Mark of the Unicorn Mince User's Guide

Section 1: Gverview and Intreoduction

1.1 What is Mince?

Mince is a display-screen oriented text editoy,
originally optimized for use on smzll computer systems. It 1is
patterned after an editor <called '"Emacs", a text editor

heretofore found generally at very large researchi computer
installations.

1.2 Mince for Text Entry ‘

~ Mince tText enftry has been made as easy &s possible for
the terminal operator. 7To enter text into a document, merely
type 1t. No complicated commands are needed for this inherently
simple operation. There are no "input" or "edit"™ modes, zs in
some text editors. Text which is entered is displayed azs it 1is
typed 1in. The screen display always shows text exactly as it

will appear in the computer file and upon output; what you see
is what you get.

1.3 Mince for Editing Text

Editing with Mince 1s easily and quickly learned. In
general, Mince commands are mnemonically assigned to keys. For
example, the editor commands which meove forward in the text are
associated with the "F" key and commands which move backward in
the text are associated with the "B" key. Mince has an
extremely powerful command set, but with the knowledge of only
a small subset of those commands, most standard editing tasks
can be accomplished with ease. Each key performs a command, and
the result of the command happens immediately. There is no need

to type carriage-returns to enter the editing commands. The
screen display reflects +the result of these commands as they
are typed. Tnis mnemonic c¢command-naming and continuous

interaction with the text rather than using a structured set of
"editing requests" make Mince easy for the novice to learn yet
efficient for experienced users to cperate. The
continuously-updated display helps all classes of users Kkeep
track of exactly what they are doing to the text.

1.4 Mince for Zditing Programs

Programmers as a <c¢lass appreciate superior speed and
power from their editors. Mince supplies both. Several programs
may be edited at once, and many of the textual editing features
regarding sentences, words, and paragraphs are easily used with
structured languages where such concepts translate to tokens,

4-2



Mark of the Unicorn Mince User's Guide

sfatements, and vlocks.

1.5 Mince and the Future

Mince 1Is an editor which will not become obsSclete with
changes in hardware; 1t easily adapts to different terminal
Lypes without extra (and expensive!) software. Furthermore,
Mince is written in a high-level language whose
transportability will accompany the program development cycle
for several years to come. The time spent learning Mince will
not be wasted when 8080/Z280 systems have been replaced by newer
hardware.

- —— e ————

People who have not read either the Programmer's
Introduction te Mince or the Mince Lessons should stop here
rather than continuing with this user's guide. New users are
best advised to take one of the intrcductory sets of lessons,
sit down at a terminal, and get started. Mince is easiest to
explain and learn by using it!

1.6 A Mince Glossary

The follcowing symbols or terms are used in the command
descripticns presented belcow, Familliarity with these items 1is 1
prerequisite for complete understanding of the Mince commands.

Point - This 1s the position in the text where editing occurs.
A1l text which is typed into the document 1is entered at
the Point and all text which is deleted is remcved there
as well. Each text buffer has its own Point. The Point is
always BETWEEN any two characters, The cursor 1s always on
the second of those two; hence the- Point is just before
the character that the cursor is on. Thus, many Mince
commands do nothing but move the curscor tc the right place
on the screen (and thus mcve the Point to the right place
in the text) to perform the next editing operation. It 1is
perfectly easy to think of editing in fterms of the curscr,
buf certain text eniry and deletion operations can only be
explained properly by thinking of this Point as between
two characters,

Newline - This item is the character which causes Mince's
display *to move the curscr on the sScreen to the beginning
of the next line. Newlines are always typed by hitting the
carriage~return key on the terminal keyboard. Newlines are
translated to the carriage-return/linefeed combination
during text output, but they are treated as single
characters for the purposes of text entry and deletion,.
During string input for commands which ask for string

4-3



Mar x

move

word

of the Unicorn Mince User's Guide

arguments, the Newline will display as <NL>, 1in order.to
definitely indicate that a Newline 1is part of the string
tc be passed to the command.

- This verb always means "move the Point" or '"mcve the
cursor". All Mince editing operations are done by "moving
to" the appropriate place 1in a document (and o¢n the
secreen) and making whatever textual changes are necessary
there.

- A word, as defined for the word movement and deletion
commands, begins at the first alphanumeric character found
and extends until a non-alphanumeric character.

sentence - A sentence, as defined for the sentence movement and

deletion commands, begins at the first word found and
extends until a punctuation mark 1s found.

paragraph - A paragraph, as defined for the paragraph movement

or filling commands, extends until either a blank line
{two Newline characters in & row), 2 line beginning with a
tab {a Newline followed by a tab character), or a line
beginning with an at-sign ("@") or period (".") (used by
some text formatters to begin commands).

Mark - This is zan invisible indicator in the text buffer. It
may be set at a particular position by using the "Set
Mark" command. Like the Point, it rests between two
characters. Also like the Point, there is cne Mark for

noon

npMn

MTM=C -

<CR>

<LE>

each text buffer.

- This is the prefix which we will wuse in the text to
refer to Contrel commands. These are formed by holding

down the key marked "CONTROL™, "CNTRL", "CTRL", or the
like on the terminal keyboard while typing another
character, usually alphabetic. Control characters are

displayed on the screen as a caret or uparrow (") fellowed
by that character.

- This 1is +the prefix which we will use in the text to
refer to Meta-commands. These are formed by typing the key
marked "ESCAPE", MESC", MALT", or M"ALT MQDE" on the
terminal, then typing another character.,

" <« This prefix is for the Meta-Control-commands. It is
formed by typing the ESCAPE key, then typing the
appropriate Contrel-command.

~ A symbol used to refer to either i{he carriage-return key
(labelled "RETURN", "CR"™, or "ENTER"™ on the keyboard).
This key sends ASCII "M, decimal 13.

-~ A symbol used to refer to either the linefeed key
(labelled "LINEFEED" or "LF"™ on the keybcard, if it is

by



Mark of the inicorn Mince User's Guide

present at all). This key sends A3SCII *J, decimal 10.

<DEL> ~« A symbol wused to refer to either the delete key
{labelled "DELETE"™, "DEL", or "RUBQUT"™ on the keyboard).
This key sends ASCII °7?7, decimal 127.

{E3C> - A symbol wused to refer to either the escape key
(labelled "ESC", M™ALT", "ESCAPE™, or "ALTMCDE"™ on the
Keyboard). This key sends ASCII “[, decimal 27.

{TAB> - A symbol used to refer to the tab key. This key sends
ASCII "1, decimal &,

{BS> - 4 symbol used to refer to the backspace Kkey {(sometimes

labelled "BS" on the keyboard). This key sends ASCII “H,
decimal 8.

4-5



Mark of the Unicorn Mince User's Guide

Section 2: The Display

The Mince screen display is divided into three areas. The
major portion is the "window", where the text to be edited 1is
displayed. Two smaller portions, the "mode line" and the "echo
line™, appear at the bottom of the screen, beneath the windcw.

2.1 The Window

The window occupies the upper portion of the screen. This
area is where all text which is typed and all text which 1is
about %to be modified is displayed. The window displays about
twenty or so consecutive lines of the document which 1is being
edited. You may think of this as a window onto a larger entity
of text, the entire document. The purpcse of this window 1is to
always show what the portion of the document contained in it
looks like. Therefore, as text is5 inserted or deleted, the
sereen updates immediately. A fundamental principle of Mince 1is
that what you see on the screen is what you actually nave in
your text,.

2.1.1 The cursor

The screen display always has the terminal's cursor at
scme point in it, and as you will see, while the cursor is in
the window, it is at the position where Mince commands will
affect the text. The cursor is always positioned to the right
of the Point in the document. {You may think cf this as the
Point being attached to the left edge of the cursor instead.)
This property makes the cursor a very important object in the
Mince display. Many Mince commands deo nothing but move the
cursor to the right place on the screen (and thus move the

Point to the right place in the text) to perform the next
editing operation.

2.1.2 Redisplaying the window

Since the window 1s always supposed to look exactly 1like
its twenty-line portion of the text, any changes in the text
must cause changes to the window display. Terminals have only
one cursor, and screen updates are always performed at the
cursor, 3Since the text updates are also performed there,
(Remember, the Point is attached to the cursor while the curscr
is in the window.) Because of this, during screen update the
curscr may move a great deal and there is no way to tell where
the cursor 1is "supposed to be", (and thus where the Point
actually 1s in the text) except by memory or dead reckoning.
Fortunately, this update cccurs very rapidly, and the cursor
always returns in the window to where the Point is in the text.

4=



Mark of the Unicorn Mince User's Guide

It 1s possible to type very very quickly or to execute 3o
many editor commands which have such large effects on the text
that the screen update will not be able to keep up. In this
case, Mince assumes that you know what you are doing and are
not relying upcn the screen redisplay. In these czses, it keeps
trying to update the display to reflect the text in the buffer

and the curscr's position in 1it, but it always processes
typed-in characters before deing any other work. This priority
can cause the screen to lag yocur typing somewhat. When you

finally stop typing at full tilt, Mince will then update the
sgreen to reflect the final state of the text in the window.

2.1.2 Specizl characters in the window

>pecial characters In The ASTTI character set which are
nermally non-printing are displayed in Mince's window. This
allows you Lo edit any type of file at all, with no worries
about whether or not any information is missing from the screen
displays. All the nonprinting characters can be represented by
the A3CII ccntrol characters. The way Mince displays control
c¢haracters on the display screen 1s by printing a caret or
uparrow ("""} followed by the character which represents the

contrcl code in  the ASCII collating sequence. (For example,
ASCII Contrcl E, decimal 5 (also known as ASCII "ENQM™), will be
displayed as M""EM.) All commands treat these as single

characters, except the screen display which translates them for
output. The Mince commands act on the "text" itself, not on the
printed representation of it.

Mince displays the tab character (ASCII "I, decimal 9) as
moving the text which follows it on the line over to the next
tab stop, rather than as a "~I". It displays a Newline as
moving text whieh follows it to the beginning c¢f the next line
of the screen. Occasionally, Mince will display a Newline where
there is not really one in the text. This is the cnly excepticn
to the rule that what is oan the screen 1is identical to what 1is
in the text. If the ftext to be displayed would have run cff the
right-hand edge of the screen, Mince will display the rest of
the line on the next line of the screen. It 1s usually easy
enough %to identify this condition, as the last werd on the
too-long line will frequently be cut in half.

2.2 The Mode Line

The second screen area of major importance 1s the line
just below the text window. It is called the "mode line" and
should look something like:

Mince Version 2.5 (Normal) bufi: X:FIRSTHNAM.LST -23%- *+

This line tells you several things, namely:
(1) You are talking to Mince rather than the operating system.

47



Mark of the Unicorn Mince User's Guide

(2) You are typing in a mode called "Nermal". In this mode, all
commands typed are treated just as they are explained in
the Mince Command List. There are other modes available,
for example "Fill" mcde or "Page" mode, esach of which
changes the Mince command set slightly. (See 3Section 6.)

(3) You are editing text in a buffer named "buf1". This name 1is
used when sSwitching from buffer to buffer. (Buffers are
explained in Section 5.)

{(4) You are editing a file called "X:FIRSTNAM.L3T". This name
is used when reading and writing files from the text buffer
and the file system. (3See Bections 4 and S5.)

(8) The Point is approximately 23% of the way through the file.
{3ince the measure is only approximate, you may never 3ee
100%, even if you are at the end of a file. For an exact
measure of the cursor's position, try the "Where Am I"

command, "C-X =".;
{6) The buffer has been modified since it was last written out
to the file. (This 1is indicated by the asterisk at the

right edge ¢f the mode line.)

