Mince Internal Documentation
Table 9£ Contents

Chapter 1 Program Logic Manual
1.1 Generalities

1.1.1 ¥Notes on Data Abstractions
1.1.2 Quick Review of Mince
1.1.3 Code Structure

1.2 Specifics

2.1 Supplied Files

2.2 Coding and Documentation Conventions
2.3 Constants and Globals
2.

1.
1.
1.
1.2.4 Conditional Compilation Flags

s v

1.3 Extending and Modifving Mince

.1 An Example

.2 On Changing Mince

.3 Compiling and Linking Mince
.4 Debugging Code

Chapter 2 Entry Points

2.1 Top Level and Redisplay Routines
2.2 User Level Buffer Desgcription
2.3 Memory Allocation Abstraction
2.4 Queue Abstraction

2.5 Buffer Abstraction

1

2 Inserting and Deleting Text

3 Beginning of Buffer, End of Buffer,
Basic Motion

4 Status and Complex Movement

5 Mark Manipulation

6 Reading and Writing Files

7 Private Routines

Chapter 3 Source Code

3.1 Control Commands: File COMM1.C

Initialization and Buffer Manipulation

3.2 Meta Commands: File COMM2.C
3.3 Control-X Commands: File COMM3.C
3.4 Support Routines: File SUPPORT.C

Chapter 4 The Terminal Abstraction

Initialization and Termination Routines
Cursor Positioning

Display Routines

Printing Text

Low Level Output and Keyboard Drivers
Internal Routines

NS S S
- L]
Oy U1 W L B

Chapter 5 Theory and Practice of Text Editors

(NOTE: This chapter is internally sectioned
into chapters, sections, and subsections.)

l. Introduction

2. Memory Management
Data Structures
Marks

2.1
2.2
2.3 Interface Procedures
2.4 Buffer Gap

2.4.1 Gap Size
2.4.2 Multiple Gaps and Why They Don't Work
2.4.3 The Hidden Second Gap

2.5 Linked Line

2.5.1 Storage Comparison
2.5.2 Error Recovery Comparison

2.6 Multiple Buffers

2.7 Paged Virtual Memory

2.8 Editing Extremely Large Files
2.9 Scratchpad Memory

3. Incremental Redisplay

3.1 Line Wrap

3.2 Multiple Windows
3.3 Terminal Types

3.3.1 TTY and Glass TTY

3.3.2 Basic

3.3.3 Advanced

3.3.4 Memory Mapped

3.3.5 Terminal Independent Output

5.

3.3.6 Echo Negotiation

3.4 Approaches to Redisplay Schemes
3.5 The Framer
3.6 Redisplay Algorithms

3.6.1 The Basic Algorithm
3.6.2 The Advanced Algorithm
3.6.3 Memory Mapped

3.7 Other Details

Tabs

Control Characters
End of the Buffer
Between Line Breakout

Proporticonal Spacing and Multiple Fonts
Multiple Windows

Wl W W W
L RN R B N S |

L] . L] L]
LA Wk

The Command Loop
4.1 Basic Loop: Read, Eval, Print
4.1.1 The Philosophy Behind the Basic Loop

4.2 Error Recovery
4.3 Arguments

4.3.1 Prefix Arguments
4.3.2 String Arguments
4.3.3 Positional Arguments

4.4 Rebinding

4.4.1 Rebinding Keys
4.4.2 Rebinding Functions

4.5 Modes

4.5.1 Implementing Modes

4.6 Kill and Unbo

4.7 Implementation Languages
7.1 TECO

Sine

Lisp

PL/1, C, etc.
Fortran, Pascal, etc.

LN S A =Y

-~ ~3 ~d]
. & ® & &
ks o b

User Interface Hardware

5.1 Keyboards

5.1.1 Special Function Kéys and Other
Auxiliary Keys
5.1.2 Extra Shift Keys

5.2 Graphical Input
5.2.1 How It Can Be Used

5.2.2 Devices: TSD, Mouse, Tablet,
Joystick

6. The World Outside of Text Editing

I. Annotated Bibliography

6,1 Emacs Type Editors

1.1 ITS BMACS

2 Lisp Machine Zwei
3 Multics Emacs

4 MagicSix TVMacs

5

6.
6.
6.
6.
6. Other Emacs

1.
ll
ll
1.
6.2 Non-Emacs Display Editors

6.3 Structure Editors
6.4 Other Editors

II. Some Implementations of Emacs Type Editors

IIT, Partial Emacs Command List

Mark of the Unicorn Program Logic Manual

Chapter 1

Program Iogic Manual

1.1 Generalities

This is the program logic manual for Mince. It disucusses a
variety of topics: First, it reviews the basic terminology used
to discuss the editor and identifies the parts of Mince. Secondg,
it explains the conventions and structure in the implementation.
Third, it discusses the file MINCE.GBL and reviews the use for
each of the variables found there. Finally, it warns about some
potential pitfalls in modifying the existing code. These topics
are not discussed in any particular order. Throughout the manual
comments on customizing Mince will be made. These comments will
be indented, as in:

First customization note. When you are writing a new
command, it is a good idea to make a copy of an
existing function which does a related task and modify
that copy. Writing new commands from scratch is much
harder,

This chapter cannot be read by itself. In order to get a full
understanding of the structure of Mince and how to modify it, the
rest of the manual is needed. First and foremost is the Mince
User's Guide. It can answer gquestions about general concepts: for

example, wh¥_ MYOU want to, use GetArg as opposed to Ask. It
expldins wha ince looks like to the user.

Next is the Complete Command List. That document gives the
definition of each command in words. You can then look at the C

source code and see how that command is actually implemented.
That chapter is also useful in reverse. If you are looking at
some code and can't figure it out, looking at the English
description can be of great help. Both the Mince User's Guide and
the Complete Command List appear in the Mince User's Manual.

The third chapter of use is "Theory and Practice of Text

Program Logic Manual Mark of the Unicorn

Editing." This chapter describes the structure of a text editor
and spends a lot of time discussing text buffers and the
redisplay, two major parts of Mince for which source code is not
supplied. In spite of the fact that the chapter was written only
last May (1980) and Mince was written in October (1980), the
underlying software technology has changed substantially.
However, the chapter does provide a solid base upon which to
understand Mince and the general approaches presented are still
valid. Note that the buffer interface described in that chapter
are not the same as those actually used in Mince.

The fourth item of interest is the Entry Point Documentation.
This chapter documents each entry point in Mince for which source
code is not supplied. It gives enough information for each entry
point to allow you to use that entry point.

The fifth item of interest is the Source Documentation. It
explains in great detail some of the more complicated routines
for which source code is supplied. This item also describes the
interface for each routine in SUPPORT.C. Understanding what these
routines do is often the key to understanding a routine that they
are used in. An extreme example is DoReplace. The entire Query
Replace command (MQryRplc in COMM2.C) merely calls
DoReplace (TRUE) .

The final useful item for understanding Mince 1s the socurce
code itself. In it, you see a concrete implementation of what atl
this documentation can only talk about in abstract terms.

1.1.1 Notes on Data Abstractions

Data abstractions are programming tools. Like any tool, they
can either be appropriate to a given situation or not and they
can be both correctly and inceorrectly applied. We used them in
Mince because they were appropriate and aided us in the
development.

A data abstraction is a collection of subroutines and data.
Only those subroutines are allowed to access that data, and that
data serves as the sum knowledge that the subroutines have about
the "world."” An imaginary 1line can be drawn around these
subroutines and data. All knowledge about the internal
representation of the data is contained within this line.

The data abstraction is manipulated by calling the subroutines
and passing them arguments. A subroutine is defined for every
operation that can be done with the data.

Mark of the Unicorn Program Logic Manual

The data abstraction 1is defined by its interface to the
outside. Any internal arrangement of data and procedures that
implements the interface is acceptable and DIFFERENT
IMPLEMENTATIIONS ARE COMPLETELY INTERCHANGABLE! This last
property is of critical importance. It allows substantial
revisions of programs while confining these changes to only those
procedures that are directly affected. For example, while
developing Mince, we rewrote the buffer abstraction so as to
provide virtual memory. No command routines had to be modified at
all. Without the high degree of information isolation provided by
the buffer abstraction, this change would have proven much more
difficuit.

In summary, a data abstraction is a way to contain information.
It does this by hiding all of the internal representations and
only showing the "outside wor1d" a clean, simple interface.

1.1.2 Quick Review of Mince

Mince is a multi-buffer in-memory text editor. This means that
it edits a copy of a file by reading it into a text buffer. This
buffer is usually in main memory (i.e. RAM). Having more than one
buffer allows you to edit several files at once by copying each
of them into a different buffer, then switching back and forth
from buffer to buffer. S8Since the available main memory space
(RAM) may not be large enough to store all of the text which can
be read into bhuffers, the existence of additicnal main memory is
simulated by a virtual memory system, which copies parts of
buffers from main memory to disk (i.e., secondary storage) and
vice versa as necessary. (The buffer abstraction, whose entry
points are described elsewhere, handles both of these functicons.)

Each buffer has a Point associated with it. A1l editing changes
take place at the Point. There are also a number of marks which
can be placed anywhere in any buffer. A mark will stay in the
same place with respect to the surrounding text no matter what
changes go on around it. Each buffer always has a distinguished
mark associated with it. It is this mark that is referred to as
"the Mark" in the user documentation.

A buffer also has a mode list. Modes are ways of tailoring the
command set on a per-buffer basis. Modes are coded in C and
represented 1in Mince as the differences between the default
command set and the desired one.

Each keystroke that is typed invokes a function to implement
the meaning associated with {or "bound to") that kevy.

Program Logic Manual Mark of the Unicorn

Customization Note. When devising modes, it helps a
tot if they don't rebind an existing command or, if
they do, that the same command kev is not also rebound
by another mode. Page mode and Fill mode have this
problem: if you invoke Fill mode first, after Page mode
is added it destroys the definition of Auto Fill Space

which was bound to the Space key. Such things are
annoying at best.

Mince is implemented as an editor within an editor. The outer
editor interfaces to the user and reformats his or her desires so
as to Dbe executable by the inner editor, known as the buffer
abstraction. It might help to think of its interface as a user's
manual for the inner editor.

The buffer abstraction sub-editor takes all memory left over
after the code, globals, and operating system have taken what
they need and divides it into 1K pages. These pages are used to
store the contents of the buffer. They are swapped between memory
and the swap file on an LRU (least recently used) basis.

In any virtual memory scheme, a page must be swapped
out of main memory to make room for the desired page.
An LRU scheme is one where the page that was least
recently accessed is the one that 1is chosen to be
swapped out. Swapping out a modifed page (the copy in
memory 1s different from the copy on disk) requires
that the page be written to disk. Swapping out an
unmodified page doesn't require any activity. Thus, the
LRU scheme that Mince uses has been modified to try to
swap out unmodified pages first as doing so takes less
time. That is also why Mince swaps out modified pages
(making them unmodifed) when it is otherwise idle; when
you start editing again, it has less work to do.

BFlush is used to implement the delayed write-through. If the
system is idle, pages are written through one by one to the swap
file until everything out there is current. Note that there are
two types of modified pages. One type is what the user sees: a
page (buffer) has had an insert or delete performed upon it. The
other type does not imply insertion or deletion. Rather, it means
that the page is different from the copy of it on the swap file.
It therefore must be written to the swap file before its memory
can be reused. The latter case happens, for example, when reading
a file in for the first time. Although the buffer is unmodifed,
the pages have to be swapped through to disk.

Redisplay 1is the process of updating the user's termingl's
screen to reflect the current contents of the buffer. Mince

Mark of the Unicorn Program Logic Manual

command routines need know nothing about this process as it is
handled automatically by the sub-editor. The redisplay process is
invoked each edit command cycle, just before the editor asks for
a command. If a command has been entered, or if one is entered as
redisplay occurs, the redisplay is aborted and the command is
executed immediately.

The redisplay operates by scanning the buffer and comparing its
current contents with the redisplay's internal model of what is
on the screen. The internal model consists of an array of special
screen marks, one for each screen line. Each screen mark has a
modified flag associated with it. Whenever an insert or dJdelete
operation takes place, the buffer ahstraction automatically sets
the modified flag on the associated screen mark. The redisplay
process thus can determine which parts of the screen could have
been affected. *

1.1.3 Code Structure

The basic edit lcop is as is disussed in "Theory and Practice
of Text Editors," chapter Five. Function Main calls Setup and
then calls Edit. Setup does a 1ot of initialization, but the
important thing is that it calls SetMocdes.

SetModes is a critically important function. It is called at
initialization, when switching buffers, and when adding or
deleting modes. It is responsible for initializing the command
bindings to their new values. It fulfills this task by calling,
in turn, finitl, finit2, and finit3 which set up the default
bindings for Control, Meta, and Control-X commands, respectively.
It then modifies these defaults by going down the mode list for
that buffer and performing the tailoring specific to each mode.

Customization Note. When adding or removing a mode
from the code, the change must occur in two places.
First is in SetModes. The other place that the change
must take place is in CheckModes in SUPPORT.C.

After SetModes has been called, Setup returns and then Edit is
called. Edit performs an IncrDsp (incremental redisplay), waits
for a character, and dispatches to the command routine that the
character is bound to. (A "command routine" is any procedure
which can be called directly from a dispatch table.) Arg is set
to 1 and Argp is set to FALSE.

Any further calls to SetModes will be from commands (e.qg.,
Switch Buffers).

Program Logic Manual Mark of the Unicorn

At this point, each command can assume the following
environment:

Arg is set to 1

Argp is set to FALSE

Lfunct points to the function bound to the command
that was executed before this one (the "last
function" executed)

Cmnd is set to the character that was typed by the
user to generate this command

Note that "this point" does not always exist., If a C-U
(Universal Argument, MArg in COMM1.C) is typed, it will
eventually dispatch again to the commands. In that case, Arg will
in general not be 1, Argp will be TRUE, and Cmnd will still be
the character that was bound to you. Similar changes happen with
the Meta and Control-X dispatch functions. Note that 128 <= Cmnd
<= 255 indicates a Meta command and 256 <= Cmnd <= 383 indicates
a Control-X command.

If Arg is greater than one when you return back to edit, edit
will decrement it and call you again.

1.2 Specifics

1.2.1 Supplied Files
There are several source files supplied with Mince. They are:

BINDINGS.C Source code for the key binding functions
finitl, finit2, finit3, and SetModes.

CoMMl.C Source for Control commands. COMM1, COMM2, and
COMM3 have the routines listed in the same order
as appears in the full command 1ist, i.e. in the
same order as the ASCII collating sequence for
the keys to which they are bound.

COMM2.C Source for Meta commands.

COMM3.C Source for Control-X commands.

1-6

Mark of the Unicorn Program Logic Manual

SUPPORT.C Source for support routines used Dby the
commands. They are listed in alphabetical order.

1.2.2 Coding and Documentation Conventions

The Entry Point Documentation, the Source Code Documentation,
and the Terminal Abstraction Documentation follow <certain
conventions. First, the name and type of each argument is given;
the return argument is only given 1f the routine specifically
returns a meaningful value. (In C, everything returns a value.)
Second, each global variable that the routine accesses is listed
in those routines for which the source code is not given. Here is
a guide to interpreting the ways that globals are used:

Exports means that that routine sets the glcbal for
other routines' use.

Imports means that that routine reads the value of
that global.

Private means that no other routines should lock at
or set that variable.

Updates means that that routine both reads and
writes the value of that global.

Uses means that that routine bashes any existing
value and leave a garbage value in that global.

Note that there is no 1listing of which globals any of the
command routines access. In general, they utilize globals heavily

and a gquick check of the source code can tell you which of them a
particular routine uses.

The upper/lower/mixed caseness of names also has meaning.

UPPERCASE names are constants. They are initialized
with #defines and are only initialized in
MINCE.GBL.

MixedCase names are procedures. A capital letter
usually indicates the start of a new word (in lieu
of a space or underscore}.

lowercase names are variables or procedures. When

procedures, they usually name a procedure used
only locally.

Within written English text, a lowercase name will often be

Capitalized in order to facilitate its recognition as a variable
or procedure name.

Program Logic Manual Mark of the Unicorn

The first letter of a procedure name usually has meaning as
well. Note that the routines in SUPPORT.C ignore this convention

completely.

letter

A
B
C

HO R

indicates that the procedure is part of the...

dynamic memory Allocator

Buffer abstraction

top level buffer abstraction that makes the
buffer abstraction Compatible with the Mince
user-visible view of buffers

Mince command set

FIFO Queue maintainer

Terminal abstraction

1.2.3 Constants and Globals

This section discusses the contents of the file MINCE.GRL. It

briefly covers

the meaning of each of the constants and globals.

Basic constants and variables:

TRUE
FALSE

NULL

HOME

FORWARD
BACKWARD

SWAPFNAM
SWAP1FNAM

INPUT
OUTPUT
UPDATE

FILMAX
STRMAX
MODEMAX
MAXMODES
BUFNAMMAX
BUFFSMAX

(-1)

0

0 -- the null pointer

0,0 ~-- TSetPoint(HOME) puts you at the upper
left corner

{-1}) -- altername names for TRUE and FALSE to

0 enhance readability in some places

"mince.swp" -- two places where it looks

"a:mince.swp" for the swap file

0 -~ mode for file input

1 ~-- and output

2 ~- and update

15 -- maximum length of a filename

40 -- maximum length of a search string

20 -- maximum length of the mode name string

4 -~ maximum number of modes (per buffer)

9 -- maximum length of a buffername

7 —-= maximum number of buffers

1-8

Mark of the Unicorn Program Logic Manual

mark -- user settable mark in the current buffer
arg -- the numeric argument to a command
argp -— TRUE if an explicit argument was entered,

FALSE otherwise

1col -- column that Next Line and Previous Line
try to leave you in

psstart -- a mark placed one character before the
start of the screen

sstart -- a mark placed at the start of the screen

send -- a mark that tries to be placed at the end

of the screen (not valid if
redisplay wag interrupted)

cnt, tmp -- scratch variables for local use by
commands or support routines., Watch
out for calling and called routines
that use the same variable!

{(*functs[3*128]) () -- the kev bindings table
(*1funct) () -- the previous command invoked

for commands that deal with margins...

fillwidth ~-- the first column text can't be in

indentcol == the first column text can be in

strarg [STRMAX] -~ previous search string

mode [MODEMAX] -- current mode name sting

namearg [BUFNAMMAX] -- previous buffer name

pnt_row -- screen line the Point was on in the
last redisplay

stat_col -- column that the statistics (-%-, etc)
begin in

abort -- set it to TRUE if you want to exit

the editor (abort out of the
command loop)

cmnd -—- current command character {128 <=
cmnd <=255 is a Meta command, 256
<= ¢cmnd <= 383 is a Control-X

command)

cbuff -- index of the current buffer in the
"buffs" structure

del_buff -— buffer descriptor of the delete

Program Logic Manual

abstraction

tmark

Mark of the Unicorn

buffer for use with the buffer

(e.g., BSwitchTo)

-- scratch variable used to hold a mark

user visible buffer structure
struct cbuffer |

bbuff ~— buffer descriptor for use
with the buffer abstraction

bmark -- the user settable mark

bname [BUFNAMMAX) ~= the buffer name

fname [FILMAX] —-- the asscciated filename

bmodes [MAXMODES] -- the 1list of mode ids for

this buffer

} buffs [BUFFSMAX]

Terminal Abstraction constants and variables:

ROWMAX
COLMAX

NUL NG
BELL '\7'
BS 10!
TAB '\11'
LF 12!
CR '\15°
ESC "\33%!
DEL 177!
NL h\21l2"
KBBUFMAX
prow

pcol

Srow

scol
tabincr

60
132

80

maximum configurable % of rows
maximum configurable # of columns

ASCII NULL character (0 decimal, ™)
ASCII BELL character (7 decimal, ~G)
ASCII BACK SPACE character
(8 decimal, “H)
ASCII HORIZONTAL TAB character
(9 decimal, ~I)
ASCII LINE FEED character
(10 decimal, ~J)
ASCII CARRIAGE RETURN character
{13 decimal, "M)
ASCII ESCAPE character
(27 decimal, " [)
ASCII DELETE character
(127 decimal, ~?)
character that Mince uses to mean
Mewline (138 decimal, ~7J)

maximum number of typeahead
characters

position of the screen point

position of the cursor

number of columns between tab stops

Mark of the Unicorn Program Logic Manual

tlrow ~- row number of the saved screen row
clrcol [ROWMAX] —-- for each row, the number of the
column after the last non-blank
character
tline [COLMAX] -- the saved screen line (for redisplay)
lindex -- temporary pointer into tline
struct | -- keyboard input gqueue structure
head
tail
bottom
top
space [KBEBUFMAX]
} kbdg

Terminal Abstraction variables that are read from the swap file
header. The swap file header was written to disk by Config.

NOPAD 0 -- for "padp", if Padp==NOPAD, no
CHARPAD 1 padding is necessary, if Padp==
DELAYPAD 2 CHARPAD, pad with characters, if
Papd==DELAYPaAD, pad with wait Tloop
FIRST 255 -- possible arguments to put_coord.
SECOND 0 Tells whether to put out the first

or the second coordinate this time,

structure describing the terminal
struct termdesc {
ctrlz ~- "7 to tell the world to stop reading
the file, as it will contain what
looks 1ike garbage

Nrows -= number of rows on the terminal

ncols -- number of columns on the terminal
rowbias -- bias to add to the desired row and
colbias -- column when doing cursor positioning
rowfirstp —- TRUE if the row should be sent first
compp -= TRUE if the row and column should be

bitwise complemented after biasing
. and before sending
binaryp -- TRUE if the row and column should be
sent in binary, FALSE if they
should be sent in ASCII
padp -- tells how to pad commands
padchar -- what character to pad with for

Program Logic Manual Mark of the Unicorn

padp==CHARPAD

nheclpad -- amount of padding to do for home and
clear screen
ncleolpad -- amount of padding to do for clear to
end of line
ncpospad -~- amount of padding to do for cursor
positioning
ncleowpad -- amount of padding to do for clear to

end of screen

For each of the operations that follow, this isg the
index and length of the character string to send:

struct str |

idx -- index
len -- length
} het ~- home and clear screen
cleol ~=- ¢clear to end of linen
cleow -— clear to end of window (screen)
cposl -— prefix string for cursor
positioning
cpos2 ~- string to separate the two
coordinates
cpos3 -— postfix string for cursor
positioning
bell -- ring the terinal beill
init -- intialize the terminal
deinit ~-- leave the terminal in a
- reasonable state
strspc[73] -- the space that the above

operations index into. It
must be 73, as it fills
out the disk block.

} terminal

I/0 port descriptions:

struct portdesc {

biosp -- TRUE if the bios is used. 1If FALSE,
the rest is relevant:

dataport -- number of the data port

statport —-- number of the status port

datamask -- ANDed with incoming data

readymask -- ANDed with status to deterine whether

a character is waiting or the port
ig ready for output
polarity -- polarity of the relevant bit. TRUE

1-12

Mark of the Unicorn Program Logic Manual

if "1" bit means the port is ready
} inport --for both input and output ports
outport

Randcom parameters:

prefrow -- preferred cursor row

fillinit -— initial fill column

tabinit -- initial indent column

indentinit -- initial tab increment

mhz -~ processor speed in tenths of
megahertz

delayent -- delay constant for echoing "Meta: ",

etc. as well as wait time before
swapping starts

npages -- number of pages in swap file. Must
be a multiple of 8

swapbase -- base of the actual swap area in
sectors

Spare area for patches:

sparel[l0] - ~- ten integers' worth

Note that you cannot alter these declarations in any way.
However, the 8Spare wvariables are available for use by any
routines that you write.

1.2.4 Conditional Compilation Flags

Mince has conditional compilation flags scattered throughout
the source code. These flags are used to tailor the Mince source

code for a variety of machines and operating systems. The flags
arey

UNIX -- indicates the operating system. only
RSX one of these can actually be on
CPM

SUSER -- single user system

LARGE -- extra command memory available
TYPEAHEAD -- typeahead is detectable

Note that for CP/M systems, the only flag that can be altered is
the LARGE flag.

Program Logic Manual Mark of the Unicorn

1.3 Extending and Modifying Mince

1.3.1 an Exampile

Let us uncover some of the potential pitfalls and see how all
of this hangs together by writing an example function. This
function is a sort of poor man's detabify. It's called MDeTab and
it will find the next Tab character and replace it with the
number of spaces that it represents.

