offboard
memory and then moved to onboard memory. If WHERLOAD = 0, no move
takes place.

MICROSYSTEMS
257

@ MOTOROLA
APPENDIX C

C.4.2 Memory Map Table

The memory map table, which is part of the initializer data module, must be
modified to describe what memory is available and how it is divided into
memory partitions.

A macro is provided to build entries in the table MEMTABL:

MTENTRY ROM, <Tow limit-,<high limit-

MTENTRY - RAM,<low limit>,<high 1imit-,<memory type >*16,partition-

TOPIBOTTOM
where:
MTENTRY RAM indicates whether this entry describes RAM or ROM.
<low Timit- describes the address range of this partition.

<high limit-
If the entry describes ROM, no other fields are required.

If the entry describes RAM, memory type and a partition number must be
specified.

<memory type>*16 any value from 0-7.
<partition> any value from 0-15. Must be unique for each partition
described. Any number of partitions can have the

same type value assigned.

TOPIBOTTOM describes whether the memory partition header
information should be placed at the top or bottom of

the partition.

The total available RAM in a system can be divided into partitions so that a
given allocation request can be limited to a specific address range.

MICROSYSTEMS
258

S

@ MOTOROLA
APPENDIX C

C.4.3 Memory Allocation Default Values

A1l memory allocation requests are made for a specific memory type and/or
partition number. The.default values for the various kinds of allocation are
defined in the Initializer data segment.

Each default value is 1 byte containing <memory type>*16+<partition-.

The fields included in the data segment are:

MEMTYPA (1 byte) Default type and/or partition number used when allocating
ASQs.

MEMTYPT (1 byte) Default type and/or partition number used when allocating
TCBs.

MEMTYPS (2 bytes) The first byte is the default type and/or partition number
used when a system task allocates a read-only segment.

The second byte is the default type and/or partition number
used when a system task allocates a read/write segment.

MEMTYPU (2 bytes) The first byte is the default type and/or partition number
used when a user task allocates a read-only segment.

The second byte is the default type and/or partition number
used when a user task allocates a read/write segment.”

C.5 RMS68K LOAD MODULE

Command files have been provided for the user to create a fully functional
RMS68K load module for each of the support configurations listed in the table
below. These command files are used as input to the SYSGEN utility that
processes the commands to produce the desired RMS68K load.

EXORMACS.RMS.CD generates EXORMACS .RMS.LO
VMES10.RMS.CD generates VMES10.RMS.LO
VME101.RMS.CD generates VME101.RMS.LO
VME110.RMS.CD generates VME110.RMS.LO
VME115.RMS.CD generates VME115.RMS.LO
VME120.RMS.CD generates VME120.RMS.LO
VME122 .RMS.CD generates VME122.RMS.LO
VME128.RMS.CD generates VME128.RMS.LO
VMO1.RMS.CD generates VMO1.RMS.LO
VM02.RMS.CD generates VMOZ2.RMS.LO
VMO3.RMS.CD generates VMO3.RMS.LO
VM04 .RMS.CD generates VMO4 .RMS . LO

MICROSYSTEMS
259

@ MOTOROLA
APPENDIX C

C.6 PROCEDURE TO BUILD AN RMS68K LOAD MODULE
The following procedure summarizes the steps necessary to generate an RMS68K
load module.

1. Log on to VERSAdos as user :9999.

2. Execute the command line:

=RMSGEN.CF <argl-,<arg2-
where:

<argl> = mnemonic for system configuration
<arg2> = output file/device (optional listing)

RMSGEN.CF performs the RMS SYSGEN associated with the specified
mnemonic.

The mnemonic -argl> is one of the following:

EXORMACS
VMO1
VM02
VMO3
VYM04
YME101
VME110
VME115
VME120
VME122
VYME128
VMES10

3. On completion, this procedure has generated a 1load module with the
appropriate catalog, along with a list (LL) file containing a Tisting of
SYSPAR, VECTTBL, and the link listing for RMS68K. The newly created file
can now be used for further system generation.

MICROSYSTEMS
260

@ MOTOROLA
APPENDIX D

APPENDIX D
RMS68K ERROR CODE SUMMARY

Error codes appear in the 1low order byte of DO if a call to RMS68K is
unsuccessful.

ERROR
CODE CAUSE QF ERROR

Issued by TRAP Handler

$01 Directive number given in register DO is not valid if the trap is a
TRAP #1. Otherwise, there is no server for this trap or the service
is unreachable from this session.

Issued by RMS68k Directives.

$02 Parameter block address is not in requesting task's address space.
$03 Target task does not exist.

$04 Required table does not exist.

$05 Table is full; insufficient space for new entry.

$06 Duplicate request; function cannot be performed again.

$07 Entry not found in table or list.

$08 Memory space is not available.

$09 Requesting task does not have permission to request this function.
$0A State of the target task is not valid for this directive.

$08B Request conflicts with existing table entries.

$0C Address of some parameter is not in requesting task's address space.
$0D Address of some parameter is not in requesting task's address space.
$0E Function is not enabled.

$0F Invalid options specified in parameter block.

$10 Invalid count or length field specified in parameter block.

MICROSYSTEMS
261 S

@ MOTOROLA
APPENDIX D

THIS PAGE INTENTIONALLY LEFT BLANK

MICROSYSTEMS
262

M moToroLA

This

appendix

APPENDIX E

CRASH ANALYSIS

provides procedures

CRASH ANALYSIS GUIDE FOR VERSAdos

There
indication
response to

that
operator

the running

input.

system may have

GUIDE FOR VERSAdos

APPENDIX E

for analyzing a VERSAdos system crash on
VERSAmodules, VMEmodules, and on EXORmacs.

determine the cause of the system crash.

