
fp

Mince Internal Documentation

'"' Table oF Contents

Chapter l program Logic ManuaZ l-l
1.1 geneEa1ities ' I-l

l.l.l Notes on Data Abstractions l-2
1.1.2 Quick Review of Mince l-3
1.1.3 Code Structure l-5

1.2 Specifics L-6

1.2.1 Supplied Files l-6
1.2.2 Coding and Documentation Conventions l-7

t 1.2.3 Constants and Globals l-8
i 1.2.4 Conditional Compilation Flags l-13

1.3 Extending and Modifying Mince l-14

1.3.1 An Example I-14
1.3.2 On Changing Mince l-15
1.3.3 compiling and Linking Mince l-16
1.3.4 Debuggiríg Code l-17

Chapter 2 Entry Points 2-l
2.1 top Level and Redisplay Routines 2-l
2.2 User LeveZ Buffer Description 2-4
2.3 Memory AZ1ocation Abstraction 2-5
2.4 Queue Abstraction 2-5
2.5 Buffer Abstraction 2-6

2.5.1 InitiaZizatÚjn and Buffer Manipulation 2-6
2.5.2 Inserting and Deleting Text 2-7
2.5.3 Beginning of Buffer, End of Buffer, and

Basic Motion 2-8
2.5.4 status and Complex Movement 2-9
2.5.5 Mark Manipulation 2-ll2.5.6 Readirig and Writing Files 2-13
2.5.7 Private Routines 2-14

Chapter 3 Source Code 3-l
3.1 Control Commands: Hie COMMI.C 3-L

rl

8

3.2 Meta Commands: File COMM2.C 3-2
3.3 Control-X Commands: File COMM3.C 3-5
3.4 Support Routines: Filie SUPPORT.C 3-6

Chapter 4 The Terminal Abstraction 4-l
4.1 Initialization and Termination Routines 4-2
4.2 Cursor Positioning 4-3
4.3 Display Routines 4-4
4.4 Printing Text 4-5
4.5 Low Level Output and Keyboard Drivers 4-6
4.6 Internal Routines 4-8

Chapter 5 Theory and Practice of Text Editors 5-I
(NOTE: ThiS chapter is ínternaTIy sectioned
into chapters, sections, and subsections.)

I. Introduction 5-I

2. Memory Management 5-3

2.1 Data Structures S-3
2.2 Marks 5-5
2.3 Interface Procedures 5-5
2.4 Buffer Gap 5-lO

2.4.1 Gap Size 5-12

2.4.2 Multiple Gaps and Why They Don't Work 5-12

2.4.3 The Hidden Second Gap 5-12

2.5 Linked Line 5-13

2.5.1 Storage Comparison 5-14
2.5.2 Error Recovery Comparison 5-14

2.6 Multiple Buffers 5-15
2.7 Paged Virtual Memory 5-16
2.8 Editing Extremely Large Files 5-16
2.9 Scratchpad Memory 5-17

3. Incremental Redisplay 5-19

3.1 Line Wrap 5-20
3.2.Mu1tipie Windows 5-20
3.3 Terminal Types 5-21

3.3.1 TTY and Glass TTY 5-21
3.3.2 Basic 5-21
3.3.3 Advanced 5-21
3.3.4 Memory Mapped 5-22
3.3.5 Terminal Independent Output 5-22

6

3.3.6 Echo Negotiation 5-23

3.4 Approaches to Redisplay Schemes 5-24
3.5 The Framer 5-24

3.6 Redisplay Algorithms 5-25

3.6.1 The Basic Algorithm 5-25
3.6.2 The Advanced Algorithm 5-27
3.6.3 Memory Mapped 5-29

3.7 Other Details 5-29

3.7.1 Tabs 5-29
3.7.2 Control Characters 5-29
3.7.3 End of the Buffer 5-30
3.7.4 Between Line Breakout 5-30
3.7.5 Proportional Spacing and Multiple Fonts 5-30
3.7.6 Multiple Windows 5-30

4. The Command Loop 5-31

4.1 Basic loop: Read, Evai, Print 5-31

4.1.1 The Philosophy Behind the Basic Loop 5-31

4.2 Error Recovery 5-32
4.3 Arguments 5-33

4.3.1 Prefix Arguments 5-33
4.3.2 String Arguments S-34
4.3.3 Positional Arguments 5-35

4.4 Rebinding 5-35

4.4.1 Rebinding Keys 5-36
4.4.2 Rebinding Functions 5-36

4.5 Modes 5-37

4.5.1 Implementing Modes 5-38

4.6 Kill and UnDo 5-38
4.7 Implementation Languages 5-39

4.7.1 TECO 5-39
4.7.2 Sine 5-40

,4.7.3 Ltsp 5-40
4.7.4 PL/l, C, etc. 5-40
4.7.5 Fortran, Pascal, etc. 5-40

5. User Interface Hardware 5-41

.-

5.1 Keyboards 5-41

5.1.1 Special Function Keys and Other
Auxiliary Keys 5-42

5.1.2 Extra Shift Keys S-42

5.2 Graphical Input 5-42

5.2.1 How It Can Be Used 5-43
5.2.2 Devices: TSD, Mouse, Tablet,

joystick 5-43

6. The World Outside of Text Editing 5-45

I. Annotated Bibliography 5-47

6.1 Emacs Type Editors 5-47

6.1.1 ITS EMACS S-47
6.1.2 Lisp Machine Zwei 5-48
6.1.3 Multics Emacs 5-48
6.1.4 MagicSix TVMacs 5-49
6.1.5 Other Emacs 5-49

6.2 Non-Emacs Display Editors 5-50
6.3 Structure Editors S-51
6.4 Other Editors 5-52

TI. Some Implementations of Emacs Type Editors 5-55

III. Partial Emacs Command List 5-57

Mark of the Unicorn Program Logic Manual

chapter I
Program Logic Manual

l.l Generalities

This is the program logic manual for Mince. It áisucusses a

variety of topics: First, it reviews the basic terminology used
to discuss the editor and identifies the parts of Mince. Second,

it explains the conventions and structure in the implementation.
Third, it discusses the file MINCE.GBL and reviews the use for
each o: E the variables found there. Finally, it warns about some

potential pitfalls in modifying the existing code. These topics
are not discussed in any particular order. Throughout the manual
comments on customizing Mince will be made. These comments will
be indented, as in:

First customization note. When you are writing a new
command, it is a good idea to make a copy of an
existing function which does a related task and modify
that copy. Writing new commands from scratch is much

harder,

This chapter cannot be read by itself. In order to get a fullunderstanding of the structure of Mince and how to modify it, the
rest of the manual is needed. First and foremost is the Mince
User's Guide. It can answer questions about general concepts: for
examp,1e, wh you want to use getArg as opposed to Ask. Itexplains

wtiaá
Mince looks like to the user.

Next is the Complete Command List. That document gives the
definition of each command in words. You can then look at the C

source code and see how that command is actua21y implemented.
That chapter is also useful in reverse. If you are Zookíng at
some code and can't figure it out, looking at the English
description can be of great help. Both the Mince User's Guide and
the Complete Command List appear in the Mince User's Manuai.

The third chapter of use is "Theory and Practice of Text

l-l

Program Logic Manual Mark of the Unicorn

Editing." This chapter describes the structure O:E a text editor
and spends a lot of time discussing text buffers and the
redisplay, two major parts of Mince for which source code is not
supplied. In spite of the fact that the chapter was written only
7ast May (1980) and Mince was written in October (1980), the
underlying software technology has changed substantially.
However, the chapter does provide a solid base upon which to
understand Mince and the general approaches presented are stillvalid. Note that the buffer interface described in that chapter
are not the same as those actually used in Mince.

The fourth item of interest is the Entry Point Documentation.
This chapter documents each entry point in Mince for which source
code is not supplied. It gives enough information for each entry
point to allow you to use that entry point.

The fifth item of interest is the Source Documentation. Itexplains in great detail some of the more complicated routines
for which source code is supplied. This item also describes the
interface for each routine in SUPPORT.C. Understanding what these
routines do is often the key to understanding a routine that they
are used in. An extreme example is DoRep1ace. The entire Query
Replace command (MQryRplc in COMM2.C) merely calls
DoRep1ace(TRUE).

The final useful item for understanding Mince is the source
code itself. In it, you see a concrete implementation of what ai'l
this documentation can only talk about in abstract terms.

l.l.l Notes on Data Abstractions

Data abstractions are programming tools. Like any tool, they
can either be appropriate to a given situation or not and they
can be both correctly and incorrectly applied. We used them in
Mince because they were . appropriate and aided us in the
development.

A data abstraction is a collection of subroutines and data.
Only those subroutines are allowed to access that data, and that
data serves as the sum knowledge that the subroutines have about

the "world." An imaginary line can be drawn around these

subroutines and data. All knowledge about the internal
representation of the data is contained within this line.

The áata abstraction is manipulated by calling the subroutines
and passing them arguments. A subroutine is defined for every
operation that can be done with the data.

l-2

Mark of the Unicorn Program Logic Manual

The data abstraction is defined by its interface to the

outside. Any internal arrangement of data and procedures that
implements the interface is acceptabte and DIFFERENT
IMPLEMENTATIIONS ARE COMPLETELY INTERCHANGABLE! This last
property is O:E critical importance. It allows substantial
revisions of programs while confining these changes to only those
procedures that are directly affected. For example, while
developing Mince, we rewrote the buffer abstraction so as to
provide virtual memory. No command routines had to be modified at
ail. Without the high degree of information isolation provided by
the buffer abstraction, this change would have proven much more

difficult.
In summary, a data abstraction is a way to contain information.

It does this by hiding ali of the internal representations and
only showing the "outside world" a clean, simple interface.

1.1.2 Quick Review of Mince

Mince is a multi-buffer in-memory text editor, This means that
it edits a copy of a file by reading it into a text buffer. This
buffer is usually in main memory (i.e. RAM). Having more than one
buffer a17ows you to edit several fiZes at once by copying each
of them into a different buffer, then switching back and forth
from buffer to buffer. Since the available main memory space
(RAM) may not be Zarge enough to store all of the text which can

be read into buffers, the existence of additional main memory is
simulated by a virtual memory system, which copies parts of
buffers from main memory to disk (i.e., secondary storage) and
vice versa as necessary. (The buffer abstraction, whose entry
points are described elsewhere, handles both of these functions.)

Each buffer has a Point associated with it. AIZ editing changes
take place at the point. Tíjere are also a number of marks which
can be placed anywhere in any buffer. A mark will stay in the
same place with respect to the surrounding text no matter what
changes go on around it. Each buffer always has a distinguished
mark associated with it. It is this mark that is referred to as
"the Mark" in the user documentation.

A buffer also has a mode list. Modes are ways of tailoring the
command set on a per-buffer basis. Modes are coded in C and
represented in Mince as the differences between the default
command set and the desired one.

Each keystroke that is typed invokes a function to implement
the meaning associated with (or "bound tO") that key.

l-3

Program Lo¢jic Manual Mark of the Unicorn

Customization Note. When devising modes, it helps a

lot if they don't rebind an existing command or, ifthey do, that the same command key is not also rebound
by another mode. Page mode and Fill mode have this
problem: if you invoke Fi71 mode first, after Page mode

is added it destroys the definition of Auto Fill Space
which was bound to the Space key. Such things are
annoying at best.

Mince is implemented as an editor within an editor. The outer
editor interfaces to, the user and reformats his or her desires so
as to be executable by the inner editor, known as the buffer
abstraction. It might help to think of its interface as a user's
manual for the inner editor.

The buffer abstraction sub-editor takes ail memory left over
after the code, globals, and operating system have taken what
they need and divides it into IK pages. These pages are used to
store the contents of the buffer. They are swapped between memory
and the swap file on an LRU (7east recently used) basis.

In any virtual memory scheme, a page must be swapped
out of main memory to make room for the desired page.
An LRU scheme is one where the page that was least
recently accessed is the one that is chosen to be
swapped out. Swapping out a moáifeá page (the mpy in
memory is different from the copy on disk) requires
that the page be written to disk. Swapping out an
unmodified page doesn't require any activity. Thus, the
LRU scheme that Mince uses has been modified to try to
swap out unmodified pages first as doing so takes less
ti-me. That is also why Mince swaps out modified pages
(making them unmodifed) when it is otherwise idle; when
you start editing again, it has less work to do.

BF1ush is used to implement the delayed write-through. If the
system is idle, pages are written through one by one to the swap

file until everything out there is current. Note that there are
two types of modified pages. One type is what the user sees: a

page (buffer) has had an insert or delete performed upon it. The

other type does not imply insertion or deletion. Rather, it means
that the page is different from the copy of it on the swap file.
It therefore must be written to the swap file before its memory
can be reused. The latter case happens, for example, when reading
a £i'e in for the first time. Although the buffer is urunodifed,
the pages have to be swapped through to disk.

Redisplay is the process of updating the user's terminal's
screen to reflect the current contents of the buffer. Mince

l-4

Mark of the Unicorn Program Logic Manua\

command routines need know nothing about this process as it is
handled automatically by the sub-editor. The redisplay process is
invoked each edit command cycle, just before the editor asks for
a command. If a command has been entered, or if one is entered as
redisplay occurs, the redisplay is aborted and the command is
executed immediately.

The redisplay operates by scanning the buffer and comparing its
current contents with the redisp1ay's internal model of what is
on the screen. The internal model consists of an array of special
screen marks, one for each screen line. Each screen mark has a

modified flag associated with it. Whenever an insert or delete
operation takes pZace, the buffer abstraction automatically sets
the modified flag on the associated screen mark. The redisplay
process thus can determine which parts of the screen could have
been affected. "

1.1.3 Code Structure

The basic edit Zoop is as is disussed in "Theory and Practice
of Text Editors," chapter Five. Function Main caZ1s Setup and
then calls Edit. Setup does a lot of initialization, but the
important thing is that it calls SetModes.

SetModes is a critically important function. It is called at
initialization, when switching buffers, and when adding or
deleting modes. It is responsibZe for initializing the command

bindings to their new values. It fu7fi11s this task by calling,
in turn, finitl, finit2, and £init3 which set up the defauZt
bindings for Control, Meta, and Control-X commands, respectively.
rt then modifies these defaults by going down the mode List for
that buffer and performing the tailoring specific to each mode.

Customization Note. When adding or removing a mode

from the code, the change must oCcur in two places.
First is in setModes. The other place that the change
must take place is in CheckModes in SUPPORT.C.

After SetModes has been ca7?ed, Setup returns and then Edit is
called. Edit performs an IncrDsp (incremental redisplay), waits
for a character, and dispatches to the command routine that the
character is bound to. (A "command routine" is any procedure
which can be called directly from a dispatch table.) Arg is set
to I and Argp is set to FALSE.

Any further calls to SetNlodes will be from commands (e.g.,
switch Buffers).

l-5

program Logic Manual Mark of the Unicorn

At this point, each command can assume the following
environment:

Arg is set to lArgp is set to FALSE

Lfunct points to the function bound to the command

that was executed before this one (the "last
function" executed)

Cmnd is set to the character that was typed by the
user to generate this command

Note that "this point" does not always exist. If a C-U
(Universal Argument, MArg in COMM1.C) is typed, it will
eventually dispatch again to the commands. In that case, Arg will
in general not be l, Argp will be TRUE, and Cmnd will still be
the character that was bound to you. Similar changes happen with
the Meta and Control-X dispatch functions. Note that 128 <= Cmnd

<= 255 indicates a Meta command and 256 <= Cmnd <= 383 indicates
a Control-X command.

If Arg is greater than one when you return back to edit, edit
will decrement it and call you again.

1.2 Specifics"

1.2.1 Supplied Files

There are several source files supplied with Mince. They are:

BINDINGS.C Source code for the key binding functions
finitl, finit2, finit3, and SetModes.

COMMI.C Source for Control commands. COMMI, COMM2, and
COMM3 have the routines listed in the same order
as appears in the full command list, i.e. in the
same order as the ASCII co17ating sequence for
the keys to which they are bound.

COMM2.C Source for Meta commands.

COMM3.C Source for Control-X commands.

I-6

Mark of the Unicorn program Logic Manual

SUPPORT.C Source for support routines used by the
commands. They are listed in alphabetical order.

1.2.2 Coding and Documentation Conventions

The Entry Point Documentation, the Source Code Documentation,
and the Terminal Abstraction Documentation follow certain
conventions. First, the name and type of each argument is given;
the return argument is only given if the routine specifically
returns a meaningful value. (In C, everything returns a value.)
Second, each global variable that the routine accesses is listed
in those routines for which the source code is not given. Here is
a guide to interpreting the ways that globals are used:

Exports means that that routine sets the global for
other routines' use.

Imports means that that routine reads the value of
that global.

Private means that no other routines should look at
or set that variable.

Updates means that that routine both reads and
writes the value of that global.

Uses meahs that that routine bashes any existing
value and leave a garbage value in that global.

Note that there is no listing of which globals any of the
command routines access. In general, they utilize globals heavily
and a quick check of the source code can tell you which of them a

particular routine uses.

The upper/1ower/mixed caseness of names also has meaning.

UPPERCASE names are constants. They are initialized
with #de£ines and are only initialized in
MINCE.GBL.

MixedCase names are procedures. A capital letter
usually indicates the start of a new word (in lieu
of a space or underscore).

lowercase names are variables or procedures. When

procedures, they usually name a procedure used
only locally.

Within written English text, a lowercase name will often be
Capitalized in order to facilitate its recognition as a variable
or procedure name.

l-7

Program Logic Manual Mark of the Unicorn

The first letter of a procedure name usua17y has meaning as
well. Note that the routines in SUPPORT.C ignore this convention
completely.

letter indicates that the procedure is part of the...
A dynamic memory Allocator
B Buffer abstraction
C top level buffer abstraction that makes the

buffer abstraction Compatible with the Mince
user-visible view of buffers

M Mince ccjmmaná set
Q FIFO Queue maintainer
T TerminaZ abstraction

1.2.3 Constants and Globals

This section discusses the contents of the file NIINCE.GBL. Itbriefly covers the meaning of each of the constants and globals.

Basic constants and variables:

TRUE (-l)
FALSE O

NULL O

-- the null pointer

HOME 0,0 -- TSetPoint(HOME) puts you at the upper
left corner

FORWARD (-l) -- altername names for TRUE and FALSE to
BACKWARD O enhance readabi\ity in some places
SWAPFNAM "mince.swp" -- two places where it looks
SWAPIFNAM "a:mince.swp" for the swap file

.

INPUT O

--
mode for file input

OUTPUT l -- and output
UPDATE 2

-- and update

FILMAX 15
-- maximum length of a filename

STRMAX 40
-- maximum length of a search string

MODEMAX 20
-- maximum length of the mode name string

MAXMODES 4
-- maximum number of modes (per buffer)

BUFNAMMAX 9

-- maximum length of a buffername
BUFFSMAX 7 -- maximum number of buffers

l-8

Mark of the Unicorn Program Logic Manual

mark -- user settable mark in the current buffer

arg -- the numeric argument to a command

argp -- TRUE if an explicit argument was entered,
FALSE otherwise

1CO1 -- column that Next Line and Previous Line
try to leave you in

psstart -- a mark placed one character before the

start of the screen
sstart -- a mark placed at the start of the screen
send -- a mark that tries to be placed at the end

of the screen (not valid ifredisplay was interrupted)

cnt, tmp -- scratch variables for local use by
commands or support routines. Watch
out for calling and called routines
that use the same variable!

(*functs[3*128]) () -- the key bindings table
(*1funct)() -- the. previous command invoked

for commands that deal with margins...
fi17width -- the first coZumn text can't be in
indentcoi -- the first column text can be in

strarg[STRMAX] -- previous search string
mode[MODEMAX]

-- current mode name sting
namearg[BUFNAMMAX] -- previous buffer name

pnt row -- screen line the Point was on in the
—

last redisplay
stat_co1 -- column that the statistics (-%-, etc)

begin in

abort -- set it to TRUE if you want to exit
the editor (abort out of the
command loop)

cmnd
-- current command character (128 <=

cmnd <=255 is a Meta command, 256
<= cmnd <= 383 is a Control-X
command)

cbuff -- index of the current buffer in the
"buffs" structure

del buff -- buffer descriptor of the deZete

l-9

Program Logic Manual Mark of the Unicorn

buffer for use with the buffer
abstraction (e.g., BSwitchTo)

tmark -- scratch variable used to hold a mark

user visible buffer structure
struct cbuffer {

bbuff -- buffer descriptor for use
with the buffer abstraction

bmark -- the user settable mark
bname[BUFNAMMAX]

-- the buffer name
fname[FILMAX] -- the associated filename
bmodes[MAXMODES]

-- the list of mode ids for
this buffer

} buffs[BUFFSMAX]

Termina\ Abstraction constants and variables:

ROWMAX 60 -- maximum configurable # of rows
COLMAX 132 -- maximum configurable # of columns

NUL '\0' -- ASCTI NULL character (O decimal, ^)
BELL '\7' -- ASCII BELL character (7 decimal, "G)
BS '\10' -- ASCII BACK SPACE character

(8 decimal, ^H)

TAB '\11' -- ASCII HORIZONTAL tab character
(9 decimal, ^1)

LF '\12' -- ASCII LINE FEED character
(ID decimal, ^J)

CR '\15' -- ASCII CARRIAGE RETURN character
(13 decimal, "M)

ESC '\33' -- ASCII ESCAPE character
(27 decimal, ^1)

DEL '\177' -- ASCII DELETE character
(127 decimal, ^?)

NL '\212' '

-- character that Mince uses to mean
Newline (138 decimal, "^J)

KBBUFMAX 80 -- maximum number of typeahead
characters

prow -- position of the screen point
pcol
srow -- position of the cursor
scoi

tabincr -- number cjf columns between tab stops

l-10

Mark of the Unicorn program Logic Manual

tirow -- row. number of the saved screen row

c1rcoI[ROWMAX] -- for each row, the number of the
column after the 'last non-blank
character

t1ine[COLMAX] -- the saved screen line (for redisplay)

lindex -- temporary pointer into tline

struct {
-- keyboard input queue structure

head

tailbottom
top
space[KBBUFMAX]
j kbdq

Terminal Abstraction variables that are read from the swap fileheader. The swap file header was written to disk by Config.

NOPAD O

-- for "padp", if! Padp==NOPAD, no
CHARPAD I padding is necessary, if padp==
DELAYPAD 2 CHARPAD, pad with ctjaractérs, ifPapd==DELAYPAD, pad with wait loop

FIRST 255 -- possible arguments to put coord.
second o Tells whether to put out the first

or the second coordinate this time.

structure describing the terminal
struct termdesc {

ctr1z --
^Z to tell the world to stop reading

the file, as it will contain what
looks like garbage

nrows -- number of rows On the terminal
ncols -- number of co7umns On the termina7
rowbias -- bias to add to the desired row and
colbias -- column when doing cursor positioning
rowfirstp -- TRUE if the row should be sent firstcompp -- true if the row and column should be

bitwise complemented after biasing
and before sending

binaryp -: - TRUE if the row and column should be
sent in binary, FALSE if they
should be sent in ASCII

padp -- tells how to pad commands
padchar -- what character to pad with for

1-ll

Program Logic Manual Mark of the Unicorn

padp==CHAR!?AD

nhclpad -- amount of padding to do for home and
clear screen

nc1eoipad -- amount of padding to do for clear to
end of line

ncpospad -- amount of padding to do for cursor
positioning

ncleowpad -- amount of padding to do for clear to
end of screen

For each of the operations that follow, this is the
index and length of the character string to send:

struct str {

idx -- index
len -- length
! hci --

home and clear screen
cIeol -- clear to end of linen
cleow -— clear to end of window (screen)
cposl -- prefix string for cursor

positioning
cpos2 -- string to separate the two

coordinates
cpos3 -- postfix string for cursor

positioning
bell -- ring the terinal bell
init -- intia1ize the terminal
deinit -- leave the terminal in a

reasonable state

strspc[7Á -- the space that the above
operations index into. It
must be 73, as it fillsout the disk block.

l terminaZ

I/O port descriptions:

struct portdesc
l,

biosp -- TRUE if the bios is used. If FALSE,
the rest is relevant:

dataport -- number of the data port
statport -- number of the status port
datamask --

ANDed with incoming data
readymask --

ANDed with status to deterine whether
a character is waiting or the port
is ready for output

polarity -- polarity of the relevant bit. TRUE

L-12

Mark of the Unicorn program Logic Manual

if "1" bit means the port is ready
} inport --for both input and output ports

outport

Random parameters:

prefrow -- preferred cursor row
fi11init -- initial fill column

tabinit -- initial indent column

indentinit -- initial tab increment
mhz -- processor speed in tenths of

megahertz
delaycnt -- delay constant for echoing "Meta: ",

etc. as well as wait time before
swapping starts

npages -- number of pages in swap file. Must
be a multiple of 8

swapbase -- base of the actual swap area in
sectors

Spare area for patches:

spare[l0} -- ten integers' worth

Note that you cannot alter these declarations in any way.
However, the Spare variables are available for use by any
routines that you write.

1.2.4 Conditional Compilation Flags

Mince has conditional compilation flags scattered throughout
the source code. These flags are used to tailor the Mince source
code for a variety of machines and operating s'Tstems. The flags
are:

UNIX -- indicates the operating system. onZy
RSX one of these can actuaily be on
CPM

SUSER -- sing7e user system
LARGE -- extra command memory available
TYPEAHEAD -- typeahead is detectable

Note that for CP/M systems, the only flag that can be altered is
the LARGE flag.

l-13

program Logic Manual Mark of the Unicorn

1.3 Extending and Modifying Mince

1.3.1 An Example

Let us uncover some of the potential pitfalls and see how all
of this hanqs together by writing an example function. This
function is a sort of poor man's detabify. It's called MDeTab and

it will find the next Tab character and replace it with the
number of spaces that it represents.

A noticab1e amount of implicit knowledge was used in the above
paragraph. First, the knowledge of how routines are named
indicated that the function name shou7d be prfixed with "M?'. ("m"
stands for "Mince.") Second, the knowledge that the general
function (detabification) is useful is implicit in selecting this
particular example. Third, the knowledge of how this function
could fit in with the "Mince philosophy" to serve as the
foundation for a "Detabify Region" command helped to shape the
definition. The "Mince philosophy" is something that is gradually
acquired by writing a (possibly large) number of commands and
trying to fit them in with the existing structure.