A noticable amount of implicit knowledge was used in the above
paragraph. First, the knowledge of how routines are named
indicated that the function name should be prfixed with "M". ("M"
stands for "Mince.") Second, the knowledge that the general
function (detabification) ig useful is implicit in selecting this
particular example. Third, the knowledge of how this function
could fit in with the ™Mince philosophy®" to serve as the
foundation for a "Detabify Region" command helped to shape the
definition. The "Mince philosophy" is something that is gradually
acguired by writing a (possibly large) number of commands and
trying to fit them in with the existing structure.

The first step is to establish the algorithm., This step is not
as forbidding as it sounds. All that it implies is that we
rewrite the above description in a more formal way:

find the next Tab
figure out how wide it is
replace the Tab with that many spaces

QOr, yet more formally:

search forward through the buffer for a Tab
figure out how wide it is

delete the Tab

insert the correct number of spaces

In C/Buffer Abstraction "Language" this would be:

BCSearch{Tab)

width=TWwidth {(¢column, Tab)
BDelete (1)

call BInsert(" ") WIDTH times

Mark of the Unicorn Program Logic Manual

Note that this is NOT a finished function and, as it stands, it
will not work. It is left at this stage to point out different
ways of making two coding decisions. First, the call to TWidth
might have been coded as a BGetCol, a move backwards one
character, and a second call to BGetCol. The difference between
the returned values in the column positions is the answer (and is
the same number that TWidth will return). Second, the insertion
of the WIDTH spaces can be by an explicit for- or while- loop or
it can be via a call to Indent. This example illustrated that
there is probably a function in Mince that directly does what you
want; your Jjob is to ferret it out.

The finished function looks 1ike this:

?DeTab() /* change a Tab to blanks */
if (!BCSearch(TAB)) return;
BMove (-1);
SIndent (TWidth (BGetCol () ,TAB)};
BDelete(l);

f

The if statement puts in a very important check: if there is no
Tab, we don't do anything. Checks of this sort are very important
in finished code. However, they are not relevant to the

definition and so were left out of the earlier discussion. We
then go backwards over the Tab. Thus, the BGetCol will return the
desired column (the one you are in just before the Tab 1is
"printed"). TWidth takes this column and returns the width of the

Tib. SIndent puts in that many spaces. The BDelete then deletes
the Tab.,

If we were to write a Detabify Region command, this function
would serve as a good base. It does need some touching up,
however. First, it should be passed a mark which was placed at
the end of the region. MDeTab would then not do anything if the
BCSearch left you after the mark. Second, MDeTab would probably
return either TRUE or FALSE, depending upon whether it did
anything. The Detabify Region command could check this flag to
determine whether to continue on in the lcop.

1.3.2 On Changing Mince

As the previous example indicated, there is a lot to know
before you change or extend Mince. The best way to acquire some
of this knowledge is to first become an expert in using Mince.
After all, it is wasteful to write a Center Line command if one

Program Logic Manual Mark of the Unicorn

already exists and you merely didn't know about it. That
knowledge will help you to fiqure out how existing code works and
it will also help you have vyour modifications fit in with the
"Mince philosophy." Unless you are reworking the entire command
set and user interface, users will be much happier if any changes
are in line with the existing philosophy of the program. It is
easier to learn and be happy with an undesirable philosophy that
consistently implemented than with the same philosophy that has
been changed here and there so as to be "less undesirable." Of
course, we feel that our philosophy is not undesirable...

1.3.3 Compiling and Linking Mince

There are a number of points to consider when compiling and
linking a version of Mince. First, the BDS C compiler {(Version
1.42 or higher} must be used for compiling Mince.

The object code files (.CRL) are distributed in two forms. Both
forms were compiled with the -e option. (We estimate a 25%
increase in size without this option.) The object code files for
which source code is not supplied are:

MINCE.CRL LMINCE.CRL
UTIL.CRL LUTIL.CRL

VBUFF1.CRL LVBUFF1.CRL
VBUFF2.CRL LVBUFF2.CRL

The normal-named versions use -e7900 and the versions starting
with "L" use -e8100. The extra 2K of space allows room for adding
functions to Mince. Note that there is essentially no extra space
in the -e7900 versions so if you add code there, you must take
out something else. If more space is required, contact us and we
will generate a special version.

Note: when compiling SUPPORT,C, the -r option must be used to
prevent symbol TEb1e Svertiow (sde 80yt °F

When linking, use the linker supplied by Mark of the Unicorn
(called "L2") and NOT the linker supplied by BDS. (Among othgr
reasons, our linker saves 10% of code space.) This 1}nker is
experimental and 1is not guaranteed to 1ink any arbitrary C
program. It will, however, link any software supplied by us.

The following command line will successfully link a Mince (it
can be found in ML.CMD):

12 mince bindings comml comm2 comm3 vbuffl vbuff2 -1

1-16

Mark of the Unicorn Program Logic Manual

support term util

Almost nothing else will. About all that you can do is to split
or include new command files, in which case be sure that they are
before the "-1", If you would like to know more about the linker
or have any problems, contact us.

1.3.4 Debugging Code

So, you have written some new functions and would l1ike to debug
them. Debugging a display editor 1is not gquite the same as
debugging anything else. For one thing, the screen has a tendency
to rearrange itself on you...

The best method to use is a modification of the basic tracing
techniques that every programmer has used: put 1in a print
statement. The function Debug is the print statement and you
simply have to call it every place that you would like to print a
value or message. Debug does the following:

it prints a message

it prints the value of an integer

it does an redisplay {so you can see what the buffer
looks like)

it waits for you to type a character, and returns
TRUE if the entered character was a Delete or
BackSpace, FALSE otherwise

It is a good idea to sprinkle a lot of calls to Debug in any
suspicious code, especially in infinite 1loops. Each message
should be different (to allow you to see what part of the loop
you are actually in. In this manner, you can see the
"intermediate results" of your function. You can also get out of
the function to try something else by doing:

if (Debug ("I am here",cnt)) |
arg=0;
return;

Don't even think of trying to use a conventional debugger with
Mince. You haven't got a chance.

Good Luck!

Mark of the Unicorn Entry Points

Chapter 2

Entry Points

2.1 Top Level and Redisplay Routines

main(arge,argv)
int argc
char *argv/{]

This is the command line entry point.

setup{iargc,iargv)
int iargc
char *igrgv/]

Exports the globals fillwidth, del buff, indentcol,
namearyg, stringarg, and tabincr.

Initialize the editor. It is called immeidately by
main and may not be reinvoked. Fillwidth is initialized

to the default fill1 width and indicates the first
column that characters may not appear in while filling
text. Indentcol 1is initialized to the default indent
column and indicates the first column that characters
may appear in while filling text. Tabincr is
initialized to the default tab increment and indicates
the number of columns from one tab stop to the next.
Namearg is initialized to the null string and retains
the default used for switching buffers. Stringarg is
initialized to the null string and retains the last
search string. Del buff is a buffer descriptor and

Entry Points Mark of the Unicorn

defines the killlbuffer.

The last act performed is to call the routine UInit
to perform any initialization desired by the user.

edit ()

Exports the globals abort, arg, argp, cmnd, and 1funct.
Imports the global functs.

The basic editor loop. It reads a command, dispatches
it, and invokes redisplay. It may be called recursively
and setting the global abort to TRUE will exit the
current invocation. Argp indicated the presence (TRUE)
or absence (FALSE) of an argument to a command and is
initialized to FALSE. Arg is the actual argument value
and is initialized to 1. Cmnd contains the key that was
typed combined with any prefix codes. Lfunct is the

address of the procedure 1invoked by the ©previous
command.

NewDsp ()

Clears the screen, does a ScrnRange, and forces
redisplay.

IncrDsp()
Imports the globals psstart, send, sendp, and sstart.

Performs a redisplay. Updates the screen, one line at
a time, to reflect the current state of the buffer. If
a character is typed during redisplay, it aborts after
finishing a line. Upon successful completion, Send is
placed at the actual end of the window. It also calls
McdeF1lags.

int
InnerDsp(from, to, pmark)
int from, to, pmark

Mark of the Unicorn Entry Points

Exports the globals send, sendp, and tline.

Imports the globals cur cptr and terminal.
Private globals lindex, pnt_row and tline.

Updates the global pcol.

Redisplays a single window for IncrDsp. The window
runs from screen lines From to To. If Pmark 1is non
Null, returns the row that the mark is on. This routine
should not be called outside IncrDsp.

ScrnRange ()
Exports the glokals psstart, sstart, and send.

Centers the window so that the Point is on PREFLINE.
Sstart is a mark which is placed at the start of the
window. Send is a mark which approximates the end of
the window. Psstart is a mark which is placed one
character before the start of the window.

int
WHeight ()
Imports the globals divide and topp.
Returns the height of the current window in lines.
int

PreflLine{)
Imports the global prefrow.
Returns the line within the current window that the
user prefers the Point to be on. This value is linearly

dependent upon the position within the window of the
value of the "preferred row" parameter given in Config.

ModeLine ()

Exports the global stat_col.
Imports the global buffs, cbuff, and mode.

Entry Points Mark of the Unicorn

Displays the mode line. Stat col indicates where to
start displaying the mode flags.

2.2 User Level Buffer Description

The data structure is:

struct cbuffer |
int bbuff, bmark;
char bname [BUFNAMMAX], fname[FILMAX], bmodes([MAXMODES];
} buffs[BUFFSMAX];

int
CMakeBuff (huffername,filename)
char *buffername, *filename

Creates a buffer named Buffername with an associated
filename Filename. It also sets the modes to no modes,
creates a mark, and sets bbuff to be a buffer
descriptor of a new buffer. Returns the index of the
newly created buffer, or -1 if it failed. Buffername
must be unique, If it 1is not, the results are
undefined.

CSwitchTo (bufferindex)
int bufferindex

Exports the globals cbuff and mark.

Makes the buffer selected by Bufferindex the current
buffer, calls SetModes, and makes the mark associated
with that bufferthe global mark. Cbhuff is a bufferindex
and is the index of the current buffer.

int
CFindBuff (buffername)
char *buffername

2-4

Mark of the Unicorn Entry Points

Returns the index of the buffer whose name 1s
Buffername or -1 if there is no such buffer.

2.3 Memory Allocation Abstraction

The following routines implement a dynamic storage allocator
and are used internally by the buffer abstraction. They cannot be
used outside of the buffer abstraction.

AAlloc ACoalesce AFindNext
AFree . AInit AlLen
APrtWrld ASpace

They reguire the following globals:

int *Abegin, Asize, *Aend, *Acap

2.4 Queué Abstraction

The following routines implement a FIFO character queue. They
all use the following definition of a gueue.

struct gqueue !
char *ghead, *gtail, *gtop, *gbottom, gspacelsize]

}

QInit(queue_pointer,size)
struct queue *queue_pointer
int size

Format a queue structure that you have allocated and
pass to QInit. Size tells the initializer how big the
queue should be. You must allocate the space yourself.

Entry Points Mark of the Unicorn

This space includes both the space for the gqueue and

the space for the queue header. Size here and the size
in the structure declaration are the same.

char
QGrab (queue_pointer)
struct queue *queue pointer

Returns the next character on the queue. Results are
undefined if the gqueue is empty.

QShove (char,queue_pointer)
char char
struct queue *queue pointer

Places Char onto the queue. Results are undefined if
the queue is full.

PLAG
QEmpty (queue pointer)
struct queue *queue pointer

Returns TRUE if the gqueue is empty; FALSE otherwise.

FLAG
QFull (gqueue_pointer)
struct queue *queue_pointer

Returns TRUE if the queue is full; FALSE otherwise.

2.5 Buffer Abstraction

2.5.1 Initialization and Buffer Manipulation

Mark of the Unicorn Entry Points

BInit({swap file_descriptor)
int swap file descriptor

Initializes the buffer abstraction and tells it to
use the indicated file as the swap file.

int
BCreate ()

Creates a new buffer and returns its
buffer descriptor. Returns NULL if no more buffers are
available or there is no more memory.

BSwitchTo (buffer descriptor)
int buffer descriptor

Makes the buffer indicated by Buffer descriptor the
current buffer.

BDelBuff (buffer descriptor)
int buffer descriptor

Deletes the buffer indicated by Buffer descriptor.
You cannot delete the current buffer (indicated by the
global Cbuff), and you will get an error message 1if you
try.

2.5.2 Inserting and Deleting Text

BInsert(character)
char character

Inserts Character at the Point. It gives an error

message and does nothing if there is no more available
(virtual) memory.

2=7

Entry Points Mark of the Unicorn

BDelete (quantity)
unsigned quantity

Deletes Quantity characters forward from the Point.

BDelToMrk (mark)
int mark
Deletes all text between the Point and the passed
mark, The passed mark must be in the current buffer,
and you will get an error message if it is not.

BCopngn(mark,buffer_descriptor)

int mark
int buffer_descriptor

Copies the text between the Point and the passed mark
into the indicated buffer, inserting the text at that
buffer's pPoint. The passed mark must be in the current
buffer, and you will get an error message if it is not.
You cannot copy into the same buffer that vyou are

copying from, and will get an _error message if you try.
Leaves the destination buffer's Poin after the
inserted text. If it runs out of available memory, it

will abort after having copied as much as it can and
print the message "Swap file full".

2.5.3 Beginning of Buffer, End of Buffer, and Basic Motion

BToStart()
Moves the Point to the beginning of the buffer.

BToEnd ()
Moves the Point to the end of the buffer.

Mark of the Unicorn Entry Points

BShoveIt ()

Places the buffer in a repeatable, invalid state. It
is used internally by redisplay. Results are undefined
if it is invoked outside of redisplay.

FLAG
BIsStart ()

Returns TRUE if the Point is at the beginning of the
buffer, FALSE otherwise.

FLAG
BIsEnd({)

Returns TRUE if the Point 1s at the end of the
buffer, FALSE otherwise.

BMove (dist)
int dist

Moves the Point Dist characters. Dist may be either
positive or negative. It will move up to but not past
either the beginning or the end of the buffer.

2.5.4 Status and Complex Movement

UNSIGNED
BGetCol ()

Returns the display width of the text between the
beginning of the buffer or the latest Newline and the
Point. WNormally, this will be the column that the
cursor is displayed in.

BMakeCol (column)

Entry Points Mark of the Unicorn

int column

Moves the Point so that the display width of the text
between the beginning of the buffer or the latest
Newline and the Point is as near Column as possible.
The Point is placed at the end of the current line if
Column is beyond the end. If Column falls in the middle

of a multi-column character, the Point is placed after
the character.

UNSIGNED
BLocation ()

Returns the Position of the Point in the buffer in
units of characters from the beginning of the buffer.
This value is not correct for locations above 65,535,

UNSIGNED
BLength(buffer descriptor)
int buffer_descriptor

Returns the 1length of the buffer indicated by
Buffer descriptor in <c¢haracters. This value 1is not
correct for buffers of more than 65,535 characters.

FLAG
BCSearch{what)
char what

Search forward through the buffer starting at the
Point for character What. Returns TRUE if the character
was found, FALSE otherwise. The Point is left after the
character that was searched for if it was found or at
the the end of the buffer if it was not.

FLAG
BCRSearch(what)
char what

Search backward through the buffer starting at the
Point for character What. Returns TRUE 1f the character

Mark of the Unicorn Entry Points

was found, FALSE otherwise. The Point is left before
the character that was searched for if it was found or
at the beginning of the buffer if it was not.

FLAG
BModp (buffer_descriptor)
int buffer descriptor

Returns TRUE if the buffer indicated by
Buffer descriptor has been modified since it was

created or had a file operation (e.g. read or write)
performed upon it, FALSE otherwise.

char
Buff ()

Returns the character after the Point. Results are
undefined if the Point is at the end of the buffer.

2.5.5 Mark Manipulation

int
BCreMrk ()

Creates and returns a mark and places it at the
Point. An error message is given and NULL is returned
if there are no more available marks.

BKil1Mrk (amark)
int amark

Removes the mark Amark.

BMrkToPnt (amark)
int amark

Places the mark aAmark at the Point.

Entry Points Mark of the Unicorn

BPntToMrk (amark)
int amark

Places the Point at the mark Amark. The passed mark
must be in the current buffer and an error message is
given if it is not.

BSwapPnt{amark)
int amark

Interchanges the positions of the Point and the mark
Amark. The passed mark must be in the current buffer
and and error message is given if it is not.

FLAG
BIsAtMrk {amark)
int amark

Returns TRUE if the positions of the Point and the
mark Amark are the same, FALSE otherwise, The passed
mark must be in the current buffer and an error message
is given if it is not.

FLAGBE
IsBeforeMrk (amark)
int amark

Returns TRUE if the position of the Point is before
the position of the mark Amark, FALSE otherwise. The
passed mark must be in the current buffer and a value
of FALSE is returned and an error message is given if
it is not.

FLAG
BIsAfterMrk (amark)
int amark

Returns TRUE if the position of the Point is after

Mark of the Unicorn Entry Points

the position of the mark Amark, FALSE otherwise. The
passed mark must be in the current buffer and a value
of FALSE is returned and an error messade is given if
it is not.

Screen marks are special marks used by redisplay to improve its
performance. Each mark has a flag associated with it. Redisplay
clears all of these flags and the buffer modification routines
(e.g., BInsert and BDelete) set the flag on the the last mark
located before the modification. As the redisplay places the
marks on the beginning of each screen line, the flag serves to
indicate whether that line has changed since the last redisplay.

int
BScrnMrk {indx)
int indx
Returns the screen mark corresponding to the Index'th
row of the screen.
FLAG

BTstMrk (smark)
int smark

Returns the state of the mark Smark and resets the
state to FALSE. It is used internally by redisplay.
Results are undefined if it is invoked.

BSetMod (smark)
int smark

Sets the state of the mark Smark to TRUE. This will
result in the corresponding line being redisplayed the
next time IncrDsp is invoked.

2.5.6 Reading and Writing Files

FLAG

Entry Points Mark of the Unicorn

BReadFile (filename)
char *filename

Read the contents of the file Filename into the
buffer. The current contents of the buffer are 1lost.

All marks and the Point are placed at the beginning of
the buffer. Succeeded is TRUE if the read was

successful, FALSE otherwise. The buffer's modified flag
is cleared.

BWriteFile(filename)
char *filename

Write the contents of the buffer 1into the file
Flename. The buffer's modified flag is cleared.

BFTush ()

If there are any modifed pages, one is written to the
swap file, otherwise, nothing happens.

2.5.7 Private Routines

The following are routines private to the buffer abstraction.

They may not be invoked from outside the buffer abstraction,

DskwWarn DskUnWarn free page
get memp GetGap into mem
make cur make offset new_page
page_split SetMod SubSet

Mark of the Unicorn Source Code

Chapter 3

Source Code

Note that not all routines will be documented here; many
of the commands are left out. Understanding these more
simple routines is tantamount to understanding what the
command is supposed to do.

3.1 Control Commands: File COMM1.C

MArg ()

Does the C-U (Universal Argument) command.

Tmp accumulates the numeric argument as typed in
(e.g. '5' then '3' becomes the value fifty-three).
Tmp does NOT accumulate the multiplications by
four. Cflag tells whether or not a digit or digits
was entered. Eflag tells whether the argument has
been echoed and thus needs clearing.

As the routine is entered, any previous argument
is multiplied by four. A (possibly null) digit
sequence 1is picked up and accumulated. If the
digit sequence was non-null, the old argument is
thrown out and those digits become the argument.
You can thus end an argument with any number of
C-U's. The non-digit which ends the digit sequence
then gets dispatched as a command. If a C-U was
picked up, this routine is invoked recursively.

Scurce Code Mark of the Unicorn

3.2 Meta Commands: File COMM2.C

MDelELine
Does the M-C-K (XKill Entire Line) command.

The tricky thing in this routine is that it does
the delete in two separate operaticons. It first
deletes the text from the Point to the beginning
of the line and puts it at the START of the delete
buffer. It then deletes the text to the end of the
line (including the Newline) and puts it at the
END of the delete buffer. If the command is given
an argument, the Point is left at the beginning of
the following line and reinvoked. All of the text
from that and following lines will be put at the
end of the delete buffer.

MCapWord
Does the M-C (Capitalize Word) command.

The tricky thing here is that if the word that
is being capitalized is only one character long,
you don't want to call the lowercase word routine.

MFillPara
Does the M-Q (Fill Paragraph) command.

It begins by resetting the fillwidth 1if there
was an argument., It then creates a different mark
so that it can return there when it is done.

The rest of the initialization involves putting
the point and a mark in the right places. A
BMove (-1) is done so that it will £iil "this"
paragraph 1f the Point 1s just after the 1last

Mark of the Unicorn Source Code

non-white character (to wit, the final period of
the final sentence). It then goes to the end of
the paragraph and backward a character yet again.
If you are at the end of the buffer (BISEnd is
TRUE), you must have a-null buffer and so return.
If that character is whitespace, you have only
whitespace in that direction 1in your Dbuffer
(Forward Paragraph always leaves you Jjust after
non-whitespace, if possible), therefore, you
return., Otherwise, vyou set a mark there and go
back to the beginning of the paragraph to start
filling.

The basic flow of the rest of the command is to
bounce through the paragraph, stopping at each
Newline and before each word and doing some
processing, finally finishing when you reach that
mark at the end ¢of the paragraph. Note that breaks
are only made on whitespace (e.g., it won't split
"a-b") and whitespace can be deleted or inserted
by the command.

There are two cases., Pirst, a word can end after
Fillwidth. BSecond, a Newline can occur before
Fillwidth. In the first case, you jump backwards
to the previous whitespace, delete it, insert a
Newline and any indentation, and Jjump forward
again. You never have to back up past whitespace
more than once (unlike MFillChk, the auto fill
space routine) because you were just there and it
wasn't past Fillwidth. You jump forward to
whitespace as you finish for efficiency and to
keep from hanging in an infinite loop if you have
a single word longer than Fillwidth. In the second
case, you delete the Newline and any indentation
and insert a space.

In the center of the text of the routine and
separating the two cases is the mechanism for
switching between the two cases. No matter which
case you just processed, you skip over any blanks
or Tabs and stop when you get to a Newline or a
non-whitespace character. A call to IsNL is made
to see which case it was that you encountered and

the result of that call selects the case to
handle.

The routine finishes by returning the Point to
the original mark and cleaning up.

Source Code Mark of the Unicorn

Note that in this scheme all Newlines will be
deleted and re-inserted, even though no actual
motion of text is needed. *sigh*,

MCntriine

Does the M-S (Center Line) command.

This begins by getting Fillwidth and Arg to be
the same value. Arg performs double duty here. It
comes in as the argument, of course, but it goes
on to become the value Fillwidth ~ Indentcol.

The routine itself moves to the beginning of the
line, deletes any whitespace (for example, the
stuff it put in last time if the line is being
re-centered), goes to the end of the line, gets
its position, goes back to the beginning, inserts
the right number of spaces, and leaves you at the
end.

MFillChk

Does the Fill Mode Space (ARuto Fill Space)
command.

It begins by returning if it doesn't have to do
anything (the Point is before Fillwidth). If the
Point is at or after Fillwidth, it has to split
the line. It jumps back to whitespace until it
gets before Fillwidth (it can't assume that the
immediately previous whitespace is before
Fillwidth). It then deletes that whitespace.

Now things get hairy. As you might have noticed,
it placed a mark before it did anything. If it is
still at that mark, that means there was lots of
trailing whitespace on the line and it 1is the
whitespace that put you over Fillwidth. It sets a
flag indicating what the situation was. It then
inserts the Newline and does the indenting. TIf
that flag indicates the this is a reasonable
situation (it was a word that put you over), it
puts yvou back at the mark (which should be after

3-4

Mark of the Unicorn Source Code

the word that was wrapped) and inserts a space. If
it was the spaces that put you over, it doesn't
have to insert the space as the Newline and
indentation already is the space.

3.3 Control-X Commands: File COMM3.C

MLstBuffs
Does the C-X C-B (List Buffers) command.

Note how it uses BSetMod and BScrnMrks to tell
the redisplay what lines it bashed. Note also that
it waits for the next character to be typed in
before it allows the screen to be cleared.

MFindFile
Does the C-X C-F (Find File) command.

Yes, there is a call to BReadFile lurking in
there. This command 1is shorthand for three
different things and it shows, both 1in the
complexity o©f the documentation and in the
complexity of the code.

MDelMode
Does the C-X C-M (Delete Mode) command.