(7) The next text deletion command which stores deleted ftext in
the kill buffer will append what it deletes to whatever 1is
already contained in the "kill buffer" (see 3ecticn 5).
(This is indicated by the plus sign at the right edge of
the mode line.)

2.3 The Echo Line

The Lhird important screen area 1s the one line of the
screen left below the mode lire. This area 1s called the echo
line, for three reasons. First, it will eche any prefix
characters {the first keystrocke of any of the two-Keystroke
commands) typed. If any of these is typed and a particularly
long ameount of time {(between .5 and 1 second) passes before the
following character is typed, the prefix <character will be
indicated in the echc line. For example, 1if the Escape key 1is
typed, the phrase "Meta:" will appear so¢ that you know that you
have indeed typed the prefix character. If not much time passes
between the two keystrokes, this display is not performed. This
behavicr is designed to give confident users optimum response
without the screen always flashing messages, yet give nervous
users Iinformation on what they are docing. Secondly, the echo
line 1is used for reading and displaying the arguments for some
commands which require strings as input (e.g. the Forward
String Search command). (See Section 3.4.2.) During these
string-argument-read operations, the cursor will nct be in the
window in its usual spot attached to the Point. Finally, error
messages from commands will appear at the far right edge of the
eche line, as do informative messages which may be displayed
while some commands are executing. Error messages displayed in
the echo line are accompanied by a bell indicator, to alert the
user of the error condition.

4-8



Mark of the Unicorn Mince User's Guilde

Section 3: The Commands

3.7 Text Insertion Commands

To Mince, everything wvyou type 1s a command. Yes,
everything. tven ordinary letters, numbers, and punctuation
which you type are commands. They are very simple commands,
though; they merely instruct Mince to insert themselves into
the text. Because of this arrangement, Mince has no '"insert
mode" and "edit mode" which determine whether characters typed
are commands or text to be inserted.

3.7.1 QOrdinary text

AlLl printing characters: a-z, A-Z, 0-9, space, and
PURSB& () %+, -,/ 1;<=>7@8[]" {]}~" self-insert. The characters are
inserted at the Point, that is, they are inserted just in front
of where the cursor 1is on the screen. The Point is then left
after the new character which was inserted. This definition
means that on the screen, the curser will move over cone
character position. Simply stated, text typed on s blank line
moves the cursor just as a typewriter carriage would move after
each character. Since characters are inserted at the Point, if
the Point happens tc be in the middle of some line of text, the
rest of the line is moved over To make room for the new text.

3.1.2 The <TAB> key

This command, while nominally self-inserting (It inserts
an ASCII "I, decimal 9.) has a characteristic which affects the
text screen display. When the tab character is displayed, the
cursor 1is moved over to the next tab stop on the display screen
before continuing to display text. This is not unusual, but 1is
mentioned here because it is one of the characters which, when

inserted 1in the text, takes up more than one cclumn on the
display screen.

3.17.3 The <CR> key

The carriage-return key inserts a character, the Newline,
which causes the cursor to go the beginning of the next line on
the screen. If a <CR> is typed when the Point is in the middle
of a line, the line is split in two, with the porticon of the
line after the Point being moved down and turned into the next
line. This is a little ccounterintuitive if you haven't used an
editcr before, but if you consider the Newline fo be a
character just 1like the other self-inserting ones, 1t makes

4-9



Mark of the Unicarn Mince User's Cuide

sense: <CR> inserts a Newline character at the Point, and moves
the Point past the character. What this lcoks 1ike to the
operating system, wnen the file is stored in the file system,
is a carriage-return/linefeed combination (ASCII ~ M/"J or
decimal 13/10). In fact, this 1is what usually causes the
display screen action of going to the beginning of <the next
line. But it's easier tec consider the Newline character to be a
single one, for text insertion and deletion purpcses. (It is
possible to enter just a carriage-return (™M) or a linefeed
(*J) by means of the (C-Q command, but typing the
carriage~return key causes the Newline character to be entered
into the text.)

3.1.4 The <DEL> key

While tris character 1is not an insertion command, 1t is sco
intimately tied to them that it must be mentioned here. The
<DEL> key 1s used for correcting typing mistakes; 1t deletes
the last character typed. Since a Newline 1s treated as an
ordinary character, a <DEL> can delete <CR>'s typed just like
any other character. A more complete description may be found
in the Command List.

3.2 The Simplest Editing Commands

How are "true" editing commands differentiated from
actual text? By the use of the terminal's CONTROL key. The most
frequently used editing commands are one character long, and
that character 1s a c¢ontrel character. For example, a C-F
causes the cursor on a video display screen to be moved forward
a character, and C-B causes 1%t Lo Dbe moved backward a
character. The control characters are generated by holding down
the control key (just 1like the 3hift key) and typing the
character. The case of a letter makes no difference to Mince
command characters; "C-f" is the same as "C-F".

The commands are mnemonically named. Qccasionally thne
mnemcnics are stretched a little, but by and large the commands
. nave some relation %o the letter upon which they are placed.
This makes it possible to remember in 2 natural manner all the
commands which manipulate the text. The special function keys
cn the terminal keyboard are not wusually used for another
reason: it is not possible to use fthese keys without having the
typist's hands leave the standard keybocard position. This
choice means that it takes a little longer to learn the command
Set, but the time made up later by command touch-typing is well
worth the effort.

In most editors, since there is a differentiation between
text insertion mode and editing mode, it is easy to type the
characters which make up the editor command set into the text.
Since Mince commands are all control characters it is unlikely
that you will want to type them into your text. If you do,

4-10



Mark of the Unicorn Mince User's Guide

however, there 1s a command to "quote" the next character and
insert it intc the text directly rather than interpreting it as
a command. (See C-Q in the Command List.:}

3.3 The Two-Keystroke Editing Commands

AS you Wlll see, there 15 a progression in command names.
The simplest and most-used commands are the -easiest to type.
Text itself, for example, is very weasy to type. Those
one-character commands which zre textual characters self-insert
into the document ycu are editing. Commands used to edit single
characters or lines are quite frequently used, and are placed
on the simple contrel <characters. The more complicated and
lesser-used commands are slightly harder to type and reguire
two keystrokes. .

3.3.17 Meta-commands

Some of two=~-char acter commands are called
"meta-commands". These are generated by typing the ESCAPE key,
then typing =2 c¢haracter, Typing the escape Key causes the
following character to be treazted as a Meta-command. If
sufficient time elapses after ‘typing the <ESC> and the
following character, the message "Meta:" will appear in the

echo area to indicate that Mince is waiting for a character to
make up one of the Meta-commands. A4 C-G will cancel the Meta
prefix and leave the tfext unchanged. Again, case makes no
difference; the second character typed may be either upper or
lower case. For example, typing ESCAPE F (M-F) moves the cursor
forward a word, and ESCAPE B (M-B) moves backward a word.
Commands which operate on words, paragraphs, or the like are
usually two-keystroke meta-commands.

3.2.2 Mefz-~control-commands

There 1s ancther set of two-Keystroke commands, which is
a combination of the control commands and the meta-ccmmands.
These are the "meta-control-commands", which are given by
typing an ESCAPE, then the appropriate control character.

3.3.3 Control X commands

Yel another (but the lzast!) set of two-keystroke commands
is the set of "Control X commands." These are nothing more than
an ordinary one-keystroke command prefixed by the one-keystroke
C~X command. Similarly to the Meta prefix <character (<ESC>),
typing the C-X will display "Control X:" in the echo area wh;le
waiting for the second character in the sequence, and typing
C-G will cancel the C-X prefix.

2.3.4 Relation between simple and two-keystroke commands
There 1s a relation between the control commands, the

4-11



Mark of the Unicorn Mince llser's Guide

meta-commands, and the meta-control-commands. Usually, the
character upon which the commands is based has similar effects
in both the control and meta-commands. For example, C-A moves
to the beginning of a line and C-E moves to the end. M-A and
M-E move to the beginning and end, respectively, of sentences.
Occasicnally, the control and meta-commands may be direct
opposites 1instead. For example, C-V views the next screen of
text, whereas M<V views the previous screenful. In almost all
casaes, though, they are related in some way.

3.4 Arguments to Commands

Mo3L WMince commands are self-contained. 3Some of them,
however, need parameters, or arguments, to accomplish thelr
task. For example, the string search command needs to know what
string to search for. The command which sets tab spacing needs
to know what column increment to use. Or perhaps Mince wants to
know if it should destroy a buffer of text to read in a new

file. These arguments give the commands any extra information
they need to perform properly. In particular, numeric arguments
are useful, as they allow repetition of the other Mince
commands .

3.4.1 Numeric arguments (repeat counts)

Commands may be given numeric paramefers as arguments.
These arguments usually are used as repeat counts. For example,
an argument of 100 to the C-F command would cause the curseor to
move forward 100 characters forward rather than the usual 1

character. Occasionally, arguments are used differently; for
example, an argument to the command which sets tThe right margin
gzpecifies Che column number to set 1t at, rather than the

number of times to reset the right margin! Since all ordinary
textual characters are actually commands too, they can be given
arguments in order to insert several of themselves at once. For
example, an argument of 20 to "#" will insert twenty stars intoc
the text at the Point.

Qf course, the manner of giving commands numeric
arguments 1s 1tself a command! The C~U command specifies the
numeric argument for tne command which folleows it. For example,
if we wished to give the argument of 100 to the C-F command, we
would type the C-U, then the number 100, then the C-F command.
The number typed will be displayed in the echc line as it is
being entered. Only positive numbers or zero may be entered;
negative arguments do not exist.

3.4.2 String Arguments

Some commands will explicitly ask for character strings
to be used as parameters for their execution. Examples of these
are the string search commands and the file reading or writing
commands. If such a string is needed a prompt will appear at

4-12



Mark of the Unicorn Mince User's Guide

the.bottom of the screen, 1in the echo area. The c¢haracter
string to Dbe supplied to the command as an argument should be
typed in.

Part of the echo-line display will be the prompt itself,
witich wWill describe what the string to be given to the command
will be used for. Following this prompt will be a string
specifying the termination character, either a <CR> or <ESC>.
This character, when typed, will signal the end of the string
argument and allow the command %to process it.

If any typing mistakes occur while entering this string,
the <DEL> key will erase them, as it does 1in ordinary text.
However, the rest of the editing commands will just insert
themselves intc the string argument, rather than editing 1it.
This means that the command which ususlly quotes the command

characters to insert them intc the text (the C-Q command) is
almost never necessary when entering a string argument.
However, if the termination character is to be inserted into

the string argument, it.must be quoted.

The C-G command will zbort execution of the command which
is asking for the string argument. Naturally, it will thus
terminate the string entry as well. If a C-G must be entered
inte the string argument, 1t too can be quoted as normal.

The <CRE> key has a different effect than usual when typed
as part of a string argument. It will display as "<NL>" rather
than going to a new line. This both assures you that you have
indeed inserted a Newline into your string (for example, to
search for the end of a line followed by a word) zand prevents
the cursor from going off the screen.

Typing the termination character without typing any
string first (called entering a "null string" in the Command
List) causes the command to use an appropriate default for the
character string. For example, the string search commands will
use whatever string was last searched for, the file I/0
commands will use whatever file name was last used in the text
puffer, and the buffer commands will use whatever buffer name
was last switched from.

