M) MOTOROLA M68KSYMBG/D2

SYMbug/A and DEbug Monitors
Reference Manual

QUALITY e PEOPLE e PERFORMANCE

M6 8KSYMBG/D2

AUGUST 1983

SYMbug/A and DEbug MONITORS

REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to and products herein
to improve reliablity, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit de-
scribed herein; neither does it convey any license under its patent rights or
the rights of others.

DEbug, EXORmacs, SYMbug, VERSAdos, VERSAmodule, VMC 68/2, VMEmodule and VME/10
are trademarks of Motorola Inc.

Second Edition
Copyright 1983 by Motorola Inc.
First Bdition April 1982

TABLE OF CQONTENTS

Page
CHAPTER 1 GENERAL INFORMATION

INTRODUCTION teeeecccesccccacscscsosascssscsossscsasscesssasscsas 1=l
SYMbug/DEbug MONITOR PROGRAMS .cceessescssssscscsssssssssas 11
SYMbug MONItOT seeeesccccessscseassssscsccsscscscsssssces 1=l
Functional Description .ecececccccccesccscecccsccscssces 1=1
OPerating ENVirOMMENt eeeeceecssscscscsscscssscsssscssacs 1-3
DEbUg MONIitOY eeeeesacssccsssscsesssscssscsssscssssscssas 13
Functional DesCription eeeececcecccccescsosccssscscsccoces 1-3
Operating Envirorment ..ceececcccccceccscccscsssssscsess 1=4
OOMMAND FORMAT cececcccccccccccccocssascsassssasssssnssssscsse 1-4
SYMbug Command FOXMAt eccececcccsccscccsassaccassscssssse 1=D
DEbug Command FOIMAt ceeecessccsccccscssscssscssssssscessse 1-5

o b e e e
[]
WWWNNNDNNND NP
[]

. .
.
N =

* o o

° s o o .

N NN
o o .
N

CHAPTER 2 SYMbug COMMANDS

INTRODUCTION ecceccasscecssccsscsccecssasaascscssssssscscsse 2=l
SYMbug INITIALIZATION ceececeoevecccccsccccscscssssassnnssase 2—1
Create Symbol Table for SYMDUG eceeececscscsccsssssacsace 2-1
SYMbUG MESSAUES eesseesccsccccsccssccsscscsscsssssssscsnse 2-3
Monitoring Execution of a User TasK eeeececcccseccscoscsees 2-4
Commnand ENtYY eeececcesccsccccssccccssccssssscccossccsases 2=5
SYMbug Primitive Command LiSt ceeeeecccssssccccssscsecnss 2-6
Macro COmMMENAS eeeeessssoscesssosccsscscsssssscenssnscss 27
NUMDEYS eeececscscocsesssscsassasascsssssssscsscscssccssnsnas 2-10
SYMDO1S ceeecerscccscccsscessassasssscsssssssssscsssssncsss 2—11
Symbol ResSOlUutiOn eeeecessscccessssccsscssscssensssaness 2-12
EXPreSSiONS eceeescesecssssssscssssssssssscsscsscccscccccas 2—-14
REJIStOrS seeeecescscccsvccsccsvsscssscsssosessssssonsasscece 2—14
PSedO REgiSterS eececscsccccosscscccscsscoasscsscssssncs 2-15
AdAressSing MOJES .ecesecscssccsccssscsccssccsscsssnsssecsnse 2-16
OPLIONS teeesccoccccsocveccssacsscscssccsscssancaccsscsnas 2—17
Attaching/Detaching Secondary Echo Device (via DE COMMAND) 2-19
.1 Secondary Output tO Printer .eeecececsceccccecssccecsesss 2-19
2 Secondary Output to Disk File sceececcsscsccssscsesssss 2-19
PRIMITIVE COMMANDS .cccecoccocsscscccccccssssscacsncscsscsccnss 2-20
AAdress StOP (AS) sesceccssccscsssccssssscsccassscssssses 222
BloCk Fill (BF) eeseccesscaccccssccccsssccccssssssssansses 2=23
BLOCk MOVE (BM) ceecocescsccsscscccscsscscsssnssscsccscccsse 2—24
Set BreakpointsS (BR) seeccccccscccccscccoscccsanccccssacssses 2=25
Block SearcCh (BS) ceccessccssscscsscsscsssscscsscccsnsssescses 2-26
Command Repeat (CR) ceecescosccassccerssscsssccsscsccsase 2=27
Define Constant (DC) ceeeseccccsssserescscsccssscsssscnssene 2-28
DefaultsS (DE) cecessscesccescccoscsssscsssscsssncsscsscsnne 2—29
Display Formatted Registers (DF) ceeceeccccsccscccssscsss 2-30
File Read (FR) 00 0000000000 CEPENENCOPEOEPONOGERPROEOOOCOOISOIOIGOGEOEEDS 2-31
File Save (FS) cesecessccccsssccscssscsssssscscesssssssess 2—32
Execute Target TasKk (G) eseccesccccccesscsscsosssscsscscssss 2-33
Display Commands (HE) eecceesececcscscccssscssccscssssssses 2-34
Define Trace (IT) cececccccscvsccessscsosvocsssscccsscsssns 2=35
Macro Define and Display (MA) cececcsccscccssssccccssssse 2-36
Memory Display (MD) eeececesscccescscccsssccccocsscccssss 2=37
Memory MOAify (MM) ceeccccscccesccccccsccsccsscnonassscsees 2-38
Memory Set (MS) cecececccesrcssccssosscosssscscesssccensas 2-39

NDNNPODDNODNNONONNPODDODNONPNDNDNONODNNODNODNODNDNNNDNNNNODNDNDNDNNODNDNDNDNDN
L]
WWWWWWWWWWWwWWwWWWWWWNNNMONRNNNNNDNONNONONNNDNDNDNDNF

o e
¢ o
. e
N =

L]
HHEFHEFFFHEFOOIADNUTES D WN -

L]

=

.
.
NN O

e o o o e © o 5 ¢ ° 0 & s e
¢ o e o o ® o o o & 8 o o .
N =

L]
HHERHEHEHEEO OO0 W
ONOAUN I WN O

i

*

NNNNNNDNDNDNNNDDNDNDNNDDNDDNDND
.
WWWWLwWwwuLwwwwwwwww

WwWwwwihhhohNDNDNDNDNDDDND -
BWONFOWOWONOAULE WNEFOW

CHAPTER 3

TABLE

¢ o o o e =
e o « o
wWKN -

NNNMNNHEHEFREREFEEERFRRBSEEOONOO S WN -

WNhPFROWVWOoOdOULdWNEFEO

WWWWWwWwWwWwwWwwWwWwbwuwwwwwwuwwwwwwwwwww
L
WWWWLWWwWwWwWwWwWwWwWwWwWwWwWwwWwWwwwWwwwWwwNNNN

2-1.
2-2.
3-1.
3-2.

TABLE OF CONTENTS (cont'd)

Offset Register Display (OF) ceeeccscssccessosscccscnsscsee
Set Outside Trace {OT) eeseescccccscscccccssscsssssssssas
Terminate Debugging Session (Q) eecececescccccccscccscene
SymbOl Define (SD) seececccocseoscssssssssscscesscsscssscsse
Trace (TR) eeeeceossccosccsscssossssssnconssossnasnssssscocss
Attach a Task to SYMbug (ATTA) ceceecccccssccscssacsancosne
Detach a Task from SYMoug (DETA) ceeeccccsccccccosccscscs
Create an Event for a Task (EVEN) cescecsccsscscscccscscas
Load a Module into Memory (LOAD) ceecescesccsssscccccsces
Alter Task's Exception Mask (MASK) eecesccscssccasssssasse
Start Execution of a Task (STAR) eeecscsccccssccaccsccces
Display Current Task's Status (STAT) eececcccescsssessacse
Stop Execution Of a Task (STOP) ceseccccsccccsccssccccone
Change Another Task to the Foreground (TASK) esecescccccee
Terminate a Task's Execution (TERM) ccccecsecvccsccosassose
Wait for Event (WAIT) eeceecccccccscscscscosscscsssscsccsans

DEbug COMMANDS

INTRODUCTION ceeecsoscoveccsccsccososcsnsssossosssssossscscssns
INVOKING THE DEbUg PROMPT ceecesesscccccccsssccssccsncssnne
DEDUG MESSAJES cececccccccsscscsscccccsccsssssconcsnsssne
Monitoring Execution of a USer TaSK eeecccccccccsccccsans
DEbug Pseudo REgISterS .eeceesscssccccccsccccsccsccccsssocs
PRIMITIVE COMMANDS sececcoccccsccosvssscosssscssncscsccsssssses
AAAdress StOP (AS) eeecscscssscssccscsssccescnnsaccacconcs
Set BreakpointS (BR) ececeeccccessessssccsassssscssssssans
Default to Attach/Detach Printer (DE) eeecccscsscccccccss
Display Target Task Registers (DF) eecsceccsscscccecscccs
Execute Target Task (G) eceeeessccccccscsssscsscssasscocsne
Display CommandsS (HE) ceeecececssccasssssosssscssscnasccas
Memory Display at Terminal (MD) .esecscccccccscccssccssns
MemOYy Set (MS) ceeeecescccccosssscasccsssssssssscnscsccns
Base Register OffsetsS (OF) ceecececesccsscscssccsssassnne
Terminate Debugging Session (Q) eecesccescccscsccsscscses
Trace Target Task (T) eceessscccecssacssscscascsscscsssscss
Attach a Task to DEbUG (ATTA) ceseccccccccssscssscscsassnsne
Detach a Task from DEbUG (DETA) seeeccsscccccccssccscncce
Create an Event for a Task (EVEN) ceecccecssssccocscscacas
Load Module into MemOry (LOAD) seeescccscsvsccssccsasenss
Alter Task's Exception Mask (MASK) eecescccccccccccccscsns
Start Execution of a Task (STAR) cesceccccscscoccsssassses
Display Current Task's Status (STAT) eeececcccesscssssasss
Stop Execution of a Task (STOP) eeeecccsccccccsccscssccce
Change Another Task to the Foreground (TASK) seecessscsces
Terminate a Task's Execution (TERM) ceeccccscssssccaccans
Wait for Event (WAIT) eeeeecscccscccscsccsscassccsscsssccas
Display/Change Specified RegiSter .cecececsccscccccscsses

LIST OF TABLES

SYMbUg MESSAJES eesesesssessscccsscccsscascosasssssasasssssas
SYMbug Primitive COMMANAS ceecccccecccccccsoscscscsocccacocass
DEbUG MESSAJES cevsecssoccccsscscsscsssscsscsssnssscnsscass
DEbug Primitive COMMANAS eeesesseccrccssossccsccsoscccssnssne

ii

Page

2-40
2-41
2-42
2-43
2-44
2-45
2-46
2-47
2-48
2-49
2-50
2-51
2-52
2-53
2-54
2-55

WLCOO~-ITAUNWN

W
1

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3=-27
3-28

2-3
2-20
3-1
3-5

CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

This manual describes the SYMbug/A and DEbug monitor programs, as they are used
in the following equipment:

EXORmacs Systems

VMC 68/2 Systems

VERSAmodule 01 and 02 Monoboard Microcomputers (VM01l and VM02)
VMEmodule Monoboard Microcomputers (MVMEL10)

VME/10 Microcomputer Sytems

Throughout this manual, SYMbug/A is referenced as SYMbug.

1.2 SYMbug/DEbug MONITOR PROGRAMS

The SYMbug and DEbug monitor programs are used to debug other programs whose
source code may have been written in Motorola-provided assembly language for
execution on the MC68000/MC68010. The language processor, in conjunction with
the linkage editor, supplies information to the SYMbug or DEbug monitors.

SYMbug and DEbug must be executed within the VERSAdos operating system.

1.2,1 S¥Mbug Monitor
S¥Mbug allows the user to perform the following:

a. Examine, insert, and modify program elements such as instructions,
numeric values, and coded information (i.e., data in all its
representations and formats).

b. Control execution, including the insertion of breakpoints into a program
and requests for breaks or changes in elements of data.

c. Trace execution by displaying information at designated points in a
program.

d. Search programs and data for specific elements and sub-elements.
e. Create macro commands allowing user-defined formats and commands.

1.2.1.1 Functional Description. SYMbug is a VERSAdos-resident multitasking
utility that allows a user to debug application program(s) in terms close to the
actual program itself. Unlike other debuggers that allow only absolute memory
access, SYMbug generates and maintains information (assembler symbol names,
module names, and section numbers) about the program that is available to the
user during debug. S¥Mbug will automatically equate this type of symbolic
information to absolute addresses for the user. Now, it is no longer necessary
to reference a current link map to debug a program. Instead, knowledge of
module names, symbols, etc., is sufficient to calculate relative offsets and
debug the program by reference to an assembler listing. Without the overhead of
user-responsible address resolution, the task of debugging a program becomes
faster, easier, and reduces the chance of user error.

1-1

SYMbug is built around a multitasking kernel. It interfaces with the VERSAdos

operatlng system to prov1de complete debug control to the user. User interface
is via a powerful set of 'primitive' commands. These commands allow the user

to:

de.

Ce.

Examine/modify registers and absolute and program-relative memory
addresses specified in a number of ways:

directly

in an expression
as an effective address

symbolically
(also allows control of display/modification formats)

Control program execution by allowing the user to:

- insert breakpoints into the program
- trace program execution

- monitor data changes during program execution
Direct multitasking functions by allowing the user to:

- modify task scheduling/information handling
- modify task attributes/status

Expand debugger functions through user generation of:

- 'macros' built as a series of primitive commands

- in line command/command block repeat functions

- default input/output format modifications
Access information outside of SYMbug so that the user may save/restore
previously defined information:

- load program(s) from disk

- save/load symbolic information (macro names/local symbols) to/from
disk

- generate debug session echo (file or printer)

is a self-documenting debugger -- that is, the user may utilize the

HELP command to:

Display a brief command syntax summary for all cammands.