This routine, as with Add Mode, assumes that the
mode list is kept packed and stored from the top
down {large indices to small indices) in
Buffs.Bmodes, Thus, [0 0 ModeA ModeB] is legal,
while [0 ModeA 0 ModeB] and [ModeA ModeB 0 0]

are not, These examples are number the indices
from zero to three, from left to right.

Source Code Mark of the Unicorn

Given that convention, Delete Mode's Jjob is
easy. It scans down the mode list until it finds a
match, then packs the rest of the list,

3.4 Support Routines: File SUPPORT.C

FLAG
ArgEcho{targ)
int targ

Uses the global cnt.

Waits an amount of time proportional to DELAY.
If a character has been entered, returns FALSE. If

nct, prints "Arg: " and the argument Targ, and
returns.

FLAG

Ask {(mesqg)

char *mesg

Prints the message in the echo line. If the user
responds with "“¥", ®"y*, or ™ ", returns TRUE. If
the user responds with "N", "n", DEL ("?), or BS
(*“H) returns FALSE. Otherwise, it rings the bell
and checks another character.

BlockMove {(from, to)
int from, to

Moves the (possibly zero 1length) block of
characters between the Point and the mark From to
the mark To. To is left after the moved
characters. The Point is left at mark From. The
Point is assumed to be before the mark From. If it
is after, no characters are moved.

3-6

Mark of the Unicorn Source Code

change (014, new)
char *old, *new

ssumes &hat the Point is at the end of 0ld. It
etes Old and inserts New.

int
CheckMode (tmname)
char *tmname

Returns the modeid of the indicated mode if
tmname is a mode name, otherwise FALSE. The mode
identifier is typically the first character of the
mode name, e.g. "f" for Fill mode.

ClrEcho ()

Clears the echo line.

CopyToMrk (tmark, forwdp)
int tmark, forwdp

Imports the globals del buff and lfunct.

Copies the region (the text between the Point
and Tmark) into the delete buffer. If Forwdp is
TRUE, it appends the text to the end of the delete
buffer. Otherwise, it puts it at the beginning. It
calls DelCmnd and if TRUE is returned, it saves
what is in the delete buffer, otherwise the region
replaces what is already there.

FLAG

Debug (message,value)
char *message
int value

Prints Message and Value in the echo area, calls
redisplay to allow you to see what the buffer
looks 1like, and waits for a character. Returns

Scurce Code Mark of the Unicorn

TRUE if the character is DEL ("?) or BS ("H),
FALSE otherwise.

FLAG

DelayPrompt (mesg)
char *mesg

Uses the global ent.

Waits for DELAY. If a character has been
entered, returns FALSE. If not, prints the message
in the echo line and returns TRUE. This routine is

used to accomplish the delayed echoing of "Meta:",
etc.

FLAG
DelCmnd (1funct)
int (*1funct) ()

Imports the global 1funct.

Returns TRUE if Lfunct points to a command that

saves deleted text in the kill buffer, FALSE
otherwise.

DoReplace (query)
int query

Uses the global tmark.

Does the Replace String and Query Replace
commands. Query is a flag that tells it whether or
not to ask each time is locates an occurrence.

The routine 1is straightforward except in two
cases, First, all characters not specifically
checked for (the default) act as "No" answers.
This is implemented in the code by not executing
the remainder of the while loop because it
executed the continue statement,

The other sticky point is in handling the *',°
(Replace And Confirm) command. First, if it is a

Mark of the Unicorn Source Code

query replace, the routine sets the Tchar variable
to ',!' in order to cause the "Replacing" message
to be printed. Each time ',' command is entered,
you will be asked to confirm the replace and this
message will have been bashed. Therefore, it is
refreshed the next time through the loop and that
same mechanism is used to get the whole mess
going. The ',' command does the replace, so in
that respect it 1is treated just 1like "Yes.,"
However, after the change has been made, it must
check to see if the command was ',' and, if so,
ask for confirmation.

Note that the ',' option does not save the
original string that was being replaced. Thus, if
the "put it Dback" option is selected, the
upper/lower caseness of the original string is
lost.

Echo {mesqg)
char *mesg

Prints the message in the echo line.

error (mesg)
char *mesg

Displays an error message. An error message
appears off to the right in the echo line. Waits
for a character to be typed before returning.

ForceCol (col, forwardp)
int col, forwardp

This routine will force the Point to be in
column Col. If necessary, it will insert spaces to
put you there. Forwardp tells whether to round up
or down on multi-column characters. (Due to
multi-column characters, you are not always going
to be in column Col. ForceCol merely deals with
the interesting cases of Newline and Tab

characters preventing you from being in the
desired column.)

Source Code Mark of the Unicorn

First, don't touch this routine, If you change
anything, it probably won't work. This routine
also relies heavily on the behavior of BMakeCol.
BMakeCol 1leaves you in the proper c¢olumn, 1if
possible. If the proper column falls in the middle
of a multi-column character (e.g., Tab or ~a), it
leaves you after the character. If the line isn't
long enocugh, it leaves you at the Newline.

ForceCol begins by doing a BMakeCol. That
ensures that you are at least close to the desired
position. It then checks to see if the desired
column is less than or equal to zero. If it is
less than, return. If it is equal to zero, we know
that BMakeCol succeeded in leaving us 1in the
correct column.

There are now three cases. First, Col can be
after the Newline. It is detected by BGetCol <
Col. In this case we want to insert some spaces.
The second case is for Col to have fallen in the
middle of what a Tab is tabbing over. It 1is
detected by BGetCol > Ccl and the character before
the Point is a Tab. In this case, it moves back
one character and inserts some spaces. The third
case 1is where Col 1is 1in the middle c¢f a
multi-column character (not Tab, though). In this
case, i1t leaves you before or after the character
depending upon the sense of Forwardp. There is an
implicit fourth case, that in which you are
already at the correct column. In this case,
nothing must be done.

The purpose of the big hairy if statement on the
third line is to leave you before the Tab if there
is one (the second case above). The Indent on the
following line then can handle both the first and
second cases at one fell swoop. Note that if
Indent is given a negative or zero argument, it
does nothing. Thus, if you are already at the
correct column or you are beyond it {(third case),
it does nothing.

The last if statement handles the third case.
All other cases will have BGetCol == Col by now.
All it does is leave you on the indicated side of
a multi-column character.

Mark of the Unicorn Source Code

FLAG

GetArg (mesg, term,str,len)
char *mesqg, term, *str
int len

This routine does all of the work for
accumulating a string argument (e.g., a search
string or file name). It provides the full echoing
and line editing facilities needed.

It prints the message and accumulates the
response into Str. Str can have up to Len
characters, When Term 1is typed, the routine
returns. It returns TRUE if everything went all
right, FALSE if C~-G (Abort/Cancel Prefix) was
entered,

int
GetModeld (msg)
char *msg

Calls GetArg with Msg as the prompt and returns
a Modeid of a valid mode or prints an error
message and returns FALSE if a valid mode was not
entered.

index (tstr, tchar)
char *tstr, tchar

Returns the index of the first occurrence of
Tchar in Tstr, or -1 if there is no occurrence.

FLAG
IsClese ()

Returns TRUE if the character after the Point is
a "closing" character, FALSE otherwise. A closing
character is one of },], {, ", or '. Used by the
sentence movement commands.

Scurce Code Mark of the Unicorn

FLAG
IsGray ()
Returns TRUE if the character after the Point is
a "gray" character, FALSE otherwise. A gray
character is a Space, a Tab, or a Newline. Note
that IsGray includes Newlines, while IsWhite doces
not.
FLAG
IsSNL ()
Returns TRUE if the character after the Point is
a Newline, FALSE otherwise.
FLAG
IsNLPunct ()
Returns TRUE if the character after the Point is
a Newline or punctuation, FALSE otherwise.
Punctuation is either ".", "?2", or ",
FLAG

IsParagEnd{)

Returns TRUE if the character after the Point is
a Newline, Tab, "", or ".", FALSE otherwise. It is
intended to be used to determine whether the Point
is at the end of a paragraph. Paragraphs are
delimited by Newline Newline, Newline Tab, Newline
""" (Seribble commands), or Newline "." {most other
text formatter commands). This routine assumes
that you are between the two delimiters and it
only checks the second one,

FLAG
IsSentEnd ()

This one is a monster. You are assumed to be
just after a candidate for an end of sentence (to

3-12

Mark of the Unicorn Source Code

wit, ".", "™i", or "?"), This routine moves you
over an arbitrary number of){]'" characters and
stops at the first character that isn't one of
those. If that character is a grayspace character,
it returns TRUE, otherwise it returns FALSE. Note
that this will leave you at the grayspace or the
other character.

FLAG
IsToken ()

Returns TRUE if the character after the Point is
a token character, FALSE otherwise. Token
characters are alphabetics and digits.

FLAG
IsWhite ()
Returns TRUE if the character after the Point is
a whitespace <character, FALSE otherwise. A
whitespace character is either a Tab or a Space.
Note that IsWhite does not include Newlines, but
IsGray does.
itot(n)
unsigned n
Prints N on the terminal.
KbWait ()

Waits for a character to be typed. It writes out
modified pages (by c¢alling BFlush) so long as no
character has been typed.

KillToMrk (tmark, forwdp)
int tmark, forwdp

Deletes the region (between the Point and Tmark)

Source Code Mark of the Unicorn

and saves the deleted text in the delete buffer.
Forwdp Fells whether to put the deleted text at
the beginning or the end of the delete buffer.

lowcase (str)
char *str

Converts the string to lower case.

ModeFlags ()

Uses the globals buffs, cbhuff, and lfunct.

Prints the percentage, modified, and append next
delete flags on the mode line.

MovePast (pred, forwdp)
int (*pred) (), forwdp

Moves through the buffer, invoking Pred at each
character. It stops when Pred returns FALSE,
leaving the Point on the near side of the
character which caused Pred to return FALSE.
Forwdp tells whether to move forward or backward.
Pred is a pointer to a function of no arguments.

MoveTo (pred, forwdp)
int (*pred) (), forwdp

Moves through the buffer, invoking Pred at each
character. It stops when Pred returns TRUE,
leaving the ©Point on the near side of the
character which caused Pred to return TRUE. Forwdp
tells whether to move forward or backward. Pred is
a pointer to a function of no arguments.

NLPrnt (str)
char *str

Mark of the Unicorn Source Code

Print Str at the terminal. ¥Newline characters
are printed as "<NL>".

FLAG
NLSrch ()

Puts you after the next Newline or at the end of
the buffer if there isn't one in that direction.
Returns TRUE if it found one, FALSE otherwise.

Rebind (from, to)
int (*from) (), (*to) ()

Updates the global functs,

Changes all occurrences of the the function From
in the bindings tables to To.

FLAG
RNLSrch ()

Puts you before the previous Newline or at the
beginning ¢of the buffer if there isn't one in that
direction. Returns TRUE if it found one. FALSE
otherwise.

RubQut (ostr,str, tceol)
char *str, *ostr, tcol

Performs DEL hackery for Getarg. It handles
deleting multi-column characters from the screen.

SIndent (arq)
int arg

Uses the global cnt.

Inserts Arg spaces. Does nothing if Arg is
negative or zero.

Source Code Mark of the Unicorn

strip(to, from)
char *to, *from

From is a file name. This routine strips off the
device ("a:") 1if it exists and the extension
(".doc") if it exists and returns what's left in

To. This routine does not change the case of
anything.

FLAG
Str8rch(str,forwardp)
char *str
int forwardp

Uses the global cnt.

Does a string search in the direction indicated
by Forwardp. Returns TRUE if it found the string,
FALSE otherwise., Leaves you after the string or at
the end of the buffer if it is a forward search,
before the string or at the beginning of the
buffer if it is a backward search.

ToBegLine ()

Moves you to the beginning of the current line.

ToEndLine {)

Moves you to the end of the current line.

TIndent (arg)
int arg

Indents Arg columns with Tabs and spaces. It
assumes that the Point was in column zero (or at
least at a Tab stop).

Mark of the Unicorn Source Code

ToNotWhite (forwardp)
int forwardp

Moves you to the first non-whitespace 1in the
direction indicated by Forwardp. You are not moved
if you are already at non-whitespace.

ToSentEnd (forwardp)
int forwardp

Moves you to the end of a sentence in the
direction indicated by Forwardp. This routine does
the work for Backward Sentence and Forward
Sentence.

It first finds a potential sentence end (a
punctuation mark or Newline). If the candidate is
a Newline, it sees whether or not it is the end of
a paragraph. If the candidate is a punctuation
mark,. it places a mark there, calls IsSentEnd
(which moves you somewhere), and restores your
position. It then checks to see if you are done.

ToWhite (fEorwardp)
int forwardp

Moves you to the first whitespace in the

direction indicated by Forwardp. You are not moved
if you are already at whitespace.

ToWord ()

Moves you forward to the beginning of a token

(word). You are not moved if you are already at a
word.

upcase (str)
char *str

3-17

Mark of the Unicorn The Terminal Abstraction

Chapter 4

The Terminal Abstraction

The terminal data abstraction is responsible for handling
all of the interaction with the user's console. It provides
a uniform interface to any terminal that Mince would ever
see, This interface standardizes the calls for performing
operations such as cursor positioning and clearing parts of
the screen. It also provides for displaying characters in a
uniform manner across all terminals.

The terminal abstraction performs these tasks by defining
a "virtual terminal.”™ By virtual terminal, we mean that the
interface will always perform the desired function; it is up
to the abstraction to make up for any missing or unusual
features. It 1is the responsiblity of the terminal
abstraction to ensure that the characteristics of this
virtual terminal are faithfully reproduced on any physical
terminal.

The wvirtual terminal has a screen that is a two
dimensional array of characters. They are numbered with
(0,0) in the upper left corner and (TMaxCol()-1,TMaxRow()~-1)
in the lower right corner of the screen. There are both a
screen point and a cursor. The screen point is the (x,y)
coordinate where the next modification to the screen will
take place. The cursor is the (x%,y) location where the
visual marker 1is displayed. Note that these are not
necessarily the same place: the screen point can be moved
guite a bit while the cursor stays in the same place. (On
most terminals, modifications must take place at the cursor.
Thus, when an actual change is being made to the screen, the
cursor must first be moved to that place.,) The virtual
terminal doces not know about its own right edge. Thu-,
strange things can happen 1f, for example, a multi-column
character is displayed so that it might wrap. (Mince's
redisplay avoids this case.)

The keyboard for this wvirtual terminal has a buffer,

The Terminal Abstraction Mark of the Unicorn

typically eighty characters or so long., The terminal will

only remember these characters (i.e., implement typeahead)
if it is checked often enough. Thus, those c¢alls to TKbChk

which are 1liberally interspersed throughout Mince (and
should be included in any changes that you make) perform a
vital task.

The terminal abstraction 1is tailored for a specific
terminal by running Config. Config stores the description in
the swap file, which is in turn read by Mince as Mince comes
up. A description of the place this information is read into
and the format of the file can be found in Chapter One.

4.1 Initialization and Termination Routines

These globals are used throughout the terminal
abstraction.

Private globals prow, pcol, srow, scol, clrcol, and

The following routines initialize and terminate the
terminal abstraction.

TInit ()

Initialize the terminal abstraction and the
terminal.

The routine first initializes the keyboard gqueue
(buffer). It then sends the initialization string
(as defined in the configuration program), sets
the Clrcol array to the last column, and clears
the screen {(which sets them again).

4+

TFini ()
Restore the terminal to its original state.
Forces the cursor to be displayed where it
"belongs" (at the bottom of the screen) and

Mark of the Uniceorn The Terminal Abstraction

deinitializes the terminal by sending the string
defined in the configuration program.

4,2 Cursor Positioning

int
TGetRow ()
Returns the row that the screen point is on.
int
TGetCol ()
Returns the column that the screen point is on.
int
TMaxRow ()
Returns the number of rows on the screen. Row-l
is the number of the last row on the screen.
int
T™axCol ()

Returns the number of columns on the screen.

Column~1 is the number of the last column on the
SCreen.

TSetPoint(irow,icol)
int irow, icol

Sets the screen point to (irow,icol).

The Terminal Abstraction Mark of the Unicorn

TForce ()

Forces the visual cursor to be displayed at the
screen point.

Does nothing if the cursor is already there. If

not, it uses the cursor positioning sequence to
put 1t there,.

4.3 Display Routines

TBell ()

Rings the terminal bell or performs other alarm
indications by sending the bell string.

TCLEOL ()

Clears from the screen point to the end of the
line.

Sends the clear to end of line string if there

is one, otherwise it sends the correct number of
blanks. It pays attention to and sets clrcol.

TClrLine()

Clears the line that the screen point is on._The
screen point is left at the beginning of the line.

TCLEOW ()

Clears from the screen point to the end of the
screen,

Mark of the Unicorn The Terminal Abstraction

Sends the clear to end of window string if there
is one, otherwise it calls TCLEOL, then repeats
going to the next row, setting the screen point
column to zero, and calling TCLEOL until it gets
to the end of the screen., It then restores the
screen point to where it was.

TClrWind ()

Clears the entire screen (window). The screen
point is left at the beginning (home position) of
the screen.

Sets the screen point to (0,0). Sends the clear

window string if one exists, otherwise calls
TCLECW.

4.4 Printing Text

TPrntChar (ichar)
char ichar

Imports the global tabincr.

Prints the character at the screen point and
updates the screen point by the display length of
the character, Ordinary characters are printed
normally. Control characters are printed as """
followed by the character Ichar XOR 64 (e.g., C-2a
prints as "A). Meta characters are printed as "™"
followed by the character Ichar AND 127 (which may
be a control charcter). Tabs ("I) are printed as
the number of spaces remaining before the next tab
stop (determined by Tabincr).

On ordinary characters, it puts the cursor at
the screen point, sends the character, updates the

cursor and screen point columns, and updates
Clrcol,

The Terminal Abstraction Mark of the Unicorn

On other characters, it prints them "in pieces"
by calling itself recursively or, in the case of
Newline, implements the meaning of the character

by logically printing a Carriage Return and a Line
Feed.

TPrntStr (string)
char *string

Prints the string as if by repeated calls to
TPrntChar.

TDisStr (row,col,string)
int row, col
char *string

Sets the screen point to (row,col) and prints
the string as if by TPrntStr.

int

TWidth (colent, tchar)
int colent
char tchar

Imports the global tabincr.

Returns the display width of the character as it
would be printed by TPrntChar with the screen
point in column colcnt. If the character should be
wrapped to the next line, the extra spaces needed
to display the wrapping are included in Width.
Note that the display width of a Newline is the
negative of colcnt.

4.5 Low Level Output and Keyboard Drivers

Mark of the Unicorn The Terminal Abstraction

TPutChar {ochar)
char ochar

Sends a character to the terminal without any
interpretation.

It actually does the output. It uses the bios if
possible (based on the global outport.biosp). If
it can't, it does the output manually, waiting for
the port to be ready and then sending the
character.

TKbChk ()

Checks to see if there is a character available
from the keyboard. If there is, it reads the
character in and places the character in a FIFO
gueue., This routine should be c¢alled frequently in
order to maintain proper typeahead buffering. If
the queue is full, it rings the terminal bell.

It actually does the 1input., It <checks the
status, using the bios if possible. If there is a
character ready, it reads it in, again using the
bios if possible.

FLAG
TKbRAy ()
Returns TRUE if there is a character avaiable,
FALSE otherwise.
It calls TKbChk, then checks the gqueue to see if
there is a character ready.
char
TGetKb ()

Beturns the next available character., It will
wait 1f necessary for a character to become
available.

Waits in a loop, calling TKbChk until there is a

The Terminal Abstraction Mark of the Unicorn

character ready, then grabs it.

4.6 Internal Routines

put_string (sdef)
struct str *sgdef

Puts a command string (e.g., the clear to end of
line string) which is represented as a structure
in the terminal abstraction internal format.

put _coord{firstp)
int firstp

Sends a cursor coordinate to the terminal. The
argument, Firstp, indicates WHICH coordinate to
send; the coordinates themselves are stored as
globals (Prow and Pcol). If Firstp is the same
sense as Terminal.Rowfirstp (i.e., they are both
TRUE or both PFALSE), the row is sent, otherwise,
the ¢olumn is sent. In either case, the coordinate
is biased as necessary (Terminal.Rowbias or
Terminal.Colbias). If the coordinate is sent in

binary, it will optionally complement it
(Terminal.Compp).

put_num(num)
unsigned num

Sends a number to the terminal as ASCII digits.

If the number is greater than ten, it calls
itself recursively to print out the first n-1
digits. It then prints the nth digit. Note that it
calls TrPutChar while itot (in SUPPORT.C) which
does a similar thing calls TPrntChr. More often
than not, this routine is called by TPrntChr in
the course of doing a cursor positioning sequence.

4-8

About This Chapter

This chapter was originally written and submitted as a B.S. thesis at the Massachusetts Institute of
Technology. Its goal was to provide a discussion of censiderations of implementing a text editor.

The preceding chapters of the Mince Internal Documentation discuss the details of a specific
implementation; this chapter will help provide perspective about what considerations are general and
what ones are implementation specific,

Acknowledgements

[would like to thank Owen Ted Anderson for teaching me a lot of what I know about
editors as well as writing one of the most readable programs around.

I would like to thank Bernard S. Greenberg, who supplied some of the algorithms
which are presented here.

I would like to thank Richard M. Stallman and the rest of the M.LT. Artificial
Intelligence Laboratory for creating the original Emacs and for doing most of the
development of ITS EMACS,

Mark of the Unicorn Introduction

1. Introduction

This thesis is intended to answer the question, “What are the important considerations in
designing a text editor?” In answering this question, it wilf provide a reference document for would-
be implementors of text editors.

There is a modest amount of literature available which discusses topics related to text editing.
Most of the papers are "reference manual”-like becavse they explain the user interface only. A few
of the rest cover the details of a specific implementation of an editor. This thesis will generalize the
latter into a document which considers the problems relevant for ail text editors.

The primary goal of a text cditor is to allow the user to edit text. There are two secondary goals.
First is to perform this editing without wasting resources. Second is to give the user a pleasant
cnvironment © edit in, The latter requires a good command sct, fecdback to the users, and quick
response to commands.

Achieving these goals is hard. One way to make it easier is (o break the design of the editor into
three parts. The memory management part performs efficient editing of the text. [t is essentially a
very simple editor in itself. The incremental redisplay part provides feedback to the user. The
command set (loop) part translates the user’s input into commands to the memory management part.
Fach part of the structure contributes in its own way towards providing quick response. [t is this
structure that will be discussed in this thesis. Each chapter of the thesis covers a different part.

The second chapter is memory management (you arc reading the first chapter). The basic
problem that is addressed is: given that you have a possibly large buffer, how do vou structare the
storage for it so that trivial operations (e.g., inserting a character and moving around in the buffer) do
not gequire excessive amounts of work? Othier problems are: what should the interface to the buffer
look like from a program? How do these constderations change when you tiave muitiple buffers
and/or virtual memery? In a nutshell, this chapter discusses the cpu time - memory - disk channet
tradeoff. This topic is interrclated with the next one.

The third chapter is incremental redisplay. The basic problem here is: given that the user has a
rcasonable video terminal which you can communicate with over a limited bandwidth channel, how
do you change what is displayed on his screen to match the current contents of the buffer? Other
problems are: what are reasonable terminals to use? What extra information can you retain to speed
up the updating process? This chapter discusses the cpu time - [/0 channel usage tradeof,

The fourth chapter is a discussion of the commund loop. What is the basic edit cycle? What sort
uf errors do you have to recover from? How and why do you dynamically change the editor itself?
What are some criteria to use when sclecting an inplementation languags?

The fifth chapter considers uscr interface hardware. What are desirable ways for the wscr to
interact with the cditor? This arca includes such things as desirable featires in ke boards and how o
take advantage of graphical input,

The sixth chapter mentions some other uses for text editers.

Note that MIT Emacs will be used in this thesis whenever a reference to a specific cditor is
required (for example, when discussing command syntax), This class of editors will be referred to as

Lh
1
—

Introduction Mark of the Unicorn

"Emacs-type.” A specific editor was sclected (as opposed to creating another one) specifically to
avoid the work of reinventing the wheel. MIT Emacs was selected because of the author's familiarity
with it and becausc several implementations of it have been made, thus providing a wealth of
experience with it in different environments.

wn
tJ

Mark of the Unicorn Memory Management

2. Memory Management

A copy of the text that is being edited is stored in a buffer. The text appears to the user as a
sequence of characters. Al editing operations are specified refative 1o a place in the huffer, This
place is called the point and it is always located between wwo characters (thinking this way eliminated
the possibility of some fencepost errors). [t is the responsibiiity of the memory munagement software
to support buffers cleanly and etficiently.

