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SUMMARY.

This report covers the design of an intelligent Winchester Disk
Controller. In contrast with traditional controller de~igns,

the Disk Operating System, generally resident at the Host
computer, is integrated in the controller.
After an introduction concerning the characteristics and appli­
cations of Winchester drives, the problems involved with inter­
facing these drives to a host computer are discussed.
Chapter three presents the general concept which lead to the
final design. A separation is made between hard- and software.
The hardware consists of a Winchester Controller Module, rather
than a random logic circuit, a processor system consisting of a
16 bit CPU and an lOP co-processor, buffer- and program memory
and an interface to the Host computer.
Chapter five deals with the software involved in this project,
in particular the Disk Operating Systems. The UNIX operating
system was taken as a guide-line for this purpose.
Though no prototype was built and tested, some conclusions are
drawn in the last chapter concerning the feasibility of the
design and its advantages over traditional controller designs.
In addition, some recommendations for follow-up are made.

KEYWORDS: Design, Disk controller, Winchester,
munication, DHA, Hardware, Processor
ware, Disk Operating System, UNIX.
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Chapter 1. INTRODUCTION.

1.1. Mass storage devices.

Any user of a digital computer system will agree to the impor­
tance of a reliable and fast mass storage device. This back­
ground memory is generally used to store user programs and
operating data in quantities too large to be kept in the compu­
ters core memory. Demands imposed on such storage devices are:

Reliability, to ensure the correct retrieval of
stored information.
- Speed, to minimize delays caused by data access on
the device.
- Cost-efficiency, meaning the price per unit of stored
information should be as low as possible, typically far
below the cost of a unit in core memory.

As these requirements are to some extent contradictory, severa1
compromises were made by storage device manufacturers.

Three important kinds of storage devices can be discerned, all
of them based on magnetic storage techniques:

1. Disk drives.
2. Drum devices.
3. Tape units.

The first category is by far the most widely used and will be
focussed upon in this report.
Within the range of disk types, a large variety exists, star­
ting with 3 inch diameter micro floppy disks and ranging to
hard disks.
The following table offers an overview of their capacity.

DRIVE TYPE. DIAMETER. STORAGE CAPACITY.

Floppy disk 3 inch 100 - 250 Kbyte.

5.25 inch 125 -1000 Kbyte.

a inch 250 -2000 Kbyte.

Winchester disk 5.25 inch 2 - 10 Mbyte.

a inch 5 - 40 Mbyte.

1.4 inch 20 - 200 Mbyte.

Hard disk over 14 inch over 200 Mbyte.
-------------------------------------------

Table I.
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The choice of a certain type of disk drive will largely depend
on its application. storage capacity will in most cases be the
decisive factor allthough access-time and cost-effectiveness
play an important role as well.
very recently, a growing trend towards the application of Win­
chester drives has developed, espescially for small and medium
sized computer systems. The traditional floppy disk drives,
commonly found in these applications, are gradually replaced by
Winchesters.
The explanation for this development is obvious. Due to finer
and more accurate mechanical parts and new head materials, Win­
chester drives have become a very favourable alternative to
floppy disk drives in terms of storage capacity, access-time,
reliability and more important, price per bit. It is for these
reasons that this report will concentrate on Winchester drives.

1.2. Winchester Disk Drives.

The classification "Winchester" stands for a drive technology
that employs a sealed disk and head-positioning assembly.
This eliminates the need for complicated and thus expensive air
filtering provisions and air flow control required for hard
disks.
The first Winchester type drive was develloped around 1973 by
IBM, contained a double 30 Mbyte disk and was given type number
3030 as a result of that. This model number must have been
associated by several people with the notorious Winchester
double barrel riffle since this nickname was soon used and has
been used for this drive technology ever since.

The major advantage Winchesters offer, as opposed to floppy
disks, is the fact that the read/write heads fly above the disk
surface on an air cushion, as is the case with hard disk
drives. This air cushion is created by the speed of the disk in
conjunction with the special shaped flexure, the flexure being
the metal holder upon which the heads are mounted. The absence
of physical head-medium contact enables faster disk speeds and
associated data recording speeds. Presently, a recording speed
of 5 Mbit/sec is quite common for the smallest Winchester
drives.
Table II highlights some of the features of Winchester disk
drives compared to floppy disk drives.
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DIAMETER HEADS CAPACITY RECORDING TRACK

(inch) ( formatted) DENSITY DENSITY

FLOPPY 5.25 J. J.OO Kb 48 tpi
2 200 Kb

8 J. 500 Kb 96 tpi
2 J. Mb

WINCHESTER 5.25 2 5 Mb 6 J.O 255-980 tpi
4 J.O Mb 6 J.O 255-980 tpi

8 2 20 Mb 6 J.O 255-980 tpi
4 50 Mb 6 - J.O 255-980 tpi

Table II.

J..3. Disk controller.

Choosing a Winchester disk drive as a background mass-storage
device, is not the complete solution to the problem. A link
between the host computer and the drive will have to be esta­
blished. This link is usually formed by a disk controller
device. Either a disk controller is bought or it is developed
and built by the purchaser of the drive. When buying a con­
troller, the user has little or no knowledge of its operation
and has to settle for a standard controller device. When desig­
ning and building however, all customer specific demands and
requirements can be taken into account, leading up to a flexi­
ble customized controller.

The object of this graduation project was to design a control­
ler, capable of controlling a wide range of Winchester drives
and interfacing with an arbitrary host computer system.
In the next chapter we will go into the details of this pro­
blem.
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Chapter 2. PROBLEM DEFINITION.

Introduction.

Prior to formulating the project covered in this report, a
survey of the functions performed by a traditional controller
is given. This will give a better insight into the problem at
hand. Subsequently, the position of the disk operating system
within a computer environment is discussed.
Equipped with this knowledge, the project definition is
formulated in the last paragraph of this chapter.

2.1. Disk Controller operation.

Looking at a conventional computer system which uses disks as
background memory, one can abstract a raw system model as is
done in figure 2.1.

Applicati on
programs

:
disk
operating
system

controller'

... .-
drive drive

Figure 2.1: conventional computer system model.
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The controller constitutes the link between what will
henceforth be called the Host computer and one or more disk
drives. For this purpose it entails a number of functional
modules which will be described briefly in the next section.

2.1.2. Controller functions.

A functional block-diagram of a standard type disk controller
is depicted in figure 2.2. In discussing the different modules
we will distinguish between three kind of operations:

1. Disk write operations.
2. Disk read operations.
3. Drive control operations.

Disk write operations.

Serializer.

Data from the host is presented in either bytes or words,
generally in a parallel format. Recording on the disk surface
however is done serially, implicating the parallel data has to
be serialized. The serializer performs this rather straight­
forward operation by means of a parallel in/serial out shift
register.

CRC generator.

To increase data integrity, a cyclic redundancy checksum is
calculated and added towards the end of a block of data
usually the size of one disk sector. This CRC control function
enables verification of data upon reading and thus increases
the reliability of the disk information.

Using CRC, the serial bits of information are treated as the
coefficients of a binairy polynomial P(x). This polynomial is
modified to an extent that makes it exactly divisible by a
fixed polynomial G(x). The divisor G(x) is refered to as the
generator polynomial. The modified polynomial, M( x) of all the
data bytes in a block is added. The result of this addition is
recorded at the end of the datablock on the disk.
The reason CRC is used as an error detection scheme, is because
of its advantages over other methods. Some of these advantages
are:

- all errors within n successive bits are detected. (n
is the number of bits in P(x). )
- for even G(x), all errors with an odd number of bits
in error are detected (50 % of all possible random
errors) .
- All error patterns that are not divisible by G(x) are
detected as erroneous.

9
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NRZ

FM

MFM

On top of this, CRC is efficient in that the number of control
bits is relatively small compared to the number of data-bits.

MPM-encoder.

The format in which data from the serializer and the CRC
generator is presented, is known as NRZ. (No Return to Zero).
This format is unsuitable to cause flux reversals on the disk
surface. Furthermore, timing information is stored on disk
along with the databits to allow proper readback operation.
To overcome this problem, a MFM-encoder is used, converting NRZ
data and clock information into MPM data. (PM data represen­
tation is not discussed here since it is never used for
Winchester drives. )
Figure 2.3 gives a timing diagram of different data represen­
tation waveforms used for disk storage.

o

I
,.--

I I" I ~ I r-- I I
I I I I I I I
I I I I

I I I
I I I I I I I
I

,
I I I I

I I I

l bi tcell ;1 t data pulseposition
~~----~)~II _

- clock pul s.e

Figure 2.3: Data representation waveforms.

MPM is generated from NRZ according to the following rules.

1. Every bitcell contains either a data pulse, a clock
pulse or no pulse at all.
2. A logic 1 in NRZ is represented by a data pulse in
the corresponding bitcell.
3. If the logic bit in NRZ is 0, then no data pulse is
present in its corresponding bitcell.
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4. If the previous bitcell contained a data pulse, the
clock pulse in the next bitcell is missing.
5. If the previous bitcell contained no data pulse,
there will be a clock pulse in the next bitcell.

This scheme may seem confusing at first but it will no doubt
become clear when reading the next paragraph on data reading.

Precompensation.

Due to the fact that the rotational velocity of the disk is
uniform, there will be an increase in lineair velocity of the
disk surface passing under the read/write head. This increase
is proportional to the track number, the most inner track
having the highest track number.
As a result of this, the spacing between subsequent flux
reversals of data and clock bits becomes smaller on the inner
tracks of the disk. (bit crowding). If the spacing becomes too
small, adjacent flux reversals tend to influence each other,
resulting in bit shifts.
During a read operation, the read/write head develops a current
as it encounters a flux reversal caused by either a clock or a
data bit. It takes a finite time for this current to reach its
peak value. During this time, the disk surface passes on and
the next flux reversal crowds under the head, resulting in its
peak current being summed with the previous one. In effect,
this means ·the bit is shifted from its proper location. Pigure
2.4 illustrates this effect.

read i
curre-nt

+-+
~t

Pigure 2.4: Bit shift

detection level

t~

Portunately, this effect is predictable and can be compensated
by pre-shifting the bits in the opposite direction. This pre­
shifting is done by the pre-compensation circuitry. As soon as
writing is done on inner tracks - tracknumber greater than a
predetermined value - the recorded bits are shifted back (early
write), not shifted (on time) or delayed (late write) by a
small amounth of time. On reading back the recorded infor­
mation, the bits will appear to be on time.
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Address Mark genera~or.

As a rule, Winches~er disks are sof~ sec~ored. Thus address
informa~ion concerning ~rack and se~or number has ~o be
recorded on ~he disk. This informa~ion is presen~ in ~he form
of iden~i~y fields or in shor~ ID-fiels. The combina~ion of an
ID-field and a Da~a field forms a sec~or. The s~ar~ of an IO
field has ~o be de~ec~able by ~he con~roller. For ~his purpose
markers are presen~ called Address Marks or AM. Address Marks
dis~inguish ~hemselves from o~her b~es by means of a missing
clock pulse, i.e. a viola~ion of ~he MPH encoding rules. Refer
~o figure 2.5.

MFM

I ,-- I I .--- 1 --- I..... ~ I --- II I I I I I II
,

I I I
I I

I I I I I, I I I I I,, I
I I I I ,

!r-- I - I I I r r-- ,,
I I I I I

1I I I I I I
I I I

I I I
I I I I II

I I ( I II I
I I , I 1 ,I , I

I I
, I I I I I I

I , I I ~ I
~ I II I I I I

I
I I I I I

I , I I II II , I I I I
I I I I I,

I I

CLOCK
0A

DATA
A1

'---- missing clock pulse

Figure 2.5: Address Mark genera~ion.

The address mark genera~or ~akes care of ~his clock bi~
Suppression.

Line drivers.

To ensure dis~ortion-free ~ransmission of MPH da~a be~ween

con~roller and drives, differen~ial line drivers are used. The
exac~ ele~rical specifica~ion of ~hese drivers is dependen~ on
~he drive manufac~urer.
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Disk read operations.

Phase locked loop.

The initial phase in the read process, consists of abstracting
the timing information recorded on the disk. The most accurate
method is to use a phase locked loop, consisting of a phase
comparator, a low pass filter and a VCO. The VCO is constantly
being adjusted by the information derived from the clock pulses
on the disk. AS a result of this, the output of the VCO is in
synchronization with the data stream from the disk.

Data separator.

The data separator, effectively a MPH to NRZ data converter,
generates separate data and clock pulses from its MFM input
signal. The output of the forementioned VCO is used for
synchronizing this data separator.

Address Mark Detection.

To find the beginning of an Io-field, the controller has to
search for an Address mark. The address mark detector triggers
on a missing clock pulse in the MPH data stream. Depending on
whether the AM belonged to an Io-field or a Data field, sub­
sequent bytes are read and interpreted by the controller.

CRC check.

The next phase in the read process is the CRC check. The CRC
checksum, calculated by the CRC check circuitry conform para­
graph 2.1, is compared with the checksum read from the disk at
the end of the data field. A mismatch will result in an error
signal, indicating the received data block contains errors.

Deserializer.

As is suggested by the name, the deserializer performs the
inverse function of the serializer, converting the serial NRZ
data from the data-separator in 8 or 16 bit words.

14



Drive control operations.

of
the

most

a number
control
it. The

below.

The third section of the controller exists of
control and status lines that enable it to
mechanical parts of the drives connected to
commonly used control and status lines are listed

head assembly
and direction
heads on any

step
Direction

Head select

Drive select

Moves the head assembly one track.
Indicates the direction of the
movement. Combining the step­
signal allows positioning of the
track of the disk.
Selects a single head of the head assembly for
reading or writing.
Selects one particular drive in the daisy chain
connected to the controller.

Ready

Track 0

Seek end

Write fault

Index

Indicates the drive is ready for operation. After
a start-up, it requires some time for the disk to
reach its operating velocity. During this time
the drive is not ready.
Indicates the heads are at track zero. This sig­
nal is required for head calibration after a
start-up or a reset.
Indicates the heads have reached their destina­
tion and are stable after a head movement opera­
tion.
As a result of an incorrect operation, more than
one head has been selected for writing or write
current is flowing through a deselected head.
The index pulse signals the beginning of a track.

2.1.3. Conclusion.

The above presents a general overview of the most predominant
characteristics of a disk controller. A more detailed
discussion of this topic is considered superfluous since the
controller concept discussed in this report uses advanced
integrated modules for implementing these controller functions.

15



2.2. Disk opera~ing sys~em.

So far, we discussed ~he hardware prov1s10ns needed ~o connec~

one or more Winches~er drives ~o a hos~ compu~er. Using ~his

hardware se~-up, ~he hos~ has ~he capabili~y ~o con~rol ~he

drive and ~o s~ore and re~rieve da~a on a sec~or basis.
The next layer in ~he hierarchie of da~a s~orage lies be~ween

~his physical disk con~rol layer and ~he logical da~a s~ruc~ure

of ~he hos~ compu~er.

Any user of ~he hos~ compu~er sys~em, wan~ing ~o manipula~e

da~a, does so by using a logical da~a s~ruc~ure. The mos~ com­
mon s~ruc~ure is a file s~ruc~ure. Every colle~ion of da~a

i~ems ~ha~ mee~s a ce~ain forma~ is called a file. Piles can
again be devided in~o one or more records.
To be able ~o read and wri~e files ~o and from a disk, a ~rans­

la~ion has ~o be performed be~ween a logical file or record and
~he physical sec~ors on ~he disk where ~he informa~ion con~ain­

ed by ~ha~ file or record will be s~ored. Consequen~ly, ~he

hos~ compu~er has ~o have knowledge of ~he physical organiza­
~ion of ~he disk.
pur~hermore, ~he hos~ compu~er has ~o supply ~he user wi~h an
access mechanism ~ha~ allows easy reading, wri~ing and manipu­
la~ing of files. Thus a se~ of commands ~he user can apply has
~o be provided by ~he hos~ compu~er.

Summarizing, one can lis~ ~he func~ions of ~his in~ermedia~e

layer be~ween disk con~roller and hos~ compu~er as such:

- Pile s~ru~ure suppo~.

Pree disk space alloca~ion and adminis~ra~ion.

- Pile direc~ory suppo~.

Pile manipula~ion suppo~.

Hencefo~h, ~he collec~ion of ~hese fun~ions will be referred
~o as Disk Opera~ing Sys~em (DOS), since ~hey allow ~he user ~o

opera~e ~he disk.

16



Pigure 2.6. places the DOS layer in its context.

user application
programs

disk operating
5ystem

disk controller

ha rdware

disk drives

]
l
~

HOST COMPUTER

DISK CONTROLLER

DRIVES

Pigure 2.6: DOS layer position.

2.3. Project definition.

Traditionally, the Disk operating System forms an integral part
of the host computers' overall operating system, as indicated
by figure 2.6.
The object of this graduation project was not only to design a
universal Winchester disk controller, as mentioned in chapter
I, but also to add to the controller those functions concerning
disk storage, normally performed by the host computer operating
system. Taking this approach implies the design of an intelli­
gent disk controller, to be used in conjunction with an arbi­
trary host computer. Pigure 2.7. shows the situation that ari­
ses when applying an intelligent disk controller.
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appl ication prog rams

communication layer

disk operating system

I controller hardware

disk dri ves

] HOST COM PUTER

DISK CONTROLLER

Figure 2.7: Intelligent Disk Controller position.

This constitutes a new approach towards controller design.
Various responsibilities residing in the Host computer, are now
being transferred to the controller. This should enable the
controller to operate in conjunction with a large variety of
host computers.
A further design requirement involves maximum universality of
the controller towards different types of Winchester drives.
The concept of the intelligent Winchester Disk Controller will
be presented in the next chapter.

A summary of the system requirements is given below.

- Integrated Disk Operating System.
- High level communication between controller and Bost.
- Support of multiple Winchester Drive types.
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Chapter 3. WINCHESTER CONTROLLER CONCEPT.

3. Winchester Disk Controller Concept.

From the requirements mentioned in the previous chapter, two
subsytems can be deduced that constitute the Winchester Disk
Controller. The first subsystem is formed by the hardware,
which is drawn in figure 3.1. The second subsystem is the
software which operates the controller.

3.1. Controller hardware.

The hardware of the controller can be divided into four parts:

1. Drive control unit. (DCU)

2. Processor system. (PS)

3. Host Interface unit. (HIU)

4. Memory system. (MS )

host p roce 550 r drive -
interface sy stem control- -
unit unit

r---

me mory
syste m

Figure 3.1: Controller block diagram.
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3.1.1. Drive Control Unit.

The drive control unit interacts directly with one or more Win­
chester Disk Drives. Its functions include:

- Selecting the appropriate drive.
- Positioning the heads on a specified track.

Pormatting soft sectored disks.
- Write sector.
- Address Mark Detection.

Read sector.

as the
forms

In short, this is the part which is commonly regarded
actual disk controller. In our concept however, it only
part of the integral controller.

3.1.2. Processor System.

The controllers processor system comprises three different
major tasks:

1 DOS execution.
2 Communicating with the disk through the Disk Control
Unit.
3 Communicating with the host computer system through
the Host Interface Unit.

As the nature of these tasks allows for a division in proces­
sing (1) and I/O (2,3), the processor system will be separated
in two sections. One central processing unit will be used for
executing the Disk operating system, a separate I/O processor
will perform all neccessary communication between the Winches­
ter Disk Controller, Winchester Drives and Host Computer.

3.1.3. Host Interface Unit.

Obviously some sort of connection has to be established between
the controller and the Host Computer. Wether this connection
exists of a parallel or a serial link is of no major importance
at this stage. There are however some requirements this connec­
tion has to meet:

of
by

prevent the neccessity
data inconsistency caused

- Maximum transfer speed of data to m~n~ze delays
caused by records or files in transport between Host
and Controller. Thus, either a parallel link with DMA
capability or a high speed serial data link will be
needed.

Reliability to
retransmission or
transmission errors.

At this stage it is premature to Qwell upon the possible imple­

20



mentations of such a communication link as these are to a large
extent dependent on the Host computer used.