3.4.3 Yes/No arguments

Some command s will ask Yes/Nc questions to get
information. These guestions, 1like the prompts for string
arguments, will appear in the echo line, but they will not have
any string termination character specified. Typing a "Y" or "y"
or a space will answer yes to the question, and typing "N" or
"n" or the <DEL> key will answer no. Typing C.G will abort the
command which asking the question; this is equivalent to the no
answer %to the question. The yes/nc questions are usually asked
if it i3 possible that some user command is about to destroy an
entire buffer of text or make other large, irreversible

4-13



Mark of the Unicorn Mince User's Guide

Section 4: Input/Qutput

4.1 Terminal I/0

Terminal 1input/cutput is fairly straightforward. Mince
has Several parameters which tell it how to do appropriate
cursor positioning, character insertion, and line erasing on

most standard terminals. The configuration program sets these
up during yocur system installation. Character-at-a-time input
is deone from the keyboard; typeahead 1is automatically
avallable, even during sc¢reen redisplay. Note that typeahead
DOE3 NOT work during the other two forms of I/0., This is due to
using the particular small computer (8080/Z80) and operating
system which Mince i3 running on. Versions of Mince for
slightly larger machines (e.g. PDP-11 or VAX) or other
cperating systems (e.g. UNIX or its lock-alikes) do not have
this restriction.

4,2 Text Buffer I/0

Text buffer I/0 occurs because Mince implements a virtual
memory system for storing text. Text files which are many times
larger than available free memory space may be edited. Mince
maintains a page-swapping file {(called "MINCE.SWP"; which it
uses to page sections of text in and out of main memory on a
least-recently-used basis. This paging affects the user iIn
three ways:

(1) Typing on the terminal keyboard is ignored during paging.
(2) Screen redisplay may occasionally be interrupted for a
short period if a page not in main memory 1s referenced.

(3) If the keybcard remains idle for a certain length of time
{settable 1in the configuration program) Mince will write
pages which have been modified in main memory back toc the
disc swap file, in order to make swapping a little faster
when the terminal keyboard is in use again. Typing at the
keyboard causes this "housecleaning" operation to cease.

A warning message tells you that a text buffer I/0
interruption is about to occur. The message "Swapping..." will
appear in the error message area of the echo line.

It is possible to get the error message "Swap File Full"”
to appear on the mode line during file read operations, large
text deletions, or during text entry (although the last is
highly unlikely). This means that the total of all the @ext
which Mince 1is storing is larger than the swapping file size,
and that the file read or text entry operation did not

L-15



Mark of the Unicorn Mince User's Guide

successfully complete Dbecause it was unable to find more room
to create new pages for text storage. This condition 1s not
fatal; editing may still be continued, =although the operation
which caused the swap file overflow almost certainly did not
complete properly. There are two sclutions for this condition:
either remove some of the text buffers (via the "C- K
command ) whieh Mince i3 wusing and are no longer needed (1if
there is more than one) (you can, of course, write them out
since the editor will still coperate) or exit the editor and
increase the swap file size using the configuration program.
(It is, of course, possible to gain space in the swap file by
deleting some of the text in one of the buffers rather than
removing the buffer entirely, but this alternative is rarely
used.)

4.3 File System I/0

File system I/0 occurs only when it is regquested. As with
buffer 1/0, terminal keyboard input 1s ignored during disc
access. 4s this 1s not unexpected I/0, as is buffer page
swapping, this limitation 1is notf very Important. File system
names for the CTP/M versions of Mince are of the following form:

X:FIRSTNAM.LST
mxan is the optional dise¢ drive name, M"FIRSTNAM" is the
one-through-eight character first component of the file name.
".LST" 1s the opticnal one-through-three character second
component of the file name, (This Second name must be preceded
by & period if it is used.) It is probably wisest to use
alphanumeric filenames, as different conventions are used wnen
different operating system versions and programs try to parse
these names later. When a file name is not sSpecified to the
file I/0 commands, the file name which was associated with the
text buffer in which the file read command was given (as shown
at the right edge of the mode line) is used,.




Mark of the Unicorn Minge User's Guide

Section 5: Text Buffers

5.1 What is a Buffer?

Mince does not edit text directly on the files in the
file system. Instead, it copies the text from whatever file you
wish to edit into a "buffer"™ of text. Changes are made to this
buffer, and are then saved back into the file if you ask for
it, by giving the "write file" command.

5.2 Why Use Buffers?

Thls metnod nas guite a few advantages. First, if you
decide that the changes you have been making are not gquite the
right thing to do, you can exit the editor without having
damaged your original file. Secondly, 1if the computer crashes
while you are editing, your file will nct be left open with
incorrect information in the middle of it. Thirdly, vou can
read data from one file and write it out to a different one,
leaving the original text file intact. Finally, vyou can have
several buffers of text{ active at once while running Mince.
This capability allows you to edit one document based upon
information contained in another without constantly entering
and exiting the editer. Additionally, with the use of the kill
buffer {(explained in Section 5.4 below), text may be moved from
one document to another as well.

There are commands which allow you to switch from buffer
te buffer, autcmatically create new buffers and select names
for them while reading in new files. There 1s alsoc & command to
delete buffers, 1If necessary. Finally, there is z command to
list all the buffers which currently exist, should you forget
what files you have and have not read in tc be edited.

5.3 What Other Infeormation the Buffer Contzins

In addition to the text in each Tbuffer, several other
pieces of information are stered with the buffer. A4 file name
is associated with each buffer. It 1s the name of the file
which has 1last been read from or written to while in this
buffer., The default for %this name (for example, if new text is
typed into a buffer in which no read or write file commands
have been issued) 1is "DELETE.ME". 4 Point and a Mark are also
associated with each buffer. This means that when switching
back and forth between buffers, the Mark and the Point in that
buffer will .not have moved, regardless of where you have moved
any other buffers' Points or Marks, and that the display will

417



Mark of the Uniecorn Mince User's Guide

reappear in the same state it was when you left the buffer.
Fach buffer alsc has a "mode" associated with it. Usually this
mode 1s "Normal" mode, but 1t can be changed. Modes are

-~

described in Section ©.

5.4 The Xill Buffer

There 13 one special buffer, ¢alled the "kill buffer™.
This buffer is used to save any deleted text which 1s deleted
in e¢lumps of more than cne character at a time. For example, if
you delete a line or two, they will be saved in this kill
buffer. There 1s a2 command to retrieve what i1s saved in the
kill buffer, so that 1if you make =zny large mistakes in
deleting, you can undo what you have done. This feature 1s alsc
used to¢ move text from one place te another, as it acts as a
temporary storage tuffer.

The kill buffer stores only text deleted by commands
which delete words, sentences, lines, or regions. The commands
which delete characters are ncot considered "dangerous" encough
to make mistakes with, nor good vehicles for deleting large
quantities of text. Also, the kill buffer tries to store text
in the proper order when deletions occur. Thus, deleting words
backwards and deleting words forwards will append text to the
correct end of the kill buffer, such that, 1f the text is
yanked back cut of the kill buffer again, all the words will be
in the proper order,

The kill buffer will store and merge together consecutive
text deletions. This means that if several line-kills are done
in a row, they are all merged together. (You may have noticed
that this deletion-merging was implied above by the discussiocon
of word deletion order.) Cne kill buffer retrieval command will
yank all the text which is in the kill buffer back at cnce. The
kill  buffer will only store one set of deletions at ocnce,
however. The first kill-buffer-saving text deletion which 1is
done "opens up" the kill buffer. Thereafter, any successive
text deletion commands given which save the deleted text in the
kill buffer will merge it with whatever is already in the
buffer. If any non-deletion commands are given thereafter, the
Kill buffer is "closed off", Following kill-buffer-saving text
deletion commands will throw away whatever text is then in the
Kill buffer and open up a new set of killed text in the kill
buffer. This behavior is reflected on the screen display. The
plus-sign on the right side of the mode line indicates whether
or not any text tc be killed will be merged onto the kill
buffer or not. If the plus is turned on, the text deleted will
be added to what is already in the kill buffer. If it is off,
the new deleted text will start a new kill buffer {(and turn the
plus-sign on again until a non<deletion command 1is given).
There 1s a command which does nothing but "turn on the plus
sign®, so that text may, if desired, be deleted from several
places and yet still merged together onto the kill buffer so
that 2 single kill-buffer-retrieval command will vyank it all

4-18



Mark of the Unicorn Mince User's Guide

back.

The kill buffer 1Is the mechanism used to copy or move
text from cne part of a document to another. A region of text
is deleted (which saves 1t in the kill buffer). If it is to be
copied, 1t 1is yanked back out of the kill buffer again, at the
same spot, S0 that the text nhas not "really" been deleted. The
copy of the deleted text 1s still stored in the kill ©buffer,
however. Thus, to make ancther copy of it, the retrieval
command c¢an be used to yank it out again and again. Thus, it
can be copied at any other place in the buffer, merely by
issuing the command again. If the text 13 teo be moved rather
than copied, the text is merely not yanked back the first time
at 1ts coriginal pesiticn, but only at the desired new pesition
in the document. The kill ©buffer 1s constant across zll
buffers. Text which is deleted and saved in the kill buffear
while wediting c¢ne buffer can be yanked back intoc & different
puffer. Thus, pleces of text can be moved from file to file by
using multiple buffers, one to hold each file used in the move
or copying cperation, and by using the kiil-buffer-saving text
deleticn commands and the buffer-retrieval yanking command.



Marx of the Unicorn Mince User's Guide

Section 6: Mince Modes

Mincet's "modes" are used te implement fundamentally
differing strategies for interaction with text In the ©buffer,
In general, if a large group of commands is to be changed in
some ¢consistent fashion or if entering text is tc have a new
meaning, the changes are combined into 2 mode.

6.1 Normal Mode

“Mince begins executicn in Normal Mode. This mode causes
all ordinary textual characters typed to be inserted into the
buffer at the Point. Qther text in the buffer is shifted over
to make room for the new characters entered. Nermal Mode i3 the
"starting point"™ for the Mince command set: Other modes may be
added (on & per-buffer basis), hut fthose modes only add
functions or rebind commands to keys; wunless the documentation
for a mode 3specifically mentions Normal Mcde commands which
have been deleted, 2ll commands which have not 1been assigned
new functions are left with their Normal Mode meaning.

6.2 Fill Mode

FI11l mode was designed to incrementzlly fill paragraphs.
The zauto-filling action makes text entry neater and prevents
having to lock at the display to keep track of margins. In Fill
Mode, the space Key's command checks to see if the previous
word typed extends past the preset "fill column" (the same
¢olumn used by the "Fill Paragraph™ command), and if so,
automatically inserts a Newline before the word. Then a space
is entered into the text, as usual. This behavior means that
typists need only hit the carriage-return key when they mean to
enter blank lines or intentionally break text to begin on a new
line. 1In order to insert a space past the fill column setting,
the space command must be quoted (by using the C-Q command).

A1l other Normal Mode commands remain unchanged by Fill
Mode. In particular, the Fill Paragraph command still works,
and text entry and deletion is the same as usual. Thus, while
the space command performs the auto-fill once, it does not keep
the paragraph filled. Geing back and inserting cor deleting text
can make the right margin more ragged again.

Note that this mode, 1like the Fill Paragraph command,
does net Justify the right margin by inserting spaces in the
line. [t leaves the right margin ragged, but fits as many words

4-290



Mark of the Unicorn Mince User's Guide

as possible on a line, then automatically inserts a Newline.

£.3 Fage Mode

Page Mode was implemented in Mince primarily as an aid
for those who have had previous experience with other types of
screen-oriented editors. In Page Mode, text insertion and
movement commands ftreat the text buffer as 1f it were s
two-dimensional grid of characters the width of the terminal
screen {(a "page™ of text). This differs from Normal Mode, in
which text i1s treated as a one-dimensional string of characters

in which the Newline characters define 1lines of differing
lengths. .