It is assumed that the user will be presented with some sort of status display. This display wiil tell
the user such things as the name of the buffer that he is editing, the name of the file that is being
edited. and what modes the buffer is in (see section 4.5, page 37 for a discussion of what modes are).
The interface to the memory management software includes operations to maintain this auxiiliary
information,

Tt is assumned that buffers are stored in the equivalent of main memory while the editing is being
done. This means that the buffer is either in main memory (for very small machines), in the address
space of the editor {for large address space virtual memory machines), or it can be mapped into the
address space (for small address space virtual memory machines). Any of these cases will be assumed
to be memory in this thesis. Therc are two commonly used techniques to manage memory in order
perform the editing efficiently. These techniques are known as buffer gap (store the text as an array
of characters) and linked line (store the toxt as a linked list of lines) and will be discussed in following
sections. Their discussion follows the more theoretical sections which cover the definition of the
interface between the main editor and the memory managemens routines. Further discussion shows
how the two schemes perform in a virtual memory environment and when multiple buffers are
manipulated. Some closing remarks will be made about scratchpad memory and methods of
reclaiming storage.

2.1 Data Structures

This section discusses the data needs of an editor. With two exceptions, all of the state of the
cditor 18 defined here. Thus, if this information is retained across invocations, you will have the
ability to resume editing where you left off. Thus, the amount of work involved with editing can be
reduced.

The other placc where state information is kept is in the the screen manager. The screen manager
to retains a knowledge of how buffers were displayed. Retaining this information allows tic screen to
reappear as the user left it {f the information is not retained. the screen manager will have to
recalculate the display and this can be somewhat confusing. However, the editor will not lese any
functionality if this state is left out.

The World contains the buffers in use by the editer, It is a circulur list of BulterDescriptors and
an indication of which bulfer is the current ene. In a PL/1-ish syntax:

declare 1 World,
2 CurrentBuffer pointer,
2 BufferChain pointer;

tach buffer descriptor has several types of internat information,

5-3

Memory Management Mark of the Unicorn

dectare 1 BufferDescriptor,

2 NextChainkEntry pointer,

2 BufferName char{big) varying,
2 Point location,

2 Length fixed,

2 Modifiedp bit(1l},

Z FileName char{big) varying,
2 ModeName char(big) varying,
2 MarklList pointer,

2 Modelist pointer,

2 StorageBata pointer,

2 ScreenData pointer;

NextChainEntry is a mechantsm for implementing the circular list of buffers. The list is circular
because there is no preferred buffer and it should be possibie to get to any buffer with equal ease.
BufferName is a way for the user to be able to refer to the buffer.

Pgint is the current location where editing operations are taking place. It is of the data type
location. The representation for this data type is implementation specific. For bufter gap cditors, it is
an intcger, but for linked line editors, it is a (line pointer, offset) pair. Length indicates how long the
buffer is in some reasonable unit (usually characters). Modifiedp is a flag which indicates whether
the buffer has been modified since it was last writien out or read in.

FileName is the name of the file svstem object which is curreatly associated with the contents of
the buffer. ModeName is way to tell the user what modes are in effect. Typicaily, each mode will
insert its name there as it is invoked. This information is not really implicit in the Model.ist because
there can be invisible modes (for example, autcloaded commands) which use the mode mechanism
for invocation but the user dues not want to be made explicitly aware of thermn.

MarkList is simply a list of marks.

declare 1 Mark,
2 NextMark pointer,
2 Name {anything convenient, try smali
integers},
2 Whereltls location;

Each mark has a poiater to the next one, a name, and a location within the buffer. Note that this
flist is not circular and it would prebably help to keep it sorted by increasing location. The name is a
way of distinguishing this mark (rom any other one assocluied with this buffer. This neme is
gencrated by the Create Mark routine and returned. F can thus be any convenient data type. Small
integers will work quite well.

Model st is a list of procedures to be invoked when this buffer is selected. Sce section 4.5, page
37 fur a move complete discussion.

SwrageData is a deseriptor block which defines how the contents of the buffer are stored in

54

Mark of the Unicorn Memory Management

memory. The nawre of this biock is dependent upon the memory management algorithm used.
ScreenData is a descriptor block which defines how the buifer appears on the user's screen. Its
definition will become apparent in the discussion in the next ¢hapter.

2.2 Marks

A mark is a named fixed point within a given buffer. A mark always points between the same two
characters no matter what has been inserted or deleted around it. Marks are used for several different
reasons.

- They remember a specific location for future reference. For example, a command might
paginate a file. In this case, a mark would remember where the point was so that the
command could return with the location of the point unchanged.

- They delimit a portion of text in conjunction with other marks or, more commonly, the
point. This portion of text is called the region. This case would be used, for cxample, in a
DeleteRegion command.

- They serve as bounds for itcration. Because they remain invariant when changes are
made to the buffer, they can scrve as a constant position to "head towards.” An example
could be the FillParagraph command. This command iterates threugh the buffer deleting
and inserting whitespace (in the process, making each line as long as it can be without
going past the right marzin) until it reaches the end of the paragraph. A mark is used (o
remember where the end of the paragraph is. This usage is a variation on the region-
delimiting usage, but it is worth noting in itself.

When an insertion is made at a mark there is a question about what to do with the mark (i.e. on
which side of the inserted character it should end up). For the most part, the mark should move (i.e.
be after the inserted character). However, there are good reasons for having it work the other way
and so there are fixed marks, which remain before an inserted character.

An example of using fixed marks is to delimit an insertion. A routine could create both a mark
and a fixed mark at the same location. Any in-2rted text would push the marks apart and end up
between them. Thus, it is possibic to keep track of wvhat he. been inserted.

2.3 Interface Procedures

This scction defines the interface between the main part of the cditor and the memory
management toutines, They will be described in terms of their logical function only, leaving out
specilic implementation details. An example of such a detail is a code variable which is returned and
which indicates whether the operation succeeded. Also note that an, Jata types mentioned (e.g.
string) are intended to be cancenical and no specific implemensations are asswmed. A <> after a
parameter means that it is returncd by the procedure,

There is an inportant question as to exactly who allocates the data (the buffer deseriptors and the
buffers themselves), This issue is more language specific in the sense that cortain languages specity
an answer which must be used whether or not it is the right one. The procedures will be defined as if
they own the data. IFic is derided that they do not, it is relatively casy to include an extra argument

55

Memaory Management Mark of the Unicorn

on cach procedure call which identifies a descriptor of the object that the procedures are to
mantpulate.

InitWorid
SaveWorld(FileName)
LoadWorld(FiteName)

InuWorld is the basic set-up-housekeeping call. It is called once, upon editor invocation.
SaveWorld and IoadWorld impiement the state-saving across edit sessions. SaveWorld is used to
save the state of the editing session for later resumption. This operation might be quite expensive if it
requires explicitly writing out all of the buffers to a large file or it might be very cheap in a virtual
memory environment, where all that might be required is to set an external static variable to indicate
that the environment is consistent. The possibility of muitiple saved environmenis is interesting, but
has not been implemented to my knowledge. It seems to be a nice way to work on several of tasks
{not in the proccss management sense) at once.

If you are creating a “stripped down" editor then the save and load world routines will not do
anything. They can be put in as stubs if there is a reasonable possibility that the editor will be
embellished later.

CreateBuffer(BufferName)
DeleteBuffer(BufferName)
SetCurrentBuffer(BufferName)
SetCurrentBufferNext(BufferName <{(r>)

CreateBuffer is given a name and it returns after having created a buffer of that name. [f the
buffer already cxists. it probably should signal an error of some sort to keep from bashing existing
mformation. DeleteBuffer deletes a buffer. If the current buffer is deleted, the default buffer
becomes the current one. (The editor is created with one defaule buffer called "Main” or something
like that. Tt must always exist.)

Depending on the implementation language, we may be able to chosse in the procedures that are
being defined between including a buffer as an explicit parameter or having it implicit by sctting an
own variable that indicates which buffer is the current buffer. If buffers are changed often, it is
worthwhile to include the buffer with each call. If, on the other hand, buffer switching is done
infrequently, the overhead invoived with setting a current butfer is more than acceptable. My
experience has been that buffer switching occurs only rarely and so the extra call is worth it.

SetCurrent3uffer makes butfer BufferName the current one. SetCurrentBufferNext makes the
next buffer m the circular bst the current one and RETURNS its name in BufferName. This
mechanism allows for iterating through all buffers looking for one which mects an arbitrary test.

Note that most of the above cails are really useful oaly if you have a multiple buffer
implementation of the editor. In a single buffer editor, they are relatively uscless and should be used
only if there is a reasonable chance of expanding to a multiple buffer editor tn the future,

SetModified(Flag)
GetModified(Flag <r>)
SetPointA{Lecation)
SetPointR{Count)

56

Mark of the Unicorn Memory Management

GetPoint(Location <{r>)
GetLength(Size <r>)

These routines deal with several variables, They allow setting and asking for the point, the current
buffer length and the state of the modified flag.

The modified flag provides an indication of whether the buffer has changed. It is set implicitly by
any buffer change operation (principally insertion and deletion} and cleared automatically by writing
the contents of the buffer to a file. The procedures to set or clear it explicitly are provided as this
ability will ordinarily be used by the redisplay code (see section 3.6.2, page 27 for the discussion of
what it is used for).

Note that there are two Havors of the SetPoint routine, designated "A™ and "R". They both do
the same logical operation, but the "A" version interprets its argument as an absolute position within
the buffer and the "R™ version interprets its argument as an offset relative to the current pesition of
the point. (Negative values indicate a backward offset.} Due to the definition of the location type,
the "A" version does not take an integer value as the location and so one usage is not readily
simulazable in erms of the other.

Insert(String)

Delete{Count)
GetStringA(Location,Length,String <r>)
GetStringR{Count,Length,String <rd>)

These routines manipulate and examine the buffer. Insert inserts a string into the buffer at the
puint. The point is left at the end of the inserted string. Delete removes abs{Count) characters from
the buffer, (Negative counts delete betore the point).

GetString returns the strirg starting at the specified location and Length characters long. There
are both absolute and relative versions of this routine.

Search(String,Lacation <r>,Flag <r>) F B
FindFirstIn(String,Location <r>,Flag <rd>) F | B
FindFirstMotIn{String,Location <r>,Flag <r>)F B
LookingAtP(String,Location,Flag <r>)

> I I
pow B = i o R v

I
I
|
I

There are a total of fourteen routines in this section, but they have been listed in an abbreviated
form for convenience. These are search routines and cach form can head either forward (F) or
backward (B3} and with the returned location either absolute (A) or relative (R) to the point.

Note that these routines are not necessary as their action can be readity simulated by using the
other defined routines. However, they have been included in the discussion because they are useful
and because they are often implemented in the same level as the other memory management routines
for having lower level aceess to the butfer witl speed up their exceution.

Search looks for the first occurrence of the string in the buffer, starting at the current point and
heading in the specified dircction. It returns a flag saying whether the string was found and an
indication of the string’s location, The location returned is the lecation of the end of the find string
{either absolute gr relative) in the direction of the scarch. (For a backward scarch, the location is the
beginning of the actual string.) This definition implies that repeated scarches will stop at successive

5-7

Memory Management Mark of the Unicom

instances of the string,

FindFirstIn searches for the first occurrence of any of the characters in the string. For example,
FindFirstIn("0123456789" ...} would return the location of the first digit encountered. Like Search, it
returns a flag as to whether a match was made and the location ¢f the match. Unlike Search, the
location returned is at the beginning of the march and not the end. Successive applications will thus
returt the same position. The difference in behavior between Scarch and FindFirstla is a function of
their different uses. FindFirstin is used 1o parse through text slowly, and zero and one characters
strings must be handled properly. These definititons facilitate that handling, FindFirstNotIn works
in exactly the same manner as FindFirstln except that it matches on any character not in the string.
For example, the following code fragment impicements a forward word operation,

alphabet="abcdefghijkimnopgrstuvwxyz";
FindFirstInFA(alphabet,location,flag);
SetPointA(location);
FindFirstNotInFA(alphabet,location,fTag);

The first Find operation will skip over any non-word characters to the beginning of a word. The
next one will skip to the end of the word. (Note that the alphabcet variable should alse have the digits,
uppercase. and several special characters in order to work as one would intuitively expect. Note also
that the selection of special characters will in general be language-specific. Further, no checks were
made for suring-not-found, etc. Thus, it is not an cxample of finished code.),

An alternative way of defining these operations is to have them automatically sct the point instead
of returning a location. (The tlag must sull be returned.) 1f the string was not found, the point wouid
not be moved. The cheice of a methed of implementing these routines is 4 matter of taste.

LookingAtP has a much more simple defintion. Tt compares String against the sequence of
characters in the buffer starting at Location, retyrning the uue/false answer in Flag.

GetHpos(Coiumn <r2>)
SetHpos(CoTlumn)

{These routines, like the previous set, are not necessary but usefut.) GetHpos returns the column
that the point is in, after taking into account lab stops, efe. It doces not take into account the screen
width as it should not make any difference to the edi 7 how big the terminal is. SetHpos moves the
point to the desired column, stopping at the end of a line if it is not long cnough. [f there is no
character at the desired column (due to tab stops), it uscs the next higher available column position.

SetfileName(FileName)
GetFileName({FileName <r>)
WriteBuffer

ReadBuffer

These routines interface between the buffer and the file system. The FileName routines set and
return the file object (in general a string--the file name). At the user interface, the editor might
implement an intelligent "default and guess” inferpretation of the file name so @ w make life casier
for the user, but doing so does not affect this level of code. This general areu is one where system-
specific conventions become significant.)

5-3

Mark of the Unicorn Memeory Management

Write Buffer writes the contents of the buffer out to the file name associated with the butfer. Any
conversions between internal format and what the file system requires witl be done at this time. Also.
the buffer modified flag (ModifiedP) will be cleared.

ReadBuffer reads the file into the current buffer. There are two choices about how to do the read
operation, Both directions will be discussed along with their ramifications for the other parts of the
editor. They are not both implemented because it is desirable to keep the number of primitives to a
minimunt.

First, it can replace the contents of the buffer with the contents of the file. If it does so, the buffer
modified flag will be clearcd automatically, The editor will want o check on what it is replacing, If
the previous contents of the buffer have been modified. the user should be asked what to do (e.g.,
whether he is making a mistake).

Second, it can insert the contents of the file into the contents of the buffer at the point. In this
case, the first method can be simulated by explicitly deleting al! of the buffer and then reading. The
buffer modified flag will have 1o be manually cleared. The same policy of asking the user what to do
with modified buffers should be followed. The advantage behind this method is that it allows the
easy implementation of the insert file command. The first method requires the allocation of
additional space and then the copying of the data; a luxury that may rot be available on smaller
systems, This second method is thus preferred.

CreateMark{MarkID}

CreatefFixedMark(MarkID)

DeleteMark(MarkID)

SetMark(MarkID,Location)
GetMark(MarkID,Location <rd)
Comparelocation{Locationl,Location2,Result <r>)

These routines manage marks. They allow for creating both ordinary and fixed marks, deleting
marks, and setting and evaluating them. Note that except for creating them, there is no difference in

usage with these routines between ordinary and fixed marks (although their behavier will, of course,
differ).

SetMark merely sets the location of the mark to Location. (A relative version of this routine can
be supplied, if desired.) GetMark returns the current location of the mark. It should be used directly
and not assigned into a variable as its value can change across some buffer operations. These
operations are Insert, Delete and ReadBuffer,

Cemparelocation allows the comparison of any two marks or the point and the mark to be done
without being aware of the specific scheme chosen. [t tukes two Locations as arguments and returas
the sign (41, 0, -1) of the result of Location] - Location?2.

SetModeName (ModeName)
GetModeMName{ModeName <r>)
AppendModebist(Procedure)
DeleteModel ist{Procedure)
InvokeModelist

‘These routines manage the multiple mode capability. The ModeName is a string which can be

5-9

Memory Management Mark of the Unicorn

displayed to remind the user what is going on. 1t does not affect anvthing else.

Append, delete, and invoke operations are all supplied. It is generally bad form to define the
modes so that it matters in which order the precedures are called, but there do arise such occasions.
Therefore, the procedures should be called in the order that they are appended onto the list. Checks
should be made to insure that a procedure is not put on the list more than once. Again, see section
4.5, page 37 for a complete discussion of modes.

2.4 Buffer Gap

This section discusses the impiementation of one of the two ways of implementing the memory
mapagement functions.

A buffer gap system stores the text as two contiguous scquences of characters with a (possibly
null) gap between them. It thus uses memory efficiently as the gap can be kept simall and so a very
high pereentage of memory can be devoted to actually storing text. Changes are made to the buffer
by first moving the gap to the location to be changed and then inserting or deleting characters by
changing pointers.

In more detail, here is an example buffer which contatns the word "Massachusetts”,

P GS GE

There is a {ot of information here which needs cxplaining. First, the buffer is 13 characters long
and it contains no spaces. The blanks between the "u” and the "s" show where the gap is and do not
indicate that the memory has spaces stored in it. The puint is between the "a” and the "c¢” at location
5 and is labeled with a "P" in the bottom line (legal values for the peint are the numbers from zero to
the length of the buffer). There are also three different sets of numbers {covrdinate systems) for

referring to the contents of the buffer,

First is the user coordinate system. Tt is displayed above the buffer. The values for it run from {
to the length of the buffer. As you will note, the gup is "invisible” in this system. The coordinates
labe! the positions hetween the characters and not the characters themselves. Theught of in this way,
the arithmetic is casy. Thought of as labeling the characters, the arithmetic hecomes fraught with
special cases and ripe for fencepost errors.

Sccond is the gap coordinate system. [t is displayed immediately under the dashed line. "The
values for it run [rom 0 to the amount of storage that is availuble and it, too, labels the positions
between the characters {or rather, storage cells). The internal arithmetic of the buffer manager is
done in this coordinate system, The start of the gap (labeled "GS" in the bottom tine) is at position §
and the end of the gap (labeled "GE") is at position T1,

Conversion from the user coordinate system o the gap coordinae systern is quite easy. 1f the
focation (in the user coordinate system) is before the start of the gap, the values are the same. [f the

5-10

Mark of the Unicorn Memory Management

focation is after the start of the gap (NOT the end of the gap!), the location in the gap coordinate
system is (GapEnd - GapSiart) + the location in the user coordinate system, it i$ a good idea to
isolate this calculation cither in a macro or a subroutine in order to enhance readability. Most
routines (e.g. Search) will then use the user coordinate system even though they are essentially
internal,

The third coordinate system is the storage coordinate system. Itis the bottom row of numbers in
the diagram. Itis the means wherceby the underlying storage celis are referenced. it is labeled from X
to X + the amount of storage that is available. The arigin (the value of X) 30 was chosen to be 30
here to help distinguish between the various coordinate systems. [t absolute value makes no
difference. Note that it labels the cells themselves and so caution must be taken to avoid fencepost
eITOrS,

A buffer gap system has a very low overhead for examining the buffer. The reference (GetChar)
comes in in the user coordinate system and the location is converted to the gap coordinate system,
The cell is the looked up and the contents returned. Esscntially, one compare and a few additions are
required. The purpese of the conversions is to make the gap invisible. Note that in no case is any
motion of the buffer necessary.

There is more of an overhcad associated with inserting or deleting a character. In this case, the
gap must be moved so as to be at the point. There are three cases;

1. The gap is at the poing already. No motion is necessary.

2. The gap is before the point. The gap must be moved to the point. The characters after
the gup but before the point must be moved. Thus, ConvertUserTeGap(Point) - GapEnd
characters must be moved. This quantity is numerically point - GapStart.

3. The gap is after the point. The gap must be moved to the point. The characters after the
point but before the gap must be moved. Thus, GapStart - ConvertUserToGap(Point)
characters must be moved. This quantity is numerically GapStart - point.

After the gap has been moved to the point, insertions or deletions can be effected by moving the
GapStart pointer {or the GapEnd pointer--it makes no difference). A deletion is a decrementing of
the GapStart pointer. An insertion is an incrementi..g of the GapStart pointer followed by placing
the inserted character in the storage cell.

Note that after the first insertion or deletion, further such operations can take place with no
motion of the gap (it is already in the right place). Further, the point can be moved away and back
again with no motion of the gap taking place. Thus, the gap s only moved when an inscrtion of
deletion is about to take place and the last modification was at a different bufler location.

This scheine has a penalty associated with it. The gap does not move very often, but potentially
very large amounts of text may have to be shuffled. If a inodilication is made at the end of a buffer
and then one is made at the beginning, the entire contents of the buffer must be moved. (Nute, on
the other hand. that if a medification is made at the end of a buffer, the beuinning is examined, and
anather modilicaton is made at the end, no motion akes place.y The key question that must be
asked when considering this schemce is, when a modification is about to be made, how far has the

5-11

Metmory Management Mark of the Unicorn

peint moved since the last modification?

Sidenote Calculation. How far can the point be moved before the shuffling delay
becomes noticeable? Assume 1/10 sec. is noticcable and that it is a dedicated system.,
Assume lusec, 8- bit wide memory. Assume 10 memory cycles per byte moved (load,
store, eight overhead cycles for instructions). Then, 10,000 byies can be moved with a just
noticeable delay.

Because of the locatity principle, it seems reasonable to conclude that for almost any
rational buffer size the average distance moved will be less than 10K byies and so the
shuffling delay will not be noticeable,

2.4.1 Gap Size

Note that the size of the gap does not affect how long the shuffling wiil take and so it should be as
large as it can be. Typically, it is all of the otherwisc unused memory. In that case, when the gap size
goes to zero, there s no more room {0 store text and the buffer is full.

2.4.2 Multiple Gaps and Why They Don’t Work

Assume that we were still uncomfortable with the shuffling delay and a possible fix was put forth.
This fix would be to have, say, ten different gaps spread throughout the buffer. What would the
effects be? The idea behind this discussion is to help in understanding the buffer gap system by
seeing how it fails,

First, the conversion from the user to the gap coordinate system would be more complicated and
take longer. Thus, seme ground has been lost. However, this is a small loss on every reference in
order to smoeoth out some large bumps, so it might still be a reasonable thing to do.

Sccond, the average amount of shuffling will go down, but not by anywhere near a factor of ten.
Because of the locality principle, a high percentage of the shuffling is of only a short distance and so
curting out the "long shots" will not have a large effect.

Third, unless the writer is very careful, the gaps will tend to Tump together into a fewer number of
"larger” gaps. [n other words, two or more gaps witl meet with the GapEnd pointer for ene matching
the GapStart pointer for another. There 18 just as much overhead in referencing them, but the
average amount of shuffling will increase.

On the whole, the cxtra complexity does not seem to return proportional bencfits and so this
scheme is not used.

2.4.3 The Hidden Second Gap

On two-dimensional memory systems such as Multics, a second gap at the end of the buffer is
provided with almost no extra overhead. The Key to this gain is that the bulfer is not stored in 4
fixed-size place. Rather, the size of the memory that is holding the buffer can also ncrease.

The extra overhead is a check to see whether a modification is taking place at the end of the
puffer. IF so, the modification is made directly with the FadOrAvailableSterage (the buffer runs

5-12

Mark of the Unicorn Memory Management

from X 1o X + EndOfAvailableStorage) variable serving to note that the change has taken place.

This change has more of an effect that might at first be apparent because a disproportionately high
percentage of modifications take place at the end of the buffer. This distortion is due to the fact that
most documents, programs, etc. are written from beginning to end and so the new text is inserted at
the end of the buffer.

The overhead for this change is low because the check for the end of the buffer was already there.
There is no problem of the gaps coalescing because one of them is pegged into place. The gains are
not all that great, but neither are the costs and so it is used. This technigue is also usable with some
implementations of multipie buffers.

2.5 Linked Line

The other method of memory management that we will discuss is called linked line. {t stores the
buffer as a doubly linked list of lines. This method is especially useful with languages such as Lisp
which provide memory management facilities integral with the language.

Each line in the linked list has several picces of information in its header. Not all of these pieces
are required. but they can help greatly in managing the buffer. The pieces of information are:

NextLine pointer /*32 bits*/
PreviouslLine pointer /*32 bits*/

Length fixed /*16 bits*/
/*prasumably no SINGLE Tine will be >84K characters*/
Line char /*the line itself*/

optional fields:

AllocatedlLength fixed /*18 bits*/
Version fixed /*32 bits*/
Marks pointer /*32 bits*/
TextPtr pointer /*32 bits*/

The NextLine and PreviousLine ficlds implement the doubly linked list. The length field is,
clearly, the number of characters in the line. These. along with the line itself, are all that are required
in order to implcment the linked line scheme. The other fields are a help in making the scheme
efficient and some of them are very valuable to include.

