M) moToroLA M6BKRMSTI/D2

RMS68K/VERSAdos
Table-Driven Task Initiator
Reference Manual

e RS T e L

QUALITY e PEOPLE

L)

M) mororoLa

M68KRMSTI/D2
DECEMBER 1985

RMS68K/VERSAdos
TABLE-DRIVEN TASK INITIATOR
REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products
herein to improve reliability, function, or design. Motorola does not assume
any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights
or the rights of others.

RMS68K and VERSAdos are trademarks of Motorola Inc.

Second Edition
Copyright 1985 by Motorola Inc.
First Edition October 1985

MICROSYSTEMS

M) moToRroLA

REVISION RECORD

M6BKRMSTI/D2 -- December 1985. Incorporates information contained in both
M68KRMSTI/D1 and S1, and adds a keyword index.

MICROSYSTEMS

N

—~

M) moToroLA

CHAPTER

CHAPTER

CHAPTER

3.
3.

CHAPTER

et e i ek b e et
. e e

RRMN RN R RN NN RN
bR WN—

EIE IR R R g

.....
WD PN N N = et it —
o . .« .

N

N

-+

WWWWwwWwwWwMN —
Gl W N e

N e

TP W N =

N —

TABLE OF CONTENTS

INTRODUCTION

o] Y P
TDTI Softwareevvvnieineennnnennns
Operating Environment

FUNCTIONAL DESCRIPTIONcccvvvnnnnn..
PUrPOSE . iiiiiiiiii ittt iii et
Operationcieiiiiiiiiinniinnnenns

CONVENTIONS USED IN THIS MANUAL

RELATED DOCUMENTATION........covievennnn..

TASK TABLE

GENERAL oo iviiiii it ieiereereronosnnnnnans
SELF-RELATIVE LINKS ...vviieiinnrnnnnnens
TASK TABLE FIELD DEFINITIONS
CREATING THE TASK TABLEcivvvnennen
Invoking TTGENccoviviiiiionienen
"Initial Selection” Menu
"Define Task Table Header" Menu
"Define Single Task Entry" Menu
Modifying TTGEN Output
EXAMPLE .oiiiiir ittt ii it ieincionananas
Interactive Dialogottt
TTGEN OQutputciviiiiiiivienenn.

CREATION OF A TDTI OPERATING SYSTEM

GENERALcvvriiiiiiiiiiiiinennnnns.
CREATING THE SYSTEMcovvuviennnn,

TDTI/VERSAdos SYSTEM EXAMPLE PROGRAM

EXAMPLE CHAINFILEcocvvvneennn
EXECUTION OF EXAMPLE CHAINFILE
CHAINFILE DESCRIPTIONSc..u.n.
TDTI.COPY.CF . vvvireiir i iienivenns
TDTIUSER.MODIFY.CF ...cvnvniiiiian...
TDTI.PRODUCT.CFvvvvvniniiienannn,
TDTI.APLICATN.CFvvvnnienennnnnnn,
TDTITTS.EXAMPLE.CFovivveiannns,

.............

.............

.............

.............

.............

.............

.............

"
F
{¢]

IO W NN ==

............. 17
............. 17
............. 18
............. 20
............. 21
............. 23
............. 23
............. 24
............. 25

............. 29
............. 31

............. 33
............. 34
............. 34
............. 35
............. 35
............. 35
............. 36
............. 36

MICROSYSTEMS

@ MOTOROLA

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F

INDEX

FIGURE 1-1.
2-1.

TABLE OF CONTENTS (cont'd)

Page
EXAMPLE TASK TABLE ... ivuivirinrvnernnscnnnasaneenns 39
FILES MODIFIED FOR EXAMPLEcvvivrenenuneennnens 45
CHAINFILES USED IN EXAMPLEovvvrerennrnonennnnn 55
ACCESSIBLE TDTI ROUTINES ...vvvrverrnrenneinacnnnes 67
ERROR INDEX VALUE ...vviivrerrnnrrronennnocnneannnens 75
INTEGRATING A PASCAL TASK INTO A TDTI SYSTEM 77
... 113
LIST OF ILLUSTRATIONS
Hierarchical Relationships Within TDTI System 6
Task Table Entries ...cvviiiiiiiiiiiiiineinninnnenn, 7

H MICROSYSTEMS

@ MOTOROLA INTRODUCTION

CHAPTER 1
INTRODUCTION

1.1 GENERAL

This manual describes the Table-Driven Task Initiator (TDTI) operating under
VERSAdos or RMS68K. It describes what a TDTI system is, describes what it can
do, and provides detailed instructions in the use of such a system. A
comprehensive example and instructions for generating an example system using
furnished chainfiles are included in this document.

1.1.1 TDTI Software

A TDTI system consists of two parts. The first part, which is supplied in the
software package, consists of the following:

. RMS68K kernel

. Standard RMS68K system initializer

. Procedure portion of the TDTI

. Optional I/0 subsystem which consists of user-selected drivers and the

VERSAdos 1/0 subsystem tasks File Handling Services (FHS) and Input/
Output Services (I0S) (these items are not included for an RMS68K-type

system)
The second part of the system consists of user-written code:

. A11 user-written application tasks
. Al1 user-written non-standard startup code and error handling logic
. The Task Table (TT) that TDTI will process

1.1.2 Operating Environment

The Task Initiator is run, in association with RMS68K, on a target machine in
an environment where application software is developed on a host machine and
downloaded to be tested on a target machine. The host machine can be any
M68000-family system running VERSAdos. The target machine can be any M68000-
family system with RMS68K.

1 MICROSYSTEMS

@ MOTOROLA INTRODUCTION

1.2 FUNCTIONAL DESCRIPTION

1.2.1 Purpose

A TDTI system is an RMS68K or VERSAdos operating system along with some user-
written tasks and some "special” code called TDTI which is used to start the
other tasks in the system in a controlled way. A TDTI system provides the
following capabilities:

a. Assists 1in debug effort by giving the user complete control over start-
up processing in the system. If a system consists of several tasks, the
user can elect to start these tasks in any order by making simple
changes to a table. If the system consists of a number of tasks but the
user is concerned only with a small subset, it is possible to prevent
some tasks from starting at all by making minor table modifications.

b. Saves time by allowing the user to make modifications to the system
without having to initiate a SYSGEN process every time. If the user
desires to replace a task, the module to be replaced and the SYSGENed
table-driven system can be downloaded, the Program Counter (PC) can be
set, and processing can continue. Thus, the user can easily replace a
task and eliminate the need for having to re-SYSGEN,

c. Allows the user to define code to handle errors during startup
processing. The error handling code can be as simple as a branch-to-
self which will "hang" the system and allow for postmortem debug
analysis, or extremely sophisticated code which may attempt error
recovery.

d. Provides an easy path to ROMing the end product. The RMS68K, TDTI, and
most VERSAdos components are directly ROMable. Once the system is
debugged in RAM, ROMing is a trivial step. Note that the VERSAdos file
management subsystem, Session Control, and the loader are not ROMable,
but the I/0 subsystem and drivers are.

The user is not restricted to the predefined "standard" functions that the
TDTI program performs. If "non-standard" processing to startup a particular
task is desired, the user may write code to be executed in lieu of the
"standard" processing that TDTI would normally perform for that task, while
still using the TDTI "standard" functions for other tasks in the same system.

TDTI performs several functions on behalf of a task during its "standard"
processing. Some examples are: "create Task Control Block (TCB)", "task
segment allocation", and "setting the task initial state to dormant or
executing"., A1l of these functions are directly accessible to user code as
subroutines. Thus, if the user desires to write some special startup
processing for a particular task, some of these "standard" functions may be
found to be wuseful and thus less special purpose code would have to be
written,

2 MICROSYSTEMS

@ MOTOROLA INTRODUCTION

1.2.2 Operation

A typical TDTI system can be started in one of several ways:

a. The system can be booted into RAM from disk and given control from the
Initial Program Loader (IPL).

b. The system can be downloaded from a host using debug firmware commands
and manually started, by setting the PC and the stack register A7 and
entering the GO command.

c. The system may be embedded; that is, it may exist entirely in ROM and be
given control during a power-up sequence.

When the TDTI system has control, the following functions are performed:

a. The first process to get control is the system jnitializer. It is
really an extensive initialization process that sets up the proper
environment for RMS68K to run. Some of the functions it performs are:

. Initializes the system vectors.
. Initializes memory and builds free memory lists.
. Initializes System Parameter Area (SYSPAR).

. Initializes the Memory Management Unit (MMU) if one exists.

. Initializes any special devices such as timers or special I1/0
devices.

. Sets up system tables for:

ASN Address segment numbers

GST Global segment table

UST User semaphore table

10V 1/0 vector map

PAT Periodic activation table
UDR User-defined directive table

Most of the functions performed by the system initializer are controlled
by parameters defined at system generation (SYSGEN) time. Do not
confuse these functions with the startup functions performed by TDTI.
The functions performed by the TDTI are controlled by a table that the
user can easily modify without initiating a new SYSGEN process. For a
complete discussion of SYSGEN-related parameters, refer to the System
Generation Facility User’s Manual.

3 MICROSYSTEMS

M mororoLA INTRODUCTION

b. After the system initializer has completed its initialization, control
is passed to the RMS68K kernel. The dispatch sequence initiated by the
kernel is as follows:

For an RMS68K TDTI system. The kernel will dispatch the TDTI task, as
it is the only task that has been defined to the system. The user-
written tasks will not be defined to the system until TDTI has executed.

For a VERSAdos TDTI system. The kernel will dispatch the I/0 subsystem
task. Prior to termination, the I/0 subsystem task will ensure that the
TRAP #2 and #3 I/0 handlers are ready for execution; then it will start
the TDTI task, which in turn will make the user-written task known to
the system.

c. The function of the TDTI task is not complex. It operates on a user-
written table that can contain any number of entries. The entries are
processed in an order that is determined by a "priority" field that is
part of the task entry itself. Normally an entry will contain the
information that the TDTI needs in order to define a task to RMS68K. An
entry such as this will be referred to as a "standard" entry and the
processing associated with such an entry will be termed "standard"
processing. Standard processing consists of the following:

1. Creating a TCB.
2. Allocating segment(s) to the task associated with the entry.
3. Optionally starting the task.

Most of the information in a single table entry is the information
required to perform the above functions. Some additional information is
required in the table, however. This additional information falls into
the following groupings:

1. Control-related information consisting of the following:

. Processing priority which defines the order in which
entries in the table are processed.

. Links which point table entries to successive entries and
links which point to non-standard user defined code.

2. Debugging aids consisting of user defined "eye catchers".

A hierarchical relationship of RMS68K, the TDTI, the TT, and the associated
task is shown in Figure 1-1.

MICROSYSTEMS

@ MOTOROLA INTRODUCTION

1.3 CONVENTIONS USED IN THIS MANUAL

The following conventions are used in the command syntax, examples, and text
in this manual:

boldface strings A boldface string is a literal such as a command or a
program name, and is to be typed just as it appears.

italic strings An italic string is a "syntactic variable" and is to
be replaced by one of a class of items it represents.

Operator inputs are to be followed by a carriage return. The carriage return
js shown as (CR) only if it is the only input required.

1.4 RELATED DOCUMENTATION

The following publications may provide additional helpful information. If not
shipped with this product, they may be obtained from Motorola’s Literature
Distribution Center, 616 West 24th Street, Tempe, AZ 85282; telephone (602)
994-6561.

ﬁaTOROLA

DOCUMENT TITLE PUBLICATION NUMBER
System Generation Facility User’s Manual M68KSYSGEN

M68000 Family Real-Time Multitasking Software User’s Manual M68KRMS68K

VERSAdos Data Management Services and Program Loader RMS68KIO
User’s Manual

M68000 Family Linkage Editor User’s Manual M68KLINK
M68000 16/32-Bit Microprocessor Programmer’s Reference Manual M68000UM

5 MICROSYSTEMS

M) mororoLa INTRODUCTION

RMS 68K VERSADOS
TABLE DRIVEN TABLE DRIVEN USER-WRITTEN
SYSGENed SYSTEM SYSGENed SYSTEM MODULES
+ + + + +-=> + +
ERROR |
RMS 68K RMS68K HANDLING |
| LoGic |
USER-SELECTED
TABLE DRIVERS
DRIVEN FHS/10S
TASK + + + +
INITIATOR TABLE |]
DRIVEN | NON-STANDARD |
+ + TASK USER-WRITTEN |
RMS 68K INITIATOR CODE
SYSTEM
INITIALIZER + +
RMS68K
SYSTEM
INITIALIZER + +
+ + + + | TASK TABLE |
| ERROR HANDLING| ENTRY FOR |
LOGIC | > TASK A’ |
| NON-STANDARD | + +
| USER-WRITTEN ERROR
| CODE | HANDLING | —=w——e >
| | LOGIC + +
| TASK TABLE | | TASK TABLE |
| | NON-STANDARD | ENTRY FOR |
+ + USER-WRITTEN | TASK 'n’ |
CODE + +
TASK TABLE
l I + + + +
| USER TASK(S) | |
| | RAM |
+ + ! |
| |
I USER TASK(S) !
| | + + + +
| RAM |
| | TASK A’
: +) | !
| |
| RAM
|
| |
| TASK *n° |
I |
]]
i RAM }

+-=> 4+

FIGURE 1-1. Hierarchical Relationships Within TDTI System

MICROSYSTEMS

@) mororoLa TASK TABLE

CHAPTER 2
TASK TABLE

2.1 GENERAL

Understanding how to use the TDTI system requires a thorough understanding of
the Task Table (TT) format. The table provides a flexible way for the user to
control the behavior of the system at startup time.

The TT consists of a header followed by one or more Task Table Entries (TTE).
(See Figure 2-1.) A utility program, TTGEN, is furnished to simplify creation
of a TT. It is described in paragraph 3. Refer also to Appendix A for a
sample TT.

The header has a self-relative link to the first TTE. Each TTE in turn is
linked to the next TTE by a self-relative offset. The last TTE contains a
self-relative offset value of zero.

Task Table Format Task Table Entry Format
gmmmm e + fommmmmmmm e +
+->
Task Table Task Entry 1
+--| Header Information Header Information
I
| #--=mmmmmmm e + Fommmm e +
|
+->| Task Table Entry 1 --> Task Entry 1
Task Control Block
+-- Related Information
I e +
[-> LT +
. Task Entry 1
+-- . Segment 1 Allocation
| 4-----memmm - + Related Information
|| I
+->| Task Table Entry n | dmmmmmm e mmme e +
| (Self-relative offset | .
| equals zero) | .
e bt + .
oo +

I
| Task Entry 1

| Segment n Allocation
|

I

Related Information

FIGURE 2-1. Task Table Entries

7 MICROSYSTEMS

@ MOTOROLA TASK TABLE

Each TTE contains information required to make the task known to the operating
system by creating the Task Control Block (TCB), allocating the segment(s)
required by the task, and setting the initial state of the task to dormant or
executing.

The TT and all of the TTEs typically would appear as a contiguous block of
data in RAM. However, this 1is not a requirement since the task table is a
linked structure.

2.2 SELF-RELATIVE LINKS

Any pointers or links used in the TT are "self-relative". This means that the
link 1is a 4-byte field containing the PC-relative offset from the 1link to the
data or code item. As an example, consider the following:

Assume that AO contains the absolute address of a data structure ($1000) and
the contents at offset LINK ($500) in this data structure consists of the PC-
relative offset ($200) to data item B. Then data item B would be located at
physical address $1700.

One way to obtain the address of data item B in A4 would be to execute the
following sequence of code:

LEA LINK(AO),A4 A4 contains the address of the
link '
ADD.L (A4),A4 A4 contains the absolute address

of data item B which is equal to
the sum of the absolute address
of LINK plus the contents of
LINK

ABSOLUTE ADDRESS

. QS > Hemmmmmmmmeoooo- + $1000
b + $1500
LINK ($500) Offset to data
item B ($200)
Homm e +
Ad - > oo + $1700
(Data item B)

8 MICROSYSTEMS

@ MOTOROLA TASK TABLE

2.3 TASK TABLE FIELD DEFINITIONS

The following illustrations describe the field contents of the TT. Shown with
each description is the mnemonic that provides offset identification, used by
TDTI, associated with the field. Explanations of the fields follow the
illustrations and have been grouped by function. The Tetter following each
mnemonic identifies the functional grouping where this field is described in
detail.

Task Table Header

TISUNID (A) | User-generated table header identifier '
TISEHLOS (8) | Self-relative offset to error handling logic |
TISFTEOS (B) | Self-relative offset to first task entry 1‘

e

Task Table Entry

TTSUTEID (A) | User-generated task entry identifier i
TISNEOS (D) | Selforelative offset to next task table entry |
TISUSC (D) | Self-relative offset to non-standard code i
IISTSKPO (C) | Task orecessing ordep T :
TISINITS (G) | Task initial state T ¢
TSN (6) | Taskname T :
TISTSN (E) | Task session mamper T :
TISTCB0 (5) | T6B divective sppians T :
TISMIN (E) | Momitor taskmame T :
TISHTSN (E) | Mamitor task session mumber :
TSTIP (6 | Task il ety T :
TSt () | Task Vit prierity T :
TTSTCBTA (E) | TCB task attributes T :
TTSTEPA (E) | Task entry point address T
TTSUGID (E) | Task user-generated identification ;
mSwes () | Wwer of seoments i

9 MICROSYSTEMS

@ MOTOROLA TASK TABLE

Task Table Entry Segment Information

TISES00 (F) | Seament divective aptians T T
HTSeSSA (F) | Seamenit attribaies T :
ITSSEGNN (F) | Segmemt mame T ¢
TTSSEGAD (F) | Segment addvess '
stz (7) | Sopert stz inbyies i

a. Debug Aids

There 1is no function associated with these fields other than to allow
the user to identify easily the start of the entity described.
Typically these identifiers will be a string of up to four ASCII
characters that would easily be recognized in a memory dump.

TTSUHID: 4 bytes -- User header identifier

This field is a user-generated TT header identifier, i.e.
"1HDR".

TTSUTEID: 4 bytes -- User task entry identifier

This field is a user-generated task entry identifier, i.e.
"TEO1".

b. Header Related Fields
TTSEHLOS: 4 bytes -- Error handling logic offset

This field contains a self-relative offset to the user-
written error handling Tlogic to be executed if the TDTI
task encounters an error while processing the TT. A simple
error handling routine that would "hang" the system and
allow postmortem debug 1is a Branch-to-Self instruction.
Upon entering the error handling lTogic register, A4 will
point to the TTE being processed, A5 will point to the TT
header, and A7 will point to an Error Index Value. (Refer
to Appendix E.)

The user may elect to bypass the error handling capability
in one of two ways:

1. By placing a value of zero in this field.

10 MICROSYSTEMS

M) mororoLa

TTSFTEOS:

TASK TABLE

2. By setting bit 0 in this field, giving an odd self-
relative offset.

If either of the above is done and an error is encountered
while processing a TTE, processing on that entry will
terminate and execution will commence with the next TTE.
Bit 0 was selected because the user could easily set and
reset this bit without destroying the even value of the
self-relative offset.

If the user elects to return from the error handling logic,
via an RTS instruction, he must preserve the stack pointer.
Preservation of all other registers will be done by the
TDTI task. Upon return, processing will commence with the
next TTE.

4 bytes -- First task entry offset
This field contains the self-relative offset to the first

TTE in the TT. A value of zero implies that there are no
TTEs.

c. Priority Processing Order Value

TTSTSKPO:

2 bytes -- Task priority processing order value

This field contains the task priority processing order
value. The execution order is from low to high. Assume
the TT has four TTEs as follows:

1T PROCESSING ORDER
ENTRY VALUE

1 31

2 10

3 17

4 35

The TTE processing order would be TTE2, TTE3, TTE1l, TTE4.
If multiple TTEs with the same processing order value
exist, the TTEs will be processed sequentially from the
first entry to the last entry.

Assume a TT had four TTEs as follows:

17 PROCESSING ORDER
ENTRY VALUE

1 31

2 05

3 17

4 05

11 MICROSYSTEMS

@ MOTOROLA

TASK TABLE

The TTE processing order would be TTE2, TTE4, TTE3, TTEL.

The user can bypass processing of a TTE by setting bit 15
in this field. Bit 15 was selected because the processing
order value will never be negative and the user can easily
set and reset this bit without destroying the processing
order value.

The user may elect to disregard this field entirely,
leaving a value of zero in each TTE, in which case the
entries will be processed in the exact order as they are
defined in the table.

d. Links Not Associated with the TT Header

TTSNEOS:

TTSUSC:

4 bytes -- Self-relative offset to the next table entry

This field contains the self-relative offset to the next
TTE in the TT. A value of zero implies there are no more
TTEs in the TT.

4 bytes -- Self-relative offset to non-standard user code

The user can elect to have TDTI perform the "standard"
processing functions for a particular TTE in the TT, or he
can elect to assume these responsibilities with his own
code. Typically this would be done if a task required
unique or additional functions which are not a part of
TDTI’s "standard"’ processing. If the user elects to
assume this responsibility, this field contains the self-
relative offset to the non-standard user code to be
processed for this task.

If non-standard code 1is to be executed, a Jump-to-
Subroutine (JSR) call will be made to the non-standard
code. The user is responsible for maintaining the stack
pointer and returning via an RTS instruction. Preservation
of all other registers will be done by the TDTI task. On a
call to the non-standard code, register A5 will point to
the TT header, and register A4 will point to the TTE to be
processed. Routines normally executed by the TDTI task
will be accessible to the non-standard user code as
subroutines, via a JSR. These routines include:

. Character-fill a work area
. Create a TCB for a task
. Call the task table error handling Tlogic, which

ultimately executes the user-written error handling
code

12 MICROSYSTEMS

@ MOTOROLA

TASK TABLE

. Obtain the task identification, which 1is required
usage for a realtime task

. Allocate segments for a task
. Start a task

Refer to Appendix D for details regarding these sub-
routines.

Upon return from the non-standard user code, the TDTI task
commences processing with the next TTE in the TT.

Since all non-standard user-written code that is executed
operates as a subroutine to TDTI, the user can execute any
RMS68K directive desired. For example, it is possible that
the user may wish to execute a delay request as a
coordination effort before moving on to the next entry in
the TT.

An example of this is demonstrated with entry number 5 in
the module 9990..TTS.SA and the corresponding user code in
module 9990.&.TEQSUSC.SA. (Refer to Appendix B.)