6.2.1 Page Mode text entry

Unlike Normal Mode, text insertion while in Page Mode
overwrites previously existing text. In order fto actuslly
insert characters without overwriting the character in the same
position on the screen, the character must be qucoted (via the
C-Q command). Consistent with this, the <(BS> key, rather than
merely deleting the previous character, backs up and overwrites
the character with a space. (Note that C-B does not overwrite,
and <DEL> actually remcves the previous character from *Lthe
line.) The carriage-return key inserts a Newline character and
moves to the next line, exactly as it deces in MNormal Mode.

Frequently, you may desire to enter text in the middle of
a line as in Normal Mode {i.e. insert rather than overwrite)
for a short period of time without all the keystrokes involved
in switching from Page Mode to Normal Mode and then back again
or the overhead of gquoting each character to be inserted. The
easiest way to do this is to position the point in the buffer
as you nermally would, type the C-0 command to split the right
half of the line tc a new one, type the text, then type a C-D
command to delete the extra Newline and bring the right-hand
part of the text back to the current line.

£.3.2 Page Mode line lengths

More differences from Normal Mode arise in the way Page
Mcde handles the end of a line and mction around Newline
characters. In Page Mode, the horizontal <character movement
commands do not go past Newlines, as they do in Normal Mode.
Instead, if the Forward Character command is given when the
Point is just in front of a Newline, the line is extended by a
character. On the screen, this means that the cursor will keep
moving to the right on the same line, regardless of where the
end of the text or the Newline was.

Similarly, the vertical line movement commands do notl
obey the same rules as in Normal Mode. In Normal Mode, if the
Previous Line command (for example) 1s given at the end of a
very long 1line and moves to a shorter line, the cursor will

4-21



Mark of the Unicorn Mince User's Guide

move to the left on the screen, s0 as to be at the end of the
shorter line. There was, after all, no text on the shorter line
that far over., In Page Mcde, however, the cursor will move
directly up one line, not changing horizontal position. The
short 1line woculd have been extended tc the right in order to
allow the cursor teo rest in fthat pesition on the screen. This
feature 15 very useful for adding or modifying coclumns of data
a3 opposed to paragraphs of text.

Unfortunately, this uniform policy of extending lines
whenever the cursor i3 positicned te a farther right cclumn
leads to some text storage inefficiencies. When writing the
text buffer out toc a file, any lines which were extended with
spaces will not be trimmed back to the last nonblank character.
Thus, as much of the page as the user has accessed by moving
the Point will be stored when the text is written out. To
counteract this waste, & command was 1included in Page Mode
which deletes trailing whitespace on each line in the buffer
(the C-X \ ccmmand).

These idiosynceracies are implemented in Page Mcde tg
allow 1the user to consider the screen as a page of text, with
screen-sized line boundaries and a c¢onsistent 1line length
rather than lines which extend only as far as they were
originally typed. Some other commands have been modified <to
give suitable effects for this mode. For example, the Beginning
and End of Line commands have been changed to go to the first
and last, respectively, nonblank characters on a line. See the
Mince Command List for a description of the particular commands
and their new properties.

4-22



Mark of the Unicorn Mince User's Cuide

Section 7: Two Windows

The Mince window system is a facility which augments the
use of multiple buffers. By allowing the single screen window
to be split into two separate windows, not only can many
buffers of text be in use during one Mince session, but more
than one of them may be displayed on the screen at once. This
capability makes it easier than ever to medify one document
based upon another or to move text from one buffer to ancther.

7.1 Creating a Second Window

The text window, which displays part of the document
being edited, normally occupies almest a1l of the screen. When
a 3sSecond windeow 13 created (via the Two Windows command, "C-X
2"), each window occupies a 1little 1less than half of the

screen. The windows are separated by a row of dashes the width
of the screen,

It is important to distinguish Dbetween windows and
buffers when using the system. A window may coccupy all or part
of the screen, and it merely shows a portion of what is in the
text buffer currently being edited in it. The buffer siores the
text, and the window displays the buffer. Thus, when the second
window is initiaslly created, since it displays the same buffer
which was in the original (full-screen) window, the screen
displays two <copies of the same text, separated by a line of
dashes.,

7.2 Editing in a Window

Any editing requests affect the text buffer which 1is
displayed in the window which has the cursor in it (the
"eurrent window'"). This is just the same as when only a single
window 1s displayed -- editing occurs at the cursor, because
the cursor is attached %to the Point in the buffer being
displayed. Usually, different buffers are displayed in each of
the windows, since a duplicate display is not too useful. (It
is possible %o display different parts of the same buffer in
each window, however.) The buffer commands work for each window
just as they did with the single window; the Select Buffer
command (C=X B) may be used to show a different buffer in the
current window. When switehing from one window to the other
{(via the Other Window command, "C-X 0O"), the mode line will
change to reflect the mode, file, and buffer names of whatever
buffer is being displayed in the current window,

4-23



Mark of the Unicorn Mince User's Guide

Using two windows does not affect the operaticn of the
buffer system, since the Other Window c¢ommand automatically
switches to whatever buffer 1is displayed in fthe window. In
particular, the window system does not affect the Kill Buffer.
This makes it very easy to copy text (paragraphs, subroutines,
whatever...) from cne buffer to ancother. If the buffer 1into
which the text is to be copied is displayed in one window, and
the pbuffer from which text is toc be taken Is displayed iIn the
otner, there is immediate visual feedback on the successful
completicn of the Yank Killed Text command {C-Y).

7.3 Manipulating the Windows

If the numbter of lines displayed in cne of the windows is
too small, it ¢an be increased by using the Grow Window command
(C=X "). Note that growing the current window shrinks the other
window, however., A window may not be shrunk to display feswer
than three lines; therefore, the other windcw can only be grown
to a certain size.

Frequently, 1t is useful to scroll the text in the other
Wwindcw while making changes to the text in the current window.
(Modifying source code based upon a compiler error listing file
i1s a good example.) Going to the other window, scrolling 1it,
and returning to the first window is rather tedious. Therefore,
the View Next/Previous Screen Other Window c¢ommands (C-X <C-V
and C-% C-Z) allow you %tc view the next or previous screenful
of text in the buffer displayed in the other window.

Finally, note that the two-window display 1is not
permanent, The One Window command {(C-X 1) causes the current

window to become the only window and thus grow to occupy the
entire display area again.

42l



Mark c¢f the Unicorn Mince User's Guilde

Command Cross-Reference Index

Add
Mode C=X M

Argument
Numer ic

@]
]
[t

Backward
Character
Line
Page
Paragraph
Sereen
Sereen, Other Window
Sentence
Word

| I T T
=< v

EFEOAZXTXRZOO
1
0 = > <
o
1
[ |

Beginning
Buffer
Line
see also Backward

X
[
= A

Buffer
Beginning
Delete, Kill
End
Go To
List

QOZ O=XR
1
B PG W PSS A

Capitalize
Word M-

O

Center
Line M-
Screen C

Change
see Buffer, Go To
see also Delete
see also Insert
see also Replace
see also Windows

Character
Backward Ca=B
Delete C-D, <DEL>
Forward C-F



Mark of the

Unicorn

Copy
Region
see also Wipe
see also Yank

Delete
Buffer
Character
Line (Kill)
Mode
Region (Wipe)
Sentence
Whitespace
Word
see also Yank

Display
See
See
See

Screen
also Buffer
also Windows

Down

see Forward

End
Buffer
Line
see aglso Forward

Exit

Files
Find
Re ad
Save
Write

Fill
Paragraph

Find
See Search
See also File

Forward
Character
Line
Page
Paragraph
Screen
Screen,
Sentence
Word

Other Window

4-26

M-W
C-X K

C-D, <DEL>
C-K, M-C-K
C-X Ca-M
C-W

MK

M=\

M-D, M-<DE

M=->
C-E

)
i
]
(@]
I
(@]

OO
1
= 0=

| |

)
]
=3

XEZEOOXTOOCO
t
e <G e <) 2 T

Mince User's Guide

L>



Mark of the Unicorn Mince User's Guide

Go To
see Buffer
see alsoc Move
see also Other Window

Indent
see Center Line
see also Margins
see zlso Tabs
Newline and Auto-Indent C-J

Insert
see beginning of Commands List
see alsoc Quote

Kill
see Delete

Line
Backward, Previous C-?P
Beginning C-4
Center M-S
Delete, Kill C-K, M-C-K
Delete Whitespace on M-\
End C-E
Forward, Next C=N

Lowercase
Word M=L-

Margins
Set Fill Column c-X F
Set Indent Column CaX

Mark
Exchange Point and c-%
Set to Point C=8
Whole Paragraph M

r M-<3SPACE>

Modes

Add C-

Delete c
Move

see Backward

see also Beginning

see also Copy

gsee also End

see also Forward

see also Kill

see alsc Yank

Nex t
see Forward

4-27



Mark of the Unicorn Mince User's Guide

Other
Window, Go %o C=X C

Page
See Screen

Paragraph
Backward M
Fill M
rorward M-
Mar k M

Position
see alsoc Margins
See also Tabs

Previous
See Backward

Query
3ee Replace

Quit C-X C=C
Quote C-Q

Re ad
File C=X C-=R

Redisplay
See Screen

Repeat
See Argument

Replace
Query M-C-=R
String M-R

Reverse
See Search
see also Transpose

Save
File C=X C-8

Screen
Backward, View Previous M
Forward, View Next C
Other Window, Next C-
Other Window, Previous c
Redisplay C

g <t <3

428



Mark of the Unicorn

Search

Forward Search
Reverse 3Jearch
see also Replace

Sentence
Backward, Beginning
Delete, Kill
Forward, End

Set

Tabs

see Margins
see alsc Mark
see also Tabs

Insert
Set

Transpose

Undelete

see Yank

Universal

Up

see Argument

see Backward

Uppercase

Word

Windows

Wipe

Word

Write

Grow

One

Ot her

Two

View Next Screen Other

View Previous Screen Othe

see Delefte

Backward
Capitalize
Delete
Forward
Lowercase
Uppercase

Mince

[ORP]
|

===
I
e e =

<TAB> or C-I
C-X <TAB>

Cc-T

M=-<DEL>

4-29

User's

Guide



Mark of the Unicorn

All

<TAB>

{DEL>

Mince Command List

The Mince Command List

printing characters: -y
PHSR&! (D *+, -/ 5<=>7@0]1"
Self-insert -
These characters are commands which insert themselves into
the buffer. The characters are inserted at the Point, that
is, they are inserted just in front of where the curscr is

Z AZ, 0-9, Space, and
1
1

i-\

on the screen., The Point 1s +then left after the new
character. This means that on the screen, the cursor will
meve over one character position. Since characters are

inserted at the Pocint, 1if the Point happens to te 1n the
middle of some line of text, the rest of the line i1s moved
over to make room for the new text. If any of these
characters 1is given 2 numeric argument, that number of
them is inserted into the buffer =zt the Point.

see CaJ
(The linefeed key sends A3CII "J, decimal 10.)

Newline Insert

This character is self-inserting as well, but causes the
cursor to go the beginning of the next line on the screen.
If a <CR> 1is typed when the Point is in the middle of a
line, the line is split in two, with the portion of the
line after the Point being moved down and turned into the
next line. This is a little non-intuitive, but 1f you
consider the Newline to be a character just like the other
self-inserting ones, it makes sense. It inserts a Newline
character at the Point, and moves the Peint past the
Newline character.