3.1.4. Memory System.

The Winchester Disk Controller's memory system serves a dual
purpose. Firstly it incorporates the programs neccessary for
controller operation. These programs are either permanently
stored in ROM or loaded from reserved tracks of a disk into
RAM.
Secondly, a data buffer has to be provided for, to compensate
for speed differences between disk and host. Furthermore, the
DOS needs memory for storage of administrative information. The
more information that can be kept in the controllers workspace
at a time, the faster file access can be achieved by minimizing
the number of disk accesses.

Summarizing, we come to the following hardware concept block
diagram. (Figure 3.2.)
In chapter 4 we will go into the details of every part of the
block diagram.

processor system

ce ntral I/O

processIng processor ,...- d ri ve ~

unit

J
host host drive I
computer interface control :0-

j
un i t un it

,

E:J
I
I

prog ram

store '--
drive n

memory sys tem

Figure 3.2: Controller functional block diagram.
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3.2. Disk storage Organization.

In order to map the users logical files to the physical disk
storage space, an organization has to be set up that performs
this task with a minimum amounth of overhead.
The choice of the file structure employed is of extreme impor­
tance as it has a major impact on the systems performance.
Rather than starting from scratch, the UNIX file structure was
taken as a guideline. The reasons for this choice are twofold:

Pirst of all, the UNIX Operating system can indulge in a fast
growing popularity, especially for use in small to medium com­
puter systems. The multi-user / multi-task facilities offered
by UNIX are remarkably powerful. It is on these devices that
Winchester Disks are used more and more.

Secondly, UNIX is quite a transparant operating system compared
to others. This makes it relatively easy to adopt to specific
needs. In spite of this, the software behind UNIX is considered
to be sufficiently uncomplicated to be implemented partially
the file handling part to be exact - in the Winchester Disk
Controller at hand.

As a result of this choice, the reader may discover various
aspects in the following section that are very much like UNIX.
However, it should be noted that alterations were made at cer­
tain points where they were considered useful for this parti­
cular application.

3.2.1. Physical storage.

Information on the disk is stored in blocks of fixed length
called sectors. The size of one sector on a Winchester disk is
usually selectable between 256, 512, 1024 or more bytes/sector.
This selection is made before formatting the disk. Unix assumes
a sector length of 512 bytes, a size which is supported by all­
most all Winchester drive manufacturers. We will adopt this
sector length as well.
In figure 3.3 a schematic view of a typical Winchester Disk
Drive ( 2 disks, 4 heads ) is given. Each individual sector is
addressable by specifying head, cylinder and sectornumber.

UNIX treats files as contiguous arrays of characters. Thus a
file is mapped on a number of sectors on the disk, large enough
to contain the file. Any structuring of data within a file is
left to the program that operates on the file. Allthough this
kind of unstructured files enables the use of them in many
different ways, this loose scheme was considered unsuitable for
the application at hand. .

The file system we wish to offer the Host computer should have
structured files. Por this purpose, files are made of one or
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more logical records. The length of these records is determined
by the file type. The information concerning the structure of a
file is kept in the file descriptor. (refer to 3.2.2.)

The most straightforward method to store structured files is to
map each logical record to one or more sectors of the disk. As
a rule, the last sector thus used will not be fully occupied
with data. They will be filled with empty characters. Pigure
3.4 shows a comparison between the UNIX strategy and the
alternative solution.

I. UNIX.

BLOC K 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5 BLOCK 6

f i l e I nu II

II.

1 2 3 4 5 6

rec.1 null r ec 2 null rec 3 null rec 4 nu II r ec 5 null

I II .

record

2 3 4

record 2

5 6

reco rd 3

Pigure 3.4: Pile storage.

Prom this comparison it is obvious that the UNIX file scheme
uses the available disk space much more efficiently. Only when
record lengths are a true multiple of one sectorlength they can
be neatly mapped and can the other scheme be used effectively.
This implicates a recordlength of 512 bytes for most Winchester
drives. Since this is rarely the case, the UNIX scheme for
storage will be adopted. However, the controller's DOS will be
equipped with routines that offer structured files to the Host
computer.

Implementation of these files is achieved by using the infor­
mation on the record length of a file present in its file des-
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criptor. After reading the required number of blocks in the
controllers workspace, the structure of the file is assembled
using the file desciptors information. Figure 3.5. illustrates
this process. Obviously, this storage method is a trade-off
between fast random access to file records and efficient disk
space usage.

---
block 1 block 2 block 3

- --

rec 1
r ec 2
rec 3

1
I
I
I-r ,

rec n -1
rec nfile data

rec. length CON TR. BUF.

FI LE A I - no de
-

r ec 1

r ec 2
CONTROLLER rBUFFER

rec. length
CONTR. BUF.

FI LE B I-node

Figure 3.5: File structuring.

3.2.2. File descriptor.

Every file is described by a file descriptor containing all the
relevant information on that particular file. In UNIX, file
descriptors are referred to as Index-nodes or I-nodes. An
Index-node contains the following information:
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1. Identification of the user and owner of the file.
2. Access rights.
3. Address information concerning the physical location
of the file on disk.
4. File size, i.e. the number of physical blocks it
occupies.
5. Number of links to the file, i.e. number of times it
appears in the directory.
6. File type: User file, record length Directory
file.

The I-node describes the entire file and provides the informa­
tion required to access its contents.
Notice that some modifications were made to the standard UNIX
I-node.

3.2.3. Address information.

The address information on a file is organised as 13 4 byte
pointers. The first 10 pointers correspond directly to the
first ten blocks (disk-sectors) of the file. The 11th pointer
points to a block containing 128 pointers to the next 128
blocks of the file. If the file is longer than 138 blocks,
pointer 12 of the I-node is used as a double indirect pointer.
It points to a block of 128 further pointers, each pointing in
their turn to pointerblocks, containing pointers to the subse­
quent blocks of the file. Finally, pointer 13 is used as a
tripple indirect pointer. As a result of this, each file can
occupy a maximum of 2,113,674 512 byte blocks on the disk.
This upper limit is considered sufficient to accomodate most
file lengths. Note that large files become increasingly unprac­
tical to operate upon.
This organization allows relatively short files (less than 5120
bytes) to be addressed directly through the I-node. Longer
files require an extra indirection i.e. an extra disk access
and thus a longer access time, as might have been expected.
The end of a file can be signaled by a null pointer, follOWing
the pointer to the last block of the file.

Two different pointer types will be used:
-Indirect pointer (I); pointing to a pointer block.
-Sequential pointer (S): pointing to a file block.

The reason for this distinction will become clear in chapter 5
when discussing record insertions. Obviously pointer 1 through
10 in the I-node are S-type pointers whereas 11,12 and 13 are
I-type.
Refer to figure 3.6. for a graphical representation of the
pointer mechanism described.
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3.2.4. Index list.

All index nodes, and thus all files, can be found by searching
through the Index-list (I-list). The Index-list is a list of
all I-nodes in the system and starts at a fixed location on the
disk. The length of this list, determined by the number of I­
nodes, may be such that it covers more than one block of the
disk. Therefore the I-list will be dispersed over a number of
blocks. We will discuss to possible solutions to organize this
Index-list.

a) Linked list: Using a linked list method, every block of the
I-list is terminated by a sequential pointer to the next
block of the list. The major advantage of this method is the
possibility to expand the I-list when required. However,
searching through the list for a particular I-node can only
be done linearly by starting from the first block, which is
at a known position. This can be a very time consuming pro­
cess, especially when the I-list becomes dispersed over the
disk due to multiple extensions. To overcome this problem,
it would be favourable to keep the I-list in the control­
lers' workspace as much as possible. This would eliminate
the need for multiple disk accesses but would on the other
hand claim considerable amounths of controller workspace.

b) Fixed list : Using a fixed list means the I-list is stored
on a fixed number of contiguous blocks on the disk. This
means a predetermined number of blocks will have to be
reserved for the I-list. Expansion of the I-list becomes
impossible. Once it is filled, no new I-nodes can be added,
unless another I-node is deleted first. Thus there is a
maximum number of files that can be resident in the system.
Though this method may seem unfavourable, its strength lies
in the ability of the controller to access an I-node direct­
ly by calculating its position on the disk. Thus the I-list
need not be kept in workspace since one integer number is
sufficient to locate the proper I-node.

In Figure 3.7. both methods are shown.
Allthough a linked I-list offers more flexibility, a fixed list
will be used to allow easy access to an I-node and thus a file.
The consequence of this choice is the limitation to a predeter­
mined number of files.

3.3. Directory structure.

Access to a file is obtained through the Index-node. Rather
than searching through the index-list lineairly, looking for a
particular Index-node, a hierarchy of directories is added to
the controller concept.
In UNIX, a directory is considered as an ordinairy file with
limited access rights. Only the system can create, write and
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modify a directory file. A directory file is marked as such in
the corresponding Index-node.
An entry in a directory file comprises two fields. The first is
occupied by a symbolic alpha-numeric name of limited length.
The UNIX convention is 14 characters maximum and as this is
considered a reasonable amounth, it will be used in this con­
cept as well.
The second field contains a two byte integer number, called the
Index-number or I-number. The Index-number is an offset in the
Index-list, leading directly to the Index-node of the file that
corresponds to the sYmbolic file name.
Refer to figure 3.8. for a graphic representation of the direc­
tory mechanism.

Due to the fact that files refered to in a directory can be
either user-files or user defined sUb-directories, a tree-like
directory structure is created. The user can thus specify a
file by its path through this tree structure. The controller
converts this pathname into the desired Index-node by starting
to look in the.current directory of the user at hand. The first
component of the pathname is searched in this directory and
when found, results in an Index-node. If it was the last compo­
nent of the pathname , the Index-node found is the final result.
If not, the· next pathname component is searched in the file
corresponding to the Index-node just found. Note that in this
case the file type had to be directory. Figure 3.9. illustrates
this tree-directory structure.
Apart from its straightforwardness and simplicity of implemen­
tation, this directory mechanism offers advantages in respect
of access-right validation and file protection.

Two standard entries in every directory are worth mentioning
distinctively. UNIX uses a single and a double dot as sYmbolic
name to refer to these entries. The first refers to the direc­
tory itself enabling the user to read his current directory
without knowing its name. The second refers to the parent of
the directory in which it appears, this parent being the direc­
tory in which it was created. This entry allows for backtrac­
king through the directory tree.
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3.4. Free space adminis~ra~ion.

In order ~o preven~ ~he con~roller from wri~ing differen~ files
on ~he same physical loca~ion of ~he disk, i~ has ~o keep ~rack

of ~he available space on ~he disk. Furthermore, i~ is ~his

part of ~he DOS ~ha~ is responsible for alloca~ing disk-space
~o a new file and re-alloca~ion of space ~ha~ becomes available
on ~he dele~ion of a file.
Looking a~ ~he UNIX opera~ing sys~em again, one encoun~ers a
s~ra~egy of blocks con~aining 50 poin~ers ~o free blocks. These
poin~er blocks form a linked lis~.

The al~erna~ive ~o ~his scheme, found in many Disk Opera~ing

Sys~ems is ~he use of a bi~-map. A bi~-map is an array of bi~s,

each corresponding ~o one sec~or or block on ~he disk. The
value of a bi~ indica~es whe~her ~he corresponding block is
free or no~.

The following ~wo paragraphs deal wi~h ~he advan~ages and dis­
advan~ages of bo~h me~hods. As a resul~ of ~his comparison, a
choice for ei~her me~hod will have ~o be made.

3.4.1. Free block poin~er lis~.

Two disadvan~ages of ~he UNIX free block poin~er lis~ s~and

ou~:

1. On s~arting wi~h an emp~y disk, poin~ers ~o all free blocks
on ~he disk have ~o be ini~ialized. This leads ~o a ~remen­

duously long free block poin~er lis~. Al~erna~ively, one
could s~art of wi~h a limi~ed lis~ and add more blocks ~o

~he lis~ as disk usage increases.
2. Whenever space has ~o be re-alloca~ed, for ins~ance af~er

dele~ion of a file, ~he poin~ers ~o ~he freed blocks have ~o

be added ~o ~he lis~.

The process of re-alloca~ion can bes~ be illus~ra~ed by an
example.

Assume ~he con~roller has a poin~er block ~o ~he free blocks on
~he disk in i~s workspace. This particular block can be consi­
dered as ~he curren~ free block poin~er. Part of ~he blocks
poin~ed ~o has allready been alloca~ed ~o differen~ files and
~herefore marked null. The o~her par~ is s~ill available as
free space. Refer ~o figure 3.10.

Two si~ua~ions can occur a~ ~his poin~:

1. A new file is crea~ed and space has ~o be alloca~ed for ~his

file. The number of blocks ~o be alloca~ed depends on ~he

file ~ype. Say ~en blocks have ~o be assigned ~o ~his file
ini~ially. The con~roller s~ar~s looking in i~s curren~ free
block poin~er block un~il i~ encoun~ers a non-zero poin~er

which is subsequen~ly assigned ~o ~he new file. Af~er ~he
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Figure 3.10: Current free block pointer.

assignment, the pointer in the free block pointer block is
set to zero. After assigning the last pointer in the free
pointer block, the controller will encounter the indirect
pointer which points to the next block in the free block
list. This block is then loaded in the controllers workspace
and becomes the new free block pointer block.
This algorithm is straightforward and causes no serious pro­
blems .

2. A file is deleted and the blocks previuosly occupied by this
file have to be registered as free blocks. If the number of
blocks involved is less than the number of empty entries in
the current free block pointer block, no problem occurs. The
pointers to the blocks returned by the deleted file are re­
corded in the current free block pointer block.
If however the number of blocks to be freed exceeds the num­
ber of unoccupied entries - and this will usually be the
case then a new element in the free block pointer list
will have to be created. The problem with this new element
is, where to locate it on the disk.

From this example we learn that the major problem using a free
block pointer list lies in the expansion of this list. We offer
three alternatives to overcome this problem:

First of all, one could use one of the blocks turned free by
the deleted file as the next block in the free block pointer
list. Conveniently this would be the block following the last
block that could be placed in the current pointer block.
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This would however lead to a dispersed free block pointer list
since the block thus added could be located anywhere on the
disk. It is considered good policy to try and confine this list
to a restricted area of the disk. This way long access times
for allocating free space to a new file can be avoided.

Secondly, one could use a double pointer list, meaning every
block in the list contains a pointer to its predecessor and a
pointer to its successor. Thus a rather fixed structure of
pointer blocks is created which can be restricted to a prede­
termined area of the disk.

Thirdly, a fixed number of contiguous blocks could be reserved
on a restricted area of the disk, similar to the Index-list
described in a previous paragraph. This method however comes
very close to that of a bit-map, every bit being replaced by a
4 byte pointer.

Summarizing one can say the first method leads to a dispersed
free block pointer list which is quite undesirable. The second
method requires a seperate adminstration of blocks that can be
attached to the free block pointer list. This seperate admini­
stration can be conceptually simple, e.g. a bit-map, but the
extra overhead involved for expanding the list, is considered a
major disadvantage. The third solution finally, involves mas­
sive waist of disk space since a 4 byte pointer is reserved for
every physical block on the disk.

In figure 3.11. the three different ways to organize the free
block pointer list are drawn.
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Figure 3.11: Free Block List.

3.4.2. Bit-map.

The use of a bit map for free space administration is quite
common, due to its conceptual simplicity. Since every block on
the disk requires only one bit of administration, the overhead
is minimal. The most predominant disadvantage of a bit map so­
lution, lies in the required calculation from bit position
within the bit-map to actual block address. Furthermore it is
difficult to define a fast algorithm for efficient allocation
and re-allocation of free space.
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From the pre~ious discussion, it is obvious that the bitmap
method will be used in this controller, as opposed to the free
block pointer list. The processing power of the controller is
sufficient enough to overcome the problem of translating bit
position within the map to physical disk address.

Concluding this section of chapter 3, I would like to state
that some features of the UNIX file system are not present in
the concept described here. partially this is due to the fact
that modifications were considered neccessary to meet the re­
quirements of a controller capable for operating in a non-UNIX
environment, partially it resulted from pragmatic choices made
to enable an easier implementation of the file system on the
controllers CPU.
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3.5. Command structure.

The most essential part of a Disk Operating System, from the
user point of view, is the command set it offers. The scope of
these commands determines the degree of intelligence of the
controller as it manifests itself to the user.
In order to reach a functional set of commands to be implemen­
ted by the DOS, a few requirements the controller has to meet,
have to be kept in mind:

- Punction as background storage for user and system
files.

- Easy and fast reading and writing of files.
- Both sequential and random access.
- Support of a logical file structure for the purpose

of random access.
The set of commands offered must be as small as pos­
sible for ease of use yet sophisticated enough to
perform any manipulation the user whishes to do with
his files.

Some of these requirements are contradictory to a certain
extent so compromising need be done.
In order to obtain a general purpose set of commands, a survey
was made on existing operating systems and the set of commands
they offer. This survey resulted in a command set, described in
the following section of this chapter, which is considered to
be a reasonable compromise between complexity of implementation
and file manipulation capability. Two different classes of
functions are distinguished, file handling commands covered
in paragraph 3.5.1. and directory commands - covered in
paragraph 3.5.2.

3.5.1. Pile handling commands.

commands
giving

follOWing

Below, a list of available file handling
Every command will be elaborated upon by
description, the result of the operation
and a list of possible error conditions.

Create
Open
Close
Delete
Read
Write
Recover
Seek
Insert
Erase
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Create.

Punction

Result

Error conditions

Open.

Punction

Result

Error conditions

Creation of a new file by assembling its In­
dex-node. Information regarding the users
identity must be supplied for protection in­
formation and access-right validation.

The create command results in the creation
of an Index-node containing all known infor­
mation on the file created. The Index-node
is added to the Index-list for future re­
ference. Purthermore, an entry in the users
current directory is made. If necessary,
space for either the new Index-node or the
directory entry must be allocated.

1. Illegal filename. The filename and file­
type combination supplied by the user, all­
ready exist in his directory.
2. No space. The physical space required to
create the new Index-node and directory en­
try is not available.

The open command activates the file speci­
fied by the user.

Activation of a file means the Index-node of
the file is fetched from the Index-list and
added to the active Index-node table in the
controllers workspace. Access to this active
Index-node table is obtained through the
users open file table. The open file table
consists of the users file names which are
currently open and an offset into the active
Index-node table.
This substructure allows for fast access to
the file for future reference.
Pigure 3.12. illustrates this scheme.

1. Pile allready open. Pilename and type is
encountered in the users open file table,
indicating it was opened previously. This is
not an error in the true sense since the
file will be open after issueing the com­
mand.
2. Illegal access. User has no legal access
rights to the file he specified.
3. No file. Pilename specified by the user
is not present in his directory or any of
the directories he has access to.
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Close.

Function

Result

Error conditions

Delete.

Function

Result

Error conditions

Read.

Closing a file, i.e. remove the access me­
chanism to the file.

As a result of the close command, the entry
in the users open file table is marked
"delet.ed". Thus the information stored in
the Index-node is maintained. However,
opening of another file by the same user can
result in the entry in his open file table
being overwritten.

1. File not open. Files which were not open­
ed can"t be closed. Again, this is not an
error in the true sense since the file will
be closed after the command is given.
2. Illegal access. User tries to close a
file he has no access rights to.
3. No file. File specified is not present in
the users directory. Note the difference be­
tween this error condition and number 1.
-File not open" means the file exists but
was not open. "No file" means the file does
not exist within the users' scope.

Delet.ion of a file, specified by the user,
from his directory.

Deletion of a file is actuated by marking
its Index-node as "deleted". Thus the Index­
node is maintained in the hierarchy but is
not available. The space occupied by a
deleted Index-node can be overwritten as the
result of a subsequent creation of a new
file.

1. Illegal access. User has no access rights
that allow deletion of a file. Files can
only be deleted by their owner.
2. No file. File specified cannot be found
in the users directory. In essence this is
not a real error condition since the result
of issueing the command will be the absence
of the specified file.

Function Read a logical record from the
file. The record is obtained from
trollers workspace and transferred

specified
the con­
to the
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Result

Error conditions

write.