Note that in this example, which has non-standard user
code, only the following fields were defined:

TTSNEOS -- Self-relative offset to next TTE

TTSUSC -- Self-relative offset to non-standard user
code

TTSTSKPO -- Task priority processing order value

The user may elect not to execute existing non-standard
code by setting bit zero of this field. In this case, the
TTE will be processed as if the non-standard code did not
exist. Bit zero was selected because the user could easily
set and reset this bit without destroying the even value of
the self-relative offset.

A value of zero implies there is no non-standard user code.

13 MICROSYSTEMS

M) moToRoLA

TASK TABLE

e. Create Task Control Block Information

This information is related to the RMS68K directive "CRTCB" found in
the M68000 Family Real-Time Multitasking Software User’s Manual.

TTSTN:

TTSTSN:

TTSTCBDO:

TTSMTN:

TTSMTSN:

TTSTIP:

TTSTLP:

TTSTCBTA:

TTSTEPA:

TTSTUGID:

4 bytes -- Taskname

This field contains the taskname.

4 bytes -- Task session number

This field contains the session number of the task.
2 bytes -- TCB directive options

This field contains the TCB directive options.

4 bytes -- Monitor taskname

This field contains the monitor taskname for this task
entry.

4 bytes -- Monitor task session number

This field contains the session number of the monitor task.
1 byte -- Initial priority

This field contains the task initial priority.

1 byte -- Limit priority

This field contains the task limit priority.

2 bytes -- TCB task attribute

This field contains the TCB task attributes.

4 bytes -- Entry point address

This field contains the task entry point address.
2 bytes -- Task ID

This field contains a user-generated task identification.

f. Segment Handling Information

TTSNOS:

2 bytes -- Number of segments

This field contains the number of segments, range of one to
four, which TDTI will allocate to this task.

14 MICROSYSTEMS

@ MOTOROLA TASK TABLE

The following information is related to the RMS68K directives "GTSEG",
"DCLSHR", and "SHRSEG" found in the M68000 Family Real-Time
Multitasking Software User’s Manual.

The segment directive options and the segment attributes reflect a
subset of options and attributes that have been extracted from the
TRAP #1 calls of GTSEG, DCLSHR, and SHRSEG. This subset has been
determined to give the maximum flexibility for the following Togic
sequence which the TDTI task processes.

If a segment is declared shareable, an attempt will be made to grant
shared access for the requesting task. If shared access is denied,
TDTI will allocate the segment to itself, declare it shareable, and
then transfer it to the target task. TDTI will perform segment
allocation for the target task if shared access is not requested.

The appropriate directive options and segment attributes will be
selected for the TRAP call being initiated.

The description of the Tlast segment associated with the task will
complete the definition of the TTE.

TTSGSDO: 2 bytes -- Segment directive options

Bit Meaning
13 0 - An address is specified in the address field

for this segment.
1 - RMS68K supplies logical address equals
physical address.

12 0 - Shareable segment is not permanent
Shareable segment is permanent.

—
1

08 0 - RMS68K does not attempt to allocate the
segment at the physical address specified in
the address field for this segment.

1 - RMS68K attempts to allocate the segment at
the physical address specified in the address
field for this segment. Since this is a
physical address, the Tlogical address will
equal the physical address.

15 MICROSYSTEMS

@ mororoLa TASK TABLE

TTSGSSA: 2 bytes -- Segment attributes

Bit Meaning
14 0 - Segment is to be read/write.
1 - Segment is to be read only.
13 0 - Segment is not locally shareable.
1 - Segment is locally shareable.
12 0 - Segment is not globally shareable.
1 - Segment is globally shareable.
11 0 - Segment is not memory mapped I/0 space.
1 - Segment is memory mapped I/0 space. The

address given in the address field for this
segment must be a physical address that is
not in the 1limits of allocatable RAM. If
this bit 1is set, none of the GTSEG options
are applicable and the segment is allocated
as as a shared segment.

TTSSEGNM: 4 bytes -- Segment name

This field contains the segment name.
TTSSEGAD: 4 bytes -- Segment address

This field contains the segment address.
TTSSEGSZ: 4 bytes -- Segment size

This field contains the segment size.

g. Task Initial State Information
TTSINITS: 2 bytes -- Task initial state

This field contains the code of the initial state that this
task is to have. Valid codes are "R" (ready to execute)
and "D" (this task is dormant).

If the initial state does not have a valid value, it will
default to dormant, "D".

The high order byte of this word has been reserved for
future use:

mmmmmmmme- ommmmmmm o +
| Future | State |
| Use | Code |
ommmmmmmm- ommmmmmme +

16 MICROSYSTEMS

@ MOTOROLA TASK TABLE

2.4 CREATING THE TASK TABLE

TDTI requires a complex TT to drive its startup processing. The complex table
format provides a great deal of flexibility, but is difficult to create
manually. The Task Table Generator Utility (TTGEN) provides an easy way for
the user to create this table. The utility provides a series of simple menus
which allow creation of a TT of arbitrary length. Most of the low level
details in the table creation are hidden, thus minimizing the amount of
information with which the user must deal.

The output from TTGEN is assembly Tanguage source which has been commented to
make various parts of the table easy to find. After the output has been
created, it can be combined with other user-written source code and assembled.

TTGEN will query the user for information required to build the table. Some
of the information required are the names of the 1load module files
representing the tasks that the user wishes to integrate into the system.
The Tload module files named must be available for TTGEN to access. Some of
the information that TTGEN puts into the table is obtained from the first
sector of the load module file (known as the Loader Information Block -- LIB).

Because the user interface is very simple, TTGEN may not be able to generate
some of the more exotic options available through use of the TT. It is
possible, however, to generate a table that is very nearly complete with
TTGEN. Any options that cannot be handled by TTGEN can easily be inserted
into the table with the VERSAdos editor.

2.4.1 Invoking TTGEN
The command 1ine to invoke TTGEN is the following:
=TTGEN [output field]

where:

output field is the filename which will receive the output from
TTGEN.

If output field is not entered, the output filename will default to TTABLE.SA
under the current default volume, catalog, and user number. The output field
must be a file; it cannot be a device such as #PR.

An initial selection menu will be presented to the user. There are three
"work" menus and three "help" menus. Each help menu is associated with a
single work menu. Movement between menus can only take place along the Tines
indicated.

17 MICROSYSTEMS

@ MOTOROLA TASK TABLE

The following diagram shows all of the menus and their relationship to one
another:

Initial selection menu

I
Define task table header
Help menu for initial selection
Help menu for header

Define single task entry

Help menu for task entry

After invoking the TTGEN utility, TTGEN will determine if the output file
already exists. If so, TTGEN will present the following question to the user.

Output file "filename" exists - OK to overwrite? (Y/N)
where filename is the completely qualified output filename. If the user
answers with N, the utility will terminate with no further action taken. If
the user answers with Y, the utility will continue. The output file will not
be overwritten, however, until the user gives the command to configure (build)
the TT.
2.4.2 "Initial Selection" Menu

The "initial selection" menu, along with its associated help menu, is shown
below:

Main selection:
1 - Define Task Table Header
2 - Define or modify a single table entry
- Delete a single table entry
C - Configure (Build) the Task Table
Q@ - Quit
H - Help

Enter selection >

MICROSYSTEMS

@ MOTOROLA TASK TABLE

HELP (for Initial Selection Menu)
Selection Description

1 - (Optional) Displays the menu which allows you to define the task table
header. If not selected, the task table header will be defined with
default values.

2 - Displays the menu which allows you to define an entry in the task table
for a single task. A 1load module file for the task must have been
created prior to building the table entry for that task.

C - Builds the task table output file using current task table header and
task table entry values. If an output file exists it will be
overwritten at this time.

Q - Terminates the utility without performing any update function.

Press ’RETURN’ to view initial selection menu

The menus are self-explanatory. The "default values" mentioned in the help
menu under item number 1 are presented when the user selects option 1 (define
TT header). This illustrates an important point: It is not necessary to go
through every selection item in the work menus. Most of the items will
default to sensible values if they are not selected by the user. In
particular, it is not necessary for the user to go though the define TT header
menu. A default TT header will be defined if the user does not select this
option. The user may elect to view the define TT header menu by making that
selection, but it is not necessary to modify any of the default values that
will be presented by that menu.

The only way to exit the TTGEN utility is to select the "Q" option when the
initial selection menu 1is presented. Selecting the "C" option will cause a
task table to be built and control to be returned to the initial selection
menu. If a mistake was made it is still possible to correct it and select the
"C" option again, which will overwrite the erroneous TT file with the
corrected information.

19 MICROSYSTEMS

M moToroLA

2.4.3

TASK TABLE

"Define Task Table Header" Menu

The "define task table header" menu, along with its associated help menu, is
shown below:

Define task table header:

1 -

x P w nN
1

Enter

Table address (heX)...veeriirreieiiiiinernronnenns $not def
Header ID......iiiiiiinrirenenesonnenecnnceennens 'HDR
Error Handling Offset (Mnemonic or hex)........... 0

Quit (return to initial selection menu)

Help

selection >

HELP (for Task Table Header Menu)

Selection Description

1 -

Press

(Optional) Enter the address that the task table will occupy in memory.
An ORG statement will be generated reflecting this value. If no
selection is made, no ORG statement will be generated.

(Optional) Enter the header ID. The ID is a 4-character alphanumeric
string. The default value is ’!HDR’.

(Optional) Enter the error handling offset. The entry may be either hex
(representing an absolute address where the error handling logic
resides) or a mnemonic (representing the assembler label of the first
instruction of the error handling code). If no entry or an entry of 0
is made,the task initiator will assume there is no error handling code.

’RETURN’ to view task table header menu

20 MICROSYSTEMS

—.

@ MOTOROLA TASK TABLE

Note that all of the selections on the TT header menu are optional. This
means that it is not necessary to select this menu at all from the initial
selection menu. If it is not selected, all of the values defined by this menu
will default.

Note the following about entering constant data: If selection 1 is chosen,
TTGEN prompts for entry of the hex value representing the starting address for
the TT. The value entered may have a leading "$" but it is not required. For
selection 2 a prompt will ask for entry of the mnemonic representing the
header ID. ASCII constants must be entered without delimiting quotes. For
selection 2, if fewer than four characters are entered, the ID will be blank-
filled on the right. If more than four characters are entered, the ID will be
truncated from the right to four characters. For selection 3, a prompt will
ask for entry of either a mnemonic (which corresponds to an assembly language
label) or a hex value. In this case, the Teading "$" is required for the hex
input since there may be confusion in some cases. The constant ’FADE’ is an
assembly Tanguage mnemonic but the constant "$FADE" is a hex value.

2.4.4 "Define Single Task Entry" Menu

The "define single task entry" menu, along with its associated help menu, is
shown below:

Define single task entry: *ZAPP’

1 - Load module file name............covuun... not def
2 - Task starting address (hex).......ccovvvuuiniinen, $not def
3 - Task initial state (Ready 'R’ or Dormant ’D’)..... D
- Task processing priority (decimal)................ 0
Q - Quit (return to initial selection menu)
H - Help

Next available address = $not def

Enter selection >

21 MICROSYSTEMS

@ MOTOROLA TASK TABLE

HEL P (for Task Entry Menu)

Selection Description
1 - Enter the load module filename for the desired task.

2 - (Optional) Enter the task start address. This address must be in_hex
and represents the address that the first segment of the task will
occupy. If no entry is made for this selection, the starting addresses
will be obtained from the load module file.

3 - (Optional) Enter the task initial state. The two possible responses are
’D’ for dormant or 'R’ for ready. The default value for this selection
is ’D’.

4 - (Optional) Enter the task processing order. The number entered is a

decimal number in the range 0-32767. The default value is 0.

Press *RETURN’ to return to view task entry menu

When selection 2 is requested from the main menu, a prompt will ask for entry
of a task entry ID. The ID entered will identify the particular task entry
being defined. The task entry ID for the above example is "ZAPP". While
still in the utility, a particular task entry menu can always be recalled
through use of the associated task entry ID. A1l the information previously
defined for that task entry will be displayed if the menu is returned to at a
Jater time. When the task table is built, the task entries will be inserted
into the table in the order in which they were defined. This order is not
necessarily the order in which TDTI will process the entries. That order is
determined by the processing order (selection 4) defined for the task entry.

Note that only the load module filename is required. ATl of the other entries
are optional. Most of the information that goes into the TT will be obtained
from the LIB of the load module file. As mentioned earlier, the load module
must be available for TTGEN to access. Refer to the M68000 Family Linkage
Editor User’s Manual for options available when Tinking a task.

The "next available address" line in the menu will assume a value when the
task start address is defined. This value is the address of the byte of
memory immediately following the last byte of the task defined. This can be
used as a guide to determine where the next task may begin. TTGEN does not
enforce address checking, however. It is possible to define tasks with
overlapping addresses. If a task start address is defined that differs from
the LIB address defined for that task, TTGEN will automatically bias the
addresses of all the segments defined for that task by the appropriate amount
before inserting the information into the TT. No change will be made in the
load module associated with that task.

22 MICROSYSTEMS

TN

—~

@ MOTOROLA TASK TABLE

2.4.5 Modifying TTGEN Output

This utility is designed to provide a very simple interface to assist the user
in coding a rather complex TT. As mentioned earlier, it may not be possible
to produce the TT to support unusual options using TTGEN alone. It is
possible, however, to produce a TT that is fairly close to the desired form,
and use the VERSAdos editor to modify the output file that TTGEN produces.
This section discusses the limitations that may be encountered in using the
TTGEN utility.

The first 1limitation is the inability to use the utility to produce a table
entry that supports special or "non-standard" processing. Each entry in the
table produced by TTGEN must have an associated task. It is possible,
however, to have a table entry that is not associated with any task, but
merely contains a pointer to some non-standard user-written code that
executes as a subroutine to the TDTI. The easiest way to handle this is to
have a small dummy task defined on the system and configure the table entry
using TTGEN to support that dummy task. After the table is created, the
editor can be used to insert a pointer to the non-standard code into the cell
that has the comment "Offset to special non-standard processing". A nonzero
value here will cause TDTI to ignore all of the information relating to the
dummy task (other than processing priority) and simply execute the special
code as a subroutine.

There 1is no provision to modify the user-generated task ID. This is the ID
that is dinserted into events queued by the task. This field can easily be
modified by editing the task entry line that has the comment "User-generated
task ID".

Another limitation 1is the 1inability to specify segment directive options.
TTGEN always sets the value $0100 (bit 8 set) into the segment directive
options field for each segment associated with a task. The option set by
TTGEN tells TDTI to allocate the segment at the defined physical address.
This should satisfy most requirements. The other defined options can be
invoked by simply finding -the appropriate segment definition area in the
output file and editing the "segment directive options" field. Refer to the
M68000 Family Real-Time Multitasking Software User’s Manual for further
information about segment directive options.

2.5 EXAMPLE

The many menus that appear during the use of the utility preclude presenting a
complete example of the use of TTGEN; therefore the following example presents
only the user inputs along with some comments about the menus that are
displayed. Following the dialog description, the output TT is presented.

23 MICROSYSTEMS

@ MOTOROLA TASK TABLE

2.5.1 Interactive Dialog

The following example represents an unrealistic system, but it illustrates the
use of the utility to create a TT with two tasks defined. The first task will
be TTGEN itself (a three-segment task), and the second task will be the
VERSAdos assembler (a two-segment task). Both of these tasks’ Toad modules
should presently be on the VERSAdos media; this example can be performed by a
user to aid in understanding the use of the utility. User inputs are shown on
the left along with comments. Entries associated with lower Tevel menus are
indented.

=TTGEN Invokes the utility. Since no output file was
selected, the output filename defaults to TTABLE.SA.
1 The user selects option 1 (define TT header). The TT
header menu is presented.
1 Option 1 is selected (table address).
$2B00 The table address is defined to start at $2B00.
2 Option 2 is selected (header ID).
HEAD The header ID is defined to be "HEAD". Note that
the ID is entered without delimiting quotes.
Q This will return control to the initial selection
menu.
2 Option 2 is selected (define single TT entry).
ZAPP The utility queries the user for task entry ID. The

entry ID is defined to be "ZAPP". The "define single
task entry" menu is presented.

1 Option 1 is selected (load module filename).

0..TTGEN.LO The filename 1is entered in response to the
utility’s query.

2 Option 2 is selected (task starting address).

3000 The starting address is defined to be $3000.

Note that the Teading "$" was not entered here.
If it had been, the effect would have been the
same.

Q This will return control to the main menu. Note
that task processing order (option 4) was not
selected. It will default to a value of 0.

24 MICROSYSTEMS

FasaN

@ MOTOROLA TASK TABLE

2 Option 2 was selected to define the second task.
ZORK The associated task entry ID is "ZORK".
1 Option 1 is selected (load module filename).
0..ASM.LO The filename 1is entered in response to the
utility’s query.
2 Option 2 is selected (task starting address).
$1DEOO The starting address is defined to be $1DEOO.
Q This returns control to the initial selection
menu.
c This selection causes the task table to be built.
Q The utility terminates.

2.5.2 TTGEN Output

The following assembly Tlanguage code was created by TTGEN from the example
input just presented:

PAGE
* Table driven task initiator (TDTI) startup table.
* Created with TTGEN

ORG $2B00
K o o o o o e o e *
* TASK TABLE HEADER *
K e e L e o o o o o e o e — e m o m e e e e e e e e e e e e e e o e e *
DC.L ’HEAD’ Header ID.
pc.L o0 Address offset of error handling routine.
* Zero means no error handling routine.
. DC.L 4 Address offset to 1st table entry.
__ *
: END OF TASK TABLE HEADER *
__ *
PAGE
K o e e e o o e o e e e e m e e o e e e e e o e e e e e e e e %*
* TASK ENTRY ZAPP *

2 MICROSYSTEMS

@ MOTOROLA TASK TABLE

K e e e e e e e e e e e e e e e — e e A e e e e e e mm MM meEm e memmem e mmmm——m—m— e —————— *
DC.L ’ZAPP’ Task entry ID
DC.L ZAPP_END-* Offset to next entry
DC.L $0 Offset to special non-standard processing
DC.Ww O Processing order value
DC.B 0 Reserved
pc.s ’D? State (’D’=dormant, ’R’=ready)
DC.L ’TTGE’ Taskname
DC.L $00000000 *,...’ Task session number
DC.W %0000000000000000 TCB directive options
DC.L $0 Monitor taskname -
DC.L $00000000 ’....” Monitor session number
DC.B $00 Task initial priority
DC.B $00 Task limit priority
DC.W %0000100000000000 Task attributes
DC.L $00003000 Task start address
DC.W O User-generated task ID
DC.W 3 Number of segments for task
*
e i Segment entry for task ’ZAPP’, segment ’SEG1’
*
DC.W %0000000100000000 Segment directive options
DC.W %0100000000000000 Segment attributes
DC.L ’SEGY’ Segment name
DC.L $00003000 Start address of segment
DC.L $00005200 Length of segment
*
LECEEEE TR Segment entry for task 'ZAPP’, segment ’SEG2’
*
DC.W %0000000100000000 Segment directive options
DC.W %0000000000000000 Segment attributes
DC.L ’SEG2’ Segment name
DC.L $00008200 Start address of segment
DC.L $0000C400 Length of segment
*
R R Segment entry for task ’ZAPP’, segment ’RRTL’
*
DC.W %0000000100000000 Segment directive options
DC.W %0101000000000000 Segment attributes
DC.L ’RRTL’ Segment name
DC.L $00014600 Start address of segment
DC.L $00008F00 Length of segment

ZAPP_END EQU *.

* END OF ENTRY FOR --- ZAPP *

26 MICROSYSTEMS

@ MOTOROLA TASK TABLE

K e A e e e e e e e e e m e m e mm e *

PAGE
K L o e e e e e e e e e e . e e e . e e e — e e e e e e e e e e e e e e e e e e e *
* TASK ENTRY ZORK *
K o e e e o e e . e mmmemaa %

DC.L ’ZORK’ Task entry ID

DC.L O Offset to next entry

DC.L $0 Offset to special non-standard processing

DC.W 0 Processing order value

DC.B 0 Reserved

pDC.B D’ State (’D’=dormant, ’R’=ready)

DC.L ’RASM’ Taskname

DC.L $00000000 ’....” Task session number

DC.W %0000000000000000 TCB directive options

DC.L $0 Monitor taskname

DC.L $00000000 ’....” Monitor session number

DC.B $00 Task initial priority

DC.B $00 Task 1imit priority

DC.W %0000100000000000 Task attributes

DC.L $0001DEOO Task start address

DC.Ww 0 User-generated task ID

DC.W 2 Number of segments for task
*
e Segment entry for task ’ZORK’, segment ’IASM’
*

DC.W %0000000100000000 Segment directive options

DC.W %0101000000000000 Segment attributes

DC.L ’IASM’ Segment name

DC.L $0001DECO Start address of segment

DC.L $00015C00 Length of segment
*
hEEE LR LR Segment entry for task ’ZORK’, segment ’SEG2’
*

DC.W %0000000100000000 Segment directive options

DC.W %0000000000000000 Segment attributes

DC.L ’SEG2’ Segment name

DC.L $00033A00 Start address of segment

DC.L $00009400 Length of segment
ZORK_END EQU *
K L e o o o o o e e e m e e e e e e o o o e e e e e e %*
* END OF ENTRY FOR --- ZORK *
K o e e e o o o o o o o e e o o o e e e e e — — — e e e e e~ — e m oo *
K o e e e e e e e o e e e e e e e e e e e e m —m = e o e e e e e e %*
* END OF TASK TABLE *
*]
* Have a nice day ! *
K o o e e e e e e e e e e e e e e e e e — — e e e e = e e e e *

27

MICROSYSTEMS

@ MOTOROLA

THIS PAGE INTENTIONALLY LEFT BLANK.

28

TASK TABLE

MICROSYSTEMS

@ MOTOROLA CREATION OF TDTI SYSTEM

CHAPTER 3
CREATION OF A TDTI OPERATING SYSTEM

3.1 GENERAL

There are two types of TDTI operating systems: RMS68K and VERSAdos. The
VERSAdos TDTI system differs from the RMS68K version in that it includes the
VERSAdos I1/0 subsystem and applicable drivers for the user’s application. The
figure below illustrates the structures of the two types of TDTI systems and
the necessary user-written portion.

RMS68K VERSAdos USER
$ommmmmmmmmmaao- + ommmm e + fmmmmm e +
| RMS68K | | VERSAdos | | USER-WRITTEN [
O + | (I0S/FHS) | | INFORMATION: [
| TDTI | e + [* TASK TABLE |
Fom e + | DRIVERS | |* NON-STANDARD CODE |
| SYSINIT I S S + |* ERROR HANDLING |
E + [* TASK(S) |

fmmmmmm e +

Because the Table Driven Operating System can operate on a target system that
has a Memory Management Unit (MMU), it is necessary that the TT, any existing
non-standard user code, and any user-written error handling logic reside in a
single user-specified partition. TDTI will allocate a segment, using the
address range for this partition, so that it can access the information
contained there. The user has complete flexibility, within the address range,
for his resource allocation.