Tools that may be required when analyzing memory:

1. The output
running system.
Tisting.

is no fail indicator on some VERSAmodules or the VMEmodules so the only
crashed is that there is no
When this happens, memory must be examined to

listing for the version of RMSGEN that is included in the
This tisting contains an assembled system parameter

2. The SYSGEN output produced when the running system was created.

The steps to follow when a system crash is suspected are:

1. Press

VME/10,
firmware

the

VME/12, or

<addr> <bytes-.

EXORmacs.

2. Display the CRASHSAV area in memory.

Look

address

of CRASHSAV

may

up the address of CRASHSAV in the SYSPAR assembly listing.
changed

have been

<catalog> .SYSPARV.AG was modified.)

EXAMPLE :

V«MD AOO

000AC0 00 00 19 C8 00 00 20 00

acrePlovena

~$Re=

VeMD ADS8 40

000a0¢
ocoate
000a2¢
000a3¢

cespQec==
0C 00 01 00 00 00 4€ EE
31 FC FO OF 00 2€ 31 7¢C
00 00 OC 00 0C FE 00 00
60 01 5¢ 00 00 01 SE 00

cowpfmmne ccapfacas

cceffen=-

00 00 01 00 00 Q0 4E EE

waaDRee=e
00 05 F7 F6 60 70 42 00
00 00 00 00 4B €0 00 28
00 05 F6 08 00 01 SE QO
00 01 3& 00 00 00 08 02

campfeeee PERYY Lo

cecafeon=

263

SOFTWARE ABORT button on the VERSAmodule, VMEmodule board,
This returns control to the resident
debugger so that memory can be examined using the command MD

(The
if the module

esesseNn. 0v pB,
1Peeelfueankme(
eeses snseVana®,

seteee®ecsVoseal

MICROSYSTEMS

@ MOTOROLA
APPENDIX E

If the system detected an error condition and called its crash
procedure (subroutine KILLER in RMS68K), the registers are saved in
the CRASHSAV area as indicated above.

If the Program Counter (PC) and Status Register (SR) displayed at
CRASHSAV are 0, then the system did not crash; go to step 7.

3. Compare the PC displayed in the CRASHSAV area with the RMS68K 1ink map
to determine which module called the crash procedure. If the PC
displayed is greater than the 1limits of RMS68K, check the SYSGEN
output to see if it is within the 1imits of the System Initializer
process (INIT.LO).

MODULE CAUSE OF SYSTEM CRASH ACTION

EXCEPT An exception condition (bus Go to step 4
error, address error, etc.)
occurred while running in
supervisor mode.

TERM A system task that is Go to step b
critical to the operating
system has aborted.

System The system 1is wunable to Go to step 6
Initializer complete its initialization
INIT.LO procedures.

4. Exception condition in supervisor mode

If an exception condition is the cause of a system crash, the system
stack area provides more information about the cause of the exception
condition.

Register A7 (displayed in the CRASHSAV area) contained the system
stack pointer when the crash happened.

Display $20 bytes of system stack.

EXAMPLE :
veuDd £D2 20
eeeplm=== ===P(2e-= =-fC= ==AQ0R=== <-QP-
000802 00 00 19 C8 00 00 17 74 38 65 00 05 58 71 38 6E eascccsvccscsosa
0008E2 20 Q06 00 00 20 B2 20 00 00 00 10 A 1C 80 00 00 cevecscesscccnee
-$R= ===pC3-=-
A7+%00 --> PC This is the same PC address saved in the CRASHSAV area.

MICROSYSTEMS
264

@ MOTOROLA
APPENDIX E

A7+$04 -—- PC2 This address points 2 bytes beyond the exception vector
address for the type of exception that caused the crash.

The exception vector addresses can be found in the RMS68K 1link

map.
SYMBOL EXCEPTION TYPE SYMBOL EXCEPTION TYPE
PROGINT2 Bus error PROGINT3 Address error
PROGINT4 Illegal instruction PROGINTS Zero divide
PROGINT6 CHK instruction PROGINT7 TRAPY

PROGINTS Priv. violation PROGINT9 Trace

PROGINTA Line 1010 PROGINTB Line 1111

A7+%08 --> FC ADDR OP

These 8 bytes are placed on the stack only by the bus error and
address error exceptions.

The FC field (2 bytes) contains address reference function code
flags.

The ADDR field (4 bytes) contains the address that could not be
accessed. .

The OP field (2 bytes) contains the opcode of the instructien
being executed.

A7+310 --> SR PC3

This is the SR and PC saved when the exception occurred. If FC
ADDR OP do not exist, then SR PC3 is found at A7+$08.

Knowing where the exception occurred and the address (if bus or address
error) that could not be accessed can provide a clue about which SYSGEN
parameter needs to be changed to run successfully.

5. SYSTEM TASK ABORT

When a critical operating system task aborts, the next step is to
display the aborting task's TCB. The starting address of the aborting
task's TCB was in A6 when the crash happened and was saved in the

CRASHSAYV area.

To interpret the contents of a TCB refer to paragraph 4.3.