Function

Result

Error conditions

Host. If the requested record is not present
there, part of the file is read from the
disk and stored in the controllers work­
space. The requested record can subsequently
be extracted using the record size informa­
tion contained in the Index-node.

The result of a read operation is the trans­
fer of a file record in sequential order
from the file speciefied. Since files are
stored on disk as contiguous blocks of data,
the division of a file into logical records
has to be done by the controller. Thus,
files are allways transferred through the
controller buffer.

1. Illegal access. User does not have the
proper access rights to read the specified
file.
2. No file. Filename specified cannot be
found in the users directory.
3. File not open. File wasn"t opened prior
to read command.
4. End of file. Either the file being read
is empty or the last record of the file has
been read on a previous occasion.

Write a logical record on disk. The record
is added towards the end of the specified
file.

The record to be written is transfered to
the controller buffer. Physical writing to
the disk is not neccessairilly done imme­
diately.
Writing from buffer to disk is done whenever
a fixed number of blocks - minimum one - can
be written at once and bufferspace has to be
made available to service another request.
As a matter of course, all active records of
a file, present in the controllers buffer
but not written to disk yet, are transfered
to disk prior to a close or read command
execution on the same file.

1. Illegal access. User has no write access
to the specified file.
2. No file. Filename specified is not pre­
sent in the users" directory.
3. File not open. File not open i.e. no en­
try in users' open file table.
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Recover.

Function

Result

4. Not End of File. Present access location
within the specified file is not positioned
at the end of the file. Since records are
added towards the end of the file, a seek to
file end has to preceed the write command.
5. No space. Space required to store the re­
cord is not available on disk or in the con­
troller buffer.

Recovering a previously deleted file. The
information contained in the recovered file
can either be intact or distorted. Informa­
tion concerning the integrity of the reco­
vered file is supplied to the user after
execution of this command.

The result of this somewhat unusual command,
is based on retrieving the Index-node of the
file to be recovered, from the Index-list.
As described previously, deleting a file re­
sults in its Index-node being marked "dele­
ted". This means it is still present in the
Index-list where it can be found by the con­
troller, unless the creation of a new file
caused the entry to be overwritten by the
new Index-node. In this case, recovery of
the deleted file is impossible.
The Index-number of the deleted file has to
be obtained from the recover file which was
specially created for this purpose, since
the normal entry in the directory has been
re1llOved .
There is yet another complication concerning
the disk space previously occupied by the
deleted file. Upon deletion of the file, the
blocks it occupied were marked as being free
. When the file is recovered, a comparison
between the address information in the In­
dex-node and the free space adminst rat ion
table has to be made. If the blocks of the
recovered file are still registered as free
blocks, they may still contain the proper
information, though this is not neccessarily
the case. This however is an uncertainty one
has to accept. Therefore the user, after
issueing a recover command, should also ve­
rify the information contained in the reco­
vered file.
From the above one can conclude that this is
a very complicated command with uncertain
results. When implementing a command like
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be found
it was not
exist at

Error conditions

Seek.

Punction

Result

Error conditions

Insert.

Punction

Result

this, one has to consider whether the advan­
tages compensate for the problems it incures

1. No file. Pile name specified is not pre­
sent in the recover file, meaning it was not
deleted.
2. No I-node. Index-node of the specified
file has been overwritten.
3. No data. One or more blocks previously
occupied by the file have been re-allocated
to other files.

The seek command moves the window, a pointer
to a record within a file, to a specified
position. Thus random access within a file
is possible.

The window of a file points to a record
within the file. The value of this pointer
is stored in the users open file table. Nor­
mally the window is incremented after every
read or write operation. Thus sequential ac­
cess is achieved. By means of the seek com­
mand, the window can be moved to an arbi­
trairy position within the file.

1. Illegal acces. User has no read access
rights to the file he specified.
2. No file. specified file cannot
in users open file table. Either
opened previously or it doesn-t
all.
3. No record. Specified record number is out
of range. The window is set to EOP as a re­
sult of this.

Insertion of a record in a file at the loca­
tion pointed to by the window.

As the result of an Insert operation, a re­
cord is added to a file at the current posi­
tion of the window. Records following the
inserted record are shifted one position as
is illustrated in figure 3.13.
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Pigure 3.13: Record insertion.

After insertion of a record, the controller
will perform a readback operation to verify
correct operation. Afterwards, the window is
moved to the next record of the file. This
enables multiple insertions to be performed
sequentially.

Error conditions

Erase.

Punction

Result

1. Illegal access. User has no write access
rights to specified file.
2. No file. specified filename does not
occur in users directory.
3. Not open. Pile exists but is not open.
4. No space. physical disk space required to
store the inserted record is not available.

Erasure of a particular record from a speci­
fied file, the erased record being the re­
cord currently pointed to by the window.

The erase command is the functional counter­
part of the insert command. Therefore, the
result is opposite to that of an insertion.
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Error conditions

Only, an erasure does not affect the posi­
tion of the window within the file. Thus,
after an erasure, the window will be at the
next record position. This allows for mul­
tiple record erasures.

1. Illegal access. User has no write access
rights to the specified file.
2. No file. Pile does not occur in users di­
rectory.
3. Not open. Pile specified was not opened.
4. End of file. Window has reached end of
file. No more erasures can be done unless a
seek is executed to a previous record posi­
tion. The same error condition occurs when
the file is empty.
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3.5.2. Directory commands.

The second set of commands involves manipulation
tory mechanism in the controller. There are two
to allow the controller access to the directory.
lities will be discussed briefly.

of the direc­
possible ways
Both possibi-

The first results from the fact that directories are just a
special kind of ordinairy files. Thus, it is possible to per­
form the same operations on directories as on files. The user
can define his own directory command set by manipulating direc­
tory files the same way he would manipulate ordinairy files.
This however requires a detailed knowledge of the controllers
directory mechanism. This is contradictory to the purpose of
the controller concept. All knowledge concerning file organiza­
tion should be concentrated in the controller, not in the Host
or at the user.

The alternative is to provide a number of directory commands at
the same level as the file commands. The scope of these direc­
tory commands will have to be limited to requiring information
on a file. Alterations in the controllers directory by the user
can not be permitted since they would require in depth know­
ledge of its operation, which is assumed absent at the user
level.

Three different directory commands will be supported:

- DIRLIST : Lists the contents of a directory specified
by the user. The specification is done by
supplying a pathname as described in para­
graph 3.3.

- ENQUIRY

- RENAME

Supplies the user with an overview of the
information contained in a file"s I-node.

Allows the user to alter a file's name.

3.6. Host Interface.

To ensure proper communication between the Disk Controller and
the Host computer, one has to provide for an interface between
the two. In general, two approaches exist:

1. Network solution.

2. Register solution.

3. Bus solution.
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3.6.1. Network solution.

Taking a network view towards the communication, the controller
is regarded as one of the devices connected to the Bost compu­
ter by a link. See figure 3.14.

host I

disk
,

computer device x --- -1 device y
controller

I
f\ i'

Ii \11

Figure 3.14: Network model.

Every device in the network has its own address and monitors
the communication channel to see whether there is a message for
him distributed on the network. If so, the message is read and
interpreted.

I som I ad. I typ I len [ ope I sod I_da_taI ctrl I eod .1 earn l

SOM
ADR
TYP
LEN
ope
SOD
DATA
CTRL
EOD
EOM

start of message.
device address.
message type.
message length.
operation Code.
start of data field.
data field.
control code.
end of data fie ld .
end of message.

Figure 3.15: Message format.

48



In a network environment, messages between members are packed
in blocks of variable length according to a certain format. A
possible message format might be what is shown in figure 3.15.

The advantage of this solution is twofold. Pirst of all, it's
very flexible in that the message blocks can contain any infor­
mation desired. The protocol only provides for sending and re­
ce~v~ng messages, regardless of their contents. Secondly, the
physical transport can be done serially or parallel without any
implications for the protocol. In both cases, the transfer
would be asynchronuous, inflicting no time constraints on
either host or controller.

As with any solution, there are some disadvantages as well, one
of them being the relatively large amounth of overhead invol­
ved. This overhead has a negative impact on the link's perfor­
mance.

3.6.2. Register solution.

A far simpler solution compared to the previous one, is the use
of a set of parallel I/O ports, one for data transfer and one
for command/status transfer. Thus, the Host sees the controller
as a peripheral located somewhere in his memory map.
Though this approach is conceptually simple, it offers little
flexibility.
To obtain a maximum performance level, the data-channel at
least should allow for DMA transfers.

~ cmd/status
-

HOST CONTROLLER

~ data

Pigure 3.16: Peripheral connection.
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3.6.3. Bus solution.

The third possibility is to connect the controller directly to
the Host computer"s bus system. This enables the controller to
directly access the Host computer"s memory. Memory to memory
transfers from the controller"s buffer to the Host"s workspace
and vice versa.
Clearly this means that the controller has to be designed for a
specific Host computer system or at least a specific bus sys­
tem, e.g. Motorola"s VME or Intel"s Multibus bus.
The design covered by this report does nott however imply in
depth knowledge of a certain bus system. Therefore this possi­
bility is dropped.

cpu shared con t ro II e r

me mory

arbiter arbiter

./
...

bu 5
".

Figure 3.17: Bus solution.

3.6.4. Conclusion.

Due to its conceptual simplicity and reasonable compatibility
to various computer systems, the register solution was chosen
in this particular design.
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Chapter 4.

4.1. Introduction.

CONTROLLER HARDWARE DESIGN.

The hardware required for a controller described in this report
is more complex than that of a conventional disk controller
which functions as a mere peripheral. The blockdiagram shown in
Pigure 4.1. gives a general idea of the scope of the hardware
for an intelligent Winchester Disk controller.
Description of this hardware system will be done in five sec­
tions:

- Processor system.
- Memory system.
- Host interface.
- Controller module.

Disk drive interface.

4.2. Processor system.

The processor system constitutes the central part of the hard­
ware and serves a dual purpose.
The most predominant task to be executed by the processor sys­
tem is the transport of data between Host and Disk Drives. This
requires massive IIO, preferably using Direct Memory Access
(DMA). Purthermore, the processor system should be able to meet
the speed requirements of both Host and Disk Drives in order to
avoid unnecessary delays.

The second task imposed upon the processor system is the execu­
tion of the controller's Disk Operating System (DOS). To this
extent, it requires flexible addressing techniques, memory
management capabilities, a strong set of instructions and fast
execution speeds.

These two obviously distinct functions, each imposing special
demands on the processor's capabilities, lead to the choice of
a multi-processor system in which every task has a dedicated
processor.

4.2.1. Parallel- versus Co-processing.

The use of more than one processor calls for some sort of com­
munication and colaboration between the different processors
involved. Two different approaches can be used, either parallel
processing or co-processing.

- Parallel processing.

Parallel processing means two or more processors, either of the
same or of a different type, are simultaneously executing part
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of a task. Thus the work-load is shared amongst several proces­
sors, increasing the overall throughput. Peripherals, memory,
bus etc are shared resources, meaning they can be used by any
of the processors in the system, only not at the same time.
Communication between different processors is performed through
shared memory.
The use of shared resources requires strict synchronization of
concurrently running processes, as well as arbitration of
simultaneous resource requests. Use of the shared bus is usual­
ly handled by a so called bus arbiter which allocates the bus
to a requesting processor as soon as it becomes available. All
bus requests are coordinated by this bus abiter. The processor
which gains control of the bus is usually also given access to
the other shared resources such as memory and peripherals.

As a rule, parallel processing is advantageous in the execution
of tasks that require considerable processing. The extra in­
vestments in arbitration hardware will have to be weighed
against the increase in performance.
Refer to figure 4.2.

LOCAL BUS A US

lOP

Pigure 4.2: Parallel processing.

- Co-processing.

In a co-processing situation, two or more processors are each
assigned a specific part of a task. However, execution of these
sUb-tasks is done sequentially rather than simultanuously, thus
only one processor is active at a time and has complete control
of all the resources. Obviously, the processors involved are of
a different nature and especially fit for their specific sub-

53



tasks.
Transfer of control from one processor to another is usually
done after completion of a sub-task, unless another processor
requires inunediate service. To achieve this, some sort of com­
munication between the different processors in the system must
exist.
A situation found in most co-processor systems is that of a
master-slave hierarchy in which one master and one or more
slave processors exist. Whenever the master wants a slave pro­
cessor to execute a task, it activates the desired slave pro­
cessor. Once activated, the slave processor "takes control of
the bus, executes its task and signals the master upon comple­
tion. Exchange of information between processors is done
through parameter blocks in memory.
The advantage of co-processing lies in its conceptual simpli­
city compared to parallel processing. The price for this
simpler approach is a lower performance level.
Refer to figure 4.3.

RQ/GT ....

CPU lOP
j

I CLOCK I
I j

I
~

-
I

ADOR/OATA CON TROL I

cC I l I
SHARED BUS

""
...

Pigure 4.3: Co-processing.

Por the design at hand, a co-processing configuration of a 8086
16 bit Central Processing Unit (CPU) and a 8089 I/O processor
(lOP) was chosen based on the following arguments.

Transferring large quantities of ~ta to or from the Disk under
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DNA requires constant use of the system bus. During these
transports, which are assumed to consume a large percentage of
the overall time, no other processor can use the shared bus,
thus no other processor can operate outside of its local envi­
ronment. Local operation of the IOP would be no solution since
the Disk operating System, running on the CPU has to operate on
the data obtained from Disk. Therefor this data has to be
stored in shared memory which is only accessable throught the
shared bus.
This heavy I/O load on the shared bus makes parallel processing
impractical, especially when the extra hardware needed for a
Parallel processing system is taken into account.

4.2.2. I/O processor description.

The Intel 8089 I/O processor is a single chip, high performance
,general purpose I/O system, equipped with two independent I/O
channels, each combining CPU caPabilities with a flexible DNA
controller. Each channel can execute a Task block program,
using 53 instructions specially designed for efficient I/O
program execution. On top of that, every channel can perform
DNA transfers with simultaneous data manipulation.
The architecture of this IOP and its capacity to operate in
conjunction with a 8086 CPU in a co-processing environment,
make it very suitable for this application.

4.2.3. Central Processing Unit description.

The 16 bit 8086 CPU, family member of the IOP, was chosen for
this application, rather than the 8088, a similar CPU with a 9
bit data bus. Allthough most disk systems in the Winchester
field currently still operate on 8 bit data units, the possi­
bility of future extension to 16 bits was taken into account.
Besides, the 8086 is perfectly capable of handling bytes and ­
can obtain a higher performance level than all existing 9 bit
micros, including the 8088.
Finally, the ease of applying the 9086 and 9089 in a co-proces­
sing environment, lead to this choice.
In figure 4.4. the processor system is shown schematically.
Circuit diagrams are all concentrated in appendix A of this re­
port and references to this appendix will be made frequently.
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Pigure 4.4: Processor System.

4.3. Memory system.

The memory system required for the controller can be divided in
two parts, Random Access Memory (RAM) which constitutes the
controllers workspace and Read Only Memory (ROM) which stores
the required software permanently, as well as the neccesary Re­
set an~ interrupt vectors.

In order to construct a read/write memory system, either static
or dynamic RAM chips can be used. The use of static memory ele­
ments results in a conceptually simple, fast and reliable memo­
ry system. However, due to the fairly large power consumption
and lower packing density of static RAM chips, dynamic memory
elements are usually applied for larger memory systems. Power
consumption is approximately 10 times, packing density 4 times
better compared to static memory.
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The major disadvantage of dynamic memory is the fact that it
has to be refreshed regularly to avoid loss of information.
During these refresh periods, the memory is not available for
the CPU. Furthermore, the timing requirements for the refresh
actions are rather strict and somewhat complicated. Thus the
use of a specially designed Dynamic RAM Controller is neces­
sary. The purpose of this controller is to take the burden of
refreshing the dynamic chips at regular intervals away from the
CPU. As a result, the memory system becomes transparant for the
CPU and acts as static RAM but only to a certain degree. If the
CPU wants to access the memory during a refresh cycle, it is
delayed by means of the insertion of WAIT states until termina­
tion of the refresh cycle. Thus, dynamic RAM may affect the
processor system"s performance.

Several possible configurations for the RAM system were exa­
mined. Two of the most interesting possibilities are discussed
below to give an impression of what options exist. Memory sizes
of 64 Kwords and 32 Kwords were assumed respectively in case of
a Dynamic and a Static system. Memory systems larger than 32
Kwords are genarally not made using static RAM.

4.3.1. Dynamic RAM system.

Designing a dynamic RAM system requires the choice of a DRAM
chip on the one hand and a compatible DRAM controller on the
other. Since the processor system is made of Intel devices, an
Intel DRAM controller seems an obvious choice. The 8207 Advan­
ced Dynamic RAM controller was taken in conjunction with 2164
DRAM chips.

2164 DRAM.

The 2164 DRAM is a 64K x 1. bit dynamic RAM chip, built around
four matrices of 1.28 rows by 1.28 columns. Rowand Column ad­
dresses, each 8 bit wide, are multiplexed through an 8 bit wide
address bus. For use in a 1.6 bit wide datapath system, 1.6 chips
is a minimum requirement, yielding a 64 Kword memory system.

8207 Advanced Dynamic RAM Controller.

As is suggested by the name, the 8207 is a very complex con­
troller module. Refer to figure 4.5. for a functional block
diagram of this controller.
The ADRC is a peripheral chip which takes care of the addres­
sing, refreshing and reqUired drive capability for 1.6K, 64K and
256K dynamic RAM chips. It provides a dual port function al­
lowing two independent processor systems to access the same
memory. A built-in arbiter determines the order in which re­
quests are serviced. Furthermore, provisions were made to con­
nect a 8206 Error Detection and Correction Unit (EDCU), yiel-
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ding a very reliable memory system. It is beyond the scope of
this report to list all the possibilities of this DRAM control-
ler.

The use of this DRAM controller in a RAM systems, leads to a
very compact design. See figure 4.6. However, the insertion of
~IT states as mentioned before, cannot be avoided using this
controller. The negative impact on the IOP-s DMA performance is
considered a major disadvantage.
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Figure 4.6: Dynamic RAM system.

4.3.2. static RAM system.

All the problems regarding timing requirements introduced by
dynamic RAM chips can obviously be avoided using static memory.
The Intel 2167 High Speed 16K x 1 bit static RAM is the highest
package density static RAM chip currently available. Due to its
built in power-down mode, power consumption is kept within
reasonable limits in spite of the fast access times. (100 nsec
slow version) A 32 Kword RAM system, made from 32 chips, would
require about 8 Watts under normal operating conditions as
opposed to 2 Watts for a similar dynamic system.
The advantages of a static RAM memory, simple timing, fast
access times, high reliability and easy expandability, lead to
the choice of a static RAM memory for this particular design.
If however the assumed memory size of 32 Kwords should prove to
be insufficient, the choice of DRAM is obvious.
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See figure 4.7 and appendix A.
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Figure 4.7: Static RAM system.

4.3.3. ROM system.

The ROM system shown in appendix A can be hard-wired to accomo­
date either 2732 4 !<byte or 2764 8 !<byte ROM chips. When equip­
ped with 2764 chips, the circuitry shown offers 32 Kwords of
Read Only Memory. Whether this size is sufficient to accommo­
date the software of the controller is as yet uncertain. Expan­
sion of this ROM capacity is a very simple operation. Alterna­
tively, operational software could be loaded from disk after
start-up and stored in RAM. This way, only a bootstrap ROM
would be needed. The consequence of this approach is a larger
requirement for RAM.

4.3.4. Address Decoding.

Address decoding is covered in this paragraph as it is consi­
dered to be an integral part of the memory system.
Decoding is done in a way that places the RAM in the lowest
region of the processor's memory map. This enables modification
of the interrupt vectors located from 80H to 400H by the user.
These vectors have to be loaded from ROM ~ediately after a
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system reset.
Since the 8086 CPU, as well as the 8089 IOP, expects its reset
vector to be in the high region of the memory map, the ROM
memory is placed there.