Display a detailed cammand summary for any command.

1.2.1.2 Operating Environment. In order to ensure proper SYMbug operation
conditions, the following complete system is required to run S¥Mbug:

a. VERSAdos operating system for:
- on-line management of object code files, symbol table files, and
user profile files
- console I/0 and printer output

b. CRT terminal

¢. Compatible software to generate/accept the necessary symbolic
information required by SYMbug:
- Assembler Rev. 1.20 (or later)
Linker Rev. 1.30 (or later)
SYyMbug Rev. 2,00
SYMbug Help File (:0..SYMBHELP.IN)

l1.2.2 DEbug Monitor
DEbug allows the user to perform the following:

a. Examine, insert, and modify program elements such as instructions,
numeric values, and coded information (i.e., data in all its
representations and formats).

b. Control execution, including the insertion of breakpoints into a program
and requests for breaks or changes in elements of data.

C. Trace execution by displaying information at designated points in a
program.

1.2.2.1 Functional Description. DEbug is an absolute rather than a symbolic
debugger. References to the target program must be absolute addresses or
relative offsets from user-defined base registers, rather than relocatable
symbols defined at assembly or link time. Thus, there is no debug file as in
SYMbug.

DEbug is the functional kernel of SyMbug, and requires less than one-fourth the
memory for execution. Macros are not supported, but task level commands and
most of the primitive SYMbug commands are available. The self-documenting verb
HELP provides a listing of the proper syntax for all supported commards.

While primitive DEbug commards apply only to the prampted foreground task name
(initial task loaded), the task level commands take as their first argument the
task name to which they apply. If task name is omitted, the foreground task is
assumed. Subsequent arguments must be preceded by a comma when task name is
omitted. Task level commands are applicable whether the user is in single or
multitasking modes. In single task mode, the attach command will not be honored
unless preceded by a detach.

1-3

1.2.2.2 Operating Enviromment. The following are required:

a. VERSAdos operating system for:

- I1/0 support of load modules on-line

- console I/0 and printer output

b. CRT terminal

1.3 COMMAND FORMAT

Commards are entered the same as in most other buffer-organized computer
systems. A standard input routine controls the system while the user types a
line of input. Processing begins only after the carriage return has been
entered.

Many primitive commands can be altered by the options field. This provides the
user several extensions to the primitive commands.

Several commands are set and reset pairs (set breakpoints, reset breakpoints);
rather than having two primitive commands, the form NO is added as the first two
characters of the command. For example, the set breakpoint command is BR, and
the reset breakpoint command is NOBR.

Command formats are presented in a modified Backus-Naur Form (BNF). Certain
symbols in the syntax may be used, where noted, in the real input/output (1/0);
however, others are meta-symbols, and their meanings are as follows:

< > The angular brackets enclose a symbol, known as a syntactic
variable, that is replaced in a command line by one of a class of
symbols it represents.

| This symbol indicates that a choice is to be made. One of several
symbols, separated by this symbol, should be selected.

[] Square brackets enclose a symbol that is optional. The enclosed
symbol may occur zero or one time.

[]... Square brackets followed by periods enclose a symbol that is
optional/repetitive. The symbol may appear zero or more times.

Operator entries are followed by a carriage return. In examples, operator
entries are shown underscored for clarity only.

1.3.1 SyMbug Command Format
The format of a command is:

SYMbug [<task>}]? [NO]<command> [<parameters>][;<options>]

where:

SYMbug [<task>]? Is the SyMbug prampt. <task> is the user foreground
task name as displayed by SYMbug.

NO Performs inverse function of command.
command Is the command mnemonic.
parameters Can be expressions or addresses and, when used, are

separated by spaces.
options Multiple options may be selected ard, when used, are
preceded by a semicolon.
1.3.2 DEbug Command Format

The format of a command is:

Debug [<task>]? [NO]<command> [<parameters>]

where:
Debug [<task>]? Is the DEbug prompt. <task> is the user foreground task
name as displayed by DEbug.
NO Performs inverse function of command.
command Is the command mnemonic.
parameters Can be expressions or addresses amd, when used, are

separated by spaces.

1-5/1-6

CHAPTER 2

SYMoug COMMANDS

2.1 INTRODUCTION

This chapter explains how to invoke the SYMbug prompt, describes the command
format structure, and provides a detailed description of the primitive and macro
commands.

2.2 S¥Mbug INITIALIZATION

2.2,1 Create Symbol Table For SYMbug

In order to build a symbol table for SYMbug to use, the following steps must be
observed in assembling and linking the application program(s) :

A,

Assemble the program module(s), specifying the debug ('D') option:
=ASM <source>[,<object>[,<listing>]];D

This creates a 'relocatable symbol' file (.RS extension) that contains
literal symbol names and their relative offsets for all symbols defined
in the source module(s). The assembler creates the relocatable symbol
file with the same file field as the source file,

NOTE

Source files should contain an 'IDNT' record.
This will correspond with the module name. If
IDNT is not used, the module name defaults to
file name .RO assembly output file.

Link the module(s) assembled in step (a), again specifying the debug
('D') option:

=LINK [<module 1>[/<module 2>]...][,[<load module>][,<listing>]];D

This creates a 'debug' file (.DB extension) that contains the absolute
address specifications for the modules as well as the symbol information
created during assembly. The 1linker automatically retrieves the
relocatable symbol file(s) corresponding in file field to the
relocatable object file name(s) (if the relocatable symbol file(s)
exists). The linker gives the debug file the same file field as the
first relocatable object module in the link module(s) specification. To
allow the user to specify any number of symbols, modules, etc., the
linker allocates symbol space dynamically. Therefore, the Z=nn option
(which specifies program stack size) may be used to specify a stack size
of 'nn' K-bytes. If the linker aborts because of stack overflow, simply
invoke it with a larger stack size specification.

In order to get SyMbug started, enter:

=SYMBUG [<file name>] [.LO]] [<command input to load module)]
where <file name> is the default task to be loaded into SyMoug. If no
task is specified, the task(s) should be individually loaded via SYMbug

'LOAD' cammand (s) . SYMbug automatically looks for and loads the
corresponding debug file(s) (if it exists).

2-1

If SYMbug is to be used as an absolute debugger, there is no need to specify the
debug options in the assembly or link phases nor is it necessary to reformat a
debug file for SYMbug as there is no need for symbol information. If a module
is assembled without debug information, the module name (but no symbols) will be
available to SYMbug if a debug file is created during linking/reformatting amd
SYMbug is used in symbolic mode.

The SYMbug utility will monitor the execution of one to 19 user tasks.
In response to the VERSAdos prampt '=':
=SYMBUG Invokes the multitasking mode.

=SYMBUG <testprog> [<{comline>] Monitors the named task with an optional
command line in single task mode.

The SYMbug start-up sequence includes:
a. Load SYMbug into memory.
b. Display the SyMbug version ID.
c. Prampt for the maximum task count of simultaneous resident tasks for
this debugging session. In single task mode, this prompt is suppressed
and the named task is automatically loaded and attached.

d. Display the SYMbug prampt.

2=2

2.2,2 SYMbug Messages

The following messages

may be encountered during execution of SYMbug.

TABLE 2-1, SyMbug Messages

MESSAGE

EXPLANATION

SYMbug <task> ?

SYMbug ?

SYMbug <task> WHAT ?

}——-> <task> ATTACH

MAP FULL ERROR

DUP SECT ERROR

<task> is the first four letters of the foreground task
name. The user may respond with any primitive or task
level SyYMbug commard.

Is the initial prompt in multitask mode. Only LOAD,
ATTA, HELP, and QUIT commands are legal until a
foreground task is declared.

Signifies a syntax error in the previous SYMbug command.
Consult the HELP command listing.

PC=00000000. The PC contains the address of the
instruction following the instruction which caused the
event.

There are too many symbols or module names (library
modules) for the default symbol table size. To increase
the symbol table size: enter SYMBUG with no file name,
enter a high maximum task count, and then load and attach
to the task. '

=SYMBUG

SyMbug: Revision 2.00

MAXIMUM TASK COUNT (1 -> 19)? 19
SyMbug ? LOAD <file name>
SYMbug ? ATTA <file name>

When reading in symbol information, the same section or
the same module is defined at two different addresses.
This could be caused by linking the same relocatable
object module twice or linking two modules with the same
name.,

The following

exception event messages

will be displayed provided the

corresponding bit in that exception mask (XM) is set.

BIT NUMBER MESSAGE
0 Not used
1-15 TRAP #1 -> TRAP #15
16 BUS ERROR
17 ADDRESS ERROR
18 ILLEGAL INST
19 ZERO DIVIDE
20 CHK INST
21 TRAPV
22 PRIV VIOLATION
23 LINE 1010
24 LINE 1111
25-31 Not used
Unmaskable BREAKPOINT
events ATTACHED
DETACHED
STOPPED

TRACE ONE INST
TRACE MAX INST
VALUE CHANGE
VALUE EQUAL

PC=XXXXXXXX
n

PC=XXXXXXXX
n

These event messages are queued for output as they occur, but will not be
displayed until the current SYMbug command has been processed and a new prompt
is about to be displayed.

2.2.3 Monitoring Execution of a User Task

All user tasks may be simultaneously active under SYMbug control.
five ways to initiate a path of execution for a task.

There are
Once the command (a

through e) has been issued for a task, another command (a through e) may not be
entered for the task until execution is terminated by one of the above events.

Qe

b.

Ce

d.

GO - starts the foreground task with OP=0000

TR - starts the foreground task with OP=1000 or 0800

AS - starts the foreground task with OP=2000 or 3000 and XM=FFFFFFFF

STAR - task name starts the named task with OP unchanged

STAR ALL - starts all ready or waiting tasks with OP unchanged

For a detailed explanation of the OP and XM
pseudo registers, refer to paragraph 2.2.9.

Once set into execution, a task will continue to execute until it:

a. Has a normal (maskable) exception that is enabled by its exception
mask (XM).

b. Has an unmaskable exception event.
c. 1Is explicitly stopped by the STOP, TERM, or QUIT command.

d. Terminates normally or abnormally via a TRAP #1 directive under program
control,

NOTE: The BREAK key will NOT affect any task's execution.

In multitasking mode, the SYMbug prompt is returned to the user prior to the
canpletion of a task's execution. Any attempt to start execution of a task
which is already executing will be ignored. In single tasking mode, the SYMbug
prampt is delayed until the event which concludes execution has occurred.

The STAT command will permit a snapshot of a task's progress while in execution.
An "e" displayed before a task's status indicates that the task is actively
executing. A DF cammand will then display the register values of the associated
task at the time of the last STAT command for a running task. Changes to
registers made when a task is not executing, or immediately following execution,
are reflected in the DF output. Charges to a task's registers, pseudo
registers, or breakpoint addresses are prohibited during execution. To set a
new breakpoint, it is necessary to use the following command sequence:

SyMbug ? STOP <task name> Resets XM to O1FFFFFl.

SYMbug ? TASK <task name> If not the foreground task.

SYMbug ? BR <address> Sets the new breakpoint.

S¥YMbug ? STAR <task name> Allows previous .OP register options to

remain in effect.

The MD command may be used to display a task's memory during execution. MS is
also enabled, but extreme caution is urged in regards to dynamically altering an
executing task's memory.

2.2.4 Command Entry

SYyMbug commands fall into one of two categories; 'primitive' commards and
'‘macro' commands. Primitive commands are those which are ‘'resident' (defined)
within SYMbug. Macro commands are those which the user defines.

SYMbug accepts free-format command lines. This means that spaces may be
embedded anywhere within the line except in the following cases:

a. In a comand name

b. In a register, number, or symbol specification

c. In an effective address specification

d. In a macro parameter

e. In a module or section offset specification

2-5

A SYMbug command
characters.
facilitate ease of use,
symbols, or hex numbers.
macro table.

(including any macro parameter expansion)

is limited to 79

Command entry is kept as simple and as short as possible to

Lowercase letters are not recognized in commands,
Command name entries are first matched with the user
If no match is found, the SYMbug primitive command table is

searched. This process allows the user to redefine a primitive command in other
than the default terms.

2,2.4.1 SyYMbug Primitive Command List.

five groups.

They are:

a. Execution group
b. Modify group
c. Display group

d.

Session control group

e, Task control group

Group 1:

AS
[NO]BR
G[O]
[NOJIT
[NO]OT
T[R]

Group 2:

a2 R

Group 3:

BS
DC
DF
MD
OF

Group 4:

CR
DE
FR
FS
HE[LP]
[NOIMA
Q[UIT]
[NO] SD

Execution Group

[<address> [<Kvalue>[;<mask>]]]
[<address> [;<count>]] ...
[<address>]

<addressl> <address2>
<addressl> <address2>
[<count>]

Modify Group

<addressl> <address2> <data>[;<length>]

<addressl> <address2> <address3>
<address> [;<option>]
<address> <data>

Display Group

<addressl> <address2> <data)>
<expression>

<address> [<count>][;<option>]

Session Control Group

[<count>]
[<default option>]
<file name>

<file name>
[<command>]
[<name>] ...

[<local> [<value>]]

L3

The SYMbug commands are separated into

Address Stop
Breakpoint
Go (Execute)
Inside Trace
Outside Trace
Trace

Block Fill
Block Move
Memory Modify
Memory Set

Block Search

Define Constant or Data Convert
Display Formatted Registers
Memory Display

Offset register display

Command Repeat
Defaults

File Read

File Save
Display commands
Macro Define
Quit Session
Symbol Define

Group 5: Task Control Group

ATTA <task name>[,<temminal>|#*] - Attach task
DETA [<task name>] - Detach task
EVEN [<task name>] ,<exception #> - Event definition
LOAD <file name> [(command lined>] - Load (task)

MASK [<task name>],<exception #> - Mask exception
STAR [<task name>|ALL] - Start task(s)
STOP [<task name> |ALL] - Stop task(s)
STAT [<task name)>]|<status>] - Status definition
TASK <task named>[,<note level>] - Task notify
TERM <task name> - Terminate task
WAIT - Wait task

While primitive SYMbug commands apply only to the prampted foreground task name,
the task level commands take as their first argument the task name to which they
apply. If <task name> is omitted, the foreground is assumed. Subsequent
arguments must be preceded by a comma when <task name> is omitted. Task level
cammands are applicable whether the user is in single or multitasking mode. In
single task mode, the ATTA command will not be honored unless preceded by a
detach.