The first step is to establish the algorithm. This step is not
as forbidding as it sounds. All that it implies is that we

rewrite the above description in a more formal way:

find the next Tab
figure out how wide it is
replace the Tab with that many spaces

Or, yet more formally:

search forward through the buEfer for a Tab
figure out how wide it is
delete the Tab
insert the correct number of spaces

In C/Buffer Abstraction "Language" this would be:

BCSearch(Tab)
width=TWidth(co1umn,Tab)
BDe7ete(l)
call B1nsert(" ") WIDTH times

l-14

Mark of the Unicorn Program Logic Manual

Note that this is NOT a finished function and, as it stands, it
will not work. It is left at this stage to point out different
ways of making two coding decisions. First, the cali to Twidth
might have been coded as a BGetCoi, a move backwards one
character, and a second call to BGetCol. The difference between
the returned values in the column positions is the answer (and is
the same number that TWidth will return). Second, the insertion
of the WIDTH spaces can be by an explicit for- or while- loop or

it can be via a call to Indent. This example illustrated that
there is probably a function in Mince that directly does what you

· want; your job is to ferret it out.

The finished function looks like this:

MDeTab() /* change a Tab to blanks */
{

if (!BCSearch(TAB)) return;
BMove(-l);
SIndent(TWidth(BGetCo1Ó,TAB));
BDe1ete(l);
}

The if statement puts in a very important check: if there is no
Tab, we don't do anything. Checks of this sort are very important
in finished code. However, they are not relevant to the
definition and so were left out of the earlier discussion. We

then go backwards over the Tab. Thus, the BGetCol will return the
desired column (the one you are in just before the Tab is
"printed"). Twidth takes this column and returns the width of the
Tab. SIndent puts in that many spaces. The BOe1ete then deletes
the Tab.

If we were to write a Detabify Region command, this function
would serve as a good base. It does need some touching up,
however. First, it should be passed a mark which was placed at
the end of the region. MDeTab would then not do anything if the
BCSearch left you after the mark. Second, MDeTab would probably
return either TRUE or FALSE, depending upon whether it did
anything. The Detabify Region command could check this flag to
determine whether to continue on in the loop.

1.3.2 On Changing Mince

As the previous examp7e indicated, there is a lot to know
before you change or extend Mince. The best way to acquire some

of this knowledge is to first become an expert in using Mince.
After all, it is wasteful to write a Center Line command if one

l-15

Program Logic Manual Mark of the Unicorn

already exists and you merely didn't know about it. That
knowZedge will help you to figure out how existing code works and

it wiZi also help you have your modifications fit in with the
"Mince philosophy." Unless you are reworking the entire commaná

set and user interface, users wilt be much happier if any changes
are in line with the existing philosophy of the program. It is
easier to learn and be happy with an undesirable philosophy that
consistently implemented than with the same philosophy that has
been changed here and there so as to be '"less undesirable." Of
course, we feeZ that our philosophy is not undesirable...

1.3.3 Compiling and Linking Mince

There are a number of points to consider when compiling aná

linking a version of Mince. First, the BDS C compiler (Version
1.42 or higher) must be used for compiling Mince.

The object code files (.CRL) are distributed in two forms. Both
forms were compiled with the -e option. (We estimate a 25%

increase in size without this option.) The object code files for
which source code is not supplied are:

MINCE.CRL LMINCE.CRL
UTIL.CRL LUTIL.CRL
VBUFFI.CRL LVBUFFI.CRL
VBUFF2.CRL LVBUFF2.CRL

The normal-named versions use -e7900 and the versions starting
with "L" use -e8l00. The extra 2K of space allows room for adding
functions to Mince. Note that there is essentially no extra space
in the -e7900 versions so if you add code there, you must take
out something else. If more space is required, contact us and we

will generate a special version.

pr2¿: É :?b"of°t"aPbi11á"ogv ,s,Ua?oowRT(s,', E!Éí0jF °ption must be used to

when linking, use the linker supplied by Mark of the Unicorn
(called "L2") and NOT the linker supplied by BDS. (Among other
reasons, our linker saves 10% of code space.) This linker is
experimental and is not guaranteed to 'link any arbitrary C

program. It will, however, link any software supplied by us.

The following command line will suecessfu11y 'link a Mince (it
can be found in ML.CMD):

12 mince bindings ciomml comm2 comm3 vbu££l vbu£fi2 -1

1~16

Mark of the Unicorn Proqram Logic Manual

support term útil ,

Almost nothing else willi. About alt that you can do is to split
or include new command files, in which case be sure that they are
before the "-1". If you wou7d like to know more about the linker
or have any problems, contact us.

1.3.4 Debugging Code

So, you have written some new functions and would like to debug
them. Debugging a display editor is not quite the same as
debugging anything else. For one thing, the screen has a tendency
to rearrange itself on you...

The best method to use is a modification of the basic tracing
techniques that every programmer has used: put in a print
statement. The function Debug is the print statement and you
simply have to call it every place that you would like to print a

value or message. Debug does the folTowing:

it prints a message

it prints the value of an integer
it does an redisplay (so you can see what the buffer

looks like)
it waits for you to type a character, and returns

TRUE ir the entered character was a Delete or
BackSpace, FALSE otherwise

It is a good idea to sprinkle a lot of calls to Debug in any
suspicious code, especially in infinite loops. Each message
should be different (to allow you to see what part of the loop
you are actually in. In this manner, you can see the
"intermediate results" of your function. You can also get out of
the function to try something else by doing:

if (Debug("l am here",cnt)) t

arg=0;
return;
}

Don't even think of trying to use a conventional debugger with
Mince. You haven't got a chance.

" Good Luck!

l-17

Mark of the Unicorn Entry points

Chapter 2

Entry points

2.1 Top Level and Redisplay Routines

main(argc,argv)
int argc
char *argv[]

This is the command line entry point.

setup(iargc,iargv)
int iargc
char *iargv[]

Exports the g1oba7s fiilwidth, del buff, indentcol,
namearg, stringarg, and tabincr.

Initialize the editqr. It is ca21ed immeidate1,y bv
main and may not be reinvoked. FiZZwidth is initimizeCl
to the default fill width and indicates the first
column that characters may not appear in while filling
text. Indentcol is initialized to the default indent
column and iridicates the first column that characters
may appear in while filling text. Tabincr is
initialized to the default tab increment and indicates
the number of columns from one tab stop to the next.
Namearg is initialized to the null string and retains
the default used for switching buffers. Stringarg is
initialized to the null string and retains the last
search string. De1_buff is a buffer descriptor and

2-l

Entry Points Mark of the Unicorn

defines the kill buffer.

The last -act performed is to call the routine Ulnitto perform any initialization desired by the user.

editO

Exports the globals abort, arg, argp, cmnd, and lfíunct.
rmports the global functs.

The basic editor loop. It reads a command, dispatches
it, and invokes redisplay. It may be called recursively
and setting the global abort to TRUE will exit the
current invocation. Argp indicated the presence (TRUE)

or absence (FALSE) of an argument to a command and is
initialized to FALSE. Arg is the actual argument value
and is initialized to l. Cmnd contains the key that was
typed combined with any prefix codes. Lfunct is the
address of the procedure invoked by the previous
command.

NewDsp()

Clears the screen, does a ScrnRange, and forces
redisplay.

IncrDsp()

Imports the globals psstart, send, sendp, and sstart.
Performs a redisplay. Updates the screen, one line at

a time, to reflect the current state of the buffer. If
a character is typed during redisplay, it aborts after
finishing a line. Upon successful completion, Send is
placed at the actual end of the window. It also calls
ModeF1ags.

int
InnerDsp(from,to,pmark)

int from, to, pmark

2-2

Mark of the Unicorn Entry Points

Exports the globals send, sendp, and tline.
Imports the globals cur cptr and terminal.

Private globals Íináex, pnt row and tline.
Updates the global pcoI.

Redisplays a single window for IncrDsp. The window

runs from screen lines From to To. If Pmark is non
Null, returns the row that the mark is on. This routine
should not be called outside IncrDsp.

ScrnRange()

Exports the g\oba1s psstart, sstart, and send.

Centers the window so that the point is on PREFLINE.
Sstart is a mark which is placed at the start of the
window. Send is a mark which approximates the end of
the window. Psstart is a mark which is placed one
character before the start of the window.

int
WFieight()

Imports the globals divide and topp.

Returns the height of the current window in lines.

int
PrefLine()

Imports the global prefrow.

Returns the line within the current window that the
user prefers the point to be on. This vaiue is linearly
dependent upon the position within the window of the
value of the "preferred row" parameter given in Config.

MoáeLíne()

Exports the global stat col.
Imports the global íjüffS, cbu£f, and mode.

2-3
t

Entry points Mark of the Unicorn

Dis§1ays the mode line. Stat col indicates where to
start displaying the mode f1agS.

2.2 User Level Buffer Description

The data structure is:

struct cbuffer !

int bbuff, bmark;
char bname[BUFNAMMAX], fname[FILMAx], bmodes[MAXMODES];
} buffs[BUFFSMAX];

int
CMake8uff(buffername,fi1ename)

char *buffername, *fi1enaíne

Creates a buffer named Buffername with an associated
filename Filename. It also sets the modes to no modes,

creates a mark, and sets bbuff to be a buffer
descriptor of a new buffer. Returns the index of the
newly created buffer, or -l if it failed. Buffername
must be unique. If it is not, the results are
undefined.

CSwítchTo(bufferindex)
int bufferindex

Exports the globals cbuff and mark.

Makes the buffer selected by Bufferindex the current
buffer, calls SetModes, and makes the mark associated
with that bufferthe global mark. Cbuff is a bufferindex
and is the index of the current buffer.

int
CFindBuff(buffername)

char *buffername

2-4

Mark of the Unicorn Entry points

Returns the index of the buffer whose name is
Buffername or -l if there is no such buffer.

2.3 Memory A17ocation Abstraction

The following routines implement a dynamic storage allocator
and are used internally by the buffer abstraction. They cannot be
used outside of the buffer abstraction.

AA71oc ACoalesce AFindNext
AFree Alnit ALen
Aprtwrld ASpace

They require the following globals:

int *Abegin, .Asize, *Aend, *Acap

2.4 Queue Abstraction

The fo71owing routines implement a FIFO character queue. They
ali use the following definition of a queue.

struct queue {
' char *qhead, *qtai1, *qtop, *qbottom, qspace[size]

}

Qlnit(queue_pointer,size)
struct queue *queue_pointer
int size

Format a queue structure that you have allocated and
pass to Qlnit. Size tells the initializer how big the
queue shcmld be. You must allocate the space yourself.

2-5

Entry Points Mark of the Unicorn

This space includes both the space for the queue and
the space for the queue header. Size here and the size
in the structure declaration are the same.

char
QGrab(queue pointer)

struct queue *queuepointer

Returns the next character on the queue. Results are
undefined if the queue is empty.

QShove(char,queue pointer)
char char "
struct queue *queue_pointer

places Char onto th? queue. Results are undefined ifthe queue is full.

FLAG

QEmpty(queue_pointer)

struct queue *queue pointer

Returns TRUE if the queue is empty; FALSE otherwise.

FLAG

QFu'l1(queue pointer)
struct"queue *queue_pointer

Returns TRUE if the queue is full; FALSE otherwise.

2.5 Buffer Abstraction

2.5.1 Initialization and Buffer Maniputation

2-6

Mark of the Unicorn Entry Points

B1nit(swap file descriptor)
int sGap_fT\e descriptor

—

Initializes the buffer abstraction and tells it to
use the indicated file as the swap £i1,e.

int
BCreate()

Creates a new buffer and returns its
buffer descriptor. Returns NULL if no more buffers are
avaiiaEñe or there is no more memory.

BSwitchTo(buf£er descriptor)
int buffer aescriptor

—

Makes the buffer indicated by Buffer descriptor the
current buffer.

BDe7Buff(buffer_descriptor)
int buffer descriptor

Deletes the buffer indicated by Buffer descriptor.
You cannot delete the current buffer (indi¿gated by the
global Cbuff), and you will get an error message if you
try.

2.5.2 Inserting and Deleting Text

8Insert(character)
chat character

Inserts Character at the Point. It gives an error
message and does nothing if there is no more available
(virtual) memory.

2-7

Entry points Mark of the Unicorn

BDe1ete(quantity)
unsigned quantity

Deletes Quantity characters forward from the Point.

BDe1ToMrk(mark)

int mark

Deletes all text between the Point and the passed
mark. The passed mark must be in the current buffer,
and you will get an error message if it is not.

BCopyRgn(mark,buffer descriptor)
int mark
int buffer descriptor

.

Copies the text between the Point and the passed mark
into the indicated buffer, inserting the text at that
buffer's point. The passed mark must be in the current
buffer, and you will get an error message if it is not.
You cannot copy into the same buffer that you are
copying from, and will get an error messaEe if you try.
Leaves the destination buffer's Poin after the
inserted text. If it runs out of avaíTabie memory, itwi7Z abort after having copied as much as it can and
print the message "Swap file full".

2.5.3 Beginning of Buffer, End of Buffer, and Basic Motion

!3ToStart()

Moves the Point to the beginning of the buffer.

FToEnd()

Moves the É'cjiñt to the end of the buffer.

2-8

Mark of the Unicorn Entry Points

BShovelt()

Places the buffer in a repeatable, invalid state. It
is used internally by redisplay. Results are undefined
if it is invoked outside of redisplay.

FLAG

B1sStart()

Returns TRUE if the Point is at the beginning of the

buffer, FALSE otherwise.

FLAG

BIsEnd()

Returns TRUE if the point is at the end of the
buffer, FALSE otherwise.

BMove(áist)
int dist

Moves the Point Dist characters. Dist m3y be either
positive or negative. It will move up to but not past
either the beginning or the end of the buffer.

2.5.4 Status and Complex Movement

UNSIGNED

BGetCo7()

Returns the disp\ay width of the text between the
beginning of the buffer or the latest Newline and the
point. Normally, this will be the column that the
cursor is dispiayeá in.

BMakeCoi(co1umn)

2-9

Entry Points Mark of the Unicorn

int column

Moves the Point so that the display width of the text
between the beginning of the buffer or the latestNewline and the Point is as near Column as possible.
The Point is placed at the end of the current line ifColumn is beyond the end. If Column falls in the middle
of a multi-column character, the Point is placed after
the character.

UNSIGNED

8Location()

Returns the Position of the Point in the buffer in
units of characters from the beginning of the buffer.
This value is not correct for locations above 65,535.

l

UNSIGNED

8Length(bu£fer descriptor)
int buffef descriptor

Returns the length of the buffer indicated by
Buffer descriptor in characters. This value is not
correct for buffers of more than 65,535 characters.

FLAG

BCSearch(what)
char what

Search forward through the buffer starting at the
Point for character what. Returns TRUE if the character
was found, FALSE otherwise. The Point is left after the
character that was searched for if it was found or at
the the end of the buffer if it was not.

FLAG

BCRSearch(what)
char what

Search backward through the buffer starting at the
Point for character what. Returns TRUE if the character

2-lO

Mark of the Unicorn Entry points

was found, FALSE otherwise. The Point is left before
the character that was searched for if it was found or
at the beginning of the buffer if it was not.

FLAG

BModp(buffer descriptor)
int bufÉer descriptor

Returns TRUE if the buffer indicated by
Buffer descriptor has been modified since it was
created or had a file operation (e.g. read or write)
performed upon it, FALSE otherwise.

char
Buff()

Returns the character after the point. Results are
undefined if the Point is at the end of the buffer.

2.5.5 Mark Manipulation

int
BCreMrk()

Creates and returns a mark and places it at the
POint. An error message is given and NULL. is returned
if there are no more available marks.

Bki11Mrk(amark)
int amark

Removes the mark Amark.

BMrkTopnt(amark)
int amark

Places the mark Amark at the Point.

2-ll

Entry Points Mark of the Unicorn

8pntToMrk(amark)

int amarle

Places the Point at the mark Amark. The passed mark
must be in the current buffer and an error message is
given if it is not.

BSwapPnt(amark)
int amark

Interchanges the positions of the Point and the mark
Amark. The passed mark must be in the current buffer
and and error message is given if it is not.

FLAG

BIsAtMrk(amark)
int amark

Returns TRUE if the positions of the Point and the
mark Amark are the same, FALSE otherwise. The passed
mark must be in the current buffer and an error message
is given if it is not.

FLAGB

1sBeforeMrk(amark)
int amark

Returns TRUE if the position of the Point is before
the position of the mark Amarle, FALSE otherwise. The
passed mark must be in the current buffer and a value
of FALSE is returned and an error message is given if
it is not.

FLAG

BIsAfterMrk(amark)
int amark

Returns TRUE if the position of the Point is after

2-12

Mark of the Unicorn Entry points

the position of the mark Amark, FALSE otherwise. The
passed mark must be in the current buffer and a value
of, FALSE is returned and an error message is given if
it is not.

Screen marks are special marks used by redisplay to improve its
performance. Each mark has a flag associated with it. Redisplay
clears ali of these flags and the buffer modification routines
(e.g., Blnsert and BDeiete) set the flag on the the last mark
Zocated before the modification. As the redisplay places the
marks on the beginning of each screen line, the f7ag serves to
indicate whether that Tine has changed since the last redisplay.

int
BScrnMrk(indx)

int indx

Returns the screen mark corresponding to the Index'th
row of the screen.

FLAG

BTstMrk(smark)
int smark

Returns the state of the mark Smark and resets the
state to FALSE. It is used interna71y by redisplay.
Results are undefined if it is invoked.

BSetMod(smark)
int smark

Sets the state of the mark Smark to TRUE. This will
result in the corresponding line being redisplayed the
next time ÍncrDsp is invoked.

2.5.6 Reading and Writing Files

FLAG

2-13

Entry Points Mark of the Unicorn

BReadFi1e(filename)
char *fi1ename

Read the contents of the file Filename into the
buffer. The current contents of the buffer are lost.
Ail marks and the Point are placed at the beginning of
the buffer. Succeeded is TRUE if the read was
successful, FALSE otherwise. The buffer's modified flag
is cleared.

BWriteFi1e(fiiename)
char *fi1ename

write the contents of the buffer into the fileFiename. The buffer's modified flag is cleared.

BFTush()

IE there are any modifed pages, one is written to the
swap file, otherwise, nothing happens.

2.5.7 Private Routines

The following are routines private to the buffer abstraction.
They may not be invoked Erom outside the buffer abstraction.

DskWarn Dskunwarn free page
get memp GetGap intojnem
majcé

cur make offset new page
page"sp1it SetMÓá SubSet

2-14

Mark of the Unicorn Source Code

Chapter 3

Source Code

Note that not all routines will be documented here; many
of the commands are left out. Understanding these more
simple routines is tantamount to understanding what the
command is supposed to do.

0

3.1 Control Commands: File COMMI.C

MArg()

Does the C-U (Universal Argument) command.

Tmp accumulates the numeric argument as typed in
(e.g. '5' then '3' becomes the value fifty-three).

Tmp does NOT accumulate the muj.tiplications by
four. Cflag tells whether or not a digit or digits
was entered. Eflag tells whether the argument has
been echoed and thus needs clearing.

As the routine is entered, any previous argument
is multiplied by four. A (possibly null) digit
sequence is picked up and accumulated. If the
áigit sequence was non-null, the old argument is
thrown out aná those digits become the argument.
You can thus end an argument with any number of
C-U'S. The non-digit which ends the digit sequence
then gets dispatched as a command. If a C-U was
picked up, this routine is invoked recursively.

3-l

Source Code Mark of the Uñiccjrn

3.2 Meta Commands: File COMM2.C

MDelELine

Does the M-C-K (Kill Entire Line) command.

The tricky thing in this routine is that it does
the delete in two separate operations. It firstdeletes the text from the point to the beginning
of the line and puts it at the START of the delete
buffer. It then deletes the text to the end of the
line (including the Newline) and puts it at the
END o: E the delete buffer. If the command is given
an argument, the Point is left at the beginning of
the following line and reinvoked. All of the text
from that and following lines will be put at the
end of the delete buffer.

MCapWord

Does the M-C (Capitalize word) command.

The tricky thing here is that if the word that
is being capitalized is only one character long,
you don't want to call the lowercase word routine.

MFillPara

Does the M-Q (Fill paragraph) command.

It begins by resetting the fillwidth if there
was an argument. It then cre"ates a different mark

so that it can return there when it is done.

The rest of the initialization involves putting
the point and a mark in the right places. a

8Move(-l) is done so that it will fill "this"
paragraph if the point is just after the Last

3-2

Mark of the Unicorn Source Code

non-white character (to wit, the final period of
the final sentence). It then gQes to the end of
the paragraph and backward a character yet again.
If you are at the end of the buffer (BIsEnd is
TRUE), you must have a"null buffer and so return.
If that character is whitespace, you have only
whitespace in that direction in your buffer
(Forward Paragraph always leaves you just after
non-whitespace, if possible), therefote, you
return. Otherwise, you set a mark there and go
back to the beginning of the paragraph to start
filling.

The basic flow of the rest of the command is to
bounce through the paragraph, stopping at each
Newline and before each word and doing some

processing, finally finishing when you reach that
mark at the end of the paragraph- Note that breaks
are only made on whitespace (e.g., it won't split
"a-b") and whitespace can be deleted or inserted
by the command.

There are two cases. First, a word can end after
Fillwidth. Second, a Newline can occur before
Fillwidth. In the first case, you jump backwards
to the previous whitespace, delete it, insert a
Newline and any indentation, and jump forward
again. You never have to back up past whitespace
more than once (unlike MFillChk, the auto fillspace routine) because you were just there and itwasn't past Fillwidth. You jump forward to
whitespace as you finish for efficiency and to
keep from hanging in an infinite loop if you have
a single word longer than Fillwidth. In the second
case, you delete the Newline and any indentation
and insert a space.

In the center of the text of the routine and
separating the two cases is the mechanism for
switching between the two cases. No matter which
case you just processed, you skip over any blanks
or Tabs and stop when you get to a Newline or a

non-whitespace character. A call to IsNL is made

to see which case it was that you encountered and
the result of that call selects the case to
handle.

The routine finishes by returning the Point to
the original mark and cleaning up.

.

3-3

Source Code Mark of the Unicorn

Note that in this scheme all Newlines will be
deleted and re-inserted, even though no actual
motion of text is needed. *sigh*.

MCntrLine

Does the M-S (Center Line) command.

This begins by getting Fillwidth and Arg to be
the same value. Arg performs double duty here. Itcomes in as the argument, of course, but it goes
on to become the value Fil1width - Indentcol.

The routine itself moves to the beginning of the
Line, deletes any whitespace (for example, the
stuff it put in last time if the line is being
re-centered), goes to the end of the line, gets
its position, goes back to the beginning, inserts
the right number of spaces, and leaves you at the
end.

MFillChk

Does the FilÁ Mode Space (Auto Fill Space)
command.

It begins by returning if it doesn't have to do
anything (the Point is before Filj.width). If the
point is at or after Fillwidth, it has to split
the line. It jumps back to whitespace until itgets before Fillwidth (it can't assume that the
immediately previous whitespace is before
Fillwidth). It then deletes that whitespace.

Now things get hairy. As you might have noticed,

it placed a mark before it did anything. If it is
still at that mark, that means there was lots o:E

trailing whitespace on the line and it is the
whitespace t-hat put you over Fílíwidth. It sets a

flag indicating what the situation was. It then
inserts the Newline and does the indenting. If
that flag indicates the this is a reasonable
situation (it was a word that put you over), itputs you back at the mark (which should be after

3~4

Mark of the Unicorn Source Code

the word that was wrapped) and inserts a space. If
it was the spaces that put you over, it doesn't
have to insert the space as the Newline and
indentation already is the space.

3.3 Control-X Commands: File COMM3.C

MLstBuffs

Does the C-X C-B (List Buffers) command.

Note how it uses BSetMod and BScrnMrks to tell
the redisplay what lines it bashed. Note also that

it waits for the next character to be typed in
before it allows the screen to be cLeared.

MFindFile

Does the C-X C-F (Find File) command.

Yes, there is a call to BReadFile lurking in
there. This command is shorthand for three
different things and it shows, both in the
complexity of the documentation and in the
complexity of the code.

MDelMode

Does the C-X C-M (Delete Mode) command.

This routine, as with Add Mode, assumes that the
mode list is kept packed and stored from the top
down (large indices to small indices) in
Buffs.Bmodes. Thus, [O O ModeA ModeB] is legal,
while [O ModeA O ModeB] and [ModeA ModeB O O]

are not. These examples are number the indices
from zero to three, from left to right.

3-5

Source Code Mark of the unicorn

Given that convention, Delete Mode's job is
easy. It scans down the mode list until it finds a
match, then packs the rest of the list.

3.4 Support Rou-tines: File SUPPORT.C

FLAG

ArgEc1rio(targ)
int targ

Uses the global cnt.

waits an amount of time proportional to DELAY.

If a character has been entered, returns FALSE. If
not, prints "Arg; " and the argument Targ, and
returns.

FLAG

Ask(mesg)
char *mesg

Prints the message in the echo line. If the user
responds with "Y", "y", or " ", returns TRUE. Ifthe user responds with "N", "n", DEL (^7), or BS

(^H) returns FALSE. Otherwise, it rings the bell
and checks another character.

BlockMove(from,to)
int from, to

Moves the (possibly zero length) block of
characters between the point and the mark From to
the mark To. To is left after the moved

characters. The point is left at mark From. The

Point is assumed to be before the mark From. If itis after, no characters are moved.

3-6

Mark of the Unicorn Source Code

change(old,new)
char *old, *new

/\ssumesj ¿Éhat t;he Point is at the end of Old. Itde&etes O and inserts New.

int
CheckMode(tmname)

char *tmname

Returns the modeid of the indicated mode iftmname is a mode name, otherwise FALSE. The mode

identifier is typically the first character of the
mode name, e.g. "f" for Fill mode.

ClrEcho()

Clears the echo line.