Rather than using conventional TTL decoders, programmable logic
is used for address decoding. Using Programmable Array Logic
introduces flexibility in that changing of the memory map can
be obtained by simply replacing the PAL with a differently pro­
grammed version. Three PALs were used, one for RAM, one for ROM
and one for I/O decoding. In figure 4.8. both methods are
shown, the conventional way as well as the programmable way.
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Pigure 4.8: Address decoding.

4.4. Host Interface.

As mentioned in chapter 3, a register-like approach was chosen
for interfacing with the Host computer. Since the properties of
the Host are not known, it will depend largely on the applica­
tion of the controller whether this kind of parallel interface
is suitable.
A block diagram of the interface hardware is given in figure
4.9. below whereas a circuit diagram can be found in appendix
A.
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Pigure 4.9: Interface block diagram.

The interface hardware is made of two I/O channels, one for
strobed I/O using a 8255 Programmable Peripheral Interface de­
vice and the second for DMA transfers.

Bi-directional I/O channel: Programmed to operate on a strobed
I/O bi-directional basis, this I/O channel is used to transfer
status and command information between controller and host.
DMA transfer channel: Using two data transceivers, a 16 bit
Wide, bi-directional data channel is created between host and
controller for the purpose of transfering file data at maximum
speed under IOP control.

The Programmable Interrupt Controller (PIC) shown in figure 4.9
should be considered as part of the processor system rather
than the interface hardware. Its purpose is to allow external
interrupts to the processor. The PIC is capable of placing a
vector on the processors data bus after the first interrupt re­
quest from the CPU.

The relatively large number of lines between host and control­
ler - 31 in all, excluding ground lines - stems from the facts
mentioned below:

- parallel I/O
- 16 bit wide data channel.
- Seperate data and control/status channel.

Each of these facts add to the throughput capability of the
interface and were introduced for that purpose.
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4.5. Drive Control Unit Hardware.

The hardware of the controller unit itself is a very essential
part in the whole design. Generally, three possible implemen­
tations of the functions mentioned in chapter two exist:

1. Standard logic.

2. Programmable logic.

3. Single chip controller.

4.5.1. Standard logic.

Designing a controller using small and medium scale integration
logic chips results in a complex and fixed design. The PC board
area is generally quite large and modifications, when necessary
are difficult to make. Since this method is becoming extinct,
no further attention was given to it.

4.5.2. Programmable logic.

As the next step towards modern controller design, the use of
programmable logic chips to replace fixed logic should be con­
sidered. When carefully designed and programmed, this method
could yield a major improvement over traditional designs. How­
ever, due to the rise of specially designed Winchester control­
ler chips - see appendix C - this option was not studied. It
might prove useful to do so. Refer also to appendix D for a
slight impression of designing with programmable logic.

4.5.3. Single chip controller.

To avoid a large number of logic chips, high power consumption
and little flexibility, which is typical of a random logic con­
troller design, several semi-conductor manufacturers have come
up with VLSI controller chips, capable of performing nearly all
the functions of a disk controller. Appendix C gives an over­
view of controller modules which are or will soon be available.
In this report, the Microcomputer systems Corporation (MSC)
9000 Winchester Disk Controller Module was chosen. This choice
was rather pragmatic since most information was available on
this particular device. Por this reason, the design described
here is not claimed to be the optimal solution.

MSC 9000 Controller Module.

The Microcomputer Systems Corporation MSC 9000 Winchester Disk
controller module contains most of the elements required for
disk control as can be seen in the block diagram of figure 4.10
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Figure 4.10: MSC 9000 controller module.

Unfortunately, two different classes of Winchester disk drives
have to be distinguished, those who have a built in data sepa­
rator and Address Mark (AM) genarator/detector and those who
lack these facilities. The latter ones are generally found in
the smaller and lower cost Winchester drives whereas high per­
formance drives allways provide a built in data separator.
Since the quality of the data separator determines to a large
extent the data integrity of the drive, this is the only way a
manufacturer can guarantee a certain rel~ability.

Since the object of this graduation project was to design a
universal Winchester Disk controller, a data separator and AM
generator/detector will have to be incorporated in order to be
able to accommodate low-cost drive types ~s well. For this pur­
pose, Microcomputer Systems Corporation offers a module, label­
led MSC 9100 to be used in conjunction with the MSC 9000 to
create a complete controller.

At this point a problem evolves. Appearantly the MSC philosophy
did not foresee the use of its controller device in a universal
controller environment. Two different types of MSC 9000 modules
are offered, each slightly different in specifications and la­
belled 9016 and 9056 respectively.
Allthough the differences are marginal (refer to appendix B),
it would be tedious to try to use either of these modules to
handle both drive types. It would mean by-passing the MSC 9100
to control Winchester drives with a built in data separator.
Though possible, this option will not be covered in this report
since it offers little additional insight.
A block diagram of the controller hardware is shown in figure
4.11. The circuit diagram can be found in appendix A.
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Pigure 4.11: Controller hardware.

4.5.4. Processor module interface.

Since the MSC 9000' can be regarded as a processor system in its
own within the hierarchy of the controller, it will have to be
interfaced with the processor system in some convenient way.
Two possible configurations can be considered:

1. SASI bus concept.

2. Special purpose interface.

SASI bus.

{9 bits )

(

<

<parallel bus

select
bu sy
request
acknowledge

inpu t/output ~(----------­

command/data ~(----------­

attention

SASI stands for Shugart Associates System Interface, a byte­
wide intelligent bus that interfaces host systems, like the
processor system in this controller, to control units, like the
MSC 9000. Currently this bus is being standarized by the ANSI
X3T9.2 subcommittee under a new name, the small Computer System
Interface. Pigure 4.12 shows the physical characteristics of
this bus.

message
reset

<
)

Pigure 4.12. SASI bus.
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The major advantage of using a bus structure like the SASI bus
is the inherent possibility of incorporating several types of
device controllers within the same controller unit. For in­
stance, the same controller could be configured to drive any
combination of Winchester drives, tape units and floppy disks.
Below this architecture is shown .

..... winchester winchester') A "-

con troller drivey

processor A -> tape "-
tape

A

system K SASI controller drive....

.... flo ppy
A .. floppy

/ c on troller drive

I
UNIVERSAL CONTROLLER

Figure 4.13: Bus architecture.

Both flexibility and expandability are high using this ap­
proach. However, according to Murphy's law, there has to be
some disadvantage as well.

Firstly, the use of a bus implies adaption of signal lines on
two occasions, from processor system to bus and from bus to
device controller. To put it another way, the incompatibility
between processor system signal lines, device controller signal
lines and bus signal lines requires extra hardware provisions
as is illustrated by figure 4.14.

processor A ...
f<.SASl ~

A . controller
adapter adapter

system module

CONTROLLER

Figure 4.14: Bus adaptions.
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Secondly, the SASI bus poses speed restraints on data transmis­
sions thus obstructing the lOP from working at maximum speed.

Special Purpose Interface.

Using a specially designed interface adapter circuitry to con­
nect the MEC 9000 to the controller's processor system yields
an optimal solution as far as data transfer speed is concerned.
A circuit diagram of this hardware interface can be found in
appendix A.

processor '"
.A "- controller

adapter modulesyste m ~

Pigure 4.15. Special Purpose Interface.

In order to explain its operation, it will be described in four
sections:

- Clock.
- Data latches.
- Communication protocol.
- Reset circuitry.

Clock.

The clock signal required by the MEC 9000 is specified in
accordance with the time diagram of figure 4.16.

~ Tql ~. ,

r: ~ F!
-------i ----------- .------------ ----
----- ----------- ---------------

____...J' : '-- ---'

I I

: Tclk '
~ ):,

TCYl :259ns!1 D
/ D

Tclk : 1113 ns (min)
VIH =vCC -ra.8

VIL : 8.8

Pigure 4.16: MEC 9000 clock waveform.
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Levels: To obtain the required voltage levels
signal from a standard TTL output, the
cuitry shown in appendix A is needed.

for the clock
buffering cir-

Timing: The accuracy of the generated clock signal is deter­
mined to a large extent by the crystal used. When
using a 74ls124 VCO chip for clock generation, a se­
ries resonant fundamental mode crystal with a series
resistance less then 200 Ohms is recommended. A 20 pF
capacitor is placed in series with the crystal. Refer
to figure 4.17.

X-TAL I:L...-_)_L..-_v_co__I' 1BUFFER I-~) Jl

Figure 4.17: MSC 9000 clock circuitry.

Data latches.

The MSC 9000 has a tri-state, active high data bus which -is
used for communicating with both, the host processor and the
disk drives. Externally driving this bus may only be done when
the ROY and LOI signals from the module are both active. To
obtain this, a data-input latch was added which is enabled only
when the forementioned condition is satisfied.
Bus buffering in the opposite direction is necessary as well,
hence the other data latch clocked when ROY and DOOT are both
active. Both latches introduce propagation delay times.

Communication Protocol.

The lowest level of communication between processor system and
controller module involves the transport of command and data
bytes. For this purpose, several interface signals are present
which are listed below.

MODBSY : MODULE BUSY - indicates whether
ler is ready to accept a command
executing a previous command.

the control­
or is still

CMDSGN COMMAND SIGNAL - initiates a command transfer
sequence.

DREQ COMMAND REQUEST - request signal
command byte.

for next

Q1 DATA REQUEST ON CHANNEL ONE - request signal
for next data byte.
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ACK ACKNOWLEDGE - acknowledge
byte transfer.

command or data

Both processor input lines MODBSY and CMDREQ are connected to
the data bus through a tri-state buffer, selectable by the
proper I/O address. This obliterates the need for an extra I/O
port in the processor system.
A timing diagram, illustrating the protocol of the communica­
tion between processor system and controller module is given in
figure 4.18. The flowcharts shown in appendix D, figure D8a and
D8b can also be used as a reference.

The hardware in which this protocol is largely implemented is
formed by a pulsed mode driven, asynchronous circuitry consis­
ting of several D-flip-flops and random logic gates. Though
this approach is quite common in interface design and not dif­
ficult, the result is a messy circuit, prone to errors caused
by glitches. Alternatively, a synchronous circuit using pro­
grammable logic could be used. Appendix D discusses this pos­
sibility.

Reset circuitry.

In order to reset the controller module, a somewhat ackward
reset signal is required on the controllers CLR input, as is
shown below.

Vcc I: Tpelr Twclr ,
I ,

~ >. !(; >:
I I

II n1

CLR I
•
I

Tpel = 10 ms (min)

Twclr: 1 Ps (min)

Figure 4.19: Reset timing.

In order to obtain a CLR input timing like the one shown, a so
called reset delay circuitry is needed, consisting of two one
shots.
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Figure 4.20: Reset delay circuit.

A positive going RESET signal triggers the first one-shot,
causing a 10 msec long, low CLR to the module. Following this
period, the second one shot is triggered, causing the CLR line
to go low for another 1 usec.

4.5.5. DMA transfer timing.

Considering the importance of the DMA data transfers between
processor system and controller module, a more detailed discus­
sion of the timing involved was made. The resu1ts of this sur­
vey, given below, are somewhat dissappointing.

Data input timing.

The MSC 9000 data bus, unfortunate1y is on1y 8 bit wide which
leaves the choice 8/8 bit transfers or 8/16 bit transfers, the
latter option by using the IOP's packing and unpacking facili­
ties. Both possibi1ities are shown in the timing diagrams of
figure 4.21 and 4.22 respectively.

WID 8/8.

WID 8/8 operation means data is fetched from memory on a byte
by byte basis and sent to the controller module one byte at a
time. The timing diagram of figure 4.21. shows this in detail.
The situation shown here is a best case in which time delays,
caused by the controller module are minimal, i.e. Tsl and TIp
are 580 nsec and 248 nsec respectively.
However, even with these minima1 time delays, the data request
(DRQ1) for the next transfer cycle appears after the T4 state
of the current transer cyc1e, yielding the insertion of 4 idle
states, a delay of 4 x 200 nsec, 0.8 usec per transfer cycle.
Thus, best case data transfers require 2.4 usec/byte.
In a worst case situation, maximum values for Tsl and TIp, 20
IOP clock cycles are needed for every transfer cycle, yielding
4 usec/byte.
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Pigure 4.21: MSC 9909 DATA INPUT TIMING (DMA)
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WID 16/8.

Using the IOP's capability to unpack a 16 bit word into two 8
bit bytes during a DMA transfer cycle, a situation as is shown
in figure 4.22. arises. Again this is a best case situation.
The unpacking operation requires four extra clock cycles be­
tween two synchronous store cycles to allow the peripheral to
remove its first data request. Using this feature, the transfer
of one word requires a minimum of 20 states, equivalent to 2
usec per byte. Worst case values are 2.8 usec/byte.

Remark.

In spite of the MSC 9000 controller module"s inability to
handle 16 bit words, word/byte transfers can be used succes­
fully to obtain a higher data transfer rate as compared to
byte/byte transfers. However, the theoretically achievable
maximum transfer speed of 957 Kbyte/sec for data input to the
MSC 9000 cannot be obtained. This dissappointing result origi­
nates from the fact that communication between processor system
and controller module is asynchronous.

WID 8/8 WID 16/8

SPEED

Data output timing.

min

250

max

416

min

357

max

500 Kbyte/sec.

In view of the results mentioned in the previous section con­
cerning data input timing, only the 8/16 option was taken into
consideration.
Two sources of time delays can be discerned in figure 4.23:
1. Four Idle states are inserted by the lOP between two syn­
chronous fetch cycles. This delay is intended to allow the
peripheral to remove its previous data request signal. In this
case however, the DRQ is allready gone in time, so Idle states
are not necessary. Unfortunately this feature is not optional
so these four Idle states will have to be taken for granted.
2. The data request following the store cycle of the previous
word, arrives at best during state T3 of the store cycle. As a
result of this, the lOP inserts four Idle states immediately
following the current store cycle. To avoid these Idle states,
DRQ from the module has to be active before state T4 of the
second fetch cycle. The minimum set-up times for Tsd and Tdp
render this impossible.

As a result of the facts mentioned above, a transfer cycle for
one word requires at least 20 stat~s, yielding a maximum trans-
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fer speed of 500 Kbytes/sec. Assuming maximum values for Tsd
and Tdp, a transfer cycle will require 28 states. (357 KB/S)

4.5.6. DMA termination.

Any DMA transfer running on the IOP"s I/O channels, can be ter­
minated on one of the following conditions:

Terminate on single transfer.
- Terminate on byte count.
- Terminate on masked compare.

Terminate on external signal.

Both channels will wait for a Data Request signal (DRQ) after a
non-terminating transfer cycle. If this request never occurs,
the DMA channel involved will wait indefinitely. Though such a
hang-up on one channel does not affect the other channels
operation - unless chained channel operation was selected - it
will prevent the lOP from terminating the Task Block Program on
the held up channel.
To prevent this, the external terminate option has to be selec­
ted on any DMA transfer operation since it is the only way to
exit a hang-up situation.
Using a Programmable Interval Timer (PIT) as a one shot, re­
triggered after every DMA transfer cycle, will cause an exter­
nal interrupt to the I/O channel after a programmable delay.
Should a DRQ signal occur beyond a reasonable period of time,
the external interrupt will cause the TBP to be resumed. A jump
condition in the TBP can determine the occurence of an EXT
interrupt and transfer control to the appropriate error hand­
ling section. Refer to appendix A for the PIT connections.

4.6. Drive interface.

The interface circuit between drives and controller module
consists of the following sections:

- Data separator The purpose of a data separator
was explained in chapter 2. As
mentioned earlier, a MSC 9000 mo­
dule was used for this purpose.

- Precompensation: The precompensation circuitry is
built around three D-PP"s clocked
at a 40 Mhz clock frequency. Se­
lect information for the multi­
plexer is derived from the MSC
9100 module. Refer to figure 4.24.
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Figure 4.24: Precompensation.

- Decoder A decoder/multiplexer is used to
decode the control information
from the MSC 9000 for proper dri­
ver and latch control. Refer to
appendix B for the required de­
coding scheme.

- Latches Drive control signals are latched
from the module's data bus and
transferred to the bus driver cir­
cuits. Select information for
these latches is derived from the
MSC 9000 through the decoder
/multiplexer.

A block diagram of the controller disk drives interface cir­
cuitry is shown in figure 4.25.
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Figure 4.25: Controller Drive Interface.
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4.7. Interface standards.

The physical interface to the drives, created by the hardware
concept described in the previous paragraph is known as the
Floppy Extension Interface. Though not a universal standard, it
is widely spread and found on most low cost 5.25 and 8 inch
Winchester drives. In fact, until now no universal interface
standard exists and due to several de facto standards pene­
trating the market, the question whether or not such a standard
will ever exist is justified.
AppendiX B contains a section concerning some of the interfaces
currently in use or being suggested by the ANSI.
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Chapter 5. SOFTWARE DESCRIPTION.

5.1. Introdution.

The software required to operate an intelligent controller like
the one covered in this report is quite extensive. When desig­
ning software of this scope, it is generally considered good
policy to divide it into functional sections and develop a mo­
dular structured software package, rather than a large bulk of
code. An attempt to make such a functional division was made in
the block diagram of figure 5.1.

ERROR HANDLER

I' ---~-----~---- !u

HOST FI L E FREE DISK
PROTOCO MANAGE-~ SPACE - ~ PROTOOOL

HANDLER MENT ADMIN1- HANDLER
STRATI~

I' ~ t II'

, COMMAND ~

HANDLER

DISKOPERATING SYSTEM

Figure 5.1: Software block diagram.

The following sections are discerned.

Host Protocol Handler: Handles all communication be­
tween Host computer system and controller.

Disk Protocol Handler: Handles all communication be­
tween Disk controller module and the controller's pro­
cessor system.

Disk Operating system: Handles file management and ma­
nipulation.

Error Handler: The error handler is responsible for
dealing with unforeseen occurencces within the control-
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ler software. After entering this software section, a
known and defined state has to be reached from which
point the controller can resume proper operation.

Prior to describing each of these software modules, the con­
troller"s initialization phase will be discussed.

5.2. Initialization.

After a power-up of the controller, it will receive an auto­
matic reset signal, bringing both the controller"s processors
in a defined state and resetting the controller module as well.
As the 8086 CPU is strapped as a master processor, it will
start executing from memory location PPPPO H were it should en­
counter an intersegment direct jump which target is the star­
ting location of the actual initialization routine. At this
stage all interrupts are disabled.
The tasks performed by the initialization routine are listed
below in sequential order.

1. CPU initialization.
2. IOP initialization.
3. Peripheral initialization.
4. RAM test.
5. Interrupt vector field initialization.
6. Controller module initialization.
7. Pile management administration set up.
8. Interrupt enabling.

After execution of this sequence, the controller is ready to
receive and execute its first command.

5.2.1. CPU initialization.

Initializing the CPU means its segment registers have to be
given a predetermined value. After a reset, the code segment
register has the value PPPF H, the instruction pointer 0000 B.
Thus the first instrution is fetched from location PPFFO H as
stated before. As a result of the intersegment direct jump in­
struction located there, the code segment register as well as
the instruction pointer are given a new value, transferring
control to the initialization program located in ROM.
The stack segment register is set to the top of stack, the
stacksize being restricted to 756 words, due to the expected
low degree of interrupt nesting.
The Data segment is used by the DOS to store its tables and
pointers. The size chosen (7 Kword) may prove to be insuffi­
cient and can be expanded easily.
Pinally, the Extra segment register is initialized, pointing to
the· area of the controllers workspace where file data is
stored. The memory map created thus can be found in figure 5.2.
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Pigure 5.2: Memory map.

5.2.2. lOP initialization.