In addition, the following keys are of significance during SYMbug execution:

BREAK - Abort command
CTRL-S - Redisplay line
CTRL-H - Delete character
CTRL-W - Hold console output
CrRL-X - Cancel command line

For more information pertaining to these commands, see the appropriate command
description(s) which follow this preface.

2.2.4.2 Macro Commands. A 'macro' cammand is a user-defined command. Macro
commands allow the user to redefine/rename primitive commands or to create
complex commands built of a string of primitive commands. Macros may also be
defined to accept variable parameters for which text is substituted upon
invocation.,

A macro command may be named and defined in reply to a command request. The
format for doing this is as follows:

SYMbug ? MA <macro name>
M= <primitive command>
M= <primitive command>

M=

The name of the macro may be one to eight characters long. The definition of
the macro command is entered on subsequent lines, with each primitive command
followed by a carriage return (CR). To end a macro definition, reply to the
prompt (M=) with a (CR) only. When a macro cammand takes the same name as a
primitive cammand, the macro takes precedence so that the primitive command that
it displaces cannot be used except within the body of the new macro.

2=7

As an example, Command GO can be redefined by the user to start at a certain
address by entering:

SYMbug ? MA GO
M= GO X:MAIN
M=

Entering the GO command executes the macro command GO which in turn executes the
primitive command GO with the optional starting address. The invocation of GO
within the macro will not be recursive, since macros may not contain other macro
calls (i.e., they may not be nested). See default GO cammand function.

The simplest type of macro command consists of a series of constant primitive
commands that are to be put into effect in the order written. The definition of
the macro command consists in this case of the corresponding string of primitive
commands,

Assume that the user finds that a string of commands is frequently entered:

MS .D0O $20 - set data register zero to value 20 hex

GO $1000 - start execution at location 1000 hex

WAIT - wait for event (only in multitasking mode)
MD .A7 - at break, display address register seven
MD $800 $20 - display 20 hex bytes starting at 800 hex

To avoid repeatedly entering these five commands, the user may define a macro
that will replace the previous series. The user names the macro REPEAT as
follows:

SYMbug ? MA REPEAT
M= MS .DO $20

M= GO $1000

M= WAIT

M= MD .A7

M= MD $800 $20

M=

The string of commands is put into effect by invoking the macro by its name
REPEAT just as the user would invoke any of the primitive commands. The
previously defined macro REPEAT is called as follows:

REPEAT
The user may set/reset an option to enable/disable listing of the commands in
the macro body as they are executed when the macro is invoked. This option need

only be set/reset once as follows:

SYMbug ? DE MAL - to enable macro listing
SyMbug ? DE NOMAL - to disable macro listing

2-8

In many cases, it would be more useful to have a macro in which the parameters
and options may be substituted at the time of the macro call. To do this, they
may be replaced by symbols consisting of the backslash (\) followed by a digit
in the range 0-9. In place of the previous constant macro, the user could
define a macro with five parameters denoted by \0, \1, \2, \3, and \4. The
macro is entered as follows:

SyMbug ? MA VARIABLE
M= MS \0 \1

M= GO \2

M= IT

M= \3

M= \1

M=

5

S

:

NOTE
SYMbug macro parameters should not be confused

with M68000 Family structured assembler macro
parameters or chain file substitution arguments.

In order to execute the macro VARIABLE to achieve the same results as executing
the macro REPFAT, the user would enter:

VARIABLE .DO $20 $1000 .A7 $800

The actual parameters are substituted for the variables. The variables may
appear in any numerical order in the body, but the order in which they are
entered on the command line is important. (First parameter corresponds to \0,
second parameter correspornds to \1l, etc.)

Parameters may also be concatenated to other parameters or text by their
relative positioning within the macro body as follows:

SYMbug ? MA CONCAT
M= BR \0\1

M= GO \2:MAIN:7

M= MD \3 $20;\4

M=

Invoking CONCAT via:

CONCAT R:MAIN ;3 X $100 L

would generate a macro expansion of the instructions:

BR R:MAIN;3
GO X:MAIN:7
MD $100 $20;L

This is useful to alleviate the overhead of symbol qualification (see Symbol
Resolution) or to add greater flexibility to a macro definition.

2-9

When entering a macro, there are three rules to consider:
a. Another macro name cannot be used within the definition of a macro.
b. Syntax of commands entered is not checked until macro is invoked.

c. Macro name must conform to valid symbol syntax for macros (see Symbols).

NOTE

It is not recammended that interactive commands
(such as MM) be used inside a macro body. Such
cammands will interrupt the macro processing
flow until the command is completed by the user.

Also, macros and local symbols are defined dynamically from a fixed size table
area. There is no preset limit to the number of locals, macros or lines per
macro; rather, the user is limited by available space in the table. SyYMbug will
notify the user when space has been exhausted and no more macros/locals may be
entered. Should this happen, the user may delete any number and combination of
macro/local symbols to free space for another macro or local symbol. 1f
available table space is exhausted in process of defining macro, the macro is
deleted fram the table.

2.2.5 Numbers

A number or a string that represents a valid integer constant is said to be
either qualified or unqualified, deperding on whether or not it is preceded by a
prefix which identifies its number base. Qualified constants are prefixed by a
term designating the base to be used in evaluating the constant. These prefixes
and the four base types they represent are:

$ (Dollar) - Hexadecimal
& (Ampersarnd) - Decimal

@ (Commercial "at") - Octal

% (Percent) - Binary

Unqualified constants take their base from the default input base and,
therefore, have no prefix to designate their number base. Upon initialization,
SYMbug sets the default input base to hexadecimal; the default input base may be
changed via the DE cammand. A negative value is indicated by preceding any base
designation with a unary minus (-).

Example: Default input base is hex

DC B - Yields value of 11 decimal

DC $B - Yields value of 11 decimal

DC -$B - Yields value of -11 decimal

DC @16 - Yields value of 14 decimal

DC &21 - Yields value of 21 decimal

DC %100 - Yields value of 4 decimal
There is also a special ASCII character that may be used to qualify a term in an
expression. This ASCII prefix is a single quote (') preceding a single
character.
Example:

DC 'A - Yields value of 65 decimal

DC ='A - Yields value of -65 decimal

2-10

2.2.6 Symbols

There are four types of symbols active within SyMbug: assembler, local, macro
and task. Assembler, local, and macro symbols may be one to eight characters
long; task symbols may be one to four characters long. Any characters entered
past these maximum lengths are ignored.

Symbolic address is comprised of three fields delineated by colons:

offset:module name:section

where:
offset Is assembler or local symbol, or numeric constants.
module name Is module name as defined at assembly time.
section Is a means of qualifying; otherwise, ambiguous references are

made to the object module.

An unqualified symbol has no module name or section reference. A partially
qualified symbol 1is offset:module name. A fully qualified symbol is
of fset:module name:section.

Symbols must obey the following syntax rules:

<assembler symbol> -> (<letter>|.) [(<letter>|$| . |__)] ces

<any other symbol> -> <letter>[(<letter>|<digit>)]...

Assembler symbols are those which are created at assembly time and are loaded
into SYMbug via the debug file. During SYMbug execution, assembler symbols
cannot be created or destroyed; they are active throughout the entire debug
session.

NOTE: The term ‘'assembler symbol' includes module name symbols as well as label
symbols.

Local symbols are those which are created by the user during the debug session.
They may be equated to any other assembler or previously defined local symbol,
relative address, or constant. Once defined, local symbols take on an absolute
value (see paragraph 2.2.6.1). These local symbols may also be entered from
previously saved symbols on a user profile file. (See FS, FR commards.)

Macro symbols are those which are used to identify macro commands. They are
either created during the debug session or read from previously saved macros
contained in a user profile file. (See FS, FR commands.)

Task symbols are those which are used to identify named application task(s) for

execution control in a multitasking enviromment. (See Task Control Group
cammands, paragraph 2.2.4.1.)

2-11

Example:

Assembler symbol X exists in module MAIN, Section 0, and in module SUBR, Section
14, MAIN also contains a Section 14, The PC is currently located in module
MAIN, Section 0. There is no local symbol X defined.

SD R 0:MAIN - local symbol R = value of relative address 0 in module
MAIN, Section 0 (the PC section).

DC X - value of X in MAIN, Section 0.

DC R - value of relative address 0 in MAIN, Section 0.

DC X:MAIN - value of X in MAIN, Section 0.

DC 0:MAIN - value of relative address 0 in MAIN, Section 0.

DC 0:MAIN:14 - value of relative address 0 in MAIN, Section O.

DC X:SUBR - value of X in SUBR, Section 14.

Modifying the PC to point to SUBR, Section 14:

MS PC 0:SUBR:14
DC X - value of X in SUBR, Section 14.
DC

R - value of relative address 0 in MAIN, Section 0 (remember
that R contains an absolute value; no reference is kept
to assembler symbol, relative address, module or section)

DC X:MAIN - value of X in MAIN, Section 0.

DC X:SUBR - value of X in SUBR, Section 14.

DC 0:MAIN:O - value of relative address 0 in MAIN, Section 0.

DC 0:MAIN:14 - value of relative address 0 in MAIN, Section 14.

DC -X:MAIN - negative value of X in MAIN, Section 0. (unary minus

also allowed for symbols and relative addresses)

2.2.6.1 Symbol Resolution. Whenever an 'unqualified' symbol is to be evaluated
in an expression, the local symbol table is first searched for a match to
determine if the symbol could be a valid local symbol. If the symbol does not
exist in the local symbol table, the current module/section (the one to which
the program counter is pointing) is searched, then all of the sections of the
current module are searched, and finally all sections of all the modules are
searched (in order of linkage and section number) for a match. Symbols defined
in modules external to the current foreground task are not resolved. If the
symbol is not found or if improper syntax is used, the message 'WHAT ?' is
displayed.

When the input base is hexadecimal and hex characters are used to designate the
of fset field of the symbolic address, the offset is resolved as a constant, not
as a symbol.

If a change is made from the hex default input base, then any hex numbers used
in a string must be prefixed with the hex symbol ($).

2-12

Example: Default input base is hex. No user symbol A exists,

DC A -~ returns value of 10 decimal

SD A 20 - sets local symbol A to a value of 20 hex
DC A - returns value 10 decimal

DE IN & - sets default input base to decimal

DC A - returns value 32 decimal (local symbol A)
DC SA - returns value 10 decimal ($ prefix —--> hex)

In order to resolve ambiguities, assembler symbol names and relative addresses
may be ‘'qualified' when entered by also specifying their module name (and
section number). This is done as follows:

XYZ 'unqualified' symbol (may reference local)

XYZ:MAIN - symbol 'qualified' with resident module

$32:MAIN relative address 'qualified' with module

$32:MAIN: 14 relative address 'fully qualified' with module
and section number

In this manner, symbolic names that appear in more than one module and module
names associated with more than one section can be absolutely resolved as to the

module/section that the user intended.

The section number qualifier need only be specified for resolution of a relative
address within a module name. In other words, if a module MAIN contains
Sections 0 and 9, then 0:MAIN could reference either Section 0 or Section 9,
depending upon the current PC value, whereas 0:MAIN:0 or 0:MAIN:9 clarifies the
relative reference more fully (with respect to section number).

When specifying an assembler symbol offset, any section number qualifier is
ignored because of SYMbug's symbol search method and the knowledge that a symbol
may not appear in two separate sections of the same module.

Partially qualified symbolic addresses are resolved by first searching the
current section in the specified module, and then any section in the specified

module.

NOTE

Since unqualified and partially qualified symbols require
reference to current PC, they should not be used to
reference an executing task because the PC is not fixed.

2-13

2.2.7 Expressions

Expressions may contain symbols, constants, or addresses linked together by the
following arithmetic operators: add (+), subtract (-), multiply (*) and integer
divide (/). There is no hierarchical order of evaluation; rather, the
expression is evaluated as it is entered (left to right). No parentheses are
allowed to group (sub)-expressions.

Example: MM 3 + 7*4 - is equivalent to 'MM &40' (not 'MM &31') because
the addition (not multiplication) is performed
first.

Example: Given default input base of hex, consider the following expression:
DC -$C +D+ 'A/@26* %100+ X:MAIN- R - &10

If 'X:MAIN' is equal to 4, and 'R' is equal to 2, then the expression
would yield a result of 4.

Allowing expressions permits the user to specify offsets to memory locations
where no symbol exists.,

Example: MM XYZ:MAIN +4 - relieves the user of the burden of first
calculating the value of address symbol XYZ in
module MAIN and then adding the offset.

2.2.8 Registers

In addition to expressions and effective addresses, register names are valid in
certain commands as if they were memory locations. The MM, MS, and MD commards
will accept register specifications as parameters.

Registers may be from one of four categories -- address, data, offset, or
control -- and must conform to the following syntax:

a. <address register> -> .A(0|1|2|3]4|5|6|7)
b. <offset register> -> .R(0|1|2|3[4|5|6|7)
c. <data register> -> .D(0|l|2|3|4|5|6|7)

d. <control register> -> (.PC|.SR|.XM|.OP|.VL|.VA|.VM|.MC)

The stack pointer may be used interchangeably with A7.

Since source register names are equivalent to unqualified hex numbers or
unqualified symbols, they must be preceded by a period (.)

Examples:
MD .77 - display contents of address register seven
MD S$A7 - display contents of memory location A7 hex
MS .D3 $44 - set data register three to value 44 hex

2-14

The Exception Mask (XM) Register is unique in that the user can control which
halt reasons are enabled through manipulation of this register. When the target
is executing anmd causes an exception, a debug halt will occur if the
corresponding bit is set in the exception mask; otherwise, normal processing of
that exception will take place (possibly an abnormal termination).