CopyToMrk(tmark,forwdp)
int tmark, forwdp

Imports the globals del buff and lfunct.
Copies the region (the text between the Point

and Tmark) into the delete buffer. If Forwdp is
TRUE, it appends the text to the end of the delete
buffer. Otherwise, it puts it at the beginning. It

· calls DelCmnd and if TRUE is returned, it saves
what is in the delete buffer, otherwise the region
replaces what is already there.

FLAG

Debug(message,value)
char *message
int value

Prints Message and Value in the echo area, callsredisplay to allow you to see what the buffer
looks like, and waits for a character. Returns

3-7

Source Code Mark of the Unicorn

TRUE if the character is DEL (^7) or BS (^H),
false otherwise.

FLAG

Delayprompt(mesg)
char *mesg

Uses the global cnt.
Waits for DELAY. If a character has been

entered, returns FALSE. If not, prints the message
in the echo line and returns TRUE. This routine isused to accomplish the delayed echoing of "Meta: ",etc.

FLAG

DelCmnd(1funct)

int (*lfunct)()
Imports the global lfunct.

Returns TRUE if Lfunct points to a command that
saves deleted text in the kill buffer, FALSE
otherwise.

DoReplace(query)

int query
Uses the global tmark.

Does the Replace String and Query Replace
commands. Query is a flag that tells it whether or
not to ask each time is locates an occurrence.

The routine is straightforward except in two
cases. First, all characters not specifically
checked for (the default) act as "No" answers.
This is implemented in the code by not executing
the remainder of the while loop because itexecuted the continue statement.

The other sticky point is in handling the ','(Replace And Confirm) ccmmand. First, if it is a

3-8

Mark of the Unicorn Source Code

query replace, the routine sets the Tchar variable
to ',' in order to cause the "Replacing" message
to be printed. Each time ',' command is entered,
you will be asked to confirm the replace and this
message will have been bashed. Therefore, it is
refreshed the next time through the loop and that
same mechanism is used to get the whole mess
going. The ',' command does the replace, so in
that respect it is treated just like "Yes."
However, after the change has been made, it must
check to see if the command was ',' and, if so,
ask for confirmation.

Note that the ',' option does not save the
original string that was being replaced. Thus, ifthe "put it back" option is selected, the
upper/lower caseness of the original string is
lost. .

Echo(mesg)
char *mesg

Prints the message in the echo line.

error(mesg)
char *mesg

Displays an error message. An error message
appears off to the right in the echo line. Waits
for a character to be typed before returning.

ForceCol(col,forwardp)
int col, forwardp

This routine will force the Point to be in
column Col. If necessary, it will insert spaces to
put you there. Forwardp tells whether.to round up
or down on multi-column characters- (Due to
multi-column characters, you are not always going
to be in column Col. ForceCol merely deals withthe interesting cases of Newline and Tab
characters preventing you from being in thedesired column.)

3~9

Source Code Mark of the Unicorn

First, don't touch this routine. If you change
anything, it probably won't work. This routine
also relies heavily on the behavior of BMakeCol.
BMakeCol leaves you in the proper column, ifpossible. If the proper column falls in the middle
of a multi-column character (e.g., Tab or ^A), itleaves you after the character. If the line isn't
long enough, it leaves you at the Newline.

ForceCol begins by doing a BMakeCol. That
ensures that you are at least close to the desired
position. It then checks to see if the desired
column is less than or equal to zero. If it is
less than, return. If it is equal to zero, we know
that BMakeCol succeeded in leaving us in the
correct column.

There are now three cases. First, Col can be
after the Newline. It is detected by BGetCol "
Col. In this case we want to insert some spaces.
The second case is for Col to have fallen in the
middle of what a Tab is tabbing over. It is
detected by BGetCol > Col and the character before
the point is a Tab. In this case, it moves back
one character and inserts some spaces. The third
case is where Col is in the middle of a

multi-column character (not Tab, though). In this
case, it leaves you before or after the character
depending upon the sense of Forwardp. There is an
implicit fourth case, that in which you are
already at the correct column. In this case,
nothing must be done.

The purpose of the big hairy if statement on the
third line is to leave you before the Tab if there
is one (the second case above). The Indent on the
following line then can handle both the first and
second cases at one fell swoop. Note that ifIndent is given a negative or zero argument, itdoes nothing. Thus, if you are already at the
correct column or you are beyond it (third case),

it does nothing.

The last if statement handles the third case.
All other cases will have BGetCol == Col by now.
All it does is leave you on the indicated side of
a multi-column character.

3-lO

Mark of the Unicorn Source Code

FLAG

GetArg(mesg,term,str,len)
char *mesg, term, *str
int len

This routine does all of the work for
accumulating a string argument (e.g., a search
string or file name). It provides the full echoing
and line editing facilities needed.

It prints the message and accumulates the
response into Str. Str can have up to Len
characters. When Term is typed, the routine
returns. It returns TRUE if everything went allright, FALSE if C-G (Abort/Cancel Prefix) was
entered.

int
GetModeId(msg)

char *msg

calls GetArg with Msg as the prompt and returns
a Modeid of a valid mode or prints an error
message and returns FALSE if a valid mode was not
entered.

index(tstr,tchar)
char *tstr, tchar

Returns the index of the first occurrence of
Tchar in Tstr, or -I if there is no occurrence.

FLAG

IsC1ose()

Returns TRUE if the character after the point is
a "closing" character, FALSE otherwise. A closing
character is one of)1]f {, ", or '. Used by the
sentence movement commands.

3-Ll

Source Code Mark of the Unicorn

FLAG

IsGray()

Returns TRUE if the character after the Point is
a "gray" character, FALSE otherwise. A graycharacter is a Space, a Tab, or a Newline. Note
that IsGray includes Newlines, while Iswhite does
not.

FLAG

ISNL()

Returns TRUE if the character after the Point is
a Newline, FALSE otherwise.

FLAG

IsNLPunct()

Returns TRUE if the character after the Point is
a Newline or punctuation, FALSE otherwise.
Punctuation is either ".", "?", or "!".

FLAG

IsParaEnd()

Returns TRUE if the character after the Point is
a Newline, Tab, "", or ".", FALSE otherwise. It is
intended to be used to determine whether the Point
is at the end of a paragraph. Paragraphs are
delimited by Newline Newline, Newline Tab, Newline
"" (Scribble commands), or Newline "." (most other
text formatter commands). This routine assumes
that you are between the two delimiters and itonly checks the second one.

FLAG

IsSentEnd()

This one is a monster. You are assumed to be

just after a candidate for an end of sentence (to

3-12

Mark of the Unicorn Source Code

wit, ".", "!", or "?"). This routine moves you
over an arbitrary number of Hi"' characters and

stops at the first character that isn't one of
those. If that character is a grayspace character,

it returns TRUE, otherwise it returns FALSE. Note
that this will leave you at the grayspace or the
other character.

FLAG

1sToken()

Returns TRUE if the character after the Point is
a token character, FALSE otherwise. Token
characters are alphabetics and digits.

FLAG

IsWhLte() '

Returns TRUE if the character after the Point is
a whitespace character, FALSE otherwise. A
whitespace character is either a Tab or a Space.
Note that IsWhite does not include Newlines, but
IsGray does.

itot(n)
unsigned n

Prints N on the terminal.

KbWait()

Waits for a character to be typed. It writes out
modified pages (by calling BFlush) so long as no
character has been typed.

KillToMrk(tmark,forwdp)
int tmark, forwdp

Deletes the region (between the Point and Tmark)

3-13

Source Code Mark of the Unicorn

and saves the deleted text in the delete buffer.Forwdp tells whether to put the deleted text at
the beginning or the end of the delete buffer.

lowcase(str)
char *str

Converts the string to lower case.

ModeFlags()

Uses the globals buffs, cbuff, and lfunct.
Prints the percentage, modified, and append next

delete flags on the mode line.

Movepast(pred,forwdp)
int (*pred)(), forwdp

Moves through the buffer, invoking Pred at each
character. It stops when pred 'returns FALSE,
leaving the point on the near side of the
character which caused pred to return FALSE.
Forwdp tells whether to move forward or backward.
Pred is a pointer to a function of no arguments.

MoveTo(pred,forwdp)

int (*pred)(), forwdp

' Moves through the buffer, invoking Pred at each

character. It stops when Pred returns TRUE,

leaving the Point on the near side of the
character which caused Pred to return TRUE. Forwdp

tells whether to move forward or backward. Pred is
a pointer to a function of no arguments.

NLPrnt(str)
char *str

3-14

Mark of the Unicorn Source Code

print Str at the terminal. Newline characters
are printed as "<NL>".

FLAG

NLSrch()

Puts you after the next Newline or at the end of
the buffer if there isn't one in that direction.
Returns TRUE if it.found one, FALSE otherwise.

Rebind(from,to)
int (*from)(Á (*to)()
Updates the global functs.

Changes all occurrences of the the function From
in the bindings tables to-To.

,

FLAG

RNLSrch()

Puts you before the previous Newline or at the
beginning of the buffer if.there isn't one in that
direction. Returns TRUE if it found one. FALSE

otherwise.

RubOut(ostr,str,tco1)
char *str, *ostr, tcol

Performs DEL hackery for GetÉtrg. It handles
deleting multi-column characters from the screen.

SInáent(arg)
int arg

Uses the global cnt.

. Inserts Arg spaces. Does nothing if Arg is
negative or zero.

3-15

Source Code Mark of the Unicorn

strip(to,from)
char *tcj, *from

From is a file name. This routine strips off the
device ("a:") if it exists and the extension
(".doc") if it exists and returns what's left in

To. This routine does not change the case of
anything.

FLAG

StrSrch(str,forwardp)
char *str
int forwardp

Uses the global cnt.

Does a string search in the direction indicated
by Forwardp. Returns TRUE if it found the string, '

FALSE otherwise. Leaves you after the string or at
the end of the buffer if it is a Eorward search,
before the string or at the beginning of the
buffer if it is a backward search.

ToBegLine()

Moves you to the beginning of the current line.

ToEndLine()

Moves you to the end of the current line.

TIMent(arg)
int arg

Indents Arg columns with Tabs and spaces. It
assumes that the Point was in column zero (or at
least at a Tab stop).

3-16

Mark of the Unicorn Source Code

ToNotWhite(forwardp)
int Eorwardp

Moves you to the first non-whitespace in the
direction indicated by Forwardp. You are not moved

if you are already at non-whitespace.

ToSentEnd(forwardp)

int forwardp

Moves you to the end of a sentence in the

direction indicated by Forwardp. This routine does
the work for Backward Sentence and Forward
Sentence.

It first finds a potential sentence end (a
punctuation mark or Newline). If the candidate is
a Newline, it sees whether or not it is the end of
a paragraph. If the candidate is a punctuation
mark,. it places a mark there, calls IsSentEnd
(which moves you somewhere), and restores your
position. It then checks to see if you are done.

Towhite(forwardp)
int forwardp

Moves you to the first whitespace in the
direction indicated by Forwardp. You are not moved

if you are already at whitespace.

ToWord()

Moves you forward to the beginning of a token
(word). You are not moved if you are already at a

word.

upcase(str)
char *str

3-17

Mark of the Unicorn The Terminal Abstraction

Chapter 4

The Terminal Abstraction

The terminal data abstraction is responsible for handling
all of the interaction with the user's console. It provides
a uniform interface to any terminal that Mince would ever
see. This interface standardizes the calls for performing
operations such as cursor positioning and clearing parts of
the screen. It also provides for displaying characters in a

uniform manner across all terminals.

The terminal abstraction performs these tasks by defining
, a "virtual terminal." By virtual terminal, we mean that the

interface will always perform the desired function; it is up
to the abstraction to make up for any missing or unusual
features. It is the responsiblity of the terminal
abstraction to ensure that the characteristics off this
virtual terminal are faithfully reproduced on any physical
terminal.

The virtual terminal has a screen that is a two
dimensional array of characters. They are numbered with
(0,0) in the upper left corner and (TMaxColÓ-l,TMaxRow()-l)
in the Lower right corner of the screen. There are both a

screen point and a cursor. The screen point is the (x,y)
coordinate where the next modification to the screen will
take place. The cursor is the (xty) location where the
visual marker is displayed. Note that these are not
necessarily the same place: the screen point can be moved
quite a bit while the cursor stays in the same place. (On

most terminals, modifications must take place at the cursor.
Thus, when an actual change is being made to the screen, the
cursor must first be moved to that place.) The virtual
terminal does not know about its own right edge. Thu",
strange things can happen if, for example, a multi-column
chaEacter is displayed so that it might wrap. (Mince's
redisplay avoids this case.)

The keyboard for this virtual terminal has a buffer,

4—l

The Terminal Abstraction Mark of the Unicorn

typically eighty characters or so long. The terminal willonly remember these characters (i.e., implement typeahead)

if it is checked often enough. Thus, those calls to TKbChk
which are liberally interspersed throughout Mince (and
should be included in any changes that you make) perform a

vital task.

The terminal abstraction is tailored for a specific
terminal by running Config. Config stores the description in
the swap file, which is in turn read by Mince as Mince comes
up. A description of the place this information is read into
and the format of the file can be found in Chapter One.

4.1 Initialization and Termination Routines

These globals are used throughout the terminal
abstraction.

private globals prow, pcol, srow, SCOI, clrcol, and
kbdq. '

The following routines initialize and terminate the
terminal abstraction.

Tlnit()
Initialize the terminal abstraction and the

terminal.

The routine first initializes the keyboard queue
(buffer). It then sends the initialization string
(as defined in the configuration program), sets
the Clrcol array to the last column, and clears
the screen (which sets them again).

4

TFini()

Restore the terminal to its original state.

Forces the cursor to be displayed where it
"belongs" (at the bottom of the screen) and

4-2

W

Mark of the Unicorn Thté Terminal Abstraction

deinitializes the terminal by sending the string
defined in the configuration prDqram.

4.2 Cursor positioning

int
TGetRow()

Returns the row that the screen point is on.

int
TGetCol()

Returns the column that the screen point is on.

int
TMaxRow() I

Returns the number of rows on the screen. Row-l
is the number of the last row on the screen.

int
TMaxCol()

Returns the number of columns on the screen.
Column-l is the number of the last column on the
screen.

TSetPoint(irow,icol)
int irow, icol

Sets the screen point to (irow,icol).

4-3

The Terminal Abstraction Mark of the Unicorn

TForce()

Forces the visual cursor to be displayed at the
screen point.

Does nothing if the cursor is already there. Ifnot, it uses the cursor positioning sequence to
put it there.

4.3 Display Routines

TBell()

Rings the terminal bell or performs other alarm
indications by sending the bell string.

TCLEOL()

Clears from the screen point to the end of the
line.

Sends the clear to end of line string if there
is one, otherwise it sends the correct number of
blanks. It pays attention to and sets clrcol.

TClrLine()

Clears the line that the screen point is on. Thé
screen point is left at the beginning cjf the line.

TCLEOW()

Clears from the screen point to the end of the
screen.

4-4

Mark of the Unicorn The Terminal Abstraction

Sends the clear to end of window string if there
is one, otherwise it calls TCLEOL, then repeats
going to the next row, setting the screen point
column to zero, and calling TCLEOL until it gets
to the end of the screen. It then restores the
screen point to where it was.

TClrWind()

Clears the entire screen (window). The screen
point is left at the beginning (home position) of
the screen.

sets the screen point to (0,0). Sends the clear
window string if one exists, otherwise calls
TCLEOW.

4.4 Printing Text

TprntChar(ichar)
char ichar

Imports the global tabincr.

Prints the character at the screen point and
updates the screen point by the display length of
the character. Ordinary characters are printed
normally. Control characters are printed as "^"
followed by the character Ichar XOR 64 (e.g., C-A
prints as ^A). Meta characters are printed as """
followed by the character Ichar AND 127 (which may
be a control charcter). Tabs (^1) are printed as
the number of spaces remaining before the next tab
stop (determined by Tabincr).

On ordinary characters, it puts the cursor at
the screen point, sends the character, updates the
cursor and screen point coLumns, and updates
CIrcol.

4-5

The Terminal Abstraction Mark of the Unicorn

On other characters, it prints them "in pieces"
by calling itself recursively or, in the case of
Newline, implements the meaning of the character
by logically printing a Carriage Return and a Line
Feed.

TPrntStr(string)
char *string

Prints the string as if by repeated calls toTPrntChar.

TDisStr(row,col,string)
int row, col
char *string

Sets the screen point to (row,co1) and printsthe string as if by TPrntstr.

int
TWidth(colcnt,tchar)

int colcnt
char tchar

Imports the global tabincr.

Returns the display width of the character as itwould be printed by TPrntChar with the screen
point in column colcnt. If the character should be
wrapped to the next line, the extra spaces needed
to display the wrapping are included in Width.
Note that the display width of a Newline is the
negative of colcnt.

4.5 Low Level Output and KeYboard Drivers

4-6

Mark of the Unicorn The Terminal Abstraction

TputChar(ochar)
char ochar

Sends a character to the terminal without any
interpretation.

It actually does the output. It uses the bios ifpossible (based on the global outport.biosp). If
it can't, it does the output manually, waiting for
the port to be ready and then sending the
character.

TkbChk()

Checks to see if there is a character available
from the keyboard. If there is, it reads the
character in and places the character in a FIFO
queue. This routine should be called frequently in
order to maintain proper typeahead buffering. If
the queue is full, it rings the terminal bell.

It actually does the input. It checks the
status, using the bios if possible. If there is a

character ready, it reads it in, again using the
bíos if possible.

FLAG

TkbRdy()

Returns TRUE if there is a character avaiable,
FALSE otherwise.

It calls TKbChk, then checks the queue to see ifthere is a character ready.

char
TGetkb()

Returns the next available character. It willwait if necessary for a character to become
available.

Waits in a loop, calling TkbChk until there is a

4-7

The Terminal Abstraction Mark of the Unicorn

character ready, then grabs it.

4.6 Internal Routines

put_string(sdef)
struct str *sdef

Puts a command string (e.g., the clear to end of
line string) which is represented as a structure
in the terminal abstraction internal format.

put coord(firstp)
int firstp

Sends a cursor coordinate to the terminal. The
argument, Firstp, indicates WHICH coordinate to
send; the coordinates themselves are stored as
globals (Prow and pcol). If Firstp is the same

sense as Terminal.Rowfirstp (i.e., they are both
TRUE or both FALSE), the row is sent, otherwise,
the column is sent. In either case, the coordinate
is biased as necessary (Terminal.Rowbias or
Terminal.Colbías). If the coordinate is sent in
binary, it will Qptionally complement it(Terminal.Compp).

put_num(num)
unsigned num

Sends a number to the terminal as ASCII digits.

If the number is greater than ten, it calls
itself recursively to print out the first n-l
digits. It then prints the nth digit. Note that itcalls TPutChar while itot (in SUPPORT.C) which
does a similar thing calls TPrntChr. More often
than not, this routine is called by TPrntChr in
the course of doing a cursor positioning sequence.

4-8

About This Chapter

This chaµer was orictinally written and submiued as a B.S. thesis at the Massachusetts Institute of
U

Technology. Its goal was to pm"ide a discussion of considerations of implementing a text editor.

The preceding chapters of the Mince Internal Documentation discuss the details of a specific

implementation: this chapter will help provide perspective about what considerations arc general and

what ones are implementation specific.

Acknowledgements

I would like to thank Owen Ted Anderson for teaching inc a lot of what I know about

editors as well as writing one of the most readable programs around.

I would like to thank Bernard S. Greenberg, who supplied some of the algorithms

which are presented here.

I would like to thank Richard M. Síallman and the rest of the MJ.T. Artificial

Intelligence Laboratory for creating the original Emacs and for doing most of the

development of ITS EMACS.

Mark ofthe Unicorn Introduction

1. Introduction
This thesis is intended to answer the question, "What are the important considerations in

designing a text cdi[oF?" In answering this question, it will provide a reference document for would-

bc implementors of text editors.

There is a modest amount of literature available which discusses topics related to text editing.

Most of the papers are "reference manual"-like because they cxplaiti the user interface only. A few

of the rest c()\·'ct the details ot" a specific implementation of an editor. This thesis will generalize the

latter inco a document which considers the problems relevant for all text editors.

The primary goal of a text editor is to allow the user to edit text. There are two secondary goals.

First is to perform this editing without wasting resources. Second is to give the user a pleasant

environment to edit in. The latter requires a good command scg feedback to the users, and quick

response to commands.

Achieving these goats is hard. One way to make it easier is to break the design of the editor into

three parts. The memory management part performs efficient editing of the rext It is essentially a

very simple editor in itself. The incremental redisplay part provides feedback to the user. The

command set (loop) part translates the user's input info commands to the memory management part.
Each part of the structure contributes in its own way towards providing quick response. It is this

structure that will be discussed m this thesis. Each chapter of the thesis covers a different part.

The second chapter is memory management (you arc reading the first chapter). The basic

problem that is addressed is: given that you have a possibly large buffer, hüw dú you structure the

storage for it 5() that trivial opcraíions (e.g., inserting a character and moving around in the buffer) do

not require excessive amounts of' work? Other problems are: what should the interface to the buffer

look like frotn a program? How do these considerations chanuc when you have multiple buffers

and/or bir[ual memory? In a nutshell, this chapter discusses the cpu time - memory " disk channel

tradcoff. This topic is interíclatcd with the next one.

The third chapter is incremental redisplay. The basic problem here is: given that the user has a

reasonable video terminal which you can communicate with over a limited bandwidth channel, how
CÍQ you change what is displayed on his screen to match the current contents of the buffer? Other

problems are: what arc reasonable terminals to use? What extra information can you retain to speed

up the updating process? This chapter discusses the cpu time - l/O channel usage tradcot'f.

The fourth chaµcr is a discussion of the command loop. What is the basic edit cycle? What sort

uf errors do you have to recover from? How and why do you dynamically change the editor itself?

What arc some criteria [o use when sclccting an implcmentation language?

The fifth ch:íptcr considers user intcrface hardware. What arc desirable ways for the liscr to
interact with the editor? This arca includes such [hi!}gs as desirable features in keyboards :ind !1c)w Lo

take advantage of graphical input.

'I'hc sixth chapter mentions some other uses for text editors.

Note that hill' Emacs will be used in this thesis whcncr·'cr ¿l reference te ¿i specific editor is

required (for ex.unplc, Míen tli',L'llsii|lg co|nln,(]}(l syntax). 'l'his C],jgS ()f'cdi(ors \Yúi !)c referred to as

5-t

Introduction Mark ofthe Unicorn

"Emacs-type." t\ specific editor was sclcctcd (as opposed to crcaúñ€ another one) spcciñcally to

avoid the work of rcinventing the whcéi. MIT Emacs was sekcted because of the aLlihor'3 familiarity

with it and because several implementations oÍ it have been made, thus providing l wealth of

experience with it in cliffcrent enviroríments.

r .'
t ,

t

5-2

Mark of the Unicorn Memory Management

2. Memory Management
A copy of the text that is being edited is stored in a buffer. The text appears to tbe user as a

sequence of characters. All editing operations arc specified relative u) a place in the buffer. This

place is called die point and it is always locatctl between two charaacrs (thinking this way eliminated

the possibility of some fencepost errors). [[is the responsibility of" the memory inanagemcnt software

to suppnrt buffers cleanly and efficiently.

It is assumed that the user will be presented wiíb some sort of status display. This display will tell

the user such things as the name of the buffer that he is editing, the name of the file that is being

edited. and what modes the buffer is in (see section 4.5, page 37 for a discussion of whac modes are).

"["he iinerface to the memory management software includes operations to maintain this auxilliary

in formation.

It is assumed that buffers are stored in the equivalent of main memory while the editing is being

done. This means that the buffer is either in main memory (for very small machines), in the address

space of the editor (for large address space virtual memory machines), or it can be mapped into the

address space (for small address space virtual memory machines). Any of these cases will be assumed

to be memory in this thesis. There are two commonly used techniques to manage memory m order

perform the editing efficiently. These techniques are known as buffer gap (store the text as an array
ol'characters) and linked line (store the text as a linked list oflines) and will be discussed in following

scctions. Their discussion follows the more thcorcrical sections which cover the clcfinition of the

interface between the main editor and the memory management routines. Further discussion shows
,

how the two schemes perform in a virtual memory environment and when multiple buffers are
manipulated. Some closing remarks will be made about scratchpad memory and methods of

reclaiming storage.

2.1 Data Structures
This section discusses the data needs of an editor, With two exceptions, alt of" the stace of the

cdicor is defined here. Thus, if this information is retained across invocations, you will há'r'C the

ability to resume editing where you left off. Thus, the amount of work involved with editing can be

reduced.
-

The other place where state information is kept is in the the screen manager. The screen manager
to retains a knowledge of how buffers were displayed. Retaining this information allows die screen to

reappear as the user left it. If the information is not retained. the screen l'll¿ln¿l!zcr will have to
~

rccatculate the display and this can be somewhat col)fL|sil}g. However, the editor y ill not lose any
functionality if this state is left out.

The World cotítains the buffcís in use by the editor. It is a circular list of EluljCrljescriptors and

an indication ohthich buffer is the current one. Iii a PL./l-ish syntax:

declare 1 World,
2 CurrentBuffer pointer,
2 BufferChain pointer;

Each buffer dcscrijmr has several hpes of in Icrn.ú illroI"lI]¿íti(')1].

S-3

Memory Management \'lark of the Unicorn

declare 1 BufferDescriptor,
2 NextChainEntry pointer,
2 BufferName char(big)" varying,

2 Point location,
2 Length f ixed,
2 Modifiedp bit(1),
2 Fi1eName char(big) varying,
2 ModeName char(big) varying,

2 MarkList pointer,
2 ModeList pointer,

2 StorageOata pointer,
2 ScreenOata pointer;

NextChainEntry is a mechanism for implementing the circular list of buffers. The list is circular

because there is no preferred buffer and it should be possible to get to any buffer with equal ease.

BufferName is a way for the user to be able to refer to the buffer.

Point is the current location where editing operations are taking place. ft is of the data type
location. The representation for this data type is irnplcmcntaúon specific, For buffer gap editors, it is

an integer, but for linked line editors, it is a (line pointer, offset) pair, Length indicates how long the

buffer is in some reasonable unit (usually characters). Modiíiedp is a flag v.'lúch indicates whether

the buffer has been modified since il was last written out or read in.