The AllocatedLength ficld indicates how much memery is allocated to storing the line itself,
Thus, an allocate/free combination are not required each time a character is inserted or deleted. For
example, a memory allocation block size of 16 bytes has been used in some implementations of this
scheme. AllocatedLength will then be cither 0, 16, 32. 48, 64, cte. The allocate/free combination is
only required every time the line crosses a 16 byte boundary, a considerable savings in overhicad.

Allocating memory in 16 byte chunks cuts down significantly on fragimeatation, Tt will ahrost
certainly be possible to run without a compactifying garbage collector. Sce the discussion of

scratchpad memory (section 2.9, page 17) for further information.

The version ficld is for use by the redisplay code and is an eptimization to make it run faster. It

5-13

Memory Management Mark of the Unicom

will be discussed with the rest of the redisplay process. It serves the purpose of specifying a unique id
for the line.

Using integer-valued buffer positions is hard with the linked line scheme. [nstead. a (line pointer,
offsct) pair are used. Marks are then always associated with a line and can thus be merely strung in a
list associated with the line that they are on. With this implementation, less time is required to
updatc the marks because only those that are on the line can possibly be changed. Note that there
should stiil be a centrat listing of all marks in order to facilitate finding any given one and that mark
ids should be unique within a buffer.

Finally, instead of storing the text of the line with the header, it can be separately allocated. The
TextPtr ficid is then used o remember where the text is. This ability is especially useful when several
places point to the header and properly updating them whenever the line is reallocated is difficult.

In summary, the most useful fields are NextLine, PreviousLine, length, Allecatedlength, and
either version or the mark list. These fields can fit within one 16 byte allocation block,

The operation of a linked line scheme is quite straightforward. New lines, when created, are
simply spliced into the list at the appropriate place. (Note that no characters are stored to indicate
line breaks). 1f the new line is in the middle of an existing line, some movement of the text an the
end of the oid line to the new line is all that is required.

The line itself is stored as a packed array of characters. Inserting or deleting text is done by
scrolling the line after the point of medification. Clearly, this scheme is very inefficient with large
line lengths.

The reason why the length fields were 16 bits long is not obvious. After all, only rarely will a
document have even 256 character lines. But people occasionally edit rather strange things, including
object files. One cannot rely on encountering new line characters at reasonable intervals in such files.
Thus, the extra size.

2.5.1 Storage Comparison

Storage requirements for a linked line schemu aie Somewhat higher than for buffer gap. A buffer
gap scheme reguires one or two new line characters jer fine, and a small amount of fixed storage
(GapStart, GapEnd, etc.).

Linked line requires, in a reasonable implementation, one 16 byte block plus an average of 8 bytes
lost due to fragmentation for each fine. On the other hand, large amounts of text will never have to
he moved.

2.5.2 Error Recovery Comparison

Recovering from errors {an unexpected program termination, for ex: unple) is relatvely casy and
fail soft in a buffer gap. In gencral, the start and end of the buffer are tindable if a marker is left
around the buffer (say, a string of sixteen strange (value 255) bytes) and the buffer is everything
between them. The gap can be recovered and manually deleted by the user or, if 1t, wo, is filled with
a special marker, it can be automatically deleted.

5-14

Mark of the Unicorn Memory Management

Linked line management is harder to recover. Recovery is greatly aided by erasing freed memory.
Basically, vou pick a block at random and examine it. If it can be parsed inio a header {i.e., the
nointer values, etc., are reasonable), continue (a carcful scicction of header formats will help).
Otherwise, pick a different block. You can then follow the next and previous pointers and parse
them. If this works three or four times in a row, you can be confident that you have a handle on the
contents. If a header doesn’t parse, it is because it is either a part of a line (either pick again at
random or go back one chunk and try again) or a header that was being modified (in which case you
are blocked from continuing down that end of the chain). [n the latter case, go in the other direction
as far as possible. You now have one half of the buffer. Repeat the randem guess, but don't pick
from memory you already know aboul. You should get the other half of the buffer. Leave it to the
user to put them together again. If the freed blocks are not erased, the chance of finding a valid-
looking header that peints to erronecus data is very high.

2.6 Multiple Buffers

How do buffer gap and linked line schemes implement muitiple buffers? There is a variety of
choices:

intertwining (linked l1ine only)
separate storage for each buffer
large address space (therefore paged)
structured
non structured
small address space
special cases

Intertwining is an option that is only open to linked line. In this case, all allocation is done out of
a common pool and so, over time, the buffers tend to "intertwing” (i.e., the lines of ene buffer are
mixed in with the lines from other buffers in physical memory). Such an approach tends to maximize
the density of text and thus make the most ¢fficient use of memory. It also assumes that a large
address space is available. (Sce also the discussion in the next section about paged environments.)

Separate buffer space means that each buffer is allocated out of its own area and that all of a
buffer’s area is contiguous. Thus, the address space is cut up into scparate sections for cach buffer.

If a large address space is available, the cutting up can be done one of two ways. If the address
space is structured (as in Multics), the operating system takes care of managing such things
automatically, 1If the address space is not structured (as in Vax/VMS), the memory management
scheme can rescrve fixed regions of the address space for separate buffers, each more than large
enough for any reasonable file,

If the address space available is too small to reserve effectively, the memory management scheme
wiltt have to keep track of afl of the buffers and map them into and out of the availubie address space
as needed. Caution must be taken to aveid requiring that only one buffer he in the address space, as
a multiple window editor must be able to scan multiple buffers. Tn additon, auxilliary buffers will be
needed from time to time {¢.g., for copying tet from one to another),

Managing multiple bulfers is relatively easy. They are treated as a set of buffers, enly one of
which can be accessed ata time. See the carlier section on bufter data structures {section 2.1, page 3).

5-15

Memeory Management Mark of the Unicorn

2.7 Paged Virtual Memory
How well do the two schemes perform in a paged virtual memory environment?

The buffer gap scheme works very well in gencral. 1ts highly compact format allows for accessing
farge parts of the buffer with onty a few pages in memory. [ts sequential organization also implies
that it has a very good Jecality of reference and so the nearby pages are heavily referenced and likely
t0 be around,

[ts major problem is the large amount of shuffling that must be done in some cases. A move of
the whole buffer impilies that the whole buffer must be swapped in and--most likely--swapped out
again. (A scarch of the whole buffer also requires this swapping, but the user asked for it and no
management scheme can search lincarly through memory that is on disk. Therefore, the user should
expect lesser response.) If the memory manager is built into the operating system, some interesting
hackery can be dene with the page table to "move” all of a chunk of memory by one or more pages
by moving page table entrics. The existence of this example implies that such a function might well
be desirable o include in a firture set of operating system calls ("insert n pages after page x and scroll
through page y"--delete n pages is implicit in this and it only affects part of the address space).

In 2 tight memory situaticn, the buffer gap scheme does as well as can be expected. The nearby
sections of the buffer will be around because of locality of reference, but anvthing far away can take a
while to get to.

A linked line scheme docs not perform as well overall. First, if an intertwining muitiple buffer
scheme is used, one may as well forget performance in a tight memory situation. The interiwining
can use different parts of each page for storing different buffers. Thus, when considering any given
buffer, the page size is effectively reduced.

Even in a scparated buffer scheme, the data is not as tightly packed overalt (the headers and
fragmentation) and so some performance is lost. Also, the linked lines can be anywhere in a large
portion of memory and so the density of nearby lines can range from goed to very low. Finally, even
if a desired line happens to be on an in-memory page, in order to get there {via the links), you will
probably have to swap in several additional pages and, in the process, may even swap the desired
page out!

The primary advantage that linked line has is that it never requires moving large sections of the
buffer. Thus, if memory is not tight, the entire buffer can fit in memory and performance will be
very good.

2.8 Editing Extremely Large Files

Fxtremely large files come in two flavors. First are files that are so large that reaspnable
assumptions break down. Such things tend to start happening about 64M bytes or so. Al that point,
even simple things (¢.g. string scarch) tend to take several mimutes to run on a fast processor with the
whole {il¢ in memory,

Although there are one or two interesting hacks to sty alive, fife is simply not bearable when

trying to cdit such a targe unstructured fite. The wliernative (which taroe data base peuple have
known about for years) is to stucture the file. Uhis alternative 1s not that unpalatable beeavse an

5-16

Mark of the Unicorn Memory Management

unstructured editor can still be used to edit the subpieces of structure. Fhe other reason why this is
not that much of a problem is that there aren't all that many gigantic files w ¢dit. The vast majority
of files are much smaller. Gigantic tiles call for special wols for manipulating them.

The other flavor is more applicable to microprocessors where an extremely large file might be
100K bytes. The reason why it is considered so large is that the disk to store it on might be only S0K
bytes, or there might only be magnetic tape for permanent siorage. Thus, a 100K file would tax the
hardware resources severely.

The basic way of dealing with such files is to break them up into chunks and edit the chunks
separately (the TECO yank command is an example of this). In general, you can only proceed
forward through the file in any given edit session because of the problems involved with the file size
changing as the edit progresses. Either a marker byte (1L is commenly used) or a character count
(not as polite to the user) can be used to determine where the fiic breaks are to occur. This method
requires an input and output file to both be available and open at the same time. A crash preserves
the input file and seme of the cutput file. Thus, editing a 100K file requires up to 200K of storage.
This is the only method that works on magnetic tape.

The next method allows full access to the file without breaking it up in any way. It requires three
files (input. output, and backup) to be open simuttancously. As you procecd through the file, it edits
from the input to the output file. However, when you reverse direction, it reads fromthe cutput fife
onto the third, backup file (it does not modify the input file, thus cnsuring its integrity in the case of a
system crash). Note that the data is stored in the backup file in reverse order! Preferably, file i/0 is
done in blocks and only the order of the blocks needs to be reversed, not the contents of the blocks
themselves. When you switch o going forward once again, the backup file is read until it is
exhausted and then use of the input file.is resumed. This method allows for simulating a very large
buffer as the file management can be done invisibly. 'Thus, the user can edit a 108K file with much
less physical memory, Note that the swapping can be slow!

The final method that is available is to simulate demand paging by breaking a buffer gap scheme
up so that there are many small buffers. Each buffer is then paged to disk independantly. {fa buffer
shoutd fill up, it can be split up into two buffers and insertions can continue. No large motion of text
is ever required, but memory is lost. . _ i

A .
[Y

In none of these systems i3 linked line acceptable. Memory is assumed to be very tight and the
overhead of the extra headers is not acceptable.

2.9 Scratchpad Memory

Scratchpad memory contains the temporary variables allocated by the editor. Because of the
transient nature of these variables, it is allocated and freed often. It is used to hold the buffer
descriptors, string variables, and--in the linked line scheme--the buffers themseives. 'The scratchpad
memory management required for text editing is relatively simple, buat there are some general
considerations that are worth mentioning. There aren’t toe many bufler deseriptors and they are of a
well known size so they are easy w manage. The string vartables can range from being null to being
cutire buffers, Thus. they can cause fragmentation quite easily. Fhe linked line formats have already
been discussed.

Memory Management Mark of the Unicorn

In a large address space system, two buffers worth of address space should be devoted to
scratchpad storage (to allow for putting an entire bufter there, which takes one buffer worth, and
because space is allocated in integer buffers worth). In a small address space system, large operations
are typicaily done character at a time because memory itself is usually at a premium. Therefore, the
amount of scratchpad storage needed can be quite small. In any sysiem where the editor can he
dynamically extended (sce the Command Loop chapter), scratchpad storage needs can vary
dramatically and are not generally predictable in advance,

Allgcating memory in chunks helps prevent fragmentation, therefore not usually requiring a
compactifying garbage collector. If memory becomes badly fragmented, a compaction is requried.
In a linked line scheme, compaction eliminates the possibility of using the line pointers as unique ids
(they change). Such unique ids are used by the redisplay algorithm.

5-18

Mark of the Unicorn Incrementai Redisplay

3. Incremental Redisplay

The most visible part of a screen-oriented text editor is the redisplay process. This is the section of
code that keeps the current contents of the buffer accurately displaved on the user’s terminal. it has
the additional goal of performing this function in such a way that a minimum or ncar minimum
amount of clock time is required in order to fulfill this purpose. Clock time is a combination of
transmission time, cpu time, and disk access time which is perceived by the user as the delay from
when he enters the command o when the redisplay is finished.

In general, the contents of the buffer will change only a small amount during the basic read
command - evaluate it - do redisplay loop. The screen will then only have to be changed by a small
amount in order to reflect the changed buffer contents. Hence, the algorithms concentrate on
incrementally redispiaying the buffer and the entire process is referred to as incremental redisplay.
Fortunately, it turns out that in cases where the buffer is changed drastically, the increment-oricnted
approach to redispiay works quite well and so there is no need for multiple algerithms.

Our discussion of the incremental redisplay process assumes a model of the system where the
editing is done on a main precessor which communicates with a terminal. If the main processor is the
same as the terminal, the bandwidth of the communication channrel can be though of as being very
high. The incremental redisplay process is an optimization between cpu time and [/0 channci time,
with a few memory considerations thrown in. The primary constraint is the speed of the /0 channel,
Typical speeds that are currently available are 30 characters/second. 120 cps, and 960 cps. There are
also memory mapped terminals which run at essentiaily bus speeds. Equivalent speeds can be
derived and run in the 100 to 50,000 <ps range,

A typical video terminal has a 24 x 80 character screen. At 30 ¢ps, it will thus take three seconds to
print a line and over a minutc to refresh the whole screen. At 120 ¢ps, less than one second is
required to print a line and about twenty to refresh the screen. At 960 cps, it will take only one or two
seconds to refresh the screen. The speed of the communication greatly affects the amount of
optimization that is desired. At 30 cps, even one extra transmitted character is painful to the user,
while at 960 cps reprinting entire lines does not take an appreciable amount of time. One dimension
of the optimization is thus clear: the importance of eoptimizing the number of characters sent
increases in proportion to the slowness of the communication line.

A user interface issue arises at this point. While it is acceptable from a clock time point of view to
reprint entire lines, users do not like to see text which has not changed in the buffer "change" by
being reprinted. The {lickering that is generated by the reprinting process attracts the user’s attention
to that text, which is undesirable {the text has not, after all, changed). Thus, aveiding extrancous
flickering and movement of text is good. Even with infinitely fast communications and computation,
inerementat redisplay will still be a desirable feature,

Cpu time must be spent in order to perform these eptimizations. [f the cpu time that is spent
exceeds some small umount of clock time, response will be annoyingly sluggish (and that is not good).
It is thercfore desirable to minimize the epu time that is spent on eptimizing the redisplay. At this
point, the speed of the communication line inakes a difference. It the tine is slow, extra cpu time can
and should be spent (at 30 cps, it is worthw hile to spend up w0 30 msec, of epu time to climinate one
character from being transmitted (which tikes about 30 msec.)). Howewer, at higher speeds it is
generaily- not practical o heavily optiniize as it can easily take longer w compute the optimizations

5-19

Incremental Redisplay Mark of the Unicorn

than (o transmit the extra text. This relaxation of the optimization is subject w the user interface
constraint outlined above. Memeory size constrains the optimization as well, One technique used is
storing the entire screen, character by character. This technique works quite well; however, where
memory is tight this technigue will prove 100 expensive to implement.

3.1 Line Wrap

There arc some more pragmatic considerations involved in the design of the redisplay progess.
The first of thesc is line wrap.

Although the editor is editing a one-dimensional stream of text, this text must be placed on a two-
dimensional screen in such a way that the user can understand it. There should be no constraints
made by the redisplay process on the length of tines. Additionally, there are no commands to
“position the screen™ or anything of the sort, 1T IS THE RESPONSIBILITY OF THE REDISPLAY
PROCESS TO HAVE THE SCREEN SHOW MEANINGFUL INFORMATION AT ALL TIMES.
The user has almost no control over this function at all, and should not need to. If commands have to
be entered in order to obtain feedback, those arc commands that are not doing productive editing.

There are two different ways to handle very long lines. One way is to have these lines be clipped
ar the right hand edge of the screen and then have some indication that the clipping is occurring. The
other is to wrap the lines to the next line (t.e., the text that does not fit on one screen line is placed on
the next). The first method is acceptable, but not very weil human-enginecred. 1yping text in the
middle of a line causes the line to spill and visually lose characters. This losing of characters causes
uncertainty in the user’s mind about what exactly is happening. In addition, it is never possible to see
a fong linc in its entirety.

The second method is slightly less "clean” when displayved on a screen as wrapped lines will be
around, but it dees not suffer from either of the above problems. Inserting text might cause a line to
wrap (an annoying process) but no text vanishes. Also, long lines are always visible. Finally,
wrapped tines are usuaily only a temporary phenomenon, because most people prefer ling widths in
the 65-80 character range and this range fits on most terminals. Thus, the wrapped lines appear
mainly during editing and will normally go away. Note that it is during the cditing process that users
most necd the feedback. Thus, the tine-wrappin; method scems 10 be the best one to use.

. .

In any method, care must be taken to make sure that the pathological case of very long lines works
properly. Although rare, non-text (e.g., object code) files arc sometimes examined with the editor.
These files generally do not break up into reasonable-sized screen lines {a newline indicator might
not occur for two or three thousand characters in an object file). Thus, a single line of text might
more than fill up the screen. Provisions must be made in the redisplay code to allow the screen to
nonctheless be positioned into tie middle of such a line.”

3.2 Multiple Windows

It is useful to be able to sce more than one buffer {or different parts of the same butfer)
simultancously. For example, you can then examnine documentation while writing a procedure call.
In general. it s not wo difficult to set up the redisplay to perform this multiple windowing. The few
necessary details will be mentioned in the discussion of the algorithms thenmselves, Care must be

5-20

Mark of the Unicorn Incremental Redisplay

taken that modifications made while in one window are reflected in any other appropriate windows.

3.3 Terminal Types

The redisplay process is the way to communicate to the user. Ttalso has a strong interest in aking
advantage of whatever features are supplied by the terminal in order to reduce the time taken for a
redisplay. This section will undertake a bricf discussion of the various classes of terminals available
and how various features affect the redisplay process.

3.3.17TY and Glass TTY

A TTY is a canonical printing terminal. Printing terminals have the property that what is once
writien can never be unwritten, A glass TTY is the same as a TTY except that it uses a screen instead
of paper. It has no random cursor positioning. Incremental redisplay for such a terminal usually
maintains a VERY small window (e.g., one line) on the buffer and either cchos only newly typed text
or ¢lse consistently redisplays that small window. Once a user is familiar with a display editor,
however, it is possible--in a crunch--to use it from a terminal of this type. This is not generally a
pleasant way to work.

3.3.2 Basic

A basic terminal has, as a bare minimum, some soct of cursor positioning. It will generally also
have clear to end of line {put blanks on the screen from the cursor to the end of the line that it is on)
and clear to end of screen {diwo, but to the end of the screen) fuonctions. These functions can be
simulated, if necessary, by sending spaces and newlines. A typical basic terminai is the DEC V352,

Such terminals are quite usable at higher spceds (960 ¢ps) but usabifity deteriorates rapidly as the
speed decreases. 1t requires patience to use them at 120 cps and a dedication bordering on insanity to
use them at 30 cps. Terminals which do not have clear to end of line are cven worse.

3.3.3 Advanced

Advanced terminals have all of the features of basic terminals along with editing features such as
insert/dclete line and/or character. These features can significantly reduce communication time for

common operations. Typical terminals in this category are the HDS Concept 100, the Teleray 1061,
and the DEC VTL00.

These terminals are, of course, quite usable at 960 cps and similar speeds. Due o the reduced
need for communication line bandwidth, at fower speeds they are more usable for editing than
anything clse. At 120 cps, editing text is relatively painless, but merely examining text takes place at a
quite slow speed. At 30 cps, even editing is barely acceptable,

There is a subtle difference among some of the advanced terminals. The VTTC0 supports a scroll
window (imove lines x throngh y up/down n lines) feature white the 1061 supports insei/delete lines.
Scroll window is more pleasing to see when there is some stationary text being displayed at the
bottom of the screen. With insert/delete line, the appropriate number of lines must be deleted and
then nserted; the text at the boom thus jumps. Scroll window does the whole thing as one
operation and does not cause the bottom to jump.

521

Incremental Redisplay Mark of the Unicom

‘The €100 has an interesting feature. 1tis a fully windowed terminal and thus all operations can be
confined to only affect a designated area on the screen. [nsert/delete line operations thus do not
cause the bottom text o jump and it is even possible to have two windows side by side as the clear to
end of linc opcration does not affect the text in the adjoining window. The window management
software thus has much mere flexibility in what can be done while remaining within reasonable
ransmission tme constraints.

3.3.4 Memory Mapped

This section covers a wide range of terminals. Their common characteristic is that the entire
screen can be read or written at ncar bus speeds. Typically, this means that the rerminal is "built in”
to the computer that is running the text editor. In addition, this compuier is often a dedicated one,
running only one user’s processes. Examples of this type of terminal are the Knight TVs {(at the MIT
Al lab), the Lisp Machine displays, and the wide variety of memory mapped displays available for
MmiCcroprocessors,

The use of memory mapped terminals has several implications for the redisplay process. First,
many of the advanced features arc typically not available, However, the terminal 1/0 is so fast that
they can be emulated very quickly. Sccond, it is possible in some cases to use the screen memory as
the only copy of Lhe screen. Thus, if reading from the screen docs not cause flicker (but writing
does), the screen can be read and the incremental redisplay process will run and compare the buffer
against it. changing it only when necessary, Finally, if you can write to the screen without flicker, the
redisplay process merely boils down to copying the buffer into the screen as doing so is always faster
than comparing. Any memory mapped terminal which has a slow access time shouid be though of as
a basic terminal for the purpose of redisplay algorithms.

3.3.5 Terminal independent Output

A full discussion of this topic is beyond the scope of this thesis. [Linhart] (sec the bibliography)
discusses this probiem more fully. In essence, the problem is that every terminal manufacturer has
decided on a different set of features and ways of accessing these features. What must be done
solve the problem is to specify a set of routines which can be called which isolate these differences, as
well as a way of selecting among different sets of such routines as the terminal changes.

Some systems alrcady have a solution to this problem and interfucing the editor to that solution is
the best way out. For the most part (such solutions are RARE), the person who writes the cditor will
effectively create one. As will be mention later, the text editor might very well become the de facto
solution to the problem. Other programs would merely output to editor buffers and the editor’s
redisplay code would take care of the rest.

The following set of routines wilf allow terminal independent 170 for mest terminals. They allow
fyll access 1o the capabilitics of TTYs and basie terminals, They will not allow fult aceess to the
capabilitics of advanced terminals, but they will get you sumewhere. Memory mapped terminais
usually use a totally different 170 package anyway and so they are not considered,

Basic [/0:

GetChar({Character <r>)

Mark of the Unicorn Incremental Redisplay

PutChar(Character)
InputWaiting(tumber <r>)
Init(Terminal Type)

Fini

The first three routines are capable of handling all input and output associated with a full duplex
stream device, End of record marks (e.g., new lines) are transmitted as characters. The first two
routines get and put raw characters (no translation or checking of any sort is donc) and the other one
tells you of the state of the buffer. InputWaiting tefls you if the user has typed anything that you
haven't read vet, If he has. you can read it before calling the redisplay. [fthe input is coming from a
file, InputWaiting will tell you the number of characters left in the file. This interface is a general
stream oriented interface. These routines update the internally known cursor position to correspond
to the new one {i.e,, increment by one for the most part on output). Init sets the terminal type and
initializes the terminal to a reasenable state (e.g., do not echo input). Fini undoes whatever init did so
as o leave the terminal in some reasonable state for gencral system use (e.g., not raw [/O, echo input,
ete.)