Exception Mask format is four bytes:

Bit Number Halt Condition
0 N/A
1-15 TRAP #1 - TRAP #15
16 Bus Error
17 Address FError
18 Illegal Instruction
19 Zero Divide
20 CHK Instruction
21 TRAPV
22 Privilege Violation
23 Line 1010
24 Line 1111
25-31 N/A

The mask initially defaults to include all exceptions except TRAP #1, TRAP #2,
and TRAP #3. Unless the target task claims break service, the BREAK key is
always enabled. If, for example, the user wishes only breakpoint halts (which
are affected by planned privilege violations), the exception mask should be set
to $40000000. This will also enable halts for non-breakpoint privilege
violations.

If the target handles its own zero divide, CHK, and TRAPV exceptions, and the
user desires only these halts to be disabled, $1C7FFFF would be the appropriate
exception mask.

2.2.9 Pseudo Registers

In addition to the normal task processor registers A0-A7, D0-D7, PC, and SR, the
user task can manipulate the following pseudo registers: MC, OP, VA, VL, WM,
and XM. These pseudo registers communicate specific constraints to VERSAXdos in
controlling the user task monitored execution.

MC The maximum count value controls the count of user task instructions to be
traced during execution. Displayed as a 4-byte value, the low order two
bytes are the count while the upper bytes are updated by VERSAdos to reflect
the current count of instructions traced to date. MC is in effect if OP bit
11 is set. Thus OP=2800 combines the address stop and maximum instruction
count features.

OP The execution option pseudo register controls the monitored manner of
execution. It permits the user task to run free, trace a specified number
of instructions, or monitor a given memory address for change in conjunction
with the settings of the pseudo registers MC, VA, VL, VM, and XM.
Hopefully, the need to adjust these pseudo registers will be minimized by
@, TR, and AS, which provide the most cammon settings automatically.

2-15

VA The value (VA) pseudo register holds a 4-byte value masked by the VM pseudo
register for comparison with the current contents at the memory address
contained in VL. In the address stop on equal mode setting of OP (=3000)
the VALUE EQUAL event will stop the task's execution with the PC at the
instruction following that which set the monitored location to the VA value.

VL The value location pseudo register is a 4-byte even (i.e., long word
boundary) address of the memory location (long word) within the task's
segment to be monitored for change in conjunction with OP=(2000 or 3000).
VL through VL+3 must be contiguous RAM locations.

VM The value mask is a 4-byte mask ANDed to the memory content at address
location (VL) prior to comparison with the value (VA). Under OP=3000, a
VALUE EQUAL event will occur appropriately.

NOTE

A mask setting of SFF000000 will isolate a single even
address byte for comparison. A mask setting of $O00FF0000
will isolate a single address byte for comparison.

XM The exception mask controls the display of exception event messages declared
previously. The mask initially defaults to O0lFFFFFl, which enables all
events except TRAPS #1, #2, and #3. If a user task desired to handle its own
zero divide exceptions, a mask value of QlF7FFFl would apply.

2.2.10 Addressing Modes

A problem that is common in debugging is user control/modification/display of a
stack operation. In non-symbolic debugging, the user must first interrogate the
address register used as the stack pointer to obtain the current stack location.
Then the user must calculate the offset desired, add this offset to the register
value, interrogate and add the value of any index register, and then perform a
memory modify on the resultant value location. In symbolic debugging, the user
may enter the desired stack location as an 'effective address'.

Example:

Assume that the stack pointer is in address register A7, the stack area in
question is at a static displacement of -10 hex, and data register D3 is being
used to calculate dynamic offsets from the stack area. The user wishes to
examine the current stack location. In non-symbolic terms, this is accomplished
by:

a. MD .A7 - to get the stack pointer location
b. MD .D3 - to get the index register offset
c. MD -S10 + x - where 'x' is the sum of (A7) + (D3) to reference

current stack location.
In symbolic terms, the 3-step operation becomes simply:
MD -10(A7,D3) - pexforms the above operations without user-

introduced errors due to arithmetic, or register
examination errors.

2-16

Other examples of effective address capabilities of SYMbug are:

(An) - Address Register Indirect
(An,Rn) - Mddress Register Indirect with Index
m(An) - Address Register Indirect with Displacement
m(An,Rn) - Mdress Register Indirect with Index and Displacement
(W suffix not allowed)
(PC) - Program Counter Indirect
(PC,Rn) - Program Counter Indirect with Index
m(PC) - Program Counter Indirect with Displacement
m(PC,Rn) - Program Counter Indirect with Index and Displacement

where 'n' is a valid digit in the range 0-7, 'm' is any valid integer, and 'R’
is an address (A) or data (D) register specification.

NOTE

For PC relative, 'n' is an absolute offset,
not the destination address as used in
resident assembler syntax.

Effective addresses are valid anywhere that expressions are valid as a command
operand. However, effective addresses are not allowed in expressions.

2,2,11 Options

There are eight groups of options available to the user for control of I/0
operations in SYMbug. They are:

GROUP 1: Output Length
- Byte (8-bits)

- Word (16-bits)
- Long Word (32-bits)

K= w

GROUP 2: Output Type

Hexadecimal

- Decimal

- Octal

Binary

ASCII Character
Integer
Disassembly

OH o™ W0

(=]
[

2-17

GROUP 3: Secondary Output Device
#PR - Printer
#FN - Disk File
GROUP 4: Macro Control
MAL - Enable Macro Expansion
NOMAL - Disable Macro Expansion
GROUP 5: Breakpoint Control
BRE - Enable Breakpoint Logic

NOBRE - Disable Breakpoint Logic

GROUP 6: Default Input Base

IN S - Default Input Base Hexadecimal
IN & - Default Input Base Decimal

IN @ - Default Input Base Octal

IN % - Default Input Base Binary

GROUP 7: User File

FILE <file name> - Secordary File Output Link to External Disk File

Group 8: Output Echo Control

ECHO - Enable Output Echo
NOECHO - Disable Output Echo

Options in groups 1, 2, and 3 may be entered on the command line of certain
primitive commands. All of the options may be specified via the DE command.
Some options may override others, e.g., the DI option will override the length
option.

The default options are:

Option Group Default Value
1 B Byte output length is selected
2 S Hex output type is selected
3 #PR Printer output
4 MAL Macro expansion is enabled
5 BRE Breakpoint logic is enabled
6 IN $ Default input base is hexadecimal
7
8 NOECHO Secondary echo is disabled

2-18

2.2.12 Attaching/Detaching Secondary Echo Device (via DE Command)
In this section, the term 'attach' will correspond to the command DE ECHO, ard
the term 'detach' will correspond to the command DE NOECHO.

2.,2,12.1 Secordary Output to Printer. A printer may be assigned as the
secondary output device as follows:

SyMbug ? DE #PR (assign printer device)
SyMbug ? DE ECHO (attach printer)

2.2.12.2 Secondary Output to Disk File. A disk file may be assigned as the
secondary output device as follows:

SyYMbug ? DE #FN (select file echo)

SYMbug ? DE FILE <file name> (assign file)
SyMbug ? DE ECHO (attach file)

or

SYMbug ? DE FILE <file name> (assign file)
SyMbug ? DE #FN (select file echo)

SYMbug ? DE ECHO (attach file)

The DE BECHO command must follow file assignment and selection default (DE)
commands. If the DE ECHO command is given and the <file name> has not been
previously assigned (in this debugging session), the message 'ATTACH NOT
ALLOWED' will be displayed.

The first attach to a <file name> for secondary output will overwrite the file.
The file must already exist on disk before the attach is attempted. Subsequent
detach/attach command series (to the same file) will append echo output to the
end of the file.

The user is cautioned that any time the secondary output device designation is
to be changed from a previous assigmment, a DE NOECHO command must be given
before the echo device is changed. The logical sequence then is:

SyMbug ? DE NOBECHO (detach current echo device; not needed if first
selection)

SYMbug ? DE <device> (#PR, #FN)

SyMbug ? DE ECHO (attach to <device>; if <device> is #FN, assign

file first)

This also applies to changing to a new <file name> (even if file device was
previously selected as echo device) as follows:

SYMbug ? DE NOECHO (detach current echo device)

SyMbug ? DE #FN (not needed if #FN is current echo device)
SYMbug ? DE FILE <file name> (select new file designation)

SYMbug ? DE ECHO (attach file)

Issuing a DE FILE <file name> command, which specifies a <file name> which had
previously attached, will overwrite the file on the next attach (any previous
echo information will be lost). Also, the DE <device> command is not needed
unless the <device> to be selected is different from the <device> which is
currently selected.

2-19

NOTE

When using the secondary output to a file, SYMbug uses the
NULL catalog for the file name, not the default user catalog. -

2.3 PRIMITIVE COMMANDS
SYMbug primitive commands are listed in the following table.

TABLE 2-2. SYMbug Primitive Commands

COMMAND SYNTAX DESCRIPTION
AS [<address> [<value> [;<mask>]]] Address stop
BF <addressl> <address2> <data)>[;<length>] Block fill
BM <addressl> <address2> <address3> Block move

[NO]BR [<address>[;<count>]]...

BS <addressl> <address2> <data>
CR [<count>]
DC <expression>
DE [<default option>]
DF
FR <file name>
FS <file name>
G[0] [<Kaddress>]

HE[LP] [<command>]
[NO]IT <addressl> <address2>
[NOIMA [<name>]...

MD <address> [<count>] [;<option>]
MM <address> [;<option>]

MS <address> <data>

OF

[NOJOT <addressl> <address2>
QIUIT]
[NO]SD [<local> [<value>]]

T[R] [<count>]

ATTA <task name>[,<terminal>|#*]
DETA [<task name)>]

EVEN [<task name>] ,<exception #>
LOAD <file> [<Kcammand line>]
MASK [<task name>] ,<exception #>
STAR [<task name>|ALL]

STAT [<task name>,<status>]

STOP [<task name>|ALL]

TASK <task name> [,<note level>]
TERM <task name>

WAIT

BREAK

CTRL-S

CTRL~H

CTRL-W

CTRL-X

CR (Carriage Return)

Set/reset breakpoint
Block search

Comand repeat

Define constant or Data convert
Defaults

Display formatted registers
File read

File save

Go (execute)

Display cammands
Set/reset inside trace
Set/reset macro define
Memory display

Memory modify —
Memory set

Display Offset register
Set/reset outside trace
Quit (go to VERSAJos)
Set/reset symbol define
Trace

Attach task

Detach task

Event definition

Load (task)

Mask exception

Start task(s)

Status definition

Stop task(s)

Task notify

Terminate task

Wait task

Abort command

Redisplay line

Delete character
Susperd output (1)
Cancel command line
Send line for execution

NOTE:

(1) when CTRL-W is used, the entry of any character will cause the

output display to continue.

2-20

In SyMbug command syntax, <address> arguments are resolved to absolute memory
locations and may take any of the following forms:

<address> Examples

A numeric constant 4AB2 or &1000

A symbolic constant START (a local symbol)

A symbolic address 4A:MAIN:9 or HERE (an assembler symbol)
An effective address (PC) or 6(a5,D3)

An expression 8+R4 or HERE-$100

For the commands MD and MS, the scope of <address> is enlarged to accept
register forms as follows:

<address> Examples
A register A3 or .D6

An offset or pseudo register .R3 or VL or .OP

2=-21

2.3.1 Address Stop (AS) AS
AS [<address> [<value>[;<mask>]]]

where:

address Is the memory location specified for test (any address mode). A
4-byte camparison is made according to the mask value.

value Is the pattern to be compared for match at <address> (number/local
symbol) . If <value> is given, execution is in the 'stop-on-
address-equal' mode -- otherwise, in the 'stop-on-address-change'
mode.

mask Is the mask value for comparison (B, W, L):
B Sets a mask of SFF000000 (MSB).

W Sets a mask of S$FFFF0000 (MSW).
L Sets a mask of S$FFFFFFFF (exact). Default mask is SFFFFFFFF.

The AS command allows the user to set/display a breakpoint type condition in RAM
user memory. Whenever a specified pattern is written to the memory address in

question, an exception event occurs.
When the AS command is used with parameters, target task begins execution. When
used with no parameters, the current AS set-up is displayed. Multiple address

stop conditions are not allowed. The .OP register is set to $200 unless a value
is supplied which sets .OP to $300 (stop-on-address equal mode).

EXAMPLES COMMENT'S

SyMbug ? AS $100 SFE Specifies address stop condition when memory contents
at location $100-$103 become equal to $000000FE.

SYMbug ? AS $100 Specifies address stop whenever locations $100-$103
are changed from their current value.

See also: GO, TR

2-22

2.3.2 Block Fill (BF) BF

BF <addressl> <address2> <data>[;length]

where:
addressl Is the lower limit for fill operation.
address? Is the upper limit for fill operation.
data Is the fill pattern (number/local symbol) and must be a
numeric or symbolic constant.
length Is the size of repeat pattern (B, W, L). Default is L. If

<address> is odd boundary, any <length> specification must be
'B' (default for odd boundary).

The BF command allows the user to repeat a specific pattern throughout a
determined user memory range.

The BF command fills according to <length> and only to upper boundary regardless
of data length,

EXAMPLES COMMENTS

SYMbug ? BF $101 $200 SFF;B Fill each byte of memory from location
$101-$200, inclusive with the pattern SFF.

SYMbug ? BF S30 S6F SFF;L Fill each long word of memory from location
$30-$6F with the pattern $000000FF (value is
right justified for long word).

SYMbug ? BF 4 4 SFF Sets location 4 to $00. (Long word is
$000000FF.)

SYMbug ? BF 4 4 S$FF;B Sets location 4 to SFF.

2-23

2.3.3 Block Move (BM)

BM <addressl> <address2> <address3>

where:

addressl

address?2

address3

Is the lower limit of block to be moved. Must be same parity
as <address3> (even/odd).