Tab Insert
This character is also self-inserting (It inserts an ASCIIL
~I (decimal 9).), but causes the cursor to move over to
the next tab stop. (To set tab increments for the screen

display, see the "C-X <TAB>" command.)

Delete Character Backward
Typing the delete key causes the last character typed to
be removed from the text. Actually, what happens is that
the character before the Point is deleted, so that the
delete key, 1if used when the cursor 1is somewhere 1n a
block of text, will always delete the character which is
just to the left of the cursor. 3ince a Newline is treated
as an ordinary character, typing a <DEL> at the beglnning
of a line causes the current line and the previous ling to
be Jjoined. A <DEL> typed at the beginning of the buffer
has no effect. This command does not save the deleted text

5-1



Mark of the Unilcorn Mince Command List

in the kill buffer.

<BS>» Delete Character Backward

The backspace key is equivalent to the delete key, as
described above.

<E3C> Meta-command Prefix

Typing the escape key causes the following character to be
treated as a Meta-command. If sufficient time elapses
after typing the <(ESC> and the following <character, the
message M"Meta:" will appear in the echo line to indicate
that Mince is waiting for a character to make up o¢one <of
the Meta-commands {or the Meta-Control-commands). The
Meta-commands are explained in the second section below. A

C-G will ~cancel the Meta prefix and leave the text
unchanged.



Mark of the Unicorn Mince Command List

)
1
=8

C-B

c-D

Set Mark

This command sets the invisible Mark to the position where
the Point is currently. On some terminals, You may have to
type a Control-<5PACE> to get a C-82 command (it sends
ASCII Null (@), decimal 0). OCthers may be physically
unable to generate this character. In that case, use the
M-<SPACE> command instead. The message "Mark Set" 1is
displayed in the echo line. {Remember this command because
it sets the mark AT the Point.)

Beginning of Line

This command moves the Pcint to just after the first
Newline character preceding the Point. This has the effect
of moving the curser to the first character on the current
line. Thus, repeated C-A's leave the cursor ¢n the same
line at the Lleft edge of +the screen. {(Remember this
command by either being at the beginning of the alphabet
-> beginning of line, or by being at the left-hand edge of
your keyboard -)> left-hand edge of the screen.)

Backward Character

This command moves the Point backward a character in the
buffer. At the beginning of the buffer, C-B has no effect.
Given a numeric argument, C-B moves back that many
characters, JSince Newline and <TAB> are treated as single
characters, C-B skips over them as well. This means that a
C-B issued at the beginning of a line will move the cursor
to just after the last character ¢on the previgus line.

Delete Character Forward

This command deletes the character which 1s after the
Point. In other words, this deletes the character which
the cursor is on. If the Point is before a Newline, the
Newline is deleted; on the screen, if the cursor is after
the last character on a line, a C-D causes the next line
to be Jjoined ¢£o the current 1line. Given a numeric
argument, C-D deletes that many characters. 4 C-D typed at
the end of the buffer has no effect. Note that the C-D
command does not save the text it deletes in the kiil
buffer. -

End of Line

This command moves %fLhe Point <to just before the first
Newline character following the Point. This has the effect
of moving the cursor to the last character on the current
line. Thus, repeated C=E's leave the cursor on the 3ame
line at the right edge of the screen.

Forward Character

This command moves the Point forward a character in the
buffer. At the end of the buffer, C-F has no effect. With
an argument, C-F moves forward that many characters. Since
Newline and <TAB)> are treated as single characters, C-F

5-3



Mark of the Unicorn Mince Command List

C-G

C-L

skips over each of them as well. This means that a C=F
issued at the end of a line will move the cursor to the
first character on the next line.

Abort/Cancel Prefix

This command aborts out of any other command which 1is
requesting s string argument. It will zalsc nullify any
prefix characters typed to make Meta-commands or C-X

commands. In cther words, C-X C-G does nothing and M-C-G
does nothing. C-G ignores any numeric argument 1t gets;
therefore, this 1is a way to cancel numeric arguments as

well. C-G also rings the terminal bell., (Think of this one
as "beeping out" of command prefixes.)

see <DEL>

(This is the backspace key {A3CII backspace, decimal 8) on
most terminals.)

see <TAB>
{<TAB> sends ASCII "I (decimal 9) on most terminals.)

Newline and Indent

This command inserts a Newline <character then insercts
enough whitespace (tabs and spaces) to move the cursor
horizontally so that the next character typed cn the new
line is in the same column as the first non-whitespace
character on the previous line. This is frequently useful
when writing programs in a block=structured computer
language. It i1s functionally equivalent to a a <CR> eand
enough tabs and spaces to position the cursor properly.

Kill Line

This command deletes text from the Point to the feollowing
Newline, wunless the Point is just in freont of a Newline,
in which c¢ase 1t deletes the Newline itself. A pecsitive
argument to C-K repeats the command that many times; a
zero argument to C-K deletes from the Point to the
beginning of the current line. This means that a single
C~K at the beginning of a line will "clear" that line, and
typing it again will actually remove the Newline character
and move all the others on the screen up a line., The C-K
command stores text which 1t deletes in the kill buffer.

Redisplay Screen

A C-L causes a Mince screen redisplay to occur. The .
current line will be centered on the screen (or placed on
another screen line selected while running the
configuration program). (Remember this one because "L 1is
the ASCII character for "form feed" (decimal 12),
interpreted as page feed on printers and screen clear on
some display terminals.)

see <CR>
(The carriage-return key sends ASCII "M, decimal 13.)

5-14



Mark of the Uniecorn Mince Command List

C-Q

Next Line

This command moves the Point to the next line in the
buffer. This has the effect of moveing the cursocr tc the
next 1line on the secreen. It tries to maintzin the same
horizontal position as it had when verticazl mcvement was
begun, that is, C-N tries to move the cursor to the spot
on the screen directly below it. If the line is too short,
1t moves the cursor to the rightmost position on that line
(i.e., just before the Newline character). Repeated use of
C-N (or C-P, the Previcus Line vertical moticn command)

uses the original  horizontal position. Given a numeric
argument, C-N moves down that many lines. At the end of
the buffer, C<N has no effect.

Open Line

This command inserts & Newline character but leaves the
Point in front of the inserted character rather than after
it, as Is the case with <CR>. With a numeric argument, C-0
inserts that many lines, This <command is funetionally
equivalent to a <CR> followed by a C-B. It is primarily
useful for splitting a line in half and inserting text
immediately at the end of the first of the %twe resulting
lines.

Previous Line -

This command moves the Point to the previous line in the
buffer. This has the effect of moving the curscr to the
previcus line on the screen. It tries to maintain the same
norizental posifion as it had when vertical movement was
begun, that is, C~P tries to move the cursor to the spot
on the screen directly above it. If the line is too short,
it moves the cursor to the rightmost positicn on that line
(i.e., just before the Newline character). Repeated use of
C-P (or C-N, the Next Line vertical motion command) uses
the original horizontal positicn. Given a numeric
argument, C-P moves up that many lines. Af the beginning
of the buffer, C-P has no effect.

Quote Next Character

This command is used to insert special characters into the
text Dbuffer which might otherwise be interpreted as Mince
commands., It is alsc used to insert & string argument
termination character 1into the string argument. If
sufficient time elapses after typing the C-Q and the
following character, the message "Quote:" will appear in
the echo line t¢ indicate thaet the C-Q c¢command has been
typed and is waiting for the next character. If C-Q is
used wnile entering characters for & string argument to
another command rather than while inserting text, the echo
line is already in use and this message will not appear.
The C-G command cannot abort out of a C-Q command; if
typed, the (-G will be inserted into the buffer or string
argument. Given a numeric argument, the C-Q command will

5-5



Mark of the Unicorn Mince Command List

(@]
1
w

C=-T

insert the following character into the buffer that many
times, just as do the self-inserting ({(ordinary tex tual)
characters.

Reverse String Search

This command is very similar to the Forward String Search
command, C-=S, which is explained below, The string prompt
message 13 "Reverse Search <ESC>:" instead, and the Point
is left BEFQRE the string if 1t 1s found between the
current Point and the beginning of the buffer.

Forward 3tring Search

This command 1s used to search for particular strings of
text. It displays the message "Forward Search <E3SC>:" in
the =echo 1line of the screen display and awalts a string
argument to search for as a string argument. If no string
is entered (i.e., 1if the escape key is typed immediately
after the C-3), whatever string was last given to a C-5 or
C-R string search command 1s used. Thus, repeated searches
for the same string dec not require retyping it each fTime.
The string search 1s performed from the Point to the end
of the buffer. If the string 1is found, the Point is left
Just  after 1it. If not, the message "Noct Found" is
displayed in the error area of the echo line and the Point
is left in its original position. The search is partially
case-independent; that 1is, a lower case letter in the
search string will match either a lower or an upper case

- letter in the buffer; however, an upper case letter will

mateh only the upper case letter in the buffer. Given a
numer ic argument, the search is perfermed that many times.
If the string is found that many times, the Point is left
after that occurrence of the string. If not, the Point is
not moved, and the "Not Found" message is displaved.

Transpose Characters

This command transposes the characters before and after.
the Point (i.e., switches the character which the cursor
is on with the one before it}. It leaves the Point after
the second one (i.e., moves the cursor tc the character
after the two just switched). Thus, successive C-T's will
"drag" the previous character toward the end of the 1line.
If the Point is at the end of a line, the twoc characters
before the Point are transposed. This different behavior
is useful when typing 1in new text; transpesition
typographical errors can be undone, since text insertion
leaves the Point after the character just inserted., At the
beginning of the buffer, the two characters following the
Point are transpcsed since there is no character before
the Point. Given a numeric argument, C-T will repeat
whatever operation it would normally have dcne that many
times. For example, a very large repeat count given to C-T
in the middle of a 1ine would first drag the character
before the Point to the end of the line, then continuously
transpose the last two characters on the 1line wuntil the

5-6



Mark of the Unicorn Mince Command List

C-V

CaX

C-Y

repeat count was depleted.

Universal Argumeat .

This command is used to give numeric arguments to other
commands. A number may be typed after typing C-U. If so,
this number 13 the argument which is given to the next
command typed. If not, the number 4 1s automatically used.
If sufficient time elapses after typing the <C-U and any

following c¢haracter, the message "Arg: 4" will appear in
the aeche line tc indicate that the C(C-U command may be
given & typed number. If numbers are typed after the C-U,

the "d4" will be repaced with the number given. Note that
<DEL> wiil not remove the lzast digit typed tc the C-U
command; rather, the sequence of C-U followed by any
number and a <DEL> will cause repeazted character deleticon
backwards. C-U's zre multiplicative, that is, two C-U's
tyvped 1in & row will cause the numeric argument given to
the next command typed to be 16 rather than 4, and "C-U 7
C-U C-F" will move the Point forward 7x4=28 characters. If
the C=U command is not used, the argument to any cocmmand
will automatically be 1 instead. <C-U may not be used to
enter negative number arguments ("C-U -3" will enter
"eweo3" into the text!) but may be used to enter z2ero as
an argument {for example, "C=U Q0 C-K").

View Next Screen

This c¢ommand moves the window so that it views tne next
screenful of text in the buffer. Incidental to this, the
Point is moved down in the text as well, sSince the cursor
always appears in the window display. There is an overlap
of a few lines at the top and bottom of the screen so that
repeated C-V's will have some continuity from screenful to
screenful of text. Given a numeric argument, C-V will move
the window down that many screens of text.

Wipe Region

This command deletes ("wipes") the regicn of text between
+he Mark (see the C-€ command) and the Point. Wiped text
is saved in the kill buffer.