Fi1eName is the name of the file system object which is currently associated with the contents of
the buffer. ModcName is way to tell the user what modes are in cffecL Typically, each mode will

inscrr its name there as it is invoked. This information is not really implicit in the Model.ist because

there can be invisible modes (for example, autcloadcd commands) which use the mode mechanism

for invocation but the user dues not want to be made explicitly aware ol'thein.

MarkList is simply a list of marks.

declare 1 Mark,
2 NextMark pointer,
2 Name {anything convenient, try small

integers},
2 Whereltls location;

t

Each mark has a pointer to the next onc, a mime, and a locación within the buffer. Note that this

list is not circular and it would probably help to keep it sortcd by increasing location. "]'hc name is a

way of distinguishing this mark l'rüm any cxher one
ass()ci¿|[cd with this buffer. 'this mme is

gcncratcd by the Create Mark routine and returned. It can thus be any convenient datí type. Small

integers will work quite well.

Modd,ist is ¿.l list of procedures to be inv'okcd when this buffer is selcctcd, See section 4.S, page

37 lot' a more complete discussion.

SíorageData is a descriptor block which íicñncs how the ccmtcnts of" the buffer arc stot'cd in

S-4

Mark ofíhc Unicorn Memory h'lanagement

memory. The nacure of this block is dependent upon the memory management algorithm used.

ScrccnData is a descriptor block which defines how the buffer appears on the user's screen. Its

dcfinition will become apparent in the discussion in the next chapter.

2.2 Marks
A mark is a named fixed point within a givcri buffer. A mark always points between the same two

characters no matter what has been inserted or dclctcd around it. Marks are used for several different

reasons.

- They remember a specific location for fijture reference. For example, a command might

paginate a file. In this case, a mark would remember where the point was sc) that the

command could return with the location of the point unchangcd.

- They delimk a portion of text in conjunction with other marks or, more commonly, the

point, This portion of text is called the region. This case would be used, for example, in a

DelcteRegion command.

- They serve as bounds for iteration. Because they remain invariant when changes are

made to the buffer, they can serve as a constant position to "head towards." An example

could be the FilLParagraph command. This command iterates through. die buffer deleting

and inserting whitespace (in the process, making each line as long as it can be without

going past the right margin) until ii reaches the end of the paragraph. A mark is used to

remember where the end of the paragraph is. This usage is a variation on the region"

delimiting usage, but it is worth noting in itself.

When an insertion is made at a tnark there is a question about what [c) do with the mark (i.e. on

which side of the inserted character if should end up). For the most part. the mark should move (i.e.

be after the inscrtcd character). However, there are good reasons for having it work the other way

and so there arc fixed marks, which remain before an inserted character.

An example of using fixed marks is to delimit an insertion. A routine could create both a mark

and a fixed mark at the same location. Any in med text would push the marks apart and end up
between them. Thus, ir is possible [o keep track ot"',íhát hx., been inserted.

2.3 Interface Procedures
This section defines the interface between the main part of the editor and the memory

management routines. They will be described in terms cñ' their logical function only. leaving out

specific irnplcnícntation details. t\n example ofsuch ¿'l detail is a code v: triable which is returned and

which indicaícs whether the operation succeeded. t\!so note that an, data types mentioned (e.g.

string) are intended to be c¿ll)c)nic¿ll and no specific implcrncnuúons arc assumed. A <r> after a

paramctu means tjljt it is returned by ihc procedure.

There is an ilnpol[¿'Lllt question as (o exactly who ,lll()c¿l[es the data (the buffer dcscriptors and [he

buffers thcmsclrcs). 'l his issue is more l:inguagc sptcific in the KllSC that certain laiíguagcs spccifj'

an answer which must I)c used whether or not it is LÍiC right one. "¡"hi; procedures '.', ill I)c dclincd ¿is if
they ()\\·11 the data. It" it is dcAdcd that thev do líOt, it is ['cl.lti\·'ci\' c: i',y Li) include All extra ¿lrgLl]ncl)t

~

S-5

Metnory Management Nlark of the Unicorn

on each procedure call which identifies a descriptor of the objcct that the procedures are to
manipulate.

InitWorld
Savewor1d(Fi1eName)

Loadwor1d(F ileName)

JniÜNorld is the basic s¢t-up-hoLlsekeepinE call. It is called once, upon editor invocation.
SaveWorld and LoadWorld implement the state-saving across edit sessions. SaréWortd is used to
save the state of the editing session for later resumption. This operarion might be quite expensive if it
requires explicitly writing out all of the buffers [o a large file or it might be \cry cheap in a rirtual

memory enrironment, where all tÍ!á1 might be required is to set an external símic variable to indicate
that the environment is consistcnL. The possibility of multiple saved em·'ironmcnís is interesting, but
has not been implemented to my knowledge. It seems to be a nice way to work on several of tasks
(not in the process management sense) at once.

If you are creating a "stripped down" editor then the save and load world routines will Rot do
anything. They can be put in as stubs if there is a reasonable possibility that the editor will be
embellished later.

CreateBuffer(8ufferName)
Delete8uffer(BufferName)
SetCurrent8uffer(BufferName)
SetCUrreRtBUfferNext(BufferName <r>)

CreateBuffer is given a name and it returns after having crcálaj a buffer of that name. If the

buffer already exists, ir probably should signal an error of some sort to keep from bashing existing

information. ljelctcl3uffcr deletes a buffer. If the current buffer is dclctcd, the- default buffer

becomes the current one. (The editor is created with one default bu ffer called 'Main" or something

like that. It must always exist.)

Depending on the implementation language, we may be able to chosse in the procedures that are
being defined between including a buffer as an explicit parameter or having it implicit by setting an

own variable that indicates which buffer is the current buffer. If buffers are changed often, it is

wonhwhile to include the buffer with each call. IE on the other hand, buffer switching is done

inf'reqll€nt]y, the overhead involved with scuing a cui"rcrt[buffer is more than acceptable. My

experience has been that buffer switching occurs only rarely and so the extra call is worth it.

Sc[Cllrl'et]t]')Lltfcr makes buffer BufferNainc the currcnl one. SetCLlri"cI1tl3LlffcrNext makes the

next buffer iu the circular list the currcmt one and RETURNS its name in BuffcrNainc. This

mechanism allows for iícrating through all buffers looking for one which meets an arbitrary test.

Note that most of Ú)c above calls are really useful only if you have a multiple buffer

i[nplcn1cnt¿ltio]1 of"thc editor. in a single buffer editor, they arc rclativcly useless and should he used

only if there is ¿i reasonable chance of expanding to a multiple buffer editor in the future.

SetModified(F1ag)
Getl1odified(FIag <r>)
SetPointA(Location) '

SetPointR(Count)

S-6

,

Mark of the Unicorn Memory Management

GetPoint(Location <r>)
GetLength(Size <r>)

These routines deal with several variables. They allow setting and asking for the poinr. the current

buffer length and the state of the modified flag.

The modified ñag provides an indication of whether the buffer has changed. It is sci implicitly by

any buffer change operation (principally insertion and deletion) and cleared automatically by writing

the contents of the buffer to a file, The procedures lo set or clear it explicitly are provided as this

ability will ordinarily be used by the redisplay code (sec section 3.6.2, page 27 for the discussion of
what it is used for).

Note that there arc two flavors of' the SetPoint routine, designated "A" and "R". They both do

the same logical operation, but the "A" version interprets its argument as an absolute position within

the buffer and the "R" version interprets its argument as an offset relative to the current position of
the point. (Negative values indicate a backward offset.) Due to the definition of the location type,

the "A" version does not take an integer value as die location and so one usage is not readily

simulamble in terms of the other.

Insert(String)
De1ete(Count)
GetStringA(Location,Length,String <r>)
GetStringR(Count,Length,String <r>)

These routines manipulate and examine the buffer. Insert inserts a string into the buffer at the

point. "l"hc point is left al the end of the inserted string, Delete removes abs(Count) characters from

the buffer. (Negative counts delete befOre the point).

GctString returns die string starting at the specified locarion and Length characters long. There

arc both absolute and relative versions of this routine.

Sea,rch(String,Location <r>,F1ag <r>) F I B A I R

FindFirstln(String,Location <r>,F1ag <r>) F I B A I R

HndFirstblotIn(String,Location <r>,F1ag <r>)F I B A I R

LookingAtP(String,Location,F1ag <r>) A I R

There are a total of fourteen routines in this section, but they have been listed in an abbre','iated
form for convenience. These arc search routines and each form can head either forward (F) or
backward (B) and with the returned location either absdutc (A) or rc!ativc (R) to the point.

Note that these routines are not necessary as their action can be readily simulated by using the
other defined routines. However, they have been included in the discussion because they arc useñil
and because they arc oRen ünplcmentcd in the same Ic\'¢Í as the other mcmnry management routines
for having h»ver level access to the but'fci" \\.iii spcctj up Úicir execution.

Search looks for the first occurrence of the string in che buffer, staiting dl the current point and
hcadiiíg in the specified direction. It returns a flag saying Ucthcr Ú)c :,íring was fuund mid an
indication of the string's |oc¿íLjor). 'lite location returned is the |()C¿l[i()ll llÍ' die end ()t" ÚlC fi}{||Í([string
(¢i[i)cr¿l|)so!llle qr i'clatit'c) in the direction otthc search. (l"ur a backmrcl search. the I()C.'lti()ll is the
bcginnint' of the :ictual string.) This dcli|liLi(}Í) implies that l'eI)c¿'lt¢d sc'at'ches will M-) ¿ii :,ucccssi\'é

5-7

Memory Management Mark of the Unicorn

instances oí' the string.

FindFirstln searches for the first occurrence of any of the characters in the string. For example,
FindFirstln("0l23456789",...) would return the location of' the first digit encountered. Like Search, it

returns a flag as to whether a match was made and the locatÍon of die match. Unlike Search, die
location returned is at the bcszinning of the march and not the end. Successite applicatioas will thus

-
return the same position- The difference iü bchaüor between Search and FindFirstln is a function of

their diFfcrent uses. FindFirstln is used [o parse through text slowly, and zero and one characters

strings must be handed properlv. These definiti[orls facilitatc that handling. FindFirstNodn works

in exacúy the same manner as FindFirsún except that iÉ matches on any characlcr not in the string.

For example, the following code fragment implcmcnts a forward word operation,,

a1phabet="abcdefghi jklmnopqrstuvwxyz";
FindFirst1nFA(a1phabet,1ocation,f1ag):
SetpointA(1ocation);
FindFirstNotlnFA(a1phabet,1ocation,f1ag);

The first Find operation will skip over any non-word characters to the beginning of a word. The

next (JllC will skip to the end of the word. (Note that the alphabet mriable should also have the digits,

uppercase. and several special characters in order to work as one would intuitively expect. Note also

that the selcction of special characters will in general be language"specific. Further, no checks were
made for sü"ing-norfound, etc. Thus, it is not an example of fiiíished code.),

An alternative way of defining these operations is to have them automatically set the point instead

of returning a location. (The Hag must süll be returned.) If the string was riot found, the point would

not be moved. The choice of a method of implcmcníing these routines is a matter of taste.

L.ookingAtP has a much more simple defintion. It compares Suing against the sequence of

characters in the buffer starúng at Location, returning the uue/fálse answer in Flag.

GetHpos(Co1umn <r>)
SetHpos(Cojumn)

(These routines, like the previous sel are not necessary but useful.) GetHpos returns the column

that the point is in, after taking into account tab stops, etc. It docs not take into account the screen

width as it should not make any difference to the cdi]'
How

big the terminal is. SctHpos ¡ñc)\.'cs the

point to the desired cuiumn, stopping at the end of a line if k is not long enough, If there is no

character at the desired column (due to tab stops), it uses the next higher available column position.

SetFi1eName(fi7eName)
GetFi1eName(F ileName <r>)
WriteBuffer
ReadBuffer

These routines intcrfacc between the buffer and the file system. "The FilcNamc routincs set :tnd

return the file object (in genera! a string-"thc file name). At the user inrcrfacc, the cdkor might

imljle\ncn[an imclligcnt "default and guess" inf': r])rek\[i0n of' íhc file name st) ¿is It) m.íkc life tmsier

for the usc!', bíít doiní' so does not affect this tc\'cí of code, This general area is (1t1c \\'iícrc system"

spcciñc coñ\'cñtions bccomc significant.

S-8

Mark of the Unicorn Memory \Íanagcment

\Vrite8uffer writes the contents of the buffer out to the file name associated with the buffer. Any

conversions between internal formal and what the file system requires will be done al this time. Also,

the buffer modified flag (ModifiedP) u'ill be cleared.

ReadBuffer reads the file into the current buffer, There arc two choices about how to do the read

operation, Both directions will be discussed along with their ramifications for the other parts of the

editor. They are not both implemented because it is desirable to keep the number of primitives to a

minimum.

FirsL it can replace the contents of the buffer with Ül¢ contents of the file. If it does so, the buffer

modified flag will be cleared automatically. The editor will want to check on what it is replacing. If
the previous contents of the buffer have been modified. (he user should be asked what to do (e.g.,

whether he is making a mistake).

Second, it can insert the contents of the file into the contents of the buffer at the point. In this

case, the first method can be simulated by explicitly delcúng all of the buffer and then reading. The

buffer modified flag will have to be manually cleared. The same policy of asking the user what to do

with modified buffers should be followed. The advaatage behind this method is that it allows the

easy imp1cmentation of the insert file command. The first method requires the allocation of
additional space and then the copying of the data; a luxury that may not be available on smaller

systems. This second method is thus preferred.

CreateMark(MarkID)
CreateFixedMark(MarkID)
De1eteMark(MarkID)
SetMark(MarklD,Location)
Ge.tMark(Mark1D,Location <r>)
CompareLocation(Locationl,Location2,Resu1t <r>)

These routines manage marks. They allow for creating both ordinary and fixed marks, deleting

marks, and setting and evaluating them. Note that except for creating them, there is no difference in

usage with these routines between ordinary and fixed marks (although their behavior will, of course,
differ).

Scálark merely sets the location of the mark to Location. (A relative version of this routine can
be supplied, if desired.) GctMark returns the current location of the mark. It should be used directly

and not assigned into a ríriable as its value can change across sonic buffer operations. These

operations arc Insert, Delete and ReadBuffcr.

Coml)¿l|"c[-Qcation allows thc comparison of any two marks or the point and the m:irk to be done

without being aware of the specific scheme chosen. It takes two Locations as arguments and returns
the sign (+], O, -l) of the result of'l.oc: uionl - L.ocation2.

SetModeName(l'1odeName)

GetModeName(b1odí'ílame <r>)
Appen[lModQList(Procedure)
Deleteí.1odeL.is t(Procedure)
InvokeModeList

'l'hcec routines manage the multiple ínodc capability. The MoílcNamc is a string uhicli can be

S-9

Memory Management Mark of the Unicorn

displayed to remind the user what is going on. It does not affect anything else.

Append, delete, and invoke opcrarions are all supplied. It is generally bad form to define the
modes so that it matters in which order the procedures are called. but there do arise such occasions.
Therefore, the procedures should be called in the order that they are appended onto the list. CHecks
should be made to insure that a procedure is not put on the list more than once. Again, see section
4.5, page 37 for a complete discussion of modes.

P

2.4 BufferGap
This section discusses the implementation of one of the two ways of implementing the memory

maoagement functions.

A buffer gap system stores the text as two contiguous sequences of characters with a (possibly

null) gap between them. It thus uses memory efficiently as the gap can be kept small and so a very
high percentage of memory can be devoted to actually storing text. Changes are made to the buffer

by first moving the gap to the]oca[ion to be changed and then inserting or deleting characters by

changing pointers.

In more detail, here is an example buffer which contains the word "Massachusetts".

O 1 2 3 4 5 6 7 8 9 10 11 12 13
I M l a I S I S I a I C l h I u I I I I S I e I t I t I S l

Q 1 2 3 4 5 6 7 8 9 IQ 11 12 13 14 15 16
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

P GS GE

There is a lot of information here which needs explaining. First, the buffer is 13 characters long

and it contains no spaces. The blanks between the "u" and the "s" show where the gap is and do not

indicate that the memory has spaces stored in il. The point is between the "a" and the "c" at location
5 and is labeled with a "P" in the bottom line (legal values for the point are the numbers from zero to

the length of the buffer). There are also three different sets of numbers (coordinate systems) for

referring to the contents of the buffer.

First is the user coordinate system. It is displayed above the but"fer, The values for it run from O

to the length of the buffer. As you will note, the gap is "invisible" in this system. The coordinates

label the positions between the characters and not the characters themselves. Thought of in this way,

the arithmetic is easy. Thought of as labeling the characters, the arithmetic becomes fraught with

special cases and ripe for fencepost errors.

Second is the gap coordinate system. [[is displayed immediately under the dashed line. The

values for it run lhm O to the amount of' storage that is ami!: iblc and it, Loo. labels the positions

between the chaí'actcrs (or rather, storage cells). The internal arithmctic of the btiffCr manager is

done in this coordinate system, The start of" the gap (Libeled "GS" in die bottom liiíc) is at position 8

and the end of'lhe gap (labeled "GE") is at position II.

Conversinn from the" user coordinate system 1(') the Eap cool'(|i|1¿lIe sys'tcrn is quite easy'. If the

|()c',|Lioll (in the usct' a)()rdi|)¿l[e system) is befOre the start ot' (he gap, the \'áiúcs ¿ire the same. If the

5-LO

Mark of the IJnicorn Memory Management

location is after the start OF die gap (NOT the end of the gap!), the l(}caLlo[\ in die gap coordinate

system is (GapEnd - GapSm) + the location in the user coordinate system. It is a good idea to

isolate this calculation either in a macro or a subroutine in order to enhance. readability. Most

routines (e.g. Search) will then use the user coordinatc system er"en though they arc essentially

internal.

The third coordinare sysrcm is the storage coordinate system. It is the bottom row of numbers in

the diagram. It is the means whereby the underlying storage cells are refcrímccd. it is labeled from X

to X + "he amount of storage that is available. The origin (the value of X) 30 was chosen to be 30

here to help distinguish between the various coordinate systems. Its absolure value makes no

difference. Note that it labels the cells themsehes and so caution must be taken to avoid fencepost

errors.

A buffer gap system has a very low overhead for examining the buffer. The reference (GetChar)

comes in in the user coordinate system and the location is converted to the gap coordinate system.

The cell is the looked up and the contents returned. Essentially, one compare and a few additions are
required. The purpose of the conversions is to make the gap invisible. Note that in no case is any
motion of the buffer rtecessary.

There is more of an overhead associated with inserting or deleting a character. In this case, the

gap must be moved so as to be at the point. There are three cases:

O

l. The gap is at the poinr already. No motion is necessary.

2. The gap is before the point. The gap must be moved to the point. The characters after

the gap but before the point must be moved. Thus, Col1v'ertUser"['oG¿1p(l'oin[) " GapEnd

characters rnust be moved. This quantity is numerically point - GapStart.

3. The gap is after the point. The gap must be moved to the point. The characters after the

point but before the gap must be moved. Thus, GapStarc - ConvertUserToGap(Point)

characters must be moved. This quantity is numerically GapStart - point.

After the gap has been moved to the point, insertions or deletions can be effected by moving the
GapStart pointer (or the GapEnd pointer--it makes no ciiffCrcncc). A ddeíion is a decrementing of
the GapStart pointer. An insertion is an incrcmcnú..g of the GapStart pointer followed by placing
the inserted character in the storage cell.

Note that after the first insertion or deletion, further such operations can take place with no
motion OÍ the gap (it is already in the right place). Further, the point can be moved away ,índ back
again with no motion of Ú)c gap taking place. Thus, the gap is only moved when dll insertion or
deletion is about to take pkice and the last modification was at a different bul"l'cr locación.

This scheme has a pcnaky associated with it. 'I'hc gap docs not lñO\'é very often, but potcntially

very large amounts of text may ha'v'e to be shuffled. If a tnodiÍic: ition is made ¿it ÚlC end of a buffer
and then one is inadc at the beginning, the cntirc contents of' the buffer mtisL be moved. (Nc:te, on
the other h: 'tnc!. that il'a Íno(|ific,ltion is m: iclc ál the end of a buffér, the bc!{ii)ning is examined, and

L
mcuhcr mo¿i(ic: \[iol1 is made dl the end, ñ() motion takes place.) The key question that must 1)¢

:iskcd when c()!]si(lcril]g this scheme is, when a [71odific¿l[i()n is about é() be made, how Ur has the

S-ll

Memory Management Mark of the Unicorn

püint moved since thc last modification?

Sidcnote Calculation. How far can the point be moved before the shuffling delay
becomes noticeable? Assume I/lO sec. is noticeable and that it is a dedicated system.
Assume lusec, 8- bit wide memory. Assume IQ memory cycles per byte rño\éci (load,

store, eight overhead cycles for instructions). Then, 10.000 bytes can be moved with a just
noticeable delay.

Because of the locality principle, it seems reasonable to conclude that for almost any
rational buffer size the average distance moved will be less than IOK bytes and so the
shuffling delay will not be noticcable,

2,4.1 Gap Size

Note that the size of the gap docs not affect how long the shuffling will take and so it should be as

large as ir can be. Typically, it is all of the otherwise unused memory. In that case, when the gap size

goes to zero, there is no more room to store text and the buffer is full.

2.4.2 Multiple Gaps and Why They Don't Work

Assume that we were still uncomfortable with the shuffling delay and :i possible fix was put forth.

This fix would be to have, say, ten different gaps spread (hrQLíghout die buffer. What would the

effects be? The idea behind this discussion is to help in understanding the buffer ízap system by

seeing how it fails.

First: the conversion frorn the user to the gap coordinate system would be more complicated and

take lont'er. Thus, some ground has been lost. However, this is a small loss on every reference in

order to smooth out some large bumps, So it might still be a reasonable thing to do.

Second, the average amount of shuffling will go down, but not by anywhere near a Eiciof of ten.
Because of die locality principle, a high percentage of the shuffling is of only a short distance arid so

cutting out the "long shots" will not have a large effect.

Third, unless the writer is very careful, the gaps will tend to lump together into ¿l fCwer number of
"larger" gaps. In other words, [wo or more gaps will mccl with the GapEnd pointer for one matching

ihc GapStart pointer for another. There is just as much overhead in referencing them, but the

average amount ofshulfling will increase.

On íhe whole, the extra complexity does not seem to return proportional benefits and so this

scheme is not used.

2.4.3 The Hidden Second Gap

On N1)-dimcnsit)n¿\l memory systems such as Multics, a second gap al die end of the buffer is

provided \ciú: i almost no extra overhead. 'the key to this gain is Úkll the buffer is ntjt stored in a

fixcd-sitcc place. Rather, the site of the memory that is holding ihc buffet" C: lll also increase.

"['be extra overhead is a check
Lo"

see \\il)cl]]cr a n1{)Liiñcation is taking place ¿it the end OÍ' the

bul1"í: r. If sc), the l])(}Llific¿lti{)n is m: "itlc dircctiv with thc F []dOf't\\,li|¿tl)|c!5t()['¿lgc ('the bufkr runs
e ~

S-12

Mark of the Unicorn Memory Management

from X to X + EndOfAvailabkStorage) variable sewing to note that the change has taken place.

This change has mote of an effect that might at Msi be apparent because a disproportionately high

percentasze of modifications take place ar the end of the buffer. This diswrtion is due to the fact that
~

most documents, programs, etc. are written from beginning to end and so the new text is inserted at

the endof die buffer.

The overhead for this change is low because the check for the end of the buffer was already there.

There is no problem of the gaps coalescing because one of them is pegged into place. The gains are

not all that great, but neither are the costs and so it is used. This technique is also usable with some
implementations of multiple buffers.

2.5 Linked Line
The other method of memory management that we will discuss is called linked line. It stores the

buffer as a doubly linked list of lines- This method is especially useful wich languages such as Lisp

which provide memory management facilities inregra! with the language.

Each Line in the linked list has several pieces of information in its header. Not al! of these pieces

are required. but they can help grearly in managing the buffer. The pieces of information are:

NextLine pointer /*32 bits*/
PreviousLine pointer /*32 bits*/
Length fixed /*16 bits*/
/*presumab7y no SINGLE line will be >64K characters*/
Line char /*the line itse1f*/

optional fields:

AllocatedLength fixed /*16 bits*/
Version f ixed /*32 bits*/
Marks pointer /*32 bits*/
TextPtr pointer /*32 bits*/

The NextLine and Previousl-ine fields implement the doubly linked list. The length field is,

clearly, the number ofcharacters in the line. These, along with the line itself, are al! that are required
in order to implement die linked line scheme. The other fields are a bclp in making the scheme
efficient and some of them arc very valuable to include,

The ,A1locatedLength field indicates how much memory is allocated to storing the line itself.
Thus, an alloc: ííc/frce combination are not required each [in'lc a character is iiiscrtcd or deleted. For
example, a memory allocation block size of 16 bytes has been tiscd in some ilnl)lcme[1[.ltiol)s of this
scheme. /\|loc¿ltcdI-cl}gth will then be either O. !6, 32. 48, 64, etc. 'I'hc allocate/frcc combiriation is "

—
only required c\·¢Ñ time the line crosses a 16 byte boundary, a cunsidcrablc savings in ()\·'erhcad.

Allocating memory in 16 byte chunks cuts down sig.niñcantly on fíamncnmtion. It will almost
~

certainly be possible to run without a compactifying garbage colkctor. See the discussion of
scratchpad nícnmry (section 2.9, page 17) for (íirthcr infL)l"n]¿l{ion.

The version field is for usc by the redisplay cock and is an í)ptii1li7¿lliot) to make it run faster. It

S-13

Memory Management Mark of the Unicorn

will be discussed with the rest of the redisplay process. It serves the purpose of specifying a unique id

for the line.

Using integer-valued buffer positions is hard with the linked line scheme. Instead, a (line pointer,
offset) pair are used. Marks are then always associated with a line and can thus be merely strung in a

list associated with the line that they are on. With this impícmemaúon, less time is required to
update the marks because only those that are on the line can possibly be changed. Note that there

should still be a central listing of all marks in order to facilitate finding any given one and that mark

ids should be unique within a buffer.