Is the upper limit of block to be moved.

Is the block relocation target address. Must be same parity
as <addressl> (even/odd) .

The BM command allows the user to relocate a memory block. The move is-
non-destructive in that moving a block to an address within the block will not
destroy the integrity of the moved data. The block move is byte oriented.

EXAMPLES

SyMbug

SYMbug

SyMbug

?

?

BM $100 $200 $300

BM S0 S$10 $2

BM DATA DATA+5 4:MAIN:0

COMMENTS

Relocate memory block in range $100-$200
to memory at $300-$400.

Relocate memory block in range $0-$10 to
$2-$12. $2-512 will accurately represent
the former data that was in $0-$10.

Relocate memory block DATA to the

symbolic address in section zero in
module MAIN,

2-24

2.3.4 Set Breakpoints (BR) BR
Reset Breakpoints (NOBR) NOBR

BR [<address>[;<count>]]l...
NOBR [<address)> [;<count>]]...

where:
address Is the program location where breakpoint is to occur (any
even address).
count Is the number of times the instruction at <address> is

executed to access <address> before program breakpoint is to
occur (decimal number > 0). The <{count> may be 1-65535 (must
be qualified decimal). Default is 1 (assumed decimal). Do
not prefix & to constant.

The BR and NOBR commands set/reset breakpoints at user program locations. Each
breakpoint may be specified with a count to enable program loops. Up to 8
breakpoints may be entered at a time, with a maximum of 10. SyMbug will
distinguish between exception event 22 caused by breakpoints and user-generated
privilege violations (refer to paragraph 2.2.2).

SYMbug affects breakpoints by implanting a privileged instruction at the
breakpoint address. Therefore, breakpoints will not be properly processed
unless bit 22 is set in the exception mask.

Rather than removing and re-entering breakpoints with BR and NOBR, it may be
convenient to temporarily disable them with the default option DE NOBR.

EXAMPLES COMMENTS

SyMbug ? BR X Sets breakpoint at address specified by
symbol X (default <count>=1l) (X may be a
local or assembler symbol).

SYMbug ? BR $30;4 Sets Dbreakpoint at address $30 with
<count>=4,

SYMbug ? BR $30;2 $100 $50;7 Sets 3 breakpoints in user program.

SYMbug ? NOBR $30;1 $50 Removes breakpoints from location $30 and $50
(<count> is ignored on remove option).

S¥Mbug ? NOBR Removes all breakpoints fram program (if they
exist).

2-25

2.3.5 Block Search (BS) BS

BS <addressl> <address2> <datad>

where:
addressl Is the lower limit for search operation.
address?2 Is the upper limit for search operation.
data Is the pattern to be searched for (number/local symbol or

ASCII string).

The BS command allows the user to scan a spe01fled memory randge for a certain
pattern., Each address where the pattern occurs is displayed for the user. The
length of <data> is determined by the length of the constant entered. Thus, SFF
will search bytes and $FFFF30 will search for a hex string of three adjacent
bytes. Searches in byte increments through range but updates past a found
string before looking for next occurrence; e.g., looking for SFFFFFF in a
16-byte string of $FF's will encounter matches at offsets 0, 3, 6, 9, and 12.

EXAMPLES COMMENTS

SYMbug ? BS $100 $200 'ARBC' Search memory from $100-$200, inclusive, for
the pattern $414243 ('ABC').

SYMbug ? BS $0 $100 SFF Search memory from $0-$100 for the pattern
$FF.

. 2-26

2.3.6 Command Repeat (CR) CR

CR [<count>]

where <count> is the number of times to invoke next command (decimal number >0).
The <count> may be 1-65535 (do not prefix & to the constant). Default <count>

is 1.

The CR command allows the user to specify multiple invocations of the command
which follows it. This pemits the user to build primitive or macro command
loops. The next primitive/macro command is repeated <count> times. The macro
being repeated may itself contain a CR command (remember that macro's may not

call other macro's).

EXAMPLES COMMENT
SyMbug ? CR 2
SYMbug ? ABC Invokes macro 'ABC' twice.

2=27

2.3.7 Define Constant (DC) DC

DC <expression>

where <expression> is the valid arithmetic expression.

The DC cammand allows the user to resolve arithmetic expression and/or symbolic
values. The value is returned in symbolic, hex, decimal, and binary formats.

EXAMPLES COMMENTS

SYMbug ? DC CAT+DOG Returns value of sum of
assembler/local symbols 'CAT' and
'DOG' (if they exist). A syntax
error occurs if an undefined
symbolic constant is referenced.

SyMbug ? DC $15+@17+CAT+%11+&21/&33*DOG If 'CAT' contains wvalue 6 and
'DOG' contains value 3, returns
value 6.

SyMbug ? DC (0:MAIN:3 Returns absolute address

corresponding to logical address 0
in assembler module 'MAIN',
section 3.

SYMbug ? DC X:MAIN Returns absolute address
correspording to logical address
associated with assembler symbol
'X' in assembler module 'MAIN'.

2-28

2.3.8 Defaults (DE) DE

DE [<default option>]

where <default option> is the specific default option to be changed:

[NO]MAL macro expansion

[NO] ECHO secondary output enable

[NO]BR breakpoint enable

IN ($|&|@|%) input base

($|&|etc.) output type (refer to option group 2, paragraph 2.2.11)
B, W, L output length

#PR, #FN secondary output device

FILE <file name> secondary output file

The DE command allows the user to examine/modify I/0 and control specifications
pertaining to the debug session.

EXAMPLES COMMENTS

SYMbug ? DE IN & Modifies default input base to decimal. Any
unqualified numbers will now be evaluated as decimals.

SyMbug ? DE NOMAL Disables macro expansion option so that macro
subcommands will not be listed as they are invoked.

SYMbug ? DE List current defaults.

MAL NOECHO NOBRE BIN IN HEX OUT;L #PR FILE=
Macro expansion enabled, echo disabled, breakpoints disabled,

binary default input base, hex default output, long default
length, printer echo device, no file.

2-29

2.3.9 Display Formatted Registers (DF) DF

DF
The DF command displays the data, address, program counter and status registers
of the foreground task.
EXAMPLE COMMENT
SyMbug ? DF Display D0-D7, A0-A7, PC, SR
D0-D7 01000000 00000000 000A02CD 05050505 00000000 FFFFFFFFE ...

A0-A7 00000AAE 00000AD2 00000BCC 00001000 00001020 00000A00 ...
PC=00010000 SR=0000

See also: MD, MS

2-30

2.3.10 File Read (FR) FR

FR <file name>
where <file name> is a valid VERSAdos file name (no default extension).
The FR command allows the user to recall saved macro/local symbol definitions
from a previous debug session. Any current macro's and local symbols will be

destroyed. Reading a file that was not previously created/modified via an FS
(file save) command will generate unpredictable results.

EXAMPLE COMMENT

SyMbug ? FR SYMBUG.PF Restores macro/local symbols from file SYMBUG.PF
for current debug session.

See also: FS, MA, SD

2-31

2.3.11 File Save (FS) FS

FS <file name>
where <file name> is a valid VERSAdos file name (no default extension).
The FS cammand allows the user to save any macro and local symbol definitions to

the specified disk file for later use. If file exists, it will be overwritten;
otherwise, it will be created for the user.

EXAMPLE COMMENT
S¥Mbug ? FS SYMBUG.PF Saves defined macros/local symbols to file
SYMBUG.PF.

See also: FR, MA, SD

2-32

2.3.12 Execute Target Task (G) G

G[O] [<address>]

where <address> is the starting address to locate PC before execution begins
(any address mode; must specify even address). The <address> must be on even
(word) boundary.

The G or GO commarnd allows the user to initiate target program execution in free
run mode. The user may optionally specify a starting address where execution is
to begin. Execution starts at current PC unless <address> is present. Only a
breakpoint, address stop, STOP command, or execution error will cause the
program to terminate execution. The GO cammand also sets the .OP address to

$0000.

EXAMPLES COMMENTS
SYMbug ? GO Begin program execution at current PC location.
SYMbug ? GO $100 Begin program execution at location $100.

See also: AS, BR, STOP

2-33

2.3.13 Display Commards (HE) HE

HE[LP] [<command>]
where <command> is any valid SyYMbug primitive command.

The HE or HELP command allows the user to get an abbreviated or detailed list of
SYMbug cammards.

EXAMPLES COMMENTS

SYMbug ? HE Displays a list of all SYMbug primitive commands and
their syntax.

SYMbug ? HELP AS Displays a more detailed description of the SyMbug AS
command .

2-34

2.3.14 Define Trace (IT) IT
Delete Inside Trace (NOIT) NOIT

IT <addressl> <address2>
NOIT

where:

addressl Is the lower boundary of trace range.

address2 Is the upper boundary of trace rarge.
The IT command allows the user to specify an address range to be used in
conjunction with the TR command. If PC address is within the range after the
trace, it is reported to the user. After tracing, if the PC address is outside
the trace boundary limits, the event message TRACE ONE INST or TRACE MAX INST is

suppressed.

Only one address range for trace inclusion will be in effect. Each subsequent
IT command replaces any existing trace boundaries.

The NOIT command allows the user to remove the inside trace range specification.
The NOIT command has no address arguments.

EXAMPLES COMMENTS

SYMbug ? IT SO $100 Specifies that if final PC trace address falls
within the range $0-$100, it is to be reported to
user.

SyMbug ? NOIT Remove current inside trace range specifications.

See also: OT, TR

2=-35

2.3.15 Macro Define and Display (MA) MA
Macro Delete (NOMA) NOMA

MA [<name>]...
NOMA [<name>]...

where <name> is a valid symbol name (1-8 alphanumeric characters).

The MA canmand allows the user to define/delete a complex command consisting of
any number of SYMbug primitive commands with optional parameter specifications.

In response to the macro definition prompt M=, enter a SYMbug command, including
a carriage return. The prompt M= will appear for the next command to be
included in the macro. Commands entered are not checked for syntax until the
macro is invoked. Exit definition mode of a macro by a carriage return (null
line). The macro may now be listed by typing MA <name>. If the macro contains
errors, it must be deleted (NOMA) and redefined. A macro containing no
primitive SYMbug commands is deleted from the macro table. When the macro table
is full, the user will be exited automatically from definition mode. Instead of
the M= prompt, the syntax error prompt 'SYMbug <task> WHAT ?' will appear. Type
MA to display all currently defined macros. Delete unneeded macros with NOMA
command or use FS command to save all macros and local symbols to a disk file,
then re-enter the macro definition mode. SYMbug commards contained in macros
may reference arguments supplied at invocation time. ARGUE ZERO 1 TOO would
invoke the macro named ARGUE. The text strings 'ZERO', 'l', and 'TOO' would
replace references to \0, \1, and \2 within the body of the macro.

If the named macro exists, it is displayed; otherwise, a prompt of M= is
displayed, indicating macro definition mode. If more than one <name> specified,
display all <name>s. If any of the <named>s are not defined, SYMbug generates a
syntax error. If deleting with NOMA, and <name> is not in table, S¥YMbug
generates a syntax error and any subsequent <name>s are not deleted.

EXAMPLES COMMENTS

SYMbug ? MA ABC Defines macro 'ABC' to display memory at location $0 and
M=MD $0 then start execution at address specified in parameter O.
M=GO\0 '"?2ABC $100' would be a wvalid invocation of the new

= macro. The string '$100' would be substituted for the
string '\0' on echo to user if the macro expansion option

is enabled.
SyMbug ? NOMA ABC Delete macro 'ABC' from user macro table.
SyYMbug ? MA Display all macros.
SYMbug ? NOMA Delete all macros from user macro table.

See also: DE, FR, FS

2-36

2.3.16 Memory Display (MD) MD

MD <address> [<count>] [;<option>]

where:
address Is the starting memory location for display.
count Is the optional number of bytes to display (decimal number
> 0). The default <count> is 16 bytes.
option Is DI for disassembly format.

The MD command allows the user to examine a variably sized block of user memory
or task register. Regardless of actual <count>, the display will always be an
integral of 16 bytes of hex data. This enables the user to display task
registers (including pseudo registers) individually.

EXAMPLES COMMENTS

SYMbug ? MD $100 Displays 16 bytes (default <count>) of memory
starting at location $100.

SyMbug ? MD $101 $17 Displays 32 bytes (integral number of 16 bytes
displayed) starting at location $101.

SYMbug ? M .OP Display user task OP pseudo register.

SYMoug ? MD 6:MAIN;DI Displays 16 instructions in disassembly format
beginning at the absolute address equivalent to
6:MAIN.

SYMbug ? MD .D1 Displays data register D1.

SyMbug ? MD D1 Displays 16 bytes of data at address Dl.

SYMbug ? MD START+16 4;DI Displays four instructions in disassembly

format beginning at the absolute address
equivalent to 16 above the relocated assembler

symbol.

2-37

2.3.17 Memory Modify (MM) MM

MM <address> [;<option>]

where:
address Is the memory location to start display/modify.
option Is DI for assembler syntax input.

The MM command allows the user to examine/modify user memory locations in an
interactive manner.

'DI' option will perform disassembly of data and accept modifications in
assembler syntax (absolute values in disassembly will be resolved to symbols).
Depress (CR) to disassemble the next instruction. To replace an instruction,
type space, then enter assembler mnemonic and operand fields. Assembler syntax
errors are indicated by an X under the offending field. Acceptable assembler
syntax is displayed automatically along with the next disassembled instructions.

The line teminators for data entry are: ([data] not valid with 'DI')

[data] (CR) [update and] step to next location

. [data] ~ - [update and] step back (not valid with 'DI')
. [data] . - [update and] terminate 'MM'
. [data] = - [update and] re-open location
EXAMPLES COMMENTS
SYMbug ? MM $100;L Display/modify memory starting at location $100. I/0
will be in groups of 16 bits (long word).
SyMbug ? MM $100 Display/modify memory starting at location $£100.
(Default I/0 is hexadecimal bytes.)
SyMbug ? MM START;DI Disassembles and displays the instruction at address

START. Depress (CR) to step to next instruction.