In systems which are to be downloaded, a VERSAdos 4.4 limitation requires that
a RAM partition be Tlogically defined to the system as ROM to prevent
downloaded information from being cleared at system boot time. The system
jnitializer at boot time will zero out all RAM defined in the RAM partitions,
but will not attempt to initialize a partition defined as ROM. Therefore, to
prevent destruction of the wuser’s application task(s), TT, and any non-
standard user-specified code or error handling logic that has been downloaded,
a partition defined as ROM must be in the address range of the downloaded
modules. This modification must be made in the INITDAT.AG module.

The user application task(s) must also reside in a ROM partition but it does
not have to be the same ROM partition that contains the TT and optional non-
standard user specified code or error handling logic. No restrictions have
been placed on the RMS68K or VERSAdos portions shown above, but the user-
written information must be defined in one or more ROM partitions. The
demonstration chainfile discussed in Chapter 4 puts these items into a single
paraition. Note that a partition defined as ROM can physically reside in ROM
or RAM.

23 MICROSYSTEMS

@ MOTOROLA CREATION OF TDTI SYSTEM

On VMEsystems with a MMU and cache memory (MVME120 and MVME121), partition 1
must be configured. Partition 1 contains the default memory allocated to user
tasks. Allocating memory from this partition ensures that the base address
will be on a required 2Kb boundary.

The above portions can be created separately but they are interrelated via
address links (pointers). The following defines the relationships that must be
resolved but does not address the method of implementation to satisfy those
relationships.

a. TDTI has three external references defined that must be resolved.
These references are defined 1in the user-written information and

include:
XREF TTSSA Pointer to the TT header
XREF AREASA Start physical address of ROM partition
XREF AREAEA End physical address of ROM partition

Between the start and end addresses of this ROM partition must be at
least the following:

Task table Required
Error handling logic Optional
Non-standard user code Optional

Additional information may reside in this partition at the user’s
discretion,

b. Links from user-written code (tasks, error handling logic, and non-
standard startup logic) to TDTI subroutines must be resolved if TDTI
subroutines are used. This is optional, and if the user elects to
write his own code instead of wusing TDTI subroutines, this
relationship would not have to be resolved. The following external
definitions have been defined in TDTI:

XDEF TI70200 Character fill subroutine

XDEF TI70500 Create TCB

XDEF TI71000 Interface to-error handling routine
XDEF TI71200 Get task ID

XDEF TI71300 Allocate task segments

XDEF TI72800 Start specified task

Refer to Appendix D for detailed information on each subroutine.

30 MICROSYSTEMS

M) moToroLA

CREATION OF TDTI SYSTEM

3.2 CREATING THE SYSTEM

The steps to create an RMS68K or VERSAdos system are as follows:

a.

b.

Execute the TDTIGEN1 utility to create the arguments required as
input to the chainfile 9998.TDTI.COPY.CF. The arguments, which
TDTIGEN]1 stores in the target volume:user number file RESTOREA.CF,
include the target volume:user number where the SYSGEN will be
executed, the source volume where the SYSGEN files reside, the
VERSAdos catalog for the SYSGEN product, and the type of SYSGEN,
RMS68K or VERSAdos. Typically the source volume and the target
volume are the same, but this is not a requirement. When TDTIGEN1
is executed, an interactive dialog begins that displays current
defaults and prompts the user for input of the arguments. A
typical example follows:

=TDTIGEN1
Target Volume SYS
Target User Number 8007
Product Catalog VMEI110
System Type v
Source Volume SYS
Target Volume - Volume where SYSGEN will occur
Target User Number - User number where SYSGEN will occur
Product Catalog - VERSAdos catalog for target SYSGEN system
Type of SYSGEN - R = RMS or V = VERSAdos
Source Volume - Volume where SYSGEN-related files reside
C = Configure file with current parameters and Quit
Q = Quit with no file configuration
A carriage return retains current value
Target Volume SYS >(CR)
Target User Number...... 8007 >99¢0

From the target volume:user number enter the following command
Tine:

=source volume:9998.TDTI.COPY.CF

This chainfile will copy to the target volume:user number those
files that require modification. The chainfile will automatically
modify &.CNFGTASK.CI and TDTI.CI according to the type of TDTI
operating system the user has selected. This chainfile uses the
SYSGEN implementation to resolve the relationship, discussed
above, between the user-written information and the TDTI task. A
listing of the chainfile is provided in Appendix C.

31 MICROSYSTEMS

@ MOTOROLA CREATION OF TDTI SYSTEM

Upon completion of this chainfile the user is notified of the
files that must be modified. These files are:

&.INITDAT.AG Must be modified to reflect the user’s
partitioning for his SYSGENed system.

&.TDTI.CI Must be modified to identify the start/end
address of the ROM partition that contains the
TT to be processed as well as the the start
address of the TT in the partition (an example
3 js provided in Appendix B).

catalog.CNFGDRVR.CI
If this is a TDTI RMS68K operating system, all
references to any drivers must be removed. If
this is a TDTI VERSAdos operating system, the
user should reference only those drivers
required for his application (an example is
provided in Appendix B).

c¢. Initiate the command line:
=TDTI.PRODUCT.CF

from the target volume:user number. The results of this chainfile
will be the type of TDTI system requested by the user. A Tisting
of this chainfile is provided in Appendix C.

NOTE
Due to a VERSAdos 4.4 limitation, I0S, FHS, and GET.TASKID.AG
contain an error which prevents the system from booting if a
RAM system was SYSGENed without the File Management System
(FMS). The corrected modules, which the user should apply to
his system, reside on the latest quarterly update media.

32 MICROSYSTEMS

@ MOTOROLA TDTI SYSTEM EXAMPLE

CHAPTER 4
TDTI/VERSAdos SYSTEM EXAMPLE PROGRAM

4.1 EXAMPLE CHAINFILE

The VERSAdos software includes, under user number 9990, a chainfile which will
create an example of a Table Driven Task Initiator (TDTI)/VERSAdos operating
system containing four tasks, each outputting a message to device CNOO. This
chainfile, TDTIVDOS.EXAMPLE.CF, will perform all of the steps necessary to
create a TT, application tasks to use with the system, non-standard user code,
and error handling logic. The example chainfile target system is an MVME110.
The demonstration chainfile identifies the steps required to create a table
driven operating system. The implementation scheme, addresses chosen, and
target system used in this example are not binding on the user but merely
illustrate one way to create a TDTI/VERSAdos system.

Listings of files used in this example are provided in appendices, as follows:

Appendix A -- Example Task Table
Appendix B -- Files Modified for Example
Appendix C -- Example Chainfiles

The creation of the TDTI/VERSAdos system by the example chainfile
TDTIVDOS.EXAMPLE.CF has two major steps:

1. Creation of the TDTI system.
2. Creation of the user-responsible code.

Step 1 involves the following:

a. Executing the TDTIGEN] utility in the target volume:user number where
the SYSGEN will occur, to establish the arguments for the execution of
the chainfile TDTI.COPY.CF.

b. Initiating the chainfile volume.9998.TDTI.COPY.CF to copy and identify
for the user those files that require user modification before the TDTI
system can be built. The chainfile TDTIUSER.MODIFY.CF reflects these
changes.

c. Making modifications to the files that define partitioning, identify
where the TT resides, and identify the driver that is applicable to -
this application. Files that are modified include:

&. INITDAT.AG
&.TDTI.CI
catalog.CNFGDRVR.CI

d. Initiating the chainfile TDTI.PRODUCT.CF. Upon completion, this chain-
file will produce the S-record file VME110.VERSADOS.MX, which can be
downloaded.

33 MICROSYSTEMS

@ MOTOROLA TDTI SYSTEM EXAMPLE

Step 2 involves the following:

a. Creating the user-required application tasks which are to be executed.
The chainfile TDTI.APLICATN.CF reflects this information. The files
related to this application are TSK1.SA, TSK2.SA, TSK3.SA, and TSK4.SA.

b. Creating the TT and any optional error handling Togic or non-standard
code defined by the user. The error handling logic is in module
TTSEHL.SA, the TT is in TTS.SA, and the non-standard user-written code
is in modules TEQIUSC.SA and TEO5USC.SA. The implementation to resolve
the relationships between user-written code and the TDTI referenced
routines was a SYSGEN. The SYSGEN modules involved are
TTSUCEHL.SYSGEN.CF and TTSUCEHL.CD. Al1 of these modules reside in
user number 9990.

The chainfile TDTITTS.EXAMPLE.CF reflects this information and the SYSGEN
technique used to collect this information into a single module.

4.2 EXECUTION OF EXAMPLE CHAINFILE
To execute the example chainfile, perform the following steps:
a. Log on to the volume:user number where the SYSGEN is to be executed.

b. Execute the TDTIGENI utility to define the arguments for the chainfile.
The VERSAdos catalog for the target system must equal "VME110" and the
type of TDTI system to be created must equal "V", which is the VERSAdos
system. The other arguments requested by the utility are user-
selectable.

c. Initiate the chainfile 9990.TDTIVDOS.EXAMPLE.CF. This chainfile will
make calls to the following chainfiles from the target volume:user
number:

9998.TDTI.COPY.CF
TDTIUSER.MODIFY.CF
TDTI.PRODUCT.CF
TDTI.APLICATN.CF
TDTITTS.EXAMPLE.CF

After the chainfiles above have been executed, the user can download all of
the files with an extension of ".MX" to the MVME110 system, set the PC and the
stack register A7, and initiate the process with the GO command. Refer to
Appendix B for information regarding the startup value.

4.3 CHAINFILE DESCRIPTIONS
The following paragraphs explain the function of the chainfiles called by the

chainfile 9990.TDTIVDOS.EXAMPLE.CF (refer to paragraph 4.2). Refer also to
Appendix C, which contains listings of these chainfiles.

34 MICROSYSTEMS

@ MOTOROLA TDTI SYSTEM EXAMPLE

4.3.1 TDTI.COPY.CF

"This chainfile will copy the files that need to be modified to the target
volume:user number. For demonstration purposes, pre-modified files exist, and
are copied to the target volume:user number. These pre-modified files reflect
the configuration of the target MVME110 system. The files copied are:

9990.EXAMPLE. INITDAT.AG Defines the example partitioning
9990.EXAMPLE.TDTI.CI Defines partitioning addresses
9990 . EXAMPLE.CNFGDRVR.CI Contains only the ACIA driver

4.3.2 TDTIUSER.MODIFY.CF

The changes the user would make are reflected in this chainfile. For this
example, the following conditions exist:

RAM partition $40000 - $9FFFF

ROM partition $300000 - $31EFFF

ROM partition $31F000 - $31FFFF

Task table start address - $300A00

Only the ACIA driver exists in the system

4.3.3 TDTI.PRODUCT.CF
This chainfile will perform the following:
a. Save the files modified by the user so they will not be destroyed.

b. Initiate an MVME110 COPYSGEN process to copy all files required for the
SYSGEN to the target volume:user number.

€. Re-establish the modified files as the ones to use during the SYSGEN.

d. Copy the TDTI-related files to the target volume:user number. The
files copied are:

9998.&.TDTI.LG
9998.&.TDTI.RO
9998.&.TDTIRSL.CI
9998.&.TDTIVU.CI
9998.TTSSA.TDTI.AG

e. Edit the VERSADOS.CD module to include the TDTI command modules TDTI.CI
and TDTIRSL.CI. The TDTI.CI will define the task attributes for the
TDTI Toad module created at SYSGEN time. The TDTIRSL.CI module and the
function it serves are explained under the discussion of the
TOTITTS.EXAMPLE.CF chainfile (refer to paragraph 4.3.3).

35 MICROSYSTEMS

@ MOTOROLA TDTI SYSTEM EXAMPLE

f. Initiate the SYSGEN process to produce the TDTI/VERSAdos system for the
MVME110 and build the corresponding module to be downloaded. A by-
product of this SYSGEN is the file XTDTIVU.CI, whose significance
will be explained in the discussion of the TDTITTS.EXAMPLE.CF chainfile
(refer to paragraph 4.3.5).

4.3.4 TDTI.APLICATN.CF

This chainfile reflects the application the user has defined for his system.
As stated previously, there are four tasks outputting a message to device CNOO
in a never-ending loop. This chainfile assembles, links, and creates the
modules to be downloaded to the target system.

4,3.5 TDTITTS.EXAMPLE.CF

This chainfile creates the module containing error handling Togic, non-
standard user-specified code, and the TT. The TT is required, while non-
standard user-specified code and the error handling logic are optional.

This module could have been created in any number of ways, but for this
demonstration a SYSGEN process was chosen. This implementation was chosen to
resolve the address references to the TDTI subroutines used by the non-
standard code in task entry 2.

For this example chainfile, TT entries 2 and 5 were selected to have non-
standard user-specified code. Task entry 2 accesses routines used by TDTI to
perform "standard" processing, but the additional function of starting the
task with specific address and data register values was added. Since task
entry two uses TDTI routines, it is necessary to know where the TDTI task
started and to include the TDTI.RO module at link time to satisfy external
references to those subroutines referenced by task entry 2. The command
include file TDTIRSL.CI, which was executed at SYSGEN time for the TDTI
operating system, created the module XTDTIVU.CI. This module identifies the
start address of the TDTI module. (Refer to Appendix B.)

Task entry 5 performs none of the "standard" processing functions, but instead
initiates the RMS68K directive to delay for five seconds before continuing to
process the balance of the TT.
The chainfile copies the following to the target volume:user number:

a. A1l non-standard user-specified code

b. The user-specified error handling logic

c. Task table-related files

d. The files needed to execute the SYSGEN for this module (refer to
Appendix B).

36 MICROSYSTEMS

@ MOTOROLA TDTI SYSTEM EXAMPLE

After the files are copied, assemblies are performed on the error handling
logic, the non-standard user-specified code, and the TT. The SYSGEN is
initiated, and upon its completion the corresponding file to be downloaded is
created.

37 MICROSYSTEMS

M) moToroLA

THIS PAGE INTENTIONALLY LEFT BLANK.

38

TDTI SYSTEM EXAMPLE

MICROSYSTEMS

M) mororoLa APPENDIX A

APPENDIX A

EXAMPLE TASK TABLE

A.1 EXAMPLE OF TASK TABLE HEADER

TTSSA:
DC.L TITTS?

*

User-generated task entry identifier. Eye
catcher only -- No function associated with
this field.

* %

DC.L TTSEHL-*

Self-relative offset to the error handling
logic to be executed if the TDTI task
encounters an error while processing the
TTS.

If the user elects to return from the error
handling logic, via an RTS instruction, he
must preserve the stack pointer.
Preservation of all other registers will be
maintained by the Table Driven Task
Initiator task. Upon return, processing
will commence with the next TTE.

If this field is zero the error handling logic
will not be executed. If an error occurs,
current TTE will be skipped and processing
will resume with the next TTE.

If error handling logic exists and an error is
encountered, but bit zero of this field is
set, processing on the current TTE will be
terminated and the error handling logic will
not be executed. Processing will commence
with the next TTE.

* % b %k Ok ¥ ¥

* H ok % % % ok A ¥ % %X ¥ *

DC.L TEID00O1-*
Self-relative offset to the first TTS entry.
A value of zero implies that there are no
* TTEs.

* %

39 MICROSYSTEMS

M) moToroLA APPENDIX A

A.2 EXAMPLE OF "STANDARD" TASK TABLE ENTRY

TEID00O2:
DC.L *TE02’
* User-generated task entry identifier. Eye
* catcher only -- no function associated with
* this field.
DC.L TEIDO0OO3-*
* Self-relative offset to the next TTE in the TITS.
* A value of zero implies there are no more
* TTEs.
DC.L 0

Self-relative offset to the non-standard
code to be processed for this task.

A value of zero or an odd value (bit zero set)
means no non-standard code will be
executed.

If non-standard code is to be executed a
Jump-to-Subroutine (JSR) call will be
made to the user-written non-standard code.
The user is responsible for maintaining the
stack pointer and returning via an RTS
instruction. Register preservation for
registers other than the stack pointer will
be done by the TDTI task. On a call to the
non-standard code register, A5 will point to
the TT header, and register A4 will point to
the TTE to be processed.

The user is responsible for performing all
actions normally done by the TDTI task.
Routines normally accessed by the TDTI task
will be accessible to the non-standard code
Upon return from the non-standard code the
TDTI task will commence processing with the
next task.

Since the offset will always be an even value,
bit zero was chosen so the user could easily
alter the flag and not destroy the offset
value.

This implementation will allow the user to easily
execute or not execute his non-standard
code.

W W R % ¥ ok %k Ok % ok % % A % % K ok % K % % % % ¥ F F % % * *

DC.W 5

* This word contains the task processing order.
* The execution order is from low to high.
: If a TTS had four TTEs as follows:

* TTS PROCESSING ORDER

* ENTRY VALUE

* 1 31

* 2 10

* 3 17

* 4 35

40 MICROSYSTEMS

M) mororoLa

% %k %k ok ok % % ok %k ok % X N kA X % A A % A % A %

% ok ® % Ok A K H X ¥ ¥ % % ¥ %

*

DC.L
DC.L
DC.W
DC.L
DC.L

*TSK2’
0020’
0
0
0

APPENDIX A

The TTE processing would be TTE2, TTE3,
TTE1, followed by TTE4.

If multiple Task Table Entries with the same
processing order value exist, the Task Table
Entries will be processed sequentially from
the first entry to the last entry.

If a TTS had four TTEs as follows:

TTS PROCESSING ORDER
ENTRY VALUE

1 31

2 05

3 17

4 05

the TTE processing would be TTEZ2, TTE4,
TTE3, followed by TTEL.

If this field has bit 15 set, this task
entry will be ignored and the next task
table entry will be processed.

Since the processing order will never be a
negative number, bit 15 was chosen so
the user could easily alter the flag and
not destroy the processing order value.

This word contains the code of the initial
state that this task is to have.

Valid codes are:
'R’ Ready to execute
’D’ This task is dormant

If the initial state does not have a valid value
it will default to dormant, ’D’.

The high order byte of this word has been
reserved for future use.

N E T o +
| Future | State |
| Use | Code |
Ty rmmmemmm e +

Task name

Task session number

TCB directive options

Monitor task name

Monitor task session number

H MICROSYSTEMS

M) moToroLA

oo A % ¥ %k ¥ ¥ A X % % X ¥ ®

* ok kA ¥ ¥ %

APPENDIX A

DC.B $42
Task initial priority
DC.B $TF
Task Timit priority
DC.W 0
Task attributes
DC.L $312000
Task entry point address
DC.W 0
User generated identification for task
DC.W 2
Number of segments associated with task
DC.W $0100
Segment Directive Options
Bit Meaning
13 0 - An address is specified in the
address field for this segment.

1 - RMS68K supplies Togical address
equal to physical address.

12 0 - Shareable segment is not permanent.

1 - Shareable segment is permanent.

8 0 - RMS68K does not attempt to allocate
the segment at the physical address
specified in the address field for
this segment.

1 - RMS68K attempts to allocate the
segment at the physical address
specified in the address field
for this segment.

Since this is a physical address,
by definition logical address will
equal physical address.
DC.W 0
Segment Attributes
Bit Meaning
14 0 - Segment is to be read/write.

1 - Segment is to be read only.

13 0 - Segment is not locally shareable.

1 - Segment is locally shareable.

12 0 - Segment is not globally shareable.

1 - Segment is globally shareable.

42

MICROSYSTEMS

@ MOTOROLA APPENDIX A

DC.L ’SEGO’
* Segment name
DC.L $312000
* Segment address
DC.L $200
* Segment size in bytes
DC.W $1100
* Segment Directive Options
* Bit Meaning
* 13 0 - An address is specified in the
* address field for this segment.
*
* 1 - RMS68K supplies logical address
* to equal physical address.
*
* 12 0 - Shareable segment is not permanent.
*
* 1 - Shareable segment is permanent.
*
* 8 0 - RMS68K does not attempt to allocate
* the segment at the physical address
* specified in the address field for
* this segment.
* 1 - RMS68K attempts to allocate the
* segment at the physical address
* specified in the address field
* for this segment.
* Since this is a physical address,
* by definition logical address will
* equal physical address.
DC.W $1000
* Segment Attributes
* Bit Meaning
* 14 0 - Segment is to be read/write.
: 1 - Segment is to be read only.
* 13 0 - Segment is not locally shareable.
: 1 - Segment is locally shareable.
* 12 0 - Segment is not globally shareable.
* 1 - Segment is globally shareable.

43 MICROSYSTEMS

(M) moToROLA

* % % % Ok H % % O * * *

APPENDIX A

11 0 - Segment is not memory mapped I/0
space.

1 - Segment is memory mapped I/0
space. The address given in the
address field for this segment
must be a physical address that is
not in the limits of allocatable
RAM. If this bit is set, none of
the GTSEG options are applicable
and the segment is allocated as
a shared segment.

DC.L ’SEGC’

Segment name
DC.L $31F000

Segment address
DC.L $100

Segment size in bytes

44 MICROSYSTEMS

.

(::) MOTOROLA

B.1 TDTI.CI MODULE

* ¥ % *

MSG
MSG
MSG
MSG
MSG

AREASA

AREAEA
TTSSA

STDTISA

TASK
STATE
ATTRIB
ATTRIB
ATTRIB
SESSION
PRIORITY
SUBS
ASM
IFEQ
=COPY
ENDC
SUBS
LINK
IFEQ

ENDC
END
%*

%*
*

APPENDIX B

APPENDIX B
FILES MODIFIED FOR EXAMPLE

e sk e e e Tk e e e e T e T ke ke e T ke v e e s e e e T sk e e e gk ok g ok ok vk e ok sk ok e ke gk ok o ok ke ook e ok ok o e e e e ke

*

*

* Link the TDTI task *

*

*

e e e % T T v ke 3k 3k ke ok 9 ok ke ke ok ok ke ke ok ok v ok o ok ok ok e ok ke v e ok ok e e ke gk ok ke ok g sk ke ok ke ok ok ok o ol o ke ok ok o e e

\PC

&.7DTI.

’READ’
*RTIM’
*CRIT?
*SYST?
1

$C8

$72272727? Partition start address of segment
containing
Task Table Structure Required
Error Handling Logic Optional

Non-Standard Code Optional
$2?22272 72 Partition end address for above segment
$227227277? Task Table start address

Lo

TTSSA.TDTI.AG
TTSSA.TDTI.AG, TTSSA. TDTI.RO,\ASMLS ;R
\ASMLSW
\ASMLS , \WORKLS ; A

&.TDTI.
&.TDTI.