USER INT POINTERS

RESERVED

DEOlCA TEO INT VEC TORS

The next phase in the initialization process, is to configure
the lOP for its task. The lOP enters a HALT state after recel­
ving a reset signal. To start its initialization sequence, it
has to receive a channel attention (CA) from the CPU. During
this CA, the select line is used to indicate whether the lOP is
to function as master or as slave processor. In this case, the
lOP will be a slave processor (SEL= high). subsequently the lOP
will request and obtain control over the system bus which it
will assume to be eight bits wide. The SYSBUS field located at
memory location PPPP6 will inform the lOP about the actual bus
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width, 16 bits in this case. The SYSBUS fie1d is part of the
system configuration pointer b1ock, 10cated from FFFF6 through
FFFFB H in ROM. This b10ck a1so contains a pointer to the sys­
tem configuration b10ck itse1f where the lOP can find the sys­
tem operation command, containing information about the
request/grant mode and the physica1 I/O bus width. Furthermore
the lOP stores the va1ue of the channe1 Contro1 B10ck (CCB) in
an interna1 register. As a resu1t of this, the CCB cannot be
re10cated un1ess another system reset is given.
This comp1etes initia1ization of the lOP. To signa1 the host,
the Channe1 1 Busy F1ag, set to FF H by the CPU prior to ini­
tia1izing the lOP, is c1eared and contro1 of the system bus is
redirected to the CPU.

The CCB contains two identica1 sections, one for each channe1.
In each section, a busy f1ag, indicating whether the corres­
ponding channe1 is active or not, a Channe1 Command Word (CCW),
indicating the channe1s mode of operation and a Parameter B10ck
pointer (PB) are present. The PB contains the task b10ck poin­
ter p1us any other parameters the Task B10ck Program ( TBP )
requires for proper operation.
At this stage the CCB is not initia1ized yet since it can be
done by the CPU at any time before starting an I/O program.
Figure 5.3 shows the lOP initia1ization sequence, figure 5.4.
the various contro1 b10cks invo1ved and their 1ocations.

5.2.3. Periphera1 initia1ization.

In order to configure the contro11er for its task, the periphe­
ra1 chips present in the system need be initia1ized proper1y.
This entai1s programming each periphera1 to function in the de­
sired mode.

Programmab1e Periphera1 Interface.:

The PPI is programmed to operate in mode 2 on channe1 A and C.
Thus strobed I/O is obtained through these channe1s. Port B can
be configured for mode a operation, either input or output.
Programming is done by writing the proper contro1 word in the
periphera1"s contro1 register.

Programmab1e Interrupt Contro11er.:

As the PIC was designed to accommodate both 0000/0005 and 0006
/0000 processor systems, carefu1 attention shou1d be given to
proper initia1ization of this periphera1 since both systems
require different interrupt hand1ing procedures. Initialization
is performed in two phases;

- Initialization Command Words. A sequence of 2,3 or 4 control
words is stored in the PIC. In this particular application,
three ICW's are needed to conf.~ure the PIC as follows:
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- Single controller.
Edge triggered interrupt.
Interrupt vector field starts at location 080 Hex.
No slave interrupt controller.
8086/8088 mode operation.

- No special end of interrupt.
- Non buffered mode.
- Not special fully nested mode.

After loading the ICW's, the PIC is ready for operation. Fur­
ther additional options can be programmed subsequently by wri­
ting Operation Command Words (OCW)

- Operation Command Words. Three OCW's are required to select
the desired mode of operation:

O~: The first OCW is used to set an interrupt mask on
the eight interrupt lines. only those lines that are
not masked off will cause an interrupt request to the
CPU.
OCW2: The second OCW specifies whether a rotating
priority scheme is used which is n?t the case here.
OCW3: The third OCW enables the user to apply the PIC
in a polled interrupt environment, rather than a
vectored interrupt one. This feature is not used.

This terminates the initialization of the PIC. It is now
capable of detecting interrupts on eight levels, each having a
different priority. IRO, having the highest priority, is used
to service host requests, providing the lOP is not executing a
DMA transfer. In the latter case, the interrupt will remain
pending until the CPU regains control of the system bus.

Programmable Interval Timer.:

After a system reset, all counter modes are undefined. Initia­
lization is done by writing the appropriate sequence of contol
words to the PIT. In order to configure the PIT for retrig­
gerable one-shot operation as indicated in pargraph 4.5.6.,
counter 0 and counter 1 are to be programmed in mode 1. during
DMA tranfers. However, as long as no DMA transfer is in pro­
gress, both counters have to be inhibited. Por this purpose,
both counters are programmed to mode O. This will force the
outputs to remain low as long as the gate inputs, connected to
the data request outputs of the lOP remain low. Thus no EXT
interrupt is generated. It is the responsibility of the Task
Block Porgram that initiates the DMA transfer to reprogram its
corresponding counter to mode 1 and loading it with a suitable
count value. After proper termination of the DMA transfer, the
corresponding timer has to be disabled again.
Timer 3 remains unused.
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5.2.4. RAM test.

A RAM test is performed to verify correct operation of the con­
troller's workspace and to determine its size. Testing is done
by an algorithm like the one shown below.

BEGIN PROCEDURE RAMTEST

ADDR, PATTERN, TEST
END

INTEGER.
BOOLEAN.

ADDR:=OOO B; PATTERN:=5555 B;TEST:=AAAA H;END:=PALSE

WHILE NOT END DO
MEM( ADDR) :"'PATTERN;
IF MEM( ADDR) NEQ PATTERN THEN END: =TRUE

ELSE BEGIN
SHIPTLEFT MEM(ADDR)
IF MEM( ADDR) NEQ TEST

THEN END: =TRUE
ELSE ADDR: =ADDR+~

FI
END

FI
OD

END (RAMTEST)

5.2.5. Interrupt Vector field initialization.

The interrupt vector field is located in RAM from location 0 H
to OPE H according to Intel convention. The contents of this
field can be loaded form the controller's ROM by a REP MOVSW
instruction which moves an entire data block from memory to
memory. The value of these interrupt service routine pointers
can be altered during program execution.

5.2.6. Controller module initialization.

After reception of the hardware reset signal, the controller
will signal the processor system by asserting its ready line.
Issuing a DIAGNOSTIC command to the controller module will
cause it to perform an internal check. The result of this check
routine can be obtained by means of a STATUS command. Refer to
paragraph 5.4.
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Subsequently, the CPU can configure a Task Block Program for
the lOP to read track zero of drive O. The information thus
obtained should at least contain parameters such as:

- No of heads.
- No of drives.
- No of tracks per drive.

Physical block size.
No of blocks per track.
Index list pointer.
Root directory pointer.

- Free space table pointer.

This information is stored in the controller"s workspace for
future reference.

5.2.7. Pile management administration set-up.

Initialization of the Disk Operating System means resetting all
relevant pointers such as those that point to the current open
file table which is empty at this stage, the active I-node
table which is loaded with the Index node of the Root directo­
ry. Also pointers into the controller"s data buffer are
cleared.
The Root directory is fetched from the disk since the user will
have to refer to it initially. Pigure 5.5. shows the situation
as it occurs after these steps.
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5.2.8. Interrupt enabling.

At this stage in the initialization process, the controller is
ready to receive and execute commands from the Host. As these
commands are given on an interrupt basis, the interrupt enable
flag of the processor has to be set as the final step.

USER LIST

supervisor

OPEN FILE TABLE

pOinters to user
open fi e tables

ACTIVE I-LIST

l..-.---f root directory
index node

I
ROOT DIRECTORY

Pigure 5.5: Initial state.
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5.3. Host Protocol Handler.

As stated before, the Host Protocol Handler performs all commu­
nication between Host computer and Controller. This communica­
tion is bi-directional and involves the exchange of the follo­
wing information:

Commands from Host to controller.
- status from controller to Host.
- File data between controller and Host.

The protocol by which this communication takes place will be
described shortly but prior to that, a brief discussion concer­
ning synchronous and a-synchronous I/O will have to decide for
either of these forms of communication, a choice that has con­
siderable impact on the protocol itself.

Synchronous I/O.

Synchronous I/O means every request from the Host is serviced
immediately by the controller. During this service request, the
Host waits for the result of his request before continuing pro­
cessing. Figure 5.7. illustrates this.

HOST

1 REQUEST

CON TROLLER

I
WAI T SERVICE

t~--R-"';;:E:....::.s-=-u.=...LT t

Figure 5.7: Synchronous I/O.

A-synchronous I/O.

In the case of asynchronous I/O, service requests from the Host
are queued by the controller. After issuing a service request
to the controller, the Host continues processing. Upon termina­
tion of a requested service, the controller interrupts the Host
to transmit the result. Furthermore the controller has to in­
form the Host of the request to which this result belongs since
Host requests are not necessairilly serviced in incoming order.
Using A-synchronous I/O, multiple service requests from the
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Host can be buffered and serviced in an order best suited for
the controller. Refer to figure 5.8.