See also: MS

2-38

2.3.18 Memory Set (MS)

MS
where:
address

data

<address> <data>

Is the register or user memory location.

Is the new content of address. It may be an ASCII string
enclosed in quotes, or a succession of numeric byte values
each delimited by spaces.

The MS cammand allows the user to store a value into a specified memory location
. Only significant bytes of new <data> are entered into memory. Any
register (including pseudo registers) may be set.

or register

EXAMPLES
SYMbug

SYMbug

SYMbug

SYMbug

SYMbug

See also:

? MS .DO $100

? MS $100 'ABC'

? MS $0 SFFF

? MS $10 0 'ABC' $10

)

MS $50 SOOFF 0 $FF

MM, BF

COMMENTS
Set data register zero to value $100.

Set memory locations $100-$102 to $41, $42,
$43 respectively ('A', 'B', ad 'C').

Set memory locations $0-$1 to $OF, SFF
respectively,

Set memory locations $10-$14 to $00, $41, $42,
$43, S$10 respectively.

Set memory locations $50-$52 to SFF, $00, SFF
respectively.

2-39

2.3.19 Offset Register Display (OF) OF

OF

Offset registers establish base addresses usable in expressions.

If assembler symbols are available fram a .DB file, offset registers are not so
valuable, When no .DB file is available, base registers may be loaded with
absolute addresses of assembler sections, facilitating offset references
matching the assembler listing (e.g., if an object module began at $1A00 and if
.Rl were initialized with the SYMbug MS cammand to $1A00, then to disassemble
the first 16 executable instructions, type MDO+R1;DI.

The OF command displays all user-defined offset registers numbered .RO through
.R7.

EXAMPLES COMMENTS

SYMbug ? OF Displays the offset registers.
RO-R7 00000000 00000020 00010000 00000000 00000000 ...

SYMbug ? MS .R1 1000 Sets offset register one to $1000.

2.3.20 Set Outside Trace (OT) or
Delete Outside Trace (NOOT) NOOT

OT <addressl> <address2>

NOOT
where:
addressl Is the lower boundary of trace exclusion,
address?2 Is the upper boundary of trace exclusion.

The OT command allows the user to specify an address range to be used in
conjunction with the TR command. If PC address after trace is outside the
range, it is reported to the user; otherwise, the event message is suppressed.
Only one address range for trace exclusion will be in effect. Each subsequent
OT command replaces any existing address boundaries.

The NOOT commard has no arguments. It removes existing trace limits.

EXAMPLES COMMENTS

SYMbug ? OT $100 $200 Specifies that if the final PC address falls
outside the range $100-$200, it is to be reported
to the user.

SYMbug ? NOOT Remove current outside trace range specifications.

See also: TR, TT

2-41

2.3.21 Terminate Debugging Session (Q) Q

Q[UIT]

The Q or QUIT command allows the user to terminate the current debug session.
SYMbug and all of the user tasks attached to SYMbug are terminated.

EXAMPLE COMMENT

SyMbug ? QUIT The current debugging session is terminated, and control
= is returned to VERSAdos.

2-42

2.3.22 Symbol Define (SD) SD
Symbol Delete (NOSD) NOSD

SD [<local> [<value>]]
NOSD [<local>]

where:
local Is a valid symbol name (1-8 alphanumeric characters).
value Is the value to be associated with <local> (any address

mode) .

The SD command allows the user to define/examine/modify user local symbols. It
also redefines a local symbol without first deleting it. When out of roam in
the table, the symbol is not entered. The FS command saves local symbols and
macros which share a common table.

The NOSD command allows the user to delete specified or all local symbols fram
the local symbol table.

EXAMPLES COMMENTS
SYMbug ? SD X 0:MAIN:14 Defines local symbol X with value of relative
address 0 in module MAIN, Section 14 ($27).
‘SYMbug ? SD Y X+1 Defines local symbol Y with value of local
symbol X + 1,
SYMbug ? SD X 8§77 Redefines local symbol X to take on value $77.
SyMbug ? 8D X Returns current value of local symbol X.
X=8 77
S¥Mbug ? NOSD X Deletes local symbol X from local symbol table.
S¥YMbug ? SD Displays all current local symbols.
Y= 27

See also: FR, FS

2-43

2.3.23 Trace (TR) TR

T[R] [<count>]

where <count> is the number of instructions to execute before forcing program
breakpoint (decimal number > 0). The <count> may be 1-65535 (must be
unqualified decimal). Default <count> is 1.

The TR cammand allows the user to monitor program execution on an instruction by
instruction level. The user may optionally execute several instructions at a
time. Execution starts at current PC. The PC displayed with the event message
is of the next instruction to be executed. In 'trace <count>' mode, TRAP
instructions are not counted. The TR command also sets the .OP register to
$1000. '

EXAMPLES COMMENTS

SyMbug ? TR 7 Executes seven instructions starting at current PC ard
then returns control to debugger.

SyMbug ?TR1 Execute one instruction.

SYMbug ? TR Same as above (default <count>=l).

See also: IT, OT

2-44

2.3.24 Attach a Task to SYMboug (ATTA) - ATTA

ATTA <task name>[,#<temminal>|#*]

The ATTA command will attach SYMbug to a task already in memory. Tasks usually
are first loaded using the LOAD command; however, they may be attached to SYMbug
if externally loaded, provided they have the same session number. Note that
setting breakpoints in resident systems routines with globally shareable
segments is not recommended. The option #<teminal> routes that task's console
I/0 to a remote terminal; otherwise, the task messages would appear on the
SYMbug terminal. The option #* denotes no LUN's are to be passed to the task
for terminal I/O. This option is required if the task is loaded external to

SYMbug.

EXAMPLES COMMENTS
S¥Mbug ? ATTA TEST Attaches load module TEST to SYMbug.
SYMbug ? ATTA TEST,#CNOl Attaches load module TEST to S¥YMbug, but routes
task messages to CNOL.
SYMbug ? ATTA TEST,#* g::ﬂt\:;ches TEST which was loaded external to
ug.

2-45

2.3.25 Detach a Task from SYMbug (DETA) DETA
DETA [<task name>]

The DETA commard disassociates that task from SyMbug. Execution of that task is
not affected as it is known to and serviced by VERSAdos; however, SYMbug
commands other than ATTA may not be issued to it. Existing breakpoints will be
extracted automatically prior to detaching the named task. Detached tasks will
remain in memory and are free to execute external to SyMbug control.

EXAMPLES COMMENTS
SYMbug ? DETA Detaches the foreground task.
SYMbug ? DETA SAMPLE Detaches the task named SAMPLE.

2.3.26 Create an Event for a Task (EVEN) EVEN
EVEN [<task name>] ,<exception #>

The EVEN command will create an event of the exception number type specified for
the named task. This is useful to allow checkout of Asynchronous Service
Routine (ASR) related task code. An attempt to acknowledge the event with a
AKQRST directive in the ASR will fail since no target task is waiting to resume
execution.

EXAMPLES COMMENTS
SyMbug ? EVEN,16 Stimulates a bus error for the foreground task.
SYMbug ? EVEN TEST,8 Queues a TRAP #8 event to the Asynchronous Service

Queue (ASQ) of task TEST.

2-47

2.3.27 ILoad a Module into Memory (LOAD) LOAD

LOAD <file name> [<command line>]

The LOAD command is typically the first command issued in the multitasking mode.
Standard VERSAdos file name conventions apply, with the default suffix being LO.
If volume defaults apply, <file name> is simply <task name>. Any characters
following the blank which terminates <file name> are assumed to be a command
line which is passed appropriately in the VERSAdos initialized processor
registers. Tasks are in the ready state after loading.

EXAMPLES COMMENTS

SYMbug ? LOAD CART:0.XYZ.PROGRAM.LO Loads the load module to memory.

SYMbug ? LOAD PROGRAM Does the same assuming defaults
apply.

SYMbug ? LOAD PROGRAM ;MAL [oads the .LO module, passes the

command line length in D6, and moves
the command 1line text to the
designated <commarnd line> buffer.

2-48

2.3.28 Alter Task's Exception Mask (MASK) MASK
MASK [<task name>] ,<exception #>

The MASK command inverts the bit of the specified exception in the named task's
XM pseudo register. This will switch the enable/disable state of event
recognition and the corresponding message display. For example, assuming the
standard XM mask of $O1FFFFFl, the command 'MASK , 2' will cause the foreground
task to stop execution and display the message TRAP #2 PC=address whenever it
calls the I/O handler. Issuing the MASK command again will reset XM from
SO1FFFFF3 to S$O1FFFFF1 and ignore TRAP #2 instructions in the user task.

EXAMPLES COMMENTS
SYMbug ? MASK MAIN,7 Inverts the numbered bit in the XM register of a
task named MAIN. This inverts (enables or

disables) recognition of TRAP #7 events as
breakpoints in the task named MAIN.

SYMbug ? MASK ,7 Does the same for the foreground task.

2-49

2.3.29 Start Execution of a Task (STAR) STAR
STAR [<task name>|ALL]

The STAR command commences execution of the named task if in the ready or wait
for command state. This is equivalent to executing a GO command for the
foreground task but without setting the OP register to zero. STAR ALL will
continue the execution paths of all tasks not already in execution or in the
dormant state.

EXAMPLES COMMENTS

SYMbug ? STAR Start execution of foreground task with prior OP
option.

SyMbug ? STAR SAMPLE Does the same for the task named SAMPLE.

SyMbug ? STAR ALL Starts all tasks in ready or wait state.

2-50

2.3.30 Display Current Task's Status (STAT) STAT

STAT [<task name>,<status>]

where <status> may be:

DORM issues STOP directive to a ready task. Task becames dormant.

REDY issues START directive to a dormant task. Task becomes ready for

execution.

WAKE issues WAKEUP directive to a waiting task. Task becames ready for

execution.

The STAT command lists the status information of all tasks or allows a specified
task's status to be changed.

The STATUS display header includes these fields:

TASK First four characters of the task name.
SESS Four digit session number.
STATE Literal status REDY, WAIT, or DORM prefixed by 'e' 1if in
execution.
EVENT Contains 4 subfields of data
< = foreground task
Task Note Level = the lead digit (see TASK command)
Last Event Type = A,D, or X (Attach, Detach, or Exception)
Last Event Code = 2 hex digits (22 = Breakpoint)
@pC Task PC following last event.
PC NOW PC (NOW being a few milliseconds ago if task in execution).
SR Status Register in hex (also a few milliseconds ago).
MASK Current XM pseudo register in effect for task event exceptions.
TCB STAT Hex long word. Consult RSTATE directive for bit interpretation.
Refer to VERSAdos Data Management Services and Program Loader
User's Manual, RMS68KIO,
op Current OP pseudo register in effect for task's execution options.
CRT Terminal id assigned to task for normal keyboard and screen I/O.
EXAMPLES COMMENTS
SYMbug ? STAT Displays status of all tasks known to SYMbug.
SyMbug ? STAT ABCD,REDY Charnges task ABCD's state to REDY.

2-51

2.3.31 Stop Execution of a Task (STOP) STOP

STOP [<task name>|ALL]

The STOP command stops execution of a task and leaves it in the ready state. A
STOPPED event message for the task signals completion of the process. STOP ALL
will affect all tasks currently flagged in execution. Note that the BREAK key
has no effect on task's execution status.

EXAMPLES COMMENTS

SYMbug ? STOP Stops execution of the foreground task.

SYMbug ? STOP CHARLIE Stops execution of the task named CHARLIE,

SyMbug ? STOP ALL Stops execution of all tasks running under SYMbug.

2-52

2.3.32 Change Another Task to the Foreground (TASK) TASK

TASK <task name>[,<note level>]

The named task will appear in the next prompt as the foreground task. Primitive
level SYMbug commands now apply to that task. The note level option directs
SYMbug's response to breakpoints for this task. The following codes allow the
user to see or suppress breakpoint messages as well as to halt or continue
execution as a result of encountering a breakpoint.

Note Task Breakpoint Become
Level Execution Message Foreground Use
0 STOPS Suppressed No Concentrate on foreground
1 (default) STOPS Displayed No Normal setting
2 STOPS Displayed Yes Saves TASK cammand
3 CONTINUES Displayed No Procedure trace without GO's
4 QONTINUES Displayed No Disables breakpoints without
reentering
EXAMPLES COMMENTS
SYMbug ? TASK FILLY Change prompt to new foreground task named FILLY.
SyMbug ? TASK METOO Suppresses breakpoint messages for task named METOO.

2-53

2.3.33 Terminate a Task's Execution (TERM) TERM

TERM <task name>

This cammand banishes a task from memory. Execution terminates and the task
becomes unknown both to SYMbug and VERSAdos. The LOAD command would reacquaint
it with VERSAdos, and ATTA would then establish SyMbug control over it. SYMbug
does not automatically terminate itself when all user tasks are terminated. The
QUIT command will terminate all user tasks and the SYMbug task. Use QUIT rather
than TERM to conclude a debugging session.

EXAMPLE COMMENT

SYMbug ? TERM DEANNA Terminate the user task named DEANNA.

2-54

2.3.34 Wait for Event (WAIT) WAIT
WAIT

The WAIT cammand will suppress the SYMbug prompt message until a task has an
exception event or the BREAK key is depressed. Task-directed I/0 to the CRT is
unaffected.

EXAMPLE COMMENT

SYMbug ? WAIT SyMbug will cease prompting for commards.

2-55/2-56

CHAPTER 3

DEbug COMMANDS

3.1 INTRODUCTION

This chapter explains how to invoke the DEbug prampt, describes the command
format structure, and provides a detailed explanation of the primitive commands.
3.2 INVOKING THE DEbug PROMPT

In response to the VERSAdos prampt (=), the user enters one of the following:

=DEBUG Invokes the multitasking mode.

after which the following is displayed:

Debug:Revision x.xx
MAXIMUM TASK COUNT (1->19)?

or

=DEBUG TESTPROG Monitors the named task with- an optional command
line in single task mode.

after which the following is displayed:

Debug:Revision x.xx
Debug TEST ATTACHED PC=00001000
Debug TEST?