MICROSYSTEMS
265

@ mo LA APPENDIX E

Some of the important fields are shown below:

TENbugs 2.0 > M) FAOO S0

00FAD00 21 54 43 42 00 o0 DE 00 00 00 GO 06 00 00 06 00 {TCB .~
00FAL0 2E 49 4F 53 00 00 00 0l 00 00 00 90 WU 00 00 V0 . XOS.
00FAZ0 00 00 00 G0 D1 D1 DI 00 A0 82 80 10 00 80 00 BOQEQA.
N0FA30 00 01 00 d0 00 00 VO VU FB & 00 Vi Yo 00 00 VO Lo
00F A40 00 U2 AC 00 U0 02 EF 00 00 00 00 00 00D 00 00 00 ..,...0

MD FAB0 -
00F ABO 45 58 45 43 20 26 206 20 11 01 00 A0 00 00 00 FE EXEC

TCB+$00 The characters '!TCB' appear in the first 4 bytes of every
TCB.
TCB+$04 TCBALL Pointer to next TCB in linked tist of all TCBs.

TCB+$10 TCBNAME Taskname.

TCB+$14 TCBSESSN Task session number.

TCB+$2A TCBABORT Abort code (Flagged by -AB-- above).
TCB+$40 TCBASQ The starting address of this task's ASQ.

TCB+$BO0 TCBATSK The taskname and session of the task that initiated the
abort or Executive if RMS68K initiated the abort due to an
exception condition.

TCB+$B8 TCBBERR If a bus error or address error caused the abort, this
field contains the 8 bytes of information saved on the
supervisor stack when the exception occurred. The 4 bytes
at TCB+$BC contain the address that could not be
referenced.

TCB+$100 TCBDO This is a save area for all 16 data and address registers
as they were the 1last time an Executive directive was
called or the task was interrupted.

MD FBOO 40

0GFBO0 U0 00 00 60 FA EZ 00 00 00 00 00 00 00 00 006 002¢

00FB10 00 00 00 01 0Y 01 BS CO 100 01 AF BO 00 01 AF A0 se. ./0. ./

00FB20 ©0 U8 00 82 C0 UL AD 28 00 02 AD 00 00 02 AD SE _-C L =A

0OFB30 0D 02 AD 9C DU 02 AD B4 n0 DO 00 H0 00 02 AE E6 . .- .. —4 +
TCB+$142 TCBPC The last PC saved when task entered Executive.

MD FB40

VUFBA40 00 04 00 00 E0 CE 00 84 00 00 00 00 00 00 0O 00 No.........

MICROSYSTEMS
266

@ MOTOROLA
APPENDIX E

A7 is the wuser stack pointer. If a system task aborted itself, it may have
saved the error code returned by an earlier Executive directive call on its
own stack; it may be useful to display the area pointed at by the task's stack
pointer.

6. SYSTEM INITIALIZER ABORT
Look at the assembly output for the system initializer data segment
that is part of the SYSGEN output (assembly of module INITDAT.AG).
Check to see that the memory partitions were defined correctly and
that other parameters were assigned reasonable values.
A list of possible initializer errors is:

a. There is no memory partition O starting at memory address 0.

b. Memory partitions have overlapping addresses.

c. The initializer could not find a vector table. The module
<catalog>.VECTABLV.AG must be included within the first 512 bytes
of RMS68K.

d. Memory is not available to build system tables. There may have
been an error when memory limits were defined.

e. The initializer is unable to find any TCB defined.

f. Error returned by RMS68K when initializer tried to create TCBs.
This can be caused by a duplicate taskname or by no memory
available.

g. A bus error occurred at an address that is not a page boundary
when the initializer was clearing memory. Register A3 contains
the address of the memory location that caused the bus error; a
probable cause of this error is a bad RAM board.

Most system 1initializer aborts are the result of problems defining memory
Timits. To display the contents of the MEMMAP, look up the address of the
symbol MAPBEG in the RMS68K 1ink map. The 4-byte address found at MAPBEG is a
pointer to MEMMAP, a table defining the limits of each memory partition.
Refer to paragraph 3.2.1 for a description of MEMMAP, as well as the free
memory list associated with each memory partition.

MICROSYSTEMS

267

M) moToROLA

EXAMPLE :

Display

APPENDIX E

MAPBEG :

V#MD COU

000COC OC 11 FE 14 00 00 00 00 00 GO OC 00 00 05 EF 00 secsccccccccnccs

Display

MEMMAP :

vsMD 11FE1A 40

11FEYZ OC 00 00 00 S8 00 00 11 FE 00 10 01 00 00 58 00 ..ceXeaooasaaeXe

11FE2# 0C 11 FE 00 20 02 00 00 58 00 Q0 11 FE 00 30 03
11FE32 OC 00 S8 00 0C 11 FE 00 FF FF Q0 00 00 00 00 00

11FEes OC GO 00 00 00 00 00 00 0C G0 00 00 00 00 00 00 cesecccconsccacs

Offset
memory 1

$6 from the start of each RAM partition entry is a pointer to the free
ist header:

veMD 11FECO

11FEQC 00 01 78 00 00 00 S8 00 00 18 00 00 00 00 00 01 .ececncesccnvene

At offset $0 is a pointer to the first free memory list entry:

v*ND 17800
01780C 00 11 18 00 00 00 00 00 0O 00 OF 88 00 00 00 ES cccccocscvesccse

7. SYSTEM DID NOT CRASH (nothing saved at CRASHSAV)
Display the SYSPAR area in memory. Look up the address of SYSPAR in
the RMS68K Linkage Editor map. The symbol RUNNER is at offset $C from
the start of SYSPAR. This is the current running task's TCB address
at the time of software abort. For a complete description of system
parameters refer to Appendix B.
EXAMPLE :
v*MD €00 40

000COC ©OC 11 FE 1A 00 00 00 00 00 00 0C QO 00 05 EF 00 ececcesceocconnss
g00C1C 00 01 3€& 00 00 00 00 00 00 11 FO 00 00 00 00 00 .sescescesveccsce
000c2C OC 11 Fa 00 00 11 F9 00 00 11 F3 00 00 11 F1 00 cceosccccsccccne
000C3C CO 00 00 FE 88 08 00 FE 00 00 00 00 02 €9 01 BC assesssccscccccss

Next, display the contents of the running task's TCB. Refer to step 5
for explanation. If the running task is an operating system task
(.105, .FHS, .TTY), display the contents of the task's ASQ (offset
$40). The ASQ structure is defined in paragraph 2.3. By checking the
ASQs of these tasks, a probable cause for no response at the terminal
may be determined.