Basic Terminal Control;

MaveCursor(x,y)
CLEOL
CLEOS

MoveCursor knows where the cursor is and figures out the fastest way of getting it to (x.y).
CLEOL sends a command to the terminal to clear from the current position to the end of the line and
CLEOS clears to the end of the screen,

Advanced Terminal Control:

Insert(String)
Delete{Number)
InsertlLines(Number)
Deletelinas{Number)

Insert takes String and figures out the mest reasonable way of inserting it. Delete deletes
characters on the current line. The Insert/Delete Lines re utines deal wich lines on the screen. In all
cases, Number can be cither positive or negative and a positive number significs to the right or below
of the cursor, respectively,

3.3.6 Echo Negotiation

Echo negotiation was devised for the Multics system and is a protocol for use by multi-node
networks which can cut down on respensc time by reducing communications overhead. It is usefuf in
an environment where the user’s terminal is a one node and the computer which is running the text
cditor is at another. In such an environment, it can take a long time to send a character buck and
forth (and it takes nearly the same time to send many). '

Fcho negotiation can only be used when the point is at the end of a line. The editor can downlead

the front end processor (the node closest to the terminal) with a list of approved characters, As long
as the user types only those characters and does not reach the end of u screen line (necessitating a

5-23

Incremental Redisplay Mark of the Unicorn

wrap), the front end can safely echo the inpus characters to the werminal and butfer the input text,
When any non-approved character is typed (or the line fills up), the editor is invoked to process the
cchoed text (the number of already cchoed characters is returned to the editor) and the additional
character. See section 3.6.2, page 27 to see how this protocol affects the redisplay algorithm.

3.4 Approaches to Redisplay Schemes

There have been two major approaches to performing redisplay. The fisst is for the routines
which are invoked by the user to tell the redispiay code exactly what they did (e.g., "l deleted 5
characters from here™). This approach is not a very clean one and it is prone to crror. This is an
especlally unportant consideration because we would like to encourage novice users to write their
own commands., The extra effort of getting the redisplay correct might make this an impractical goal.

The second approach has been to have the redisplay know nothing about what has occurred. 1t
must rescan the buffer and decide for itself what has and has not changed. This process requires a
copy of the screen and can be expensive in cpu time, This algorithm will be presented first because
of its relative simplicity.

There is a compromise between these two approaches which seems to solve all of the problems.
This compromise is t0 have the memory management seftware communicate with the redisplay
software. User routines know ncthing of this communication and cannot cause bugs in it. On the
other hand, the ¢pu time require for a redisplay is somewhat reduced and is more spread out and so it
i5 not as noticeable, Extra memary is required o handle the communication, but in some cases, the
screen representation can be discarded and so the net result could be a memory gain. [t is this
compromise that is the heart of the "modern” redisplay and it is the other one to be presented.

3.5 The Framer

The framer is the part of the redisptay that decides what will appear on your screen, In the stable
state, there are two different approaches used.

First, the TopOfScreen and BottomOfScreen marks are kept around. As long as the point stays
within these marks, we expect that the point witl remain on the screen, Thus, the top of the screen
can be assumed to be in the proper place and the redisplay algorithm can be started directly, If it
does not (the redisplay code detects this error and generates a FramerError), the [ramer runs again,
but uses the next approach.

Second, if the point is outside of the screen marks, it is simplest 1o assume that the entire screen
will be changed. Thus, the framer wants to recenter the poiat on the screen, [tcan start by counting
back <sereen heightd 7 2 lines. Assuming that there are no wrapped lines, this method would worsk
fine. At this point, the framer cherks this assumption (that there are no wrapped lines) by counting
forward character by character, keeping track of how many lines are actually used along with the
intermediate results. EF there are no wrapped lines, the new guess will work fine, [F there are
wrapped lines, it will look at the interinediate results and decide how many lincs to throw away to
leave you approximately centered. 1f the advanced redisplay aleorithm is used, these ntermediate
resuits should be recorded as they might be needed.

If all the lines have to be thrown away (i.¢., the current line is VERY long), the thisd and most

5-24

Mark of the Unicorn Incremental Redisplay

desperate mude must be used. Here, the framer figures out, character by character, where cach
character on the current line is. It then decides how many characters to move back before starting the
redisplay, while staying within the same line.

3.6 Redisplay Algorithms

Here are presented the two majer redisplay algerithms and an discussion of how to adapt these
algorithms for memory mapped ierminals, These algorithms will not go into every detuil {or even
maost of them) as doing s¢ would inundate the description with too much detail. This detail is
discussed in later sections.

3.6.1 The Basic Algarithm

call Framer;
/* TopOfScreen is a mark returned by
the framer */
Bufloc = TopOfScreen;
/* loop over the whole screen */
do Row=1 while(Row <= HeightOfScreen);
do Col=1 while(Col <= WidthOfScreen);

/* found a NewlLine char */
if Buffer(BuflLoc)=NewlLine
then do;
/* is the rest of the line biank? */
do i=Col to WidthOfScreen;
if Screen(i,Row) t= " "
then do;
/* if not, make it so by
sending a CLEOL at the
non-blank */
call MoveCursor{i,Row);
¢all CLEOL;
do j=i to WidthOfScreen;
Screen(j,Row)=" ";
end;
leave;
end;
end;
BufLo¢ = BuflLoc + 1;
/* move to next 1ine */
Row = Row + 1;
Col = 1;
lTeave;
end;

/* no NewlLine, so has there been a
change in the buffar? =»/

if Screen(Col,Row) t="Buffer{Bufloc)
then do;

/* if so, change the screen

5-25

Incremental Redisptay Mark of the Unicorn

to match */

call MoveCursor{Col,Row);

call PutChar{Buffer(BufLoc));

Screen{Col,Row)=Buffer(BufLoc);

end;

BufLoc = BufLoc + 1;
Col = Col + 1;

/* save the (x,y) of the point so

that we can put the cursor there later */
if BuflLoc=Point

then do:
PointX = €ol;
PointY = Row;
end;
end;
Row = Row + 1;
Col = 1;

end;

/* framer missed-~it almost never happens */
if BuflLoc < Point
then call FramerError;
End0fScreen = BufLoc;
call MoveCursor(PointX,PointY);

This algorithm is quite straightforward. It first calls the framer to match the top of the screen with
some point in the buffer. It then iterates through the buffer and the screen simultancously, matching
characters as is gues. As long as the character on the screen matches the character in the buffer, no
acticn is taken. When there is a discrepancy, the cursor is moved to that position by means of the
MoveCursor routine. the changed character is printed. and the screcn array is updated. If the line
gets to be too long, it is wrapped automatically, 1f a NewLine character is encountered, the rest of the
line is checked o make sure that it is all blanks. If not, blanks are put there. Finally, a note is made
of where in the bufter the end of the screen falls.

This is your hasic, garden variety redisplay algorithm. It will work on any terminal that supports
cursor positioning {the CLEOL call can be faked by sending spaces). 1t will work quite well on
anything running at 480 cps or over. Its only mewmory requirements are an asray large enough to hold
the screen (typically 1920 characters). The only inte: .tior between the redisplay algorithm and the
memory management system is two marks, Finally, it is not told anything about what changes were
made and so it figures everything out for itself cach time it is called. There can thus be a cpu time
penalty associated with this algorithm that might nake it slow encugh to be painful. The next section
describes with an algorithm which gets around this penalty.

A complete redisplay can be gencrated quite easily usiag this aigorithin. The
GencratcNewDisplay routine will set the cursor to home and then clear the screen and the internal
screet array. 1t then calls the incremental redisplay routine. The incremental redisplay rontine will
simply do its normal job, which in this casc implies sending all of the non-blank characters o the
terminal, The NewDisplay routine must alse remember o send such things as status displays, which
arc not sent during an ordinary redisplay.

A stutus display is text that is kept on the screen hut is not often changed. For example. the Emacs

5-26

Mark of the Unicorn incremental Redisplay

status dispiay has the editor name. the mode name, the current buffer name. and the file name
displayed on a line near the bottom of the screen. Ordinarily, the redisplay code ignores this section
of the screen.

3.6.2 The Advanced Algorithm

The advanced redisplay algorithm serves two vastly different purpases. First, it provides a way of
efficiently wking advantage of the insert/delete line/character functions which are supptlied with
some rerminals. Second, it provides a low cpu overhead way of performing a redisplay on basic
terminals,

The basic idea used by this algorithm is to assign a unique id to each buffer line that appears on
the screen. Note that a buffer line can take up more than one line on the screen by wrapping, Just to
make sure that the definitions are clear, here they arc: a buffer line {BufferLine) is either the text
between two newline characters (in the buffer gap memory management scheme) or the texs in one
element of the line list {in the linked line scheme), A screen line (Screenline) is a horizontal row of
characters on the user’s display.

The unique id can be in any form. One method is to use a 32 bit counter and increment it each
time any line is changed. After the change is made, the line is assigned the current value of the
counter. {firis changed again, it gets the new value of the counter. The assignment can be made in
an otherwise unused part of tie header (for linked line) or in a special mark (for buffer gap). [na
linked line scheme, the pointer to the line can serve as a unique id.

These unique ids only have to exist for lines that appear on the screen. Thus, the buffer gap
scheme only has a few of these special marks that must be maintained, The special marks are placed
at the beginning of each line thar appears on the screen. They contain a version number for the line
as well as the location of the mark,

The memory management scheme is responsible for maintaining this extra informaticn. Thus, it
and the redisplay code can interact heavily and the specific redisplay process chosen will affect the
internal structure of the memory management scheme.

There arc two flags that can be kept by the memory management software which will aid the
redisplay process. First is the buffer modified flag. This flag is usually kept anyway so that the editor
can detect when the buffer has been modified. (The details of manipulating it were discussed with
the interface routines in section 2.1, page 3.) Tt it has not been sct, the redisplay code knows that it
generally will not have to do anything except move the cursor, [f the point is still on (he screen
(remember that we have beginning and end of screen marks), its posilion vn the screen can be
caleulated with much less effort that is required for a full redisplay, If the flag has been set, a full
redisplay is required and the flag will be reset {(the editor proper ORs this flag in with a private llag
{Modifiedp: mentioned in the buffer data structure descriptivns) in order o properly remember
whether the bufler has heen modified).

Another flag {which has not been mentioned before) can significantly reduce redisplay
computation in some cases. Assuming that you ace located at the end of a Bufferl ine, it wils you
whether or net any operation other than inserting a character las been done. I the flag savs not, all
that the redisplay has w du is vutput the one character (after checking fur wrap, ete.). A significant

Incremental Redisplay Mark of the Unicorn

amount of time can be saved this way, but it is most useful with a negotiated echo protocol (see
section 3.3.6, page 23). The exact interface to this flag will not be defined.

The redisplay algorithm itself starts by trying te find a match between the Bufferlines and the
Screealines by using unique ids. The unique ids are compared., line by line. If they match, no work
needs w be done and the redisplay proceeds to the next line. If they don't, it can be for one of three
reasons:

- An addidonal line (or lines) was inscrted between the two ScreenLines. This condition is
detected by comparing the Screenline unique id with all of the Bufferbine’s unique ids
and finding a match. (Remember that the Screenlines are what the BufferLines were
one redisplay iteration agoe.) We thus have the situation where we used to have A,B and
now have A <junk>,B. Clearly, the most reasonable assumption is that <junk> has been
inseried. We thus count how big junk> {the framer has alrcady calculated this
information) is and tell the terminal to insert the appropriate number of lines. {Before
you do this, however, you must first delete the same number of lines from the end of the
window in order to keep from losing the text at the bottom of the screen.)

- A line {or lines) was deleted. This is detected by comparing the BufferLine unique id
with all of the Screcnline’s unique ids and finding a match. We thus have ABC
becoming A,C. We delete the appropriate number of lines and then insert them again at
the bottom of the window. '

- The line was modified, This is detected by not finding either of the abuve maiches. At
this point, we switch to intra-line work and do the following:

*Do a string compare starting from the beginning of each line {the BufferLine and
the Screenl.ine) and sec how much they have in common. (If this says the whole
line matches, no more work has to be done.) For example, if the ScreenLine is
"abedef" and the BufferLine is "abxdef™, they have two characters in common from
the start.

*Dp the same thing starting from the end. The example strings have three characters
in common from the end.

*Compare the line lengths, 1f the two lines are the same length, you only need to
rewrite the changed part (e.g., two characters were interchanged). [n the example
strings, the lengths are the same (6). This eptimization can be done ¢ven on a basic
terminal. If the two lines are not the same length (for example, the Screenline is
"abedef” and the Bufferfine is "abxyzdef™), rewrite a8 much of the portion
hetween the common text sections as possibic ("x™") and then cither insert or delew
the required number of characters (in this case. insert two blanks) and finish writing
the modificd text ("yz"). Remember that if there i$ no common text at the end and

the Bufferl.ine is shorter than the Sereenl.ine, a CLEOL call is uppropriate.

*Wrapped lines can pose a problem. There may be no end common text, and yet an
insert ot delete character operation might be the appropriate one. (Il the screen

5-28

Mark of the Unicorn Incremental Redisplay

width is six characters, the Screenline is "abedef”, and the BufferLine is "abexdef™.
Here, the BufferLine will ultimatelv become two Screenlines, “abexde” and "f7.)
This case is detected by having no end common portion and noticing that the line
wraps. A more complicated matching process can detect the situation and
appropriate action can be taken.

3.6.3 Memory Mapped
Redisplay for memory mapped terminals boils down to one of three cases. Each case is relatively
simple,

1. Reading from and writing to the screen cause flicker. The solution i8 to use the basic
termninal redisplay scheme.

2. Reading does not cause flicker but writing does. The solution is to use the basic terminal
redisplay scheme, but use the actual screen memory for storing the screen array.

3. Neither reading or writing cause flicker. On each redisplay cycle, merely cepy the buffer
into screen memory, not forgetting to process new lines, etc., as needed.

3.7 Other Details

There are a number of other details that must be carcfully watched when writing redisplays. None
of them are particulary worrisome in themselves, but they colicctively clutter the algorithms a great
teal. The problems that they pose will be described and they are gach simple enough that specific
soiution algorithms are not required.

3.7.1 Tabs

It helps to think of a tab character in a buffer as a cursor controt command saying, "think of me a
N blanks, where N is the number of coiumns to the next tab step.” Thus, whenever you see a tab you
want to figure out what N is, and then check to sce that the next N colums are blanks, increment the
cursor by N, etc, Tab stops can be set in an aray (for arbitrary placement of tabs) or set every C
columns, In a one origin numbering system, tabs set eve,y C columns are sct at positions 1, C+1,
2C+1, 3C+1, ... Forexampte, when C=38, tabs are in columns 1, 9, 17, 25, 33, cte. Again, assuming
a onc-origin system, the equation for N is:

N =C - mod(X-1,C)

(X is the calumn position,)

3.7.2 Control Characters

[n general, only the new line character(s) and tabs are interpreted; other control characters are
displayed in some reasonable printing representation, One popnlar representation is "t followed by
the character whose ASCI value is <control chard + 64. The character control-a is thus printed as
tAL (The ASCI DEL character, 127, can be printed as t2.) This convention has been followed in
this thesis. When displaying control characters, you must remember that while the character itself is

5-29

Incremental Redisplay Mark of the Unicorn

only one characier, it displays in a two character wide sequence. In addition, it is the actual displayed
scguence that is stored in the screen array {e.g.. "+ and "A", not "tA"). Care must be taken to
insure that controi characters can wrap properly across line boundaries (e.g., the "t" is not displayed
at the end of one line with the "A" at the beginning of the next).

3.7.3 End of the Buffer

If the codre buffer fits on the screen, you wili run out of buffer before you run out of screen.
Thus, whenever BufLoc is incremented, a check should be made against the buffer length. If you do
run out of buffer, remember to finish blanking the rest of the screen if it needs it.

3.7.4 Between Line Breakout

The redisplay process does not have to run to completion before editing resumes. [ustead, it can
get to a convenient spot {in the basic algorithm, almost any spot will do; in advanced algorithm, stop
after finishing a line) and check the input buffers. [If more input has arrived, it can abort the
redispiay and process the input. Remember that the purpose of redisplay is to provide feedback to
the user. [f he has already typed something, he does not need feedback immediately. (However, if
vou can give it to him in a way that does not stow him up, do so.)

3.7.5 Proportional Spacing and Multiple Fonts
Displaving text in a proportional spaced font is not too difficult. Tnstead of assuming that each
character has a width of one, the width can vary and it must be looked up each time it 18 needed.

Displaying maitiple fonts implies receiving a command to switch fonts at some time during the
redisplay process. These commands can be stored in the buffer (in which case like NewlLines they are
interpreted and nat displayed just) or in some other structure.

3.7.6 Multiple Windows

There is a database somewhere which describes what windows (i.e., what part of which buffers)
are to appear en the screen. One way o perform redisplay with multiple windows is to call the
incremental redisplay routine and pass it as an argument cach window descriptor in turn. Another
way is mere suitable for use with the advanced algorithin and it involives having a separate descriptor
for each line of the display (.., the same database sorted backwards as well). This descriptor tells
you where to get cach line from,

If a row of dashes ("---=-") or any other character string is used as a visual scparater between
windows, it can be implemented as an additonal buffer/window combination and no special casing is
required for the redisplay code.

Mark of the Unicorn The Command Loop

4. The Command Loop

This command loop is the part of the editor that actually implements the logic of the editor. 1t is
responsible for reading in commands, executing them, and "printing” the resuits. In the process of
executing them, it must accept arguments and bind the input characters (o functions, This chapter
will discuss the command loop. It will also discuss some distantly related issues: the tradeoffs
between kill buffers and an undo function, the provisions for recovering from errors, and
considerations for selecting implementaticn langauges,

4.1 Basic Loop: Read, Eval, Print
The basic loop is:

do while{TRUE);
call GetChar(Char);
call Eval(Char);
if abort
then Teave;
if InputWaiting() = 0
then call IncrementalRedisplay;
end;

Note the two details that have been added to what was mentioned in the section heading, First, an
abort flag is checked to see whether we are supposed to exit the edit session. This flag is set by the
Eval routine. Eval works by invoking a function which was specified by the input character. This
function’s only result is the change in the state of the editor {c.g., an "x" has been inserted). The
“printing” (actually, an incremental redisplay to the screen) is done only if the user has not typed in

anything more to be processed.

4.1.1 The Philosophy Behind the Basic Loop

The basic loop as described puts the fewcest restrictions on the uscr interface that can be managed.
Each character, in its raw form, is mapped to a procedure which is in turn evaluated. Any arbitrary
syniax and semantics can be implemented with this base.

In theory, a syntax of commands being words (¢.g., "delete”, "move"”, etc.) could be implemented
in this structure by having either a large number of dispatch tables (and thus implementing a symbol
state table architccture) or a procedure which parses the syntax of the command via conditional
statements, For reasons which will be stated, this syntax is not generally implemented.

Consider the thought that every character that is typed at the keyboard causes a function to be
executed. The first conclusion that results is that it is silly to type "insert x" or anything like that
when you want "x” 1o be inserted. As this is a very common operation, it makes more sense to hind
the key "x" to the InsertX function. (Actually, it is probably bound to SelfInsert. a function which
looks at how it was invoked--the input character--to determine what to insert).

Now, all of the straight, printing, ASCIL characters have been taken and bound to Sclflnsert.
(While there are a large number of special characters that are not otten typed, leaving them in
consideration does not materially affect the conclusions.) The renwining things that can be cntered

‘The Command Loop Mark of the Unicorn

from an ASClI keyboard are the controt characters, the delete key, and the break key. These could
be bound to functivns that implement a cormplex syntax, but why bother? [t is not too difficult to
learn even a large number of key bindings, sa let us bind the control keys directly to useful functions.
For example, 1F could be ForwardCharacter, 11D could be DeleteCharacter, etc.

33 functions are not enough for even the commonly used functions, Thus, some of the keys
should be bound (o functions which rebind the dispatch table. For each of these rebinding functions,
128 new functions are made available (ihere is 1o reason for the printing characters in them to be
bound to Selflnsert). Note that the break key is not used in this scheme as it is hard to work with (it
does not have an ASCII value).

Thus, even though we began with a structure for the command loop that did not to impose any
constraints on the syntax of commands {and thus was as generai as possible), we arrived at a specific
syntax for commands. This syntax is 10 bind the printing characters (o SelfInsert, bind the contrel
characters 10 a mixture of useful functions and rebinders, and to have about three or four alternate
dispatch tables {enough to supply many hundreds of commands). Thus, commands are rarely more
than two keystrokes long. The price that is paid for this brevity is a longer lead time in learning to use
the editor cffectively.

{Note that most of the increased lead time in learning the editor is NOT from the brief
commands, but because there are more commands to learn. Given a "conventional” cditor (e.g.
DEC’s SOSY and an equivalent subset of an Emacs-type editor, novice useis will learn the subset of
the Emacs-typc cditor faster.)

4.2 Error Recovery

Errors come in two flavors. There are internal errors which are in the editor itself (e.g., a subscript
out of range) and external errors which are caused by the user (e.g., attemipt to delete off the end of
the buffer). There is also a non-error, the normal exit, which will be treated as an error in this
discussion. These crrors will, in general, be indicated both from within the editor and from the
outside world (the operating system).

The first category to be considered will be int=~mal errors. These errors cause an immediate exit to
the operating system with no questions asked ard no 'olays tolerated. They will be internally
generaied by such things as arithmetic overflows anu bad subscripts. (While the editor might catch
and process sume of these. it will aot in general process them all) They can also be gencrated
externally and often are {(c.g., process switching). The factor in common is that they are
unpredictable and the state of the editor should remain exactly intact. The user should also be able to
signal such an error to abort out of the editor. He might want to do this because of a problem with
the editor itself (e.g.. infinite loop) or because he wants to do something else. This signalling is
usually done with the he'p of the operating system. In any case, the precise state of the editor should
he retained so thae it can be resumed exactly where it left off. Most operating systems have some
facility for doing this; they differ principally in the freedom of action that they allow before lusing the
state. This freedom ranges from nothing to doing arbitrarily many other things.

At the user's discretion, the cditor sheuld be restartable either from exactly where it left off orat a

safe restart peint. This point is ordinarily a portion of the editor which recovers the bulfers and other
current state and thea resumes the command toop.

5-32

Mark of the Unicorn The Command Loop

External errors are principally user errors. The action ordinarily tken is the display of an error
message and a return to command level. The implementation of this level of recovery is buiit in to
the procedures which implement the commands.

There is a variation of external errors which are generated manually by the user. Typically, these
involve backing out of an undesired state (e.g., the unwanted invoking of a dispaich table rebinding
or aborting an undesired argument). The bell character {ASCII 1G) has often been used for this
purpose. In this case, the procedures will know that a bell has been typed and will implement the
backout protocol.

Finally, provisions to exit the editor must be made. This is ordinarily by means of an abort flag of
some sort as can be seen in the previous code fragment. Note that various other uses might be
multiplexed onto this abert flag, signifying varying levels of "exiting.” For example, one level could
used by buffer switching in order to rebind the dispaich tables (see the section on later in this
chapter),

Ordinary exiting involves several types of processing. The editor might ask the user what w do
with buffers that have been modified but not written out, [f, as i ordinarily assumed, the state of the
cditor is preserved across invocations, the state must be saved. If not, it must be sure that all memory
is deallocated. Finally, the user’s environment should be restored as it was found. This impiies such
varied things as cleaning up the stack, closing files, deallocating unneeded storage, and resetting
terminal parameters.

4.3 Arguments

Arguments are specified by the user to modify the behavior of a function. The Fmacs argument
mechanism will be described as an example of three diverse ways in which arguments are obtained.

There are three standard argument types. First are prefix arguments. These are invoked by a
string of functions (which are in turn invoked by characters typed before the "actual” command) and
are an example of using the key/function binding 1o implement a more compiicated syntax. Next are
string arguments. When obtaining a string argument, the editor is invoked recursively on an
argument buffer and upon return from the recursive invocation the contents of that buffer are given

to the requesting procedure. Last are positional arguments. These are the internal variables of the
editor.

4.3.1 Prefix Arguments

Pretix arguments are entered before the command whose behavior they are modifying, thus, their
interpretation must not depend upon the command. miacs limits these o numeric values.

Ordinarily, commands will have an internal variable available to them named something like
"argument” and it will have a value of one. Prefix arguments allow the user to change that value to
any other positive or negative integer,

Arguments are used for two different purposes, First is to specify a repeat count for a command.

Thus, <12> 1F would go forward twelve characters (assume the 1 key is bound to the ForwardChar
function). The other use 15 10 tell a command o use an alteraste vaiue for a parameter. If

5-33

The Command Loop Mark of the Unicorn

FillParagraph was bound to tP, then <65> tP might say to, for this time only. use 65 as the desired
width of the paragraph (the right margin} after it is filled. Alternatively, it might say to resct the
default value of the right hand margin to 65 and then use that value. It is useful to provide a
predicate to aliow procedures to determine whether an argument has been given. This allows them to
differentiate the default argument of one from the user entering one as the argument value.