CONTROLLER

SCHEDULER

HOST

1
QUEUE

~~~

rEOI

1REQ2

~(-- ;..:.RE=s~U~L;;;.;T;.....;2=__ SERVICE 2

lRffi3 1
1

RESULT 1
<E:-(----------.;~~--------SERVI CE 1

1I~<------~R::..ES.:...U:...:L:...:T~3------_S ERVI CE3

t
Figure 5.8: A-synchronous I/O.

The major advantage of synchronous I/O is its relative simpli­
city, no request queueing, no scheduling, no interrupts to the
Host. On the other hand, the host is inactive during the time
his request is being serviced by the controller, leading to a
decreased performance of the Host.
A-synchronous I/O entails scheduling of requests by the con­
troller"s Host Protocol Handler. Furthermore, the Host might
need the results of his request before being able to continue
its current process. Thus the apparent advantage of parallel
processing could be deceiving. On top of that, the Host has to
keep track of outstanding requests and the order in which he
receives the results from the controller.

Based on these considerations, synchronous I/O was chosen
whereby the Host interrupts the controllers current activity by
issuing a service request and subsequently waits for the re­
sult. Figure 5.9. illustrates the controller"s control flow.
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PROCESS
HOST
PROTOCOL
HANDLER

CON TlNUE

N

COMMAND
HANDLER

Pigure 5.9: Control flow.

5.3.1. Layer model.

The problems involved with communication protocols between com­
puter systems, which is what we are dealing with here, are ex­
tensive. No attempt is made in this report to present a univer­
sal solution to communication protocol problems. The approach
chosen here is somewhat related to the ISO Open systems Inter­
connection reference model allthough some modifications were
made. One of these modifications is the reduction to four
rather than seven layers as can be seen in figure 5.10.

APPLICATION LAYER

PRESENTATION LAYER

TRANSPORT LAYER

OA TALI NK LAYER

Pigure 5.10: Protocol layer model.
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5.3.2. Application Layer.

The application layer acts as an intermediary between the con­
troller"s Disk Operating system and the Host Protocol Handler.
This interaction is bi-directional. The DOS calls the applica­
tion layer as a subroutine whenever it wants to transfer status
information or file data to the Host. The application layer in
return, signals the reception of a command request or a data
file from the Host to the DOS. This signalling is done by means
of a flag rather than on interrupt basis.
The information obtained by the application layer, originates
from the layer underneath. Communication between the diverse
layers in the model is performed stricktly through system memo­
ry.
Figure 5.11. illustrates the interaction between DOS and Appli­
cation layer.

TEST
MESSAGE
FLAG

MESSAGE
BLOCK

N

N

APPL. LA't9

CALL

TEST
RESULT

INPUT OUTPUT

Figure 5.11: DOS-Application Layer interaction.



5.3.3. Presentation Layer.

The task of the presentation layer is to arrange the incoming
and outgoing data into a fixed format to avoid mis-interpreta­
tion. To this extent, three different types of so called I/O
blocks are distinguished:

- command Block.
- status Block.
- Data Block.

command Block.

COMMAND CODE

USER 10

FILE NAM E

RECORD NUMBER

DATA FIELD LENGTH

CONTROL FIELD

COMMAND CODE: Block identifica­
tion.
USER ID: User identification.
FILE NAME: string of characters
terminated by an ETX symbol spe­
cifying the file.
RECORD NUMBER: Record to be ac­
cessed within file.
DATA FIELD LENGTH: Length of data
involved.
CONTROL FIELD: Error control in­
formation.

The length of a command block is variable and depends largely
on the file reference information, i.e. filename or path name.
The other fields within the command block are of a fixed
length.

status Block.

STATUS CODE

USER 10

STATUS FIELD

CONTROL FIELD

STATUS CODE: I/O block identi­
fication.
USER ID: User identification.
STATUS FIELD: String of charac­
ters terminated by an ETX symbol
containing the actual status in­
formation.
CONTROL FIELD: Error control in­
formation.

The status block contains information concerning the controller
,in particular any errors that occured as a result of the exe­
cution of a user command. The length of this I/O block is
determined by the information contained in the status field.
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Data Block.

The format of a data block is similar to that of a status block
in that it has the same fields. In a data block however, file
data is contained in the last field.

DATA CODE

USER 10

DATA FIELD

CONTROL FIELD

DATA CODE: I/O block identifi­
cation.
USER ID: User identification.
DATA FIELD: String of characters.
CONTROL FIELD: Error control in­
formation.

A Data block allways follows after either a command or a
block. For this purpose, the command and status code
contain a flag indicating whether the block is followed
data block or not.

5.3.4. Transport Layer.

The transport layer serves a dual purpose:

1.. Receiving command and data blocks.
2. Sending status and data blocks.

status
fields

by a

The condition imposed on this transport of I/O blocks, is that
it is done error-free. To this extent, error checking and re­
transmission is performed. In case of failure, an error status
signal is generated, signalling the presentation layer.

1.. Receiving.

The Host can interrupt the controllers current activity by
writing to the peripheral interface port. Providing the lOP is
not active, i.e. the CPU is running, it will receive an inter­
rupt from the Command/status I/O port. As a result of this, an
interrupt service routine is called which initializes the lOP
to perform the required task block program. This TaP proceeds
with the following steps:

+ Acknowledge the interrupt and disable further inter­
rupts.

+ Read and interpret the contents of the PPI.
+ Transfer control to the required software routine.
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Wha~ rou~ine ~his should be depends on ~he value of ~he firs~

byte sen~ by ~he Hos~. Three possibili~ies exis~:

1. Command code.
2. S~a~us code.
3. Da~a code.

Command rou~ine.

Af~er receiving a conunand code, ~he IOP polls ~he PPI ~o ob~ain

~wo further bytes, indica~ing ~he leng~h of ~he I/O block ~he

Hos~ will sen~ over ~he Da~a channel. Based on ~his informa~ion

,an area in ~he con~rollers workspace is alloca~ed as I/O buf­
fer. Subsequen~ly a DMA channel is prepared and a DMA ~ransfer

from hos~ ~o con~roller is ini~ia~ed.

The actual DMA ~ransfer is performed by ~he physical layer des­
cribed in ~he ne~ paragraph.

Af~er ~ermina~ion of ~he DMA ~ransfer, a checksum is calcula~ed

and compared wi~h ~he informa~ion con~ained in ~he I/O block-s
con~rol field. In case of a misma~ch, a re~ransmission is
reques~ed.

The Hos~, af~er ~ermina~ion of ~he DMA ~ransfer, wai~s for a
message from ~he con~roller ~hrough ~he command/s~a~us channel
~o verify whe~her ~he I/O block was received correc~ly. If no~,

~he en~ire block is sen~ again. This process repea~s i~self un­
~il a re~ry coun~er a~ ~he hos~ decremen~s ~o zero af~er which
~he a~~em~ is abor~ed.

Da~a rou~ine.

As ~he resul~ of a succesful I/O block ~ransfer, ~he IOP
block program checks ~he flag in ~he I/O block"s command
field ~o see whe~her a Da~a block follows. If so, ~he

block is ~ransfered ~o ~he con~roller acccording ~o ~he

principle as a command block.

Illegal rou~ine.

~ask

code
da~a

same

Upon de~ection of a unknown or illegal code sen~ by ~he Hos~,

~he communica~ion is broken off. A message byte is sen~ ~o ~he

Hos~ informing i~ of ~he fac~ ~ha~ ~he code received was no~

legal and ~he communica~ion process a~ ~he con~roller was
abor~ed. Hence ~he Hos~ will have ~o ~ry again.

In figure 5.12 an a~~emp~ was made ~o draw a flow-chart of ~he

receive rou~ine in ~he ~ransport layer.

Af~er re~urning from ~he in~erru~ service
will resume i~s previous ac~ivi~y. Wha~ever
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Interrupt
from PPI.

Task block
program
RECEIVE

two
PPI

y

error

DMA

set up
status
I/O block
negative

set up
status
I/O block
ositive

code

ack interrupt
read PPI status
re ister.

enable interrupts 95

set message flag.

set up call data link
status layer (DLL)
I/O block '------r---.....J

positive

two
PPI

N

error

DMA

command
routine

y

set up status
I/O block
ne ative

Pigure 5.12: Transport Layer receive routine.



on the CPU, it will frequently have to check the I/O buffer
flag for reception of a command or data block. Refer to figure
5.13 for this polling sequence.

BACKGROUND 10 fla
T FOREGROUND ----

F

Figure 5.13: Controller DOS polling.

2. sending.

The routine which transfers I/O blocks from controller to host
is allways called from the presentation layer. It executes the
following sequence of actions:

- A status code is written to the PPI which places it
on the command/status bus.

- The status register of the PPI is polled to determine
whether the host has accepted the status code.

- Two furter bytes are sent according to the same prin­
ciple which contain the length of the I/O block to be
transfered.
DMA channel is prepared.
DMA transfer is executed.
The status register of the PPI is polled to determine
whether the host has received the I/O block properly.
If not, the sequence is repeated.

The flowchart of figure 5.14 shows this sequence.

Allthough the process described above is simple enough, there
is one specific point of interrest which deserves special at­
tention. At several points in the routine, busy waits are
introduced to verify correct acceptation and reception of cer­
tain bytes by the PPI. Circumstances may occur which will pre­
vent these busy wait loops from terminating, causing a hang up
of the controller. In order to prevent this, time out facili­
ties have to be provided for.
Unfortunately, no external interrupt -generated by an Interval
Counter for instance- can be given to the lOP unless it is per­
forming a DMA transfer which is typically not the case during a
busy wait loop.
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call transport
layer

att

Task block
program
SEND.

write status
code to PPI

read PPI status
register

N

write
block
bytes

prepare DMA
channel

DMA. transfer

status

read PPI data
register

N

return
CPU.

Pigure 5. 14; Transport Layer sent routine .

97



Rather than transferring the sent routine from executing on the
lOP to the CPU which can be interrupted, a software time out
like the one shown in figure 5.15 will have to be added. The
software time out is created by a counter which is decremented
after every unsuccesful attempt. As soon as the counter decre­
ments to zero, an exit from the routine is made, specifying the
cause of the exit to the calling routine. Between successive
attempts, a delay is introduced, proportional to the time esti­
mated for the host to respond.

load retry
counter with
initial value

delay
loop

decrement
retry counter

set error
flag.

return to
CPU.

read PPI status
register

Figure 5.15: Time out.

5.3.5. Data Link Layer.

The data link layer is responsible for the actual transfer of
bytes or words. For this purpose it has two independent I/O
channels available as described in chapter 4. One channel
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(command/status channel) uses strobed I/O, supported by the
Programmable Peripheral Interface (PPI) and transfers command
and status information. The second channel transfers the I/O
blocks mentioned previously under DMA.
The communication protocols of both channels are shown in the
state diagrams of figure 5.16 and 5.17 respectively.
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CONTROLLER

ST8 ..T
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Pigure 5.16:
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HOST
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DMA INPUT
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Pigure 5.17:



5.4. Disk Protocol Handler.

As an opponent towards the Host protocol handler, this section
of the software is responsible for the communication between
the controller-s processor system and the Winchester disk con­
trol hardware. As a logical consequence of this, the protocol
used for communicating between the two is determined primarily
by the MSC 9000 controller module.

Two types of messages are invloved in the communication process
, commands and data.

5.4.1. Commands.

The MSC 9000 supports eleven commands which can be divided in
commands that don-t cause additional data transfers and com­
mands that do. All commands, including those that don-t require
disk access, conform to the eight byte format shown below.

BYTE 1 COMMAND CODE.
BYTE 2 DRIVE SELECT.
BYTE 3 CYLINDER ADDRESS, MSB
BYTE 4 CYLINDER ADDRESS, LSB
BYTE 5 HEAD ADDRESS.
BYTE 6 SECTOR ADDRESS HI
BYTE 7 SECTOR ADDRESS LO

Commands that do not require the full eight bytes
adjusted by the insertion of pad bytes to maintain
byte command length convention.

5.4.2. Data.

have to be
this eight

Certain commands, like read and write commands, are followed by
a data transfer. The amounth of data involved in the transfer
is related to the nature of the command. Read and Write com­
mands yield data transfers of one sectorlength. A Status com­
mand only requires the transfer of a single byte whereas a Sec­
tor Interleave command is followed by a 21 byte transfer.
Thus the routine that issues the command should also initiate
the data transfer.
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Data Bytes
CMD DRV CYL CYL HD SCT SCT SCT Number In/Out of

COMMAND CODE NBR MSB LSB ADR ADR HI LOW of Bytes Modu!~

SEEK 0 X X X - - - - - -
READ 1 X X X X X X X N OUT
WRITE 2 X X X X X X X N IN
FORMAT 3 X X X X - X X - -
RECALIBRATE 4 X - - - - - - - -
STATUS 5 - - - - - - - 1 OUT
READ LONG 6 X X X X X X X N+4 OUT
WRITE LONG 7 X X X X X X X N+4 IN
WRITE ALI. a X X X X X - - - -
SET INTERLEAVE 9 - - - - - - - S IN
WRITE CHECK A X X X X X X X - -
DIAGNOSTIC B - - - - - - - - -

Figure 5.18: MSC 9000 command table.

5.4.3. Task Block Program.

The task block program (TBP) that implements the relatively
simple Disk Protocol Handler is shown in the flowchart of
figure 5.19. Calling this routine after configuring the correct
parameter block (PB) results in issuing a command to the MSC
9000 and subsequently transferring data if applicable. Figure
5.20 shows the format of the parameter block required for this
routine.

TASK POIlnl~/CHANNEL

STATE SAVB AREA

DRIVE SELECT COMMAnD CODE

CYLI NDER ADR CYLINDER ADR
LSB MSB

SECTOR ADR HEAD ADDRESS

SECTOR COUNT SECTOR COUNT
LO HI

DATA LENGTH DATA FLAG

BUFFER POInTER

STATUS FIELD

- Task block pointer field

- Reserved

- 1~C 9016 command format.

- number of bytes for DMA XFR
- data transfer flag.
- pointer to start of system

memory where data is to be
stored or fetched from.

15

Figure 5.20: Disk Protocol Handler PB.
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Channe1 command
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....
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output

Channel corwnand
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GA=source
WID 8,16

terminate on
byte count:=
offset f6

Piqure 5.19. Disk protocol handler TBP.
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The flowchart is thought to be self explaining. Note that no
error conditions are detected by this routine. Therefore it is
considered wise to perform a status read of the MSC 9000 after
every command. Such a status read can be done by issuing a sta­
tus command to the module which will then transfer one status
byte. As this is a normal' command, the same routine could be
used. It would be easier however to devote a special TBP for
this task. Refer to figure 5.21 and 5.22 for a flowchart of
this TBP and the corresponding PB.

TASK BLOCK POINTER/
CHANNEL STATE SAVE

I STA{fUS FIELD

15

- Task block pointer field

Reserved.

Returned status information

Pigure 5.22. status read PB.

5.5. Disk Operating System.

The Disk Operating System is defined as the collection of the
following sub-systems:

- Command Handler.
- Pree Space Administration.
- Pile management.

Each of these sub-systems will have to be executed by the 8086
CPU assisted where necessary by the lOP. A possible implemen­
tation of this DOS will be given in the form of flow diagrams
in the following paragraphs.

5.5.1. Command Handler.

Section 3.4. gave an overview and functional description of the
commands supported by the DOS. Each of these commands will be
discussed seperately.

Control flow.

After succesful completion of the initialization sequence, the
controller will enter an idle state. During this idle period,
the message flag of the Host Protocol Handler will be checked
frequently to see whether the Host has sent a command. If so,
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load GA reg with
module address

load GE reg with
address of status
field pointer in FE

Channel command
word:
single transfer
WID 8,8
GA=source
IX: '#7

test module bUsy
bit on status port

y

y

N

test CMDREQ bit on
status port

move STATUS command
code to module

N

on

N

start DMA transfer

move last pad command
byte

J.05

le xfr
>--~""""'-..:..,

store-error code
in FE status field

Pigure 5.2J.: status request TBP.



the command will be fetched from its I/O command block and be
interpreted by the Command Handler.

CREATE routine.

Upon entering this routine, the name of the file to be created
is fetched from the parameter block and a lineair search in the
directory is performed to determine whether the file exists or
not. If not, space is allocated by invoking the Pree space Ad­
ministration routine. An index node for the file is created and
added to the I-list. Updating of the directory finishes the
create routine.

OPEN routine.

The open routine performs two functions. Pirstly it checks
whether the file to be opened exists and whether the user has
legal access rights, secondly it creates access to the file by
adding its index node to the user's open file table. Purther­
more the window - a pointer to the next record of the file to
be read is initiated to point to the first record of the
file.

WRITE routine.

A write operation adds a record to the end of the file. In
order for a write to be legal, the window of the file has to be
at the end of the file. The file name is fetched from the PB
after which access rights are checked. It may be necessary to
allocate free space in which case the PSA routine is called.
The actual write operation is done by calling the Disk Protocol
Handler routine. After a succesful write operation, the corres­
ponding Index node is updated and the window incremented.

READ routine.

The read operation is to a large extent analogous to the write
routine. Reading is done at the position pointed to by the win­
dow, one record at a time. The data read from the disk is
placed in a buffer in system memory. After creating the proper
I/O block, the Host Protocol Handler is called to transfer the
contents of the buffer to the Host.

SEEK routine.

Whenever the user wants to do a random record read, he has to
perform a seek operation, positioning the window at the record
he whishes to read. This is done by the SEEK routine. Speci­
fying the record is done by a number. Note that the SEEK rou-
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>-'N-'-----__-.l NO SPACE
ERROR

CALL:Free space
Administration
(FSA)

Figure 5.24, Create routine.
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error>-'-=-------1

N'------'-<error>-''"'-----..J
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ABORT
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protocol
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....
o
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figure 5.23. Control flow.



~~---~ NO ACCESS
ERROR

N NOT EOF
>-"'--------.1 ERHOR

y

FILE NOT
>--------11 OPEN ERROR
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window for
End Of File

almocated;>~y'----~====~ __

NO SPACE
ERROR

CALLI FSA N
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blocks

>.:.'---_-.lNO ACCESS
ERROR
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y

NO FILE
ERROR

Figure 5.25: Open routine. error >-'-y-------...I DEVICE
ERROR

Figure 5.26. Write routine.



~N~ ~ NO ACCESS
ERROR

EOF

found >--N ~ NO RECORD
ERROR

found ,r-'------tIFILE NOT
OPEN ERROR

Figure 5.28: Seek routine.

set window ----'--/
to EOF
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ERROR
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ERROR

DEVICE ..-------!..-<
ERROR

record in
workspace

y

Figure 5.27. Read routine.



tine does not imply a read operation.

INSERT routine.

The insert routine is complex in nature in that it implies dis­
tortion of the sequential order in which the records of a file
are stored on the disk. Nevertheless it gives the user the very
powerful option of adding a record to a file at an arbitrary
position, thus enabling updating and extending of files.
An INSERT command has to be preceeded by a SEEK command to
position the window at the desired position in the file. To al­
low for insertions in the sequential storage structure, one has
to introduce a new type of pointer, the indirect pointer. The
alternative to this method is alter the pointers following the
position of the record to be inserted. This would involve ex­
tensive data movements and would thus be time consuming.
By using indirect pointers, the only penalty paid is a slightly
slower access to records of a file beyond an insertion point.
Figure 5.29 illustrates this method.
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Figure 5.29: Record insertion.

Insertion of records implies a fair amounth of administration
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y DEVICE
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create Disk access
parameter block
to store record
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y
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change last
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ERROR
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old seq pointer

............

first entry in
new ptr block:=
last two ptrs of
old tr block
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of old ptr block
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down.

A

Figure 5.30. Insert routine.



and results in a slower access response. It would be good poli­
cy to try and restrict the use of this option to a selected
group of users.

ERASE routine.

The user can remove a record from a file at an arbitrary posi­
tion within the file. To do this, he has to perform a seek
operation to the record he wishes to remove. Upon calling the
erase routine, the pointers to the disk blocks containing the
data of that record are set to deleted. This means these poin­
ters are still present but not accessable. The blocks turned
free by the removal of the record are registered as free blocks
again by the Free space Administration.

CLOSE routine.

Calling the close routine results in the removal of the speci­
fied file from the open file table. As such, this routine is
quite similar to the open routine.

DELETE routine.

The delete routine removes the directory entry of the specified
file from the directory list. All blocks on the disk containing
the data of this file are returned to the Free Space Admini­
stration. Before returning control to the command handler, the
deleted file name with its corresponding I node are added to
the recover file.

RECOVER routine.

Whenever a user decides to try and recover a previously deleted
file, the command handler will call the recover routine. After
confirmation of the fact that the file to be recovered was ac­
tually deleted, the recover file is read into workspace.
Whether it can be recovered or not depends on its presence in
this file. If it is, a comparison is made between the I node
contents and the Free Space Administration to see if the blocks
previously occupied by the file are still free. If not, reco­
very is impossible since the data of the file was overwritten.
If the blocks in question are still free, they may still con­
tain the original data allthough there is no certainty. By
creating a new I node the data of the file are made available
to the user. It is the user's responsibility to verify the
contents of the recovered file.
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Figuxe 5.32: Close xoutine.

NO ACCESS
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FILE NOT
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NO RECORD
found>...:.-------tt ERROR

........
w

Figuxe 5.31. Exase xoutine.
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directory
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create I/O block
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file
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are still free

NO FILE
ERROR

name
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directory
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....
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CALL: FSA
re-allocate
free blocks

free >-:.:N ---tI NO RECOVER
ERROR

Figure 5.33. Delete routine. Figure 5.34: Recover routine.



DIRLIST routine.

The DIRLIST routine starts with inspecting the parameter block
for a file name. If no file name is present, it assumes the
user wants a listing of the root directory and makes a copy of