MICROSYSTEMS
268

@ MOTOROLA
APPENDIX E

EXAMPLE :
VsM0 SEFO00 30

00SEFCO 21 41 S3 St 07 30 00 01 S2 86 06 00 00 00 00 05 *!ASQ.0ccRecercsn
O0SEF10 EF S2 00 G1 S2 CC 00 05 €EF 28 00 05 FO 00 00 05 .RecReces(esoase
O00SEF20 EF 78 00 05 EF 78 00 00 00 00 00 00 00 00 00 00 oxeoeXoaavvosocee

The following describes the sequence of events that takes place when
the BREAK key is depressed.

a. Operator depresses BREAK key.

b. Channel 1/0 driver reads serial port, recognizes break, and queues
an event to the terminal driver.

¢. Terminal driver reads event, recognizes break code, and queues an
event to the break claimer. A task qualifies as break claimer if
it has issued an I/0 request to claim all unclaimed breaks, or an
1/0 option for break service. On the released operating system,
the break claimer is the command processor (&EET).

d. &EET reads the event and initiates the logon sequence.

To find the TCBs of all tasks known to the operating system, look up
the address of TCBHD in the RMS68K 1ink map. TCBHD contains a pointer
to the most recently created TCB now known to the system and is the
start of a linked 1ist of all TCBs. In VERSAdos release 4.4, TCBHD can
be found at offset $10 from the start of the SYSPAR area. The pointer
to the next TCB in the 1linked 1list is found at offset $4 (symbol
TCBALL) in each TCB. Refer to paragraph 4.3 for a complete description
of a TCB and step 5 for a description of some of the important fields.

SOME COMMON CAUSES OF SYSTEM HANG-UP (no response at terminal)

a. DCB or CCB parameters specified incorrectly at SYSGEN. Refer to
output of SYSGEN, specifically the 1listing of the assembly of
10C. <driver_name>.AG (e.g., IOC.MPSCDRV.AG).

b. Terminal hardware problem.

¢. Hardware interrupt of channel is not enabled; normally, interrupt
level 5 for local terminals.

d. Spurious interrupts caused by a hardware configuration problem.
Look up the symbol SPURCNT in the RMS68K 1ink map. SPURCNT is the
address of a 2-byte field that contains a count of spurious
interrupts. If this value 1is not 0, check the hardware
configuration.

e. A user program has modified memory outside the limits of its own
address space. With no MMU, it is possible for a user task to
crash other tasks or the operating system.

MICROSYSTEMS
269

@ m LA APPENDIX E

8. SYSTEM TRACE TABLE (TRC)

The TRC can provide information about the most recent events that have
occurred while the system was running. Refer to paragraph 9.3.3 for a
description of the TRC.

EXAMPLE :

Look at the RMS68K link map to find the address of the symbol TRACEBEG. At
this address is a pointer to the start of the trace table.

venp € 30

000€ 30 00 0S5 #1 GO CO 00 00 F€ 83 08 00 P& 00 00 00 00 cecsccccncocacss

Display the beginning of the trace table:

vemd $P100

OSF18C 0C 05 P2 F6 OC 05 P2 P6 PF 1S 00 00 00 OO0 ?
ceNEAT="= ecel@pece

Display part of the trace table containing recent entries:
veng $£280 80

0SA28C 00 0O 97 QO 00 00 00 22 02 €8 €8 80 02 P? FP 15 ..cceec™ecasccas
0SP29C OC 10 00 00 89 5C 00 00 8& 4€& 00 00 97 00 00 00 .scceeMecoNoccoos
0SE2aC 00 4A 02 €8 Es 61 02 P8 FF 135 00 10 00 00 88 6 .Jcccecccccscess
0s#28C 00 00 80 P€& 00 00 97 00 00 00 00 3C 02 €a €4 82 ccvcvcccoreConen
0SF2CC 02 6P FF 135 00 00 00 00 86 42 00 00 80 PE 00 00 +0sceccccBoccnss
0SF20C 97 00 00 00 00 24 02 €8 €8 63 02 €0 PP 15 00 00 ..cecBocsccocces

OSFZIC oo oo 79 éA 00 00 00 ll °° 00 3’ oo\l.’-o.ooo.oc.os
0SF28C 02 E8 €8 86 01 87 00 00 00 00 00 00 00 00 00 00 ccccevcccsssocse

The most recent entry in the above table is:

TRCCODE TRCSR TRCPC TRCAO TRCAG TRCDO TRCYIME TRCTIM2
FF1S§ 0000 00G0756a 00000082 00007C00 00000035 02E8Ed8S 0187

The code FF15 indicates that a TRAP #1 was executed.

The address at TRCA6 is the address of the TCB of the task that executed the
TRAP #1.

The calling task's D0=$35. This is the directive number for the DERQST
directive.

TRCSR and TRCPC contain the SR and PC of the task that executed the trap.

To ‘learn more about the task that was responsible for any entry, examine that
task's TCB as described in step 5.

When examining the TRC, it may also be useful to look for similar entries that
are frequently repeated indicating a loop in some program, or a table that is
completely full of I/0 Interrupt entries (TRCCODE=$EE14) indicating that some
interrupt may not be getting cleared.