\LINKLSW
=COPY

TDTI

LG
LG

\LINKLS,\WORKLS;A

45 MICROSYSTEMS

M) moToroLA APPENDIX B

Modifications to TDTI.CI Module

/* :
/* Edit the TDTI.CI module to establish the following:
*

=/* Address range of the ROM partition defined for this example
=/* This ROM partition must contain at a minimum
=/* The Task Table Required
=/* Non-standard user-specified code Optional
=/* User-written error handling code Optional
=/* Start address, in this address range, of the Task Table
= /%
=E &. TDTI.CI
F /AREASA/
C /$22222722/$00300000/
F /AREAEA
C /$22222222/$0031EFFF/
F /TTSSA
C /$22222222/$00300A00/
QUIT
46

MICROSYSTEMS

(M) moToroLA APPENDIX B

B.2 VME110.CNFGDRV.CI MODULE

=/%

=/* Edit VME110.CNFGDRVR.CI
=/*

=/* Remove drivers not required for this application.
=/%

=E VME110.CNFGDRVR.CI

F /NORWIN =1/

C /NORWIN = 1/NORWIN =0/
F /NVME315 =1/

C /NVME315 = 1/NVME3IS = 0/
F /NVME320 =1/

C /NVME320 = 1/NVME320 = 0/
F /NVME4205 = 1/

C /NVME4205 = 1/NVME4205 = 0/
F /NVME4OO =1/

C /NVME40O0 = 1/NVME400 = 0/
F /NVME410 =1/

C /NVME410 = 1/NVME4I0 = 0/
QUIT

B.3 EXCERPT FROM VME110.SYSLIST.LS IDENTIFYING STARTING ADDRESS, $49700, OF
TDTITASK AND STARTUP ADDRESS, $4AB00, FOR THE SYSTEM

FILE NAME TASK PROC SEG ADDR TCB
RMS.LO RMS RMSO $040000
RMS2 $040100
DRVLIB.LO DRVL DRVL $044E00
TERMLIB.LO TERM TERM $045000
ACIADRV.LO ACIA ACIA $046300
FHS.LO .FHS .FHS $046600 $ 047A00
10S.L0 .10S .10S $047C00 $ 049500
TOTI.LO TDTI TDTI $049700 $ 049C00
I0I.10 .I0I 10SG $049E00 $ 04A900
.I0I $04A500
SYSINIT.LO SYSI .INT $04AB0O

- FINAL PC VALUE

= $04B500
- START-UP ADDRESS =

$04AB0OO

4 MICROSYSTEMS

M) moToroLA APPENDIX B

B.4 TTSUCEHL.SYSGEN.CF RELATED MODULES

=/**********************

=/* TTSUCEHL.SYSGEN.CF * -
=/**********************

=0PT K,N
=/***
=/%

=/* SYSGEN for

=/* Task Table Required

=/* Non-Standard User Code Optional

=/* Error Handling Logic Optional

=/%

=0PT J,-N

=TIME

=SYSGEN &.TTSUCEHL.CD,\1:\2/&. TTSUCEHL.SY,&. TTSUCEHL.LS

=/%

=0PT -N
=/***

=/**
=/** Sysgen Completed --
= /%%

=/***
=/***

=0PT -K o
=END

B.4.1 TTSUCEHL.CD -- SYSGEN Command File for Sample System

*

* TTSUCEHL.CD

*

* This command file is used to accumulate the following modules
*

* Task Table Required

* Non-standard user code Optional

* Error Handling Logic Optional

*

* The addresses should reflect those to be processed by the

* Table Driven Task Initiator task (TDTI).

*

INCLUDE &.XTDTIVU.CI S
*

* Start address of TDTI task

*

TDTISTRT = \TDTISA

: The following flags are defined as follows

48 MICROSYSTEMS

M) moToroLA

. .
%*
*

FLAGEHL
FLAGUSC

IFNE

MSG
MSG
MSG
MSG
MSG

Non-zero --> The information exists

Zero --> The information does not exist

= 1 Flag for Error Handling Logic

= 1 Flag for User-Specified Code
\FLAGEHL

e ek e g e g e e e d e Fe e Fo % e T e Fe e ek Fe e e e e Fe de e Fe e Tk de e e e e e e v e e e e e ok
* *
* Process the Error Handling Logic *
* *

e e e Je T e e e e e Fe T de Je Fe Je e Fe e e T e T d e e e g e e e sk e e Kk e Kk e ok ek ok ok ok ke ke ke ke

INCLUDE &.TTSEHL.CI

ENDC

TFNE

MSG
MSG
MSG
MSG
MSG

\FLAGUSC

e e e T Jo ik ke T de e e e T T ke e o e e ke e o Ik Tk ke e e I e o e ke ke ok Tk ok ke ke ok ke ke ke ok ek ke ok
* *
* Process User-Specified Code *
* *

e e Fe e Fe e Fe e e e e e e e T e e e T e e e e e ke ke e e Tk v e ke e e ke ke vk vk ok ok e ok e ke e ke ke ke ke

INCLUDE &.TEOI1USC.CI
INCLUDE &.TEOQ5USC.CI

ENDC

MSG
MSG
MSG
MSG
MSG

Fe e e e e e e ke e T e Tk e T e ke T e sk vk de 3k e e e ok v e 3k e vk ke ke de 3k e Sk ke Sk v e e e ok ok ok ke ke ke ok

* *
* Process the Task Table Structure *
* %*

Fe e e e e e e e e o e o e e T e e e e T e e e e e e e e e ke s e ke e ke e ok e e o e sk e ke e o e ke e e ke

INCLUDE &.TTS.CI

END SYSGEN

49

APPENDIX B

MICROSYSTEMS

M) moToroLA

APPENDIX B

B.4.2 TTSEHL.CI -- SYSGEN Include File for Error Handling Code

*
* TTSEHL.CI
* .
* This command file has been built to create a task table
* Error Handling Logic module.
*
* STARTEHL = Start address of the Error Handling Logic. This address
* js in the range of AREASA to AREAEA defined in module
* TDTI.CI
*
PC = $300000
STARTEHL = *
SUBS &.TTSEHL.LG
LINK &.TTSEHL.LG
PROCESS &.TTSEHL.LO
END TTSEHL
*

%*
*

B.4.3 TTSEHL.LG -- SYSGEN Link File for Error Handling Code

= /%
=/* TTSEHL.LG

=/*

=/% Link chainfile to create TTSEHL.LO
= /%

= /%

=LINK ,TTSEHL.LO, TTSEHL.LL;HAMIX
SEGMENT EHLO:1 \PC

INPUT &.TTSEHL.RO

END

=/%

-END

50

MICROSYSTEMS

M) mororoLA APPENDIX B

B.4.4 &.TEOIUSC.CI -- SYSGEN Include File for Task 1

*
* &.TEO1USC.CI
*
* This command file has been built to create a non-standard code
* module for use with the Table Driven Task Initiator task.
*
* SUSCTEO]1 = Start address of the User-Specified Code. This address
* is in the range of AREASA to AREAEA defined in module
* TDTI.CI
*
*
PC = $300500
SUSCTEO] = *
EXCLUDE T0TI
SUBS &.TEOIUSC.LG
LINK &.TEOL1USC.LG
PROCESS &.TEO1USC.LO

END TEO1USC
*

*
*

B.4.5 TEQOIUSC.LG -- SYSGEN Link File for Task 1

=/* TEOLUSC.LG

=/*

=/* Link file to link non-standard code for this task entry
=/*

=LINK ,&.TEOIUSC.LO,&. TEOIUSC. LL ;HAMIX
SEG TDTI:0 \TDTISTRT

SEG TO1U:2 \PC

IN TTSSA.TDTI.RO

IN &.TDTI.RO
IN &.TEO1USC.RO
END

=END

2 MICROSYSTEMS

@ MOTOROLA

B.4.6 &.TTS.CI -- SYSGEN Include File for Task Table

APPENDIX B

*

* &.TTS.CI

*

* This command file has been built to create the task table

* module for use with the Table Driven Task Initiator task.

*

* STARTTTS = Start address of the Task Table Structure. This address
* is in the range of AREASA to AREAEA defined in module
* TDTI.CI
*

PC = $300A00

STARTTTS = *

SUBS &.TTS.LG

LINK &.TTS.LG

PROCESS &.TTS.LO

END

%*

*
*

B.4.7 TTS.LG -- SYSGEN Link File for Task Table

/*
TTS.LG

*

*
/* Link chainfile to create TTS.LO
=/%
=LINK ,&.TTS.LO,TTS.LL;AHMIX
DEFINE TTSEHL,\STARTEHL
DEFINE TEO1USC,\SUSCTEO1
DEFINE TEQ5USC,\SUSCTEQ5
SEG TTS0:4 \PC

INPUT &.TTS.RO

END

=/%

=END

52

MICROSYSTEMS

M) mororoLa APPENDIX B

B.4.8 TEO5USC.SA -- Sample User Code That Does Not Initiate Task

PAGE

NOLIST
INCLUDE &.TR1.EQ
LIST

PAGE

*

External definitions

XDEF TEO5USC
PAGE
*
* It should be noted that this user-specified code has been used to
* execute a delay for 5 seconds before returning control back
* to the TDTI task. This example of user-specified code has been
* included to illustrate that there are other functions that the
* user specified code could be used for other than performing the
* standard TDTI functionality. This particular usage provides the
* the user the capability to complement the order in which tasks are
* executed by adjusting the timing of their execution.
*
PAGE
SECTION 3
*
* TEO5 User Specified Code
*
* INPUT
*
* A4 = Address of TTE to be processed
* A5 = Address of TTS
*
TEO5USC:
MOVE.L #(5*1000),A0
* AO0= Number of milliseconds to delay
MOVE.L #DELAY,DO
* DO = Directive for this request
TRAP #1
* Initiate request
* DELAY
RTS
* Return to TDTI task
END

53 MICROSYSTEMS

@ MOTOROLA APPENDIX B

B.4.9 TDTIRSL.CI -- SYSGEN Include File Used for Sample System

SUBS &.TDTIVU.CI
Substitute into the TDTI VersaUser command file
which will be used later on in the example by
the SYSGEN that creates the VERSAdos module and
the SYSGEN that creates the Task Table Structure

The results of the substitution is the module
XTDTIVU.CI

* % * % * % * *

B.4.10 TDTIVU.CI

*

* The values defined in this file will be used by the

* VERSAdos SYSGEN and the

* Task Table SYSGEN

*

TDTISA = \STDTISA

* Starting address where the Table Driven Task Initiator
* task is located

> MICROSYSTEMS

M mororoLA APPENDIX €

APPENDIX C
CHAINFILES USED IN EXAMPLE

C.1 TDTI.COPY.CF

=0PTION K
=/*
=/* OPTION K means:
=/* Do not translate LOWER case to UPPER case
=/%
=/* TDTI.COPY.CF
=/*
=/* Chainfile to perform the preliminary steps required prior to
=/* executing the chainfile TDTI.PRODUCT.CF which will generate an ’RMS’
=/* or a ’VERSAdos’ Table Driven Task Initiator (TDTI) system.
= /%
=/* Completion of this chainfile will identify the files to be modified
=/* by the user prior to user invocation of the TDTI.PRODUCT.CF
=/* chainfile.
=/*
=/* CHAIN INVOCATION
=/*
=/* Log on to volume:user number where SYSGEN will be executed
=/* Respond to prompt with <Source Volume>:9998.TDTI.COPY.CF
=/*
=/* Press RETURN to continue
=/* Chainfile Assumptions
=/%
=/* 1. The user has executed the TDTIGEN1 utility, which creates the
=/%* file RESTOREA.CF which is REQUIRED input for this chainfile.
=/* The file RESTOREA.CF contains the following:
=/* Name of Source Volume which contains all the files
=/* required to execute this chainfile
=/* Target volume:user number where SYSGEN will occur
=/* VERSAdos target system catalog identification for the
=/% target system (VM0O4, VME1l0, etc.)
=;* Type of sysgen: RMS or VERSAdos
=/%
=/* 2. The file RESTOREA.CF resides in the volume:user number where
=/* this chainfile will execute.
=/*
=§* Press RETURN to continue
=/&
55

MICROSYSTEMS

M) mororoLa

/* Establish the original arguments for this chainfile

/@ &.RESTOREA.CF

Chainfile assumptions based on file RESTOREA.CF

1. Chainfile will use \1:\2.\3
to execute the SYSGEN
/* 2. A1l files required to execute this chainfile reside on

=/* volume \5 and will be copied to \1:\2
=/* 3. The type of sysgen is for

=/IFEQ "R"\4

=/* 7RMS’.

=/ENDIF

=/IFEQ "V"\4

=/* ’VERSAdos’ .

=/ENDIF

=/*

=/& Press RETURN to continue Press BREAK to terminate
= /%

=/* Establish volume:user number as \1:\2

=/%

=USE \1:\2.&

=/*

=/* Copy chainfiles to be modified to \1:\2.&
=/%

COPY \5:9998.&.CNFGTASK.CI A\l
=COPY \5:9998.&. INITDAT.AG A\l
=COPY \5:9998.&.TDTI.CI \1:\2;YC
=COPY \5:9998.\3.CNFGDRVR.CI A\l
=COPY \5:9998.TDTI.PRODUCT.CF A\l

=/IFEQ "R"\4

=/%

* Build &.CNFGTASK.CI for the RMS sysgen
%

Remove the following from the system

* I/0 Request

* File Handling

=/* File Management

=/* Session Control

=/* Loader

=/* For the RMS SYSGEN these modules are not needed.

£ &.CNFGTASK.CI
FHS$10S$
FHS$I0S$

. nnn_
*\\\

0o/
0/

1/
1/FHS$10S$
1

/
1/FMS$
1/

SN
-
=
(7]
R
Hou % nn

56

APPENDIX C

MICROSYSTEMS

M) moToroLA APPENDIX C

C /EETS = 1/EET$ = 0/
F /LDR$ =1/
C /LDRS = 1/LDR$ =0/
QuIT
=/ENDIF
=/IFEQ "V"\4
=/*
=/% Build &.CNFGTASK.CI for the VERSAdos sysgen
= /%
=/* Remove the foilowing from the system
=/* File Management
=/* Session Control
=/* Loader
=/* For the VERSAdos SYSGEN these modules are not needed.
= /%
=E &.CNFGTASK.CI
F /FMS$ =1/
C /FMS$ = 1/FMS$ =0/
F /EETS =1/
C /EETS = 1/EETS =0/
F /LDR$ =1/
C /LDR$ = 1/LDR$ =0/
QuIT
=/*
=/* Place the TDTI task in the dormant state. The I0I task will
=/* START this task prior to terminating itself.
= /%
=£ &.TDTI.CI
F /READ/
C /READ/DORM/
QuIT
=/ENDIF
=/%
=/* The following files require modification prior to invoking
=;* \1:\2.TDTI.PRODUCT.CF
=/%
=/* \1:\2.&.INITDAT.AG
=/* \1:\2.&.TDTI.CI
=;* \1:\2.\3.CNFGDRVR.CI
= /%
=/* \1:\2.&. INITDAT.AG
=/* Must be modified to reflect the user’s
=/* partitioning
=/* \:\2.&.TDTI.CI
=/* Must be modified to identify the start/end
=/* address of the ROM partition that contains
=/* the task table to be processed as well as the
=/* start address of the task table in the
=/* partition
57

MICROSYSTEMS

@ MOTOROLA APPENDIX C

=/IFEQ "R"\4

=/* \1:\2.\3.CNFGDRVR.CI

=/* A11 references to any drivers must be removed

=/ENDIF

=/IFEQ "V"\4 —
=/* \1:\2.\3.CNFGDRVR.CI)
=/* The user should reference only those drivers

=/* required for his application.

=/ENDIF

=/& Press RETURN to continue

=/*

=/* When the user has modified the above files he may initiate the

=/IFEQ "R"\4

=/* RMS sysgen by invoking the following command line

=/ENDIF

=/IFEQ "V"\4

=§* VERSAdos sysgen by invoking the following command Tine

=/ENDIF

=/% \1:\2.TDTI.PRODUCT.CF

=END

C.2 DTIUSER.MODIFY.CF

=/*

=/* TDTIUSER.MODIFY.CF

=/*

=/* This chainfile reflects changes the user would have to make

=/* to satisfy the needs required for his application. In our example
=/* the files have already been modified and exist in user number

=/* 9990. This chainfile merely copies the already modified modules
=/* to the target sysgen user number.

=/%

=/& PRESS RETURN to continue

=/*

=/* Restore the arguments established by TDTI.COPY.CF

=/%*

=/@ &.RESTOREA.CF

=COPY \5:9990.EXAMPLE. INITDAT.AG,\1:\2.&. INITDAT.AG;YC -

=COPY \5:9990.EXAMPLE.TDTI.CI,\1:\2.&.TDTI.CI;YC
=COPY \5:9990.EXAMPLE.CNFGDRVR.CI,\1:\2.VME110.CNFGDRVR.CI;YC

=END

%8 MICROSYSTEMS

(::) MOTOROLA

C.3 TDTI.PRODUCT.CF
=/* TDTI.PRODUCT.CF

/%
=/% Establish the original chainfile arguments established when
=/* TDTI.COPY.CF was executed

=/@ &.RESTOREA.CF

=/% Chainfile to produce
=/IFEQ "R"\4
=/* an RMS
=/ENDIF
=/IFEQ "V"\4
=/* a VERSAdos
=/ENDIF
=/* Table Driven Task Initiator (TDTI) system.
=/*
=/* CHAIN INVOCATION
=/*
=/* Log on to volume:user number where SYSGEN will be executed.
=/* Respond to prompt with TDTI.PRODUCT.CF
=/*
/*
*

Chainfile ASSUMPTIONS:
/*
* 1. Chainfile will use \1:\2.\3
* to execute the SYSGEN
/* 2. A1l files required to execute this chainfile reside on
* volume \5 and will be copied to \1:\2
* 3. The type of sysgen is for
I

/IFEQ "R"\4

/* ’RMS’ .

=/ENDIF

=/IFEQ "V"\4

=/* ’VERSAdos’.

=/ENDIF

=/* 4. File TDTI.COPY.CF has already been executed.

=/*

=/& Press RETURN to continue Press BREAK to terminate
=/*

=/* Establish the target volume:user number.catalog \1:\2.\3

*

USE \1:\2.\3

=/%
=/* Save the files that have been modified so that they are not

APPENDIX C

destroyed

39 MICROSYSTEMS

M) moTroroLA APPENDIX €

*
OPY &.INITDAT.AG,&.INITDAT.GA;Y
OPY \3.CNFGDRVR.CI,\3.CNFGDRVR.IC;Y

C
C
=/%

=/* Perform the COPYSGEN for the target system
= /%

=/0 \5:9998.\3.COPYSGEN.CF \5,\1,\2

*

=/* Establish the original chainfile arguments established when
=/* TDTI.COPY.CF was executed
= /%
=/0@ & RESTOREA.CF
/*
*

Re-establish the files modified by the user when TDTI.COPY.CF
was executed

*

*

COPY &.INITDAT.GA,&.INITDAT.AG;YC
COPY \3.CNFGDRVR.IC,\3.CNFGDRVR.CI;YC

=/%

=/* Copy the TDTI related modules to the target volume:user number
=/* \1:\2

=/*

=COPY \5:9998.&.TDTI.LG \1:\2;YC

=COPY \5:9998.&.TDTI.RO \1:\2;YC

=COPY \5:9998.&.TDTIRSL.CI \1:\2;YC

=COPY \5:9998.&.TDTIVU.CI \1:\2;YC

=COPY \5:9998.TTSSA.TDTI.AG \1:\2;YC

=/%

=/* Edit \1:\2.&.VERSADOS.CD for the SYSGEN

=/%

=/* Merge the command file for the task initiator module and the
=/* command module TDTIRSL.CI whose output, & XTDTIVU.CI, will be used
=/* in the SYSGEN for the Task Table.

=/*

=E &.VERSADOS.CD

F /FHS$10S$/

up 1

MERGE &.TDTI.CI

F /= \&SERFLAG/

D1

MERGE &.TDTIRSL.CI

QUIT

=/IFEQ "V"\4

= /%

60 MICROSYSTEMS

@ MOTOROLA APPENDIX C

*

COPY \5:9990.DEVICE.I0S.RO,\1:\2;YC
COPY \5:9990.DEVICE.FHS.RO,\1:\2;YC
=COPY \5:9990.FILE.I0S.RO,\1:\2;YC
=COPY \5:9990.FILE.FHS.RO,\1:\2;YC
=COPY \5:9990.GET.TASKID.AG,\1:\2;YC

=/*
=/* The I0I module was modified to start the TDTI task prior to
=/* terminating.

=/% The VERSAdos 4.4 version of I0S and FHS and GET.TASKID.AG modules had
=/* an error that occurred at boot time if the SYSGEN was for a RAM

=/* system without the file handling module (FMS). These modules have

=/* been corrected to eliminate that problem and must overlay the modules
=/* copied over during the copysgen.

*

COPY \5:9990.&.101.R0,\1:\2.&.10I.RO;YC

=/ENDIF

— /%

=/* Perform the TDTI SYSGEN

=/%

=/@ \1:\2.STD.SYSGEN.CF

=/*

=/* Establish the original chainfile arguments established when
=/* TDTI.COPY.CF was executed

= /%
=/@ &.RESTOREA.CF

* .
* Build the <system>.VERSADOS.MX module to be downloaded
*
DEL \3.VERSADOS.MX
U

=/*
=/* Two files that are produced as a result of this chainfile are
=/* &.XTDTIVU.CI and TDTI.LO. If the user has non-standard user-specified
=/* code that references routines in the TDTI module, these files can
=/* be of value in reducing the amount of user-specified code required.
=/* Reference files TTSUCEHL.CD, TEOIUSC.CI, and TEQIUSC.LG as an example
=/% of how these files have been used.
=/*
=END

61

MICROSYSTEMS

M) moToroLA APPENDIX C

C.4 TDTI.APLICATN.CF

=0PTION K

=/*

=/* OPTION K means:

=/* Do not translate LOWER case to UPPER case

=/%

= /%

=/* This chainfile contains the user application related functions.
=/%

=/* CHAIN INVOCATION

=/*

=/* This chainfile is called by the example chainfile and as such
=/* the existing arguments defined by the example chainfile are
=/* applicable here.