Finally, instead of storing the text oF the Iiríe with the header, it can be separately allocated. The

TextPtr field is then used [o remember where the text is. This ability is especially useful when several

places point to the header and properly updating them whenever the line is reallocated is difficult.

In summary, the most useful fields are NextLine, PreviousLine, length, AllocatedLength, and

either version or the mark list. These fields can fit within one 16 byte allocation block.

The operation of a linked line scheme is quite scraightforward. New lines. when created, are

simply spliced into the list at the appropriate place. (Note that no characters are stored to indicate

line breaks). If the new line is in the middle of an existing line, some movement of the text on the

end ofthe old line to the new line is all that is required.

The line itself is stored as a packed array of characters. Inserting or deleting text is done by

scrolling the line after the point of modification. Clearly, this scheme is very inefficient with large

line lengths.

The reason why the length fields were 16 bits long is Rot obvious. After all, ody rarely will a

document have even 256 character lines. But people occasionally edit rather strange things, including

object files. One cannot rely on encountering new line characters at reasonable intervals in such files.

Thus, the extra size.

2.5.1 Storage Comparison
Storage requirements for a linked line scheme gi'e somewhat higher than for buffer gap. A buffer

b
gctp scheme requites one (It two new line character" ,x:r line, and a small amount of fixed storage

(GapStart, GapEnd, etc.).

Linked line requires, in a reasonable implementation, one 16 byte block plus an avcrazc of S bytes
~

lost due to fragmentation for each line. On the other band, large amounts of text will never have to

be moved.

2.5.2 Error Recovery Comparison

Recovcring from errors (an unexpected program termination, for example) is rehüh cly easy and

tail soft in a buffer gap. In general, the start and end of the buffer arc findable if a marker is left

around ljlC buífCr (say, a string of sixteen strange (value 255) bytes) and the buffer is c\cry[|)ing

bctwccm them. 'l'hc gap can be rccovercd and manually dclctcd by tjj¢ user or, if it, [(1(), {s filled wich

a special marker, it can be automatically deleted.

S-14

Mark ofrhe L'nicom Memory Management

Linked line management is harder to recover. Recovery is greatly aided by erasing freed memory.

Basically, you pick a block at random and examine it. If it can be parsed inlo a header (i.e., the

pointer values, etc., are reason:tble), continue (a careful selection of' header formats will help).

Otherwise, pick a different block. You can then follow the next and pm·'ious pointers and parse

them. If this works three or four 1ÍKK?S in a row, you can be confidcní that you have a handle on the

contents. If a header doesn't parse. ii is because it is either a part of a line (either pick again at

random or go back one chunk and try again) or a header [ha[was being modified (in which case you

are blocked from continuing down that end of the chain). In the latter case, go in the other direction

as far as possible. You now have one half of the buffer. Repeat the random guess, but don't pick

from memory you already know about. You should get the other half of the buffer. Leave it to the

user to put them together again. If the freed blocks are not erased, the chance of finding a valid-

looking header that points to erroneous data is very high.

2.6 Multiple Buffers
How do buffer gap and linked line schemes implement multiple buffers? There is a variety of

choices:

intertwining (linked line only)
separate storage for each buffer

large address space (therefore paged)

structured
non structured

small address space

special cases

lntcrtwining is an option that is only open to linked line. In this case, all allocation is done out of

a common pool and so, over time, the buffers tend to "intertwinc" (i.e., the lines of one buffer are

mixed in with the lines from other buffers in physical memory). Such an approach tends to maximize

the density of text and thus make the most efficient use of memory. It also assumes that a large

address space is available. (See also the discussion in the next section about paged environments.)

Separate buffer space means that each buffer is allocated out of its own area and that ail of a

buffer's area is contiguous. Thus, the address space is cut up into separate sections for each buffer. '
"

If a large address space is available, the cutting up can be done one of two ways. If the address

space is structured (as in Multics), the operating system takes care of managing such things

automatically. If the address space is not structured (as in Va.x/VMS), the memory management
scheme can reserve fixed regions of the address space for separate buffers, each more than large

enough for any reasonable tile,

If the address space available is too small lo reserve cffectñ'cly, the memory ma nagcment scheme

will have [c) keep track of all of the bu1f"ers and map them into and out of the available address space

¿is needed. Caution must be taken to avoid requiring that only orc buffer be in the address space, as

a multiple window editor must be able to scan inukiplc buffet's. In addition, auxilliary buffers w ill be

needed from time to time (c.g., fOr copying ter from one to another).

X'hinaging muliipk buffCrs is rclmivciy easy. They arc treated dS a sci of' buWcrs, only UilC of

which can be accc5sccj at a liinc. Sec the earlier section on buflCi" d¿l[¿I btl"l|c[\|l'es (scc[i()I1 2.!, page 3).

5-lS

Memory Management Mark of the Unicorn

2.7 Paged Virtual Memory
How well do the two schemes perform in a paged virtual memory environment?

The buffer gap scheme works very well in general. Its highly compact format allows for accessing
large parís of the buffer with only a few pages in tnemory. Its sequential organization also implies

that it has a t'cry good locality of reference and so the nearby pages are heavily referenced and likely

to be around.

Its major problem is the large amount of" shuffling that must be done in some cases. A move of
the whole buffer implies that the whole buffer must be swapped in and--most likely"-swappcd out
again. (A search of the whole buffer also requires this swapping, but the user asked for it and no

management scheme can search linearly through memory that is on disk. Thercfot'c, the user should

expect lesser response.) If the memory tnanager is built imo the operating system, sorne intcrcsting

hackery can be done with die page table to "move" all of a chunk of memory by one or more pages
by moving page table entrics. The existence of this example implies that such a function might well
be desirable [o include in a future set of operating system calls ("insert n pages after page x and scroll

through page y"--delete n pages is irrIplici[in this and it only affects pan of the address space).

In a tight memory situation, the buffer gap scheme does as well as can be expected. The nearby

sections ofthe buffer will be around because of locality of reference, hut anything far away can lake a

while to get to.

A linked line scheme does not perform as well overall. First, if an intertwining multiple buffer

scheme is used, one may as well forget performance in a tight memory situaúún. 'l"hc imcrtwining

can use different píírts of each page for storing different buffers. Thus, when considering any givén

buffer, the page size is effccíively reduced.

Even in a separated buffer scheme, the data is not as tightly packed overall (the headers and

fr¿Ig!l1cniLlti()n) and so some performance is lost. Also, the linked lines can be anywhere in a large

portion of memory and so the density of nearby lines can range from good to very low. Finally, eren

if a desired line happens to be on an in-memory page, in order to get there (via the links), you will

probably hav'e to swap in several additional pages and, in the process, may even swap the desired

page out!
,

The primary advantage that linked line has is that it never requires moving large sections of the

buffer. Thus, if' memory is not tight, the entire buffer can fit in memory and performance will be

very good.

2.8 Editing Extremely Large Files
Extremely large files come in two fiavoÑ. First are files that aíc so large that reascmable

asslln]|)[i()l}s break down. Such things tend to start happening about 64M bytes cir so. i\l íhm point,

even simple ÚÚl1f'S (c.g. string search) tend {o take SC\'cI'¿í] inmutes to run OIl a fast processor wkh the

whole fife ii\ memory.

/\|{ll()Ll!?ll there are one or two intcrcstiríg hacks to st: iy alive, lile is simply not bcar,ihlc \\'iicñ

trying to CJlt such a large unsü'ucturuj ñlc. ')'hc ¿l|LCl'¡1¿lti',C ('i:hich]i|["!: C d:tu base pcuple hme '

known about fOr years) is to structure the file. 'l'his a!tcmativc is {1c\(that \|np: \]¿\L¿\blc 1)cc,\\isc an

S-16

,

Mark ofthe Unicorn Memory Management

unstructured editor cart still be used lo edit the subpieccs of structure. The other reason why this is

not that much of a problem is that there aren't all that many gigantic files to edit. The vast tnajority

of files arc much smaller. Gigantic tiles call for special tools for manipulating them.

The other flavor is more applicable to microprocessors where an extremely large file might be

1OOK bytes. The reason why it is considered so large is that the disk to store it on might be only 50K

bytes, or there might only be magnetic tape for permanent storage. Thus. a lOOk file would tax the

hardware resources severely.

The basic way of dealing with such files is to break them up into chunks and edit the chunks

separately (the TECO yank command is an example of this). In general, you can only proceed

forward through die file in any given edit session because of the problems invoh'ed with the file size

changing as the edit progresses. Either a marker byte (tL is commonly used) or a character count

(not as polite to the user) can be used to determine where die file breaks are to occur. This method

requires an input and output file to both be available and open at the same time. A crash preserves
the input file and some of the output file. Thus, cditing a IOOK file requires up to 20OK of storage.

This is the only method that works on magnetic tape.

The next method allows full access to the file without breaking it up in any way. It requires three

files (input, output, arid backup) to be open simultaneously. As you proceed through the file, it edits

from the input to the output file. However, when you reverse direction. ii reads frornthc output file

onto the third, backup file (it does not modify the input file, thus ensuring itS in[cgri[y in the case of a

system crash). Note thac the data is stored in the backup file in reverse order! Preferably, file i/o is

done in blocks and only the order of the blocks needs to be reversed. not the contents of the blocks

themsch'es. When you switch [o going forward once again, the backup file is read until it is

exhausted and then use of the input file.is resumed. This method allows for simulating a very large

buffer as the file management can be done invisibly. Thus, the user can edil a IOOK file with much

less physical memory. Note that the swappirig can be slow!

The final method that is available is to simulate demand paging by breaking a buffer gap scheme

up so that there arc many small buffers. Each buffer is then paged to disk indepcndantly. If a buffer

should fill up, it can be split up into two buffers and insertions can continue. No large motion of text
is é\(x required, but memory is lost.

u- , C r
In none of these systems is linked line acc¿ptablc. Mémory is assumed to be very tight and the

overhead of the extra headers is not acceptable.

2.9 Scratchpad Memory
Scrmchpad memory contains the temporary variables "allocated by the editor. Because of the

transient nature of these variables, it is allocated and freed OÍ"tCl1. It is used to hold the buffer

descriptors, string variables, and--in die linked line schctnc--thc buflCrs thcmsch'es. 'l'lic scratclipad

tnemury tnanag«neíu required R)é" text editing is rclátir'cly simple, but there arc some general
c()!]si(]c1": l[iolls that j]"C worth mcntiuning. 1'ha'c aren't loó many buffer descriptors and they are of' ¿l

well known size 5() they arc easy [() numage. The m'ing vari,ib1es can range from being null to being
entire buffers. Thus, they can cause fi'dglÍ)enla[iQn quite easily. ['he linked line f'ortñ: lts h: ive ali'cacly
been discussed.

S-17

Memory Management Ylark of the Unicorn

In a large address space system, two buffers worth of address space should be devoted to

scratchpad storage (to allow for putting an entire buffer diere, which uíkcs one buffer worth, and

because space is allocated in imcgcr buffers worth). In a small address space system, large operations

are typicallv done character at a time because memory itsclf is usually at a premium. Therefore, the

amount of scratchpad mragc needed can be quite small. In any system where the editor can be

dynamically extended (see the Command Loop chapter), scratchpad storage needs can vary
dramatically and are not generally predictable in advance.

Allocating rneinory in chunks helps prevent fragmentation, therefore not usually requiring a

compactifying garbage cdlecior. if memory becomes badly fragmented, a compaction is requried.

In a linked line scheme, compaction eliminates the possibility of using the line pointers as unique ids

(they change). Such unique ids are used by the redisplay algorithm.

S-18

Mark of the Unicorn Incremental Redisplay

3. lncrem"ntal Redisplay
The most risible part ofa screen-oriented text editor is the redisplay process. This is the section of

code that keeps the current contcnís of the buffer accurately displayed on the user's terminal. It has

the aC!diúonal goal of performing this function in such a way that a minimum or near minimum

amount of clock time is required in order to fulfill this purpose. Clock time is a combination of

transmission time, cpu time, and disk access time which is perceived by the user as the delay from

when he enters the command to when the redisplay is finished.

In general, the contents of the buffer will change only a small amount during the basic read

command - evaluate it - do redisplay loop. The screen will then only have to be changed by a small

amount in order to reflect the changed buffer contents. Hence, the algorithms concentrate on
incrcmeníally redisplaying the buffer and the entire process is referred to as incremental redisplay.

Fortunately, it turns out that in cases where the buffer is changed drasíically, the increment-oricnted

approach to redisplay works qui[c well and so there is no need for multiple algorithms.

Our discussion of the incremental redisplay process assumes a model of the system where the

editing is done on a main processor which communicates with a terminal. If the main processor is the

same as the terminal, the bandwidth of the communication channel can be though of as being very
high. The incremental redisplay process is an oprimization between cpu time and I/O channel time,

with a few memory considerations thrown in. The primary constraint is thtt speed ofíhe l/O channel.

Typical speeds that are currently available are 30 charactcrs/second, 120 cps, and 960 cps. There are
also memory mapped terminals which run at essentially bus speeds. Equivalent speeds can be

derived and run in the lOó to 50,000 cps range.

A typical video terminal has a 24 x 80 character screen. At 30 cps, it will thus take three seconds to
print a line and over a minute to refresh the whole screen. At 120 Cps, less than one second is

required to prinr a litic and about twenty to refresh the screen. At 960 cps, it will take only one or two
seconds to rcfresh the screen. The speed of the communication greatly affects the amount of

optimization that is desired. At 30 cps, even one extra transmitted character is painful to the user,
while at 960 cps reprinting entire lines does not take an appreciable amount of time. One dimension

of the optimization is thus clear: the importance of optimizing the number of characters sent
increases in proportion to the slowness of the communication line.

A user interfáce issue arises at this point. While it is acccptablc from a clock time point of view to
reprint entire lines, users do not like to see text which has not clíanszccl in the buffer "change" by

-.
being reprinted. The flickering lhat is gcmcrated by the reprinting process atmcts the user's attention

to that text, which is undesirable (che text has not, after ali, chanµ: d). Thus, avoiding cxEj"aneous

flickering and [no\.'e[ncnL uf text is good. Even with infinitely fast c('lnlntlnicjtiotls attd computation,
Mcremcntal redisplay will still be a desirable feature.

Cpu [imc must be spent iii order to perform these optimizations. If the cpu time that is spent
exceeds some small amount of clock time, response will I)c ¿ll)t)oyil)gy' s|Ll2gi5h (:ind that is not good).

It is thercforc dcijrablc to Enil1iII1i7e the cpu titnc üiat is spent on Q|)[il[]i/.ilÍg the rcdispl: íy. At this
point, the speed of the c()tl)lnu]lic: I¿io!} line makes a dilfCrcncc, lt'tlic line is slow, extra cpíi time can
and should be spent (at 30 cps, ir is w()rL]l\\|lile to spciíd tip 1(} 30 ñl.y'C, Mc|a1 rime 1() eliminate one
character Íí'otn being transmiucd (uliiCh takes about 30 mscc-)). É[()\','¢L¢'r, at l)|glIel' speeds it is

generally llñt practical ¿c) hem ii\i optimize as it can c,isily take 1()i)éz¿]' 1() c:umµutc the ()!)tilr]i/.¿ltions
U

S-19

Incremental Redisplay Mark of the Unicorn

than lo transmh the extra text. This rclaxation of the opúmization is subject to the user interface

consuainí ouüned above. Memory size constrains the optimizaúon as well. One technique used is

suxiug the entire screen, character by character. This technique works quite \\/éñ; however, where

memory is tight this technique will prove too expensive to implement.

3.1 Line Wrap
There arc some more pragmatic considerations involved in the desigrí of the redisplay process.

The first of these is line wrap.

Although die editor is editing a one-dimensional stream of icxe, this text must be placed on a two-
dimensional screen in such a 'way that the user can understand it. There should be no constraints

made by the redisplay process ()Él the length of lines. Additionally, there are no commands to

"posiíion die screen" or anything of the sort. IT IS THE RESPONSIBILITY OF THE REDISPLAY

PROCESS 1"0 HAVE THE SCREEN SHOW MEANINGFUL INFORMATION AT ALL TIMES.

The user has almost no control over this function at all, and should not need Iq. If commands have to
be entered in order to obtain feedback, those arc commands that are not doing productive editing.

There are two different ways to handle very long lines. One way is to have these tines be dipped

at the right hand edge of the screen and then have some indication that the clipping is occurring. The

other is to wrap the lines lo the next line (i.e., the text that does not fh o!] one screen line is placed on

rhe next). The first method is acceptable. but not very well hL1[nan-enf'in¿crcd. Typing text in the
-middle Qt a line causes the line to spill and visually lose characters. This losing of cMracíers causes

uncertainty in the user's mind abour what exactly is happening. In addition, it is never possible to see

a long line in its entirety.

The second method is slightly less "clean" when displayed on a screen as wrapped lines will be

around, but it does not suffer from either of the above problems. Inserting text might cause a line to

wrap (an annoying process) but no text vanishes. Also, long lines are always visible. Finally,

wrapped lines are usually only a temporary phenomenon, because most people prefer line widths in

the 65-80 character range and this range fits on most rerminais. Thus, die wrapped liííes appear

mainly during editing and will normally go away. Note that it is during the editing process that users

most need the leedback. Thus, the line-wrappin» ,jt,ethod seems to be the best one to use.

. , t · .

In any method, care must be mken to make sure thctt the pathological case of very long lines works

properly. Although rare, non-text (e.g., object code) files are sometimes examined with íhe editor.

These files generally do not break up into reasonabtc-sizcd screen lines (a newline indicator might

not occur for two or three thousand characters in an object ñlc). Thus, a single line of text might

mQl"c than fill up the screen. Provisions must be made in. the redisplay code to allow the scrccll to

nonetheless be positioned into thc middle ofsuch aliñe."

3.2 Multiple Windows
It is useful lo be able to sec more than one buffer (()1' diffcrcnt parts of the same buí'fer)

simultancously, Fur example, you can then examine docLlnlc!}taLiol\ Uilc writing a l)]"(jcc(lI|rc call.

Iii ctcncral. 1[is |]()[1()() difficuk j(} set up die redisplay to pci1i.nin úiis multiple \\'in(h)\\'i[]g. "l'hc Ñw
~

ncccss: iry details \Yj]j be mentioncd in the discussion üf the ¿\l3\)ri\hms thcmsch'cs. Care 1I\llxt be

S-20

Mark oflhe Unicorn Incremental Redisplay

taken that modifica[ions made while in one window are reflected in any other appropriate windows.

3.3 TerminalTypes
The redisplay process is the way to comrnunicate to the user. It also has a strong interest in taking

advantage ot' whatever features are supplied by the terminal in order Lo reduce the time taken for a

redisplay. This section will undertake a brief discussion of the various classes of terminals available

and how various features affect the redisplay process.

3.3.1 TTY and Glass TTY

A TTY is a canonical printing terminal. Printing terminals have the property that whar is once

written can never be unwritten. A glass TTY is the same as a TTY except that it uses a screen instead

of paper. It has no random cursor positioning. Incremental redisplay for such a terminal usually

maintains a VERY small window (e.g., one line) on the buffer and cither echos only ñc\\'íj/ typed text

or else consistently redisplays that small window. Once a user is fámiliar with a display editor,

however, it is possible--in a crunch--to use it from a terminal of this type. This is not generally a

pleasant way to work.

3.3.2 Basic

A basic terminal has, as a bare minimum, some sort of cursor positioning. It will generally also

have clear to end oflinc (put blanks on the screen from the cursor to the end of the line that it is on)

and clear [c) end of screen (dicto, but to the end of the screen) fi'ncticms. These fünctions can be

simulated, if necessary, by sending spaces and newlines. t\ typical basic terminal is the DEC VT52.

Such terminals are quite usable at higher speeds (960 cps) but usability deteriorates r: tpidly as the
,

specd decreases. It requires patience to usc'thcm at 120 cps and a dedication bordering on insanity to

use 'hem at 30 cps. Terminals which do not have clear to end of line are even worse.

3.3.3 Advanced

Advanced terminals have all of the features of basic termiriak along with editing fcaturcs such as

inscrt/dclete line and/or character. These features can significantly reduce communication time for

cümmon operations. Typical terminals in this category are the FIIJ'S Concept lOó, thc 1'elcray 1061,

and the l)tíC V'TLOO.

'l'hcsc terminals are, of course. quite usable at 960 cps and similar speeds. Due u) the reduced

need tOr c(}I71l]iLlnic¿lti(}l1 litw bandwidth, at lower speeds they arc more usable for editing than

anwhing else. At no cps, editing text is rclaíivcly painless. butmcrcly examining text kikes pRice ala
quitc slow speed. At 30 cps. even editing is barely acccpiable,

There is a subtle diff'ercncc among sonic of the advanced terminals. The V'l'lOO supports a scroll

window (move lines x thruugh y llP/dO\\'l1 n lines) feature while the 106! supports inset Udclctc litics.

Scroll window is more pleasing to sec when there is some station: íry text being displitjcd at [he
bottom d' the screen. With inscrt/dektc line, the ;lPPl"ol)]'i: l[c number ut"lincs must be dci(: [cLl and

then inscncd: the text at ihe bottom Ú)us jumps. Scroll ündow docs the \\ÍKÁC thing as one
opí: r¿l[iL'iÍ anj docs IlO[cause the buttom 1() jump.

S-21

Incrementa! Redisplay Mark otthe Unicorn

l"hc ClOO has an intcrcsting feature. It is a fully windowed tcrminal and thus all operations can be

confined to only affect a designated arca on the screen. InscrUdelae line operations thus do not
cause the bottom text to jump and it is even possible to have two windows side by side as the clear to
end of line opcration docs 11()[affect the text in the adjoining window. The window management
software thus has much more flcxibility in what can be done while remaining within reasonable
transmission time constraints.

3.3.4 Memory Mapped

This section covers a wide range of terminals. Their common characteristic is that die entire

screen can be read or written at near bus speeds. Typically, this means rhat the terminal is "built in"

to the computer that is running the text editor. In addition, this compuíer is often a dedicated one,
running only one user's processes. Examples of this type of terminal are the Knight TVS (at the MIT

AI lab), the Lisp Machine displays, and the wide variety of memory mapped displays available for

microprocessors.

The use of memory mapped terminals has several implications for the redisplay process. First,

many of the advanced features are typically not available. However, the terminal I/O is so fast that

they cari be emulated very quickly. Second, it is possible in some cases to use the screen memory as

the only copy of the screen. '!"hus, if reading from the screen docs not CdúSé flicker (but writing

does). the screen can be read and the incremental redisplay process will run and compare the buffer

against it. changing it only when necessary, Finally, if you can write [o the screen without flicker, che

redisplay process merely bails down to copying the buffer into the screen as cioinq so is always faster

than comparing. Any memory mapped terminal which has a slow access tirrie should be though of as

a basic terminal for the purpose ofredisplay algorithms.

3.3.5 Terminal Independent Output
A full discussion of this topic is beyond the scope of this thesis. [Linhartj (sec the bibliography)

discusses this problem more hilly. In essence, the problem is that every terminal manufácturcr has

decided on a different set of features and ways of accessing these features. What must be done to

solve die problem is lo specify a set of routines which can be called which isolate these differences, as

well as a 'way of selecting among different sets of such routines as the terminal changes.

Some systems already have a soluúon to this problem and intcrfacinj' the cxíitor Cc) that solution is

the best way out. For the most part (such solutions are RARE), the person Mic) writes the editor will

cl'fectivcly create one. As will be mention later, Lhc text editor might very well become the dc facto

solution to ílic problem. Other programs would merely output to editor buffCrs and the editor's

redisplay code would take care oflhc rest.

The following set of routines will allow terminal indcpcndcnt l/O for most tcrininals. They alluw

full access 1() t'hc capabilities of 'l"l'Ys mid basic tcrininais. 'lhcy will not ¿ii]Ü\'\/' full access to the

capabilities of adv:"ínccd tcnninds, bur they will get you somewhere. Memory m:ippcd tcnnin: ús

usually usc ¿l umll;,' different I/O package anyway and so they arc not considered.

Basic I/O:

GetChar(Character <r>)

S-22

Mark of the Unicorn Incremental Redisplay

PutChar(Character)
InputWaiting(Number <r>)
Init(Termina1 Type)

Fini

The first three roulincs are capable of handling ail input and output associated with a full duplex

stream device. End of record marks (e.g., new lines) are transmitted as characters. The first two

routines get and put raw characters (no translation or checking of any sori is done) and the other one

tells you of the state of die buffer. InputWaiting tells you if the user has typed anything that you
haven't read yet. If he has. you can read it before calling the redisplay. If the input is coming from a

file, InputWaiting will tell you die number of characters left in the file. This interface is a general

su'cam oriented interface. These routines update the intcrnally known cursor position [o correspond

to the new one (i.e., increment by one for the most part on output). Ini[sets the terminal type and

initializes the terminal to a reasonable state (e.g., do not echo input). Fini undoes whatever init did so

as Lo leave the terminal in some reasonable state for general system use (e.g., not raw I/O, echo input,

etc.)

Basic Terminal Control:

MoveCursor(x,y)
CLEOL
CLEOS

.

MoveCursor knows where the cursor is and figures out the fastest way of getting it to (x,y).

CLEOL sends a command to the termina! to clear from the current position to the end of' the line and

CLEOS clears to the end of the screen,

Advanced Terminal Control:

Insert(String)
Delete(Number)
InsertLines(Number)
De1eteLines(Number)

Insert takes String and figures out the mc"u reasonable way of inserting it. Delete deletes
Xcharacters on the current line. The lnsert/l)eletc1 incs rE '.ítines deal with lines on the screen. In all

cases, Number can be either positive or negative and a positive number signifies ec) the right or below

of the cursor, respectively.

3.3.6 Echo Negotiation
Echo ncgutiation was devised for the Multics system "atid is a protocol for usc by multi-node

networks which can cut down on response time by reducing comInllnic.ltiol)s overhead. It is useful in

an cnvironment u: here the user's terminal is a one node and the computer which is running die text
editor is at ¿ln()[l1cr. Iii such ail cn\'irol1me!lt, it can take a long time to send a charactc't" back and
forth (and it takes nearly the same time U) send many).