MICROSYSTEMS
270

——

MOTOROLA
@ ° APPENDIX F

APPENDIX F

GLOSSARY OF RMS68K TERMS

Asynchronous Mode

A mode of processing events where the task is dispatched to its ASR to
handle the incoming event.

Asynchronous Service Queue (ASQ)
A FIFO0O queue used for management of event messages between tasks or

between RMS68K and a task. The ASQ can be used by a task to process
events synchronously or asynchronously.

Asynchronous Service Routine (ASR)
A part of a task's program code that asynchronously processes event

messages in the task's ASQ. The ASR operates in a software interrupt
mode.

Autovector

MC68000 Family microprocessor interrupt-caused exception vectors. There
are seven autovectors corresponding to seven levels of interrupt priority.

Channel Control Block (CCB)

A block of data containing variables used to control an I/0 Channel.

Channel Management Routine (CMR)

CMRs are an optional layer of RMS68K functionality for managing I/0
Channels and I/0 Requests.

CRASHSAV

Area of memory containing information describing system crashes such as
program counter, status registers, and registers DO to D7 and A0 to A7 at
time of system crash. (Refer to Appendix E for format.)

Concurrent Processing

An operation mode where more than one process seems to be in progress at a
given time even though the processes are actually sharing the processor.

71 MICROSYSTEMS

TOROL
M) mororoLa APPENDIX F

Device Control Block (DCB)

A block of data containing variables and static data used to control an
I1/0 device.

Exception Monitor Task

A task that can monitor one or more other tasks and be notified of any
exceptions that occur within those tasks.

Exception Vector

A memory location from which the M68000 Family microprocessor fetches the
address of a routine that handles an exception.

Executive Directive

A request issued by a task for services of RMS68K.

Free Memory List (FML)

Doubly Tlinked 1list of nodes describing current status of free memory
within a RAM partition.

Global Segment Table (GST)

Array of segment descriptors for all currently defined shareable segments
within the system.

Interrupt Service Routine (ISR)

A part of a task's program code that handles interrupts. The ISR operates
in am asynchronous mode with the task.

1/0 Vector Table (IOV)

Array of descriptors for all tasks currently claiming interrupts via the
CISR directive.

Memory Management Unit (MMU)

Hardware device that provides mapping of Jlogical memory addresses to
physical addresses and protects one task's address space from unauthorized
accesses from other tasks.

MICROSYSTEMS
272

TOROLA
@ mo APPENDIX F

Memory Map Table (MEMMAP)
Array of partition descriptors for all RAM or ROM partitions within the
system.

Monitor Task
A task that receives automatic notification on the termination of one or
more other tasks, called subtasks of the monitor task.

Multitasking
An operation mode where more than one functionally bound task is being
processed concurrently.

Non Real-time Task
Task that does not execute under severe time constraints. These tasks may

have any mapping of address space and use the taskname, session number
identification when referring to a target task.

Periodic Activation Table (PAT)

Linked 1ist of nodes describing all current demands for elapsed time
notification.

Program Counter

Internal processor register that contains the address of the instruction
currently being fetched by the processor.

Real-time Task

Task that executes wunder severe performance constraints. To meet those
constraints, real-time tasks must be mapped with logical addresses equal
to physical addresses and must use the internally generated code output by
the GTTASKID directive when referring to a target task.

Segment

A block of memory that can be used for data or program code. Every task
can consist of up to four segments. Segments can be shared by more than
one task.

MICROSYSTEMS
273

@ mo LA APPENDIX F

Semaphore
A unit representing a count of signals used for synchronizing task
activity or controlling the use of resources. o
Server Task

A task that operates 1like an extension of RMS68K, and can provide a
service to any task in the system on request.

Session

A group of related tasks, identified by a session number.

Status Register (SR)
Internal processor register that contains status information such as

supervisor/user node, trace bit, interrupt mask level, and condition
codes.

Supervisor Hardware State
A privileged state of M68000 Family microprocessor execution. No

restrictions are placed on operations. RMS68K operates in the supervisor
hardware state.

Synchronous Mode
The mode of operation where the task processes the event inline, i.e., the
task is not sent off to its ASR but dispatched to the instruction
immediately following the GTEVNT or RDEVNT call in the main line code of
the task.

System Parameter Table (SYSPAR)

Unstructured list of miscellaneous system parameters.

System Task
A task that operates in the user hardware state of the M68000 Family
microprocessor and can affect other tasks executing within alien sessions.
System Trace Table (TRC)
Circular queue of traced events describing system history.

MICROSYSTEMS
274

@ MOTOROLA
APPENDIX F

Task

A functionally bound group of one or more modules that can operate
concurrently with other tasks.

Task_ID
An 8-byte code for referencing a target task. For real-time requesting
tasks, it is an internally generated code; for non real-time requesting
tasks, it 1is the taskname and session number of the target task. Note

that the format of the task_id is dependent on the real-time/non real-time
type of the requestor and is not dependent on the type of the target.

Task Control Block (TCB)

Unstructured 1ist of miscellaneous task state information.

Taskname

A means of identifying a particular task within a session.

Task Priority

A relative level of importance given to a task. Tasks that are more
urgent are assigned higher priorities.

Task Segment Table
Array of segment descriptors for all segments currently accessible to a
task.

Trap Instruction Assignment Table (TIAT)
Byte array indexed by trap number that defines each trap instruction as
being unassigned, reserved for RMS68K, or assigned to a server task.

Trap Instruction Owner Table (TIOT)
Array of descriptors for currently defined trap servers indexed by trap
number . :

Trap Vector
A particular type of M68000 Family microprocessor exception vector,

corresponding to M68000 Family TRAP instructions.