=/%*

=/% Chainfile arguments

= /%

/@ & RESTOREA.CF

= /%
=/* Copy the application tasks to be processed
=/%
=COPY \5:9990.%* TSK*.* \1:\2.* TSK*.*;Y
A
=/%
=/* Assemble the tasks to be processed
=/%
=NOARG
=/@ TSK1.AF
=NOARG
=/@ TSK2.AF
=NOARG
=/@ TSK3.AF
=NOARG
=/@ TSK4.AF
=NOARG
=/@ TSK2TSK3.AF
= /%
=/: Link the tasks to be processed
=NOARG
=/@ TSK1.LF
=NOARG
=/0 TSK2.LF
=NOARG
=/@ TSK3.LF
=NOARG
=/@ TSK4.LF
=/*
=/: Build the corresponding task files to be downloaded
=/@ TSK1.CF
62

MICROSYSTEMS

@ MOTOROLA APPENDIX C

=/@ TSK2.CF
=/@ TSK3.CF
=/@ TSK4.CF

=END

C.5 TDTITTS.EXAMPLE.CF

=0PTION K
=/*
=/* OPTION K means:
=/* Do not translate LOWER case to UPPER case
=/%
=/%
=/* This chainfile processes the Task Table, error handling logic,
=/* and non-standard user specified code.
= /%
=/% CHAIN INVOCATION
= /%
=/* This chainfile is called by the example chainfile and as such
=/* the existing arguments defined by the example chainfile are
/* applicable here.
%

=/* Chainfile arguments

/@ &.RESTOREA.CF

= /%

=/* Copy the

=/* User-specified code that may exist to the target
=/* SYSGEN user number
=/*

=/*

=COPY \5:9998.TEMPLATE.TDTITTS.AI,\1:\2;YC
=COPY \5:9990.* TE05*.* \1:\2.*.TEO5*.*;Y
A

=COPY \5:9990.* . TEO1*.* \1:\2.*.TEQOLl*.*;Y
A

=/%

=/* Copy the

=/* Error Handling Logic modules to the target
=/* SYSGEN user number
= /%

= /%

=COPY \5:9990.&.TTSEHL.*,\1:\2.&. TTSEHL.*;Y
A

=/*

=/* Copy the

63 MICROSYSTEMS

@ MOTOROLA APPENDIX C

=/* Task Table Structure modules to the target

=/% SYSGEN user number

=/%

=/* >>>>>

=/* >>>>> The user should examine Task Table Structure (TTS) entries 2 and
=/* >>>>> 5. Both of these entries have user-specified code yet illustrate
=/* >>>>> different types of usage for user-specified code.

=/* >>>>>

= /%

=COPY \5:9990.* TTS*.* \1:\2.* . TTS*.*;Y

A

= /%

=/* Copy the file to initiate a SYSGEN to accumulate the following
=/* Task Table Structure Required

=/* Non-Standard User Code Optional

=/% Error Handling Logic Optional

=/%

=COPY \5:9990.TTSUCEHL.SYSGEN.CF,\1:\2;YC

*

=/* Assemble the user-specified code

=/*

=NOARG

=/@ &.TEOSUSC.AF

=NOARG

=/@ &.TEO1USC.AF

2

=/* Assemble the Error Handling Logic module

= /%

=NOARG

=/@ TTSEHL.AF

=/*

=/* Assemble the Task Table Structure

=/*

=NOARG

=/@ TTS.AF

=/*

=/* Restore the arguments established by TDTI.COPY.CF
=/*

=/@ &.RESTOREA.CF

= /%

=/* Establish volume:user number.catalog as \1:\2.&
=/%

=USE \1:\2.&

= /%

=/* Execute a SYSGEN to create the module containing
=/*

64 MICROSYSTEMS

@ MOTOROLA APPENDIX C

=/* Task Table Structure Required

=/% User Specified Code Optional

=/* Error Handling Logic Optional

=/*

=/@ TTSUCEHL.SYSGEN.CF

/%

=/* Build the corresponding user-specified code to be downloaded
=/%

=/@ TTSUCEHL.CF
=END

65 MICROSYSTEMS

M) moToroLA

THIS PAGE INTENTIONALLY LEFT BLANK.

66

APPENDIX C

MICROSYSTEMS

M) mororoLA

APPENDIX D
ACCESSIBLE TDTI ROUTINES

D.1 TI70200 -- CHARACTER FILL

APPENDIX D

o s T e e e e e o e e e e T e e e e e T T e e T e e T e v 5k 5 ke e e ke e e 3k e e e ke e e de ok e e e e ke ek ok de ke e de ke ke ke de ke ke ke ke ke ok ek ke

% k¥
e Xk de
dokdk
ek
* %k
% dede
Jedode
*k %k
s kk
*%kk
*kk
Fekdk
*dkk
* %%k
Jekk
J sk
dedkk
Fdk
Jedede
sk k
%k Kk
k%
%k k
%k k
* k¥
% de
Jedek
Jekk
dekk
Fe kg
Jedk ke
% %k
Jede e
%k Kk
Jokk
Jedk Kk
J ke k
*dkk
Jekde
Jodede
*dkek
% dek
Jedkk
Jeded

INTERNAL SUBROUTINE: TI70200

DESCRIPTION:

Subroutine to character fill a specified area.

NOTES:
N/A

REGISTER USAGE (A)rgument (D)estroyed (P)reserved (R)eturned
0 1 2 3 4 5 6 7 SRhi SR 1o (CCR)

D: AR P P P P P P P
A: AR P P P P P P P
INPUT:
A0 = Start address of area to character fill
DO = Low order byte of Tow order word contains fill
character
High order byte of Tow order word is for future
use
High order word contains number of bytes to move
ommmmmem - oo R R dummmm o +
[Number of bytes to | Future | Fill |
|character fill | use | character|
4ommmmmmmm ECLE TR e E R ommmmmmmm - +
OUTPUT:
REGISTERS/DATA STRUCTURES
AC = Unchanged
DO = Unchanged

CONDITION CODES
NOT-EQUAL --> Number of bytes to character fill is
zero or negative
EQUAL --> Specified data area was character filled

* %9
Jekd
*kx
Kk %k
e k¥
* Kk
*kk
* %%
*k %
* ek
K&k
*kk
* k%
% Je ke
* k%
F*ekk
*kk
% %k Je
Jkk
*kk
% d Kk
*kk
% dek
%k ok
Fekk
% %k ¥
dekk
Jek Kk
d ke k
ek de
* %%k
% dede
Jode ke
%k k
*dek
dede ke
*kk
* ek
sk ¥k
e %k
* %k
sk
*k%k
Fedkk

e e e e e Fe T T T T e e e e e e e e e Tk T vk T ke e ok e e e g s e T e e e T e e e e e e e e e e e e vk e e I o e e e e e ke e sk e e e e ke e vk e ok e ok o e oke e

67 MICROSYSTEMS

M) moToroLA

APPENDIX D

D.2 TI70500 -- CREATE TCB

e e e 3 ke e e T e ke e Tk v e e Tk e Tk e ke e e T e e e g ke T vk ke v e T vk e ok T e o e e ke e vk e vk ok ok v e e sk e sk ke ok Sk e sk ke Tk ke dk ke o e o vk ok vk ok ke ok ke ek ke

INTERNAL SUBROUTINE: TI70500

*ode ke
* ¥k
*kk
% kK
dedkek
dedek
ek v
Jodedk
Jedkk
*dkk
Jde k%
% ¥k
dekk
Jok %k
dedke Xk
Jokk
e de g
F*dek
Jodkk
% % %
de kK
ek k
*%k%k
*dk
e dede
deded
kK
%%k
dekk
ddkk
dedkk
% dede
dkd
Yo de g
Jedkk
dedede
dedek
Jedkek
dedede
%k %k
Fededk
dedkek
ek %
dedek
% %k
Jede ke
Jedk ke
eded
* %k

DESCRIPTION:

Subroutine to create Task Control Block for specified task.

NOTES:

If an error occurs, the error handling logic specified

int

Jump-to-Subroutine call. The caller is responsible for

main
task

TASK TABLE entry. A1l other registers will be preserved
by the TASK INITIATOR task. If the caller has elected
to bypass the error handling logic, processing on this

he TASK TABLE structure will be executed via a

taining the stack pointer so the TASK INITIATOR
can commence normal processing with the next

TASK TABLE entry will terminate, and a return to the

call

REGISTER USAGE

0
D: P
A: P
INPUT:
A3 =
Ad =
A5 =
OUTPUT:
REGISTERS/DATA
A3 =
A4 =
A5 =

er will be executed.
(A)rgument (D)estroyed {P)reserved (R)eturned
1 2 3 4 5 6 7 SRhi SR 1o (CCR)

P P P P P P P
P P AR AR AR P P

Address where CREATE TCB parameter block can be
built.

Address of TTE to be processed
TTS start address

STRUCTURES

Unchanged
Unchanged
Unchanged

CONDITION CODES

NOT -

EQUAL --> Error occurred processing this TTE

EQUAL --> TTE had TCB created

kkk
kkk
*kk
kkk
*kk
*kk
*kk
ek
Fedede
Fekd
*kk
*kk
Kokok
Hokk
Sk
dekk
sk
*kk
Jokk
kK
*kk
Kk
Kk
dkk
kkk
Fkk
*kk
ek
*kk
ek
dokk
dekk
dkk
dokk
*kk
Jekk
dedek
Kok
Jedkk
*kk
kK
Jokk
kkk
Jedede
Sk
*kk
Fokk
Fedede
kkk

e e e ok e e T T e e e T e e e e v 2k e e T e T Tk e T T T T e e T e T T T T T s T T e e T v s T e T T e e e e e e e e e 9 e e e e s Tk de Tk sk sk e e e e e K

68

MICROSYSTEMS

@ MOTOROLA

D.3 TI71000 -- CALL EHL

APPENDIX D

Fe e e e 3k e 3k e e e ke ok e Fe e Tk e T e Je e de vk e ke ok e ke e e e T e T v Tk e e e e e e I e e e Tk e e v e T T e e T e e e T e I v e e de e e ke ke ke ke e e e

sk ok
* %%k
*kk
%k
dededk
Jok Kk
ok
% &k
*kk
d*kk
kdkek
*kk
Yok
%k k
Fdek
% K%k
%k k
% dek
*kdk
*kk
*dek
% k%
Jedek
*kk
dedkk
dedkdk
%%k
*kk
% %k
*kk
dedked
gk
J*kk
Jdkk
dedkek
% & g
*dkek
%k
dkk
*kdede
kdkk
dedek
dedkek

INTERNAL SUBROUTINE: TI71000
DESCRIPTION:

Subroutine to
Call the Error Handling Logic (EHL)

NOTES:
The caller is responsible for maintaining the stack
pointer so the TASK INITIATOR task can commence normal
processing with the next TASK TABLE entry. A1l other

registers will be preserved by the TASK INITIATOR task.

If the caller has elected to bypass the error handling
logic, processing on this TASK TABLE entry will
terminate and a return to the caller will be executed.

The user should refer to offset TTSEHLOS for the
implementation that will allow the user to bypass the
error handling logic

REGISTER USAGE (A)rgument (D)estroyed (P)reserved (R)eturned
06 1 2 3 4 5 6 7 SRhi SR 1o (CCR)

D: AR P P P P P P P
A: AR P P P P AR P P
INPUT:

A5 = TASK TABLE structure start address
use

OUTPUT:
REGISTERS/DATA STRUCTURES
A5 = Unchanged
CONDITION CODES
N/A

*dk
ek g
dedkdk
dekk
Jede ke
KKk
Jodek
Jedede
Fedek
*edek
Jedkk
dded
Jedek
£ 2
% dek
dok Xk
ek k
Jdkk
%k k
*kk
* %k
% kK
Jed %
%edek
% k%
Jedek
dedek
dedkedk
dedek
*ekk
*k%k
*kk
sk g
% Je %
*kk
% ke ke
%k k
%k %k
Jedek
dodk ok
dodkk
J kX
% kK

e e s e ke e e e e e e e Fe e e e v e e Je e e e e e e e e e e e e e T v Tk e vk v T sk s T s e s s e sk 3 sk 3k e vk e vk sk vk e vk v vk gl ke sk vk ke e ok 3k v vk ok ok ke e

69

MICROSYSTEMS

@ MOTOROLA

D.4 TI71200 -- GET TASK 1D

APPENDIX D

e e e e e e e T Fe T T Fe T 3 e s e e T 3 e Tk Fe 3k Tk 5 g T ¢ 9k e ok ok o ke vk e e e e e e e e e e e e e T e e e ok e e ok e e ok ke e ke e ke e ok e ek ek ke ok

*kk
Jkk
Fedek
Jedeke
Jedek
Jedkede
Jedode
Jedede
Fedek
kK
Fedek
% g de
e de ke
*kk
Jedkk
Jedede
*kk
Jedek
Jedede
*dkk
Jedek
Jekd
*dede
Jedek
& %k
Jokk
* k%
dedkk
Jok g
Jedede
*kk
Kk k
kK
kdkk
dkk
Jek ke
Feded
J*kk
dekd
Jkk
*kk
dkk
kk
dekd

INTERNAL SUBROUTINE: TI71200

DESCRIPTION:

Subroutine to get task identification.

NOTES:
N/A

REGISTER USAGE (A)rgument (D)estroyed (P)reserved (R)eturned
0 1 2 3 4 5 6 7 SRhi SR 1o (CCR)

D: R P P P P P P P
A: R R P AR AR P P P
INPUT:
A3 = Address where GET TASK identification parameter

block can be built
A4

Address of TASK TABLE entry to be processed

OUTPUT:
REGISTERS/DATA STRUCTURES

AO/Al = New 8-byte task identification
A3 = Unchanged
A4 = Unchanged
DO = Results of TRAP request

CONDITION CODES

NOT-EQUAL --> Error occurred trying to get task
identification

EQUAL --> Task identification successfully obtained

Jede K
% ke Xk
dekk
sk ke
Jedk
% g
Jedk Kk
ke Kk
dodede
% kK
e g
Jekk
de gk
% kk
Jokk
Jkk
*edek
Jdek Xk
ke ke
Jededk
%%k ke
*dedk
*dkk
sk ke
Jedkek
dkk
Jedek
* %%k
dkk
% g Kk
*kdede
*dek
dede g
* %k
k%
Fokd
Fokk
*dedk
*edkk
sk dek
Je ek
ddkk
%k Kk
&k

e s e e e e e T Fe e e e e T ke e e e T e e e e e e Fe e e e T e kT e sk e 3 3k ok T e e o ok sk o ke e e T e e o e e ok ke o e e ke e e ek e ok ok e e ke sk e e

70 MICROSYSTEMS

TN

o~

M) moToroLa

D.5 TI71300 -- ALLOCATE SECTORS

APPENDIX D

Fe e T e e e T Fe e T e sk e T e e e e e e e Fe e e Fe e e v vk e e 3K 3k e e e ke vk e e 3k 3 ke e v e e vk e v ke v ok e o e e ok e e S e ke e ke e ok ke e e de dede e ek

Jdekk
* %%k
* %%k
% Jek
sk
de ek
Jokk
%k %k
Jo ek
ok ke
ddkok
Fkk
Jedkk
*dkk
sk
Jededk
*dk
* Kk
dok
J k%
%k
*kk
% dek
Jekk
* %%
Jedek
Jekek
% k%
% kK
%ok ¥k
%k %
Jokk
*%kk
Jdek
*dedk
%k
sedkdk
Fdkk
% dkk
*dkk
%k k
d %k
* %k
*kk
dKkk
23
% Kk
e de ke
ddkek
*k ¥k

INTERNAL SUBROUTINE: TI171300
DESCRIPTION:
Subroutine to allocate task segments as required.

NOTES:
If an error occurs, the error handling logic specified
in the TASK TABLE structure will be executed via a
Jump-to-Subroutine call. The caller is responsible for
maintaining the stack pointer so the TASK INITIATOR
task can commence normal processing with the next

TASK TABLE entry. A1l other registers will be preserved

by the TASK INITIATOR task. If the caller has elected
to bypass the error handling logic, processing on this
TASK TABLE entry will terminate and a return to the
caller will be executed.

REGISTER USAGE (A)rgument (D)estroyed (P)reserved (R)eturned
0 1 2 3 4 5 6 7 SRhi SR 1o (CCR)

D: P P P P P P P P
A: P P P AR AR AR P P
INPUT:
A3 = Address where GET SEGMENT parameter block can be

built. The start address of TDTI’s dynamic
data area can be used for this address.

A4 = Address of TASK TABLE entry to be processed

A5 = TASK TABLE structure start address

use

I

OUTPUT:
REGISTERS/DATA STRUCTURES

A3 = Unchanged
A4 = Unchanged
A5 = Unchanged

CONDITION CODES

NOT-EQUAL --> Error occurred trying to allocate task
segment

EQUAL --> A1l task segments allocated successfully

sk Xk
Fedkdk
*kk
* %%
% k%
Jedeke
* %k
dedek
Jekk
* k%
*kk
*dkk
*edkek
Jek ok
%k %k
Jedkk
% Je &k
Fedkdk
%k %
Jdek
Jedek
*dkk
* %%k
Jekk
seded
*dkk
Jok K
dekde
Jede ke
* %%k
* %%k
dedek
ek
%* gk
%k %k
% dek
% %k
dekk
dedkdk
J*ekk

*kk .

dedkek
k%
Jedkk
*kk
e dek
%k k
Jeded
dede Xk
dede Kk

e T e e e e Je Fe e e e e e e e T vk T v e Je e T ke T e e T e e e e e e T e e e e v e e T ke e Tk e v s Tk 3k e ke e e ke e ke e vk e e e e ke I ok e ok e ke ke e e e de ke

71

MICROSYSTEMS

M) mororoLA

D.6 TI72800 -- START TASK

APPENDIX D

Fede e e v Jo e s e e e s e e S sk d ke ok T e ke e ok e e e Tk e sk o e g e ok ke e T e e e T e e T e e ke e T T ke e e e e e ke ke e e ok ok ke e e ek ek ke ke e ok

INTERNAL SUBROUTINE: T172800

*kk
Jkk
*%kk
%k
* k%
*kk
Jedkek
kX
ek k
%k
%%k
dedkk
ddk
&k
Jedkedk
ek
*dkk
* ke k
Jedede
Jeded
Jedede
%k k
Jedkk
Jedek
Jok ke
*dkk
*dde
Jde Xk
Jedede
% ek
% k%
% gk
Jedkek
% %k
%k ke
dek ok
ke
Jedkk
Jek ok
Jkk
*dkk
% ek
*kk
dk %k
*kk
dek
% k%
Jdkek
* k%
dekdk

DESCRIPTION:

Subroutine to start specific task table entry in the TASK

NOTES:

TABLE structure.

PRE-REGISTER initialization for a task can ONLY be
accomplished by starting a specific task
from user-specified code.

If pre-register initialization is NOT selected, then
the register values for a task that is started
will be zeros.

An attempt by the caller to start a task that has
already been started WILL NOT be construed as
an ERROR. The routine will return as if the
request was successful.

If an error occurs, the error handling logic specified
in the TASK TABLE structure will be executed via a
Jump-to-Subroutine call. The caller is responsible for
maintaining the stack pointer so the TASK INITIATOR
task can commence normal processing when the return via
the RTS instruction is executed. A1l other registers
will be preserved by the TASK INITIATOR task. If the
caller has elected to bypass the error handling logic,
processing to start this task will terminate and the
appropriate status condition will be returned.

REGISTER USAGE (A)rgument (D)estroyed (P)reserved (R)eturned

INPUT:

0 1 2 3 4 5 6 7 SRhi SR 1o (CCR)

P P P P P P P P
P P AR AR AR AR P P

A2 = If contents of this register equal zero there is
no pre-register initialization

ELSE

* kK
*kk
%k k
* %k
% k&
Fodkk
ek
*de ke
*kk
k%
ek
sk k
Jedek
Jokek
dede ¥k
* %k
ek %k
Yok %
sk
%k %
* k%
skt
%k
ddkk
dedek
ek k
ddkede
%k k
dkk
% gk
dedek
* k%
sk k
ke
sk
dekk
* gk
* k%
*kk
ddkk
s gk
kK
¥k
dededk
%dede
dekk
*kk
F*dkk
d k%
%%k

72 MICROSYSTEMS

@ MOTOROLA

Jede Kk
dedek
*dk
dkkdk
dede ke
Fdkk
*kk
Jedkedk
*kk
%k %k
Fekk
dodk Kk
dekk
*dkk
sk
dk¥k
dedkk
dedkk
Yok gk
dedkk
ke K
Jedkk
ddkdk
edede
ek
Jedede
dedode
dedkk
dekk
*dkk
Jedkek
Jede ke
kK
Jdkdk
dodek

Contents of this address contains the address of
the pre-register initialization data for
registers D0-D7 and AO-A6

A3 = Register contains address where START TASK
parameter block can be built

A4 = Contains address of the specific TTE
to be started

A5 = Address of TTS

OUTPUT:
REGISTERS/DATA STRUCTURES

A2 = Unchanged
A3 = Unchanged
A4 = Unchanged
A5 = Unchanged

CONDITION CODES
ZERO --> Task was started successfully

NOT-ZERO --> Error encountered trying to start task
Potential errors are
Unable to get task identification
Unable to start task

APPENDIX D

Jodkk
k%
*kk
* %k
*kk
k¥
* %k
*%kk
*kk
*kk
* k%

dkk

dkk
dekk
*dek
*k%k
Jkk
dedek
%edk ke
dedkk
Jede ke
%k k
Jededk
%k %
% %%
dede sk
% de g
dkk
dedek
Fkk
dedkk
dedek
dededk
Jedede
Jeded

e e v e e e e e e e e e e e e e e e T Y e Fe e T e T e e e e e e e T e sk e e T o e T vk T e T e T e e T T T e e e e e sk e e T e T ok ke e e e sk Fe e e e ok v

73

MICROSYSTEMS

M) mororoLA APPENDIX D

THIS PAGE INTENTIONALLY LEFT BLANK.

4 MICROSYSTEMS

@ MOTOROLA APPENDIX E

APPENDIX E
ERROR INDEX VALUE

" E.1 DESCRIPTION

When an error is encountered by the Table Driven Task Initiator (TDTI) task,
the user-specified Error Handling Logic (EHL), if it exists, is executed via a
Jump-to-Subroutine (JSR) call. To aid in the debugging process, the TDTI task
will place on the stack an Error Index Value (EIV). This EIV will be the
longword immediately following the return address on the stack. This EIV,
when applied to the EIV table, will identify for the user the type of error
encountered and the approximate location in the TDTI task where the error
occurred. The TDTI task will be responsible for removal of the EIV from the
stack in the event the user elects to return from the EHL.

| EHL |

E.2 ERROR INDEX VALUE TABLE

The EIV table has the following EIV code structure:

EIV RANGE DESCRIPTION
$0000 - $1FFF TDTI Errors
EIV$0010 General location: TI20000 mainline code.