3.2.1 DeEbug Messages

The following messages may be encountered during the execution of DEbug.

TABLE 3-1. DEbug Messages

MESSAGE EXPLANATION

Debug <task> ? <task> is the first four letters of the foreground
task name. The user may respond with any primitive or
task level DEbug command.

Debug ? Is the initial prompt in multitask mode. The LOAD,
: ATTA, HELP, and QUIT are the only legal commands until a
foreground task is declared.

Debug <task> WHAT ? A bell will also ring to signify a syntax error in the
previous DrFbug command. Consult the HELP command
listing.

Debug <task> ATTACHED PC=00000000. The PC contains the address of the
instruction following the instruction which caused the

event,

3-1

The following
corresponding bit in the exception mask is set.

BIT NUMBER

Unmaskable Events

0
1-15
16
17
18
19
20
21
22
23
24

25-31

exception event messages will

MESSAGE

Not used

TRAP #1 -> TRAP #15
BUS ERROR
ADDRESS ERROR
ILLEGAL INST
ZERO DIVIDE
CHK INST

TRAPV

PRIV VIOLATION
LINE 1010

LINE 1111

Not used

BREAKPOINT
ATTACHED
DETACHED
STOPPED

TRACE ONE INST
TRACE MAX INST
VALUE CHANGE
VALUE EQUAL

be displayed provided the

PC=XXXXXXXX
"

PC=XXXXXXXX
"

These event messages are queued to tasks as they occur and will not be displayed
until the current DEbug command has been processed and a new prompt is about to
be displayed.

3.2.2 Monitoring Execution of a User Task

No single task may have multiple paths of execution; however, all user tasks may
be simultaneously active under DEbug control.
initiate a path of execution for a task.

There are five methods to

For explanation of OP and XM pseudo registers, refer to paragraph 3.2.3.

a.
b.
C.
d.

=N

&0 - starts the foreground task with OP=0000

TR - starts the foreground task with OP=1000 or 0800

AS - starts the foreground task with OP=2000 or 3000 and XM=FFFFFEFF
STAR <task name> - starts the named task with OP unchanged

STAR ALL - starts all ready or waiting tasks with OP unchanged

Once set into execution, a task will continue to execute until ite
a. Has a normal (maskable) exception that is enabled by its exception mask.

b. Has an urmaskable exception event controlled by that task's pseudo
registers, including tracing a specified number of instructions, changing
the monitored address, or hitting a breakpoint.

c. Is explicitly stopped by the STOP, TERM, or QUIT commard.

d. Terminated normally or abnormally via a TRAP #1 directive under program
control.

NOTE: The BREAK key will NOT affect the execution of any task.

In single tasking mode, the DEbug prompt is delayed until the event which
concludes execution has occurred. In multitasking mode, the DEbug prompt is
returned to the user prior to the completion of a task's execution. The user
may now issue DEbug commands to other tasks or type WAIT. In either case, an
event message will notify the user when the executing task has concluded.

The STAT command will permit a snapshot of a task's progress while in execution.
An 'e' displayed before a task's status indicates that the task is actively
executing. A DF commard will then display the register values of the associated
task at the time of the last STAT command. Changes to a task's registers,
pseudo registers, or breakpoint addresses are prohibited during execution. To
set a new breakpoint, it is necessary to use the command sequence:

Debug ? STOP <task name> Resets XM to OlFFFFFl.

Debug ? TASK <task name> Makes <task name> the foreground task.
Debug ? BR <address> Sets the new breakpoint.

Debug ? STAR <task name> Allows previous .OP register options to

remain in effect.

The MD command may be used to display a task's memory during execution. MS is
also enabled, but extreme caution is urged in regards to dynamically altering an
executing task's memory.

3.2.3 DEbug Pseudo Registers

In addition to the normal task processor registers A0-A7, DO-D7, PC, and SR, the
user task can manipulate the following pseudo registers which communicate
specific constraints to VERSAdos in controlling the user task's monitored
execution.

MC The maximum count value controls the count of user task instructions to be
traced during execution. Displayed as a 4-byte value, the low order two
bytes are the count while the upper bytes are updated by VERSAdos to reflect
the current count of instructions traced to date. MC is in effect if OP bit
11 is set. Thus OP=2800 combines the address stop and maximum instruction
count features. See .OP, .MC, ard TR.

OoP

VA

The execution option pseudo register controls the monitored manner of
execution., It permits the user task to run free, trace a specified number
of instructions, or monitor a given memory address for change in conjunction
with the settings of the pseudo registers MC, VA, VL, VM, and XM. The need
to adjust these pseudo registers explicity will be minimized by GO, TR, and
AS, which provide the most common settings automatically. See .OP, .MC,
VA, VL, GO, TR, AS, and STAT.

The value pseudo register contains a 4-byte value masked by the VM pseudo
register for comparison with the current contents at the memory address
contained in VL. In the address stop on equal mode setting of OP (=3000),
the VALUE EQUAL event will stop the task's execution with the PC at the
instruction following that which set the monitored location to the VA value.
See .VA, .VL, .VM, and .OP.

The value location pseudo register is a 4-byte even address of the memory
location within the task's segment to be monitored for change in conjunction
with OP=(2000 or 3000). See .VA, .VL, .OP, and AS.

The value mask is a 4-byte mask ANDed to the memory content at address
location (VL) prior to comparison with the value (VA). Under OP=3000, a
VALUE EQUAL event will occur appropriately. Note that a mask setting of
FF000000 will isolate a single byte for comparison.

The exception monitor mask controls the display of exception event messages
declared previously. The mask initially defaults to O1FFFFFl, which enables
all events except TRAPS #1, #2, and #3. If a user task desired to handle
its own zero divide exceptions, a mask value of OlF7FFFl would apply. See
XM, MASK, and STAT instructions to manipulate XM.

3-4

3.3 PRIMITIVE COMMANDS
DEbug primitive commands are listed in the following table.

TABLE 3-2. DEbug Primitive Commands

COMMAND SYNTAX DESCRIPTION
AS [<address>] [<Kvalue>] Address stop
[NOIBR [<address>]... Set/reset breakpoint
DE Default to attach/detach printer
DF Display format
G[O] Execute target task
HE[LP] Display commands
MD <address> [<count>] Memory display
MS <address> <byte 1> [<byte 2> <byte 3>]...
Memory set
OF [<register> <value>] Offset
Q[UIT] Quit (go to VERSAJOS)
T[R] [<count>] Trace target task
ATTA <task name>[,<terminal>|#*] Attach task
DETA [<task name)>] Detach task
EVEN [<task name>] ,<exception #> Event definition
LOAD <file name> [<command line>] Load (task)
MASK [<task name>] ,<exception #> Mask exception
STAR [<task name>] |ALL] Start task(s)
STAT [<task name>,<{status>] Status definition
STOP [<task name>|ALL] Stop task(s)
TASK <task name>[,<note level>] Task notify
TERM <task name> Terminate task
WAIT Wait task
.A0-.A7 Display/change address register
.DO-.D7 Display/change data register
MC Display/change maximum count
(software register)
.OP Display/change execution options
(software register)
.PC Display/change program counter
.SR Display/change status register
.ST Display/change task state
.VA Display/change value
(software register)
.VL Display/change value location
(software register)
VM Display/change value mask
(software register)
XM Display/change exception mask
BREAK Abort command
CTRL-S Redisplay line
CTRL-H Delete character
CTRL-W Suspend output (1)
CTRL-X Cancel command line
CR (Carriage Return) Send line for execution

NOTE: (1) When CTRL-W is used, the entry of any character will cause the
output display to continue.

3-5

3.3.1 Address Stop (AS) AS
AS [<address>] [<Kvalue>]

The AS command starts program execution with a breakpoint type condition on the
designated value address (.VA) pseudo register. The values of value location
(.VL), value mask (.VM), and .VA are updated, depending on parameters supplied.
If both address and value parameters are provided, program execution will
terminate when the address equals value. Otherwise, a stop-on-address-change
rather than stop-on-equal mode of execution is in effect. The .M register is
applied to memory location .VL to achieve comparisons of less than four bytes.
Thus, .VM values of SFF000000 and S$FFFF0000 are used for byte or word fields

beginning at location .VL.

COMMAND FORMAT

AS

AS <address>

AS <address> <value>

AS <address> <value>;<mask>

AS <address>;<mask>

EXAMPLES
Debug ? AS 1D08
Debug ? AS 1D08 20

DESCRIPTION

Target begins execution using previous values of
VL, .VA, and .VM in stop-on-address-change mode.

<address> is stored in .VL and target execution
begins in stop-on-change mode.

Both .VL and .VA are updated and target execution
commences in stop-on-equal mode.

Same as preceding format except <mask> specifies
B, W, or L. Default <mask> is L.

Same as secord example above except .VM is
updated to a <mask> of B, W, or L.

COMMENTS

$1D08 is stored in .VL. Task begins execution at
address in .PC. $2000 is stored in ,OP to cause
memory location $001D08 to be compared with .VA
for change after executing each instruction. .VA
is initialized by the monitor as the original
content of $001D08 prior to executing the first
instruction, This 1is stop-on-address-change
mode.

Functions as above except a value of S$FF000000 is
placed in .VM and $20000000 is placed in .VA. An
exception event to halt the task will occur only
if program execution caused the byte at address
$001D08 to become $20. This is stop-on-address
equal mode.

3.3.2 Set Breakpoints (BR) BR
Reset Breakpoints (NOBR) NOBR

BR [<address>]...
NOBR [<address>]...

The BR command enters the address into the internal breakpoint table. During
execution of the target task, a debug halt occurs immediately preceding the
execution of any instruction whose address is in the breakpoint table. In this
case, the halt reason is breakpoint.

The NOBR command is used to remove one or more breakpoints from the internal
breakpoint table, and functions as the inverse of the BR command.

COMMAND FORMAT DESCRIPTION
BR Display all current breakpoints.
BR <address> Set a breakpoint.
BR <addressl> <address2>... Set several kreakpoints.
NOTE

DEbug affects breakpoints by implanting a privileged
instruction at the breakpoint addresses. Thus,
breakpoints will not be properly processed unless
bit 22 is set in the exception mask.

COMMAND FORMAT DESCRIPTION

NOBR Reset all current breakpoints.
NOBR <address> Reset a breakpoint.

NOBR <addressl> <address2>... Reset several breakpoints.
EXAMPLES COMMENTS

Debug ? BR 1080 Sets a breakpoint at $1080.

Debug ? BR 1084 109A 984 Sets three breakpoints.

Debug ? NOBR 109A Removes the third breakpoint.
Debug ? NOBR Removes the remaining breakpoints.

3.3.3 Default to Attach/Detach Printer (DE) DE
DE

The DE command displays the current state of the printer echo option.
Responding Y or N to the prompt will cause MD output to be echoed to the line
printer or suppressed.

EXAMPLE COMMENT
Debug ? DE
PR HCHO = N (Y/N)? ¥ Enables the printer.

3.3.4 Display Target Task Registers (DF) DF

DF

The DF cammand is used to display all registers of the foreground task.

COMMAND FORMAT DESCRIPTION

DF The contents of the following target task registers are
displayed:

DO-D7
AO0-A7
PC
SR

EXAMPLES COMMENTS
Debug ? DF Displays the registers as follows:
DO-D7 00000000 00000000 00000000 00000000. ..

A0-A7 00000000 00000000 00000000 00000000...
PC=00000000 SR=0000

3.3.5 Execute Target Task (G) G

G[O]

The G or GO command is used to cause execution of the foreground task. The
option (.OP) pseudo register is automatically set to $0000.

EXAMPLE COMMENT

Debug ?G Target begins or continues to execute.

3.3.6 Display Commards (HE)

HE[LP]

The HE or HELP command lists the primitive commands, as shown below:

AS
[NO] BR

DE

DF

G

MU

MS

OF

QUIT

TR

[<addr>] [<value>]
[<addr>] eewe

[<addr>]

<addr> [<count>]
<addr> <datad....
[<reg> <value>]

[count]

.AO_>.A7' .D0_>.D7 .m .SR .XM .ST

ATTA
DETA
EVEN
LOAD
MASK
STAR
STAT
STOP
TASK
TERM
WAIT

Debug

[<task>] [<#crt>]
[<task>]

[<task>] <#exception>
<task> [<comline>]
[<task>] <#exception>
[<task> | ALL]
[<task> <status>]
[<task>] ALL] .
<task> [<#notify>]
<task>

?

ADDRESS STOP (On change or = Value)
BREAKPOINT List, Set or Delete Multiple
DEFAULT List, Set Options

DISPLAY FORMATTED Registers

&0 into Execution (Foreground Task)
MEMORY DISPLAY (default count=16 bytes)
MEMORY SET (Data bytes spaced out)
OFFSET REGISTER List, Set or Delete
QUIT (Terminate Debugging Session)
TRACE (CR will continue TRACE)

.VL .VA VM .MC REGISTER List or Set
ATTACH Task to DEBUG (Remote crt I1/0)
DETACK Task from DEBUG (Continues Exec)
EVENT CREATED for a Task

LOAD TASK (with COMLINE)

MASK Exception Toggled

START Task(s) into Execution like GO
STATUS List or Set (DORM,REDY or WAKE)
STOP Task(s) Execution & Set DORMANT
TASK becames FOREGROUND with BP option
TERMINATE Task

WAIT for {BREAK} to display PROMPT

3-11

3.3.7 Memory Display at Terminal (MD) MD

MD <address> [<count>]

The MD command is used to display the count bytes of memory beginning at
<address> on the user's terminal. The displayed bytes must be contained in one
segment .,

COMMAND FORMAT DESCRIPTION

MD <address> Display memory beginning at <address> for a count
of $10 bytes.