MICROSYSTEMS
275

@ MOTOROLA
APPENDIX F

User Directive Table (UDR)

Array of descriptors indexed by directive number for all directives
currently defined by tasks via the CDIR directive.

User Hardware State
The normal state of execution of the M68000 Family microprocessor. There

are restrictions on the operations allowed. User tasks and system tasks
execute in this state.

User Semaphore Table (UST)

Array of semaphore descriptors indexed by semaphore key for all currently
defined semaphores created by the CRSEM or ATSEM directives.

User Stack Pointer (USP)

Stack pointer in use when processor is executing in the user hardware
mode.

User Task

A task that operates in the wuser hardware state of the M68000 Family
microprocessor and can only affect other tasks executing within its own
session.

User Vector
A particular type of Me8000 Family microprocessor exception vector. They
can be assigned by the user.

XDEF

Assembler construct for declaring labels to be accessible to external
modules.

MICROSYSTEMS
276

M) moToroLA APPENDIX G

APPENDIX G
SUMMARY OF DIRECTIVES

B.1 ALPHABETICAL SUMMARY OF RMS68K DIRECTIVES

Following are the directives that tasks can issue to RMS68K by using the TRAP
#1 instruction.

DIRECTIVE DIRECTIVE RETURN
NAME DIRECTIVE MEANING NUMBER PARAMETER PARAMETER PAGE

ABORTA Task aborts itselt 14 A0 - 12
AKRQST Server acknowledge request 54 AD - 186
ATSEM Attach to semaphore 41 AD AD 164
ATTSEG Attach a shareable segment 4 AD A0 80
CDIR Configure a new directive 58 A0 - 225
CISR Configure ISR 61 A0 - 215
CRSEM Create semaphore 45 A0 A0 162
CRTCB* Create TCB 11 A0 - in
DCLSHR Declare a segment shareable 7 A0 - 76
DEASQ* Detach ASQ 32 - - 42
DELAY* Task moves itself to DELAY

state 21 A0 - 144
DELAYW DELAY, WTEVNT, and WAIT

functions are performed 30 A0 - 145
DERQST Set user/server request

status 53 A0 - 188
DESEG* Detach a segment 2 A0 - 74
DESEM Detach from semaphore 44 A0 - 167
DESEMA Detach from all semaphores 46 - - 168

* Required for RSM68K; cannot be removed from the system.

MICROSYSTEMS

271

M) moToroLA APPENDIX G

DIRECTIVE DIRECTIVE RETURN
NAME DIRECTIVE MEANING NUMBER PARAMETER PARAMETER PAGE

DEXMON Detach exception monitor 65 A0 - 206
DSERVE Detach server function 52 A0 - 190
EXMMSK Set exception monitor mask 66 A0 - 196
EXMON Attach exception monitor 64 AO - 194
EXPVCT Announce exception vectors 26 A0 - 221
FLUSHC Flush user cache 75 - - 96
GTASQ Allocate ASQ 31 AQ - 28
GTDTIM Get date and time 74 A0 Buffer 154
GTEVNT Get an event 38 AD - 36
GTSEG Allocate a segment 1 A0 A0,Al 68
GTTASKID Get a target task's task_id 10 AQ A0,Al 134
GTTASKNM Get a target task's taskname

and session number 12 A0 A0,Al 136
MOVELL Move from logical address 6 A0 Buffer 92
MOVEPL Move from physical address 72 A0 Buffer 94
PSTATE Modify task state 68 Al - 204
QEVNT Queue event to task's ASQ 35 A0 - 33
RCVSA Receive segment attributes 9 A0 Buffer 89
RDEVNT Task reads event from its ASQ 34 A0 Buffer 38
RELING Task moves itself from

RUN state to READY state 22 - - 129
RESUME Target task goes to READY

state from SUSPEND state 18 A0 - 128
REXMON Run task under exception

monitor control 69 A0 - 198
RQSTPA Task is set up to be

periodically activated 29 A0 - 147

MICROSYSTEMS

278

NAME
RSTATE
RTE

RTEVNT

SERVER
SETASQ

SETPRI
SGSEM
SHRSEG
SINT
SNPTRC

START

STDTIM
sTop

SUSPND

TERM*
TERMT*

TRPVCT
TRSEG
TSKATTR

TSKINFO

DIRECTIVE
NUMBER

PARAMETER

Receive task state
Return from ISR execution

ASR returns after event
servicing

Task is made a server task

Task changes its ASQ/ASR
status

Change priority of a task
Signal semaphore

Grant shared segment access
Simulate interrupt

Snapshot of system trace

Target task goes to READY
state from DORMANT state

Set date and time

Target task goes to DORMANT
state from any state

Task moves itself to
SUSPEND state

Task terminates itself

Target task is terminated
from any state

Announce trap vectors
Transfer a segment

Receive task user number
and attributes

Receive copy of TCB

37
51

33
24
43

62

13
73

25

17
15

16
27

23
28

po,D1,D2

AD

A0

A0
A0
A0
A0
A0

AD

A0
A0

A0

A0
A0
A0

A0
A0

* Required for RMS68K; cannot be removed from system.