C~X Command Prefix
The next character typed 1s interpreted as one of the

two=-character C-X commands. See the list below. If
sufficient time elapses after typing the C-X and any
following character, the message "Control-X:" will appear

in the echo 1line to indicate that the C-X command is
waiting for another character tc complete the command .

Yank Killed Text

This command inserts the contents of the kill ©buffer at
the Point. It dces not destroy the kill buffer, so that
several C-Y's may be done to get several copies of the
previously killed text. Given a numeri¢ argument, C-Y
yvanks back the killed text that many times.

5-7



Mark of the Unicorn Mince Command List

see <ESC>
(The escape key generates the ASCII “[ (decimel 27)
character.)

Delete Indentation

This command deletes the leading whitespace on the current
line. It does not move the Point from 1ts current
position, however . This command does not save the
whitespace it deletes in the kill buffer.

5-8



Mark of the Unicorn Minece Command List

C-X <TAB> Set Tab Spacing

Tnis command sets the tab increments for the display
screen. These affect how far each tab character indents
the following text. This command may be used in cne of two
ways: Given a numeric argument, it sets the tab spacing Lo
that number., Given no argument, it uses the column number
which the Point is at as the argument. Thus the tab
spacing may be set "by eye”,.

C-X C-B List Buffers
This command lists all the buffers created in this editing

session. Each element of the list nas the following form:
buf1 * 1234 X:FIRSTNAM.LS3T

where "buf1" is the buffer name, the asterisk indicates
that the buffer has not been written out since it has been
medified, my234n is the 1length of the buffer in

characters, and "X:FIRSTNAM.LST" is the name of the file
which was either last read from or written to in this
buffer "buf 1", As many of these lines as there are buffers
are displayed at the top of the screen. (The kill buffer
is not displayed in this list, since it cannot be used in
the same manner as the others.) This command is useful if
you forget which buffer a certain file has been read intoc.
(Note its similarity to the "C-X 3" command.) In order tc
remcove the temporary display at the top of the screen,
type any command (for example, C-L or C-G may be used).

C-X C-C Exit to Command Level
This command exits Mince, returning the user t¢ the
operating system. (CP/M users may remember it by thinking
of 1t as an augmented C(C=C, the "standard" program
interrupt character.) If any buffers have been modified
since being written out, Mince asks the yes/no question
"Abandon Modified Buffer(s)?" in the echo line.

C~X C-F Find File
This command puts you in a buffer editing a particular
file, regardless of whether you have already read it into
Mince or not. It displays the prompt "Find File <CR>:" in
the echo line and waits for you to type in a file name as
a string argument. If that file name 1s assoclated wWith
any buffer available in Mince, it effectively does a "C-X
B" command to display and allows you to edit that buffer.
If there is no such file in a Mince b ffer at the moment,
Mince tries to cereate a buffer whose name is the same as
the first component of the file name. If such z buffer 1is
already in use, Mince displays the message "Buffer
Existst" and asks "Buffer to Use <CR>:" in the echo line
and waits for you to supply a different name for the
buffer. If you chocse to re-use the buffer whose name is
the first component of the file name (i.e. the cne which
Mince had originally chosen), just enter a carriage-return
and the previous contents of the buffer will be lost. If

5-9



Mark of the Unicorn Mince Command List

you choose to use a different buffer, enter its name. In
any case, the filename given will be read in tc the buffer
selected, just as if the "C-X C-R" command had Dbeen given.
(See its description for yet more ramifications.) In
general, this command is functionally equivalent to a C-X
B command, possibly followed bty a C-X C-R command.

C=X C=-T (same as C-X <TAB>)

C-X C-M Delete Mode
This command is used to delete modes from Lhe current
vuffer's mode list. (Think of it as the inverse of the

"C-X M"™ command.) It displays the message '"Delete Mode
CR»:" in the echo line and waits for a mecde name as a
string argument. If no such mode exists, the message

"Unknown Mode" 1is displayed at the right of the mode Iline.
If the mode exists buf has not been added to the buffer's
mode l1ist, this command does nothing. If it dces exist and
is on the buffer's list, it is removed and the mode line
is updated to reflect the change in modes.

C-¥ C=R Read File

This command is used to read the contents of a file into
the current buffer, It displays the message '"Read File
{CR>:" in the echo line and wasits for the user to supply
the name of the file to be read as a string argument. If a
null string is entered, the file name currently asscciated
with the buffer (i.e., whatever file name was last used in
a file read or write command or "DELETE.ME" if there nad
been none) is used. If ne such file is found on disc the
message "New File"™ appears in the eche line, znd the
buffer is made empty. Since the Read File command always
overwrites the current contents of the buffer, it checks
to see if it has been previously modified without Dbeing
written cut. If it has, the Read File command gqueries the
user with the yes/no question Clobber modified buffer?!" in
the echo line. The Mark and the Point are set to the
beginning of the text buffer when a file is read in.

C=X C=3% Save File

This command is equivalent to typing "C-X C-W <CR>". 3ee
the Write File command description below.

C-X C-V View Next Screen Cther Window
This command is used to scroll forward (or ‘'"down'") the
text in the window whiech the cursor is not currently in.
Thus, it is functionally equivalent to the sequence "C-X O
C-¥ C-X O". Given a numeric argument, the text is scrolled
down that many times. (The actual number of lines passed

depends wupon the size of the other window.) If there is
only one window being displayed, this command has no
effect.

C=X C-W Write File



Mark of the Unicorn Mince Command List

C=-X

This command i3 used toc wWrite the contents of the current
buffer to a disc file. It displays the message "File to
Write <CR>:M in the echo line and waits for the user to
supply a file name as a string argument. If tne null
string is entered, the file name currently associated with
the buffer (i.e., whatever file name was last used in a
file read or write ccmmand or "DELETE.ME"™ if <there had
been none) is used. If no file of the name given exists,
one 1is created. If one exists, it is overwritten with the
contents of the buffer.,

C-X Exchange Point and Mark

This command switches the Point and the invisible Mark in
the current buffer. It is useful for determining the edges
of a region which is about teo be wiped with the C=W

command . ( Remember this command as standing for
"eXchange" .)

C-X C-Z View Previous Screen OCther Window

C-X

This command is used to scroll backward (or "up") the text
in the window which the cursor is not currently in. Thus,
it 1is functicnally equivalent to” the sequence "C-X 0 M-V
C-X O". Given a numeric argument, the text i1s scrolled up

that many times. (The actual number of lines passed
depends upon the size of the other window.) If there 1is
only one window being displayed, this command has no
effect.

Set Indent Column

This command is used to set the number of spaces which
should be left blank at the 1left margin for the M-=Q
command, the M-8 command, or while using Fill mode. Given
a numeriec argument, it sets the indent column to that
number. If not given an argument, it sets the indent
column to whatever column the Point is at in the text. The
indent column is the first column in which text may appear
when filling paragraphs or centering lines. (The fill
column is the first ceclumn in which text may not appear.)
Note that <columns are numbered from zero. A default
setting for the indent column (usually zero) 1is selected
when the configuration program 1is run, This command
displays "Indent Column is n" in the echo line.

1 One Window

This command makes whatever window in which editing is
currently being done the only window on the screen.
Effectively, this undoes the effect of the "C-X 2"
command . If two windows are not being displayed on the
screen, this command has no effect.

C-X 2 Two Windows

This command splits the display screen in half and turns
the one windew into two. This &allows a buffer tc be
displayed in either the upper or lower window areasa {or

5-11



Mark of the Unicorn Mince Command List

both). The window boundary is indicated by a line of
dashes across the screen, separating the upper from the
lower window., Initially, the second window will display

the same buffer as the first window; that is, both windows
will display the same buffer which was being edited when
the Two Windows command was given. The cursor will be left
in the upper window, and editing may be continued there.
If there are already two windows on the screen, this
command will have no effect.

C~X = Where Am I
This command displays (in the echo line) the location of
the Point and Mark measured in characters from the
beginning of the buffer and the s3size of the buffer
measured in characters. It also displays the the Point's
current horizontal position {(column number).

C~X B Select Buffer
This command displays "Switeh te Buffer (CR>:" in the echo
line and waits for the user fto supply in a buffer name Lo
go to as a string argument. If the user picks a buffer
name which 1s already 1in use, that buffer becomes the

current buffer, it is displayed on the screen, and all
subsequent editing operations are performed on it. If the
user picks s new buffer name, Mince asks the yes/no
question "Creafte New Buffer?”, A no answer aborts the
command execution, and a yes answer creates a new empty
buffer. If no buffer name is supplied (i.e., <©he user

enters a null string) whatever buffer was last switched
from 1s switched to. Thus, repeated executions of the "C-X
B" command cause the editor to switch back and forth
between two buffers (cnce the "other" buffer is first  set
by actually giving C-X B a buffer name or by using the C-X
C-F command, which automatically performs a C-X B}.

C-X F Set Fill Column

This command 1is wused to set the right margin used for
filling text during the operation of the M-Q command or

while using Fill mode or the line centering command, M-3.
Given a numeric argument, it sets the fill column toc that
number . If not given an argument, it sets the fill column

to whatever horizontal column the Point is at in the text.
The fill column is the first column in which text may not
appear when filling paragraphs or centering lines. (The
indent column is the first column in which text may appear
when filling paragraphs or centering lines.) Note that
columns are numbered from zero. A default setting for the
£fill column (usually 65) is selected when the
configuration program is run. This command displays "Fill
Column is n" in the echo line.

C-X K Kill Buffer

This command 1is used to remove buffers from fthe Mince
working set. It may be used to free up space in the swap

5-12



Mark of the Unicorn Mince Command List

file if a "Swap File Full" error is encountered or to
remove some of the visual (and mental) clutter which
oceurs with many buffers to keep track of. It displays
"Delete Buffer <CR>:"™ in the echo line and waits for the

user to supply the name of the buffer to be deleted as =a
string argument. If the null string is entered, the buffer
name used 1is the last cne switched from, as wWith the
Select Buffer command, C-X B. If the buffer selected to be
killed 1s the current buffer, Mince displays "Switch To
Buffer <CR>:" in the echo line and waits for a new buffer
name string argument. (Mince will nct let you switeh to
the buffer you are about to delete, and displays an error
message 1f you try to.) After performing the buffer switch
(which 1is 1identical in function to the "C-X B" command),
if any, Mince tries to delete the requested buffer. If it

has ncet been written out since being mcdified, Mince asks
the yes/no questicn "Delete Mcdified Buffer?” in the echo
line.

C=X M Add Mode
This command is used to add modes to the current buffer's

mode list. It displays the message "Mode Name <CR>:" in
the echo line and waits for a mode name as =z string
argument. If there is no such mode, the error message

"Unknown Mode™ i3 displayed. Adcding a mede fo buffer in
wnich 1t is already on the buffer's mode 1list has no
effect.

C-X O Other Window
When two windows are displayed on the screen, this command
switeches from one window to the other. It automaftically
selects the buffer which i3 being displayed in the window
being switched to. If only one window is being displayed
on the screen, this command has no effect.

C-X ~ Grow Window

This command increases the number of lines used to display
the window in which editing is currently being done. (Thus
it decreases the number of screen lines availlable ¢to
display the other window.) Given a numeric argument, this
command enlarges the window by that many lines. Windows
cannct be smaller than three lines, thus a window cannot
be grown such that it will force the other one to be
smaller than that limit. If this command is given when
only one window is being displayed on the screen, it has
no effect. (Remember this command by thinking of the arrow
"pushing" the window boundary up or down.)