the root directory"s I node in an area of workspace called the
Current Index Node (CIN). If a file name was specified, a check
is performed on the file type of that file to see whether it
actually is a directory type file. If not, an error condition
occurs.
The I node which is present in the CIN is subsequently scanned
to obtain all file names and file types it points to. This in­
formation is stored in a buffer. When the end of the directory
has been reached, the contents of the buffer is transfered to
the host by calling the Host Protocol Handler.

RENAME routine.

The renaming of a file is quite a simple operation. Some checks
are built in. Pirstly to verify whether the file to be renamed
exists at all, secondly whether the new name supplied by the
user was not previously used for naming another file.

ENQUIRY routine.

The explicit function of the enquiry routine is to fetch the
information stored in the Index node of a file and make this
information available to the Host. Por this purpose, the direc­
tory is searched until the specified file name is found. The
information present in the Index node is transfered to a buffer
which is subsequently sent to the Host.

5.5.2. Pree Space Administration.

The Pree Space Administrattion entails a dual function:

1. Registration of used and free disk blocks.

2. Allocation and re-allocation of blocks.

Registration.

Por the registration of free and occupied blocks, a bit map ap­
proach was chosen as explained in chapter 3.
Since every position within the bit map corresponds to a physi­
cal block (or sector) on the disk, a translation from bit posi­
tion to disk address must be made.
~e bit map is made of an array of consequetive words, starting
w~th word number zero. A bit map address consists of a word
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number and an offset into that word. A disk address is made of
a head, cylinder and sector number.

Q

p

15

HEAD ra

I~

HEAD 2

e
1

N-1
N
N+1

2N-1
2N

Figure 5.37: Bit map.

The mapping procedure is illustrated by figure 5.37. Given the
position of a bit within the bit map as P,Q where P equals the
word number and Q the offset value, the disk address can be
calculated as such;

Head number P div N
Cylinder number = «P-P div N)~ 16 + Q) div M
Sector number"" «P-P div N)~ 16 + Q) mod M

where N =
M

(no.of cylinders ~ no.of sectors/track)/16
no.of sectors/track.

Reversely, the bit position of a block within the bit map can
be calculated from the disk address H,C,S by;

P = (H ~ N + C ~ M + S) div 16
Q (H ~ N + C ~ M + S) mod 16
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To give an impression of the size of such a bit map, an example
of a medium sized Winchester drive is given below.

Capacity
No of heads
No of cylinders
No of sectors/track
No of bytes/sector

34 Mbyte formatted.
4
1024
17
512

Total number of blocks
Bit map size required

69632
4352 words

Thus the bit map would occupy 9 blocks on the disk in this
particular case.
Note however that when the number of sectors per track is not a
power of two, the arithmetic operations involved in mapping
between bit map address and disk address becomes quite complex.

Re-allocation.

Blocks being turned free, probably as a result of the deletion
of a record or a file, have to be registered as such. This
means converting the corresponding disk addresses to bit posi­
tions within the bit map and setting these bits to indicate
free blocks. A check to see whether the block turned free was
actually occupied is also performed in the process. Refer to
figure 5.38.

address

calculate bit
position in
bit map

test current value
of bit in bit map

set error
flag

Figure 5.38: Re-a110cation.

y

set bit to "block
free"
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Allocation.

Allocation of disk space to a file or record is done by request
from the command handler. A few things should be considered
when designing an algorithm for this purpose.

- Assigned space should be contiguous as much as possi­
ble in order to minimize head movements and thus to
reduce average access time.

- space assigned to an existing file for the purpose of
extending it should be as close to the old file posi­
tion on the disk as possible for the same reason.

- Garbage collection, i.e. moving files across the disk
to create contiguous free space, should only be done
when disk saturation occurs.

- Generally, newly allocated blocks should be at the
end of the previous allocation, i.e. the disk should
be filled from the lower tracks upwards. This is to
prevent tedious fitting in of blocks in small area's
previously turned free by the deletion of records,
when there is still sufficient contiguous free space
on the upper tracks.

In order for the allocation routine to meet these requirements,
it requires knowledge of the following information:

1. Number of blocks to be allocated.
2. Position of the last allocated block.
3. Pile extension or new file.
4. In case of a file extension, position of the last

block of the file.

NUMBER OF NEW FILE/
BLOCKS EXTENSION

CYLINDER ADDRESS

HEAD NUMBER SECTOR nUMBER

CYLINDER ADDRESS

HEAD NUMJ3ER SECTOR NUMBER

BUFFER POINTER

ERROR FIELD

Request information

Last allocated block
address

Last block of file to
be extended

Pointer to memory space
where block list must
be stored.

Pigure 5.39: Allocation routine PB.
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search from calc
pOSe for one
free block

calc disk adr and
add to buffer

set last alloc.
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list
file
at a
pro-.

Calling the allocation routine results in the return of a
of disk addresses which can be assigned to the record or
they where requested for. This list is stored in workspace
location pointed to by a pointer supplied by the calling
cess.
Communication between calling process (command handler) and
allocation routine is performed through a parameter block. The
format of this PB is shown in figure 5.40.

5.5.3. Pile Management.

The Pile Management section is made up of a database, contain­
ing all the lists and tables required for the file access
mechanism, and a set of routines that operate on this database.
The list and tables mentioned were described in chapter 3 pre­
viously. The set of routines described below, offers additional
service to the process that wishes to use the information con­
tained in the database.

Access right control.

Using the information stored in a file"s index node regarding
the identity of the file"s user and owner in conjunction with
the kind of access requested, the access rights can be checked.
Three types of access are possible, read only, read/write and
execute only. Also, three levels of access authority are dis­
tinguished, owner, user and group. Hence the format of the
access information field in the I node is as such:

OWNER
exc r/w ro

USER
exc r/w ro

GROUP.
exc r/w ro

x x x x x x x x x

Index node create routine.

When called by the create routine of the command handler, this
service routine configures and stores a new Index node using
the information supplied by the calling process.

Search file name.

This routine searches through a list or table, depending on the
process which called it, and when found returns a pointer to
the location where the filename was found. When not, an error
message is returned. Normally this search would be lineair
since no ordering of file names takes place.
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5.5.6. Error Handler.

As can be seen in the flowcharts presented in this chapter,
several error conditions can occur at various points during
program execution. The purpose of the error handling routine is
to minimize the effects of these error conditions and to pre­
vent them from obstructing further operation of the controller.

Error conditions are divided into three categories:

1. Recoverable errors.
2. User errors.
3. Fatal errors.

5.6.1. Recoverable errors.

are those errors whose effects can be elimi­
trying to obtain the same result through an
by simply retrying the operation that caused

Recoverable errors
nated by either
alternative way or
the error.
Recoverable errors frequently occur in communication processes
where the loss of some information caused by external inter­
ference results in an error condition. By retsarting, the same
error will usually not occur again. Most of the errors that can
be avoided or compensated for this way, are covered locally in
the software in the software routines. Refer in particular to
the frequent occurence of time-out loops in the host and disk
protocol handler routines. Only after a predetermined number of
retries, a fatal error is signalled.

Another type of semi-recoverable error is the one that occurs
when requested free disk space is not available, the so called
NO SPACE ERROR. Three possibilities exist to overcome this
problem:

through the file
the disk that are

the process, all
avoid small unsused

1. Garbage collection. By searching
management table-s, all areas of
not in use are turned free. In
files are rearranged so as to
gaps between them.

2. Change volume. Though disk space is usually reques­
ted on a specific volume, it could in some cases be
diverted to another where more space is available.
Note that this has considerable consequences for the
file administration information.

3. Return to User. By returning to the user, it becomes
his responsibility to create free space by deleting
one or more files or records. Thus, a status I/O
block is configured and sent to the host.
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5.6.2. User errors.

A considerable percentage of errors falls into this category.
User errors are caused by the issuing of non-executable com­
mands by a user. Upon detection of such an error condition, the
controller aborts its current process, typically the execution
of a user command, and creates a status I/O block, informing
the user of the kind of error he made. Armed with this infor­
mation, the user can take the appropriate action.

User errors are: PILE NOT OPEN
NO PILE
NO RECORD
NO ACCESS
NOT EOP
CREATE
NO RECOVER
NOT DELETED
NO DIRECTORY
ILLEGAL NAME

5.6.3. Patal errors.

As the name suggests, these kinds of errors result in a situa­
tion the controller cannot handle. Generally this means a hard­
ware failure occured in the controller itself or in the Host"s
communication section.

Patal errors are: DEVICE ERROR, controller module malfunction.
COMMUNICATION ERROR, Time-out occured during

DMA transfer or busy wait.
HOST ERROR, Host does not respond correctly

Upon detection of a fatal error, the controller enters an idle
state.
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Chapter 6. CONCLUSIONS AND RECOMMENDATIONS.

Due to the fact that the controller module used in this design
was not available at the time, no prototype could be built and
tested. Therefore, no experimental data or test results can be
presented here. Nevertheless, the design presented in this re­
port is considered to be a feasible solution to the interface
problem associated with the application of Winchester Disk
Drives.

6.1. Conclusions.

The most predominant advantage of the design at hand is the
high degree of service it offers to the host computer. The com­
mand level supported by this controller related to file manipu­
lation is comparable to that of a high level language like Pas­
cal.

From a dsigner-s point of view, the use of an integral control­
ler module like the MSC 9000 eliminates the traditional design
problems of the disk controller unit hardware. The penalty for
this is a lower degree of flexibility in respect of interface
standards and drive types that can be accommodated.
Additionally, a controller conform this concept is inherently
expensive compared to those that lack a DOS facility. Thus it
application is restricted to small and medium sized mini-compu­
ter systems, rather than micro-systems.

The use of the UNIX operating system as a guide-line for desig­
ning the controller's DOS proved advantaguous since UNIX offers
a straightforward file structure and storage organization. Un­
fortunately it will be impossible to implement a UNIX compati­
ble operating system in the controller since UNIX uses special
files for I/O operations. This requires the neccesary file
organization information to be present at the host which is ex­
actly what should be avoided by using an intelligent
controller.

The aspects mentioned above should be considered seriously when
deciding for an approach like the one described here.

6.2. Recommendations.

Some recommendations can be made to enhance the design for
future follow-up of the project.
Firstly, the introduction of the Intel 80186 single chip compu­
ter during this project, might prove to be a serious alterna­
tive to the co-processor system of 8086 and 8089. Allthough the
DMA controller imbedded in the 80186 is not as powerful as the
IOP, it could prove to offer sufficient service for this appli­
cation.
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The suggestion to use programmable logic (PPGA's/PAL's) instead
of a controller module as is done here, is repeated. Also, it
would be wise to use controller modules that support a standard
interface to there host e.g. the SASI interface bus.

Pinally, it would be advantaguous to allow the controller di­
rect access to the host's memory. Allthough the idea of buffer­
ing in the controller is not a bad idea in itself, the extra
work of moving information from this buffer to the host could
be avoided by granting the controller direct access to the host
memory. A condition for this approach is the rewuired compati­
bility between controller and host bus system. In particular a
dual port memory system at the host would suit this applica­
tion.
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Appendix B. MSC 9000 DATA SHEET.

MSC-9000 SERIES
DISK ORIENTED I/O PROCESSORS

PRODUCT SPECIFICATION

Write Long
Status Report
Format Track
Write Check

The MSC-9000 is a series of modules which incorporate
75% of the circuitry required to interface to small Winchester
disk drives. There are two modules, each with identical
features but with functional differences to accommodate
either the Memorex 101, or Seagate Technology ST-506 disk
drive. The functions incorporated within each module of the
MSC-9000 series allow high level tasks to be communicated
with it, achieving sophisticated control of the disk drive with
minimum additional circuitry. Signals are provided allowing
the easy implementation of simple interface circuits to
control up to 4 disk drives. The MSC-9000 simplifies and
handles most of the burdens associated with implementing a
disk drive controller.

There are twelve separate commands which the Module
will execute. Each of these commands requires multiple 8
bit bytes to fully specify the task.

Seek Read Sector
Recalibrate Write Sector
Diagnostic Read Long
Set Interleave Write Alt. Sector

FEATURES

• Alternate sectoring for defect skipping.
• Variable interleave for data transfer rate tuning.
• Sophisticated error correction ensures data integrity,'

detecting up to 22 bit burst-errors and correcting up to
11 bit bu rst-erro rs.

• Full Sector Data buffer allows flexible data rates without
affecting data transfer integrity.

• Automatic position verification to ensure data base
integrity.

• Self-diagnostics assures easy maintainability.
• Proven technology for attaining high reliability.
• Compact Module ensures easy integration into strin-

gent space restrictions.
• Low power consumption (4W typical).
• High level modularity ensures high maintainability.
• Universality assures easy integration for most system

requirements.
• Supports up to 4 disk drives.
• Automatic Retries

TO DISK
INTERfACE

DATA BUS

INOEX

DISK
CLK ORIENTATION POSITION

• MANAGEMENT
AMD

VCC ..
ERROR

GROUND CORRECTION
•

+
..-- REAO DATA

RESET DATA <=- WRITE OATA
BUffER DISKSTROBE

DATA READ GATE
BUSY t MANAGEMENT

WRITE GATE
READY CONTROL l+- i-

PROCESSOR ~ PLO CLOCK

COMMAND MODE DISK DCI

I-- f- STATUS
LOAD DATA IN AND DCO

CONTROL
DCVALIDSL512

DATA OUT
'"""--- DATA OUT

..... ....
...., v

MODULE
POWER AND

CLOCKS

TO HOST
INTERfACE

Figure 1
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MSC-9000

CDi
5OO'i'
UNUSED
Wi
AMD

AMD

SL512
DCO

DCl

UNUSED
UNUSED
UNUSED
CMD
UNUSED
UNUSED
RDY
8SY
DcV
CLK
GND

PIN CONFIGURATION

01 400
02 390
o 3 380

0 4 370
05 360
o 6 350
o 7 340
08 330
09 320
010 310

0'1 300
012 290
013 280
014 270
015 260

0 16 250
017 240
018 230
019 220
020 210

vce
vce
DTA7

DTAO

DTAl

DTA6

DTA5

DTA2

DTA3

DTA4

PLO
INDX
WDTA

WGTE

ROTA

RGTE
PSTN
UNUSED
STB
GND

No Symbol Name I/O Function

lDI load Data In 0 Active low output. When ROY is active this signal should
be used to Gate Host data onto the data bus for input to the
module.

2 DOUT Data Out 0 Active low output. Indicates the data bus contains valid
data output from the module to be stored in the host
interface when ROY is active, or the disk interface when
DCV is active.

4 ClR Clear Active low input. Clears the Module.
'5/6 AMD AM DETECT Active low input. Address mark detect from data separator.

7 Sl512 Select 512 512 Data Bytes per Sector when = 1, 256 when = O.
8 DCO Disk Control 0 0 Active high output disk interface control signals. These
9 DCl Disk Control 1 0 signals are encoded for which disk status or control in-

formation is on the data bus when DCV is active. See
Table 1.

13 CMD Command Active low input. Requests the Module to enter command
Mode mode to enable giving it the command descriptor on the

data bus. Command mode will only be entered when
module is not busy (BSY = 0). This signal can be res9t
anytime after the module accepts the first byte, it must be
inactive before the module returns to Not Busy.

16 ROY Ready 0 Active low output. Signifies when data can be transferred
and Strobe can be activated.

17 BSY Busy 0 Active high output. Signifies when module is processing
(or acting on) command descriptor given to it. When low
signifies idle and ready to accept command descriptor.

18 DCV Disk Control 0 Active low output. Indicates when the disk control signals
Valid DCO and DCl contain valid control signals to define the

use of the Data Bus. See Table 1.
19 ClK Clock 4 MHz Clock input.

20,21 GND Ground D.C. Power Ground
22 STB Strobe Active high input. Strobes data in or out of module. May

only be set when ROY is active.
""24 PSTN Position Active high input. Pulse for defining the rotational posi-

tion of the disk. Sector Pulse in MSC-9016 from Memorex
101.

25 RGTE Read Gate 0 Active high output. Read Gate for disk drive.
26 ROTA Read Data I Active high input. NRZ serial read data from disk drive or

data separator.
27 WGTE Write Gate 0 Active high output. Write Gate for disk drive and data

separator.
28 WDTA Write Data 0 Active high output. Write Data for disk drive or MFM

encoding circuit.
29 INDX Index Active high input. Index pulse from disk drive.
30 PlO PlO Clock Active high input. PlO clock from disk drive or data

separator for Strobing read and write data.
31-38 DTAX Data X Active High Tri-State Bidirectional 8 bit Data Bus. NOTE:

This bus should only be driven from outside the module
when ROY and lDI or DCV are active. See Table 1.

39,40 VCC Power +5 Volt D.C. Power.

'Not used on MSC-9016 for MRX10l - Pull up to VCC through 1KO Resistor for ·9016.

'·Not used on MSC-9056 for ST-506-Tie to ground for -9056.

Note: Unused Pins Must Be Left Open.
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MSC-9000 COMMAND SET DEFINITIONS

CODE '0' SEEK-The seek command moves the heads
to the specified absolute cylinder. The disk
must be formatted.

'" READ ONE SECTOR-The read one sector
command transfers one sector of data from
the disk to the host system. During this com­
mand, the Module positions the heads (im­
plied seek), verifies the ID field, transfers the
sector data to the module, and checks and
corrects data errors prior to transferring the
data to the host.

'2' WRITE ONE SECTOR-The write one sector
command transfers one sector of data from
the host to the disk. During this command, the
Module transfers one sector of data from the
host to the internal buffer, positions the heads
(implied seek), verifies the ID field and if
proper, writes the data to the disk.

'3' FORMAT ONE TRACK-The format one track
command initializes all ID and data fields for
the specified track. The data field is initialized
with a preset pattern of B6DB6D. The head
parameter is used to select the head ofthe disk
prior to formating, the cylinder parameter is
used to write the ID field.

'4' RECALIBRATE-The recalibrate command
positions the heads at track 00 on the disk.

'5' STATUS-The status command sends one
byte of status information to the host. The
status represents the results of the previous
task.

'6' READ LONG-The read long command trans­
fers one sector plus thefour ECC (Error Correc­
tion Code) Bytes from the disk to the host.
During this command, the module positions
the heads (implied seek), verifies the 10 field,
transfers the sector data to the module, and
then transfers the sector plus ECC Bytes to the
host. The module does not try to correct the
data field if an ECC error occurs during the
read. This command can be used to verify the
ECC function of the module.

NOTE: Four retries will automatically be invoked if an
error is encountered during any of the following
operations:

• Position Verification (Seeking)
• Target Sector Verification
• Hard ECC Error on Read Sector
• Write Alternate Sector

CODE '7' WRITE LONG-The write long command
transfers one sector plus four ECC Bytes from
the host to the disk. During this command, the
module transfers one sector plus the ECC
Bytes from the host to the internal buffer, posi­
tions the head (implied seek). verifies the ID
field, and writes the data and ECC to the disk.
This command can be used to verify the ECC
function of the module. The appended ECC
polynomial should be (XJ2 + X2J + X2' + X" +
X2 + 1).

'S' WRITE ALTERNATE SECTOR-This com~

mand is used to reassign a defective sector to
the alternate location on the track. During this
command the module formats the entire track
and initializes all data fieldS with B6DB6D. The
specified Sector is assigned as defective and the
alternate sector is assigned as a replacement.
Note that if the rest of the track already contains
data it must be preserved by reading all sectors
and re-writing all sectors after the alternate
assignment (this command) is executed.

'9' SET INTERLEAVE-This command transfers a
block of data into the Module which represent
the interleave table of logical to physical as­
signments. After CLEAR or diagnostic com­
mand, the Module defaults to no interleave
until this command is executed.

'A' WRITE CHECK-The command is identical to
the READ Sector command, without any data
transferred. It can be used to verify the
previously written data can be read without
ECC errors.

'B' DIAGNOSTIC-This command causes the
Module to execute a self-test; checking its
internal processors', data buffers, ECC cir­
cuitry, and Program memory. A STATUS
command can then be performed which will
give the results. If this command does not
complete within 2 seconds the Module has a
defect which prevents communication. This com­
mand will leave the module in a clear state.
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MSC-9000 COMMUNICATION

TABLE I-Data Bus Contents with DCV = 0

DC1, DCO

00 01 10 "11
Output Head Output Drive Input Status Reset
and Control Select AM Detect
(DOUT = 0) (DOUT = 0) (DOUT =0)

MSC·9016

Do

I
Head 0

!
Select 0 Track 00 N/Ai

D, Head 1 ; Select 1 Write Fault N/AI

D2 Head 2 Select 2 Seek End N/A
D] Head 3 Select 3 Drive Ready NIA
D. Step
Ds Direction Select
D6 Fault Clear I

D7 I

MSC·9056

Do

I

Head 0 Select 0 Track 00 None
D, Head 1 Select 1 Write Fault None
D2 Head 2 Select 2 Seek End None
D] Head 3 Select 3 Drive Ready None
D. Step Write Address Mark None
Ds Direction Select None
D6 None
D7 Reduce Current None

*This function is not used in the MSC·9016

All commands are sent to the Module using 8 Bytes of information over the Module Data Bus (BIT 0 =LSB) in the
following format.

Byte 1 Command Code
Byte 2 Drive Select (one of four)
Byte 3 Cylinder Address-Most Significant Byte
Byte 4 Cylinder Address-Least Significant Byte (Maximum numbers of cylinders =1024)
Byte 5 Head Address
Byte 6 Sector Address
Byte 7 Sector Count Hi
Byte 8 Sector Count Low

If a command does not require the full 8 Bytes, then Pad Bytes must be included to maintain the 8 Byte message
length. After the task is sent to the Module, data will be transferred (in or out) when the task is executed.

The Task Bytes are represented as follows:

Byte Task Bytes 07 06 Os 04 03 02 0, Do

1 Command Code , 0 0 0 23 22 2' 2°
2 Drive Select (one of four) 0 0 0 0 D4 D3 D2 D,
3 Cylinder Address (MSB) C,s C14 C13 C,2 Cn C10 Cg Ca
4 Cylinder Address (LSB) C7 C6 Cs C4 C3 C2 C1 OJ
5 Head Address 0 0 0 0 H3 H2 H, I-b
6 Sector Address S7 S6 Ss S4 S3 S2 S1 SJ
7 Sector Count Hi 0 0 0 0 0 0 0 0
8 Sector Count Low 0 0 0 0 0 0 0 1

I =Retrres can be Inhibited by setting bit 7 in command byte.
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MSC-9000 COMMUNICATION SEQUENCE SUMMARY

Data Bytes

CMD DRV CYL CYL HD SCT SCT SCT Number In/Out of
COMMAND CODE NBR MSB LSB ADR ADR HI LOW of Bytes Module

SEEK 0 X X X - - - - - -
READ 1 X X X X X X X N OUT
WRITE 2 X X X X X X X N IN
FORMAT 3 X X X X - X X - -
RECALIBRATE 4 X - - - - - - - -
STATUS 5 - - - - - - - 1 OUT