Problem: After obtaining a data segment, TDTI
zeros it out. An error will occur if
the number of bytes to zero out is zero
or negative.

EIV$0020 General location: TI20000 mainline code.

Problem: TDTI tries to obtain the segment which
contains the TT structure, and user-
specified code or EHL that may exist,
so it can process it. An error will
occur if this segment cannot be
obtained.

75 MICROSYSTEMS

M) mororoLA

EIV$0030

EIV$0040

EIV$1010

EIV$1020

EIV$1030

EIV$1040

EIV$1050

EIV$1054

EIV$1060

EIV$1070

APPENDIX E

General location: TI60000 routine.

Problem: The TDTI task will attempt to find a TT
entry based on an index value. An error
will occur if the TT entry cannot be
found.

General location: TI72800 routine.

Problem: Prior to starting a task, the work area
set aside for starting the task is
jnitialized to =zeros. An error will
occur if the number of bytes to clear
is zero or negative.

General location: TI70500 routine.
Problem: An error occurred when the create TCB
request was made.

General location: TI71300 routine.

Problem: An error occurred because the number of
segments to allocate for the task was
less than one.

General location: TI71300 routine.
Problem: An error occurred trying to obtain the
task identification.

General location: TI71300 routine.
Problem: An error occurred trying to allocate a
segment for the task.

General location: TI71300 routine.
Problem: An error occurred trying to declare a
segment shareable.

General location: TI71300 routine.
Problem: An error occurred trying to transfer a
segment to the target task.

General location: TI72800 routine.
Problem: An error occurred trying to obtain the
task identification.

General location: TI72800 routine.
Problem: An error occurred trying to start the
task.

78 MICROSYSTEMS

@ MOTOROLA APPENDIX F

APPENDIX F
INTEGRATING A PASCAL TASK INTO A TDTI SYSTEM

F.1 PROBLEM ASSOCIATED WITH PASCAL TASKS IN A TDTI SYSTEM

The example presented in the manual describes how to integrate an assembly
language task into the Table-Driven Task Initiator (TDTI) system. The
technique used cannot be directly applied to tasks written in Pascal, for two
reasons. First, the Pascal runtime initializer expects logical units 5 and 6
to be assigned to a standard input and standard output device, respectively,
when the task is first started. Second, the length of the command line is
normally passed in a register at startup time. In the case of a TDTI system,
there is no command line.

The above functions are normally performed by the VERSAdos session manager
when the Pascal task 1is started in the normal full VERSAdos environment.
Since tasks that TDTI starts are already present in memory and not loaded by
the session manager, it is necessary to provide for the passing of logical
units 5 and 6 and for the correct handling of a nonexistent command line in a
different way. One technique for doing this 1is described below. The
technique has been applied to Pascal tasks, but it could also apply to tasks
written in other high level languages, or even to tasks written in assembly
language if desired.

F.2 RECOMMENDED SOLUTION TO PROBLEM

The recommended solution to the above problem is to provide code to pass
logical units 5 and 6, and to indicate an empty command line to the task being
started. This code will be pointed to by the "non-standard startup” cell in
the associated task entry of TDTI’s task startup table. In addition to these
functions, the code can initialize the registers of the task being started.
This code will have to perform all of the other functions associated with task
startup that the TDTI task would perform in the "standard" case. This code
consists of a small user-written module and a supplied subroutine module that
will perform most of the work.

The non-standard startup module has been reproduced in a later section of this

supplement. The following diagram shows the structural relationships between
TDTI and the startup module.

7 MICROSYSTEMS

@ MOTOROLA APPENDIX F

Task table TDTI task . "Non-standard startup code"
Non-standard | | . BSR--»
startup cell | |-
------------------ >| | <--RTS |
Entry A | | | |
| meeeeeae- v
_________ - | e mmmema—— = cremmm——————
Entry B |----- | Small | BSR--> | Non- |
| user- j<------- >| standard |
--------- - | written | <--RTS | startup |
Entry C | interface| | module |

The user-written interface indicated above is very simple. It is illustrated
below:

XREF NSSUPASC
START MOVE.L #CN11,Al Indicate the device mnemonic
* desired for the assignment of

* logical units 5 and 6.

BSR NSSUPASC Call the non-standard startup

module.
IF <NE> THEN.S
BRA.S * Here we hang on a branch if there

* was an error in the startup.

ENDI

RTS Return to TDTI.

Note that there is no mention of command 1ine in the above routine. This is
because the non-standard startup module will indicate to the Pascal task that
the command 1line length was 0 (no command line). If the user had desired to
initialize some register values and have them passed to the task, that could
have been done in the above module. The registers that can be passed are AO-
A3, and DO0-D5. Note that D6 and D7 are set by the startup module to contain
command line 1length (0) and Tlogical unit bit mask ($61) respectively.
Registers A4-A6 are reserved and cannot be used to pass information. The
terminal identification must be passed in register Al. What is presented
above, however, is the minimum necessary to start a Pascal task.

8 MICROSYSTEMS

——~

M) mororoLA APPENDIX F

F.3 PASCAL TDTI SYSTEM EXAMPLE

F.3.1 System Description

The TDTI demonstration system is a VM04 which contains RMS, a serial
input/output driver, the VM22 driver, the Intelligent Peripheral Controller
(IPC) driver, the TRAP #3 server (File Handling Services (FHS)), the I/0
subsystem (Input/Output Services (I0S)), and TDTI. Applications include two
Pascal tasks, non-standard user-written code for each task, the non-standard
startup routine, and the task table created via the TDTI support utility
TTGEN.

The Pascal tasks, which use the shareable Pascal runtime library, illustrate
the use of the library by de-assigning the standard input/output and then re-

assigning them. After this is done, each task goes into an infinite loop
displaying a message to "CN11", the terminal chosen for this example.

F.3.2 Memory Map

The INITDAT module, which must be modified to reflect the user’s partitioning,
contains three partitions:

a. RAM partition 0, which RMS will use to obtain RAM for system as well as
user requirements.

b. RAM partition 2, which is defined to contain the read/write segment
associated with the Pascal task.

c. ROM partition to contain the following:
. Pascal task code and shareable runtime library
. Task table to be processed by TDTI
. Error handling logic referenced by the task table
. Non-standard user-written logic referenced by the task table

. Non-standard startup routine called from the user-written non-
standard code

79 MICROSYSTEMS

M) moToroLA

00000 +

EDO00 +
EES00 +
FO000 +
FODOO +
FIBOO +
FIC00 +
F2000 +
F2200 +
F4000 +
F6000 +
FFOOO +
FFFFF +

............................. +
RAM for TDTI system usage;
VERSAdos is resident here

_____________________________ +
Read/write segment for
Pascal task A (SEG2)

_____________________________ +
Read/write segment for
Pascal task B (SEG2)

_____________________________ +
Code segment for Pascal
task A (SEG1)

_____________________________ +
Code segment for Pascal
task B (SEG1)

_____________________________ +
Error handling logic |

_____________________________ +
Non-standard startup
routine

----------------------------- +
Non-standard user-written
code for Pascal task A

............................. +
Non-standard user-written
code for Pascal task B

............................. +
TDTI task table

_____________________________ +
PASCAL shareable runtime
library (RRTL)

............................. +
Available for use

............................. +

80

---+

-t

APPENDIX F

---> RAM
Partition

---> RAM
Partition
2

---> ROM
Partition

MICROSYSTEMS

-

M) mororoLa

To aid in explaining the memory map shown above, the link files for the Pascal

tasks are shown below:

TASK A

=/IFC \1

=ARG TASKA.LL
=/ENDIF
= /%
=LINK ,ATASK.LO,\1;HAMIXS
TASK ATAS,’$0010
PRIORITIES $42,$7F
ATTRIBUTES P
SEG SEG1(R):0,9 $F0000
SEG SEG2:15 $ED00O
SEG RRTL(GR):8 $F6000
IN 9998.RRTL.RTLINIT.RO
N &.TASKA.RO
IN 9998.RRTL.RRTLACCS.RO
IN 9998.RRTL.PRTL.RO
IN 9998.RRTL.PLJSR.RO
IN 9998.RRTL.RFINIT.RO
IN 9998.RRTL.RTRAPS.RO
IN 9998.RRTL.RPSCALIB.RO
LIB 0.&.PDOLRLIB.RO
END

_/*

=END

TASK B

=/IFC \1
=ARG TASKB.LL
=/ENDIF

=/%

=LINK ,BTASK.LO,\1;HAMIXS
TASK BTAS,’$0010
PRIORITIES $42,$7F
ATTRIBUTES P

SEG SEG1(R):0,9 $FODOO
SEG SEG2:15 $EE8B00
SEG RRTL(GR):8 $F6000
IN 9998.RRTL.RTLINIT.RO
IN &.TASKB.RO

IN 9998.RRTL.RRTLACCS.RO
IN 9998.RRTL.PRTL.RO

IN 9998.RRTL.PLJSR.RO

IN 9998.RRTL.RFINIT.RO
IN 9998.RRTL.RTRAPS.RO
IN 9998.RRTL.RPSCALIB.RO
LIB 0.&.PDOLRLIB.RO

END

_/*

=END

APPENDIX F

Note that SEG2, which is a read/write segment, has been removed from the ROM
partition and placed in partition 2. Partition 2 has been defined with a
memory type different than partition 1 so that RMS will not allocate that
memory for the system/user memory requirements. Segments SEG]1 and RRTL are
read-only segments that have been placed in the ROM partition. SEGI
represents the Pascal code for each respective task while RRTL is the
shareable runtime library that is common to both Pascal tasks.

The task table, non-standard user-written code, non-standard startup routine,

and error handling logic reside in the ROM partition at user-chosen addresses
discussed in section S.3.4.

81 MICROSYSTEMS

@ MOTOROLA APPENDIX F

F.3.3 Task Table Generation

The TDTI support utility, TTGEN, will create the major part of the task table
required for the TDTI task.

The Tload modules created by the Pascal link files shown above were used as
input to the TTGEN utility to create the task table. Note that in addition to
specifying the start address of each segment, the linker commands ’TASK’ and
’PRIORITIES’ are wused to define the taskname, session number, and priorities.
This information, 1if supplied at link time, will automatically be extracted
from the Loader Information Block and placed in the task table entry by TTGEN.

The modifications that were made to the task table created by the TTGEN
utility were as follows:

. Defining the external references to the mnemonics defined.

. Defining the offset mnemonic to the non-standard user-written routine
for each Pascal task.

. Setting a bit (bit 10) in the segment attributes of SEG! and RRTL to
indicate that they reside in a ROM segment.

. Adding an ’END’ statement.
The results of running the TTGEN utility with the above modifications follow:
PAGE

* Table Driven Task Initiator (TDTI) startup table.
* Created with TTGEN

SECTION 4

XREF TTSEHL (NOTE)

XREF NSSUTEOA (NOTE)

XREF NSSUTEOB (NOTE)
* ORG not def
B o o e e e o o o e o o e e e e . — - . et nemm e, ———— *
* TASK TABLE HEADER *
K e e e e e e e e e e e e . e — e e e e e — e mame—,——————— *

DC.L ’!HDR’ Header ID.

DC.L TTSEHL-* Address offset of error handling routine.
* Zero means no error handling routine.

DC.L HEDR_END-* Address offset to first table entry.
HEDR_END EQU *
K e e e e e e e e e e e e e e e m e e M A e m A m e et S e C NS e C e S e N CeCGmmeEmemEm e e m— e mm————————— *
* END OF TASK TABLE HEADER *
B e o o e — e — o e e e e e e e e e e e e m e m————— %*

82 MICROSYSTEMS

M) mororoLA

APPENDIX F

PAGE
U *
* TASK ENTRY TEOA *
K e e e e o e e e e e e e e e m et e, — e, e e et e e e e e et e e e e e e et e r e temem e e e e e —.———— L3

DC.L °’TEOA’ Task entry ID

DC.L TEOA_END-* Offset to next entry

DC.L. NSSUTEOQA-* Offset to special non-standard processing

{NOTE) DC.W 0
Processing order value

DC.B 0 Reserved

DC.B 'R’ State (’D’=dormant, ’R’=ready)

DC.L ’ATAS’ Task name

DC.L ’0010’ ’....’ Task session number

DC.W %0000000000000000 TCB directive options

DC.L $0 Monitor task name

DC.L $00000000 >....” Monitor session number

DC.B $42 Task initial priority

DC.B $7F Task 1imit priority

DC.W %0000100000000000 Task attributes

DC.L $000F0000 Task start address

DC.LW O User-generated task ID

DC.W 3 Number of segments for task

DC.
DC.
DC.
DC.
DC.

DC.
DC.
DC.
DC.
DC.

DC.
DC.
DC.
DC.
DC.

TEOA_END EQU

Segment entry for task *TEOA’, segment ’SEG2’

%0000000100000000 Segment directive options
%0000000000000000 Segment attributes

’SEG2’ Segment name

$000EDO0O Start address of segment
$00001400 Length of segment

Segment entry for task 'TEOA’, segment ’SEG1’

%0000000100000000 Segment directive options
%0100010000000000 Segment attributes (NOTE)
*SEG1’ Segment name

$000F0000 Start address of segment
$00000D00 Length of segment

Segment entry for task *TEOA’, segment ’RRTL’

%0000000100000000 Segment directive options

%0101010000000000 Segment attributes (NOTE)

*RRTL’ Segment name

$000F6000 Start address of segment

$00008F00 Length of segment

*
__ *

END OF ENTRY FOR --- TEOA *

83 MICROSYSTEMS

M) mororoLa

APPENDIX F

PAGE
K o e e o e o e e e e e e e e e e e e e e e e e e e — e — e e e e e e e e e e e e m m e — e e At e e mmemcec———————— *
* TASK ENTRY TEOB *
K e o e e e e e e e e e e e e e . e e e e e e~ e e e e e e e e e e e — e e e m e CemAMmmm e e e m e m e — e ———————— *
DC.L ’TEOB’ Task entry ID
Dc.L o Offset to next entry
DC.L NSSUTEOB-* Offset to special non-standard processing
(NOTE) DC.W 0
Processing order value
DC.B O Reserved
DC.B 'R’ State (’D’=dormant, ’R’=ready)
DC.L ’BTAS’ Task name
DC.L ’0010’ ’....” Task session number
DC.W %0000000000000000 TCB directive options
DC.L $0 Monitor task name
DC.L $00000000 ’....” Monitor session number
DC.B $42 Task initial priority
DC.B $7F Task Timit priority
DC.W %0000100000000000 Task attributes
DC.L $000FO0DOO Task start address
DC.w O User-generated task ID
DC.W 3 Number of segments for task
*
REEET LR Segment entry for task ’TEOB’, segment ’SEG2’
*
DC.W %0000000100000000 Segment directive options
DC.W %0000000000000000 Segment attributes
DC.L ’SEG2’ Segment name
DC.L $00OEES800 Start address of segment
DC.L $00001400 Length of segment
*
hEREEEEE T Segment entry for task ’TEOB’, segment ’SEG1’
*
DC.W %0000000100000000 Segment directive options
DC.W %0100010000000000 Segment attributes (NOTE)
DC.L ’SEGL’ Segment name
DC.L $000FODOO Start address of segment
DC.L $00000D00 Length of segment
*
EEEEEEEE TP Segment entry for task ’TEOB’, segment ’RRTL’
*
DC.W %0000000100000000 Segment directive options
DC.W %0101010000000000 Segment attributes (NOTE)
DC.L ’RRTL’ Segment name
DC.L $000F6000 Start address of segment
DC.L $00008F00 Length of segment
TEOB_END EQU *
K L o o e e o e o e — e e e e e ———— *
* END OF ENTRY FOR --- TEOB *

MICROSYSTEMS

@ MOTOROLA APPENDIX F

K o o o e e e e e e e e e e e — e e e e e e A e e e e e e e m e e mcesmceeETemm e — e ———-- *
* *
* END OF TASK TABLE *
* *
%* Have a nice day ! *
* *
K e o o o e e e e e e h f Cr e w C e e e e e et e e e e e e e et e e et e e e e et dcc e e r e e, e, e e — - *

NOTE
Lines flagged with (NOTE) have been modified.

F.3.4 SYSGEN Command File

The integration of the task table, non-standard code, and error handling logic
into the ROM partition was done via a SYSGEN. The following SYSGEN command
file processes, respectively, these items:

. Error handling logic

. Non-standard startup routine

. Non-standard user-written code for each task
. Task table

Note that the SYSGEN ’EXCLUDE’ command is used to process the non-standard
startup routine as well as the non-standard user-written code for each Pascal
task. The Tink will include the segment specified so that external references
can be satisfied, but the SYSGEN ’EXCLUDE’ command will remove them from the
resultant load module.

The following addresses, excluding those referencing TDTI, can be related to
the memory map in section F.3.2.

*

* TTSUCEHL.CD

*

* This command file is used to accumulate the following modules
*

* Task Table Required

* Non-standard user code Optional

* Error handling logic Optional

%*

* The addresses should reflect those to be processed by the
* Table Driven Task Initiator task (TDTI).

%*

* The values defined in this file will be used by the

* VERSAdos SYSGEN and the task table SYSGEN

*

*

* Start address of TDTI task

*

TDTISTRT = $DEOO

85 MICROSYSTEMS

M) moToroLA

* % * *

*

FLAGEHL
FLAGUSC

IFNE

MSG
MSG
MSG
MSG
MSG

W % o % ¥ F * ¥ ¥ *

o
(]

STARTEHL

PROCESS
SUBS
LINK
END

*

*
*

ENDC

IFNE

MSG
MSG
MSG
MSG
MSG

The following flags are defined as follows

Non-zero --> The information exists

Zero --> The information does not exist

= 1 Flag for error handling logic

= 1 Flag for user-specified code
\FLAGEHL

e e Je de e e de e T T e e I e e T e T e g e e e e Fe e e de e e de de e e e e e e de e e e g e e ke ke ko ok ke
% %*
* Process the Error Handling Logic *
* %*

T e e e T e e e Je de o Fe d e Je Jo de e e e e e e e e e e e e e e Je e s e Je e e e Je e Je Fe e Je Je e Je Je Je e

TTSEHL.CI

This command file has been built to create a task table
error handling logic module.

APPENDIX F

STARTEHL = Start address of the error handling logic. This address
is in the range of AREASA to AREAEA defined in module

TDTI.CI

= $F1B00
= %

&.TTSEHL.LO

&.TTSEHL.LG

&.TTSEHL.LG

TTSEHL
\FLAGUSC
s e Je g e e Je e e T e e e Je e Fe e e Je e Fe Fe e Fe Je e Fe e e Fe Fe e Je Je ¢ de e v e e e Je Fe e % g e e de ok e
* *
* Process User-Specified Code *
* *

e e Je Je e Je Je T e JeJe e e e J T e Fe Fe Jo e Fe e de de Je e e e e e e e I e e T ke e e e e e e e o e e e e

86

MICROSYSTEMS

M) moToroLa

* % ok k * H F ¥ * * *

APPENDIX F

TDTI.NSSUPASC.CI

This command file has been built to create the non-standard startup
code routine which can be used with the Table Driven Task Initiator.

NSSURSA = Start address for the non-standard startup routine. This
address is in the range of AREASA to AREAEA defined in
module TDTI.CI

PC = $F1C00

NSSURSA =

PROCESS
EXCLUDE
SUBS
LINK
END

*

*
*

* % % % K % F * * ¥ *

*

TDTI.NSSUPASC.LO
TDTI
TDTI.NSSUPAS.LG
TDTI.NSSUPAS.LG
NSSUPASC

NSSU.TASKA.CI

This command file has been built to create user-written non-standérd
module for use with the Table Driven Task Initiator task.

NSSUTASA = Start address of the user-specified code. This address
is in the range of AREASA to AREAEA defined in module
TDTI.CI

PC = $F2000

NSSUTASA

PROCESS
EXCLUDE
EXCLUDE
SUBS
LINK
END

*

*
*

= %

NSSU.TASKA.LO
TDTI

NSPL
NSSU.TASKA.LG
NSSU.TASKA.LG
NSSUTSKA

87 MICROSYSTEMS

@ MOTOROLA APPENDIX F

*

* NSSU.TASKB.CI

*

* This command file has been built to create user-written non-standard
* module for use with the Table Driven Task Initiator task.

*

* NSSUTBSA = Start address of the user-specified code. This address

* is in the range of AREASA to AREAEA defined in module
* TDTI.CI

*

*

PC = $F2200

NSSUTBSA = *

PROCESS NSSU.TASKB.LO
EXCLUDE TDTI
EXCLUDE NSPL

SUBS NSSU.TASKB.LG

LINK NSSU.TASKB.LG

END NSSUTSKB

*

*

%*

ENDC
MSG e e e e e e e e e e e e T Fe I F e Fe e e ke e e Fe e T K e e Je T T I e e % Fe v e Fo Fe g e o e de g e e K de
MSG * *
MSG * Process the Task Table *
MSG * *
MSG e v e e T 3k %k Fe % Je T T e e ek ek T % Fe T g e o e ok Ik T T v e e e e e ok e %k e g e e de e ok
%*
* &.TTS.CI
*
* This command file has been built to create the task table
* module for use with the Table Driven Task Initiator task.
*
* STARTTTS = Start address of the Task Table. This address
* is in the range of AREASA to AREAEA defined in module
* TDTI.CI
*

PC = $F4000

STARTTTS = *

PROCESS &.T7S.LO

SUBS &.TTS.LG

LINK &.TTS.LG

88 MICROSYSTEMS

@ MOTOROLA APPENDIX F

END
*

*
*

END SYSGEN

F.3.5 Sample Link Files
Sample 1link files used by the SYSGEN command file for the non-standard start-
up routine, non-standard user-written code, and task table are as follows:

a. Non-standard startup routine:

=/* TDTI.NSSUPASC.LG

=/%

=/* Link file to link the non-standard startup routine
= /%

=LINK ,TDTI.NSSUPASC.LO, TDTI.NSSUPASC.LL;HAMIX
SEG TDTI:0 $DEOO

SEG NSPL:13 $F1C00

IN TTSSA.TDTI.RO

IN &.TDTI.RO
IN TDTI.NSSUPASC.RO
END

=END

b. Non-standard user-written code for a task:

NSSU.TASKA.LG

%*
*
* Link file to 1ink non-standard code for this task entry
s

=LINK ,NSSU.TASKA.LO,NSSU.TASKA.LL;HAMIX
SEG TDTI:0 $DEOO

SEG NSPL:13 $F1C00

SEG NSPA:2 $F2000

IN TTSSA.TDTI.RO

IN &.TDTI.RO

IN TDTI.NSSUPASC.RO

IN NSSU.TASKA.RO

END
=END

8 MICROSYSTEMS

@ MOTOROLA APPENDIX F

c. Task table:

The linker °’DEFINE’ commands were used to identify the start address of the
error handling logic (TTSEHL), the start address of task ’A’ (NSSUTEOA) and
task ’B’ (NSSUTEOB) non-standard user-written code, respectively.