Mark of the Unicorn Mince Command List

M-<DEL> Delete Word Backward

This command deletes <+fext backward until it finds tne

beginning of a word. This means that if the Point is 1in
the middle of a word, the first part of the word will bDe
deleted. If the Pecint is at the end of a word, the entire

word will be deleted. If the Point is after a werd, all
the intervening characters between the Point and the last
character of the word will be deleted as well. Deleted
text 13 saved iIin the kill buffer. Given a numerlic
argument, M-<DEL> deletes that many words.

MLCSPACE> see (-8

(This command is implemented for those terminzals
physically unable to generate the character for the C-€
command .)

Beg inning of Buffer

This command moves the Point back to the beginning of the
tegxt buffer. Before doing this, it sets the Mark to the
place where the Point currently is. Thnis allcws a C-X C-X
command to get you back to where you started. ( Remember
this one because ¢the less-than symbol Points iIn the
direction you want to move.)

End of Buffer

This command moves the Point to the end of the buffer,
Before doing this, it sets the invisible Mark to the place
wnere the Point currently i1s. 7This allows the C-X C-X
command to get you back to where you started. (Remember
this one because the greater-than symbol Points in the
directicn you want to move.)

Backward Sentence
This command moves the PFoint tc just before the sentence

which 1t is currently in. If the Point is not in scme
sentence, 1t will be moved to the ©beginning o¢f the
previous sentence. Given a numeric argument, this command

will move the Point backward that many sentences.

Backward Word.

This command moves the Point backward to just before the
word which it is currently in. If the Point is not in some
word, it will be moved to the beginning of the previous
word. Given a numeric argument, this command Wwill move
backward that many words. Like all word commands, this one
will skip over any intervening whitespace or punctuztion
wnile looking for the beginning of a word.

Capitalize Word

This ccommand capitalizes the current word. If the Point is
in the middle of a word rather than in front of 1it, the
letter which the cursor 1is on will be capitalized rather
than the first letter of the word. Note that the numbers 0

514



Mark of the Unicorn Mince Command

M-D

List

through 9 are considered to be parts of words and have no
capital form. The rest of the word is lowercased. This
command leaves the Point just after the word which has
heen capitalized. Therefore, given a numeric argument,
this command will capitalize and move forward past that
many words. Like all word ccmmands, this one will skip
over any intervening whitespace or punctuation while
looking for the beginning of a word.

Delete Word Forward

This command deletes text until it finds the end of a
word., This means that 1f the Point is in the middle of =
word, tThe rest of the word will be deleted. If %the Point
is at the beginning of a word, the entire word will be
deleted. If the Point 1s tefore a word, 21l the
intervening characters before the word will be deleted as
well. Deleted text is saved in the kill buffer. Given a
numeric argument, M-D deletes that many words.

Forward Sentence

This command moves the Point to the end of +the sentence
wnich it is currently in. If the Point is not in some
sentence, 1t will be moved to the end of the following

sentence. Given a numeric argument, this command will move
the Point forward that many sentences,

Forward Word

This c¢ommand moves the Point forward %to just after the
word which 1t is currently in. If the Point is nct in some
word, i1t will bte moved t¢ the end cf the next word. Given
a numeric argument, this command will move forward that
many words. Like all word commands, this cne will skip
over any intervening whitespace or punctuation while
looking for the end of a word.

Mark Whole Paragraph

This command Marks the paragraph which the Peint is in (or
which the Point is just before)}. It mcves the Point toc the
beginning of the paragraph and sets the Mark to the end.
This c¢command 1s functionally equivalent to the sequence
M-], C-8, then M-[. It is used for convenience with C-W
and C-Y for copying or moving peragraphs. (Remember it by
the "H" standing for "wHole".)

Xill Sentence Forward
This command deletes text until it finds the end of a
sentence. This means that if the Point is in the middle of

a sentence, the rest of the sentence will be deleted. If
the Point is at the beginning of a sentence, the entire
sentence will be deleted. If the Point 1s before a
sentence, all the intervening characters before the
sentence will be deleted as well. Deleted text is saved in
the Kkill buffer. Given a numeric argument, M-K deletes
that many sentences. If the argument is zero, M-K deletes

5=15



Mark of the Unicorn Mince Command List

M-Q

backward from the Point to the beginning of the sentence.

Lowercase Word

This command lowercases the current word, If the Point is
in the middle of a word rather than in freont of 1it, the
letter which the cursor 1s on will be the first to be
changed from upper to lower ¢ase rather than the first
letter of the word. Note that tfthe numbers 0O through 9 are
considered to be parts of words and have nc special
lowercase form. This command leaves the Point just after
the word which has Dbeen recased. Therefore, given a
numer ic argument, this command will lowercase and move
ferward past that many words. Like all word commands, thnis
one will skip over any 1ntervening whitespace or
punctuation while locking for the beginning of a word.

Fill Paragrapn

This command fills text in the current paragraph sc¢ that
each line of text does not go past the right margin (set
by the Set Fill Column command, "C-X F"), and so that each
line after the first begins at the left margin (set by the
Set Indent Column command, "C=X ."). Given a numeric
argument, it sets the fill coclumn to that number (i.e.,
executes an automatic "C-X F") and then performs the text
filling operation. The text filling operation will move
words between lines and insert or delete as many lines as
are necessary Lo properly format the text.

Replace 3tring
This ccmmand replaces strings from the Point to the end of

the buffer, It 1is functicnally equivalent to the Query
Replace (M-C-R) command, with the "!" option (to replace
all following occurrences) specified. See the M-C-R

command description for an explzanation of tne string
arguments.

Center Line

This c¢ommand centers the current line, if possibile,
between the left margin (set by the Set Indent Column
command , "C-X .") and the right margin (set by the Set
Fill Column command, "C-X F"). If this is not possible,

the line to be centered is left flush at the left edge of
the screen. Given a numeric argument, it sets the fill
column to that number (i.e., executes an automatic "C-=X
F") and then performs the centering operation. (Remember
this command by the S-scund in "center™.)

Transpose Words

This command transposes the words before and after the
Point. It leaves the Point after the second one. Thus,
successive M-T's will "drag" the previous word toward the
end of the line. If the Point is at the end of a line, the
last word on the line is exchanged with the first word on
the next line. If the Point is at the end of the buffer,

5-16



Mark of the Unicorn

M-V

M- [

M=]

Mince Command List

this command has no effect. If the Point is in the middle
Qf a word, the twe halves of the word are switched
instead. Given a numeric argument, the word-switching is

performed that many times,.

Uppercase Word

This command uppercases the current word., If the Pocint is
in the middle of a word rather than in front of 1it, the
letter which the cursor 15 on will be the first to be
changed to upper c¢ase rather than the first letter of the
word. Note that the numbers 0 through § are considered to
be parts of words and have no special uppercase form. This
command leaves the Point just after the word which has
been reczsed. Therefore, given a numeric argument, this
command will uppercase and move forward past that many
words. Like 211 word commands, this cne will skip over any
intervening whitespace or punctuation while looking for
the beginning of a word.

View Previous Screen

This command moves the window so that 1t views <the
previous screenful of text in the buffer. Incidental to
this, the cursor 1s moved backward in the text as well,
since it must always appear in the window display. There
is an overlap of a few lines at the ftop and botficm of the
sereen 50  that repeated M-V's will have some continuity
from screenful to screenful of text. Given a numeric

argument, M-V will move the windcw down that many screens
of text.

Ccpy Region

This command copies the region of text between the Mark
(see the C-€ command) and the Point onto the kill buffer.
( Remember this command by its relaticnship to the kill
buffer and the C-W command.)

Backward Paragraph

This command moves backward to the ©beginning of the
current paragraph. If this command 1is given while the
Point is not inside any paragraph, the Point will be moved
to the beginning of the paragraph before the Point. Given
a2 numer ic argument, M~[ will move the Pcint backward that
many paragraphs.

Delete Surrounding Whitespace

This command deletes all spaces and tab characters on boph
sides of the Point. The whitespace deleted is not saved 1in
the kill buffer.

Forward Paragraph

This command moves forward to the end of the cgrrent
paragraph. If thnis command is given while the Point is nct
inside any paragraph, the Point will be moved to the end
of the ©paragraph after the Point. Given a numerlic

5=17



Mar k

M-C-=H

M-C-K

M-C-R

of the Unicorn Mince Command List
sea M-<DEL>
Kill Entire Line
Tbig command deletes the entire current line. It is
similar to the C-K command, except that it will kill any

text from the beginning of the line tc the Point as well,
and will kill the Newline after killing the tex%t on the
line. The killed text 1s saved in the kill buffer.

Query Replace 3tring
This command does sString replacement, asking for some sort
of confirmation at each occurrence of the string %o be
replaced. The search/replace operation 1s performed
starting at the Point, toward the end of the buffer. 0id
and new strings {(the string to be repeatedly searched for
and the string to replace it with) are requested as string

arguments with the prompts "Query Replace <(ES3SC>:" and
"With <ESC>:"., At each cccurrence of the old string, the
user has the following command choices:
C-G Abort
This character will cause the replacing operation to
stop. The Pgint will ©be left where 1t was in the
middle of the searching operation (i.e., Jjust after

the current cccurrence of the old string).
! Replace Rest
This character will replace all the remaining
oceurrences of the o0ld string with the new one,
without stopping at each to ask.
Exit
This character will cause the query-replace to stop
without searching for any remaining occurrences of
the o¢ld string. The Point will be left at the
position where the query-replace command was given.
, Replace and Request Confirmation
This character will cause the replacement to ocecur,
then ask a Yes/No questiocn to determine whether or
not to actually leave the old string replaced by the
new. Thus, the wuser can see the results of a
replacement and decide whether or not to keep It.
Y (or y or space) Replace and Find Next
This character causes the current occurrence of the
old string to be replaced with the new and the next
oceurrence of the old string in the Dbuffer to De
found.
<anything else> Don't Replace, and Find Next
Any other character typed will 1leave the current
occurrence of the old string unchanged and searcn for
the next one.

M-C-W Append to Kill Buffer

This command causes the next group of ¢text deleteion
commands to append to the kill buffer if they otherwise
would have started a new kill group. (This is effectively
"turning on the plus sign' on the Mince screen display.;

5=13



Mark of the Unicorn Mince Command List

( Remember this command by its relationship with the C-W
command .)

Fill Mode Command List

Space Auto Fill Space

This command inserts a space into the buffer and moves
past the space. It also checks to see 1f the word just
prior to the space extends past the right margin {set by
the Set Fill Column c¢ommand, <C-X F), and if s¢, inserts a
newline 2and inserts whitespace to the left margin (set by
the Set Indent Column command, C-=X .) before that word.
Thus, a typist can type whole paragraphs without looking
at the screen.

5=20



Mark of the Unicorn

All

Mince Command List

Page Mode Command List

printing characters: a-2z, A-Z, 0-9, Space, and
PMESEET (D ¥4+, =,/ i5<=>78[ ] {1}~
Self-overwrite -
The se characters are commands which overwrits the
character at the Point with themselves. These characters
will not overwrite a Newline character (instead, they

extend the line), and if overwriting a tab character, will

insert sufficient spaces to maintain the c¢olumn pesition
of the text following the tab.

To First Non-White
This command moves the Point to just before the first
non-whitespace character (i.e., non-space, non-tab) on the

current line., This is similar to the Normal Mode (-4
command , except that after moving back to just after the
first preceding Newline, it moves feorward wuntil it

encounters a non-white character in the line.