279

APPENDIX G
RETURN

PARAMETER PAGE

Buffer 201

- 220

- 41

- 183

- 31

- 117

- 166

A0 83

- 218

Buffer 228

- - 114

- 152

A0 119

- 127

- 121

A0 122

- 223

A0 86

A0 130

Buffer 132

MICROSYSTEMS

(ZEQADGCTTIDF?C)LJI

NAME

WAKEUP*

WTEVNT

WTSEM

APPENDIX G
DIRECTIVE RETURN
DIRECTIVE MEANING NUMBER PARAMETER PARAMETER PAGE
Task moves itself to
WAIT state 19 - - 125
Target task goes to READY
state from WAIT state 20 A0 - 126
Task moves itself
to WAIT FOR EVENT state 36 - - 40
Wait on semaphore 42 A0 - 165
* Required for RMS68K; cannot be removed from system.
MICROSYSTEMS

280

M) moToroLA APPENDIX G

B.2 NUMERIC SUMMARY OF RMS68K DIRECTIVES

Following are the directives that tasks can issue to RMS68K by using the TRAP
#1 instruction.

DIRECTIVE DIRECTIVE RETURN
NAME DIRECTIVE MEANING NUMBER PARAMETER PARAMETER PAGE

RTE Return from ISR execation - D0.01.0z - 220
GTSEG Allocate a segment 1 A0 A0,Al 68
DESEG* Detach a segment 2 AD - 74
TRSEG Transfer a segment 3 A0 A0 86
ATTSEG Attach a shareable segment 4 A0 A0 80
SHRSEG Grant shared segment access 5 A0 A0 83
MOVELL Move from logical address 6 A0 Buffer 92
DCLSHR Declare a segment shareable 7 A0 = 76
SNPTRC Snapshot of system trace 8 AD Buffer 228
RCVSA Receive segment attributes 9 A0 Buffer 89
GTTASKID Get target task's task_id 10 A0 AC,Al 134
CRTCB* Create TCB 11 AD - 111
GTTASKNM Get a target task's taskname '

and session number 12 A0 A0,Al 136
START Target task goes to READY

state from DORMANT state 13 A0 - 114
ABORT* Task aborts itself 14 A0 - 124
TERM* Task terminates itself 15 - - 121
TERMT* Target task is terminated

from any state 16 A0 A0 122
SUSPND Task moves itself to

SUSPEND state 17 - - 127
RESUME Target task goes to READY

state from SUSPEND state 18 A0 - 128

* Required for RSM68K; cannot be removed from the system.

MICROSYSTEMS
281 B B

OTOROLA
@ M APPENDIX G

DIRECTIVE DIRECTIVE RETURN
NAME DIRECTIVE MEANING NUMBER PARAMETER PARAMETER PAGE

WAIT Task moves itself to

WAIT state 19 - - 125
WAKEUP* Target task goes to READY

state from WAIT state 20 A0 - 126
DELAY* Task moves itself to DELAY

state 21 AD - 144
RELINQ Task moves itself from

RUN state to READY state 22 - - 129
TSKATTR Receive task user number

and attributes 23 A0 A0 130
SETPRI Change priority of a task 24 A0 - 117
STOP Target task goes to DORMANT

state from any state 25 A0 A0 119
EXPVCT Announce exception vectors 26 A0 - 221
TRPVCT Announce trap vectors 27 AO - 223
TSKINFO Receive copy of TCB 28 A0 Buffer 132
RQSTPA Task is set up to be

periodically activated 29 A0 - 147
DELAYW DELAY, WTEVNT, and WAIT

functions are performed 30 A0 - 145
GTASQ Allocate ASQ 31 A0 - 28
DEASQ* Detach ASQ 32 - - 42
SETASQ Task changes its ASQ/ASR

status 33 A0 - 31
RDEVNT Task reads event from its ASQ 34 A0 Buffer 38
QEVNT Queue event to task's ASQ 35 A0 - 33
WTEVNT Task moves itself

to WAIT FOR EVENT state 36 - - 40
RTEVNT ASR returns after event

servicing 37 A0 - 41

* Required for RMS68K; cannot be removed from the system.

MICROSYSTEMS
282

M) mororoLa APPENDIX G

DIRECTIVE DIRECTIVE RETURN
NAME DIRECTIVE MEANING NUMBER PARAMETER PARAMETER PAGE
ATSEM Attach to semaphore 41 AD AO 164
WTSEM Wait on semaphore 42 AC - 165
SGSEM Signal semaphore 43 A0 - 166
DESEM Detach from semaphore 44 A0 - 167
CRSEM Create semaphore 45 A0 A0 162
DESEMA Detach from all semaphores 46 - - 168
SERVER Task is made a server task 51 A0 - 183
DSERVE Detach server function 52 A0 - 190
DERQST Set user/server request
status 53 A0 - 188
AKRQST Server acknowledge request 54 AO - 186
CDIR Configure a new directive 58 A0 - 22
CISR Configure ISR 61 A0 - 215
SINT Simulate interrupt 62 AD - 218
EXMON Attach exception monitor 64 A0 - 194
DEXMON Detach exception monitor 65 A0 - 206
EXMMSK Set exception monitor mask 66 AD - 196
RSTATE Receive task state 67 AC Buffer 201
PSTATE Modify task state 68 A0 - 204
REXMON Run task under exception
monitor control 69 A0 - 198
MOVEPL Move from physical address 72 A0 Buffer 94
STDTIM Set date and time 73 A0 - 152
GTDTIM Get date and time 74 A0 Buffer 154
FLUSHC Flush user cache ' 75 - - 96
MICROSYSTEMS

283

@ M ROLA APPENDIX G

B.3 SUMMARY OF RMS68K DIRECTIVES BY FUNCTION

Following are the directives that tasks can issue to RMS68K by using the TRAP
#1 instruction.