Echo ll(:g(')ti¿]tion can only be used when the point is at the end of ¿i line, The editor c: tn (|o\\'nh)¿l(i
the front end processÓr (the node closest 1() the termina!) ',íitli a list of dni)1"()'.'c{lc]).íl"¿|ctcÍ': ;. ..\s long
as the user types only Ú)usc characters and docs not rc:ich the end ol ¿l

sc"rccn line (ncccs &tting :?

S-23

lncrcmental Redisplay Mark of the Cnicorn

wrap), die Front end can safely echo the input characters to IJlC terminal and buffer the hiput text.
When any non-approved character is typed (or the line fills up), the editor is 121\ okcd tu process the

echoed text (the number of already echoed characters is returned to the editor) and the additional

character. Sec section 3.6.2, page 27 to see how this protocol affects the redisplay algorithm.

3.4 Approaches to Redisplay Schemes
There have been two major approaches to pcrforming redisplay. The first is for the routines

which are invoked by the user to tell the redisplay code exactly what they did (e.g., "[deleted S

characters from here"). This approach is not a very clean one and it is prone to error. This is an
especially important consideration because we would like to encourage novice users to write their

owu commands. The extra effort of geuing the redisplay correct might make this an impractical goal.

The second approach has been to have the redisplay know nothing about what has QccLlrred. It

must rescan the buffer and decide for itself what has and has not changed. This process requires a

copy of' the screen and can be expensive in cpu time. This algorithm will be presented first because

of its i'e!aúve simplicity.

There is a compromise between these two approaches which seems to solve all of the problems.

This compromise is to hare the memory management software communicate with the redisplay

software. User routines know nothing of this communication and cannot cause bugs in it. On the

other band, the cpu time mjuire for a redisplay is somewhat reduced and is more spread out and so it

is not as noticeable. Extra memory is required to handle the communication. !jui in some cases, the

screen representaíion can be discarded and so the ñCl result could be a memory gala. k is this

compromise that is the heart of the "modern" redisplay and it is the other one to be presented.

3.5 The Framer
The framer is tho part of the redisplay that decides what wit! appear orí your screen. In the stable

state, there are two different approaches used.

FKSL the TopOfScrecn and BottomOfScreen marks are kept around. i\S long as the point says

within these marks, we expect dial the poinl wiÉl remain on the screen, Thus, the top of the screen

can be assumed to be in the proper place and the redisplay algorithm can bc started directly. If it

docs not (the redisplay code dctccts this error and generates a Ft'amcrError), the framer runs again,

but uses the next approach.

Second, if thc point is outside of the screen marks, ii is simplest to assume that the entire screen

will be changed. Thus, the framer wants lo recenter the point on lhc screen. It cart start by counting

back <scrccm hcighú / 2 lines. AssIllnjn8 that there arc no wrapped lines, this mcúiod would wosk

fine. At this point, the framer chcAs this assumption (that there ¿ll"C no wrappcj lines) by counting

forward character by character, keeping track ot' how many lines arc actually used along with the

intcrinediatc results. lf there arc 1)() wrapped lines, the new guess will work fine. If there arc

wrapped lines, if will look at the intcrmcdiate results and decide how many lines It) Úirow away to

Ícá\'¢ you approximace1y ccníercd. If the advanced redisplay algorithm is used, these intcrinediatc

rcstiks should be recorded as they might be needed.

If all the lines have tí) be thn)\.\.'¡I ,íway (i.í"., the current line is \'liRY long), the Úiii'd and most

S-24

Mark of the Unicorn Incremetual Redisplay

desperate mode must be used. Here, the framer figures out, character by character, where each

character on the current line is. It then decides how many characters to move back before starting the

redisplay, while staying within the same line.

3.6 Redisplay Algorithms
Here are presented the two major redisplay algorithms and an discussion of how to adapt these

algorithms for memory mapped terminais. These algorithms will not go into every detail (or even

most of them) as doing so would inundate the description with loo much detail. This detail is

discussed in later sections.

3.6.1 The Basic Algorithm

call Framer:

/* TopOfScreen is a mark returned by

the framer */
BufLoc = TopOfScreen;

/" loop over the whole screen "/
do ROw=1 whi1e(Row <= HeightOfScreen);

do CO1=1 whi1e(Co1 <= WidthOfScreen);

/* found a NewLine char */
if 8uffer(BufLoc)=NewLine

then do;

/* is the rest of the line blank? */
do i=Co1 to WidthOfScreen;

if Screen(i ,Rqw) t= " "

then do;

/* if not, make it so by

sending a CLEOL at the
non-blank */

call MoveCursor(1,ROw);

call CLEOL;
do j=i to WidthOfScreen;

Screen(j ,Row)=" "'7
end;

leave;
end;

end;
BufLoc · BufLoc + I;
/* move to next line */

Row = Row + I;
Col = I;
leave;

end;

/* no Newt-inc, so has there been a

change in the buffer? */
if Screen(Col ,Row) t="Buffer(BufLoQ

then do;

/" if so, change the screen

S-25

Íncrcmental Redisplay Mark of the Unicorn

to match */
call MoveCursor(Co1,Row);
call PutChar(Buffer(8ufLoc)):
Screen(Col ,Row)=Buffer(BufLoc);

end;
BufLoc = BufLoc + I:
Co7 = Col + I;

/* save the (x.y) of the point so
that we cari put the cursor there later */

if BufLoc=Point
then do;

PointX = Col;
PointY = Row;

end;
end;
Row = Row + I;
Col = I;

end;

/* framer missed--it almost never happens */
if BufLoc < Point

then call FramerError;
EndOfScreen = BufLoc;
call MoveCursor(pointX,PointY);

This algorithm is qlli[e straightforward. It first calls the framer to match the top of the screen with

some point in the buffer. It then iterates through die buffer arid the screen simultancously, matching

characters as is goes. ,As long as the character on the screen matches the character in the buffer, no
action is taken, When there is a discrepancy, the cursor is moved to that position by means of the

MovcCursor routine. the changed character is printed. and the screen array is updated. If the line

gets to be too long, it is wrapped aummatically. If a NewLine character is encountered, the rest of the

line is checked [o make sure that it is all blanks. If ñQt, blanks are put there. Finally, a note is made

of where in the buftér the end of the screen falls,

This is your basic, garden variety redisplay algorithm. It will work on any terminal that supports

cursor positioning (the CLEOL call can be fáked by sending spaces). It will work quite well on
anything running at 480 cps or ewer. Its only meinoíy req!Iircmen[s are an array large enough to hold

the screen (typically 1920 characters). The only inte: :iion between the redisplay algorithm and the

memory management system is two tnarks. Finally, it is not told anything about what changes were

made and Sc) if figures everything out for itself each time iÍ is called. There can thus be a cpu time

penalty associated with this algorithm that might make 'ii slow enough to be painful. The next section

describes with an algt'rithm which gets around this penally,

/\ complete redisplay can be generated quite easily lls:.1g this algorithm. The

CkmciatcNcwDisplay routine will set the cursor to hume and then clear the screen and the internal

scréctl array. It then calls the incrcmcntal redisplay routine. The inc['c!1}cn[a{ redisplay routine \Yüi

simply do its normal job, which in this case implies sending all of the norrblank characters 1() the

[cr]nil)¿tl. The FewL)isplay routine must also remember to send such things as status displays, which

arc not sent during an ordinary redisplay,

,r\ SMtllS display is text dial is kept on the screen but is [1()1 oRen changed. For example, the Emacs

S-26

Mark ofthe Unicorn Incremental Redisplay

status display has the editor name. the mode name, the current buffer name. and the file name

displayed on a line near the bottom of the screen, Ordinarily, the redisplay code ignores this section

of the screen.

3.6.2 The Advanced Algorithm
The advanced redisplay algorithm serves two vastly different purposes. First, it provides a way of

efficiently taking advantage of the inserüdelete line/character fiínctions which are supplied with

some tcrminals. Second, it provides a low cpu overhead way of performing a redisplay on basic

terminals.

The basic idea used by this algorithm is to assign a unique id to each buffer line that appears on

the screen. Note that a buffet' line can take up more than one line on the screen by wrapping, Just to

make sure that the definitions are clear, here they arc: a buffer line (BuffcrLine) is either the text

between two newline characters (in the buffer gap memory management scheme) or rhc text in one

element of the line list (in the linked line scheme'). A screen line (ScreenLinc) is a horizontal row of

characters on the user's display.

The unique id can be in any form. One method is to use a 32 bit counter and increment it each

time any line is changed. After the change is made, the line is assigned the current value of the

counter. If it is changed again, it gets the new value of die counter. The assignment can be made in

an otherwise unused part of the header (for linked line) or in a special mark (for buffer gap). In a

linked line scheme, the pointer to the line can serve as a unique id.

These unique ids only hare to exist for lines that appear on the screen. Thus. the buffer gap
scheme only has a few of these special marks that must be maintained. The special marks are placed

at the begil)ni[]g of each line that appears on the screen. They contain a version number for the line

as well as the location d the mark,

The memory management scheme is responsible for maintaining this extra information. Thus, it

and the redisplay code can interact heavily and the specific redisplay process chosen will affect the

internal structure of the memory management scheme.

There are two flags that can be kept by the memory management software which will aid the'

redisplay process. First is the buffer modified flag. This flag is usually kept anyway so th:tt the editür

can detect when the buffer has been modified. (The dctails of manipulating it were discussed with

the interface routines in section 2.L page 3.) If it has riot been set, the redisplay code knows that it

generally will not I1¿2\'c to do anything except move the cursor. If the point is síiil on the screen
(remember that we have bcginninj' and end of screen marks), its posilioñ 1)1} the screen can be

calculated with much less effort that is required for a full redisplay. If the flag has been set, ¿i full

redisplay is required and the flag will be reset (the editor proper ORS this flag in with ¿l private Ílag
(Mociiñcdp; mcntioncd in the buffer data structure descriptions) in order L() properly remember

whether the bufkr has been modified).

Another flag (u'hic'h has not been mentioned befm'c) can signiñc: Íll[|y reduce redisplay
~

co1r]])Ll[a[io[1 in some cases. ,·\s'ui'ning that JOLI ¿ll'C located at the end of a IhiffcrI.inc, it túlls you
\\.l}ctlIcr nr nut :my {)l)cl'¿l{iol7 Ütiícr tli: m inscrtitíg ¿i ch,íi'actcr has becti clone. If' the flag Sit;. 's not, :ill
that the rcdispl.iy has to do is output the oiic ch,iractcr (alici' checking Íijt" wrap, etc.). ¿\ significant

S-27

Incremental Redisplay Mark of the Unicorn

amount of time can be saved this way, but it is most useful with a negoúated echo protocol (see

scctioií 3.3.6, page 23). The exact interface to this flag will not be defined.

The redisplay algorithm itself' starts by trying to find a match between the Buffcrl-iues and the
ScreenLines by using unique ids. 1'he unique ids are compared. line by line. If they match, no work
needs to be done and the redisplay proceeds to the next line. If they don't, it can be for one of three

reasons:

- An additional line (or lines) was inserted between the two ScreenLines. This condition is

detected by cümpai'ing the Screenl.ine unique id with al) of the BufferL.ine's unique ids

and finding a match. (Remember that the ScreenL.ines are what the BufferLines were

one redisplay iteration ago.) We thus have the situation where we used to have AB and

now have A,<junk>j3. Clearly, the most reasonable assumption is tFiat <junk> has been

inserted. We thus count how big <junk> (the framer has already calculated this

intounation) is arid tell the terminal to insert the appropriate number of lines. (Before

you do this, however, you must first delete the same number oflines from the end of the

window in order to keep from losing the text at the bottom of the screen.)

- A line (or lines) was deleted. This is detected by comparing the BufferLine unique id

with all of the ScrecnLine's unique ids and ñtiding a match. We thus have A,B,C

becoming AC. We delete the appropriate number of lines and then insert them again at

the bottom of the window.

- The line was modified. This is detected by riot finding either of die above matches. At

this point, we switch lo intra-line work and do the following:

*Do a suing compare starting from the beginning of each line (the BuffcrLine and

the Scrccnl-ine) and sec how much they have in common. (If this says the whole

line matches, no more work has to be done.) For example, if the ScrecnLine is

"abcdef" and the BuffcrLine is "abxdcf", they have two characters in common from

the stan.

*Do the same thing starting from the end. The example strings have three characters

in common from the end.

*Compax"e the line lengths. If the two lines are the same length, you only need to

rewrite the changed part (e.g., two characters were interchanged). Iii the example

strings, the lengths are the same (6). This (}gtirrli/aLion can be done even Dl) a basic

terminal. If' the two lines arc nut the sanie lcngdi (for example, the Scrccnl-ine is

"abcdd' and the BuíTcí'Linc is "abxy7.(]er), rewrite ElS much of the portion

between the common text sections as possible (Y') and then ciihcr itísert or delete

the required number ofcharactcrs (iii this case. inscrí two blanks) and finish writing

the modified text ("yz"). Remember that if there is no conimou text at the enc] and

the Bufterl.inc is shorter than the Scrcenl.inc, a Cl .EOL call is appropriate.

*\Vrappcd lines can pose a problem. There may be no end c()lr1n1o[l text, and yet ¿i])

insert oí' delete character opcraúon rniízM be ihc ¿!pl)r(.)í)l"i,ltc one. (Ii" the screen
~

S-28

Mark of the Unicorn Incremental Redisplay

width is six characters, the Screed-inc is "abcdcf", and the BufferLinc is "abcxdef'.

Here, the BuffcrLine will ultimatelv become two ScrcenLines, "abcxde" and "f".)
This case is dcrccu: d by having no end common portion and noticing that the line

wraps. A more complicated marching process can detect the situation and

appropriate action can be taken.

3.6.3 Memory Mapped

Redisplay for memory mapped terminals boils down to one of three cases. Each case is relatively

simple.

1. Reading from and writing to the screen cause flicker. The solution is to use the basic

terminal redisplay scheme.

2. Reading does not cause flicker but writing does. The solution is to use the basic terminal

redisplay scheme, but use the actual screen memory for storing the screen array.

3. Neither reading or writing cause flicker. On each redisplay cycle, merely copy the buffer

into screen memory, not forgetting to process new lines, etc., as needed.

3.7 Other Details
There are a number of other details that must be carefully watched when writin redisplays. None

-of them are particulary worrisome in themselves, but they collcctively clutter the algorühms a great

deal. The problems that they pose will be described and they are each simple enough that specific

solution algorithms are not required.

3.7.1 Tabs

It helps to think of a tab character in a buffer as a cursor control command saying, "think of me a

N blanks, where N is the number ofcolumns to the next tab mp." Thus, whenever you see a tab you

want to figure out what N is, and then check to sec that the next N colums are blanks, increment the

cursor by N, etc. Tab stops can be set in an aí'": íy (for arbitrary placcmcnt of tabs) or set every C
P-

columns. In a one origin numbering system, tabS 3et
eve. y C columns are sci at positions l, C-f l,

2C + 1, 3C + l, ...
For example, when C = 8, Labs are in columns l, 9, 17, 25, 33, etc. Again, assuming

a one-origin system, the equation for N is:

N = C
- mod(X-1,C)

(X is the column position.)

3.7.2 Control Characters
In general, only the new line chm"actcr(s) and tabs arc interpreted; other control characters ¿ire

displayed in some reasonable printing l"eprcscl}taLioll. One popnl: tr rcprcscntation is "r' f¿)|]()\vcL[by
the character whuse t\SC1l value is <cmrol char> + 64. The character control-.i is ÜillS printed as

'rí\. (The ASCII l)li1. character, 127, can be printed ¿is t?.) 'l his coñ\"cñtion hits been f'oll{)\\'cd in
this thesis, Whcíí displaying control Cl)¿l['¿lctCl"s, you must remember thar while the c|]3|"¿lc[ei' itself is

S-29

Incremental Redisplay Mark of the Unicorn

only one character, it displays in a two character wide sequence. In addition, it is the actual displayed

sequence that is stored in the screen array (c.g., "T" and "A", not "Tt\"). Care must be taken to
insure that control characters can wrap properly across line boundaries (e.g., the "t" is not displayed

at the end of one line with the "A" at the beginning oflhe next).

3.7,3 End of the Buffer
If the entire buffer fits on the screen, you will run out of buffer before you run out of screen.

Ihus, whenever BufLoc is incremented, a check should be made against the buffer length. lfyou do

run out ofbuffer, remember to finish blanking the resc of the screen if it ríceds it.

3.7.4 Between Line Breakout
The redisplay process does not have Lo run to completion before editing resumes. instead, it can

get to a convenient spot (in the basic algorithm, almost any spot will do: in advanced algorithm, slop
after finishing a line) arid check the input buffers. If more input has arrived, it can abort the

redisplay arid process the input. Remember that the purpose of redisplay is to provide feedback to

the user. If he has already typed something, he does not need feedback immediately. (However, if
you can give it to him in a way that does not slow him up, do SO.)

3.7.5 Proportional Spacing and Multiple Fonts

Displaying text in a proportional spaced font is Rot too difficult. Instead of assuming that each

character has a width of one, the width can vary and it musí be looked up each time it is needed.

Displayiug multiple fonts implies receiving a command to switch fonts at some time during the

redisplay process. These commands can be stored in the buffer (in which case like NcwLines they are
interpreted and not di°:p1ayed just) or in some other structure.

3.7.6 Multiple Windows
1'herc is a database somewhere which describes what windows (i.e., what part of which buffers)

are to appcar en the screen. One way lo perform redisplay with multiple windows is lo call the

incremental redisplay routine and pass it as an argument each window dcscriptor in turn. Another

way is more suitable fOr use with the advanced algorithm and il iñ\'ot\"cs havinz a separate descriptor
~

for each line of the display (i.e., the same database soncd backwards ElS well). This descriptor tells

you where [c) pct each line from,

If a row of dashes C'"""""") or any other character string is used as a visu: d separator between

windows, it can be implcmcntcd as an additional bíúfcr/window combination and no special casing is

required for the redisplay code.

S-30

Mark of the Unicorn The Command Loop

4. The Command Loop
This command loop is the parr of the editor that actually implements the logic of the editor. It is

Fcsponsible for reading in commands, executing them, and "printing" the results. In the process of

executing them, ic must accept argumcnts and bind the input characters to fiinctions. This chapter

will discuss the command loop. It will also discuss some disrantly related issues: the tradeoff's

between kill buffers and an undo function, the provisions for recovering from errors, and

considerations for selecting implcmcntaúon Iangauges.

r"

4.1 Basic Loop: Read, Eval, Print
The basic loop is:

do whi1e(TRUE);
call GetChar(Char);
call Eva1(Char);

if abort
then leave;

if InputWaiting() " O

then call IncrementalRedisplay;
end;

Noic the two details that have been added to what was mmioned in the section heading. First, an
abort tlag is checked to see whether we are supposed to exit the edit session. This flag is set by the

Eval routine. Eval works by invoking a function which was specified by the input characier. This

functioiis only re: nik is the change in the stare of the editor (c.g., an "x" has been inserted). The

"printing" (actually, an incremental redisplay to the screen) is done only if the user has not typed in

anything more to be processed.

4.1.1The Philosophy Behind the Basic Loop

The basic loop as described puts the fewest resuictions on the user interface that can be managed.

Each character, in its raw form, is mapped to a procedure which is in tum evaluatcd. Any arbitrary

syntax and semantics can be implemented with this base.

In theory, a syntax of commands being words (e.g., "delete", "move", etc.) could be implcmemcd

in this structure by having either a large number of dispawh tables (and thus implcíncnting a symbol

sLátc table architcclure) or a procedure which parses the syntax of the command via conditional

statements. For reasons which will be stated, this syntax is not generally implemented.

Consider the thought that every character that is typed at tjlC keyboard causes a function to be

executed. The first conclusion that results is that it is silly to type "insert x" or anything like that
when you want "x" to be insci'ccd. As this is a very common ()p¢1"ation, it makes inure sense to bind
ÚlC key "x" to (JlC lnscrtX function. (Actually, it is probably bound to Selflnscrt. a function which
looks ¿ii how it was im'okcd--the input character--to dcícrminc what [c) 1rsc!1).

N()\v, all of the straight. printing, ASCII characters hare been taken and bound to Sc1f1ríscrt.

(While Mere dFC a large number µ[special ch.u':íctcrs that arc iim ol"tcn ij'pccj, lú: u'ing them in
c()l]si(ler¿ltiol1 docs not lij¿llc'ri¿í|!y' afkct the cojÍcjLlsi()lls.) The ["c!)l¿|ii\illg things that can he entered

S-31

The Cornniand Loop Mark ofthe Unicorn

from an ,\SCII keyboard are the control characters, the delctc key, and the break key. These could
be bound [o functions that implement a complex syntax, but why bother? [t is not loó difficult to
learn even a large number of key bindings, so let us bind the control keys directly to uscCul functions.

For example, tF could be ForwardCharacter, tD could be DelcteCharacter, etc.

33 functions are not enough for even the commonly used ñinctions. Thus, some of the keys

should be bound to functions which rebind the dispatch table. For each of these rebinding functions,
128 new' functions are made available (there is no reasün for the printing characters in íhem lo be

bound to Selflnsert). Note that the break key is not used in this scheme as it is hard co work with (it

does not have an ASCII value).

Thus, even though we bej;an with a structure for the command loop tha[did not to impose any
constraints on the syntax of commands (and thus was as general as possible), we arrived at a specific

syntax for commands. This syntax is to bind the printing characters lo Selflnsert, bind die control

characters to a mixture of useful functions and rebindcrs, and to have about three or four alternate

dispatch tables (enough to supply many hundreds of commands). Thus. commands are rarely more
than two keystrokes long. The price that is paid for this brevity is a longer lead time in learning to use
the editor effectively.

(Note that most of the increased lead time in teaming the editor is NOT from the brief

commands, but because diere are more commands to learn. Given a "convemional" editor (e.g.

DEC's SOS) and art equNalcnt subset of an Ernacs"typc editor, novice uséis will learn the subset of

the Emacs-type editor faster.)

4.2 Error Recovery
Errors come in two flavors. There are internal errors which are in the editor itself (e.g., a subscript

out of range) and external errors which are caused by the user (e.g., attempt to delete off the end of

the buffer). There is also a non-error, the normal exit, vchich will be treated as an error in this

discussion. These errors will, in general, be indicated both from within the editor and from the

outside world (the operating system).

The first category to be considered will be int"mal errors. These errors cause an immediate exit to

the operating system with no questions asked árci no -"'days tolerated. They will be internally

generand by such things as arithmetic overflows anu bad subscripts. (While the editor might catch

and process some oF these, it will riot in general process diem all.) Thcy can also be generated

externally and often arc (eg., process switching). The fáctor in comrñoll is that they are

unpredictíibk and the state Út' thc editor should remain exactlv intact. The usu" should also be able ro

signal such an crrol' to abort out of Lhc editor. He miglit \V¿ll1[to do this because of" a problcin with

the editor itself (eg., infinite loop) or because he wants to do soinething else. 'l'his signalling is

usually done with the kdp of the operating sytAerñ. In any case, the precise state of the editor should

be retained 5() Lh: ú it can be resumed exactly where it lcf't off. Most operating systems have sc)]ñ¢

fácility fur doing this: they dif"Ni' princ ipalíy in the freedom of" action that diey allow befOre losing the

state. This freedom ranges from nothing to doing arbitrarily many other things.

At the user's discrction. Éhc editor should be restartable citlícr from cxacdy where it left of'for at d

sate remit pt.'int. 'l his point is ot'jinarily ¿i portion of the editor which récu\'cl"s the bult"crs :"inj odícr

current StíltC anti then resumes ÚlC command loop.

S-32

Mark ofthe Unicorn The Command Loop

External errors arc principally user errors. The jction ordinarily taken is the display of an error

message and a return to command level. The implmcntation of this level of recovery is built in to

the procedures which implement the cúmmands.

There is a variation of external errors u hich are generated manually by the user. Typically, these

invoh'e backing out of an undesired state (.e.g., the unwaritcd invoking of a dispatch table rebinding

or aborting an undesired argumcm). The bell character (ASCII tG) has often been used for this

purpose. In this case, the procedures will know that a bell has been typed and will implement the

backout protocol.

Finally. provisions to exit the editor must be made. This is ordinarily by means of an abort flag of

some sort as can be seen in the previous code fragment. Note that various other uses might be

mukiplexed onto this abort flag, signifying varying levels of "exiting." For example, one level could

used by buffer switching in order to rebind the dispatch tables (see the section Oíl later iii this

chapter).

Ordinary exiting involves several types of processing. The editor might ask die user whac co do

with buffers that have been modified but not w ritten out. If, as is ordinarily assumed, Úie state of the

editor is preserved across invocations, the state must be saved. If llOf, if must be sure Ü'.al all memory
is deallocated. Finally, the user's environment should be restored as it was found. This implies such

varied things as cleaning up the stack, closing files, deallocating unneeded storage, and rescuing

terminal parameters.

4.3 Arguments
Arguments arc specified by die user to modify the behavior of a function. The Emacs argument

mechanism will be described as an example of three divecse ways in which arguments are obtained.

There are three stíindard argument types. First are prefix arguments. These arc invoked by a

su"ing of functions (which are in turn invoked by characters typed befOre the "acüial" command) and

are m example Qt using the key/functiorí binding [d implement a more complicated syntax, Ncxt are

su"ing .írgumcnls. When obtaining a string argument. the editor is invoked recursively on an

argument buffer and upon mum from the recursive invocation the contents of that buffer are given

to the rcqucsúng procedure. Í-asl arc positional arguments. Thcse are the internal variables of the

editor.

4.3.1 Prefix Arguments
Prefix arguments arc cutcred before the command whose bch: ivior they arc modifying, thus, their

interpretation must not depend upon the coinmand. Emacs limits these (o numeric values.

Ordinarily, commands will have an internal variable availabic Cc) them named s\}n]c[l]il]g like
"argument" and It will have a value oforie. Prefix ¿\rl",Ll|nctjts áüo\\ the usa' Ed change rhat 'mlue to

any other positive or negative integer.