READ LONG 6 X X X X X X X N+4 OUT
WRITE LONG 7 X X X X X X X N+4 IN
WRITE ALT. 8 X X X X X - - - -
SET INTERLEAVE 9 - - - - - - - S IN
WRITE CHECK A X X X X X X X - -
DIAGNOSTIC B - - - - - - - - -

Byte Interleave Table Contents

20 Physical location of logical Sector 20

37 Physical location of logical Sector 37

o Physical location of logical Sector 0
1 Physical location of logical Sector 1

STATUS CODE TABLE
CODE MEANING

00 No Error
01 Invalid Command
02 Drive Not Ready
03 Seek Timeout (2 Seconds)
04 Invalid Track 00 indication from disk drive
05 AJlID Fields Bad on Track
06 Target Sector Not Found
07 No Sector Found and 10 ECC Error on Target Sector
08 Position Error (Seek Error)
09 Defective Module or Support Signals
OA Drive Fault Active
DB Index/Sector Timeout
OC Command Parameter Error
00 Uncorrectable ECC Error
IX Correctable ECC Error
20 Write Alternate Error
21 Invalid Alternate Sector Assignment
22 Alternate Already Assigned
23 Direct Access to Alternate Sector
24 Defective processor
25 Defective Buffer Memory
26 Defective ECC Circuitry
27 Defective Program Memory
28 Illegal Sector Pulse during diagnostic
29 Illegal Interleave Table Parameter

NOTE: X is the length of the burst error which can be 1 to B
to note if the correction span was 1 to 11 bits.

21
17

512 Bytesl
Sector

38
32

256 Bytesl
Sector

Module Type MSC-9016
MSC-9056

Sectors Per
Track

(5) is the logical to Physical interleave table with the
number of bytes equal to the number of Sectors per track.

(X) represents a task byte is required. (-) represents a Pad
Byte is required.
(N) is the number of Data bytes per Sector which can be
selected to be ~56 or 512.
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MSC-9000 MSC-9000 SERIES D.C. CHARACTERISTICS

Ta = O°C to +50 0 C; Vee =+5V :!:5% unless otherwise specified.

Limits Test
Parameter Symbol Min Typ(1) Max Unit Conditions

Input low Voltage V,L -0.5 0.8 Volts

Input High Voltage V,H 2.5 Vee +·5 Volts

Output low Voltage VOL 0.45 Volts IOL=Max

Output High Voltage VOH 2.4 Vee Volts IOH=Max

Vee Supply Current lee 0.8 1.4 Amps

Note 1: Typical values for T.=25°C and nominal Vee.

OUTPUT CURRENT (MIN)

Signal

lDI, DOUT

RDY

DCV

BUSY, WGTE. WDTA

RGTE

DJ-D7

DCa, DC1

Signal

CMD, AMD, SL512

ClR

Do-D7

PSTN,INDX

ClK

STB

PlO

RDTA

High Level IOH (;.LA)

160J,LA

200
400
400

400
80

140

INPUT CURRENT (MAX)

High Level IL1H (p.AI

10

90

120

50

160

80

60

40

LOW Level IOL (mA)

2.5mA

3.2
8.0

2.8

5.6

.90mA

1.36

Low Level ILIL (mAl

10(p.A)

1.7

.88

2.0

2.1

1.5

1.2

.8

Ta = 25°C; Vee =OV OUTPUT CAPACITANCE-50pf max

Absolute Maximum Ratings*

Operating Temperature
Storage Temperature
All Input Voltages
All Output Voltages
Supply Voltage Vee

DOC to +50oC
-40°C to +125°C
-0.5 to +7 Volts
-0.5 to +7 Volts
-0.5 to +7 Volts

Comment: Stress above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

NOTE: Failure to observe conventional precautions during storage, handling. and usage, in order to avoid exposure to
excessive voltages or static charges may affect device reliability.
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MSC-9000 TIMING CHARACTERISTICS

Host Data Input To Module

MIN TYP MAX UNITS

75 NS
0 NS

560 1175 NS
32 NS

270 NS
485 915 NS

873 KBi sec.

ROY __I
lOi -.j-""'I-"--'2-5-n-Se-c-ty-P.-----,-..----T-LP-----------------....-I-------

--:....-1 1 L

I
Tlsl-.. __ TSL __.! TLS I

STB 1 1.-1 _

0,-0,(1]~ IT'b&

rTL01
MIN TYP MAX UNITS

TLo LDI LOW TO DATA ENABLE 0 NS
Tos DATA SETUP FROM STROBE 100 NS
TOH DATA HOLD FROM LDI HIGH 5 115 NS
TSL STB HIGH TO LDI HIGH 580 1235 NS
TLs LDI HIGH TO STB LOW 0 210 NS
TLP LDI HIGH TO LDI LOW 248 748 NS
Max DATA INPUT RATE 957 KB/ sec.

(DISK WRITE)
TIS LDI LOW TO STB HIGH 0 NS

Host Data Output From Module

ROY ---,I-~------------------------J~
I I 375 nsec typo I~" TOP __~"I

OOUT ---J r---11- 1 L

~
TOS--i..*I....__ TSO--..1 Tos I

STB___ ! IToH 1..1 _

TO: I I
0

0
.07 ~<XXXXXXX~~~~.,.~---------...:.....XXXXXXXXX>O

TOA DATA VALID FROM DOUT LOW
Tos DOUT LOW TO STB HIGH
Tso STB HIGH TO DOUT HIGH
TOH DATA VALID FROM DOUT HIGH
Tos DOUT HIGH TO STB LOW
Top DOUT HIGH TO DOUT LOW
Max DATA OUTPUT RATE

(DISK READ)
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MSC-9000 TIMING CHARACTERISTICS

Reset Timing

Vee _--J

ClR ~":~~_- -_TP_eL_R~~_-_-_-_~...;V

TPClA :: 10 MILlISEC (MIN)
TWClA:: 1 /-,SEC (MIN)

Clock Timing

~__ TCYL __-.,

VIH -----_�_

VIL ----~H

TCLK

TClK :: 110 NSEC (MIN)
TCYl :: 250 NSEC ± 1%

VIH :: Vcc - O.8V
Vil :: O.8V
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MSC·9000

DCV

DCO, DCl

DOUT

00-07
(OUT)

TIMING CHARACTERISTICS

Disk Control Timing

TOCVL

\ V
V

1\
TOCS TOCH

I
I

VALID I

\ /
V

TOH

f-T
o

_

~~ VALID X
TOCVl = 625 NS
Tocs = 212 NS (MIN)
TOCH 51 NS (MIN)
To 30 NS (MAX)
TOH 52 NS (MIN)

Disk Data Timing

I~...- __TCYL---...I

PLOCLK
TAOS T AoH

ROTA

WDTA ....;.".."""'_\.

TCYL 192 NS (MIN) (50%±10% DUTY CYCLE)
TROS 20 NS (MIN)
TROH 20 NS (MIN)
Two 55 NS (MAX)
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MSC-9056 FORMAT

I

.. ID FIELD .. DATA FIELD

AM IGAP1 SYNC1! GAP21 COM ICYLH ICYLL IHEAD ISEC IFLAG IALT IECCI GAP3 SYNC2[ GAP41 DATA IECC2 GAPS I

FIELD FIELD DESCRIPTION # OF BYTES

AM ADDRESS MARK 4
GAP1 ZERO BYTE GAP 9
SYNC1 ID SYNC BYTE 1
GAP2 ID ZERO BYTE GAP 2
COM ID COMPARE BYTE 1
CYLH CYLINDER HIGH (MSB) 1
CYLL CYLINDER LOW (LSB) 1
HEAD HEAD # 1
SEC SECTOR # 1
FLAG FLAG BYTE 1
ALT ALTERNATE SECTOR 1
ECC1 ID ECC BYTES 4
GAP3 ZERO BYTE GAP 16
SYNC2 DATA FIELD SYNC BYTE 1
GAP4 DATA FIELD ZERO BYTE GAP 2
DATA DATA FIELD 256/512*
ECC2 DATA FIELD ECC BYTES 4
GAP5 INTER-RECORD ZERO GAP 14/43*

*256 BYTE SECTOR/512 BYTE SECTOR

143
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Mechanical Dimensions

.021-.026 DIA PIN
TIN-LEAD PLATED

19 EQ SP
@ .100 =

1.900

1 20.......-_....
T

1.000"·010

l-

3.25%03

PIN 1

r- 3.25~03 ---..·1

Weight = 300 grams max. All Dimensions in Inches.

RECOMMENDED MOUNTING METHODS

1.) Wave or Hand Soldered wi .042 Min. Hole Dia.
2.) Sockets wi Mechanical Mounting to PCB.
Sockets: Augat ItB134-HC-6P2

8134-HC-6P3
Cambion 1t450·3703·01

450·3983-01

ORDERING INFORMATION

Model
MSC-9016
MSC-9056

Disk Drives Accommodated
Memorex-101, Fujitsu 2301
Seagate Technology ST-506
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Appendix C. WD CONTROLLER MODULES OVERVIEW.

C.l Controller hardware.

The layer between the Winchester and the software drivers (see
figure 1.1) is formed by the controller hardware. The control­
ler hardware is responsible for executing functions involving
data-conversion, AM detection and status and control handling.

Host interface I

protocol. I

File managment I

I

software
drivers

controller

drive interface I
protocol. I

Winchester
drives

Figure C.l.

Two approaches exist when designing the controller hardware.
The first and hitherto most commonly used approach is the use
of conventional TTL logic, usually in fairly large quantities.
Such a design can be customized to meet all the requirements of
the user. The price for this is a large number of chips, high
power consumption and little flexibility.

In order to overcome these problems, several manufacturers have
come up with functional modules, capable of performing many of
the functions required for drive control. Using such modules
lowers the amount of external hardware and simplifies control­
ler design. Since this is a fairly recent development, scarce
information is available on these modules. Nevertheless an at­
tempt is made to describe the functional features of some of
them.
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C.2. MSC 9000.

The MSC 9000, manufactured by Microcomputer Systems Corporation
,incorporates 75% of the circuitry required to interface to
small Winchester disk drives. Two models exist, each with iden­
tical features but with functional differences to accomodate
either the Memorex 101 or Seagate Technology 506 disk drive.
The functions incorporated within the modules allow high level
tasks to be communicated with it, achieving sophisticated con­
trol of the disk drive with minimum additional circuitry. Up to
four drives can be serviced by one module. Refer also to appen­
dix B.

The following lists all the commands the module is capable to
execute.

Seek Track.
Recalibrate.
Diagnostic.

- Set Interleave.
Read Sector.

- Write Sector.
Read long.
Write Alternate Sector.

- Write long.
- Status Report.

Pormat Track.
Write Check.

Commands are transfered in a 8 byte format as such:

Byte 1: Command Code.
Byte 2: Drive Select.
Byte 3: Cylinder Address.
Byte 4: Cylinder Address.
Byte 5: Head Address.
Byte 6: Sector Address.
Byte 7: Sector Count Hi.
Byte 8: Sector Count Lo.

Commands that don"t require the full 8 bytes like Status re­
port, use pad bytes to maintain the 8 byte length.
sector size is software selectable to 256 or 512 bytes/sector.
Error bursts of up to 11 bits can be corrected and 22 bit burst
errors will be detected allowing high data integrity.

Data transfers.

The module transfers data in blocks that equal one sector on
the disk. Both programmed I/O and DMA transfer techniques may
be used. A built-in sector buffer compensates for speed dif­
ferences between controller and host. Maximum data-rates using
DMA are set to 957 Kbytes/sec for input to the module, 873
Kbytes for output.
Unfortunately the data-bus from the module is only 8 bits wide.
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Unfortunately the data-bus from the module is only 8 bits wide.
Using a 8089 I/O processor would limit the transfer speed to
625 Kbytes/sec since the 8089 requires eight clock cycles to
perform a memory to port or port to memory transfer. With a 5
Mhz clock this requires 8*200 nsec = 1.6 microsecs. A 16 bit
wide data-bus would permit maximum transfer rates to be achiev­
ed.

MSC 9100.

When controlling low-cost drives like the ST506, external cir­
cuitry for data-separation and AM detection is required, as
mentioned before. The MSC 9100 was developed to be used in con­
junction with the MSC 9000 to perform precisely these func­
tions. It comprises a clock generator, NRZ to MFM converter
addres mark detector/generator, phase locked loop and MFM to
NRZ converter. Control signals for precompensation are also
available from this module.

Interface.

The floppy extension interface is used for interfacing between
drives and controller. A universal bus is available for host
communication.

C.3 Western Digital 1010.

The Western Digital we 1010 is a 40 pin package, single chip
Winchester controller, capable of controlling an interesting
class of low-cost 5.25 and 8 inch Winchester drives. The chip
contains MFM encoder/decoder, address mark detector, high speed
shiftregisters, write precompensation and write splice avoidan­
ce logic. External sector buffering, phase locked MFM read
clock and high frequency detection must be added externally.

The command level is not as high as is the case with the MSC
9000. A brief survey is given in the table beneath.

-Restore
-Seek
-Read sector
-Write sector
-Scan ID
-Write format

automatic seek to track 000.
seek specific track.
perform a sector read.
perform a sector write.
scans track for ID field.
writes all necessary address marks
and data marks on a track.

Data transfers to and from the disk are made at a 5 Mbit/sec
speed which is compatible with most low-cost 5.25 inch drives.
The use of an external FIFO sector buffer enables DMA transfers
at any desirable speed. (limited by the FIFO and or DMA logic,
not by the controller chip. ) As with the MSC 9000, the extended
floppy interface is supported while the interface to the host
is universal.
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C.4. National Semiconductor chip set.

Only very recently, National Semiconductor Corporation announ­
ced a chipset, capable of supporting a large number of dif­
ferent Winchester drives. Depending on the sophistication of
the drive to be controlled, one or more of the chips are need­
ed. The four chips in the set are:

Pulse detector, converting analog pulse signals into
digital pulses.

- Data separator, generating a read clock and decoding
standard MPH data.
MPH data encoder.
Formatter, serializer, deserializer, doing all the
read/write formatting as well as serial-to-parallel
and vice versa data conversion in combination with
error detection and correction.

Combining these chips as required allows the construction of a
very flexible controller, supporting most of the existing con­
troller-to-drive interface standards.

A very usefull feature of the formatter chip is its possession
of a 16 bit wide databus to the host computer, thus allowing a
16 bit microprocessor to interface to the controller. Using a
8089 I/O-processor, 1.25 Mbyte/sec can be transferred between
the host and the controller under DMA. The controller itself
supports transfer rates to and from the drive at a speed of up
to 30 Mbit/sec.

C.5. Summary.

Based on the little information that is available about the
forementioned components, one can say that it is very cost ef­
fective to integrate them in any modern Winchester controller
design. It may be considered too soon but judging from the
above description, one might consider the National Chipset as
one of the better Choices. Unfortunately, no technical informa­
tion is available on it yet.
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Appendix D. CONTROLLER MODULE INTERFACE.

0.1. Introduction.

The interface hardware between the MSC 9000 controller module
and the processor system was described in chapter 4 of this
report. Prom the circuit diagram shown in Appendix A, one can
see that this traditional way of connencting a peripheral to a
processor system results in a circuit consisting of several
Plip-Plops and logic gates. Purthermore, the design of a cir­
cuit like the one shown, is rather heuristic, starting out from
timing diagrams which show the required sequence of events.
In this Appendix, an alternative is described using a Pield
progranunable Logic Sequencer (FPLS) to obtain a "clean",
straight-forward design method, resulting in a functional cir­
cuit with fewer chips.

0.2. Interfacing to a peripheral.

Pigure 0.1. below shows a generally applicable blockdiagram of
an interface between a peripheral and a processor or processor
system.

~ ~
data

~ Jtransceiver
"" ""

processor peripheral

T
~

l.- control
~

log i c

Pigure 0.1: Processor peripheral interface.

Traditionally, the block designated by "control logic" is built
with random logic circuitry. Depending on the complexity of the
interface, various chips are required, often not fully used.
The object of this PPLS approach, is to implement this control
logic block in one FPLS. This would result in a circuit diagram
which is almost identical to the block diagram in figure 0.1.
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Figure 0.2: FPLS based interface.

One important feature of a programmable logic control section
should be stressed. A FPLS is a synchronous device and thus
requires a clock signal to control its operation. Replacing a
pulsed mode, asynchronous interface circuitry like the one
shown in Appendix A will therefore have to be clocked at a rate
high enough to avoid delay's compared to the asynchronous solu­
tion. In this particular case where controller module and pro­
cessor system each have different clocks, the clock frequency
of the FPLS will have to exceed both of them. Since both con­
troller module and processor system only monitor their inter­
face signals at a minimal interval determined by their clock
periods, the maximal delay possibly introduced by a FPLS clock­
ed at a higher frequency would be equal to the clock period of
either the processor clOCk or the module clock.
Finally, a asynchronous circuitry has a delay caused by the ac­
cumulated propagation delay times of the gates invloved which
is usually in the order of 60 nsec. If the FPLS were to be
clocked at a frequency of 16 MHz, the same result would be ob­
tained.
The PLO (phase locked oscillator) output, present on the 8284A
clock generator of the processor system can be used convenient­
ly for this purpose. Its frequency of 15 MHz will result in
state transitions of the FPLS at 66 nsec intervals leading to
an average delay of 33 nsec.

0.3. Field Programmable Logic.

Field programmable logic devices were designed to avoid the
need of random logic often required to interface between advan­
ced, highly complex functional modules. These non-trivial ran-
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dom logic configurations rely
scale integrated logic circuits,
relatively high chip counts.

heaviliy on small and medium
whose fixed functions lead to

Signetics corporation offers a range of field programmable
logic chips, ranging in complexity from FPLG's (Field Program­
mable Logic Gate), FPLA' s (Field Programmable Logic Array) to
FPLS (Field Programmable Logic sequencer). The table below
outlines this product line along with some of its features.

FIELD-PROGRAMMABLE LOGIC FAMILY

Iw
c

I~

0
., ..

~o! :;; .. co ;:;

[ co
] ! :a -&c

8 'c ., .. ., ,. co cou S :;.; l!o .; Q, co '"Q, 8 :i: u ;3 u
c3 c3 < cod .5 u ::: ...

FPGA • ANDINAND
825102 9 ac 35 nS now N
825103 ~ yes

• AND-ORI 825100 8 T5 50 ns no.. N,F
NOR 825101 8 ac

FPLA
• AND-OR 825106 8 ac
• Sel~.nable 825107 ST5 nu 70 ns 4079 N

output 16 170

• AND-OR 825104
mA

• Complement 825105 80C
a"IV

FPLS • &-bit stall yes(3) 90 n. 4079 N,F
regillar

• 8.lJit output 8TS
regilllr

"'oc • open colloctor TS = thl'lHlall
'21N • pllllic F = Cardip
13Ie£ input m.., be optionally programmed as prlS8t.

Table 0.1.

These gate arrays provide a powerful alternative to random
logic, enabling systematic design, yielding power-, cost- and
PC board area savings.

FPLS description.

For the problem at hand we will focus on FPLS's, the most
powerful member of the gate array family. Basically, a FPLS is
a state machine, performing synchronously clocked logic sequen­
ces. State machines are known in two forms;

-Moore Machines, in which the output is a function of
the present state only.

-Mealy Machines, in which the output is a function of
both the present state and the present input.
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Figure 0.3. shows the basic architecture of a FPLS.

sent
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register

l'
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II

p~
combinational E-- output, ,

logic F register
,

'I'

stat e
state
output

Output

preset
Figure 0.3: MEALY machine.

With a FPLS, any logic sequence that can be expressed as a se­
ries of transitions between states, triggered by a valid input
condition at clock time T can be programmed. The number of sta­
tes involved depends on the complexity of the process involved
and is limited by the width of the FPLS state register. In the
case of a 82S105 FPLS, the state register is 6 bits wide so 64
different states can be defined. Expansion of the state regis­
ter by assigning part of the output register for this purpose
is possible at the cost of loosing input and output lines.
The maximum number of transitions is limited by the amounth of
AND gates in the AND array of the FPLS, in this case 48.

Figure 0.4. shows a typical state diagram. The state
the transition occurs is called the present state
which it terminates is refered to as next state N. A
allways causes a change in state but not necessarily
in the machines output F.

%~ '"~,"
Figure 0.4: state diagram.
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All states are arbitrarily assigned and stored in the state
register which has the next state information from the combina­
tional network as its inputs. state transitions can only occur
when the AND function of clock, present state and input condi­
tion is true. Figure 0.5. shows the architecture of a FPLS.

10
47

'">-
::> I,"-
"=

115

Po

~
- PROGRAM!

OUTPUT­
ENABLE
INPUT

P ENABLE

OUTPUTS
I--£>-- Fo

F,

ENABLE

Figure 0.5: FPLS architecture.

FPLS programming.

Programming of a FPLS can be done by means of a logic program­
ming equipment, similar to a PROM programmer. The input connec­
tions necessary to implement the desired logic function are
coded directly from the state diagram using a programming table
as shown in figure 0.7. In this table, the logic state or ac­
tion of control variables e,I,p,N and F associated with each
transition term Tn, is assigned a sYmbol which results in the
proper fusing pattern of the corresponding link pairs. In the
next section, an example of this state table will be shown for
the interface function at hand.

LIT: Electronics, July 5, 1979 pg 89-102.
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0.4. Design.

Designing the interface between controller module and processor
system using a PPLS, is now basically reduced to programming
the FPLS in the correct way. In order to do this, a state dia­
gram is drawn, reflecting the different states in which the
interface logic can be, as well as the input conditions that
cause a state transition and the output status of the PPLS re­
sulting from the transition. Refer to figure 0.6.

In order to be able to draw this diagram, two things are re­
quired:

1. Plow chart or Time diagram, showing the protocol
of the communication.

2. List of input and output signals involved.

Time diagrams are obtained from the data-sheets supplied by the
manufacturer of the peripheral, in this case, refer to Appendix
B. Prom these time diagrams, the correct sequence of events can
be deduced.
Below, a list of the signal lines involved along with a block
diagram of the interface set-up is given.

DATA

k: ~ TRANS ~ ~" v "CEIVER

EI'f ICKO

PROCESSOR -- MSC 9lHHl
ROY

SYSTEM
MODBSY Lol,
CMoREQ DOUr

I.- DRQ 1 BUSY
I'" FP LS ,

CLR
CMoSGN

~

ACK
, --
.... CMo

STROBE ....
ck -

A

PLO l'

Pigure 0.8: Signal lines.
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FPLS input signals.

CMDSGN:

ACK
ROY
LOI
COUT
BUSY
CLR

Issues a command cycle start request to the
controller.
Acknowledge data transfer.
Controller ready to accept or sent data.
Data input request.
Data output request.
Controller busy.
Reset interface.

FPLS output signals.

MODBSY:
CMDREQ:
DRQl
EI
CKO
CMD

STROBE:

Module busy indication.
Command byte request to processor system.
DNA request signal.
Enable input latch.
Clock output latch.
Signal command cycle start to controller mo­
dule.
Data transfer strobe signal.

The input- and output vectors for the state diagram shown in
figure 0.6. are as follows:

I: ROY LOI COUT BUSY CMDSGN ACK CLR
I6 IS I4 I3 I2 Il IO

0: CMDREQ MODBSY DRQl CMD STROBE EI CKO
P6 PS P4 P3 P2 PI PO

The format used at the state transition arrows is:

I6 IS I4 I3 I2 II IO / P6 PS P4 P3 P2 PI FO
INPUT CONDITION OUTPUT RESULT

Appearantly, the total number of states involved is 13, thus
only four bits of the state register are needed. Coding of
these states can be done arbitrarilly so the binairy equivalent
of the state numbers shown in figure 0.6 was taken. Pigure 0.7.
shows the corresponding programming sheet.

Once the FPLS has been programmed, the hardware of the inter­
face between the MSC 9000 controller module and the processor
system will look as is shown by Pigure 0.9. The difference with
the corresponding circuit diagram of Appendix A is obvious.
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BIPOLAR MEMORY DNiSION

FIELD PROGRAMMABLE LOGIC SEQUENCER

FPLS PROGRAM TABLE (Logic)

MAY 1981

825104 (O.C.)j82s105 (15.)
INTEGRATED FUSE LOGIC
SERIES 28

CUSTOMER NAME _

PURCHASE ORDER # _

SIGNETICS DEVICE # _

TOTAL NUMBER OF PARTS _

PROGRAM TABLE # REV __ DATE __

THIS PORTION TO BE COMPLETED BY SIGNETICS
CF (XXXX) _

CUSTOMER SYMBOLIZED PART # _

DATE RECEIVED _

COMMENTS _

I, P IH

i,j5 1 L

DON'T 1
1-,

CARE I

PROGRAM TABLE ENTRIES:
Cn lilt Pe

GENERATE I A

PROPAGATE I.

TRANSPARENT : -

Ne Fr

SET IH

RESET 1 L

NO 1
1-

CHANGE I

NOTES

1. The FPL~ is shipped with all links initially intact. Thus. a background of "0· for all
Terms. and an "H" for the PIE option, exists in the table, shown BLANK instead for
clarity.

2. Unused Cn, 1m• and Ps bit. ere normslly progremmed Don'I Care (-I.
3. Unused tranailion and output Terms can be left blank.

4. Letters in variable fields are used as identifiers by logic type programmers.

TRAHSITION TERM

~- -- - - -- -- .!HPUT VARIABLE (lilt) PRESEHT STATE (Pe)

HO. Cn 1 1 1 1 1 1 - ~- --,..- --,..---- - -- -- - ,..- -- -- -~-
5 4 3 2 1 0 g 8 7 8 5 4 3 2 1 0 5 4 3 2 1 0

0 - - - - - - ~ - - - - - L - _ 1-1

1 - - I..... 1,.1 L/ -
2 - '- J-I -I - L Y
3 t- t.. L - - "4 - .J - ~

5 - - ~ I~ '../ .- -
8 ~ - -7 - - -
8 - - --
9 - - - - 1-1

10 -' - - -11 - - -12 - - '-J - -
13 - L --14 .- - L '-' - -15 L J./ - - r.J /./ IL L
18 - -- - - - - .- - '- JJ -- J.IJ.I ,
17
18
19
20
21 -
22
23
24 /

25
28
27
28
29
30
31
32
33
34
35 k

38
37
38
39
40
41
42
43
44
45
48
47

OPTIOH (PIE) I L
OUTPUTTEIIM

HEXT STATE (He) OUTPUT FUNCTIOH (Fr)

- -- - -- -- - -- - -- -
5 4 '31-;- 1 0 7 8 5 4 3 2 1 0

- - l.. L H II"> L. IL. - L - l-
- - 1- H t.. '" I l- t- L H- - 1- I IIJ H '"' U - - - - - -- - L. j.J L- 0 - - - H L. -
- - 1-1 l-/ L.. - - IH -- - l.J L - ~ - /.J - - -- - l.r U - _ J.J - - -

- l. /... - - L - JJ - ,..
~ - ".. - - /.J -- _ -L - - - - -- J fj ~ - -IZ. - H - ,.

- - - ,.- - - t.. - L- L.. - - - - - -- J< - - - - -- - _ IJ-J ,.. - -- l.- .- _ ,/..J -- - If

- - t> - -II-J - - - J.I

o 7 Signetics
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