DIRECTIVE DIRECTIVE RETURN
NAME DIRECTIVE MEANING NUMBER PARAMETER PARAMETER PAGE

Event Manager

QEVNT Queue event to task's ASQ 35 A0 - 33
RDEVNT Task reads event from its ASQ 34 AO Buffer 38
RTEVNT ASR returns after event

servicing 37 A0 - 41
GTEVNT Get an event 38 A0 -
GTASQ Allocate ASQ 32 A0 - 28
DEASQ* Detach ASQ 32 - - 42
SETASQ Task changes its ASQ/ASR

status 33 - AO - 31
WTEVNT Task moves itself

to WAIT FOR EVENT state 36 - - 40

Memory Manager

GTSEG Allocate a segment 1 A0 A0,Al 68
DESEG* Detach a segment 2 A0 - 74
DCLSHR Declare a segment shareable 7 A0 - 76
ATTSEG Attach a shareable segment 4 A0 A0 80
SHRSEG Grant shared segment access 5 A0 AO 83
TRSEG Transfer a segment 3 A0 A0 86
RCVSA Receive segment attributes 9 A0 Buffer 89
MOVELL Move from logical address 6 A0 Buffer 92
MOVEPL Move from physical address 72 A0 Buffer 94
FLUSHC Flush user cache 75 - - 96

* Required for RMS68K; cannot be removed from the system.

MICROSYSTEMS
284

APPENDIX G
DIRECTIVE DIRECTIVE RETURN
NAME DIRECTIVE MEANING NUMBER PARAMETER PARAMETER PAGE
Task Manager
CRTCB* Create TCB 11 AD - 111
START Target task goes to READY
state from DORMANT state 13 A0 - 114
SETPRI Change priority of a task 24 A0 - 117
STOP Target task goes to DORMANT
state from any state 25 A0 A0 119
TERM* Task terminates itself 15 - - 121
TERMT> Target task is terminated
from any state 16 A0 A0 122
ABORT* Task aborts itself 14 A0 - 124
WAIT Task moves itself to
WAIT state 19 - - 125
WAKEUP* Target task goes to READY
state from WAIT state 20 AD - 126
SUSPND Task moves itself to
SUSPEND state 17 - - 127
RESUME , Target task goes to READY
state from SUSPEND state 18 A0 - 128
RELINQ Task moves itself from
RUN state to READY state 22 - - 129
TSKATTR Receive task user number
and attributes 23 A0 A0 130
TSKINFO Receive copy of TCB 28 A0 Buffer 132
GTTASKID Get a target task's task_id 10 AD AD,AL 134
GTTASKNM Get a target task's taskname
and session number 12 AD A0,Al 136
* Required for RMS68K; cannot be removed from system.
MICROSYSTEMS

285

APPENDIX G

NAME

DIRECTIVE

NUMBER

PARAMETER

RETURN
PARAMETER PAGE

Time Manager
DELAY*

DELAYW

RQSTPA

STDTIM

GTDTIM

Task moves itself to DELAY
state

DELAY, WTEVNT, and WAIT
functions are performed

Task is set up to be
periodically activated

Set date and time

Get date and time

Semaphore Manager

CRSEM
ATSEM
WTSEM
SGSEM
DESEM

DESEMA

Create semaphore
Attach to semaphore
Wait on semaphore
Signal semaphore
Detach from semaphore

Detach from all semaphores

Trap Server Manager

SERVER
AKRQST
DERQST

DSERVE

Task is made a server task
Server acknowledge request

Set user/server request
status

Detach server function

30

29
73

74

45
41
42
43
44
46

51
54

53
52

Al

AD
A0
A0

AD
A0
AQ
A0
Al

A0
A0

A0
AC

* Required for RMS68K; may not be removed from system.

286

- 145

- 147
. 152

Buffer 154

AO 162
A0 164
- 165
- 166
- 167
- 168

- 183

- 186

- 188

- 190

MICROSYSTEMS

TN

&) moToroLA APPENDIX G

DIRECTIVE DIRECTIVE RETURN
NAME DIRECTIVE MEANING NUMBER PARAMETER PARAMETER PAGE

Exception Monitor Manager

EXMON Attach exception monitor 64 A0 - 194
EXMMSK Set exception monitor mask 66 AO .- 196
REXMON Run task under exception

monitor control 69 A0 - 198
RSTATE Receive task state 67 A0 Buffer 201
PSTATE Modify task state 68 AQ - 204
DEXMON Detach exception monitor 65 A0 - 206

Exception Manager

CISR Configure ISR 61 AD - 215
SINT Simulate interrupt 62 A0 - 218
RTE Return from ISR execution - Do,b1,D2 - 220
EXPVCT Announce exception vectors 26 A0 - 221
TRPVCT Announce trap vectors 27 A0 - 223
CDIR Configure a new directive 58 A0 - 225
SNPTRC Snapshot of system trace 8 A0 Buffer 228

MICROSYSTEMS

287

M) mororoLa APPENDIX G

THIS PAGE INTENTIONALLY LEFT BLANK

MICROSYSTEMS

288

SUGGESTION/PROBLEM
REPORT

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way

Tempe, Arizona 85282

Attention: Publications Manager

Maildrop DW164

Product: Manual:

COMMENTS: ___

Please Print

Name Title

Company Division

Street Mail Drop Phone
City State Zip
For Additional Motorola Publications - Four Phase/Motorola Customer Support, Tempe Operations
Literature Distribution Center (800) 528-1908

616 West 24th Street (602) 438-3100

Tempe, AZ 85282

(602) 994-6561

@ MOTOROLA

MOTOROLA Semiconductor Products Inc.

PO. BOX 20912 ® PHOENIX, ARIZONA 85036 ® A SUBSIDIARY OF MOTOROLA INC.

17343-1 PRINTED IN USA (1/86) MESSENGER 1500