Arguments are used fOr two different purposes. First is 1() specify a t"cpca1 count for íl ctmtnand.
Thus. <12> tF wuuld go f"onvai'd [\yCÍ\'C characters {assunic the 11"' key is bmiid [{) the |"()r\\.|r(lC'|1¿?r

fi|l\cti\)l]) The other use is [o tcll a command to inc an altcrmte \'¿1Íl'c Fui' ¿i parameter. If

S-33

The Command Loop MaTk of the: Unicorn

FillParagraph was bound to tP, then <65> "rp might say 10, for this rime only. use 65 as the desired
width of the paragraph (the right margin) after it is filled. Altcrnatively, it might say to reset the
defáult value of the right hand margin to 65 and then usc that value. It is useful to provide a

predicate Iq allow procedures to determine whether an argument has been given. This allows them to
differentiate the default argument of one from the user entering one as the argument value.

Emacs uses tU as the UniversalArgument function. It can be used in either of two ways. tÚ tF
means to go forward four characters. Adding another tÚ means to multiply the current argument by
four. Thus, TÚ TÚ TÚ tF means to go forward 64 characters. The factor of four was selected because

five is too large (l, 5, 25, 125 goes up too fast) and, while three might have beuer spacing (I, 3, 9, 27,

81, 243), the powers of four are known by all people who are likely to be around computers.

The ocher use is more complicated. TÚ l 2 tF means to go forward twelve characters, TÚ - l 4 7

TÁ means to give tA an argument of -147. The tU in this case serves as an "escape" to logically

rebind the O-9 and - keys.

On some terminals, there are two sets of numeric keys (one sel thar sends the ASCII "O" - "9"

codes and another that is labeled with digits but sends different codes) to generate "numbers" than

simply sending the appropriate ASCII codes. In this case, diese "other numbers" can be bound

directly to argument generating functions and the iniíial TÚ is not needed.

4.3.2 String Arguments
String argumencs are specifically requested by a procedure. A prompt is displayed and the user

enters die value of the argument. "lhc procedure.uses this value in any way ii desires.

One way to implement such a way of entering arguments is to create an argument buffer in a new

window, display a prompt, and call the editor recursively with that as the current buffer. By

following this scheme, the fúll power of the editor is available to correct typing mistakes or otherwise

make the entry process easier.

When implementing any argument entry scheme, there are three things to take into account.

FÜtsl the key or key sequence used to indicate that the entry process is over should be able to vary

depending upon who is asking for the argument. tM (<cr>) and t[(<CSC>) arc both commonly used

as dclimkcrs. Second. there should be a clean way to abort out of the argument cmry process (tG is

commonly used for this purpose). In this case, the calling procedure should be told about the abort

in order tor it 1() terminate gracefully. (Most of the routines that ask for amimcnts do all of the
m

asking at once and then proceed to do a large amount of work (e.g.. ReadFik). Thus, aborting out of

the argument entry process effectively aborts out of the command. /\bortil]q cannot be done cleanly
—

if commands .ll'C written Lo get an aryímait, do some work, get another argument, etc.) Finally, null

arguments (ihe user enters only the delimiter character) {All be used u) cut dom on typing errors if
the procedures supply some reasonable default values,

Here arc some examples of using string arguments:

ScarchString: Ask for a string and took for it in the buffer. If the user enters a null string, usc die

sainé string that he searched fur before.

.

S-34

Mark of the Unicorn The Command Loop

ReadFile: Ask for a string and, using ii as a filename, read the file into the buffer. If the user enters a

null suing, use the current filename associated with the buffer.

ChangeBuffer: Ask for a string and, using it as a buffername, make that buffer the current one. If
the user enters a null string, use the buffer that he was in last (i.e., the one that he

was in before the one that he is in now).

Note that SearchString typically uses T[(<esc>) as the delimiter while ReadFile and ChangeBuffCr

typically use tM (<cr>). In order to help the user, it is nice to aLl[oma[ica1]y remind him which

delimiter is being asked for. Here are sonie example prompts:

Search String(<esc>):
Input File Name(<cr>) (Default is >u>fin>test):
Buffer Name(<cr>) (Default is foo):

Note that some prompts helped the user by reminding hirn of the default value.

While all of the examples asked for and wanted a character string, this might not always be the

case. It is quite practical to use this method to enter numeric values. The requesting procedure

merely has to convert the read-in character suing to a numeric value.

P4.3.3 Positional Arguments
Positicmal arguments are not directly specifiable by the user. They are the internal variables that

are used in the editor. Such variables include both those required by die editor (e.g., the length of the

buffer, the locations of the point and the mark, etc.) and those which have a specialized purpose (e.g..

the current value of the right hand margin, rhe tab spacing, etc.).

Often these values are used in unusual ways. For example, the horizontal position (column) ofthe

point catt often be a more pleasant way of specifyiRg a value than emeriríg a tiumber. The user can
indicate that "this is where I want the right margin to be" instead of having to count characters to get

a number. The user indicates this value by using other commands (e-g., ForwardChar,

FonvardWord) to move Lhe point to the desired location. See also section 5.2, page 42 for

information about how graphical input devic "s (tnice, tablets, touch sensitive displays) affect
+ ..posiíional arguments.

.
"--

.
t"'

4.4 Rebinding
Rebinding is a name for die act of changing at run time what a key or procedure docs. The

disünction bcrwecn the two (keys and fltl}C[iollS) is irnpcmánt. Changing the binding of a key means
that when that key is typed, the new procedure (the one that is now bound to dic key) will be

executed instead of the old one. Changing the binding of' a procedure means that whenever that

procedure is invoked, the new version will be executed insmd of" Lhc old one. This change af'ÑcIs

not only any keys bound to that procedure but also any internal references to it.

There arc two levels oIrebinding functions. Level I rebinding is when the new procedure must be

known befOre invoking the cd'tor. Imc1ll rebinding is Mien die new ptoccdurc cjn be dt'ññcd ,Ú"ttr
the cdilor is invoked. U nkss othcrMsc stated, level II rebinding is assumed.

S-35

The Command Loop Mark of the Unicorn

To a first approximation, edirors that are written in compiled languages (eg., PI-ll) can only

change the key bindings and interpreted editors (those written in, say, Lisp) can change both
bindings. Dynamic linking, however, allows both bindings to change m compiled editors and so this
distinction is not always a proper one to make.

4.4.1 Rebinding Keys

The process of key rebinding is a relatively simple one arid it is done csserítialiy the same way in
ai! implementations. A set of dispatch tables is used lo map keys (represented by their ASCII values)

to their respective functions.

In languages such as Lisp and PL/l, the table can comain the procedures themselves. In less
powerful languages such as Fortran and Pascal, the dispatch table branches 1() a different part of the

same routine that contains the table. There, the procedure call is made. In languages that supply it, a

case statanent can be used instead of the n-way branch.

None of these command procedures have any formal parameters, and so they can all be invoked

with the same calling sequence. Thus, the Lisp and PIll direct invocations can work properly. Note
also that simple commands do not have to have a separate procedure assigned ro them, but che code

to execute them can be placed in-line in place ofa call (where the case staument equivalent is used).

Doing this subsúuniori loses some potential flexibility.

4.4.2 Rebinding Functions
Level II function rebinding is ordinarily a language-supplied feature and so it will not be

discussed in depth. Two comments will, however, be made on how to simulate it.

If the underlying operating system has dynamic linking (e.g., Multics). a procedure may be

rebound at nin time. Dynamic linking is a way of linking procedures íogcthcr in which the actual

link is not made nntil the procedure is about to be executed. At that time, the procedure is located in

the file system and brought into memory. The link may either be left alone, in which case the next

call will have the procedure re-located (a rclatR'ejy expensive process) or it may be snapped.

Snapping a link implies converting the general call instrucúon (which is kept in a special. writable

parr of the program) into a call insrrucúon to the apprDpTia[e address. If a link is snapped, it must be

explicitly unsnapped before any re-locating is done.

If the operating system does not support djmamic linking, the editor writer might choose to

simulate it manually. Such a process is complex and some thought will have to be given to exactly

how desirable rebinding functions is. The process is tantamount to explicit overlaying.

This all has a straightforward bearing on rebinding functions. Rebinding a function i1t\jl¥'cs

changing the dctitñlion of the proccchue that is invoked by rcfcí'cncing it. What has been discussed

arc ways of changing such a procedure dcfinirion. Note that if the code to exccure a function is

inserted in-line in the basic editor, k cannot be rebound by a!1y ofthcse methods.

If dynamic linking is not ¿l\',lil:ll)]c and is un feasible to simu1aíc, there is mill one way out. This

way will onlv pruvidc ic\·'ci I rebinding. ' Instead ot" just usincí one dispatch table which indicates a
~

pr()ccdurc Ii) be called dit'ccily, usé two. 'l"hc firsÉ table maps from keys 1() the operation to be

S-36

Mark of the Unicorn The Command Loop

performed (e.g., tF is mapped [c) rño\ ing forward one character). The second table maps from the

operation [o be performed to a procedure to perform it (e.g., moving forward one character is

mapped to ForwardChar).

4.5 Modes
Modes are collections of rebindings which are done all at once. They can either be done

auromaúcally or can be expliciúy asked for by the user.

An example of an automatically loaded mode might be PL/l mode. This mode will aLltoma[jcally

be loaded whenever a file whose name ends in ".ptl" is read irúo a buffer. Such a mode might do

several things. It might rebind the internal variable that identifies which characters are legal in

tokens (i.e., variable names) to also include the "$" and underscore characters which can occur within

PL/l names. This change would make the ForwardWord function treat a PL/l variable name as a

word. The mode might also rebind the ": " key to be an electric semicolon (i.e., finishing one

statement would cause it [o automatically indent properly for the next one).

The process of autoloading is related to auromatically loaded modes. The trigger is the main

difference. In autoloading, the trigEer in complaely internal. An example could be the set of S-

expression hacking commands. Although they are defined at all times, the code for them is not

necessarily a part of the editor. Instead, when any cjf the commands is invoked, they are auioloaded

into the editor and the command is executed.

Ar example of a user requested mode would be auto fill mode. This mode rebinds the space

charmer to one that checks to see if you are typing past the right margin. If you are, it breaks the

line up to fit within the right margin. It also inserts the space.

t\ printing terminal mode would use function rebinding. It would be loaded automatically

whenever the editor is used from a printing terminal instead of a display. It might rebind the

Self1nsert function (which is used by alt of the 95 princing keys) to one that prints the character that it
is inserting on the terminal (and then inserts it). In this case the definition of the function changed

and sc) function rebinding is called for. Note that this change is global over all buffers and so it is not
readily simulaabk by changing the bindings of keys to operations.

The function rcbindings that are commonly done by an editor are known in advance and so they

can be done by any hnplcmcntation (sec the preceding section for a discussion of the clifñculties

involved in function rebinding). Fully dynamic rebinding (the new definition ofthe procedure is not
k nown until m li time) is desirable for several reasons.

- Dcbugging is greatly cased if the trial-and-error cycle time is reduced by not having to
compile arid link the whole editor each time. Instead, only om fímction has to be

recxirnpilcd and linked. (In languages such as Lisp, it is more accurate to say

c(mpiIcd/linkcd as ihc two opcraúons are synonymous.)

- Space savings arc achieved if unnccdcd modes and amoloadcd single functions are not
brought into memory until asked for.

- If the editor is impkmcntcd in an imci"prctcd language (sec the next section) users crin

5"37

The Command Loop Mark ofthe Unicorn

develop their own functions relatively easily. Such "sideline" development is

advantageous because it allows many people to develop usdul code and so the editor can
be specialized in many more ways than any reasonable support group could ever
implement on their own. Ii also encourages tailoring the·edi[or to a user's own taste and

so his productivity is enhanced.

4,5.1 Implementing Modes

Modes are on a per buffer basis and so provision must be made for changing these bindings as

buffers are switched. The general technique for doing this is to have a set of defauli bindings and a

set of current ones. When a buffer switch is made, the default bindings are copied to the current ones
and then a series of procedures are run which modify the set of current bindings to be the correct

ones for the modes that are active on this butler.

A different approach would be to have a separate environment for each buffer which is created

with the buffer, is modified as modes are added, and is never thrown away. This approach leads to
efficiency problems because of the large amount of storage overhead associated with each buffer.

Sidenote Calculation: Assume that there are two dispatch tables of 128 commands each

and that each entry is four bytes (big enough for an address). This leads to IK bytes just

for the dispatch tables per buffer. In addition. you have another IK bytes for a default

table to usc when creating a new buffer. With a current/dcfáult dispatch table scheme,

you have 2K bytes per editor and so you are always as efiicicnt and better in the case

where you have more than one buffer. Procedural storage o\"crl]cad is essentially the

same. In one case, you invcke the state buildirtg procedure once (but iii general cannot

undefine the procedure) and in the other case, you invoke it with each buffer switch. It

does, on the ocher hand, take longer to switch buffers but the incremental time is usually

minimal.

There is an important flexibility tradeoff. With a mode list and the associated ddault/current

dispatch tables, it is possible to remove a mode from a buffer. If each buffer has its own dispatch

table which is incrementally changed whenever a new mode is added, it is not generally possible to

undo such changes. Note that while the dispa[cl] tables were used as an example, it is by no means

the on.ly variable whose value may change on a pcc-buffer basis.
t r

4.6 Kill and UnDo
An Emacs maintains a kill ring which is a place where all significant chunks of deleted text get

placed. (Those dclctcd with C-d and <de1> do not get saved.) 'I'hci'c arc commands to push and pop

things from die current spot in the ring and to rotate the ring so th:ít different text is at the current

spot. Typically, a maximum of ten or so items arc kept in the kill ring.

Moves and copies of text arc done with this ring. Thus, there is a mechanism by which the LlSCC

can recover accidentally deleted text. This type of error is t.hc most harmful cinc that can occur as it

il)\:'(}lYcs losing information.

The Interl.isp system (and others) p!'()\ ides a more general undo facility. IÍ)\()kil1g üiis facility

will cause the system to "undo" W|)¿l[C\'Cl" it 'was that you just did (íój" one c(}iíí[n¿ll1(l only: ii scumd

S-38

Mark of the Unicorn "l'he Command Loop

"undo" will undo the first one). In order to implement this facility, the system must keep track of

everything that you do and whaíits effects were.

While this general purpose facility has good applications, it is not clear that a text editor is one of

them. '["here are three basic areas where undo applies to text editing. These are: mor ing around in

text. dctcting text, arid file i/o. 1be Emacs approach and the undo approach will be compared for

each of these.

Moving around in texr is simply solving thc problem "I am at x and I want to be at y." The Emacs

solution involves translating this difference into a sequence of commands [o move the point fwm z CO

y. If a mistake is made in the process of impkmenting the solution, the problem is merely restated to

"I am at x' and I want to be at y" and it is re-solved. The undo solution differs by detccíing the error
('i.e., deviation from the intended solution), saying "undo" to put you back on the original path, and

proceeding. Ordinarily this difference in the two solutions is not very great.

If the accidentally typed command is one that moves you a great deal (e.g., move to the beginning

of the buffer), it is not always easy to recover with the Emacs solution because you might not

remember exactly where you were. Emacs solves this by having the large movement commands set

the mark to where you were. Thus, an interchange poiní and mark sequence will recover from the

error.

The undo actually helps less in the text dektion case. These, the "canonical" undo will only

recover the last command and, hence. the last delete operation. There is no provision for deleting

something, moving somewhere else. and undekting it. Nqt is there a provision for recording

multiple dclcúons. Thus, the Emacs approach is more flexible.

Finally is the case of file i/o. Different implementations of Emacs will do different things but the

basic idea is to let the user do what lie wants. Obvious things will be checked (the file was modified

by someone else since it was read in, for example) and such things as dclctions \t·iñ be double

checked with the user bur qc) recovery will be provided. On the other hand, not all systems can

support the overhead of the multiple copies of a file that would be required by undo, nor are there

always ways u) manage these extra files conveniently. (The DEC TOPS-20 operating system does do

a reasonable job at this, but it is far from perfect.)

The basic conclusion is that while an undo facility is nice, it is not ail that useful in the context of

an Emacs type text editor.

4.7 Implementation Languages
'I he language that die editor is implcmcnted in can greatly affect the ease of writirig, mítintaining,

and extending ir. Some brief comments will be made about several classes of progiamming
languages which might be considered as impkmcntaúon languages.

4.7.1 TECO

(This dincussion refers to M]"1'"I'ECO and not the 1'ECO which is qllpl)ol1c(l by DEC on sc\ckÚ of
its inachinc.z Ml'l' 'I'ECO is much more pou'crfuL) TECO is : i text editor. Its c{)|71In: ll)d l: ll}gll:ígc is

~ ~
SQ l)l)\vc1"ñll Ú7¿lt it is usable [l) write oÜICi' pr(}gI':}lÍ}s in. It is t: 'iúorcd 1()1' writing text ¿ll)[)|iL'¿lti()i)S :ind

S-39

The Command Loop Mark ofíhc Unicorn

so would seem a good choice. It has two major prdAems:

- It is the only language less readable than APL. A listing of a TECO program more
resembles umsmíssion line noise than readable text. Thus, maintenance is a problem.

- Its only implementation is on the PDP-IO/DEC 20 series ofcomputcrs. Implementations

on ocher machines involve asking the quesúon of what you write tbe TECO in.

4.7.2 Sine

Sine is a Lisp-like language tailored for text applications. Its only implementation [o date is on
Interdata 7/32 (or Pcrkin-Elmer 3200) minicomputers running the MagicSix operating system
developed at MIT. It is interesting because it is a language tailored for implementing editors. It is a

example of an "ideal" impkmcntaúon language. [A nderson] discusses this language in detail.

Sine is composed of two parts. Sine source code is assembled into a compact format. This object

code is then iníapretcd. It allows function rebinding and other such nicities and the interpreter

implements such things as memory management and screen redisplay automarical1y. Thus, the

resulting editor is nicely structured, with "irrelevant" details hidden away.

4.7.3 Lisp

Lisp is probably the best choice. if it is avaiíable. The Lisp rríusl however. have siring operations

in order to run with any efficiency. It is best suited for íhc linked line form of memory management

because of its view of memory management. Lisp provides a nice interpretive language fói' escaping

into [o easily write complicated editing macros. Ir also is quite readable and maiiminabic. It also

provides function rebinding. Some Lisps have compilers whose code can run very fast, so speed need

not be a problem.

4.7.4 PL/1,C,etc.
P[./l, C, and other such "systems languages" are widely available in reasonably efficient

implementations. They allow the straightforward manipulation oí complicatcd data structures and

yet remain generally readable. They specifically support cmtainmcnt of detail by independently

compiling several related routines and their internal data structures.

As a specific example of the latter, it is possible to write a buffer management abstraction in which

the only risible parts arc the entry points. 'lhe specific method chosen to represent the buffer

remains well hidden.

4,7.5 Fortran, Pascal, etc.
Fortran, Pascal, and other such languages arc the least acceptable (except, of course, for

assembler). In general, one must either simulatc a missinéz basic lC: l[.L|l'C (c.g,. Fortran and tFThen-
W

Else) or circumvcnr a "feature" (e.g., Pascal and lack of' multiple entry points [g procedures) in urdcr

to do useful work in such languages.
.

¶

S-40

Mark of the Unicorn User Interlace Hardware

.

5. User Interface Hardware
The cínly way for a user to interact with the text editor specifically or the containing operating

system generally is by means of the keyboard/screen combination. The chapter on Incremental

Redisplay' discusses the use oÍ' the screen in detail. This discussion is on the kcyboard part tjf the

combination.

5.1 Keyboards
The keyboard is the primary means of interacting with the system. In most cases, it is the only

way of doing so. Many thousands of characters will be entered in the course of a normal working

session. Thus, the keyboard should be tailored for the ease of typing characters. While the previous

statement might seem trite, there are a large number of keyboards on the market which are not very

good at all tor entering characters. Here is a discussion of the various keyboard features and why

they are or are not desirable:

N-KEY ROLLOVER is a highly desirabfe feature. Having it means that you don't have to let go

of orie key before striking die next. The codes for the keys that you did strike will be sent dui only

once and in the proper order. (The "n" means that this rollcwer operations will occur even though

every key on rhe keyboard has been hit.) The basic premise behind n-key roüover is that you will not

hit the same key twice in a row. Instead, you will hit a different key first and the reach for Ú1ál key

will narurally pull your finger off of the initia1 otíe. However, the timing req'uircments are quire loose

about exactly when your finger has to come off of the first key- Thus, typing errors are reduced.

Note that n-key rollover is of no help in typing double letters. Note also that shift keys and the

control key are handled specially and arc not subject to rollover.

AUTO-REPEAT has both good and bad sides to it. it is useful on a system which does not supply

such things in software but its drawbacks (leaning on a key can be deadly) wícíkcs it out of place on a

system with a sophisúcatcd editor. (If you want a row of "."s, just type '"rU 80 ,".)

'

.

TOUCH-TYPABIUTY is the single most critical feature. It is simply the ability to type the

useful characters wühout moving your fingers from the standard touch-íyping position (the "asdf"

and "jkl: " keys). As more and more people who usc keyboards are touch typists and can thus type at

a reasonable clip, they should not be slowed down by hqving to physically reach Lhcir bands out of

the basic position. It can take one or two SECONDS .j locate and type (Ill QLlt-Qf-L!lc-\'/ay kcy. (The
.

row above the digits is out-oFthe-way, as arc numeric key pads and cursor control keys.) One second
is from three to ten characters of time (30 -

100 words per minute). Thus, it takes less time in general

[o type a four or five character command from the basic keyboard than to type one "special" key.

Because of the desire for touch-typability, it is worth at Icast considering doing away with such

keys as "shift lock." They arc rarely, if ever, used and the keyboard space that they occupy is in high

demand.

Other things which keyboard manufacturéis have done can be deadly. Two examples are
illL]s[rative. First, the timing ()(1 the shift keys can be blown. '!'he result of doing Sc) is that \\'ÍlCñ
"Foo" is desired, "FOo," 'TOo," and "foo" are more likely to rcsult. 'I"hc other cxainµ\e is having a

small "sweet spot" Olí each key. Missing this "sweet spot" will cause both the desired and the
adjoining key to fire. Thus, suiking "i" can c: iusc "1()" to be sent.

S-41

,

User Interface Hardware Mark of the Unicorn

More generally, the packaging of a keyboard can be important. Sharp edges near the keyboard or
too tighdy packed keys can cause errors and fatigue.

5.1.1 Special Function Keys and Other Auxiliary Keys

Keyboard manufacturers seem to have decided that a plethora of special keys is more useful than

a more general approach. Thus. you can get "inserí line" or "cursor up" or--gasp--"PF r', These

keys, when pressed. will either do the function that they name, do something totally random, or send

a (usually pre-defined) sequence of characters to the computer. For reasons that have been covered

already, having the terminal do the named functions is a losing approach. Having them send pre-
defined sequences of charaaers is not much more useful. For example. the "cursor up" key might

send lj E and your editor has this sequence bound to MovcToEndofSentence. Note that this

problem exists even though the editor is fully extcnsibk (i.e., it is not an acceptable soIuúon to rebind

the t[E command in the editor to MovcUpI.ine) because the user might still want to usc the t[E

command for its original purpose. This problem can be avoided if the keys are down loadable with a

sequence of characters [o send. Thus, the editor can tel! the "cursor up" key Lo send, say, tP.

Aside from the problems of compatibility with whatever software is being nin, the placement of
the keys is the worst problem. As has just been stated, keys thac are off to one side rake too long to

hit. Thus, typing is slowed down considerably.

There is yet one more problem. Additional keys are not free and so ÚlC number of them that you

want to pay for is limited. However, it is desirable to have the ability Lo specify a large number of
functions (i.c., have a large number of codes that can be specified by the user). The number of
special keys required grows linearly with the number of codes.

5.1.2 Extra Shift Keys

A more genccal solution is to provide extra shift keys. These are key.4 that modify the actions of
the other keys. "Shift' and "control" are the [wo most common examples of' such keys. The Teleray

106! terminal has a "meta" key as an opÚon. This key sets the top (128) bit of the character that is

specified. There arc thus 256 codes that can be specified instead of the usual 128 from a ful! ASCII

keyboard.

The number of extra shift keys required grows as the log of the number of codes. Thus, 512, 1024,

and even 2048 code keyboards arc conceivable.

Fütding room tm the basic keyboard for these extra shift keys is not easy. That is one reason why

the removal of the "shift lock" key was suggested earlier. 1"hcsc kcys must be on the basic keyboard

in order to µrcscrvc touch-typability. (It does not take l\o[iccdbly longer to type the shifted version of

a key than the non-shifted version.) "¡'he Knig'u keyboards in use at the Ml'l' Artificial Intclligcnce

Laboratory have several shift keys. They arc, unfortunatdy, 1ocatcd líir enough away líum the basic

keyboard to prevctit touch-typability.

5.2 Graphical Input
Another my of imcracting \\·iúi a computer is by means cjt' a grb|[)llical input device. The

aL|\'al)t¿Í?,c ofa graphical input device is that it can reduce the ntimba" ()f"c()lT1!11¿l11ds needed. Such a

S-42

,

Mark of the Unicorn User Interface Hardware

device is used for pointing at sections of the screen. It is thus possible to specify items there without

having to specify the numerical address of the location or a command suing to move you there.

5.2.1 How It Can Be Used

A graphical inputdevice is used by thinking of the screen as one menu with the device pointing to

one entry. A cursor of some sort is used to provide feedback about which mcriu item is currently

selected. There are usually one or more "flags" úiat cart be specified conveniently from the device.

These flags provide control information. One flag is special and it provides "Z-axis" information.

The basic loop is to track the device with the cursor. When the Z-axis flag is entered, the currently

selcctcd action is taken. The screen is logically broken up into iwo or more sections. One section has

the text that is being edited. Moving the cursor here provides a com'enient way to move the point

around; typing a character could cause it to be inserted wherever the cursor is. Other logical screens

can specify menus of possible actions to select from. It is chus a very sophisitcated and general way of

specifying a position as an argument to a function.

The desired logical screen can be selected by means of the flags or, where the number of flags is

limited. by physical position of the cursor on the screen. The Lisp Machine editor and Xerox

PARC'S Bravo editor both use graphical input devices heavily.