MD <address> <count> Display memory beginning at <address> for count
bytes.

EXAMPLES COMMENTS

Debug ? MD 400 Displays 16 bytes beginning at address 00000400.

Debug ? MD 400 30 Displays memory content fram 400 through 42F.

Debug ? MD 0 200 512 bytes of memory displayed beginning at address
00000000.

3-12

3.3.8 Meamory Set (MS) MS

MS <address> <bytel [<byte2 <byte3]...

The MS cammand is used to set memory beginning at <address> and extending
through subsequent locations to the values specified by the input bytes.

COMMAND FORMAT DESCRIPTION

MS <address> <byte 1> Set the byte at <address> to <byte 1>.

MS <address> <byte 1> <byte 2> Set the bytes at <address> and <address+l> to
<byte 1> and <byte 2>, respectively. A space
is required between multiple byte entries.

EXAMPLES) COMMENTS

Debug ? MS 400 0A Sets memory address 000400 to S$SOA.

Debug ? MS 401 OB OC OD Sets addresses 401-403 to $0B, $0C, and S$OD,
respectively.

3-13

3.3.9 Base Register Offsets (OF) OF
OF [<register> <value>]

The OF camand is used to define up to eight base registers numbered 0-7 within
the task that corresponds with section definitions that reset the relative
location counter to zero. This permits syntax like 6+R3 to be evaluated as
logical address $1A06 if base register 3 was initialized to $1A00. If base
registers are defined they will be used in displaying memory or breakpoint
addresses.

COMMAND FORMAT DESCRIPTION

OF Display current base register values

OF <register> <value> Define base register number (register) to be that
hex value.

OF <register> 0 Cancel effective base register.

EXAMPLES COMMENTS

Debug ? OF Displays the eight offset base registers.

Debug ? OF 1 4AA Sets R1 to 000004AA.

Debug ?0F 10 Resets Rl to zero.

3-14

3.3.10 Terminate Debugging Session (Q) 0

Q[UIT]

The Q or QUIT commard is used to terminate DEbug and all target tasks
simultaneously.

EXAMPLE COMMENT

Debug ? Q[UIT] DEbug immediately terminates all target tasks and
= returns control to VERSAdos.

3-15

3.3.11 Trace Target Task (T) T

T[R] [<count>]

The T or TR command causes execution of a specified number of instructions. If
<count> is omitted, the default is one. In trace one mode, a carriage return
will trace one more instruction. The PC is displayed with the event message of
the next instruction to be executed. In trace count mode, TRAP instructions are
not counted.

COMMAND FORMAT DESCRIPTION

T Traces one instruction.

T <count> Traces number of instructions specified by count.
EXAMPLES COMMENTS

Debug ? TR Traces the next instruction. A (CR) will trace one

more instruction each time it is depressed.

Stores 6 in .MC register. Sets .OP register to
$0800, which results in tracing the next six
instructions.

Debug ?

|3
|on

3-16

3.3.12 Attach a Task to DEbug (ATTA) ATTA
ATTA <task name>[#<termina1>|#*]

The ATTA command will attach DEbug to a task already in memory. Tasks usually
are first loaded using the LOAD command; however, they may be attached to DEbug
if externally loaded as long as they have the same session number. The option
#<terminal> routes that task's console I/O to a remote terminal; otherwise, the
task messages will appear on the DEbug terminal. The option #* denotes no LUNS
are to be passed to the task for temminal I/0. This option is required when the
task was loaded external to DEbug.

EXAMPLES COMMENTS

Debug ? ATTA ,#CNO1 Routes task messages to CNOl.

bDebug ? ATTA TEST Attaches load module TEST to DEbug.

Debug ? ATTA TEST,#* Attaches TEST which was loaded externally to DEbug.

3-17

3.3.13 Detach a Task fram DEbug (DETA) DETA

DETA [<task name>]

The DETA cammand disassociates that task fram DEbug. Execution of that task is
not affected as it is known to and serviced by VERSAdos; however, DEbug
canmands other than ATTA may not be issued to it. Existing breakpoints will be
extracted automatically prior to detaching the named task.

EXAMPLES COMMENTS
Debug ? DETA Detaches the foreground task.
Debug ? DETA MASTER Detaches the task named MASTER.

3-18

P

3.3.14 Create an Event for a Task (EVEN) EVEN

EVEN [<task name>] ,<exception #>

The EVEN commard will create an event of the exception number type specified for
the named task. This is useful to allow checkout of ASR-related (Asynchronous
Service Routine) task code. An attempt to acknowledge the event with an AKQRST
directive in the ASR will fail since no target task is waiting to resume
execution.

EXAMPLES COMMENTS
Debug ? EVEN ,16 Simulates a bus error for the foreground task.
Debug ? EVEN TEST,8 Queues a TRAP #8 event to the ASQ (Asynchronous

Service Queue) of task TEST.

3-19

3.3.15 Load Module into Memory (LOAD) LOAD

LOAD <file name> [<command line>]

The LOAD command is typically the first command issued in the multitasking mode.
Standard VERSAdos file name conventions apply with the default suffix being .LO.
If volume defaults apply, the first four characters of <file name> are used as
<task name>. Any characters following the blank which terminates <file name>
are assumed to be a cammand line which is passed appropriately in the VERSAdos
initialized processor registers. Tasks are in the ready state after loading.

COMMAND FORMAT DESCRIPTION

LOAD <volume)>:<user#>.<catalog>.<file name>.<ext> Loads the load module into
MEemory.

LOAD <file name> Does the same, assuming

defaults apply.

LOAD <file name> <command line> Ioads the .LO module,
passes the command line
length in D6, and moves
the command line text to
the designated <command
line> buffer.

EXAMPLE COMMENT

Debug ? LOAD TESTASM ;D A test version of an
assembler is loaded with
the ;D option. The <task
name> is TEST.

3-=20

3.3.16 Alter Task's Exception Mask (MASK) MASK
MASK [<task name>] ,<exception #>

The MASK command inverts the bit of the specified exception in the named task's
XM pseudo register., This will switch the enable/disable state of event
recognition and the corresponding message display. For example, assuming the
standard XM mask of SO1FFFFFl, the command 'MASK , 2' will cause the foregrourd
task to stop execution and display the message 'TRAP #2 PC=address' whenever
it calls the I/0 handler. 1Issuing the MASK command again will reset XM from
SO1FFFFF3 to SO1FFFFFl and ignore TRAP #2 instructions in the user task.

EXAMPLES COMMENTS

Debug ? MASK MAIN,7 Inverts the numbered bit in the named task's XM
register.

Debug ? MASK ,7 Does the same for the foreground task.

3-21

3.3.17 Start Execution of a Task (STAR) STAR
STAR [<task name>|ALL]

The STAR cammand commences execution of the named task if in the ready or wait
command state. This is equivalent to doing a GO command for the foreground task
but without setting the .OP register to zero. STAR ALL will continue the
execution paths of all tasks not already in execution or in the dormant state.

EXAMPLES COMMENTS

Debug ? STAR Start execution of foreground task with prior OP
option.

Debug ? STAR SAMPLE Does the same for the task named SAMPLE.

Debug ? STAR ALL Starts all tasks in ready or wait state.

3.3.18 Display Current Task's Status (STAT) STAT

STAT [<task name>,<status>]

where <status> may be:
DORM issues STOP directive to a ready task. Task becomes dormant.

REDY issues START directive to a dormant task., Task becomes ready for
execution,

WAKE issues WAKEUP directive to a waiting task. Task becomes ready for
execution,

The STAT command lists the status information of all tasks or allows a specified
task's status to be changed.

The STATUS display header includes these fields:

TASK First four characters of the task name.
SESS Four digit session number.
STATE Literal status REDY, WAIT or DORM prefixed by "e" if in execution.

EVENT Contains 4 subfields of data
< the foreground task
Task Note Level = the lead digit (see TASK command)
Last Event Type = A, D, or X (Attach, Detach, Exception)
Last Event Code = 2 hex digits (22 = Breakpoint)

@pC Task PC following last event.

PC NOW PC (being a few millisecords prior if task in execution).

SR Status register in hex (a few milliseconds prior).

MASK Current .XM pseudo register in effect for task event exceptions.

TCB STAT Hex long word. Consult RSTATE directive for bit interpretation.

op Current .OP pseudo register in effect for tasks execution options.
CRT Terminal ID assigned to task for normal keyboard and screen I1/0.
EXAMPLES COMMENTS
Debug ? STAT Displays status of all tasks known to DEbug.
Debug ? STAT DORM,REDY Changes task DORM's state to REDY.

3-23

3.3.19 Stop Execution of a Task (STOP) STOP
STOP [<task name>]|ALL

The STOP command terminates execution of a task and leaves it in the ready
state. A STOPPED event message for the task signals completion of the process.
STOP ALL will affect all tasks currently flagged in execution. Note that the
BREAK key has no effect on task's execution status.

EXAMPLES COMMENTS

Debug ? STOP Stops execution of the foreground task.

Debug ? STOP WRITER Stops execution of the task named WRITER.

Debug ? STOP ALL Sggps execution of all tasks running under
DEbug .

3-24

3.3.20 Change Another Task to the Foreground (TASK) TASK
TASK [<task name>] [,<note level>]

The named task will appear in the next prompt as the foreground task. Primitive
level DEbug commands now apply to that task. The <note level> option directs
DEbug's response to breakpoints for this task. The following codes allow the
user to see or suppress breakpoint messages, as well as to halt or continue
execution as a result of encountering a breakpoint.

Note Task Breakpoint Become
Level Execution Message Foreground Use
0 STOPS Suppressed No Concentrate on foreground
1 (default) STOPS Displayed No Normal setting
2 CONTINUES Displayed Yes Saves TASK commard
3 CONTINUES Displayed No Procedure trace without GO's
4 CONTINUES Suppressed No Disables breakpoints without
reentering
EXAMPLES COMMENTS
Debug ? TASK IMPACT Change prompt to new foreground task named IMPACT.
Debug ? TASK SHORT,O0 Suppresses breakpoint messages for task named
SHORT .
Debug ? TASK ,2 Current task becomes foreground when a breakpoint

is encountered.

3-=25

3.3.21 Terminate a Task's Execution (TERM) TERM

TERM <task name)>

The TERM command banishes a task from memory. Execution terminates and the task
becomes unknown both to DEbug and VERSAdos. The LOAD command would reacquaint
it with VERSAdos and ATTA would then establish DEbug control over it. DEbug
does not automatically terminate itself when all user tasks are terminated. The
QUIT command will terminate all user tasks and the DEbug task. Use QUIT rather
than TERM to conclude a debugging session. <task name> is a required argument.

EXAMPLE COMMENT

Debug ? TERM CURE Terminate the user task named CURE.

3-26

3.3.22 Wait for Event (WAIT) WAIT
WAIT

The WAIT command will suppress the DEbug prompt message until a task has an
exception event or the BREAK key is depressed. Task directed I/O to the CRT is
unaf fected.

EXAMPLE COMMENT

Debug ? WAIT DEbug will cease prompting for commands.

3-27

3.3.23 Display/Change Specified Register

.<register> [<value>]

The .<register> command is used to display or set the specified register
pseudo register belonging to the foreground task.

.AO_ 0A7
.DO— . D7

MC
.OP
.PC
-SR
ST
VA
VL
M
XM

COMMAND FORMAT

.{register>

.<register> [<value>]

See also:

EXAMPLES
Debug
Debug
Debug

Debug

Debug

Debug

Debug

DF, MD, OF.

A5 3FD

.D4 0

)

address register

data register

maximum instruction count (software register)
option (software register)
program counter register

status register

task state register

value (software register)

value location (software register)
value mask (software register)
exception mask register

DESCRIPTION
Display contents of specified register.

Replace contents of specified register with value.

COMMENTS
Displays address register AS5.
Sets address register AS to S$3FD.

Zeros data register D4.

or

Displays the program counter address at which
execution of the foreground task will resume

following a GO, TR, STAR, or AS command.

Sets the program counter to resume execution at

memory location $1020.
Sets maximum instruction count for trace at 4.

Displays current options register for monitor:

$0000 means GO

$0800 means TRACE maximum <count> instructions.
$1000 means TRACE one instruction.

$2000 means STOP on .VL address change.

$3000 means STOP on .VL address equal .VA.

3-28

Debug

Debug

Debug

Debug

Debug

Debug

Debug

? .SR 8004

ST

VA 5

2 JVL 10C8

.vM

? XM 01FFFF1

Displays the status register condition codes. Bits
0-7 are user byte; bits 8-15 are system byte. User
byte format is O0O0O0XNZVC for extend, byte negative,
zero, overflow, and carry conditions, as set by the
previously-executed instruction.

Sets trace mode (system byte) and zero condition in
status register.

Displays monitor status word of task. See RSTATE
directive for bit interpretation.

Sets value pseudo register to 5.

Sets value location (to be monitored by
stop-on-address option) to $10C8.

Displays value mask applied to the content of memory
at .VL before comparison with value in .VA.

Sets exception mask register to enable all events
except TRAPS #1, #2, #3, and #7.

3-29/3-30

SUGGESTION/PROBLEM
REPORT =

Motorola welcomes your comments on its products and publications. Please use this form.

PERFORMANCE

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282
Attention: Publications Manager
Maildrop DW164

Product: Manual:

COMMENTS:

Please Print

Name Title

Company Division

Street MailDrop _________ Phone
City State Zip

For Additional Motoroia Publications
Literature Distribution Center

616 West 24th Street

Tempe, AZ 85282

(602) 994-6561

Microsystems Field Service Support
(800) 528-1908
(602) 829-3100

@ MOTOROLA

MOTOROLA Semiconductor Products Inc.

PO. BOX 20912 ® PHOENIX, ARIZONA 85036 ® A SUBSIDIARY OF MOTOROLA INC.

16362-1 PRINTED {N USA (11/83) MPS 2M