Backward Character on Line
Thnis command moves the Point backward a character in the

buffer. It is similar to the Normal Mode C-B command,
except that it will not skip over Newline characters (it
always stzays on the current line} and it treats tab

characters as multiple spaces while moving rather than as
single characters,

To Last Non-White
This command moves the Point to just after the last

non-whitespace character on the current line. This is
similar to the Normal Mode C-E command, except that after
moving forward to the first following Newline, 1t moves

backward until it encounters a non-white character in the
line.

Forward Character cn Line

This command moves the Point forward a character in the
buffer., It is similar to the Normal Mode C-F <command,
except that it will not skip over Newline characters (it
always stays on the current line) and that it treats tab
characters as multiple spaces while moving rather than‘as
single characters. Thus, moving to a Newline and typing
C=F will extend the line by one more character to the
right.

Overwrite Character Backward

This command moves backward a character Iin the buffer and
overwrites it with a space, leaving the Point before the

5-21



Mark of the Unicorn Mince Command List

C-N

C-P

C-X

overwritten space. It is functionally equivalent to typing
C-B <SPACE> C-B. (C-H is usually availlable by typing the
<B3S> key.)

Next Line Forced
Thnis command moves the Point to the next line in the

buffer. It is similar to the Normal Mode C=N command,
except that rather than trying to preserve the horizontal
column positicn when moving frem line to line, 1t forces

the horizontal column position to be the same. Thus, 1f
the line to be moved to has fewer columns than the current
column position, it is extended the appropriate amount
with whitespace before the cursor is moved. This has the
effect of always moving the cursor directly verticaily,
rather than "hugging" the right margin of the text, as may
occur in Normal Mode.

Previous Line Forced
This command moves the Point to the previous line in the
buffer. It is similar to the Normal Mode C-P command in

all respects except those mentioned azabove for the C-N
ccemmand .

Quote Next

This command "quotes" the next character typed; that 1is,
it inserts the character literally intoc the buffer rather
than performing the command asscciated with 1it. This
command 1s identicsal in operaticn to the Normal Mode (=&
command . The only reason it is mentioned here i3 that when
ordinary textual characters are guoted with C-Q, they are

inserted into the buffer as in Normal Mode, rather than
overwritten on the buffer as in Page Mode.

\ Delete Trailing Whitespace

This command examines every line in the buffer and deletes
trailing blanks from each line.. This is useful to delete
any trailing blanks which may have been creatad by the
screen cursor positioning commands in Page Mode. (Remember
this command by its similarity to M<\, the Delete
Surrounding Whitespace command.)

5-22



The Mince Commands

All printing characters: a-z,
!”#$%&'()*+,-./:;<=>?@[]A_{?}"‘

A-Z,
Self-insert

{LF> see C-J

<CR> Newline Insert

<TAB> Tab Insert )

{DEL> Delete Character Backward

CESC> Meta-command Prefix

C-8 Set Mark

C-4A Beginping of Line

C-B Backward Character
C-D Delete Character Forward
G-E End c¢f Line

C~-F Forward Character

C-G Abort/Cancel Prefix
C-H see <DEL>

C-I see <TAB>

C-J Newline and Indent
C-K Kiil Line

C-L Redisplay Screen

C-M see <CR>

C-N Next Line

C-0 Open Line

C-P Previous Line

C=Q Quote MNext Character
C-R Reverse S3tring Search

C-S Forward String Search

61

0—9,

Space,

and



Mark of the Unicorn Command

C-X
C-X

C-X

Transpose Characters

Universal Argument

View Next Screen

Wipe Region

C-X

Command Prefix

Yank Killed Text

see

<ESC>

Delete Indentation

{TAB> 3et Tab 3pacing

List Buffers

Exit to Command Level

Find File

(same as C-X <TAB>)

Pelete Mode

Read File

Save file

View Next Sereen Other Window
Write File

Exchange Point and Mark

View Previous Screen Other Window

Set Indent Column

= Where Am I

1 One Window

2 Two Windows

B Select Buffer

F Set Fill Colunmn

6-2

Summary



Mark of the Unicorn Command Summary
C-X X Kill BRuffer

C-{ M Add Mode

C-X C Other Window

C-X ° Grow Window

M-<DEL> Delete Word Backward
M-<SPACE> see C-@

M-< Beginning of Buffer
M=> End of Buffer

M-A Backward Sentence

M-B Backward Word

M-C Capitalize Word

M«D Delete Word Forward
M=E Forward Sentence

M-F Forward Word

M-H Mark Whole Paragraph
M<K Kill Sentence Forward
M-L Lowercase Word

M=Q Fill Parzgraph

M-R Replace String

M-S Center Line

M-T Transpose Words

M-U Uppercase Word

M-V View Previous Screen
M-W Copy Region

M={ Backward Paragraph
M-\ Delete Surrounding Whitespace

M-] Ferward Paragraph

6-3



Mark of the Unicorn Command 3ummary

M-C-H see M-<DEL>
M-C-K Xill Entire Line
M~C-R Query Replace String

M~C-W Append to Kill Buffer

Fill Mode Commands

space Auto Fill Space

Page Mode Commands

All printing characters: a-
P#3%&T (¥4, =/ 0;<=22280 1" (]

§:\ A7, 0-9, space, and
Self-overwrite

C-A To First Non-White

C-8 Backward Character on Liné

C-E To Last Non-White

C-F Forward Charzcter on Line

C-H Overwrite Character Backward

C-N Next Line Forced

C-P Previous Line Forced

C-Q Quote Next

C-X N\ Delete Trailing Whitespace

64



USASCII Character Set

as medified for printing
and the inclusion of Meta characters

Decimal Octal Hex Graphic Name (Meaning) <English Text Reference>
0. 000 00 ~Q NUL (used for padding) <NULL>
1. 001 01 “a SCH (start cof header)

2. Qo2 02 B STX (start of text)
3. 003 03 “C ETX (end of text)
4. 004 04 ~D EOT (end of transmission)
5. 005 05 “E ENQ (enquiry)
6. 006 066 o ACKX (acknowledge)
7. 007 Q7 “G BEL {bell or alarm) <BELL>
8. 010 08 ~H BS (backspace) <BS>
9. 011 q@9 1 HT (horizontal tab) <TA3>
10. Q012 Qa "3 LF {(line feed) <LF>
11. 013 OB “R VT (vertical tab)
12. 014 0QcC “L FF (form feed, new page) <FF>
13. 015 0D "M CR (carriage return) <CR>
14. 016 OE “N SO (shift out)
15. Ql7 OF “0 SI (shift in)
15, 020 10 P DLE (data link escape)
i7. 021 11 ~Q DCl (device contrel 1, XON)
18. Q22 12 "R DC2 {(device control 2)
19. 023 13 "8 DC3 ({(device control 3, XOFF)
20, 024 14 T DC4 (device control 4)
21, 025 13 s} NAK (negative acknowledge]
22. 026 16 v SYN (synchronous idle)
23. 027 17 W ETB (end transmission block)
24, 030 18 X CAN (cancel)
25, 031 19 Y EM (end of medium)
26. 032 1A “Z SUB (substitute)
27. 033 1B [ ESC (escape, alter mode, SEL) <ESC>
28. 034 1cC AN FS (file separator)
29. 035 1p ™) GS (group separator)
30. 036 1E ~n RS (record separator)
31. 037 17 "_ US (unit separator)
32. 040 20 space or blank <SP>
33. 041 21 ! eXxclamation mark
34, 042 22 n double quote
35. 043 23 # number sign (hash mark)
36. 044 24 $ dollar sign
37. 045 25 % percent sign
38. 046 26 & ampersand sign
39. 047 27 ! single guote (apostrophe)
40. 050 28 { left parenthesis
41. 051 29 ) right parenthesis
42. 052 2A * asterisk (star)
43, 053 2B + plus sign
44, 054 2C ' COmMma
45, 055 2D - minus sign (dash)
46, 056 2E . period (decimal point, dot)
47. 057 2F / (right) slash



48.
49.
50.
51.
52.
53.
54.
55.
56.
57,
58.
59.
6C.
61.

63.
64,

66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.

80.
g81l.
82.
83.
84.
85.
86.
87.
28,
89.

91.
92.
93.
94.
95.

060
061
062
063
064
065
066
067
070
071
Q72
073
074
075
076
a77

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117

120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

30
31
32
33
34
35
36
37
38
39
3A

3C
3D
3E
3F

40
41
42
43
44
45
46
47
48

4p
4B
4C
4D
4E
4F

50

52
53
54
55
56
57
58
5%
5a
5B
5C
5D
5E
5F

OZEORaHADOYWEOoODP®

e OO~V WO

VO A .

et SR K E SO HE YO

numeral zero
numeral one
numeral two
numeral three
numeral four
numeral five
numeral six
numeral seven
numeral eight
numeral nine
colon
semi-colon
less-than sign
equal sign
greater-than sign
guestion mark

atsign

upper-case letter ALPHA
upper-case letter BRAVO
upper-case letter CHARLIE
upper-case letter DELTA
upper-case letter ECHO
upper-case letter FOXTROT
upper-case letter GOLF
upper-case letter HOTEL
upper-case letter INDIA
upper-case letter JERICHO
upper-case letter KAPPA
upper~case letter LIMA
upper-case letter MIKE
upper-case letter NOVEMBER
upper-case letter OSCAR

upper-case letter PAPPA
upper-case letter QUEBEC
upper-case letter ROMEO
upper-case letter SIERRA
upper~case letter TANGO
upper-case letter UNICORN
upper-case letter VICTOR
upper-case letter WHISKEY
upper-case letter XRAY
upper-case letter YANKEE
upper~case letter ZEBRA
left square bracket

left slash (backslash)
right square bracket
uparrow {carat)
underscore



9g.

97.

98.

99.
100.
101.
102,
103,
104,
105.
106,
107.
108.
109.
110.
111.

112.
113.
114,
115,
llse.
117.
118.
118.
120.
121.
122,
123.
124.
125,
126.
127.

128.
129.
130.
131.
132,
133.
134,
135,

159,
160.
l61.

253.
254.
255.

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157

160
161l
182
163
164
165
166
167
170
171
172
173
174
175
176
177

200
201
202
203
204
205
206
207

237
240
241

3735
376
377

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74

76
77
78
79
7A
7B
7C
70
7E
F

80
81
g2
83
84
85
86
87

gF
A0
Al

FD
FE
FF

’

O a8 PR DIDTAHo o UL

NN X T oo o

>t
V]

(single} back guote (grave

lower-case
lower-case
lower-case
lower-case
lower-case
lower-case
lower-case
lower-case
lower-case
lower-case
lower-case
lower-case
lower-case
lower-case
lower-case

lower-case
lower—-case
lower-case
lower-case
lower—-case
lower-case
lower-case
lower-case
lower—-case
lower—-case
lower—-case
left curly

letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter

letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
brace

vertical bar
right curly brace

tilde

DEL (delete,

Me ta NUL
Meta SOH
Meta STX
Meta ETX
Meta EQT
Meta ENQ
Meta ACK
Meta BEL

Meta US
Meta space

rub out)

alpha
bravo
charlie
delta
echo
foxtrot
golf
hotel
india
Jericho
kappa
lima
mike
november
oscar

pappa
guebec
romeo
sierra
tango
unicorn
victor
whiskey
Xr ay
yankee
zebra

Meta exclamation mark

Meta right curly brace

Meta tilde
Meta DEL

<DEL>

acecent)



Notes:

The

(decimal)

form of each character is created by adding 128
to that character's ASCII

To prevent ambigulty,
used for printing:

94.
126,
222,
254.

136
176
336
376

5E
7E
DE
FE

— A

~

can
can
can
can

be
be
be
be

value.

printed
printed
printed
printed

as
as
as
as

the following alternate forms can be