Emacs uses 11U as the UniversalArgument function. It can be used in either of two ways., +U tF
means 10 go forward four charactess. Adding anather tU means to multiply the current argument by
four. Thus, tU tU tU tF means to go forward 64 characters. The factor of four was selected because
five 18 100 large (1, 5, 25, 125 goes up too fast) and, while three might have better spacing (1, 3, 9, 27,
81, 243), the powers of four are known by all people who are likely to be around computers.

The other use is more complicated. +U 1 2 +F means to go forward twelve characters, tU - 147
TA means to give TA an argument of -147, The tU in this case serves as an "escape” o logically
rebind the 0-9 and - keys.

On some terminals, there are two sets of numeric keys (one set that sends the ASCII "0" - 9"
codes and another that is labeled with digits but sends different codes) to generate "numbers™ than
simply sending the appropriate ASCII codes. In this case, these "other numbers” can be bound
directly to argument generating functions and the initiai tU is not needed.

4.3.2 String Arguments
String arguments are specifically requested by a procedure. A prompt is displayed and the user
enters the value of the argument. The procedure.uses this value in any way it desires,

One way to implement such a way of entering arguments is to create an argument buffer in a new
window, display a prompt, and call the editor recursively with that as the current buffer. By
following this scheme, the fuli power of the editor is available to correct typing mistakes or otherwise
make the entry process easier.

When impicmenting any argument entry scheme, there are three things to tuke into account.
First, the key or key sequence used to indicate that the entry process is over should be able to vary
depending upon who is asking for the argument. +M {<cr?) and [(<esc>) are both commoaly used
as delimiters. Second, there should be a clean way to abort out of the argument entry process (tG is
commenly used for this purpose). In this case, the calling procedure should be told about the abort
in order for it to terminate gracefulty. (Most of the routines that ask for arguments do all of the
asking at once and then proceed to do a farge amount of work (e.g., ReadlFile). Thus, aborting out of
the argument entry process cffectively aborts out of the command. Aborting cannot be done cleanly
if commands are written to get an argument, do some work, get another arguinent, ¢tc.) Finally, null
arguments (the user enters only the delimiter character) can be used t cut down on typing cirors if
the procedures supply some reasonable default values.

Here are sume examples of using string arguments:

SearchString: Ask for a string and look for it in the buffer. 1If the user enters a null string, use the
same string that he scarched for before. :

5-34

Mark of the Unicorn The Command Loop

ReadFile: Ask for a string and. using it as a filename, read the file into the buffer. If the user enters a
pull string, use the current filename associated with the buffer,

ChangeBuffer: Ask for a string and, using it as a buffername, make that buffer the current one. If
the user enters a null string, use the buffer that he was in last (i.c., the one that he
was in before the one that he IS in now).

Note that SearchSiring typically uses [(<esc>) as the delimiter while ReadFile and ChangeBuffer
typically use ™M (<cr>). In order to help the user, it is nice to automatically remind him which
delimiter is being asked for. Here are sume ¢xample prompts:

Search String{<escr):
Input File Name(<cr>) (Default is >u>fin>test):
Buffer Name(<cr>} (Default is foo):

Note that some prompts helped the user by reminding him of the default value.

While all of the examples asked for and wanted a character string, this might not always be the
case. It is quite practical to use this method to enter numeric values. The requesting procedure
merely has to convert the read-in character string to a numeric value.,

4.3.3 Positional Arguments

Fositional arguments are not directly specifiable by the user. They arc the internal variabies that
are used in the editor, Such variables include both those required by the editor (e.g., the length of the
buffer, the locations of the point and the mark, etc.) and those which have a specialized purpose {e.g.,
the current vaiue of the right hand margin, the tab spacing, etc.).

Ofien these values are used in unusual ways, For example, the horizontal position (column) of the
point can cften be a more pleasant way of specifying a value than entering a number. The user can
indicate that "this is where I want the right margin to be" instead of having to count characters to get
a number. The user indicates this value by using other commands (e.g., ForwardChar,
ForwardWord) to move the point 1o the desired location. See also section 5.2, page 42 for
information about how graphical input devir*;; (mice, tablets, touch sensitive displays) affect

pusitional arguments. Lo -

4.4 Rebinding

Rebinding is a name for the act of changing at run time what a key or procedure does. The
distinction between the two (keys and functions) is important. Changing the binding of a key means
that when that key is typed, the new procedure (the one that is now bound to the key) will be
exccuted instead of the old one. Changing the binding of a procedure means that whenever that
procedure is invoked, the new version will be executed instead of the old one. This change affects
not ondy any keys bound to that procedure but alse any internal references to it

There are two levels of rebinding functions. T.evel [rebinding is when the new procedure must he

known before invoking the editor. T.evel [T rebinding is when the new procedure can be defined alter
the cditor is invoked. Unless otherwise stated, level [rebinding is assumed.

5-35

The Command Loop Mark of the Unicorn

To a first approximation, editors that are written in compiled languages (c.g., PL/1) can only
change the key bindings and interpreted editors (those written in. say, 1.isp} can change both
bindings. Dynamic linking, however, allows both bindings to change in compiled editors and so this
distinction is not always a proper vne to make.

4.4.1 Rebinding Keys

The process of key rebinding is a relatively simiple one and it is done essentially the same way in
all implementations. A set of dispatch tables is used to map keys (represented by their ASCII values)
to their respective functions.

In languages such as Lisp and PL/1, the table can contain the procedures themselves. In less
powerful languages such as Fortran and Pascal, the dispatch table branches to a different part of the
same routine that contains the table. There, the procedure call is made. In languages that supply it, a
case statement can be used instead of the n-way branch.

None of these command procedures have any formal parameters, and so they can all be invoked
with the same calling sequence. Thus, the Lisp and PI/1 direct invocations can work properly. Note
also that simple commands do not have to have a separate procedure assigned to them, but the code
to exccute them can be placed in-line in place of a call (where the case statement cquivalent is used).
Doing this substitution loses some potential flexibility.

4.4.2 Rebinding Functions
Level 11 function rebinding is ordinarily a language-supplied feature and so it will not be
discussed in depth. Two comments will, however, be made on how to simulate it.

If the underlying operating system has dynamic linking (e.g., Multics). a procedurc may be
rehound at run time, Dynamic linking is a way of linking procedures together in which the actual
link is not made until the procedure is about to be executed. At that time, the procedure is located in
the file system and brought into memory. The link may either be left alone, in which case the next
call will have the procedure re-located (a rclatively expensive process) or it may be saapped.
Snapping a link implies converting the general call instruction (which is kept in a special, writable
part of the program) inte a call instruction to the appropriate address. 1fa link i3 snapped, it must be
explicitly unsnapped before any re-locating is done.

If the operating system does not support dynamic linking, the editor writer might choose to
sinulate it manuaily. Such a process is complex and some thought will have to be given to exactly
how desirable rebinding functions is. The process is tantamount to explicit overlaying.

This all has a straightforward bearing on rebinding functions. Rebinding a function invalves
changing the deflnition of the procedure that is invoked by referencing it What bas been discussed
arc ways of changing such a procedure definition. Note that if the code to exccute a function is
inserted in-line in the basic editar, it cannot be rehound by any of these methods,

If dynamic linking is not available and is unfeasible to simulate, there is stil one way out. This

way will only provide level T rebinding. Instead of just using onc dispateh tuble which indicates a
procedure o be called divectly, usé two. “LThe first wble maps from keys 10 the operation to be

5-36

Mark of the Unicorn The Comumand Loop

performed (e.g., 1F is mapped to moving forward one character). The second table maps from the
operation o be performed to a procedure to perform it (e.g.. moving forward one character is
mapped to ForwardChar).

4.5 Modes

Modes are collections of rebindings which are done afl at once. They can either be done
automatically or can be explicitly asked for by the user.

An example of an automatically loaded mode might be PL/1 mode. This mode will automatically
be loaded whenever a file whose name ends in ".pl1" is read into a buffer. Such a mede might do
several things. [t might rebind the internal variable that identifies which characters are legal in
tokens (i.e., variable names) to also inctude the "$" and underscore characters which can occur within
PL/1 names, This change would make the ForwardWord function weat a PL/1 variable name as a

word, The mode might also rebind the ";” key to be an electric semicolon {i.e., finishing one
statement would cause it to automatically indent properly for the next one).

The process of autoloading is related to automatically foaded modes. The trigger is the main
difference. [n autoloading, the trigger in completely internal. An example could be the set of §-
expression hacking commands. Although they are defined at all times, the code for them is not
necessarily a part of the editor. Instead, when any of the commands is invoked, they are auiwoloaded
into the editor and the command is executed. ‘

An example of a user requested mode would be auto fill mode. This mode rebinds the space
character o vne that checks to see if you are typing past the right margin. If you are, it breaks the
line up to fit within the right margin. It also inserts the space.

A printing terminal mode would use function rebinding, It would be loaded automatically
whenever the editor is used from a printing terminal instead of a display. [t might ebind the
Selflnsert function (which is used by all of the 95 printing keys) to one that prints the character that it
is inserting on the terminal (and then inserts it). In this case the definition of the function changed
and sa function rebinding is called for. Note that this change is globat over all buffers and so it is not
readily simulatable by changing the bindings of keys to operations.

The function rebindings that are commonly done by an editor are known in advance and so they
can be done by any implementation (sce the preceding section for a discussion of the difficulties
invelved in function rebinding). Fully dynamic rebinding (the new definition of the procedure is not
known until run time) is desirable for several reasons.

- Debugging is greatly cased if the trial-and-error cycle tinme is reduced by not having 1w
compile and link the whole cditor cach time. Instead, only onr function has to be

recompiled and linked. (In languages such as Lisp, it is more accurate to say
compiled/linked as (the two operations are synonymous.)

- Space savings are achieved if unnceded modes and auntoloaded single functions are nat
brought into memory until asked for.

- 1f the ¢editor is implemented in an interpreted langoage (see the next scetion) users can

5-37

The Command Logp Mark of the Unicorn

develop their own functions rclatively easily. Such "sideline” development is
advantageous because it ailows many people to develop usefizl code and so the editor can
be speciaiized in many more ways than any reasonable support group could ever
implement on their own. It also encourages tailoring the editor te a user's own taste and
s0 his productivity is enhanced.

4.5.1 Implementing Modes

Modes are on a per buffer basis and so provision must be made for changing these bindings as
buffers are switched. The general technique for doing this is to have a set of default bindings and a
set of current ones. When a buffer switch is made, the default bindings are cepied tw the current ones

and then a series of procedures are run which modify the set of current bindings to be the correct
ones for the modes that are active on this buffer.

A different approach would be to have a separate environment for each buffer which is created
with the buffer, is modified as modes are added, and is never thrown away. This approach leads to
efficiency problems because of the large amount of storage overhead associated with each buffer.

Sidenote Calculation: Assume that there are two dispatch tables of 128 commands each
and that each entry is four bytes {big enough for an address). This leads 1o 1K bytes just
for the dispaltch tables per buffer. [n addition. you have another 1K bytes for a defauit
table to usc when creating a new buffer. With a current/dctault dispatch table scheme,
vou have 2K bytes per editor and so you are always as efficicnt and better in the case
where you have more than one buffer. Procedural storage overhead is essentially the
same. [n one case, you inveke the state building procedure once (but in general cannot
undefine the procedure) and in the other case, you invoke it with each buffer switch. It
does, on the other hand, take jonger to switch buffers but the incremental time is usually
minimal.

There is an importaat Acxibility tradeoff. With a mode list and the associated default/current
dispatch tables, it is possible to remove a mode from a buffer. If each buffer has its own dispatch
table which is incrementally changed whenever a new meode is added, it is not generally possible to
undo such changes. Note that while the dispatch tables were used as an example, it is by no means
the only variable whose value may change on a puf-buffertb'asis.

4.6 Kill and UnDo

An Finacs maintains a kill ring which is a place where all significant chunks of deleted text get
placed. {Those deleted with C-d and do not get saved.) “There are commands to push and pop
things from the current spot in the ring and to rotate the 1ing so that differcnt lext Is at the current
spot. Typically, a maximum of ten or sv items are kept in the kill ring.

Moves and copics of text are done with this ring. Thus, there is a mechanism by which the user
can recover accidentally deleted text. This type of error is the most harmful one that can oceur as il
involves tosing information.

The Interlisp system (and others) provides a more general undo facility. Invoking this facility
will cause the system to "undo” whatever it was that you just did (for one comtand oaly: a second

5-38

Mark of the Unicorn The Command [¢op

“undo" will undo the first one). 1n order to implement this facility, the system must keep track of
everything that you do and what its effects were.

While this general purpose facility has good applications, it is not clear that a text editor is one of
them. There are three basic areas where undo applies to text editng. These are; meving around in
text, deleting text, and file i/0. The Emacs approach and the undo approach will be compared for
cach of these,

Moving around in text is simply solving the problemn "l am at x and [want to be at y." The Emacs
solution involves translating this difference into a sequence of commands to move the peint from z to
vy, If a mistake is made in the process of implementing the solution, the problem is merely restated to
"Tamatx” and [want to be at v™ and it is re-solved. The undoe solution differs by detecting the crror
(i.e., deviation from the intended solution), saying "undo” to put you back on the original pach, and
proceeding. Ordinarily this difference in the two selutions is not very great.

If the accidendally typed command is one that moves you a great deal {e.g., meve to the beginning
of the buffer), it is not always easy to recover with the Emacs solution because you might not
remember exactly where you were, Emacs solves this by having the large movement commands set
the mark to where you were. Thus, an interchange poiat and mark sequence will recover from the
error.

The undo actually helps Iess in the text deletion case. There, the "canonical”™ undo will only
recover the last command and, hence, the last delete operation. There is no provision for deleting
something, moving somewhere else. and undeleting it. Nor is there a provision for recording
multipie deletions. Thus, the Emacs approach is more flexible.

Finally is the case of file i/0. Different implementations of Emacs will do different things but the
basic idea is to let the user dv what he wants. Obvious things will be checked {the file was modified
by somecne clse since it was read in, for example) and such things as deletions will be double
checked with the user but no recovery will be provided. On the other hand, not all systcms can
support the overhead of the multiple copies of a file that would be required by itndo, nor are there
always ways ¢ manage these cxtra fites conveniently. (The DEC TOPS-20 operating system does do
a reasonable job at this, but it is far from perfect.)

The basic conclusion s that while an undo facility is nice, it is not ait that useful in the context of
an Emacs type text editor.

4.7 implementation Languages

The language that the editor is implemenated in can greatly affect the ease of writing, maintaining,
and extending it. Some brief comments will be made about scveral classes of progiamming
languages which might be considered as implementation languages.

4.7.1TECO

{This discussion refers to MIT TECO and not the TECO which is supported by DEC on several of
its machines. MITTECO is much more powerful.) TECO is a text editor. 1ts conmnund langnage is
s powerful that it s usable to write other programs in. 1tis taillored for wiiting text applications and

5-39

The Command Loop Mark of the Unicorn

so would seem a good choice. [t has two major problems:

- It is the only language less readable than APL. A listing of a TECO program more
resembles transmission line noise than readable text. Thus, maintenance is a problem.

- Its only implementation is on the PDP-10/DEC 20 series of computers. Implementations
on other machines invoive asking the question of what vou write the TECO in.

4.7.2 Sine

Sine is a Lisp-like language tailored for text applications. Its only implementation to date is on
{nterdata 7/32 (ov Perkin-Elmer 3200) minicomputers running the MagicSix operating system
developed at MIT. Ttis interesting because it is a language tailored for implementing cditors, It is a
example of an "ideal” implementation language. [Anderson] discusses this language in detail.

Sine is composed of two parts. Sine source code is assembled into a compact format. This object
code is then interpreted. It allows function rebinding and other such nicities and the interpreter
implements such things as memory management and screen redisplay automatically. Thus, the
resulting editor is nicely structured, with "irrelevant” details hidden away.

4.7.3 Lisp

Lisp is probably the best choice, if it is available. The Lisp must, however, have siring operations
in order to run with any efficiency. It is best suited for the Yinked line form of memory management
because of its view of memory management. Lisp provides a nice interpretive language for escaping
into 1o easily write complicated editing macros. [t also is quite readable and maintainable. [t also
provides function rebinding. Some Lisps have compilers whose code can run very fast, so speed need
not be a problem.

4.7.4PL/1, C, etc.

PiL/1, C, and other such "systemns languages” are widely available in reascnably cfficient
implementations. They allow the straightforward manipulation of complicated data structures and
yet remain generally readable. ‘They specifically support containment of detail by independently
compiling several related routines and their internal data structures.

As a specific cxample of the latter, it is possible to write a buffer management abstraction in which
the only visible parts arc the cntry points. The specific methed chosen to represent the bufter
remains weit hidden.

4.7.5 Fortran, Pascal, etc.

Fortran, Pascal, and other such languages arc the least acceptable (except, of course, for
assembter). In general, one must cither sintulate a missing basic feature (c.g.. fortran and 1£Then-
Else) or circumvent a "feature” {e.g., Pascal and lack of multipie entry pomnts to procedures) in order
to o useful work in such languages.

Mark of the Unicorn User [nterface Hardware

5. User interface Hardware

The only way for a user to interact with the text editor specifically or the containing operating
system generally is by means of the keyboard/screen combination. The chapter on Incremental
Redisplay discusses the use of the screen in detail. This discussion is an the keyboard part of the
combination,

5.1 Keyboards

The keyboard is the primary mcans of interacting with the system. In most cases, it is the only
way of doing so. Many thousands of characters will be entered in the course of a normal working
session. Thus, the keyboard should be wilored for the ease of typing characters. While the previous
statement might seem trite, there are a large number of keyboards on the market which are not very
good at all for entering characters. Here is a discussion of the various keyboard features and why
they are or are not desirable:

N-KEY ROLLOVER is a highly desirable feature, Having it means that you don’t have to let go
of one key before sriking the next. The codes for the keys that you did strike will be sent out only
once and in the proper order. (The "n” means that this rollover operations will occur even though
every key on the keyboard has been hit.) The basic premise behind n-key rollover is that you will not
hit the same key twice in a row. Instead, you will hit a different key first and the reach for that key
will naturally pull your finger off of the initial one, However, the timing requirements are quite loose
about exactly when your finger has to come off of the first key. Thus, tvping errors are reduced.
Note that n-key rollover is of no help in typing deuble letters, Note also that shift kevs and the
control key are handled specially and are not subject to rollover.

AUTO-REPEAT has both good and bad sides to it. [t is useful on a system which does not supply
such things in software but its drawbacks (leaning on a key can be deadly) makes it out of place on a

o

system with a sophisticated editor. (If you want a row of "."s, just type "tU 80.".)

TOUCH-TYPABILITY is the single most critical feature. 1t is simply the ability to type the
useful characters without maving your fingers from the standard touch-typing position {the "asdf”
and "jkl;" keys). As more and more people who use keyboards are touch typisis and can thus type at
a reasonable clip, they should not be slowed down by having to physically reach their hands ouwt of
the basic position. [t can take one or two SECONDS o locate and type an out-of-the-way key. (lhe
row above the digits is out-of-the-way, as arc numeric key pads and cursor control keys.) One second
is from three to ten characters of time (30 - 100 words per minute). Thus, it takes kess time in general
te type a four or five character command from the basic keyboard than to type one "special” key.

Because of the desire for touch-typability, it is worth at least considering doing away with such
keys as "shift lock.” They are rarcly, if ever, used and the keyboard space that they occupy is in high
demand, '

Other things which keybourd manufacturers have done can be deadly, Two cxamples are
illustrative. First, the timing on the shift keys can be blown. The result of doing so is that when
"Foo” i desired, "FOo," "fO0," and "foo" wre more likely to result, The other example is having a
small "sweet spot” on cach key, Missing this "sweet spot™ will cause both the desired and the
adjoining key to fire. Thus, striking "i'" can cause "io" to be sent.

User Interface Hardware Mark of the Unicorn

More generally, the packaging of a keyboard can be important, Sharp edges near the keyboard or
to tightly packed keys can cause errors and fatigue,

5.1.1 Special Function Keys and Other Auxiliary Keys

Keyboard manufacturers seem to have decided that a plethora of special keys is more useful than
a more general approach. Thus, you can get "insert line” or "cursor up™ or--gasp--"PF1". These
keys, when pressed, will either do the function that they name, do something totally random, or send
a (usually pre-defined) sequence of characters to the computer. For reasons that have been covered
already, having the terminal do the named functions is a losing approach. Having them send pre-
defined sequences of characters is not much more useful. For example, the "cursor up" key might
send t{ E and your editor has this sequence bound to MoveToEndofSentence. Note that this
probiem exists even though the editor is fully extensible (i.e, it is not an accepiable solution to rebind
the [E command in the editor to MoveUpL.ine) because the user might seill want to usce the [E
command for its original purpose. This problem can be aveided if ihe keys are down loadable with a
sequence of characters to send. Thus, the editor can tell the "cursor up” key to send, say, tP.

Aside from the problems of compatibility with whatever software Is being run, the placement of
the keys is the worst problem. As has just been stated, keys that are off to one side take too long to
hit, Thus, typing is slowed down considerabty.

There is yet one more problem. Additienal keys are not free and so the number of them that you
wan! to pay for is limited. However, it is desirable to have the ability to specify a large number of
functions (i.c., have a large number of codes that can be specified by the user). The number of
special keys required grows lincarly with the number of codes.

5.1.2 Extra Shift Keys

A tore general solution is to provide extra shift keys. These are keys that medify the actions of
the other keys. "Shift” and "control” are the two most common examples of such keys. The Teleray
1061 termina) has a "meta"” key as an option. This key sets the top (128} bit of the character that is
specified. There are thus 256 codes that can be specified instead of the usual 128 from a full ASCII
keyboard.

The number of extra shift keys required grows as the log of the number of codes. Thus, 512, 1024,
and even 2048 code keyboards are conceivable.

Finding room on the basic keyboard for these extra shift keys is not casy. That is oae reason why
the removal of the "shift lock” key was suggested carlier, These keys must be on the basic keyboard
in order to preserve touch-typability. (It does not take noticcably fonger to type the shifted version of
a key than the non-shifted version,) The Knight keyboards in use at the MIT Artifictal Intelligence
Laboratory have several shift keys. They are, unfortunately, located fur cnough away from the basic
keyboard to prevent touch-typability.

5.2 Graphical input
Another way of interacting with a computer s by means of a graphical input device. The
advantage of a graphical input device is that it can reduce the number of commuands needed. Such a

5-42

Mark of the Unicorn User Tnterface Hardware

device is used for peinting at scctions of the screen. It is thus possible to specify items there without
having to specify the numerical address of the location or a command string to move you there.

5.2.1 How It Can Be Used

A graphical input device is used by thinking of the screen as one menu with the device pointing to
one entry. A cursor of some sort is used to provide feedback about which menu item is currently
selected. There are usuaily one or more "flags” that can be specified convenicntly from the device,
These flags provide control information. One flag is special and it provides "Z-axis™ information.

The basic loop is to track the device with the cursor. When the Z-axis flag is entered, the currently
selected action is taken. The screen is logically broken up into two or more sections. One section has
the text that is being edited. Moving the cursor here provides a convenient way to move the point
around; typing a character could cause it to be inserted wherever the cursor is. Other logical screens
can specify menus of possible actions to select from. It is thus a very sophisitcated and general way of
specifying a position as an argument to a function.

The desired logical screen can be selected by means of the flags or, where the number of flags is
litited, by physical positon of the cursor on the screen. The Lisp Machine editor and Xerox
PARC's Bravo editor both use graphical input devices heavily.

5.2.2 Devices: TSD, Mouse, Tablet, Joystick

There are several types of devices that are either available commercially or experimentally. They
shall be discussed in order of usability.

A Touch Sensitive Display (T50) is just what it sounds like. The sereen is covered with a special
eransparent material that you touch with your finger and it reports the absolute x,y coordinates of
where you touched. Wo "flags” are available until someone can figure out how to track your finger as
it brushes the surface as well as when you press more firmly (creating a Z-axis touch). It is the nicest
of the devices, although obtaining feedback is Irard because your finger covers the most interesting
part of the screen.

A mouse is a small box with wheels. It reports the rclative movement that you give it (i.e,, "he
moved me n units up and m units left”) as opposcd to absclute coordinates ("I am at position x,¥").
[t can have several flags. [t moves along the floar, table, books, icgs, ar anything else.