5.2.2 Devices: TSD, Mouse, Tablet, joystick
There arc several types of devices Únaí are either avaüable commercially or expcrimcntaÜy. They

shall be discussed in order of usability.

A Touch Sensitive Display (TSD) is just whaE it sounds like. The screen is covered with a special

transparent material that you touch wiúi your finger and it reports the absolute x,y coordinates of

where you touched. No "flaé's" are available until someone can figure out how to track your finger as

it brushes the surface as well as when you press more firmly (creating a Z-axis touch). It is the nicest

of the devices, although 'obtaining feedback is hard because your finger covers the most interesting

part oldie screen.

A mouse is a small box with wheels. It reports the relative movement that you give it (i.e., "he

moved me n unils up and m units left") as opposed to absolute coordinates ("I am at position x,y").

It can have several flags. It moves along the floor, table, books, legs, or anything else.

A tablet is an absolute version of a mouse (actually, it came first). It can be run with an

electronically detected puck (a small box) or a pen. A physical tablet is required for detection md it
is usually about 15" x IS" x 1/2". The absolute coordinates arc rclarivc to tbc tablet. "I'herc can be

several flags for a puck; a pen usually only has Z-axis reporting.

a joystick is a small stick mounted on a couple of potentiometers. [t can rc[)()I't either absolute
position, first derivative (rclatit'c movement) or second dcrivativc. t\S it is moved small distances,
gcíring good rcsdution and ¿l\'oiding "stickincss" and "jumpiness" arc hard. It is generally not as

nice to usc as the others. Flags arc usually by means ofrcgular kcybmt'd keys.

Finally, an jlT): }?in¿|['y but us,cf"u[device sNmld be considered. 'l'h,it ÍJc\'icc is t] f{)ot-(")pcratcd

S-43

User Interface Hardware Mark of the Unicorn

mouse. Using your feet rather than your hand to operate the mousc solves one of most nagging

problems of any of these devices, which is that your hands must leave the keyboard with the usual

and aforementioned results.

These devices all assume a high bandwidth connection to some computer. Such a connection is

not practical over, say, 30 cps phone fines. What must be done in that case is to have the device

report to the terminal, which moves the cursor around and reports when a flag has been hit. Thus, it

is possible to supply the immediate feedback that is necessary. A 30 cps connection would be quite

satisfactory for this operation (but probably not satisfactory for the screerí refresh that would follow,

say, the selection of a menu).

,

.

-.
P">^

- .

-

S-44

Mark of the Unicorn The World Outside ofText Editing

6. The \/Vorld Outside of Text Editing
Text editors have been used for many things besides editing text and, in the future, they will

undoubtcdly be used for more diverse things. Here are some examples:

A texi editor can be the primary interfáce to a mail system. Messaizes can be composed by editing
~

a buffer and sent with a special command. Mail can be read and managed by reading ii into a buffer

and haüng special commmds to perform such operations as move (o the next message and

summarize all messages. Having the full power of a text editor available can make such things as

undcleting an accidentally deleted message or copying the text of a message that is being replied to

quite easy to implement.

A text editor cari be the primary interface to the operating system. Command lines can be edited

with the full power of the editor before being evaluated. The past record of interaction can be kept

and parts of it examined or re-used in new command lines. if the operating system does riot have

support for advanced terminals, a display editor can offer its interface for use by other programs.
Other programs would then take advanrage of the terminal independence of the editor.

Nternative!y, other programs would insert their output into a buffer and the editor would become an
entire terminal management system.

t\ text editor can be used by a debugger. Multiple buffers and multiple windows can be used to

examine (perhaps multiple) source files, interact with the debugger. and see the output/input of the

program as it runs, In additions, a debugger might rake over an extra window or two to do such

things as constaritty show selected variables.

,'\ text editor can be an interface to a complicated file. For example, an indexed sequential file cati
be updated by providing editor commands to read and write entries (adding or deleting them can be

managed as well}. Within the entry, the full power of the editor is available for editing it.

A text editor can provide a smooth interface to the tile system. A directory can be read by the

editor and "edited" by the user. Files can be deleted or othcrwisc changed in a smooth manner by

merely moving iq the file name and giving a command (e.g., "delete").

(All of the preceding are cunenúy subsystems within Multics Emacs. They are enthusiasúcally

accepted by the user community.)

A text editor can be used to examine and-"whcn absolutely necessary--modify ob jcct files. It can
thus replace various patching programs.

A text editor is an integral part of a word processing system. Such systems oRen Í1d\é features like

automatic pagination and continual jusliñcation (the document in general and the current I)¿!ragr¿lpll

in particular arc constantly kept right justified by. rcjustiñc.ítion after each mo(|ÍIjc: }(iol1). These
features exist in the ALTO editor Bravo, \ñ1"ÍKCij at Xerox Pi\RC as well as a number of che word

processing packages supplied currently for micro computers.

A text editor can deal wi[h proportionately spaced fonts as well ¿is fixed with ones. (The redisplay

gas a lot more complex.)

" "l'hc editor can be interfaced \\ ith the compiler to incrementally compile and/ur check a program.

5"4S

The World Outside of Text Editing Mark of the Unicorn

Here, the principle of "sticky compiling" must be introduced. Assume that a program has been

properly compiled. Now, change a statement by delcting a few characters and inserting a few others.

The editor/compiler combination should not give an error message even though the program has

been temporarily illegal. Rather, it should be quiet until you Li¿i\'c either finished entering the new

statement or it is clear that you are makiog a mistake. (Deciding when you have made a mistake can
be hard.) The editor/compikr ccmbinatiorí is generally also interfaced with a debugger. This trio

supplies the essence of an integrated program development system.

In summary, a text editor can be used for a wide variety of things besides editing text. Taking the

intended usc inío account when designing a new system can provide useful feedback and new

constraints on the design of the system as a whole.

S-46

Mark of' the Unicorn Annotated Bibliography

I. Annotated Bibliography
This bibliography includes many different types of documents. Some of the documents are user

manuals for various editors. Others of them describe the impiemcnraúon of specific editors. Still

others discuss language tradeoiís or inpuüoutp Lit system interfaces,

They are grouped by the type of editor that they refer to. Each entry is annotated to help place it

in pcrspccúve. Documents that are marked with "*" are especially valuable or interesting.

6.1 EmacsType Editors
There are four prinicipal implementations of Emacs type editors and diere are enough documents

to justify their separate listing.

6.1.1 ITS EMACS

Ciccare11i, Eugene
An Introduction to the EMACS Editor
MIT Artificial Intelligence Laboratory, MIT AI Lab Memo #447,

Cambridge, Massachusetts
January 1978

A primer on the editor's user interface.

*Sta11man, Richard M.
EMACS: The Extensible, Customizable, Se7f-Oocumenting, Display

Editor
MIT Artificial Intelligence Laboratory, AI Memo #519,

Cambridge, Massachusetts
june 1979

Provides arguments for the Emacs philosophy.

µ n-

Stallmarc Richard M.
' " .

'. '

Structured Editing with a Lisp
letter in Surveyor's Forum (includes a response by Sanderwall)
Computing Surveys, vol 10 #4, page 50S
December 1978

This is a response to the Sanderwajl papel" (referenced later).

On-line Documentation
MIT-AI: .TECO.; TECORD >

A more detailed command list for TECO

MIT-AI: .TECO.: TECO PRIMER
A primer for TECO

MIT-AI: EMACS; EMi\cs CHART

A four page command list for Emacs

S-47

Annotated Bibliography MarkoftheUnicorn

MIT-AI: EMACS; EMACS GUIDE
A detailed user interface manual

MIT-AI: EMACS; EMACS ORDER

A more detailed command list for Emacs

6.1.2 Lisp Machine Zwei

*Weinreb, Daniel L. & Moon, David

The Lisp Machine Manual

MIT MtifiUaj Intelligence Laboratory, Cambridge, Massachusetts

january 1979

The user interface for Zwei.

Weinreb, Daniel L.
A Real-Time Display-Oriented Editor for the Lisp Machine

S.B. Thesis, MIT Electrical Engineering and Computer Science
Department, Cambridge, Massachusetts

January 1979

How Zwei works internally.

6.1.3 Multics Emacs

Greenberg, Bernard S.

Emacs Extension Writer's Guide

Order #CJ52, Honeywell Information Systems, Inc.
(In publication)

How to write extensions.

Greenberg, Bernard S.

Emacs Text Editor User's Guide

Order #CH27, Honeywell Information Systems, Inc.
December 1979

The user interface.

*Greenberg, Bernard S.

"Multics Emacs: an Experiment in Computer Interaction"
Proceedings, Fourth Annual Iloneywell Software Conference,

Honeywell Information Systems

March 1980

A summary of MEPAP (referenced below).
Also, MIT-AI: BSG; PIMEPAP >

S-48

Mark otthe Unicorn Annotated Bibliography

Greenberg, Bernard S.

Read-Time Editing on Multics
Multics Technical Bulletin #373

Honeywell Information Systems, Inc., Cambridge, Massachusetts

April 1978

On-Line Documentation:
(by Greenberg, Bernard S.)

MIT-AI: BSG; LMEPAP >

Why Lisp was chosen for the implementation
language

* MIT-AI: BSG; MEPAP >

A detailed history of Emacs in general and the
Multics implementation in specific.
Very valuable.

MIT-AI: BSG; R4V)
A proposal for a terminal independent video
terminal support package.

MIT-AI: BSG; TTYWTN >

a look at the good and bad features of video
terminals.

6.1.4 MagicSix TVMacs

*Anderson, Owen Ted
The Design and Implementation of' a Display-OrÍented Editor

Writing System

S.B. Thesis, MIT Physics Department, Cambridge, Massachusetts
January 1979

How TVMacs works internally. It concentrates on describing not
the editor itself but rather the implementations language: SINE.

Linhart, Jason T.
Dynamic Multi-Window Terminal Management for the MagicSix

Operating System
S.f3, Thesis, MIT Electrical Engineering and Computer Science

Department, Cambridge, Massachusetts
June 1980

A video terminal management system. Contahís many useful
comments on terminal independence and redisplay problems.

6.1.5 Other Emacs

This section covers editors which tiá\'c the same general user interface as an Eiríacs (c.g., screen-
oricntal, similar key bil1LliI)t's) but arc not cxtensiblc or oÚicrwisc fail noticably short of the Emacs

philosophy.

S-49

AnnocatedBibliography
- hlarkoftheUnicorn

Finseth, Craig A.
VINE Primer
Texas Instruments, Inc., Central Research Laboratories, Systems

and Information Sciences Laboratory,, Dallas, Texas

August 1979

User interface manual for the complete novice.

Schiller, Jeffrey I.
TORES: The Text ORiented Editing System

revised from S.B. Thesis, MIT Electrical Engineering and
Computer Science Department, Cambridge, Massachusetts

june 1979

On-Line Documentation
CMU-1OA: fine.{mss prt}[s20Omk50]

User manual for FINE, running at Carnegie-Mellon
University. Written by Mike Kazar.

6.2 Non-Emacs DisplayEditors
0

Bi1ofsky, Walter
The CRT Text Editor NED

-- Introduction and Reference Manual

Rand Corporation, R-2176-ARPA

December 1977

Irons, E, T. & Djw"up, f. m.

A CRT Editing System

Communications of the ACM, \joi. 15 #1, page 113

january 1972

joy, William - t-" ',.,
Ex Reference Manual; Version 2.0' "

"
" "

Computer Science Division, Dept of Electrical Engineering and

Computer Science, University of California at Berke7ey

April 1979

joy, William
An Introduction to Display Editing with Vi

Computer Science Division, Dept of Electrical Engineering and

Computer Science, University of Californ'ia at Berkeley
April 1979

Kanerva, Pentti
TVGUID: A User's Guide to TEC/DATAMEDIA TV-Edit

Stanford University, Institute for Mathematical Studies in

5-SO

MarkoftheUnicorn AnnotatedBibliography

the Social Sciences
1973

Kelly, Jeanne
A Guide to NED: A New On-Line Computer Editor
The Rand Corporation, R-200O-ARPA

july 1977

Kernighan, Brian W.

A Tutorial Introduction to the ED Text Editor
Technical Report, Bell Laboratories, Murray Hill, New Jersey
1978

MacLeod, I. A.

Design and Imp1ementatiart Of a Display-Oriented Text Editor
Software Practice and Experience, vQi. 7 #6, page 771

November 1977

Weiner, P., et. a).
The Yale Editor "E": A CRT Based Editing System

Yale Computer Science Research Report 19

April 1973

Seybold, patricia B.
TYMSHARE's AUGMENT

-- Heralding a New Era, The Seybo1d

Report on Word Precessing
Vol. 1, No. g, 16pp, ISSN: 01(30-9572, Seybold pub1icaticms, Inc.,

Box 644, Media, Pennsy7vania 19063

October 1978

On-Line Documentation:
SAIL: E.ALS[UP,D0C]

User manual again. Stanford University.

6.3StructureEditors

Ackland, Gillian M., et al
UCSD Pascal Version 1.5 (Reference Manual)

Institute for Information Systems, University of
California at San Diego

Donzeau-Gouge, V.: Huet, G.; Kahn, G.; Lang, B.; & Levy, J.J.
A Structure Oriented Program Editor: A First Step Towards

Computer Assisted Programming
Res. Rep. 114, IRÍA, Paris

5-Si

c1nnQI: í[cdBibIiography Mai'kofthe Unicorn

April 1975

,

Teitelbaum, R. T.
The Cornell Program Synthesizer: A Microcomputer

Implementation of PL/CS

Technical Report TR 79-370, Department of Ccmputer Science,
Cornell University, Ithaca, New York

6.4OtherEditors

Benjamin, Arthur J.
An Extensible Editor for a Small Machine With Disk Storage
Communications of the ACM, vol. 15 #8, page 742

August 1972

Talks about an editor for the IBM 1130 written in Fortran.
Not extensible at all.

Bourne, S. R.
A Design for a Text Editor
Software Practice and Experience, vol 1, page 73

january 1971

User manual

Cecil, Moll & Rinde

TRIX AC: A Set of General Purpose Text Editing Commands

Lawrence Livermore Laboratory UCID 30040

March 1977

Deutsch, L. Peter & Lampson, Butler W.

An On-i-inc Editor
Communications of the ACM, vol. 10 #12, page 793

December 1967

QED user manual

Fraser, Christopher W.

A Compact, Portable CRT-?ased Editor
Software Practice and Experience, vol. 9 #2, page 121

February 1970

Front end to a line editor.

Fraser, Christ.opher W.

A Generalized Text Editor

S-52

Markofthe Unicorn AnnotatcdBibliugrapby

Communications of the ACM, vol. 23 #3, page 154

March 1980

Applying text editors to non-text objects,

Hansen, W. j.
Creation of Hierarchic Text with a Computer Display
Ph.O, Thesis, Stanford University
june 1971

Kai, joyce Moore
A Text Editor Design

Department of Computer Science, Univ of Ill at Urbana-Champaign,

Urbana, Illinois
july 1974

Describes both internals and externals on the editor, However,

the design is a poor one.

Kernighan, Brian W, & Plauger, P. J.
Software Tools
Addison-Wesjey, Reading, Massachusetts
1976

This book has a chapter which leads you by the hand in
implementing a simple line editor in Ratfor.

*Roberts, Teresa L.

Evaluation of Computer Text Editors
Systems Sciences Laborary, Xerox PARC

November 1979

A comparative evaluation of four tu."x.t editors. Quite well done.

Unfortunately, it does not include Em"zs'(it uses DEC TECO

instead).

Sanderwall, Erik
Programming in the Interactive Environment: the Lisp Experience
Computing Surveys, vol. 10 #1, page 35 "

March 1978

Talks about the editor for InterLisp.

Sneeringer, James

User-lnterface Design for Text Editing: A Case Study

Software Practice and Experience, Vol 8, page 543
1978

S-53

AnnotatedBíbliography Markofthe Unicorn

User manual and a discussion of user interface concepts. '

Teite1man, Warren '

InterLisp Reference Manual

Xerox Palo Alto Research Center, palo Alto, CaTifornia
October 1978

How to use the InterLisp (non-display) structure editor.

van Dam, Andries & Rice, David E.

On-Line Text Editing: A Survey

Computing Surveys, Vol. 3 #3, p. 93

September 1971

Contains a general introduction to the problems of text
editing. Out-dated technology, though.

S-54

Mark of the Unicorn Some Implementations of Emacs Type Edimrs

11. Some Implementations OÍ Emacs Type
Editors

This is a pmial list and is iixcndcd to provide a general guide arid not a comprehensive list.

Name System Implementation
Language

TECO ITS Midas (assembler)

Full Emacs

EMACS ITS TECO

Emacs Multics Lisp
Emacs Tops-20 TECO

TvMacs MagicSix Sine
Zwei Lisp Machine Lisp

Partial Emacs

FINE Tops- 10 Bliss
MINCE CP/M C

otv MagicSix Pl-ll
Tores UNIX C

VINE VAX/VMS Fortran

S-55

Mark of the Unicorn Partial Emacs Command List

Ill. Partial Emacs Command List
This list is of the command set that is generally common to all of the fiill Emacses. Specific

command bindings can and do vary from implementation to implementation. This list is not

complete, nor can it be as commands are constantly being added and changed.

Command designations rcflect both the name and the manner in which they are entered. For

example, the C-f command is named "control r' and it is entered by typing the tF character. Most of

the C- commands can be given directly from an ASCII keyboard. Escapes are provided for those that

are not. 'I"he M-a coinmaad is named "mela a" and it is entered from an ASCII keyboard by typing

the <esc> key and then the command. Thus, M-a is given by typing <esc> a and M-C-a (or C-M-a) by

typing<esc> tA.

C-@ place the mark at the point
C-a move to the beginning of the current line
C- b move backward one character
C-c a prefix for control-meta commands. see below
C- d delete the following character
C-e move to the end of the current line
C- f move forward one character
C-g abort: abort execution of the current command and

return to the edit loop
C -h same as C-b
C- i insert <tab>
C_ j insert <new1ine>; insert <tab>
C-k delete the text to the end of the current line; if at

the end of the line, delete the newline
character; push deleted text onto the kill buffer

C-1 rebuild the display from scratch
C -m insert <new1ine>

-

C- n move down one line staying in as nearly the same
horizontal position as possible

C-o insert <new1ine>; move backward one character
C- p move up one line staying in as nearly

the same horizontal position as possible
C -q insert the fol1owing character as typed
C

- r search for a string before the point;
see C-s for details

C- s search for a string after the point.
There are lots of things that you can do

typing characters builds up the search string
<dei> deletes the previous character
C-s search for the next occurrence of the string
C- r search for the previous occurrence
C-g abort
<a1t> terminate search: if the string is null, the

previous string is used
C- t interchange the characters on each side of the point,

leaving the point after the second one; if at
the end of a line, interchange the previous

' two characters
C

- u universal argument.

S-57

PartialEmacsCommandLis[Mark ofthe Unicorn

There are two forms
C-u C-u

....
(command) do <command> 4, 16, 64, 256,

...times depending upon the number of C-us.
C-u <integer> <command> do <ccmmand> <integer> times,
(e.g., C-u 3 5 C-f means to C-f 35 times)

C-v move the bottom of the current screen to the top of the
screen

C-w delete the text between the point and the mark; push

the deleted text onto the kill buffer
C-x a prefix for control-x commands. see below

C-y copy the top item from the kill buffer to the point;
place the mark at the beginning of the
block and the point at the end

C-z return to superior
C_[a prefix for meta ccmmands, see below

C-\ a prefix for meta commands. see below
C~]
C-t a prefix for control commands. See this list
C"_

1"#$%&'()*+,-./ insert themselves
0123456789
:;<=>7@

A..Z
[]'
a,.z
{ }~

bs,back space

same as C-h

tab same as C-i
1f,1ine feed

same as c"j
cr,carriage return,return

same as C-m

esc,escape
same as C-[(the <a1t> key)

de1,delete,rubout
delete the previous character

C-<ait> you are now typing at whatever is running the editor

C-7. ask for the old string, then the new one and replace

all occurrences of the old with the new

C-l give help
C-< place mark at the beginning of the buffer
C-> place mark at the end of the buffer
C-? give help

C-x C-b print a list of ail buffers and associated 'information
C-x C-d display the current directory -

"

C-x C-f ask for the name of a file and read it into a buffer
whose naine is derived front the filename; if

S-58

Mark ofthe Unicorn Partial EmacsCommand Lisí

there is a conflict with an existing
· buffer, you are asked for a name to use

C-x C-i indent the region
C-x C-1 convert the region to lower case

, C-x C-o delete the blank lines around the
point

C-x C-p move to the top of the current screen; place the mark

at the end of the current screen
C-x C-r ask for the name of a file and read it into the

current buffer
C-x C-s write out current buffer to the current filename if it

has been modified
C-x C-u convert the region to upper case
C-x C-w ask for the name of a file and write the buffer to

that file
C-x C-x exchange point and mark
C-x 1 use one window
C_x 2 use two windows
C-x 3 use two windows and stay in the first
C-x = print where you are in the buffer
C-x A ask for the name of a buffer; append the region to that

buffer
C-x B ask for the name of a buffer and put you there
C-x D edit directory
C-x F set the fill column to the horizontal poSition
C_x I run INFO
C-x M send mail
C-x O in two window mode go to other window
C-x R read mail
C-x t grow window by
C-x a same as C-x A

C-x b same as C-x B

C-x d same as C-x D

C-x f same as C-x F

C-x i same as C-x I
C-x m same as C-x M

C-x o same as C-x O
_ p,.- "

C-x r same as C-x R ' - '"
-

:"'

M-" ditto. copy the word directly above onto this line
M-% QueryReplace. ask for an old string and a new string

At each occurrence of the old string, it
is displayed and you are asked for a command

<sp> replace and go on
<de1> don't" replace and go on-

, replace and wait
. replace and exit
<a1t> exit
t return to previous old string (jump to mark)
C-w delete old string and enter C-r recursively
C-r normal edit, but recursively invoked
C-1 redisply screen
! do not ask any more

S-59

h

5-bl

Mark ol'the Unicorn Partial EmacsCommand List

there is a COnflict with an existing
· buffer, you are asked for a name to use

C-x C-i indent the region
C-x C-1 convert the region to lower case

,
C-x C-o delete the blank lines around the

point
C-x C-p move to the top of the current screen: place the mark

at the end of the current screen
C-x C-r ask for the name of a file and read it into the

current buffer
C"x C-s write out current buffer to the current filename if it

has been modified
C-x C-u convert the region to upper case
C-x C-w ask for the name of a file and write the buffer to

that file
C-x C-x exchange point and mark
C-x 1 use one window

C-x 2 use two windows

C-x 3 use two windows and stay in the first
C-x = print where you are in the buffer
C-x A ask for the name of a buffer; append the region to that

buffer
C-x B ask for the name of a bufTer and put you there
C-x D edit directory '

C-x F set the fill column to the horizontal position
C-x I run INFO
C-x M send mail
C-x O in two window mode go to other window

C-x R read mail
C-x t grow window by
C-x a same as C-x A

C-x b same as C-x B

C-x d same as C-x D

C-x f same as C-x F

C-x i same as C-x I
C-x m same as C-x M

C-x o same as C-x O
-

),,- "

C-x r same as C-x R ' - "
-

:"'

M-" ditto. copy the word directly above onto this line
M-% QueryReplace. ask for an old string and a new string

At each occurrence of the old string, it
is displayed and you are asked for a command

<sp> replace and go or
<de1> don't replace and go orr

, replace and wait
. replace and exit
<a1t) exit
t return to previous old string (jump to mark)
C-w delete old string and enter C-r recursively
C-r normal edit, but recursively invoked
C-1 redisply screen
! do not ask any more

S-59

Partial Emacs CommandList Mark ofthe Unicorn

M_(nsert "()": leave point between them
M-< move to the the beginning of the current buffer
M-> move to the end of the current buffer
M-? help
M-A move to the beginning of the current sentence
M-B move backward one word
M-C capitalize the following word
M-D delete the following word; push deleted text onto

the kill buffer
M-E move to the end of the current sentence
M-F move forward one word
M-G fill text in the region
M-H move to the beginning of the current paragraph;

place the mark at the end of the
current paragraph

M-L convert the fo11owing word to lower case
M-Q fill the current paragraph (make each line as long

as possible); C-u M-Q means do justify
(same, but make right margin even)

M-S center the current line on the screen
M-T interchange the adjoining words, leaving the point

after the right hand word
M-U convert the foIÍowing word to upper case
M-V move the top of the current screen to the bottom of

the screen
M-W push a copy of the region onto the kill buffer
M-X ExecuteCommand '

M-Y (after C-Y) delete yanked text and yank previous
kill buffer entry

M-[move to the beginning of the current paragraph
M-\ delete the <sp> and <tab>s around the point
M-] move to the end of the current paragraph
M-a same as M-A

M-b same as M-B

M-c same as M-C

M-d same as M-D

M-e same as M-E

M-f same as M-F

M-g same as M-G

M-h same as M-H

M-1 same as M-L

M-q same as M-Q

M-s same as M-S

M-t same as M-T

M-u same as M-U

M-v same as M-V

M-w same as M-W

M-x same as M-X

M-y same as M-Y

M-<de1> delete the previous word; push deleted text onto the

kill buffer ',
.

C-M-) move up one level of list structure backward

S-60

Mark ofthe Unicorn Partial Emacs Command List

C-M-(move up one level of list structure forward
C-M-A move to the beginning of the current defun

C-M-B move backward one S-expression
C-M-E move to the end of the current defun
C-M"F move forward one S-expression
C-M-G format the current S-expression
C-M-H move to the beginning of the current S-expmssion;

place the mark at its end
C-M-K delete the f6ljowing S-expression; push the

deleted text onto the kill buffer
C-M-O move the rest of this line vertically down,

inserting <tab>s and <sp>s as needed
C-M-T interchange the adjoining S-expressions, leaving the

point after the fo71owing S-exprssion
C-m-w the following delete-and-push will be part of the

current entry in the kill buffer
C-M-<de1> delete the preceeding S"expression; push

the deleted text onto the kill buffer

«

4

5-6L