TTS.LG
Link chainfile to create TTS.LO

—/%
=/%
= /%
=/%
=LINK ,&.TTS.LO,TTS.LL;AHMIX
DEFINE TTSEHL,$F1B0O
DEFINE NSSUTEOA, $F2000
DEFINE NSSUTECB,$F2200

SEG TTS0:4 $F4000

INPUT &.TTS.RO

END

_/*

=END

2 MICROSYSTEMS

@ MOTOROLA APPENDIX F

F.3.6 Listing of Non-Standard Startup Routine Code

User-written code

| Input requirements

I
Create/start task
in VERSAdos

environment
I
I
I
|
Assign standard terminal Create task
INPUT and OUTPUT
| I | I
| - |
Assign LUN 5 Assign LUN 6 Transfer LUN Start task

Transfer LUN 5 Transfer LUN 6

Ok bk N ok R OF Ok bk N K N X % K % % ok Ok Ok F % ok ok ok ok Ok N ok ok K Ok ¥ ¥ % ¥ H H * *

9 MICROSYSTEMS

M) moToroLa

ok % ok % R % N N R N b ok R ok ok b Nk ok K % ok Ok X ok K W ok K N %k K N K % A N X X * F ¥ ¥

* % * %

APPENDIX F

PAGE

TDTI.NSSUPASC.SA

This routine is a non-standard startup routine which executes —
as a subroutine to the TDTI task via the non-standard user-written

code.

This routine is called to create/start a task by performing the
following functions:

@ Assign to TDTI, for the user-specified terminal
identification, logical unit 5 for INPUT and logical
unit 6 for OUTPUT

@ Create the Task Control Block (TCB) for the task

@ Allocate the task’s required segments

@ Pass logical units 5 and 6 to the task to being processed

@ Start the task if requested

Entry requirements

Al = Initial terminal identification (device mnemonic,
i.e. CNOO) the task wants to be assigned to INPUT
and OUTPUT, respectively logical units 5 and 6

A4 = Address of task table entry to process

A5 = Address of task table header

Registers A4 and A5 are already established upon entry to the
user-written code; consequently they need only be passed to this
routine.

Exit status

A11 registers are preserved EXCEPT register DO.

Exit conditions

Non-zero --> Error occurred
DO = Error code in following format

R EGEETEEE TR O CLET T EE R +

| NSSUPASC INTERNAL | RMS RETURNED CODE |

| ERROR CODE | IF APPLICABLE |

| | ELSE ZERO |

R ittt L L e LT +
92

MICROSYSTEMS

M) moToroLA

% % % % % A % X % X X A F ¥

* * *

% ¥ & % % X % % ¥ N * K % % ¥ * * %

* * *

APPENDIX F

NSSUPASC INTERNAL
ERROR CODES

Error assigning LUN 5

Error assigning LUN 6

Error creating Task Control Block
Error allocating task segments
Error obtaining task identification
Error changing LUN §

Error changing LUN 6

Error starting task

O~NOoOT-PAWN =

Zero --> Routine completed successfully
DO = ZERO
EXTERNAL DEFINITIONS

XDEF NSSUPASC
XDEF NSPTASKP

EXTERNAL REFERENCES

The method by which the external references, listed below, are
satisfied will depend upon the Tinking mechanism the user selects.

The most common means of satisfying the references are

1. Via a SYSGEN, to INCLUDE the TDTI segment, which contains
the corresponding external definitions, to satisfy the
external references but EXCLUDE it from the actual linking
of this module, where INCLUDE and EXCLUDE are SYSGEN
commands.

2. Link this module, using the 1link DEFINE commands if the user
knows where each external reference resides.

TDTI routine references

XREF TI70200 Character fill a specified area
XREF TI70500 Create Task Control Block
XREF TI71200 Get task identification
XREF TI71300 Allocate segments to a task
XREF TI72800 Start task
PAGE

93

MICROSYSTEMS

@ MOTOROLA

* %k % % % * H ¥

*

* % % * K ¥ * ¥

ILLINST

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
NOLIST
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
LIST

PAGE

MACROS
MACRO
SWAP
MOVE.W
SWAP

ENDM

MACRO
DC.W

ENDM
PAGE

TEMPLATE.
9995.&.
9995.8%.
9995.8&.
9995.8&.
9995.4&.

TEMPLATE.
9995.&.
9995.&.
9995.&.
9995.&.
9995.8&.

Do
D5,D0
DO

The exit

$4AFC

TDTITTS.AlL
EXE.EQ
I0E.EQ
NIO.EQ
FME.EQ
FMI.EQ

TDTITTS.AIL
EXE.EQ
I0E.EQ
NIO.EQ
FME.EQ
FMI.EQ

Exchange high order

APPENDIX F

and low order words

Establish the NSSUPASC internal code

Establish DO in error exit format

format for ’DO’ is:

L ittt
| NSSUPASC INTERNAL

| ERROR CODE

I

+ ____________________

I1legal instruction

94

R EETEE T PP PP PP +
| RMS RETURNED CODE |
| IF APPLICABLE |
| ELSE ZERO |
L L LT T LT +

MICROSYSTEMS

e~

M) moToroLA

* % % % ¥ % ok X % ¥ * %

PBA
NSSUPASC:

* % X * * * F

APPENDIX F

Save registers
Assign terminal device, for standard INPUT and OUTPUT,
to this routine (ASTDLUN)
IF assignment error
Establish error exit status
Restore saved registers
Return to caller
Restore saved registers
Create the task for general VERSAdos environment (NSPTASKP)
Return to caller

SECTION 13
EQU * Program Base Address for this routine

MOVE.L #$61,D7

CLR.L D6
Force these registers to conform to the
documentation stated for the Session Control
START command discussed in the VERSAdos
System Facilities manual
D7 = Logical unit assignments for LUN 5 and 6

and zero for device assignments

D6 = The command line length must be zero

MOVEM.L DO-D7/A0-A6,- (A7)
Save the registers

LEA PBA(PC),A2
A2 = Program Base Address for this routine
A2 will maintain this value throughout
this routine
BSR.S ASTDLUN
Assign standard terminal device LUN 5 and 6
for the terminal specified by the user

IF <NE> THEN.S

MOVE.L DO, (A7)

Establish routine exit conditions and register DO
MOVEM.L (A7)+,D0-D7/A0-A6

Restore registers that were saved
RTS

Return to caller

ENDI

MOVEM.L (A7)+,D0-D7/A0-A6
Restore registers that were saved

9% MICROSYSTEMS

@ MOTOROLA

APPENDIX F

BSR.S NSPTASKP

RTS

PAGE

Create the task for the general VERSAdos
environment

Return to caller

e e sk e e e Fe ke e e e e T e sk ok e e e e e e e ke A ke e e e e ke e T e o e e e e de e ke e e e e e ke o ok vk e e ok ok o e e e e e de e de e e de de e ek e e ek

INTERNAL SUBROUTINE: ASTDLUN

* k%
*k*k
Jokde
*dkk
*kk
*kk
Jedede
% %%
*kk
*kk
%k k
*k%k
*dk
kK
*kk
% gk
sk
* %%k
d*kk
*dkek
% de
sk k
*dk
*kk
d* k%
% %k
%%k
dedk
*kk
dekk
ddkk
Jedede
ddkk
Jedkdk
dedede
* %k %
Jdkdk
dekd
*kk
*dek
*kk
Jekk

DESCRIPTION:

Subroutine to

Establish LUN 5 as the INPUT device
Establish LUN 6 as the OUTPUT device

NOTES:

N/A

REGISTER USAGE (A)rgument (D)estroyed (P)reserved (R)eturned

0 1 2 3 4 5 6 7 SRhi SR 1o (CCR)
D: DR P P P P P P P
A: D AR AR P AR AR P P
INPUT:
Al = Initial terminal identification the task
wants to be assigned to INPUT and OUTPUT,
respectively logical units 5 and 6.
A2 = Program Base Address for this routine
A4 = Address of TASK TABLE entry to be processed
A5 = Address of TASK TABLE header
OUTPUT:
REGISTERS/DATA STRUCTURES
Al = Unchanged
A2 = Unchanged
A4 = Unchanged
A5 = Unchanged
DO = See CONDITION CODES below for definition

96

*kk
*dkXk
Jekk
* k%
Jokk
deded
*dk
kK
ek
dokk
d*kk
* %%k
*kk
dedkk
Fekk
*kk
%k %k
%k
Fededk
Fokk
*kk
Fedkk
*kk
dedkk
*kk
*kk
Jedkek
dokk
dke Kk
*k%k
*kk
* %k
dekk
*dkk
Jedek
Jede g
dedede
Jek ke
Jedkk
sk
*kk
*kk

MICROSYSTEMS

S

@ MOTOROLA APPENDIX F

ek CONDITION CODES *kk
Kk %k * %k
*kk Not Equal --> Error occurred trying assign LUN *kk
*dk * %%k
fadedl DO = Error code in following format *kk
* %%k sk Kk
Fekk Fomcmm e occcccmmm—m——————— + Kk
Fkk] NSSUPASC INTERNAL | RMS RETURNED CODE | Fkk
*dk | ERROR CODE | IF APPLICABLE [ek
*kk | | ELSE ZERO | Fkk
Jeded o m e mcmcceemam—ee Fommm e + dedede
sede ke * ki
do kg * %k %
ool Equal --> LUN assignments were successful ek
Jekk sedkk
Fekk DO = ZERO fadadd
e dede e g Je
s Yo T e e Fe v Fe e Je e Fe e Fe e Fe e Je e e P e Y T e Fe e e e e T e T e Je e Fe e e e e Je T Fe e Fe Ik e %k e F T e e e e e e e e e e e e e e e Fe e K e de ke ke o ek
*dkek Jekde
*xk Establish routine input for LUN 5 Fkk
Fkk Assign LUN 5 for INPUT (NSPLALUN) Fkk
ok IF error in LUN assignment ek
faladed Adjust format of error in DO to meet routine exit format Fkek
ke Establish routine exit conditions Tk
Fkk Return to calier faledd
ek Establish routine input for LUN 6 ke
*kx Assign LUN 6 for OUTPUT (NSPLALUN) *kk
ook IF error in LUN assignment ek
Fxk Adjust format of error in DO to meet routine exit format Fkk
fadadad Establish routine exit conditions fudaled
ek Return to caller Fekk
dedek Return to caller kk
Jek ¥k dek i

e e ek ok e v sk sk Tk T T ke e Tk e Tk e T s ek v g v e e v e e e vk e v e e e v sk e e e e e e e e e e e e e ke e e o d e e o T e e ok e e e e e e e de dedede ke

ASTDLUN:

MOVE.L #5,D1 LUN
MOVE.L #FOPPR D2 Assign options

* Al = Contains the terminal ID to assign LUN to
* D1 = Contains LUN for INPUT assignment
* D2 = Contains options for LUN assignment (PR)
* Routine input requirements for NSPLALUN
BSR.S NSPLALUN
* Assign LUN 5 for INPUT
IF <NE> THEN.S
MOVE.L #1,D5
* D5 = NSSUPASC internal error code
* Error trying to assign logical unit 5
: DO = Results of trap assignment call

Routine input requirements for NSPLAJDO

7 MICROSYSTEMS

@ MOTOROLA APPENDIX F

AJDO
* Adjust register DO to reflect the output format
* for this routine
TST.L DO
* Establish routine exit conditions
RTS
* Return to caller

ENDI

MOVE. L #6,D1 LUN
MOVE.L #FOPPW,D2 Assign options

Al = Contains the terminal ID to assign LUN to
* D1 = Contains LUN for OUTPUT assignment
* D2 = Contains options for LUN assignment (PW)
* Routine input requirements for NSPLALUN
BSR.S NSPLALUN
* Assign LUN 6 for OUTPUT

IF <NE> THEN.S
MOVE.L #2,D5

* D5 = NSSUPASC internal error code
* Error trying to assign logical unit 6
* DO = Results of trap assignment call
* Routine input requirements for NSPLAJDO
AJDO
* Adjust register DO to reflect the output format
* for this routine
TST.L DO
* Establish routine exit conditions
RTS
* Return to caller
ENDI
RTS
PAGE
Fe e e Je F e e e e e e e e e e e e I e T Fe Fe e de e e e e e e de Fe T e e e e e e e I T e e de e Ko K e e e T T de de T vk e e e e e e e e T de e de e do e de ok ok e ke ke
ol INTERNAL SUBROUTINE: NSPLALUN Fekk
Jekk * k%
*kk DESCRIPTION: *kk
dekdk *dek
okk Subroutine to Fkk
*kk Assign the specified device to the specified LUN fadadal
kg Sedek
*kk NOTES: *kk
dedk N/A sk k
Jedek Jede e
98

MICROSYSTEMS

@ MOTOROLA APPENDIX F

*kk REGISTER USAGE (A)rgument (D)estroyed (P)reserved (R)eturned :::
% de ke

ookl 0 1 2 3 4 5 6 7 SRhi SR 1o (CCR) ek
%k k *kk
*kk D: DR AR AR P P P P P *kk
ik A: P AR P P P P P P dekek
Jede Kk * k%
s dkek *kk
ok INPUT: dedek
Jokk sk ke
sk %k
*kk D1 = Contains the LUN to be assigned Fekk
fooded D2 = Contains the options for the assignment request *kk
fadaled Al = Contains the terminal ID to assign to *kk
dekk A2 = Program Base Address for this routine *kk
% ek dkk
*kk *kk
ek OUTPUT: Fokk
sk dekk
ek REGISTERS/DATA STRUCTURES Fkk
*kk ek de
*xk DO = Status of trap call to assign LUN *kk
Fkk D1 = Unchanged *kk
ek D2 = Unchanged kk
*kk Al = Unchanged dekk
Fekk A2 = Unchanged Fkk
Jede ke %k &k
ek CONDITION CODES Tk
% dek *kk
*kk Not Equal --> Error occurred trying assign LUN *xk
dekk %ok %
*kk DO = Status of trap call to assign LUN *kk
%%k * ¥k
* k% *k%
okx Equal --> LUN assignments were successful Fkk
dodkdk Jedkk
ek DO = ZERO dedeke
dedkdk *kk
e e e v o e e e e e Je Jo ke Je e Tk e e e ke e e g de e e e e T e e d e e F e e e e e T e e e e e T e e e Fe e e d e e Fe e e T e e de e e ok e e e K e de e K de de
% ek dedek
dkek Save registers bolaie
ok Put assign parameter block on stack bl
dekk Establish register input to TI70200 (A0,DO) rkk
Fkk Clear the assign parameter block *kk
sedede Jedkek
*kk IF an error occurs on the parameter block clear ek
fabaid Execute an illegal instruction as this should never occur Fkk
Kk Build the parameter block on the stack *kk
*kk Initiate the assign call faledl
falalad Remove the parameter block from the stack *kk
Fkde Restore saved registers Fekx
Fokk Establish routine exit conditions ke
Jede gk E 2% 3

e e e 3 e o e e A e e Fe e e T T e T T e e e 2k e 2 e e e e sk e e 3k e ke e e e e 3 9 3k e e e Je sk Je e e e T T I T T e T e T v sk vk e T v ke e ke e e e de e e e e

9 MICROSYSTEMS

M) mororoLA

APPENDIX F

FHSBLN EQU $28 Assign LUN parameter block size

NSPLALUN:

*

*
*

MOVEM.L AO0/A6,-(A7)
Save register
SUB.L #FHSBLN, A7
Adjust stack with enough space for parameter
block to assign the terminal to a LUN
MOVE.L A7,A0
A0 = Starting address of parameter block
MOVE.L #FHSBLN<<16,D0
DG = Number of bytes to clear in high order word
Fill character in low order byte
LEA T170200-PBA,A6
LEA 0(A2,A6.L),A6
A6 = Address of routine to execute
JSR (A6)
Clear the assign parameter block on the stack
IF <NE> THEN.S

ILLINST
Execute an illegal instruction
This should never happen
ENDI

MOVE.W #FHASGN, FHSCMD(AO)
Establish the assign command,code

MOVE . W D2,FHSOPT(AOQ)
Establish assignment options
MOVE.B D1,FHSLUN(AQ)
Establish the LUN for the terminal device

MOVE.L Al,FHSVOL (AO)
Establish the terminal device to assign

TRAP #3
Assign the terminal device to the LUN

ADD.L #FHSBLN,A7
Remove assign parameter block from stack
MOVEM.L (A7)+,A0/A6
Restore register
TST.L DO
. Establish the routine exit conditions
S

PAGE

100 MICROSYSTEMS

M) moToRroLA

APPENDIX F

e e e 3 e e Y e e e T s e T Fe e e T e e T s T e sk e T e 7k e ke T e e e e o e e e e e et Fo e e e de e de e ke ok e e e ke ek e e ke e ke ke ke kodkedkde ke

*kk
Jokk
kK
*kk
dedek
dkk
*kek
Jekd
kK
kkk
ek
*kk
kkk
kkk
Jedede
kK
ek
kkk
dkk
kK
Fekk
*kk
*kk
Jokk
Kk
kK
Kk
Sk
*kk
kK
dedek
Jedesk
Sk
Fekok
dedek
Jekok
dedk
kK
kK
kdkk
ke
ddk
Jedesde
Sk
Sk
*kk
ok
kK
ek
dedek
dokk
Hokk
kK

INTERNAL SUBROUTINE: NSPTASKP

DESCRIPTION:

Subroutine to
Create task in VERSAdos environment by initiating the
following:
Create the Task Control Block (TCB) for task entry
Allocate segments associated with task

Pass logical units 5 and 6 to task being created
Start task if requested

NOTES:
N/A

REGISTER USAGE (A)rgument (D)estroyed (P)reserved (R)eturned
6 1 2 3 4 5 6 7 SRhi SRTo (CCR)

D: DR P P P P P P P
A: P P P P AR AR P P
INPUT:
A4 = Address of TASK TABLE entry to be processed

A5 = Address of TASK TABLE header

LUN 5 MUST be assigned to the TDTI task prior to call
LUN 6 MUST be assigned to the TDTI task prior to call

OUTPUT:
REGISTERS/DATA STRUCTURES

A4 = Unchanged
A5 = Unchanged
DO = See CONDITION CODES below for definition

CONDITION CODES
Not Equal --> Error occurred trying assign LUN

DO = Error code in following format

R il Fecmmmmmmeme oo +

| NSSUPASC INTERNAL | RMS RETURNED CODE |

| ERROR CODE | IF APPLICABLE |

l | ELSE ZERO [

e S LR LR LR +
101

*kk
sedek
*edkk
Jedkk
kdek
*dkk
Kk g
Jokk
dokke
*kk
dede ke
*ded
*%kk
*kk
sk%k
Jekk
J*dkk
*kk
*kk
dekk
J gk
Jeded
e dede
dedk
Jedkde
Jede ke
ke
Jedek
*dkk
dekdk
Kk
dedok
Jedek
dede ke
Jekk
dedde
Jededk
dedkede
Jkd
Jodede
ddek
k%%

*kk -

*kk
Jedede
ddek
Jedek
*kk
*dkk
*dkk
dkdkek
Jedkk
dedkk

MICROSYSTEMS

M) moToroLA

APPENDIX F

*ddk *kk
* %k *dkk
fadaded Equal --> LUN assignments were successful *kx
% %k Jede ke
R DO = ZERO el
Jedd Jedede
e e de o e e Fe Je Je e Je e Je F de T Fe T v e T e T v e e T Ik e e e T T e v e e e e 3k e e Fe T e T e e T o T e de de e e e T Tk e e e T o e e v e e e o e ok e e de
*dk¥k sk ke
faledl Save registers dekk
ekk Establish Program Base Address for routine dekek
Fhk Establish TDTI work area on stack Fkk
Fhk Execute TDTI routine to build TCB Fkk
ek IF error wekk
ek Remove TDTI work area from stack ¥k
*kk Establish error code for TCB build error *kk
falaiad Save in register DO Kk
dedek Restore saved registers ek
*kk Exit routine fadedd
Fekk Execute TDTI routine to allocate task segments ek
ek IF error ek
ek Remove TDTI work area from stack ek
*kk Establish error code for segment allocation Fkk
*kk Save in register DO Kk
ekok Restore saved registers ek
fadalel Exit routine ek
Rk Remove TDTI work area from stack Fkk
*kk Pass logical unit 5 to task being processed Fkk
Fhok IF error *kk
Fkk Adjust to error exit format ek
dedede Save in register DO Fkk
Jedede Restore saved registers *kk
Fekk Exit routine Fekk
ek Pass logical unit 6 to task being processed *kk
dedek IF error ek
el -Adjust to error exit format *kk
*kk Save in register DO Fkk
*kk Restore saved registers faloded
*kk Exit routine *kk
*kk Start the task being processed if start requested Fekk
ekk IF error ek
dkk Establish error code for trying to start task fabalad
ek Save in register DO ek
ek Restore saved registers *xk
*ekk Exit routine ekk
Kk Establish routine exit conditions as successful *kk
ok Save in register DO ek
ekk Restore saved registers Fkk
Kk Exit routine ek
Jedok *k¥k

e e ek e e e de e e e Fo e I o e e e e e e e e e e e e e e T e de e e o 7 sk e e e ke g e T vk ok e ke e e ke e e e e e e e e e d e e e e T e e o e e e KK e de e

102

MICROSYSTEMS

@ MOTOROLA APPENDIX F

PBSIZEPL EQU $5E
* Work area for TDTI task
NSPTASKP:
MOVEM.L DO-D7/A0-A6,-(A7)
* Save registers
LEA PBA(PC),A2
* A2 = Program Base Address for this routine
MOVE.L A7,A6
* A6 = Address where registers were saved
SUB.L #PBSIZEPL,A7
* Adjust stack for TDTI work space
MOVE.L A7,A3
* A3 = Address of work area that will be used
* by TDTI routines that are called from
* this routine.
LEA TI170500-PBA,Al
LEA 0(A2,Al.L),Al1
JSR (A1)
* Build the TCB for the task being processed