A tablet is an absolute version of a mouse (actually, it came first), It can be run with an
electronically detected puck (a small box) ur a pen. A physical tablet is required for detection and it
15 usually about 15" x 18" x 1/2". The absclute coordinates are relative to the wblet. There can be
scveral flags for a puck; a pen usually only has Z-axis reporting.

A joystick is a small stick mounted on a couple of potentiometers, [t can report etther absolute
position, first derivative {relative movement) or sccond derivative, As it is moved small distances,
getting good roselution and aveiding "stickiness” and “jumpiness™ are hard. 1t is generally not as

nice 1o use as the others. Flags are usuaily by means of regular keyboard keys.

Finally, an imaginary but useful device should be considered. That device is a fovt-operated

5-43

User Interface Hardware Mark of the Unicorn

mouse. Using your feet rather than your hand to operate the mouse selves one of most nagging

problems of any of these devices, which is that your hands must leave the kevboard with the usual
and aforementioned results.

These devices all assume a high bandwidth connection to some computer. Such a connection is
not practical over, say, 30 ¢ps phone lines. What must be done in that case is 0 have the device
report to the terminal, which moves the cursor around and reports when a flag has been hit. Thus, it
is possible to supply the immediate feedback that is necessary. A 30 ¢cps connection would be gquite
satisfactory for this operation (but probably not satisfactory for the screen refresh that would follow,
say, the sclection of 2 menu).

544

Mark of the Unicorn The World Outside of Text Editing

6. The World Outside of Text Editing

Text editors have been used for many things besides editing text and, in the fuure, they will
undoubtedly be used for more diverse things. Here are seme examples:

A text editor can be the primary interface to a mail system, Messages can be composed by editing
a buffer and sent with a special command. Mail can be read and managed by reading it into a buffer
and having special commands to perform such operations as move to the next message and
summarize all messages. Having the full power of a (ext editor available can make such things as
undeleting an accidentally deleted message or copying the text of a message that is being replied to
quite easy o implement.

A text editor can be the primary interface to the operating system. Command lines can be edited
with the full power of the editor before being evaluated. The past record of interaction can be kept
and parts of it examined or re-used in new command lines. If the operating system does not have
support for advanced terminals, a display editor can offer its interface for use by other programs,
Other programs would then take advantage of the terminal independence of the editor.
Aliernatively, other programs would insert their output into a bufler and the editer would become an
entire terminal management system.

A text editor can he used by a debugger, Multiple buffers and multiple windows can be used to
examine {perhaps multiple) source files, interact with the debugger, and see the output/input of the
program as it runs. In additions, a debugger might take over an cxtra window or two to do such
things as constantly show selected variables.

A text editor can be an interface to a complicated file. For example, an indexed sequential file can
be updated by providing editor commands 1o read and write entries (adding or deleting them can be
managed as well). Within the entry, the full power of the editor is available for editing it.

A text editor can provide a smooth interface to the file system. A dircctory can be read by the
editor and "edited” by the user. Files can be deleted or otherwise changed in a smooth manner by
merely moving to the file name and giving a cormmand (e.g., "delere”).

(Al of the preceding are currently subsystems within Multics Emacs. They are enthusiastically
accepted by the user community.)

A text editor can be used to examine and--when absolutely neccssary--modify obicet files. [t can
thus replace various patching programs.

A text editor i an integral part of a word processing system. Such systems often have features like
automatic pagination and continuat justification (the document in general and the current paragraph
in particular are constantly kept vight justified by rejustification afier each maodification). These
features exist in the ALTO editor Bravo, writien at Xerox PARC as well as a nuniber of the word
processing packages supplied curreatly for micro compuiers.

A text editor can deal with proporticnately spaced fonts as well as fixed with ones. (The redisplay
gets a fot mere cotnplex.)

‘The editor can beinterfaced with the comptler to incrementally compile and/or check a program.

5-45

The World Outside of Text Editing Mark of the Unicorn

Here, the principie of "sticky compiling™ must be introduced. Assume that a program has been
properiy compiled. Now, change a statement by deleting a few characters and inserting a few others.
The editor/compiler combination shoutd not give an error message even though the program has
been temporarily iliegal. Rather, it should be quict until you have ¢ither finished entering the new
statement or it is clear that you are making a mistake. (Deciding when you have made a mistake can
be hard.) The editor/compiler combination is generally also interfaced with a debugger. This trio
supplies the essence of an integrated program development system.

In summary, a text editor can be used for a wide variety of things besides editing text. Taking the
intended use into account when designing a new system can provide uscful fecedback and new
constraints on the design of the system as a whole.

5-46

Mark of the Unicornl Annotated Bibliography

. Annotated Bibliography

This bibliography includes many different types of documents. Some of the documents are user
manuals for various editors, Others of them describe the implementation of specific editors. Still
others discuss langnage tradeoffs or input/output system interfaces.

They are grouped by the type of editor that they refer to. Each entry is annotated to help place it
in perspective. Documents that are marked with ™*" are especiaily valuable or interesting.

6.1 Emacs Type Editors
There are four prinicipal implementations of Emacs type editors and there are enough documents
to justify their separate listing,

6.1.1ITS EMACS

Ciccarelii, Eugene

An Introduction to the EMACS Editor

MIT Artificial Intelligence Laboratory, MIT Al Lab Memo #447,
Cambridge, Massachusetts

January 1978

A primer on the editor's user interface.

*Stallman, Richard M,

EMACS: The Extensible, Customizable, Self-Documenting, Display
Editor

MIT Artificial Intelligence Laboratory, AI Memo #519,
Cambridge, Massachusatts

June 1979

Provides arguments for the Emacs philosophy.

PR
s

StalTman, Richard M, N

Structured Editing with a Lisp

Tetter in Surveyor's Forum (includes a response by Sanderwall)
Computing Surveys, vol 10 #4, page 505

December 1978

This is a response to ithe Sanderwall paper {referenced Tater).

On-1line Documentation
MIT-ATI: .TECO.; TECORD > .
A more detailed command list for TECO
MIT-A1: .TECO.: TECO PRIMER
A primer for TECO
MIT-AI: EMACS: EMACS CHART
A four page commnand 1ist for Emacs

5-47

Annotated Bibliography Mark of the Unicorn

MIT-AT: EMACS; EMACS GUIDE

A detailed user interface manual
MIT-AI: EMACS; EMACS ORDER

A more detailed command 1ist for Emacs

6.1.2 Lisp Machine Zwei

*Weinreb, Daniel L. & Moon, David
The Lisp Machine Manual

MIT Artificial Intelligence Laboratory, Cambridge, Massachusetts
January 1979

The user interface for Zwei.

Weinreb, Daniel L.

A Real-Time Display-Oriented Editor for the Lisp Machine

$.B. Thesis, MIT Electrical Engineering and Computer Science
Department, Cambridge, Massachusetts

January 1979

How Zwei works internally.

6.1.3 Multics Emacs

Greenberg, Bernard §.

Emacs Extension Writer's Guide

Order #CJ52, Honeywell Information Systems, Inc.
{In publication)

How to write extensions,

Greenberg, Bernard S.

Emacs Text Editor User's Guide

Order #CH27, Honeywell Information Systems, Inc.
December 1978

The user interface.

*Greenberg, Bernard S.

"Multics Emacs: an Experiment in Computer Interaction”

Proceedings, Fourth Annual lloneywell Software Conference,
Honeywell Information Systems

March 1980 '

A summary of MCPAP (referenced below).
Also, MIT-AL: BSG; NMEPAP >

5-43

Mark of the Unicorn Annotated Bibliography

Greenberg, Bernard S.

Read-Time Editing on Multics

Multics Technical Bulletin #373

Honeywell Information Systems, Inc., Cambridge, Massachusetts
April 1978

On-Line Documentation:
(by Greenberg, Bernard S.)
MIT-AI: BSG; LMEPAP >
Why Lisp was chosen for the implementation
fanguage
» MIT-AI: BSG: MEPAP >
A detailed history of Emacs in general and the
Multics implementation in specific.
Very valuable.
MIT~AL: BSG; R4V >
A proposal for a terminal independent video
terminal support package.
MIT-AL: BSG; TTYWIN >
A look at the good and bad features of video
terminals.

6.1.4 MagicSix TVMacs

*Anderson, Owen Ted

The Design and Implementation of a Display-Oriented Editor
Writing System :

S.B. Thesis, MIT Physics Department, Cambridge, Massachusetts

January 1979

How TVMacs works internally. It concentrates on describing not
the editor itself but rather the implementations language: SINE.

Linhart, Jason T.

Dynamic Multi-Window Terminal Management for the MagicSix
Operating System

S.B. Thesis, MIT Electrical Engineering and Computer Science
Department, Cambridge, Massachusetts

June 1980

A video terminal management system., Contains many useful
comments on terminal independence and redisplay problems,

6.1.5 OtherEmacs

‘This section covers editors which have the same gencral user interface as an Finaes {¢.g., screen-

oriented, similar key bindings) but are not extensible or otherwise fiil noticably short of the Emacs
philosophy.

5-49

Annotated Bibliography - Mark of the Unicorn

Finseth, Craig A.
VINE Primer :
Texas Instruments, Inc., Central Research Laboratories, Systems

and Information Sciences Laboratory, Dallas, Texas
August 1979 '

User interface manual for the compliete novice.

Sechiller, Jeffrey I.
TORES: The Text ORiented Editing System
revised from S.B., Thesis, MIT Electrical Engineering and

Computer Science Department, Cambridge., Massachusetts
June 1979

On-Line Documentation
CMU-10A: fine.{mss prt}[s200mks0]
User manual for FINE, running at Carnegie-Mellon
University. Written by Mike Kazar.

6.2 Non-Emacs Display Editors

Bilofsky, Walter

The CRT Text Editor NED -- Introduction and Reference Manual
Rand Corporation, R~2176-ARPA

December 1877

Irons, E. T. & Djorup, F. M.

A CRT Editing System

Communications of the ACM, vol. 15 #1, page 16
January 1972

Joy, William - 5
Ex Reference Manual; Version 2.0
Computer Science Division, Dept of Electrical Engineering and

Computer Science, University of Califoraia at Berkeley
April 1979

bl

Joy, William

An Introduction to Display Editing with Vi

Computer Science Division, Dept of Electrical Engineering and
Computer Science, University of California at Berkeley
April 1979 -

Kanerva, Pentti _
TVGUID: A User's Guide to TEC/DATAMCDIA TV-Edit _ ‘
Stanford University, Institute for Mathematical Studies in

5-50

Mark of the Unicorn Annotated Bibliography

the Social Sciences
1973

Kelly, Jeanne

A Guide to NED: A MNew On-Line Computer Editor
The Rand Corporation, R-2000-ARPA

July 1977

Kernighan, Brian W.

A Tutorial Introduction to the ED Text Editor

Technical Report, Bell Laboratories, Murray Hill, New Jersey
1978

Macleod, I. A.

Design and Implementation of a Display-Oriented Text Editor
Software Practice and Experience, veol. 7 #8, page 771
November 1977

Weiner, P., et. al.

The Yale Editor "E": A CRY Based Editing System
Yate Camputer Science Research Report 19

April 1973

Seybeld, Patricia B,

TYMSHARE s AUGMENT ~- Heralding a New Era, The Seybold
Report on Word Prccessing

Vol. 1, No. 2, 16pp, ISSN: 0160-95872, Seybold Pubiicatiens, Inc.,
Box 644, Media, Pennsylvania 19843

October 1978

On-Line Documentation:
SAIL: E.ALS{UP,DOC]H
User manual again, Stanford University.

6.3 Structure Editors

Ackiand, Gillian M., et al

UCSD Pascal Version 1.5 (Reference Manual)

Institute for Information Systems, University of
California at San Diego

Donzeau-Gouge, V.; Huet, G.; Kahn, G.; lLang, B.; & Levy, J.J,

A Structure Oriented Program Editor: A First Step Towards
Computer Assisted Programming

Res, Rep. 114, IRIA, Paris

5-51

Annotated Bibliography Mark of the Unicorn

April 1975

Teitelbaum, R. T,

The Cornell Program Synthesizer: A Microcomputer
Impiementation of PL/CS

Technical Report TR 79-370, Department of Computer Science,
Cornell University, Ithaca, HNew York

6.4 Other Editors

Benjamin, Arthur J.

An Extensible Editor for a Small Machine With Disk Storage
Communications of the ACM, vol. 15 #8, page 742

August 1972

Talks about an editer for the IBM 1130 written in fortran,
Not extensible at all.

Bourne, S. R.

A Design for a Text Editor

Software Practice and Experience, vol 1, page 73
January 1971

User manual

Cecil, Moll & Rindae

TRIX AC: A Set of General Purpose Text Editing Commands
Lawrence Livermore Laboratory UCID 30040

March 1977

Deutsch, L. Peter & Lampson, Butler W,

An On-Line Editor

Communications of the ACM, vol. 10 #12, page 793
December 1967

QED user manual

Fraser, Christopher W.

A Compact, Portable CRT-Zased Editor

Software Practice and Experience, vol. 9 #2, page 121
February 1970

Front end to a line editor.

fraser, Christopher W.
A Generalized Text Editor

5-52

Mark of the Unicorn Annotated Biblivgraphy

Communications of the ACM, vol. 23 #3, page 154
March 1980

Applying text editors to non-text objects,

Hansen, W. J.

Creation of Hierarchic Text with a Computer Display
Ph.D. Thesis, Stanford University

June 1971

Kai, Joyce Moore

A Text Editor Design

Department of Computer Science, Univ of I11 at Urbana-Champaign,
Urbana, I1lineois

July 1974

Describes both internals and exterpals on the editor. However,
the design is a poor one.

Kernighan, Brian W, & Plauger, P. J.
Software Tools

Addison-Wesley, Reading, Massachusetts
1976

This book has a chapter which leads you by the hand in
implementing a simple 1ine editor in RatFor.

*Roberts, Teresa L,

tvaluation of Computer Text Editars
Systems Sciences Laborary, Xerox PARC
November 1979

A comparative evaluation of four text edjtors. Quite well done.
Unfortunately, it does not include Em-<s (it uses DEC TECO
instead).

Sanderwall, Erik

Programming in the Interactive Environment: the Lisp Experience
Computing Surveys, vol. 10 #1, page 356
March 1978

Talks about the editor for InterLisp.
Sngeringer, James
User-Interface Design for Text Editing: A Case Study

Software Practice and Experience, Vol 8, page 543
1978

5-53

Annotated Bibliography Mark of the Unicorn

User manual and a discussion of user interface concepts.

Teitelman, Warren

Interlisp Reference Manual

Xerox Palo Alto Research Center, Palo Alto, California
October 1978

How to use the InterlLisp (non-display) structure editor.

van Dam, Andries & Rice, David E.
On-Line Text Editing: A Survey
Computing Surveys, Vol. 3 #3, p. 93
September 1971

Contains a general introduction to the problems of text
editing. Out-dated technology. though.

5-54

Mark of the Unicorn Some Implementations of Emacs Type Editors

Il. Some Implementations of Emacs Type
Editors

This is a partal list and is intended to provide a general guide and not a comprehensive list,

Name System Implementation
Langquage
TECO ITS Midas {assembler)
Full Emacs

EMACS ITS TECO

Emacs Multics Lisp

Emacs Tops-20 TECO

TVMacs MagicSix Sine

Zwei Lisp Machine Lisp

Partial Emacs

FINE Tops-10 Bliss
MINCE CP/M C

otv MagicSix PL/1
Tores UNIX C

VINE VAX/VMS Fortran

5-55

Mark of the Unicorn Partial Emacs Command List

I11. Partial Emacs Command List

This list is of the command set that is generally common to all of the full Emacses. Specific
command bindings can and do vary from implementation o implcmentation. This list is not
cumplete, nor can it be as commands are constantly being added and changed.

Command designations reflect both the name and the manner in which they are cntered. For
example, the C-fcommand is named "control * and it is entered by typing the tF character. Most of
the C- commands can be given directly from an ASCIH kevboard, Escapes are provided for those that
are not. The M-a coinmand is named "meta a” and it is entered from an ASCII keyboard by typing
the <esc> key and then the command. Thus, M-a is given by typing <esc> a and M-C-a (or C-M-a) by
typing <esc> tA.

C- place the mark at the point

C-a move to the beginning of the current line

C-b move hackward one character

C-c¢ a prefix for control-meta commands. see below

C-d delete the following character

C-e move to the end of the current line

C-f move forward one character

C-q abort: abort execution of the current command and
return to the edit loop

C-h same as C-b

C-1 insert <{tab>

C-j insert <newiine>; insert <{tab>

C-k delete the text to the end of the current line: if at
the end of the line, delete the newline
character; push deleted text onto the kill buffer

C-1 rebuild the display from scratch

C-m insert <newline> -

C-n move down one line staying in as nearly the same
horizontal position as possible

C-o insert <newline>; move backward one character
C-p move up one line staying in as nearly

the same horizontal position as possible
C-q insert the following character as typed
C-r search for a string before the point;

seg (-s for details
C-s search for a string after the point,
There are lots of things that you can do
typing characters builds up the search string
{del> deletes the previous character

C-s search for the next occurrence of the string
C-r search for the previous occurrence
C-g abort

{ait> terminate search; if the string is null, the
previous string is used
C-t interchange the characters on each side of the point,
leaving the point after the second one:; if at
the end of a line, interchange the previous
two characters
C-u universal argument.,

5-§7

Partial Emacs Command List Mark of the Unicomn

There are two forms
C-u C-u <command> do <command> 4, 16, 64, 256,
times depending upon the number of C-us.
C-u <integer> <command> do <command> <{integer> times.
{e.g., C-u 3 5 C-f means to C-f 35 times)

C-v move the bottom of the current screen to the top of the
screen
C-w delete the text between the point and the mark; push

the deleted text onto the kill buffer

C-x a prefix for control-x commands, see below

C-y copy the top item from the kill buffer to the point;
place the mark at the beginning of the
block and the point at the end

C-z return to superior

C-L a prefix for meta commands. see below

C-\ a prefix for meta commands. see below

C-]

C-+ a prefix for control commands. See this 1ist

C_

1"HEA& ()+, -~/ insert themselves

0123456789

1;<(=>7@

A..Z

[1L

a..2

(i)~

bs,back space
same as C-h
tab same as C-i
1f,1ine feed
same as €-j
cr,carriage return,return
same as C-m
esc,escape
same as C-[(the <alt> key)
del,delete, rubout
delete the previous character

C-<alt> you are now typing at whatever is running the editor

C-% ask for the old string, then the new one and replace
atl occurrences of the old with the new

c-/ give help

C-< place mark at the beginning of the buffer

c-> place mark at the end of the butfer

c-7 give help

C-x C-b print a list of ail buffers and associated information

C-x C-d display the current directory _

C-x C-f ask for the name of a file and read it into a buffer
whose name is derived from the filename; if

§-58

Mark of the Unicern Partial Emacs Command List

there is a conflict with an existing
buffer, you are asked for a name to use
C-i indent the region
C-1 convert the region to lower case
C-o0 delete the blank lines around the
point
C-x C-p move to the top of the current screen; place the mark
at the end of the current screen
C-x C-r ask for the name of a file and read it into the
current bhuffer
€-x C-5 write out current buffer to the current filename if it
has been modified
u convert the region to upper case
-w ask for the name of a file and write the buffer to
that file
C-x exchange point and mark
1 use one window
2 use two windows
3
A

1Oy
[}
woOw

i

use two windows and stay in the first

print where you are in the buffer

ask for the name of a buffer; append the region to that
huffer

ask for the name of a buffer and put you there

edit directory :

set the fill column to the horizontal position

run INFO

send mail

in two window mode go to other window

read mail

grow window

same as C-

same as C-x

same as C-x

same as C-x

same as C-x
C-x
C-x
C-x

leNeNeoNeNe N
| | t 1 [[} i b
oM X K O OX

]
«

| IR I R R |
HoOoM M oM MM M W X MK K O M OK K MK

Same as
same &35
same as

OO0 0O ONOOoO0On
1
2 0 3 . =-moom 2O ~~mDow

DOERTMOW>DCT

=
1

ditto. copy the word directly above ontc this line
QueryReplace. ask for an old string and a new string
At each occurrence of the old string, it
is displayed and you are asked far a command

=
|
L

<spo replace and go on
{del> don't replace and go on
, reptace and wait

. replace and exit

<art> exit

return to previous old string (jump to mark)
delete old string and enter C-r recursively
normal edit, but recursively invoked
redisply screen

do noi ask any more

— OOy -
1
— - E

5-59

5-61

Mark of the Unicorn Partial Fmacs Command List

there is a conflict with an existing
buffer, you are asked for a name to use
C-i indent the region
C-1 convert the region to lower case
C-o delete the blank 1ines around the
paint
C-x C-p move to the top of the current screen; place the mark
at the end of the current screen
C-x C-r ask for the name of a file and read it into the
curraent buffer
C-x C-s write out current buffer to the current filename if it
has been modified
convert the region to upper case
ask for the name of a file and write the buffer to
that file

ey
i
[er R gp]
1
£ C

1

1
X

C-x C-x exchange point and mark

C-x 1 use cne window

C-x 2 use two windows

C-x 3 use two windows and stay in the first

C-x = print where you are in the buffer

C-x A ask for the name of a buffer; append the region to that
buffer

C-x B ask for the name of a buffer and put you there

C-x D edit directory :

C-x F set the fi11 column to the horizontal position

C-x 1 run INFO

C-x M send mail

C-x 0 in two window mode go to other window

C-x R read mail

C-x 1 grow window by

C-x a same as C-x A

C-x b same as C-x B

C-x d same as C-x D

C-x f same as C-x F

C-x i same as C-x I

C-xm same as C-x M

C-x o same as C-x 0 - e

C-x r same as C-x R - i

=
1

ditto. copy the word directly above onto this line
QueryReplace. ask for an old string and a new string
At each occurrence of the old string, it
is displayed and you are asked for a command
{sp> replace and go on '
{del> don't reptace and go on
, replace and wait
. replace and exit
<atts exit
return to previous old string (jump to mark)
delete old string and enter C-r recursively
normal edit, but recursively invoked
redisply screen
do not ask any more

=
I
2

_— OO =
|
-— -3 E

3-59

Partial Emacs Command List Mark of the Unicorn

M- (nsert "()":; leave point between them

M-< move to the the beginning of the current buffer

M-> move to the end of the current buffer

M-7 help

M-A move to the beginning of the current sentence

M-B move backward one word

M-C capitalize the following word

M-D delete the following word; push deleted text onto
the kill buffer

M-E move to the end of the current sentence

M-F move forward one word

M-G fi11 text in the region

M-H move to the beginning of the current paragraph;
place the mark at the end of the
current paragraph

M-L convert the following word to Tower case

M-Q fi11 the current paragraph (make each line as long
as possibie); C-u M-Q means do justify
{same, but make right margin aven)

M-S center the current line on the screen

M-T interchange the adjoining words, leaving the point
after the right hand word

M-U convert the foliowing word to upper case

M-V meve the top of the current screen to the bottom of
the screen

M-W push a copy of the region onto the kill buffer

M-X ExecuteCommand

M-Y (after C-Y) delete yanked text and yank previous
ki1l buffer entry

M-[move to the beginning of the current paragraph

M-\ delete the <{sp> and <{tab>s around the point

M- move to the end of the current paragraph

M-a same as M-A

M-b same as M-B

M-c same as M-C

M-d same as M-D

M-e same as M-E

M-f same as M-F

M-g same as M-G

M-h same as M-H

M-1 same as M-L

M-q same as M-Q

M-s same as M-S

M-t same as M-T

M-u same as M-U

M-v same as M-V

M-w same as M-W

M-x same as M-X

M-y same as M-Y

M-<del1> delete the previous word; push deleted text onto the

kiil buffer

C-M-) move up one tevel of 1list structure backward

5-60

Mark of the Unicormn Partial Emacs Command List

move up one level of list structure forward

move to the beginning of the current defun

move hackward one S-expression

move to the end of the current defun

move forward one S-expression

format the current S-expression

move to the beginning of the current S-expression;
place the mark at its end

delete the following S-expression; push the
deleted text onto the ki1l buffer

move the rest of this Tine vertically down,
inserting <tab>s and <{sp>s as needed

interchange the adjoining S-expressions, leaving the
point after the fallowing S-exprssion

the following delete-and-push will be part of the
current entry in the kill buffaer

C~M- delete the preceeding S-expression; push

the deleted text onto the kill puffer

561