IF <NE> THEN.S

ADD.L #PBSIZEPL,A7 .
* Remove TDTI work area from stack
MOVE. L #3<<16, (A7)
* DO = NSSUPASC exit error code
* Error creating TCB
MOVEM.L (A7)+,D0-D7/A0-A6
* Restore saved registers
RTS
* Return to caller
ENDI
LEA TI71300-PBA,Al
LEA 0(A2,Al1.1),Al
JSR (A1)
* AlTocate the task segments

IF <NE> THEN.S

ADD.L #PBSIZEPL,A7
* Remove TDTI work area from stack
MOVE.L #4<<16, (A7)
* DO = NSSUPASC exit error code
* Error allocating segments to task
MOVEM.L (A7)+,D0-D7/A0-A6
* Restore saved registers
RTS
* Return to caller
ENDI
103

MICROSYSTEMS

@ MOTOROLA APPENDIX F

ADD.L #PBSIZEPL,A7
* Remove TDTI work area from stack

CLR.L D1
* Establish change logical unit options

MOVE.L #5,D2
* D2

Logical unit to be passed (LUA)

' MOVE.L D2,D3
* D3

Logical unit to be received (LUB)

BSR.S NSPLCLUN
* Pass logical unit 5 to the task being processed

IF <NE> THEN.S
IF D5 <EQ> #0 THEN.S
MOVE.L #6,D5

* If zero, then error was due to change logical
* unit request; else error occurred trying to
* obtain task identification, and D5 already has
* the internal error code
* D5 = NSSUPASC internal error
* Error trying to pass logical unit 5
ENDI
AJDO
* Adjust register DO to reflect the output format
* for this routine
MOVE.L DO, (A7)
* DO = NSSUPASC exit error code
* Error trying to obtain task identification
MOVEM.L (A7)+,D0-D7/A0-A6
* Restore saved registers
RTS
* Return to caller

ENDI

MOVE.L #6,D2

*
o
~N

]

Logical unit to be passed (LUA)
MOVE.L D2,D3

*
(=]
w

L}

Logical unit to be received (LUB)

BSR.S NSPLCLUN
* Pass logical unit 6 to the task being processed

104 MICROSYSTEMS

@ MOTOROLA APPENDIX F

IF <NE> THEN.S
IF D5 <EQ> #0 THEN.S
MOVE.L #7,D5

* If zero, then error was due to change logical
* unit request; else error occurred trying to
* obtain task identification, and D5 already has
* the internal error code
* D5 = NSSUPASC internal error
* Error trying to pass logical unit 6
ENDI
AJDO
* Adjust register DO to reflect the output format
* for this routine
MOVE.L DO, (A7)
* DO = NSSUPASC exit error code
* Error trying to obtain task identification
MOVEM.L (A7)+,D0-D7/A0-A6
* Restore saved registers
RTS
* Return to caller
ENDI
BSR NSPLSTART
* Start the task if task entry so indicates
IF <NE> THEN.S
MOVE.L #8<<16, (A7)
* Establish routine exit conditions as unsuccessful
* Error trying to start task
MOVEM.L (A7)+,D0-D7/A0-A6
* Restore saved registers
RTS
* Return to caller
ENDI :
CLR.L (A7)
* Establish routine exit conditions as successful
MOVEM.L (A7)+,D0-D7/A0-A6
* Restore saved registers
RTS
* Return to caller
PAGE

105 MICROSYSTEMS

M) moToroLA

APPENDIX F

e e e e T e e T e e T T T T T T T T T e e e e 3 e e e e e 3 e 2 T e 3 T 2k e e o ke e e e e e e e e T e ok ke ke ke T Tk Tk ke ke e ke e e e e e e e e e e ok Sk ek e

% kk
*k%k
F*ekk
dedk
Jedede
*dkdk
dkd
ddek
Jodkk
* k%
dedede
Jekk
Fedkek
Jedek
Jedede
deded
dedek
dkk
Kk %k
dek ke
Jekk
Jdede d
dekk
*dkd
Jodkk
Jededk
deded
Jekde
*kk
Jded
sk
ek ke
e
Kk %k
*kk
Jedke g
* k%
dk %
s*kk
d¥kdk
Fedkk
dekdk
Jedede
% dek
dkd
dkk
Kk %k
*kk
dek &
dedede
dedede
Jedede

INTERNAL SUBROUTINE: NSPLCLUN
DESCRIPTION:

Subroutine to
Pass the logical unit to the task being processed

NOTES:
The SEND option MUST be used. This routine will
will force this option.

REGISTER USAGE (A)rgument (D)estroyed (P)reserved (R)eturned
0 1 2 3 4 5 6 7 SRhi SR To (CCR)

D: DR AR AR AR P DR P P
A: P P AR P AR AR P P
INPUT:
D1 = Options for change logical unit request

SEND option is required

D2 = LUA the existing assignment

D3 = LUB the new assignment

A2 = Program Base Address for this routine

A4 = Address of TASK TABLE entry to be processed
A5 = Address of TASK TABLE header

OUTPUT:
REGISTERS/DATA STRUCTURES

DO = Trap request status

D1 = Unchanged

D2 = Unchanged

D3 = Unchanged

D5 = Contains NSSUPASC internal code if the task the
being sent the logical unit does not exist,
else the value will be zero

A2 = Unchanged

A4 = Unchanged

A5 = Unchanged

CONDITION CODES
Not Equal --> Error occurred trying assign LUN

Equal --> LUN assignment was successful

e de Kk
Kkdk
k%X
*kk
Jokde
* Kk
*dkk
% dede
ke dek
dedkk
%k
Jedede
Jedede
sk Xk
*kk
*dek
sk
deded
% dede
ddk
ek
*kk
sk %
% Jek
dedede
% k%
ek Kk
% Jede
Jedede
*dkk
dedek
dok Kk
k¥
k¥
deded
dekk
Jedkk
*dk
k%
k%
% k%
dkk
Jeded
%%k
&k
Jekk
%ok ke
dede Xk
Kk k
ddk
Jkk
kK

Fe e e e e e e e e e Je e e e e e 9 e s e e v e Je e e e e e e e e 7 e e e e e e e e vk e e e v e e ke e e T e e e e v e de e o e e e e e e e e ok e e e e e e

106

MICROSYSTEMS

@ MOTOROLA APPENDIX F

*dek) *dkk
ok Save registers Fekk
faadel Establish work area on stack ok
Fxk Execute TDTI routine to obtain task identification faldl
*kk IF error *k%
falelad Remove work area from stack *kx
bl Establish flag - error obtaining task identification Xk
Fkk Establish error exit conditions Fkk
kel Restore registers ek
Fkk Return to caller Kk
*kk Save task identification information ek
Fkk Execute TDTI routine to zero fill parameter work area on stack Fedek
Fedek IF error *%k
Kk Execute an illegal instruction as this should not happen *kk
*kk Build the change Togical unit (pass) parameter block on stack fabaded
Fkk Pass the logical unit to the task being processed *kk
*kk Remove the TDTI work area from the stack fabedd
Fkk Establish flag; error, if one exists, is due to not obtaining *kk

task ID *kk
Fkk Establish the routine exit conditions ek
ek Return to the caller ek
%k %k % %Xk

e e e e Fe T e e Je e Je s e e e vk e e e ke e T v T e T T e e e T e T T T S e S e e T e T v e v e T e Fhe e e e e e e v e T e T T v I e T e Y I e 3k ke 3 e % e e e

NSPLCLUN:

MOVEM.L AO-A3,-(A7)
* Save registers
SUB.L #PBSIZEPL,A7
Adjust stack for work area required by TDTI
MOVE.L A7,A3

*

* A4 = Address of task table entry being processed
* A3 = Address of dynamic work area
* Routine requirement for routines referenced
* in TDTI
LEA TI71200-PBA,Al
LEA 0(A2,A1.L),Al
JSR (A1)
* Get task ID as TDTI is a real time task
IF <NE> THEN.S
ADD.L #PBSIZEPL,A7
* Remove TDTI work area from stack
MOVE.L #5,D5
* D5 = Contains the NSSUPASC internal code
* Error trying to get task identification
TST.L DO
* Establish routine exit conditions
MOVEM.L (A7)+,A0-A3
* Restore registers
RTS
* Return to caller
ENDI

107 MICROSYSTEMS

M) MmoToroLA

* * ¥ ¥

MOVE.L
MOVE.L

MOVE.L
MOVE.L

LEA
LEA
JSR

APPENDIX F

Al,-(A7)

A0, - (A7)
Save respectively session number and task ID
on stack

A3,A0 S
#FHSCLN<<16,D0
A0 = Start address of parameter block
DO = Routine input identifying number of bytes
to fill and the fill character
Routine requirements for TI70200

T170200-PBA,Al
0(A2,Al.L),Al
(A1)
Zero fill the change LU parameter block

IF <NE> THEN.S

ILLINST
: Execute an illegal instruction
This should never happen
ENDI
MOVE.W #FHCHLU, (A0)
Establish code, command
MOVE.W DI1,FHSOPT(A0) o
AND.W #$FFFE,FHSOPT(AO)
Establish user’s specified options
Force the SEND option
MOVE.L (A7)+,FHSTSK(AO0)
MOVE.L (A7)+,FHSSES(A0)
Establish the task name/session number in pb
MOVE.B D2,FHSLUA(AD)
MOVE.B D3, FHSLUB(AQ)
Establish LUA and LUB for the parameter block
TRAP #3
Pass the LU to the new task
ADD.L #PBSIZEPL,A7
Remove TDTI work area from stack
CLR.L D5 —
Establish flag -- Error, if one exists, is due
to not obtaining task identification
TST.L DO
Establish routine exit conditions
MOVEM.L (A7)+,A0-A3

RTS

Restore registers

Return to caller

108 MICROSYSTEMS

M) moToroLA

PAGE

APPENDIX F

e e e e e s e T ok e e e e e e e e T e e e e T e e sk e e T e e e e e e e e e de e e o e de e e e e e o e e e o e de g de e e e dodede dedededede e dede ke

* %k
Jedede
Jedede
*kk
Kk
Jedek
Jedek
Jede ke
sk
J*kk
* %%k
*kk
dedede
Jkk
*kk
dekk
dedkeKk
dedek
Jedek
dedede
*dkk
dede g
Jekde
dokk
Jedede
Jedede
Jedkk
*kk
*dkk
*kk
dedek
e dede
deded
d*dkk
% dek
Jedkek
Jedkk
*kk
dedkk
% dek
*kk
dekk
* k%
% gk
* %%k

INTERNAL SUBROUTINE: NSPLSTART
DESCRIPTION:

Subroutine to
Start task if requested

NOTES:
N/A

REGISTER USAGE (A)rgument (D)estroyed (P)reserved (R)eturned
6 1 2 3 4 5 6 7 SRhi SR 1o (CCR)

D: P P P P P P P P

A: P P AR P AR AR AR P

INPUT:
A2 = Program Base Address for this routine
A4 = Address of TASK TABLE entry to be processed
A5 = Address of TASK TABLE header

A6 = Address where registers D0-D7/A0-A6 are saved

OUTPUT:
REGISTERS/DATA STRUCTURES

A2 = Unchanged
A4 = Unchanged
A5 = Unchanged
A6 = Unchanged

CONDITION CODES
Not Equal --> Error occurred trying to start task

Equal --> Task started successfully
or did not request starting

Jeded
ek
*dede
dekk
*dkk
ket
*dek
*kk
*kk
JekJ
*edkdk
*dek
dedkdk
Jdkk
dedek
dekk
dededk
Jedkek
dedede
dedede
dedede
dodked
Jedkde
deded
dedede
Kk
%*¥kk
Kk
Jede ke
Jedek
dodede
dekedk
dedkk
dedek
dede ke
dekede
dekde
dekk
Kk
dedkek
* k¥
dedkk
Kk
Jodkk
ddkdk

e e s e e e e e e e Fe e e e T T e e T e e v T ke e e e T e Fe d e e T e g v e e e v e e o e e e e e ke e e T gk e Ik e e e e Sk T ke e e e ok e Sk e e ke e e de de e

109

MICROSYSTEMS

M) moToroLA

APPENDIX F

*kk Save registers Fkk
okk If task state is dormant Fkk
*kk Restore saved registers Fkk
ke Exit task *kk
Fekek Establish TDTI work area on stack Kk
Fhk Start the requested task ek
Tk Remove work area from stack Fkek
Fokdk IF error Fkk
Fkk Establish error exit conditions Kk
ek Restore saved registers dedek
ek Return to caller *kk
Fkek Establish successful exit conditions Kk
ik Restore saved registers ek
*okk Return to caller *kk
ek K gk

sk e e ke ke e e T e e e e T Je T T T e e e T e e e e e T e T e T e e e e e e I e 9 Tk e T e e ke ke e sk e e e e e e e e e e ke e ke e ke e e ek ok ke ke ek

NSPLSTART:

MOVEM.L A1-A3,-(A7)

IF.B #°D’ <NE>

LEA
LEA

MOVE.L
MOVE.L
SUB.L
MOVE.L
JSR

LEA
ADD.L
MOVEM. L

IF <NE> TH
CMP.L

MOVEM
RTS
ENDI

Save registers
TTSINITS+1(A4) THEN.S
T172800-PBA,Al

0(Al,A2.L),Al

Al = Address of routine to execute
A6, - (A7)
A7,A2

A2 = Contains address where initial registers
are saved on the stack

#PBSIZEPL,A7

Adjust stack for TDTI work area
A7,A3

A3 = Requirement for TI72800
(A1)

Start the requested task
PBA(PC),A2

Restore register A2
#PBSIZEPL,A7

Remove TDTI work area from stack
(A7)+,A6

Restore Register A6

EN.S

A7,A3
Establish error exit conditions

.L (A7)+,Al1-A3
Restore save registers

Return to caller

110 MICROSYSTEMS

N

M) mororoLA

CMP.L

MOVEM. L
RTS

ELSE.S
MOVEM.L
RTS

ENDI

PAGE

NOP

PRGMSIZE EQU *-NSSUPASC
END

D0,DO
Establish good exit conditions

(A7})+,A1-A3
Restore save registers

Return to caller

(A7)+,A1-A3
Restore save registers

Return to caller

111

APPENDIX F

MICROSYSTEMS

@ MOTOROLA APPENDIX F

THIS PAGE INTENTIONALLY LEFT BLANK.

112 MICROSYSTEMS

M) mororoLa

absolute address

ACIA

address segment number(s) (ASN)
allocate sectors

ASN

assembler

assembly language

base address
boldface strings

cache memory
CCR
chainfile(s)

character fill
command file
command line
condition codes

conventions
COPYSGEN
CRTCB directive

data structure
DCLSHR directive
debug

demonstration system
driver(s)

dummy task

editor

EHL

EIV

error handling logic (EHL)

Error Index Value (EIV)
external references

;ale Handling Services (FHS)
S

file management subsystem
File Management System (FMS)
flag(s)

FMS

free memory lists

INDEX

113

INDEX

8, 20

35, 47

3

71

See address segment number
20, 24, 36, 37, 62, 64

17, 21, 25, 77

30, 95, 96, 99, 102, 103, 106, 109
5

30

67-72, 96, 99, 101, 106, 109
1, 29, 31-36, 50, 52, 55, 56,
58-63, 90

30, 67, 93

48, 50, 51, 52, 54, 60, 85-89
17, 31, 32, 58, 77, 78, 95
67-71, 73, 97, 99, 101, 106,
109

5

35, 60, 61

14

8

15

2, 3, 10

79

1, 2, 6, 29, 32, 33, 35, 47, 58, 79
23

17, 23

See error handling logic

See Error Index Value

1, 6, 9-12, 20, 29, 30, 33, 34, 36,
37, 39, 45, 48-50, 63-65, 68, 69,
71, 72, 75, 79-81, 85, 86, 90

10, 75, 76

30, 36, 82, 85, 93

1, 6, 32, 47, 56, 60, 61, 79
See File Handling Services

2

32, 56, 57, 61

40, 41, 48, 49, 86, 107, 108
See File Management System

3

MICROSYSTEMS

M moToroLA

get task ID

global segment table (GST)
GO command

GST

GTSEG

hierarchical relationships
high Tevel languages

1/0 subsystem

1/0 vector map (I0V)

include file

Initial Program Loader (IPL)
initialization

initializer

Input/Output Services (IO0S)

Intelligent Peripheral Controller (IPC)

invoking TDTIGEN1
invoking TTGEN
10S

10v

IPC

IPL
italic strings

JSR instruction

kernel

LIB

link file(s)

linkage editor, Tinker

1ink(s)

load module(s)

loader

Loader Information Block (LIB)
logical address

logical unit [number] (LU, LUN)
LU, LUN

M68000-family

Memory Management Unit (MMU)
memory map

menu(s)

MMU

monitor task

MVME110

MVME1I20

MVMEI21

114

INDEX

30, 70, 107

3

3, 34

See global segment table
15

6
77

1, 2, 4, 29, 79

3

36, 50-52, 54

3

3,4, 72,73, 77,78

1, 3, 4, 29

1, 6, 32, 47, 56, 60, 61, 79
79

31

17

See Input/Output Services
See 1/0 vector map

See Intelligent Peripheral
Controlier

See Initial Program Loader
5

12, 40, 72, 68, 71, 72, 75, 100,
103, 107, 108, 110

1, 4

See Loader Information Block

50, 51, 52, 81, 82, 89

22, 36, 45, 82, 90

4, 7, 8, 30

17, 19, 21, 22, 24, 25, 35, 82, 85
2, 56, 57

17, 22, 82

15, 42, 43

77, 78, 92, 95-102, 104-107

See logical unit

1

3, 29, 30

79-81

17-25

See Memory Management Unit
9, 14, 26, 27, 41, 83, 84
33-36

30

30

MICROSYSTEMS

——

M) mororoLA

non-standard code

offset

option(s)

partition(s)

Pascal runtime initializer
Pascal task(s)

PAT

PC

periodic activation table (PAT)
physical address

pointer(s)

priority

Program Counter (PC)

RAM
register(s)

related documentation
RMS

RMS68K
ROM

RTS instruction

runtime 1ibrary

segment attributes
self-relative offset
Session Control
session manager
session number
shareable segment
shared access

SHRSEG directive
stack pointer

stack register
standard processing
start task

starting address

115

INDEX

1, 2, 4, 6, 9, 12, 13, 23, 26, 27,
29, 30, 33, 34, 36, 37, 40, 45, 46,
48, 51, 61, 63, 64, 77-85, 87-92

7-13, 20, 23, 25-27, 39, 40, €9,
82-84

9, 10, 14-17, 19, 22-27, 41-44, 62,
63, 84, 97-100, 104, 106, 108

29, 30, 32, 35, 45, 46, 59, 79-81
77

77-111

See periodic activation table

See Program Counter

3

8, 15, 16, 23, 30, 42-44

8, 11, 12, 23, 30, 39, 40, 68, 69,
71, 72

4, 9, 11, 13, 14, 21, 23, 26, 27,
42, 45, 82-84

2, 3, 47, 50-52, 86-88, 95, 103,
110

2, 3, 6, 8, 16, 29, 32, 34, 35, 44,
61, 79, 80

3, 10-12, 34, 36, 39, 40, 67-73,
77, 78, 92, 95, 96, 98-111

5

31, 47, 55, 56, 58, 59, 79, 81, 92,
94, 97, 101

1-4, 6, 13-15, 29, 31, 32, 36, 42,
43

2, 3, 29, 30, 32, 35, 46, 57, 79-
82, 85

11, 12, 39, 40, 53, 72, 78, 95, 96,
98, 100, 103-105, 107, 108, 110,
111

79-81

10, 15, 16, 26, 27, 42, 43, 82-84
7, 9-13, 39, 40

2, 56, 57, 95

77

9, 14, 26, 27, 41, 82-84, 108

15, 16, 42, 43, 76

15

15

11, 12, 39, 40, 68-72, 75, 99, 100,
102-104, 107, 108, 110

3, 34

2, 4, 12, 36, 53, 77

72, 73, 91, 93, 101, 102, 105, 109
21, 24, 25, 47, 54, 100

MICROSYSTEMS

xXmOD 2Z -

xmQZ —

M) mororoLA

SYSGEN utility

SYSPAR

system generation

system initializer

System Parameter Area (SYSPAR)

Task Control Block (TCB)

task entry

task ID

task initial state
Task Table (TT)

task table entry (TTE)

task tabte generator
task table header
task table structure (TTS)

TCB

TDTIGEN] utility
timers

TRAP(s)

17

TTE
TTGEN utility
TTS

UDR

user semaphore table (UST)
user-defined directive table (UDR)
usT

vectors
VERSAdos

VMO4
VM22
VMEsystems

INDEX

2, 3, 31-37, 48-52, 54-61, 63-65,
85, 89, 93

See System Parameter Area

3

1, 3, 4, 6, 29
3

2, 4, 7-9, 12, 14, 26, 27, 30, 41,
47, 68, 83, 84, 92, 93, 101-103

4, 7, 9-11, 14, 18, 21-27, 36, 39,
40, 42, 51, 77, 83, 84, 89, 101,
105

14, 23, 26, 27, 30, 83, 84, 107,
108

2, 9, 16, 21, 22

1, 4, 6-13, 17-25, 29, 30, 32, 33-
37, 39-41, 45, 46, 48, 50, 52, 54,
57, 60, 63, 75, 76, 78-82, 85, 86,
88-90

6-13, 15, 19, 39-41, 53, 68-73,
82, 92, 96, 101, 106, 107, 109

17, 82

9, 18-20, 39, 92, 96, 101, 106, 109
13, 34, 39-41, 45, 49, 52-54, 64,
65, 68, 69, 71-73, 75

See Task Control Block

31, 33, 34, 55

3

4, 15, 53, 70, 79, 100, 108
See task table

See task table entry

7, 17-19, 21-25, 79, 82

See task table structure

See user-defined directive table
3

3

See user semaphore table

3

1, 2, 4, 17, 23, 24, 29, 31, 32-34,
54-59, 61, 77, 80, 85, 91, 96, 101
55, 79

79

30

MICROSYSTEMS

SUGGESTION/PROBLEM
REPORT R

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282
Attention: Publications Manager
Maildrop DW164

Product: Manual:

COMMENTS:

Please Print

Name Title

Company Division

Street Mail Drop Phone

City State Zip

For Additional Motorola Publications Four Phase/Motorola Customer Support, Tempe Operations
Literature Distribution Center (800) 528-1908

616 West 24th Street (602) 438-3100

Tempe, AZ 85282
(602) 994-6561

@ MOTOROLA

\

@ MOTOROLA Semiconductor Producits Inc.

PO. BOX 20912 ® PHOENIX, ARIZONA 85036 @ A SUBSIDIARY OF MOTOROLA INC.

18440 PRINTED IN USA (1/86) MESSENGER 3500

